
15 Miscellaneous
Features

• Enumerated Data Type
Uses of Enumerated Data Type

• Renaming Data Types with rypedef
• Typecasting
• Bit fields
• Pointers to Functions
• Functions Returning Pointers
• Functions with Variable Number of

Arguments
• Unions

Union of Structures
• Summary
• Exercise

505

506	 Let Us C

e topics discussed in this chapter were either too large or
far too removed 'from the mainstream C programming for
inclusion in the earlier chapters. These topics provide

certain useful pi'ogramming features, and could prove to be of
immense help in certain programming strategies. In this chapter
we would examine enumerated data types, the typedef keyword,
typecasting, bit fields, function pointers, functions with variable
number of arguments and unions.

Enumerated Data Type

The enumerated data type gives you an opportunity to invent your
own data type and define what values the variable of this data type
can take. This can help in making the program listings more
readable, which can be an advantage when a program gets
complicated or when more than one programmer would be
working on it. Using enumerated data type can also help you
reduce programming errors.

As an example, one could invent a data type callea mar _status
which can have four possible values—single, married, divorced or
widowed. Don't confuse these values with variable names; mairied
for instance has the same relationship to the variable mar—status
as the number 1 5 has with an integer variable.

The format of the enum definition is similar to that of a structure.
Here'show the example stated above can be implemented:

enum mar status

-	 single, married, divorced, widowed

rwm mar status personi, person2

Like structures this declaration has two parts:

Chapter 15.' Miscellaneous Features 	 507

(a) The first part declares the data type and specifics its possible
values. These values are called'enumerators'.

(b) The second part declares variables of this data type.

Now we can give values to these variables:

person 1 married
person2 divorced;

Remember we can't USC values that aren't in the original
declaration.

Thus, the following expression would cause an error:

person unknown

Internally, the compiler treats the enumerators as integers. Each
value on the list of permissible values corresponds to an integer,
starting with 0. Thus, in our example, single, is stored as 0,
married is stored as 1, divorced as 2 and widowed as 3.

This way of assigning numbers can be overridden by the
programmer by initializing the enumerators to different integer
values as shown below.

enum mar-status

single = 100, married 200, divorced 300. widowed 400

enum mar_status person l, person2

Uses of Enumerated Data Type

Enumerated variables are usually used to clarify the operation of a
program. For example, if we need to use emplo yee departments in
a payroll program, it makes the listing easier to read if we use

508
	

Let Us C

values like Assembly, Manufacturing, Accounts rather than the
integer values 0, 1, 2, etc. The following program illustrates the
point I am trying to make.

main()
{

enum emp_dept

assembly, manufacturing, accounts, stores

struct employee

char name[30]:
mt age;
float bs;
enum emp_dept department;

struct employee e;

strcpy (e.name, Lothar Mattheus');
e.age 28;
e.bs = 5575.50;
e.department manufacturing;

printf ('\nName = %s, e.name);
pnntf ('\nAge %d, e.age);
pnntf (\nBasic salary %, e.bs);
pnnt (\nDept = %d", e.department);

if (e.department 	 accounts)
printf (\n%s is an accounanr, e.name);

else
printf ("\n%s is not an accounanr, e.name);

}

And here is the output of the program...

Name = Lothar Mattheus

Chapter 15: Miscellaneous Features 	 509

Age 28
Basic salary 5575.50.
Dept 1
Lothar Mattheus as not an accountant

Let us now dissect the program. We first defined the data type
enum emp_dept and specified the four possible values, namely,
assembly, manufacturing, accounts and stores. Then we dcfined a
variable department of the type enum emp_dept in a structure.
The structure employee has three other elements containing
employee information.

The program first assigns values to the variables in the structure.
The statement,

e.departnient manufacturing;

assigns the value manufacturing to e.department variable. This is
much more informative to anyone reading the program than a
statement like,

e.department 1

The next part of the program shows an important weakness of
using enum variables.., there is no way to use the enumerated
values directly in input/output functions like printf()'and scanf.

The printf() function is not smart enough to perform the
translation; the department is printed out as 1 and not
manufacturing. 01 course we can write a function to print the
correct enumerated values, using a switch statement, but that
would reduce the clarity of the program. Even with thislimitation,
however, there are many situations in which enumerated variables
are god sent!

34

510
	

Let Us C

Renaming Data types with typedef

There is one more technique, which in some situations can help to
clarify the source code of a C program. This technique is to make
use of the typedef declaration. Its purpose is to redefine the name
of an existing variable type.

For example, consider the following statement in which the type
unsigned long it is redefined to be of the type TWOWORDS:

typedef unsigned long mt TWOWORDS;

Now we can declare variables of the type unsigned long mt Fy

writing

TWOWORDS varl, var2;

instead of

unsigned long int van, var2

Thus, typedef provides a short and meaningful way to call a data
type. Usually, uppercase letters are used to make it clear that we
are dealing with a renamed data type.

While the increase in readability is probably not great in this
example, it can be significant when the name of a particular data
type is long and unwieldy, as it often is with stnicture declarations.
For example, consider the following structure declaration:

struct employee

char name[30]
nt age;
float bs;

ra

Chapter 15: Miscellaneous Features 	 511

struct employee e;

This structure declaration can be made more handy to use when
renamed using typedef as shown below:

struct employee
{

char name[30J;
nt age;
float bs;

typedef struct employee EMP;
EMP el, e2;

Thus, by reducing the length and apparent complexity of data
types, typedef can help to clarify source listing and save time and
energy spent in understanding a program.

The above typedef can also be written as

typedef struct employee
{

char namef301,
nt age;
float bs;

}EMP;
EMP el, e2;

Typecasting

Sometimes we are required to force the compiler to explicitly
convert the value of an expression to a particular data type. This
would be clear from the following example:

main()

float a

Let Us C512

nt x=6,y4:

a = x Iy
printf (\nValue of a = %, a);

And here is the output...

Value of a 1.000000

The answer turns out to be 1.000000 and not 1 .5. This is because,

6 and 4 are both integers and hence 6 I 4 yields an integer, 1. This
I when stored in a is converted to 1.000000 But what if we don't
want the quotient to be truncated. One solution is to make either x
or y as float. Let us say that other requirements of the program
does not permit us to do this. In such ,I what do we do? Use

type casting. The following program illustrates this.

main()

foal a
mt x6,y4;

a (float) x / y
printi ('nVaIue of a %, a)

And here is the output...

Value of a = 1.500000

This program uses type casting. This consists of putting a pair of
parentheses around the name of the data type. In this program we

said,

a = (float) x I y

Chapter 15: Miscellaneous Features 	 513

The expression (float) causes the variable x to be converted from
type mt to type float before being used in the division operation.

Here is another example of type casting-

main(

float a6,35;

printf (Value of a on type casting %d', (nt) a)
printf ("nValue of a %, a);

And here is the output...

Value of a on type casting 6
Value of a 6.350000

Note that the value of a doesn't get permanently changed as a
result of typecasting. Rather it is the value of the expression that
undergoes type conversion whenever the cast appears.

Bit Fields

If in a program a variable is to take only two values I and 0, we
really need only a single hit to store it. Similarly, if a variable is to
take values from 0 to 3, then two bits are sufficient to store these
values. And if a variable is to take values from 0 through 7, then
three bits will be enough, and so on.

Why waste an entire integer when one or two or three bits will do?
Well, for one thing, there aren't any one bit or two bit or three bit
data types available in C. However, when there are several
variables whose maximum values are small enough to pack into a
single memory location, we can use 'bit fields' to store several
values in a single integer. To demonstrate how bit fields work, let

514
	

Let Us C

us consider an example. Suppose we want to store the following
data about an employee. Each employee can:

(a) be male or female
(b) be single, married, divorced or widowed
(c) have one of the eight different hobbies
(d) can choose from any of the fifteen different schemes proposed

by the company to pursue his/her hobby.

This means we need one bit to store gender, two to store marital
status, three for hobby, and four for scheme (with one value used
for those who are not desirous of availing any of the schemes). We
need ten bits altogether, which means we can pack all this
information into a single integer, since an integer is 16 bits long.

To do this using bit fields, we declare the following structure:

struct employee

unsigned gender : 1;
unsigned mar_stat 2;
unsigned hobby : 3;
unsigned scheme :4

The colon in the above declaration tells the compiler that we are
talking about bit fields and the number after it tells how many bits
to allot for the field.

Once we have established a bit field, we can reference it just like
any other structure element, as shown in the program given below:

#define MALE 0;
#define FEMALE 1;
#define SINGLE 0;
#define MARRIED 1;
#define DIVORCED 2;

Chapter 15. Miscellaneous Features	 515

#define WIDOWED 3;

main()

struct employee

unsigned gender: 1;
unsigned mar_stat: 2;
unsigned hobby: 3;
unsigned scheme: 4;

struct employee e;

e.gender = MALE;
e.mar_status DIVORCED;
e.hobby=5;
e.scheme 9;

pnntf (.nGendêr %d, e.gender);
printf (\nMaritaI status %d', e.mar_status)
printf (\nBytes occupied by e %d', sizeof (e));

And here is the output...

Gender 0
Marital status 2
Bytes occupied by e 2

Pointers to Functions

Every type of variable that we have discussed so far, with the
exception of register, has an address. We' have seen how we can
reference variables of the type char, int, float, etc through their
addresses—that is by using pointers. Pointers can also point to C
functions. And why not? C functions have addresses. If we know

516
	

Let Us C

the function's address we can point to it, which provides another
way to invoke it. Let us see how this can be done.

main()
{

mt display()

printf (\nAddress of function display is %u, display)
display() 1 usual way of invoking a function

display()

puts ('\nLong live viruses!!

The output of the program would be:

Address of function display is 1125
Long live viruses!!

Note that to obtain the address of a function all that we have to do
is mention the name of the function, as has been done in the
prin(f() statement above. This is similar to mentioning the name
of the array to get its base address.

Now let us see how using the address of a function we can manage
to invoke it. This is shown in the program given below:

/* Invoking a function using a pointer to a function */
main()

nt display()
mt (*func_ptr)()

funcplr display r assign address of function 1

printf (nnAddress of function display is %u, func.ptr)

Chapter 15. Miscellaneous Features	 517

('func_ptr); P invokes the function display() 'I
}

mt display()

puts ("\nLong live viruses!!")

The output of the program would be:

Address of function display is 1125
Long live viruses!!

In main() we declare the function display() as a function
returning an ml. But what are we to make of the declaration,

nt (*func_ptr)(

that comes in the next line? We are obviously declaring something
that, like display(), will return an int, but what is it? And why is
* funcj,tr enclosed in parentheses?

If we glance down a few lines in our program, we see the
statement,

furic_ptr display

so we know that func_ptr is being assigned the address of
display(). Therefore, func_ptr must be a pointer to the function
display(). Thus, all that the declaration

mt (func_ptr)();

means is, that func ptr is a pointer to a function, which returns an
mt. And to invoke the function we are just required to write the
statement,

518
	

Let Us C

(*f1J.cpr.)()

Pointers to functions are certainly awkward and offputting. And
why use them at all when we can invoke a function in a much
simpler manner? What is the possible gain of using this esoteric
feature of C? There are two possible uses:

(a) in writing memory resident programs
(b) in writing viruses, or vaccines to remove the viruses

Both these topics form interesting and powerful C applications and
would call for separate book on each if full justice is to be given to
them. Much as I would have liked to, for want of space I would
have to exclude these topics.

Functions Returning Pointers

The way functions return an int, a float, a double or any other data
type, it can even return a pointer. However, to make a function
return a pointer it has to be explicitly mentioned in the calling
function as well as in the function definition. The following
program illustrates this.

main()

mt *p;
mt Iwo;)

p fun Q;

nt *fun()

mt i	 20
return (&i);

Chapter 15: Miscellaneous Features	 519

This program just indicates how an integer pointer can be returned
from a function. Beyond that it doesn't serve any useful purpose.
This concept can be put to use while handling strings. For example
look at the following program which copies one string into another
and returns the pointer to the target string.

main()

char 0str
char *copy()
char source[I "Jaded";
char target[101;

str copy (target, source);
printi (\n%s, str);

char *copy (char *t char 's)

char r;

r=t;

while (s!='\Q')

et

return (r)

Here we have sent the base addresses of source and target strings
to copy(). In the copy() function the while loop copies the
characters in the source string into the target string. Since during

520	 Let Us C

copying t is continuously incremented, before entering into the
loop the initial value oft is safely stored in the character pointer r.
Once copying is over this character pointer r is returned to
main().

Functions with Variable Number of Arguments

We have used prin(f() so often without realizing how it works
properly irrespective of how many arguments we pass to it. Flow
do we go about writing siich routines that can take variable number
of arguments? And what have pointers got to do with it? There are
three macros available in the tile "stdarg.h" called vastart,
va_arg and va list which allow us to handle this situation. These
macros provide a method for accessing the arguments of the
function when a function lakes a fixed number of arguments
followed by a variable number of arguments. The fixed number of
arguments are accessed in the normal way, whereas the optional
arguments are accessed using the macros va_Mart and va_arg.
Out of these macros va start is used to initialize ,I to the
beginning of the list of optional arguments. On the other hand the
macro va_arg is used to advance the pointer to the next argument.
Let us put these concepts into action using a program. Suppose we
wish to write a function Iindmax() which would find out the
maximum value from a set of values, irrespective of the number of
values passed to it.

include "stdarg.h
main()

nt max
nt findmax (int, ...

max findmax (5, 23, 15, 1, 92, 50)
printf (\nmaximum %d', max)

max findmax (3, 100, 300, 29);

Chapter 15: Miscellaneous Features 	 521

printi ("nmaximum %d, max);

nt findmax (mt tot_num,

nt max, count, num;

valist ptr;

va_start (ptr, tot _num);
max va_arg (ptr, int)

for (count 1; count < tot_num ; count++

num = va_arg (ptr, int);
if(num > max)

max = num;

return (max)

Note how the findmax() function has been declared. The ellipses
(...) indicate that the number of arguments after the first
argument would be variable.

Here we are making two calls to findmax() first time to find
maximum out of 5 values and second time to find maximum out of
3 values. Note that for each call the first argument is the count of
arguments that follow the first argument. The value of the first
argument passed to findmax() is collected in the variable
tot—num. findmax() begins with a declaration of a pointer ptr of
the type valjst. Observe the next statement carefully:

va_start (ptr, tot_num)

522	 Let Us

This statement sets up ptr such that it points to the first variable
argument in the list. If we are considering the first call to
flnndinax() ptr would now point to 23. The statement max =
vaarg (ptr, mt) would assign the integer being pointed to by
ptr to max. Thus 23 would he assigned to max, and ptr would
now start pointing to the next argument, i.e 15. The rest of the
program is fairly straightforward. We just keep picking up
successive numbers in the list and keep comparing them with the
latest value in max, till all the arguments in the list have been
scanned. The final value in max is then returned to mainO.

How about another program to fix your ideas? This one calls a
function display() which is capable of printing any number of
arguments of any type.

#include stdarg.h

main()

void display (nt, int,

display (1, 2, 5, 6)
display (2, 4, 'A', 'a', b, 'c');
display (3, 3, 2.5, 299.3, -1.0);

void display int type, int num,

nt i,j;
char c;
float 1;
va_list ptc;

va_start (ptr, num);
printf(\n")
switch (type)

case 1:

Chapter 15: Miscellaneous Features 	 523

for (j 	 <= nurn ; j++

vaarg (ptr, int);
p1ifltf(%di)

break;

case 2:
for (j1 j<num;j++)

c vaarg (ptr, char);
printf("%c,c);

break:

case 3:
for (j1 ;J<=num;j++)

(float) vaarg (ptr, double);
printf(%f', f)

Here we pass two fixed arguments to the function display(). The
first one indicates the data type of the arguments to he printed and
the second indicates the number of such arguments to be printed.
Once again through the statement va start (ptr, nurn) we set up
ptr such that it points to the first argument in the variable list of
arguments. Then depending upon whether the value of type is 1, 2
or 3 we print out the arguments as ints, chars or floats.

In all calls to display() the first argument indicated how many
values are we trying to print. Contrast this with printf(). To it we
never pass an argument indicating how many value are we trying
to print. Then how does prinU() figure this out? Simple. It scans

524 	 Let UsC

the format string and counts the number of format specifiers that
we have used in it to decide how many values are being printed.

Unions
Unions are derived data types, the way structures are. But Unions
have the same relationship to structures that you might have with a
distant cousin who resembled you but turned out to be smuggling
contraband in Mexico- That is, unions and structures look alike,
but are engaged in totally different enterprises.

Both structures and unions are used to group a number of different
variables together. But while a structure enables us treat a number
of different variables stored at different places in memory, a union
enables us to treat the same space in memory as a number of
different variables. That is, a union offers a way for a section of
memory to be treated as a variable of one type on one occasion,
and as a different variable of a different type on another occasion.

You might wonder why it would he necessary to do such a thing,
but we will be seeing several very practical applications of unions
soon. First, let us take a look at a simple example:

r Demo of union at work
main()

union a

mt i
char ch[2];

union a key;

key.i 512;
printf (\nkey.i %d', key.i)
printf (\rikey.ch[O)	 keych[O];

Chapter 15.' Miscellaneous Features	 525

pnntf (\nkey.ch[1] = %d, key.ch[1]);

And here is the output...

key.i 512
key.ch[O] = 0
key.ch [1] 2

As you can see, first we declared a data type of the type union a,
and then a variable key to be of the type union a. This is similar to
the way we first declare the structure type and then the structure
variables. Also, the union elements are accessed exactly the same
way in which the structure elements are accessed, using a
operator. However, the similarity ends here. To illustrate this let us
compare the following data types:

struct a

nt i
char ch[2];

struct a key,

This data type would occupy 4 bytes in memory, 2 for key.i and
one each for key.ch(OJ and key.ch1J, as shown in Figure 15.1.

key.i	 Hkey.ch{ 0]—'f--kcy.ch[i

I	 I	 I

1002	 1003	 1004	 1005

IIgure

35

526	 Let Us

Now we declare a similar data type, but instead of using a structure
we use a union.

union a

mt i
char ch[2]

union a key;

Representation of this data type in memory is shown in Figure
15.2.

key.i

P
1— key.ch [0] 4— kcy.ch[0

Figure 15.2

As shown in Figure 15.2, the union occupies only 2 bytes in
memory. Note that the same memory locations which ae used for
key.i are also being used by key.chIOI and key.chJlJ. it means that

the memory locations used by key.i can also be accessed using

,-key.chIOl and key.chII). What purpose does this serve? Well, now
we can access the two bytes simultaneously (by using key.i) or the
same two bytes individually (using key.chOJ and key.ch 111).

This is a frequent requirement while interacting with the hardware.
i.e. sometimes we are required to access two bytes simultaneously
and sometimes each byte individually. Faced with such a situation,
using union is the answer, usually.

Chapter 15: Miscellaneous Features 	 527

Perhaps you would be able to understand the union data type more
thoroughly if we take a fresh look at the output of the above
program. Here it is..,

key.i 512
key.ch[OJ 0
key.ch[1J 2

Let us understand this output in detail. 512 is an integer, a 2 byte
number. it's binary equivalent will be 0000 0010 0000 0000. We
would expect that this binary number when stored in memory
would look as shown below.

Key,i

IoIoIoInIoIoHHHJoloIoIoIoIoIoI
high byte	 low byte

key.ch [O]	 kcy.ch [l]

Figure 15.3

If the number is stored in this manner then, the output ofkey.chJOJ
and key.cb [1] should have been 2 and 0. But, if you look at the
output of the program written above, it is exactly the opposite.
Why is it so? Because, when a two-byte number is stored in
memory, the low byte is stored before the high byte. It means,
actually 512 would be stored in memory as shown in Figure 15.4.

Let Us C

key, i	 I

01 0	
0̂0j

i11
k	 low byte	 high byte

key.chOI	 kcy.ch[i]

Figure 15,

N ,w, we can see why value of key.chIOI is printed as 0 and value

of key.chIlI is printed as 2.

One last thing. We can't assign different values to the different

union elements at the same time. That is, if we assign a value to

key.i, it gets automatically assigned to key.ch(OI and key.chIll.
Vice versa, if we assign a value to key.chIOI or key.chI l I, it is

bound to get assigned to key.i. Here is a program that illustrates

this fact.

main(

union a

nt i
char ch[21;

union a key;

key.i5l2
printf (\nkey.i %d, keyi),
printf (\nkey.ch01 %d, key.ChtOl)
printi ("\nkey.ch[11 %d, key.ch[1]);

key.ch[0 50; 1' assign a new vaIueO key.ch01 I

Chapter 15: Miscellaneous Features 	 529

printf (\nkey.i = %d", key I);
printf (\nkey.ch[O1 = %d, key.ch[O]);
printf ("\nkey.ch[1] = %d, key.ch[1]);

}

And here is the output...

key.i 512
keychiOl 0
key.ch[1] = 2
key.i= 562
key.ch[0) = 50
key.ch[1] 2

Before we move on to the next section, let us reiterate that a union
provides a way to look at the same data in several different ways.
For example, there can exist a union as shown below.

union b

double d;
float fj2];
nt i[41
char chiB];

union b data;

In what different ways can the data be accessed from it?
Sometimes as a complete set of eight bytes (data.d), sometimes as
two sets of 4 bytes each (data.11Ol and data.flhl), sometimes as
four sets of 2 bytes each (data.iIOl, data.itlj, data.i121 and
data.131) and sometimes as eight individual bytes (data.chjOj,
data.chlfl... data.chl71),

530
	

Let Us C

Union of Structures

Just as one structure can be nested within another, a union too can
be nested in another union. Not only that, there can be a union in a
structure, or a structure in a union. Here is an example of stuctures
nested in a union.

main()

struct a

mt i;
char c[2];

struct b

nt
char d[21;

union z

struct a key;
struct b data

union z strange:

strange.key.i 512;
strange.data.d[Oj 0;
strange.data.d[1] 32;

pnntf (\n%d, strange.keyi);
printf (\n%d', strange.data.j)
printI (\n%d, strange.key.c(0])
printf (\n%d", strange datad[0fl;
printf (\n%d', strange. keyc[1);
printf (\n%d, strangedatadEll);

Chapter 15: Miscellaneous Features	 531

And here is the output...

512
512
0
o
32
32

Just as we do with nested structures, we access the elements of the
union in this program using the '.' operator twice. Thus,

strange.key.i

refers to the variable i in the structure key in the union strange.
Analysis of the output of the above program is left to the reader.

Summary
(a) The enumerated data type and the typedef declaration add to

the clarity of the program.
(b) Typecasting makes the data type conversions for specific

operations.
(c) When the information to be stored can be represented using a

few bits of a byte we can use bit fields to pack more
information in a byte.

(d) Every C function has an address that can be stored in a pointer
to a function. Pointers to functions provide one more way to
call functions.

(e) We can write a function that receives a variable number of
arguments.

(f) Unions permit access to same memory locations in multiple
ways.

Exercise

IAI What would be the output of the following programs:

532
	

Let Us C

(a) main()

enum status { pass, fail, atkt
enum status studi, stud2, stud3,
studi pass
stud2 fail
stud3 atkt;
printf (\n%d %d %d", studi, stud2, stuci3)

(b) main()

printf (%r, (float)	 int) 3.5/ 2)

(c) main()

float ij;
(float) 3/2;

jit3;
printf ('\n%d, (mt) j)

IBI Point out the error, if any, in the following programs:

(a)	 main()

typedef struct patient

char name[201;
mt age;
nt systolic-bp;
nt diastolicbp

} ptt;
ptt p1 = { anil, 23, 110, 220);
printi (*\n%s %d, p1 name, p1 age);
pnntf ("\n%d %d', p1 .systolic_bp, p1 .diastolic_bp);

Chapter 15: Miscellaneous Features 	 533

(b) main()

void showfl;
void (s)();
s = show;
(*s) ();

void show()

prinif ("ndon't show off. It wont pay in the long run"

(c) rnair()

mt showfl;
mt (*s);
s show();
(t)(

float show()

printf (\nControl did reach here");
return (333)

(d) main()

void show(int, float);
void (*)(int, float)
s show;

)(10, 3.14)

show (mt I, float f)

printf ("\n %d %r, i, f);

534
	

Let Us C

C1 Attempt the following:

(a) Create an array of four function pointers. Each pointer should
point to a different function. Each of these functions should
receive two integers and return a float. Using a loop call each
of these functions using the addresses present in the array.

(b) Write a function that receives variable number of arguments,
where the arguments are the coordinates of a point. Based on
the number of arguments received, the function displays, type
of shape like a point, line, triangle, etc. that can be drawn.

(c) Write a program, which stores information about a date in a
structure containing three members—day, month and year.
Using bit fields the day number should get stored in first 5
bits of day, the month number in 4 bits of month and year in
12 bits of year. Write a program to read date of joining of 10
employees and display them in ascending order of year.

(d) Write a program to read and store information about insurance
policy holder. The information contains details like gender,
whether the holder is minor/major, policy name and duration
of the policy. Make use of bit-fields to store this information.

16 C Under Windows

• Which Windows...
• Integers
• The Use of typedef
• Pointers in the 32-bit World

Memory Management
Device Access

• DOS Programming Model
• Windows Programming Model

Event Driven Model
• Windows Programming, a Closer Look
• The First Windows Program
• Hungarian Notation
• Summary
• Exercise

535

536	 Let Us

S

o far we have learnt every single keyword, operator and
instruction available in C. Thus we are through with the
language elements that were there to learn. We did all this

learning by compiling our programs using a 16-bit compiler like
Turbo C/C++. Now it is time to move on to more serious stuff. To
make a beginning one has to take a very important decision—
should we attempt to build programs that are targeted towards 16-
bit environments like MS-DOS or 32-bit environments like
Windows/Linux, Obviously we should choose the 32-bit platform
because that is what is in commercial use today and would remain
so until 64-bit environment takes over in future. That raises a very
important question—is it futile to learn C programming using 16-
bit compiler like Turbo C/C++? Absolutely not! The typical 32-bit
environment offers so many features that the beginner is likely to
feel lost. Contrasted with this, 16-bit compilers offer a very simple
environment that a novice can master quickly.

Now that the C fundamentals are out of the way and you are
confident about the language features it is time for us to delve into
the modern 32-bit operating environments. In today's commercial
world 16-bit operating environments like DOS are more or less
dead. More and more software is being created for 32-bit
environments like Windows and Linux. In this chapter we would
explore how C programming is done under Windows. Chapters 20
& 21 are devoted to exploring C under Linux.

Which Windows...

To a common user the differences amongst various versions of
Windows like Windows 95 ,98 , ME, NT, 2000, XP, Server-2003 is
limited to only visual appearances—things like color of the title
bar, shape of the buttons, desktop, task bar, programs menu etc.
But the truth is much farther than that. Architecturally there are
huge differences amongst them. So many are the differences that
Microsoft categorizes the different versions under two major
heads—Consumer Windows and Windows NT Family. Windows

Chapter 16: C Under Windows 	 537

95, 98, ME fall under the Consumer Windows, whcrcas Windows
NT, 2000, XP, Server 2003 fall under the Windows NT Family.
Consumer Windows was targeted towards the home or i. ' II office
users, whereas NT family was targeted towards bus . users.
Microsoft no longer provides support for Consumer Windows.
Hence in this book we would concentrate only on NT Family
Windows. So in the rest of this book whenever I refer to Windows
I mean Windows NT family, unless explicitly specified.

Before we start writing C programs under Windows let us first see
some of the changes that have happened under Windows
environment.ronment.

Integers

Under 16-bit environment the size of integer is of 2 bytes. As
against this, under 32-bit environment an integer is of 4 bytes.
Hence its range is -2147483648 to +2147483647. Thus there is no
difference between an mt and a long mt. But what if we wish to
store the age of a person in an integer? It would be improper to
sacrifice a 4-byte integer when we know that the number to be
stored in it is hardly going to exceed hundred. In such as case it
would be more sensible to use a short mt since it is only 2 bytes
long.

The Use of typedef

Take a look at the following declarations:

COLORREF color;
HANDLE h;
WPARAM w;
LPARAM I;
BOOL b;

538	 Let Us

Are COLORREF, HANDLE, etc. new datatypes that have been
added in C under Windows compiler? Not at all. They are merely
typedef's of the normal integer datatype.

A typical C under Windows program would contain several such
typedefs. There are two reasons why Windows-based C programs
heavily make use of typedefs. These are:

(a) A typical Windows program is required to perform several
complex tasks. For example a program may print documents,
send mails, perform file 1/0, manage multiple threads of
execution, draw in a window, play sound files, perform
operations over the network apart from normal data
processing tasks. Naturally a program that carries out so many
tasks would be very big in size. In such a program if-we start.
using the normal integer data type to represent variabks that
hold different entities we would soon lose track of what that
integer value actually represents. This can be overcome by
suitably typedefining the integer as shown above.

(b) At several places in Windows programming we are required
to gather and work with dissimilar but inter-related data. This
can be done using a structure. But when we define any
structure variable we are required to precede it with the
keyword struct. This can be avoided by using typedef as
shown below:

struct rect

mt Lop;

it'd left;

mt right;
ml bottom;

typedef struct rect RECT;
typedel struct rect' PRECT;

Chapter 16. C Under Windows	 539

RECT r:
PRECTpr;

What have we achieved out of this? It makes user-defined
data types like structures look, act and behave similar to
standard data types like integers, floats, etc. You would agree
that the following declarations

RECTr;
nt I

are more logical than

struct RECT r;
Intl;

Imagine a situation where each programmer typedefs the integer
to represent a color in different ways. Some of these could be as
follows:

typedef mt COL;
typedef mt COLOR;
typedef mt COLOUR;
typédef mt COLORREF;

To avoid this chaos Microsoft has done several typedels for
commonly required entities in Windows programming. All these
have been stored in header files. These header files are provided as
part of 32-bit compiler like Visual C++.

Pointers in the 32-bit World

In a 16-bit world (like MS-DOS) we could run only one
application at a time. If we were to run another program we were
required to terminate the first one before launching the second. As
only one program (task) could run at a time this enviroflment was

540	 Let Us

called single-tasking environment. Since only one program could
run at any given time entire resources of the machine like memory
and hardware devices were accessible to this program. Under 32-
hit environmentlike Windows several programs reside and work
in memory at the same time. Hence it is known as a multi-tasking
environment. But the moment there are multiple programs running
in memory there is a possibility of conflict if two programs
simultaneously access the machine resources. To prevent this,
Windows does not permit any application direct access to any
machine resource. To channelize the access without resulting into
conflict between applications several uew mechanisms were
created in the Microprocessor & OS. This had a direct bearing on
the way the application programs are created. This is not a
Windows OS book. So we would restrict our discussion aboit the
new mechanisms that have been introduced in Windows to topics
that are related, to C programming. These topics are Memory
Management and Device Access'.

Memory Management

Since users have become more demanding, modern day
applications have to contend with these det;inds and provide
several features in them, To add to this, under Windows several
such applications run in memory simultaneously. The maximum
allowable memory—I MB—that was used in 16-bit environment
was just too small for this. Hence Windows had to evolve a new
memory management model. Since Windows runs on 32-hit
microprocessors each CPU register is 32-bit long. Whenever we
store a value at a memory location the address of this memory
location has to be stored in the CPU register at some point in time.
Thus a 32-bit address can be stored in these registers. This means
that we can store 2 32 unique addresses in the registers at different
times. As a result, we can access 4 GB of memory locations using
32-bit registers. As pointers store addresses, every pointer under
32-bit environment also became a 4-byte entity.

Chapter 16: C Under Windows	 541

However, if we decide to install 4 GB memory it would cost a lot.
Hence Windows uses a memory model which makes use of as
much of physical memory (say 128 MB) as has been installed and
simulates the balance amount of memory (4 GB 128 MB) on the
hard disk. Be aware that this balance memory is simulated as and
when the need to do so arises. Thus memory management is
demand based.

Note that programs cannot execute straight-away from hard disk.
They have to be first brought into physical memory before they
can get executed. Suppose there are multiple programs already in
memory and a new program starts executing. If this new program
needs more memory than what is available right now, then some of
the existing programs (or their parts) would be transferred to the
disk in order to free the physical memory to accommodate the new
program. This operation is often called page-out operation. Here
page stands for a block of memory (usually of size 4096 bytes).
When that part of the program that was paged oUt is needed it is
brought back into memory (called page-in operation) and some
other programs (or their parts) are paged out. This keeps on
happening without a common user's knowledge all the time while
working with Windows. A few more facts that you must note
about paging arc as follows:

(a) Part of the program that is currently executing might also be
paged out to the disk.

(b) When the program is paged in (from disk to memory) there is
no guarantee that it would be brought back to the same
physical location where it was before it was paged out.

Now imagine how the paging operations would affect our
programming. Suppose we have a pointer pointing to some data
present in a page. If this page gets paged out and is later paged in
to a different physical location then the pointer would obviously
have a wrong address. Hence under Windows the pointer never
holds the physical address of any memory location. It always holds
ii virtual address of that location. What is this virtual address? At

36

Let Us

its iame suggests it is certainly not a real address. It is a number,
which contains three parts. These parts when used in conjunction
with a CPU register called CR3 and contents of two tables called
Page Directory Table and Page Table leads to the actual physical
address. This is shown in Figure 16.1.

Page Dir. liidcx I Page Table Index Page Byte Offset

21/	 i/	 0

Directory / Page Table	 Target Page

P
^",'(pP

(t

..T1

U,

PTnI	 I Pn

Page Directory
Recister

PFN cL
Physical M

Figure 16.1

The CR3 register holds the physical location of Page Directory

Table. The left part of the 32-bit virtual address holds the index
into the Page Directory Table. The value present at this index is
the starting address of the Page Table. The middle part of the 32-
bit virtual address holds the index into the Page Table. The value
present at this index is the starting address of the physical page in
memory. The right part of the 32-bit virtual address holds the byte

Chapter 16: CUnder Windows	 543

offset (from the start of the page) of the physical memory location
to be accessed.

Note that the CR3 register is not accessible from an application.
Hence an application can never directly reach a physical address.
Also, as the paging activity is going on the OS would suitably keep
updating the values in the two tables.

Device Access

All devices under Windows are shared amongst all the running
programs. Hence no program is permitted a direct access to any of
the devices. The access to a device is routed through a device
driver program, which finally accesses the device. There is a
standard way in which an application can communicate with the
device driver. It is device driver's responsibility to ensure that
multiple requests coming from different applications are handled
without causing any conflict. This standard way of communication
is discussed in detail in Chapter 17.

DOS Programming Model

Typical 16-bit environments like DOS use a sequential
programming model. III model programs are executed from
top to bottom in an orderly fashion. The path along which the
control flows from start to finish may vary during each execution
depending on the input that the program receives or the conditions
under which it is run. However, the path remains fairly predictable.
C programs written in this model begin execution with main()
(often called entry point) and then call other functions present in
the program. If you assume some input data you can easily walk
through the program from beginning to end. In this programming
model it is the program and not the operating system that
determines which function gets called and when. The operating
system simply loads and executes the program and then waits for it
to finish. If the program wishes it can take help of the OS to carry

544
	

Let Us C

out jobs like console I/O, file I/O, printing, etc. For other
operations like generating graphics, carrying out serial
communication, etc. the program has to call another set of
functions called ROM-BIOS functions.

Unfortunately the DOS functions and the BIOS functions do not
have any names. Hence to call them the program had to use a
mechanism called interrupts. This is a messy affair since the
programmer has to remember interrupt numbers for calling
different functions. Moreover, communication with these functions
has to be done using CPU registers. This lead to lot of difficulties
since diuièrent functions use different registers fo communication.
To an extent these difficulties are reduced by providing library
functions that in turn call the DOS/BIOS functions using
interrupts. But the library doesn't have a parallel function for every
DOS/BIOS Function. DOS functions either call BIOS functions or

directly access the hardware.

At times the programs are needed to directly interact with the
hardware. This has to be done because either there are no

DOS/BIOS functions to do this, or ii ' they are there their reach is

limited.

Figure 16.2 captures the essence of the DOS programming model.

main()

fun()

fun()

U11 execution
transfer control

to program

DOS
Interrupt
&cpU	

Functions

Registers

Chapter 16: C Under Windowv 	 545

BIOS
& CPU	 lunction

Registers	 ------

Hardware

Sequentially Executing
DOS program

Figure 16.2

From the above discussion you can gather that there are several
lin)itations in the DOS programming modeL These have been
listed below:

No True Reuse

The library functions that are called from each program become
part of the executable file (EXE) for that program. Thus the same
functions get replicated in several EXE flies, thereby wasting
precious disk space.

546	 Let Us C

Inconsistent Look and Feel

Every DOS program has a different user interface that the user has
to get used to before he can start getting work out of the program.
For example, successful DOS-based software like Lotus 1-2-3,
Foxpro, Wordstar offered different types of menus. This happened
because DOS/BIOS doesn't provide any functions for creating
user interface elements like menus. As the look and feel of all
DOS based programs is different, the user takes a lot of time in
learning how to interact with the program

Messy Calling Mechanism

It is difficult to remember interrupt numbers and the registers that
are to be used for communication with DOS/BIOS functions. For
example, if we are to position the cursor on the screen using a
BIOS function we are required to remember the following details:

Interrupt number— 16
CPU Registers to be used:

AH - 2 (service number)
DH - Row number where cursor is to be positioned
DL - Column number where cursor is to be positioned

While using these interrupt numbers and registers there is always a

chance of error.

Hardware Dependency

DOS programs are always required to bother about the details of
the hardware on which they are running. This is because for every
new piece of hardware introduced there are new interrupt numbers
and new register details. Hence DOS programmers are under the
constant fear that if the hardware on which the programs are
running changes then the program may crash.

Chapter 16. C Under Windows	 547

Moreover the DOS programmer has to write lot of code to detect
the hardware on which his program is running and suitably make
use of the relevant interrupts and registers. Not only does this
make the program lengthy, the programmer has to understand a lot
of technical details of the hardware. As a result the programmer
has to spend more time in understanding the hardware than in the
actual application programming.

Windows Programming Model

From the perspective of the user the shift from MS-DOS to
Windows OS involves switching over to a Graphical User
Interface from the typical Text Interface that MS-DOS offers.
Another change that the user may feel and appreciate is the ability
of Windows OS to execute several programs simultaneously,
switching effortlessly from one to another by pointing at windows
and clicking them with the mouse. Mastering this new GUI
environment and getting comfortable with the multitasking feature
is at the most a matter of a week or so. However, from the
programmer's point of view programming for Windows is a whole
new ball game!

Windows programming model is designed with a view to:

(a) Eliminate the messy calling mechanism of DOS
(b) . Permit true reuse of commonly used functions
(c) Provide consistent look and feel for all applications
(d) Eliminate hardware dependency

Let us discuss how Windows programming model achieves this.

Better Calling Mechanism

Instead of calling functions using Interrupt numbers and registers
Windows provides functions within itself which can be called
using names. These functions are called API (Application
Programming Interface) functions. There are literally hundreds of

548	 Let Us C

API functions available. The y help ail to perform

various tasks such as creating it window, drawing a line,

performing file inputJoutput, etc.

True Reuse

A C under Windows program calls several API functions during
course of its execution. Imagine how much disk space would have
been wasted had each of these functions become pail of the EXE
file of each program. To avoid this, the API Functions are stored in
special files that have an extension .DLL.

DLL stands for Dynamic Link Libraries. A DLL is a binary file
that provides a library of functions. The functions present in DLLs
can be linked during execution. These functvins can also be shared
between several applications running in Windows. Since linking is
done dynamically the functions do not become part of the
executable file. As i t result, the size of EXE files does not go out of
hand. It is also possible to create your own DLLs. You would like
to do this for two reasons:

(a) Sharing cor I non code between different exccutvble tiles.

(b) Breaking an application into component parts to provide a
way to easily Upgrii(IC application's components.

The Windows AN functions come in three DLL files. Figure 16.3
lists these filenames along with purpose of each.

Chapter 16: C Under Windows 	 549

DIL	 Description

IJSER32.DLL	 Contains functions that are responsible
for window management, including
menus, cursors, communicatiOtis,
timer etc.

0D132,DLL	 Contains functions for graphics drawing
and painting

KERNFL32.DLL	 Contains functions to handle memory
management. _threading, etc.

Figure 16.3

Consistent Look and Feel

Consistent look and feel means that each program offers a
consistent and similar user interface. As a result, user doesn't have
to spend long periods of time mastering a new program. Every
program occupies a window—a rectangular area oii the screen. A
window is identified by a title bar. Most program functions are
initiated through the program's menu. The display of information
too large to fit on a single screen can be viewed using scroll bars.
Some menu items invoke dialog boxes, into which the user enters
additional information. One dialog box is found in almost every
Windows program. It opens a file. This dialog box looks the same
(or very similar) in many different Windows programs, and it is
almost always invoked from the same menu option.

Once you know how to use one Windows program, you're in a
good position to easily learn another. The menus and dialog boxes
allow user to experiment with a new program and explore its
features. Most Windows programs have both a keyboard interface
and a mouse interface. Although most functions of Windows
programs can be controlled through the keyboard, using the mouse
is often easier for many chores.

550	 Let Us

From the programmer's perspective, the consistent user interface
results from using the Windows API functions for constructing
menus and dialog boxes. All menus have the same keyboard and
mouse interfaces because Windows—rather than the application
program—handles this job.

Hardware Independent Programming

As we saw earlier a Windows program can always call Windows
API functions. Thus an application can easily communicate with
OS. What is new in Windows is that the OS can also communicate
with application. Let us understand why it does so with the help of
an example.

Suppose we have written a program that contains a menu item,
which on selection is supposed to display a string "Hello World"
in the window. The menu item can he selected either using the
keyboard or using the mouse. On executing this program it will
perform the initializations and then wait for the user input. Sooner
or later the user would press the key or click the mouse to select
the menu-item. This key-press or mouse-click is known as an
'event'. The occurrence of this event is sensed by the keyboard or
mouse device driver. The device driver would now inform
Windows about it. Windows would in turn notify the application
about the occurrence of this event. This notification is known as a
'message'. Thus the OS has communicated with the application.
When the application receives the message it communicates back
with the OS by calling a Windows API function to display the
string "Hello World" in the window. This API function in turn
communicates with the device driver of the graphics card (that
drives the screen) to display the string. Thus there is a two-way
communication between the OS and the application. This is shown
in Figure 16.4.

Chapter 16: C Under Windows	 551

L Application I
API CaIIj j Message

Windows OS

Device Driver

Hardware

Figure 16.4

Suppose the keyboard and the mouse are now replaced with a new
keyboard and mouse. Doing so would not affect the application at
all. This is because at no time does the application carry out any
direct communication with the devices. Any differences that may
be there in the new set of mouse and keyboard would be handled
the device driver and not by the application program. Similarly, if
the screen or the graphics card is replaced no change would be
required in the program. In short hardware independence at work!
At times a change of device may necessitate a change in the device
driver program, but never a change in the application.

Event Driven Model

When a user interacts with a Windows program a lot of events
occur. For each event a message is sent to the program and the
program reacts to it. Since the order in which the user would
interact with the user-interface elements of the program cannot be
predicted the order of occurrence of events, and hence the order of
messages, also becomes unpredictable. As a result, the order of

552	 Let Us C

calling the functions fit program (that react to different
messages) is dictated by the order of occurrence of events. Hence
this programming model is called '[vent Driven Programming
Model'.

That's really all that is there to event-driven programming. Your
job is to anticipate what users are likely to do with your
application's user interface objects and have it function waiting,
ready to execute at the appropriate time. Just when that time is, no
one except the user can really say.

Windows Programming, a Closer Look

There can be hundreds of ways in which the user may interact with
an application. In addition to this some events may occur without
any user interaction. For example, events occur when we create a
window, when the window's contents arc to be drawn, etc. Not
only this, occurrence of one event may trigger it few more events.
Thus literally hundreds of messages may be sent to an application
thereby creating a chaos. Naturally, a question comes---in which
order would these messages get processed by the application.
Order is brought to this chaos by putting all the messages that
reach the application into a 'Queue'. The messaWs in the queue
are processed in First In First Out (FIFO) order.

In fact the OS maintains several such queues. There is one queue,
which is common for all applications. This queue is known as
'System MessageMessage Queue'. In addition there is one queue per
application. Such queues are called 'Application Message
Queues'. Let us understand the need for maintaining so many
queues.

When we click a mouse and an event occurs the device driver
posts a message into the System Message Queue. The OS retrieves
this message finds out with regard to which application the
message has been sent. Next it posts a message into the

N. , Cr_ I-
LIT s b.çth to tern 	 -

Chapter 16: C Under Windows
	

553

Application Message Queue of the application in which the mouse
was clicked. Refer Figure 16.5.

Event

Device Driver

M.

Other
Mess

Event

Device Driver

_sg.

System Msg.
Queue

OS	 Other
"....N.	 Mes-a

Application 1	 Application 1
Msg. Queue

Application2 Application2
Msg. Queue

Figure 16.5

I think now we have covered enough ground to he able to actually
start C under Windows programming. here we go...

554
	

Let Us C

The First Windows Program

To keep things simple we would begin with a program that merely
displays a "Hello" message in a message box. Here is the
program...

#nclude <windows.h>
nt _stdcall WinMain (HINSTANCE hinstance, HINSTANCE hPrevinstance,

LPSTR lpszCmdline, int nCmdShow)

MessageBox (0, Hello!', Title', 0);
return (0);

Naturally a question would conic to your mind--how do I create
and run this program and what output does it produce. Firstly take
a look at the output that it produces. Here it is...

Figure 16.6

Let us now look at the steps that one needs to carry to create and
execute this program:

(a) Start VC++ from 'Start I Programs j Microsoft Visual C++
6.0'. The VC++ IDE window will get displayed.

(h) From the File I New menu, select 'Win32 Application', and
give a project name, say, 'sample I '. Click on OK.

(c) From the File I New menu, select 'C++ Source File', and give
a suitable file name, say, 'samplel '. Click on OK.

(d) The 'Win32 Application-Step I of I' window will appear.
Select 'An empty project' option and click 'Finish' button.

Chapter 16: C Under Windows	 555

(e) A 'New Project Information' dialog will appear. Close it by
clicking on OK.

(f) Again select 'File I New I C++ Source File'. Give the file
name as 'samplel .c'. Click on OK.

(g) Type the program in the 'samplel.c' file that gets opened in
the VC++ IDE.

(h) Save this file using 'Save' option from the File menu.

To execute the program follow the steps mentioned below:

(a) From the Build menu, select 'Build samplcl.exe'.
(b) Assuming that no errors were reported in the program, select

'Execute sample l.exe' from the Build menu.

Let us now try to understand the program. The way every C under
DOS program begins its execution with main(), every C under
Windows program begins its execution with WinMainQ. Thus
WinMain() becomes the entry point for a Windows program. A
typical WinMain() looks like this:

mt _stdcall WinMain (H INSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR lpszCmdLine, mt nCmdShow)

Note the _stdcall before WinMain(). It indicates the calling
convention used by the WinMain() function. Calling Conventions
indicate two things:

(a) The order (left to right or right to Jell) in which the arguments
arc pushed onto the stack when a function call is made.

(b) Whether the caller function or called function removes the
arguments from the stack at the end of the call.

Out of the different calling conventions available most commonly
used conventions are _cdecl and stdcall . Both these calling
conventions pass arguments to functions from right to left. In

cdecl the stack is cleaned up by the calling function, whereas in
case of_stdcall the stack is cleaned up by the called Function. All

556
	

Let Us C

API functions use	 stdcaH calling convention. If not mentioned,
_cdecl calling convention is assumed by the compiler.

HINSTANCE and LPSTR are nothing but typedefs. The first is an
unsigned mt and the second is a pointer to a char. These macros
are defined in 'windows.h'. This header file must always be
included while writing a C program under Windows. hinstance,
hPrevinstance, lpszCrndLine and nCrndShow are simple
variable names. In place of these we can use i, j, k and I
respectively. Let us now understand the meaning of these
parameters as well as the rest of the program.

WinMain() receives four parameters which are as under:

hinstance: This is the 'instance handle' for the running.
application. Windows creates this ID number when the
application starts. We will use this value in many Windows
functions to identify an application's data.

A handle is simply a 32-bit number that refers to all
The entity could be an application, a window, an icon, a
brush, a cursor, a bitmap, a file, a device or any such entity.
The actual value of the handle is unimportant to your
programs, but the Windows module that gives your program
the handle knows how to use it to refer to an entity. What is
important is that there is a unique handle for each entity and
we can refer and reach the entity only using its handle,

hPrevinstance: This parameter is a remnant of earlier
versions of Windows and is no longer significant. Now it
always contains a value 0. It is being persisted with only to
ensure backward compatibility.

lpszCmdLinc: This is a pointer to a character string
containing the command line arguments passed to the
program. This is similar to the argv, argc parameters passed
to main() in a DOS program.

Chapter 16: C Under Windows	 557

nCmdShow: This is an integer value that is passed to the
function. This integer tells the program whether the window
that it creates should appear minimized, as an icon, normal, or
maximized when it is displayed for the first time.

- The Message Box() function pops up a message box whose
title is 'Title' and which contains a message 'Hello!'.

- Returning 0 from WinMain() indicates success, whereas,
returning a nonzero value indicates failure.

- Instead of printing 'Hello!' in the message box we can print
the command line arguments that the user may supply while
executing the program. The command line arguments can be
supplied to the program by executing it from Start I Run as
shown in Figure 16.7.

Type Om rneof e t,rogan, fade, doAe t,
(_j1J [ntTet	 a'd'M'dowi 4	 i for yoia.

'; [yapp.exethc!xyz .

Ililog Ic1[jow,e

Figure 16.7

Note from Figure 163 that 'myapp.exe' is the name of our
application, whereas, 'abc ijk xyz' represents command line
arguments. The parameter lpszCmdline points to the string
It

ijk xyz". This string can be printed using the following
statement:

MessageBox (0, lpszCmdline, Title, 0);

lithe entire command line including the filename is to be
retrieved we can use the GetCommandLine() function.

37

Let Us C

Hungarian Notation

Hungarian Notation is a variable-naming convention so called in
the honor of the legendary Microsoft programmer Charles
Sinionyi. According to this convention the variable name begins
with a lower case letter or letters that denotes the data type of the
variable. For example, the sz prefix in szCnidiine stands for
'string terminated by zero'; the prefix h in hinstance stands for

'handle'; the prefix n in nCmdShow stands for mt. Prefixes are
often combined to form other prefixes, as lpsz in lpszCmdLlne
stands for 'long pointer to a zero terminated string'. Though
basically this notation is a good idea nowadays its usage is
discouraged. This is because when a transition happens from say a
16-bit code to 32-hit code then a whole lot of variable names have
to be changed. For example, suppose the 16-bit code used 2-byte
and 4-byte integer variables called wParam and IParam, where w

indicated a 16-bit integer (word) and a 32-bit integer (long)
respectively. When this code is ported to a 32-bit environment
wParam had to be changed to lParam since in this environment
every integer is 4 bytes long. You would agree that if we follow
the Hungarian notation then we would have to make a whole lot of
changes in the variable names when we port the code to a 32-bit or
a 64-bit environment. Hence the usage of this convention is
nowadays discouraged.

Summary
(a) Under Windows an integer is four bytes long. To use a two-

byte integer pre-qualfy it with short.

(b) Under Windows a pointer is four bytes long.
(c) Windows programming involves a heavy usage of typedefs.

(d) DOS uses a Sequential Programming Model, whereas,
Windows uses an Event Driven Programming Model.

(e) Entry point of evecy Windows program is a function called
Win Main(

Chapter 16: C Under Windows	 559

(f) Windows does not permit direct access to memory or
hardware devices.

(g) Windows uses a Demand-based Virtual Memory Model to
manage memory.

(h) Under Windows there is two-way communication between the
program and the OS.

(i) Windows maintains a system message queue common for all
applications.

(j) Windows maintains an application message queue per running
application.

(k) Calling convention decides the order in which the paramens
are passed to a function and whether the calling function o
the called function clears the stack.

(I) Commonly used calling Conventions are _cdecl and
stdcall.

(rn) Hungarian notation though good its usage is not
recommended any more.

Exercise

IAI State True or False:

(a) MS-DOS uses a procedural programming model.
(b) A Windows program can directly call a device driver program

for a device.
(c) API functions under Windows do not have names.
(d) DOS functions are called using an interrupt mechanism.
(e) Windows uses a 4 GB virtual memory space.
(f) Size of a pointer under Windows depends upon whether it is

near or far.
(g) Under Windows the address stored in a pointer is a virtual

address and not a physical address.
(h) One of the parameters of WinMain() called hPrevinstance

is no longer relevant.

560
	

Let Us C

IBI Answer the following:

(a) Why is Event-driven Programming Model better than the

Sequential Programming Model?

(b) What is the meaning of different parts of the address stored in
a pointer under Windows environment!

(c) Why Windows does not permit direct access to hardware?

(d) What is the difference between all ;cnt and a message?

(e) Why Windows maintains a diftren1 message queue for each

application?
(I) In which different situations messages get posted into an

application message queue?

LCI Attempt the following:

(a) Write a	 ogram that prints the value of hinstanCe in a

message box.
(b) Write a program that displays three buttons 'Yes', 'No'

'Cancel' in the message box.

(c) Write a program that receives a number as a command line
argument and prints its factorial value in a message box.

(d) Write a program that displays command line arguments
including file name in a message box.

17 Windows
Programming

• The Role of a Message Box
• Here comes the window...
• More Windows
• A Real-World Window

Creation and Displaying of Window
Interaction with Window
Reacting to Messages

• Program Instances
• Summary
• Exercise

561

562	 Let Us C

- '7event driven programming requires a change in mind set. I
hope Chapter 16 has been able to bring about this change.

- However this change would be bolstered by writing event
driven programs. This is what this chapter intends to do. I am
hopeful that by the time you reach the end of this chapter you
would be so comfortable with it as if you have been using it all
your life.

The Role of a Message Box

Often we are required to display certain results on the screen
during the course of execution of a program. We do this to
ascertain whether we are getting the results as per our
expectations. In a sequential DOS based program we can easily
achieve this using printf() statements. Under Windows screen is a
shared resource. So you can imagine what chaos would it create if
all running applications are permitted to write to the screen. You
would not be able to make out which output is of what application.
Hence no Windows program is permitted to write anything directly
to the screen. That's where a message box enters the scene. Using
it we can display intermediate results during the course of
execution of a program. It can be dismissed either by clicking the
'close button' in its title bar or by clicking the OK button present
in it. There are numerous variations that you can try with the
MessageBox(). Some of these are given below

MessageBox (0, 'Are you sure", Caption", MB_YESNO);
MessageBox (0, Print to the Printer", 'Caption", MB_YESNO CANCEL)
MessageBox (0, "icon is all about style", 'Caption". MB-OK I

MB_ICONINFORMATION);

You can put the above statements within WinMain() and see the
results for yourself. Though the above message boxes give you
flexibility in displaying rcsult v . button, icons, there is a limit to
which you can stretch them. What if we want to draw a free hand
drawing or display an image, etc. in the message box. This would

Close
Butt
on

Vertical

Scrol

Icon

Menu

Client
An

Chapter 17: Windows Programming	 563

not be possible. To achieve this we need to create a full-fledged
window The next section discusses how this can be done.

Here Comes the window...

Before we proceed with the actual creation of a window it would
be a good idea to identify the various elements of it. These are
shown in Figure 17.1.

Caption	 Minimize

Horizontal Scroll

Figure 17.1

Note that every window drawn on the screen need not necessarily
have every element shown in the above figure. For example, a
window may not contain the minimize box, the maximize box, the
scroll bars and the menu.

Let us now create a simple program that creates a window on the
screen. Here is the program...

#include <windows.h>

-j DI x

Press Me

564
	

Let Us C

mt stdcall WinMamn (HINSTANCE hinstance, HINSTANCE hPrevinstance,
LPSTR lpszCmdLine, int nCmdShow)

HWND h;

h CreateWindow ("BUTTON", 'Hit Me', WS_OVERLAPP EDWIN DOW,
10,10,150, 100,0,0,m,0);

ShowWindow (h, nCrndShow);
MessageBox (0, "Hi!", Waiting", MB-OK.);
return 0;

Here is the output of the program...

Figure 17.2

Let us now understand the program. Every window enjoys certain
properties—background color, shape of cursor, shape of icon, etc.
All these properties taken together are known as 'window class'.
The meaning of 'class' here is 'type'. Windows insists that a
window class should be registered with it before we attempt to
create windows of that type. Once a window class is registered we
can create several windows of that type. Each of these windows
would enjoy the same properties that have been registered through
the window class. There are several predefined window classes.
Some of these are BUTTON, EDIT, LISTBOX, etc. Our program
has created one such window using the predefined BUTTON class.

Chapter 17: Windows Progra#nining 	 565

To actually create a window we need to call the API function
CreateWindow(). This function requires several parameters
starting with the window class. The second parameter indicates the
text that is going to appear on the button surface. The third
parameter specifies the window style.
WS_OVERLAPPEDWJNDQW is a commonly used style. The
next four parameters specify the window's initial position and
size—the x and y screen coordinates of the window's top left
corner and the window's width and height in pixels. The next three
parameters specify the handles to the parent window, the menu and
the application instance respectively. The last parameter is the
pointer to the window-creation data.

We can easily devote a Section of this book to CreateWindow()
and its parameters. But don't get scared of it. Nobody is supposed
to remember all the parameters, their meaning and their order. You
can always use MSDN (Microsoft Developer Network) help to
understand the minute details of each parameter. This help is
available as part of VC-t-+ 6.0 product. It is also available on the
net at http://www.msdn.microsoft.com/library.

Note that CreateWindow() merely creates the window in
memory. We still are to display it oil screen. This can be done
using the ShowWindow() API function. CreateWindow()
returns handle of the created window. Our program uses this
handle to refer to the window while calling ShowWindow(). The
second parameter passed to Show Window() signifies whether the
window would appear minimized, maximized or normal. If the
value of this parameter is SW_SHOWNORMAL we get a normal
sized window, if it is SW_SHOWMINIMIZED we get a
minimized window and if it is SW SHOWrSIINIMIZED we get a
maximized window. We have passed nCmdShow as the second
parameter. This vriable contains SW_SHOWNORMAL by
default. Hence our program displays a normal sized window.

566

The WS_OVERLAPPEDWINDOW style is a collection of the

following styles:

WS OVERLAPPED I WS-CAPTION I WS_SYSMENU I WS_THICKFRAME I

WS_MINIMIZEBOX WS_MAXIMIZEBOX

As you can make out from these macros they essentially control
he look and feel of the window being created. All these macros

are #defined in the Windows.h' header tile.

On executing this program a window and a message box appears
on the screen as shown in the Figure 17.2. The window and the
message box disappear as soon as we click on OK. This is because
on doing so execution of WinMain() comes to an end and
moreover we have made no provision to interact with the window.

You can try to remove the call to MessageBox() and see the
result. You would observe that no sooner does the window appear
it disappears. Thus a call to MessageBox() serves the similar

purpose as getch() does in sequential programming.

More Windows

Now that we know how to create a window let us create several
windows on the screen. The program to do this is given below.

#include <windows.h'

mt _stdcatl WinMain (1-IINSTANCE hlnstance HINSTANCE hPrevinstance,
LPSTR IpszCmclLine nt nCmdShow)

HWND h[10];
mt x

for(x=0; x<=9,, x+

Press Me NII

Chapter 17: Windows Programming	 567

h[x] CreateWindow ("BUTTON, Press Men,
WS_OVERLAPPEDWINDOW, x * 20,
x20, 150,1000,0,1,0);

ShowWindow (h[x], I);

MessageBox (0, 	 Waiting, 0);
return 0;

Figure 17.3

Note that each window created in this program is assigned a
different handle. You may experiment a bit by changing the name
of the window class to EDIT and see the result.

A Real-World Window

Suppose we wish to create a window and draw a few shapes in it.
For creating such a window there is no standard window class
available. Hence we would have to create our own window class,
register it with Windows OS and then create a window on the basis
of it. Instead of straightway jumping to a program that draws

Let Us C

shapes in a window let us first write a program that creates a
window using our window class and lets us interact with it. Here is
the program...

#iriclude <windows.h>
#include helper.h

void OnDestroy (HWND);

mt _stdcall WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance,
LPSTR lpszCmdline, int nCmdShow)

MSG m;

r perform application initialization I
Initinstance (hlnstance, nCmdShow, title);

I' message loop !
while (GetMessage (&m, 0, 0, 0))

DispatchMessage (&m)',

return 0;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
WPARAM wParam, LPARAM lParam)

switch (message)

case WM_DESTROY:
OnDestroy (hWnd)
break

default:
return DefWindowProc (hWnd, message, wParam, lParam)

return 0

Chaplet- 17: Windows Programming 	 569

void OnDestroy (HWNO hWnd)

PostQuitMessage (0);	 p

On execution of this program the window shown in Figure 17.4
appears on the screen. We can use minimize and the maximize
button it its title bar to minimize and maximize the window. We
can stretch its size by dragging its boundaries. Finally, we can
close the window by clicking on the close window button in the
title bar.

Figure 17.4

Let us now try to understand this program step by step.

Creation and Displaying of Window

Creating and displaying a window on the screen is a 4-step
process. These steps are:

(a) Creation of a window class.
(b) Registering the window class with the OS.
(c) Creation of a window based on the registered class.
(d) Displaying the window on the screen.

Creation of a window class involves setting up of elements of a
structure called WNDCLASSEX. This structure contains several

570	 Let Us

elements. They govern the properties of the window. Registration
of a window class, creation of a window and displaying of a
window involves calling of API functions RegisterClasSEX(),

CrcateWindoW() and ShowWindOW() respectively. Since all the
4 steps mentioned above would be required in almost every
program in this chapter 1 have written this code in a user-defined
lunction called Initlnstance() in the file 'helper.h'.

Though writing code in a header file goes against the convention I
have still done so to achieve simplicity. The complete listing of
'helper.h' file is available in Appendix F. Alternatively you can
download it from the following link:

www.kicit.com!books/letLISC/Sourcecode,lielper.h

As expected WinMain() starts off by calling the function

Initlnstance() present in 'helper.h' file. This file has been

#included at the beginning of the program. Remember to copy this
file to your project directory—the directory in which you are going
to create this program.

Once the window has been created and displayed let us see how
we can interact with it.

Interaction with Window

As and when the user interacts with the window--by stretching is
boundaries or clicking the buttons in the title bar, etc. a suitable
message is posted into the message queue of our application. Our
application should now pick them up from the message queue and

process them.

A message contains a message id and some other additional
information about the message. For example, a mouse click
message would contain additional information like handle to the
window with which the user has interacted, the coordinates of

Chapter 17: Windows Programming 	 571

mouse cursor and the status of mouse buttons. Since it is difficult
to memorize the message ids they have been suitably #defined in
'windows.h'. The message id and the additional information are
stored in a structure called MSG.

In WinMain() this MSG structure is retrieved from the message
queue by calling the API function GetMessage(). The first
parameter passed to this function is the address of the MSG
structure variable. GetMessage() would pick the message info
from the message queue and place it in the structure variable
passed to it. Don't bother about the other parameters right now.

After picking up the message from the message queue we need to
process it, This is done by calling the Dispatch Message() API
function. This function does several activities. These are as
follows:

(a) From the MSG structure that we pass to it,
DisplayMessage() extracts the handle of the window for
which this message is meant for.

(b) From the handle it figures out the window class based on
which the window has been created.

(c) From the window class structure it obtains the address of a
function called WndProc() (short for window procedure).
Well I didn't tell you earlier that in Initlnstance() while
filling the WNDCLASSEX structure one of the elements has
been set up with the address of a user-defined function called
WndProcO,

(d) Using this address it calls the function WndProc().

Since several messages get posted into the message queue picking
of the message and processing it should he done repeatedly. Hence
calls to GetMesage() and Dispatch Message() have been made in
a while loop in WinMain(). When GetMessage() encounters a
message vitli Id WM_QUIT it returns a 0. Now the control comes
out of the loop and WinMajn() conies to an end.

572	 Let Us C

Reacting to Messages

As we saw in the previous section, for every message picked up
from the message queue the control is transferred to the
WndProc() function. This function is shown below:

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
WPARAM wParam, LPARAM IParam)

This function always receives four parameters. The first parameter
is the handle to the window for which the message has been
received. The second parameter is the message id, whereas, the
third and fourth parameters contain additional information about
the message.

LRESULT is a typedef of a long mt and represents the return
value of this function. CALLBACK is a typedef of _stdcall.
This typedef has been done in 'windows.h'. CALLBACK
indicates that the WndProc function has been registered with
Windows (through WNDCLASSEX structure in InitlnstanceO)
with an intention that Windows would call this back (through
Dispatch Message() function).

In the WndProc() function we have checked the message id using

a switch. If the id is WM_DESTROY then we have called the

function OnDestroy(). This message is posted to the message
queue when the user clicks on the 'Close Window' button in the
title bar. In OnDestroy() function we have called the API

function PostQuitMessage(). This function posts a WM_QUIT
message into the message queue. As we saw earlier, when this
message is picked up the message loop and WinMain() is

terminated.

For all messages other than WM_DESTROY the control lands in

the default clause of switch. Here we have simply made a call to

DefWindowPrOC() API function. This function does the default

Chapter 17: Windows Programming	 573

processing of the message that we have decided not to tackle. The
default processing for different message would be different. For
example on double clickug the title bar DefWindowProc()
maximizes the window.

Actually peaking when we close the window a WMCLOSE
message is posted into the message queue. Since we have not
handled this message the DeiWindowProc() function gets called
to tackle this message. The LeñVindowProc() function destroys
the window and places a WMDESTROY message in the
message queue. As discussed earlier, in WndProc() we have
made the provision to terminate the application 011 encountering
WM_DESTROY.

That brings us to the end of a lonnngggg explanation! You can
now heave a sigh of relief. I would urge you to go through the
above explanation till the time you are absolutely sure, that you
have understood every detail of it. A very clear understanding of it
would help you make a good Windows programmer. For your
convenience I have given a flowchart of the entire working in
Figure 17.5.

38

574
	

Let Us C

START Executio

Call lnitlnstance(

Fill WNDCLASSEX structure to define window class

Call RegisterCallEx() to register the window class with OS

Call CreateWindow() to create window in memory

Call Show Window() to display window on screen

Pick message from message queue - GctMcssagc(

the mess,,___L
VMQU1

Process the message DispatchMesage(

Cal] Window Procedure

Is the
	

'-'-	 EPost WM QUIT -
1MDFSTR	 postQuitessage(

Do default processing of
ssae - DcfWindowProc

Figure 17.5

Chapter 17: Windows Programming	 575

Program Instances

Windows allows you to run more than one copy of a program at a
time. This is handy for cutting and pasting between two copies of
Notepad or when running more than one terminal session with a
terminal emulator program. Each running copy of a program is
called a 'program instance'.

Windows performs an interesting memory optimization trick. It
shares a single copy of the program's code between all running
instances. For example, if you get three instances of Notepad
running, there will only be one copy of Notepad's code in
memory. All three instances share the same code, but will have
separate memory areas to hold the text data being edited. The
difference between handling of the code and the data is logical, as
each instance of Notepad might edit a different file, so the data
must be unique to each instance. The program logic to edit the files
is the same for every instance, so there is no reason why a single
copy of Notepad's code cannot be shared.

Summary
(a) A message box can be displayed by calling the

MessageBox() API function.
(b) Message boxes are often used to ascertain the flow of a

program.
(c) Appearance of a message box can be customized.
(d) The CreateWindow() API function creates the window in

memory.
(e) The window that is created in memory is displayed using the

ShowWindow() API function.
(f) A 'window class' specifies various properties of the window

that we are creating.
The header file 'Windows.h' contains declaration of several
icros used in Windows programming.

576
	

Let Us C

(h) When the user clicks in a window, or moves mouse pointer on
the window, messages are generated and posted in the

application message queue.
(i) A message contains the message id and additional information

about the message.

(j) The GetMessage()DispatchMeSSage() loop breaks when

GetMessage() encounters the WM_QUIT message.

(k) If we don't handle a message received by our application then

the DefWindOWPrOc() function is called to do the default

processing.

Exercise

LA! State True or False:

(a) MessageBOx() is an API function.

(b) Calling the MessageBox() function displays the specified

string in console window.
(c) The CreateWindow() function creates and displays the

window on the screen.

(d) The ShowWifltIOW() function can display only the

maximized window.
(e) Every window has to be created using pre-registered window

class.
(f) Window classes are similar to classes in C++

(g) We can use the pre-defined window classes but cannot create

our own.
(h) The style WS_OVERLAPPED I WSCAPTION

WS_MINIMIZEBOX will create a window with caption bar

and minimize box only.
(i) To be able to interact with a window it is necessary to

implement the message loop.

jBj Answer the following:

(a) Outline the steps that a typical Windows program follows

during execution.

Chapter 17. Windows Programming 	 577

(b) Run any Windows based program and see whether you can
identify all the elements of the application window.

(c) How would you minimize a window programmatically?

(d) What would happen if we do not place WM QUIT message
in the message queue when the user tries to close the window.

(e) Explain the need of RegisterClassEx() function.

(f) What is the difference between GetMessage() and

Dispatch Message() function?

(g) Write a program, which receives an integer as a command line
argument, creates a button window, and based on the value of
the integer displays button window as maximized / minimized
I normal.

(h) Try to display a window with different combinations of
window styles and observer the results.

578	 Let Us

18 Graphics Under
Windows

• Graphics as of Now
• Device Independent Drawing
• Hello Windows
• Drawing Shapes
• Types of Pens
• Types of Brushes

Code and Resources
• Freehand Orawing, the Paintbrush Style
• Capturing the mouse
• Device Context, A Closer Look
• Displaying a Bitmap
• Animation at Work

WM_CREATE and OnCreate()
WM_TIMER and OnTi,ner()
A Few More Points...

• Windows, the Endless World...
• Summary
• Exercise

579

580	 Let Us C

S

ince times immcniril colors and shapes have fascinated
mankind like nothing else. Otherwise people would have
still been using the character oriented interfaces of MS-DOS

or Unix. In fact the graphical ability of Windows has played a very
important role in its success stary. Once you get a hang of how to
draw inside a window it would open up immense possibilities that
you never thought were possible.

Graphics as of Now

World has progressed much beyond 16 colors and 640 x 480
resolution graphics that Turbo C/C-H- compilers offered under
MS-DOS environment, Today we are living in a world of 1024 x
768 resolution offering 16.7 million colors. Graphical menus,
icons, colored cursors, bitmaps, wave files and animations are the
order of the day. So much so that a 16-color graphics program
built using Turbo C working on a poor resolution almost hurts the
eye. Moreover, with the whole lot of Windows API functions to
support graphics activity there is so much that can he achieved in a
graphics program under Windows. I am sure that this chapter will
help you understand and appreciate these new capabilities.

Device Independent Drawing

Windows allow programmers to write programs to display text or
graphics on the screen without concern over the specifics of the
video hardware. A Windows program that works on a VGA
display will work without modification on an SVGA or on a XGA
display that Windows supports.

The key to this 'device independence' is Windows' use of a
'device context'. We will explore how the device context can be
used for both text and graphics output, and how using the device
context keeps our programs from interfering with each other on the
screen.

Chapter 18: Graphics Under Windows	 581

During the original design of Windows, one of the goals was to
provide 'device independence'. Device independence means that
the same program should be able to work using different screens,
keyboards and printers without modification to the program.
Windows takes care of the hardware, allowing the programmer to
concentrate on the program itself. If you have ever had to update
the code of an MS-DOS program for the latest printer, plotter,
video display, or keyboard, you will recognize device
independence as a huge advantage for the developer.

Windows programs do not send data directly to the screen or
printer. A Windows program knows where (screen/printer) its
output is being sent. However, it does not know how it would be
sent there, neither does it need to bother to know this. This is
because Windows uses a standard and consistent way to send the
output to screen/printer. This standard way uses an entity called
Device Context, or simply a DC. Different DC's are associated
with different devices. For example, a screen DC is associated
with a screen, a printer DC is associated with a printer, etc. Any
drawing that we do using the screen DC is directed to the screen.
Similarly, any drawing done using the printer DC is directed to the
printer. Thus, the only thing that changes from drawing to screen
and drawing to printer is the DC that is used.

A windows program obtains a handle (ID value) for the screen or
printer's DC. The output data is sent to the screen/printer using its
DC, and then Windows and the Device Driver for the device takes
care of sending it to the real hardware. The advantage of using the
DC is that the graphics and text commands that we send using the
DC are always the same, regardless of where the physical output is
showing up.

The part of Windows that converts the Windows graphics function
calls to the actual commands sent to the hardware is the GD!, or
Graphics Device Interface. The GDI is a program file called
GD132.DLL and is stored in the Windows System directory. The

582	 Lei Us

Windows environment loads GDI32.DLL into memory when it is
needed for graphical output. Windows also loads a 'device driver'
program if the hardware conversions are not part of GD132,DLL.
Common examples are VGA.SYS for VGA video screen and
HPPLC.SYS for the HP LaserJet printer. Drivers are just programs
that assist the GD! in converting Windows graphics commands to
hardware commands.

Thus GD! provides all the basic drawing functionality for
Windows; the device context represents the device providing a
layer of abstraction that insulates your applications from the
trouble of drawing directly to the hardware. The GD! provides this
insulation by calling the appropriate device driver in response to
windows graphics function calls.

Hello Windows

We would begin our tryst with graphics programming under
windows by displaying a message "Hello Windows" in different
fonts. Note that though we are displaying text under Windows
even text gets drawn graphically in the window. First take a look at
the program given below before we set out to understand it.

include <windows.h>
include helpertf

void On Paint (HWNO):
void OnDestroy (HWND);

mt _stdcall WinMain (HINSTANCE hlnstance, HINSTANCE hPrevinstance
LPSTR lpszCmdline, mt nCmdShow)

MSG m;

P Perform application initialization *1

Initinstance (hinstance, nCmdShow, Text);

Chapter 18: Graphics Under Windows	 583
fE Main message loop */
while (GetMessage (&m, NULL, 0, 0))

DispatchMessage(&m);

return 0;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
WPARAM wParam, LPARAM IParam)

switch (message)

case WM_DESTROY:
OnDestroy (hWnd);
break;

case WM_PAINIT:
OnPaint (hWnd);
break;

default:
return DefWindowProc (hWnd, message, wParam, IParam);

return 0;

void OnDestroy (HWND hWnd)
{

PostQuitMessage (0);

void On Paint (HWND hWnd

HDChdc,
PAINTSTRUCT PS;
HFONT hfont;
LOOFONT f = { 0 };
HGDIOBJ holdfont;
char fonts[j = { AriaI 1 , Times New Roman, 'Comic Sans MS'
mt

584
	

Let Us C

hdc = BeginPaint (hWnd, &ps)

for (iz0;i<3;++)

strcpy (fifFaceName, fonts[i i); I" copy font name I

f.lfHeight 40 * (i + 1); /* font height I

fifitalic = 1; /* italic I

hfont CreateFontindirect (&f)
hoidlont = SelectObject (hdc, hfont)

SetlextColor (hdc, RGB (0, 0, 255));

TextOut (hdc, 10, 70 * , "Hello Windows", 13);

SelectObject (hdc, holdfont);
DeleteObject (hfont);

End Paint (hWnd, &ps);

}

On execution of this program the window shown in Figure 18.1
appears.

Hello Windows

Hello Windows

Hello Windows
Figure 18.1

Chapter 18: Graphics Under Windows	 585

Drawing to a window involves handling the WMPAINT
message. This message is generated whenever the client area of the
window needs to be redrawn. This redrawing would be required in
the following situations:

(a) When the Window is displayed for the first tirri.
(b) When the window is minimized and then maximized.
(c) When some portion of the window is overlapped by another

window and the overlapped window is dismissed.
(d) When the size of the window changes on stretching its

boundaries,
(e) When the window is dragged out of the screen and then

brought back into the screen.

Would a WM PAINT message be generated when the cursor is
dragged in the window? No. In this case the window saves the area
overlapped by the cursor and restores it when the cursor moves to
another position.

When the switch-case structure inside WndProc() finds that the
message ID passed to WndProc() is WM PAINT, it calls the
function OnPaint(). Within OnPaint() we have called the API
function BeginPaint(). This function obtains a handle to the
device context. Additionally it also fills the PAINTSTRUCT
structure with information about the area of the window which
needs to be repainted. Lastly it removes WM_PAINT from the
message queue. After obtaining the device context handle, the
control enters a loop.

Inside the loop we have displayed "Hello Windows" in three
different fonts. Each time through the loop we have setup a
LOGFONT structure 1. This structure is used to indicate the font
properties like font name, font height, italic or normal, etc. Note
that in addition to these there are other font properties that may be
setup. The properties that we have not setup in the loop are all
initialized to -0. Once the font properties have been setup we have
called the CreatcFontlndirect() API function to create the font.

586	 Let Us C

This function loads the relevant font file. Then using the
information in the font file and the font properties setup in the
LOGFONT structure it creates a font in memory.
CreateFontlndirect() returns the handle to the font created in
memory. This handle is then passed to the SelectObject() API
functian to get the font into the DC. This function returns the
hrind! to existing font in the DC, which is preserved in
htfont variable. Next we have used the SetTextColor() API
function to set the color of the text to be displayed through
TextOut(). The RGB() macro uses the red, green and blue
component values to generate a 32-bit color value. Note that each
color component can take a value from 0 to 255. To TextOut()
we have to pass the handle to the DC, position where the text is to
be displayed, the text to be displayed and its length.

With Mont only one font can be associated at a time. Hence before
associating another font with it we have deleted the existing font
using the DeleteObject() API function. Once outside the loop we
have called the EndPaint() API function to release the DC
handle. If not released we would be wasting precious memory,
because the device context structure would remain in memory but
we would not be able access it.

In place of TextOut() we can also use the DrawText() API
function. This function permits finer control over the way the text
is displayed. You can explore this function on your own.

Drawing Shapes

If text is so near can graphics be far behind? Now that we know
how to draw text in a window let us now create a simple program
that displays different shapes in a window. Instead of showing the
entire program given below is the listing of OnPaint(). The rest of
the program is same as in the previous section. Here onwards I
would be showing only the OnPaint() handler unless otherwise
required.

Chapter 18: Graphics Under Windows 	 587

void OnPaint (HWND hWnd)

HDC hdc
PAINTSTRUCT PS;
HBRUSHhbr;
HGDIOBJ holdbr;
POINT pt[51 = { 250, 150, 250, 300, 300, 350, 400, 300, 320, 190);

hdc = eginPaiR hWnd, &ps);

hbr = CreateSolidBwsh (RGB (255, 0, 0));
hotdbr SelectObject (hdc, hbr);

MoveToEx (hdc, 10, 10, NULL);
LineTo (hdc, 200, 10);

Rectangle (hdc, 10, 20, 200, 100);

RoundRect (hdc, 10, 120, 200, 220, 20, 20);

Ellipse (hdc. 10, 240, 200, 340);

Pie (hdc,250, 10,350, 110, 350, 110, 350, 10);

Polygon (iac, pt, 5);

SelectObject (hdc, holdbr);
DeleteObject (hbr);

EndPaint (hWnd, &ps);

On execution of this program the window shown in Figure 18.2
appears.

Let (13 C

4

Figure 18.2

For drawing any shape we need a pen to draw its boundary and a
brush to paint the area enclosed by it. The DC contains a default
pen and brush. The default pen is a solid pen of black color and the
default brush is white in color. In this program we have used the
default pen and a blue colored solid brush for drawing the shapes.

As before, we begin by obtaining a handle to the. DC using
BeginPaint() function. For creating a solid colored brush we need

to call the CreateSolidBrush() API function. The second
parameter of this function specifies the color of the brush.. The
function returns the handle of the brush which we have preserved

Chapter 18: Graphics Under Windows	 589

in the hhr variable. Next we have selected this brush in the DC.
The handle of the default brush in DC is collected in the holdbr
variable.

Once we have selected the brush into the DC we are ready to draw
the shapes. For drawing the line we have used MoveToEx() and
IneTo() API functions. Similarly for drawing a rectangle we
have used the Rectanglc() function.

The RoundRect() function draws a rectangle with rounded
corners. In RoundRect (xl, y l, x2, y2, x3, y3), fl, yl represents
the .v and

'
v-coordinates of the upper-left corner of the rectangle.

Likewise, x2, y2 represent coordinates of the bottom right ccwne
of the rectangle. 0, y3 specify the width and height of the ellipse
used to draw the rounded corners.

Note that rectangle and the rounded rectangle are drawn from xl,
yl up to x2-1, y2-1.

Parameters of Elhipse() specify coordinates of bounding rectangle
of the ellipse.

The Pie() function draws a pie-shaped wedge by drawing an
elliptical arc whose center and two endpoints are joined by lines.
The center of the arc is the center of the bounding rectangle
specified by x, yl and x2, y2. In Pie(xl, N , l, x2, y2, 0, y3, x4,
y4), xl, yl and x2, y2 specify the x and)-coordinates of the upper
left corner and bottom right corner respectively, of the bounding
rectangle. 0, y3 and x4, y4 specify the x and)-coordinates of the
arc's starting point and ending point respectively.

In Polygon (IpPoints, nCount), IpPoints points to an array of_
points that specifies the vertices of the polygon. Each point in U'
array is a POINT structure. nCount specifies the number
vertices stored in the array. The system closes the poly
automatically, if necessary, by drawing a line from the last ver
to the first.	 .

39

59)
	

Let Us C

Once c-c are through with drawing the shapes the old brush is
seec ted back in the DC and then the brush created by us is deleted
using DeleteObject() function.

Types of Pens

In the previous program we have used the default solid black pen
of thickness I pixel. We can create pens of different style, color
and thickness to do our drawing. The following OnPaint()
handler shows how this can be achieved.

void OnPaint (HWND hWnd)

HDChdc;
PAINTSTRUCT PS:
HPEN hpen:
HGDIOBJ holdpen;

hdc = BeginPaint (hWnd, &ps);

hpen CreatePen (PS_DASH, 1, RGB (255, 0,0));
holdpen = SeectObject (hdc, hpen)

MoveToEx (hdc, 10, 10, NULL);
UneTo(hdc, 500, 10);

SelectObject (hdc, hold pen);
DeleteObject (hpen);

hpen CreatePen (PS_DOT, 1, RGB (255,0, 0));
holdpen	 riSelectObject (hdc, hpe);

MiMoveToEx (hdc, 10, 60, NULL);
LineTo (hdc, 500, 60);

SelectObject (hdc, holdpen),
DeleteObject (hpen);

Chapter 18: Graphics Under Windows 	 591

hpen CreatePen (PS_DASHDOT, 1, RGB (255, 0, 0));
holdpen SelectObject (hdc, hpen);

MoveToEx (hdc, 10, 110, NULL);
LineTo (hdc, 500, 110);

SeleclObject (hdc, holdpen);
DeleteObject (hpen);

hpen CreatePen (PS DASHDOTDOT , RGB (255, 0, 0));
holdpen SelectObject (hdc, hpen);

MoveToEx (hdc, 10, 160, NULL);
Linelo (hdc, 500, 160);

SetectObject (hdc, holdpen);
DeleteObject (hpen);

hpen CreatePen (PS_SOLID 10, RGB (255, 0, 0));
holdpen = SelectObject (hdc, hpen);

MoveToEx (hdc, 10, 210, NULL);
Linelo (hdc, 500, 210);

SeectObject (hdc, holdpen);
DeleteObject (hpen);

EndPai- (hWnd, &ps):

On execution of this program the window shown in Figure 18.3
appears.

592	 Let Us

Figure 18.3

A new pen can be created using the CreatePen() API function.
This function needs three parameters—pen style, pen utickness
and pen color. Different macros like PS SOLID, PS_DOT, etc.
have been defined in 'windows.h' to represent different pen styles.
Note that for pen styles other than PS SOLID the pen thickness
has to be I pixel.

Types of Brushes

The way we can create different types of pens, we can also create
three different types of brushes. These are—solid brush, hatch
brush and pattern brush. Let us now write a program that shows
how to build these brushes and then use them to fill rectangles.
Here is the OnPaint() handler which achieves this.

void OnPaint (HWND hWnd)

HOC hdc
PAINTSTRUCT PS;
HBRUSHhbr;

Chapter 18: Graphics Under Windows	 593

HGDIOBJ holdbr;
HBITMAP hbmp;

hdc BeginPaint (hWnd, &ps);

hbr = CreateSolidBrush (RGB (255, 0, 0));
holdbr = SelectObject (hdc, hbr);

Rectangle (hdc, 5, 5, 105, 100);

SelectObject (hdc, holdbr);
DeleteObject (hbr);

hbr CreateHatch Brush (HS —CROSS, RGB (255, 0, 0));
holdbr SelectObject (hdc, hbr)

Rectangle (hdc, 125, 5, 225, 100)

SelectObject (hdc, holdbr);
DeleteObject (hbr);

hbmp LoadBtmap (hlnst, MAKEINTRESOURCE (IDB_BtTMAP1));

hbr Create Pattern Brush (hbmp);
holdbr = SelectObject (hdc, hbr);

Rectangle (hdc, 245, 5, 345, 100);

SelectObject (hdc, holdbr);
DeleteObject (hbr);
D&eteObject (hbmp);

EndPaint (hWnd, &ps);

DeleteObject (hbr);

594	 Let Us C

On execution of this program the window shown in Figure 18.4
appears.

•uu•u	 U.

::::::: I•uuuu
I1111MM01110

..u.......

Figure 18.4

In the OnPaint() handler we have drawn three rectangles--first
using a solid brush, second using a hatched brush and third using a
pattern brush. Creating and using a solid brush and hatched brush
is simple. We simply have to make calls to CreateSolidBrush()
and CreateHatchBrush() respectively. For the hatch brush we
have used the style IfS CROSS. There are several other styles
defined in 'windows.h' that you can experiment with.

For creating a pattern brush we need to first create a bitmap
(pattern). Instead of creating this pattern, we have used a
readyrnade bitmap file. You can use any other bitmap file present
on your hard disk.

Bitmaps, menus, icons, cursors that a Windows program may use
are its resources. When the compile such a program we usually
want these resources to become a part of our EXE file. If so done
we do not have to ship these resources separately. To be able to
use a resource (bitmap file in our case) it is not enough to just copy
it in the project directory. Instead we need to carry out the steps
mentioned below to add a bitmap file to the project.

(a) From the 'Insert' menu option of VC++ 6.0 select the
'Resourct ;•ntion.

Chapter 18: Graphics Under Windows 	 595

(b) From the dialog that pops up select 'bitmap' followed by the
import button.

(c) Select the suitable .bmp file.
(d) From the 'File' menu select the save option to save the

generated resource script file (Script I .rc). When we select
'Save' one more file called 'resource.h' also gels created.

(c) Add the 'Script] .rc' file to the project using the Project I Add
to Project I Files option.

While using the bitmap in the program it is always referred using
an id. The Id is #defined in the file 'resource.h'. Somewhere
information has to be stored linking the Id with the actual .bmp file
on the disk. This is done in the 'Scriptl.rc' file. We need to
include the 'resource.h' file in the program.

To create the pattern brush we first need to load the bitmap in
memory. We have done this using the LoadBitmap() API
function. The first parameter passed to this function is the handle
to the instance of the program. When Initlnstance() function is
called from WinMain() it stores the instance handle in a global
variable hlnst. We have passed this htnst to LoadBitmap(). The
second parameter passed to it is a string representing the bitmap.
This string is created from the resource id using the
MAKEIINTRESOURCE macro. The LoadBitmap() function
returns the handle to the bitmap. This handle is then passed to the
CreaePatternBrush() function. This brush is then selected into
the DC and then a rectangle is drawn using it.

Note that if the size of the bitmap is bigger than the rectangle
being drawn then the bitmap is suitably clipped. On the other hand
if the bitmap is smaller than the rectangle it is suitably replicated.

While doing the clean up firstly the brush is deleted followed by
the bitmap.

596	 Let Us C

Code and Resources

A program consists of both instructions and static data, Static data
is that portion of the program which is not executed as machine
instructions and which does not change as the program executes.
Static data are character strings, data to create fonts, bitmaps, etc.
The designers of Windows wisely decided that static data should
be handled separately from the program code. The Windows term
for static data is 'Resource data', or simply 'Resources'. By
separating static data from the program code the creators of
Windows were able to use a standard C/C++ compiler to create the
code portion of the finished Windows program, and they only had
to write a 'Resource compiler' to create the resources that
Windows programs use. Sepaiating the code from the resource
data has other advantages like reducing memory demands and
making programs more portable. It also means that a programmer
can work on a program's logic, while a designer works on how the
program looks.

Freehand Drawing, the Paintbrush Style

Even if you are knee high in computers I am sure you must have
used PaintBrush. It provides a facility to draw a freehand drawing
using mouse. Let us see if we too can achieve this. We can indicate
where the freehand drawing begins by clicking the left mouse
button. Then as we move the mouse on the table with the left
mouse button depressed the freehand drawing should get drawn in
the window. This drawing should continue till we do not release
the left mouse button.

The mouse input comes in the form of messages. For free hand
drawing we need to tackle three mouse messages-
WM_LBUTTONDOWN	 for	 left	 button	 click,
WM_MOUSEMOVE for mouse movement and
WMLBUTTONUP for releasing the left mouse button. Let us
now see how these messag are tackled for drawing freehand. The

Chapter 18: Graphics Under Windows	 597

WndProc() function and the message handlers that perform this
task are given below

intxl,yl, x2, y2;

LRESULT CALLBACK WndProc (HWND hWnd, UINT message,
WPARAM wParam, LPARAM IParam)

switch (message)

case WM_DESTROY:
OnDestroy (hWnd);
break;

case WMLBUTTONDOWN:
OnLButtonDown (hWnd, LOWORD (Param),

HIWORD (Param));
break;

case WM_LBUTTONUP:
Ci:Button(Jp(
bre

case WM_M(MOVE:
OnMouseF,c' , hWnd, wParam, LOWORD (lParam),

HWORD (IParam));
break;

default:
return DefWindowProc (hWnd, message, wParam, IParam)

return 0;

void OnLButtonDown (HWND hWnd, int x, mt y)
{

SetCapture (hWnd);
xl x;

rf 61-41
	

Let Us C

yl = y

void OnMouseMove (HWND hWnd, mt flags, int x, int y)

HOC hdc;
if (flags	 MKLBUTTON) I is left mouse button depressed *J

hdc = GetDC (hWnd)
x2 x

y
MoveloEx (hdc, xl, yl, NULL)
LineTo(hdc,x2,y2);

ReleaseDC (hWnd, hdc)

xl x2
yl y2

void OnLButtonUp()

ReleaseCapture()

On execution of this program the window shown in Figure 1
appears. We can now click the left mouse button with mouse
pointer placed anywhere in the window. We can then drag the
mouse on the table to draw the freehand. The freehand drawing
would continue till we do not release the lcfl mouse button.

Chapter 18: Graphics Under Windows	 599

Figure 18.5

It appears that for drawing the freehand we should simply receive
the mouse coordinates as it is moved and then highlight the pixels
at these coordinates using the SetPixel() All function. However,
if we do so the freehand would be broken at several places. This is
because usually the mouse is dragged pretty fast whereas the
mouse move messages won't arrive so fast. A solution to this
problem is to construct the freehand using small little line
segments. This is what has been done in our program. These lines
are so small is size that you would not even recognize that the
freehand has been drawn by connecting these small lines.

600	 Let Us

Let us now discuss each mouse handler. When the
WM_LBUTTONDOWN message arrives the WndProc()
function calls the handler OnLButtonDown(). While doing so,
we have passed the mouse coordinates where the click occurred.
These coordinates are obtained in IParam in WndProc(). In
lParam the low order 16 bits contain the current x - coordinate of
the mouse whereas the high order 16 bits contain the y -
coordinate. The LOWORD and HIWORD macros have been
used to separate out these x and y - coordinates from IParam.

In OnLButtonDown() we have preserved the starting point of
freehand in global variables xl and yl.

When OnMouseMove() gets called it checks whether the left
mouse button stands depressed. If it stands depressed then the
flags variable contains MKLBUTTON. If it does, then the
current mouse coordinates are set up in the global variables x2, y2.
A line is then drawn between fl, yl and x2, y2 using the functions
MoveToEx() and lJneTo(). Next time around x2, y2 should
become the starting of the next line. Hence the current values of
x2, y2 are stored in xl, yl.

Note that here we have obtained the DC handle using the API
function GeIDC(). This is because we are carrying out the
drawing activity in reaction to a message other than WM_PAINT.
Also, the handle obtained using GetDC() should be released using
a call to ReleaseDC() function.

You can try using BeginPaint! EndPaint() in mouse handlers
and GetDC(.) / ReleaseDC() in OnPaint(). Call draw any
conclusions?

Capturing the Mouse

If in the process of drawing the freehand the mouse cursor goes
outside the client area then the window below our window would

Chapter 18: Graphics Under Windows	 601

start getting mouse messages. So our window would not receive
any messages. If this has to be avoided then we should ensure that
our window, continues to receive mouse messages even when the
cursor goes out of the client area of our window. The process of
doing this is known as mouse capturing.

We have captured the mouse in OnLButtonDown() handler by
calling the API function SetCapture(). As a result, the program
continues to respond to mouse events during freehand drawing
even if the mouse is moved outside the client area. In the
OnLButtonUp() handler we have released the captured mouse by
calling the ReleaseCapture() API function.

Device Context, a Closer Look

Now that we have written a few programs and are comfortable
with idea of selecting objects like font, pen and brush into the DC,
it is time for us to understand how Windows achieves the device
independent drawing using the concept of DC. In fact a DC is
nothing but a structure that holds handles of various drawing
objects like font, pen, brush, etc. A screen DC and its working is
shown in Figure 18.6.

602
	

Let Us C

App I
	

A

Screen DC	 Screen DC

	

HPEN 200	 HPEN 900
	HBRIJSH 400	 HBRUSH_1000

	

HBITMAP 600 	 HBITMAII 600

	

HFON1 790	 HFON1 800

Other In

	

	 Other lnf
Screen

Drawing Object 	 Drawing Object
0/P Device

Anal	 Red	 Blue
Pen	 Brush

IWONT 700
900	 1000

LBlack	 White Brush

	

200	 400
Mono. Bill apl	 Font

	

600	 800
Drawing Objects

Figure 18.6

You can make following observations from Figure 8.6:

(a) The DC doesn't hold the drawing objects like pen, brush, etc.
It merely holds their handles.

(b) With each DC a default monochrome bitmap of size I pixel x
I pixel is associated.

(c) Default objects like black pen, white brush, etc. are shared by
different DCs in same or different applications.

Chapter 18: Graphics Under Windows 	 603

(d) The drawing objects that an application explicitly creates can
be shared within DCs of the same application, but is never
shared between different applications.

(e) Two different applications would need two different DCs
even though both would be used to draw to the same screen.
In other words with one screen multiple DCs can exist.

(0 A common Device Driver would serve the drawing requests
coming from different applications. (Truly speaking the
request comes from GDI functions that our application calls).

Screen and printer DC is OK, but what purpose would a memory
DC serve? Well, that is what the next program would explain.

Displaying a Bitmap

We are familiar with drawing normal shapes on screen using a
device context. flow about drawing images on the screen?
Windows does not permit displaying a bitmap image directly using
a screen DC. This is because there might be color variations in the
screen on which the bitmap was created and the screen on which it
is being displayed. To account for such possibilities while
displaying a bitmap Windows uses a different mechanism—a
'Memory DC'

The way anything drawn ' using a screen DC goes to screen,
anything drawn using a printer DC goes to a printer, similarly
anything drawn using a memory DC goes to memory (RAM). But
where in RAM—in the 1 x I pixel bitmap whose handle is present
in memory DC. (Note that this handle was of little use In case of
screen/printer DC). Thus if we attempt to draw a line using a
memory DC it would end up on the I x I pixel bitmap. You would
agree I x I is too small a place to draw even a small line. Hence
we need to expand the size and color capability of this bitmap.
How can this be done? Simple, just replace the handle of the I x 1
bitmap with the handle of a bigger and colored bitmap object. This
is shown in Figure 18.7.

604	 Let Us C

Default Memory DC -

HPEN 200
HBRVSH 400

HBLTMAP 405 - - -
HFON1 800

Othcr Inf

1emorv DC after selecting b

HBRUSHI 4(R)
FIBITMAFI 40000

Other In

Black Pen	 White Brush

200	 400

DefauLL_QZP Device F	 Font

8405	 00
lxi Monochrome

bitmap

Default Drawing Objects

E31ack Pen 1	 'White Brush

200	 400	
jvice Fo nt 11

40000
190x220 24—color

hitman

Figure 18.7

What purpose would just increasing the bitmap size/color would
serve? Whatever we draw here would get drawn on the bitmap but
would still not be visible. We can make it visible by simply
copying the bitmap image (including what has been drawn on it) to
the screen DC by using the API function BitBitO.

Before transferring the image to the screen DC we need to make
the memory DC compatible with the screen DC. Here making
compatible means making certain adjustments in the contents of
the memory DC structure. Looking at these values the screen
device driver would suitably adjust the colors when the pixels in

Chapter 18: Graphics Under Windows 	 605

the bitmap of memory DC is transferred to screen DC using
BitBlt() function.

Let us now take a look at the program that puts all these concepts
in action. The program merely displays the image of a vulture in a
window. Here is the code...

void OnPaint (HWND hWnd)

HOC hdc;
HBTMAP hbmp;
HOC hmemdc
HGDIOBJ holdbmp
PAINTSTRUCT PS

hdc BeginPaint (hWnd, &ps)

hbmp = LoadBitmap (hlnst, MAKEINIRESOURCE (IOB_BITMAP1));

hmemdc = CreateCompatibleLJC (hdc);
hoidbmp SelectObject (hmemdc, hbmp);

BitBit (hdc, 10, 20,190, 220, hmemdc, 0, 0, SRCCOPY);

EndPaint (hWnd, &ps);

SeectObject (hmemdc, holdbmp);
DeleteObject (hbmp):
DeleteDC (hmemdc);

On executing the program we get the window shown in Figure
18.7.

4f

606
	

Let Us C

Figure 18.7

As usual we begin our drawing activity in OnPaint() by first

getting the screen DC using the BeginPaiflt() function. Next we
have loaded the vulture bitmap image in memory by calling the

LoadBitmap() function. Its usage is siimlar to what we saw while
creating a pattern brush in an earlier section of this chapter. Then
we have created a memory device context and made its properties
compatible with that of the screen DC. To do this we have called

the API function CreateCOmPatibIeDC(). Note that we have

passed the handle to the screen DC to this function. The function
in turn returns the handle to the memory DC. After this we have
sciccd the loaded bitmap into the memory DC. Lastly, we have
performed a bit block transfer (a bit by bit copy) from memory DC

to screen DC using the function BitBlt(). As a result of this the

'vulture now appears in the window.

We have made the call to Bit Blt() as shown below:

BitBit (hdc, 10, 20, 190, 220, hmemdc, 0, 0, SRCCOPY);

Chapter 18: Graphics Under Windows 	 607

Let us now understand its parameters. These are as under:

hdc -- Handle to target DC where the bitmap is to he butted

10, 20 - Position where the bitmap is to be butted

190, 220 - Width and height of bitmap being butted

0,0 Tup lefl corner of the source image. If we give 10, 20 then
the image from 10, 20 to bottom right corner of the bitmap would
get butted,

SRCCOPY - Specifies one of the raster-operation codes. These
codes define how the color data for the source rectangle is to be
combined with the color data for the destination rectangle to
achieve the final color. SRCCOPY means that the pixel color of
source should be copied Onto the destination pixel of the target.

Animation at Work

Speed is the essence of life. So having the ability to display a
bitmap in a window is line, but if we can add movement and sound
to it then nothing like it. So let us now see how to achieve this
animation and sound effect.

If we are to animate an object in the window we need to carry out
the following steps:

(a) Create an image that is to be animated as a resource.
(b) Prepare the image for later display.
(c) Repeatedly display this prepared image at suitable places in

the window taking care that when the next image is displayed
the Previous image is erased.

(d) Check for collisions while displaying the prepared image.

Let us now write a program that on execution makes a red colored
ball move in the window. As the ball strikes the walls of the

608
	

Let Us C

window a noise occurs. Note that the width and height of the red-
colored ball is 22 pixels. Given below is the WndProc() function
and the various message handlers that help achieve animation and
sound effect.

HBITMAP hbmp,
intx, y
HOC hmemdc;
HGDIOBJ holdbmp,

LRESULT CALLBACK WndProc (HWND hWnd, IJINT message
WPARAM wParam, LPARAM IParam)

switch (message)

case WM_DESTROY
OnDestroy (hWnd);
break;

case WMCREATE:
OnCreate (hWnd);
break;

case WM_TIMER:
OnTimer (hWnd);
break;

default:
return DetWindowProc (hWnd, message wParam, IParam)

return 0;

void OnCreate (HWND hWnd)
(

RECT r;
HOC hdc;

hbmp = LoadBitmap (hlnst, MAKEINTRESOURCE (IDB_BITMAP1)) ;

GetDC(hWnd);

Chapter 18: Graphics Under Windows 	 609

hmemdc CreateCompatibleDC (hdc);
holdbmp = SelectObject (hmerndc, hbmp);

ReleaseDC (hWnd, hdc);

srand (time (NULL));
GetClientRect (hWnd, &r);
x rand() % r.right - 22;
y rand() % r.bottoni - 22;

SetTimer (hWnd, 1 50, NULL);

void OnDestroy (HWND hWnd)

KiliTimer (hWnd, 1);
SelectObject (hmemdc, holdbmp);
DeIeteDC (hmemdc)
DeleteObject (hbmp);
PostQuitMessage (0);

void OnTimer (HWND hWnd)

HDChdc;
RECT r:
const mt wd 22, ht 22;
static int 	 = 10, dy = 10;

hdcGetDC(hWnd);
BitBft (hdc, x, y, wd, ht, hmemdc, 0, 0, WHITENESS);
GetCilentReci (hWnd, &r);

x + dx;
if (x <U)

x0;
dx10;

610
	

Let Us C

PlaySourid ('chord.wav', NULL, ND-FILENAME I SND_ASYNC)

else if (x> (r.right - wd))

xr.right - wd:
dx -10
PlaySourid ('chord,wav", NULL, SND_FILENAME I SND_ASYNC);

y+dy;
if (Y < 0)

Y=O'
dy10;
PlaySound ('chordwav, NULL, SNO_FILENAME I SND_ASYNC);

else if y> (r.bottom ht))

y = r.bottom - ht;
dy-10;
PlaySound ('chord wa y', NULL, SND_FILENAME I SND_ASYNC);

BitBit (hdc, x, y, wd, ht, hmemdc, 0, 0, SRCCOPY):
ReleaseOC (hWnd, hdc);

From the WndProc() function you can observe that we have
handled two new messages here-WM... CREATE and

WM_TIMER. For these messages we have called the handlers

OnCreate() and OnTlmer() respectively. Let us now understand

these handlers one by one

WM_CREATE and OnCreate()

The WM_CREATE message amves whenever a new window is
created. Since usually a window is created only once, the one-time

Chapter 18: Graphics Under Windows 	 611

activity that is to be carried out in a program is usually done in
OnCreate() handler. In our program to make the ball move we
need to display it at different places at different times. To do this it
would be necessary to but the ball image several times. However,
we need to load the image only once. As this is a one-time activity
it has been done in the handler function OnCreate.

You are already familiar with the steps involved in preparing the
image for butting—loading the bitmap, creating a memory DC,
making it compatible with screen DC and selecting the bitmap in
the memory DC.

Apart from preparing the image for blittuig we have also done
some intialialisations like setting up values in some variables to
indicate the initial position of the ball. We have also called the
SetTimer() function. This function tells Windows to post a
message WM_TIMER into the message queue of our application
every 50 milliseconds.

WM_TIMER and OnTimer()

If we are to perform an activity at regular intervals we have two
choices:

(a) Use a loop and monitor within the loop when is it time to
perform that activity,

(b) Use a Windows mechanism of timer. This mechanism when
used posts a WM_TIMER message at regular intervals to our
application.

The first method would seriously hamper the responsiveness of the
program. If the control is within the loop and a new message
arrives the message would not get processed unless the control
goes out of the loop. The second choice is better because it makes
the program event driven. That is, whenever WM_TIMER arrives
that time its handler does the job that we want to get executed

612
	

Let Us C

periodically. At other times the application is free to handle other
messages that come to its queue.

All that we have done in the OnTimer() handler is erase the ball
from previous position and draw it at a new position. We have also
checked if the ball has hit the boundaries of the window. If so we
have played a sound file using the PlaySound() API function and
then changed the direction of the ball.

A Few More Points...

A few more points worth noting before we close our discussion on

animation...

(a) One application can set up multiple timers to do different jobs
at different intervals. Hence we need to pass the id of the
timer that we want to set up to the SetTimer() function. In
our case we have specified the id as 1.

(b) For multiple timers Windows would post multiple
WMTIMER messages. Each time it would pass the timer
as additional information about the message.

(c) For drawing as well as erasing the ball we have used the same
function--BitBlt(). While erasing we have used the raster
operation code WHITENESS. When we use this code the
color values of the source pixels get ignored. Thus red colored
pixels of ball would get ignored leading to erasure of the ball
in the window.

(d) The size of client area of the window can be obtained using
the GetClientRect() API function.

(c) We want that every time we run the application the initial
position of the ball should be different. To ensure this we
have generated its initial x, y coordinates using the standard
library function rand(). However, this function doesn't
generate true random numbers. To ensure that we do get true

Chapter 18: Graphics Under Windows 	 613

random numbers, somehow we need to tie the random number
generation with tu.ie, as time of each execution of our
program would be different. This hzs been achieved by
making the call

srand (time (NULL)) ;

Here time() is function that returns the time. We have further
passed this time to the srand() function.

(1) To be able to use rand() and srand() functions include the
file 'stdlib.h'. Similarly for time() function to work include
the file 'tinie.h'.

(g) In the call to the PlaySound() function the first parameter is
the name of the wave file that is to be played. If first
parameter is filename then the second has to be NULL. The
third parameter is a set of flags. SN!) FILENAME indicates
that the first parameter is the filename, whereas
SND_ASYNC indicates that the sound should he played in
the background.

(Ii) To be able to USC the PlaySound() function we need to link
the library 'winmnilih'. This is done by using 'Project
Settings' menu item. On selection of this item a dialog pops
up. In the 'Link' tab of this dialog mention the name
winmm.lib' in the 'Object / Library modules' edit box.

(i) When the application terminates we have to instruct Windows
not to send WM_TIMER messages to our application any
more. For this we have called the KilITimer() API function
passing to it the ID of the timer.

Windows, the Endless World...

The bggcst hurdle in Windows programming is a sound
understanding of its programming model. In this chapter and in the
last two I have tried to catch the essence of Windows' Event

614

Driven Programming model. Once you have understood it
thoroughly rest is just a matter of understanding and calling the
suitable API functions to get your job done. Windows APE is truly
an endless world. It covers areas like Networking, Internet
programming, Telephony, Drawing and Printing, Device 110,
Imaging, Messaging, Multimedia, Windowing, Database
programming, Shell programming, to name a few, The programs
that we have written have merely scratched the surface. No matter
how many programs that we write under Windows, several still
remain to be written. The, intention of this chapter was to unveil
before you, to give you the first glimpse of what is possible under
Windows. The intention all along was not to catch fish for you but
to show you how to catch fish so that you can do fishing all your
life. Having made a sound beginning, rest is for you to explore.
Good luck and happy fishing!

Summary
(a) In DOS, programmers had to write separate graphics code for

every new video adapter. In Windows, the code once written
works on any video adapter.

(b) A Windows program cannot draw directly on an output device
like screen or printer. Instead, it draws to the logical display
surface using device context.

(c) When the window is displayed for the first time, or when it is
moved or resized OnPaint() handler gets called.

(d) It is necessary to obtain the device context before drawing
text or graphics in the client area.

(j) A device context is a structure containing information
required to draw oil display surface. The information
includes color of pen and brush, screen resolution, color
palettes, etc.

(e) To draw using a new pen or brush it is necessary to select
them into the device context.

(f) If we don't select any brush or pen into the device context
then the drawing drawn in the client area would be drawn

Chapter 18: Graphics Under Windows	 615

with the default pen (black pen) and default brush (white
brush).

(g) RGB is a macro representing the Red, Green and Blue
elements of a color. RGB (0, 0, 0) gives black color,
whereas, RGB (255, 255, 255) gives white color.

(h) Animation involves repeatedly drawing the same image at
successive positions.

Exercise
JAI State True or Faise:

(a) Device independence means the same program is able to work
using different screens, keyboards and printers without
modifications to the program.

(b) The WM_PAINT message is generated whenever the client
area of the window needs to be redrawn.

(c) The API function EndPaint() is used to release the DC.
(d) The default pen in the DC is a solid pen of white color.
(e) The pen thickness for the pen style other than PS —SOLID has

to be I pixel.
(f) BeginPaint() and GetDC() can be used interchangeably.
(g) If we drag the mouse from (10, 10) to (110, 100), 100

WMMOUSEMOVE messages would be posted into the
message queue.

(h)WM_PAINT message is raised when the window contents are
scrolled.

(i) With each DC a default monochrome bitmap of size I pixel x
1 pixel is associated.

(j) The WM_CREATE message arrives whenever a window is
displayed.

IBI Answer the following:

(a) What is meant by Device Independent Drawing and how it is
achieved?

(b) Explain the significance of WM PAINT message.

616 	 Let Us C

(c) How Windows manages the code and various resources of a
program?

(d) Explain the Windows mechanism of timer.

(c) What do you mean by capturing a mouse?

(f) Write down the steps that need to be carried out to animate an
object.

ICI Attempt the following:

(a) Write a program, which displays "hello" at any place in the
window where you click the left mouse button. If you click
the right mouse button the color of subsequent hellos should

change.

(h) Write a program that would draw a line by joining the new
point where you have clicked the left mouse button with the
last point where you clicked the left mouse button.

(c) Write a program to gradient fill the entire ejient area with
shades of blue color.

(d) Write a program to create chessboard like boxes (8 X 8) in the
client area. If the window is resized the boxes should a!so get
resizcd so that all the 64 boxes are visible at all times.

(e) Write a program that displays only the upper half of a bitmap

of size 40 x 40.

(f) Write a program that displays different text in different colors
and fonts at different places alter every 10 seconds.

19 Interaction With
Hardware

• Hardware Interaction
• Hardware Interaction, DOS Perspective
• Hardware Interaction, Windows Perspective
• Communication with Storage Devices

The ReadSeclor() Function
• Accessing Other Storage Devices
• Communication with Keyboard

Dynamic Linking
Windows Hooks

• Caps Locked, Permanently
• Did You Press It TTwwiiccce.
• Mangling Keys
• KeyLogger
• Where is This Leading
• Summary
• Exercise

6 17

618	 Let Us

T

here are two types of Windows programmers those who are
happy in knowing the things the way they are under
Windows and those who wish to know why the things are

the way they are. This chapter is for the second breed of
programmers. They are the real power users of Windows. Because
it is they who first understand the defauh working of different
.. tiisn that Windows uses and then are able to make those

r;icchanisms work to their advantage. The focus here would be
restricted to mechanisms that are involved in interaction with the
hardware under the Windows world. Read on and I am sure you
would he on your path to become a powerful Window;
programmer.

Hardware Interaction

Primarily interaction with hardware suggests interaction with
peripheral devices. However, its reach is not limited to interaction
with peripherals. The interaction may also involve communicating
with chips present on the motherboard. Thus more correctly,
interaction with hardware would mean interaction with any chip
other than the microprocessor. During this interaction one or more
of the following activities may be performed:

(a)Reacting to events that occur because of user's interaction
with the hardware. For example, if the user presses a key or
clicks the mouse button then our program may do something.

(b) Reacting to events that do not need explicit user's interaction.
For example, on ticking of a timer our program may want to
do something.

(c) Explicit communication from a program without the
occurrence of an event. For example, a program may want to
send a character to the printer, or a program may want to
read/write the contents of a sector from the hard disk.

Chapter 19: Interaction With Hardware 	 619

Let us now see how this interaction is done under different
platfortns.

Hardware Interaction, DOS Perspective

Under DOS whenever an external event (like pressing a key or
ticking of timer) occurs a signal called hardware interrupt gets
generated. For different events there are different interrupts. As a
reaction to the occurrence of an interrupt a table called interrupt
Vector Table (IVT) is looked up. IVT is present in memory. It is
populated with addresses of different BIOS routines during
booting. Depending upon which intempt has occurred the
Microprocessor picks the address of the appropriate BIOS routine
from IVT and transfers execution control to it. Once the control
reaches the BIOS routine, the code in the BIOS routine interacts
with the hardware, Naturally, for different interrupts different
BIOS routines are called. Since these routines serve the interrupts
they are often called 'Interrupt Service Routines' or simply ISRs.

Refer Figure 19.1 to understand this mechanism.

620
	

Let Us C

Key hit / Mouse dick
generates an interrupt

Microprocessor

Microprocessor
looks up IVT

Suitable
tSR is

FofAddress	 Addsscalled

RIorlsR2'

IVT

ISRIL i
ISR2

BIOS Routines

Figure 19.1

If we want that instead of the default ISR our routine should get
called then it is necessary to store the address of this routine in
IVT. Once this is done whenever a hardware interrupt occurs our
routine's address from TYT is picked up and the control is
transferred to our routine. For example, we may register our ISR in
IVT to gain finer control over the way key-hits from the keyboard
are tackled. This finer control may involve changing codes of keys
or handling hitting of multiple keys simultaneously.

Explicit communication with the hardware can be done in four
different ways. These are shown in Figure 19.2.

19: Interaction With Hardware	 621

C Program

Library I	

Dire
B I OS .	DOSInteraction

Functions	 Functions	 Functions I

Hardware

Figure 19.2

Let us now discuss the pros and cons of using these different
methods to interact with the hardware.

(a) Calling DOS Functions

To interact with the hardware a program can call DOS
functions. These functions can either directly interact with the
hardware or they may call BIOS functions which in turn
interact with the hardware, As it the programmer is not
required to know all the hardware details to be able to interact
with it. However, since DOS functions do not have names
they have to be called through the mechanism of interrupts.
This is difficult since the programmer has to remember
interrupt service numbers for calling different DOS functions.
Moreover, communication with these functions has to be done
using CPU registers. This leads to lot of difficulties since
different functions use different registers for communication.
So one has to know details of different CPU registers, how to
USC them, which one to use when, etc.

(b) Calling BIOS Functions

41

622
	

Let Us C

DOS functions can carry out jobs like console I/O, file 1/0,
printing, etc. For other operations like generating graphics,
carrying out serial communication, etc. the program has to
call another set of functions called ROM-BIOS functions.
Note that there are some functions in ROM-BIOS that do
same jobs as equivalent DOS functions. BIOS functions suffer
from the same difficulty as DOS functions—they do not have
names. Hence they have to be called using interrupts and
involve heavy usage of registers.

(c) Calling Library Functions

We can call library functions which in turn can call
DOS/BIOS functions to carry out the interaction with
hardware. Good examples of these functions are printf() I
seanf() / getch() for interaction with console, absread() I
abswrite() for interaction with disk, bioscom() for
interaction with serial port, etc. But the library doesn't have a
parallel function for every DOS/BIOS function, Hence at
some point of time one has to learn how to call DOS/BIOS
functions.

(d) Directly interacting with the hardware

At times the programs are needed to directly interact with the
hardware. This has to be done because either there are no
library functions or DOS/BIOS functions to do this, or if they
are there their reach is limited. For example, while writing
good video games one is required to watch the status of
multiple keys simultaneously. The library functions as well as
the DOS/BIOS functions are unable to do this. At such times
we have to interact with the keyboard controller chip directly.

However, direct interaction with the hardware is difficult
because one has to have good knowledge of technical details
of the chip to he able to do so. Moreover, not every technical
detail about how the hardware from a particular manufacturer
works is well documented.

Chapter 19: Interaction With Hardware	 623

Hardware Interaction, Windows Perspective

Like DOS, under Windows too a hardware interrupt gets generated
whenever an external event occurs. As a reaction to this signal a
table called Interrupt Descriptor Table (IDT) is looked up and a
corresponding routine for the ;nteurupt gets called. Unlike DOS the
l[)T contains addresses of various kernel routines (instead of BIOS
routines). These routines are part of the Windows OS itseltl Whcr
the kernel routine is called, it in turn calls the ISR present in the
appropriate device driver. This ISR interacts with the hardware.
Two questions may now occur to you:

(a) Why the kernel routine does not interact with the hardware
directly?

(b) Why the ISR of the device driver not registered directly in the
I DT?

Let us find answer to the first question. Every piece of hardware
works differently than the other. As new pieces oF hardware come
into existence new code has to be written to be able to interact ith
them. If this code is written in the kernel then the kernel would
have to be rewritten and recompiled every time a new hardware
comes into existence. This is practically impossible. I fence the
new code to interact with the device is written in a separate
program called device driver. With every new piece of hardware a
new device driver is provided. This device driver is all
of the OS itself.

Let us now answer the second question. Out of the several
components of Windows OS a component called kernel is tightly
integrated with the processor architecture. If the processor
architecture changes then the kernel is bound to change. One of
goals of Windows NT family was to keep the other components of
OS and the device drivers portable across different microprocessor
architectures. All processor architectures may not use IDT for the
registration and lookup mechanism. So, had registration of the
device driver's ISR in IDT been allowed, then the mechanism

624	 Let Us C

would fail on processors which do not use IDT, thereby
compromising portability of device drivers.

Refer Figure 19.3 for understanding the interrupt handling
mechanism under Windows.

Key hit /Mouse dick
generates an interrupt

Microprocessor

Microprocessor
looks up IDT

Suitable
ISRis

Jed
called

 [

I

 Device DriverKernel
___________ 	 ISR	 I

routine I Suitable
ISR is
called

Kernel
r01,ltinc2	 Device Driver

Address Address
of' ISRI I of ISR2

11)1

Figure 19.3

we are to gain liner control while reacting to interrupts we
would be required to write a device driver containing a new ISR to
do so.

Under Windows explicit communication with hardware is much
different than the way it was done: under DOS. This is primarily
because under Windows every device is shared amongst multiple
applications running in memory. To avoid conflict between
ditirent programs accessing the same device simultaneously

Chapter 19: Interaction With Hardware 	 625

Windows does not permit an application program to directly
access any of the devices. Instead it provides several API functions
to carry out the interaction. These functions have names so calling
them is much easier than calling DOS/BIOS functions. When we
call an API function to interact with a device, it in turn accesses
the device driver program for the device. It is the device driver
program that finally accesses the device. There is a standard way
in which an application call with the device driver. It
is device driver's responsibility to ensure that multiple requests
coming from different applications are handled without causing
any conflict. In the sections to follow we would see how to
communicate with the device driver to be able to interact with the
hardware.

One last question--won't the API change if a new device comes
into existence? No it won't. That is the beauty of the Windows
architecture. All that would change is the device driver program
for the new device. The API functions that we would need to
interact with this new device driver would remain same. This is
shown in Figure 19.4

C Program

Windows API

Device Driver

Hardware

Figure 19,4

Will!
	

Let Us C

Communication with Storage Devices

Since DOS is commercially dead the rest of the chapter would
focus on communication with the devices under Windows
plaiform. We would illustrate this with the help of several
programs.

Let us begin with the one that interacts with the simplest storage
device, namely the floppy disk. Rather than the physical structure
of the floppy disk it is the way the stored information is laid out
and managed that concerns programmers most. Let us understand
how the information is laid out on a floppy disk. Each floppy disk
consists of four logical parts—Boot Sector, File Allocation Table
(FAT), Directory and Data space. Of these, the Boot Sector
contains information about how the disk is organized. That is, how
many sides does it contain, how many tracks are there on each
side, how many sectors are there per track, how many bytes are
there per sector, etc. The files and the directories are stored in the
Data Space. The Directory contains information about the files like
its attributes, name, size, etc. The FAT contains information about
where the files and directories are stored in the data space. Figure
19.5 ShOVS the four logical parts of 1.44 MB disk.

Chapter 19: Interaction Willi Hardware 	 627

	

13	 1413	 14
12 D

1	

12 F2

F2 F2

F
F' F2 17	

D	 DS	
17

	

8	 F
H F] Fl F]

	

D D D D D
	 2

6	 4	 6	 5	 4

Side 0, Track 0	 Side 0, Track 1

13S - [loot Sector	 F] -First copy of FAT
F2 - Second copy of FAT D - Root directory structure
DS Data space

Figure 19.5

With the logical structure of the floppy disk behind us let us now
write a program that reads the hoot sector of a flOPPY disk and
displays its contents on the screen. But why on earth would we
ever like to do this? Well, that's what all Windows-based Anti-
viral softwares do when they scan for boot sector viruses. A good
enough reason for us to add the capability to read a boot sector to
our knowledge! Here is the program...

include stdaIx.h>
include <windows.h>
include <stdio,h>
include <conio.h>

#pragma pack (1)
struct boot

BYTE jump [31;

Let Us C

char bsOemName 181
WORD bytesperSector
BYTE sectorspercluster;
WORD sectors reserveda rea
BYTE copiesFAT;
WORD maxrootdirentries
WORD totalSectors;
BYTE mediaDescriptor
WORD sectorsperFAT
WORD sectorsperTrack;
WORD sides
WORD hiddenSectors
char reserve 1 480

void ReadSector (char'src, int ss, mt num, void' buff

void main(

struct boot b;
ReadSector ('\\\\.VA:", 0, 1, &b);

printf ('Boot Sector name: %s\n', bid)
printf ('Bytes per Sector: Mn', b.bps)
printf ("Sectors per Cluster: %d\n", b.spc)
r rest of the statements can be written by referring Figure 19.6

and Appendix G"/

void ReadSector (char 'src, mt ss, int num, void* buff)

HANDLE h;
unsigned mt br;
h CreateFile (src, GENERIC READ,

FILE-SHARE-READ, 0, OPEN_EXISTING, 0, 0);
SetFilePointer (h, (ss 512), NULL, FILE-BEGIN
ReadFile (h, buff, 512" num, Mr, NULL)
CloseHandle (h);

Chapter 19: Interaction With Hardware
	

629

The boot sector contains two parts--Boot Parameters' and Disk
Bootstrap Program'. The Boot Parameters are useful white
performing read/write operations on the disk. Figure 19.6 shows
the break up of the boot parameters for a floppy disk.

Description

Jump instruction

OEM name
Bytes per sector

Sectors per cluster
Reserved sectors

Number of FAT copies
Max. Root directory entries
Total sectors

Media descriptor

Sectors per FAT

Sectors per track

No. Of sides

Hidden sectors

Huge Sectors
BIOS drive number

Reserved sectors
Boot signature
Volume ID

Volume label

File system type

Length	 I Typical Values

3
	

EB3C9O

$
	

MSWIN4. I
2
	

512

2

2
2
	

224

2
	

2880

2
	

C)

2
	

38
2
	

2
4
	

0
4
	

0
0

0
41

4
	

349778522
II
	

'CIT
8
	

FAT 12

Figure 19.6

630	 ii CIS C

Using the breakup of bytes shown in Figure 19.6 our program has
first created a structure called boot. Notice the usage of #pragma

pack to ensure that all elements of the structure are aligned on a I-
byte boundary, rather than the default 4-byte boundary. Then
comes the surprise—there is no WinMain() in the program. This
is because we want to display the boot sector contents on the
screen rather than in a window. This has been done only for the
sake of simplicity. Remember that our aim is to interact with the
floppy, and not in drawing and painting in a window. If you wish
you can of course adapt this program to . display the same contents
in a window. So the program is still a Windows application. Only
difference is that it is built as a Win32 Console Application' using
VC++. A console application always begins with main() rather

than WinMainO.

To actually read the contents of boot sector of the floppy disk the
prograni makes a call to a user-defined function called
ReadSector(). The ReadSector() function is quite similar to the
absread() library function available in Turbo C/C*+ under DOS.

The first parameter passed to ReadSector() is a string that
indicates the storage device from where the reading has to take
place. The syntax for this string is \\rnachine-narne\StOrage-
device name. In \\.\\A:, we have used .' for the machine name. A
.' means the same machine on which the program is executing.

Needless to say, A: refers to the floppy drive. The second
parameter is the logical sector number. We have specified this as 0
which means the boot sector in case of a floppy disk. The third
parameter is the number of sectors that we wish to read. This
parameter is specified as I since the boot sector occupies only a
single sector. The last parameter is the address of a buffer/variable
that would collect the data that is read from the floppy. Here we
have passed the address of the boot structure variable b. As a
result, the structure variable would be setup with the contents of
the boot sector data at the end of the function call.

Chapter 19: Interaction With /Iardit'arc 	 631

Once the contents of the boot sector have been read into the
structure variable b we have displayed the first few oithcrn on the
screen using printf(). If you wish you can print the rest of the
contents as well.

The ReadSecior() Function

With the preliminaries over let US now concentrate oil real stuff
in this program, i.e. the ReadSector() function. This function
begins by making a call to the CreateFile() API function as
shown below:

h = CreateFile (src, GENERIC READ,
FILE-SHARE-READ, 0, OPEN-EXISTING, 0, 0);

The CrcateFile() API function is very versatile. Anytime we are
to communicate with a device we have to firstly call this API
function. The CreateFile() function opens the specified device as
a file. Windows treats all devices just like files on disk. Reading
from this file means reading from the device.

The CreateFile() API function takes several parameters. The first
parameter is the string specifying the device to be opened. The
second parameter is a set of flags that are used to specify the
desired access to the file (representing the device) about to be
opened. By specifying the GENERIC _READ flag we have
indicated that we just wish to read from the file (device). The third
parameter specifies the sharing access for the file (device). Since
floppy drive is a shared resource across all the running
applications we have specified the FILE _SHARE_READ flag. In
general while interacting with any hardware the sharing flag for
the file (device) must always be set to this value since every piece
of hardware is shared amongst all the running applications. The
fourth parameter indicates security access for the file (device).
Since we are not concerned with security here we have specified
the value as 0. The fifth parameter specifies what action to take if

632	 -	 Let UsC

the file already exists. When using CrcateFile() for device access
we must always specify this parameter as OPEN—EXISTING.
Since the floppy disk file was already opened by the OS a long
time back during the booting. The remaining two parameters are
not used when using CreateFile() API function for device access.
Hence we have passed a 0 value for them. If the call to
CreateFite() succeeds then we obtain it handle to the file (device).

The device file mechanism allows us to read from the file (device)
by setting the tile pointer using the Set File pointcr() API function
and then reading the file using the ReadFile() Al'l function. Since
every sector is 512 bytes long, to read from the n1 sector we need
to set the file pointer to the 512 * n bytes from the start of the file.
The first parameter to SetFilcPointer() is the handle of the device
file that we obtained by calling the CreateFile() function. The
second parameter is the byte offset from where the reading is to
begin. This second parameter is relative to the third parameter. We
have specified the third parameter as FILE BEGIN which means
the byte offset is relative to the start of the file.

To actually read from the device file we have made a call to the
RcadFile() API function. The ReadFilc() function is very easy to
use. The first parameter is the handle of the file (device), the
second parameter is the address oh' a buffer where the read contents
Should be dumped. The third parameter is the count of bytes that
have to be read. We have specified the value as 512 * num so as to

read num sectors. The fourth parameter to ReadFilc() s the
address of an unsigned jut variable which is set up with the count
of bytes that the function was successfully able to read. Lastly,
once our work with the device is over we should close the file
(device) using the Closetlandk() API function.

Though ReadSector() doesn't need it, there does exist a
counterpart of the Read File() function. Its name is WriteFile().
This API function can be used to write to the file (device). The
parameters of WriteFile() are same as that of ReadFile(). Note

Chaplet- 19: Inieractio,z With Hardware 	 633

that when WriteFik() is to be used we need to specify the
GENERIC WRITE flag in the call to CreateFile() API
function. G

_

iven below is the code of WriteSector() function that
works exactly opposite to the RcadSector() function.

void WriteSector (char *src, int ss, mt num, void* buff)

HANDLEh;
unsigned int br;
h CreateFile (src, GENERIC_WRITE

FILE_SHARE WRE, 0, OPEN EXISTING, 0, 0)
SetFilePointer (h, (ss * 512), NULL, FILE BEGIN);
WriteFile (h, buff, 512 * num, &br, NULL)
CloseHandle (h);

Accessing Other Storage Devices

Note that the mechanism of reading from or writing to any device
remains standard under Windows. We simply need to change the

string that specifies the device. Here are some sample calls for
reading/writing from/to various devices:

ReadSector ("\\\\.\a:", 0, 1 &b)'; / reading from 2 nd floppy drive */
ReadSector ("\\\\.\\d:', 0, 1, buffer): /* reading from a CD-ROM drive I

WriteSector ("\\\\.\\c: °, 0, 1, &b) : 1 writing to a hard disk /

ReadSector ("\\\\.\\physicaIdrive0 , 0, 1 &b); /* reading partition table 1

Here are a few Interesting points that you niust note.

(a) If we are to read From the second floppy drive we should
replace A: with B: while calling ReadSector().

(b) To read from storage devices like hard disk drive or CD-ROM
or ZIP drive, etc. use the string with appropriate drive letter.
The string can be in the range \\.\C: to \\.\Z:.

634
	

Let Us C

(c) To read from the CD-ROM just specify the drive letter of the
drive. Note that CD-ROMs follow a different storage

organization known as CD File System (CDFS).

(d) The hard disk is often divided into multiple partitions. Details
like the place at which each partition begins and ends, the size
of each partition, whether it is a bootable partition or not, etc.

arc stored in a table oil disk. This table is often called
'Partition Table'. If we are to read the partition table contents

we can do so b y using the string \\.\physicaldriveO.

(e) Using \\.\physicaldriVeO we can also read contents of any
other parts of the disk. Here 0 represents the First hard disk in
the system. II we are to read from the second hard disk we
need to use I in place of 0.

Communication with Keyboard

Like mouse messages there also exist messages for keyboard.
These are WM KEYDOWN, WM_KEYUP and \VMCUAR.

Of these, WM_KEYDOWN and WM_I<EYUP are sent to an

application (which has the input focus) whenever the key is
pressed and released respectively. The additional information in
case of these messages is the code of the key being pressed or

released. When we tackle WM KEYDOWN or WM_KEYUP

we need to ourselves check the status of toggle keys like NumLock
and CapsLock and shift keys like Ctrl, Alt and Shift. If we wish to

avoid all this checking we can tackle the WM_CIIAR message

instead.

What is mentioned above is the normal procedure followed by
most Windows applications. However, if we wish to go a step
further and deal with the keyboard we need to tackle it differently.
For example, suppose we are to perform one of the following jobs:

(a) Once you hit any key CapsLock should become on. Once it
becomes on it should remain permanently on.

C7zaj:ier 19: Interaction fYi/li Hard 'are	 635

(b) If we hit a key once it should appear twice on the screen.
(c) If we hit a key A then B should appear oil 	 screen, if we hit

a B thcn.0 should occur and so on.

Note that all these effects should work on a system-wide basis for
all Win32 applications. To be able to achieve these effect we need
understand two important mechanisms—'Dynamic Linking' and
Windows [looks'. Let us understand these mechanisms one by

one.

Dynamic Linking

As we saw in Chapter 16, Windows permits linking of libraries
stored in a .DLL file during execution. A .DLL file is a binary file
that cannot execute on its own. It contains functions that can be
shared between several applications running in memory.

Windows Hooks

As the name suggests, the hook mechanism permits us to intercept
and alter the flow of messages in the OS before they reach the
application. Since hooks are used to alter the messaging
mechanism on a system-wide basis the code fr hooking has to be
written in a DLL. The hooking mechanism involves writing a hook
procedure in a DLL file and registering this procedure with the
OS. Since the DLL cannot execute oil own we need a separate
program that would load and execute the DLL.

For different messages there are different types of hooks. For
example, for ke yboard messages there is a keyboard hook, for
mouse messages there is mouse hook, etc. You can refer MSDN
for nearly a dozen more types of hooks. Here we would restrict our
discussion only to the keyboard hook.

636	 -	 Let Us C

Before we proceed to write our own hook procedure let us
understand the normal working of the keyboard messages. This is

illustrated in Figure 19.7.

Interrupt

Kernel RoutinJ

Device Driver tSR

7-
Obtain key code by

interacting with
KB controller

Place key code in System
Msg. queue by calling
keyhd event(

System Msg. qucuc

It -I tIItT, I

OS

I	 --	 -

Application I

Figure 19.7

Application I
Msg. Queue

Applicaiion2	 Application2
Msg. Queue

With reference to Figure 19.7 here is a list of steps that are carried
out when we press a key from the keyboard:

Chapter 19: Interaction With Hardware	 637

(a) On pressing a key an interrupt occurs and the corresponding
kernel routine gets called.

(b) The kernel routine calls the tSR of the keyboard device driver.
(c) The ISR communicates with the keyboard controller and

obtains the code of the key pressed.
(d) The !SR calls a OS function keybd_event() to post the key

code to the System Message Queue.
(e) The OS retrieves the message from the System Message

Queue and posts it into the message queue of the application
with regard to which the key has been pressed.

Let us now see what needs to be done if we are to alter this
procedure. We simply need to register our hook procedure with tIn
OS. As a result, our hook procedure would receive the message
before it is dispatched to the appropriate Application Message
Queue. Since our hook procedure gets a first shot at the rncsge it
can now alter the working in the following three ways:

(a) It can suppress the message altogether
(b) It can change the message
(c) It can post more messages into the System Message Queue

using the keybd_event() function.

Let us now put all this theory into practice by writing a few
programs.

aps Locked, Permanently

Let us now write a program that keeps the CapsLock permanently
on. This effect would come into being when the first key is hit
subsequent to the execution of our program. In fact there would be
two programs:

(a) A DLL containing a hook procedure that achieves the
CapsLock effect.

(b) An application EXE which loads the DLL in memory.

Given below is the source code of the DLL program.

42

61,',	 Let Us C

1 huck.c 4/

inc!ude cwindows.h'

static HHOOK hkb NULL
HANIJLEh;

BOOL _stdcaR DtMain (HANDLE hModule, DWORD uLreason_fOr_CalI,
LPVOID IpReserved)

hModule;
return TRUE,

BOOL _cieclspec (duexport) instatlhook()

hkb = SetWindowSHOOkEX (WH_KEYBOARD,
(HOOKPROC) KeyboardPrOC (HNSTANCE) h, 0);

if(hkbNULL)
return FALSE;

return TRUE;

LRESULT decspeC (dilexport) _stdcaU KeyboardPrOC (int nCode,
WPARAM wParam, LPARAM IParam)

short int state,

f(nCode<Q)
return CaUNextHoOEX (hkb, nCode, wParant, LParam)

if ((nCode HC-ACTION) &&
((DWORD) 1 param & Ox40000000))

{
state GetKeyState (VKCAPITAL)
f((state & 1)= 0)! if off /

Chapter 19: Interaction With Hardware	 639

keybd_event (VK_CAPITAL 0,
KEYEVENTF_EXTENDEDKEY, 0);

keybd_event (VK.. CAPITAL, 0,
KEYEVENTFEXTENDEDKEY J KEYE VENTF KEY(JP, 0);

return CallNextHookEx (hkb, nCode, wParam, (Param);

BOOL decIspec (dilexport) removehook()

return UflhOOkWjndOwHookE (hkb)

Follow the steps mentioned below to create this program:

(a) Select 'File I New' option to start a new project in VC+-t-.
(b) From the 'Project' tab select 'Win32 Dynamic-Link Library'

and click on the 'Next' button.
(c) In the 'Win32 Dynamic-link Library Step I of I' select "An

empty DLL project" and click on the 'Finish' button.
(d) Select 'File f New' option.
(e) From the 'File' tab select 'C4+ source file' and give the file

name as 'hook.c'. Type the code listed above in this tile.
(f) Compile the program to generate the .DLL file.

Note that this program doesn't contain WinMain() since the
program on compilation should not execute on its own. It has been
replaced by a function called DllMain(). This function acts as
entry point of the DLL program. It gets called when the DLL is
loaded or unloaded.

When the application loads the DLL the DllMain() function
would he called. In this function we have merely stored the handle
to the DLL that has been loaded in memory into a global variable
h for later use.

640
	 Let Us C

Those functions in a DLL that can be called from outside it are
called exported functions. Our DLL contains three such
functions_iflstaHhookO, removehook() and KeyboardPrOCO.

To indicate to the compiler that a function in a DLL is an exported

function we have to pre-qualify it with _declspec (dllexport).

These functions would he called from the second program. This
second program is a normal GUI application created in the same
way that we did applications in Chapters 17 and 18. The handlers

for messages WM_CREATE and WM_DESTROY are given

below:

/ capslocked.c I

HINSTANCE h;

void OnCreate (HWND hWnd)

BOOL (CALLBACK 'p)()

h LoadLibrary (hook.dll");
if(h 1= NULL)

p = GetProcAddreSS (h, instaIlhook)
(p)() I calls installh000k() function I

void OnDestroy (HWND hWnd)

BOOL (CALLBACK *p)()

p GetProcAddleSS (h, removehook)

(p)O; 1' calls removeh000k() function I

FreeLibrary (h)
PostQuitMessage (0):

Chapter 19: I,zteraction With Hardware	 641

As we know, the OnCreate() and OnDestroy() handlers would
be called when the WM_CREATE and WM_DESTROY
messages arrive respectively. In OnCreate() we have loaded the
DLL containing the hook procedure. To do this we have called the
LoadLibrary() API function. Once the DLL is loaded we have
obtained the address of the exported function installhook() using
the GetProcAddress() API function. The returned address is
stored in p, where p is a pointer to the instalthook() function.
Using this pointer we have then called the installhook() function.

In the installhook() function we have called the API function
SetWindowsHookEx() to register our hook procedure with the
OS as shown below:

hkb = SetWindowsHookEx (WHJ(EVBOARD,
(HOOKPROC) KeyboardProc, (HINSTANCE) h, 0);

Here the first parameter is the type of hook that we wish to
register, whereas the second parameter is the address of our hook
procedure KeyboardProc(). hkb stores the handle of the hook
installed.

From now on whenever a keyboard mess .age is retrieved by the OS
from the System Message Queue the message is firstly passed to
our hook procedure, i.e. to KeyboardProc() function. Inside this
function we have written code to ensure that the CapsLock always
remains on. To begin with we have checked whether nCode
parameter is less than 0. If it so then it necessary to call the next
hook procedure. The MSDN documentation suggests that "if code
is less than zero, the hook procedure must pass the message to the
CallNextllooktx() function without further processing and
should return the value returned by CallNextHookEx()".

Note that there can be several hook procedures installed by
different programs, thus forming a chain of hook procedures.
These hook procedures always get called in an order that is

642

opposite to their order of installation. This means the last hook
procedure installed is the first one to get called.

If the nCode parameter contains a value HC_ACTION it means
that the message that was just removed form the system message
queue was a keyboard message. If it is so, then we have checked
the previous state of the key before the message was sent. If the
state of the key was 'depressed' (30th bit of IParam is I) then we
have obtained the state of the CapsLock key by calling the
GetKeyState() API function. 11 it is

Off (0th bit of state variable is
0) then we have turned on the CapsLock by simulating a keypress.
For this simulation we have called the function keybdevent()
twice—first call is for pressing the CapsLock and second is for
releasing it. Note that keybd_event() creates a keyboard message
from the parameters that we pass to it and posts it into the system
message queue. The parameter VK CAPITAL represents the code
for the CapsLock key.

A word of caution! When we use keybd_ event() to post keyboard
message for a simulated CapsLock keypress, once again our hook-
procedure would be called when these messages are retrieved from
the system message queue. But this time the CapsLock would be
on so we would end up passing control to the next hook procedure
through a call to CallNextHoOkEXO,

When we close the application window as usual the OnDestroy()
would he called. In this handler we have obtained the address of
.the removehook() exported function and called it. In the

removehook() function we have unregistered our hook procedure
by calling the UnhookWindOWSHOOkE X() API function. Note
that to this function we have passed the handle to our hook. As a
result our hook procedure is now removed from the hook chain.
Hereafter the CapsLock would behave normally. Having unhooked
our hook procedure the control would return to OnDestroy(
handler where we have promptly unload the DLL from memory by

.calling the Freelibrary() API function.

Chapter 19: Interaction With Hardware	 643

One last point about this program -the hook.dIl' file should be
copied into the directory of the application's EX[I before executing
the EXE.

Did You Press It TTwwiiccee...

With the power oiwindows hooks below your belt you are into the
league of power programmers of Windows. So how about tasting
the power some hit more. How about writing a program that would
make every key pressed in any Windows application appear twice.
Here is the code for the hook procedure.

LRESULT _declspec (dilexport) stdcall Ke yboardProc (mt nCode,
WPARAM wPararn, LPARAM IParam)

static BYTE key
static BOOL flag FALSE:

if(nCode<O)
return CallNextHookEx (hkb, nCode, wPararn, Pararn)

if ((nCode HC-ACTION) &&
((OWORD) IPararn & 0x80000000) == 0)

if (flag	 FALSE)

key wPararn
keybd event (key, 0, KEYEVENTF_EXTENDEDKEY, 0):
flagTRUE;

else

if (key	 BYTE) wPararn)
flag = FALSE

return CaltNextHookEx (hkb, nCode, wParam, IPararn)

644	 Let (Is C

In this hook procedure once again we have checked if the nCode
parameter contains a value DC_ACTION. if it does then we have
checked the present stale of the key in question. if the present state
of the key is 'pressed' (3 1 bit of IParam is 0) then we have
posted the message for the same key into the system message
queue by calling the keybd event(). However, this may lead to a
serious problem. Can you imagine which? The message that we
post, once retrieved, would again bring the control to our hook
procedure. Once again the conditions would become true and we
would post the same message again. This would go on and on.
This can be prevented by using a using a simple flag variable as

shown in the code.

Note that the rest of the Ilinctions in the DLL file are exactly same
as in the previous program. So also is the application program.

Mangling Keys

I low about one more program to bolster your confidence'? Let us-
try one that would mangle every key that is pressed. That is,
convert an A to a B, U to C, C to D. etc. This would he fairly

straightforward. We simply have to increment the key code before
posting it into the system message queue. Also, further processing
of key has to be prevented. This can be achieved by simply
returning a non-zero value from the hook procedure (thus

bypassing the call to CallNextIlookEX()). This is shown in the

following hook procedure.

LRESULT declspec (dllexport) _stdcall KeyboardProc (nt nCode,
WPARAM wParam, LPARAM IParam)

static BYTE key;
static BOOL flag FALSE;

Chapter 19: Interaction With Hardware	 645

if(nCode<O)
return CallNextHookEx (hkb, nCode, wParam, IParam)

if ((nOode HC-ACTION) &&
((DWORD) IParam & 0x80000000) 0)

if (flag	 FALSE)

key = wParam;
key ++
keybd event (key, 0, KEYEVENTF EXTENDEDKEY, 0);
flag = TRUE
return 1

else

if (key	 (BYTE) wParam)
flag = FALSE;

return CailNexiHookEx (hkb, nCode, wParam, Param

KeyLogger

There are several malicious programs that are floating on the net
that steal away your passwords. These programs keep a log of
every key that is pressed while entering passwords or credit card
numbers. These programs make use of windows hooks to trap
every key that is pressed. With the knowledge that you have
gained from the past three programs this may not be a big (teal.

However, such key logger programs deviate from the ones that we
developed in three fundamental ways:

(a) They do not pop any window on the screen; otherwise the
program's presence would get detected.

646	 Let U.sC

(b) These programs also hide themselves from the Task Manager
so that the user cannot terminate them.

(c) The logged keys are secretly sent over the net to the malicious
users who write such programs. Once the logged keys arc
known it would be possible to break into the system.

Where is This Leading

Even for a moment do not create an impression in you mind that
Windows Hooks are only for notorious activities. There are many
good things that they can be put to use for. These activities
include:

(a) Multimedia keyboards have special key like Cut, Copy, Paste,
etc. Such keyboards also come with special programs which
when installed know how to tackle these special keys. On
pressing these keys these programs use the hook mechanism
to place the simulated keys in the system message queue.

(b) Many demo programs once executed autoniatical ly move the
mouse pointer to a menu or a toolbar or any such item to
demonstrate some featore of the soliware. To manage these
actions a windows hook called Journal hook is used.

(c) For physically impaired persons a keyboard can be simulated
on the screen and the mouse clicks on this keyboard can be
communicated to Windows as actual key hits. This again can
be achieved using mouse and keyboard hook.

There call many more such examples. But the above three I
believe would he ample to prove to you the constructive side otthe
powerful mechanism called Windows Ilooks.

Chapter 19: Interaction With Hardware	 647

Summary
(a) Hardware interaction can happen in two ways: (I) When the

user interacts with the hardware and the program reacts to it.
(2) When the program interacts with the hardware without any
user intervention.

(b) In DOS when the user interacts with the hardware an ISR gets
called which interacts with the hardware. In Windows the
same thing is done by the device driver's]SR.

(c) In DOS when the program has to interact with the hardware it
can do so by using library functions, DOS/BIOS routines or
by directly interacting with the hardware. In Windows the
same thing can he done by using API functions.

(ci) Under Windows to gain liner control over the hardware we
are required to write a device driver program.

(c) Interaction with the any device can be done using API
functions like CreateFile(), ReadFile(), WriteFite() and
CloseHandlcQ.

(f) Different strings have to he passed to the CrcateFile(
functions for interacting with different devices.

(g) Windows provides a powerful mechanism called hooks that
can alter the flow of messages before they reach the
application.

(h) Windows hook procedures should be written in a DLL since
they work on a system wide basis.

(i) Windows hooks can be put to many good uses.

Exercise

(Al State True or False:

(a) In MS-DOS on occurrence of an interrupt values from IDT
are used to call the appropriate kernel routine.

(b) Under Windows on occurrence of an interrupt the kernel
routine calls the appropriate device driver's ISR.

(c) Under Windows an application can interact with the hardware
by directly calling its device driver's routines.

Let Us C

(d) Under Windows we can write device drivers to extend the OS
itself.

(e) ReadSector() and WriteSec(or() are API functions.
(f) While reading a sector from the disk the CreateFile(

function creates a file on the disk.
(g) The Windows API function to stop communication with a

device is CloseFileO.
(h) The ReadFile() and WrRcFiIe() API functions can only

perform reading or writing from/to a disk file.

IBI Answer the following:

(a) Flow is hardware interaction under Windows different that
that under DOS?

(b) What is the advantage of writing code in a DLL?

(c) Explain the Windows hooks mechanism.

(d) What is the standard way of communicating with a device
under Windows'?

(e) Write a program to read the contents of Boot Sector of a 32-
bit FAT file system and print them on the screen. Refer
Appendix G for details about the contents of the boot sector.

(f) Write a program that ensures that the key 'A' is completely
disabled across all applications.

(g) Write a program that closes any window just by placing the
cursor on the 'Close' button in the title bar of it.

20 C Under Linux
• What is Linux
• C Programming Under Linux
• The 'Hello Linux' Program
• Processes
• Parent and Child Processes
• More Processes
• Zombies and Orphans
• One Interesting Fact
• Summary
• Exercise

649

650	 Let Us

T

oday the programming world is divided into two major
camps—the Windows world and the Linux world. Since its
humble beginning about a decade ago, Linux has steadily

drawn the attention of programmers across the globe and has
successfully created a community of its own. How big and
committed is this community is one of the hottest debates that is
raging in all parts of the world. You call at the hot discussions
and the flame wars on this issue on numerous sites on the internet.
Before you decide to join the Windows or the Linux camp you
should first get familiar with both of them. The last 4 chapters
concentrated on Windows programming. This and the next one
would deal with Linux programming. Without any Further
discussions let us now set out on the Linux voyage. I hope you
find the journey interesting and exciting.

What is Linux

Linux is a clone of the Unix operating system. Its kernel was
written from scratch by Linus Torvalds with assistance from a
loosely-knit teani of programmers across the world on Internet. It
has all the features you would expect in a modern OS. Moreover,
unlike Windows or Unix, Linux is available completely free of
cost. The kernel of Linux is available in source code form.
Anybody is free to change it to suit his requirement, with a
precondition that the changed kernel can he distributed only in the
source code form. Several programs, frameworks, utilities have
been built around the Linux kernel. A common user may not want
the headaches of downloading the kernel, going through the
complicated compilation process, then downloading the
frameworks, programs and utilities. Hence many organizations
have come forward to make this job easy. They distribute the
precompiled kernel, programs, utilities and frameworks oil
common media. Moreover, they also provide installation scripts
for easy installations of the Linux OS and applications. Some of
the popular distributions are Redflat, SUSE, Caldera, Debian,
Mandrake, Slack-ware, etc. Each of them contain the same kernel

Chapter 19. fflteraCtiOfl With Hardware651

but may contain different application programs, libraries,
frameworks, installation scripts, utilities, etc. Which one is better
than the oilier is only a matter of taste.

Linux was first developed for x86-based PCs (386 or higher).
These days it also runs on Compaq Alpha AXP, Sun SPARC,
Motorola 68000 machines (like Atari ST and Amiga), MIPS,
PowerPC, ARM, Intel Itanium, Super!-!, etc. Thus Linux works on
literally every conceivable microprocessor architecture.

Under Linux one is faced with simply too many choices of Linux
distributions, graphical shells and managers, editors, compilers,
linkers, debuggers, etc. For simplicity (in my opinion) I have
chosen the following combination:

Linux Distribution - Red Hat Linux 9.0
Console Shell 	 - BASH
Graphical Shell	 - KDE 3.1-10
Editor	 - KWrite
Compiler	 - GNU C and C++ compiler (gee)

We would be using and discussing these in the sections to follow.

C Programming Under Linux

How is C under Linux any different than C under DOS or C under
Windows? Well, it is same as well as different. It is same to the
extent of using language elements like data types, control
instructions and the overall syntax. The usage of standard library
functions is also same even though the implementation of each
might he different under different OS. For example, a printf()
would work under all OSs, but the way it is defined is likely to be
different for different OSs. The programmer however doesn't
suffer because of this since he can continue to call printf() the
same way no matter how it is implemented.

652	 Let Us C

But there the similarity ends. If we are to build programs that
utilize the features offered by the OS then things are bound to be
different across OSs. For example, if we are to write a C program
that would create a Window and display a message "hello" at the
point where the user clicks the left mouse button. The architecture
of this program would be very closely tied with the OS under
which it is being built. This is because the mechanisms for creating
a window, reporting a mouse click, handling a mouse click,
displaying the message, closing the window, etc. are very closely
tied with the OS for which the program is being built. In short the
programming architecture (better known as programming model)
for each OS is different. Hence naturally the program that achieves
the same task under different OS would have to be different.

The 'Hello Linux' Program

As with any new platform we would begin our journey in the
Linux world by creating a 'hello world' program. Here is the
source code....

mt main()

printf ("Hello Linux\n')
return 0;

The program is exactly same as compared to a console program
under DOS/Windows. It begins with main() and uses printf()
standard library function to produce its output. So what is the
difference? The difference is in the way programs are typed,
compiled and executed. The steps for typing, compiling and
executing the program are discussed below.

The first hurdle to cross is the typing of this program. Though any
editor can be used to do so, we have preferred to use the editor
called 'KWrite'. This is because it is a very simple yet elegant

Chapter 19: Interaction With Hardware 	 653

editor compared to other editors like 'vi' or 'emacs'. Note that
KWnte is a text editor and is a part of K Desktop environment
(KDE). Installation of Linux and KDE is discussed in Appendix H.
Once KDE is started select the following command from the
desktop panel to start KWrite:

K Menu I Accessories I More Accessories I KWrite

If you face any difficulty in starting the KWrite editor please refer
Appendix H. Assuming that you have been able to start KWrite
successfully, carry out the following steps:

(a) Type the program and save it under the name 'heflo.c'.
(b) At the command prompt switch to the directory containing

'hello.c' using the cd command.
(c) Now compile the program using the gcc compiler as shown

below:

gcc hello.c

(d) On successful compilation gcc produces a file named 'a.out'.
This file contains the machine code of the program which can
now be executed.

(e) Execute the program using the following command.

.Ia.out

(f) Now you should be able to see the output 'Hello Linux' on
the screen.

Having created a Hello Linux program and gone through the edit-
compile-execute cycle once let us now turn our attention to Linux
specific programming. We will begin with processes.

Processes

Gone are the days when only one job (task) could be executed in
memory at any time. Today the modern OSs like Windows and

43

654	 Let Us C

Linux permit execution of several tasks simultaneously. Hence
these OSs are aptly called 'Multitasking' OSs.

In Linux each running task is known as a 'process'. Even though it
may appear that several processes are being executed by the
microprocessor simultaneously, in actuality it is not so. What
happens is that the microprocessor divides the execution time
equally among all the running processes. Thus each process gets
the microprocesor's attention in a round robin manner. Once the
time-slice allocated for a process expires the operation that it is
currently cxec1ing is put on hold and the microprocessor now
directs its attention to the next process. Thus at any given moment
if we take the snapshot of memory only one process is being
executed by the microprocessor. The switching of processes
happens so fast that we get a false impression that the processor is
executing severar processes simultaneously.

The scheduling of processes is done by a program called
'Scheduler' which is a vital component of the Linux OS. This
scheduler program is fairly complex. Before switching over to the
next thread it stores the information about the current process. This
includes current values of CPU registers, contents of System Stack
and Application Stack, etc. When this process again gets the time
slot these values are restored. This process of shifting over from
one thread to another is often called a Context Switch. Note that
Linux uses preemptive scheduling, meaning thereby that the
context switch is performed as soon as the time slot allocated to
the process is over, no matter whether the process has completed
its job or not.

Kernel assigns each process running in memory a unique 11) to
distinguish it from other running processes. This ID is often known
as processes ID or simply PID. It is very simple to print the MID of

a running process programmatically. Here is the program that
achieves this...

Chapter 19: Interaction With Hardware 	 655

nt main()

printf (Process ID %d", getpid());

Here getpid() is a library function which returns the proess ID
of the calling process. When the execution of the program comes
to an end the process stands terminated. Every time we run the
program a new process is created. Hence the kernel assigns a new
ID to the process each time. This can be verified by executing the
program several times—cach time it would produce a different
output.

Parent and Child Processes

As we know, our running program is a process. From this process
we can create another process. There is a parent-child relationship
between the two processes. The way to achieve this is by using a
library function called fork(). This function splits the running
process into two processes, the existing one is known as parent and
the new process is known as child. Here is a program that
demonstrates this...

include <sysltypes,h>
mt main()

printf ('Before ForkingW);
fork()
prinif (!After Forking\n');

Here is the output of the program...

Before Forking
After Forking
After Forking

656	 Let Us

Watch the output of the program. You can notice that all the
statements after the fork() are executed twice—once by the parent
process and second time by the child process. In other words
fork() has managed to split our process into two.

But why on earth would we like to do this? At times we want our
program to perform two jobs simultaneously. Since these jobs may
be inter-related we may not want to create two different programs
to perform them. Let me give you an example. Suppose we want
perform two jobs—copy contents of source file to target file and
display an animated GIF file indicating that the file copy is in
progress. The GIF file should continue to play till file copy is
taking place. Once the copying is over the playing of the GIF file

should be stopped. Since both these jobs are inter-related they
cannot be performed in two different programs. Also, they cannot
be performed one after another. Both jobs should be performed
simultaneously.

At such times we would want to use fork() to create a child
process and then write the program in such a manner that file copy
is done by the parent and displaying of animated GIF file is done
by the child process. The following program shows how this can
be achieved. Note that the issue here is to show how to perform
two different but inter-related jobs simultaneously. Hence I have
skipped the actual code for file copying and playing the animated
GIF file.

include <sysitypes.h>

nt main()
{

mt pid;
pid = fork();
if (pid == 0)

printf ("In child process\n")
/ code to play animated G I F file I

Chapter 19: Interaction With Hardware 	 657

else

printf (in parent process\n');
r code to copy file *1

As we know, fork() creates a child process and duplicates the
code of the parent process in the child process. There onwards the
execution of the fork() function continues in both the processes.
Thus the duplication code inside fork() is executed once, whereas
the remaining code inside it is executed in both the parent as well
as the child process. Hence control would come back from fork()
twice, even though it is actually called only once. When control
returns from fork() of the parent process it returns the PID of the
child process, whereas when control returns from fork() of the
child process it always returns a 0. This can be exploited by our
program to segregate the code that we want to execute in the
parent process from the code that we want to execute in the child
process. We have done this in our program using an if statement.
In the parent process the 'else block' would get executed, whereas
in the child process the 'if block' would get executed.

Let us now write one more program. This program would use the
fork() call to create a child process. In the child process we would
print the PID of child and its parent, whereas in the parent process
we would print the PID of the parent and its child. Here is the
program...

include <sys/types.h>
mt main()

intpid;
pid fork()

if(pid:O)

658	 Let Us C

printf ("Child : Hello I am the child process\n')
printt ("Child : Child's PID: %d\n", getpid())
printf ('Child: Parents PID: %d\n', getppid());

}
else

printf ("Parent Hello I am the parent process\n)
printf ("Parent: Parents PlO: %d\n", getpid())
printi ("Parent: Child's PlO: %d\n', pid);

Given below is the output of the program:

Child : Hello I am the child process
Child : Child's PlO: 4706
Child : Parent's PID: 4705
Parent: Hello I am the Parent process
Parent: Parent's PID. 4705
Parent : Child's PlO. 4706

In addition to getpid() there is another related function that we
have used in this program—getppid(). As the name suggests, this
function returns the liD of the parent of the calling process.

You can tally the PIDs from the output and convince yourself that
you have understood the fork() function well. A lot of things that
follow use the fork() function. So make sure that you understand
it thoroughly.

Note that even Linux internally uses fork() to create new child
processes. Thus there is a inverted tree like structure of all the
processes running in memory. The father of all these processes is a
process called init. If we want to get a list of all the running
processes in memory we can do so using the ps command as
shown below.

Chapter 19: I,:terac,ion With Hardware 	 659

PS —A

Here the switch —A indicates that we want to list all the running
processes.

More Processes

Suppose we want to execute a program on the disk as part of a
child process. For this first we should create a child process using
fork() and then from within the child process we should call an
exec function to execute the program on the disk as part of child
process. Note that there is a family of exec library functions, each
basically does the same job but with a minor variation. For
example, execl() function permits us to pass a list of command
line arguments to the program to be executed, execv() also does
the same job as execl() except that the command line arguments
can be passed to it in the form of an array of pointers to strings.
There also exist other variations like execle() and cxecvp().

Let us now see a program that uses execl() to run a new program
in the child process.

include <unistd.h>
nt main()

intpid
pid	 fork()
if(pidO)

execi ("/binlIs"-al', "Ietc, NULL)
printf ("Child: After exec()\n")

else
printf ("Parent process\n")

660	 Let Us C

After forking a child process we have called the execl() function.

This function accepts variable number of arguments. The first
parameter to excel() is the absolute path of the program to be
executed. The remaining parameters describe the command line
arguments for the program to be executed. The last parameter is an
end of argument marker which must always he NULL. Thus in our
case the we have called upon the execl() function to execute the Is

program as shown below

Is -al /etc

As a result, all the contents of the Ietc directory are listed oil

screen. Note that the printf() below the call to execl() function is

not executed. This is because the exec family functions overwrite
the image of the calling process with the code and data of the
program that is to be executed. In our case the child process's
memory was overwritten by the code and data of the Is program.
Hence the call to printf() did not materialize.

It would make little sense in calling execl() before fork(). This is
because a child would not get created and execl() would simply
overwrite the main process itself. As a result, no statement beyond
the call to excel() would ever get executed. Hence fork() and

excel() usually go hand in hand.

Zombies and Orphans

We know that the ps —A command lists all the running processes.
But from where does the ps program get this information? Well,
Linux maintains a table containing information about all the
processes. This table is called 'Process Table'. Apart from other
information the process table contains an entry of 'exit code' of the
process. This integer value indicates the reason why the process
was terminated. Even though the process comes to an end its entry
would remain in the process table until such time that the parent of
the terminated process queries the exit code. This act of querying

Chapter 19: Interaction With Hardware 	 661

deletes the entry of the terminated process from the process table
and returns the exit code to the parent that raised the query.

When we fork a new child process and the parent and the child
continue to execute there are two possibilities—either the child
process ends first or the parent process ends first. Let us discuss
both these possibilities.

(a) Child terminates earlier than the parent

In this case till the time parent does not query the exit code of the
terminated child the entry of the child process would continue to
exist. Such a process in Linux terminology is known as a 'Zombie'
process. Zombie means ghost, or in plain simple Hindi a 'Bhoot'.
Moral is, a parent process should query the process table
immediately after the child process has terminated. This would
prevent a zombie.

What if the parent terminates without querying. In such a case the
zombie child process is treated as an 'Orphan' process.
Immediately, the father of all processes----init --adopts the
orphaned process. Next, as a responsible parent mit queries the
process table as a result of which the child process entry is
eliminated from the process table.

(b) Parent terminates earlier than the child

Since every parent process is launched from the Linux shell, the
parent of the parent is the shell process. When our parent process
terminates, the shell queries the process table. Thus a proper
cleanup happens for the parent process. However, the child process
which is still running is left orphaned. Immediately the mit process
would adopt it and when its execution is over mit would query the
process table to clean up the entry for the child process. Note that
in this case the child process does not become a zombie.

Thus, when a zombie or an orphan gets created the OS takes over
and ensures that a proper cleanup of the relevant process table

662	 Let

entry happens. However, as a good programming practice our
program should get the exit code of the terminated process and
thereby ensure a proper cleanup. Note that here cleanup is
important (it happens anyway). Why is it important to get the exit
code of the terminated process. It is because, it is the exit code that
would give indication about whether the job assigned to the
process was completed successfully or not. The following program
shows how this can he done.

include <unistd.h'
include <sys/types.h>
nt main()

unsigned inti = 0
nt pid, status
pid = fork:
if(pid==0)

while (i <4294967295U

printf ('The child is now terminating\n')

else

waitpid (pid, &status, 0)
if (WIFEXITED (status))

printf ("Parent. Child terminated normally\n")
else

printf ("Parent: Child terminated abnormally\n")

return 0

In this program we have applied a big loop in the child process.
This loop ensures that the child does not terminate immediately.
From within the parent process we have

made a call to the

waitpid() function. This function makes the parent process wait

Chapter 19. Interaction With Hardware 	 663

till the time the execution of the child process does not come to an
end. This ensures that the child process never becomes orphaned.
Once the child process, terminates the waitpid() function queries
its exit code and returns back to the parent. As a result of querying,
the child process does not become a zombie.

The first parameter of waitpid() function is the pid of the child
process for which the wait has to be performed. The second
parameter is the address of an integer variable which is set up with
the exit status code of the child process. The third parameter is
used to specify some options to control the behavior of the wait
operation. We have not used this parameter and hence we have
passed a 0. Next we have made use of the WIFEXITED() macro
to test if the child process exited normally or not. This macro takes
the status value as a parameter and returns it non-zero value if the
process terminated normally. Using this macro the parent suitably
prints it message to report the status (nornial/ahnormal)
termination of its child process.

One Interesting Fact

When we use fork() to create a child process the child process
does not contain the entire data and code of the parent process.
Then does it mean that the child POCCSS contains the data and code
below the fork() call. Even this is not so. In actuality the code
never gets duplicated. Linux internally manages to intelligently
share it. As against this, some data is shared, some is not. Till the
time both the processes do not change the value of [he variables
they keep getting shared. However, it' any of the processes (either
child or parent) attempt to change the value of a variable it is no
longer shared. Instead a new copy of the variable is made for the
process that is attempting to change it. This not only ensures data
integrity but also saves precious memory.

664
	

Let Us C

Summary

(a) Linux is a free OS whose kernel was built by Linus Trovalds
and friends.

(h) A Linux distribution consists of the kernel with source code
along with a large collection of applications, libraries, scripts,

etc.
(c) C programs under Linux can be compiled using the popular

gcc compiler.
(d) Basic scheduling unit in Linux is a 'Process'. Processes are

scheduled by a special program called 'Scheduler'.
(e) fork() library function can be used to create child processes.

(f) mit process is the father of all processes.

(g) execl() library function is used to execute another program
from within a running program,.

(h) execl() function overwrites the image (code and data) of the

calling process.
(i) cxecl() and fork() usually go hand in hand.

(j) PS command can be used to get a list of all processes.

(k) kill command can be used to terminate a process.
(I) A 'Zombie' is a child process that has terminated but its

parent is running and has not called a function to get the exit
code of the child process.

(m) An 'Orphan' is a child process whose parent has terminated.
(n) Orphaned processes are adopted by' mit process

automatically.
(o) A parent process can avoid creation of a Zombie and Orphan

processes using waitpid() function.

Exercise

IAI State True or False:

(a) We can modify the kernel of Linux OS.

(b) All distributions of Linux contain the same collection of
applications, libraries and installation scripts.

(c) Basic scheduling unit in Linux is a file.

Chapter 19: Interaction With Hardware 	 665

(d) execl() library function can be used to create a new child
process.

(e) The scheduler process is the father of all processes.
(f) A family of fork() and exec() functions are available, each

doing basically the same job but with minor variations.
(g) fork() completely duplicates the code and data of the parent

process into the child process.
(h) fork() overwrites the image (code and data) of the calling

process.
(i) fork() is called twice but returns once.
(j) Every zombie process is essentially an orphan process.
(k) Every orphan process is essentially an orphan process.

[BJ Answer the following:

(a) If a program contains four calls to fork() one after the other
how many total processes would get created?

(b) What is the difference between a zombie process and an
orphan process?

(c) Write a program that prints the command line arguments that
it receives. What would be the output of the program if the
command line argument is *?

(d) What purpose do the functions getpid(), getppid(),
getpppid() serve?

(e) Rewrite the program in the section 'Zombies and Orphans'
replacing the while loop with a call to the sleep() function.
Do you observe any change in the output of the program?

(1) How does waitpid() prevent creation of Zombie or Orphan
processes?

666	 Let Us C

21 More Linux
Programming

• Communication using Signals
• Handling Multiple Signals
• Registering a Common Handler
• Blocking Signals
• Event driven programming
• Where Do You Go From Here
• Summary
• Exercise

667

668	 ---

C

ommunication is the essence of all progress. This is true in
real life as well as in programming. In today's world a
program that runs in isolation is of little use. A worthwhile

program has to communicate with the outside world in general and
with the OS in particular. In Chapters 16 and 17 we saw how a
Windows based program communicates with Windows. In this
chapter let us explore how this communication happens under
Linux.

Communication using Signals

In the last chapter we used fork() and exec() library function to
create a child process and to execute a new program respectively.
These library functions got the job done by communication with
the Linux OS. Thus the direction of communication was from the
program to the OS. The reverse communication—from the OS to
the program—is achieved using a mechanism called 'Signal. Let
us now write a simple program that would help you experience the
signal mechanism.

intmain()

while (1)
printi (Pogram Running\r');

return 0,

The program is fairly straightforward. All that we have done here
is we have used an infinite while loop to print the message
"Program Running" on the screen. When the program is running
we can terminate it by pressing the Ctrl ± C. When we press Ctrl +
C the keyboard device driver informs the Linux kernel about
pressing of this special key combination. The kernel reacts to this
by sending a signal to our program. Since we have done nothing to
handle this signal the default signal handler gets called. In this

Chapter 21.' More Linux Programming	 669

default signal handler there is code to terminate the program.
Hence on pressing Ctrl + C the program gets terminated.

But how on earth would the default signal handler get called. Well,
it is simple. There are seieral signals that can be sent to a program.
A unique number is associated with each signal. To avoid
remembering these numbers, they have been defined as macros
like SJGIT, SIGKILL, SIGCONT, etc. in the file 'signil.h'.
Every process contains several 'signal ID - function pointer' pairs
indicating for which signal which function should be called. If we
do not decide to handle a signal then against that signal ID the
address of the default signal handler function is present. It is
precisely this default signal handler for SIGINT that got called
when we pressed Ctrl + C when the above program was executed.
INT in SIGINT stands for interrupt.

Let us know see how can we prevent the termination of our
program even after hitting Ctrl + C. This is shown in the following
program:

include <signal.h>

void sighandler (mt signum)

pnntf (SIGINT received. Inside sighandler\n');

intmain()

signal (SIGINT, (void*) sighandler):
while (1)

printf ('Program Runningth')
return 0;

In this program we have registered a signal handler for the SIGINT
signal by using the signal() library function. The first parameter

44

670	 Let Us C

of this function specifies the ID of the signal that we wish to
register. The second parameter is the address of a function that
should get called whenever the signal is received by our program.
This address has to he typecasted to a void * before passing it to
the signal() function.

Now when we press Ctrl ± C the registered handler, namely,
sighandler() would get called. This function would display the
message SIGIN1' received. Inside sighandler' and return the
control back to main(). Note that unlike the default handler, our
handler does not terminate the execution of our program. So only
way to terminate it is to kill the running process from a different
terminal. For this we need to open a new instance of command
prompt (terminal). How to start a new instace of command prompt
is discussed in Appendix H. Next do a ps —a to obtain the list of
processes running at all the command prompts that we have
launched. Note down the process id of a.out. Finally kill a.out'
process by saying

k 3276

In my case the terminal on which 1 executed a.out was ttyl and its
process id turned out to be 3276. In your case the terminal name
and the process id might be a different number.

If we wish we can abort the execution of the program in the signal
handler itself by using the exit (0) beyond the printfO.

Note that signals work asynchronously. That is, when a signal is
received no matter what our program is doing, the signal handler
would immediately get called. Once the execution of the signal
handler is over the execution of the program is resumed from the
point where it left off when the signal was received.

Chapter 21: More Linus Programming	 671

Handling Multiple Signals

Now that we know how to handle one signal, let its try to handle
multiple signals. Here is the program to do this...

include <unistd.h>
include <sys/types.h>
include <signal.h>

void inthandler (int signum)

printf (\nSlGlNT Received\n);

void termhandler (int signum

printf ("\nSIGTERM Received\n);

void conthandler (int signum)

printi ('\nSlGCONT Received\nN);

intmain()

signal (SIGINT, inthandler);
signal (SIGTERM, termhandler);
signal (SIGCONT, conthandler);

while(l)
printf (\rProgram Running');

return 0;

672	 Let Us

In this program apart from SIGINT we have additionally
registered two new signals, namely, SICTERM and SLGCONT.
The signal() function is called thrice to register a different handler
for each of the three signals. After registering the signals we enter
a infinite while loop to print the 'Program running' message on the
screen.

As in the previous program, here too, when we press Ctrl + C the
handler for the SIGINT i.e. inthandler() is called. However,
when we try to kill the program from the second terminal using the
kill command the program does not terminate. This is because
when the kill command is used it sends the running program a
SICTERM signal. The default handler for the message terminates
the program. Since we have handled this signal ourselves, the
handler for SJGTERM i.e. termhandler() gets called. As a

result the printf() statement in the termhandler() function gets
executed and the message 'SIGTERM Received' gets displayed on
the screen. Once the execution of termhandler() function is over
the program resumes its execution and continues to print 'Program
Running'. Then how are we supposed to terminate the program?
Simple. Use the following command from the another terminal:

kill —SIGKILL 3276

As the command indicates, we are trying to send a SIGKILL
signal to our program. A SICKILL signal terminates the program.

Most signals may be caught by the process, but there are a few
signals that the process cannot catch, and they cause the process to
terminate. Such signals are often known as un-catchable signals.
The SIGKILL signal is an un-catchable signal that forcibly
terminates the execution of a process.

Note that even if a process attempts to handle the SICKILL signal
by registering a handler for it still the control would always land in
the default SIGKILL handler which would terminate the program.

Chapter 21: More Linux Programming 	 673

The SIGKILL signal is to be used as a last resort to terminate a
program that gets out of control. One such process that makes uses
of this signal is a system shutdown process. It first sends a
SICTERM signal to all processes, waits for a while, thus giving a
'grace period' to all the running processes. However, after the
grace period is over it forcibly terminates all the remaining
processes using the SIGKILL signal.

That leaves only one question—when does a process receive the
SIGCONT signal? Let me try to answer this question.

A process under Linux can be suspended using the Ctrl + Z
command. The process is stopped but is not terminated, i.e. it is
suspended. This gives rise to the un-catchable SIGSTOP signal.
To resume the execution of the suspended process we can make
use of the Ig (foreground) command. As a result of which the
suspended program resumes its execution and receives the
SICCONT signal (CONT means continue execution).

Registering a Common Handler

Instead of registering a separate handler for each signal we may
decide to handle all signals using a common signal handler. This is
shown in the following program:

include <unistd.h>
include <sysltypes.h>
include <signal.h>

void sighandler (int signum)

switch (signum)

case SIGINT:

674
	

Let Us C

printf (SIGINT Received\n')
break;

case SIGTERM:
printf (SIGTERM Received\n);
break;

case SIGCONT:
printf (SIGCONT Receivedn');
break;

intmain()

signal (SIGINT, sighandler);
signal (SIGTERM, sighandler);
signal (SIGCONT, sighandler);

while (1
printf (\rProgram running)

return 0

In this program during each call to the signal() function we have
specified the address of a common signal handler named
sighandler(). Thus the same signal handler function would get
called when one of the three signals are received. This does not
lead to a problem since the sighandler() we can figure out inside
the signal ID using the first parameter of the function. In our
program we have made use of the switch-case construct to print a

different message for each of the three signals.

Note that we can easily afford to mix the two methods of
registering signals in a program. That is, we can register separate
signal handlers for some of the signals and a common handler for

Chapter 21. More Linux Programming 	 675

some other signals. Registering a common handler makes sense if
we want to react to different signals in exactly the same way.

Blocking Signals

Sometimes we may want that flow of execution of a critical/time-
critical portion of the program should not be hampered by the
occurrence of one or more signals. In such a case we may decide
to block the signal. Once we are through with the critical/time-
critical code we can unblock the signals(s). Note that if a signal
arrives when it is blocked it is simply queued into a signal queue.
When the signals are unblocked the process immediately receives
all the pending signals one after another. Thus blocking of signals
defers the delivery of signals to a process till the execution of
some critical/time-critical code is over. Instead of completely
ignoring the signals or letting the signals interrupt the execution, it
is preferable to block the signals for the moment and deliver them
some time later. Let us now write a program to understand signal
blocking. Here is the program...

include <unistd.h>
include zsysItypes.h>
include 'signal.h>
include <stdio.h'

void sigh andler (mt signum)

switch (signum)

case SIGTERM:
pnntf ("SIGIERM Received\n");
break:

case SIGINT:
printf (SIGINT Received\n")
break:

676
	

Let Us C

case SIGCONT:
printf (SIGCONT Received\n);
break

intmain()

char buffer [80]	 \0"
sigset_t block:

signal (SIGTERM, sighandler);
signal (SIGINT, sighandler)
signal (SIGCONT, sighandler)

sigemptyset (&block)
sigaddset (&b!ock, SIGIERM)
sigaddset (&block, SIGINT)

sigprocmask (SIG -BLOCK, &block, NULL);

while (strcmp buffer,n)	 0)

printf ('Enter a String:);
gets (buffer);
puts (buffer)

sigprocmask (SIG-UNBLOCK, &block, NULL);

while (1
printf (\rProgram Running);

return 0

In this program we have registered a common handler for the
SIGIINT, SIGTERM and SKCONT signals. Next we want to

Chapter 21: More Linux Programming	 677

repeatedly accept strings in a buffer and display them on the screen
till the time the user does not enter an n' from the keyboard.
Additionally, we want that this activity of receiving input should
not be interrupted by the SIGINT or the SIGTERM signals.
However, a SICCONT should be permitted. So before we proceed
with the loop we must block the SIGINT and SIGTERM signals.
Once we are through with the loop we must unblock these signals.
This blocking and unblocking of signals can be achieved using the
sigp roc niask() library function.

The first parameter of the sigprocmask() function specifies
whether we want to block/unblock a set of signals. The next
parameter is the address of a structure (typedefed as sigset_t) that
describes a set of signals that we want to block/unblock. The last
parameter can be either NULL or the address of sigsett type
variable which would be set up with the existing set of signals
before blocking/unbioc king signals.

There are library functions that help us to populate the sigset_t
structure. The sigeinptyset() empties a sigset_t variable so that it
does not refer to any signals. The only parameter that this function
accepts is the address of the sigset_t variable. We have used this
function to quickly initialize the sigset_t variable block to a known
empty state. To block the SIGJNT and SICTERM we have to add
the signals to the empty set of signals. This can be achieved using
the sigaddset() library function. The first parameter of
sigaddset() is the address of the sigset t variable and the second
parameter is the ID of the signal that we wish to add to the existing
set of signals.

After the loop we have also used an infinite while loop to print the
'Program running' message. This is done so that we can easily
check that till the time the loop that receives input is not over the
program cannot be terminated using Ctrl + C or kill command
since the signals are blocked. Once the user enters 'n' from the
keyboard the execution comes out of the while loop and unblocks

678	 Let Us C

the signals. As a result, pending signals, if any, are immediately
delivered to the program. So if we press CtrI + C or use the kill
command when the execution of the loop that receives input is not
over these signals would be kept pending. Once we are through
with the loop the signal handlers would be called.

Event Driven programming

Having understood the mechanism of signal processing let us now
see how signaling is used by Linux - based libraries to create
event driven GUI programs. As you know, in a GUI program
events occur typically when we click on the window, type a
character, close the window, repaint the window, etc. We have
chosen the ('JTK library version 2.0 to create the GUI applications.
Here, GTK stands for Girnp's Tool Kit. Refer Appendix I-I for
installation of this toolkit. Given below is the first program that
uses this toolkit to create a window on the screen.

P mywindow.0 'V
include <gtkigtk.h>

mt main (mt argc, char *argvfl)

Gtk Widget p:

gtk.jnit (&argc, &argv)
p = gtk_windownew (GTKWINDOWJOPLEVEL)
gtk_window_set_title (p "Sample Window*);
g_signal_connect (p, "destroy", gtk_main_quit, NULL)
gtk_widget_seLs ize_requeSt (p, 300, 300);
gtk_widget ...show (p);
gtk_main();

return 0

Chapter 21: More Linux Programming 	 679

We need to compile this program as follows:

gec mywindow.c pkg-config gtk+-2.0 - -cflags - -libs

Here we are compiling the program 'mywindow.c' and then
linking it with the necessary libraries from GTK toolkit Note the
quotes that we have used in the command.

Here is the output of the program...

Figure 21.1

The GTK library provides a large number of functions that makes
it very easy for us to create GUI programs. Every window under
GTK is known as a widget. To create a simple window we have to
carry out the following steps:

680
	

Let Us C

(a) Initialize the GTK library with a call to gtk_init() function.
This function requires the addresses of the command line
arguments received in mainO.

(b) Next, call the gtk_window_new() function to create a top
level window. The only parameter this function takes is the
type of windows to be created. A top level window can be
created by specifying the GTK_WINDOW_.TOPLEVEL
value. This call creates a window in memory and returns a
pointer to the widget object. The widget object is a structure
(GtkWidget) variable that stores lots of information including
the attributes of window it represents We have collected this
pointer in a GtkWidget structure pointer called p.

(c) Set the title for the window by making a call to
gtk_window_ set _title() function. The first parameter of this
function is a pointer to the GtkWidget structure representing
the window for which the title has to be set. The second
parameter is a string describing the text to be displayed in the
title of the window.

(d) Register a signal handler for the destroy signal. The destroy
signal is received whenever we try to close the window. The
handler for the destroy signal should perform clean up
activities and then shutdown the application. GTK provides a
ready-made function called gtk_main_quit() that does this
job. We only need to associate this function with the destroy
signal. This can be achieved using the gsignal.. connect()
function. The first parameter of this function is the pointer to
the widget for which destroy signal handler has to be
registered. The second parameter is a string that specifies the
name of the signal. The third parameter is the address of the
signal handler routine. We have not used the fourth parameter.

(e) Resize the window to the desired size using the
gtk_widget....set_Sil.e_rCtlUeSt() function. The second and the

Chapter 21.' More Linux Programming 	 681

third parameters specify the height and the width of the
window respectively.

(I) Display the window on the screen using the function
gtkwidget_show().

(g) Wait in a loop to receive events for the window. This can be
accomplished using the gtk_main() function.

How about another program that draws a few shapes in the
window? Here is the program...

r myshapes.c */
include <gtklgtk.h>

mt expose_event (GtkWidget *widget, GdkEventExpose *event)

GdkGC*p;

GdkPoint arr [5] (250, 150, 250, 300, 300, 350, 400, 300, 320, 190 };

p = gdkgc_new (widget -> window);
gdk_draw_line (widget .> window, p, 10, 10, 200, 10);
gdk..drawjectangle (widget > window, p, TRUE, 10, 20, 200, 100);
gdk draw arc (widget -> window, p, TRUE, 200, 10, 200, 200,

2880, .2880*2);
gdk...drawpolygon (widget -> window, p, TRUE, arr, 5);
gdk...gc. unref (p);

return TRUE;

nt main(int argc, thar *argv[])

GtkWidget 'p;

gtkjnit (&argc, &argv);

Let Us C

p = gtk_windowJieW (GTK_WINDOW_TOPLEVEL);
gtk_window_set_UtIe (p, "Sample Window")
g_sgnaI_conneCt (p, "destroy". gtk_main_quit NULL);
g_signal_coniect (p. "expose-event', expose_event NULL);
gtk_widget_Set_SIZe_IeqUeSt p. 500, 500);
gtk_wkigeLs how (p);
gtkmain(

return d

Given below is the output olthc program.

ri

Chanter 21. More Linux_Programrni,:g 	 683

I

Figure 21.2

This program is similar to the first one. The only difference is that
in addition to the destroy signal we have registered a signal
handler for the expose_event using the g_signal_connect()
function. This signal is sent to our process whenever the window
needs to be redrawn. By writing the code for drawing shapes in the
handler for this signal we are assured that the drawing would never
vanish if the windows is dragged outside the screen and then
brought back in, or some other window uncovers a portion of our
window which was previously overlapped, and so on. This is

Let Us C684	 _______________

because a expose event signal would be sent to our application
which would immediately redraw the shapes in our window.

The way in Windows we have a device context, under Linux we
have a graphics context. In ord'r to draw in the window we need
to obtain a graphics contexi for the window using the

gdk_gc_fleW() function. This function returns a pointer to the
graphics context structure. This pointer must be passed to the

drawing functions like
gdk_draWJifleO gdk_draW_reCtaflgIeO

gdk_draw_arc(), gdk_draW_pOiYgoflO ' etc. Once we are

through with drawing we should release the graphics context using

the gdk_gC_Uflref() function.

Where Do You Go From Here

You have now understood signal processing, the heart of
programming under Linux. With that knowledge under your belt
you are now capable of exploring the vast world of Linux on your
own. Complete Linux programming deserves a book on its own.
Idea here was to raise the hood and show you what lies underneath
it. I am sure that if you have taken a good look at it you can try the

rest yourselves. Good tuck

Summary
(a) Programs can communicate with the Linux OS using library

functions.
(b) The Linux os communicates with a program by means of

signals.
(c) The interrupt signal (SIGINT) is sent by the kernel to our

program when we press Ctrl + C.

(d) A term signal (SIGTERM) is sent to the program when we

use the kill command.
(e) A process cannot handle an un-catchable signal.

(f) The kill —SIC KILL variation of the kill command generates

an un_catchable SIGKILL signal that terminates a process.

Chapter 21: More Linux Progrwnnzing	 685

(g) A process can block a signal or a set of signals using the
sigprocmask() function.

(h) Blocked signals are delivered to the process when the signals
are unblocked.

(I) A SIGSTOP signal is generated when we press Ctrl + Z.
(j) A SIGSTOP signal is un-catchable signal.
(k) A suspended process can be resumed using the fg command.
(1) A process receives the SIGCOT signal when it resumes

execution.
(in) In GTK, the g_signal_connect() function can be used to

connect a function with an event.

Exercise

IAI State True or False:

(a) All signals registered signals must have a separate signal
handler.

(b) Blocked signals are ignored by a process.
(c) Only one signal can be blocked at a time.
(d) Blocked signals are ignored once the signals are unblocked.
(c) If our signal handler gets called the default signal handler

automatically gets called.
(f) gtk_main() function makes uses of a loop to prevent the

termination of the program.
(g) Multiple signals can be registered at a time using it single call

to signal() function.
(ii) The sigprocmask() function can block as well as unblock

signals.

jBj Answer the following:

(a) how does the Linux OS know if we have registered it signal
or not?

(b) What happens when we register a handler tbr a signal?

45

LtI,1tJ
	

Let Us C

(c) Write a program to verify that SJGSTOP and S1GKILL
signals are un-catchable signals.

(d) Write a program to handle the SIGJNT and SICTERM
signals. From inside the handler for SIGINT signal write an
infinite loop to print the message 'Processing Signal'. Run the
program and make use of Ctrl + C more than once. Run the
program once again and press Ctrl 4- C once then use the kill

command. What are your observations?

(e) Write a program that blocks the SICTERM signal during
execution of the SIGINT signal.

