
S System Considerations

The implementation of combinational logic and registers has been presented in
the previous chapter. This chapter considers the additional features required
when translating from the system design level to logic. It includes a discussion of
suitable control and timing techniques plus a description of the facilities that
must be included in order to ensure that a design is testable. This is preceded by
a general description of the translation process and the design options available
to the designer.

5.1 System to Logic Translation

At the highest level in the design hierarchy, the system description is expressed
in terms of functional blocks and data paths. This architecture diagram effec-
tively details the operations performed on the data and the information flow
through the system, without specifying how these features are implemented.
This part of a design can be regarded as the data architecture.

The control and timing circuitry associated with a design are normally omitted
at this level. This is because their inclusion is implicit in any design and also
because such circuitry can be regarded as an implementational detail. Similarly,
although the approach to testing must be established at the system design level,
test paths and associated circuitry will probably not appear on the top level
diagram.

Figure 5.1 shows an example of the data architecture of a general-purpose
central processing unit (CPU) plus the functional blocks for timing and control.
Unusually, some of the control paths are indicated; these show the interaction
between the data and control logic. The exact registers required in the system
are dependent upon the chosen ordercode. Nevertheless, the diagram is suf-
ficiently detailed to serve as an example for discussion here and elsewhere in this
chapter.

The design is centred around the arithmetic and logic unit (ALU). Operations
proceed by the control enabling a source register on to highway A and/or high-
way B, specifying an ALU function and finally clocking the JtLU result on
highway C into a destination register. The control signals are updated by the
timing circuitry so that a sequence of operations to fetch and execute i.nzructions
can take place.
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Figure 5.1 Processor architecture example

In general, a design is testable if its flip flops can be initialised to a known
state and subsequently monitored. Figure 5.1 has an in-built mechanism for
observing internal' states, since the content of all processor registers can be
placed on highway C. Furthermore, if all registers -connected to highway A (or
highway B) are disabled, then external data can be placed on this highway and
written into any register; this allows initial states to be entered into the machine.
Thus the processor is fully testable.

The logic diagrams detail every logic element that is requiredto implement a
design. Normally, the translation of the data architecture to logic diagrams is
fairly direct and straightforward. The composition of the control and timing
circuits tends to be more difficult. The control circuits have to cater for every
condition that will arise within the system and for complex systems it is easy to
overlook some of the conditions. Hence, some formal method of specifying the
control signals is highly desirable, this aspect is covered in more detail in section
5.3. The timing logic is closely associated with the control and evolves from the
choice of control type.

Once the logic diagrams are drawn, decisions have to be made as 'tO how to

implement the logic.,Scme functions may be very efficir'ntly implemented with
existing IS! or VLSI chips available 'off the shelf' from a manufacturer and are
therefore clearly not candidates for integration; random access memory, for
example. is in this category. However, functions that can'only be implemented
with existing SSI or MSI chips or architectures suited to bit slice techniques
which are unobtainable are suitable for integration. The possibility of integration
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should also be examined where existing LS! functions are inefficient to use
because of redundancy of included features and/or lack of some required func-
tions.

Larger chip sizes and smaller geometries allow large sections (or all) of a
design to be accommodated on a chip. Furthermore, it is likely that to exploit
the full area, a chip will contain circuitry from more than one designer. One
important aspect of the logic design is the interfacing of logic designed by
different members of a team, since poor communication between people can
often result in faults arising here. it is therefore vital to check carefully the inter-
faces between different logic sections. Unfortunately, the number of logic
elements on a chip is likely to necessitate partitioning the design for the purposes
of logic simulation  and this makes the checking of the interfaces more difficult.

In general, designers wishing to integrate some logic will have access to either
semi-custom or full custom facilities. The next section outlines the differences
between these two design approaches.

5.2 Full Custom and Semi-custom Design

The most efficient implementation of a function is realized by a full custom
design. The content of each layer is entirely under the designer's control, resulting
in an optimized use of the silicon area.

The implementation of a full 'Custom design requires an understanding of all
aspects of the design procedure. Thus the designer has to be knowledgeable
about suitable system architectures for integration, the approaches to logic
design, the electrical characteristics of MOS circuits, the fabrication process and
the design rules appertaining to layout. This information is put to practical use
in realising each level of the design hierarchy and in translating to the next level
down.

In addition, the designer needs to be familiar with the software package to be
used for entering and checking the chip description at the geometric layout,
transistor circuit and logic element levels. Since it is necessary to initiate this
package,some understanding of the user-machine interface of the computer
on which It runs is also required.	 -

It will be appreciated that it takes time to assimilate this large amountof
information. In particular, significant times can be encountered if documen-
tation Is unavailable or pooiiy presented. Consequently there is a 'start-up' time
before design can commece.

Once the design is underway, considerable design effort is required to define
each layer on the chip; for example,the NMOS process described requires seven
masks. This leads to a long overall development time: eighteen monthswould be
realistic for a first-time designer implementing a 'hand-crafted' design. This time
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can be shortened by automating some aspects of the design. The most useful
design aid in this respect is automatic routing of interconnections between cir-
cuits. Manual routing dominates the development time, even for a relatively
small design.

The design effort needed and the number of masks required also makes it
expensive to manufacture a chip. In a commercial environment, such a cost is
only viable If a large number of chips are required (more than 100000 devices
per year) or If high performance is the design criterion. In sftutions where low.
volume prototypes are required, costs can be reduced by including several
designs on a wafer.

However, a more effective approach for a low-volume requirement in terms
of design effort and cost is semi-custom design. Here the user designs the logic in
terms of available logic functions which the manufacturer has designed and
characterised. In its simplest form, the area is organised as a two-dimensional
array of logic cells surrounded by peripheral cells. This arrangement is referred
to as a 'gate array' or an 'uncommitted logic array' (ULA).

Each logic cell in the array is normally identical and typically consists of four
to eight transistors which can be connected up in different ways (on the metal
layer(s)) to form primitive logic functions. For example, consider a CMOS cell
consisting of two NMOS and two PMOS transistors. By appropriate connections
between these devices and to power and ground, this cell can be configured to
form two inverters, one two-input nor gate, one two-Input nand gate, two pass
gates or an inverter plus a transmission gate.

The peripheral'cells provide an interface between the circuitry of the logic
cells and circuits external to the chip. These cells are placed in fixed positions
around the edge of the chip and include a power and ground pad. The remaining
peripheral cells can be configured by the user to be either an input or output pin.

With a ULA, all silicon Layers are pie-formed, except for the metal layer(s).
Thus the user only has to determine the Interconnections required between cells
and the configuration of the cells to realise the required logic; all these connec-
tions appear on the metal Layer(s). Thus the geometrical layout stage in semi-
custom design reduces to specifying one mask for a fabrication process with one
metal layer (or three masks for a two metal layer process). Again automatic
routing of this stage is essential for a short development time.

A semi-custom approach also simplifies the design process in other ways. The
designer can think of and implement the design solely in terms of logic gates
with well-characterised electrical parameters; the design process is similar to that
of designing a system using an available logic family. This enables the design to
proceed at a much higher level in the design hierarchy than is possible in full
custom, and also results in a much shorter 'start-up' time.	 J

The ease of semi-custom design leads to a relatively short design time of a
few weeks. In addition, the simplicity of this design approach and the need for
only one (or three) user-specified mask(s) make it probable that a working
design will be obtained at the first attempt.
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The low manufacturing cost of a semi-custom design compared with full
custom also makes the gate array attractive. The pre-formed ULA is a general-
purpose circuit and has the low cost associated with a high-volume product. The
user, of course, has in addition to bear the cost of the metal mask(s), but this is
far lower than the cost of providing all the masks required by full custom design.

There are disadvantages from adopting a semi-custom approach. These arise
from a less efficient utilisation of area, since functions are constructed from
general-purpose primitive functions rather than special-purpose circuits. Also,
the use of primitive functions leads to a large number of interconnections and
this usually prevents more than about 80 per cent of the logic cells being used.
A range of gate array sizes h available, starting at around 500 gates and increas-
ing by a factor of approximately two up to about 10000 gates. Thus the amount
of logic that can be placed on a ULA is rather limited.

In addition to the primitive functions available from a logic cell, most manu-
facturers now provide a library of more complex functions, such as flip flops,
decoders, counters etc. These are usually formed from a group of cells which
ae interconnected on the metal layer(s).

An alternative approach to semi-custom design is that based on standard cells.
Here, the manufacturer designs, and provides performance and area-efficient
functions. The range of functions being offered is rapidly expanding and general-
purpose circuits at the LSI and MSI levels are now emerging. ' These vary from
random access memory to logic elements such as arithmetic and logic units,
PLAs, shifters and multipliers.

The user now constructs the final chip design from these building blocks
whch are proven and well characterised. This approach leads to the fast develop-
ment time associated with gate array design, while the silicon area can be utilised
effectively at the cost of providing an individual mask for each layer of a chip
design. An intermediate semi-custom approach, which avoids this cost penalty,
results if the silicon is. pre-formed below the metal layers but contains a mixture
of functions; these could include memory elements (flip flops or random access
memory), gate array cells, arithmetic and logic functions.

Approaches based on standard . cells allow an increased packing density on
that available for a gate array; Consequently, chips in excess of 20000 gates are
becoming achievable and up to 50000 gates are anticipated. An extension of the
standard cell technique would seem to offer a viable method for managing and
implementing a VLSI design.

5.3 Control

The control unit in a design determines the action of the hardware at any time.
Techniques for implementing control are either formal or informal. In the
former t ype, operations are synchronised to a clock. Informal or asynchronous
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control results when actions are initiated by the detection of states arising within
the hardware.

In general, a chain of delay elements driven from detected states within the
hardware forms the basis of an asynchronous control unit. This approach yields
the fastest possible 'function speed. However, such a unit consists of special-
purpose hardware which can only deal with the conditions built into it. Thus
compared with synchronous methods of control, it is more difficult to design,
commission, monitor and modify.

The problems of designing an asynchronous control and the need to cater for
all the conditions that will arise within the hardware make it virtually impossible
to produce a correct control at the first attempt (despite careful logic simu-
lation). Thus a vital feature of this type of control is an ability to change it! It
should, therefore, be apparent that this informal approach to control is very
unsuitable for inclusion in a chip design.

Formal control techniques can be split into two groups. The first is referred
to as'fixed control logic'. Here, control is hardwired into the system and typically
consists of a chain of flip flops connected as a shift register. The principle is
illustrated in figure 5.2. Each flip flop shown is a master-slave device and its
(slave) output is associated with a set of control signals which cause a particular
action to be performed in the data logic. Thus a flip flop is required for each
control state and in a non-overlapped system only one flip flop is set at any
time.

Initialisation of the chain sets the flip flop In stage 1. Thereafter, the master
and slave clocks are alternately applied and at every slave clock, control pro-
gresses sequentially down the chain. The slave clock causes a flip flop in the next
stage to be set and the set flip flop in the current stage to be reset. At points in
the chain, the action required next may depend upon conditions within the
hardware. For example, the implementation of an ordercode in a processor
necessitates a different sequence of actions for each instruction and the sequence
requited is determined by the function bits in the order. This choice of actions is
implemented in the control logic by the control chain splitting, as shown at stage
3; the conditions applied at the input of this stage effect a conditional branch at
this point.

Ideally the time for the action associated with each stage is similar and this
determines the clock period or system beat time. However, some actions span
more than one clock period and waiting for data from a store may involve several
beats. Clearly, the next operation can only be initiated when the current action
has completed. Hence it is necessary in these cases to inhibit the application of
the clocks to the control chain. This is achieved by gating the master and slave
clocks with a Wait signal which is generated by the control whenever appropriate.
(Strictly, only the slave clock need be gated.)

A synchronous control leads to some redundant time at the end of some
actions since the next operation will not commence until the start of the next
beat. Thus a poorer speed is obtained than with an asynchronous control. How.
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Figure 5.2 Fixed control logic
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ever, the main drawback of the fixed control approach, like the asynchronous
control. is . the specialised nature of the control hardware. Again, the control
needs to be capable of modification and changes are difficult to incorporate
since they often lead to alterations in the control signals generated by existing
portions of the chain. Thus the fixed control logic technique is only practical for
small chip designs or for small portions of a chip, such as a multiplier.

A general-purpose approach to formal control is that of a microprogrammed
control. Here the control information is held in a memory known as the micro.
program store. Each line of the store is associated with a particular control state
and contains the control signals for that state. Thus store lines can be regarded
as holding microinstructions or microcode, and operations are implemented by
accessing and obeying the correct sequence of microinstructions.

Microprogramming does not yield the same functional speed as the other
tchniques described. However, the flexibility and advantages gained by adopting
this approach in terms of chip design more than outweigh any drawbacks. It is
now possible to change the existing control merely by rewriting lines in the
microprogram store. In the same way, new facilities can be included and existing
operations removed by adding new microinstructions and deleting others. Thus
it should be apparent that the system seen by the user is that provided by this
store.

The organisation of a microinstruction closely reflects the data architecture.
The lines are normally divided into fields, where each field has a fixed position
in the line and has a specific purpose; for example, the processor organised
around an ALU, as in figure S. 1, would require three fields to perform a register-
to-register transfer; thOe are a source register field, an ALU function field and a
destination register field. Using the concept of fields, the microcode required in
a store line can be written in terms of a simple, low-level assembly language. This
enables appropriate software to check that the specified control actions are com-
patible and then to generate the required binary pattern. This mechanism can
also be used to produce up-td-date documentation of the contents of the control
store.

Figure 5.3 shows hardware for a microprogram control. The address of the
next microinstruction to be obeyed is loaded into the address register (Addr
Reg) when the LDA clock is applied. The store is accessed at this address and the
line contents are loaded into the microcode register on the LDD clock. Part of
the information in the line comprises the control signals which cause activities
within the data logic; these are equivalent to the control signals generated by the
fixed control logic when a flip flop in the control chain is set. The remaining
fields are used to determine activities within the timing and control units.

Some control states lead directly to the action contained in the next micro-
instruction, while others require the actIvities that follow it to depend upon con-
ditions and states within the data logic. This is effected by including a condition
field and a next-address field in the microinstruction. The address-generation
hardware combines these fields with incoming states and conditions from th
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Figure 5.3 A microprogram control

data logic, to determine the next microprogram address to be jumped to. The
next-address field contains the address normally accessed next from the micro.
program store, while the condition field specifies the type of jump required
(conditional or unconditional) and whether the next-address is to be modified.

It is usual to include . number of-different types of jumps in a microinstruc.
tkin. Normally available options include an unconditional jump to the next.
address, an unconditional jump to the next-address modified by states within the
system and a conditional jump to the next-address (with a jump to the next-
address modified if the condition is not true). The two latter options can effect
a multi-way switch and a conditional branch respectively.

Once a sequence of microinstnjctjgns has commenced, it continues until the
finish field indicates that the operation is complete. The finish signal is used to
terminate the selection of addresses from the address generation logic via the

4
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Iwo-to-one multiplexor (MPX). Initialisition of a new code sequence now arises
from sources external to the control unit which are arranged in order of priority.
In this way, a number of tasks can be initiated and executed by the microcode.
Hence the microprogram hardware shown will support both simple and complex
designs.

The microinstructiori has to control all parts of the data logic, normally at the
register or logic block level. This, combined with the fields associated with the
control and timing, leads to the width of the microprogram store being much
wider than the width of the data logic paths, even when the fields are encoded.
However, the number of store lines can be relatively modest. Thus for example,
a $1 2.line, 80-bit wide microprogram store would be capable of controlling most
16-bit wide processors and assisting with 'housekeeping' tasks, such as dealing
with interrupts. This level of hardware support may make the choice of a fixed
control more attractive for a small amount of logic.

The system beat time is determined by the maximum time to perform the
activities defined by lines in the microprogram store, which do not have to wait
for external data. Microinstructions which request information external to the
system, such as from a store, are likely to take more than one beat to execute.
Again, this is effected by using gated docks in the control. Microinstructions
where waiting occurs are indicated by a bit being set In their wait field. This bit
is used to stop the LDA and LDD clocks in the control unit and these are only
recommenced when the required data has arrived.

There is also an execution time associated with the circuitry of the micro-
program control. Here, time is needed for a line read from the microprogram
store to be loaded into the microcode register and the microinstruction decoded.
Following this, time is required for the next-address in this store to be calculated
and then for this new line to be read out. Clearly this execution time should be
less than the system beat time, otherwise the data logic will be held up by the
control. For this reason, the operation of the control and data logic are usually
synchronised to the system beat.

The microprogram store can be implemented in random access memory
and this is useful in a prototyping environment. However, it should be noted
that the data is only retained while the memory is powered up and it needs to
be rewritten at each power-up. Once the microprogram Store contents have been
finalised, it is more convenient to store microinstructions In a read only memory
(ROM). This a a non-volatile memory whose data Is fixed. Thus an initial oper-
ation Is required to establish the dCsired information in the memory and there-
after the data is only read.

In the MOS technology described, in ROM can he Implemented using the
PIA structure. Referring to figure 4.5, the AND plane performs the address
decode. Thus the AND plane inputs are the true and inverse phases of the
address bits. The outputs from the AND plane are the address decode lines and
there is one for each microinstruction contained in the OR plane. The address
decode line selected by the input address is activated (high). enabling the asso-
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dated microinstruction in the OR plane to be output. All other AND plane
outputs are low and thus have no effect on the OR plane operation. The place.
merit of transistors in the selected microinstruction causes the associated output
lines from the OR plane to go low while all other OR plane output lines remain
high. Ckarly, the size of ROM that can be implemented in this way is limited by
capacitive loading and area constraints.

5.4 Timing

While the control specifies the activities within a system during a beat, the
timing unit determines when these occur and updaies the control at the end of
the beat. Thus the control and timing circuitry are closely coupled. Integration
imposes additional constraints if a correct design is to be obtained at the first
attempt. A formal approach is needed which incorporates 'safe' timing strategies.
These avoid flip flop synchronisation problems and the initiation of incorrect
actions by race hazards. The former arise if the flip flop set-up and hold times
are not observed, while race hazards are the unwanted voltage pulses which arise
as a result of differencesin delays through gates and interconnections. Again,
synchronous timing, rather than asynchronous, Is a fundamental requirement in
achieving these aims.

The activities performed In a beat normally have to be sequenced and thus
there are a number of distinct phases associated with an action. For example,
consider the microprogram control of figure 53 controlling the processor of
figure 5.1. If both are synchronised to the system beat, then an action in the
data logic and control can be split into four phases (see figure 54).

At the start of the beat, the new microinstruction is loaded into the micro-
code register. During phase I. this register'soutputs settle to their new value and
the microinstruction is decoded. Referring to figure 5.1, the inputs to the ALU
are then selected and become valid during phase 2. The -ALU function is per-
formed during phase 3 and the AL(J output is strobed into the required desti-
nation register during phase 4.

Parallel to this activity, the microprogram control (figure 53) is accessing the
next microinstruction..Again during phase 1 the microcode register outputs are
assumed to be settling. During phase , the address generation hardware calcu-
lates the address of The next microinstruction. At the start of phase 3. this
address is clocked into the (microprogram) address register and the line is
accessed during the remai .nder.,q phase 3 and phase 4.

The four (non-overlapping) timing pulses TI. 12, 13 and 14 associated with
the four phases are shown in figure,,•54 These are used by the data logic and
control to perform clocking operations during a beat. The data logic uses 14, to
clock information into the destination register while the loading of the micro-
code register and the (microprogram) address register are . synchronised to TI
and .T3 respectively.
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A ring counter can be used to form these- four pulses, as shown in figure 5.5.
Each flip flop shown is a master-slave device and the arrangement is essentially
a shift register with the last flip flop in the ring (FF8) connected back to the
start (FF1). The counter is btitialised by setting FF1 and clearing all other flip
flops. Thereafter, master and slave clocks are alternately applied. At each slave
clock, the 4 1' propagates to the output of the next flip flop In the ring and the
set flip flop in the current stage is cleared (see table 5.1). Since the output of
FF8 propagates to FF1, a 'I' continues to circulate indefinitely around the ring
of flip flops. Phases can be prolonged by not applying clocks to the counter,
and these gated (master and slave) clocks effect the wan conditions within the
control.	 -

The outputs of FF1, FF3, FF5 and FF7 form pulses TI, T2,T3 and 14 res
pectively. Non-overlapping of the timing pulses results from using the outputs of
alternate flip flops. In practice, the capacitive loads associated with TI. T3 and
14 would necessitate their buffering prior to being used in the system. As a
result, buffer gate chains would be Inserted into the shift register data path and
these cause a delay in data teaching their succeeding flip flop.

The delay time resulting from buffering 14 is likely to be the largest. as T4
is. used extensively throughout the data logic. This time directly contributes to
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Table 5.1 Ring counter sequence

FF1 FF2 FF3 FF4 FF5 FF6 FF7 FF8. Pulse

	

1	 0	 0	 0	 0	 0	 0	 0	 TI

	

0	 1	 0	 0	 0	 0	 0	 0

	

0	 0	 I	 0	 0	 0.0	 0	 T2

	

0	 0	 .0	 1	 0	 0	 0	 0

	

0	 U	 0	 0	 .1	 Q	 0	 0	 T3

	

..0	 0	 0	 0	 0	 1	 0	 0

	

0	 0	 0	 0	 0	 0	 1	 0	 T4

	

0	 0	 0	 0	 0	 0	 0	 1
I	 0	 0	 0	 0	 0	 0	 0	 TI

Gated clocks

T1	 T2	 T3	 T4

LOt)	 .	 LOA	 Load Destination
Register

F1irre 55 Generation of timing pulses

the time between the application of the slave and master clocks since the master
of FF8 cannot be clocked until its input data has arrived Thus the effect of
buffering is to eXtend the clock period it therefore follows that by slowing
down the clock- rate, the configuration of figure 5.5 can always be made to
operate ëorrectly with guaranteed non-overlap between the timing pulses, regard-
less of the delay introduced breapaciuve biding.

The dopton or -two-phase non-overlapping clocks, 01 and 02. for the master
and slave clocks has previously been discussed in section 4.5. These can be
generated Off-chip and applied- via two-, biput pins. However. since the two
phases are normally generated from a common clock source. it is more sensibk
to deae them on-chip from a single clock waveform (see figure 5 6a)

....
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Figure 3.6 Generation of two-phase non-overlapping clocks: (a) logic, (b) timing

The arrangement is essentially that of a Set-Reset flip flop with Clock applied
to the set input and Clock to the reset. Conventionally, the feedback connections
for such a flip flop arise from connecting Q to the input of nor gate B and Q to

the input of gate A. However, clock signals need to be buffered to drive their
capacitive load. These buffer gate chains are incorporated into the flip flop to
ensure that 01 and 02 do not overlap; it can be seen from figure 5.6a that if the
feedback to gates A and B were from Q and Q, and the delays 'd and t through
the buffer gates forming Of and 02 differed, then 01 and 02 could overlap. This
is avoided by making the feedback connections from the buffer chain outputs to
gatesA and B.
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The timing waveforms are shown in figure 5.6b. When Clock goes high,
is forced low and, after the delay : through the non-inverting buffer chain, 02 is
also forced low. This causes both inputs to nor gate B to be low and thus Q goes
high. After the delay t4 through the non-inverting buffer chain, 01 goes high.
This state is maintained by the feedback until Clock changes. When Clock goes.
low, the input to not gate B goes high, forcing Q low. After the delay td, 01 goes
low. As a result, both inputs to gate A are now low and Q responds by rising:
Thus after a further delay t, 02 goes high. This output state is maintained until
Clock goes high again.

It should be noted that the operation of the flip flop is such that when Clock
changes state, the circuit output currently high is forced low, and this causes the
other circuit output to go high. The time 01 and 02 both remain low is equal to
the combined delay of a not gate and its associated buffer chain. Thus, even if
buffer gates are not required, gates should be Inserted at this point to provide a
delay.

02 is derived from Clock going low and its width is dependent upon the time
Clock is low. Similarly, the width of 01 depends upon the time Clock is high.
These widths are reduced .by the combined delay through a nor gate and its
associated buffer chain. FOr example, assuming a Clock high and low time of
t, and equal buffer chain delays tc significantly greater than all other gate delays,
then the widths of 01 and 02 are approximately z, - tc with non-overlap times
of :. It therefore follows that by increasing the clock period, the circuit of
figure 5.6a can be guaranteed to produce two-phase non-overlapping clocks,
regardless of the buffer chain delays.

The clock-generation circuit of figure 5.6a can also be used to generate two-
phase clocks using one of the ring counter outputs as the Clock input, in order,
for example, to Inérement countess during i particular phase.

Clock signals normally fan out to many places on a chip and consequently are
associated with long line lengths. It is essential that such lines are implemented
in metal to avoid the significant line delays associated with long diffusion or
polysilicon lines. The delay down a metal line is negligible and thus no timing
skew arises when distributing a clock to different parts of the chip. Running
clocks on metal lines also ensures that any non-overlap of clock pulses is pre-
served.

53 Testability

Chip testability is the ability to determine the correct functionality of a design.
There is clearly no point in proceeding with a design unless it can be tested, and
this section considers design features that allow a system to be tested. This is

usually referred to as 'designing for testability'.
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The testing of large systems presents many problems. The test time is propor-
tional to the number of gates to the power it, where it is between 2 and 3. Thus
the time to test makes It impossible to test exhaustively an entire system. For
this reason, if a large system can be partitioned Into sub-systems which can be
tested, then the test time can be very much reduced. It should be noted that
there are likely to be few spire input and output pins available. This results in
the use of common input lines to the sub-systems plus common output lines. In
addition, an address to specify the sub-system is required.

This structure is exhibited by the processor example of figure 5.1. Here the
sub-systems are the registers attached to the highways. The common input is the
data on highway A (or B) and the multiplexed output Is the data on highway C.
Reding and writing to a register for test purposes can most easily be accom-
plished by use of a microprogram control, such as that shown in figure 5.3.

A request to monitor a register within the system Is treated as originating
from an external source. This causes a jump to a microprogram routine at the
end of the current microcode sequence. By arranging for the register address
supplied with the monitor request to replace that specified in the microprogram
for highways A, B and/or C. any addressable register in the CPU can be accessed
for reading from or writing to. In this way, the data logic can be externally
tested. Furthermore, no additional hardware Is needed as the necessary circuitry
is incorporated in the existing structure.

It should be noted that the structure of figure 5.1, when controlled by a
microprogram, is highly suited to testing itself, Here, a test p(ogram is stored in
the microcode. Once initiated, each part of the data logic addressable by the
microcode is exercised and the results checked against those expected by the
system. This self-test runs to completion if there are no errors, while a detected
error causes.a halt with a fault indication.

A system may not be suited to testing by partitioning or by microcode; for
example, if many flip flops are either not addiessabk or not connected to a data
highway. In this case, other methods for providing testability have to be em-
ployed and three approaches are particularly suitable for chip designs.

The first approach is that of signature analysis. This takes a serial (or multiple)
stream of output test data from the system and compresses it using a feedback
shift register. so that a much smaller unique signature (that is, a number) is
created. Testing is centred around an n-bit feedback shift register which is used
to generate a (pseudo) random number sequence of 2' - I different ItteS
before repeating. The randomness of the generated pattern is a result of thing
particular feedback connections. These are combined by the use of exclusive-or
gates and feed a '0' or 1' into the shift register, depending upon its current state.

Figure 5.7 shows a 4-bit number generator with feedback connections from
the first and fourth stages; each flip flop shown is a master-slave device. Table
5.2 gives the fifteen states it generates. assuming that the external input DI as a
V. and thus has no effect on the sequence. The shift register omits the all-zeros
pattern, since this would result in no further changes in the register outputs. It
is thus necessary to initialise the register to anon-zero value.
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Figure 3. 7 Four-bit pseudo random number generator

Table 5.2. Fifteen-state random number sequence
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When testing, the system and the nuthbcr generator-are initialised to a known
starting state. Thereafter, inputs applied to the system 'cause the output data

:stream applied, via Dl, to the number generator to pass throigh a pre.deterrnined
pr !rn. This pattern is superimposed upon the number generator sequence and.

a specific number of clocks, a unique number or signature is held in the
nber generator. This can be compared ''ith the expected signature to mdi-

ate a test pass or fail.
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The error-detection rate is dependent upon the number of bits n in the
generator register and, for a data stream much longer than n, the probability of
an undetected error is approximately 1/2". Thus this method can provide very
good error coverage even with modest generator register lengths. Clearly, this
technique reveals no Information Concerning the nature or cause of any fault and
a correct design is necessary to form the expected signature. Hence this form of
testing is most suited to a production environment where the design is proven.

Prototype designs require testability that can initialise the flip flops to a
known state and allows them to be monitored thereafter. The scan path approach
has both these attributes. Here all flip flops on the chip are reconfigured during
test mode to be a single shift register with an external input and output (see
figure 5.8a). This implies additional circuitry as all flip flops now need to be
(D-type) master-slave devices. A multiplexor is also required to select either the
normal data path or the adjacent slave flip flop output when in test mode (see
figure 5.b). This logic also causes extra delay to be incurred in the normal data
path, which will reduce the operating speed.

Under test, each flip flop in the chip can be loaded with known data via the
shift register serial input. Thus the system can be initialised to any known state.
Furthermore, this state can be shifted out via the shift register serial output to
check that the system is correctly initialised. If the test path can be established
then the system switches to normal operation. A specific number of clocks are
now applied at the normal operating speed, together with appropriate system
inputs. Finally, test mode is re-entered and the flip flop contents read via the
serial test path and analysed for correctness.

Thus this testing technique has excellent observability. The generality of this
approach makes it a very flexible and powerful aid to fault detection and diag-
nosis. It also has the advantage of requiting only one pin each for the shift
register input and output, plus a pin to control whether the chip operates in
normal or test mode.

The shift register. configuration of the chip during test mode leads to a con-
siderable time to input and output data in a large system. The approach also
requires off-chip generation of input test data and analysis of the test results.
These features can be avoided or greatly reduced by combining the scan path
and signature analysis techniques so that test data generation and testing is per.
formed on-chip.

This built-in selftest approach uses built-in logic block obervation (BILBO)
registers and the elements of a four-bit BILSO register are shown in figure 5.9.
Each bit consists çf amutti'plexor plus a master-stave flip flop, allowing the
register to be configured in one of five ways. For normal operations, input I of
the multiplexor is selected. Here, the Input data DI to 04 is clocked into the
(lip flops and appears on QI to Q4 respectively.

When Input 3 is selected. the register is connected as a shift register with
feedback f from stages I and 4 to the input of FF1. The register therefore
generates a pseudo random number sequence of fifteen patterns. Input 2 of
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Figure 5.8 Principle of a scan path: (a) system example, (b) logic for three bits
of a register

the multiplexor also configures the regsser as a shift register with feedback I,
but here the data inputs Dl to 1)4 are superimposed upon the generated pattern
sequence using exclusive-or gates; this configuration is that of a multiple input
signature register.

Input 4 is selected if the system is in the scan path mode. Here, the register
is configured as a shift register. This mode creates a serial test path from the
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input of FFl to the output of FF4. Fiafly. system initialisation results from
selecting input. 5 since all flip flops are set.

When testing, the system is first initialised and *lis can be checked vii the
serial test path The chip then enters signá*urthode as hown in figure 5 lOa
By setting the multiplexor control bits appropnatly alternate registers in a
pipeline generate a random number panem(denoterPat.) orhold asignafure
(denoted Sig.).The number generitor registersare effectively isolated from, the
preceding logic block and this is thown is breakI.nthe ionnal data path

In fitire 5. 10s. the odd numbered re iteft ;re number generators and the
even numbered r sters hold signategi ures TLe iwmber sequence	 atgenered by
register irs applied to logic block f an the blp k oupu1; are stpenmposed
upon the number sequence generated by :,re 2 TJws '2fte*4 number p1

clocks, register. 2t.holds a unique Ligliattire similarly, ill other tren numbered
registers will cont*in * unique signature prtang to the outputs from tjie
preceding logic block Serial test path mode is thn entered, allowing thecsig
natures held by the even numbered regisirs tube hecle4, a correct sglia1ure'I. I
indicates that the preceding (odd n umbered) logic bloc) ttinctioIi?correctly

To test the even numbered It blocks, the regrstes are so. n initialised,,
checked and signature mode re.er1ered ,. 17W tm,, the Ivelmiumber4d registers
are configured as number generatori 'md 'the: odtnumbed registers. hold
signatures (see figure 5. 10b). Testing proceeds in C similar manner as beforc,,
Thus, random numbers generated by eglstet2 are o2ersed on by to block 2
and the block outputs superimposed upon the pajtem tsequence generated by
register 3 Again after a number of clocks, th jitem swt*ches to serial test path
mode to allow the slgiitures in the .oddmumberid reglsters to be . checked ftr
correctness. 	 ,	 .•

With this approach, the test dit tbe applied is enex moll'  and IS

probably more comprehensive than tests de*seJ,y the eeigner. Testing can be
relatively fast, as the system is partitioned o that half the logic blocks can be
tested in parallel The checking of test data is simk anli yIelds a pa/fall indi-
cation for each logic block, further fault diagnosi44'blocks thad l̂ fail is of
course possibkvi,thc serial test path

There is a considerable silicon area overhead .ss8ciatcil wh BIL registBO	 ers
As ,h result it is likely that onlyparts of an *chI$tute suiftd to this approach
(such as a data pipeline) would be implemented in thiS way, With other tech
niques being used elsewheree Neverthdess the self tei approach'would seem to
offer a viable solution to the probknso(testingViSesign.s

-.
..

,,,,,,,,,,,,,,,,,,,,,,,,,,,•,

S.6 Further Reading

R A Frohwerke 'Signature analysis ; ,new digits) fieldservice method Hewlett
Packard Journal May (1977) pp 24.
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6 A. Design Example

The best way of learning about chip design is by 'doing'. With this in mind, this
chapter outlines a first attempt at producing a small, conservatively designed,
'handcrafted' full custom chip. It is hoped that this will give a comprehensive
view of the design process.

The correct implementation of any design requires that great care is taken at
all stages of the design hierarchy; it is essential that thorough checking (and
double checking) for errors be performed at each stage and that any available
software aids be used. This carefulness and thoroughness are of particular
importance when the design (or part of it) is to be integrated. Here, any design
errors in any stage will cause the chip to malfunction and the fault cannot, of
course, be corrected on the manufactured chip.

Incorrectly designed chips are costly in terms of both money and time.
Hence the design emphasis at all levels must be to implement a correctly working
chip at the first attempt. For this reason, the design proceeds systematically
through the lcveb.of the design hierarchy. In addition, the approach down to the
logic design stage is to successively partition the problem into smaller and more
manageable sections.

6.1 System Specification

The purpose of the chip is to incorporate controllability and observability into a
register so that the monitoring of its states can proceed in parallel with the
register's normal operation. Since many registers need to increment and decre-
ment, the register is to be implemented as an up/down counter. The ability to
control and monitor the counter's operation is achieved by the addition of a
shift register which operates indepepdently of the counter.

The system specification of the chip is shown in figure 6.1. The number of
counter and ihift register bits, n, which can be accommodated on the chip Is
not known at thii stage but is normally chosen to be a multiple of 4. If the design
is approached and discussed in terms of a 4-bit device, then a larger device is just
a matter of duplicating the data architecture.

To observe the counter's state, its contents are transferred into the shift
register. This can then be shifted out serially while the counter continues to
operate normally. The shift register incorporates a two-way shift path to aid
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fault diagnosis on the shift register a two-way path allows the position of a
break in this path to be determined.

Controllability is achieved by loading the shift register via one of its serial
paths and then transferring its contents to the counter. This feature requires the
addition of a multiplexor on each input bit-of the counter to select between the
normal input data and the shift register data. Thus the additiOn of a shift register,
and associated multiplexors incorporates excellent monitoring facilities into the
counter. Furthermore, since all sequential elements on the chip can be Initialised
to a known state and monitored thereafter, the design is fully testable. These
features also enable testing and fault diagnosis of prototype systems incorporating
this counter design

Data In

multi

-	 Counter mode Control (2)

- )II IIIJ Count Ena InTerminal
Co4niLDC

Clock .__-(	 -- Data Out (#'l

Shift Asgister Control (2)

Serial in Right	 a-- Serial Out Right
a bit shift register

Serial Out Left 	 Serial In Left

Los

FIgure 6.1 System specification

The architecture can also be used for the conversion of serial ,bit stream to
parallel data by loadiiig up the shift rester with the senal data and then trans-
frring it to the counter. Alternatively, a parallel-to-serial data converson is
obtained by transferring the counter contehts, to hithe ,ft register and then
shifting data out ,enally from this Thus the chip architecture can be regarded
as being generalp*rpOse
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It can be seen from figure 61 that a large number of control lines are needed
(ten). This reflects the versatile nature of the chip operation. The binary counter
is cascad able; this allows it to be used in conjunction with other similar chips to
extend the counting range. In this case. iperementing or decrementing is only
performed on a chip when all bits of lesser significance than it in a count chain
are either all ones (if counting up) or all zeros (if counting down). This is indi-
cated by the Count Enable In signal, which is used (in conjunction with the
counter mode control bits) to enable counting on a chip.

Similarly, the Terminal Count output indicates that the counter bits of a chip
are either all ones if incrementing or all zeros if decrementing. This output signal
is used by chips of greater significance in a count chain for the formation of
their Count Enable In signal.

All operations on the chip are synchronised to the Clock. Normal counter
operation is specified by two mode control bits. These either cause the existing
data to be incremented or decremented (if the Count Enable In input is also
active), or held, or the external data DI  to Din to be loaded. Similarly, two bits
determine the shift register function. Here, the shift register can be loaded from
the counter or the existing contents held, shifted right or shifted left.

overridesLDC signal ovedes the counter mode control bits but allows normal
shift register operations; it causes the shift register contents to be transferred to
the counter. Similarly, the LDS signal transfers the counter contents to the shift
register; it overrides the shift register control bits but allows counter operations.
If both the LDC and LDS signals are present, the counter and shift register
contents are swapped. Finally, the Freeze signal is used to inhibit all counter
operations and thus overrides the LDC and the counter mode control bits; it has
no effect on the shift register actions.

6.2 Architecture

In this example, the functional blocks of the system architecture can be directly
derived from the system specification. Clearly, the design is centred around the
counter and shift register.

Table 6.1 shows the sixteen states of a 4-bit binary counter when Incrementing
and decrementing; Qlc is the (slave) flip flop output of The counter's most sig-
nificant bit and 04c is its least significant bit: It can be seen that the least
significant bit changes at each count. When incrementing, a bit only changes
state on the next count if all bits of lesser significance are ones. Similarly, if
decrementing a bit only changes state on the next count if all bats of lesser
significance are zeros. Thus when counting, the next state is dependent upon the
existing state. The shift register's next state is also dependent upon its current
state (when shifting). Hence, the counter and shift register have to he organised
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on a master-slave basis and require two-phase non-overlapping clocks. These am
provided by the clock-generation logic of figure 6.2, which forms the master and
slave clocks, 01 and 02, from a single Clock waveform.

Table 6.1 Four-bit binary counter sequence

Za out

Qic 02c 03c 04c	 Count

0	 0	 0	 0
o	 o	 o•1	 I
o	 0	 1	 0	 2
o	 0	 1	 1	 3
o	 i	 0	 0	 4
o	 i	 o	 1
o	 1	 1	 0	 6
o	 t	 i	 i	 i	 7

Count I	 0	 0	 0	 Count	 8

up	 1	 0	 0	 1	 down	 9
1,	 0	 I	 0	 10
I	 0	 1	 1	 11
1	 I	 0	 0	 12
t	 1	 0	 I	 13
I	 ii	 0	 14
1	 1	 1	 1	 15

Although figure 6.1 shows information loaded into the counter arising just
from the input data or the shift register, the counting requirement necessitates
that it also be derived from the existing counter outputs. It should be noted that
the counter's true (slave) flip flop outputs, are required when incrementing and
the inverse outputs when decrementing These are used to change the state of
bits rather than directly loading In information as in the case of the input data
or shift register contents

The formation of the data to be clocked into the counter is performed by the
counter's data selection circuitry. The information source selected by this
qrcwtty is determined by control signals from the counter control logic these
in turn are derived by the control logic 1rpm input signals to the chip appertaining
to the counter operation The terminal count logic is activated when counting
'qd indicates when the count is all on if incrementing or all zeros If decre-

tusg
\ta selecuon logic is also required for the shift register Input si$e its input

'vies from the counter contents, or an adjacent bit of greater significance
N right), or an adjacent bit of lesser significance (if shifting left) This

s deternuned by the shift register's control logic
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Figure 6.2 Floor plan of system architecture

Figure 6.2 shows the logic blocks of the system arranged as a floor plan which
reflects the flow of date through the chip. This plan indicates the ideal arrange-
ment of the system blocks as their area is not known at this stage. It can be seen
that including the power and ground pins, 24 pins- am required for a 4-bit chip
and 32 . pins for an 8-bit chip. 7bit pads for these signals are placed around the
edge of the available chip area (we figure 6.10).
At the commencement of a design, it is usual to know which fabrication line is
to be used for manufacture. Furthermore, it is likely that specific chip sizes are
associated with the line. For this example, it is assumed that a chip size of 4 mm
x 4 mm is available from a 6 urn NMOS process which supports a single metal
layer and buried contacts. After allowing for the manufacturer's para-metric test
circuits, a chip area of 3.5 mm x 4mm remains. The area of an out-putt is
greater than the area of all other pad types (input, power- and ground) andfoan
NMOS process with a g of 3urn, an output pad is typically 0.35 mm	 -



132	 Des" of VLSI Systems

wide and 0.5 mm low 'This leaves an inner design area of 2.5 mm x 3 mm to
accommodate the logic: the' amount of logic that can be placed in this design
area dictates the number of bits which can be incorporated on the chip.

Seven output or other pad types can be comfortably accommodated down a
2.5 mm side while cighicanbe placed along a 3 mm side. This gives a total pad
éowtt of approximately 30 pins, indicating that , control signals may have to be
encàded externally and decoded on-chip to drive an 8-bit chip.

6.3 Logic Deiign

The functional blocks of the architecture diagram have now to be translated into
logic elements. At thiS1Int, there are many ways of implementing a design. A
design can be JudsW to be succesefid If It performs the specified task at the
requited speed, conforms to any Interfacing requirements and is completed
within the design schedule duiie. Thus the decisions made for this example at the
logic design Level reflect, only one of the approaches which can be taken.

The preceding discussion has shown that the major blocks (in terms of
circuitry) are the counter and shift register plus their data selection. The rem.in-
ing functional blocks ire small in comparison with these. The type of clocked,
master-slave flip flop Used In the counter and shift register affects the design
of the data-selection logic .fld hence needs to be decided first.

Existing data In the counter and shift register may have to be held indefi-
nitely. Therefore, suitable flip flop types are the clocked static devices) that is,
the D.type or  or a dynamic D.type flip flop with feedback applied so that
the data can b. maintained. The basis of such a dynamic flip flop ls shown ln
figure 6.3.

-	
a

I T2O1

Oat. in

'.ov

Figure 6.3 A dynamic flip flop with feedback

1 and Of are non-overlapping clocks and except for a short non-overlapping
time, Of is active when ,iis Inactive, and vice versa. The pass transistor TI and
the Inverter 'A form a dynamic flip flop so that during Oi. the inverse of Data In
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is transferred to ; T2 is off at this time. When Oi is removed, TI turns off and
the, state at Q is maintained by the charge on C. After the non-overlap time. Of
is applied, turning the pass transistor 12 on. This completes the feedback round
the loop. from the output of gate A to its input. This reinforces the existing
charge on C and hence the current state of Q. In this way, the flip flop state can
be indefinitely maintained between applications of Øi; the device thus exhibits
static behaviour.

Two D.type flip flops per bit are required for the counter and shift register.
It should be noted that although the dynamic flip flop of figure 6.3 requires less
area than the static D-type of figure 4.11, extra logic is needed to generate the
feedback clocks Om and Of, for the master and slave flip flops.

In order to hold or toggle a bit on particular clock pulses when using (dynamic
or static) D.iype flip flops. it is necessary to apply a gazed clock to the muter
device. This gazing is different for each bit of the counter, introducing some
clock skew across it. The gated clocks associated with D .type devices would
necessitate the addition of two functional blocks on the architecture diagram
of figure 6.2 for their formation.

A 1-K flip flop does not have these features since holding, loading or toggling
can be achieved by simply driving the I and K inputs appropriately. It follows
that it is not necessary to gaze the clock. Thus no clock formation logic Is required
and two-phase non-overlapping clocks, 01 and 02, can be directly applied to
the master and slave flip flops of the 1.-K device. The flexibility of operation of a
1.-K flip flop best meets the requirements of the design and for this reason this
type of flip flop is used.

The design of the data-selection logic for the) and K inputs of the master flip
flops can now be discussed. Depending upon the control signals to the data-
selection logic, the data In a master flip flop of the counter is either held (1 0',
K = 'OS), loaded, or toggled (I 'I', K 'I') on 01. Consider loading data into a
master flip flop. If the data to be loaded is a . 1'. the desired effect can be
obtained if) is a '1' and K is a '0'. If the existing data is a 'I', then loading a
'I' causes no change of state and the same effect is obtained if) and K are both
V. If, however, the existing data is a '0', then loading a '1' causes a change of
state and this can be achieved by taking) and K to '1'.

Similarly, a '0' can be loaded by taking) and  toa'l' if the existing state is
a 'I', and by taking) and K to '0' if the current state is '0'. Thus if the data to
be loaded is the same as the existing data, loading can be effected with  and K
both '0', while if the data to be loaded differs from that currently held then
I and K must be 'I' to load.

All operations can be performed on the counter with I and K equal. In this
case, there is no need for the separate fonition of the) and K inputs for each
bit. This is shown in figure 6.4 for the most significant bit of a 4-bit counter and
shift register.

Ignoring the signals in brackets which relate to the data selection for the most
significant bit of the shift register. the loading of data into the counter from the
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external data (DI I) is enabled if control signal CIc (from the counter control
logic) is present. Here, the data to be loaded is compared with the currently held
counter data (Qic) by and gates A and B. If DLI is equal to Qic, then both and
gate outputs remain low, soJ and K are low. However, if DII and Qic are not
equal, then the output of either gate A or B goes high which in turn causes J
and K to be high. Similarly, and gates C and D compare the most significant shift
register bit (Qis) with the counter contents if control signal C2c is present.
Effectively, and gates A and B or C and D perform an exclusive-or operation if
enabled.

And gates E and F determine whether a bit toggles when counting up or
down respectively. These gates inspect the true and inverse state of the counter
bits of lesser significance on the chip and are enabled by C3c and C4c respec-
tively. Thus, for example, if C3c is active, I and K for the most significant bit
are '1' only If and gate E's output is high; this occurs when Q2c to Q4c are
high, indicating an existing count state of seven or fifteen. Only one of the four
control signals can be, present at any time and if none is activated, then J and K
are '0' and a hold operation is obtained on 01.

The I and K inputs for the master flip flops of the shift .register can be
Conned in a similar manner. Here, data is loaded in from one of three sources by
comparing It with the existing shift register state. Referring to figure 6.4, and
Sates A and B, C and D at E and F perform an exclusive-or function if enabled
by control signal Cis, C2s or C3s respectively; these control signals are formed
by the shift register control logic. Cis selects the counter data for loading while
C2s selects data from the adjacent bit of the shift register on the left (shift right)
and C3s selects the adjacent bit on the right (shift left); thus in figure 6.4,Qls
is compared with QIc, Serial In Right (SIR) and Q2s respectively. Again the
absence of all three control signals causes the execution of a hold operation on
'I.

The formation of the.! and K inputs for all other bits of the counter and shift
register Is similar to that shown in figure 6.4. This suggests that a common
element be designed which can then be used 2n times inthé design.

The remaining functional blocks of the system architecture can be dealt with
more briefly. The counter and shift register control logic can easily be derived
from the equations relating the chip input signals to the control signals for the
dataselectiOn logic. These are given in table 6.2 and the relationships shown are
directly derived from the system specification. Thus for example, the enabled
count up and count down control signals, C3c and C4c, are only activated when
Count Enable In is present, and the Freeze signal inhibits all counter control
signals. It can be seen (rein table 6.2 that only primitive logic functions, such as
nand, nor, and-or-not and not (invert), are required for these sections. These
blocks can be Implemented In random logic and/or a transistor array.

The Terminal Count signal indicates when the count has reached the all-ones
state when incrementing and all-zeros when dectementing. An n-input and gate
detects the former case while an n-input nor gate indicates the latter state. The
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Figure 6.4 Data-selection logic for most significant bit of counter and shift
register

outputs from these gates are then combined with the count up and count down
signals respectively (CMCO. CMCI and CMCO. CMCI) in an and-or-not element
which is then inverted to produce the Terminal Count output. Again only a small
number of primitive logic functions are required to implement this logic.

Finally, the clock-generation logic to produce 01 and 02 from a single clock
waveform is as described in section 5.4 with the logic shown in figure 5.6. Flow-
ever, a sitIe suthuffer is used rather than a buf(er gate chain, as the master
and slave . clock loading is relatively small. Apart from the superbuffers. only
2-input hor gates plus Iñverters are required.

.The logic elenient's to be-used in a design are dependent upon the details of
the circui? implementation: Thus, in effect, the logic dia4raqn and logic simu-
lation c?nnot be completed until the circuit design phase. This i1lstrates that In
a practical design, design work on different levels overlaps and significantly
interacts.
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Table 6.2 Formation of the data selection control signals

Counter Control Logic block

(chip) Inputs: Freeze
LDC
Count Enable In (Co En In)
Counter Mode Control - CMCO CMC I - decoded as

o	 0	 hold
o	 1	 load DIl-Dl4
I	 0	 count up
I	 I	 countdown

Outputs (to counter's data selection logic): ______
Cic load DI  to D14 Goc.CMCO.CMCI
C2c load shift register contents - Freeze. LDC
C3c enabled count up a Goc.Co En InCMCO.CMCI

C4c enabled count down x Goc.Co En In.CMCO.CMCI
where Goc Freeze+LDC

Shift Register Control logic block

(chip) Inputs: LDS
Shift Register Control - SMCO SMCI - decoded as

o	 0	 hold
o	 i	 load counter
1	 0	 shift right
1	 1	 shift left

Outputs (to shift register's data selection logic): 	 -
CIs load counter contents = I.DS+SM0. SMCI
C2s shift right IDS.SMCO.SMCI
C3s shift left- LDS.SMCO.SMCI

6.4 Circuit Design

Again, there are many ways of implementing the logic and only one particular
approach will be described. The counter and shift register contain sequential
elements. These are the I-K flip flops described in section 4.5 and implemented
exactly as shown in figure 4.13. The remaining functional blocks contain combi-
national logic. Here, random logic and PLAS are preferred to pass transistor
arrays, because of their superur speed. Again, the majority of the combinational
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logic resides in the data-selection circuitry and hence its implementation repre-
sents the most important design decision at this level.

Considering figure 6.4. this logic is unsuitable for implementation in a PL&
because many of the inputs are only used by one and gate and the others are
only common to two gates. A 16 x 6 AND plane would be required to implement
the most significant counter bit, of which only 20 transistor positions would be
used. The inefficiency of such a sparse array would be Improved by folding but,
even so, this will only halve the AND plane size at best.

Thus it Is more sensible to design this function in random logic. Although the
logic can be designed in three levels of gating using seven nor gates and an
inverter, greater area efficiency is obtained by designing a complex function to
directly produce the inverse of the required .1 and K signals; this is then inverted
to obtain the true phase. Figure 6.5 shows the stick diagram of the J:.gforrnatjon
circuit directly derived from the logic diagram of figure 6.4. Each branch per-
forms an and function while the connection of the branthes to V0,, forms a
nor of these products.

Key
- Diflusion

Depletion implant

Buried contact

- Polysilicon

e . Contact cut

= Metal

Figure 6.5 Stick diagram of T-k formation

The counter control and shift register control can likewise be implemented
with random logic or an AND plane. The shift register control signals Cis to
Os and the counter control signals Cl. C3c and C4c can be efficiently impk-
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mented in two 6 x 3 AND planes but the remaining logic in these blocks requires
a random logic approach. The clock-generation and terminal count logic both
require a random logic approach. In view of the fact that there is little use for a
PLA approach in this design, it seems reasonable to use random logic throughout
the design.

Clearly, while a large number of different random logic functions can be
designed and implemented, the effort and managability of a design is facilitated
by using just a few function types. Furthermore, the and-or-not, nand, nor and
invert functions can be implemented in one level of gating, vhereas the and, or
and non-inverting buffer functions require two levels of gating. Bearing this in
mind, an inspection of. the logic functions performed In each logic block shows
that only eight different logic elements are required to efficiently implement
the entire design; these cells are listed In table 6.3.

Table 6.3 Logic elements

	

Cell	 Cell	 No. used in

	

width	 height	 4-bit design

	

(pm)	 (pn

not	 48	 87	 14
2xnot	 87	 87	 14
2-input nor	 75	 84	 3
4-input nand	 81	 123	 8
3-input and-or-not	 105	 120	 2
invei-tingsuperbuffer 	 105	 75	 25
J-K formation	 216	 150	 8
I-K flip flop	 219	 273	 8

It can be seen that apart fro'm the i-K formation and the f-K flip flop cells,
all other elements perform primitive logic functions which have been described
elsewhere in this text. (See section 29 for the inverter design, section 4.2 for
nand, nor and and-or-not gates, and section 2.16 for a superbuffcr.)'The 2 x not
cell consists of two inverters and produces the true and inverse of a signal. This
function can be implemented with two inverters but its frequcntisemade it
desirable to design an element occupying less area.

A cell .approach introduces some inefficiency in terms of the number of logic
elements required; any , repeated inefficiencies that arise can and should be
remedied by the introduction of additional cell designs. Nevertheless, the
advantage of a cell approach is that only a few circuit elements have to be
designed and these are specific to a desii Once proven and characterised the
circuui can be regarded in purely logical terms. This simplifies the design there-
after as it reduces the task to the interconnection of logical elements
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Having determined the logic elements for the system, the logic diagram can
now be finalised. Figure 6.6 shows the data-selection plus the counter and
shift register logic for the most significant of four bits. This logic is repeated for
each bit on the chip.

The fan-out load of points can be estimated relative to driving an inverter
which counts as a load of one. Thus a 4-input nand gate having a gate width
four times that of the inverter represents a load of four on a driving gate. Con-
sidering the load on Qic, figure 6.6 shows that Qic Is an input to two 3-input
and gates (load6) in the counter's J-gfozntatlon and is input to one 3-input

• and gate (load z3) in the shift registees.74 formation. In addition, the signal
is input to a 4-input nand gate (load-4) in the terminal count logic. This gives
an estimated total load of 33 on this point and necessitates that the signal be
buffered (by an inverting superbuffer).

In general, any point loaded with a fan out In excess of 10 is buffered. As a
result, all true and inverse outputs of the counter and shift register flip flops are
buffered plus the counter control signals. Cic to C4c, and the shift register
control signals, Cis to C3s.

The logic can now be simulated by describing the system as a set of inter-
connected logic elements. Appropriate input signals are applied and the resulting
output responses are compared with expected responses, so that any differences
.result in an error indic ation. The accessibility of all sequential elements and the
relatively small size of this design enables exhaustive testing of the system.

Functional tests can verify that the logic meets the system specification.
These tests can be used on the fabricated chips later to determine working
devices. If typical logic element delays are Included In the simulation, then. the
approximate operating speed emerges and any potential timing problems within
the design can be Identified and corrected.

A particularly valuable feature arises if the logic description can be compared
with the circuit and/or layout It generates for discrepancies; this helps to ensure
consistency and Integrity throughout the design process. When such a checli. is
not available, the logic simulation only validates the design down to the lçglc
design level of the hierarchy.

Circuit simulation is necessary (and useful) to verify the logical operation of
cells and characterise them. While most of the details for this simulation can be
derived from the circuit diagram the capacitance of points in a cell needs to be
estimated to give an indication of the speed of operation; unfortunately this
calculation requires the geometric 4yat. Again this lllustrats the overlapping
nature of the design activity at the different levels In the hierarchy.

Unfortunately, circuit simulation of large parts of the design is often not
practical because of the time to simulate and the amount of memory required.
Thus while it is feasible and desirable to check the logic functionality of cells.
it is not realistic to check the circuit design against the system specification.
Likewise, validated circuits often cannot be checked for consistency with the
layouts generated at the next level down. Thus circuit simulation only checks
the correctness of the design at the circuit level.
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6.5 Layout, Placement and Interconnections

The adoption of stick diagrams for the cell designs facilitates the layout stage
since they only require fleshing out. Again, it is worth while concentrating on
minimising the area of the .1-K flip flop and the i-R formation circuit, since
these cells are much larger than any other.

These particular cells require more than one attempt at the layout to success-
ively reduce wasted area and eliminate unnecessary contact cuts. Figure 6.7
shows the layout of the simpler of these two cells, the 74 formation element.
Careful comparison with the stick diagram of figure 6.5 shows that they are
equivJent. The inverter ratio used throughout the cell Is S/I. Thus a logic '0'
voltage of 0.35 V has been accepted in the interests of reducing the cell area and
the input and output capacitance.

It should be noted that there is a notional rectangular boundary surrounding
the cell. The cell inputs and output plus power and ground are routed to this
boundary in order to provide the cell with connection points, Taking the bottom
left corner of the boundary as the origin, the cell can be regarded as a rectangular
box with connection points at known positions. Furthermore, the cells can be
abutted without infringing the layout rules if connection points ae compatible.
Once designed, no other interconnection lines are allowed through the cell.
Again, this allows the cell to be treated in logical terms, removing the necessity
to be concerned about the circuit or the layout within. For this reason, these
design features have been used in all cell designs.

It should be noted that the cell has a S V and a 0 V rail running horizontally
through it near the top and the bottom of the cell. Again, this is adopted for all
cells as it aids the distribution of power and ground throughout the design. It
can also be seen that the inputs and output run vertically to connection points
at the top and the bottom of the cell. Again, this convention is adopted for all
cells. All cell inputs run vertically in polysilicon. Cell outputs also run vertically,
mostly in polysilicon and the remainder in diffusion. In addition, where the cell
area permits, the output or input of primitive cells is routed to the top and
bottom of the cell to facilitate interconnecting.

The conventions adopted for the cell designs imposed some uniformity on the
layouts and table 6.3 lists the cell boundary sizes for a X of 3 pm. A check
should be made at this point to verify that layouts do not infringe the design
rules of the fabrication line (section 3.7); this does not, of course, verify that the
layout is correct from a circuit viewpoint.

Cell placement follows. This is based on the system architecture floor plan
(figure 6.2), since this reflects the flow of data through the system and should
therefore lead to the shortest interconnections. It is sensible in terms of power
distribution and interconnections to organise the logic in rows. Thus the place-
ment is ideally organised as six rows of logic, where each row corresponds to a
level shown on the system architecture floor plan.
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It is essential that adequate space between cells is left to cater for intercon-

nections. Thus a gap U left for this purpose between rows. Some cells in a row
abut. However, gaps between cells in a row are left when there is clearly to be
tracking from a cell to rows above or below it. The different widths of cells

makes it diff
icult to form cell gaps at similar positions in the rows, Introducing

deviations in some of the vertical tracking..
Placethent is performed using a co-ordinate grid of the design area to place

cells at a particular position. Figure 6.8-shows a scaled drawing of the placement
of elements for the counti'On*xol logic; this occupies the top right-hand corner
of the design area. All coordinates shown are lnpm and assume an origin at the
bottom left-hand corner of the design ireai

• Again, more than one attempt at the placement Is normally necessary to
create adequate inter-row and inter-cell pps..Thutsn aim of the placement
phase is to facilitate the interconnection of cells: With this in mind. figure 6.8
shows that cells have been rotated 180, so that the positions of inputs are in
general along the top of the. cell with the output(s) along the bottom; this
reflects the flow of data from the top of the design area to the bottom. Even
so, cells might have to be moved later at the interconnection stage to fit in
tracking in the congested areas?

The size of the terhlnal ount and thE' counter control logic is too large

to fit into a row width of 23 mm and these blocks therefore occupy two rows.
The counter flip flops and their associated buffers are allocated to a row, as are
the shift register flip flops and their buffers. The relative height of a flip flop

(273 pm) and an inverting superbuffer (75 pm) allows the buffers for a flip flop
to be placed one above the other in the row; this increases the inter-cell gap for

vertical tracking.
Even so, table 6.3 shows that each Clip flop and Its buffers occupies a width

of 0.32 mm. This indicates that while four bits can be accommodated on a row,
leaving 1.2 mm (out of a width of 23 mm) for tracking, eight bits and its
buffering cannot be accommodated. An eight-bit chip can be Implemented in the
given design area by splitting this logic and placing the flIp flops in one row with
its buffering In another row. However, this incrains thenumber of rows of logic

from seven to nine which cannot comfortably be accommodated In the vertial

direction. Thus it Is not until this rather advanced.stagein the' deslgn , that the

decision can be made to Implement four rather than eight bits on the chip.
The cells in the seven rows occupy a vertical height of -approximately

1.22 min ( 2 x 273 pm + 2 x 150 ism + 3 x 123 pm). This leaves l.7$ufl for
inter-row gaps and space at the top and bottom of the design area for tracking
to the input and output pads. Thus the average inter-row gap is 0.22 mm

( 1.78 mm/8).
A tingle layer of metal maices it sensible to adopt the conventions Used within

the cell layouts for routing. Thus metal interconnections run horizontallY, while
po!ysihcon and diffusion interconnections run vertically. This !110ws horizontal
tracks to run over vertical routing without electrical effect (see-figure 6.8).
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Figure 6.9 shows that the area of metal surrounding a contact cut is 4X x 4X. A 
X

of 3pm allows metal tracks of width 12pm to be placed 6pm apart. Thus an
inter-row gap of 220 pm can accommodate twelve horizontal metal tracks.

Complex cells tend to generate a small but concentrated number of inter-
connections, while a large number of connections are associated with the primi-
tive cells. This indicates that there will be a high concentration of tracks around
the 7.-K formation cell; this can be appreciated from figure 6.6 and proves to be
the case in practice.

The layout of figure 6.7 shows that this cell has nine different inputs at the
top and bottom of the cell which require connections. Allowance has also to
be made for tracks to connection points in the logic directly above and below
the formation cells. Since signals can approach a connection point from the left
or the right, an inter-mw gap of 220 pin shàuld be adequate for these rows, and
again this proves to be the case in practice. A smaller inter-row spacing can be
used where the rows on each side of it contain primitive cells; there is a lower
density of interconnections associated with these rows.

One consequence of routing horizontal tracks In metal and vertical tracks in
polysilicon is that every time an interconnection changes direction, the con-
ducting layer also changes. The other feature that arises is that the maximum
polysilicon and diffusion length of any track Is confined to the height of the
design area. Furthermore, the system floor plan shows that vertically, the maxi-
mum distance data flows Is across four rows. Thus the longest polysilicon and
diffusion lines encountered should be 15 mm.

It had been hdped to approach the interconnection phase of the design in a
hierarchical manner, so that, for example, having defined the interconnections
for one bit of the data, this can be repeated for all bits. While this is true for
small sections where the data flowed vertically from one row to the next row
down, the interconnections for each I-K formation cell of the counter are cbs-
similar. Also, control interconnections are irregular. This leads to individual
routing for all sections of the chip, making the interconnecting phase the most
time consuming task in the design process.

Figure 6.8 shows the routing for the counter control logic plus the external
data bits D13 and D14. The cell outputs are indicated and an inspection reveals
that it implements the relationships of table 6.2. Communication w

ith other
blocks of the system are also indicated. Thus CMCO, CMCI and CMC1 are sent
to the terminal count logic, while the counter control signals, C I c to C4c, plus
the true and inverse of D13 and D14 are sent to the .T-9 formation cells on the
next row down.	 -

The cells in the rows are arranged so that the 0 V and S V lines align. How.
ever, the different height of cells in the second row requires a connection from
the S V rail to the power rail of cells of smaller height. It can b. seen that the
effective height of a row is determined by the tallest cell, since it is difficult to
utilise the spare row area created by cells of lesser height.
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In figure 6.8. the 4-input nand gates have polysilicon inputs 6 pm wide spaced
6 pm apart. To maintain this density of vertical tracking when it connects to
metal tracks requires some consideration. Figure 6.9 illustrates the configuration
consistently used to achieve this. It can also be seen that the density of vertical
tracks is optimised by alternating diffusion and polysilicon lines.

After defining the routing for the interconnections In the design area, the
input, output, ground and power pads have to be placed around the design area
and tracked to connection points within the design. In particular, the positioning
of the ground and power pads have to be made bearing in mind any packaging
conventions.

6.6 Fabrication and Testing

In order to submit a design for mask making, the content of each layer needs to
be described in textual form. Here, the layout is usually described in terms of
the polygons and rectangles comprising each layer. Thus for example, in the
layout of figure 6.7, the S V ling can be described as  metal rectangle of height
15 pm and length 216pm, starting at an X. Y co-ordinate 0,123pm with

4respect to the cell origin. This textual description can usually be automatically
generated from a graphical description of the layout, or can be input directly.

The chip description is now checked for layout and electrical consistency.
During layout checking, each design rule is taken in turn and its associated fea-
tures located on tite different layers; each occurrence of the features is examined
to see that it conforms to the rule. For example, to check the overlap of metal
around a contact cut requires that contact cuts and metal regions are located:
their coincidence indicates positions where an 'overlap Is required. Anj errors
detected during the layout checks cause an error message (or an error plot)
giving the type of fault and its location.

The layout can also be used to extract electrical parameters and to generate
a circuit description from which simple electrical checks can be performed.
Device size extraction from the layout leads to the calculation of transistor
aspect ratios, Inverter ratios and the capacitance of points. Here, capacitances
larger than a specified value or circuits with a low Inverter ratio could be reported,
Electrical checking generally consists of indicating faults such as circuit outputs
connected together, or an output shorted to power or ground, or inputs that
are unconnected (not driven).

After correcting any layout or electrical inconsistencies, the layout descrip-
tion normally leads to the production of a mask foi each layer. This, in turn, is
Wowed by chip fabrication as described in section 3.2. After production, the
manufacturer performs parametric testing to ensure that parts of the wafer are
within the processing tolerances. Provided the yield from this point of view is
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Figure 6.10 Pad bounding for a 28-pin dual-in-line package

reasonable. the wafer is broken. Chips are then selected from the good regions for
packaging.

Chips are usually placed in a standard package which for small designs is likely to be a

24-pin. 28-pin or 40-pin dual-in-line pack. The wiring of the. pack designer at the time the

design is specified by a diagram supplied 5y the designer at the time the design is

submitted for fabrication, this design example has 25 pins (including, a pin for the

substrate) and will therefore fit into a 28-pin package, as illustrated in figure 6.10.

The package has seven bounding pads on each of its four sides. Conventionally in such

packages, ground is allocated to pin 14 and power to pin 28. This there only sensible to

connect (that is. bond) from a pad in the design to a nearby pin on the corresponding side

of the package (see figure 6.10): bounding wires should not cross, otherwise short circuits

are likely to result. It will be noted that the substrate pad is in the parametric test area.
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Table 6.4 Part of functional testing program

M;QIC,Q2C,03C.Q4CS
LçMCd$MCO.SMCI .FREEZE,LDSLDC,cO EN IN,CLOCK$
H:CMC1S

L.D11,D12,DI3PDI4S
H:CLOCK$
LCJ..00KS
L:Q1C,Q2C,Q3C,Q4C,X$

M:Q4SS
H:SMCI,CMCO,CO EN INS
H:CLOCKS
L:CLOCKS
H:QIC,Q2C,Q3C,Q4C$
L:Q4S,X$
1(3)5
L:SMCIS
HSMCO$
H:CLOCK$
L:CLOCKS
L:Q4CXS
1(4)5
H;CLOCK$
L:CLOCKS
H:Q4CS
L:Q3C,XS
1(5)5
IE:CLOCKS
LCLOCKS
L:Q4C,X5
1(6)5

Key

14	 monitor output
L	 low	 -
H	 high
1(N) test number N
X	 check Outputs
S	 end ofline
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• Finally, the designer has to perform functional testing on the packaged chips
• to determine good and defective devices. These tests are normally the same as

those performed at the logic simulation stage. Thus the packaged device is
regarded and treated as a system of logic. While the tests indicate whether the

• chip is logically functional, it is normally performed at low speed and gives no
information concerning the speed performance.

Table 6.4 gives a sample of part of the low level functional test for the chip
which runs on an in-house tester controlled by a microprocessor. The program
is interpreted line by line, so that operations occur in the order in which they
are listed and the 'S . symbol marks the end of a line. In the initialisation sequence
prior to test 1 the counter outputs Qic to Q4c are monitored. The Clock and all
input control ignas except CMC1 are set low; CMCI is set high. Thus the
counter control indicates a load operation and 02 Is active.

Test I sets the four data inputs DI  to D14 low before applying the 01 clock
(Clock high) and the .02 clock (Clock low). It should be noted that (in all tests)
the control and data inputs are constant during 01 when information Is clocked
'nt the masters Correct operation requires that any input changes occur when

is inactive When the execute symbol X is encountered as the listing all
monitored outputs are compared with those expected and, if they differ, an
error is entered into a fault file In test I the expected counter outputs are
specified to be all low and this is compared with the outputs obtained for.
errors.

Test 2 transfers the all zeros counter content to the shift register and decre-
ments the counter. It will be noted that it Is only necessary to list the signals
which change state. Thus the least significant shift register output, Q4s, Is moni-
tored in addition to the counter outputs. In test 2, after applying a master and
slave clock, the counter output is checked for fifteen (all ones) and the least
significant bit of the shift register for V.

Tests 3,4 and 5 decrement the counter by one in each test and this iscfrcked
for. Thus in rest 5, an error is flagged if the counter output is not twelve. Also in
each test, the shift register contents are shifted one place to the right and Q4s
checked each time against '0' to see that the counter to shift register transfer,
has been correctly performed.

In this way, the chip can be comprehensively tested and a chip with no errors
in any test is logically correct. It has become almost obligatory at this point for
the proud designer to display a picture of the design. However, the author has
never found this exercise very illuminating and will therefore desist! It is more
relevant to note that using the design techniques described in this chapter and
by paying caref attention to the detail at all levels of the design, working
designs can be implemented at the first attempt; furthermore, out of five pack-
aged chips, four functioned correctly.


