CHAPTER 23

Applications of Total and Simultaneous Equations

WHEN A MASS a moves in a plane subject to a forceF, its acceleration continues to satisfy Newton's Second
Law of Motion: mass x acceleration = force, '

To obtain the equations of motion, when rectangular coordinates are used, consider the components
of the vectors force and acceleration along the axes. The components of acceleration a_and a, are given by

dx d'y
.S = -——*n .’ = —'-
dt dt

and, denoting the components of the force by F, and !, » the equations of motion are

2 2
m -d—-‘! = f: . m g_}’ - "
det det g

COMPONENTS OF F IN RECTANGULAR AND POLAR COORDINATES.

In polar coordinates, the corresponding equations are

2 ) 2
42 _ %ty . ¥ b, 46,
'.'{dt! P(df) } 5 ’ m{2 dé di + p de? } F‘ [

where F, and Fg are the radial and transverse components of force, i.c., the components along the radius
vector at P and a line perpendicular to it. ?

SOLVED PROBLEMS

1. Find the family of curves orthogonal to the surfaces =* + 2y' + 42° = C.

Since %%+ 2y"+ 42%= C is the primitive of the total differential equation
xds + 2ydy + 43ds = 0,
the differential equation of the family of orthogonal curves is

& & . &
= P o (See Chapter 22, Problem 31.)
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Solving & .9 wehave y = Ax®, Solving dy . 4% wehave 1 = By?.
x o &y 4x

The required family of curves has equations y = Ax®, z = By®,

Show that there is no family of surfaces orthogonal to the system of curves
-yt =ay, xty=bs

Differentiating the given equations and eliminating the constants, we have

2 .1
ds - ydy = =L dy, dx+dy = oI ds,
I
; dx dy o eyt T
The first can be written as = . Solving it fordx, ds = =12 dy, and substituting in the
2 2 : 2x
Yy : g Y
2, .2
second, we have (S—2- + 1)dy = Ia or & . ds
_ 2xy z 2y (£ +y)2
Thus, the differential equations in symmetric form of the given family of curves are
P N

eyt Ty (x+y)2
Since the equation (z*+ y*)dx + 2xy dy + (x + y)zdz = 0 does not satisfy the condition of integrability,
there is no family of surfaces cutting the curves orthogonally.

. The xz-component of the acceleration of a particle of unit mass, moving in a plane, is equal to its ordinate
and the y- component is equal to twice its abscissa. Find the equation of its path, given the initial conditions
x=y=0, dr/dt =2, dy/dt=4 when t=0.

d’ d*
The equations of motion are .y, e,
dt? dt? . .
Differentiating the first twice and substituting from the second, 5—: = d—-'-:- = 2 and
dt dt
z = C.e“ + C.'.c""'t + Cq cosat + C, sin at, where at = 2.
d’x £ t
Then, y = - a?(Cye®® + Cye™®' - C,y comat - C, sinat),
dt
:_‘: . u(C;-“ - C.c'"c‘t -~ Cy sinat + C, cos at),
and % . o (that - C,c'“ + Cy 8inat - C, cos at),
Using the initial conditions: Cy+ Ca#Ce=0, Cy+ C3=Cy=0, Cy=Cq+ Cu= g- G-Cg-Cs= ~4—5 '
a
2 2
Then C"-‘C"n’z. c'lol and c‘_a—Z_
2’ a
The parametric equations of the path are:
L) L)
REVOR, N ThCLIp ¢ (N 4(2-v3) V3 sin V3¢,

y i(hﬁ).}éaﬁ' - e'ﬁ') + §(2-v2) VB sin V3t
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A particle of mass m is repelled from the origin O by a force varying inversely as the cube of the distance
pfrom O. If it starls at p=a, & =0 with velocity v, perpendicular to the initial line, find the equation of
the path.

2
The radial and transverse components of the repelling force are: LA % = !;' =0,
. P
o8y i’ dodf _d'% '
H €, - B — —) =
enc n( dt) ) £ 2= - T o dt'J 0
d%. 9 2 A d% do d@
0 —— 2 —_ —_— - = s
e 0 5F - i 1 PR AT R "
Integrating 2), p :_6 = Cy.When t=0, p =a and pd_e = vg; then €y = ayy and :—f = ._?
% A a? i
Substituting for m ), =£ « 23X , 2. Multiplying by 2%,
di? 2 P dt
22 .12 N
:,f—f-25-—!9—;—-t—§ and (‘;E)’u A RN :i + Cy
P p
8 4
When t=0, p=a and'ﬁn 0; then Cq = S ER and
dt . !
]
Pt o Fd e i d Ly o pel-a
& (uuo*h)(n' P” (a"vo + )‘P’
112 : 1, 2 /T80
Dividingby (& . 23, oy . Weerkrg-a) £ o8 g 2, Aarnrh gy
L e a6 a'vo p/pt-al a'u
Integrating, .:-arc mg = '—"—l:i-:—i-— € + Cqu
e v

Va ug+h

When t<0, p=a and 8=0; then Cg=0and g = aue..-.;;;-_-o. '

A projectile of mass & is fired into the air with initial velocity w, at an angle & with the ground. Neglecting
all forces except gravity and the resistance of the air, assumed proportional to the velocity, find the position
of the projectile at time ¢,

In its horizontal motion, the projectile is affected only by
the s-component of the resistance. Hence,

y

d's ds dx d's ds
1 L G e - R, O
Pommgealip a el o Or = e mkips

Kv
In its vertical motion, the projectile is affected by gravity i -
and by the y- component of the resistance. Hence,
2 @ ~ z

2) u-—l‘-l“-‘z or d_.z-..._j;‘z. 0

d‘ d' d" dl
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Integrating 1), ‘d% = - hkx +Cy and x = i Cy + C,a'".
Integrating 2). & & gt - ky + K, and y = 3!{, i g™ . “it - .!'.;,
dt k k L

Using the initial conditions z =y =0, % = yg cos &, % * vy 8in § when t=0:

1 1
C.-ug__rﬂ. c,--%».,co-a; Ky = vo 8in 8, K.--;volina-;;g.

kt

Thus, x = E(u,, cos B)(1l-e¢ ), y= E{(f + vp 8in 6)(1 - Pl T gt).

. Two masses, =, and ay, are separated by a spring for which k = kg ¥u~! and a, is
attached to a support by a spring for which k = ky Na=! as in the figure. After the
system is brought 10 rest, the masses are displaced a metres downward and released.
Discuss their motion.

Let positive direction be downward and let x, and x, denote the displacement
of the masses at time ¢ from their respective positions at rest. The elongation of the
upper spring is then z, and that of the lower spring is x4-x,.The corresponding
restoring forces in the springs are

—kyxy + hg(xg-24) actingon m,
and —hg(xg=121) acting on mg.
The equations of motion are
d d’:
' —.’J- = - hyxy ¢ hg(rg =x4) and [ —: = = ky(xg =xy)
dt dt
or 1) II:D’* (ky+hg)lxy - hgxq = 0 and 2) l'.lo’*hl}’l = kgxy = 0,

Operating on 1) with (gD + kg) and substituting from 2),
2 2 2 ] 2 2
{..D + *')(I;D + *I* *.]S-‘ - h](l‘D + *]}" = (w + h.}('io + kl'i' h.,‘l - h'll = 0
or (D' + (h*-‘l + h)D’ + bil‘.];l = 0.
ny L] By Ry

Denoting the roots of the characteristic equation by %ia, i3, where

+
ny Ry Ry

o, B - 4

_(b' ilo&l) *J(hl’h!+h)’_4hlhi
By L Ry

{at -i8t

+ C,c"” + Cye and

2 2
oy ;1*-(!;9’* b b » kyt kg -ma {c“{-t+qc-dnt’ : h!\sl,_ﬂé c"iﬂt+c.‘-lﬂt)
*

Xy C;cht + Cqe

b' l’
. mc“i-r " C.c"“') . wc"ur " C“—iﬂtJ_
Using the initial conditions xy=x4=a, %1 = :_'.!. =0 when t=0,
t

2 o 2
oo G oo S%h o ShacmB, 44 ¢ . o = - SducAl,,
2Vv-u b 1 ﬂ"ﬂ' =, d.'-ﬁ
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7. A uniform shaft carries three disks as in the adjoining
figure. The polar moment of inertia of the disk at either end
is I, and that of the disk at the middle is 47, The torsional
stiffness constant of the shaft between two disks (the
torque required to produce an angular displacement
difference of one radian between successive disks) is &,
Find the motion of the disks if a torque 2T stnwt is -«
applied to the middle disk, assuming that at ¢t=0 the
disks are at rest and there is no twist in the shaft,

Attime t, let the angular displacement of the disk at either end be 6, and that of the disk at the middle
be 8,5+ The differences of the angular twists of the ends of the two pieces of shaft, from left to right, are
Bq~ 6, and 6, ~ 6,. The restoring torques acting on the disksare  k(8, - 6,), k( 6y = 6,) = k(6,-6y) and
k(8- 8,) respectively. The net torque acting on a mass when rotating is equal to the product of the
polar moment of inertia of the mass about the axis of rotation and its angular acceleration; hence the
equation of motion of the middle disk is

g .
1) 41 q‘ * k(6,-6y) - k(Gy=-6y) + 2Tysinwt or tiID’+t)9. = k6, + Tosinwt
dt
and that of either end disk is
d’ ]
2) I—t = p6,-8y) or (ID"+ k)8, = k&,

di?
Operating on 2) with {HD' + k) and substituting from 1),

[2101* .)(ID’*‘ i)&; = lf!ID'* k}ﬂ. = i’ﬂ. b rgh sinet, or

3) D'@r’n" + 3&D)6;, = Tok sinwt.

The characteristic roots are 0, 0,ai, ~ai, where of « 34/2I, and

4) 6y = Cy+ Cat+ Cgcomat + C,sinat + Z'!.l a:nu{
Jw (2w - 3k)

= Cg+ Cgt + Cgcos at + C.8in at + —L'— 8in wt,
21'&:’(& -a)

From2), 6, = (‘Eo'onat and

2
5) Ba = Cy+ Cat s Cyg(l- za')cu at + Cy(l = Iu’]un at + —k=Bwl . .
k k 21"&:'(0 -a)

From 4) and 5), we obtain by differentiation,

4') :—fﬁ = Cy - Cya 8in at + Cya co8 at+—r?-h-__..cum. and
wlw -a’)

57 d—?ﬁ = Cq = Csa(l = { u')un at + C,a(l - £¢'3cu at + M cos wt,
dt k k 21'&(@’ -ah

Using the initial conditions 6y = 8¢ = 0, ;:21 . gg.-. =0 when a0, wehave C,+ C, = 0,
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2
Cy + Cof1- i“’) =0, Cq+ Cia+ ol - 0, and Cy + Coa(l- {B')* Tok-Twl _,

At -ad) 't -ah
Then Cl L C' = 0, C.. - —'—M—"'l C. = —TLP
3la(w!-a?) o
8. ' IE(E & a® sin wt _w sin at ) » &(g & a’ sin et -u, sin at)' and
! MY Pw'-ah a(w? = a?) U w w'(w'-a’)

& W s To(a sinwt - w 8in at)

2la(at -a?y

. The fundamental equations of a transformer are

1) u‘i:i+L,j—:t+n,;'. .0 3 l:—:!+£.,:: ¢ Ryiy = E(t),

where iy(t)and i4(r)denote the currents, while #, Ly, Lgs Ry. Rq are constants.

Assuming M® < LiLs. show that
2,

A) by -wHE2
dt

¢ BLyeRLOTE ¢ RiBaiy = RE) + LE'®),

2. .
B) (ale-WHZ32 « m‘t.m.a.:%! ¢ RiBgia = - ME'(D).
dt

Solve the system when E(t) = E5, a constant.

Differentiating 1) and 2) with respect to ¢,

1. 2. ’ 2. 2. 5
) ydia,p 9, p % .0 9 ud_‘l+1.,".—:*-+n,§‘-t-s'cn.
de? de dt de* dt ¢

Multiplying 3) by ¥ and 4) by Ls, and subtracting,

1. 4 3
Lule-WH33L o« AL, 32 - 4, St o 18",

dele dt dt

Subtituting for :_:n from 2), we obtain 4.
Multiplying 3) by Ly and 4) by M, and subtracting,
] s 4

_yhd s dig _pu® . _uNE'
(LoLg-¥ 2 Rals 5 k. )

Subtituting for :—:l from 1), we obtain B).

2. ;
When E(t) = Es, equation 4) is (L,,L.-u'}i%t + (ﬁsl--*ﬂ.h):—:i + RyReiy = Rebo.
de

T
Let a, B = § ~(Ryly+Roly) ¢ V(AL -'R..L,) + WMCRyRy denote the characteristic roots.
L‘L. = "
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Then ig = C.c"t + C.c‘" > 2

Ry

To find iy, multiply 1) by # and 2) by L,, and subtract to obtain

WRyis = (Lila-MHSE o Ly, - Liko.

Then ig = H-;—[cL,L. WY @Cye*t s BCe®") + LoRy(Cre®t s Gueh)).
: ]

Note that since ¥ < LyLy, botha and S are negative. Then after a time, the primary current béecomes
approximately constant = £o/R, and the secondary current ig becomes negligible.

9. A moving particle of mass a is attracted to a fixed point O by a central force which varies inversely as

the square of the distance of the particle from 0. Show that the equation of its path is a conic having the
fixed point as focus.

Using polar coordinates with O as pole, the equations of motion are

2 H 2 2
1) .[d_g-p{f)’] ™ -.-x- = --..-t- or d_p_p(:_f)! = _L,
dt

dt H H 2

P P dt o'
dpdo  d'8, odo, dl
2) -[26'34,9‘“’] 0 or e +p“’ 0.
d_ 2 df = g db s
From 2); a-;(ﬂ a"‘;) 0 and y=l E = C;l
] B dn—a = CJ = 2 2 = éﬂ g L -!_ f d—a . - c 2.
Let o= 5+ Then b Gy o do dt ot dé dt b
i'ﬁ' = i(-c 'b)- : =C ﬁ!f = -Clt ﬁ'. Substituting in 1) and simplifying, we have
@t - I a0 ' ag? @ v '
N d k . B . :
1Y) s =, 8 linear equation with constant coefficients. Solving,
d8 s
'S 1 g{zt'
o= c. col(ﬂd-C.] + — or p = = -
o s : A
— + Cgcon(84Cy) 1+ cos(8+Cy)
[ ¥
Writing c.’/l' =], Ic,c.’/k'] = e, Cq=a, this becomes p = -——-'—-—. the equation of

1%econ(fsa)
a conic having 0 as focus.
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SUPPLEMENTARY PROBLEMS

10. Find the family of curves orthogonal to the family of surfaces deytentac

12.

13.

14.

Ans. y =Ax, 3 =By

Find the family of surfaces orthogonal to the family of curves y = Gz, x°+y*+ 2:* = ¢,.
Ans. P Cl{l:l - y.)

A particle of mass = is attracted to the origin 0 by a force varying directly as its distance from 0, If it
starts at(a,0) with velocity vy in a direction making an angle 8 with the horizontal, find the position at
time t.

Ans. s-acmhl-tw

sinkt,

,.'_"9_!53..9.;“,

The currents iy, ia, § = i, + i, ina certain network satisfy the equations
diy

1 .1
200 + O pr

=5 - 41 4+ iy + 10009y = 1.
Determine the currents subject to the initial conditions i = iy = iy = 0 when t = 0.

2
Hint: Use iy = da, to obtain 8 & 240 %5 40,0009, = 0.
dt dl* dt

1 -120¢

Ans. iy = = i' 120t 1 -1208

sin 160¢, iy = iu - ¢ con 160¢) + ge ' s1n 160t

Initially tank I contains 400 | of brine with 100 kg of salt, and tank II contains 200 | of fresh water.
Brine from tank I runs into tank II at 12 I/min, and from tank IT into tank I at 8 I/min, If each tank is
kept well stirred, how much will tank I contain after 50 minutes?

Hint: g4 + g4 = 100, ... W, Ans. 34-375 kg.
dt 504t 100=t



CHAPTER 24

Numerical Approximations to Solutions

IN MANY APPLICATIONS it is required to find the value ¥ of y corresponding to x = xo+h from the
particular solution of a given differential equation

1) y' = f(x,y)

satisfying the initial conditions y = y, when x = xo . Such problems have been solved by first finding
the primitive )

2) y = F(x) + C

of 1), then selecting the particular solution

3) y = 4(x)

through (xo,¥,) and finally computing the required value y=g(xo¢h)

When no method is available for finding the primitive, it is necessary to use some procedure for approxi-
mating the desired value. Integrating 1) between the limits x =x,, y =y, and x=x,y =y we obtain

=
4) Y = Yo + I f(x,y) dx.
Xo

The value of y when x =x,+h is then
.ﬁ+h

5) ¥y = yo * f f(x,y)dx.
X

The methods of this chapter will consist of procedures for approximating 4) or 5).

PICARD'S METHOD. For values of x near x =xq the corresponding value of y = g(x) is neary, =
#(xo). Thus, a first approximation y,of y = g(x) is obtained by replacing y by yoin the right member
of 4), that is,

~X
Yy = yo 4 J £(x,yo)dx.
*o

A second approximation, y, is then obtained by replacing y by y, in the right member of 4), that is,

x
Y = Yo + _f f(x,y,)dx.
£

Continuing this procedure, a succession of functions of x
Yor Yis ¥Yesy Yas ***-* o

is obtained, each giving a better approximation of the required solution than the preceeding one,

See Problems 1-2.

Picard's method is of considerable theoretical value. In general, it is unsatisfactory as a practical means
. of approximation because of difficulties which arise in performing the necessary integrations.

186
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TAYLOR SERIES. The Taylor expansion of y = g(x) near (xo,¥o) is

6) ¥y = g(x0) + (x-x0) d'(x0) + %(x-xa ¥ g"(xe) + gu-xc)’z'(xo) Faeen

From1), y' = g'(x) = f(x,y); hence, by repeated differentiation,

of | 3f dy ?f af
F = i = e b omm ot = e £
¥ arx) Ix 9y dx ox i Ay
d  of of 2 ?,,0f of.
= X) = —(=— +fZ) = (= + f=)(— + F—
7) g (x) dx(Bx By) (Bx t By)(ax + 31')
%F . of 4 .
. of of of 3f+ﬁaf)a+!zaf' B
Ix ox dy . 9xy oy ¥yl
2 2 F
For convenience, write p = -.2-{ qg= a—'f. r = —f. s = 2 f. t = o f and
x oy Jied Xy 3}_2

Let £, pPo,qo,++ denote the values of £,p,q, - al (Xo,¥o).Substituting in 6) the results of 7)

and evaluating for x =x,+h, we obtain

8) P W g § il b %h’(ph o8-8 4 éh’(r°+ Po'Go + 2580+ Fo-ap + 3+ 1,)

This series may be used to compute ; it is evident, however, that additio nal terms will be increasingly
com A
omplex Sce Problems 3-4.

FIRST DERIVA ' IVE METHOD. A procedure involving only first derivatives, that is, using only the first
two terms of Taylor series, follows.

(

Cc

Q

Yo N
M x

0 : © Zg+h

As a first approximation of ¥ , take the first two terms of 8)
¥ x Yo+ hf(xo,¥0)-

To interpret this approximation geometrically, let PQ be the integral curve of 1) through P (X0,¥0) and
and let O be the point on the curve corresponding to x = xo+h. Then¥ = ¥Q = Yo+k. If & is the angle of
inclination of the tangent at P, then from 1) tan 6 = f(xs,¥s) and the approximation

—25 Yo+ hf(xg, yo) =LP + htanf = WN+ NA = NA.
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To obtain a better approximation, let the interval LM of width Abe divided into n subintervals of widths
hy,hy, .+ hy.(In the figure, n =3,) Let the linex = Xothymeet PA inR(xo+hy,yotk,) = (x4,¥4).
Then

Yi = Yot ky =2 yo + hy £(x5,¥5).

Let RS be the integral curve of 1) through R, and on its tangent at R take T having coordinates (x4
+hy, y1tkg) = (x4.¥4). Then

Ye = Yyt ke = yy + hyf(xy,y,) = ¥y + hy f(xgthy, yy+h, £),

After a sufficient number of repetitions, we reach finally an approximation MC of ¥ Q. It is clear from
the figure that the accuracy will increase as the number of subintervals is increased in such a manner that
the widths of the subintervals decrease. See Problems 5-6.

RUNGE'’S METHOD. From 5) and 8) we obtain
%ob
9) k = F-y, = f f(x,y)dx
o

= hf;+ %h!(n, + foq,) + éh’(r, +PoGo + 258, + foq; + f:roj ¥ oresenran

Assume for the moment that the values Yor¥1., Y2 of y = g(x) corresponding 1o X, Xy= Xg
+4h, xq=xo+h are known. Then by Simpson's Rule,

Kot b h
. 10) k = j,; f(x,y)dx = g“('o Yo) * 4f(xo* %h, y,) + f(x,+h, yy) ).

Actually, only y, is known. Runge’s Method is based on certain approximations yand y,,
Yi & yo # ihr(xnryo) = Yo v *hf0|
Y = Yo + hf(xg,th, Yothfy),

chosen so that whenk, found by 10, is expanded as a power series in A the first three terms coincide with
_those of the right member of 9). Thus 10) becomes

1) k & g{f, t4f(xo+ dh, yo+ $hfo) + Flxgth, yo+hf(xoth, yo+hfy)]).

These calculations are best made as follows:
kl = hfo. k' = hf(x°+h|y°+kl). *' = hf(-'l'oh‘l.yoik.). k‘ | -hf(xo"’!h.yo"’*k;}.
k = é(k|"‘4k4*k.)-

Note. Since the approximation of k obtained here differs from the value as given by 8) in the terms
containing powers of h greater than 3, the approximation may be poor if f5 > 1.
See Problems 7-11.

KUTTA-SIMPSON METHOD. Various modifications of the Runge Method have been made by Kutta.
One of these, known as Kutta's Simpson’s Rule uses the following calculations:

k, =hf,, kg = hf(xo+4h, Yotiky), kg =hf(xo+4h, yotiky), k, = hf(xo"'hn}’o“kt)n

k % dlka+ 2Ky 42y 4k, See Problem 12,
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SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS. Approximations to that solution of
the simultaneous differential equations

% = f(x,y,1), g& = g(x,y, 1)
for which y =y, and 2 = £, when x = x,, may be obtained by the use of Picard's Method, Taylor Series,
Runge’s Method, or Kutta-Simpson Method. The necessary modifications of the formulas given above

are made in Solved Problems 13-14. Further extensions to three or more simultaneous first order equations
may be readily made.

DIFFERENTIAL EQUATIONS OF ORDER n . The differential equation

nal

dl'l
L=ty oyt ey
dx

2
where y' = %- y'= i—f. «++ymay be reduced to the system of simultaneous first order equations
dx

g'yil m.y‘l ''''' Oéz'm'=yﬂ._ll %l.'l"f(‘lY!PSrY!P""'lyﬂ-l)l

When initial conditions x=xo, ¥=¥5, ¥'=(¥1)os ¥"=(¥edo, ***s ¥" " =(yaqy Jo are given,
the methods of the preceding paragraph apply,

2
ExamMPLE. The second order differential equation d—t} B hg - 4y = 0 is equivalent to the system
dx
of simultaneous first order differential equations

d
© Lo, % -y - 2, See Problems 15-16.

SOLVED PROBLEMS

1. Use Picard’s Method to approximate y'whcn x=0.2, giventhat y=1 when x=0, and dy/dx=x-y,

Here f(x,y) = x=-y, 2020, y0=1. Then

; x
Yi = Yo ¢ .g flx,y0)dx

i .
1+-£(:-l)dz = ;;’—:* 1,

"
—
+

X x
Yg = ¥ ¥ J; f(x,yy)ds L(—%sl+2s-l)d: = -éx"+ ::-x+l.

x
Ys» = Yot _£ flx,yp)dx = 1

+

f[%-:’-x’oh’-l)d: = %x'- E:-x"' 52w 1,

% x ] . 5
Yo = Yot ,f; flzaygddx = 1+ L (= -El;x'o %:5-x’+ 2t < 1)dx = -fi b':—z-%-oz’—sﬁl.
Y = Lga-lx‘+—l;‘_£"+xn_x¢1. sesssasan

120 60 12 3

When £=0.2, yo=1, yy=0.82, yo=0.83867, y,=0.8374C, y.=0.83745, ys = 0.83746.
Thus, to five decimal places, y = 0.83746.
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Note. The primitive of the given differential equation is y = x -1+ Ce™*, The particular solution
satisfying the initial conditions x= 0,y =118 y = x -1+ 2", Replacing ™* by its MacLaurin series,

: 1.3 e 1 5 1 ) :
we have O (g, . 7= VI . 4 — tessensans . Upon comparing this
4 3 12 o o ' P e

with the successive approximations obtained above, it seems reasonable to suppose that the sequence of
approximations given by Picard's Method tends to the exact solution as a limit.

Use Picard’s Method to approximate the value of y when x=0.1,given that y=1 when x+0, and
dy/de = 3x+ y2,
Here f(x.,y) = 3x+ y:, %0, yo=1. Then

x'tx!-!.

¥ 4 x
Yo" J’o*L(axi-y:)dt . 1+_£¢3:+I')dx .

x x
Ye = ."o*J; (azoy:)dx - 1+J; {%s'+a:’+u’+5:+nd: =

x
81 10 27 9 14l 8 17 7 1157 6 136 5 125 » 3
Yo = 1+ L(mx ol R B R o Sl + Bz + 8x + 1)dx

—al :11 * ﬁ!m * ﬂx’ + E‘l + —1'1'5",:lr +* ﬁx‘ * E.t, + Ex‘ + 2:’ + El” + x+ 1.
4400 400 240 32 1260 45 12 12 2

Whenx=0.1, yo=1, yi=1,115, yg=1,12684, yg=1.12721,

3. If g = x -y, use the Taylor Series Method to approximate y when:

a) x=0.2, giventhat y=1 when x=0.
b) x=1.6, giventhat y=0,4 when x=1,

a) Here y =g(x), 8(x0) = 1, Y=g = -y, g%(x) = -2,
y' = gl(x) sx-y, g'(xo) = -1, vy gy oy gxe) = 2
¥ =g = 1-y's g"(xa) = 2, Y org ) =y g'() = -2, etc.

and equation 6) becomes y = 1 =x + x° - -;- P R %x‘ 3 % %2 -4 sasssves, Then
¥ o* 1-0.2+0.04 - %(o.ooa} N .llz(o.oom = %m.oooa:; + +er 2 0.83746. (See Problem 1.)

b) Here g(xo) = 0.4, g'(x0) = 0.6, g"(x0) = 0.4, g"(xo) = -0.4, gz 7(xo) = 0.4, elc.,
and equation 6) becomes

H 5 L) L] b
y = 0.4 + 0.6h+ 0.4%-0.1-%*0.4%—0.4{%*0.‘%4 sevesore, where h = x-3g.

When x=1,8, h = 0.6 and

¥ = 0.4 + 0.6(0.6) + 0.4(0.18) ~ 0.4(0.036) + 0.4(0.0054) - 0.4(0.000648) + 0.4(0.0000648)

* sernnnnans

= 0,81953.



NUMERICAL APPROXIMATIONS TO SOLUTIONS 191

4. If g « 3+ y?, use the Taylor Series Method to approximate y when:

a) x=0.1, giventhat y=1 when x =0,
b) x=1.1, giventhat y=1.2 when x~=1.

a) Here (xo.y0) = (0,1)s g(xg) = 1,

y' = g'(x) = 3xs+y?, g(xs) = 1,
y" = g"x) = 3+2y', 8"(xg) = B,
y* = gmx) = 2000 +2yy", g7(x0) = 132,
y ¥ e g = eyryrs 2y, 8V () = 54,
Y o= gVx) = 6(yMT+ Byly”+2yy', g (xg) = 354, and 6) becomes

y = lL+x+ %xi * 2:50 %x' + %'5 + sssevessnses, When z = 0.1,
F = 140.1¢0,025+ 0,002 + 0.00022 + 0,00003 + +++=++ & L 12725, (See Problem 2.)

b) Here(xo,¥0) = (L,1.2), Bg(xo) = 1.2, g'(%0) = 444, g"(x5) = 13,856, g"(x0) = 72.202,
8" (x0) = 537.078, g"(x0) = 4973, ++e++e+ees,  and 6) becomes

A % A K’
= 1. . 13. —_ 13, _— ' -— T3 —— 4 ssasssnnnnns 0
Y 1.2 ¢ 4.44h + 13.8656 2 + 202 + 537.078 7% 49 12 '

whereh = x =25, Whenx=1,1, h=0.1 and
= 1.2+ 0.1(4.44) + 0.01(6.828) + 0,001(12.03) + 0,0001(22.4) + 0.00001(41) + -+ & 1.7270.

K, Use the First Derivative Method, with n = 4, to approximate y when x=1.1, given that y = 1,2 when
x=1 and dy/de = 3x +y?, See Problem 4b.

Here h=0.1 and we take hy=hgnhg=h, = 0,025, Weseek yo+ kat kg+ kgt hy = yo+ koo

a) (f0.¥0) = (1,1.2), hi‘. = 0,025, f(‘o:,'o) = 4,44, h; - h;_f{xo.yo) = 0,111;
Y3 = Yo + ky = L,311,

b) (x1,¥s) = (1,025,1,311), hg = 0.025, f(x1,¥1) = 4.7937, kg = haf(xy,yy) = 0.1198;
) Y2 = Y1 + ks = 1.4308.

¢)  (%a.¥s) * (1.05,1.4308), hg = 0.025, f(xg,ys) = 5.1972, ks = haf(xa.yq) = 0.1209;
Ya = yg * kg = 1,5607.

d)  (xs,ys) = (1.095,1.5607), ha = 0.025, f(xs.¥s) = 5.6608, ks = huf(xa,ys) = 0.1415;
Y m ys + ka = 1.7022,

6. Use the First Derivative Method, with n = 4, to approximate y when x = 1.4, given that y =0.2 when
x =1 and g = (x%+ Zy)ﬁ.'
Here h = 0.4 and we take hyshg=hy=h, = 0.1,
a} (xDIyO) * (110-2)' hl ™ Otll f(xn-)'ul L Vl-‘ = 1. 183. *I. - h;f(lo.yo) - 0.1133;
Y1 = Yo + ky = 0.3183.
b)  (xq.y1) = (1.1,0.3183), hy = 0.1, f(xy,yy) = 1.359, ky = hgof(xy,ys) = 0.1359;

Y2 = ¥y + kgt = 0.4542,
c) (xg.¥2) = (1.2,0.4542), hy = 0.1, f(x"y'j = 1,532, bk, = hlf“lr"i) = 0.1532;
Yo = yg + kg = 0.8074.



NUMERICAL APPROXIMATIONS TO SOLUTIONS

d} ‘InJ‘u) » (103v00m1‘). h‘ - o-lp f{‘.t’l)‘ - luTO‘. *4 o h;f’t‘..}".) L 0. 1104:
F x ya ¢ i& L 0-171"

7. Use Runge’s Method to approximate y when x = 1.8, given that y=0.4 when x = 1and dy/de = -y,

(See problem 35.)

Here  (xo,y0) = (1, 0,4), h'= 0.6, fo » 1-0.4 = 0.6. Then
ky = hfy = 0,36,
kg = hf(xo+h, yo+ky) = 0,6[(1+0,6) -(0.4+0.36)] = 0.504,
ky = hf(xo+h, yo+hg) = 0.6[(1+0.6) -(0.4+0.504)] = 0.4175,
ke = hf(xot3h, yor3k,) = 0.6((1+0.3)-(0.4+0.18)] = 0.432,

N % -;(l,+4k.+t,) . é[ﬂ.“*‘l(ﬂ.ﬂﬂﬂ0.4116]-0.4178. and F = yo+ h % 0.8176,

The difference between this approximation and that found in Problem 3b arises from the fact
that A = 0.6, In finding the value of y when x=1.1, (that is, h=0.1 ), the Taylor series gives

Y = 0.4+ 0.6(0.1) + 0.4(0.005) = 0.4 (0.00017) + 0.4(0.000004) = ++esseeseens ay 0. 48193, while
by Runge's Method

ky = 0.1(0.6) = 0,08, kg = 0.1¢1.1-0.46) = 0.064, kg = 0,1¢(1,1-0,464) = 0.0636,
ke = 0.1(1,05-0.43) = 0,062, k= é(h. + 4k, + k) =0.08103, and % 0.46193.

Use Runge’s Method 1o approximate y when x=0.1, given that y =1 when x = 0 and dy/ds = 3+ y?,

Here (%.%) = (0.1), h=0.1, fo =1. Then
ky = hfs = 0.1,
ky = hf(xosh, yotky) = 0.1[3(040.1) +(1+0.1)°) = 0,151,
ky = hf(xorh, yorky) = 0,1[3¢0+0.1) +(1+0.151)%) =« 0.16248,
ke = hf(xordh, yossky) = 0.1(3(0+0.08) + (1+0.08)°) = 0.12525,

k= -;thuuuh:) = %[0-1*4(0.12525)60. 16248) = 0.12725, and § = yo + k A 1,12725,
' (See Problems 2 and 4a.)

. Use Runge's Method to approximate y when x = L1,given that y=1.2 when x=1 and dy/dr = 3x+ y?,

Here (20.¥0) = (1, 1.2), h =0.1, fo = 4.44. Then

ky = hfo = 0.444,

ky = hf(xoth, yotky) = 0.1(3(140.1)+ (1.2+0.444)'] = 0.600274,
ks = hftxgth, yotke) = 0.1(3(1+0.1) + (1.24+0.60021)7] = 0.8654087,
ko = hf(zotsh, yordky) = 0.1[3(1+0.05)+ (1.2+0.222)°) = 0.517208,

k= éctuu.u,) = é{o.«huo.snm) + 0.654097) = 0.527822, and
¥ = yo+ hk a 1,727822.

Comparing this result with that obtained in Problem 4b, it is to be roted that the approximation is
better than might have been expected in view of the value fo = 4.44.
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10. Use Runge's Method to approximate y whenx = 0.8 for that particular solution ofdy/ds = Vz+y satisfy-
ing y=0.41 when =x=0.4.

Here (x0.y0) = (0.4, 0.41), h = 0.4, fo =v0.81 =0.8. Then

ky = hfy = 0.36,

ke = hf(xgeh, yo+ky) = 0.4/T37 = 0.50120,
ky = hf(xgth, yo+hg) = 0.4vI.T112 = 0.52325,
ke = hf(zgedh, yordhe) = 0.4¥1.18 = 0.43635,

k x .%(i. + 4ky + kg) = 0.43811, and Y = yo+thk x 0.84811,

I1. Solve Problem 10, first approximating y when x=0.8 and then, using this pair of values as (x0,¥5),
approximate the required value of y.
First, (¥a,70) = (0.4, 0.41), h = 0.2, fo = v0.81 # 0.9, Then
ky, = hf, = 0.18,
ke = hf(xgth, yorkg) = 0.2¢TVT8 = 0,21817,
ky = hf(zg+h, yorkg) = 0.2y/T.TIBIT = 0,22165,
ke = hf(zo+dh, yordky) = 0.2,

LI %ﬂ;*tk.¢l.) = 0.20028, and Y = yo + h = 0,81028,

Next, take (20.¥5) = (0.6, 0.61028), h = 0.2. Then fo = vT.31038 = 1.1001,
ky = hfy = 0,2202,
ky = hf(xoth, yo+thy) = 0,2/T.83030 = 0.25537,
ky = hf(xosh, yorky) = 0,2/1.66565 = 0,28812,
ke = hf(zotth, yorthy) = 0.2/T.9023 = 0.23836,

LI %(kuu,_v ky) = 0.23860, and § = yo +h =x 0.84888,

12. Solve Problem 10, using the Ku'lta-Simpson Method.

Here (z0.¥) = (0.4, 0.41), h = 0.4, fo =vD0.8L = 0.5. Then

ky = hfy = 0.38,

ky = hf(zothh, yo+iky) = 0.4/1.10 = 0.43635,
ks = hf(sotih, yotiky) = 0.4/1.22817 = 0.44329,
ke = hf(zoth, yotke) = 0.4/1.65320 = 0.51432,

ko i(h. # kgt kg + k) = 0.43883, and ¥ = yo + k x 0.84893.

13. Use Picard’s Method to approximate y and z corresponding to ==0.1 for that particular solution of

d:
;E = flx,7,2) = x4z, g = g(x,y,2) = r—J'

satisfying y=2, 1=1 when z=0.
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For the first approximations,

+
l_.._H
—~
-
+
L]
-—
[}
»
+
k.
+*
-
]
[

Yy = J'o“'ff(-‘l.]o.lo}di = 2

; 4 2
I3 = & "j; t(*-)’o-lo)d-‘ LI S J;‘(—‘*l)d! = ] = 4x + *; 2

For the second approximations,

+*

x x 3 1
Y = ya'fj;f(x.y,.:,)ds = 2 _Lu-anix’)d: = 2+x—§x’+ax5,

+

X x
14 = z°+j;s<=.:,.z1m g j;H—ax-a:’-x’-u"m

= 1 - dx - Ex' -x"'-lx‘— ix,.
- 4 20
For the third approximations,
x 1 1
Ys * Iu*ff(h)‘u‘eldl = 24 I (1 - 3x — —x 'xs"""“—""d‘
= 3.2 T3 1w L5 1.8
24+ x--x 3 —‘x mx m"

% %
= 2,73 3Lv 1,
3 * x°+j°‘(x,j.,,1’)d.l = 1+ J;(-{-ax + 5x +§.: —ﬁx + 2: ﬁx ydx

- . 1-—“-%!’1-§x’+l:‘n£x’+—l-x°qlx."

and so on. 3 12 1] 12 252
When = =0.1: yg = 2.105 zy = 0.605 /
ye = 2.08517 24 = 0.58397 /
Ys = 2.08447 15 = 0.58672. /

' ;
14. Use Runge's Method to approximate y and z when x = 0.3 for that particular solution of the system

‘iz =x4yIn j(;_y,;),'g = y -7 = g(x,y,2) satisfying y=0.5, z=0 when x=0.2,

Here (%o.Yo.%o) = (0.2,0.5,0), h=0.1, fo =0.2, g =0.5. Then
ky = hfs = 0.02,
ly, = hgs = 0.05,
ks = hf(zoth, yoths, 2o+ly) = 0,1(0.3 + y¥0.05) = 0.05238,
l, = hg(xoth, Yotks, o*+ly) = 0.1(0.52-v0.05) = 0.02964,
ke = hf(xo+h, Yotks. Zo+lg) = 0.1(0.3+ V0.02964 ) = 0.047216,
ly = hg(xo+h, Yotk 2o+lg) = 0.1(0.52 - V0.02064) = 0.034784,
ke = hf(sgrih, Jordky, Zo+4ly) = 0.1(0.25 + /0.025) = 0.040811,
lo = hglzo+th, Yo+iks, z2o+4ly) = 0.1(0.51-v0.025) = 0.035189,

A ox %chn dho + k) = 0.03841, 1 =m %c:, + 4l + 1g) = 0.03759,

and F = y, %k = 0.53841, T = z,+ Ll %= 0.03758.

15. Use the Taylor Series Method Lo approximate the value of & corresponding tot = 0,05 for that particular

2
solution of 49 .. 88in 8 satisfying & = n/4, L 1 when t=0,
de? dt
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The given differential equation is equivalent to the system

a8 ap .

E ¢ f‘tlel'¢)l ;,"; = - B sin 6 - “t¢6l¢}

with initial conditions t=0, 8=m/4, ¢ =1. Then

Coons g1 &'« -88in8 & = -4V
8"« @' G = -4V2 @"= ~868'cos 8 @ = -4V32
=" G =-4/2 " = 8(8") ' 8in 6 - 86" cosd
6" e¢" G = 4/2 +32 & = 4/3(1+ 4V3)

2 3 .
and 8 = 74 + ¢ - 4,/':'.% = 1\/5% + 4(3”/5);_‘. & sasersesnn = [,820821,

16. Use the Kutta-Simpson Method to approximate y corresponding to x = 0.1 for that particular solution

2
of i—i-ﬂ»hf—i-ﬁ = 0 satisfying y=0.2, gzo.s when =0,

The given equation with initial conditions is equivalent to the system

X Fix.y.2), % = 4y - 2%z = g(x,Y,2)

with initial conditions x=0, ¥=0.2, z=0.5.

Here (x0.Y0.20) = (0, 0.2,0.5), h=0.1, fo =0.5, g =0.8. Then

1, = hfs = 0.05,

ly = hgs = 0.08,

ka = hf(sotdh, yotiky, 2ot3ly) = 0.1(0.54) = 0.054,

la = hglzo+th, yo+ik,, 2o¢4ly) = 0.1(0.846) = 0.0846,

ky = hf(xsgt#h, yotika, 2ot#ly) = 0.1(0.5423) = 0.05423,

ly = hglxo+th, yot+iks, zo+3lg) = 0.1(0.85377) = 0.085377,
ki = hf(zgth, Yoths, Zo+la) = 0.1(0.585377) = 0.0585377,

1 -
ko= —Gu, + 2ky + 2ky 4+ k,) = 0.0541663, and Y = yo * k = 0.25417.
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SUPPLEMENTARY PROBLEMS

17. Approximate y when z=0,2 if dy/dx = x4 y? and y =1 when x=0, using a) Picard's method, b)
Taylor series. and ¢) the First Derivative method with n = 4.

Ans. a) y, = 1,22, y, = 1.2657, y, = 1.2727; b) 1.2735; ¢) 1.2503

18. Approximate y when x=0,1 if dy/dx = x - y’ andy = 1 when x = 0, using a) Picard's method, b) Taylor
series, and ¢ the First Derivative method with n = 4.

Ans. @) yi * 0.905, y; = 0,9143, ys = 0.9138; 4) 0.9138; ¢) 0.9107

19. Use Runge’s method 1o approximate y when 220,025 il dy/dz = x+yand y =1 when z =0,
Ans.  1.0256

20. Use Runge's method to approximate y when x =2.2if dy/ds = 1+y/x and y=2when x 22,
Ans.  2.4008

21. Use Runge's method to approximate y when z=0,5if dy/dx = vx+3y and y=0.17 when t=0,3,
Ans.  0.3607

22. Solve Problem 21 using the Kutta-Simpson method. Ans. 0.3611

23. Use Runge's method to approximate y and z when x = 0.2 for the particular solution of the system
dy/dx = y +2, di/dx = x? 4+ y salisfying y=0.4, z=0.1 when x=0,1.
Ans. y 20,4548, : % 0.1450 '

24. Use the Kutta-Simpson method to approximate y when x =0.2 for that particular solution of

2
47 4 - s.xd—" *+ ¥ = 0 salisfying y=0.1, ﬂ = 0.2 when x=0.1. A4ns. 0.1191
ds? dx dx



CHAPTER 25

Integration in Series

:QUATIONS OF ORDER ONE. The existence theorem of Chapter 2 for a differential equation of the form

1 g’; = f(x,y)

gives a sufficient condition for a solution. In the proof using power series, y is found in the form of a
Taylor series

2) y o= Ay b Ag(x-%) + Ag(x=Xp)2 # rrerer 4 Ap(x=xg)" 4 veree ,

where for convenience yo has been replaced by Ao .This series i) satisfies the differential equation 1),
ii) has the value ¥ =yo whenx =xg,and 144) is convergent for all values of x sufficiently nedr x =Xg .

A. To obtain the solution of 1) satisfying the condition y = yo When x =0:
a) Assume the solution to be of the form
y = Ay + Ayx Ml,.u:=l + A,x‘ PR RTREEE B W SETRRRR
in which Ao = ¥o and the remaining A s are constants to be determined
b) Substitute the assumed series in the differential equation and proceed as in the Method of Undeter-
mined Coefficients of Chapter 15,

EXAMPLE 1. Solve y' = £ +y in series satisfying the condition y=yo when x=0.

Since f(z.y) = £?+ y issingle valued and continuous while 3f/8y = 1 is continuous over any rectungle
of values(x, y)enclosing (0.yo) . the conditions of the Existence Theorem are satisfied and we assume the
solution

Yy = Ao+ Alxd—A'x! +A.xl + A‘;‘ & tenuas ‘+ ‘"‘H+ siaine

Now. within the region of convergence, this series may be differentiated term by term yielding a series
which converges to the derivative y’.Hence.

y! = Ay ¢ 2gx ¢+ 3:'..:’ + M.x’ +oreeres 4 m:"-l LR
and

gl g8 wp w Gl b iy < RGYR0% iy = Ay = W 3 QU =il wmrmnres
+ (nAy -Aﬂ_‘]g"-l 4 srasreses = D,

In order that this series vanish for all values of x in some region surrounding x = 0,1t is necessary and
sufficient that the coefficients of each power of x vanish. Thus,

Ay~ Ay =0 and Ay = Ao = You 34g = Ag - 1 =0 and A,=—;+-éy°.
S
_ 1 1 1 _ 11
24, - Ay = 0 and _,4,-5.4'-540-3;0, dA, - A, = 0 and A4, = TR

LR O

ndg - Ap.y = 0 and An = Elf‘n-t- R

(4%

197



198 INTEGRATION IN SERIES

This latter relation, called a recursion formula, may be used to compute additional coefficients; thus,

1 .ok 1 11
A " - [ e — - 0 — (R RN
b SM T B T Ime At g4 360 770"

It is also possible to obtain the coefficients as follows:

Since An = ;:"‘n-: and  An., « —_4,,_,, An = —-—-A..-.- But 4., » "Li"""'

ni{n - n-
hence, Adn = - Ay = : (1+ 445) = -l-(hyo), i
R(A=1)(N=2)+:run 4 n(n=1) (n=2)v1e+4.3 al
When the values of the A’s are substituted in the assumed series, we have
1 I 1
Y % Yo+ Yoxr ¢ i?{ﬂ’ + (5* E?o)-'! * ('l-li‘ E‘—J'o"" el L *;‘LI(Z‘J'O}!" £ BEINE
= (yg+2](l+xt~!-z!+-l—x’+ ------ »-..1..:"'4 ------ )-'x’-k-i
2! 31 nt ’

" (Yo+e" - x? - 2.2

The given differential equation may be solved using the integrating factor ¢%; thus,

-X

fx!l-’dr = (-x'-h-!}! +C and y = c.‘-:’-z--z.

Using the initial condition, Y=yo When x20, C y+2, and y « (o + e = x" =2 -2, as before.

B.  To obtain the solution of 1) satisfying the condition y =ys when x =x, :
a) Make the substitution x - x, = v, that is,

X =y +x°| % = %
resulting in dy/dv = F(y,y).

b)  Use the procedure of A4 to obtain the solution of this equation satisfying the condition y = yowhen
v=0,

¢) Make the substitution v = X = Xg in the solution,

EXAMPLE 2. Solve y/ = odrryel satisfying the condition y =3 when x = 2,
First make the substitution x = v+ 2 and obtain -3-' = v¥ + y - 3, We seek the solution satisfying
y =3 when v =0; hence, we assume the series soluuon
oo Haie A et s le® bosseeessan g Ao e ERPPRTLD
dy

ThC:n d‘; Lo A‘ + 2‘@9 + 3‘.1’.“ + 1A‘y’ * vrsssnane 4 nhy"-l‘ + siasnawnn

and
;E- whia Y+ 3 = Ay o+ (24, - Ay + (345 = A, = Dot (44, ~ A.)v’ + serssisane

*(ﬂ"n-‘n-tj"'”-x"“""" = 0,

Equating the coefficients to zero, we have: AL =0, 243-A; =0 and 4g =0, My-Ag =120
and A = 1/3, 4A.-A, = 0and A, = 1712, weesenans
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The recursion formula 4, = EA.... yields

An = _14‘_‘ = - A“_. ® srias 0= 1 4. = ..a.. ﬂza.
n nin=1) nn=1)(n=2)r1sae4¢ nl
Thus‘ y = 3+ }.u, + lu‘ + R tissssnssnnanans + lv“ 4 teavssrasans
12 nl
= 3 4 ..2_(3..2}’ + —2.(‘-2)‘ + crssssnsaasan . 4 _2..{;-2”‘ # turenan
3 4! n|

See also Problems 1-4.

LINEAR EQUATIONS OF ORDER TWO. Consider the equation
3) R(x)y" + LOOy' + Py(x)y = 0

where the P's are polynomials in x. We shall call x = a an ordinary point of 3) if Po(a) # 0;otherwise,
a singular point.

If x=0 isan ordinary point, 3) may be solved in series about x =9 as
4) y = A{series in x} + B(series in x),

in which A and B are arbitrary constants. The two series are linearly independent and both are convergent
in a region surrounding x=0, The procedure for equations of order one in the section above may be used

to obtain 4). See Problem 5-7.

SOLVED PROBLEMS
EQUATIONS OF ORDER ONE.

1. Solve :—E = 2:—'} in series satisfying the condition y=y, when x=0,

Assume the seriestobe y = Ag + Ayx + A,z’ + .4..:’ A 4 ciiiie 4 A 4 srinen,
where AQ = Yo Then )" L. A‘ + u'x + 34‘.!' + “‘x! + tersen 4 m,l—l + ternana

Substituting in the given differential equation (1-x)y’=2s+y = 0, we have

(1—")(‘1 + 2.‘33 + 3.-1.8! + ‘A‘x, + srrrne 4 nkxn.l + *renan)

-2z + (Ao + Ay + 4‘8! + A.;’ + ssenee 1-“’“ + sreses) = 0,
or

ul“c) *(24,—2):4»(34, -A,sz{ (MA-M'}X’ + sews & tfﬂ‘*l)"tu—(ﬂ-l}‘n]la # *0er = ),

(Note. In finding the general term in the line immediately above, we may write a number of terms on
cither side of the general term of the assumed series for y, differentiate each in getting y'. carry out the
required multiplications, and pick out the terms in =™ OR learn to write the required term using the general
term of the assumed series and its derivative. In the present problem we wish the term in #™ when the
substitutions are made iny’- xy’' - 2c+ y = 0,First, we need the term in =" of y' when we have the term
in =", We simply replace n by (n+1) in ndsx™ and obtain (n+ DAqesx» The remaining terms
~nAnx" + Az are obvious.)
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Equating the coefficients of distinct powers of x to zero-yields

Ay s+ Ao =0 and A, = = Ao, 34s - Ay = 0 and 4,-%4,-%.
24, -2+0 and 4, = 1, 4 -24, =0 and A.-%A.-é-

(n+1)Anes = (N=1)An = 0 and Am-’.‘n-:_igﬂ. (2 2.

(n-2)(n-3) (n-2)(n-3)(n-4)

Now Wt i < g = emecsns T
b n Hn=y n{n-1) Anet n(n=1)(n=2) nss
. IA-2)(n-3)(n-4)r++re22:1 Ay = 2 i e
n(n-1)(n-2)nv--n-u-4oa nn=1)
Thus, Yy = Yo(l-x)+ 24 %xs + %:‘ B .l%z’ $ aereies 4 n(ﬂz—l) 2" 4 ereens

@
v 2 n
= (1-2) + P SRS
¥ u?l n(n-1)

n+l
B , . =
Using the ratio test, PT .13 LA |x] 11m = sl
L ‘n’ﬂ neo n+l

The series converges for  |x| < 1,

Note. By means of the integrating factor L/(1-xz) the solution of the differential equationisy = 2(1-x)
In(1-x) + 2x + C(1-x), The particular integral required is

¥ = yo(l=x) + 2(1-x)}1In(l-x) + 2¢,
2. Solve (1=xy)y'~- y = 0 inpowersof =.
Assume the seriestobe ¥y = Ag + Agx + A.x' + A,s’ ¢ Agx 4 srees ¢ Apx" # vesee,  Then

=1
yl = Ay + 2A,x 4+ 34,:’ + 4A,x7 4 seeve b nAgx" T 4 seeee and

(1-xn)y' =y .
= (1 -Apx -4;1’ - 4,:’ -A,x' - e = Aqx"'”' —eeee)(Ay + 249% + SA.x’ +4A.x} 4 oranes
4u‘nxn‘3§ rase) = (&}*41"4132"A3"" LT +A,|xnv vees)

= (AgAo) + (UgAchAyAs)x + (g -2Aohg~As-Ag)x’ + (4As =3AghAg=TAAg=Ag)s® + +eer = 0

Equating to zero the coefficients of distinct powers of x,

A=A =0 and A, = A,
249 = AgAy = Ay =0 and A= kA (1+ Ag) = §Ag(l + Ao),

! " 2 1 2
34y = 244, - A’: ~Ag =0 and 4Ap = %tZAcA. + Ay + Ag) = 540{“ 545+ 24;),

2
4As - 3AcAs = 3AsAs - Ag = 0 and A, = %Ml + 174g + 2645 + 8A),

T R T T T T N ]
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Thus, y = Aol1+ x -;Turao)z’ i gll-{hsAgfug)x’ .

‘-llm 1745+ BAg + BASIE® & wewvavi),

We shall notattempt 1o obtain a recursion formula here nor to test for convergence.

201

Solve ay'-y-x-1=0 1npowersol (z-1),
Setting x = z « 1, the equation becomes (z + ”:‘Z -y-2-2 = 0,Since we seek its solution in powers
. - I
of z, assume the series to be
y = 49"‘413"’1!?:‘1325’4'2‘ + crramrena s +4";"'{ srsanarea, Thcn
g-! = Ay + 2451 + 3.41,:.‘l + 44.:, 4 srimsnen 4 mlﬂz“-l + rarsanas and
2
dy
(z#1)L < yi= g =2
+ )dz Yy H
s (e Ry v 2432 ¢ 3Ap2Y o @AY 4 viiie b AlE™ R 4 denes)
-1 = 2= (dy+ Agz + A,x’ + Aa;, + ecses 3 Anz™ ¥ 1ienny
T Ay = 2-Ag) 4 (2y - 1)z + By + Ag)s® ¢ (4hAy + 245027 4 crearinans
t [(n+DAg,q + [n_l),‘ﬂ];"¢ siessnenas = (),
Equating 10 zero the coefficients of the distinct powers of z,
1 1
Ay =2 -4 =0 and Ay = 2 + 4, 343 + A, =0 and A,,-a-s;l,-_i.
24,-1=0  and A, =}, Ay + 243 =0 and A, v~ 34, =L,
2 2 12
(M+DAdn,y + (n=1Ay = 0 and Anﬂz_.n_':;lﬂ, ng 2
n+
From Problem 1, 4, = (1" (n—2}(n-3)------2-1A‘ eyt » n2 3
niA =1)eesssnssnsedad nin-1)
and Y 5 Ag + (2+Ap)z + _1.:2 = ..15 i .-.g' - tssess $ ‘_”!l 1 ;’l 4+ rtesnas,
2 6 12 ni(n -1)

Replacing : by (x -1), we have '

1 2 1 5 1 %
= 2x=1) ¢+ =(2=l) = 2(x=1Y + — -1 - wssssanans
y Aox + 2(x 2(= ) E(-‘ ) 12(-‘ )

@
= Aox ¢ Ax-1 + X (-1)" =1
nwg, afn=1)
; A zﬂ.l n-=1
Using the ratio test, lim | =22 f2] lim —— = [z] = |x-1].
n—mo An‘n n—=x N+l

The series conveiges for |z -1 <1,
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4. Solve y'-x"-e¢” = 0 satisfying the condition y=0 when x=o0.
In view of the initial condition, assume the series to be

y = AIX + A'I! + .‘,f’ +* A.x‘ +A.x‘ & vEmamea N

Then y' = Ay + 2Agx + 3Agx’ + 4Ax’ & SAgx’ + reeeeenan,

A'SO. ¢’ = T 4% 5+ 2—];:(! + %J" + ;.11_,' $ tessanssan

14 (AgxeAgx®sAge s Azt 40nin) ¢ -;Tuf:’;u‘.a,xh (A2e24Ag)x" 4 000eri]

1 2 1
+ a(ﬁ:x}+ﬂl‘ﬂﬁx'+-...-} + H(‘:x‘-}.-..-) 4 sssssEstEbIIREsRmERRbe

Lo Agx v (e SADET 4 (o ¢ Ady + 2D

1 1 1 4
+ (A, + EA: ¢ Aghg s E,q'fg, % 5.;4,;;" b IV

L
Substituting in the differential equation,

2 L3
Ay = 1) ¢ (2Ay—Ag)x + (343 -1 -4, - %A‘)xz + (44, = Ag - AjAq - F -4:)35

2 2 1 &
+ (54‘..4‘...%,1,__4“4,_.;414,__2:4‘),‘ i ke & D

Equating coefficients of distinct powers of = to zero,

Ay -1=0 and A, = 1, 2A,—A‘noandA,-%A,=%.

L .3 1 1,2 2
3‘5—1-‘Ag—£1‘1=0 and Ag=-a'(lfﬂg"‘§»‘-1):§'
1.3 1 BB | L
‘A‘_A’-A‘A"'EA: =0 and A‘ = ;(A,"‘Jt‘.‘., ."E‘g) .5.
2 1,2 1 17
By fig By by -3 Ak - A = 0 and Ag = g ceeeesesnees

and_'r-x+

LINEAR EQUATIONS OF ORDER TWO.

5. Solve (1+x%)y" + xy' = y = 0 in powers of x.
Here Po(x) = 1+x7, Pot0) #0 and x = 0 isan ordinary point.

We assume the series

Yy = A°+A‘x+A,gt'¢- A:_"{A‘x‘t..-----.- ;Aﬂg"-r cesmsamna,

.Ihcn y' = "l + 'GA’X + 3‘33’ + ‘A‘x, + samssns + nAn:'H-l + sesesesen

and y" = 24, & BAgx 124,57 4 cevrvnns 4 n(n=1)Apz’ 0 4 wreereenn,



INTEGRATION IN SERIES 203
Substituting in the given differential equation,
(1*82)[2426614:X+12ﬂ‘xlf raen +n(n.-£),l,‘xn_2+ ----] ‘x(‘s§24’x+34’xa+u‘x,4-|-.

+ nAn;ﬂ-l + haen) = ("0 + Alx +A?x=+ A,x’ + A‘x. 4 aner # Aﬂ!" 4+ +0es) =0,

Or (24, - Ag) + BAzx + (124, + 3A9}x' 4 vene 4+ ((N+2)(n ¢ DAnsg + (1= DAn)x " 421er = 0,

Equating to zero the coefficients of the distinct powers of x,

2U,-As=0and A, = %Ao: 64,=0 and A4=0, 124,+34,=0 and A‘=-§1"‘°‘ E—

n=1
n+2

(Re2)(n+1Anag * (R2=1)An = 0 and Aneg = = An.

From the latter relation it is clear that A, = A5 = A; = -«++ =0, thisis, Aq,, =0 if nisodd. Ifn

is even, (n = 2k),then

2k -3 (2k-3)(2k-5) k41 1035500000 (2k=3)
A AP, A y - g teves g =1) Ao
2k i S e e TR ( -
Thus, the complete solution is
¥ = As(l #+ %x’ - %:' + Tl'é‘h - -l%a-:n ey v Myx
1.2, <x, (Aol 1e3:Seeeas(2k=3) 2i
= Aoll 4 22t 4 (-1 T =T 2] v Agx
2 ]
k=2 2"k
1.2 &,k L1e3eSeress (2k=-3) 2k
= Al + * - 2en TSR] 4 A
k=2 2 k!
n+2 3
Here TR . 7T (S e 2=d . =%, and the serics converges for |x| < 1.
ne= Anxn nee n+2
6. Solve y"_x"' -y =0 inpowersof .
Here Po(x) =1 and x=0 isan ordinary point. We assume the series
Then

Yy = A°+A,.x+;{,x’¢A,x’+......... +,qﬂ,"+........._

F' = Ay BAgE 4 AT & veramememe b RlgETR & cesiisvie

yl' = u, + '64‘31 + 12“‘:' + mA,:’ b moaw wmeinlh H(H—I)An!n-l 4 vamssasas aﬂd
y -x'y -y
= Ay - Aoy + (BAg = AT + (1244 = Ay = Ag)x” + (Ag = 245 = Ag)x® + rrosrrresnnenns
+ [0+ D0+ Dhneg = (0 =DApoy = Agls" ¢ covveneeeinnee = 0,
Equating to zero the coefficients of the distinct powers of x,

Ur-do=0 and Ayr jho. Shi-Ait0 and Ay ghis I2Ae-Ai-Ags0and Aot o g

—27
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R B Mgy = B=T)hges = s B0 B Agey » A-Wasp iy, o3y,
(n+1)(n+2)

The complete solutionis  y = Ao(1+ -;x’ . %‘.;' . %x’ + %;ﬁ_%,' $ aaseeiny

+ Ag(x + sx’ + .—1-.-;‘ . _l_!a + ._?...;t + _.‘..!..;' FEYTYS N

12 120 360 5040
7. Solve y" - h!y' + 4xy = 2+ 2+ 2in powers of x.
Assume the series to be
y = .‘.°+"X+A’I=¢A,R’*—A.K‘Q"‘"f resmssnn +A‘xnb reesamen Thcn
y' = Ay + 24ax « BAgx’ + 44..:’ + 5-.4;3. 4 sevrees +nAnx“-l  sarraens,
y" = 245 + BAgx + 121.:1 - 2]46:’ F orensarsaniins 4 n(n-l)An:H-’ 4 +essees, and
¥ -2y b dxy -5 ~2-2 = (243 -2) + (6Ag+ 8o ~20x + (12444 24y —1)x" + WAgx’ + resenee
# A+ 2) (M4 DAngg = 200 = DAy + 8Ang)2" + creeene = 0,

Equating the coefficients to zero, we obtain

1 2 1 1
U4,-2=0 and Ag =1, BAg+dds -2 =0 and A, 5-5.‘@. A, E-E“. Ag = 0,
2(n - 3)

(Nn+2)(n+ 1Aneg = 2(n=Ag_y = 0 and An s Aoz, n 22,

(n+1)(n+2)

The complete solution is

235 2.6 2 .9 i e % 1. & 0
* Axtl = = - — - — - taerrans + A - - — - — - tasstsess)
4 ST Y "’ ) W -3F -@* Tt
oxz-tig’ p._l..g‘ 1-—1',“b + L’T4_1..;’+_I—-.;‘o 4 ssetsnsses
3 12 I 126 %08 1134

8. Solve y”"+ (x-1)y’ + y=0 inpowersof z-2.
2
Put x = v+2 in the given equation and obtain i% + (v-rl)% +y = 0 which is to be integ-
dv
rated in powers of v. Assume the series

¥y = Ag+ Agv +A,v’ * A,u’ + A‘U' #F wawcEeaEs +,4ng"+ ..'......._ Then

= Ay o+ 245v 4+ ﬁA,v' . QA‘ui # sesenewes +nA,|p‘-l + eneasnens,

S SIS

™ e

5 = 24, + 6A,v + 12,4“;’ B TR n(n_l)dﬂu"": $orranmanan and

v

d’y dy 2

d_’ . (Ufi)d-—‘; vy = (25 + Ay + Ag) + (645 + 24, + 24)v + (124, + 3A, + 3A)u" 4 reeenans
v

+ [(ne(n+DAn,e ¢ (MDA + (A4 DAg  Jv" + coseeceer = 0,
. - .
Equating the coefficients of powers of v to zero, we obtain

1
Ay = - ‘5(4‘9*41]. Ay = - 3

(Ay+ 4,) = %(‘o-f‘:)- Ay ® = %1‘:*411 = Tlimo"‘z“lj' s el

1
(M+2Y(n+ Dhnyg + N+ DAn + (N+ 1),y = 0 and Ange = - ﬂ_i'ﬁ("‘ + Anes)de

-



%

10.

11,

13.

14

15.

16.

17.
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Thus, noting that v = x =2, the complete selution is

. -__I a1 5 1 " 1 [ 1 [}
Y Aol = 3(x-2)" + g0 ¢ el - Slx- - oole o) v ]

:

v ALz -2 —%(x-zf- :

(1—2)5 + -;-(:—21. - 3—16(1—2)" TACETRRES

SUPPLEMENTARY PROBLEMS

Solve (1-x)y' = x’-y in powers of «,
1 l 2 1-2 n

oo X e X O P00 b ——— e ¥ 4 ssaaa)

5(_1
3 6 10 (n+2)(n+3)

Ans, Yy " Ag(l-x) ¢+ x

Solve xy’ = 1-x4+2y inpowersof x-1. Alsé integrate directly.

Hint: Let x-1=: and solve (u:):—: = -z +2y inpowersofz.

Ans, y v Agl1 ¢ 2(x=1) + (x=1)°%) ¢ b e (x=1)
Solve y’ = 2%+ 3y in powers of =z,

Ans. y» Aol + 32 + 0x7/2 4 9x7/2 + 295" /8 ¢ vevnnn] o (26773 4 272 4 conien)
Solve (x+1)y' = s2-2+y in powers of x.

Ans, y * Ao(1+x) -x" + /3 - 273 + 8%/5 - 2715 4 ennen

Solve y"+xy = p inpowersof x,

i
n(n =1)

RF, Ang ==

An-s+ n 2 3; convergent for all x,
Ans. y = Aotl - 1!/6 + zbflm - terren) 4 A‘E;’ - “/13 + x?/so‘ = sanens)

Solve y"+2:'y = 0 in powers of x,
2
nin =1}

4”5'. y'k(l—x‘/ﬁ*:"/lﬁ&-nu-o) * A“x—x$/10f29’{3m-lnnatlJ

RF. Ay == An.s; convergent for all x.

Solve y"<xy’s ;’y = 0 in powers of x.

"RF. nin=1Ag = (n=2D)An_g * An_a =0, n 2 4.
AnS. y = Ag(1 = x*/12 = 2700 + z*/3360 ¢ voi) 4 Ag(x + 22/6 = /40 = x"/148 = s000)

Solve (l-x’)y“-?.:ru plp+ 1)y = 0, where p is a constant, in powers of x.(Legendre Equation)

K e BEpI0SEY o

-2 ¢ convergent for |x| < 1.

n(n-1)
Ans. y = Ag(l = P“’z:” - fP"z’P(P“’U(Pﬂl ¥ . Cerinenaes)
v Az - EE:.%.I‘.E_*_ZAJ . fP‘”‘J"";‘U‘”2’“’“n & o Enmnmabiiel
Solve  y"s4 g'_y « 1+x+x° in powers of x, RF. An = - —(Lﬁaﬂ-ﬂ--: convergent for all =,
nin -

Ans. y = Ag(1 - ,"/12 + ;'/512 = sreren) + Ag(x - x’/za + :aflﬂo - tearan)

+ x'/? + z’;‘ﬁ . x“,-'lz - xb/ﬁo = x',fzsz = x“/s';z ikt



CHAPTER 26

Integration in Series

WHEN x=a IS A SINGULAR POINT OF THE DIFFERENTIAL EQUATION
D Pox) " + Py(x)y' + Py(x)y = 0,
in which P (x) are polynomials, the procedure of the preceding chapter will not yield a complete solution

in series about x =a.

ExampLE |.For the equation z*y" + (s? = x)y’+ 2y=0, x=0isa singular point since Py(0) = 0. If we
assume a solution of the form

(I) J"‘-o"‘;’#A.x’iA.x’+u..-....

and substitute in the given equation, we obtain

Uo + Aux + (g ¢ AE" & (BAL+ )8 + seennnans . 0.

In order that this relation be satisfied identically, it is necessary that A, = 0, Ay = 0,Ag = 0, Adg = 0, '*7+;

hence, there is no series of the form (i) satisfying the given equation.

A SINGULAR POINT x =a OF 1) IS CALLED REGULAR IF, when 1) is put in the form

1°) y" o4 My’d-_gl.(iyuo.
X-a (x-a'j'

Ry (x) and R4 (x) can be expanded in Taylor series about x=a.

EXAMPLE 2, For the equation(1+ x)y” + 2xy’ - 3y =0, x=-1 isa singular pointsince Po(~1) = 1+ (1)

= 0. When the equation is put in the form

¥+ Ri(x) y' o+ Rl(-‘J’ y = y" + 2x J’" '3(3“:) 0,
x+1 (x+1) x+1 x+1)

the Taylor expansions about x = -1 of Ry(x) and Re(x) are
Ry(x) = 2 = 2(x +1) =2 and Ra(x) = -3(x+1).

Thus, x = -1 is a regular singular point.

EXAMPLE 3. For the equation x’y"+x%y'+ y =0, x=0 isa singular point. Writing the equation in the

1/x

form “ 1 '
¢;y +_2y 0,

Yy
X
1tis seen that Re() = 1/x cannot be expanded in a Taylor series about = = 0. Thus, = = 0 isnota

regular singular point.

206
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WHEN x =0 IS A REGULAR SINGULAR POINT OF 1), there always exists a series solution of the form

L] n

©
2) y = x" E Anx" = Agx" + Jl,x"l' 5 AR Foses ¥ Agx™" 4 i

n=0
with Ag # 0, and we shall proceed to determine m and the A's so that 2) satisfies 1).

EXAMPLE 4, Solve in series 2ty" + (x+ L)y’ + 3y = 0.

Here, =x=0 isa regularsingular point, Substituting

R*2

y = on' + .ll,,x'"' + Agx + eeees + Ay

wen-1

y' = .on"‘ + (m+ 1).4,.:' + {u+2).4.:r“" + semns + (R+n)Anx

y" = (u-l)ulox"'} l(n+1);|,_:"'l SR (m* Az # 100 & (Ren=1)(m+ n};l..;s““" e

in the given differential equation, we have

(i) l{hal)c‘gl‘-l ¢ ((m+1)(2m+ DAy + (m+ 3).(,,]:' + [(m+2)(2m+3)4, + (n+114,]x"" .

Bt A=l

b + [((men)(m+I=1)dn + (R4 N+ Dhnoylx 4 eretesiies w0,

Sinceds # 0, the coefficient of the first term will vanish provided a(2a -1) = 0, that is, provided m =0 or
a = %, However, without regrard to a, all terms after the first will vanish provided the A's satisfy the

recursion formula

m+n+2
B e ———— S gl
‘" ARGy e B

Thus, the series

2»} }- ” 4‘0-" [l = rR+3 T (l"‘s){."') 3’
(m+1)(2m+1) (R+1)(m+2)(2m+1)(2m+3)

(m+d)(m+35) 3

x + --qo-lcala]
(m+l)(m+2)(2n+1)(2m +3)(2n+3)

satisfies the equation -
(i) ZF" + (x+1)F" + 3F = a(m-Ldox .,

The right hand member of (ii) will be zero when ==0 or m=% When a = 0,we have from 2’)

with dg = 1, the particular solution

Yo 0% 1 =3+ 2 - 227/3 4 cerennns .
and when m = % with 4, = 1, the particular solution
o g = VE(1 - 756 + 21x7/40 - 11x°/80 + seenns ).
The complete solution is then * / / /
Y = Ayi + By,
= A(1-3c 42" - 2734 .0 ) + BVE(l - Tx/6 + 21=°/40 - 1123/80 + +esee).

The coefficient of the lowest power of z in (i), (also, the coefficient in the right hand member
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of (ii), has the form f(m)4s. The equation f(m) =0 iscalled the indicial equation. Thelinearlyind:pend-

ent solutions y, and y, above correspond to the distinct roots a = ¢ and a = ¥ of this equation.

In the Solved Problems below, the roots of the indicial equation will be:
a) distinct and do not differ by an integer. -
b) equal, or . '
¢) distinct and differ by an integer.

The first case is illustrated in the example above and also in Problems 1-2.

-
When the rootsm, andm,of the indicial equation are equal, the solutions corresponding will be identical.
The complete solution is then obtained as

ﬁ Y
y 2 AYI.-.I ' B-a-s

See Problems 3-4.

nemy
When the two roots m, < myq of the indicial equation differ by an integer, the greater of the roots my

will always yield a solution while the smaller root ,my may or may not. In the latter case, we set Ao =

By (m=m,) and obtain the complete solution as

Y = 4; + HEZ

LEL T om

See Problems 5-7.

LLE 'Y

The series, expanded about x= 0, which appear in these complete solutions converge always in the
region of the complex plane bounded by two circles centred at x = 0.The radius of one of the circles is
arbitrarily small while that of the other extends to the finite singular point of the differential equation
nearestx = 0.1t is clear that the series obtained in Example 4 converge also atx = 0;moreover, since the
differential equation has but one singular point x =0, these series converge for all finite values of x.

THE COMPLETE SOLUTION OF

3) Po(x)y" + Pi(x)y' + Py(x)y = Q

consists of *he sum of the complementary function (complete solution of 1) ), and any particular integral

of 3). A procedure for obtaining a particular integral when Q is a sum of positive and negative powers of
x is illustrated in Problem 8.

LARGE VALUES OFx.It isat times necessary to solve a differential equation 1) for large values of
x.In such instances the series thus far obtained, even when valid for all finite values of x,are impractical.

To solve an equation in series convergent for large values of x or “about the point at infinity", we trans-
form the given equation by means of the substitution

x= 1/

and solve, if possible, the resulting equation in series near z=0,
See Problems 9-10.
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SOLVED PROBLEMS

1. Solve in series iy axy s (270 1y = 0.
Y

Substituting

y = A.q:' + Al_x.-’l + A,g..'+ rer iR et esea R e ettt tnsane & Aﬂx.'n+ sessrene

r! = ‘&::l-l + {.*l)"l'. + (.‘2)4',.‘1 4 cerresresncns 4 (.'n)hxlbﬂ'—l i ST

=1 A+n=2

yrs fl—l)l‘ol.-t + (.+1)n_4,z. + (n+l}{u+2).l,z' + nsees 4 (men-1)(R+ A Anx P

in the given differential equation, we obtain

* L L3

(m=1)(2m=1)Aox™ + m(2m+ DA™ 4 ([(m+2)(2m+1) ¢ 1Ay ¢ Ag)x™" 2 4 covanns

men

+ {[(m+n)(2m t 2 -3) + 1)Ady + Ap_g)x ¥ amiesny & )

Now all terms except the first two will vanish if 43,4a,++++ satisfy the recursion formula

1

o Aacic WE D
(m+n)(2m+2n=3) +1 o

i) An =

209

The roots of the indicial equation, (m=1)(2a=1) = 0, are a = %, 1, and for cither value the first term
will vanish, Since, however, neither of these values of & will cause the second term to vanish, we take

Ay = 0. Using 1), it follows thatAy = A = Ag = +-+-- = 0, Thus,

¥ o= Ax™(1 - 1 £ 4 : £ = wereesRisey
(m+2)(2n+1) +1 [(m+2)(2n+1) +1)[(m+4)(2m+5) +1]
satisfies 25" —xF 4 (T4 DT = (m-1)(2m - DAox"

and the right hand member will be 0 when & = jor & = 1,

When lwtﬂndﬂo'l. we have Y1 = ﬁ{l—z’/s#x‘flea—jbflluuﬁ TEETERRRTRS |
and when m = 1, with A4 = 1, we have ye = x(1 - x’/m + x /360 - ;a/maﬁ ¥ oawssavenun),

The complete solution is then
y = Ayi + Bys
= AVE(1 - x’/ﬂ + x'/l&ﬂ - x°/1m58 + v00) + Bx(l - x’jlo + x'/sao - x‘/zanso + 1ee),

Since x =0 is the only finite singular point, the series converge for all finite values of x.

2. Solve in series 3xy" + 2y’ + x’y = 0.

Substituting for y, y’, and y* asin the problem above, we have

n+2

m(3m-1Aox™ 4 (m+1)(3m+ DAsx" < (m+2)(3m+5)Aax™ & [(me3)(Im+8)Ay + Ao)x

q4n=1

+ vesees [[l#l‘l)(h*:’l’lul)ﬂq +Aﬂ_,]; + wissss = 0,

All terms after the third will vanish if Ag.A4,+++s+ satisfy the recursion formula

Ay = - : R S
(R+n)(3m+3n 1)
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The roots of the indicialequation m¢3m - 1) = 0 are a = 0, 1/3. Since neither will cause the second and
third terms to vanish, we take 4, = A, = 0. Then, using the recursion formula, Ay =Ag 2 Ay =000 20
and A, = Ay = Ay = ... = 0, Thus the series

1) Y = on.(l - 1 L 1 $* & v )
(m+3)(3u+8) (m+3)(m+86)(3m+B8)(3m+1T7)
satisfies uF"+ 25 + 2’5 = m3m-DAex™t.
For m = 0, with 4y = 1, we obtain from I) ¥y = 1- /20 + 2272448 = «oennn,

and for m = 1/3, with 4, = 1, we obtain y, = x¥ (1 - 22/30 + 2%/3420 = +evvaee).

The complete solution is

y = Ayy + By, = A(1 - xijz«l + x‘/!Hs - seann ) + B:uatl - 35/30 + :‘/312] = seeaa),
The series converge for all finite values of x.

ROOTS OF INDICIAL EQUATION EQUAL.

i

3. Solvein series xy"+y’—y = 0.

Substituting for y, y*, and y” as in Problems 1 and 2 above, we obtain

nhox" ™t ¢ [m e 1)PAL — AL o [(me 274, - 4)S

4+ srwrecs * & “Il-l'l)!ﬁn - 4“_,‘]1.*"-1 ¢ -essss = D,
All terms except the first will vanish if Ay,4,,+++++ satisfy the re ils
. 1
1) An = 2 An-i1. n2
Thu‘s. b
- = | 1 | 3
y = _on (1 #I - x + = 3 x * - -2-— z x * eessennn)
(m+1) (m+1) (m+2) (» y (» m+3)
satisfies
2) ' '+ ¥y - § = lzlnx'-l

The roots of the indicial equation are a = 0,0. Hence (here corresponds but one series solution

satisfying 2) with = = 0. However, regarding y asafunct 1oftheindependent variables x and m,
/W . 33y 3 37 35,
= = = = 2& - &
om om Dx 3:{31 (Bn‘

and oL - ii(?ﬁ!) ﬂ.?.(a_r) - 3_3_&_3:) &Z;".

3m Om x Ox d9x Dm 3x 3x 3x 3m om
and we have by differentiating 2) partially with respect to =,

3y » 3F.1 3y n=1 2, w=1
3 iy SEYe = Nl=Z) - + mApx Inx.
) x‘a- : (31 om Ao

From 2) and 3) it follows that y, = §|_=° and ,, . % are solutions of the given differential

3 I On|a=g
equation. Taking 4, = 1. we find
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g - x.lnx ]:I + . 2 x + 'l 2 .l' + ! 8, +* lu-nua-n-]
oa (m+1) (me+l) (m+2) (nbl}’(-+2)={l+3)=
& t.[- 2 ’: _ ( 2 - i 2 )l’ - 2
(m+1) (+1) (m+2) (-+l)i'~'(n+2)’I {I*l}’ (I+2]'(I+3)’
* 7 2 + 3 )S’ - ilii‘dll't]
(m+ 1) (-+2}’ (.oaf (n«-l)’{nﬁz)’{nﬂ)’
= ill'lx-h-[ ! £ # 1 = :1 }x!
{-+1)’ cui)’ (m+2) (m+1) cuuz}’
€4 . 2 i 7 - : ' 2 1 2 ) e,
(I*U, (m+2) (m+3) (m+1) (l*:)’ (m+3) (m+1) (m+2) (34-3)5
£ o
Then Yy = ;lﬂ"“ = 1 + x + = + = + oareaseaass
(2) (3!)
¥ a_’ = yylnx - 2[x + ......_1 (1 + l;? + 1 (1-!-11»-!);5 * ........-]I
38 [ae (21 2 (an? 3
and the complete solution is
Yy = Avi+Bys = (A+Blnx)[1 + x 4 ..-.l_a.:? s ? sereases ]
' (2!) (31)
1 1 1 L

(1*1}.:2  —

- 28[x + =
(2!) (31)

The series converge for all finite values of x # 0.
4. Solveinseries zy"+y'+x°y = 0.

Substituting for y, y/, and y”, we obtain

1

12.4.0:--1 + cu+l)zj,x. + (l+2)2Azx“ + [(m +:])ZA, a-,l‘,]x'"2 F oreressiavtnsres

+ [(nﬁm:,kn +An_3]xlm-1 R e Pe R  <S

The two roots of the indicial equation are equal. We take Ao=1, 4, = A, = 0,and the remaining A s
1

satisfying the recursion formula 4, = - Atiaas
(m+n)
Then Ay =Ay =4, = 100 =0, Ag = Ag = Ay = +++ =,
y = £t = . - L 21 - £ . ) % vensasend)
(m+3) (r+3) (n+6) (1»3)2(-“‘5)’ (n-Q)z

and, following the procedure of Problem 3 above,
-2%’3"1“1*?4.[ l,x,-( ,1 = - )zt
(m +3) (m+3) (m+6) (n+3}2(n+3}’

¢ 1 + : + . }39 =],

flts)’ (u+6)=(ue9)2 (m 4__3)’(-+5)5 (-+g}2 (u+3)?(a+s)=(.+9]’
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Using the root = = 0 of the indicial equation,

" b 1 ¥ 1 9
71 ’l = ] - = * x o x 4 BEbesnsues
e 3t ! 3%(ar)?

and ys * g—’ syalnx s 2[5 8 - Lo bt ——ae 2 et o)

R |zep 3! ag(m) 2 3'(aty 3

The complete solution is
Y = Ayy + Byy = (A+BInx)[1 - _-}Lxs . - 1 ;‘o = 1 . x‘ ¥ wsdvdeee]
3 3*(2ny? 33
val5 e - Loaedet o gl tohe L,
3 3’21y 2 3" an 8

The series converge for all finite values of z # 0,

ROOTS OF INDICIAL EQUATION DIFFERING BY AN INTEGER.

5. Solve in series xy" -3y’ +xy = 0.
Substituting for y, y’, and y” we obtain
‘el

(-t—-i)dox'd + (--3_1{-4-1)41:' + [(m-2)(m+2)A; + Ap)x & e

+ [fl#n—‘){loﬂ)ﬁn + )I“_,]z‘"‘-l ¥ sssniees = (),

The roots of the indicial equation are = = 0,4, and we have the second special case mentioned above
since the difference of the two roots is an integer. We take Ay = 0 and choose the remaining A's to satisty

the recursion formula
1

(R+n—-4)(m+n)

An = - An_g, nd 2

Itisclear that this relation yields finite values when m = 4, the larger of the roots, but when n=0, A-g.
Since the root m = 0 gives difficulty, we replace Ao by Bo(m = 0) = Bom  and note that the series

5 = ol P 1 2 1 N : <
(m=2)(m+2) R(m—-2)(m+ 2)(m +4) nim=-2)(m+2) (n+4)(m+6)
+ 1 xl - -n--cnlon..-]

n(m—2)(m+ 2)2 (m #4)2 (m+6)(n+8)

= Boa:.[- - -~ 22 2 s : s
(m-2)(m+2) (m~2)(m+2)(n+4q) (R-2)(m+2) (m+4)(m+6)
+ 1 ;‘ - -cnuo--------]

(n=2)(n+2)" (n +4)% (m + 6) (m +8)

satisfies the equation N e
2y " - 37" 4+ x5y = (A -d)mhox" " = (m-d)m'Box" .

Since the right hand member contains the factor °, it follows by the argument made in Problem 3



6. Solve in series

INTEGRATION IN SERIES

that § and 9%, with = = 0, are solutions of the given differential equation. We find

om

u’+1 ]
—-————-’ x
((m=2)(m+2)]
1 1

+ i -

7 =
(m=2)(m+2) (m+d)(n+6) ®~

%

= ?!I‘ll + ﬂos.[li-

1
(
(-—2}(1+2}’{n+ﬂ'{l¢ﬂ}fl+3)

-

Using the root = = 0, with Bo = 1, we obtain

T m-2)(m+2)(m+d) B2

1 " -

L]
+
»
]
+
-

2 1 ) A
n+2 m+4 m+B

1 2

+*
n-2

+_!.+_1.-—)z

+|s¢|¢].
mn+2 m+4 a+8 =m+8

Y i! L - 1 ;‘ + 1 xh -_._1_-—3a + snisanenny
- 2:2.4 2.2% 446 22"4" 68
and
y,-a-z -y;ln:+1*—l’:'+—‘}-—=‘-t1 (l+%+§)x&
om0 2 2 2 231
1 1 1.1 1,8 1 TR T O TR O T
+ ————[(ltmt=e)e=]x =~ e (L LR R N R ) E Ll
fan 339413 s 2 TET TR
The complete solution is
y = Ays + Bye
R R S S ,_"‘__..; $ aviraving
2’ 2 2an 2 412
+ B{1+ —1—!:' + 1 x‘ - = 1 {14%1-2‘.);‘ + ...1_[(1+1+1+1) 4-1]3’
2 21 an 3 2% 41 21 34 1
b1 1.1.1.1 1.1 10
- léctmtb=t=) d(=+= sesssnan J,
" y— [(Lagegegtp v Grpls * :

The series converge for all finite values of x # 0,

(:-z'}y"-:!yf +2 = 0.

Substituting for y, y', and y", we obtain

(e yalox™ ¢+ [(m=3) (a4 1Ay~ (0=2) (84 DA)s" + [(R=2)(R+ DAg (a=1)(n+ DAJs""

4 venennes & [(meN=4)(REN)An = (m+P =3) (M4 N)Any]x

m+n-3

-1 + werrnena =

i ] 1 2 —— =
The recursion formula is  4n -on-i"‘ + so that
1) F » Aa®[1+ 252x o 221yt B 0, avl e w3, B30 4 cvenenes]
’ Aon | n-3 a-3  m-3 -3 -3 n=-13

satisfies the differential equation

(x-x2)7" - 35" + 25

= (A= i]Mg:l-l.

213
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The roots » = 0,4 of the indicial equation differ by an integer. However, when a=0 the expected
vanishing of the denominator in the coefficient of £% does not occur since the factor s appears in both

numerator and denominator and thus cancels out, Note that the coefficient of =3 is zerowhen s = o0,

Thus, with 4, = 1,
yYr = ¥

- 1+ 2¢/3 + x’;‘a +0-2/3- h’/; - 3.:°/3 — 4;’/3 - rasesuss

and

Yy * = 200w Be 3P vl & s

ylll&

sothat y, = (1+ 2¢/3 + x%/8) - y./3.
The complete solution is Y * Cuyy + Cays = Cy(l # 25/3 + 57/3) + (Cy = Co/3)ys

ol A(x'+2=+:!) +Be'(1s2s vt o asd o srear)

L]
= 4(:242:“3)-&8 = -
(lL-x)

There are finite singular points at x=0 and x =1, The series converge for [x| <1,

7. Solvein Series xy"q-(g-]}y’-y = 0,
Substituting for y, y’, and y*, we obtain
(m = 2mdos™? 4 [(m=1)(m+ DAL+ (R=1)Ao)x™ + [a(m+ Ags A )x"* & tevrenns
+ [(-¢n-2)(-+nM.‘+(u§n-2;!.h‘]:“"']‘ 4 escsrees = Q,

The roots of the indicial equation are = = 0,2 which differ by an integer. We choose the A's to satisfy

the recursion formula

R4n -2 1
bt Eenhaem " e e

At this point we see that no A; = for m = 0, the smaller root, as in Problem S.This is due,
of course, to the fact that the factor a +n -2 cancels out. Thus, since

¥ ® 1 1 ? 1 3
[+] —————
¥ o= Aox (1 - x + B £ ¥ vesenns )
R+l (m+1)(m+2) (m+1)(m+2)(m+3)

satisfies

' x-DF - F = (m-mdos™t,

we obtain, with Ao =1 and m=0, m=2 respectively,

¥y » ¥

a=0 1 =-x+ x'fz! - ."’/3] + l.tliitl:l = c“

and
Yo * ¥

Sk 2 ;. - 2:’/3[ + k‘/{! - 2"/3] # rerennenns = 2(("‘1.'_”.

The complete solutionis y = Cie™  + Gl2(e™ +x=1)] = A ™« B(1-x), convergent for all finite
values of x.
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PARTICULARINTEGRAL.
8. Solve (s'-x)y" +3' -2 = x+ 3/:' near x = 0,
Substituting for y, y’, and y” asin Problem 6, we obtain the condition

1) B4 -mAox" ™ ¢ [(R41)(3-m)Ay + (RH1)(R=DAg)s" + cenirernns

+ [((men)(4-m-n)dy + (u+n;{u+n—3}1“-,,}x'm"" boerennnne = x4 300,

To find the complementary function, we set the left member of 1) equal to zero and proceed as before.

The recursion formula is An = b aA,.,h and thus
R+n =4
¥ o= " a-2 Lo YE B T . Loit 105, RO,
3 wufn-a‘*-»s' +l~3x ‘--a‘ ? 3
satisfies
2) {3!-:)§'+3§’ -2 = a4 =-m)dox"2,

The right hand member of 2) will be O when & = 0,4. m = 0 with 4y = 1, we have
CPRE IR 77 W07 I T L R T )7 Ly S

and for m = § with A = 1, we have
T T T A T P e T ).

Then yy = (14 2¢/3 + x°/3) - y,/3 and (See Problem 6) the complementary function is
y = A(x"e 2043) + Bx"/(1-2)%,

In finding a particular integral, we consider each of the terms of the right member of the given different-
ial equation separately. Setting the right member of 2) equal to = , that is,

R4 =mMox" Y u x, identically,

we have m = 2 and Ao = 4. For am = 2, the recursion formula is An = n_-: An-y; thus, Ay = A,
- 2 n= :
*= Ay = «+evs = 0, The particular integral corresponding to the term = is /4.
Again, setting the right member of 2) equal to 3/x?, that is,

a4 -mdox" " . 3/x?, identically,
wehave m = -1 and Ao = -3/5, For m = =1, Ay » E—:—;An-s: thus, Ay= %Jo. Age ';'llo. Ag =

;”Jlo. Al mAg mAg = vuies = 0. The particular integral correspondingto the term 3/x* is
" %:"‘n + %; . -;x' . %;’), The required complete solution is
.
y = ﬂ(:'+2s+a) +;."....-i__’. -.3.3-.._’_;'
{l—..!)’ 5x 2 10 10
N
= .C(x'+2:+3) - Bs T ¢ lx’ ol
(1-2) ¢ 5z

Note. A partial check of the work is obtained by showing that the particular integral y =x /4 - a/5x
,satisfies the differential equation.
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Since x = 1 is the only other finite singular point, the series converge in the annular region bounded
by a circle of arbitrarily small radius and a circle of radius one. both centred at x = 0.

EXPANSION FOR LARGE VALUES OF x
9. Solve 2% (x -1)y” + x(3x+ 1)y’ - 2y = 0 in series convergent ncar x = ©,

The substitution

2 2
x.l, ylngd_‘--.}..ﬁ--;ig. ”lldl-i.ld_l-;‘u-i:glndz
z dr dx g1 dz dz 50 dr  di? di? dz
transforms the given equation into
2
20-H3L 4 1P _ 2y a0
dr’ ds

for which z = g, the transform of x = ®, is a regular singular point. We next assume the series solution

y = ‘o!‘ + “:..i + A‘l..t * sasnsans * h‘j-"‘é asansnan

and obtain the condition
[ T . 2 L ]
R(2m = 1)Apz + ((m+1)(2m+1)Ay - (20" + 3m+D)Ag)s ¢ crrerirneane
’ fAfi=]

+ ((men)(2m+2n =1)An = [Q(ntn)’ ~(m+n) +1)Aq.4 ) + sine o= 0,

i 2(n+n)'- (m+n)+1
(men)(2m+2n =1)

The recursion formula is = Ag An-1. and thus the series

a'eame2 W iame2 2 eTeT 2

- L] i venerans)
¥R AL (m+1)(2m+ 1) (m+l)(2n+1) (n+2)(2m+3) E
satisfies 2.d%7 dy il
Azaz")—= + (1=52)=— = 2F = m(2m-1)4dpz
dr? dz

For m = 0, with A4g = 1, wehave ya = 1+ 22+ 1:’/3 ¢ 11227/48 + soneness
= ] + ! * .l + &

¢ ternsnmRNee

and for m = §, with 4o = 1, wehave Y2 * x*(l + 42/3 + 22715 + 4B42°/315 & serenes )
- ’-*(1 1,-_‘. * _.2_2... + & + -1.-11.-].
B st s

The complete solution is

2

y = AyL ¢ By, = AL+ -+ £.38 .

112 F=nesss) & B;-*(Lo—t-.—_!c-_...,-vn-_p....}.
452’ 1527 318

e
h’

The series in z converge for 2| < 1, that is. for all z inside a circle of radius 1. centred bt *

The series in x. converge for |x| > 1, that is, for all xoutside a circle of radius 1. centred at x = 0.
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10. Solve z’y' + x(1-x)y" + y = 0 in Series convergent near x = o,

Making the substitution x = 1/z asin Problem 9, we obtain

1) !£§+(3—z)§z+y-0
P dz
for which z = 0 isa regular singular point. We next assume the series solution
y = Ao:'+.41;"1+41,;"’+ TErrT N T e R
substitute in 1), and obtain
an e DA™ 4 [(gel)(meBdy = (n-1Ag)z™ + [(me2)(m+dihy - mA )2 4 ceeininninns

+ [(men)(m+n+2)Apn -(n+n-2)4.,_,]z“"'l 4+ sisessvsenee = 0,

The roots of the indicial equation are m = 0,-2 and differ by an integer. From the recursion formula

m+n=2

‘.n E—
(m+n)(mens+2)

An-y it is seen that A; - o when = = -2, We replace Ay by By (m+2) and note

that the series

§ =Bz [(m+2) + {B=li(n+ D) z 4+ edid o ’(.-l). 2
(m+1)(m+3) (R+1)(m+3)(m+4) (m+3) (m+d)(m+5)
- (a-1)a(n +2) P s

(m +3)’ (nﬂ.)z (m+5)(m+86)
satisfies the equation

d'y d5 1
# 23 +{3»z)—y+§ = Bol{a¢2)?t".
d:’ d!
Hence,
Q = ¥ln: + an'{l + [ ol = "-1)("2}{ d it Y : +
on (m+1)(m+3) (m+1)(m+3) m+1 m+3
2n -+ = (a-1)m ( 1 i 1 P l)]z' %

(m+1)(m+3)(m+4d) (R+1)(m+)(m+4) m+1l m+3 nm+d

-1 ” (m-1)m ‘ 2 + 1 3 1 )]2, i
(s+3]’{-+1)(-+5) (-og;’(.+4”.+5]u+3 m+d m+5

L + +
(m+3)? (m+4)? (m+5)(n+8) menar)?(me5)(meg) m+3 med me5 m+8

I+ 2m-2 g (m=1)n(m+2) (2 ., 2 1 1 ”"

* sesesersrees ) also satisfies this equation,

Using m = =2 with By = 1, we find

-1 .2 3 1
Y. = ?]n_: =z (=32 +2") = ;-3 and
yi v B s yalnz o+ £ (e 324 420 2110730 2B 4 eee)
omme -2

= nlné ¢x b g- 11/3x + 1/827 & seveseeees.  The complete solution is
y = Ay, +By, = (A+B 1!15)(1/: -3 + Bz ¢ 34 4= 1/2x ¢ YBaT 4 ceencren),

The series converge for all values of z # 0,
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SUPPLEMENTARY PROBLEMS
Solve in series near x = 0.
11. 2(:’”:’);" - (x -h‘]y' +y=0.
RF. Ap s =Anoy

Ans. y = (Avx +Bz)(l -x + s i $i Converges for |=] <1.

12, d4xy" + 2(1 =x)y' = y = Q.

1 1
RF ‘n L m A‘_.
x Z’ -\" x 8’ )
Ans. y = Al + - + * ehns) % BVEML ¢ ik +
211 gtg  gl.g 103 1:3:5  1:3-5:7

Converges for all finite values of x.

13, 235" —xy' + (1-2T)y = 0.

R.F. 4y = 1 An-2, n even, A, =0, n odd.
(m+n=1)(2m +2n -1)
l‘ x' xa
Ans. y = Ax(1 + — + " & s
25 204:5:9  2:4:6:5:8:13

!

L} ]

2
x X x
Bvx(1 et +
CBEA S Rt res 2eea Tl

Converges for all finite values of .

14, xy" + y' + xy = 0.

RF. Ay ==

= Ap.,, n even; Ap = 0, n odd.
(= +n)

lz l‘ .lﬁ
Ans. y = (A #+Blnx)(1 -—+

o e * sessasenen)
22 2

2t ed 2t 6

2 . . 1.1
v BLE - Lot 5 geg) - )
2 2.4 2:4-8

Converges for all finite values of x # 0.

15. %" -xy' + P +l)y e 0. RF. An = ——— Ay, ncVeRi Ay = 0, n 0dd.
(m+n-1)
4 u‘* 3 ‘l 8. :6
ns. y = Inx)z(l + — + ——— = +oarvanes aees)
22 ) 2@
E " ’6

2

1 1.1

+Ba[S - e (142) ¢ (142 42) + cernaneani],
e s gt o2 2lant 3

Converges for all finite values of z # 0.

* saiani)y



INTEGRATION IN SERIES 219

I6. zy" -2y’ +y=0. RF. An = - :

——— An.
(m+n~3)(m+n) o
5 . R S 2 3 . 5
Ans. y = (A oBInx)(_x_ r"—.——:_-i cee) +B(1+£+L+s__ﬁ+.,‘_§£_...].
12 48 480 2 4 36 576 28800
Converges for all finite values of x # 0.
17, xy" + 2y’ + xy = Q. RF. Ap = - ——1'-—----—4,,..,. n even; Ay = 0, n odd.
(m+n)(m+n+1)
1 12 S. SH x‘
Ans. 2 ATl = b = mieiees) + Bl = e ¢ = i),
% # %8 21 4! * 31 5!
Converges for all finite values of x # 0.
18. x(x +Dy" 4 x(x+ Dy -y =0,
Singular points: x = 0,-1, R BBt i
m+n+1

Ans, y = As(1-32/3 + /6 = 57/10 ¢ seiiein) + BxTH1 4 0.

Converges in the annular region bounded by a circle of arbitrarily small radius and a circle
of radius one,both centred at = = 0. '

19 22y 4y’ -y = x+ L. R.F. An = : An_y

(m+n)(2m +2n - 1)

Ans y = A(1 ¢+ x ¢+ x’/a + x’/m +oeeees) + B + x/3 + x',r':!O + 15/630 LIEEERERED
’ %x’u ¢ x/15 % 1°/420 + 2°/18900 + reneves) = 1,

Converges for all finite values of x,

Solve in series near x = o .

20.2.!"9:"4 = Q. R F An = - : An_
. & & " (m+n)(2m +2n +1) .
1 1 1
Ans. y aj{]_-..l-f—l—-..—l-——ﬁ.-1---] + Bﬁ[l*;‘ z——;‘ """ ).
3 30?7 g30c’ 6" 90x
Converges for all finite values of = # 0. e
1’3.-" G2
2 Ly i)y my0n _—— RF Ay = s
m+n
1 1 1 1

Ans. y = (A oBlnf)uo

0—-&.4-)}3[;1-0

i, b i 3
e — (145 ¢ ——(Lezen) v een]
T g gt P 2 3 2 3

Converges for all finite values of x # 0.



CHAPTER 27

The Legendre, Bessel, and Gauss Equations

THE THREE DIFFERENTIAL EQUATIONS to be considered here are solved by the methods of the pre-
ceding chapter The first two have important applications in mathematical physics, The solutions of
all three have many interesting proporties.

THE LEGENDRE EQUATION
(1-x")y"=2xy" *+ p(p + 1)y = 0.
A solution of this equation in series convergent near x =0, an ordinary point, was called for in Problem

16. Chapter 25. Under certain conditons on p which will be stated later, we shall obtain here the solution
convergent nedr x = x. Using the substitution x = 1/z(see Chapter 26) the equation becomes

o,

d
B w B -;-'r + plpely = 0

di? d:

for which 2 =0 iy sepular singular point
PURER & v e Sl T YT & e bt Bowena s
{=m(mn-1) + pipe 1]},101' *{-ainel) - oa(p 1)_‘-41.-"" v {[~ms1(m+2) + plp+ )4,

2

tomme DA e {[-t-'n!r-»n-l::'.t!:pvlﬁﬂu v (men=2)(men-1)An_, )"t

* sevae w3 0,

Wetake 4, = 0 and  4q = bafei Bl (LN 500 Awos . und scethi
(meny(me+n-1)=-p(ps+1)

Fo= Agt™ 1 . mimy 1) . mim e li(me 2)me 3 K
(R 1) M2y ~pips1) [mrly(me 2 =pipe D]{M-33m=d) —pip+ 1]
- mimelp(m=27(m+3j(m+q)(a-5) . 20 }

(ms1y(me2y-pipr1)][(me 3 (m ch-pip e ] {(ne5imeB)-plg+ 1]

sauslties the equation

. - -’2,‘7 » 1 dy = f S &
(r -z TR T L ey 2 [ cea-l)ep(pe)]Ast = (mepl(-m+p+ Aoz
d2

For a=-p with 4; =1, we obam

) oy, = 2P -EEZD 2 P@-DE-D@- v pR-DE-DE-NE-DE-5 .8
4 T 2% 2:4(2% -1)(2p - N 2:4-6(2p - 1)(2p =) (2 - 5)
e )
. by o BESl - ptp—l)(p-!)(p'!nx-' _ PtP-II(P-ZHP-3HP-ﬂfP-5)‘-t
23y -1) 2 4(2p -1 (2p -3 2:4:6(2p -1)(2p=3)(2p -5)
& v —



THE LEGENDRE, BESSEL, AND GAUSS EQUATIONS 221
For m = prl with Ag =1, we oblam

I by (p+1(p+2) & (p+D(p+Dp+N(p+4) i,

2) ’
i 2(2p + 3) 2 4(2p+3)(2p +5)

(p+D(p+Dp+N(p+a)p+8)(p+6B) & . ,....)
24:B(2p +3) (P +5)(Pp+TD

o (1 + (p+N)(p+2) ok (p+{p+2)(p+3)(p+4) L
AP+ ) 2:4(2p + ) (2 +3)

(peD(p+D(p+N(p+O(p+S)p+E) -6 . ....])
204:8(2p+ (P +5)(P+T)

Thus. y = Ayy * Bya

is the complete solution, convergent for [x| > 1, provided that p ¢ 1/2, 3/2, 8/2, ++eeeeer oOF

p A =3/2, =5/2 serreren.

Suppose p 18 a positive integer including 0 and consider the solution yy which is a polvnomial, say

up(x). Putting p = 0,1,2,3,¢00 0 in 1), we have

dg () = 1, ug(x) = x, Ug(x) = L-n, ug(x) = = - 21/5,

(a4)
i « % (-t Aol oGl | hem

neo Enn! (2h = 1)essiais(Zh=2n+1)

. teseen

Where [4k] denotes the greatest integer € ghtie, f (gh] = 30f k=7, [§h] = 4 if k8.
The polynomials defined by

3) Pytz)y = S iy Mu(;), P20, 1,2 torer,
P P ¢

are called Legendre polynomials. The first few of these are:
PQ(J’ " Usfx) = 1,

PIL(J'] = Ht{l} - x,

Po(x) = l-.‘:'i"!"a(tl = %ll -%.
Py(x) = L::i:-!u;u} T %g, = %“
P,(z) = 1'3'5'7;:,(:) = .2:_":‘1: = 2:_155_: oF 4 ;:.

It is clear from 3) that Py(x) 1sa particular solution of the Legendre equation (1-xT)y" —2ty’ « p(p+
neo See Problems 1-6
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THE BESSEL EQUATION

xy"exy' 4 (x - kYy = 0.
It is evident that z =0 is a regular singular point. To obtain the solution in series, convergent rear

x =0, we substitute

Yy = dnx- + A,x“l + ﬁ,z‘.: + srsvens & 4,‘,"" ¥ oswsises
and oblain
(k) 0x™ o (e 1T YA . LR BTN M A o aduiscnanis
+ {[(l¢n)=-i’]4., kRN e, =T
We take 4320 and An = - —— An_; and see that
(m+n) %
Fordstio —— 7, 1 .
(m+2) <k [(-&2]’—*2][(-04}’—i=]
1 ]
- 7 = 2 3 3 7, x * -co-.u---.}
(m+2)" =k ) [(me )" — k" J[(m+ 8" - &)
satisfies the equation 54 o e (xz-h:);?_ e

For » = & with 4, =1, we obtain
Y, = -'l*{l - i ‘! + 1 x‘ = 3 1 ;b = bewsun ..}
LICRRY 2k )k 2y .31k v 1) (k+2)(k + )

and for m = -k with 45 =1, we obtain

: ¥ i x‘ - 1 xh + swess ...}.

X +
i1~k &2 (1-kyz-1) 31 (1-k)(2=k)(3-k)

-k
y2 = x {1-

Notethat Y2 = ¥y ik =0,¥1s meaningless if kisa negative integer. and yq is meininglessil & is a posilive
integer. Except for these cases, the complete solution of the Bessel equationis y = Ay, + By,, convergent
forall = # 0.

The Bessel functions of the firs: kind are defined by

= 2".l;.s = (fi’*{% ) l!ckin!‘;}? § 2!th1+2}!:§j‘ ) szchia)![iz)b i
J o fxy = (-1)"Jtm. where & is a positive integer including o.
Of these, Jafzy =11 « -_l_!(%)’ . 13(33" _ _l;ﬁzf T
(1) (2!) (3!)
and IR RE R S 2!—13!@' - ﬁ%(gb v seveddini )

are more frequently used. See Problems 7-10.
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THE GAUSS EQUATION

(x-x)y" + [y -(a+B8+1)x]y’' - aBy = 0.

To obtain the solution in series, convergent near = =0, substitule

41 L B

y = Ao-t‘ ¢ A"t b Asx & Voverein Bl g SRawaie

and obtain

l(lvy-l)&x"‘ 2 {((malymey)Ay - [R(meas B s aBlAdx" + srreennnes

stn~-1

+ {(meny(m+n+y-NAy - [(men-L)(m+n+a+B-1)+al)4q_ )= + sseses = oQ,

Wetake An = f'*ﬂ-l)(l+n+a+ﬁ_1)+aﬁh_‘

(men)(mens+y =1)

and see that

7 = i1 s -(nfanﬁ)*aﬁ‘ 1 -(l+a+ﬁ)faﬁ.(l«l}(loa+ﬁ+l}+aﬁxa
(m+1)(a+)) (m+l)(m+y) (m+2)(m+y+1)

5 n(l+u+ﬁ)+aﬂ- {l+1)(lra+ﬂ+1)¢aﬁ_ (m+2)m+a+S+2)+aB 3
(m+1)(m+y) cf'li-?)[li-j‘wl) (m+3)(m+y+2)

4 sresasas]

satisfies the equation

(x=xHF" + [y=@+B+Dx]F = af¥ = m(a+y-Dhos™ .

For m =0, with dg =1, we obtain

af | a@+1BBY 2 afa+tD@+DEHE+D(B+D) 3
1-y 1- 2.9(y + 1) 1:2:39(y + (Y + D)

rl’l‘

* seswewsn

and for m = 1-7, y ¥ 1, with 4, =1, we obtain

1-?[1 1 {G—7+11(f3'7*1) B (@a=FY+1)(a=-y+ 2)05‘_};,”“3_7*2) lz
12-7 1:2(2-7(3-7

Y = 2

ey NE@-YrD@-y+ NG-Y+ DB-y+DB-y+3) 3
12:3(2-7)(3 =) (4 =)

* .a-a....-..]

The serics ys, known as the hpergeometric series, is convergent for |x| <1 and is represented by
s L F(a,ﬁ.y. X).
Note that Y = P Fla-y+1, B-7+1, 2=y, x)
is of the same type. Thus, if 5 is non-integral (including 0). the general solution is
Yy = Ays+ By, = AF@.B,y,x) + Bx " F@-y+1, B-y+1, 2-7, 1.

There are numerous special cases. depending upon the values of a, 8,and 7. Some of these will be

treated in the Solved Problems.
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SOLVED PROBLEMS

THE LEGENDRE EQUATION

]

L. VC?'f)' that 3’PTP,(=) . -5-5(:’ -1®.  (Rodrigues' Formula)
dx
# = :
By the binomial theorem. (x® - 11’ . z ATy LS £2°*"  Then
el nl (p=nj!
o (4g)
=)’ o T —B (- ) (2p - 2 =1)eeennne(pa2n o yef
de® neo nl(p =n)l
(49 2p(2p-~1
o 3 -t ROV @B o ) 2p-dnetye s ey 2@ Tl pt gt
Asl QP(@ =1)sus a -2n+1) # # s [p-h)(p-ml-l)...] nI(H)!

Now (in the denominator) 2p(2p=1+++(2p-2n+1) = ian(P—l)"@-ﬂ*lﬂ[ﬂp-ma’-ﬁi"{b-aﬂ*l}] and
when multiplied by tp-n)! yields 2"p1[(2p -1)(2 =3)'*+*(p =21+ 1)]. Hence,

P 2 |
—'lx' ST W T - ) p g
dx < ned 2P [(p=-1(p -0 (Pp-nen)p-2)tnl
(k¢)
- Zpt AR, __PE-hi(oRrl) | pem
L " ntpl (=1(P =3 (p=n+])
L] { )l ] ’o
, o u.(s) 2 p!P’u).
(4] 2n)|
2. Show that Py(x) = 2 =" 3 L o o i From Problem | above,
nao 2" n! (p=n)! (p = 2n)1
» (D)

Gt D St —-E--<zp “a) (-l (patne et
dx neo al{p=n)!

(k9)
© I e @ m e pame pEIRL L B o
(p=2n)l n!(p-n)l
(48]
- E DT, ('b-h)!pr .
neo nl{p=-n)!(p=2n)l
¢ & [#7)
Bl Pyix) = —-—-—-'——(l’-l)’ N Zt-ll" (2 = 2n)! R

o ax’ ne0 2’ nl (p-n)l (p -2
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1
3. Evaluate f:. P (x) Pyx) dr.

USing Rodrigues’ formula (Problem 1),

' 1 o i d’
f P (x) .F;(z] dr F — f (r.: - 1)'- _c'z - 1)’ dx,
a 27 L oa” ds?
i3 3 rel s=1
Let us S x?any” and v = do® -1)%ds. Then cu = E—ca"-1) ds, v = T—(s’-1)}
dxr d,’ d‘"l sl
x=1 xel x=1
and f udv = wuy - f v du
xe=1 real w1
r s-1 i | 1 ] 5=1
d
- Lty ity - f B D et
dx" cde® ik =3 dx
a*~! ¢ :
Now —(x -1 =8, for j s 1,2,+++,8-1; henee after one integration by parts,
&7 =)
1 1.7 $-1
f P(x) Pyx) ax = - : f #__afait i et -t
1 2r¢_' . dlv'{l dx -1
\ second integration by parts selds
1 1 1 df +2 i d:.: " .
f F(z) Py(x) dx = = f (= -1 7= -1 dx
=1 2? ] Flig) ek d-troa' d:_g_

and, alter s integrations by parts, we have formally

3 {=iy’ . d™*% 2 .
A f P(x) Pfx) de = ——l f af -’ (x" =1y dx.
=1 -k dx

e res
r!sl

-2
Suppose s>r. Then. since o1y aa oo’

§ e o (_1)'. (J:i'--l)r =0

res
1
and L P.(x) P,(x) dr = 0. Since rund senter symmetrically, this relation holds also whenr > s,

Thus, 1t holds when r ¢ s.

Suppose s = r, Then 4 becomes

1 r 1 r
2 o r
B: f Prxyax - ‘-,'{:‘”—, f < st s s
- 2%" (r1y* b de2”
2 T kB (=" (2Zr)! ST
Now —(x" =1) = (2)!.  Hence f P (x)dx = —-:-7——2-— f (x"=1) dx
dx -1 2 (rty 7T
r _ & . rel
‘t_:'—‘-—) S -t—n'-ZI sin® " oge o L2 2t . 2, usingthe

2" (r1)? 0 _ 22 (r1)? 132 e 1) 2+ 1
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jud n
substitution x = cos & and Wallis' Formu]a-f P g 1 (N )i .
(] 1e3ese(2n+ 1)
~

4. Express f(x) = x'+ 22> + 28 - x -3 in terms of Legendre polynomials.

Since P,(x) = A 3
8 4 8

] lhcn x‘ = _B_P‘(;} * Exe = -3_ and
35 T 35

.08,

2-%}+2!s+2.xi—x-3 . %P.f;:.h’.i:i; o e

feoy = (% P.(x) + f-:x

2 3 8 4 0 2 1 108
Now i’ = SP,(x) + 5% gnd fl=y = 3—5;"(:] - -S-P,(x] R Rk S e
2 2 1 8 40 1 224 =
Ry S EPa(-ﬂ + 3 and f(x) = s afx) + ';"Pu(!) + ﬁpaﬂ) + sx = Fzs
' 8 4 40 1 22
= s—spl(*) + Eplfx) + EP,(x} + EP;(S} - E‘EPQ(X)- ."

5. Show that (1-2xt+ r’)'* = Po(x) ¢+ Py(x) t + Py(x) B e Py (x) t. § v g

Now (1..z=t+t=1'* . [s=faee<t)"¥ o 3 & %{br-t’; " .':.y_i’.i(..si'."‘_‘(gﬂ_g';’,

_l'?,"'(a""’(zu-t’a"’ o B2 o, R R RIS
2" 2 k-2 2"k - 1)1 2"k
But (h!—tz}*' . (2;)":*........
(2t = @™ Ll hian iR $aeesi,
(2st = )*? o (2" TeMt C ngyeantt et E:%:*_"_-'ilm.)*-*,* o Ay R
Hence, (1-264th) 2 o 1 s xt @ a¥e 5 ¢ ceivevsinenns ¢ [RB22(R=1 A4
¢ % 2* ke

~ 1-3'--tat—3)<k_”,‘,t-zx~-a , 1:3:02(2k-5) (k=-2)(k=3) LT U

ke Pt
27k 1yt 2" 2(k - 21 2
. 3.2 1 .a 10300 (2k=1) , &
= & t ] i tssrsansnnraane it e Vo B
‘ixte R =L + = [x
kik - = = = = =
_ ke 1) i L B kk =1)(kR -2)(k-3) x& s _“.]'l PR
2(2k - 1) 2:4(2k=-1)(2k-3)
= Po(xz) + Py(x)t » Py(x) gz $ vemsen 4 Pt(’) ¢.¢. TN
6. Show that Py(1) = 1, p=0,1,2,3, 0r0eeees :

Put x =1in the identity established in Problem 5. Then

7 $

3= -
(1-2t+1t) = (1-(]1 = |+¢+¢2.......,: b renens

= FPo(l) + Py(lye + Pyl t? 4 veene s P‘,(l) P eene , identicaily.

Hence, Pocl) = Pa(1) = veeev = Piq1) % veeen w1,
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THE BESSEL EQUATION.

7. Prove c-E.J,(x) = = Jy(x).

- n 1 X 2n
o) = X (-1 — (P
n=0 (nl)
1 4+
s 4 = (f_)! = lz{izf g lztxilb N (_.nnu _____252 .......
’ (21) (31 [(n+1)1)
and
d x 1 x3 ) 1 X 2n+l
-—JI = - (= —_— - e— - teeas - —_— LN
& ") PR T TR U T TR U i Mo Ty s
E - i - =)’ 4 *sesses = A __1 '.‘.2“‘1 EIEE RN
[2 1121‘2) * t b n!(nél}l(z, g ]
x n+l
I (-1 - Jy (x).
Eu " R rrum P R
More briefly.
o
d d n 1 x2n d 2!‘!
— Jo(x) = = 3 (-1) £S5 % SR G E -1 &™ 7
dx dx LY (n!j? 2 dx . nA=l (n!)
d S 1 2
TR [l & (_115 {l ‘l‘ﬁi X X 2n+l = —-J .
dx ”?o [(u+1)l]3 2 E ¢ ) nl(n+l)"2) 12)
d - -
8. Prove a)l .i.x*dk(s) - 2t Jy 13 b) ol "Jx(*) = -5 Jra(®),
where k isa pmiliveinleger
d & 1 2h42n
a) — =" Ji(x) _2(1) x
A
dx ned 2" a1 (k4 1
E n 2k + 2n 2k+2n-1 -
- '(—I) ___;____x LT
n=0 2““1:! (k+n)l
1 2k +2n-1
. Z -1 x
neo g =t (k+n-1)1
Ao, 1 X N
X kenal
3 (-1 —_— (= .
x “E':o ) al{hsno1 (2) = Iy,
d on d < " 1
b) — ‘Jitx) 2 E (-1) ————"—-—.Im
dx dx ww zliiunl Frg
d 1
B e [__ - 2 (~ 1] 1 n+2
dx k - x ]
- R 4 2 TR a1t (hin e DI
- ¥ 3 e —b
(- l) :znu = g (-1)" X ke2n+l . -k
nel zkozu 1n'thm-1)l x n?u n'(kona1)1(2) x Jhll[:).
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9. Prove a) J, (%) = J,, (x) = 2%1,‘(:). b) Jy 3 + Jyux) = %“’u‘"-

where & is a positive integer.

From Problem 8§,

A) i—- x‘-J,m O % Jy(x) + T Jyxy = X Jy1 () and
B) £ ".'J'h{x) o g=® % Jytx) - a2 Jy(x) = = x'. Jyay (X)s
Then from A,

d k
1) 7 Jyts) ¢ = Jytx) = Sy (=)
and from B),

k
2) B = =& = =y, ).

dx
When 1) and 2) are added, we have a); when 2) is subtracted from 1). we have b).
Note that when 4) is subtracted from a/, we have

d 2k
2 =Jy(x) = =Jy(x) = =2 or i- Jy(x) = ;J*m = S @

dr P h:.
Note also that &) is a recursion formula for Bessel functions.

10. Show that AR Jolx) + tJi(x) 4 seene + I*J.{x) + asaes g ‘:"J‘-l(‘l 4 vues
+m
n
+ _lkJ'.(x) 4 cesnunen - E t Jn(‘).
t fle=0
JRE-WE)  gxt -x/at
2.2 5.5 n 2
.[!’i_t_‘:t'r:tf“xl )i~ A% x
22 2 2" nt 2t gt gy ¢
3 n
- ‘_ 4 sasse § {-1)'—_!-_ + l'l'l]‘
2 3 ¢ 2" nt "
In this product, the terms free of ¢ are
1- G s 50 - =5A° v v " 2567 ¢ - s,
(21) (31) (ul)
the coefficient of t*is
ll ’hd =, ’hn :! r ’hﬂ £ Rikela
i T wrpwvelst e prepreieroyoiie o TETRTEROp
1 =& 1 x heg 1 x_hey ket
= — - - —— PR S _,-_._ 4 teasaan
k! {2) eks1)t 2 x 21 (k + 2)1 2) T (ka3 “)
- 2 {13 ot (5)""" = Jy(®). and the coefficient of _13 is

Rab n:(hrm 2 t
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A M+l he2 2 k43 H
{-i).[ % = E A x e _ x ,x - anic)
2u a2 M Gy 2P 2 hesy 2
A1 xa 1 x heg 1 z hew 1 x kib
(el [} - m——a T b — e - —_— (=) # eee]
Iu (2’ U(k+1)1 2 20Ck+2y1 2 31k +3)1 (3

T S AL e
THE GAUSS EQUATION.

11. Solvein series (x -3')3" + {% - 20)y! - ‘ly = 0,

Here a+B8+1 =2, ¥=3/2, af = V4; thus a = 8= 1/2, and ¥ = 3/2,

2 3
S5x
Thl.‘n Y. = F(ﬂ,ﬁ.)’.l) = F(%.;.;'l) = 1 + E + % + m + isswsas
-y -4
and Yo = x Fa-y+l, B-y+1, 2-7, 5) = x YF(0,0,4,x) = W&,
and the complete solution is y = AF(-;.;. ;.;) + B/VE.

12. Solve in series (x -x’}r" + 4(l-x5)y' - 2y = 0,
Here. a+B+1 4, ¥=4, aBu2then awy, Be2, y=4 Or a3z B=l, 7= 4

For either choice, yi = F(1,2.4,5) = F(2,1,4,x)

2 3 ) 5
= 14+ 2 + g‘— + i + X + i 4 sneanns
3 10 ] 7 28

Since 7y = 4,the fourth term in y, has zero for denominator. However, one of a=y+2 , Sy +2
in the third term is zero so that

o » 8 F21-20 = xRl o200 = 2 (1w

and the complete solution is

y = AF(L,2,4,5) + BE.
x
13. Show that a) Fa,B.8.x) = (1=-3)"", b) xF(1,1,2,~x) = In(1+x).
. (@a+1) +1) 2
a) F(ﬂ.ﬂ.ﬂ.l) = 1 + “-—E‘x + E_Lg 4 ssemsas
1.8 1.288+1
= 1 + ax + a@+ 1) 4 o BBPDRED I L aesiis w (1_,]"'.
Hi 3
b) F(1,1,2,-9 = x[1.+ ﬂ(—s) + l_"‘:..;'_’(..;)’ + M(.,)’ 4 weranas ]
1-2 1-2-2-3 1+2:32+3+4

1 1 2 1«
-x

= g(] - qz.; * 5' - & wevess ) = lo(le+x).
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14,

15.

16.

17.
18.

19,

21.

22.

THE LEGENDRE, BESSEL, AND GAUSS EQUATIONS
SUPPLEMENTARY PROBLEMS

Compute a) P,(2) = 55.3750, &) Jo(1) = 0.7652, ¢) Jy(1) = 0.4401, o) F(l,1.10,~1)= 0.9147
Verify each of the following by using the series expansion of Py (x).

a) *=DPyx) = (p+ D[Py, (x) ~xP ()] = plxPy(x) ~ Py ()],
b) Pfoy () = xPy(x) + (p+1)Py(x).
c) [2p§l)P¢(x) = P;“u) -P‘:_l(x) = %[(p&»np a®) s pP,_l(x)).

If Pa(2) = a and P,(2) = b,show that
a) Pl(2) = ;(b-m. b) B@) = X2b-a), ) P2 2(30b=a), d) B/(2) = 3(52b- 14a).

If Jo(2) =a and J,(2) = b, showthat @) Ja(2) = b-a, &) N (2) =a-4b, ¢) Js(2) = a.

Show that the change of independent variable x* = ¢ reduces the Legendre equation to a Gauss equation,

a) Show that the change of dependent variable y = £ transforms y"+y =0 into a Bessel equation.

(x) andshow that J (x)

b) Write the solution of the Bessel equationas y = C,:*J (x) + C,x“J_ y

% %
and J[_*f;) may be defined as ax ® sinx and bx " cos x respectively.
¢) Show that if the relations of Problem 8 areto hold for k = + 4, then a = &,
Note. These functions are defined with a = v2/n, : »

2/3

Use the substitution y = «**; and then = = (3t/2) to show that y"+zy = 0 is a special case of

the Bessel equation, and solve.

Hint: 2" + tz* + -::’-1/8): =0,

& 9
Ans. s h[l - + = - * + sevasnaa ]
23 2237 3128 70
3 b 9
+* B[l - -L + > - * + srsssssveama ]-
3.2 213°2.5 313258 .

Solve (x’_ 32+ 2)y" + dxy' + 2y = 0 after reducing it to a Gauss equation by a substitution of the

form x=€z+ 7,

Hint: y=AF(,2,-4,2-1) + B(x~ 1)’!‘(8.?.8,:-1) is not a complete solution since the sixth term of
F(1,2,-4,x-1) becomes infinite.

Ans. y = AF(1,2,8,2-x) + B(2=x)" ' F(~8,=5,=8,2-x)

Express each of the following as Gauss functions.

a) 1—1; = F(1, 8,8, % d) ¢ = 1l Fa@. 1.1, 5/a)

a— @
1

b) arc sinzx = SF(%I 33" x’)

LSS

2
3 z
e) sin x = ‘I-.‘.- ’F(‘pﬁ.il- :E)t
A=

w

c) arc tan x = x F(ls -;-. - -x')



CHAPTER 28

Partial Differential Equations

PARTIAL DIFFERENTIAL EQUATIONS are those which contain one or more partial derivatives. They
must, therefore, involve atleast 1wo independent variables. The order of a partial differential equation is

that of the derivative of highest order-in the equation. For example, considering z as dependent variable
and x, y as independent variables,

1) xa_‘+y3_z=z or 1) xp + yq = z
oax ay
is of order one and
2 2 2
2}§_Z+3£+3_:=0 or 2y r+3s +tt=0
ax? ™y oy

is of order two. In writing | )and 2"), use has been made of the standard notation:

2 2
_ oz _. oz polz g = 02

PR 7% o

2
pow X,
ay’
Partial differential equations may be derived by the elimination of arbitrary constants from a given
relation between the variables and by the elimination of arbitrary functions of the variables. They also
\/‘ay arise in connection with geometrical and physical problenis.
E

MINATION OF ARBITRARY CONSTANTS. Consider zto be a function of two independent variables
x and y defined by

R)) &(x,y,z,a,b) =0,
in which a and b are two arbitrary constants. By differentiating 3) partially with respect to x and y, we
obtain
28 34 3z 38 28
4 = + 222 =z 28 4 p= o
) B Bl o A P ®
and
2 ,242% _ 2%, 2
5 . + —_ = -g = 0.
’ y "y Ty P9 70
In general, the arbitrary constants may be eliminated from 3), 4), 5) yielding a partial differential equation
of order one
6) f(x,y.z,p.q) = 0.

ExampLE 1. Eliminate the arbitrary constants a and & from z = ax®+ by®+ ab,

Differentiating partially with respect to x and y, we have
2 oz
il 2ax and g = q = 2by.

Solving for a and b from these equations and substituting in the given relation, we obtain

231
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:o= g Bty 4t 4 by ) or pa + 2’y + 2qxy” = dayz,

x
a partial differential equation of order one.

If z is a function of x and y defined by a relation involving but one arbitrary constant, it
is usually possible to obtain two distinct partial differential equations of order one by eliminating the
constant.

ExamPLE 2. Eliminate a from z = a(zx +y).

Differentiating with respect to x gives p=a, so that the partial differential cquation z = p(x +y) is
obtained. Similarly, differentiation with respect to y gives ¢ = a and the equation z = g(x + y).

If the number of arbitrary constants to be eliminated exceeds the number of independent variables,
the resulting partial differential equation (or equations) is usually of order higher than the first.

ExAMPLE 3. Eliminate a,b,c from z = ax+ by + cxy.
Differentiating partially with respect to £ and y, we have
(i) p=a+cy and (i) g = beex.

These, together with the given relation, are not sufficient for the elimination of three constants. Dif-
ferentjating (i) partially with respect lox , we have

2
...._a .—a‘ - -
Bxp - ! ¥ S

a partial differential equation of order two. Differentiating (ii) partially with respect to y ,we have
Raga 2t o B of order two.

Differentiating (i) partially with respect to y or (ii) with respect to =, we obtain

?
-a—-P = E—-q = --—3‘
By 3x ox Ay

From (i), p =a+syand a = p-sy; from(ii). b = g=-sx.

= 5 = c,

Substituting for a,b,c in the given relation. we obtain

or-order two. 2 = (p-sy)x + (gq-sx)y + sxy = px + qy - sxy,

Thus, we have three partial differential equations r=0, t=0, 2=px+ qy - sxy of the same (minimum)

ogder associated with the given relation. See also Problems 1-4

ELIMINATION OF ARBITRARY FUNCTIONS. Let u=u(x,y, z) and v=v(x,y,z) be independent
functions of the variables x,y, z, and let
7) @(u,v) =0

be an arbitrary relation between them. Regarding z as the dependent variable and differentiating part-
ially with respect to x andy, we obtain

Mdu, v, v, v _
8) P ety =0 o
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B e, 2, B, L L g
A au(ay 1 "ax) g dv {'ay x) '

Eliminating 2_45 and %Q from 8) and 9), we have
u v

pdd R, %
3x Pas oz
S pEE e el - Eradh & e

du du v v . X 3z dy dz 3?+ dz Ix P

+ — Pher it
> 9 y'%:
Jud_ v, Budv_ dwdvy , Qud Budv _ g
?x 3y Dy X 3z ¥y ¥}y oz Ox 3z 3z 3x '
Writing Una_ua_v..a_"y = 23U 3V _%u v, = OU 3v _ 2u3v,
3y 9z 3z By 9z ¥x ox oz 3x By By ox

this takes the form
Pp + Qg =

a partial differential equation linear in pand q and free of the arbitrary function ¢(u, v).

EXAMPLE 4. Find the differential equation arising from  ¢(z/x%, y/x) = 0, where ¢ isanarbitrary
function of the arguments.
We write the functional relation in the form ¢(u,v) =0 with u= z/x’ and v=y/x. Differentiating

partially with respect to = and y, we have

%ﬁ ng‘-‘b(-lwo ﬁ(in—)-u.
l

The elimination of 2 and 2 yields
xn

p/s" - 3z/2" -y/.:’

= pfz’ - /e’ + qy/s> = 0 or  px + gy = 3r
o/’ 1=

The arbitrary functional relation may also be given by = = f(yor 2 = = f(¥) where fis an arbitrary
y ,
function of its argument. Using v = y/x and differentiating 2z = x’f{v) with respect to = and y yields
p ety e SLE 2 alry o SEHE L) - B -y fw,
dv ox dv  4?

y df v y df 1 2
g = x -&Eé—’ . ’(35”;) = x5 fl(v).
When f'(v) is eliminated from these, we have

px +qy = Sx’f(v') = 3z
as before, Sec also Problems 5-8.
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SOLVED PROBLEMS

Eliminate a and b from z = (x2+ a1(y" + &),
Differentiating partially with respectto x and y, p = 2¢(y*+6) and ¢ = 2y(z?+a). Then
2 = -E. ] 2 i [l = 2 2 = 3— -E. 0 = .
Y vhr miin v % and = x"+a)(y*+b) {huan r pq = 4xyz
We could also eliminate a and & as follows: pq = 4xy(y®+ b)(x" +a) = 4xyz.
Find the differential equation of the family of spheres of radius S with centres on the plane r=y,

The equation of the family of spheres is 1) (x - (y-a)' + (z=b)" =25, a and b being arbitrary
constants. Differentiating partially with respect tox and y, and dividing by 2, we have
(x-a) + (z-b)p =0 and (y-a) + (z-b)g = 0.
let z-b = -a; then z-a=pm and y -a =qn, Making these replacements in 1), we get

l’(pz‘?q!*l) = 25, =
Now z-y= (p-q)m. Thenm = 222, a?p?sq? 41y = E—-_—‘r"?tp’ +q" +1) = 25,and the required
. (-9
: . o 2 2 2 2
differential equationis (x~-y) (p" #+q" +1) = 25(p-q)".
Show that the partial differential equation obtained by eliminating the arbitrary constants a,¢ from

2 = ax + h(a) y + ¢, where h(a) isanarbitrary function of a, is free of the variables x,y,1.

Differentiating z = ax+ h(a)y + ¢ partially with respect to x and y,weobtainp = a and ¢ = h(a).
The differential equation resulting from the elimination of a is g = h(p) or f(p,q) = 0, where f isan

arbitrary function of its arguments. This equation contains p and -q but none of the variables x,y,z.
Show that the partial differential equation obtained by climinating the arbitrary constants a and 6 from

z =ax + oy + f(a.b),
the extended Clairaut equation, 15
= px+qy+ flp.9)

Differentiating 2 = ax + by + f(a,b) with respect to x and y yields p=a and g=b, and the required
differential equation follows immediately.

Find the differential equation arising from @ (x+y+z, aly®a?y = 0.
Let u=xey+z, v=x+y ~z? sothat the given relation is ¢(u,v) = 0.

Differentiation with respect to yand y yields

3 3P oy - . 3 v 22y -2:0) = 0. Eliminatin & and 22, we have
3“l(lﬂ’) * a"th p) = 0 ,a"(h-qa autzy Q) B o =
1+4p 2&-2p

= 2y=-x) + 2p(y+2) - 29(z+x) = 0 or (y+ra)p-(z+1)g=x =Y.

1+q 2y-2q
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6. Eliminate the arbitrary function ¢(x+y) from z = ¢(x + y).
Let z+y = wu so that the given relationis z = $(u).
Differentiating with respect to x andy yields p = ‘;E =¢'(w) and g = @' (W.
Thus. p = ¢ is the resulting differential equation.

7. The equation of any cone with vertex at Py (xq, Yo, 20} 15 of the form ¢(E—"¥ ' %} = 0.
-1 I-1g

Find the differential cquation,

Let =% =y, Y=Y0 . y 5o that the given relation is  @(u,v) = 0.
1-25 -2

Differentiating with respect 1o x and y. we have

a1 p =%

X p LYo g

+

du 2-1o “_1032 du (xmzo)’
E@c—q——"‘“,) . g‘—”:xiz - g L= -0,
o (1 -10) v ° (z -120)
Elimmating ?’ and :_q_? we oblamn p(z=xg) + gly-Yo) = 2z —Zo.
u v

8. Eliminate the arbitrary functions f(x) and g(y) ftom z = y f(x) + xg(y).

Differentiating partially with respect to x andy, we have
1) p=yfix)+ gy and 2) g = flx)* xg'(N

Since it is not possible to eliminate f.g.f'. g'from these relations and the given one, we find the second
partial derivatives
Y reyf%. s = fi(x) + g, t=xg"(y),

From 1) and 2) we find f/(x) = ;[p—g(y)] and gr(y) = i[q-)’(:)]- Hence,

¢ = sy g’y - ;Ln-s(:r)] v 2g-feo).

Thus. xys = x[p-g(n) + ylg=fx)] = px + gy - [y f(x) + x8(0] = pxegy-z is the resulting
partial differential equation.

Note that the differential equation is of order two although, in general, a higher order is expected. How-
ever, since one of the relations 3) involves only the first derivatives of f and g, it is possible to eliminate
fi8: f'. 8" between this relation, 1), 2), and the given relation.

9. Find the differential equation of all surfaces cutting the family of cones x?+ y*~ a®:* = 0 orthogonally.

Let z = f(x.y) be the equation of the required surfaces. At a point P(x,y,z)on the surface, a set of

direction numbers of the normal to the surface is (p,q,~1]. Likewise, at P a set of direction numbers of

the normal to the cone through P is [x,y,-a%z). Since these directions are orthogonal,
px + gy + 'z = 0.
The elimination of a? between this and the given equation yields the required differential equation

—31 1(pr4qy) + 2%+ ¥¥ = 0.
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10. A surface which is the envelope of a one-parameter family of planes is called a developable surface. (Such

a surface can be deformed (developed) into a plane without stretching or tearing.) Obtain the differential
equation of developable surfaces.

Let z = f(x,y) be the equation of a developable surface.

The tangent plane at a point (o, yo. 2o) of the surface has equation

1) F = (x=2)p + (y=-y0)q = (2-25) = 0,

Now when p and ¢ satisfy a relation #(+q) = 0. 1) is a onc-parameter family of planes having
r = f(x,y) asenvelope. Thus ¢(p,q) = 0 or g = A(p) 1s the required differential equation.

The cone of Problem 9 is a developable surface since p = =, 4 - —:'- satisfies

ﬂ!l az

#p) = a’(plegly -1 =0,

I1. Eliminate the arbitrary functions ¢, and ¢, from

17 Py mux) ¢ Po(ysmex) = Py(u) + Py(v)

in which =y # a, are fixed constants,

Differentiating partially, we obtain

1 2 2 2 2 2
rz-:d;‘il*.:d_ﬁ. .:.‘d__ﬁ+.‘di!. ;:ﬁ.é!;dd".
du? dv? du? dv? d®  dv?
2
) d= 2 .I. l’ r
Eliminating ;l%:_t? we have B By s| = (my-m)r - (-":_n:): + (u:l,—l,-:)r =0
v
1 1 ¢

Or,SINCE my £ My, r = (A 4m,)s + mm,t = 0.

12. Show that(a) z = as’+ by’ and (b)

2= ax’+ bx'y+cxy’+ dy' /2 give rise to the same differential
equation,

a) Differentiating 2 = dx’ + by? partially with respect 1o x and y , we have
P = 3ax? and q = 3by’,
Thus.px + gy = 3ax’+ by’) = 3 is the resulting differential equation.
b) Differentiating 2 = ax’+ bx’y + exy?+ dy%/x partially with respect to = and y, we have
p = Bax® + 2bxy + cy? - dy'/x* and ¢ = bx® + 2cxy + sdy’/x.
Thus, px+qy = 3(ax® + bx?y ¢ cxy? + dy*/x) = 32 as before.
The fact that these two equations, one with two arbitrary constants and the other with four, give rise

to the same differential equation will indicate the subordinate role which the arbitrary constant will play
here. In its place we will have arbitrary functions. Since (a) may be written as

r s ax? b:(’ = .'I"[d +6()’_{'x)5] - ;’.‘{y/g}.
while (5) may be written as

i = Llarby/n s/ vdiy/n') = 2 hiy/n,
each is a particular case of z = x’-f(y/z) considered in Example 4.
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SUPPLEMENTARY PROBLEMS

Eliminate the arbitrary constants a,b,¢ from each of the following equations.

13.
14.
15,
16.
17.

18.

20 (x=a) + (y-b)' Ans. 41 = pl + q'

z =axy + b xp-y3 = 0

ax + by + cz = | r=0, s£=0 or t=0

:-au’#h’ewﬁb q=xp+p’

1=ayeyhioal + b Pq = xp + ¥q9

x’/n' ¢y'/b! + xa{'ct =1 .ur+xp=-:puo. y;l+yq'-:q-0. or 2s+pg=0

Eliminate the arbitrary constants a,b and the arbitrary functionseg.f, g,

19,
20.
21.
22,
23,

A4,
25.

26.
27,

z = x'lﬂx—y) or l{:(:;’z’, r-y) =0 Ans. 21 = xp + xq

xyt = @Pxey+1) x(y=2)p + y(2=%)q # z(x=Y)

2= {:oy)tﬁ(:'—y,) yp + 2 = 2

20 f(x) + e gx) t-q =0

x = f(1) + g(y) ps =~ qr =0

s fxy) + g(xsy) Ans. x(y-xr = F=xT)s e y(r=nt ¢ Pag)(x+y) * 0
2= f(x+z2) + gz y) Ans. qr - (l+p+gq)s + (1+p)t =0
:-u'+g(y) p=-xr=0 or s =0

z = §(at + 2327 + axy + bx + Py + ax) Fa2tsrt =g =2

Find the differential equation of all spheres of radius 2 having their centres in the x0y plane.

Hint: Eliminate a and b from (s_q' + (y-.b}' P e Ans. x'(p' - q' +1) = 4
Find the differential equation of planes having equal x- and y- intercepts. Ans. p-q =0
Find the differential equation of all surfaces of revolution having the - axis as axis of rotation.

Hint: Eliminate ¢ from ; « @ (vxt+ J"} = Y(x? +_y’). Ans. yp-xq9 =0



CHAPTER 29

Linear Partial Differential Equations of Order One

THE PARTIAL DIFFERENTIAL EQUATIONS of order one

) Bx % gy = 3z and 1,) px‘*qy:z’

are called linear 10 indicate that they are of the first degree in p and q. Note that, unlike linear ordinary
differential equations, there is no restriction on the degree of the dependent variable z,

All partial differential equations of order one which are not linear, as

2) pP+qt=1 and 2)p +1lng = 2%,

are called non-finear.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER ONE, Equation 1,) was obtained in
Chapter 28, Example 4, from the arbitrary functional relation '

3) &(1/x>, y/x) = 0
or its equivalent z/x* = f(y/x), This solution, involving an arbitrary function, is called the general solu-
tionof 1),

The differential equation was also obtained (Chapter 28, Problem 12) by eliminating the arbitrary
constants from

4, z = ax’ + by’
and from
4,) z = ax® + bxly + exy? + dy*/x.

A study of the problems of thut chapter indicates that relations involving two arbitrary constants usually
yield non-linear partial differential equations of order one, while those involving more than two arbitrary
constants yield equations of order higher than one. However, as was pointed out in Chapter 28, Problem
12, both of these relations are particular cases of the arbitrary functional relation 3). It is clear then that
the general solution of 1) yields a much greater variety of solutions than that obtained (in the case of
ordinary differential equations) through the appearance of arbitrary constants; for example,
/x> = A sin(y/x)' + B cos(y/x) + C In(y/x) + De** 4 E(y/x)"*

is included in the general solution 2).

THE GENERAL SOLUTION. A linear partial differential equation of order one, involving a dependent
variable z and two independent variables x and y, is of the form
3) Pp +Qq =R

where P,0Q, R are functions of x,y, z.
If P=0o0rQ=0, 95 may be solved .easily. Thus, the equation -:1 = 2x + 3y has as solution z =
X
x4 3xy + #(y), where ¢ isan arbitrary function.

238
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Lagrange reduced the problem of finding the general solution of 5) to that of solving an auxiliary
system (called the Lagrange system) of ordinary differential equations

dx dy dz

6 = om 2 oz 3D

) P Q R
by showing (see Problem 7) that

7 $(u,v) =0, ( ¢, arbitrary)

is the general solution of 5) provided u=u(x,y,z) =a and v=v(x,y,z)=>b are two independent
solutions of ). Here, a and b are arbitrary constants and at least one of u, v must contain z.

ExaMpLE 1. Find the general solution of
1) px + gy = 3z.

;“_-g'dx.

The auxiliary system is = o

From &, :—:.wc obtain u = z/x* = a; and from dT’ = ?-Wc obtain v = y/x = b,
x

Thus, the general solution is d:(z/x’. y/x) = 0, where ¢ 1s arbitrary.

Of course, from i :—’ , we obtain z/y? = ¢, and we may write
y :

v/ iy =0 or Aa/y' y/3) = 0,

where ¥ and A are arbitrary. However these are all equivalent and we shall call any one of them rhe
general solution.

The above procedure may be extended readily to solve linear first order differential equations involving
more than two independent variables. '

ExXAMPLE 2. Find the general solution of

X = 4 —_— t — = t.
oz . dy .
z being the dependent variable.
The auxilary system is de @y @ B
= Y t xyt

We obtain readily u = z/y =a, v =tfy = b,
A third independent solution may be found by using the multipliers yt, xt, xy, -3. Since

X(yt) + y(xt) + t(xy) + (xyt)(-3) = 0,
ytde + xtdy + xydt - 3d: = 0
and xyt =3z = ¢,

Thus, the general solution is @x/y, t/y, syt -32) = 0,
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COMPLETE SOLUTIONS. If u=a and v=b are two independent solutions of 6) and if a, 8 are arbit-
rary constants,

8) u =av + 8

is called a complete solution of 5). Thus, for the equation of Exa mple 1.
z/x’ = a(y/x) + B

is a complete solution.

A complete solution 8) represents a two-parameter family of surfaces which does not have an envelope,
since the arbitrary constants enter linearly. It is possible, however, to select one-parameter families of
surfaces from among 8) which have envelopes. As shown in Problem 8, these envelopes (surfaces) are
merely particular surfaces of the general solution.

SOLVED PROBLEMS

\',l./Find the general solution of 2 + 3¢ = 1,

The auxiliary system isi."':. « W &

3 1

From% = ? wehave x-2: = a; and from 3-2‘-'- . ?- we have ax - 2y = b, Thus, the general solution

is ¢(‘-2]. Ix -2y) = 0

The complete solution = -2: = a(3x-2y)+ 8 isa two-parameter family of planes. The one-parameter
family determined by taking B = a? has equation

A) x=2 = a(3x-2) + a, ‘
Differentiating A) with respect toa yields 0 = 3x ~2y+ 22 0r a = - $(3x -2y).

Substituting for a in 4), we obtain the envelope, a parabolic cylinder, x =2z = = $(3xr = ay)' s
This cylinder is clearly a part of the general solution.

‘}/ Find the general solution of y'zp - x’:q = x’y.

The auxiliary equations are & 4y | d
y*z =2 :’y
From 9% . 4 or zdz+ ydy =0, we have y*+2%.4; I'rclm--d'i - i. we have ;’fy’- b,
=y -z ¥z -x'2

Thus, the general solution is @(y*+:2 23+y%) = 0.

YFind the general solution of (y -z)p ¢ (x-y)g = 2 - .

The auxil'ary system is AL S
Y=-3 x-y 3-x

Since (y=2) ¢+ (x=y) +(z=x) =0, dredy+ds = 0 and £4+y+z=a,
Since x(y-z)+i(x-y)+y(2-x) =0, xde+1dy+ydz=0 and x24 2yz = b,

Thus, the general solutionis (=% 2yz, x+yez) = 0.
The complete solution x*+ 2yz = a(x +y+1) + B represents a family of hyperboloids.
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\/Aind the general solution of (z* -~y*-2%)p + 2xyq = 2u:.

= - dx dy dz
The ausiliary system is ———————— = — = —.
;'-J’-;’ 2!)' 2x2

3y . 42 yeobtain y/t = a.

From
2y 2xz

xdx + ydy + zdz :xdxoydyq-:d: - 2‘2(xdz+ydy+zdxj
2

dz
From = =
1 x(x’-y'—zz)o;r(?xy)fz(&t) x(xzoyzozi) z .:3-&)31-8

!'{b !§li
we obtain 2 2¥ ** .y,

2 1. .2
¥ BTRY T
l' z

Thus, the general solution is @( ) =0,

The complete solution x? + y? + 27 = ay+ B2 consists of the spheres through the origin with centres on
the plane yOz.

VA]“ ap + bg + €2 = 0,

The auxiliary system 1s & _dy . B Erom BB, weobtain ay - bx = A.
a b -c1 a b
If ayo, _‘:" = %‘ yields Inz = - 2: +1nB or 1:Be¢ ™% and the general solution may be
wrilten as 1 = r'“/“ @(ay=-bx), If b4 0, --‘:i‘ = % yiclds 2 = Ce'c’/b. and the general solution
may be written as z = c'cﬂbgb(u;r- bxy,

QA)]\'& 1) 2p+q+2=0, 2)p=-3g+2r:0, 3)2p+3q+5:2=0, 4)qg+22:0.
1) Comparing with Problem § above,a=2, b=1, ¢ =1.
The general solutionis z = e'#,¢(2;r-x) or r = c-’\b{!y—x).
2) Here, a=1, b=-3, ¢ =2 The general solutionis z = ¢~y +3x) or z = e"?“\'b{jlex).

3) The genera' solutionis z = e',x“d:(:y-sx; or z = e'”f’ Y2y - 3x).

4) The general solution is z = e 2 ¢ex) = ¢ 2 Y(x).

; ; . dy d
%w that if u=u(x,y,2) =a and v=v(x,y,z)=b are two independent solutions of %‘=Ey'ﬁ- where

P,Q,R are functions of x,y,z, then $(u,v) = 0, with @ arbitrary. is the general solution of Pp+Qq = B,

Taking the differentials of u =a and v =5, we have
u Bu u v v v
—ds + —d —dz = 0, —dx ¢+ —d = d 0.
= 3 y + v z 3 + > Yy * = i =
Since u and v are independent functions, we may solve for the ratios

d":'frfd"(éé-}l-é)' hé-é-@-: EE—EE = P:Q:R.

dy 313y ddw w3z mdy Jydx

But these are the relations (see Chapter 28) defining P,Q,R in the cquation Pp+ Qg =R whose general
solution 1s ¢(u,v) = 0,
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8. Let u=avsB be a complete solution of Pp+ Qg = R. From this two-parameter family of surfaces,
sclect a one-parameter family by setting 8 = h(a), where hisa given function of @, and obtain the envelope.

The envelope of the family

1) u=av+ hia)
is obtained by eliminating a between | )and
2) 0 =v+ h'(a),
Solving 2) for @ = u(v) and substituting in 1), we have
3) u o= vepfy) + hlp(vd) = Av),

Now 3) is a part of the general solution ¢ (u, vy = 0. Thus. unlike the case of ordinary differential equations,
the envelope is not a new locus,

If h(a) is taken as an arbitrary function of a, A(v) is an arbitrary function of v, and 3)is the general
solution. Thus, the general solution of a linear partial differential equation of order one is the totality
of envelopes of all one-parameter families 1) obtained from a complete solution. It is to be noted that
when h(a) is arbitrary, the elimination of a between 1) and 2) is not possible: thus, the general solution
cannot be obtained from the complete solution.

9. Show that the conditions for exactness of the ordinary differential equation
H(x.y) M(x,y)de + u(x,y) Nix,y)dy = 0

is a linear partial differential equation of order one. Thus, show how to find an integrating factor of
Mdx+Ndy =0, (See Chapter 4.)

If puMd: + puNdy = 0
is exact, then %(,ukl = %(,uﬂ) or Mg_‘; & h':..!i‘ s Mgg_g_‘;).
This is a linear partial differential equation of order one for which the auxiliary system 1s
1) . R |
N W,
dax Oy

Any solution, involving g, of this system is an integrating factor of Mdx + Ndy = 0.

Writing 1) in the form

N_w W _ W

_ i = X % dy = B, it is evident thatif
-N M H

2)

N _ oM W

3= 3y o : " ; o
- va = f(x), then u - ejﬂ“‘d‘ 1s an integrating ¢ <ior, or if & ¥ o . BlX). # = Y s an
i

integrating factor. Moreover, if the equation is linear (thatis, y’+Py = Q). then M= Py-¢, A=1and 2)

becomes Pdx = s d’,_,‘ﬂf and p = efpd" is an integrating lactor.
Py-Q »®
10. Find an integrating factor for (2x’y - y*)dr = (2" « xy)dy = 0. (See Problem 9 ubose )

N
Here M - ?.xsy-yz. N o= -(Zx“vxyl. ,;2‘= 2:5-23. g—l= -{&x".ﬂ.
Y
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We seek a solution involving u of dx = dy E du .
a*exy  2ly-yt pr-t0g’)
From dp . -2y dx - 3x dy _ ~2yds-3xdy a8 du _ -2y ds -3xdy
ply 1027y —2y(2x" v xy) - w2y -y xvly - 102%) # "
we obtain Inu = -21nx -3lny, Thus, x=x"% isanintegrating factor.
11. Find the integral surface of xp+y’g+2®=0  which passes the hyperbola
xy=x+y, 21=1.
e . dx d
The auxiliary system is — = L
x ,l _22
From é = -_a!i we obtain u = ENE a, and from d'_y = _d_z_ we obtain v = dire b.
x -32 xz r: - yz
We firsteliminate  zg,¥ .%o belween xo¥Yo = %o +Yo» %o =1 and u = Tot2 , %%l ., and
oYo Yor 2o Xolo Yo

¢ wintie oty Solving the latter for zg = =t Yo = 1 and substituting in  xo¥s = %o + yo.
Yolo Yo a-1 b-1
we obtain . RS ST,

or a+b =3 as the relation which must exist between a and
(a-1)(b-1) a-1 b-1

b. Then the equation of the required surface is

I+ +
I

e e =3 or 2xy + z(x+Yy) = 3xy1.

a+h = utv =

SUPPLEMENTARY PROBLEMS

Find the general solution of each of the following equations.

12. p+gq=z2 Ans. 1= e? Plz-y)

13, 3p + 49 =2 3y-dx = f(3z=2x) or 3y-4x, 32-2¢) =0
4. yg -xp =z $(xy, x2) = 0

15. =2zp + y2q = xy y=x rﬁ(zy—z’)

16. =°p + y’q = &’ x =y = xyP(l/x - 1/2)

17. yp-xth’-y':l] qﬁ-(x’q»y'. xy-2) =0

18. yzp - x2q = xy ¢(z2+y!. y +2'y =0

19. zp+yg=x x ez -yd:tz!-:!!

20. x(y-2)p + y(z-x)9 = 2(x=y) B(xyz, x+y+z) = 0

1. =(r’-=*)P + r(z'-s’)q . x(sl-r') Plxyz, z’t:’ui) =0

22. Find the equation of all thesurfaces whose tangent planes pass through the point (0,0,1).
Hint: Solve zp «+yg = 2 =1. Ans, 1 = 1+ xsd(y/x)

23. Find the equation of the surface satisfying 4yzp +q +2y = 0 and passing through yiezlal, xez =2,
_ 3 Ans y2+z24x41 =3



CHAPTER 30

Non-linear Partial Differential Equations of Order One

COMPLETE AND SINGULAR SOLUTIONS, Let the non-linear partial differential equation of order one

1) f(x,y,z2,p,q) =0

be derived from
2) g(x,y,z,a,b) =0
by eliminating the arbitrary constants a and b, Then 2) is called a (or the) compleze solution of 1),

This complete solution represents a wo-parameter family of surfaces which may or may not have an
envelope. To find the envelope (if one exists) we eliminate a and b from

3 A8

4= 0, J =20, == = ),
If the eliminant %a b

3) ‘\(xlya :) =0

satisfies 1), it is called the singular solution of 1); if
ANx,y,2) = £(x y 2)en(x,y,z)

andif £ = 0 satisfies 1) while n = 0 does not, & = 0 is the singular solution. Asin the case of ordinary
differential equations (Chapter 10), the singular solution may be obtained from the partial differential
equation by climinating p and g from

of of

—

0, —=0.
ap

f=0|
3q

EXAMPLE 1. Itisreadily verified that z = ax +by -(a®+ &) isacomplete solutionof z = px + 9y - (p?
+q*). Eliminatinga andb from
'z—ﬂx-b&’+62:0, 3--— 20 = 0 31- 2&-0.
E yta % x +da f 3 Y+
we have : = 4x% 4 3y - gt yh - t(=*+y"). This satisfies the differential equation and is the

singular solution. The complete solution represents a two-parameter family of planes which envelope
the paraboloid x? + y2 = 4z,

GENERAL SOLUTION, If, in the complete solution 2), one of the constants, say b, is replaced by a known

function of the other, say b = ¢(a), then

d(x.y,2,a,4(a)) =0

is @ one-parameter family of the surfaces of 1). If this family has an envelope, its equation may be found
as usual by eliminatinga from

g(x,y,2,a,¢(a)) = 0 and -33; d(x.y,z,a,4(a)) =0
and determining that part of the result which satisfies 1),

244
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EXAMPLE 2. Set b = ¢p(a) = a in the complete solution of Example 1. The result of eliminating a
from g = 2-a(x+y)+ 2a® = 0 and %ﬁ = —(x+y)+d4a =0 is 2z = %(;*y)’which can be readily shown

to satisfy the differential equation of Example 1. This is a parabolic cylinder with its elements parallel
to the =0y plane.

The totality of solutions obtained by varying ¢(a) is called the general solution of the differential
equation. Thus, from Example 2, Bz = (x +y)? is included in the general solution of the differential
equation of Example 1.

When b = ¢(a), ¢ arbitrary, is used, the elimination of a between

34

%8 . ¢

da

is not possible; hence, we are unable to express the general solution as a single equation, involving an
arbitrary function, as we were in the case of the linear equation.

g=0 and

SOLUTIONS. Before considering a general method for obtaining a complete solution of 1), we give special
procedures for handling four types of equations.

TYPEI: F(p,qQ) = 0. Example: pt-q? = 1,

From Problem 3, Chapter 28, it follows that a complete solution is
4) z = ax + h{a)y +c,
where f(a,h¢a)) = 0, and a and ¢ are arbitrary constants.
The equations for determining the singular solution are
z = ax + h(aYy + ¢, 0 =x+ h'ta) y, 0 =1.
Thus, there is no singular solution

The general solution is obtained by putting ¢ = $(a), ¢ arbitrary, and eliminating a between

5) z=ax +h(a)y +¢(a) and 0 =x ¢ hita)y + ¢'(a).

The first equation of 5) for a stipulated function ¢(a) represents a one-parameter family of planes and
its envelope (a part of the general solution) is a developable surface. (See Problem 10, Chapter 28.)

ExampLE 3. Solve p?-q? =1L

Here f(p.q) » pl=q'-1=0, f(a,h(a) =al=[h@)'-1=0 and he) = (a?-1%

A complete solution is z = ax + {a¥ l)“y + .
A neater form is obtained by putting a = sec @; then h(a) = tan a and we have
z =x8eca + y tanag + c.

Il we set ¢ = ¢(a) = 0, the result of eliminating e from

r=xsecqa+ytana, O=xtang+ ysecg or O xsina+y
is x't:!—y’.

This developable surface (cone) is a part of the general solution of the given differential equation.

Note that we might have taken h(a) = -(a’ - 1" and obtained as a complete solution

1= ax - (n'—l)“y&c.

See also Problems 1-2.



246 NON-LINEAR PARTIAL EQUATIONS OF ORDER ONE

TYPEII: z = px + qy + f(p,q). Example: z = px +qy + 3p*3¢*".

From Problem 4, Chapter 28, it follows that a complete solution is
6) z = ax ¢+ by + f(a,b),
This is known as the extended Clairaut type, for obvious reasons. This complete solution consists of a
two-parameter family of planes. The singular solution (if one exists) is a surface having the complete
solution as its tangent planes.

ExamMpre4. Solve ; = px + qy + apl"i qu"'.
A complete solutionis z = ar + by + 3%/ bm.

The derivatives with respect to aand & are x+a 2 4™ . ¢ and y+ oMy, 0.

SR LIS m—2 R

Then ax + by =
and, substituting in the complete solution, we obtain the singular solution

2=, YVaxy or xyz = 1.
See also Problems 3-4

TYPEI: f(z,p,q) = 0. Example: z = p? + q'.
Assume z = F(x +ay) = F(u), where a isthe arbitrary constant. Then

E.S_:Es?_l.l’:_d-: and q:g—‘.yﬂﬂgo
© 3%  dudx du du dy du

When these are substituted in the given differential equation, we obtain an ordinary differential equation
of order one
d dz
fla, 'EE , a E) =0
whose solution is the required complete solution.
EXAMPLE 5. Solve 2 = p? 4 ?,

Put z = F(x+ay) = F(u). Then p = dz/du, q = a di/du, and the given equation may be reduced to

s @ G

du

) dz vz dz 1 : 1 1
Solving — = Of — = —— du, weobtain 2v/7 = ush = (u+ by,
du Vs a, V1 V1+a? l"1+¢i ilmi
Thus, a complete solutionis  4(1+a%)z = (x+ ay+b?, a family of parabolic cylinders.
Taking the derivatives with respect to @ and b, we have
8az - 2(x +ay+ b)y = 0, x+ay+b=o,
The singular solutionis z = o, See also Problems 5-7.

TYPEIV: F,(x,p) = fq(y, q). Example: p -x? = qt J”-
Set f,(x,p)=a, fa(y,q) =a, where a isan arbitrary constant, and solve to obtain
P = Fy(x,a) and q = Fy(y,a).

Since zisa functionof x and y, dz = pdx +qdy = F,(x,a)dx + F,(y,a)dy.
Thus,
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7) 2= [Rayax + [Fuyaydy + b,
containing two arbitrary constants, is the required complete solution.

ExamMPLE 6. Solve p-g=x+y® or pox? e geyl.
Setting p-x’-a. q+y’-c. we obtain  p=a+ x?, q-n—y’.
Integrating dz = pde ¢ gdy = (a+x’)dv + (a-y")dy, the required complete solution is
zsax+x/34 ay - y°/3 + b. There is no singular solution,
See also Problems 8-9.

-

TRANSFORMATIONS. As in the case of ordinary differential equations, it is possible at times to find a
transformation of the variables which will reduce a given equation 1o one of the above four types.

The combination px, for example, suggests the transformation X = 1n x, since then

3z _ 3z dX 1 3z il _ a_z.
x Xk = x3x Y

Thus, g = px + p?x? becomes 2 _ 22, 22 ?  of Typel.
oy aX (3.\’)

Similarly. the combination gy suggests the transformation Y =1n y.

The appearance of %. g in an equation suggests the transformation Z =1nz since then

p:E:ﬁE::z and E=E_Z; similarly, E:?.'E.
3x dZ 3x 3x z  3x z 3y

Thus, g = (2}3 becomes g—: = (%}’ , of Type I.

See also Problems 10-14.

COMI’L\E’VOLUTION. CHARPIT'S METHOD. Consider 1 he non-linear partial differential equation

D f(x-}'.I.P.Q) = 0.
Since z is a function of x and y, it follows that
8) dz = pdx + qdy.

Let us assume p = u(x,y, z,4), where a is an arbitrary «:onstant, substitute in 1) and solve to obtain
g = v(x,y,z,a). For thes¢ values of p and q,8) becomes;

8,) dz = udx + vdy.
Now if 8 ,)can be integrated, yielding
9) é(x,y,z,a,b) =0,

this is a complete solution of 1).

@KKMPLE 7. Solve pg + gx =y,
Take p = a-x, substitute in pq+gx=y, and solve for g * ya.

Substituting in dz = pdr + gdy, we have d: = (a-x)a'x + (y/a)dy, an integrable equation, with
solution

trax-42e fy*ae k. or 20z s 2fx - ax?ayle b
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Since the success of the above procedure depends upon making a fortunate choice for p, it cannot
be suggested as a standard procedure. We turn now to a general method for solving 1). This consists
in finding an equation

10) F(x,y,z,p.q) =0
such that 1) and 10) may be solved for p= P(x,y,2) and q=Q(x, ¥, z), (that is, such that

o o
p 3q

1) A = # 0, identically),
> o
3p 9q

and such that for these values of p and g the total differential equation
8) dz = pdx + gqdy = Pix,y,2)dx + Q(x,y,2)dy

oa_P_a—IP.-I'E:E-_a.E:O.

is integrable, that is, Pw -
2z 4z 3y ox ax By

Differentiating 1) and 10) partially with respect to x and y, we find

o af of 3p A 3
2 —— _— — i e ot =
kel ® T Pn Tk i T
13) i, q of , P , 39 0,
y dz op ¥y 3q 2y
14) 3_’ + p E + y EE + 3—".. aj = 0,
ox Bz 3p ox Bq Ix
15) 4 +.q F ¥ 9..{ 3_" + 3! E‘I = 0,
?y oz 3p dy 2q dy
i F oF of of . i ;
lying 12) by 22,13 by £, 19 by - &, « 9 ind a
Multiplying 12) by ap. ) by 3% ) by % 15) by - and adding, we obtain (noting that
% .9
9y ox
of 3f oF aof af , 3F 3f ?F of oF of Bf oF
—) S5 — —_—)— a = im a S — o — 5
PG TN By - g tefis el

This is a linear partial differential equation in F, considered as a function of the independent variables
x,¥, 2, p,q. The auxiliary system is

16) dp = dq ol o o dz - 9
of o of iad T A 0
Rl PR i Y T % (st a.50)

Thus, we may take for 10) any solution of this system which involves p or g, or both, which contains an
arbitrary constant, and for which 11) holds,
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EXAMPLES. Solve q = -xp+ ,0:1

3f

Here f = p*-2p- 9 so that 3 4P 0, of . 0, 4. 2p - x, %I = -1, and
9

g dy BN "3
of of o L. of .o 2
_— = % =n, — — 0, - — —_— T - + + .
% T P 3> i3 P » qa?) P rapeg
The auxiliary system (16) 1s ® %, . e W o o,
-P 0 ~pex 1 -2p? vxp+ g
From % . d—ly v wehave lnp==-y+ lna or p = ae ”,
=P

. . . - -2%
Using the given differential equation, q = =xp+p? = ~axe™ v a’e ™7™,

Then dz = pds + qdy becomes dz = ae™ dx + (~aze”+a’¢ ’)dy., Integrating,
P qay g
: = aze - iaac-ay + b,

There is no singular solution _
See also Problem 15.

SOLVED PROBLEMS

(In these solutions, the equations leading to the general solution will not be given,)

TYPE!: f(p,q) = 0,

1. Solve p! . qz = 9,
A complete solutionis z = ax + by + ¢, where a® + b? = g,
The equations for determining the singular solution are

z=as*v‘9-u2y¢e, 0D=x ="'

Y. 0=1, Thus, there is no singular solution.
9-a '

2. Solve Pg+p+qg - s

A complete solutonis z = ax+by+c, where absash =0, Or 2 = ax - ek
a+

" There is no singular solution.

TYPEIN: z = px + qv + f(p,q).
T ____--_‘_—-__"—-‘_.

3. Solve z-px+qy+p’+pqtq’,
A complete solutionis z = ax + by + a? & ab + b2,
Differentiating the complete solution with respect to a and b, we have
0=x+ 2+ b, 0=y+as+ 2b.
Solving to obtain a = (y-2)/3, b = (x-2y)/3 and substituting in the complete solution, the singular
solution is 3z = 2y - x2 - 42,

4. Solve z = px + gy + p7¢".
A complete solution is 2 = ax + by « a®62, The equations obtained by differentiating with respect
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ra i
toaand bare 0 = x + 2ab%and 0 = y + 2a”b. Thena = - ’%; b=~ f;—,and the singular solution

xt—xﬂ - f f ﬁz"" 2'{’
16

TYPE NI f(z,p.7) =
5, Solve 4(1+2°) = 92°pq.

Assume z = F(x+ay) = Fw). Then p=—. g = az_z. and the given equation becomes

2
4(1e2’y = Quz'(g-) or 3Va dz = 2du.
ik 1+2

Integrating, v/a(1+:z’) = u+b, anda complete solution is
g g

Using the results of differentiating this with respect to a and b

1+ 20 = 2(x +ay+ by and

the singular solution is 27 + 1 = 0.

a(l+2z’) = (xeay+h)?.

0= 2x+ay+b),

6. Solve p(1-q%) = q(1-1).

Assume z = F(z +ay) = F(u). Then p = ? g=oa ? » and the given equation becomes
u u

(—)[l a’ ::)’] = ngf(l-n or ::l[l-atux—ﬂ &7 - o,
dz 2 dr 2 a dz

Then 2 =pandz =c; 0r 1-a+az-a°(—)° =0, ———— = du and
du du h"l—e+ax

2¥1-a+az =u+h = x+ay+ b or «I(l-—aanz]=|‘xouy+b]’.
Eachof z = c and 4(l1-a+a2) = (x+ay+ )7 is a solution; the latter is a complete solution. Using it,
the equations for obtaining the singular solution are

g'l(l-u&a:)—.(x+ay+b)2 =0, . 2%

g3 T A-Iad) - W(xeaysb) =0, e -2(x+ay+b) = 0;
there is no singular solution.

7. Solve 1+ p® = gz.

Assume z = F(x+ay) = F(u). Then p = :—:. q = ag d the given equation becomes
(d—:) B ire0 o = % du.
du du a: - va 2" -4

Rationalizing the left member of the latter equation, we obtain (az +

solution is iu:’ + ;1[2#' 2,2 *4 _21n(az + Va2l -4)) = 2(u+b).

a?:? _4)dz = 2du whose

A complete solution is then a®:® + a2va®2?-4 - ¢1n(az + 2:2.4) = da(z+ay+b).
Note that o222 - az va?:? -4 + ¢ In(az + Ja?:?_4) = da(x+ay+ b), obtained from i

. . az + Y/a?1? -4
= du, is also a complete solution.
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TYPEIV: f,(x,p) = f3(y.q).

8. Solve vh -vq + 3x = 0 or vp + 3x =/,
Set v »3x =a and v = a. Then p = (a-30)"and q = a?. A complete solution is

¢ o= Jpde o fqdyo b« I‘“‘s‘]zd’-* a’fdy + b or z = —s(ﬂ—ax)’ + nzy+ b.

There is no singular solution.

9. Solve q = —px + pi_
Set P’—px =aand g=a, Then p = 3(x » Vzle 4a).

A complete solutionis 2 = & [(x+ Vx*+4a)dx + afdy + b

or 1 = f(x*+xv/e’v4a) + alnx+ VxPrda) s ay s b,

Another complete solution is obtained by the method of Charpit in Example 8.
There is no singular solution.

{SE OF TRANSFORMATIONS.

i non 21 pz qi N
10. Solve pg = xy or e WL
1 Y
The transformation
thl-I ¥ xl‘l ¥ :yﬂ.l g .E_ZE = -lP..l.. é_.z la_-gél -1ql
Y=l mel nvl X  dxdX &3 yay ”

reduces the given differential equation to - NS
X oY

This equation is of Type | and its solutionis Z = aX + a‘? + c.

1-1 ‘sﬂ n+l
A complete solution of the given equation is — = @ . +
1=1 m+l a(n+1)
There is no singular solution.
11. Solve x=p2 + y!qz = 1.
1) The transformation
, ; a2 ?Z dx -3 ?Z  3¥Z dy o |
A= . Felny Z=2%, £ 25— =piz’, = === =qy
By o X Tma ¥ " ayar ¥
2 - 9Z.2 aZ 2 Az 2 oz 2
reduces the given equation 10 225" + 2(3)" =2 or () + (=)' =1, of Typel
¢ R X oY ax ?r pe

A complete solution is Z = aX + bY + c or 4z = (@ lnx+ bln y+ ¢)?, where a® + b% « 1, The singular
solutionis z = 0.

2) The transformation X = Inx, Y =1lny, p= o ddk 1% g = 12z
3x X dx T ax y ?Y
. y . =33
reduces the given differential equation to [ﬁlz + <§—;f =z, of Typelll

—33
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Weset z = F(X+aY) = Fu). Then 9 _ drQu -f. d_’su‘ﬁ. and
du ar du dY du
:d—'}’ S ey o Jed B o
du Vi
Integrating. 2/1+a? z* = u+b = X+a¥+h = lnx +alnys+ b,

A complete solution is 4(1+a%)z = (lnx + a Iny + &%, The singular solution is z = 0.

\)4: Solve dxy: = pqg + 2px’y + 2uy’.

Lv:tx=X*. ’,=1,1'F_ Then pza_'=

L L edr b
Ax X

Y dy ¥

ar . gt :
dx X

D . . 9z 32 9z
Substituting in the given equation. we have = X E’.’. ) dres — of T 11
€ e e o W ™ ype

A complete solutionis 2 =aX + bY + ab  or 1z = ax® + by? &

Eliminatinge and b from this and 0 = 2% + b, 0 y +a, obtained by differentiating it with respect to
a and b, the singular solution is found to be z + £%y? = g,

\I}>§o[\'e szz = 2{z -qy).,

The transformation ¥ = 1n y, X =1nx, p = B .ha EE. q = i reduces the
: & 3X dx x aX y 3Y
. £ E: ? al .
given equationto . AJ) ()* = z2(z - =), of Type lll.
{ax 3 Yp
Weset z = F(X+a¥) = Fuy., Then _3 = gi. %:, a %- and 4, becomes (%) % 3 a::—:-

Then d—’ = z(v"a + 4 - a), :!dz—x = (Va?+ 4 - aydu, and n 2% - (v‘aiaq - a)(u+b).
u

A complete solution is 1n 2* = (Va®+4 - a)y(Inx + a In y + b).
. There is no singular solution.

JSUWE pz + qz = ;3(;+y} or (%)2 - (g-)2 = X+ Y.

The transformation Z = 1nz, p = %z, q = AL reduces the given equation to

Bx dy
az 2 oz 2

oz, 2 oz 2
(_.) - or (=) s 5wy ==y, of Type 1V,
at dy el ¥ e oy .

3z 2 9Z 2 oz 5
Set (5) '~z = a = y-(% Then =2 = (a+x)
3 s 3

and 3—2- = (y -n}i.
x dy

A complete solution is Z = j(au)*dx + f{y—a}idy + b

or Ilnz = g(aq-x)y’ + §(j-n)y’ + b,
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A

<4
.
z -

CHARPIT'S METHOD.
18 Solve 16p%2% + 9g%:7 + 42 -4 = 0.

Let f(x.y.2.p.q) = 169727 + 8g2% « 42” -

Then ¥.0- ¥, ¥, 32p%: + 18q°z + Bz, o . 32p:°, gi = 18gz?, and the auxiliary system
-4 q

3}' o2 oy
B s B o is
éi + p_‘éi Ei +q §£ - él - a_f -(p EI +q .a—!j
3=z Az By o 9p dq 3p 3
dp . dg 5 dx . dy . dz )
32}:’: + 13pq'3 + Bpz 32p=q: + laqs: + Bgz -32p:2 -qu’ -32p=:=— 1aq’z’

Using the multipliers 4z, 0, 1, 0, 4p,  We find

1:(32;:’: + lapqu + Bp2) + 1(—32,01?:- * 4,9(-3.2;:’:2 - 184-,-’:2) =0

and so dr + 4p dz + 4zdp = 0.
Then x + 4pz = a and p = -f.:'-f. Substituting for p in the given differential equation, we find
i

(x-a) + 99°2" + 41> =4 =0, Usingtheroot gq = %fi-z"’-i,{x—a)! '

dz = pdr + gdy = “E Dk o —z-vfl-s'-i{x—a)’ dy or dy = 3z dz + f(x - ayds)
v 5 P TR

3 (-0  (y-b’ ‘
Then y-b = -Ev‘l-—x’-*(x-n}' or &2 , U /) + 2% = 1 is a complete solution.
4 9/4

This is a family of ellipsoids with centres on the xOy plane. The semi-axes of the ellipsoids are 2 units

parallel 1o the x-axis, 3/2 units parallel to the y-axis, and | unit parallel to the z- axis. The singular solution
consists of the parallel planes z = £1,

Another complete solution may be found by noting that the equation is of Type I1I. Using F(x +ay) =

F(u) and sctting p = :—: and g = a :-i the given equation becomes

2 ,dz 2 2.2 ,dz.2 2 : dz 2
1823 (—=)" + g’ (=) + 42" -4 =0 or —m du. Then
au du V1=-12 /16+0a?
T i gl
eflat® &8 e (u+bh) = (x+ay+b).

2
Y16+ 9a? Y16+ ga?

This complete solution (16+ sa*)u-x’} = 4(x+ay+ b)' represents a family of elliptic cylinders with
elements parallel to the xOy plane. The major axis of a cross section lies in the xOy plane and the minor axis
is 2 units parallel to the z-axis.
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SUPPLEMENTARY PROBLEMS

Find a complete solution and the singular solution (if any).

16. p = qz ' Ans. 1 = bx + by + ¢
17. p=+p=qz 2 =ax+bysc where b%:=a%+4
i8. pPg =p+g (b=-1)2 -bx‘bfb-l}}‘l’:
19. 2 = px+ gy + pg z =ax + by +ab; s.8., 1 = —xy
20, p:+q= = 4z l(lon:] = (x+ay+ b)?; 8.8,, 2 = 0
21, pz =1+ q' 2?2 2/2%_4a% Qa’ln{z . ./:’-.H’) = 4(x+ay+b)
22. :1(p’+qz+lj =1 (1+a’y(1-2% = (x+ay+b)=; 8By 20 ml» 0
23, p’+pq-4: (1+u);-(x+a,-+b)’; 8.8., 2 = 0
2
4. p'-xq -y 3(2-b) = 2(x+ 0y 4 2(y4a)/
25. yp - x!qz = z’y i(n—ljy!' = {:i:-t:.u:!'--b)2
26. {l_y?)xq’ +* )fzp =0 (2:-u’+ b)z = -!ﬂ(.v:-l)
27. x“p’-yzq-:’lo xlnx'a*(uz-l)xlny+bx
Hint: Use Xs1/x, Y=1ny, Z = In gz,
28. :‘p’ +y'g -2:7 = 0 "xy lnz =ay+ (n'nz)x + bxy
Hint:Use X=1/x, Y=1/y, Z=1n 1,
2. 'y .0 ayrarby’ +ay? =0
30. 2py= - q!; =0 22 eas s ay’ + b
3. g=3p+pt : = 2az¢” + 227%™ 4 b
32. 1p= - y’p B y’q =0 y;' = 2(axy + a_'{!d- n'o by)

Hint: ii-;3~-=—"';_; pz=a and q:;u-i;.).
P ~p2 y

3B pgtulyalp s yyeng - 2y ez = 0
Ans. » = ax + b{yla- 2y+a); 55. 1z + x(y'+2y) =0



CHAPTER 31

Homogeneous Partial Differential Equations of Higher Order

I/V with Constant Coefficients

AN EQUATION SUCH AS

3 3 3 2 2
1) (x’iy“.)ﬂ+2x—a: +§__x__§_§+ x 2z
ax? 3y’ ,.By’ x?

which is linear in the dependent variable z and its partial derivatives is called a linea: partial differential
equation. The order of 1) is three, being the order of the highest ordered derivative,

A linear partial differential equation such as
2) 5t 3_‘: 32 'z 3’z 2 3

§ P E e 3RS meat B,
ax ax” 3y ax 3y By

in which the derivatives involved are all of the same order, will be called homogeneous, although there is no
agreement among authors in the use of this term.

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS.

Consider - .
dz 3z
A— ¢+ B—= =0,
3 ox ay
2 2 F
4) 42+83‘+C9—5-0.
an? oxdy 't
2 2 2
5) Aa_:.+Ba'+CE = x + 2¥,
Ax? dx Ay 3],’

in which the numbers 4 . B, C are real constants.

It will be seen as we proceed that the methods for solving equations 3)-5) parallel those used in solving
the linear ordinary differential equation

f(D)y = Q(x) where D = %
We shall employ two operators, D, = -é% and Dy = % + 50 that equations 3)-5) may be written as
3) f(De,Dy)z = (AD, + BD,)z = 0,
4" f(De,Dy)z = (AD + BD,D, +CDy)z = 0,
5 f(Dg,Dy)e = (AD; + BD,D, + CD)z = x + 2y.

255
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Equation 3°) is of order one and the general solution (Chapter 29) is z = ¢(y - %x) , ¢ arbitrary.

Suppose now that z = ¢(y + mx) = $(u), ¢ arbitrary. is a solution of 47); then substituting

_ % _ dpdw _ dd _ 2 _ #3w &
BE S T T et il =
in 4')we obtain :2 (Am’+Bm+C) 5
u

Since ¢ is arbitrary, d?¢/du? is not zero identically : hence, m is one of the roots m =my, my of Am® + Bm
+C =0, If m #mg, z=P,(y+myx) and z = P,(y +myx) are distinct solution of 4°). Clearly,
2= ‘i’;(.‘l’ +myx) + ¢Q()’ +myx)

is also a solution; it contains two arbitrary functions and is the general solution.

More generally, if

6) E(Dg,Dy)z = (Dg=mDy)(Dy=mgDy)eervsvs(Dg=mDy)z = 0
andif my # mg # +oeeeinn # my, then
7 2 = Py(yrmx) + Py rmgx) # cevrrer 4 Pu(y t mpx)

is the general solution of £(D,,Dy)z = O.

EXAMPLE 1. Solve (D} - DDy ~ 6D3)z = (D, + 2D,)(Dy = 3Dy)z = 0.

Here, my = -2, =g = 3, and the g_eneral solutionis y = Py(y-2x) + da(y +3x).

See also Problems -2,
If mg =mg = +v0nn =myf My Ao # m, , so that 6) becomes
6)  F(D.D)z = (D =mD) (D =my, D)eeeer (D ~mD)z = 0,
the part of the general solution given by the corresponding k equal factors is
By (Y +mx) + XPy(y +mx) + X Py (¥ tmx) + ceoer + by + myx),
and the general solution of 6°)is

z = P (ytmyx) + xdo(y tmyx) + oenn + x“"&.(y+m,x} @y (y+my, x)
+ v ¥ %(}f"lﬂnx).

where ¢,,¢,,+++«+d, are arbitrary functions.

ExampLE 2. Solve (D} - D2D,, - 8D D} + 12D}): = (D, - 2D,)' (D, + 3Dz = o.

Here, my = m, =2, &, =+3 and the general solution is 2 = @y (¥ +28) + 2P (y + ) + Sy(y - 2x),
See als. Problems 3-4.
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If one of the numbers. say my,of 6) is imaginary then another. siy my, is the conjugate of m,, Let
my = a+biand m, = a- biso that 6) becomes

67) F(De,Dy)z = [Dx—(ai-bj)Dy}{Dx-(a-bi)DJ](Dx—m,D’}-----(Dx-mnDJ,]z = 0.

The part of the general solution given by the first two factors is
@y (y vax +ibx) + ¢,(y +ax —ibx) + i[@,(y +ax +ibx) - ¢ (y +ax — ibx)],

( &y, @, arbitrary. real functions), and the general solution of 6 *) is

z = @y(y+ax +ibx) + ¢ (y +ax —ibx) + i[P,(y +ax + ibx) - d,(y + ax - ibx)]
FDa(y 4mex) + cueeians t Paly + max).

Exampre 3. Solve (D) - D’ID] + mf:o; - 50D + 3D)):
= (D, -~ D,)2 (D, + #(1+ i/ﬁm;] (D, + %11~ ;‘/ﬁ)ﬂ,]z = 0.
Hereo my=my =1, mg== 31+ 1V/I1), mg=- (1 - 1VID), and the general solution is
1= Pulyex) ¢ 3P0y +x) 4 Byly - AL+ tvIDix] 4 Baly = 41 = i vID)x)

+ udady - g1+ 1 /IDx)} = dudy - 301 - 1/ID)x}].
g Sce also Problem 5.

The general solution of

5 f(De,Dy)z = (AD} + BDD, +CD})z = x + 2y
consists of the general solution of the reduced equation
4’) f(D,.Dy)2 = (AD} + BD.D, +CD})z = 0

plus any particular integral of 5°). We shall speak of the general solution of 4°) as the complementary fun-
crionof 57),

In setting up procedures for obtaining a particular integral of

8) f(D,, D)z = (Dy-mD,)(D,—myD)eeres (D, - mD )z = F(x.y),
we define the operator ;by the identity
:—nD-;]
f(D,,D,) F(x,y) = F(x.y).
f( xr &y

The particular integral. denoted by

z = —IF{X.}') = : F(x,y),

(D, D) (Dt-m,D}){D,-m,D))-.--'{Dxumﬂpy)

may be found. as in Chapter 13. by solving nequations of the first arder

9) u‘z——i-_f‘xly)' Uy & — ey, e, 2 Uy _l.un_l_

D" == mﬂD? Dx _mH-LD) ) Dx - m,D),
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Note that each of the equations of 9) is of the form

10) p - mq = g(x,¥)

and that we necd only a solution .the simpler the better. In Problem 6 below, the following rule is established
for obtaining one such solution of 10): Evaluate z = [g(x,a~nmx)dx, omitting the arbitrary constant

of integration, and then replace a by y + mx.

ExampLE 4. Solve (Df - DD, - 6D})z = (D, +2D,3(D, 3Dz = x + 7y,
From Example 1, the complementary function is z = @, (y=2x) + @a(y +3x).

To obtain the particular integral denoted by  z = : ( . (x+y)):

D, + 2D, D, - 3D,

a)Set u = D:_%-D_(x +y) and obtain a particular integral of (D; = 3D)u = x +y,
- 3D, ¢

Using the procedure of Problem 6, we have u = J(x+a-3x)de = ax ~x%...and, rcplauing,qby y +3x,

u = xy+2.r’.
B) Bt & 4 et @ -—--l—-(xy +2")  and obtain a particular integral of
. D +2D, D, + 2D, FRERR
(Dy + 2Dz = xy + 2x%.
: 1
Then z = _r[;(a +2x) + zg*],d_; = -;-a.:: + %z!' and, replacing a by y-2x, z= %.x:y + 5:5.

Thus the general solution is  z = ¢y(y -2x) + Py(y +3x) + %x’, + %,5

See also Problems 8-9.

The method of undetermined coeflicients may be used if F(x,y) involves sin(ax +by) or cos
(ax + by).

ExAMPLE 5. Solve

2
@} + 50D, + 5Dz = [D = 4(=5+ VEIDI(D, - 45 = VEID, )i = x sin(3x-2y),

The complementary functionis z = $y[y + 3(=5 + vB)x] + uly + #1(-5 - VB)s).
Take as a particular integral

2 = Ax 8in(3x - 2y) + Bx cos(3x=2y) + C sin(3x-2y) + D cos(3x-2y). Then
D:x = (6A-9D)cos(3x - 2y) - (6B + 9C)sin(3x - 2y) - 8Ax sin(3z - 2y) - 9Bx cos(3z -2y),
DDz = (-2A+6D)cos(3x~2y) + (2B +6C)sin(3x - 2y) + 6Ax sin(3x - 2y) + 6Bz cos(3x =2y),
* Djz = -4D cos(3x-2y) - 4C sin(3x-2y) - 4Ax sin(3x-2y) - 4Bx cos(3x-2y),

and {q: + 50Dy + ED;)z = Ax sin(3x -2y) + Bx cos(3x-2y) ¢ (C + 4B) sin(3x-2y)

+ (D=44) cos(ax=-2y) = =x sin(3x-2y).
Then A = &, B = C = 0, D = 4 and the particular integral is
1 = x sin(3z-2y) + 4 cos(3x=2y). The general solution is
: = Pyly + 4(-5 + VE)x] + Paly + 4(-5 - VB)x] + x sin(3x-2y) + 4 cos(3x-2y).
See also Problem 10.
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-

Short methods for obtaining particular integrals. analogous to those of Chapter 16, may be uscd.

a) 1 gexety 1 Lox¢  gioyided f(a,b) # 0.
f(D,,D,) f(a,b)

If fa,b) = 0. write f(D,, D) = (D, - $D)" (D, D)), where g(a,b) # 0; then

1 1 eaxoby - 1 1 eax‘b) 2 1 itc“’b-”
a v b a r a h) r!
(D:-ED)) (0., D) g(a, b) (D’_ED5} d(a, b
b) B sin(ax +by) = 1 sin(ax + hy) and
f(b;,D,D,,0}) f(-a*,-ab,-b")
——1—— cos(ax + by) = - 1 > cos(ax + by),
f(D:.DxD).D;,) f(-a*,-ab,=b")

provided t"(—al,ﬂsb, *baj # 0.

ExampLE 6. Solve (D:-ED!DJ, ' ZD;}z = (O,-D,) (D -2D)z = X L YL sintx -2y
The complementary function is z = @, (y +x) + Paly + 20),

Now 1 S 1 25 lg:xo};.

z s = - - is one werm of the
DK-SDID)+ZD} 2 =3+2:3+2:3

. - . *
particular integral. Since @y (y +x) includes e 7. we write

1 etoy R 1 ( 1 ‘_xw\ 1 ( 1 :x’}) a 1 c’”? e -tex.).
nf-3n.D, + 20} D~ By Be-20y S R =
1 1 1
Also. : 5 sin(x-2y) = — - = sin(x-2y) = “5% sin(x - 2y).
a7y i, = i
D, -3D,D, + 2Dy 1 - 302 2(=1)(=2)
s 1
Thus. the general solutionis 2 = @y(3 - 1) + aly +25) + %e“'”-u"’- 8100 =2
¢ I F(x,y) isa polynomial, that Fix,y) = Zp“.ui yj_ where i, J are positive inlegers Or zero
and Pqj are constants. the procedi - " ustrated below may be used,

ExampLe 7. Solve (D: -D.D, ,J.ra_j); = x+y. (Example 4.)

For a particular integral, w:o e

D 1
z 2(; +y) = = _.._..l_-—’(; +y) = _l:{[l # L ] xey)) = Ji{x*JNB-)
D - BD, - 60 Bf Dy _ g0y g5 & =

1
m eEd yax) u —ll-tihyl . %:’+%x’y. Note that Dy(x+y) = 1 and ﬂ_,'Id"

Sce ilso Problems 11-13
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SOLVED PROBLEMS

Solve (D + 20D, ~ DD} - 201 + (M, - D,)(D, + DD, + 2D = o.

Here my = 1, m, = =1, my = -2 and the general solution is

2 = Pyly+x) + Paly—x) + Paly -21).

Solve (Df ~ 5D, + 50,0 + 3D}z = (0, - 30D, - (1 + vaiR, )8 -1 - v2D,): = 0.

Here my = 3, my = 1+v2, my = 1-v2 and the general solution is
2 = Puly+3z) + Doy ¢ (14v2)x] + Byly + (1=v2)x).

Solve (D3 +:ID:.DJ,~4D;)2 = D -RHD + 25)122 = 0.

Since my =1, my = my; = =2, the general solution is

T.s Du(yex) & Py -2¢) + x Dyly - 2.
general solution is 2T Pulyrx) ¢+ Pa(y =2x) + y Pyly -2x),

. Solve (Q:—:!D:D; + D;'}: e (O - D,‘:’cﬂ;, + D,)’: = 0,

Here my = m; = 1, my = my = =1 and the general solution is

2 = iy sx) + xPa(yex) + Doy —x) + xduly-1).

Solve @} -20.D, +5D%)z = (D -1 +20D)(D, - (1-200,): = 0

Since my = 1+2i, my = 1-21, the general solution is

Another form of the

po= Py(yex +2ix) + Py +x-2ix) + t[Pa(y +x +2ix) - By 2 =-2ix)],

where @,, ¢, are real functions.

If we take ¢, (u) = cosu and ¢,(u) = ¢, then since

e”" = cos bx + 1 sin bx, sin bx =
e_wx = cos bx = t Bin bx, cos bx =
@iy +x +2ix) = cos(y +x) cos(lix) - sin(y +x) sin(2ix)

‘= cos(y'+x) cosh 2x - & sin(y +x) sinh 2z,

Sy +x=2ix) = cos(y +z) cos(2i1x) + sin(y +x) sin(2ix)
= Ccos(y+x) cosh 2r + 1 sin(y+x) sinh 2x,

Paly +x +2ix) — Paly +x =21x) =

Thus, we obtain as a particular integral

+x+2ix *x-21ix 4x
cJ' s o cJ' = ¢’

%) o 2ie®"" stn2x.

z = [cos(y+x) cosh 2x - i sin(y+x) sinh 2s] + ([cos(y+x)cosh2x + t s12(y+x) sinh 2x ]

+ 12" sin2x) = 2 cos(y+ x) cosh 2x - 27" sin 2«.

Note that z isa real function of x and y.
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6. Show thata particular integral of p-»g = g(x,y) may be found by integrating dz = g(x,a-mx)dx,0mitling

the arbitrary constant of integration. and then replacing a by y +mx.

dx d dz
The auxiliary systemis 7+ ° 2 o»
% 1 -n Elx.Y)

- Integrating the equation formed with the first two terms.

we have y +mx = a. Using this relation. the equation

5-'!'- = -—‘-i-f-— becomies - g g .
1 Bz, y) 1 g(x,a-mx)

Then 2 =Jg(x,a-mx)dx and. in order that no arbitrary constants be involved, we replace a by y +mx in

the solution.

7. Using the procedure of Problem 6. find particulur integrals of

d) pe3q = cos(2x+y), h, p-2q = (¥ s 1),
w: Here m = -3 und g(x,y) = cos{2z +y).
Then: = Jgix.a-mx)dz = Jcos(2x + 0 ¢ Bx)de = ésin{&on) and. replicing a by y-3xz, the required

particular integral is 2 = %sin{zx +¥).

r 2
by 2z = _fg(x.ﬂ-a:}d.u = [(a-2x -‘-l)t’x dx = %ta+1]e‘hr - g‘eh . geh.
Replacing a by y +2x, we huve z = %(y—:: FET gxcix . ;e!x = %U" + g)e”‘_

8. Solve (D} + 20D, - 8D}z = (D - 2D)(D, + 4Dz = VZAIIy.

The complementary functionis 2 = @y(y +2x) + Paly=41),

- 1 —
ain the p i ul denot / vZx+ 3y, we obtain lrom
To obtuin the particular integral denoted by @, ~2D,) (D, + 4B, Y ‘

(D¢ + 4Dy)u = VZ 3y the solution u s f[2x+3(a-a))Pdx = fl2e+3(a+ 42)) de

/2

1
e Jax+30 P ax = Elz(mvau;’ . E(zusy)’“

and from  (De=2Dy)2 = u = %(2: + 3Jr)”2 , the solution
e+ Linaesa-20P"a = - L(ga-ay? - - g2e s 392
21 210 210 :

The general solution is 2 = @, (y +22) + $aly -4x) - E;—o(z: +3y>m .

9. Solve (D - 20y (B + 3Dz = il

The complementary functionis 2 = @y(y+2x) « xPyy +2x) + Paly=3x).

. ; p B = e
To obtain the particular integral denoted by 1 e, we obtain from
(D, 2Dy ) (D, 2D, (D, +3Dy)

1 sxen 1 2xey
= : -

Dy + 3D )u = eZ*Y thesolution u = fcz“fmh]d.t = [ dx
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from (Dy=2Dy)v = u = .;,"“3' the solution v = %fc”‘{ﬂ'u]d: = %xeﬂ = -éu’"";

and from (B -2D,)z = v « 1:e®*Y thesolution @ = Do de v Sate® g™
. 5 5 10 10
The general solution is 2 “ = @y(y +2x) + x Pa(y+ 26) + Pyly~3x) + l_lv‘.!"‘uq'

10. Solve (Iﬁ + n:o, - D,,D; - D;)x = (D + n,;’a; =Dy = e” cos 2y,
The complementary function z = Gy (y-x) + xdg(y-x) + Pyly+2).
Take as a particular integral z = Ae® cos 2y + Be” sin 2y, Then

D:: = Ae” cos 2y + Be” sin 2y, D;D;

z =+ -4Ae” cos 2y - 4Be” sin 2y,
D:D): = -24e¢” sin 2y + 2Be” cos 2y, D;x = gAe” sin 2y - 8Be* cos 2y,
Substituting in the given differential equation, we have

(54 + 10B)e” cos 2y + (5B -10A)e™ 8in 2y = " cos 2y, sothat A =1/25 and B = 2/25,
The particular integral isz = -:—5 e* cos 2y + 525 ¢” sin 2y, and the general solution is

ror Buy-x) ¢ xPaly-x) + Syly+x) + %e: cos 2y + :-se’ sin 2y,

1. Solve tq:-EDrD,)t = DDy =20z = e™ ¢+ 2%y,

The complementary functionis 2 = @y(y) + Pg(y + 2x).

A particular integral is given by = $ g = x’y. The first term vields
1 2x 1 ax Qe D,-‘ZD,‘J), B = 30uly
—g————¢ = =¢ , Writing the sccond term
(2" - 2(2)(0) 4
-IE_; : x!y = -l’(l + igl + --n)z’y = i,(x’y + -?-:’) - —1!-(:’_7 B %x‘).
Dy 1_35'. D, * Dy b, Dy

x

-

5
we obtain 22 .
20

b] s

s
The general solutionis z = @y(y) + Paly + 25) + %.”‘ R

‘ -
60 20

Y
12, Solve (D - 10,0} - 6D}): = (D, + Dy)(D, +2D)(D, - 3D,)z = sin(x+2y) + ™7,

The complementary function isz = @, (y-x) + Pa(y=-2x) + $aly +3x). A particular integral is given

by 31 = sin(x + 2y) + 't 2 c“‘j.
(D¢ + Dy) (Dy = DDy - 6Dy) (Dy =3Dy) (B +3DDy +2D))
(Note. The separation in the first term is one of convenience. i.e.. we could have written

'1 7~ 8in(x +2y). The separation in the second term is necessary. however, since
(Dy +2D,) (D; ~ 2D, D, ~3D,)

e’*Y s part of the term ¢q(y +32) of the complementary function.)
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1 1
For the first term: =1 : sin(z+2y) = : sin(x + 2y)
(Dy + Dy) (Dy = DDy ~6Dy) D+Dy =1+2+24
1 =Dy 1 1
L RO S5 = i 2y)y = = — cos(xz +2y).
= sin(z + 2y) 25(3)@‘ Dy) sin(z + 2y 7 x +2y)
0} - 15
Sxey
For the second term: ’1 . PR . £
(D =3Dy) (Dx +3DxDy +2D5) D, -3D, 95+9+2
1 1 ix ey 1 3xey
T — [ = —xe .
20 D,-3D, 2

The gencral solutionis  z = Sy -x) + Py =2x) + Paly +3x) - %cos(:+2y) + %xe"‘x".

13. Solve (D: -?D,,D; - BD;}z = cos(x-y) ¢ 2 vy yl,

The reduced equation is that of Problem 12, A particular integral is given by

1 1 2 T 5
= = coB(x =y) + —5-—2—-—’{: +xy +¥ ).
(Dy + Dy) (D = D,Dy~ 6Dy) D; - 1D,Dy - 805
(Note that cos(x ~y) is part of the complementary function; hence, the corresponding factor (O + D)

must be treated scparately.)
1

cos(x-y). We must solve

L

’1 = co8(x-y) =
(D, + D) (Dg = DD, - 6Dy) D, + Dy
Je

For the first term:

(D + Dyu = %cm[:-y]_ obtaining u = zlfcoltx-(¢+:)]dl’ . i— o8 (=a) dx
1 1
u ;x cos(=a) = ;xcuﬂ(:-y).

3 —atexyt ey L Rt A
Dx-TD,_—Dy—GDJ' Dx’(l"’—’-s"%)
b; D

For the second term:

2 5

D.
-%-{l * T—i + 32’-)(:201324.,’) = _1; [3' + xy’ + y’ + l’ﬂsﬁ-ly} + %(G)]
B X b D] D D]
s La¥inte?i o Tnoays o X 5 B0 6 Llueam o 2N« 2N,
o’ p o 72 80 2 8
x x =

The general solution is

2 " Pyly=a, + Gyly=2x) + Pa(y +3x) + %s cos(x-y) + -572—’6 + %8’(1#2]’)

* i"’ * lg’y!
kA
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Sol

14.

16.
17.
18.
19.

20.

21.

22,

26.

27.
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SUPPLEMENTARY PROBLEMS

ve each of the following equations.

o} - 80D, + 151];); = 0. Ans. 2=y +32) + P,y +52)

®F - 20D, - DY)z = o. Ans. z = dly+sx(1+v3)] + Suly +x(1-v3))
{D:- "D:Dy + «ID:): = 0. Ans. 1 = Ply +2x) + xP,(y + 2x)

(Dz + 2D:D} - DtD; = ZD;};' = 0, Ans, 2 -.¢‘(I +2) + Paly-x) + dg(y—-2x)
@D + D)z = 0. ANs. 2 o= By(y) ¢ xboly) + Botx) + yhulx) + dyly-x)
{D: + 50D, + Eﬂ;)z = 77, Ans. 1 = py(y=2x) + Py(y-3x) + %r;-’

(D: + D;]-x = x’y’.

Ans. 2 =P (y+1x) + Dy =ix) + P[Py +1x) = Po(y=-1x)] 4+ ‘1;—0115:‘)'-:&)

(Dz- SD:DJ . iD;)z = ty’“. Ans. = = g(y-x) + Doy +2x) + xPyly +2x) + é:'e”u

@ + 200D, - DD} ~2D))z = (y+2)e".  Ans. 1 sdy(yex) s dyly-x) + dyly-25) + ye*

(1 - 307D, - 4B,05 .+ 12D3)z = sin(y +2n).

Ans. 3 = duly-20) ¢ daly +20) + By + 3x) + Tx 8inly +20)

'EB: —355,0; +2D;): = vx + 2y, Ans. 2 = Pyly+x) + xPy(y +x) + Py(y-2x) + %f-‘*“l'n

¢I£ + D:.D) - GDxD;).t = 13 + ,2_

Ans. z = Dy(y) + Po(y+2x) + Py(y-3x) + 1:’ - -!-:'y o

2
15 12 5

o; - ‘D:Dy * 5ﬂzD; - 20;“ e 70 P,

Ans. z = Sy +x) + xPy(yex) + Dy(y+ 2x) - %x'e"" . -;Ee"” + 2t

@] -20]D)z = 2™ + 35y,

Ans. 2 = @u(y) + xdu(y) » Dy(y+ 2x) + :lg“ + ﬁxy * %t

(0} - 3D,D) - 2D))z = cos(x+2y) - e”(3+21).

Ans. z = Py (y-x) + xdy(y-x) + Py +2x) + % sin{x + 2y) + n’



CHAPTER 32

Non-homogenous Linear Equations with Constant Coefficients

A NON-HOMOGENEOLUS LINEAR partial differenual equation with constant coefficients such as

(D, D)z = (D} -D}+3D, +D, +2)z = (D + D, +1)(D ~ D, +2)z = x" + xy

is called reclucible. since the left member can be resolved into factors each of which is of the first degree
in B ,Dy, while
2
f(D,,D,)z = (DD, 9203}: = D, (D, + 2D))z = cos(x-2y),

which cannot be so resolved. is called rreducible.

REDUCIBLE NON-HOMOGENEOUS EQUATIONS. Consider the reducible non-homogencous equation

1) f(bx,D,)z = (a,D, + b1D, +cy)(a, D + b,D’+ Cglreens (anD, + Baly + ca)z = 0,

where the a;, by, ¢; areconstants. Any solution of

2) (a;D, + bD, tc;)z =0

1s a solution of 1). From Problem 5. Chapter 29. the general solution of 2) is
3) z= % $a y-b;x), a, #0,

or

3) 7 = e Ci¥/bi Y(a,y-b;x), b; #0,

with ¢ and ¥ arbitrary functions of their argument. Thus, if no two factors of 1) are linearly dependent
(that is, if no factor is a mere multiple of another). the general solution of 1) consists of the sum of n
arbitrary functions of the tyvpes 3) and 37) .

EXAMPLE 1. Solve (2 + Dy + 1) (Dg=3Dy + 2)2 = 0.

The general solution is : = e @, (2y-x) + e > da(y+32). Note that the first term on the right
may be replaced by ¢'*‘”¢;,(:y-:) and the second by Pl Yaly +3x).

EXAMPLE 2. Solve (2D, + 3Dy - 5) (D, + 2D, ) (D =2) (Dy + 2)2 = 0.

= g2y -3x) ¢ Ber-20) + €= dy(n) + ¢ duix).

See also Problems 1-2.

The general solutionis 2z
Ir
4) f(D..Dy)z = (2,B + btpy*ca]'k(hu D +byyy Dy # €3y )" (anDy ¢ ByDy + cp)z = 0,

where no two of the n factors are linearly dependent except as indicated, the part of the general solution
corresponding to the k repeated factors is

e-c"x"{h[‘ﬁl(ﬂ;!’"b:x} t xPa(ayy—=byx) + .- + xi-1¢h(a"y‘b‘x}]'

265
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ExAMPLE 3. Solve (2D + Dy + 5) (B, - 2D, + 'z =o.

The general solutionis 2z = ¢ 7 @s(2y-x) + ¢~ [Paly +2%) + xPy(y +26)].

See also Problem 1
THE GENERAL SOLUTION OF

5) f(Dx,D,)s = (a, 0+ b,D, +cy)(azD, + b.D, +cg)err (anDy + baDy 4 cp)z = F(x,¥)

is the sum of the general solution of 1), (now called the complementary function of 3). and a particular
integral of ),

1
6} = — F(x, i
N R,

The general procedure for evaluating 6) as well as short methods applicable to particular forms of
F(x,y) are those of the previous chapter.
ExaMmpLE 4. Solve fw,.D})z = (D: = Dny o m; + 2D, - 4D))z
= (D, - ZD,I(D, +Dy+2)2 = yex + 3xa 7,
The complementary function is  z = Sy(y +22) + e > (y-x).’

1
@ -2D,)@, +D, +2)°

To evaluate

1 x x
——ye e, we first solve (D + Dy + 2)u =ye
f(D..Dy) %

whose auxiliary system is = .0, :u + We obtainy = x +a readily and the equation
1 ye* = 2u
du L dx o W, 2u = ye* = (x+a)e”. This linear equation hase™™ us integrating factor: hence,
yrx- 2u 1 dx

u-eu = f(:+a)e’xdx = %xe’z- _I'eSx + 1ue"'," = %xe’x- %e“ + é(y—:)e’x and

u = l}'tx ltx
3 i 8

We then solve (O, - 2Dy)z = u = %ye" = %e’ obtaining the required particular integral (sec
Problem 6, Chapter 31)
= I[%(ﬂ-—hlex - %e:]dx " %at” B gzez ¢ Eex - -"-e’
x

1 x 2
3c}""2-")¢ - :-;xe +

x 1v. %o x
€ E(J"E)f-

wilown

1

To evaluate ), we solve = 3xe 7 whose auxiliary sy
@, 2D, 30, + D, + 2)(3:: ). we (D, + Dy + 2)u = 3xe 7 whose auxiliary system

dz _d du
4 ———+ Then y =x +a, andfrom ____da_’d_y
3re - 2u e 72w !

ar
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.d..lf ¢« 2u = 3;¢-
dy

Y u 3(y-a)e?, ue?? s 3j(y-c]¢ydy + 3(y-1-a)e” = 3(x-1)e’ and

u=3@-1) 7, Solving in turn (B -2Dy)z = u = 3(x-1)e 7, the required particular integral is

= - -_ -3- -y
2 2(: 2}: .

z = 3I(r—.l}¢-aﬂxdx = %(’“-odx Ee"”u) 3

The general solutionis z = @,(y+2x) + :'"cb,rywx} + %(, + gie’ + %tx - %)e"-

ExampLE 5. Solve  f(D .Dy)z = B - DD, - ZD; + 80 - 0Dy + 5)2
© Bt Dy B =20y s 1z = e Y

The complementary function is 1 = € @y -x) + € Bg(y + 2x).

For the particular integral corresponding to the first term of F(x,y), we use

1 ea:nb) . 1 eomb:. f(a.b) # 0,
r{onDy} f(d,b}
and obtain 1 LIty C 2»112 — Y _;‘znz
bl - DD, - 205 + 6D, - 8D, + 5 ~g= -
In evaluating }ﬁe’“’. we note that f¢1,1) = 0. This means that ¢**Y is a part of the
. j .

complementary function. (To see this, take @,(y+2x) = € "+ fo(y +2x): then

e Pays2e) = e (¥ 4 Yaty +21)] = 2% ¢ e FYu(y +26).) We write

1 x+y 1 1 x+y

el = € : Pkt I A2 4
f®,.D,) D -2D,+1D,+4D,+5

D, -2D, +1

=

=3

The general solutionis z = e ~Py(y-x) + e “Poly + 2x) + LN L P
? i 8 7

See also Problems 4-5.
The use of the formula
7) 1 VedT*ty _ gaxtby 1

—_— ¥, V=Vxy,
£(D,.D,) f(D +a,D,+b)

is illustrated below,

EXaMPLE 6. Solve (D) + 305D, - 2D)z = DI(D  + 3D, - 2z = (x"+2y0e™ "7

The complementary function is z = ¢, (y) + =P (y) + ¢™ ¢o(y-2x). A particular integral is

z W —1—(x’+2y)e’x” . @ty : (=" + 2y).

DZ (D, + 3D, - 2) (Dg+2)° (Dg+ 3Dy +3)

Setting (D, + 3Dy + Ju = 124-2)', the auxiliary system is d _dy | _.;.d"_ -
—35 1 3 x +2y-3u
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du
Then y = 8x+a, and from AT o or d—u-'rsla -z’+2y. we have
x +2y-3u 1 de
ue™ = [(x*+6xs2a)edx = e‘_"¢%x’+‘?°x_ ;-g+§a}and e 51'"*%";-:*2'?

Next, setting (D, + 2)v = u and making use of theintegrating factor eh.y being regarded as a constant

2x 1 167, 5 17 1 : L 7 .1
- - - dz - - — | et P o -,
- [ 9’ =t ” y ( 18" " 108 3”' nd v = 5F St e 7
Finally, setting (B¢ + 2)w = v, we have
I 2x 1 2 5 17 1 2 1iy 2 i
= Je G* “18° "Tos '3V STl T sm

Yoo wi 7 1
and w ﬁx -§x+-2—“—;+§y.

xey

2 Ay
Then 2z = we and the general sclution is

1x ) 1 2 2 Y 1 . 2xey
z Dy (y) + xBy(y) + e Py(8y-xz) + (Ex - gx a»Ei—G + -G-y)e "
See also Problems 6-7.

IRREDUCIBLE EQUATIONS WITH CONSTANT COEFFICIENTS. Consider the linear equation with
constant coefficients

8) £(D,, D,z = O.

. s PR a .
Since D, D (ce®™* %) = ca B e®* %Y, where a,b,c are constants, the result of substituting
9) x = cedx + by

in8)is cf(a,b)e®™*® = 0. Thus.9)is a solution of 8) provided
IO) f(d. b) =
withcarbitrary. Now for any chosen value of a (or b) one or more values of b (ora) are obtained by means
of 10). Thus, there exist infinitely muany pairs of numbers (a;, b;) satisfying 10). Moreover,
1) 2

= 2 c ed“‘b"', where f(a;, b)) = 0,

i=]

is a solution of 8).

If £(D,, D))z = (D +hD, +k)g(D,, D)z,

thenany pair (a, b) for which a + hb + k = 0 satisfies 10). Consider all such pairs(a;,b;) = (~hb~k, b; ).
By 11).

@ @
E c‘e—(hbuh}xi»b;y = L_-h 2 c‘.eb"{"h’]
i=) i=1
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is 4 solution of 8) corresponding to the linear factor (D + hDy + k) of £(Dy, Dy).

This is, of course, e'“r,ﬁ(y-hx}. ¢ arbitrary, used above. Thus, if f(D,, D, ) has no linear factor, 11)
will be called the solution of 8): however, if f(De, Dy) has m < n linear factors, we shall write part of the
solution involving arbitrary functions (corresponding to the linear factors) and the remainder involving

arbitrary constants.
EXAMPLE 7. Solve  f(B. D)z = (O +Dy+Dy)z = 0.

The equation is irreducible. Here f(a,b) = a®+a+b =0 so that for anya = a¢, by = =a;(a; +1),
Thus the solution is

@ @
xe b =t lia . .
pon Do o e i(8i*2)Y - ith c, and g, arbitrary constants.
el el
EXAMPLE 8. Solve (D +2D,) (D, -2D, +1) (D - D))z = 0.
Corresponding 1o the linear factors we have ,(y-2x) and ¢ ¢,(y + 2x) respectively.
For theirre ' ible factor B -Dy wehave a-b" =0 ora = b’
The required solution is

w 2
- bxeb, ’ . .
: = Byly=2x) + e Pa(ye2s) + 2‘;“ g "’. with ¢; and ', arbitrary constants.
i=1

In obtaining a particular integral of £(D,, D)z = F(x,y) ,all procedures used heretofore are available.

ExaMPLE 9. Solve {(D‘_D’)x = (D,-D;): . Y,

@ 2
Fromn '+ &, the complementary function is 1 = E fiehs"“ bt’_
i=l
For the particular integral : --i—z e . --—1—; G S % ~ i A
DI-D) G 2-(3)
o 2
The required solutionis = = 2, cﬂeb"! ¥he % Pl
ra See also Problems 8-11.

THE CAUCHY (ORDINARY) DIFFERENTIAL EQUATION f(xD)y = F(x) is transformed into a
linear equation with constant coefficients by me.:ns of the substitution x =e” (see Chapter 17). The

analogue in partial differential equations is an equation of the form

T
f(xD, ,yD)z = 'Esc"x y’'D;Djz = F(x,y), ¢, =constant,

which is reduced to a linear partial differential equation with constant coefficients by the substitution
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ExaMPLE 10. Solve ("B} + 209D, - =D 3z = =°/y",
The substitution x = ¢, y = ¢', 2Dz = Dz, yDyz = Dyz, x’q:: = D, (D, -1)e,
xyD‘D’ =DJD z, y’D:s =D, WD, ~1): transforms the given equation into
(D,®,-1) +2DD, -D): = DD, +2D,-2: » &*

whose solutionis 2z = @y (u) + ,3“¢‘(u_3u) e ée’"'“.

Thus, the general solution (expressed in the original variables) is
1e
9 2

=

z = dy(lny) + x’d’,(.‘ln -y;) -

x

—
?

x

2 4
See also Problems 12- [}

or f I ‘;‘;(J’) + "¢.('E) - é
x

=

SO1.VED PROBLEMS
RELL.
1. Solve (O -D§+3D, =3D)z = (B ~D)WB +Dy+ Nz = 0

The general solutionis z = Sy (y+x) + € dy(y =x).

2. Solve Dy(2Dy = Dy + 1)(D; + 2Dy = 1)z = 0,
iy : o) v efdadvem) + ¥ By -2m),

3. dolve (2B + 3Dy - 1)" Ly - - A, 0. | 1ie eril solution 15

1w e (B ay-35) + xdy(2y-31)) + o [Dety +3x) + ydaly +32) ¢ y'dyiy+3n),

4. Solve onn  n' 3Dz = DA +Dy-3)z = 3 cos(3x-2y).

The complementary :uncuon is 2 = P (x) + ¥’ &.(2y~-x). A particular integral is

1 3 3
—— - (3x=2y) = ———  cos5(3x-2y) = cos (3x - 2y)
2D,D, + Dy -3D, 2(6)~4-3D, ) 8-3D,

3(8+3Dy) cos(3x=2y) = -3—(80-31)3,) cos(3x~2y) = 2 [4 cos(3x~2y) +« 3 sin(3x-2y)].
o4 - oo 100 50

The general solutionis z = ¢, (x) + ¢"’¢,(2y-x) + % [4 cos(3x-2y) + 3 Bin(3x-2y)].

5. Solve D (B +Dy-1)D+3D,-2)z = x"-axy+ 2y’
The complementary function is z = dy(y) + e Py(y=x) + €= oy =3x).

A particular integral is denoted by :z = 1 (= - hy+2y=).

Dy (D + Dy = 1) (D + 3Dy ~ 2)
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1 2 2
(x!-uyoﬁyzl = 4 (x° -4xy +2y")

4 a 1
To evaluate it. consider
Dr0307-2 —l‘-*(Dx+3D’}

= $(1 = 4B+ 3Dy) - 4B +3D,) - +oer] 6o dxy 4207

= i[-(s’—i:y*%’z) — (~Sx+dy) - /2] = - *{gz-h-,u 2,’-5.tfiy+?/2).

(x’—hy + 2;': ~5x+4y+7/2)

Consider next i (= 4xy +2y’—5x+1y+?/2) = g . S
D:‘Dj—l 1"(.0‘"‘ D’-]

= 4 [I-P(Dx oD’)q-(D‘pr)’ + o--}(x‘-t:yf2}"-5;4-{)'1-7/2) = *(l’-h"ti”-'fl*‘y**).
Finally, : - D{(x?-uy+2;’-1:-1y+j) = *(x’/a_z;’pz:y'-7:’/2*4:3«:/2).

The general solution is

o= Pu(y) + g*é,{y-;) + ¢” By (y -3x) + %(2.:’-—121'3{-11:)”-213’+2l.=y¢:lx}.

TYPE: L ___ 9%*® yey 1y,
£(D;,D,)

6. Solve {&+D,-1ND,+D,-31(D,oDJ): = ex""cos(nx-y).

The complementary functionis  ; 4 e Pyly-z) ¢+ P @aly =x) + Puly-x).

1 A LL)

For the particular integral. cos(2x - y)
Dy + Dy = 1) (B, + D, -8) (D, +D,)
. Y . e* cos(2x-y)
(Dx‘D) + 1)@ +Dy— IJ(D‘+DJ,¢2}
s Al . ’l cos(2x-3y) = - *‘xo)fl __IIT___ cos(2x - y)
(0§ + 2DeDy + Dy = 1) (B + Dy + 2) Byt
-2
PN %cxoro: _!g_*_?z_e__ sy % Syt (Dy 4Dy —2) Gon(2E~)
D +2DDy + Dy~ 4

s = @ (gn(eay) ¢ 2con@e-9)):  The general solution is

10

1 2
1 ‘1.'0)‘0

2 = e Ply-x) + .5‘@(,«_;) + Pyly-x) - [8in(2x - y) + 2cos(2x-y)].

7. Solve B (D -2D,) (D + DYz = . e P (x? 4 4y,

The complementary function is o= Pu(y) + Paly+2x) ¢ dy(y-x).

For the particular integral

1 ex‘”(x’o{y’} N ‘xo!y 1

(x*s 4y'). we first
D,(D,-:D,)(DxﬁD,) (D,»IHD,—2D,.—3}{D,,+ D, +3)
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find u = 5——%—-——(;’»“’) = %—-—-—1—-——-(1,+4§3)
e i 1+ 3@, 4D
1 1 1 2 2 2
= 5[1-51&+D,)+ gDx+Dyy 4 vevee Jx" + 4y")

1,2 g w2 i1 e TP $00
5[. + 4y 5;:”,“?] 77(0% + 36y - &x-24y +10),

1
1
1#5(21’,—&)

- 8—11(9:’ + 36y° - 12y +58),

then v

[N

1 1 1 1 2
— w = = 201- 2@y -Dy) + 2(2Dy-B)' - +eu
&_23’_3 3 3 o

1
Dx"l

The general solution is

and finally, z = v = (1-D,¢p:+...w B -s_ll(gxﬂuy’_m,_uy‘.“)_

2
2 o= dy(y) v Byly v 2ux) + Pely-x) - s—ll(nx’+say'-1s-.-qzy+ 18",

TYPE: IRREDUCIBLE EQUATIONS.

8. Solve f(Dy.Dy)z = (D‘-D;)x . g
= b’ixfb‘y
The complementary function is & = 2 cge from Example 9.
i=1
The short method for evaluating the particular integral ?El.ﬁy_) ¢*7 cannot be used. since f(a,b)

= f(1,1) = 0. We shall use the method of undetermined coefficients. assuming the particular integral

10 be of the form z = Aze**” + Bye™*?,
Now Dz = (A +Ax+Byye" 7, D;: = (Ax +2B +By)e**” and (D,,-D;}z = (A-2B)e"*? = ¢*%; hence

A-2B = 1, Taking A =1, B=0, we have as particular integral z = ze**. taking A=0, Bs=-4,

we have = —4ye"”; and so on. Choosing the first, the required solution is
® 2
boxe b
z L 2 l.“l ' a + xcx”.
i=l
9. Solve (20: - D; +D)z = -y
@ a.x+by
The complementary function is I > e U Ry b: +a; = 0.

i=1

The particular integral le—-(z’-y) B _-_1_' ! ==y
"Dx'p)' "Dx D’ [ B"‘ZD:
2
Dy
z 22
- "L,[‘ +&+,2D’ \ (Dx+:D§l_+.”](‘s_y) - ~-:l-[x’-742’:‘+.2=]
D D, D, D, 5 -
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1 2 2 2w 1l 22 1.3 1 1 4 1 &
- -;)_’{x ~y+xy +2y +y /12) - 3%y ¢ 6’ - =gy~ 300 ? *
y
& T
¢ I - axt HIKRY 1arg 1 1 ¢ 1e 1 &
The required solutionis z = 2, c;e - 3%y +Ef_ﬁxy ~ g~

i=l

10. Find a particular integral of w:w,)w,-ny_n;n = sin(2x +y).

A particular integral is given by

s . 3 sin(2x+ y) = PRSI ; W Bin(2x + y)
+ =D, +
(D +D,) (D, - D, - D)) 'y} (U= Dy + 1)
1
= sin(2cx+ y) = 8in(2x +y)
2 - -
D,D, - Dy~ 4D, + 5D, - 4 =
SDy-4D+ 5 sin(2x+y) = - ili [5 sin(2c+y) - 3 cos(2x +y)].

2 2
25D, - 40D, D, +18D) - 25

The method of undetermined coeflicients with z = A 8in(2c + y) + B cos(2c +y) may also be used here.

1. Find a particular integral of (D ~2Dy+ 8) (D7 +D +3)z = ' sinx-2y).

1
(B, - 2D, + 5)(DF + Dy + 3)

A particular integral is Y aingx- 2y)

S . singr-2y) = e¥**7 1 sin(x - 2y)
2 y D
(Dx-2D,)(Dx¢ﬂDx+D’+1o) ( x-zﬂy)(GD,hDJ,*l&)
u gy - 1: sin(x=2y) = % g Xty _..._ID__._ sin(x - 2y)
- - - - -4
60, ~110,D, ~2D] 415D, -300, an, - 6D,
1 s
w i g ANy : 3Dy - 6Dy +|’ sin(x -2y} = = _1510__5 4% (3p . 6D, +4) sin(x-2y)
90; -360,D, + 36D - 16

1

Ixeny
T R *Y 15 costr-2y) + 4 sin(x -2y)].

TYPE: f(xD,,yD,)z = 0.

12. Solve (:D,’D; - yD:D;}: =0 or (z’y’n"n; - S:J’I;f Yz = 0,
The substitution = = ¢, y = ¢", s’y’D:D;x = Dy(D, = 1) (D, =2)Dy, (D, = )1,
-'!J)D:D_,.’! = DD, -1)Dy (D, ~1)(D,-2)z  transforms the given equation into
DD,y ~1)(D, - 1) (D, - D)z = 0. The required solution 1s
o B ¢ B v e By + by 4 By (v +u) or, in the original variables,

= dylny) + @,(Inx) + xP,(ln ¥) + y&,(1n x) + ¢e(ln xy)
= V) ¢ Ya(x) ¢ 3Ya(y) + yWiex) + Ve (xy).
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13. Solve (x'.n: - 1y'D; - 4yDy -1z = ,’y‘ Iny.

The substitution =z e y= ¢¥ transforms the given equation into

(D D, -1y - 4D,(D, =1y - 4D, -1)z =« (@ - 4D} = D, - 1z = ve™*,
A particular integral of this equation is given by «i-——;!-— PPl g
D;-4D,-D, -1
ltu.’v 1 v = Q“.,u 2 : Ve
@, +2)° - 40, +3) = (B, +2) - 1 D2 -4} +3n, - 24D, - 38
. 3 3 2 2 : 1 24
By inspection, a solution of (D,=-4D, +30,~24D, -35w =v IS foundtobe w = = —v + 5
: (35)
Hence, the particular integral is z = - LT sy n 24, _ '

sy
The required solution of the given differential equation is

N ;
e div : ey :
: =, :‘ea‘ L B 35,_24)  or, in the original variables,
i=1

1225
& a; b 1
Sk Ec‘x‘y‘— xzy’(:iﬁlny-n), cf-ib:-¢‘~l-o.
1a1 1225

SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

14. (.n,wr + 1)¢nx-zo, -1)z = 0. Ans. 1 = g“qb,(y-;) + EPply +2x)
15. (D +2D, ~3)(D + D, ~1)z = 0. Ans. 1 = by (y=2x) + €dy(y-2)
16. (@D +D, +1}(D:+3Dx£),-30x): = 0. Ans. 1 = dy(y) + € D2y ~x) + by (y-3x)

17. (DD, +D})®, -D, -2z = 0. Ans. 1= dy(x) + Bay=3) + By ex)

18. (D +2D,)(D, +2D, + 1)(B, +2D, +2)'x = 0,

Ans. 3 = Py(y-25) + € Pa(y-2x) + ¢ [By(y =22 + yPaly-20)]

19. D, + D,) (D_+ D’ =2)z = sin(x + 2y).

Ans. 3 =g (y-x) + iy -x) + 'I",l‘_'l [6 cos(x+2y) - 9 sin(x +2y))

20, {D,a-D,-l)(D,o:D,i-i)x = .{xﬂy + y(1l=-2x).

Ans. 3 = €Py(y=x) + ¢ Py -2x) + 2y + % + %e“",

2 E % ' .
2. (B, +DD +D, 1)z = o e Ans. 1= € Py (y) + Cdaly ) + -;-.u‘ 3 %;g =



22
23.

25,

27,

28.

29,

31

32,
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(03 - DDy -0} + B0, )z s e)/e. Ans. 3 = d(y) + Poly+x) + €baly-x) + Inx _

(SD,:II&-?D;-D,}: = cos(3y +2x). Anx. oz = Py(xy + e“tﬁ,{:iyozx) 3 -:-:- sin(3y + 2x)
(0F+D,D, -0y +D, =D)s = ¢™ . Ans. z = b W 2™V, ofiab-bea -t -0
{30: -21);+D,—1}x = 3¢°"7 sin(x + y).

Ans. z = zcizﬂ‘x‘b‘, - e”’cos(x+y). 3af-2b:+ai-1 =0
{D: fﬂLD;—M)) +3)z = e**7 cos(x +2y). ‘

a.x+by 1 2
Ans. I = zc‘-c t v . Eexoy cos(x+ 2y), 9 ;h‘.bi-' %i* 3=0

(D:q.DxD, +D 4D, 41z = P o 2yz).

.x 4b; -
Ans, 2= Xagebd Vo % e (9% 4 18y" + 182 + 12y + 16), aieabraeb el = 0

2 H 1y x
(DxD,+D)-2)x = ¢ cos 3x + ¢ sin 2y.

b
Ans. 1 = Ec‘en"“ 2 1—15 e?? cos 3x - 516 ¢*(cos 2y + 3 sin 2y), afb; - bf—z =0
txy!LDy—f%'-azﬂ,uMy): = 0. Ans. x=di(n )+ Pdadnn) = Yalxy) + ¥ ¥a(0)

(' - 20yD, D, -3y D} + 1Dy -3yD) = x'y sin(In z°).

Ans. 1 = lﬁ‘(x!y) + Daly/x) - 315 x!y[q cos(ln x:) + 7T sin(ln xz)]
1 2 2.2 : 2 2
(D +xyD D ~2y'D ~xD -€yD )z = 0. Ans. 1= (y/x) + 1 Sa(xy)

(x’ﬂ?—xyﬂID,—ZyzD;‘u&—hﬂy)x = In(y/x) - 1/2.

Ans. 1 = ¢,(x’y) + @a(y/x) + #(1n x)' Iny + $1nx Iny
< t! f}'s ,
Iy

(:'y{fﬂ, -xy'D‘D: - x!B: + y’D;)-:

x’-—

. w gk =y
Ans. 1 = xPy(y) + yPe(x) + dalzy) 6‘ P )




CHAPTER 33

Partial Differential Equations of Order Two
with Variable Cofficients

THE MOST GENERAL LINEAR PA RTIAL DIFFFRENTIAL EQUATION of order two in 1wo independent

variables has the form

1) Rr+Ss+Tt+Pp+quZt=.F

where R, S, T, P,Q, Z, Farc functions of x and y only and not all R, S, T arc zero.

Before considering the general equation, a number of special types will be treated.

TYPE I
F
2a) o= B_; = F/R = Fi(x,y)
ox
2
25) . a%'iz; = F/S = Fy(x,y)
- aiz
2¢) £ = . = F/T = Fa(x,y).
qy

These are reducible equations with constant coeficients (Chapter 32), but a more direct method of solving
will be used here.

EXAMPLE I. Solve ¢ =y -y
]

Integrating 5 = Rz 8 x~y Withrespectto y, p = = . xy - &7 ¢ Yea), ¥ arbitrary.
&0y x
Integrating this relation with respect to x, 2 gxly - day? 4 B2y 4 Ba0y).
d . 2
where Ez-qb’{x} =¥x) and d.(¥) are arbitrary functions.

TYPE 11

3a) Re + Pp = R-éf+Pp=.F
Ax

3b) Ss+Pp=S—a£+Pp=F

ic) Ss + Qg = Si?+0q=f‘

-
&

1d) Tt + Qq +Qg = F.

B%

These are essentially linear ardinary differential equations of order one in which P (or g)isthe dependent
variable.

276
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.7
ExampLe 2 Solve xr+2p = (92+ gye™ ",

Considering p as the dependent variable, x as the independent variable, and y as constant, the equation
., *2 . . . " .
is xg_‘: + 2 % (9x+ 6)e """ for which x is an imtegrating factor.

a2y

Integrating 2 gﬁ + 2xp = (927 + Bx)e » we have
X
D, D
2
25 v pmteene™MY o LN, TR CE - Liaues’ e )
% 3 39
7 3xe2y B2 Ix42y 1
= dxe + ¢yy) or p=_§-=3e + = P
X x

Then = = &% L ;d;,.(y) + éa(y)y 15 the required solution.

TYPE Il
4a) Rr + Ss + Pp = F or R.B.E+s.a_p=p,.Pp
ax Jy
4b) Ss + Tt +Qg = F or Sa—q+T-a£=F—Q\q.
ox oy

These arc linear partial differential equations of order one with p (orq) as dependent variable and x, y as
independent varables.

EXAMPLE 3. Solve 2rr-yse+2p = 4xy? or 2x B_p' - ¥ ® . 4xy? - 2p.
ox Ay
. : - - - o - dp
Using the method of Lagrange (Chapter 29). the auxiliary system is — = = = ———.
2x -y 4xy’-2p

From the first two ratios, we obtain readily xy¥ = a,

By inspection, 2y*(2x) + 2py(-y) - y'(hy'-zp) = 0. Thus,

v 2 y'dp - 2py dy P
2y dr « 2pydy -y'dp =0 or ﬂdz--—‘-—--o. and -;-2: = b,
b { b

The general solution is  p/y? - 2x = Y(xy?). Then

2
pe 52 = 297 ¢ Yy and 2 =27y 4 Bur®) ¢ $a().  where aﬁrf’dxrz) =y \!’f‘J’}'
X

TYPEIV.
2 aaz ?z
Sa) Rr + Pp + 2z = F or R— + P—= + 2z =F
ax! Bx
2
5b) Tt + Qg + 2z = F or Ta_i *QE + 2z = F.
'’ dy

These arc essentially linear ordinary differential equations of order two with x as independent vanable
in Sa) and y as independent variable in 55).
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EXAMPLE4. Solve t - 22g + 272 = (z =2}’ * %,
The equation may be written as (D:'- 2D, + ol I {Dy-szr » (x-2)e =,

The complementary functionis 3 = ¢* ¢, (x) + 2™ dy(x) and a particular integral is

2
A (:-2):”"” = == 2, e T8k e
(D, - x* (2 =x) x-2

Sx+2y

The required solution is z = e @, (x) + xe* Py(x) + ==

X -
See also Problems 1-8.
LAPLACE'S TRANSFORMATION. This transformation on
1) Rr+S:*T¢+Pp+Oq+Z:=G{u.V}

consists of changing from the independent variables x,y 10 a new set u, v, where
6) u = u(x,y), v = v(x,y)

are 1o be chosen so that the resulting equation is sii-npler than |). By means of 6). we obtain

%
; L] :u“g""bux' g ® —-— = 'unj"'uy)'

L]
U

Il + (2,40 + ‘uu"x)":_+ Tylpx * (30 + 2, )u,

2 2
B 1 LN SU SRR VS

¥

Tylgy + (2yu, + Eyyly Uy, + Fytpy * (Bl * oI, u 00

= ’uu"'x“;r + ‘w(“z"'y + n,ux) + 'w"'x"y + z“ux:' + ;uvr, ’

1

2
]+.lul.l. + 2V

2
2uuluy) + L uvy, +or, (v yy vyy*

Y

Let
1) R, + 8’0, 05, +Ps, 2Q's, s Bz =2
be obtained by making the above replacements in 1) and rearranging. We shall need only thecoefTicients
R’ = l(ux-)’ + Su,u, + T(u,)’ and T' = R(vx)' + Svev, ¢ T(y, §*.
We note that both are of the form
7 REN + SEE, + TE,) = (af, + 5E,) (6, + 1)),

i) Suppose b/a # f/e; then, if for u we take any solution of ag, + b¢, = 0 and for v any solution of

ef, +f§,=0, 1) istransformed into 1 )with R'=T'= 0,
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ExampLE 5. Solve a) ,'Q,._]),- = x{y:- s + y(y=1)t + xyp = g = 0,
b) ylxey)(r=s) - tp=-yg -2 =0.

a) Here 7)is ;!(3-1}(;’:)! - x(y’-l)fxef) . J'(J'—l}(f’)! = 0
2 2 2
or x (&) - xy+DEL + &) = C!E,-J'f),)(’f,-f,) = 0.
Now ;fx-—yf) = 0is satisfied by £=u 2y and =£ - ..‘J =0 is satisfied by £= v=xe’. Moreover, il is
easily shown that these solutions also satisfy the given differential equation. Hence, the required solution is

o= Pylxy) + Palze’).

b) Here 7)is yrx+y1[{§x)’-f,f,] =0 or (£-£), = 0

Now £ - fy =0 is satisfied by £=x+y and £, =0 by {=y. However, neither of these solutions will
satisfy the given differential equation.

Wetake uexsyandvey, Then puzy,, gez 42, rez,, =1, + 2y, » and the given differen-

tial equation becomes
“y(x+y)z,, -x1, -y1, ~y3 -2=0 or uvz,, ¢+ Wz, +vi, + 2 =0,

This may be written as

1 1 1 1 1
'uv + ;‘u + ;zvq- E—J: = %(% + ;z) + &(g + ;x) = (% + %)(% + é;) = {0,
Let N L = w; then (. 0 and wu = Y(v)., Now
w v u
o 1 1

1 1 1
S U oM. 2y o= cA@) + gyu),  and Tox ghv) v sda),

d .. 4 ; T Daly) | Palx+y)
where M) = vdiv) and av). = ZA(v). The required solution is  z = =5 ! -l_.;_

EXAMPLE 6. Solve x°r - y’r tpx-qy ® "5

Here 7)is (€)' - Y€, = & -16)68, +5¢,) = 0.
Now x£ -yfj =0 is satisfied by £ -xy and £, +y6,=0 by £=x/y. It is found readily that these

salutions satisfy the reduced equation 2r-y?¢+s px- 9y =0; hence, the complementary function is
2 = $y(x/y) + $a(xy). However, thiscomplementary function may be obtained along with the particular
integral as follows. Tuke u=xy and v = x/y; then

P=yz +1: Q= xz __x_: re 'z + 2% % 2z taz? 2% "’
ut T w3 Y Iy wy * 3 fvue fuu = Tl it S
Y ¥ Y b 4 y
and the given equation becomes u’:w =% or e * e
Integrating first with respect to u, z, = () + fu,
and then with respect 1o v, 3= dy(v) ¢ Pa(u) + fuv = B(xfy) + Balay) + gx°,

where ;—‘ié.{u) = Y(v).
See Problems 9-10.
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1)) Suppose b/a = f/e; then R(£, 72 o+ SE.€, + T, ¥ = m(ag, + b.fy)‘ . This case is treated in
Problem 11. '

NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER TWO. One possible method for
solving a given non-linear partial differential equation of order two

8) F(x,y,2,p,q,r,s,t) =0

is suggested by sevcral of the examples of lincar equations above. In each of Examples 1-3, the first step
consisted in finding a relation of the form

9) ' u = y(v), ¢ arbitrary,
where u = u(x,y,z,p,q) and v = v(x,¥,z,p,q), from which the given differential equation could
be derived by eliminating the arbitrary function. Such a relation 9) is called an intermediare integral of §).

For example, p- xy + §y? = Y(x)is an intermediate integral of s = x -y, (Example 1).

It can be shown that the most general partial differential equation having
u = Y(v), ¥ arbitrary,
where u = u(x,y,z,p,q) and v = v(x,y,z,p,q), as intermediate integral has the form
10) Rr + Ss + Tt + Utrt-s") = V,
where R, S, T, U, V are functions of x, y, z, p, g. However, it is evident from the definitions of R,S,+++, ¥

that not every equation of the form 10) has an intermediate integral. The discussion below concerns
Monge's method for determining an intermediate integral of 10), assuming that one exists.

TYPE: Rr + Ss + Tt = V. Consider the equation
11) Rr + Sz + Tt =V,

that is, 10) with U identically zero. Since we seek z as a function of x and y, We have always

12,) i w B W Al v ady,
ax Ay
12,) & w Loee By rde s didy,
ox dy
12 s M v By v o i by
3 dq ax ayd’ sdx + tdy
Solving the latter two for r= —df-:&id—y. t = d:_;;_g and substituting in 11), we obtain

gi’&%ﬁi’l+s,+rﬂ%‘*=v¢n

13) s[R(dy)' ~ Sdxdy + T(d)'] = Rdydp + Tdxdg - V dxdy.
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The cquations

14,) R(dy)® - Sdxdy + T(cx)?

]
(=]

14 ) Rdydp + Tdxdgq - V dxdy

]
o

are called Monge's cquutions.

Suppose R(dy)® - Sdxdy + T(dx)’ = (Ady + Bax)? = 0. If now
u=ulx,y,2,p,q9) =a, v=v(xyzpq) =>b satisfy the system

[ Ady + Bdx = 0
Rdydp + Tdxdq - Vdxdy = 0,
then u = Y(v)

is an intermediate integral of 11) since w=a, v=5b satisfy 13) and, hence, 11).

Sunpose R(dy)’ - S dxdy +T(dx)’ = (A dy + B, dx)(Adydy +B,dx) = 0,
where 4,8, - A,B, # 0 indentically We now have two systems

Aydy + Bydx = 0 . A,dy + Bydx = 0
an
Rdydp + Tdxdg - Vadxdy = 0 Rdydp + Tdxdg - Vdxdy = 0.

If either system is integrable. we arc led 1o an intermediate integral of 11): if both are integrable, we have
two intermediate integrals at our disposal. Procedures for finding a solution of a given equation for which
intermediate integrals have been obtained will be discussed in the examples and solved problems.

EXaMPLE 7. Solve q(yg+z)r - p(2yg +2)s + yp't + p°q = 0. ’

Here R =gq(yg+2), § = - p(2yg+2), T = yp’, V= - p'q; Monge s equations are
f“u’n? -~ Sdxdy + T(dx}’ = q(yqu)(dy)’ + p(2yg + 1)dxdy ™+ _rp’(d;}’
= (gdy+ pdr)[(yq+2)dy + ypdz] = 0

and Rdydp + Tdedg ~ Vdxdy = q(yg+z)dydp + yp’i:dq + pzqd.:dy = 0.
;dy + pdz = 0

We seek a solution, of the system 2 2

: ’ g4+ 2)dydp + yp dc dg ¢ p g dxdy = 0.
Combining the first equation and 12,).we have d: = 0 and z = a. Substituting in the second equation
dy = —pdx/q, obtained from the first. we obtain

(yg+2)dp = plydg +qdy) = 0.
We add -p dz = 0 to this, obtaining

dp _ ydg+gdy+d:

{yq -z21dp - p{ +qdy+ dz2) = o
- 2)dp - ply dg + qdy ¢ r P yq -z

_
with solution 322
)

b, Then yg-z = pefesy is an intermediate integral. The Lagrange system for

- dr 3 7 2 . d
this first order equation 15 25 « 2 o % | From @ . ¥ e obtain yz = a, and from . B
ftey =y 2 -y oz ftzy =
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obtain = = ff(z)‘if = ¢, (z) + b, Thus. the required solution is
I
x = Py(2) + Py ly2).

(yg+2)dy + ypdx = 0

Consider next the second syst -
yRtem q(yq +z)dydp + ypzdxa'q + pzqd:dy =0,

From the first equation, pds + gdy = —zdy/y: then dz = -2dy/y and yz = a. Substituting from the
first equation. the second becomes

grdp - pydg - pgdy =0 or = - 2 - = +0

with solution qy/p = b. Then gy = p-g(yz) is an intermediate integral. The Lagrange svstem is .Tdr"-; =
gly:

4, dz = 0. Then z = a and the first equation - has solutionx = = fs(ya)‘-i?— = Pg(ya) * b
-y g{ya) =y Y

We thus obtain x = ¢y(z) + $alyz) as before.

The solution may also be obtained by using the two intermediate integrals simultaneously. Upon solving

themfor p = . S q = .. ... -
f(r) - glyn) y[f(zy - goyn))

and substituting in pdx + qdy = dz, we have yz dx + zg(yz)dy = yf(z)dz = yg(yz)dz,

Writing f(z) = 2 f1(2) and g(yz) = = yzga(yz), this equation becomes

dx = fy(2)dz + gy(yz)lady + ydz)

wid, lotegrating, SRR Sec also Problems 12-16

TYPE: Rr + Ss + Tt + U(rt-s?) = V. Consider equation 10) with U # 0. By substituting

= do— sdyl
dx

r

t = A ;';d" as in the preceding type, we oblain

s[l'(dy)’-dedyiT(dx]! +U(dxdp+dydq)] = Rdydp+Tdxdg+Udpdg -V dxdy.

The equations

15,) R(dy)' - Sdxdy + T(dx)' + U(dxdp +dy dq) =0
15) Rdydp + Tdxdg + Udpdg - w = 0
2
are called Mange's equarions. Note that when U = 0, the: attons are 14 )and 14 ) However. unhke

14 ) and 14)), ncither can be fuactored.

We shall attempt to choose A = A(x,y,z,p,q) s0as 1o obuun a factorable combination

16 A[R(dy)' — S dxdy + T(ax)' +Uldx dp +dy dg)) + R dydp+T dxdg + U dpdg - V dxdy
= (ady+bdx + cdp)(ady + Bax + ¥ dy)
= aa.(d}‘)! + (8l + ba)dx dy + bA(dx)? + e dxdp +ay dydg + ca dydp
+ bydxdg +cydpdg = 0.

.
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Comparing coetlicients, we have
aa=TF\, aB+ba=-SA-V, bB=TA, cBf=U\=ay, ca=R, by=T, cy=U,

The first relation will be satisfied by taking a=A and a = R; thischoice determines b=T/U, B8=\U, ¢
=1, 7=VU. The remaining relation aB + ba = =SA- ¥

takes the form Uf + _Um; = -~SA-V or
2.2
17 UM + SUL+TR +UV = 0.

In general 17) will have two distinct roots A = Ay A = Ag: thus, 16) can be factored as
0 and
0.

18,) (A Udy + Tax + Udp) (Rdy + A Udx + Udq)
18,) (AUdy + Tax + Udp)(Rdy + A Udx + Udg)

]

There are four systems to be considered. The system A,Udy + Tdx +Udp = 0, A Udy +Tdx +Udp = 0
implies (A; = Ay)Udy = 0 and. hence, unless A\y=Xx,, Udy=0 identically. Similarly, the system,
Rdy + A, Udx+Udg = 0, Rdy+ A,Udx+Udg = 0 implies Udx = 0 identically. We therefore shall use
only the systems

i} [,x,uawrcmwp: 0 - [ A Udy + Tdx + Udp
Rdy + AUdx+Udg = 0 Rdy + A Udx + Udq

[
o o

Each system, if'integrable. vields an intermediate integral of 10).

ExaMPLER. Solve 3s - 2(rt-s%) = 2,

Here, R=0, $=3, T=0, Us=2, ¥=2, Then U’ + SUN+ TR+ UV = 4N - 6A= ¢ = 0, A\ = i
and A, = 2. We seek solutions of the systems

[A,Udy+Td.:+Udp-dy-2dp-0 i [A,u¢+rd“uap--4dy-zdp-u
Rdy + AjUdx + Udq = ~4dx - 2dg = 0 Rdy + AyUdx + Udg = dx — 2dg = 0.

From the first system. y-2p=a and 2s+ g=b; then (i) y-2p = f(2x+q) is an intermediate integral.
From the second system, 2y+p=a and x-2q =b;then (ii) 2y+p = g(x~- 2q) is an intermediate integral.
Since q appears in the argument of both fand g, it is no longer possible to obtain a solution of the given
equation involving two arbitrary functions by solving for p and q and substituting in dz = pds + q dy.

We shall attempt to find a solution involving arbitrary constants from the intermediate integral y -2p
= f(2x+ ). To obtain an integrable equation, take f(2c+ q) = a(2x+q) + B, wherea and B are arbitrary
constants. The Lagrange system for

) Y=2 ra(2e+q) + 8 or 2p+rag=y-2ax-43
15

ﬁ-fz = d: -
2 a y-2x-8

From the first two members, ax = 2y + £. Substituting for ax, the last two members become

dy _ dz
e -3 -2%£-8

Or ad: = (= 3y - 26 - 8)ydy and a:--%y’-ﬁfy-,ﬁy+ﬂ.
5 2 g ’ a .
Thus, az » 3y - (@ax + B)y + dy(ax - 2y) is a solution of the given equation involving one arbitrary

function and two arbitrary constants,
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Treating the second intermediate integral similarly, we take 2y +p = y(x -2q)+8 or p+2yg =7yx -

: . i d.
2y+5, where y and & are arbitrary constants. The corresponding Lagrange system is .,
1 2y yx=-29+8
From the first two members, y = 29x + £, Now the first and third members become d dz

1 =3ys-26+ 8
and z = - g'y:’ - 2x + 8z + ., Thus.: = %-yx’ - {2y =8)x + P, (y=2yx) isalsoasolution involving
one arbitrary function and two arbitrary constants.

A solution involving two arbitrary functions of parameters A and 4 will next be found. Set 2x+ ¢ = A

and x-29 = u so thatx = (2A+ x)/5. Then (i) and (ii) become y=-2 = f(N) and 2y+p = g(w), and
y = [fy + 2800)/5. Now

(iii) P o= dly-f] = -2+ g and
(iv) g = A-2x = d(x-p

Substituting the second value of p and the first value of gindz = pdx + qdy, we have
dz = [-2y + g())dx + (A = 25)dy

s = Uyduexdy) + %ym[z dh+dyu] + %k[{’(&)d&szg'u;}dp]

" - 20decexdn) + 2 Godue 669N o MO+ FIEN - Hrdh v Lggoda

and 2 = - 2xy gkgam + é’\jm - @) + dat)

= -2y + Ay =GN+ Palud.

This solution may have been obtained by using the first value of p in (iii) and the second value of q in (iv).
See also Problems 17-18.

SOLVED PROBLEMS

2
2% or 3..:. « x%"7,

3x

Solve r = x"¢”

i ;
One integration with respect to = yields p = % = ‘-;- e™” + $4(»), and the second integration with

L]
respect 1o x yields 1 = -’l-z- e 4 2Py ¢ Baly).

Solve xy's = 1 - -lxly.
’ 3’3 ol g =l s & ) -l =1
Integrating =——. = x -4 with respect to = = =g - dxlny+ !
2 353y y xy pe Y3 y Y+ )

Integrating this with respectto =, 1 = - ; Inz=2:"1ny + ds(x) + Ba(y)s

D2 6 2l (@ ) ;9 ¢ WS+ zxf) -

4 .
where b $1(x) = Y(x). .2In6iznos visvidis o
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3. Solve axys - px = y’.

3
y2£-p
. 33' 1 . 2 2
Integrating ——— = - withrespectto y, weget €« L, yy or &2 o L 4 yda).
y! x ¥y x a‘ x

Integrating with respect to x, we get z = y’ln x + yPy(x) + Pa(y), where im(x) = J(x).

4. Solve t =xq = =siny - x cosy.

Integrating %3 - xg = =(sin y + x cos y), using the integrating factor ¢,  we obtain

f”q = -J-c-n(ainy + x coB y)dy = e'ﬂcouy + Yxy or gq = % " coBy + l”t#(x).

A second integration, with respect to y, vields z = siny + ™ ¢,(z) + @a(x),
where @y(x) = Ji(x)/x.

£, Solve sy - 2xr = 2p = Bxy.

The auxiliary system for the equation h% - ygﬂ = =6zy = 2p is dr dy | dp
y

2 oy cey-%p
From the first and second ratios. we find xy® « a. By inspection,

2y’ (26) = (2yp s+ 2xy’)(=y) + ¥ (- Bxy-2p) = 0

so that 2y’dx - (2yp + 2ey " )dy + y’dp = 0,
2
or I (dp + 2xdy + a’f” = 2y(p+ 2zy)dy _ 0, and P._*’z’-f = b,
y ¥

Thus, we obtain as solution p + 2xy = y’ c.bcxy’}. Then

% = -2y + y Ylay?) and 2 = —x'y ¢ By(xy") + Ga(y).  where 3—295,}:;") = y? piaydy.

6. Solve zs + yt + g = 102"y,
o)

The auxiliary system for the equation x? ¥ s > 10¢’y - g is
x Y

w| B
&
£

10s°y-q
From the first two ratios. s/y = a. By inspection,
(g-8y)x - 2" (y) + x(10x’y-q) = 0
so that (q—&’y)d:-k'dy.:dg:ﬂ. or xdg+ qdr = &’Jdt + h'dy.
and gx = 2:'3 + b,
The general solutionis gx = 2:'3 + Yty/x). Thus,

X 1 5.2 y ) 3 1
g . 2’y t;\b(E) and 1 = x'y" + &G+ Dy(x)s where s;g,‘c;!) . ;¢(£).
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7. Solve ¢t - q - été 1)z = :r' - x’r' + 2!"::' - 2¢%,

The equation may be written as ID; -~ = é(é =)z = xy' - sty a’y - 2,
The complementary function is z = ¢ by(x) + A Fa(x).

For a particular integral we try 2 = Ay®+ By + C, where A.B,C- are functions of x or constants. Then

[D -D - -(-—l)]: = 24-24y- B-(—- - -!J(Ay +By+C) = xy -zt eady 2 identically. Equat-

ing coefficients of the sevcral powers of y. we have
I I i o S 3
- t;; xM 5(l -x), -24- (—, =B =2% 24-8B (;—, ==lC'= ~2a%,

Then A = —x°, B«C =0 and the required solution is z = e”'¢t(:) - c"”xﬁu) - 2!

8 Solve ys ¢ p=yg -1z = (1 = =x)(1 + 1n y).

This equation is solved readily by noting that it may be put in the form

EN 1 2z Az z 3 1 o l-x
— 55 LB s =S s - &l 0 2oy,
B Ty I By S 'y y y

Setting w = :‘-i; + ;;. the equation becomes :-.E -w = —-._u + In y) for which ™ is an integrating

factor. Then

% = 1+Iny I‘(":

hge-x>dg s m(;;‘x
b4 Y

Y +¢y) and w = x “'rm + e Yy

In turn, integrating g; s v giting

+ e'y(y), using the integrating factor y, we find
y x x
y2 2 x[Tcinndy o & Lyiyrdy + sylay + eFdyy) ¢ Byte.

LAPLACE'S TRANSFORMATION,

9. Solve t —4 + p = g(l + 1/x) + 2/x = 0.

Setting tnfy . fx{,’y = 0 and solving. we have € = x and £ = x+y.

For the choice u=x and v=x+y, P™2,42,, 9= 3=1,+z,,8nd t=z  Substituting

. — . 3 3 9% 1%

in the given equation. we have By =8, ¢ =l2,-0) = s;(g -z) + ;i -2) = 0,

Let gi—x'w, !hcna—w'!=oand uw vugé_x} = Yv).
v 4 v

v
Integrating % -z = 54-(::;. we have ez « ,-lléntvl +pu) or 2 = 'T by lv) + =u¢(ul-
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. i x+y
In the original variables, = f‘—¢'1(1*?) + Py = éf(:;;) + r’lg(:). where

fix+y) = P @utxey) and g(x) = & dix),

10. Solve sys - x°r - px - gy + 2z = - ".‘x'y.
From xy£ €, - xt(fx)! 206, -3§) " 0. weoblain § =y and § .y,

Using uwaxy, vey, p=yz,, qexi,+2, r= y’x.,,,. 8 =z, +xyz,, +yi, . the given differ-

ential equation becomes

1 1 1 2u 9. i 13z 1 w
z‘m - ;3‘. - ;;v * ;J’ - :.i. or 5;(5 - ::) - :(a_v - :3) - :'-o
Let E-11'.-I" then E!-:--E.and :--E-&U‘J(U) or v l—£+u|p(u),
2V ' Qu U u? u ot ot
a1 2’ ut
Integrating we S s e o 4 uygw), wehave 2 ow M4 ui(v) + de) or
Jp v ot v ot
u! u!
P sw Yelv) + vdglu) = = A(v) + v g (u),
In the original variables, o oxy A(y) ¢ y alxy) + z'y = xhy(y) + yPa(xy) + ;’,.

11. Solve x*r - 2xys + y't - xp + 3yq = By/x.

Here x'(fs)' - hyf,f, + y'(fj-f . (xf, - yf,)' = 0, and since the factors are not distinct we
obtain only § = xy,
We set u =xy and take v =y; then PeYyi,s 9exs, v, r -y'zw. LRI W 3 SR A

2 . A . N
t *xz +2z2 +: and the given differential equation becomes
H 2 2
Yz, ¢+ 3yz, = 8y/x or v, +3vz, = Bv/u,
an equation of the Cauchy type. However, it is seen that v is an integrating factor; hence

H L]
v,:w +8u, = av’/u and u’xu = 2v fu + P(u),

d(u) and 3 = UT - -1-;¢(u) + Dy ()
v

Then : -2—"-4-
v u

ul""‘

. -l-'#tu) + Pyu)
I.l'!

= Py (xy) + i\b(x:r) + L
y z

or 1 = @y(xy) + 2 Palxy) + f where W(xy) = x'y' Palxy),



288

PARTIAL OF ORDER TWO, VARIABLE COEFFICIENTS

MONGE'S METHOD.

12.

13.

14.

15.

Solve qs = pt = q,.
The Monge equations are gdxdy + p{dx)’ = 0 and pdxdg + q"'dxdy = 0.
From the first equalion, gdy + pdx = 0; then dz = pdcx+ qdy =0 and 1z = a.

Substituting gdy = -pds inthesecond equation yields dq-q’d: =0; thus 1/g+x=b and
/g +x = f(z) or [z-f(z)]g = -1 isan intermediate integral.

The required solution is obtained by solving this first order equation; thus
32 - [fG)ds =~y ¢ da(x) Oy 4z = du(3) + @otx), Where @) = f(2).
b
Solve q'r - 2pqs + p't = pg’. _
The Monge equations are (g dy + pcb)' = 0 and q' dydp + p! dxdg - ﬁq’ dedy = 0,
From the first equation, qdy + pde = 0; then dz = pdx + qdy =0 and 2 = a,
Substituting qdy » - pds in the second yields -qdp+pdg+pads=0 Of -?+?+¢:- o and

e“q/p = b. Thus ¢*g - p f(z) = 0 is an intermediate integral. The Lagrange system for this equation is

-dL! with solution e*/f(c) + y = d.

(c) -

From the second equation. z = ¢. Then the first becomes

As required solution, we find

y = =e5/f(2) 4 Pg(z) = €F $y(2) + Pg(x), where (1) = = 1/f(2).

Solve x(r+2n+x't} =p+ 2%,
The Monge equations are (dy)' - 2rdrdy + :'(ds}’ . (dy = xa‘x}' = 0
and xdydp + x dsdg - (p+2x')dx dy = O,
We seek a solution of the system dy - xdx = 0, =xdydp + xd dedg - (pi-ﬂ.x’)dx dy = 0.
From the first equation, 2® -2y = a, Substituting dy = x dx in the second, we get
zdp + :'dq - (p+2=’}d.: = 0.

. Using the integrating factor 1/z?, we obtain the intermediate integral p +xq = x sxflx" - 2).

The Lagrange system is . —-—““—’— « The first two members yield x" -2y =cand then
1 ¥ x! +xf(x" = 2y)
the first and third become . SE . 2 « Solving.
x, +xflc)

pos g2t B v Ble)  or oz om gxt 4 45 ST =2y) ¢ st - 2.

Solve q(l+q)r = (1+29)(1+p)s + (l+p}’| = 0.

The Monge equations are
91+ @)@’ + (1+29)(1+p)drdy + (14 ) ()} = [gdy + (L4 p)dx) ((1+q)dy + (1+p)ds] = 0
and q(l+q)dydp + (l+pl'dtdq = 0,
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Consider first the system
gdy + (lep)ds = 0
q(leqdydp + (1+p)dedg = 0.
Fromihe first equation, pdx + gdy = ~dx; thends = ~dy and  x+:=a. The substitution of
Gdy = - (1+p)dx in the second yvields
~(l+g)dp + (1 + pddg = 0

from which we obtain 122 « b, Thus. 1—*3 = f(x+2z) isanintermediate integral,
+9

1+g
"Consider next the system
(1+g)dy + (1+p)dx = 0
q(l+qldydp + <1+p1’d:dq = 0.
From the first, pdx+gdy = ~(de+dy) so thut dz = =(dsedy)and = +y+2=a, The substitution of
(1+g)dy = —(1+p)dr in the second gives —gdp « (1+p)dg = 0 which is satistied by % = b, Thus,
l—;—P & glx+y+2) san miermediate integril.

Solving the two intermediate integrals for p = !'8_*}—_3, B .f_ and substitnting in the relation
B P <7 q 7 [
- 8 -
pdx + qdy =dz, we have

(fg+f-glds + fdy = (g-fdz, fadx = ~f(dx+ dy+dz) + g(dx+dz),

dx + dy + dz dx + dz
LA +

' und x v (xey+1) +hu(xez),
Elx+y+1) fix+1)

dx

16. Solve (x-1) [sq’r- glx+2+2x)8+ (2+px+pz+ pzx)t] = (1+ p)qidx +1).
Monge*s equations ure
xq (dy)! + q(x+z+2px)dedy + (14p)(2+ px)(de)’ = [qdy+ (14 p)ds)[xgdy + (24 px)de] = 0O
and (x=2)[xq"dydp + (1+p)(2+px)drdg)~ (1+p)g"(x+2)dsdy = 0.

Consider first the system
qdy + (l+p)dx = 0

2
(x-1)xg'dydp + (14p)(2+px)(x=2)de dg - (14 p)g*(x+2)de dy = O.

From the firstequation. pdsx + gdy = —dx; thendz « ~dsand x + z = a. Substituting gdy = —(1+ pdx,
a~x in the second, we have

i) ~(&=a)xqdp + (2x~a)(a=x+px)dg + (1+p)gads = 0.
To solve this equation, consider x as a constant so that dx = 0, Then 1) becomes
=(2Zx=a)xgdp + (2x-a)(a-x+px)dg = 0 _or x(qdp-pdq) - (a-x)dg =0

and w = Y(x). To determine we lake the differential of this relation,
q(xdptpdr-ds) - (xpea-2)dg = o'
and obtain ‘?#"Pd?'vaﬂ—mdtfqdnoadq-xdq.

From i), :qdp_‘qu = [h-ﬂ)(n-—xz)x#+(ltp)qadl « Gnaxdidy ¥ (l;e)ind:;
-a -a



290 PARTIAIL OF ORDER TWO, VARIABLE COEFFICIENTS

then q’@-pqu + qds + adg —xdg = (a-x)dg + i—“'::);"d‘p
-
dy AT e s W . Ty
g(2x ~a) 2x-a 2x-a ;

ThI.IS. lP#n—l 5 p+r
g(2x -a) q({x-1)

= f(x +2)is an intermediate integral.

Consider next the system
L zqdy + (z+px)ds = 0
(x= l)xq’dy dp ¢+ (1+p)(z+px)(x=2)dxdg = (1+ p)q!(x +2)dedy = 0.

From the first equation, pdx 4 qdy = —zdx/x; then dz = - tds/x and xz=a. Substituting zgdy =

- (2 + px)dz, 2 = a/x inthe seccond, we have
i -xqix’-a)dp + x(1+p)(x-a)dg + (14p)q(x’+a)dx = 0.
Considering x asaconstant, this becomes gdp - (1+p)dg = 0 and we have 1% = ¥x).  From this

L |
relation we find qdp - (1+ pydg = g’dy, while fromii) qdp=(lsp)dg » L221X D) g4

x({x =—-a)

2 2
Then dy = (AP *S) & x 28w (-;ﬁ o d')\,b, Iny = ~lnx+ln(x -a)+ Inb,

q’x(;’_n) x(zx" -a) s*.a
1
and ¢ = L B B Thig, 228 . g(xz) is an intermediate integral.
* 9 q(x-z) ’

Solving the two intermediate integrals, we find p = £=28 und ¢ = —1 2 then
xg - x8 -

d: = pdx + gqdy = f“‘dx + i dy or f(x+1)(dc+dz) + dy = 2g(xz)dx + xg(x2)dr.
- xg-f xg-f

Thus. y + @y(x +3) = PHy(xz) 18 the required solution.

17. Solve Br+sst+(rt-s’) = -9,

Here,., R=3, S=T=U=1, V=-9; then
P2 eSUN+TR+UV = W aA=6s0 and Ay =2 Aps=-3.

We seck solutions of the system (see equations 19)
AgUdy + Tdx + Udp = 2dy+ds +dp = 0, Rdy x + Udg = 3dy~3ds + dg = 0
and AUdy + Tdx + Udp = -3dy +ds + dp = 0, Rdy Ide + Udg = 3dy + 2dx + dg = 0.

From the first system, we have 2y+x+p=a, 3y-3x+qg=b; thus. p+2y+x = f(g+3y=3x) isaninter-
mediate integral. From the second system, we have =3y+x+¢p=¢, 3Iy+2x+q =d; lhus,p~3y+zx
= g(q + 3y + 2x) is an intermediate integral. Since g appears in the argument of both s and g, it will not
be possible to solve for p and q as before, and it will not be possible to find a solution involving two ar =
bitrary functions. We give two solutions involving arbitrary constants.

Replacing the arbitrary function ¢ of the first intermediate integral by a(q+3y-3x)+3, we obtain

P+2y+x =a(g+Iy-3x) + B Of p-029 = (3a=-2)y - (3a+l)x+ 3
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;dz dz
g Ba-2)y-(3a+)x+S

for which the Langrange system ES&T = - From é;— » g wefind y eax = £

dx dz dz

then s 5
1 Ba-y-@a+Dx+B  _@a'sa+)x+3af -26+ A

and

E: ey - i(&l’+a.+l}:' + (3af-2%+B)x +m = - 4@Ba’+a+x? + Bay+3a’x-2y-2ax+ Bz,
Thus, z = i(h’-h-l)x' + (3a-2)xy + Bx + $(y+ax) isasolutioninvolving one arbitrary'function
and two arbitrary constants.

Replacing the arbitrary function g(q + 3y + 2x) of the second intermediate integral by the linedr function
y(q +3y + 2x) + § , we obtain

P-3y+x =y(g+3y+2x)+ & or P-79 = 3(y+l)y + (2y=-1)x + 3
; . de _dy dz dx _ dy
fi hich the Lagrange systemis — = — = ! s, F — = L,we
or whic e Lagrange sys 1 2 W Dys@-Dass rom ; > we get
y +yx = &; then d & , = 2 e and
L S(y+Dy + (2y-1a + 8 ~@Y +y+1)x + 3YE+ 3 + B

: = - *m’+7+i)x‘ + (3-){1-3{1-8): e

Thus, = = §3y"+ sy-l)x' + 3(Y+)xy + §x + do(y+¥yx) isalso a solution.

Solve xqr + (p+q)s + ypt + (xy =1)(rt-3%) + pg = 0.
Here, R=xq, S=p+q, T=yp, U=xy-1, V= - pg; then

UDNE L SUN+ TR+ UV = sy =108 « (peq)ay=DA s pg =0 and Ay = —F-0 Ags =

—pdy + ypds + (xy -1)dp = 0
Consider first the system . The system is not integrable since
xqdy - gdx + (zy -1)dq =0

neither equation is integrablé. Vi

Consider next the system  -gqdy + ypde + (sy-1)dp = 0, =xgdy - pde + (sy-1)dg = Q.

We multiply the second equation by y. add the first, and divide by sy ~1 10 obtain 9dy +dp + ydq = b

and thus p+yg = a. Again, we multiply the first equation by -, add the second. and divide by =y -1
to obtain pds+xdp+dg = 0and thus xp+q = b.However, the form of the resulting intermediate
integral xp+ q = f(yg+ p) or yq + p = g(sp + q) does not permit a solution involving two arbitrary functions.

To obtain a solution, involving one arbitrary function and two arbitrary constants, we replace f(yq + p)
by the linear function a(yg+ p) +8 in the first form of the intermediate integral above and have
(x-a)p + (1-ay)g = B.

The corresonding Lagrange system is A . 4 B Eon the first two members we obtain
x-a l-ay

aln(x-a) + In(l-ay) = In& or [x-a)'(l-o.y) = £, and from the first and third members we get
: = Bln(z-a) + 7. Thus, the solution is

z = Bln(x-a) + @[tx-a) (1-ayp)].
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Solve,

19.
20.
21.
22,
23.
24.
25.
26.

27.
28.

r=xy

s -x’+yl

t = -x' sin(zy)

xr - p=Q
xr+p-1/x'
yt-q =2y

ys = p » xy" sin(ay)
lfqlti-,

r+as -33'

xyr + %5 - yp = xe”
2yt-n+34-:’y

:r+yl+pn8¢y'+9:’

SUPPLEMENTARY PROBLEMS

LAPLACE'S TRANSFORMATION.

31
32,

33

35,

3.

6r -5 -1 = 18y - &x

Ans.,

Ans,

= xdi(y) + daty) + %x’y
Eordi(x) *dyly) + ;-(s’y'r:y’)
1=y @i(x) + Py(x) + sin(xy)
=" B0 + da)

= da(y) Inx + y(y) + 1/x

*y du(x) + Buim) 4+ 2N  Iny

=y $u(x) + do(y) - sin(xy)

w7 By(x) + Bacx) = xye”?

L]

“Pux=3) + Su(y) ¢ 2y

s dux"=y") ¢ Bun) + gate?

= duixly) + By(x) + ishy!

-

2= by(x/y) + daly) + 3’7’ + 2

2= dy(x=3y) + Pa(x+2y) o r(h'w'l

xay=1)r - =%y - 1)s + YEY=1)t + (x=1)p + (y=1)9 = 0 Ans. 2 = y(xe”) + Batye™

x(y-z)r - (:'-:')c *Y(y=x)t t (yex)(p-g) = 2(x+y+1)

Hint: Let x4 yeu, zy=v,

(Y=1r - (" =1)s + Yy-L)t +p-g-= ‘-‘rr”tl-n’

)T = ("-I'_)t-xyl i PY=-gqx = 2(;'_ "'

r=2s+t+p-gq= .‘(zy-a) - e

Hint: Let s+ yeu, yav,

-2ty —ypog) -2 .,°

MONGE'S METHOD.

8.

(€*=1)(gr-ps) = pge*

Ll P = 4’(’)0

Ans.

Ans.
Ans.

Ans.

Ans.

G.S.:

L =dy(xty) *Pa(xy) tx=y+Inx

t2yzey) + da(re™) + (x4 y)yte™
R CRIar Paly/x) - xy

tadu(xey) + e” Puixey) ¢ xe? 4 yo*

2 Eyduxey) +§¢.(=+n + 5-:-'

x = y(a) + da(y) + eF



40,

41.

42,

43,

46.

47.

PARTIAL OF ORDER TWO, YARIABLE COEFFICIENTS

293
r-3s-10t = -3 1.1;  p+29 = July+55), p-59 = \yoly - 2x)

Gs.: 1 ®Pyly+5x) + Soly-2¢8) + 3y
q’r—2pqup’t =0 LL:  p = gy(2). GS.: xpy(z) + ¥ = Pa(3)e

gr-(1+p+q)s +(14p)t = 0 1: p=-q =Wulxez), p+1=q¥alx+y)
G.S.: z = f(x+2) + g(x+Y)

1 . 1-g, )
(1= r-2(2-p-2q +pQ)8 +(2-p) t = 0 Nidos ETE Wiy + 28 =32)

Gs.: x + YPu(y+2x=23) = Py +2x=12)

Sr-10s+4t=(rt=a3") = =1
{1 a:uu-p !l51+‘7!-q). Ty+dx-p = g(By +3x- q) \
2
3 =2 4 3xy ¢ iy -2ax’-Bx+ Py(y +ax) or 2 . 2 +'Txy+-y v 2yx = Bx 4 Paly + %)

2 -Bes2t s (rt-s) = 4
LL: 2y+2:+p-fﬂy+lx+q). 1y+2:+p-'(2y+2:+q)
Sol. z =ax +ﬂx-(s+;r) +@uly+ax) oOr z =-Yx ! x-x-dxy-y ¢¢,(jf7:}

3r-ﬁ+u-{rt-l’) =3 s
2
LL.:  Sy+dz-p = f(3y+3x-q). Sol.: 2 =2 +3xy+ 3y + fx + Py +ax).

2
yr-ps+t+y(re=2 y==1 i
1
L ypex = flgeyh Sol. 6a'z= 2y’ -3a’y  +Bazy + 68y + dlax+ iy ).

xqr-(s+y);+,pt+sytrt-l') = l-pq .
11.:  zpey = f(yg+x) Sol.: z=ax+y/a+flox+ Py,



