
A Precedence
Table

ME

Let Us C

Description	 Operator	 Associativity

Function expression	 ()	 Left to Right

Array Expression	 []	 Left to Right

Structure operator	 ->	 Lcil to Right

Structure operator	 Left to Right

Unary minus	 -	 Right to left

Increment/Decrement	 ++	 Right to Left

One's compliment	 Right to left

Negation I Right to Left
Right to left

Right to left

Right to left
Right to left -

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Left to right

Continued—

Appendix A: Precedence Table	 689

[-I

Description	 Operator	 Associativity

Bitwise AND	 &	 Left to right

Bitwise exclusive OR	 "	 Left to right

Bitwisc inclusive OR	 I	 Left to right

Logical AND	 &&	 - Left to right

Logical OR	 Left to right

Conditional	 ? :	 Right to left

Assignment	 =	 Right to left

-	 %	 Right to left

+=	 -	 &	 Right to left

1=	 Right to left

<<	 >>=	 Right to left

Comma 	 Right to left

Figure Al. l

690	 Let Us C

B Standard Library
Functions

• Standard Library Functions
• Arithmetic Functions
• Data Conversion Functions
• Character Classification Functions
• String Manipulation Functions
• Searching and Sorting Functions
• I/O Functions
• File Handling Functions
• Directcry Control Functions
• Buffer Manipulation Functions
• Disk 1/0 Functions
• Memory Allocation Functions
• Process Control Functions
• Graphics Functions
• Time Related Functions
• Miscellaneous Functions
• DOS Interface Functions

691

692
	

Let Us C

L

et alone discussing each star..ard library function in detail,
even a complete list of these functions would occupy scores
of pages. Ilowever, this hook would be incomplete if it has

nothing to say about standard library functions. I have tried to
reach a compromise and have given a list of standard library
functions that are more popularly used so that you know what to
search for in the manual. An excellent hook dedicated totally to
standard library functions is Waite group's, Turbo C Bible, written
by Nabjyoti Barkakti.

Following is the list of selected standard library functions. The
functions have been classified into broad categories.

Arithmetic Functions

Function	 Use

abs	 Returns the absolute value of an integer
cos	 Calculates Cosine
cosh
	

Calculates hyperbolic cosine
cxp	 Raises the exponential e to the xth power
fabs	 Finds absolute value
floor	 Finds largest integer less than or equal to argument
linod
	

Finds floating-point remainder
hypot
	 Calculates hypotenuse of right triangle

log	 Calculates natural logarithm
log 10
	

Calculates base 10 logarithm
modf
	

Breaks down argument into integer and fractional parts
pow	 Calculates a value raised to a power
Sir)
	 Calculates sine

sinh
	

Calculates hyperbolic sine
sqrt
	 Finds square root

tan	 Calculates tangent
tanh
	

Calculates hyperbolic tangent

Appendix B. Standard Library Functions	 693

Data Conversion Functions

Function	 Use

atof	 Converts string to float
atoi	 Converts string to mt
atol	 Converts string to long
ccv!	 Converts double to string
fcvt	 Converts double to string
gcvt	 Converts double to string
itoa	 Converts mt to string
!toa	 Converts long to string
strtod	 Converts string to double
strtol	 Converts string to long integer
strtoul	 Converts string to an unsigned long integer
ultoa	 Converts unsigned long to string

Character classification Functions

Function	 Use

isalnuni	 Tests for alphanumeric character
isalpha	 Tests for alphabetic character
isdigit	 Tests for decimal digit
islower	 Tests for lowercase character
isspacc	 Tests for white space character
isupper	 Tests for uppercase character
isxdigit	 Tests for hexadecimal digit
tolower	 Tests character and converts to lowercase if uppercase
toupper	 Tests character and converts to uppercase if lowercase

mil
	

Let Us C

String Manipulation Functions

Function	 Use

strcat

strchr

strcmp

strcmpi

strcpy
strdup
stricmp

strien

strlwr

stmcat

strncmp

stmcpy

strnicmp

strrchr
strrev

strset
strstr
strupr

Appends one string to another

Finds first occurrence of a given character in a string

Compares two Frings
Compares two strings without regard to case

Copies one string to another

Duplicates a string
Compares two strings without regard to case (identical to
strcmpi)
Finds length of a string
Converts a string to lowercase

Appends a portion of one string to another

Compares a portion of one string with portion of another
string
Copies a given number of characters of one string to another

Compares a portion of one string with a portion of another
without regard to case

Finds last occurrence of a given character in a string

Reverses a string
Sets all characters in a string to a given character
Finds first occurrence of a given string in another suing

Converts a string to uppercase

Searching and Sorting Functions

Function	 Use

bsearch	 Performs binary search

Hind	 Performs linear search for a given value

qsort	 Performs quick sort

Appendix B: Standard Library Functions	 695

I/O Functions

Function

Close
fc lose
feof
fgetc
fgetchar
fgets
fopen
fprintf
fputc
fputchar
fputs
fscanf
fseck
flel I
gctc
getch
getche
getchar
gets
in port
inportb
kbhit
lseek
open
outport
outportb
printf
putc
putch
putchar
puts
read

Use

Closes a file
Closes a file
Detects end-of-file
Reads a character from a file
Reads a character from keyboard (function version)
Reads a string from a tile
Opens a file
Writes formatted data to a file
Writes a character to a file
Writes a character to screen (function version)
Writes a string to a file
Reads formatted data from a file
Repositions tile pointer to given lecation
Gets current file pointer position
Reads a character from a file (macro version)
Reads a character from the keyboard
Reads a character from keyboard and echoes it
Reads a character from keyboard (macro version)
Reads a line from keyboard
Reads a two-byte word from the specified I/O port
Reads one byte from the specified I/O port
Checks for a keystroke at the keyboard
Repositions file pointer to a given location
Opens a file
Writes a two-byte word to the specified I/O port
Writes one byte to the specified I/O port
Writes formatted data to screen
Writes a character to a file (macro version)
Writes a character to the screen
Writes a character to screen (macro version)
Writes a line to file
Reads data from a file

Let Us C

Repositions file pointer to beginning of file

Reads formatted data from keyboard

Reads formatted input from a string
Writes formatted output to a string

(Jets current file pointer position
Wntcs data to a file

rewind

scanf

sscanf

sprintf

tell
write

File Handling Functions

Function	 Use

remove	 Deletes file

rename	 Renames file
unlink	 Deletes file

Directory Control Functions

Function	 Use

chdir
getcwd

fnspl it

find first

findriext

nikdi r
rmdir

Changes current working directory

Gets current working directory
Splits a full path name into its components

Searches a disk directory

Continucsfiiulfirst search

Makes a new directory
Removes a directory

Buffer Manipulation Functions

Function	 Use

memchr	 Returns a pointer to the first occurrence, within a specified
number of characters, of a given character in the buffer

memcmp	 Compares a specified number of characters from two
buffers

Appendix B: Standard Library Functions	 697

memcpy

mcmicmp

memmovc

mcmset

Copies a specified number of characters from one buffer to
another
Compares a specified number of characters from two
buffers without regard to the case of the characters
Copies a specified number of characters from one buffer to
another
Uses a given character to initialize a specified number of
bytes in the buffer

Disk I/O Functions

Function	 Use

absread	 Reads absolute disk sectors
abswrite	 Writes absolute disk sectors
biosdsk	 Performs BIOS disk services
getdisk	 Gets current drive number
sctdisk	 Sets current disk drive

Memory Allocation Functions

Function	 Use

calloc	 Allocates a block of memory
farmalloc	 Allocates memory from far heap
farfrec	 Frees a block from far heap
free	 Frees a block allocated with nra/bc

mal toe	 Allocates a block of memory
realloc	 Reallocates a block of memory

Process Control Functions

Function	 Use

abort	 Aborts a process
atexit	 Executes function at program termination

698
	

Let Us C

execl	 Executes child process with argument list
exit	 'Terminates the process
spawni	 Executes child process with argument list
spawnlp	 Executes child process using PAIl-I variable and argument

list
system	 Executes an Ms-DOS command

Graphics Functions

Use

Draws an arc
Draws an ellipse
Fills an area of the screen with the current color
Stores a screen image in memory
Obtains the current line style
Obtains the pixel's value
Draws a line from the current graphic output position to the
specified point
Moves the current graphic output position to a specified
point
Draws a pie-slice-shaped figure
Retrieves an image from memory and displays it
Draws a rectangle
Sets the current color
Sets the current line style
Plots a pixel at a specified point
Limits graphic output and positions the logical origin
within the limited area

Function

arc
ellipse
flood fill
gctinlage
getlinestyle
gctpixel
Ii neto

mc veto

picslicc
puti mage
rectangle
setcolor
set linestylc
putpixcl
setvicwport

Time Related Functions

Function	 Use

clock	 Returns the elapsed CPU time for a process
difflime	 Computes the difference between two times

Appendix B: Standard Libraiy Functions
	

699

ftime	 Gets current system time as structure
strdatc	 Returns the current system date as a string
strtime	 Returns the current system time as a string
time	 Gets current system time as long integer
setdate	 Sets DOS date
getdate	 Gets system date

Miscellaneous Functions

Function	 Use

delay	 Suspends execution for an interval (milliseconds)
getcnv	 Gets value of environment variable
gctpsp	 Gets the Program Segment Prefix
perror	 Prints error message
putenv	 Adds or modifies value of environment variable
random	 Generates random numbers
randomize	 Initializes random number generation with a random value

based on time
sound	 Turns PC speaker on at specified frequency
nosound	 Turns PC speaker off

DOS Interface Functions

Function	 Use

FP—OFF

FP_SEG
getvect

keep

int86

int8ôx

I ntdos

intdosx

MK—FP

Returns offset portion of far pointer

Returns segment portion of a far pointer

Gets the current value of the specified interrupt vector

Installs terminate-and-stay-resident (TSR) programs

Issues interrupts

Issues interrupts with segment register values

Issues interrupt 2 lb using registers other than DX and AL

Issues interrupt 21 h using segment register values
Makes a far pointer

700
	 Let Us C

segread	 Returns current values of segment registers
setvcct	 Sets the current value of the specified interrupt vector

C Chasing The
Bugs

46	 701

702	 -	 Let Us

C

programmers are great innovators of our times. Unhappily,
among their most enduring accomplishments are several
new techniques for wasting time. There is no shortage of

horror stories about programs that took twenty times to 'debug' as
they did to 'write'. And one hears again and again about programs
that had to be rewritten all over again because the bugs present in
it could not be located. A typical C programmer's 'morning after'
is red eyes, blue face and a pile of crumpled printouts and dozens
of reference books all over the floor. Bugs are C programmer's
birthright. But how do we chase them away. No sure-shot way for
that. I thought if I make a list of more common programming
mistakes it might be of help. They are not arranged in any
particular order. But as you would realize surely a great help!

[1] Omitting the ampersand before the variables used in scan fQ.

For example,

mt choice;
scanf ("%d', choice);

Here, the & before the variable choice is missing. Another
common mistake with scanf() is to give blanks either just
before the format string or immediately after the format string
as in,

mt choice;
scanf (%d , choice)

Note that this is not a mistake, but till you don't understand
scanf() thoroughly, this is going to cause trouble. Safety is in
eliminating the blanks. Thus, the correct form would be,

mt choice
scanf (%d', &choice);

Appendix C: Chasing The Bugs	 703

[2] Using the operator= instead of the operator =

What do you think will be the output of the following
program:

main()

ir)t 1:10;

while (i 10)

printf (got to get out);

}

At first glance it appears the message will be printed once and
the control will come out of the loop since i becomes 11. But,
actually we have fallen in an indefinite loop. This is because
the = used in the condition always assigns the value 10 to i,
and since i is non-zero the condition is satisfied and the body
of the loop is executed over and over again.

[3] Ending a loop with a semicolon.

Observe the following program.

main(

ml j1

while (j	 100)

printf (\nCompguard');

F'

704
	

Let Us C

Inadvertently, we have fallen in an indefinite loop. Cause is
the semicolon after while. This in effect makes the compiler
feel that you wanted the loop to work in the following
manner:

while (j< 100);

This is an indefinite loop since j never gets incremented and
hence eternally remains less that 100.

[4] Omitting the break statement at the end of a case in a switch
statement.

Remember that if a break is not included at the end of a case,
then execution will continue into the next case.

main()

nt ch

switch (ch)

case 1:
printf(\nGoodbye');

case 2:
printf (nLieutenant);

Here, since the break has not been given after the printf() in
case I, the control runs into case 2 and executes the second
printf() as well.

However, this sometimes turns out to be a blessing in
disguise. Especially, in cases when we are checking whether
the value of a variable equals a capital letter or a small case

Appendix C: Chasing The Bugs	 705

letter. This example has been succinctly explained in Chapter
4.

[5] Using continue in a switch.

It is a common error to believe that the way the keyword
break is used with loops and a switch; similarly the keyword
continue can also be used with them. Remember that
continue works only with loops, never with a switch.

[6] A mismatch in the number, type and order of actual and formal
arguments.

yr = romanise (year, 1000, em');

Here, three arguments in the order int, mt and char are being
passed to romanise(). When romanise() receives these
arguments into formal arguments they must be received in the
same order. A careless mismatch might give strange results.

[7] Omitting provisions for returning a non-integer value from a
function.

If we make the following function call,

area area—circle (1.5);

then while defining area_clrcle() function later in the
program, care should be taken to make it capable of returning
a floating point value. Note that unless otherwise mentioned
the compiler would assume that this function returns a value
of the type mt.

[8] Inserting a semicolon at the end of a macro definition.

706
	

Let Us C

How do you recognize a C programmer? Ask him to write a
paragraph in English and watch whether he ends each
sentence with a semicolon. This usually happens because a C
programmer becomes habitual to ending all statements with a
semicolon. However, a semicolon at the end of a macro
definition might create a problem. For example,

#define UPPER 25;

would lead to a syntax error if used in an expression such as

if (counter	 UPPER)

This is because on preprocessing, the if statement would take
the form

if(counter == 25)

[9] Omitting parentheses around a macro expansion.

#define SQR(x) x x
main()

mt a;

a 25 / SQR (5);
printf ("\n%d, a):

In this example we expect the value of a to be I, whereas it

turns out to be 25. This so happens because on preprocessing
the arithmetic statement takes the following form:

a 2515 * 5

Appendix C: Chasing The Bugs	 707

[10] Leaving a blank space between the macro template and the
macro expansion.

#cfefineABS(a)(aO ?a:-a)

Here, the space between ABS and (a) makes the preprocessor
believe that you want to expand ABS into (a), which is
certainly not what you want.

[II] Using an expression that has side effects in a macro call.

#define SUM (a) (a + a)
main()

nt wb5;

wSUM(b++);
printf ('\n%d", w);

On preprocessing, the macro would be expanded to,

w(b++)+(b++);

If you are wanting to first get sum of 5 and 5 and then
increment b to 6, that would not happen using the above
macro definition.

[121 Confusing a character constant and a character string.

In the statement

ch =

a single character is assigned to ch. In the statement

708
	

Let Us C

ch

a pointer to the character string "a" is assigned to ch.

Note that in the first case, the declaration of ch would be,

char ch;

whereas in the second case it would be,

char ch;

[13] Forgetting the bounds of an array.

main()

nt num[50), I;

for(kl ;i50;i++)
num[i]:i1;

Here, in the array num there is no such clement as numI501,
since array counting begins with 0 and not I. Compiler would
not give a warning if our program exceeds the bounds. If not
taken care of, in extreme cases the above code might even
hang the computer.

[14] Forgetting to reserve an extra location in a character array for the
null terminator.

Remember each character array ends with a '\0', therefore its
dimension should be declared big enough to hold the normal
characters as well as the \O'.

Appendix C. Chasing The Bugs 	 709

For example, the dimension of the array word[I should be 9
if a string "Jamboree" is to be stored in it.

[15] Confusing the precedences of the various operators.

main()

char ch;
FILE *fp;

fp fopen (iext.c', 'r'):

while (ch getc (fp) ! EOF)
putch (ch)

I'd ose (fp);

Here, the value returned by getc() will he first compared with
EOF, since ! has a higher priority than =. As a result, the
value that is assigned to ch will be the true/false result of the
test—I if the value returned by getc() is not equal to EOF,
and 0 otherwise. The correct forrn of the above while would
be,

while((ch getc (fp))	 EOF)
putch(ch);

[16] Confusing the operator -> with the operator. while referring to a
structure element.

Remember, on the left of the operator only a structure
variable can occur, whereas on the left of the operator -> only
a pointer to a structure can occur. Following example
demonstrates this.

main()

710
	

Let Us C

struct emp

char name[35];
nt age;

struct emp e { Dubhashi, 40 };
struct emp *ee

pnntf ('\n%d", e.age);
ee =
piintt (\n%d', ee->>age);

[17] Forgetting to use the far keyword for referring memory locations
beyond the data segment.

main()

unsigned mt 's;

s=0x413;
printf('\n%d, *S):

Here, it is necessary to use the keyword far in the declaration
of variable s, since the address that we are storing in s (0x413)
is a address of location present in BIOS Data Area, which is
far away from the data segment. Thus, the correct declaration
would look like,

unsigned mt tar s;

The far pointers are 4-byte pointers and are specific to DOS.
Under Windows every pointer is 4-byte pointer.

[18] Exceeding the range of integers and chars.

Appendix C.' Chasing The Bugs 	 711

main()

char ch

for (ch=O;ch<255;ch++)
pnntf (\n%c %d', ch, ch);

Can you believe that this is an indefinite loop? Probably, a
closer look would confirm it. Reason is, ch has been declared
as a char and the valid range of char constant is -128 to
+127. Hence, the moment ch tries to become 128 (through
ch++), the value of character range is exceeded, therefore the
first number from the negative side of the range, -128, gets
assigned to ch. Naturally the condition is satisfied and the
control remains within the loop externally.

712	 Let Us

D Hexadecimal
Numbering

• Numbering Systems
• Relation Between Binary and Flex

713

714	 Let UsC

W

hile working with computers we are often required to use
hexadecimal numbers. The reason for this is—
everything a computer does is based on binary numbers,

and hexadecimal notation is a convenient way of expressing binary
numbers. Before justifying this statement let us first discuss what
nurberng systems are, why computers use binary numbering

binary and hexadecimal numbering systems are
.ted and how to use hexadecimal numbering system in everyday

life.

Numbering Systems

When we talk about different numbering systems we are really
talking about the base of the numbering system. For example,
binary numbering system has base 2 and hexadecimal numbering
system has base 16, just the way decimal numbering system has
base 10. What in fact is the 'base' of the numbering system? Base
represents number of digits you can use before you run out of
digits. For example, in decimal numbering system, when we have
used digits from 0 to 9, we run out of digits. That's the time we put
a I in the column to the left - the ten's column - and start again in
the one's column with 0, as shown below:

0

2
3
4
5
6
7
8
9last available digit
10 start using a new column
11
12
13

Appendix D. Hexadeci,nal Numbering 	 715

14

Since decimal numbering system is a base 10 numbering system
any number in it is constructed using some combination of digits 0
to 9. This seems perfectly natural. However, the choice of 10 as a
base is quite arbitrary , having its origin possibly in the fact that
man has 10 fingers. It is very easy to use other bases as well. For
example, if we wanted to use base 8 or octal numbering system,
which uses Only eight digits (0 to 7), here's how the counting
would look like:

0

2
3
4
5
6
7	 last available digit
10 start using a new column
11
12

Similarly, a hexadecimal numbering system has a base 16. In hex
notation, the ten digits 0 through 9 are used to represent the values
zero through nine, and the remaining six values, ten through
fifteen, are represented by symbols A to F. The hex digits A to F
are usually written in capitals, but lowercase letters are also
perfectly acceptable. Here is how the counting in hex would look
like:

716
	

Let Us C

2
3
4
5
6
7
8
9
A
B
C
D
E
F	 last available digit
10 start using a new column
11

Many other numbering systems can also be imagined. For
example, we use a base 60 numbering system, for measuring
minutes and seconds. From the base 12 system we retain our 12
hour system for time, the number of inches in a foot and so on.
The moral is that any base can be used in a numbering system,
although some bases are convenient than others.

The hex numbers are built out of hex digits in much the same way
the decimal numbers are built out of decimal digits. For example,
when we write the decimal number 342, we mean,

3 times 100 (square of 10)
+ 4 times 1O
+ 2 times 1

Similarly, if we use number 342 as a hex number, we mean,

3 times 256 (square of 16)

Appendix D: Hexadecimal Numbering 	 717

+ 4mes16
+ 2 times 1

Relation Between Binary and Hex

As it turns out, computers are more comfortable with binary
numbering system. In a binary system, there are only two digits 0
and I. This means you can't count very far before you need to start
using the next column:

0
1	 last available digit
10 start using a new column
11

Binary numbering system is a natural system for computers
because each of the thousands of electronic circuits in the
computer can be in one of the two states—on or off. Thus, binary
numbering system corresponds nicely with the circuits in the
computer-0 means off, and I means on. 0 and I are called bits, a
short-form of binary digits.

Hex numbers are used primarily as shorthand for binary numbers
that the computers work with. Every hex digit represents four bits
of binary information (Refer Figure D.1). in binary numbering
system 4 bits taken at a time can give rise to sixteen different
numbers, so the only way to represent each of these sixteen 4-bit
binary numbers in a simple and short way is to use a base sixteen
numbering system.

Suppose we want to represent a binary number 11000101 in a
short way. One way is to find it decimal equivalent by multiplying
each binary digit with an appropriate power of 2 as shown below:

47

718
	

Let Us C

1*2 7 +1*2 6 O*25+0*24f0*2±1*2+0*2+12

which is equal to 197.

Hex	 Binary	 Hex	 Binary

0	 0000	 8	 1000

1	 0001	 9	 1001

2	 0010	 A	 1010

3	 0011	 13	 1011

4	 0100	 C	 1100

5	 0101	 D	 1101

6	 0110	 E	 1110

7	 0111	 F

Figure D. I

Another method is much simpler. Just look at Figure D. I. From it
find out the hex digits for the two four-bit sets (1100 and 0101).
These happen to be C and 5. Therefore, the binary number's hex
equivalent is C5. You would agree this is a easier way to represent
the binary number than to find its decimal equivalent. In this
method neither multiplication nor addition is needed. In fact, since
there are only 16 hex digits, it's fairly easy to memorize the binary
equivalent of each one. Quick now, what's binary 1100 in hex?
That's right C. You are already getting the feel of it. With a little
practice it is easy to translate even long numbers into hex. Thus,
1100 OlD! 0011 101O binary iSC53Ahex.

As it happens with many unfamiliar subjects, learning hexadecimal
requires a little practice. Try your hand at converting some binary
numbers and vice versa. Soon you will be talking hexadecimal as

if you had known it all your life.

E ASCII Chart

719

720	 Let Us

T

here are 256 distinct characters used by IBM compatible
family of microcomputers. Their values range from 0 to

255. These can be grouped as under:

r

aracter Type	 No. of Characters

pital letters 	26

all-case Letters	 26

Digits	 10

Special Symbols	 32

Control Character	 34

Graphics Character	 128

Total	 256

Figure E.1

Out of the 256 character set, the first 128 are often called ASCII
characters and the next 128 as Extended ASCII characters. Each
ASCII character has a unique appearance. The following simple
program can generate the ASCII chart:

main()

mt ch

for (ch U; ch <<255 ch++)
printf ('%d °IoC\fl, ch. ch);

This chart is shown on the following page. Out of the 128 graphic
characters (Extended ASCII characters), there are characters that
are used for drawing single line and double line boxes in text
mode. For convenience these characters are shown in Figure E.2.

Appendix E: ASCII Chart
	

721

218 129	 191
--1

179

195-

197

192 -	 1931

2

2
190

Figure E.2

191-1

186

180

J217

184

181

201 205 203	 187

L	 JL
r2o4

202
I 200	 ii

185

188

183

182	 I

189
196

211	 208

c)

U

U

>

U

U

>

.0
C)

U

co
>

.0
U

V

.0
U

U

>

.0
C)

U

'A .-	 3 < > N--------

C —	 V 10 N- 00 0' 0 — (- r V '0 N- 000' 0 —
—

> >- N —	 .0 C.)	 V -on.0 — - -

0' 0 — N	 ' 10 N- 000' 0 Irl
cc 00	

— N

	

0' 0' 0' 0' 0' 0' 0' 0' 0' 0'	 00 0'—
c 0000

L)	 U. 0 m .— — -	 Z 0 A. CYC4 0 f-. >

'4N 000' 0 N (fl	 '0 r- 00 0' 0 — N M '0 N-
'4 '0 '0 '0 N- N N- r- i— r- N- N N- N- 00 00 00 00 00 00 00 00

(Z) — N	 c '0 N 00 C	 - V 11 A C

' 'f '0 N 000' 0 — N mN- 000' 0 — N
'	 • •	 't '4 V V	V'IT 'It

I4-'- t 4 .	 - .--- * +

	

r'o N 00 0' 0 — r'i r'	 '0N 00 0' 0 — r-1 cfl
I r' N N N N N N r'4 mfl	 mmr- t - 't

e4
	

N	 '0N000

N

1 NJ -. c 10 too -	 LA	 L.a N) - 0 10 ?O --1 ' (J 4 L.a N.-)

Q <; C.	 Pi3 rr >. > - -, -, CD- CD: rD, r) pa. pa- pa

LA

Z J	 Zi:. rz. 0, -. pa. '-..	 t•: .

\O b O '0 O '0 '0 '0	 o	 o o o	 - -
-	 LA 4 L.a N) - O O -4 O\

I TH Fr--' U.

N.J N) N) NJ N) N--) N) NJ N-) N.J N) N.J NJ N) N-) N) NJ N) N.J N) - —'-----.---.----
'0 '0LJN)OO 00,

•	 1 zr	 II- fr :;i r,-:::i=-Tr-

N..) N.J N) N-) NJ NJ N.J N) N-.) N) N.) N.J N) N) N) N-.) NJ NJp. 	 NJ NJ N.) NJ
. - w L.a L, W w w L.a Lt w N.J N) N.J N) N) NJ N) N.J N-.) NJ

0

H- ii	 -	 NI	 ' •

N.J NJ N) NJ N) N) N) N) NJ N) N) NJ N) NJ
LA LA LA LA LA LA .P. .. 4	 .	 -
LA L.) N.J — 0 0 -4 V, LA - L. N)

a	 -	 0 M I -. IA Al

pa

CD

C')
pa1

C,')

pa

CD

C')
A,1

Pa

CD

C)

A,

C)

Pa

A,
CA

C')

pa

(P

C)

724	 Let Us

F Helper.h File

725

726	 Let Us

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM);

HINSTANCE hinst ; // current instance

r FUNCTION: Initinstance (HANDLE, mt
PURPOSE: Saves instance handle and creates main window
COMMENTS: In this function, we save the instance handle in a global

vanabte and create and display the main program window.

BOOL Initinstance (HINSTANCE hinstance, int nCmdShow, char* plitle)

char classname['MyWindowClass;
HWND hWnd;

WNDCLASSEX wcex;
wcex.cbSize	 = sizeof (WNDCLASSEX);
wcex.styte	 CS_HREDRAW I CS_VREDRAW;
wcex.tpfnWndProc	 (WNDPROC) WndProc;
wcex.cbClsExtra	 0;
wcex,cbWndExtra	 0;
wcex.hlnstance	 hinstance;
wcex.hlcon	 NULL;
wcex,hCursor	 LoadCursor (NULL, I DC_ARROW);
wcex.hbrBackground (HBRUSH)(COLOR_WINDOW + 1);
wcex.lpszMenuName NULL;
wcex.IpszClassName classname;
wcex.hconSm	 = NULL;

if (!RegisterClassEx (&wcex))
return FALSE;

hlnst hinstance II Store instance handle in our global variable

hWnd CreateWindow (classname, pliUe,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
NULL, hlnstance, NULL);

,t(!hWnd)

Appendix F.' Helper. h
	

727

return FALSE;

ShowWindow (hWnd. nCrndShow);
UpdateWndow (hWnd);

return TRUE

728	 Let Us

G Boot Parameters

730	 Let UsC

T

he disk drives in DOS and Windows are organized as zero-
based drives. That is, drive A is drive number 0, drive B is
drive number I, drive C is drive number 2, etc. The hard

disk drive can be further partitioned into logical partitions. Each
drive consists of four logical parts—Boot Sector, File Allocation
Table (FAT), Directory and Data space. When a file/directory is
created on the disk, instead of allocating a sector for it, a group of
sectors is allocated. This group of sectors is often known as a
duster. How many sectors together form one cluster depends
upon the capacity of the disk. As the capacity goes on increasing,
so also does the maximum cluster number. Accordingly, we have
12-bit, 16-hit or 32-bit FAT. In a 12-bit FAT each entry is of 12
bits. Since each entry in FAT represents a cluster number, the
maximum cluster number possible in a 12-bit FAT is 212 (4096).
Similarly, in case of 16-bit FAT the maximum cluster number is
216 (65536). Also, for a 32-bit FAT the maximum cluster number
is 228 (268435456. Only 28 of the 32 bits are used in this FAT).
All FAT systems are not supported by all versions of DOS and
Windows. For example, the 32-bit FAT system is supported only
in Win 95 OSR2 version or later. There are differences in the
organization of contents of Boot Sector, FAT and Dirctory in
FAT l2/FATI6 system on on hand and FAT32 on the other.

In Chapter 19 Figure 19.6 we saw the breakup of the contents of
the boot sector of a 12-bit FAT. Given below are the contents of a
boot sector of 16-bit FAT and a 32-bit FAT.

Appendix G: Boot Parameters	 731

Description Length 	 Typical Values

Jump instruction 	 3	 EB3C90

OEM name	 8	 MSWIN4.1

Bytes per sector 	 2	 512

Sectors per cluster 	 I	 64

Reserved sectors	 2	 1
Number of FAT copies 	 1	 2
Max. Root directory entries	 2	 512
Total sectors	 2	 0
Media descriptor	 I	 F8
Sectors per FAT	 2	 256

Sectors per track	 2	 63
No. of sides	 2	 255

Hidden sectors	 4	 63

Huge sectors	 4	 4192902
BIOS drive number	 I	 128
Reserved sectors	 I
Boot signature	 I	 41
Volume ID	 4	 4084677574
Volume label	 ii	 WIT
File system type	 8	 FATI6

Figure G. I

Let us now take a look at the 32-bit FAT system's boot sector
contents. These are shown in Figure G.2.

732
	

Let Us C

Description	 Length	 Typical Values

Jump instruction	 3	 EB5890

OEM name	 8	 MSW[N4. I

Bytes per sector 	 2	 512

Sectors per cluster	 1	 8

Reserved sectors	 2	 51

Number of FAT copies 	 I	 2

Root directory entries	 2	 0

Total sectors	 2	 0

Media descriptor	 I	 F8

Sectors per FAT	 2	 0

Sectors per track	 2	 63

No. of sides	 2	 255

Hidden sectors	 2	 63

High word of hidden sectors 	 4	 63

Huge sectors	 4	 4192902

High word of huge sectors	 2	 4192902

Sectors per FAT	 2	 4095

High word of sectors per FAT	 2	 4095

Drive description flag	 2	 0

File system version	 2	 0

Root directory starting cluster	 2	 2

High word of root directory	 2	 2
starting cluster
File system information sector 	 2	 I

Back up boot sector 	 2	 6

Reserved	 6	 0

continued...

Appendix G: Boot Parameters
	

733

con/zn ued

BIOS drive number	 128
Rcserved	 0
Boot signature	 41
Volume ID	 4

	
649825316

Volume label	 11
	

ICIT
File system type	 8

	
FA 132

Figure G.2

There are significant changes in the contents of the boo t sector of
a 32-bit FAT system. The entries 'Number of hidden sectors' and
'Huge sectors' have now been made 4-byte entries. The first two
bytes contain the low word of the value, whereas, the next two
bytes contain the high word value.

The number of sectors per FAT in a 32-bit file system is likely to
exceed what can be accommodated in two bytes. Hence the entry
'Sectors per FAT' for a disk with a 32-bit file system would
typically have a value 0. The value of 'Sectors per FAT' is now
stored as a 4-byte entity, with the similar arrangement of low word
and high word as discussed earlier.

The boot sector of a 32-bit FAT system also has new entries like
'Drive description flag', 'File system version' 'Starting cluster
number of the root directory', 'Sector number of the file system
information sector', and the sector number of the 'Backup boot
sector',

The 'Drive description flag' is a two-byte entity. Bit 8 of this flag
indicates whether or not the information written to the active FAT
will he written to all copies of the FAT. The low four hits of this
entry contains the 0-based FAT number of the active FAT. These
bits are meaningful only if bit 8 is set.

48

734
	

Let Us C

In the entry 'File system version number' the high byte contains
the major version number, whereas, the low byte contains the
minor version number.

The entry 'File system information sector' contains a value
indicating the sector number where the tile system information is
present. This file system information consists of the fields shown
in Figure G.3.

Description
	 Length

File system signature 	 4

Total number of free clusters	 4

Sector number of the next free cluster	 4

Reserved	 6

Figure G.3

The entry 'File information sector' contains a value OFFFFh if
there is no such sector. The entry 'Backup boot sector' contains a
value OFFFFh is there is no backup boot sector. Otherwise this
value is any non-zero value less than the reserved sector count.

H Linux Installation

735

IF

736
	

Let Us C

T

his appendix gives the steps that are to be carried out for
installing Red Hat Linux 9.0. In addition I have also
indicated a few commands that are necessary to compile

and execute the programs given in Chapters 20 and 21. Follow the
steps mentioned below to carry out the installation-

(a)Configure the system to boot from CDROM drive.
(h) Insert the first CD in the drive and boot the system from it.
(c) 1-lit 'Enter' key when the 'boot' prompt appears.
(d) Select the 'Skip' option in the "CD Found" dialog box.
(c) Click on the 'Next' button in the 'Welcome' screen.
(1) Click on the 'Next' button in the 'Language selection' screen.
(g) Click on the 'Next' button in the 'Keyboard' screen.
(h) Click on the 'Next' button in the 'Mouse Configuration'

screen.
(i) Select the 'Custom' option in the 'Installation Type' screen

and then click on the 'Next' button.
(j) Click on the 'Next' button in the 'Disk Partitioning Setup'

screen.
(k) Select the 'Keep all partitions and use existing free space'

option in the 'Automatic Partitioning' screen and then click
on the 'Next' button. Ignore any warnings generated by
clicking on the 'OK' button.

(I) Click on the 'Next' button in the 'Boot loader configuration'
screen.

(m) Click on the 'Next' button in the 'Network configuration'
screen.

(n) Click on the 'Next' button in the 'Firewall configuration'
screen.

(o) Click on the 'Next' button in the 'additional language
support' screen.

(p) Select a suitable option in the 'Time zone offset' screen and
click on the 'Next' button.

(q) Type a password for the root account in the 'Set root
password' screen and then click on the 'Next' button.

(r) Click on the 'Next' button in the 'Authentication
configuration' screen.

Appendix H. Linux installation	 -	 737

(s) In the 'Package group selection' screen make sure that you
select the following options—X window system, K desktop
environment, Development tools, GNOME software
development and then click on the 'Next' button.

(t) Select 'No' option in the 'Boot diskette creation' screen
(u) Click on the 'Next' button in the 'Graphical Interface (x)

configuration' screen.
(v) Click on the 'Next' button in the 'Monitor configuration'

screen.
(w) In the 'Customize graphical configuration' screen select the

'Graphical' option and then click on 'Next' button.
(x) Once the system restarts configure the system to boot from

Hard Disk.

Using Red Hat Linux

For logging into the system enter the username and password and
select the session as KDE (K Desktop Environment), Once you
have logged in, to start typing the program use the following menu
options:

KMenu I Run Command

A dialog would now pop up. In this dialog in the command edit
box type KWrite and then click on the Ok button. Now you can
type the program and save it.

To compile the program you need to go the command prompt.
This can be done using the following menu option.

KMenu I System Tools I Terminal

Once at the command prompt you can use the gcc compiler to
compile and execute your programs. You can launch another
instance of the command prompt by repeating the step mentioned
above.

738	 Let UsC

Index

739

740
	

Let Us C

0,328,329,330, 331
64, 72

51
define. 244, 245, 247

#elif, 258
#elsc, 257. 258
#endif, 255, 256, 258
#if, 258
ifdef, 255, 256, 257

#ifnclef, 257
#include, 253, 254. 258
#pragma pack. 382, 63()
#pragma, 261, 263
iunc1cf, 260
%, 106
&&. 64
&' 180
', ISO, 182

106
++,106
+-,106
-=,106
/=, 106
<,51
<=,51

51. 52
>,475
>,51
>=, 51
>>,486
7 :, 76

64
521

cdccl, 555
dc1spcc (dllexporl), 640
stdcall, 555, 556

A

Actual arguments. 167, 189
Address of operator, 180
API Functions. 547
Application Message Queues, 552

argc. 466. 468, 556
argv. 466. 468, 556
Array, 270, 271, 272, 279, 344
Array

Accessing Elements, 273
Bounds Checking, 276
Declaration, 272
Irntialisatton, 275
Memory representation. 283, 287
of characters, 328
of pointers to strings, 347
of pointers, 300. 347, 34S. 351
of structures. 371. 373
Passing to function. 277, 286
Reading data, 274
Storing data, 273
Three dimensional. 302

W') dimensional, 289
iocrativity, 34
atof('),
auto, 225, 228, 234

B

BeginPaint(), 588
Binary Files. 434
hioscom(). 622
Bit Fields, 513, 515
Itil3lt(), 604. 605, 606. 612 -
titc Operators, 482
F3lockin. 675
fOOL, 537
Boot Parameters, 629
Boot Sector, 626
Bounds checking, 333
break, 118. 123, 138
BUTTON. 564

C

C++, 3
Call by Reference, 178, 188
Call by Value, 178. 186
CALLBACK, 568.572
Calling Convention, 172
CapsLock. 637

Index
	

741

case, 130
Character Set, 5
Character. TO
Child process, 055
CloseHandle(), 632, 647
COLORREF, 537
Command line arguments. 460
Comment, IS
Communication using Signals, 068
Communication with keyhoaid, 634
Communication with storage devices,

626. 633
Compilation, 19
Compiler, 214, 215, 221
Compiler

16-hit. 214
32-bit, 214

Compound assignment operators. TOO
Conditional Compilation, 255
Conditional Operators, 76
Console I/O, 395
Console I/O functions, 395, 396
Console I/O Functions

formatted, 395. 396
unformatted, 395, 405

const, 340. 341, 342
Constants. 6, 7
Context Switch, 054
continue, 120, 123
Control Instructions

Decision making Instructions. 50
Loops, 98

Control Instructions
clap, 252
CPU registers, 544
CPU registers. 621
CreateCompatiblcDC(). 606
CrcatcFile(), 631. 047
CrcatcFontlndirect(), 585
CrcatcHatchl3rush(), 594
CrcatePattcmBrush(), 595
C'reatePcn(), 592
CrcatcSo!idE3rush(). 588, 594
CrcateWindow(), 565, 570

D

Data space. 626
Data Type

enum. 506. 507
Database Management, 441
Decision Control Instructions

switch. 136
Decision Making Instructions, 50
default. 136
DcIWiiidowProc(), 572. 576
DeleteOhject(), 580. 590
Dennis Ritchie, 2.42
Device context. 580, 581
Dc cc driver. 623
Directory, 626
Disk Bootstrap Program, 629
DispatchMessagc(), 571, 572
DLL, 548
DllMain(), 639
double, 219
do-while, 98, 121
DrawText(), 586
Dynamic Linking, 635

E

EDIT, 564
Ellipse(). 589
else. 50.61.66, 144
EndPaint(), 586
enum. 506, 509
EOF, 469
Escape Sequences, 401
Event Driven Model, 551
exec, 659
excel(). (iSO, 664
exccle(), 659
Execution, 19
cxecv(), 659
cxecvp(). 659
Exported functions, 040
expose_event, 683, 684
extcm, 234

742
	

JsC

F

fclose(), 422, 472
feof(), 469
ferror(), 470, 471
Mush(), 432
fgcommand, 673, 685
fgelcO, 420, 424, 448, 469,471.472
fgets(), 430
File Allocation Table, 626
File I/O, 395, 416
File I/O

Opening Modes, 426
FILE BEGIN, 632
FILE SHARE READ, 631
float, 219
Floating Point Emulator, 222
Floppy disk

Logical structure, 627
fopen.4l8, 419, 421, 426, 452,

470,472
for, 98, 107. 110.115
fork(), 655, 656, 657, 664
Formal arguments, 367, 170
Format Specifications, 397
Format specifiers. 18
fpnntf), 430
fputc(), 422, 424, 425, 448, 473
fjutchar(). 407
(uts(), 427, 428, 430
fread(), 441,446
fscanf(), 431
fseek(), 446, 447
ftell(), 447
Functions, 158, 165
Functions

Adding to library, 197, 200
Called function, 159, 162, 163,

164
Calling function. 159
definition, 162, 163
Passing values. 166
Prototype declaration, 175, 177
Returning from, 368, 169, 170
returning pointers, 518
Scope, 171

variable arguments 520
Iwnte(), 441, 446, 448

G
gsignal_coirncct(), 680. 683, 685
gcc. 653, 664
GDI, 581. 582
gdk_draw_arc(). 684
gdk_draw_line(), 684
gdk_draw_)olygon(), 684
gdk_draw_rectanglcO, 684
gdk_gc_new(), 684
gdk_gc_unref(), 684
GENERIC READ, 631
GENERIC-WRITE, 633
getc(), 420, 422
getch, 406
getchar(). 406
gctclie(). 406
GetClientRcct(). 632
GetCommand-,inc(), 557
GetDC(), 600
GctKeyState(), 642
GctMessage(), 571
getpid(), 655
getppid(), 658
gets(), 407, 408,409, 333. 334
goto, 145
gotoxy(), 442
GTK library. 678
gtk_init(), 680
gtk_rnain(), 681
gtk_main_quit(), 680
gtk_widget_set_siZe_reqoeSt()' 680
gtk_widget_show(), 681
gtk_window_newO 680
gtk_window_sel_title(), 680
GTKWINDOW_TOPLEVEL, 680
Gtk Widget. 680

H

HANDLE, 537
Handling Multiple Signals, 671
Hardware Interaction, 018

Index
	

743

Hardware Interaction
DOS Perspective, 619
Windows Perspective, 623

HC ACTION, 642, 644
H INSTANCE, 556
KS CROSS, 594
Hungarian Notation, 558

I/O Redirection, 473
Input, 476
Input/Output, 477
Output, 474

if, 50, 51, 56, 61, 66, 144
mit, 658, 661, 664
Init!nstance(), 570, 571, 572, 595
Instructions, 23
Instructions

Arithmetic Instruction, 23, 25
Control Instruction, 23
Type Declaration Instruction, 23,

24
mt. 537
Integer, 8
Integers, 214
Integrated Development Environment

(IDE). 19
Interrupt Descriptor Table, 623
Interrupt Service Routines, 6I9
Interrupt Vector Table, 619
Interrupts, 544, 621
inthandler(), 672

J

Java, 3

K

K Desktop environment (KDE), 653
Kernel routine, 623
Kernel, 623
Kemighan and Ritchie, 168
Keyboard messages, 636
KeyLogger, 645

Keywords, 6, 12
Kill, 664, 672, 084
KiIlTimcr(), 613
KWnte, 652

L

LineTo(), 589
Linus Torvalds. 650
Linux, 3, 19, 536, 650
Linux

Event Driven programming, 678
Orphan, 661, 664
Preemptive scheduling, 654
Process Table, 660
process, 654
Shell, 661
Zombie, 661, 664

LI$TI3OX, 564
LoadBitmap(), 595
LoadLibrary(), 641
LOGFONT, 585
Logical Operators. 64
long mt. 537
Iong,214, 215, 216
Loops, 98, 114
Loops

do-while, 98, 121
for, 98, 107, 110. 115
while, 98, 99, 101

Low Level Disk I/O, 447
LPARAM, 537
LPSTR, 556
LRESULT, 568,572
Is command, 660
Lvalue, 77

M

Macro Expansion, 244
mainQ, 16
MAKEINTRESOURCE, 595
mallocO, 352. 353
Mangling Keys, 644
McssagcBox(). 557, 562, 566

744
	

Let Us C

Microprocessor
16-hit, 214
32-bit, 214

MK_LBUVTON, 600
MoveToEx(), 589. 600
MSG, 571
Multi tasking. 540

N

Negative numbers, 222
Storing, 222

0

0 APPEND, 450
0_BINARY, 451
OCREAT. 451
ORDWR, 451
0-TEXT, 451
0_WRONLY, 451
OnCreate(), 610
OnCreate(), 641
OnDestroy(), 572. 641
OnLButtonDown(), 599,600
OnMouseMovc(). 600
OnPaint(), 585. 586, 590
OnTimcrQ, 610,612
open(), 450, 452
OPEN_EXISTING, 632
Operator

380
->, 380
>, 475
AND, 493
Bitwise, 492
Left Shift, 488
One's Complement, 484
OR, 498
Right Shift, 486
XOR, 499

Operators, 17, 73
Operators

Address of, 180
Associativity, 34

Compound assignment operators.
06

Conditional Operators, 76
Logical Operators, 64
Relational Operators, 51
Value at address, 180. 278

P

Page Directory Table, 542
Page Table, 542
Page-in operation, 541
PAINTSTRUCT, 585
Parent process, 655
perror(), 471
PlaySound(), 612. 613
POINT, 589
Pointer, 185, 330
Pointers 178, 179, 184, 279,292,

295, 300, 334, 347, 539
Pointers

to an Array, 295
to functions, 515

Polygon (), 589
Preprocessor Directives

Conditional Compilation, 255
File Inclusion, 253
Macro, 244, 248, 252

Preprocessor. 242
printf(), 18, 396,471
PRN, 476
Processes ID (MD), 654
Programming Model, 543, 547
Programming Model

Event Driven, 551, 562
Sequential. 543
Windows. 547

Prototype Declaration, 175, 177
PS command, 658, 664
pulc(), 474
putch(), 407, 425
putchar(), 407
puts(), 333, 334, 407, 408,409

Index
	

745

R
rand(), 612
read(). 452
ReadFilcO, 632, 547
Real, 9
Record I/O, 430,437
Rectangle(), 589
Recursion, 189, 193, 194
register, 227, 234
RegisterClassEx(). 570
Relational Operators, 51
ReleascDC(). 600
return, 158, 169
rewind(), 446
RGB(), 586
ROM-13105 functions. 622
RoundRcct(), 589

S_IREAD, 451
S_I WRITE, 451
scan1), 21, 22, 396
Scheduler, 654
SEEK CUR, 447
SEEK END, 447
SeleclObjeci(). 586
SctCapture(). 601
SetFilePointerO, 632
SetPixct(), 599
SetTcxtColor(), 586
SetTimer().6l I
short ml. 537
short, 214, 215, 216
ShowWindowQ, 565, 570
sigadd.set(), 677
SIGCONT. 669, 672, 673, 685
sigemptyset(), 677
sighandtcr, 670. 674
SIGINT, 669, 684
STGKJLL, 669, 672
signal(), 669. 672
Signal, 558, 684
signed, 214, 216, 217
sigprocmask(), 677. 685

sigset_t. 677
S1GSTOP, 673, 685
SIGTERM, 672,684
sizeof), 439
SNDASYNC, 613
SND FILENAME, 613
sprintf(), 404. 405
srand(). 613
SRCCOPY, 607
sscan1). 404, 405
Standard Library Functions. 335
static, 228. 229, 230, 234
stdaux. 472
stdprn, 472, 473
Storage Class, 223. 226, 227, 230,

233
Storage Classes

Automatic, 224
External, 230
Register, 226
Static, 227

streat(), 342
strcat. 336
strchr(). 335
slrcrnp(), 336, 343, 344, 346
strcmpl(), 330
strcpy(). 339, 340
stltpy. 336
strdup(), 336
stncmp(). 336
String 1/0, 427
Strings

Bounds checking, 333
Strings. 328, 329, 334, 347
strlcn(). 337
strlen, 335
strlwr, 336
strocat. 336
stmcnlp(). 336
stmcpy. 336
stmicrnp(). 336
strnset(, 336
strrchr(), 336
strrcv(), 336
strsct(), 336
strstr(). 336

746
	

Let Us C

struct, 367
Structure, 364, 366, 374, 383
Structure

Accessing elements, 370
Declaration, 367
Variables, 368

sliupr.

S	 't 1,'MIN1MIZED, 565
.'.HOWNORMAL 565
switch, 56, 136, 144
System Message Queue, 552, 637

T

termhandlcr(). 672
Text Files, 434
TextOut(), 586Three 	 array. 302
tlmc()"6l 3
Two dimensional array, 344, 348
Type Conversion, 29
Type Declaration Instruction, 24
Typecasting. 511
typetlef. 506: 510,511.537,538,

556. 572

Lii

un-catchabie signals, 672
UnhookWindowsl-iookEx(), 642
UNIX, 3.650
unsigned. 214, 216, 217

MA

waitpid(), 662, 664
while, 98, 99, 101
WIFEXITED(), 663
Window Class, 564
Window Class

BUTTON, 564
EDIT, 564
LISTBOX, 564

Windows Hooks, 635
Windows, 536,537
WinMain(), 555. 556, 557,562, 566,

571, 595
WMCHAR, 634
WMCLOSE, 573
WMCREATE, 610, 640
WMDESTROY, 572,573,640
WMKEYDOWN, 634
WMKEYUP, 634
WMLBUTTONDOWN, 596,599
WMIJ3UTTONUP, 596
WMMOUSEMOVE, 596
WMPAINT, 585
WMQUIT, 571, 572, 576
WMTIMER, 610,611
WNDCLASSEX, 569,572
WridProc(), 568, 571, 585, 597, 599,

600
WPA RAM, 537
WriteFtic(), 632, 647
WSOVER,LAPPEDWINDOW, 565

X

XGA, 580

Value at address operator, 180, 278
Vaiab1es, 6, II
VDU, 473
VGA, 580
void, 177

