
CHAPTER 1

Origin of Differential Equations

DIFFERENTIAL EQUATION is an equation which involves derivatives.''7or example,

dy
1) ;;;	

x + 5

2

2) Y + 3	 + 2y = 0
dx2	 dx

3) xy'+ y = 3

4) y" + 2(y) 2 +	 = cos x

5) (y") 7 + (y ') 3 + 3y = x2

6) LZ = z + x!!
BX	 -3y

2

7) _.! + I, = x2 + Y.
x 2	 By 2

(If there is a single independent variable, as in ,L) -5), the derivatives are ordinary derivatives and the
equation is called an ordinary diff'rentiaI equation.

If there are two or more independent variables, as in 6) -7). the derivatives are partial derivatives and
the equation is called a partial differenuol equafion

The order o1' a differential equation is the order of the highest derivative which occurs. Equationsi),
3), and 6) are of the first order. 2), 5). and 7) are of the second order, and 4) is of the third order.

• The degree of a differential equation which can be written as a polynomial in the derivatives is the
degree of the highest ordered dcl:ivative which then occurs. All of the above examples are of the first degree
except 5) which is of the second degree.

A discussion of partial diffirentialequationswiIl be given in Chapter 28. For the present, only ordinary
differential equations with a single dependent variable will be considered.

ORIGIN OF DIFFERENTIAL EQUATIONS. V

a) Geometric Problems. See Problems I and 2 below.

hi Physical Problems. See Problems 3 and 4 below.

ci Primitives. A relation between the variables which involves n essential arbitrary constants, as
Y = x + Cx or y = Ax 2 + lix is called it prinzi!ire. The n constants, always indicated by capital letters
here. are called (vwnFiai it' they cannot be replaced by a smaller number of constants. See Problem 5.

In general. it involving n essential arbitrary constants will give rise to a differential equation,
of order,',, free of arbitrary constants. This equation is obtained by eliminating the n constants between
the (n + 1) equations consisting of the primitie and the n equations obtained by differentiating the
primitive n times with respect to the independent variable. See Problems 6-14 below.



SOLVED PROBLEMS

I. A curve is defined by the condition that at each of its points (x.y), its slope
is equal to twice the sum of the coordinates of the point.Express thccondiiionhy
means of a differential equation.

The differential equation representing the condition is dy
2(x + y).

dr

2. A curve is defined by the condition that the sum of the x- and y-intercepts of its tangents is alwa ys equal
to 2. Express the condition by means of a differential equation.

The equation of the tangent at (z,y) on the curve is I - y	(X x) and the x- and y- intercepts are

dyrespectively x	
dx

x-y	 and Y y - z	 . The differential equation representing the condition is

X I t x_y	 +y-x	 2 or x()2 - (x + y - 2)	 + ydzdy

3. One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional
to the amount unconverted. Find the differential equation expressing the rate of conversion after t minutes.

Let g denote the number of grams converted in e minutes. Thcn(oO - q) is the number of grams uncon-
verted and the rate of conversion is given by ! k(loO -q). k being the constant of proportionality.

dt

4. A particle of mass a moves along a straight line (the x- axis) while subject to I) a force proportional
to its displacement x from a fixed point 0 in its path and directed toward Oancl 2) a resisting force propor-
tional to its velocity. Express the total force as a differential equation.

The first force may be represented by -x and the second b y	.,6klicrc k 1 and k 2 are factors of
proportionality.

The total force (mass x acceleration) is given by m"- = - k 1x -	
dx

 -
di'	 dt

5. In each of the equations a) y x' + 4 + B. b) y	 c) y • A + lnBz show that only one of the
two arbitrary constants is essential -

a) Since A +Bis no more thana single arbitrary constant, only one essential arbitraryconstant is inolvcd.
X+B	 XBb) y .oAE	 -Ae e • and Ae is no more than a single arbitrary constant,C) 

y • A + InBz • .4 + lnfi+ In 	 and (A + In 	 lsno more than a single constant.

6. Obtain the differential equation associated with the primitive y Ax' • Bx +C.
Since there are three arbitrary constants, we consider the four equations

y Ax2 +Bx+C,	 Z • 2x+B,	 -! 2.4,	 . 0..4
dx	

dz2	 dx5
The last of these .i, being free of arbitrary Constants and of the proper order, is the required equation.dx5



ORIGIN OF DIFFERENTIAL EQUATIONS 	 3

Note that the constants could not have been eliminated between the first three of the above equations.
Note also that the primitive can be obtained readily from the differential equation by integration.

7. Obtain the differential .'quation associated with the primitive x 2 y 5 	 x3y5	 C.

Differentiating once ith respect to x we obtain (2xy 5 t.2 dy

	(3x2 y 5 5xy	 )	 o or. when

4 fi 0. (2y + 3x	 )	 xy 2 (3y + 5x	 o as the required equation.

When written in differential notation, these equations are

I)	 (2xy5 dx ' 3x 2 y2 dy) 4 
(3X2 y 5 5xy4 dy) 	 0

and	 .	 2) (2ydx	 31 dy) 4_
	 5xdy)	 0.

Note that the primitive can he obtained readily from l)bv integration but not so readily from 2). Thus,
to obtain the primitive hen 2) is given, it is necessary to determine the factor xy 2 which as removed
from I).

S. Obtain the differential equation associated with the primitive y	 A cos ax	 B sin ax, A and B being
arbitrary constants, and a being a fixed constant.

Here	 d—)'	 -Ao s in ox + Ba cos ax
dz

and	 LZ	 -Aa2 cos or - Ba 2 sin ax	 _a2 (A cos a.	 B sin ax)	 -a 2Y.

The required differential equation is 	 a 2Y	 o.
dx2

• crential equation associated with the primitive y AC2X + Be+ C.

Here	 2.	 2Ae2- Be',4Ae2 ' + Be1.	
dy	

8,42
dx	

(j52

Then	 -	 4Ae2,	 d 	 - dy	 z4e7X	 and
5	 dX2	 cLx2	 (jZ

The required equation is 	 d 3y	 d2
-	 3 —	 + 2 .	 0.

dx

=
dx'5	cix2	 dx2	 dx I

10. Obtain the differential equation associated with the primitive y	
2x

Gt e	 + C2e 	+ C3e x

Here	 = 3C C3: + 2 2 e 2 + C3e1,
dx

and d y = 27CLC3X 8 C2 C2 % +

d2y	 5x
- 9C1 e + 4C2 e 	 4 C'ex.

The elimination of the constants by elementary methods is somewhat tedious. If three of the equations
are solved for C. C2 , c3 , using determinants, and these substituted in the fourth equation, the result may
be put in the form (called the eliminant):

—2



(-A	

,P(x y)

x 2 +y2 = 2A+z)2

= 4A(A+x)
y2 = ILA (A +x)

URI(1N OF DIFFERENTIAL EQUATIONS

5x	 2x	 x
e	 e	 c	 y

5X	 2x	 xe	 2e	 e	 y'

9e	 4e	 e
5x	 2z	 x

5x	 2x	 x27e	 Be	 e	 y

1 1 y

3 2 1 y'ex	
e(-2y' 4 l2y " - 22y' + 12y )	 0.

9 4 1

27 8 1 y"'

	

5	 2
The required differential equation is 	 - 6	 + 11	 - 6y = 0.

d, 5 	 dx2

	II. Obtain the differential equation associated with the primitive y 	 Cx2 + C2.

	

2	 1 dy 2	 i(dY)2Since	 = 2 x	 C•	 --	 d	 2an	 y	 Gx	

4x2 '
2.z cix

The required differential equation is	 ()2 + 2x 5 	- 4x2 y 	 0.

Noie. The primitive involves one arbitrary constant of degree two and the resulting differential equation
is of order one and degree two.

12. Find the differential equation of the family of circles of fixed radius r with centres on the x axis.

The equation of the family is (x -C)2 + y 2	 r 2. C being
an arbitrary constant.	

r/

Then (x -C) • y o. x -C = - y	 and the diftren-	 0	 (C,0)
dx

tial equation is	 2(dY)2 + Y2 
= r2.

dx

13. Find the differential equation of the family of parabolas with foci at the origin and axes along the x- axis.
I 

The equation of the family of parabolas is y 2 = 4A (A + x).

Then yy' = 2A, A Jyy , and y 2	 2yy1(yy'+x).

The required equation 	 yation is dy2 +
	 - - y = 0.

dx
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14. Form the differential equation representing all tangents to the parabola y 2 = 2x.

At any point (A,B)on the parabola, the equation of the tangent is y-B = (x-.A)/B or, since A •
By	 x + W. Eliminating B between this and By' 1, obtained by differentiation with respect to
we have as the required differential equation 2x (y')2 - 2yy' + 1 • 0.

SUPPLEMENTARY PROBLEMS

15. Classify each of the following equations as to order and degree.

a) dy + (xy - cos x)dx	 0

2,-,

b) L	 + B	 + 9 • 0
dt2	 de	 C

C) y" + xy" + 2y(y')2 + ry • 0

X(d) d 2vdt'	 dv2
- - + 	 + u • 0
dx ' dz	 dx

(d)2 - 
(L! )" + t'I' • 0
du 

f) e-xy" 4 y • 0
g) 2-;-- • sin 8

/t) y + x •

;-8 i FP+ (leI)

Ans. Order one: degree one

Airs. Order two: degree one

Ans. Order three: degree one

.4n.c. Order two: degree one

-Inc. Order three: degree two

Ans. Order three: degree does not apply

Ans. Order one: degree one

Airs. Order one: degree four

Airs. Order two: degree four

16. Write the differential equation for each of the curves determined by the given conditions.

ci At each point (x,y) the slope of the tangent is equal to the square of the abscissa of the point.
Ans. y' •

h' At each point (x,y) the lenght of the subtangent is equal to the sum of the coordinates of the point.
Ans. y/y 	 or (x+y)y# • 7

C) The segment joining P(x,y) and the point of intersection of the normal at P with the z-axis is bisected
by the y-axis. 	

Ans. y 4	 or yy' + 2% • 0
dy

di At each point (p.9) the tangent of the angle between the radius vector and the tangent is equal to
1.3 the tangent of the vectorial angle. 	 d8	 1

Ans. p— •- tan 

ci The area bounded by the arc of a curve, the x-axis, and two ordinates, one fixed and ore variable.
is equal to twice the length of the arc be:; cen the ordinates,

Hint fy dx 

•	
(y >2 dx.	 4 1c. y • 2

I
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17. Express each of the following physical statements in differential equation form.

a) Radium decomposes at a rate proportional to the amount Q present.	 Ans. dQ/dt

b

	

	 The population P of a city increases at a rate proportional to the population and to the difference
between 200,000 and the population.

Ans. dP/dt - kP(200.000 -
c

	

	 For a certain substance the rate of change of vapour pressure (F) with respect to temperature (T)
is proportional to the vapour pressure and inversely proportional to the square of the temperature.

Ans. dP/dT - kP/T2

d) The potential difference £ across an element of inductance L is equal to the product of L and the
time rate of change of the current i in the inductance.

Ans. E • L

de) Mass x acceleration = net force.	 tins. . ._ • F or s d2—.1 • F
di	 dt2

18. Obtain the differential equation associated with the given primitive. A and B being arbitrary constants.

a) y Ax	 tins. y 	 y/x	 e) y • sin(x+A)	 Ans. (y')2 	1 -
b) y • Ax + B	 tins. y" . 0	 f) y • AeX + B	 tins, y" •
C) y • x*4	

Be ,	 tins. y'	 y	 gi x A stn(y+B)	 tins. y' •
d) y A sin x	 Ans. y'	 y cot x	 Ii) in y - A 2 + B

Ans. xyy" -	 - x(y')2	 0

19. Find the differential equation of the family of circles of variable radii rwith centres on the z'.axis. (Compare
with Problem 12.)
Hint: (x-.A)2 + y2	 r 2 , A and r being arbitrary constants. Ajs, yy" +	 + 1 • 0

20. Find the differential equation of the family of cardiods p. • a(1 - co 8).
Ans. (1 - eos8)dp • p sin  dO

21. Find the differential equation of all straight lines at a unit distance from the origin.

Ans. (xy' - y )2	 1 +
22. Find the differential equation of all circles in the plane.

Hint: Use x 2 + y2 -2Ax-28y+C 0.	 tins, (1 + (y ')2 ]y - 37'(y")2	0

I



-	 + 11	 - 6y	0
dx 2	 dx

y=C1 e' + C2 e2X + C,ex (Prob. lO, Chap. l)2)

CHAPTER 2

Solutions of Differential Equations

THE PROBLEM in ckrnentary differential equations is essentially that of recovering the primitive which
gave rise to the equation. In other words, the problem of solving a differential equation of order n is
essentially of finding a relation between the variables involving n independent arbitrary constants which
together with the dcri'ativcs obtained from it satisfy the differential equation. For example:

Differential Equation
	 Primitive

1)	
dx3
	 y = Ax 2  + Bx + C

	
(Prob. 6, Chap. 1)

2(dY)2 +	 = r2
dx

(x—C) 2 + y2 =r 2 (Prob. 12. Chap. 1)

THE CONDITIONS under which we can be assured that a differential equation is solvable are given by
Existence Theorems.

For example, a differential equation of the form y ' = g(x,y) for which

a) (x,y) is continuous and single valued over a region R of points(x,y)

b)N exists and is continuous at all points in R,
ZY

admits an infinity of solutions f(x, y,C) = 0 (C an arbitrary constant) such that through each point

of R there passes one and only one curve of the family f(x ,y ,C) = 0 .See Problem S.

A PARTICULAR SOLUTION of a differential equation is one obtained from the primitive by assigning
definite values to the arbitrary constants. For example, in 1) above y = 0 (A B C 0), y 2x + 5

(A = 0, B = 2, C = 5) and y = x 1 + 2x + 3 (A = 1, B 2, C = 3) are particular solutions.

Geometrically, the primitive is the equation of  family of curves and a particular solution is the equation
of some one of the curves. These curves are called integral curves of the differential equation.

As will be seen from Problem 6, a given form of the primitive may not include all of the particular
solutions. Moreover, as will be seen from Problem7, a differential equation may have solutions which
cannot be obtained from the primitive by any manipulation of the arbitrary constant as in Problem 6.
Such solutions, called singular solutions, will be considered in Chapter 10.

The primitive of a differential equation is usually called the general solution of the equation. Certain
authors, because of the remarks in the paragraph above, call it ageneral solution of the equation.

7
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SOLUTIONS OF DIFFERENTIAL EQUATIONS

A DIFFERENTIAL EQUATION dy = g(x,y) associates with each point (x0 , y0 ) in the region R of the

above existence theorem a direction m =	 9 (x0, y0)
d.c I (x0y0)

The direction at each such point is that of the tangent to the curve of th finiiIy f(x.yC) = 0 that is.
the primitive, passing through the point. 	

IY
The region R with the direction at each of its points

indicated is called a direction field. In the adjoining figure,
a number of points with the direction at each is shown for
the equation cfv/dx 2x. The integral curves of the
differential equation are those curves having at each of their
points the direction given by the equation. In this example,
the integral curves are parabolas.

Such diagrams are helpful in that they aid in clarifying
the relation between a differential equation and its primitive,
but since the integral curves are generally quite complex,
such a diagram does not aid materially in obtaining their
equations.

0

14	 0

SOLVED PROBLEMS

I. Show by direct substitution in the differential equation and a check of the arbitrary constants that each
primitive gives rise to the corresponding differential equation.

a) y • C1 Bin x • C,x

x	 ,.	 x	 -.	 lb) y • Ce + .x* + i.l -x + 2x e x

*
(1 -x cot z)_Z	 •	 • o

2

dx

a) Substitute y • C liar + C,x,	 • C coat +	 - C1 ala x in the differential equation

to obtain
(1- z cot x)(-05 sin x) - x(C1 coax • C2 ) + (C 1 liar • Cox)
-C1 ath x • CL x cos x - C1 x con x - C,x • C sin x + C,x	 0.

The order of the differential equation (2) and the number of arbitrary constants (2) agree

b) y •	 C11x + C,ze x • -x	 2 xe	 +

(Cl + C,) . x + C,z e X - Co e_ X + 2Z2 ex +

yN • (C1 . 2C,)	 + C2 x 2 X + C,e_ X . 2x*e X + 8,, x • 4eX,

• (C1 + 3C, )e Z • C,xe X - c1e_ x • 2x * e X + 12e' + 12eX,

and y -	 - y' + y	 Bo x. The order of the differential equation and the number of arbitrary constants
agree.

2. Show thaty • 2x + Ce x is the primitive of the differential equation 	 -	 • 2(1 - x ) and Find the parti-

cular solution satisfied by x • 0. y 3 . i.e., the equation of the integral through (0.3).



SOLUTIONS OF DIFFERENTIAL EQUATIONS	 9

Substitute y • 2x + CeX and LY • 2+ C.Xin the differential equation to obtain 2 + CeX_ (2x+ CeX)	 2- Zx.dz
When 	 0, y 3, 3 20 ce°and C 3. The particular solution is y	 2x + 3e X.

23. Show that y •

	

	 + x is the primitive of the dit'l'ercntial equation 	 Z —	 • 2y	 2x -3 and
xc+ c

dx

find the equation of the integral curve through the points (0.0) and (1.0).

Substitute y	 c j e
x

 + C2e 2K+ X.	
dy
—	 C1 e + 2C2 2 + 1,	

2
CteX + 4 2 e	 in the differential

equation.to obtain CjeX+ 4G1e- 3(Ce X l. 2C2e2X + 1) + 2(C e X + C,e2+ x)	 2x -3.

When x 0. y-0:  t, + C,	 0. When x 1, y a: Ce + C2 e 2 	-1.

	

X	 7r
Then C	 _C2 • __!__ and the required equation is y • x + C

dy4. Show that ( y -C) 2 . Cx is the primitive of the differential equation 4x()2 + 2x	 - y	 a and find the
dx

equations of the integral curves through the point (1.2).

dy	 dy	 CHere 2(y -C) — . C and 	
' 2(YC)dX	 d%

Then tx 	C	
-	

• C2x,Cx(y_C)_y(y_C)2	 y(Cx-y-C2)	
.

4(y-C) 2 	2(y-C)	 (y-C)2	 (y-C)2

When x 1, y - 2:	 (2 - C) 2 	C and C • 1. 4.

The equations of the integral curses through (1.2) arc (y - j)2	 x and (y - 4)2 
• U.

5. The primitive of the differential equation 	 is y Cx. Find the equation ol the integral curve through
a) (1.2) and b (0.0).

ai When	 j, y 2: C 2 and the required equation is y • 2x.

b	 Whenx = 0. y - 0: C is not determined, that is all of the integral curves pass through the origin. Note
that g(x,y)	 y/x is not continuous at the origin and hence the existence theorem assures one and only one
curve of the family y	 Cx through each point of the plane except the origin.

6. Differentiating xy	 C(x - 1) (y -1) and substituting for C. we obtain the differential equation

____________y
X 

dy
— + y = C{(x _l)Z + y	 r

i)	 ((x— I)	 + y-1)
dx	 dx	 (x-1)(y-1)	 dx

Or	 I)	 x(x _l)Z + y(y-1) •
di

No both y • 0 and y 1 are solutions of I). since, for each, dy/dx 0 and I) is satisfied. The first
is obtained from the primitl\e by setting C 0, but the second y i cannot be obtained by assigning a
Finite value to C. Similarly, 1) may be obtained from the primitive in the form Bxy (x - 1)(y -'1). Now
the solution y 1 is obtained by setting B o while the solution y • 0 cannot be obtained by assigning
finite value toB. Thus, the gicn (cmi of a primitive ma y not include all of the particular solutions of
the differential equation. (Note that x t is also J particular Solution.)
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7. Differentiating y - Cx + 2C 2 , solving for C
dy

 and substituting in the primitive yields the differential

equation

I)	 2() 2 + x() - y • 0.

Since y	 -	 -	 satisfies I). :24 8y r 0 is a solution of ft

Now the primitive is represented by a family of straight lines and it is clear that the equation of a para-
bola cannot be obtained b y manipulating the arbitrary constant. Such a solution is called a singular
solution of the differential equation.

8. Verify and reconcile the fact that- • C cos z C, Bin xandy A cos(x + Bare primitives of	 + y	 0.

From y C1 coB: + c2 sin x, y' -C1 sin: + C2 COB: and

y"= -C 1 cosz- C2 sin:	 -y w,	
Y + y 0.

From y • A cos (x + B).	 y' 2 -A sin (x + B) and y" -A COB (: + B) -y.

Now 	 A COS (x+B) • A(cosx cosB - sin: sin B

• (A cos B) cos x + (-A Bin B) sin: = Cj coB: + C2 Bin:.

9. Show that in	 + In 	 A +x may be written as / BCX.

in :2 + in L	 ln(x2 !) • in	 = A + x. TI	 2	 A 4:	 A. x	 x

	

lCfl y = e	 •	 Be
52

10. Show that Arc Bin x - Are sin y A may be written as 	 -	 B.

sin(Aic Bin X - Arc sin y)	 sin A B.

Then s!n(Arc sin:) COs(ArC sin y) - cos(Arc sin:) sin( Arc Bin y) ,/i?- y /i? .8.

11. Show that in(1+y) + ln(i+x) = A may be written as xy+x+y = C.

ln(1+y) + ln(i+x) • ln(i+y)(i+x) • A.

A
Then(i+y)(1+z) • xy+x+y+1 - e - B and xy+z+y • B-i • C.

12. Show thatsinh y + cosh y cx may be written as y • in: + A.

	

Here Binh y + cosh y w i ( e Y— e ' + 4(e* e') •	 . Cx.

Then y • In C + in x - A + in x.
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SUPPLEMENTARY PROBLEMS

Show that each of the following expressions is a solution of the corresponding differential equation. Classify
each as a particular solution or general solution (primitive).

13.

14.

'S.

M.

17.

18.

19.

20.

21.

22.

2
. ax.

+ ylS

• Cx + C'.

(1-x)y 1 • z 5

y • Cz + C,eX.

x-x
y.C1c +C1e

y C1I X + C2C 1 + x - 4

x	 lx
y . Cie +Cte

x	 lx	 lx
yC 1 e +C1 e	 +xe,

xy 	 2y.

yy + x • 0.

I'
y • xy' • (yl)

2x 5 y' • y(y2+3x2).

yfl - 2y' + y • 0.

(x-1)y"-xy' +yD.

- y = 0.

-	 5 4 - X.

- 3y' + 2y • 0.

- 3y ' + 2y - 2.
x (1-x).

Particular solution

Primitive

Primitive

Particular solution

Particular solution

General solution

General solution

General solution

General solution

General solution

—3



CHAPTER 3

Equations of First Order and First Degree

A DIFFERENTIAL EQUATION of the first order and first degree may be written in the form

I)	 M(x,y)thc + N(x,y)dy	 0.

	

EXAMPLE 1. a)	 +	 = 0 may be written as (y + x) dc + (y - x)cfr 0 in which t(x, y) =

y+x and N(x,y)=y—x.

	

b)	 = 1+x2 y may be written as(1+ x2y)thc—cly=0 in which N(,y)= 1+x'y

and N(x,y)=-1.

If N(x, y)dx + M(x, y) dy is the complete differential of a function &s(x, y),

that is, if	 N(x, y) dc + N(x, y)dy = d/.L(x, y).
I) is called exact and j.qx,y) = C is its primitive or general solution.

EXAMPLE 2.3x1 y2 dx + 20y c' = 0 i an exact differential equation since 3x 2y2 dx + 2x 5 y c,
d(x5 y2 ). Its primitive is x 3 y2 = C.

If I) is not exact but
(x,y){1(x,y)cbc + N(x,y)dy} =

e(x,y) is called an integrating factor of ])and i.(x,y) = C is its primitive.

EXAMPLE 3. 3y dx + 2x c' = 0 is not an exact differential equation but when multiplied bye (x, y)
= x2 y, we have 3x 2 y'cix + 2x3 ydy= 0 which is exact. Hence, the primitive of 3y dc + 2x dy = 0 isxy2 = C. See Example 2.

If I) is not exact and no integrating factor can be found readily, it may be possible by a change of one
or both of the variables to obtain an equation for which an integrating factor can be found.

EXAMPLE 4. The transformation x = t — y, dx dt — dy, (i.e., x + y =

reduces the equation	 (x +y +1)dx + (2x + 2y + 3)dy = 0

to	 (t+1)(dt—dy) + (2t+3)dy = 0
or	 (t + 1)dt + ( t + 2)dy = 0.

By means of the integrating factor 1 the equation takes the formt +2

dy + !iJdt = c + dt - L. dt = 0.
t+2	 t+2

Then	 y+t-1n(t+2) =C

and, since t = x + y. 2y + x - ln(x + y + 2) = C.

Note. The transformation x + y + 1 = t or 2x + 2y + 3 = 2a is also suggested by the form of the equation.

12
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A DIFFERENTIAL EQUATION for which an integrating factor is found readily has the form

2)	 f(x)'g,(y)ctx + f,(x).g(y)dy a 0.

By means of the integrating factor	 1	 ,2) is reduced to

2')	 11(x) dx +	 (y)	 o
f1 (x)	 d,(y)

whose primitive is

f
f(x)	 + ft(Y)dJ, = C.
f,(x)	 42(Y)

Equation 2) is typed as Variables Seperable and in 2') the variables are separated.

EXAMPLE 5. When the differential equation

(3xty_xy)dx + (2x5 y'+x 5 y')dy a 0

is put in the form	 y(3x5 - x) dx + x S (2y + y' )dy - 0

it is seen to be of the type Variables Separable. The integrating factor .—!. reduces it to 	 — .1.) cbr +
yx3	 x

(2y + y 3 )F a 0 in which the variables are separated. Integrating, we obtain the primitive

31nx++y' I ' -C.

IF EQUATION I) admits a solution f(x y C) • 0 where C is an arbitrary constants there exist infinitely

many integrating factors(x1y)such that

'(x,y)(t(x,y)thc + M(x,y)cb') 	 0

is exact. Also, there exist transformations of the variables which carry I) into the type Variables Separable.
However, no general rule can be stated here for finding either an integrating factor or a transformation.
Thus we are limited to solving certain types of differential equations of the first order and first degree, i.e.,
those for which rules-may be laid down for determining either an integrating factor or an effective tran-
sformation.

Equations of the type Variables Separable, together with equations which can e reduced to this type
by a transformation of the variables are considered in Chapter 4.

Exact differential equations and other types reducible to exact equations by means of integrating
factors are treated in Chapter 5.

The linear equation of order one

3)	 + P(x).y = Q(x)
dx

and equations reducible to the form 3) by means of transformations are considered in Chapter 6.
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These groupings are a matter of convenience. A given equation may fall into more than one group.

EXAMPLE 6. The equation x c' - y dx z 0 may be placed in any one of the groups since

a) by means of the integrating factor 11xy the variables are separated; thus, c/y - dxix s 0 so
that lay - in x = in C or y/x = C.

b) by means of the integrating factor 1/x 2 or 1/y 2 the equation is made exact; thus, X	 dx	
0

2 

and =Cor1_Ydx=0and _X=c, 	 =--L=c.
X	 y	 x

c) when written as dy - I y	 0, it is a linear equation of order one.

Attention has been called to the fact that the form of the primitive is not unique. Thus, the primitive
in Example 6 might be given as

a) in y - mx	 in C, b) y/x - C, c) y n Cx, d) x/y K, etc.

It is usual to accept any one of these forms with the understanding, already noted, that thereby certain
particular solutions may be lost. There is an additional difficulty!

EXAMPLE 7. It is clear that y = 0 is a particular solution of dy/dx a y or dy - y dx - 0.When y 0 we
may write dy/y - dx = 0 and obtain In y - - in C with C 0 in turn, this may be written asy l,C0X.

C pf 0.Thus, to include all solutions, we should writey 0; y Cex, CA 0. But note that y. Co g free of the
restrictions imposed on y and C, includes all solutions.

This situation will arise repeatedly as we proceed but, as is customary, we shall refrain from pointing
out the restritions; that is, we shall write the primitive as y 	 C. with C completely arbitrary. In defense,
we offer the following observation. Let us multiply the given equation by e 	 to obtain ex dy - yX dx
- 0 from which, by integration, we get ey	 C or y	 Co

g
. Irr this procedure, it has not been nece-

ssary to impose any restriction y or C.



CHAPTER 4

Equations of First Order and First Degree
VARIABLES SEPARABLE AND REDUCTION TO

VARIABLES SEPARABLE

VARIABLES SEPARABLE. The variables of the equation t(xy)d + M(x,y)dy z 0 are separable if

the equation can be written in the form

I)	 11(x).g,(y)dx + f1(x)•91(y)'	 0.

The integrating factor	 1	 , found by inspection, reduces 1)10 the form
f,(z) ,(y)

f 1 (x)	 +	 - o
f,(x)	 g,(y)

from which the primitive may be obtained by integration.

For example. (x - 1)'ythc + x'(y + 1)' N 0 is of the form 1). The integrating factor ._L reduces
x,y

the equatipn to	
1) 

dx + SZ 1) ' = 0 in which the variables are separated.

See Problems 1-5.

HOMOGENEOUS EQUATIONS A function f(x y) is called homogeneous of degree n

- X"f(xy.

For example:

a) f(xy) = x - X5  is homogeneous of degree 4 since

	

f( ur , Xy) - ().x) - (A.x) 3 (KY) - X (x'- x'y)	 f(x.y).

b) f(x, y) -	 + tan	 is homogeneous of degree 0 sin1e

	

f(Xx,)y) =	 + tan -
Xy	 y/x + tan =	 f(x,y).
XX	 X

C) f(x,y) - x I + Bin X cosy is not homogeneous since

f(Xx') = )'xT + sin(x) co6(ky)	 f(x,y).

The differential equation 1(x,y)dx + N(y)c- 0 is called homogeneous if l(xy)andN(X,Y)

are homogeneous and nL the came degre For example, x In th +	 arc sin dy - 0 is homo-

geneous of degree I, but	
X	 x

neither (x' + y')thc - (xy2 _y)p = 0 nor (x +y')cbc + (x- y)dy	 0 is a homogeneous

equation.

15
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The transformation	 y -	 + x dv

will reduce any homogeneous equation to the form

P(*,)thc + Q(x 1 v)dv = 0

in which the variables are separable. Alter integrating, v is replaced by y/x to recover the original variables.

See Problems 6-I1,
EQUATIONS IN WHICH N(x,y) AND N ( X ,Y)ARE LINEAR BUT NOT HOMOGENEOUS.

a) The equation (a1x+by+c.)dx+(a,x+b,y+c,)	 0. (ab,— a 1 b 1 	 0) is reduced by
the transformation

a1dxn i x +b1 y - t,	 dy - dt-.

to the form	 P(*t)dx + Q(xt)dt	 0

in which the variables are separable. 	 See Problem 12.

b) The equation(ax + by +c	 + (a,x 4 b,y + c,)dy - 0, (a 1 b, - al b,	 0), is reduced
the homogeneous form

(a' + b y ) dx' + (&,x' + b,y')c'' a 0
by the transformation	

x.x'+h,	 y.y +k
in which x - h, y - k are the solutions of the equations

a 1 x+b5 y+c 1 . 0 and a,x+b,y+c, • 0.	 See Problems 13.14.

EQUATIONS OF THE FORM y. !(xy)th + x. (xy)' 0.The transformation

xy • z.	 Y
	 z	

*2

reduces an equation of this form to the form

P(x,i)ib + Q(xs)dx • 0
in which the variable's are separable.

See Problems 15.17.

OTHER SUBSTITUTIONS. Equations, not of the types discussed above, may be reduced to a form in which
the variables are separable by means of a properly chosen transformation. No general rule of procedure
can be given; in each case the form of the equation suggests the transformation.

See Problems 18-22.

SOLVED PROBLEMS
VARIABLES SEPARABLE.

1. Solve x 5 dx + (y+1)t dy s

The variables are separated. Hence, integrating term by term,

+ '	 • C	 or	 3x" + 4(y + 1) 9 • r.
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3Ive x'(y+I)dx + y2 (x-1)dy • 0.

1
The integrating factor	 reduces the equation to ...L.. dx + .1—. dy	 0.

(y+1)(x-l)	 x-1	 y+1

Then, integrating (x + 1 + —.—)dx + (y - 1 + -J.—)d7 • 0,
y+1

+ x + in(x - 1) + jy2 - y + In(y + 1) a C,.
+ 2 + 2x - 2y + 2 Ia(x - 1) (y + 1) • C1,

and	 (x 1) + (Y-1) 2 + 2 in(x - 1)(y + 1) • C.

3. Solve 4xdy - ydx • x2dy or ydx + ( x 2 -4x)dy - 0.

The integrating factorreduces the equation to	
dx	 +	

a o in which the variables
are separated, 	 Y(,x —4x)	 7(x-4)	 7

The latter equation may be written as 	 -	 +	 • 0 or	 -	 +
x-4	 x	 y	 x-4	 x	 y

Integrating, ln(x -4) - in x + 4 In y • in C or (x -4)y . Cx.

4. Solve	 •	 4y	 or x(y-3)dy	 4ydx,
dx	 x(y-3)

The integrating factorl reduces the equation to Y	 dy -	 dr.

Integrating, y - 3 in y = 4 In x + inC1 or	 y	 Ifl(C1x'y5).

This may be written as C1 x'y5 -	 or x'y	 Ce1'.

5. Find the particular solution of (1 +x 5 )dy - x2y dx • o satisfying the initial conditions x l,y • 2.

First find the primitive, using the integrating factor
y(1+z5)

Then	 - _!___ dr -0, In - ! ln(1.x 3 ) a c, 3111y - In(1+x 5 )+ In C. y5-C(1+z5).
7	 1+x3

When x 1, y • 2: 25	 C(1 #1). C a 4 and the required particular solution is ya4(1 +x5i.

HOMOGENEOUS EQUATIONS.
6. When Mdx + Ndy - 0 is homogeneous, show that the transformation y a iiz will separate the variables.

When Mdz+ Ndy ois homogeneous of degree n, we may write

MdxNdy • x1(M1(!)dx+l,Z)y) a o whence M1 ()dx + Nj (!)dya 0.

The transformation y = vx, dy • vdx + x dv reduces this to

dx + N 1 (v)(v dx + x dv) = o	 or	 { M 1 (v) + *d'1 (v))dx + xN 1 (v) dv 0

dx N 1 (v) dvor, finally, - + -	 0 in which the variables are separated.
X	 (t) + vN1(v)
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Solve (x 5 +7 5 )dx - 3xy1dy . 0.

The equation is homogeneous of degree 3. We use the transformation y • vx. di • v dx + xdv to
obtain

	

1) x 5 {(1+0)dx - 3v 2 (vdz + xdv)} 0	 or	 (1-2v)dx - 3vTxdv 0
in which the variables are separable.

-Upon separating the variables, using the integrating factor	
1	 dx 3v d ' V 

• , and
x(1-2v 5 )	 i-2,5

ins + j ln(1-2v 3) - C1 ,	 2 In + ln(i-2v3 ) • In C.	 or	 xt (i-U S) C.

Sin.x	 2v = y/x. the primitive is x (1 -2y 5 /x 5 ) - C or x 5 - 2y5 • Cx.

Note that the equation is of degree 3 and that after the transformation x 3 is a factor of the left member
of I). This factor may be removed when making the transformation.

-S Solve xdy - ydx-./x 1 -y1 dx = 0.

The equation is homogeneous of degree 1. Using the transformation 	 vx, di v dx + x dv and
dividing by x, we have

	

vdx+ xdv_vdx_/j 7dx = o	 or xdv - /id -0.

When the variables are separated, using the integrating factor 	 .	 -	 - o.

Then arc sin v - in z • In C or are sin v	 ln(Cx) and returning to the original variables.

Using  • y/z, arc tin Z • ln(Cx)or Cx= • C tin

9. Solve (sinh+3y cosh )dx-3x cosh dy -0.

The equation is homogeneous of degree 1. Using the standard transformation and dividing by x • we have

2 ainh v dx - 3x cosh v dv - 0.

Then, separating the variables, 2	 3 COth V dv	 0.
2 stab 

Integrating, 2 lax -3 in ainb v - in C.	 x - C ainb 5 v, and x2 C sthh3

10. Solve (2x+ 3y)dz • (y-x)dy = 0.

The equation is homogeneous of degree I. The standard transformation reduces it to

	

(2 +3v)d + ( p - i)(vdx + xdv) • 0	 or ( v 2 + 2v + 2)dx + x(v -1)dv 0.

d
-	2dv	

= 0,Separating the variables, dx
- +	

v - i 	 x
dv = - +
	

2v+2 dv
2 	 v2+2v+2	 *	 2v + 2	 (v + 1)2

Integrating. Ins + j ln(v 2 + 2 +2) - 2 arc tan(u + 1) = C1.

In x2 ( vt +2v+2)  - 4 arc tan(v + 1) = C. and ln(y2 + 2xy + x 2 ) - 4 are tan x I Y - C.

11. Solve (1 + 25X/Y)dx +	 - ) dy 0,
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The equation is homogeneous of degree 0 The appearance of x/y throughout the equation suggests
the use of the transformation z - vy, dx - vdy + ydv.

Then (i+2e 1')(vdy + ydv) + 2"(l-v)dy	 0,	 (v+2et)dy + 7(1+ 2e '')di	 0,

and	 dy	 1+2"dv - 0.
Y

Integrating and replacing v by x/y, in y + ln(v + 2t1)	 In C and x + 2yexlyC.

LINEAR BUT NOT HOMOGENEOUS.

12. Solve (x+y)dx + (3x+3y-4)dy 	 0.

The expressions (x + y) and (3x + 37) suggest the transformation x + y • t.

We use y • t -x, d, a di -dx to obtain tdx • (3t - 4)(dt -dx) • 0 or (4- 2t)dx • (3t - 4)dt 	 0

in which the variables are separable.

Then ldx +	 di • 2 d - 3 d + -i-. dg • 0.
2-i	 2-i

Integrating and replacing by x + y, we have

-3t -2 In (2 -1) - C 1 ,	 2z -3(z y) -2 in (2 -x -y) - C 1, and	 x + 3y + 2 in (2 -x -y)	 C.

13. Solve (2-5y+3)d.z - (2x+4y-e)dy • 0.

First solve 2x -5y • 3 • 0, 2x +4y - • 0 simultaneously to obtain x • h 1. y • k 1.

The transformation x • a'' h - x'+ 1,	 dx - dx'
y-y'+k-y'+i.	 dy - dy'

reduces the given equation to ('-5y')dz'-(2r1+ 4y')dy'	 0

which is homogeneous of degree I. (Note that this latter equation can be written down without carrying
out the details of the transformation

Using the transformation	 y' • vx', dy' - v dx' + x t dv.

we obtain (2-Sv)dx'-(2+4v)(vdz'+ x'dv). 0,	 (2-7v-4v2)dx'-x'(2+4v)dv	 0,

and finally	 +	 ...±.. + ! _±_. - 0.
X1	 34v-1	 3v+2

Integrating,	 in z 1 +	 1*(4v -1) + in (v + 2) • in C1 or	 £ 3(4_ 1)(v + 2) 	 C.

Replacing v by y'/x'. (4y'-x1)(y'+	
)2 - C.

and replacing x' by x -land y' by y- I we obtain the primitive (4y - x - 3)(y + 2x - 3)	 C.

14. Solve (z - y - i)da + (47+x-1)dy - 0.

Solving x-y-10. 4y+x -1-0 simultaneously, we obtain x•h 1. y -k 0.

The transformation z - s'+ h • x'4 1, dx - dx'

reduces the given equation to (I' - 7')dx' + (4y'+ x')dy' 0 which is homogeneous of degree 1. (Note
that this transformation x-1 x t , y-y' could have been obtained by inspection, that is, by examining
the terms (x -7-1)and (4y +2-1).)

—4
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Using the tr'-3formation	 y'	 ', dy' v dx' + x' du

we obtain	 (i-v)d.x'+ (4v+ I)(vdx'+ x'dv) • 0.

dx'	 4v'+l	 dx'	 8v	 dvThen	 —+	 dv • -._+	 dv+	 • 0,
X1	 It'2 + 1	 x 1	 02 + 1	 4v2 + 1

In x' + j in(4v 2 + 1) + arc tan 2v = C1 ,	 In x'(4v2 + 1) + arc tin 2v	 C,

ln(4y'+ x) + arc tan L. = C. and ln(4y 2 + (x- 1)2] + arc tin _!i_ - C.
z-1

FORM y f(xy)dx + xg(xy)dy = o.

15. Solve y(xy+ 1)dx + x(1+xy+x 2 y2 )dy a 0.

The transformation zy • v,	 y viz,	 *iy = 
x dv- vdx

reduces the equation to	 + 1)dx + x(1 + V + v2) zdv -t' dx

which, after clearing of fractions and rearranging, becomes v3 dx - x(1 + v + u 2 )dv • 0.

Separating the variables, we have 
dx- - du— - dv- - dv= 0.
x

Then	 in x + J.- + - in v	 c,	 2v2 In 	 - 2v	 1 = Cv2,

	

V	 x

and	 2x2y2Iny - 2xy - 1	 Cx2y2.

16. Solve (y-xy 2 )dx - (z+zy)dy	 0	 or y(i - xy)dx - x(1+xy)dy a 0.

The transformation xy v, y = v/x • dy • x dv- v dx reduces the equation to
xl

x du - v dx-x(1+v)	 - 0	 or	 2vdz-x(1+v)dv • 0.x

1Then 2 dx	 +v— - — dv	 0,	 2 in x - in v - v • In c. X2
	

V-	 and x CyeXY.
x	 I,	 V.

17. Solve (1-xy+x 2yt )dz + (x 5y-x)dy a 0	 or	 y(1-xy+x'y2 )dX + x( 2y2 -xy)dy 0.

The transformation xy = v, y= v/x, dy x dv - v dx reduces the equation to
X2

(1_v+v 2 )dx + x(v2_v)Xh*J__t'dx = o	 or	 vdx • z(v'-v)dv • 0.
x	

x2

dx
Then	 + (v - 1)dv	 0,	 In x + v2 - v = c,	 and In z • zy	 x2 y2 + C.2
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MISCELLANEOUS SUBSTITUTIONS.

18. Solve	 . (y-4x)2 or dy	 (y-4z)2dg.
ds

The suggested transformation y - 4x . v. dy • 4dx + dv reduces the equation to

4dx+dv.v2 dx or	 dz_±_ .0.
V2- 4

Then x + * In ! 12
	

i— • C, In -
+2	 v+2

= In  - tx -
	 and ' -tx + 2

w-2	 v-2	 v -2	 y-4z -2

19. Solve tan t (z+y)dx - dy * 0.

The suggested transformation x + y • v, dy • dv - dx reduces the equation to

	

tsnv dx - (dv -dx) • 0. dx -	 du	 • 0,	 or dx - coo 2 v dv • 0.
1+tLn2t'

Integrating. x - v - a1n 2v	 C1 	 and	 2(x -y) - C + sin 2(x + y).

20. Solve (2+2zy)ydx + (x2y+2)xdy - 0.
2

• v, y = -, dy •	 dv - -'dz reduces the equation' toV
The suggested transformation xy

X%	 x3

2	 2

	

(2+ 2v)-. dx + z(V + 2)( dv -	 - dx)	 0	 or	 v(3+ v)dx - x(v + 2)dv	 0.
1

dx 2 d 1 dv
Then - - -- - -3 - 0,	 3lnx - 2lnv - in(v+ 3) • in C 1 .	 x5 - C5v'(v+3),

3v

	

x	 v+

and 1 - C5zy(xy+3) or xy(xy+3) -C.

21. Solve (2 3y' 7)x dx - (3x 2 + 2y2 - 8)y dy * 0.

The suggested transformation x' - u, y'= v reduces the equation to

(i+3v-'t)- (3U+7v-8)dV • 0
which is linear but not homogeneous.

The transformationu • a + 2. v • e + 1 yield&the homogeneous equation (2+ 3t)da - (3, + 2t) de • 0 and

the transformation * • rt, dx • r dt + t dr yields 2(r' - 1)dt # ( 2r + 3) t dr • 0.

Separating the variables, we have	 + ?S_._d,. - 2 g.! -	 +	 •±_ 5 0.

	

t	 re_i	 t	 2r+1	 2r-1

Then	 4 in C - ln(r + 1) + 5 ln(r - I) - in C.

	

-	 (a - t)$	(u-v -1)	 (xt-y2 - 1) • C. and (12 -
	 - 1) • C(x 2 + y2 - 3).

	

r+ 1	 a+ t	 u+ v-3	 z2+ y2 - 3

22. Solve x(x dg 4 y dy) + y(x dy - y dx) • 0.

	Here xdx + ydy • d(x 2 • y')andr dy-ydx • xtd(y/x)suggests 2+7 • p2 . y/z	 tan 8 or

z • P Co. 8. y • p sin 8, dx • - p sin 6 dO + coa $ dP. dy • P C08 8 dO + sin 8 dp.

The given equation takes the form p2 coet9 (p dp) + p ath 8(' dO)	 0

or dp + tan  aec$d0 • 0.

Then	 P + see 8 • c1.	 /2 7	 1) • 1	 and	 (x2 + y2) (x + j)2
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SUPPLEMENTARY PROBLEMS

23. Determine whether or not each of the following functions is homogeneous and, when homogeneous,
state the degree.

a) x_xy,	 homo.of degree two,	 e) are sin xy,	 not homo.

b) _!L.,	 not homo.	 f)	
+	

homo. of degree one.x+y'
g) in x - in y or in	 homo. of degree zero.

C) .- 	 homo. of degree zero.	 /.'-._______
xl+yt Ii)	 zxy+ 3y1	

homo. of degree one.

d) x + y con ,	 homo. of degree one. 	 i)	 sin + y sin X. not homo.

Classify each of the equations below in one or more of the following categories:

(I) Variables separable
(2) Homogeneous equations
(3) Equations in which H(x.y) and N(x,y) are linear but not homogeneous
(4). Equations of the form y f(xy) + x j(xy)dy • 0
(5)' None of the above apply.

24. 4y dx + x dy	 0	 Ans. (I); (2), of degree one

25. (1+2y)dx + (4—x t )dy a o	 (I)

26. yec_x?dy - 0	 (1);(2),of degree two

27. (1+y)dx - ( 1+x)dy -0	 (1):(3)

28. (xy'+ y)d.x + (x i yx)dy	 0	 (4)

29. (x sin Z - y cos Z)dx	 x cos dy a 0	 (2), of degree one

30. y 2 x2 + 2)dx + (x 5 +y 3 )(ydx - xdy) • 0	 (5)

31. yht + yt dx - xx + Ix*+y)y _o	 (2), of degree two

32. (x+y+1)dx 4 (2x+2y+1)dy • 0	 (3)

33. Solve each of the above equations (Problems 24-32) which fall in categories (1)-(4).

Any. 24. x 16 • C	 28. y a Cxe xy

25. (1+ 2y) • C _.!	 29. x sin Z a C2+x	 Z

26. y • x+Cxy	 31. Cz-c'+,' •
27. (1+7) C(i+x)	 32. x + 2y 4 ifl(x+y) • C

Solve each of the following equations.

34. ( I + 2y)dx - (4—x)dy = 0	 Ans. (_4)*(j 
27) • C
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35. xydx + (t+*t )dy . 0

36. cot 8dp+pd0 • o

37. (z+2y)d + (2x+37)dy 0

38. 2xdy-2ydx

39. (37- 71 + 7)dx + (7y - 3x + 3)dy • 0

40. zydy • (y+1)(1-x)dx

41. (yt _x1 )cLz + zydy • 0

42. y(1+2xy)dx + x(1-zy)dy =0

43. ds s. (1-z1 )cotydy • 0

44. (x+y)d • 3s/dy = 0

45. (3x+2y41)dz - (3x +2y -1)dy • 0

Ans.	 y2 (1+x2 ) - C

Ans. paCcos$

Ans. z 2 +4xy+3y2 - C

Ans.	 I + 4Cy - C2s2 0

Ans.	 (y-r 
4.)t(y45_) = C

Ans. y+z • 1nz(y+1)

Ans. 2sy • x + C

Ans. 7 - Ciii1'

Ans. siny • C i--s
1+5

4Ans.	 .x +4xy . C

Ans.	 1b (15s+ 10y - 1 ) + (X.y)	 C

In each of the following, Find the particular solution indicated.

46. zdy+2ydx •o:when s . 2. yu 1.

47. (x 2 .y7 )ds+xydy -0 : when x • 1,y.-I.

48. Cosy a . (1+.)ainy dy * 0.when xa0, y = 1/4.

49. (y'+zy)dx - s tdy 0:whcn Z • 1. 7 • 1.

Ans. 513 4

Ans. x 
+ 2z

2
y' - 3

Ans. (1+.)$.C7 S 34

Ans. s •

50. Solve the equation of Problem 30 using the substitution y vs.

Ans. sy lns - y + z-	 - Cs1y

SI. Solve y' • -2(+ 
3)1	 using the substitution	 a • 2s+ 37.

Ans.	 + 43(2s + 3y) = c.'4
I - 4(2s+ Sy)

52. Solve (z - 2 slay + 3)d • (Zs - 4 sin  - 3)cosy dy - 0 using the substitution sin  a

Ans. e sin y + 4s + 9 ln(4z - $ sin y + 3) • C

'F
I.,.



from which	 - '(y) and, hence, *() can be founddy See Problems 2-3.

CHAPTER 5

Equations of First Order and First Degree
EXACT EQUATIONS AND REDUCTION TO EXACT EQUATIONS

THE NECESSARY AND SUFFICIENT CONDITION that

I)
	

M(x,y)dx + N (x, y ) dy = 0

be exact is

2)
	

ZN

At times an equation may be seen to be exact after a regrouping of its terms. The equation in the reg-
grouped form may then be integrated term by term.

For example, (x - y)thc + (y 1 - x) dy = 0 is exact since

;
-- —(x —y) = —1 = — (y —z) = —.
y By BX 3x

This may also be seen after regrouping thus: x1 dx + y2 dy - (y de xdy)	 0.

This equation may be integrated term by term to obtain the primitive x13 + y 5/3 - xy = C. The

equation (yT -	 + (x - y)dy 0, however, is not exact since L = 2y 4 2x =

	

ay	 3X

See also Problem I.

IF I) IS THE EXACT DIFFERENTIAL of the equation j.(x, y) C,

-	 d*c + t cIy - M(x,y)dx + N(xy)dy.
ax	 By

Then	 - t(x,y),	 and	 p(x,y)	 +

where fx indicates that in the integrating y is to be treated as a constant and 4(y) is the constant (with
respect tpx) of integration. Now

5 ?_(f X N(X,y)dx) +	 M(x,y)
Y	 b'	 dy

INTEGRATING FACTORS. III) is not exact, an. integrating factor is sought.

y N x	 ff(x)dz
a) If	 - 1(x) a function of x alone, then • 	 is an integrating factor of 1).
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If	 = -gy), a function of y alone, then e fg(y)dy is an integrating factor of I).5Y 	 TX_

I
See Problems 4-6.

b) If!) is homogeneous and Ix + My 0, then	 1	 is an integrating factor.
Ix + NY	 See Problems 7-9.

c) lfI) can be written in the form yf(xy)dx + xg(xy)dy = 0, where f(xy )	 g(xy) then

1	 - =	 1 -is an integrating factor.
xy{f(xy) -Q(xy)}	 AN - NY	 See Problems 10-12.

d) At times an integrating factor maybe found by inspection, after regrouping the terms of the equation.
by recognizing a certain group of terms as being a part of an exact differential For example:

GRoUP OF TERMS	 INTEGRATING FACTOR	 EXACT DIFFERENTIAL

x dy - y dx	 1	 Z	
• d()

X2 	 X2	
Z

xdy + yd.z

xdy+ydz - d(	 ). if n#1
(zy) 'I	 (n -1) (xy)1

(zy) 'I	 xdy+ydx	 d{ln(xy)}.	 if fls5

Xy

zdz+ydy - d(	 ), if i#1
1 

7"	

(xT+ 72 ) 1	 2(n-l)(xt+ y2f_l
xdz+ydy	

•	 2(x +y )	 xdx+ydy - d(41u(x2+y')}.	 if n-i
72

See Problems 13-19.

e) The equation x'y' (my cb + ax dy) + xy°(y d + vx dy) 0 where r, s, m, n, p, a. A. v are
constants and m y - n 0 , has an integrating factor of the form x The method of solution usually
given consists of determining a and /3 by means of certain derived formulas. In Problems 20-22, a proce-
dure, essentially that used in deriving the formulas, is followed.
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SOLVED PROBLEMS

I. Show first by the use of 2) and then by regrouping of terms that each equation is exact, and solve.

a) (4z5 y) -2xy)ds + (3x'y2 - x 2), a 0

b) -0	
a') 3x(yi-1)dx + .xdy •o

C) (005 y e y cci x)dx + ( Sin x - z sin y)dy 2 0 
e)	 + (3x 6 Y 2+5)d -0

a) By 2): a 13*3, 2 - 3*— - -	 and the equation is exact.

By inspection: (4x3 y5 dx + 3x4 y2dy) - (2xydx+ x2dy) • d(x 73 ) - d(zty) a

The primitive is zy5 - zy	 C.

b) By 2):	 3x. 3.	 N- and the equation is exact.

By inspection: (3.5xyd* +	 dy) - 2* dx • d(ay) - d(z 1) - 0.

The primitive is	 0 5 y - x2 a C.

C) By 2):	 - sin y + Co. x •	 and the equation is exact.

By inspection:	 (coS y dx - z sin y dy) + (y cos x dx	 sing dy)
- d(x co. y) + d(y sin x) a 0• The primitive is s cosy + y sin x • C.2

d) By 2):	 - and the equation is exact.
2	 2	 2By inspection:

	

	 (25yX dx + . dy) - 2* dg • d(yo ) - d(x 2) a 0.a
The primitive is ye' -	 • C.

	

3,	 'e) By 2):	 -
BY

 = 18z y • x3 y a -	 and the equation is exact.;3z
By inspection: 	 (*9y3dx + 3x6ytdy) + (4x 3y3 dx + 5x'y'dy)	 d(x6y') + d(z') a 0.
The primitive is	 6,.5 + x' y' • C.

2. Solve (Z* 3 +3y)di + (3x+y-1)dy = 0.

3 •	 and the equation is exact.
ax

Solution I. Set	 u(x,y) 
= f* 

(2*' + 3y)dx a	 + 3xy +

Then	 3* + 4'y a N(z.y) • 3x+ y-1,	 #'(y) • y-1,	 4(y) k y 2 -y.

and the primitive is x' + 3zy + iY2- y • C1	or	 + 6xy + 72 - 2y • C.

Solution 2. Grouping the terms thus 2x3dx,' ydy -	 + 3(y dx + z dy) • 0
and recalling that ydx s xdy • d(xy). we obtain, by integration, W+	 - y + 3x • C as before. ky
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2
3, Solve (y2 

e	 • 4x')dx 4 (2xye	 - 3y2 )dy	 0.

2ye

	

xy2 
2xy 

5
e xy2	BN

- and the equation is exact.+ 

2	 2	
4x3	

2
Set	 f (y	 +	 ) dx	 e	 + X +

Then	 ?.xye	 #	 ' ( y)	 2xye' - 3y 2 .	 4'(y)	 (y)

2	and the primitive is exy + x -	 . C.
xy2The equation may be solved by regrouping thus 4x 5 dx - 3y 2dy + (y

2 e xy2 dx + 2xye dy) • 0 and

	

2	 2
noting that 2XY2dx	 2xye	 dy	 d(e	 ).

xy

4. Solve ( 2 
y

2
 +x)dx + xydy x 0.

-	 2y - r
	 the equation is not exact.

M BN

y	 x • 2y - y	 1
However.	 -	 - f(x) and e 	efdx/x 	 mx

X
N	 xy	 x

is an integrating factor. Introducing the integrating factor, we have

	

(x 3 + xy2 +x 2 )dx + x2ydy	
2	 20	 or	 x3dx + x dx + Cxy dx + x 2ydy)	 0.

Then, noting that xy2 dx + x 2y dy	 d(z 2y2 ). we have for the primitive
.4	 5

X	 x	 22- 3

	

+ - + x y	 C1	 or 3x + 4x + 6x2y2
4	

C.

5. Solve (2y4 e+ 2xy 3 + y)dx + (x 2 y * ye — x
2 2
y - 3z)dy	 0.

-	 Bxy	 + 2xy'e + 6xy2 	 1.	 -	 2xy'e - 2xy
2 - 3; the equation is not exact.

21Y	 ax

ôM N _____However, - - -	 8xy e
y 

+ 8xy 2  + 4 and Ey
y Zz 	 U	 Y

Then e fg(y)dy	 -4j'dy/y	 e- 4  lziy 1/y,is an integrating factor and, upon introducing it

the equation takes the form
2

(2xe+2+--)dx + (x 2
e
y X
- - - 3—x )dy • 0	 and is exact.

2

2

Set	 x,y) 
• fx 

(2xe + 2	 J.)dx 2 y	 x	 x	
q(y).- Xe + — + —+

	

7 )43	 7	 73

1	 2

Then 7 X	 X	 I()	 2 7	 X	

•	 ' (y)	 0. q6(y) constant, and- xc —	 3	 +	 • Xe —	 3

2
Ithe primitive is x

1
c

7 	 X
+ — + —	 C.

—5	
Y 73
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6. Solve (2x
5
 Y

2
+ U2  + 2xy' xy" + 2y)dx + 2(y 5 + x 2  + x)dy - 0.

M	 3	 2

Ty	 ax
4x y + 4x + lxy + 4xy	 2	 2(2xy + 1) the equation is not exact.

BY	 BX

-

XdX2
N

	

2x and the integrating factor is e	 eX . When it is introduced, the given equation

becomes	 252	 2	 2	 x	 2(2z y # 4x y + 2xy + xy + 2y)e dx + 2(y + x y + x)e dy	 0	 and is exact.
X

Set	 (x,y)	 S (2x 5 2
y + 4x 2	 2	 x 2y + 2xy + xy + 2y)e dx

i• fX(y2 
+ 5y2;ex2dx + fX(2 + 

4x 2y)/	 xdx + j zy e dx
22x2	 2	 2

• xye	 +	 yex +y'e e x
 +(y).

Then 22x ye	 + 2x e X + 2yeX + -" (y )	 2(y3 + x 2y + x •	 '(y) = o,	 and the
22primitive is (2x y + 4xy + y )e	 C.

7. Show that	 I • where Mx + NY is not identically zero, is an integrating factor of the homogeneousMx + NY

equation M(x,y)dr * N(r.y)dy =o of degree n. Investigate the case Mx# NY- o identically.

We are to show that - M dx •	 N dy	 o is an exact equation, that is. that
Mx+Ny	 Mx+Ny

D('

	

t hi

	 -	 N
'YMx+Ny	 xMxsNy

(Mx + Ny) LM - H ( x	 + N + y )	 NY	 -	 - MyBNM >	 -	 ______________

	

(aY+Ny)2	 (Mx+Ny)2
and

B IV___	
(Mx+Ny)_N(x+M+yi)	 Mx' - MN - N

	

(Mx+Ny) 2	(Ux#Ny)2

-M N + y
M(.	 —)M	 N	 x	 y	 x	 3y	 N(nM) - M(rN)

Br Mx + NY -0-

	

(MX + NY ) 2	 (Mx +Ny)2
BY Mx + NY

(by Euler's Theorem on homogeneous functions).

	

H	 -	
and the differential equation reduces to ydx - xdy	 0 for

If Mx + NY = 0 identically. then	 x

which l/xy is an integrating factor.

8. Solve (x' + y)dx - xy 3dy = 0.
	1 	 1The equation is homogeneous and

	

	 is an integrating factor. Upon its introduction,Mx+Ny
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the equation becomes ( + L dx - Z_ dy	 0 and is exact.x

Set p(x.y)	
jX	

+ .- ) dx	 in x -	 +

Then	 - -	 + i i (y) - -	 .46 1	 - o, and the primitive is
ay

In x -	 • C	 or	 y'	 4x In +

Note. The same integrating factor is obtained by using the procedure of a) above. The equation may be
solved by the method of Chapter 4.

9. Solve y2dx + (x 2 - xy - y 2 )dy	 0.

1	 1The equation is homogeneous and	 •	 is an integrating factor.
Mx + NY	 Y( .2 - Y 2 )

1	 2
Upon introducing it the given equation becomes	 ' dx + X - XY - ' dy 0 which is exact.

x2 - y2	 y(x2 - y2)

Set ax.y)	 fx Y dx • 1 jX 1	 L)dx - 1	 i -y- in — +

	

2	 1x-y zy	 2	 x + y

	

(y) 
•	 2 -x)'- y 2	 1 -	 xThen	 • - X

Y x-y2	
- in

y(z 2 - y2 

	and the primitive is	 In	 Y * in- y 	in C1 or	 (x - y ) y2	 C(x + y).
x +y

10. Show that	 1	 • when Mx - Ny is not identically zero, is an integrating factor for the equation
NX -NY

Mdx + A'dy - yf j (xy)dx + xf,(xy)dy v 0. Investigate the case Mx - NyQ identically.

The equation	 yf1(xy)	 +	 xf2(xy)	 dy	 0	 is exact
xy{f 1 (xy) 12(xY))	 xy{f1(xy) -f2(xy)}

since
f1

	

X (ft- f,)	 - f X (-aft - -)	 f2	 ft	
2

	

Y x(f1-f2)	 x2(f-fa)2	 x(f1-f2)2

	

21 Y(f1-f2)	
-	

-12Y(	
f2	

ft-	 12
f2	 ft

	

{	
12)	

- 

	

Y(ft -12)	 y2(ft _f3)2
	

y(fi f)2

and
ft (Y
	 -

	

{	 1	
-	 {	

12	
-

	
f2 

-Y	 + x	 +

	

Y Z (ft -12)	 Yf-f)	 xy(ft f2)

This is identicall y zero since	 y	 f(xy)
By	 -ax
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M yIf Mi-NY u 0, then - . - and the equation reduces to xdy • yd.x • 0 with solution zy C.NI

II. Solve y(x 2y 2 • 2)dx + x(2-2x 2 y 2 )dy • 0.

The equation isoithe form yf, (xy)dx • xf2 (xy)dy 0 and	 1	 1 is an integrating factor.
Ni-Ny ax3y3

22
2
	22

.Upon introducing it, the equation becomes xy	 dx	 2- 2x ' dy 0 and is exact.
3xy'	 31275

22

Set (x,y)	 fX (I Y	 2 ) 	 jX 1 •	 •1 mx - __!__ +
5y2	 rX 33y3	 3	 3xy

Then	 +
2	 22x1y2	 2	 2- •	 4)(Y)• - 	 In

3z2y 3	 31275	 3y

and the primitive is 1 mx
1 	 2	 1 t/x'Y2

- 3x2y2	
lay • In C	 or	 x • y e

The equation may be solved by the method of Chapter 4.

12. Solve y(2xy • 1)dx + x(1 +217-z 5 y 3 )dy a 0.

The equation is of the form yf1 (xy)dx xf2 (xy)dv • 0 and	 1	 •	 is an integrating factor.
Mi-Ny x1y1

Upon introducing it, the equation becomes ( ....L. + .J.-)dZ + (__!_ + ...L. - 1)d7 . 0 and is exact.
xy I zy	 zy 	 X 1 Y 9 )

Set	 x. Y) • j I ._L. + _!_)j	 • - __L - ___L.. +2 3 y2 	 xy	 x1y1	 3zy

+ __L • '(y) • ._.L. + ..L - .	 '(y) . !,	 (y ) • - Thy,Then	
•	 x5y	 xy' X2 YSY

and the primitive is	 - Thy - I - __! 	 c5	 or	 y u
x 2yt 3zy

13. Obtain an integrating factor by inspection for each of the following equations.

a) .xye' • xy + y)d.x + (z 1y"e' - x 2y2 - 3x)dy . 0
	

(Problem 5)

h) ( x 2y5 + 2y)dx 4 (2z - 2x 5 y 2 )dy • 0
	

(Problem ii)

) ( y2 +	 + (x + 2z 
2 Y- 

x"y3 )dy . 0	 (Problem 12)

a) When the equation is written in the form

Y"(2x'e'dx+r 2edy) + 2xy 5 d.z - x 2 y2 dy + ydx - 3xdy	 0

the term y' (2xe'd.x + x 2 e"dy) . y't (an exact differential) suggests that 1Jy is a possible integrating
factor. To show that it is an integrating factor, we verify that its introduction produces an exact equation.

b) When the equation is written in the form 2(y dx + x dy) + x2yd.x - 2x 3 y2dy 0, the term ( y di . x dy)
suggests V(xy)k as a possible integrating factor. An examination of the remaining terms shows that
each will be an exact differential II k 3. i.e., 1/(,,y) 3 is an integrating factor.
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C) When the equation is written in the form (x dy + ydx) + Zxy(x dy +ydx) -	 0 the first two
terms suggest i/zy. The third term will be an exact differential if k	 4: thus. 1J(xy)' is an integrating

factor.

14. Solve ydx+x(1-3x 2 y 2 )dy 0 or xdy + yd.x - 3x 5y 2dy 0.

The terms x dy +y dx suggest W(xy)' and the last term requires I • 3.
Upon introducing the integrating factor ...J..... . the equation becomes z dy + yd.x -	

o whose
(.y)5	 XSYS	 '

-11primitive is - - 3 my a C, 8lny - inc - - or y 6 • Ce"
2x 2 y 2	 x2y2

IS. Solve x dx + ydy + 4y 5 2
	 2

(x +y )dy • 0.

The last term suggests I/ (xi 	 2) as an integrating factor,

dy
Introducing it, the equation becomes 

x dx + y	 + 4y5 dy • 0 and is exact.
+ 

72

The primitive is i ln(x 2 y2 ' + y	 In C5 or (x + y2 )e27	 C.

16. Solve zdy -ydx - (1-x 3 )dx • 0.

Here liz 2 is the integrating factor s since all other possibilities suggests by x dy - y dx render the last term
inexact.

Upon introducing it, the equation becomes  dy - ydx -
	 tx • owbose primitive is Z +

2 1	 I	 2 Z

•C or	 y+x t +Z sCx.

17. Solve (x +	 +2x 
I 
Y + y )dx + y dy - 0 or .x dx 4 ydy + (22 + 72)2 dx • 0.

An integrating factor suggested by the form of the equation is	 . Using it, we have xdx+ydy
(22+72)2	 (XI +y

4 dx - 0 whose primitive is -	 1	
• x a C1 or (C + 2z) (22 + 2) - 1.

2( 1 2 + y2)

18. Solve Z 2	 •xy + /i_x2 y2 	0 or x(zdy+yd.x) + /1-x'y2 cLx x 0.
dx

I	 ________________The integrating factor 	 _______ reduces the equation to the form _'
	 • dx_______ - 0 whose

2

primitive is irc sin (zy) 4 In x • C.

19. Solve 	 or (x 5 #zy2 -y)dx + (y3 +x2y+x)dy	 0.
dx	 x+x2y+yS

When the equation is written thus- (21 4. yt )(x dx ydy) x dy - y dx o. the terms z dy - y dx suggest

several possible integrating factors. By trial, we determine 11( 2 2 + y2 ) which reduces the given equation
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x dy -yd*
dx-y	 X2___to the form	 xdx+ydys xdy	 xdx +ydy +	 • 0.

X2+ Y2
x

The primitive jsx 2 + j Y 2  
+ arc t. y C1 or X 2 + 

y
2 +2rcttn	 C.

X	 x

20. Solve	 x(4ydx + 2xdy) + y5 (3ydx + 5xdy)	 0.

Suppose that the effect of multiplying the given equation b y X 
a 

Y	 is to produce an equation

a'l
A) (4x y dx 2x y dy) + (3z 2

y"dx+$x °' y'	 3 dy)	 0

each of whose two terms is an exact differential. Then the first term of A) is proportional to
a+3 5G	 G+1 g. 2B) d(x y	 )	 (a + 2)z y dx + (,8 • 1)x a y dy,

that is,
a+2	 $+jC) -	 and	 a-230.4	 2

Also, the second term of A) is proportional to

asj 544	 a+1 $,

	

Di	 d(x y )	 (a + 1)x a y dx + ($+ 4)x y dy,
that is,

E)- - and 5a 3$ 7.
a+1	 $+4

3	 5

Solving a-2$ • 0. 5a-3/3 • 7 simultaneously, we find a • 2, $1.

When these substitutions are made in A), the equation becomes
(4xyZ + 2xydy) + (3x'y3 d.x 4 5x 5 y4 dy)	 0.

The primitive is x y2
 + x3 y • C.

21. Solve	 (8ydx 4 8xdy) 4 xT y5 (4ydz + 5xdy) = 0.

Suppose that the effect of multiplying the given equation by 	 x y	 is to produce an equation

A) (8x'y81dz 8xa+1 	 a+2y dy) 4 (4x y dg 4 5x
a+5 6+3

y dy) • 0

each of whose two terms is an exact differential. Then the first is proportional to

a+1 +X	 a a+i	 $B) d(x y )	 (a+ 1)x y dx + (j3+1)xa+1 
y dy,

that is,

a#1	 /3+
C)

i
. -	 and8	 8

Also, the second term is proportional to

a•3 	 +1$	 a+2 844 3D) d(x y ) • (a+3)x• y dx + ($+4)xa. 
y

$4 dy,
that is,

E) a + 3	
/3 —+4 	 and	 Si - 4$ • 1.4	 S

Solving a-/3 0, 5a - 0 1 simultaneously, we find a. 1, /3 1.
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When these substitutions are made in A). the equation becomes

(8xy2dx + 8x2ydy) +	 + 5xy
4

dy)	 0.

The primitive is	 4x1y2 + x'y - C.

Note. In this and the previous problem it was not necessary to write statements B) and D) since, alter
a little practice, the relations C) and E) may be obtained directly from A).

22. Solve x 3 y5 (2yd.x+zdy) - (5yd.x+7xdy)	 0.

Multiplying the given equation by x 8, we have

A) (2 5 7
11
dx + x"y 5 )dy - (5i/dx + 7x1+lyBdy)	 0.

	

-	 Z8lithe first term of A) is to be exact, then -ai+4	 4.
--

and a -

a4-1If the second term of A) is to be exact, then	 /3 -+1 and 7a - 5/3 -2.
	5 	 7

Solving a-2)3	 , 7a-s3 --2 simultaneously, we find a --8/3, 3 -10/3.

Then, from	 '5 dz+x y	 dy) - (5x ' y" dx	 7x-" ••10/5 dy)	 0, each of the

two terms is exact, and the primitive is

+ U-5/5
y" 	 Cl.	 z%/5 Y 2/3 + 

2z'y ' • C or x 5 y5 + 2

SUPPLEMENTARY PROBLEMS

23. Select from the following equations those which are exact and solve.

a)

b)

C)

d)

1)

g)

h)

i)

I)

k)

(x2-y)dx - xdy 0

y(z-2y)dx - r2dy - 0

2
(x +y 

2
)dx + xydy - 0

(x 2 4y2 )dz + 2xydy • 0

(x # y cos x)dx + sin x dy • 0

(1 + e28)do + 2pe2OdS - o

dx - Vx2 dy - 0

(2x+3y+4)dz + (3x+4y+5)dy -0

(4x 3 y5 + !)dx + (3x 
11 

Y - !)dy - 0

2(u + UV)du + (U + V )dv = 0

- y)dz + (y Ix 2 + y" - x)dy - o

Ans.	 zy - x 3 /3 + C

Ans.	 ry 2 + x 5 /3 - C

Ans.	 x2 + 2y sin x C

Ans.	 p(1 4 e 28 - C

AOS.	 x2#3xy+2y2+4x+Sy=C

Ans.	 x'y 5 + ln(z/y) - C

5	 5Ans.	 20 +3u 2 
v,v -C

Ans.	 (x2+y!)5/!_3x7 -C
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I) (z+y+1)à - (z-y-3)dy • 0

,n) (z+y .l)à - (y-z +3)dy • 0	 Ans. x + 2zy - y1 + 2x - y - C

n) csc 0 tin 8 dr - (r Ccc 8 + tin2 8)de 0	 Ans. r cee 8 in sec 8 C

o) (y -
_____

4 2)dx + (_-L + 2y (x + l)Jdy - 0	 Ans. In - + (z+l)(y
2 

+ 2) • C______
2+7

2(2+7)	 5+7	 S

P) (7.23'+7'e5+l)á + (2eXY+2xye2Y
2
	2 y-2y)dy - OAns. • 	+ ex y

l
 x ._y	 C

24. Solve the remaining problems above [b), c), g), /)) using the appropriate procedure of Chap.4.

Ans.	 5) sly • 2 laz+C

;	 22
C) z + y •C

g) y.arc sins/a 4 C

I) ln,4 2 +yt -2x+4y+5 - arc	 • C

25. For each of the following, obtain an integrating factor by inspection and solve.

a) zdx + ydy a (xi +72 )dx	 Ans. ii(x2+y')
2 2	 isx +y •Ce

b) (27-3x)dx+xd3'-O	 Ans. x; z
2
y a x5 +C

•
C)	 (X- Y dx + 2xydy • o	 Ans. 1/s 2 	 2• y + x ins • Cs

d) x dy - ydx • 3 t (t 
y2 )d*	 4ns, 1/(z+ y' ) ; are tifl y/z a x 4 C

e) ydx -xdy+lnxdz -0	 Ans, i/zr : y+lns +1-Cs

P	 (32 
+	

2	 2t)dz - 2xy dy - a	 Ans. 1/s	 3x - y 2 . Cs

g) (xy-2y2 )dx - (z 2 -3xy)dy • 0

h) (x+y)ds - (x - y)dy a

0 2y dx - 3zy2dz - x dy • 0

J) ydr+x(x 2 y-1)dyO
k)	 (y+x 5y+2x 2 )dx + (x+4xy+8y 3 )dy x 0

Ans. 11xy2 ; s/y + 1n(y3 /z 2 ) - C
2Ans. 1/(z +y 2 ); x 

2 + 
Y  2 Ce2tt5J%7/2

Ans. x/y 2	 x 2 /y-x 3 - C
Ans. y/x 9	 3y2 - 2ic 2 y 5 • Cs2

3	 3	 IAns. If(zy+2,;	 ]n(xy+2) + z + 3y • C

26. For each of the following, obtain an integrating factor and solve,

a) xdy - ydx - ztexdz	 Ans. y•C.x+xe 2

b) (l+y2 )ds • (z+z2 )dy	 Ans. arc tiny • in s/(x +1) + C

C) (2y-x3 )dx + xdy 0	 Ans. x 2 
y - z/5 = C

d)yd.y+ydz-zdyuo	 y+z.Cy
e) (3y3 -xy)dz - (x 2 +6xy2 )dy -0	 Ans. 3,2 +x In(zy) • Cs

f) 3z 1yds + 4(x3y-3)dy - 0	 Ans. X7 - 4y - C
g) 7(z+y) - xtdy - 0	 Ans. sly 4 in x	 C

h) (27 + ) y2 )dg 4 (x + 2s 2y)dy • 0	 Ans. zy(l + zy) - C
0 y(yt -2x2 )dr + z(Zy'-x 2 )dy • 0	 Ans. x2

y2 (y2 -x 2 ) - C

27. Show that .4 f(y/z) is an integrating factor of x dy - y dx - 0.



CHAPTER 6

Equations of First Order and First Degree
LINEAR EQUATIONS AND THOSE REDUCIBLE TO THAT FORM

THE EQUATION	 1)	 + yP(x)	 Q(x),
dx

whose left member is linear in both the dependent variables and its derivative, is called a linear equation

of the first order,

For example,

	

+ 3xy = sin x is called linear while LY 4 3xy 2	sin x is not.
dx

d	 JP(x)dx	 dy IP(x)d	 JPxcix	 JP(x)d dy

dx	 dx
Since	 —(ye	 ) = - e	 + y P(x) e	 = e	 ( —dx 

+ yP(X)

JP(x)	 .
e	 is an integrating factor of 1) and its primitive is

	

yefPçt)cix	 JP(x)dx
= JQ(x) . e 	dx + C.

Sec Problems 1-7.

BERNOULLI'S EQUATION. An equation of the form

+ yP(x) = y'Q(x)	 or y 	 Y- ' P (X) = Q(x)

is reduced to the form I). namely.	 + v{ (1 - n)P(x) ) = (1 - n)Q(x), by the transformation
dx

= v	 Y- !y =	 i-_ dv .	 See Problems8-12.

	

dx	 1-ndx

OTHER EQU.•\ lIONS ma y he reduced to the form I ) by means of appropriate transformations. As in previous

chapters, no . .enc ral rule can be stated; in each instance, the proper transformation is suggested by the form

of the equal. )fl

See Problems 13-18.

SOLVED PROBLEMS

LINEAR EQUATIONS.

I. Solve	 4 2xy	 4x.
dx

JP(x)d.	 f 2. d. 
= 2
	 and	 e 

IP(x)dz=e
	 is an integrating factor.

2

Then ye1 = f4xe 1 dx 	 + C	 or	 y	 2 4 Ce."1

dy	 3	 2	 dy	 1	 2
LSotve x—=	 +x*3x -2.	 or ---y=x *3x-2.

dx	 I

JP(x)d.	 f	 mx	 and	
1121	 1= - is an integrating factor.

I	 I

—b
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	Then y! • 5 — ( x + 3. - '4)dx	 5 (x + 3- )dx	 x2 + 3x -2 In + C or

2y	 x5+ 6x2-4x1nx+t..

	3. SoRe (x - 2)	 y + 2(x - 2)	 or	 1
- — y	 2(x-2 )2.dx	 dx	 x-2

5 P	 dx r -f .±_	 - rn(x -2)	 and an integrating factor is	 In(x -2) =
x-2	

x-2

Then y(__L)
x 2	

25 (..-2) 2 .   x-.L2 d.25 (x-2)dx	 (x-2)2 + C or y	 (, - 2)3 + C(x-2).--

—	 x	 54 Sot	 dy 
+ y cot	 ,cos '. Find the particular solution, given the initial conditions: x	 y -4.dx

fcotx dx	 In SiflxAn Integrating factor is e	 r	 sin x and

	

COS x	 cos

	

y sin x	 5 f e	 sin x dx	 - Se	 * C.

When x	 irt, y r -4: (-4)(1)	 -5(1)	 C and C • 1. The particular solution is

coB 2y sin 	 5e	 1.

5. Solve	 + ( 2-3x 2 )y	 x 5	 or	 2'	
2_3x2

+	 y • 1.

	

Z	 di

S	 dx	 -	 - 3lnx and an integrating f .atlor is
ze

Then	 Y	
j 

dx=
x31/	 22 + C	 or	 2y	 x5 +

6. SoRe	 - 2y cot. 2x = 1 - 2x cot 2x - 2 csc 2x.dx

An integrating factor Is e -f2 cot 2xdx	 -In sin 2x= e	 • csc 2x.

Then y cse2x r. J(csc2x - 2x cot 2x c5c2x - 2csC 2 2x)d	 xcsc2x + Cot 2x+ C
or	 y = x + cos 2x + C sin 2x,

7. SoRe y my dx + (x - in y)dy	 0.

The equation, with x taken as dependent variable, may be put in the form 	 +	 x
dy yiny	 Y

	Then C Tdy	 in y )	 in (In y)	 In y is an integrating factor.

Thus.	 In y	 J in y dy • 1 
M2
	 2yk and the solution js 2xinyin yC.
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REKNOLLLIS EQUATION.

B. Solve	 - y 	 xy3 or y _. - -	 x.

.- 4 	 dy	 IdvThe transformation 	 y • V. y	 -	 reduces the equation to

ldv	 dv 4fdx	 x
v • x	 or	 - • 4v - -4x. An Integrating factor is e	 e

dx

r	 ,	 4X	 $X
Then	 ye	 • -4 J Xe 

X ax	 -Xe + e + C.

"
4x

Y •	 • -xi	 + e 14 + C,	 or	 --	 -X + j 4

9, Solve t + 2xy + zy • 0 or	 + 2zy	 -x.

• dvreduces the equation to 	 - kv • ax.The transformation y	 v, -3y 
dx dx

Using the integrating factor e -J'Gxdx • e-3z • we have

-3X	 f3xeXdx	 It-5x 	 1	 1
UI	 •	 • -	 + C	 or	 - - + 

Ce 5x

dy	 1	 1
10. Solve	 * y	 (1-2x)	 dyor y 	+ 1-y

-	 • '(I

The transformation y	 V. - 3y	 reduces the equation to	 - v • ax -

for which c -x is an integrating factor. Then, integrating by parts.

-x
vi	 • f(2x - 1).Xdx • -2xe X - e

-X 
+ C or .!	 -1 - 2w + C4 x.

-1II. Solve	 + y - yt (cox -sins)	 or	 y'	 + y	 • coax - sin X.
dx

The transformation y •' 	 v 1 -y	
dv•	

reduces the equation to

	

di dx	 - v = sin x - cos x

for which •-x is an integrating factor. Then

	

Ve" • f ( sin x - coo x).'dx	 -eajnx + C or	 • -sin  + Cex.
Y

12. Solve ady - {y+ xy(1 + lax))dx • 0 or Y'	 1 -2
--y	 • j+lnx.

dx	 x

The transformation y• v, - 3y 5dy •	 reduces the equation	
v 2uation o - + -v • -3(1+lng)

did:	 dxx

for which .12 dxix = a 	 is an2	
integrating factor, Then

2fx'+ x'lnx)dx	 _	 2 5	 x2	 2	 2vi • - w 
!x5_ -
	 orx lox + C	 -

9	 3	
y2 -

	 + 1ax + C.
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MISCELLANEOUS SuasTmiTloNs.

13. An equation of the form f'(y) t + 1(y) P(x) • Q(x) is a linear equation of the first order

+ vP(x) • Q(x) in the new variable v = 1(y ).	 (Note that the Bernoulli equation

..n dy	 ..n+	 n dy	 ..n+1y	 y	 P(x)	 Q(x)	 or	 (-n+1)y	 + y	 (-n+1)P(x) • (-i'i+1)Qx) is an example)

Solve	 + 1 • 4esin x	 or e 
y dy 

+ e	 4 sins.
dx	 T.

In the new variable v = 1(y)	 ?, the equation becomes dv + i • 4 sin x for which e x is an integ.

rating factor. Then

X	 fX 
siiz dc a 2e Z (Sinx - coax) +C	 or	 Vain  - coo z) +

14. Solve sin y	 = con x(2 cony - sin 2 x) or	 - sin y	 + cos y (2 coa x) - sin 2 x cci X.
dx

In the new variable v • coo y, the equation becomes	 + 2v coo x = iin 2 x coo z for which
dx

2fcosxdx2sirix
C	 • e	 is an integrating factor. Then

2ethx	 Sithx	 2	 i Sin x	 I	 Islrx	 2$lflxvs	 -	 sin x cos s dx •	 sin x - i s	 sins + is	 + C

or	 cony = j sin 2x - sins + j +

dy	 j- ........ •15. Solve siny	 cos (1 - x cosy)	 or	
dx

Since .. ......L.. -	 we take v	 -__L.. and obtain the equat ion v
dyCon	 2	 co5 y	

tion	 - V • —5.

cos y

Using the integrating factor	 we obtain

ve	 S xdx	 + -X 
+ C	 or	 v •	 sic y • x + 1 + Ce5.

CO. y

yd16. Solve x - - y + 3.z
5 y - 

2	
0 or	 x dy - y dx + 3x 3 yd.x - xtdx	 0.

dx

Here (x dy - ydx) suggest the transformation Z a v.

Then	
LYdx + 32 Y d* - dx - 0 is reduced	

dv	 2
2	 + lx v	 1 for which e is an integrating

dX
factor

Thus veX' /	
ft3 dx 

+ C	 or y a xe"5 f3 dx +

The indefinite integral here cannot be evaluated in terms of elementary functions.
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17. Solve (4r2 a - 6)dr • r 5 ds	 0	 Or	 (r ds + adr) 4 3s dr	 1 dr.

The first term suggests the substitution rs • t which reduces the equation to

cit + 3dr	 1 dr or	 •	 .!.
r	 r 2	 dr	 r	 r2

The r 3 is an integrating factor and the solution is

3	 4	 2..	 3	 Ctr • ra • 3r+i..	 or	 z

18. Solve xsin e d8 + (z_ 2X 2
 
cos e 4 CO8	 • o or - x sln8d6 2 + coo  dx 

+ 2edx v z dx.
x

The substitution zy • cos 8. dy - X 5
in8 de 4 cos 8dX

 reduces the equation to
x2

dy + Zxydx • xcix or	 + 2xy • x.
dx

An integrating factor is ex and the solution is

x2	 coa8 X2	 2	 2	 2
ye	 - e • SeX xdx	 X + x or 2 cos e • +

x

SUPPLEMENTARY  PROBLEMS

19. From the following equations, select those which are linear, state the dependent variable, and solve.

a) dy/a 4 y • 2 + 2x	 k) y(1+y2 )dx 	 2(1-2xy')d3'

b) dp/dG+32 . 2	 1) yy'-xy2+x"O

c) dy/dx - • xy 2	 m) xdy-ydz - h'— dy

d) xdy -Zy dx • (x_2)eXdx	 n) #5(t) dx/dt + xi,(t) - 1

e) di/dt 6i 108th 2t	 o) 2dx/dy - x/y + x 3 
coo y • 0

f) dy/dx + ,	
2x	

p) xy' • y(1-x tan x) + x2 COS x

g) ydx + (xy+x-3y)dy • 0	 q) (2+y2)dx - (xy+2y+y')dy = 0

Ii) (2J_e2t)do = 2(se 2 —CO8 2i)dt	 r) (1+y 2 )dx 	 (arc tin y - x)dy

1) x dy + ydx • x 5 yb dx	 s) (Zxy 3 -y)dx + 2x dy 0

j)	 dr + (Zr cot 8 + sin 30)dO = 0	 r) (1 + sin y)dx	 [2y cos y -  x(sec y + tan y)]dy

Ans

a) y; I. F. .	 y • 2x +	
-#,s

a) t; I.F., e	 = — (3 sin 2t + cos 20 + _. 
ot

b) P; 1. F., e 
58	 3 • 2 + Ce 38	 g) x; I.F., ye y ; xy • 3(y - 1) + Ce7

2	 x	 ..2	 2d)	 Y. 1. P. liz	 y • e + Lx	 j) r; I.?., sin 0; 2r sin 2 8 + sin0 • C
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11
z; I.F. (I+y ) ; (1.y 1 )

Ix • 2 lny+ ? + C

z	 I.E.,	 f#,(t)dt/(c)	 Jt(t}dt14(t) •
	

1	 J5(:)at/#1(t) dt + C
./

1	 2Y, LF.. x -cos 	 y • z 006x • Cx coax

X; LF.. 1147; x = 2 • y 1 + c6T?
ire tiny	 -ire tinyx	 arc

x: I.F.. eecy+tlny; x(secy + tiny) • y + C

20. From the remaining equations in Problem 19. solve those of the Bernoulli type.

Ans. C) y 1 = v; 1/y • 1- x+ C._x	 I) y • v; y2 • 1 • Cc xx

-1	 X	 -t	 -7f)y •v; CC.z)ye.1.O	 üx	 v;xy. Coe yiy sin y+C

I) y	 • v; 2/y 5 	 C's + 5,)	 si y	 • ; 3x u

21. Solve the remaining equations, hi and m,, of Problem 19.

Anc It)	 2it— It	 • sin 21 • C	 ml y x •ln(y 'C)

22. Solve:

alxy'2y.xe	 subject toy s owheqz . i. A1l.y.z 7 ( i %_ i)

h) L	 R	 sin 2t. where L.R,E, are consn. subject to the condition i . 0 when t 0.

Ans.	
i•	

£	
(R sin 2t — 2L cos 21 + 2Le't)

R + 4L2

23. Solve:

a)	 x cosy Z	 2* sin y — I. using sin y • a.	 .4it.s.	 Its sin y	 Cs + 1

hI 4x2yy' • 3x (3y '2) + 2(3y1 • 2) , using 3y2 .2 • x, .4,,. 	 49	 (C3x7)(3y2 •3)t

IxC)	 xte)sx + 3xyt dy • 0,	 using y	 VS.	 .-ln..	 2y2 •ze	 •

di	 dy/dx + x(z 4 y ) • x3(z ' ))3 .- 	ruts.	 1/(s + y) 2 I 5 t •I + _( 
2

e)	 (y+	 eK)dx • (1 • e')dy • 0. 	 y $ e	 * ,-

40

k)

'1)

P)

q)

r)

1)



CHAPTER 7

Geometric Applications

IN CHAPTER 1 it was shown how the differential equation

1) f(x,y.y5 = 0
of a family ofcurves
2) g(x,y,C) = 0

could he obtained. The differential equation expresses analytically accrtain property common to every
curve of the family.

Conversel, if a propert y whose analytic representation involves the derivative is given, the solution
of the resulting differential equation represents a one parameter family of curves, all possessing the given
properly. Each curve of the 1aniil is called an integral curie of I) and particular integral curves be singled
out by ging additional properties, for example. a point through which the curve passes.

For convenience, the iollo'.ing properties of curves which involve the derivative, are listed.

RECTANGULAR COORDINATES Let (x, Y) he a general point of a curve F(x,y) = 0.

YAS

(X, Y)

AZ^Lent 8t. X

T	 U	 N

o.i	 is the slope of the tangent to the curve at (z.y).

-	 is the slope of the normal to the curve at (x.y).
dy

ci	 Y -y	 -x) is the equation of the tangent at(x.y), where (XY)are the coordinates of any point

on it.

cli	 Y-y	 -	 (X-x) is the equation of the normal at (x.y), where (X,Y) are the coordinates of
dy

any point on it.

C)	 x-y—.
dx and y x	 ire. the x and
dy	

-dy	
-	

y- intercepts of the tangent.
dX

41
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GEOMETRIC APPLICATIONS

fj x+ y	 and y+x	 are the x- and y- intercepts of the normal.

g) yJ	
dx	

an x
2	

d Ji + ( z)2 are the lengths of the tangent between (x y) and the x- and y- axes.dxI + (—) dy

yJ1dy
dy2
dx	

d X/	
()2 are the lengths of the normal between (x.y) and the z- and y- axes. .+ (—) an

x	 dy(	 d
y — and	 are the lengths of the subtangent and subnormal.

dy

j) S	 /(dx)2 + ( dy) 2 	dx J1 + () 2 	
dy I + (—)	 s an element of length of arc.J dy

k) y dx or xdy is an clement of area.

POLAR COORDINATES. Let (p. 8) be a general point on a curve p =

(p.8)

$Ubt&rgJj

T

1) tan 41	 p	 where 0 is the angle between the radius vector and the part of the tangent dra' n
dp

toward the initial line.

,n) p tan 'b	 p 2 	 is the length of the polar subtangent.

n) p cot'

	

	 is the length of the polar subnormal.
dO

o) p sin 	 p2	 is the length of the perpendicular from the pole to the tangent.
ds

p) dx = I'p)2 •	 (dO)2 = dp Ji . 2g)2	 dO J()2 + 2 is an element of length of arc.

q} p 2 d6 is an element of area.
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TRAJECTORIES. Any curve which cuts every member of a given family of curves at the constant angle w

is called an c- trajectory of the family. A 90 trajectory of the family is commonly called an orthogonal
trajectory of the family. For example, in Figure (a) below, the circles through the origin with centres
on they-axis are the orthogonal trajectories of the family of circles through the origin with centres on the
x- axis.

(a)
	 (b)

In finding such trajectories, we shall use:

A) The integral curves of the differential equation

3)	 f(xy y-tafl()
1+y'tanw 

=

are the c- trajectories of the family of integral curves of

1)	 f(x,y,y') = 0.

To pro\t this, consider the integral curve C of I) and an w- trajector) which intersect at P(x.y),as

shown in F gure (b) above. At each point of C for which I) defines a value of y', we associate a triad
of numbers (x, y; y'),the first two being the coordinates of the point and the third being the corresponding
value of y'gIen by 1). Similarly, with each point of T for which there is a tangent line, we associate a triad
(x, y y') the first two being the coordinates of the point and the third the slope of the tangent. To avoid
confusion, since we are to consider the triads associated with P as a point on C and as a point on 1,

let us write the latter (associated with P on T) as (x,y;)). Now, from the figure, x =, y= at P

while y'= tan 9 and ' = tan q5 are related by

= tan 	 n(;) = tan- tanc =	 '— tanw

i+ tan  tan cü	 1#P'tanc

Thus, at P (a general point in the plane) on an	 trajectory, the relation

f(x,y,y') = f(jJ;,	 '... tan w ) 
= 0

1+ Ptan

holds, or, dropping the dashes, f(x, y, y '- tan c'

1 +	
=

B) The integral curves of the differential equation

4)	 f(x,y,-11y') = 0

are the orthogonal trajectories of the family of integral curves of I).

—7
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C) In polar coordinates, the integral curves of the differential equation

5)	 f(p, 8, —p2 dO
dp) = 0

are the orthogonal trajectories of the integral curves of

6)f(p,8,	 0.
d8

SOLVED PROBLEMS

1. At each point (z.y) of a curve the intercept of the tangent on the y- axis is equal to 2*72.
Find the curve.

Using e), the differential equation of the curve is

dy	 2	 ydx-xdy	
dx

	

y-x-7y	 or	 2xdx	 y2

	Integrating, X 
= x

2
 + C	 or x - x2 y	 Cy.

The differential equation may also be obtained directly

	

from the adjoining figure as	 ,, -
dx	 x

2. At each point (x,y) of a curve the subtangent is proportional to the square of the abscissa.
Find the curve if it also passes through the point (1.e).

Using ij . the differential equation is y	 kx2	 or	 k	 • where k is the proportionalitydy	 .2	 7
factor.

Integrating, k in y	 - + C. When x = 1, y = e: k 	 -1 + C and C • k+1.

The required curve has equation k thy	 - + k + 1.

3. Find the family of curves for which the length of the part of the tangent between the point of contact
(x,y) and they-axis is equal to they- intercept of the tangent.

From g) and C), we have x Ji + (dY )2 	 dy	
A	 2	 2 -

dx	 YXd or ) x

The transformation y = vx reduces A) to

(1+ v 2 )dx + 2vzdu,= 0	 or	 +	 = 0. 2v dv

i+v2

Integrating,	 in x + in(1+ v 2) = in C.

Then x(1 +	 r	 or X 2 + 2
Y • Cx is the equation of the family.
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4. Through any point (x.y) of a curve which passes through the origin, lines are drawn parallel to the
coordinate axes. Find the curve given that it divides the rectangle formed by the two lines and the axes
into two areas, one of which is three times the other.

(a)
	 (b)

There are two cases illustrated in the figures.

a) Here 3(area OAP)= area OPB. Then 3f. y4ix	 - jXydx or 4J0 y dx xy.

To obtain the differential equation. we differentiate with respect to x.

Thus,	 4y - y +	 or

	

dx	 dx	 x

An integration yields the family of curves y 	 c'.

b) Here area OAF = 3(area OPB) and 4J,
x 

y dx	 3xy.

Thd differential equation is	 •. and the family of curves has equation y 5	 Cx.

Since the differential equation in each case was obtained by a differentiation extraneous solutions may
have been introduced, it is necessary therefore to compute the areas as a check. In each of the above
cases, the curves found satisfy the conditions. However, see Problem S.

S. The areas bounded by the x- axis, a fixed ordinate x a, a variable ordinate, and the part of a curve in-
tercepted by the ordinates is revolved about the x-axis. Find the curve if the volume generated is proport-

ional to a) the sum of the two ordinates, b) the difference of the two ordinates.

a) Let A be the length of the fixed ordinate. The differential equation obtained by differentiating

I)	 f y2dx •	 • A) is vty2	. Integrating, we have 2) y(C - 'tx)	 k.
a	 dx

When the value of y given by 2)is used in computing the left member of 1), we find

	

X	 k 2 dx	 k2 k(y—A).3)	 7s

	

° (C-ltx) 2	C-!tx - C-ita

Thus, the solution is extraneous and no curve exists having the property a).

b) Repeating the above procedure with	 I') rj y 2 dx	 - 4',, we obtain the differential equation

icy 2	whose solution is 2') y(C - ltx)	 k.
dz

It is seen from 3) that this equation satisfies I '). Thus, the family of curves 2') has the required property.
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6. Find the curve such that at any point on it the angle between the radius vector and the tangent is equal
to one-third the angle of inclination of the tangent.

Let 9 denote the angle of inclination of the radius vector, 'r the angle of inclination of the tangent,
and i the angle between the radius vector and the tangent.

Since	 ( 41 - 6)/3. then	 8 and tan &tan9.

Using /j, tan i'	 p d6-
	 dptan 8 so that -	 cot J OdO.

Integrating, In 	 2 in sin 8 + in C 1 or p	 C1 8in2 9	 C(l - cos 8).

7. The area of the sector formed by an arc of a curve and the radii vectors to the end points is one-half
the length of the arc. Find the curve.

Let the radii vectors be given by 0 . 01 and 0 •

Using q) and p ) , j J p2 d8	 j	 + P2 dO.

Differentiating with respect to 8. we obtain the differential equation

P I = J(dP)2 
+ p2	 or	 1) dp - ±	 dO.

If p2 1. 1) reduces to d	 o. It is easily yenned that p • i satisfies the condition of the problem.

If p2 i, we write the equation in the form	 ± dO and obtain the solution

P	 sec(C ± 6. Thus, the conditions are satisfied by the circle p land the family of curves
P secC + 0). Note that the families p - sec(C + 8) and p sec(C - 8) are the same.

8. Find the curve for which the portion of the tangent between the point of contact and the foot of the
perpendicular through the pole to the tangent is one-third the radius vector to the point of contact.

(a)

In Figure (a): p	 30 • 3p cos(1 - )	 -.p cos ,li. cos i -1/3. und tan 1' -
In Figure (h): p 3.	 3p cos '' and tan IJ = 2,12,

	

dp	 dOUsing I) and combining the two cases, tan 	 p dO
± 24 or	 -	 ±

The required curves are the families p CeOh'2	 and p - Ce
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9. Find the orthogonal trajectories of the hyperbolas zy • C.

The differential equation of the given family is

	

	 + y 0, obtained by differentiating zy s C. The
dz

differential equation of the orthogonal trajectories, obtained replacing LY by ..	 . is -x	 + y	 0

or ydy - xd. • 0.

Integrating, the orthogonal trajectories are the family of curves (hyperbolas) 	 C.

10. Show that the family of confocal conics 	 + Z_	 1. where C is an arbitrary constant, is self-

orthogonal.

Differentiating the equation of the family with respect to x yields	 + YE • 0. where p

xx
Solving this for C, we find C • - so that C-k	 !LPY- . When these replacements are made inx+yp	 x+yp

the equation of the family, the differential equation of the family is found to be
(x+yp)(pz-y)-kp a 0.

Since this equation is unchanged when p is replaced by -i/p. it is also the differential equation of the
orthogonal trajectories of the given family.

11. Determine the orthogonal trajectories of the family of cardiods p CU + sin 8).

Differentiating with respect to 9 to obtain	 C cos 8. solving for C - .._!_	 . and sub.-
dO	 cos 9d9

stituting for C in the given equation, the differential equation of the given family is

40 • p Cos O

dO	 i+ sin O

The differential equation of the orthogonal trajectories, obtained by replacing 	 by _Ptdll is

dO •	 COO 0
or	 + (sec 9 + tstan e)dO • 0.

dP	 p(1+ sine)	 p

Then In  + ln(sec9 + ton 9)- in cosO • In  orCco8	 ci -sin 9.a
sec 0 + ton 8
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12. Determine the 45' trajectories of the family of concentric circles x1 + y • C.

The differentil equation of the family of circles is x yy' • 0.

The differential equation of the 4Y trajectories, obtained by replacing y' in the above equation by

is x + y yf	 • 0	 or	 (x +y)dy + (z ..y)4 - 0.

Using the transformation y -vx.this equation is reduced to

( v 2 .j)dx • x(v#1)dv • o	 or	 • v I dv • 0.
X	 v2+i

Integrating, In + f 1fl(v 2 +1) + arc tan v In K1 ,	 In x t (1+v') • In  -2 arc tan v

2	 7	 -t Ire tan y/xand £ + 3 • Xi

In polar coordinates, the equation becomes p 2 . Ke'7 	 Or	 C.

SUPPLEMENTARY PROBLEMS

13. Find the equation of the curve for which

a) the normal at any point(x.y) passes through the origin. 	 Ans. x'+y t - C

h) the slope of the tangent at any point (x,y) is & the slope of the line from the origin to the point.
Ans, yt

C) the normal at any point (x.y)and the line joining the origin to that point form an isosceles triangle
having the x-axis as base. 	 .	 Ans. yo ..x2 • C

d) the part of the normal drawn at point (x.y) between this point and thex-axis is bisected by they-axis.
Ans. yt+2x2.0

e) the perpendicular from the origin to a tangent line of the curve is equal to the abscissa of the point
of contact (x, y).	 Ans. x 2 +y2 • Cx

1) the arc length from the origin to the variable point (x.y) is equal to twice the square root of the
abscissa of the point.

Ans. y.j(ftrc5jfl'+i/77)+C
g) the polar subnormal is twice the sine of the vectorial angle. 	 Ans. p • C - 2 coa 8

h) the angle between the radius vector and the tangent is J the vectorial angle.
Ans. p-C(1- cos 8)

i) the polar subtangent is equal to the polar subnormal. 	 Ans. P • Cm

14. Find the orthogonal trajectories of each of the following families of curves,

a) r *2y • C

b) zy • C

C) xt + 2y1 - C

d) y -

e)
y	 /(_>

Aizs y..2z.J
2

X

y .Kx2

• x+I(
2 22 K(2x7	 2(x +y ) i	 +y )

f)3' • x-1+Ce	 Ans £ -
2	 x2(l	 22g) 7 - 2	 - Cx )	 Z+37 ln(Ky)O

h)p - accO	 p-b sin 8

1) p • a(i + em (9)	 P • bi- 8n 8)

j) p - a(aecO+ta6)	 p -



CHAPTER 8

Physical Applications

MANY OF THE APPLICATIONS of this and later chapters will be concerned with the motion of a body
along a straight line, If the body moves with varying velocity v (that is with accelerated motion) its accele-
ration, given by dv/dt, is due to one or more forces acting in the direction of motion or in the opposite
direction. The net force on the mass is the (algebraic) sum of the several forces.

EXAMPLE I. A boat is moving subject to a force of 90 newtons on its sail and a resisting force (N)
equal to 0.3 times its velocity (ms') If the direction of motion is taken as positive, the net force (N)
is 90- 0•3v.

EXAMPLE 2. To the free end of a spring of negligible mass, hanging vertically, a mass is attached and
brought to rest. There are two forces acting on the mass gravity acting downward and a restoring force,
called the spring force, opposing gravity. The two forces, being opposite in direction, are equal in mag-
nitude since the mass is at rest. Thus, the net force is zero.

N"ton's Second Law of Motion states in part that the product of the mass and acceleration is propor-
tional to the net force on the mass. When the system of units described below is used, the factor of propor-
tionality is k 1 and we have

mass \ acceleration = net force.

THE S.I. SYSTEM is based on the fundamental units: the kilogramme (kg) of macs. the metre (.) of length,
and the second (s)of rime. The derived unit of/irc'e is the neiWn N, defined by

iN 1kg	 -2

Hence,
mass in kilogrammes x acceleration in MS-2 = net force in newtons

The acceleration g of a freely falling body varies but slightly over the earth's surface. For convenience
in computing, an approximate value g = 9.8 2 is used in the problems.

SOLVED PROBLEMS

1. If the population of  country doubles in 50 years, in how many years will it treble under the assumption
that the rate of increase is proportional to the number of inhabitants?

Let y denote the population at time t years and Yo the population at time t • 0. Then

I)	 ky or	 = k dt, where k is the proportionality factor.

First Solution. Integrating 1), we have 2) in y • kt + in C or y Cekt.

At time t -0. y =yo arid, from 2), C yo . Thus, 3) y = yoekt.

49
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50 A	 3O
Alt • 50. y 2yo. From 3), 2yo • y0e	 or e	 2.

	

htWhen y 3Yo. 3) gives 3	 T	
50Okt	 oh	 tThen 3 = e	 (e	 ) • 2 and t • 79 years.

Second Solution. Integrating I) between the limits t 0, y • Yo and t 50, y 2yo.

	

r, !^Z - k f 50 dt,	 in 2y0 - In Yo • 50k	 and 50k - in 2.

Integrating I) between the limits t • o, y yo and t - e, y • YO.

J"	
= k	 dt, and in 3 = H.

'0

Then 5Oin3	 SOkt	 tin2 and 	 50 in 3	 79 years.
In 2

2. In a certain culture of bacteria the rate of increase is proportional to the number present. (a) If it is
found that the number doubles in 4 hours, how many may be expected at the end of 12 hours? (.5) If there
are 10' at the end of 3 hours and 410' at the end of 5 hours, how many were there in the beginning?

Let x denote the number of bacteria at time t hours. Then

I)	 kx	 or	 kdt.dt	 x

a) First Solution. Integrating I), we have 2) in x = H + in C or x = Cekt,

Assuming that x z0 at time t 0. C x0 and x = x0e.

At time t = 4, x • 2x0 . Then 2x0 x0 e	 and e	 = 2.

When t • 12, x =	
12 h
	 x0(23) = 8x,.that is, there are 8 times the original number.

Second Solution. Integrating 1) between the limits t • o. x -xo and	 4, z I 2x0,

	k f dt.	 in 2z0 - In x0 4k	 and 4k in 2.

Integrating!) between the limits t.o. x =x0 and t -12. x =z,

	

- k f1 dt.	 and	 in!- = 12k- 3(4k	 3 in 2 • in S.
xo X	 o

Then z	 8x0 . as before.

h) Firs: Solution. When	 3, z t0. Hence, from2), 10' Ce3k and C	 10

E

Whent - s, x - 4 . 10'.Hence, 4'I0' - C. k and c •

	10'	 4.10 	 Then 2k 
• 4 and	 2.-Equating the values of C. -

I -

	

3k	
C 

3k

Thus, the original number is C • 101 • 9.-	 bacteria.
1 3k	 8
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Second Solution. Integrating I) between the limits t = 3. x = 10 and t = 5. x = 410g.

f dt.	 In 4	 2k and	 k	 in 2.
10=	 X	 5

Integrating I) between the limits t o, x = x0 and t 3. x

	

dx
,40	 5

	

J = k	 dt,	 in	 3k 3 In 2 1n8 and x0	 2._ as before.
x	 8

3. According to Newton's law of cooling. the rate at which a substance cools in moving air is proportional to
the difference between the temperature of the substance and that of the air. lithe temperature of the air
is 300K and the substance cools from 370K to 340K in 15 minutes, find when the temperature will be 310K,

Let T he the temperature of the substance at the time t minutes.

Then	 fT = -k(T - 300)	 or	 dT	 -k d.

	

dt	 T-300

(Note. The use of-k here is optional. It will he found that k is positive, but if +k is used it will be found
that k is equallynegati'c.)

Integrating between the limits t	 0, T = 370 and i = 15. T 340.

15 
dt,dT	

- k In 40 - in 70 = -15  = In	 and 15k = in	 = 0.56.
J 0 T-3oo	 .	 7	 4

Integrating between the limits t	 o. T = 370 and t	 t. T 2!0.

	

dT	 "i	 15 in7

J	 -k	 dc.	 in 10-In 70 = -kt, 15kt = 15 in 7. t	 52 1n.

	

T -300	 0.58

4. A certain chemical dissokes in water at a rate proportional to the product of the amount undissolved
and the difference between the concentration in a saturated solution and the concentration in the actual
solution. In 100 grams of a saturated solution it is known that 50 grams of the substance are dissolved.
If when 30 grams of the chemical are agitated with 100 grams of water, 10 grams are dissolved in 2 hours.
how much will be dissolved in 5 hours?

Let x denote the number of grams of the chemical undissolved after t hours. At this time the concentra-

	

tion of the actual solution is 	 an that of the saturated solution is

Then

5° -	 • kx	 dt.

	

- kx(—	 ) or - - - =
dt	 100	 100	 100	 x	 x#20	 5

	

Integrating between t = o. z	 30 and t = 2, z • 30-10	 20.

f-	 fdt. and k	 In	 -0.46.

Integrating between it • o, x x 30 and t • 5, x

rw f _± 	 -	 in 5z 	 • 0.46. Z	 o x^20	 5 fo	 3(x+20)	 x+20 5

= 0.38. and x • 12. Thus, the amount dissolved after 5 hours is - 12 • 18 grams.
—8	
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5. A tank of volume 0-5 m 3 is filled with brine containing 30 kg of dissolved salt. Water runs into the tank
at the rate of 15 10 m s and the mixture, kept uniform by stirring, runs out at the same rate. How
much salt is in the tank after I hour?

Let x be the number of kilogrammes of salt in the tank after t seconds, the concentration then being
2x k gm ". During the interval dr, 15 10 dr cubic meters of water flow in and 15 10-s di cubic meters
of brine containing 2x 15 10 9 de - 3. 10 - ' dt kilogrammes of salt flow out.

Thus, the change dx of the amount of salt in the tank is dx -'ti 10"4 dt.

Integrating x = Ce
-5.10

	 At t 0 , x 30, hence C	 30 and x	 30 e
-'4

When	 3,600 seconds, x 30 e 11	 30 e - I -OR	 10 kilogrammes,

6. The air in a certain room 50m l?.Sm	 4m tested 0'21CO 2 . Fresh air containing 0 . 05 % c0 2 was then
admitted by ventilators at the rate 4 • 2	 . Find the percentage c0 2 after 20 minutes.

Let  denote the number of cubic meters of c0 7 in the room at timer, the concentration of CO 2 thenbeing x /3.500 During the interval di • the amount of Co 2 entering the room is 4 . 2 ( - 0005) di m 5 and

the amount leaving is 4.2	 dt in
3.500

Hence the change dx in the interval is dx	 4- 2( 0' 0005 
-

i-)dt	 (21' 10 '4- 12 x 10 '4 x) dt.

Integrating j 	 • 10 In (21	 10	 - 12	 10	 x	 -t+ InC1 and x 7/4+ Ce -

At 1	 0, x = 0'002 3.500. 7. Then C	 21/4 and x 7/4(1	 3e -12 10
-'4

When t	 306 ' 1001,200, x = i4 ti + 3e	 3.06 . The percentage CO2 is then ___________ • 0.09%
3.500

7. Under certain conditions the constant quantity Q
joules/second of heat flowing through a wall is given by

Q - -kA,
dx

where A is the conductiity of the material. A( M2) is
the area of a face of the wall perpendicular to the
direction of flow, and T is the temperature x (m) from
that face such that T decreases as x increases. Find the
number of joules of heat per hour flowing through I
square metre of the wall of a refrigerator room 1 . 25 :
thick for which A = I. o5, if the temperature of the inner
face is 268K and that of the outer face is 348 K

Let x denote the distance of a point within the wall
from the outer face.

Integrating dT —	 dx from r 0. T '348 to	 1- 25 7' 268,

26I	 1.25

dT - — 2 ,f dx.	 80 - 2 (1.25) and	 Q-	 1.05	
67.2 Js -

1f kA	 k4	 1.25	 1'25

Thus the flow of heat per hour is 3. sooQ = 2 . 42 ioJ
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8. A steam pipe 02 m in diameter is protected with a covering
006 m thick for which A • 0 - 13 ('a) Find the heat loss
per hour through a metre length of the pipe if the sur-
face of the pipe is at 470 K and the outer surface of
the covering is at 300 K (b) Find the temperature at a
discancex > o . im from the cnEre of the pipe.

At a distancex >O'im from the centre of the pipe, heat is
flowing across a cylindrical shell of surface area 2x M2

per m of length of pipe. From Problem 7,

Q . -AA fr • -2itkx LT or 2ltk dT -Q
dx	 dx

a) Integrating between the limits T 300, x - 0.16

53

4

av'r,ti4S, Of

and T • 470. x so .1
70	 0.1

21tk f	 dT	 -Q f	 , 340Ttk Q(lnO' 16-In 0.1) Q In 16 and Q	 ±9.! isO0	 0 16	 X	 In 1-6

Thus, the heat loss per hour through a metre length of pipe is 3,600 Q • 1 '03 M 

b) Integrating 2Ftk dT . -

	

	 between the limits T • 300, z 0 . 16 and T T. xIn 1.6 x

J
dT . - _U_ (	 !.	 T-300 - _. 22 In 2-and T • 300	

170	 16
500	 In 1.6	 0	 x	 in 1.6	 0.16	 in 1.6	 x

Check. Whenx • 0 . 1, T • 300 4 __!!9_ in 1.6 470K .Whcrix • 0 . 16. T • 300 • 0 • 300 Kin 1.6

9. Find the time required for a cylindrical tank of radius 25 m and height 3 m to empty through a round
hole of radius 25 mm in the bottomof the tank. gisen that water will issue from such a hole with velocity
approximately	 v • 2 . 5 /' ms h being the depth of the water in the tank.

The volume of water which runs out per second may be thought of as that of a cylinder 25 mm in radius
and of height v. Hence, the volume which runs out in time dt sec is

't(O. 025)2 ( 2'5 V)dt,

Denoting by dl, the corresponding drop in the water level in the tank, the volume of water which
runs out is also given by(2-5 )2 rtdjt. Hence,

It (0.025) (2.5V)dt . - ?t(2.5)'dh or dt • - (._iL_)2	 dh	 • - 4 000

	

0,025	 2.5/v

	Integrating between t • 0. h • 3 and t a t, h	 0,

rdt - 4000J'	- 8000	 8000 v' sees •3hr 34n
.10

10. A ship of mass 45,000 Mg starts from rest under the force of a constant propeller thrust of 900,000 N.
a) Find its velocity as a function of time t given that the resistance in newtons is 150,000v with v = velocity
measured in .	 b) Find the terminal velocity (i.e. v when t -co) in kilometres per hour.
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Since mass (kg) x acceleration (2)	 net force (N)
== impetus of propeller - resistance

then	 45 106	 900,000 - 15 10	 +dt	 vorl)—---_
dt	 300	 50

1Integrating, ye t/500
	

— Ic t/ 500 
dt	 6 e'300 + C.50

a) When t a O, vO; C-6 and v6(1-e	 ).
b) As t -. co. v -. € the terminal velocity is 6 ma 	 • 2 1 '8 kin per hour. This may also be obtained

from 1) since, as v approaches a limiting value, 	 0.	 Then v • 6 as before.dt
11. A boat is being towed at the rate 20 km per hour. At the instant (t 0) that the towing line is cast off,

a man in the boat begins to row in the direction of motion exerting a force of 90 N. If the combined mass
of the man and boat is 225 kg and the resistance (N) is equal to 2625 v • where v is measured in ms"
find the speed of the boat after 1/2 minute.

Since	 mass (kg) x acceleration (.s 2 ) = net force (N)
= forward force- resistance

then	 225
du

 • go- 26'2	 dv	 7	 • 25	 or	 — + — V -
dt	 60	 5

fl/bC 2Integrating,	 y e	 7t'60	 120 it/bC• - Sc 	 dt 	— e	 + C.
5	 35

20,000	 50	 24	 134 -7t.oWhen	 • o, v -	 - 	 c	 and v - -	 -
eoo	 9	 63	 7	 83

When	 t x 30.	 v	 1 e" 3 a	 5ma'7 63
12. A load is being pulled across the ice on a sled, the total mass including the sled being 35 kg. Under the

assumption that the resistance offered by the ice to the runners is negligible and that the air offers a resistance
in newtons equal to 70 times the velocity (v ms ") of the sled, find
a) the constant force (newtons) exerted on the sled which will give it a terminal velocity of 16 kilometres
per hour, and
b) the velocity and distance (sm) travelled at the end of 48 seconds.

Since	 mass (kg) x acceleration(me- 2 )	 net force (N)
= forward force - resistance

then 35	 F - 70  or	 + 2v a .!.F.where F (N) is the forward force.
de	 dt	 35

FIntegrating, v	 - + CC -2t.
 When t-0, v o; then C a - -F and70

F	 -20
V = -U - e ).

70

a) As	 =	 The required force is Fi%a311N.
'70	 3609	 9

—20b) Substituting from a) in A), v —40(1
9

4When 0 48: v	 0
• — (1-c

-96 - 40— m!" and	 f vdt	 —
40
f (1 - e 20)dt a 211k9	 9	 0

•	 ..

A)
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13. A spring of negligible weight hangs vertically. A mass of a kg is attached to the other end. If the mass

is moving with velocity vr, ms - 1
 when the spring is unstretched, find the velocity v as a function of the

stretch £ in.

According to Hooke's law, the spring force (force opposing the stretch) is proportional to the stretch.

Net force on body = weight of body - spring force.

Then	 ag - hx or * .	 a v dv	 kz, since	 V.

Integrating. av 2	 2agx - kx 2 + C.

When z 0, v • v0 . Then C - av	 and av 2 - 2agx -	 + .v.

14. A parachutist is falling with speed 55 as when his parachute opens. If the air resistance is Wv 7/25 N.

where W is the total weight of the man and parachute, find his speed as a function of the time t after the

parachute opened.

Net force on system = weight of system - air resistance.

Then	 w -	 or	 dv	 -edt.
gdl	 25	 v2- 25	 25

Integrating between the limits It • 0. v = 55 and t	 t, v -

I V	 2

,,dv
	 __! 1 dr.

-23	 25o

'V
1	 u-5 I	 9.8tl
- in - I •--1
10	 v+5	 25 lo55

V 	 5 98In - - in - - --t,
v+5	 6	 25

5 ..e	 6.5e'
-e	 , and u ' 5

v.5	 6	 6-Se

Note that the parachutist quickly attains an approximately constant speed, that is, the terminal speed

of 5 ms1

15. A body of mass a kg falls from rest in a medium for which the resistance (N) is proportional to the square
of the velocity (.s') lithe terminal velocity is 50 :s	 find
a) the velocity at the end of 2 seconds, and
b, the time required for the velocity to become 30 ms

Let v denote the velocity of the body at time seconds. dv
Net force on body = weight of body - resistance, and the equation of motion is I). - 	 .g- Ky7.

dt

Takingg = 9.858_2 it is seen that some simplification is possible by choosing K- -	 Lb.
16

dv 98
2 2	

_______

	

Then I) reduces to -	 - (16 - kv) or	
dv	 9.3 dt.

16	 2dt .2

	

v -16	 16

	

b y - 4	 ' kv-4
Integrating, in - - 4.9 k	 in C or - Ce

	

kv 4	 kv+4

When t • o, v • 0. Then C • - 1 and 2) 
kv-4

• -e
kv + 4

ght- -a.. and2)b	 150	 -0.395
When - • v • so. Then .	 - 0, becomes _..	 • - e

25	 v+5O
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a) When t a 2, uSO -o,7-e	 • -0,48 and v a 18'5ms'1,i+ 50

b) When v	 30,e_0159	 0.25	 e' 5" and	 3.5 secs.

16. A body of mass • falls from rest in a medium for which the resistance (N) is proportional to the velocity
me . If the specific gravity of the medium is one-fourth that of the body and if the terminal velocity is
7 . 35m' 1flnd (a) the velocity at the end of 3 sec and (b) the distance travelled in 3 sec.

Let v denote the velocity of the body at time t sec. In addition to the two forces acting as in Problem IS,
there is a third force which results from the difference in specific gravities, This force is equal in magnitude
to the weight 01 ' the medium which the body displaces and opposes gravity.

Net force on body = weight of body - bouyant force -- resistance, and the equation of motion is
du	 1	 3

	

C .-	 R9 	 - AS - Xv	 -	 - Ku,

Taking g 9' 8 me ' and K	 3 m k the equation becomes	 3(2,45 - ku) or	 3dt.
Integrating from	 o. v	 0	 to	 t • t. v	 V.	

dt

I
0
t)-	 In(2,45 - ku)	 3tj o - 1n(.45.. ku) • in 2,45 • 3 ke and	 kv • 2,43 	 ).

When t -., t, • 7 . 35. Then k • 1/3 and I) v • 7,35(1 - e -t).

a) When t • 3. v • 7.35(1-c- S)	
7me.

b) Integrating v	 • 7.35(1_et) between t • 0. x = 0 and t	 3. x •

x
• 7,33(te')and	 x • 1,35(2.	 •15m10

17. The gravitational pull on a mass * at a distance s metres from the centre of the earth is proportional
to a and inversely proportional to 82. a) Find the velocity attained by the mass in falling from rest at
a distance SR from the centre to the earth's surface, where A a 8500 km is taken as the radius of theearth. b) What velocity would correspond to a fall from an infinite distance, that is, with what velocity
must the mass be propelled vertically upward to escape the gravitational pull? (All other forces, including
friction, are to be neglected.)

The gravitational force at a distance $ from the earth's centre is km/a 2. To determine k, note that theforce is eg when g a 8; thus ag a km/A 2 and k a g 1 . The equation of motion is

dv	 dsdv	 dv	 igR21) C	 a fl__. • mv —
di	 dtda	 ds	 or

the sign being negative since v increases as a decreases.

vdv a -gR 
2 da

-

a) Integrating I) from v - 0, a 58 to v a V. 8 a R.

v,. u dv	 gR2 5R ! .	 V2 a	 2 1 1	 4

	

0
	 SR (-) a ...g, v2 •f (9.8) (6 500) (1 000),

	and v a	 or approximately 10ks1.
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b) lnu'r'.tirigI)from u	 0, s- co to v	 V. 8 -R.

.1 v dv	 -gR 2 f	 ! .	 v2 = 2gR,	 u	 1000	 ss "i or approximately 11.3 kms
-v	 -	 - w 5 2 -

18. One of the basic equations in electric circuits
is

I)	 L	 + R	 E(t).
dt

where L (henries) is called the inductance,
B (ohms) the resistance, i (amperes) the current, 	

—and E(volts)the electromotive force or emf. (In
this book B and L will be constants.)	 I
a) Solve 1) when E(t) = E0 and the initial
current is to.

h) Solve 1) when L	 3 henries, B	 15 ohms,
is the 60 cycle sine wave of amplitude

Lu volts, and i 0 when t 0.

E(r+

I)( b(a)

dtRt/L	 E	 Rt/L	 E0 Rt/L	
c0) Integrating L - + Ri = Eo,	 e	 -	 e	 dt	 - e	 + C or i	 + e

dt	 - L	 B	 B

(1	When t0,	 Then Cr	 and	 - 
e 
-.t/L) + .

toe -RtIL

	Note that as	 EQ/A, a constant.

h.	 Integrating' 3 - + 15	 E0 sin wt	 110 sin 271(60)t = 110 sin Mat.
dt

	

• t	 110 r	 110	 t 5 sin 120Ttt - 120 1t COS l2Oltt
Ic	 —J e sin 120rtt dt	 - e	 + C

25 + I4400!t

or
22 sin 120Ttt - 24' cos 120Ttt

= 
3	 1 + 576tt2

When	 0,	 hen c	
22' 24i

3(1 + 5.76712)

and	 sin 1Ttt - 24it cos 171t + 2471
3	 1+ 576712

A more useful form is obtained by noting that the sum of the squares of the coefficients of the sine and
cosine terms is the denominator of the fraction above. Hence, we may define

sin 	
2471 and	 cos

(1 + 5 .767t 2 )	 (1 + 5761t2)

so that	 22	
(cosrk sin 120't - sin 0 cos 12011 

t)17671+
3(1 + 576 Tt 2 ) 	 1 + 576712

22	 17671er	 sln(120T11 -	 +
3+576r1 2 )	1 • 5767t
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PHYSICAL APPLICATIONS

19. If an electric circuit contains a resistance R (ohms) and a condenser of
capacitance C (farads) in series, and an emf E(volts), the charge q (cou-
lombs) on the condenser is given by

+	 E.
dr	 C	 1(t)

If R • 10 oh, C = io farad and 1(t)	 100 sin 1209 t volts.
a) find q, assuming that q = 0 when t 0.

b) use i • dq/dt to find i assuming that i s amperes when 0.	
C

Integrating 10	 1039	 100 sin 120nt, we have

100 tqe	 10f 'o" sin l2OTtt d	 10C	
10,000

100 sin 120ltt - 1011 cos 1207tt
10.000 + 14,400't2

loot 10 sin 120ttt - 127t cos 120ltte	 + A.
100 + 144Tt2

and	 I)	 q	 sin(1ttt - Ce)) 4 At- lOOt

(100 + 1441`1 2)

where sin	 12n	
and cos	 10

	

(100 + 14412)	 (100 + 144rt2)

	

31t	 1a) When e 0. q - 0. Then A =	 and 	 sin(12071t -	
+	 e -100 C

25+36i 2	 2(25+ 3671 2) VA 	
25+36i2

b) Differentiating I) with respect tot, we obtain

dq - _ • 60t	 -loot
1 - - ______

dt

	

	 )2	
') - lOOAe

(25+367t 

When t x 0. o = 5. Then IOOA z	 60t	 300io

36ri	
-	

25+36
___________

and	 =	 60't	
c0s(l2Oltt —	 —	

30010
+ 36t -
	

-loot

(25 + 36102)

20. A boy, standing in corner A of a rectangular pool,
has a boat in the adjacent corner B on the end of a
string 10 metres long. He walks along the side of the
pool toward C keeping the string taut. Locate the
boy and boat when the latter is 6 metres from AC.

Choose the coordinate system so that AC is along the
x-axis and AB is along the y- axis. Let (x,y) be the
position of the boat when the boy has reached I • and
let 8 denote the angle of inclination of the string.

Then tan 0 =	 ._Y
d	

or	 dx=	 dy.
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Integrating,	 z	 v110 -	 • 10 In	 + c

When the boat is at B, x z 0 and y	 10,

Then C o and x	 -/-100-Yl. lOin 10 - + /100 
7 + C is the equation of the boat's path.

Now AE 2 x + /1 -2 • lOin 10+	 + C Hence, when the boat is  metres from

4C (I. e., y t 6),	 z + 8	 10 in 3	 11.

The boy is II m from A and the boat is 3 in from AB,

21. A substance 'I' is being formed by the reaction of two substances aand P in which a grams of a and 6 grams
of )3 form a + h grams of Y. If initially there arc xo grams of a, yo grams of, and none of y present and
if the rate of formation of Y is proportional to the product of the quantities of a and 9 uncombined,
express the amount (z grams) of Y formed as a function of time t.

The z grams of Y formed at time t consists of ---- grams of a and ---- grams of P.
ob

Hence, at time t there remain uncombined ( - 	 grams of  and (y - -b-) grams of B.
a + b

di 02 	 Kab	 a'b
—	 K(x0 -	 - —) -

	
* 2 (—

.--x0 - z)(--y0 -
dt	 a + b	 a+b	 (a 6)

k(A-z)(B-z),	 where	 k	
Kab . A = (b)x0	 and	 B

(a+b)2	 a	 6

cases to be considered: I) A / B. say A > B, and 2) A = B.

Then

Ther

I) Here
di	 -	 L. __	 At dt

(A-z)(B-z)	 A - BA - i	 A-B B-i

Integrating from	 t	 a. z	 0 to	 ,	 z, we obtain

1	 A-i	 1	 A-i	 A	 A-i	 A (A-B)k
In -	 kt .	 — ( in - - in - ) 

ht,
A-B	 B-i	 A-B	 B-i	 B	 B-i	 B

and
AB(1 - e__8t)

z
A _Be1

	2) Here	 dx	 • kdc. Integrating from t = a, z = 0 to t r ,	 z, we obtain
(A _z)2

t	 I	 I	 A2kt

	

A z
	 kilt .	 - - -	 kt,	 and	 z =

-	 10	 A - i	 A	 i+Akt
—9
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SUPPLEMENTARY PROBLEMS

22. A body moves in a straight tine so that its velocity exceeds by 2 its distance from a fixed point of the line.
If u 5 when	 0 find the equation of motion.	 Ans. x 5c  - 2

23. Find the time required for a sum of money to double itself at 5% per annum compounded continuously.
Hint: dx/dt	 () .05x. where x is the amount alter tyears. 	 Ans. 13.9 years

24. Radium decomposes at a rate proportional to the amount present. If half the original amount disappears
in 1600 years, find the percentage lost in tOO years. 	 Ans. 4.2%

25. In a culture of yeast the amount of active ferment grows at a rate proportional to the amount present.
If the amount doubles in 1 hour, how many times the original amount may be anticipated at the end
of 275 hours?	 Ans. 6.73 times the original amount

26. If, when the temperature of the air is 290 K. a certain substance cools from 370 K to 330K in 10 minutes,
find the temperature alter 40 minutes. 	 Ans. 295 K

27. A tank contains 450 litres of brine made by dissolving 30 kg of salt in water. Salt water containing 1,9 kg
of salt per litre runs in at the rate 9 1/min and the mixture, kept uniform by stirring, runs out at the rate
135 1/mm. Find the amount of salt in the tank at the end of 1 hr. Hint dx/dt = 2 - 3x/( 100- t).

Ans. 187 kg

28. Find the time required for a square tank of side 2 in and depth 4 m to empty through a 22 mm circular
hole in the bottom. (Assume, as in Prob. 9, v r 2 5V ' ms	 API.c. 171 mm

29. A brick wall (k 0 . 48) is 03 m thick. If the inner surface is 290 K and the outer is 270 K. find the
temperature in the wall as a function of the distance from the outer surface and the heat loss per day
through a square metre.	 200

	

Ans.	 T	 -- x # 270 216 10 J
3

30. A man and his boat have a mass of 150 kg. If the force exerted by the oars in the direction of motion is
70 N and if the resistance (in N) to the motion is equal to thirty times the speed (D15 1 ) find the speed
IS sec after the boat starts from rest.	 Ans. 23 ms

31. A tank contains 05 m of brine made by dissolving 40 kg of salt in water. Pure water runs into the tank
at the rate 3 10 W ' m 5 8 -1 and the mixture, kept uniform by stirring, runs out at the same rate. The
outflow runs into a second tank which contains 05 m 3 of pure water initially and the mixture, kept
uniform by stirring, runs out at the same rate. Find the amount of salt in the second tank after 1 hr.

Hint:	 6 10 -4 (40c -o 0006t - x) for the second tank	 Ans. 104 kg
dt

32. A funnel 024 rn in diametre at the top and 24 min 	 diameter at the bottom is 054 in 	 If initially
full of water, find the time required to empty. 	 Ans. 137 sec

-33 Water is flowing into a vertical cylindrical tank of radius 2 m and height 4 in the rate 0 0031m 5S-1 and
is escaping through a hole 24 mm in diameter in the bottom. Find the time required to fill the tank.

Hint:	 (0-003n - It (12)	 2'5/)dt = 4 it dh.	 Ans. 106 mm
(1000)2

34. A mass of 60 kg slides on a table. The friction is equal to sixty times the velocity, and the mass is subjected
to a force 54 sin 2t N. Find the velocity as a function of t if v o when t	 0.

Ans.	 v	 9/50 (sin 2t-2cos2+ 2e

35. A steam pipe of d iameter 24 cm has a jacket of insulating material (K =0 • 1) 12 cm thick. The pipe is kept
at 550 K and the outside of the jacket at 300 K. Find the temperature in the jacket at a distance x m from
the centre of the pipe and the heat loss per day per metre of pipe.

Ans. T3oo_250(1nx_1no.24)/(in2):19.6MJ
36. The differential equation of a circuit containing a resistance iL capacitance C. and emf e £ sin wt is

R d/dt. Assuming R.C,E,w to be constants, find the Lurrcrlt i at time t.

Ans.	 i	 ECr	 (cos wt + RCc. sin wt) + C1e
!?

2
C2 w 21+ 



CHAPTER 9

Equations of First Order and Higher Degree

A DIFFERENTIAL EQUATION of the first order has the form f(x, y, y') = 0 or f(x, y, p) = 0, where

tr convenience y'	 is replaced hyp. If the degree of p is greater than one, as in p2 - 3px + 2y = 0,
dx

the equation is of first order and higher (here, second) degree.

The general first order equation of degree n ma y be written in the form

1) p" + P1 (x,y)p' 1 + .......+ P_(x,y)p + P(x,y)	 0.

It may be possible. at times to solve such equations by one or more of the procedures outlined below.
In each case the problem is reduced to that of solving one or more equations of the first order and first
degree.

EQUATIONS SOLVABLE FOR p. Here the left member of I), considered as a polynomial inp, can be
resolved into n linear real factors, that is. I) can be put in the form

(p-F1)(p-12) .......(p-F,) = 0,
where the F's are luntions of x and y.

Set each factor equal to zero and solve the resulting,, differential equations of first order and first degree

= F 1 (x,y),	 = F2 (x,y),	 '''•'',	 = F,(x,y)

to obtain

2) f(x,y,C)=0,	 f(x,y,C)=0,	 f(x,y,C)=0.

The primitive of I) is the product

3) f(x,y,C).f,(x,y,C) .........f(x,y,C) = 0

of the n solutions 2).

Note. Each individual solution of 2) may be written in any one of its several possible forms before
being combined into the product 3). See Prob, 1-3.

EQUATIONS SOLVABLE FOR y, i.e.,y = f(x,p).
Differentiate with respect to x to obtain

=	 =+e
dx	 3x	 ZP dx

an equation of the first order and first degree.

= F(x,p,
dx

Solve p = F(x,p,	 ) to obtain c$(x,p,C) = 0.
dx

Obtain the primitive by eliminating p between y = f(x,p) and (x,p,C) = 0, when possible, or
express x and y separately as functions of the parameter p.

See Problems 4-7.
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EQUATIONS SOLVABLE FOR x, i.e.,  x = f(y,p).

Differentiate with respect to p to obtain

-	 =	 + Ydp
	F (	 AP)

d/p 	 By	 Bpciy

an equation of the first order and first degree.

Solve I = f(y,p,	 to obtain 0 (y,p,C) = 0.

Obtain the primitive by eliminating p between x = f(y, p) and #(YfP, C) 0, when possible, or
express x and  separately as functions of the parameter p.

See Problems 8-10.

CLAIRAUT'S EQUATION. The differential equation of the form

Y = PX + f(p)

is called Clairauts equation. Its primitive is

Y = Cx + f(C)

and is obtained simply by replacing p by C in the given equation.
See Problems 11-16.

SOLVED PROBLEMS

1. Solve p - ( x + 2y + 1)p 5 + (x # 2y 4. 
2ty)p2 - 2xyp • 0 or	 pp - l)(p -x)(p -2y) • 0.

The solutions of the component equations of first order and first degree

- 0,	 A .i,	 -x.O,	 Z231.0
dx	 dx	 dx	 dx

are respectively	
—c	 ,	 ,	 2 -x - C - 0 •	 y- Ce	 0.

The primitive of the given equation is (y-C)(y-.x-C)(2y-x2- C)(y-Ce)	 0.

2. Solve xyp 2 + (x 2 + xy + y 2 )p	 + xy 0	 or	 (xp + x + y) ( yp + x) • 0.

The solutions of the component equations x 2LY • x + y • 0 and y ty + x • 0
d7c	 d%

are respectively 2xy + x 2 - C o and x 2 • y2 - C • 0.

The primitive of the given equation is (2xy + x 2 - C)(x 2 + y2 - C>	 0.

3. Solve (x 2 +x)p 2 + (x 2 + x- 2xy-y)p • Y - xy	 a	 or	 ((x • 1)p-y)(xp#z-y) • a.

The solutions of the component equations (x + 1)	 -y • a and	 • x - y 0

are respectively y - C(x + 1) • 0 and	 y x in CX • 0.

The primitive of the given equation is 	 (y - C(x + i)] [y + x in Cx)	 0.
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4. Solve 12 + 2p 2y - px	 0 Or 2y	 pz - 16

Differentiating the latter form with respect to z 2p	 p	 x

	

dx	 p 2 	p5 dx

Clearing of fractions and combining, p(p5	 32x) - x(p 5 • 32x>	 0
dr

	or I) ( p 3 + 320(p - x	 • 0.
dx

This equation is satisfied when p3 32x 0 or p - x	 • 0. From the latter, LP . 2Lx and p • Kx.

When this replacement for p is made in the given equation, we have

	

or	 2+C2y-C3z2• 0.

after replacing K by 2C.

The factor p5 32x of ])will not be considered here since it does not contain the derivative
Its significance will be noted in Chapter 10.

. Solve y ' 2px	 p'x2.

Differentiating with respect to z, p	 2.x	 + 2p •	 + 4px 1 f

or (p

	

	 2x)(1 + 2p 5x) ' 0.
dx

The factor 1 + 2px is discarded as in Problem 4. From p • 2x	 • 0. xpt • C.
dz

In parametric form, we have 	 r • C/p 2 , y • 2C/p C', the second relation being obtained by
substituting x	 C/p' in the differential equation.

Here p may be eliminated without difficulty between the relation xp2 • C or p2 • Clx and the
given equation. The latter may be put out in the form y - px2 • 2jz and squared to givey -

4p2x2. Then, substituting for p' , we have (y - C2) • 4Cx.

6. Solve z	 yp + p 2 or y •	 - p.

dDifferentiating with respect to z, p • 1- - x I

	

- 	-	 or p 5 - p + z + p')	 0.
P	 2 dx dxds

The	 W -P)
dx
 + x +• 0 or	

p3-p	 p2-i

The latter is a linear equation for which	 "• 1 is an integrating factor. Using it,
P

	

_______ • - f• - ln(p +	 + C
p

and x • -	 In( p+	
+	 Cp	

,	 = _ -	 In (P 4.çTj +

	

)	 C
_	 ____	 ___ 

6FTi	
/;F:-j
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7. Solve y	 ( 24p)x + p2.

Differentiating with respect to z,	 p • 2 + p + (x +	 or	 + ix • —p.

This is a linear equation having e JfdP 8	 as an integrating factor.

Then	 • -5 pe dp • -2p. + 4e + C

and	 x 2(2-p) +	 y • 8 - p2 + ( 2+p)Ce.

8. Solve y • 3px + Gptyt.

Solving for x.	 3x •	 6py2. Then, differentiating with respect to y,

! •!_L_ey t -12py 	 and	 l+6p'yX2p+y)	 0.
p p	 tdy	 dy

The second factor equated to zero yields pyt . C. Solving for p and substituting in the original

differential equation yields the primitive y • 3z + 6C2.

9. Solve p5 -	
+ 471 . 

o	 or	 2, •	 +
7	 p

Differentiating with respect to y.

.-via -P-! + 4(1-2%	 or	 (p - 2.y )(2y' - p') • 0.

Integrating p - 2y	 • 0 and eliminating p between the solution pt . Ky and the original differential
dy

equation, we have 167 • k(K-3x) t . This may be put in the form 2y C(C-z) t by letting N • 2C.

10. Solve 4x s py(pt-3).

Differentiating with respect to y.

•p(p23) + 3y(p1_j)	 or	
+ _3pp(pt-1)4p

p	 dy	 7	 (p'-4)(p1+ 1)

Integrating, by partial fractions, in y + _!. in (p + 2) + .1 in (p - 2) + in (pt + 1) • in C.
10	 10

Then	 , •
	 C * a 1	 Cp(pt-3)

	

(pt -4)	 (p +	
—

2 i 5"3	 (p2 
4)9h10 (p t 1)51

CLAIRAUTS EQUATION.

11. Solve y • Px + /?.	 The primitive is y • Cx + /4 + C2.

12. Solve (y-px) 2 • I + pt.

Here ' • px ± /iT'.
The primitive is (y - Cx - /i7 ')(y — C. + /iT )	 0	 or	 (7 - Cx)t • 1 + C2.



22	 2
17. xp ^xyp-6y •0

18. xp 2 + (y -1-x 2)p - x(y-1) 	0

19. xp2 -2yp+4z -0

20. 3xp —zp—y0

21. 8yp 2 -2xp+y0

.i	 2 2
Lh. yp +3px-y0

Ans.	 (_	 Cr5)	 0

Ans.	 (2y_x2+C)(XYX4') • 0

Ans. Cy 	
2

t.. 

Ans. zy C(3x - 1)

Ans. y2 -Cx +2C2 0

Airs.	 y 5 -. 3Cx - C2 • 0

EQUATIONS OF FIRST ORDER AND HIGHER DEGREE
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13. Solve y • 3px + 6y 2p 2 .(Sce Problem 8.)
This may he reduced to the form of a Clairaut equation.
Multiply the equation by y 2 to obtain y 5 • 3y 2px + 6y'p2.

Using the transformation y 5 v, 3y2p	 this becomes v	 x	 +

The primitive is vKx+ 3K2or y5Kx+K2 or y 5 3Cx+ 6c.

14. Solve COS 
2 y p 2 + sin x cos x cos y P- sin y COS 2x	 0.

COS 

ZThe transformation sin y	 u, sin x • v, p	 reduces the equation to u	 v	 + 
(>2•

CoSx dv	 dv	 dv

Then u z Cv + C2 or sin y = C sin x + C2.

15. Solve (px - y)(py + x)	 2p.

du
The transformation y 2 u,	 = V. p	 reduces the equation to

vdu	 4 3du 4 	 vdu	 dv	 dv	 dv

	

- - u )(v - + V )	 2	 o 	 (V - - u)(— + 1) • 2 -
4dv	 dv	 dv	 dv	 du	 dv

2 
du

-dvThen v = u 
du
— - ____

dv

dv

2C
	and u • CV - -	 or	 - 2C

	

1+C	 1+C

16. Solve p 
2 
x(x -2) + p(2y - 2.xy -x + 2) + y 

2
+ y	 0.

The equation may he written as (y - px +	 ) y - px	 1)	 0.

Each of y px -	 and y px - 1 is it 	 equation.

Thus the primitive is (y - Cx + 2C) (y - x + 1)	 0.

SUPPLEMENTARY PROBLEMS

Find the primitive of each of the following.
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23.p2—xp+y.0	 Ans. y.CxC2

24. 16y3p2 - Up s y • 0	 Ans. y	 C(x - C)

5	 2	 5	 2	 2	 2
25. xp - yp 

i 
+ (x + 1)p - lxyp • (x + y )p - y • 0	 Ans. (y— Cz — C )(C x - Cy • 1) • 0

26. xp 
2

-yp-y • 0	 A,is. x • C(p.1)e ,y •Cpe

27. y	 2px + y2p5	 (Use y - Z. 	 ,ins. y2 • 2Cx + C5

28. p2 - zp - y • 0	 Ans. 3x 2p + C/v'p, 3y • p2 - C/V

29. y	 (1 + p)z + p2	 An,r, z	 2(1 - p) + Ce. y	 2 - p 2 + C(1 + p)e

30. y - 2p +	 Ans. x • 2 lnp + 1rI(p+/T 1 ) + C. y • 2p +

31. yp2 - xp + 3y • 0	 An.s. x Cp1'2 (p2 + 3)(p2 +	 y Cp 5 (p2

•	 •.•- 'TA .

Ii- ;	 •'

1c,

o •	 •', -	 -	 -

1e	 L--

	

-1	
1

0

	

-	 -
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CHAPTER 10

Singular Solutions—Extraneous Loci

:-HE DIFFERENTIAL EQUATION

I)	 y = px+2p2

has as primitive the family of straight lines of equation

2)	 y = Cxi-2C2.

With each point (x, y) in the region of points for which x 2 + 8y > 0, equation I) associates a pair of
distinct real directions and equation 2) associates a pair of distinct real lines having the directions deter-
mined by I). For example, when the coordinates (-2, 4) are substituted in I), A e have 4 - 2 p + 2p'
or p2 - p – 2 = 0 and then p = 2,–i. Similarly. hen 2)is used, we obtain C = 2, –1.Thus, through
the point (-2, 4) pass the lines y 	 2x + 8 andy = -x + 2 of the family 2) whose slopes are gien by I).
Points for which x 2 8y < 0 yield distinct imaginar y p- and C-roots.

(a)	 (b)

Through each point of the parabola x 2 + 8y = 0 there passes but one line of the family, that is, the
coordinates of any point on the parabola are so related that for them the two C-roots of 2) and the two
p -roots of I) are equal. For example, through the point (-8. -8) there passes but one line, y = 2x + 8,
and through the point (4, -2) but one line, y = –x + 2. (See Fig. a.)

It is easily verified that the line of 2) through a point of x 2 + 8y = 0 is tangent to the parabola there,
that is, the direction of the parabola at any one of its points is given by I ) Thus, x2 + 8y = 0 is a solution
of I ). It is called a singular solution since it cannot he obtained from 2) by a choice of the arbitrary const-
ant, that is, since it is not a particular solution. The corresponding curve, the parabola, is called an n-

velope of the family of lines 2). 	 (See Fig. h above).

—10



Summary and Extension:

A singular solution of a differential equation satisfies the differential equation but is not a particular
solution of the equation.

At each point of its locus (envelope) the number of distinct directions given by the differential equation
and the number of distinct curves given by the corresponding primitive are fewer than at points off
the locus.

THE SINGULAR SOLUTIONS of a differential equation are to be found by expressing the conditions.
a) that the differential equation(p -equation)have multiple roots, and
b) that the primitive (c-equation) have multiple roots.

In general, an equation of the first order does not have singular solutions: if it is of the first degree
it cannot have singular solutions. Moreover, an equation f(x, y, p) = 0 cannot have singular solutions
if f(x, y, p) can be resolved into factors which are linear in p and rational in x and y.

The simplest expression, called the discriminant, involving the coefficients of an equation 1(X) = 0
whose vanishing is the condition that the equation have multiple roots is obtained by eliminating X
between 1(X) = 0 and F'(X) = 0. The discriminant of

	

ax  + bX +c = 0	 - is	 - 4ac,

of	 aX5 + bX 2 + cX + d = 0	 is
	

b2 c 2 + 18abca_48c5_4b'd_27a2d2.

See Problem I.

For the example above, the discriminants of the p- and C -equations are identical, being x2 + 8y.

If E(x, y) = 0 is a singular solution of the differential equation f(x, y, p) = 0, hose primitive is
g(x,y,C) = 0, then E(x,y) is  factor of both discriminants. Each discriminant, however, may have
other factors which give rise to other loci associated with the primitive. Since the equations of these loci
generally do not satisfy the differential equation . they are called extraneous,

EXTRANEOUS LOCI. (Differential equation, f(x,y,p) = 0; primitive, g(x, y. C) = 0.)

a) Tac Locus.

Let P be a point for which two or more of the n distinct curves of the family g(x, y.C) = 0 through
it have a common tangent at P. Now the number of distinct directions at P is less than n so
that the p-discriminant must vanish there. The locus, if there is one, of all such points is called
a tac /ocus. If T(x, y) = 0 is the equation of the tac locus, then T(x.y) is a factor oIthep-discriminant.
In general, T(x. y)is not a factor of the C-discrirninant and T(x, y) = 0 does not satisfy the differential
equation.

y = 0 is a tac locus.
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b) Nodal LOCUS.

Let one of the curves of the family through Phave a node (a double point th distinct tangents) there.
Since two of the n values of p are thus accounted for, there can he no more than ri - 1 distinct curves
through P hence, the C -discriminant must vanish at P. The locus, if there is one, of all such points is
called a nok,l locus. If N(x,y) = 0 is the equation of the nodal locus, then N(x,y)is a factor of the
C-4iscriminant. In general, N(x, y ) is not a factor of the C-discriminant and N(x, y) = 0 does not
satisfy the differential equation.

(-) Cusp Locus.

Let one of the curves of the family through P have a cusp (a double point with coincident tangents)
there. Since one of thep-roots is of multiplicity two, thep-discriminant must vanish at P, Moreover, as in
the ease of a node, there can be no more than n -1 curves through P and the C -discriminant must vanish
at P. The locus, it' there is one, of all such points is a cusp locus. if C(x, y) = 0 is the equation of the
cusp locus, then C(x, y) is a factor of both the p - and C-discriminants. In general, C(x, y ) = Odoes not
satisfy the differential equation.

016666.
y - 0 is a nodal locus.	 y • 0 is a cusp locus.

If the curves of the family g(x y,C) = 0 are straight lines, there are no extraneous loci.
If the curves of the family are coiiics. there can be neither a nodal nor cusp locus.

THE P-DISCRIMINANT RELATION. The discrimindnt of the differential equation f(x, y, p) 0, the
p-discriminant, equated to zero includes as a factor

I) the equation of the envelope (singular solution) once, See Problems 2-4.
(The singular solution satisfies the differential equation.)

2) the equation of the cuspidal locus once. See Problem 7,
(The equation of the cuspidal locus does not satisfy the differential equation unless it is also a singular
solution or particular solution.)

3) the equation of the tac locus twice. See Problem 5.
(The equation of the tac locus does not satisfy the differential equation unless it is also a singular
solution or particular solution.)

THE C-DISCRIMINANT RELATION. The discriminant of the primitive g(x, y, C)	 0, the  -discriminant,
equated to zero includes as a factor.

I) the equation of the envelope or singular solution once.
2) the equation of the cuspidal locus three times,
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3) the equation of the nodal locus twice. See Problem 6.
(The equation of the nodal locus does not satisfy the differential equation unless it is also a singular
solution or particular solution).

When any locus falls in two of the categories, the multiplicity of its equation in a discriminant relation
is the sum of the multiplicities for each category; thus. a cuspidal locus which is also an envelope is in-
cluded twice in thcp-discriminant and four times in the C-discriminant relation.

The identification of extraneous loci is, however, more than a mere counting olmultiplicities of factors.

SOLVED PROBLEMS

I. Find the discriminant relation for each of the following:

a) + X	 0,	 I) p'x - 2p2   - 16x 2 	 0.	 1 y	 C(x-. C)2.

Note. These discriminant relations may he written readily using the formula given above We give here
a procedure which may be preferred.

a) We are to eliminate p between f(x.y.p) v p 5 + pi- y • 0 and Lf • 3p2 + x • 0. This is best doneby eliminating p between	 ZP

31 - p	 • 3p 5 + px - 3y - 3p 3 - pr - 2px - 3y • o	 and	 • 3p 2 x - 0. Solving the first
2

for p •	 and substituting in the second, we find 3p 2 +	 x • 0 or 4x 5 + 27y2

	

0.

4X 2

Note. if f(x,y,p) -0 is of degree ri in p, we eliminate p between nf - p	 0 and	 • o.

h) We are to eliminate p between 31- p if • 3p 5 x - 6p 2y- 48x 2 - 3p 3 x + 4p 2y • -2p2 y - 48X 1 	 0

and	 - 3p2 z - lpy 0. From the latter weobtain 9px2	 16p 2 y 2 or 9px2 - lep'y' • 0 and from
2

the former p2	 -24	 - Substituting for p2 . we obtain x 2 (2y + 27x) • 0.

C) Here (x.y,C) C 3 - 2C2x + Cr2 - y	 0 and we are to eliminate C between

I) 3g - C	 3C5 - 6C2x + 3Cr2 - 3y - 30 + 4G2x - Cx 2	 -20x + 2Cx 2 - 3y 0 and

2)	 3C2-4Cx	 x 2 -0.

Multiplying I) by 3 and 2) by 2x, and adding, we have -2Cr 2 4 2x - 9y = 0.

Substituting	 2x-9 
in 2) and simplifying we obtain y(0 3 - 21y)	 0.

2X 2

2. Solve y	 2xp - yp2 and examine for singular solutions.

Solving for 2x	 yp and differentiating with respect toy, we have



•	

,1)

y
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2	 1 ydp
y—

dp

	

°	
2	 d-	 - -	 +	 +	 or (p -1)(p + y-E)	 0.

P	 P	 2 d	 dy	 dy

Integrating p	 0 to obtain py • C and substitutingfor p	 in the given diflerentialequation,

we obtain the primitive	 2Cr

Thep- and C -discriminant relations are x2 - y 2 • 0. Since both y • randy 	 -x satisfy the given dif-
ferential equation, they are singular solutions.

If p is eliminated between the differential equation and the relation p 2 - 1 • 0, discarded in this solu-
tion, the equation of the envelope z2 - y2 o is again obtained. The presence of such a factor implies the
existence of a singular solution but not conversely. Hence, this procedure is not to be used in finding
singular solutions.

The primitive represents a family of parabolas with principal axis along the x -axis. Each parabola is
tangent to the line y • x at the point (C. C) and to the line y • -x at the point (C ,-C).
See Figure (a) below.

Family of parabolas y 2 • 2Cr- 0,	 Family of straight lines	 y • Cx + C5,
envelope y = ±x.	 envelope 4z 5 • 27y 2 • 0.

3. Examine p 3 4, px - y	 0 for singular solutions.

This is a Clairaut equation, the primitie being Z • Cz + C5.

Thep- and C-discriminant relation 4.z 5 + 27y 2 	 0 is a singular solution since it satisfies the differential
equa t ion.

The primitive represents a family of straight lines tangent to the semi-cubical parabola 0 + 27	 0.

the enclope. See Figure 1h above.

4. Examine 6p2y2 . 3px - y	 o for singular solutions

From Problem 3, Chapter 9. the primitive is y 5 3Gz 6C2.

Both the p- and c•dtscrtminant relations are 3r 2 + 8y 5	0. Since this satisfies the differential equation,
it is a singular solution.

5. Soke ( r 2 - 4)p2 - Zxyp_x 2	 0 and examine for singular solutions and extraneous loci.

Solving for 2y • xp - p -	 and differentiating with respect to x, we have



•- 1/8

• 1/4

x

	

yOI	 _• i

	

RI	 II	 4v'

9

Q.-
-I.:	 c -i-

Family of cubic curves
• x(x—l).

Fig. J. Prob, 6

Family of parabolas

C'(x t - 4)-2Cy-1 - o.

Fig. (c) Prob. 5

72
	

SINGULAR SOLUTIONS - EXTRANEOUS LOCI

2p • p + xE	 f -	 -	 or	 (p2x2-4p24x2)(p - xE ) • o.dx x2 X	
pdx

From p -	 • 0. p • Cx and the primitive is C2 42 - 4) - 2Cy - i • o, The p -discriminant
relation	 x2 • Y - 4) • o, and the C -discriminant rclation is x2 + Y - 4 • 0.

Now x + • 4 occurs once in the p - and C-discriminant relations and satisfies the differential
equation: it is  singular solution. AISOX • o occurs twice in thep-discriminant relation, does not occur in the
C -discriminant relation, and does not satisfy the differential equat-ion: it is a tac locus.

The primitive represents a family of parabolas having the circle x + Y • 4 as envelope, Sec Figure
(c) below.

Note I. The two parabolas through a point P of the tac locus x . 0	 have at Pa common tangent.
Note 2. A curve of the Family meets the envelope in the points 	 - !) ;hence, only those

parabolas given by C 3	 At touch the circle.

6. Solve 
up  -	 - 1' • 0 and examine for singular solutions and extraneous loci.

Solving for p •	 -	 x), we obtain by integration	 y •	 - x '2 ) • C	 or

( y • C)2 • x(x -	 Thep-discriminant relation IS x(3x - t) • o. and the C -dscnminint relation is
x(x-1)2 ' 0.

Here x • o is common to the two relations and satisfies the differential equation. that is x • 0• 0

satisfies the equation when written in the form 4x - ( 3x - 1)1 ()	 0. It is it singular solution

3x - 1 • o is a tac locus since it occurs twice in the p -discriminant relation, does not occur in the C
discriminant relation, and does not satisfy the differential equation

z - 1 • 0 is it nodal locus since it occurs twice in the C	 disc rminani relation, does not
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occur in the p-discriminant relation, and does not satisfy the differential equation.

The primitive represents a family of cubics obtained by moving y 2 	 X(X - 
1)2 along the y-axis. These

curves are tangent to they-axis and have a double point at x	 i.Moreovcr, through each point on x	 1/3

pass two curves of the family having a common tangent there. See Figure (il) above.

7. Solve 9yp 2 +4 z 0 and examine for singular solutions and extraneous loci.

Solving for 9y -4/p2 and differentiating with respect to x, we have

dx	 and	 x + C
	

8
9 P4	

27p5

Eliminating p between this latter relation and the differential equation. the primitive is 	 y
5 + (x C)2

0.

Thep -discriminant relation isy Oand the C -discriminant relation is y 5 0. Since y • 0 occurs once
in thep-discriminant relation, three times in thcC -discriminat relation, and does not satisfy the differential
equation, it is a cusp locus.

The primitive represents the family of semi-cubical parabolas obtained by moving y + x2 0 along the
x-axis. Each curve has a cusp at its intersection with the x -axis, and 	 u is the locus of these cusps
See the figure below.

of	 cusp locus

A7̂  A K
Family of semicubical parabolas

+ (x+C)2 a 0

8. Solve x3p2 e x 2 yp + 1 • 0 and examine for singular solutions and extraneous loci.

Solving for y - _-_ - xp and differentiating with respect to x we have
Z 2

dp
(1 - x 5 p2 )(2p . x — )	 0.

dx

From 2p+x	 0, px 2 C and, eliminating between this and the differential equation the primitive
dz

is C2 +Gxy+x	 0.

The p -discriminant relation is x 5 (xy2 - 4)	 0, and the C -discriminant relation is x(xy2 - 4) 0.

xy2 - 4 • 0 satisfies the differential equation and is a singular soutitrn.

• 0 is a particular solution (C	 0). Note that it occurs three times in the p -discriminant relation
and

once in the C -discrimnatit relation
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9. Examine px - 2p 1 y - 16x 2 	o for singular solutions and extraneous loci.

From Problem 4, Chapter 9, the primitive is C 	 - C 2y - 2 0.

The p -discriminant relation is x 2 (2y 5 + 27x)	 0. and the C -discriminant relation is 2y 3 + 27x = 0.

Since 2y 5 27x	 o is common to the discriminant relations and satisfies the differential equation.
itisa singular solution. At each point of the line x a. two parabolas of the family are tangent there (for
y < 0, the parabolas are real). Thus x = 0 is a tac locus. Also x a 0 is a particular solution. Since it is
obtained by letting C -. co. it is sometimes called an infinite solution. Noie however that when the
primitive is ritten as X2 - Ky - 20 = 0,this solution is obtained when K 	 0.

SUPPLEMENTARY PROBLEMS

Investigate for singular solutions and extraneous loci.

10. y • px..2p2.

2 2
Y p +3xp-y 0.

12. xp 2 -2yp+4x	 0.

13. xp2 -2yp+x+2y	 0.

22
14. (3y-1) p = 4y.

15. y	 -xp +xp2.

16. 2y = p	 4xp.

17. y(3-4y)
2 

p
2
 = 4(1-y).

18. p 3 -4x"p+8x 5 y	 0.

19. (p2 + 1)(x-y) • (x +yp)2.

	

Hint: Use x	 p cos e,

	

Y	 p sin 8.

Ans.	 primitive, y	 Cx - 2C 2; singular solution, x 2	 8y.

Ans.	 prim., y3 3x - C 2	 0; s.s., 9x2
	 5
+ 4y	 0.

Ans.	 prim.. C 2 X2- Cy + 1	 0; 
S. S., 

y 2 - 4X
2 =

 0.

A pis. prim.. 2x 2 2C(x - y) + C 2	 0;	
2 

+ 2xy - y 2	 0.

Ans.	 prim.. (x + C) 2	 y (y 1) ;	 s.s., y • 0;	 .I., y • 1/3;

ni.,	 y	 1.

2Ans.	 prim., xy = C+ C 
2 x; S. s., 1 + 4x y	 0; tI.. x	 0.

Ans.	 prim., (4x' + 3xy + C) 2	2(2x 2 + y > ; no s.s.:
cl.,	 2x 2 +y = 0.

Ans.	 piim., x- C) 2 	 y3 (1- y );	 s.s. • y	 1; C. 	 y	 0;
tI..	 y = 3/4.

Ans.	 prim., y x Cr 2 - C3 ;	 s. S., 4.' - 27y2	0;	 tI. x = o.

Ans.	 prim.. (x - C 2	 (y- C)2	 C2; 
S. S., xy 0; tI. y



CHAPTER II

Applications of First Order and Higher Degree Equations

IN FINDING THE EQUATION of a curve having a given property. (for example, that its slope at any point
is twice the abscissa oithe point), we obtained in Chapter 7 a boil ol curves (y x2 + C) having the pro -
perty. In this charter the family of curves will frequently he a Family of straight lines, In such cases, the
curve in which we are most interested is the envelope of the family.

SOLVED PROBLEMS

I. Find the curve for which:
al the sum of the intercepts of the tangent line on the

coordinate axes is equal to k.

h j the product of the intercepts of the tangent line on the
coordinate axes is equal to k.

()

	

	 the portion of the tangent lipe intercepted by the
coordinate axes is of constant length k,

Let ihe equation of the tangent line he

Y = px *

the x- 'flU y_ intercepts being -1(p)/p and f(p ) resp-
ectively

a I S:nce f(p) -f(p)/p	 k, 1(p )	 _ kp/ (1 -P), and the

equation of he tangent line s y	 px -
kp

1 -p

This	 rwt equation, the prinutie being the family

of linc -	
-	

or xC 2 - (x + y - k)C + y	 0. The required curve, the envelope of the family,

has equi:n (x y - k) 2 	4xy or	 ± y	 k. Note that this curve is an envelope (singular solution)
since It tiiIes the differential equation and cannot he obtained from the primitive by assigning a value
toO

hI Since f(p) [ — f(p )/p ]	 A. f p 	±	 and the equation of the tangent line is y = px ±
This is a C1araut equation, the prirniti e being

y -x	 ±	 or	 x2C2 
4,

	 — 2xy)C +	 0.

The required curc, the envelope of the fan]ilv, has equation 4xy

c) Since [{f(p))2 + {_f()/)2J	 k, f(p )	 ± kp//1 + P 2 , and the equation of the tangent line is

y	 pi ± kp//i. The primitive of this equation is .y	 Cx ±kC111T.
Differentiating with respect to C we have 0	 x ± k/ 1 + C2)2.

Then z	 k/( 1 + C 2 ) 312 .	 y	 Gx ± kC/( I+ C 2 ) 112	 ±AC3/(1C2)3/2	 and the equation of the

envelope is	 z'	 ,*/3	 k2/( 1+ C 2 )	 k 2" 3 C'/( 1+ C2)

—11	 75



2. Find the cur e for v Inch
a' the sum of the distances of the points (0.0) and (-0.0) from the tangent line is equal to k.
Fi,	 the sum or the dist:tnces of the points	 (a0) and (0 , a )	 from [he tangent line is equal to k.

Take px — y + 1(p)	 a	 the norni;tI form of the equation of i tarteetit line.

	

y	
y	 f (P)

(0,a)
op f(p)

7T0.0taP4fT
0

1(P)

taO)(-0,0) N

	

(u)	 (h)

al The distances of the points (0,0) and (-a,0) from the line are ° 	 and -op RP) respectively.

Thus,	 k, f(p)	 k	 and the equation of the tangent line is y	 px + k v4 7. The

primitive of this Clairaut equation is

y	 Cx +	 01	 (422-k2)C2 - 8xyC + 4y 2 	k 2	0.

The required curve, the en elope of this famil y of lines, has as equation x I
 + y	 k2.

h) The distances of the points (a, 0) and (Ga) from the fine are	 +	 and	 ° ftp) respectively.
/

Thus, ° 0	 2f (p)	
k.	 f(p)	 [k A	 op + a ]. and the equation of the tangent line is

y	 px	 ]. The pi i mi tk e is y 	 Cz+

Differentiating with respect to C, e have 0	 x	 - a).

Then x = - [ c/AT'1 - a ], y	 [k//i7 + a ], and the ene1ope of the family of' lines has

equation x+y 2 -ax-ay	 (k2-22).

3. Find the curve such that the tangent line at an y of its
points P bisects the angle between the ordinate at P and
the line joining P and the origin.

Let 0 he the angle ofinclinatioti ofa tangent line and
be the angle of inclination of OP. Then, if M is the foot
of the ordinate through P.
angle OPM = 90*-	 2(90'- 8) 	180° - 28.

Now tan(90°- ) cot = tan(180°- 28) -tan 28
and tan 0 tan 20 = -1.

Since tan	 y/x and tan o z y' p. we obtain the
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2P 
2

differential equation of the curve	 .	 = - 1 or 2y	 xp - x/p. Differentiating ith respect to
i -p

x ,2P z p -	 + (x +	 ) E	 p(p 2 + 1)	 x(p 2 + 1). and x dp - pdx	 0.

Integrating, in p	 in x + in C or p Cx. Substituting for p in the differential equation, we obtain
the family of parabolas C 2x 2 - Wy -	 0.

4. Find the shape of a reflector such that light coming
from a fixed source is reflected in parallel rays.

Let the fixed point be at the origin of coo Jinates
and the reflected rays be parallel to the x-axis. The
reflector is then a surface of revolution generated by
revolving a curve f(x,y)	 0 about the x-axis.

Confining ourselves to the xOy plane. let P(x,y)
be a point on the curve f(x,y) • a, TPT' be the
tangent line at P. and PQ be the reflected ray.	 Since	 T
the angle of incidence is equal to the angle 01' ref-
lection, it follows that LOPT	 LQPT'.

Now 	 . tan LOTP tan 0 and tan LTOP - tI(rt-24)- -tan 2	
2 tan 4>

dz	 1- tan t0	
X

hence,	 2P	 or 2x -	 - yp.

i-pt	 P

Differentiating with respect to y,	 • . - -2 dP - p -	 and	 - J. Then, p •

Eliminating p between this relation and the original differential equation, we have the family of curves

Y E 2Cx C 1 . Thus, the reflector is a member of the family of paraboloids of revolution y 2 + z 2 • 2Cx +
ri

SUPPLEMENTARY PROBLEMS

5. Find the curve for which each of its tangent lines forms with the coordinate axes a triangle of constant
area a 2 , Ans. 2xy - a2

6. Find the curve for which the product of the distances of the points (a • 0) and (-a. 0) from the tangent lines

is equal to	 Ans. kx 2 = ( k a2 ) ( k - y2)

7. Find the curve for which the projection upon they- axis of the perpendicular from the origin upon any
tangent is equal to k.	 Ans. x2 = 4k(k -y)

8. Find the curve such that the origin bisects the portion of they-axis intercepted by the iancnt and normal
at each of its points.	 Ans. x 2 + 2Cy C2

9. Find the curves for which the distance of the tangent from the ori gin varies as the distance of the origin

from the point of contact.
2

Hint:	 ___________	 kp ,	 .1rc. p Ce
42+ (dp/dO)2


