
I	 Getting Started
. What is
• Getting Started with C

The C Character Set
Constants, Variables and Keywords
Types of C Constants
Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constants
Types of C Variables
Rules for Constructing Variable Names
C Keywords

• The First C Program
• Compilation and Execution
• Receiving Input
• C Instructions

Type Declaration Instruction
Arithmetic Instruction
Integer and Float Conversions
Hierarchy of Operations
Associativity Of Operators

• Control Instruction in C
• Summary
• Exercise

1

2	 Let UvC

B

efore we can begin to write serious programs in C, it would

he interesting to find out what really is C. how it came into
existence and how does it compare with other computer

languages. in this chapter we would briefly outline these issues.

Four important aspects of any language arc the way it stores data,
the way it operates upon this data, how it accomplishes input and
output and how it lets you control the sequence of execution 01
instructions in a program. We would discuss ihe first three of these

ilding blocks in this chapter.

/

hat is C

Cisa programming language developed at AT & T's Bell

Laboratories ofliSAin 1972. It was designed and written b y a

man named Dennis Ritchie. in the late seventies C began to
replace thiorc familiar languages of that time like PL/l,

ALGOL, etc. No one pushed C. It wasn't made the 'official' Bell

Labs language. Thus, without any advertisement C's reputation

spread and its pooi of users grew. R i tchie seems to have been

rather surprised that so many programmers preferred C to older
languages like FORTRAN or PL/I, or the newer ones like Pascal

and APL. But, that's what happened.

Possibly why C seems so popular is because it is reliable, simple

and easy to use. Moreover, in an indusuy where newer languages,
tools and technologies emerge and vanish day in and day out, a

language that has survived lbr more than 3 decades has to he really

good.

An opinion that is often heard today is -- "C has been already

superceded by languages like C-F , C# and Java, so why bother to

chapter 1: Getting Started3

learn C today". I seriously beg to differ with this opiuion. There
are several reasons for this:

(a) I believe that nobody can learn C++ or Java directly. This is
because while learning these languages you have things like
classes, objects, inheritance, polymorphism, templates,
exception handling, references, etc. do deal with apart from
knowing the actual language elements. Learning these
complicated concepts when you are not even comfortable
with the basic language elements is like putting the cart before
the horse. Hence one should first learn all the language
elements very thoroughly using C language before migrating
to C++, Ct or Java. Though this two step learning process
may take more time, but at the end of it you will definitely
find it worth the trouble.

(h) C+ , ('// or Java make use of a principle called Object
Oriented Programming (OOP) to organize the program. This
organizing principle has lots of advantages to offer. But even
While ising this organizing principle you would still need a
good hold over the language elements of C and The basic
programming skills.

(c) Though many C++ and Java based programming tools and
frameworks have evolved over the years the importance of C
IN still unchallenged because knowingly or unknowingly while
using these frameworks and tools you would be still required
to use the cote C language elements another good reason
wh y one should learn C before C -+, C# or Java.

(d) Major parts of popular operating systems like Windows,
UNIX, Linux is still written in C. This is because even today
when it conies to performance (speed of execution) nothing
beats C. Moreover, if one is to extend the operating system to
work with new devices one needs to write device driver
programs. These programs are exclusively written in C.

Let Us C

(c) Mobile devices like cellular phones and palmtops are
becoming increasingly populai Also, common consumer
devices like microwave oven, washing machines and digital
cameras are getting smarter by the (lay. This smartness conies
from a microprocessor, an operating system and a program
embedded in this devices. These programs not only have to
run fast but also have to work in limited amount of memory.
No wonder that such programs are written in C. With these
constraints on time and space, C is the language of choice
while building such operating systems and programs.

(1) You must have seen several prohssinnal 3k) computer games
where the user navigates some object, like say a spaceship and
tires bullets at the invaders. The essence of all such games is
speed. Needless to say, such games wont become popular if
they takes a long time to move the spaceship or to fire
bullet. To match the expectations of the player the game has
to react fast to the user inputs. This is where C language
scores over other languages. Many popular gaming
frameworks have beer' built using C language

(g) At times one is required to ery closely interact with the
hardware devices. Since C provides several language
elements that make this interaction feasible without
compromising the performance it is the preferred choice of
the programmer.

I hope that these are very convincing reasons why one should
adopt C as the first and the very important step in your quest for

/ /aming programming languages.

Getting Started with C

Communicating with a computer involves speaking the language
the computer understands, which immediately rules out English as
the language of communication with computer. However, there is

Chapter 1: Getting Stailed 	 5

a close analogy between learning English language and learning C
language. The classical method of learning English is to 1ist learn
the alphabets used in the language, then learn to combine these
alphabets to Form words, which in turn are combined to form
sentences and sentences are combined to form paragraphs.
Learning C is similar and easier. Instead of straight-away learning.
how to write programs, we must first know what alphabets,
numbers and special synihols are used in C, then how using them
constants, variables and keywords arc constructed, and finally how
are these combined to form an instruction. A group of instructions
would be combined later on to form a program. This is illustrated
in the Figure I. I.

Steps in learning English language:

LA11ahets

Steps in learning C:

Ls1	
JrogrJ

Variabls
	

-e Keywords
l sv lions

Figure 1,1

The C Character Set

A character denotes any alphabet, digit or special symbol used to
represent information. Figure 1.2 shows the valid alphabets,
numbers and special symbols allowed in C.

6
	

Let Lix C

Alphabets	 i\. 3. Y, 1.

it. 11 	 Y. /.

Digits	 0, 1, 2, 3, 4, 5, 6, 7Th.9

Special s y nihok	 (i /1 % ' & * () -

Figure 1.2

' stants. Variables and Keywords

The alphabets, nuiuihcrs and pcc al yiiihus when properly
combined forni constants, variables aid keywords. let us see what
are'constants' and variables' in C. A constant is all entity that
doesn't change whereas a variable is an entity that may change.

In any program we typically do lots of calculations. The results of
these calcuIatons are stored in computers memory. Like human

memory the computer memory also consists of millions of ccl Is.
The calculated vaIuc arc sorcd in these nienlory cells. To make

the retrieval and usage of these vincs eas y these niernoiy cells

(also Called memory locations) are given names. Since the value

stored in each location ma y change the names y en to these

locations are called vanahlc names. Consdcr the following

example.

I here 3 is stored in a memoty location and it name x is givcn to it.

Then we are assignug it new value 5 to the same memory location

x. This would overwrite the earlier value 3, ,-,inc(: a memory
location can hold only one value at a time. This is showii in Figure

1.3.

Chapter I. Getting Started	 7

3Jx
fffl

Figure 1.3

Since the location whose name is x can hold different values at
different times x is known as a variable. As against this, 3 or 5 do
not change, hence are known as constants.

es of C Constants

C constants can be divided into two major cacgories:

(a) Primary Constants
(b) Secondary Constants

These constants are further categorized as shown III Figure 1.4.

Let Us C

C Constants

Primary Constants I	 I Secondary Constants

Integer Constant 	 Array

Real Constant	 Pointer

Character Constant	 I Structure

Union

Enun. etc.

Figure IA

At this stage we would restrict our discussion to only 'rimaty
Constants, namely, Integer, Real and Character constants. Let us
see the details of each of these constants. For constructing these
different types of constants certain rules have been laid down.
These rules are as under:

Rules for Constructing Integer Constants

(a) An integer constant must have at least one digit.
(b) It must not have a decimal point.

(c) It can be either positive or negative.

(d) If no sign precedes an integer constant it is assumed to be
positive.

(e) No commas or blanks are allowed within an integer constant.

(f) The allowable range for integer constants is -32768 to 32767.

Truly speaking the range of an Integer constant depends upon the
compiler. For a 16-bit compiler like Turbo C or Turbo C-H- the

Chapter_1._Getting_Started	 9

range is -32763 to 32767. For a 32-hit compiler the range would
be even greater. Question like what exactly do you mean by a 16-
bit or a 32-bit compiler, what range of an Integer constant has to
do with the type of compiler and such questions are discussed in
detail in Chapter 16. Till that time it would be assumed that e are
working with a 16-bit compiler.

Ex.: 426
+782
-8000
-7605

Rules for Constructing Real Constants

Real constants are often called Floating Point constants. The real
constants could be written in two forms,—Fractional form and
{:xponentiai form.

Following rules must be observed while constructing real
constants expressed in fractional form:

(a) A real constant must have at least one digit.
(b) It must have a decimal point.
(c) It could he either positive or negative.
(d) Default sign is positive.
(e) No commas or blanks are allowed within, a real	 nsan,

Ex.: +325.34
426.0
-32.76
-48.5792

The exponential form of representation of real constants is isuaUy
used if the value of the constant is either too small or tot) large. It
however doesn't restrict us in any way from using exponential
form of representation for other real constants.

10	 Let Us C

In exponciiiial form of representation, the real constant is
represented in two parts The part appearing before 'e' is called
mantissa, whereas the part toilowing e' is called exponent.

lollowng rutc s nius he observed while constructing real
cojisants cxnressed w exponent al form:

(a) The niaiitiss	 part and the exponential part should be

separated by a letter e.

(b) The mantissa part may have it positive or negative sign.

(c) Delault sign of mantissa part is positive

(d) The exponent must have at least one digit, which must he a
Positive or negative integer. E)ciaiill sign is positive.

(e) Range of real constants expressed in exponential !orni is

-3.4e3X to 3.4e3t'.

Ex.: +32e-5
4.1 e8
-O.2e+3
-3.2e-5

Rules for Constructing Character Constants

(a) A character constant is a single alphabet, a single digit or a
single special symbol enclosed within single inverted
commas. loth the inverted commas should point to the left.
For example, 'A' is a valid character constant whereas 'A' is

not.
(b) The maximum length of a character constant can he I

character.

Ex.. A

'5,

Chapter 1: Getting Started	 11

Types of C Variables

As we saw earlier, an entity that may vary during program

execution is called a variable. Variable names are names given to
locatioms in memory. These locations can contain integer, real or
character constants. In any language, the types of variables that it
can support depend on he types of constants that it can handle.
This is because a particular type of variable can hold only the same
t ype of constant. For example, an integer variable can hold only an
integer constant, a real variable can hod only a real constant and a
character variable can hold only ;I 	 constant.

The rules for constructing different types of constants are different.
However, for constructing variable names of all types the same set
of rules apply. These rules are given below.

Rules for Constructing Variable Names

(a) A variable name is any combination of' I to 31 alphabets,
digits or underscores. Some compilers allow variable names
whose length could be lip to 247 characters. Still, it would be
safer to stick to the rule of 31 characters, Do not create
unnecessarily long variable names as it nkls to your typing
effort.

(b) The first character in the . ariablc name must he an alphabet or
underscore.

(c) No commas or blanks are allowed within a variable name.
(d) No special s y mbol other than an underscore (as in gross sal)

can be used in a variable name.

Ex.: slint
mhra
pop-e_89

These rules remain same for all the types of primary and secondary
variables. Naturally, the question follows... how is C able to
differentiate between these variables? This is a rather simple

12	 Let Us C

matter C compiler is We to distinguish between the variable
names by making it compulsory br you to declare the type of any
variable name that you wish to use in a program. This type
declaration is done at the beginning of the program. Following are
the examples of type declaration statements:

Ex.: mt si, m_hra
float bassal
char code

Since, the maxtmiini aNiw:b1c length 01 a '. armhle name is 31
characters, an enormous number of variable names can be
constructed using the above-mentioned odes. It is it good practice
to exploit this enormous choice in naming variables by using
meaningful variable names.

'ihu::. if we want to calculate sint1'e interest, it is alwa y s ad'. sahft
to construct mcan:nttui variable flumes like prin. roi. IiOy to
repre.ent Principle, Rate of interes. and Number of ycai:: rathor
than using the variables a, b, c.

C keywords

Keywords are the words whore nicanine hoi alrcadv hce
explained to theC c02]pl!cr (or in a broad sense to the comnuter).
The keywords cannot he used o4 variabic fluirnC5 because it y e Ic
so we are trying io assitii t new mean ng to the keyword, which is
not allowed by the computer. Some C compilers allow you to
construct variable names diit cxuctiv resemble the keywords
However, it would be 'atft:r not to mix up the variable names and
the keywords. The keywords ate also called 'Reserved words'.

There are only 32 keywo rds avai!able in C. Figure 1. gves a list
of these keywords for y our read y reference. A detailed discussion
of each of these keywords would be taken up in ater chapters
wherever their use is relevant.

Chapter J. Getting Started	 13

auto

break
case
char
consi
continue
default
do

double

else
enum
extern

float
for
goto
if

mt

long
register
return
short
signed
sizeof
static

struct

switch
typedef
union
unsigned
void
volatile
while

Figure 1.5

Note that compiler vendors (like Microsoft, Borland, etc.) provide
their own keywords apart from the ones mentioned above. These
include extended keywords like near, far, asm, etc. Though it has
been suggested by the ANSI committee that every such compiler
specific keyword should be preceded by two underscores (as in
_asm), not every vendor follows this rule.

The First C Program

Armed with the knowledge about the types of variables, constants
& keywords the next logical step is to combine them to form
instructions. However, instead of this, we would write our first C
program now. Once we have done that we would see in detail the
instructions that it made use of.

Before we begin with our first C program do remember the
following rules that are applicable to all C programs:

(a) Each instruction in a C program is written as a separate
statement. Therefore a complete C program would comprise
of a series of statements.

3

14

(b) The statements in a program must appear in the same order in
which we wish them to be executed; unless of course the logic
of the problem demands a deliberate 'jump' or transfer of
control to a statement, which is out of sequence.

(c) Riank spaces may he inserted between two words to improve
the readability of the statement. However, no blank spaces are
allowed within a variable, constant or keyword.

(d) All statements are entered in small case letters.

(e) C has no specific rules for the position at which a statement is
to be written. That's why it is often called a free-form
language.

(1) Every C statement must end with a ;. Thus ; acts as a
statement terminator.

Let us now write down our first C program. It would simply
calculate simple interest for a set of values representing principle,
number of years and rate of interest

P Calculation of simple interest 'I
/* Author gekay Date: 25105/2004

*/

main()

ml p , n;
float r, si

p = 1000;
n 3
r8.5;

f* formula for simple interest '1
p • n * 1/100

pnntf(%rsi);

Chapter 1: Getting Started 	 15

Now a few useful tips about the program...

- Comment about thc program should be enclosed within 1* /.

For example, the first two statements in our program are
comments.

- Though comments are not necessary, it is a good practice to
begin a program with a comment indicating the purpose of the
program, its author and the date on which the program was
written.

- Any number of comments can be written at any place in the
program. For example, a comment can be written before the
statement, after the statement or within the statement as shown
below:

/ formula */ Si p n * r / 100
sipfn*r/100 ; /formula/
si = p *n * r// formula */100;

- Sometimes it is not so obvious as to what a particular
statement in a program accomplishes. At such times it is
worthwhile mentioning the purpose of the statement (or a Set
of statern nts) using a comment. For example:

I' formula for simple interest I
Si p * n * r/ 100;

Often programmers seem to ignore writing of comments. But
when a team is building big software well commented code is
almost essential for other team members to understand it.

16
	

Let U. (I

- Although a lot of comments are probably not necessary in this
program, it is usually the case that programmers tend to use
too few comments rather than too many. An adequate number
of comments can save hours of misery and suffering when you
later try to figure out what the program does.

- The normal language rules do not apply to text written within
/. Thus we can type this text in small case, capital or a

combination. This is because the comments are solely given
for the understanding of the programmer or the hllow
programmers and are completely ignored byby the compiler.

- Comments cannot be nested. For example,

f* Cal of SI f* Author sam date 0110112002 '1 1

is invalid.

- A comment can he split over more than one line, as in,

1* This
a jazzy
comment *1

Such a comment is often called a multi-line comment.

- main() is a collective name given to a set of statements. This
name has to be main(), it cannot be anything else. All
statements that belong to main() are enclosed within a pair of
braces } as shown below.

main()

statement 1;
statement 2

Chapter 1: Getting Started	 17

statement 3;

- Technically speaking main() is a function. Every function has
a pair of parentheses () associated with it. We would discuss
functions and their working in great detail in Chapter 5.

- Any variable used in the program must he declared before
using it. For example,

nt p,n;
float r, Si

- Any C statement always ends with a;

For example,

float r, Si

rz8,5;

- In the statement,

Si = p * n • r/ 100

* and I are the arithmetic operators. The arithmetic operators
available in C are +, -, * and I. C is very rich in operators.
There are about 45 operators available in C. Surprisingly there
is no operator for exponentiation... a slip, which can be
forgiven considering the fact that C has been developed by an
individual, not by a committee.

- Once the value of si is calculated it needs to be displayed on
the screen. Unlike other languages, C does not contain any
instruction to display output on the screen. All output to screen
is achieved using readymadc library functions. One such

ix
	

Let Us C

function is printf() We have used it display on the screen the
value contained in ci.

The general form olprintf() function is,

printf (" <format string>, <list of variables>

<format string> can contain.

0/f for printingreaivues
/0d for printing integer values
%c for printing cha racter values

In addition to format specifiers like %f, %d and %c the
format string may also contain any other characters. These
characters are printed as they are when the printf() is
executed.

Following are some examples of usage of printf() function

printf (%C. Si)
printf (%d %d %f %f", p, n, r, si)
printf ('Simple interest z Rs. %f, i)
printf (Prin %d \nRate V. p, r)

The output of the last statement would look like this...

Prin 1000
Rate 8.5

What is '\n' doing iii this statement? It is called newlinc and it
takes the cursor to the next line. Therefore, you get the output
split over two lines. '\n' is one of the several Escape
Sequences available in C. These are discussed in detail in
Chapter Il. Right now, all that we can say is '\n' comes in

Chapter 1. Getting Started	 19

handy when we want to format the output properly on
separate lines.

printf() can not only print values of variables, it can also
print the result of an expression. An expression is nothing but
a valid combination of constants, variables and operators.
Thus, 3, 3 + 2. c and a h * c d all are valid expressions.
The results of these expressions can he printed as shown
below:

printf('%d%d%d%d'3,3+2c,a+bc.-d);

Note that 3 and c also represent valid expressions.

Compilation and Execution

Once you have written the program you need to type it and instruct
the machine to execute it. To type your C program you need
another program called Editor. Once the program has been typed it
needs to be converted to machine language (Os and Is) before the
machine can execute it. To carry out this conversion we need
another program called Compiler. Compiler vendors provide an
Integrated Development Environment (IDE) which consists of an
Editor as well as the Compiler.

There are several such IDEs available in the market targeted
towards different operating systems. For example, Turbo C, Turbo
C++ and Microsoft Care some of the popular compilers that work
under MS-DOS Visual C++ and Borland C++ are ,the compilers
that work under Windows, whereas gee compilerworks under
Linux. Note that Turbo C++, Microsoft C++ and Borland C++
software also contain a C compiler bundled with them. 11 you are a
beginner you would be better off using a simple compiler like
Turbo C or Turbo C++. Once you have mastered the language
elements you can then switch over to more sophisticated compilers
like Visual C++ under Windows or gee under Linux. Most of the

20	 LeE Us C

programs in this book would work with all the compilers.
Wherever there is a deviation I would point it out that time.

Assuming that you are using a Turbo C or Turbo C+ - ompiler
here are the steps that you need to fol l ow to compile and execute
your first C program...

(a) Start the compiler at C> prompt. The compiler (TC.EXE is
usually present in C:\TC\BtN directory).

(b) Select New from the File menu.
(c) Type the program.
(d) Save the program using F2 under a proper name (sa'

Program I .c).
(e) Use Ctrl + F9 to compile and execute the program.
(1) Use Alt + F5 to view the output.

Note that on compiling the program its machine language
equivalent is stored as an EXE file (ProgranilEXE) on the disk.
This file is called an executable file. If we copy this file to another
machine we can execute it there without being required to
recompile it. In fact the other rnchinc need not even have a
compiler to be able to execute the file.

A word of caution! If you run this program in Turbo C++
compiler, you may get an error - "The function printf should
have a prototype". To get rid of this error, perform the following
steps and then recompile the program.

(a) Select 'Options' menu and then select 'Compiler I C4-+

Options'. In the dialog box that pops up, select 'CPP always'
in the 'Use C++ Compiler' options.

(b) Again select 'Options' menu and then select 'Environment I
Editor'. Make sure that the default extension is 'C' rather than
'CPp,.

Chapter 1: Getting Started 	 21

Receiving Input

In the program discussed above - we assumed the values of p, n and
r to be 1000, 3 and 8.5. Every time we run the program we would
get the same value for simple interest. If we want to calculate
simple interest for some other set of values then we are required to
make the relevant change in the program, and again compile and
execute it. Thus the program is not general enough to calculate
simple interest for any set of values without being required to
make a change in the program. Moreover, if you distribute the
EXE file of this program to somebody he would not even be able
to make changes in the program. Hence it is a good practice to
create a program that is general enough to work for any set of
values.

To make the program general the program itself should ask the
user to supply the values of p. n and r through the keyboard during
execution. This can be achieved using a function called scanf().
This function is a counter-part of the Drintf() function. p1ntf()
outputs the values to the screen whereas scanf() receives them
from the keyboard. This is illustrated in the program shown below.

I' Calculation of simple interest I

1' Author gekay Date 25/05/2004 1
main()

nt pn;
float r, si
printf (Enter values of p, n, r)
scarf '%d %d %r, &p, &n, &r);

Si = p n * r 1100;
printf(°.rsi);

22	 L1't U' C

The First priritf() outputs the nessilge Friter values of p. n, r' on

the screen. I le e we ha c not used any expression in printf()

which means that using expressions in printf() is op.ional.

Note that the ampersand (&) be tore the variables n the scanf(

function is a must. & is an'Address of' operator. It gives the

location number used by the variable in memory. When we say

&a, we are tellint. Ncanf() at which memory location should it

store the value supplied by the user from the keyboard. The

detailed working of the & operator would he taken up in Chapter
S

Note that a blank, it tab or a new line must separate the values

supplied to scanf(). Note that a blank is creating using it spacebar,

tab using the Tab key and new line using the l.nter key. This is

showii below:

Ex.- The three valuesse parated b y blank

1000515.5

Ex.: The three values separated by tab.

1000 5	 15.5

EX.: The three values eparatctI b y newline.

1000

0
15.5

So much Rr the tips. I low about another program to give you a

feel 01-things...

1 Just for fun. Author. Bozo
main()

fit num

printf ('Enter a number

Chapter I: Getting Started	 23

scanf ('%d', &rium)

printf ('Now I am letting you on a secret..')
printf ('You have just entered the number %d', num)

44Iuctions

Now that we have written a few programs let us look at the
instructions that we used in these programs. There are basically
three types of instructions in C:

(a) Type Declaration Instruction
(b) Arithmetic instruction
(c) Control Instruction

The purpose of each of these instructions is given below:

(a) Type declaration instruction - To declare the type of
variables used in a C
program.

(b) Arithmetic instruction - To perform arithmetic
operations between con-
stants and variables.

(c) Control instruction -- To control the sequence of
execution of various state-
ments in a C program.

Since, the elementary C programs would usually contain only the
type declaration and the arithmetic instructions: we would discuss
only these two instructions at this stage. The other types of
instructions would be discussed in detail in the subsequent
chapters.

24	 Let UY C

P Type Declaration Instruction

This instruction is used to declare the type of variables being used
in the program. Any variable used in the program must be declared
belore using it in any statement. The type declaration statement is
written at the beginning of main() function.

Ex: int bas
float rs, grosssal
char name, code;

There are several subtle vanatiuns of the type declaration
instruction. These are discussed below:

.à) While declaring the type of variable we can also initialize it as
shown below.

intl	 10, j	 25:
float a 1.5, b 1.99 + 2.4*1.44;

The order in which we define the variables is sometimes
important sometimes not. For example.

inti	 10,j	 25:

is same as

intj25j	 10;

/t However,

float a1.5.ba+3.1

is alright, but

float ba+3.1a1,5,

Chapter 1: Getting Started	 25

is not. This is because here we are trying to use a even before
defining it.

The following sI tements would work

at a, b, c, d
a b c = 10;

However, the following statement would not work

irita=b=c=d=10;

Once again we are trying to use b (to assign to a) before
defining it.

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left
hand side of and variable names & constants on the right hand
side of . The variables and constants appearing on the right hand
side of= are connected by arithmetic operators like + -, *, and I.

Ex.:	 int ad;
coat kot, c]eta, alpha, beta, gamma;
ad 3200;
kot 0.0056;
deta alpha * beta I gamma + 3.2 * 2/5;

Here,

+ are the arithmetic operators.
is the assignment operator.

2, 5 and 3200 are integer constants.
3.2 and 0.0056 are real constants.
ad is an integer variable.
kot, deta, alpha, beta, gamma are real variables.

26	 ___	 ____ Let Us

The variables and constants together are called operands' that are
operated upon by the'arithmetic operators' and the result is
assigned, using the assignment operator, to the variable on left-
hand side.

A C ar'thiivic statcmen could hc of tirc types. These are as
faIlc s.

ç 4 /itcgcr mode arithmetic statement - This is an arithmetic
\j	 saement in which all operands are either integer variables or

integer constants.

Ex.: mt i, king, issac, noteit
i = i + 1
king issac 234 + noteit - 7689

mode arithmetic statement - This is an arithmetic
statement in which all operands are either real constants or
real variables.

Ex.: float qbee, antirik, si, prin, anoy, roi

I qbe	 Yantink + 23.123 / 4	 0.3442;
si prin anoy roi / 100.0

Mixed mode arithmetic statement - This is an arithmetic
statement in which sonic of the operands are integers and
some of the operands are real.

Ex.: float si, prin, anoy, roi, avg
nt a, b, c, num
Si prin anoy * roil 100.0

avg(a+b+c+num)l4;

It is very important to understand how the execution of an
arithmetic statement takes place. Firstly, the right hand side is
evaluated using constants and the numerical values stored in the:
variable names. This value is then assigned to the variable on the
left-hand side.

Chapter 1: Getting Started 	 27

Though Arithmetic instructions look simple to use one often
commits mistakes in writing them. Let us take a closer look at
these statements. Note the following points carefully.

only one variable on left-hand side of =. That is, £
k * f is legal, whereas k * I z is illegal.

addition to the division operator C also provides a modular
division operator. This operator returns the remainder on
dividing one integer with another, Thus the expression 1012
yields 5, whereas, 10 % 2yields 0. Note that the modulus
operator (%) cannot be applied on a float. Also note that on
using % the sign of the remainder is always same as the sign
of the numerator. Thus —5 % 2 yields —I, whereas, 5 % -2
y ields 1.

(c) An arithmetic instruction is often used for storing character
constants in character variables.

char a,b,d;
a	 'F';
b
d

When we do this the ASCII values of the characters are stored
in the variables. ASCII values are used to represent any
character in memory. The ASCII values of 'F' and 'G' are 70
and 71 (refer the ASCII Table in Appendix E).

(d) Arithmetic operations can be performed on hits, floats and
chars.

Thus the statements,

char x, y;

mt z;
x a

y
zx+y;

28 	 Let Us

are perfëcty valid, since the addition is performed on the
ASCII values of the characters and not on charact&rs
thcmseves. The ASCII values of a' and b' are 97 and 98,
and hence can definitely be added.

(e) No operator is assumed to he present. it must be writtcr.
xpicitly. in the following example, the multiplication

operator after b must be cphcitly written.

a c.d.b(xy)	 usual arithmetic statement
bc*d*b(xy)	 Cstatement

(1) Unlike other high level languages, there is no operator for
performing exponentiation operation. Thus following
statemeilts are nvald,

a 3 "2
b3A2;

If we want to do the exponentiation we can get it done this
way:

#include <math.h>
main()

inta;
a pow (3, 2)
pntf(%d'a);

Here pow() function is a standard library function. It is being
used to raise 3 to the power of 2. #inciude <mathh> is a
preprocessor directive. It is being used here to ensure that the
pow() function works correctly. We would learn more about
standard library functions in Chapter 5 and about preprocessor
in Chapter 7.

Chapter 1: Getting Started 	 29

Integer and Float Conversions

In order to effectively develop C programs, it will be necessary to
understand the rules that are used for the implicit conversion of
floating point and integer values in C. These are mentioned below.
Note them carefully.

(a) An arithmetic operation between an integer and integer
always yields an integer result.

(b) An operation between a real and real always yields a real
result.

(c) An operation between an integer and real always yields a real
result. In this operation the integer is first promoted to a real
and then the operation is performed. Hence the result is real.

I think a Few practical examples shown in the following figure
would put the issue beyond doubt.

Operation	 Result	 Operation	 Result

5/2	 2	 2/5	 0

5.0/2	 2.5	 2.0/5	 0.4

5/ 2.0. 	 2.5	 2 / 5.0 	 0.4

5.0/ 2.0 	 2.5	 2.0 / 5.0	 0.4

Figure 1.6

Type Conversion in Assignments

It may so happen that the type of the expression and the type of the
variable on the left-hand side of the assignment operator may not
be same. In such a case the value of the expression is promoted or

4

30	 Let Us C

demoted depending on the type of the variable on left-hand side of

For example, consider the following assignment statements.

mt	 I;
float b;
i3.5;
b = 30;

Here in the first assignment statement though the expression's

value is a float (3.5) it cannot be stored in i since it is an mt. In
such a case the float is demoted to an mt and then its value is

stored. Hence what gets stored in i is 3. Exactly opposite happens
in the next statement. I Icre, 30 is promoted to 30.000000 and then
stored in h, since b being a float variable cannot hold anything

except a float value.

Instead of a simple expression used in the above examples if a
complex expression occurs, still the same rules apply. For
example, consider the following program fragment.

float abc,
nt s;
sabc/100+32/4-3' 1.1;

Here, in the assignment statement some operands are ints whereas

others are floats. As we know, during evaluation of the expression
the juts would be promoted to floats and the result of the
expression would be a float. But when this float value is assigned
to s it is again demoted to an mt and then stored in s.

Observe the results of the arithmetic statements shown in Figure
1.7. It has been assumed that k is an integer variable and a is a real

variable.

Chapter 1: Getting Started	 31

Arithmetic Instruction Result Arithmetic Instruction Result

k2/9	 0	 a=219	 0.0
k = 2.0/9	 0	 a = 2.0 / 9	 0.2222
k = 2 / 9.0	 0	 a = 2 / 9.0	 0.2222
k = 2.0/9.O	 0	 a=2.019.O	 0.2222
k=9/2	 4	 a=9/2	 40
k = 9.0/2	 4	 a=9.0/2	 4.5
k9/2.O	 4	 a=9/2.O	 4.5

4	 a=9.0/2.0	 4.5

Figure 1

Note that though the following statements give the same result, 0,
the results are obtained differently.

k219;
k2.019;

In the first statement, since both 2 and 9 are integers, the result is
an integer, i.e. 0. This 0 is then assigned to k. In the second
statement 9 is promoted to 9.0 and then the division is performed.
Division yields 0.222222. However, this cannot be stored in k, k
being an mt. Hence it gets demoted to 0 and then stored in k.

Hierarchy of Operations

While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it
get executed. For example, does the expression 2 * x - 3 *
correspond to (2x)-(3y) or to 2(x-3y)? Similarly, does A / B * C
correspond to A / (B * C) or to (A / B) * C? To answer these
questions satisfactorily one has to understand the 'hierarchy' of
operations. The priority or precedence in which the operations in

32
	

Let Us C

an arithmetic statement are performed is called the hierarchy of
operations. The hierarchy of commonly used operators is shown in
Figure 1.8.

Priority Operators Description
3 11	 * / %	 multinlication. division. modular division

2 nd + -	 addition, subtraction

assignrncflt

Figure 1.8

Now a few tips about usage of operators in general.

(a) Within parentheses the same hierarchy as mentioned in Figure
1.11 is operative. Also, if there are more than one set of
parentheses, the operations within the innermost parentheses
would be performed first, followed by the operations within
the second innermost pair and so on.

(b) We must always remember to use pairs of parentheses. A
careless imbalance of the right and tell parentheses is a
common error. Best way to avoid this error is to type () and
then type an expression inside it.

A few examples would clarify the issue further.

Example 1.1: Determine the hierarchy of operations and evaluate
the following expression:

1=2*3/4+414+8.2+518

Stepwise evaluation of this expression is shown below:

i=2*3f4+4I4+82+58

Chapter 1: Getting Started 	 33

i6I4+4I4+8-2+5I8	 operation:
i=1 +4/4+8-2+5/8	 operation:!
11+1+8-2+5/8	 operation:/
i=1+1+8-2+0	 operation:!
= 2+8-2+0	 operation:+

10 - 2 + 0	 operation: +
=8+0	 operation :-
= 8	 operation: +

Note that 6 I 4 gives I and not 1 .5. This so happens because 6 ann
4 both are integers and therefore would evaluate to only an integer
constant. Similarly 5 / 8 evaluates to zero, since S and 8 are integer
constants and hence must return an integer value.

Example 1.2: Determine the hierarchy of operations and evaluate
the following expression:

kk = 3 ! 2 * 4 + 3 /8 + 3

Stepwise evaluation of this expression is shown below:

kk = 3 / 2 * 4 + 3/8 + 3

kk=1 *4+3/8+3	 operation:!
kk = 4+3/8+3	 operation:*
kk = 4+0+3	 operation:!
kk =4 + 3	 operation: +
kk = 7	 operation: +

Note that 3 / 8 gives zero, again for the same reason mentioned in
the previous example.

All operators in C are ranked according to their precedence. And
mind you there are as many as 45 odd operators in C, and these
can affect the evaluation of an expression in subtle and unexpected
ways if we aren't careful. Unfortunately, there are no simple rules
that one can follow, such as "BODMAS" that tells algebra students
in which order does an expression evaluate. We have not

34	 -.-.-- 	Let _UsC

encountered many out of these 45 operators, so we won't pursue
the subject of precedence any further here. However, it can be
realized at this stage that it would be almost impossible to
remember the precedence of all these operators. So a full-fledged
list of all operators and their precedence is given in Appendix A.
This may sound daunting, but when its contents are absorbed in
small bites, it becomes more palatable.

So far we have seen how the computer evaluates an arithmetic
statement written in C. But our knowledge would be incomplete
unless we know how to convert a general arithmetic statement to a
C statement. C can handle any complex expression with ease.
Some of the examples of C expressions are shown in Figure 1.9.

Algebric Expression Expression

a x b - c x ci

(,n + ,z) (a + b)

3x2 + 2x + 5

a + b + c

d+c

[2BY

[d+l 3(z+y)

* b - c * d

(rn ± n) * (a + b)

3*x*x+2*x+ 5

(a -1- h + c) I (d 4- e

2 * . b * y / (d + I)—xI
3 * (z + y)

Figure 1.9

Associativity of Operators

When an expression contains two operators of equal priority the tic
between them is settled using the associativity of the operators.
Associativity can be of two types-- Left to Right or Right to Left.
Left to Right associativity means that the left operand must be

Chapter 1: Getting Started 	 35

unambiguous. Unambiguous in what sense? It must not be.
involved in evaluation of any other sub-expression. Similarly, in
case of Right to Left associativity the right operand must be.
unambiguous. Let us understand this with an example.

Consider the expression

a = 3 / 2 * 5

Here there is a tic between operators of same priority, that is
between / and *• This tic is settled using the associativity of! and
* But both enjoy Left to Right associativity. Figure 1.10 shows for
each operator which operand is unambiguous and which is not.

Operator Left	 Right	 Remark

/	 3	 1 2 or 2 * Left	 operand	 is
S	 unambiguous, Right is not

*	 3 / 2 or 2 5	 Right	 operand	 is
unambiguous, Left is not

Figure 1.10

Since both / and * have L to R associativity and only / has
unambiguous left operand (necessary condition for L to R
associativity) it is performed earlier.

Consider one more expression

ab3:

Here both assignment operators have the same priority and same
associativity (Right to Left). Figure 1. 11 shows for each operator
which operand is unambiguous and which is not.

Let Us C

Operator Left	 Right	 Remark

=	 a	 h or b = Left	 operand	 is
3

	

	 unambiguous, Right is
not

=	 horab 3	 Right	 operand	 is
unambiguous, Left is not

Figure 1.11

Since both = have R to L associativity and only the second = has
unambiguous right operand (necessary condition for R to L
associativity) the second = is performed earlier.

Consider yet another expression

z=a*b+c/d

Here * and I enjoys same priority and same associativity (Left to
Right). Figure 1.12 shows for each operator which operand is
unambiguous and which is not.

Operator Left Right Remark

*	 a	 b	 Both operands are unambiguous

/	 c	 d	 Both operands are unambiguous

Figure 1.12

Here since left operands for both operators are unambiguous
Compiler is free to perform * or / operation as per its convenience

Chapter 1: Getting Started 	 37

since no matter which is performed earlier the result would be
same.

Appendix A gives the associativity of all the operators available in
C.

Control Instructions in C

As the name suggests the 'Control Instructions' enable us to
specify the order in which the various instructions in a program are
to be executed by the computer. In other words the control
instructions determine the'flow of control' in a program. There
are four types of control instructions in C. They are:

(a) Sequence Control Instruction
(h) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take
a decision as to which instruction is to be executed next. The Loop
control instruction helps computer to execute a group of statements
repeatedly. In the following chapters we are going to learn these
instructions

in detail.detail. Try your hand at the Exercise presented on
the following pages before proceeding to the next chapter, which
discusses the decision control instruction.

Summary
(a) The three primary constants and variable types in C are

integer, float and character.
(b) A variable name can be of maximum 31 characters.
(c) Do not use a keyword as a variable name.

Let U'' C

(d) An expression may contain any sequence of constants.
variables and operators.

(e) Operators having equal precedence are evaluated using
associativity.

(1) Left to right associativity means that the tell operand of a
operator must he unambiguoLls whereas right to left
associativity means that the right operand of a operator must
he unambiguous.

(g) Input/output in C can be achieved using scanf() and printf()
functions.

Exercise

IAI Which of the following are invalid variable names and why?

BASICSALARY	 _basic	 basic-hra
#MEAN	 group.	 422
population in 2006	 over time	 mindovermatter
FLOAT	 hELLO	 queue.
leam'svictory	 Plot #3	 2015DDay

JBJ Point out the errors, if any, in the following C' statements:

(a) int=314.562* 150;

(b) name = 'Ajay'

(c) varchar = '3'

(d) 3.14*r*r*h=volofcyL

(c) k=(a*b)(c+(2.5a+h)(d+e);

(I) minst = rate of interest * amount in rs

Chapter I.- Getting Started 	 39

(g) si principal * rateofinterest * numberolycars / 100

(Ii) area =3.14*r**2;

(i) volume =3.l4*r'2*h;

(j) k=((a*b)+c)(2.5*a+b);

(k) a=b=3=4;

(I) count count -4- 1

(m) date = '2 Mar 04'

ICI Evaluate the following expressions and show their hierarchy.

(a) g=big/2+ big 4/big- big +abc/3;
(abc = 2.5, big = 2, assume g to be a float)

(b) onink*act/2+3/2*act+2+tig;
(ink = 4, act = 1, tig = 3.2, assume on to be an int)

(c) s=qui * add /4 6/2+2/3 *6/ god ;
(qui = 4, add = 2, god = 2, assume s to be an int)

(d) s=l/3*a/46/2+2/3 *6/g;
(a = 4, g = 3, assume s to be an int)

(DI Fill the following table for the expressions given below and
then evaluate the result. A sample entry has been filled in the
table for expression (a).

ME
	

Let Us C

Operator TLeft 	 Right	 Remark

/	 10	 5 or 5 /2 Left	 operand	 is
/ 1	 unambiguous, Right

is not

(a) g= 10/512/

(b) h=3/2 1 5*4/3.

(c) a=b=c=3+4;

tEl Convert the following equations into corresponding C
statements.

(a) Z=
8.8 (a + h) 2 / c - 05 + 2 a / (q + r)

(a +b) * (I / m)

(b) X	
h+(b*b)+2 4ac

=
2a

(c) R	
2v+6.22 (c+d)

=
g + v

(d)
A — 7.7h(xy+a)/c-0.8+2b

(x -f a) (I /y)

E1 What would be the output of the following programs:

(a) main()

Chapter 1: Getting Started	 41

mt i=2,jz3k,I;
float ab;

ijIi

b=JI'*m;
prmntf(%d %d %f %r, k, I, a b);

main()	
J

'printf ("a %d b = %d", a b):

main(

float a=5 b=2;
intc;
- % -

printi ("%d-, c);

main()

printf ('nn n\n nn\n")
printf ("nn mm nn/n')

(e) main(

inta b:
printf ("Enter values of a and b")
scanf (%d %d , &a, &b)
prmntf('a =%db=%d,ab)

42	 Let Us C

(f)	 main()

intpq,
printf (R Enter values of p and q
scanf(%d %d p, q);
printf('p	 %dq%dpq)

[CI Pick up the correct alternative for each of the following
questions:

(a) C language has been developed by
(I) Ken Thompson
(2) Dennis Ritchie
(3) Peter Norton
(4) Martin Richards

(b) C can he used on
(1) Only MS-DOS operating system
(2) Only Linux operating system
(3) Only Windows Operating system
(4) All the above	 *

(c) C programs are converted into machine language with the
help of
(I) An Editor
(2) A compiler
(3) An operating system
(4) None of the above

(d) The real constant in C can be expressed in which of the
following forms
(1) Fractional form only
(2) Exponential form only
(3) ASCII form only

Chapter /. Getting Started 	 43

(4) Both fractional and exponential forms

(e) A character variable can at a time store
(1) 1 character
(2) 8 characters
(3) 254 characters
(4) None of the above

(f) The statement char ch = 'Z' would store in ch
(1) The character Z
(2) ASCII value of Z
(3) Z along with the single inverted commas
(4) Both (I) and (2)

(g) Which of the following is NOT a character constant
(I) 'Thank You'
(2) 'Enter values of P, N, R'
(3) '23.56E-03'
(4) All the above

(h) The maximum value that an integer constant can have is
(1) -32767
(2) 32767
(3) 1.7014e+38
(4) —17014e+38

(i) A C variable cannot start with
(I) An alphabet
(2) A number
(3) A special symbol other than underscore
(4) Both(2)&(3)above

(j) Which of the following statement is wrong
(1) mes= 123.56;
(2) con = 'T' * A';
(3) this ='T' * 20;
(4) 3+a=b;

44
	

Let Us C

(k) Which of the following shows the correct hierarchy of
arithmetic operators in C
(I) ***or/+or

(2)
(3) ** /, ** +, -
(4) /or*,or+

(1) in b = 6.6 / a + 2 * n which operation will be performed
first?
(1) 6.6/a
(2) a+2
(3) 2 * n
(4) Depends upon compiler

(iii) Which of the following is allowed in a C Arithmetic
instruction

(1) []
(2)

(3) ()
(4) None of the above

(n) Which of the following statements is false
(I) Each new C instruction has to be written on a separate

line
(2) Usually all C statements are entered in small case letters
(3). Blank spaces may be insetied between two words in a C

statement
(4) Blank spaces cannot be inserted within a variable name

(o) If is an integer variable, a = 5 / 2 vill return a value
(1) 2.5

(2) 3
(3) 2
(4) 0

(p) The expression, a s: 7,1 22 (3.14 4-2) * 3 / 5 ; evaluates to

Chapter 1. Getting Started	 45

(1) 8.28
(2) 6.28
(3) 3.14
(4) 0

(q) The expression, a = 30 * 1000 + 2768 ; evaluates to
(1) 32768
(2) -32768
(3) 113040
(4) 0

(r) The expression x = 4 ± 2 % - 8 evaluates to
(I) -6
(2) 6
(3) 4
(4) None of the above

(s) Hierarchy decides which operator
(I) is most important
(2) is used first
(3) is fastest
(4) operates on largest numbers

(t) An integer constant in C must have:
(1) At least one digit
(2) Atleast one decimal point
(3) Aconima along with digits
(4) Digits separated by commas

(u) A character variable can never store more than
(1) 32 characters
(2) 8 characters
(3) 254 characters
(4) 1 character

(v) In C a variable cannot contain
(I) Blank spaces

5

46
	

Let Us C

(2) Hyphen
(3) Decimal point
(4) All the above

(w) Which of the following is FALSE in C
(I) Keywords can be used as variable names
(2) Vanable names can contain a digit
(3) Variable names do not contain a blank space
(4) Capital letters can be used in variable names

(x) In C, Arithmetic instruction cannot contain
(1) variables
(2) constants
(3) variable names on right side of
(4) constants on kit side of=

(y) Which of the following shows the correct hierarchy of
arithmetic operations in C
(I) /+
(2) */
(3) +-f
(4) /+-

(z) What will be the value of d if d is a float after the operation
d=2/7.O?
(1) 0
(2) 0.2857
(3) Cannot be determined
(4) None of the above

1111 Write C programs for the following:

(a) Rarnesh's basic salary 'is input through the keyboard. His
dearness allowance is 40% of basic salary, and house rent
allowance is 20% of basic salary. Write a program to calculate
his gross salary.

Chapter 1: Getting Started	 47

(b) The distance between two cities (in km.) is input through the
keyboard. Write a program to convert and print this distance
in meters, feet, inches and centimeters.

(c) If the marks obtained by a student in five different subjects
are input through the keyboard, find out the aggregate marks
and percentage marks obtained by the student. Assume that
the maximum marks that can be obtained by a student in each
subject is 100.

) Temperature of a city in Fahrenheit degrees is input through
the keyboard. Write a program to convert this temperature
into Centigrade degrees.

Jt length & breadth of a rectangle and radius of a circle are
input through the keyboard. Write a program to calculate the
area & perimeter of the rectangle, and the area &
circumference of the circle.

(f) Two numbers are input through the keyboard into two
locations C and D. Write a program to interchange the
contents of C and D.

(g) If a five-digit number is input through the keyboard, write a
program to calculate the sum of its digits.

(Hint: Use the modulus operator '°/')

(h) If a five-digit number is input through the keyboard, write a
program to reverse the number.

(i) If a four-digit number is input through the keyboard, write a
program to obtain the sum of the first and last digit of this
number.

(I) In a town, the percentage of men is 52. The percentage of
total literacy is 48. If total percentage of literate men is 35 of
the total population, write a program to find the total number

Let U.s C

of illiterate men and women if the population of the town is
0,000.

(k) A cashier has currency notes of denominations 10, 5() and
100. If the amount to be withdrawn is input through the
keyboard in hundreds, find the total number of currency notes
of each denomination the cashier will have to give to the
with drawer

If the total selling price of 15 items and the total profit earned
on them is input through the keyboard, write a program to
find the cost price of one item.

(m) If a five-digit number is input through the keyboard, write a
program to print it new number by adding one to each of its
digits. For example if the number that is input is 12391 then
the output should he displayed as 23402.

2 The Decision
Control Structure
. Decisions! Decisions!
• The ifStatcment

The Real Thing
Multiple Statements within if

• The :f else Statement
Nested felses
Forms off

• Use of Logical Operators
The else ifClause
The! Operator
Hierarchy of Operators Revisited

• A Word of Caution
• The Conditional Operators
• Summary
• Exercise

.49

50 	 Let Us C

W

e all need to diter our actions in the face of changing
circumstances. If the weather is fine, then I will go for a
stroll. If the highway is busy I would take a diversion.

lithe pitch takes spin, we would win the match. If she says no, I
would look elsewhere. If you like this book, I would write the next
edition. You can notice that all these decisions depend on some
condition being met.

C language too must be able to perform different sets of actions
depending on the circumstances. In fact this is what makes it worth
its salt. C has three major decision making instructions—the if
statement, the if-else statement, and the switch statement. A
fourth, somewhat less important structure is the one that USeS
conditional operators. In this chapter we will explore all these
ways (except switch, which has a separate chapter devoted to it,
later) in which it C program can react to changing circumstances.

Decisions! Decisions!

In the programs written in Chapter 1 we have used sequence
control structure in which the various steps are executed
sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don't
have to do anything at all. By default the instructions in a program
are executed sequentially. However, in serious programming
situations, seldom do we want the instructions to be executed
sequentially. Many a times, we want a set of instructions to be
executed in one situation, and an entirely different set of
instructions to be executed in another situation. This kind of
situation is dealt in C programs using a decision control
instruction. As mentioned earlier, a decision control instruction
can be implemented in C using:

(a)The if statement
(b) The if-else statement
(c) The conditional operators

Chapter 2: The Decision Control Structure 	 51

Now Ic s learn each of these and their variations in turn.

fStatement

Like most languages, C uses the keyword if to implement the
decision control instruction. The general form of if statement looks
like this:

if (this condition is true)
execute this statement;

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is
always enclosed within a pair of parentheses. If the condition,
whatever it is, is true, then the statement is executed. If the
condition is not true then the statement is not executed; instead the
program skips past it. But how do we express the condition itself
in C? And how do we evaluate its truth or falsity? As a general
rule, we express a condition using C's 'relational' operators. The
relational operators allow us to compare two values to see whether
they are equal to each other, unequal, or whether one is greater
than the other. Here's how they look and how they are evaluated in
C.

this expression	 I is true if

x = y	 x is equal to y

x !=y	 xis not equal toy

X	 xis less than y

x> y	 x is greater than y

X <= y	 x is less than or equal to y

>= y	 x is greater than or equal to y

Figure 2.1

52
	

Let Us C

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that is
used for assignment, whereas, = is used for comparison of two
quantities. Here is a simple program, which demonstrates the use
of if and the relational operators.

/ Demonstration of if statement
main()

nt num

printi ("Enter a number less than 10"
scanf ("%d", &num)

iI(num<= 10)
printf ("What an obedient servant you arc,!")

On execution of this program, if you type a number less than or
equal to 10, you get a message on the screen through printf(). If
You type sonic other number the program doesn't do anything. The
following flowchart would help you understand the flow of control
in the program.

Chapter 2: The Decision Control Structure	 53

[START

PRINT enter a mini
less than 10

INPUT num

Is

nuni> 10

PRINT What an obedient
servant you arc	 /

rTiop
Figure 2.2

To make you comfortable with the decision control instruction one
more example has been given below. Study it carefully before
reading fuhef.To help you understand it easily, the program is
accompanied by an appropriate flowchart.

Example 2.1: While purchasing certain items, a discount of 10%
is offered if the quantity purchased is more than 1000. If quantity
and price per item are input through the keyboard, write a program
to calculate the total expenses.

54
	

Let Us C

Figure 2.3

(Calculation of total expenses
main()

mt qty.dis=O;
float rate, tot;
printi ('Enter quantity and rate");
scanf("%d %f", &qty, &rate),

if(qty >1000)
dis=1O;

Chapter 2: The Decision Control Structure	 55

tot (qty rate) - (qty * rate * dis /100);
printf ("Total expenses Rs. %f', tot);

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as
1200 (value of qty) is greater than 1000. Therefore, the variable
dis, which was earlier set to 0, now gets a new value 10. Using this
new value total expenses are calculated and printed.

In the second run the condition evaluates to false, as 200 (the value
of qty) isn't greater than 1000. Thus, dis, which is earlier set to 0,
remains 0, and hence the expression after the minus sign evaluates
to zero, thereby offering no discount.

Is the statement dis = 0 necessary? The answer is yes, since in C, a
variable if not specifically initialized contains some unpredictable
value (garbage value).

The Real Thing

We mentioned earlier that the general form of the if statement is as
follows

if (condition)
statement;

Truly speaking the general form is as follows:

56	 -	 Let UsC

if (expression
statement;

Here the expression can be any valid expression including a
relational expression. We can even use arithmetic expressions in
the if statement. For example all the Following if statements are
valid

if (3 + 2 % 5)
printi (" This works)

if (a = 10)
printf (" Even this works")

if (-5)
printf ("Surprisingly even this works");

Note that in C a non-zero value is considered to be true, whereas a
0 is considered to he false. In the first if, the expression evaluates
to 5 and since 5 is non-zero it is considered to be true. [fence the
printf() gets executed.

In the second if, 1 0 gets assigned to a so the if is now reduced to if
a) or if (10). Since 10 is non-zero, it is true hence again

printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again
printf() goes to work. In place of-5 even if a float like 3.14 were
used it would be considered to be true. So the issue is not whether
the number is integer or float, or whether it is positive or negative.
Issue is whether it is zero or non-zero

Multiple Statements within if

It may so happen that in a program we want more than one
statement to be executed if the expression Following if is satisfied.
If such multiple stateilients are to be executed then they must he

Chapter 2: The Decision Control Structure 	 57

placed within a pair of braces as illustrated in the following
example.

Example 2.2: The current year and the year in which the
employee joined the organization are entered through the
keyboard. If the number of years for which the employee has
served the organization is greater than 3 then a bonus of Rs. 2500/-
is given to the employee. If the years of service are not greater
than 3, then the program should do nothing.

/* Calculation of bonus /
main()

nt bonus, cy, yoj, yr_of.ser;

printf (Enter current year and year of joining
scan! ("%d %d", &cy, &yo;);

yr_of_ser cy - yoj

if (yr_of_ser> 3)

bonus 2500;
printf ('Bonus Rs. %d', bonus)

Observe that here the two statements to be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a
pair of braces is not used then the C compiler assumes that the
programmer wants only the immediately next statement after the if
to be executed on satisfaction of the condition. In other words we
can say that the default scope of the if statement is the immediately
next statement after it.

Let Us C

LSTART]

/ INPUT
I	 cy, yoj

Figure 2.4

The if-else Statement

The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to
true. It does nothing when the expression evaluates to false. Can
we execute one group of statements if the expression evaluates to
true and another group of statements ifthe expression evaluates to
false? Of course! This is what is the purpose of the else statement
that is demonstrated in the following example:

Example 2.3: In a company an employee is paid as under:

Chapter 2: The Decision control Strt4cure 	 59

If his basic salary is less than Rs. 1500, then HRA 10% of basic
salary and DA = 90% of basic salary. Jihis sa!ary is either equal to
or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic
salary. If the employee's salary is input through the keyboard write
a program to find his gross salary.

/ Calculation of gross salary
main()

float bs, gs, da, hra

printf (Triter basic salary);
scanf ('%f, &bs);

if (bs < 1500)

hra bs * 10/100;
da= bs * 90/100;

else

hra= 500;
da bs * 981100;

gs bs 4• hra + da;
printf (gross salary Rs. %f, gs);

60 	 Let U'C

Figure 2.5

A few points worth noting...

(a) The group of statements after the if upto and not including the

else is called an 'if block'. Similarly, the statements after the

else form the 'else block'.

(b) Notice that the else is written exactly below the if. The

statements in the if block and those in the else block have
been indented to the right. This formatting convention is

Chapter 2: The Decision Control Structure 	 61

followed throughout the book to enable you to understand the
working of the program better.

(c) Had there been only one statement to be executed in the if
block and only one statement in the else block we could have
dropped the pair of braces.

(d) As with the if statement, the default scope of else is also the
statement immediately after the else. To override this default
scope a pair of braces as shown in the above example must be
used.

Nested if-.elses

It is perfectly all right if we write an entire if-else construct within
either the body of the if statement or the body of an else statement.
This is called 4 nesting'of ifs. This is shown in the following
program.

r A quick demo of nested if-else E/

main()

mt	 I;

piintf ('Enter either 1 or 2")
scanf(%d",&i);

if (i == 1)
printf ("You would go to heaven I')

else
{

if (2)
pnntf ("Hell was created with you in mind");

else
pnntf ("How about mother earth!");

}

6

62 	 Let Us C

Note that the second if-eke construct is nested in the first else
statement. If the condition in the first if statement is fidse, then the
condition in the second if statement is checked. If it is false as
well, then the final else statement is executed.

You can see in the prograni how each time it if-else construct is
nested within another if-else construct, it is also indented to add
clarity to the program. Inculcate this habit of indentation,
otherwise you would end up writing progranis which nobody (you
included) can understand easily at a later date.

in the above program an if-else occurs within the else block of the
first if statement. Similarly, in sonic other program an if-else may
occur in the if block as well. There is no limit on how deeply the
ifs and the elses can be nested.

Forms of if

The if statement can take any of the following forms:

(a) if (condition)
do this;

(b) if (condition)

do this
and this

(C)	 if (ondition)
do this

else
do this

(d)	 if (condition)

do this

Chapter 2. The Decision Coizirol Siritciure	 63

and this

else

do this
and this

(e)	 if (condition)
do this;•

else

if (condition)
do this

else

do this
and this

(1)	 if (condition)

if (condition)
do this

else

do this
and this

else
do this

64
	

Let Us C

Use of Logical Operators

C allows usage of three l ogical operators, namely, &&, 11 and

These are to be read as 'AND' 'OR' and 'NOT' respectively.

There are several things to note about these logical operators. Most
obviously, two of them are composed of double symbols: 11 and

&&. Don't use the single symbol I and &. These single symbols
also have a meaning. They are bitwise operators, which we would

examine in Chapter 14.

The first two operators, && and II, allow two or more conditions
to be combined in an if statement. Let us see how they are used in
a program. Consider the following example.

Example 2.4: The marks obtained by a student in 5 different
subjects are input through the keyboard. The student gets a
division as per the following rules:

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this
example. These methods are given below.

I' Method — I I
main()

mt ml, m2, m3, m4, m5, per

printf (Enter marks in five subjects);
scanf("%d %d %d %d %d, &ml, &m2, &m3, &m4, &m5);
per(m1 +m2+m3+m4+m5)i5,

Chapter 2: The Decision Control Structure	 65

if (per '= 60)
pnntf ('First division');

else
{

it (per > 50)
printf ('Second division');

else

if (per > 40)
pnntf ('Third division'):

else
printf('Fail');

}

This is a straight forward program. Observe that the program uses
nested if-elses. This leads to three disadvantages:

(a) As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole
program creeps to the right.

(b) Care needs to be exercised to match the corresponding ifs and
elses.	 -

(c) Care needs to be exercised to match the corresponding pair of
braces.

All these three problems can be eliminated by usage of 'Logical
operators'. The following program illustrates this.

rMethod — ll 'I
main()

nt ml m2,m3,rn4,rn5,per;

pnntf ('Enter marks in five subjects');
scant ("%d %d %d %d %d', &ml &m2, &m3, &n-A, &m5);
per (mi+m2+m3+m4+m5)/5;

66
	

Let Us C

if (per > 60)
printf (First division"

if((per> 50)&&(per<60))
printi (Second division")

if per > 40) && (per < 50))
printf (Third division")

if (per < 40)
printf("Fail")

As can be seen From the second if statement, the && operator is
used to combine two conditions. 'Second division' gets printed if
both the conditions evaluate to true. If one of the conditions
evaluate to false then the whole thing is treated as false.

Two distinct advantages can be cited in favour of this program:

(a) The matching (or do I say mismatching) of the ifs with their
corresponding elses gets avoided, since there are no elses in
this program.

(b) In spite of using several conditions, the program doesn't creep
to the right. In the previous program the statements went on
creeping to the right. This effect becomes more pronounced as
the number of conditions go on increasing. This would make
the task of matching the ifs with their corresponding elses and
matching of opening and closing braces that much more
difficult.

The else if Clause

There is one more way in which we can write program for
Example 2.4. This involves usage of else if blocks as shown
below:

Chapter 2: The Decision Control Structure 	 67

r else if ladder demo */
main()

mt ml, m2, m3, m4, m5, per

per (m1+m2+m3+ m4+m5)Iper;

if (per	 60
printf ("First division")

else if per >= 50)
pnntf ("Second division");

else if (per > 40)
printf ("Third division");

else
pr.ntf ("fail")

}

You can note that this program reduces the indentation of the
statements. In this case every else is associated with its previous if.
The last else goes to work only if all the conditions fail. Even in
else if ladder the last else is optional.

Note that the else if clause is nothing different. It is just a way of
rearranging the else with the if that follows it. This would be
evident if you look at the following code:

if(i	 2)
printf("With you...");

else

if (j =2)
printi ("...All the time")

if(i=2)
prmntf ("With you...")

else if (j	 2)
printf ('...All the time

Another place where logical operators are useful is when we want
to write programs for complicated logics that ultimately boil down

68	 Let Us

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

- lithe driver is married.
- If the driver is unmarried, male & above 30 years of age.
- If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to detennine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not he ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

r Insurance of driver - without using logical operators 'I
main()

char sex, ms,
mt age;

pnntf ('Enter age, sex, marital status')
scant (Nod %c %c, &age, &sex, &rns);

if (ms	 'M)
printf ('Driver is insured').;

else

if(sex ==M)

Chapter 2: The Decision Control Structure	 69

if (age> 30)
printf (Driver is insured');

else
printf ('Driver is not insured*);

else

if (age > 25)
printf ('Driver is insured");

else
printf ('Driver is not insured');

}

From the program it is evident that we are required to match
several ifs and elses and several pairs of braces. In a more real-life
situation there would be more conditions to check leading to the
program creeping to the right. Let us now see how to avoid these
problems by using Logical operators.

As mentioned above, in this example we expect the answer to be
either 'Driver is insured' or 'Driver is not insured'. If we list down
all those cases in which the driver is insured, then they would be:

(a) Driver is married.
(b) Driver is an unmarried male above 30 years of age.
(c) Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and II as shown in the program
below:

r Insurance of driver using logical operators 1
main()
{

char sex, ms;

70
	

Let Us C

nt ace;

printf ("Enter age, sex, marital status");
scanf ("%d %c %c" &age, &sex, &ms)

if ((ms	 'M) il (ms =='U'&& sex =='M'&& age > 30)
(ms == 'U'&& sex	 'F' && age > 25))

printi ("Driver is insured")
else

printf ("Driver is not insured')

In this program it is important to note that:

- The driver will be insured only if one of the conditions
enclosed iii parenthees evaluates to true.

For the second pair of parentheses to evaluate to true, each
condition in the parentheses separated by && must evaluate to
true.

- Even if' one of the conditions in the second parentheses
evaluates to false, then the whole of the second parentheses
evaluates to false.

- The last two of the above arguments apply to third pair of
parentheses as well.

Thus we can conclude that the && and Ii are useful in the
following programming situations:

(a) When it is to be tested whether a value falls within a
particular range or not.

(b) When after testing several conditions the outcome is only one
of the two answers (This problem is oflen called yes/no
problem).

Chapter 2: The Decision control Structure	 71

There can be one more situation other than checking ranges or
yes/no problem where you might find logical operators useful. The
following program demonstrates it.

Example 2.6: Write a program to calculate the salary as per the
following table:

Gender Years of Service Qualifications	 Salary

Male	 > 10	 Post-Graduate	 15000

	

= 10	 - Graduate 	 10000

<10 	 Post-Graduate	 10000

< 10	 Graduate	 7000

Female	 >= tO	 Post-Graduate 	 12000

	

ID	 - Graduate	 9000

< 10	 Post-Graduate - 	 10000

< 10	 Graduate	 6000

Figure 2.6

main()

char g;
mt yos, qual, sal;

printf ("Enter Gender, Years of Service and
Qualifications (0 G, 1 PG):")

scanf ("%c%d%d, &g, &yos, &qual);

if (g =='m'&& yos > 10 && qual 	 1)
sal 15000;

else if ((g =='m'&& yos	 10 && qual0)
(grn&&yos< 10&&qual z 1))
sal 10000;

72
	

Let Us C

else if (9 =='m'&& yos < 10 && qua)	 0)
sal 7000;

else if (g	 'I' && yos > 10 && qual	 1)
sal 12000:

else if (g	 f && yos >= 10 && qual	 0)
sal 9000;

else if (9 == 'f && yos < 10 && qual 	 1)
sal= 10000;

else if (9 == 'f && yos < 10 && qual	 0)

sal = 6000;

printf (\nSalary of Employee = %d, Sal);

The! Operator

So far we have used only the logical operators && and fi . The
third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0. Vice versa, if the
expression evaluates to zero then on applying ! operator to it
makes it 1, a non-zero value. The final result (after applying !) 0 or
I is considered to be false or true respectively. Here is an example
of the NOT operator applied to a relational expression.

!(Y<10)

This means "not y less than 10". In other words, if y is less than
10, the expression will be false, since (y < 10) is true. We can
express the same condition as (y >= 10).

The NOT operator is often used to reverse the logical value of a
single variable, as in the expression

if (flag)

Chapter 2: The Decision Control Struciw e
	

73

This is another way of saying

if (flag	 0)

Does the NOT operator sound confusing? Avoid it if you want, as
the same thing can be achieved without using the NOT operator.

Hierarchy of Operators Revisited

Since we have now added the logical operators to the list of
operators we know, it is time to review these operators and their
priorities. Figure 2.7 summarizes the operators we have seen so
far. The higher the position of an operator is in the table, higher is
its priority, (A full-fledged precedence table of operators is given
in Appendix A.)

Operators

< > <= >=

&&

Figure 2.7

A Word of Caution

Type

Logical NOT

Arithmetic and modulus

Arithmetic

Relational

Relational
Logical AND
Logical OR
Assignment

What will be tie output of the following program:

74
	

Let Us C

main()

mt

printf ('Enter value of i')
scanf (%d°, &i

5)
printf ('You entered 5

else
printf ('You entered something other than 5')

And here is the output of two runs of this program...

Enter value of 1200
You entered 5
Enter value of i 9999
You entered 5

Surprising? You have entered 200 and 9999, and still you find in
either case the output is ')'ou entered 5'. This is because we have
written the condition wrongly. We have used the assignment
operator = instead of the relational operator =. As a result, the
condition gets reduced to if (5), irrespective of what you supply
as the value of i. And remember that in C truth' is always non-
zero, whereas 'falsity' is alwa ys zero. Therefore, if (5) always
evaluates to true and hence the result.

Another common mistake while using the if statement is to write a
semicolon (;) after the condition, as showii below:

main()

nt	 I;

printf ('Enter value of
scanf ('%d', &i

Chapter 2: The Decisiozz Co,,iroI Structure	 75

if(i5);
printf (You entered 5');

The ; makes the compiler to interpret the statement as if yon have
written it in following manner:

if(i5)

printf (You entered 5")

Here, if the condition evaluates to true the ; (null statement, which
does nothing on execution) gets executed, Following which the
printf() gets executed, lithe condition fall ,., then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
evaluates to true or false the . printf() is bound to get executed.
Remember that the compiler would not point out this as an error,
since as far as the syntax is concerned nothing has gone wrong, but
the logic has certainly gone awry. Moral is, beware Of such
pitfalls.

The Following figure summarizes the working of' all the three
logical operators.

Operands	 Results

X'	 !v	 x&Jx Ill y

o 	 o	 1	 1	 0	 Jo

o	 11011-7cro	 I	 0	 0	 1)

non-zero _0	 0	 1	 0

non-zero	 nn-/cro	 0	 1 (1

Figure 2.8

76
	

Let Us C

The Conditional Operators

The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind
of foreshortened if-then-else. Their general form is,

expression 1? expression 2 : expression 3

What this expression says is: "if expression 1 is true (that is, if its
value is non-zero), then the value returned will be expression 2,
otherwise the value returned will be expression 3". Let us
understand this with the help of a few examples:

(a) int x, y ',
scanf ("%d, &x)
y(x>5?3:4);

This statement will store 3 in y if x is greater than 5,

otherwise it will store 4 in y.

The equivalent if statement will be,

if (x > 5)

else
y=4;

(b) char a;
mt y;
scanf("%c"&a);
y=(a>65&&a<9O?l :0);

Here I would be assigned to y if a >=65 && a <90 evaluates to

true, otherwise 0 would be assigned.

The following points may be noted about the conditional
operators:

Chapter 2: The Decision Coiiirol Structure	 77

(a) It's not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex.:	 int i;
scanf(%d",&i);
(I	 1 ? printf ("Amit') printf (A11 and sundry'))

Ex.:	 char a
printf("%c' (a>=a?a:")),

(b) The conditional operators can be nested as shown below.

mt big, a,b,c;
big (a> b?(a >c? 3: 4) : (b>c? 6: 8))

(C) Check out the following conditional expression:

a>b?ga:gb;

This will hive you an error 'Lvalue Required'. The error can
be overcome by enclosing the statement in the part within a
pair of parenthesis. This is shown below:

a>b?ga:(gb):

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
operators aren't as frequently used as the if-else.

Summary
(a) There are three ways for taking decisions in a program. First

way is to use the if-else statement, second way is to use the

7

Let Uc C

conditional operators and third way is to use the switch
statement.

(b) The default SCOPC of the if statement is only the next
statement. So, to execute more than one statement they must
be written in a pair of braces.

(c) An if block need not always be associated with an else block.

However, an else block is always associated with an if

statement.
(d) if the outcome of art if-else ladder is only one of two answers

then the ladder should be replaced either with an else-if clause
or by logical operators.

(e) && and 11 are binary operators, whereas, ! is a unary operator.

(f) In C every test expression is evaluated in terms of zero and
non-zero values. A zero value is considered 10 he false and a
non-zero value is considered to he true.

(g) Assignment statements used with conditional operators must
be enclosed within a pair of parenthesis.

Exercise

:/; if-else, Nestedf-eIses

Itl What would be the output of the following programs:

(a) main()

mt a30O,b,c;
if (a >= 400)

b 300;
c 200
printf (\n%d %d',b, c);

(b) main()

mt a=500b,c;
a >= 400)

Chaplet- 2: The Decision Control Structure	 - 79

b 300:
c = 200:
pnntf (\n%d %d", b, c);

}

(C) main()

nt x=10y20;

	

if(x	 y)
printf (\n%d %d, x, y);

• (d) main()

nt x=3,y5;
if(x==3)

printf ("\n%d, x)
else:

phntf, (\n%d, y)

6t-(-e—) rnain()

nt x3;
float y=3.O:

f(x=y)
pnntf (\nx and y are equal

else
printf ('\nx and y are not equal')

(1)	 main()

int x3,yz;
F x 10:
z = x < 10;
printf(\nx :%dy%dz%d',x,y,z)

80
	

Let Us C

(g) main()

nt k35:
printf	 (\n%d %d %d, k	 35, k = 50, k > 40);

(h) main()

inti =65
char i =W

	

if (I	 j
printf (C is WOW);

else
pnntf(T is a headache);

(i) main()

mt a5bc;
b a = 15;
c=a<15;
printf (na %d b %d c %d, a, b, c);

U)	 main()

nt x=15;
printf (\n%d %d %d*, x 15, x 20, x < 30);

IBI Point out the errors, if any, in the following programs:

(a) main()

float a12.25,b12.52;
if (a b)

printi (\na and b are equal);

Ch	 r 2: The D"cision Control Structure	 81

(b)

j=10.ki2;
k > j)

kj;
jk;

(c1

X <x)

printf (\nascii value of X is smaller than that of x);

(d) n

nt x 10;
if(x> 2) then

pnntf(\n%dx)

lain()

lilt x10;
if x>2

prirt(*\n%d);

(main()

ml x10y15;
if (x % 2 y % 3)

Let Us C

printf (\nCarpathians")

(g) main()

nt x 30 y 40
if(x =y)

printf("x is equal to y");
elseif (x > y)

printf("x is greater than y)
elseif(x<y)

printf(x is less than y"

(h) main()

mt x	 10
if(x>2)then

printf (\n%d, x)

(i) main()

inta, b
scanf ("%d %d",a, b)
if (a > b)

printf ("This is a game")

pnntf ("You have to play It")

ICI Attempt the Following:

) If cost price and selling price of an item is input through (lie
keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit
he made or loss he incurred.

Chapter 2: The Decision Control Structure	 83

Any integer is input through the keyboard. Write a program to
find out whether it is an odd number or even number.

/
() Any year is input through the keyboard. Write a program to
/	 determine whether the year is a leap year or not.

(Hint: Use the % (modulus) operator)

(d) According to the Gregorian calendar, it was Monday on the
date 01/01/1900. If any year is input through the keyboard
write a program to find out what is the day on 1' January of
this year.

(e) A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine
whether the original and reversed numbers are equal or not.

If the ages of Ram, Shy-, 	 and Ajay are input through the
\" keyboard, write a program to determine the youngest of the

three.

(g) Write a program to check whether a triangle is valid or not,
when the three angles of the triangle are entered through the
keyboard. A triangle is valid if the sum of all the three angles
is equal to 180 degrees.

(h) Find the absolute value of a number entered through the
keyboard.

(I) Given the length and breadth of a rectangle. write a program to
find whether the area of the rectangle is greater than its
perimeter. For example, the area of the rectangle with length = 5
and breadth = 4 is greater than its perimeter.

(j) Given three points (fl, yl), (x2, 2) and (0, y3), write a
program to check if all the three points fall oil 	 straight line.

84
	

Let Us C

(k) Given the coordinates (x, v) ofa center ofa circle and it's radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle.

(Hint: Use sqrt() and pow() functions)

(I) Given a point (x, y), write a program to hod out if it tics on the
x-axis, y-axis or at the origin, viz. (0, 0).

Logical Operators

If a = 10, b = 12, c = 0, find the values of the expressions in
the following table:

Expression

a!= 6 && b > 5
a	 9 11 h <3
!(a<. tO)
(a > 5 && c

5 && c

IDI What would be the output of the Ibilowing programs:

(a) main()

nt i4,z12;
if (511 z> 50)

printf (\nDean of students affairs*)
else

printf ('nDosa')

(b) main()

mt i4,z12;

Chapter 2: The Decision control Structure	 85

if(i 5 && z> 5)
printf ("\nLet us C");

else
printf("nWish Cwas free'");

	

int	 4, j	 -1, k	 0, w, x, y, z;

	

w	 k
xi&&j&&k;
y l iii && k;

Ilk;
prin(f("\nw%dx%dy%dz:%d"w,xyz);

(d) main()

nt k4J.1k0yz;
yi+5&&j+1k+2;
zi+5llj+1&&k+2;
printf("thy%dz%d",yz);

(e) main()

mt i-3j3;
if(i+ !j* 1)

printf ("Massaro")
else

printf ("\nBennanvo");

(t)	 main(

nt a40;
if (a > 40 && a <45)

printf ("a is greater than 40 and less than 45");

86	 __	 Let Us

else

printf ('%d, a)

(main()

nt p=8,q20:
f(p=5&&q>5)

pnntf("\riWhy not C')
else

printf (\nDefinitely C !')

(h) main()

	

intl	 -1, j	 1, k
ki&&j:

printf (%d %d', I, j)

(i) main()

intx2O y4O,z45;
if (x > y && x z)

printf(x is big)
else if(y>x&&y>z)

printf(y is big'
else if(z>x&&z>y)

printf('z is big')

(j) main(

	

irit	 i	 -1,1	 1, k
k = 1

1	 i
printf (%d %d •', I, j)

Chapter 2: The Decision Control Structure	 87

(k) main()

irit j4k;
k 15 && I
printf('\nk %d", k)

IEI Point out the errors, if any, in the following programs:

(a) /* This program
/* is an example of
r using Logical operators /
main()

mt i2,j5;
iI(i=2&&j=5)

printf ("\nSatisfled at last");

(b) main()

mt code, flag;
if (code = 1 & flag =O)

printf ("\nlhe eagle has landed")

(c) main(

char spy 'a', password
if (spy = 'a or password 	 z')

priritf ("\nAll the birds are safe in the nest")

(d) main()

,.aIe
	

Let Us i

mt 110,j20;
if(i 5) && if(j = 10)

printf ('\nHave a nice day')

(a) main()

mt x=10,y=20;
if(x>2 and y<50)

printf (\n%d', x)

(b) main()

mt ab;
if (a	 I & b	 0)

printf ('\nGod is Great')

(c) man()

mntx2:
if (x = 2 && x 0)

printf('nHi');
printf('\nHello');

else
pnntf('Bye');

(d) main()

ml i=10,110;
if(I &&j	 10)

prmntf ('\nHave a nice day')

Chapter 2. The Decision Control Structure
	

89

IFI Attempt the following:

(a) Any yàar is entered through the keyboard, write a program to
determine whether the year is leap or not. Use the logical
operators && and II.

(b) Any character is entered through the keyboard, write a
program to determine whether the character entered is a
capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for
various characters.

Characters

A-Z

a - z

0-9

special symbols

ASCII Values

65-90

97- 122

48 -57
0-47.58.64.91-96,123-127

(c) An Insurance company follows following rules to calculate
premium.

(I) If a person's health is excellent and the person is between
25 and 35 years of age and lives in a city and is a male
then the premium is Rs. 4 per thousand and his policy
amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that
the sex is female then the premium is Rs. 3 per thousand
and her policy amount cannot exceed Rs. I lakh.

(3) If a person's health is poor and the person is between 25
and 35 years of age and lives in a village and is a male

J.L'((Is C

then the premium is Rs. 6 per thousand and his policy
cannot exceed Rs. 10,000.

(4) In all other cases the person is not insured.

Write a program to output whether the person should be
insured or not, his/her premium rate and maximum amount
for which he/she can he insured.

(d) A certain grade of steel is graded according to the following
conditions:

(1) Hardness must he greater than 50
(ii) Carbon content must be less than 0.7
(iii) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 if all three conditions are met
Grade is 9 If conditions (i) and (ii) are met
Grade is 8 if conditions (ii) and (iii) are met
Grade is 7 if conditions (i) and (iii) are met
Grade is 6 if- only one condition is mel
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel
under consideration and output the grade of the steel.

(e) A library charges a fine for every book returned late. For first
5 days the fine is 50 paise, for 6-10 (lays fine is one rupee and
above 10 days line is 5 rupees. If you return the book after 30
days your membership will he cancelled. Write a program to
accept the number of days the member is late to return the
book and display the fine or the appropriate message.

Chapter 2: The Decision Control Structure	 91

(f) If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
valid or not. The triangle is valid if the sum of two sides is
greater than the largest of the three sides.

(g) If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
isosceles, equilateral, scalene or right angled triangle.

(h) In a company, worker efficiency is determined on the basis of
the time required for a worker to complete a particular job. If
the time taken by the worker is between 2 -- 3 hours, then the
worker is said to he highly efficient. If the time required by
the worker is between 3 - 4 hours, then the worker is ordered
to improve speed. If the time taken is between 4 - 5 hours, the
worker is given training to improve his speed, and if the time
taken by the worker is more than 5 hours, then the worker has
to leave the company. If the time taken by the worker is input
through the keyboard, find the efficiency of the worker.

(i) A university has the following rules for a student to qualify
for a degree with A as the main subject and B as the
subsidiary subject:
(a) lie should get 55 percent or more in A and 45 percent or

more in B.
(b) If he gets than 55 percent in A he should get 55 percent or

more in B. However, he should get at least 45 percent in
A.

(c) If he gets less than 45 percent in B and 65 percent or more
in A he is allowed to reappear in an examination in B to
qualify.

(d) In all other cases he is declared to have failed.

Write a program to receive marks in A and B and Output
whether the student has passed, failed or is allowed to
reappear in B.

92
	

Let Us C

-A) The policy followed by a company to process customer orders
is given by the following rules:

(a) If a customer order is less than or equal to that in stock
and has credit is OK, supply has requirement.

(b) If has credit is not OK do not supply. Send him
intimation.

(c) If has credit is Ok but the item in stock is less than has
order, supply what is in stock. Intimate to him data the
balance will he shipped.

Write a C program to implement the company policy.

Conditional operators

IGI What would be the output of the following programs:

(a) main()

mt i = -4,j, num
j(num<O?O:numtnum);
printf ("\n%d, j);

(b) main()

nt k,num3O:
k=(num>5?(num<10?100:200):500)
prrntf ("\n%d", num);

(c) main()

mt j=4:
(!j != 1? prmntf ("\nWelcome") : printf ("\nGood Bye"));

Chapter 2: The Decision Control Structure	 93

IHI Point out the errors, if any, in the following programs:

(a) main()

nt tag =0, code =1;
f (tag =O)

(code > I ? printf ("nHello') ? pnntf (\nHi));
else

pnntf (\nHello Hi !!);

(b) main()

nt ji65;
printf (\nji >= 65? %d : %c, ji);

(c) main()

mt	 10,j;
i > 5? (j	 10): (j	 15);
prinff(\n%d%d1ij);

(d) main()

mt a 5, b 6;
(a	 b ? pnntf(%d,a));

(e) main()

mt n	 9;
(n == 9 ? pnntf(You are correct') ; : printf('You are wrong*);):

8

Let Us C

(f) main(

nt hk65H;
(kk	 65 : printf (In kk is equal to 65") : printf ("\n kk is not

equal to 65"));
pnntf("%d", 11)

(g) main(

mt xzlOy20:
x	 20 && y	 10 ? printf("True") : printf("False"

111 Rewrite the following programs using conditional operators.

(a) main()

mt x, mm, max
scant ("\n%d %d", &max, &x);
if(x> max)

max
else

mm = x

(b) main()

at code;
scant ("%d", &code)
it(code >1

printf ("\nJerusalem")
else

f(code < 1)
printf ('\nEddie");

else
printf ("\nC Brain")

Chapter 2: The Decision Control Structure	 95

(c) main()

float sal
printf ("Enter the salary"
scanl(%r, &sal)
if (sal < 40000 && sal > 25000)

pnntf('Manager');
else

if (sal <25000 && sal" 15000)
printf ('Accountant*);

else
printf ("Clerk);

1.11 Attempt the following:

(a) Using conditional Opel ators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a
special symbol or not.

(b). Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year or
not.

(C) Write a program to find the greatest of' the three numbers
entered through the keyboard using conditional operators,

96	 Let Us C

3 The Loop Control
Structure

• Loops
• The while Loop

Tips and Traps
More Operators

• Thefor Loop
Nesting of Loops
Multiple Initialisations in the for Loop

• The Odd Loop
• The break Statement

The continue Statement
• The do-while Loop
• Summary
• Exercise

97

98	 Let Us C_

T

he programs that we have developed so far used either a
sequential or a decision control instruction. In the first one,
the calculations were carried out in a fixed order, while in

the second, an appropriate set of instructions were executed
depending upon the outcome of the condition being tested (or a
logical decision being taken).

These programs were of limited nature, because when executed,
they always performed the same series of actions, in the same way,
exactly once. Almost always, if something is worth doing, it's
worth doing more than once. You can probably think of several
examples of this from real life, such as eating a good dinner or
going for a movie. Programming is the same; we frequently need
to perform an action over and over, often with variations in the
details each time. The mechanism, which meets this need, is the
'loop.', and loops are the subject of this chapter.

Loops
The versatility of the computer lies in its ability to perform a set of
instructions rcpcatcdly. This involves repeating some portion of
the program either a specified number of times or until a particular,
condition is being satisfied. This repetitive operation is done
through a loop control instruction.

There are three methods by way of which we can repeat a part of a

program. They are:

(a)Using a for statement
(b) Using a while statement
(c) Using a do-while statement

Each of these methods is discussed in the following pages.

Chapter 3: The Loop control Structure 	 99

The while Loop

It is often the case in programming that you want to do something
a fixed number of times. Perhaps you want to calculate gross
salaries of ten different persons, or you want to convert
temperatures from centigrade to fahrenheit for IS different cities.
The while loop is ideally suited for such cases. Let us look at a
simple eamplc, which uses a while loop. The flowchart shown
below would help you to understand the operation of the while
loop.

Iigure i.I

100
	

Let Us C

/' Calculation of simple interest for 3 sets of p, ii and r /
main()

nt p, n, count
float r, si

count 1:
while (count < 3)

printf ('\nEnter values of p, n and r)
scanf ("%d %d °i3r, &p, &n, &r):
si p * n r / 100;
printf (Simple interest = Rs. °i0r, si)

count count + 1;

And here are a few sample runs...

Enter values of p, n and r 1000 513.5
Simple interest Rs. 675.000000
Enter values of p, n and r 2000 513.5
Simple interest Rs. 1350.000000
Enter values of p, ii and r 3500 5 3.5
Simple interest = Rs. 612.500000

The program executes all statements after the while 3 times. The
logic for calculating the simple interest is written within a pair of
braces immediately after the while keyword. These statements

form what is called the 'body' of the while loop. The parentheses

after the white contain a condition. So long as this condition
remains true all statements within the body of the while loop keep

getting executed repeatedly. To begin with the variable count is

initialized to I and every time the simple interest logic is executed
the value of count is incremented by one. The variable count is
many a times called either a 'loop counter' or an 'index variable'.

Chapter 3: The Loop Control Sfruclure	 101

The operation of the while loop is illustrated in the following

figure.

Figure 3.2

Tips and Traps

The general form of while is as shown below:

initialise loop counter;
white (test loop counter using a condition)

{
do ftii;
and this;
incremrit leep counter;

Note the following points about while...

102	 Let Us C

- The statements within the while loop would keep on getting
executed till the condition being tested remains true. When the
condition becomes false, the control passes to the first
statement that follows the body of the while loop.

In place of the condition there can he any other valid
expression. So long as the expression evaluates to a non-zero
value the statements within the loop would get executed.

- The condition being tested may use relational or logical
operators as shown in the following examples:

while (I < 10)
while (i> 10&&jc= 15)
while (10 && (b< 15 fc< 20)

- The statements within the loop may be a single line or a block
of statements. In the first case the parentheses are optional. For
example,

while(i< 10)
ii+1

is same as

while (i<=10)

ii+1

- As a rule the while must test a condition that will eventually
become false, otherwise the loop would he executed forever,
indefinitely.

main()

mt	 izi;

Chapter 3: The Loop Control Structure	 103

while (i(z 10)
printf (%d\n", i)

This is an indefinite loop, since i remains equal to I forever.
The correct form would be as under:

main()

mt	 i1;
while (i<10)

printf('%d\n"i);
iI+1

- instead of incrementing a loop counter, we can even decrement
it and still manage to get the body of the loop executed
repeatedly. This is shown below:

main()

mt i5;
while (i>1)

printf ("Make the computer literate!")

- It is not necessary that a loop counter must only be an mt. It

can even be a float.

main()

float a 10.0
while (a<10.5)

104	 Let Us C

printf (\nRaindrops on roses...")
printf ("...and whiskers on kittens)
a = a + 0.1

- Even floating point loop counters can be decremented. Once
again the increment and decrement could be by any value, not
necessarily 1.

What do you think
program?

main()

ml	 !1;
while (i <= 32767)

pnntf(%d\n', i)

would be the output of the following

No, it doesn't print numbers from I to 32767. It's an
indefinite loop. To begin with, it prints out numbers from I to
32767. After that value of i is incremented by 1, therefore it
tries to become 32768, which falls outside the valid integer
range, so it goes to other side and becomes -32768 which
would certainly satisfy the condition in the while. This
process goes oil

- What will he the output of the following program9

main()

m t 	 i=1;
while (i <= 10);

printf (%dn", i)

Chapter 3: The Loop Control Structure 	 105

ii+1

This is another indefinite loop, and it doesn't give any output
at all. The reason is, we have carelessly given a ; after the
while. This would make the loop work like this...

while (i<1O)

printf(%d\n', i);

Since the value of I is not getting incremented the control
would keep rotating within the loop, eternally. Note that
enclosing printf() and i = 1 +1 within a pair of braces is not
an error. In fact we can put a pair of braces around any
individual statement or set of statements without affecting the
execution of the program.

More Operators

There are variety of operators which are frequently used with
while. To illustrate their usage let us consider a problem wherein
numbers from I to 10 are to be printed on the screen. The program
for performing this task can be written using while in the
following different ways:

(a) main()

mt	 i1;
while (i<10)

pnntf(%d\n, I);
i = i + 1

106
	

Let Us C

}

(b) main()

mt	 :_j.

while (i<= 10)

printf(%d\n, i)

Note that the increment operator -4--I- increments the value of I
by I, every time the statement i++ gets executed. Similarly, to
reduce the value of a variable by I a decrement operator -- is
also available.

However, never use n±++ to increment the value of n by 2,
since C doesn't recognize the operator +++.

(C) main()

mt	 i1;
while(i	 10)

printi ('%d\n', I
I 4= 1

Note that + is a compound assignment operator. It
increments the value of i by I. Similarly, j = j + 10 can also
be written as j + 10. Other compound assignment operators
are -, =, / and %=.

(d) main()

Chapter 3: The Loop control Structure	 107

mt i	 0;
while (i++ < 10)

pnntf ('%d\n,

In the statement while (i++ < 10),_firstly the comparison of
value of i with 10 is performed, and then the incrementation
of i takes place. Since the incrcmeriiitin ofihappens after its
iiic, here the -H- operator is called a post- incrcmentation
operator. When the control reaches printl(, i has already
been incremented, hence i must be initialized to 0.

(e) main()

mt i0;
while (++i<10)

pnntf (%d\n, I)

In the statement while (+-+i <= 10). firstly incrcmcntation of
i takes place, then the comparison of value of i with 10 is
performed. Since the incrementation of i happens before its
usage, here the ++ operator is called it pre-incrcmentation
operator.

Thefor Loop

Perhaps one reason why few programmers use while is that they
are too busy using the for, which is probably the most popular
looping instruction. The for allows us to specify three things about
a loop in a single line:

(a) Setting a loop counter to an initial value.
(b) Testing the loop ,,counter to determine whether its value has

reached the number of' repetitions desired.

108
	

Let Us C

(c) Increasing the value of loop counter each time the program
segment within the loop has been executed.

The general form of for statement is as under:

for (initialise counter; test counter, increment counter)

do this;
and this
and this

Let us write down the simple interest prograñi using for. Compare
this program with the one, which we wrote using while. The
flowchart is also given below for a better understanding.

: The Loop Control Structure	 109

Figure 3.3

r Calculation of simple interest for 3 sets of p, n and r
main ()

mt p, n, count;
float r, si

or (count 1; count < 3; count count + 1)

printf ("Enter values of p, n, and r")
scanf ("%d %d %f", &p, &n, &r);

Si p * * r /100;
printf ("Simple Interest Rs.%f\n", Si);

9

110 	 Let UsC

If this program is compared with the one written using while, it
can be seen that the three steps—initialization, testing and
incremcntation—required for the loop construct have now been
incorporated in the for statement.

Let us now examine how the for statement gets executed:

- When the for statement is executed for the first time, the value
of count is set to an initial value 1.

- Now the condition count <= 3 is tested. Since count is I the
condition is satisfied and the body of the loop is executed for
the first time.

- Upon reaching the closing brace of for, control is sent back to
the for statement, where the value of count gets incremented
by 1.

- Again the test is performed to check whether the new value of
count exceeds 3.

- If the value of count is still within the range 1 to 3, the
statements within the braces of for are executed again.

- The body of the for loop continues to get executed till count
doesn't exceed the final value 3.

- When count reaches the value 4 the control exits from the loop
and is transferred to the statement (if any) immediately after
the body of for.

The folowing figure would help in further clarifying the concept
of execution of the for loop.

Chapter 3: The Loop Control Structure 	 111

Figure 3.4

It is important to note that the initialization, testing and
incrementation part of a for loop can be replaced by any valid
expression. Thus the following for loops are perfectly ok.

for (i1O;i;i--)
printf(%d,i);

for(<4 ;j 5';j=O)
printf(%d, i);

for(i	 1; i <10; pnntf("%d"i++)

for (scanf(%d&i):k 10:i++)
printf ("%d, I);

Let us now write down the program toprint numbers from I to 10
in different ways. This time we would use a for loop instead of a
while loop.

112
	

Let Us C

(a) main()

jot i
for(i = 1 ;i<=1O;ii+1)

printf (%d\n, i

Note that the initialisation, testing and incrementation of loop
counter is done in the for statement itself. Instead of i = I + 1,
the statements i++ or i +rr I can also be used.

Since there is only one statement in the body of the for loop,
the pair of braces have been dropped. As with the while, the

default scope of for is the immediately next statement after

for.

(b) main()

mt
for (i	 1; I <	 10 :)

printf ("%d\n' I);
j=i+ 1;

/ Here, the incremcntation is done within the body of the fo
loop and not in the for statement. Note that inspitc of this th
semicolon after the condition is necessary.

(c) main()

nt i1;
for (; i <= 10; i = i + 1)

pnntf (%d\n, I)

INMIMMM-

Chapter 3: The Loop Control Structure 	 113

Here the initialisation is done in the declaration statement
itself, but still the semicolon belore the condition is necessary.

(d) main()

mt	 i-I;
for (i < 10

printf("%d\n", i):
i=j+1

Here, neither the initialisation, nor the incrementation is done
in the for statement, but still the two semicolons are

necessary.

(e) main()

mt	 I:
for (i0;i+4<10;)

printf(%d\n,i);

Here, the comparison as well as the incrementation is done
through the same statement, i++ < 10. Since the ++ operator
comes after i firstly comparison is done, followed by
incrernentation. Note that it is necessary to initialize ito 0.

(1)	 main()

mt
for(i0;++i< 10;)

printf ("%d\n", i)

114	 Lee' (is C

Here, both, the coilipansun and the incrernentation is done
through the same statnieiit, ++i < 10. Since ++ precedes i
firstly incrementalion . done, followed by comparison. Note
that it is necessary to lnlilalize ito 0.

Nesting of Loops

The way if statements can he nested, similarly whiles and fors can
also he nested. To understand how nested loops work, look at the
program given below:

/0 Demonstration of nested loops 'I
main()

nt r, c, sum
for(r z 1 ;r<=3,-r++) 1 outer loop /

for (c I c <= 2 c++) 10 inner loop

sum r + c
printf ("r %d c %d sum %d\n", r, c, sum

}

When you run this program you will get the following output:

r = 1 C 1 sum 2
r 1 C = 2 sum = 3
r 2 C 1 sum = 3
r = 2 C 2 sum 4
r 3 C 1 sum 4
r = 3 C = 2 sum 5

Here, for each value f r the inner loop is cycled through twice,
with the variable c taking values from I to 2. The inner loop

Chapter 3: The Loop Control Structure	 115

terminates when the value of c cxcccds 2, and the outer loop
terminates when the value of r exceeds 3.

As you can see, the body of the outer for loop is indented, and the
body of the inner for loop is further indented. These multiple
indentations make the program easier to understand.

Instead of using two statements, one to calculate sum and another
to print it out, we can compact this into one single statement by
saying:

printf ('r %d c %d sum %dn, r, c, r + c)

The way for loops have been nested here, similarly, two while
loops can also be nested. Not only this, a for loop can occur within
a while loop, or a while within a for.

Multiple Initialisations in the for Loop

The initialisation expression of the for loop can contain more than
one statement separated by a comma. For example,

for (i	 1, j	 2 ;j < 10; ++)

Multiple statements can also be used in the incrementation
expression of for loop; i.e., you can increment (or decrement) two
or more variables at the same time. However, only one expression
is allowed in the test expression. This expression may contain
several conditions linked together using logical operators.

Use of multiple statements in the initialisation expression also
demonstrates why semicolons are used to separate the three
expressions in the for loop. If commas had been used, they could
not also have been used to separate multiple statements in the
initialisation expression, without confusing the compiler.

116
	

Let Us C

The Odd Loop

The loops that we ha e used so far executed the statcmens within
them a finite number of times. However, in real life programming
one conies across a situation when it is not known beforehand how
many times the statements in the loop are to be executed. This
situation can be programmed as shown below:

/* Execution of a loop an unknown number of times I

main()

char another
mt num
do

printf (Enter a number)
scanf (%d, Mum);
pnnff (square of %d is %d, num, num rum)
printf ('\nWant to enter another number yin ')
scanf (' %c, &another)

while (another

And here is the sample output...

Enter a number 5
square of 5 is 25
Want to enter another number yin y
Enter a number 7
square of 7 is 49
Want to enter another number y/n n

In this program the do-while loop would keep getting executed till
the user continues to answer y. The moment he answers n, the loop
terminates, since the condition (another = 'y') fails. Note that
this loop ensures that statements within it are executed at least
once even if n is supplied first time itself.

Chaplet- 3: The Loop Control Structure	 117

Though it is simpler to program such a requirement using a do-
while loop, the same functionality if required, can also be
accomplished using for and while loops as shown below:

/* odd loop using a for loop "1

main()

char another
nt num
for (another ==

printf ("Enter a number")
scanf ("%d", &num);
printf ("square of %d is %d', num, num • num);
printf ('\nWanl to enter another number yin

scanf (' %c", &another)

/* odd loop using a while loop
main()

char another
mt num

while (another	 'y')

pñntf ("Enter a number");
scanf ("%d", &num);
printf (square of %d is %d", num, num * num)
printf ("\nWant to enter another number y/n ")
scanf (" %c', &another)

118	 ____ Let UrC

The break Statement

We often come across situations where we want to jump out of a
loop instantly, without waiting to get hack to the conditional test.
The keyword break allows us to do this. When break is
encountered inside any loop, control automatically passes to the
first statement after the loop. A break is usually associated with an
if. As an example, let's consider the following example.

Example: Write a program to determine whether it number is
prime or not. A prime number is one, which is divisible only by I
or itself.

All we have to do to test whether a number is prime or not, is to
divide it successively by Al numbers froni 2 to one less thait itself.
If remainder of any of these divisions is zero, the twnihcr is not a
prime. If no division yields a zero then the number is a prime
number. Following program implements this logic.

zrnain()

tnt num, i

printi ("Enter a number)
scanf ("%d", &num)

iz2;
while (I < num - 1)

i f (num % i	 0)

printf ("Not a prime number")
break

Chapter 3: The Loop Control Structure	 119

if(i==num)
printf (Prime number"

In this program the moment num % i turns out to be zero, (i.e.
num is exactly divisible by I) the message "Not a prime number"
is printed and the control breaks out of the while loop. Why does
the program require the if statement afler the while loop at all?
Well, there are two ways the control could have reached outside
the while loop:

(a) It jumped out because the number proved to be not a prime.
(b) The loop came to an end because the value of i became equal

to num.

When the loop terminates in the second case, it means that there
was no number between 2 to niirn - 1 that could exactly divide
num. That is, num is indeed a prime. If this is true, the program
should print out the message "Prime number",

The keyword break, breaks the control only from the while in
which it is placed. Consider the following program, which
illustrates this fact.

mt i	 1 J = 1;

while (i++ (100)

while (j++ < 200)

if 	 150)
break;

else
printf ('%d Mn', i j)

120	 Let Us' (

Ii
)

In this program when j equals 150, break takes the control outside

the inner while only, since it is placed inside the inner while.

The continue Statement

In sonic programming situations we want to take the control to the
beginning of the loop, bypassing the statements inside the loop,
which have not yet been executed. The keyword continue allows
us to do this. When continue is encountered inside any loop,
control automatically passes to the beginning of the loop.

A continue is usually associated with an if As an example, lets
consider the following program.

main(

mt

for (i1 ;i<2;;++)

for (j	 1 ;j<2;l++)

if (i	 j
continue

printf (\n%d %d\n", I, j

ftc output of the above program would be...

12
21

Chapter 3: The Loop Control Structure 	 121

Note that when the value of i equals that of j, the continue
statement takes the control to the for loop (inner) bypassing rest of
the statements pending execution in the for loop (inner).

The do-while Loop

The do-while loop looks like this:

do

this
and this
and this
and this

while (this condition is true):

There is a minor difference between the working of while and do-
while loops. This difference is the place where the condition is
tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while
tests the condition after having executed the statements within the
loop. Figure 3.5 would clarify the execution of do-while loop still

further.

122
	

Let Us C

r STARTj

initialisc

Figure 3.5

This means that do-while would execute its statements at least
once, even if the condition fails for the first time. The while, on
the other hand will not execute its statements if the condition fails
for the first time. This difference is brought about more clearly by
the following program.

main()

while (4<1
print! (*Hello there \n)

Chapter 3. The Loop Control Structure 	 123

Here, since the condition fails the first time itsclf, the printf() will
not get executed at all. Let's now write the same program using a
do-while loop.

main()

do

printf ("Hello there N);

)while(4c 1),

In this program the printf() would be executed once, since first
the body of the loop is executed and then the condition is tested.

There are some occasions when we want to execute a loop at least
once no matter what. This is illustrated in the following example:

break and continue are used with do-while just as t' would be
in a while or a for loop. A break takes you out of the do-while
bypassing the conditional test. A continue sends you straight to
the test at the end of the loop.

124
	

Let Us_C

Summary
(a) The three type of loops available in C are for, while, and do-

while.
(b) A break statement takes the execution control out of the loop.

(c) A continue statement skips the execution of the statements
after it and takes the control to the beginning of the loop.

(d) A do-while loop is used to ensure that the statements within
the loop are executed at least once.

(c) The -4-4- operator increments the operand by I, whereas, the --
operator decrements it by 1.

(0 The operators , =, =, 1, % are compound assignment
operators. They modify the value of the operand to the left of

them.

Exercise

^Vile
Loop

lAl What would be the output of the following programs:

(a) main()

int;;
while (j<l0)	 I'

prntf ('\n%d,
jj+1

(b) main()

mt I = 1;
while (i < 10);

printf (\rt%d, i);

Chapter 3: The Loop Control Structure	 125

") main()

nt
while (j< 10)

printf ("\n%d', j);
+1

(d) main()

mt x = 1;
while (x 	 1)

x = x - 1
phntf ("n%d, x),

(e) main(

nt x1
while (x 	 1)

xx-1
printf ("n%d, x)

s'f)	 main()

char x;

10

126
	

Let Us C

while (x0;x<255x++)
printf (\nAscii value %d Character %c", x, x)

(g) main()

mt x4,y,z;
y —x
Z =
printf ("\n%d %d %d, x, y. z)

(h) main()

nt x 4, y 3, z;

z=x-- -y:
printf (\n%d %d %d, x, y, z)

(I)	 main()

while ('a' <'b')
printi (\nmalyalam is a palindrome");

(j) main()

mt i=10;
while (i 20)

printf (\nA computer buff!)

(k) main()

mt
while(i10)

Chapter 3: The Loop Control Structure	 127

pnntf ("\n%d", I):
I=i+1

)

(I)	 main()

float x 1.1
while (x1.1)

printf (\n%f, x);
x=x—O.1

(m) main()

while (T<7)'2'
printf (\nln while loop');

(n) main()

char x;
for(xO;x255;x++)

printf (\nAscii value %d Character %c", x, x);

(0) main()

mt x 4, y 0, z;
while (x>0)

Y++;
if(xy)

128
	

Let Us C

continue;
else

printf ("\n%d %d", x, y);

(p) main()

mt x 4, y = 0, z;
while (x > 0)

if(x=y)
break;

else
printf ('\n%d %d", x, y);

Y++

}

IBI Attempt the following:

/Write a program to calculate overtime pay of 10 employees.
Overtime is paid at the rate of Rs. 12.00 per hour for every
hour worked above 40 hours. Assume that employees do not
work for fractional part of an hour.

*b) Write a program to find the factorial value of any number
entered through the keyboard.

(c) Two numbers are entered through the keyboard. Write a
program to find the value of one number raised to the power
of another.

(d) Write a program to print all the ASCII values and their
equivalent characters using a while loop. The ASCII values
vary from 0 to 255.

Chapter 3: The Loop Control Structure 	 129

,(e)/'rite a program to print out all Armstrong numbers between
1 and 500. If sum of cubes of each digit of the number is
equal to the number itself, then the number is called an
Armstrong number. For example, 153 (I * I * I) + (5 * 5
*5)+(3*3*3)

(0 Write a program for a matchstick game being played between
the computer and a user. Your program should ensure that the
computer always wins. Rules for the game are as follows:

- There are 21 matchsticks.
- The computer asks the player to pick 1, 2, 3, or 4

matchsticks.
- After the person picks, the computer does its

picking.
- Whoever is forced to pick up the last matchstick

loses the game.

(g) Write a program to enter the numbers till the user wants and
at the end it should display the count of positive, negative and
zeros entered.

%(h) Write a program to find the octal equivalent of the entered
number.

(i) Write a program to find the range of a set of numbers. Range
is the difference between the smallest and biggest number in
the list.

_11*r, break, continue, do-while

(CI What would be the output of the following programs:

(a) main()

mt I	 0;
for (; i ;)

130
	

Let Us C

printf ("\nHere is some mail for you)

(b) main()

mt i
for (I	 1;i < 5; printf('\n%cr, i)

(C) main()

mt i1j=1
for

if(i>5)
break;

else

printf (\n%d, j)

(d) main()

nt
for (i	 1 ;i <5;printf('\n%c,65))

IDI Answer the following:

(a) The three parts of the loop expression in the for loop are:

the i 	 expression
the t 	 expression
the I

I

Chapter 3: The Loop Control Structure	 131

(b) An expression contains relational operators, assignment
operators, and arithmetic operators. In the absence of
parentheses, they will be evaluated in which of the following
order:

1. assignment, relational, arithmetic
2. arithmetic, relational, assignment
3. relational, arithmetic, assignment
4. assignment, arithmetic, relational

(c) The break statement is used to exit from:

1. an if statement
2. a for loop
3. a program
4. the main() function

(d) A do-while loop is useful when we want that the statements
within the loop must be executed:

1. Only once
2. At least once
3. More than once
4. None of the above

(e) In what sequence the initialization, testing and execution of
body is done in a do-while loop

1. Initialization, execution of body. testing
2. Execution of body, initialization, testing
3. Initialization, testing, execution of body
4. None of the above

(f) Which of the following is not an intThitc loop.

1.	 inti1;	 2.	 for(;;);
while (1)

132	 Let Us

3. int True 0, false:	 4. lilty, x = 0
while (True)	 do

False = 1:	 y=x:
})while(x=O);

(g) Which of the following statement is used 10 take the control to
the beginning of the loop?

1. exit
2. break
3. Continue
4. None of the above

IEI Attempt the following:

(a) Write a program to print all prime numbers from I to 300.
(Hint; Use nested loops, break and continue)

(b) Write a program 10 fill the entire screen with a smiling face.
The smiling face has an ASCII value I.

(c) Write a program to add first seven terms of the following
series using a for loop:

1.1	 21	 3f

(d) Write a program to generate all combinations of 1, 2 and 3
using for loop.

(e) According to a study. the approximate level of intelligence of
a person can be calculated using the following formula:

2 (y + 0.5 x)

Chapter 3: The Loop Co,ztrol Siructure	 133

Write a program, which will produce a table of values of i, y
and x, where y varies from I to 6, and, for each value of y, x
varies from 5.5 to 12.5 in steps of 0.5.

(1) Write a program to produce the following output:

A R C D f F G F J F) C B A

ARCDFF	 FFD(-RA

ARCDF.	 FDCRA

A B C I)	 J) C' B A

ARC	 C R A
AR	 RA
A	 A

(g) Write a program to rill the entire screen with diamond and
heart alternatively. The ASCII value for heart is 3 and that of
diamond is 4.

(h) Write a program to print the multiplication table of the
number entered by the user. The table should get displayed in
the following form.

29 *1 = 29
29 * 2 = 58

(I) Write a program to produce the following output:

0

134	 Us C

(j) Write a program t produce the hollowing output:

2	 I

3	 3	 I

4	 6	 4

(k) A machine is purchased which will produce earning of Rs.
1000 per year while it lasts. The machine costs Rs. 6000 and
will have a salvage of Rs. 2000 when it is condemned If 12
percent per annum can be earned oil investments
what would be the minimum life of the machine to make it a
more attractive investment compared to alternative
investment?

(I) When interest compounds q times per year at an annual rate of
r % for n years, the principle p compounds to an amount a as per
the following formula

a = p (1 + r q) nq

a program to read 10 sets of p, r, n & q and calculate
the corresponding as.

(m) The natural logarithm can be approximated by the following
series.

x — l + i (x—l 2 I (x—i	 l(x—i4
—1

x	 2. .v)	 2'. .v I	 2'.x)

If x is input through the keyboard, write a program to
calculate the sum of first seven terms of this series.

4 The Case Control
Structure

• Decisions Using switch
The Tips and Traps

• switch Versus jf:e/se Ladder
• The goto Keyword
• Summary
• Exercise

135

136	 Let Us

I

n real life we are often faced with situations where we are
required to make a 'choice between a number of alternatives
rather than only one or two. For example, which school to join

or which hotel to visit or still harder which girl to marry (you
almost always end up making a wrong decision is a different
matter altogether!). Serious C programming is same; the choice we
are asked to make is more complicated than merely selecting
between two alternatives. C provides a special control statement
that allows us to handle such cases effectively: rather than using a
series of if statements. This control instruction is in fact the topic
of this chapter. Towards the end of the chapter we would also
study a keyword called goto, and understand why we should avoid
its usage in C programming.

Decisions Using switch

The control statement that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up
the control statement. They most often appear as follows:

switch (integer expression

case constant 1:
do this:

case constant 2
do this;

case constant 3:
do this

default:
do this

The integer expression following the keyword switch is any C
expression that will yield an integer value. It could be an integer
constant like 1, 2 or 3, or an expression that evaluates to an

Chapter 4: The case Control Structure 	 137

integer. The keyword case is followed by an integer or a character
constant. Each constant in each case must be different from all the
others. The "do this" lines in the above form of switch represent
any valid C statement.

What happens when we run a program containing a switch? First,
the integer expression following the keyword switch is evaluated.
The value it gives is then matched, one by one, against the
constant values that follow the case statements. When a match is
found, the program executes the statements following that case,
and all subsequent case and default statements as well. If no
match is found with any of the case statements, only the
statements following the default are executed. A few examples
will show how this control structure works.

Consider the following program:

main()

nt i2;

switch(i)

case 1:
printf (1 am in case 1 \n");

case 2:
printf (1 am in case 2 \n')

case 3:
printf ("I am in case 3 \n');

default:
printf (1 am in default \n");

The output of this program would be:

I am in case 2

138
	

Let Us C

I am in case 3
I am in default

The output is definitely not what we expected! We didn't expect
the second and third line in the above output. The program prints
case 2 and 3 and the default case. Well, yes. We said the switch
executes the case where a match is found and all the subsequent
cases and the default as well.

If you want that only case 2 should get executed, it is upto you to
get out of the switch then and there by using a break statement.
The following example shows how this is done. Note that there is
no need for a break statement after the default, since the control
conies out of the switch anyway.

main()

mt i =2;

switch(i)

case 1:
printf (1 am in case 1 \n)
break

case 2:
printf (l am in case 2 \n)
break;

case 3:
pnntf (1 am in case 3 \n")
break

default:
pnntf (I am in default \n);

}

The output of this program would be:

I am in case 2

Ch	 4: The Case Control Structure 	 139

The operation of switch is shown below iii the Form of it flowchart
for a better understanding.

START

statcnient I

statement 2

statement 3

statement 4

switch (choice)
{

case 1
statement 1;
break;

case 2:
statement 2,
break;

case 3:
statement 3;
break;

case 4:
statement 4;

Figure 41

140
	

Let Us C

The Tips and Traps

A few useful tips about the usage of switch and a few pitfalls to be
avoided:

(a) The earlier program that used switch may give you the wrong
impression that you can use only cases arranged in ascending
order, I, 2, 3 and default. You can in fact put the cases in any
order you please. Here is an example of scrambled case order:

main()

mt I	 22:

switch (I)

case 121
printf ("I am in case 121 \n')
break;

case 7:
printf ("I am in case 7 \n);
break;

case 22:
printi (I am in case 22 \n")
break;

default:
printf (I am in default \n):

}

The output of this program would be:

I am in case 22

(b) You are also allowed to use char values in case and switch as

shown in the following program:

main()

Chapter 4: The Case Control Structure	 141

char c

switch (c)

case 'si':
pnntf(i am in case v\rf)
break

case 'a':
printf (lam in case a \n)
break;

case 'x:
printf (1 am in case x \n);
break;

default:
piintf(1 am in default \n");

The output of this program would be:

I am in case x

In fact here when we use 'v', 'a', 'x' they are actually
'replaced by the ASCII values(l 18,97, 120) of these character

constants.

(c) At times we may want to execute a common set of statements
for multiple cases. How this can be done is shown in the
following example.

main()

char ch;

printf ("Enter any of the alphabet a, b, or c);
scanf("%c, &ch),

11

142
	

Let Us C

switch (ch)

case 'a':
case 'A':

printf ('a as in ashar')
break;

case 'b':
case 'B:

pnntf ('b as in brain')
break;

case c
case 'C':

printf ('c as in cookie')
break;

default:
pnntf ('wish you knew what are alphabets')

Here, we are making use of the fact that once a case is
satisfied the control simply falls through the case till it
doesn't encounter a break statement. That is why if an
alphabet a is entered the case 'a' is satisfied and since there
are no statements to he executed in this case the control
automatically reaches the next case i.e. case 'A' and executes
all the statements in this case.

(d) Even if there are multiple statements to be executed in each
case there is no need to enclose them within a pair of braces
(unlike if, and else).

(c) Every statement in a s$vitch must belong to some case or the
other. If a statement doesn't belong to any case the compiler
won't report an error. However, the statement would never get
executed. For example, in the following program the printf()
never goes to work.

Chapter 4: The Case Control Structure	 143

main()

mt I,

printf (Enter value of ii);
scant (%d', &i');

switch (I)

pnntt ('Hello');
case 1:

=10;
break;

case 2:
j=20;
break;

}

(f) If we have no default case, then the program simply falls
through the entire switch and continues with the next
instruction (if any,) that follows the closing brace of switch.

(g) Is switch a replacement for if? Yes and no. Yes, because it
offers a better way of writing programs as compared to if, and
no because in certain situations we are left with no choice but
to use if The disadvantage of switch is that one cannot have a
case in a switch which looks like:

case i < 20:

All that we can have after the case is an mt constant or a char
constant or an expression that evaluates to one of these
constants. Even a float is not allowed.

The advantage of switch over if is that it leads to a more
structured program and the level of indentation is manageable,

144
	

Let Us C

more so if there are multiple statements within each case of a
switch.

(h) We can check the value of any expression in a switch. Thus
the following switch statements are legal.

switch (I + j k)
switch (23 + 45 % 4 * k)
switch(a<4&&b>7)

Expressions can also be used in cases provided they are
constant expressions. Thus case 3 + 7 is correct, however,
case a + b is incorrect.

(i) The break statement when used in a switch takes the control
outside the switch. However, use of continue will not take
the control to the beginning of switch as one is likely to
believe.

(j) In principle, a switch may occur within another, but in
practice it is rarely done. Such statements would be called
nested switch statements.

(k) The switch statement is very useful while writing menu
driven programs. This aspect of switch is discussed in the
exercise at the end of this chapter.

switch Versus if-else Ladder

There are some things that you simply cannot do with a switch.
These are:

(a) A float expression cannot be tested using a switch
(b) Cases can never have variable expressions (for example it is

wrong to say case a +3:)
(c) Multiple cases cannot use same expressions. Thus the

following switch is illegal:

Chapter 4: The Case Control Structure - 	 - _ 145

switch (a)

case 3:

case 1 + 2:

(a), (b) and (c) above may lead you to believe that these are
obvious disadvantages with a switch, especially since there
weren't any such limitations with if-else. Then why use a switch at
all? For speed—switch works raster than an equivalent if-else
ladder. How come? This is because the compiler generates a jump
table for a switch during compilation. As a result, during
execution it simply refers the jump table to decide which case
should be executed, rather than actually checking which case is
satisfied. As against this, if-elses are slower because they are
evaluated at execution time. A switch with 10 cases would work
faster than an equivalent if-else ladder. Also, a switch with 2 cases
would work slower than if-else ladder. Why? If the I 01 case is
satisfied then jump table would be referred and statements for the
10rh case would be executed. As against this, in an if-else ladder 10
conditions would be evaluated at execution time, which makes it
slow. Note that a lookup in the jump table is faster than evaluation
of a condition, especially if the condition is complex.

If on the other hand the conditions in the if-else were simple and
less in number then if-else would work out faster than the lookup
mechanism of a switch. Hence a switch with two cases would
work slower than an equivalent if-else. Thus, you as a programmer
should take a decision which of the two should be used when.

The goto Keyword

Avoid goto keyword! They make a C programmer's life miserable.
There is seldom a legitimate reason for using goto, and its use is

146	 Let Us

one of the reasons that programs become unreliable, unreadable,
and hard to debug. And yet many programmers find goto
seductive.

In a difficult programming situation it seems so easy to use a goto
to take the control where you want. However, almost always, there
is a more elegant way of writing the same program using if, for,
while and switch. These constructs are far more logical and easy
to understand.

The big problem with gotos is that when we do use them we can
never be sure how we got to a certain point in our code. They
obscure the flow of control. So as far as possible skip them. You
can always get the job d. without them. Trust me, with good
programming skills goto can always be avoided. This is the first
and last time that we are going to use goto in this book. Ilowever,
for sake of completeness of the book, the following program
shows how to use goto.

main()

mt goals;

pnntf ('Enter the number of goals scored against India');
scanf ('%d", &goals);

if (goals <5)
goto sos

else

printf ('About time soccer players learnt C\n');
pnntf ('and said goodbye! adieu! to soccer");
exit() ; 1 terminates program execution i

SOS:
printf (*To erv is human!);

Chapter 4: The Case Control Structure	 147

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To err is human!
Enter the number of goals scored against India 7
About time soccer players learnt C
and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

- If the condition is satisfied the goto statement transfers control

to the label 'sos', causing printf() following SOS to be

executed.

- The label can be on a separate line or on the same line as the
statement following it, as in,

sos: printf (To err is human!');

- Any number of gotos can take the control to the same label.

- The exit() function is a standard library function which
terminates the execution of the program. It is necessary to use
this function since we don't want the statement

pnntf ('To err is human!')

to get executed after execution of the else block.

- The only programming situation in favour of using goto is
when we want to take the control out of the loop that is
contained in several other loops. The following program
illustrates this.

148	 Let Us

main(

mt ij,k;

for(i	 1 ;i=3;i++)

for ;j<3;j+#)

for(k 1; k <= 3; k++)

if(i == 3 &&i	 3 && k	 3)
golo out;

else
print! ("%d %d %d\n', i j k)

out
print! ("Out of the loop at last!")

Go through the program carefully and Find out how it works. Also
write down the same program without using goto.

Summary

(a) When we need to choose one among number of altematives, a
switch statement is used.

(b) The switch keyword is followed by an integer or an
expression that evaluates to an integer.

(c) The case keyword is followed by an integer or a character
constant.

(d) The control falls through all the cases unless the break
statement is given.

(e) The usage of the goto keyword should be avoided as it usually
violets the normal flow of execution.

Chapter 4: The Case Control Structure	 149

Exercise

[Al What would be the output of the following programs:

(a) main()

char suite 3;
switch (suite)

case 1:
pnntf (\nDiamond");

case 2:
printf (\nSpade");

default:
pnntf (\nHeart);

printf (\nl thought one wears a suite)

(b) main()

ml c=3,

switch (c)

case v
printf (l am in case v \n)
break

case 3:
phnff('lamin case 3\n);
break

case 12:
pntf(1 am in case 12\n)
break;

default
printf (1 am in default \n')

150
	

Let Us C

(c) main()

mt kj=2;
switch(k j + 1)

case 0:
pnntf ('\nTailor');

case 1:
printf (\nTutor'):

case 2:
pnntf ('\nlramp'):

default:
printf ('\nPure Simple Egghead!);

}

(d) main()

nt 1=0;
switch (I)

case 0:
printf ('\nCustomers are dicey'

case 1:
pnrtf ('\nMarkets are pricey'):

case 2:
pnntf (\nlnvestors are moody");

case 3:
printf ('\nAt least employees are good');

}

(e) main()

mt k
float j = 2.0;

Chapter 4: The Case Control Structure 	 151

switch (k j + 1

case 3:
printf (\nTrapped);
break:

default:
printf (\nCaught!");

(f) main()

nt ch = 'a' +
switch (ch)

case 'a':
case b:

printf ("\nYou entered be);
case 'A':

printf (\na as in ashar);
case 'b' + 'a':

printf (InYou entered a and b');
}

}

(g) main()

mt i	 1:
switch (i 2)

case -1
printf ('Weeding fish");

case 0:
printf ('\nWeeding grass'

case 1:
printf (\nmending roar);

default:
printf (\nJust to survive)

152	 Let Us C

IBI Point out the errors, if any, in the following programs:

(a) main()

mt suite	 1;
switch (suite)

case 0:
print! ("\nClub')

case 1
prmntf ("\nDiamond')

(b) main()

nt temp;
scant ("%d", &temp)
switch (temp)

case (temp <= 20)
printf ("\nO000000hnn! Damn coolt"

case (temp > 20 && temp < 30)
print! ("\nRain rain here again'')

case (temp' 30 && temp < 40)
printf ("Vi Wish I am on Everest")

default:
print! ('\nGood old nagpur weather')

(c) main(

float a = 3.5
switch (a)

Chapter 4: The Case control Structure 	 153

case 0.5:
printf ("\nThe art of C");
break:

case 1.5:
pnntf ("\nlhe spirit of C"):
break;

case 2.5:
printf("\nSee through 7.);
break

case 3.5.:
printf ("\nSimply c");

)
}

(d) main()

inta3,b4,c;
c	 - a;
switch (C)

case 1112
printf ("God give me an opportunity to change things"):
break;

case a 11 b:
pnntf ("God give me an opportunity to run my show");
break;

}

ICI Write a menu driven program which has following options:

1. Factorial of a number.
2. Prime or not
3. Odd or even
4. Exit

154
	

Let Us C

Make use of switch statement.

The outline of this program is given below:

I' A menu driven program
mai()

nt choice
while(1)

printf ('\nl. Factorial')
printf ('\n2. Prime');
pnntf ('\n3. Odd/Even');
printf ("\n4. Exit');
printf('\nYour choice?');
scanf ('%d', &choice);

switch (choice)

case 1:
r logic for factorial of a number 'I
break

case 2:
I* logic for deciding prime number */
break;

case 3:
I' logic for odd/even */
break;

case 4:
exit()

}

Note

Chapter 4: The Case control Structure	 155

The statement while (1) puts the entire logic in an infinite loop.
This is necessary since the menu must keep reappearing on the
screen once an item is selected and an appropriate action taken.

ID] Write a program which to find the grace marks for a student
using switch. The user should enter the class obtained by the
student and the number of subjects he has failed in.

- If the student gets first class and the number of subjects he
failed in is greater than 3, then he does not get any grace.
If the number of subjects he failed in is less than or equal
to 3 then the grace is of 5 marks per subject.

- If the student gets second class and the number of subjects
he failed in is greater than 2, then he does not get any
grace. If the number of subjects he failed in is less than or
equal to 2 then the grace is of 4 marks per subject.

- If the student gets third class and the number of subjects
he failed in is greater than 1, then he does not get any
grace. If the number of subjects he failed in is equal to I
then the grace is of 5 marks per subject

156
	

Let Us C

5 Functions &
Pointers

• What is a Function
Why Use Functions

• Passing Values between Functions
• Scope Rule of Functions
• Calling Convention
• One Dicey Issue
• Advanced Features of Functions

Function Declaration and Prototypes
Call by Value and Call by Reference
An Introduction to Pointers
Pointer Notation
Back to Function Calls
Conclusions
Recursion

• Adding Functions to the Library
• Summary
• Exercise

12	 157

158	 Let Us

Ks

nowingly or unknowingly we rely on so many persons for

o many things. Man is an intelligent species, but still
annot perform all of life's tasks all alone. He has to rely

on others. You may call a mechanic to fix up your hike, hire a
gardener to mow your lawn, or rely on a store to supply you
groceries every month. A computer program (except for the
simplest one) finds itself in a similar situation. It cannot handle all
the tasks by itself. Instead, it requests other program like
entities—called 'functions' in C—to get its tasks done. In this
chapter we will study these functions. We will look at a variety of
features of these functions, starting with the simplest one and then
working towards those that demonstrate the power of C functions.

What is a Function

A function is a self-contained block of statements that perform a
coherent task of some kind. Every C program can bethought of as
a collection of these functions. As we noted earlier, using a
function is something like hiring a person to do a specific job for
you. Sometimes the interaction with this person is very simple;
sometimes it's complex.

Suppose you have a task that is always performed exactly in the
same way—say a bimonthly servicing of your motorbike. When
you want it to be done, you go to the service station and say, "It's
time, do it now". You don't need to give instructions, because the
mechanic knows his job. You don't need to be told when the job is
done. You assume the bike would be serviced in the usual way, the
mechanic does it and that's that.

Let us now look at a simple C function that operates in much the
same way as the mechanic. Actually, we will be looking at two
things—a function that calls or activates the function and the
function itself.

Chapter 5: Functions & Pointers 	 159

/Aano
messageQ;
printf ("\nCry, and you stop the monotony!);

message()

printf (\nSmile, and the world smiles with you...

And here's the output...

Smile, and the world smiles with you...
Cry, and you stop the monotony!

Here, main() itself is a function and through it we are calling the
function message. What do we mean when we say that main()
'calls' the function message()? We mean that the control passes to
the function message(). The activity of maln() is temporarily
suspended; it falls asleep while the message() function wakes up
and goes to work. When the message() function runs out of
statements to execute, the control returns to malnO, which comes
to life again and begins executing its code at the exact point where
it left off. Thus, main() becomes the 'calling' function, whereas
message() becomes the 'called' function,

If you have grasped the concept of 'calling' a function you are
prepared for a call to more than one function. Consider the
following example:

printf ('\nl am in maine)
italy()
brazil();
argentina()

160
	

Let Us C

italy()

printf('\nI am in italy');

brazil()

pnntf ('\nl am in brazil')

argentina()

printf ('\nI am in argentina')

The output of the above program when executed would be as
under:

I am in main
lam in italy
I am in brazil
am in argentina

From this program a number of conclusions can be drawn:

/
- Any C program contains at least one function.

- If program contains only one function, it must be main()

- If a C program contains more than one function, then one (arid
only one) of these functions must be main(), because program
execution always begins with main().

- There is no limit on the number of functions that might be
present in a C program.

- Each function in a program is called in the sequence specified
by the function calls in main().

Chapter 5: Functions & Pointers 	 161

- After each function has done its thing, control returns to
main().When main() runs out of function calls, the program
ends.

As we have noted earlier the program execution always begins
with main(). Except for this fact all C functions enjoy a state of
perfect equality. No precedence, no priorities, nobody is nobody's
boss. One function can call another function it has already called
but has in the meantime left temporarily in order to call a third
function which will sometime later call the function that has called
it;if you understand what I mean. No? Well, let's illustrate with an
example.

• main()

printf (In am in main")
italy()
printf ("W am finally back in main');

italy()

printf ("uil am in italy");
brazil();
printf ("\nl am back in italy");

brazil()

printf ("\nl am in brazil');
argentina();

}
argentina()
{

printf ("\nl am in argentina");

And the'output would look like,..

162
	

Let Us C

I am in main
I am in italy
I am in brazil
I am in argenna
I am back in italy
I am finally back in main

Here, main() calls other functions, which in urn call still other
functions. Trace carefully the way control passes from one
function to another. Since the compiler always begins the program
execution with main(), every function in a prograin must be
called directly or indirectly by main(). In other words, the main()
function drives other functions.

Let us now summarize what we have learnt so far.

(a) C program is a collection of one or more functions.
(b) A function gets called when the function name is followed by

a semicolon. For example,

main()

argentiria()

(c) A function is defined when function name is followed by a
pair of braces in which one or more statements may be
present. For example,

argentina()

statement 1
statement 2;
statement 3;

Chapter 5. Functions & Pointers	 163

(d) Any function can be called from any other function. Even
main() can be called from other functions. For example,

main()

message();

message()

printf ('\nCan't imagine life without C)
mainQ;

}

(e) A function can be called any number of times. For example,

main()
{

message):
message);

message(.)

printi (\nJewel Thief!!)
}

(I) The order in which the functions are defined in a program and
the order in which they get called need not necessarily be
same. For example,

main()

messagel();
message2Q;

message2()

pnntf(\nBut the butter was bitter);

164
	

Let Us C

messagel()

printf ("Mary bought some butter)

Here, even though messagel() is getting called before
message2(), still, messagel() has been defined after
message2(). However, it is advisable to define the functions
in the same order in which they are called. This makes the
program easier to understand.

(g) A function can call itself. Such a process is called 'recursion'.
We would discuss this aspect of C functions later in this
chapter.

(h) A function can be called from other function, but a function
cannot be defined in another function. Thus, the following
program code would be wrong, since argentina() is being
defined inside another function, main().

main()

printf ("ml am in main")
argentina()

piintf (" \nl am in argentina")

(i) There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.
User-defined functions Ex. argentina, brazil() etc.

As the name suggests, library functions are nothing but
commonly required functions grouped together and stored in

Chapter 5: Functions & Pointers	 165

what is called a Library. This library of functions is present on
the disk and is written for us by people who write compilers
for us. Almost always a compiler comes with a library of
standard functions. The procedure of calling both types of
functions is exactly same.

Why Use Functions

Why write separate functions at all? Why not squeeze the entire
logic into one function, mainO? Two reasons:

(a) Writing functions avoids rewriting the same code over and
over. Suppose you have a section of code in your program
that calculates area of a triangle. If later in the program you
want to calculate the area of a different triangle, you won't
like it if you are required to write the same instructions all
over again. Instead, you would prefer to jump to a 'section of
code' that calculates area and then jump back to the place
from where you left off. This section of code is nothing but a
function.

(b) Using functions it becomes easier to write programs and keep
track of what they are doing. If the operation of a program can
be divided into separate activities, and each activity placed in
a different function, then each could be written and checked
more or less independently. Separating the code into modular
functions also makes the program easier to design and
understand.

What is the moral of the story? Don't try to cram the entire logic in
one function. It is a very bad style of programming. Instead, break
a program into small units and write functions for each of these
isolated subdivisions. Don't hesitate to write functions that are
called only once. What is important is that these functions perform
some logically isolated task.

166
	

Let Us C

Passing Values between Functions

The functions that we have used so far haven't been very flexible.
We call them and they do what they are designed to do. Like our
mechanic who always services the motorbike in exactly the same
way, we haven't been able to influence the functions in the way
they carry out their tasks. It would be nice to have a little more
control over what functions do, in the same way it would be nice
to be able to tell the mechanic, "Also change the engine oil, I am
going for an outing". In short, now we want to communicate
between the 'calling' and the 'called' functions.

The mechanism used to convey information to the function is the
'argument'. You have unknowingly used the arguments in the
printf() and scanf() functions; the format string and the list of
variables used inside the parentheses in these functions are
arguments. The arguments are sometimes also called 'parameters'.

Consider the following program. In this program, in main() we

receive the values of a, b and c through the keyboard and then
output the sum of a, b and c. However, the calculation of sum is
done in a different function called calsumO. If sum is to be

calculated in calsum() and values of a, b and c are received in

main(), then we must pass on these values to calsum(), and once

calsum() calculates the sum we must return it from calsum()

back to mainO.

J* Sending and receiving values between functions '1

main()

nt a, b, c, sum

printf ("\nEnter any three numbers")
scanf ('%d %d %d, &a, &b, &c);

sum = calsum (a, b, C)

Chapter 5: Functions & Pointers	 167

printf(\nSum %d, sum);

calsum (x, y, z)
nt x,y,z;

{
nt d;

d=x+y+z;
return

 here is the output...

Enter any three numbers 10 20 30
Sum 60

There are a number of things to note about this program:

(a) In this program, from the function main() the values of a, b
/ and c are passed on to the function catsum(), by making a

call to the function calsum() and mentioning a, b and c in the
parentheses:

sum calsum (a, b, c);

In the calsum() function these values get collected in three
variables x, y and z:

calsum (x, y, z)
mt x, y, z;

(b) The variables a, b and c are called 'actual arguments',
whereas the variables x, y and z are called 'formal
arguments'. Any number of arguments can be passed to a
function being called. However, the type, order and number of
the actual and formal arguments must always be same.

IMM
	

Let Us C

Instead of using different variable names x, y and z, we could
have used the same variable names a, b and c. But the
compiler would still treat them as different variables since
they are in different functions.

(c) There are two methods of declaring the formal arguments.
The one that we have used in our program is known as
Kernighan and Ritchie (or just K & R) method.

calsum (x, y, z)
mt x,y,z;

Another method is,

calsum (int x, int y, int z)

This method is called ANSI method and is more commonly
used these days.

(d) In the earlier programs the moment closing brace ()) of the
called function was encountered the control returned to the
calling function. No separate return statement was necessary
to send back the control.

This approach is line if the called function is not going to
return any meaningful value to the calling function. In the
above program, however, we want to return the sum of x, y
and z. Therefore, it is necessary to use the return statement.

The return statement serves two purposes:

(I) On executing the return statement it immediately
transfers the control back to the calling program.

(2) It returns the value present in the parentheses after
return, to th3e calling program. In the above program
the value of sum of three numbers is being returned.

Chapter 5: Functions & Pointers	 169

(e) There is no restriction on the number of return statements
that may be present in a function. Also, the return statement
need not always be present at the end of the called function.
The following program illustrates these facts,

fun()

char ch;

printf ("\nEnter any alphabet);
scanf (%c', &ch)

if (ch > 65 && ch <= 90)
return (ch)

else
return (ch + 32);

In this function different return statements will be executed
depending on whether ch is capital or not.

(f) Whenever the control returns from a function some value is
definitely returned. If a meaningful value is returned then it
should be accepted in the calling program by equating the
called function to some variable. For example,

sum = calsum (a, b, c)

(g) All the following are valid return statements.

return (a);
return (23);
return (12.34);
return

170
	

Let Us C

In the last statement a garbage value is returned to the calling
function since we are not returning any specific value. Note
that in this case the parentheses after return are dropped.

(h) If we want that a called function should not return any value,
in that case, we must mention so by using the keyword void
as shown below.

void display()

printf ("\nHeads I win..."
printf (\nTails you lose');

(i) A function can return only one value at a time. Thus, the
following statements are invalid.

return (a, b)
return (x, 12)

There is a way to get around this limitation, which would be
discussed later in this chapter when we learn pointers.

U) If the value of a formal argument is changed in the called
function, the corresponding change does not take place in the
calling function. For example,

main()

nt a 30;
fun (a);
printf ("th%d", a);

fun (int b)

b 60;

Chapter 5. Functions & Pointers	 171

printf (\n%d w , b);

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fund, the
value of a in main() remains unchanged. This means that
when values are passed to a called function the values present
in actual arguments are not physically moved to the formal
arguments; just a photocopy of values in actual argument is
made into formal arguments. 	 .-

/
Scope Rule of Functions

Look at the following program

main()

mt I = 20;
display(i);

display (mt 1)

mt k35;
printf (\n%d', j);
printf ('\iiT0d', k)

In this program is it necessary to pass the value of the variable ito
the function display()? Will it not become automatically available
to the function display()? No. Because by default the scope of a
variable is local to the function in which it is defined. The presence

172	 Let UvC

of i is known only to the function main() and not to any other
function. Similarly, the variable k is local to the function
disptay() and hence it is not available to mainO. That is why to
make the value of i available to display() we have to explicitly

pass it to display(). Likewise, if we want k to be available to
main() we will have to return it to main() using the return
statement. In general we can say that the scope of a variable is
local to the function in which it is defined..

Calling Convention

Calling convention indicates the order in which arguments are
passed to a function when a function call is encountered. There are
two possibilities here:

(a) Arguments might be passed from left to right.
(b) Arguments might be passed from right to left.

C language follows the second order.

Consider the following function call:

fun (a, b,c,d)

In this call it doesn't matter whether the arguments are passed
from left to right or from right to left. However, in some function
call the order of passing arguments becomes an important
consideration. Fo ir example:

inta1;
printf ('%d %d %d, a, ++a, a++);

It appears that this printf() would output 1 2 3.

This however is not the case. Surprisingly, it outputs 3 3 1. This is
because C's calling convention is from right to left. That is, firstly

Chapter 5: Functions & Pointers	 173

I is passed through the expression a++ and then a is incremented
to 2. Then result of ++a is passed. That is, a is incremented to 3
and then passed. Finally, latest value of a, i.e. 3, is passed. Thus in
right to left order I, 3, 3 get passed. Once printf() collects them it
prints them in the order in which have asked it to get them
printed (and not the order in which they were passed). Thus 3 3 I
gets printed.

One Dicey Issue

Consider the following function calls:

#include <conio.h>
clrscr()
gotoxy(10,20);
cli = getch (a);

Here we are calling three standard library functions. Whenever we
call the library functions we must write their prototype before
making the call. This helps the compiler in checking whether the
values being passed and returned are as per the prototype
declaration. But since we don't define the library functions (we
merely call them) we may not know the prototypes of library
functions. Hence when the library of functions is provided a set of
'.h' files is also provided. These files contain the prototypes of
library functions. But why multiple files? Because the library
functions are divided into different groups and one file is provided
for each group. For example, prototypes of all input/output
functions are provided in the file 'stdio.h', prototypes of all
mathematical functions are provided in the file math.h', etc.

On compilation of the above code the compiler reports all errors
due to the mismatch between parameters in function call and their
corresponding prototypes declared in the file conio.h' You can
even open this file and look at the prototypes. They would appear
as shown below:

13

174	
Let Us C

void clrscr();
void gotoxy (nt, lot);
intgetcN);

Now consider the following function calls:

#include <stdio.h>
lilt i =1O,j20;

printf(%d%d%d'iI)
printf(%d"i,i)

The above functions get successfully compiled even though there
is a mismatch in the format specifiers and the variables in the list.

This is because printf() accepts variable number of arguments

(sometimes 2 arguments, sometimes 3 arguments, etc.), and even
with the mismatch above the call still matches with the prototype

of printf() present in 'stdio.h'. At run-time when the first printf()

is executed, since there is no variable matching with the last
-specifier %d, a garbage integer gets printed. Similarly, in the

second printf() since the format specifier for j has not been
mentioned its value does not get printed.

Advanced Features of Functions

With a sound basis of the preliminaries of C functions, let us now
get into their intricacies. Following advanced topics would be

considered here.

(a) Function Declaration and Prototypes
(b) Calling functions by value or by reference

(C) Recursion

Let us understand these features one by one.

Chapter 5. Functions & Pointers	 175

Function Declaration and Prototypes

Any C function by d. "'ilt returns an mt value. More specifically,
whenever a call is made to a function, the compiler assumes that
this function would return a value of the type mt. If we desire that a
function should return a value other than an int, then it is necessary
to explicitly mention so in the calling function as well as in the
called function. Suppose we want to find out square of a number
using a function. This is how this simple program would look like:

main()

float a, b;

printf(\nEnter any number);
scanf(%f, &a);

b = square (a);
printf (\nSquare of %f is %f, a, b);

square (float x)

float y;

yx*x
return (y)

And here are three sample runs of this program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.000000
Enter any number 2.5
Square of 2.5 is 6.000000

176
	

Let Us C

The first of these answers is correct. But square of 1.5 is definitely
not 2. Neither is 6 a square of 2.5. This happened because any C
function, by default, always returns an integer value. Therefore,
even though the function square() calculates the square of 1.5 as

2.25, the problem crops up when this 2.25 is to be returned to
mainO. square() is not capable of returning a float value. How
do we overcome this? The following program segment illustrates
how to make square() capable of returning a float value,

main()

float square(float);
float a, b;

printf ('\nEnter any number');
scanf('%f'&a);

b square (a);
pnntf ('\nsquare of %f is %, a, b);

}

float square (float x)

float y;
yx'x;
return (y);

And here is the output...

Enter any number 1.5
Square of 1.5 is 2.250000
Enter any number 2.5
Square of 2.5 is 6.250000

Chapter 5: Functions & Pointers	 177

Now the expected answers i.e. 2.25 and 6.25 are obtained. Note
that the function square() must be declared in main() as

float square(float);

This statement is often called the prototype declaration of the
square() function. What it means is square() is a function that
receives a float and returns a float. We have done the prototype
declaration in main() because we have called it from main().
There is a possibility that we may call square() from several other
functions other than mainO. Does this mean that we would need
prototype declaration of square() in all these functions. No, in
such a case we would make only one declaration outside all the
functions at the beginning of the program

In practice you may seldom be required to return a value other
than an lot, but just in case you are required to, employ the above
method. In some programming situations we want that a called
function should not return any value. This is made possible by
using the keyword void. This is illustrated in the following
program.

main()

void gospel();
gospel() ;

void gospel()
{

printf ('\nViruses are electronic bandits...');
printf ('\nwho eat nuggets of information...");
pnntf ('\riand chunks of bytes...');
printf ('\nwhen you least expect...');

178	 Let UsC

Here, the gospel() function has been defined to return void; means
it would return nothing. 'Therefore, it would just flash the four
messages about viruses and return the control back to the main()
function.

Call by Value and Call by Reference

By now we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed
something to it we have always passed the 'values' of variables to
the called function. Such function calls are called 'calls by value'.
By this what we mean is, on calling a function we are passing
values of variables to it. The examples of call by value are shown
below:

sum calsum (a, b, c)
f factr (a)

We have also learnt that variables are stored somewhere in
memory. So instead of passing the vaue of a variable, can we not
pass the location number (also called 'address) of the variable to a
function? If we were able to do so ;t would become a 'call by
reference'. What purpose a 'call by reference' serves we would
find out a little later. First we must equip ourselves with
knowledge of how to make a 'call by reference'. This feature of C
functions needs at least an elementary knowledge of a concept
called 'pointers'. So let us first acquire the basics of pointers after
which we would take up this topic once again.

An Introduction to Pointers

Which feature of C do beginners find most difficult to understand?
The an3wer is easy: pointers. Other languages have pointers but
few use them so frequently as C does. And why not? It is C's
clever use of pointers that makes it the excellent language it is,

Chapter 5: Functions & Pointers	 179

The difficulty beginners have with pointers has much to do with
C's pointer terminology than the actual concept. For instance,
when a C programmer says that a certain variable is a "pointer",
what does that mean? It is hard to see how a variable can point to
something, or in a certain direction.

It is hard to get a grip on pointers just by listening to programmer's
jargon. In our discussion of C pointers, therefore, we will try to
avoid this difficulty by explaining pointers Jn terms of
programming concepts we already understand. The first thing we
want to do is explain the rationale of C's pointer notation.

Pointer Notation

Consider the declaration,

mt 13;

This declaration tells the C compiler to:

(a) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.
(C) Store the value 3 at this location.

We , may represent i's location in memory by the following
memory map.

location name

value at location

65524	 location number

Figure 5.1

180	 Let Us

We see that the computer has selected memory location 65524 as
the place to store the value 3. The location number 65524 is not a
number to be relied upon, because some other time the compIier
may choose a different location for storing the vJie 3. The
important point is, i's address in memory is a number.

We can print this address number through the following program:

main()

mt I = 3;
printf ('\nAddress oil %tf, &i);
printf(\nValue oil %d', I)

The output of the above program would be:

Address of 65524
Value ofi=3

Look at the first printf() statement carefully. '&' used in this
statement is C's 'address or operator. The expression &i returns
the address of the variable i, which in this case happens to be
65524. Since 65524 represents an address, there is no question of a
sign being associated with it. Hence it is printed out using %u,
which is a format specifier for printing an unsigned integer. We
have been using the '&' operator all the time in the scanf()
statement.

The other pointer operator available in C is '*$, called 'value at
address' operator. It gives the value stored at a particular address.
The 'value at address' operator is also called 'indirection'
operator.

Observe carefully the output of the following program:

Chapter 5: Functions & Pointers	 181

rnain()

mt I	 3;

printf ("\nAddress of I %u, &i);
printf (\nValue of I %d, i) ;
printf ('\nValue of i %d, '(&i));

The output of the above program would be:

Address of I 65524
Value of i = 3
Value of i 3

Note that printing the value of *(&i) is same as printing the value
of i.

The expression &l gives the address of the variable i. This address
can be collected in a variable, by saying,

= &;

But remember that j is not an ordinary variable like any other
integer variable. It is a variable that contains the address of other
variable (1 in this case). Since j is a variable the compiler must
provide it space in the memory. Once again, the following memory
map would illustrate the contents of i and j.

I	 j

L-1	 [241

65524	 65522

Figure 5.2

182
	

Let Us C

As you can see, i's value is 3 and i's value is i's address.

But wait, we can't ue j in a program without declaring it. And
since j is a variable that contains the address of i, it is declared as,

mt 1

This declaration tells the compiler that j will be used to store the
address of an integer value. In other words j points to an integer.
How do we justify the usage of * in the declaration,

mt 0j;

Let us go by the meaning of * .Itstands for 'value at address'.
Thus, mt j would mean, the value at the address contained in j is
an mt.

Here is a program that demonstrates the relationships we have
been discussing.

main()

mt i=3;
mt)

=
piintf (!\nAddress of	 %u, &i);
printf (\nAddress of I %u', j);
pnnt ("\nAddress of	 %u, &j);
printf (\nValue of i = %u", j);
pnntf (\n'/alue of	 %d, I);
printf (\nValue of i %d, (&i));
printf (\nValue of	 W. tj);

}

The output of the above program would be:

Chapter 5: Functions & Pointers	 183

Address of i = 65524
Address of i = 65524
Address of j = 65522
Value of j = 65524
Value of 3
Value of I 3
Value of i = 3

Work through the above program carefully, taking help of the
memory locations of i and j shown earlier. This program
summarizes everything that we have discussed so far. If you don't
understand the program's output, or the meanings of &i, &i,
and *(&i), it-read the last few pages. Everything we say about C
pointers from here onwards will depend on your understanding
these expressions thoroughly.

Look at the following declarations,

mt *alpha;
char *ch;
float Es

Here, alpha, ch and s are declared as pointer variables, i.e.
variables capable of holding addresses. Remember that, addresses
(location nos.) are always going to be whole numbers, therefore
pointers always contain whole numbers. Now we can put these two
facts together and say—pointers are variables that contain
addresses, and since addresses are always whole numbers, pointers
would always contain whole numbers.

The declaration float * does not mean that s is going to contain a
floating-point value. What it means is, s is going to contain the
address of a floating-point value. Similarly, char *ch means that
ch is going to contain the address of a char value. Or in other
words, the value at address stored in ch is going to be a char.

184
	

Let Us C

The concept of pointers can be further extended. Pointer, we know
is a variable that contains address of another variable. Now this
variable itself might be another pointer. Thus, we now have a
pointer that contains another pointer's address. The following
example should make this point clear.

main()

mt	 3 1 **k
= &i,

k
pnntf (\nAddress of i %u", &i);
printf (\nAddress of I = %u, j)
printf (\nAddress of i %u', ak);
printf (\nAddress of j %u
printf (\nAddress of j %u'
printf ("\nAddress of k = %u', &k);
printf(\nValueofl %uJ);
printf (\nValue of k %U k);
priatf(\nValueoui =%d, i);
printf(\nValueofi %d(&i));
printf (\nValue of I	 %d", *j);
printf (\nValue of i 	 %d, **k);

The output of the above program would be:

Address of i = 65524

Address of I 65524
Address of i 65524
Address of j = 65522
Address of j 65522
Address of k 65520
Value of j = 65524
Value of k 65522

Chapter 5: Functions & Pointers	 185

Value ofi 3
Value ofi =3
Value pfi 3
Value of =3

Figure 5.3 would help you in tracing out how the program prints
the above output.

Remember that when you run this program the addresses that get
printed might turn out to be something different than the ones
shown in the figure. however, with these addresses too the
relationship between i, j and k can be easily established.

____ 	 k

I	 I	 65524	 65522

65524	 65522	 65520

Figure 5.3

Observe how the variables j and k have been declared,

mt I,

Here, i is an ordinary int, j is a pointer to an mt (often called an
integer pointer), whereas k is a pointer to an integer pointer. We
can extend the above program still further by creating a pointer to
a pointer to an integer pointer. In principle, you would agree that
likewise there could exist a pointer to a pointer to a pointer to a
pointer to a pointer. There is no limit on how far can we go on
extending this definition. Possibly, till the point we can
comprehend it. And that point of comprehension is usually a
pointer to a pointer. Beyond this one rarely requires to extend the
definition of a pointer. But just in case...

FI
	

Let Us C

Back to Function Calls

Having had the first tryst with pointers let us now get back to what
we had originally set out to learn--the two types of function
calls—call by value and call by reference. Arguments can
generally be passed to functions in one of the two ways:

(a) sending the values of the arguments
(b) sending the addresses of the arguments

In the first method the 'value' of each of the actual arguments in
the calling function is copied into corresponding formal arguments
of the called function. With this method the changes made to the
formal arguments in the called function have no effect on the
values of actual arguments in the calling function. The following
program illustrates the 'Call by Value'.

main(

nt a 10, b 20;

swapv (a, b);
printf (\na %d b %d, a, b);

swapv (mt x, mt y)

mt t;

tx;
xy;
y=t;

pnntf("\nx %d y %d,x, y);

The output of the above program would be:

Chapter 5: Functions & Pointers	 187

x2OylO
a=lOb=20

Note that values of a and b remain unchanged even after
exchanging the values of x and y.

In the second method (call by refere nce) the addrc.ses of actual
arguments in the calling function are opied into frrnal arguments
of the called function. This means that using these addresses we
would have an access to the actual arguments and hence we would
be able to manipulate them. The following program illustrates this
fact.

main(,)

mt a1O,b2O;

swapr(&a,&b);
printf(\na%db=%d, ab);

swapr(im	 mt *y)

at t;

I
=

The output of the above proam would be:

d2Ob1O

Note that this program manages to exchange the values of a and b
using	 resses stored in x and y.

188
	

Let Us C

Usually in C programming we make a call by value. This means
that in general you cannot alter the actual arguments. But if
desired, it can always he achivcd through a call by reference.

Using a call by reference intelligently we can make a function
return more than one value at a time, which is not possible
ordinarily. This is shown in the program given below,

main()

nt radius;
float area, perimeter;

print! ('\riEnter radius of a circle');
scant (%d', &radius);
areaperi (radius, &area, &perimeter);

pnntf ("Area %, area);
print! ('\nPerimeter %f", perimeter };

I

areaperi (int r, float *a float p)

3.14 'r 'r;
2 * 3,14 * r;

And here is the output...

Enter radius of a circle 5
Area 78.500000
Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the
value of radius but, addresses of area and perimeter. And since
we are passing the addresses, any change that we make in values
stored at addresses contained in the variables a and p, would make

Chapter 5: Functions & Pointers 	 189

the change effective in mainQ. That is why when the control
returns from the function areaperi() we are able to output the
values of area and perimeter.

Thus, we have been able to indirectly return two values from a
called function, and hence, have overcome the limitation of the
return statement, which can return only one value from a function
at a time.

Conclusions

From the programs that we discussed here we can draw the
following conclusions:

(a) If we want that the value of an actual argument should not get
changed in the function being called, pass the actual argument
by value.

(b) If we want that the value of an actual argument should get.
changed in the function being called, pass the actual argument
by reference.

(c) If a function is to be made to return more than one value at a
time then return these values indirectly by using a call by
reference.

Recursion

In C, it is possible for the functions to call themselves. A function
is called 'recursive' if a statement within the body of a function
calls the same function. Sometimes called 'circular definition',
recursion is thus the process of defining something in terms of
itself.

Let us now see a simple example of recursion. Suppose we want to
calculate the factorial value of an integer. As we know, the

14

190
	

Let Us C

factorial of a number is the product of all the integers between I
and that number. For example. 4 factorial is 4 * 3 * 2 * 1. This can
also be expressed as 4!= 4 * 3! where '!' stands for factorial. Thus
factorial of a number can be expressed in the form of itself. Hence
this can be programmed using recursion. However, before we try
to write a recursive function for calculating factorial let us take a
look at the non-recursive function for calculating the factorial
value of an integer.

main()

nt a, fact;

printf ('\riEnter any number);
scanf ("%d',&a)

fact factorial (a)
printf (Factorial value %d, fact);

factoal (mt x)

nt f=1i;

for(i x ;i >= 1 :i-
f	 fi

return (I);

And here is the output...

Enter any number 3
Factorial value 6

Chapter 5: Functions & Pointers	 191

Work through the above program carefully, till you understand the
logic of the program properly. Recursive factorial function can be
understood only if you are thorough with the above logic.

Following is the recursive version of the function to calculate the
factorial value,

main()

nt a, fact;

printi ("\nEnter any number");
scanf ("%d", &a);

fact rec (a):

printf ("Factorial value %d", fact);

rec(int x)

mt f;

if(X == 1)
return (1);

else
x * tee (x - 1);

return (f);

And here is the output for four runs of the program

Enter any number 1
Factorial value 1
Enter any number 2
Factorial value 2
Enter any number 3

192	 Let Us

Factorial value 6
Enter any number 5
Factorial value = 120

Let us understand this recursive factorial function thoroughly. In
the first run when the number entered through scanf() is 1, let us
see what action does rec() take. The value of a (i.e. I) is copied
into x. Since x turns out to be I the condition if (x = 1) is
satisfied and hence 1 (which indeed is the value of I factorial) is
returned through the return statement.

When the number entered through scanf() is 2, the (x = 1) test
fails, so we reach the statement,

f x * rec (x - 1):

And here is where we meet recursion. How do we handle the
expression x * rec (x - 1)? We multiply x by rec (x - 1). Since
the current value of x is 2, it is same as saying that we must
calculate the value (2 * rec (1)). We know that the value returned
by rec (1) is 1, so the expression reduces to (2 * I), or simply 2.
Thus the statement,

x • rec (x- 1);

evaluates to 2, which is stored in the variable 1, and is returned to
mainQ, where it is duly printed as

Factorial value = 2

Now perhaps you can see what would happen if the value of a is 3,
4, 5 and so on.

In case the value of a is 5, main() would call rec() with 5 as its
actual argument, and rec() will send back the computed value. But
before sending the computed value, rec() calls rec() and waits for
a value to be returned. It is possible for the rec() that has just been

Chapter 5: Functions & Pointers 	 193

called to call yet another rec(), the argument x being decreased in
value by I for each of these recursive calls. We speak of this series
of calls to rec() as being different invocations of rec(). These
successive invocations of the same function are possible because
the C compiler keeps track of which invocation calls which. These
recursive invocations end finally when the last invocation gets an
argument value of 1, which the preceding invocation of rec() now
uses to calculate its own f value and so on up the ladder. So we
might say what happens is,

rec (5) returns (5 times rec (4),
which returns (4 times rec (3),

which returns (3 limes rec (2),
which returns (2 times rec (1),

which returns (1)))))

Foxed? Well, that is recursion for you in its simplest garbs. I hope
you agree that it's difficult to visualize how the control flows from
one function call to another. Possibly Figure 5.4 would make
things a bit clearer.

Assume that the number entered through scanf() is 3. Using
Figure 5.4 let's visualize what exactly happens when the recursive
function rec() gets called. Go through the figure carefully. The
first time when rec() is called from main(), x collects 3. From
here, since x is not equal to 1, the if block is skipped and rec() is
called again with the argument (x - I), i.e. 2. This is a recursive
call. Since x is still not equal to I, rec() is called yet another time,
with argument (2 - I). This time as x is 1, control goes back to
previous rec() with the value 1, and I is evaluated as 2.

Similarly, each rec() evaluates its f from the returned value, and
finally 6 is returned to main(). The sequence would be grasped
better by following the arrows shown in Figure 5.4. Let it be clear
that while executing the program there do not exist so many copies
of the function rec(). These have been shown in the figure just to

194
	

Let US C

help you keep track of how the control flows during successive
recursive calls.

from main()

.1,
rcc(intx)	 rec(intx)	 rcc(intx)

mt 1;	 mt f;	 tnt 1;

if (x	 I)	 if (X== I)	 if(xr)
return (1);	 return (1);	 return (1);

else	 cisc	 j else
fx*rcc(x_l);	 f=xrec(x—i);	 f=x*rcc(x

return (f)	 rcwm (1);	 return (1)

I	 I

to main()

Figure 5.4

Recursion may seem strange and complicated at first glance, but it
is often the most direct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Recursion and Stack

There are different ways in which data can be organized. For
example, if you are to store five numbers then we can store them
in five different variables, an array, a linked list, a binary tree, etc.
All these different ways of organizing the data are known as data
structures. The compiler uses one such data structure called stack
for implementing normal as well as recursive function calls.

Chapter 5: Functions & Pointers 	 -	 195

A stack is a Last In First Out (LIFO) data structure. This means
that the last item to get stored on the stack (often called Push
operation) is the first one to get out of it (often called as Pop
operation). You can compare this to the stack of plates in a
cafeteria—the last plate that goes on the stack is the first one to get
out of it. Now let us see how the stack works in case of the
following program.

main()

mt a 5, b = 2, C;
c = add(a, b);
printf ("sum = %d", c)

add (inti,intj)

mt sum;
sum I +
return sum

In this program before transferring the execution control to the
function fun() the values of parameters a and b are pushed onto
the stack. Following this the address of the statement printf() is
pushed on the stack and the control is transferred to fun(). It is
necessary to push this address on the stack. In fun() the values of

a and b that were pushed on the stack are referred as i and J. In
fun() the local variable sum gets pushed on the stack. When
value of sum is returned sum is popped up from the stack. Next
the address of the statement where the control should be returned
is popped up from the stack. Using this address the control returns
to the printf() statement in main(). Before execution of printf()
begins the two integers that were earlier pushed on the stack are
now popped off.

How the values are being pushed and popped even though we
didn't write any code to do so? Simple—the compiler on

196	 Let U5

encountering the function call would generate code to push
parameters and the address. Similarly, it would generate code to
clear the stack when the control returns back from fun(). Figure
5.5 shows the contents of the stack at different stages of execution.

	

printf()	
XXXX

Address of

	Copy of a	 5Copy of a	
?	 I

Copy of h L 2	 Copy of b

Empty stack	 When call to	 Before transfcring

	

fun() is met	 control to fun(

SUM L-H
Address

I	 5	 5

	

J L 2 I 	 2

	

After control	 While returning	 On returning control

	

rcachc fun()	 control from fun()	 from fun()

Figure 5.5

Note that iii this program popping of sum and address is done by
fun(), wherea popping of the two integers is done by main().
When it is done this way it is known as CDect Calling
Convention'. There are other calling conventions as well where
instead of maiii), fun() itself clears the two integers. The calling
convention also decides whether the parameters being passed to
the function are pushed on the stack in left-to-right or right-to-left
order. The standard calling convention always uses the right-to-left

Chapter 5: Functions & Pointers 	 197

order. Thus during the call to fun() firstly value of b is pushed to
the stack, followed by the value of a.

The recursive calls are no different. Whenever we make a
recursive call the parameters and the return address gets pushed on
the stack. The stack gets unwound when the control returns from
the called function. Thus during every recursive function call we
are working with a fresh set of parameters.

Also, note that while writing recursive functions you must have an
if statement somewhere in the recursive function to force the
function to return without recursive call being executed. If you
don't do this and you call the function, you will fall in an
indefinite loOp, and the stack will keep on getting filled with
parameters and the return address each time there is a call. Soon
the stack would become full and you would get a run-time error
indicating that the stack has become full. This is a very common
error while writing recursive functions. My advice is to use
printf() statement liberally during the development of recursive
function, so that you can watch what is going on and can abort
execution if you see that you have made a mistake.

Adding Functions to the Library

Most of the times we either use the functions present in the
standard library or we define our own functions and use them. Can
we not add our functions to the standard library? And would it
make any sense in doing so? We can add user-defined functions to
the library. It makes sense in doing so as the functions that are to
be added to the library are first compiled and then added. When we
use these functions (by calling them) we save on their compilation
time as they are available in the library in the compiled form.

Let us now see how to add user-defined functions to the library.
Different compilers provide different utilities to add/delete/modify
functions in the standard library. For example, Turbo C/C++

198

compilers provide a utility called tlib.exc' (Turbo Librarian). Let
us use this utility to add a' function factorial() to the library.

Given helw are the steps to do so:

(a) Write the function definition of factorial() in some file, say

fact.c'.

it factorial (mt num)

nt i, f= 1
for (i 1 ;i<=numH++)

f	 1* i
return (1)

(b) Compile the 'fact.c' file using Alt F9. A new file called
'fact.obj' would get created containing the compiled code in
machine language.

(c) Add the function to the library by issuing the command

C:\>tlib math.Iib + c:\1act.ob

Here, 'niath.lib' is a library filename, + is a switch, which
means we want to add new function to library and 'c:\fact.obj '

is the path of the '.obj' file.

(d) Declare the prototype of the factorial() function in the header
file, say 'fact.h'. This file should be included while calling the
function.

(e) To use the function present inside the library, create a
program as shown below:

#include "c:\\facth '
main()

Chapter 5: Functions & Pointers 	 199

intf;
factorial (5)

printf ("%d', f)

(f) Compile and execute the program using Ctrl F9.

If we wish we can delete the existing functions present in the
library using the minus (-) switch.

Instead of modifying the existing libraries we can create our own
library. Let's see how to do this. Let us assume that we wish to
create a library containing the functions factorial(), prime() and
fThonacci(). As their names suggest, factorial() calculates and
returns the factorial value of the integer passed to it, prime()
reports whether the number passed to it is a prime number or not
and fibonacJ() prints the first n terms of the Fibonacci series,
where n is the number passed to it. I-lcrc are the steps that need to
be carried out to create this Library. Note that these steps are
specific to Turbo C/C++ compiler and would vary for other
compilers.

(a) Define the functions factorial(), prime() and libonacci() in
a file, say 'myfuncs.c'. Do not define main() in this file.

(h) Create a file 'myfuncs.h' and declare the prototypes of
factorial, prime() and fibonacci() in it as shown below:

int factorial (int)
nt prime (irit)
void fiboriacci(int);

(c) From the Options menu select the menu-item 'Application'.
From the dialog that pops us select the option 'Library'.
Select OK.

200	 Let Us C

(d) Compile the program using AR F9. This would create the
library file called 'mfuncs.lib'.

P.

That's it. The library now stands created. Now we have to use the
functions defined in this library. Here is how it can be done.

(a) Create a file, ay 'sample.c' and type the following code in it.

#include myfuncs.h
main()

nt f, result
factorial (5);

result prime (13);
fibonacci(6);
printf (\n%d %d, f, result)

a

Note that the file 'myfuncs.h' should be in the same directory
as the file 'sample.c'. If not, then while including 'myfuncs.h'
mention the appropriate path.

(b) Go to the 'Project' menu and select 'Open Project...' option.
On doing so a dialog would pop up. Give the name of the
project, say 'sample.prj' and select OK.

(c) From the 'Project' menu select 'Add Item'. On doing so a file
dialog would appear. Select the file 'samplec' and then select
'Add'. Also add the file 'myfuncs.lib' in the same manner.
Finally select 'Done'

(d) Compile and execute the project using Ctrl F9.

/
Chapter 5: Functions & Pointers 	 201

Summary
(a) To avoid repetition of code and bulky programs functionally

related statements are isolated into a function.
(b) Function declaration specifies what is the return type of the

function and the types of parameters it accepts.
(c) Function definition defines the body of the function.
(d) Variables declared in a function are not available to other

functions in a program. So, there won't be any clash even if
we give same name to the variables declared in different
functions.

(e) Pointers are variables which hold addresses of other variables.
(f) A function can be called either by value or by reference.
(g) Pointers can be used to make a function return more than one

value simultaneously.
(h) Recursion is difficult to understand, but in some cases offer a

better solution than loops.
(i) Adding too many functions and calling them frequently may

slow down the program execution.

Exercise

Simple functions, Passing values between functions

JAI What would be the output of the following programs:

(a) main()

printf (\nOny stupids use C?);
display;

display()

printf (\nFools too use C!);
main()

202
	

Let Us C

(b) main()

printf ("\nC to it thai C survives);
main()

(c) rnia(

nt I	 45, c;
c check (i)
printf ("\n%d", C);

check (mt ch)

if (ch ' 45)
return (100);

else
return(10* 10)

(d) main(

mt i=45,c;
c Multiply (i* 1000);
pnntf(\n%dc);

}
check (mt ch)

if(ch> 40000)
return (ch '10);

else
return (10);

(BI Point out the errors, if any, in the following programs:

(a) main()

C/ip1c'r 3: Functions & Pointers	 203

ml ij4,kI;
kaddmuIt(i,j);
=addmuIt(i,j);

printf (\n%d %dR, k, t);
}
addmutt (mt ii, int)

mt kk, II;
kkii+jj;
II	 ii * ii;
return (kk,O);

(b) main()

mt a;
a messageQ;

message()

printf ("\nViruses are written in C");
return;

(C) main()

float a15.5;
char ch
print (ach);

print(a,ch)

printf(\n%f%c"a,ch);

(d) main()

message()

204
	

Let Us C

message(;)

message(

printf ("\nPraise worthy and C worthy are synonyms")

(e) main()

let_Us_co

printf ('\nC is a Cimple minded language!"
printf("\nOthers are of course no match!'

f)	 main()

message(message ());

void message()

printf ('\nPraise worthy and C worthy are synonyms")

CJ Answer the following:

(a) Is this a correctly written function:

sqr (a)
inta;

return (a * a)

(b) State whether the following statements are Tnie or False:

Chapter 5: Functions & Pointers 	 205

I. The variables commonly used in C functions are available
to all the functions in a program.

2. To return the control back to the calling function we must
use the keyword return.

3. The same variable names can be used in different
functions without any conflict.

4. Every called function must contain a return statement.

5. A function may contain more than one return statements.

6. Each return statement in a function may return a different
value.

7. A function can still be useful even if you don't pass any
arguments to it and the function doesn't return any value
back.

8. Same names can be used for different functions without
any conflict.

9. A function may be called more than once from any other
function.

10. It is necessary for a function to return some value.

IDI Answer the following:

Write a function to calculate the factorial value of any integer
'	 entered through the keyboard.

(b) Write a function power (a, b), to calculate the value of a
raised to b.

15

206
	

Let Us C

(c) Write a general-purpose function to convert any given year
into its roman equivalent. The following table shows the
roman equivalents of decimal numbers:

Decimal	 Roman	 1 Decimal	 Roman

I	 i	 100	 C

5	 v	 50()	 d

10	 x	 1000	 In

50	 1

Example:

Roman equivalent of 198 k mdcccclxxxviii
Roman equivalent of 1525 is mdxxv

(d) Any year is entered through the keyboard. Write a function to
determine whether the year is it leap year or not.

(c) A positive integer is entered through the keyboard. Write a
function to obtain the pi-me factors of this number.

For example, prime factors of 24 are 2, 2, 2 and 3, whereas
prime factors of 35 are S and 7.

Function Prototypes. Call by Value/Reference, Pointers

IEJ What would be the output of the following programs:

(a)	 main()

float area
nt radius 1;
area circle (radius)
printf ('\n%f, area

circle (nt r)

Chapter 5: Functions & Pointers 	 207

float a;
a 3.14 * r' r;
return (a)

(b) main()

'oid siogan()
mt c5;
c slogan(;
printf (\n%d', c);

void slogan()

printf (\nOnly He men use C!);

[FJ Answer the following:

(a) Write a function which receives a float and an mt from
main(), finds the product of these two and returns the product
which is printed through main().

(b) Write a function that receives 5 integers and returns the sum,
average and standard deviation of these numbers. Call this
function from main() and print the results in mainO.

Write a function that receives marks received by a student in 3
subjects and returns the average and percentage of these
marks. Call this function from main() and print the results in
mainO.

IGI What would be the output olthc following programs:

(a) main()

nt H5jz2;

Let UsC

junk (ij);
printf (\n%d %da, I, j)

junk(mt i, mt j

j=*;
jj*j;

(b) main()

nt I	 5, j	 2:
junk (&L&j);
printf(\n%d%d,ij);

junk (int I, mt i

* a

a

(c) main()

mt =4,j=2;
junk (&ij);
prmntf(n%d%d,iJ):

junk (mt	 mt j)

a-	 a a a

(d) main()

float a 135;
float *b aC

b &a; r suppose address of a is 1006

Chapter 5: Functions & Pointers	 -__209

c=b;
printf ('\n%u %u %U, &a, b, c);
printi (\n%f %f %f %f %f, a, (&a), *&a b, *C);

1111 Point out the errors, if any, in the following programs:

(a) main()

mt i135,a=135k;
k= pass (I, a)
printf('\n%d',k);

pass (int j,int b)
mt C;

cj+b;
return (c);

}

(b) main()
{

nt p23f24;
jiaayjo (&p, &f);
pnntf (\n%d %d', p, f);

aayjo (mt q, mt g)

qq+q;
gg+g;

(c) main()

mt k=35z;
z = check (k);
pnntf ('\n%d", z);

210
	

Let Us C

check (m)

mt m;
if(m>40)

return (1>
ease

return (0)

(d) main()

mt I	 35 z;
z function (&i);
printf (\n%d, z);

function(int m)

return (m + 2)

I I I What would be the output of the following programs:

(a) main()

inti=0,

if(i<=5)

printf ('\nC adds wings to your thoughts);
exit()
mainO;

)

(b) main()

static tnt iO;

Chapter 5. Functions & Pointers	 211

if (i <= 5)

printf ('\n%d, I)
main(;

else
exit(

I J I Attempt the following:

(a) A 5-digit positive integer isentered through the keyboard,
write a function to calculate sum of digits of the 5-digit
number:

(I) Without using recursion
(2) Using recursion

(b) A positive integer is entered through the keyboard, write a
program to obtain the prime factors of the number. Modify the
function suitably to obtain the prime factors recursively.

,,(2Write a recursive function to obtain the first 25 numbers of a
/' Fibonacci sequence. In a Fibonacci sequence the sum of two

successive terms gives the third term. Following are the first
few terms of the Fibonacci sequence:

1 1 2 3 5 8 13 21 34 55 89...

(d) A positive integer is entered through the keyboard, write a
function to find the binary equivalent of this number using
recursion.

(e) Write a recursive function to obtain the running sum of first
25 natural numbers.

(1) Write a C function to evaluate the series

sin(x)=x—(x'13!)+(x5/5!)—(x7/7!)+A

212
	

Let Us C

to five significant digits.

(g) Given three variables x,y. z write a function to circularly shift
their values to right. In other words if = 5, y = 8. z = 10 after
circular shifty 5, z = 8, x =10 after circular shift y = 5, z = 8
and x ACall the function with variables a, b, c to
circularly shill values.

(h) Write a function to find the binary equivalent of a given
decimal integer and display it.

(i) If the lengths of the sides of a triangle are denoted by a, b,
and c, then area of triangle is given by

area = .,fS—a)(S--b)(S--c)

where, S=(a+b+c)/2

(j) Write a function to compute the distance between two points
and use it to develop another function that will compute the
area of the triangle whose vertices are A(x, yl), B(x2, y2),
and C(x3, y3). Use these functions to develop a function
which renirns a value I if the point (x, y) lines inside the
triangle ABC, otherwise a value 0.

(k) Write a function to compute the greatest common divisor
given by Euclid's algorithm, exemplified for J = 1980, K =
1617 as follows:

1980/1617=1
	 1980-1 * 1617 =363

1617/363=4
	

1617-4 * 363 = 165
363 / 165 = 2
	 363_2* 165=33

5 / 33 = 5
	 1655*33=0

Thus, the greatest common divisor is 33.

6 Data Types
Revisited

• Integers, long and short
• Integers, signed and unsigned
• Chars, signed and unsigned
• floats and Doubles
• A Few More Issues...
• Storage Classes in C

Automatic Storage Class
Register Storage Class
Static Storage Class
External Storage Class
Which to Use When

• Summary
• Exercise

213

214	 et Us C

A

s seen in the first chapter the primary data types could be of
three varieties—char, int, and float. It may seem odd to
many, how C programmers manage with such a tiny set of

data types. Fact is, the C programmers aren't really deprived. They
can derive many data types from these three types. In fact, the
number of data types that can be derived in C, is in principle,
unlimited. A C programmer can always invent whatever data type
he needs.

Not only this, the primary data types themselves could he of
several types. For example, a char could be an unsigned char or a

signed char. Or an mt could be a short jut or a long mt.
Sufficiently confusing? Well, let us take a closer look at these
variations of primary data types in this chapter.

To fully define a variable one needs to mention not only its type
but also its storage class. In this chapter we would be exploring the
different storage classes and their relevance in C programming.

Integers long and short

We had seen earlier that the range of an Integer constant depends
upon the compiler. For a 16-bit compiler like Turbo C or Turbo
C++ the range is --32768 to 32767. For a 32-hit compiler the range
would be –2147483648 to +2147483647. Here a 16-hit compiler
means that when it compiles a C program it generates machine
language code that is targeted towards working on a 16-bit
microprocessor like Intel 8086/8088. As against this, a 32-hit
compiler like VC++ generates machine language code that is
targeted towards a 32-bit microprocessor like Intel Pentium. Note
that this does not mean that a program compiled using Turbo C
would not work on 32-hit processor. It would run successfully but
at that time the 32-bit processor would work as if it were a 16-bit
processor. This happens because a 32-hit processor provides
support for programs compiled using 16-bit compilers. If this
backward compatibility support is not provided the 16-bit program

Chapter 6: Data Types Revisited 	 215

would not run on it. This is precisely what happens on the new
Intel Itanium processors, which have withdrawn support for 16-bit
code.

Remember that out of the two/four bytes used to store an integer,
the highest bit (16th/32

bit) is used to store the sign of the integer.
This bit is I if the number is negative, and 0 if the number is
positive.

C offers a variation of the integer data type that provides what are
called short and long integer values. The intention of providing
these variations is to provide integers with different ranges
wherever possible. Though not a rule, short and long integers
would usually occupy two and four bytes respectively. Each
compiler can decide appropriate sizes depending on the operating
system and hardware for which it is being written, subject to the
following rules:

(a) shorts are at least 2 bytes big
(b) longs are at least 4 bytes big
(c) shorts are never bigger than ints
(d) ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS
used.

L
iCompiler	 ' short mt long

16-bit (Turbo C/C++) 	 2	 2	 4
32-bit (Visual C++) 	 2	 4	 4

Figure 6.1

long variables which hold long integers are declared using the
keyword long, as in,

216
	

Let Us C

long mt i
long mt abc;

long integers cause the program to run a bit slower, but the range
of values that we can use is expanded tremendously. The value of
a long integer typically can vary from -2147483648 to
+2147483647. More than this you should not need unless you are
taking a world census.

If there are such things as longs, symmetry requires shorts as
well—integers that need less space in memory and thus help speed
up program execution. short integer variables are declared as,

short int j;
short mt height;

C allows the abbreviation of short mt to short and of long mt to

long. So the declarations made above can be written as,

long I;
long abc;
short
short height;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small

enough to be an int, but still we want to give it as much storage as

along. In such cases we add the suffix 'L' or '1' at the end of the
number, as in 23L.

Integers, signed and unsigned

Sometimes, we know in advance that the value stored in a given
integer variable will always be positive—when it is being used to

Chapter 6: Data Types Revisited	 217

only count things. for example. In such a case we can declare the
variable to be unsigned, as in,

unsigned int npm_students;

With such a declaration, the range of permissible integer values
(for a 16-bit OS) will shift from the range -32768 to +32767 to the
range 0 to 65535. Thus, declaring an integer as unsigned almost
doubles the size of the largest possible value that it can otherwise
take. This so happens because on declaring the integer as
unsigned, the left-most bit is now free and is not used to store the
sign of the number. Note that an unsigned integer still occupies
two bytes. This is how an unsigned integer can be declared:

unsigned mt I;
unsigned i,

Like an unsigned int, there also exists a short unsigned mt and a
long unsigned mt. By default a short mt is a signed short mt and
a long mt is a signed long mt.

Chars, signed and unsigned

Parallel to signed and unsigned ints (either short or long),
similarly there also exist signed and unsigned chars, both
occupying one byte each, but having different ranges. To begin
with it might appear strange as to how a char can have a sign.
Consider the statement

charch 'A;

Here what gets stored in ch is the binary equivalent of the ASCII
value of 'A' (i.e. binary of 65). And if 65's binary can be stored,
then -54's binary can also be stored (in a signed char).

218	 Let Us

A signed char is same as an ordinary char and has a range from
-128 to +127; whereas an unsigned char has a range frorn 0 to

255. Let us now see a program that illustrates this range:

main(

r-ar rh 291
prntf (\n%d %c, ch, ch

What output do you expect from this program? Possibly, 291 and
the character corresponding to it. Well, not really. Surprised? The
reason is that ch has been defined as a char, and a char cannot
take a value bigger than +127. Hence when value of ch exceeds
+127, an appropriate value from the other side of the range is
picked up and stored in ch. This value in our case happens to be

35, hence 35 and its corresponding character fi, gets printed out.

Here is another program that would make the concept clearer.

main()

char ch

for (chO;ch<z255;ch++)
printf (\n%d %C, ch, ch)

This program should output ASCII values and their corresponding
characters. Well, No! This is an indefinite loop. The reason is that
ch has been defined as a char, and a char cannot take values
bigger than +127, Hence when value ofch is ±127 and we perform
ch-H- it becomes -128 instead of -'128. -128 is less than 255 hence
the condition is still satisfied. 1-here onwards ch would take values
like -127, -126, -125. -2, -1,0,-fl, +2, ... 4 127, -128, -127, etc.
Thus the value of cli would keep oscillating between -128 to + 127,
thereby ensuring that the loop never gets terminated. how do you

Chapter 6: Data l'vpes Revisited	 219

overcome this difficulty? Would declaring ch as an unsigned char
solve the problem? Even this would not serve the purpose since
when ch reaches a value 255, ch-4-+ would try to make it 256
which cannot be stored in an unsigned char. Thus the only
alternative is to declare ch as an mt. however, if we are bent upon
writing the program using unsigned char, it can be done as shown
below. The program is definitely less elegant, but workable all the
same,

main()

unsigned char ch

for (ch=Q;ch<254;ch++)
prinff(\n%d %c', ch, ch);

printf("\ri%d %c', ch, ch);

Floats and Doubles

A float occupies four bytes in memory and can range from -3.408
to +3.4e38. If this is insufficient then Coffers a double data type
that occupies S bytes in memory and has a range from - 1.7008 to
+1.7e308. A variable of type double can be declared as,

double a, population

If the situation demands usage of real numbers that lie even
beyond the range offered by double data type, then there exists a
long double that can range from -1.7e4932 to +l.7e4932. A long
double occupies 10 bytes in memory.

You would see that most of the limes in C programming one is
required to use either chars or ints and cases where floats,
doubles or long doubles would he used are indeed rare.

220
	

Let Us C

Let us now write a program that puts to use all the data types that
we have learnt in this chapter. Go through the following program
carefully, which shows how to use these different data types. Note
the format specifiers used to input and output these data types.

main()

char c
unsigned char d
mt I
unsigned mt
short mt k;
unsigned short int I;
long int m
unsigned long mt n
float x;
double y;
long double z;

I' char
scani (*%c %c, &c, &d)
printf ('%c %c, c, d);

rmntl
scanl(%d %u, &i, &j)
printi (%d %u', i, j)

r short int/
scanf (*%d %u", &k, &l);
printf (%d %U, k, I)

I long int 1
scant (%ld %ttf, &m. &n);
pnntf ("%ld %lu', m, n)

r float, double, long double I

scanI("%f%lf%Lr,&X&Y&Z)
printf (%f %1f W. x y, z);

Chapter 6: Data Types Revisited	 221

The essence of all the data types that we have learnt so far has
been captured in Figure 6.2.

Data Type	 Range	 Bytes Format

signed char	 -128 to + 127	 1	 %c
unsigned char	 0 to 255	 I	 %c
short signed ml	 -32768 to 4-32767 	 2
short unsigned int 0 to 65535	 2	 %u
signed mt	 -32768 to +32767	 2	 %d
unsigned mt	 0 to 65535	 2	 %u
long signed mt	 -2147483648 to +2147483647 	 4	 %ld
long unsigned mt 0 to 4294967295	 4	 %lu
float	 -3.4e38 to +3.4e38 	 4	 %f
double	 -1 7e308 to + 1.7008	 8
longdouble	 -1.7e4932 to+1.7e4932	 IQ	 %Lf

Note: The sizes and ranges of int, short and long are compiler
dependent. Sizes in this figure are for 16-hit compiler,

t'igure b..Z

A Few More Issues...

Having seen all the variations of the primary types let us take a
look at some more related issues.

(a) We saw earlier that size of an integer is compiler dependent.
This is even true in case of chars and floats. Also, depending
upon the microprocessor for which the compiler targets its
code the accuracy of floating point calculations may change.
For example, the result of 22.0/7.0 would be reported more

16

222
	

Let UsC

accurately by VCI+ compiler as compared to TCjTC+f
compilers. This is, because TC/TC++ targets its compiled code
to 8088/8086 (16-bit) microprocessors. Since these
microprocessors do not offer floating point support, TC/TC+
performs all float operations using a software piece called
Floating Point Emulator. This emulator has limitations and
hence produces less accurate results. Also, this emulator
becomes part of the EXE file, thereby increasing its size. In
addition to this increased size there is a performance penalty
since this bigger code would lake more time to execute.

(b) If you look at ranges of chars and mis there seems to be one
extra number on the negative side. This is because a negative
number is always stored as 2's compliment of its binary. For
example, let us see how -128 is stored. Firstly, binary of l2
is calculated (10000000), then its 1 's compliment is obtained
(01111111). A I's compliment is obtained b y changing all Os
to is ard is to Os. Finally, 2's compliment of this number, i.e.
10000000, gets stored. A 2's compliment is obtained by
adding I to the l's compliment. Thus, for -128, 10000000
gets stored. This is all number and it can he easily
accommodated in a char. As• against this. 4-128 cannot be
stored in a char because its binary 010000000 (left-most 0 is
for positive sign) is a 9-hit number. However +127 can be
stored as its binary 01111111 turns out to be 'a 8-bit number.

(c) What happens when we attempt to stole *128 in a char'? The

first number on the negative side, i.e. -128 gets stored. This is
because from the 9-bit binary of +128, 010000000, only the
right-most 8 bits get stored. But when 10000000 is stored the
left-most bit is 1 and it is treated as a sign bit. Thus the value
of the number becomes -128 since it is indeed the binary
of -128, as can be understood from (b) above. Similarly, you
can verify that an attempt to store +129 in a char results in
storing -127 in it. In general, if we exceed the range from
positive side we end up oil 	 negative side. Vice veWis

Chapter 6. Data Types Revisited 	 223

also true. If we exceed the range from negative side we end up
oil positive side.

Storage Classes in C

We have already said all that needs to be said about constants, but
we are not finished with variables. To fully define a variable one
needs to mention not only its type' but also its 'storage class'. In
other words, not only do all variables have a data type, they also
have a 'storage class'.

We have not mentioned storage classes yet, though we have
written several programs in C. We were able to get away with this
because storage classes have defaults. If we don't specify the
storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the
variable is used. Thus, variables have certain default storage
classes.

From C compiler's point of view, a variable name identities some
Physical location within the computer where the string of bits
representing the variable's value is stored. There are basically two
kinds of locations in a computer where such a value may be kept -
Memory and CPU registers. It is the variable's storage class that
determines in which of these two locations the value is stored.

Moreover, a variable's storage class tells us:

(a) Where the variable would he stored.
(b) What will be the initial value of the variable, if initial value is

not specifically assigned.(i.e, the default initial value).
(c) What is the scope of the variable; i.e. in which functions the

value of the variable would be available.
(d) What is the life of the variable; i.e. how long would the

variable exist.

224
	

Let Us C

There are four storage classes in C:

(a) Automatic storage class
(b) Register storage class
(c) Static storage class
(d) External storage class

Let us examine these storage classes one by one.

Automatic Storage Class

The features of a variable defined to have an automatic storage
class are as under:

Storage	 - Memory.
Default initial value - An unpredictable value, which is often

called a garbage value.

Scope	 - Local to the block in which the variable
is defined.

Life	 - Till the control remains within the block
in which the variable is defined.

Following program shows how an automatic storage class variable
is declared, and the fact that if the variable is not initialized it
contains a garbage value.

main()

auto int ij;
printf(\n%d %d", i. i

The output of the above program could be...

1211 221

where, 1211 and 221 are garbage values of i and j. When you run
this program you may get different values, since garbage values

Chapter 6: Data Types Revisited	 225

are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are likely to get
unexpected results. Note that the keyword for this storage class is
auto, and not automatic.

Scope and life of an automatic variable is illustrated in the
following program.

main()

auto mt	 1;

printf (\n%d, i);

printf("%di);

printf (%d, i

The output of the above program is:

111

This is because, all printf() statements occur within the outermost
block (a block is all statements enclosed within a pair of braces) in
which i has been defined. It means the scope of i is local to the
block in which it is defined. The moment the control comes out of
the block in Which the variable is defined, the variable and its
value is irretrievably lost. To catch my point, go through the
following program.

main()

auto int i1

226
	

Let Us C

auto int i2;

auto int I 3
printf ("\n%d , i)

printf(%d"i);

printf(%di);

The output of the above program would be:

321

Note that the Compiler treats the three i's as totally different
variables, since they are defined in different blocks. Once the
control comes out of the innermost block the variable i with value
3 is lost, and hence the I in the second printf() refers to i with
value 2. Similarly, when the control comes out of the next
innermost block, the third printf() refers to the i with value I.

Understand the concept of life and scope of an automatic storage
class variable thoroughly before proceeding with the next storage
class,

Register Storage Class

The features of a variable defined to be of register storage class

are as under:

Storage	 - CPU registers.
Default initial value - Garbage value.
Scope	 - Local to the block in which the variable

is defined.

Life	 - Till the control remains within the block
in which the variable is defined.

Chapter 6: Data Types Revisited	 227

A value stored in a CPU register can always be accessed faster
than the one that is stored in memory. Therefore, if a variable is
used at many places in a program it is better to declare its storage
class as register. A good example of frequently used variables is
loop counters. We can name their storage class as register.

main()

register int

for(I	 1 i	 10 ;i++)
printf (\n%d', I)

Here, even though we have declared the storage class of i as
register, we cannot say for sure that the value oil would be stored
in a CPU register. Why? Because the number of CPU registers are
limited, and they may be busy doing some other task. What
happens in such an event.., the variable works as if its storage class
is auto.

Not every type of variable can be stored in a CPU register.

For example, if the microprocesso r has 16-bit registers then they
cannot hold a float value or a double value, which require 4 and 8
bytes respectively. However, if you use the register storage class
for d float or a double variable you won't get any error messages.
All that would happen is the compiler would treat the variables to
be of auto storage class.

Static Storage Class

The features of a variable defined to have a static storage class are
as under:

Storage	 - Memory.
Default initial value	 Zero.

228
	

Let Us C

Scope	 - Local to the block in which the variable
is defined.

Life	 - Value of the variable persists between
different function calls.

Compare the two programs and their output given in Figure 6.3 to
understand the difference between the automatic and static
storage classes.

main()
	

main()

increment()
	

increment(
increment()
	

increment(
increment()
	

increment()

increment(
	

increment()

auto inti	 1;	 static inti	 1;
phntf
	

printf (%d\n, i)
i=ill

The output of the above programs would be:

1
	

2
3

Figure 6.3

The programs above consist of two functions main() and
increment(). The function incremerit() gets called from main()
thrice. Each time it increments the value of i and prints it. The only
difference in the two programs is that one uses an auto storage
class for variable i, whereas the other uses static storage class.

Chapter 6: Data Types Revisited	 229

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them is that static
variables don't disappear when the function is no longer active.
Their values persist. If the control comes back to the same function
again the static variables have the same values they had last time
around.

In the above example, when variable i is auto, each time
incrcment() is called it is re-initialized to one. When the function
terminates, i vanishes and its new value of 2 is lost. The result: no
matter how many times we call increment(. i is initialized to I
every time.

On the other hand, iii is static, it is initialized to I only once. It is
never initialized again. During the first call to increment(), i is
incremented to 2. Because i is static, this value persists. The next
time increment() is called, I is not re-initialized to 1; on the
contrary its old value 2 is still available. This current value of i
(i.e. 2) gets printed and then i I + I adds Ito ito get a value of 3.
When increment() is called the third time, the current value of i
(i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static jut I = us executed
only once, irrespective of how many times the same function is
called.

Consider one more program.

main(

mt j

intfunO;
j = funft
printf (\n%d, j);

intfun()

230	 ___--	 vC

intk 35;
return (&k)

here we are returning an address of k from fun() and collecting it
in j . Thus j becomes pointer to k. Then using this pointer we are
printing the value of k. This correctly prints out 35. Now try
calling any function (even printf()) immediately after the call to

fun(). This time printf() prints a garbage value. Why does this
happen? In the first case, when the control returned from fun()
though k went dead it was still left on the stack. We then accessed
this value using its address that was collected in j . But when we
precede the call to printf() by a call to any other function, the
stack is now changed, hence we get the garbage value. If we want
to get the correct value each time then we must declare k as static.

By doing this when the control returns from fun(), k would not

die.

All this having been said, a word of' advice—avoid using static
variables unless you really need them. Because their values are
kept in memory when the variables are not active, which means
they take up space in memory that could otherwise he used by
other variables.

External Storage Class

The features of a variable whose storage class has been defined as
external are as follows:

Storage	 - Memory.
Default initial value - Zero.
Scope	 - Global.
Life	 - As long as the program's execution

doesn't come to an end.

Chapter 6: Data Types Revisited	 231

External variables differ from those we have already discussed in
that their scope is global, not local. External variables are declared
outside all functions, yet are available to all functions that care to
use them. Here is an example to illustrate this fact.

mt I;
main()

printf ("W %d',)

increment(;)
increment()
decrement()
decrement(

increment()

ii+1;.
printi ('\non incrementing	 I)

decrement()

printf ("\non decrementing 	 %d, i)

The output would be:

=0
on incrementing i 1
on incrementing i 2
on decrementing i = 1
on decrementing i 0

2 3 2` 	 Let Us C

As is obvious from the above output, the value of i is available to
the functions incremeftt() and decrement() since i has been
declared outside all functions.

Look at the following program.

mt x	 21;
main()

extem mt y
printf ('\n%d %d', x, y)

mnty=31

Here, x and y both are global variables. Since both of them have
been defined outside all the functions both enjoy external storage
class. Note the difference between the following:

extern mt y
inty31

Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable no space is reserved for it,
whereas, when we define it space gets reserved for it in memory.
We had to declare y since it is being used in printf() before it's
definition is encountered. There was no need to declare x since its
definition is done before its usage. Also remember that a variable
can be declared several times but can be defined only once.

Another small issue—what will be the output of the following
program?

mt x	 10;
main()

mt x=20;

pnntf (\n%d', x);

Chapter 6: Data Types Revisited	 233

display(;

display()

printf (\n%d M , x);

Here x is defined at two places, once outside main() and once
inside it. When the control reaches the printf() in main() which x
gets printed? Whenever such a conflict arises, it's the local
variable that gets preference over the global variable. Hence the
printf() outputs 20. When display() is called and control reaches
the printf() there is no such conflict. Hence this time the value of
the global x, i.e. 10 gets printed.

One last thing—a static variable can also be declared outside all
the functions. For all practical purposes it will be treated as an
extern variable. However, the scope of this variable is limited to
the same file in which it is declared. This means that the variable
would not be available to any function that is defined in a file other
than the file in which the variable is defined.

Which to Use When

Dennis Ritchie has made available to the C programmer a nftrr
of storage classes with varying features, believing that the
programmer is in a best position to decide which one of these
storage classes is to he used when. We can make a few ground
rules for usage of different storage classes in different
programming situations with a view to:

(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:

234
	

Let Us C

- Use static storage class only if VOL) want the value of it

variable to persist between di iterent function calls.

- Use register storage class For only those variables that are
being used very often in a program. Reason is, there are very
fe' CPU registers at our disposal and many of' them might be
t)tiSV coliig something else. Make careful utilization of the
scarce resources. A typical application of register storage class
is loop counters, hich get used a number of times in a
program.

- Use extern storage class for only those variables that are being
used by almost all the functions in the program. This would
avoid unnecessary passing of these variables as arguments
when making a function call. Declaring all the variables as
extern would amount to a lot of wastage of memory space
because these variables would remain active throughout the
life of the program.

- If you don't have any of the express needs mentioned above,
then use the auto storaec class. In fact most of the times we
end up using the auto variables, because often it so happens
that once we have used the variables in a function we don't
mind loosing them.

Summary
(a) We can use different variations of the primary data types,

iiunicly signed and unsigned char, long and short mt. float,
double and long double. There are different format
specifications for all these data types when they are used in
scanf() and printf() functions.

(b) The maximum value a variable can hold depends upon the
number of bytes it occupies in memory.

(c) By default all the variables are signed. We can declare a
variable as unsigned to accommodate greater value without
increasing the bytes occupied.

Chapter 6: Data 7Ttpes Revisited	 235

(d) We can make use of proper storage classes like auto,
register, static and extern to control four properties of the
variable—storage, default initial value, scope and life.

Exercise

IAI What would be the output of the ibliowing programs:

(a) main()

mt
for (i=O;i<5OOOO;i++)

printf ("\n%d, i

(b) main()

float a 13.5
double b 13.5;
printf (\n%f %I, a, b)

(C)	 int izQ
main(

printf ('\nmains i =
4+;

val(
printf ("\nmains i = %d, i);
val()

val()

= 100;
printf ("\nvats i 	 i)

236
	

Let Us C

(d) main()

nt xy,s2;
s	 3:
y	 f(s);
xg(s);
printf (\n%d %d %d", s, y, x):

nt t8;
f(int a)

a + -5
t - 4;
return (a + I);

g(int a)

a1
t	 a;
return (a + t)

(e) main()

static mt count5;
printi (\ncount %d, count--):
if(count '=O)

main()

(f)	 main()

nt I, j
for (i	 1 ;i<5;i++)

j=g(i):
printi ("\n%d', j);

Chaplet- 6: Data Types Revisited	 237

g(int x)

static int v=1
mt b=3;
V += x;
return (v + x + b)

(g) float x4,5;
main()

float yfloat t(float);
x	 2.0
yf(x);
printf('\n%f%rxy);

float f(float a)

a+ 1.3;

return (a + x)

i)	 main()

func()
func()

func()

auto int i 0
register intl = 0;
static int k = 0

j++ k++
printf (\n %d % d %d ij, k);

17

238
	

Let Us C

(i)	 intxlO;
main()

intx 20;

intx =30;
printf ("\n%d, x)

printf (\n%d, x);

BI Point out the errors, if any, in the following programs:

(a) main()

long num;
num 2;
pnntf (\n%ld, num);

(b) main()

char ch200;
printf (\n%d, ch);

(c) main()

unsigned a = 25;
long unsigned b 251;
printf (\n%lu %u, a, b);

(d) main()

long float a 25,345e454;
unsigned double b = 25;
printf (\n%lf %d", a, b);

Chapter 6: Data Types Revisited 	 239

}
(e) main()

float a 25.345;
float tb;
b
printf ("\n%f %u', a, b);

(f) static inty;
main()

static intz;
printf(%d%d'yz);

JCJ State whether the following statements are True or False:

(a) Storage for a register storage class variable is allocated
each time the control reaches the block in which it is
present.

(b) An extern storage class variable is not available to the
functions that precede its definition, unless the variable is
explicitly declared in these functions.

(c) The value of an automatic storage class variable persists
between various function invocations.

(d) If the CPU registers are not available, the register storage
class variables are treated as static storage class variables.

(e) The register storage class variables cannot hold float
values.

(f) If we try to use register storage class for a float variable
the compiler will flash an error message.

240
	

Let Us C

(g) If the variable x is defined as extern and a variable x is
also defined asa local variable of some function, then the
global variable gets preference over the local variable.

(h) The default value for automatic variable is zero.

(i) The life of static variable is till the control remains within

the block in which it is defined.

U) If a global variable is to be defined, then the extern

keyword is necessary in its declaration.

(k) The address of register variable is not accessible.

IDI Following program calculates the sum of digits of the number
12345. Go through it and find out why is it necessary to
declare the storage class of the variable sum as static.

main()

mt a;
asurndig(12345);
printf (\n%d, a);

sumdig (mt nurn)

static int sum
nt a, b;
a nurn % 10;
b (num - a) 110:
sum = sum
if(bt=0)

sumdig(b);
else

return (sum)

7 The C Preproces-
sor

• Features of C Preprocessor
• Macro Expansion

Macros with Arguments
Macros versus Functions

• File Inclusion
• Conditional Compilation
• #f and #e1f Directives
• Miscellaneous Directives

#undef Directive
#pragrna Directive

• Summary
• Exercise

241

242	 Let Us C

T

he C preprocessor s exactly what its nanie implies. It is a
program that processes our source program before it is
passed to the compiler. Preprocessor commands (often

known as directives) form what can almost be considered a
language within C language. We can certainly write C programs
without knowing anything about the preprocessor or its facilities.
But preprocessor is such a great convenience that virtually all C
programmers rely on it. This chapter explores the preprocessor
directives and discusses the pros and cons of using them in
programs.

Features of C Preprocessor

There are several steps involved from the stage of writing a C
program to the stage of getting it executed. Figure 7.1 shows these
different steps along with the files created during each stage. You
can observe from the figure that OLIV program passes through
several processors before it is ready to be executed. The input and
output to each of these processors is shown in Figure 7.2.

Note that if the source code is stored in a file PRI.0 then the
expanded source code gets stored in a file PRI.J. When this
expanded source code is compiled the object code gets stored in
PRI.OBJ. When this object code is linked with the object code of
library functions the resultant executable code gets stored in
PRI .EXE.

The preprocessor offers several features called preprocessor
directives. Each of these preprocessor directives begin with a #
symbol. The directives can be placed anywhere in a program but
are most often placed at the beginning of a program, before the
first function definition. We would learn the following
preprocessor directives here:

(a)Macro expansion
(b) File inclusion

Chapter 7: The C Preprocessor 	 243

Hand written program

Text editor

rC Source code (PR 1 .C)]

Preprocessor

pandcd source code (PR I

Compiler

Object code (PR I .OBJI

I.ir,lur

[Executablc code (PR I.EXE)

Figure 7.1

Processor Input	 Output

Editor	 Program typed from	 C source codc containing
keyboard	 program and preprocessor

commands

Prepro-	 C source code file 	 Source code file with the
cessor	 preprocessing commands

properly sorted out

Compiler	 Source code file with	 Relocatable object code
preprocessing commands
sorted out

Linker	 Relocatable object code	 Executable code in
and the standard C	 machine language
library functions

Figure 7.2

244
	

Let Us C

(c) Conditional Compilation
(d) Miscellaneous directives

Let us understand these features of preprocessor one by one.

Macro Expansion

Have a look at the following program.

#define UPPER 25
main()

mt i
for (i = 1 ;i<= UPPER; i++)

printf('\n%d',i);

In this program instead of writing 25 in the for loop we are writing
it in the form of UPPER, which has already been defined before
main() through the statement,

#define UPPER 25

This statement is called 'macro definition' or more commonly, just
a 'macro'. What purpose does it serve? During preprocessing, the
preprocessor replaces every occurrence of UPPER in the program
with 25. Here is another example of macro definition.

#definePl 3.1415
man()

float r6.25;
float area;

area Pt r * r;
printf (riArea Ot circleF %, area

Chapter 7: The C Preprocessor 	 245

UPPER and P1 in the above programs are often called 'macro
templates', whereas, 25 and 3.1415 are called their corresponding
'macro expansions'.

When we compile the program, before the source code passes to
the compiler it is examined by the C preprocessor for any macro
definitions. When it sees the #define directive, it goes through the
entire program in search of the macro templates; wherever it finds
one, it replaces the macro template with the appropriate macro
expansion. Only after this procedure has been completed is the
program handed over to the compiler.

In C programming it is customary to use capital letters for macro
template. This makes it easy for programmers to pick out all the
macro templates when reading through the program.

Note that a macro template and its macro expansion are separated
by blanks or tabs. A space between # and define is optional.
Remember that a macro definition is never to be terminated by a
semicolon.

And now a million dollar question... why use #define in the above
programs? What have we gained by substituting Pt for 3.1415 in
our program? Probably, we have made the program easier to read.
Even though 3.1415 is such a common constant that it is easily
recognizable, there are many instances where a constant doesn't
reveal its purpose so readily. For example, if the phrase "\x I B[2J"
causes the screen to clear. But which would you find easier to
understand in the middle of your program "\xlB{2J" or
"CLEARSCREEN"? Thus, we would use the macro definition

#define CLEARSCREEN '\xlB[2J"

Then wherever CLEARSCREEN appears in the program it would
automatically be replaced by "\xlB[2J" before compilation begins.

246 	 Let UsC

There is perhaps a more important reason for using macro
definition than mere readability. Suppose a constant like 3.1415
appears many times in your program. This value may have to be
changed some day to 3.14 1592. Ordinarily, you would need to go
through the program and manually change each occurrence of the
constant. However, if you have defined P1 in a #ctefine directive,

you only need to make one change, in the #define directive itself:

#definePl 3141592

Beyond this the change will be made automatically to all
occurrences of P1 before the beginning of compilation.

In short, it is nice to know that you would be able to change values
of a constant at all the places in the program by just making a
change in the #definc directive. This convenience may not matter
for small programs shown above, but with large programs macro

definitions are almost indispensable.

But the same purpose could have been served had we used a

variable p1 instead of a macro template P1. A variable could also

have provided a meaningful name for a constant and permitted one
change to effect many occurrences of the constant. its true that a
variable can be used in this way. Then, why not use it? For three

reasons it's a bad idea.

Firstly, it is inefficient, since the compiler can generate faster and
more compact code for constants than it can for variables.
Secondly, using a variable for what is really a constant encourages
sloppy thinking and makes the program more difficult to
understand: if something never changes, it is hard to imagine it as
a variable. And thirdly, there is always a danger that the variable
may inadvertently get altered somewhere in the program. So it's

no longer a constant that you think it is.

Chapter 7: The C Preprocessor	 247

Thus, using #dcfinc can produce more efficient and more easily
understandable programs. This directive is used extensively by C
programmers, as you will see in many programs in this book.

Following three examples show places where a #define directive is
popularly used by C programmers.

A #define directive is many a times used to define operators as
shown below.

#define AND &&
#define OR II
main()

nt f=1x4y90:

if ((f <5) AND (x < 20 OR y < 45)
printf('\nYour PC will always work fine...)

else
printf ("\nln front of the maintenance mans

A #define directive could be used even to replace a condition, as
shown below.

#define AND &&
#define ARANGE (a > 25 AND < 50
main()

nt a=30;

f(ARANGE)
pntf ("within range");

else
printf ("out of range"):

Let Us C

A #define directive could be used to replace even an entire C
statement. This is shQwn below.

#defne FOUND printf (The Yankee Doodle Virus")
main()

char signature

if (signature == 'Y')
FOUND

else
printf ('Sale... as yet!')

Macros with Arguments

The macros that we have used so far are called simple macros.
Macros can have arguments, just as functions can. Here is an
example that illustrates this fact.

#defineAREA(X)(3.14*X*X)
main()

float ri = 6,25, r2 = 2.5, a

a= AREA (rl);
printi ("\nArea of circle %f, a);
a AREA (r2);
pnntf ("\nArea of circle %f, a):

Here's the output of the program...

Area of circle = 122.656250
Area of circle 19.625000

Chapter 7: The C Preprocessor 	 249

In this program wherever the preprocessor finds the phrase
AREA(x) it expands it into the statement (3.14 * x * x).
However, that's not all that it does. The x in the macro template
AREA(x) is an argument that matches the x in the macro
expansion (3.14 * x * x). The statement AREA(rl) in the
program causes the variable ri to be substituted for x. Thus the
statement AREA(rI) is equivalent to:

(3.14 * rl * ii)

After the above source code has passed through the preprocessor,
what the compiler gets to work on will be this:

main()

float ri 6.25, r2 = 2.5, a

a3, 14*r1 krl

printf ("Area of circle %f\n", a);
a 3.14 *r2 * r2
pnff ("Area of circle %f", a)

Here is another example of macros with arguments:

#define ISDIGIT(y) (y >= 48 && y < 57)
main()

char ch

printi ('Enter any digit");
scanf ("%c', &ch);

if(ISDIGIT(ch))
printf ('\nYou entered a digit')

else
printf ('\nFllegal input")

250
	

Let Us C

Here are some important points to remember while writing macros
with arguments:

(a) Be careful not to leave a blank between the macro template
and its argument while defining the macro. For example, there
should be no blank between AREA and (x) in the de1nition,

define AREA(x) (3.14 * x * x

If we were to write AREA (x) instead of AREA(x), the (x)
would become a part of macro expansion, which we certainly
don't want. What would happen is, the template would be
expanded to

(ri)(3 . 14*rl *11)

which won't rim. Not at all what we wanted.

(b) The entire macro expansion should be enclosed within
parentheses. Here is an example of what would happen if we
fail to enclose the macro expansion within parentheses.

#efine SQUARE(n) n * a
main()
{

nt j;

64 I SQUARE (4);
printf (j	 %d", j);

The output of the above program would be:

jz64

whereas, what we expected was = 4.

7: The C Preprocessor 	 251

What went wrong? The macro was expanded into

= 64/4 4;

which yielded 64.

(c) Macros can be split into multiple lines, with a 'V (back slash)
present at the end of each line. Following program shows how
we can define and use multiple line macros.

#defineHLlNE for(izO;i<79;i++.)\
printf(%c', 196);

#defineVLlNE(XY) {\
gotoxy(XY);\
printf("%c, 179);\

main()

nt i,y;
clrscr;

gotoxy(t12);
HLINE

for (y=1 ;y<25;y++)
VLINE(39,y);

This program draws a vertical and a horizontal line in the
center of the screen.

(d) If for any reason you are unable to debug a macro then you
should view the expanded code of the program to see how the
macros are getting expanded. If your source code is present in
the file PRI .0 then the expanded source code would be stored

252	 Let Us C

in PRI.I. You need to generate this file at the command

prompt by saying:.

cpp prl.c

Here CPP stands for C PreProcessor. It generates the
expanded source code and stores it in a file called PR] I. You
can now open this file and see the expanded source code.
Note that the file PRI.l gets generated in C:\TC\BIN
directory. The procedure for generating expanded source code
for compilers other than Turbo C/C1-+ might he a little

different.

Macros versus Functions

In the above example a macro was used to calculate the area of the
circle. As we know, even a function can he written to calculate the
area of the circle. Though macro calls are 'like function calls, they
are not really the same things. Then what is the difference between

the two?

In a macro call the preprocessor icplaccs the macro template with
its macro expansion in a stupid, unthinking, literal way. As
against this, in a function call the control is passed to a function
along with certain arguments, some calculations are performed in
the function and a useful value is returned back from the function.

This brings us to a question: when is it best to use macros with
arguments and when is it better to use a function? Usually macros
make the program r-un faster but increase the program size,
whereas functions make the program smaller and compact.

If we use a macro hundred limes in a program, the macro
expansion goes into our source code at hundred different places,
thus increasing the program size. On the other hand, if a function
is used, then even if it is called from hundred different places in

Chapter 7: The C Preprocessor 	 -	 253

the program, it would take the same amount of space in the
program.

But passing arguments to a function and getting back the returned
value does take time and would therefore slow down the program.
This gets avoided with macros since they have already been
expanded and placed in the source code before compilation.

Moral ofihe story is—if the macro is simple and sweet like in our
examples, it makes nice shorthand and avoids the overheads
associated with function calls. On the other hand, if we have a
fairly large macro and it is used fairly otlen, perhaps we ought to
replace it with a function.

File Inclusion
The second preprocessor directive we'll explore in this chapter is
file inclusion. This directive causes one file to be included in
another. The preprocessor command for file inclusion looks like
this:

#include iilename

and it simply causes the entire contents of filename to be inserted
into the source code at that point in the program. Of course this
presumes that the file being included is existing. When and why
this feature is used? It can be used in two cases:

(a) If we have a very large program, the code is best divided into
several different files, each containing a set of related
functions. It is a good programming practice to keep different
sections of a large program separate. These files are
#included at the beginning of main program file.

(b) There are some functions and some macro definitions that we
need almost in all programs that we write. These commonly

18

254	 Let Us

needed functions and macro definitions can be stored in a file,
and that file can be included in every program we write,
which would add all the statements in this file to our program
as if we have typed them in.

It is common for the files that are to be included to have a .h
extension. This extension stands for 'header file', possibly because
it contains statements which when included go to the head of your
program. The prototypes of all the library functions are grouped
into different categories and then stored in different header files.
For example prototypes of all mathematics related functions are
stored in the header file 'math.h', prototypes of console
input/output functions are stored in the header file 'conio.h', and
so on.

Actually there exist two ways to write #include statement. These

are:

#include 'filename"
#include <filename>

The meaning of each of these forms is given below:

#include 'gotoc' This command would look for the file goto.c
in the current directory as well as (lie
specified list of directories as mentioned in
the include search path that might have been
SC(tip.

#include <goto.c>	 This command would look for the file goto.c
in the specified list of directories only.

The include search path is nothing but a list of directories that
would be searched for the file being included. Different C
compilers let you set the search path in different manners. if you
are using Turbo C/C++ compiler then the sarèh path can be set up
by selecting 'Directories' from the 'Options' menu. On doing this

Chapter 7: The C Preprocessor 	 255

a dialog box appears. In this dialog box against 'Include
Directories' we can specify the search path. We can also specify
multiple include paths separated by ';' (semicolon) as shown
below:

c:\tc\Jib ; c:\mylib d:\libfiles

The path can contain maximum of 127 characters. Both relative
and absolute paths are valid. For example '..\dir\incfilcs' is a valid
path.

Conditional Compilation

We can, if we want, have the compiler skip over part of a source
code by inserting the preprocessing commands #ifdef and #endif,
which have the general form:

#ifdef macroname
statement 1;
statement 2;
statement 3;

#endif

If macroname has been #defined, the block of code will be
processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to compile
only a part of your program? In three cases:

(a) To "comment out" obsolete lines of code. It often happens
that a program is changed at the last minute to satisfy a client.
This involves rewriting some part of source code to the
client's satisfaction and deleting the old code. But veteran
programmers are familiar with the clients who change their
mind and want the old code back again just the way it was.

256
	

Let (Is C

Now you would definitely not like to retype the deleted code
again.

One solution in such it situation is to put the old code within a
pair of f / combination, But we might have already
written a comment in the code that we are about to "comment
out". This would mean we end up with nested comments-
Obviously, this solution won't work since we can't nest
comments in C.

Therefore the solution is to use conditional compilation as
shown below.

main()

#ifdef OKAY
statement 1
statement 2; 1' detects virus 1

statement 3;
statement 4 ; I' specific to stone virus 'I

#endif

statement 5;
statement 6;
statement 7

Here, statements 1, 2, 3 and 4 would get compiled only if the
macro OKAY has been defined, and we have purposefully
omitted the definition of the macro OKAY. At a later date, if
we want that these statements should also get compiled all
that we are required to do is to delete the #ifdef and #endif

statements.

(b) A more sophisticated use of #ifdef has to do with making the
programs portable, i.e. to make them work on two totally
different computers. Suppose an organization has two

Chapter 7: The C Preprocessor	 257

different types of computers and you are expected to write a
program that works on both the machines. You can do so by
isolating the lines of code that must be different for each
machine by marking them off with #ifdef. For example:

main()

#ildef INTEL
code suitable for a Intel PC

#else
code suitable for a Motorola PC

#endif
code common to both the computers

When you compile this program it would compile only the
code suitable for it Intel PC and the common code. This is
because the macro INTEL has not been defined. Note that the
working of #ifdef- #else - #endif is similar to the ordinary if-
else control instruction of C.

If you want to run your program on a Motorola PC, just add a
statement at the top saying,

#define INTEL

Sometimes, instead of #ifdef the #ifndef directive is used.
The #ifndef (which means 'if not defined') works exactly
opposite to #ifdef. The above example if written using
#ifndef, would look like this:

main()

#ifndef INTEL
code suitable for a Intel PC

#else
code suitable for a Motorola PC

258	 - Let Us C

#endif
code common to bOth the computers

(c) Suppose a function myfunc() is defined in a file 'mylile.h'
which is #included in a file 'myfilel .h'. Now in your program
file if you #inc%ude both 'myfile.h' and 'myfilel.h' the
compiler flashes an error 'Multiple declaration for myfunc'.
This is because the same file 'niyfile.h' gets included twice.
To avoid this we can write following code in the header file.

r myfile.h I
#ifndef myfiIe_h

#define _myfile_h

myfunc()

r some code

#endif

First time the file 'myfile.h' gets included the preprocessor
checks whether a macro called _myfilejt has been defined

or not. If it has not been then it gets defined and the rest of tile
code gets included. Next time we attempt to include the same
file, the inclusion is prevented since _myfile_h already
stands defined. Note that there is nothing special about
_myfile_h. In its place we can use any other macro as well.

#,f and #elif Directives

The #if directive can be used to test whether an expression
evaluates to a nonzero value or not. If the result of the expression
is nonzero, then subsequent lines upto a #else, #elif or #endif are

compiled, otherwise they are skipped.

Chapter 7: The C Preprocessor	 259

A simple example oI#if directive is shown below:

main(

#if TEST <= 5
statement 1;
statement 2;
statement 3

#else
statement 4;
statement 5;
statement 6;

#endif

If the expression, TEST < 5 evaluates to true then statements 1,2
and 3 are compiled otherwise statements 4, 5 and 6 are compiled.
In place of the expression TEST <= 5 other expressions like
(LEVEL = HIGH 11 LEVEL LOW) or ADAPTER =
CGA can also be used.

If we so desire we can have nested conditional compilation
directives. An example that uses such directives is shown below.

#if ADAPTER VGA
code for video graphics array

#else
#if ADAPTER SVGA

code for super video graphics array
#else

code for extended graphics adapter
#endif

#endif

The above program segment can be made more compact by using
another conditional compilation directive called #elif. The same
program using this directive can be rewritten as shown below.

260 	 Us C

Observe that by using the #eIif directives the number of #endifs
used in the program get reduced.

#I! ADAPTER == VGA
code for video graphics array

#elif ADAPTER SVGA
code for super video graphics array

#else
code for extended graphics adapter

#endif

Miscellaneous Directives

There are two more preprocessor directives available, though they
are not very commonly used. They are:

(a) #undcf
(b) #pragma

#undef Directive

On some occa ions it may be desirable to cause a defined name to
become 'under nd', This can be accomplished by means of the
#undef directive io order to undefine a macro that has been earlier
#dfined, the dircchve.

#undef macro template

can be used. Thus the statement,

#undef PENTIUM

would cause the definition of PENTIUM to be removed from the
system. All subsequent #ifdef PENTIUM statements would
evaluate to false. In practice seldom are you required to undefine a
macro, but for some reason if you are required to, then you know
that there is something to fall back upon.

Chapter 7: The C Preprocessor 	 261

#pragma Directive

This directive is another special-purpose directive that you can use
to turn on or off certain features. Pragmas vary from one compiler
to another. There are certain pragmas available with Microsoti C
compiler that deal with formatting source listings and placing
comments in the object file generated by the compiler. Turbo
C/C++ compiler has got a pragma that allows you to suppress
warnings generated by the compiler. Some of these pragmas are
discussed below.

(a) #pragma startup and #pragma exit: These directives allow
us to specify functions that are called upon program startup
(before main()) or program exit (just before the program
terminates). Their usage is as follows:

void funl()
void fun2;

#pragma startup funi
#pragma exit fun2

main()

printf ("\nlnside maim),

void funl()

printf ("\ntnside fun1)

void fun2()

priritf ("\nnside fun2);

262
	

Let Us C

And here is the output of the program.

Inside funi
Inside main
Inside Iun2

Note that the functions funl() and fun2() should neither
receive nor return any value. If we want two functions to get
executed at startup then their pragrnas should be defined in
the reverse order in which you want to get them called.

(b) #pragma warn: This directive tells the compiler whether or
not we want to suppress a specific warning. Usage of this
pragma is shown below.

#pragma warn -rvl
#pragma warn -par
#pragma warn -rch

nt fl()

nt a 5

r return value *1

I parameter not used I

/ unreachable code I

void 1`2(irit x)

pnntf (\nInside f2);

mt f3()

mt x= 6-,

return x;
x++

void main()

Chapter 7.' The C Preprocessor 	 263

fl()
Q (7)
13()

If you go through the program you can notice three problems
immediately. These are:

(a) Though promised, fl() doesn't return a value.

(b) The parameter x that is passed to 12() is not being used
anywhere in f20.

(c) The control can never reach x++ in 13().

If we compile the program we should expect warnings
indicating the above problems. However, this does pot happen
since we have suppressed the warnings using the #pragma
directives. If we replace the -' sign with a +' then these
warnings would be flashed on compilation. Though it is a bad
practice to suppress warnings, at times it becomes useful to
suppress them. For example, if you have written a huge
program and are trying to compile it, then to begin with you
are more interested in locating the errors, rather than the
warnings. At such times you may suppress the warnings.
Once you have located all errors, then you may turn on the
warnings and sort them out.

Summary
(a) The preprocessor directives enable the programmer to write

programs that are easy to develop, read, modify and transport
to a different computer system.

264 	 Us

(b) We can make USC of various preprocessor directives such as
#deline, #inclide, #ifdef - #else - #eiidif, if and #elif in our
program.

(c) The directives like #undef and #pragnla are also useful
although they are seldom used.

Exercise

IAI Answer the following:

(a) What is a preprocessor directive

- a message from compiler to the programmer
2. a message from compiler to the linker
3. a message from programmer to the preprocessor
4. a message from programmer to the microprocessor

(b) Which of the following are correctly formed #define
statements:

#define INCH PER FEET 12
#define SQR(X) (X*X)
#define SQR(X) X * X
#define SQR(X) (X X)

c) State True or False:

I. A macro must always be written in capital letters.

2. A macro should always he accomodated in a single line.

3. After preprocessing when the program is sent for
compilation the macros are removed from the expanded
source code.

4. Macros with arguments are not allowed.

5, Nested macros are allowed.

6. In a macro call the control is passed to the macro.

Chapter 7: The C Preprocessor	 265

(d) [low many #include directives can he there in a given
program file'!

(e) What is the dif1crcice between the following two #include
directives:

#include conio.h'
#include <conio.h>

(1) A header file is:

I. A tile that contains standard library functions
2. A file that contains definitions and macros
3. A file that contains user - defined functions
4. A file that is present in current working directory

(g) Which of the following is not a preprocessor directive

1. #if
2. #elseif
3. #undef
4. #pragma

(h) All macro substitutions in a program are done

I. Before compilation of the program
2. After compilation
3. During execution
4. None of the above

(i) In a program the statement:

#include filename

is replaced by the contents of the file "filename"

1. Before compilation
2. After Compilation
3. During execution
4. None of the above

266
	

Let Us C

till What would be the output of the following program:

(a) main()

	

nt	 2
#def DEF

printf (\n%d, i)
#endif

(b) #define PRODUCT(x) (x * x)
main()

	

mt	 3,
PRODUCT(i + 1)

printi (\n%d, j)

(c) #dene PRODUCT(x) (x * x)
man()

nt i3,j.k;
PRODUCT(++)

k PRODUCT (+4i):

printf (\n%d %d, j, k);

(d) # define SEMI;
main()

mt p 3 SEMI
printf ("%d. p) SEMI

C/apicr7. The C Preprocessor	 267

CI Attempt the following:

(a) Write down macro definitions for the following:

I. To test whether a character entered is a small case letter or
not.

2. To test whether a character entered is a upper case letter or
not.

3. To test whether a character is an alphabet or not. Make
use of the macros you defined in (I) and (2) above.

4 To obtain the bigger of two numbers.

(b) Write macro definitions with arguments for calculation of
area and perimeter of a triangle, a square and a circle. Store
these macro definitions in a file called "areaperi.h". Include
this file in your program, and call the macro definitions for
calculating area and perimeter for different squares, triangles
and circles.

(c) Write down macro definitions for the following:

1. To find arithmetic mean of two numbers.
2. To find absolute value of a number.
3. To convert a uppercase alphabet to lowercase.
4. To obtain the bigger of two numbers.

(d) Write macro definitions with arguments for calculation of
Simple Interest and Amount. Store these macro definitions in
a file called "interest.h". Include this file in your program, and
use the macro definitions for calculating simple interest and
amount.

268	 ___Let LIS

