CHAPTER 1

Origin of Differential Equations

Q DIFFERENTIAL EQUATION is an equation which involves dcrivatives.}ar example,

n%‘*” 5) (M o+ () 43y = o
d?y dy dz 9z

2 ——t G t2y =0 6) = = + ox—

}dx' e ) x z qu

3 ! = 2 2

Yty e g ?)3--’,-1-3—-"--::’4-)'.

4) y* + 2(yM? + y' = cos x L L

@herc is a single independent variable, as in 1) -5), the derivatives are ordinary derivatives and the
cqualion is called an ordinary differential equation.

»
If there are two or more independent variables, as in 6) -7), the derivatives are partial derivatives and
the equationis called v parrial differential equation™

The order of a differential equation is the order of the highest derivative which occurs. Equationsl),
3), and 6) are of the lirst order: 2), 5). and 7) are of the second order; and 4) is of the third order.

" The degree of a differential equation which can be written as a polynomial in the derivatives is the
degree of the highest ordered derivative which then occurs. All of the above examples are of the first degree
except 5) which is of the second degree.

A discussion of partial differentialequationswill be given in Chapter 28. For the present, only ordinary
differential equations with a single dependent variable will be considered.

ORIGIN OF DIFFERENTIAL EQUATIONS, \/ 9 T

al  Geometric Problems. See Problems | and 2 below.

i/ Physical Problems. Sec Problems 3 and 4 below.

¢/ Primitives, A relation between the variables which involves n essential arbitrary constants, as

y = x* +Cxor y = Ax? ¢ Bx is called a primitive. The nconstants, always indicated by capital letters

here. are called essential if they cannot be replaced by a smaller number of constants. See Problem 5.
In general. a primitive involving n essential arbitrary constants will give rise to a differential equation,

of ordern, Iree of arbitrary constants. This equation is obtained by eliminating the nconstants between

the (n +1) equations consisting of the primitive and the n equations obtained by differentiating the

primitive n times withrespectto the independent variable. See Problems 6-14 below.
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5,

6.

VURIVINUF UAFPERENLIAL EQUATIONS

SOLVED PROBLEMS

A curve is defined by the condition that at each of its points (x,y), its slope
is equal to twice the sum of the coordinates of the point. Express the condition by
means of a differential equation. P(x.y)

. . - . . - ’
The differential cquation representing the condition is g = 2(x + ) ol 7

A curve is defined by the condition that the sum of the x- and y-intercepts of its tangents is always cqual
to 2. Express the condition by means of a difTerential equation.

The equation of the tangent at (x,y) on the curve is Y-y = 5:'1—'(.\'-:: and the x-and y-intercepts are
respectively X = z-y% and Y = y-x g The differential equation representing the condition is

Xr!’-x—ys";vy-;g-: or x(g}’..(x-ﬁy_z)%-pyxg'

One hundred grams of cane sugar in water are being converted into dextrose at a rate which is proportional
to the amount unconverted. Find the differential equation expressing the rate of conversion after ¢ minutes.

Let g denote the number of grams converted in ¢ minutes. Then (100 - q) is the number of grams uncon-
verted and the rate of conversion is given by d_‘: = k(100 ~q), k being the constant of proportionality.

A particle of mass = moves along a straight line (the z- axis) while subject to 1) a force proportional
lo its displacement x from a fixed point 0 in its path and directed toward Ouand 2) a resisting foree propor-
tional to its velocity. Express the total force as a differential equation.

The first force may be represented by —k,x and the second by —h,;ﬁ » where &y and kg ure factors of
proportionality. .
2

The total force (mass x acceleration) is given by m f—; = < hyx— Ry ?— .

dt ¢

In eachlol' the equations @) y = x*+A+B, b) y 4>, ¢) y = A + InBx show that only onc of the
two arbitrary constants is essential.

a) Since A +Bisnomore thana single arbitrary constant. only one essential arbitrary constant is involved.

. +8 B 2
b]y :"qu_ = Ae"¢’, and Aelis no more than a single arbitrary constant.
-
¢) y=A+1nBx = A+ InB + Inx, and (A + 1n B) is no more than a single constant.

L]

Obtain the differential equation associated with the primitive y = Ax®+ Bx +C,
Since there are three arbitrary constants, we consider the four equations

2 3
J"l‘l"f&ltc. Q‘I.m;ﬂ_ ‘.i_z-u. ‘.i_l-u
: dx d'? dl’
d . ‘ ;
The last of these ;:—:1 + being free of arbitrary constants and of the proper arder. is the required equation.
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I
Note that the constants could not have been eliminated between the first three of the above equations.
Note also that the primitive can be obtained readily from the differential equation by integration.

7. Obtain the differential equation associated with the primitive =y’ + 'y’ = C.

Differentiating once with respect to x, we obtain (2ey’ + zx’y’%} + (axly e 820y %] = 0 or. when

oy £ 0, (27 + 3:3—5) + x;r!(Sy + Sx :—f) = 0 as the required equation.

When written in differential notation, these equations are
1) (2xyPde + 3xPyPdy) + (3x°y dx + SxPy'dy) = 0O
and . 2) (2ydx + 3xdy) + :y’(:!yd.l + 5xdy) = O.

Note that the pnmnm can be oblained readily from 1)by integration but not so rv:ddﬂ) from 2). Thus.
to obtain the primitive when 2) is given. it is necessary to determine the factor xy? which was removed

from 1).

8. Obtain the differential equation associated with the primitive y = 4 cos ax + B sin ax, A and B being
arbitrary constants, and a being a fixed constant.

Here % . s sin ax + Ba cos ax
dx
42
and —-% = -Aa® cos ar - Ba® sin ax - -ulm cos ax + B sin ax) = -azy.
dz

: 2
The required differential equation is d_% + a®y = 0,
dx

%ﬁﬁmin the * Terential equation associated with the primitive y = Ae**+ Be®+ C.

d d? d’
Here 2 = 240 4 B, Y = wde™ + B, Y o gde®™ + BeS,
ux dx? dx’
4 q d’y d dy d R
Then S o0d wape®™ 2 o0 < i gpd X L BY 92 E . 1;\)
de? de da? s ‘o dd ’ de?  dx
; s

3 2
The required equation is By waldd ¢ 7% & 0.
de? dx® dx

10. Obtain the differential equation associated with the primitive y = Cye®* + Coe'~ + Cae”.

2

ol C:!x. E:E = SC,c’x - 1C,¢" £ Cants

Here - ac,;"‘ + 2Ce
dx

d’y 5x 2x x

and E = 27C e + 8Ce" ¢+ Gue

The elimination of the constants by elementary methods is somewhat tedious. If three of the equations
are solved for Cy, Cy, Gy.using determinants, and these subsl:luled in the fourth equation, the result may
be put in the form (called the climinant):
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2 UKILIN OF DIFFERENTIAL EQUATIONS

o 3T oF y 1 11 y
3** g2 E g T RS, i
2 = e = e (=2 + 129" = 22"+ 12y) = 0.
> G & b -l Sl L
27'}: sg!x 'x Jr"' 27 8 1 y...
. : R d* d
The required differential equationis Y _ %Y , 1, 9 _ 6y = 0,
dx? dze? dx

1. Obtain the differential equation associated with the primitive y = C* + C%,

nce 9 . . Ldy cetact. Adr,e, A dys
Since E;-—2Cx. c o and y Cz" v 2:1:’+“:‘¢x1'

The required differential equation is lt':--f)2 + 20 5—: - 4’y = 0,

Note. The primitive involves one arbitrary constant of degree two and the resulting differential equation
is of order one and degree two.

12. Find the differential equation of the family of circles of fixed radius r with centres on the x axis.

T
The cquation of the family is (x-C)? + yl=r2c being - —— -P-Sx'” —————
an arbitrary constant. / r/
o ¥

Then(x -C) + y :—f =0, x-C =~y 5% and the dilferen- k o (C,0)

Cr— - ———

tial equation is y’(:_i'}’ O

13. Find the differential equation of the family of parabolas with foci at the origin and axes along the x- axis.

T '

‘2”’ = cu‘_‘}?
¥ 44As 1) FUd+n

The cquation of the family of parabolas is y? = 44¢4 + ).
Then yy' =24, A =idyy' and »? = 2yy'(hyy’ s 1).
The required equation is ,(g)’ + 2 % -y = 0.
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14. Form the differential equation representing all tangents to the parabola y? e 2x,

16.

Al any point (4,B)on the parabola, the equation of the tangent is y=B = (x=A)/B or, since A = 482,

By = x + 482, Eliminating B between this and By’ = 1, obtained by differentiation with respect to =,
we have as the required differential equation 2x (y*)* - 2yy' +1 = 0.

a)
b)

¢)

d)

¢)

7

8/
h)

i

SUPPLEMENTARY PROBLEMS

. Classify each of the following equations as to order and degree.

dy + (zy - cos x)dx = 0 Ans. Order one; degree one

Ans. Order two: degree one

yoeayt e zy.:y")’ sxy 0 Ans.  Order three; degree one
2

:T:g * :(%)‘ s+ U= Ans. Order Iwo, degree one
5 2

(ﬂ}' - (Q)' + vk = 0 Ans. Order three: degree two
dv? dv?

e —ay"eye0 Ans.  Order three: degree does not apply

ve'+p = 8in 6 Ans. Order one: degree one
yl b x s (y-ay)” Ans.  Order one. degree four
o, B & Ans. Order two; degree f

o b7 ns. Order two; degree four

Write the differential equation for each of the curves determined by the given conditions.

al

by

()

d)

c)

Al each point (x, y) the slope of the tangent is equal to the square of the abscissa of the point.
Ans. y'» x?

At each point (x, y) the lenght of the subtangent is equal to the sum of the coordinates of the point.
Ans. y/y' = x+y oOF (xty)y' L
|

The segment joining P(x,y) and the point of intersection of the normal at P with the z-axis is bisected
by the y-axis. i, a0y ’% agy OF yy’+'2xs0
Al each point(p. 8) the tangent of the angle between the radius vector and the tangent is equal to

k] \ F e,
173 the tangent of the vectorial angle Aog, p :_g . % ik @

The area bounded by the arc of a curve, the x-axis. and two ordinates, one fixed and oge variable,
is cqual to twice the length of the arc between tne ordinates.

x x
Hint; J;thf.x = Zfa 1+(y'y de, Ans. y = 21+ (")
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18,

19.

21.

22.

ORIGIN OF DIFFERENTIAL EQUATIONS

Express each of the following physical statements in differential cquation form.

a)

b)

c)

d)

e)

L]

Radium decomposes at a rate proportional to the amount @ present, Ans, dQ/dt = -kQ

The population P of a city increases at a rate proportional 10 the population and to the difference
between 200,000 and the population. Ans. dpsde = RP(300,000 = Py

For a certain substance the rate of change of vapour pressure (P) with respect to temperature (7)
is proportional to the vapour pressure and inversely proportional to the square of the temperature.
Ans. dP/dT = kP/T?

The potential difference £ across an element of inductance L is equal to the product of L and the
lime rate of change of the current i in the inductance.

| §
Ans. E = L .cﬁ.
’ dv d’s
Mass x acceleration = net force. Ans.m — = F or a =2 s F
dt dl’

Obtain the differential equation associated with the given primitive. 4 and B being arbitrary constants.

a)
b)

.“)

d)

y = Ax Ans. y' = y/x e) y = sin(zx+4) Ans. (y')’ =1 - y'
y=Ax + B Ans. y" = 0 f) y=Ae®+ B Ans. y" =y
§ua® o pa® Ans. y! =y g) x=Asin(y+B) Ans. 5" = x(y')

y =A sin x Ans. y' = y cot x h) Iny=As*+B

Ans. xyy" ~yy' - xy)' ® 0

Find the differential equation of the family of circles of variable radiir with centres on the x -axis. (Compare
with Problem 12.)
Hint: (x=4)® + y* = r®, A and r being arbitrary constants.  Ans. "y 1.0

Find the differential equation of the family of cardiods p = a(1 - cos 6.

Ans. (1 - cos @)dp = p sin 8 dF

Find the differential equation of all straight lines at a unit distance from the origin.

Ans. (zy'-y@ =14+ (y')?

Find the differential equation of all circles in the plane.

Hint: Use %+ y® _24x-2By+C = 0. Ans. [1+ (") 1y" - 3" (") = 0



CHAPTER 2

Solutions of Differential Equations

THE PROBLEM in elementary differential equations is essentially that of recovering the primitive which
gave rise to the equation. In other words, the problem of solving a differential equation of order nis
essentially of finding a relation between the variables involving n independent arbitrary constants which
together with the derivatives obtained from it satisfy the differential equation. For example:

Differential Equation Primitive
3
1) 5y - 0 y =Ax? + Bx +C (Prob. 6, Chap. 1)
dx?
d’ d*
2) ;{ - 6—-—’; + 11% -6y =0 y=Ce" +Ce™ 4 Cye” (Prob. 10, Chap.1)
3 y'(g)’ +yl=s ot (x-C)'+ y'= 1! (Prob. 12, Chap.1)

THE CONDITIONS under which we can be assured that a differential equation is solvable are given by
Existence Theorems. J

For example, a differential equation of the form y’ = g(x,y) for which
a) &(x,y) is continuous and single valued over a region R of points (x,y)

b) %‘ exists and is continuous at all points in R,
Y

admits an infinity of solutions f(x,y,C) =0 (C an arbitrary constant) such that through each point
of R there passes one and only one curve of the family £(x,y,C) =0.See Problem 5.

A PARTICULAR SOLUTION of a differential equation is one obtained from the primitive by assigning
definite values to the arbitrary constants. For example, in 1) above y =0 (A =B=C=0), y=2x+5

(A=0, B=2, C=5)andy=x?+2x+3 (A =1, B=2, C=3)are particular solutions.

Geometrically, the primitive is the equation of a family of curves and a particular solution is the equation
of some one of the curves. These curves are called integral curves of the differential equation.

As will be seen from Problem 6, a given form of the primitive may not include all of the particular
solutions. Moreover, as will be seen from Problem7, a differential equation may have solutions which
cannot be obtained from the primitive by any manipulation of the arbitrary constant as in Problem 6.
Such solutions, called singular solutions, will be considered in Chapter 10.

The primitive of a differential equation is usually called the general solution of the equation. Certain
authors, because of the remarks in the paragraph above, call it a general solution of the cquation.

7



SOLUTIONS OF DIFFERENTIAL EQUATIONS

A DIFFERENTIAL EQUATION % = g(x,y) associates with each point (xg,yg) in the region R of the

above existence theorem a direction m = ¥ = g(x, Yo) -

dx | (xo. Yo)
The direction at each such point is that of the tangent to the curve of the family f(x,y,C) =0 that is,
the primitive, passing through the point.

The region R with the direction at each of its points
indicated is called a direction field, 1n the adjoining ligure,
a number of points with the direction at each is shown for
the equation dy/dx = 2x. The integral curves of the
differential equation are those curves having at each of their
points the direction given by the equation. In this example,
the integral curves are parabolas.

Such diagrams are helpful in that they aid in clarifying
the relation between a differential equation and its primitive,

but since the integral curves are generally quite complex, b}
such a diagram does not aid materially in obtaining their slope s 4 //
equations. tlaﬂl-ﬂ: "

[ ] (]

SOLVED PROBLEMS

Show by direct substitution in the differential equation and a check of the arbitrary constants that cach
primitive gives rise to the corresponding differential equation,

. d¥
a) y = Cysinx + Cox tl-:cetz};ﬂ;-sgfy-a
3 2
B) y u Cie* ¢ Coxe™ ¢ Cye™* + 2'e* ﬂ-u-fl;,.a,‘
de} dx? dx

]
a) Subslitute y = C, sinx + Cyx, 3 * Cycosx + Cy, %E * =Cysinx in the differential equation

to obtain
(1 - xcotx)(~Cy sinx) - x(Cyco8x + Cg) + (Cysinx + Cyx) =

~Cyisinx + Cyxcosx - Cyxcosx - Cyx + C; sinx+ Gz = 0,
The order of the differential equation (2) and the number of arbitrary constants (2) agree

b) y = Cit”* & Cina”™ + Gé™® o+ %5
Y = €+ Cle® + Cuxe™ = Cue™ + u'e® ¢ e,
' » (Ce2C)e* ¢ Cure® + Cee™* ¢ 27T 4 mwe”™ ¢ 4,
YU e (Cre3Ch)e® + Coxe® - Ge™* ¢ 2te® 4 12me* + 1265,
and y" = y" = y' + y = 8™ The order of the differential equation and the number of arbitrury constants

agree,

Show thaty = 2x+ Ce* is the primitive of the differential equation g - ¥ = 2(1-x)and find the parti-
cular solution satisficd by x = 0, y =3, i.c.,the equation of the integral through (0,3).
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Substitutey = 2x+ Ce™ and:—i = 2+ Ce”in the differential equation o oblain 2+ Ce’-(ance‘, = 2-2x,
Whenx=0, y=3, 3=2:04+Ceand C=3. The particular solution is y = 22+ 37,

2
3. Show that y = Cye™+ Cye™ 4 x is the primitive of the differential cquation :—;E - ai‘z ¢ 2 = 2x-3 und
’
find the cquation of the integral curve through the points (0.0) and (1,0).

2
Subslilulc‘ y * Cye™e C,e’xv- x, SE « Cie”s 2C,¢a: +1, :—'—E = Cre*+ .(C’.': in the differential

equation.to obtain  Cye*+ -lC,_e_’”- 3(Cie* +2Ce™ 4 1) ¢ 2(Cie s Coe™ o %) & -3,

When x20, y=0: Cy+Cy = 0. When x=1, y=0: C1¢+C=¢’ = -1,
x__ix

and the required equation is y = x + £ €

e -¢ ¢ =g

Then Cy = -C, =

4. Show that(y -C)?= Cx is the primitive of the differential equation 1:(%)’ B 2:% =y = 0 and nd the

equations of the integral curves through the point (1.2).

o%. @ . _C
Here 2(y -C) = C and Z“in
2 . 2 2 2
Then s—S— 4 25 C _ _, . C2G0G-0-y0-0" | ylex-g-0'1 _
0-0" 2r-0 (r-0Cy? (y-0p?

When x=1, y=2: (2-€)% « ¢ und C =14

The equations of the integral curves through (1.2) are (y - )7 = 2 and (y - 1}’ = 4x,

§5. The primitive of the differential equation :—f = 5 isy = Cx, Find the cquation ol the integral curve through
a) (1,2) and by (0.0),

@) When x=1, y=2: C=2 and the required equation isy = 2«,

b) Whenx =0, y=0: Cis not determined, that is all of the integral curves pass through the origin. Note
that g(x,y) = y/risnot continuous at the origin and hence the existence theorem ussures one and only one
curve of the family y = Cz through each point of the planc except the origin.

6. Differentialing xy = C(x=1)(y=1) and substituting for €. we obtain the differential equation

dy - - d
= C{ix-1=Z -1) = = -1
i {tx Yt ) (3—1}(1—13{(’ sd.*yl }

dy .
or 1) x(x - ¢ y(y-1 = 0.

Now both y= 0 and y =1 are solutions of 1), since. for each. dy/dx =0 and 1) is satisfied. The first
is obtained from the primitive by setting € = 0, but the second y =1 cannot be obtained by assigning a
finite value to C. Similarly, 1) may be obtained from the primitive in the form Bxy = (x-1)(y-1). Now
the solution y =1 is obtained by setting B= 0 while the solution ¥y =0 cannot be obtained by assigning
finite value to 8. Thus, the given form of a primitive may not include all of the particular solutions of
the differential cquation. (Note thut x =1 is also u particular solution.)



SOLUTIONS OF DIFFERENTIAL EQUATIONS

&
Differentiating y = Cz+ 2c?, solving for €= % + and substituting in the primitive yiclds the differential
equation ;

L (PR SO
1) 2(d‘) +xt¢) y 0.

Since y = - %: . - %x satisfies 1), =" + 8y = 0 is a solution of"li.

dx

Now the primitive is represented by a family of straight lines and it is clear that the equation of a para-
bola cannot be obtained by manipulating the arbitrary constant, Such a solution is called a singular
solution of the differential equation.

8. Verify and reconcile the fact thaty = Cycos x + Ca sinxandy = A cos(x + Bjure primitives of d—!E +y =0,
dx

Fromy = Cy cosx + Cgsinx, y'= -Cqsinx+ Cycosx and
dy
y"= =Cycosx - Cp8inx = -y or i +y =0,
Fromy = Acos(x+B), y'= -Asin(x+B) and y"= ~Acos(x+B) = -y.

Now y = Acos(x+B) = A(cosx cosB - sinx sinB)

= (AcosB)cosx + (-AsinB)sinx = Cycosx + Cgsinx.

2
9. Showthat 1nz? + lnL! = A+x may be written as y* = Be™,

X
2 2 : y? 2
nx° + lnzi' = In(x Z;) = Iny’ = A+x, Then y" = e T L
= x

10. Show that Arc sin x - Arc siny = A may be written as 1-y? - y/1-5* = B,

sin(Arc sin x - Arc sin y) = sin A = B,

Then ein(Arc sin ) cos(Are sin y) - cos(Arc sin z) sin(Arc sin'y) = rv’l-y’-yv‘l-x’ = B,

11. Show that ln(l+y) + In{1+z) =4 may be wriltenas sy+x+y = C.

In(l+y) + In(l+x) = In(l+y)(1+x) = A,

Then(l+y)(1+x) = sy+x+y+l = e =B and sy+x+y =B-1=C

12. Show thatsinh y + coshy = Gz may be writtenas y = 1nz ¢+ A,

Herc  sinhy + coshy = i(e’—c") + t(-’+ ey = e = Cx,

Then y = InC +lnx = 4+ lnx,
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SUPPLEMENTARY PROBLEMS

Show that each of the following expressions is a solution of the corresponding differential equation. Classify
each as a particular solution or general solution (primitive).

13. y = 22, xy’ = 2y, Particular solution
14. Seytec, yy'+ x = 0. Primitive

15. ysCx+C, y = xy' ¢ (¥ Primitive

16. (l-s)y’ . o, h’y' = y(y'+ 3:'). ' Particular solution
M y=ef(141), y'-2y"+y =0, Particular solution
I8. y ® Cyx + Cye”, (x=-1)y"=xy' + y =0. General solution
19, y = c‘c" ¥ Ca™ yray=o, General solution
20. y = Cye” + C,e" +x -4, y'-y=4-2z, General solution
21 y = Cye™ + Cs'“- y" - 8y" + 2y = 0. General solution
22. y = C,e' + C.e" .t y" -3y + 2y = 2¢7(1-x). General solution



CHAPTER 3

Equations of First Order and First Degree

A DIFFERENTIAL EQUATION of the first order and first degree may be written in the form
1) N(x,y)dx + N(x,y)dy = 0.
ExamPLE 1. a) % + :;—+i = Omay be written as (y +x)dx + (y=x)dy = 0 inwhich H(x,y) =
ytx and N(x,y)=y-x.
b) g = 1+x"y may be written as (1+ x"y)dx —~dy =0 in which¥(x,y) =1+ x'y

and N(x,y)=-1.

If (x,y)dx + ¥(x, y)dy is the complete differential of a function uix,y),

that is, if N(x,y)dx + N(x,y)dy = du(x,y).
1) iscalled exactand u(x,y) = C is its primitive or general solution. .

EXaMPLE 2.3x" Y  dx + 2¢’y dy = 0is an exact differential equation since 3x"y*dx + 2y dy =
dix y*y. Its primitive is x’y* = C.

If 1) is not exact but

E(x, ) {M(x,y)dx + N(x,y)dy} = du(x,y),

€ (x,y) is called an integrating factor of 1) and u(x,y) = Cis its primitive.

EXAMPLE 3. 3y dx + 2x dy = 0 is not an exact differential equation but when multiplied by £(x,y)

= x"y, we have 3x*y*dx + 2€ y dy = 0 which is exact. Hence, the primitive of 3y dc + 2x dy = 0 is
x’y* = C. Sce Example 2.

If 1) is not exact and no integrating factor can be found readily, it may be possible by a change of one
or both of the variables to obtain an equation for which an integrating factor can be found.

ExaMPLE 4. The transformation x = t-y, dx = dt=dy, (l.e., x+y = ¢),

reduces the equation ' (x+y +1)dx + (2x+ 2y +3)dy = 0

to (t+1)(dt ~dy) + (2t +3)dy = 0
or (t+1)dt + (¢+2)dy = 0.

By means of the integrating factor t_:z the equation takes the form

t+1 1
dyi-_dt:d’r-}dt_ —dt = .
t+2 t+2 ¢

Then y+t-In(t+2) =C
and,since ¢t = x+y, 2y + x - In(x+y +2) = C.
Note. The transformation x + y + 1 = t or 2x + 2y + 3 = 2sis also suggested by the form of the equation.

12



EQUATIONS OF FIRST ORDER AND FIRST DEGREE 13

A DIFFERENTIAL EQUATION for which an integrating factor is found readily has the form

2) fo(x) ga(y)dx + fo(x)-¢,(y)dy = 0.
By means of the integrating factor ,2) is reduced to
Fo(x) gely)
2) () 5, 8102 e
f, (x) d1(y)

whose primitive is

fl")d! ' la(?)cb’ i
fq(x) £a(y)

Equation 2) is typed as Variables Seperable and in 2°) the variables are separated.

EXAMPLE 5. When the differential equation
(3x"y ~xp)ax + (2" + 2y')dy = 0O

is put in the form y(3xT = x)ax + x(2y +y")dy = O
it is seen to be of the type Variables Separable. The integrating factor —l’- reduces it to (% - ..‘i.)m *
yx x

(2y + r’)d? = 0 in which ihc variables are scparated. Integrating, we obtain the primitive

1 § . (i
31nx+;+y +zy = C,

IF EQUATION 1) admits a solution £(x,y,C) = 0 where C is an arbitrary constant, there exist infinitely
many integrating factors § (x, y) such that :
E(x,y)(M(x,y)dx + N(x,y)dy) = 0

is exact. Also, there exist transformations of the variables which carry 1) into the type Variables Separable.
However, no general rule can be stated here for finding either an integrating factor or a transformation.
Thus we are limited to solving certain types of differential equations of the first order and first degree, i.e.,
those for which rules-may be laid down for determining either an integrating factor or an effective tran-
sformation,

Equations of the type Variables Separable, together with equations which can ke reduced to this type
by a transformation of the variables are considered in Chapter 4.

Exact differential equations and other types reducible to exact equations by means of integrating
factors are treated in Chapter §.

The linear equation of order one
3) L4 Py = 0x)

and equations reducible to the form 3) by means of transformations are considered in Chapter 6.
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These groupings are a matter of convenience. A given equation may fall into more than one group.
EXAMPLE 6. The equation x dy - y dx =0 may be placed in any one of the groups since

a) by means of the integrating factor 1/xy the variables are scpafated; thus, dy/y - dx/x = 0 so
thatlny =lnx =1ln Cor y/x = C.

b) by means of the integrating factor 1/x* or 1/y* the equation is made exact; thus, ﬂ_."_l_;‘l‘. =0
x

andE-CorM-nand —JE?-C"' !n—lucl

y & Cy

¢) when written as % - ;1‘ y = 0,itis a linear equation of order one.

Attention has been called to the fact that the form of the primitive is not unique. Thus, the primitive
in Example 6 might be given as

a)lny =Ilnx=1nC,b) y/x=C, ¢) y=Cx, d)x/y =K, etc.

It is usual to accept any one of these forms with the understanding, already noted, that thereby certain
particular solutions may be lost. There is an additional difficulty!

ExampLE 7. It is clear that y = Ois a particular solution of dy/dx =y ordy -y dx = 0.When yEO we
may write dy/y - dx =0 and obtainln y - x = In € with C #0in turn, this may be written asy =Ce*,
€ #0.Thus, to include all solutions, we should writey = 0; y = Ce*, C #0.But note thaty = Ce* free of the
restrictions imposed on ¥ and C, includes a/l solutions.

This situation will arise repeatedly as we proceed but, as is customary, we shall refrain from pointing
out the restrictions; that is, we shall write the primitive as y = Ce* with € completely arbitrary, In defense,
we offer the following observation. Let us multiply the given equation by e** to obtain e*dy - ye*dx
= 0 from which, by integration, we get e**y = € ory = Ce*,In this procedure, it has not been nece-
ssary to impose any restriction y or C.



CHAPTER 4

Equations of First Order and First Degree
VARIABLES SEPARABLE AND REDUCTION TO
VARIABLES SEPARABLE

VARIABLES SEPARABLE. The variables of the equation #{x,y)dx + N(x,y)dy = 0 are separable if
the equation can be written in the form

1 Fy(x) do(y)dx + Fo(x)gs(y)dy = 0.
The integrating factor ! , found by inspection, reduces 1) to the form
f. (x) daly)

fi(l)d‘ § 4, (y) e B
fo(x) d:(y)

from which the primitive muy be obtained by integration.

For example, (x = lj'ydx + x'(y + 1)dy = 0 isof the form 1). The integrating factor -.!- reduces
x%y

the equation to

x-1)!
H

dx + ﬂ%!l dy = 0 in which the variables are separated.
X

See Problems 1-5.

HOMOGENEOUS EQUATIONS. A function f(x, y) i§ called homogeneous of degree n if

FQx, ) = N F(xp).

For example;
a) £(x,y) = x* = x’y is homogeneous of degree 4 since
fOx A = (' = (0 ) = X (= y) = Ny,
b) flx,y) = ¢’* & tln% is homogeneous of degree 0 sinte
Fhx,\y) = ol"‘m' + tan :—5 a o tln; = ff(x,y).
¢) f(x,y) = x* + sinx cosy is not homogeneous since

FAx,\y) = M'x* ¢+ sin(Ax) cos(Ay) # 2t £(x,¥).
The differential equation ¥(x,y)dx + N(x,y)dy = 0 is called homogeneous if ¥(x,y)and ¥(x,y)

2
and of the same degree. For example, x lngdx + ?;‘—l.rclinédr = 0 is homo-

geneous of degree 1, but

neither (x* + y*)dx - (xy'-y’)dy =0 nor (x+y')dx + (x-y)dy = 0 is a homogeneous
equation.

15
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The transformation y = wx, dy = vdx + x dv
will reduce any homogeneous equation to the form
' P(x,v)dx + Q(x,v)dv = 0
in which the variables are separable. After integrating, v is replaced by y/x to recover the original variables.

See Problems 6-11.
EQUATIONS IN WHICH ¥(x,y) AND N(x,¥) ARE LINEAR BUT NOT HOMOGENEOLUS.

a) Theequation (ayx + byy + c)dx + (ayx # by +co)dy = 0, (a,bg - a,b, = 0) is reduced by
the transformation

.‘x'l-b‘y- t, dy = i‘——b—‘t..g
1
1o the form P(x,t)dx + Q(x,t)dt = 0
in which the variables are separable. See Problem |2,

b) The equation(a,x + b,y +c)dx + (agx + bey + cq)dy = 0, (al, by - agb, # 0),is reduced t
the homogeneous form

‘.lx’ + b,y‘)dl’ + (l.x* + b.y’)d"‘ = 0

by the transformation x=x'+h, y=y'+k

in which x = h, y =k are the solutions of the equations

ayxtbytc,= 0 and ax¢byy+e, = 0, See Problems 13-14,

EQUATIONS OF THE FORM y. f(xy)dx + x.g(xy)dy = 0.The transformation

dy = x dg - x dx

z
Xy = g y=s =,
2 X x1

reduces an equation of this form to the form
P(x,z)dx + Q(x,2)dz = 0
in which the variables are separable,
See Problems 15-17,

OTHER SUBSTITUTIONS. Equations, not of the types discussed above, may be reduced to a form in which

the variables are separable by means of a properly chosen transformation. No general rule of procedure
can be given; in each case the form of the equation suggests the transformation.

See Problems 18-22.

SOLVED PROBLEMS
VARIABLES SEPARABLE.

L Solve x%dr + (y+1)'dy = 0.

The variables are separated. Hence, integrating term by term,

3
% + E"—;"—’— =Cy or '+ qyen) 7,
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%lvc :'(yo 1)de + y'(: -l)dy = 0,

.

. " 1
—_—_— the equation to = -Z_ - 0.
The integrating factor T reduces quati i dn - e ldy 0

Then, integrating (x +1 + ﬁ)dx # (y-1+ ’Tll)da' =0,
ix' +x+ In(x=-1) + iy'_ y+ In(y+1) = Cg,
ste gt -2y 2laa-lyel) = Gy,

and x+0 s (y-1+2Inx-1)(y+1) = C.

3. Solve 4xdy - ydx = xdy or ydx + (2" -4x)dy = 0.

The integrating factor -——,—1——- reduces the equation to

are separated. Yy~ =4x) A~

;“‘ﬂz-ogr ih_oqﬂ-
x y x-4 x

- 5} = 0 in which the variables

e
&

The latter equation may be written as

»n
-

Integrating, In(x ~4) -~ Inx + ¢ Iny = InC or (x-4)y' = Cs,

4. Solve ‘_‘Z (_2_} or x(y-3)dy = 4ydx,
x(y -3

The integrating I'm:lcn';l;r reduces the equation to Z;—’dy . i-d:.
Integrating, y -3 lny = 4 lnx + InCy Or y = In(C=*y’).

This may be written as Cyx'y’ = ¢’ or ='y’ = Ce’,

5. Find the particular solution of (14 z°)dy - x°y ds = 0 satisfying the initial conditions x = 1,y = 2,

First find the primitive, using the integrating factor B
y(1+s%)
z
Then ‘_:'Z 2 dx=0, Ilny - ;lnuu’) =Cy, 3lny = In(1+x%)+ InC, ¥y =C1+3%).
+x
When x=1, y=2: 2’ = C(1+1), C =4 and the required particular solution is y) = 4(1 +x0).
HOMOGENEOUS EQUATIONS.,

6. When Mdx + Ndy = 0 is homogeneous, show that the transformation y = vx will separate the variables.

When Hdx + Ndy = 0is homogenecous of degree n, we may write
Mds+Ndy = 2"(Hy(Drde+ Medrdy) = 0 whence My(Dyds ¢ Ny = o,
The transformation y = vx, dy = vdx + x dv reduces this to

Hyv)de + Ny {vde+ xdv) =0 or  {Mg(v) + w¥s(uv)}ds + xNy(v) dv = 0

Ny(v) dv

————————— = 0 in which the variables are separated.
Myti) + vNy(v)

+

or, finally, %
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1y Solve (x4 y'yds - 35y'dy = 0,

The equation is homogeneous of degree 3. We use the transformation y = vz, dy = vds + xdv (0
obtain
1) £ {(1+vM)dx - 3 (vds + xdv)) =0  or (1-2v’)de - BTz v = 0
in which the variables are separable.

L]
Upon separaling the variables, using the integrating factor —————— o e, 0, and
=(1-2v%) £ 1-2

Ins+ g In(1-2v") =C;, 2lnz+ In(1-2”) =InC, or sf1-2°)=cC.
Since v = y/x, the primitive is :'(l -27’/:’) =Corx- 27" = Cx.

Note that the equation is of degree 3 and that after the transformation x? is a factor of the left member
of 1). This factor may be removed when making the transformation.

;;0:’ Solve zdy - yde -~ vV -y dx = 0.

The equation is homogeneous of degree 1. Using the transformation y =vx, dy = vdx + xdv and
dividing by x, we have

vdz + xdv—vﬁ—v‘l-vids = 0 or xdv—r’l-v’du = 0.

1 dv adi
PUSTR TR
Then wrc sin v = lnx = InC or arc sin v = In(Cs) and returning to the original variables.
arc sin y/z

When the variables are separated, using the integrating lactor

using v = y/x, arc -uf = In(Cz)or Cx = @

9. Solve (2« llﬂh5+ Sycolhiidz-hcmhfdy = 0,

The equation is homogeneous of degree 1. Using the standard transformation and dividing by x, we have
2 sinhv dc - 3x coshw dv = 0.

dxt _ seodtv
x sinh v

Then, separating the variables, 2 dv = 0.

Integrating, 2 Inx - 3 ln siphv = In C, 2 aC nnh’u. and 2% = C sinh’ f

10. Solve (2cr+ 3y)dx + (y=x)dy = 0.
The equation is homogeneous of degree 1. The standard transformation reduces it to

(2+3u)dx + (v-1)(vde + xdv) = 0 or (vi+2v+2)ds + x(v=-1)dv = 0,

Separating the variables, .. SR L (e, | R
= vie2va2 x vieaue2 e e

Integrating, 1nxz + 4 In(v?+ 20+2) - 2arctan(v+1) = C,,

Iz e2ve2) - darctan(v+1) = ¢, and ln(y'+h;roh') - 4arctan 22X ,
X

=/,

11. Solve (1+2¢"%dx + z."”u-’;‘)dy- 0.
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The equation is homogencous of degree 0 . The appearance of =/y throughout the equation suggests
the use of the transformation x = vy, dx = vdy + ydv.

Then (1+2e“)(vdy + ydv) + 2¥(1-v)dy = 0, (v+2”)dy + y(1+2%dv = 0,

v
and . R L S I
¢ y v+2eY

Integrating and rcp!i!i.‘:llngp by x/y.Iny + In(u+2*) = InC and x + 2ye™” « C,

LINEAR BUT NOT HOMOGENEOUS.
12. Solve (x+ y)de + (Ax+3y=d)dy = 0.

The expressions (x + y) and (3x + 3y) suggest the transformation xz+y = ¢,
Weusey = t =x, dy = dt~ds (o obtain tds + (3t -4)(dt-dx) = 0 Or (4-2t)dr + (3t-4)dt = 0

in which the variables are separable.

3t -4

Then 2ds + St 3#-3dt+-2-—2-t-dtwu.

Integrating and replacing byx+y, we have

2x-3t-210(2-t) =C,, 2-3(x+y)-21n(2-x-y) =Cy, and x+3y+21n(2-x-y) =C.

13. Solve (2t =5y +3)dx = (2x + 4y =€)dy = 0.
First solve 2x -5y +3 = 0, 2x +4y -6 = 0 simultancously to obtain z=h=1, y=k =1,

The transformation = = '+ h = g’+ 1, dr = dx’
yey'+h=ysl, dy=dy’

reduces the given equation to (2s'=5y")ds’ = (2¢' + 4y")dy’ = 0
which is hormogeneous of degree 1. {»Note that this latter equation can be written down without carrying
out the details of the transformation
Using the transformation  y's vx', dy'= vdx’'+ x'dy,
we obtain  (2-5v)dx' - (2+4v)(vdx’'+ x'dv) = 0, (2=Tv -4v)ds' = x/ (2 + 4u)dv = 0,

d' 4 dv 3 dv

x! -1 ives ¥

and finally

Integrating, Inx'+ ;]ltiu -1) + ;ln (v+2) = InCy oOF s""{cv-n (v+ 2}' = C.

Replacing v by y//z', (4y'=-z")(y"+ = C,
and replacing s by x~1and y’by y -1 we obtain the primitive (4y- -3 (y+ == ey S

14, Solve (x=y=1)de + (4y4+x-1)dy = 0,
Solving x=y=-1=0, 4y+x=1=0 simultaneously, we obtain x=h=1, y=k=0,

The transformation x = x’+h =x'+1, dx = dx’
yryshey o dyvidy
reduces the given equation 10 (3/ - y")ds’ + (4y'+ x’)dy’ = 0 which is homogeneous of degrecl. (Note
that this transformation x-1= 2, y=y’ could have been obtained by inspection, that is, by examining
the terms (z -y =1)and (4y +x-1).)

—4
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Using the tr»~:formation y'=uz!, dy'=vdx’'+ x'dv

we obtain (1-v)dz'+ (4v+ 1) (vds'+ z'dv) = 0,
i ] ]
Then d.L + _..._..“"+1 duv = £. 4+ 8y + dv = 0,
! @l = il ol

2
Inx'+ 4in(a”+ 1) + § arctan 2v = C,, Inx' (4v?+1) + arc tan2y = C,

2 '
ln(iy'!+ x') + arc tan EL' = C, and In[dy®+ (x-1)?) + arc tan ’il « G
" &

FORM y f(xy)dx + xg(xy)dy = 0.
15. Solve y(xy+1)ds + x(1+xy+xy*)dy = 0.

The transformation zy = v, y = v/x, dy = Fdn s Vo

reduces the equation to E(wn«i« + x(l+vus v’)‘dv_-!"d‘— = 0

4

which, alter clearing of fractions and rearranging, becomes Vide - x(1+v+vt)dy = 0.

Separating the variables, we have ‘i' dv _dv _dv

Then lnxo-Lol-lnn-C,. h’ln{s)—zv-l-ctr’.
2"! v x .

and 2y lny -2y -1 = clyt.

16. Solve (y -zy:)d: - (x+xly)dy =0 or y(l-xy)ds - x(1+ zy)dy = 0,

The transformation zy=v, y=uv/x, dy = ’&-}-‘-ﬁ- reduces the equation to

E(I—v)ds - x(1+v) M_

=0 or Jude-sx(lvruv)dv = D,
52

2
Then 2? - -I—E—Udu =0, 2lnx-lnv-v=1nC, %_-C«". and  x = Cye™,

17. Solve (1-xy+x7y*)dx + (x’y-s’)dy =0 or y(l-xy+ x'y')lﬁ + J(S’J"" xy)dy = 0.

The transformation xy=v, y=v/x, dy = ’.‘_5“'_"7"3 reduces the equation to
x

E(I-—w-u’)d: + :(u’-u)’_‘.""_"”_d’ =0 or wvds+ x(vi-udv = 0,
x

Then ? ¢ (v-1dv = 0, Inx +§vf-v =C, and Inz = zy-4sfy?+ C.
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MISCELLANEOUS SUBSTITUTIONS.
18. Solveg = (y-u)' or dy = (r—u}tdr.

The suggested transformation y - 4x = v, dy= 4dx +dv reduces the equation to

4de+ dv = vidx  or dx - dv = 0.
vi-4
Then xailnm-c‘,. lnv—i-a--lnC-h. "”-C-'“. and M-Gc'“.
v-2 v=12 v=2 y-4x-2

19. Solve tan®(x+y)ds - dy = 0.
The suggested transformation x+y = v, dy = dv-dx reduces the equation to

taly o (dpmde) 50, = —Da0, or ds=ooevidye0s
1+ tanfy

Integrating, x - 4v - §sin 2v v €, and 2(zs=-y) =C + ein2(z+y).

20. Solve (2+ h'y‘)yds + (x'y“+2}s dy = 0,
. kK v v, 4 o
The suggested transformation x'y = v, y = = dy = = dv - —,—d.- reduces the equation 10
* x x 4

u' v iv'
(2+42V)=dx + s(v+2)(—dv=- —ds) =0 OF v(3+ v)ds = x(v+2)dv = 0,
= ' x x

Then d _ad 1 & , 0, 3lnx-21lnv - 1n(v+3) = InC,, P C;v’hua].

- — -

and 1 = C;xy(x'yht 3) or :y(:’ynf 3) = C.
21, Solve (s 2y?-Txds - (' e'-Bydy = 0.
The suggested transformation =*=u, y*= v reduces the equation to

(Zu+3v=-T)du - (3u+2v-8)dv = 0
which is linear but not homogeneous.

The transformationu = s + 2, v = ¢t + 1yicldsthe homogeneous equation (2s+3t)ds - (3s + 2t)de * 0 and

the transformation s = rt, ds = rdt+ tdr yields 2(r® - 1)dt + (2r +3)t dr = 0.

Separating the variables, we have 255 v X8y zﬁ TN _Jngy W 0.
t ri_ t 2r+1l 2r=1
Then 4 lnt-In(r+1)+ 5ln(r-1) = InC,
PGS VA CEoE ) LA Tt 28 VN C bt et | PSP SR SR e R, L D% S
r+1 s+t u+v-3 ;'o”-a '

22. Solve x"(sds + ydy) + y(zdy -yds) = 0,

Here xds + ydy = yd(s* + yhand x dy- yds = xd(y/x) suggests x*+ y* = P, y/x = tan 8 or
x=pcosB, y=psinB, drx= -p 8in® d6 + cos 8 dp, dy = p cos 8 dO + sin 8 dp.

The given equation takes the form p’co-'e (e de) + g sin e(p' dg) = 0
or dp + tan© sec 9 dB = 0,

Then o+ sec = Cy, Yzl _y’ (‘—:-1) = Cy and (=% + y'Hx w1 = Gl
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SUPPLEMENTARY PROBLEMS

23. Determine whether or not each of the following functions is homogeneous and, when homogeneous,
state the degree.

a) s2azxy, homo.of degree two. ¢) are sin xy, not homo.
B S not homo. 1) 24y, homo. of degree one.
*
" 4 g/ Imx=lny or ln? ' homo. of degree zero.
c) e} homo. of degree zero.
xteyt h) &%+ 2y + 357 homo. of degree one.
d) x+y coef : homo. of degree one. i) xsiny + ysinx, not homo.

Classify each of the equations below in one or more of the following categories:

(1) Variables separable

(2) Homogencous equations

(3) Equations in which M(s,y)and N(x.y) are linear but not homogeneous
(4). Equations of the form y f(xy)de + x g(xy)dy = 0

(5)" None of the above apply.

24, 4yde ¢+ xdy = 0 Ans. (1); (2), of degree one
25. (1+2y)dx + (4-x")dy = (1 |

26, y'd.-x'a!y =0 (1): (2), of degree two
27. (1+y)dx = (1ex)dy = 0 (1):(3)

28, (xy'+ y)dr + (s'y-x}dy =0 (4)

29. (sstnl - ycos Lyds + x cosl dy = 0 (2), of degree one
30. y'a"s 2ds + (P 4y’ (yds = xdy) w0 (5)

3L yva'ey' ds - x(x 4 /x‘+_y‘)¢ =0 (2), of degree (wo
32 (sey+l)de ¢ (2w+2y+1)dy = 0 (3)

33. Solve each of the above equations (Problems 24-32) which fall in categories (1)-(4).

Any. 24, x‘y =C 28. y = Cxe™
2 d-x
28. (1+=}') I(:m 29.!.'“5 = C
26. y = x + Cxy 3, Cx- Vateyt * x 1n(v/ateyt - x)
27. (1+y) = C(l+ ;) 32. x+2y + In(x+y) nC

Solve each of the following equations.

M. (1+2y)ds = (4=x)dy =0 Ans. (-6 (1+29) = C



36,
3.
38,
39.
40.
41.
42,

VARIABLES SEPARABLE

:yé+(1+x')dy =0

cot8dp + pdB = 0

(x+2y)ds + (2x +3y)dy = 0
2edy - Iyds = Vx' + 4y dt
(3y=Tx+ Tydx + (Ty=3x+3)dy = 0
xydy = (y+1)(1-x)dx
(y'-:'}d: + xydy=0

y(1+ 2y)de ¢+ x(1-xy)dy = 0

ds + (1-3")cotydy = 0
(2 + yhyde + 2myldy = 0

(3x+2y +1)ds ~ (3z+2y-1)dy = 0

Ans.
Ans.
Ans.
Ans.
Ans.
Ans.
Ans,
Ans.
Ans.
Ans.

Ans.

,1'(1*!') =C

p=C cos 8
:’ouyoay'-c’
I.*(Cy-C'x’ =0
-x+nfes-1’ = C
y+x = InCx(y+1)

2 -5 +C

tyl
T -1/xy
y=Cze

l-x
lex

x‘+uy,-C

nin'y = C

In(i%s + 10y - 1) + ;(s-y) = C

In each of the following, find the particular solution indicated.

46.
47.
48.

49.

50.

1.

sdy + 2yds = 0:when s = 3, y = 1,

(x'+y')ds + xydy = 0 :whens = 1, y = -1,

Ans. sy « 4

Ans, =+ a'y' .3

cosy de + (|+c"'}uny dy = 0;when =0, ¥y = n/4. Ans. {l.n')uay e 2V3

(y'+s;ndn - :'dy =0:whenx =1, y=1.

Ans. x = l'l-”,

Solve the equation of Problem 30 using the substitution y = vs,

Ans.

Solve y’ = -2(25+ 3y)' using the substitution

Ans. .

z.y lax =y + s - iy’ - Cl'y

3= z:+'!y.

1+ Baedy) | o MTx
1= vis+3y) .

Solve (x - 2siny + 3)ds + (2¢r - 48iny - 3)comsy dy = 0  using the substitution siny = 2,

Ans.

8siny + 45 + 8 In(dx - Beiny + 3) = C

23



CHAPTER §

Equations of First Order and First Degree
EXACT EQUATIONS AND REDUCTION TO EXACT EQUATIONS

THE NECESSARY AND SUFFICIENT CONDITION that

) M(x,y)dx + N(x,y)dy = 0
be exact is
2) o N

Y X

Al times an equation may be seen to be exact after a regrouping of its terms. The equation in the reg-
grouped form may then be integrated term by term,
For example, (x? - y)dx + (y?-x)dy = 0 isexact since

1!-3; '— = - - —a- z— = 3—!.
3 ay(x y) 1 ax(r x) I

This may also be seen after regrouping thus: xdx + y*dy - (y dx + xdy) = 0,
This equation may be integrated term by term to obtain the primitive x¥/3 + y¥%3 - xy = C, The

equation (y® - x)dx + (;'—r)dy = 0, however, is not exact since % =2y ¥ 2x = aa—:.

: See also Problem 1.

IF 1) IS THE EXACT DIFFERENTIAL of the equation u(x,y) = C,
B v+ Loy = Mxyde + Nx ) dy.
ox Yy

Then %L‘dx = N(x,y)dx, and ulx,y) = f’l(x.r)d* + o,

where _|' indicates that in the integrating y is to be treated as a constant and¢g(y) is the constant (with
respect tox) of integration. Now

gf, - .-a—:{.f’ N(x,y)dx )} + g = N(x,y)
from which g = ¢'(y) and, hence, $(y) can be found. See Problems 2-3. ’

INTEGRATING FACTORS. If 1) is not exact, an integrating factor is sought.

o ¥
? ox
a) If -’:-—’— = f(x) a function of x alone, then chmﬁ is an integrating factor of 1),

B 24
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W _ W

? g
.._"'_3‘” = -g(y), a function of y alone, then e_f'(y)dy

1f is an integrating factor ql‘ 1).

Scc Pioblcms 4-6.

b) If 1) is homogeneous and Nx + Ny #0, then

is an integrating factor.
¥x+ Ny See Problems 7-9.
¢) If1)can bewritten in the form ¥ f(xy)dx + x g(xy)dy = 0,where f(xy) # g(xy) then '

1 B _
= is an integrating factor.
xy{F(xy) —8(x»)} ¥x - Ny See Problems 10-12.

d) At times an integrating factor may be found by inspection, after regrouping the terms of the equation,
by recognizing a certain group of terms as being a part of an exact differential. For example:

Grour oF TERMS INTEGRATING FACTOR ExacTt DIFFERENTIAL
1 xdy-yds | Y
xdy - ydx F ) “:}
1 ¥ y dz - xdy . de X
xdy-yd‘: ; —'—,! d{ ,)
1 dy & b
xdy - yds ; Y = Iﬂll'l’)
xdy-yds
1 x dy-yds x? Y
xdy - ydx = = d(arc tan =)
R xte y? “‘E): x
= +'# = Ii{-—-—--"—'-_-;}. if ng1
sdy's g 1 (=y) (n =1) (=y)
n
‘-‘"} mf:i ] d{lﬂ“’l)} N if n=1
l&"yd, - ‘{ -1 )‘ ir n"
e v gy 1 ate M 2n-1) =¥+ yH™
. (:3+,l)n dx
:x':y = d{4 ln(:'+y')}, if n=l

See Problems 13-19.

e) The equationxy® (my dx + nx dy) + x”y” (uy dx + vx dy) = 0 where r,s,mn, p,0,u,v arc
constants and mv - nu # 0 , has an integrating factor of the form x ®y? The method of solution usually

given consis‘ls of determining @ and B by means of certain derived formulas. In Problems 20-22, a proce-
dure, essentially that used in deriving the formulas, is followed.
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.

-+ SOLVED PROBLEMS
1. Show first by the use of 2) and then by regrouping of terms that each equation is exact, and solve.
a) (427y’ - 2eyyds + (355 - xTydy = 0

b) (3> y -25)de+ dy = 0
) (cosy + ycosx)dx + (8in x - x 8in y)dy = 0

!’ .I’!
d) 2(ye” ~l)ds + ¢ dy =0

€/ (82'y + 4=’y )dx + (%% + 82"y )iy = 0

8) By maay -~2c =« & . and the equation is exact.
dy ox

By inspection: (u"'y’dx + S:'y'n'y) = (2zy ds + :’dy) = d(s‘y’) - d(:'y) = 0.
The primitive is x*y’ - sy = C.

b) By2): :—: - 3¢ . g—’-: and the equation is exact,

By inspection: (:h”yd: - c”dy) -2 dz = d(c"‘:) ~dish = o,

The primitive is ~ ¢¥y - 4? = ¢,

¢) By2): a—' = =-siny + cosx = -'}-q and the equation is exact.
dy ox
By inspection: (cofyde - x siny dy) + (y cosx ds + singx dy)
= d(x cos y) + d(y 8in x) = 0. The primitive is x cosy + ysinx = C.
d) By?2): :—‘! = zu" = g—: and the equation is exact.
y
2 2 2 :
By inspection: (ye"de + " dy) - 2 de = d(ye® ) - dx?) = 0.
2
The primitiveis  ye* - 2 « ¢,
e) By2): :.! = 1a’y' s m’y‘ = g—' and the equation is exact.
i o] i

By inspection:  (82y’ds + 3y dy) ¢ (4P + 8°y%dyy « de'yy o di«'y’) = o,
The primitive is 2% + 2y = C
2. Solve (2-’-»33}# +t (3x+y-1)dy = 0.
% = 3 = g-g and the equation is exact..
: 3
Solution 1. Set ' jux,y) = ) (h’-ﬁ By)dy = 4s° + 3y + B(y).
EE r ’ 2
Then e B3 = Nay) = Smby-1, @) =y-1, &y iy -y
Yy

and the primitive is 42"+ auyi»iy’-y = Cy or PR Bzy + y' -2 = C,

Solution 2. Grouping the terms thus 2« dx + ydy ~ dy + 3(yds+ xdy) = 0
and recalling that yds + xdy = d(zy), We obtain, by integration, *s‘ s iy‘ - ¥ + 3y = C; as before,



EXACT EQUATIONS 54
2 : i 2
3. Solve (y?e* + axdydx + (2aye™ - 3y")ydy = o.

2 2 -
?’ « 25" ¢ wyle™? . g—ﬁ and the equation is exact.
Y X

k) 2
Set wixuy) = ST yie v azdyde = &7 4 2 s Py

a 2 2
Then 5?‘ « 2ye™ o+ Bl(y) = 2y - 3y, @'y = -3y", Sty ==y,

2
and the primitive is ¢ + x' =y’ = ¢,
. 2
The equation may be solved by regrouping thus 4xds - 3y dy + ty’e” dx + Z:ye*”dy) = 0 and

2 2 2
noting that y’c” dx + Z:yex’ dy = dte™).

4. Solve (x’i-y’ox)d.: + xydy = 0,

o 2y, o . y: the equation is not exact.
¥y 3x .
W _ W
However. dy o . =y 1 fay and ‘If(x]ds " g_fd:/z " 'ln: o
N xy x

is an integrating factor. Introducing the integrating factor, we have
(l’, . xy’o x’)dx + rzy dy = 0 or xldz + 2tdx + txy’d‘x + x’y dy) = 0.

Then. noting that x;r'd.: + xlydy = d(i:’y’}. we have for the primitive

&

£

f; + + ix’y2 = Cy or 31"+ 42’ + az’y’ = C.

5. Solve (2y'e” + 2y’ + yydx + (s%y'¢” - £%y! - 3x)dy = o.

oM oN i
z ° Bxy'e” + 2ey'e” + Gxy® 4 1, £ 2y'e? - 205" - 3; the equation is not exact.
: .
W W
However, .. a.nf’e’ + a.zy'+ 4 and . = ,L. -g(y).
dy ©ox o y

Then eIs{y)dy = e"”‘w’ « AW y* is an integrating factor and, upon introducing it

the equation takes the form
2
(2xe” + 2%, -!-)d: - (z!t’— S Si)dy = 0 and is exacl.
A "l
x b x 1 2y = x
Set u(x,y) = I (2xe +2;+—3}d: = x e’ 4 — + — + Ply).

y y ¥
2 ?
Then g_;‘ . . 5; - 3-": + @' = axte? - 5-‘- - 3—‘; « @'(y) =0, )= constant, and
Yy y Y Y

z
the primitiveis =7¢’ + = + X . ¢,

) ¥y 9
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6. Solve (i.'x’y! + {x!y + 2ty’ + x4 2y)dx + 2!:-’ - x’,- + x)dy = 0,

g—-‘; = 4x’y TP dxy + hy’ +2, g.-_'v = 2(2xy +1); Lhe equation is not exact.
X

M N

e 2

% Z = 2 and the integrating factor is JEd e* . When itis introduced, the given equation
becomes " . . 2 2

(27" + 4x’y ¢ 297 ¢ 25" ¢ 2y)e® dx + 20y*+ 2’y +2)¢* dy = 0 and is exact.
2
x
Set wryy = [ (k’y’ + h’y + ny’ v xy' + 2y)e” da

v . ;
.r'tZ:yz - 2:!’2": dr + f (2y + h‘y)l‘ad.t + f’xy'e’!dx
2 2 2
o 2T 4 2yt 4 iyt s By,
2 2 2
Then g-‘;‘ = h!"x e 2e” 4+ leF D'y) = 209 + 2y s x)e'z

2
primitive is (2¢7y? + axy + ye* = C.

> ¢'ty) =0, and the

7. Show that

r - il where Mx + Ny is not identically zero, is an integrating factor of the homogeneous
x + Ny

equation M(x,y)dr + N(x,y)dy =0 of degree n, Investigate the case Mx+ Ny =0 identically.

M

N
We are to show that dr +
Mx + Ny llx-n'l’

dy = 0 |san exacl equation, that is. that

Do Xy o Dl 4
aJ'Hx+Ny ax.lh+:\‘y
W W W W w
MeoNy) M g M, N, W Ny M - u
ey o - ”3.7 x33' ya.’v u T 3 ‘%
¥ Mx+ Ny (Mx 'Nﬂ: (&'N&)’
and 3~ . 3~ b "
el . Mx 4+ N o e poand
B, | NG ~Sg wl i g S ”’a:_
ox Mx +Ny (M +h‘y)z (s + Hy]!
.. oM oM o N,
Nx =— —) = M okl
DM, 3.8, EGrIG MRS ey o
32'”:+Ny ox Mx+ Ny .

(Mx + Ny)? (Hx + Ny)?
(by Euler’s Theorem on homogencous functions).

If Mx+ Ny = 0 identically. then :-: = - f and the differential equation reduces to ydx - xdy =0 for

which Vxy is an integrating factor.

8. Solve {xlb_y‘)dx = xy’dy = 0,

The equation is homogeneous and ‘&—}-N—’ * =5 Isanintegrating factor. Upon its introduction,
X



the equation becomes (5

x
Set ptx,y) = [ (;'+’

3
Then S W B (¥)
dy ?

1
In U -
L

[

x?

EXACT EQUATIONS i

3
+ yT)d: - L‘dy = 0 and is exacl.
x

L]
= 1y
)dx Inx - Z;T + dy).

’ . ag. .
= - ?-'; . ¢'(y) = 0, and the primitive is
x

L]
b 4 ]
il or y
x

- le'|l Inx + Cx .

29

Note. The same integrating factor is obtained by using the procedure of a) above. The equation may be
solved by the method of Chapter 4.

9. Solve ylds + (x? - xy - yhydy = 0.

The equation is homogeneo

Upon introducing it the given equation becomes

Sel wiz,y)
st y?

Tien 2w <k
ay l'—y’

and the primitive is iln::; +lmy = InCy or

10. Show that

=Ny

. | 2
+ Ply) = Yoxyry -.1.-.

1, 1

us and
Mx + Ny y(:'-—y

- is an integrating factor.
)

2 2
Y _dy+ XYY 4y = 0 which is exact.
2oy yx? - ¥y

R e LTI BUR-er AP Y

x+y 2 Tty

X tivy & 3,
= P '(y) 7 @(y) = 1n y,

yixt- yh Y aloy

(z -y)y’ = Clz+y).

Mde + Ndy = yfy(xy)ds + xfy(xy)dy = 0. Investigate the case Mx-Ny=0 identically.

The equation b4

AL % fa (zy)

dy = 0 is exact

sy{fi(zy) = fatzn)}

since

3 fl } i *

=y{futay) - fetzy))

Ay T
¥ x(fy-f2)

TR y

= {
o y(fa = fa)

and

A Ay 3y

3y 2(fy - f2) oz

This is identically zero since

(fi-fa) %f_i - f,x(-aa% —%.53) ' ~fa g_?, s '%? .
xz‘f;-fn)z X(f;‘f.)t
(f:'f:)g{-z - f.y(%ﬁ-%zf_') !‘g% = !’%‘é.
P -t Yt = fal’
fe ] f:(!ar "ch, faly 3 xax)'
yifa = fa) -‘J"(f;-}'g}:
y A= 3=y '

dy & Bx

+ when Mx-Ny is not identically zero, is an integrating factor for the equation
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If Mx-Nys=0, then ; = £ and the equation reduces to xdy + yds=0 with solution xy=C.

11. Solve y(x'y’+ 2)dx + x(!-h'y')d} = 0.

The equation is of the form ¥ f, (xy)dx + & f(xy)dy = 0 and T S an integrating factor.
Mx - Ny ax”l

2.2 22
Upon introducing it, the cquation becomes =Y *+ 24, , 2=25y dy = 0 and is exact.

3z’y' 3x’y
2.2
s [FAYLE S v (P 1 I
Set w(x,y) _r ( e )ax f (E - &’y')d‘ - Inx iyt + By,
2.2
3 2 iy o ol i el 2
Then 3 = 'hTJ" + @' () 32ty @' (y) = 3y @ly) = 3 In y,
F gy 2.2
and the primitive is -;-‘ mx-——-3ny=1nC, or =z CyleV/*

. . Sx’y’ 3
The equation may be solved by the method of Chapter 4.

12. Solve y(2xy+l)dx + x(1 +2:y-:’y’)dy = 0.

The equation is of the form y fy (xy)dx + = fa(xy)dy = 0 and RS 1 is an integrating factor,
Mx-Ny Sy
Upon introducing it, the equation becomes (—2— + —-)de + (—t— + —2%_ - -l-)dy = 0 and is exact,
Dyt 2% Ay glyb Y
X 2 1 1 1
Set mx,y) = J ¢ $ o )dE % m = ——e 4 By),
' 2y gy ROV R y
W 2 1 p - 21 ' 1
Then f ;;;';’,,,“ﬁ(r) ;’_y'"+x'_y’ = ¢(!)'-y- @) ==1Iny,
& )
and the primitiveis  -Iny - =4 - —L_ 2 g, or y s g GFYH/Ox ’,).
3'1‘ ",y’

13. Obtain an integrating factor by inspection for each of the following equations,

a) (2y'e” + 21y’ + yyde ¢ (a"y'e? = 1Yy - 30)dy = 0 (Problem §)
b) (x*y + 2y)de + (2 - 2’yPydy = 0 (Problem 11)
c) (2*7' + y)de + (x + &’r - x‘y’)dy =0 (Problem12)

a) When the equation is written in the form
r.(h’n’.n x’e’dn + &y’dz - :'y’d'y + yde - 3zdy = 0

the term y'(he’dnx’?dn = y% (an exact differential) suggests that 1/y* is a possible integrating
factor. To show that it is an integrating factor, we verify that its introduction produces an exacl equation.

b) When the equation is written in the form 2(y dx + =dy) + x’y"d: - h’y’d} = 0, theterm ¢y dx + x dy)
suggests I/ (xy)* as a possible integrating factor. An examination of the remaining terms shows that
each will be an exact differential if k = 3, i.e., L/txy)? is an integrating factor.
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18,

16.

17.

18.

19.
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¢) When the equation is written in the form (x dy + yds) + 2ey(x dy + ydx) - x"y’dy = 0 the first two
terms suggest Vs, The third term will be an exact differential if k = 4;thus, 1/(xy)* is an integrating
factor.

Solve yds+x(1-3x"y')dy =0 or xdy+ yds - 3 y%dy = o.
¥

The terms xdy +y d= suggest I/(xy)* and the last term requires & = 3, &t
Upon introducing the integrating factor the equation becomes ’_‘.;‘%L -3 dy = 0 whose

(:y)’ *

2.2
primitive is -’:';L!- -31lny = Cy, 6lny =1InC - '—1 or y® «Cem¥END
y a x

Solve xdx + ydy + 4y"(:'+y’)dy = 0,

The last term suggests I/ (x*+ y% as an integrating factor.

zds+yd

x“ey

Introducing it, the equation becomes + 4y’dy = 0 and is exact.

3 L]
The primitive is iln(xi+y’) +y" = 1nCy or (s'+ y’)-" = C,
P

Solve xdy - yds - tl-:')dx = 0,

Here 1/5? 1s the integrating factor, since all other possibilities suggests by x dy - y d= render the last term
inexact.

Upon introducing it, the equation becomulﬂ'.‘i&' " (-1; - 1)dx = owhose primitive is -:: ' ..! *x
X X

«C or y':'+l = Cx,

Solve (x+x'+ 2%y sy )des ydy = 0 Or xdx+ ydy + (x'fy')'dl = 0.

. Usingit, we have Sdstydy
e gty ot o 38!
sx2C or (Ce2n@aey) =1,

An integrating factor suggested by the form of'the equation is

+ dx = 0 whose primitive i§ - —————m
2{"! * ’.‘l)

Solve z’g ¢ oxy + v’l-x'y’ = 0 or =x(xdy+yds) + u{l-x’;‘ de = 0.

The integrating factor —2  reduces the equation to the form xdysyds ?- = 0 whose

/1= e

primitive is arc ain(xy) + Inx = C,

2.5
Solve 9 . 21=% -2 o Pesy'-yyds s (P exlyemddy = 0.
s+xlysy?

When the equation is written thus” (s? + y*) (x dx + ydy) + = dy - ydx = 0, the terms x dy - yds suggest

several possible integrating factors. By trial, we determine (x?+ y?) which reduces the given equation
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x dy - yds
2
Io[heform xdx + ydy.p E‘:_‘L’i‘: = xdx + de + x = = 0,
sty 1+

The primitive is 4x°+ 4y*+ are tmz «Cy or x'+y'+2arctan E : C,
Solve  x(d4ydx + 2xdy) + y’(3yde + Szdy) = 0.
Suppose that the effect of multiplying the given equation by x',"’ is to produce an equation

A) (“t’i md‘ 2° y‘dy) ; (h‘y’“d:+5 a+l ‘“d) o

each of whose two terms is an exact differential. Then the first term ol' A} is proportional 1o

B) d* ™) o @endt™y e v B0t
that is,
C) a:’-L;-! and a-=-28=0.

Also, the second term of A4 ) is proportional to
D) d(x“ly’“) 2 (a+ s y Pde + (B+ vl)x""1 ’.sdy.
that is,
E) I L N

3 5
Solving a-28 =0, 5a-38 = 7 simultaneously, we find a = 2, 8= 1
When these substitutions are made in A), the equation becomes
(4y'ds + 2ydy) + (a'ylde + 8'y'dy) = 0,
The primitiveis x'y* + »’y’ « ¢,
Solve  (Byds + 8xdy) + :'r’t'lyd: + 5xdy) = 0.
Suppose that the effect of mulliplying the given equation by x"y‘ is to produce an equation

A) @y dr o 8 Y0y 4 a0 & =0

each of whose two terms is an exact dlﬂ'cremial. Then the first is proportional to

T 505 ﬂ*!

B) dia®' Y™« @ena®y® '+ Bea® *yody,
that is,

C} a“l'ﬁ"l

n % and a- (=09,

Also, the second term is proportional to

D) d'(x“,y’“} = (a.+3]x° y d; + (B+4)x L !y"!dy,
that is,
E) 229 . 822 it sa-aen

4 5
Solving a-8 = 0, 5a~48 = 1 simultaneously, we find a = 1, 8= 1.



When these substitutions are made in 4), the equation becomes

The primitive is

EXACT EQUATIONS

(8sy'ds + By dy) + ('Y dx + s2'y"dy) = 0.

u'y’ - :'y’ = C.

33

Note. In this and the previous problem it was not necessary to write statements B) and D) since, after
a little practice, the relations C) and E) may be obtained directly from 4).

22. Solve zsy’(aydx +xdy) - (Sydz+7xdy) = O.

Multiplying the given equation by x'f, we have

at] Be+s a+y

A) (2=

T a S+l

1
r‘ﬁldy - (5xy de+ = rﬂdﬂ = 0,

If the first term of A is to be exact, then “—;l-‘. - '8—1'-3 and a - 28 = 4.

If the second term of 4) is to be exact, then n_;_l = ﬁ-—;'_l- and Ta -58= =2,

Solving a~28 = 4, Ta-38 = -2 simultaneously, we find a = -8/3, 8 = -10/3.
Then, from AJ,(k””y’j’dx ¢ 20 y“m dy) - (.'m'm y'md: R ’—mfsd” = 0, each of the

two terms is exact, and the primitive is

2
2

SUPPLEMENTARY PROBLEMS

23. Select from the following equations those which are exact and solve.

a)l
b)
c)
d)

e)

'
g
h)
i)
il
k)

(x'-y)d: -xdy =0

y(x=2y)dx = x°dy = 0

(l'l—y')ds +xydy =0

(x'q-y’}d.: + 2xydy =0

(x + ycos x)ds + sinx dy = 0

(1+ c")dp + Rpeudﬂ =0
dev<vV-ab dy = 8

(2x+3y+ d)de + (3x+4y+5)dy = 0
(ax’y? + %Mt + 'yt - ;)dy =0
2{u'+ uv)du + (u'+v'}du =0

(x/x%e yt = yyds + (y /x4yt = x)dy = 0

Ans. -

Ans.
Ans.

Ans,

Ans.

Ans.

Ans.
Ans.

‘quy!/s 5 3‘-5/5 y.m « B xu;’m 4 z:"” ’-m & ‘;,3 ¥l am yrn‘

Yy = s’/s +C

IJ’ - :’/3 =C

P 2y sinx = C

P(l + e

x'tky«!y'l-kay-C

x'ys

!’]IC

+ In(z/y) =C

20’ + 3ulv e v’ = C

(s' +

2
s )5/

-3xy = C



h)

m)
n)
o)

p)

Ans.

a)
b)
<)
d)
e)
7

g)
h)
i)
7
k)

a)
b)
¢}
d)
e)
J)
g)
h)
i)

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

(x+y+1)ds = (x=y~-3)dy = 0
(x4ye+l)de = (y-x+3)dy = 0

cu&tmﬂdr-{rmai-un'ﬂ)dﬂ-u

Ans. =z

Ans.

’+:uy..y'+z:-sy-c

;md-inmooc

2 1 bl o x4y 2 C
(y -;E;l';-ﬁ ::):h + [.’.+_’ + 2y(z+)]dy = 0 Ans. ln! S f:uny +2) =

2
(zlyc'.’+y’c” + 1)ds + (x'c"p’ca:yc" - 2y)dy = 0 Ans. £72d7 4 am y' = C

) z/y=21ns+C

¢) s eu’yl=cC

xds + ydy = (x'q-y')d: Ans.
(2y=3x)ds + xdy = 0 Ans.
(x-y')ds + 2:,}; =0 Ans.
xdy - yde = e y'}d: Ans.
yde —xdy + lnx dx = 0 Ans.
3" +y")ds - 20ydy = 0 Ans,
(xy-2y")ds - (x" - 3xy)dy = 0 Ans.
(x+y)ds = (x=y)dy = 0 Ans.
2yd=~3xy!dx-xdy-0 Ans.
ydx + xts"y=1)dy = 0 . Ans,
(y +x"y+2s')d: + (x4 4:_7‘1 !y,)dy =0 Ans.

xdy - yds = = e dx Ans.
(la-y')dx = {su:')dy Ans.
(Zy-ssjd: +xdy =0 Ans.
y’dy + yde - xdy = 0

(3:’-:!)# - (3'1» n:y')dy =0 Ans.
Bx’y’d: + 4(:’}-3)# =0 Ans.
y(x+y)ds - s'dy = 0 Ans.
(2y +3xy")ds + (x4 2’y)dy = 0 Ans.
ro =2Nydr o 22 - 2Ny = 0 Ans.

Solve the remaining problems above [6), ¢/, g), )] us'ing the appropriate procedure of Chap.4.

g) y=arcsinsxfa + C

/) ln,o‘xl+yl-h+iy+5 - arc tin‘L:-: =C

For each of the following, obtain an integrating factor by inspection and solve.

l/(x’oy'): 3’*3" . Ce™*
%5 -'y-x”c

3 2
I/, y +xlnxs(Cx

ety
1

arc ten y/x a3+ C

I/, y+Ilnx ¢«1=Cz

it wtayec

.l/sy': x/y + ln(y’/zl) =C

1724 9% ata gyt R USAR I
'y sty -2 ac

LT A

xy+2;; In(xy+2) + 22+ B = C

For each of the following, obtain an integrating factor and solve.

y =Cx + xe”

arc tan y = In 2/(x+1) + C
x'y -5 = C

y’ + x5 = Cy

3y’ + x In(xy) = Cx

=y - ty’ =C

zfy + Inx = C
s’:{h—:n =C
ylotoxt) = C

27. Show that -l’- fty/x) is an integrating factor of xdy - yds = 0,
x



CHAPTER 6

Equations of First Order and First Degree
LINEAR EQUATIONS AND THOSE REDUCIBLE TO THAT FORM

THE EQUATION ) :TY b yP(x) = 0Q(x),

X
whose left member is linear in both the dependent variables and its derivative, is called a linear equation
of the first order.
For example,
" . g 5 2 .
-1-’: + 3xy = sinx is called linear while j—" + 3xy" = sinx isnot
x

. d. JPwe g JPmx JPw)ar JPy& gy
Since P = ZX = bt P
i dx{ye- R + yP(x)e e dx*)’ x)).,
ejp(;; is an integrating factor of 1) and its primitive is
yefpu)d‘ = Jo(x)- efP{x)d.: dx + C.
See Problems 1-7.
BERNOULLI'S EQUATION. An equation of the form
oy oypx = yh0e0  or ¥y PG = 000

is reduced to the form 1), namely, Z_: + v{{(1-mP(x))} = (1-nQ(x), by the transformation

. -n dy 1 j_". See Problems™-12.
X

Vl —_— =

dx 1-n

OTHER EQUATIONS may be reduced to the form 1) by means of appropriate transformations. As in previous
chapters, no encral rule can be stated; in each instance, the proper transformation is suggested by the form

of the equation.
See Problems 13-18.

SOLVED PROBLEMS

LiNEAR EQUATIONS,
1. Solve P42y = 4.
dx

fPaide = Javas =a? end THIEE R v integrating factor.

xl x’ !2 —22
Thcnyctfucds-zcoc or y = 2+Ce".

el

M|

2. Solve x%-y*x‘fhz—?x or y=x 4 3-2

8% . 1 isan integrating factor.

]

JPxydx = -de’ = -Inx and
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Then y-;:- = f%(x’*ﬂx—k)dx = j(x+3-§)ds = ix’*h-!]nx*cl or

2 = 2’ + &' = 4xInx + Cx.

3. Solve (g% v Ax -2  or & . 1 .. 2(x -2)2.
(x )d:.y (= = x_zy ( )

JPixydx + -f .d'_'z_ = -In(x=-2) and an integrating factor is FIMEER -—l-i .
Xz - X -
1

x -2

1
Then y( ) = 2}'{;-2;’.__541; = zj(x-z)a:, = (x_2]’¢c or y= (,-z}’, Cix-2).
X -

4. Solve g-.: + ycotx = 5¢°°*% Find the particular solution, given the initial conditions: x = 4, y = -4,

An integrating factor is ‘fcotx o PR sinx and

Yy sinx = Sfecos:sinxd.r W Mgtk C.

When x = 4n, y = -4: (=4)(1) = -5¢1) + € and C = 1, The particular solution is

cos x
e

y sinx + 5 1.

2
5. Solve xsg . {2_3371). o ‘5 or ﬂ)_" % 2-3x

L
dx e

2-3:° 1 . . : 1
J== e = -1 _31ns andan integrating factor is ——

x} x? 8 = xd /X

2
Then X - [ de - = IT + Cy Of 2y = 2+ Cxle'®
xlelix xlelix 2e¥x .
6. Solve %

E -2y cot 2x = 1 - 2¢r cot 2x ~ 2 csc 2x.

An integrating factor is g"‘rz cot2eds | chsindy csc 2x,

Then y csec2: - Jtese 26 - 25 cot 2¢ csc2x - 2 csc’ 26)dx = xCSC2x + Cot 2x 4 C

or Y = x + cos2x + C sin 2x.

7. Solve ylny dy + (x - Iny)dy = 0,

The equation. with x taken as dependent variahle, may be put in the form . . :

—_— e——— e,

dy  ylny y

Then of@Y/Grlny) oNHEE o Iny is an integrating factor.

Thus, zlny = [1Iny ‘-:-PZ = %ln’y + K and the solution is 2 Iny = ln!y 1



LINEAR EQUATIONS 37

BERNOULLI'S EQUATION.
8. Solwe g‘!- y = xy or Jd-‘-‘z-y" = x,

The transformation y'" . v, y" :—f = - %g reduces the equation to
1 dv dv ; ; ; 4 [dx “x
e e b = -dr, al : = i
vy or = R 1] 4x.  Anintegrating factor is e e
Then o fxc“d: — Qc“ + C, )
y—!'ltx - _"u + hlx v C. or _i. S i ” c‘-lx.
2

9. Solve g+ Zy+xy =0 or y"‘i!+ 2y} = x,

The transformation y™ = v, =3y g . gxz reduces the equation to % - 6rv = 3x,
5 ag?
Using the integrating factor e foads. b5 , we have
2 2 2 2
Ul-u » Ian"“d: = -%c"".c or -l—’ -—;oC‘!".
b )

-} 1
- S 3(1 ).

B oo dy o acagy or gt H, ]
10, Suiw:& o atl 2)y or y 254-’

The transformation  y™ « v, -3y™ g . % reduces the equation to %—: -v = -1

for which ™ is an integrating factor. Then, integrating by parts.

v w faeaneTd v e T Cor G e m1-2e e,
y

11, Solve ¥4 y = y'(cosx - sinx) or y" - y' = cosx - sinx.
d dx
The transformation y™* = v, - "g - 2 reduces the equation to g -v = 8inx ~cosx

for which ™ isan integrating factor. Then

ve™ Itllns ~cosx)e"dx » -¢“stnx+ C or ;% =« -sinz + Ce”,

12. Solve xdy = {y ¢ sy’(1 + lnx))}ds = 0 or y"g - éy" = 1+ 1nx,

. gv = =2(1+1nx)

e

The transformation y"- v, -2 g = g reduces the equation to
for which ..l'3 &/, s' isan integrating factor. Then

H
ux‘ - -2]{;‘0 x’.‘mlldl" -—!:’— fx’m”c or ‘—'-385(3*1!3)*0-
9 3 yi 3 3
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MISCELLANEOUS SUBSTITUTIONS.

13. An equation of the form f'(y) % + fty) P(x) = Q(x) is a linear equation of the first order
i + vP(x) = Q(x) in the new variable y = f(y). (Note that the Bernoulli equation

dx

y-n g + r-'“l Plx) = Q(x} or
Ysin x or c’iz + ¢ = 4¢sinx.

t-n+l)y'" g + y""" (=n+N)P(x) = (-n+1)06) is an example)

dy =

Solve = +1 = 4¢
ds

In the new variable v = f(y) = ¢’ the equation becomes %" + v =4¢sinx for which ¢ isan integ-

rating factor. Then

ve* = 4‘]"‘ sinx dx = k”(ninx - coix')+C Y. 2(Binx - cos8x) + Cl".

or ¢

14. Solve siny EZ‘ « cosx(2cosy - sin’x) or -siny % + cosy(2cosx) = sin’x cosx.

In the new variable v = cos y, the equation becomes g + 3ucosx = sin'x cosx for which

Alcovade | dains is an integrating factor. Then

wumx e J—‘umx‘m:‘ soiw db . w *‘Illnr lln': " h’““-lnx % hllln: + C
-llliﬁx

or cosy = iun':-iuinzi»ﬁi-& .

siny dy _ _1 i

cm'y dx e f

Since ..".'.(_....1.....; « M0 wetake v « —1_ and obtain the equation . S—
dy © cos'y sy &

15. Solve -1ny£ = cosy(l -=xcosy) or

Using the integrating factor ¢, we obtain

" ssecy = x+ 1+ Ce",

ve ™ = [oxeTdx = xe 4+ 74 C or v
cos y

16. Solvexd—y- +3s’y——xl = 0 or xdy - ydx + &x’yd!-:'n‘.l - 0,
e h g

Here (x dy = ydx) suggest the transformation f = v,

Then M + de - dx = 0 isreduced to g + 3x°v = 1 forwhich C"isan integrating

xz
factor
¢ =

3 3 L]
Thus ve® 7= Je¥ dc+ C or y = xe ™ [e* dx+ Cze”

The indefinite integral here cannot be evaluated in terms of elementary functions.
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17. Solve (1F28 - B)dr + r’ds = 0 or (rds+ sdr) + 3sdr = -%dr.

r

The first term suggests the substitution rs = ¢ which reduces the equation to

t 6 de 3 6
d - = — - = e—
[ Erdr :—idr or e * r‘ r!

The r’ isan integrating factor and the solution is

tr’-r‘:-3r2+c or .--§-+£.
o
18. Solve zsinB 48 + (x’-h’cueo cos B)dx = 0 or - xtihﬂdﬁ: cos 6 dr + 2cosfdx = x dr,
x
x 8in0 d6 + cos O dx

The substitution xy = cos 8, dy = -

= reduces the equatien to
x

dy + 2tyde = xdx OF gv&h’l:.
2
An integrating factor is ¢* and the solution is

F)
e+ K of 2cosB = x4+ Cxe™.

[T

SUPPLEMENTARY PROBLEMS

19. From the following equations, select those which are linear, state the dependent variable, and solve.

a) dy/ds +y =3+ 2 k) y(leylyds = 2¢1- 20y")dy

b) do/df + 3p = 2 ) oyl -z sa=o

c) dy/d.:-y-:;(! m) sdy-yds = SMG’:

d) xdy-2yds = (x-2)e"ds n) @y(ty de/dt + xdy(t) = 1

e) difdt - 8i = 10 sin 2t 0) 2ds/dy - x/y + 5 cosy = 0

f) dy/dx + y = yle* p) xy' = y(1-xtanz) + z cos x

g) yds+ (zy+x=-3y)dy = 0 q) (R*J'M:- (xy+b+.7,)dy'n

h) (20-¢*)ds = 2(s¢® - cos 26)dt r) (1+y")dx = (arc tan y - x)dy

i) xdy+ yde = x'ylds s) (2xy’-y)dx + 2edy = 0

j)  dr + (2r cot 8 + sin 26)d6 = 0 t) (1+8in y)ds = [2y cos y - x(sec y + tan y)]dy
Ans.

a) y: LP.,e ye24+Ce” e) i: LP., €%, iu-4(38in2t+ cos2t) + (o

b) o LP, e 3prze+ce™ g) x LF., ye'i xy=3(y-1) +Ce™”

d) yi LP., wxh y=e©a ce? J ey LB, sin? 8, 2r8in’ 6 +8in' 6 = C



21.

22.

k)
n)
r)
q/)
r)

t)

=,

Yi

X,

x;

1L.F.,
I.F.,
L.P.,
LP.,
LP.,

L.P,

EQUATIONS OF FIRST ORDER AND FIRST DEGREE

(1+y')'; (on';'x =2 lnyﬁy' « C

Jhmamn, | Teanarsy J‘él Jdttnaman o, o
1 (1)

X co8 x '

y-x'co.x ¢+ Cx cos x

IMvyT; x=34yts Cvary!

L ttny:

x = arc tany - 1 +

C.-u.rc tany

secy +tany; x(secy +tany) = y' + C

From the remaining equations in Problem 19. sclve those of the Bernoulli type.

Ans. ¢) y™' - w;

f)

i

/

y ‘=v

-5

§ oy

Iy = 1=x¢Ce™™

; Cemiye” 4120

i3y e e

2
1) ytev; ¥t a1 ecCe®

0}

5

il BT :"y-cmy+yllnytc

e at

Solve the remaining equations, i) and »1), of Problem 19.

Ans, h

Solve:

/

] —IC'

" esin2t =C

mj

y=x 8in(y+ C)

« (4240

=

a) xy' = 2y + x'e subject lo y = 0 when = = 1. Ans. , o 42 -0
y (

h) L % * Rv = E sin 2¢, where L R.E, are constants, subject to the condition i=0 when teo0.
Ans. iw —’—-!-—'.tﬂ sin 2t - 2L cos 2t + ﬁh—’w'}
R+ 4qL

Solve:

a) = cur% *2¢ 8iny =1, using siny = 2, Any, 3z siny « Cet o 1

hioalyy' s m@yen) s 20yt o2, using By ezen Ans. @’ s (Codtyayt o2)

cl (I’ln”-l'l‘]dl + hy’dy = 0, using y’ * ux, Ans. 2]’:‘  5e* 4 Cx
3 3 1 _ ¢ <
d) dyfds + x(x+y) = 27 (x+y) - 1, Ans.  1/tasy) = x 4 14+Ce
¥y =% Wt b -%
€) (y+e ~e ydz + (1ee’)dy = 0. Ans, yrel s xeCre



CHAPTER 7

Geometric Applications

IN CHAPTER 1 it was shown how the differential equation

) fx,y.y") = 0
of a family of curves
2) é(x,y,C) = 0

could be obtained. The differential equation expresses analytically a certain property common 10 every
curve of the family.

Conversely, if a property whose analytic representation involves the derivative is given, the solution
of the resulting differential equation represents a one parameter family of curves, all possessing the given
property. Each curve of the family is called an integral curve of 1) and particular integral curves be singled
out by giving additional properties, for example, a point through which the curve passes.

For convenience, the following properties of curves which involve the derivative, are listed.

RECTANGULAR COORDINATES Let (x,¥) be a general point of a curve F(x,y) = 0.

aj 1s the slope of the tangent to the curve at (=, y).

Fl&

b) = ? is the slope of the normal to the curve at (x,¥).
Y

) Yay = %’(;_,) is the equation of the tangent at (z,y), where (X, Y) are the coordinates of any point

on it.

d) Y-y = - étx-n is the equation of the normal at (x,y), where (X,Y) are the coordinates of
b | dy q Y

any point on it.
el x-y? and y-x% are the x= und y- intercepts of the tangent.
v

41
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f) :»y% and yus—; are the x- and. y- intercepts of the normal,

gl y 1+ (:-g}’ and = /1 + (g): are the lengths of the tangent between (x,y) and the x- and y- axes.
hy y [1+ (%)' and x /1 + (:—;}? are the lengths of the normal between (x.y)and the z-and y- axes.

i) y% and :r:—i

Jj) ds e V‘{dx)i + (dy)! = dx f1+ (g}z = dy f1+ (:—Eiz is an element ol length of arc.

k) yde or xdy isanclement of area.

are the lengths of the subtangent and subnormal.

POLAR COORDINATES. Let (p,8) beageneral pointonacurve p = f(8).

) tanyr = p i—i. where ¢ is the angle between the radius vector and the part of the tangent drawn

toward the initial line.

m)ptany = p° :—E is the length of the polar subtangent.

n) peoty = 'i; is the length of the polar subnormal.

d

0) psiny = p° :_f is the length of the perpendicular from the pole to the tangent.
5

p) ds = /mo;'. pi(dﬁ’)’ = doJ1+ p’(:;E)’ = d8 h?;)! + ,o=I is an element of length of arc.

g) $p°d8 isan element of area.
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TRAJECTORIES. Any curve which cuts every member of a given family of curves at the constant angle w
is called an w- trajectory of the family. A 90° trajectory of the family is commonly called an orthogonal
trajectory of the family. For example, in Figure (a) below, the circles through the origin with centres
on the y -axis are the orthogonal trajectories of the family of circles through the origin with centres on the

z- axis.

y 4

T G

- P(z,y)
(1]
¢
14 N\ =

fa) rb)

In finding such trajectories, we shall use:

A) The integral curves of the differential equation

y'-tanw

3 Y
g i 1+y'tan

0
are the w- trajectories of the family of integral curves of
1) f(x,y,y") = 0.

To prove this, consider the integral curve € of 1) and an w- trajectory which intersect at P(x,y),as
shown in F gure (b) above. Al each point of € for which 1) defines a value of y', we associate a triad
of numbers(x, y; y'),the first two being the coordinates of the point and the third being the corresponding
value of y’given by 1). Similarly, with each point of T for which there is a tangent line, we associate a triad
(x,y;y') the first two being the coordinates of the point and the third the slope of the tangent. To avoid
confusion, since we are to consider the triads associated with P as a point on C and as a pointon T,
let us write the latter (associated with P onT) as (X,7;¥7'). Now, from the figure, x=X, y=¥ at P
while y’=tan @ and y'= tan ¢ are related by

tan ¢ - tanw ' -tanw
"= tan 6 = ta - = - .
a n(f- o) 1+tan¢ tanw 1 +V/tan w

Thus, at P (a general point in the plane) on an w- trajectory, the relation

- = y-fanw
f x, Y, ! - f X, ¥, 'L_""_ =0
(x, 7.7 ( 1+ 3 tane )
r
holds, or, dropping the dashes, f(x,y, YPRE o= e
1+y'tanw

B) The integral curves of the differential equation
4) fx,y,-1/¥y") = 0

are the orthogonal trajectories of the family of integral curves of 1).
—7
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C) In polar coordinates, the integral curves of the differential equation

dé
5) f(0,6, -p' ) = 0
P dp)
are the orthogonal trajectories of the integral curves of

6 f .stﬁ = .
) (e Ll

SOLYED PROBLEMS

1. Ateach point (z,y)o0f a curve the intercept of the tangent on the y- axis is equal to 2-1’.
Find the curve.

Using e, the differential equation of the curve is

d! . 2 ydx - xdy
Yy - Si k’ or —T hdﬂi
]nlegra{ing, ; = l’. + C or = = 3’, = C)'-
The differential equation may also be obtained directly 2 il L

- 2ey?
from the adjoining figure as ‘-E « Loy,

x

2. At cach point (5,y) of a curve the subtangent is proportional to the square of the abscissa.
Find the curve if it also passes through the point(l,e).

Using i), the differential equation is yg = ke? or ;#; = h? + where & is the proportionality
x
factor,

]ﬂlcgl’aliﬂg.klny = -;‘!*C. When x=]l, y=¢: h=-1+C and C=h+1l.

The required curve has equation klny = - -:- +hs1,

3. Find the family of curves for which the length of the part of the tangent between the point of contact
(z,y)and the y-axis is equal to the y-intercept of the tangent.

dy 2 dy r_ .2 dy
Fromg) and e/, we have = l”ds‘ = y=at ord) xt=y -kyd'-

The transformation y = vx reduces 4/ to

(1+v¥)de + 2uxdv,= 0 or o S5l s
x enh
Integrating, Inx + In(1+v%) = Inc,

2
Then x(1 + ’—’5 *C or x"+ 5" = G isthe equation of the family.
x
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4. Through any point (s,y) of a curve which passes through the origin, lines arc drawn parallel to the
coordinate axes. Find the curve given that it divides the rectangle formed by the two lines and the axes
into two areas, one of which is three times the other.

y Y Pz, )

B P(x.y)

) A 0 A

fa) (b)
There are two cases illustrated in the figures.
a) Here area OAP)= area OPB. Then 3_f: ydx = xy - J':y dx or 4_[: ydz = xy.

To obtain the differential equation. we differentiate with respect to x.

Thus, 1ytr*x§£ or %.3_:.

An integration yiclds the family of curves y = Cs’,
b) Here area OAP = 3(area OPB) and Lf: ydr = 3xy.
Thé differential equation is g = é » and the family of curves has equation y‘ = Cx,

Since the differential equation in each case was obtained by a differentiation extraneous solutions may
have been introduced. It is necessary therefore to compute the areas as a check. In cach of the above
cases, the curves found satisfy the conditions. However, see Problem 5.

§. The areas bounded by the x-axis, a fixed ordinate x = a, a variable ordinate, and the part of a curve in-
tercepted by the ordinates is revolved about the x-axis. Find the curve if the volume generated is proport-
ional to @) the sum of the two ordinates, b) the difference of the two ordinates.

a) Let A be the length of the fixed ordinate. The differential equation obtained by differentiating
1 ﬂf: yldx = k(y + A) is ny? = hg. Integrating, we have 2) y(C - nx) = k,

When the value of y given by 2)is used in computing the lelt member of 1), we find

2 2 2
x k" de k k
<4 . g

= h(y - A).
(C = nx)? C-nx C-Ra g kY

3)

Thus, the solution is extraneous and no curve exists having the property a).
b) Repeating the above procedure with 1) m‘j’: y?dx = k(y - A), we obtain the differential equation
ny? = hg whose solution is2') y(C - nx) = k.

It is seen from 3) that this equation satisfies 1 ‘). Thus, the family of curves2’) has the required property.
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6. Find the curve such that at any point on it the angle between the radius vector and the tangent is equal
to one-third the angle of inclination of the tangent.

Let € denote the angle of inclination of the radius vector, 7 the angle of inclination of the tangent,
and ¢ the angle between the radius vector and the tangent.

Since ¢ = 7/3 = (y+ 83, then - $9 and tan Y = tan 46,
Using /), tany = p:-g = tan 38 so that %" = cot %8 d6,
Integrating,Inp = 2 Insin 46 + InCy or p = C, 81’48 = C(1 - cos 8y,
7. The area of the sector formed by an arc of a curve and the radii vectors to the end points is one-half
the length of the arc. Find the curve.
Let the radii vectors be given by 6 = 6y and @ = 6,
& 8

Using g) and p). 248 = 2, 0% 46,

g4 P #J;SP U;‘ Gg' + o' 8

Differentiating with respect to 8, we obtain the differential equation

Pt o= f(;%}’+p' or 1) do = #p/pi-1 db,

If p%=1, 1) reduces to do = 0. It is easily verified that p = 1 satisfies the condition of the problem,

= t df and obtain the solution

If p' #1, we write the equation in the form
pYp* -1

p = sec(C t ), Thus, the conditions are satisfied by the circle o = 1and the family of curves

£ = sec(C + 8), Note that the families o = sec(C + &) and p = sec(C - &) are the same.

8. Find the curve for which the portion of the tangent between the point of contact and the foot of the
perpendicular through the pole to the tangent is one-third the radius vector to the point of contact.

f{a) fb)

In Figure (a): p = 3a = 3p cos(n - ¥) = -3p cosy, cosy = -1/3, undtan ¢ = - 2V2,
In Figure (h): p = 3a = 3p cos ¥ and tan Y o= 2v/3,

. 5 ] do d8
Using /) and combining the two cases. ta & = s or — = & —.
¢ g st S8 2 22
The required curves are the families o = Ce®*Y? and p= o i
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9. Find the orthogonal trajectories of the hyperbolas sy = C.
The differential equation of the given family is xg + y = 0, obtained by differentiating xy = C. The

differential equation of the orthogonal trajectories, obtained replacing ‘T}i by - :—:. is -ngy +y=0
or ydy = xds = 0,

Integrating, the orthogonal trajectories are the family of curves (hyperbolas) yi-2t=C,

¥
Y
xy=C
P x
0 E ; f ! 0
Problem 9 Problem 10

2 2
10. Show that the family of confocal conics % + Ez_i = 1, where C is an arbitrary constant, is self-

orthogonal.

Differentiating the equation of the family with respect to = Yyields E * ‘ZL = 0, where p = ﬂ

Solving this for C, we find C = —%; so that C=\ = _EZ When these replacements are made in

the equation of the family, the differential equation of the farmly is found to be
(x+yp)(px-y) = Ap = 0.

Since this equation is unchanged when p is replaced by -1/p, it is also the differential equation of the
orthogonal trajectories of the given family.

11. Determine the orthogonal trajectories of the family of cardiods 2 = C(1 + 8in 8),
1

cos &

Differentiating with respect to & to obtain :L; = C cos 8, solving for C = % . andsub-

stituting for Cin the given equation, the differential equation of the given family is

&, pestd
dé 1+8iné
2d@

The differential equation of the orthogonal trajectories, obtained by replacing :L; by -p 7S is

dg cos 8 dp
- B eee—— = da = 0,
ap Fils s dh or - + (sec & + tan )

Then Inp + In(sec& + tanf) - lncos § = InC or p = ____C_c_ﬂ_f_ e C(1-8in@).
sec 8 + tan 8
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12. Determine the 45° trajectorics of the family of concentric circles x?+ y¥=c.

The differential equation of the family of circles is %+ yy' = 0.

The differential equation of the 45° trajeclories, obtained by replacing y’ in the above equation by

'~ tan45° fi * & o1
f*r'tn:.-.‘ 4 J;U*‘ R "L—l,,, “0 or (xeydy+ (x=y)ds = 0,

Using the transformation y = vs,this equation is reduced to

{v'+l]d: + x(v+1)dv = 0 or 9 + v—”dv = 0,
5 vie ]

Integrating, Inx + dIn(v®+1) + arctanv = In K,, 18 s%(1+v?) = 10K - 2 arc taav,
and =+ " = x'-tmunyfx.

In polar coordinates, the equation becomes pteke™® o o’ C

SUPPLEMENTARY PROBLEMS

13. Find the equation of the curve for which
a) the normal at any point(«,y) passes through the origin. Ans. zteylac

b) the slope of the tangent at any point (x,y) is 4 the slope of the line from the origin to the point.

Ans, y' = Cx
¢} the normal at any point (x,y)and the line joining the origin to that point form an isosceles triangle
having the x-axis as base. - Ans. y'-x?= C

d) the part of the normal drawn at point (s, y) between this point and the x-axis is bisccted by the y-axis.
Ans. yt+2:? = C

L1

e) the perpendicular from the origin to a tangent line of the curve is equal to the abscissa of the point

of contact (z,y). Ans. ¥+ y* = Cx
/) the arc length from the origin to the variable point (x,¥) is equal to twice the square root of the
abscissa of the point. e e Heade s18VE & VTS yec
g) the polar subnormal is twice the sine of the vectorial angle. Ans. p = C = 2 cos 8

h) the angle between the radius vector and the tangent is 4 the vectorial angle.
Ans. p = C(1 - cos 8)

i) the polar subtangent is equal to the polar subnormal. Ans. p =Ce’

14. Find the orthogonal trajectories of each of the following families of curves.

a)x+3y =C  Ans y-2u sk Sl y*x=1+4Ce™  Ans x = y-14Ke™
b)xy s :'-y' . K g) y s 2:%(1- Cx) :’+3y’ln(}.’y).o
t}s'ozy'-c y-h' h) p=acos8 p=bsinf

d)y =Ce™™ P TY i) p=a(l+sinf) p=b(l-8in8)

e) y' = z’/(C-:) (x'oy')’-Kﬂx'+ y') Jj) P =a(sec @ +tan8) p= i



CHAPTER 8

Physical Applications

MANY OF THE APPLICATIONS of this and later chapters will be concerned with the motion of a body
along a straight line. If the body moves with varying velocity v (that is with accelerated motion) its accele-
ration, given by dv/dt, is due to one or more forces acting in the direction of motion or in the opposite
direction. The net force on the mass is the (algebraic) sum of the several forces.

EXAMPLE |. A boat is moving subject to a force of 90 newtons on its sail and a resisting force (N)
equal to 0.3 times its velocity (ms™*) If the direction of motion is taken as positive, the net force (N)
i590=- 0-3v.

ExampLE 2. To the free end of a spring of negligible mass, hanging vertically, a mass is attached and
brought 1o rest. There are two forces acting on the mass - gravity acting downward and a restoring force,
called the spring force, opposing gravity. The two florces, being opposite in direction, are equal in mag-
nitude since the mass is at rest. Thus, the net lorce is zero.

Newton’s Second Law of Motion states in part that the product of the mass and acceleration is propor-

tional to the net force on the mass. When the system of units described below is used, the factor of propor-
tionality is k =1 and we have

mass % acceleration = net force.

THE S.1. SYSTEM is based on the fundamental units: the kilogramme (kg) of mass, the metre (m) of length,
and the second (s) of time. The derived unit of force is the newron (N), defined by

IN= lkgms™2

Hence,
mass in kilogrammes x acceleration in ms~? = net force in newtons

The acceleration g of a freely falling body varies but slightly over the earth’s surface. For convenience
in computing, an approximate value g = 9.8ms ? is used in the problems.

SOLVED PROBLEMS

1. If the population of a country doubles in 50 years, in how many years will it treble under the assumption
that the rate of increase is proportional to the number of inhabitants?

Let y denote the population at time ¢ years and y, the population at time t =0, Then
1) sf-: = ky or %Z = 'kdt, where k is the proportionality factor.

First Solution. Integrating 1), we have 2) Iny = kt + InC or y = ce™,

Attime t=0, y=yo and, from 2), C = yo« Thus, 3)y = yce“-

49
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Alt =50, y =2yo.From 3), 2y, = ch’" ot §2°8 -

When y = 3y,, ) gives 38 = c“. Then 3%° = A (c’“)t = 2t and t = 79 years.

Second Solution. Integrating 1) between the limits t =0, y =y, andt=50, y =2y,

% %
j: !JFZ = l_[ dt, In 2yo = In yo = 50k and 30k = 1n 2,

Integrating 1) between the limits t=0, y=yo and t=t¢, y =3y,

3 t
_[1’51 = hI dt, and 1n 3 = kt.
O,

Then 50 In3 = 50kt = t In2 andt = % = 79 years.
n

In a certain culture of bacteria the rate of increase is proportional to the number present. (a) I it is
found that the number doubles in 4 hours, how many may be expected at the end of 12 hours? (5 If there
are 10% at the end of 3 hours and ¢-10" at the end of 5 hours, how many were there in the beginning?

Let x denote the number of bacteria at time ¢ hours. Then

1) & . x»  or & | pdt.
. x

de

a) First Solution. Integrating 1), we have 2) lnx = kt + InC or =x= Ct“.
Assumjing that = = xg attimet = 0, C = xo and x = :oan.
Attimet = 4, x = 25, Then 2x, = xp¢"® and ¢'" = 2,

Whent = 12, x = :oclﬂ = xo(c‘i)’ = 30(2’) = Bxo,that is, there are 8 times the original number.

Second Solution. Integrating 1) between the limits t =0, x=#o and t =4, x = 2%,
Zo - :
J. - = hfﬂ'l. In 225 - Inx, = 4k and 4k = 1n 2,
& X
Integrating 1) between the limits ¢t =0, x=x5 and t=12, x=x,
x 2
f Q B }fdg. and ln£-12h-3(15)=31n2-158.
% flo

Then x = 8x5, as before.

b) First Solution. When t = 3, x = 10", Hence, from2), 10* = Ce’* and C = % .
L3
y . 4-10"
Whene = 8, x = 410" . Hence, 4+10" = Ce?* and C = "
[ 4

10°  ¢.10° x A
Equating the values of C, = 1 ---"T Then ¢™ = 4 and ¢ = 2.

L e

10

Thus, the original numberis C = e
[ 4

L]
= _l.l_:__ bacteria.
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Second Solution. Integrating 1) between the limits ¢ =3, x=10° and ¢t=5, x= 4—10'.

u-w‘dx 5
f‘ o ;f dt, Iné¢=2k and k= 1n 2,
10 x 3

Integrating 1) between the limits ¢=0, x=x5 and t=3, ==10",

o & d 10" 10"
f - = Ir_!: dt, In — =3k =31In2=1n8 and x5 = — as belore.
% X 8

*]

3. According 1o Newton's law of cooling, the rate at which a substance cools in moving air is proportional 1o
the difference between the temperature of the substance and that of the air. If the temperature of the air
i5 300K and the substance cools from 370K 1o 340K in 15 minutes, find when tRe temperature will be 310K,

Let T be the temperature of the substance at the time t minutes.

or =—— = =kdt,

Then o 2 ' ar
T k(T - 300) T —300

(Note. The use of -k here is optional. It will be found that k is positive, but if +& is used it will be found
that & is equally negative.)
Integrating between the limits ¢ = 0, T =37 and t = 15, T = 340,
A 1

f LSRR e I L - T
510 T -300 g

w3 |

and 15k = 1n - = 0,56.

o | =3

Integrating between the limits ¢ = 0, T = 370 and ¢ = ¢, T = 210,

jio t
f (- S _a[ dt, 1n10-1nT0=-kt, 15he=151n7, ¢=33307 _ oo uin,
s T -300 0.56

4. A certain chemical dissolves in water at a rate proportional to the product of the amount undissolved
and the difference between the coricentration in a saturated solution and the concentration in the actual
solution. In 100 grams of a saturated solution it is known that 50 grams of the substance are dissolved.

If when 30 grams of the chemical are agitated with 100 grams of water, 10 grams are dissolved in 2 hours.
how much will be dissolved in 5 hours?

Let x denote the number of grams of the chemical undissolved after ¢ hours. At this time the concentra-

tion of the actual solution is 3{:0'; an that of the saturated solution is .4

100
Then
g‘- = b(.i?.. - -.a;’—-:j = hx E..:E. or 2 - dx = tdf.
dt 100 100 100 x x+20 5

Integrating between ¢ = 0, x = 30 and ¢t = 2, x = 30-10 = 20,

0 20 2
ds dx k ! 5 $
f” = ;—5 g dt " and k '2' 1n E -0.48.

Integrating between ¢ = 0, x = 30and ¢ = 5, x =%,
de f‘ ds k f’ 5x x 3 -0
- P d —_—— = k = ~0,48, = —g
j!: x 0 x+20 5 J b ma(;+m} . =+20 5
= 0.38, and x = 12, Thus, the amount dissolved after S hours is30 ~12 = 18 grams. ,q g

—8
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S. A tank of volume 0-5 m? is filled with brine containing 30 kg of dissolved salt. Water runs into the tank

at the rate of 15 »107* ’ s™* and the mixture, kept uniform by stirring, runs out at the same rate. How
much salt is in the tark after | hour?

Let £ be the number.of kilogrammes of salt in the tank after ¢ seconds, the concentration then being
2« kgm 3. During the interval dt, 15 = 10~34¢ cubic meters of water flow in and 15 = 10~ de cubic meters

of brine containing 2z =15 10~ 7dt = 3: « 10~ % d¢ kilogrammes of salt flow out,

Thus, the change dr of the amount of salt in the tank is de = -3x « 10-%dt,

<10 " . i -
Integrating x = Ce ™ ', Ar ¢« 0,x:30,hence C = 30 and x = 3pe “3x20 ¢

-2
When t= 3,600 seconds, x = 30e-208%107" . 45 -1.08 . 4 kilogrammes.

6. The air in a certain room 50m « 17.5m = 4n tested 0-2%C0,. Fresh air containing 0-05%co, was then
admitted by ventilators at the rate 4+ 28’8, Find the percentage €0, after 20 minutes.

Let x denote the number of cubic meters of €0, in the room at timet, the concentration of Co0, then
being x/3,500 During the interval de, the amount of €0, entering the room is 4.2 (+ 0005) dt m and

3

the amount leaving is 4.2 dtm

Hence the change dx in the interval is dx = 4-2(0- 0005 - azm)a‘t = (2110 "~ 12x 107 1) a2,

-

Integrating é « 10%In(21+10°%-12.120"" %) = -t + InCy and = =T/d+ Ce-i2¥20 ¢
-9

Att = 0, x = 0002 =3,500= 7. Then C = 21/4 and x = 7/4(1 + 3e-12¥10 £,

When ¢ = 1,200, == 7/4(1+3¢~1"%) = 3.08. The percentage €0, is then i‘.";_'_‘;"’_ - 0-00%
1500

7. Under certain conditions the constant quantity @Q 1-25m
Joules/second of heat flowing through a wall is given by W7
~

dr
= -.A.._‘ Y
Q N:==

where k is the conductivity of the material. A(n?) is x
the area of a face of the wall perpendicular to the
direction of flow, and T is the temperature x (m) from
that face such that T decreases as x increascs. Find the
number of joules of heat per hour flowing through 1 &
square metre of the wall of a refrigerator room 1-25 k.
thick for which & « 1. 05, ifthe temperature of the inner 7
face is 268K and that of the outer face is 348 K

Im

—————
——

|

T =348 k

\\\!

+—a=
Let x denote the distance of a point within the wall directica of flow
from the outer face.

Integrating dT = "h%d‘ fromz =0, T=348 102 = 1-25, T = 268,

264 1.2%
Q Q 80kA 80 x 105 -1
dl’ 2 ==& dx, 80 = = (1.25) and —_— —— = - §7.2J
'/;n kA s leA( ’ 4 1-25 1:25 ®

Thus the flow of heat per hour is 3, 600Q = 2.42 x 10 J .
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A steam pipe 0-2 m in diameter is protected with a covering
0:06 m thick for which k = p.13 (a) Find the heat loss
per hour through a metre length of thepipe if the sur-
face of the pipe is at 470 K and the outer surface of
the covering is at 300 K (b) Find the temperature at a
distancex > 0+1m [rom the céntre of the pipe.

Al a distance x > 0+1m from the centre of the pipe, heat is
flowing across a cylindrical shell of surface area 2tz m?
per m of length of pipe. From Problem 7,

dT dT o
e 24 . _ouke T ank dT = -0 &,
g & T AN

a) ‘Integrating between the limits T'= 300, = = 0.16

al'ld T = 4?01 x 0.1
%70 0.1

2nk dT = -Q c‘—’. 340nk = Q(In0+16-1n0¢1) = QIn1:6 and Qsmn"
500 0:14 X In 148
Thus. the heat loss per hour through a metre length of pipe is 3,800 Q = 1:03 MJ
b) Integrating 2tk dT = = IEE:- ? between the limits T= 300, x :0.16 and T =T, x = x,
n
4 x
NI Iy e R R R I N R Ll LRty
300 Inle J, % Inl8 0.1 Inle =

170

Check. Whenx = 0.1, T = 300 +
g Inl.g

InLé = 470K Whenx=0.16, T= 300 + 0 = 300 K

Find the time required for a cylindrical tank of radius 25 m and height 3 m to empty through a round
hole of radius 25 mm in the bottom,of the tank, given that water will issue from such a hole with velocity
approximately v = 2.5/h ms*!h being the depth of the water in the tank.

The volume of water which runs out per second may be thought of as that of a cylinder 25 mm in radius
and of height v, Hence, the volume which runs out in time dt sec is
R(0:025)° {25 VR)dt.

Denoting by dh the corresponding drop in the water level in the tank. the volume of water which
runs out is also given by (2:5)° nh. Hence,

2 2 .59, dh
Kt 0 } {2|5 - S a = [——l E -
0,025 vR)de n (2,5 dh or dt (01025) o 4 DOO?;:

Integrating between ¢ = 0, h=3 and t = ¢, h =0,

’ 0
fdt--qoooj:iﬁ :--anouFL-aooo/iucs-ahr 34min
[+ ]

A ship of mass 45,000 Mg starts from rest under the force of a constant propeller thrust of 900,000 N.
a) Find its velocity as a function of time t given that the resistance in newtons is 150,000¢ with v = velocity
measured in ms-* &) Find the terminal velocity (i.c. v when ¢t =) in kilometres per hour.
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Since mass (kg) = acceleration (ms*?) = net force (N)
= impetus of propeller - resistance

then 45« 10° % = 900,000 - 15 x 10"y or 1)5_:% LT R

300 50

¢/300 _ 1 t/300 t/300
58 fe dt Be + C.

a) When t =0, v=0; C=-6 and v =6(1-¢ /3%,

Integrating, ve

b) Ast=w, v =6 theterminal velocity is 6ms “* = 216 km per hour. This may also be obtained

from 1) since, as v approaches a limiting value, :—-"' = 0. Then v = & as before.

A boat is being towed at the rate 20 km per hour. At the instant(t = 0) that the towing line is cast off,
aman in the boat begins to row in the direction of motion exerting a force of 90 N, If the combined. mass
of the man and boat is 225 kg and the resistance (N) is equal to 26:25 v, where v is measured in ms”?
find the speed of the boat after 1/2 minute.

Since mass (kg) x acceleration (ms=?) = net force (N)
= forward force - resistance

then m;—'-: = 90 - 26:25v  or % R %v E
Integrating, v « 2 J RICIE 2 1m0 e,
When :-o,.,..l”-_"?.?_.i?. c. B4 g LM, B4 o
: 3600 9 63 7 63
When' t=30, v =24 34 208 oo

T 63
A load is being pulled across the ice on a sled, the total mass including the sled being 35 kg. Under the
assumpuon that the resistance offered by the ice to the runners is negligible and that the air offers a resls tance
in newtons equal to 70 times the velocity (vms™) of the sled, find
a) the constant force (newtons) exerted on the sled which will give it a terminal velocity of 16 kilometres
per hour, and
b) the velocity and distance ( sm) travelled at the end of 48 seconds.

Since mass (kg) x acceleration (me=%) = net force (N)
= forward force - resistance

then 3553 = F-7v or ?« 2v = --F where F (N) is the forward force.

Integrating, v = 7%» Ce™**. When t=0, v=0: then C = _._5) and

A) ve _g(l R

a) As t-o, v-% —3—% T.'I'hcr:quucdfomﬂs Fsz-;m-auN.

b) Substituting froma)in A), v = !99(1 =y

= . -‘o =96 '12 -1 " 4 AL -
When t=48: v -9—(1"! ) 9ll and s -j; vdt = -ﬁ_ujo {l-e")dt-?lll-
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13. A spring of negligible weight hangs vertically. A mass of a kg is attached to the other end. If the mass

is moving with velocity vo ms™* when the spring is unstretched, find the velocity v as a function of the
stretch x m,

According to Hooke's law, the spring force (force opposing the stretch) is proporlioﬁa! to the stretch.

Net force on body = weight of body - spring force.

dv dv dx dv . dx
T awv . = dvex B v ki o
hen . ag- b or ao- == Ky g kx, since "y

Integrating, mv® = 2mgx - kx’ + C.

When x = 0, v = vo. Then C = n-': and m? = 2mgx - ket o l'l!g.

14. A parachutist is falling with speed 55 ms =} when his parachute opens. If the air resistance is wv?s25 N,

where W is the total weight of the man and parachute, find his speed as a function of the time t after the
parachute opened.

Net force on system = weight of system — air resistance.

2
Then !L"'. = W - !."'_ or ..__ﬂ"...._ = _9'-_8:“.
g dt 25 v 29

Integrating between the limits ¢ =0, v = 3§ and t=t¢t, veuy,

v t
dv -0 =
f = - __!f dt, -Ll.nu -
0 1

b _ el

1 vi-28 25 0 ves |, 25 |o
5 5 98 5 6+5¢
In &Z== -1z = =—14, v=S L 2 M and v s 8 ——
ves 6 25 v+s 6 a8~

Note that the parachutist quickly attains an approximately constant speed, that is, the terminal speed
of 5§ ms™

15. A body of mass a kg falls from rest in a medium for which the resistance (N) is proportional to the square
of the velocity (ms=*) If the terminal velocity is 50 ms=? find
a) the velocity at the end of 2 seconds, and
5) the time required for the velocity to become 30 ms™*

Let v denote the velocity of the body at time seconds. d
Net force on body = weight of body - resistance. and the equation of motion is 1}a d_: = ag- kvl

Takingg = 9-8ms~? il is seen that some simplification is possible by choosing K= - ’—1'5 wk?,

dv 98 dy 98
Then 1) reduces to = e = dt.

(16 -&'u') o —
kv =16 16

0

: hv= 3§ Ay -4 A
Integrating. 1n —— =-4.9kt + InC or =i o8
kv+ 4 ku +4

When t =0, v=0. Then C = -1 and2) s S|
kv+ g

When ¢ @, wa 50: Thenue " .. 0; k= 2, and 2) becomes Y=2 « s s
25 RTE
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v =50 3 _‘-o.u

a) Whent = 2, S

= -046 and v+ 18-5ms"?,

b) When vy = 30, '—o.nr‘ 0,25 = g'l'” and ¢t = 3,5 secs.,

A body of mass a falls from rest in a medium for which the resistance (N) is proportional to the velocity
ms ~*, If the specific gravity of the medium is one-fourth that of the body and if the terminal velocity is
7+35es *find (a) the velocity at the end of 3 sec and (b) the distance travelled in 3 sec.

Let v denote the velocity of the body at time t sec. In addition to the two forces acting as in Problem 15,
there is a third force which results from the difference in specific gravities, This force is equal in magnitude
to the weight of the medium which the body displaces and opposes gravity.

Net force on body = weight of body - bouyant force - resistance, and the equation of motion is
15% = mg -zlng-k'v = ‘Eu-ﬂ.’u.

Taking g=9-8ms~? and K = 3mk the cquation becomes :_: * 302,45 -hv) or "'i; = 3dt.

245k
Integratingfrom ¢ =0, v=0 10 t=t, vauy,

-E lncz,u-ml: . ::': ~In(245-kv) « 102,45 « 3he and kv = 2,45(1- N,

When t <@, v=7.35. Then k = 1/3 and 1) v = 7,35(1 - ™),
a) When ¢ =3, v« 735(1=¢"") = Tms "},

b) Integrating v = % * 7.35(1-¢"") between ¢ = 0, =0 and ¢t = 3, x = x,

¢
:{’ =735t s ey :

5 and  x = 7,332+ ¢} «15n

The gravitational pull on a mass  at a distance s metres from the centre of the earth is proportional
to m and inversely proportional to 2, @) Find the velocity attained by the mass in falling from rest at
a distance 5 R from the centre to the earth's surface, where R = 6500 km is taken as the radius of the
earth. b) What velocity would correspond to a fall from an infinite distance, that is, with what velocity
must the mass be propelled vertically upward to escape the gravitational pull? (All other forces, including
friction, are to be neglected.)

The gravitational force at a distance s from the earth's centre is ka/s?, To determine k, note that the
force is mg when s = R; thus ag = ka/R? and k = 8R*. The equation of motion is

dv ds dv dv 2 z ds
1) n&—ttn;‘-d—’--nu;--—::%- or vdv = -gR F;

the sign being negative since v increases as s decreases,

@) Integrating 1)from v = 0, s = SR to v = v, s = R,

B (9.8) (6 500) (1000),

v 2 r* ds 2 2.3 4 - i
Sithnai - A

and v = Vo3 x10'ms " or approximately 10kms™>,
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b) Integratingl)from v =0, ¢~ to vs=v, 3s=R,

R = o =

_L vdv = -gR" J d’. v¥= 2gR, v = 1000/127 s~ or approximately 11,3kms "},
One of the basic equations in electric circuits
is

. LB & g B,

dt

where L (henries) is called the inductance, L
R (ohms) the resistance, ¢ (amperes) the current,
and E (volts)the electromotive force or emf. (In Er = Ece) '9
this book R and L will be constants.)

a) Solve 1) when E(t)=Es and the initial R R
current is ig.

b) Solve 1) when L = 3 henries, R = 15 ohms,
is the 60 cycle sine wave of amplitude
iluvolts, and i=0 when ¢t =0.

(a) (b)

a) Integrating [ Ei_‘ + R = E5, P %fe“lb dt = i—“ehﬂ' «Cor &= %‘.‘4 gt

When t=0, 1 =i, Then €= 14 _%‘2 and 1 = %{1 -e'nﬂ’) + x'oe-xw.

Note that ast =@, 1 = Eg/R, aconstant.

b) Integrating acdf—: + 15t = Ep sinwt = 110 sin 21(60)t = 110 ein 120nmt,
- n
‘.esz , mf‘” &l 190K e 110 5: 5 sin 120M¢t 120 cos 120m¢ e
3 ) 25 + 14400 ©°
or 2_2 sin 1201t - 247 cos 1207t . Cc_”.
3 1+ 576n32
When ¢=0, i=¢ Then C . S Un_
3(1 + 5761%)
22 sin 1207t - 24n cos 1207mt + 241 %
and 1 = sin = os

3 1+ 576n°

A more useful form is obtamed by noting that the sum of the squares of the coefficients of the sine and
cosine terms is the denominator of the fraction above. Hence, we may define

sind = = 5 and cos P = —-—-L—E-
(1 + 5761y (1+ 576n%) )
it 22 176n e
i = 0 (cos & sin 120nt - sin P cos 120m¢) —_
3¢1 + 576n?) 1+ 576n?
Y
= n 7 sin(120mt - @) & i L
3¢ + 576n%) 1+ 576n?
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19. If an electric circuil contains a resistance R (ochms) and a condenser of R

capacitance C (farads) in series, and an emf E(volts), the charge ¢ (cou- ; M\
lombs) on the condenser is given by

n.ﬁ¢ﬂ.g,

de” c E(t)

If R = 10 ohms, C = 1077 farad'and E(t) = 100 sin 120m¢ volts.
a) findg, assuming that ¢ = 0 whent = 0. fpromed

b} usei =dg/dt 10 find ¢ assuming that i =5 amperes when ¢ =0.
Integrating 10 :—f +10°q = 100 sin 120nt, we have

in 120nt - 1207 cos 120mt
qe'%°" mfe“‘” sin 120n¢ dt = 10¢ ' e 2 + A
* i0,000 + 14,4000

100t 10 sin 120mt -~ 121 cos 1207t E
= ' .

100 + l4¢n?

and 1) q = —lxstncmm-m + A
(100 + 144m%)

-100¢
[

where sin ¢ MR

Py and cos @ = 10 g
(100 + 144n%) (100 + 144n?)
-100¢
a) When t=0,qg-0. Then A = e, and g = =y sin(l20mt - @) + e .
25 + 361 2(25+ 36n°) 25+ 3gn?

b) Differentiating 1) with respect to t. we obtain

-60M =100%

, . il
P S 120M¢t - - A .
i = g cos( @) 1004 e

(25 + 361%)

CDS¢—5 " 3o0mr Sl

25+ 36n?

When t=0, t=5. Then 1004 =

(25 + 36n7)"

conpione= Py - (0B _ _ gymW008

and i & 5
25+ 36n

6on
(25 + 3619

A boy, standing in corner A4 of a rectangular pool. i
has a boat in the adjacent corner 8 on the end of a B
string 10 metres long. He walks along the side of the

pool toward C keeping the string taut. Locate the

boy and boat when the latter is 6 metres from AC. ')

x-axis and AB is along the y- axis. Let (x,y) be the

i
i ; !
Choose the coordinate system so that AC is along the | '
1
1

position of the boat when the boy has reached E. and
let & denote the angle of inclination of the string.

x
[A
Then tan® « & . __ -y or 4 »'_V100 -yt
o 100 - y y
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r
: / 1
Integrating, x = -v100 - y? + 101n 102 lyoo" +C
When the boatisat B, x = 0 and y = 10.

/ 1
Then c =0 and x = -/100 - y? + 101n E—%’- + C is the equation of the boat's path.

Mow AE = x+ /100 -4 + 101n w + C Hence, when the boat is 6 metres [rom

AC(i.e., y=86), x+8=101In3 =11,

The boy is 11 m from A4 and the boat is 3 m from AB.

21. A substance ¥ is being formed by the reaction of two substances aand £ in which a grams of a and é grams
of 8 form (a+ by grams of v.If initially there are xo grams of a, yo grams of € and none of y present and
if the rate of formation of Y is proportional to the product of the quantities of @ and # uncombined,
express the amount (¢ grams) ol Yformed as a function of time ¢,

az bz

grams of a and

a+b a+

The 2 grams of Y formed at time ¢ consists of grams of f.

: 2 ; a bz
Hence, at time t there remain uncombined (xo - ;—:—b) grams of @ and (yo ~ -——bl grams of &,
a+

K + +
Then & ., Kixg < S5y (v = B s °b,{° bxo—:)(" bro-:}
dt a+ b a+ b (a+b)
= k(A-2)(B-2), where k = Ra&’- A= (a+ blzo and B = .‘lf_%.
(a+ b) a
Ther: .y cases 10 be considered: 1) A £ B, suy A>B, and2) A = B,
1) Here g e
(A=2)(B=1) A-BA-: A-B B-1:

Integratingfrom t =0, z=0 to t=1¢, z =1, weobtain

z
1 A-2 ¢ 1 A-z A A-2 A (4-8)kt
E—— T — = ht . —_ 1 - ln = = *t‘ — = - -
A-Blnﬂ-:n |° A-B( l.IB--.t H:' B-zx B
ABY o s RN
and I = g
A - Be
2) Here ds = kdt. Integratingfrom t =0, z=0 0 t=1t, 2 =2, We obtain
A -n?
: Akt
—1-— = th . _1 ..l = kt, and I = .
A-1z A=z A 1+Ake

—9
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PHYSICAL APPLICATIONS
 SUPPLEMENTARY PROBLEMS

A body moves in a straight line so that its velocity exceeds by 2 its distance from a ﬁxtcd point of the line,
Ifu=5 whent = 0 find the equation of motion. Ans. x = 5e -2

Find the time required for a sum of money to double itself at 5% per annum compounded continuously.
Hint:dx/dt = 0,05x, where x is the amount after ¢years. Ans. 13.9 years

Radium decomposes at a rate proportional to the amount present. If half the original amount disappears
in 1600 years, find the percentage lost in 100 years. Ans. 4.2%

In a culture of yeast the amount of active ferment grows at a rate proportional to the amount present.
If the amount doubles in 1 hour, how many times the original amount may be anticipated at the end

of 2-75 hours? Ans. 6.73 times the original amount
If, when the temperature of the air is 290 K, a certain substance cools from 370 K 10 330K in 10 minules,
find the temperature after 40 minutes. Ans. 295 K

A tank contains 450 litres of brine made by dissolving 30 kg of salt in water. Salt water containing 1/9 kg
of salt per litre runs in at the rate 9 1/min and the mixture, kept uniform by stirring, runs out at the rate
13:5 1/min. Find the amount of salt in the tank at the end of | hr. Hint: dx/dt = 2 - 3x/(100-1).

Ans. 18-7 kg

. Find the time required for a square tank of side 2 m and depth 4 m to empty through a 22 mm circular

hole in the bottom. (Assume. as in Prob. 9, v = 2:5vh ms ~%) Ans. 171 min

A brick wall (k = 0+48) is 0-3 m thick. If the inner surface is 290 K and the outer is 270 K. find the
temperature in the wall as a function of the distance from the outer surface and the heat loss per day
through a square metre. Wik $. 300 .om. snga10")

A man and his boat have a mass of 150 kg. If the force exerted by the oars in the direction of motion is
70 N and if the resistance (in N) to the motion is equal to thirty times the speed (ms™!) find the speed
15 sec after the boat starts from rest. Ans. 2:3 ms™!

A tank contains 0-5 m? of brine made by dissolving 40 kg of salt in water. Pure water runs into the tank
at the rate 3 « 10" m’s ™! and the mixture, kept uniform by stirring, runs out at the same rate. The
outflow runs into a second tank which contains 0-5 m?* of pure water initially and the mixture, kept
uniform by stirring, runs out at the same rate. Find the amount of salt in the second tank after 1 hr.

Hinl:% = 6x 107" (40e "0 0008F _x) for the second tank  Ans. 104 kg

A funnel 0:24 m in diametre at the top and 24 mm in diameter at the bottom is 0-54 m deep. [ initially
full of water, find the time required to empty. Ans. 13-7 sec

1

Water is flowing into a vertical cylindrical tank of radius 2 m and height 4 m at the rate 0- 003nm’s™ and

is escaping through a hole 24 mm in diameter in the bottom. Find the time required to fill the tank.
Hint: (0-003x - 12 2.5/Kyde = 4ndh. Ans. 106 min
(1000)?
A mass of 60 kg slides on a table. The friction is equal to sixty times the velocity, and the mass is subjected
to a force 54 sin2¢ N. Find the velocity as a function of ¢ if v = o when ¢t = 0.
Ans. v = 9/50 (sin2t=-2cos2t+ 2¢ ~%)

A steam pipe of diameter 24 cm has a jacket of insulating material (K = 0-1) 12 em thick. The pipe is kept
at 550 K and the outside of the jacket at 300 K. Find the temperature in the jacket at a distance x m from
the centre of the pipe and the heat loss per day per metre of pipe.

Ans. T =300 =250 (lnx-1no0-24)/(1n2);19-6MJ
The differential equation of a circuit containing a resistance R, capacitance G, and emf ¢ =E sinwt is
R di/dt, Assuming R,C,E,w 1o be constants, find the current i at time ¢,
Ans. i = _.“L(coswt + RCw sin wt) + C,c_m’c

1+ R’C’m’



CHAPTER 9

Equations of First Order and Higher Degree

A DIFFERENTIAL EQUATION of the first order has the form f(x,y, ¥ =0 or

fix,y, p)=0, where
S : dy
forconvenience y' = =
o 4 dx

is replaced by p. If the degree of p is greater than one. asin p? - 3px + 2y = 0,
the equation is of first order and higher (here, second) degree.

The general first order equation of degree n may be written in the form

1) P P, )Pt 4 ciiiine 4 Pasi(x,0)P * Palx,y) = 0.

It may be possible, at times to solve such equations by one or more of the procedures outlined below.

In cach case the problem is reduced to that of solving one or more equations of the first order and first
degree.

EQUATIONS SOLVABLE FORp. Here the left member of 1), considered as a polynomial inp , can be
_ resolved into n linear real factors, that is, 1) can be put in the form

(p=-F)(p=F3)eveeven(p=-Fo) = 0,
where the F's are funtions of x and y.

Set each factor equal to zero and solve the resulting ndifferential equations of first order and first degree
ﬁ = F x Q = F x LRI B N Y g = F x
e L (x,9), o 2 (X,¥), ' e n(x.y)
1o obtain

2) !I.tXOYJC}’OI fl(xlylc)-ol ekl I fﬂ(“:)’lc)=0°

The primitive of 1) is the product

3} ":.("-J’-C)'G(XJ.C) """"" ‘I(X,}‘.C) = 0
of the n solutions 2).

Note. Each individual solution of 2) may be written in any one of its several possible forms before
being combined into the product 3). See Prob. 1-3,

EQUATIONS SOLVABLE FOR y, i¢.,y = f(x,p).
Differentiate with respect to x 1o obtain

&zp:-a;fﬁba—fgg

dx ax op dx
an equation of the first order and first degree,

dp
F(x,p, =)
(xpcb()

Solve p = F(x, p. gE) to obtain ¢é(x,p,C) = 0.

Obtain the primitive by eliminating p between y = f(x,p) and ¢(x,p,C) =0, when possible, of
express x and y scparately as functions of the parameter p.

. See Problems 4-7.
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EQUATIONS SOLVABLE FOR x, i.c, x = f(y,p).
Differentiate with respect to y to obtain

ﬁsl-:‘?{i-lf‘_;e::p d.
T ivgigs (y.ﬂ.;E)

an equation of the first order and first degree.

Solve ,l; = F(y,p, sf) to obtain ¢(y,p,C) = 0,

Obtain the primitive by eliminating p between x = f(y,p) and @(y,p,C)=0, when possible, or

express x and y separately as functions of the parameter p.
See Problems 8-10.

CLAIRAUT'S EQUATION. The differential equation of the form
y = px + f(p)
is called Clairaut's equation. Its primitive is

y = Cx + F(C)

and is obtained simply by replacing p by C in the given equation.
See Problems 11-16.

SOLVED PROBLEMS

I. Solve p* = (x+2y+1)p? + (u2y+2.:y)p' - 2yp=0 or plp=-D)(p=x)(p=2y) = 0,

The solutions of the component equations of first order and first degree

- 4 @ . . ST il s
&D.d‘l.éxﬂ,gho

are respectively il y;:-c .0, 2y-x'-C .0, ,_c‘ls . B

The primitive of the given cquation is (y-C)(y -x-C)(2y =22~ C)(y=Ce™) = 0,
2. Solve xyp® + (2% +xy+yPp + x%4zy =0 or (sptx+y)(yp+x) = 0.

The solutions of the component equations x g +#x+y=0 and y g +x%0

are respectively 2xy + x*-C=0 and 2?4+ y?-C = 0.

The primitive of the given equation is (2xy .;’-C)(x’o y’-C) = 0.
3, Solve (x*+x)p? ¢ (Pex-2xy-y)peyt-zy=0 or [(x+Dp-yllzp+x-y) = 0.
The solutions of the component equations (x + 1) g -y=0 and ;g +x=y=0

are respeclively y - C(x+1) =0 and y+ x 1nCx = 0.

The primitive of the given equationis [y = Cx+ 1)][y ¢+ x 1n Cx) = 0.
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2
4. Solve 16x? + b’y—psx'n or 2y = px - 165-5-
P

L]
2
Diflerentiating the latter form with respect 1o =1 2p = p + x dp _ 3% | 3% dp
dx p? p} dx

Clearing of fractions and combining, p{p! e 320) - x(p’ + 321:)% * 0

orl) tp5+ 3zncp—s§) = 0,

This equation is satisfied when p’+ 32¢=0 or p- x‘% = 0. From the latter, %E = i? and p = Kx,

When this replacement for p is made in the given equation, we have
16:'+2K’:’y-K5:"D or 2¢C'3-Cs:’l 0,
after replacing K by 2C.

The factor p’+ 32x of 1) will not be considered here since it does not contain the derivative ;{ .
Its significance will be noted in Chapter 10.

5. Solve y = 2px + p'x’,
Differentiating with respecttoz, p = 2 '35 + % ¢ s+ 4p’st '5'5
or (p + hg)(l + ngxj = 0,
The factor 1+ 2.95.1 is discarded as in Problem 4. From p+ 2:§ 0, n'=C

In parametric form, we have * = C/p?, y = 2C/p + €%, the second relation being obtained by
substituting = * C/p* in the differential equation.

Here p may be eliminated without difficulty between the rclauon xp* = C or p? « C/x and the
gwen cquatlorl The latter may be put out in the form y - p's® = Zpxand squared to give(y - p*s")!

® 1p 2%, Then, substituting forp we have (y - chH? = 4Ca.

6. Solve x = yp+ p' or y 'E‘P-

Differentiating with respectto z, p = = = = g -2 of pPept (x4 p’)% = 0,

1

h-B I

The (p’—p]%ésop'-o or ﬁ § i g

". . - "
Jepris-9) is an integrating factor. Using it,

“f3

The latter is a linear equation for which ¢

‘.—P—_-_l. . -I—i— L] -ID(P“ ."P!-tj) + C

b 77

and x = --—Lln(po pl=1) + _CL. y = -p - 1 In(p +u’pi—1) -
T M v Y A
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7. Solve y = (2+p)x + p*.
Differentiating with'respectto x, p=2+p + (x+ @)E or % + 4% = =p,

This is a linear equation having RIL ? asan integrating factor.

Then xel? o -J'm”dp = -2“*’* “it + C

and x = 2(2-p) + Cc’”. y=8-p+ {3+p>€e—“.

8. Solve y = 3px + 8%y,

Solving for =, ix = E = epy®. Then, differentiating with respect to y,

-.-V..‘!B_g,‘ - 12py and (1+ ‘P'J’H’P"’J’%’ = 0.

g
PP ptdy dy

The second factor equated to zero yields py® = C. Solving for P and substituting in the original
differential equation yields the primitive y* = 3Gx + 6C%,

2
9. Solvnps-‘.‘-ypq-cy'-o or k-%-q.!:-'.

Differentiating with respect to y,

1 pd g, o2 Sty Brin s oY « 0,
e i TR i T el

Integrating p - By'% = 0 and eliminating p between the solution p* = Ky and the original differential

equation, we have 16y = KK =25)' . This may be put in the form 2y = C(C-x)" by letting K = 2C.

10. Solve 4x = py(p?-13),
Differentiating with respect to y,

1
; = p(p’-ﬂ} + 3)'(9"”% or fl + M = 0.

Y pt-apt D

Integrating, by partial fractions, lny + % In(p+2) + ;% In(p-2) + Elntp' +1) = 1aC

Cp(p*=3)

- 0" e 1)

.

C L 13
Then y = g% % 7

L]
(- "W(p: x “m

CLAIRAUT'S EQUATION.
11. Solve y = px+ V4+p®,  Theprimitiveis y = Cx+ V4 + c.

12. Solve (y-pm) = 1+ pt,

Here y = px ¢ Vis pL

The primitive is (y - Cx -v‘hE")(y-C:+ -’hE') = 0 or (y-Cx)' « 3¢ C'.
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13. Solvey = 3px + 8y’p".(See Problem 8.)
This may be reduced to the fnrm of a Clmraul equauon
Multiply the equation by y? 10 obtain y « 3y’px + 6y P

; ; " 3 2z _dv ‘ dv 2 dv.2
» transforma =y, 2 — is becomes = x -
Using the transformation y’= v, 3y'p= = th b's W 4 3(&)

The primitive is v = Kx + 3200 Y K 2k or y? = 3Cx + 8C2.
P 3 ¥ 3

14. Solve cos’y p? + sinx cosx cosy p - siny cos'x = O.
The transformation siny = u, 8inx = v, p et i“rcducestheequalion ou = v du (E}'.
: § cos x dv dv dv
Then u = Cu+ C” or siny = Csinx + C'. -
15. Solve (px - y)(py + 2) = 2p.
: 2 2 v odu .
The transformation y* = u, x"=v, p= = = reduces the equation 10
u v
%
v du % % du % v du du du du
pocs= AR =y = 2 — = F — — = -—
(;E dv i dv B u* dv 2 v dv u”du =8 . du &
7 W
Then uzugg- dv_ .  and n-Cv—i ot P oL .
dv du 1+ C 1+C
1+ =
dv
16. Solve p’x(x -2) + p(2y -2Uy-x+2) + J't t oy w0
The equation may be written as (y = px + 2p)(y - px + 1) = 0.
Eachof y = px-2 and y = px-1 isa Clairaut equation.
Thus the primitiveis (y = Cx + 20)(y -Cx + 1) = 0.
SUPPLEMENTARY PROBLEMS
Find the primitive of each of the following.
1. 5" ¢« xyp - 6" = 0 Ans. (-ChH-CT =0
18. xp’ + (y-l-zsz -x(y=-1) = 0 Ans. (2:-.:’+C){xy-x+€) =0
19. xp’ - 2yp +4x = 0 Ans. Cy = P
"20. ap’ —xp-y=0 Ans. xy = C(3Cz-1)
21. Sypz-z.:p+y-0 Ans. y’—-CxO‘ZC!'U

2. yp'espr-y=o Ans. yP-3Cx-Cte0
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23.p'-xpoy-0 AHJ‘.leI-Ci

24, lsy"pz -4zp+y=0 Ans. y* « Ctx - C)

28, xp’ - yp' . (x' bl)’, - ?.typ' + (x ey’)p -y=0 Ans. (y-Cx-—Cs){C!:—C)"l‘l =0
26. xpl -y=-y*=0 Ans. x = Cep 01}49. . szcp
27y <25 0y (Use y a1 Ans. yt = 20x ¢ C

8. ptaxp-yso Ans. 3x = 2p + Civp, 3y » p' - CIVp

29. y = (1¢p).z v p Ans. x = 2(1-p) + Ce™F, y =2-p' . Caspre”’
30.1-21)#'/1:_9‘ An.r.:-ﬁlnp+ln(p+/l_+?)+c. yrip#/l*_pi
3l yp! -xp +3y =0 Ans. x = Cp"’(‘(pat 3)(?’ 42)""'. y = Cp,ﬂ(pgo 2)-"‘



CHAPTER 10

Singular Solutions—Extraneous Loci

THE DIFFERENTIAL EQUATION

1) y = px +2p°
has as primitive the family of straight lines of equation

2) ¥y = Ox %20,

With each point (x,y)in the region of points for which x? + 8y > 0, equation 1) associates a pair of
distinct real directions and equation 2) associates a pair of distinct real lines having the directions deter-
mined by 1). For example, when the coordinates (-2, 4) are substituted in 1), wehave 4 = - 2p 4 2%
or p?—~p-2 =0undthen p = 2,-1. Similarly. when 2) is used, we obtain € = 2, -1. Thus. through

- the point (-2, 4) puss the lines y = 2x + 8 andy = —x +2 of the family 2) whose slopes are given by 1).
Points for which x? + 8y < 0 yield distinct imaginary p-and C -roots,

| Y
| lines of family
y = Cx+2C?
O] x
envelope
x2¢sy =0
fa} fb)

Through each point of the purubola x? + 8y = 0 there passes but one line of the family, that is, the
coordinates ol any point on the parabola are so reluted that for them the two C-roots of 2) and the two
P-roots of 1) are equal. For example, through the point (-8, -8) there passes but one line, y = 2x +8,
and through the point (4, -2) but one line, y = —x +2.(See Fig. a.)

It is casily verified that the line of 2) through a point of x* + 8y = 0is tangent to the parabola there,
that is, the direction of the parabola at any one of its points is given by 1). Thus, x? + 8y = 0is a solution
of 1). Itis called a vingulur solution since it cannot be obtained from 2) by a choice of the arbitrary const-
ant, that is, since it is not a particular solution. The corresponding curve, the parabola, is called an -
velope of the fumily of lines 2). (See Fig. b above).

—10



SINGULAK SOLUTIONS — EATRANEOUS LOCI

Summary and Extension:

A singular solution of a differential equation satisfics the differential equation but is not a particular
solution of the equation,

At each point of its locus (envelope) the number of distinct directions given by the differential equation
and the number of distinct curves given by the corresponding primitive are fewer than at points off
the locus.

THE SINGULAR SOLUTIONS of a differential equation are to be found by expressing the conditions.
a) that the differential equation(p-equation)have multiple roots, and
b) that the primitive (¢-equation) have multiple roots.

In general, an equation of the first order does not have singular solutions; if it is of the first degree
it cannot have singular solutions. Moreover, an equation f(x,y, p) = 0 cannot have singular solutions
if £(x,y,p) can be resolved into factors which are linear in p and rational in x and y,

The simplest expression, called the discriminant, involving the coefficients of an equation F(X) =0
whose vanishing is the condition that the equation have multiple roots is obtained by climinating X
between F(X) = 0 and F'(X) = 0. The discriminant of

aX® +BX + ¢ 0 - 08 b’-'lac.

of axdsbx?scx4d =0 is b%c? 4 18abed - 4ac? — 4bid - 274247,
See Problem 1.

For the example above, the discriminants of the p- ind C -equations are identical, being x? + 8y.

If E(x,y) = 0 isa singular solution of the differential equation f(x,y,p) = 0, whose primitive 1s
&(x,y,C) = 0, then E(x, y)1s a factor of both discriminants. Each discriminant. however, may have
other factors which give rise to other loci associated with the primitive. Since the equations of these loci
generally do not satisfy the differential equation . they are called exrraneous.

EXTRANEOUS LOCI. (Differential equation, f(x,y,p) = 0; primitive, g(x,y.C) = 0.)
a) Tac Locus.

Let P be a point for which two or more of the n distinct curves of the family g(x,y,C) = 0 through
it have a common tangent at P, Now the number of distinct directions at P is less than n 50
that the p-discriminant must vanish there. The locus, if there is one, of all such points is called
a tac locus. If T(x,¥) = 0 is the equation of the tac locus. then T(x,y)is a factor of the p-discriminant.
In general, T(x, y)is not a factor of the C-discriminantand T(x,y) = 0 does not satisfy the differential
equation,

é

I
|
1
]

¥=0 isa tac locus.
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b)  Nodal Locus.

Let one of the curves of the family through P have a node (a double point with distinct tangents) there.
Since two of the n values of p are thus accounted for, there can be no more than n-1 distinct curves
through P hence, the € -discriminant must vanish at P. The locus, if there is one, of all such points is
called a nodal locus. I N(x,y) = 0 is the cquation of the nodal locus, then N(x,y)is a factor of the
C-discriminant. In general, N(x, y) is not a factor of the C-discriminant and N(x,y) = 0 does not
satisly the differential equation.

¢} Cusp Locus.

Let one of the curves of the family through P have a cusp (a double point with coincident tangents)
there. Since one of the p-roots is of multiplicity two, the p-discriminant must vanish at P, Moreover, as in
the casc of a node, there cun be no more than n-1curves through P and the C -discriminant must vanish
at P, The locus, if there is one, of all such points is a cusp locus. if C(x,y) = 0 is the equation of the
cusp locus, then C(x, y) is a factor of both the p - and C -discriminants. In general, C (x,¥) = Odoes not
satisly the differential equation.

y Y
0 x
£
y = 0 is a nodal locus. y =0 is a cusp locus.

If the curves of the fumily g(x,y,C) = 0 arc straight lines, there are no extraneous loci,
If the curves of the fumily are conics, there can be neither a nodal nor cusp locus.

THE p-DISCRIMINANT RELATION. The discriminant of the differential equation f(x,y,p) =0, the

p-discriminuant, equated to zero includes as a factor

1) the equation of the envelope (singular solution) once. See Problems 2-4.
(The singular solution satisfies the differential equation.)

2) the equation of the cuspidal locus once. See Problem 7.
(The equation of the cuspidal locus does not satisfy the differential equation unless it is also a singular
solution or particular solution.)

3) the equation of the tac locus twice. See Problem 5.
(The equation of the tac locus does not satisfy the differential equation unless it is also a singular
solution or particular solution.)

THE C-DISCRIMINANT RELATION. The discriminant of the pnmll:\cﬁx y,C) = 0, theC d:scnmmanl

equated to zero includes as a factor.

1) the equation of the envelope or singular solution once.
2) the equation of the cuspidal locus three times.
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SINGULAR SOLUTIONS — EXTRANEOUS LOCI

3)  the equation of the nodal locus twice. See Problem 6.

(The equation of the nodal locus does not satisly the diffcrential equation unless it is also a singular
solution or particular solution).

When any locus falls in two of the categories, the multiplicity of its equation in a discriminant relation
18 the sum of the multiplicitics for each category thus. u cuspidal locus which is also an envelope is in-
cluded twice in the p-discriminant and four times in the C -discriminant relation.

The identification of extraneous loci is. however, more than a mere counting of multiphcities of factors.

SOLVED PROBLEMS

Find the discriminant relation for each of the following:
a) P’+px-y-0. b)p’x-!pzy-lﬁx’ =0, o)y = Cx-C).

Note. These discriminant relations may be written readily using the formula given above, We give here
a procedure which may be preferred,

a) We are to eliminate p between fix,y.p) = p’ +px-y = 0 and g‘f = 3p’ +x = 0. This is best done
by eliminating p between P

3! _Pgi - 3P!03F‘-31-3P’-P-‘ = 2px -3y = 0 and :—f = ap'i'-'l = 0. SOI\'iﬁglhc first
P
forp = %'Z and substituting in the second, we find ﬂp'# z = 1?-’? tx =0 OF 42+ :l?y’ =0,
4x 2 3 "

Note. If f(x,y,p) =0 is of degree nin p, we eliminate p between nf -ps:: =0 uand 55 = 0.
bW g af ' 2 H 5 F H H

/ e are 1o eliminate p belween 3)'--;:5—- " 3px-6p y-48x ~3p'xedp'y = =2py ~48:" = 0

P

and %{ « 3p'x-4py = 0. From the latter we obtain ep"x' . J.ap'y’ or op'x -Lep'y' « 0 and from
P

:
the former p? + -24 =+ Substituting for p, we obtain x*(2y* + 27¢%) = 0.
¢) Here g(x.9.C) =€ - 2¢% &t - y = 0 and we are to eliminate C between

1) 35-{',‘-2% = 3CS-GC’:+3&’ - 33-3C’+1C’:-Cx' « 2c% . ZC:’-By =0 and
5 X .ae?- sty e,
3C
Multiplying 1) by 3 and 2) by 2x, and adding, we have -2¢x* + 27 - 9y = 0.

5
Substituting € = -4:"-'-—";3"’-' in 2) and simplifying we obtain y4x’ - 27y) = 0.
2s

Solve y = 2xp -yp’ and examine for singular solutions.

Solving for 2« = i * yp and differentiating with respect toy. we have
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)'dP dp : 2 pr
B = 0 = =) = 0.
2 4 ’P'J‘r r (P l)(P"‘y!J

O —
o

Integrating p + .Yd—-i = 0 toobtain py = C andsubstituting for p = g in the given differential equation,

we obtain the primitive yl = 30k =,

The p-and C -discriminant relations are x* - y* = 0. Since both y = xand y = —x satisfy the given dif-
ferential equation, they are singular solutions.

If pis eliminated between the differential equation and the relation p?-1 = 0, discarded in this solu-
tion, the equation of the envelope =2 -y? = g isagain obtained. The presence of such a factor implies the
existence of a singular solution but not conversely. Hence, this procedure is not to be used in finding
singular solutions.

The primitive represents a family of parabolas with principal axis along the x -axis. Each parabola is
tangent to the line y = x at the point (€, €) and to the line y = -x at the point (€ ,=C).
See Figure fu) below.

y
0 x
Fig. a) Prob.2 Fig. b) Prob 3
Fumily of parabolas y? « 202~ CY, Family of straight lines y = Cx + C’,
Reeiope. o envelope  4x) o 21’! =0,

Examine p’ +px~y = 0 for singular solutions.
This is a Clairaut equation, the primitive being y = Cx + ¢l

Thep- and ¢ -discriminant relation 4x® + 27y* = 0is a singular solution since it satisfies the differential
equation.
The primitive represents a Family of straight lines tangent to the semi-cubical parabola  ax3 + 27%* = o,
the envelope. Sec  Figure (h) above,
. 2 1 o
Examine 6p"y" + 3px -~y = 0 for singular solutions.

From Problem 13, Chapter 9. the primitive is y' = 3Cx+ 8C%.

Both the p- and c-discriminant relations are ate By’ = 0. Since this satisfies the differential equation,
it is a singular solution.

2 2 2 . , . ,
. Solve (x" - 4)p" - 2xyp-x" = 0 und examine for singular solutions and extraneous loci.

Solving for 2y = xp - ;p - ‘B and differentiating with respect to x. we have
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dp 4p 4 dp 1 xQ 2 2 g Lo dp
. Ut = TS G . R L or X -4p 4+ x - X i) 0.
2p P 7 x Pl (p P )p 7 "

From p _xss =0, p=Cx and the primitive is C2(x?=4) = 2Cy -1 =0, The p-discniminant
relation (' y?-4) « 0, and the C-discriminant relationis x%+ =4 = 0,

Now x"+y' = ¢ occursonceinthe p - and C-discriminant relations and satisfies the differential

equation:itisa singular solution. Alsox =0 occurs twice in thep-discriminant relation, does not occur in the
C -discriminant relation, and does not satisly the differential equation: it is a tac locus.

The primitive represents a family of parabolas having the circle «?+ y' =4 as envelope, Sec Figure
fc) below,

Note 1. The two parabolas through a point P of the tac locus x=0 have at P a common tangent.

Mote 2. A curve of the family meets the envelope in the points (t—‘—/E'_E:—lr = .Cl-; thence, only those:

parabolas éivcn by ¢?2 & touch the circle.
|¥

il

Family of parabolas Family of cubic curves
CHaxt-)-20y-1u0, (y+C® » x(x =11

Fig. (c/) Prob. § Fig. /i, Prob. 6

t 2 el i : ;
6. Solve 4xp - (3x-1) = 0and examine for singulur solutions und extrancous loci,

Solving for p = gcg Piap %s'm}. we obtuin by integration y 1(:” - :m) +C;, or

tysCy » x(x-1)", Thep-discriminant relation is =(3x-1)® « 0, and the € -discriminant relation is

2
xX(x = 1) = 0.
Here x =0 is common 1o the two relations iand satisfies the differential equation, that is, x = 0, ';,2 s 0
y

satisfies the equation when written in the form 4x - (3x - oy c;';:’ = 0. It is a singular solution.

3x=1=0is & tac locus since it occurs twice in the p -discriminant relation. does not occur in the € -
discriminant relation, and does not satisfy the differential equation,

x=17°0 is a nodal locus since it occurs twice in the C - discriminant relation. does not
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occur in the p-discriminant relation, and does not satisfy the diflerential equation.
The primitive represents a family of cubics obtained by moving y? « x(x - 1)? along the y-axis. These
curves are tangent to the y-axis and have a double point at x = 1.Morcover, through each pointon x = 1/3

pass two curves of the family having a common tangent there. See Figure (d/ above.
7. Solve ﬁyp’ +4 = 0 and examine for singular solutions and extrancous loci.

Solving for 9y = -4/p?and differentiating with respect 1o x, we have

i'ff and x+C--—s;--

% ) 27p}

de =
Eliminating p between this latter relation and the differential equation, the primitive is y + O
=0,

Thep -discriminant relation isy = 0.and the € -discriminant relation is y’ = 0.Sincey = 0occurs once
in the p-discriminant relation, three times in the C -discriminat relation, and does not satisfy the differential
-equation, it is a cusp locus.

The primitive represents the family of semi-cubical parabolis obtained by moving yerleo along the

x-axis. Each curve has a cusp at itsintersection with the = -axis, and y = v is the locus of these cusps.
See the figure below.

ANNNA

Family of semicubical parabolas

y’ + (x*C)' =0

2 2 : ; ; i
8. Solve x’p +x yp+1 = 0 and examine for singular solutions and extraneous loci.

Solving for y = - ...;- - xp and differentiating with respect to x . we have
=‘p

(1 = x’p')(Zp + x%) = 0.

From 2p +x£ =0, px’ « € and, eliminating pbetween this and the diflerential equation the primitive
15 C’thya-z = 0.

The p -discriminant relation is x’(xr’-ﬂ =0, and the C-discriminant relation is =(xy - 4)= 0.

xy =4 = 0 satisfies the differential equation and is a singular solution.

x = 0 isa particular solution (C = 0). Note that it occurs three timies in the p -discriminant relation
and

once in the € -discrim*nant relation
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9. Examine p’x -2y - 16z = 0 for singular solutions and extraneous loci.

2 2
x

From Problem 4, Chapter 9, the primitive is i O y~-2=0.

The p-discriminant relation is x’{2y34 27x*) = 0, and the C-discriminant relation is 2y% « 21z* = 0.

Since 2y’ + 27x* = 0 is common to the discriminant relations and satisfies the differential equation,
itisasingularsolution. Ateach pointoftheline x = 0, two parabolas of the family are tangent there (for
y < 0,the parabolas are real). Thus = = 0is a tac locus. Also = = 0 is a particular solution. Since it is
obtained by letting € — w, it is sometimes called an infinite solution. Note however that when the
primitive is written as x? - Ky - 2k* = 0.this solution is obtained when K = 0.

SUPPLEMENTARY PROBLEMS

Investigate for singular solutions and extraneous loci,

10, y = px -2p°, Ans.  primitive, y = Cr-2¢% singular solution, £ = 8y,
11. Jr’p:oltp—y =0, Ans.  prim., y’-i:iCx—C’ =0, S5, ol 'Iy’| = 0.
12. "P’ ~2yp+dx = 0. Ans.  prim., Caxz—»Cy +1 =0, ss., J"!-il’ = 0.
2 ; 2 2 3 2 2
13. xp“-2yp+x+2y = 0. Ans. prim., 2x +2C(x-y)+C =0; S5, x +2ay-y =0,
* 2 - 2 2
14, 3y -1y p = 4y. Ans.  prim., (x+C) = y(y-1): ss, y=0 l, y=1/3;
nl, ¥y=1,
15. y = -xp +x.p=. Ans. prim., zy = C+C'x: 5s., lwh!y =0; tl, z =0.
2 y ] 2 2 - 1
16. 2y = p" + 4xp. Ans. prim., (4x”+3xy+C) = 2(2x +y) . noss.;
cl, 2?4y = 0.
17 z 2 - LI, S . .
- y(3-4yyp 4(1-y) Ans. prim., (-C) =y (1-y} ss.. y=LlL cl,y=0
tl; Yy = 3/4,
L] “ 5 " 2 3 ] 2 r
18. p’'-4x ps+8Bx’y = 0. Ans. prim., ¥y = C"=-C'; s55. 4 =27 =0; Ll x=0.
2 7 2
19. (p e+ (x-y) = (x+¥P) . Ans. prim., @-C)'+ (y-C) =C% ss., xy=0; tl. ys=1.

Hint: Use x = p cos 8,
y = psin@,



CHAPTER 11

Applications of First Order and Higher Degree Equations

IN FINDING THE EQUATION of a curve having a given property, (for example, that its slope at any point
i1s twice the abscissa of the point), we obtained in Chapter 7 a family of curves (y = x* + C)havingthe pro -
perty. In this chapter the family of curves will frequently be a family of straight lines, In such cases, the
curve in which we dre most interested is the envelope of the family.

SOLVED PROBLEMS

Find the curve for which:
a) the sum of the intercepts of the tangent line on the
coordinate axes is equal to &.

by the product of the intercepts of the tangent line on the ¥
coordinate axes 15 equal to k. \

¢/ the portion of the tangent lipe intercepted by the
coordinate axes i1s of constant length k,

Let the equation of the tangent line be

y = P+ fp), fp)
:-t;\,:;.j}-lmd y- intercepts being -f(p)/p and f¢py resp- yepz+fp)
a) Since f(p) ~f(p)/p =k, f(p) =-kp/(1-p), and the %
equation of the tangent lineis y = px - —% . o -f®)/p \
This 1. raut equation, the prinitive being the family
of hnes | = x - ,_f_%_: or xC- (x+y=-k)C + y = 0. The required curve, the envelope of the family,

has equation (s + y- k)’ = 4xy or L y"" = ™, Note that this curve is an envelope (singular solution)
since it sutisfies the differential equation and cannot be obtained from the primitive by assigning a value
toC.

by Since fipy[=f(p)/p) = h, fip) = 1V -kp, and the equation of the tangent lincis y =px t V- kp
This is a Clairaut equation, the primitive being

y-Cx = £+ V_Ck or T ¢ (h-20)C + y? =0,
The required curve, the envelope of the family, has equation 4xy = k.
c) Since Ufpm) + {—J‘(;:r),fr.:}ﬂ]]’ls =k, f(py = £ kp//1+p?,and the equation of the tangent line is
y =pxt ip,’-/h—?. The primitive of this equationis, = Cx ¢ th/lc-_C’
Differentiating with respect to Cwe have 0 = x + k/(1+C § i
Then = = 7 h/(1+ €HY% 5 = & 2 kC/1+ €Y7 = 100%/ (10 CY

envelopeis %% &+ y¥9 . ¥ « A1 = O

2)%2  and the cquation of the

= 75



2. Find the curve for wlich:
a) the sum of the distances of the points (a,0) and (-a,0) from the tangent line is equal to k,
h)  the sum of the distinces of the points  (a,0) uand  (0,a) from the tangent line is equal Lok,

Tuke B2 1 , o as the normal form of the equation of a tungent line,

1+p?
\ Y Ny
-t
»
ﬂ‘
-
“ (0,a) 4
ap +f(p)
V14 p?
4
@0) N\ 0 (4,0) N
fa) (b
a) The distances of the points (a,0y and (=a, 0) from the line are 22SB) 0y 9P + f(2) respectively.
l-olg.u‘l lL+p
Thus, 2‘”": =k, f(p) = $kv1+p?, und the equation of the tangent line is y = px + ik./hp!. The
1+p

primitive of this Clairaut equation is
y s Cx+ 3k /s C?: or (422 - k%)C? - 8xyC + ay? - k% = 0,
The required curve, the envelope of this family of lines, has as equation x? + y2 = 1%,

b)  The distances of the points (a,0) and (0,a) from the linc are ?f-ﬁ;—l and Za+fip respectively,
l+p 1+ p’

- 2 ; o
Thus, stivap« 2/ =k, ftp) = 3(kV1+p? - ap + a], und the equation of the tangent line i1s

I¢p=
y=pr+ 3(kV1+p% —ape+a), The primitiveis y = Cx+ §[k/1+ C? —aC+a).
Differentiating with respect toC, we have 0 = x + 3 [kCA/A+ CT - o).

Then z = - ﬁ[kC//h c -a), y= s[k//1+C%+a), and the envelfope of the family of lines has

equation x3+y? —ax—ay = k(k?-22%),

3. Find the curve such that the tangent line at any of its y
points P bisects the angle between the ordinate at P and
the line joining P and the origin. Ptz,y)
Let @ be the angle of inclination of a tangent line and ¢ =
be the angle of inclination of OP. Then. if ¥ is the foot 90°-¢
of the ordinate through P, 90°- 8
angle OPM = 90° - ¢ = 2(90°-8) = 180° - 26.
Now tan(90°- ¢) = cot ¢ = tan(180°-26) = —tan 28 ¢ e s
and tan¢ tan 28 = - 1. 0 / M

Since tan ¢ = y/x and tan g= y'=p, we obtain the
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differential equation of the curve % . —E-L: = -1 or 2y = xp - z/p. Differentiating with respect to
; 1-p
£ rpogtxs :;ag- ptp?+1) = 56"+ DE. and xdp - par = 0.
Integrating, Inp = lnx + In C or p = Cx, Substituting for p in the differential equation, we obtain
the family of parabolas C%? - 2Cy =1 = 0.

Find the shape of a reflector such that light coming
from a fixed source is reflected in parallel rays.

Let the fixed point be at the origin of coordinates ) 137
and the reflected rays be parallel to the x-axis. The
reflector is then a surface of revolution generated by P&,y fxiy)=0
revolving a curve f(x,y) = 0 about the x-axis. Q

Confining ourselves to the xOy plane, let P(x.y) / ]
be a point on the curve f(x,y) =0, TPT' be the i e
tangent line at P, and PQ be the reflected ray. Since 0

the angle of incidence is equal to the angle of ref-
lection, it follows that ZOPT = ¢ = LQPT',

Now p = 4. tan ZOTP = tan @ and tan ZTOP = tan(n-2¢$) = -tan 29 = pu 18 ol
dx 2 x
1-tan‘g
hence, L « —2E_ or 2c = L-yp,
2t P

) e 2 13 dp dp dp _ _ dy ¢
D at th respect to . 2ab.E -p- and o = £ . Then, . a

ifferentiating wi pec % 37 g P yd! b 3 en, p = &
Eliminating p between this relation and the original differential equation, we have the family of curves

y? = 2Cx + C%  Thus, the reflector is a member of the family of paraboloids of revolution y? + 2% = 2Cx +
nt

SUPPLEMENTARY PROBLEMS

Find the curve for which each of its tangent lines forms with the coordinate axes 4 triangle of constant
areaa?, Ans. 2xy = o?

Find the curve for which the product of the distances of the points (a,0) and (-a,0) from the tangent lines
is equal to Ans. kx? = (k+a?)(k-¥?)

Find the curve for which the projection upon the y- axis of the perpendicular from the origin upon any
tangent is equal to &, Ans. x2 = akik -y)

Find the curve such that the origin bisects the portion of they-axis intercepted by the tangent and normal
at each of 1ts points. Ans. 22+ 2Cy = C?

Find the curves for which the distance of the tangent from the origin varies as the distance of the origin
from the point of contact.

o g 142
Hinl: ————— = kp. Ans. p =Ce *

vo?+ (dp/d8y



