8 Arrays

® What are Arrays
A Simple Program Using Array
e More on Arrays
Array Initialisation
Bounds Checking
Passing Array Elements to a Function
* Pointers and Arrays
Passing an Entire Array to a Function
The Real Thing
* Two Dimensional Arrays
Initialising a 2-Dimensional Array
Memory Map of a 2-Dimensional Array
Pointers and 2-Dimensional Arrays
Pointer to an Array
Passing 2-D Array to a Function
Array of Pointers
Three-Dimensional Array
Summary
Exercise

” 269

270_ _ Let Us C

he C language provides a capability that enables the user to
design a set of $imilar data types, called array. This chapter
describes how arrays can be created and manipulated in C.

We should note that, in many C books and courses arrays and
pointers arc taught scparately. | feel it is worthwhile to deal wath
these topics together. This is because pointers and arrays are so
closely related that discussing arrays without discussing pointers
would make the discussion incomplete and wanting. In fact all
arrays make use of pointers internally. Hence it is all too relevant
to study them together rather than as isolated topies.

What are Arrays

For understanding the arrays properly, let us consider the
jellowing program:

main{)

{
int x:
s
x=10

printf { "\nx = %d", x)

)

No doubt, this program will print the value of x as 10. Why so?
Because when a value 10 is assigned to x, the earlier value of x,
ie 5. is lost. Thus, ordinary variables (the ones which we have
used so far) are capable of holding only onc value at a time (as in
the above example). However, there are situations - which we
would want to store more than one value at a time in a single

variable.

For example, suppose we wish 1o arrange the percentage marks
obtained by 100 students in ascending order. In such a case we
have two options to store these marks in memory:

Chapter 8: Arrays 271

(a) Construct 100 variables to store percentage marks obtained by
100 different students, i.e. each variable containing one
student’s marks.

(b) Construct one variable (called array or subscripted variable)
capable of storing or holding all the hundred valucs.

Obviously, the second altemative is belter. A simple reason for
this is, it would be much casicr to handle one variable than
handling 100 different variables. Morcover, there are certain logics
that cannot be dealt with, without the use of an array. Now a
formal definition of an array—An array is a collective name given
to a group of *similar quantities’. These similar quantities could be
percentage marks of 100 students, or salaries of 300 employees, or
ages of 50 cmployees. What is important is that the quantities must
be ‘similar’. Each member in the group is referred 10 by its
position in the group. For example, assume the following group of
numbers, which represent percentage marks obtained by five
students.

per = {48, 88,34, 23, 96)

If we want to refer to the second number of the group, the usual
notation used is per;. Similarly, the fourth number of the group is
referred as pery. However, in C, the fourth number is referred as
per|3]. This is because in C the counting of clements begins with 0
and not with 1. Thus, in this example per|[3] refers to 23 and
per[d] refers to 96. In general, the notation would be perfi],
where, i can take a value 0, 1, 2, 3, or 4, depending on the position
of the element being referred. Here per is the subscripted variable
(array), whereas i is its subscript.

Thus, an array is a collection of similar elements, These similar
elements could be all ints, or all fleats, or all chars, ctc. Usually,
the array of characters is called a ‘string’, whercas an array of ints
or floats is called simply an array. Remember that all elements of

272 Lé: UsC

any given array must be of the same type. i.e. we cannot have an
array of 10 numbers, of which 5 are ints and 5 are floats.

A Simple Program Using Array

Let us try to write a program to find average marks obtained by a
class of 30 students in a test.

main()
{
int avg,sum=0;
int i,
int marks[30] ; /* array declaration */

for(i=0;i<=29;i++)

printf { "\nEnter marks *) ;
scanf ("%d", &marksi]) ; /* store data in array */

}

for(i=0;i<=29;it+)
' sum = sum + marksli] ; /" read data from an array*/

avg=sum/30,
printf ("\nAverage marks = %d", avg) ;
}

There is a lot of new material in this program, so let us take it apart
slowly.

Array Declaration

To begin with, like other variables an array needs to be declared so
that the compiler will know what kind of an array and how large
an array we want. In our program we have done this with the
statement:

Chapter 8: Arrays , 273

int marks[30] ;

Here, int specifies the type of the variable, just as it does with
ordinary variables and the word marks specifics the name of the
variable. The [30] however is new. The number 30 tells how many
elements of the type int will be in our array. This number is often
called the ‘dimension’ of the array. The bracket ([]) tells the
compiler that we are dealing with an array.

Accessing Elements of an Array

Once an array is declared, let us see how individual elements in the
array can be referred. This is done with subscript, the number in
the brackets following the array name. This number specifies the
element’s position in the array. All the array elements are
numbered, starting with 0. Thus, marks|2] is not the second
element of the array, but the third. In our program we are using the
variable i as a subscript to refer to various elements of the array.
This variable can take different values and hence can refer to the
different elements in the array in turn. This ability to use variables
as subscripts is what makes arrays so useful.

Entering Data into an Array
Here is the section of code that places data into an array:

for (i=0;i<=29;i++)
{
printf ("\nEnter marks *) ;
scanf (*%d", &marks[i]) ;
)

The for loop causes the process of asking for and receiving a
student’s marks from the user to be repeated 30 times. The first
time through the loop, i has a value 0, so the scanf() function will
cause the value typed to be stored in the array element marks(0],
the first element of the array. This process will be repeated until i

374 L(.’L U.3£

becomes 29. This is last time through the loop, which i1s a good
thing, because there is nerarray clement like marks|30].

In seanf() function, we have used the “address of” operator (&) on
the element marks|i] of the array, just as we have used it earlier
on other variables (&rate, for cxample). In so doing, we are
passing the address of this particular array clement to the scanf()
function, rather than its value; which is what scanf() requires.

Reading Data from an Array

The balance of the program reads the data back out of the array
and uses it to calculate the average. The for loop is much the same,
but now the body of the loop causes cach student's marks to be
added to a running total stored in a variable called sum. When all
the marks have been added up, the result is divided by 30, the
number of students, to get the average.

for(i=0;i1<=29,i++)
sum = sum + marks|i] ;

avg =sum/30;
printf ("\nAverage marks = %d", avg) |

To fix our ideas, let us revise whatever we have leamnt about
arrays:

(a) An array is a collection of similar elements.

(b) The first element in the array is numbered 0, so the last
element is | less than the size of the array.

(c) An array is also known as a subscripted variable.

(d) Before using an array its typc and dimension must be
declared.

(e) However big an array its elcments are always stored in
contiguous memory locations. This is a very important point
which we would discuss in more detail later on.

Chapter 8: Arrays v 275

More on Arrays

Array 1s a very popular data type with C programmers. This is
because of the convenience with which arrays lend themselves to
programming. The features which make arrays so convenient to
program would be discussed below, along with the possible pitfalls
in using them.

Array Initialisation

So far we have used arrays that did not have any values in them to
begin with. We managed to store values in them during program
execution. Let us now sce how to initialize an array while
declaring it. Following are a few examples that demonstrate this.

int numf6] = (2, 4,12,5,45,5);
int n[]={2 4,12,5,455};
float press[]={12.3,34.2-234,-113},

Note the following points carefully:

(a) Till the array elements are not given any specilic values, they
are supposed to contain garbage values.

(b) Ifthe array is initialised where it is declared, mentioning the
dimension of the array is optional as in the 2™ example above.

Array Elements in Memory
Consider the following array declaration:
int arr[8] ;

What happens in memory when we make this declaration? 16
bytes get immediately reserved in memory, 2 bytes each for the 8
integers (under Windows/Linux the array would occupy 32 byles

276 _ Let Us C

as cach integer would occupy 4 bytes). And since the array is not
being initialized, all eight values present in it would be garbage
values. This so happans because the storage class of this array is
assumed to be auto. If the storage class is declared to be static
then all the array clements would have a default initial value as
zero. Whatever be the initial values, all the array elements would
always be present in contiguous memory locations. This
arrangement of array elements in memory is shown in Figure 8.1,

12 34 66 -45 23 146 77 a0

65508 AS510 65512 65514 65516 65518 65520 65522

Figure 8.1

Bounds Checking

In C there is no check to see if the subscript used for an array
exceeds the size of the array. Data cntered with a subscript
exceeding the array size will simply be placed in memory outside
the array; probably on top of other data, or on the program itself.
This will lcad to unpredictable results, to say the least, and there
will be no error message to warn you that you are going beyond
the array size. In some cases the computer may just hang. Thus,
the following program may turn out to be suicidal.

main()
int num(40}, i ;

for(i=0;i<=100;i++)
numfi] =i;

Chapter 8: Arrays) 277

Thus, to see to it that we do not reach beyond the array size is
entirely the programmer’s botheration and not the compiler’s.

Passing Array Elements to a Function

Array elements can be passed to a function by calling the function
by value, or by reference. In the call by value we pass values of
array elements to the function, whereas in the call by reference we
pass addresses of array elements to the function. These two calls
are illustrated below:

* Demonstration of call by value */
main()
{
int i,
int marks(] = {55, 65, 75, 56, 78, 78,90 } ;

for(i=0;i<=6;i++)
display (marks[i]) ;
)

display (int m)
{

printf (*%d ", m);
}

And here’s the output...
556575567878 90

Here, we are passing an individual array clement at a time to the
function display() and getting it printed in the function display().
Note that since at a time only one element is being passed, this
element is collected in an ordinary integer variable m, in the
function display().

And now the call by reference.

278

f* Demonstration of call by reference */
main()

{
int 1,
int marks[] = { 55, 65, 75, 56,78, 78,90 }:
for(i=0;i<=6;i++)
disp (&marksli]) ;
}

disp(int *n)

printf ("%d ", *n) ;
}

And here's the output...
55657556 78 78 90

LetUs €

Here, we are passing addresses of individual array elements to the
function display(). Hence, the variable in which this address is
collected (n) is declared as a pointer variable. And since n contains
the address of array clement, to print out the array element we are

using the ‘value at address’ operator (*).

Read the following program carefully, The purpose of the function
disp() is just to display the array elements on the screen. The
program is only partly complete. You are required to write the

function show() on your own. Try your hand at it.

main()
L
it 1,
int marks|] ={ 55, 65,75, 56,78.78,90 }

for(i=0;1<=6;it+)
disp (&marks|i]) |

Chapter 8: Arrays _ _ 279

}

disp (int *n)
show (&n) ;

}

Pointers and Arrays

To be able to see what pointers have gol to do with arrays, lct us
first leamm some pointer arithmetic. Consider the following

example:
main() i
{

inti=3,"x;

float j=1.5,%y;

char k='C, "z,

printf ("\nValue of i = %d", i) ;

printf ("\nValue of j = %f", j) ;

printf ("\nValue of k = %c", k } ;

x=&i;

y=4j.

z=8k;

printf ("\nOriginal address in x = %u”, x) ;
printf ("\nOriginal address in y = %u", y)
printf ("\nOriginal address in z = %u", z) ;
X++

y+t

Z+4 !

printf ("\nNew address in x = %u", x) ;
printf ("\nNew addressiny = %u", y) ;
printf ("\nNew addressinz=%u", z) ;

}

Here is the output of the program.

280 Let Us C

Valueofi=3
Value of j = 1.500000
Valueofk=¢

Original address in x = 65524
Original address in y = 65520
Original address in z = 65519
New address in x = 65526
New address iny = 65524
New address in z = 65520

Observe the last three lines of the output. 65526 is original value in
x plus 2, 65524 is original value in y plus 4, and 65520 is original
value in z plus 1. This so happens because every time a pointer is
incremented it points to the immediately next location of its type.
That is why, when the integer pointer x is incremented, it points to
an address two locations after the current location, since an int is
always 2 bytes long (under Windows/Linux since int is 4 bytes
long, new value of x would be 65528). Similarly, y points to an
address 4 locations after the current location and z points |
location after the current location. This is a very important result
and can be effectively used while passing the entire array to a
function.

The way a pointer can be incremented, it can be decremented as
well, to point to earlier locations. Thus, the following operations
can be performed on a pointer:

(a) Addition of a number 1o a pointer. For example,
int i=4,%%;
j=8&i;
i=it1
j=i*9;
k= i + 3 :

(b) Subtraction of a number from a pointer. For example,

Chapter 8: Arrays 281

(c)

int i=4,%,°;
j=4&i;-
j=i-2;
j=i-5.

k=j-6;

Subtraction of one pointer from another.

One pointer variable can be subtracted from another provided
both variables point to elements of the same array. The

resulting value indicates the number of byles separating the

corresponding array elements. This is illustrated in the
following program.

main()
[
int arr{]={ 10, 20, 30, 45, 67, 56,74 }
int %, 4 ;
i = &ar1].
j= &am(S];
printf (*%d %d",j- i, - i)

}

Here i and j have been declared as integer pointers holding
addresses of first and fifth element of the array respectively.

Suppose the array begins at location 65502, then the elements
arr[1] and arr[5] would be present at locations 65504 and
65512 respectively, since each integer in the array occupies
two bytes in memory. The expression j - i would print a value
4 and not 8. This is because j and i are pointing to locations
that are 4 integers apart. What would be the result of the
expression *j - *i? 36, since *j and *i return the values
present at addresses contained in the pointers j and i.

(d) Comparison of two pointer variables

282

Let Us C_

Pointer variables can be compared provided both variables
point to objects of the same data type. Such comparisons can
be uscful when both pointer variables point to clements of the
same array. The comparison can test for cither equality or
inequality. Morcover, a pointer variable can be compared with
zero (usually expressed as NULL). The following program
ilustrates how the comparison is carried out.

main()

{

}

int arr[]={10, 20, 36,72,45,36 } .
JI'H nrr ak :

if(j==k)
printf { "The two poinlers point to the same location” } ;

else
printf { "The two pointers do not peint to the same location”) ;

A word of caution! Do not atempt the following operations on
pointers... they would never work out.

(a) Addition of two pointers
(b) Multplication of a pointer with a constant
(¢) Davision of a pointer with a constant

Now we will try lo correlate the following two facts, which we
have learnt above:

(a) Array clements are always stored in contiguous memory
locations. _

(b) A pointer when incremented always points to an immediately
next location of its type.

Chapter 8: Arrays 283

Suppose we have an array num|] = { 24, 34, 12, 44,56, 17 }. The
following figure shows how this array is located in memory,

24 | a4 12 44 56 17

65512 65514 65516 05513 65520 65522

Figure 8.2

Here is a program that prints out the memory locations in which
the elements of this array are stored.

main()
{ .
int num[]= {24, 34, 12,44, 56,17) :
int i;

for(i=0,i<=5;i++)

printf ("nelement no. %d ", i) :
printf ("address = %u", &num|i}) ;

}

The output of this program would look like this:

element no. 0 address = 65512
element no. 1 address = 65514
element no. 2 address = 65516
element no. 3 address = 65518
element no. 4 address = 65520
element no. 5 address = 65522

Note that the array elements are stored in contiguous memory
locations, each element occupying two bytes, since it is an integer

284 Let Us C

array. When you run this program, you may get different
addresses, but what ig certain is that cach subsequent address
would be 2 bytes (4 bytes under Windows/Linux) greater thaa its
immediate predecessor.

Our next two programs show ways in which we can access the
elements of this array.

main()

{
int num[]= {24, 34,12, 44,56, 17},
int i;

for(i=0,i<=5;i++)

printf ("\naddress = %u ", &num(i]) ;
printf (“element = %d", num(i]) ;
}
}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

This method of accessing array elements by using subscripted
variables is already known to us. This method has in fact been
given herc for easy comparison with the next method, which
accesses the array elements using pointers,

main()

{
int num(]=(24,34,12 44,56,17},

Chapter 8: Arrays 285
int i, %,
j = &num(0] ; /* assign address of zeroth element */
for(i=0;i<=5,i++)

printf ("\naddress = %u ", j) ;
printf { "element = %d", *j) ;
j+t+ . I increment pointer to point to next location */
)
}

The output of this program would be:

address = 65512 element = 24
address = 65514 element = 34
address = 65516 element = 12
address = 65518 element = 44
address = 65520 element = 56
address = 65522 element = 17

In this program, to begin with we have collected the base address
of the array (address of the 0™ element) in the variable j using the
statement,

j=&num(0] ; /* assigns address 655120 */

When we are inside the loop for the first time, j contains the
address 65512, and the value at this address is 24. These are
printed using the statements,

printf ("\naddress = %u ", j);
printf ("element = %d", %}) ;

On incrementing j it poimts to the next memory location of its type
(that is location no. 65514). But location no. 65514 contains the
second element of the array, therefore when the printf()

20

286 Let Us C

statements are executed for the sccond time they print out the
second element of the array and its address (i.e. 34 and 65514)...
and so on till the last element of the array has becn printed.

Obviously, a question arises as to which of the above two methods
should be used when? Accessing array elements by pointers is
always faster than accessing them by subscripts. However, from
the point of view of convenicnce in programming we should
observe the following:

Array elements should be accessed using pointers if the elements
are to be accessed in a fixed order, say from beginning to end, or
from end to beginning, or every alternate element or any such
definite logic.

Instead, it would be easier to access the clements using a subscript
if therc is no fixed Jogic in accessing the elements. However, in
this case also, accessing the clements by pointers would work
faster than subscripts.

Passing an Entire Array to a Function

In the previous section we saw two programs—one in which we
passed individual clements of an array to a function, and another in
which we passed addresses of individual elements to a function.
Let us now see how to pass an cntire array to a function rather than
its individual elements. Consider the following example:

I* Demanstration of passing an entire array fo a function */
main()

int num[] = {24, 34,12,44,56,17),
dislpay (&num[Q].6) ;
}

display (int *j,int n) 5
{ T

Chapter 8: Arrays 287

int i;
for(i=0;i<=n-1;i++)

printf ("\nelement = %d", *j) ;

jt+; I*increment pointer to point to next element */
}
-

Here, the display() function is used to print out the array
elements. Note that the address of the zeroth element is being
passed to the display() function. The for loop 1s same as the one
used in the carlier program to access the array elements using
pointers. Thus, just passing the address of the zeroth element of the
array to a function is as good as passing the entire array to the
function. It is also necessary to pass the total number of clements
in the array, otherwise the display() function would not know
when to terminate the for loop, Note that the address of the zeroth
element (many a times called the base address) can also be passed
by just passing the name of the array. Thus, the following two
function calls are same:

display { &numi0], 6) ;
display (num, 6) ;

The Real Thing

If you have grasped the concept of storage of array elements in
memory and the arithmetic of pointers, here is some real food for
thought. Once again consider the following array.

24 34 12 44 56 17
65512 65514 65510 65518 65520 65522

Figure 8.3

288 Let Us C

This is how we would declare the above array in C,
int num{] = {24, 34, 12, 44,56, 17} ;

We also know that on mentioning the name of the array we get its
base address. Thus, by saying *num we would be able to refer to
the zeroth element of the array, that is, 24. One can easily see that
*pum and *(num + 0) both refer to 24.

Similarly, by saying *(num + 1) we can refer the first element of
the array, that is, 34. In fact, this is what the C compiler does
internally. When we say, num(i], the C compiler internally
converts it to *(num + i). This mcans that all the following
notations are samc:

num(i]

*(num+i)

*(i+num)

ifnum]

And here is a program Lo prove my point.

/* Accessing array elements in different ways */
main()

int num{] = {24, 34,12, 44,56, 17},
int i,

for (i=0;i<=5,i++)
printf (“\naddress = %u *, &numlj])i

printf ("element = %d %d *, numli], *(num +i))
printf (*%d %d”, *(i + num), ifnum]) ;

}

The output of this program would be:

Chapter 8: Arrays

address = 65512 element = 24 24 24 24
address = 65514 element = 34 34 34 34
address = 65516 element = 12 12 12 12
address = 65518 element = 44 44 44 44
address = 65520 element = 56 56 56 56
address = 65522 element = 17 17 17 17

Two Dimensional Arrays

So far we have explored arrays with only one dimension. It is also
possible for arrays to have two or more dimensions. The two-
dimensional array is also called a matrix.

Herc is a sample program that stores roll number and marks
obtained by a student side by side in a matrix.

main()

{
int stud[4](2] ;
int i,j;

for(i=0;i<=3;i++)
{
printf ("\n Enter roll no. and marks") ;
scanf (*%d %d", &stud[i][0]. &stud(i][1]) ;
}

for (i=0;i<=3;i++)
printf ("\n%d %d", stud|i][0], stud(i][1]) .
}
There are two parts to the program—in the first part through a for
loop we read in the values of roll no. and marks, whereas, in
sccond part through another for loop we print out these values.

Look at the seanf() statement used in the first for loop:

scanf ("%d %d", &stud(i][0], &studfi][1]);

290 B ___L(Ja' C

In stud[i][0] and stud[i]|1] the first subseript of the variable stud,
is row number which changes for every student. The second
subseript tells which of the two columns are we talking about - the
seroth column which contains the roll no, or the first column
which contains the marks. Remember the counting of rows and
columns begin with zero. The complete array arrangement is
shown below,

_golmo. & _eabooi |
row no, 0 [__Eh‘l . 6 _
rowno || 1202 3 !
row no, 2 M RO
row no, 3 |2 7N

Figure 8.4

Thus, 1234 is stored in stud[0]]0], 56 is stored in stud [0][1] and
so on. The above arrangement highlights the fact that a two-
dimensional array is nothing but a collection of a number of one-
dimensional arrays placed one below the other.

In our sample program the array elements have been stored
rowwise and accessed rowwise, However, you can access the array
clements columnwise as well. Traditonally, the array elements are
being stored and accessed rowwise; therefore we would also stick
to the same strategy.

Initialising a 2-Dimensional Array

How do we initialize a two-dimensional array? As simple as this...

Chapter 8: Arrays) 291

int stud(4](2] = {

{1234,56),
{(1212,33),
(1434, 80},
{1312,78}

Yi
or even this would work...
int stud(4][2] = { 1234, 56, 1212, 33, 1434, 80, 1312, 78 } .
of course with a corresponding loss in readability.
It is important to remember that while initializing a 2-D array it is
necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional.

Thus the declarations,

int arr{2][3) = {12, 34, 23,45, 56,45 } ;
int arr| |[3]={ 12,34, 23,45,56,45} .

are perfectly acceptable,
whereas,

int arr(2][] = {12, 34, 23, 45,56, 45) ;
int are{][] = { 12, 34, 23, 45, 56,45} ;

would never work.

Memory Map of a 2-Dimensional Array

Let us reiterate the arrangement of array clements in a (wo-
dimensional array of students, which contains roll nos. in one
column and the marks in the other.

292 B Let Us €

The array arrangement shown in Figure 8.4 is only conceptually
true. This is because memory doesn’t contain rows and columns.
In memory whether it is a one-dimensional or a two-dimensional
array the array clements are stored in one continuous chain. The
arrangement of array clements of a two-dimensional array in
memory is shown below:

S[0100] s[O)(1] s[110] s[1)[1] s[210] <2111 s[3](0] sB3](1]
1234 56 1212 13 1434 l ¥0 | 1312 78

65508 65510 65512 65514 65510 6SSI8 05520 65522

Figure 8.5

We can casily refer to the marks obtained by the third student
using the subscript notation as shown below:

printf { "Marks of third student = %d", stud[2](1]) ;

Can we not refer the same clement using pointer notation, the way
we did in one-dimensional arrays? Answer is yes. Only the
procedure is slightly difficult to understand. So, read on...

Pointers and 2-Dimensional Arrays

The C language embodics an unusual but powerful capability—it
can treat parts of arrays as arrays. Morc specifically, each row of a
two-dimensional array can be thought of as a one-dimensional
array. This is a very important fact if we wish to access array
elements of a two-dimensional array using pointers.

Thus, the declaration,

int s[5][2] ;

Chapter 8: Arrays 293

can be thought of as sctting up an array of 5 elements, each of
which is a one-dimensional array containing 2 intcgers. We refer
to an element of a one-dimensional array using a single subscript.
Similarly, if we can imagine s to be a one-dimensional array then
we can refer to its zeroth element as s[0], the next element as s[1]
and so on. More specifically, s|0] gives the address of the zeroth
one-dimensional array, s[1] gives the address of the first one-
dimensional array and so on. This fact can be demonstrated by the
following program,

I* Demo: 2-D array is an array of arrays */

main()
int s[4)[2] = {
{1234,56 },
{1212,33},
{1434,80),
(1312,78}
it i; f

for(i=0;i<=3;i++)
printf ("\nAddress of %d th 1-D array = %u", i, s[|]) ;
}

And here is the output...

Address of 0 th 1-D array = 65508
Address of 1th 1-D array = 65512
Address of 2 th 1-D array = 656516
Address of 3 th 1-D array = 65520

Let's figure out how the program works. The compiler knows that
s is an array containing 4 one-dimensional arrays, cach containing
2 integers. Each one-dimensional array occupics 4 bytes (two
bytes for each integer). These onc-dimensional arrays are placed
linearly (zeroth 1-D array followed by first 1-D array, etc.). Hence

294 LaUsC

cach onc-dimensional arrays starts 4 bytes further along than the
last one, as can be seen’in the memory map ol the array shown
below.

s[0J(0] s[OJ(1] s(V)[0] s[UIEH) s[2100] s[2](1] s(3100] s[3)[T]
1234 | s6 | 1212 | 33 | 1434 | 80 | 1312 78

65508 65510 65512 65514 65516 65518 065520 65522

ﬁgurc 8.6

We know that the expressions s|0] and s[1] would yicld the
addresses of the zeroth and first one-dimensional — array
respectively. FFrom Figure K.6 these addresses turn out to be 65508
and 65512,

Now, we have been able to reach each one-dimensional array.
What remains is to be able to refer to individual elements of a one-
dimensional array. Suppose we want to refer to the element s[2][1}]
using pointers. We know (fram the above program) that §{2] would
give the address 65516, the address of the second one-dimensional
array. Obviously (65516 + 1) would give the address 65518. Or
(s5]2] + 1) would give the address 65518, And the value at this
address can be obtained by using the value at address operator,
saying *(s[2] + 1). But, we have alrcady studied while lcarming
onc-dimensional arrays that numli] is same as *(num + i).
Similarly, *(s[2] + 1) is same as, *(*(s +2) + 1). Thus, all the
following cxpressions refer to the same clement,

s[2](1]
"(s[2] +1)
"("(s+2)21)

Chapter 8: Arrays 295

Using these concepts the following program prints out cach
clement of a two-dimensional array using pointer notation.

/* Poinler notalion to access 2-D array elements */
main()

int s(4][2) = {
(1234, 56,
{1212,33},
{1434, 80},
{1312,78)
b

int i,
for(i=0,i<=3;i++)
printf{ "\n") ;
for (j=0;)<=1:j++)
printf ("%d " *(*(s+i) +])):
}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Pointer to an Array

1" we can have a pointer lo an integer, a pointer to a float, a pointer
to a char, then can we not have a pointer to an array”? We certainly
can. The following program shows how to build and use it.

296 Let Us C

f* Usage of pointer to an array */
main()

int s[5][2] = { 4
< {1234,56),
{1212, 33} 0
o> (1434, 80 },0x
{1312, 78)
%
int (*p)i2j.
int i, "pint ;

for(1=0:i<=3;1++)
{
p=&sfi],
pint=p;
printf ("\n") ;
for (j=0,j<=1:j++)
printf { "%d ", *(pint+)}),

}

And here 1s the output. .,

\ ¥
1234 56
1212 33
1434 80
1312 78

Here pois a pointer to an array of two integers. Note that the
parcntheses in the declaration of p arc necessary. Absence of them
would make p an array of 2 integer pointers. Array of pointers is
covered n a later scetion in this chapter. In the outer for loop cach
time we store the address of a new one-dimensional array, Thus
first time through thiy loop p would contain the address of the
zeroth 1-D array. This address s then assigned to an integer
pointer pint. Lastly in the inner for loop using the pointer pint we

Chapter 8: Arrays 297

have printed the individual elements of the 1-D array to which p is
pointing.

But why should we use a pointer to an array to print clements of a
2-D array. Is there any situation where we can appreciale its usage
better? The entity pointer to an array is immensely useful when we
need to pass a 2-D array to a function. This is discussed in the next
section.

Passing 2-D Array to a Function

There are three ways in which we can pass a 2-D array to a
function. These are illustrated in the following program.

/* Three ways of accessing a 2-D array */

main()
{
int a[3][4] = {
1,2, 3,4,
5,678,
9,0,1,6

clrser() ;
display (2, 3,4);
show(a, 3,4);
print(a, 3,4);

}

display (int *q, int row, int col)
int i, j;
for(i=0;i<row;i++)

for (j=0;j<col;j++)
printf ("%d ", *(q+i*col+]));

298

Let Us C

printf ("\n") ;

)
printf ("\n") ;

show (int { *q)[4]. int row, int col)

inl i,j;

int *p;

for(i=0;i<row;i++)

{
P=Q+i,
for(j=0.j<col;j++)

printf ("%d ", * (p+j));

printf ("\n") ;

)

printf ("\n") ;

}
print (int g[][4], int row, int col)
{

int i, j;

for(i=0;i<row;i++)

{
for (j=0,j<col;j++)
printf { "%d ", qlilfi]) ;
printf (\n*) ;
printf ("\n") ;

}

And here 1s the output. .,

1234
5678

Chapter 8: Arrays 299

9016

1234
5678
3016

1234
5678
9016

In the display() function we havc collected the base address of the
2-D array being passed to it in an ordinary int pointer. Then
through the two for loops using the expression * (q+1i* col +j)
we have reached the appropriate element in the array. Suppose i is
equal to 2 and j is equal to 3, then we wish to reach the element
a]2]13]. Let us see whether the expression * (q +i * col + j) does
give this element or not. Refer Figure 8.7 to understand this.

Figure 8.7

The expression * (q + i * col + j) becomes * (65502 +2 * 4 + 3).
This turns out to be * (65502 + 11). Since 65502 is address of an
integer, * (65502 + 11) turns out to be * (65524). Value at this
address is 6. This is indced same as a|2]|3]. A more general
formula for accessing cach array clement would be:

* (base address + row no. * no. of columns + column no.)

In the show() function we have defined q to be a pointer to an
array of 4 integers through the declaration:

300 Let Us C

int (*q)(4];

To begin with, q holds the base address of the zeroth 1-D array,
i.e. 4001 (refer Figure 8.7). This address is then assigned to p, an
int pointer, and then using this pointer all elements of the zeroth 1-
D array are accessed. Next time through the loop when i takes a
value 1, the expression q + i fetches the address of the first 1-D
array. This is beccause, q is a pointer to zeroth 1-D array and
adding 1 1o it would give us the address of the next 1-D array. This
address is once again assigned to p, and using it all clements of the
next [-D array are accessed.

In the third function print(), the declaration of q looks like this:

int qf][4];

This is same as int (*q)[4], where q is pointer to an array of 4
integers. The only advantage is that we can now use the more
familiar expression q[i][j] to access array elements. We could have
used the same expression in show() as well.

Array of Pointers

The way there can be an array of ints or an array of floats,
similarly there can be an array of pointers. Since a pointer variable
always contains an address, an array of pointers would be nothing
but a collection of addresses. The addresses present in the array of
pointers can be addresses of isolated variables or addresses of
array clements or any other addresses. All rules that apply to an
ordinary array apply to the array of pointers as well. 1 think a
program would clarify the concept.

main()

int *arr[d] ; /* array of integer pointers */

Chapter 8: Arrays 301

inti=31,j=5k=19,1=71,m;

arr{0] = &i;
ar{1]=&j;
arr2] = &k ;
am3]=&l;

for(m=0;m <=3, mé+)
printf (“%d *, * (am{m])) ;
)
Figure 8.8 shows the contents and the arrangement of the array of
pointers in memory. As you can observe, arr contains addresses of
isolated int variables i, j, k and 1. The for loop in the program

picks up the addresses present in arr and prints the values present
at these addresses.

65516 65514 65512 65510

arr[0] arr[1] arr[2] arr[3]

65516 | 05514 | 65512 | 65510 I

65518 65520 65522 65524

Figure 8.8

An array of pointers can even contain the addresses of other
arrays. The following program would justify this.

main()

{
staticint a[]={0,1,2,3,4);

21

302 Let Us C

int *p[]={a,a+1,a+2a+3 a+d};

printf ("\n%u %u %d". p.'p, " (*p)),
)

I would leave it for you to figure out the output of this progrant.

Three-Dimensional Array

We aren't going to show a programming example that uses a three-
dimensional array. This is because, in practice, one rarely uses this
array. However, an example of initializing a three-dimensional
array will consolidate your understanding of subscripts:

int ar(34)(2] = (

—— — — p——
oW~ PRI
o H o

e ot S

|

— —— —— ——
PO O
wWw o,

S, St g S

w e
- bR
o et o

—— e ——
on e

}
)

A three-dimensional array can be thought of as an array of arrays
of arrays. The outer array has three clements, each of which is a

Chapter 8: Arrays 303

two-dimensional array of four one-dimensional arrays, each of
which contains two integers. In other words, a one-dimensional
array of two elements is constructed first. Then four such one-
dimensional arrays are placed one below the other to give a two-
dimensional array containing four rows. Then, three such two-
dimensional arrays are placed one behind the other to yield a three-
dimensional array containing three 2-dimensional arrays. In the
array declaration note how the commas have been given, Figure
8.9 would possibly help you in visualising the situation better.

2™ 2-D Array N

1% 2-D Armray %—hl

0™ 2.D Array —— 4

Figure 8.9

Again remember that the arrangement shown above is only
conceptually true. In memory the same array' elements are stored
linearly as shown in Figure 8.10. .

0" 2-p Amay—*[*— |¥ 2.D Amray—+— ™ Z-DAmay_'l
2_4?33456?634532339723451
65478 65494 65510

Figure 8.10

304 Let Us C '

How would you refer to, the array clement 1 in the above array?
The first subscript should be [2], since the element is in third two-
dimensional array; the second subscript should be [3] since the
element is in fourth row of the two-dimensional array; and the
third subscript should be [1] since the element is in second position
in the one-dimensional array. We can therefore say that the
clement 1 can be referred as arr[2][3](1]. It may be noted here that
the counting of array elements even for a 3-D array begins with
zero. Can we not refer to this element using pointer notation? OF
course, yes. For example, the following two expressions refer to
the same element in the 3-D array:,

arr{2)(3](1]
(f(fam+2)+3)+1)

Summary

(a) An array is similar to an ordinary variable except that it can
store multiple elements of similar type.

(b) Compiler doesn’t perform bounds checking on an array.

(¢) The array variable acts as a pointer to the zeroth element of
the array. In a 1-D array, zeroth clement is a single value,
whereas, in a 2-D array this element is a |-D array.

(d) On incrementing a pointer it points to the next location of its
type.

(e) Array elements are stored in contiguous memory locations
and so they can be accessed using pointers.

(f) Only limited arithmetic can be done on pointers.

Exercise
Simple arrays

[A] What would be the output of the following programs:

(a) main()

Chapter 8: Arrays 305

{

int num(26], temp ;

num|0] = 100 ;

num|25] = 200 ;

temp = num|[25] ;

num([25] = num(0] ;

num([0] = temp ;

printf ("\n%d %d", num[0], num(25]) ;
)

(b) main()
{
int array[26),i;
for (i=0;i<=25;i++)
{
,amayfi]="A'+i;
printf ("\n%d %c", array(i), arrayli]) ;
}

)

(c) main()
{
int sub[50], i;
for(i=0;i<=48;i++);

{
subfi] =i,
printf ("\n%d", subfi]) ;
}
)

|B] Point out the errors, if any, in the following program
segments:

(a) /" mixed has some char and some int values */
int char mixed[100] ;

main()

{
int a[10},i;

306 Let Us C

for(i=1,1<=10,i++)

scanf ("%d", alif) ;
printf (*%d", afl]) ;
}
)

(b) main()
{

int size ;
scanf (“%d", &size) ;
int arr(size] ;

for (i=1,;i<=size;i++)

scanf (“%d", arrfi]) ;
printf ("%d", arr[i}) ;
}

(c) main()

inti,a=2,b=3;
int am[2+3];
for(i=0,i<a+b,i++)

scanf ("%d", &arrfi]) ;
printf ("\n%d", arrfi]) ;
)
}

[C] Answer the following:

(a) An array is a collection of

different data types scattered throughout memory
the same data type scattered throughout memory
the same data type placed next to each other in memory
different data types placed next to each other in memory

=

Chapter 8: Arrays 307

(b)

©

(d)

(e)

(D]
(a)

Are the following array declarations correct?

int a(25);
int size = 10, bsize] ;
intc={0,1,2};

Which element of the array does this expression reference?
num(4)

What is the difference between the S's in these two
expressions? (Select the correct answer)

int num(5] ;
num([5]=11;

1. first is particular element, second is type

2. first is array size, second is particular element
3. first is particular element, second is array size
4, both specify array size

State whether the following statements are True or False:

1. The array int num|26] has twenty-six elements.

2. The expression num[1] designates the first element in the
array

3. It is necessary to initialize the array at the time of
declaration.

4. The expression num|[27] designates the twenty-eighth
element in the array.

Attempt the following:

Twenty-five numbers are entered from the keyboard into an
array. The number to be searched is entered through the
keyboard by the user. Write a program to find if the number to
be searched is present in the array and if it is present, display
the number of times it appears in the array.

308 Let Us C

(b) Twenty-five numbers are entered from the keyboard into an
array. Write a program to find out how many of them are
positive, how many are negative, how many are even and how
many odd.

(c) Implement the Selection Sort, Bubble Sort and Insertion sort
algorithms on a set of 25 numbers. (Refer Figure 8.11 for the
logic of the algorithms)

— Selection sort
— Bubble Sort
— Insertion Sort

Selection Sort
licration | Iteration 2
0 44:| B3N] 22 o1] o|l1] o|1
1133 44 44 44 1] 44 :I 1| 44 1| 33
2|55 | |55 |5 ||]55 2| 55 2| 55 2| 55
3|22 22 22 33 3133 3(33 3| 44
4| 11 11 [11] [4| 22 4| 22 4| 22
Iteration 3 Iteration 4
Result
o] 11 olliﬁ__ 011 ol 11
1] 22 1] 22 1|22 1|22
2 55" 2| 44 2133 2|33
alaa ¥ 3|55 3|55 3| 44
4| 33 4] 33 4| 44 4| 55

Figure 8.11 (a)

Chapter 8: Arrays

309

¥
Bubble Sort
Iteration | Iteration 2
0] 44 ‘:] 33 33 a3 0133 ':I 0} 33 0} 33
11 33 44 J 44 44 1] 44 1] 44 ;] 11 22
2| 55 55 55 :] 22 223 2| 22 2| 44]
3| 22 22 22 553 3|1 3| 1 3| 11 1
4 1 1 11 1 4|55 | 4|55 4| 55
Iteration 3 i Iteration 4
[_ Result
0] 33 J 0| 22 0|22 :I o 11
1] 22 1] 337 111" 1| 22
2| 11 2l 1 2133 2133
3| 44 3| 44 3144 3| 44
4| 55 4| 55 4| 55 4] 55
Figure 8.11 (b)
Insertion Sort
Iteration | Iteration 2 Iteration 3 lteration 4 Result
33 33 22 0] 11
44 33 1122
55 j 44 2133
22 22 3| 44
11 11 1" 4|55

Figure 8.11 (c)

310 _LaUsC

(d) Implement the following procedure to generate prime
numbers from | to 100 into a program. This procedure is
called sieve of Eratosthenes.

step 1 Fill an array num[100] with numbers from 1 to 100

step 2 Starting with the second entry in the array, set all its
multiples to zero.

step3 Proceed to the next non-zero element and set all its
multiples to zero.

step4 Repeat step 3 till you have set up the multiples of
all the non-zero elements to zero
step 5 At the conclusion of step 4, all the non-zero entries

left in the array would be prime numbers, so print
out these numbers.

More on arrays, Arrays and pointers

(E] What would be the output of the following programs:
(a) main()

int b{]={10, 20, 30,40,50} ;
inti;
for(i=0;i<=4;i++)
printf (\n%d" *(b+i));
)

(b) main()
{
int b[]={0,20,0,40,5};
int i, "k ;
k=b;
for(i=0;i<=4;i++)

printf (\n%d" %k) ;

Chapter 8: Arrays

311

k++

}
}

(c) main()

int a[]={2,4,6,810},

int i;

change(a,5);

for(i=0;i<=4;i++)
printf(“\n%d", afi]) ;

}
change (int *b, int n)

int i;
for(i=0;i<n;i++)
(b+i)="(b+i)+5;

(d) main()
{

int a[5],i,b=16;
for(i=0;i<5;i++)
afi]=2"i;
flab);
for(i=0,i<$;i++)
printf ("\n%d", a[i]) ;
printf("\n%d", b) ;
}
fint *x,int y)
{ . .
int i,
for(i=0;i<5;i++)
x+i)+=2]
y+=2;
}

312 Let Us C

(e) main()

staticint a[5); ’
int i;
for(i=0;i<=4,i++)
printf ("\n%d", ali]) ;
}

() main()
{

int a[5)={5,1,15,20,25},

inti,jk=1,m;

i =++3[1],

j=al]++]

m = afi+4] ;

printf ("\n%d %d %d",i,j,m);
)

[F] Point out the errors, if any, in the following programs:
(a) main()

int array[6]={1,2,3,4,56},
int i;
for (i=0;i<=25;i++)
printf ("\n%d", array[i]) ;
}

(b) main()

int sub[50},i,
for(i=1;i<=50;i++)
{
subli] =i
printf ("\n%d" , subfi]) ;
)
}

Chapter 8: Arrays 313

(c) main()

{
int a[]={10,20,30,40,50};
int j,
j=a; I*store the address of zeroth element)
j=j*3; -
printf ("\n%d" *j) ;

}

(d) main()
{

float a[]={13.24,15,15,54,35};
float % ;

j=a;

j=)+4,

printf ("\n%d %d %d", j, "}, al4]) ;

} B

(e) main()

float a[)={13.24,1.5,15,54,35},
float *j, *k ;
j=a;
k=a+4;
j=1*2;
k=kl2;
printf ("\n%d %d", *j, "k) ;
}

() main()
{

int max=5,

float arrimax];

for (i=0;i<max;i++)
scanf ("%f", &arr{i]) ;

314 Let Us C

[G] Answer the following:

(a)

(b)

(c)

(d)

(¢)

What would happen if you try to put so many values into an
array when you initialize it that the size of the array is
exceeded?

I. nothing

2. possitle system malfunction

3. error message from the compiler
4. other data may be overwritten

In an array int arr[12] the word arr represents the
a of the array

What would happen if you put too few elements in an array
when you initialize it?

1. nothing)

2. possible system malfunction

3. error message from the compiler

4. unused elements will be filled with 0's or garbage

What would happen if you assign a value to an element of an
array whose subscript exceeds the size of the array?

the element will be set to 0
nothing, it's done all the time
‘other data may be overwritten
error message from the compiler

2w —

When you pass an array as an argument to a function, what
actually gets passed?

address of the array

values of the elements of the array
address of the first element of the array
number of elements of the array

B LR

Chayter 8: Arrays 315

)

(2)

[H]
(a)

(b)

(c)

Which of these are reasons for using pointers?

To manipulate parts of an array

To refer to keywords such as for and if

To return more than one value from a function

To refer to particular programs more conveniently

Pl

If you don’t initialize a static array, what would be the
clements set to?

0

an undetermined value

a floating point number
the character constant \0'

b LK, e

State True or False:

Address of a floating-point variable is always a whole
number.

Which of the fo']Iowing is the correct way of declaring a float
pointer:

5. float ptr;

6. float *ptr;

7. *floatptr;

8. None of the above

Add the missing statement for the following program to print
35

main()
{
int , *ptr ;
"pr=35,;
printf (n%d",) ;
)

316 Let Us C

(d)

(1
(a)

(b)

(c)
(d)

(e)

if int s{5] is a one-dimensional array of integers, which of the
following refers to'the third element in the array?

9, MExr2)
10. ¥(s+3)
11.5+3
12 5% 2

Attempt the following:

Write a program to copy the contents of one array into another
in the reverse order.

If an array arr contains n elements, then write a program to
check if arr[0] = arr[n-1], arr|1] = arr[n-2] and so on.

Find the smallest number in an array using pointers.
Write a program which performs the following tasks:

— initialize an integer array of 10 elements in main()

— pass the entire array to a function modify()

- in modify() multiply each element of array by 3

—~ return the control to main() and print the new array
elements in main()

The screen is divided into 25 rows and 80 columns. The
characters that are displayed on the screen are stored in a
special memory called VDU memory (not to be confused with
ordinary memory). Each character displayed on the screen
occupies two bytes in VDU memory. The first of these bytes
contains the ASCII value of the character being displayed,
whereas, the second byte contains the colour in which the
character is displayed.

For example, the ASCII value of the character present on
zeroth row and zeroth column on the screen is stored at

Chapter 8: Arrays 317

location number 0xB8000000. Therefore the colour of this
character would be present at location number 0xB8000000 +
1. Similarly ASCII value of character in row 0, col 1 will be at
location 0xB8000000 + 2, and its colour at 0xB8000000 + 3.

With this knowledge writc a program which when executed
would keep converting every capital lctter on the screen to
small case letter and every small case letter to capital letter.
The procedure should stop the moment the user hits a key
from the keyboard.

This 1s an activity of a rampant Virus called Dancing Dolls.
(For monochrome adapter, use 0xB0000000 instead of
0xB8000000).

More than one dimension

1]
(a)

(b)

22

What would be the output of the following programs:
main()

int n[3]3] = {

o o A~
- o w

Lo N

printf ("% %d %d", *n, n[3J3), 212) :

main()
int n3]3] ={
2r4| 3r
6,8,5,
3,51
3
int i, *ptr;

318

Let Us C

ptr=n;
for(i=0;i<=8,i++)

1
(c) main()

int nf3]3] = {

mp’m
o o
— o w

L
int i, §;
for(1=0,;i<=2 i++)
for(j=0;j<=2:j+)

printf ("n%d %d", nfili]. *(*(n+i)+j)),

)

printf ("\n%d", *(ptr +i))

[K] Point out the errors, if any, in the following programs:

(@ main()
int twod]][] ={
2.4,
6.8
print ("Wn%d", twod) ;
}

(b) main()

int three(3){]1=1

R oo
W o b
- PO W

):
printf ("\n%d", three[1)[1]) ;

Chapter 8: Arrays 319

}

[L] Attempt the following:

(a) How will you initialize a three-dimensional array
threed[3][2][3]? How will you refer the first and last element
in this array?

(b) Write a program to pick up the largest number from any 5 row
by 5 column matrix.

(c) Write a program to obtain transpose of a 4 x 4 matrix. The
transpose of a matrix is obtained by exchanging the elements
of each row with the elements of the corresponding column.

(d) Very often in fairs we come across a puzzle that contains 15
numbered square pieces mounted on a frame. These pieces
can be moved horizontally or vertically. A possible
arrangement of these pieces is shown below:

l 4 15 7
8 10 2 I
14 3 6 13
12 9 5

Figure 8.12

As you can see therc is a blank at bottom right corner.
Implement the following procedure through a program:

320 Let Us C

Draw the boxes as shown above. Display the numbers in the
above order. Allow the user to hit any of the arrow keys (up,
down, left, or right).

If user hits say, right arrow key then the piece with a number
5 should move to the right and blank should replace the
original position of 5. Similarly, if down arrow key is hit, then
13 should move down and blank should replace the original
position of 13. If left arrow key or up arrow key is hit then no
action should be taken.

The user would continue hitting the arrow keys till the
numbers aren’t arranged in ascending order.

Keep track of the number of moves in which the user manages
to arrange the numbers in ascending order. The user who
manages it in minimum number of moves is the one who
wins.

How do we tackle the arrow keys? We cannot receive them
using scanf() function. Arrow keys are special keys which
are identified by their ‘scan codes’. Use the following
function in your program. It would return the scan code of the
arrow key being hit. Don't worry about how this function is
written. We are going to deal with it later. The scan codes for
the arrow keys are:

up arrow key — 72 down arrow key — 80

left arrow key — 75 right arrow key — 77

I* Retums scan code of the key that has been hit */
#include "dos h*
getkey()

union REGS i, 0;

Chapter 8: Arrays 321

while (!kbhit())

i.h.ah, =0;
int86 (22, &, &0) ;
return (0.h.ah) ;

}

(e) Those recaders who are from an Engincering/Science

(M

background may try writing programs for following problems.

(1) Write a program to add two 6 x 6 matrices.

(2) Write a program to multiply any two 3 x 3 matrices.

(3) Write a program to sort all the elements of a 4 x 4 matrix.

(4) Write a program to obtain the determinant value of a 5 x
5 matrix.

Match the following with reference to the following program
segment:

int i, j, = 25;

int *pi, *pj = &J;

Pi=it]

Each integer quantity occupies 2 bytes of memory. The value
assigned to i begin at (hexadecimal) address FOC and the
value assigned to j begins at address FOE. Match the value
represented by left hand side quantities with the right.

1. &i a. 30
2. &j b. F9E
3. n c; 35
4, *nj d. FA2

322 Let Us C

(g)

(h)

¥ i c. FoC
6. pi f. 67
7. *pi g. unspecified
8. (pi+2) h. 65
9. (*pi+2) i F9E
0. *(pi+2) . F9E
k. FAO
l F9D

Match the following with reference to the following segment:
int x[3](5] = {

{1.2,3.4,8)
(6,7,8,9,10},
{ 11,12, 13, 14, 15}
},*'n=8x;
1. **¥x+2)+1D) a. 9
2. (. 0 g b. 13
3. w(*w4 1)) c. 4
4. (Mx)+2)+1 d. 3
s. *(*¥(x+1)+3) € 2
6. *n f. 12
7. *(n+2) g 14
8. (*(n+3)+1 h. 7
9. *(n+5)+ i 1
10. ++*n J. 8
k. 5
. 10
m. 6

Match the following with reference to the following program
segment:

struct
{

int x, y;
}s{]={10,20,15,25,8,75,6,2}
int *i;
i=s;

Chapter 8: Arrays 323

l: *i+3) a. 85
2. s[i[7]].x b, 2
2 s[(s +2)->y / 3(1]].y c. 6
4. li[1-i(2)) d 7
5, i[s[3].y] €. 16
6. (s+1)>x+5 f. 15
7. *LH)*™(i+4)/*% 2. 25
8. s[i[0] —i[4]Ly + 10 h. 8
9. (Ms+H(i+1)/*i))x+2 i
10. ++i[i[6]) i 100
k. 10
L 20

(i) Match the following with reference to the following program
segment;

unsigned int arr[3)[3] = {

4,6,
9,1, 10,
16,64, 5
}i
I **arr a. 64
2. **arr < *(*ar+2) b 18
3. *(arr+2)/(*(*arr+1)>"ar) c. 6
4, *(arr[1]+1)]ar[1][2] d. 3
5. *(arr(0]) [*(arr(2]) c 0
6. arr[1][1] < arr[0][1] f 16
7. arr[2][[1] & arr[2][0] g. 1
8. arr[2][2]] arr[O][!] h. 1
9. arr{0][1] * arr[0][2] i 20
10, ++**arr+ --arr[1][1] J- 2
k. 5
1. 4

(j)) Write a progcam that interchanges the odd and even
components of an array.

(k) Write a program to find if a square matrix is symmetric.

324 - LaUsC

(1)

Write a function to find the norm of a matrix. The norm is
defined as the square root of the sum of squares of all
clements in the matrix.

(m) Given an array p|5], write a function to shift it circularly left

(n)

(o)

(p)

by two positions. Thus, if p[0] = 15, p{1]= 30, p[2] = 28,
p[3]= 19 and p[4] = 61 then after the shift p[0] = 28, p[1] =
19, p[2] = 61, p[3] = 15 and p[4] = 30. Call this function for a
(4 x 5) matrix and get its rows left shifted.

A 6 x 6 matrix is entered through the keyboard and stored in a
2-dimensional array mat|7]|7]. Write a program to obtain the
Determinant values of this matrix.

For the following set of sample data, compute the standard
deviation and the mean.

-6 -12,8,13,11,6,7,2,-6,-9,-10,11,10,9, 2
The formula for standard deviation is

o Lok}

H

where X, is the data item and x 1s the mean.

The area of a triangle can be computed by the sine law when 2
sides of the triangle and the angle between them arc known.

Area =(1/2)absin(angle)

Given the following 6 triangular pieces of land, write a
program to find their area and determine which is largest,

Plot No. a b angle
I 1374 80.9 0.78
2 155.2 92.62 0.89

3 149.3 97.93 1.35

Chapter 8: Arrays

325

4 160.0
3 155.6
6 149.7

100.25 9.00
08.95 1.25
120.0 1.75

(q) For the following set of n data points (x, y), compute the
correlation coefficient r, given by

(r)

2oy

r=

X Y
34.22 102.43

NS (O 1y (T

For the following sct of point given by (x, ¥) fit a straight line

39.87 100.93
41.85 97.43
43.23 97.81
40.06 98.32
53.29 98.32
53.29 100.07
54.14 97.08
49,12 91.59
40.71 94.85
55.15 94.65
given by

y=a +bx

where,
a=y-bx and

DM ION:

[an -0

X Y
3.0 1.5

326 LaUsC

4.5 2.0
5.5 3.5
6.5 5.0
7.5 6.0
8.5 7.5
8.0 9.0
9.0 10.5
9.5 12.0
10.0 14.0

(s) The X and Y coordinates of 10 different points are entered
through the keyboard. Write a program to find the distance of
last point from the first point (sum of distance between
consecutive points).

9 Puppetting On
Strings S

L7,

What are Strings
More about Strings
Pointers and Strings
Standard Library String Functions
strlen()
strepy()
streat())
stremp()
Two-Dimensional Array of Characters
Array of Pointers to Strings
Limitation of Array of Pointers to Strings
Solution
Summary
Exercise

327

328 , Let Us C

sizes and dimensions, how to initialize arrays, how 10 pass

arrays to a function, etc. With this knowledge under your belt,
you should be rcady to handle strings, which are, simply put, a
special kind of array. And strings, the ways to manipulate them,
and how pointers are related to strings are going to be the topics of
discussion in this chapter.

In the last chapter you learnt how to define arrays of differing

What are Strings

The way a group of integers can be stored n an integer array,
similarly a group of characters can be stored in a character array.
Character arrays are many a time also called strings. Many
languages internally treat strings as character arrays, but somehow
conceal this fact from the programmer. Character arrays or strings
are used by programming languages to manipulate text such as
words and sentences.

A string constant is a onc-dimensional array of characters
terminated by a null (10"). For example,

char namel] ={'H",'A"'E','S".'L','E'. 'R, 0"} ;

Fach character in the array occupics one byte of memory and the
last character is always “\0’. What character is this? It looks like
two characters, but it is actually only one character, with the \
indicating that what follows it is something special. "\0’ is called
null character. Note that \0' and ‘0" are not same. ASCII value of
“\0" is 0, whereas ASCII value of 0" is 48. Figure 9.1 shows the
way a character array is stored in memory. Note that the elements
of the character array are stored in contiguous memory locations.

The terminating null (\0") is important, because it 1s the only way
the functions that work with a string can know where the string

Chapter 9: Puppetting On Strings 329

ends. In fact, a string not terminated by a ‘\0” is not really a string,
but merely a collection of characters.

H A E S L E R \0

65518 65519 65520 65521 65522 65523 65524 65525

Figure 9.1

C concedes the fact that you would use strings very often and
hence provides a shortcut for initializing strings. For example, the
string used above can also be initialized as,

char name[] = "HAESLER" ;

Note that, in this declaration “\0" is not necessary. C inserts the
null character automatically.

More about Strings

In what way are character arrays different than numeric arrays?
Can elements in a character array be accessed in the same way as
the elements of a numeric array? Do I need to take any special
care of \0’? Why numeric arrays don’t end with a “\0'? Declaring
strings is okay, but how do I manipulate them? Questions galore!!
Well, let us settle some of these issues right away with the help of
sample programs.

I* Program to demonstrate printing of a string */

main()

{
char name[| = "Klinsman" ;
inti=0;
while (i<=7)

{

330 LetUs C

printf (*%c", namelfi]) ;
++; g
}
}

And here 1s the output...
Klinsman

No big deal. We have initialized a character array, and then
printed out the clements of this array within a while loop. Can we
write the while loop without using the final value 7?7 We can;
because we know that each character array always ends with a
“\0". Following program illustrates this.

main()

char name]] = "Klinsman"
inti=0,

while (name[i] != "0')

printf { "%c¢", nameli}) ;
i++

}

And here is the output...
Klinsman

This program docsn't rely on the length of the string (number of
characters in it) to print out its contents and hence is definitely
more general than the earlier one. Herc is another version of the
same program,; this one uses a pointer to access the array elements.

Chapter 9: Puppetting On Strings 331

main()

{

char name|] = "Klinsman" ;
char *ptr; -

ptr=name ; /* store base address of string */
while (*ptr 1="10")
{

printf ("%c", *plr) ;
ptr++ ;

}

As with the integer array, by mentioning the name of the array we
get the base address (address of the zeroth clement) of the array.
This base address i= stored in the variable ptr using,

pir = name ;

Once the base address is obtained in ptr, *ptr would yield the
value at this address, which gets printed promptly through,

printf ("%c", *pir) ;

Then, ptr is incremenied to point to the next character in the
string. This derives from two facts: array elements are stored in
contiguous memory locations and on incrementing a pointer it
points to the immediately next location of its type. This process is
carmied out till ptr doesn’t point to the last character in the string,
that is, "\0".

In fact, the character array elements can be accessed exactly in the
same way as the elements of an integer array. Thus, all the
following notations refer to the same element:

332 LetUs C

“namefi]

*(name +1) '
*(i+name)

iiname]

Even though there arc so many ways (as shown above) to refer to
the elements of a character array, rarely is any one of them used.
This is because printf() function has got a sweet and simple way
of doing it, as shown below. Note that printf() docsn't print the
0.

main()

{

char name[] = "Klinsman" ;
printf ("%s", name) ;

}

The %s used in printf() is a format specification for printing out
a string. The same specification can be used to receive a string
from the keyboard, as shown bclow.

main()

{

char name(25] ;

printf ("Enter your name *) |
scanf ("%s", name) ;
printf ("Hello %s!", name) ;

}

And here is a sample run of the program...

Enter your name Debashish
Hello Debashish!

Chapter 9: Puppetting On Strings 333

Note that the declaration char name([25] sets aside 25 bytes under .
the array name| |, whereas the scanf() function fills in the
characters typed at keyboard into this array until the enter key is
hit. Once enter is hit, scanf() places a \0 in the array. Naturally,
we should pass the base address of the array to the scanf()
function. :

While entering the string using scanf() we must be cautious about
two things:

(a) The length of the string should not exceed the dimension of
the character array. This is because the C compiler doesn’t
perform bounds checking on character array$. Hence, if you
carelessly exceed the bounds there is always a danger of
overwriting something important, and in that event, you
would have nobody to blame but yourselves.

(b) scanf() i1s not capable of receiving multi-word strings.
Therefore names such as ‘Debashish Roy' would be
unacceptable. The way to get around this limitation is by
using the function gets(). The usage of functions gets{) and -
its counterpart puts() is shown below.

main()

{

char name[25] ;

printf ("Enter your full name ") ;
gets (name) ;

puts ("Hello!") ;

puts (name) ;

}
And here is the output...

Enter your name Debashish Roy
Hello!

23

334 Let Us C

Debashish Roy

The program and the output are self-explanatory except for
the fact that, puts() can display only one string at a time
(hence the use of two puts() in the program above). Also, on
displaying a string, unlike printf(), puts() placcs the cursor
on the next linc. Though gets() is capable of receiving only
one string at a time, the plus point with gets() 1s that it can
reccive a multi-word string,

If we are prepared (o take the trouble we can make scanf()
accept multi-word strings by writing it in this manner:

char name|25} ;
printf ("Enter your full name " } ;
scanf ("%[*\n]s", name) ;

Though workable this is the best of the ways to call a
function, you would agrec.

Pointers and Strings

Suppose we wish 1o store “Hello", We may cither store it in a
string or we may ask the C compiler to store it at some location in
memory and assign the address of the string in a char pointer. This
is shown below:

char str[]="Hello"
char *p = "Hello" ;

“There is a subtle difference in usage of these two forms. For
cxample, we cannot assign a string to another, whereas, we can
assign a char pointer to another char pointer. This is shown in the
following program.

Chapter 9: Puppetting On Strings 335

main()

{
char stri[] ="Hello" ;
char str2[10];

char *s = "Good Morning" ;
char *q;

str2 =str1 ; [error */
q=s;/ works*/

)

Also, once a string has been defined it cannot be initialized to
another sct of characters. Unlike strings, such an operation is
perfectly valid with char pointers.

main()
{
char str1[] ="Hello" ;
char *p = "Hello" ;
stri ="Bye" ; /' error */
p ="Bye" ; /* works */
}

Standard Library String Functions

With every C compiler a large set of useful string handling library
functions are provided. Figure 9.2 lists the morec commonly used
functions along with their purpose.

336 LetUs C

Function | Use

strlen Finds length of a string

striwr Converts a string to lowcrease

strupr Converts a string to uppercase

strcat Appends onc string at the end of another

strncat Appends first n characters of a string at the end of
another

strepy Copies a string into another

stmepy Copies first n characters of one string into another

stremp Compares two strings

sttnemp Compares first n characters of two strings

strempi Compares two strings without regard to case ("1" denotes
that this function ignores case)

stricmp Compares two strings without regard to case (identical 1o
strempi)

stnicmp | Compares first n characters of two strings without regard
o case

strdup Duplicates a string

strchr Finds first occurrence of a given character in a string

strrchr Finds last occurrence of a given character in a string

strstr Finds first occurrence of a given string in another string

strset Sets all characters of string to a given character

strnset Sets first n characters of a string to a given character

strrev Reverses string

Figure 9.2

Out of the above list we shall discuss the functions strlen(),
strepy(), streat() and stremp(), since thesc are the most
commonly used functions. This will also illustrate how the library
functions in general handle strings. Let us study these functions

one by one.

Chagwrﬁ Puppetting On Strings 337

v)s/trlen()

This function counts the number of characters present in a string.
Its usage is illustrated in the following program.

?ain() k: uer

e

char amf]= 'Baﬁbmzled' ;
int lent, len2 ; o

~
len1 = strlen (arr), %’,
len2 = strien ("Humpty Dumpty”) ;

printf ("\nstring = %s length = %d", am, len1) ;
printf ("\nstring = %s length = %d", *Humpty Dumpty*, len2) ;
}

The output would be...

string = Bambogzled length = 10
string = Humpty Dumpty length = 13

Note that in the first call to the function strlen(), we are passing
the base address of the string, and the function in turn returns the
length of the string. While calculating the length it doesn’t count
“\0". Even in the second call,

len2 = strien ("Humpty Dumpty”) ;

what gets passed to strlen() is the address of the string and not the
string itself. Can we not write a function xstrlen() which imitates
the standard library function strlen()? Lct us give it a try...

I* A look-alike of the function strien() */
main()

{

338 LetUs C

char arr[] = "Bamboozled" ,
int len1, len2 ; '

len1 = xstrlen (arr) ;
len2 = xstrien (*Humpty Dumpty”) ;

printf ("\nstring = %s length = %d", ar, lent) ;
printf ("\nstring = %s length = %d", "Humpty Dumpty", len2) ;

}
xstrien (char *s)
{
int length=0;
while (*s 1=10")
{
length++ ;
S++
}
retumn (length) ;
}

The output would be...

slring = Bamboozled length = 10
string = Humpty Dumpty length = 13

The function xstrlen() is fairly simple. All that it does is keep
counting the characters till the end of string is not met. Or in other
words keep counting characters till the pointer s doesn’t point to
“0°.

Chapter 9: Puppetting On Strings 339

cpy()

This function copies the contents of onc string into another. The
base addresses of the source and target strings should be supplied
to this function. Here is an examplc of strepy() in action...

main()

{
char source[| ="Sayonara” ;
char target[20] ;

strcpy (target, source) ;
printf ("\nsource string = %s", source) ;
printf ("\ntarget string = %s", target) |

}

And here is the output...

source string = Sayonara
larget slring = Sayonara

On supplying the base addresses, strepy() goes on copying the
characters in source string into the target string till it doesn't
encounter the end of source string (\0"). It is our responsibility to
see to it that the target string’s dimension is big enough to hold the
string being copied into it. Thus, a string gets copied into another,
piece-meal, character by character. There is no short cut for this.
Let us now attempt to mimic strepy(), via our own string copy
function, which we will call xstrepy().

main()

{

char source[] = *Sayonara” ;
char target(20] ;

xstrcpy (target, source) ;

340

Let Us C

printf { "\nsource string = %s", source) ;

printf { "\ntarget string = %s", larget) ;
)

xstrcpy (char “t, char *s)

while (*s '="0")

{
t="s;
s++;
{++;

}

1=10";

)

The output of the program would be...

source string = Sayonara
target string = Sayonara

Note that having copied the entire sourcc string into the target
string, it is necessary to place a “\0" into the target string, to mark

its end,

If you look at the prototype of strepy() standard library function,

it looks like this...

strepy (char *t, constchar ’s) ;

We didn’t use the keyword const in our version of xstrepy() and
still our function worked correctly. So what is the need of the

const qualifier?

What would happen if we add the foHowing lines beyond the last

statement of xstrepy()?.

Chapter 9: Puppetting On Strings 341

§=s5-8;
.s=lKl:

This would change the source string to “Kayonara”. Can we not
ensure that the source string doesn't change even accidentally in
xstrepy()? We can, by changing the definition as follows:

void xstrcpy (char *t, const char *s)

while (*s 1=10')
{
t="s;
§++
t++
)
‘1=10';
)

By declaring char *s as const we are declaring that the source
string should remain constant (should not change). Thus the const
qualifier ensures that your program does not inadvertently alter a
variable that you intended to be a constant. It also reminds
anybody reading the program listing that the variable is not
intended to change.

We can use const in several situations. The following code
fragment would help you to fix your ideas about const further.

char *p = "Hello" ; /* poinler is variable, so is string */
*p="M"; I works */

p="Bye"; /" works */

const char *q = "Hello® ; /* string is fixed pointer is not */

'q="M"; /" emor*/
q="Bye"; /" works */

342 et Us C

char const *s = "Hello" ; /* string is fixed pointer is not */
*s='M'; ["error”!
s="Bye"; I" works */

char * const t = "Hello" ; /* pointer is fixed string is not */
*t="M"; " works */
t="Bye"; I" error*

const char * const u = "Hello™ ; /* string is fixed so is pointer */
u="M; ffermor
u ="Bye"; [*error "/

The keyword const can be used in context of ordinary variables
like int, float, etc. The following program shows how this can be
done.
main() °
{

floatr, a;

const float pi = 3.14 ;

printf ("\nEnter radius of circle ") ;

scanf ("% &r);

a=pi‘r'r;

printf ("\nArea of circle = %M, a) |
)

streat()

This function concatenates the source string at the end of the target
string. For example, “Bombay™ and “Nagpur” on concatenation
would result into a string “BombayNagpur”. Here is an example of
strcat() at work.

main()

{

Chapter 9: Puppetting On Strings 343

char source[] ="Folks!";
char target[30] = "Hello" ;

strcat (target, source) ;
printf ("\nsource string = %s", source) ;
printf { "\ntarget string = %s", target) ;

}

And here is the output...

source string = Folks!
target string = HelloFolks!

Note that the target string has been made big enough to hold the
final string. I leave it to you to develop your own xstreat() on
lines of xstrlen() and xstrepy().

stremp()

This is a function which compares two strings to find out whether
they are same or different. The two strings are compared character
by character until there is a mismatch or end of onc of the strings
is reached, whichever occurs first. If the two strings are identical,
stremp() retums a value zero. If they’rc not, it returns the
numeric difference between the ASCII values of the first non-
matching pairs of characters. Here is a program which puts
stremp() in action,

main()

{
char stringi1[] = "Jemy" ;
char string2[] = "Ferry” ;
int i,j.k;

i = strcmp (string1, "Jerry”) ;
j = stremp (string1, string2) ;

344 Let Us C

k = stremp (string1, "Jerry boy”) ;

printf (“\n%d %d %d". i.]. k)
}

And here is the output...
04-32

In the first call to stremp(), the two strings are identical—"Jerry”
and “Jerry"—and the value returned by strcmp() is zero. In the
second call, the first character of “Jerry” doesn't match with the
first character of “Ferry” and the result is 4, which is the numeric
difference between ASCII value of ‘)’ and ASCII value of ‘F’. In
the third call to stremp() “Jerry” doesn't match with “Jerry boy”,
because the null character at the end of “Jerry” doesn’t match the
blank in “Jerry boy". The value returned is -32, which is the value
of null character minus the ASCII value of space, i.c., ‘\0’ minus
** which is equal to -32.

The exact value of mismatch will rarely concern us. All we usually
want to know is whether or not the first string is alphabetically
before the second string. If it is, a negative value is returned; if it
isn’t, a positive value is returned. Any non-zero value means there
is a mismatch. Try to implement this procedure into a function '
xstremp().

Two-Dimensional Array of Characters

In the last chapter we saw several examples of 2-dimensional
integer arrays. Let's now look at a similar entity, but one dealing
with characters. Our example program asks you to type your name.
When you do so, it checks your name against a master list to see if
you are worthy of entry to the palace. Here’s the program...

Chapter 9: Puppetting On Sirings 345

#define FOUND 1
#define NOTFOUND O
main()

char masterlist[6){10] = {
*akshay”,
'pal'ag' 4
"raman’,
"srinivas”,
"gopal’,
“rajesh”

int i, flag, a;

char yourname[10] ;

printf ("\nEnter your name ") ;
scanf ("%s", youmame) ;

flag = NOTFOUND ;
for(i=0;i<=5;i++)
{
a = stremp (&masterist[i][0], yourname) ;
if(a==0)
printf ("Welcome, you can enter the palace™) ;
flag=FOUND ;
break ;

}
if (flag == NOTFOUND)

printf (*Sorry, you are a trespasser”) ;
}

And here is the output for two sample runs of this program...

Enter your name dinesh
Sorry, you are a trespasser

346 Let Us C

Enter your name raman
Welcome, you can enter the-palace

Notice how the two-dimensional character array has been
initialized. The order of the subscripts in the array declaration is
important. The first subscript gives the number of names in the
array, while the second subscript gives the length of each item in
the array.

Insicad of initializing names, had these names been supplied from
the keyboard, the program segment would have looked like this...

for(i=0;i<=5;i+t)
scanf ("%s", &masterlist[i){0]) .

While comparing the strings through stremp(), note that the
addresses of the strings are being passed to stremp(). As seen in
the last section, if the two strings match, stremp() would return a
value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control
did reach inside the if or not. To begin with, we set flag to
NOTFOUND. Later through the loop if the names match, flag is
set to FOUND. When the control reaches beyond the for loop, if
flag is still set to NOTFOUND, it means none of the names in the
masterlist] |[| matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.
Note that cach string ends with a “\0". The arrangement as you can
appreciate is similar to that of a two-dimensional numeric array.

Ch. wer 9. Puppetting On Strings 347

65454 fa| ks | h|al|ly |\

65464 |pla|ra|g ol |

65474 [r |a |m|a |n |0 T

65484 |s|rfi|n]i|v]a]s |\

65494 lglo|pla |l [\O

65504 [r|a|j|lec|{s|h [Y 65513

b n et (1ast location)

ﬁgurc 9.3 -

Here, 65454, 65464, 65474, ctc. are the base addresses of
successive names. As scen from the above pattern some of the
names do not occupy all the bytes reserved for them. For example,
even though 10 bytes arc reserved for storing the name “akshay™,
it occupies only 7 bytes. Thus, 3 bytes go waste. Similarly, for
each name therc is some amount of wastage. In fact, more the
number of names, more would be the wastage. Can this not be
avoided? Yes, it can be... by using what is called an ‘array of
pointers’, which is our next topic of discussion.

Array of Pointers to Strings

As we know, a pointer variable always contains an address.
Therefore, if we construct an array of pointers it would contain a
number of addresses. Let us see how the names in the ecarlier
example can be stored in the array of pointers.

char *names[] = {
"akshay",
"parag’,
raman®,

348 Let Us C

"srinivas”,
*gopal”,
"rajesh”

Yi

In this declaration names]] is an array of pointers. It contains base
addresses of respective names. That is, base address of “akshay” is
stored in names[0], base address of “parag” is stored in names[1]
and so on. This is depicted in Figure 9.4.

182 195 201
210 216 189
names[]
182 189 195 201 210 216

65514 65516 65518 65520 65522 65524

‘Figure 9.4

In the two-dimensional array of characters, the strings occupied 60
bytes. As against this, in array of pointers, the strings occupy only
41 bytes—a net saving of 19 bytes. A substantial saving, you
would agree. But realize that actually 19 bytes are not saved, since
12 bytes are sacrificed for storing the addresses in the array
names| |. Thus, one reason to store strings in an array of pointers
is to make a more efficient use of available memory.

Another reason to use an array of pointers to store strings is to
obtain greater case in manipulation of the strings. This is shown by

Chapter 9: Puppetting On Strings 349

the following programs. The first one uses a two-dimensional
array of characters to store the names, whereas the second uses an
array of pointers to strings. The purpose of both the programs is
very simple. We want to exchange the position of the names
“raman” and “srinivas”.

I* Exchange names using 2-D array of characters */

majn()
{
char names[][10] = {
*akshay",
"parag’,
"raman",
*srinivas’,
"gopal’,
“rajesh*
}:
int i;
char t;

printf ("\nOriginal: %s %s", &names|2][0], &names(3][0}) ;

for(i=0;i<=9;i++)

{
t = names(2J[i] ;
names|2][i] = names{3]fi] ;
names(3][i) = t;

}

printf ("\nNew: %s %s", &names|2][0], &names[3][0]) ;
}

And here is the output...

Original: raman srinivas
New: srinivas raman

24

350 Let Us C

Note that in this program to exchange the names we are required
to exchange corresponding characters of the two names. In effect,
10 exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an
array of pointers to strings. Here is the program...

main()

char *names|] = {
"akshay",
"parag’,
“raman’,
*srinivas”,
"gopal®,
“rajesh”
};

char *temp ;

printf (*Original: %s %s", names|2], names|[3]) ;
temp = names[2] ;

names|2] = names[3] ;

names[3] = temp ;

printf ("\nNew: %s %s", names|[2], names{3]) ;
)

And here is the output...

Original: raman srinivas
New: srinivas raman

The output is same as the earlier program. In this program all that
we are required to do is exchange the addresses (of the names)
stored in the array of pointers, rather than the names theflasélves.

Chapter 9: Puppetting On Strings 351

Thus, by effecting just one exchange we are able to interchange
names. This makes handling strings very convenient,

Thus, from the point of view of efficient memory usage and ease
of programming, an array of pointers to strings definitely scores
over a two-dimensional character array. That is why, even though
in principle strings can be stored and handled through a two-
dimensional array of characters, in actual practice it is the array of
pointers to strings, which is more commonly used.

Limitation of Array of Pointers to Strings

When we are using a two-dimensional array of characters we are
at liberty to either initialize the strings where we are declaring the
array, or receive the strings using scanf() function. However,
when we are using an array of pointers to strings we can initialize
the strings at the place where we are declaring the array, but we
cannot receive the strings from keyboard using scanf(). Thus, the
following program would never work out.

main()

{
char *names]6] ;
int i:
for(i=0;i<=5;i++)
{

printf ("\nEnter name ") ;
scanf ("%s", namesi]) ;
}
}

The program doesn’t work because; when we are declaring the
array it is containing garbage values. And it would be definitely

352 Let Us C

wrong to send these garbage values to scanf() as the addresses
where it should keep the strings received from the keyboard.

Solution

If we are bent upon receiving the strings from keyboard using
scanf() and then storing their addresses in an array of pointers to
strings we can do it in a slightly round about manner as shown
below.

#include "alloc.h"

main() -

{ ;
char *names[6) ;
char n[50] ;
int len,i;
char’p;

for(i=0;i<=5;i++)
{ .
printf (\nEnter name ") ;
scanf ("%s", n);

len =stren(n);
p=malloc(len+1);
strepy (p.n)
names[i]=p,

}

for(i=0;i<=5;i++)
printf ("\n%s", namesfi]) ;

}

Here we have first received a name using scanf() in a string nf].
Then we have found out its length using strlen() and allocated
space for making a copy of this name. This memory allocation has
been done using a standard library function called malloc(). This

Chapter 9: Puppetting On Strings 353

function requires the number of bytes to be allocated and returns
the base address of the chunk of memory that it allocates. The
address returned by this function is always of the type void *.
Hence it has been converted into char * using a feature called
typecasting. Typecasting is discussed in detail in Chapter 15. The
prototype of this function has been declared in the file ‘alloc.h’.
Hence we have #included this file.

But why did we not use array to allocate memory? This is because
with arrays we have to commit to the size of the array at the time
of writing the program. Moreover, there is no way to increase or
decrease the array size during execution of the program. In other
words, when we use arrays static memory allocation takes place.
Unlike this, using malloc() we can allocate memory dynamically,
during execution. The argument that we pass to malloc() can be a
variable whose value can change during execution.

Once we have allocated the memory using malloc() we have
copied the name received through the keyboard into this allocated
space and finally stored the address of the allocated chunk in the
appropriate clement of names]| |, the array of pointers to strings.

This solution suffers in performance because we need to allocate
memory and then do the copying of string for ecach name received
through the keyboard.

Summary

(a) A string is nothing but an array of characters terminated by
"\0’.

(b) Being an array, all the characters of a string are stored in
contiguous memory locations.

(c) Though scanf() can be used to receive multi-word strings,
gets() can do the same job in a cleaner way.

(d) Both printf() and puts() can handle multi-word strings.

354 Let Us C

(e) Strings can be operated upon using several standard library
functions like strien(), strepy(), strcat() and stremp()
which can manipulate strings. More importantly we imitated
some of these functions to learn how these standard library
functions are written.

(f) Though in principle a 2-D array can be used to handle several
strings, in practice an array of pointers to strings is preferred
since it takes less space and is efficient in processing strings.

(g) -malloc() function can be used to allocate space in memory
on the fly during cxecution of the program.

Exercise
Simple strings

|A] What would be the output of the following programs:
(@) main()

char c[2] ="A";
printf ("\n%c", c[0]) ;
printf ("\n%s", ¢) ;

}

(b) main()

{
char s[]="Get organised! leam C!!" ;
printf ("\n%s", &s[2]) :
printf ("\n%s", 5) ;
printf { "\n%s", &s) ;
printf ("\n%c", s[2] } ;

}

(c) main()

{

char s[]="No two viruses work similarly” ;

Chapter 9: Puppetting On Strings 355

inti=0;
while (slij!=0)

printf ("\n%c¢ %c”, s[i}, “(s+i));
printf ("\n%c %c", i[s], '(‘j +3)),;
++
} 3
}
(d) main()
{
char s[]="Churchgate: no church no gate" ;
char t[25] ;
char *ss, *tt;
§8=8§,
while { *ss 1="0')
fss++ ="+
printf ("\n%s", 1) ;
}

(e) main()

charstri[]={'H' €. 1. 0 };
char str2[| = "Hello* ;

printf ("\n%s", str1) ;
printf ("\n%s", str2) ;
)

(Y main()
{

printf { 5 + "Good Moming *) ;
}

(9) r?ain()

printf (*%c", "abedefgh’[4]) ;
}

356 Let Us C

(h) main()
{
printf ("\n%d%d", sizeof ('3'), sizeof ("3"), sizeof (3)) ;
}

[B] Point out the errors, if any, in the following programs:

(@) main()

{
char *str1 = "United" ;
char *str2 = "Front" ;
char *strd ;
str3 = strcat { str1, str2) ;
printf ("\n%s", str3) ;

}

(b) main()

int am[]={'A",'B,'C,'D'};
int i;
for(i=0;i<=3;i++)
printf ("\n%d", anfi})
}

(c) main()
{
char ar|8] = "Rhombus" ;
int i,
for(i=0;i<=7,i++)
printf ("\n%d", *arr) ;
ar++ >

}
[C] Fill in the blanks:

(a) "A"isa while "A’ is a

Chapter 9: Puppetting On Strings 357

(b)
(©)
G

(D]

(@)

(b)

©

(d)

(e)

&)

A string is terminated by a character, which is written
as
The array char name[10] can consist of a maximum of

characters.

The array elements are always stored in memory
locations.

Attempt the following:

Which is more appropriate for reading in a multi-word string?
gets() printf() scanf() puts()

If the string "Alice in wonder land” is fed to the following
scanf() statement, what will be the contents of the arrays
strl, str2, str3 and str4?

scanf ("%s%s%s%s%s", str1, str2, str3, str4) |

Write a program that converts all lowercase characters in a
given string to its equivalent uppercase character.

Write a program that extracts part of the given string from the
specified position. For example, if the sting is "Working with
strings is fun", then if from position 4, 4 characters are to be
extracted then the program should return string as "king".
Moreover, if the position from where the string is to be
extracted is given and the number of characters to be
extracted is O then the program should extract entire string
from the specified position.

Write a program that converts a string like "124" 10 an integer
124.

Write a program that replaces two or more consecutive blanks
in a string by a single blank. For example, if the input 1s

358 Let Us C

Grim retum to the planet of apes!!
the output should be

Grim return to the planet of apes!!

Two-dimensional array, Array of pointers to strings

[E] Answer the following:

(a) How many bytes in memory would be occupied by the
following array of pointers to strings? How many bytes would
be required to store the same strings, if they are stored in a
two-dimensional character array?

char *mess[] = {
"Hammer and tongs",
*Tooth and nail",
"Spit and polish®,
"You and C*
)i
(b) Can an array of pointers to strings be used to collect strings
from the keyboard? If not, why not?

[F] Attempt the following:

(a) Write a program that uses an array of pointers to strings strf].
Receive two strings strl and str2 and check if strl is
embedded in any of the strings in str|]. If strl is found, then
replace it with str2.

char *str{] ={
"We will teach you how to...”,
“Move a mountain”,
*Level a building”,
"Erase the past’,

Chapter 9: Puppetting On Strings 359

(b)

(c)

(d)

*Make a million®,
"...all through C!*
g

For example if strl contains "mountain” and str2 contains
“car", then the second string in str should get changed to
"Move a car".

Write a program to sort a set of names stored in an array in
alphabetical order.

Write a program to reverse the strings stored in the following
array of pointers to strings:

char *s[] = {
"To err is human...",
"But to really mess things up...",
*One needs to know C!I"
|

Hint: Write a function xstrrev (string) which should reverse
the contents of one string. Call this function for reversing
each string stored in s.

Develop a program that receives the month and year from the
keyboard as integers and prints the calendar in the following
format.

360 LetUs C

(©)

0

September 2004

Mon Tue Wed Thu Fri Sat Sun

1 2 3 4 5
6 7 8 9 10 11 12
13 14 15 16 17 18 19

20 21 22 23 24 25 26
27 28 29 30

Note that according to the Gregorian calendar 01/01/1900 was
Monday. With this as the base the calendar should be
generated.

Modify the above program suitably so that once the calendar
for a particular month and year has been displayed on the
screen, then using arrow keys the user must be able to change
the calendar in the following manner:

Up arrow key : Next year, same month
Down arrow key : Previous year, same month
Right arrow key : Same year, next month
Left arow key : Same year, previous month

If the escape key is hit then the procedure should stop.

Hint: Use the getkey() function discussed in Chapter 8,
problem number [L](c).

A factory has 3 division and stocks 4 categorics of products,
An inventory table is updated for each division and for each
product as they are received. There are three independent
suppliers of products to the factory:

Chapter 9: Puppetting On Strings 361

(g)

(h)

(i)

)

(a) Design a data format to represent each transaction.

(b) Write a program to take a transaction and update the
inventory.

(c) If the cost per item is also given writc a program to
calculate the total inventory values.

A dequeue is an ordered set of elements in which elements
may be inserted or retrieved from either end. Using an array
simulate a dequeue of characters and the operations retrieve
left, retrieve right, insert left, insert right. Exceptional
conditions such as dequeue full or empty should be indicated.
Two pointers (namely, left and right) are needed in this
simulation.

Write a program to delete all vowels from a sentence. Assume
that the sentence is not more than 80 characters long.

Write a program that will read a line and delete from it all
occurrences of the word ‘the’.

Write a program that takes a set of names of individuals and
abbreviates the first, middle and other names except the last
name by their first letter,

Write a program to count the number of occurrences of any
two vowels in succession in a line of text. For example, in the
sentence

“Pleases read this application and give me gratuity”

such occurrences are ea, ea, ui.

362 Let Us C

1 0 Structures

e Why Use Structures
Declaring a Structure /
Accessing Structure Elements
How Structure Elements are Stored
» Array of Structures
* Additional Features of Structures
¢ Uses of Structures
e Summary
¢ Exercise

363

364 Let Us C

only one type of vehicle? None. Same thing is true about

C language. it wouldn't have been so popular had it been
able to handle only all ints, or all floats or all chars at a time. In
fact when we handle real world data, we don’t usually deal with
little atoms of information by themselves—things like integers,
characters and such. Instead we deal with entities that are
collections of things, cach thing having its own attributes, just as
the entity we call a ‘book’ is a collection of things such as title,
author, call number, publisher, number of pages, date of
publication, etc. As you can see all this data is dissimilar, for
example author is a string, whereas number of pages Is an integer.
For dealing with such collections, C provides a data type called
‘structure’. A structure gathers together, different atoms of
information that comprise a given entity. And structure is the topic
of this chapter.

Which mechanic is good enough who knows how to repair

Why Use Structures

We have seen earlier how ordinary variables can hold one piece of
information and how arrays can hold a number of pieces of
information of_the same data type. These-two_data_types can
handle a great variety of situations. But quite often we deal with
entities that are collection of dissimilar data types.

For example, suppose you want to store data about a book. You
might want to store its name (a string), its price (a float) and
number of pages in it (an int). If data about say 3 such books is to
be stored, then we can follow two approaches:

(a) Construct individual arrays, one for storing names, another for
storing prices and still another for storing number of pages.
(b) Use a structure variable.

Let us examine these two approaches one by one. For the sake of
programming convenience assume that the names of books would

Chapter 10: Structures 365

be single character long. Let us begin with a program that uses
arrays.

main({)

{
char name[3] ;
float price[3] ;
int pages(3],i;

printf (*\nEnter names, prices and no. of pages of 3 books\n") ;

for(i=0;i<=2,i++)
scanf ("%c %f %d", &nameli], &priceli], &pagesi]);

printf ("\nAnd this is what you entered\n”) ;
for(i=0;i<=2;i++)
printf ("%c %f %d\n", nameli], pricei], pages|i]);
}

And here is the sample run...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 23370 512

And this is what you entered
A 100.000000 354
C 266.500000 682
F 233700000 512

This approach no doubt allows you to store names, prices and
number of pages. But as you must have realized, it is an unwieldy
approach that obscures the fact that you are dealing with a group
of characteristics related to 4 single entity—the book. -

25

3ﬁ6 LetUs C
7

/T he program becomes more difficult to handle as the number of
N" items relating to the beok go on increasing. For example, we
/' would be required to use a number of arrays, if we also decide to
store name of the publisher, date of purchase of book, etc. To solve

this problem, C provides a special data type—the structure.

A structure contains a number of data types grouped together.
These data types may or may not be of the same type. The
following example illustrates the use of this data type.

main()
{
struct book
{
char name |
float price ;
int pages ;

1 2
struct book b1, b2, b3 ;

printf ("\nEnter names, prices & no. of pages of 3 books\n") ;
scanf (*%c %f %d", &b1.name, &b1.price, &bi.pages) ;

- scanf ("%c %f %d", &b2.name, &b2.price, &b2.pages) ;
scanf ("%c %f %d", &b3.name; &b3.price, &b3.pages) ;

printf ("\nAnd this is what you entered") ;

printf ("\n%c %f %d", b1.name, b1.price, b1.pages) ;

printf ("\n%c %f %d", b2.name, b2.price, b2.pages) ;

printf ("\n%c %f %d", b3.name, b3.price, b3.pages) ;
}

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

Chapter 10: Structures 367

And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

This program demonstrates two fundamental aspects of structures:
= 4 ————— —_—

(2) declaration of a structure.,

o . ST
(b) accessing of structure elements
Let us now look at these concepts one by one.

Declaring a Structure

In our example program, the following statement declares the
structure type:

{ '
char name ;
float price ;
int pages ;

¥ !

This statement defines a new data type called struct book. Each
variable of this data type will consist of a character variable called
name, a float variable called price and an integer variable called
pages. The gencral form of a structure declaration statement is)
given below:

struct <structure name>

{

structure element'1 ;
structure element 2 ;
structure element 3 ;

! _we‘a’\.;/

S ?

368 Let Us C

!

Once the new structure data type has been defined one or more
variables can be declared to be of that type. For example the
variables b1, b2, b3 can be declared to be of the type struct book,
as

struct book b1, b2, b3 ;

This statement sets aside space in memory. [t makes available
space to hold all the elements in the structurc—in this casc,ﬂ)
bytes—one for name, four for price and two for pages. These
bytes are always in adjacent memory locations.

If we so desire, we can combine the declaration of the structure
—

type and the structure variables in one statement.
— .-

i

For example,

struct book
{

char name;
float price ;

int pages ;

}; :

struct book b1, b2, b3;

1§ same as...

struct book
{

char name ;
float price ;
int pages;
} b1, b2, b3,
or even...

struct

Chapter 10: Structures 369

char name ;

float price ;

int pages; -
}b1,b2,b3;

Like primary variables and arrays, structure variables can also be

initialized where they are declared. The format ysed is quite

similar lﬂ-lhwd to initiate arrays.
struct book

char name[10] ;
float price ;
int pages ;

b
struct book b1 = {"Basic", 130.00, 550} ;
struct book b2 = { "Physics", 150.80, 800} ;

Note the following points while declaring a structure t

(a) The closing brace in the sfructure type declaration must be
followmsfe—@_cp_lg‘g)
(b) It is important to understand that a structure type declaratlon
- does not tell the compiler to reserve any space in memory. All
a structure declaration does is, it defines the ‘form’ of the
structure.

(c) Usually structure type declaration appears at the top of the
source code file, before atwwm_cd.

" In very large programs they are usually put in a separate
header file, and the file is included (using the prefrocessor

directive #include) in whichever program we want to use this
stw:t/umiype. —_—

370 Let Us C

Accessing Structure Elements

Having declared the structure type and the structure variables, let
us see how the elements of the structure can be accessed.

In arrays we can access individual elements of an array using a
subscript. Structures use a different scheme. They use a dot ()
operator. So to refer to pages of the structire defined in our
sample program we have to use,

b1.pages :)

Similarly, to refer to price we would use,

b1.price

Note that before the dot there must always be a structure variable
and after the dot there must always be a structure element.

How Structure Elements are Stored

Whatever be the clements ofa structure, lhey are always stored in

lllustratc this:

/* Memory map of structure elements */

main()
{
struct book
{
char name :
float price ;
int pages;

i
struct book b1 ={'B', 130.00, 550},

printf ("\nAddress of name = %u", &b1.name) ;

Chapter 10: Structures 371

printf ("\nAddress of price = %u", &b1.price) ;
printf ("\nAddress of pages = %u", &b1.pages) ;
)

Here is the output of the program...

Address of name = 65518
Address of price = 65519
Address of pages = 65523

Actually the structure elements are stored in memory as shown in
the Figure 10.1.

bl.name bl.price bl.pages
B 130.00 350
65518 65519 65523
Figure 10.1

A’r‘%'ay of Structures

Our sample program showing usage of structure is rather simple
minded. All it does is, it receives values into various structure
elements and output these values. But that's all we intended to do
anyway... show how structure types are created, how structure
variables are declared and how individual elements of a structure
variable are referenced.

In our sample program, to store data of 100 books we would be
required to use 100 different structure variables from bl to b100,
which is definitely not very convenient. A better approach would
be to use an array of structures. Following program shows how to
use an array of structures.

372 Let Us C

f* Usage of an array of structures */
main()
{

struct book

{

char name ;
float price ;
int pages ;

bi

struct book b[100];

int i;
for(i=0;i<=99;i++)

printf ("\nEnter name, price and pages ") ;
scanf ("%c¢ %f %d", &bfil.name, &bli].price, &bfi].pages) ;
}

for(i=0;i<=99,i++)
printf ("\n%c %f %d", b[i].name, bfi).price, bfi].pages) ;
}
linkfloat{)
floata=0,"b;

b=&a; /" cause emulator to be linked */
a="b; [suppress the warning - variable not used */

}

Now a few comments about the program:

(a) Notice how the array of structures is declared...
struct book b{100] ;

Chapter 10: Structures : 373

(b)

(©)

(d)

(e)

This provides space in memory for 100 structures of the type
struct book.

The syntax we use to reference each element of the array b is
similar to the syntax used for arrays of ints and chars. For
example, we refer to zeroth book’s price as b[0].price.
Similarly, we refer first book’s pages as b[1].pages.

It should be appreciated what careful thought Dennis Ritchie
has put into C language. He first defined array as a collection
of similar elements; then realized that dissimilar data types
that are often found in real life cannot be handled using
arrays, therefore created a new data type called structure. But
even using structures programming convenience could not be
achieved, because a lot of variables (b1 to b100 for storing
data about liundred books) needed to be handled. Therefore he
allowed us 10 create an array of structures; an array of similar
data types which themselves are a collection of dissimilar data
types. Hats off to the genius!

In an array of structures all elements of the array are stored in
adjacent memory locations. Since cach element of this array is
a structure, and since all structure elements are always stored
in adjacent locations you can very well visualise the
arrangement of array of structures in memory. In our example,
b[0]’s name, price and pages in memory would be
immediately followed by b[1]’s name, price and pages, and
S0 on.

What is the function linkfloat() doing here? If you don’t
define it you are bound to get the error "Floating Point
Formats Not Linked" with majority of C Compilers. What
causes this error to occur? When parsing our source file, if the
compiler encounters a reference to the address of a float, it
sets a flag to have the linker link in the floating-point
emulator. A floating point emulator is used to manipulate
floating point numbers in runtime library functions like

374 ret s C

scanf() and atof(). There are some cases in which the
reference to the foat is a bit obscure and the compiler does
not detect the need for the emulator. The most common is
using scanf() to read a float in an array of structures as
shown in our program.

How can we force the formats to be linked? That’s where the
linkfloat() function comes in. It forces linking of the
floating-point emulator into an application. There is no need
to call this function, just define it anywhere in your program.

Additional Features of Structures

Let us now explore the intricacies of structures with a view of
programming convenience. We would highlight these intricacies
with suitable examples:

(a) The values of a structure variable can be assigned to another
structure variable of the same type using the assignment
operator. It is not necessary to copy the structure elements
piece-meal. Obviously, programmers prefer assignment 1o
piece-meal copying. This is shown in the following example.

main()
struct employee

char name(10];

int age;

float salary
}
struct employee e1 = { "Sanjay", 30, 5500.50 } ;
struct employee e2, €3,

I* piece-meal copying */
strepy (€2.name, el.name) ;
e2.age =el.age;

Chapter 10: Structures 375

(®)

e2.salary = e1.salary ;

I* copying all elements at one go */
ed=e2;

printf ("\n%s %d %f", e1.name, e1.age, el.salary) ;
printf ("\n%s %d %f, e2.name, e2.age, e2.salary) ;
printf ("\n%s %d %f", e3.name, e3.age, e3.salary) ;

The output of the program would be...

Sanjay 30 5500.500000
Sanjay 30 5500.500000
Sanjay 30 5500.500000

Ability to copy the contents of all structure elements of one
variable into the corresponding elements of another structure
variable is rather surprising, since C does not’allow assigning
the contents of one array to another just by equating the two.
As we saw earlier, for copying arrays we have to copy the
contents of the array element by element.

This copying of all structure elements at one go has been
possible only because the structure elements are stored in
contiguous memory locations. Had this not been so, we would
have been required to copy structurc variables element by
element. And who knows, had this been so, structures would
not have become popular at all.

One structure can be nested within another structure. Using
this facility complex data types can be created. The following
program shows nested structures at work.

main()

struct address

376 Let Us C

char phone[:I 5}

char city[25] ;
int pin ;

b

struct emp
char name([25];

struct address a,
¥
struct emp e ={"jeru’, "531046", "nagpur”, 10 };

printf ("\nname = %s phone = %s", e.name, e.a.phone) ;
printf (“\ncity = %s pin = %d", e.a.city, e.a.pin) ;
)

And here is the output...

name = jeru phone = 531046
city = nagpur pin = 10

Notice the method used to access the element of a structure
that is part of another structure. For this the dot operator is
used twice, as in the expression,

e.a.pin or ea.city

Of course, the nesting process need not stop at this level. We
can nest a structure within a structure, within another
structure, which is in still another structure and so on... till the
time we can comprehend the structure ourselves. Such
construction however gives rise to variable names that can be
surprisingly self descriptive, for example:

maruti.engine.bolt.large.qly

Chapter 10: Structures 377

()

This clearly signifies that we are referring to the quantity of
large sized bolts that fit on an engine of a maruti car.

Like an ordinary variable, a structure variable can also be
passed to a function. We may either pass individual structure
elements or the entire structure variable at one go. Let us
examine both the approaches one by one using suitable
programs.

I' Passing individual structure elements */
main()

struct book
{

char name[25] ;
char author[25) ;
int callno ;

¥;

struct book b1 = {"Let us C*, *YPK", 101} ;

display (b1.name, b1.author, b1.callno) ;
}

display (char *s, char *t,int n)

printf ("\n%s %s %d",s,1,n);
}

And here is the output...

Let us C YPK 101

Observe that in the declaration of the structure, name and
author have been declared as arrays. Therefore, when we call

the function display() using,

display (b1.name, b1.author, b1.callno) ;

378 LetUs C

we are passing the basc addresses of the arrays name and
author, but the value stored in callno. Thus, this is a mixed
call—a call by reference as well as a call by value.

Tt can be immediately realized that to pass individual elements
would become more tedious as the number of structure
clements go on increasing. A better way would be to pass the
entire structure variable at a time. This method is shown in the
following program.

struct book
char name;25] ;

char author[25]
int calino;

}i
main()
struct book b1 ={"Letus C*, "YPK", 101}

display (b1);
}

display (struct beok b)

printf ("\n%s %s %d", b.name, b.author, b.callno) ;
}

And here is the output...
Let us C YPK 101

Note that here the calling of function display() becomes quite
compact,

display (b1);

Chapter 10: Structures 379

(d

Having collected what is being passed to the display()
function, the question comes, how do we define the formal
arguments in the function. We cannot say,

struct book b1 ;

because the data type struct book is not known to the
function display(). Therefore, it becomes necessary to define
the structure type struct book outside main(), so that it
becomes known to all functions in the program.

The way we can have a pointer pointing to an int, or a pointer
pointing to a char, similarly we can have a pointer pointing to
a struct. Such pointers are known as ‘structure pointers’.

Let us look at a program that demonstrates the usage of a
structure pointer.

main()

struct book
{

char name|[25) ;

char author{25) ;

int callno ;

)i

struct book b1 ={*Let us C*, "YPK", 101} ;
struct book *ptr;

ptr=&b1:

printf (*\n%s %s %ad", b1.name, bi.author, bi.calino) ;

printf ("\n%s %s %d", ptr->name, ptr->author, ptr->callno) ;
}

The first printf() is as usual. The second printf() however is
peculiar. We can't use ptr.name or ptr.callno because ptr is
not a structure variable but a pointer to a structure, and the dot

380 Let Us C

operator requires a structure variable on its left. In such cases
C provides an operator -, called an arrow operator to refer to
the structure elements. Remember that on the left hand side of
the “’ structurc operator, there must always be a structure
variable, whereas on the left hand side of the *->" operator
there must always be a pointer to a structure. The arrangement
of the structure variable and pointer to structure in memory is
shown in the Figure 10.2.

bl .nameg bl.author bi.callno
LaaUsC YPK 101
65472 65497 65522
ptr
65472
65524
Figure 10.2

Can we not pass the address of a structure variable to a
function? We can. The following program demonstrates this.

I* Passing address of a structure variable */
struct book

char name(25]
char author(25] .
int callno ;

A
main()

struct book b1 = {"Letus C*,"YPK" 101}
display (&b1).

Chapter 10: Structures 381

(e)

26

}
display (struct book *b)

printf ("n%s %s %d", b->name, b->author, b->callno) ;
}

And here 1s the output...
Letus C YPK 101

Again note that to access the structure elements using pointer
to a structure we have to use the ‘->” operator.

Also, the structure struct book should be declared outside
main() such that this data type is available to display() while
declaring pointer to the structure.

Consider the following code snippet:

struct emp
{
inta;
charch;
floats ;
)i,
structemp e,
printf (*%u %u %u®, &e.a, Be.ch, &es);

[f we execute this program using TC/TC++ compiler we get
the addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after
the int and float begins immediately after the char.

382 Let Us C

However, if we run the same program using VC++ compiler
then the output turns but to be:

1245044 1245048 1245052

It can be observed from this output that the float doesn’t get
stored immediately after the char. In fact there is a hole of
three bytes after the char. Let us understand the reason for
this. VC++ is a 32-bit compiler targeted to generate code for a
32-bit microprocessor. The architecture of this microprocessor
is such that it is able to fetch the data that is present at an
address, which is a multipic of four much faster than the data
present at any other address. Hence the VC++ compiler aligns
every element of a structurc at an address that is multiple of
four. That’s the reason why therc were three holes created
between the char and the float.

However, some programs need to exercise precise control
over the memory areas where data is placed. For example,
suppose we wish to read the contents of the boot sector (first
sector on the floppy/hard disk) into a structure. For this the
byte arrangement of the structure clements must match the
arrangement of various ficlds in the boot sector of the disk.
The #pragma pack directive offers a way to fulfill this
requirément. This directive specifies packing alignment for
structure members. The pragma takes effect at the first
structure declaration after the pragma is scen. Turbo C/C++
compiler doesn't support this feature, VC++ compiler does.
The following code shows how to use this directive.

%
#pragma pack(1)
struct emp
{

inta;
char ch;
floal s,

¥

Chapter 10: Structures 383

#pragma pack()

structemp e ;
printf ("%u %u %u", &e.a, &e.ch, &e.s) ;

Here, #pragma pack (1) lets cach structurc element to begin
on a 1-byte boundary as justified by the output of the program

given below:

1245044 1245048 1245049

Uses of Structures

Where are structures useful? The immediate application that
comes to the mind is Database Management. That is, to maintain
data about employees in an organization, books in a library, items
in a store, financial accounting transactions in a company etc. But
mind you, use of structures stretches much beyond database

management. They can be used for a variet ses like:
g ey ety of purpo

(a) Changing the size of the cursor
(b) Clearing the contents of the sercen

(c) Placing the cursor al an appropriate position on screen

(d) Drawing any graphics shape on the screen

(¢) Receiving a key from the keyboard

(f) Checking the memory size of the computer

(g) Finding out the list of equipment attached to the computer
th)—Formatting a floppy

@) Hiding a file from the directory

(1) Displaying the directory of a disk

(k) Sending the output to printer

(1) Interacting with the mouse

And that is certainly a very impressive list! At least Impressive
enough to make you realize how important a data type a structure
is and to be thorough with it if you intend to program any of the

384 ' Let Us C

above applications. Some of these applications would be discussed
in Chapters 16 to 19.

Summary

A structure is usually used when we wish to store dissimilar
data togcther.

@ Structure clements can be accessed through a structurc
wvariable using a dot (.) operator.)

(c) Structure clements can be accessed through a pointer to a
structure using the arrow (->) operator. =g &

(d) All elements of one’structure variable can be assigned to
another structurc variable using the assignment (=) operator.

(¢) It is possible t pass a structure variable to a function either
by value or by address.

(f) Itis possible to creatc an array of structures.

Exercise

[A] What would be the output of the following programs:

(@) main()

struct gospel
{
int num ;
char mess1{S0];
char mess2(80]
pm;

maum=1;
strcpy (m.mess#, *If all that you have is hammer”) ;
strepy { m.mess2, "Everything looks fike a nail i

I assume that the strucure is located at address 1004 */
printf (\n%u %:1 %u”, &m.num, m.mess1, mmess2) ;

Chapter 10: Structures

385

(b) struct gospel
{

int num ;
char mess1[50] ;
char mess2[50] ;
}m1= {2 "if you are driven by success",
*make sure that it is a quality drive"
Vi

main()
{
struct gospel m2, m3 ;
m2=mi,
m3=m2;
printf ("\n%d %s %s", m1.num, m2.mess1, m3.mess2) :

}

[B] Point out the errors, if any, in the following programs:

(a) main()
i

struct employee

char name[25) ;
int age;
float bs ;
¥
slruct employee e ;
strepy (e.name, "Hacker') ;
age=25;
printf ("n%s %d", e.name, age) ;
}

(b) main()
{

struct

{

char name[25] ;

386

Let Us C

(c)

(d)

char language[10] ;
)i :
struct employee e = { "Hacker","C"}
printf ("\n%s %d", e.name, e.language) ;

)

struct virus

{

char signature[25] ;
char status(20] ,

int size ;
Jv2)={
*Yankee Doodle’, "Deadly”, 1813,
"Dark Avenger", "Killer*, 1795
main() '
{
int i;

for(i=0;i<=1;i+)
printf ("\n%s %", v.signature, v.stalus) ;
)

struct s

char ch;

int i;

float a,
b

main{)
structs var={'C', 100, 1255},
f(var);
g (&var).

f(structs v)

printf ("\n%c %d %f", v->ch, v->i,v->a)
}

Chapter 10: Structures 387

g (structs *v)

printf ("\n%c %d %f", v.ch, vi,v.a);
}

(e) structs

-
int i;
structs *p;
}i
main()

{

structs vari, var2 ;

varl.i=100;

var2.i=200;

varl.p = &var2;

var2.p = &vart ;

printf ("\n%d %d", vart.p->i, var2p ->i) ;
}

[C] Answer the following:

(a) Ten floats are to be stored in memory. What would you
prefer, an array or a structure? :

(b) Given the statement,
maruti.engine.bolts = 25 ;
which of the following is True?

1. structure bolts is nested within structure engine
2. structure enginc is nested within structure maruti
3. structure maruti is nested within structure engine
4. structure maruti is nested within structure bolts

(c) State True or False:

1. All structure elements are stored in contiguous memory
locations.

388 LetUs C

(d)

(D]
(a)

2. An array should be used to store dissimilar elements, and
a structure to store similar elements.

3. In an array of structures, not only are all structures stored
in contiguous memory locations, but the elements of
individual structures arc also stored in contiguous
locations.

struct time

{

int hours ;
int minutes ;
int seconds ;
Fe
struct time *tt;
ft=4&t;

Iooking at the above declarations, which of the following
refers to seconds correctly:

1. ttseconds
2. (*tt).seconds
3. time.t

4, tt->seconds

Attempt the following:

Create a structure to specify data on students given below:
Roll number, Name, Department, Course, Year of joining
Assume that there arc not more than 450 students in the

collage.

(a) Write a function to print names of all students who joined
in a particular year.

(b) Write a function to print the data of a student whose roll
number is given.

Chapter 10: Structures 389

(b)

(c)

(d)

(e)

(0]

Create a structure to specify data of customers in a bank. The

data to be stored is: Account number, Name, Balance in

account. Assume maximum of 200 customers in the bank.

(a) Write a function to print the Account number and name
of each customer with balance below Rs. 100.

(b) If a customer request for withdrawal or deposit, it is
given in the form: -

Acct. no, amount, code (1 for deposit, 0 for withdrawal)

Write a program to give a message, “The balance is
insufficient for the specified withdrawal”.

An automobile company has serial number for engine parts

starting from AAQ to FF9. The other characteristics of parts to

be specified in a structure are: Year of manufacture, material

and quantity manufactured.

(a) Specify a structure to store information corresponding 1o
a part.

(b) Write a program to retrieve information on parts with
serial numbers between BB1 and CC6.

A record contains name of cricketer, his age, number of test
matches that he has played and the average runs that he has
scored in each test match. Create an array of structure to hold
records of 20 such cricketer and then write a program to read
these records and arrange them in ascending order by average
runs. Use the qusort() standard library function.

There is a structure called employee that holds information
like employee code, name, date of joining. Write a program to
create an array of the structure and cnter some data into it.
Then ask the user to enter current date. Display the names of
those employees whose tenure is 3 or more than 3 years
according to the given current date.

Write a menu driven program that depicts the working of a
library. The menu options should be:

390 Let Us C

(g)

(h)

(1)

Add book information

Display book information

List all books of given author

List the title of specified book

List the count of books in the library

List the books in the order of accession number
Exit

Y Sy et

Crecate a structure called library to hold accession number,
title of the book, author name, price of the book, and flag
indicating whether book is issued or not.

Write a program that compares two given dates. To store date
use structure say date that contains three members namely
date, month and year. If the dates are equal then display
message as "Equal” otherwise "Unequal”.

Linked list is a very common data structure often used to store
similar data in memory. While the elements of an array
occupy contiguous memory locatiors, those of a linked list
are not constrained to be stored in adjacent location. The
individual elements are stored “somewhere” in memory,
rather like a family dispersed, but still bound together. The
order of the elements 1s maintained by explicit links between
them. Thus, a linked list is a collection of elements called
nodes, cach of which stores two item of information—an
element of the list, and a link, i.e., 2 pointer or an address that
indicates explicitly the location o. the node containing the
successor of this list element.

Write a program to build a linked list by adding new nodes at
the beginning, at the end or in the middle of the linked list.
Also write a function display() which display all the nodes
present in the linked list.

A stack is a data structurc in which addition of new element
or deletion of existing element always takes place at the same

Chapter 10: Structures 391

1)

end. This end is ofien known as ‘top’ of stack. This situation
can be compared to a stack of plates in a cafeteria where every
new plate taken off the stack is also from the ‘top’ of the
stack. There are several application where stack can be put to
use. For example, recursion, keeping track of function calls,
evaluation of expressions, etc. Wrilc a program (o implement
a stack using a linked list.

Unlike a stack, in a qucue the addition of new element takes
place at the end (called ‘rear’ of queue) whereas deletion takes
place at the other end (called ‘front’ of queue). Write a
program to implement a queue using a linked list.

392 LetUs C

11 console
Input/Output

Types of 1/0

Console /0O Functions
Formatted Console [/O Functions
springfi) and sscanf{ } Functions
Unformatted Console I/0 Functions

Summary

Exercise

393

394 Let Us C

s mentioned in the first chapter, Dennis Ritchie wanted C

to remain confpact. In keeping with this intention he

deliberately omitted everything related with Input/Output
(1/0) from his definition of the language. Thus, C simply has no
provision for receiving data from any of the input devices (like say
keyboard, disk, etc.), or for sending data to the output devices (like
say VDU, disk, etc.). Then how do we manage [/0, and how is it
that we were we able to use printf() and scanf() if C has nothing
to offer for 1/O? This is what we intend to explore in this chapter.

Types of 1/0

Though C has no provision for /0, it of course has to be dealt with
at some point or the other. There is not much use writing a
program that spends all its time telling itself a secrel. Each
Operating System has its own facility for inputting and outputting
data from and to the files and devices. It's a simple matter for a
system programmer to-wvrite a few small programs that would link
the C compiler for particular Operating system's I/O facilities.

The developers of C Compilers do just that. They write several
standard 1/0 functions and put them in libraries. These libraries are
available with all C compilers. Whichever C compiler you are
using it’s almost certain that you have access to a library of /O
functions,

Do understand that the IO facilities with different operating
systems would be different. Thus, the way one OS displays output
on screen may be different than the way another OS does it. For
example, the standard library function printf() for DOS-based C
compiler has been written keeping in mind the way DOS outputs
characters to screen. Similarly, the printf() function for a Unix-
based compiler has been written keeping in mind the way Unix
outputs characters to screen. We as programmers do not have
bother about which printf() has been written in what manner. We
should just use printf() and it would takc carc of the rest of the

Chapter 11: Console Input/Qutput 395

details that arc OS dependent. Same is true about all other standard
library functions available for /0.

There are numerous library functions available for /0. These can
be classified into three broad categories:

(a) Console VO functions - Functions to reccive input
from keyboard and write
output to VDU,

(b) File IO functions - Functions to perform /O
operations on a floppy disk or
hard disk.

In this chapter we would be discussing only Console I/O functions.
File I/O functions would be discussed in Chapter 2.

Console I/0 Functions

The screen and keyboard together are called a console. Console
/O functions can be further classified into two categories—
formatted and unformatted console /O functions. The basic
difference between them is that the formatted functions allow the
input read from the keyboard or the output displayed on the VDU
to be formatted as per our requirements. For example, if values of
average marks and percentage marks are to be displayed on the
screen, then the details like where this output would appear on the
screen, how many spaces would be present between the two
values, the number of places after the decimal points, ete. can be
controlled using formatted functions. The functions available
under each of these two categories are shown in Figure 11.1. Now
let us discuss these console /O functions in detail.

396 Let Us C

Console Input/Output functions

v v Ly : ’ ¥ - "
’V Formatted functions Unformatted functions
Type | Input | Qutput Type | Input Output

char scanf() | printf{) I char gclc:() putch()
getche() | putchar()

- getchar()

[int scanf{) | printf() int - -
float scanf{) | printf{) float = -
string | scanf() | printf() J string | gets() puts()

Figure 11.1

Formatted Console I/0 Functions

As can be seen from Figure 11.1 the functions printf(), and
scanf() fall under the category of formatted console I/0 functions.
These functions allow us to supply the input in a fixed format and
let us obtain the output in the specified form. Let us discuss these
functions one by one.

We have talked a lot about printf(), used it regularly, but without
having introduced it formally. Well, better late than never. Its
general form looks like this...

printf { "format string", list of variables) ;

The format string can contain:

(a) Characters that arc simply printed as they are
(b) Conversion specifications that begin with a % sign

Chapter 11: Console Input/Qutput 397

(c) Escape sequences that begin with a \ sign

For example, look at the following program:

main()
{
int avg =346 ;
float per=69.2;
~ printf ("Average = %d\nPercentage = %f", avg, per) ;
}

The output of the program would be...

Average = 346
Percentage = 69.200000

How does printf() function interpret the contents of the format
string. For this it examines the format string from left to right. So
long as it doesn’t come across either a % or a \ it continues to
dump the characters that it encounters, on to the screen. In this
example Average = is dumped on the screen. The moment it
comes across a conversion specification in the format string it
picks up the first variable in the list of variables and prints its value
in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when
an escape sequence is met it takes the appropriate action. In this
example, the moment \n is met it places the cursor at the beginning
of the next line. This process continues till the end of format string
is not reached.

Format Specifications

The %d and %f used in the printf() are called format specifiers.
They tell printf() to print the value of avg as a decimal integer
and the value of per as a float. Following is the list of format
specifiers that can be used with the printf() function.

27

398 Let Us C

Data type . Format specifier
Integer short signed %d ar %l

short unsigned %ou

long singed Yold

long unsigned Yelu

unsigned hexadecimal | %x

unsigned octal Y0
Real float %l
double %lf
Character signed character Yoc
unsigned character Yoc
String Yos
e
Figure 11.2

We can provide following optional specifiers in the format
specifications.

Specifier | Description

dd Digils specifying field width

Decimal point separating field width from precision
(precision stands for the number of places after the
decimal point)

dd Digits specifying precision

Minus sign for left justifying the output in the
specified field width

~

Figure 11.3

Chapter 11: Console Input/Output 399

Now a short explanation about these optional format specifiers.
The field-width specifier tells printf() how many columns on
screen should be used while printing a value. For example, %10d
says, “print the variable as a decimal integer in a field of 10
columns”. If the value to be printed happens not to fill up the
entire field, the value is right justified and is padded with blanks
on the left. If we include the minus sign in format specifier (as in
%-10d), this means left justification is desired and the value will
be padded with blanks on the right. Here is an example that should
make this point clear.

main()

{
int weight =63 ;

printf ("\nweight is %d kg", weight) ;

printf ("\nweight is %2d kg", weight) ;

printf ("\nweight is %4d kg", weight) ;

printf ("\nweight is %6d kq", weight) ;

printf ("\nweight is %-6d kg", weight) ;
}

The output of the program would look like this ...

Columns 0123456769012345678901234567830
- weight is63kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg

Specifying the field width can be useful in creating tables of
numeric values, as the following program demonstrates.

main()

printf ("n%f %f %f", 5.0, 13.5, 133.9) ;

400 - Let Us C

printf ("\n%f %f %", 305.0, 1200.9, 3005.3) ;
} .

And here is the output...

5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000

Even though the numbers have been printed, the numbers have not
been lined up properly and hence are hard to read. A better way
would be something like this...

~ main()

printf ("\n%10.1f %10.1f %10.1F, 5.0, 135,1339);
printf ("\n%10.1f %10.1f %10.1f, 305.0, 1200.9, 3005.3);
)

This results into a much better output...

01234567890123456789012345678901
5.0 135 1339
305.0 1200.9 3005.3

The format specifiers could be used even while displaying a string
of characters. The following program would clarify this point:

[* Formatting strings with printf() */
main()

{ .

char firstname1[] ="Sandy";
char sumamei|]= "Malya";

char firstname2[| = "AjayKumar* ;
char sumame?(] = "Gurubaxani" ;

printf ("\n%205%20s", firstname1, sumname1) ;
printf ("\n%20s%20s", firstname2, sumame2) ;

Chapter 11: Console Input/Output 401

'}
And here’s the output...

012345678901234567890123456789012345678901234567890
Sandy Malya
AjayKumar Gurubaxani

The format specificr %20s reserves 20 columns for printing a
string and then prints the string in these 20 columns with right
justification, This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left justified
the string.

Escape Sequences

We saw carlier how the newline character, \n, when inserted in a
printf()’s format string, takes the cursor to the beginning of the
next line. The newline character is an ‘escape sequence’, so called
because the backslash symbol (\) is considered as an ‘escape’
character—it causes an escape from the normal interpretation of a
string, so that the next character is recognized as one having a
special meaning,

The following example shows usage of \n and a new escape
sequence \t, called ‘tab’. A \t moves the cursor to the next tab stop.
A 80-column screen usually has 10 tab stops. In other words, the
screen is divided into 10 zones of 8 columns each. Printing a tab
takes the cursor to the beginning of next printing zone. For
example, if cursor is positioned in column 5, then printing a tab
takes it to column 8.

main()

printf ("YouMtmustithe\tcrazy\ntolthateMthis\thook”) ;
}

402 Let Us g_

And here’s the output...

1 2 3 4
01234567890123456789012345678901234567890
You must be crazy

to hate this book

The \n character causes a new line to begin following ‘crazy’, The
tab and newline arc probably the most commonly used escape
sequences, but there are others as well. Figure 11.4 shows a
complcte list of these escape sequences.

.
Esc. Seq. | Purpose Esc. Seq. | Purpose
\n New line \t Tab
\b Backspace \r Carriage return
\f Form feed \a Alert
bl Single quolte \" Double quote
\\ Backslash .

Figure 11.4

The first few of these escape sequences are more or less self-
explanatory. \b moves the cursor one position to the left of its
current position. \r takes the cursor to the beginning of the line in
which it is currently placed. \a alerts the user by sounding the
speaker inside the computer. Form feed advances the computer
stationery attached to the printer to the top of the next page.
Characters that are ordinarily used as delimiters... the single quote,
double quote, and the backslash can be printed by preceding them
with the backslash. Thus, the statement,

printf (*He said, \"Let's do ith™) ;

Chapter 11: Console Input/Qutput 403

will print...
He said, "Let's do itl"

So far we have been describing printf()'s specification as if we
are forced to use only %d for an integer, only %ec for a char, only
%s for a string and so on. This is not true at all. In fact, printf()
uses the specification that we mention and attempts to perform the
specified conversion, and does its best to produce a proper result.
Sometimes the result is nonsensical, as in case when we ask it to
print a string using %d. Sometimes the result is useful, as in the
case we ask printf() to print ASCII value of a character using
%d. Sometimes the result is disastrous and the entire program
blows up.

The following program shows a few of these conversions, some
sensible, some weird.

main()

char ch='2';
inti=125;

float a=1255;

char s[] ="hello there I" ;

printf ("\n%c %d %f*, ch, ch,ch);
printf ("\n%s %d %f", s,5,5);
printf ("\n%c %d %f,i i, i)
printf ("n%f %d\n", a,a) ;

}

And here’s the output ...

z 122 -9362831782501783000000000000000000000000000.000000
hello there ! 3280 -
9362831782501783000000000000000000000000000.000000

} 125 -9362831782501783000000000000000000000000000.000000

404 Let Us C

12.550000 0

I would leave it to you to analyze the results by yourselves. Some
of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to
enter data from kcyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:
scanf ("format string”, list of addresses of variables) ;

For example:

scanf ("%d %f %c", &c, &a, &ch) |

Note that we are sending addresses of variables (addresses are
obtained by using ‘&’ the ‘address of’ operator) to scanf()
function. This is necessary because the values received from
keyboard must be dropped into variables corresponding to these
addresses. The values that are supplied through the keyboard must
be separated by cither blank(s), tab(s), or newline(s). Do not
include these escape sequences in the format string.

All the format specifications that we learnt in printf() function arc
applicable to scanf() function as well.

sprintf() and sscanf{) Functions

The sprintf() function works similar to the printf() function
except for one small difference. Instead of sending the output to
the screen as printf() does, this function writes the output to an
array of characters. The following program illustrates this.

main()

Chapter 11: Console Input/Output 405

int i=10;
char ch='A";
float a=3.14 ;
char str{20] ;

printf ("\n%d %c %f".i,ch,a);
sprintf str, "%d %c %", i,ch,a);
printf ("\n%s", slr) ; -

}

In this program the printf() prints out the values of i, ¢h and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn’t get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the sccond printf() statement.

The counterpart of sprintf() is the sseanf() function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified formats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using ssecanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console 1/0 Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
thee which handle one character at a time.

So far for input we Tave consistently used the scanf() function.
However, for some situations the scanf() function has one glaring
weakness... you need to hit the Enter key before the function can

406 Let Us C

digest what you have typed. However, we often want a function
that will read a single character the instant it is typed without
waiting for the Enter key to be hit. getch() and getche() are two
functions which serve this purpose. These functions return the
character that has been most recently typed. The ‘e’ in getche()
function means it echoes (displays) the character that you typed to
the screen. As against this getch() just returns the character that
you typed without echoing it on the screen. getchar() works
similarly and echo’s the character that you typed on the screen, but
unfortunately requires Enter key to be typed following the
character that you typed. The difference between getchar() and
fgetchar() is that the former is a macro whereas the latter is a
function. Here is a sample program that illustrates the use of these
functions.
main()

char ¢ch;

printf ("\nPress any key 1o continue”) ;
getch() ; /* will not echo the character */

printf ("\nType any character”) |
ch = getche() ; /* will echo the character typed */

printf { "\nType any character”) ;

getchar() ; /* will echo character, must be followed by enter key */
printf ("\nContinue Y/N") ;

fgetchar() ; /* will echo character, must be followed by enter key */

}

And here is a sample run of this program...

Press any key to conlinue
Type any character B
Type any character W
Continue Y/N'Y

Chapter 11: Console Input/Output 407

putch() and putchar() form the other side of the coin. They print
a character on the screen. As far as the working of putch()
putchar() and fputchar() is concerned it’s exactly same. The
following program illustrates this.

main()
char ch='A';
putch (ch);
putchar (ch);
fputchar (ch) ;
putch('Z'),;
putchar ('Z'},;
fputchar (') ;

}

And here is the output...

AAAZZZ

The limitation of puteh(), putchar() and fputchar() is that they
can output only one character at a time.

gets() and puts()
gets() receives a string from the keyboard. Why is it needed?
Because scanf() function has some limitations while receiving
string of characters, as the following example illustrates...
main()

char name[50];

printf ("\nEnter name ") ;

scanf ("%s", name) ;
printf ("%s", name) ;

408 Let Us C

)

And here is the output...

Enter name Jonty Rhodes
Jonty

Surprised? Where did “Rhodes™ go? It never got stored in the array
name| |, because the moment the blank was typed after “Jonty”
scanf() assumed that the name being entered has ended. The result
is that there is no way (at least not without a lot of trouble on the
programmer’s part) to enter a multi-word string into a single
variable (name in this case) using seanf(). The solution to this
problem is to use gets() function. As said carlier, it gets a string
from the keyboard. It is terminated when an Enter key is hit. Thus,
spaces and tabs are perfectly acceptable as part of the input string.
More exactly, gets() gets a newline (\n) terminated string of
characters from the keyboard and replaces the \n with a\0,

The puts() function works exactly opposite to gets() function. It
outputs a string to the screen,

Here is a program which illustrates the usage of thosc functions:
main()

char footballer[40];

puts ("Enter name”) ;

gets (footballer) ; /* sends base address of array */

puts ("Happy footballing!”) ;

puts (footballer) ;
)

Following is the sample output:

Enter name

Chapter 11: Console Input/Output 409

Jonty Rhodes
Happy footballing!
Jonty Rhodes

Why did we usc two puts() functions to print “Happy
footballing!™ and “Jonty Rhodes™ Because, unlike printf(.
puts() can output only one string at a time. If we attempt to print
two strings using puts(), only the first one gets printed. Similarly,
unlike scanf(), gets() can be uscd to rcad only one string at a
time.

Summary

(a) There is no keyword available in C for doing input/output.

(b) All /O in C is done using standard library functions.

(¢) There are several functions available for performing console
input/ourput.

(d) The formatted console 1/O functions can force the user to
receive the input in a fixed format and display the output in a
fixed format.

(e) There are several format specifiers and escape sequences
available to format input and output.

(N Unformatted console 1/O functions work faster since they do
not have the overheads of formatting the input or output.

Exercise

[A] What would be the output of the following programs:

(8) main()
{
charch;
ch = getchar() ;
if (islower (ch))
putchar (toupper (ch)) ;
else
putchar (tolower (ch)) ;

410 Let Us C

}
(b) main()
{
inti=2;

float f = 25367 ;
char str{] = "Life is like thal" ;

printf ("n%4d\%3.3M%4s", i, f, str) ;
}

(c) main()

printf ("More often than 1b\b not \the person who \
wins is the one who thinks he can!") ;

}
(d) char p[]="The sixth sick sheikh's sixth ship is sick" ;
main(}
inti=0;
while (p[i] = 0")
putch (pfi);
i+
)
}
[B] Point out the errors, if any, in the following programs:
(a) main()
inti;

char a[] = "Hello";
while (a!="0")

printf ("%c", *a);
att |

Chapter 11: Console Input/Output 411

(b) main()
{

double dval ;
scanf ("%f", &dval) ;
printf ("nDouble Value = %If", dval) ;

{c) main()

int ival ;
scanf ("%d\n", &n) ;
printf ("\ninteger Value = %d", ival) ;

(d) main()
{

char *messl5] ;
for(i=0;i<5;i++)
scanf ("%s", messli}) ;

(e) main()

int dd, mm, yy ;

printf (“\nEnter day, month and year\n") ;

scanf (*%d%"c%d%"c%d", &dd, &mm, &yy) :

printf ("The date is: %d - %d - %d", dd, mm, vy)
}

() main()
{

chartext:
sprintf (text, "%4d\%2.20\n%s", 12, 3.452, "Merry Go Round*) ;
printf ("\n%s", text) ;

() main()

{
char buffer{50] ;

412 LetUs C

ICl

| (a)

(b)

(c)

int no =97,
double val =2.34174 |
char name[10] = "Shweta" ,

sprintf (buffer, *%d %If %s", no, val, name)5

printf ("\n%s", buffer) ;

sscanf (buffer "%dd %2.2if %s", &no, &val, name) ;
printf ("\n%s", buffer) ;

printf ("\n%d %If %s", no, val, name) ;

}

Answer the following:

To receive the string "We have got the guts, you get the
glory!!" in an array char str(100] which of the following

functions would you use?

1. scanf("%s", str);
2. gets(str),

3. getche (str);

4. fgetchar(str),

Which function would you use if a single key were to be
received through the keyboard?

|. scanf()
2. gets()

3. getche()
4, getchar()

If an integer is to be entered through the keyboard, which
function would you use?

1. scanf()
2. gets()

3. getche()
4 gclchat‘()

Chapter 11: Console Input/Output 413

(d)

(¢)

()

(8)

D

(a)

(b)

28

If a character string is to be received through the keyboard
which function would work faster?

1. scanf()
2. gets()

What is the difference between getchar(), fgetchar(),
getch() and getche()?

The format string of a printf() function can contain:

Characters, format specifications and escape sequences
Character, integers and floats

Strings, integers and escape sequences

Inverted commas, percentage sign and backslash character

B Ry

A field-width specifier in a printf() function:

Controls the margins of the program listing

Specifies the maximum value of a number

Controls the size of type used to print numbers

Specifies how many columns will be used to print the
number

s R e

Answer the following:

Write down two f[unctions xgets() and xputs() which work
similar to the standard library functions gets() and puts().

Write down a function getint(), which would receive a
numeric string from the keyboard, convert it to an integer
number and return the integer to the calling function. A
sample usage of getint() is shown below:

main()

{

int a;

4 14 Let Us C

a =getint();
printf ("you entered %d", a)

}

12 File input/Output

* Data Organization
* Eile Operations
Opening a File
Reading from a File
Trouble in Opening a File
Closing the File
¢ Counting Characters, Tabs, Spaces, ...
* A File-copy Program
Writing to a File
File Opening Modes
String (line) I/O in Files
The Awkward Newline
Record /0 in Files
Text Files and Binary Files
Record 1/0 Revisited
Database Management
Low Level Disk 1/0
A Low Level File-copy Program
1/0 Under Windows
Summary
Exercise

415

416 Let Us C

ften it is not enough to just display the data on the screen.

This is because if the data is large, only a limited amount

of it can be stored in memory and only a limited amount
of it can be displayed on the screen. It would be inappropriate to
store this data in memory for one more reason. Memory is volatile
and its contents would be lost once the program is terminated. So
if we need the same data again it would have to be either entered
through the keyboard again or would have to be regenerated
programmatically. Obviously both these operations would be
tedious. At such times it becomes necessary lo store the data in a
manner that can be later retrieved and displayed either 1n part or in
whole. This medium is usually a ‘file’ on the disk. This chapter
discusses how file 1/0 operations can be performed.

Data Organization

Before we start doing file input/output let us first find out how data
is organized on the disk. All data stored on the disk is in binary
form. How this binary data is stored on the disk varies from one
0S to another. However, this does not affect the C programmer
since he has to use only the library functions written for the
particular OS to be able to perform input/output. It is the compiler
vendor’s responsibility to correctly implement these library
functions by taking the help of OS. This is illustrated in Figure
12.1.

C Library
ki S functions ‘_‘\ 0

I

Figure 12.1

Chapter 12: File Input/Output 417

File Operations,

There are different operations that can be carried out on a file.
These are:

(a) Creation of a new file

(b) Opening an existing file

(c) Reading from a file

(d) Writing to a file

(e) Moving to a specific location in a file (seeking)
(f) Closing a file

Let us now write a program to read a file and display its contents
on the screen. We will first list the program and show what it does
and then dissect it line by line. Here is the listing. ..

[* Display contents of a file on screen. */
#include "stdio.h"
main()

{ FILE *fp;
char ch;
fp = fopen ("PR1.C", *r") ;
while (1)
ch=fgetc(fp); .

if (ch==EOF)
break ;

printf ("%c¢", ch) ;
}

fclose (fp) ;

418 | LetUs C

On execution of this program it displays the contents of the file
‘PR1.C’ on the screen. Let us now understand how it does the
same, ’

Opening a File

Before we can read (or write) information from (to) a file on a disk
we must open the file. To open the file we have called the function
fopen(). It would open a file “PR1.C" in ‘read’ mode, which tells
the C compiler that we would be reading the contents of the file.
Note that “r” is a string and not a character, hence the double
quotes and not single quotes. In fact fopen() performs three
important tasks when you open the file in *r" mode:

(a) Firstly it scarches on the disk the file to be opened.,

(b) Then it loads the file from the disk into a place in memory
called buffer.

(¢) It sets up a character pointer that points to the first character
of the buffer.

Why do we nced a buffer at all? Imagine how inefficient it would
be to actually access the disk every time we want to read a
character from it, Every time we rcad something from a disk, it
takes some time for the disk drive to position the read/write head
correctly. On a floppy disk system, the drive motor has to actually
start rotating the disk from a standstill position every time the disk
is accessed. If this werc to be done for every character we read
from the disk, it would take a long time to complete the reading
operation. This is where a buffer comes in. It would be more
sensible to read the contents of the file into the buffer while
opening the file and then read the file character by character from
the buffer rather than from the disk. This is shown in Figure 12.2.

Chapter 12: File Input/Output 419

D
PRI.C
Memory
40
DISK
Buffer
fp l
40
Figure 12.2

Same argument also applies to writing information in a file.
Instead of writing characters in the file on the disk one character at
a time it would be more efficient to write characters in a buffer and
then finally transfer the contents from the buffer to the disk.

To be able to successfully read from a file information like mode
of opening, size of file, place in the file from where the next read
operation would be performed, etc. has to be maintained. Since all
this information is inter-related, all of it is pathered together by
fopen() in a structure called FILE. fopen() returns the address of
this structure, which we have collected in the structure pointer
called fp. We have declared fp as

FILE *fp;

420) Let Us C_‘

The FILE structure has been defined in the header file “stdio.h”
(standing for standard input/output header file). Therefore, it is
necessary to #include this file.

Reading from a File

Once the file has been opened for reading using fopen(), as we
have seen, the file's contents arc brought into buffer (partly or
wholly) and a pointer is set up that points to the first character
the buffer. This pointer is one of the elements of the structure to
which fp is pointing (refer Figure 12.2).

To read the file's contents from memory there exists a function
called fgete(). This has been used in our program as,

ch=1fgetc(fp):

fgete() reads the character from the current pointer position,
advances the pointer position so that it now points to the next
character. and returns the character that is read, which we collected
in the variable ch. Note that once the file has been opened, we no
longer refer to the file by its name, but through the file pointer fp.

We have used the function fgete() within an indefinite while loop.
There has to be a way to break out of this while. When shall we
break out... the moment we reach the end of file. But what is end
of file? A special character, whose ASCII value is 26, signifies end
of file. This character is inserted beyond the last character in the
file, when it is created.

While reading from the file, when fgete() encounters this special
character, instead of returning the character that it has read, it
returns the macro EOF. The EOF macro has been defined in the
file “stdio.h”. In place of the function fgete() we could have as
well used the macro gete() with the same effect.

Chapter 12: File Input/Quiput 421

In our program we go on reading each character from the file till
end of file is not met. As each character is read we display it on the
screen. Once out of the loop, we close the file.

Trouble in Opening a File

There is a possibility that when we try to open a file using the
function fopen(), the file may not be opened. While opening the
file in “r" mode, this may happen because the file being opened
may not be present on the disk at all. And you obviously cannot
read a file that doesn't exist. Similarly, while opening the file for
writing, fopen() may fail duc to a number of reasons, like, disk
space may be insufficient to open a new file, or the disk may be
write protected or the disk is damaged and so on.

Crux of the matter is that it is important for any program that
accesses disk files to check whether a file has bcen opened
successfully before trying to read or write to the file. If the file
opening fails due to any of the several reasons mentioned above,
the fopen() function returns a value NULL (defined in “stdio.h™
as #define NULL 0). Here is how this can be handled in a
program...

#include "stdio.h"
main()
{

FILE *fp;

fp =fopen ("PR1.C", '1") ;
if (fp ==NULL)
{

puts ("cannot open file") ;
exit() ;

422 __ Let Us C

Closing the File

When we have finished reading from the file, we need to close it.
This is done using the function fclose() through the statement,

fclose (Tp) ;

Once we close the file we can no longer read from it using gete()
unless we reopen the file. Note that to close the file we don’t use
the filename but the file pointer fp. On closing the file the buffer
associated with the file is removed from memory.

In this program we have opened the file for reading. Suppose we
open a file with an intention to write characters into it. This time
too a buffer would get associated with it. When we attempt to
write characters into this [ile using fpute() the characters would
get written to the buffer. When we close this file using fclose()
three operations would be performed:

(a) The characters in the buffer would be written to the file on the
disk.

(b) At the end of file a character with ASCII value 26 would get
written.

(c) The buffer would be climinated from memory,

You can imagine a possibility when the buffer may become full
before we close the file. In such a case the buffer’s contents would
be written to the disk the moment it becomes full. All this buffer
management is done for us by the library functions.

Counting Characters, Tabs, Spaces, ...

Having understood the first file I/O program in detail let us now
try our hand at onc more. Let us write a program that will read a
file and count how many characters, spaces, tabs and newlines are
present in it. Here is the program. ..

Chapter 12: File Input/Output

423

I* Count chars, spaces, tabs and newlines in a file */

include "stdio.h"

main()

{
FILE *fp;
char ch;

int nol =0, not=0,nob=0,nac=0;
fp = fopen ("PR1.C","r") ;

while (1)

: ch="fgetc(fp);

if (ch==EOF)
break ;

noc++ |

if(ch=="")
nob++ ;

if(ch=="n")
nol++

if (ch=="1")
not++ ;

}

fclose (fp);

printf ("\nNumber of characters = %d", noc) ;

printf ("\nNumber of blanks = %d", nob } ;
printf ("\nNumber of tabs = %d", not) ;
printf ("\nNumber of lines = %d", nol) ;

424 Let Us C

Here is a sample run...

Number of characters = 125
Number of blanks = 25
Number of tabs = 13
Number of lines = 22

The above statistics arc true for a file “PR1.C”, which | had on my
disk. You may give any other filecname and obtain different results.
| believe the program is self-explanatory.

In this program too we have opened the file for reading and then
read it character by character. Let us now try a program that needs
to open a file for writing,

A File-copy Program

We have already used the function fgete() which reads characters
from a file. Its counterpart is a function called fpute() which
writes characters to a file. As a practical use of thesg character I/O
functions we can copy the contents of one file into another, as
demonstrated in the following program. This program takes the
contents of a file and copies them into another file, character by
character.

#include "stdio.n”

main{)

{
FILE *fs, *ft;
char ch;

fs = fopen ("pric”, ™"),
if (fs == NULL)

puts (*Cannot open source file") ;

exit() ;

Chapter 12: File Input/Output 425

}

ft = fopen ("pr2.c”,"w") ;
if (ft == NULL)

puts ("Cannct open target file") ;
fclose (fs)
exit()

}

while (1)
{
ch=fgetc(fs);

if (ch == EQF)
break ;
else
fpute (ch, ft);
)

fclose (fs);
fclose (ft);
}

I hope most of the stuff in the program can be easily understood,
since it has already been dealt with in the earlier section. What is
new is only the function fputc(). Let us see how it works.

Writing to a File

The fpute() function is similar to the putch() function, in the
sense that both output characters. However, putch() function
always writes to the VDU, whereas, fpute() writes to the file.
Which file? The file signified by ft. The writing process continues
till all characters from the source file have been written to the
target file, following which the while loop terminates.

426

Let Us C__

Note that our sample file-copy program is capable of copying only
text files. To copy files with extension .EXE or .COM, we need to
open the files in binary mode, a topic that would be dealt with in
sufficient detail in a later section.

File Opening Modes

In our first program on disk 1/0O we have opened the file in read
(“r") mode. However, “r" is but one of the several modes in which
we can open a file. Following is a list of all possible modes in
which a file can be opencd. The tasks performed by fopen() when
a file 1s opened in each of these modes are also mentioned.

r

llau

||r+1|

Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file cannot be opened fopen()
returns NULL.

Operations possible — reading from the file.

Searches file. If the file exists, its contents are overwritten.
If the file doesn't exist, a new file is created. Returns
NULL, if unable 10 open file.

Operations possible — writing to the file.

Scarches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer that points to the

" last, character in 1t. If the file doesn’t exist, 2 new file is

created. Returns NULL, if unable to open file.
Operations possible - adding new contents at the end of file.
Scarches file. If is opened successfully fopen() loads it into

memory and sets up a pointer which points to the first
character in it. Returns NULL, if unable to open the file.

Chapier 12: File Input/Quiput 427

Operations possible - reading existing contents, writing new
contents, madifying existing contents of the file.

"w+" Searches file. If the file exists, its conlenls are overwritten.
If the file doesn’t exist a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing new contents, reading them
back and modifying existing contents of the file.

"at" Scarches file.-If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file doesn’t exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - reading ¢ .isting conlents, appending
new contents to end of file. Cannot modify existing
contents.

String (line) 1/0 in Files

For many purposes, character 1/0 is just what is nceded. However,
in some situations the usage of functions that read or write entire
strings might turm out to be more efficient.

Reading or writing strings of characters from and to files is as easy
as rcading and writing individual characters. Here is a program
that writes strings to a file using the function fputs().

I* Receives strings from keyboard and writes them to file */
#include "stdio.h”
main()

FILE *fp,
char s[80];

428 Let Us C

fp = fopen ("POEM.TXT", "W") ;
if(fp==NULL)
{
puts (“Cannot open file") ;
exit() ;

}

printf ("\nEnter a few lines of text\n") ;
while (strlen (gets (s))>0)
{

fputs (s, fp) ;
fputs ("n", fp),
)
fclose (fp);

}

And here is a sample run of the program...

Enter a few lines of text:

Shining and bright, they are forever,
s0 true about diamonds,

more so of memories,

especially yours !

Note that each string is terminated by hitting enter. To terminate
the execution of the program, hit enter at the beginning of a line.
This creates a string of zero length, which the program recognizes
as the signal to close the file and exit.

We have set up a character array to receive the string; the fputs()
function then writes the contents of the array to the disk. Since
fputs() does not automatically add a newline character to the end
of the string, we must do this explicitly to make it casier to read
the string back from the file.

Here is a program that reads strings from a disk file.

Chapter 12: File Input/Output 429

I* Reads strings from the file and displays them on screen */
#include "sldio.h”
main()

(
FILE *fp;
char s[80];

fp = fopen ("POEM.TXT","r"),
if (fp==NULL)

puts ("Cannot open file") ;
exit() ;
}

while (fgets (s, 79, fp) I= NULL)
printf ("%s" ,s);

fclose (fp);
}

And here is the output...

Shining and bright, they are forever,
50 true about diamonds,

more s0 of memories,
%pecially,yours !

The function fgets() takes three arguments. The first is the address
where the string is stored, and the second is the maximum length
of the string. This argument prevents fgets() from reading in too
long a string and overflowing the array. The third argument, as
usual, is the pointer to the structure FILE. When all the lines from
the file have been read, we attempt to read one more line, in which
case fgets() returns a NULL.

-

29

430 . Let Us C

The Awkward Newline

We had earlier written a program that counts the total number of
characters present in a file. If we use that program to count the
number of characters present in the above poem (stored in the file
“POEM.TXT"), it would give us the character count as 101. The
same file if seen in the directory, would be reported to contain 105
characters.

This discrepancy occurs because when we attempt to write a “\n”
to the file using fputs(), fputs() converts the \n (o \rin
combination. Here \r stands for carriage return and \n for linefeed.
If we read the same line back using fgets() the reverse conversion
happens. Thus when we write the first line of the pocm and a *\n”™
using two calls to fputs(), what gets written to the file is

Shining and bright, they are forever,\rn

When the same line is read back into the array s| | using fgets(),
the array contains

Shining and bright, they are forever \n\0

Thus conversion of \n to \r\n during writing and \r\n conversion to
\n during reading is a feature of the standard library functions and
not that of the OS. Hence the OS counts \r and \n d§ separate
characters. In our poem there are four lines, therefore there is a
discrepancy of four characters (105 - 101).

Record I/0 in Files

So far we have dealt with reading and writing only characters and
strings. What if we want to read or write numbers from/to file?
Furthermore, what if we desire to read/writc a combination of
characters, strings and nurnbers? For this first we would organize
this dissimilar data together in a structure and then use fprintf()

Chapter 12: File Input/Qutput 431

and fscanf() library functions to read/writec data from/to file.
Following program illustrates the use of structures for writing
records of employees.

I* Writes records to a file using structure */
#include "stdio.h"
main()
{
FILE *fp;
char another="Y';
struct emp
{

char name[40];
int age ;
float-bs ;

i

strucle;np e,
fp = fopen ("EMPLOYEE.DAT", "w") ;

if (fp == NULL)

{
puts ("Cannot open file*) ;
exit() ;

}

while (another =="Y")

{
printf ("\nEnter name, age and basic salary: *) ;
scanf ("%s %d %f", e.name, &e.age, &e.bs) ;
forintf fp, "%s %d %fn", e.name, e.age, e.bs) ;

printf (*Add another record (Y/N) *) ;
fflush (stdin) ;
another = getchef() ;

)

felose (fp) ;

432 Let Us C

}

And here is the output of the program...

Enter name, age and basic salary: Sunil 34 1250.50
Add another record (Y/N) Y

Enter name, age and basic salary: Sameer 21 1300.50
Add another record (Y/N) Y

Enter name, age and basic salary: Rahul 34 1400.55
Add another record (Y/N) N

In this program we are just reading the data into a structure
variable using scanf(), and then dumping it into a disk file using
fprintf(). The user can input as many records as he desires. The
procedure ends when the user supplies *N’ for the question ‘Add
another record (Y/N)'.

The key to this program is the function fprintf(), which writes the
values in the structure variable to the file. This function is similar
to printf(), except that a FILE pointer is included as the first
argument. As in printf(), we can format the data in a variety of
ways, by using fprintf(). In fact all the format conventions of
printf() function work with fprintf() as well.

Perhaps you are wondering what for have we used the function
fflush(). The reason is to get rid of a peculiarity of scanf(). After
supplying data for one employee, we would hit the enter key. What
scanf() does is it assigns name, age and salary to appropriate
variables and keeps the enter key unread in the keyboard buffer.
So when it's time to supply Y or N for the question ‘Another
employee (Y/N)', getch() will read the enter key from the buffer
thinking that user has entered the enter key. Tosavoid this problem
we use the function fflush(). It is designed to remove or *flush
out’ any data remaining in the buffer. The argument to fllush()
must be the buffer which we want to flush out. Here we have used
‘stdin’, which means buffer related with standard input
device—keyboard.

Chapter 12: File Input/Output 433

Let us now write a program that reads the employee records
created by the above program. Here is how it can be done...

I* Read records from a file using structure */
#include "stdio.h”
main()

FILE *fp;
struct emp

char namel[d0] ;
int age ;
float bs;

h

structemp e

fp = fopen ("EMPLOYEE.DAT", "r") ;

if (fp == NULL)

{
puts ("Carinot open file") ;
exit() ;

)

while (fscanf (fp, "%s %d %f", e.name, &e.age, &e.bs) != EOF)
printf ("\n%s %d %f", e.name, e.age, ebs) ;

fclose (fp);
}

And here is the output of the program...

Sunil 34 1250.500000
Sameer 21 1300.500000
Rahul 34 1400.500000

434 Let Us C

Text Files and Binary Files

All the programs that we wrote in this chapter so far worked on
text files. Some of them would not work correctly on binary files.
A text file contains only textual information like alphabets, digits
and special symbols. In actuality the ASCIl codes of these
characters are stored in text files. A good e‘nmp!c of a text file is
any C program, say PR1.C.

As against this, a binary file is merely a collection of bytes. This
collection might be a compiled version of a C program (say
PR1.EXE), or music data stored in a wave file or a picture stored
in a graphic file. A very casy way to find out whether a file is a
text file or a binary file is to open that file in Turbo C/C++, If on
opening the file you can make out what is displayed then it is a
text file, otherwise it is a binary file.

As mentioned while explaining the file-copy program, the program
cannot copy binary files successfully. We can improve the same

_program to make it capable of copying text as well as binary files
as shown below.

#include "stdio.h"

main()

{
FILE *fs, *ft;
intch ;

fs = fopen ("pri.exe” "rb") ;

if (fs == NULL)

{
puts ("Cannot open source file”) ;
exit() ;

}
ft = fopen ("newpri.exe", "wb") ;

Chapter 12: File Input/Output 435

if (ft == NULL)

puts (“Cannot open target file”) ;
fclose (fs):
exit() ;

)
while (1)
ch=fgelc(fs);

if (ch==EOF)
break ;
else
fputc (ch, ft}),;
}

folose (fs) ;
folose (f);
}

Using this program we can comfortably copy text as well as binary
files. Note that here we have opened the source and target files in
“rb™ and “wb" modes respectively. While opening the file in text
mode we can use either “r” or “rt”, but since text mode is the
default mode we usually drop the *t'.

From the programming angle there are threc main areas where text
and binary mode files are different. These are:

(a) Handling of newlines
(b) Representation of end of file
(c) Storage of numbers

Let us cxplore these three differences.

436 Let Us C

Text versus Binary Mode: Newlines

We have already seen -that, in text mode, a newline character is
converted into the carriage return-linefced combination before
being written to the disk. Likewise, the carriage return-linefeed
combination on the disk is converted back into a newline when the
file is read by a C program. However, if a file is opened in binary
mode, as opposed to text mode, these conversions will not take
place.

Text versus Binary Mode: End of File

The second difference between text and binary modes is in the way
the end-of-file is detected. In text mode, a special character, whose
ASCII value 1s 26, is inserted afler the last character i the e to
mark the end of file. If this character is detected at any point in the
file, the read function would return the EOF signal to the program.

As against this, there is no such special character present in the
binary mode files to mark the end of file. The binary mode files
keep track of the end of file from the number of characters present
in the directory entry of the file.

There is a moral to be derived from the end of file marker of text
mode files. If a file stores numbers in binary mode, it is important
that binary mode only be used for reading the numbers back, since
one of the numbers we store might well be the number 26
(hexadecimal ! A). If this number 1s detected while we are reading
the file by opening it in text mode, reading would be terminated
prematurely at that point,

Thus the two modes are not compatible. See to it that the file that
has been written in text mode is read back only in text mode.
Similarly, the file that has been written in binary mode must be
read back only in binary mode.

Chapter 12: File Input/Qutput 437

Text versus Binary Mode: Storage of Numbers

The only function that is available for storing numbers in a disk
file is the fprintf() function. It is important to understand how
numerical data is stored on the disk by fprintf(). Text and
characters are stored one character per byte, as we would expect.
Arc numbers stored as they are in memory, two bytes for an
integer, four bytes for a float, and so on? No.

Numbers are stored as strings of characters. Thus, 1234, even
though it occupies two bytes in memory, when transferred to the
disk using fprintf(), would occupy four bytes, one byte per
character. Similarly, the foating-point number 1234.56 would
occupy 7 bytes on disk. Thus, numbers with more digits would
require more disk space.

Hence if large amount of numerical data is to be stored in a disk
file, using text mode may turn out to be inefficient. The solution is
to open the file in binary mode and use those functions (fread()
and fwrite() which are discussed later) which store the numbers in
binary format. It means each number would occupy same number
of bytes on disk as it occupies in memory.

Record 1/0 Revisited

The record 1/O program that we did in an earlier section has two
disadvantages:

(2) The numbers (basic salary) would occupy more number of
bytes, since the file has been opened in text mode. This is
because when the file is openced in text mode, each number is
stored as a character string.

(b)y If the nimber of fields in the structure increase (say, by
adding vidress, house rent allowance etc.), writing structures

438 Let Us C

using fprintf(), or reading them using fscanf({), becomes
quite clumsy.

Let us now see a more cfficient way of reading/writing records
(structures). This makes use of two functions fread() and
fwrite(). We will write two programs, first one would write
records to the file and the second would read these records from
the file and display them on the screen.

/* Receives records from keyboard and writes them to a file in binary mode */
#include "stdio.h”
main()
{
FILE *fp.:
char another ="Y",
struct emp

char name[40] ;
int age .
float bs ;

H

structemp €,

fp = fopen ("‘EMP.DAT", "wb") ;

if (fp==NULL)

{
puts { "Cannot open file” } |
exil(),

)

while (another =="Y")

{

printf { "\nEnter name, age and basic salary. o I
scanf ("%s %d %f", e.name, &e age, &ebs) |
fwrite (&e, sizeof (e), 1,fp).

printf (“Add anather record (YN} ") |

Chapter 12: File Input/Output _ 439

flush (sidin) ;
another = getche() ;
}
fclose (fp) ;

}

And here is the output...

Enter name, age and basic salary: Suresh 24 1250.50
Add another record (Y/N) Y .
Enter name, age and basic salary: Ranjan 21 1300.60
Add another record (Y/N) Y
Enter name, age and basic salary: Harish 28 1400.70
Add another record (Y/N) N

Most of this program is similar to the one that we wro'tc earlier,
which used fprintf() instead of fwrite(). Note, however, that the
file “EMP.DAT" has now been opened in binary mode.

The information obtained from the keyboard about the employee is
placed in the structure variable e. Then, the following statement
writes the structure to the file:

fwrite (&e, sizeof (e), 1,fp) :

Here, the first argument is the address of the structure to be written
to the disk.

The second argument is the size of the structure in bytes. Instead
of counting the bytes occupied by the structure ourselves, we let
the program do it for us by using the sizeof() operator. The
sizeof() operator gives the size of the variable in bytes. This keeps
the program unchanged in event of change in the elements of the
structure,

440 Let Us C

The third argument is the number of such structures that we want
to write at one time. In this case, we want t0 write only one
structure at a time. Had we had an array of structures, for example,
we might have wanted to write the cntire array at once,

The last argument is the pointer to the file we want to write to.

Now, let us write a program to read back the records written to the
disk by the previous program.

[Reads records from binary file and displays them on VDU "I
#include "stdio h”
main{)

{
FILE *fp;
siruct emp

char name[40] |
int age ;
float bs;

s{ruct emp €,
fp = fopen ("EMP.DAT", "rb" ¥

if (fp==NULL)

{ ,
puts (*Cannot open file") ;
exil()

}

while (fread (8e, sizeof (e), 1,fp) ==1)
printf ("\n%s %d %f", e.name, e.age, ebs);

fclose (fp);

Chapter 12: File Input/Output ‘ 441

Here, the fread() function causes the data read from the disk to be
placed in the structure variable e. The format of fread() is same as
that of fwrite(). The function fread() returns the number of
records read. Ordinarily, this should correspond to the third
argument, the number of records we asked for... 1 in this case. If
we have reached the end of file, since fread() cannot read
anything, it returns a 0. By testing for this situation, we know
when to stop reading.

As you can now appreciate, any database management application
in C must make use of fread() and fwrite() functions, since they
store numbers more efficiently, and make writing/reading of
structures quite easy. Note that even if the number of elements
belonging to the structure increases, the format of fread() and
fwrite() remains same.

Database Management

So far we have. learnt record I/0 in bits and pieces. However, in
any serious database management application, we will have to
combine all that we have learnt in a proper manner to make sense. -
I have attempted to do this in the following menu driven program.
There is a provision to Add, Modify, List and Delete records, the
operations that are cimperative in any database management.
Following comments would help you in understanding the
program easily:

- Addition of records must always take place at thc end of
existing records in the file, much in the same way you would
add new records in a register manually.

~ Listing records means displaying the existing records on the
screen. Naturally, records should be listed from first record to
last record.

~ While modifying records, first we must ask the user which
record he intends to modify. Instead of asking the record

442 Let Us C

number to be modified. it would be more meaningful to ask for
the name of the employce whose record 15 to be modified. On
modifying the record, the existing record gets overwritten by
the new record.

In deleting records, except for the record (o be deieted, rest of
the records rmust {irst be written to a temporary file, then the
original file must be deleted, and the temporary file must be
renamed back to original,

Observe carefully the way the file has been opened, first for
reading & writing, and if this fails'(the first time you run this
program it would certainly fail, because that time the file is not
existing), for writing and reading. It is imperative that the file
should be opened in binary mode.

Note that the file is being opened only once and closed only
once, which is quite logical,

clrser() function clears the contents of the screen and
gotoxy() places the cursor at appropriate position on the
screen. The parameters passed to gotoxy() are column number
followed by row number.

Given below is the complete listing of the program.

/* A menu-driven program for elementary database management */
#include "stdio.h"

main()

{
FILE *fp,*ft;
char another, choice ;
struct emp

char name(40] ;
int age ;
float bs;

¥

Chapter 12: File Input/Output 443

structemp e,
char empnamel[40] ;
long int recsize ;

fp = fopen ("EMP DAT", "rb+") ;

if (fp == NULL)
{
fp = fopen ("EMP.DAT", "wb+") ;

if (fp==NULL)
: 4
puts { "Cannot open file") ;
exit() ;
}
}

recsize = sizeof (e) ;

while (1)
{

clrser()

gotoxy (30,10) ;

printf ("1. Add Records") ;
gotoxy (30, 12) ;

printf ("2. List Records") ;
gotoxy (30, 14) ;

printf (*3. Modify Records") ;
gotoxy (30, 16) ;

printf (. *4. Delete Records") ;
gotoxy (30, 18) ;

printf (*0. Exit") ;

gotoxy (30,20);

printf ("Your choice”) ;

filush (stdin) ;
choice = getche() ;

444) Let Us C

switch { choice),

{

case'1":

fseek (fp, 0, SEEK_END),
another ='Y";

while (another =="Y")

{
printf { "\nEnter name, age and basic sal. ") ;
scanf (*%s %d %", e.name, &e.age, 8ebs) ;
fwrite (&e, recsize, 1,1p)
printf ("\nAdd another Record (Y/N) ") |
fflush (stdin) ;
another = gelche()

)

break ;

case'2":
rewind (fp) ;

while (fread (&e, recsize, 1,fp) == 1)
printf ("n%s %d %f", e.name, e.age, e.bs)|

break ;
case'd:

another ="Y";

while (another =="Y")

{
printf (“nEnter name of employee to modify ") ;
scanf (“%s", empname) ;

rewind (fp);
while (fread (&e, recsize, 1,fp) ==1)

Chapter 12: File Input/Output

445

}

{
if (stremp (e.name, empname) == 0)

printf (\nEnter new name, age & bs") ;

scanf ("%s %d %P, e.name, &e.age,
&ebs);

fseek (fp, - recsize, SEEK_CUR) ;

fwrite (&e, recsize, 1,p) ;

break ;

}
)

printf (“\nModify another Record (Y/N) ") ;
flush (stdin) ;
another = getche() ;

break ;

case'q".

another ='Y";
while (another =="Y")

{

printf (“\nEnter name of employee to delete *) ;
scanf "%s", empname) ;

ft = fopen ("TEMP.DAT", "wb")

rewind (fp) ;
while (fread (&e, recsize, 1,fp) == 1)
{

if (stremp (e.name, empname) != 0)
fwrite (&e, recsize, 1, ft) ;
)

folose (fp)
folose (ft);

446 LetUs C

remove ("EMP.DAT") ;
rename ("TEMP.DAT EMP. DAT"),

fp = fopen ("EMPDAT," rb+") ;

printf ("Delete another Record (Y/N)") ;
fflush (stdin),
another = getche (),

}
break ;

case '0':
fclose (fp),
exit();

J

To understand how this program works, you need to be familiar
with the concept of pointers.A pointer is initiated whenever we
open a file. On opening a file a pointer is set up which points to
the fifst record in the file. To be precise this pointer is present in
the structure to which the file pointer returned by fopen () points
to. On using the functions fread () or fwrite () the pointer moves
to the beginning of the next record. On closing a file the pointer is
deactivated. Note that the pointer movement is of utmost
importance since fread () alwas reads that record where the
pointer is currently placed. Similarly, fwrite () always writes the
record where the pointer is currently placed

The rewind (J function places the pointer to the beginning of the
file, irrespective of where it is present right now.

The fseek () function lets us move the pointer from one record to
another. In the program above, to move the pointer to the previous
record from its current position, we used the function,

Chapter 12: File Input/Output 447
fseek (fp,-recsize SEEK CUR) ;

Here, recsize moves the pointer back by recsize bytes from the
current position. SEEK CUR is a macro defined in "stdio.h".

Similarly, the following fseek() would place the pomter beyond
the last record in the file.

fseek (fp. 0, SEEK_ END) ;

In fact recsize or 0 are just the offsets that tell the compiler by
how many bytes should the pointer be moved from a particular
position, The third argument could be SEEK_END, SEEK_CUR
or SEEK SET All these act as a reference from which the pointer
should be offset. SEEK_END means move the pointer from the
end of the file, SEEK_CUR means move the pointer with
reference to its current position and SEEK_SET means move the
pointer with reference to the beginning of the file.

If we wish to know where the pointer is positioned right now, we
can use the function ftell(). It returns this position as a long int
which is an offset from the beginning of the file. The value
returned by ftell() can be used in subsequent calls to fseek(). A
sample call to ftell() is shown below.

position=ftell (fp)
where position is a long int

Low Level Disk I/O

In low level disk I/O, data cannot be written as individual
characters, or as strings or as formatted data. There is only one
way date can be written or read in low level disk 1/O fanctions as
a buffer full of bytes.

448 Let Us C

Writing a buffer full of data resembles the fwrite() function.
However, unlike fwrite(,), the programmer must set up the buffer
for the data, place the appropriate values in it before writing, and
take them out after writing. Thus, the buffer in the low level VO
functions is very much a part of the program, rather than being
invisible as in high level disk 1/0 functions.

Low level disk 1/0 functions offer following advantages:

(a) Since these functions parallel the methods that the OS uses to
write to the disk, they are more efficient than the high level
disk I/O functions.

(b) Since there are fewer layers of routines to go through, low
level /O functions operate faster than their high level
counterparts.

Let us now write a prograin that uses low level disk input/output
functions.

A Low Level File-copy Program

Earlier we had written a program to copy the contents of one file to
another. In that program we had read the file character by
character using fgetc(). Each character that was read was written
into the target file using fpute(). Instead of performing the 1/O on
a character by character basis we can read a chunk of bytes from
the source file and then write this chunk into the target file. While
doing so the chunk would be read into the buffer and would be
written to the file from the buffer. While doing so we would
manage the buffer ourselves, rather than relying on the library
functions to do so. This is what is low-level about this program.
Here is a program which shows how this can be done.

I* File-copy program which copies text, .com and .exe files */
#include *fcntl.n"
#include "types.h* /* if present in sys directory use

Chapter 12: File Inpur/Oufput’ . 449

"c:telincludeVsysttypes.h* ¢

#include "stath® 7 if present in sys directory use

"c:\telinclude\\sys\\stat h™ */

main (int argc, char *argv|])

{

char buffer{ 512, source [128 |, target [128];
int inhandle, outhandle, bytes ;

printf ("\nEnter source file name") ;
gets (source) ;

inhandle = open (source, O_RDONLY | O_BINARY) ;
if (inhandie ==-1)
{

puts ("Cannot open file*) ;
exit() ;
}

printf ("\nEnter target file name®) ;
gets (target) ;

outhandle = open (target, O_CREAT | O_BINARY | O_WRONLY,
S_IWRITE);
if (inhandle == -1)
{
puts ("Cannot open file") ;
close (inhandle) ;
exit() ;

}

while (1)

: bytes = read (inhandle, buffer, 512) ;
if (bytes >0)

write (outhandle, buffer, bytes) ;
else

450

break ;
}

close (inhandle) ;
close (outhandle) :

}
Declaring the Buffer

The first difference that you will notice in this program is that we
declare a character buffer,

char buffer[512] ;

This is the buffer in which the data read from the disk will be
placed. The size of this buffer is important for effrcient operation.
Depending on the operating system, buffers of certain sizes are
handled more efficiently than others.

Opening a File

We have opened two files in our program, one is the source file
from which we read the information, and the other is the target
file into which we write the information read from the source file.

As in high level disk I/O, the file must be opened before we can
access it. This is done using the statement, .

inhandle=open (source, O_RDONLY | O_BINARY) ;

We open the file for the same reason as we did earlier-to establish
communication with operating system about the file. As usual, we
have to supply to open(), the filename and the mode in which we
want to open the file. The possible file opening modes are given
below : -

O_APPEND - Opens a file for appending

Chapter 12: File Input/Output 451

O_CREAT - Creates a new file for writing (has no effect
if file already exists)

O_RDONLY - Creates a new file for reading only

O_RDWR - Creates a file for both reading and writing

O_WRONLY - Creates a file for writing only

O_BINARY - Creates a file in binary mode

O_TEXT - Creates a file in text mode

These 'O-flags' are defined in the file "fcntl.h”. So this file must
be included in the program while usng low level disk I/O. Note
that the file "stdio.h" is not necessary for low level disk V/O.
When two or more O-flags are used together, they are combined
using the bitwise OR operator (). Chapter 14 discusses bitwise
operators in detail.

The other statement used in our program to open the file 1s,

outhandle = open (target, O_CREAT | O_ BINARY | O_WRONLY,
S-IWRITE),

Note that since the target file is not existing when it is being
opened we have used the O_CREAT flag, and since we want to
write to the file and not read from it, there fore we have used
O_WRONLY. And finally, since we want to open the file in
binary mode we have used O_ BINARY.

Whenever O_ CREAT flag is used, another argument must be
added to open() function to indicate the read/write status of the
file to be created. This argument is called “permission argument’.
Permission arguments could be any of the following :

S_IWRITE - Writing to the file permitted
~ S_IREAD - Reading from the file permitted

452 Let Us C

To use these permissions, both the files “types.h™ and “stat.h” must
be #included in the program alongwith “fentlh™.

File Handles

Instead of returning a FILE pointer as fopen() did, in low level
disk /O, open() returns an integer value called ‘file handle’. This
is a number assigned to a particular file, which is used thereafter to
refer to the file. If open(-) returns a value of -1, it means that the
file couldn’t be successfully opened.

Interaction between Buffer apd File

The following statement reads the file or as much of it as will fit
into the buffer:

bytes = read (inhandle, buffer, 512) ;

The read() function takes three arguments. The first argument is
the file handle, the second is the address of the buffer and the third
is the maximum number of bytes we want to read.

The read() function returns the number of bytes actually read.
This is an important number, since it may very well be less than
the buffer size (512 bytes), and we will need to know just how full
the buffer is before we can do anything with its contents. In our
program we have assigned this number to the variable bytes.

For copying the file, we must use both the read() and the write()
functions in a while loop. The read() function returns the number
of bytes actually read. This is assigned to the variable bytes. This
value will be equal to the buffer size (512 bytes) until the end of
file, when the bufTer will only be partially full. The variable bytes
therefore 1s uscd to tell write(), as to how many bytes to write
from the buffer to the target file.

Chapter 12: File Input/Output 453

Note that when large buffers are used they must be made global
variables otherwise stack overflow occurs.

I/0 Under Windows

As said earlier I/O in C is carried out using functions present in the
library that comes with the C compiler targeted for a specific OS.
Windows permits several applications to use the same screen
simultaneously. Hence there is a possibility that what is written by
one application to the console may get overwritten by the output
sent by another application to the console. To avoid such situations
Windows has completely abandoned console 1/0 functions. It uses
a separate mechanism to send output to a window representing an
application. The details of this mechanism are discussed in
Chapter 17.

Though under Windows console 1/O functions are not used, still
functions like fprintf(), fscanf(), fread(), fwrite(), sprintf{(),
sscanf() work exactly same under Windows as well.

Summary

(a) File I/O can be performed on a character by character basis, a
line by line basis, a record by record basis or a chunk by
chunk basis.

(b) Different operations that can be performed on a file are—
creation of a new file, opening an existing file, reading from a
file, writing to a file, moving to a specific location in a file
(seeking) and closing a file.

(c) File I/O is done using a buffer to improve the efficiency.

(d) A file can be a text file or a binary file depending upon its
contents.

(e) Library functions convert \n to \r\n or vice versa while
writing/reading to/from a file.

454 Let Us C

(f) Many library functions convert a number to a numeric string
before writing it to a file, thereby using more space on disk. This
can be avoided using functions fread() and fwrite().

(g) In low level file I/O we can do the buffer management
ourselves.

Exercise

(A) Point out the errors, if any, in the following programs :
(a) # include "stdio.h"

main ()

{

FILE *fp ;

openfile ("Myfile txt", fp) ;

if (fp ==NULL)

printf ("Unable to open file...") ;
}

openfile (char *fn, FILE **f)
{

*f= fopen (fn, "r") ;

}

(b) # include "stdio.h"

main()

{

FILE *fp.

Char ¢

fp=fopen ("TRY.C", "r") |

if (fp == null)

{

puts ("Cannot open file")

exit() “

}

while ((¢ = getc (fp)) != EOF)
putch (c) ;

fclose (fp) ;

Chapter 12: File Input/Output 455

}
(¢) main ()
{
- char fname[| = "c:\\students.dat";
FILE *fp ;
fp = fopen (fname, "tr");
if (fp==NULL))
printf ("\nUnable to open file...") ;
}
(d) main()
{
FILE *fp ;
char str[80] ;
fp = fopen ("TRY.C", "r") ;
while (fgets (str, 80, fp) ! = EOF)
fputs (str) ;
fclose (fp) ;

(e) # include "stdio.h"
{
unsigned char ;
FILE *fp ;

fp - fomn (fltriall“ I!rll) ;
while ((ch = getc (fp)) ! = EOF)
printf ("%c"ch) ;
fclose (fp) ;

}

(f) main ()

(
FILE *fp ;
char name [25] ;
int age ;

fp = fopen (" YOURS", "r") ;

456 _ Let Us C

while (fscanf (fp, "%s %d", name, &age) != NULL)
fclose (fp) ; ’
)

(g) ;nain()
FILE *fp;
char names(20] ;
int i;
fp = fopen ("students.c”, ‘wb") ;
for(i=0,;1<=10;i++)

puts ("\nEntername ") ;
gels (name) ;
fwrite (name, size of (name), 1.fp) ;

)

close (fp);

}
(h) main()

FILE *fp .
char name[20] = "Ajay" ;
int i;
fp = fopen ("students.c®, "r") ;
for (i=0;i<=10;i++)
fwrite (name, sizeof (name), 1,fp) ;
close (fp):
}

(i) #include "fcntl.h*®
main()
{
int fp;
fp = open ("pr22.c”,"r"};
if(fp==-1)
puts ("cannot open file™) ;
else
close (fp),

Chapter 12: File Input/Output 457

}
0 Enain()

int fp;
fp = fopen ("students.c”, READ | BINARY) ;
if(fp==-1)
puts ("cannot open file") ;
else
close (fp);

[B] Answer the following:

(a) The macro FILE is defined in which of the following files:

stdlib.h
stdio.c
io.h
stdio.h

ol e

(b) Ifa file contains the line “I am a boy\r\n" then on reading this
line into the array str[] using fgets() what would str| |
contain?

“ 1. Tamaboy\r\n\0
2. Tam aboy\r\0
3. Tam aboy\n\0
4. lamaboy

(c) State True or False:

I. The disadvantage of High Level Disk /O functions is that
the programmer has to manage the bufTers.

2. If a file is opened for reading it is necessary that the file
must exist.

3. If a file opened for writing already exists its contents
would be overwritten.

458

4. For opening a file in append mode it is necessary that the file
should exist.

(d) On opening a file for reading which of the followingactivities
are performed :

|. The disk is searched for existence of the file.

2. The file is brought into memory.

3. A pointer is set up which points to the first character in the
file.

4. All the above.

(e) Is it necessary that a file created in text mode must always be
opened in text mode for subsequent operations ?

(f) State True or False :

A file opened in binary mode and read using fgetc () would
report the same number of characters in the file as reported by
DOS's DIR command.

(g) While using the statement,
fp= fopen ("myfile c") "r")
what happens if,

- 'myfile.c’ does not exist on the disk
- 'myfile.c’ exists on the disk

(h) What is the purpose of the library function fflush ()?
(1) While using the statement,

fp = fopen (" myfile.c” "wb")
what happens if,

- 'myfile.c’ does not exist on the disk -
- 'myfile.c’ exists on the disk

(i) A floating-Point array contains percentage marks obtained by
students in an examination, To store these marks in a file
'marks.c’. in which mode would you open the file and why ?

Chapter 12: File Input/Ouiput 459

[C] Attempt the following :
(a) Write a program to read a file and display contents with its
line numbers.

(b) write a program to find the size of a text file without
traversing it character by character.

(c) Write a program to add the contents of one file at the end of
another.

(d) Suppose a file contains student's records with each record
containing name and age of a student. Write a program to read
these records and display them in sorted order by name.

(e) Write a program to copy one file to another. While doing so
replace all lowercase characters to their equivalent uppercase
characters. '

(f) Write a program that merges Lines alternately from two files
and writes the results to new file If one file has less number of
lines than the other, the remaining lines from the larger file
should be simply copied into the target file.

(g) Write a program to display the contents of a text file on the
screen. Make following provisions :

Display the contents inside a box drawn with opposite corner co-
ordinates being (0, 1) and (79,23) Disply the name of the file
whose contents are being displyed, and the page numbers in the
zeroth now. The moment one screenful of file has been displayed,
flash a message 'Press any key..." in 24th row. When a key is hit,
the next page's contents should be displayed, and so on till the
end of file.

(h) Write a program to encrypt/decrypt a file using.

460

Let Us C

(1) An offset cipher: In an offsct cipher each character from

the source file is offset with a fixed value and then
written to the target file.

For example, if character read from the source file is ‘A,
then convert this into a new character by offsetting ‘A’
by a fixed value, say 128, and then writing the new
character to the target file.

(2) A substitution cipher: In this each character read from the

source file is substituted by a corresponding
predetermined character and this character is written to
the target file.

For example, if character ‘A’ is read from the source file,
and if we have decided that every ‘A’ is to be substituted
by ‘", then a ‘!" would be written to the target file in
place of every ‘A’ Similarly, every ‘B’ would be
substituted by ‘5" and so on.

(i) In the file ‘CUSTOMER.DAT’ there are 100 records with the
following structure:

struct customer

{

}i

int aotno A
.char name[30] ;
float balance ;

In another file ‘TRANSACTIONS.DAT’ there are several
records with the following structure:

struct trans

{

int accno,
char trans_type

Chapter 12: File Input/Output 461

(k)

31

float amount ;

b

The parameter trans_type contains D/W indicating deposit or
withdrawal of amount, Write a program to update
‘CUSTOMER.DAT" file, i.c. if the trans_type is ‘D’ then
update the balance of ‘CUSTOMER.DAT’ by adding
amount to balance for the corresponding accno. Similarly, if
trans_type is ‘W’ then subtract the amount from balance.
However, while subtracting the amount make sure that the
amount should not get overdrawn, i.e. at lcast 100 Rs. Should
remain in the account.

There are 100 records present in a file with the following
structure:

struct date

{
¢
struct employee

{
int empcodel[6] ;
char empname(20] ;
struct date join_date ;
float salary ;

b

intd, m, y;

Write a program to read these records, arrange them in
ascending order of join_date and write them in to a target
file.

A hospital keeps a file of blood donors in which each record
has the format;

Name: 20 Columns

Address: 40 Columns

462 Let Us C

M

Age: 2 Columns
Blood Type: | Column (Type 1,2,3 or 4)

Write a program to read the file and print a list of all blood
donors whose age is below 25 and blood is type 2.

Given a list of names of students in a class, write a program to
store the names in a file on disk. Make a provision to display
the n'™ name in the list (n is data to be read) and to display all
names starting with S.

(m) Assume that a Master file contains two fields, Roll no. and

(n)

(o)

name of the student. At the end of the year, a set of studefits
join the class and another sct leaves. A Transaction file
contains the roll numbers and an appropriate code to add or
delete a student.

Write a program 1o create another file that contains the
updated list of names and roll numbers. Assume that the
Master file and the Transaction file are arranged in ascending
order by roll numbers. The updated file should also be in
ascending order by roll numbers.

In a small firm employec numbers are given in serial
numerical order, thatis 1,2, 3, etc.

- Create a file of employce data with following information:
employece number, name, sex, gross salary.

— If more employees join, append their data to the file.

— If an employee with serial number 25 (say) leaves, delete

the record by making gross salary 0.

If some employee’s gross salary increases, retrieve the

record and update the salary.

Write a program to implement the above operalions,

Given a text file, write a program lo create another text file
" (3% " L

deleting the words “a”, “the”, “an” and replacing each one of
them with a blank space.

Chapter 12: File Input/Output 463

(p)

(q)

(r)

You arc given a data file EMPLOYEE.DAT with the
following record structure:

struct employee {
int empno ;
char name[30] ;
int basic, grade ;
}i

Every employee has a unique empno 2nd there are supposed
to be no gaps between employee numbers. Records ‘are
entered into the data file in ascending ofder of employee
number, empno. It is intended o check whether there are
missing employec numbers, Write a program segment to read
the data file records sequentially and display the list of
missing employee numbers.

Write a program to carry out the following:

— To read a text file “TRIAL.TXT" consisting of a
maximum of 50 lines of text, each line with a maximum
of 80 characters.

— Count and display the number of words contained in the
file.

— Display the total number of four letter words in the text
file.

Assume that the end of a word may be a space, comma or a
full-stop followed by one or more spaces or a newline
character.

Write a program to read a list of w5, sort the words in
alphabetical order and display them one word per line. Also
give the total number of words in the list. Qutput format
should be:

Total Number of words in the list is

Alphabetical listing of words is:

464 Let Us C

(s)

0]

Assume the end of the list is indicated by ZZZZZ7. and therc
are maximum in 25 words in the Text file.

Write a program to carry out the following:

(a) Read a text file INPUT.TXT
(b) Print each word 1n reverse order

Example,

Input; INDIA IS MY COUNTRY
Output: AIDNI SI YM YRTNUOC

Assume that each word length is maximum of 10 characters
and each word is separated by newline/blank characters.

Write a C program to read a large text file ‘NOTES.TXT’ and
print it on the printer in cut-sheets, introducing page breaks at
the end of every 50 lines end a pause message on the screen at
the end of every page for the user to change the paper.

13 More Issues In
Input/Output

Using arge and argv
Detecting Errors in Reading/Writing
Standard /O Devices
/0O Redirection
Redirecting the Output
Redirecting the Input
Both Ways at Once
Summary
Exercise

465

466 Let Us C

done in C. There are still some more issues related with
input/output that remain to be understood. These issues help in
making the I/0 operations more elegant.

In Chapters 11 and 12 we saw how Console I/0 and File I/O are

Using argc and argv

To execute the file-copy programs that we saw in Chapter 12 we
are required 1o first type the program, compile it, and then exccute
it. This program can be improved in two ways:

(a) There should be no neoi to compile the program every time to
use the file-copy utility. It means the program must be
executable at command prompt (A> or C> if you are using
MS-DOS, Start | Run dialog if you arc using Windows and $
prompt if you are using Unix).

(b) Instead of the program prompting us to enter the source and
target filenames, we must be able to supply them at command
prempt, in the form:

filecopy PR1.C PR2.C

where, PR1.C is the source filename and PR2.C 1s the target
filename. :

The first improvement is simple. In MS-DOS, the exccutable file
(the one which can be executed at command prompt and has an
extension .EXE) can be created in Turbo C/C++ by using the key
F9 to compile the program. In VC++ compiler under Windows
same can be done by using F7 to compile the program. Under Unix
this is not required since in Unix every time we compile a program
we always get an executable file.

The second improvement is possible by passing the source
filename and target filename to the function main(). This is
illustrated below:

Chapter 13: More Issues In Input/Output

467

#include "stdio.h"
main (int argc, char “argv[])

{

FILE *fs, *ft;
char ch;

if(argc!=3)
{ n

puts ("Improper number of arguments”) ;
exit() ;

}

fs = fopen (argv[1], "),
if (fs == NULL)

puts ("Cannot open source file*) ;
exit() ;

}

ft = fopen { argvi2], "w") ;
if (ft == NULL)

puts { "Cannot open target file") ;
fclose (fs) ;
exit() ;

}
while (1)
ch=fgetc(fs);
if (ch == EOF)
break ;

else
fputc (ch, ft);

468 Let Us C

fclose (fs),
fclose (ft) ;

}

The arguments that we pass on to main() at the command prompt
are called command line arguments. The function main() can
have two arguments, traditionally named as arge and argv. Out of
these. argv is an array of pointers to strings and arge is an int
whese value is equal to the number of strings to which argv
points. When the program is executed, the strings on the command
linc are passed to main(). More precisely, the strings at the
command line arc stored in memory and address of the first string
is stored in argv|0], “.udress of the second string is stored in
argv[l] and so on. The argument arge is set to the number of
strings given on the command line. For example, in our sample
program, if at the command prompt we give,

flecopy PR1.C PR2.C

then,

argc would contain 3

argv[0] would contain base address of the string “filecopy”
argv[1) would contain base address of the string “PR1.C"
argv{2] would contain base address of the string “PR2.C”

Whenever we pass arguments to main(), it is a good habit to
check whether the correct number of arguments have been passed
on to main() or not. In our program this has been done through,

if(argc!=3)
{

printf ("Improper number of arguments") ;
exit() ;

Chapter 13: More Issues In Input/OQuiput 469

Rest of the program is same as the earlier file-copy program. This
program is better than the earlier file-copy program on two counts:

(a) There is no need to recompile the program every time we
want to use this utility. It can be executed at command
prompt.

(b) We are able to pass source file name and target file name to
main(), and utilize them in main().

One final comment... the while loop that we have used in our
program can be written in a more compact form, as shown bhelow:

while ((ch =fgelc(fs))!= EOF)
fputc (ch, ft);

This avoids the usage of an indefinite loop and a break statement
to come out of this loop. Here, first fgete (fs) gets the character
from the file, assigns it to the variable ch, and then ch is compared
against EOF. Remember that it is necessary to put the expression

ch =fgetc (fs)

within a pair of parentheses, so that first the character read is
assigned to variable ch and then it is compared with EOF.

There is one more way of writing the while loop. It is shown
below:

while (lfeof (fs))
{

ch=fgetc (fs);
fpute (ch, ft);
}

Here, feof() is a macro which returns a 0 if end of file is not
reached. Hence we use the ! operator to negate this 0 to the truth
value. When the end of file is reached feof() returns a non-zero

470 B vee Js C

value, ! makes it 0 and since now the condition evaluates to false
the while loop gets terminated.

Note that in each one of them the following three methods for
opening a file are same, since in each one of them, cssentially a
base address of the string (pointer 1o a string) is being passed to
fopen().

fs = fopen ("PR1.C*,"r") ;
fs = fopen (filename, "r") ;
fs = fopen (argv(1], "),

Detecting Errors in Reading/Writing

Not at all times when we perform a read or write operation on a
file are we successful in doing so. Naturally there must be a
provision to test whether our attempt to. read/write was successful
or not.

The standard library function ferror() reports any error that might
have occurred during a read/write operation on a file. It returns a
zero if the read/write is successful and a non-zero value in case of
a failure. The following program illustrates the usage of ferror().

#linclude "stdio.h"
main()

{
FILE *fp;

char ch,

fp = fopen ("TRIAL", "w") ;

while ('feof (fp))
ch=fgetc(fp);

if (ferror())
{

Chapter 13: More Issues In Input/OQuiput 471

printf ("Error in reading file") ;
break ,
}
else .
printf ("%c", ch) ;
)

fclose (fp);
}

In this program the fgete() function would obviously fail first time
around since the file has been opened for writing, whereas fgete()
is attempting to read from the file. The moment the error occurs
ferror() rcturns a non-zcro value and the if block gets executed.
Instead of printing the error message using printf() we can use the
standard library function perror() which prints the error message
specified by the compiler. Thus in the above program the perror()
function can be used as shown below,

if (ferror())
perror ("TRIAL") ;

break ;

}

Note that when the error occurs the error message that is displayed
1s:

TRIAL: Permission denied
This means we can precede the system error message with any

message of our choice. In our program we have just displayed the
filename in place of the error message.

472 Let Us C

Standard ¥/O Devices

To perform reading or writing operations on a file we need to use
the function fopen(), which sets up a file pointer to refer to this
file. Most OSs also predefine pointers for three standard files. To
access these pointers we need not use fopen(). These standard file
pointers are shown in Figure 13.1

Standard File pointer | Description

stdin standard input device (Keyboard)

stdout standard output device (VDU)

stderr standard error device (VDU)
Figure 13.1

Thus the statement ch = fgete (stdin) would read a character
from the keyboard rather than from a file. We can use this
statement without any need to use fopen() or fclose() function
calls.

-

Note that under MS-DOS two more standard file pointers are
available—stdprn and stdaux. They stand for standard printing
device and standard auxiliary device (serial port). The following
program shows how to use the standard file pointers. It reads a file
from the disk and prints it on the printer.

/* Prints file contents on printer */
#include "stdio.h”
main()

FILE *fp .
char ch;

Chapter 13: More Issues In Input/Output 473

fp = fopen ("poem.txt”, "r") ;

if (fp == NULL)
printf { "Cannot open file") ;
exit() ;

}

while ((ch=fgetc(fp)) = EOF)
fputc (ch, stdprn) ;

fclose (fp);
}

The statement fputc (ch, stdprn) writes a character read from the
file to the printer. Note that although we opened the file on the
disk we didn’t open stdprn, the printer. Standard files and their
use in redirection have been dealt with in more details in the next
section.

Note that these standard file pointers have been defined in the file
“stdio.h”. Therefore, it is necessary to include this file" in the
program that uses these standard file pointers.

I/0 Redirection

Most operating systems incorporate a powerful feature that allows
a program to read and write files, even when such a capability has
not been incorporated in the program. This is done through a
process called ‘redirection’.

Normally a C program receives its input from the standard input
device, which is assumed to be the keyboard, and sends 1ts output
to the standard output device, which is assumed to be the VDU. In
other words, the OS makes certain assumptions about where input

474 Let Us C

should come from and where output should go. Redirection
permits us to change thése assumptions.

For example, using redirection the output of the program that
normally goes to the VDU can be sent to the disk or the printer
without really making a provision for it in the program. This is
often 2 more convenient and flexible approach than providing a
s.parate function in the program to write to the disk or printer.
Similarly, redirection can be used to read information from disk
file directly into a program, instead of receiving the input from
keyboard.

To use redirection facility is to execute the program from the
command prompl, inserting the redirection symbols at appropriate
places. Let us understand this process with the help of a program.

Redirecting the Output

Let's see how we can redirect the output of a program, from the
screen lo a file. We'll start by considering the simple program
shown below:

* File name: util.c */
#include "stdio.h"<+>
main()
{
char ch;
while ((ch = getc (stdin)) 1= EOF)
pute (¢h, stdout) ;
}

On compiling this program we would get an executable file
UTIL.EXE. Normally, when we execute this file, the putc()
function will cause whatever we type to be printed on screen, until
we don’t type Ctrl-Z, at which point the program will terminate, as

Chapter 13: More Issues In Input/Output 475

shown in the foliowing sample run, The Ctri-Z character is often
called end of file character.

C>UTIL.EXE

perhaps | had a wicked childhood,

perhaps | had a miserable youth,

but somewhere in my wicked miserable past,
there must have been a moment of truth AZ
C>

Now let’s see what happens when we invoke this program from in
a different way, using redirection:

C>UTILEXE > POEM.TXT
C>

Here we are causing the output to be redirected to the file
POEM.TXT. Can we prove that this the output has indeed gone to
the file POEM.TXT? Yes, by using the TYPE command as
follows:

C>TYPE POEM.TXT

perhaps | had a wicked childhood,

perhaps | had a miserable youth,

but somewhere in my wicked miserable past,
there must have been a moment of truth

C>

There’s the result of our typing sitting in the file. The redirection
operator, ‘>', causes any output intended for the screen to be
written to the file whose name follows the operator,

Note that the data to be redirected to a file doesn’t need to be typed
by a user at the keyboard; the program itself can generate it. Any
output normally sent to the screen can be redirected to a disk file,
As an cxample consider the following program for gencrating the
ASCII table on screen:

476 Let Us C

/* File name: ascii.c*/
main()

{

int ch;

for (ch=0; ch <= 255; ch++)
printf ("\n%d %c", ch, ch) ;
)

When this program is compiled and then executed at command
prompt using the redirection operator,

C>ASCIIL.EXE > TABLE.TXT

the output is written to the file. This can be a useful capability any
time you want to capture the output in a file, rather than displaying
it on the screen.

DOS predefines a number of filenames for its own use. One of
these names in PRN. which stands for the printer. Output can be
redirected to the printer by using this filename. For example, if you
invoke the “ascii.exe” program this way:

C>ASCILEXE > PRN

the ASCII table will be printed on the printer.

Redirecting the Input

We can also redirect input to a program so that, instead of reading
a character from the keyboard, a program reads it from a file. Let
us now see how this can be done.

To redirect the input, we need to have a file containing something
to be displayed. Suppose we use a file called NEWPOEM.TXT
containing the following lines’

Chapter 13: More Issues In Input/Output 477

Let's start at the very beginning,
A very good place to start!

We'll assume that using some text editor these lines have been
placed in the file NEWPOEM.TXT. Now, we use the input
redirection operator ‘<’ before the file, as shown below:

C>UTIL.EXE < NEWPOEM.TXT
Let's start at the very beginning,
A very good place to start!

C>

The lines are printed on the screen with no further effort on our
part. Using redirection we've made our program UTIL.C perform
the work of the TYPE command.

Both Ways at Once

Redirection of input and output can be used together; the input for
a program can come from a file via redirection, at the same time its
output can be redirected to a file. Such a program is called a filter.
The following command demonstrates this process.

C>UTIL < NEWPOEM.TXT > POETRY.TXT

In this case our program receives the redirected input from the file
NEWPOEM.TXT and instead of sending the output to the screen it
would redirect it to the file POETRY.TXT.

Similarly to send the contents of the file NEWPOEM.TXT to the
printer we can use the following command:

C>UTIL < NEWPOEM.TXT > PRN

While using such multiple redirections don’t try to send output to
the same file from which you are receiving input. This is because

3z

478 _ Let Us C

the output file is crased before it's written to. So by the time we
manage to receive the input from a file it is already crased.

Redirection can be a powerful tool for developing utility programs
to examine or alter data in files. Thus, redirection is used to
establish a relationship between a program and a file. Another OS
operator can be used to relate two programs directly, so that the
output of one is fed directly into another, with no files involved.
This is called ‘piping’, and is donc using the operator ‘[*, called
pipe. We won’t pursue this topic, but you can read about it in the
OS help/manual.

Summary

()
(b)
(c)
(d)
(c)
(f)

We can pass paramcters to a program at command line using
the concept of ‘command line arguments’.

The command linc argument argy contains values passed to
the program, whereas, arge contains number of arguments.
We can use the standard file pointer stdin to take input from
standard input device such as keyboard.

We can use the standard file pointer stdout to send output to
the standard output device such as a monitor.

We can use the standard file pointers stdprn and stdaux to
interact with printer and auxiliary devices respectively.
Redirection allows a program to read from or write to files at
command prompl.

(g) The operators < and > are called redirection operators.

Exercise

{A] Answer the following:

(a) How will you use the following program to

— Copy the contents of one file into another.
— Printa file on the printer.
— Create a new filc and add some text to it.

Chapter 13. More Issues In Input/Output 479

(b)

(c)

(B]
(a)

— Display the contents of an existing file.

#include "stdio.h"

main()

{
char ch, str[10] ;
while ({ ch = getc (sidin)) 1=-1)
putc (ch, stdout) ;

i

{x

}

State True or False:

1. We can send arguments at command line cven if we
define main() function without parameters.

2. To use standard file po@crs we don’t nced to open the
file using fopen().

3. Using stdaux we can send output to the printer if printer is
attached to the serial port.

4. The zeroth element of the argv array is always the name
of the exe file.

Point out the errors, if any, in the following program

main (int ac, char (*)av|])
{

printf ("\n%d", ac) ;

printf ("\n%s", av{0]) ; ¢
}

Attempt the following:
Write a program to carry out the following:

(a) Read a text file provided at command prompt
(b) Print each word in reverse order

For example if the file contains v
INDIA IS MY COUNTRY
Output should be

oy

480 Let Us C

(b)

(c)

AIDNI S| YM YRTNUOC

Write a program using command line arguments to search for
a word in a file and replace it with the specified word. The
usage of the program is shown below.

C> change <old word><new word> <filename>

Write a program that can be used at command prompt as a
calculating utility. The usage of the program is shown below.

C> calc <switch> <n> <m>

Where, n and m are two iﬂgeger operands. switch can be any
one of the arithmetic or comparison operators. If arithmetic
operator is supplied, the output should be the result of the
operation. If comparison operator is supplied then the output
should be True or False.

14 Operations On
Bits

e Bitwise Operﬂors
One’s Complement Operator
Right Shift Operator
Left Shift Operator
Bitwise AND Operator
Bitwise OR Operator
Bitwise XOR Operator

® The showbits() Fpnction

e Summary .

o Exercise ’

@

481

482 Let Us C

variations. The smaflest element in memory on which we are
able to operate as yet is a byte; and we operated on it by
making usc of the data type char. However, we haven't attempted
' to look within these data types to see how they are constructed out
of individual bits, and how 1|;|";c bits can be manipulated. Being
able to operatc on g3 bit evel, can be very important in
programming, especially when a program must interact dircectly
with the hardware. This is because, the programming languages
are byte oriented, whercas hardware tends to be bit oriented. Let us
now delve inside the byte and see how it is constructed and how it
can be manipulated effectively. So let us take apart the byte... bit
by bit. "

Bitwise Operators’

So far we have dealt with characters, integers, floats and their

One of C's powerful featurcs is a set of bit manipulation operators.
These permit the programmer to access and manipulate individual
bits within a piece of data. The various Bitwise Operators available
in C are shown in Figure 14.1.

Operator Meaning

~ Oﬁc's complement

>> Right shift

<< Left shift

& Bitwisc AND

| Bitwisc OR

A Bitwise XOR{Exclusive OR)
Figure 14.1

These operators can operate upon ints and chars but not on floats
and doubles. Before moving on to the details of the operators, let

¥

Chapter 14: Operations On Bits 483

us first take a look at the bit numbering scheme in integers and
characters. Bits are numbered from zero onwards, increasing from
right to left as shown below:

7 654 3 2 1 0
ittt i

Character

IS 14 13 12 11 109 8 7 6 5 4 3 2 1 0

0 O 0 T 1 O R .

16-bit Integer

Figure 14.2

Throughout this discussion of bitwise operators we are going to
use a function called showbits(), but we are not going to show
you the details of the function immediatcly. The task of
showbits() is to display the binary representation of any integer or
character value.

We begin with a plain-jane example with showbits() in action.

I* Print binary equivalent of integers using showbits() function */
main()

(
int j;
fgr(j:(];j<<:5;i++]

printf ("\nDecimal %d is same as binary ", j) ;
showbits () ;

484 Let Us C

}

And here is the output...

Decimal 0 is same as binary 0000000000000000
Decimal 1 is same as binary 0000000000000001
Decimal 2 is same as binary 0000000000000010
Decimal 3 is same as binary 0000000000000011
Decimal 4 is same as binary 0000000000000100
Decimal 5 is same as binary 0000000000000101

Let us now explore the various bitwise operators one by one.

One’s Complement Operator

On taking one’s complement of a number, all I's present in the
number are changed to 0's and all 0's are changed to 1's. For
example one’s complement of 1010 is 0101. Similarly, one’s
complement of 1111 is 0000. Note that here when we talk of a
number we are talking of binary equivalent of the number. Thus,
one’s complement of 65 means one’s complement of 0000 0000
0100 0001, which is binary equivalent of 65. One’s complement of
65 therefore would be, 1111 1111 1011 1110. One’s complement
operator is represented by the symbol ~. Following program shows
one’s complement operator in action.

main()

{
int j,k;
for (j=0;j<=3;j#+)

printf (“nDecimal %d is same as binary ", j) ;
showbits (j) ;

=-—j:

printf ("\nOne's complement of %d is *,j) ;

Chapter 14.: Operations On Bits 485

showbits (k) ;
}
}

And here is the output of the above program...

Decimal 0 is same as binary 0000000000000000
One's complement of 0 is 1111111111111
Decimal 1 is same as binary 0000000000000001
One's complement of 1is 1111111111111110
Decimal 2 is same as binary 0000000000000010
One's complement of 2 is 1111111111111101
Decimal 3 is same as binary 0000000000000011
One's complement of 3is 1111111111111100

In real-world situations where could the one’s complement
operator be useful? Since it changes the original number beyond
recognition, one potential place where it can be effectively used is
in development of a file encryption utility as shown below:

{* File encryption utitity */
#include "stdio.h"
main()

{
encrypt() ;

{encrypt[)

FILE *fs,*ft;
char ch;

fs = fopen ("SOURCE.C*, *r*) . * normal file */
ft = fopen (“TARGET.C", "w") ; I* encrypted file */

if (fs == NULL || ft == NULL)
{

486 Let Us C

printf ("\nFile opening error!”) ;
exit(1),
}

while ((ch=getc(fs))!=EOF)
putc (~ch, ft)

fclose (fs) ;
fclose (ft);

}

“How would you writc the corresponding decrypt function? Would
there be any problem in tackling the end of file marker? It may be
recalled here that the end of file in text files is indicated by a
character whose ASCII value is 26.

Right Shift Operator

The right shift operator is represented by >>. It needs two
operands. It shifts cach bit in its left operand to the right. The
number of places the bits are shifted depends on the number
following the operator (i.c. its right operand).

Thus, ch >> 3 would shift all bits in ch three places to the right.
Similarly, ch >> § would shift all bits 5 places to the right.

For example, if the variable ch contains the bit pattern 11010111,
then. ¢h >> 1 would give 01101011 and ch >> 2 would give
00110101.

Note that as the bits arc shifted to the right, blanks are created on
the left. These blanks must be filled somehow. They are always
filled with zeros. The following program demonstrates the effect
of rnight shift operator.

main()

{

Chapter 14: Operations On Bits 487

int i=95225,) k!

printf ("\nDecimal %d'is same as binary ", i) ;
showbits (i)

for(j=0;j<=5;j++)
{
k=1>>;
printf ("\n%d right shift %d gives ", i,]) .
showbits (k) ;
)
}

The output of the above program would be...

Decimal 5225 is same as binary 0001010001101001
5225 right shift 0 gives 0001010001101001
5225 right shift 1 gives 0000101000110100
5225 right shift 2 gives 0000010100011010
5225 right shift 3 gives 0000001010001101
5225 right shift 4 gives 0000000101000110
5225 right shift 5 gives 0000000010100011

Note that if the opcrand is a multiple of 2 then shifting the operand
one bit to right is samc as dividing it by 2 and ignoring the
remainder. Thus,

64 >> 1 gives 32
64 >> 2 gives 16
128 >> 2 gives 32

but,

271>>1is13
49>>1is24

488 LetUs C

A Word of Caution

In the explanation a > b if b is negative the result is
unpredictable. If a is negative than its left most bit (sign bit) would
be 1. On some computer right shifting a would result in extending
the sign bit. For example, if a contains -1, its binary representation
would be 1111111111111111. Without sign extension, the
operation a >> 4 would be 0000111111111111. However, on the
machine on which we executed this expression the result turns out
to be 1111111111111111. Thus the sign bit | continues to get
extended.

Left Shift Operator

This is similar to the right shifl operator, the only difference being
that the bits are shifted to the left, and for each bit shifted, a 0 is
added to the right of the number. The following program should
clarify my point.

main()
int i=5225,),k;

printf ("\nDecimal %d is sameas ", i) .
showbits (i),

er“:O;j{:d:j-I-{r)
k=i<<;
printf { "\n%d left shift %d gives ", i,j) ;
showbits (k) ;

}
}

The output of the above program would be...

Decimal 5225 is same as binary 0001010001101001

Chapter 14: Operations On Bits 489

5225 left shift 0 gives 0001010001101001
5225 left shift 1 gives 0010100011010010
5225 left shift 2 gives 0101000110100100
5225 left shift 3 gives 1010001101001000
5225 left shift 4 gives 0100011010010000

Having acquainted ourselves with the left shift and right shift
operators, let us now find out the practical utility of these
operators.

In DOS/Windows the date on which a file is created (or modified)
is stored as a 2-byte entry in the 32 byte directory entry of that file.
Similarly, a 2-byte entry is made of the time of creation or
modification of the file. Remember that DOS/Windows doesn’t
store the date (day, month, and year) of file creation as a 8 byte
string, but as a codified 2 byte entry, thereby saving 6 bytes for
each file entry in the directory. The bitwise distribution of year,
month and date in the 2-byte entry is shown in Figure 14.3.

1514 13 12 1110 9 8 7 6 5 4 3 2 1 0
Y Y[V Y[V[M M[[v 5] 5] 5] o[D

[¢———— year ————»l+— month —s——— day——>

Figure 14.3

DOS/Windows converts the actual date into a 2-byte value using
the following formula:

date =512 * (year - 1980) + 32 * month + day

Suppose 09/03/1990 is the date, then on conversion the date will
be,

date =512 (1990- 1980) +32° 3 + 9= 5225

490 | Let Us C

The binary cquivalent.of 5225 is 0001 0100 0110 1001. This
binary value is placed in the date field in the directory entry of the
file as shown below.

15 14 13 12 1) 109 8 7 2 1
[ool 1T ol 1T o o] of tJ1|(:|||n[0[|]
|-———— year ———+—monlh —'I‘—— day —'l

Figure 14.4

Just to verify this bit distribution, let us take the bits representing
the month,

month = 0011
=1*2+17%1
=3

Similarly, the year and the day can also be verified,

When we issuc the command DIR or use Windows Explorer to list
the files, the file's date is again presented on the screen in the
usual date format of mm/dd/yy. How does this integer to date
conversion take place? Obviously, using lcft shift and right shift
operators.

When we take a look at Figure 14.4 depicting the bit pattern of the
2- byte date field, we sec that the year, month and day cxist as a
bunch of bits in contiguous locations. Separating cach of them is a
matter of applying the hitwise operators.

For example, to get year as a scparate entity from the two bytes
entry we right shift the entry by 9 to get the year. Just see, how...

Chapter 14: Operations On Bits i 491

IS 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Lol ofol 1ol ifolofolu]ufel 1o o[1]}
f——— year ————#¢— month —fe—— day ——|

Right shifting by 9 gives

IS 14 13121110 9 8 7 6 5 4 3 2 1 0
Lol o] o] of o] o] oT o o o] o[o] 1T o] 1] 0]
N

le ;
I year ¢

Figure 14.5

On similar lines, left shifting by 7, followed by right shifting by 12
yields month,

492 Let Us C

s

15:413121||;J9376543 2 10
[oJo] [[1 | [[o[i[1fo[tJo]ol 1]

P

I‘— year ——']“— month '-‘I]‘-‘ day 'I

Left shifting by 7 gives,
1514I31211109876543210

[o[ol 1] [o] 1JoJo1Jofofof tJol1[o]
Id—month—b-ld—-day_—-l

Right shifting by 12 gives,

15 14 13 12 11 10 9 8 7 6 4 3 2

(o] o] o] o[o[o[o of o] o] GI ofofol II 1J
|4—— month—'{

L

Figure 14.6

Finally, for obtaining the day, left shift date by 11 and then right
shift the result by 11. Left shifting by Il gwes
0100100000000000. Right shifting by 11 gives
0000000000001001.

This entire logic can be put into a program as shown below:

I* Decoding date field in directory entry using bitwise operators */
main()
unsignedint d=9, m=3,y= 1990, year, month, day, date ;

date:(y-198l])'512+m'32+d.‘
printf ("\nDate = %u", date) ;

Chapter 14: Operations On Bits _ 493

year = 1980 + (date >>9) ;
month = ((date << 7)>>12);
day = ((date << 11)>>11);
printf { "\nYear = %u ", year) ;
printf (*Month = %u ", month) ;
printf ("Day = %u’", day) ;

}

And here is the output...

Date = 5225
Year = 1990 Month=3 Day=9

Bitwise AND Operator

This operator is represented as &. Remember it is different than
&&, the logical AND operator. The & operator operates on two
operands. While operating upon these two operands they are
compared on a bit-by-bit basis. Hence both the operands must be
of the same type (either char or int). The second operand is often
called an AND mask. The & operator operates on a pair of bits to
yield a resultant bit. The rules that decide the value of the resultant
bit are shown below:

First bit Second bit First bit & Second bit
0 0 0
0] 0
l 0 0
1 1 1
Figure 14.7

33

59:! Let Us C

This can be represented in a more understandable form as a “Truth
Table’ shown in Figure 14.8.

Figure 14.8

The example given below shows more clearly what happens while
ANDing one operand with another. The rules given in the Figure
14.8 are applied to each pair of bits one by one.

7 & 5 4 3 2 1 0
11 0l 1 o] 10} I} 0 This operand when
EIEI R AT NIEE - vl

6 5 4 3 2 10
1Jolof oo 1] t] Wihthisoperand
yiclds

Il

7 6 54 3 2 10
ol ofofof o] 1Jo] thisresul

Figure 14.9

Work through the Truth Table and confirm that the result obtained
is really correct,

Thus, it must be clear that the operation is being performed on
individual bits, and the operation performed on one pair of bits is

Chapter 14: Operations On Bits 495

completely independent of the operation performed on the other
-pairs.

Probably, the best use of the AND operator is to check whether a
particular bit of an operand is ON or OFF. This is explained in the
following example.

Suppose, from the bit pattern 10101101 of an operand, we want to
check whether bit number 3 is ON (1) or OFF (0). Since we want
to check the bit number 3, the second operand for the AND
operation should be 1 * 2°, which is equal to 8. This operand can
be represented bitwise as 00001000.

Then the ANDing operation would be,

10101101 Original bit pattern
00001000 AND mask

00001000 Resulting bit pattern

The resulting value we get in this case is 8, i.e the value of the
second operand. The result turned out to be 8 since the third bit of
the first operand was ON. Had it been OFF, the bit number 3 in the
resulting bit pattern would have evaluated to 0 and the complete
bit pattern would have been 00000000,

Thus, depending upon the bit number to be checked in the first
operand we decide the second operand, and on ANDing these two
operands the result decides whether the bit was ON or OFF, If the
bit is ON (1), the resulting value turns out to be a non-zero value
which is equal to the value of second operand, and if the bit is OFF
(0) the result is zero as seen above. The following program puts
this logic into action.

/* To test whether a bit in a number is ON or OFF */
main()
(

496 Let Us C

int i=865,j,
printf ("\nvalue of i = %d" 1) ;
j=i&32;
if(j==0)

printf ("\nand its fifth bit is off") ;
else

printf ("\nand its fifth bitis on") ;

j=i&64;
if(j==0)
printf ("\nwhereas its sixth bit is of") ;
else
printf ("\nwhereas its sixth bitis on") ;
}
And here is the output...
Value of i = 65

and its fifth bit is off
wheraas its sixth bit is on

In every file entry present in the directory, there is an attribute
byte. The status of a file is governed by the value of individual bits
in this attribute byte. The AND operator can be used to check the
status of the bits of this attribute byte. The meaning of each bit in
the attribute byte is shown in Figure 14.10.

Chapter 14: Operations On Bits 497

Bit numbers Meaning

5 ol Read only
[Hidden
= System
| ST Volume label entry
g ok W@ oo Sub-directory entry
e b e o oo Siw Archive bit
s L mow s W oy @ Unused
I we wee w oW e Unuscd

Figure 14.10

Now, suppose we want to check whether a file is a hidden file or
not. A hidden file is one, which is never shown in the directory,
even though it exists on the disk. From the above bit classification
of attribute byte, we only need to check whether bit number 1 is
ON or OFF.

So, our first operand in this case becomes the attribute byte of the
file in question, whereas the second operand is the 1 * 2'=2,as
discussed earlier. Similarly, it can be checked whether the file is a
system file or not. whether the file is read-only file or not, and so
on.

The second, and equally important use of the AND operator is in
changing the status of the bit, or more precisely to switch OFF a
particular bit.

498 Let Us C

If the first operand happens to be 00000111, then to switch OFF
bit number |, our AND mask bit pattern should be 11111101, On
applying this mask, we get,

00000111 Original bit pattern
11111101 AND mask

00000101 Resulting bit pattern

Here in the AND mask we keep the value of all other bits as 1
except the one which is to be switched OFF (which is purposefully
kept as 0). Therefore, irrespective of whether the first bit is ON or
OFF previously, it is switched OFF. At the same time the value |
provided in all the other bits of the AND mask (second operand)
keeps the bit values of the other bits in the first operand unaltered.

Let’s summarize the uses of bitwise AND operator:
(a) It is used to check whether a particular bit in a number is ON

or OFF.
(b) Itis used to turn OFF a particular bit in a number.

Bitwise OR Operator

Another important bitwise operator is the OR operator which is
represented as |. The rules that govern the value of the resulting bit
obtained after ORing of two bits is shown in the truth table below.

Figure 14.11

Chapter 14: Operations On Bits 499

Using the Truth table confirm the result obtained on ORing the
two operands as shown below.

11010000 Original bit pattern
00000111 OR mask

11010111 Resulting bit pattem .

Bitwise OR operator is usually used to put ON a particular bit ina
number.

Let us consider the bit pattern 1100001 1. If we want to put ON bit
number 3, then the OR mask to be used would be 00001000. Note
that all the other bits in the mask are set to 0 and only the bit,
which we want to set ON in the resulting value is setto 1.

Bitwise XOR Operator

The XOR operator is represented as * and is also called an
Exclusive OR Operator. The OR operator returns |, when any one
of the two bits or both the bits are 1, whereas XOR returns | only
if one of the two bits is 1. The truth table for the XOR operator is
given below.

|
Figure 14.12

XOR operator is used to toggle a bit ON or OFF. A number
XORed with another number twice gives the original number. This
is shown in the following program.

500 Let Us C

main()
int b=50;

b=b*12;
printf ("\n%d", b) ; /* this will print 62 */

b=b*12;
printf ("n%d", b) ; /* this will print 50 */
}

The showbits() Function

We have used this function quite often in this chapter. Now we
have sufficient knowledge of bitwise operators and hence are in a
position to understand it. The function is given below followed by
a brief explanation.

showbits (int n)

{
int i, k, andmask ;
for(i=15;i>=0;i-)
andmask = 1 <<i;
k = n & andmask ;
k==07printf ("0") : printf (*1") ;
)
}

All that is being done in this function is using an AND operator
and a variable andmask we are checking the status of individual
bits. If the bit is OFF we print a 0 otherwise we printa |.

First time through the loop, the variable andmask will contain the
value 1000000000000000, which is obtained by left-shifting 1,

Chapter 14: Operations On Bits 501

fifteen places. If the variable n’s most significant bit is 0, then k
would contain a value 0, otherwise it would contain a non-zero
value. If k contains 0 then printf() will print out 0 otherwise it
will print out 1.

On the second go-around of the loop, the value of i is decremented
and hence the value of andmask changes, which will now be
0100000000000000. This checks whether the next most significant
bit is 1 or 0, and prints it out accordingly. The same operation is
repeated for all bits in the number.

Summary

(a) To help manipulate hardware oriented data—individual bits
rather than bytes a set of bitwise operators are used.

(b) The bitwise operators include opcrators like one's
complement, right-shift, left-shift, bitwise AND, OR, and
XOR.

(c) The one’s complement converts all zeros in its operand to 1s
and all Is to Os.

(d) The right-shift and left-shift operators are useful in
eliminating bits from a number—ecither from the left or from
the right.

(e) The bitwise AND operators is useful in testing whether a bit is
on/off and in putting off a particular bit.

(f) The bitwise OR operator is used to turn on a particular bit.

(g) The XOR operator works almost same as the OR operator
except one minor variation.

Exercise
[A] Answer the following:
(a) The information about colors is to be stored in bits of a char

variable called color. The bit number 0 to 6, each represent 7
colors of a rainbow, i.e. bit 0 represents violet, 1 represents

502 Let Us C

(b)

(c)

indigo, and so on."Writc a program that asks the user to enter
a number and based on this number it reports which colors in
the rainbow does the number represents.

A company planning to launch a new newspaper in market
conducts a survey. The various parameters considered in the
survey were, the economic status (upper, middle, and lower
class) the languages readers prefer (English, Hindi, Regional
language) and category of paper (daily, supplement, tabloid).
Write a program, which reads data of 10 respondents through
keyboard, and stores the information in an array of integers.
The bit-wise information to be stored in an integer is given
below:

Bit Number Information

0 Upper class

1 Middle class

2 Lower class

3 English

4 Hindi

5 Regional Language
6 Daily

7 Supplement

8 Tabloid

At the end give the statistical data for number of persons who
read English daily, number of upper class people who read
tabloid and number of regional language readers.

In an inter-college competition, various sports and games are
played between different colleges like cricket, basketball,
football, hockey, lawn tennis, table tennis, carom and chess.
The information regarding the games won by a particular
college is stored in bit numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8
respectively of an integer variable called game. The college

Chapter 14: Operations On Bits 503_

(d)

(e)

that wins in 5 or more than 5 games is awarded the Champion
of Champions trophy. If a number is entered through the
keyboard, then write a program to find out whether the
college won the Champion of the Champions trophy or not,
along with the names of the games won by the college.

An animal could be either a canine (dog, wolf, fox, etc.),’a
feline (cat, lynx, jaguar, etc.), a cetacean (whale, narwhal,
etc.) or a marsupial (koala, wombat, etc.). The information
whether a particular animal is canine, feline, cetacean, or
marsupial is stored in bit number 0, 1, 2 and 3 respectively of
a integer variable called type. Bit number 4 of the variable
type stores the information about whether the animal is
Carnivore or Herbivore.

For the following animal, complete the program to determine
whether the animal is a herbivore or a camivore. Also
determine whether the animal is a canine, feline, cetacean or a
marsupial.

struct animal

char name[30] ;
int type ;

}
struct animal a = {"OCELOT", 18);

The time field in the directory entry is 2 bytes long.
Distribution of different bits which account for hours, minutes
and seconds is given below. Write a function which would
receive the two-byte time entry and return to the calling
function, the hours, minutes and seconds.

504 Let Us C

(H)

(g)

1514131211109 8 7 6 5 4 3 2 1 0
| H[H| H] H] H]| M[M| M M] M[M] ST ST s s s}

Figure 14.13

In order to save disk space information about student is stored
in an integer variable. If bit number 0 is on then it indicates I*
year student, bit number | to 3 stores 11" year, 111" year and
IV" year student respectively. The bit number 4 to 7 stores
stream Mechanical, Chemical, Electronics and IT. Rest of the
bits store room number, Bascd on the given data, write a
program that asks for the room number and displays the
information about the student, if its data exists in the array.
The contents of array are,

intdata|] = { 273, 548, 786, 1096) ; .
What will be the output of the following program:

main()

{
int i=32,j=65k I mn,op;
k=i]35; 1=~k; m=i&j;
n=j"32; o=j<<2; p=i>5;
printf ("\nk = %d 1= %d m = %d", k, I, m);
printf ("\nn = %d o= %dp=%d" n.o,p);

