A Precedence
Table

687

688 Let Us C

Description Operator Associativity
Function expression) Left to Right
Array Expression 11 Left to Right
Structure operator > Leht to Right
Structure operator . Left to Right
Unary minus - Right to left
Increment/Decrement ++ Right to Left
One's compliment ~ Right to lefi
Negation ! Right to Left
Address of & Right to left
Value of address " Right to left
Type cast (type) Right to left
Size in bytes sizcol Right to left
Multiplication o Left to right
Division / Left to right
Modulus % Left to right
Addition * Left to right
Subtraction . Lefl to right
Lefl shift << Left to right
Right shift == Left to right
Less than < Lefl to right
Less than or cqﬁni o <= Lefl to right
Greater than > Left to right
Greater than orcqual to | >= Left to right
Equal to == Lefl to right
Not cqual to I Left to right

Continued. ..

Appendix A: Precedence Table 689

Continued...

Description Operator Associativity

Ewise AND & Left to right

Bitwise exclusive OR # Left to right

Bitwisc inclusive OR | Lcft to right

Logical AND && Left to right

Logical OR Il Lefl to right

Conditional 23 Right to left

Assignment = Right to lefl

*= /= Vo=

F= -= &= | Right to left

n= = Right to left

<<= >>= Right to left

Right tc left

Figure Al.1

690 LetUs C

B Standard Library
Functions

Standard Library Functions
Arithmetic Functions

Data Conversion Functions
Character Classification Functions
String Manipulation Functions
Searching and Sorting Functions
1/0 Functions

File Handling Functions
Directcry Control Functions
Buffer Manipulation Functions
Disk I/0 Functions

Memory Allocation Functions
Process Control Functions
Graphics Functions

¢ Time Related Functions
Miscellaneous Functions

» DOS Interface Functions

e & @ ® ® ® & ® & o @+ o 2

691

692

Let Us C

even a complete list of these tunctions would occupy scores

l et alone discussing each starard library function in detail,

of pages. However, this book would be incomplete if it has
nothing to say about standard library functions. 1 have tried to
reach a compromise and have given a list of standard library
functions that arc more popularly used so that you know what to
search for in the manual. An excellent book dedicated totally to
standard library functions i1s Waite group’s, Turbo C Bible, wrilten
by Nabjyoti Barkakti.

Following is the list of selected standard library functions
functions have been classified into broad categories.

Arithmetic Functions -

. The

Function Use

abs Returns the absolute value of an integer

cos Calculates cosine

cosh Calculates hyperbalic cosine

exp Raiscs the exponential ¢ to the x™ power

fabs Finds absolute value

floor Finds largest integer less than or equal to argument
fmod Finds floating-point remainder

hypot Calculates hypotenuse of right triangle

log Calculates natural logarithm

logl0 Calculates base 10 logarithm

modf Breaks down argument into integer and fractional parts
pow Calculates a value raised to a power

sin Calculates sine

sinh Calculates hyperbolic sine

sqrt Finds square root

tan Calculates tangent

tanh Calculates hyperbolic tangent

Appendix B: Standard Library Functions 693

Data Conversion Functions

Function Use

atof Converts string to float

atoi Converls string to int

atol Converts string to long

covt Converts double to string

fevt Converts double to string

gevt Converts double to string

itoa Converts int to string

Itoa Converts long to string

striod Converts string to double

strtol Converts string to long integer
strtoul Converts string to an unsigned long integer
ultoa Converts unsigned long to string

Character classification Functions

Function Use

isalnum Tests for alphanumeric character

isalpha Tests for alphabetic character

isdigit Tests for decimal digit

islower Tests for lowercase character

isspace Tests for white space character

isupper Tests for uppercase character

isxdigit Tests for hexadecimal digit

tolower Tests character and converts to lowercase if uppercase

loupper Tests character and converts to uppercase if lowercasc

694

Let Us C

String Manipulation Functions

Function Use

strcat Appends one string Lo another

strchr Finds first occurrence of a given character in a string

stremp Compares two s'rings

strempi Compares two strings without regard to case

strepy Copies onc string to another

strdup Duplicates a siring

stricmp Compares two strings without regard to case (identical to
strempi)

strlen Finds length of a string

strlwr Converts a string o lowercasc

strneat Appends a portion of one string to another

stremp Compares a portion of one string with portion of anather
string

strnepy Copies a given number of characters of one string to another

strnicmp Compares a portion of one string with a portion of another
without regard to case

strrehr Finds last occurrence of a given character 1n a siring

strrev Reverses a string

strset Sects all characters in a string to a given character

strstr Finds first occurrence of a given string in another string

strupr Converts a string to uppercasc

Searching and Sorting Functions

Function Use
bsearch Performs binary search
Ifind Performs linear scarch for a given value

gsort

Performs quick sort

Appendix B: Standard Library Functions 695

I/O Functions

Use

Function

Close Closes a hile

fclose Closes a file

feof Detects end-of-file

fgetc Reads a character from a file |

fgetchar Reads a character from keyboard (function version)
fgets Reads a string from a file

fopen Opens a file

fprintf Writes formatted data to a file

fpute Writes a character to a file

fputchar Writes a character o screen (function version)
fputs Writes a string to a file

fscanf Reads formatted data from a file

fseek Repositions file pointer to given Incation

ftell Gets current file pointer position

gelc Reads a character from a file (macro version)
getch Reads a character from the keyboard

getche Reads a character from keyboard and echoes it
getchar Reads a character from keyboard (macro version)
gets Reads a line from keyboard

inport Reads a two-byte word from the specified /O port
inportb Reads one byte from the specified 1/O port
kbhit Checks for a keystroke at the keyboard

Iseek Repositions file pointer to a given location

open Opens a file

outport Writes a two-byte word to the specified [/0 port
outportb Writes one byte to the specified I/O port

printf Writes formatted data to screen

pulc Writes a character to a file (macro version)
putch Writes a character to the screen

putchar Writes a character to screen (macro version)
puts Writes a line to file

read

Reads data from a file

696

Let Us C

rewind
scanf
sscanf
sprintf
tell
write

Repositions file pointer to beginning of a file
Reads formalted data from keyboard

Reads formatted input from a string

Writes formatted output to a string

Gets current file pointer position
Writes data to a file

File Handling Functions

Function Use

remove Deletes file
rename Renames file
unlink Deletes file

Directory Control Functions

Function Use

chdir Changes current working directory »
getewd Gets current working directory

fnsplit Splits a full path name into its componcnts
findfirst Searches a disk dircctory

findnext Continues findfirst scarch

mkdir Makes a new dircclory

rmdir Removes a directory

Buffer Manipulation Functions

Function Use

memchr Returns a pointer to the first occurrence, within a specificd
number of characters, of a given characicr in the buffer

mememp Compares a specified number of characters from two

buffers

Appendix B: Standard Library Functions 697

memcpy Copics a specified number of characters from one buffer to
another

memicmp Compares a specified number of characters from two
-buffers without regard to the case of the charactcrs

memmove Copies a specified number of characters from one buffer to
another

memsel Uses a given character to initialize a specificd number of
bytes in the buffer

Disk I/O Functions

Function Use

absread Reads absolute disk sectors

abswrite Writes absolute disk scctors

biosdisk Performs BIOS disk services

getdisk Gets current drive number

setdisk

Sets current disk drive

Memory Allocation Functions

Function Use

calloc Allocates a block of memory
farmalloc Allocates memory from far heap
farfree Frees a block from far heap

free Frees a block allocated with malloc
malloc Allocates a block of memory
realloc Reallocates a block of memory

Process Control Functions

Function Use
abort Aborts a process o7
atexit Executes function at program termination

698

Let Us C

exccl
exit
spawnl
spawnlp

system

Exccutes child process with argument list

Terminates the process

Executes child process with argument list

Executes child process using PATH variable and argument
list

Executes an MS-DOS command

Graphics Functions

Function Use

arc Draws an arc

cllipse Draws an cllipse

floodfill Fills an arca of the screen with the current color

getimage Stores a screen image in memory

getlinestyle Obtains the current line style

getpixel Obtains the pixel's value

lineto Draws a line from the current graphic output position to the
specified point

movelo Moves the current graphic output pesition to a specified
point

pieslice Draws a pie-slice-shaped figure

putimage Retricves an image from memory and displays it

reclangle Draws a rectangle

setcolor Sets the current color

setlinestyle Sets the current line style

putpixel Plots a pixcl at a specified point

setviewport Limits graphic output and positions the logical origin

within the limited arca

Time Related Functions

Function Use
clock Returns the elapsed CPU time for a process
difftime Computes the difference between two times

Appendix B: Standard Library Functions

699

ftime
strdate
striime
time
setdate
getdate

Gets current system lime as struclure
Returns the current system date as a string
Returns the current system tinie as a string
Gets current system time as long integer

Sets DOS date
Gets system date

Miscellaneous Functions

Function Use

delay Suspends execution for an interval (milliseconds)

getenv Gets value of environment variable

getpsp Gels the Program Segment Prefix

perror Prints error message

putenv Adds or modifies valuc of environment variable

random Generates random numbers

randomize Initializes random number generation with a random value
based on time

sound Tums PC speaker on at specified frequency

nosound Tums PC speaker off

DOS Interface Functions

Function Use

FP_OFF Returns offset portion of a far pointer

FP_SEG Returns segment portion of a far pointer

getvect Gets the current value of the specified interrupt veetor
keep Installs terminate-and-stay-resident (TSR) programs

int86 Issues interrupts

int86x Issues interrupts with segment register values

intdos Issues interrupt 21 h using registers other than DX and AL
intdosx Issues interrupt 21h using segment register values
MK_FP Makes a far pointer

700 Let Us C

segread Returns current values of segment registers

setvect Sets the current value of the specified interrupt vector

C Chasing The
Bugs

46 701

702 L e

among their most enduring accomplishments are several

new techniques for wasting time. There is no shortage of
horror stories about programs that took twenty times to ‘debug’ as
they did to ‘write’. And one hears again and again about programs
that had to be rewritten all over again because the bugs present in
it could not be located. A typical C programmer’s ‘morning after’
is red eyes, blue face and a pile of crumpled printouts and dozens
of reference books all over the floor. Bugs are C programmer's
birthright. But how do we chase them away. No sure-shot way for
that. 1 thought if 1 make a list of more common programming
mistakes it might be of help. They are not arranged in any
particular order. But as you would realize surely a great help!

Cprogrammers are great innovators of our times. Unhappily,

[1] Omitting the ampersand before the variables used in scanf().

For example,

int choice ;
scanf("%d", choice) |

Here, the & before the variable choice is missing. Another
common mistake with seanf() is to give blanks cither just
before the format string or immediately after the format string
as in,

int choice ,
scanf (" %d ", choice) ;

Note that this is not a mistake, but till you don't understand
scanf() thoroughly, this is going to cause trouble. Safety is in
' eliminating the blanks. Thus, the correct form would be,

int choice ;
scanf (“%d", &choice) ;

Appendix C: Chasing The Bugs 703

(2]

(3]

Using the operator = instead of the operator = =,

What do you think will be the output of the following
program:

main()

{

int i=10;

while (i=10)
{
printt ("got to get out") ;
i++:
}
t

At first glance it appears the message will be printed once and
the control will come out of the loop since i becomes 11. But,
actually we have fallen in an indefinite loop. This is because
the = used in the condition always assigns the value 10 to i,
and since i is non-zero the condition is satisfied and the body
of the loop is executed over and over again,

Ending a loop with a semicolon.
Observe the following program.
main()
{

intj=1;

while (j<=100);

{

printf ("\nCompguard”) ;

i 2

t

704 Let Us C

g

Inadvertently, we have fallen in an indefinite loop. Cause is
the semicolon after while. This in effect makes the compiler
feel that you wanted the loop to work in the following
manner:

while (j <= 100);

This is an indefinite loop since j never gets incremented and
hence etemally remains less that 100.

Omitting the break statement at the end of a case in a switch
statement.

Remember that if a break is not included at the end of a caée,
then execution will continue into the next case.

main()
intch=1,

switch (ch)
{
case 1:
printf ("nGoodbye") ;
case2:
printf (“\nLieutenant”) ;
)
)

Here, since the break has not been given after the printf() in

" case 1, the control runs into case 2 and executes the second

printf() as well.

However, this sometimes turns out to be a blessing in
disguise. Especially, in cases when we are checking whether
the value of a variable equals a capital letter or a small case

Appendix C: Chasing The Bugs 705

(5]

(6]

(7]

(8]

letter. This example has been succinctly explained in Chapter
4,

Using continue in a switch,

It is a common error to believe that the way the keyword
break is used with loops and a switch; similarly the keyword
continue can also be used with them. Remember that
continue works only with loops, never with a switch,

A mismatch in the number, type and order of actual and formal
arguments. :

yr = romanise (year, 1000, 'm') ;

Here, three arguments in the order int, int and char are being
passed to romanise(). When romanise() receives these
arguments into formal arguments they must be received in the
same order. A careless mismatch might give strange results.

Omitting provisions for returning a non-integer value from a
function,

If we make the following function call,

area = area_circle (1.5) ;

then while defining area_circle() function later in the
program, care should be taken to make it capable of returning
a floating point value. Note that unless otherwise mentioned
the compiler would assume that this function returns a value

of the type int.

Inserting a semicolon at the end of a macro definition.

706 Let Us C

How do you recognize a C programmer? Ask him to write a
paragraph in English and watch whether he ends each
sentence with a semicolon. This usually happens because a C
programmer becomes habitual to ending all statements with a
semicolon. However, a semicolon at the end of a macro
definition might create a problem. For example,

#define UPPER 25 ;
would lead to a syntax error if used in an expression such as
" if (counter == UPPER)

This is because on preprocessing, the if statement would take
the form

if (counter ==25)
[9] Omitting parentheses around a macro expansion.

#define SQR(x) x * x
main()

(

int a;

a=25/SQR(5);
printf { "\n%d", a),
)

In this example we expect the value of a to be 1, whereas it
tumns out to be 25. This so happens because on preprocessing
the arithmetic statement takes the following form:

a=25/5"5;

Appendix C: Chasing The Bugs 707

[10] Leaving a blank space between the macro template and the
macro expansion.

#idefine ABS (a) (a=0 ?a:-a)
Here, the space between ABS and (a) makes the preprocessor

believe that you want to expand ABS into (a), which is
certainly not what you want.

[11] Using an expression that has side effects in a macro call.

fdefine SUM(a)(a+a)
. main()

int w,b=5;
w=SUM(b++);
printf ("n%d", w) ;
On preprocessing, the macro would be cxpanded to,
W= (b++)+(b++);
If you are wanting to first get sum of 5 and S and then

increment b to 6, that would not happen using the above
macro definition.

[12] Confusing a character constant and a character string.
In the statement
ch='7";

a single character is assigned to ch. In the statement

708 Let Us C

ch="2";
a pointer to the character string “a” is assigned to ch.
Note that in the first case, the declaration of ch would be,
char ch,
whereas in the second case it would be,
char *ch:
[13] Forgetting the bounds of an array.
main()
int num(50),1;
for(i=1;i<=50;i++)

numfi]=i°®i;
}

Here, in the array num there is no such element as num|S0],
since array counting begins with 0 and not 1. Compiler would
not give a wamning if our program exceeds the bounds. If not
taken care of, in extreme cases the above code might even
hang the computer.

[14] Forgetting to reserve an extra location in a character array for the
null terminator.

Remember each character array ends with a \0’, therefore its
dimension should be declared big enough to hold the normal
characters as well as the “\0”.

Appendix C: Chasing The Bugs 709

For example, the dimension of the array word| | should be 9
if a string “Jamboree™ is to be stored in it.

[15] Confusing the precedences of the various operators.

main()

{
char ch;
FILE *fp;

fp = fopen ("text.c”,'r");

while (ch = getc (fp) = EOF)
putch (ch);

fclose (fp) ;
}

Here, the value returned by gete() will be first compared with
EOF, since != has a higher priority than =. As a result, the
value that is assigned to ch will be the true/false result of the
test—1 if the value returned by getc() is not equal to EOF,
and 0 otherwise. The correct form of the above while would
bﬂ,

while ((ch =getc (fp))!= EOF)
putch(ch);

[16] Confusing the operator -> with the operator . while referring to a
structure element.

Remember, on the left of the operator . only a structure
variable can occur, whereas on the left of the operator -> only
a pointer to a structure can occur. Following example
demonstrates this. '

main()

710 Let Us C

struct emp

char name[35] ;
int age;

struct emp e = { "Dubhashi", 40} ;
struct emp *ee ;

printf ("\n%d", e.age) ;

ee=&e;

printf ("\n%d", ee->>age) ;
)

[17] Forgetting to use the far keyword for referring memory locations
beyond the data segment.

main()

{

unsigned int *s ;

s =0x413;
printf ("n%d", *s) ;
}

Here, it is necessary to use the keyword far in the declaration
of variable s, since the address that we are storing in s (0x413)
is a address of location present in BIOS Data Area, which is
far away from the data segment. Thus, the correct declaration
would look like,

unsigned int far *s ;

The far pointers are 4-byte pointers and are specific to DOS.
Under Windows every pointer is 4-byte pointer.

[18] Exceeding the range of integers and chars.

Appendix C. Chasing The Bugs 711

main()
char ch;

for (ch=0;ch<=255;cht+)
printf ("\n%c %d", ch, ch) ;

Can you believe that this is an indefinite loop? Probably, a
closer look would confirm it. Reason is, ch has been declared
as a char and the valid range of char constant is -128 to
+127. Hence, the moment ch tries to become 128 (through
ch++), the value of character range is exceeded, therefore the
first number from the negative side of the range, -128, gets
assigned to ch. Naturally the condifion is satisfied and the
control remains within the loop externally.

712 Let Us C

Hexadecimal
Numbering

¢ Numbering Systems
* Relation Between Binary and Hex

713

714 Let Us C

hile working with computers we are often required to use
Whexadccimal numbers. The reason for this is—

everything a computer does is based on binary numbers,
and hexadecimal notation is a convenient way of expressing binary
numbers. Before justifying this statement let us first discuss what
nurabering systems are, why computers use binary numbering
syotom. Pov binary and hexadecimal numbering systems are
reiated and how to use hexadecimal numbering system in everyday
life.

Numbering Systems

When we talk about different numbering systems we are really
talking about the base of the numbering system. For example,
binary numbering system has base 2 and hexadecimal numbering
system has base 16, just the way decimal numbering system has
base 10. What in fact is the ‘base’ of the numbering system? Base
represents number of digits you can use before you run out of
digits. For example, in decimal numbering system, when we have
used digits from 0 to 9, we run out of digits. That's the time we put
a 1 in the column to the left - the ten's column - and start again in
the one’s column with 0, as shown below:

O~ MW & Wiy —-O

9 last available digit

10 start using a new column
1

12

13

Appendix D: Hexadecimal Numbering 715

14

Since decimal numbering system is a base 10 numbering system
any number in it is constructed using some combination of digits 0
to 9. This seems perfectly natural. However, the choice of 10 as a
base is quite arbitrary, having its origin possibly in the fact that
man has 10 fingers. It is very easy to use other bases as well. For
example, if we wanted o use base 8 or octal numbering system,
which uses only eight digits (0 to 7), here's how the counting
would look like:

DN E W =O

7 last available digit

10 startusing a new column
1

12

Similarly, a hexadecimal numbering system has a base 16. In hex
notation, the ten digits 0 through 9 are used to represent the values
zero through nine, and the remaining six values, ten through
fifteen, are represented by symbols A to F. The hex digits A to F
are usually written in capitals, but lowercase letters are also

perfectly acceptable. Here is how the counting in hex would look
like:

0

4

716 Let Us C

mcom}wmwmmhmm

F last available digit
10 start using a new column
1

Many other numbering systems can also be imagined. For
example, we use a base 60 numbering system, for measuring
minutes and seconds. From the base 12 system we retain our 12
hour system for time, the number of inches in a foot and so on.
The moral is that any base can be used in a numbering system,
although some bases are convenient than others.

The hex numbers are built out of hex digits in much the same way
the decimal numbers are built out of decimal digits. For example,
when we write the decimal number 342, we mean,

3 times 100 (square of 10)
+ 4 times 10
+ 2times 1

Similarly, if we use number 342 as a hex number, we mean,

3 times 256 (square of 16)

Appendix D: Hexadecimal Numberi ng 717

+ 4'times 16
+ 2times 1

Relation Between Binary and Hex

As it turns out, computers are more comfortable with binary
numbering system. In a binary system, there are only two digits 0
and 1. This means you can’t count very far before you need to start
using the next column:

0

1 last available digit

10 start using a new column
11

Binary numbering system is a natural system for computers
because each of the thousands of electronic circuits in the
computer can be in one of the two states—on or off. Thus, binary
numbering system corresponds nicely with the circuits in the
computer—0 means off, and | means on. 0 and | are called bits, a
short-form of binary digits.

Hex numbers are used primarily as shorthand for binary numbers
that the computers work with. Every hex digit represents four bits
of binary information (Refer Figure D.1). In binary numbering
system 4 bits taken at a time can give rise to sixteen different
numbers, so the only way to represent each of these sixteen 4-bit
binary numbers in a simple and short way is to use a base sixteen
numbering system.

Suppose we want to represent a binary number 11000101 in a

short way. One way is to find it decimal equivalent by mutiplying
each binary digit with an appropriate power of 2 as shown below:

47

718 Let Us C

1*2’+1'2°+0*2-‘+0*1‘+0*2-‘+1*2?+0*2'+1*2°

which is equal to 197.

—

Hex Binary Hex Binary

0000
0001
0010
00l
0100
0101
0110
0111

qomhum-—c
mm o O m > e e

-

Figure D.1

Another method is much simpler. Just look at Figure D.1. From it
find out the hex digis for the two four-bit sets (1100 and 0101).
These happen to be C and 5. Therefore, the binary number’s hex
equivalent is C5. You would agree this is a easier way 10 represent
the binary number than to find its decimal equivalent. In this
method neither multiplication nor addition is needed. In fact, since
there are only 16 hex digits, it's fairly easy to memorize the binary
equivalent of cach one. Quick now, what’s binary 1100 in hex?
That’s right C. You are already getting the feel of it. With a little
practice it is easy 1o translate even long numbers into hex. Thus,
1100 0101 0011 1010 binary is C53A hex.

As it happens with many unfamiliar subjects, learning hexadecimal

‘requires a little practice. Try your hand at converting some binary
numbers and vice versa. Soon you will be talking hexadecimal as
if you had known it all your life.

E Ascl chart

719

720 Let Us C

family of microcomputers. Their values range from 0 to

There are 256 distinct characters used by IBM compatible
255. These can be grouped as under:

Character Type No. of Characters
Capital letters 26

Small-case Letters 26

Digits 10

Special Symbols 32

Control Character 34

Graphics Character

Total '

Figure E.1

Out of the 256 character set, the first 128 are often called ASCII
characters and the next 128 as Extended ASCII characters. Each
ASCII character has a unique appearance. The following simple
program can generate the ASCIT chart:

main()
intch;

for (ch =0 ; ch <<=255 ; ch++)
printf (*%d %c\n*, ch, ch) |

}

This chart is shown on the following page. Out of the 128 graphic
characters (Extended ASCII characters), there are characters that
are used for drawing single line and double line boxes in text
mode. For convenience these characters are shown in Figure E.2.

Appendix E: ASCII Chart

721

218 129 194 191

i

179

195 - -|- 180
197

192 193 | 217

213 —— 3 184
2

19 #18[
216

21 A o196
190

201 205 203 187

3]185

188

m 183

Figure E.2

E 1<t w 601 M L8 v 59 + £t § 1Z
2 0£1 [801 A 98)] 9 . w b 0z
n 671 ¥ LOT n 8 i £9 (52 i 61
) 8Z1 [901 1 ¥8 < 79) 0¥ 1 81
H, Lzl ! SOl S £8 = 19 ¢ 6¢ w L1
~ 971 y 01 | 8 > 09 » 8¢ -4 91
{ rdl 8 €01 0 I8 : 65 % LE o Sl
| vzl J]| d 08 : 8¢ $ 9¢ e bl
H €Tl 3 101 0 6L 6 LS # o3 E £l
z zzl P 001 N 8L 8 9¢ i e o} Z1
£ 1Z1 2 66 W LL L <9 i €€ o 11
X 0zl q 86 1 9L 9 ¥S € [| 01
M 611 e L6 b | SL S £ A €) 6
A sil ’ 96 f L v zs v (1] o 8
n LIt $6 I €L £ 15 - 67 . L
1 911 v ¥6 H L Z 0S 4 82 L] 9
s Sl [€6 3] L [6% - L % S
1 20 \ z6 i oL 0 8y - 9z ¢ b
b €11] 16 E | 69 / L t 54 A £
d [48 yA 06 a 89 : op i vT ® £
o 111 X 68 o) L9 = St 1 €T o |
u (LR} X uy d ue " v = e v
ey an[eA ey oneA TeYD AM[EA JEY) AN[EA SEYD 3ANEA rey) Sn[eA
D5 17 & 72

Appendix E: ASCII Chart 723

Value Char Value Char Value Char Value Char Value Char Value Char

132] 154 U 176 198 E 220 - 242 :
133 a 155 ¢ 177 E 199 IF 221] 243 <
134 A 156 £ 178 B 200 L 222 8 244 %
135 c 157 ¥ 179 | 201 " 223 L 245

136 é 158 Ps 180 “ 202 & 224 a 246 B
137 é 159 f 181 203 T 225 8 247 =
138 & 160 F 182 4 204 f 226 r 248 °
139 i 161 i 183 m 205 = 227 7 249 .
140 i 162 & 184 u_ 206 F 228 £ 250 .
141 i 163 0 185 3 207 L 229 o 251 S
142 A 164 ii 186 fl 208 4 230 u 252 7
143 A 165 N 187 = 209 = 231 T 253 2
144 E 166 a 188 4 210 - 232 3 254 »
145 x 167 ° 189 4 214 L 233 8 255

146 A 168 i 190 4 212 E 234 9]

147 & 169 - 191 - 213 = 235 i

148 5 170 - 192 L 214 236 o

149 o 171 V4 193 L 215 M 237 o

150 i 172 Va 194 - 216 238 €

151 i 173 i 195 8 217 4 239 ez

152 v 174 « 196 o 218 r 240 s

153 0 175 » 197 + 219 N | 241 +

724 Let Us C

F Helper.h File

725

726] Let Us C

LRESULT CALLBACK WndProc (HWND, UINT, WPARAM, LPARAM) ;
HINSTANCE hinst ; // current instance

f* FUNCTION: Initinstance (HANDLE, int
PURPOSE: Saves instance handle and creates main window
- COMMENTS: In this function, we save the instance handle in a global
variable and create and display the main program window.
! .
BOOL Initinstance (HINSTANCE hinstance, int nCmdShow, char® pTitle)

{
char classnamef | = "MyWindowClass"
HWND hWnd ;
WNDCLASSEX weex |
wcex.cbSize = sizeof (WNDCLASSEX) ,
wcex.style = CS_HREDRAW | CS_VREDRAW ;
weex.lpfWndProc = (WNDPROC) WndProc ;
wcex.cbClsExtra =0,
weex.chbWndExtra =0
weex.hinstance = hinslance ;
weex.hicon =NULL ;
weex.hCursor = LoadCursor (NULL, IDC_ARROW) ;
weex.hbrBackground = (HBRUSH)(COLOR_WINDOW + 1) ;

weex.IpszMenuName = NULL ;
weex.IpszClassName = classname ;
weex.hlconSm =NULL;

if (RegisterClassEx (&wcex))
return FALSE ;

hinst = hinstance ; // Store instance handle in our global variable

hWnd = CreateWindow (classname, pTitle,
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT, 0, CW_USEDEFAULT, 0, NULL,
NULL, hinstance, NULL) ;

if (!hWnd)

Appendix F: Helper.h

727

return FALSE ;

ShowWindow (hWnd, nCmdShow) ;

UpdateWindow (hWnd) ;

return TRUE ;
)

728 Let Us C

G B_oot Parameters

730 Let Us C

based drives. That is, drive A is drive number 0, drive B is

drive number 1, drive C is drive number 2, etc. The hard
disk drive can be further partitioned into logical partitions. Each
drive consists of four logical parts—Boot Sector, File Allocation
Table (FAT), Directory and Data space. When a file/directory is
created on the disk, instead of allocating a sector for it, a group of
sectors is allocated. This group of sectors is often known as a
cluster. How many sectors together form one cluster depends
upon the capacity of the disk. As the capacity goes on increasing,
s0 also does the maximum cluster number. Accordingly, we have
12-bit, 16-bit or 32-bit FAT. In a 12-bit FAT each entry is of 12
bits. Since each entry in FAT represents a cluster number, the
maximum cluster number possible in a 12-bit FAT is 2'? (4096).
Similarly, in case of a 16-bit FAT the maximum cluster number is
2'® (65536). Also, for a 32-bit FAT the maximum cluster number
is 2° (268435456. Only 28 of the 32 bits are used in this FAT).
All FAT systems are not supported by all versions of DOS and
Windows. For example, the 32-bit FAT system is supported only
in Win 95 OSR2 version or later. There are differences in the
organization of contents of Boot Sector, FAT and Direttory in
FATI2/FATI16 system on on hand and FAT32 on the other.

T he disk drives in DOS and Windows are organized as zero-

In Chapter 19 Figure 19.6 we saw the breakup of the contents of
the boot sector of a 12-bit FAT. Given below are the contents of a
boot sector of 16-bit FAT and a 32-bit FAT.

Appendix G: Boot Parameters

731

Description Length Typical Values
Jump instruction 3 EB3C90
OEM name 8 MSWIN4, |
Bytes per sector 2 512
Sectors per cluster 1 64
Reserved sectors 2]

Number of FAT copies 1 2

Max. Root directory entries 2 512

Total sectors 2 0

Media descriptor | F8

Sectors per FAT 2 256
Sectors per track 2 63

No. of sides 2 255
Hidden sectors 4 63

Huge sectors 4 4192902
BIOS drive number] 128
Reserved sectors 1 1

Boot signature | 41

Volume ID 4 4084677574
Volume label 11 ICIT

File system type FATI16

Figure G.1

Let us now take a look at the 32-bit FAT system’s boot sector
contents, These are shown in Figure G.2.

732 Let Us C
Description Length Typical Values
Jump instruction 3 EBS5890
OEM name 8 MSWIN4.1
Bytes per sector 2 512
Sectors per cluster 1 8
Reserved sectors 2 51
Number of FAT copies i 2
Root directory entries 2 0
Total sectors 2 0
Media descriptor 1 F8
Sectors per FAT 2 0
Sectors per track 2 63
No. of sides 2 255
Hidden sectors 2 63
High word of hidden sectors 4 63
Huge sectors 4 4192902
High word of huge sectors 2 4192902
Sectors per FAT 2 4095
High word of sectors per FAT 2 4095
Drive description {lag 2 0
File system version 2 0
Root directory starting cluster 2 2
High word of root directory 2 2
starting cluster
File system information sector 2 I
Back up boot sector 2 6

Reserved

conlinued...

Appendix G: Boot Parameters 733

..continued

BIOS drive number 1 128
Reserved i 0

Boot signature 1 41

Volume D 4 649825316
Volume label 11 ICIT

File system type FAT32

Figure G.2

There are significant changes in the contents of the boo t sector of
a 32-bit FAT system. The entries ‘Number of hidden sectors’ and
‘Huge sectors’ have now been made 4-byte entries. The first two
bytes contain the low word of the value, whereas, the next two
bytes contain the high word value, '

The number of sectors per FAT in a 32-bit file system is likely to
exceed what can be accommodated in two bytes. Hence the entry
‘Sectors per FAT' for a disk with a 32-bit file system would
typically have a value 0. The value of *Sectors per FAT’ is now
stored as a 4-byte entity, with the similar arrangement of low word
and high word as discussed earlier.

The boot sector of a 32-bit FAT system also has new entries like
‘Drive description flag’, ‘File system version’ ‘Starting cluster
number of the root directory’, *Sector number of the file system
information sector’, and the scctor number of the ‘Backup boot
sector’,

The *Drive description flag’ is a two-byte entity. Bit 8 of this flag
indicates whether or not the information written to the active FAT
will be written to all copies of the FAT. The low four bits of this
entry contains the O-based FAT number of the active FAT. These
bits are meaningful only if bit 8 is set.

48

734 | Let Us C

In the entry ‘File system version number’ the high byte contains
the major version number, whereas, the low byte contains the
minor version number.

The entry ‘File system information sector’ contains a value
indicating the sector number where the file system information is
present. This file system information consists of the fields shown
in Figure G.3.

Description Length
File system signature 4
Total number of frec clusters 4

Sector number of the next free cluster

Reserved

Figure G.3

The entry ‘File information sector’ contains a value OFFFFh if
there is no such sector. The entry ‘Backup boot sector’ contains a
value OFFFFh is there is no backup boot sector. Otherwise this
value is any non-zero value less than the reserved sector count.

H Linux Installation

735

736 Let Us C

installing Red Hat Linux 9.0. In addition 1 have also

T his appendix gives the steps that are to be carried out for

indicated a few commands that are necessary to compile

and execute the programs given in Chapters 20 and 21. Follow the
steps mentioned below to carry out the installation.

(a)
(b)
(c)
(d)
{e)
()
(g)
(h)

(1)
)
(k)

(0

Configure the system to boot from CDROM drive.

Insert the first CD in the drive and boot the system from it.
Hit ‘Enter’ key when the ‘boot’ prompt appears.

Select the ‘Skip® option in the "CD Found" dialog box.

Click on the ‘Next’ button in the ‘Welcome' screen.

Click on the ‘Next’ button in the ‘Language selection” screen.
Click on the ‘Next’ button in the ‘Keyboard’ screen.

Click on the ‘Next’ button in the ‘Mouse Configuration’ .
screen.

Select the *Custom’ option in the ‘Installation Type’ screen
and then click on the ‘Next’ button.

Click on the ‘Next’ button in the ‘Disk Partitioning Setup’
screen.

Selcct the ‘Keep all partitions and use existing free space’
option in the ‘Automatic Partitioning’ screen and then click
on the ‘Next' button. Ignore any warnings generated by
clicking on the “OK’ button.

Click on the “Next’ button in the ‘Boot loader configuration’
screen.

(m) Click on the ‘Next' button in the ‘Network configuration’

(n)
(o)
(p)
(q)
(r)

screen.

Click on the ‘Next’ button in the ‘Firewall configuration’
screen.

Click on the ‘Next' button in the ‘additional language
support’ screen.

Select a suitable option in the ‘Time zone offset’ screen and
click on the ‘Next’ button.

Type a password for the root account in the ‘Set root
password’ screen and then click on the ‘Next’ button.

Click on the ‘Next’ button in the ‘ Authentication
configuration’ screen.

Appendix H: Linux Installation _ 737

(s) In the *Package group selection’ screen make sure that you
select the following options—X window system, K desktop
environment, Development tools, GNOME software
development and then click on the ‘Next” button.

(t) Select *“No’ option in the ‘Boot diskette creation” screen

(u) Click on the ‘Next’ button in the ‘Graphical Interface (x)
configuration’ screen.

(v) Click on the ‘Next’ button in the ‘Monitor configuration’
screen.

(W) In the ‘Customize graphical configuration’ screen select the
‘Graphical’ option and then click on ‘Next’ button.

(x) Once the system restarts configure the system to boot from
Hard Disk.

Using Red Hat Linux

For logging into the system enter the username and password and
select the session as KDE (K Desktop Environment). Once you
have logged in, to start typing the program use the following menu
options:

KMenu | Run Command

A dialog would now pop up. In this dialog in the command edit
box type KWrite and then click on the Ok button. Now you can
type the program and save it,

To compile the program you need to go the command prompt.
This can be done using the following menu option.

KMenu | System Tools | Terminal

Once at the command prompt you can use the gee compiler to
compile and execute your programs. You can launch another

instance of the command prompt by repeating the step mentioned
above.

738 Let Us C

Index

739

740

Let Us C

L]
.

0, 328, 329, 330, 331
164,72

I= 31

#idefinc, 244, 245, 247
telif, 258

#else, 257. 258
#lendif, 255, 256, 258
#if, 258

#ifdef, 255, 256, 257
#ifndef, 257

tiinclude, 253, 254, 258
#Hpragma pack, 382, 630
#pragma, 261, 263
#undef, 200

'/a=‘. “)6

& &, 64

&, 180

*)80, 182

*= 106

++, 106

+=, 106

= 106

=, 106

<, 51

<= 5|

==,51,52

> 475

> 51

>=,51

>>, 486

b /-

fl, 64

L

__cdecl, 555
__declspee (dllexport), 640
__sldeall, 555, 556

A

Actual arguments, 167, 189
Address of operator, 180
API Functions, 547

Application Mcssage Queues, 552

arge, 466, 468, 556
argy, 4006, 468, 550
Array, 270, 271, 272, 279, 344
Array
Accessing Elements, 273
Rounds Checking, 276
Declaration, 272
Ininalisauon, 275

Memory representation, 283, 287

of characters, 328
of pointers to strings, 347

of pointers, 300, 347, 348, 351

of structures, 371, 373

Passing to function, 277, 286

Reading data, 274
Storing data, 273
Three dimensional, 302
I'wa dimensional, 289
Mmgocrativity, 34
atofl), .
auto, 225,228, 234

B

BeginPaini(), 588
Binary Files. 434
bioscom(), 622

Bit Ficlds, 513, 515
Bty), 604, 605, 606, 612 -
Bﬂwg‘ Operators, 482
Blockinw alg's. 675
BOOL, 537

Boot Paramelers, 629
Boot Sector, 626
Bounds checking, 333
break, 118, 123, 138
BUTTON, 564

C

C++.3

Call by Refercnce, 178, 188
Call by Value, 178, 186
CALLBACK, 568,572
Calling Convention, 172
CapsLock, 637

Index 741
case, 136 D

Characler Set, 5 :

Character, 10 Data spacc, 626

Child process, 655 Data Type

CloseHandle(). 632, 647
COLORREF, 537
Command line arguments, 466
Comment, 15
Communication using Signals, 668
Communication with keyboaid, 634
Communication with storage devices,
626, 633
Compilation, 19
Compiler, 214, 215, 221
Compiler
16-bit, 214
32-bit, 214
Compound assignment operators, 106
Conditional Compilation, 255
Conditional Operators, 76
Consale /0, 395
Console I/0 functions, 395, 396
Console I/O Functions
formatted, 395, 396
unformatied, 395, 405
const, 340, 341, 342
Constants, 6, 7 _
Conicxt Switch, 654
continue, 120, 123
Contro! Instructions
Decision making Instructions, 50
Loops. 98 ;
Control Instructions
epp, 252
CPU registers, 544
CPU registers, 621
CreateCompatibleDC(). 606
CreatcFile(), 631, 647
CreatcFontindirect(), 585
CreateHatchBrush(), 594
CreatePattemBrush(), 595
CreatcPen(), 592
CreateSolidBrush(), 588, 594
CreateWindow(), 565, 570

enum, 506, 507
Database Management, 441
Deeision Control Instructions
switch, 136
Decision Making Instructions, 50
default. 136
DefWindowProc(), 572, 576
DeleteObjecy(), 586, 590
Demnis Ritchie, 2, 42
Device context, 580, 581
Device dniver, 623
Dircctory, 626
Disk Boolstrap Program, 629
DispatchMessage(). 571, 572
DLL, 548
DliMain(), 639
double, 219
do-whilc, 98, 121
DrawText(), 586
Dynamic Linking, 635

E

EDIT, 564

Ellipse(), 589

clse. 50, 61, 66, 144
EndPaint(), 586

cnum, 5006, 509

EOF, 469

Escape Scquences, 401
Event Driven Model, 551
exec, 659

exccl(). 659, 664
execle(), 659
Execution, 19

execy(), 659

exccvp(). 659

Exported functions, 640
expose_cvent, 683, 684
extern, 234

742

dLd :js‘ C

F

felose(), 422, 472
feoff), 469
ferror(), 470, 471
fMush), 432
fg command, 673, 685
fgete(), 420, 424, 448, 469, 471,472
fgets(), 430
File Allocation Table, 626
File /O, 395, 416
File I/O
Opening Modcs, 426
FILE_BEGIN, 632
FILE_SHARE_READ, 631
float, 219
Floating Point Emulator, 222
Floppy disk
Logical structure, 627
fopen(), 418, 419, 421, 426, 452,
470,472
for, 98, 107, 110, 115
fork(), 655, 656, 657, 664
Formal arguments, 167, 170
Format Specifications, 397
Format specifiers, 18
fprintf), 430
fputc(), 422, 424, 425, 448, 473
fputchar(), 407
fputs(), 427, 428, 430
fread(), 441, 446
fscanf(), 431
fseck(), 446, 447
flell(), 447
Functions, 158, 165
Functions
Adding to library, 197, 200
Called function, 159, 162, 163,
164
Calling function, 159
definition, 162, 163
Passing valucs, 166
Prototype declaration, 175, 177
Retuming from, 168, 169, 170
returning pointers, 518
Scope, 171

variablc arguments, 520
fwrite(), 441, 446, 448

G

g_signal_connect(), 680, 683, 685
gee, 653, 664

GDI, 581, 582

gdk_draw_are(), 684
gdk_draw_line(), 684
gdk_draw_polygon(), 684
gdk_draw_rectangle(), 684
gdk_ge_new(), 684
gdk_ge_unref(), 684
GENERIC_READ. 631
GENERIC_WRITE, 633

gete(), 420, 422

getch(), 406

getchar(). 406

getche(), 400

GetClientRect(), 612
GetCommandLine(), 557
GeiDC(), 600

GetKeyState(), 642
GetMessage(), 571

getpid(), 655

getppid(), 658

gets(), 407, 408, 409, 333, 334
goto, 145

gotoxy(), 442

GTK library, 678

gtk_init(), 680

gtk_main(), 681
gtk_main_guit(), 680
gtk_widget_set_size_request(), 680
gtk_widget_show(), 681
gtk_window_new(), 680
gtk_window_set_title(), 680
GTK_WINDOW_TOPLEVEL, 680
GtkWidget, 680

H

HANDLE, 537
Handling Multiple Signals, 671
Hardware Intcraction, 618

Index

743

Hardware Interaction
DOS Perspective, 619
Windows Perspective, 623
HC_ACTION, 642, 644
HINSTANCE, 556
HS_CROSS, 594
Hungarian Notation, 558

I

I/0 Redirection, 473
Input, 476
Input/Qutput, 477
Output, 474
if, 50, 51, 56, 61, 66, 144
Init, 658, 661, 664
InitInstance(), 570, 571, 572, 595
Instructions, 23
Instructions
Arithmetic Instruction, 23, 25
Control Instruction, 23
Type Declaration Instruction, 23,
24
int, 537
Integer, B
Integers, 214
Integrated Development Environment
(IDE), 19
Interrupt Descriptor Table, 623
Interrupt Service Routines, 619
Interrupt Vector Table, 619
Interrupts, 544, 621
inthandler(), 672

J

Java, 3

K

K Desktop environment (KDE), 653
Kemel routine, 623

Kemel, 623

Kemighan and Ritchie, 168
Keyboard messages, 636
KeyLogger, 645

Keywords, 6, 12
Kill, 664, 672, 684
KillTimer(), 613
KWrite, 652

L

LineTo(), 589
Linus Torvalds, 650
Linux, 3, 19, 536, 650
Linux
Event Driven programming, 678
Orphan, 661, 664
Preemptive scheduling, 654
Process Table, 660
process, 654
Shell, 661
Zombie, 661, 664
LISTBOX, 564
LoadBitmap(), 595
LoadLibrary(), 641
LOGFONT, 585
Logical Operators, 64
long int, 537
long, 214, 215, 216
Loops, 98, 114

do-while, 98, 121
for, 98, 107, 110, 115
while, 98, 99, 101
Low Level Disk VO, 447
LPARAM, 537
LPSTR, 556
LRESULT, 568, 572
Is command, 660
Lvalue, 77

M

Macro Expansion, 244

main(), 16
MAKEINTRESOURCE, 595
malloe(), 352, 353

Mangling Keys, 644
MessageBox(), 557, 562, 566

744

Let Us C

Microprocessor

16-bit, 214

32-bit, 214
MK_LBUTTON, 600
MoveToEx(), 589, 600
MSG, 571
Multi tasking, 540

N

Negative numbers, 222
Storing, 222

O

O_APPEND, 450
O_BINARY, 451
O_CREAT, 451
O_RDWR, 451
O_TEXT, 451
O_WRONLY, 451
OnCreate(), 610
OnCreate(), 641
OnDestroy(), 572, 641

OnLButtonDown(), 599, 600

OnMouseMove(), 600

OnPaint(), 585, 586, 590

OnTimer(), 610, 612
open(). 450, 452
OPEN_EXISTING, 632
Operator

. 380

->, 380

>, 475

AND, 493

Bitwise, 482

Left Shifl, 488

One's Complement, 484

OR, 498
Right Shift, 486
XOR, 499
Operators, 17, 73
Operators
* Address of, 180
Associativity, 34

Compound assignment operators,

106
Conditional Operators, 76
Logical Operalors, 64
Relational Operators, 51
Value at address, 180, 278

P

Page Directory Table, 542
Page Table, 542
Page-in operation, 541
PAINTSTRUCT, 585
Parent process, 655
perror(), 471
PlaySound(), 612, 613
POINT, 589
Pointer, 185, 330
Painters, 178, 179, 184, 279, 292,
295, 300, 334, 347, 539
Pointers
to an Array, 295
to functions, 515
Polygon (), 589
Preprocessor Directives
Conditional Compilation, 255
File Inclusion, 253
Macro, 244, 248, 252
Preprocessor, 242,
printfl), 18,396, 471
PRN, 476
Processes 1D (PID), 654
Programming Model, 543, 547
Programming Model
Event Driven, 551, 562
Sequential, 543
Windows, 547
Prototype Declaration, 175, 177
ps command, 658, 664
pute(), 474
putch(), 407, 425
putchar(), 407
puts(), 333, 334, 407, 408, 409

Index 745
R sigset 1, 677
SIGSTOP, 673, 685
rand(), 612 SIGTERM. 672, 684
read(), 452 sizeofl), 439
ReadFile(), 632, 647 SND_ASYNC, 613
Real, 9 SND_FILENAME, 613

Record 1/O, 430,437
Rectangle(), 589
Recursion, 189, 193, 194
register, 227, 234
RegisterClassEx(), 570
Relational Operators, 51
ReleaseDC(), 600
return, 168, 169

rewind(), 446

RGB(), 586
ROM-BIOS functions, 622
RoundRect(), 589

S

S_IREAD, 451
S_IWRITE, 451

scanf(), 21, 22, 3196
Scheduler, 654
SEEK_CUR, 447
SEEK_END, 447
SelectObject(), 586
SetCapture(), 601
SetFilePainter(), 632
SetPixel(), 599
SetTextColor(), 586
SetTimer(), 611

short int, 537

short, 214, 215. 216
ShowWindow(), 565, 570
sigaddset(), 677
SIGCONT, 669, 672, 673, 685
sigemptysct(), 677
sighandler(), 670, 674
SIGINT, 669, 684
SIGKILL, 669, 672
signal(), 669, 672
Signal, 668, 684

signed, 214, 216, 217
sigprocmask(), 677, 685

sprintf(), 404, 405

srand(), 613

SRCCOPY. 607

sscanf{), 404, 405

Standard Library Functions, 335

slalic, 228, 229, 230, 234

stdaux, 472

stdprn, 472,473

Storage Class, 223, 220, 227, 230,
233

Storage Classes
Automatic, 224
External, 230
Register, 226
Siatic, 227

streal(), 342

sircat, 336

strehr(), 336

stremp(), 336, 343, 344, 346

strempi(), 336

strepy(). 339, 340

strepy, 336

strdup(), 336

stricmp(), 3306

String /0, 427

Strings
Bounds checking, 333

Strings. 328, 329, 334, 347

strien(). 337

strien, 330

striwr, 336

strmeat, 336

stmemp(). 336

stmcpy, 336

stmicmp(), 336

stmset(), 336

strrchr(), 336

strrev(), 336

strset(), 336

strstr(), 336

746

Let Us C

struet, 367
Structure, 364, 360, 374, 383
Structurc
Accessing clements, 370
Declaration, 367
Variables, 368
strupr, 336
SVGA, BN
S IHOWMINIMIZED, 565
Svw_SHOWNORMAL, 565
switch, 50, 136, 144
System Message Queue, 552, 637

T

termhandler(), 672

Text Files, 434

TextOut(), 586

Three dimensional array, 302

time(), 613

Two dimensional array, 344, 348

Type Conversion, 29

Type Declaration Instruction, 24

Typecasting, 511

typedef, 506, 510, 511. 537, 538,
556,572

U

un-catchable signals, 672
Unhook WindowsHookEx(), 642
UNIX, 3. 650

unsigned, 214, 216, 217

v

Value at address operator, 180, 278
Vanables. 6, 11

VDU, 473

VIGA, 580

void, 177

A%%

waitpid(), 662, 664
while, 98, 99, 101
WIFEXITED(), 663
Window Class, 564
Window Class
BUTTON, 564
EDIT, 564
LISTBOX, 564
Windows Hooks, 635
Windows, 536, 537
WinMain(), 555, 556, 557,562, 566,
571,595
WM_CHAR, 634
WM_CLOSE, 573
WM_CREATE, 610, 640
WM_DESTROY, 572, 573, 640
WM_KEYDOWN, 634
WM_KEYUP, 634
WM_LBUTTONDOWN, 596, 599
WM_LBUTTONUP, 596
WM_MOUSEMOVE, 596
WM_PAINT, 585
WM_QUIT, 571, 572,576
WM_TIMER, 610, 611
WNDCLASSEX, 569, 572
WndProc(), 568, 571, 585, 597, 599,
600
WPARAM, 537
WriteFile(), 632, 647
WS_OVERLAPPEDWINDOW, 565

X
XGA., 580

