
8 Arrays
• What are Arrys

A Simple Program Using Array
• More on Arrays

Array Initialisation
Bounds Checking
Passing Array Elements to a Function

• Pointers and Arrays
Passing an Entire Array to a Function
The Real Thing

• Two Dimensional Arrays
Initialising a 2-Dimensional Array
Memory Map of a 2-Dimensional Array
Pointers and 2-Dimensional Arrays
Pointer to an Array
Passing 2-D Array to a Function

• Array of Pointers
• Three-Dimensional Array
• Summary
• Exercise

19	 269

270	 Let Us C

T

he C language provides a capability that enables the user to
design it 	 of ni I ar data types, called array. This chapter
describes how arrays call 	 created and manipulated in C.

We should note that, iii many U hooks and courses arrays and
pointers are taught scparatcly. I feel it is worthwhile to deal with
these topics together. This is because pointers and arrays are so
closely related that discussing arra y s without discussing pointers
would make the discussion incomplete and wanting. In fact all
arrays make use of pointers internally. I fence it is all too relevant
to study them together rather than as isolated topics.

What are Arrays

For understanding the arrays properly, let its consider the
ic l iowing program:

ma'n

tx
x5;
x = 10
printf (\nx %d, x)

No doubt, this program vill print the value of x as 10. Why so'!
Because when a value it) is assigned to x the earlier value of x,
i.e. 5, is lost. Thus, ordinary variables (the ones which we have

used SO far) are capable of holding only one aluc at a time (as in
the above example). I lovcver, there are situations III we
would want to store more than one value at a time in a single
variable.

For example, suppose we wish to arrange the percentage marks
obtained by 100 students iii ascending order. In such it we

have two options to store these marks in niemorv:

Chapter 8. Arrays
	

271

(a) Constnict 100 variables to store percentage marks obtained by
100 different students, i.e. each variable containing one
student's iiiaiks.

(b) Construct one variable (called array or subscripted variable)
capable of storing or holding all the hundred values.

Obviously, the second alternative is better. A simple reason for
this is;, it would be much easier to handle one variable than
handling 100 different variables. Moreover, there are certain logics
that cannot be dealt with, without the use of an array. Now a
formal definition of an array—An array is a collective name given
to a group of 'similar quantities'. These similar quantities could be
percentage marks of 100 students, or salaries of 300 employees, or
ages of 50 employees. What is important is that the quantities must
be 'similar'. Each member in the group is referred to by its
position in the group. For example, assume the following group of
numbers, which represent percentage marks obtained by five
students.

per	 48 88, 34, 23, 96

If we want to refer to the second number of the group, the usual
notation used is per 2 . Similarly, the fourth number of the group is
referred as per4 , However, in C, the fourth number is referred as
per3. This is because in C the counting ot'elements begins with 0
and not with 1. Thus, in this example per [3 1 refers to 23 and
per141 refers to 96. In general, the notation would be perlil,
where, i can take a value 0, 1, 2, 3, or 4, depending on the position
of the element being referred. Here per is the subscripted variable
(array), whereas i is its subscript.

Thus, an array is a collection of similar elements. These similar
elements could be all its, or all floats, or all chars, etc. Usually,
the array of characters is called a 'string', whereas an array of ints
or floats is called simply an array. Remember that all elements of

272
	

Let Us C

any given array must be of the same type. i.e. we cannot have an
array of 10 numbers, o1hich 5 are ints and 5 are floats.

A Simple Program Using Array

Let us try to write a program to find average marks obtained by a
class of 30 students in a test.

main()

mt avg, sum= 0;
mt
nt marks[30; r array declaration

for(i 0; i < 29 i++)
{

printf (0\nEnter marks);
scanf (0%d", &marks[i]); /* store data in array '1

for (i0;i<29;i4+)
sum = sum + marks[i] r read data from an arrayI

avg sum / 30;
pnntf (nAverage marks %d, avg);

There is a lot of new material in this program, so let its take it apart
slowly.

Array Declaration

To begin with, like other variables an array needs to be declared so
that the compiler will know what kind of an array and how large
an array we want. In our program we have done this with the
statement:

c/iapzer& Arrays	 273

nt marks[301;

Here, mt specifies the type of the variable, just as it does with
ordinary variables and the word marks specifics the name of the
variable. The 1301 however is new. The number 30 tells how many
elements of the type mt will be in our array. This number is often
called the dimension' of the array. The bracket ([J) tells the
compiler that we are dealing with an array.

Accessing Elements of an Array

Once an array is declared, let us see how individual elements in the
array can be referred. This is done with subscript, the number in
the brackets following the array name. This number specifies the
element's position in the array. All the array elements are
numbered, starting with 0. Thus, marks121 is not the second
clement of the array, but the third. In our program we are using the
variable i as a subscript to refer to various elements of the array.
This variable can take different values and hence can refer to the
different elements in the array in turn. This ability to use variables
as subscripts is what makes arrays so useful.

Entering Data into an Array

Here is the section of code that places data into an array:

for (iO;i<=29;i++)

printf ('\nEnter marks");
scan I (%d", &marks[i));

The for loop causes the process of asking for and receiving a
student's marks from the user to be repeated 30 times. The first
time through the loop, i has a value 0, so the scanf() function will
cause the value typed to be stored in the array element marks[01,
the first element of the array. This process will be repeated until I

274	 Let Us C

becomes 29. This is last time through the loop, which is a good
thing, because(here is no, array clement like marksl301.

In scanf() function, we have used the "address of" operator (&) on
the element marksli} of the array, just as we have used it earlier
on other variables (&rate, for example). In so doing, we are
passing the address of this particular array clement to the scanf()
function, rather than its value; which is what scanf() requires.

Reading Data from an Array

The balance of the program reads the data back out of the array
and uses it to calculate the average. The for loop is much the same,
but now the body of the loop causes each student's marks to he
added to a running total stored in a variable called sum. When all
the marks have been added up, the result is divided by 30, the
number of students, to get the average.

for(kO ;i<29;i++)
sum sum + marks(iJ;

avg sum 130;
printi ('\nAverage marks %d, avg

To fix our ideas, let us revise whatever we have learnt about
arrays:

(a) An array is a collection of similar elements.
(b) The first element in the array is numbered 0, so the last

element is I less than the size of the array.
(c) An array is also known as a subscripted variable.
(d) Before using an array its type and dimension must be

declared.
(e) However big an array its elements are always stored in

contiguous memory locations. This is a very important point
which we would discuss in more detail later on.

Chapter 8: Arrays
	 275

More on Arrays

Array is a very popular data type with C programmers. This is
because of the convenience with which arrays lend themselves to
programming. The features which make arrays so convenient to
program would be discussed below, along with the possible pitfalls
in using them.

Array Initialisation

So far we have used arrays that did not have any values in them to
begin with. We managed to store values in them during program
execution. Let us now see how to initialize an array while
declaring it. Following are a few examples that demonstrate this.

mt num E6] = (, 4,12,5,45,5):
nt n[j={2,4,12,5,45,5};
float press(}	 12.3, 34.2 -23.4, -11.3 };

Note the following points carefully:

(a) Till the array elements are not given any specilic values, they
are supposed to contain garbage values.

(b) lithe array is initialised where it is declared, mentioning the
dimension of the array is optional as in the 2' example above.

Array Elements in Memory

Consider the following array declaration:

nt arr[8]

What happens in memory when we make this declaration? 16
bytes get immediately reserved in memory, 2 bytes each for the 8
integers (under Windows/Linux the array would occupy 32 bytes

276	 Let Us

as each integer would occupy 4 by(es). And since the array is not
being initialized, all oight values present in it would be garbage
values. This so happejis because the storage class of this array is
assumed to be auto. If the storage class is declared to he static
then all the array elements would have a default initial value as
zero. Whatever he the initial values, all the array elements would
always be present in contiguous memory locations. This
arrangement of array elements in memory is shown in Figure 8. I.

12 1 14 664ST 23	 346

6550	 6SS10 65512 6514 6516 6551	 65520 65522

Figure 8. I

Bounds Checking

In C thre is no check to see if the subscript used for an array
exceeds the size of' the array. Data entered with a subscript
exceeding the array size will simply be placed in memory outside
the array; probah!y on lop of other data, or on the program itself.
This will lead to unpredictable results, to say the least, and there
will be no error message to warn you that you are going beyond
the array size. In some eases the computer may just hang. Thus,
the following program may turn out to be suicidal.

main()

mt num[401, i

for (i0:i<100;i++)
num[iJ

Chapter 8: Arrays
	

277

Thus, to see to it that we do not reach beyond the array size is
entirely the programmer's botheration and not the compiler's.

Passing Array Elements to a Function

Array elements can he passed to a function by calling the function
by value, or by reference. In the call by value we pass values of
array elements to the function, whereas in the call by reference we
pass addresses of array elements to the function. These two calls
are illustrated below:

P Demonstration of call by value 1
main()

mt	 i
nt marks[J (55, 65, 75, 56, 78, 78, 90 };

for (i:0;i<6;i++)
display (marks[i])

display (mt m)

printf (%d, m);

And here's the output...

55 65 75 56 78 78 90

Here, we are passing an individual array clement at a time to the
function display() and getting it printed in the function display().
Note that since at a time only one element is being passed, this
element is collected in an ordinary integer variable in, in the
function display().

And now the call by reference.

278

/ Demonstration of caf by reference 1
main(

mt	 I

mt marksE) = 55, 65, 75, 56, 78, 78, 90

for (i0;i<6:'++)
disp (&marks[i))

disp(int *n)

printf	 ('%d	 n)

And here's the output...

55 65 75 56 78 78 90

Here, we are passing addrcsscs of individual array elements to the
function display(). Hence, the variable in which this address is
collected (a) is declared as it pointer variable. And since n contains
the address of array clement, to print out the array element we are
using the 'value at address operator (*).

Read the following program carefully. The purpose of the function
disp() is just to display the array elements on the screen. The
program is only partly complete. You are required to wrile the
Function show(on your own. Try your hand at it.

main()

mt	 I
nt marks(1 = { 55, 65, 75, 56, 78, 78, 90

for (iO;i<6;i')
disp (&marksti]

Chapter 8: Arrays
	 279

disp(int n)

show (&n);

Pointers and Arrays

To be able to see what pointers have got to do with arrays, let us
first learn some pointer arithmetic. Consider the lol lowi iig
cxathplc:

main(

mt i	 3, 'x
float =j1.5,*y

char k 'c, z

printf ("\nValue of i %d, i);
printf (\nValue of j %r, j)
printf ("\nValue of k %c, k)
x

Y =
z
printf (\nOriginal address in x %u, x)
pdntf (\nOriginaI address in y = %u, y)
printf ('\nOriginal address in z %u, z)

Y++;
z++
printf (*Mew address in x = %u', x)
printf (\nNew address in y %u, y);
printi ("Mew address in z = %u', z)

Here is the output of the program.

MII]
	

Let Us C

Value of i3
Value of j = 1.500000
Value of k = c
Original address in x 65524
Original address in y 65520
Original address in z = 65519
New address in x 65526
New address in y 65524
New address in z 65520

Observe the last three lines of the output. 65526 is original value in
x plus 2, 65524 is original value in y plus 4, and 65520 is original
value in z plus 1. This so happens because every time a pointer is
incremented it points to the immediately next location of its type.
That is why, when the integer pointer x is incremented, it points to
an address two locations after the current location, since an mt is
always 2 bytes long (under Windows/Linux since mt is 4 bytes
long, new value of x would he 65528). Similarly, y points to an
address 4 locations after the current location and z points I
location after the current location. This is a very important result
and can be effectively used while passing the entire array to a
function.

The way a pointer can be incremented, it can be decrernented as

well, to point to earlier locations. Thus, the following operations
can be performed on a pointer:

(a) Addition of a number to a pointer. For example,

mt i =4j,k;

j	 j + 1
j=j+9;
k j + 3

(b) Subtraction of a number from a pointer. For example,

Chapter 8: Arrays
	

281

mt i=4,*j,*k;

=

j j -2;
j=j-5•:
k.=j-6;

(c) Subtraction of one pointer from another.

One pointer variable can be subtracted froni another provided
both variables point to elements of the same array. The
resulting value indicates the number of bytes separating the
corresponding array elements. This is illustrated in the
following program.

main()

nt arr(J	 10, 20, 30, 45, 67, 56. 74 };
mt 1, j

1&arrtlj;
= &arr[5];

priitf (%d %d", j - i, j -

Here i and j have been declared as integer pointers holding
addresses of first and fifth element of the array respectively.

Suppose the array begins at location 65502, then the elements
arrill and arrI5I would be present at locations 65504 and
65512 respectively, since each integer in the array occupies
two bytes in memory. The expression j - i would print a value
4 and not 8. This is because j and i are pointing to locations
that are 4 integers apart. What would be the result of the
expression j - 1? 36, since j and I return the values
present at addresses contained in the pointers j and I.

(d) Comparison of two pointer variables

282
	

Let Us C

Pointer variables can he compared provided both variables
point to objects c1 the same data type. Such comparisons can
be useful when both pointer variables point to elements of the
s:ime array. ihe coniparison can test tor either equality or
inequality. Moreover, it pointer variable can he compared with
>cro (usually expressed as NULL). The following program

mtracs how the comparison is carried out.

man()

nt arri I = 10, 20, 36, 72, 45,36
mt	 j,

&arr 4
k = (arr + 4)

if	 == k)
printl ("The two pointers point to the same location"

else
printf ("The two pointers do not point to the same location")

A word of caut i on' Do not attempt the following operations on
pointers... they would never work out.

(a) Addition oliwo pointers
(b) Multiplication of a pointer with a constant
(c) Division of a pointer with it constant

Now we will try to correlate the lohlowing two facts, which we
have learnt above:

(a) Array elements are always stored in contiguous memory
locations.

(h) A pointer when incremented always points to an immediately
next location of its type.

(./)f(7P.	 /lfluilS
	

283

Suppose we have an anay nunil I = 24, 34, 12, 44, 56. 17 . The
following figure shows how this array is located in memory.

L24	 34	 12
LM 441
	 17 1

65512	 65514	 65516	 6551 S	 65520	 65522

Figure 8.2

I [ere is a program that prints out the memory locations In which
the elements of this array are stored.

main()

nt num[](2434, 12,44,56, 17}:
ml	 i

for(i0,i<=5;i++)

printf ("\nelement no: %d , i)
printf ('address = %u', &nurn[ij)

The output of this program would look like this:

element no. 0 address 65512
element no. 1 address 65514
element no. 2 address 65516
element no. 3 address 65518
element no. 4 address = 65520
element no. 5 address 65522

Note that the array elements are stored in contiguous memory
locations, each clement occupying two b y tes, since it is an integer

284
	

Let Us C

array. When you run this program, you may get different
addresses, but what is certain is that each subsequent address
would be 2 bytes (4 bytes under Windows/Linux) greater than its
immediate predecessor.

Our next two programs show ways in which we can access The
elements of this array.

main()

nt num[]{24,34, 12, 44, 56. 17};
nt

for (i=0:i<5;i++)

printf ('\naddress : 	 , &num[i])
printf (element = %d', num1])

The output of this program would be:

address = 65512 element 24
address 65514 element 34
address = 65516 element 12
address = 65518 element 44
address 65520 element 56
address = Q5522 element = 17

This method of accessing array elements by using subscripted
variables is already known to us. This method has in fact been
given here for easy comparison with the next method, which
accesses the array elements using pointers.

main()

nt num[1{24,34,l2,44,56l7}

Chapter 8: Arrays	 285

mt	 ,

&num[0]; /* assign address of zeroth element /

for(i0;ic5;i++)

printf ("\riaddress = %u ", j)
printf ('element %d", *j);

/* increment pointer to point to next location 'I

}

The output of this program would be

address 65512 element = 24
address 65514 element = 34
address 65516 element = 12
address 65518 element = 44

address 65520 element = 56
address 65522 element 17

In this program, to begin with we have collected the base address
of the array (address of the Øh element) in the variable j using the
statement,

&num[0]; 1* assigns address 65512 to '1

When we are inside the loop for the first time, j contains the
address 65512, and the value at this address is 24. These are
printed using the statements,

printf (\naddress = %u ", j);
printi ("element %d, 1)

On incrementing j it pois to the next memory location of its type
(that is location no. 65514). But location no. 65514 contains the
second element of the array, therefore when the printf(

20

Let Us C

statements are executed for the second time they print out the
second element of the array and its address (i.e. 34 and 65514)...
and so on till the last element of the array has been printed.

Obviously, a question arises as to which of the above two methods
should he used when? Accessing array elements by pointers is
always faster than accessing them by subscripts. However, from
the point of view of convenience in programming we should
observe the following:

Array elements should be accessed using pointers if the elements
are to be accessed in a fixed order, say from beginning to end, or
from end to beginning, or every alternate element or any such
definite logic.

Instead, it would be easier to access the elements using a subscript
if there is no fixed logic in accessing the elements. However, in
this case also, accessing the elements by pointers would work
faster than subscripts.

Passing an Entire Array to a Function

In the previous section we saw two programs—one in which we
passed individual elements of an array to a function, and another in
which we passed addresses of individual elements to a function.
Let us now see how to pass an entire array to a function rather than
its individual elements. Consider the following example:

f* Demonstration of passing an entire array to a function
main()

nt num[]{24,34,1244,56l7);
disipay (&num[O], 6)

display (mt *j, jot n)

IN

Chapter 8: Arrays	 287

mt

for(i = 0; i <= n - i; ++)

printf (\nelement %d", *j);
1 increment pointer to point to next element I

lere, the display() flmction is used to print out the array
elements. Note that the address of the zeroth element is being
passed to the display() function. The for loop is same as the one
used in the earlier program to access the array elements using
pointers. Thus, just passing the address of the zeroth clement of the
array to a function is as good as passing the entire array to the
function. It is also necessary to pass the total number of elements
in the array, otherwise the display() function would not know
when to terminate the for loop. Note that the address of the zeroth
element (many a times called the base address) can also he passed
by just passing the name of the array. Thus, the following two
function calls are same:

display (&num[01, 6)
display (num, 6)

The Real Thing

If you have grasped the concept of storage of array elements in
memory and the arithmetic of pointers, here is some real food for
thought. Once again consider the following array.

[24	 34	 12	 44	 56	 17

65512	 65514	 65516	 6551	 6552()	 65522

Figure 8.3

M1
	

Let Us C

This is how we would declare the above array in C.

mt numH{243412445&l7}

We also know that on mentioning the name of the array we get its
base address. Thus, by saying *num we would be able to refer to
the zeroth element of the array, that is, 24. One can easily see that
*flJfl and *(nurn + 0) both refer to 24.

Similarly, by saying *(nuni + I) we can refer the first element of
the array, that is, 34. In fact, this is what the C compiler does
internally. When we say, numlil, the C compiler internally
converts it to *(num + I). This means that all the following

notations are same:

num[i]
(num + i

I + num)
i[num

And here is a program to prove my point.

P Accessing array elements in different ways I

main()

mt num[]={243412.4456.17}
mt	 I;

for (i	 O ;i<5 i++)

printt (\naddress %u', &numm1)
printf ('element %d %d", num(m], *(num + i));
printf ("%d %d', (i + num), i(num])

The output of this program would he:

289

^XI

Chapter 8: Arrays

address 65512 element 24 24 24 24
address = 65514 element 34 34 34 34
address 65516 element 1212 12 12
address 65516 element 44 44 44 44
address 65520 element = 5656 5656
address 65522 element = 17 17 1717

Two Dimensional Arrays

So lar we have explored arrays with only one dimension. It is also
possible for arrays to have two or more dimensions. The two-
dimensional array is also called a matrix.

I Icre is a sample program that stores roll numbcr and marks
obtained by a student side by side in a matrix.

main()

nt stud[4][2]
mt	 i,

for(i=0;i<3;i++)

printf (n Enter roll no. and marks") ;
scanf (%d %d", &stud[i](0], &stud[i][11

Ior(i0;i<z3;i++)
printf (\n%d %d, stud[i]t0], stud[i][11)

There are two parts to the program-- in the first part through a for
loop we read in the values of roll no. and marks, whereas, in
second part through another for loop wc print out these values.

Look at the scanf() statement used in the first for loop:

scanf ("%d %d', &stud[i][01, &stud[i][1]

290 	 Lei	 C

In studlil 101 and stud lilI 1 I the first suhscripi of the variable stud,
is row number which changes for every stitdcrit. The second
subscript tells which of the two COI L11111)'; are we talking iihoiit the
icroth column which contains the toll no. or (tic first COI L111111

which contains the marks. Remember the counting of rows and
columns begin with zero. The complete array arrangement is
shown below.

cot 110. 0	 COt 110

row no. (I	 L1 2 14 4
row no1212

row	 2	 1 4-I	 5th

00. 11(1.	 I 1	 75

I : igulre 9.4

Thus, 1234 is stored in stud101 101, 56 is stored in stud101 III and

so on. The above arrangement highlights the fact that a two-
d ifllCnSIOflill array is nothing but it collection of' a number of one-
dimensional arrays placed one below the other.

In our sample program the array elements have been stored
rowwisc and accessed rowwise. I fowcvcr, you can access the array
elements coluninwise as well. Traditionally. the array elements are
being stored and accessed rowwise thercibre we would also stick
to the same strategy.

Initialising a 2-Dimensional Array

Flow do we initialize a two-dimensional array? As simple as this...

Chapter 8: Arra ys	 291

mt stud[4][2]	 (
(1234 56},
(1212,33),
(1434,80),
(1312,78)

or even this would work...

nt stud[41(21 = (1234, 56, 1212, 33, 1434, 80, 1312, 78):

of course with a corresponding loss in readability.

It is important to remember that while initializing a 2-D array it is
necessary to mention the second (column) dimension, whereas the
first dimension (row) is optional.

Thus the declarations,

mt arr[2]131 (12, 34, 23, 45, 56, 45
nt arr[][3] (12, 34, 23, 45, 56, 45 };

are perfectly acceptable,

whereas,

nt arr[2][] (12, 34, 23, 45, 56, 45)
nt arr[]j 1(12, 34, 23, 45, 56, 45);

would never work.

Memory Map of a 2-Dimensional Array

Let us reiterate the arrangement of array elements in a two-
dimensional array of students. which contains roll I1OS. in One
column and the marks in the other.

292 	 Let Us

The array arrangement shown in Figure 8.4 is only conceptually
true. This is because immory doesn't contain rows and columns.
In memory whether it is a one-dimensional or a two-dimensional
array the array elements are stored in one continuous chain. The
arrangement of array elements of a two-dimensional array in
memory is shown below:

s F 0 11 0 1 s F 0 11 1]	 s1 l][0)	 S[1) 1 1)	s[2][0)	 s 1 2 1[Ii	 s F 3 11 0 1	 s[31[11

1234 1	 56	 1 122 1	 33	 J 143 .1 1	 80	 1 1312	 78 1
65508 65510 65512 65514 65516 65518 65520 65522

r: ig ti rc 8.5

We can easily icier to the marks obtained by the third student
using the subscript notation as shown below:

printf (Marks of third student %d', studl2][1])

Can we not refer the same element using pointer notation, the way
we did in one-dimensional arrays? Answer is yes. Only the
procedure is slightly difficult to understand. So, read on...

Pointers and 2-Dimensional Arrays

The C language embodies an unusual but powerful capability—it
can treat parts of arrays as arrays. More specifically, each row of a
two-dimensional array can be thought of as a one-dimensional
array. This is a very important fact it' we wish to access array
elements of a two-dimensional array using pointers.

Thus, the declaration,

nt s[5][21

Chapter 8: Arra ys	 293

can be thought of as setting up an array of 5 elements, each of
which is a one-dimensional array containing 2 integers. We refer
to an element of a one-dimensional array usmg a single subscript.
Similarly, if we can imagine s to be a one-dimensional array then
we can refer to its zeroth clement as s(Ol, the next clement as sill
and so on. More specifically, s 1 0 1 gives the address of the zeroth
one-dimensional array, s i l l gives the address of the first one-
dimensional array and so on. This fact can be demonstrated by the
following program.

/* Demo: 2-D array is an array of arrays 1
main()

nt s[4][21(
1234,56},

{1212,33},
{143480},
{1312,78}

mt i

for (i0;i<3;i++)
pnntf ("\nAddress of %d th 1-0 array = 	 i, s(ifl;

And here is the output...

Address of 0 th 1 -D array 65508
Address of I th l-D array = 65512
Address of 2 th 1-0 array 65516
Address of 3 Lii 1-D array 65520

Let's figure out how the program works. The compiler knows that
S is an array containing 4 one-dimensional arrays, each containing
2 integers. Each one-dimensional array occupies 4 bytes (two
bytes for each integer). These one-dimensional arrays are placed
linearly (zeroth I -D arra y followed by first I -D array, etc.). Hence

294	 Let Uv C

each one-diniensional arrays starts 4 by tes further along than the
last One, as can be seen in the memory map of the array shown
below.

	

[01101	 s[O]t 1	 4][Oj	 s [l] [1 1 	s [2] [0 1 	[2][1	 s[3][01	 s[3][11

	

r1234 f	 56	 1212
J	

31	 434	 50	 1312	 78

65505 05S10 65512 05514 65516 65518 65520 65,522

f : ig ij re 8.6

We know that the expressions sfOf and s i l l would yield the
addresses of the zeroth and first one-dimensional array
respectively. From Figure 8.6 these addresses turn out to be 65508
and 65512.

Now, we have been able to reach each one-dimensional array.
What remains is to he able to refer to individual elements ofa one-
dimensional array. Suppose we want to refer to the clement s f 2 1 Ill
using pointers. We know (from the above program) that s f 2 1 would
give the address 65516, the address of the second one-dimensional
array. Obviousl y (65516 1 I) would give the address 65518. Or

(s i 21 + I) would give the address 65518. And the value at this
address can he obtained by using the value at address operator,
saying *(sf21 + I). But, we have already studied while learning
one-dimensional arrays that numlil is same as *(nurn + i).
Similarly, *(s 1 2 1 + I) is same as. *(*(s + 2) + 1). Thus, all the
following expressions refer to the sante clement.

s[21111
• (s(2f + 1)

Chapter 8: Arrays	 295

Using these concepts the fol lowing program prints out each
clement of a two-dimensional arra y using pointer notation.

/ Pointer notation to access 2-D array elements
main()

mt s[4]t2]	 {
{123456),

1212, 33),
{1434,80},
(131278)

mt	 i,j;

for (i0;i<3i+)

printf (\n'
for (j0;j<l j++)

printf(%d*(*(s+i)+I))

}

And here is the output...

1234 56
1212 33
1434 80
1312 78

Pointer to an Array

It' we call a pointer to an integer, a pointer to a float, a pointer
to a char, then can we not have a pointer to an array? We certainly
can. The following program shows how to build and use it,

296 	 Let Us C

/ Usage of pointer to an array
main()

in s(5]121 {
{1234,56},
{ 1212, 33 }
(1434,80},
{ 1312,78 }

nt (p)[2,
mt i, j, *pint

for (i=0;i<=3;i++)

p
pint	 p;
printf (•'\n"
for (j0j<1;j+)

printf(%d , (pint + j

And here is the output...

'V
1234 56
1212 33
1434 80
1312 78

I kre p is it pointer to an array of two integers. Note that the
parentheses in the declaration of p are necessary. i\hscncc of' them
would make p an array of' 2 integer pointers. Array of pointers is
covered in a later section iii this chapter. In the outer for 1001) each
time we store the address of ii new one-dimensional array. Thus
first time through this loop p would contain the address of' the
zeroth I -D array. This address is then assigned In an integer
pointer pint. Lastly, in I he inner for loop using the pointer pint We

Chapter 8: Arrays
	 297

have printed the individual elements of the I-D array to which p is
pointing.

But why shOuld we use a pointer to an array to print elements of a
2-D array. Is there any situation where we can appreciate its usage
better? The entity pointer to an array is immensely useful when we
need to pass a 2-D array to a function. This is discussed in the next
section.

Passing 2-D Array to a Function

There are three ways in which we can pass a 2-D array to a
function. These are illustrated in the following program.

1 Three ways of accessing a 2-D array f

main()

nt a[314]	 (
1, 2, 3,4,
56,7,8,
9. 0. 1,6

F!

clrscr()
display (a, 3, 4);
show(a, 3,4);
print (a 3 4)

display (mt *q, mt row, mt col)

mt	 i, j;

for (i0;i< row ;i++)

for (j0 ;j < col ;1++)
printf(%d n , *(q+i *col +j))

298
	

Let Us C

printf(\n

printf (\n)

show (mt (*q
)E1, mt row, int co

mt
mt	 p

for (i= U	 row i+

p=qi:
for (j 0;j <col j++

printf(%d,(p+j));

printf (\n

prmntf (\n)

print (int q[]14] mt row, int col

nt

for (i0:i< row ;i++)

for (j z 0,j< co! j++)
printf (%d q []])

printf(\n)

printf ("\n')

And here is the output.

1234
5678

	

Chapter 8: Arrar.c	 299

9016

1234
5678
9016

1234
5678
9016

In the display() function we have collected the base address of the
2-D array being passed to it in an ordinary lot pointer. Then
through the two for loops using the expression * (q + i * cot + j)
we have reached the appropriate element in the array. Suppose i is
equal to 2 and j is equal to 3, then we wish to reach the element
a 1 2 11 3 1 . Let us see whether the expression * (l + I * cot + j) does
give this element or not. Refer Figure 8.7 to understand this.

112I3I41	 56 1 71 8 I910 11 I_t

	

65502 ..04 .06 ...0	 ... 10 .,. 12 ... 14... 10 ... 18 .20	 .22	 .24

Figure 8.7

The expression * (q + i * cot + j) becomes * (65502 + 2 * 4 + 3).
This turns out to be * (65502 + II). Since 65502 is address of an
integer, * (65502 + II) turns out to be * (65524). Value at this
address is 6. This is indeed same as a121131. A more general
formula for accessing each array element would be:

(base address + row no. * no. of columns + column no.)

In the show() function we have defined q to be a pointer to an
array of 4 integers through the declaration:

300	 Let Us

nt (*q)[41

To begin with, q holds the base address of the zeroth I -D array,
i.e. 4001 (refer Figure 8.7). This address is then assigned to p, an
mt pointer, and then using this pointer all elements of the zeroth 1-
D array are accessed. Next time through the loop when i takes a
value I, the expression (I + i fetches the address of the first I -D
array. This is because, q is a pointer to zeroth l-D array and
adding I to it would give us the address of the next I -D array. This
address is once again assigned to p, and using it all elements of the
next I -D array are accessed.

In the third function print(), the declaration of q looks like this:

mt q[][4J

This is same as mt (*q
)1 4 1, where q is pointer to an array of 4

integers. The only advantage is that we can now use the more
familiar expression qijJ to access array elements. We could have
used the same expression in show() as well.

Array of Pointers

The way there can be an array of ints or an array of floats,
similarly there can be an array of pointers. Since a pointer variable
always contains an address, an array of pointers would be nothing
but a collection of addresses. The addresses present in the array of
pointers can be addresses of isolated variables or addresses of
array elements or any other addresses. All rules that apply to an
ordinary array apply to the array of pointers as well. I think a
program would clarify the concept.

main(

nt arrE4l /* array of integer pointers ,l

Chapter 8. Arrays	 301

mt i31,j5k19,k71,m;

arr[O] = &i;
arr[1] =
arrf21 = &k;
arr(3J

	

for(m z O;m	 3;m++)
printf(%d,(arr[mJ));

Figure 8.8 shows the contents and the arrangement of the array of
pointers in memory. As you can observe, arr contains addresses of
isolated mt variables I, j, k and I, The for loop in the program
picks up the addresses present in arr and prints the values present
at these addresses.

k

	

L 3 1 L	 1	 I L' I

	

65516	 65514	 65512	 65510

	

arr[0]	 arr[I]	 arr[2]	 arr[3]

165516 1 65514 1 65512 J 655101

	

65518	 65520	 65522	 65524

Figure 8.8

An array of pointers can even contain the addresses of other
arrays. The following program would justify this.

main()

static int a[]=(O1,234}

21

302
	

Let Us C

mt *p[]z(a,a+ 1,a+2,a+3,a+4):

printf(\n%u%u%d,p, p, *(*p);

I would leave it for you to figure out the output of this program-

Three-Dimensional Array

We aren't going to show a programming example that uses a three-
dimensional array. This is because, in practice, one rarely uses this
array. However, an example of initializing a three-dimensional
array will consolidate your understanding of subscripts:

at arr[3][4][2] (

(2,4),
(7,8),
(3,4),
(5,6)

(7,6),
(3,4),
(5,3),
(2,31

(7,2),
(3,4),
(5, 1),

}

A threedimeflSiOfla,l array can be thought of as an array of arrays
of arrays. The outer array has three elements, each of which is a

2 2-D Array

1" 2-D Array
01h 2-D Array

Chapter 8: Arrays	 303

two-dimensional array of four one-dimensional arrays, each of
which contains two integers. In other words, a one-dimensional
array of two elements is constructed first. Then four such one-
dimensional arrays are placed one below the other to give a two-
dimensional array containing four rows. Then, three such two-
dimensional arrays are placed one behind the other to yield a three-
dimensional array containing three 2-dimensional arrays. In the
array declaration note how the commas have been given. Figure
8.9 would possibly help you in visualising the situation better.

tigure z5.9

Again remember that the arrangement shown above is only
conceptually true. In memory the same array elements are stored
linearly as shown in Figure 8.10.

HLLE 1 2-D Array	 2 2-D Ay

17I6I3J4l5F3J2JiJ8i9I7I2J3J4lS}j

65478	 65494	 65510

Figure 8.10

304
	

Let Us C

1-low would you refer tothe array element I in the above array?
The first subscript should be [2], since the element is in third two-
dimensional array; the second subscript should be [3] since the
element is in fourth row of the two-dimensional array; and the
third subscript should be [I] since the element is in second position
in the one-dimensional array. We can therefore say that the
element I can be referred as arrI2l13I1 1 I . It may be noted here that
the counting of array elements even for a 3-D array begins with
zero. Can we not refer to this clement using pointer otation? Of
course, yes. For example, the following two expressi

n
ons refer to

the same element in the 3-D array:.

arr[2][31[1
('((arr 	 1)

Summary
(a) An array is similar to an ordinary variable except that it can

store multiple elements of similar type.

(b) Compiler doesn't perform bounds checking on an array.

(c) The array variable acts as a pointer to the zeroth element of
the array. In a l-D array, zeroth element is a single value,
whereas, in a 2-D array this element is a l-D array.

(d) On incrementing a pointer it points to the next location of its

type.
(e) Array elements are stored in contiguous memory locations

and so they can be accessed using pointers.

(f) Only limited arithmetic can be done on pointers.

Exercise

Simple arrays

IAI What would be the output of the following programs:

(a) main(

Chapter 8: Arrays	 305

{
mt num(26], temp;
num(0] = 100:
num[25] 200;
temp num[25];
num[25] numb);
num[0] = temp;
printt ('\n%d %d, numfOl, num(25]);

(b) main()

mt arrayl261, I;
for(i = 0; i <=25;i++)
{

array[i] 'A' +
pnntf (\.n%d %c, array(iJ, array[i]);

(c) main()

nt sub[50), I;
for (1=0 ; k= 48; i++);

sub[i]
pnntf (tn%d', sub(i]);

IBI Point out the errors, if any, in the following program
segments:

(a) r mixed has some char and some mt values
mt char mixedElOOl;

main()

{
mt a[10], I

306
	

Let Us C

for(i1 ;i<1O;i++)

scant ("%d', alil);
pnntf (%d, a[i]

(b) main()

mt size;
scanf ("%d, Mize)
nt arr[size]
for (i=1 ;i< size ;i++)

scanf ("%d", arr[i]);
printf (%d, arr[i]

(c) main()
{	 I

mt i,a=2;b3;
nt arr[2+3j;
for (iO;i<a+b;i++)

scanf (%d0 , &arr[i))
pnntf (\n%d, arr[iI);

}
}

ICI Answer the following:

(a) An array is a collection of

1. different data types scattered throughout memory
2. the same data type scattered throughout memory
3. the same data type placed next to each other in memory
4. different data types placed next to each other in memory

Chapter 8: Arrays
	

307

(b) Are the following array declarations correct?

mt a (25);
mt size = 10, b[size];
intc (0,12);

(c) Which element of the array does this expression reference?

num(4]

(d) What is the difference between the 5s in these two
expressions? (Select the correct answer)

mt num[5];
num[5]=11;

1. first is particular element, second is type
2. first is array size, second is particular element
3. first is particular element, second is array size
4. both specify array size

(e) State whether the following statements are True or False:

I. The array mt num(261 has twenty-six elements.
2. The expression numIII designates the first element in the

array
3. It is necessary to initialize the array at the time of

declaration.
4. The expression numE27I designates the twenty-eighth

element in the array.

fDJ Attempt the following:

(a) Twenty-five numbers are entered from the keyboard into an
array. The number to be searched is entered through the
keyboard by the user. Write a program to find if the number to
be searched is present in the array and if it is present, display
the number of times it appears in the array.

308
	

Let Us C

(b) Twenty-five numbers are entered from the keyboard into an
array. Write a program to find out how many of them are
positive, how many are negative, how many are even and how
many odd.

(c) Implement the Selection Sort, Bubble Sort and Insertion sort
algorithms on a set of 25 numbers. (Refer Figure 8.11 for the
logic of the algorithms)

- Selection sort
- Bubble Sort
- Insertion Sort

Iteration I

Selection Soil

Iteration 2

o 44	 33	 33	 22

1 33	 44	 44	 44

2 55	 55	 55

3 22	 224	 22	 33

4	 11	 ill	 .11	 11

Iteration

O 11	 0 11	 0 11

1 44	 1 44	 1 33

2 55	 2 55	 255

3 33	 3 33	 344

4 22	 4 22	 4 22

Iteration 4

Result

o ii	 oLi	 o ii	 0 11

1 22	 1 22
	

1 22
	

1 22

2 55 1	 244
	

23.3
	

2 33

3 44	 3 55
	

3 55
	

3 44

4 33	 4 33
	

4 44
	

4 55

Figure 8.11(a)

	

Chapter 8: Arrays	 309

Rubble Sort

	Iteration I	 Iteration 2

o 44	 33	 33	 33
1 33	 44	 44	 44
2 55	 55	 55 j 22
3 22	 22	 2255
4 11	 11	 11	 11

o 33	 0 33	 0 . 33
1 44	 1 44	 1 22
2 22	 2 22	 2 44
3 11	 3 11	 3 11
4 55	 4 55	 4 55

Iteration 3
	

Iteration 4

Result
o3	 o 22
1 22	 1 33
2 11
	 2 11
	 2 33	 2 33

3 44
	

3 44
	 3 44	 3 44

4 55
	

41 55
	

4 55	 4 55

Figure 8.11 (b)

Iteration I

LJ
LiJ
Hi

Insertion Sort

Iteration 2
	

Iteration 3

Ea

Iteration 4

Th
Result
0 11
1 22
2 33
3 44
4 r55

Figure 8.11 (c)

310
	

Let Us C

(d) Implement the following procedure to generate prime
numbers from I to 100 into a program. This procedure is
called sieve of Eratosthenes.

step I Fill an array num i lOO l with numbers from I to 100

step 2 Starting with the second entry in the array, set all its
multiples to zero.

step 3 Proceed to the next non-zero element and set all its
multiples to zero.

step 4 Repeat step 3 till you have set up the multiples of
all the non-zero elements to zero

step 5 At the conclusion of step 4, all the non-zero entries
left in the array would be prime numbers, so print
out these numbers.

More on arrays, Arrays and pointers

lEt What would he the output of the following programs:

(a) main()

ml bI]{10,20,3O4O5O)
nt
for(i	 0; i < 4:

printf(\n%d'(b + i))

(b) main()

nt b[1(0,20,0405);
mt	 i
kb;
for (i=0;i<4:i+4)

printl ("\n%d Ak).

Chapter 8: Arrays
	 311

)

(c) main()

mt a(](2,4,6,8,10);
mt
change (a, 5)
for = 0; i <=4; i++)

pnntf("\n%d", a[iJ);

change (int Ab int n)

mt I;
for (i=0; i < n; i++)

*(b +) *(b + I) + 5;

(d) main()

nt a[5],m,b16;
for (i=0;i<5;i++)

a[i] 2
f (a, b);
for (i = 0; i <5; i++)

pnntf (\n%d", a[iJ);
pnntf(\n%d, b);

f(int *x int

mt i
for (kO;i<5;i++)

x + I) + 2
y += 2;

312
	

Let Us C

(e) main()

stac nt a[5)
nt
for (i=O;i<4;i++)

printf (tn%d, a[iJ)

(t)	 main()
{

nt a(5]{5 1 1520,25);
jot i,jk=1,m;

m a[i++];
printf (\n%d %d %d, i, j, m)

IF] Point out the errors, if any, in the following programs:

(a) main()

mt array[6](12,3,456);
mt I;
for (i0;i<25;i++)

printf ('\n%d', array[i]);

(b) main()

nt subf50j, i
for (i1 ;i4z=50;i++)

sub(i) =
pnntf ('\n%d' sub[ij);

313Chapter 8: Arrays

(c) man()

mt a[I (10, 20,30,40,50);
nt j;
= a; /* store the address of zeroth element /

printf ("\n%d *j)

(d) main()

float aLl = (13.24, 1.5, 1.5,5.4,3.5);
float *j;
j=a;

prmnff (\n%d %d %d', j, *j a[4]);

(e) main()

float a[)(13.24, 1.515, 5.4, 3.5
float *i
j=a;
ka+4;
jj2;
k=k/2;
printf ("\n%d %d", j, k)

(1)	 main()

mt max = 5;
float arrimaxi
for (i 0 < max i++

scanf (%r, &arr[i1);

314
	

Let Us C

CJ Answer the following:

(a) What would happen if you try, to put so many values into an
array when you initialize it that the size of the array is
exceeded?

I. nothing
2. jS	 system malfunction

error message from the compiler
4. other data may be overwritten

(b) In an array ht arr112J the word arr represents the
a 	 of the array

(c) What would happen if you put too few elements in an array
when you initialize it?

I. nothing	 -
2. possible system malfunction
3. error message from the compiler
4. unused elements will be filled with 0's or garbage

(d) What would happen if you assign a value to an element of an
array whose subscript exceeds the size of the array?

1. the element will be set to 0
2. nothing, it's done all the time
3. other data may be overwritten
4. error message from the compiler

(e) When you pass an array as an argument to a function, what
actually gets passed?

I. address of the array
2. values of the elements of the array
3. address of the first element of the array
4. number of elements of the array

Cho. Pc, 8: Arrays
	 315

(1) Which of these are reasons for using pointers?

I. To manipulate parts of an array
2. To refer to keywords such as for and if
3. To return more than one value from a function
4. To refer to particular programs more conveniently

(g) If you don't initialize a static array, what would be the
elements set to?

1. 0
2. an undetermined value
3. a floating point number
4. the character constant '\O'

HJ State True or False:

(a) Address of a floating-point variable is always a whole
number.

(b) Which of the following is the correct way of declaring a float
pointer:

5. float ptr;
6. float *ptr;
7. *float ptr
8. None of the above

(c) Add the missing statement for the following program to print
35.

main()

irit j, 1ptr
ptr 35;

printf('\n%d,j);

316
	

Let Us C

(d) if ml sJ51 is a one-dimensional array of integers, which of the
following refers toihe third element in the array?

9 *(4.)
10. '(s+3)
11.s+3
12.s+2

I I I Attempt the following:

(a) Write a program to copy the contents of one array into another
in the reverse order.

(b) If an array arr contains n elements, then write a program to
check it'arrOJ = arrin-11, arrill = arr[n-21 and so on.

(c) Find the smallest number in an array using pointers.

(d) Write a program which performs the following tasks:

- initialize an integer array of 10 elements in main()
- pass the entire array to a function modify()
- in modify() multiply each element of array by 3
- return the control to main() and print the new array

elements in main()

(e) The screen is divided into 25 rows and 80 columns. The
characters that are displayed on the screen are stored in a
special memory called VDU memory (not to he confused with
ordinary memory). Each character displayed on the screen
occupies two bytes in VDU memory. The first of these bytes
contains the ASCII value of the character being displayed,
whereas, the second byte contains the colour in which the
character is displayed.

For example, the ASCII value of the character present on
zeroth row and zeroth column on the screen is stored at

Chapter 8: Arrays
	 317

location number OxB8000000. Therefore the colour of this
character would be present at location number OxB8000000 +
I. Similarly ASCII value of character in row 0, col I will be at
location OxB8000000 + 2, and its colour at OxB8000000 + 3.

With this knowledge write a program which when executed
would keep converting every capital letter on the screen to
small case letter and every small case letter to capita] letter.
The procedure should stop the moment the user hits a key
from the keyboard.

This is an activity of a rampant Virus called Dancing Dolls.
(For monochrome adapter, use OxB0000000 instead of
OxB8000000).

More than one dimension

UI What would be the output of the following programs:

(a) main()

nt n[3]3]
2,4,3,
68,5,
3, 5, 1

printi (\n%d %d %d, n, n[3]131 n[2][21);

(b) main()

nt °[3][3]={
2,4,3,
6,8,5,
3, 5, 1

nt i,tptr;

22

318-	 Let Us

ptr n
for (iOi<8;i++)

printi (\n%d', (ptr + I))

(c) main()

nt n[3][3}	 {
2,4,3,
6,8,5,
3,5,1

ml	 I,
for (iO;i<2;i++)

for (j 0 j < 2 j++
prmntf(\nb/od%,dn[IIj1*(*(fl+I)+J))

IKI Point out the errors, if nny. in the Rllowing programs:

(a) main()

mt twod[}j]{
24,
6,8

printf (\n%d', twod);

(b) main()

nt three[3](I {
2,4,3,
6,8,2,
2,3,1

printf { \n%d, three(1 1[1))

Chapter 8: Arrays
	

319

ILl Attempt the following:

(a) How will you initialize a three-dimensional array
th reed 13][2113 1? How will you refer the first and last element
in this array?

(b) Write a program to pick up the largest number from any 5 row
by 5 column matrix.

(c) Write a program to obtain transpose of a 4 x 4 matrix. The
transpose of a matrix is obtained by exchanging the elements
of each row with the elements of the corresponding column.

(d) Very often in fairs we come across a puzzle that contains 15
numbered square pieces mounted on a frame. These pieces
can be moved horizontally or vertically. A possible
arrangement of these pieces is shown below:

I	 4	
1	

15	 7

8	 10	 2	 II

4	 3	 6	 1 3

I?	 9	 5

Figure 8.12

As you can see there is a blank at bottom right corner.
Iniolement the following procedure through a program:

320
	

Let Us C

Draw the boxes as shown above. Display the numbers in the
above order. Allow the user to hit any of the arrow keys (up,
down, left, or right).

If user hits say, right arrow key then the piece with a number
5 should move to the right and blank should replace the
original position of 5. Similarly, if down arrow key is hit, then
13 should move down and blank should replace the original
position of 13. If left arrow key or up arrow key is hit then no
action should he taken.

The user would continue hitting the arrow keys till the
numbers aren't arranged in ascending order.

Keep track of the number of moves in which the user manages
to arrange the numbers in ascending order. The user who
manages it in minimum number of moves is the one who
wins.

1-low do we tackle the arrow keys? We cannot receive them
using scanf() function. Arrow keys are special keys which
are identified by their scan codes'. Use the following
function in your program. It would return the scan code of the
arrow key being hit. Don't worry about how this function is
written. We are going to deal with it later. The scan codes for
the arrow keys are:

up arrow key - 72 down arrow key - 80

left arrow key - 75 right arrow key - 77

1 Returns scan code of the key that has been hit 4/

#include dos.h"
getkey()

union REGS I, o;

Chapter 8: Arrays
	

321

while (!kbhit())

i,h.ah = 0;
int86 (22, &i, &o)
return (o.h.ah);

(e) Those readers who are from an Engineering/Science
background may try writing programs for following problems.

(1) Write a program to add two 6 x 6 matrices.
(2) Write a program to multiply any two 3 x 3 matrices.
(3) Write a program to sort all the elements of 4 x 4 matrix.
(4) Write a program to obtain the determinant value of a 5 x

5 matrix.

(1) Match the following with reference to the following program
segment:

nt I, j, = 25;
mt *pi*pj=&j;

:1* more lines of program

+ 5
= *Pi + 5;

Pi = pi*pi =i

Each integer quantity occupies 2 bytes of memory. The value
assigned to I begin at (hexadecimal) address F9C and the
value assigned to j begins at address F9E. Match the value
represented by left hand side quantities with the right.

1. &i	 a.	 30
2. &j	 b.	 BE
3. pi	 C.	 35

4. *pj	 d.	 FA2

322	 Let Us

5. i	 C.	 F9C

6. pi	 f.	 67

7. *pi	 g.	 unspecified
8. (pi+2)	 IL	 65

9. (*pi + 2)	 i.	 BE
10. t (pi+2)	 j.	 BE

k,	 FAQ
I.	 F9D

(g) Match the following with reference to the following segment:
nt x(31[5] = (

{1, 2,3,4,5),
{ 6, 7, 8, 9, 10 },
(11,12,13,14,15)

n =

I.	 (*(x+2)+l)	 a.	 9
2.	 *(*x+2)+S	 b.	 13
3	 *(*(x+l))	 C.	 4
4. *(*(x)+2)±I	 d.	 3
5. *(t(X4.I)+3)	 C.	 2
6. n	 f.	 12
7•	 *(fl.4.2)	 g.	 14
8. (*(n 4 . 3) +- 1	 h.	 7

9. *(n + 5)+]	 i.
10. ++n	 j.

k.	 5
1.	 to
m.	 6

(h) Match the following with reference to the following program
segment:

struct

nt x, y;

} Sti = (10, 20, 15, 25, 8, 75, 6, 2);
mt I
i=s;

Chapter 8: Arrays	 323

j +3)	 a.	 85
2. s[i[7]].x
	 b.	 2

3. s[(s + 2)->y / 3[111.y
	

C.	 6
4. i L i [I 1-i(2]]
	

d.	 7
5. i[s[3].yJ	 e.	 16
6. (s+ I)->x+5
	

L
	

15
7. *(I +i)**(i+4)/j	 g.	 25

8. s [i [0 I - 1 [4 1] .y + 10
	

h
	

8
9. (*(s+ *(j + I)/i)).x-s-2
10. ++i[i[6]]	 J.	 100

k.	 10
1.	 20

(i) Match the following with reference to the following program
segment:

unsigned int arr [3][3] =
2,4,6,
9, 1, tO,
16, 64,5

1. **an	 a. 64
2. **arr < *('arr + 2)	 b.	 18
3. arr + 2) /(*(arr + 1)> **arr) 	 C.

	 6
4. (arr[1]+ I)Iarr[l][21

	
d.	 3

5. *(an.[Ojfl*(an.[21)	 C.
	 0

6. arr[I][l] <arr[0][1J
	

1.	 16
7. arr[2][[I1 & arr[2][0] 	 g.
8. arr[2][2] I arr[OJ[I]
	

h.	 11
9. arr[0][1] ' arr[0121
	

20
10
	

++**arr + --arr[I l[t] 	 J.	 2

	

k.	 5
	1. 	 4

(j) Write a prom that interchanges the odd and even
components of an array.

(k) Write a program to find if a square matrix is symmetric.

324 	 Let Us C

(I) Write a function to find the norm of a matrix. The norm is
defined as the square root of the sum of squares of all
elements in the matrix.

(rn) Given an array p(51, write a function to shift it circularly left

by two positions. Thus, if p[O] = 15, p[l] 30, p[2] = 28,

p[3] = 19 and p[4] = 61 then after the shift p{O] = 28, p[l] =
19, p{2] = 61, p [3] = 15 and p{4] = 30. Call this Function for a
(4 x 5) matrix and get its rows left shifted.

(n) A 6 x 6 matrix is entered through the keyboard and stored in a
2-dimensional array matI7I17I. Write a program to obtain the
Determinant values of this matrix.

(o) For the folloing set of sample data, compute the standard
deviation and the mean.

•6-12813,11,67,2-6-9,-10,11,10,9,2

The formula for standard deviation is

1	 2

fl

where x 1 is the data item and x is the mean.

(p) The area of a triangle can he computed by the sine law when 2
sides of the triangle and the angle between them are known.

Area =(1 12)absin(angle)

Given the following 6 triangular pieces of land, write a
program to find their area and determine which is largest,

	

Plot No.	 a	 b	 angle

1	 137.4	 80,9	 0.78
2	 155.2	 92.62	 0.89
3	 149.3	 97.93	 1.35

Chapter 8. Arrays
	 325

4	 160.0	 100.25	 9.00
5	 155.6	 68.95	 1.25
6	 149.7	 120.0	 1.75

(q) For the following set of n data points (x, y), compute the
correlation coefficient r, given by

-	 ______

- ()2 }[y	 (.)2

x	 y
34.22
	

102.43
39.87
	

100.93
41.85
	

97.43
43.23
	

97.81
40.06
	

98.32
53.29
	

98.32
53.29
	

100.07
54.14
	

97,08
49.12
	

91.59
40.71
	

94.85
55,15
	

94.65

(r) For the following set of point given by (x, y) fit a straight line
given by

y a + bx

where,

a= y -bx and

b=
	 -

[11.v 2 _(x)h]

x	 y
3.0	 1.5

326
	

Let Us C

4.5	 2.0
5.5	 3.5
6.5	 5.0

7.5	 6.()
8.5	 7.5
8.0	 9.0
9.0	 10.5
9,5	 12.0
10.0	 14.0

(s) The X and Y coordinates of 10 different points are entered
through the keyboard. Write a program to find the distance of
last point from the first point (sum of distance between
consecutive points).

9 Puppetting on
Strings

• What are Strings
• More about Strings
• Pointers and Strings
• Standard Library String Functions
(1 strlcn()

J s(rcpy()
) s(rcaf()
L slrcmp()
• Two-Dimensional Array of Characters
• Array of Pointers to Strings
• Limitation of Array of Pointers to Strings

Solution
• Summary
• Exercise

327

328	 Let Us

J

n the last chapter you learnt how to define arrays of differing
sizes and dimensions, how to initialize arrays, how to pass
arrays to a function, etc. With this knowledge under your belt,

you should be ready to handle strings, which are, simply put, a
special kind of array. And strings, the ways to manipulate them,
and how pointers are related to strings are going to be the topics of
discussion in this chapter.

What are Strings

The way a group of integers can be stored in an integer array,
similarly a group of characters call stored in a character array.
Character arrays are many a time also called strings. Many
languages internally treat strings as character arrays, but somehow
conceal this fact from the programmer. Character arrays or strings
are used by programming languages to manipulate text such as
words and sentences.

A string constant is a one-dimensional array of characters
terminated by a null ('\O'). For example,

char name[)	 ('H', A, 'E', 'S. 'L, 'E', R, '\O);

Each character in the array occupies one byte of memory and the
last character is always '\O'. What character is this? It looks like
two characters, but it is actually only one character, with the \
indicating that what follows it is something special. '\O' is called
null character. Note that '\O' and '0' are not same. ASCII value of
'\O' is 0, whereas ASCII value of '0' is 48. Figure 9.1 shows the
way a character array is stored in memory. Note that the elements
of the character array are stored in contiguous memory locations.

The terminating null ('\O') is important, because it is the only way
the functions that work with a string can know where the string

Chapter 9: Puppetting On Strings	 329

ends. In fact, a string not terminated by a '\O' is not really a string,
but merely a collection of characters.

[H IA I Is I L F E H Ho
65518 65519 65520 65521 65522 65523 65524 65525

Figure 9.1

C concedes the fact that you would use strings very often and
hence provides a shortcut for initializing strings. For example, the
string used above can also be initialized as,

char name[] = 'HAESLER;

Note that, in this declaration \O' is not necessary. C inserts the
null character automatically.

More about Strings

In what way are character arrays different than numeric arrays?
Can elements in a character array be accessed in the same way as
the elements of a numeric array? Do I need to take any special
care of '\O'? Why numeric arrays don't end with a \O'? Declaring
strings is okay, but how do I manipulate them? Questions galore!!
Well, let us settle some of these issues right away with the help of
sample programs.

r Program to demonstrate phnng of a string 'I
main()

char name[I 'Klinsman
nt i0;

while (i<7)

330
	

Let Us C

pnntt ('%c*, nameji));

And here is the output..

Kinsman

No big deal. We have initialized a character array, and then
printed out the elements of this array within a while loop Can we

write the while loop without using the final value 7? We can;
because we know that each character array always ends with a
'\0'. Following program illustrates this.

main()

char name[] 'Klinsman'
mt i =0;

while (name[i] != \0)

printf ('%c, name[ifl;

And here is the output,..

Klmnsman

This program doesn't rely on the length of the string (number of
characters in it) to print out its contents and hence is definitely
more general than the earlier one. Here is another version of the
same program; this one uses a pointer to access the array elements.

Chapter 9. Puppetting On Strings 	 331

main(

char name[] 'Klirisman'
char 'ptr;

ptr = name; P store base address of string 1

while (*p = \O')

printf ("%c", *ptr)
plr++;

As with the Integer array, by mentioning the name of the array we
get the base address (address of the zeroth cicment) of the array.
This base address Iq stored in the variable p(r using,

ptr = name;

Once the base address is obtained in pt, *ptr would yield the
value at this address, which gets printed promptly through,

prinlf(%c', *plr)

Then, ptr is incremented to point to the next character in the
string. This derives from two facts: array elements are stored in
contiguous memory locations and on incrementing a pointer it
points to the immediately next location of its type. This process is-
carried out till ptr doesn't point to the last character in the string,
that is, '\O'.

In fact, the character array elements can be accessed exactly in the
same way as the elements of an integer array, Thus, all the
following notations refer to the same element:

332
	

Let Us C

name(i)
*(name + i)

i + name)
Enamel

Even though there are so many ways (as shown above) to refer to
the elements of a character array, rarely is any one of them used.

This is because printf() function has got a sweet and simple way
of doing it, as shown below. Note that printf() doesn't print the

main()

char name[I 'Klinsman"
printf('%s', name);

The %s used in printf() is a format specification fot printing out
a string. The same specification can be used to receive a string
from the keyboard, as shown bclow.

main()

char namet25)

pnntf ('Enter your name'
scanf('%s', name)
phntf (*Hello %S!', name);

And here is a sample run of the program...

Enter your name Debashish
Hello Debashish!

Chapter 9: Puppetting On Strings	 333

Note that the declaration char name(251 sets aside 25 bytes under
the array namel 1, whereas the scanf() function fills in the
characters typed at keyboard into this array until the enter key is
hit. Once enter is hit, scanf() places a '\O' in the array. Naturally,
we should pass the base address of the array to the scanf()
function.

While entering the string using scanf() we must be cautious about
two things:

(a) The length of the string should not exceed the dimension of
the character array. This is because the C compiler doesn't
perform bounds checking on character arrays. Hence, if you
carelessly exceed the bounds there is always a danger of
overwriting something important, and in that event, you
would have nobody to blame but yourselves.

(b) scanf() is not capable of receiving multi-word strings.
Therefore names such as 'Debashish Roy' would be
unacceptable. The way to get around this limitation is by
using the function getsQ. The usage of functions gets() and
its counterpart puts() is shown below.

main()

char name(25};

printf ("Enter your full name"
gets name);
puts ("Hello!"
puts (name);

And here is the output...

Enter your name Debashish Roy
Hello!

23

334
	

Let Us C

Debashish Roy

The program and the output are self-explanatory except for
the fact that, puts() can display only one string at a time
(hence the use of two puts() in the program ahov(.-) Also, on

displaying a string, unlike printf(), puts() places the cursor

on the next line. Though gets() is capable of receiving only
one string at a lime, the plus point with gets() is that it can

receive a multi-word string.

If we arc ptCpalC(l to take the trouble we can make scanf()
accept multi-word strings by writing it in this maimer:

char name25
printf (Enter your full name
scant ("%[A \n1s", name

Though workable this is the best of the ways to call a
function, you would agree.

Pointers and Strings

Suppose we wish to store "Hello". We may either store it in a
string or we may ask the C compiler to store it at some location in
memory and assign the address of the string in a char pointer. This

is shown below:

char str[I = Hello
char	 = Hello

There is a subtle difference in usage of these two forms. For
example, we cannot assign a string to another, whereas, we can
assign char pointer to another char pointer. This is shown in the

following program.

Chapter 9: Puppetting On Strings	 335

main()

char sin [J	 HelIo
char slr2[10]

char s Good Morning
char •q

str2 sin	 1 errorl
q s 1 works 'I

Also, oiie a string has been defined it cannot be initialized to
another set of characters. Unlike strings, such an operation is
perfectly valid with char pointers.

main()

char stni [I = Hello
char *p "Hello
sin	 Bye r error	 i
p = Bye 1* works */

Standard Library String Functions

With every C compiler a large set of useful string handling library
functions are provided. Figure 9,2 lists the more commonly used
functions along with their purpose.

336
	

Let Us C

Function I Use

strlcn
strlwr
strupr
streat
stmCat

strcpy
strncpy
strcmp
strnc mp
strcTrlpi

stricmp

strriicmp

strdup
strchr
strrchr
strstr
strset
strnset
strreV

Finds length of a string
Converts a string to lowercase
Converts a string to uppercase
Appends one string at the end of another
Appends first n characters of a string at the end of
another
Copies a string into another
Copies first n characters of one string into another
Compares two strings
Compares first n characters of two strings
Compares two strings without regard to case (i" denotes
that this function ignores case)
Compares two strings without regard to case (identical to
strcmpi)
Compares first n characters of two strings without regard
to case
Duplicates a string
Finds first occurrence of a given character in a string
Finds last occurrence of a given character in a string
Finds first occurrence of a given string in another string
Sets all characters of string to a given character
Sets first n characters of a string to a given character
Reverses string	 -

Figure 92

Out of the above list we shall discuss the functions strlen(),

strcpy(), strcat() and strcmp(), since these are the most
commonly used functions. This will also illustrate how the library
functions in general handle strings. Let us study these functions

one by one.

petting On Strings	 337

strlen()

This function counts the number of characters present in a string.
Its usage is illustrated in the following program.

main()	

Jv
char arr[I 'Bamboozled;
mt leni, len2;

leni	 strlen(arr);
len2 strien ('Humpty Dumpty');

printf ('\nstnng = %s length = %d, air, leni);
pnntf (9nstring %s length = %d', Humpty Dumpty', Ten2);

The output would be...

string = BamboQlèd length 10
string = Humpty Dumpty length 13

Note that in the first call to the function strlen(), we are passing
the base address of the string, and the function in turn returns the
length of the string. While calculating the length it doesn't count
'\0'. Even in the second call,

len2 = strien ('Humpty Dumpty');

what gets passed to strlen() is the address of the string and not the
string itself. Can we not write a function xstrlen() which imitates

the standard library function strlen? Let us give it a try...

r A look-alike of the function stilen() 'I
main()

{

338
	

Let Us C

char arr[I"Bamboozled"
nt lent len2

leni	 xstrlen (arr)
len2 xstrlen (Hump(y Dumpty')

pnntf (nstng = %s length %d, arr, leni);
printf ('\nstnng = %s length %d, "Humpty Dumpty, len2);

xstrlen (char s

nt length 0;

while (s != '\O')

length++

return (length)

The output would be...

string Bamboozled length = 10
string = Humpty Dumpty length 13

The function xstrlen() is fairly simple. All that it does is keep
counting the characters till the end of string is not met. Or in other
words keep counting characters till the pointer s doesn't point to

Chapter 9: Puppetting On Strings	 339

,,) ̂ rcpy()
This function copies the contents of one string into another. The
base addresses of the source and target strings should be supplied
to this function. Here is an example of strcpy() in action...

main()

char source] = "Sayonara
char target[201;

strcpy (target, source)
printf (\nsource string = %s', source);
printf (\ntarget string = %s", target)

And here is the output...

source string = Sayonara
target string Sayonara

On supplying the base addresses, strcy() goes on copying the
characters in source string into the target string till it doesn't
encounter the end of source string ('\O'). It is our responsibility to
see to it that the target string's dimension is big enough to hold the
string being copied into it. Thus, a string gets copied into another,
piece-meal, character by character. There is no short cut for this.
Let us now attempt to mimic strcpy(), via our own string copy

function, which we will call xstrcpyQ.

main()

char source[Sayonara
char target[20];

xstrcpy (target, source)

340
	

Let Us C

printf (\nsource string = %s', source)
pnntf (\ntarget string =,%s, target)

xstrcpy (char t, char s)

while ('s!O)
{

=
s++;

I

The output of tht program would be.,.

source string Sayonara
target string Sayonara

Note that having copied the entire source string into the target
string, it is necessary to place a \O' into the target string, to mark
its end.

If you look at the prototype of strcpy() standard library function,
it looks like this...

strcpy (char *t const char 's)

We didn't use the keyword const in our version of xstrcpy() and
still our function worked correctly. So what is the need of the
const qualifier?

What would happen if we add the following lines beyond the last
statement of xstrcpy()'?.

Chapter 9: Puppelting On Strings 	 341

S=S-8;
='K';

This would change the source string to "Kayonara". Can we not
ensure that the source string doesn't change even accidentally in
xstrcpy? We can, by changing the definition as follows:

void xstrcpy (char t, const char s)

while (s''\O')

=

t++;

'1 =

By declaring char * as const we are declaring that the source
strung should remain constant (should not change). Thus the const
qualifier ensures that your program does not inadvertently alter a
variable that you intended to be a constant. It also reminds
anybody reading the program listing that the variable is not
intended to change.

We can use const in several situations. The following code
fragment would help you to fix your ideas about const further.

char *p = 'Hello' I' pointer is variable, so is string 1
p=M; I works ul

p 'Bye'; r works *1

const char *q 'Hello' 1 string is fixed pointer is not l
f error i

q = 'Bye'; P works 'I

342
	

ct Us C

char const s 'Hello" 1' string is fixed pointer is not 'I
'S =	 [* error '1
s 'Bye' P works 1

char * const I 'Hello' P pointer is fixed string is not 'I
1 works I

t='Bye' /* error

const char * const u = 'Hello' / string is fixed so is pointer
M; r error 'I

u 'Bye' r error 'I

The keyword const can be used in context of ordinary variables

like mt, float, etc. The following program shows how this can be

done.

main()

float r, a
const float pi 3.14

printf ('\nEnter radius of circle'
scanf ('%f'&r);
a p1 * r *
printf ('\nArea of circle %f', a)

strcat()

This function concatenates the source string at the end of the target
string. For example, "Bombay" and "Nagpur" oil
would result into a string "BombayNagpur". Here is an example of

strcat() at work.

main()

Chapter 9: Puppetting On Strings	 343

char source[] "Folks!
char target[30J = "Hello"

strcat (target, source)
printf ('\nsource string %s', source)
printf ("\ntarget string %s", target);

And here is the output...

source string = Folks!
target string HelloFoiks!

Note that the target string has been made big enough to hold the
final string. I leave it to you to develop your own xstrcat() on
lines of xstrlen() and xstrcpyO.

strcmp()

This is a function which compares two strings to find out whether
they are same or different. The two strings are compared character
by character until there is a mismatch or end of one of the strings
is reached, whichever occurs first. If the two strings are identical,
strcmp() returns a value zero. If they're not, it returns the
numeric difference between the ASCII values of the first non-
matching pairs of characters. Here is a program which puts
strcmp() in action.

main()

char string [I "Jerry'
char stnng2[I 'Ferry'
ml i,j,k;

= strcmp (stringi, "Jerry')
= stremp (stringi, sthng2)

344	 Let Us

k strcmp (stringi, 'Jerry boy')

pnntl ('\n%d %d %d", i, j, k);

And here is the output...

04-32

In the first call to strcmp(), the two strings are identical—"Jerry"

and "Jerry"—and the value returned by strcmp() is zero. In the
second call, the first character of "Jerry" doesn't match with the
first character of "Ferry" and the result is 4, which is the numeric
difference between ASCII value of 'J' and ASCII value of 'F'. In
the third call to strcmp() "Jerry" doesn't match with "Jerry boy",
because the null character at the end of "Jerry" doesn't match the
blank in "Jerry boy". The value returned is -32, which is the value
of null character minus the ASCII value of space, i.e., '\0' minus

which is equal to -32.

The exact value of mismatch will rarely concern us. All we usually
want to know is whether or not the first string is alphabetically
before the second string. If it is, a negative value is returned; if it
isn't, a positive value is returned. Any non-zero value means there
is a mismatch. Try to implement this procedure into a function
xstrcmp().

Two-Dimensional Array of Characters

In the last chapter we saw several examples of 2-dimensional
integer arrays. Let's now look at a similar entity, but one dealing
with characters. Our example program asks you to type your name.
When you do so, it checks your name against a master list to see if
you are worthy of entry to the palace. Here's the program...

Chapter 9: Puppetting On Strings 	 345

#define FOUND 1
#define NOTFOUND 0
main()

char masterist[6j[101
akshay,
parag,

Mraman
srinivas',
gopal
rajesh

nt i,fiaga;
char youmame[10];
phntf (\nEnter your name
scant ("%s", youmame);

flag :;: NOTFOUND:
for (i0;i<5;i++)

a strcmp (&niasterlist[i][01, yourname)
if (a =0)

printf (Welcome, you can enter the palnce
f1agFOUND;
break

if (flag == NOTFOUND)
printf (sorry, you are a trespasser

And here is the output for two sample runs of this program...

Enter your name dinesh
Sorry, you are a trespasser

346	 Let Us C

Enter your name raman
Welcome, you can enter the-palace

Notice how the two-dimensional character array has been
initialized. l'hc order of the subscripts in the array declaration is
important. The first subscript gives the number of names ill

array, while the second subscript gives the length of each item in

the array.

Instead of initializing names, had these names been supplied from
the keyboard, the program segment would have looked like this...

for (i0;i<5j++)
scanf (&masterlistjij[01

While comparing the strings through strcrnp(), note that the

addresses of the strings are being passed to strcrnp(). As seen in

the last section, if the two strings match, strcnip() would return a
value 0, otherwise it would return a non-zero value.

The variable flag is used to keep a record of whether the control
did reach inside the if or not. To begin with, we set flag to
NOTFOUND. Later through the loop if the names match, flag is
set to FOUND. When the control reaches beyond the for loop, if

flag is still set to NOTFOUND, it means none of the names in the

masterlisti 111 matched with the one supplied from the keyboard.

The names would be stored in the memory as shown in Figure 9.3.
Note that each String ends with a '\0. 'File arrangement as you can
appreciate is similar to that of a two-dimensional numeric array.

uuiiiiaI

nuauuu

MENAEU

65454

65464

65474

65484

65494

65504 65513
(last location)

C/ . 'e#9:Puppctiing On Strings	 347

Figure 9.3

Here, 65454, 65464, 65474, etc. are the base addresses of
successive names. As seen from the above pattern some of the
names do not occupy all the bytes rcscrvcd for them. For example,
even though 10 bytes arc reserved for storing the name "akshay",
it occupies only 7 bytes. Thus, 3 bytes go waste. Similarly, for
each name there is some amount of wastage. In fact, more the
number of names, more would be the wastage. Can this not be
avoided? Yes, it can be... by using what is called an 'array of
pointers', which is our next topic of discussion.

Array of Pointers to Strings

As we know, a pointer variable always cotaius an address.
Therefore, if we construct an array of pointers it would contain a
number of addresses. Let us see how the names in the earlier
example can be stored in the array of pointers.

char *names[I
'aks hay',
'parag",
"ía man"

348	 Let Us

'srinivas
'gopal";
raesh'

In this declaration names! J is an array of pointers. It contains base
addresses of respective names. That is, base address of"akshay" is

stored in names101, base address of "parag" is stored in namcslfl

and so on. This is depicted in Figure 94.

kshay\0	 Iaman\0 I	 [nivas\0 I
182	 195	 201

[opaJ\0	 ajesh\0 j	 I paragj
210	 216	 189

names[)

182	 189	 195	 20!	 210	 216 j
65514	 65516	 65518	 65520	 65522	 65524

Figure 9.4

In the two-dimensional array of characters, the strings occupied 60
bytes. As against this, in array of pointers, the strings occupy only
41 bytes—a net saving of 19 bytes. A substantial saving, you
would agree. But realize that actually 19 bytes are not saved, since
12 bytes are sacrificed for storing the addresses in the array

names! I . Thus, one reason to store strings in an array of pointers

is to make a more efficient use of available memory.

Another reason to USC an array of pointers to store strings is to
obtain greater case in manipulation of the strings, ThÉs is shown by

Chapter 9: Puppetting On Strings 	 349

the following programs. The first one uses a two-dimensional
array of characters to store the names, whereas the second uses an
array of pointers to strings. The purpose of both the programs is
very simple. We want to exchange the position of the names
"raman" and "srinivas".

I* Exchange names using 2-0 array of characters */
mjn()

char names[][10] =
'akshay,
parag,

"raman',
"sñnivas",
"gopaI,
"rajesh"

mt
char t;

pnntf ("\nOriginal: %s %s, &names[2][0], &names[3][01);

for (iO;i<=9;i++)

t names[21[ij;
names[2J[i] names[3j;
names[31[i] t;

printf (nNew: %s %s", &names[21[01, &names[3][0]);

And here is the output,..

Original: raman snnivas
New: srinivas raman

24

350
	

Let Us C

Note that in this program to exchange the names we are required
to exchange corresponding characters of the two names. In effect,
10 exchanges are needed to interchange two names.

Let us see, if the number of exchanges can be reduced by using an
array of pointers to strings. Here is the program...

main()

char names(I =
'akshay',
'pa rag"
'raman",
"snnivas
'gopar
'rajesh'

char *temp;

printf ('Original: %s %s", names[21, names[31);

temp names[21
names[2] namesl31
names[3] = temp:

printf ('\nNew: %s %s", names[2], names(3])

And here is the output..

Original: raman snnivas
New: srinivas raman

The output is same as the earlier program. In this program all that
we are required to do is exchange the addresses (of the names)
stored in the array of pointers, rather than the names thefas&lvcs.

Chapter 9: Puppetting On Strings 	 351

Thus, by effecting just one exchange we are able to interchange
names. This makes handling strings very convenient.

Thus, from the point of view of efficient memory usage and ease
of programming, an array of pointers to strings definitely scores
over a two-dimensional character array. That is why, even though
in principle strings can be stored and handled through a two-
dimensional array of characters, in actual practice it is the array of
pointers to strings, which is more commonly used.

Limitation of Array of Pointers to Strings

When we are using a two-dimensional array of characters ' we are
at liberty to either initialize the strings where we are declaring the
array, or receive the strings using stnf() function. However,
when we are using an array of pointers to strings we can initialize
the strings at the place where we are declaring the array, but we
cannot receive the strings from keyboard using scanf(). Thus, the
following program would never work out.

main()

char 'names[6]

mt I;

for (kO;i<5;i++)

pnntf (\nEnter name');
scanf('%s', names[i1)

The program doesn't work because; when we are declaring the
array it is containing garbage values. And it would be definitely

352
	

Let Us C

wrong to send these garbage values to scanf() as the addresses
where it should keep the strings received from the keyboard.

Solution

If we are bent upon receiving the strings from keyboard using

scanf() and then storing their addresses in an array of pointers to
strings we can do it in a slightly round about manner as shown
below.

#include alloc.h'
main()

char 'names[61;
char n[50]
nt teni;
char tp;

for (iO;i<5;i)

printf (\nEnter name
scarif(%s n)
ten strlen (n)
P malloc (len + 1)
strcpy(p,n);
names[i] p:

for (iO;i<5;i+)
printf ('\n%s' namestil):

Here we have first received a name using scanf() in a string nI 1.

Then we have found out its length using strlen() and allocated

space for making a copy of this name. This memory allocation has
been done using a standard library function called malloc(). This

Chapter 9: Puppetting On Strings	 353

function requires the number of bytes to be allocated and returns
the base address of the chunk of memory that it allocates. The
address returned by this function is always of the type void *

Hence it has been converted into char * using a feature called
typecasting. Typecasting is discussed in detail in Chapter 15. The
prototype of this function has been declared in the file aIloc.h'.
Hence we have #included this file.

But why did we not use array to allocate memory? This is because
with arrays we have to commit to the size of the array at the time
of writing the program. Moreover, there is no way to increase or
decrease the array size during execution of the program. In other
words, when we use arrays static memory allocation takes place.
Unlike this, using malloc() we can allocate memory dynamically,
during execution. The argument that we pass to malloc() can be a
variable whose value can change during execution.

Once we have allocated the memory using malloc() we have
copied the name received through the keyboard into this allocated
space and finally stored the address of the allocated chunk in the
appropriate clement of namesi I the array of pointers to strings.

This solution suffers in performance because we need to allocate
memory and then do the copying of string for each name received
through the keyboard.

Summary
(a) A string is nothing but an array of characters terminated by

(b) Being an array, all the characters of a string are stored in
contiguous memory locations.

(c) Though scanf() can be used to receive multi-word strings,
gets() can do the same job in a cleaner way.

(d) Both printf() and puts() can handle multi-word strings.

354	 Let Us C

(e) Strings can be operated upon using several standard library
functions like strienO, strcpy(), strcat() and strcmp()
which can manipulate strings. More importantly we imitated
some of these functions to learn how these standard library
functions are written.

(0 Though in principle a 2-D array can be used to handle several
strings, in practice an array of pointers to strings is preferred
since it takes less space and is efficient in processing strings.

(g) . malloc() function can be used to allocate space in memory
on the fly during execution of the program.

Exercise

Simple strings

IAI What would be the output of the following programs:

(a) main()

char c[2]
printf (\n%c", c[O1);
printf (\n%s", C);

(b) main()

char s[]	 Get organised! learn C!!
printf (fl\fl%,

&s[21)
printf (\n%s', s);
printf ("\n%s, &s);
pnntl(\n%c, s{21);

(c) main()

char s[j "No two viruses work similarly'

Chapter 9: Puppetting On Strings	 355

mt iO;
while (s[i]	 0)

printf ('\n%c %c, s[iJ, *(s + i))
printf (\n%c %c,i[s], 	 + s))

)

(d) main()

char s[] Churchgate: no church no gate
char t[25]
char	 tt;
55 S

while (!	 O)
=

pntI ("\n%s4 , t);

(e) main()

char sIrl[
char str2[]	 HeIlo

pnntf (\n%s, stri)
printf (\n%s, str2);

(f) main(

pnntf (5 + Good Morning);

(g) main()

printf("%c, abcdefgh[4);

356
	

Let Us C

(h) main()

pnntf ("\n%d%d", sizeof (3), sizeof (3), szeof (3));

IBI Point out the errors, if any, in the following programs:

(a) main()

char strl	 United"
char str2	 Front
char *str3
str3 strcat (strl, str2)
printi ('\n%s', str3)

(b) main()

mt arr[]{A''B,C'D'};
mt	 I
for (1=0 i<= 3; i++

prinif ('\n%d, arn(i]);

(c) main()

char arr[8] "Rhombus
mt I
for(i=0 ; i7; ++)

pnntf (\n%d, tarr);
arr++;

CI Fill in the blanks:

	

(a) "A" is a 	 while 'A' is a

Chapter 9. Puppetting On Strings	 357

(b) A string is terminated by a 	 character, which is written
as

(c) The array char namel101 can consist of a maximum of
characters.

(d) The array elements arc always stored in 	 memory
locations.

101 Attempt the following:

(a) Which is more appropriate for reading in a multi-word string?

gets()	 printI()	 scanf()	 puts()

(b) If the string "Alice in wonder land" is fed to the following
scanf() statement, what will be the contents of the arrays
stri, str2, str3 and str4?

scanf ("%s%s%s%s%s" stri, str2, str3, str4)

(c) Write a program that converts all lowercase characters in a
given string to its equivalent uppercase character.

(d) Write a program that extracts part of the given string from the
specified position. For example, if the sting is "Working with
strings is fun", then if from position 4, 4 characters are to be
extracted then the program should return string as "king".
Moreover, if the position from where the string is to be
extracted is given and the number of characters to be
extracted is 0 then the program should extract entire string
from the specified position.

(e) Write a program that converts a string like "124" to an integer
124.

(I) Write a program that replaces two or more consecutive blanks
in a string by a single blank. For example, if the input is

358
	

Let Us C

Grim	 return	 to the	 planet	 of	 apes!!

the output should be

Grim return to the planet of apes!!

Two-dimensional array, Array of pointers to strings

[El Answer the following:

(a) How many bytes in memory would be occupied by the
following array of pointers to strings? How many bytes would
be required to store the same strings, if they are stored in a
two-dimensional character array?

char 'mess[]
"Hammer and tongs",
"Tooth and nail",
"Spit and polish',
"You and C"

(b) Can an array of pointers to strings be used to collect strings
from the keyboard'? If not, why not?

IF1 Attempt the following:

(a) Write a program that uses an array of pointers to strings str[}.
Receive two strings stri and str2 and check if stri is
embedded in any of the strings in strj J. If strl is found, then
replace it with str2.

char 'str() =
"We will teach you how to...",
"Move a mountain",
"Level a building",
"Erase the past",

Chapter 9: Puppetting On Strings 	 359

'Make a million",:Make
 through C'

II

For example if stri contains "mountain" and str2 contains
"car", then the second string in str should get changed to
"Move a car".

(b) Write a program to sort a set of names stored in an array in
alphabetical order.

(c) Write a program to reverse the strings stored in the following
array of pointers to strings:

char 's[]
'To err is human...
'But to really mess things up...',
'One needs to know C!!'

1-lint: Write a function xstrrev (string) which should reverse
the contents of one string. Call this function for reversing
each string stored in s.

(d) Develop a program that receives the month and year from the
keyboard as integers and prints the calendar in the following
format.

360
	

Let Us C

September 2004

Mon	 Tue
	 Wed Thu	 Fri
	

Sat
	

Sun
2	 3
	

4
	

5

6	 7
	

8	 9	 10
	

12
13	 14
	

15	 16	 17
	

18
	

19

20	 21
	

22	 23	 24
	

25
	

26

Note that according to the Gregorian calendar 01/01/1900 was
Monday. With this as the base the calendar should be
generated.

(c) Modify the above program suitably so that once the calendar
for a particular month and year has been displayed oil
screen, then using arrow keys the user must be able to change
the calendar in the following manner:

Up arrow key	 : Next year, same month
Down arrow key : Previous year, same month
Right arrow key : Same year, next month
Left arrow key	 : Same year, previous month

If the escape key is hit then the procedure should stop.

Hint: Use the getkey() function discussed in Chapter 8,
problem number [LJ(c).

(f) A factory has 3 division and stocks 4 categories of products.
An inventory table is updated for each division and for each
product as they are received. There are three independent
suppliers of products to the factory:

Chapter 9: Puppetting On Strings 	 361

(a) Design a data format to represent each transaction.
(b) Write a program to take a transaction and update the

inventory.
(c) If the cost per item is also given write a program to

calculate the total inventory values.

(g) A dequeue is an ordered set of elements in which elements
may be inserted or retrieved from either end. Using an array
simulate a dequeue of characters and the operations retrieve
left, retrieve right, insert left, insert right. Exceptional
conditions such as dequeue full or empty should be indicated.
Two pointers (namely, left and right) are needed in this
simulation.

(h) Write a program to delete all vowels from a sentence. Assume
that the sentence is not more than 80 characters long.

(i) Write a program that will read a line and delete from it all
occurrences of the word 'the'.

(j) Write a program that takes a set of names of individuals and
abbreviates the first, middle and other names except the last
name by their first letter.

(k) Write a program to count the number of occurrences of any
two vowels in succession in a line of text. For example, in the
sentence

"Pleases read this application and give me gratuity"

such occurrences are ca, ea, ul.

362	 Let Us

I0 Structures
Why Use Structures

Declaring a Structure
Accessing Structure Elements -
How Structure Elements are Stored

Array of Structures
Additional Features of Structures
Uses of Structures
Summary
Exercise

363

364	 Let Us

W

hich mechanic is good enough who knows how to repair
only one type of vehicle? None. Same thing is true about
C language. It wouldn't have been so popular had it been

able to handle only all ints, or all floats or all chars at a time. In
fact when we handle real world data, we don't usually deal with
little atoms of information by themselves—things like integers,
characters and such. Instead we deal with entities that are
collections of things, each thing having its own attributes, just as
the entity we call a 'book' is a collection of things such as title,
author, call number, publisher, number of pages, date of
publication, etc. As you can see all this data is dissimilar, for
example author is a string, whereas number of pages is an integer.
For dealing with such collections, C provides a data type called
'structure'. A structure gathers together, different atoms of
information that comprise a given entity. And structure is the topic
of this chapter.

Why Use Structures

We have seen earlier how ordinary variables can hold one piece of
information and how arrays can hold a number of pieces of
information oLthsaapdjjype . Thgs—t.wodata jypcs_cafl
handle a great variety of situations. But quite often we deal with
entities that are collection of dissimilar dataypes.

For example, suppose you want to store data about a book. You
might want to store its name (a string), its price (a float) and
number of pages in it (an int). If data about say 3 such books is to
be stored, then we can follow two approaches:

(a)Construct individual arrays, one for storing names, another for
storing prices and still another for storing number of pages.

(b) Use a structure variable.

Let us examine these two approaches one by one. For the sake of
programming convenience assume that the names of books would

ter 10: Structures
	 365

be single character long. Let us begin with a program that uses
arrays.

main()

char name[3]
float price[3]
nt pages[3), I

printf ('\riEnter names, prices and no. of pages of 3 books\n')

for (i0 j < 2; +1-)
scanf ("%c %f %d, &name[i], &pricelil, &pages[i]);

pnntf (\nAnd this is what you entered\n);
for (i0;k=2;i++)

printf (%c %f %d\n', name[i], price[i], pages[i]);

And here is the sample run...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 25650 682
F 233,70 512

And this is what you entered
A 100.000000 354
C 256.500000 682
F 233.700000 512

This approach no doubt allows you to store names, prices and
number of pages. But as you must have realized, it is an unwieldy
approach that obscures the fact that you are dealing with a group
of characteristics related to a single entity—the hook.'

25

3
	

Let Us C

The program becomes more difficult to handle as the number of
items relating to the book go on increasing. For example, we

\I would be required to use a number of arrays, if we also decide to
store name of the publisher, date of purchase of book, etc. To solve
this problem, C provides a special data type—the structure.

A structure Contains a number of data types grouped together.
These data types may or may not be of the same type. The
following example illustrates the use of this data type.

main()

struct book

char name
float price;
nt pages;

struct book bi, b2, b3;

printi (nEnter names, prices & no. of pages of 3 books\n);
scanf ("bc %f %d', 01 .name. MI .price, &bl pages);
scant (%c %f %d, &b2.name, &b2.pnce, &b2.pages);
scanf ("%C %f %d, &b3.name, &b3.price, &b3.pages);

prtntf (\nAnd this is what you entered') ;
prntf ("'1n%c %f %d, bi name, bi price, bi pages);
printf ("\n%c %f %d, b2.name, b2,price, b2,pages);
printf (\n%c %f %dR, b1name, b1price, b1pages);

And here is the output...

Enter names, prices and no. of pages of 3 books
A 100.00 354
C 256.50 682
F 233.70 512

Chapter 10: Structures
	 367

And this is what you entered
A 100.000000 354
C 256,500000 682
F 233.700000 512

This program demonstrates two fundamental aspects of structures:

(a) declaration of a scrc..
(b) sjofsruc1ure_c1emcnts

Let us now look at these concepts one by one.

Dec1arg!uc!u!e
In our example program, the following statement declares the
structure type:

struct book

char name;
float price;
mt pages;

This statement defines a new data type called struct book. Each
variable of this data type will consist of a character variable called
name, a float variable called price and an integer variable called
pages. The general form of a structure declaration statement is
given below:

struct <structure name>

structure element'l
structure element 2;
structure element 3;

368
	

Let Us C

Once the new structure data type has been defined one or more
variables can be declared to be of that type. For example the
variables hi, b2, b3 can be declared to be of the type struct book,
as,

struct book 1, b2, b3;

This statement sets aside space in memory. It makes availabl
space to hold all the elements in the structure—in this case, \ 7
bytes—one for name, four for price and two for pages. These
bytes are always in adjacent memory locations.

If we so desire, we can combine the declaration of the structure
type and the structure variables in one statement.

For example,

struct book

char name
float price;
nt pages

struct book bl,b2b3;

is same as...

struct bç'ok

char name;
float pdcp
nt pages;

}bl,b2b3,
or even...

struct

Chapter 10: Structures
	 369

char name
float price
mt pages;

}bl,b2,b3;

Like primary variables and arrays, 	 c4!rxariaIJes can also e
initialized where they are declared.	 _rmaL_4js_Rtjte
similartoAbat used to initiate arrays.

struct book

char name[10]
float price;
nt pages;

struct book bi {Basic, 130,00,550);
struct book b2 { Physics', 150.80, 800);

Note the following points while declaring aurjye:

(a) The closing brace, in the sype declaration must be
followeimicolon.

(b) It is impo? ntt inderstand that a structure type declaration
does not tell the compiler to reserve any space in memory. All
a structure declaration does is, it defines the 'form' of the
structure.

(c) Usually structure type declaration appears at the top of the
source code file, before any variabi M ' 'ons are defined.
In very large programs t ey are usually put in a separate
headeLftle, and the file is include& (using the preôcior
directive #incl4) in whichever program we want to use this
strure.-Lype.

370
	

Let Us C

Accessing Structure Elements

Having declared the structure type and the structure variables, let
us see how the elements of the structure can be accessed.

In arrays we can access individual elements of an array using a
subscript. Structures use a different scheme. They use a dot C)
operator. So to refer to pages of the structure defined in our
sample program we have to use,

bi pages

Similarly, to refer to price we would use,

bi price

Note that before the dot there must always be a structure variable
and after the dot there must always be a structure element.

How Structure Elements are Stored

Whatever be the elements of a structure, they are always stored in
cpItioI&mrnQry 1otions. The following program would
illustrate this:

r Memory map of structure elements 1

main()

struct book

char name;
float price;
mt pages;

struct book bi ('B, 130.00, 550);

printf (\nAddress of name %u, &bl name);

Chapter 10. Structures	 371

pnntf ("\nAddress of price = %u', &bl price);
printf (\nAddress of pages %u, &bl pages);

Here is the output of the program...

Address of name = 65518
Address of price 65519
Address of pages 65523

Actually the structure elements are stored in memory as shown in
the Figure 10.1.

biname	 bI.pricc	 bI.pages

B'	 130.00	 550

65518	 65519	 65523

Figure 10.1

Array of Structures

Our sample program showing usage of structure is rather simple
minded. All it does is, it receives values into various structure
elements and output these values. But that's all we intended to do
anyway... show how structure types are created, how structure
variables are declared and how individual elements of a structure
variable are referenced.

In our sample program, to store data of 100 books we would be
required to use 100 different structure variables from bi to WOO,
which is definitely not very convenient. A better approach would
be to use an array of structures. Following program shows how to
use an array of structures.

372
	

Let Us C

/* Usage of an array of structures
main()

struct book
{

char name;
float price;
nt pages;

struct book b[100)
nt

for (iO ; i<99; .s-+)

pri nil (nEnter name, price and pages);
scanf ('%c %f %d, &b[i]name, &bj.price, &b[i],pages);

for (O;i<9;i++)
printf (\n%c %f %d, b[iJ.narne, b[i}.price, b[i].pages);

linkfloat()

float a=O,*b;
b = &a; I' cause emulator to be linked *1

a *b; /suppress the warning - variable not used * /

Now a few comments about the program:

(a) Notice how the array of structures is declared.,.

struct book b[100];

Chapter 10: Structures
	 373

This provides space in memory for 100 structures of the type
struct book.

(b) The syntax we use to reference each element of the array b is
similar to the syntax used for arrays of hits and chars. For
example, we refer to zeroth book's price as b[O1.price.
Similarly, we refer first book's pages as b(lj.pages.

(c) It should be appreciated what careful thought Dennis Ritchie
has put into C language. He first defined array as a collection
of similar elements; then realized that dissimilar data types
that are often found in real life cannot be handled using
arrays, therefore created a new data type called structure. But
even using structures programming convenience could not be
achieved, because a lot of variables (bi to blOO for storing
data about hundred books) needed to be handled. Therefore he
allowed us to create an array of structures; an array of similar
data types which themselves are a collection of dissimilar data
types. Flats off to the genius!

(d) In an array of structures all elements of the array are stored in
adjacent memory locations. Since each element of this array is
a structure, and since all structure elements are always stored
in adjacent locations you can very well visualise the
arrangement of array of structures in memory. In our example,
b(OJ's name, price and pages in memory would be
immediately followed by bill's name, price and pages, and
so on.

(e) What is the function linkfloat() doing here? If you don't
define it you are bound to get the error "Floating Point
Formats Not Linked" with majority of C Compilers. What
causes this error to occur? When parsing our source file, if the
compiler encounters a reference to the address of a float, it
sets a flag to have the linker link in the floating-point
emulator. A floating point emulator is used to manipulate
floating point numbers in runtime library functions like

374
	

ds C

scanf() and atof(). There are some cases in which the
reference to the float is a bit obscure and the compiler does
not detect the need for the emulator. The most common is
using scanf() to read a float in an array of structures as
shown in our program.

How can we force the formats to be linked? That's where the
linkfloat() function comes in. It forces linking of the
floating-point emulator into an application. There is no need
to call this function, just define it anywhere in your program.

A itional Features of Structures

Let us now explore the intricacies of structures with a view of
programming convenience. We would highlight these intricacies
with suitable examples:

(a) The values of a structure variable can be assigned to another
structure variable of the same type using the assignment
operator. It is not necessary to copy the structure elements
piece-meal. Obviously, programmers prefer assignment to
piece-meal copying. This is shown in the following example.

main()

struct employee

char name[1 01:
nt age;
float salary;

struct employee el { Sanjay, 30, 5500.50
struct employee e2, e3;

1* piece-meal copying /
strcpy (e2.name, el.name)
e2.age el.age;

Chapter 10: Structures
	

375

e2.salary el salary;

1* copying all elements at one go *f
e3 e2;

printf ("\n%s %d %f, el name, el age, el salary);
printf ("\n%s %d %r, e2,name, e2.age, e2,salary);
prinif (\n%s %d %t", e1name, e1age, e3.salary);

}

The output of the program would be...

Sanjay 30 5500.500000
Sanjay 30 5500500000
Sanjay 30 5500.500000

Ability to copy the contents of all structure elements of one
variable into the corresponding elements of another structure
variable is rather surprising, since C does not'allow assigning
the contents of one array to another just by equating the two.
As we saw earlier, for copying arrays we have to copy the
contents of the array element by element.

This copying of all structure elements at one go has been
possible only because the structure elements are stored in
contiguous memory locations. Had this not been so, we would
have been required to copy structure variables element by
element. And who knows, had this been so, structures would
not have become popular at all.

(b) One structure can be nested within another structure. Using
this facility complex data types can be created. The following
program shows nested structures at work.

main()

struct address

376
	

Let Us C

char phonei5
char city[25
nt pin

struct emp

char nameE25l;
struct address a

struct emp e = { 'jeru, 1 531046 , ngpur, 10 };

printf (\nname %s phone %s', e.name, e.a.phone);
printf ('\ncity %s pin = %d, e.a.city, e.a.pin);

}

And here is the output...

name jew phone = 531046
city nagpur pin 10

Notice the method used to access the element of a structure
that is part of another structure. For this the dot operator is
used twice, as in the expression,

ea.pin or e.a.city

Of course, the nesting process need not stop at this level. We
can nest a structure within a structure, within another
structure, which is in still another structure and so on... till the
time we can comprehend the structure ourselves. Such
construction however gives rise to variable names that can be
surprisingly self descriptive, for example:

maruti.engine.bottiarge.qty

Chapter 10: Structures
	

377

This clearly signifies that we are referring to the quantity of
large sized bolts that fit on an engine of a maruti car.

(c) Like an ordinary variable, a structure variable can also be
passed to a function. We may either pass individual structure
elements or the entire structure variable at one go. Let us
examine both the approaches one by one using suitable
programs.

1 Passing individual structure elements
main()

struct book

char name[251
char author[25]
mt calino

struct book bi = (Let us C', YPK', 101);

display (bi name, bi author, bi .callno)

display (char s, char *t int n

prinff('\n%s %s %d', s, t, n);

And here is the output...

Let usCYPK 101

Observe that in the declaration of the structure, name and
author have been declared as arrays. Therefore, when we call
the function display() using,

display (bi name, bi author, bi .callno)

378
	

Let Us C

we are passing the base addresses of the arrays name and

author, but the value stored in calino. Thus, this is a mixed
call--a call by reference as well as a call by value.

It can he immediately realized that to pass individual elements

wcld b,,-come more tedious as the number of structure
eLements go on increasing. A better way would be to pass the
entire structure variable at a time. This method is shown in the

following program.

struct book

char name251;
char author[25);
nt cailno;

rnain()

struct book bi ('Let us C', 'YPK', 101);
display (bl);

display (struct book b)

printf ('\n%S %s %d', b.name, b.author, b.callno)

And here is the output...

Let us CYPK 101

Note that here the calling of function display() becomes quite

compact,

display(bi);

Chapter 10: Structures	 379

Having collected what is being passed to the display()
function, the question comes, how do we define the formal
arguments in the function. We cannot say,

struct book bi

because the data type struct book is not known to the
function display. Therefore, it becomes necessary to define
the structure type struct book outside main(), so that it
becomes known to all functions in the program.

(d) The way we can have a pointer pointing to an int, or a pointer
pointing to a char, similarly we can have a pointer pointing to
a struct. Such pointers are known as structure pointers'.

Let us look at a program that demonstrates the usage of a
structure pointer.

main()

struct book

char name[25);
char authorl251;
ml cailno

struct book bi { ' Let us C, 'YPK', 101 };
struct book *ptr;

ptr&b1
printf (n%s %s %d*, bi name, bi .author, bi .callno):
prinif ('\n%s %s %d', ptr->name, ptr->author, ptr->callno);

The first printf() is as usual. The second printf() however is
peculiar. We can't use ptr.name or ptr.callno because ptr is
not a structure variable but a pointer to a structure, and the dot

i1:iI]
	 Let Us C

operator requires a structure variable on its left. In such cases
C provides an operator ->, called an arrow operator to refer to
the structure elements Remember that on the left hand side of
the '.' structure operator, there must always be a structure
variable, whereas on the left hand side of the '->' operator
there must always be a pointer to a structure. The arrangement
of the structure variable and pointer to structure in memory is
shown in the Figure 10.2.

bi name	 bl.author	 bl.callno

LctUsC	 YPK

65472	 65497	 65522

ptr

LI654i
65524

Figure 10.2

Can we not pass the address of a structure variable to a
function? We can. The following program demonstrates this.

1' Passing address of a structure variable
I

struct book

char nameE25)
char author251;
mt calino

main()

struct book bi ("Let us C, YPK, 101 };
display (&bl);

Chapter 10: Structures
	 381

display (struct book *b)

printf (\n%s %s %d", b-'name, b->author, b->callno);

And here is the output...

Let us YPK 101

Again note that to access the structure elements using pointer
to a structure we have to use the '->' operator.

Also, the structure struct book should be declared outside
main() such that this data type is available to display() while
declaring pointer to the structure.

(e) Consider the following code snippet:

stRict emp

nt a;
charch;
float s;

structempe;
pnntf ('%u %u %u, &e.a, &e.ch, &e.$);

If we execute this program using TC/TC+-+ compiler we get
the addresses as:

65518 65520 65521

As expected, in memory the char begins immediately after
the mt and float begins immediately after the char.

26

382
	

Let Us C

However, if we run the same program using VC+-4- compiler
then the output turns but to be:

1245044 1245048 1245052

It can be observed from this output that the float doesn't get
stored immediately after the char. In fact there is a hole of
three bytes after the char. Let us understand the reason for
this. VC++ is a 32-bit compiler targeted to generate code for a
32-bit microprocessor. The architecture of this microprocessor
is such that it is able to fetch the data that is present at an
address, which is a multiple of four much faster than the data
present at any other address. Hence the VC++ compiler aligns
every element of a structure at all that is multiple of
four. That's the reason wh y there were three holes created

between the char and the float.

However, some programs need to exercise precise control
over the memory areas where data is placed. For example,
suppose we wish to read the contents of the boot sector (first
sector oil floppy/hard disk) into a structure. For this the
byte arrangement of the structure elements must match the
arrangement of various fields in the boot sector of the disk.

The #pragma pack directive otTers a way to fulfill this
requirement. This directive specifies packing alignment for
structure members. The pragma takes effect at the first
structure declaration afIcr the pragma is seen. Turbo C/C++
compiler doesn't support this feature, VC++ compiler does.
The following code shows how to use this directive.

#pragma pack(1)
struct emp

nt a;
char ch
float s;

Chapter 10: Structures
	

383

pragma pack()

struct emp e;
pntf ('%u %u %u, &e.a, &e.ch, &e.$);

Here, #pragma pack (I) lets each structure clement to begin
oil i-byte boundary as justified by the output of the program
given below:

1245044 1245048 1245049

Uses of Structures

Where are structures useful? The immediate application that
comes to the mind is Database Management. That is. to maintain
data about employees in an organization, books in a library, items
in a store, financial accounting transactions in a company etc. But
mind you, use of structures stretches much beyond database

^purp

(a) Cijan ging the size of the cursor
(b) clearing the contents of the scrccn

(c) position on screen
(d) Drawing any graphics shape on the screen
(e) Receiving a key from the keyboard
(f) Checking the memory size of the computer
(g) Finding out the list of equipment attached to the computer
Ji)— Formaiting a floppy
)- Hiding a file from the directory

(j) Displaying the directory of a disk
(k) Sending the output to printer
(1) Interacting with the mouse

And that is certainly a very lmvessivc list! At least impressive
enough to make you realize how important a data type a structure
is and to be thorough with it if you intend to program any of the

384	 Let Us

above applications. Some of these applications would be discussed
in Chapters 16 to 19.

Summary
A structure is usually used when we wish to store dissimilar

data together.
Structure elements can he accessed through a structure -
variable using a dot () operator.

(c) Structure elements can be accessed through a pointer to a
strucir_using the arrow (>) operator.

(d) All elements of one structure variable can be assigned to
another structurc variable using the assignment (=) operator.

(e) It is possible V , pass a structure variable to a function either

by value or by address.
(1) It is possible to create all 	 of structures.

Exercise

IAI What would be the output of the following programs:

(a) main()

struct gospel

mt num;
char messl[50]
char mess2[501;

m.num1;
strcpy (m.messl 1f all that you have is hammer');
strcpy (mmess2 Everything looks like a nail") ;

1' assume that the strucure is located at add?ess 1004 */
printf(\n%u %;' %u, &m,num, m.messl, m.mess2);

Chapter 10: Structures	 385

(b) struct gospel

mt num;
char messl[50)
char mess2[50];

ml	 { 2, 'II you are driven by success',
'make sure that it is a quality drive'

main()

struct gospel m2, m3;
m2 ml
m3 m2;
pnntf('\n%d %s %s', minum, m2.messl, m3.mess2);

fBj Point out the errors, if any, in the following programs:

((a) T main()

struct employee

char name[25]
nt age;
float bs;

struct employee e;
strcpy (ename, 'Hacker);
age 25;
printf ("n%s %d", ename, age);

(b) main()

struct

char name[25];

Let Us C

char language101

struct employee e ("Hacker, 'C');
printt ("\n%s %d' e.narne, eianguage);

(c) struct virus

char sgnaturet25
char status[20]
mt size;

)v[21={
'Yankee Doodle', "Deadly', 1813,
'Dark Avenger, "Killer', 1795

main()

mt
for (i0;i<l ;i++)

printf ("\n%s W. vsignature, v,status)

(d) structs

char ch
mt I
float a;

main()

struct s var (C, 100, 12.55);
f(var);
g(&var);

f(s(ructs v)

printf('n%c%d V. v->ch,v->i,V->a)

Chapter 10: Structures
	 387

g(structs tv)

pnntf (n%c %d %f', v.ch, vi, v.a);

(e) struct s

nt i;
struct s •p

main()

struct S varl, var2;

vanli 100;
var2.i200;
van .p &var2;
var2.p &varl
pnntl (n%d %d, van •p -> I, var2.p ->

[C) Answer the following:

(a) Ten floats are to be stored in memory. What would you
prefer, an array or a structure?

(b) Given the statement,

marutiengine.bolts 25;

which of the following is True?

1. structure bolts is nested within structure engine
2. structure engine is nested within structure maruti
3. structure maruti is nested within structure engine
4. structure maruti is nested within structure bolts

(c) State True or False:

1. All structure elements arc stored in contiguous memory
locations.

UM
	

Let Us C

2. An array should be used to store dissimilar elements, and
a structure to store similar elements.

3. In an array of structures, not only are all structures stored
in contiguous memory locations, but the elements of
individual structures are also stored in contiguous
locations.

(d) struct time

mt hours;
mt minutes
mt seconds

struct time 'tt:
tt =

Looking at the above declarations, which of the following
refers to seconds correctly:

1. tt.seconds
2. ().seconds
3. time.t
4. tt -> seconds

[Dl Attempt the following:

(a) Create a structure to specify data on students given below:

Roll number, Name. Department, Course, Year of joining

Assume that there are not more than 450 students in the
collage.

(a) Write a function to print names of all students who joined
in a particular year.

(b) Write a function to print the data of a student whose roil
number is given.

Chapter 10: Structures 	 389

(b) Create a structure to specify data of customers in a bank. The
data to be stored is: Account number, Name, Balance in
account. Assume maximum of 200 customers in the bank.
(a) Write a function to print the Account number and name

of each customer with balance below Rs. 100.

(b) If a customer request for withdrawal or deposit, it is
given in the form:

Acct. no, amount, code (1 for deposit, 0 for withdrawal)

Write a program to give a message, "The balance is
insufficient for the specified withdrawal".

(c) An automobile company has serial number for engine parts
starting from AAO to FF9. The other characteristics of parts to
be specified in a structure are: Year of manufacture, material
and quantity manufactured.
(a) Specify a structure to store information corresponding to

a part.
(b) Write a program to retrieve information on parts with

serial numbers between BB and CC6.

(d) A record contains name of cricketer, his age, number of test
matches that he has played and the average runs that he has
scored in each test match. Create an array of structure to hold
records of 20 such cricketer and then write a program to read
these records and arrange them in ascending order by average
runs. Use the qusort() standard library function.

(e) There is a structure called employee that holds information
like employee code, name, date of joining. Write a program to
create an array of the structure and enter some data into it.
Then ask the user to enter current date. Display the names of
those employees whose tenure is 3 or more than 3 years
according to the given current date.

(1) Write a menu driven program that depicts the working of a
library. The menu options should be:

390
	

Let Us C

1. Add hook information
2. Display hook information
3. List all books of given author
4. List the title of specified book
5. List the count of books in the library
6. List the books in the order of accession number
7. Exit

Create a structure called library to hold accession number,
title of the book, author name, price of the book, and flag
indicating whether book is issued or not.

(g) Write a program that compares two given dates. To store date
use structure say date that contains three members namely
date, month and year. If the dates are equal then display
message as "Equal" otherwise "Unequal'.

(h) Linked list is a very common data structure often used to store
similar data in memory. While the elements of an array
occupy contiguous memory locations, those of a linked list
are not constrained to be stored in adjacent location. The
individual elements are stored "somewhere" in memory,
rather like a family dispersed, but still bound together. The
order of the elements is maintained by explicit links between
them. Thus, a linked list is a collection of elements called
nodes, each of which stores two item of information—an
element of the list, and a link, i.e., pointer or an address that
indicates explicitly the location o: the node containing the
successor of this list element.

Write a program to build a linked list by adding new nodes at
the beginning, at the end or in the middle of the linked list.
Also write a function display() w hich display all the nodes
present in the linked list.

(i) A stack is a data structure in which addition of new element
or deletion of existing clement always takes place at the same

Chapter JO: Structures	 391

end. This end is often known as 'top' of stack. This situation
can be compared to a stack of plates in a cafeteria where every
new plate taken off the stack is also from the top' of the
stack. There are several application where stack can be put to
use. For example, recursion, keeping track of function calls,
evaluation of expressions, etc. Write a program to implement
a stack using a linked list.

(j) Unlike a stack, in a queue the addition of new element takes
place at the end (called 'rear' of queue) whereas deletion takes
place at the other end (called 'front' of queue). Write a
prOgram to implement a queue using a linked list.

392	 Let Us C

11 Console
Input/Output

• Types of I/O
• Console I/O Functions

Formatted Console I/O Functions
sprint/() and sscan/() Functions
Unformatted Console I/O Functions

• Summary
• Exercise

393

394	 Let Us C

A

s mentioned in the first chapter, Dennis Ritchie wanted C
to remain confpact. In keeping with this intention he
deliberately omitted everything related with Input/Output

(I/O) from his definition of the language. Thus, C simply has no
provision for receiving data from any of the input devices (like say
keyboard, disk, etc.), or for sending data to the output devices (like
say VDU, disk, etc.). Then how do we manage I/O, and]low is it
that we were we able to use priti(f() and scanf() if C has nothing
to offer for I/O? This is what we intend to explore in this chapter.

Types of I/O

Though C has no provision for I/O, it of course has to be dealt with
at some point or the other. There is not much use writing a
program that spends all its time telling itself it Each
Operating System has its own facility for inputting and outputting
data from and to the files and devices. It's a simple matter for a
system programmer to—write it 	 small programs that would link
the C compiler for particular Operating system's I/O facilities.

The developers of C Compilers do just that. They write several
standard I/O functions and put them in libraries. These libraries are
available with all C compilers. Whichever . compiler you are
using it's almost certain that you have access to a library of I/O
functions.

Do understand that the I/O facilities with di fftrent operating
systems would he dilterent Thus, the way one OS displays output
oil may be different than the way another OS does it. For
example, the standard libraiy function printf() for DOS-based C
compiler has been written keeping in initid the way DOS outputs
characters to screen. Similarly, the printl() function for a Unix-
based compiler has been written keeping in mind the way Unix
outputs characters to screen. We as programmers do not have to
bother about which prin I f() has been vrtttcn in what manner. We
should just use printf() and it would take care of the rest of the

Chapter II: Console Input/Output 	 395

details that are OS dependent. Same is true about all other standard
library functions available for I/O.

There are numerous library functions available for I/O. These can
he classified into three broad categories:

(a)Console I/O functions - Functions to receive input
from keyboard and write
output to VDU.

(b) File I/O functions - Functions to perform I/O
operations on a floppy disk or
hard disk.

In this chapter we would be discussing only Console I/O functions.
File I/O functions would be discussed in Chapter 12.

Console I/O Functions

The screen and keyboard together are called a console. Console
I/O tinctions can be further classified into two categories—
formatted and unformitted console I/O flinctions. The basic
difference between them is that the formatted functions allow the
input read from the keyboard or the output displayed on the VDU
to be formatted as per our requirements. For example, if values of
average marks and percentage marks are to he displayed oil
screen, then the details like where this output would appear on the
screen, how many spaces would he present between the two
values, the number of paces after the decimal points etc. can be
controlled using formatted functions. The functions available
under each of these two categories are shown in Figure II . 1, Now
let us discuss these console I/O functions in detail.

396
	

Let Us C

Console input/Output functions

Formatted functions

PC
input	 Output

char	 scanf()	 printf(

^Int	

rcanf(

a
oat 	 anf()	 printf()

string)	 prinhf(

__	 c

Unformatted functions

Type Input	 Output

char	 gctch()	 putch(
gctche()	 putchur()
ELc

nit	 -	 -

float	 -	 -

string	 gets()	 puts(

Figure 11.1

Formatted Console I/O Functions

As can be seen from Figure 11.1 the functions printf(), and

scanf() fall under the category of formatted console 1/0 functions.

These functions allow us to supply the input in a fixed format and
let us obtain the output in the specified form. Let us discuss these
functions one by one.

We have talked a lot about printf(), used it regularly, but without
having introduced it formally. Well, better late than never. Its
general form looks like this...

pnntf (format string", list of variables);

The format string can contain:

(a) Characters that are simply printed as they are
(b) Conversion specifications that begin with a % sign

Chapter ii: Console input/Output	 397

(c) Escape sequences that begin with a \ sign

For example, look at the following program:

main()

mt avg 346;
float per 69.2;
printf (Average %d\nPercentage V. avg, per

The output of the program would be...

Average = 346
Percentage = 69,200000

How does printf() function interpret the contents of the format
string. For this it examines the format string from left to right. So
long as it doesn't come across either a % or a \ it continues to
dump the characters that it encounters, on to the screen. In this
example Average is dumped on the screen. The moment it
conies across a conversion specification in the format string it
picks up the first variable in the list of variables and prints its value
in the specified format. In this example, the moment %d is met the
variable avg is picked up and its value is printed. Similarly, when
an escape sequence is met it takes the appropriate action. In this
example, the moment \n is met it places the cursor at the beginning
of the next line. This process continues till the end of format string
is not reached.

Format Specifications

The %d and %f used in the printf() are called format specifiers.
They tell printf() to print the value of avg as a decimal integer
and the value of per as a float. Following is the list of format
specifiers that can be used with the printf() function.

27

398	 Let UsC

Figure 11.2

We can provide following optional specifiers in the format
specifications.

Specifier I Description

dd	 Digits specifying field width

Decimal point separating field width from precision
(precision stands for the number of places aflcr the
decimal point)

dd	 Digits specifying precision
Minus sign for lefi justifying the output in the
specified field width

Figure 11.3

Chapter 11: Console Input/Output	 399

Now a short explanation about these optional format specifiers.
The field-width specifier tells printf() how many columns on
screen should be used while printing a value. For example, %IOd
says, "print the variable as a decimal integer in a field of 10
columns". If the value to be printed happens not to fill up the
entire field, the value is right justified and is padded with blanks
on the left. If we include the minus sign in format specifier (as in
%-lOd), this means left justification is desired and the value will
be padded with blanks on the right. Here is an example that should
make this point clear.

main()

mt weight 63;

printi (*\nweight is %d kg', weight);
printf ("\nweight is %2d kg", weight)
printf ("\nweight is %4d kg", weight);
printi ("\nweight is %6d kg", weight);
printf ('thweight is %-6d kg", weight);

The output of the program would look like this

Columns	 0123456789012345678901234567890
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg
weight is 63 kg

Specifying the field width can be useful in creating tables of
numeric values, as the following program demonstrates.

main()

printf ("\n%f %f %r, 5.0, 13,5,133.9);

400
	

Let Us C

printf (\n%f %f %f, 305.0, 1200.9, 3005.3)

And here is the output...

5.000000 13.500000 133.900000
305.000000 1200.900000 3005.300000

Even though the numbers have been printed, the numbers have not
been lined up properly and hence are hard to read. A better way
would be something like this...

main()

printf ("\n%10.lf %10.11 %10.1, 5.0, 13.5, 133.9);
printf ("\n%lO.lf %10.1f %10.lf', 305.0, 1200.9, 3005.3);

This results into a much better output...

01234567890123456789012345678901

	

5.0	 13.5	 133.9

	

305.0	 1200.9	 3005.3

The format specifiers could be used even while displaying a string
of characters. The following program would clarify this paint:

I* Formatting strings with printf() I
main()

char firstnamel[1 Sandy"
char sumamel] Malya";
char firstname2() AjayKumar;
char sumame21 I = "Gurubaxani

printf (\n%20s%20s', firstnamel, sumamel);
pnntf (\n%20s%20s, firstname2, sumame2);

Chapter II: Console Input/Output 	 401

And here's the output...

012345678901234567890123456789012345678901234567890

	

Sandy	 Malya

	

AjayKumar	 Gurubaxani

The format specifier %20s reserves 20 columns for printing a
string and then prints the string in these 20 columns with riht
justification. This helps lining up names of different lengths
properly. Obviously, the format %-20s would have left justified
the string.

Escape Sequences

We saw earlier how the newline character, \n, when inserted in a
printf()'s format string, takes the cursor to the beginning of the
next line. The newlinc character is an 'escape sequence', so called
because the backslash symbol (\) is considered as an 'escape'
character—it causes. an escape from the normal interpretation of a
string, so that the next character is recognized as one having a
special meaning.

The following example shows usage of \n and a new escape
sequence \t, called lab'. A \t moves the cursor to the next tab stop.
A 80-column screen usually has 10 tab stops. In other words, the
screen is divided into 10 zones of 8 columns each. Printing a tab
takes the cursor to the beginning of next printing zone. For
example, if cursor is positioned in column 5, then printing a tab
takes it to column 8.

main()

printf ('You\tmust\tNe\tcrazy\nto\thate\tthjs\tok")

402	 Let Us C

And here's the output.

1	 2	 3	 4
01234567890123456789012345678901234567890
You	 must	 be	 crazy
to	 hate	 this	 book

The \n character causes a new line to begin following crazy' The
lab and newline are probably the most commonly used escape
sequences, but there are others as well. Figure 11 .4 shows a
complete list of these escape sequences.

Esc. Seq.	 Purpose	 Esc. Seq.	 Purpose

\n	 New line	 \t	 Tab

Backspace	 \r	 Carriage return

Form feed	 Alert

\'	 Single quote	 \11
	 quote

\\	 Backslash

Figure 11.4

The first few of these escape sequences are more or less self-
explanatory. \b moves the cursor one position to the left of its
current position. \r takes the cursor to the beginning of the line in
which it is currently placed. \a alerts the user by sounding the
speaker inside the computer. Form feed advances the computer
stationery attached to the printer to the top of the next page.
Characters that are ordinarily used as delimiters.., the single quote,
double quote, and the backslash can be printed by preceding them
with the backslash. Thus, the statement,

priritf ("He said, \Let's do it!\"")

Chapter 11: Console Input/Output	 403

will print...

He said, "Let's do it!"

So far we have been describing printf()'s specification as if we
are forced to use only %d for an integer, only %c for a char, only
%s for a string and so on. This is not true at all. In fact, printf()
uses the specification that we mention and attempts to perform the
specified conversion, and does its best to produce a proper result.
Sometimes the result is nonsensical, as in case when we ask it to
print a string using %d. Sometimes the result is useful, as in the
case we ask printf() to print ASCII value of a character using
%d. Sometimes the result is disastrous and the entire program
blows up.

The following program shows a few of these conversions, some
sensible, some weird.

main()

char ch
mt k125;
float a12.55;
char s[] "hello there!"

printf (tn%c %d %f", ch, ch, ch);
printf ("\n%s %d %, s, s, s);
prinlf ('\n%c %d %r,i ,i, i);
printf ("\n%f %d\n", a, a);

And here's the output

z 122 -9362831782501783000000000000000000000000000.000000
hello there 3280 -
9362831782501 783000000000000000000000000000.000000

125 -9362831782501783000000000000000000000000000.000000

404	 Let Us C

12.550000 0

I would leave it to you to analyze the results by yourselves. Some
of the conversions you would find are quite sensible.

Let us now turn our attention to scanf(). scanf() allows us to
enter data from keyboard that will be formatted in a certain way.

The general form of scanf() statement is as follows:

scanf ("format string", list of addresses of variables)

For example:

scanf (%d %f %c", &c, &a, &ch)

Note that we are sending addresses of variables (addresses are
obtained by using &' the address of operator) to scanf(
function. This is necessary because the values received from
keyboard must be dropped into variables corresponding to these
addresses. The values that are supplied through the keyboard must
he separated by either blank(s), tab(s), or newlinc(s). Do not
include these escape sequences in the format string.

All the format specifications that we learnt in printf() function are
applicable to scanf() function as well.

sprintf() and sscanf() Functions

The sprintf() function works similar to the printf() function
except for one small difference. Instead of sending the output to
the screen as printf() does, this function writes the output to an
array of characters. The following prograni illustrates this.

main()

Chapter 1/: Console Input/Output 	 405

mt i1O;
char ch 'A';
float a 3.14
char strt201;

printf ('n%d %c %, I, ch, a);
sprint! (str, "%d %c %f, i, ch, a)
print! (\n%s', str)

In this program the printf() prints out the values oh, ch and a on
the screen, whereas sprintf() stores these values in the character
array str. Since the string str is present in memory what is written
into str using sprintf() doesn't get displayed on the screen. Once
str has been built, its contents can be displayed on the screen. In
our program this was achieved by the second prin(f() statement.

The counterpart of sprintf() is the sscanf(function. It allows us
to read characters from a string and to convert and store them in C
variables according to specified fomiats. The sscanf() function
comes in handy for in-memory conversion of characters to values.
You may find it convenient to read in strings from a file and then
extract values from a string by using sscanf(). The usage of
sscanf() is same as scanf(), except that the first argument is the
string from which reading is to take place.

Unformatted Console I/O Functions

There are several standard library functions available under this
category—those that can deal with a single character and those
that can deal with a string of characters. For openers let us look at
thre which handle one character at a time.

So far for input wcve consistently used the scanf() function.
However, for SOC situations the scanf() function has one glaring
weakness.., you need to hit the Enter key before the function can

406	 Let Us C

digest what you have typed. However, we often want a function
that will read a single character the instant it is typed without
waiting for the Enter key to be hit. getch() and getche() are two
functions which serve this purpose. These functions return the
character that has been most recently typed. The 'e' in getche()
function means it echoes (displays) the character that you typed to
the screen. As against this getch() just returns the character that
you typed without echoing it on the screen. getchar() works
similarly and echo's the character that you typed on the screen, but
unfortunately requires Enter key to be typed following the
character that you typed. The difference between getchar() and
Igetchar() is that the former is a macro whereas the latter is a
function. Here is a sample program that illustrates the use of these
functions.

main()

char ch

printf ("\nPress any key to continue");
getch() ; r will not echo the character /

printf ("\nType any character");
ch getche() ; I will echo the character typed *1

printf ("\nType any character");
getchar() ; I will echo character, must be followed by enter key I

printf ("\nContinue YIN")

fgetchar() 1 will echo character, must be followed by enter key 1

And here is a sample run of this program...

Press any key to continue
Type any character B
Type any character W
Continue YIN V

Chapter II: Console Input/Output 	 a	 407

putch() and putchar() form the other side of the coin. They print
a character on the screen. As far as the working of putch()
putchar() and fputchar() is concerned it's exactly same. The
following program illustrates this.

main()

char ch =

putch(ch);
putchar(ch);
Iputchar (ch);
putch (7'
putchar (7);
fputchar (7);

And here is the output...

AAAZZZ

The limitation of putch(), putchar() and fputchar() is that they
can output only one character at a time.

gets() and puts()

gets() receives a string from the keyboard. Why is it needed?
Because scanf() function has some limitations while receiving
string of characters, as the following example illustrates...

main()

char name[501

printf (\nEnter name);
scant (%s", name)
printf (%s", name)

408 Let UsC

And here is the output...

Enter name Jonty Rhodes
Jonty

Surprised? Where did "Rhodes" go? It never got stored in the array
name[1 because the moment the blank was typed after "Jonty"
scanf() assumed that the name being entered has ended. The result
is that there is no way (at least not without a lot of trouble on the
programmer's part) to enter a multi-word string into a single
variable (name in this case) using scanf(). The solution to this
problem is to use gets() function. As said earlier, it gets a string
from the keyboard. his terminated when an Enter key is hit. Thus,
spaces and tabs are perfectly acceptable as part of the input string.
More exactly, gets() gets it tiewlinc (\n) terminated string of'
characters from the keyboard and replaces the \n with a \O.

The puts() function works exactly opposite to gets() function, It
outputs a string to the screen.

I here is a program which illustrates the usage of thoe functions:

main()

char footbal!er[401;

puts ("Enter name'
gets (footballer) 1 sends base address of array /

puts (Happy footballing!"
puts (footballer)

Following is the sample output:

Enter name

Chapter 11. Console Input/Output 	 409

Jonty Rhodes
Happy ootballing!
Jonty Rhodes

Why did we use two puts() functions to print "Happy
footballing!" and "Jonty Rhodes"? Because, unlike printf(),
puts() can output only one string at a time. If we attempt to print
two strings using puts(), only the first one gets printed. Similarly,
unlike scanf(), gets() can be used to read only one string at a
time.

Summary
(a) There is no keyword available in C for doing input/output,
(h) All 1/0 in C is done using standard library functions.
(c) There are several functions available for performing console

input/output.
(d) The formatted console I/O functions can force the user to

receive the input in a fixed format and display the output in a
fixed format.

(e) There are several format specifiers and escape sequences
available to format input and output.

(fl Unformatted console I/O functions work faster since they do
not have the overheads of formatting the input or output.

Exercise

IAJ What would be the output of the following programs:

(a) main()

charch;
ch = getchar()
if (islower (ch))

putchar(toupper(ch));
else

putchar (tolower (ch))

410
	

Let Us C

(b) main()

intl	 2;
float 	 25367;
char str(] "Life is like that"

printf ("\n%4d\t%3.3f\t%4s" I, f, str);

(c) main()

printf ("More often than \b\b not \rthe person who \
wins is the one who thinks he can!")

(d) char p[) = "The sixth sick sheikhs sixth ship is sick"
main()

mt 1=0;
white (pi]

putch (Ii])

IBI Point out the errors, if any, in the following programs:

(a) main()

mt
char a(I "He!lo
while W=

printf("%c", "a);
a+;

Chapter 11: Console I'zput/Output 	 411

(b) main()

double dval;
scanf (%f, &dval)
printf (\nDoubIe Value %lr, dval);

(c) main()

intival
scani ("%d\n", &n);
pntf ("\nlnte9er Value %d, ival);

(d) main()

char 'mess[5J
for(iO;v5 i++)

scanf ("%s", mess[iJ);

(e) main()

mt dd, mm, yy;
pnntt ('\nEnter day, month and yearin');
scani (U%d%*c%d%* °/d" &dd, 8mm, &yy);
printf ('The date is: %d - %d - %d", dd, mm, yy);

(f) main()

char text
sprintf (text, "%4d\t%2.2f\n%s, 12, 3452, "Merry Go Round");
pnntf ("\n%s", text);

(g) main()

char bufferi50};

412
	

Let Us C

intno97;
double val = 2.34174
char nameE101 "Shweta

sprint! (buffer, "%d %lf %s, no, va, name);
print! (\n%s, buffer);
sscanf (buffer '%4d %2.211 %s, &no, &val, name);
printf (\n%s', buffer);
print! (\n%d %ff %S, no, vat, name)

ICI Answer the following:

(a) To receive the string "We have got the guts, you get the
glory!!" in an array char strilOOl which of the following
functions would you use?

1	 scanf ("%s", str)
2. gets (str);
3. getche (str)
4. fgetchar (str);

(b) Which function would you use if a single key were to be
received through the keyboard?

L. scanf()
2. gcts()
3. getche()
4. getchar()

(c) If an integer is to be entered through the keyboard, which
function would you use?

I. scanf()
2. gets()
3. getche()
4. getchar(ç)

Chapter /1: console Input/Output 	 413

(d) If a character string is to he received through the keyboard
which function would work faster?

I. scanf()
2. gets()

(e) What is the difference between getchar(), fgetchar(),
getch() and getche()?

(1) The format string of a printf() function can contain:

I. Characters, format specifications and escape sequences
2. Character, integers and floats
3. Strings, integers and escape sequences
4. Inverted commas, percentage sign and backslash character

(g) A field-width specifier in a printf() function:

1. Controls the margins of the program listing
2. Specifies the maximum value of a number
3. Controls the size of type used to print numbers
4. Specifies how many columns will be used to print the

number

1 9 1 Answer the following:

(a) Write down two functions xgets() and xputs() which work
similar to the standard library functions gets() and putsQ.

(b) Write down a function getint(), which would receive a
numeric string from the keyboard, convert it to an integer
number and return the integer to the calling function. A
sample usage of getint(is shown below:

main()

nt a

28

414
	

Let Us C

agetint():
printf ('you entered %d", a)

12 File Input/Output
• Data Organization
• F41c Operations

Opening a File
Reading from a File
Trouble in Opening a File
Closing the File

• Counting Characters, Tabs, Spaces,
• A File-copy Program

Writing to a File
• File Opening Modes
• String (line) 1/0 in Files

The Awkward Newline
• Record 1/0 in Files

• Text Files and Binary Files
• Record I/O Revisited
• Database Management
• Low Level Disk I/O

A Low Level File-copy Program
• I/O Under Windows
• Summary
• Exercise

415

416	 Let Us C

O

ften it is not enpugh to just display the data on the screen.
This is because if the data is large, only a limited amount
of it can be stored in memory and only a limited amount

of it can be displayed on the screen. It would be inappropriate to
store this data in memory for one more reason. Memory is volatile
and its contents would be lost once the program is terminated. So
if we need the same data again it would have to be either entered
through the keyboard again or would have to be regenerated
programmaticallY. Obviously both these operations would be
tedious. At such times it becomes necessary to store the data in a
manner that can be later retrieved and displayed either in part or in
whole. This medium is usually a 'file' on the disk. This chapter

discusses how file I/O operations can be performed.

Data Organization

Before we start doing file input/Output let us first find out how data
is organized on the disk. All data stored oil disk is in binary
form. How this binary data is stored on the disk varies from one
OS to another. Ilowever, this does not affect the C programmer
since he has to use only the library functions written for the
particular OS to be able to perform input/output . It is the compiler

vendor's responsibility to correctly implement these library
functions by taking the help of OS. This is illustrated in Figure

12.1.

Our program	
Library

functions

Figure 12.1

Chapter 12: File Input/Output 	 417

File Operations,

There are different operations that can be carried out on a file.
These are:

(a) Creation of a new file
(h) Opening an existing file
(c) Reading from a file
(d) Writing to a file
(e) Moving to a specific location in a tile (seeking)
(f) Closing a tile

Let us now write a program to read a file and display its contents
on the screen. We will first list the program and show what it does,
and then dissect it line by line. Here is the listing...

r Display contents of a file on screen.
include 'stdio.h'
main()

FILE *fp;
char ch;

fp fopen ("PR1.C", r')

while (1)

ch fgetc (fp);

if(chEOF)
break;

printf (%c", ch);

fclose (fp)

418	 Let Us C

On execution of this program it displays the contents of the life
'PR! .C' on the screen. Let us now understand how it does the
same.

Opening a File

Before we can read (or write) information from (to) a file on a disk
we must open the file. To open the file we have called the function
fopen(). It would open a file "PR IC" in 'read' mode, which tells
the C compiler that we would he reading the contents of the file.
Note that "r" is a string and not a character hence the double
quotes and not single quotes. In fact Iopen() performs three
important tasks when you open the file in "r" mode:

(a) Firstly it searches oil 	 disk the file to be opened.
(h) Then it loads the file from the disk into a place in memory

called buffer.
(c) It sets up a character pointer that points to the first character

of the buffer.
Why do we need a buffer at all? Imagine how inefficient it would
be to actually access the disk every time we want to read a
character from it. Every time we read something from a disk, it
takes some time for the disk drive to position the read/write head
correctly. On a floppy disk system, the drive motor has to actually
start rotating the disk from a standstill position every time the disk
is accessed. 11 this were to be done for every character we read
from the disk, it would take a long time to complete the reading
operation. This is where a buffer comes in. It would be more
sensible to read the contents of' the file into the buffer while
opening the tile and then read the file character by character from
the buffer rather than from the disk. This is shown in Figure 12.2.

Chapter 12: File Input/Output	 419

Figure 12.2

Same argument also applies to writing information in a file.
Instead of writing characters in the file on the disk one character at
a time it would be more efficient to write characters in a buffer and
then finally transfer the contents from the buffer to the disk.

To be able to successfully read from a file information like mode
of opening, size of file, place in the file from where the next read
operation would be performed, etc. has to be maintained. Since all
this information is inter-related, all of it is gathered together by
fopen() in a structure called FILE. fopen() returns the address of
this structure, which we have collected in the structure pointer
called fp. We have declared fp as

FILE tfp;

42Q__

The FILE structure has been defined III header file "stdio.h"
(standing for standard ' Input/output header file). Therefore, it is
necessary to #includc this file.

Reading from a File

Once the file has been opened for reading using fopen(), as we
have seen, the file's contents are brought into buffer (partly or
wholly) and a pointer is set up that points to the first character in
the buffer. This pointer is one of the elements of the structure to
which fp is pointing (refer Figure 12.2).

To read the file's contents from memory there exists a function
called fgetc(). This has been used in our program a,

ch fgetc (Ip)

fgetc() reads the character from the current pointer position,
advances the pointer position so that it now points to the next
character, and returns the character that is read, which we collected
in the variable ch. Note that once the file has been opened, we no
longer refer to the file by its name, but through the file pointer fp.

We have used the function fgetc() within an indefinite while loop.
There has to be a way to break out of this while. When shall we

break out... the moment we reach the end of file. But what is end
of file? A special character, whose ASCII value is 26, signifies end
of file. This character is inserted beyond the last character in the

file, when it is created.

While reading from the file, when fgetc() encounters this special
character, instead of returning the character that it has read, it
returns the macro EOF. The EOF macro has been defined in the

file "stdio.h". III of the function fgetc() we could have as

well used the macro getc() with the same effect.

Chapter 12: File Input/Output 	 421

In our program we go on reading each character from the file till
end of file is not met. As each character is read we display it on the
screen. Once out of the loop, we close the tile.

Trouble in Opening a File

There is a possibility that when we try to open a file using the
function fopen(), the file may not he opened. While opening the
tile in 'Y" this may happen because the file being opened
may not be present on the disk at all. And you obviously cannot
read a file that doesn't exist. Similarly, while opening the file for
writing, fopen() may fail due to a number of reasons, like, disk
space may he insufficient to open a new file, or the disk may he
write protected or the disk is damaged and so on.

Crux of the matter is that it is important for any program that
accesses disk files to check whether a file has been opened
successfully before trying to read or write to the file. If the file
opening fails due to any of the several reasons mentioned above,
the fopen() function returns a value NULL (defined in "stdio.h"
as #defune NUlL 0). Here is how this can he handled in a
program...

#include "stdio.h"
main()

FILE •1p

fp fopen t: 'PR1.C, 'r")
if(fp 	 NULL)

puts (cannot open file*)
exit()

}

422
	

Let Us

Closing the File

When we have Iinishc1 reading from the file, we need to close it.
This is done using the function fclosc() through the statement,

Iclose (fp)

Once we close the tile we can no longer read from it using getc()
unless we reopen the file. Note that to close the file we don't use
the filename but the file pointer fp. On closing the file the buffer
associated with the file is removed from memory.

In this prograin we have opened the file for reading. Suppose we
open a file with an intention to write characters into it, This time
too a buffer would get associated with it. When we attempt to
write characters into this file using fputc() the characters would
get written to the buffer. When we close this file using fclose(
three operations would be performed:

(a) The characters in the butler would he written to the file on the
disk.

(b) At the end of file a character with ASCII value 26 would get
written.

(c) The buffer would be eliminated from memory.

You can imagine a possibility when the buffer may become full
before we close the file. In such a case the butler's contents would
be written to the disk the moment it becomes full. All this butler
management is done for us by the library functions.

Counting Characters, Tabs, Spaces,

Having understood the first file I/O program in detail let us now
try our hand at one more. Let us write a program that will read a
file and count how many characters, spaces, tabs and newlines are
present in it. Here is the program...

Chapter 12: File 1nput/0u1pu 	 423

/* Count chars, spaces, tabs and newlines in a file I
include 'stdio.h"
main()

FILE *fp;
char ch
mt nol z O not O nob O,nocO;

Ip fopen ("PR1.C', r");

while(1)

ch = fgetc (Ip);

if(ch==EOF)
break;

noc++

if (ch
nob++

if ch
nol++;

if ch ==
not++

(close fp);
printf (\nNumber of characters %d, nec)
printf (\nNumber of blanks %d, nob);
printf ("\nNumber of tabs %d", not)
printf ("\nNumber of lines %d", nol);

424	 Let Us C

Here is a sample run...

Number of characters 125
Number of blanks 25
Number of tabs 13
Number of tines 22

The above statistics are true for it file "PRI.C', which I had on my
disk. You may give any other Filename and obtain different results.
I believe the program is self-explanatory.

In this program too we have opened the file for reading and then
read it character by character. Let us now try a program that needs
to open it file for writing.

A File-copy Program

We have already used the function fgetc() which reads characters
from a file. Its counterpart is a function called fputc() which
writes characters to a file. As it practical use of thesç character I/O
functions we can copy the contents of one file into another, as
demonstrated in the Following program, This program takes the
contents of a file and copies them into another file, character by
character.

#include 'stdio.h
main()

FILE fs, *ft
char ch

fs fopen (pr1.c, 'r")
if(fs= NULL)

puts ("Cannot open source file"
exitO;

Chapter 12: File Input/Output 	 425

ft fopen (pr2.c, "wv);
if (ft =NULL)

puts ("Cannot open target file")
fclose (fs).;
exitQ;

while (1)

ch fgetc (fs);

if (ch	 EOF)
break;

else
fputc(ch,ft);

fclose (fs);
fclose (ft)

I hope most of the stuff in the program can be easily understood,
since it has already been dealt with in the earlier section. What is
new is only the function fputcQ. Let us see how it works.

Writing to a File

The fputc() function is similar to the putch() function, in the

sense that both output characters. however, putch() function
always writes to the VDU, whereas, fputc() writes to the file.
Which file? The file signified by ft. The writing process continues
till all characters from the source file have been written to the
target file, following which the while loop terminates.

Let Us C

Note that our sample Ide-copy program is capable of copying only
text files. To copy files with extension .EXE or .COM, we need to
open the files in binary mode, a topic that would be dealt with in
sufficient detail in a later section.

File Opening Modes

In our first program on disk I/O we have opened the file in read
("r") mode. However, "r" is but one of the several modes in which
we can open a file. Following is a list of all possible modes in
which a file can be opened. The tasks performed by fopen() when
a file is opened in each of these modes are also mentioned.

"r" Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file cannot be opened fopen()
returns NULL.

Operations possible - reading from the file.

"W" Searches file. If the file exists, its contents are overwritten.
If the file doesn't exist, it new file is created. Returns
NULL, if unable to open file.

Operations possible - writing to the file.

"a' Searches file. If the file is opened successfully fopen()
loads it into memory and sets up a pointer that points to the
last, character in it. If the file doesn't exist, a new file is
created. Returns NULL, if unable to open file.

Operatians possible - adding new contents at the end of file.

'r+" Searches file. If is opened successfully fopen() loads it into
memory and sets up a pointer which points to the first
character in it. Returns NULL, if unable to open the tile.

Chapter 12: File_Input/Output	 427

Operations possible - reading existing contents, writing new
contents, modifying existing contents of the file.

Searches file. If the file exists, its contents are overwritten.
If the file doesn't exist a new file is created. Returns NULL,
if unable to open file.

Operations possible - writing new contents, reading them
back and modifying existing contents of thc tile.

"al-' Searches file. lf the file is opened successfully fopen()
loads it into memory and sets up a pointer which points to
the first character in it. If the file doesn't exist, a new file is
created. Returns NULL, if unable to open file.

Operations possible - reading - . sting contents, appending
new contents to end of file. Cannot modify existing
contents.

String (line) I/O in Files

For many purposes, character I/O is just what is needed. However,
in some situations the usage of functions that read or write entire
strings might turn out to be more efficient.

Reading or writing strings of characters from and to files is as easy
as reading and writing individual characters. Here is a program
that writes strings to a file using the function fputs().

f* Receives strings from keyboard and writes them to file 'I
#include stdio.h
main()

FILE fp;
char sf801;

428
	

Let Us C

Ip = fopen ("POEM.TXT", "wv);
if (fp	 NULL

puts (" Cannot open file"
exit()

pnntf ("\nEnter a few lines of text:\n')
while (strlen (gets (S)) >0

fputs(s,fp)
fputs("\n"fp);

fclose(fp)

And here is a sample run of the program...

Enter a few lines of text:
Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especially yours!

Note that each string is terminated by hitting enter. To terminate
the execution of the program, hit enter at the beginning of a line.
This creates a string of zero length, which the program recognizes
as the signal to close the file and exit.

We have set up a character array to receive the string; the fputs()
function then writes the contents of the array to the disk. Since

fputs() does not automatically add a newline character to the end
of the string, we must do this explicitly to make it easier to read
the string back from the file.

I ere is a program that reads strings from a disk file.

Chapter 12: File Input/Output	 ----	 429

P Reads strings from the file and displays them on screen I

#include 'stdioh"
main()

FILE *fp.
char s[80]

fp fopen ("POEM .TXT'. "r");
if(fp 	 NULL)

puts ('Cannot open fife")
exit(

while (fgets (s, 79, fp) 	 NULL)
printf('%s' ,$);

fclose (fp);

And here is the output...

Shining and bright, they are forever,
so true about diamonds,
more so of memories,
especialyyours

The Function fgets() takes three arguments. The first is the address
where the string is stored, and the second is the maximum length
of the string. This argument prevents fgets() from reading in too
long a string and overflowing the array. The third argument, as
usual, is the pointer to the structure FILE. When all the lines from
the file have been read, we attempt to read one more line, in which
case fgets() returns a NULL.

29

430	 Let Us C

The Awkward Newline

We had earlier written a program that counts the total number of
characters present in a file. If we use that program to count the
number of characters present in the above poem (stored in the file
"POEM.TXT"), it would give us the character count as 101, The
same file if seen in the directory, would be reported to contain 105
characters.

This discrepancy occurs because when we attempt to write a "\n"
to the file using fputs(), fpu(s() converts the \n to \r\n
combination. I lere \r stands for carriage return and \n for linefeed.
If we read the same line back using fgets() the reverse conversion
happens. Thus when we write the first line of the poem and a
using two calls to fputs(), what gets written to the tile is

Shining and bright, they are forever,\r\n

When the same line is read hack into the array si I using fgets(),
the array contains

Shining and bright, they are forever,\n\0

Thus conversion of \n to \r\n during writing and \r\n conversion to
\n during reading is a feature of the standard library functions and
not that of the OS. Hence the OS counts \r and \n separate
characters. In our poem there are four lines, therefore there is a
discrepancy of four characters (105 - 101).

Record I/O in Files

So far we have dealt with reading and writing only characters and
strings. What if we want to read or write numbers from/to file?
Furthermore, what if we desire to read/write a combination of
characters, strings and nurhbers? For this first we would organize
this dissimilar data together in a structure and lhcn use fprintf()

Chapter 12: File Input/Output	 431

and Iscanf() library functions to read/write data from/to file.
Following program illustrates the use of structures for writing
records of employees.

r Writes records to a file using structure I
#include Nstdioh
main()

FILE *fp.
char another
struct emp

char name[40];
I t. age:
float. bs:

struct emp e;

fp = fopen ("EMPLOYEE.DAT", "w");

it (tp	 NULL

puts ("Cannot open file");
exit()

while (another == 'Y)

pnntf ("\nEnter name, age and basic salary:");
scant (%s %d %r, e.name, &e,age, &e.bs);
fprintf (fp, %s %d %f\n", e.name, e.age, e.bs);

prinif ("Add another record (Y/N)");
Mush (stdin);
another = gelche(j;

fclose(fp),

432	 Let UsC

And here is the output of the program...

Enter name, age and basic salary: Sunil 34 1250.50
Add another record (YIN) V
Enter name, age and basic salary: Sameer 211300.50
Add another record (YIN) V
Enter name, age and basic salary: Rahul 34 1400.55
Add another record (Y/N) N

In this program we are Just reading the data into a structure
variable using scanf(), and then dumping it into a disk file using
fprintf(). The user can input as many records as he desires. The
procedure ends when the user supplies 'N' for the question 'Add
another record (YIN)'.

The key to this program is the function fprintfO, which writes the
values in the structure variable to the file. This function is similar
to printf(), except that a FILE pointer is included as the first
argument. As in printf(), we can format the data in a variety of
ways, by using fprintf(). In fact all the format conventions of
printf() function work with fprintf() as welt.

Perhaps you are wondering what for have we used the function
Mush(). The reason is to get rid of a peculiarity of scnnf(). After
supplying data for one employee, we would hit the enter key. What
scanf() does is it assigns name, age and salary to appropriate
variables and keeps the enter key unread in the keyboard buffer.
So when it's time to supply Y or N for the question Another
employee (YIN)', getch() will read the enter key from the buffer
thinking that user has entered the enter key. Toavoid this problem
we use the function Mush(). It is designed to remove or 'flush
out' any data remaining in the buffer. The argument to fflush()
must be the buffer which we want to flush out. Here we have used
'stdin', which means buffer related with standard input
device--keyboard.

Chapter 12: File Input/Output	 433

Let us now write a program that reads the employee records
created by the above program. Here is how it can be done...

/* Read records from a file using structure I

#include "stdio.h'
main()

FILE *fp;
struct emp

char name[40]
mt age;
float bs;

struct emp e;

fp = fopen (EMPLOYEE.DAT", "r");

if(fp== NULL)

puts ("Cannot open file');
exit()

while (fscanf (fp, "%s %d %f', e.name, &e.age, &e.bs) != EOF)
prmntf ('\n%s %d °i0r, e.name, e.age, ebs)

fclose (fp)

And here is the output of the program...

Sunil 34 1250.500000
Sameer 211300.500000
Rahul 34 1400.500000

434
	

Let Us C

Text Files and Binary Files

All the programs that we wrote in this chapter so far worked on
text files. Some of them would not work correctly on binary files.
A text file contains only textual information like alphabets, digits
and special symbols. In actualityactuality the ASCII codes of these
characters are stored in text files. A good example of a text file is
any C program, say PR I .C.

As against this, a binary file is merely a collection of bytes. This
collection might be a compiled version of a C program (say
PR1.EXE), or music data stored in a wave file or a picture stored
in a graphic file. A very easy way to find out whether a tile is a
text file or a binary file is to open that file in Turbo C/C++. If on
opening the file you can make out what is displayed then it is a
text file, otherwise it is a binary file.

As mentioned while explaining the file-copy program, the program
cannot copy binary files successfully. We can improve the same
program to make it capable of copying text as well as binary files
as shown below.

#include "stdio.h"
main()

FILE *fft;
intch

Is fopert ('pri .ex&, "rb)
if(fs 	 NULL)

puts (Cannot open source file)
exit(

ft fopen (newprl.exe, wb);

Chapter 12. File_Input/Output	 435

f (ft =NULL)

puts ('Cannot open target file')
fclose (fs
exit()

while (1)

ch fgetc (Is);

if(chEOF)
break;

else
fputc(ch,ft);

fclose (fs)
fclose (ft)

Using this program we can comfortably copy text as well as binary
files. Note that here we have opened the source and target files in
"rb" and "wb" modes respectively. While opening the file in text
mode we can use either "r" or "rt", but since text mode is the
default mode we usually drop the T.

From the programming angle there are three main areas where text
and binary mode files are different. These are:

(a) Handling of newlines
(h) Representation of end of file
(c) Storage of numbers

Let us explore these three differences.

436
	

Let Us C

Text versus Binary Mode: Newlines

We have already seen 'that, in text mode, a newline character is
converted into the carriage return-lincfced combination before
being written to the disk. Likewise, the carriage return-linefeed
combination on the disk is converted hack into a newlinc when the
file is read by a C program. However, if it file is opened in binary
mode, as opposed to text mode, these conversions will not take
place.

Text versus Binary Mode: End of File

The second difference between text and binary modes is in the way
the end-of-file is detctcd. In text mode, a special character, whose
ASCII value is 2. is inserted idler the List character ill file to
mark the end of file. If this character is dctected at ally point in the
file, the read function would return the LOP signal to the program.

As against this, there is no such special character present in the
binary mode tiles to mark the end of file. The binary mode files
keep track of the cod of file from the number of characters present
in the directory entr' of the file.

There is a moral to he derived from the end of file marker of text
mode files. If a file stores numbers in binary mode, it is important
that binary mode only be used for reading the numbers back, since
one of the numbers we store might well he the number 26
(hexadecimal 1 A). If this number is detected while we are reading
the file by opening it in text mode, reading would he terminated
prematurely at that point.

Thus the two modes are not compatible. Sec to it that the file that
has been written in text mode is read hack onl y in text mode.
Similarly, the file that has been written in binary mode must be
read hack only in binary mode.

Chapter 12: File Input/Output 	 437

Text versus Binary Mode: Storage of Numbers

The only function that is available for storing numbers in a disk
file is the fprintf() function, It is important to understand how
numerical data is stored on the disk by fprintl(). Text and
characters are stored one character per b yte, as we would expect.
Are numbers stored as they are in memory, two bytes for an
integer, four bytes for a float, and so on? No.

Numbers are stored as strings of characters. Thus, 1234, even
though it occupies two bytes in memory, when transferred to the
disk using fprintf(), would occupy four bytes, one byte per
character. Similarly, the floating-point number 1234.56 would
occupy 7 bytes oil Thus, numbers with more digits would
require more disk space.

hence if large amount of numerical data is to be stored in a disk
file, using text mode may turn out to be inefficient. The solution is
to open the file in binary mode and use those functions (frcad()
and fm-rite() which are discussed later) which store the numbers in
binary format. It means each number would occupy same number
of bytes on disk as it occupies in memory.

Record I/O Revisited

The record 1/0 program that we did in an earlier section has two
disadvantages:

(a) The numbers (basic salar y) would occupy more number of
bytes, since the file has been opened in text mode. This is
because when the file is opened in text mode, each number is
stored as a character siring.

	

(b) If t'	 t-er of fields in the structure increase (say, by

	

addini	 dress, house rent allowance etc.), writing structures

438
	

Let Us C

using fprintf(), or reading them using fscanf(), becomes

quite clumsy.

Let us now see a more efficient way of reading/writing records
(structures). This makes use of two functions frcad() and

fwrite(). We will write two programs, first one would write
records to the file and the second would rcid t;cc rccords from
the tile and display them on the screen.

1. Receives records from keyboard and writes them to a file in binary mode I
#include stdio.h
rnain()

ALE 1p;
char another =
struct emp

char name[40)
mt age;
float bs

struct emp e

fp fopen ("EMP.DAT", wb);

if(fp	 NULL)

puts (" Cannot open file")
exit(

while (another	 Y

printf ("\nEnter name, age and basic salary: ")
scanf ("%s %d %t", e.name, &e.age, &e.bs)
fwrite (&e, sizeof (e), 1, fp)

printf ("Add another record (YIN)");

Chapter 12: File Input/Output 	 439

Mush (stdin);
another getche(

fclose (fp)

And here is the output...

Enter name, age and basic salary: Suresh 24 1250.50
Add another record (YIN) Y
Enter name, age and basic salary Ranjan 21 1300.60
Add another record (Y/N) V
Enter name, age and basic salary. Harish 281400.70
Add another record (YIN) N

Most of this program is similar to the one that we wrote earlier,
which used fprintf() instead of fwrite(). Note, however, that the
file "EMP.DAT" has now been opened in binary mode.

The information obtained from the keyboard about the employee is
placed in the structure variable e. Then, the following statement
writes the structure to the file:

fwrite (&e, sizeol (e), 1 fp)

Here, the first argument is the address of the structure to be written
to the disk.

The second argument is the size of the structure in bytes. Instead
of counting the bytes occupied by the structure ourselves, we let
the program do it kr us by using the sizeof() operator. The
sizeof() operator gives the size of the variable in bytes. This keeps
the program unchanged in event of change in the elements of the
structure.

440
	

Let Us C

The third argument is the number of such structures that we want
to write at one time. In this case, we want to write only one
structure at a time. I-laa we had an array of structures, for example,
we might have wanted to write the entire array at once.

The last argument is the pointer to the file we want to write to.

Now, let us write a program to read back the records written to the

disk by the previous program.

r Reads records from binary file and displays them on VDU 1

#include "stdio.h"
main()

FILE fp
strict emp

char nameI40I
mt age
float bs;

S
struct emp C

fopen (EMP.DAT rb")

if(fp 	 NULL)

puts (Cannot open file')
exit()

while (tread (&e, sizeof (e) , 1, f p) 	 1)
printf (\n%s %d %f', e.name, e.age, cbs);

fclose(fp);

Chapter 12: File Input/Output	 441

Here, the fread() function causes the data read from the disk to be
placed in the structure variable e. The format of fread() is same as
that of fwrite(). The function fread() returns the number of
records read. Ordinarily, this should correspond to the third
argument, the number of records we asked for... I In this case. If
we have reached the end of file, since fread() cannot read
anything, it returns a 0. By testing for this situation, we know
when to stop reading.

As you can now appreciate. any database management application
in C must make use of fread() and fwrite() functions, since they
store numbers more efficiently, and make writing/reading of
structures quite easy. Note that even if the number of elements
belonging to the structure increases, the format of Iread() and
fwrite() remains same.

Database Management

So far we have, learnt record I/O in bits and pieces. However, in
any serious database management application, we will have to
combine all that we have learnt in a proper manner to make sense.
I have attempted to do this in the following menu driven program.
There is a provision to Add, Modify, List and Delete records, the
operations that are imperative in any database management.
Following comments would help you in understanding the
program easily:

- Addition of records must always take place at the end of
existing records in the file, much in the same way you would
add new records in a register manually.

- Listing records means displaying the existing records on the
screen. Naturally, records should be listed from first record to
last record.

- While modifying records, first we must ask the user which
record he intends to modify. Instead of asking the record

442
	

Let Us C

number to he modified. it would be more meaningful to ask for
the name of the employee whose record is to be modified. On
modifying the record, the existing record gets overwritten by
the new record.

- In deleting records, except for the record io be deieted, rest of
the rC((mist irst he written to a temporary file, then the
original tile must he deleted, and the temporary file must be
renamed back to original.

- Observe carefully the way the file has been opened, first for
reading & writing, and if this fails (the first time you run this
program it would certainly fail, because that time the file is not
existing), for writing and reading. It is imperative that the file
should be opened in binary mode.

- Note that the file is being opened only once and closed only
once, which is quite logical.

- clrscr() function clears the contents of the screen and
gotoxy() places the cursor at appropriate position on the
screen. The parameters passed to gotoxy() are column number
followed by row number.

Given below is the complete listing of the program.

r A menu-driven program for elementary database management 1
#include 'stdio.h'
main()

FILE *fp •ft;

char another, choice;
struct emp

char name[40]
nt age;
float bs;

Chapter 12: File Input/Output 	 443

struct emp e;
char empname[40)
long mt recsize;

fp fopen ("EMP.DAT", "rb+");

if(fp 	 NULL)

fp fopen (EMP,DAT", "wb+");

if(fp 	 NULL)

puts ("Cannot open file")
exit(

recsize sizeof (e);

while (1)

clrscr()

gotoxy(301O);
print? ("1. Add Records")
gotoxy(30, 12);
print? ("2. List Records")
gotoxy(30, 14);
print? ("3. Modify Records');
gotoxy(30, 16);
print? ("4. Delete Records');
gotoxy(30, 18);
print? (0. Exit');
gotoxy(3020);
print? ("Your choice")

Mush (stdin)
choice getche();

444
	

Let (Is C

switch (choice).

case '1,:

fseek(fp,O, SEEK-END)
another

while (another	 'Y')

printf (\nEnter name, age and basic sal.
scanf (*%s %d %f, e.name, &e.age, &e.bs);
fwrite (&e, recsize, 1, Ip):
printi (\nAdd another Record (YIN))
fflush(stdin);
another getche(

break;

case 2:

rewind (tp

while (tread (&e, recsize, 1 Ip) 	 1)
priritf (\n%s %d %r, e.name, e.age, ebs);

break;

case 3:

another
while (another 	 Y)

pnntf (\nEnter name of employee to modify);
scan! ("%s', empname);

rewind (fp);

	

while (fread (&e,	 recsize, 1 Ip) 	 1)

	

Chapter 12. File Input/Output	 445

if (strcmp (e.name, enipname) 	 0)

pnntf ('\nEnter new name, age & bs);
scant ('%s %d %f, e.name, &e.age,

&e.bs);
fseelc (Ip, - recsize, SEEK_CUR);
fwrite (&e, recsze, 1, fp);
break;

pnntf ('Modify another Record (YIN));
ffiush (stdin);
another getche;

}

break;

case 4':

another
while (another	 'Y')

pnntf ('\nEnter name of employee to delete');
scanf ('%s', empname);

ft=fopen('TEMP.DAr,wb')

rewind (fp);
while (fread (&e, recsize, 1 fp)	 1)

if (strcmp (e.name, empname) != 0)
fwrite(&erecsize, 1, ft);

fclose (fp);
fclose (ft);

446	 Let Us C

remove ("EMP.DAT");
rename ("TEMP.DAT EMP. DAT);

fp = fopen ("EMP.DAT," rb+"):

printf ("Delete another Record (YIN)")
fflush (stdin),
another = getche (),

break;
case 0':

fclose (fp),
exit(

To understand how this program works, you need to be familiar
with the concept of pointers.A pointer is initiated whenever we
open a file. On opening a file a pointer is set up which points to
the first record in the file. To be precise this pointer is present in
the structure to which the file pointer returned by fopen () points
to. On using the functions fread () or fwnte () the pointer moves
to the beginning of the next record. On closing a file the pointer is
deactivated. Note that the pointer movement is of utmost
importance since fread () aiwas reads that record where the
pointer is currently placed. Similarly, fwrite () always writes the
record where the pointer is currently placed

The rewind () function places the pointer to the beginning of the
file, irrespective of where it is present right now.

The fseek () function lets us move the pointer from one record to
another. In the program above, to move the pointer to the previous
record from its current position, we used the function,

Chapter 12: File Input/Output 	 447

fseek (fp,-recsize SEEK CUR);

Here, rccsize moves the pointer back by recsize bytes from the
current position. SEEK CUR is a macro defined in "stdio.h".

Similarly, the following fseek() would place the pomter beyond
the last record in the file.

fseek (fp. 0, SEEK_ END);

In fact recsize or 0 are just the offsets that tell the compiler by
how many bytes should the pointer be moved from a particular
position, The third argument could be SEEK—END, SEEK—CUR
or SEEK SET All these act as a reference from which the pointer
should be offset. SEEK—END means move the pointer from the
end of the file, SEEK—CUR means move the pointer with
reference to its current position and SEEK _SET means move the
pointer with reference to the beginning of the file.

If we wish to know where the pointer is positioned right now, we
can use the function ftell(). It returns this position as a long mt
which is an offset from the beginning of the file. The value
returned by ftell() can be used in subsequent calls to fseek(). A
sample call to ftell() is shown below.

position=ftell (fp)

where position is a long mt

Low Level Disk 110

In low level disk I/O, data cannot be written as individual
characters, or as strings or as formatted data. There is only one
way date can be written or read in low level disk I/O fanctions as
a buffer full of bytes.

448	 Let Us

Writing a buffer full of data resembles the fwrite() function.
However, unlike fwrite(.), the programmer must set up the buffer
for the data, place the appropriate values in it before writing,.and
take them out after writing. Thus, the buffer in the low level I/O
functions is very much a part of the program, rather than being
invisible as in high level disk I/O functions.

Low level disk I/O functions offer following advantages:

(a) Since these functions parallel the methods that the OS uses to
write to the disk, they are more efficient than the high level
disk I/O functions.

(b) Since there are fewer layers of routines to go through, low
level 110 functions operate faster than their high level
counterparts.

Let us now write a program that uses low level disk input/output
functions.

A Low Level File-copy Program

Earlier we had written a program to copy the contents of one file to
another. In that program we had read the file character by
character using fgetc(). Each character that was read was written
into the target file using fputc(). Instead of performing the 110 on
a character by character basis we can read a chunk of bytes from
the source file and then write this chunk into the target file. While
doing so the chunk would be read into the buffer and would be
written to the file from the buffer. While doing so we would
manage the buffer ourselves, rather than relying on the library
functions to do so. This is what is low-level about this program.
Here is a program which shows how this can be done.

I' File-copy program which copies text, .com and .exe files */
#inctude fcnll.h
#indude types.h r if present in Sys directory use

Chapter 12: File Input/Output	 449

'c:tcVUncIude\tss\\types.h' I
#indude 'stat.h' 1' if present in sys directory use

'c:\\tc\nclude\tsys\\.stat.h' 'I

main (mt argc, char 'argv[1)

char bufferj5l2) source [128), target [128);
mt inhandle, outhandle, bytes;

printf ('\nEnter source file name');
gets (source);

inhandle = open (source, 0_ROONLY I 0_13INARY);
if(inhandle==-1)

puts ('Cannot open file'
exit()

pntf ('In Enter target file name');
gets (target);

outhandle open (target, 0_CREAT I 0_BINARY I 0_WRONLY,
S_IWRITE);

9(inhandle== . 1)

puts ('Cannot open file');
close (inhandle);
exit()

while (1)

bytes read (inhandle, buffer, 512);

if (bytes > 0)
write (outhandle, buffer, bytes)

else

450

break:

close (inhandle);
close (outhandle):

Declaring the Buffer

The first difference that you will notice in this program is that we
declare a character buffer,

char buffer[512]

This is the buffer in which the data read from the disk will be
placed. The size of this buffer is important for effrcient operation.
Depending on the operating system, buffers of certain sizes are
handled more efficiently than others.

Opening a File

We have opened two files in our program, one is the source file
from which we read the information, and the other is the target
file into which we write the information read from the source file.

As in high level disk [JO, the file must be opened before we can
access it. This is done using the statement,

inhandle=open (source, 0_RDONLY I 0_BINARY);

We open the file for the same reason as we did earlier-to establish
communication with operating system about the file. As usual, we
have to supply to open(), the filename and the mode in which we
want to open the tile. The possible file opening modes are given
below

0—APPEND - Opens a file for appending

Chapter 12: File Input/Output 	 451

0_CREAT - Creates a new file for writing (has no effect
if file already exists)

0_RDONLY - Creates a new file for reading only
0_ RDWR - Creates a file for both reading and writing

0_WRONLY - Creates a file for writing only
0_BINARY - Creates a file in binary mode

O_ TEXT	 - Creates a file in text mode

These '0-flags' are defined in the file "fcntl.h". So this file must
be included in the program while usng low level disk 110. Note
that the file 'stdio.h" is not necessary for low level disk 1/0.
When two or more 0-flags are used together, they are combined
using the bitwise OR operator (I). Chapter 14 discusses bitwise
operators in detail.

The other statement used in our program to open the file is,

outhandle = open (target, 0_CREAT 10— BINARY I 0_WRONLY,
S-IWRITE),

Note that since the target file is not existing when it is being
opened we have used the 0_CREAT flag, and since we want to
write to the file and not read from it, there fore we have used
0_WRONLY. And finally, since we want to open the file in
binary mode we have used O_ BINARY.

Whenever O_ CREAT hag is used, another argument must be
added to open() function to indicate the read/write status of the
file to be created. This argument is called permission argument'.
Permission arguments could be any of the following:

S_I WRITE	 - Writing to the file permitted
S_tREAD	 - Reading from the file permitted

452	 Let Us

To use these permissions, both the files "types.h" and "stat.h" must
be #included in the program alongwith "fcntth".

File Handles

Instead of returning a FILE pointer as Iopen() did, in low level
disk I/O, open() returns an integer value called 'file handle'. This
is a number assigned to a particular file, which is used thereafter to
refer to the file. If open() returns a value of-I, it means that the
file couldn't be successfully opened.

Interaction between Buffer and File

The following statement reads the file or as much of it as will fit
into the buffer:

bytes read (inhandle, buffer, 512)

The read() function lakes three arguments. The first argument is
the file handle, the second is the address of the buffer and the third
is the maximum number of bytes we want to read.

The read() function returns the number of bytes actually read.
This is an important number, since it may very well be less than
the buffer size (5 12 bytes), and we will need to know just how full
the buffer is before we can do anything with its contents. In our
program we have assigned this number to the variable bytes.

For copying the file, we must use both the read() and the write()
functions in a while loop. The read() function returns the number
of bytes actually read. This is assigned to the variable bytes. This
value will be equal to the buffer size (512 bytes) until the end of
file, when the buffer will only be partially full. The variable bytes
therefore is used to tell write(), as to how many bytes to write
from the buffer to the target file.

Chapter 12: File Input/Output	 453

Note that when large buffers are used they must be made global
variables otherwise stack overflow occurs.

I/O Under Windows

As said earlier I/O in C is carried out using functions present in the
library that comes with the C compiler targeted for a specific Os.
Windows permits several applications to use the same screen
simultaneously. Hence there is a possibility that what is written by
one application to the console may get overwritten by the output
sent by another application to the console. To avoid such situations
Windows has completely abandoned console I/O functions. It uses
a separate mechanism to send output to a window representing an
application. The details of this mechanism are discussed in
Chapter 17.

Though under Windows console 1/0 functions are not used, still
functions like fprintf(), fscanf(), fread(). fwrite(), sprintf(),
sscanf() work exactly same under Windows as well.

Summary
(a) File 1/0 can be performed on a character by character basis a

line by line basis, a record by record basis or a chunk by
chunk basis.

(b) Different operations that can be performed on a file are—
creation of a new tile, opening an existing file, reading from a
file, writing to a file, moving to a specific location in a file
(seeking) and closing a file.

(c) File I/O is done using a buffer to improve the efficiency.
(d) A file can be a text file or a binary file depending upon its

contents.
(e) Library functions convert \n to \r\n or vice versa while

writing/reading to/from a file.

454
	 Let Us C

(f) Many library functions convert a number to a numeric stnng
before writing it to a file, thereby using more space on disk. This
can be avoided using functions fread() and fwrite().

(g) In low level file 110 we can do the buffer management
ourselves.

Exercise

(A) Point out the errors, if any, in the following programs:
(a) # include "stdio.h"
main ()

FILE *fp;
openuule ("Myfile txt", fp)
if (fp ==NULL)
printf ("Unable to open file...");

openfile (char *f, FILE **f)

*f fopen (fn, "r")

(b) # include "stdio.h"
main()

FILE *fp,
Char c;
fp=fopen ("TRY.C", "r");
if (fp == null)

puts ("Cannot open file")
exit(;

while ((c getc (fp)) != EOF)
putch (c)
fclose (fp)

Chapter 12: File input/Output	 455

(c) main ()

char fname[j = "c:\\students.dat ';
FILE *fp;
fp = fopen (fname, "tr');
if (fp = = NULL)
printf("\nUnable to open file...');

(d) main()

FILE *fp;
char str[801
fp = fopen ("TRY.C', r');
while (fgets (str, 80, fp) ! = EOF)
fputs (str)
Hose (fp);

(e) # include "stdio.h"

unsigned char;
FILE *fp;

fp = fopen ("trial", "r')
while ((ch getc (fp)) ! EOF)
printf ("%c',ch)
Hose (fp)

(f) main ()

FILE $fp;
char name [251
mt age;

fp = fopen ("YOURS", "r);

456
	

Let Us C

while (fscanf (Ip, "%s %d, name, &age) NULL)
Iclose(fp);

(g) main()

ALE •fp;
char names[20)
nt i
fp fopen ('studentsc", wb")
for (iO;i<1O++)

puts ("\nEnter name")
gets (name);
fwrite (name, size of (name), 1, ip)

close (ip);

(h) main()

FILE *fp;
char name[20] z "Ajay;
nt
Ip fopen (studentsc. "r
for (iO;v1O:i++)

fwnte (name, sizeof (name), 1, fp);
close (fp);

(i) #include "icntl.h
main()

mt fp;
fp open (pr22.c , r);
if(fp=-1

puts (cannot open le")
else

close (fp);

Chapter 12: File Input/Output	 457

(j) main()

mt tp;
fp fopen ('students-c", READ I BINARY):
if (Ip	 -1)

puts ('cannot open file');
else

dose (fp);

fBI Answer the following:

(a) The macro FILE is defined in which of the following files:

I. stdlib.h
2. stdio.c
3. io,h
4. stdio.h

(b) If a file contains the line "I am a boy\r\n" then on reading this
line into the array strf I using fgets() what would strf I
contain?

I. I am a boy\r\n\O
2. 1 am a boy\r\O
3. 1 am a boy\n\O
4. lamaboy

(c) State True or False:

I. The disadvantage of High Level Disk I/O functions is that
the programmer has to manage the buffers.

2. If a file is opened for reading it is necessary that the file
must exist.

3. If a file opened for writing already exists its contents
would be overwritten.

458
4. For opening a file in append mode it is necessary that the file
should exist.

(d) On opening a file for reading which of the followingactivities
are performed:

I. The disk is searched for existence of the file.
2. The file is brought into memory.
3. A pointer is set up which points to the first character in the
file.
4. All the above.

(e) Is it necessary that a file created in text mode must always be
opened in text mode for subsequent operations?

(f) State True or False:

A file opened in binary mode and read using fgetc () would
report the same number of characters in the file as reported by
DOS's DIR command.

(g) While using the statement,
fp= fopen (myfile c') 'r')
what happens if,

- 'myfile.c' does not exist on the disk
- myfile.c' exists on the disk

(h) What is the purpose of the library function fflush ()?

(I) While using the statement,

fp = fopen (rnyfile.c "wb)
what happens if,

- myfile.c' does not exist on the disk
- 'myfile.c' exists on the disk

(i) A floating-Point array contains percentage marks obtained by
swdents in an examination, To store these marks in a file
marks.c, in which mode would you open the file and why 7

Chapter 12: File Input/Output 	 459

[C] Attempt the following:
(a) Write a program to read a file and display contents with its
line numbers.

(b) write a program to find the size of a text file without
traversing it character by character.
(c) Write a program to add the contents of one file at the end of
another.

(d) Suppose a file contains student's records with each record
containing name and age of a student. Write a program to read
these records and display them in sorted order by name.
(e) Write a program to copy one file to another. While doing so
replace all lowercase characters to their equivalent uppercase
characters.

(f) Write a program that merges Lines alternately from two files
and writes the results to new file If one file has less number of
lines than the other, the remaining lines from the larger file
should be simply copied into the target file.

(g) Write a program to display the contents of a text file on the
screen. Make following provisions

Display the contents inside a box drawn with opposite corner co-
ordinates being (0, 1) and (79.23) Disply the name of the file
whose Contents are being displyed, and the page numbers in the
zeroth now. The moment one screenful of file has been displayed,
flash a message 'Press any key..' in 24th row. When a key is hit,
the next page's contents should be displayed, and so on till the
end of file.

(h) Write a program to encrypt/decrypt a file using.

460
	

Let Us C

(1) An offset cipher: In an offset cipher each character from
the source file is offset with a fixed value and then
written to the target file.

For example, if character read from the source tile is 'A',
then convert this into a new character by offsetting A'
by a fixed value, say 128, and then writing the new
character to the target tile.

(2) A substitution cipher: In this each character read from the
source file is substituted by a corresponding
predetermined character and this character is written to
the target file.

For example, if character 'A' is read from the source tile,
and if we have decided that every 'A' is to be substituted
by '!', then a '!' would be written to the target file in
place of every 'A' Similarly, every 'B' would be
substituted by '5' and so on.

(i) In the file 'CUSTOMER.DAT' there are 100 records with the
following structure:

struct customer

mt accno:
.char name[301;
coat balance;

In another file 'TRANSACTIONS.DAT' there are several
records with the following structure:

struct trans

mt accno,
char trans-type

Chapter 12: File Input/Output	 461

float amount

The parameter trans_type contains D/W indicating deposit or
withdrawal of amount. Write a program to update
'CUSTOMER.DAT' file, i.e. if the trans _type is 'D' then
update the balance of CUSTOMER.DAT' by adding
amount to balance for the corresponding accno. Similarly, if
trans_type is W' then subtract the amount from balance.
However, while subtracting the amount make sure that the
amount should not get overdrawn, i.e. at least 100 Rs. Should
remain in the account.

(j) There are 100 records present in a file with the following
structure:

struct date

intd my;

struct employee

nt empcode6;
char empname[20]:
struct date join—date
float salary;

Write a program to read these records, arrange them in
ascending order of join-date and write them in to a target
file.

(k) A hospital keeps a file of blood donors in which each record
has the format:
Name: 20 Columns
Address: 40 Columns

31

462
	

Let Us C

Age: 2 Columns
Blood Type: I Column (Type 1, 2, 3 or 4)

Write a program to read the file and print a list of all blood
donors whose age is below 25 and blood is type 2.

(I) Given a list of names of students in a class, write a program to
store the names in a file on disk. Make a provision to display
the n name in the list (n is data to be read) and to display all
names starting with S.

(m) Assume that a Master file contains two fields, Roll no. and
name of the student. At the end of the year, a set of students
join the class and another set leaves. A Transaction file
contains the roll numbers and an appropriate code to add or
delete a student.
Write a program to create another file that contains the
updated list of names and roll numbers. Assume that the
Master file and the Transaction file are arranged in ascending
order by roll numbers. The updated file should also be in
ascending order by roll numbers.

(n) In a small firm employee numbers are given in serial
numerical order, that is 1, 2, 3, etc.

- Create a file of employee data with following information:
employee number, name, sex, gross salary.

- If more employees join, append their data to the file.
- If an employee with serial number 25 (say) leaves, delete

the record by making gross salary 0.
- If some employee's gross salary increases, retrieve the

record and update the salary.

Write 'a program to implement the above operations.

(o) Given a text file, write a program to create another text file
deleting the words "a", "the", "an" and replacing each one of
them with a blank space.

Chapter 12: File Input/Output 	 463

(p) You are given it data file EMPLOYEE.DAT with the
following record structure:

strict employee
nt empno;
char namet301;
nt basic, grade;

Every employee has a unique empno aJ there are supposed
to be no gaps between employee numbers. Records are
entered into the data file in ascending order of employee
number, empno. It is intended to check whether there are
missing employee numbers. Write a program segment to read
the data file records sequentially and display the list of
missing employee numbers.

(q) Write a program to carry out the following:

- To read a text file "TRIAL.TXT" consisting of a
maximum of 50 lines of text, each line with a maximum
of 80 characters.

- Count and display the number of words contained in the
file.

- Display the total number of four letter words in the text
file.

Assume that the end of a word may he a space, comma or a
full-stop followed by one or more spaces or a newline
character.

(r) Write a program to read a list of " c:;. sort the words in
alphabetical order and display them one word per line. Also
give the total umber of words in the list. Output format
should be:
Total Number of words in the list is
Alphabetical listing of words is:

464
	

Let Us C

Assume the end of the list is indicated by ZZZZZZ and there
are maximum in 25 words in the Text file.

(s) Write a program to carry out the following:

(a) Read a text file 'INPUT.TXT'
(b) Print each word in reverse order

Example,

Input: INDIA IS MY COUNTRY
Output: AIDNI SI YM YRTNUOC

Assume that each word length is maximum of 10 characters
and each word is separated by newline/blank characters.

(t) Write a C program to read a large text file 'NOTES.TXT' and
print it on he printer in cut-sheets, introducing page breaks at
the end of every 50 lines nd a pause message on the screen at
the end of every page for the user to change the paper.

13 More Issues In
Input/Output

• Using argc and argv
• Detecting Errors in Reading/Writing
• Standard I/O Devices
• I/O Redirection

Redirecting the Output
Redirecting the Input
Both Ways at Once

• Summary
• Exercise

465

466	 Let Uv C

J

nChapters II and 12 we saw how Console I/O and File I/O are
done in C. There are still some more issues related with
input/output that remain to be understood. These issues help in

making the 1/0 operations more elegant.

Using argc and argv

To execute the file-copy programs that we saw in Chapter 12 we
are required to first type the program, compile it, and then execute
it. This program can be improved in two ways:

(a) There should be no nc: ito compile the program every time to
use the file-copy utility. It means the program must be
executable at command prompt (A> or C> if you are using
MS-DOS, Start I Run dialog if you are using Windows and $
prompt if you are using Unix).

(b) Instead of the program prompting us to enter the source and
target filenames, we must be able to supply them at command
prompt, in the form:

filecopy PR1.0 PR2.0

where, PR! .0 is the source filename and PR2.0 is the target
filename.

The first improvement is simple. In MS-DOS, the executable file
(the one which can be executed at command prompt and has an
cx(ension .EXE) can be created in Turbo C/C++ by using the key
F9 to compile the program. In VC++ compiler under Windows
same can be done by using F7 to compile the program. Under Unix
this is not required since in Unix every time we compile a program
we always get an executable file.

The second improvement is possible by passing the source
filename and target filename to the function main(). This is
illustrated below:

Chapter 13: More Issues In Input/Output 	 467

#include "stdio.h'
main (mt argc, char 'argv[I)

FILE 'fs,ft;
char ch;

if(argc!3)

puts ("Improper number of arguments")
exitQ;

tsfopen(argv[1,"r');
if(fs 	 NULL)
{

puts ('Cannot open source file")
exit()

ft fopen (argv21, "w');
if(ft 	 NULL)

puts ("Cannot open target file")
fclose (Is);
exit;

while(1)

ch fgetc (fs)

if (ch	 EOF)
break:

else
fputc(ch,It);

468
	

Let Us C

fclose (Is)
fclose (It)

The arguments that we pass on to main() at the command prompt
are called command line arguments. The function main() can
have two arguments, traditionally named as argc and argv. Out of
these. irgv is an array of pointers to strings and argc is an mt
whose value is equal to the number of strings to which argv
points. When the program is execjted, the strings on the command
line are passed to main(). More precisely, the strings at the
command line arc stored in memory and address of the first string
is stored in argvlof, .idress of the second string is stored in
argvlll and so on. The argument argc is set to the number of
strings given on the command line. For example, in our sample
program, if at the command prompt we give,

filecopy PR1.0 PR2.0

then,

argc would contain 3
argv[O) would contain base address of the string "filecopy"
argv[11 would contain base address of the string "PR1.C"
argv[2] would contain base address of the string PR2.C'

Whenever we pass arguments to main(), it is a good habit to
check whether the correct number of arguments have been passed
on to main() or not. In our program this has been done through,

if(argc!3)

pnntf (improper number of arguments');
exit()

Chapter 13: More Issues In Input/Output 	 469

Rest of the program is same as the earlier file-copy program. This
program is better than the earlier file-copy program on two counts:

(a) There is no need to recompile the program every time we
want to use this utility. It can be executed at command
prompt.

(b) We are able to pass source file name and target file name to
maine, and utilize them in maine.

One final comment... the while loop that we have used in our
program can he written in a more compact form, as shown below:

while ((ch tgetc (fs)) != EOF)
Iputc(ch,ft);

This avoids the usage of an indefinite loop and a break statement
to come out of this loop. Here, first fgetc (fs) gets the character
from the file, assigns it to the variable ch, and then ch is compared
against EOF. Remember that it is necessary to put the expression

ch fgetc (fs)

within a pair of parentheses, so that first the character read is
assigned to variable ch and then it is compared with EOF.

There is one more way of writing the while loop. It is shown
below:

while(!feof(fs))

ch fgetc (Is);
fputc (ch, ft) ;

Here, feof() is a macro which returns a 0 if end of file is not
reached. Hence we use the ! operator to negate this 0 to the truth
value. When the end of file is reached feof() returns a non-zero

470	 :-' Li

value, ! makes it 0 and since now the condition evaluates to false

the while loop gets terminated.

Note that in each one of them the following three methods for
opening a file are same, since in each one of them, essentially a
base address of the string (pointer to a string) is being passed to

fopenO.

Is = fopen (PR1.0 ,
fs fopen (filename, r")
fs=fopen(argv[11 "r")

Detecting Errors in Reading/Writing

Not at all times when we perform a read or write operation on a
file are we successful in doing so. Naturally there must be a
provision to test whether our attempt to read/write was successful

or not.

The standard library function ferror() reports any error that might
have occurred during a read/write operation on a file. It returns a
zero if the read/write is successful and a non-zero value in case of

a failure. The following program illustrates the usage of ferror().

#include stdio.h
main()

FILE fp;
char ch

fp fopen (TRIAL, "wa);

while (!feo (fp))

ch fgetc (Ip);
if (ferror())

Chapter 13: More Issues In Input/Output 	 471

printf ("Error in reading file")
break;

else
printf ("%c", ch);

fclose (fp)

In this program the fgetc() function would obviously fail first time
around since the file has been opened for writing, whereas fgetc()
is attempting to read from the file. The moment the error occurs
ferror() returns a non-zero value and the if block gets executed.
Instead of printing the error message using printf() we can use the
standard library function perror() which prints the error message
specified by the compiler. Thus in the above program the perror()
function can be used as shown below.

if(ferror())

perror ("TRIAL");
break

Note that when the error occurs the error message that is displayed
is:

TRIAL: Permission denied

This means we can precede the system error message with any
message of our choice. In our program we have just displayed the
filename in place of the error message.

472
	

Let Us C

StandarEI'JIO Devices

To perform reading or writing operations on a file we need to use
the function fopcn(), which sets lip a file pointer to icier to this
file. Most OSs also predefine pointers for three standard files. To
access these pointers we need not use fopen(). These standard file
pointers are shown in Figure 13.1

Standard File pointer Description

stdin	 standard input device (Keyboard)

stdout	 standard output device (VDU)

stdcrr	 standard error device (VDIJ)

Figure 13.1

Thus the statement cli = fgetc (stdin) would read a character
from the keyboard rather than from a file. We can use this
statement without any need to use fopen() or fclose() function
calls.

Note that under MS-DOS two more standard tile pointers are
available—stdprn and stdaux. They stand for standard printing
device and standard auxiliary device (serial port). The following
program shows how to use the standard file pointers. It reads a file
from the disk and prints it on the printer.

I' Prints file contents on printer 1

#include stdio.h
main()

FILE *fp;
char ch;

Chapter 13: More Issues In Input/Output 	 473

fp fopen ("poem.txt", "r');

if(fp 	 NULL)

printf ('Cannot open file*);
exit()

while ((chfgetc(1p))!EOF)
fputc (ch, stdprn)

fclose (Ip)

The statement fputc (ch, stdprn) writes a character read from the
file to the printer. Note that although we opened the file on the
disk we didn't open stdprn, the printer. Standard files and their
use in. redirection have been dealt with in more details in the next
section.

Note that these standard file pointers have been defined in the file
"stdio.h". Therefore, it is necessary to include this file in the
program that uses these standard file pointers.

I/O Redirection

Most operating systems incorporate a powerful feature that allows
a program to read and write files, even when such a capability has
not been incorporated in the program. This is done through a
process called 'redirection',

Normally a C program receives its input from the standard input
device, which is assumed to be the keyboard, and sends its output
to the standard output device, which is assumed to be the VDU. In
other words, the OS makes certain assumptions about where input

474	 Let Us

should come from and where output should go. Redirection
permits us to change these assumptions.

For example, using redirection the output of the program that
normally goes to the VDU can he sent to the disk or the printer
without really making a provision for it in the program. This is
ofier a mor• convenient and flexible approach than providing a

function in the program to write to the disk or printer.
Similarly, redirection can he used to read information from disk
file directly into a program, instead of receiving the input from
keyboard.

To use redirection facility is to execute the program from the
command prompt, inserting the redirection symbols at appropriate
places. Let us understand this process with the help of a program.

Redirecting the Output

Let's see how we can redirect the output of a program, from the
screen to a file. We'll start by considering the simple program
shown below:

/* File name: u(il.c I
#include "stdio.h<+>
main()

char ch
while ((ch = getc (stdtn)) != EOF)

putc (ch, stdout)

On compiling this program we would get an executable file
UTIL.EXE. Normally, when we execute this file, the putc()
function will cause whatever we type to be printed on screen, until
we don't type Ctrl-Z, at which point the program will terminate, as

Chapter 13: More Issues In Input/Output 	 475

shown in the following sample run. The Ctrl-Z character is often
called end of file character.

C>LJTIL.EXE
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth AZ

C>

Now let's see what happens when we invoke this program from in
a different way, using redirection:

C>UTIL.EXE > POEM.TXT
C>

Here we are causing the output to be redirected to the file
POEM.TXT. Can we prove that this the output has indeed gone to
the file POEM.TXT? Yes, by using the TYPE command as
follows:

C>TYPE POEM.TXT
perhaps I had a wicked childhood,
perhaps I had a miserable youth,
but somewhere in my wicked miserable past,
there must have been a moment of truth
C>

There's the result of our typing sitting in the file. The redirection
operator, '>', causes any output intended for the screen to be
written to the file whose name follows the operator.

Note that the data to be redirected to a file doesn't need to be typed
by a user at the keyboard; the program itself can generate it. Any
output normally sent to the screen can he redirected to a disk file.
As an example consider the following program for generating the
ASCII table on screen:

476
	

Let Us C

r File name: ascii.c/
main()

nt ch

for (ch 0 ch <= 255 ch++)
printf (\n%d %c', ch, ch)

When this program is compiled and then executed at command
prompt using the redirection operator,

C>ASCII.EXE > TABLETXT

the output is written to the tile. This can he a useful capability any
time you want to capture the output in a file, rather than displaying
it on the screen.

DOS predefines a number of filenames for its own use. One of
these names in PRN, which stands for the printer. Output can be
redirected to the printer by using this filename. For example, if you
invoke the "ascii,ee" program this way:

C>ASClE.3(E > PRN

the ASCII table will he printed on the printer.

Redirecting the Input

We can also redirect input to a program so that, instead of reading
a character from the keyboard, a program reads it from a file. Let
us now see how this can be done.

To redirect the input, we need to have a file containing something
to be displayed. Suppose we use a file called NEWIOEMTXT
containing the following lines

Chapter 13: More Issues In Input/Output 	 477

Let's start at the very beginning,
A very good place to start!

We'll assume that using some text editor these lines have been
placed in the file NEWPOEM.TXT. Now, we use the input
redirection operator '<' before the file, as shown below:

C>UTIL.EXE < NEWPOEM.TXT
Let's start at the very beginning,
A very good place to start!
C>

The lines are printed on the screen with no further effort on our
part. Using redirection we've made our program UTIL.0 perform
the work of the TYPE command.

Both Ways at Once

Redirection of input and output can be used together; the input for
a program can come from a file via redirection, at the same time its
output can be redirected to a file. Such a program is called a filter.
The following command demonstrates this process.

C>UTIL < NEWPOEM,TXT> POETRY.TXT

In this case our program receives the redirected input from the file
NEWPOEM.TXT and instead of sending the output to the screen it
would redirect it to the file POETRY,TXT.

Similarly to send the contents of the file NEWPOEM.TXT to the
printer we can use the following command:

C>UTIL < NEWPOEM.TXT> PRN

While using such multiple redirections don't try to send output to
the same file from which you are receiving input. This is because

32

478	 Let Us ci

the output file is erased before it's written to. So by the time we
manage to receive the input from a file it is already erased.

Redirection can be a powerful tool for developing utility programs
to examine or alter data in tiles. Thus, redirection is used to
establish a relationship between a program and a file. Another OS
operator can be used to relate two programs directl y , so that he
output of one is fed directly into another, with no files involved.
This is called 'piping', and is done using the operator 'I', called
pipe. We won't pursue this topic, but you can read about it in the
OS help/manual.

Summary
(a) We can pass parameters to a program at command line using

the concept of 'command line arguments'.
(b) The command line argument argv contains values passed to

the program, whereas, arge contains number of arguments.
(c) We can use the standard file pointer stdin to take input from

standard input device such as keyboard.
(d) We can use the standard file pointer st(iout to send output to

the standard output device such as a monitor.
(c) We can use the standard file pointers stdprn and stdaux to

interact with printer and auxiliary devices respectively.
(1) Redirection allows a program to read from or write to files at

command prompt.
(g) The operators <and > are called redirection operators.

Exercise

IAI Answer the following:

(a) How will you use the following program to

- Copy the contents of one file into another.
Print a file on the printer.

- Create a new file and add sonic text to it.

Chapter 13: More Issues In Input/Output 	 479

- Display the contents of an existing tile.

#include "stdio.h
main()

char ch, str[10]
while ((ch=getc(stdin))-1)
putc (ch, stdout):

}

(b) State True or False:

I. We can send arguments at command line even if we
define main() function without parameters.

2. To use standard file pojpers we don't need to open the
file using fopen().

3. Using stdaux we can send output to the printer if printer is
attached to the serial port.

4. The zerotli element of the argv array is always the name
of the exe file.

(c) Point out the errors, if any, in the following program

main (mt ac, char () av })

printf ("n%d', ac);
printf (\n%s, av[O])

(BI Attempt the following:

(a) Write a program to carry out the following:

(a) Read a text file provided at command prompt
(b) Print each word in reverse order

For example if the File contains

INDIA IS MY COUNTRY

Output should be

480
	

Let Us C

AIDNI SI YM YRTNL)OC

(b) Write a program using command line arguments to search for
a word in a file and replace it with the specified word. The
usage of the program is shown below.

C> change <old word> <new word> <filename>

(c) Write a program that can be used at command prompt as
calculating utility. The usage of the program is shown below.

C> calc <switch> <n> <m>

Where, n and m are two ijteger operands, switch can be any
one of the arithmetic or comparison operators. If arithmetic
operator is supplied, the output should be the result of the
operation. If comparison operator is supplied then the output
should be True or False.

14 Operations On
Bits	

40

Bitwise Operors
One's Complcment Operator
Right Shift Operator
Left Shift Operator
Bitwise AND Operator
Bitwise OR Operator
Bitwise XOR Operator

The showbits() Fnction
Summary
Exercise

481

482	 Let_UsC

S

o far we have dealt with characters, integers, floats and their
variations. The srulest element in memory on which we are
able to operate as yet is a byte and we operated on it by

making use of the data type char. 1 lowever, we haven't attempted
to look within these data types to see how they are constructed out
of individual bits, and how tltsc bits can be manipulated. Being
able to operate on bit level, can be very important in
programming. especially when a program must interact directly
with the hardware. This is because, the programming languages
are byte oriented, whereas hardware tends to he bit oriented. Let us
now delve inside the byte and see how it is constructed and how it
can be manipulated effectively. So let us take apart the byte... bit
by bit.

Bitwise Operators

One of C's powerful features is a set of bit manipulation operators.
These permit the programmer to access and manipulate individual
bits within a piece of data. The various Bitwise Operators available
in Care shown in Figure 14.1.

OperatorMeaning

Otie's coipleniciit
>>	 Right shift

Left shift
&	 Bitwisc AND

I	 I3itwisc OR
131twise XOR(Exciusivc OR)

Figure 14.1

These operators can operate upon ints and chars but not on floats
and doubles. Before moving on to the details of the operators, let

Chapter 14: Operations On Bits	 483

us first take a look at the bit numbering scheme in integers and
characters. Bits are numbered from zero onwards, increasing from
right to left as shown below:

Character

16-bit Integer

Figure 14.2

Throughout this discussion of bitwise operators we are going to
use a function called showbits(), but we are not going to show
YOU the details of the function immediately. The task ot
showbits() is to display the binary representation of any integer or
character value.

We begin with a plain-jane example with showbits() in action.

/* Print binary equivalent of integers using showbtts() function */
main()

mt

for 	 O ;j <<5 ;)

printf (\nDecimal %d is same as binary ', j)
showbits (j

484
	

Let Us C

And here is the output.

Decimal 0 is same as binary 0000000000000000
Decimal 1 is same as binary 0000000000000001
Decimal 2 is same as binary 0000000000000010
Decimal 3 is same as binary 0000000000000011
Decimal 4 is same as binary 0000000000000100
Decimal 5 is same as binary 0000000000000101

Let us now explore the various bitwise operators one by one.

One's Complement Operator

On taking one's complement of a number, all I's present in the
number are changed to 0's and all 0's are changed to I's. For
example one's complement of 1010 is 0101. Similarly, one's
complement of 1111 is 0000. Note that here when we talk of a
number we are talking of binary equivalent of the number. Thus,
one's complement of 65 means one's complement of 0000 0000
0100 0001, which is binary equivalent of 65. One's complement of
65 therefore would be, 1111 111 I 10111110. One's complement
operator is represented by the symbol . Following program shows
one's complement operator in action.

main()

mt j, k

for (j0;j<3;j++)

printf (\nDecimal %d is same as binary ',j);
showbits (j)

k
printf (\nOne's complement of O/Q is". j);

Chapter 14: Operations On Bits 	 -	 485

showbits (k);

And here is the output of the above program...

Decimal 0 is same as binary 0000000000000000
One's complement of 0 is 1111111111111111
Decimal 1 is same as binary 0000000000000001
One's complement of 1 is 1111111111111110
Decimal 2 is same as binary 0000000000000010
Ones complement oI2is 1111111111111101
Decimal 3 is same as binary 0000000000000011
One's complement of3is 1111111111111100

In real-world situations where could the one's complement
operator be useful? Since it changes the original number beyond
recognition, one potential place where it can be effectively used is
in development of a file encryption utility as shown below:

r File encryption utility I
#include stdio.hw
main()

encrypt();

encrypt()

FILE *fssft;
char ch;

fs = fopen (SOURCE.C, r): r normal file'!
ft = fopen ("TARGET.C, w) P encrypted file

if (fs	 NULL 11 ft	 NULL)

lot
	 Let Us C

priritf ("\nFle opening error')
exit (1);

while ((chgetc(fs))!=EOF)
putc(-chfI)

fclose (fs)
I close (ft

Ilow would you write the corresponding decrypt function? Would
there be any problem in tackling the end of file marker? It may be
recalled here that the end of file in text files is indicated by a
character whose ASCII value is 26.

Right Shift Operator

The right shift operator is represented by >>. It needs two
operands. It shifts each bit in its left operand to the right. The
number of places the hits are shifted depends on the number
following the operator (i.e. its right operand).

Thus, ch >> 3 would shift all bits in ch three places to the right.
Similarly, ch >> 5 would shift all bits 5 places to the right.

For example, if the variable cli contains the bit pattern 11010111,
then, ch >> I would give 0 110 10 11 and cli >> 2 would give
00110101.

Note that as the hits arc shifted to the right, blanks are created on
the left- These blanks must he filled somehow. They are always
Idled with zeros. The following program demonstrates the effect
of right shift operator.

main()

Chapter 14: Operations On Bits	 - -	 487

mt i = 5225, j, k;

printf ('\nDecimal %d is same as binary I)
showbits (i

for (j0;j<5 ;j++)

k i >>j
printf ("\n%d right shift %d gives n
showbits (k)

The output of the above program would he...

Decimal 5225 is same as binary 0001010001101001
5225 right shift 0 gives 0001010001101001
5225 right shift 1 gives 0000101000110100
5225 right shift 2 gives 0000010100011010
5225 right shift 3 gives 0000001010001101
5225 right shift 4 gives 0000000101000110
5225 right shift 5 gives 0000000010100011

Note that if the operand is a multiple of 2 then shifting the operand
one bit to right is same as dividing it b y 2 and ignoring the
remainder. Thus,

64>' 1 gives 32
64>>2 gives l6
128 '>2 gives 32

but,

27>> 1 is 13
49>> 1 is 24.

EM
	

Let Us C

A Word of Caution

In the explanation a ' >> b if b is negative the result is

unpredictable. If a is negative than its left most bit (sign bit) would
be 1. On some computer right shifting a would result in extending
the sign bit. For example, if a contains -1, its binary representation
would be 11lIlll1l1lIllIl. Without sign extension, the
operation a >> 4 would he 0000111111111111. However, on the
machine on which we executed this expression the result turns out
to be 1111111111111111. Thus the sign hit I continues to get

extended.

Left Shift Operator

This is similar to the right shift operator, the only difference being
that the bits are shifted to the left, and for each bit shifted, a 0 is
added to the right of the number. The following program should
clarify my point.

main()

mt I	 5225, j K

printt (\nDecimal %d is same as', i)
showbits (i)

for(j=0;j<4;j++)

k = I
pnntf ("\n%d left shift %d gives", I, j)
showbits (k);

The output of the above program would be...

Decimal 5225 is same as binary 000 10 1000110 1001

Chapter 14: Operations On Bits	 489

5225 left shift 0 gives 0001010001101001
5225 left shift 1 gives 0010100011010010
5225 left shift 2 gives 0101000110100100
5225 left shift 3gives 1010001101001000
5225 left shift 4 gives 0 1000 110 100 10000

Having acquainted ourselves with the left shill and right shift
operators, let us now find out the practical utility of these
operators.

In DOS/Windows the date on which a file is created (or modified)
is stored as a 2-byte entry in the 32 byte directory entry of that file.
Similarly, a 2-byte entry is made of the time of creation or
modification of the file. Remember that DOS/Windows doesn't
store the date (day, month, and year) of file creation as a 8 byte
string, but as a codified 2 byte entry, thereby saving 6 bytes for
each tile entry in the directory. The bitwise distribution of year,
month and date in the 2-byte entry is shown in Figure 14.3.

	

15141312111098	 76543210

I_'I_''I_'!_''I_''I_''I_'I_MI_MIMI MI DJ DI DI_DI_D
year	 b14	 month	 day

Figure 14.3

DOS/Windows converts the actual date into a 2-byte value using
the following formula:

date 512 • (year - 1980) + 32 * month + day

Suppose 09/03/1990 is the date, then on conversion the date will
be,

date =512'(1990-1980)+323+95225

490	 Let Us C

The binary equivalent .i 5225 is 0001 0100 1)110 1001. This
binary value is placed in the date field in the directory entry of thc

file as shown below.

15 14 13 12 II	 0) 9	 S	 7	 6	 5	 4	 3	 2	 1	 0

H 0	 1	 01 11 °l 0 1 0	 I	 iJ (t	 I	 ()	 0

kI 	 year	 month	 day

Figure 14.4

Just to verify this bit distribution, let us take the bits representing

the month,

month 0011
=r2+lfl

Similarly, the year and the day can also he verified.

When we issue the command DIR or use Windows Explorer to list
the files, the file's date is again presented on the screen in the
usual date format of mmldd/yy. I low does this integer to date
conversion take placc? Obviously, using left shift and right shift

operators.

When we take a look at Figure 14.4 depicting the hit pattern of the
2- byte date field, we see that the year, month and day exist as a
bunch of bits in contiguous locations. Separating each of them is a
matter of applying the bitwise operators.

For example, to get year as a separate entity from the two bytes
entry we right shift the entry by 9 to get the year. Just see, how...

Chapter 14: Operations On Bits	 --	 491

15 14	 13 12 II	 10	 9 8	 7	 6	 5	 4	 3	 2	 I	 0

Lot of °hf o fli OH °HHI of If olofli
4	 year	 month	 day

Right shilling by 9 gives

5 14 13 12 II 10 9 8	 7	 6	 S	 4	 3	 2	 I	 0

of of of of of of of of of of of of i1 of 	 'I1

io
	 year

Figure 14.5

On similar tines, tell shifting by 7, followed by right shilling by 12
yields month.

492	 Let Us

15 14 13 12 II 10 9 8 7	 6	 5	 4	 3	 2	 I	 0

1 0 o 1	 1	 1	 1	 I	 I	 I o(I	 I °1 'I 01 0 1 1 1

year	 month	 day

Left shifting by 7 gives,

15 14 13 12 11 10 9 8	 7	 6	 5	 4	 3	 2	 1	 0

01 01 I I II o	 1	 0 ! 0 1 11 70E01 o10l 'I

J4-- 	 'I	 day -'-'

Right shifting by 12 gives,

15 14 13 12 II 10 9 8	 7	 6	 5	 4	 3	 2	 1	 0

0 0 1 o 1 0 01 o 1 0 1 o 1 o[0 0] 0 1 01 11
month

Figure 14.6

Finally, for obtaining the day, left shift date by Ii and then right
shift the result by	 11.	 Left shifting by	 11	 gives

0100I00000000000. 	 Right	 shifting	 by	 Il	 gives

0000000000001001.

This entire logic can be put into a program as shown below:

I* Decoding date field in directory entry using bitwise operators I
main()

unsigned int d 9, m 3, y 1990, year, month, day, date;

date	 y- 1980) * 512 +m 32 +d
pnntf ('\nDate %u, date);

Chapter 14: Operations On Bits	 493

year= 1980+(date >>9):
month ((date <<7)>> 12);
day=((date<< 11)>>11);
printf (nYear %u ', year);
printf (Month %u", month
printf (Day %u, day);

And here is the output...

Date 5225
Year 1990 Month 3 Day = 9

Bitwise AND Operator

This operator is represented as &. Remember it is different than
&&, the logical AND operator. The & operator operates on two
operands. While operating upon these two operands they are
compared on a bit-by-bit basis. Hence both the operands must be
of the same type (either char or int). The second operand is often
called an AND mask. The & operator operates on a pair of bits to
yield a resultant bit. The rules that decide the value of the resultant
bit are shown below:

First bit	 Second bit	 First bit & Second bit

o	 0	 0

o	 1	 0

1	 0	 0

I	 I	 I

Figure 14.7

33

404	 Let Us C

This can be represented in a more understandable form as a 'Truth

Table' shown in Figure 14.8.

& Th-0

L'o
Figure 14.8

The example given below shows more clearly what happens while
ANDing one operand with another. The rules given in the Figure
14.8 are applied to each pair of bits one by one.

76543	 2	 10

I	 0	 I	 0 1 1 1 0	 1	 0	 This operand when
ANDed bitwise

76543	 2	 1	 0

0	 o 1 o 1 (}	 11 1	 With this operand
yields

	

765432	 10

[_LL 01 °l 01 0	 0	 1, oJ	 this result

Figure 14.9

Work through the Truth Table and confirm that the result obtained

is really correct.

Thus, it must be clear that the operation is ciig performed on
individual hits, and the operation performed On one pair of bits is

Chapter 14: Operations On Bits	 495

completely independent of the operation perfontied on the other
-pairs.

Probably, the best use of the AND operator is to check whether a
particular bit of an operand is ON or OFF. This is explained in the
following example.

Suppose, from the bit pattern 10 10 110 1 of an operand, we want to
check whether bit number 3 is ON (1) or OFF (0). Since we want
to check the bit number 3, the second operand for the AND
operation should he I * 2, which is equal to 8. This operand can
be represented bitwise as 00001000.

Then the ANDing operation would be,

10101101	 Original bit pattern
00001000	 AND mask

00001000	 Resulting bit pattern

The resulting value we get in this case is 8, i.e the value of the
second operand. The result turned out to be 8 since the third bit of
the first operand was ON. Had it been OFF, the bit number 3 in the
resulting bit pattern would have evaluated to 0 and the complete
bit pattern would have been 00000000.

Thus, depending upon the bit number to be checked in the first
operand we decide the second operand, and on ANDirig these to
operands the result decides whether the hit was ON or OFF. If the
bit is ON (I), the resulting value turns out to be a non-zero value
which is equal to the value of second operand, and if the bit is OFF
(0) the result is zero as seen above. The following program puts
this logic into action.

P To test whether a bit in a number is ON or OFF 1
main()

496
	

Let Us C

mt i=65,j;

pnntf ('\nvalue of i = %d"; i);
I & 32;

if(j==O)
pnntf ('\nand its fifth bit is off');

else
printf ("\nand its fifth bit is on");

j=i&64;

if(j==O)
printf (\nwhereas its sixth bit is oft')

else
printf (\nwhereas its sixth bit is on');

And here is the output...

Value of 1 65
and its fifth bit is off
whereas its sixth bit is on

In every file entry present in the directory, there is an attribute
byte. The status of a file is governed by the value of individual bits
in this attribute byte. The AND operator can be used to check the
status of the bits of this attribute byte. The meaning of each bit in
the attribute byte is shown in Figure 14.10.

Chapter 14: Operations On Bits 	 497

Bit numbers	 Meaning

76543210

I	 Read only

I	 Hidden

I	 System

• I Volume label entry

Sub-directory entry

Archive bit

•	 I	Unused

Unused

Figure 14.10

Now, suppose we want to check whether a file is a hidden file or
not. A hidden tile is one, which is never shown in the directory,
even though it exists on the disk. From the above bit classification
of attribute byte, we only need to check whether hit number I is
ON or OFF.

So, our first operand in this case becomes the attribute byte of the
file in question, whereas the second operand is the I * 2 1 = 2, as
discussed earlier. Similarly, it can be checked whether the tile is a
system tile or not, whether the tile is read-only tile or not, and so
on.

The second, and equally important use of the AND operator is in
changing the status of the bit, or more precisely to switch OFF a
particular bit.

498 	 Let UsC

If the first operand happens to be 00000111, then to switch OFF
bit number 1, our AND mask bit pattern should he I 1111101. On
applying this mask, we get,

00000111	 Original bit pattern
11111101	 AND mask

00000101	 Resulting bit pattern

Here in the AND mask we keep the value of all other bits as I
except the one which is to be switched OFF (which is purposefully
kept as 0). Therefore, irrespective of whether the first bit is ON or
OFF previously, it is switched OFF. At the same time the value I
provided in all the other bits of the AND mask (second operand)
keeps the bit values of the other bits in the first operand unaltered.

Let's summarize the uses of bitwise AND operator:

(a) It is used to check whether a particular bit in a number is ON
or OFF.

(b) It is used to turn OFF a particular bit in a number.

Bitwise OR Operator

Another important hitwise operator is the OR operator which is
represented as 1. The rules that govern the value of the resulting bit
obtained after Offing of two bits is shown in the truth table below.

0

0	 0

I	 I	 id
Figure 14.11

Chapter 14: Operations On Bits	 -	 499

Using the Truth table confirm the result obtained on ORing the
two operands as shown below.

11010000	 Original bit pattern
00000111 OR mask

11010111	 Resulting bit pattern

Bitwise OR operator is usually used to put ON a particular bit in a

number.

Let us consider the bit pattern 11000011. If we want to put ON bit
number 3, then the OR mask to be used would be 00001000. Note
that all the other bits in the mask are set to 0 and only the bit,
which we want to set ON in the resulting value is set to I.

Bitwise XOR Operator

The XOR operator is represented as A and is also called an
Exclusive OR Operator. The OR operator returns I, when any one
of the two bits or both the bits are I, whereas XOR returns I only
if one of the two bits is 1. The truth table for the XOR operator is

given below.

LA
0	 0

I	 0

Figure 14.12

XOR operator is used to toggle a bit ON or OFF. A number
XORed with another number twice gives the original number. This
is shown in the following program.

500
	

Let (Is C

main()

mt b = 50:

b=b Al2;
printf (\n%d, b) ft this will print 62 1

b=b12;
printf (\n%d, b); 1' this will print 50 /

The s/wwbits() Function

We have used this function quite often in this chapter. Now we
have sufficient knowledge of bitwise operators and hence are in a
position to understand it. The function is given below followed by
a brief explanation.

showbits (mt n)

nt i, k, andmask

for(1= 15 i>=0; i--)

andmask = 1 <(i;
k n & andmask:

k=0?printf("0):pntf(t1t);

All that is being done in this function is using an AND operator
and a variable andmask we are checking the status of individual
bits. If the bit is OFF we print a 0 otherwise we print a 1.

First time through the loop, the variable andmask will contain the
value 1000000000000000, which is obtained by left-shifting I,

Chapter 14: Operations On Bits	 501

fifteen places. If the variable U's most significant bit is 0, then k
would contain a value 0, otherwise it would contain a non-zero
value. If k contains 0 then printf() will print out 0 otherwise it
will print out 1.

On the second go-around of the loop, the value of i is decremented
and hence the value of andmask changes, which will now be
0100000000000000. This checks whether the next most significant
bit is I or 0, and prints it out accordingly. The same operation is
repeated for all bits in the number.

Summary
(a) To help manipulate hardware oriented data—individual bits

rather than bytes a set of bitwise operators are used.
(b) The bitwise operators include operators like one's

complement, right-shift, left-shill, bitwise AND, OR, and
XOR.

(c) The one's complement converts all zeros in its operand to Is
and all IstoOs.

(d) The right-shift and left-shift operators are useful in
eliminating bits from a number—either from the left or from
the right.

(e) The bitwise AND operators is useful in testing whether a bit is
on/off and in putting off a particular bit.

(f) The bitwise OR operator is used to turn on a particular bit.
(g) The XOR operator works almost same as the OR operator

except one minor variation.

Exercise

IAI Answer the following:

(a) The information about colors is to be stored in bits of a char
variable called color. The bit number 0 to 6, each represent 7
colors of a rainbow, i.e. bit 0 represents violet, I represents

502
	

Let Us C

indigo, and so on. -Write a program that asks the user to enter
a number and based on this number it reports which colors in
the rainbow does the number represents.

(b) A company planning to launch a new newspaper in market
conducts a survey. The various parameters considered in the
survey were, the economic status (upper, middle, and lower
class) the languages readers prefer (English, Hindi, Regional
language) and category of paper (daily, supplement, tabloid).
Write a program, which reads data of 10 respondents through
keyboard, and stores the information in an array of integers.
The bit-wise information to be stored in an integer is given
below:

Bit Number	 Information

0	 Upper class
Middle class

2	 Lower class
3	 English
4	 Hindi
5	 Regional Language

6	 Daily
7	 Supplement

Tabloid

At the end give the statistical data for number of persons who
read English daily, number of upper class people who read
tabloid and number of regional language readers.

(c) In an inter-college competition, various sports and games are
played between different colleges like cricket, basketball,
football, hockey, lawn tennis, table tennis, carom and chess.
The information regarding the games won by a particular
college is stored in bit numbers 0, 1, 2, 3, 4, 5, 6, 7 and 8
respectively of an integer variable called game. The college

Chapter 14: OperationsOn Bits	 503

that wins in 5 or more than 5 games is awarded the Champion
of Champions trophy. If a number is entered through the
keyboard, then write a program to find out whether the
college won the Champion of the Champions trophy or not,
along with the names of the games won by the college.

(d) An animal could be either a canine (dog, wolf, fox, etc.),a
feline (cat, lynx, jaguar, etc.), a cetacean (whale, narwhal,
etc.) or a marsupial (koala, wombat, etc.). The information
whether a particular animal is canine, feline, cetacean, or
marsupial is stored in bit number 0, 1, 2 and 3 respectively of
a integer variable called type. Bit number 4 of the variable
type stores the information about whether the animal is
Carnivore or Herbivore.

For the following animal, complete the program to determine
whether the animal is a herbivore or a carnivore. Also
determine whether the animal is a canine, feline, cetacean or a
marsupial.

struct animal

char name[301
nt type;

struct animal a ("OCELOT", 18)

(e) The time field in the directory entry is 2 bytes long.
Distribution of different bits which account for hours, minutes
and seconds is given below. Write a function which would
receive the two-byte time entry and return to the calling
function, the hours, minutes and seconds.

504
	

Let Us C

15 14 13 12 II II) 9	 8	 7	 6	 5	 4	 3	 2	 1	 0

I ''I 'I HI HI Hf MJ Mf Ml Mf Ml Mf SI Sf SI SI SI

Figure 14.13

(U) In order to save disk space information about student is stored
in an integer variable. If bit number 0 is on then it indicates l
year student, bit number I to 3 stores 11d year, 111 rd year and
IVth year student respectively. The bit number 4 to 7 stores
stream Mechanical, Chemical, Electronics and IT. Rest of the
bits store room number. Based on the given data, write a
program that asks for the room number and displays the
information about the student, if its data exists in the array.
The contents of array are,

nt data[] (273, 548, 786, 1096):

(g) What will be the output of the following program:

main()

nt i=32,j65, k, I, m, no, p;
ki135; l-k; mi&j;
nj A 32; oj<<2; pi>>5;
printi (\nk =	 I %d m = %d, k, I, m);
printt("Inn =%do=%dp%dn,o,p);

