1 Getting Started

e Whatis C
¢ Getting Started with C

The C Character Set

Constants, Variables and Keywords

Types of C Constants

Rules for Constructing Integer Constants
Rules for Constructing Real Constants
Rules for Constructing Character Constant:,
Types of C Variables

Rules for Constructing Variable Names

C Keywords

The First C Program
Compilation and Execution
Receiving Input

C Instructions

Type Declaration Instruction
Arithmetic Instruction

Integer and Float Conversions
Hierarchy of Operations
Associativity Of Operators

» Control Instruction in C
* Summary
e Exercise

2 LetUsC _

cfore we can begin to write serious programs in C, it would

be interesting to find out what really is C, how it came into

existence and how does it compare with other computer
languages. In (his chapter we would briefly outline these issues.

Four important aspects of any language are the way it stores data,

the way it operates upon this data, how it accomplishes input and

output and how it lets you control the sequence ol execution of

instructions in a program. We would discuss the first three of these
uilding blocks in this chapter.

hat is C

(T_is_i_gr_(_)j;:'amming language developed at AT & T's Bell
Laboratories of USA_in 1972. It was designed and written by a
man named Dennis R_iET{i_E_In the late seventies C began (o
replace” the more familiar languages of that time like PL/L
ALGOL, ete. No one pushed C. It wasn’t made the “official” Bell
Labs language. Thus, without any advertisement C's reputation
spread and its pool of users grew. Ritchic seems to have been
rather surprised that so many programmers preferred C to older
languages like FORTRAN or PL/L, or the newer ones like Pascal
and APL. But, that's what happencd.

Possibly why C seems so popular is because it is reliable, simple
and easy to use. Moreover, in an industry where newer languages,
tools and technologies emerge and vamish day in and day out, a
language that has survived for more than 3 decades has to be really
good.

An opinion that is often heard today is - “C has been alrcady
superceded by languages like C++, C# and Java, so why bother to

Chapter 1: Getting Started 3

learn C today™. | seriously beg to differ with this opinion. There
arc several reasons for this:

(a)

(b)

(c)

(d)

1 believe that nobody can learn C++ or Java directly. This is
because while learning these languages you have things like
classes, objects, inheritance, polymorphism, templates,
exception handiing, references, etc. do deal with apart from
knowing the actual language clements. Learning these
complicated concepts when you are not even comfortable
with the basic language elements is like putting the cart before
the horse. Hence one should first learn all the language
elements very thoroughly using C language before migrating
to C++, C# or Java. Though this two step learning process
may take more time, but at the end of it you will definitely
find it worth the trouble.

C++, CH# or Java makc use of a prnciple called Object
Oriented Programming (OOP) to organize the program. This
organizing nrinciple has lots of advantages to offer. But even
while using this organizing principle you would still need a
good hold over the language elements of C and the basic
programming skills.

Though many C++ and Java based programming tools and
frameworks have evolved over the years the importance of C
is still unchallenged because knowingly or unknowingly while
using these frameworks and tools you would be still required
to use the core C language clements—another good reason
why one should learn C before C++, C# or Java,

Major parts of popular operating systems like Windows,
UNIX, Linux is still written in C. This is because even today
when it comes to performance (speed of execution) nothing
beats C. Moreaver, if one is to extend the operating system to
work with new devices one needs to write device driver
programs. These programs are exclusively written in C.

4 - Let Us C

(¢) Mobile devices like cellular phones and palmtops are
becoming increasingly popular. Also, common consumer
devices like microwave oven, washing machines and digital
cameras are getting smarter by the day. This smartness comes
from a microprocessor, an operating system and a program
embedded in this devices. These programs not only have (o
run fast but also have to work in limited amount of memorv.
No wonder that such programs are written in C. With these
constraints on time and space, C is the language of choice
while building such operating systems and programs,

() You must have seen several professional 3D computer games
where the user navigates some object, ke say a spaceship and
fires bullets at the invaders. The essence of all such games is
speed. Needless to say, such games won't become popular if
they takes a long time to move the spaceship or to firc a
bullet. To match the expectations of the player the game has
to react fast to the user inputs. This is where C language
scores over other languages. Many popular gaming
frameworks have been built using C language

(g) Al times onc is required to very closely interact with the
hardware devices. Since C provides several language
clements that make this interaction feasible without
compromising the performance it is the preferred choice of
the programmer.

I hope that these are very convincing reasons why one should
adopt C as the first and the very important step in your quest for

K/carning programming languages.

(setting Started with C

Communicating with a computer involves speaking the language
the computer understands, which immediately rules out English as
the language of communication with computer. However, there is

Chapter 1: Getting Started) 5

a close analogy between learning English language and learning C
language. The classical method of learing English is to fitst learn
the alphabets used in the language, then learn to combine these
alphabets to form words, which in tum are combined to form
sentences and sentences are combined to form paragraphs.
Leaming C is similar and easier. Instead of straight-away learning.
how to write programs, we must first know what alphabets,
numbers and special symbols are used in C, then how using them
constants, variables and keywords are constructed. and finally how
are these combined to form an instruction. A group of instructions
would be combined later on to form a program. This is illustrated
in the Figure 1.1,

W

Steps in learning English language:

lA]phabets I " Words |"" Sentences _’LPamgmphs

Steps in leaming C;
- Alphabets J

Digits |- 50'1.51'?;1 .

. arables .
Special sy- ! g Instructions Program
mbols s b

l
Figure 1.1

The C Character Set

A character denotes any alphabet, digit or special symbel used to
represent information. Figure 1.2 shows the valid alphabets,
numbers and special symbols allowed in C,

6 Let Us C

SO = SR . £ ——t
Alphabets ¥ PR S
- T ¢ T N
Digits Pt 2. 3045, 60T 9
Special symbols ~tt@it %o & () _-t=
(] "l 9 ,

}.-.'i'gurc 1.2
\&étanls. Variables and Keywords

The alphabets, numbers and special symbols when properly
combined lorm constants, vartables and keywords. Let us sec what
are ‘constants’ and ‘variables’ in €. A constant is an entity that
doesn’t change whereas a variable is an entity that may change.

[n any program we lypically do lots of calculations. The resulls of
these calculations are stored in computers memory. Like human
memory the computer memory also consists of millions of cells.
The calculated values ar¢ stored in these memory cells. To make
the retricval and usage of these values casy these memory cells
(also called memory locations) arce given names. Since the value
stored in each location may change the names given (o these
locations are called variable names. Consider the following
example.

Iere 3 is stored in a memory location and a name x 1§ given to it.
Then we are assigning a new value 5 10 the same memory location
x. This would overwrite the earlier value 3, since a memory
location can hold only one value at a time. This is shown in Figure
by

Chapter 1: Getting Started _ 7

Figure 1.3

Since the location whose name 1s x can hold different values at
different times x is known as a variable. As against this, 3 or 5 do
not change, hence are known as constants,

\‘)&i{pes of C Constants

C constants can be divided into two major categories:

(a) Primary Constants
(b) Secondary Constants

These constants are further categorized as shown in Figure 1.4,

Let Us C

C Constants

' -

Primarv Constants

Secondary Constants

Integer Constant Array

Real Constant Pointer
Character Constant Structure
Union

Enum. ete.

Figure 1.4

At this stage we would restrict our discussion to only rimary
Constants, namely, Integer, Real and Character constants. Let us
see the details of cach of these constants. For constructing these
different types of constants certain rules have been laid down.
These rules are as under:

Rules for Constructing Integer Constants

(a)
(b)
(c)
(d)

(e)
(f)

An integer constant must have at least one digit.

It must not have a decimal point.

It can be cither positive or negative.

If no sign precedes an integer constant it is assumed to be
positive,

No commas or blanks are allowed within an integer constant.
The allowable range for integer constants is -32768 to 32767.

Truly speaking the range of an Integer constant depends upon the
compiler. For a 16-bit compiler like Turbo C or Turbo C++ the

Chapter 1: Getting Started .9

range is 32768 to 32767. For a 32-bit compiler the range would
be even greater. Question like what exactly do you mean by a 16-
bit or a 32-bit compiler, what range of an Integer constant has to
do with the type of compiler and such questions are discussed in
detail in Chapter 16. Till that time it would be assumed that e are
working with a 16-bit compiler.

Ex: 426
+782
-8000
-7605

Rules for Constructing Real Constants

Real constants are often called Floating Point constants. The real
constants could be written in two forms— Fractional form and
Exponential form.

Following rules must be observed while constructing real
constants expressed in fractional form:

(a) A real constant must have at least one digit.

(b) It must have a decimal point.

{c) ltcould be either positive or negative.

(d) Default sign is positive.

(e) No commas or blanks are allowed within a real constant.

Ex.. +325.34
426.0
-32.76
-48.5792

The exponential form of representation of real constants is usually
used if the value of the constant is cither too small or too large. [t
however doesn’t restrict us in any way from using exponential
form of representation for other real constants.

10 _ | - _ Let Us C

In exponential form of representation, the real constant 1s
represented in two parts. The part appearing before ‘e’ s called
mantissa, whereas the part following ‘¢’ is called exponent.

Following rules nwst be observed while constructing real
constants expressed nrexponential form:

(@) The mantissa part and the exponential part should be
separated by a letter ¢.

(b) The mantissa part may have a positive or negative sign.

(c) Default sign of mantissa part is positive.

(d) The exponcnt must have at least onc digit, which must be a
positive or negative integer. Default sign 1% positive,

(e) Range of real constants expressed m exponential form is
-3.4¢38 tn 3.4cl8.

Ex. +32e5
4.1e8
-0.2e+3
-3.2e-5

Rules for Constructing Character Constants

(a) A character constant is a single alphabet, a single digit or a
single special symbol enclosed within - single inverted
commas. Both the inverted commas should point to the left,
For example, "A" is a valid character constant whereas ‘A’ is
not.

(b) The maximum length of a character constant can be 1
character.

Ex:. 'A

Chapter I: Geiting Started) 11

~ Types of C Variables

As we saw carlier, an entity that may vary during program
exceution is called a variable. Variable names are names given to
locations in memory. These locations can contain integer, real or
character constants. In any language, the types of variables that it
can support depend on the types of constants that it can handle.
This is because a particular type of variable can hold only the same
type of constant. For example, an integer variable can hold only an
integer constant, a real variable can hold only a real constant and a
character variable can hold only a character constant.

The rules for constructing diiferent types of constants are different.
However, for constructing variable names of all types the same set
of rules apply. These rules are given helow.

Rules for Constructing Variable Names

(a) A variable name is any combination of | (0 31 alphabets,
digits or underscores, Some compilers allow variable names
whose length could be up to 247 characters. Still, it would be
safer to stick to the rule of 31 characters. Do not create
unnecessarily long variable names as it adds to your typing
cifort.

(b) The first character in the variable name must be an alphabet or
underscore.

(c) No commas or blanks arc allowed within a variable name.

(d) Nao special symbol other than an underscore (a1 in gross_sal)
can be used in a variable name.

Ex.: si_int
m_hra
pop_e_89
These rules remain same for all the types of primary and secondary

variables. Naturally, the question follows... how is C able to
differentiate between these variables? This is a rather simple

12 N Let Us C

matter. C compiler is able to distinguish between the variable
names by making it compulsory for you to declare the type ol any
variable namec that you wish to use in a program. This lype
declaration is done at the beginning of the program. Following are
the examples of type declaration statements:

Ex.:. int si,m_hra;
float bassal ;
char code

Since, the maximum allowable length of a variable name 15 31
characters, an cnormous number of variable names can be
constructed using the above-mentioned rules. It is a good practice
to cxploit this enormous choice in naming variables by using
meaningful variable names.

Thus, if we want ta caloulate simple interest, it is always advisable
to construct meaningful variable names like prin, rot, noy w
represent Principle, Rate of mterest and Number of years rathe
than using the variables a, b, ¢.

C Keywords

Keywords are the words whose meaning has already been
explained to the C comptler {or in o broad sense to the computer].
The keywords cannot he used as vartable numes because if we do
0 we are trying (o assipn 1 new meanmg to the keyword, which is
not allowed by the computer. Some C compilers allow you to
construct variable names that exactly resemble the keywords
However. 1t would be safir not to mix up the variable names and
the keywords. The keywards are also called *Reserved words'.

here are only 32 keywords available in C. Figure 1.5 gives a list
of these keywords for your ready reference. A detailed discussion
of each of these keywords would be taken up in later chapters
wherever their use is relevant.

Chapter 1: Getting Started 13

auto double int struct
break else long switch
case enum register typedef
char extern retum union
const float short unsigned
continue for signed void
default gato sizeof volatile
do if static while
Figure 1.5

Note that compiler vendors (like Microsoft, Borland, etc.) provide
their own keywords apart from the ones mentioned above. These
include extended keywords like near, far, asm, etc. Though it has
been suggested by the ANSI committee that every such compiler
specific keyword should be preceded by two underscores (as in
__asm), not every vendor follows this rule.

The First C Program

Armed with the knowledge about the types of variables, constants
& keywords the next logical step is to combine them to form
instructions. However, instead of this, we would write our first C
program now. Once we have done that we would see in detail the
instructions that it made use of.

Before we begin with our first C program do remember the
following rules that are applicable to all C programs:

(a) Each instruction in a C program is written as a separate
statement. Therefore a complete C program would comprise
of a series of statements.

14

I:er Us C

(c)

(e)

"

The statements 1n a program must appear in the same order in
which we wish them to be executed; uniess of course the logic
of the problem demands a deliberate 'jump’ or transfer of
control to a statement, which is out of sequence,

Blank spaces may be inserted between two words to improve
the readability of the statement. However, no blank spaces are
allowed within a variable, constant or keyword.

All statements are entered in small case letters.
C has no specific rules for the position at which a statement is
to be written, That's why il is often called a free-form

language.

Every C statement must end with a ;. Thus ; acts as a
statement terminator.

Let us now write down our first C program. It would simply
.calculate simple interest for a set of values representing principle,
number of years and rate of interest.

/* Calculation of simple interest */
* Author gekay Dale; 25/05/2004 */
main() .

{

int p,n;
floal r, si:

p =1000;
n=3;
r=85;

[* formula for simple interest */
si=p*n*r/100;

printf ("%f", si);

Chapter 1: Getting Started 15

Now a few useful tips about the program...

Comment about the program should be enclosed within /* */.
For example, the first two statements in our program are
comments.

Though comments are not necessary, it is a good practice to
begin a program with a comment indicating the purpose of the
program, its author and the date on which the program was
written.

Any number of comments can be written at any place in the
program. For example, a comment can be written before the
statement, after the statement or within the statement as shown
below:

{*formula*f si=p*n*r/100;
si=p*n*r/100; /formula*/
si=p*n*r// formula* 100

Sometimes it is not so obvious as to what a particular
statement in a program accomplishes. At such times it is
worthwhile mentioning the purpose of the statement (or a set
of statemznts) using a comment, For example:

I* formula for simple interest */
si=p*n*r/100,;

Often programmers scem to ignore writing of comments. But
when a tcam is building big software well commented code is
almost essential for other team members to understand it.

Let Us g_

Although a lot of comments are probably not necessary in this
program, it is usually the casc that programmers tend to use
100 few comments rather than too many. An adequate number
of comments can save hours of misery and suffering when you
later try to figure out what the program does.

The normal language rules do not apply to text written within
f* .. */. Thus we can type this text in small case, capital or a
combination. This is because the comments are solely given
for the understanding of the programmer or the fellow
programmers and are completely ignored by the compiler.

Comments cannot be nested. For example,

/* Cal of SI I* Author sam date 01/01/2002 */*/

is invalid.
A comrient can be split over more than one line, as in,
[* Thisis

ajazzy
comment */

Such a comment is often called a multi-line comment.

main() is a collective name given to a set of statements. This
name has to be main(), it cannot be anything else. All
statements that belong to main() are enclosed within a pair of
braces { } as shown below.

main()

statement 1;
statement 2 ;

Chapter 1: Getting Started 17

statement 3 ;

)

— Technically speaking main() is a function. Every function has
a pair of parentheses () associated with it. We would discuss
functions and their working in great detail in Chapter 5.

— Any variable used in the program must be declared before
using it. For example,

int p,n;
float r,si;

- Any C statement always ends with a ;
For example,

float r,si;
r=85;

— In the statement,

si=p*n*r/100;

* and / are the arithmetic operators. The arithmetic operators
available in C are +, -, * and /. C is very rich in operators.
There aré about 45 operators available in C. Surprisingly there
is no operator for exponentiation... a slip, which can be
forgiven considering the fact that C has been developed by an
individual, not by a committee.

~ Once the value of si is calculated it needs to be displayed on
the screen. Unlike other languages, C does not contain any
instruction to display output on the screen. All output to screen
is achieved using readymade library functions, One such

18 LaUsC

function is printf() We have used 1t display on the screen the
value contained in si.

The general form of printf() function is,
printf (*<format string>*, <list of variables>) ;
<format string> can cantain.

%f for printing real values
/od for printing integer values

Fec for printing characler values

——— :

In addition to format specifiers like %f, %d and %c the
format string may also contain any other characters. These
characters are printed as they are when the printf() is
cxccuted.

Following are some examples of usage of printf() function:

printf ("%f™, si) ;

printf { “%d %d %f %, p, n,r,si) ;
printf { “Simple interest = Rs. %", si) ;
printf { "Prin = %d \nRate = %", p.r) ;

The output of the last statement would look like this...

Prin = 1000
Rate =8.5

What is ‘\n” doing in this statement? [t is called newline and it
takes the cursor to the next line. Therefore, you get the output
split over two lines. “\n’ is one of the several Escape
Sequences available in C. These are discussed in detail in
Chapter 11. Right now, all that we can say is ‘\n’ comes in

Chapter 1: Getting Started 19

handy when we want to format the output properly on
separate lines.

printf() can not only print values of variables, it can also
print the result of an expression. An expression is nothing but
a valid combination of constants, variables and operators.
Thus, 3,3+ 2, canda + b * ¢ —d all are valid expressions.
The results of these expressions can be printed as shown
below:

printf ("%d %d %d %d". 3,3+2,¢c,a+b"c-d);

Note that 3 and ¢ also represent valid expressions.

Compilation and Execution

Once you have written the program you need to type it and instruct
the machine to execute it. To type your C program you need
another program called Editor. Once the program has been typed it
needs to be converted to machine language (0s and 1s) before the
machine can execute it. To carry out this conversion we need
another program called Compiler. Compiler vendors provide an
Integrated Development Environment (IDE) which consists of an
Editor as well as the Compiler.

There are several such IDEs available in the market targeted
towards different operating systems. For example, Turbo C, Turbo
C++ and Microsoft C are some of the popular compilers that work
under MS-DOS: Visual C++ and Borland C++ are the compilers
that work under Windows, whereas gce compiler works under
Linux. Note that Turbo C++, Microsolt C++ and Borland C++
software also contain a C compiler bundled with them. If you are a
beginner you would be better off using a simple compiler like
Turbo C or Turbo C++. Once you have mastered the language
elements you can then switch over to more sophisticated compilers
like Visual C++ under Windows or gce under Linux. Most of the

20 Let Us C

programs in this book would work with all the compilers.
Wherever there is a deviation | would point it out that time.

Assuming that you are using a Turbo C or Turba C++ compiler
here are the steps that you need to follow to compile and exccute
your first C program...

(a) Start the compiler at C> prompt. The compiler (TC.EXLE 1s
usually present in C\TC\BIN directory).

(b) Select New from the File menu,

(c) Type the program.

(d) Save the program using F2 under a proper name (say
Programl.c).

(e) Use Ctrl+ F9 to compile and execute the program.

(f) Use Alt + IS5 to view the output.

Note that on compiling the program its machine languagc
equivalent is stored as an EXE file (Program!.EXE) on the disk.
This file is called an exccutable file. If we copy this file to another
machine we can exccute it there without being required to
recompile it. In fact the other machinc need not even have a
‘compiler to be able to execute the file.

A word of caution! If you run this program in Turbo C++
compiler, you may get an error — “The function printf should
have a prototype™. To get rid of this error, perform the following
steps and then recompile the program.

(a) Select ‘Options’ menu and then select ‘Compiler | C4+
Options’. In the dialog box that pops up, sclect ‘CPP always’
in the *Use C++ Compiler’ options.

(b) Again select ‘Options’ menu and then select ‘Environment |
Editor’. Make sure that the default extension is ‘C” rather than
‘CPP.

Chapter 1: Geiting Started 21

Receiving Input

In the program discussed above we assumed the values of p, n and
r to be 1000, 3 and 8.5. Every time we run the program we would
get the same value for simple interest. If we want to calculate
simple interest for some other set of values then we are required to
make the relevant change in the program, and again compile and
execute it. Thus the program is not general enough to calculate
simple interest for any set of values without being required to
make a change in the program. Morcover, if you distribute the
EXE file of this program to somebody he would not even be able
to make changes in the program. Hence it is a good practice to
create a program that is general enough to work for any set of
values.

To make the program general the program. itself should ask the
user to supply the values of'p, n and r through the keyboard during
execution. This can be achieved using a function called scanf().
This function is a counter-part of the printf() function. printf()
outputs the values to the screen whereas scanf() receives them
from the keyboard. This is illustrated in the program shown below.

I* Calculation of simple interest */
* Author gekay Date 25/05/2004 */

main()

{ i
int p,n;
float r,si:

printf { "Enter values of p, n, 1") ;
scanf (“%d %d %f", &p, &n, &r) ;

si=p*n*r/100;
printf { "%, si);

22 : Lt‘{ Uy _C

The first printf() outputs the message "Enter values of p,n,r on
the screen. Here we have not used any cxpression in printf()
which means that using expressions in printf() is optional.

Note that the ampersand (&) before the variables in the scanf()
function is a must. & is an ‘Address of” operator. It gives the
location number used by the variable in memory. When we say
&a, we are telling seanf() at which memory location should it
store the value supplied by the user from the keyboard. The

detailed working of the & operator would be taken up in Chapter
g

Note that a blank, a tab or a new line must scparate the values
supplied to scanf(). Note that a blank is creating using a spacebar,
tab using the Tab key and new hine using the Enter key. This is
shown below:

Ex.: The three values separated by blank

1000515.5

Ex.: The three values separated by tab.
1000 5 155

Ex.: The three values separated by newhne.
1000
5
18.5

So much for the tips. [fow about another program to give you a
feel of things...

* Just for fun. Author, Bozo ®/
main(|

{

int num ;

printf { "Enter a number”) ;

Chapter 1: Getting Started 23

scanf ("%d’, &num) ;

printf { "Now | am letting you on a secret...") ;
printf { "You have just entered the number %d", num) ;

}
Mructions

Now that we have written a few programs let us look at the
instructions that we used in these programs. There are basically
three types of instructions in C:

(a) Type Declaration Instruction
(b) Arithmetic Instruction
(c) Control Instruction

The purpose of each of these instructions is given below:

(@) Type declaration instruction - To declare the type of
variables used in a C
program.

(b) Arithmetic instruction - To perform anthmetic

operations between con-
stants and variables.

(c) Control instruction ~ To control the sequence of
execution of various state-
ments in a C program,

Since, the elementary C programs would usually contain only the
type declaration and the arithmetic instructions: we would discuss
only these two instructions at this stage. The other types of
instructions would be discussed in detail in the subsequent
chapters.

24 - Let Us C

1 s

_~ Type Declaration Instruction

This instruction is used to declare the type of variables being used
in the program. Any variable used in the program must be declared
before using it in any statement. The type declaration statement 15
written at the beginning of main() function.

Ex inl bas;
float rs, grosssal ;
char name, code |

There are several subtle variations of the type declaration
instruction. These are discussed below:

{%f} While declaring the type of variable we can also initialize it as
shown below.
inti=10,j=25:
floata=150b=199+24"144;

V(bf The order in which we define the variables is sometimes
important sometimes not. For example,

inti=10,]=25;
is same as
intj=25j=10,

V-éﬂ’owwer.

floata=15b=a+31;
is alright, but

float b=a+31,a=15;

Chapter 1: Getting Started 25

2

15 not. This is because here we are trying to use a cven before
defining 1t.

The following statements would work

inta,b,c,d:

azb=c=10;

However, the following statement would not work

inta=b=¢c=d=10;

Once again we are trying to use b (to assign to a) before
defining it.

Arithmetic Instruction

A C arithmetic instruction consists of a variable name on the left
hand side of = and variable names & constants on the right hand
side of =. The variables and constants appearing on the right hand
side of = are connected by arithmetic operators like +y= *,and /.

Ex. inl ad;

float kol, deta, alpha, beta, gamma ;

ad = 3200 ;

kot = 0.0056 ;

deta = alpha * beta/gamma +3.2*2/5;
Here,

*, l, =, + are the arithmetic operators.

= is the assignment operator.

2, 5 and 3200 are integer constants,

3.2 and 0.0056 are real constants,

ad is an integer variable.

kot, deta, alpha, beta, gamma are real variables.

Ei_ Let Us C

The variables and constants together are called ‘operands’ that are
operated upon by the ‘arithmetic operators’ and the result is
assigned, using the assignment operator, to the variable on lefl-
hand side.

A C arithmetic statement could be of three types. These are as
follows:

v,.é/ﬂ\luzcr mode arithmetic statement - This is an arithmetic
statement in which all operands are cither integer variables or
inleger constants,

Ex.. int i king, issac, noleit ;
i=i+ 1]
king = issac * 234 + noteit - 7689

eal mode arithmetic statement - This is an arithmetic
statement in which all operands are cither real constants or
real variables.

Ex: floal gbee, antink, si, prin, anoy, roi ;
gbes = antink + 23,123 /4.5* 0.3442 ;
i =prin * anoy * roi/ 100.0,

GQ);-.[Mixcd mode arithmetic statement - This is an arithmetic
statement in which some of the operands are integers and
some of the aperands are real.

Ex.: float si, prin, anoy, roi, avg ;
int a,b,c, num:

si= prin * anoy * roi / 100.0 ;

awg=(atb+c+num)/4;

It i1s very important to understand how the execution of an
arithmetic statement takes place. Firstly, the right hand side is
evaluated using constants and the numerical values stored in the:
variable names. This value is then assigned to the variable on the
lefi-hand side.

Chapter 1: Getting Started 27

Though Arithmetic instructions look sumple to use one often
commits mistakes in writing them. Let us take a closer look at
these statements. Note the following points carefully.

mws only one variable on left-hand side of = That is, z =

k * lis legal, whereas k * I = z is illegal.

W} addition to the division operator C also provides a modular

(c)

(d)

division operator. This operator returns the remainder on
dividing one integer with another. Thus the expression 10/ 2
yields 5, whereas, 10 % 2 yields 0. Note that the modulus
operator (%) cannot be applied on a float. Also note that on
using % the sign of the remainder is always same as the sign
of the numerator, Thus -5 % 2 yields -1, whereas, 5 % -2
yields 1.

An arithmetic instruction is often used for storing character
constants in character variables.

char a b, d,;
a="F;

b = IGI :
d="+;
When we do this the ASCII values of the characters are stored
in the variables. ASCII values are used to represent any
character in memory. The ASCII values of ‘F’ and ‘G’ are 70
and 71 (refer the ASCII Table in Appendix E).

Arithmetic operations can be performed on ints, floats and
chars.

Thus the statements,

char x,Y;
int z;
x="a";
y=,
z=x+y;

28

Let U C

(e)

N

are perfectly valid, since the addition is performed on the
ASCIl values of the characters and not on characters
themsclves. The ASCII values of *a’ and *b” are 97 and 98,
and hence can definitely be added.

No operuator is assumed to be present. I must be written
cxplicitly. In the following example, the multiplication
operator after b must be explicitly written.

a=cdbxy) usual arithmelic stalement
b=c*d*b*(x'y) C statement

Unlike other high level languages, there 15 no operator for
performing exponentiation operaticn. Thus following
statements are invalid.

a=3a*"2;
b=3%2;

if we want to do the exponentiation we can get it done this
way:

#include <math h>
main()

inta;
a=pow(3,2);
printf (“%d", a) ;
1
F]

Here pow() function is a standard library function. H is being
used to raise 3 to the power of 2. #include <math.h> is a .
preprocessor directive. It is being used here to ensure that the
pow() function works correctly. We would learn more about
standard library functions in Chapter 5 and about preprocessor
in Chapter 7.

Chapter 1: Getting Started 29

Integer and Float Conversions

In order to effectively develop C programs, it will be necessary to
understand the rules that are used for the implicit conversion of
floating point and integer values in C. These are mentioned below.
Note them carefully.

(a) An arithmetic operation between an integer and integer
always yields an integer result.

(b) An operation between a real and real always yields a real
result,

(c) An operation between an integer and real always yields a real
result. In this operation the integer is first promoted to a real .
and then the operation is performed. Hence the result is real.

I think a few practical examples shown in the following ﬁgure
would put the issue beyond doubt.

Operation Result Operation Result

5/2 2 2/5 0

50/2 . 2.5 20/5 04

5/2.0. 2.5 2/5.0 0.4

50/20 25 20/5.0 04
Figure 1.6

Type Conversion in Assignments
It may so happen that the type of the expression and the type of the

variable on the left-hand side of the assignment operator may not
be same. In such a case the value of the expression is promoted or

4

30 Let Us C

demoted depending on the type of the variable on lefi-hand side of

For example, consider the following assignment statements.

int i;
float b
i=35;
b=230;

Here in the first assignment statement though the expression’s
value is a float (3.5) it cannot be stored in i since it is an int. In
such a case the float is demoted to an int and then its value is
stored. Hence what gets stored in i is 3. Exactly opposite happens
in the next statement. Here, 30 is promoted to 30.000000 and then
stored in b, since b being a float variable cannot hold anything
except a float value.

Instead of a simple expression used in the above examples if a
complex expression occurs, still the same rules apply. For
example, consider the following program fragment.

float a b, c;
int s;
s=a*b*c/100+3274-37141;

Here, in the assignment statement some operands are ints whereas
others are floats. As we know, during evaluation of the expression
the ints would be promoted to floats and the result of the
expression would be a float. But when this float value is assigned
to s it is again demoted to an int and then stored in s.

Observe the results of the arithmetic statlements shown in Figure
1.7. It has been assumed that k is an integer variable and a is a real
variable.

Chapter 1: Getting Started 31

Arithmetic Instruction | Result ’Arithmetic Instruction | Result
k=2/9 0 a=2/9 0.0
k=20/9 0 a=20/9 0.2222
k=2/9.0 0 a=2/90 0.2222
k=2.0/90 0 a=20/90 0.2222
k=9/2 4 a=9/2 4.0
k=9.0/2 4 a=90/2 4.5
k=9/2.0 4 a=9/2.0 4.5
k=9.0/2.0 4 a=90/20 4.5 l

Ly =

Figure 1.7

Note that though the following statements give the same result, 0,
the results are obtained differently. '

k=2/9:
k=20/9: e

In the first statement, since both 2 and 9 are integers, the result is
an integer, i.e. 0. This 0 is then assigned to k. In the second
Statement 9 is promoted to 9.0 and then the division is performed.
Division yields 0.222222. However, this cannot be stored in k, k
being an int. Hence it gets demoted to 0 and then stored in k.

Hierarchy of Operations

While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it
get executed. For example, does the expression 2 * x - 3 * y
correspond to (2x)-(3y) or to 2(x-3y)? Similarly, does A /B * C
correspond to A / (B * C) or to (A / B) * C? To answer these
questions satisfactorily one has to understand the ‘hierarchy’ of
operations. The priority or precedence in which the operations in

32 Let Us C_

an arithmetic statement are performed is called the hierarchy of
operations. The hierarchy of commonly used operators is shown in
Figure 1.8.

Priority | Operators | Description I
1% * /% multinlication. division. modular division
™ +- addition, subtraction
3 = assignment

Figure 1.8

Now a few tips about usage of operators in general.

(a) Within parentheses the same hierarchy as mentioned in Figure
1.11 is operative. Also, if there are more than one set of
parentheses, the operations within the innermost parentheses
would be performed first, followed by the operations within
the second innermost pair and so on.

(b) We must always remember to use pairs of parentheses. A
careless imbalance of the right and left parentheses is a

common error. Best way to avoid this error is to type () and
then type an expression inside it.

A few examples would clarify the issue further.

Example 1.1: Determine the hicrarchy of operations and evaluate
the following expression:

i=2*3/4+4/4+8-2+5/8
Stepwise evaluation of this expression is shown below:

i=2*3/4+4/4+8-2+5/8

Chapter 1: Getting Started 33

i=6/4+4/4+8-2+5/8 operalion: *
i=1+4/4+8-2+5/8 operation: /
i=1+1+8-2+5/8 operation: /
i=1+1+8-2+0 operation: /
i=2+8-2+0 operation; +
i=10-2+0 operation: +
i=8+0 operation : -
i=8 operation; +

Note that 6 / 4 gives | and not 1.5. This so happens because 6 ana
4 both are integers and therefore would evaluate to only an integer
constant. Similarly 5/ 8 evaluates to zero, since 5 and 8 are integer
constants and hence must return an integer value.

Example 1.2: Determine the hierarchy of operations and evaluate
the following expression:

kk=3/2*"4+3/8+3

Stepwise evaiuation of this expression is shown below:

kk=3/2"4+3/8+3

kk=1*4+3/8+3 operation: {
kk=4+3/8+3 operation: *
kk=4+0+3 operalion: {
kk=4+3 operalion: +
kk =7 operation: +

Note that 3 / 8 gives zero, again for the same reason mentioned in
the previous example.

All operators in C are ranked according to their precedence. And
mind you there are as many as 45 odd operators in C, and these
can affect the evaluation of an expression in subtle and unexpected
ways if we aren't careful. Unfortunately, there are no simple rules
that one can follow, such as “BODMAS” that tells algebra students
in which order does an expression evaluate. We have not

34 Let Us C

encountered many out of these 45 operators, so we won't pursue
the subject of precedence any further here. However, it can be
realized at this stage that it would be almost impossible to
remember the precedence of all these operators. So a full-fledged
list of all operators and their precedence is given in Appendix A.
This may sound daunting, but when its contents are absorbed in
small bites, it becomes more palatable.

So far we have scen how the computer evaluates an arithmetic
statement written in C. But our knowledge would be incomplete
unless we know how to convert a general arithmetic statement to a
C statement, C can handle any complex expression with ease.
Some of the examples of C expressions are shown in Figure 1.9,

Algebric Expression C Expression
axb-cxd a*b-c*d
(m + n) (a +b) (m+n)*(@a+b)
Ix2+2x+ 35 FREFAA-DERF &
at+b+c (a+b+c)/(d+e)
d+e
2BY & 2*b*y/(d+1)-x/
== —=| S ahy)
d+1 3(z+y)
S LA
Figure 1.9

Associativity of Operators

When an expression contains two operators of equal priority the tie
between them is settled using the associativity of the operators.
Associativity can be of two types—Left to Right or Right to Left.
Left to Right associativity means that the left operand must be

Chapter 1: Getting Started 35

unambiguous.: Unambiguous in what sense? [t must not be.
involved in evaluation of any other sub-expression. Similarly, in
case of Right to Left associativity the right operand must be-
unambiguous. Let us understand this with an example.

Consider the expression
g /2%5 0

Here there is a tie between operators of same priority, that is
between / and *. This tie is settled using the associativity of / and
*. But both enjoy Left to Right associativity. Figure 1.10 shows for
each operator which operand is unambiguous and which is not.

//-’
X
Operator | Left Right Remark
/ 3 2 or 2 *| Left operand is
5 unambiguous, Right is not
2 3/20r2 |5 Right operand is
unambiguous, Left is not
Figure 1.10

Since both / and * have L to R associativity and only / has
unambiguous left operand (necessary condition for L to R
associativity) it is performed earlier.

Consider one more expression

a=b=3;
Here both assignment operators have the same priority and same
associativity (Right to Left). Figure 1.11 shows for each operator

which operand is unambiguous and which is not.

36 - . Let Us C

Operator | Left Right Remark
= a borb=| Left operand is
3 unambiguous, Right is
not
= bora=b |3 . Right operand is
unambiguous, Lefl is not

Figure .11

Since both = have R to L associativity and only the second = has
unambiguous right operand (necessary condition for R to L
associativity) the second = is performed earlier.

Consider yet another expression
z=a"b+cl/d;

Here * and / enjoys same priority and same associativity (Left to
Right). Figure 1.12 shows for each operator which operand is
unambiguous and which is not.

—_—

Operator | Left | Right | Remark

o a b Both operands are unambiguous
A7 c d Both operands are unambiguous
Figure 1.12

Here since left operands for both operators are unambiguous
Compiler is free to perform * or / operation as per its convenience

Chapter 1. Getting Started 37

since no matter which is performed earlier the result would be
same. .

Appendix A gives the associativity of all the operators available in
C.

Control Instructions in C

As the name suggests the ‘Control Instructions’ enable us to
specify the order in which the various instructions in a program are
to be executed by the computer. In other words the control
instructions determine the ‘flow of control® in a program. There
are four types of control instructions in C. They are:

(a) Sequence Control Instruction

(b) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take
a decision as to which instruction is to be executed next. The Loop
control instruction helps computer to execute a group of statements
repeatedly. In the following chapters we are going to learn these
instructions in detail. Try your hand at the Exercise presented on
the following pages before proceeding to the next chapter, which
discusses the decision control instruction,

Summary

(a) The three primary constants and variable types in C are
integer, float and character.

(b) A variable name can be of maximum 31 characters.

(¢) Do not use a keyword as a variable name.

38] Let Us G

(d) An expression may contain any sequence of constants,
variables and operators.

(e) Operators having cqual precedence are evaluated using
associativity.

(f) Left to right associativity means that the left operand of a
operator must be unambiguous whereas right to left
associativity means that the right operand of a operator must
be unambiguous.

(g) Input/output in C can be achieved using scanf() and printf()
functions.

Exercise

[A] Which of the following are invalid variable names and why?

BASICSALARY _basic basic-hra
#MEAN group. 422

population in 2006 over time mindovermatter
FLOAT hELLO queue.
team'svictory Plot # 3 2015 _DDay

B] Point out the errors, if any, in the following C statements:
v g

(a) int=2314.562*150;

(b) name = ‘Ajay’;

(c) varchar="3}";

(d) 3.14*r*r*h=vol_of cyl:

() k=(a*b)(c+(25a+b)(d+e);

(f) m_inst = rate of interest * amount in rs ;

Chapter 1: Getting Started 39

(g)
)
(i
()
()
(n
(m)

€

(a)
(b)
(c)

(d)

(D]

si = principal * ratcofinterest * numberofyears / 100 ;
area=3.14 *r** 2,

volume=3.14*r*2*h;
k=((@a*b)+c)(2.5*a+b);

a=b=3=4;

count = count + | :

date = '2 Mar 04';

Evaluate the following expressions and show their hierarchy.

g=big/2 +big*4/big-big+abec/3;
(abc = 2.5, big = 2, assume g to be a float)

on=ink *act/2+3/2%act+2+tig;
(ink =4, act = 1, tig = 3.2, assume on to be an int)

s=qui*add/4-6/2+2/3*6/god;
(qui = 4, add = 2, god = 2, assume s to be an int)

=1/3*%a/l4-6/2+2/3*6/g;
(a=4, g=3, assume s to be an int)

Fill the following table for the expressions given below and
then evaluate the result. A sample entry has been filled in the
table for expression (a).

40 Let Us C

Operator 1 Left | Right Remark

/ 10 Sor5/2 | Left operand is
/1 unambiguous, Right
15 not

(a) g=10/57211);
(b) b=3/2+5*4/3;
(c) a=b=c=3+4;

|E] Convert the following equations into corresponding C
statements.

88(a+b)2/c-05+2a/(q+r)

(@ 2Z=
(a+b)*(I/m)
-b+(b*b)+2 4ac
;o
(b) . 2a
© R_2v+6.22(c+d)
g+v
(d) AZ?.?h(x5*+a]lc-0.8+2b
(x+a) (1/y)

IF] . What would be the output of the following programs:

(a) main{)

g

Chapter 1: Getting Started

int i=2,j=3,k1;

float a,b;

2

V=jli*;

a=ilj*j:

b=jli*i;

printf("%d %d %f %M, k. a,b)

\\yg P @ %}@‘zao 2.00

int a,b;
—-3--3
-(-3);
pnntf(a= %db %d", a,b);

rna:n()
floata=5, b=2;
intc;

c=a%b;

pnntf{'%d o I
hpt -@

mam()

printf ("nn \nn nn\n®) ;
printf ("nn /n/n nn/n") ;

(e) main()

inta,b;
printf ("Enter values of aand b") |
scanf (" %d %d", &a, &b);
printf ("a =%d b=%d", a,b);

}

42

Let Us C

(N

(Gl

(a)

(b)

(c)

(d)

main()

{
intp,q;
printf ("Enter values of pand q°) ;
scanf (" %d %d ", p,q):
printf ("p = %d q=%d", p,q);
}

Pick up the correct alternative for each of the following
questions:

C language has been developed by
(1) Ken Thompson

(2) Dennis Ritchie

(3) Peter Norton

(4) Martin Richards

C can be used on

(1) Only MS-DOS operating system
(2) Only Linux operating system
(3) Only Windows operating system
(4) All the above

C programs are converted into machine language with the -
help of

(1) An Editor

(2)" A compiler

(3) An operating system
(4) None of the above

The real constant in C can be expressed in which of the
following forms

(1) Fractional form only

(2) Exponential form only

(3) ASCII form only

Chapter 1: Getting Started 43

(e)

("

(2)

(h)

(i)

0

(4) Both fractional and exponential forms

A character variable can at a time store
(1) I character

(2) 8 characters

(3) 254 characters

(4) None of the above

The statement char ch = ‘Z’ would store in ch

(1) The character Z

(2) ASCII valueof Z

(3) Z along with the single inverted commas

(4)- Both (1) and (2)

Which of the following is NOT a characier constant
(1) ‘Thank You’

(2) ‘Enter values of P, N, R"

(3) ‘23.56E-03"

(4) All the above

The maximum value that an integer constant can have is
(1) -32767

(2) 32767

(3) 1.7014e+38

(4) -1.7014e+38

A C variable cannot start with

(1) An alphabet

(2) A number

(3) A special symbol other than underscore
(4) Both (2) & (3) above

Which of the following statement is wrong
(1) mes=123.56;

(2) con="T'*'A’:

(3) this="T"*20;

(4) 3+a=b;

44

Let U5£

(k)

(m)

(n)

(©)

(p)

Which of the following shows the correct hierarchy of
arithmetic operators in C

(1) YW =2orl-Eor-

(2) *% % | 4«

(3) #!ll‘ J'!.. *. +‘ -

(4) for* -or+

Inb=66/a+ 2*n: which operation will be performed
first?

(1) 6.6/a

@) a+2

3) 2*n

(4) . Depends upon compiler

Which of the following is allowed in a C Arithmetic
instruction

(M (]

@ i}

) £)

(4) None of the above

Which of the following statements is false

(1) Each new C instruction has to be written on a separate
line

(2) Usually all C statements arc entered in small ¢ase letters

(3). Blank spaces may be inserted between two words ina C
statement

(4) Blank spaces cannot be inserted within a variable name

Ifa is an integer variable, a =5/ 2 ; will return a value
(I 2.5

(2) 3

3y 2

4) 0

The expression,a=7/22*(3.14 +2)* 3 /5 ; evaluates to

Chapter 1: Getting Started

45

(q)

(r)

(s)

(u)

(v)

(1) 8.28
(2) 6.28
(3) 3.14
) 0

The expression, a =30 * 1000 + 2768 ; cvaluates to
(1) 32768

(2) -32768

(3) 113040

“4) 0

The cxpression x = 4 + 2 % - 8 evaluates to
(nh -6

(2) 6

3) 4

(4) None of the above

Hierarchy decides which operator
(1) is most important

(2) is used first

(3) is fastest

(4) operales on largest numbers

An integer constant in C must have:
(1) Atleast one digit

(2) Adtleast one decimal point

(3) A comma along with digits

(4) Digits separated by commas

A character variable can never storc more than
(1} 32 characters

(2) 8 characters

(3) 254 characters

(4) 1 character

In C a variable cannot contain

(1) Blank spaces

46 Let Us C

(2) Hyphen
(3) Decimal point
(4) All the above

(w) Which of the following is FALSE in C
(1) Keywords can be used as variable names
(2) Vanable names can contain a digit
(3) Variable names do not contain a blank space
(4) Capital letters can be used in variable names

(x) InC, Anthmetic instruction cannot contain
(1) wvarables
(2) constants
(3) variable names on right side of =
(4) constants on left side of =

(y) Which of the following shows the correct hierarchy of
arithmetic operations in C
(1) /+*-
(2) *-/+
(3) +-1*
(4) */+-

(z) What will be the value of d if d is a float after the operation
d=2/7.07
(1) 0
(2) 0.2857
(3) Cannot be determined
(4) None of the above

" [H] Write C programs for the following:

(a) Ramesh's basic salary "i1s input through the keyboard. His

" dearness allowance is 40% of basic salary, and house rent
allowance is 20% of basic salary. Write a program to calculate
his gross salary.

Chapter 1: Getting Started 47

(b) The distance between two cities (in km.) is input through the
keyboard. Write a program to convert and print this distance
in meters, feet, inches and centimeters.

(c) If the marks obtained by a student in five different subjects
are input through the keyboard, find out the aggregate marks
and percentage marks obtained by the student. Assume that
the maximum marks that can be obtained by a student in each
subject is 100,

) Temperature of a city in Fahrenheit degrees is input through.
the keyboard. Write a program to convert this temperature
into Centigrade degrees.

(ey yThe length & breadth of a rectangle and radius of a circle are

”_input through the keyboard. Write a program to calculate the
area & perimeter of the rectangle, and the area &
circumference of the circle. E

(f) Two numbers are input through the keyboard into two
locations C and D. Write a program to interchange the
contents of C and D.

(g) If a five-digit number is input through the keyboard, write a
program to calculate the sum of its digits.

(Hint: Use the modulus operator ‘%")

(h) If a five-digit number is input through the keyboard, write a
program to reverse the number.

(i) If a four-digit number is input through the keyboard, write a
program to obtain the sum of the first and last digit of this
number.

(j) In a town, the percentage of men is 52. The percentage of
total literacy is 48. If total percentage of literate men is 35 of
the total population, write a program to find the total number

48

Let Us C

(k)

N

(m)

of illiterate men and women if the population of the town is
80.,000.

A cashier has currency notes of denominations 10, 50 and
100. If the amount to be withdrawn is input through the
keyboard in hundreds, find the total number of currency notes
of each denomination the cashier will have to give to the
withdrawer.

If the total selling price of 15 items and the total profit earned
on them is input through the keyboard, write a program to
find the cost price of one item.

If a five-digit number is input through the keyboard, write a
program to print a new number by adding one to each of its
digits. For example if the number that is input is 12391 then
the output should be displayed as 23402.

2 The Decision
Control Structure

Decisions! Decisions!
The if Statement

The Real Thing

Multiple Statements within iff
The if-else Statement

Nesled if-elses

Forms of if
Use of Logical Operators

The else if Clause

The ! Operator

Hierarchy of Operators Revisited
A Word of Caution
The Conditional Operators
Summary
Exercise

49

50 Let Us C

e all need to alter our actions in the face of changing
Wcircumstances. If the weather is fine, then I will go for a
stroll. If the highway is busy I would take a diversion.
If the pitch takes spin, we would win the match. If she says no, I
would look elsewhere. If you like this book, | would write the next

edition. You can notice that all these decisions depend on some
condition being met.

C language too must be able to perform different sets of actions
depending on the circumstances. In fact this 1s what makes it worth
its salt. C has three major decision making instructions—the if
statement, the if-else statement, and the switch statement. A
fourth, somewhat less important structure is the one that uses
conditional operators. In this chapter we will explore all these
ways (except switch, which has a separate chapter devoted to it,
later) in which a C program can react to changing circumstances.

Decisions! Decisions!

In the programs written in Chapter | we have used sequence
control structurc in which the various steps are executed
sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don't
have to do anything at all. By default the instructions in a program
are executed sequentially. However, in serious programming
situations, seldom do we want the instructions to be executed
sequentially. Many a times, we want a set of instructions to be
executed in one situation, and an entirely different set of
instructions to be cxecuted in another situation. This kind of
situation is dealt in C programs using a decision control
instruction. As mentioned earlier, a decision control instruction
can be implemented in C using:

(a) The if statement
(b) The if-else statement
(c) The conditional operators

Chapter 2: The Decision Control Structure 51

Like most languages, C uses the keyword if to implement the
decision control instruction. The general form of if statement looks
like this:

if (this condition is true)
execute this statement ;

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is
always enclosed within a pair of parentheses. If the condition,
whatever it is, is true, then the statement is cxecuted. If the
condition is not true then the statement is not executed; instead the
program skips past it. But how do we express the condition itself
in C? And how do we evaluate its truth or falsity? As a general
rule, we express a condition using C’s ‘relational’ operators. The
relational operators allow us to compare two values to see whether
they are equal to each other, unequal, or whether one is greater
than the other. Here's how they look and how they are evaluated in
i

this expression is true if
K==y X is equal to y
X =y x 1s not equal to y
x<y X is less than y
x>y x i1s greater than y
X<=y X 15 less than or equal to y
! X>=y x is greater than or equal to y

Figure 2.1

52 Let Us C

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that = is
used for assignment, whereas, == is used for comparison of two
quantities. Here is a simple program, which demonstrates the use
of if and the relational operators.

I* Demonstration of if statement */
main()

{

int num ;

printf ("Enter a number less than T
scanf ("%d", &num) ;

if { num <= 10)
printf ("What an obedient servant you are 1) ;

}

On cxecution of this program, if you type a number less than or
equal to 10, you get a message on the screen through printf(). If
you lype some other number the program doesn’t do anything. The
following flowchart would help you understand the flow of control
in the program.

Chapter 2: The Decision Control Structure 53

START

PRINT cnter a num
less than 10

PRINT What an obedient
servant you arc !

TOP

&

Figure 2.2

To make you comfortable with the decision control instruction one
more example has been given below. Study it carefully before
reading further. To help you understand it easily, the program is
accompanied by an appropriate flowchart.

Example 2.1: While purchasing certain items, a discount of 10%
is offered if the quantity purchased is more than 1000. If quantity
and price per item are input through the keyboard, write a program
to calculate the total expenses.

54

Let Us C

Figure 2.3

[Calculation of total expenses */
main()
{
int qty, dis=0;
float rate, fot ;
printf { "Enter quantity and rate ") ;
scanf ("%d %, &qty, &rale) ,

if (gty > 1000)
dis=10:

Chapter 2: The Decision Control Structure S5

tot=(qty *rate) - (qty * rate * dis /100) ;
printf { *Total expenses = Rs. %f", tot) ;
}

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses = Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses = Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as
1200 (value of gty) is greater than 1000. Therefore, the variable
dis, which was earlier set to 0, now gets a new value 10. Using this
new value total expenses are calculated and printed.

In the second run the condition evaluates to false, as 200 (the value
of qty) isn't greater than 1000. Thus, dis, which is earlier set to 0,
remains 0, and hence the expression after the minus sign evaluates
to zero, thereby offering no discount.

Is the statement dis = 0 necessary? The answer is yes, since in C, a

variable if not specifically initialized contains some unpredictable
value (garbage value).

‘The Real Thing

We mentioned earlier that the general form of the if statement is as
follows

if (condition)
slatement ;

Truly speaking the general form is as follows:

56) Let Us C

if { expression)

statement ;
Here the expression can be any valid expression including a
relational expression. We can even usc arithmelic expressions in

the if statement. For example all the following if statements are
valid

f(3+2%5)
printf { *This works") ;

if(a=10)
printf ("Even this works") ;

if(-5)
printf ("Surprisingly even this works") ;

A

Note that in C a non-zero value is considered to be true, whercas a
0 is considered to be false. In the first if, the expression evaluates
to § and since 5 is non-zero it is considered to be true. Hence the
printf() gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if
(a)orif (10). Since 10 is non-zero, it is true hence again
printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again
printf() goes to work. In placc of -5 even if a float like 3.14 were
used it would be considered to be true. So the issue is not whether
the number is integer or float, or whether it is positive or negative.
[ssue is whether it is zero or non-zero.

Multiple Statements within if

[t may so happen that in a program we want more than one
statement to be exccuted if the expression following if is satisfied.
If such multiple statements are to be executed then they must be

Chapter 2: The Decision Control Structure 57

placed within a pair of braces as illustrated in the following
example.

Example 2.2: The current year and the year in which the
employee joined the organization are entered through the
keyboard. If the number of years for which the employeé has
served the organization is greater than 3 then a bonus of Rs, 2500/-
is given to the employce. If the years of scrvice are not greater
than 3, then the program should do nothing.

{* Calculation of bonus *f
main()

int bonus, cy, yoj, yr_of_ser;

printf (*Enter current year and year of joining ") ;
scanf ("%d %d", &cy, &yoj) ;

yr_of_ser=cy-yoj;
if (yr_of_ser>3)

bonus = 2500 ;
printf ("Bonus = Rs. %d", bonus) ;

}

Observe that here the two statements (o be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a
pair of braces is not used then the C compiler assumes that the
programmer wants only the immediately next statement after the if
to be executed on satisfaction of the condition. In other words we
can say that the default scope of the if statement is the immediately
next statement after it.

58 “ Let Us C

START
/ INPUT
g ey, yoj

.

yr_of_ser = cy - yoj

yr of ser>3
e
bonus = 2500
PRINT
honus
f"“\\=
STOP
Figure 2.4
The if-else Statement

The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to
true. It does nothing when the expression evaluates to false. Can
we execute one group of statements if the expression evaluates to
true and another group of statements if the expression evaluates to
false? Of course! This is what is the purpose of the else statement
that is demonstrated in the following example:

Example 2.3: In a company an employee is paid as under:

Chapter 2: The Decision Control Structure 59

If his basic salary is less than Rs. 1500, then HRA = 10% of basic
salary and DA = 90% of basic salary. If his salary is either equal to
or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic
salary. If the employee's salary is input through the keyboard write
a program to find his gross salary.

I* Calculation of gross salary */ i
main() >

float 'hs, gs,da, hra;

printf { "Enter basic salary ") ;
scanf ("%f", &bs) ;

if (bs < 1500)
{

hra = bs * 10/ 100 -
da=bs * 90/ 100 :
}

else

{
hra =500 ;
da=bs*98/100;

)

gs=bs+hra+da;
printf "gross salary = Rs. %", gs) ;

60 Let Us C

hra = 500 IT\ra = bs* 10/ 100
da= bs* 98/ 100 da=bs*90/ 100

gs =bs + hra+da ‘

STOP

Figure 2.5
A few points worth noting...

(a) The group of statements after the if upto and not including the
else is called an ‘if block’. Similarly, the statements after the
else form the ‘*else block’.

(b) Notice that the else is written exactly below the if. The
statements in the if block and those in the else block have
been indented to the right. This formatting convention 1s

Chapter 2: The Decision Control Structure 61

followed throughout the book te enable you to understand the
working of the program better.

(c) Had there been only one statement to be executed in the if
block and only one statement in the else block we could have
dropped the pair of braces.

(d) As with the if statement, the default scope of else is also the
statement immediately after the else. To override this default
scope a pair of braces as shown in the above example must be
used.

Nested if-elses

It is perfectly all right if we write an entire if-else construct within
either the body of the if statement or the body of an else statement.
This is called ‘nesting’of ifs. This is shown in the following
program. '

I* A quick demo of nested if-else */
main()
{

int i;

printf ("Enter either 1or 2) ;
scanf ("%d", &i) ;

if(i==1)
printf (*You would go to heaven I*) ;
else

ifli==2)

printf ("Hell was crealed with you in mind") ;
else

printf ("How about mother earth I*) ;

62) Let Us C

Note that the second if-else construct is nested in the first else
statement. If the condition in the first if statement is false, then the
condition in the second if statement 13 checked. 11 it is false as
well, then the final else statement is executed.

You can see in the program how cach time a if-else construct is
nested within another if-else construct, it is also indented to add
clarity to the program. Inculcate this habit of indentation,
otherwise you would end up writing programs which nobedy (you
included) can understand easily at a later date.

In the above program an if-else occurs within the else block of the
first if statement. Similarly, in some other program an if-else may

occur in the if block as well. There 15 no limit on how deeply the
ifs and the elses can be nested.

Forms of if
The if statement can take any of the following forms:

(a) if(condition)

do this ;
(b) if (condition)
{
do this :
and this ;
}

{c) if(~ondition)
“dothis ;
else

do this ;

(d) if (condition)

{

do this ;

Chapter 2: The Decision Control Structure

63

(e)

and this |
)

else

do this ;
and this ;

)

if (condition)
do this ;-
else

if (condition)
do this ;

else

{
do this ;
and this ;

}

)

if (condition)

if { condition)

do this ;
else
do this ;
and this ;
)
}
else

do this ;

64 Let Us C

Use of Logical Operators

C allows usage of three logical operators, namely, &&, || and .
These are to be read as ‘AND’ ‘OR’ and *NOT' respectively.

There are several things to note about these logical operators. Most
obviously, two of them are composed of double symbols: || and
&&. Don't use the single symbol | and &. These single symbols
also have a meaning. They are bitwise operators, which we would
examine in Chapter 14.

The first two operators, && and ||, allow two or more conditions
to be combined in an if statement. Let us see how they are used in
a program. Consider the following example.

Example 2.4: The marks obtained by a student in 5 different
subjects are input through the keyboard. The student gets a
division as per the following rules:

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this
example. These methods are given below.

[* Method -1 */
main()

{
int m1, m2, m3, m4, m5, per ;

printf (*Enter marks in five subjects "
scanf (*%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
per=(mi+m2+m3+md+m5)/5;

Chapter 2: The Decision Control Structure 65

if (per >=60)
printf { “First division ") ;
else
if (per>=50)
printf ("Second division") ;
else
if (per>=40)
printf ("Third division™) ;
else
printf ("Fail”) ;
)
}

)

This is a straight forward program. Observe that the program uses
nested if-elses. This leads to three disadvantages:

, (@) As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole
program creeps to the right.

(b) Care needs to be exercised to match the corresponding ifs and
elses. i

(c) Care needs to be exercised to match the corresponding pair of
braces.

All these three problems can be eliminated by usage of ‘Logical
operators’. The following program illustrates this.

* Method - Il */
main()
{
int m1, m2, m3, m4, m5, per ;

printf *Enter marks in five subjects *) ;
scanf ("%d %d %d %d %d", 8m1, &m2, &m3, &m4, &m5) ;
per=(mi+m2+m3+md+m5)/5;

66 Let Us C

if (per >= 60)
printf ("First division”) ;

if ((per>=50)&& (per<6d))
printf ("Second division™) ;

if ((per>=40) && (per<50))
printf ("Third division") ;

if { per <40)
printf ("Fail") ;
}

As can be seen from the sccond if statement, the && operator is
used to combine two conditions. ‘Second division’ gets printed if
both the conditions evaluatc to true. If one of the conditions
evaluate to false then the whole thing is treated as false.

Two distinct advantages can be cited in favour of this program:

(a) The matching (or do I say mismatching) of the ifs with their
corresponding elses gets avoided, since there are no elses in
this program.

(b) In spite of using several conditions, the program doesn't creep
to the right. In the previous program the statements went on
creeping to the right. This effect becomes more pronounced as
the number of conditions go on increasing. This would make
the task of matching the ifs with their corresponding elses and
matching of opening and closing braces that much more
difficult.

The else if Clause

There is one more way in which we can write program for
Example 2.4. This involves usage of else if blocks as shown
below:

Chapter 2: The Decision Control Structure 67

[* else if ladder demo */
main()

{

int m1, m2, m3, m4, m5, per ;
per=(m1+m2+m3+ md+mb)/ per;

if (per >= 60)

printf ("First division™) ;
else if (per >= 50)

printf ("Second division”) ;
elseif (per >=40)

printf ("Third division™) ;
else

printf (*fail”) ;

}

You can note that this program reduces the indentation of the
statements. In this case every else is associated with its previous if.
The last else goes to work only if all the conditions fail. Even in
else if ladder the last else is optional.

Note that the else if clause is nothing different. It is just a way of
rearranging the else with the if that follows it. This would be
evident if you look at the following code:

if(i==2) if(i==2)
printf ("With you...") ; printf ("With you...") ;
else elseif(j==2)

printt ("...All the time ") ;
i(j==2)
printf (*...All the time") ;

}

Another place where logical operators are useful is when we want
to write programs for complicated logics that ultimately boil down

68 Let Us C

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

— If the driver is married.
~ If the driver is unmarried, male & above 30 years of age.
— If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to determine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not be ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

{* Insurance of driver - without using logical operators */

main()

{
char sex,ms;
int age,

printf ("Enter age, sex, marital status ") ,
scanf (“%d %c %c", &age, &sex, &ms) ;

if (ms=="M)
printf ("Driver is insured")
else
\ if (sex =="M)

{

Chapter 2: The Decision Control Structure - 69

if(age>30)
printf ("Driver is insured”) ;
else
printf { *Driver is not insured”) ;
}
else
if(age>25)
printf (*Driver is insured”) ;
else
printf ("Driver is notinsured”) ;
}

}
]

From the program it is evident that we are required to match
several ifs and elses and several pairs of braces. In a more real-life
situation there would be more conditions to check leading to the
program creeping to the right. Let us now see how to avoid these
problems by using logical operators.

As mentioned above, in this example we expect the answer to be
either ‘Driver is insured’ or ‘Driver is not insured’. If we list down
all those cases in which the driver is insured, then they would be:

(a) Driver is married.
(b) Driver is an unmarried male above 30 years of age.
(c) Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and || as shown in the program
below:

I* Insurance of driver - using logical operators */
main()
{

char sex, ms;

70 Let Us C

int age;

printf ("Enter age, sex, marital status ") ;
scanf { "%d %c %c" &age, &sex, &ms) ;

if{(ms=="M)||(ms=="U'&8& sex =='M'88& age > 30) ||
(ms=="U &&sex=="F' && age >25))
printf ("Driver is insured”) ;
else
printf ("Driver is not insured”) ;

In this program it is important to note that:

— The driver will be insured only if one of the conditions
enclosed in parentheses evaluates to true,

— For the second pair of parentheses to evaluate to true, each
condition in the parentheses separated by && must evaluate to
true.

— Even if one of the conditions in the second parentheses
cvaluates to false, then the whole of the second parentheses
evaluates to false.

— The last two of the above arguments apply to third pair of
parentheses as well.

Thus we can conclude that the && and || are useful in the
following programming situations:

(a) When it is to be tested whether a value falls within a
particular range or not.

(b) When after testing several conditions the outcome is only one
of the two answers (This problem is often called yes/no
problem).

Chapter 2: The Decision Control Structure 71

There can be one more situation other than checking ranges or
yes/no problem where you might find logical operators useful. The
followirig program demonstrates it.

Example 2.6: Writc a program to calculate the salary as per the
“following table: -

Gender | Years of Service | Qualifications Salary
Male >= 10 Post-Graduate 15000
>= () Graduate 10000
<10 Post-Graduate 10000
< |0 Graduate 7000
Female | >=10 Post-Graduate 12000
>= |0 Graduate 9000
<10 Post-Graduate 10000
<10 Graduate 6000
Figure 2.6
main()
{
char g;

int yos, qual, sal ;

printf { "Enter Gender, Years of Service and
Qualifications (0=G,1=PG):");
scanf ("%c%d%d", &g, &yos, &qual) ;

if(g=="m'&& yos >= 10 && qual == 1)
sal = 15000 ;

elseif ({g=="m"'&& yos >= 10 && qual == 0) ||
(g=="'m'&& yos < 10 && qual==1))
sal = 10000 ;

72 Let Us C

elseif (g=="'m" 8& yos < 10 && qual ==0)

sal = 7000 ;

elseif (g=="f 8& yos >= 10 &8 qual == 1)
sal = 12000 ;

elseif (g=="f &&yos >= 10 && qual==0)
sal = 8000 ;

elseif (g=="f && yos < 10 8& qual==1)
sal = 10000 ;

elseif (g=="f && yos <10 && qual==0)
sal = 6000 ;

printf (“\nSalary of Employee = %d", sal) ;
)

The ! Operator

So far we have used only the logical operators && and ||. The
third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0. Vice versa, if the
expression evaluates to zero then on applying ! operator to it
makes it 1, a non-zero value. The final result (after applying !) 0 or
1 is considered to be false or true respectively. Here is an example
of the NOT operator applied to a relational expression.

I(y<10)

This means “not y less than 10", In other words, if y is less than
10, the expression will be false, since (y < 10) is true. We can
express the same condition as (y >= 10).

The NOT operator is often used to reverse the logical value of a
single variable, as in the expression

if (1 flag)

Chapter 2: The Decision Control Structui e

73

This is another way of sa

if(flag==0)

Does the NOT operator sound confusing? Avoid it if you want, as

ying

the same thing can be achieved without using the NOT operator.

Hierarchy of Operators Revisited

Since we have now added the logical operators to the list of
operators we know, it is time to rcview thesc operators and their
priorities. Figure 2.7 summarizes the operators we have seen so
far. The higher the position of an operator is in the table, higher is
its priority. (A full-fledged precedence table of operators is given

in Appendix A.)

Operators Type I
! Logical NOT : I
* ./ % Arithmetic and modulus
e Arithmetic -
< > <= >= Relational
== = Relational
&& Logical AND
I Logical OR
= Assignment I
Figure 2.7
A Word of Caution

What will be tue output of the following program:

74 - Let Us C

main()

{

int i

printf ("Enter value of i ") ;
scanf ("%d", &1) ;
if(i=5)
printf ("You enlered 5") ;
else
printf ("You entered something other than 5") :

}

And here is the output of two runs of this program...

Enter value of 1 200
You enlered 5

Enter value of i 9999
You entered 5

Surprising? You have entered 200 and 9999, and still you find in
cither case the output is *You entered 5. This is because we have
written the condition wrongly. We have used the assignment
operator = instead of the relational operator ==. As a result, the
condition gets reduced 1o if (§), irrespective of what vou supply
as the valuc of i. And remember that in C ‘truth’ is always non-
zero, whereas ‘falsity” is always zero, Therefore, if (5) always
evaluates to true and hence the result.

Another common mistake while using the if statement is to writc a
semicolon (3) after the condition, as shown below:

main()

{

int i,

printf { "Enter value of 1") ;
scanf ("%d", &) ;

Chapter 2: The Decision Control Structure 75

if(i==5);
printf ("You entered 5") ;
)

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if(i==5)
printf("You entered 5") ;

Here, if the condition cvaluates to true the ; (null statement, which
does nothing on execution) gets executed, following which the
printf() gets executed. If the condition fails then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
cvaluates to true or false the printf() is bound to get exccuted,
Remember that the c0mpilcr would not point out this as an_error,
since as far as the syntax is concerned nethmg has gone wrong, but
the logic has certainly gone awry. Moral IS‘. beware of such
pitfalls.

The following figure summarizes the working of all the three
logical operators. :

-]
Operands ! Results
X hj x 'y x&&y | x|y
0 i} | | 0 0
0 Nnon-7¢ro | 1] 0 0
non-zero | 0 0 1 1o B 1
non-7¢ro non-ycro | 0 0 1 1

Figure 2.8

76 Let Us C

The Conditional Operators

The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind
of foreshortened if-then-else. Their general form is,

expression 1 7 expression 2 : expression 3

What this expression says is: “if expression 1 is true (that is, if its
value is non-zero), then the value returned will be expression 2,
otherwise the value returmed will be expression 3. Let us
understand this with the help of a few examples:

(8) int x,y;
scanf ("%d", &x),
=(x>573:4),;

This statement will store 3 in y if x is greater than 5,
otherwise it will store 4 in y.

The equivalent if statement will be,

if(x>5)
y=3;
else
y=4;
(b) char a;
int y;
scanf ("%c", &a);
y=(a>=65882a<=90?1:0);

Here | would be assigned to y if a >=65 && a <=90 evaluates to
true, otherwise 0 would be assigned.

The following points may be noted about the conditional
operators:

Chapter 2: The Decision Control Structure 77

(@) It's not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex: int i,
“ scanf("%d", &i);
(i==17printf ("Amit*) : printf ("All and sundry”)) ;

Ex: char a='7;
printf ("%c", (a>="a'?a. ")),
(b) The conditional operators can be nested as shown below.

int big,a,b,c;
big=(a>b?(a>c?3:4):(b>c76:8));
(c) Check out the following conditional expression:

a>b?g=a:g=b;

This will give you an error ‘Lvaluc Required’. The error can
be overcome by enclosing the statement in the : part within a
pair of parenthesis. This is shown below:

a>b?g=a:(g=b);

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
opcrators aren’t as frequently used as the if-else.

Summary

(a) There are three ways for taking decisions in a program. First
way is to use the if-else statement, sccond way is to use the

78 Let Us C

conditional operators and third way is to use the switch
statement,

(b) The default scope of the if statement is only the next
statement. So, to execute more than one statement they must
be written in a pair of braces.

(¢) An if block need not always be associated with an else block.
However, an else block 1s always associated with an if
statement.

(d) 1f the outcome of an if-else ladder is only one of two answers
then the ladder should be replaced either with an else-if clause
or by logical operators.

() && and || are binary operators, whereas, ! is a unary operator.

(D In C every test expression 1s evaluated in terms of zero and
non-zero values. A zero value is considered to be false and a
non-zero value is considered to be true.

(g) Assignment statements used with conditional operators must
be enclosed within a pair of parenthesis.

Exercise

if, if-else, Nested if-elses
[A] What would be the output of the following programs:
(@) main()

int a=300,b,¢;
if (a>=400)
b=300;
c=200;
printf ("\n%d %d", b, c};
}

(b) main()

int a=500,b, ¢,
if (a>=400)

79

Chapter 2: The Decision Control Structure

i ()

b=300;
c=200;
printf ("n%d %d", b, ¢) ;
} :
(c) main()
int x=10,y=20;
if(x==y),
printf ("\n%d %d", x, ¥),
}
@ (d) main()
{
int x=3,y=5;
if(x==3)
printf ("\n%d”, x) ;
glse ;

printf ("\n%d", y) ;

}
@.ﬁéfma‘mﬂ
' {
int x=3;
float y=3.0;

f(x==y) ——0—
printf ("\nx and y are equal”) ;-“
else
printf ("nx and y are not equal”) ;

)
(h main()
{
int x=3,y,2;
y=x=10;
z=x<10:
printf ("nx =%dy=%dz="%d", x,y,2);

80 Let Us C

(9) ?13"’()

b\
gy int k=35

\ printf { “n%d %d %d", k == 35,k =50,k >40) ;
}

(h) main()

| inti=65;
“) charj="A";
if (i==])
printf (“C is WOW") ;
else
printf("C is a headache") ;
}

& () main()
(

int a=5b,c;

b=a=15;

c=a<i5;

printf ("na=%db=%dc=%d", a,b,c);
}

() main()
{ int x=15;
printf ("\n%d %d %d", x 1= 15, x =20, x < 30) ;
[B] Point out the errors, if any, in the following programs:
(a) main()
float a=1225.b=1252;

if(a=b)
printf ("\na and b are equal”) ;

Ch ‘+ 2: The Drcision Control Structure

81

(t)
b j=10,k=12;
>=j)
{
k=j:
j=k;
}
{c; ()
X <)

printf ("\nascii value of X is smaller than that of x") ;

(@ r

int x=10;
if (x>=2)then
printf ("n%d", x) ;

ain()

\
mnt x=10;
ifx>=2
print! ("\n%d", x),
}

() main()
{

int x=10,y=15;
if(x%2=y%3)

82 Let Us C

printf { "\nCarpathians”) ;
}

(@) ;ﬂain()
intx=230,y=40;
if(x==y)
printf{ "x is equalto y" } ;
elseif (x>y)
printf("x is greater than y*) ;
elseif (x <y)
printf{ "x is less than y*) ;
}

(h) main()

int x=10;
if (x>=2)then
printf ("\n%d", x) ;
}

(i) main()
{
inta,b;
scanf("%d %d".a,b)
if(a>b);
printf ("This is a game™) ;
else
printf ("You have to play it”) ;
}

[C] Attempt the following:

(d) If cost price and selling price of an item is input through the
keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit
he made or loss he incurred.

Chapter 2: The Decision Control Structure 83

y

(
(d)

(e)

Q)

()

i)

Any integer is input through the keyboard. Writc a program to
find out whether it is an odd number or even number.

Any year is input through the keyboard. Write a program to
determine whether the year is a leap year or not.

(Hint: Use the % (modulus) operator)

According to the Gregorian calendar, it was Monday on the
date 01/01/1900. 1f any year is input through the keyboard
write a program to find out what is the day on 1% January of
this year. '

A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine
whether the original and reversed numbers are equal or not.

If the ages of Ram, Shyam and Ajay are input through the
keyboard, write a program to determine the youngest of the
three. - X

Write a program to check whether a triangle is valid or not,
when the three angles of the triangle are entered through the
keyboard. A triangle is valid if the sum of all the three angles
is equal to 180 degrees.

Find the absolute value of a number entered through the
keyboard.

Given the length and breadth of a rectangle, write a program (o
find whether the arca of the rectangle is greater than its
perimeter. For example, the arca of the rectangle with length = 5
and breadth = 4 is greater than its perimeter.

Given three points (x1, y1). (x2, ¥2) and (x3, ¥3). write a
program to check if all the three points fall on one straight line.

84 Let Us C

(k) Given the coordinates (x, ¥) of a center of a circle and it's radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle,

(Hint: Use sqrt() and pow() functions)

() Given a point (x, ¥), writc a program to find out if it lies on the
x-axis, y-axis or at the origin, viz. (U, 0).

Logical Operators

Ifa=10,b=12,c=0, find the values of the expressions in
the following table:

Expression Value

al=6&&b>5 i
==9||b<3
I{a<10)
'(a>5&&c)
E&&ch&il]!c

(D] What would be the output of the following programs:

(a) main()
{
int i=4,z=12;
if(i=5]z>50)
printf ("\nDean of students affairs") ;
else
printf ("\nDosa") ;
)
(b) main()
{

int i=4,2=12;

Chapter 2: The Decision Control Structure 85

if(i=58&z>5)
printf ("\nLetus C") ;
else
printf ("\nWish C was free I") ;

ain()

int i=4,j=-1k=0,w,xy 2;

w=illjllk;

x=i&&j&&k,

y=illj8&k;

z=i&&j|lk;

printf ("nw =%dx=%dy=%d z= %d" w,x, ¥, Z);
}

(d) main{)

int i=4,j=-1,k=0,y,2: Y A
y=i+5&8&[+1||k+2; =X
2=i+5)j+18&K+2; 2"
printf ("y = %d z=%d". y. 2},

}

(e) main()
{
int i=-3,j=3;
if(li+h*1) |
printf { "\nMassaro") ;
else
printf { "\nBennariva”) ;
}

() main()
{
int 2a=40,

if({a>40&&a<45)
printf ("a is greater than 40 and less than 45") ;

86

else
printf ("%d", a) ;
/)

{9y Enain()
int p=8g=20;
if(p==5&8&qg>5)
printf ("\nWhy not C*) ;
else
printf { "\nDefinitely C ") ;
)

(h) main()
{
inti=-1,j=1,k[;
k=18&]:
I=iflj;
printf ("%d %d", 1,]} .
}

(n main()
{
intx=20 ,y=40,2=45;
ifH{x>y&&x>2)
printf("x is big") |
elseif (y>x8&y>2)
~ printf("y is big*) ;
elseif (z>x&&z>y)
printf("z is big") ;
}

() main()
{
inti=-1,j=1,k .
k=li&&];
=)
printf (*%d %d",i,j)

Let Us C

Chapter 2: The Decision Control Structure 87

(k)

[E]

(a)

(b)

(d)

}

main()

{
int j=4,k;
k=158&];
printf ("\nk = %d", k) ;

)

Point out the errors, if any, in the following programs:

I* This program
[* is an example of
[I' using Logical operators */

main()
{
int i=2,j=5;
if(i==28&j==5)
printf ("\nSatisfied at last”) ;
}
main()
{
int code, flag ;

if(code==18&flag==0)
printf ("\nThe eagle has landed”) ;
}

main()
char spy='a', password ='Z',

if (spy =="a' or password == 2’)
printf ("\nAll the birds are safe in the nest") ;
)

main()

{

88 Let Us «

int i=10,j=20;
if(i=5)8&if(j=10)
printf ("\nHave a nice day") ;
}

(a) main()

int x=10,y=20,
if(x>=2andy <=50)
printf ("n%d", x) ;
)

(b) main()
{
int a,b;
if(a==16&b==0)
printf ("\nGod is Great") ;
}

/af main()
j {

intx=2;
if(x==28&&x!=0);

printf ("nHi") ;
printf{ "\nHello™) ,

else
printf{ *Bye") ;
}

/{d}’ main()

int i=10,j=10;
if (18&&]==10)
printf ("\nHave a nice day”) ;

Chapter 2: The Decision Control Structure 89

|F] Attempt the following:

(a)

(b)

(c)

Any year is entered through the keyboard, write a program lo
determine whether the year is leap or not. Use the logical
operators && and ||.

Any character is ecntered through the keyhoard, write a
program to determine whether the character cntcred is a
capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for
varivus characters.

Characters | ASCII Values

A-Z 65 - 90

a—-z 97 -122

0-9 48 - 57

special symbols 0-47 58-64,91-96,123-127

An Insurance company follows following rules to calculate
premium.

(1) Ifaperson’s health is exccllent and the person is between
25 and 35 years of age and lives in a city and is a male
then the premium is Rs. 4 per thousand and his policy
amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that
the sex is female then the premium is Rs. 3 per thousand
and her policy amount cannot exceed Rs. | lakh.

(3) If a person’s health is poor and the person is between 25
and 35 ycars of age and lives in a village and is a male

90

Let Us C

(d)

(e)

then the premium is Rs. 6 per thousand and his policy
cannot exceed Rs. 10,000.
(4) In all other cases the person is not insured.

Write a program to output whether the person should be
insured or not, his/her premium rate and maximum amount
for which he/she can be insured.

A certain grade of steel is graded according to the following
conditions:

(i) Hardness must be greater than 50
(11) Carbon content must be less than 0.7
(i11) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 1f all three conditions are met
Grade 1s 9 1f conditions (1) and (i1) arc met
Grade is 8 if conditions (i) and (ii1) are met
Grade is 7 if conditions (i) and (ii1) are met
Grade is 6 if only one condition is met
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel
under consideration and output the grade of the steel.

A library charges a fine for every book returned late. For first
5 days the fine is 50 paise, for 6-10 days fine is one rupee and
above 10 days fine is 5 rupees. If you return the book after 30
days your membership will be cancelled. Write a program to
accept the number of days the member is late to return the
book and display the fine or the appropriate message.

Chapter 2: The Decision Control Structure 91

)

(g)

(h)

(i)

If the three sides of a triangle arc cntered through the
keyboard, write a program to check whether the triangle is
valid or not. The triangle is valid if the sum of two sides is
greater than the largest of the three sides.

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
isosceles, equilateral, scalene or right angled triangle.

In a company, worker efficiency 1s determined on the basis of
the time required for a worker to complete a particular job. If
the time taken by the worker is between 2 - 3 hours, then the
worker is said to be highly efficient. If the time required by
the worker is between 3 — 4 hours, then the worker is ordered
to improve speed. If the time taken is between 4 — 5 hours, the
worker is given training to improve his speed, and if the time
taken by the worker is more than § hours, then the worker has
to leave the company. If the time taken by the worker is input
through the keyboard, find the efficiency of the worker.

A university has the following rules for a student to qualify
for a degree with A as the main subject and B as the
subsidiary subject:

(a) He should get 55 percent or more in A and 45 percent or
more in B.

(b) If he gets than 55 percent in' A he should get 55 percent or
more in B. However, he should get at least 45 percent in
A.

(c) If he gets less than 45 percent in B and 65 percent or more
in A he 1s allowed to reappear in an examination in B to
qualify.

(d) In all other cases he is declared to have failed.

Write a program to receive marks in A and B and Output

whether the student has passed, failed or is allowed to
reappear in B.

92 ’ Let L_f:s: L

\(,(j) The policy followed by a company to process customer orders
is given by the following rules:

(a) If a customer order is less than or cqual to that in stock
and has credit is OK, supply has requirement.

(b) If has credit is not OK do not supply. Send him
intimation.

(¢) If has credit is Ok but the item in stock is less than has
order, supply what is in stock. Intimate to him data the
balance will be shipped.

Write a C program to implement the company policy.

Conditional operators
IG] What would be the output of the following programs:
(a) main()
int i=-4,jnum;
j=(num<0?0:num*num);
printf (“n%d", j) ;
)
(b) main()
{
int k, num=30;
k=(num>57(num<=107?100:200):500);

" printf ("n%d", num) ;
}

(c) main()

int j=4;
(11= 12 printf { "\"Welcome") : printf (\nGood Bye"))

Chapter 2: The Decision Control Structure

93

[H] Point out the errors, if any, in the following programs:

(a)

(b)

(c)

(d)

()

(code > 17 printf (“\nHello") ? printf ("\nHi*)) ;

)
main()
{
int tag=0,code=1;
if(tag==0)
else
printf ("\nHello Hi ") ;
}
main()
int ji=65;

printf ("\nji >= 65 ? %d : %c", ji) ;

main()
int i=10,j,
i>=52(j=10):(j=15):
printf ("\n%d %d", i,) ;
main()
inta=5,b=6;
(a==b 7 printf("%d"a)) ;
main()

inth=9;

(n==97 printf("You are correct™) ; : printf(*You are wrong") ;) ;

}

94 Let Us C

(h main()
{

int kk=651;

Il = (kk == 65 : printf ("\n kk is equal to 65) : printf ("\n kk is not
equalto 657));

printf("%d", Il) ;
}

(g) main()
{
int x=10,y=20:
x == 20 8& y 1= 10 7 printf("True") . printf{ "False”) ;
}

(1] Rewrite the following programs using conditional operators.

(a) main()
{
int x, min, max ;
scanf ("\n%d %d", &max, &x)
if (x> max)
max = X ;
else
min = x ;
}

(b) main()
{
int code
scanf ("%d", &code) ,
if(code>1)
printf ("\nJerusalem®) ;
else
if (code < 1)
printf ("\nEddie”)
else
printf ("\nC Brain") ;

Chapter 2: The Decision Control Structure 95

(c) main()
{
float sal ;
printf ("Enter the salary™} ;
scanf ("%f", &sal) ;
if (sal < 40000 && sal > 25000)
printf ("Manager®) ;
else
if (sal < 25000 && sal > 15000)
printf { "Accountant”) ;
else
printf ("Clerk”) ;

[J] Attempt the following:
(a) Using conditional operators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a
special symbol or not.

(b)~Write a program using conditional operators to dctermine
whether a year entered through the keyboard is a leap year or
not. - '

(c) Write a program to find the greatest of the three numbers
entered through the keyboard using conditional operators.

96

Let Us C

3 The Loop Control
Structure

® Loops
® The while Loop
Tips and Traps
More Operators
e The for Loop
Nesting of Loops
Multiple Initialisations in the for Loop
® The Odd Loop
The break Statement
The continue Statement
* The do-while Loop
s Summary
¢ Exercise

7

98 Let Us C

he programs that we have developed so far used either a

sequential or a decision control instruction. In the first one,

the calculations were carried out in a fixed order, while in
the second, an appropriate set of instructions were executed
depending upon the outcome of the condition being tested (or a
logical decision being taken).

These programs were of limited nature, becausc when executed,
they always performed the same series of actions, in the same way,
exactly once. Almost always, 1if something is worth doing, 1t’s
worth doing more than once. You can probably think of several
examples of this from real life, such as cating a good dinner or
going for a movic. Programming is the same; we frequently need
to perform an action over and over, often with variations in the
details each time. The mechanism, which meets this need, is the
‘loop’, and loops are the subject of this chapter.

Loops

The versatility of the computer lies in its ability to perform a set of
instructions repeatedly. This involves repeating some portion of
the program cither a specified number of times or until a particular
condition is being satisfied. This repetitive operation is done
through a loop control instruction.

There are three methods by way of which we can repeat a part ofa
program. They are:

(a) Using a for statement
(b) Using a while statement

(¢) Using a do-while statement

Fach of these methods is discussed in the following pages.

Chapter 3: The Loop Control Structure 99

The while Loop

It is often the case in programming that you want to do something
a fixed number of times. Perhaps you want to calculate gross
salaries of ten different persons, or you want to convert
temperatures from centigrade to fahrenheit for 15 different cities.
The while loop is ideally suited for such cases. Let us look at a
simple example, which uses a while loop. The flowchart shown
below would help you to understand the operation of the while
loop.

J

START

count = |

No

Yes
m -

v

si=p*n*r/100

i

count = count + |

T

Figure 3.1

100 Let Us C

J* Calculation of simple interest for 3 sets of p, nand r */

main()

L
int p, n,count;
floal r,si;
count=1;
while (count <= 3)
{

printf ("\nEnter values of p, nandr”) ;
scanf ("%d %d %f", &p, &n, &r) .
si=p*n*r/100;

printf { *Simple interest = Rs. %f", si),

count=count +1;

}

And here are a few sample runs...

Enter values of p, nand r 1000 § 13.5
Simple interesl = Rs. 675.000000
Enter values of p,nand r 2000 5 13.5
Simple interest = Rs. 1350.000000
Enter values of p, nand r 3500 5 3.5
Simple interest = Rs. 612.500000

The program executes all statements after the while 3 times. The
logic for calculating the simple interest is written within a pair of
braces immediately after the while keyword. These stalements
form what is called the ‘body" of the while loop. The parentheses
after the while contain a condition. So long as this condition
remains true all statements within the body of the while loop keep
getting executed repeatedly, To begin with the variable count is
initialized to 1 and every time the simple interest logic is executed
the value of count is incremented by one. The variable count is
many a times called cither a ‘loop counter’ or an ‘index variable’.

Chapter 3: The Loop Control Structure 101

The operation of the while loop is illustrated in the following
figure.

(" start |
[initiatise |

4

test hi;s_l

True
STOP

| body ofloupJ

[increment |

Figure 3.2
Tips and Traps
The general form of while is as shown below:

initialise loop counter ;
while (test loop counter using a condition)

do this ;
and this ;
increment loop rounter ;

}

Note the following points about while...

102 Let Us C

- The statements within the while loop would keep on getting
executed till the condition being tested remains true. When the
condition becomes false, the control passes to the first
statement that follows the body of the while loop.

In place of the condition there can be any other valid
expression. So long as the expression evaluates to a non-zero
value the statements within the loop would get executed.

- The condition being tested may usc relational or logical
operators as shown in the following examples:

while (i <= 10)
while (i>= 10 &&j <= 15)
while (j> 1088 (b< 15 c<20))

— The statements within the loop may be a single line or a block
of statements. In the first case the parentheses are optional. For
example,

whilé (i<=10)
i=i+1;

is same as

while (i<=10)
{
i=i+1;

}

— As a rule the while must test a condition that will eventually
become false, otherwise the loop would be executed forever,
indefinitely.

main()

{

int 1=1:

Chapter 3: The Loop Control Structure .~ 103

-~

while (i <=10)
printf ("%d\n", 1) |
} \

This is an indefinite loop, since i remains equal to 1 forever.
The correct form would be as under:

main()

int i=1;
while (i<=10)

printf ("%d\n" i) ;
izi+t;
)
}

_ Instead of incrementing a loop counter, we can even decrement
it and still manage to get the body of the loop executed
repeatedly. This is shown below:

main()

{
int i=5;
while (i>=1)

printf ("\nMake the computer literate!”) ;
i=i-1;
}
}
— It is not necessary that a loop counter must only be an int. It
can even be a float.

main()
float a=100;

while (a<=105)
{

104 LetUs C

printf { "\nRaindrops on roses..*)
printf (*...and whiskers on kittens") ;
a=a+01;
}
}

= Even floating point loop counters can be decremented. Once
again the increment and decrement could be by any value, not
necessarily 1.

What do you think would be the output of the following
program?

main()
{
int i=1;
while (i <= 32767)

printf ("%d\n", i)
izi+1;
}
}

No, it doesn't print numbers from 1 to 32767. It’s an
indefinite loop. To begin with, it prints out numbers from 1 to
32767. After that value of i is incremented by 1, therefore it
tries to become 32768, which falls outside the valid integer
range, so it goes (o other side and becomes -32768 which
would certainly satisfy the condition in the while. This
process goes on indefinitely.

= What will be the output of the following program?

main()

(
int i=1;
while (1<=10) ;
{

printf ("%dn”, i) ;

Chapter 3: The Loop Control Structure 105

i=ist;
}
)

This is another indefinite loop, and it doesn’t give any output
at all. The reason is, we have carelessly given a ; after the
while. This would make the loop work like this...

while (i<=10)

printf (*%d\n®, i) ;
i=i+1;

}

Since the value of i is not getting incremented the control
would keep rotating within the loop, eternally. Note that
enclosing printf() and i =i +1 within a pair of braces is not
an error. In fact we can put a pair of braces around any
individual statement or set of statements without affecting the
execution of the program.

More Operators

There are variety of operators which are frequently used with
while. To illustrate their usage let us consider a problem wherein
numbers from 1 to 10 are to be printed on the screen. The program
for performing this task can be written using while in the
following different ways:

(a) main()
{

int i=1;
while (i<=10)

printf ("%d\n", 1) ;
i=i+1;

106 Let Us C

i s
}

(b) main()
{
int ‘=1;
while (1<=10)

printf ("%d\n", i) ;
1+
}
}

Note that the increment operator ++ increments the value of i
by 1, every time the statement i++ gets executed. Similarly, to
reduce the value of a variable by 1 a decrement operator - is
also available.

However, never usc n+++ (o increment the value of n by 2,
since C doesn’t recognize the operator +4++.

{c}) main()

int i=1;
while (i<=10)

printf { "%d\n", i) ;
i += ’1 :
)
}

Note that += is a compound assignment operator. It
increments the value of i by 1. Similarly, j = j + 10 can also
be written as j += 10. Other compound assignment operators
are -=, *=, / = and %=.

id) main()

Chapter 3: The Loop Control Structure 107

{
inti=0;
while (i++<10)
printf (*%d\n", i) ;
}

In the statement while (i++ < 10), firstly the comparison of
“value of i with 10 is performed, and then the incrementation.
of i takes place. Since the incrementation of i happens after its
mm——————— = < - e
usage, here the ++ operator is called a post-incrementation
operator. When the control reaches printf(), i has already
been incremented, hence i must be initialized to 0.

(e) main()

inti=0;
while (++i<=10)
printf (*%d\n", i),

In the statement while (++i <= 10), firstly incrementation of
i takes place, then the comparison of value of i with 10 is
performed. Since the incrementation of i happens before its
usage, here the ++ operator 1s called a pre-incrementation
operator,

The for Loop

Perhaps one reason why few programmers use while is that they
are too busy using the for, which is probably the most popular
looping instruction. The for allows us to specify three things about
a loop in a single line:

(a) Setting a loop counter to an initial value.
(b) Testing the loop counter to determine whether its value has
rcached the number of repetitions desired.

108 Let Us Cﬁ

(¢) Increasing the value of loop counter each time the program
segment within the loop has been executed.

The general form of for statement is as under:

for (initialise counter ;test counter; increment counter)
{

do this ;

and this ;

and this ;

}

Let us write down the simple interest program using for. Compare
this program with the one, which we wrote using while. The
flowchart is also given below for a better understanding.

A7
C‘hcyiteyf The Loop Control Structure 109

AN

{‘\{ :
Q 1 START [

count = | —* i No
count <=3

v

count = count + | =

Yes

3

hd

fmpm_;
Bt | STOP |

3

si=p*n*r/100

Figure 3.3
I* Calculalion of simple interest for 3sets of p,nand r*/
main ()
{ A
int p, n, count;
float r,si;
for { count =1 ; count <= 3 ; count = count + 1)
(
printf ("Enter values of p,n, andr ™) ;
scanf ("%d %d %f", &p, &n, &r) ;
si=p*n*r/100;
printf { "Simple Interest = Rs.%fn" si) ;
!

110 Let Us C

If this program is compared with the one written using while, it
can be seen that the three steps—initialization, testing and
incrementation—required for the loop construct have now been
incorporated in the for statement.

‘Let us now examine how the for statement gets executed:

— When the for statement is executed for the first time, the value
of count is set to an initial value 1.

— Now the condition count <= 3 is tested. Since count is | the
condition is satisficd and the body of the loop is executed for
the first time.

— Upon reaching the closing brace of for, control is sent back to
the for statement, where the value of count gets incremented
by I.

— Again the test is performed to check whether the new value of
count exceeds 3.

—~ If the value of count is still within the range 1 to 3, the
statements within the braces of for are executed again.

— The body of the for loop continues to get executed till count
doesn’t exceed the final value 3.

~ When count reaches the value 4 the control exits from the loop
and is transferred to the statement (if any) immediately after
the body of for.

The following figure would help in further clarifying the concept
of execution of the for loop.

Chapter 3: The Loop Control Structure 11 1

| START I

r

L initialise I

test al

e o)
body of loop STOP

|

increment

Figure 3.4

It is important to note that the initialization, testing and
incrementation part of a for loop can be replaced by any valid
expression. Thus the following for loops are perfectly ok.

for(i=10;i.i-)
printf ("%d",i); /
for(i<4;j=5:j=0)
printf ("%d", i) ;
for (i=1;i<=10; printf { “%d",i++)
for (scanf "Sd", &i) ;<= 10:i++)
printf("%d", i) ;
Let us now write down the programyto print numbers from 1 to 10

in different ways. This time we would use a for loop instead of a
while loop.

112 Let Us C

(a)

(b)

(c)

main()
{
int i,
for(i=1;i<=10;i=i+1)
printf (*%d\n®, i) |
)

Note that the initialisation, testing and incrementation of loop
counter is done in the for statement itself, Instead of i =i+ 1,
the statements i++ or i += 1 can also be used.

Since there is only one statement in the body of the for loop,
the pair of braces have been dropped. As with the while, the
default scope of for is the immediately next statement after
for.

main()
{ s
int i;
for(i=1;i<=10;)
printf { "%d\n", 1) ;
i=i+13
}
}

Here, the incrementation is done within the body of the {]‘-].Z
loop and not in the for statement. Note that inspite of this
semicolon after the condition is necessary.

main()
{
int i=1;
for (;i<=10;i=i+1)
printf ("%d\n",i) ;

Chapter 3: The Loop Control Structure 113

(d)

()

Here the initialisation is done in the declaration statement
itself, but still the semicolon before the condition 1s necessary.

main()

int i=1;
for(;i<=10;)

printf { "%d\n", 1) ;
izi+t1,;
}
]

Here, neither the initialisation, nor the incrementation is done
in the for statement, but still the two semicolons are
necessary.

main()
{
int i,
for(i=0;i++<10;)
printf ("%d\n™, i)
}

Here, the comparison as well as the incrementation is done
through the same statement, i++ < 10. Since the ++ operator
comes after i firstly comparison is donc, followed by
incrementation. Note that it is necessary to initialize i to 0.

main()
{
int i;
for(i=0;++i<=107)
printf ("%d\n", i),

¥

7

114 | Let Us C

Here, both, the comparison and the incrementation is done
through the same statement, ++i <= 10. Since ++ precedes i
firstly incrementation s done, followed by comparison. Nole
that it is necessary to initialize i to 0. .

Nesting of Loops
The way if statements can be nested, simi larly whiles and fors can
also be nested. To understand how nested loops work, look at the

program given below:

1* Demonstration of nested loops */

main()
{ .
int r,c, sum;
for(r=1,r<=3;r++) /* outer loop */
{
for(c=1;c<=2;ct+) I"inner loop */
{
sum=r+c;
printf (*r = %d ¢ = %d sum = %d\n", r, ¢, sum) :
}
}
}

When you run this program you will get the following output:

r=1c=1sum=2
r=1¢=2sum=3
r=2¢=1sum=3
r=2c=2sum=4
r=3c=1sum=4
r=3c=2sum=5

Here, for each value of r the inner loop is cycled through twice,
with the variable ¢ taking values from | to 2. Thé inner loop

Chapter 3: The Loop Control Structure 115

terminates when the value of ¢ exeeeds 2, and the outer loop
terminates when the value of r exceeds 3. ’

As you can see, the body of the outer for loop is indented, and the
body of the inner for loop is further indented. These multiple
indentations make the program easier to understand.

Instead of using two statements, one to calculate sum and another
to print it out, we can compact this into one single statement by
saying:

printf (r = %d ¢ = %d sum = %d\n", r,c,r+c);

The way for loops have been nested here, similarly, two while
loops can also be nested. Not only this, a for loop can occur within
a while loop, or a while within a for.

Multiple Initialisations in the for Loop

The initialisation expression of the for loop can contain more than
one statement separated by a comma. For example,

fo{(i:1_]':2;i(=‘|0;i++}

Multiple statements can also be used in the incrementation
expression of for loop; i.e., you can increment (or decrement) two
or more variables at the same time. However, only one expression
is allowed in the test expression. This expression may contain
several conditions linked together using logical operators.

Use of multiple statements in the initialisation expression also
demonstrates why semicolons are used to separate the three
expressions in the for loop. If commas had been used, they could
not also have been used to separate multiple statements in the
initialisation expression, without confusing the compiler.

! 16 Let Us C

The Odd Loop

The loops that we have used so far execuled the statemenis within
them a finite number of times. However, in real life programming
one comes across a situation when it is nol known beforehand how
many times the statements in the loop are to be exccuted. This
situation can be programmed as shown below:

I* Execulion of a loop an unknown number of times */

main()
{
char another ;
int num ;
do
L
printf ("Enter a number ") ;

scanf ("%d", &num) ;
printf ("square of %d is %d", num, num * num) ;
printf ("\nWant to enter another number y/n *) ;
scanf (" %c", &another) ;

} while (another ==y} ;

)

And here is the sample output..,

Enter a number 5

square of 5 is 25

Want to enter another number y/n y
Enter a number 7

square of 7 is 49

Want to enter another number y/n n

In this program the do-while loop would keep getting executed till
the user continues to answer y. The moment he answers n, the loop
terminates, since the condition (anether == "y') fails. Note that
this loop ensures that statements within it are executed at least
once even if n is supplied first time itself.

Chapter 3: The Loop Control Structure 117

Though it is simpler to program such a requirement using a do-
while loop, the same functionality 1 required, can also be
accomplished using for and while loops as shown below:

1* odd loop using a for loop */

main()

{
char another ='y';
int num ;
for (; another =='y";)
{

printf ("Enter a number ") ;

scanf ("%d", &num) ;

printf ("square of %d is %d", num, num * num) ;
printf ("\nWant to enter another number y/in ") ;
scanf (" %c", &another) ;

}
)
1* odd loop using a while loop */
main()
{
char another ='y';
int num ;

while (another =="y')

{
printf { "Enter a number ") ;
scanf ("%d", &num) ;
printf ("square of %d is %d", num, num *“ num) ;
printf ("\nWant to enter another numbery/in ™) ;
scanf (" %c", &another) ;

}

118 Let Us C

The break Statement

We often come across situations where we want to jump out of a
loop instantly, without waiting to get back to the conditional test.
The keyword break allows us to do this. When break is
encountered inside any loop, control automatically passes to the
first statement after the'loop. A break is usually associated with an
if. As an cxample, let's consider the following example.

Example: Write a program to determine whether a number is
prime or not. A prime number is one, which is divisible only by 1
or itself.

All we have to do to lest whether a number is prime or not, 1s lo
divide it successively by all numbers from 2 to one less thau itself
If remainder of any of these divisions 1s zero, the number is not a
prime. If na division yields a zero then the number is a prime
number. Following program implements this logic.

/main()
A

int num,i;

printf ("Enter a number *) ;
scanf ("%d", &num) ;

i=2,
while (i <=num-1)

{

i(num%i==0)

printf ("Not a prime number") ;
break ;

i+

Chapter 3: The Loop Control Structure 119

if (i==num)
printf ("Prime number") :

}

In this program the moment num % i turns out to be zero, (i.e.
num is exactly divisible by i) the message “Not a prime number”
is printed and the control breaks out of the while loop. Why does
the program require the if statement aficr the while loop at all?
Well, there are two ways the control could have reached outside
the while loop:

(a) It jumped out because the number proved to be not a prime.
(b) The loop came to an end because the value of i became equal
to num.

When the loop terminates in the second case, it means that there
was no number between 2 to num - 1 that could cxactly divide
num. That is, num is indecd a prime. If this is true, the program
should print out the message “Prime number”.

The keyword break, breaks the control only from the while in
which it is placed. Consider the following program, which
illustrates this fact.

()

{

inti=1,j=1;
while (i++<=100)
{ while (j++ <=200)
: if (j==150)
break ;

else
printf (“%d %d\n", i,]) ;

Let U.s‘_ C_

In this program when j equals 150, break takes the control outside
the inner while anly, since it 1s placed inside the inner while.

The continue Statement

In some programming siluations we want lo take the control to the
beginning of the loop, bypassing the statements inside the loop,
which have not yet been executed, The keyword continue allows
us to do this. When continue is encountered inside any loop,
control automatically passes to the beginning of the loop.

A continue is usually associated with an if. As an ecxample, let's
consider the following program.

 main()
Ly
int i,

for(i=1;i<=2;it+)

{ for(j=1.)<=2:.1%+)
{
if(i==])
continue ,
printf { "\n%d %d\n",1,])
)
)

}

The output of the above program would be ..

12
21

Chapter 3: The Loop Control Structure 121

Note that when the value of i equals that of j, the continue
statement takes the control to the for loop (inner) bypassing rest of
the statements pending execution in the for loop (inner).

The do-while Loop
The do-while loop looks like this:
do
{
this ;
and this ;
and this ;
and this ;

} while (this condition is true) ;

There is a minor difference between the working of while and do-
while loops. This difference is the place where the condition is
tested. The while tests the condition before executing any of the
statements within the while loop. As against this, the do-while
tests the condition after having executed the statements within the
loop. Figure 3.5 would clarify the execution of do-while loop still
further.

122 Let Us C

START

! initialise

i

,_

[body of leop I

| increment 1
True
F

alse

This means that do-while would execute its statements at least
once, even if the condition fails for the first time. The while, on
the other hand will not execute its statements if the condition fails
for the first time. This difference is brought about more clearly by
the following program.

Figure 3.5

main()

while (4<1)
printf { *Hello there \n") ;

Chapter 3: The Loop Control Structure 123

Here, since the condition fails the first time itsclf, the printf() will
not get executed at all. Let's now write the same program using a
do-while loop.

main() _
do
printf ("Hello there \n") ;
Ywhile(4<1);
In this program the printf() would be executed once, since first

the body of the loop is executed and then the condition is tested.

There are some occasions when we want to execute a loop at least
once no matter what. This is illustrated in the following example:

break and continue are used with do-while just as t:cy would be
in a while or a for loop. A break takes you out of the do-while
bypassing the conditional test. A continue sends you straight to
the test at the end of the loop.

124 _ Let _{Zs(;

Summary

(@) The three type of loops available in C are for, while, and do-
while.

(b) A break statement takes the execution control out of the loop.
{c) A continue statement skips the execution of the statements
after it and takes the control lo the beginning of the loop.

(d) A do-while loop is used to ensure that the statements within

the loop are executed at least once.
(e} The ++ operator increments the operand by 1, whercas, the --
operator decrements it by 1.

(f) The operators +=, -=, *=, /=, %= are compound assignment
operators. They modify the value of the operand to the left of
them.

Exercise

\7@4 Loop

[A] What would be the output of the following programs:

(a) main{)
b
int j;
while {j <=10)

printf { \n%d", |)
j =] +1;
)
}

(b) main()
{

inti=1;
while (i<=10},

printf ("\n%d", i) ;

125

Chapter 3: The Loop Control Structure

| &
i++
}
)
s} main()
int j;
while (j<=10)
printf ("\n%d",) :
=i+
}
}
(d) main()
{
int x=1:
while (x==1)
{
Xx=x-1,;
printf ("n%d", x) ;
}
}
(e) main()
{
int x=1;
while (x==1)

x=x-1;
printf ("\n%d", x) ;

) main()

char x;

10

126 _ Let Us C

while (X =0 x <= 255, x++)
printf ("nAscii value %d Characler %c", x, x) ;
}

() ?aM)

int x=4,y,2,

y=-X.

Z=X--;

printf { "n%d %d %d*, x,y.Z).
)

(h) main()

{
int x=4,y=3,2;

2= X"y,
printf { "\n%d %d %d", x, .2} :
}

() main()

while ('a' <'D')
printf ("\nmalyalam is a palindrome”) ;
}

() main()
{

inti=10;
while (i=20)
printf ("\nA computer bufft”) ;
)

(k) main()
{
int i
while (i=10)
{

Chapter 3: The Loop Control Structure 127

printf ("n%d", i) ;
i=i+1;
}
)

() main()

float x=1.1;
while (x==1.1)

printf ("\n%f", x) ;
x=x=0.1;
}
}

(m) main()

while ('1'<'2")
printf ("\nin while loop™) ;
)

(n) main()
{
char x;
for(x=0;x<=285, x++)
printf ("\nAscii value %d Character %c", x, x) ;

(o) main{)

int x=4,y=0,2;
while (x>=0)

X
y-!-'l-;
if(x==y)

128 Let Us C

continue ;
else
printf (\n%d %d", x, y) ;
}
}

(p) main()
(

int x=4,y=0,2;
while (x>=0)
{
if(x==y)
break ;
else
printf (\n%d %d", x, ¥) ;
K==
yt+t,
}
}

[B] Attempt the following:

\/@/ Write a program to calculate overtime pay of 10 employees.

Overtime is paid at the rate of Rs. 12.00 per hour for every
hour worked above 40 hours. Assume that employees do not
work for fractional part of an hour.

s, .)
(b)" Write a program to find the factorial value of any number
entered through the keyboard. —

(c) Two numbers are entered through the keyboard. Write a
program to find the value of one number raised to the power
of another.

(d) Write a program to print all the ASCII values and their
equivalent characters using a while loop. The ASCII values
vary from O to 255.

Chapter 3: The Loop Control Structure 129

!\

| ye

(N

(8)

3(h)

(i)

v

Write a program to print out all Armstrong numbers between
1 and 500. If sum of cubes of each digit of the number is
equal to the number itself, then the number is called an
Armstrong number. For example, 153 =(1* 1 * |)+ (5*5
$8J+E(ITIXES)

Write a program for a matchstick game being played between
the computer and a user. Your program should ensure that the
computer always wins. Rules for the game are as follows:

— There are 21 maltchsticks.

— The computer asks the player to pick 1,2, 3, 0r 4
matchsticks.

- After the person picks, the computer does its
picking.

= Whoever is forced to pick up the last matchstick
loses the game.

Write a program to enter the numbers till the user wants and
at the’end it should display the count of positive, negative and
zeros entered.

Write a program to find the octal equivalent of the entered
number.

Write a program to find the range of a set of numbers. Range
is the difference between the smallest and biggest number in
the list.

WH‘, break, continue, do-while

[C] What would be the output of the following programs:

(a)

main()

inti=0;
for(;i;)

130 Let Us C

printf ("\nHere is some mail for you® Vi

}

(b) main()
{
inti;
for (i=1;i<=5;printf ("n%d",i));
i++
}

(c) main()
{
inti=1,
for (;:)

e

if(i>5)
break ;
else
i =i
printf ("\n%d", |) :
'|+=J';
)
}

(d) main()
b,
int i,
for (i=1;i<=5;printf ("\n%c",65)) .
4+
}

[D] Answer the following:

(a) The three parts of the loop expression in the for loop are:

the i expression
the t expression
the i cxpression

Chapter 3: The Loop Control Structure 131

(b)

(c)

(d)

(e)

()

An expression contains relational operators, assignment

operators, and arithmetic operators. In the absence of
parentheses, they will be evaluated in which of the following

order:

I. assignment, relational, arithmetic

2. arithmetic, relational, assignment

3. relational, arithmetic, assignment

4. assignment, arithmetic, relational

The break statement is used to exit from:

1. an if statement

2. afor loop

3. aprogram

4. the main() function

A do-while loop is useful when we want that the statements
within the loop must be executed:

1. Only once

2. At least once

3. More than once

4. None of the above

In what sequence the initialization, testing and execution of
body is done in a do-while loop

1. Initialization, execution of body, testing

2. Execution of body, initialization, testing

3. [Initialization, testing, exccution of body

4. None of the above

Which of the followirg is not an infinite loop.

1. inti=1; 2. Worl =
while (1)
{ i++

g o

132 Let Us C

(9)

[E]
(a)

(b)

(c)

(d)

(e)

3. intTrue =0, false ; 4, inty,x=0;

while (True) do
{ (
False = 1: y=x;
} Jwhie (x==0);

Which of the following statement is used to take the control to
the beginning of the loop?

l. exit

2. break

3. continue

4. None of the above

Attempt the following:

Write a program to print all prime numbers from 1 to 300,
(Hint: Use nested loaps, break and continue)

Write a program to fill the entire screen with a smiling face,
The smiling face has an ASCII value 1.

Write a program to add first scven terms of the following
series using a for loop:

1 2 2

1! * 2! W 3 T

Write a program to generate all combinations of 1, 2 and 3
using for loop.

According to a study, the approximate level of intelligence of
a person can be calculated using the following formula:

=2+ (y+05x)

Chapter 3: The Loop Control Structure 133

(f)

(9)

(h)

(i)

Wnite a program, which will produce a table of values of i, y
and x, where y varies from 1 to 6, and, for each value of y, x
varies from 5.5 to 12.5 in steps of 0.5.

Write a program to produce the following output:

ABCDEFGFEDCRBA
ARCDEF FEDCRA
ABCDE EDCRA
ARCD NCRA
A B C C R A
AR B A
A A

Write a program to fill the entire screen with diamond and
heart alternatively, The ASCII value for heart is 3 and that of
diamond is 4.

Write a program to print the multiplication table of the
number entered by the user. The table should get displayed in
the following form.

29*%1=29

29*2=358

Write a program to produce the following output:

1

134 _ Let Us C

)

(k)

(1)

(m)

1
| |
1 2 1
| 3 3 |
] 4 § 4 |

A machine is purchased which will produce carning of Rs.
1000 per year while it lasts. The machine cosls Rs. 6000 and
will have a salvage of Rs. 2000 when it is condemned. If 12
percent per annum can be earned on alternate investments
what would be the minimum life of the machine to make it a
more attractive investment compared to alternative
investment?

When interest compounds g times per year at an annual rate of
r % for n ycars, the principle p compounds to an amount a as per
the following formula

a=p(1+r/q)™

Wri.e a program to read 10 sets of p, ry n & q and calculate
the corresponding as.

The natural logarithm can be approximated by the following
series.

F L1 4
x—1 Iif 21 I [x=1 1{ x-1
4+ — p—|— || +
X 2 X Flh N 2L x
If x is input through the keyboard, write a program to
calculate the sum of first seven terms of this series.

4 The Case Control
Structure

e Decisions Using switeli
The Tips and Traps
e switch Versus if-else Ladder
* The gore Keyword
e Summary
s Excrcise

135

136 Let Us C

required to make a ‘choice between a number of alternatives

rather than only one or two. For example, which school to join
or which hotel to visit or still harder which girl to marry (you
almost always end up making a wrong decision is a different
matter altogether!). Serious C programming is same; the choice we
are asked to make is more complicated than merely selecting
between two alternatives. C provides a special control statement
that allows us to handle such cases effectively; rather than using a
series of if statements. This control instruction is in fact the topic
of this chapter. Towards the end of the chapter we would also
study a keyword called goto, and understand why we should avoid
its usage in C programming.

l n real lifc we arc often faced with situations where we are

Decisions Using switch

The control statement that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up
the control statement. They most often appear as follows:

switch (integer expression)
{
case constant 1:
do this ;
case constant 2 :
do this ;
case constant 3 :
do this ;
default :
do this ;
}

The integer expression following the keyword switch 1s any C
expression that will yield an integer value. It could be an integer
constant like 1, 2 or 3, or an expression that evaluates to an

Chapter 4: The Case Control Structure 137

integer. The keyword case is followed by an intcger or a character
constant. Each constant in each case must be different from all the
others. The “do this” lines in the above form of switch represent
any valid C statement.

What happens when we run a program containing a switch? First,
the integer expression following the keyword switch is evaluated.
The value it gives is then matched, one by one, against the
constant values that follow the case statements. When a match is
found, the program executes the statements following that case,
and all subsequent case and default statements as well. If no
match is found with any of the case statements, only the
statements following the default are executed. A few examples
will show how this control structure works.

/ Censider the following program:

main()
int i=2;
switch (i)
{ *
case1:
printf ("I am in case 1\n") ;
case?2:
printf ("l am incase 2\n") ;
case 3 :
printf ("l amincase 3\n") ;
default :
printf ("I am in default \n") ;
)
}

The output of this program would be:

Il amin case 2

138 Let Us C

| amin case 3
| am in default

The output is definitely not what we expected! We didn’t expect
the second and third line in the above output. The program prints
case 2 and 3 and the default case. Well, yes. We said the switch
exceutes the case where a match is found and all the subsequent
cases and the default as well.

f you want that only case 2 should get executed, il is upto you to
get out of the switch then and there by using a break statement.
The following example shows how this is done. Note that there is
no need for a break statement after the default, since the control
comes out of the switch anyway.

main()
{
it i=2;
swilch (i)
{
casel:
printf ("l am incase 1\n") ; =
break ;
case 2:
printf (" am incase 2\n") ;
. break ;
case 3:
printf ("l am in case 3\n") |
break ,
default ;
printf (" am in default\n") ;
}
}

The output of this program would be:

| am in case 2

Chu,ier 4: The Case Control Structure 139

-

;)
\»/The operation of switch is shown below in the form of a flowchart
for a better understanding.

statement |

= Yes
2 case 2 1 slatement 2 —#

No >
;- case 3 Yoy statement 3

No
> case 4 Xes statement 4

No

STOP
switch (choice)

R {

* case 1:
statement 1 ;
break ;

» case 2 :
statement 2 ;
break ;

: > case 3:
slatement 3 ;
break ;

= case 4 :
statement 4 ;
} .

Figure 4.1

140 Let Us C

The Tips and Traps

A few useful tips about the usage of switch and a few pitfalls to be
avoided:

(a)

(b)

The earlier program that used switch may give you the wrong
impression that you can use only cases arranged in ascending
order, 1, 2, 3 and default. You can in fact put the cases in any
order you please. Here is an example of scrambled case order:

main()
inti=22;
switch (i)

case 121:
printf ("l amin case 121\n")
break ,

case 7
printf ("l amincase 7\n") ;
break ;

case 22 .
printf ("l am in case 22\n") ;
break ;

default
printf ("l am in default\n") ;

)
}

The output of this program would be:
| am in case 22

You are also allowed to use char values in case and switch as
shown in the following program:

main()

Chapter 4: The Case Control Structure

141

(

char c='x";

swilch (¢)

{

case'v'.
printf (“| am in case v\n") ;
break ;

case 'a':
printf ("l amincasea\n”);
break ;

case'x':
pnntf('lam:ncasexh')
break ;

default :
printf (" am in default \n") ;

})

}

The output of this program would be:

| amin case x

w fact here when we use ‘v, “a’, ‘x’ they are actually
““replaced by the ASC[lvalues (118,97, 120) of these character

constants.

(c) Attimes we may want to execute a common set of statements
for multiple cases. How this can be done is shown in the

following example.

main()

char ch;

printf ("Enter any of the alphabeta, b,orc ") ;

scanf (“%c", &ch) ;

1

142 Let Us C

(d)

(e)

swilch { ch)
{
case'a’:
case'A":
printf (*a as in ashar”) ;
break ;
case'd':
case 'B':
printf (*b as in brain®) ;
break ;
case'c :
case 'C":
printf ("c as in cookie”) ;
break ;
default ;
printf "wish you knew what are alphabets®) ;
}
)

Here, we are making usc of the fact that once a case is
satisfied the control simply falls through the case till it
doesn’t encounter a break statement. That is why if an
alphabet a is entered the case ‘a’ is satisfied and since there
are no statements to be executed in this case the control
automatically reaches the next case i.e. case ‘A’ and executes
all the statements in this case.

Even if there are multiple statements to be executed in each
case there is no need to enclose them within a pair of braces
(unlike if, and else).

Every statement in a switch must belong to some case or the
other. If a statement doesn’t belong to any case the compiler
won't report an error. However, the statement would never get
executed. For example, in the following program the printf()
never goes to work.

Chapter 4: The Case Control Structure 143

(

(2)

main()

{

int i,j;

printf ("Enter value of i*) ;
scanf ("%d", &) ;

switch (i)

printf ("Hello") ;

case 1:

S j=10;
break ;

case2:
j=20;
break ;

}
}

If we have no default case, then the program simply falls
through the entire switch and continues with the next
instruction (if any,) that follows the closing brace of switch.

Is switch a replacement for if? Yes and no. Yes, because it
offers a better way of writing programs as compared to if, and
no because in certain situations we are left with no choice but
to use if. The disadvantage of switch is that one cannot have a
case in a switch which looks like:

casei<=20:
All that we can have after the case is an int constant or a char
constant or an expression that evaluates to one of these

constants. Even a float is not allowed.

The advantage of switch over if is that it leads to a more
structured program and the level of indentation is manageable,

144 Let Us C

more so if therc are multiple statements within each case of a
switch. :

(h) We can check the value of any expression in a switch. Thus
the following switch statements are legal.

switch (i +j°k)
switch (23+45% 4" k)
switch (a<4 8&b>7)

Expressions can also be used in cases provided they are
constant expressions. Thus case 3 + 7 is correct, however,
case a + b is incorrect.

(i) The break statement when used in a switch takes the control
outside the switch. However, usc of continue will not take
the control to the beginning of switch as one is likely to
believe.

(j) In principle, a switch may occur within another, but in
practice it is rarely done. Such statements would be called
nested switch statements.

(k) The switch statement is very useful while writing menu
driven programs. This aspect of switch is discussed in the
exercise at the end of this chapter.

_switch Versus if-else Ladder

There are some things that you simply cannot do with a switch.
These are:

(a) A float expression cannot be tested using a switch

(b) Cases can never have variable expressions (for example it is
wrong (o say case a +3 ;)

(c) Multiple cases cannot use same expressions. Thus the
following switch is illegal:

Chapter 4: The Case Control Structure 145

switch (a)
{

cased.

case1+2:

(a), (b) and (c) above may lead you to believe that these are
obvious disadvantages with a switch, cspecially since there
weren’t any such limitations with if-else. Then why use a switch at
all? For speed—switch works faster than an equivalent if-else
ladder. How come? This is because the compiler generates a jump
table for a switch during compilation. As a result, during
execution it simply refers the jump table to decide which case
should be executed, rather than actually checking which case is
satisfied. As against this, if-elses are slower because thcy are
evaluated at execution time. A switch with 10 cases would work
faster than an equivalent if-else ladder. Also, a switch with 2 cases
would work slower than if-else ladder. Why? If the 10" case is
satisfied then jump table would be referred and statements for the
10™ case would be executed. As against this, in an if-clse ladder 10
conditions would be evaluated at cxecution time, which makes it
slow. Note that a lookup in the jump table is faster than evaluation
of a condition, especially if the condition is complex.

[f on the other hand the conditions in the if-else were simple and
less in number then if-else would work out faster than the lookup
mechanism of a switch. Hence a switch with two cases would
work slower than an equivalent if-else. Thus, you as a programmer
should take a decision which of the two should be used when.

The goto Keyword

Avoid goto keyword! They make a C programmer’s life miserable.
There is seldom a legitimate reason for using goto, and its use is

146 Let Us C

one of the reasons that programs become unreliable, unrcadable,
and hard to debug. And yet many programmers find goto
seductive.

In a difficult programming situation it seems so easy to use a goto
to take the control where you want. However, almost always, there
is a more elegant way of writing the same program using if, for,
while and switch. These constructs are far more logical and easy
to understand.

The big problem with gotes is that when we do use them we can
never be sure how we got to a certain point in our code. They
obscure the flow of control. So as far as possible skip them. You
can always get the job dc e without them. Trust me, with good
programming skills goto can always be avoided. This is the first
and last time that we are going to use goto in this book. However,
for sake of completeness of the book, the following program
shows how 10 use goto.

main()
int goals ;
printf ("Enter the number of goals scored against India”) ;
scanf ("%d", &goals) ;

if (goals <=5)
golo s0s ;
else

printf ("About time soccer players leamt C\n") ;
printf ("and said goodbye! adieu! to soccer”) ;
exit() ; /" terminates program execution */

}

S0S
printf (*To er is human!®) ;

Chapter 4. The Case Control Structure 147

}

And here are two sample runs of the program...

Enter the number of goals scored against India 3
To e is human!

Enter the number of goals scored against India 7
About time soccer players leamnt C

and said goodbye! adieu! to soccer

A few remarks about the program would make the things clearer.

— If the condition is satisfied the goto statement transfers control
to the label ‘sos’, causing printf() following sos to be
executed.

— The label can be on a separate line or on the same line as the
statement following it, as in,

sos : printf (*To err is human!®) ;
— Any number of gotes can take the control to the same label.

— The exit() function is a standard library function which
terminates the execution of the program. It is necessary to use
this function since we don't want the statement

printf (*To err is human!®)

to get executed after execution of the else block.

— The only programming situation in favour of using goto is
when we want to take the control out of the loop that is
contained in several other loops. The following program
illustrates this.

148

Let Us i _(_;‘__

main()
Cint gk
for(i=1:i<=3;i++)

for(j=1;j<=3,j++)

{
for(k=1;k<=3;k++)
if(1==388j==38&&k==3)
goto out ;
else
printf (*%d %d %d\n®,i, j k) ;
}
)
}
out :

printf { "Out of the loop at lastl") ;
)

Go through the program carefully and find out how it works. Also

write down the same program without using goto.

Summary

(a) When we need to choose one among number of alternatives, a

switch statement is used.

(b) The switch keyword is followed by an integer or an

expression that evaluates (o an integer.

(c) The case keyword is followed by an integer or a character

constant,

(d) The control falls through all the cases unless the break

statement is given.

(e) The usage of the goto keyword should be avoided as it usually

violets the normal flow of execution.

Chapter 4: The Case Control Structure 149

Exercise

[A] What would be the output of the following programs:
(a) main()

char suite=3;
switch (suite)
{
case1:
printf ("\nDiamond") ;
case 2:
printf ("\nSpade”) ;
default :
printf { "\nHeart") ;

printf ("\nl thought one wears a suite”) ;

)

(b) main()
{

intc=3,

switch (¢)
{ (]
case'v':
printf ("l am in case vin") ;
break ;
case 3:
printf ("l amin case 3\n") ;
break ;
case 12 :
printf ("l amin case 12\n") ;
break ;
default
printf ("1 am in defauli \n") ;

150 Let Us C

}

{c) main()
{
int k,j=2;
switch (k=j+1)
{
case0:
printf ("\nTailor®) ;
case 1:
printf ("\nTutor") ;
case?2:
printf (“\nTramp”) ;
default :
printf { “\nPure Simple Egghead!") ;
}
}

(d) main()

mi=0;
switch (1)
{
case 0 :
printf { "\nCustomers are dicey") ;
case 1:
printf ("\nMarkets are pricey”) |
case2:
printf ("\ninvestors are moody") ;
cased:
printf ("\nAl least employees are good") ;
}
}

(e) main()
{
int k;
floatj=2.0;

Chapter 4: The Case Control Structure

151

switch (k=j+1)

{
cased:
printf { "\nTrapped") ;
break ;
default :
printf { “\nCaught!”) ,
}
)
(H main()
{
int ch="a"+"d';
switch (ch)
{
case'a':
case'b':
printf ("\nYou entered b*) ;
case ‘A’:
printf ("\na as in ashar”) ;
case'b' +'a':
printf ("\nYou entered aand b) ;
}
)
(9) main()
{
inti=1,;
switch (i-2)
{
case-1:
printf ("\nFeeding fish*) ;
case(:
printf ("\nWeeding grass®) ;
case1:
printf ("\nmending roof”) ;
default :

printf ("\nJust to survive®) ;

152 | Let Us €

)
}

[B] Point out the errors, if any, in the following programs:

(@) main()
{
int suite =1;
swilch (suite) ;

case(;
printf ("\nClub") ;
case 1;
printf ("\nDiamend”) ;
)
)

(b) main()
{
int temp
scanf ("%d", &temp) ;
switch (temp)
{
case (temp<=20):
printf ("\nOoooooabhnn! Damn coal!*) ;
case (temp > 20 && temp <= 30) :
printf (\nRain rain here again!") ;
case (temp > 30 && temp <= 40) :
printf ("\nWish | am on Everes!”) ;
default ;
printf ("\nGood old nagpur weather”) ;
¥
!

{c) main{)

float a=35;
switch (a)

Chapter 4: The Case Control Structure 153

{

case 0.5:
printf ("\nThe art of C*) ;
break ;

case 1.5;

- printf ("\nThe spiritof C") ;

break ;

case 5.
printf ("\nSee through ") ;
break ; '

case 3.5.
printf ("\nSimply ¢*) ;

}

)
(d) main()
{

inta=3 b=4,c¢,
c=b-a;
switch (¢)
case1]|2:
printf (*God give me an opportunity to change things”) ;
break ;

casea||b:
printf (*God give me an opportunity lo run my show®) ;
break ;
)
}

[C] Write a menu driven program which has following options:

|. Factorial of a number.
2. Prime or not

3. Odd or even

4, Exit

154

Let Us C

Make use of switch statement.
The outline of this program is given below:

{* A menu driven program */
main()
{

int choice ;

while (1)

printf ("\n1. Factorial") ;
printf ("\n2. Prime");
printf { "\n3. Odd/Even") ;
printf ("\nd. Exit");
printf ("\nYour choice?*) ;
scanf ("%d", &choice) ;

switch (choice)
{
case 1.
I* logic for factorial of a number */
break ;
case 2
I* logic for deciding prime number */
break ;
case 3:
I* logic for odd/even */
break ;
cased:
exit();

Note:

Chapter 4. The Case Control Structure 155

The statement while (1) puts the entire logic in an infinite loop.
This is necessary since the menu must keep reappearing on the
screen once an item is selected and an appropriate action taken.

[D] Write a program which to find the grace marks for a student
using switch. The user should enter the class obtained by the
student and the number of subjects he has failed in.

- If the student gets first class and the number of subjects he
failed in is greater than 3, then he does not get any grace.
If the number of subjects he failed in is less than or equal
to 3 then the grace is of 5 marks per subject.

— If the student gets second class and the number of subjects
‘he failed in is greater than 2, then he does not get any
grace, If the number of subjects he failed in is less than or
equal to 2 then the grace is of 4 marks per subject.

- If the student gets third class and the number of subjects
he failed in is greater than 1, then he does not get any
grace. If the number of subjects he failed in is equal to 1
then the grace is of 5 marks per subject

156 Let Us C

5 Functions &
Pointers

What is a Function
Why Use Functions ;
Passing Values between Functions
Scope Rule of Functions
Calling Convention
One Dicey Issue
e Advanced Features of Functions
Function Declaration and Prototypes
Call by Value and Call by Reference
An Introduction to Pointers
Pointer Notation
Back to Function Calls
Conclusions
Recursion .
Adding Functions to the Library
Summary
Exercise

- 157

158 Let Us C

nowingly or unknowingly we rely on so many persons for
Ko many things. Man is an intelligent species, but still

annot perform all of life's tasks all alone. He has to rely
on others. You may call a mechanic to fix up your bike, hire a
gardener to mow your lawn, or rely on a store to supply you
groceries every month. A computer program (except for the
simplest one) finds itself in a similar situation, It cannot handle all
the tasks by itself. Instead, it requests other program like
entities—called ‘functions’ in C—to get its tasks done. In this
chapter we will study these functions. We will look at a variety of
features of these functions, starting with the simplest one and then
working towards those that demonstrate the power of C functions.

What is a Function

A function is a self-contained block of statements that perform a
coherent task of some kind. Every C program can be thought of as
a collection of these functions. As we noted earlier, using a
function is something like hiring a person to do a specific job for
you. Sometimes the interaction with this person is very simple;
sometimes it's complex.

Suppose you have a task that is always performed exactly in the
same way—say a bimonthly servicing of your motorbike. When
you want it to be done, you go to the service station and say, “It’s
time, do it now”. You don’t need to give instructions, because the
mechanic knows his job. You don’t need to be told when the job is
done. You assume the bike would be serviced in the usual way, the
mechanic does it and that’s that.

Let us now look at a simple C function that opzrates in much the
same way as the mechanic. Actually, we will be looking at two
things—a function that calls or activates the function and the
function itsclf.

Chapter 5: Functions & Pointers 159

‘4@«)

message() ;
printf ("\nCry, and you stop the monotony!”) ;

message()

printf ("\nSmile, and the world smiles with you...") ;
}

And here’s the output...

Smile, and the world smiles with you...
Cry, and you stop the monotony!

//;Here, main() itself is a function and through it we are calling the

function message(). What do we mean when we say that main()
‘calls’ the function message()? We mean that thé control passes to
the function message(). The activity of main() is temporarily
suspended; it falls asleep while the message() function wakes up
and goes to work. When the message() function runs out of
statements to execute, the control returns to main(), which comes
to life again and begins executing its code at the exact point where
it left off. Thus, main() becomes the ‘calling’ function, whereas
message() becomes the ‘called” function,

If you have grasped the concept of ‘calling’ a function you are
prepared for a call to more than one function. Consider the
following example:

()

i |

printf ("\nl am in main®) ,
italy() ;

brazil() ;

argentina() ;

}

160 Let Us C

italy()

}

printf ("\nl am in italy" } ;

brazil()

printf ("\nl am in brazil") ;

argentina()

}

printf ("\nl am in argentina”) ;

The output of the above program when executed would be as
under:

| am in main

| am in italy

| am in brazil

I am in argentina

_~From this program a number of conclusions can be drawn:

Any C program contains at least one function.
If a program contains only one function, it must be main().

If a C program contains more than one function, then one (and
only one) of these functions must be main(), because program
execution always begins with main().

There is no limit on the number of functions that might be
present in a C program.

Each function in a program is called in the sequence specified
by the function calls in main().

Chapter 5: Functions & Pointers 161

— After each function has done its thing, control returns to
main(). When main() runs out of function calls, the program
ends.

As we have noted earlier the program execution always begins
with main(). Except for this fact all C functions enjoy a state of
perfect equality. No precedence, no priorities, nobody is nobody’s
boss. One function can call another function it has already called
but has in the meantime left temporarily in order to call a third
‘function which will sometime later call the function that has called
it;if you understand what I mean. No? Well, let’s illustrate with an
example.

/main()
printf ("\nl am in main") ;

italy() ;
printf ("\nl am finally back in main”) ;

)
italy()
{
printf ("nl am in italy") ;
brazil() ;
printf ("\nl am back in italy") ;
}
brazil()
{ :
printf ("\nl am in brazil") ;
argentina() ;
argentina()

printf { "\nl am in argentina") ;

And the'output would look like...

162 Let Us C

| am in main

| amin italy

| am in brazil

| am in argentina

| am back in italy

| am finally back in main

Here, main() calls other functions, which in turn call still other
functions. Trace carefully the way control passes from one
function to another. Since the compiler always begins the program
execution with main(), every function in a prograin must be
called directly or indirectly by main(.). In other words, the main()
function drives other functions,

Let us now summarize what we have learnt so far.

(a) C program is a collection of one or more functions.
(b) A function gets called when the function name is followed by
a semicolon. For example,

main()

argentina() ;

}

(c) A function is defined when function name is followed by a
pair of braces in which one or more statements may be
present. For example,

argentina()

statement 1 ;
statement 2 ;
slatement 3 ;

}

Chapter 5: Functions & Pointers 163

(@

(e)

(H

Any finction can be called from any other function. Even
main() can be called from other functions. For example,

main()
message() ;

message()

printf ("\nCan't imagine life without C*) ;
main() ;

}

A function can be called any number of times. For example,

main()

{

message() ;
message() ;

message()

printf { “\ndewel Thiefll") ;
}

The order in which the functions are defined in a program and
the order in which they get called need not necessarily be
same. For example,

main()
{
messagei() ;
message?() ;
message2()

printf ("nBut the butter was bitter”) ;

164 . Let Us C

(2)

(h)

(M

}

messagei()

printf ("\nMary bought some butter”) ;

Here, cven though messagel() is getting called before
message2(), still, messagel() has been defined after
message2(). However, it is advisable to define the functions
in the same order in which they are calle.d This makes the
program casier to understand,

A function can call itself. Such a process is called ‘recursion’.
We would discuss this aspect of C functions later in this
chapter.

A function can be called from other function, but a function
cannot be defined in another function. Thus, the following
program code would be wrong, since argentina() is being
defined inside another function, main().

main()

{
printf ("\nl am in main") ;
argentina()

printf { "\nl am in argentina”) ;
}
)

There are basically two types of functions:

Library functions Ex. printf(), scanf() etc.
User-defined functions Ex. argentina(), brazil() etc. ;

As the name suggests, library functions are nothing but
commonly required functions grouped together and stored in

Chapter 5. Functions & Pointers 165

what is called a Library. This library of functions is present on
the disk and is written for us by people who write compilers
for us. Almost always a compiler comes with a library of
standard functions. The procedure of calling both types of
functions is exactly same.

Why Use Functions

Why write separate functions at all? Why not squeeze the entire
logic into one function, main()? Two reasons:

(@) Writing functions avoids rewriting the same code over and
over. Suppose you have a section of code in your program
that calculates area of a triangle. If later in the program you
want to calculate the area of a different triangle, you won't
like it if you are required to write the same instructions all
over again. Instead, you would prefer to jump to a ‘section of
code’ that calculates area and then jump back to the place
from where you left off. This section of code is nothing but a
function.

(b) Using functions it becomes easier to write programs and keep
track of what they are doing. If the operation of a program can
be divided into separate activities, and each activity placed in
a different function, then each could be written and checked
more or less independently. Separating the code into modular
functions also makes the program easier to design and
understand. .

What is the moral of the story? Don’t try to cram the entire logic in
one function. It is a very bad style of programming. Instead, break
a program into small units and write functions for each of these
isolated subdivisions. Don’t hesitate to write functions that are
called only once. What is important is that these functions perform
some logically isolated task.

166 Let Us C

Passing Values between Functions

The functions that we have used so far haven't been very flexible.
We call them and they do what they are designed to do. Like our
mechanic who always services the motorbike in exactly the same
way, we haven't been able to influence the functions in the way
they carry out their tasks. It would be nice to have a little more
control over what functions do, in the same way it would be nice
to be able to tell the mechanic, “Also change the engine oil, I am
going for an outing”. In short, now we want to communicate
between the ‘calling’ and the ‘called’ functions.

The mechanism used to convey information to the function is the
‘argument’. You have unknowingly used the arguments in the
printf() and scanf() functions; the format string and the list of
variables used inside the parentheses in these functions are
arguments. The arguments are sometimes also called ‘parameters’.

Consider the following program. In this program, in main() we
receive the values of a, b and ¢ through the keyboard and then
output the sum of a, b and ¢. However, the calculation of sum is
done in a different function called calsum(). If sum is to be
calculated in calsum() and values of a, b and ¢ are received in
main(), then we must pass on these values to calsum(), and once
calsum() calculates the sum we must retum it from calsum()
back to main().

[* Sending and receiving values between functions */
main()

{

int a, b, ¢, sum;

printf ("\nEnter any three numbers ") ;
scanf ("%d %d %d", &a, &b, &c) ;

sum =calsum(a,b,c);

Chapter 5: Functions & Pointers 167

}

printf ("\nSum = %d", sum) ;

calsum (x,y,2)
int x,y,2

int d;

d=x+y+z;
return (d);

And here is the output...

Enter any three numbers 10 20 30

Sum =

60

There are a number of things to note about this program:

(a»)

Fd

(&)

In this program, from the function main() the values of a, b
and c¢ are passed on to the function calsum(), by making a
call to the function calsum() and mentioning a, b and ¢ in the
parentheses:

sum =calsum (a,b,¢);

In the calsum() function these values get collected in three
variables x, y and z:

calsum(x,vy,z)
int x,y,2;

The variables a, b and ¢ are called ‘actual arguments’,
whereas the variables x, y and z are called ‘formal
arguments’. Any number of arguments can be passed to a
function being called. However, the type, order and number of
the actual and formal arguments must always be same.

168 Let Us C

(c)

(d)

Instead of using different variable names x, y and z, we could
have used the same variable names a, b and c. But the
compiler would still treat them as different variables since
they are in different functions.

There are two methods of declaring the formal arguments.
The one that we have used in our program is known as
Kernighan and Ritchie (or just K & R) method.

calsum(x,y,z)
int x,y,2;

Another method is,

calsum (int x, int y, inl 2)

This method is called ANSI method and is more commonly
used these days.

In the earlier programs the moment closing brace (}) of the
called function was encountered the control returned to the
calling function. No separate return statement was necessary
to send back the control.

This approach is fine if the called function is not going to
return any meaningful value to the calling function. In the
above program, however, we want to return the sum of x, y
and z. Therefore, il is necessary to use the return statement.

The return statement serves two purposes:

(1) On executing the return statement it immediately
transfers the control back to the calling program.

(2) It returns the value present in the parentheses after
return, to th3e calling program. In the above program
the value of sum of three numbers is being returned.

Chapter 5: Functions & Pointers 169

(e) There is no restriction on the number of return statements

(0

(g)

that may be present in a function. Also, the return statement
need not always be present at the end of the called function.
The following program illustrates these facts.

fun()
{

char ch;

printf ("\nEnter any alphabet ") ;
scanf ("%c", &ch) ;

if (ch>=658&ch<=90) p
return (ch); '
else
return (ch +32) ;

In this function different return statements will be executed
depending on whether ch is capital or not.

Whenever the control returns from a function some value is
definitely returned. If a meaningful value is returned then it
should be accepted in the calling program by equating the
called function to some variable. For example,

sum=calsum(a,b,c);

All the following are valid return statements.
retum(a);

return (23) ;

return (12.34) ;
return ;

170 Let Us C

(h)

(1)

@)

In the last statement a garbage value is returned to the calling
function since we are not returning any specific value. Note
that in this case the parentheses after return are dropped.

If we want that a called function should not return any value,
in that case, we must mention so by using the keyword void
as shown helow.

void display()

printf ("nHeads | win...") ;
printf ("nTails you lose") ;

}

A function can return only one value at a time. Thus the
following statements are invalid.

relurn(a,b);
return (x, 12);

There is a way to get around this limitation, which would be
discussed later in this chapter when we learn pointers.

If the value of a formal argument is changed in the called
function, the corresponding change does not take place in the
calling function. For example,

main{)
{
int a=30;
fun(a);
printf ("n%d", a),;
}

fun {int b)

b=60;

Chapter 5: Functions & Pointers 171

printf ("n%d", b) ;

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fun(), the
value of a in main() remains unchanged. This means that
when values are passed to a called function the values present
in actual arguments are not physically moved to the formal
arguments; just a photocopy of values in actual argument is
made into formal arguments, /

Scope Rule of Functions

Look at the following program

main()
inti=20;
display (i) ;

display (int j)
{

int k=35

printf ("\n%d", j) ;

printf ("\r%d”, k) ;
)

In this program is it necessary to pass the value of the variable i to
the function display()? Will it not become automatically available
to the function display()? No. Because by default the scope of a
variable is local to the function in which it is defined. The presence

172 Let Us C

of i is known only to the function main() and not to any other
function. Similarly, the variable k is local to the function
display() and hence it is not available to main(). That is why to
make the value of i available to display() we have to explicitly
pass it to display(). Likewise, if we want K to be available to
main() we will have to return it to main() using the return
statement. In general we can say that the scope of a variable is
local to the function in which it is defined..

Calling Convention
Calling convention indicates the order in which arguments are
passed to a function when a function call is encountered. There are

two possibilities here:

(a) Arguments might be passed from left to right.
(b) Arguments might be passed from right to lefl.

C language follows the second order.

Consider the following function call:

fun(a b,c,d);

In this call it doesn’t matter whether the arguments are passed
from left to right or from right to left. However, in some function
call the order of passing arguments becomes an important

consideration. For example:

inta=1;
printf ("%d %d %d", a, ++a, att) ;

It appears that this printf() would output 1 2 3.

This however is not the case. Surprisingly, it outputs 3 3 1. This is
because C’s calling convention is from right to left. That is, firstly

Chapter 5: Functions & Pointers 173

1 is passed through the expression a++ and then a is incremented
to 2. Then result of ++a is passed. That is, a is incremented to 3
and then passed. Finally, latest value of a, i.e. 3, is passed. Thus in
right to left order 1, 3, 3 get passed. Once printf() collects them it
prints them in the order in which we have asked it to get them
printed (and not the order in which they were passed). Thus 3 3 |
gets printed.

One Dicey Issue
Consider the following function calls:

#include <conio.h>
clrser () ;

gotoxy (10,20),
ch=getch(a):

Here we are calling three standard library functions. Whenever we
call the library functions we must write their prototype before
making the call. This helps the compiler in checking whether the
values being passed and returned are as per the prototype
declaration. But since we don’t define the library functions (we
merely call them) we may not know the prototypes of library
functions. Hence when the library of functions is provided a set of
“.h’ files is also provided. These files contain the prototypes of
library functions. But why multiple files? Because the library
functions are divided into different groups and one file is provided
for each group. For example, prototypes of all input/output
functions are provided in the file ‘stdio.h’, prototypes of all
mathematical functions are provided in the file ‘math.h’, etc.

On compilation of the above code the compiler reports all errors
due to the mismatch between parameters in functior call and their
corresponding prototypes declared in the file ‘conio.h’: You can
even open this file and look at the prototypes. They would appear
as shown below:

13

174 Let Us C

void clrser() ;
void gotoxy (int, int) ;
int getch() ;

Now consider the following function calls:

#include <stdio.h>
int i=10,j=20;

printf (*%d %d %d *,1,])
printf ("%d", i,]) ;

The above functions get successfully compiled even though there
s a mismatch in the format specifiers and the variables in the list.
This is because printf() accepts variable number of arguments
(sometimes 2 arguments, sometimes 3 arguments, etc.), and even
with the mismatch above the call still matches with the prototype
of printf() present in ‘stdio.h’. At run-time when the first printf()
is executed, since there is no variable matching with the last
specifier %d, a garbage integer gets printed. Similarly, in the
second printf() since the format specifier for j has not been
mentioned its value does not get printed.

Advanced Features of Functions

With a sound basis of the preliminaries of C functions, let us now
get into their intricacies. Following advanced topics would be
considered here.

(a) Function Declaration and Prototypes
(b) Calling functions by value or by reference
(¢) Recursion

Let us understand these features one by one.

Chapter 5: Functions & Pointers 175

Function Declaration and Prototypes

Any C function by d:ult returns an int value. More specifically,
whenever a call is made to a function, the compiler assumes that
this function would return a value of the type int. If we desire that a
function should return a value other than an int, then it is necessary
to explicitly mention so in the calling function as well as in the
called function. Suppose we want to find out square of a number
using a function. This is how this simple program would lcok like:

main()

{
float a,b;

printf ("\nEnter any number ") ;
scanf ("%f", &a) ;

b=square(a);
printf ("\nSquare of %fis %", a,b);
)
square (float x)
{ L
float y;
y=x*x;
retun (y);
}

And here are three sample runs of:lhis program...

Enter any number 3
Square of 3 is 9.000000
Enter any number 1.5
Square of 1.5 is 2.000000
Enter any number 2.5
Square of 2.5 is 6.000000

176 Let Us C

The first of these answers is correct. But square of 1.5 is definitely
not 2. Neither is 6 a square of 2.5. This happened because any C
function, by default, always returns an integer value. Therefore,
even though the function square() calculates the square of 1.5 as
2.25, the problem crops up when this 2.25 is to be returned to
main(). square() is not capable of returning a float value. How
do we overcome this? The following program segment illustrates
how to make square() capable of returning a float value. .

main()
{
float square (float) ;
float a,b;
printf (“nEnter any number *) ;
scanf ("%f", &) ;
b=square(a);
printf ("\nSquare of %f is %F", a, b);
}
float square (float x)
float y;
y=x"x;
retumn (y):
}
And here is the output...

Enter any number 1.5
Square of 1.5 is 2.250000
Enter any number 2.5
Square of 2.5 is 6.250000

Chapter 5: Functions & Pointers 177

Now the expected answers i.e. 2.25 and 6.25 are obtained. Note
that the function square() must be declared in main() as

float square (float) ;

This statement is oflen called the prototype declaration of the
square() function. What it means is square() is a function that
receives a float and returns a float. We have done the prototype
declaration in main() because we have called it from main().
There is a possibility that we may call square() from several other
functions other than main(). Does this mean that we would need
prototype declaration of square() in all these functions. No, in
such a case we would make only one declaration outside all the
functions at the beginning of the program.

In practice you may seldom be required to return a value other
than an int, but just in case you are required to, employ the above
method. In some programming situations we want that a called
function should not return any value. This is made possible by
using the keyword void. This is illustrated in the following
program.

main()

void gospel(),
gospel() ;

void gospel()

{
printf ("\nViruses are electronic bandits...”) ;
printf { “\nwho eat nuggets of information...”) ;
printf ("\nand chunks of bytes...") ;
printf { "\nwhen you least expect...”) ;

178 Let Us C

Here, the gospel() function has been defined to return void; means
it would return nothing, ‘Therefore, it would just flash the four
messages about viruses and return the control back to the main()
function.

Call by Value and Call by Reference

By now we are well familiar with how to call functions. But, if you
observe carefully, whenever we called a function and passed
something to it we have always passed the ‘values’ of variables to
the called function. Such function calls are called ‘calls by value’.
By this what we mean is, on calling a function we are passing
values of variables to it. The examples of call by value are shown
below:

sum = calsum(a,b,c);
f=factr(a);

We have also learnt that variables are stored somewhere in
memory. So instead of passing the vaiue of a variable, can we not
pass the location number (also called address) of the variable to a
function? If we were able to do so it would become a ‘call by
reference’. What purpose a ‘call by reference’ serves we would
find out a little later. First we must equip ourselves with
knowledge of how to make a ‘call by reference’. This feature of C
functions needs at least an elementary knowledge of a concept
called ‘pointers’. So let us first acquire the basics of pointers after
which we would take up this topic once again.

An Introduction to Pointers

Which feature of C do beginners find most difficult to understand?
The answer is easy: pointers. Other languages have pointers but
few use them so frequently as C does. And why not? It is C's
clever use of pointers that makes it the excellent language it is.

Chapter 5: Functions & Pointers 179

The difficulty beginners have with pointers has much to do with
C’s pointer terminology than the actual concept. For instance,
when a C programmer says that a certain variable is a “pointer”,
what does that mean? It is hard to see how a variable can point to
something, or in a certain direction.

It is hard to get a grip on pointers just by listening to programmer’s
jargon. In our discussion of C pointers, therefore, we will try to
avoid this difficulty by explaining pointers .in terms of

programming concepts we already understand. The first thing we
want to do is explain the rationale of C’s pointer notation.

Pointer Notation

Consider the declaration,

inti=3;

This declaration tells the C compiler to:

(a) Reserve space in memory to hold the integer value.
(b) Associate the name i with this memory location.

(c) Store the value 3 at this location.

We -may represent i's location in memory by the following
memory map.

. .
i =™ location name

| 3 —I——’ value at location

65524 —* location number =

Figure 5.1

180 LetlUs ™

We see that the computer has selected memory location 65524 as
the place to store the value 3. The location number 65524 is not a
number to be relied upon, because some other time the compuler
may choose a different location for storing the value 3. The
important point is, i’s address in memory is a number.

We can print this address number through the following program:

main()

{
inti=3;
printf ("\nAddress of i = %u”, &i) ;
printf ("\nValue of i = %d", i) ;

}

The output of the above program would be:

Address of i = 65524
Valueofi=3

Look at the first printi() statement carefully. ‘&’ used in this
statement is C’s *address of* operator. The expression &i returns
the address of the variable i, which in this case happens to be
65524. Since 65524 represents an address, there is no question of a
sign being associated with it. Hence it is printed out using %u,
which is a format specifier for printing an unsigned integer. We
have been using the ‘&’ operator all the time in the scanf()
statement.

The other pointer operator available in C is “**, called ‘value at
address’ operator. It gives the value stored at a particular address.
The ‘value at address’ operator is also called ‘indirection’
operator. '

Observe carefully the output of the following program:

Chapter 5: Functions & Pointers 181

main()
int i=3;

printf ("\nAddress of i = %u", &i) ;

printf ("\nValue of i = %d", i) ;

printf ("\nValue of i = %d", *(&)) ;
}

The output of the above program would be:

Address of i = 65524
Value ofi=3
Valueofi=3

Note that printing the value of *(&i) is same as printing the value
of i.

The expression &i gives the address of the variable i. This address
can be collected in a variable, by saying,

j=8&i;

But remember that j is not an ordinary variable like any other
integer variable. It is a variable that contains the address of other
variable (i in this case). Since j is a variable the compiler must

provide it space in the memory. Once again, the following memory
map would illustrate the contents of i and j.

i]

; 3 I |65524|

65524 65522

Figure 5.2

182 Let Us C

As you can see, i's value is 3 and s value is i’s address.

But wait, we can’t use j in a program without declaring it. And
since j is a variable that contains the address of i, it is declared as,

int %, ¥

This declaration tells the compiler that j will be used to store the
address of an integer value. In other words | points to an integer.
How do we justify the usage of * in the declaration,

int *;

Let us go by the meaning of *. It stands for ‘value at address’.
Thus, int *j would mean, the value at the address contained in j is
an int.

Here is a program that demonstrates the relationships we have
been discussing.

main{)

{
inti=3;
int *j;
j=&i;

printf ("nAddress of i = %u", &) ;
printf ("nAddress of i = %u", j) ;
printf ("nAddress of j = %u", &) ;
printf ("\nValue of j = %u",j) |
printf ("\nValue of i = %d", i) ;
printf ("nValue ofi = %d", *(&)),
printf ("\nValue of i = %d", %) ;

}

The output of the above program would be:

Chapter 5: Functions & Pointers 183

Address of i = 65524
Address of i = 65524
Address of j = 65522
Value of j = 65524
Value ofi=3

Value ofi=3
Valueofi=3

Work through the above program carefully, taking help of the
memory locations of i and j shown earlier. This program
summarizes everything that we have discussed so far. If you don’t
understand the program’s output, or the meanings of &I, &j, *j
and *(&i), re-read the last few pages. Everything we say about C
pointers from here onwards will depend on your understanding
these expressions thoroughly.

Look at the following declarations,

int *alpha;
char *ch;
float *s;

Here, alpha, ch and s are declared as pointer variables, i.e.
variables capable of holding addresses. Remember that, addresses
(location nos.) are always going to be whole numbers, therefore
pointers always contain whole numbers. Now we can put these two
facts together and say—pointers are variables that contain
addresses, and since addresses are always whole numbers, pointers
would always contain whole numbers.

The declaration float *s does not mean that s is going to contain a
floating-point value. What it means is, s is going to contain the
address of a floating-point value. Similarly, char *ch means that
ch is going to contain the address of a char value. Or in other
words, the value at address stored in ch is going to be a char.

184 Let Us C

The concept of pointers can be further extended. Pointer, we know
is a variable that contains address of another variable. Now this
variable itself might be another pointer. Thus, we now have a
pointer that contains another pointer's address. The following
example should make this point clear.

main()
int i=3,% "k,

j=8&i;
k=8&;
printf ("\nAddress of i = %u", &i);
printf ("\nAddress of i = %u", j) ;
printf ("\nAddress of i = %u", *k) ;
printf ("nAddress of | = %u", &) ;
printf (“\nAddress of j = %u", k) ;
printf ("\nAddress of k = %u", 8k) ;
printf ("\nValue of | = %u",j);
printf ("\nValue of k = %u", k),
printf ("\nValue of i =%d",1);
printf ("\nValue ofi =%d", * (&i)).
printf { "\nValue ofi =%d", "j)
printf ("\nValue of i =%d", *k);

}

The output of the above program would be:
Address of i = 65524

Address of i = 65524
Address of i = 65524
Address of j = 65522
Address of j = 65522
Address of k = 65520
Value of j = 65524

Value of k = 65522

Chapter 5: Functions & Pointers 185

Value ofi =3
Value ofi =3
Value pfi =3
Value ofi =3

Figure 5.3 would help you in tracing out how the program prints
the above output,

Remember that when you run this program the addresses that get
printed might turn out to be something different than the ones
shown in the figure. However, with thesc addresses too the
relationship between i, j and k can be easily established.

i i k
] 3 65524 65522
65524 65522 65520

Figure 5.3
Observe how the variables j and k have been declared,
inl i. .ju th ;

Here, i is an ordinary int, j is a pointer to an int (often called an
integer pointer), whereas K is a pointer to an integer pointer. We
can extend the above program still further by creating a pointer to
a pointer to an integer pointer. In principle, you would agree that
likewise there could exist a pointer to a pointer to a pointer to a
pointer to a pointer. There is no limit on how far can we go on
extending this definition. - Possibly, till the point we can
comprehend it. And that point of comprehension is usually a

pointer to a pointer. Beyond this one rarely requires to extend the
definition of a pointer. But just in case...

186 Let Us C

Back to Function Calls

Having had the first tryst with pointers let us now get back to what
we had originally set out to lcarn—the two types of function
calls—call by value and call by reference. Arguments can
generally be passed to functions in one of the two ways:

{a) sending the values of the arguments
(b) sending the addresses of the arguments

In the first method the ‘value’ of each of tHe actual arguments in
the calling function is copied into corresponding formal arguments
of the called function. With this method the changes made to the
formal arguments in the called function have no effect on the
values of actual arguments in the calling function. The following
program illustrates the *Call by Value’.

main()
int a=10,b=20;
swapv(a,b);
printf ("na =%db=%d"a,b);
}
swapv (int x,int y)
{
int t;
t=x,;
X=y;
y=t;
printf ("\nx = %d y =%d", x,y),
}

The output of the above program would be:

Chapter 5: Functions & Pointers 187

x=20y=10
a=10b=20

Note that values of a and b remain unchanged even after
exchanging the values of x and y.

In the second method (call by reference) the addresses of actual
arguments in the calling function are ~opied into formal arguments
of the called function. This means that using these addresses we
would have an access to the actual arguments and hence we would
be able to manipulate them. The following program illustrates this
fact.

main().
int a=10,b=20;
swapr (&a, &b);

printf ("\na =%d b=%d",a,b);
)

:swapr{ int *x,int *y)

\
int t;

}
The output of the above program would be:
a=20b=10

Note that this program manages to exchange the values of a and b

using i addresses stored in x and y.

188 Let Us C

Usually in C programming we make a call by value. This means
that in general you cannot alter the actual arguments. But if
desired, il can always be achieved through a call by reference.

Using a call by reference intelligently we can make a function
return more than one value at a time, which is not possible
ordinarily. This is shown in the program given below.

main()

{

int radius ;
float area, perimeter ;

printf ("\nEnter radius of acircle ") ;
scanf ("%d", &radius) ,
areaperi (radius, &area, &perimeter) ;

printf { *Area = %™, area) ;
printf ("\nPerimeter = %f", perimeter) ;

}

areaperi { int r, float *a, float *p)
*a=3i4'r"r;
'p=2'3.14"r;

)

And here is the output...

Enter radius of a circle 5
Area = 78.500000
Perimeter = 31.400000

Here, we are making a mixed call, in the sense, we are passing the
value of radius but, addresses of area and perimeter. And since
we are passing the addresses, any change that we make in values
stored at addresses contained in the variables a and p, would make

Chapter 5: Functions & Pointers 189

the change effective in main(). That is why when the control
returns from the function areaperi() we are able to output the
values of area and perimeter.

Thus, we have been able to indirectly return two values from a
called function, and hence, have overcome the limitation of the
return statement, which can return only one value from a function
atatime. -

Conclusions

From the programs that we discussed here we can draw the
following conclusions:

(a) If we want that the value of an actual argument should not get
changed in the function being called, pass the actual argument
by value.

(b) If we want that the value of an actual argument should get
changed in the function being called, pass the actual argument
by reference,

(c) If a function is to be made to return more than one value at a
time then return these values indirectly by using a call by
reference.

Recursion

In C, it is possible for the functions to call themselves. A function
is called ‘recursive’ if a statement within the body of a function
calls the same function. Sometimes called ‘circular definition’,
recursion is thus the process of defining something in terms of
itself. ' '

Let us now see a simple example of recursion. Suppose we want to
calculate the factorial value of an integer. As we know, the

14

_129 Let Us C

. factorial of a number is the product of all the integers between 1
and that number. For example, 4 factorial is4 * 3 * 2 * 1. This can
also be expressed as 4!'= 4 * 3! where ‘!" stands for factorial. Thus
factorial of a number can be expressed in the form of itself. Hence
this can be programmed using recursion. However, before we try
to write a recursive function for calculating factorial let us take a
look at the non-recursive function for calculating the factorial
value of an integer.

main()
int a, fact;

printf ("\nEnter any number ") :
scanf ("%d", &a);

fact = factorial (@) ;
printf ("Factorial value = %d", fact) ;

}
factorial (int x)
i f=1,1;
for(i=x;i>=1;i=)
f=f*i;
return (f)

}

And here is the output...

Enter any number 3
Factorial value = 6

Chapter 5: Functions & Pointers 191

Work through the above program carefully, till you understand the
logic of the program properly. Recursive factorial function can be
understood only if you are thorough with the above logic.

Following is the recursive version of the function to calculate the
factorial value.

main()
{ L
int a, fact
printf ("\nEnter any number ") ;
scanf ("%d", &a) ;
fact=rec(a); |
printf ("Factorial value = %d", fact) ;
}
rec(int x)
int f;
if(x==1)
return (1)
else
f=x*rec(x-1);
retum (f);
)
And here is the output for four runs of the program
Enter any number 1
Factorial value = 1
Enter any number 2

Faclorial value = 2
Enter any number 3

192 Let Us C

Factorial value = 6
Enter any number 5
Factorial value = 120

Let us understand this recursive factorial function thoroughly. In
the first run when the number entered through scanf() is 1, let us
see what action does ree() take. The value of a (i.e. 1) is copied
into x. Since x turns out to be 1 the condition if (x == 1) is
satisfied and hence 1 (which-indeed is the value of 1 factorial) is
returned through the return statement.

When the number entered through scanf() is 2, the (x == 1) test
fails, so we reach the statement,

f=x*rec(x-1);

And here is where we meet recursion. How do we handle the
expression x * rec (x - 1)? We multiply x by rec (x-1). Since
the current value of x is 2, it is same as saying that we must
calculate the value (2 * rec (1)). We know that the value returned
by rec (1) is 1, so the expression reduces to (2 * 1), or simply 2.
Thus the statement,

x*‘rec(x-1);

evaluates to 2, which is stored in the variable f, and is returned to
main(), where it is duly printed as

Factorial value = 2

Now perhaps you can see what would happen if the value of a is 3,
4, 5 and so on.

In case the value of a is 5, main() would call rec() with 5 as its
actual argument, and rec() will send back the computed value. But
before sending the computed value, rec() calls rec() and waits for
a value to be returned. It is possible for the rec() that has just been

Chapter 5: Functions & Pointers 193

called to call yet another ree(), the argument x being decreased in
value by | for each of these recursive calls, We speak of this series
of calls to ree() as being different invocations of rec(). These
successive invocations of the same function are possible because
the C compiler keeps track of which invocation calls which. These
recursive invocations end finally when the last invocation gets an
argument value of 1, which the preceding invocation of rec() now
uses to calculate its own f value and so on up the ladder. So we
might say what happens is,

rec (5) returns (5 times rec (4),
which returns (4 timesrec (3),
which retuns (3 times rec (2),
which retums (2 times rec (1),
whichreturns (1)))))

Foxed? Well, that is recursion for you in its simplest garbs. I hope
you agree that it’s difficult to visualize how the control flows from
one function call to another. Possibly Figure 5.4 would make
things a bit clearer.

Assume that the number entered through scanf() is 3. Using
Figure 5.4 let’s visualize what exactly happens when the recursive
function rec() gets called. Go through the figure carefully. The
first time when rec() is called from main(), x collects 3. From
here, since X is not equal to 1, the if block is skipped and ree() is
called again with the argument (x — 1), i.e. 2. This is a recursive
call. Since x is still not equal to 1, ree() is called yct another time,
with argument (2 - 1). This time as x is 1, control goes back to
previous rec() with the value 1, and f is evaluated as 2.

Similarly, each rec() evaluates its f from the returned value, and
finally 6 is returned to main(). The sequence would be grasped
better by following the arrows shown in Figure 5.4. Let it be clear
that while executing the program there do not exist so many copies
of the function ree(). These have been shown in the figure just to

194 Let Us C

help you keep track of how the control flows during successive
recursive calls.

from main()
rec(intx) rec(intx) rec (intx)
{ { {
intf; intf; int f;
if{(x=1) il fe=="1) if(x==1)
retun (1) ; retum(1); retum (1),
else clsc clse
f=x*rec(x-1); f=x*rec(x-1); f=x*rec(x-1);
A
retumn () retumn (f) ; return (1) ;
i | | i
to main()
Figure 5.4

Recursion may seem strange and complicated at first glance, but it
is often the most dircct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Recursion and Stack

There are different ways in which data can be organized. For
example, if you are to store five numbers then we can store them
in five different variables, an array, a linked list, a binary trec, etc.
All these different ways of organizing the data are known as data
structures. The compiler uses one such data structure called stack
for implementing normal as well as recursive function calls.

Chapter 5: Functions & Pointers ' 195

A stack is a Last In First Out (LIFO) data structure. This means
that the last item to get stored on the stack (oflen called Push
operation) is the first one to get out of it (often called as Pop
operation). You can compare this to the stack of plates in a
cafeteria—the last plate that goes on the stack is the first one to get’
out of it. Now let us see how the stack works in case of the
following program.

main()
inta=5,b=2,c;
c=add(ab);
printf ("sum = %d", ¢) ,

}
add (inti, intj)

{
int sum ;
sum=itj;
return sum ;
}

In this program before transferring the execution control to the
function fun() the values of parameters a and b are pushed onto
the stack. Following this the address of the statement printf() is
pushed on the stack and the control is transferred to fun(). It is
necessary to push this address on the stack. In fun() the values of
a and b that were pushed on the stack are referred as i and j. In
fun() the local variable sum gets pushed on the stack. When
value of sum is returned sum is popped up from the stack. Next
the address of the statement where the control should be returned
is popped up from the stack. Using this address the control returns
to the printf() statement in main(). Before execution of printf()
begins the two integers that were earlier pushed on the stack are
now popped off.

How the values are being pushed and popped even though we
didn’t write any code to do so? Simple—the compiler on

196 Let Us C

encountering the function call would generate code to push
parameters and the address. Similarly, it would gencrate code to
clear the stack when the control returns back from fun(). Figure
5.5 shows the contents of the stack at different stages of execution.

Address of .
printf() 3
Copy of a 5 Copy of a 5
Copy of b 5—_ Copy of b 2
Empty stack When call to Before transfering
fun() 15 met control to fun()
sum ‘I',l
Address xx;;._._ xxxx__
i s 5
. =
J |_ 2 2
Aiter control While returning On returning control
reachc fun() control from fun() from fun()
Figure 5.5

Note that in this program popping of sum and address is done by
fun(), whereas popping of the two integers is done by main().
When it is done this way it is known as 'CDecl Calling
Convention’. Therc are other calling conventions as well where
instead of main(), fun() itself clears the two integers. The calling
convention also decides whether the parameters being passed to
the function are pushed on the stack in left-to-right or right-to-left
order. The standard calling convention always uses the right-to-left

Chapter 5. Functions & Pointers 197

order. Thus during the call to fun() firstly value of b is pushed to
the stack, followed by the value of a.

The recursive calls are no different. Whenever we make a
recursive call the parameters and the return address gets pushed on
the stack. The stack gets unwound when the control returns from
the called function. Thus during every recursive function call we
are working with a fresh set of parameters.

Also, note that while writing recursive functions you must have an
if statement somewhere in the recursive function to force the
function to retum without recursive call being executed. If you
don’t do this and you cail the function, you will fall in an
indefinite loop, and the stack will keep on getting filled with
parameters and the return address each time there is a call. Soon
the stack would become full and you would get a run-time error
indicating that the stack has become full. This is a very common
error while writing recursive functions. My advice is to use
printf() statement liberally during the development of recursive
function, so that you can watch what is going on and can abort
execution if you see that you have made a mistake.

Adding Functions to the Library

Most of the times we either use the functions present in the
standard library or we define our own functions and use them. Can
we not add our functions to the standard library? And would it
make any sense in doing so? We can add user-defined functions to
the library. It makes sense in doing so as the functions that are to
be added to the library are first compiled and then added. When we
use these functions (by calling them) we save on their compilation
time as they are available in the library in the compiled form.

Let us now see how to add user-defined functions to the library.
Different compilers provide different utilities to add/delete/modify
functions in the standard library. For example, Turbo C/C++

198 et Us C

compilers provide a utility called ‘tlib.exe’ (Turbo Librarian). Let
us use this utility to add a function factorial() to the library.

Given below are the steps to do so:

(a)

(b)

(c)

(d)

Write the function definition of factorial() in some file, say
*factic’,

int factorial { int num)

inti,f=1;

for(i=1,i<=num;itt)
f=1"i;

return () ;

}

Compile the ‘fact.c’ file using Alt F9. A new file called
‘fact.ob)” would get created containing the compiled code in
machine language.

Add the function to the library by issuing the command
C:\>tlib math.lib + c:\fact.obj

Here, ‘math.lib’ is a library filename, + is a switch, which
means we want to add new function to library and ‘c:\fact.obj’
is the path of the “.obj’ file.

Declare the prototype of the factorial() function in the header
file, say ‘facth'. This file should be included while calling the
function.

To use the function present inside the library, create a
program as shown below:

#include "c:\\facth"
main()

Chapter 5: Functions & Pointers 199

{
intf;
f=factorial (5) ;
printf ("%d", f) ;
}

(f) Compile and execute the program using Ctrl F9,

If we wish we can delete the existing functions present in the
library using the minus (-) switch.

Instead of modifying the existing libraries we can create our own
library. Let’s see how to do this. Let us assume that we wish to
create a library containing the functions factorial(), prime() and
fibonacci(). As their names suggest, factorial() calculates and
returns the factorial value of the integer passed to it, prime()
reports whether the number passed to it is a prime number or not
and fibonaccl() prints the first n terms of the Fibonacci series,
where n is the number passed to it. Here are the steps that need to
be carried out to create this library. Note that these steps are
specific to Turbo C/C++ compiler and would vary for other
compilers.

(a) Define the functions factorial(), prime() and ﬁbonacci{) in
a file, say *myfuncs.c’. Do not define main() in this file.

(b) Create a file ‘myfuncs.h’ and declare the prototypes of
factorial(), prime() and fibonacci() in it as shown below:

int factorial (int) ;
int prime (int) ;
void fibonacci (int) ;

(c) From the Options menu sclect the menu-item ‘Application’.
From the dialog that pops us select the option ‘Library’.
Select OK.

200 Let Us C

(d)

Com;:;ilc the program using Alt F9. This would create the
library file called ‘myfuncs.lib’.

»

That's it. The library now stands created. Now we have to use the
functions defined in this library. Here is how it can be done.

(a)

(b)

(c)

(d)

Create a file, say ‘sample.c’ and type the following code in it.

#include "myfuncs.h”
main()

{

int f, result;

f=factorial {5);

result = prime (13);
fibonacci (6) ;

printf ("\n%d %d", f, result) ;

} ‘

Note that the file ‘myfuncs.h’ should be in the same directory
as the file *sample.c’. If not, then while including ‘myfuncs.h’
mention the appropriate path.

Go to the ‘Project’ menu and select *Open Project...” option.
On doing so a dialog would pop up. Give the name of the
project, say ‘sample.prj’ and select OK.,

From the ‘Project’ menu select *Add Item’. On doing so a file
dialog would appear, Select the file ‘sample.c’ and then select
‘Add’. Also add the file ‘myfuncs.lib’ in the same manner.
Finally select ‘Done’

Compile and execute the project using Ctrl F9,

/

. Chapter 5: Functions & Pointers 201
Summary
(a) To avoid repetition of code and bulky programs functionally

(b)

(c)
(d)

(e)
(H
(8)
(h)

(i)

related statements are isolated into a function.

Function declaration specifies what is the return type of the
function and the types of parameters it accepts.

Function definition defines the body of the function.

Variables declared in a function are not available to other
functions in a program. So, there won’t be any clash even if
we give same name to the variables declared in different
functions.

Pointers are variables which hold addresses of other variables.
A function can be called either by value or by reference.
Pointers can be used to make a function return more than one
value simultaneously.

Recursion is difficult to understand, but in some cases offer a
better solution than loops.

Adding too many functions and calling them frequently may
slow down the program execution.

Exercise

Simple functions, Passing values between functions

[A] What would be the output of the following programs:

(a)

main()

printf ("\nOnly stupids use C?") ;
display() ;

display()
{
printf ("\nFools too use CI*) ;

main() ;

}

202 , Let Us C

(b) main()

printf (\nC to it thal C survives®) ;
main(),

}

(c) main()

inti=45¢;
c=check(i};
printf ("n%d", ¢),

check (int ch)

if(ch>=45)
return (100) ;
else
return (10*10);
)

{d) main()
{
inti=45¢c;
c = multiply (i*1000);
printf ("\n%d", ¢) ;
}
check (int ch)
if (ch >=40000)
return{ch/10);
else
retun (10) ;
)

[B] Point out the errors, if any, in the following programs:

(a) main()

Chapier 5: Functions & Pointers 203

it i=3,j=4k!;
k = addmult (i,) ;
I=addmult (i,j);
printf ("\n%d %d", k, 1) ;

addmult (int i, int jj)

int kk, Il
kk=ii+jj;
h=ii*j;
return (kk, Il) ;

(b) main()
{
int a;
a = message() ;
message()

printf ("\nViruses are writtenin C") ;
return ;

}

(c) main()
float a=155;
char ¢ch='C';
printit (a,ch);

}
printit { a, ch)
{

}
(d) main()
{

printf ("\n%f %c", a, ch) ;

message() ;

204 LetUs C

message() ;

}

message() ;

printf ("\nPraise worthy and C worthy are synonyms®) ;
}

(e) main()
let_us_c()
printf { \nC is a Cimple minded language I") ;

printf ("\nOthers are of course no match I") |

}
}

) main()
{
message(message ()) ;
void message()

printf ("\nPraise worthy and C worthy are synonyms®) ;

}

[C] Answer the following:

(a) Is this a correctly written function:

sgr(a),
int'a;

retun(a‘a).

}

(b) State whether the following statements are True or False:

Chapter 5: Functions & Pointers 205

1. The variables commonly used in C functions are available
to all the functions in a program.

2. To return the control back to the calling function we must
use the keyword return.

3. The same variable names can be used in different
functions without any conflict.

4. Every called function must contain a return statement.
5. A function may contain more than one return statements.

6. Each return statement in a function may return a different
value.

7. A function can still be useful even if you don’t pass any
arguments to it and the function doesn’t return any value
back. .

8. Same names can be used for different functions without
any conflict.

9. A function may be called more than once from any other
function.

10. It is necessary for a function to return some value.

[D] Answer the following:

"Write a function to calculate the factorial value of any integer
-
< entered through the keyboard.

(b) Write a function power (a, b), to calculate the value of a

15

raised to b.

206 . LetUsC

(c) Write a general-purpose function to convert any given year
into its roman equivalent. The following table shows the
roman equivalents of decimal numbers:

Decimal Roman _ Decimal Roman
1 i 100
5 Y 500 d
10 X 1000 m
50 |
Example:

Roman cquivalent of 1988 is mdeceelxxxviil
Roman equivalent of 1525 is mdxxv

(d) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

(c) A positive integer is entered through the keyboard. Write a
function to obtain the prime factors of this number.

For example, prime factors of 24 are 2, 2, 2 and 3, whereas
prime factors of 35 are 5 and 7.

Function Prototypes, Call by Value/Reference, Pointers

[E] What would be the output of the following programs:

(a) main()
{
float area;
int radius=1;
area = circle (radius) ;
printf ("n%f", area) ;

circle (int r)

Chapter 5: Functions & Pointers 207

{
float a;
a=314"r'r;
return(a) ;

}

(b) main()
{
void slogan();
intc=5;
¢ =slogan() ;
- printf { "\n%d", ¢) ;
}
void slogan()
{

printf ("nOnly He men use C!*) ;
}

[F] Answer the following:

(a) Write a function which receives a float and an int from
main(), finds the product of these two and returns the product
which is printed through main().

(b) Write a function that receives 5 integers and returns the sum,
average and standard deviation of these numbers. Call this
function from main() and print the results in main().

rite a function that receives marks received by a student in 3
subjects and returns the average and percentage of these

marks, Call this function from main() and print the results in
main().

|G] What would be the output of the following programs:

(8) main()

{
int i=5,j=2;

208

Let Us C)

(b)

(d)

junk (i.]) ;
printf { "\n%d %d", i,j);
}
junk (int i,int j)
{ 3 .
i=i*i;
=7
}
main({)
inti=5j=2;
junk (& &) ;

printf (\n%d %d", i,]) ;

junk (int *i, int %)

{

H LR

| M <
ljltj:

i
]
}

main()

nti=4,j=2;
junk (&) ;
printf ("\n%d %d",i,j)

j}unk(inl *,int j)
{ LH LHL A H
o e
=it
}

main()

float a=13.5;
float *b, *c;
b=8&a: I* suppose address of ais 1006 */

Chapter 5: Functions & Pointers 209

c=b;

printf { "\n%u %u %u", &a,b,c);

printf ("\n%f %f %f %f %f", a, *(&a), *&a, *b, *¢) ;
}

[H] Point out the errors, if any, in the following programs:
(a) main()

int i=135a=135k;
k=pass(ia);
printf ("\n%d", k) ;

}
pass (int j,int b)
int c;
{
C=j+b;
retun(c);

}
(b) main()
{

int p=23,f=24,
jiaayjo (&p, &f) ;
printf ("Wn%d %d", p, f);

)
jiaayjo (int q,int @)
{
q=q+q;
g=g+9,

{c) main()

int k=35,z;

z=check(k);

printf ("\n%d", 2) ;
}

210 Let Us C

check (m)
{
int m;
if(m>40)
return (1) ;
else
return (0) ;
}

(d) main()

int i=35,"2;

z = function (&) ;

printf ("\n%d", z);
)

function (int *m)

return(m+2);

}

[1] What would be the output of the following programs:

(a) main()
{
" inti=0;
++

if(i<=5)
{

printf ("\nC adds wings to your thoughts”) ;
exit() ;
main() ;
}
}

(b) main{)

staticint i=0;
j++

Chapter 5: Functions & Pointers 211

if(i<=5)

printf ("\n%d", 1) ;
main() ;
'

else

exil() ;
}

3] Attempt the following:

(]

(a) A 5-digit positive integer is "entered through the keyboard,
write a function to calculate sum of digits of the S-digit
number:

(1) Without using recursion
(2) Using recursion

(b) A positive integer is entered through the keyboard, write a
program to obtain the prime factors of the number, Modify the
function suitably to obtain the prime factors recursively.

Write a recursive function to obtain the first 25 numbers of a

/ Fibonacci sequence. In a Fibonacci sequence the sum of two
successive terms gives the third term. Following are the first
few terms of the Fibonacci sequence:

1 12358 13 21 34 55 39..

(d) A positive integer is entered through the keyboard, write a
function to find the binary equivalent of this number using
recursion.

(e) Write a recursive function to obtain the running sum of first
25 natural numbers.

(f) Write a C function to evaluate the series

sin(x) =x—(x 130+ (/5 =(x7 /T +A

212 Let Us C

(2)

(h)

(1)

0)

(k)

to five significant digits.

Given three variables x, y, z write a function to circularly shifi
their values to right. In other words if x =5,y = 8,z =10 after
circular shiftv = 5, z= 8, x =10 after circular shift y =5, z=8
and x = 10. Call the function with vanables a, b, ¢ to
circularly shift values.

Write a function to find the binary equivalent of a given
decimal integer and display it.

If the lengths of the sides of a triangle are denoted by a, b,
and ¢, then area of triangle is given by

area = JS(S ~a)(§=b)S -c)

where, S=(a+b+c¢)/2

Write a function to compute the distance between two points
and use it to develop another function that will compute the
area of the triangle whose vertices are A(x1, y1), B(x2, y2),
and C(x3, y3). Use these functions to develop a function
which returns a value 1 if the point (x, y) lines tnside the
triangle ABC, otherwise a value 0.

Write a function to compute the greatest common divisor
given by Euclid's algorithm, exemplified for J = 1980, K =
1617 as follows:

1980/ 1617 = 1 1980 - 1 * 1617 = 363

1617 /363 =4 1617 -4 * 363 =165
363/165=2 363 -2*165=133
5/33=5 165-5*%33=0

Thus, the greatest common divisor is 33.

6 Data Types
Revisited

e Integers, long and short

Integers, signed and unsigned

Chars, signed and unsigned

Floats and Doubles

A Few More Issues. ..

Storage Classes in C
Automatic Storage Class
Register Storage Class
Static Storage Class
External Storage Class
Which to Use When

Summary

Exercise

213

214 Let Us C

three varieties—char, int, and float. It may seem odd to

many, how C programmers manage with such a tiny set of
data types. Fact is, the C programmers aren't really deprived. They
can derive many data types from these three types. In fact, the
number of data types that can be derived in C, is in principle,
unlimited. A C programmer can always invent whatever data type
he needs.

s s seen in the first chapter the primary data types could be of

Not only this, the primary data types themselves could be of
several types. For example, a char could be an unsigned char ora
signed char. Or an int could be a short int or a long int.
Sufficiently confusing? Well, let us take a closer look at these
variations of primary data types in this chapter.

To fully define a variable one needs to mention not only its type
but also its storage class. In this chapter we would be exploring the
different storage classes and their relevance in C programming,

Integers, long and short

We had seen carlier that the range of an Integer constant depends
upon the compiler. For a 16-bit compiler like Turbo C or Turbo
C++ the range is —32768 to 32767. For a 32-bit compiler the range
would be —2147483648 to +2147483647. Herc a 16-bit compiler
means that when it compiles a C program it gencrates machine
language code that is targeted towards working on a 16-bit
microprocessor like Intel 8086/8088. As against this, a 32-bit
compiler like VC++ gencrates machine language code that is
targeted towards a 32-bit microprocessor like Intel Pentium. Note
that this does not mean that a program compiled using Turbo C
would not work on 32-bit processor. 1t would run successfully but
at that time the 32-bit processor would work as if it were a 16-bit
processor. This happens because a 32-bit processor provides
support for programs compiled using 16-bit compilers. If this
backward compatibility support is not provided the 16-bit program

Chapter 6: Data Types Revisited 215

would not run on it. This is precisely what happens on the new
Intel Itanium processors, which have withdrawn support for 16-bit
code.

Remember that out of the two/four bytes used to store an integer,
the highest bit (16"/32™ bit) is used to store the sign of the integer.
This bit is | if the number is negative, and O if the number is
positive,

C offers a variation of the integer data type that provides what are
called short and long integer valucs. The intention of providing
these variations is to provide integers with different ranges
wherever possible. Though not a rule, short and long integers
would usually occupy two and four bytes respectively. Each
compiler can decide appropriate sizes depending on the operating
system and hardware for which it is being written, subject to the
following rules:

(a) shorts are at lcast 2 bytes big
(b) longs are at least 4 bytes big

(c) shorts are never bigger than ints
(d) ints are never bigger than longs

Figure 6.1 shows the sizes of different integers based upon the OS
used.

Compiler short | int | long

16-bit (Turbo C/C++) 2 2 4

32-bit (Visual C++) 2 4 4
Figure 6.1

long variables which hold long integers are declared using the
keyword long, as in,

216 Let Us C

longint i;
long int abc ;

long integers cause the program to run a bit slower, but the range
of values that we can use is expanded tremendously. The value of
a long integer typically can vary from -2147483648 to
+2147483647. More than this you should not need unless you are
taking a world census.

If there are such things as longs, symmetry requires shorts as
well—integers that need less space in memory and thus help speed
up program execution. short integer variables are declared as,

shortint j;
shortint height ;

C allows the abbreviation of short int to short and of long int to
long. So the declarations made above can be written as,

long i;

long abc;
short ;;
short height ;

Naturally, most C programmers prefer this short-cut.

Sometimes we come across situations where the constant is small
enough to be an int, but still we want to give it as much storage as
a long. In such cases we add the suffix ‘L’ or ‘I at the end of the
number, as in 23L.

Integers, signed and unsigned

Sometimes, we know in advance that the value stored in a given
integer variable will always be positive—when it is being used to

Chapter 6: Data Types Revisited 217

only count things, for example. In such a case we can declare the
variable to be unsigned, as in,

unsigned int num_sludents ;

With such a declaration, the range of permissible integer values
(for a 16-bit OS) will shifl from the range -32768 to +32767 to the
range 0 to 65535. Thus, declaring an integer as unsigned almost
doubles the size of the largest possible value that it can otherwise
take. This so happens because on declaring the integer as
unsigned, the left-most bit is now free and is not used to store the
sign of the number. Note that an unsigned integer still occupies
two bytes. This is how an unsigned integer can be declared:

unsigned int i ;
unsigned i ;

Like an unsigned int, there also exists a short unsigned int and a
long unsigned int. By default a short int is a signed short int and
a long int is a signed long int.

Chars, signed and unsigned

Parallel to signed and unsigned ints (cither short or long),
similarly there also exist signed and unsigned chars, both
occupying one byte each, but having different ranges. To begin
with it might appear strange as to how a char can have a sign.
Consider the statement

charch="A";
Here what gets stored in ¢h is the binary equivalent ot the ASCII

value of ‘A’ (i.e. binary of 65). And if 65's binary can be stored,
then -54's binary can also be stored (in a signed char).

218 Let Us C

A signed char is samc as an ordinary char and has a range from
-128 to +127; whereas, an unsigned char has a range from 0 to
255. Let us now see a program that illustrates this range:

main()

char ch=291:
printf ("\n%d %c", ch, ch) ;
}

What output do you expect from this program? Possibly, 291 and
the character corresponding to it. Well, not really. Surprised? The
reason is that ch has been defined as a char, and a char cannot
take a value bigger than +127. Hence when value of ch exceeds
+127, an appropriatc value from the other side of the range is
picked up and stored in ch. This value in our case happens 10 be
35, hence 35 and its corresponding character #, gets printed out.

Here is another program that would make the concept clearer.

main()

{

char ch;

for (ch=0;ch <=255,ch++)
printf ("\n%d %¢*, ch, ch);
}

This program should output ASCII values and their corresponding
characters. Well, No! This is an indefinite loop. The reason is that
ch has been defined as a char, and a char cannot take values
bigger than +127. Hence when value of ch is +127 and we perform
ch++ it becomes -128 instead of +128. -128 is less than 255 hence
the condition is still satisfied. Here onwards ch would take values
like -127, -126, <128, -2, -1, 0, +1, +2, ... +127, -128, -127, etc.
Thus the value of ch would keep oscillating between -128 to +127,
thereby ensuring that the loop never gets terminated. How do you

Chapter 6: Data Types Revisited 219

overcome this difficulty? Would declaring ¢h as an unsigned char
solve the problem? Even this would not serve the purpose since
when ch reaches a value 255, ch++ would try to make it 256
which cannot be stored in an unsigned char. Thus the only
alternative is to declare ch as an int. However, if we are bent upon
writing the program using unsigned char, it can be done as shown
below. The program is definitely less elegant, but workable ail the
same.

main()

{

unsigned char ch;

for(ch=0;ch <= 254 ; ch++)
printf ("\n%d %c", ch, ch) ;

printf ("\n%d %c", ch, ch) ;
}

Floats and Doubles

A float occupies four bytes in memory and can range from -3.4¢38
to +3.4e38. If this is insufficient then C offers a double data type
that occupies 8 bytes in memory and has a range from -1.7¢308 to
+1.7¢308. A variable of type double can be declared as,

double a, population ;

If the situation demands usage of real numbers that lic cven
beyond the range offered by double data type, then there exists a
long double that can range from -1.7¢4932 to +1.7¢4932. A long
double occupies 10 bytes in memory.

You would see that most of the times in C programming one is
required to use either chars or ints and cases where floats,
doubles or long doubles would be used are indeed rare.

220 Let Us C

Let us now write a program that puts to use all the data types that
we have leamnt in this chapter. Go through the following program
carefully, which shows how to use these different data types. Note
the format specifiers used to input and output these data types.

main()

{

char c;

unsigned char d;
int i;

unsigned int j;
short int k;
unsigned short int 1;
long int m;
unsigned longint n;
float x ;

double y;

long double z;

* char*/
scanf ("%¢ %c", &c, &d);
printf ("%c %c", ¢, d);

fint*
scanf ("%d %u", &, &) ;
printf ("%d %u", i)

f* shortint */
scanf ("%d %u”, 8k, &l),
printf ("%d %u”, k, 1) ;

f* long int */
scanf (“%Id %lu", &m, &n) ;
printf (“%ld %lu™, m,n);

I float, double, long double */
scanf (“%f %lIf %LF, 8x, &y, &z2):
printf (*%f %lIf %LF, x, y,2):

Chapter 6: Data Types Revisited

221

1

The essence of all the data types that we have leamnt so far has

been captured in Figure 6.2.
Data Type Range Bytes | Format

= signed char -128to + 127 1 %c

unsigned char 0 to 255 1 %c
short signed int -32768 to +32767 2 Yod
short unsigned int | 0 to 65535 2 %ou
signed int -32768 to +32767 2 %d
unsigned int 0 to 65535 2 You
long signed int 2147483648 to +2147483647 | 4 %Id
long unsigned int | 0 to 4294967295 4 %lu
float -3.4¢38 to +3.4¢38 4 %f
double -1.7e308 to +1.7¢308 8 %lf
long double -1.7e4932 to +1.7e4932 10 %Lf

Note: The sizes and ranges of int, short and long are compiler
dependent. Sizes in this figure are for 16-bit compiler.
<M/

Figure 6.2

A Few More Issues...

Having seen all the variations of the primary types let us take a
look at some more related issues.

(a) We saw earlier that size of an integer is compiler dependent.
This is even true in case of chars and floats. Also, depending
upon the microprocessor for which the compiler targets its
code the accuracy of floating point calculations may change.
For example, the result of 22.0/7.0 would be reported more

16

222 Let Us C

(b)

(c)

accurately by VC++ compiler as compared to TCTCY+
compilers. This is because TC/TCH++ targets its compiled code
to BOSR/8086 (16-bit) microprocessors. Since these
microprocessors do not offer floating point support, TC/TCH
performs all float operations using a software picce called
Floating Point Emulator. This emulator has limitations and
hence produces less accurate results. Also, this emulator
becomes part of the EXE file, thereby increasing its size. In
addition to this increased size there is a performance penalty
since this bigger code would take more time to execute.

If you look at ranges of chars and ints there seems 10 be one
extra number on the negative side. This is because a negative
number is always stored as 2's compliment of ils binary. Fou
example, let us see how -128 is stored. Firstly, binary of 128
is calculated (10000000), then its 1's compliment is obtamnced
(01111111). A 1’s compliment is obtained by changing all Us
to 1s and 1s to 0s. Finally, 2's compliment of this number, i.e.
10000000, gets stored. A 2's compliment is obtained by
adding 1 to the |'s compliment. Thus, for -128, 10000000
gets stored. This is an 8-bit number and it can be casily
accommodated in a char. As against this, +128 cannot be
stored in a char because its binary 010000000 (ieft-most (0 is
for positive sign) is a 9-bit number. However +127 can be
stored as its binary 01111111 turns out to be a 8-bit number.

What happens when we attempt to store +128 in a char? The
first number on the negative side, i.e. -128 gets stored. This is
because from the 9-bit binary of +128, 010000000, only the
right-most 8 bits get stored. But when 10000000 is stored the
left-most bit is 1 and it is treated as a sign bit. Thus the value
of the number becomes -128 since it is indeed the binary
of -128. as can be understood from (b) above. Similarly, you
can verify that an attempt to store +129 in a char results in
storing -127 in it. In general, if we exceed the range from
positive side we end up on the negative side. Vice vema’is

Chapter 6: Data Types Revisited 223

also true. If we exceed the range from negative side we end up -
on positive side.

Storage Classes in C

We have already said all that needs to be said about constants, but
we are not [inished with variables. To fully define a variable one
needs to mention not only its ‘type’ but also its ‘storage class’. In
other words, not only do all variables have a data type, they also
have a ‘storage class’.

We have not mentioned storage classes yet, though we have
written several programs in C. We were able to get away with this
because storage classes have defaults. If we don’t specify the
storage class of a variable in its declaration, the compiler will
assume a storage class depending on the context in which the
variable is used. Thus, variables have certain default storage
classes.

From C compiler’s point of view, a variable name identifies some
physical location within the computer where the string of bits
representing the variable’s value is stored. There are basically two
kinds of locations in a computer where such a value may be kept—
Memory and CPU registers. It is the variable’s storage class that
determines in which of these two locations the value is stored.

Moreover, a variable’s storage class tells us:

(a) Where the variable would be stored. .

(b) What will be the initial value of the variable, if initial value is
not specifically assigned.(i.c. the default initial value).

(¢) What is the scope of the variable; i.c. in which functions the
value of the variable would be available.

(d) What is the life of the variable: i.e. how long would the
variable exist.

224 Let Us C

There are four storage classes in C:

(a) Automatic storagg class
(b) Register storage class
(c) Static storage class

(d) External storage class

Let us examine these storage classes one by one.

Automatic Storage Class

The features of a variable defined to have an automatic storage
class are as under:

Storage - Memory.
Default initial value An unpredictable value, which is often
called a garbage value.

Scope "~ — Local to the block in which the variable
is defined.
Life — Till the control remains within the block

in which the variable is defined.

Following program shows how an automatic storage class variable
is declared, and the fact that if the variable is not initialized it
contains a garbage value.

main()

autoint i,j;

printf (\n%d %d",i.]).
}

The output of the above program could be...
1211 221

where, 1211 and 221 are garbage values of i and j. When you run
this program you may get different values, since garbage values

Chapter 6: Data Types Revisited 225

are unpredictable. So always make it a point that you initialize the
automatic variables properly, otherwise you are likely to get

unexpected results. Note that the kcyword for this storage class is
auto, and not automatic.

Scope and life of an automatic variable is illustrated in the
following program.

main()
{
autoint i=1;
{
{
printf ("\n%d ", i) ;
printf ("%d ", i) ;
}
printf ("%d", i) ;
)

The output of the above program is:
Bid

This is because, all printf() statements occur within the outermost
block (a block is all statements enclosed within a pair of braces) in
which i has been defined. It means the scope of i is local to the
block in which it is defined. The moment the control comes out of
the block in which the variable is defined, the variable and its
value is irretrievably lost. To catch my point, go through the
following program.

main()

{

autoint i=1:

{

226 Let Us C

autoint i=2;

autoint =3,
printf ("\n%d ", i),

}
printf ("%d ", i) ;
}
printf { "%d", 1) ;
)

The output of the above program would be:
321

Note that the Compiler treats the three i's as totally different
variables, since they are defined in different blocks. Once the
control comes out of the innermost block the variable i with value
3 is lost, and hence the i in the second printf() refers to i with
value 2. Similarly, when the control comes out of the next
innermost block, the third printf() refers to the i with value 1.

Understand the concept of life and scope of an automatic storage

class variable thoroughly before proceeding with the next storage
class.

Register Storage Class

The features of a variable defined to be of register storage class
are as under:

Storage - CPU registers.

Default initial value - Garbage value.

Scope - Local to the block in which the variable
is defined.

Life - Till the control remains within the block

in which the variable is defined.

Chapter 6: Data Types Revisited 227

A value stored in a CPU register can always be accessed faster
than the one that is stored in memory. Therefore, if a variable is
used at many places in a program it is better to declare its storage
class as register. A good example of frequently used variables is
loop counters. We can name their storage class as register.

main()
registerint i,

for(i=1:;i<=10;i++)
printf { "\n%d", i) ;
}

Here, even though we have declared the storage class of i as
register, we cannot say for sure that the value of i would be stored
in a CPU register. Why? Because the number of CPU registers are
limited, and they may be busy doing some other task. What
happens in such an event... the variable works as if its storage class
is auto.

Not every type of variable can be stored in a CPU register.

For example, if the microprocessor has 16-bit registers then they
cannot hold a float value or a double value, which require 4 and 8
bytes respectively. However, if you use the register storage class
for 4 float or a double variable you won’t get any error messages.
All that would happen is the compiler would treat the variables to
be of auto storage class.)

Static Storage Class

The features of a variable defined to have a static storage class are
as under:

Storage - Memory.
Default initial value ~— Zero.

228 Let Us C

Scope — Local to the block in which the variable
is defined.
Life - Value of the variable persists between

different function calls.

Compare the two programs and their output given in Figure 6.3 to
understand the difference between the automatic and statié
storage classes.

main() main()
{
increment() ; increment() ;
increment() ; increment() ;
increment() ; increment() ;
} }
increment() increment()
{ {
autointi=1; staticinti=1;
printf { "35d\n", i) ; printf ("%d\n", i) ;
izi+t: i=i+1;
} }
The output of the above programs would be:
1 1
1 2
1 3

Figure 6.3

The programs above consist of two functions main() and
increment(). The function increment() gets called from main()
thrice. Each time it increments the value of i and prints it. The only
difference in the two programs is that one uses an auto storage
class for variable i, whereas the other uses static storage class.

Chapter 6: Data Types Revisited 229

Like auto variables, static variables are also local to the block in
which they are declared. The difference between them is that static
variables don’t disappear when the function is no longer active.
Their values persist. If the control comes back to the same function
again the static variables have the same values they had last time
around.

In the above example, when variable i is auto, each time
increment() is called it is re-initialized to one. When the function
terminates, i vanishes and its new value of 2 is lost. The result: no
matter how many times we call increment(), i is initialized to 1
every time.

On the other hand, if i is static, it is initialized to 1 only once. It is
never initialized again. During the first call to increment(), i is
incremented to 2. Because i is static, this value persists. The next
time increment() is called, i is not re-initialized to 1; on the
contrary its old value 2 is still available. This current value of i
(i.e.2) gets printed and then i=i+1adds 1 to i to get a value of 3.
When increment() is called the third time, the current value of i
(i.e. 3) gets printed and once again i is incremented. In short, if the
storage class is static then the statement static int i = 1 is executed
only once, irrespective of how many times the same function is
called. ‘

Consider one more program.

main()

{
int *j;
int*fun();
j=fun();

printf (\n%d", %) ;
}
int *fun()
{

intk =35,
return (&k) .
}

Here we are returning an address of k from fun() and collecting it
in j. Thus j becomes pointer to k. Then using this pointer we are
printing the value of k. This correctly prints out 35. Now try
calling any function (even printf()) immediately after the call to
fun(). This time printf() prints a garbage value. Why does this
happen? In the first case, when the control returned from fun()
though k went dead it was still lcft on the stack. We then accessed
this value using its address that was collected in j. But when we
precede the call to printf() by a call to any other function, the
stack is now changed, hence we get the garbage value. If we want
to get the correct value each time then we must declare Kk as static.
By doing this when the control returns from fun(), k would not
die.

All this having been said, a word of advice—avoid using static
variables unless you really need them. Because their values are
kept in memory when the variables arc not active, which means
they take up space in memory that could otherwise be used by
other variables.

External Storage Class

The features of a variable whose storage class has been defined as
external are as follows:

Storage - Memory.

Default initial value - Zero.

Scope — Global.

Life - As long as the program’s execution

doesn't come to an end.

Chapter 6: Data Types Revisited | 231

External variables differ from those we have already discussed in
that their scope is global, not local. External variables are declared
outside all functions, yet are available to all functions that care to
use them. Here is an example to illustrate this fact.

int i:
main()

{
printf ("\ni = %d", 1} ;

increment() ;
increment() ;
decremenl() ;
decrement() ;

}

increment()

{

i=i+1,
printf ("\non incrementing i = %d", 1) ;

}

decremenl()
ko
i=i-1; .
printf { "\non decrementing i = %d", i) ;

}
The output would be:

i=0

on incrementing i = 1

on incrementing i = 2

on decrementing i =1
on decrementing i = 0

232 Let Us C

As is obvious from the above output, the value of i i1s available to
the functions incremeht() and decrement() since i has been
declared outside all functions.

Look at the following program.

int x=21;
main()
{
externint v ;
printf { "\n%d %d", x,y) ;
}
inty=31;

Here, x and y both are global variables. Since both of them have
been defined outside all the functions both enjoy external storage
class. Note the difference between the following:

extemnint y;

inty =31;

Here the first statement is a declaration, whereas the second is the
definition. When we declare a variable no space is reserved for it,
whereas, when we define it space gets reserved for it in memory.
We had to declare y since it is being used in printf() before it’s
definition is encountered. There was no need to declare x since its
definition is done before its usage. Also remember that a variable
can be declared several times but can be defined only once.

Another small issue—what will be the output of the following
program?

int x=10;
main()

int x=20;

printf ("\n%d", x) ;

Chapter 6: Data Types Revisited 233

display() ;
display()

printf ("\n%d", x) ;
}

Here x is defined at two places, once outside main() and once
inside it. When the control reaches the printf() in main() which x
gets printed? Whenever such a conflict arises, it's the local
variable that gets preference over the global variable. Hence the
printf() outputs 20. When display() is called and control reaches
the printf() there is no such conflict. Hence this time the value of
the global x, i.e. 10 gets printed.

One last thing—a static variable can also be declared outside all
the functions. For all practical purposes it will be treated as an
extern variable. However, the scope of this variable is limited to
the same file in which it is declared. This means that the variable
would not be available to any function that is defined in a file other
than the file in which the variable is defined.

Which to Use When

Dennis Ritchie has made available to the C programmer a nitweer
of storage classes with varying features, believing that the
programmer is in a best position to decide which one of these
storage classes is to be used when. We can make a few ground
rules for usage of different storage classes in different
programming situations with a view to:

(a) economise the memory space consumed by the variables
(b) improve the speed of execution of the program

The rules are as under:;

234 Let Us C

Use static storage class only if you want the value of a
variable to persist between different function calls,

Use register storage class for only those variables that are
being used very often in a program. Reason is, there are very
few CPU registers at our disposal and many of them might be
busy domg something else. Make careful utilization of the
scarce resources. A typical application of register storage class
is loop counters, which get used a number of times in a
program.

Use extern storage class for only those variables that are being
used by almost all the functions in the program. This would
avoid unnecessary passing of these variables as arguments
when making a function call. Declaring all the varnables as
extern would amount to a lot of wastage of memory space
because these variables would remain active throughout the
life of the program.

Il you don’t have any of the express needs mentioned above,
then use the auto storage class. In fact most of the times we
end up using the auto variables, because often it so happens
that once we have used the variables in a function we don't
mind loosing them.

Summary

(a)

(b)

(c)

We can use different variations of the primary data types,
namely signed and unsigned char, long and short int, float,
double and long double. There are different format
specifications for all these data types when they are used in
scanf() and printf() functions.

The maximum value a variable can hold depends upon the
number of bytes it occupies in memory,

By default all the variables are signed. We can declare a
vartable as unsigned to accommodate greater value without
increasing the bytes occupied.

Chapter 6: Data Types Revisited 235

(d) We can make use of proper storage classes like auto,
register, static and extern to control four properties of the
variable—storage, default initial value, scope and life.

Exercise

[A] What would be the output of the following programs:

(a) main()
{
int i;
for (1=0;i<=50000;i++)
printf ("\n%d",i);
}

(b) main()

float a=135;

double b=135;

printf ("\n%{ %I, a,b) ;
}

(¢) inti=0;
main({)

{
printf { "\nmain's i = %d" i) ;
i+ .

val() ;
printf ("\nmain's i = %d", i},
val() ;

}

val()

{
i=100;
printf ("\nval's i = %d", i) ;
[

}

236 Let Us C

(d) main()
{

int x,y,s=2;
s"=3;
y=f(s);
x=g(s);
printf ("\n%d %d %d", s, ¥, x) ;

}

int t=8;

f(int a)
a+=-5;
t-=4;
retum(a+t);

(int a)

—_—— -

a=1;
[+=a:
retum(a+t);

(&) main()

static int count=5;
. printf ("\ncount = %d", count--) ;
if (count!=0)
main() ;
)

(fy main()
{

int i,j;
for(i=1;i<5;i++)
(
i=glt);
printf ("\n%d".) ;
}

Chapter 6: Data Types Revisited 237

)
gfint x)
{
staticint v=1;
int b=3;
\.||'+=x;
retun (v+x+b);

}

(g) float x=4.5;
main()
{
float y, float f(float) ;
x*=20;
y=f(x),
printf ("\n%f %", x, v) ;

float f (float a)

a+=13;.
x-=45;
retum (a+x);

}

1) main()

{
func() ;
func() ;

}

func()

{
autoint 1=0;
registerintj=0;
staticintk=0,
i b ki
printf ("\n %d % d %d",i,j. k)

17

238 Let Us C

(i)

intx=10;
main()

{
intx=20,

intx =30,
printf ("n%d", x) ;

}
printf ("\n%d", x) ;
}

[B] Point out the errors, if any, in the following programs:

(a)

(b)

(c)

(d)

main()

{

long num ;

num=2;

printf ("n%Id", num) ;
)

main()

char ch=200;
printf ("\n%d", ch) .
)

main()

unsigned a=25;

long unsigned b =25l ;

printf ("\n%lu %v*, a,b)
}

main()

long float a = 25.345e454 ;
unsigned double b=25;
printf ("\n%If %d", a,b) ;

Chapter 6: Data Types Revisited 239

)

(e) main()

)

float a=25.345;

float *b;

b=4&a;

printf ("\n%f %u",a, b ;

() staticinty;
main()

}

staticintz ;

printf ("%d %d",y, z);

[C] State whether the following statements are True or False:

(a)

(b)

(c)

(d)

(e)

("

Storage for a register storage class variable is allocated
each time the control reaches the block in which it is
present.

An extern storage class variable is not available to the
functions that precede its definition, unless the variable is
explicitly declared in these functions.

The value of an automatic storage class variable persists
between various function invocations.

If the CPU registers are not available, the register storage
class variables are treated as static storage class variables.

The register storage class variables cannot hold float
values.

If we try to use register storage class for a float variable
the compiler will flash an error message.

240 Let Us C

(D]

(g) If the variable x is defined as extern and a variable x is
also defined as'a local variable of some function, then the
global variable gets preference over the local variable.

(h) The default value for automatic variable is zero.

(i) The lifc of static variable is till the control remains within
the block in which it is defined.

(j) If a global variable is to be defined, then the extern
keyword is necessary in its declaration.

(k) The address of register variable is not accessible,

Following program calculates the sum of digits of the number
12345. Go through it and find out why is it necessary to
declare the storage class of the variable sum as static.

main()

{
int a;
a = sumdig (12345)
printf ("\n%d", a) ;

sumdig (int num)
{
static int sum
int a,b;
a=num%10;
b=(num-a)/10;
sum=sum+a;
if(b!=0)
sumdig (b) ;
else
return { sum) ;

7 The C Preproces-
sor

e Features of C Preprocessor
e Macro Expansion
Macros with Arguments
Macros versus Functions
File Inclusion
Conditional Compilation
#if and #elif Directives
Miscellaneous Directives
#undef Directive
#pragma Directive
Summary
Exercise -t

e« o 0 0

241

242 Let Us C

program that processes our source program before it is

passed to the compiler. Preprocessor commands (often
known as directives) form what can almost be considered a
language within C language. We can certainly write C programs
without knowing anything about the preprocessor or its facilities.
But preprocessor is such a great convenicnce that virtually all C
programmers rcly on it. This chapter explores the preprocessor
directives and discusses the pros and cons of using them in
programs,

F l Yhe C preprocessor is cxactly what its name implies. It is a

Features of C Preprocessor

There are several steps involved from the stage of writing a C
program to the stage of getting it executed. Figure 7.1 shows these
different steps along with the files created during cach stage. You
can observe from the figure that our program passes (hrough
several processors before it is ready to be executed. The input and
output to each of these processors is shown in Figure 7.2.

Note that if the source code is stored in a file PRI.C then the
expanded source code gets stored in a file PRI, When this
expanded source code is compiled the object code gets stored in
PR1.0OBJ. When this object code is linked with the object code of
library functions the resultant exccutable code gets stored in
PRI.EXE.

The preprocessor offers several features called preprocessor
directives. Each of these preprocessor directives begin with a #
symbol. The directives can be placed anywhere in a program but
are most often placed at the beginning of a program, before the
first function definition. We would learn the following
preprocessor directives here:

(a) Macro expansion
(b) File inclusion

Chapter 7: The C Preprocessor

243

Hand written program

Text editor
: ¥

C Source code (PR1.C) I

Prep r{iccssur

Compiler

Expanded source code (PR1.T)

sy

Object code (PR1.0BJ)

l.iTu-.r

' Executable code (PR1.EXE) I

Figure 7.1

Processor [Input

Output

Editor
Prepro-
cessor

Compiler

Linker

Program typed from
keyboard

C source code file

Source code file with
preprocessing commands
sorted out

Relocatable object code
and the standard C
library functions

C source code containing
program and preprocessor
commands

Source code file with the
preprocessing commands
properly sorted out

Relocatable object code

Executable code in
machinc language

oy rr—

Figure 7.2

244 Let Us C

(c) Conditional Compilation
(d) Miscellaneous directives

Let us understand these features of preprocessor one by one.

Macro Expansion
Have a look at the following program.

ftdefine UPPER 25
main()
{
int i;
for (i=1;i<=UPPER;i++)
printf ("\n%d", i) ;
)

In this program instead of'lwriting 25 in the for loop we are writing
it in the form of UPPER, which has already been defined before
main() through the statement,

#define UPPER 25

This statement is called ‘macro definition’ or more commonly, just
a ‘macro’. What purpose does it serve? During preprocessing, the
preprocessor replaces every occurrence of UPPER in the program
with 25. Here is another example of macro definition.

#define Pl 3.1415
main()

float r=6.25;
float area;

area=Pl*r*r;
printf ("\nArea 6f circle = %f*, area) ;

Chapter 7: The C Preprocessor 245

UPPER and PI in the above programs are often called ‘macro
templates’, whereas, 25 and 3.1415 are called their corresponding
‘macro expansions’.

When we compile the program, before the source code passes to
the compiler it is examined by the C preprocessor for any macro
definitions. When it sees the #define directive, it goes through the
entire program in search of the macro templates; wherever it finds
one, it replaces the macro template with the appropriate macro
expansion. Only after this procedure has been completed is the
program handed over to the compiler.

In C programming it is customary to use capital letters for macro
template. This makes it easy for programmers to pick out all the
macro templates when reading through the program.

Note that a macro template and its macro expansion are separated
by blanks or tabs. A spate between # and define is optional.
Remember that a macro definition is never to be terminated by a
semicolon.

And now a million dollar question... why use #define in the above
programs? What have we gained by substituting PI for 3.1415 in
our program? Probably, we have made the program easier to read.
Even though 3.1415 is such a common constant that it is easily
recognizable, there are many instances where a constant doesn’t
reveal its purpose so readily. For example, if the phrase “\x1B[2]”
causes the screen to clear. But which would you find easier to
understand in the middle of your program *“\x1B[2J" or
“CLEARSCREEN"? Thus, we would use the macro definition

#define CLEARSCREEN "1B[2J)"

Then wherever CLEARSCREEN appears in the program it would
automatically be replaced by “\x1B[2J"” before compilation begins.

246 Let Us C

There is perhaps a more important reason for using macro
definition than mere readability. Supposc a constant like 3.1415
appears many times in your program. This value may have to be
changed some day to 3.141592. Ordinarily, you would need to go
through the program and manually change each occurrence of the
constant. However, if you have defined PI'in a #define directive,
you only need to make one change, in the #define dircctive itself:

#define Pl 3.141592

Beyond this the change will be made automatically to all
oceurrences of PI before the beginning of compilation.

In short, it is nice to know that you would be able to change values
of a constant at all the places in the program by just making a
change in the #define dircctive. This convenience may not matter
for small programs shown above, but with large programs macro
definitions are almost indispensable.

But the same purpose could have been served had we used a
variable pi instead of a macro template P1. A variable could also
have provided a meaningful name for a constant and permitted one
change to effect many occurrences of the constant. It's true that a
variable can be used in this way. Then, why not usc it? For three
reasons it's a bad idea.

Firstly, it is inefficient, since the compiler can generate faster and
more compact code for constants than it can for variables.
Secondly, using a variable for what is really a constant encourages
sloppy thinking and makes the program more difficult to
understand: if something never changes, it is hard to imagine it as
a variable. And thirdly, there is always a danger that the variable
may inadvertently get altercd somewhere in the program. So it's
no longer a constant that you think it is.

Chapter 7. The C Preprocessor 247

Thus, using #define can produce more efficient and more casily
understandable programs. This directive is used extensively by C
programmers, as you will sec in many programs in this book.

Following three examples show places where a #idefine directive is
popularly used by C programmers.

A #define directive is many a times used to define operators as
shown below.

. #define AND &&
#define OR ||
main()

int f=1,x=4,y=90;

if((f<5)AND (x<=200Ry<=45))

printf ("\nYour PC will always work fine..") ;
else

printf { "\nln front of the maintenance man") ;

)

A #define directive could be used even to replace a condition, as
shown below.

fidefine AND &&
#define ARANGE (a>25AND a <50)
main()
{
int a=30;

if (ARANGE)

printf ("within range”) ;
else

printf ("out of range") ;

248 Let Us C_

A #define directive could be used to replace even an entire C
statement. This is shawn below.

#idefine FOUND printf (“The Yankee Doodle Virus") ;
main() '

{

char signature ;

if (signature == "Y")
FOUND
else
printf ("Safe... as yet ") ;
}

Macros with Arguments

-

The macros that we have used so far are called simple macros.
Macros can have arguments, just as functions can. Here is an
example that illustrates this fact.

#define AREA(X) (3.44* x*x)

main()

{
float r1=6.25r2=25,a,
a=AREA(r1);
printf ("\nArea of circle = %f", a) |
a=AREA(r2);

printf ("\nArea of circle = %f', a) ;
)

Here's the output of the program...

Area of circle = 122656250
Area of circle = 19.625000

Chapter 7: The C Preprocessor _ 249

In this program wherever the preprocessor finds the phrase
AREA(x) it expands it into the statement (3.14 * x * x).
However, that’s not all that it does. The x in the macro template
AREA(x) is an argument that matches the x in the macro
expansion (3.14 * x * x). The statement AREA(r1) in the
program causes the variable r1 to be substituted for x. Thus the
statement AREA(r1) is equivalent to:

(3.14*r1*n1)

After the above source code has passed through the preprocessor,
what the compiler gets to work on will be this:

main()

{
float r1=6.25,12=25 a:

a=314*ri*1:
printf ("Area of circle = %f\n", a) ;
a=314"2'r2:
printf ("Area of circle = %f", a) ;
}

Here is another example of macros with arguments:

#define ISDIGIT(y) (y >= 48 && y <= 57)
main()

{

char ch:

printf ("Enter any digit ") ;
scanf ("%c", &ch) ;

if (ISDIGIT (ch))

printf ("\nYou entered a digit") ;
else

printf ("\nlllegal input”) ;

250 Let Us C

}

Here are some important points to remember while writing macros
with arguments:

(a)

(b)

Be careful not to leave a blank between the macro template
and its argument while defining the macro. For example, there
should be no blank between AREA and (x) in the definition,
#define AREA(X) (3.14 *x * x)

If we were to write AREA (x) instead of AREA(x), the (x)
would become a part of macro expansion, which we certainly
don't want. What would happen is, the template would be
expanded to

(r1)(3.14*r1"r1)
which won’t run. Not at all what we wanted.

The entire macro expansion should be enclosed within
parentheses. Here is an cxample of what would happen if we
fail to enclose the macro expansion within parentheses.

#cefine SQUARE(n) n* n
main()

{

int j;
j=64/SQUARE (4);
printf ("} = %d",) ;

}

The output of the above program would be:
j=64

whereas, what we expected was j = 4.

Chepier 7: The C Preprocessor 251

(c)

(d)

What went wrong? The macro was expanded into
j=64/4"4;

which yielded 64.

Macros can be split into multiple lines, with a ** (back slash)
present at the end of each line. Following program shows how
we can define and use multiple line macros.
#define HLINE for (i=0;i<79;i++)\
printf ("%c", 196) ;
#define VLINE(X, Y) {\
gotoxy (X, Y);\
printf (*%c", 179) ;\
main()
{
int i, y;
clrser() ;
gotoxy (1, 12) ;
HLINE
for(y=1;y<25;y++)
VLINE (39,y):
)

This program draws a vertical and a horizontal line in the
center of the screen.

If for any reason you are unable to debug a macro then you
should view the expanded code of the program to see how the
macros are getting expanded. If your source code is present in

 the file PR1.C then the expanded source code would be stored

252 _ Let UsC_

in PRLL You need to generate this file at the command
prompt by saying: .

cpp pric

Here CPP stands for C PreProcessor. It generates the
expanded source code and stores it in a file called PR1.I. You
can now open this file and sce the expanded source code.
Note that the file PRL.I gets generated in CATC\BIN
directory. The procedure for generating expanded source code
for compilers other than Turbo C/C++ might be a little
different.

Macros versus Functions

[n the above example a macro was used to calculate the area of the
circle. As we know, even a function can be written to calculate the
area of the circle. Though macro calls are ‘like’ function calls, they
are not really the same things. Then what is the difference between
the two?

In a macro call the preprocessor replaces the macro template with
its macro expansion, in a stupid, unthinking, literal way. As
against this, in a function call the control is passed to a function
along with certain arguments, some calculations are performed in
the function and a useful valuc is returned back from the function.

This brings us to a question: when is it best to use macros with
arguments and when is it better to use a function? Usually macros
make the program rtun faster but increase the program size,
whereas functions make the program smaller and compact.

If we use a macro hundred times in a program, the macro
expansion goes into our source code at hundred different places,
thus increasing the program size. On the other hand, if a function
is used, then even if it is called from hundred different places in

Chapter 7: The C Preprocessor 2‘53

the program, it would take the same amount of space in the
program,

But passing arguments to a function and getting back the returned
value does take time and would therefore slow down the program.
This gets avoided with macros since they have already been
expanded and placed in the source code before compilation.

Moral of the story is—if the macro is simple and sweet like in our
examples, it makes nice shorthand and avoids the overheads
associated with function calls. On the other hand, if we have a
fairly large macro and it is used fairly often, perhaps we ought to
replace it with a function.

File Inclusion

The second preprocessor directive we'll explore in this chapter is
file inclusion. This directive causes one file to be included in
another. The preprocessor command for file inclusion looks like
this:

#include "filename”

and it simply causes the entire contents of filename to be inserted
into the source code at that point in the program. Of course this
presumes that the file being included is existing. When and why
this feature is used? It can be used in two cases:

(a) If we have a very large program, the code is best divided into
several different files, each containing a set of related
functions. It is a good programming practice to keep different
sections of a large program separate. These files are
#included at the beginning of main program file.

(b) There are some functions and some macro definitions that we
need almost in all programs that we write. These commonly

18

254 Let Us C

needed functions and macro definitions can be stored in a file,
and that file can be included in every program we write,
which would add all the statements in this file to our program
as if we have typed them in.

It is common for the files that are to be included to have a .h
extension. This extension stands for ‘header file’, possibly because
it contains statements which when included go to the head of your
program. The prototypes of all the library functions are grouped
into different categories and then stored in different header files.
For example prototypes of all mathematics related functions are
stored in the hecader file ‘math.h’, prototypes of console
input/output functions are stored in the header file ‘conio.h’, and
SO on.

Actually there exist two ways to write #include statement. These
are:

#include "filename”
#include <filename>

The meaning of each of these forms is given below:

#include "goto.c” This command would lock for the file goto.c
in the current directory as well as the
specified list of directories as mentioned in
the include search path that might have becn
set up.

#include <goto.c> This command would look for the file goto.c
in the specified list of directories only.

The include search path is nothing but a list of directories that
would be searched for the file being included. Different C
compilers let you set the search path in different manners. If you
are using Turbo C/C++ compiler then the search path can be set up
by selecting ‘Directories’ from the ‘Options’ menu. On doing this

Chapter 7: The C Preprocessor 255

a dialog box appears. In this dialog box against ‘Include

Directories’ we can specify the search path. We can also specify

multiple include paths separated by ;' (semicolon) as shown
 below:

c\tcllib ; c:\mylib ; d:\libfiles

The path can contain maximum of 127 characters. Both relative
and absclute paths are valid. For example ‘. \dir\incfiles’ is a valid
path.

Conditional Compilation

We can, if we want, have the compiler skip over part of a source
code by inserting the preprocessing commands #ifdef and #endif,
which have the general form:

#itdef macroname
statement 1 ;
statement 2 ;
statement 3 ;

#endif

If macroname has been #defined, the block of code will be
processed as usual; otherwise not.

Where would #ifdef be useful? When would you like to compile
only a part of your program? In three cases:

(a) To “comment out™ obsolete lines of code. It often happens
that a program is changed at the last minute to satisfy a client.
This involves rewriting some part of source code to the
client’s satisfaction and deleting the old code. But veteran
programmiers are familiar with the clients who change their
mind and want the old code back again just the way it was.

256 Let Us C

(b)

Now you would definitely not like to retype the deleted code
again. ‘

One solution in such a situation is to put the old code within a
pair of /* */ combination. But we might have already
written a comment in the code that we are about to “comment
out”. This would mean we end up with nested comments.
Obviously, this solution won't work since we can’t nest
comments in C.

Therefore the solution 1s to use conditional compilation as
shown below.

main()

#ifdef OKAY
slatement 1 ;
stalement 2 ; /* detects virus */
statement 3 ;
statement4 : [* specific to stone virus */
#endif

statement 5 ;
statement 6 |
slatement 7 ;

}

Here, statements 1, 2, 3 and 4 would get compiled only if the
macro OKAY has been defined, and we have purposefully
omitted the definition of thc macro OKAY. At a later date, if
we want that these statements should also get compiled all
that we are required to do is to delete the #ifdef and #endif
statements.

A more sophisticated use of #ifdef has to do with making the
programs portable, i.e. to make them work on two totally
different computers, Suppose an organization has two

Chapter 7: The C Preprocessor 2587

different types of computers and you are expected to write a
program that works on both the machines. You can do so by
isolating the lines of code that must be different for each
machine by marking them off with #ifdef. For cxample:

main()
{
#ifdef INTEL
code suitable for a Intel PC
Helse
code suitable for a Molorola PC
#endif
code common to both the computers

}

When you compile this program it would compile only the
code suitable for a Intel PC and the common code. This is
because the macro INTEL has not been defined. Note that the
working of #ifdef - #else - #endif is similar to the ordinary if -
else control instruction of C.

If you want to run your program on a Motorola PC, just add a
statement at the top saying,

fidefine INTEL

Sometimes, instead of #ifdef the #ifndef directive is used.
The #ifndef (which means ‘if not defined’) works exactly
opposite to #ifdef. The above example if written using
#ifndef, would look like this:

main(

#ifndef INTEL
code suitable for a Intel PC
#else

code suitable for a Motorola PC

258 | Let Us C

#endif
code comman to bdth the computers

)

(¢) Suppose a function myfunc() is defined in a file ‘myfile.h’
which is #included in a file ‘myfilel .h’. Now in your program
file if you #include both ‘myfile.h’ and ‘myfilel.h’ the
compiler flashes an error ‘Multiple declaration for myfunc’.
This is because the same file ‘myfileh’ gets included twice.
To avoid this we can write following code in the header file.

* myfile h */
#ifndef _ myfile_h
#define __myfile_h

myfunc()

[* some code */

)
#endif

First time the file ‘myfile.h’ gets included the preprocessor
checks whether a macro called __myfile_h has been defined
or not. If it has not been then it gets defined and the rest of the
code gets included. Next time we attempt (o include the same
file, the inclusion is prevented since __myfile_h already
stands defined. Note that there is nothing special about
__myfile_h. In its place we can usc any other macro as well.

#if and #elif Directives

The #if directive can be used to test whether an expression
evaluates to a nonzero value or not. If the result of the expression
is nonzero, then subsequent lines upto a #else, #elif or #endif are
compiled, otherwisc they are skipped.

Chapter 7: The C Preprocessor 259

A simple example of #if directive is shown below:
main()

#if TEST <=5
statement 1 ;
statement 2 ;
statement 3 ;

ftelse
statement 4 ;
statement 5 ;
statement 6 ;

#endif

}

If the expression, TEST <=5 evaluates to true then statements 1, 2
and 3 are compiled otherwise statements 4, 5 and 6 are compiled.
In place of the expression TEST <= 5 other expressions like
(LEVEL = HIGH || LEVEL = LOW) or ADAPTER =
CGA can also be used.

If we so desire we can have nested conditional compilation
directives. An example that uses such directives is shown below.

#if ADAPTER == VGA
code for video graphics array
#else
#if ADAPTER == SVGA
code for super video graphics array
#else
code for extended graphics adapter
#endif
#endif

The above program segment can be made more compact by using
another conditional compilation directive called #elif. The same
program using this directive can be rewritten as shown below.

260 Let Us C

Observe that by using the #elif directives the number of #endifs
used in the program get reduced.

#if ADAPTER == VGA
code for video graphics array
#elif ADAPTER == SVGA
code for super video graphics array
#else '
code for extended graphics adapter
#endif

Miscellaneous Directives

There arc two more preprocessor directives available, though they
are not very commonly used. They are:

(a) #Hundel
(b) #Hpragma

#undef Directive

On some occasions it may be desirable to cause a defined name to
become ‘undefncd’. This can be accomplished by means of the
#tundef directive. in order to undefine a macro that has been earlier
#defined, the dircctive,

#undel macro template
can be used. Thus the statement,
#undef PENTIUM

would cause the definition of PENTIUM to be removed from the
system. All subscquent #ifdef PENTIUM statcments would
evaluate to false. In practice seldom are you required to undefine a
macro, but for some reason if you are required to, then you know
that there is something to fall back upon. -

Chapter 7: The C Preprocessor - 261

#pragma Directive

This directive is another special-purpose directive that you can use
to turn on or off certain features. Pragmas vary from one compiler
to another. There are certain pragmas available with Microsoft C
compiler that deal with formatting source listings and placing
comments in the object file generated by the compiler. Turbo.
C/C++ compiler has got a pragma that allows you to suppress
warnings generated by the compiler. Some of these pragmas are
discussed below.

(a) #pragma startup and #pragma exit: These dircctives allow
us to specify functions that are called upon program startup
(before main()) or program exit (just before the program
terminates). Their usage is as follows:

void funi1();
void fun2() ;.

#pragma startup fun1
#pragma exit fun2

main()

printf ("\ninside maim") ;

}
void funi()

printf ("\ninside fun1”) ;
)

void fun2()
{

printf ("\ninside fun2") ;
)

262 . LetUsC

(b)

And here is the output of the program.

Inside fun1
Inside main
Inside fun2

Note that the functions funi() and fun2() should neither
receive nor return any value. If we want two functions to get
executed at startup then their pragmas should be defined in
the reverse order in which you want to get them called.

#pragma warn: This directive tells the compiler whether or
not we want to suppress a specific waming. Usage of this
pragma is shown below.

#pragma warn -rvl " return value */
#pragma warm —par [* parameler not used */
#pragma warn —rch [* unreachable code */

int f1()

int a=5;

}
void f2 (int x)

printf ("\ninside f2°) ;
}

int f3()
{

int x=6;
return x ;
N+t

}

void main()

Chapter 7: The C Preprocessor 263

{
f1();
f2(7),
B3();
}

If you go through the program you can notice three problems
immediately. These are:

(a) Though promised, f1() doesn’t return a value.

(b) The parameter x that is passed to f2() is not being used
anywhere in f2().

(c) The control can never reach x++ in f3().

If we compile the program we should expect wamings
indicating the above problems. However, this does pot happen
since we have suppressed the warnings using the #pragma
directives. If we replace the ‘-’ sign with a ‘+" then these
warnings would be flashed on compilation. Though it is a bad
practice to suppress warmings, at times it becomes useful to
suppress them. For example, if you have written a huge
program and are trying to compile it, then to begin with you
are more interested in locating the errors, rather than the
warnings. At such times you may suppress the warnings.
Once you have located all errors, then you may turmn on the
warnings and sort them out.

Summary

(a) The preprocessor directives enable the programmer to write
programs that are easy to develop, read, modify and transport
to a different computer system.

264 Let Us C

(b) We can make usc of various preprocessor directives such as
#define, #include! #ifdef - #else - #endif, #if and #elif in our
program.

(¢) The dircctives like #undef and #pragma are also useful
although they are seldom uscd.

Exercise

[A] Answer the following:

(a) What is a preprocessor directive

I. amessage from compiler to the programmer

2. amessage from compiler to the linker

3. amessage from programmer to the preprocessor
4. amessage from programmer to the microprocessor

(b) Which of the following are correctly formed #define
statements:

#idefine INCH PER FEET 12
#define SQR (X) (X* X)
#define SQR(X) X*X
#define SQR(X) (X" X)

¢) State Truc or False:
I. A macro must always be written in capital letters.
2. A macro should always be accomodated in a single linc.

3. Afler preprocessing when the program is sent for
compilation the macros are removed from the expanded
source code.

4. Macros with arguments are not allowed.
5. Nested macros arc allowed.

6. Ina macro call the control is passed to the macro.

Chapter 7: The C Preprocessor 265

(d) How many #include dircctives can be there in a given
program file?

(e) What is the differerice between the following two #include
directives:

#include "conio.h”
#include <conio.h>

() A header file is:

I. A file that contains standard library functions

2. A file that contains definitions and macros

3. A file that contains user - defined functions

4. A file that is present in current working directory

(g) Which of the following is not a preprocessor directive

1. #if

2. ftelseif
3. #undef
4. #pragma

(h) All macro substitutions in a program are done

1. Before compilation of the program
2. After compilation

3. During execution

4. None of the above

(i) Ina progf’am the statcment:

tinclude "filename”

is replaced by the contents of the file “filename’

1. Before compilation
2. After Compilation
3. During execution
4, None of the above

266

Let Us C

[B]

(a)

(b)

(©)

(d)

What would be the output of the following program:

main()

inti=2;
#ifdef DEF
i'=i,
Halre
printf ("\n%d", 1) ;
#endif
}

#define PRODUCT(x) (x " x)
main()

{
inti=3,j,;
j= PRODUCT(i+1):
printf ("\n%d", j) ;

)

#define PRODUCT(x) (x* x)
main()

int i=3,)k,
j = PRODUCT(i++),
k = PRODUCT (++i),

printf { "\n%d %d", j. k) ;
}

define SEM! ;
main()

{

intp=3SEMI;

printf ("%d", p) SEMI
}

Chrapter 7: The C Preprocessor 267

ICl Attempt the following:

(a)

(b)

(c)

(d)

Write down macro definitions for the following:

1. To test whether a character entered is a small case letter or
not.

2. To test whether a character entered is a upper case letter or
not.

3. To test whether a character is an alphabet or not. Make
use of the macros you defined in (1) and (2) above.

4. To obtain the bigger of two numbers.

Write macro definitions with arguments for calculation of
area and perimeter of a triangle, a square and a circle. Store
these macro definitions in a file called “areaperi.h™. Include
this file in your program, and call the macro definitions for
calculating area and perimeter for different squares, triangles
and circles.

Write down macro definitions for the following:

1. To find arithmetic mean of two numbers.

2. To find absolute value of a number.

3. To convert a uppercase alphabet to lowercase.
4. To obtain the bigger of two numbers.

Write macro definitions with arguments for calculation of
Simple Interest and Amount. Store these macro definitions in
a file called “interest.h™. Include this file in your program, and
use the macro definitions for calculating simple interest and
amount.

268 Let Us C

