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CHAPTER 23

Applications of Total and Simultaneous Equations

WHEN A MASS a moves in a plane subject to a forcef, its acceleration continues to satisfy Newton's Second
Law of Motion: mass x acceleration = force.

To obtain the equations of motion, when rectangular coordinates are used, consider the components
of the vectors force and acceleration along the axes. The components of acceleration a and a are given by

dtx	 d'y
a -,8 = -X	

dt	 dt'
and, denoting the components of the force by F, and F, 1 the equations of motion are

a?	 = ':IC'	 = p,.
7t i

7

COMPONENTS OF F IN RECTANGULAR AND POLAR/COORDINATES.

in polar coordinates, the corresponding equations are

= Jl,	 d'e
dt dt	

=

where F,, and F,9 are the radial and transverse components of force, i.e., the components along the radius
vector at P and a line perpendicular to it.

SOLVED PROBLEMS

1. Find the family of curves orthogonal to the surfaces x +	 + 4! -

Since x + 2Y2 + 4z 2 - C is the primitive of the total differential equation

xdx + 2y dy + 4zdz = 0.
the differential equation of the family of orthogonal curves is

-	 .	 (See Chapter 22, Problem 31.)
X	 2y	 4,
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Solving	 . we have y = Ax 2. Solving LY .	 , we have z - By2.
x	 2y	 2y 4x

The required family of curves has equations y Ax 2. z By".

2. Show that there is no family of surfaces orthogonal to the system of curves

x 2 - y2 47, X+7 •

Differentiating the given equations and eliminating the constants, we have

2	 5
2xdx-2ydy = Z;Y7	 dx+dy = -ldx.

The first can be written as	
dx	 -	 Solving it fordx. d	 dy, and substituting in the

x2+y2	 2zy

second, we have	
2 
+ 1)dy .	 dx	 or	 .-

2xy	 2	 2xy	 (x+y)

Thus, the differential equations in symmetric form of the given family of curves are

dx	 cf	 dx

	

x2+72	 2X7	 (x+y)z

Since the equation 
(2 

+ y2 )d.x + 2xy dy + (x + y)z dx	 o does not satisfy the condition of integrability,
there is no family of surfaces cutting the curves orthogonally.

3. The x- component of the acceleration of a particle of unit mass, moving in a plane, is equal to its ordinate
and the y- component is equal to twice its abscissa. Find the equation of its path, given the initial conditions
xyO, dx/dt=2, dy/dt=4 when t-o.

d2	d2
The equations of motion are 	 y.	 2x.

dt 2	dt2	 2

Differentiating the first twice and substituting from the second, 	 =	 = 2x	 and
dt4	dt2

x • Cje° 4 a_ at + C, cos at + C4 sin at, where o - 2.

d 2x2	 at	 -atThen,	 y • -	 a (C1e + C5 e	 - C, coat - C. sin at),
dt2

dx at 	 -at

	

- - a(C1e - C,e	 - C, ath at + C4 cos at),
dt

and	
dy- 

a
t	 -t

-	 (Cl(C1e - C5 5 	 + C, sin at - C4 C08 at).
dt 

Using the initial conditions: C1 + C,+C. 0, C 1 + C2 -C, 0, c- C,+C4	. c- C,-C4

2
a +2

Then C1 - - C2- -. C, 0, and C4

2a3 	 05

The parametric equations of the path are:

	

'	 t	 i-
x -	 (2+.V) ?'(e	 - e	 ) - (2-V) /' sin Vat,

Y =	 (2+V)	 (e	 -	 (2-V)	 thae	 )+

24
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4. A particle of mass a is repelled from the origin 0 by a force varying inversely as the cube of the distance
pfrom 0. If it starts at P— a. 9-0 with velocityvo.perpendicular to the initial line, find the equation of
the path.

The radial and transverse components of the repelling force are: 	 K
- - -. 0.

40	 P

	

d 2p 	 p 2 )	 ab'Hence, is(_ - -	 - - .
dtdtf p5

or	 I)	 -	
-

dt'

dt dt	 dtt

2) pdta + 2 Lp La
dt'	 dt dt

* dOIntegrating 2), p	 = C1 . When t -0. p a and	 = v0 ; then C1 - avo and	 . 2.
dt	 dt

Substituting for	 in I),	 •	 +	 . Multiplying by 2,
dt	 dt'	 p	 p

2—' - 2a2v+k'	
and	 -

	

de de'	 dt	 (i;)	 + Cl.

22	 1
When t=o, p-a andy -0; then C	

ar +k- _______ and
a2

(42), -	
ak2)( 1	 1	 + 112p__2

(4v0 + 	-

	

dt	 as -	 - (a vo	 —
a*p

2tdO - a2-02' 	 _____(LP 	 (a vo+k')p'_dpDividing by (PS _a') 
and	 _____ - i

__ 	 av0+k as.dtC—) -

	

It	 dO	 2

	

P	 au3	 /P-F--  au

/1 2 2au,+kIntegrating, 1- arc sec p -
a	 a	 ta V0

' 2 2
When t-o, p-a and 9.0; then C1 .o and p - a sec Ia

1
v0+ k9.av0

5. A projectile of mass a is fired into the air with initial velocity 'k at an angle 8 with the ground. Neglecting
all forces except gravity and the resistance of the air, assumed proportional to the velocity, find the position
of the projectile at time t.

In its horizontal motion, the projectile is affected only by
the x-component of the resistance. Hence,

d2x	 -K. -&k	 orI)

	

	 _k dga—
dt2	 de	 dt	 d,2 -	 dt

In its vertical motion, the projectile is affected by gravity
and by they. component of the resistance. Hence,

2) a	 - atg - M	 or
de1 de	 dtt	 dt
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Integrating I).	 -	 C1	 and	 x	 C1 + C, S
di

Integrating 2).	 - gt - ky + K 5 	 and	 y	 K1 + 1(,edi

•Using the initial conditions z y O.	 - "0 cos	 v0 sin 9 when t • 0;dt

CL	 O	 9. C1 - v0 cos 8; K, vo sin e. g, • - v0 51n8 -

Thus,	 x •	 cos O)(1 - e	 ),	 y	 -- e	 ) - St).+ t' am 8

181

6. Two masses, •L and .,,are separated by a spring for which k • k, Na 1 and • is
attached to a support by a spring for which k 1, as in the figure. After the
system is brought to rest, the masses are displaced a metres downward and released.
Discuss their motion.

Let positive direction be downward and let x 1 and z 5 denote the displacemert
of the masses at time t from their respective positions at rest. The elongation of the
upper spring is then x, and that of the lower spring is corresponding
restoring forces in the springs are

	

+ k,(x,-X1)	 acting on
and	 ..k,(x,x,)	 acting on s.

The equations of motion are

dx,

	

a __.dx A • - k 1x • k,(x 1 - x 1 )	 and	
a -- = - 

k,(x2 -x1)

dt 2 	dt

as-.

A,

silo..

or	 I) [a 5 D2 + (k,+ k,))x 5 - k,a,	 0 and	 2) (a,D'+k,)x, - k,x j = 0.

Operating on I) with (a,D2 + k,) and substituting from 2),

+ k,)(D's A 5 + &,) x, - k,(a,D2 + k,)ir, • (a,D' + A 5 ) (aD2 + k 1 + k,)x5 - k,z, = 0

or	 (Di + (ks+hi- + 1)D' + .L1)51 - 0.
U1	 at	 mint

Denoting the roots of the characteristic equation by ±ia, ±q3, where

2	 2 = 	 k,+k, + 1)	 (k&+ kt + 
L')2 - 4( ±

si	 a,	 / a 

tat	 -tat	 1.$t	 ..&5t• Cie	 + C,.	 + Coe	 + C,.	 and

a1 
2
	 tat	 ..st	 k,+k,-afi	 itXt • 1(.,D'+ A, + k,)x --	 (C1.	 + C..	 )	 +

A,	 A,	 A,

• 4.	 -s.ttot
ft	 + C,.	 ) + i'(C,e	 + C,.	 ).

	Using the initial conditions x 1 -x1 -a, d11-	 !=o when t=O,
dt	 di

a i' - i	 a k5-a,fl2	 and	 C5 - C, = -C1 • C, = ------
2	 _
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7. A uniform shaft carries three disks as in the adjoining
figure. The polar moment of inertia of the disk at either end
is I, and that of the disk at the middle is 41. The torsional
stiffness constant of the shaft between two disks (the
torque required to produce an angular displacement
difference of one radian between successive disks) is k,
Find the motion of the disks if a torque 27o81nt is
applied to the middle disk, assuming that at t 0 the
disks are at rest and there is no twist in the shaft.

k33
At time t, let the angular displacement of the disk at either end be 01 and that of the disk at the middle

be 92 . The differences of the angular twists of the ends of the two pieces of shaft, from left to right, are
9,-0 and 8- 8,.The restoring torques acting on the disks are k(0, - k(01 - 8,)- k(8, - and
4(8& - O) respectively. The net torque acting on a mass when rotating is equal to the product of the
polar moment of inertia of the mass about the axis of rotation and its angular acceleration; hence the
equation of motion of the middle disk is

- k(81 -8,) - k(8,-81 ) + 27sincüt or (21D'+k)8, - k81 + T41	 0sinwtI) 
dt'

and that of either end disk is

2) I	 - k(9,_01 )	 or	 (ID '+k)81 - kG,.
dtf

Operating on 2) with (21D'+ k) and substituting from I),

(21D'4k) (ID '+ 081 - k(21D'+k)8, - k'01 + To  sin wt,	 or

3) D'(9I'D' + 3k1)01	7'0k aint.

The characteristic roots are 0. 0, at, — at, where ? - 3k/21. and

4) 81 - C1 + C,t + C,co,at + C4 sin at + 	 TQ k 5iDt

- 3k)

• C1 + Cat + Cocoa at + Csin at +	 TO 
Sib

r'2 c (w - a

From 2), 8, •	 D1 + 1)8k and

5) 8, • C1 + Cot + C,(1- a)coe at + C4(1 - a')sinat + - T0k-TJJ sine
22 2	 S21 ., (w - a)

From 4) and 5), we obtain by differentiation,

4') - C, - C,a sin at + Ca cos at +	 cosc't,dt	
21'w(c) - a2)

T0k	
and

5') - C, - C,a(i - at )sin at + C4a(i - a')cos at +	 - r0Ji 
coswt,dt 211c.42 - a2)

Using the initial conditions 8L - 89 -0,	 -	 - o when t. a, we have C1 Co 0,

	

de	 dt
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I
C + C,(1-	 + C4o. +• o. c,	

7'0k	
• o, and C, • C4a(1- -a

2 
)+ 

T0 k-T0JI
 -0.

212

	

w -a)	
k	 2Ici(w2_a2)

	

2	 2

	Then C - C, • 0. C4 - 
— To W	

. C,
	3Ia( 2	 2	 3Ic.c.. -a)

	

= TO ( t + a2 510wt — CJ sin at	 TO t	 a5 sthwt -C.)3 sin at),	 and
___________ 	 —(-	

2
+ 2231	

w2(c.)t-a2) a(ø2 — a2 )	 ai (w -a )

02	 01 — 
T0 (a sin c.f -	 sin at)

21a(J _ a2 )

8. The fundamental equations of a transformer are

I) N'J..L L, 
d,

Ni t
 

a- +	 t,	 0,	 2)	 N	 4 L 1 	 + R 1 i .
dt

where i(t)and ,(t)denote the currents, while M. L 1 , L,. R 1 . 8, are constants.

Assuming W 2 < L 1L,. show that

A) (L IL, _ N 2)-! + (RL,+R,.L1)- + R 1R,i	 • R,E(t) • L1E'(0.

dt2	
dt

B) (L1L,_ N2) -1 + (RL,+R,L t ) i +	 - — ME'(t).
dt	

de

Solve the system when E(t) • £, a constant.

Differentiating 1) and 2) with respect to t.

d2"
	

Al	
- 4)W-+L—+ R

dt 2 	dt	 dt'

Multiplying 3) by N and 4) by L,, and subtracting,

	

(L 1L,-N')- + R 1 L,	 — MR,	 •

dt2

Subtituting for d 2 from 2), we obtain A).
dt

Multiplying 3) by L 1 and 4) by U. and subtracting,

	

(L LL,_N 2)4! + R,L	 - R1N	 = 
_ME, (t).

	

dt	
dt	 dt

Subtituting for	 from I), we obtain B).
dt

	When E(t) • Lo. equation A) is	 (LtL,_W2)j + (RtL,+RsLt)? + RR,t
dt2

Let	 a, /3 =	
-(RL, ^R,L 1 ) ±	 -R,.L) + 4M2RR, denote the characteristic roots.

LL, - N'
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Then
	

it • CILeat + C,e +

To find i 1 , multiply I) by U and 2) by L,. and subtract to obtain

• (LL2–M2)dij + L,R0 – L1E0.dt

Then	 i1	 .-((L1L1	 + L,R(C,.e+ C1eSt)).

Note that since N 2 < L 1L,, both a and 8 are negative. Then after a time, the primary current becomes
approximately constant = E0/R, and the secondary current i t becomes negligible.

9. A moving particle of mass n is attracted to a fixed point 0 by a central force which varies inversely as
the square of the distance of the particle from 0. Show that the equation of its path is a conic having the
fixed point as focus.

Using polar coordinates with 0 as pole, the equations of motion are

1)	 [•••
d82 	-	 d2p	 de?	 A2
dt	 or ——	

p2	 p2	 dst -
	

-

2)	 +	 d'O
odtdt or d28

dtdt +	 • 0.

	

d ,d9	 ,d8From 2),	 (p	 ) • 0	 and p -. • C.

	Let (7. Then to •	 • cto- 
2	 dp - ddo'	 1,d8

	

,	
t	 do- dt	 02 d8 dt • - 1	 anddO

(–	 — 
dG	 22— • —C10- 

d20
—. Substituting in 1) and simplifying, we have

	

a –	
dto

de'	 de	 d82 dt	 d 

d 2o-	 A2I )	 —+ o- • —. a linear equation with constant coefficients. Solving.
dO2	 C2I

A2
o- • C,coa(9+CO ) + —

2Cl
I	 C!/k,or	 p a 

A' + C1 002(0+ C,)	 1 + clJlcoa(e+C.)
'1

Writing C'/k2 a 1. JC,C121h'j	 • C. a a, this becomes p •
	

1
±
	. the equation of

a conic having 0 as focus.
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SUPPLEMENTARY PROBLEMS

10. Find the family of curves orthogonal to the family of surfaces z2 + y2 + 2s . C.

Ans.	 y • Ax. s • By 

11. Find the family of surfaces orthogonal to the family of curves y C1x xt + y2 + 212 
U

Ans.	 1 • C(x 2 + y1)

12. A particle of mass a is attracted to the origin 0 by a force varying directly as its distance from 0. If it
starts at(a.0) with velocity v0 in a direction making an angle 8 with the horizontal, find the position at
time t.

	

v0 COB 	 v0 sin8Ans.	 x • a cos kt +	 sin he, y •	
k	

sin he
k 

13. The currents i. i. I	 + i t in a certain network satisfy the equations

	

201 + o.1.!	 5,	 4 +	 + 1000q - 1.
dt

Determne the currents subject to the initial conditions I - i	 it - 0 when t • 0.

Hint: Use i	 to obtain	 + 240	 + 40,000q 1 	 0.
dt	 dt2	 dt

Ans.	 Ij	 - 
1 -120t sin 160t. 3.2 	1 '12Ot sin 160t1-e	 c06160t)+

14. Initially tank I contains 400 1 of brine with 100 kg of salt, and tank II contains 200 I of fresh water.
Brine from tank I runs into tank ii at 12 1/mm, and from tank II into tank I at 8 1/mm, If each tank is
kept well stirred, how much will tank I contain after 50 minutes?

Hint: 9 1 + q, • ioo.	 • ._!.!_. - 321	 Ans. 34 . 315 kg.
dt	 50+t	 100-t



CHAPTER 24

Numerical Approximations to Solutions

IN MANY APPLICATIONS it is required to find the value F of y corresponding to .x - z +h from the
particular solution of a given differential equation

1) Y, = f(x,y)

satisfying the initial conditions y = yo when x = x0 . Such problems have been solved by first finding
the primitive

2) y= F(x)+C

of 1), then selecting the particular solution

3) y=(x)

through (x0 , y0 ) and finally computing the required value p = g (x 0 + h)

When no method is available for finding the primitive, it is necessary to use some procedure for approxi-
mating the desired value. Integrating I) between the.limits x = xo • y y0 and x = x, y = y we obtain

4) y = y0 + J f(x,y)dx.
XO

The value of ywhen x =x+h is then

5) P = Yo + J	 f(x,y)dx.
xo

The methods of this chapter will consist of procedures for approximating 4) or 5).

PICARD'S METHOD. For values of x near x =x0 the corresponding value of y = g(x) is near y,, =
g(x0 ). Thus, a first approximation yof y = g(x) is obtained by replacing  by y0 in the right member
of 4), that is,

= y0 + Jf(x. YO) clX.

A second approximation, y2 is then obtained by replacing y by yt in the right member of 4), that is,

Y, = Yo + J f(x,y)dx.
x0

Continuing this procedure, a succession of functions of x

Yo, Y 1 . Ye. Y., ......1

is obtained, each giving a better approximation of the required solution than the preceeding one.

See Problems 1-2.

Picard's method is of considerable theoretical value. In general, it is unsatisfactory as a practical means
of approximation because of difficulties which arise in performing the necessary integrations.

186
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TAYLOR SERIES. The Taylor expansion of y = g(x) near (x0 , y0 ) is

6)	 y	 9(x0 ) + ( x-x0 ) 9 1 (x0 ) + 1(xx0)2 g"(x0 ) + !(X-x0)('(x0) +

From I),	 y' = g' (x) = f(x, y); hence, by repeated differentiation,

-af= g"(x) = - + Lf A =	 + fi,
,ax Bydx	 Bx	 By

d Bf 
+	 = (1 + f --)(	 +

cbc
7)	 Y'	 ('(x) =	

By	 Bx	 By Bx	 By

= B 2 ! -8fB + 
2f—

	

f	 'I'f2f

	

+ - -	 -- + f(2f)2 + f2	
• etc.

Bx2	 Bx By	 . BxBy	 By	 By2

Bf	 B!	 B2!	 B2!	 andFor convenience, write p -. q = -, F = -, S = -, =

Bx	 By	 Bx2	 BxBy	 By 

Let 4 , p.,,, q0 , ... denote the values of F. p, q, ... at (x0 , y0 ) . Substituting in 6) the results of 7)

and evaluating for x = x0 +h, we obtain

8)	 = y0 + h . f0 + h 2 (p,, + f0.q0) + 
h(0+ p0 •q0 + 2f, - so + f0 .q +

+	 .........

This series may be used to compute; it is evident, however, that additional terms will be increasingly
complex. See Problems 3-4.

FIRST DERIVA I IVE METHOD. A procedure involving only first derivatives, that is, using only the first

two terns of Taylor series, follows.

y

_-

R	
S

0 xo

As a first approximation of , take the first two terms of 8)

5 Yo + hf(x0,y0).

To interpret this approximation geometrically, let PQ be the integral curve of 1) through P(x0 , Yo) and

and let Q be the point on the curve corresponding to x = x0 +h. Then3 = NQ y0+k. If 0 is the angle of

inclination of the tangent at P, then from 1) tan 0 = f(x0 , y ) and the approximation

_5	 y + hf(x0 , y0 ) = U' + h tan 9 = MPI+NA = MA.



To obtain abetter approximation, let the interval LM of width hbe divided into n subintervals of widths

	

h 1 .h ...... h, (In the figure, n 3.) Let the line xx0 +h 1 meet PA inR(xo+htyo+k)	 (xipyt).
Then

Yj = yo+ k = y0 + hf(x0,y0).

Let R S be the integral curve of I) through R, and on its tangent at R take T having coordinates (x1
+h,,y 1 +k,) = (x 1 .y,). Then

Yt = yj + k, = y j + h2f(xj,y) = y 1 + haF(x0 +h 1 , y0+h1f0).

After a sufficient number of repetitions, we reach finally an approximatior! NC of M Q. It is clear from
the figure that the accuracy will increase as the number of subintervals is increased in such a manner that
the widths of the subintervals decrease. 	 See Problems 5-6.

RUNGE'S METHOD. From 5) and 8) we obtain

9) k = y, = f	 f(x,y)dx
'0

= hfo + h2(p + f0 q0 ) +	 +jq0 + 2f0 s0 +	 + f:0) + ........

Assume for the moment that the values YG,YI.Y, of y = g(x) corresponding to x0 , x= r0

+ h, x, = xo + h are known. Then by Simpson's Rule,

10) k 
= f(x,y)dx	 y0) + 4f(x0 + j h, y 1 ) + f(x0 +h, y,)),

Actually, only y0 is known. Runge's Method is based on certain approximations Yt and y,,
y t 	 Yo + hf(x0,y0) = y0 +

y,	 yo + hf(x0 +h, y0+h10),

chosen so that whenk, found by 10, is expanded as a power series in h the first three terms coincide with
those of the right member of 9). Thus 10) becomes

Ii)	 k	 {f0 + 4f(,+ Jh. y0 + hf0 ) + f[x0+h, y0 +hf(x0 +h, y0+hf0)]}.

These calculations are best made as follows:

k 1 = hf0 , k, = Jif(x0 +h,y0 +k 1), k, = hf(x0 +h,y0 +k,), k 4 = hf(0+h,y0+k1)•

k

Note. Since the approximation of k obtained here differs from the value as given by 8) in the terms
containing powers of h greater than 3, the approximation may be poor if f0 > 1.

See Problems 7—I1.

KUTTA-SIMPSON METHOD. Various modifications of the Runge Method have been made by Kutta.
One of these, known as Kutta's Simpson's Rule uses the following calculations:

k 1 =h/'0 , k, = hf(x0 +&h,y0 +k 1 )	 k, =hf(x0+h,y0+k,), k 4 = hf(x0+h,y0+k,),

k(k 1 + 2k, + 2k, + k,),	 See Problem 12.
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SIMULTANEOUS FIRST ORDER DIFFERENTIAL EQUATIONS. Approximations to that solution of
the simultaneous differential equations

	

dy 
= f(x,y.z),	 g(x,y,z)

CbC

for which y = yo and z = z0 when x = x0 • may be obtained by the use of Picard's Method,Ta y lor Series.
Runge's Method, or Kutta-Simpson Method. The necessary modifications of the formulas given above
are made in Solved Problems 13-14. Further extensions to three or more simultaneous first order equations
may be readily made.

DIFFERENTIAL EQUATIONS OF ORDER n. The differential equation

Ft
=

f(x,y,y', y", ......,y	 )
thc'

where y 1 = 	 d2y 
p	 may be reduced to the system of simultaneous first order equations- ...p

cbct

-	 i,.,	 = yn	 ,	 = f(x,y,y ,y2 , .... . , YFtt ).
ct

When initial conditions x =x0 , y=y0 , y' = (y)0 	 y"(y 1)0 ,. . . ., yfl_t(y,_ )o are given,
the methods of the preceding paragraph apply.

EXAMPLE. The second order differential equation ZZ + 2x	 - 4y • o is equivalent to the system
dx

of simultaneous first order differential equations

- x.	
dx • 4y - 2xz.	 See Problems 15.-16.

SOLVED PROBLEMS

1. Use Picard's Method to approximate y when x • 0.2. given that y • 1 when x • 0, and dy/d.x x - y.

Here f(x.y) • x -. y, x0 'O, Yc • 1. Then

X

Yo + f f(x,y0 )dx = 1 + f.0 (x - 1)dz	 - z +

	

X	 1	 1
Ye	 Yo + f f(xy5)d.x	 + j (- -x

2 
+ 2x - 1)dx	 - - x

5 
+ x2 - x + 1.

0	 2	 8

	

X	

fox IT	
2x-1)dx	 1	 1	 2Ya • Yo + f f(x.y2 )d.x 	 1 

+	 24	 3
—z - -z + x	 x + 1.

	

= Yo 
+ fx	

i 
+ 

fX (- —
1
x + -1x5-x 2 2x-1)dx - -L-

S	
X 23
	

2
4 ----+1 -2+1.

0	 24	 3	 120	 12 3

1	 b	 1	 1	 15	 2Ye	 —x --x +—x - -z +x -x+1•
12	 3

When x 0.2, Yo - 1, y= 0.82, Ye 0.83867. y -0.8374C.  y	 0.83746, y = 0.83748.
Thus, to five decimal places,	 0.83746.
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Note. The primitive of the given differential equation is y • x -I+	 The particular solution

satisfying the initial conditions x - O,y 21 is y • x - I + 
-x• Replacing i	 by its MacLaurin series,

we have	 y - 1 - + z - ! x + .! X 11 - _!. s + _L x + ...........	 Upon comparing this
3	 12

with the successive approximations obtained above, it seems reasonable to suppose that the sequence of
approximations given by Picard's Method tends to the exact solution as a limit.

2. Use Picard's Method to approximate the value of y when x 0. 1, given that y - 1 when z • 0. and

dy/d.x • ax+y2.

Here f(x.y) • 3x+y 2. xo0, Yo - 1.	 Then

Yt - Yo + ft3x + 2	
1 4 £
	

+ l)dx - !	 + x + 1.

Yo + f 2	 -	
+ X 

9x'+a5+u2+sx+l)	 •	 I 4	 5—x + -x + -.z + -x
2 + x + 1,f0(;	 20	 4	 3	 2

2 81 10 21 9 141	 17 7 1157 6 136 3 125	 23	 Sr + 1)dx• 1 + (-2 + —r + —X + —x + —x + —x + -2 + —X +
400	 40	 80	 4	 180	 15	 12	 3

81 11	 27 10	 47 9	 17 A	 1157 7	 68 6	 25	 3	 52
r'• + 2* + -x + x + 1.- —x + —x + —x + —x + —x + —x + —

4400	 400	 240	 32	 1260	 45	 12	 12	 2

When  . 0.1, y - 1, y • 1.115. Yi -1.1264. y, • 1.12721.

3. If A • x -y, use the Taylor Series Method to approximate y when:
dx

a) x . 0.2, given that y a l when x-0.
b) x - 1.6, given that y n o. 4  when x - 1.

a) Here	 y • g(x).	 g(x0)	 1,	 y" • C(x)
I	 ,	 jy	 ITY, 8 g (z) = 2 -y, 	g (x0) 8 -1.	 y	 g (x)

y = g (x) • 1-y'.	 8 " (z0 ) • 2,	 y ' • g V (x) • -y 
iT

and equation 6) becomes y 8 	 - x + z 	 5 
+ ! x - -! x 3 + ........

	3 	 12	 60

= -2.
IV

g (x0) - 2.

g V (x0 ) • -2, etc.

Then

• 1 - 0.2 0.04 - (0.008) + _1(0.0016) -	 (O.00032) + ...	 0.83746. (See Problem L)
12

b) Here g(x0 ) • 0.4. g'(x0 ) • 0.6. g"(x0 )	 0. 4, g(x0 )	 -0.4. 8iY() • 0.4. etc.,

and equation 6) beco/Ties

h5	 h1
4 	4	 where h x - r4-- — 4 0y = 0.4 + 0.6h + 0.4 .- - 0.4 - +	 0.4

24 	 120	 . 720

When x-1.6. h 0.6 and

- 0.4 + 0.8(0,6) + 0.4(0. 18) - 0.4(0.036) 4 0.4(0.0054) - 0.4(0.000648) + 0.4(0.0000648)
+ ..........

0.81953.
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4. If	 • 3x + y2 , use the Taylor Series Method to approximate y when:
dx

a) x • 0. 1 , given that y • 1 when x %

h) x - 1.1. given that y • 1.2 when x • 1.

a) Here (xo.yo)	 (0,1). 8(20) I I.
• 81 (X) • 3x#y 2 .	 g(X) • 1.

• g"(x) • 3+'y',	 g(xo)	 5.

	

g"(x)	 2(y')2 + 2yy",	 g'(xo) a 12,

	

g t '(x)	 6y'y"+	
gtT() • 54,

Y 	 e(x) • 6(y)2 + 8y'f + 27y",	 9 
11(20) • 354,	 and 6) becomes

Y = 1 + x +	 + 2x 5 + 
9 

X +	 + ............. When x • 0. 1,

• 1	 0.1 + 0.025 + 0.002 + 0.00022 + 0.00003 + ...... 	 1.12125.	 (See Problem 2.)

b) Here(x0 , y0 ) • (1,1.2). g(x0 ) - 1.2, g'(x)	 4.44, g"(x)	 13.656. 8(x0) a 72.2D2.

• 537.078. gT (xo)	 4973, ..........,	 and 6) becomes

	h 2	h5
y - 1.2 + 4.44h + 13.656 - + 12.2 - + 537.078	 + 4973 - +

	

2	 120

where h 2 -20. When x • 1.1. h 0.1 and

= 1.2 + 0.1(4.44) + 0.01(6.828) + 0.001(12.03) + 0.0001(22.4) + 0.00001(41) + '•• 	 1.7270.

5. Use the First Derivative Method, with n - 4. to approximate y when x - 1, 1P given that y • 1.2 when

x I and dy/dx 3x + y, See Problem 4b.

Here h -0.1 and we take h 1 . h 2 . h 3 - h4 - 0.025. We seek y + +	 +	 +	 •	 + it4.

(20,70)	 (1,1.2), h 1	0.025, f(xo,yo)	 4.44, it 1 	 h 1 f(xo,y0 )	 0.111

y L • Yo + kL • 1.311.

( x t, y t) z ( 1.025,1.311), h 2	0.025, f(x 1 , y t ) • 4.7937, it 2 	 hf(x,yj )	 0.1198;

	

-	 72 • yj + 	- 1.4308.

(22.72) 	 (1.05.1.4308). h 3	0.025, f(x 2 , y 2 ) . 5.1972, it,	 h,f(x,,y,)	 0-1299;
it3 - 1.5607.

(x,,y,)	 (1.015,1.5607), h4	0.025, f(x,,y,) • 5.6608, it 4	 h4 f(x,,ys)	 0.1415;

+ it 4 	 1.7022.

6. Use the First Derivative Method, with n 4. to approximate y when z 1.4, given that y - 0.2 when

1 and	 (22 2y).

Here h - 0.4 and we take h 1 -	 h, -	 • 0.1.

a) (X,y)	 (1,0.2), h 1	 0.1. f(x0 ,y0 ) • vT: • 1.183, k • h1 f(x0 .y0 ) • 0.1183;

Yi - Yo + k, • 0.3183.

b) (x,yj ) • (1.1,0.3183), h2	0.1, f(x 1 ,y j ) • 1.359, it, • h,f(x j ,y 1 ) • 0.1359;

72 - 7 + it 9 ' = 0.4542.

C)	 ( x 2 . y,) • ( 1.2,0.4542). h 3 • 0. 1, f(z,,y,) • 1.532, it, • h,f(x, ,y,) • 0.1532;

• y t + it, • 0.6074.

a)

b)

C)

d)
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d) (x,y	 • ( 1.3.0.6074), h 4	0.1, f(x,,y,)	 1.704, k,,	 h4 f(x 3 ,y 3 ) • 0.1704;
# k 4 • 0.7778.

7. Use Runge's Method to approximate y when x • 1. 6. given that y • 0.4 when x land dy/dx x - y.
(See problem 3b.)

Here (x0 .y0 )	 0, 0.4), h	 0.6, to	 1-0.4	 0.6.	 Then
k a • hf	 • 0.36.

kg • hJ(x.,.,+h, ).k) • 0.6[(1+0.6)-(0.4+0.36)]	 0.504,
• hf(x0 +h, Y0 *k,)	 0.6((1+0.6)-(0.4+0.504)j • 0.4176,

k 4	hf(xo.h. Yok 1 )	 0.61(1 +0.3) -(0.4+0.18)) 	 0.432,

k 4k 4 + k 3 ) - ! (O.36 +4(0.432) + 0.4176) - 0.4176, 	 and 5	 Yo + k	 0.8176.

The difference between this approximation and that found in Problem 3b arises from the fact
that h	 0.6. In finding the value of y when x 1.1. (that is, h. 0.1 ),  the Taylor series gives

0.4 + 0.6(0.1) + 0.4(0.005) - 0.4 (0.00017) + 0.4(0.000004) - ............ 	 0.46193, while
by Runge's Method

k 1 - 0.1(0.6)	 0.06, k 2 • 0.1(1.1-0,48) • 0.064, k, - 0.1(1.1-0.464) - 0.0636,

0.1(1.05-0.43)	 0.062, At	 04 + k 3 ) • 0.06193, and	 0.46193.

B. Use Runge's Method to approximate y when x 0. 1, given that  • 1 when z • 0 and dy/dx • 3x + y2.

Here (z0 , y0 ) • (0.1), h • 0.1, to	 1.	 Then
• hf0 • 0.1,

• hf(x0 4.h, y0 +k 1 ) - 0.1(3(0+0.1) + (1+ 0.1)2) . 0.151.

• hf(z0 +h,	 +k 2 ) • 0.1(3(0 + 0.1) + (1 + 0.151)2) • 0. 16248,
k. • hf(x0+h, y9 +k 1 )	 0.1(3(0 + 0.05) + (1+0.05)2)	 0. 12525,

k	 (k + 4k 4 k)	 1 + 4(0. 12525) + 0. 18248) 	 0. 12728, and Yo + k	 1. 12725.

(See Problems 2 and 4a,)

9. Use Runge's Method to approximate y when x 1. 1.given that y i. 2 when x 1 and dy/dz 3x + y2.

Here	 (xo,yo) z (1, 1.2), h • 0.1, fo	 4.44.	 Then
k 1	 hf0	 0.444,

• hf(x0+h, y0 +k 1 )	 0.1(3(1+0.1) + (1.2+0.444)2) 	 0.600274,
- hf(x0+h, y0 +k 2) = 0.1(3(1+0.1)+(1,2+0.60027)2)	 0.65407,

k. = hf(+ h.	 + k t) • 0.1[3 (1  + 0.05) + (1.2 + 0,222)2) 	 0.517208,

k	 !(k+ 4k 4 + k 3 )	 [o.444+ 4(0,517208) + 0.6540971 	 0.527822,	 and

- yo + k	 1.727822.

Comparing this result with that obtained in Problem 4h. it is to be noted that the approximation is
better than might have been expected in view of the value Jo 4.44.
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10. Use Runge's Method to approximate y whenx 0.8 for that particular solution of dy/dr VT5 satisfy.
ing y0.41 when x-0.4.

Here (x0 , y0 ) • (0.4, 0.41), h • 0.4. fo	 v'ii • o..	 Then

- hf0 - 0.36,

hf(.,+h, y0 +k 1 ) - 0.4V=7	 0.50120.

- hf(x0 +h, y0 +k,) • 0.4v'1.7112	 0.52325,

hf(z.0 +fh, 70+kk1) • 0.4415	 • 0.43635.

k	 .1(k1 + 0 4 + k,)	 0.43811,	 and	 Yo + k	 0.84811.

II. Solve Problem 10, first approximating y when x -0.8 and then, using this pair of values as (z0,70),
approximate the required value of y,

First, (zo.y0 ) • (0.4. 0,41), h • 0.2, fo	 vii A 0.9. Then
• hf4, • o.ia,

hf(x0 +h, Yo+k t )	 0.2/r-M	 0.21817,

ii,	 hf(x.3+h, y0 +k,)	 0.2/1.22817	 0.22165.
• hf(x.+)&, y04k 1 )	 0.2.

(k + 4k4 + k,) • 0.20028,	 and	 7 • Yo + k	 0.81028.

Next, take (x0 . y0 ) a (0.6. 0.61028), h	 0.2. Then f • /1.21028 • 1.1001.
- hf0 • 0.22002,

hf(x0 +h. y0 +k 5) • 0.2/1.63030 z 0.25537,

hf(x0+h, y0 1k,)	 0.2/1.66565	 0.25812,

A. • hf(z0+h, y0+k 1 )	 0.2/1.42029 • 0.23836,

k	 (k1 + 4k + A,)	 0.23860,	 and	 Y	 Yo + A	 0.84888.

12. Solve Problem 10. using the Kutta-Simpson Method.

Here (x0 . y0 ) 1 (0.4. 0.41), h - 0.4. fo v'iT - 0.9. Then

A 1 - hf0 - 0.36,

A, - hf(xe+h, y0+k 1 ) • 0.4V1-. W 	0.43635.
A, - hf(x0+h, y0+k,)	 0.441.22817	 0.44329.

A 4 - hf(r0+h, y0+k,) - 0.4/1.65329 - 0.51432,

A s 101 + 2k, + 2k, + A 4 ) - 0.43893,	 and	 5 - Yo + A	 0.84893.

13. Use Picard's Method to approximate y and z corresponding to x - 0. 1 for that particular solution of
dy di- - f(x,y.z)	 z+z,	 g(x.y,z) • x -y

satisfying y • 2. z • 1 when x • 0.
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For the first approximations.

Y	 Yo + J;x

	

f(x. yo, so) dx	 2 + J (1+x)dX	 2 + x +
0

2

	

- so + Ig(z.yo.zo)dx	 1 
+	

= I - 4x + jz.x)dz
0	 0

For the second approximations.

---.

	

7, = Yo ^ f
X 
f(x,7 0 ,z j )dx	 2 

+ j 
(1-ax^x 2 )dx 	2+x	 x +2 1 x

	

2	 6

rx
-	 + J g(x.y 1 ,z j )dx	 1 +	 (-4 -3x -3x 2 -x 5 -

32 	 1
= 1-4--x -x - -'x' --x.

2	 4	 20
For the third approximations.

X	 32	 5	 l.	 1
73	 Yo + f f(x,y 2 ,z 2 )dx = 2 + 5o (1 - 3x - -

2
x - x - -x -	 z )dx

	

 4	 20

1	 1.,	 1	 16
= 2+x--3 x 2 --x --x --x ----X.

2	 2	 4	 20	 120

+

	

fo
g(x, 2 .z 2 )dx	 i•+ J (-4 - 3.x + 5x2 

+ 
X	

31 x% i. x	 x dx

	

1	 1 o
o	

__j-2 -)

2 X 2  5	 7	 31	 I
1-4.x- 	 +-x +—x ---x +—x --x.

and so on.	 2	 3	 12	 12	 252

When x -0.1:	 y	 2.105	 0.605

	

y2 = 2.08517	 z, = 0.58397

	

ys • 2.08447	 z,	 0.58872.

14. Use Runges Method to approximate y and z when x 0.3 for that particular solution of the system

- x +	 • f(x.y.z),	 - y -	 - g(x.y,z) satisfying y = 0.5. z = 0 when x-0.2.

Here	 (xo, yo, so) • (0.2. 0.5,0). h	 0. 1, to	 0.2. go	 0.5.	 Then

hf0	 0.02.

I s • hp,	 - 0.05,

hf(x0+h, y0+k 1 . z0+1) - 0.1(0.3 + /&) • 0.05236.

I t • hg(xo+h. )b+k i . z0+t) a 0.1(0.52 - /ö)	 0.02964,

hf(x0 +h, y0+k,. 20+12)	 0.1(0.3 + /0.02984 )	 0.047216.

1s	 hg(zo+h. y0+k,. 20 + 12)	 0.1(0.52-/0.02964) . 0.034784.

h f(xo+ h ,	 Z+11)	 0.1(0.25 + V'Th)	 0.040811,

1 4 - hg(x0+4h. 70 k 3L . zo+ 1 1) - 0.1(0.51 - V'öTh )	 0.035189,

k	 (k1+ 4k 1 + k,) - 0.03841.	 1	 !(1 + 41, + 1 3 ) = 0.03759.

and	 Y	 yo * k	 0.53841,	 • 20 + 1	 0.03759.

15. Use the Taylor Series Method to approximate the value of B corresponding tot - 0.05 for that particular

so	
d28

solution of 
—i. - 

8 sin 0 satisfying 9 - 71/4, 
d8- - 1 when t - 0.

dt	 dt



NUMERICAL APPROXIMATIONS TO SOLUTIONS
	

195

The given differential equation is equivalent to the system

•0 • f(t,9,),	 - g sin 	 = g(t,O.r)
dt

with initial conditions t • 0. 0 77/4, q5 = i. Then

901 . 1
dt

9flql	 8=-4f2

9'-4/

611 	 4V +32

-BsinO	 —4/i

"-88'cos0	 ''-4V'

= 8(9')281n9 - 89" cosS

4V'(1+ 4/)

L2
	 / -	 V'

tI'
and	 0	 77/4 +	 - 4 y/'2-- - 4	 + 4(8+	 ) - + ..........= 0.82821.

2	 8	 24

16. Use the Kuua-Simpson Method to approximate y corresponding to x 0. 1 for that particular solution

of	 + 2x	 -4y = 0 satisfying y = 0.2, LY = 0.5 when x o.

The cien equation with initial conditions is equivalent to the system

dy
=	 f(xy,z).	 = 4y-2xz	 g(x,y,z)

with initial conditions	 0, y-0.2, z=0.5.

Here (x01 yo. z0 )	 (0, 0. 2. 0. 5). h	 0. 1, 10	 0. 5. go = 0.8. Then

= hf0 • 0. 05.

1 1 = hg0 = 0. 08.

k 2 = hf(x0 +h. Y0+*k 1. ZO+ Z t)	 0.1(0.54)	 0.054,

12	 hg(x0+h. yo+k, zol'l j )	 0.1(0.846)	 0.0846,

= hf(x0+h, y0 +4k 2 , z0+ + 1 2) = 0.1(0.5423) = 0.05423,

1 3	 hg(-0+h, Yo$ka. z0 +l 2 )	 0. 1(0. 85377)	 0.085377.

k.	 hf(,+h . Yo3. zo +l 3 )	 0.1(0.585377)	 0.0585377,

At	 .!(k + 2k 2 + 2k 3 + k 4 ) = 0.0541663. and	 5 = Yo + k	 0. 25417.

-
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SUPPLEMENTARY PROBLEMS

17. Approximate y when x 0.2 If dy/dr r+ y2 and y 1 when x 0, using a) Picard's method, h)Taylor series, and c) the First Derivative method with n - 4.
An.c. a) y 1 - 1,22, y 2	 1.27, y	 1.2727;	 h) 1.2735;	 c) 1.2503

18. Approximate y when x 0.1 if dy/dr x - y2 and 	 1 when x- 0, using a) Picard's method. h) Taylorseries, and c) the First Derivative method with n = 4.
Ans.	 a) y1	 0.905, Y2 x 0.9143. y,	 0.9138;	 b) 0.9138; C) 0.9107

19. Use Runge's method to approximate y when x = 0.025 if dy/dr x + y and y • '1 when x 0.
Ans.	 1.0256

20. Use Runge's method to approximate y when x = 2.2 if dy/dr 1 +y/x and y • 2 when x • 2.
Ans.	 2.4096

21. Use Runge's method to approximate y when x = 0.5 if dy/dr - v'i1 and y = 0.17 when x =0.3.
.4n.c.	 0.360'?

22. Solve Problem 21 using the Kutta-Simpson method. 	 Ans. 0.3611

23. Use Runge's method to approximate y and z when x - 0.2 for the particular solution of the system
dy/dr - y + z, dz/dx -	 + y satisfying y - 0.4, z =0.1 when x 0.1.
Ans. y	 0.4548. 2	 0.1450

24. Use the Kutta-Simpson method to approximate y when x =0.2 for that particular solution of

+ 3x	 y • 0 satisfying y = 0.1.	 • 0.2 when x • 0.1. An.r 0.1191



CHAPTER 25

Integration in Series

EQUATIONS OF ORDER ONE. The existence theorem of Chapter 2 for a diThrendaI equation oF the form

I)
dy  = f(x,y)
dx

gives a sufficient condition for a solution. In the proof using power scries, y is found n the 'orm of a

Taylor series

2)	 y	 A0 + A 1 (x—x0 ) + A 2 (x—x0 ) 2 + ......+ A(xxo) . + ......

where for convenience Yo has been replaced by A 0 .This series i) satisfies the differential equation I),

ii) has the value y = Yo when =x0 ,and iii) is convergent for all values of x sufficiently near x = x0

To obtain the solution of I) satisfying the condition Y Yo when x 0:

a) Assume the solution to be of the form

y = A + A ix + A 2 x 2 + A 3 x	 + ......+	 + ......

in which A 0 = Yo and the remaining As are constants to be determined.

h	 Substitute the assumed series in the differential equation and proceed as in the Method of Undeter-

mined Coefficients of Chapter 15.

EXAMPLE I. 	 Solve y'	 x 2 + y in series satisfying the condition y yo when x 0.

Since f(x,y) • x + y is single valued and continuous while f/dy 1 is continuous over any rectangle

of values(x ,y)enclosing (0. y0 ),the conditions of the Existence Theorem are satisfied and we assume the

solution

y x A0 + A i x + A 2 x 2 + A 0 x 3 + A 4 x + ......+ An 	 + ......

Now, within the region of convergence, this series may be differentiated term by term yielding a series
which converges to the derivative y'.Hence.

A t • 2.4 2 x + 3,4 5 x 2 + 4A 4 x 5 + ......+ nA,.,x1

and

	

- y • (A 1 - A..) + (2A 2 -	 + (3A 3 - A - 1)x2 + (4A 4 - A 3 )x5 +

+ (rA, - A0_t)x' + .........= 0.

In order that this series vanish for all values of x in some region surrounding x o, it is necessary and

sufficient that the coefficients of each power of x vanish. Thus.

	

A 1 - A0 = 0 and At A0 Yo.	 3A3 - A 2 - 1 0 and A 3	 + Yo.

	

2A 2 - A1 o and A 2 . A 1	 A0	 Y. 	 4A4 A	 0 and A 4 r	 + !yo,

	

nA - A,.. 1	 0	 and
	

An	 n	 4.

197
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This latter relation, called a recuesionfor,,,,i/a may be used to compute additional coefficients; thus.

	

!A,,
	 1	 1	 1	 1	 1A 5 . _ + — YO.	 A6	 -A5	 . + —yo .120

It is also possible to obtain the coefficients as follows:

	

Since A. -	 and	 A,	 ....L A_),	 But	 .-J.._

hence, A.,	 —A) •	 (1+.4)	 (2yo,	 Pt	 3.fl(n-1)(n-2) .....4	 n(n-1)(n-2) ..... 4.3

When the values of the A' s are substituted in the assumed series, we have
1	 11	 1	 1
2

Y	 y + y0x + - y0 x
2 + (- + - y0 )x 5 + (— +	 Yo)x% + ......	 1 (2+ y0 )xn +3 6	 12 24

• (Yo +2)(1+x+__.x2+_.,x5+•..... .+.!x'+ ...... )-x 2 -2x..2

	

2!	 31	 'i
2• (Yo2)eX 

-x -Zx-2.

The given differential equation may be solved using the integrating factor e; thus,
fx 3 e dx • ( _ x2_ 2x - 2)e + C	 and	 y	 Co x - x 2 - 2x - 2.

Using the initial condition, y - yo when X 0, C • Yo + 2. and y	 (yo + 2)e- x 2 - 2z -2, as before.

B. To obtain the solution of I) satisfying the condition y = y0 when x =
a) Make the substitution x -x 0 	 v, that is,

	

x = v+x0 ,	 =

resulting in dy/dy n f(y, y).

b) Use the procedure of A to obtain the solution of this equation satisfying the condition y - y0whcn
"=0,

ci Make the substitution v 	 x -x0 in the solution.

EXAMPLE 2. Solve y'	 2_ a + y + 1 satisfying the condition y • 3 when x 2.
First make the substitution x • v 4 2 and obtain	 v2 + y - 3. We seek the solution satisfying

y 3 when t • a; hence, we assume the series solution

	

Y	 3 + A j v	 A	 + A 3 V 3 + A 4v + .........+ A,v" + .........

Then	 A + 2A 2 v + 3A1 v 2 + 4.4 4 u 3 + ......... . nA,v"	 + .........

and
2

	

- V2 	 y + 3	 A1 + (2.4 2 - A 1 )v 4 (3A 3 - A 2 - 1)v2 + (4.44 - 44)	 + ..........dv

+ ( APt - A.,. 5 )v'" + ..........0.
Equating the coefficients to zero, we have: 	 A 1 0, 2A 2 -A l - 0 and A 2 - 0, 3A 3 —A 2-1-0

	

and A - 1/3,	 4.44-43 - 0 and A. - 1/12,
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	The recursion formula An •	 yields

	

1	 A,1,	 1	
—As .-2—	 n3.n	 Ti(n -)	 n(n-1)(n-2) .... 4	 at

Thus,	 y	 •	 3 •	 +	 +	 .........................+	 + ......3	 12	 at

• 3 + -a (x -2) + !( -2)	 + ..............+	 (x -2)' +3?	 4?	 a?

See also Problems 1-4.

LINEAR EQUATIONS OF ORDER TWO. Consider the equation

3) P0(x)y" + P1 (x)y' + P,(x)y = 0

where the P's are polynomials in x. We shall call x = a an orthnar) point of 3) if P0 (a) , 0; otherwise,
a singular point.

If x = 0 is an ordinary point, 3) may be solved in series about x 0 as

4) y	 A(serles in x) + B(series in x)

in which A and B are arbitrary constants. The two series are linearly independent and both are convergent
in a region surrounding x.0,The procedure for equations of order one in the section above may be used
to obtain 4).

See Problem 5-7.

SOLVED PROBLEMS

EQUATIONS OF ORDER ONE.

I. Solve	 in series satisfying the condition y • Yo when x • 0.

Assume the series tohe y 	 4 + A 1 + A 2 x 2 + A,x 3 • A4x + ......+ A,x'1 +

where	 y0. Then	 y' •	 + 2A2x + 34,x 2 + 4A 4 x + ......+ nAx	 +

Substituting in the given differential equation (1- x)y' - 2z + y	 0, we have

(1-x) (A,, + 2.4 21 + 3.4,12 + 4441 3 + ......+ n4x	 +

or	
- 2x + (A0 + Ax + A2 x 2 + 4,x + ......+ 4,x' + ...... ) • 0

(A 1 + A.0 ) + ( 2.4 2 - 2)x + (3A, -A 2 )z 2 + (4A4 —24 3 )x + •... + [(n + 1)A,1 . 1 - (a - 1 ) A,] x" + .... a

(Note. In finding the general term in the line immediately above, we may write a number of terms on
either side of the general term of the assumed series for y, differentiate each in getting y'. carry out the
required multiplications, and pick out the terms in x OR learn to write the required term using the general
term of the assumed series and its derivative. In the present problem we wish the term in x when the
substitutions are made in y'- xy' - 2x + y o. First, we need the term in x'of y' when we have the term
in x'. We simply replace n by (n + 1) in nA,x'1 ' and obtain (a + 1)A, 1x", The remaining terms
-nA,x Ax' are obvious.)
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Equating the coefficients of distinct powers of x to zero-yields

A+A0 . 0 and A-A0 .	 3A_A20 and A,.A,.i!.

2A, - 2 • 0 and A,- 1.	 4A,-2A,=o and A 4	A3 •

- (n-1)A,, = 0	 and	 A,,+ I	 _LAn.	 (n	 2).
n+1

Now A. = 2.Z.i.,,	 (n-2)(n-3)A,-,,  = (n-2)(n-3)(n-4) A,,-
	

=
n	 n(n-1) 	 n(n-.1)(n-2) 

	

= (n-2)(n-3)(n--4)...... . 21A,	 2	 •	 n > 2

	

...................... 4.3 	 n(n-1)

InUS,	 y	
2	 i	 i	 1y0(1-x) + x +	 r + -x + —z + .......+	 x +

3	 6	 10	 n(n 
2 
-1) n

= y0 (1-x) +
Co

 
2

n=2 n(n-1)

Using the ratio test.	 Urn I A,,.1z	
I 

= ki urn	 Ix
 't-.A,,z	 n+1

The series converges for	 Ix I < 1.

Note. By means of the integrating factor 1J(1-x) the solution of the differential equation is y 1 2(1-)

ln(1 -x)	 Zx + Co -z). The particular integral required is

y	 yo(1 .-x) + 2(1-z) In( 1-x) + 2x.
4

2. Solve (1- xy)y' - y • 0 in powers of x.

Assume the series to be y	 A0 + A 1 x + A 2z 2 + A,x 3 + Aix" 4 ..... + A,,x' + .....	 Then

A 1 + 2A 2x + 3A,x 2 + 4A 4 x 3 4 ..... 4 nA,,x" 1 +	 and

(1-xy)y' - y

	

(1-A0x-A 1 x 2 -A,x 3 -A,x' -"'. -A,,x	 ....")(A1+2A,x+3A,x2+4A4x5 + .....

+ nA,,x ,t-1 + ••.•) - (A0 + A 1x + A,x' + A 3 x 5 + •... + A,,x #

	

(A 1-A0 ) + ( 2.4,- 40A 1-.4 1 )x + ( 3A, -2AoA,	 -A2)x2 + (44 4	-3AA,-A1)x +	 = 0.

Equating to zero the coefficients of distinct powers of x,	 -

-	 = o and A 1 .

2A, - AA, - A 1	0 and	 A,	 A(1 + A0 ) = A0(1

3A, - 2A0A, - A t	A, = 0 and	 As	 (2A0A2 + A + A,) 	 A0(1+5A0+2A,,).

4.4 4 -	 - 3A 1 A 2 - A, = o and A 4	,4(1 + 17A0 + 26A.	 64).
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Thus, y	 A0 [1 * x + J_ ( 1+ A0 )x 2 + L( l+ 5,4. + 24,)x 3 + --(1 + 17A0 + ZA.+ 64)x' + .......J.

We shall not attempt to obtain a recursion formula here nor to test for convergence.

3. Solve xy'- y -x -1	 0 in powers of (x - 1).

Setting x = 2 i, the equation becomes (2 1)	 - y - x - 2	 0. Since we seek its solution in powersdz
of z, assume the series to be

y	 A0	 A 2 z + A 2 z + A 3 z 5 + 
,442 q 

++ A,z' + .........	 Then
dy	 A	 + 2A 2 z + 3A,z 2 + 4A4z 3 + ........+ nA1 z 1 + ....... . anddz

d(2 + 1).y - y - z - 2
dz

(z + 1)(A 1 + 2A 2 z + 3A 3 z + 44j 3 + ....+ nA,z'	 + .....)

z - 2 - (A0 + A 1 z + A 2 z 2 + A 3 z 3 + .....+ A,z'1 + .....)

(A 1 - 2 - A0 ) 4 (24 2 - 1): + (3,4 3 + A 2 ) z 2 + (4A 4 + 2A 3 )z 3 + ..........

+ [(ri+1)A, 1 + (n-i)A,1]z't+ ...........0.

Equating to zero the coefficients of the distinct powers of z,

A 1 - 2 -	 0 and A 1 	2 +A0,	 3A3 + A, 0 and A, - A, -

2A 2 - 1 = 0	 and A.	 .	 4A4 + 2A, = o and A --!A9

	

2	 12

(n.1)A 41 + ( r2-1)A,1 	 0	 and	 A 	 A,,	 n Z 2.
12+ 1

From Problem I 	 ())fl (ii - 2) (n -3)	
2.1 A, = (-1)	 •

n(n-1) ........... 4.3 	 n(n-1)

1 2	 1and	 y	 -A0 + (2+A0)z	 -	 - 1-2 5 
+ 

u
—1 s - ......+ (-1)	 z +2	 6	 12	 n(n-1)

Replacing z by (x - 1), we have

1Y	 4x + 2(x - 1) 4 
1
-(x -1)

2
 - -(x -1) + 

I 
(x -1) -

2	 6	 12

=	 + 2(x -1) +	 (- 1)' -s-- (x - 1)".
n(rI -1)

I
Using the ratio Lest,	 1m 

I	

A,i

A,1z	
j	 =	 zj i11M = 	 Ix - ii.I	 71	 !1	 fl+

The series Conveiges for lx - 1 < 1.
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4. Solve y'-x 2 - e ' = 0 satisfying the condition y = 0 when x - O.

In view of the initial condition, assume the series to be

y • A 1 x + A,x 2 + A,x 5 + A4x it	 5+ A,x +

Then y' • A 1 + 2A 2x + 3A,x 2 + 4A 4 x 5 + 5A,x'4 +

y	 12	 15	 ii
Also,e = i+y+ —y +_y #—y

1 + (A 1x + A,z'+ A,x 5 # A 4x'4 + .. ..) + _
L [A2.2 + 2A 1A,x 5 # (A z, + 24 1A,)x'4 + ......)

+ 1 (A 1	 'x+3A,A	
1-	 + .... . )+—(A1x +

12 21+A,x+ (A,+-A 2 )x + (A3+A1A2'4!A)X3

I'.

	

+ — A)x	 + .............	+ (A4 + .!A	 AA+ 1 , ! A' A, 
24

Substituting in the differential equation.

(A 1 - 1) • (2A,-A 1 )x + (3A, - 1 - A, - A)x' + (4A 4 - A, - A 1A, -

	

12	 2'+ (5A 8 - A 4	 A2	 A 1A, - - A,A, - - A1)x	 + ...................	 .- 0.

Equating coefficients of distinct powers of x to zero,

A 1 - = o and A 1 = L	 2A2 -A, =o and A.	 A1

3A 3 - 1 - A, - Al 0 and A, = (1 + A, + ! A) =

44 4 - A, - A 1A 2 - . A 5 	 and A4 !(A, + A 1A 2 + .! 4)=

5A, - A. - 1 A,' - A2A, - AL'A, - _ A'4 = 0 and A,
2	 '4

1 2	 2 3	 117 5

2	 3
and y = x + -x +-x + - x + —

60 
x +

3 

LINEAR EQUATIONS OF ORDER TWO.

5. Solve	 (1+ x 2 y" + xy' - y = 0 in powers of x.

Here P0 (x) = i+x 2 . P0 (0) / 0 and x = 0 is an ordinary point.

We assume the series

y = A0 + A jx + A,x2' • A 3x 5 + A4 x'4 + ......... +A,1x + .........

Then	 = A 1 + 2A 2x + 3A 9x 2 + 4A4 x 3 + .......+ nA1 x	 + .........

and	 y" = 2A 2 + 6A 3 x	 12A4x2	 n(n-1)A,x2 +
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Substituting in the given differential equation,

(1 + x 2 ) ( 24 2 + 6A 3x + 12Ax 2 + •... + n(n - 1)A,xt 2	 + x(A + 2.4 2x + 3A 'x2+ 4A 4x +
n -1+ IIAX	 + . •.) - ( 4 4- A ix + A 2x 2 + A 3 x 5 + Ax + .... + Anx n +	 a

or	 (2.4, - A0 ) + 6A 9x + (12.4 4 + 3A 9 ) x 2 + ... . + l(n + 2)(n + 1)A,, 2 + (n 2 - 1)4,Ix" +	 a.

Equating to zero the coefficients of the distinct powers of x,

2.4,-A0 0 and A,	 A4) ,	 6A,= 0 and A, 0, 12A 4 + 3.4, 0 and A 4 	 .L4<, ,

	

(n + 2) (n + 1)'4,2., + (n 
2 _ 1)A	 a	 and	 A,., = -	 A,,

From the latter relation it is clear that A.	 A,	 A,	 0, this is, A,, 42	a if n is odd. If ri

is even, ( i - 2k), then

A	 -	 A	 (2k-3)(2k-5) A	 - (-1) k.1 1.3.5.....(2k -3)
2k	 2k-2	 2* (2k -2)	 2k-u	 - 	

k

Thus, the complete solution is

12	 1	 16	 5	 6Y
	 A(1 + -x - -x + —x - —x + .....) + Aix

2	 8	 16	 128

I2	 k+	 1 . 3 . 5 ..... (2k-3)	 2k
= .4 [i + 2-x +	 (-1)	 x ] + Aix

k-2	 2kk,

Ao[ 1 + I X
x 
2 -	

(-
1)k 1 . 3 . 5 ..... (2k-3) 2kx J + A ix.=

2

II
u	 2	 n-i	 2Here	 Il

	

= x Urn -	 x , and the series converges for I  I < 1.
I An xn I 	,,_.

6. Solve Y,, 
x 2y' - y a in powers of x.

Here P0 x>	 1 and x 0 is an ordinary point. We assume the series

y	 Ao + A ix + A.x 2 + A,x 3 + .........+ A,,x +	 Then

= A + 2A 2x + 3A 3x 2 + ..........+ nAx	 + .........

2.4 2 + 6A 3z + 12A.x 2 + 20A,x + .........+ n(n-1)Ax'	 + ......... . and

- x27' - y
(2.4, - A0 ) + (6.4, - A,)x + (12A 4 - A, - A 2 )x 2 + (20.4, - 2A, - A,)x 3 +

+ [(n + 2) (n + i)A,,., - (n - 1)A,,_ t - A,Jx + ...............0.

Equating to zero the coefficients of the distinct powers of x,

2A 2_ A0 0 and A,= A0 , 6A,-A,=0 and A.	 A,,	 12A 4 -A,-A, .. o and A 4 =	 A0 + jAi.

—27



(n + 2)(n 4 1)A, 4 2 - (n - 1)A,_ 1 - A • 0	 and	 A	 (n - 1A,_ 2 + An	 ,	 1.
(n +1)(n+ 2)

1 2	 1	 4	 1 5	 1	 6	 13	 1
The complete solution is	 y	 A0(1 + -x + 

24
—x +

2	 20
•—x + '120—x + —2520 x + .......

	

1	 1	 1	 s	 7 6	 41	 7
	6 	 12	 120

+ A(x 4 -x + — X + —x + —
360 

X + —
5040x 

+ .......1.

7. Solve y "- 2x 2 y' + 4.xy • x+ 2x + 2 in powers ofx.

Assume the series to be

y 2 A0 + A 1 x + A2 X2 • A 3x 5 + A 4x + A 5z 5 + ........ 4 A,x fl • .........	 Then

y'	 A + 2A 2x *3A3 x 2 + 4A 4x 3 + SAex'+ ....... +nAx 1 + ........

+ 12A 4 x 2 + 20Ax 5 4 .............+ n(n - 1)Axl 2 • .......,	 and

y"- 2x'y' + 4xy -x 2 - 2x - 2

	

	 (2A2 -2) + (6A 3 + 4A.0 - 2)x + (12A 4 # 2A 1 - 1)x 2 • 20A8x 5 + .......

+ [(n+2)(n+1)A,+2 - 2(n-1)A,_ 1 # 4A,_1)x' + ........0.

Equating the coefficients to zero, we obtain

2A,-2=0 and A 2 1,	 6A3+4A0-2 o and A. =	 - A0 ,	 A.	 - A 1 .	 A.	 D.

(n + 2)(n • 1)A,, - 2(n - 3)A.. 1	0	 and	 A,+,	
2(n -3)

A, 1 ,	 n	 3.
(a + 1) (a + 2)

The complete solution is

y 2	 2 b	 2g	 1	 17	 1	 lo

	

•) + A 1 (x--x --x ---x	 - .........)
3	 T5

A0(1--x	 X	 X -
	 6	 63	 567

2	 13	 1%	 lb	 1	 1	 1	 9	 I	 10
+X + — X +—X + — X + — x +—	 4—x + .........

3	 12	 45	 126	 405	 1134

8. Solve	 y" + (x — 1)y' + y 0 in powers of x — 2.

Put	 V + 2 in the given equation and obtain 6Y + (v + 1)	 + y	 o which is to be integ-

	

dv2	 dv
rated in powers of v. Assume the series

y =	 + Av + A 2 v2 + A 3 *.i 3 + A4 ,.," + .........+ Anv n + ..........	 Then

dy	
A,.+ 2A 2v+3A 3 v 2 +4A 4 v 3 + ......... + nAnv hl 4 .........

dv
2

	• 2A2 + 6A 3v + 12A 4 v 2 + ..........+ ri(n - 1)A,,"' 4 .........,	 and
dv2

-+(v+l)+y r (24,+A 1 + AO ) +(6A,+2.41+2A,)v+(12A4+3A2+3A,)v2+
dv2 	7V

+ [(n42)(n+1)A,,, • (n+1)A, 1 + (n+1)A,141 1v'+ ......... B

Equating the coefficients of powers of v to zero, we obtain

A,	
- 

F9 A,.),	 A3	 — (A 1 + A 3 )	 (A0 -A 1 ),	 A.	 —	 + A,) •	 + 2A,.),

1
+ (n+1)4	 .4

	

+ (n+1)A 4 ,. • 0	 and	 ,,	 —	• - 	 (An +
n+2
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Thus, noting that u	 x -2. the complete solution is

	

1	 2
	 —' (x 	

1	1 	 1y	 A0 [1 - — (x -2) + —(x -2) + —(x -2) - —(x -2)	 ( - 2) +

	

2	 6	 12	 - 180

+ A 1 [(x - 2) - 1— (x -2)
2
 - — (1 x -2)5	 1	 '	 1— (x -2) - —(x -2) +

2	 6	 6	 36

SUPPLEMENTARY PROBLEMS

9. Solve	 (1- x)y' = 2 y in powers of r.

Ans.	 y=A0(1-x)+x 5 (-1 +-1 r+ —1 x 2 + .....+	 1-2	 x +
3	 8	 10	 (n+2)(n+3)

10. Solve	 xy'	 1- x + 2y in powers of x -1. Also integrate directly.

	

Hint: Let x - i z and solve (z + 1)	 -z + 2y in powers of z.

Ans. y	 A0 ( I + 2(x -1) • ( - j)?) +	 + (x -1)

II. Solve y' •	
4. 	 in powers of x.

Ans. y	 A(i • ax + 9x 2 /2 + 9x 5 /2 + 27x 1/8 + ......J + (2x 5 /3 * x 4 /2 * ......)

	

12. Solve (z + 1)7' .	 - Zx + y in powers of x.

Ans. y	 A O (I • x) - x2 
4.

	 - x/3	 x/5 - 2xb/15 •

13, Solve Y4 xy • 0 in powers of x.

R, F.	 An • -
n(n 1 - 1) 

A, 3 , n	 3; convergent for all x.

Abs. y • A0 (1 -	
2b/'eo -) + A & (x - x/12 + x t/504 - ......)

14. Solve yU + 2x 2y	 0 in powers of x.

R. F,	 A	
-	 2	 A,2 .. 4 ;	 convergent for all x.

- 1)

4ns. y	 A.0 (1 - x/8 + A/168 - ......) • A 1 (x - x 5 /10	 x 9/3	 -

15. Solve y'_xy' # x 2y	 o in powers of x.

R.F.	 ri(n-1)A,2 - ( n-2)A, 9 • A.. 1 • 0,	 ri Z 4.

Ans. y	 A0 (1 - x/12 - x/9i) 4 
A,3350	

... ) + A, (zx 3 /6 - x 5 /40 - x 1 /144 -

16. Solve (1 -x 2 )y" - 2xy' + p(p + i)y 0. where p is a constant, in powers of x, (Legendre Equation)

R.F	 A,,	 (n-2-p)(n+p-1),
2	 convergent for I x I <1.n(n - 1)

Ans. y	 4( I - p (p + 1) 2
+ 

( p - 2) p (p + 1) (p + 3)

	

 x	 -	 ....... ...)2!	 4!

	

+ 
A1(x - (p 1) (p+ 2) 5 * p- 3) (p - i) (p + 2) (p4	 -

3'	 5!
17. Solve	 y. x 2 

y	 1+ x + x 
2 in powers of x. 	 R. F. A,,	

-
 ---!--A ..4 convergent for all x.

- 1)

	

Ans. y • A.( I -	 12 + x/672 - ......) • A 2 (x -. x"/20 + x9/ 1440 - .....

• x 2/2 + x 5 /6 * x/12 - bi60 - x7/252 - XR/672 * ......



CHAPTER 26

Integration in Series

WHEN x a IS A SINGULAR POINT OF THE DIFFERENTIAL EQUATION

I)	 P0 (X )
yN
	 P, (X) y ' + P" (X ) y = 0,

in which P(x) are polynomials, the procedure of the preceding chapter will not yield a complete solution

in series about x = a.

EXAMPLE I. For the equation x 2y" + (x 2 - x)y' + 2y o, x 0 is a singular point since Po)	 D . If we

assume a solution of the form

(i)	 y ' A0 + A 5x + A2x2 +	 + .........

and substitute in the given equation, we obtain

2.4 + A 1 x + 1 2A 2 + .4)x2 + (5A 1 + 2A,)x 5 + ......... . 0.

In order that this relation be satisñcd identically, it is necessary that A0 • 0, A 1 • 0. A, • 0, A	 0.

hence, there is no series of the form (i) satisfying the'given equation.

A SINGULAR POINT x = a OF 1) IS CALLED REGULAR IF, when I) is put in the form

l)	 " + 
R& (x)' +	 R1 (x) 

> =

R 1 (x) and R2 (x) can be expanded in Taylor series about x = a.

EXAMPLE 2. For the equation (I + 	 # 2xy' - 3y 0, x • -lisa Singular point since P0 (-1)	 1 + (-1)

0. When the equation is put in the form

R 1 (K) ______ 	 2x	 ,	 -3(z+ 1)•	 y +_y +	 y-y +—y+	 2y0.
x+1	 (x+1)2	 x+l	 (x+l)

the Taylor expansions about x -1 of Rx) and R2 (z) are

R 5 (z)	 2x	 2(x + 1)- 2	 and	 !?2(x)	 -3(x + 1).

Thus, x	 -1 is a regular singular point.

EXAMPLE 3. Fcir the equation x5y"+ Z2 Y , y 0, x o is a singular point. Writing the equation in the

form	 ,,	 liz
y + -i" + — y	 0.

X

it is seen that R 2 (x)	 1/x cannot be expanded in a Taylor series about 	 o. Thus, z = o is not a

regular singular point.

206
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WHEN x = 0 IS A REGULAR SINGULAR POINT OF 1), there always exists a series solution of the form

Co
•

2)	 y = x' I Ax	 = A0 x I 
+ 4 1 x *i. + A 2 x12 + •... + A,x	 +

'.0

with A 0	 0, and we shall proceed to determine in and the A's so that 2) satisfies 1).

EXA.1PLE 4. Solve in series 2zy" + (x + l ) y ' + 3y	 0.

Here, x 0 is a regular singular point. Substituting

y	 4,x 2 + A 1x
1.1. • A,x	 + .....+ A,z	 + .....

- nAox 
2-1
	 (ii+1)Ax' + (&+2)4 1 x 	 + ..... 4 (a+n)4,x	 +

• (* I)li4.0 x	 + &(a+ 1)Ax
t -	 %+M-2 

+ (a + 1) (a + 2)A2x1 + ... + (a + r -1) (a + n)Aqx 	 +

in the given differential equation, we have

(i) a(2a - 1)40z'	 + ((a + 1) (2* + 1)A + (a + 3)Ao)z' + [(a + 2) (2a + 3)A 1 + (a + 4)A1]x'

4 .....+	 + n)(2* + 21 - 1)A, + (a + n + 2)Aj)x1 '' + .......... . 0.

Since A.0 id 0. the coefficient of the first term will vanish provided &(2&-1) • 0. that is, provided IN •o or

a • 4. However, without regrard to a, all terms after the first will vanish provided the A's satisfy the

recursion formula

A	 • -	 n1.

Thus,the series

2')	 -	 a + 3	 +	 (a + 3) (a + 4)

-	 (a + 1) (2* + 1)	 (a + 1) (a + 2) On + 1) (2* + 3)

-	 (rr+4)(m+5)	 +

(iI + 1) (a + 2) (2*4 1) (2* + 3) (2* + 5)

satisfies the equation
(ii) 2x5" + (x + 1)5' + 35 = a(2* - 1)A0x.

The right hand member of (ii) will be zero when a 0 or a . When . • o. we have from 2')

with A 0	 1, the particular solution
1-3+2z -Zx7a+ ........

and when a - 4 with A.	 1, the particular solution

The complete
- 7x/6 + 21x2/40 - 11x 5/8O + ......

solution is then

y - Ay, +By2

-	 - 2/3 + .....) + BV'(1 - '7z/6 + 21x 2/40 - lLx 5 /80 +

The coefficient of the lowest power of x in (i), (also, the coefficient in the right hand member
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of(ii), has the form f4,. The equation f(n) o is called the indicial equation. The linearly	 pend-

ent solutions y1 and Y2 above correspond to the distinct roots a 0 and a	 of this equation.

In the Solved Problems below, the roots of the indicial equation will be:
a) distinct and do not differ by an integer.
b) equal, or
C) distinct and differ by an integer.

The first case is illustrated in the example above and also in Problems 1-2.

When the rootsm 1 andm,of the indicial equation are equal, the solutions corresponding will be identical.
The complete solution is then obtained as

y	 API	 + BZ I	 See Problems 3-4.

When the two roots m 1 < m, of the indicial equation differ by an integer, the greater of the roots M.
will always yield a solution while the smaller root ,ni5 may or may not. In the latter case, we set A. =

80 (m—n, 1 ) and obtain the complete solution as

y	 A I	 + BBPI	 Se Problems 5-7

The series, expanded about x= Owhich appear in these complete solutions converge a/wars in the
region of the complex plane bounded by two circles centred at x = O.The radius of one of the circles is
arbitrarily small while that of the other extends to the finite singular point of the differential equation
nearestx = 0.1t is clear that the series obtained in Example 4 converge also atx = 0 ;moreover, since the
differential equation has but one singular point x 0, these series converge for all finite values of x.

THE COMPLETE SOLUTION OF

3)	 Pc,(x)y" + P1 (x)y' + P,(x)y	 Q

consists of tie sum of the complementary function (complete solution of I) ), and any particular integral
of 3). A procedure for obtaining a particular integral when Q is a sum of positive and negative powers of
xis illustrated in Problem 8.

LARGE VALUES OFx.lt is at times necessary to solve a differential equation I) for large values of
x. In such instances the series thus far obtained, even when valid for all finite values of x,are impractical.

To solve an equation in series convergent for large values ofx or "about the point at infinity', we trans-
form the given equation by means of the substitution

X = 1/2

and solve, if possible, the resulting equation in series near z 0,
See Problems 9-10.
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SOLVED PROBLEMS

I. Solve in series	 2x 2y"—zy' (z 2 + 1)y • 0.

Substituting

1	 1+1	 1+2	 r+n
• AoX	 + Ax	 + A 2 x	 + .............................+	 +

- L40Z 	 4 ( a + 1)A 1 zI + (a + 2)A,. * *1 + .............+ (a + n)A.1 xI + ........

	

(a_ 1)aA0z'2 + ( a + 1)i..4x'	 + (a+ 1)(a + 2)4 2x1 + .....+ (a +, -1) (a + n),4,xt +?2 +

in the given differential equation, we obtain

(a-1)(2a	 1-1)A0x + •(2.+1)A1x .1+1+ {[ (a+2)(2a+1) • 11A, + A)x	 •

	+ {((a+n)(2aj-3) + 1]A, + A,_ 2 }x	 + .........0.

Now all terms except the first two will vanish if A 2 ,A 3 .	 satisfy the recursion formula

	

A,_ 2 .	 n Z 2.
(a+n)(2a+-3) +1

The roots of the indicial equation, a -i(2 -1)	 0, are .	 J. 1, and for either value the first term
will vanish, Since, however, neither of these values of a will cause the second term to vanish, we take

0.	 Using 1), it follows that A, 	 A,	 A	 0. Thus,

-	 a	 1	 2y'40x(t-	 x	 +	 x	 - ..........)
(a+2)(2a+j)+j

satisfies	 2z 2iff-	 + (x 2 + 1)	 (a -1) (2. - 1)A0x'

and the right hand member will be 0 when a a j or a 1.

When a • and A0	 1, we have	 y	 V(1 - x 2/6 + x/168 - x/11088 +

and when a • i, with Aa	 1, we have yz x(1 - x2 /1O + x/360 - x/28080 +

The complete solution is then

Y - Ay, + By,

• Ay'(1 - x 2/6 + x"/168 - x/11088 + '') + 	 -	 + x/3 - x/28080 4.

Since x o is the only finite singular point, the series converge for all finite values of z.

2. Solve in series 3xy" + 2y' + x 2y 	 0.

Substituting for y, y', and y" as in the problem above, we have

a-im(3a -1)A0x	 + (a + 1) (3* +2)A,x	 (a + 2)(3a +5)A,x *+3. 
+ [ (a + 3)(3a+ 8)A 3	Ao]x sf2

+ ......+ [(*4. n) (3* + 3n - 1)A,1 + A,.. 3 Jx	 + .. .... - 0.

All terms after the third will vanish if A,.A ....... satisfy the recursion formula

An	 -	 1	
A,1	 n3.

(a + n) (3* + 3z -1)



*	 1	 1	 2)'	 A0x(1 +	 —x +	 x # -2	 2	 2(m+j) (m.+2)
satisfies

2)

--2+ 3)
x 	+ ........

"t	

)2
) ('

+ 5;' - 5 = a2Aox
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The roots of the indicial equation	 - 1) • 0 are	 0, 1/3. Since neither wiLl cause the second and

third terms to vanish, we take A	 A2 = 0. Then, using the recursion formula, A	 A 4 • 4 7	 0

and A 2 • As As	 o. Thus the series

	

-1	 b1)	 y	 A..*(l -	 x3 +	
1

	 x	 - ......
( + 3) (3.* + 8)	 + 3) (r + 6) (3 • B) (3 + 17)

satisfies	 3x5;' + 25;' + x 2 5;	 m(3m-1)A0x'1.

For m	 0, with A0 z 1, we obtain from I)	 YJ	 I - x 5/24 + x/2448 - .......

and for u	 1/3• with A0	1, we obtain y3 =	 ( 1 - x 5/30 + x 6/343 - .......

The complete solution is

y	 Ay, + J3y	 A(1 - x/24	 x 6/2448 - .....) + Bx 1/3 ( l - x/3 + 6/343 - .....

The series converge for all finite values of x.

ROOTS OFINDICIAL EQUATION EQUAL.

3. Solve in series xy"+y'y = o.

Substituting for y, y', and y" as in Problems I and 2 above, we obtain

2A
*- a.'0i	 + NAt+ 1) 2 A I - A]x 2 + (ML + 2)2 A 2 - 4Jx

4 .......+	 4 )24, - +	 .....	 •0.

All terms except the first will vanish if A 1 .A 2 ...... satisfy the n

I)	 A	 =n
(iThus,

	The roots of the indicial equation are 	 0,0. Hence here corresponds but one series solution

satisfying 2) with At • 0. However, regarding 5 as a funci 	 of the independent variables x and a,

	

(BY) -	 (DY) -
m	 mx

and	 r I	
-

Jt X BX	 x RI BX 	 31 z

And we have by differentiating 2) partially with respect to a.

3)	 (!)" + (Z) ' -(.Z)	 2aAox!	 + a2A0x' 	 In

From 2) and 3)it follows that y	 5;j	 and Y2	 are solutions of the given differential
2=0

equation. Taking A0	1. we find	
am
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[i.	
1	 x +	 +	 1	

+ . .)• x 1x
2	 2	 2	 2	 2	 2	(a+1) (a+2)	 (a+1) (a+2) (a+3)

a	 2	 2	 2	 2	 2+	
(a +	

' -
	 +1)5 (a + 2)2	 (a + 1)2 (. + 2)	 -	 (4+1) (a + 2)2

 ( 
+ 3)2

2
+	 2	

)x' - ..........)4

(a + 1)2 (a + 2) 5 7-73
	 (a + 1)2 (a 4- 2)2 ( + 3)5

- 2x 'r 	 1	 1	 1	
)x 

2

+ 1)	 (a + 1) (a + 2)2	 (a + 1)2 (a + 2) 

1	 1	 1	 )r5+....].
5	 2	 2	 2	 -	 5	 2 2	 2

	

(. 1) (a + 2) (a + 3)	 ( a + 1) (a + 2) (a #3)	 (a + 1) (a + 2) (a +2)

2	 5x	 x+x + -4- +Then	
(2!)	 (3!)2

yI
Ya	 —j	 y	 1	 1 In 	- 2[x +	 (I + -)x 2 	 1	 1+	 (1 + - 	 1)11 5 4

an 4. 0	()2	 2	 2	 2	 3

and the complete solution is

	1 	 1y	 Ay, + BY2	 (A+BInx)[j + x + —x
2 + —.--x 5 + ........)

	

(2! )2	 (3!

2B[	 1	 1 2	 1	 1	 1 s-	 x +	 (1 + -)x	 +	 (1 +	 + )x	 +
	2 	 >2	 23

The series converge for all finite values of x / 0.

4. Solve in series xy' +	 + x 2 
y	 o.

Substituting for y, y', and y ' , we obtain

2 a-	 2	 a	 2A a+1	 2	 *42a A0x	 + (a + 1) Ax + (a + 2) 2x	 # [(a + 3) A 3 + Aox	 +

+

	

(a+n) 2 A" + A,_ 2 Jx 	 + ............. o.

The two roots of the indicial equation are equal.We take A0 = 1, A 1	 A 2 = 0,and the remaining 4's

	

satisfying the recursion formula A,-	
-	 1 

2
( a + n)

Then A 1	 A 4	 A 1 • •..	 0, A 2 =As = As = ... = 0,

a	 1	 3	 1	 b	 1	
9)x(1 -	 x +	 x	 x #2	 2	 2(.+3)	 (a+3) (ai-5)	 (a+3) 2 

(.+6)
 2 

(9+9) 
2

and, following the procedure of Problem 3 above,

jinx + 2r'[	 1	
X 

5	 1	
+	 1	 6- 

5	 5	 2	 2	 5(a + 3)	 (a + 3) (a + 6)	 (a 43) (a + 6)

_________	 91	 -+	 1	 1

5	 2	 22(a.s3) 3	 2	 2
(a+6) (a+9) 	(.43) 2 

(a+6) (a+9)	 (*4-3) (a+6)
—28
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Using the root a • 0 of the indicial equation.

-	 13	 1	 6	 1	 9y	 • I --x	 •x -	 z +Yt
1.0	 32	 4(2!)2	 36(31)2

____
and y,	 Yt	 x	 -	 (	

1In x + 2 (.! 	1	 + -)x
6
 +	

1	
(1	 -

1	 1+ -)x 9 - ......
3	 3(2!)	 2	 37(3!)2	 2	 3

The complete solution is

3	 1y 	 Ay, +By 7 . ( A f	 1

	

B1nx)[l__	 6	 1	 9x	 +	 -	 x	 + ........]

	

2	 x

	

3	 3 (2!)	 36(31)2

428113	 1	 .	 1.6	 1	 1	 19

	

X -	 ( 1 + -)x	 +	 (1 +	 + -)x -

	

33	 33(2!)2	 -	 37(3!)2	 2	 3

The series converge for all finite values of x	 0.

ROOTS OF INDICIAL EQUA TION DIFFERING BY AN INTEGER.

	

5. Solve in series xy"-3y'+xy	 0.

Substituting for Y. y '. and y'.'we obtain

( - 4)&4.x' -1 + ( a -3) (a + 1)A 1x' + [(a -2) (a + 2)A 2 + A0)x * + 1

+ [(a+n-4)(a+n)A, + A.2 1x
I	 0.

The roots of the indicial equation are a 0.4, and we have the second special case mentioned aboe
since the difference of the two roots is an integer. We take A 0 and choose the remaining A's to satisfy
the recursion formula

-	 1	
fl2.	 n2.

(a + n -4) (a + n)

It is clear that this relation yields finite values when a	 4. the larger of the roots, but when At	 0, A. -
Since the root a = 0 gives difficulty, we replace A0 by B (a - 0) = 80 a	 and note that the series

5A0x'[1...	 1	
x	 +	 x

2	 1	
-	

1	 6

	

(a -2) (a + 2)	 a(a -2) (a + 2) (a + 4)	 A(a- 2) (a + 2)2 in + 4) (a + 6) x

+ -
a(-2)(a42)2 (a+4) 2

	

a	 (a+6) (Pt +8)

80xa [a -	 x +	 x
a	 2	 1	

-	
1	 6

X

	

(a- 2) (a + 2)	 (a -2)(a + 2)(a +4) 	 (a -2)(a + 2)2 (a + 4)(a + 6)

+ ____________ x- .............]
(a -2) (a + 2)2 (a + 4)2 ( '6) (a + 8)

satisfies the equation

	

xy -	 +	 = (a-4)Lx1 
-

1 	 2(a-4)a B.3x*X

2Since the right hand member contains the factor a, it follows by the argument made in Problem 3



	

INTEGRATION IN SERIES 	 213

that	 and i. with 	 0, are solutions of the given differential equation. We find

2

-	 in  + B0x'[1 +	
.+4	 2	 1	 1	 1	 1 '

	

x-	 _(__-__+
	1-2 a+2	 +4

+	
1

	

1	 2	 1	 1	 b

&-2 .+2 .+4 .+8

11	 2	 2	 1	 1
_ 	 )z +-	 (_+_+_+	

8

.-2 *+2 .+4 a+6 .48

Using the root . • o. with Bo	 1, we obtain

-	 1	 1	 8
y1 y	 - - z +	 -	 * +

2.2.4	 2.22.4.6	 2.22.42.6.8

and

•y5lnz+1	
1*	 1	 i	 1	 1	 16

Yt	
0.0	

+ - * + - x -	 1 + - + -)*

22	 2 21	 26 31 11
2 3

+ 1	 11112	 1	 1111	 1131D
1+ -4- +-) 4 2345	 232.84121	 2 3	

-)x	
- 2° 5131	

1+	 + ( +) X	 +

The complete solution is

y	 Ay, + Byt

1	 2	 1	 8
x	 +	 x	 -	 x	 + ........}

25 21
(A + B 1x){-	

2 3111	 2 4121

12	 1	 1	 116	 1	 111	 18
+ B(1 + — z + — x - 	 ( 14 + )x +	 (1+ + +-) + -]x

22	 3 4 2
2 2!	 36 3111	 2	 4! 2!	 2 

1	 1111
-	 (1+ 4 +-+-)+

2'° 5131	 2	 5	
(.+	 + ........!))x°	 3.

The series converge for all finite values of z ' o.

6. Solve in series 	 (x-x 2 )y"-3y'+2y -0.

Substituting for y, y', and y, we obtain

(.-4)I.4x ' 	 4 ((.-3)(1 + 1)A 1 - (1-2)1 + 1 )Ao] x8 	 I+ [( - 2)(. + 2)A 2 - (i - 1)(. + 2)Ajx41

+ ........+ ((a + n -4)(. + n)A,, - (.+ a - 3)(a + n)A,_jx'' + ........ .o.

The recursion formula is A	 '+'- 
3= so thata +n -4

I)	 • A0x1(
1-2 	 a-i 2	 a	 •+1	 a+2	 a+3 6

1+ — x +—x + 	 4-I +-X + ........ 3
.-3	 1-3	 a-3	 .-3	 .-3	 a-3

satisfies the differential equation S

	(x - x2)5 - 3' + 2	 - (a- 4)iiAox'.



214
	

INTEGRATION IN SERIES

The roots a a 0.4 of the indicial equation differ by an integer. However, when At • 0 the expected
vanishing of the denominator in the coefficient of x' does not occur since the factor a appears in both

numerator and denominator and thus cancels out. Note that the coefficient of x is zero when a a

Thus, with A0 • 1.

and	
2x (1 + 2x 4' 3x + 4x + ........)

so that	 Yt	 (1 + 2x/3 + x213) - yS3.

The complete solution is	 y - C1y 1 + C2y2 a C1 (I, + 2x13 + x 2/3) 4 (Cl - C513)y1
........... fix ............ ...... )

• A(x 2 +2x+3) +B	
2(1 -x)

There are finite singular points at z . 0 and x • 1. The series converge for xl < 1.

7. Solve in series x? + (r - 1)y' - y • 0.

Substituting for y, y', and y", we obtain

(a-2)a.40xa—i 
+ ((-1)(a+1)A+ (a-1)40 jx	 + (a(ai+2)A,+aA1)x s41 

+ ........

+ ((. + n - 2)(a +n),4, + (a + n -. 2)A,_ 1 I x	 + ........ . 0.

The roots of the indicial equation are a a 0,2 which differ by an integer. We choose the A's to satisfy

the recursion formula
-	 a + n - 2

(a+n -2)(a+,t)

At this point we see that no A — co for a • o, the smaller root, as in Problem 5. This is due,
of course, to the fact that the factor a +n -2 cancels out. Thus, since

A 
ft	 1	 1	 2	 1	 5a 0x(1- —	 +	 x	 x + •...... )

satisfies	
(a1)(.+2)	 (a+1)(I+2)(a+3)

+ (x - 1)' -	 • (a -

we obtain, with A 0 - I and a • 0. a • 2 respectively,

a	 — X + x 2/21 - x/31 4. ,,.,..,,., a

and

a YI.. 2	 -z - 2x3 /31 + 2 ' /41 - 2z5/51 + ..........•

The complete solution is y a Ce	 + Cv C2e+ x -1))	 A1	 + B 1- x. convergent for all finite
values of x.
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PART/CL/LA R I1VTEGRA L.

8. Solve (x 2 -x)y" + 3y' - 2y • x + 31x  hear x • 0.

Substituting for y, y', and yfl as in Problem 6, we obtain the condition

1) '(4 -.)A0z' 1 + ( ( a + 1) (3 -.)A 1 + ( a + i)(a _2)A 0)x' + ..........

+ ((+n)(4......n)A + (a+n)(a+n_3)A, 1 _
1
1x11'' + ......... . a x + 3/x2.

To find the complementary function, we set the left member of 1) equal to zero and proceed as before.

The recursion formula is 	 An •	 '	 and thus
a +n -4

-	 a	 a-2	 a-i 2	 a	 a+1 '
y • Aox(i +-X+-x +_x •-- x ............

	

a	 )a-3	 a-3	 a-3	 -3
satisfies

2	 -,,	 -	 -	 a-i2) (x -x)y + 3 ,y - 2y	 a(4-a)Aox

	The right hand member of 2) will be 0 when a - 0, 4.	 a • o with 4 • i, we havc-

• 1 +	 /3 + 2/3 - x*/3 - 20/3 - 3x 6 /3 - 4x 7/3 - ...............

and for a a 4 with A0 • 1, we have
5- x (1 +	

2+ 3x + 42 	+ 5x Ii + ...............

Then Yt • 0 + 2x/3 + x/3) - y,/3 and (See Problem 6) the complementary function is

y • A(x 2 . 2x +3) +

In finding a particular integral, we consider each of the terms of the right member of the given different-

ial equation separately. Setting the right member of 2) equal to	 that is.

A(4 -a)A0x ' 	• x, identically,

we have a • 2 and A0 •	 For a a 2, the recursion formula is A,1 a	 thus, A 1 • 4,
n-2

As • .....- 0. The particular integral corresponding to the term x is x2/4.

Again. setting the right member of 2) equal to 3/2, that is,

Y J

2(4-a)A0x'' a 3/2, identically.

we have a • -1 and 4 = -3/5. For a • -i, An • _:i A,.. 1 ; thus,	 A 1 a A0 . A,. 1 Ao, A.
I

	

	 n-52
A0 . A 4 • A, • A, a ..... . 0. The particular integral corresponding to the term 3/z' is 

- x ' (i +	 x + .	 . x 	 The required complete solution is

y • A(x2 +2a+3)+	 ------!	 '---.x._-x
(1-x)2	 5x	 10	 10

	

•	 +2x+3)  +	 Bx	 + ! 2 -

(1-xt	 4
Note. A partial check of the work is obtained by showing that the particular integral y • x 1/4 - 3/5x

satisfies the differential equation.
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Since x • i is the only other finite singular point, the series converge in the annular region bounded
by a circle of arbitrarily small radius and a circle of radius one. both centred at x	 0

EXPANSION FOR LARGE IALL IES OF 'c

9. Solve 2%2 (X- 1)y" + x(3x + 1)y' - 2y • 0 in series convergent near x •

The substitution

1	 1	 dy dx	 - 1 dy	 - 2 dy	
a." •	 + -!	 +

2	 dx dx	 2 dx	 dx	 X5 dx	 x 
14 dz 2 	 dx2	 dx

transforms the given equation into

2(z_z2)i + (1-

	

	 - 2y - 0
dx

for which z - o, the transform of x w, is a regular singular point. We next assume the series solution

y	 Az * Az
*41 +	 *42+ ........+ Aqx	 +

and obtain the condition

	

- 1)A0x'	 + ( ( ii + 1)(2* + 1)A5 - (22 + 31 + 2)A.0 )1' + ............

+	 + n (2* +	 - 1)A - (2(&+n) 2 - (* + at) + 1] A,1_,5) x
•4n-1
 + . . . - 0.

The recursion formula is	 A,	 2(ii+n) 2 - ( * + n) +1	 and thus the series
(* +n)(2* + 2n - fl

• Ax'(1 + 2*3+2
	 2*2+3+2	 2m 77 2

x +	 •	 x	 +

	

(*+1)(2*+1)	 (+1)(2*+1) (t+2)(2*+3)

satisfies
* —1

	

2( z.x 2 )._2 + (l _ 5 z ) .Y_ 2	 - .(2*-l)A02

	

dx2
	 di

For * • 0, with A0	 1, we have	 Yt • 1 + 2z + 722/3 + 1122/45 + ........

	

2	 7• 1 + - + —	 112 + - +

	

X	 3x2 	45x5

	

and for * • i, with A0 1. we have	 Ys	 x*(1 + 4z/3 + 22z 2 /15 + 484x/315 .4

x 4 (1 +	 + _!!...
15.z	 315x5

The complete solution is

Y a Ay1	
2

+ By 2 • Ad + -	
7	 112
- + — 

4 .....
) + Bz(1 4 - + 

22
.. .±i. +.

	

2	 322	 45x	
3x	 15x 2 	315x

The series in z converge for I z  < 1. that is. for all z inside a circle of radius I centred0a

The series in x. converge for lxi >1, that is. for all xoutside a circle of radius 1, centred at x a 0.
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10. Solve zy + xi - x ) y ' + y • 0 in series convergent near x •

Making the substitution x	 1/i as in Problem 9, we obtain

1) 6 +(3-z)+y	 0
dx2	 di

for which z • o is a regular singular point. We next assume the series solution
1	 1+1	 .42

Y • A0 z + A . z	 + A 2 z 	 + ........+ An 	 + ........

substitute in I), and obtain

a (a + 2)A 0 z 1 + [ ( j + 1) (a + 3)A 1 - ( a - i)A0 ]z' + [ (a + 2)(. 4)A, - iAjz 14	 +

+ [(a+n)(a+n+2)A, - (a+i-2)A_1)z'	 + .............- o.

The roots of the indicial equation are a • 0,-2 and differ by an integer. From the recursion formula

An •
	 a+n-2	

it is seen that A2 -.	 when a -2. We replace 4o by B(a+2) and note(a + n) (& + n + 2)

that the series

(a-i) (a + 2)	 (a -1).	 2	 (a - 1)ay	 •Boz[(.+2	 £ +	 2	 +
(.+1)(a+3)	 (.+i)(.+3)(.+4)	 (43)2(+4)(+5)

(a-1)a(.+2)	 '4+	 z	 + ............I
( +3) ( + 4)2 (*+ 5)(* + 6)

satisfies the equation	
d 2

+ (3 2)	 +	 42) 2
2 *i

dz2	 di
Hence,

In 2 + B,z	 +	
2a+ i	 (a-1)(.+2)	

+ 
a
---))z +{i [	 - -

(a+i)(m+3)	 (a+1)(a+3) 
(—a+1	 +3

2.-i-	 -	 (a-i).	 (_J._ +	 + __!_)] 22 +
(a+1)(Jt+3)(a+4)	 (a+i) (At +3) (it +4) M +1	 t+3	 a44

2.-i	 (a-i).	 2	 1	 1))5 +

(it

(a-1).(a+2)	 2	 2	 1
(a+3)2(a+4)2(a+5)(a+e) - (aI3)2(a+4)2(.+5)(.+8) .+3 .+4 4+5 a+6

+ . ........... )	 also satisfies this equation.

Using a • -2 with B., - 1,wefind
-	 -2	 2	 3	 1y I • y 2 • z ( -3z + z ) • - - 3 and

•ZY	 71 In  + 2- 2 G + 3z + 422 - 11z/3 + i/8
12

	

• y1n- +x 4 ax + 4- 1I/3x + 1/ax 2 + ...........	 The complete solution is

y • Ay + By, - (A + B in . )(1/z - 3) + B(x 2 + 3x + 4 - 11/3x + 1/8x 2 + ........

The series conv rge for all values of x / 0.
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SUPPLEMENTARY PROBLEMS

Solve in series near x =0.

11. 2(x 2 +x 5 )y' - (x -3x 2 )y' + y	 0.

R.F. An • -A11..

Ans.	 y = (AVc + Bx)(1 - x + x -	 + ......	 Converges for jxj <1.

12. 4xy" + 2(1 -z)y' - y - 0.

R. F.	 A,1 •
	 1	

A,1_
2( +n)

	

2	 2

	

2	 2	 2Ans.	 +	 ).
211	 22.2!	 231	 1•3	 1 . 3 . 5	 1.3.5.7

Converges for all finite values of x.

13. 2x2 j" - xy' + (1-. 2 2 )y 	0.

R.F. An

	

	 A,..2 . n even; A	 0, n odd.
+n -1)(2ii +2n -1)

2	 11	 6
Ans. y • Ax(1 + 2 - +	

1	
+	

X	
+ .,

2 . 5	 2 . 4 . 5'9	 2.46•5•9•13

2	 1	 6
+ Bv'X	

x	 I
(1 + - + 	+	

I
	 + ...............

2 . 3	 2'43'7	 2'463711

Converges for all finite values of x.

14. xy' + y' + xy	 0.

R.F. An	 1 
2 A_ 2 . n even; A • 0. n odd.

( +n)
4	 'I	 6

Ans.	 y	 (A + B lnx)(1 -	 + _...... - _______ +)
2	 22.42	 22.42.62

+B	
x

(2
	x 	 1	 x

- -(1+-) +	 (1+ 1 +!) -

	

22	 22. 42	 2	 22. 42 62	 2 3

Converges for all finite values of x 1 0.

15. x 2y" - xy' + x 2 +1)y= o.	 R.F.	 An • -
	 A,,_2 . n even; A	 0, n odd.

+n -I)-

	

2	 4	 6
y • (A+ B In x)x(1	 - +I	 1	 2	 + ..........)

	2 2	2(2!)2 - 2(3I)2

2	
-)
• +

	

61	 2	
(1+	 (1+!+!) +

	

- 2 ( 2I )2	2	 26(31)2	 2 3

Converges for all finite values of x i o.

Ans



INTEGRATION IN SERIES
	

2)9

16. xy' - 2y' + y - 0.	 R F. A	 - _____________
(a +n -3) (a +n)

5	 5	 2	 5	 5x	 x	 x x	 x	 19x	 137x.Ans. y(A 4 B1nx)	
x

(--+---+ ... )+B(1+-+-.--+-.----+--------...),
12 48 480	 2 4	 36	 576	 28800

Converges for all finite values of x / 0.

17. zy" +	 + xy • 0.	 R.F. A	 -	 1	 , n even; A	 0. n odd.
(*+n)(. +n +1)

a-x	 x	 x	 I	 I
Ans.	 yAx (1--+-- ..... .)+B(1--+--

	

2!	 4!	 31	 5!

Converges for all finite values of x / o.

18. 12(1 
+ i)y" + x(z + 1)y' - y 1 0.

-1Singular points: x	 0.-i,	 R. F. A	 - 
a +n 
a +n + 1

Ans. y = Ax (I - x/3 + 12/6 - 1/10 + ........) + Bx(j + x).

Converges in the annular region bounded by a circle of arbitrarily small radius and a circle
of radius one, both centred at x • o.

19. 2zy" +	 - y	 x	 L.	 R. F.

	

(a +n)(2a	 i -1)

Airs. y	 .4(1 + z +	 + x/90 +	 +	 1 + x/3 +	 + x/630 +

+ 1 . , (
1x/,	 121F420 + x/18900 . .......

Ccricrges for all finite values of x.

Sole in series near x

20. 2x 5 y"	 x 7y'	 y = 0.	 R F	 A	 -	 1	
A

(a +n)(2.. e2n +1)

Ans.	 ...... )	 ...... ).
3z	 30x 2 	 630z	

I	 2	 5

Converges for all finite values of x / 0.	 -

21. 'y'	
(2	

)	 - y	 0. _.-.-•--	 R.F An

Ans.	 y	 (.4 + B ln!)(1	 1	 1	 1	
) +	

( I	 1	 1	 1	 1 1- 4..	 + — ( 1+-) + —(1+-+-) +

	

I	 I	 2	 6x 5	 x	
zx 2	 2	 6x 5	 2 3

Converges fair all finite values of x je o.
—29



CHAPTER 27

The Legendre, Besse], and Gauss Equations

THE TIIHFF; DIFE F:RI•\ lit!. EQI, ..t JIOS to he considered here are solved by the methods of the pre-
ceding chapter the lINt two have important applications in mathematical ph) sics. The solutions of
all three ha e inorr, i n:eresting proporliec

THE L.FGENDRF. FQtAUON

(1 - x 2 )y -	 y	 p(p 1) y = 0.

	

A solut on ol tl:	 L.i on in i c eon ercn near x o. an ordinji point, was called for in Problem
16, Chapter 2. I	 e; lain cond tI:\ &'a p ' hich will he stated later, we shall obtain here the solution
cc, n erizcnt near z	 .	 ci PC thi' u).! t itt on x r 1/: (see Chapter 2() the equation becomes

	

(:- ,2d_y 
• 2z	 . p(psl)y	 0

br slinli	 0	 ' a :i'.Lo ':iiuLir p'.t

'	 *•	 .?

	

Putting	 y	 4 .	 4	 .4k:	 4.:	 .	 we have

	

1)	 • ii 4.z' .	 _m^vk . 1	 ;)p.1)'4'	 •	 - (	 Ii(. • 2) • p(p . I)JA2

4	 •1).4,,' 	 •	 -(r.n)(m.t1) •pp

+ ..... . 0.

	\Vctikc	 4	 .	 ,i4.-	
.rt_2)(m.n_.1)

•	 Pt - 1)- p(p	 1)

y	 41*	 1)	 ,2	 1) (Ok	 211*

1	 -	 • 1) 	 i>. •	 -p	 • 1), f(. . 3it . 4) ->(p • i)J

	

L " R 1) (	 •	 j-' ii)	 • 3' 1 m '	 -	 * 1>) :in .	 • 6) 	 ( í • 1)]

s3ti'iIL	 jj' C eLji.ttit'I1

-(2	 ,.	 • p(.1y	 -m_1l.p(p.I)JAz
al

For it - _p	 sitli 4	 1,	 e

- '( -1) 2	 p(p - 1)( -2)(p -3)	 pp - 1(p -2)(p - 3 )(p -4)(p -5)
2(-1)	

_>	 2'4'6(-1)(-3)(_ 5)

-. p(p -1) -2	 p(p - l)(p -2) (p -3) - - p(p-1)(p-2) (o-3) ( p -4)(p 5)
2(? -t	 24(2p - 1) (	 -3)	 2'46(2p -1) ( 2p -3) (2p-5)

220
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For in	 p + 1	 ith A 0	 1, \e cihiain

'	 Ya	 (i •	 '	 1) (p 2)	 2	 (p	 1) (p	 2) (p +3) (p • 4)

22p - 3)	 2'4(2p+3)(2p+5)

(p*1)(p+2)(p43)(p44)(p5)(p8) zb
	

) +

2' 4 . 6(2p . 3) (2p . 5) (2 + 7)

•	 --1 (1 + 
(pl)(p2) — 2 + ( p+1)(p+2)(p+3)(P4) -'

X 	 x
2.4(2p+3)(24+5)

(p+1)(p+2)(p+3)(P4)(PS)(P6) -—x	 + ..........)
2'4'6(2p + 3)(2p .5)(2p .7)

Thus,	 y • Ay,	 By2

is the complete solution, conergent for lx! ) 1, provided that p	 1/2, 3/2. 5/2, ....... . or

p	 -3/2. -5/2, ........

Suppose p is a positi\e integer includin g 0 and c'ndcr the solution y j which is a pol y nomial sty

Up(Z). Putting p • 0.1,2.3 ...... in I). WC

1,	 u1(x)	 x,	 142(x)	 - 1/3.	 uz) a x 3 - 3z/5,

u(x)	 a	 s—i '	 — 1)	 41)	 h.2n
)	 x	 ,

ts
2	 ri! (2k-1) ....... (—+1)

Where	 denotes the greatest integer 	 i'.. if (k) a 3 if I • 7,	 (] • 4 if I • 8).

The pok riomials defined by

3)	 Pzt	 u 0(z)	
135	 Up(X)	 p	 0. 1. 2,a

2p (p!
)2

are LaHed Lc'cnJre -u ' k nomials The first few of these are

P0 (x) • u.j(x)	 • 1,

P(z)	 U1(z)	 a

1'3	 32	 1
x	 -	 .—	 -P2 (x) • - u2(x)	

2	 2

P2 (x)	 a	
1 . 3 . 1 . 3 (x)

	 a
3!	 2	 2'

1	 •	 35.
P4(z)	 1-3-5-	 5.7

u 4 (x)	 ' - x - 2— * 42	 1.3

4'	 2'4	 2'4	 2'4

1'3'5'79	 '' x	 2-"Pe(X)	 u5(x) • -	 x + ,— X,
5!	 2'4	 -	 24	 2'4

Pa(x)	 Ue(2)	 Z -	 X	 31'3 •• '' 11	 7-9- 11 b	 5.7.9 •	 35,7	 2	 1'35
•	 _----x

61	 2.4.6	 2'4'6	 2.4.6	 '2. -4.6

1'3"''13	 9.11.13	 'r	 9'i1	 ',
__	 + 3	

-
-x	 z etc

71	 2-4-6	 2'4PT(x)	 •	 &s,(x) 	 -	 7' 
'6	 2'4'6	 24'6

It :s clear from 3 that P(x) is a Part i cular solution of the Legendre equation 0 - x 7 )y - 2xy' + p(p 4

1) • 0.	 See Problems -6
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THE BESSEL EQUATION

x 2y" + xy' + (x 2 - k 2 )y = 0.

It is evident that x = o is a regular singular point. to obtain the solution in series, convergent rear
0. we substitute

	

Y = A0x + Aix* 	 1*1

and obtain	
+ A 2 2 4+3 x	 +	 .......•

( m2 - k 2 )A0x' .	 + 1) 2 - 2 
)A1x+i	 { ((	 2)

2
 - k 2 ) A, + A0)

.4 {
	 )

2 -	
A,1_}x	

.......
.- o.

	We take A 1 = 0 and A,1	 -	 1
A,1_2 and see that)2 -

	

Aox'{1_	 1	 2	 1
X 4-	 x+ 2) 2 - k2 ( a+ 2) - k 2 J ((	

42 - 01

	

1	 5
•••• ••• ••••••	 •••••••••

	

2	 2-k

satisfies the equation	
x Y"

2 	 2
+ x5'	 (x - k2)57. r 	2 - k2 )A0x

For m	 k with A0 1, we obtain

1	 2	 1	 1	 bY,	
4(k

=x	 x 4 

2	
x -	 -x

	

+ 1)	 421 (k	 1)(k • 2)	 4.3! k + 1)(k	 2)(k	 3)

and for * = -k with A0 = 1, we obtain

—k	 1	 2	 1	 1Y2	 X {1_	 —X	 x -

	

4(1-k)	 422'(1-k)(2k)	 4'.3!(1_k)(2)(3_k)

Note that Ya	 Y ilk = o,y is meaningless if k isa negative integer. and y 2 is ncaiiin gk ilk is a positive

	

integer. Except for these cases, the complete solution of the Bcsel equation is y - 4y,	 By 2 con\erL'entfor all x fi 0.

The Bessel functions of the fir.c: kind are defined by

11	 1	 9	 1	 xiJ (x)	 y	 r	 (_	 X2	 X	
.4 .....

) {_ -	 (-) +	 -) -	 -(-)	 )

	

2	 k'	 1! (k + 1)! 2	 2! k +2)! 2	 3! (k #3)! 2

'_ k(z) =	 - 1J ( i ).	 here k is a positive integer including 0.

Of these,	 Jc(x'	 1 -	 1 ( x ) 2 1 	 X 9	 1	 x i
2	 + ( 21 )2	-

	

x	 1	 x2	 1	 'i	 I1 --) +	 x - .-.---(-
X	

4
and	 J1(x)	

- 1!2' 2	 2!3! 2	 3!41 2.)

are more frequently used. 	
See Problems 7-10
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THE GAUSS EQUATION

(x_x 2 )y * (y-(+/341)x)y'- .x/3y = 0.

To obtain the solution in series, convergent near x = 0, substitute

U	 +i	 *4Ft
y	 A 0x +Ax	 +Arjx	 +	 4-

and obtain

a(. + y - 1)A0x' 1 + ((a 1)(a+ )')4 - {I(ai	 + /3) aB)A 0 )x' + ..........

+ ri-i+ {(u+n)(.+n+y-1)A, - [(a+ri-1)(a+ri+a+/3-1)+ci,3]A..}x 	 +	 0.

We take	 An	
(At +n-1)(asri#ci+)3-1)#a/.3	 and see that

( a + n)(+ n +7-1)

y x*( i+ 4(a+a+/3)+a,3	 (a+2+/.3)+a.,B(*+1)(a+ci+8+1)+a/32
(a+ 1)(*+))	 (a #1)(aty)	 (a+2)(.+y+1)

+ a __+a+/3)#L/3(a+1)+/3+1	 +2)(*+a+13+2)+a/35 +
(a + 1) (a + y)	 (. + 2)(a +y + 1)	 (a + 3) (a+ y + 2)

satisfies the equation

( -
	

+ [ y - ( +i3 +	 - a,& = a(a + 7- 1)AoxUi.

For a	 0	 kith A 1 1. we obtain

1)J3(J3 + 1) 2	 a(a + ) (a 4 2)/3(j3 + 1) (3 + 2) )
y j • 1 + —x +	 x +	 x +

t . y	 1. 2 .7(7 + 1)	 1. 2 . 3 . 7(7 + 1) (y + 2)

and for a	 1-y, y 1 1, with A	 1, we obtain

i-V	 (a-741)(,3-y+1)	 (c1-y+j)(a-y+2)c3-y#1)(J.3-y+2) 2
Y2	 [1+	 X +	 x

1(2-7)	 1.2(2-y)(3--y)

(a - ,y 1)(a-y+ 2)(-7+ 3)(/3-), 4- 1):3-y 2) 0--y 3) 5x	 +	 ...........J.
1 • 23(2-y)(3 -y)(4 -7)

The series Yt. kno n as the hvprgt'oin'ric series, is converent for x I < 1 and is represented by

y j = F(a./3,y,x).

Note that	 1--fx 	 F(a -y • 1. ,3_y + 1, 2 -y, x)

is of the same is pe. Thus. 1 	 is non-integral (including 0). the general solution is

y	 Ay, + By 2	AF(a.J3,y, x)	 Bx1,yF(a-y*1, 43-741. 2-y, x).

There are numerous special cases, depending upon the values of cL, 43. and y. Some of these Aill be

treated in the Solved Problems.
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SOLVED PROBLEMS

THE LEGE,VDRE EQL.4T10V.

I. Verily that 2p'(x) • —(xd	 - 1) 0 ,	 (Rodrigues' Formula)'xp

p
BN the binomial theorem. (x 2 - 1) Z (-1)	 p	 22x	 Then

nt(p-r%)?
(a p)

2	 P
(x	 (1)n	

-1) ........ (p-	 +1)z•-.-	 -I)

(I1
(_j) 9 2p (74-1) . . (-•% 41) (?p-i) (--1 ) •.. (p-1)	 -1-1)... 1 •	 pI

o	 2p(2p-1)... (Zp-i.j)	 (p-t)(p-2n-1) ... 1 n! (p-.n) I

No	 (in the denominator) ?(2p-1) •• (-+1) 
•	

and
when muItplied by (p)I icids 2"pi ((	 - 1) (	 -3.....( . -	 • 1)] . Hence.

p	 (IP]
-	 -	 ( 2p) p1	 -

(1 )

	

(20)1	 p(p-1) ... (p-.1)	 '-I'
no

	

2 
pt ni pi	 (	 - 1)(' 3) ... (2p -t + 1)

F'
	 t	

1a0(z)	 •	
2.p? P(z).

16 01
2. Show that P(x) •	 (-1)'	 - i)t	 -3nz	 From Problem I above.

2n! (p - n)t (p -)t

[ip)1 2	 P •	 (-1)n	 PI

(k o)

	• 	
; (1)n(,7,	 t(p-')I •	 pt	 -21X

n.O	 (p-)I nUp-n)l

tIP)

	

•	 ()	
(	 -	 ) O x

n.O

	

1	 1 2	 p 	I 	 p-inHence.	 P(x)	 —(z - 1)	 •	 (2p'

	

2 0 p1	 dx	 2nt (p-')I (p-i)I
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1

3. Ealuate 5 PI, (Z) P,(x) dx.

I. iuc Rodrigues' formula (Problem I),

	

1	

25 P1' (x) (x) dx

2	
J' d

.(x - 1)	
d ' ( 2 - 1) 3

 dx
1' *5

ni!	 dx"	 dx'

1'
2 	 3d	 a	 '-	 d	 2	 3	 d'

Let 'i • —(x - t and dv —(x -1) dx. Then du = —x1)" dx
I-dx	 Sdx	 dx1'

X.1	 lx1

and	 udv • utj	
- 5	 vdu5	 1

s-i	 '11	 1	 1	 5-1.'d	 2

	

d 2	 r d	 2	 s	 -	 d	
( x 2 - 1) . —(x

2
- 1) dx.(x	 1)

:	 j1	
11 dxdx

	

s-i 	 II
Now	 L_.__(x2 j)0, for ,	 1,2. • .,s-1; hcii.c. alter .ne n!cgration by parts.

	

I 
11 r'l	 S-i

	

1	 d 2 	rd	 2

-	 1''	 dx1	 dx'	 -
P(x) P3(x) dx	 -	 —(x.—(x 1, dx

	

2	 r!s!	 -

•\ second integration h part 	 ieid

I: F(x) P5(x) dx2
	

5-2
1	 d	 rd

—(x -1) -(x -1) dx
-	 r' St	 dx1'2	 dx2

and. alter $ i nteQrations h parts, y e have formally

2 1'
"1

	

(x	 j)	
2	

dx.-1).1,	 I	 P (x) P(x) dx	
• 1' . ,1'

	

2	 r'$l J

2 1'	 21'	 2r-2	 1'

Suppose sr. Then. since (x -1)	 • x	 - rx	 + ......+ (-1).	 —(x-l)1' =0

dx

andI P
1' 
(x) P5 (x) dx • o. Since r and $ enter s ymmetricall y , this relation holds also when r > :.

Thus, it holds when r i S.

Suppose	 r. Then A becomes

2
1'	

d21'	 2	 1'
2	

(-1)	 2	 1'
P (x) dx	 (x - 1) . —(x - 1) dx.

1'	 21'	 2	
dx21'2	 (r!)

2
2	 (_11'()!	 (x2- 1)1'dx

2

	

(x2_ 1) 1' = (Zr)!.	 Hence,	 P, (z) dx

	

21'	 2	 -1-1dx 2	 2 (ni)

1'

'(-1) . 2	 sin	 dO = _______ 	 using the(-1) (Zr)!	
J	

•x	 (2r)!	 2	 r!	 2
21'	 2	 2r	 2 1 . 3''' (Zr + 1)	 Zr + 1

2	 (r!)	 .	 2	 (r')

B

Nov.
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substitution x cos 0 and Wallis' Formula f	 ain21 0 dO	 2 fl!
C

4. Express f(x)	 x + 2x	 2 - x -3 in terms of Legendre polynomials

	

35	 15z	 h	 8	 62	 3Since P, (z)- x - - x + -	 then x	 x) + - x - - and

	

8	 4	 8	 35	 7	 35

	

(- P4(.) + 8
-x

2
 - 

3
—) + 2x 5 + 2x 2	

x	 3	 8 P4 (x

	

)+ 2x + 202	 108—x -x--.
7	 35	 -	 35	 7	 35

3Now x 5 = 	 P3 (x)-x	 and f(x) = ! p, ( X)
+ 	 P,(x) 4- — x +

2	 1x - 108- -.
5	 35	 5	 7	 5	 35

2	 2- P, (x)! and f(x)	 1. P. 	 + 1 P3 (x) + 	P2 (x)
1 	 224• -x - -

3	 3 5	 105

	

T5	 5	 21	 5	 105

	

P, (z) + 	 p3 (x) + 	 p, (z) + 	P(x) - 224 - P0 (x).

5. Show that (1-2xt+ e2)	 =
 

PO ( z ) + P(x) t 4 P" (z) t 2 	 + P(x) t , *

Now (1	 t + t2)	 [1- (2xt - t2)Y	 + 1( t -
t 2) + (

112) (3/2)	 - 2)2
2

_______1 . 3 ... (2k 
52xt	

2 k-2
)	

+ 1.3...(	 - 2	 1	 13" (2k 1)	 2+ 	 _________t )	 #	 (2xt-.( ) +
2 2 (k - 2)!	 -	 2_1(k -1)!	 2	 t

But (2xt -	 (21) k r - .....

(t- t 2 )	 = (2x)1t1 - (k-t)(2x)t

(2it - t2) h-2	 ()2 tk_2 - ( k -2)(2x)	 _i *	
- 2)(k - 

3 (Zx)" t - ...... etc.

Hence,	 (i- it + t2)	 1 + xt + ( 2 x 2 - !)t2 + .............+	 -1) 2hk

2 k!
- i..	 (2k	

(k - 1)22x Il_2 + 1 . 3... (2k -5) (k -2)(k -	
j k

2 _t (k -1)!	 2k_2(k -2)!	 2!

3 2	 1 2	 13."(2k-t)	 b

	

1+ xt +	 ( — x	 --)t.................
4- 	[2	 2

	

- kk	 1)	 k-2 • k(k-1)(k-2)(k-3) k .-+ •	 +
2(2k -1)	 2.4(2k - 1)(2k -3)

•	 + P2(x) t 2 4- ......+ P(x) t	 + ......

6. Show that P( 1) z 1.	 p	 0, 1. 2,3...........

Put x 1 in the identity established in Problem 5. Then

(1 _ 2t+t 2 	 (1_f)i	 +tP4• ......
	io(1) + PI( 1)t .- P2 1) t	 + ..... + P(l) t	 ......* identicaily.

Hcncc,	 P0(1) r P1)	 - P(i) r ..... . 1.
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7. Prove	 ... JO (X)- J1(x).
dx

n	 1	 x
J0(x)

	 2n

(ni)2

1X) 2
	 1	 x	 x4	 1	

4 
(_1)n4l	 1	 (x )2n2 +- - +—

(21)22	
-	 +	

[n 
+1)1) 2

and

x	 1 x5	 1 2 3	 1)n.1.	 I	 2 2n+i.Jo(x)	 - (_) + ._.—(-) - ____-(-)	 + .....+	
fl (n + 1)!	

+2131 2

2	 1 ( x )3.	 • +	
1)'	

1	 x 2n+i-	
- 	 () 	+	 ...)

co
2 2n.i

n.0n1(n+1)12>

More briefly.

d 	 OD	

2n.J(x)	 :
	 d 1(x)2t	 -	

ii +	
(_1)fl

(ni)2 2	 dx	 n-i	 )2 2

d	
-	 (-1)"	 1	 x 2ne2

dx	 [(n + 1)!J22 
	 (x)2n+1 -

n.O	 nl(n+j)! 2

d	 -k8. Prove	 a. — xk
	

i•Jk(x) = x 3 	(x).	 h	 —d x- 
•Jk (x )	 - x	 Jk.'j(x),dx	 k	 dx

where k is a positive integer.

k 1
dx

a) d CD
— r J(x)	 2h +7m

	

dx	 1) 
2 k+2n1 

(k + n)t

cn
C	 2k+ 2n	 2k+2n-1

I
	n 	 2	 rh (k+n)l

co
1	 2+2n-1=	 (-1)	 2
(k+n-1)!

OD
1	 x k+2'h-1	 h

Jo(-1)	 0)	 x
n!(k4n1)!	 2

b)
d-k j	 d	 n	 1

2co

	= 	
(-1) 2
	 nl (k+n)i

	

d	 I
-	 (_1)n 2 

k42n+2

	

OD	 OD2: n-j

(n+1)i (k4fl+1)f

	

I	 2,'+i	 -k	 n	 1	 x k'2n+= -	 (-1) -	 x	 = -X	 (-1)
n.D	 2	 n! (+n+1)!	 °	 fll(k4n+1)!2	 = -x	 J41

—30	
x).
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9. Prove	 a)	 Jbl ( x ) — Jk .(z )	 2	 J(z).	 b) Jk l ( x ) + J1 .,(x) • .

where k is a positive integer.

From Problem 8.

A) • x .- Jx • kx	 Jh (x )	 • x J_(z)	 and

B)	
X- Jk. 

Jh (X) =	 J,(x) — kxk.. J(x) . — x	 J. 1 (z).
dx

Then from A),

I)

	

	 ... J() +	 J(z)
dx

and from B).

2)	 J(x) —	 J(x)	 —

When 1) and 2) are added, we have a) when 2) is subtracted from I), we have b).

Note that when h) is subtracted from a), we have

	

2 ... J(x) — !	 — 2 J,jx)	 or	 J(z) =	 J(x) —

Note also that 1) is a recursion formula for Bessel functions.

1
10. Show that	 e	 = J0 (x) + I J (x) + .....+ t h	

(x) + .....+ — ) - (x) +
I 

	+ .! J...k(x) + ........•	 t1 J,(2).

x(t lit)	 et. -x/2t

222	 53

	

!—t	
xt	 xI	 x	 z

(1 +
	
+_+_—__+ .... £_+....](1_ —+

	2 	 22 21	 2 31	 2 n 	 21	 2 21

_______

	

4...... + (-	 .. 3.1) 	 + ...
S x3 S	 I

2 31t	 2'I ntt
In this product, the terms free of t are

(z)2 
+	 22

1	 *	

—	
1 (!)6  

+	
+ ( l)	

1	 2 2n— —	
+ •... 

= J0(x).

the coefficient of t is

it
2	 2	 5	 2	 2 

2	 +5
2	 5 5

— + .......
2 *k I	21 (k+ 1)1 • 2	 22 (k +2)1 22 21	 k +3)! 2 ) 31

1	 514b1 z	 1	 ______	 ______
.	 T	 ii	 +—	 —	

+ .......
	2 1 (k + 2)1	 2	 31	 + 3)1

=	 (-1)'	
1	

()+2n = J(x),	 and the coefficient of —1	 is
n!(k+n)I	 2
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I	 b+i	 *42	 2	 1+3
I	 I	 •___	 I

2* kI	 21+1 (1 + 1)1 2	 2142 (k + 2)1	 2 2!.	 2*45 (1 + 3)1 2 31

( 1) 1	 1 X 1
-	

1	 5)1+2 +	 1	 z 1+;	 1
11 (k + 1)!	 21 (A + 2)1	 - 31(A +3)!	 2 +

(-1) 
I 

J1 (x) - J_1(z).

THE GA USS EQ UA TION.

11. Solve in series (x _57)7 
+	 -Zx)y' -	 • 0.

Here a+ ,8 +I • 2, y 3/2. u8 • 1/4; thus a $ 1/2. and 7 • 3/2.

Then yj	 F(L 
1 3	 + x + 3x + Sx• 1	 —	 -	 - + .......

2 2 2	 6	 40	 112

and	 ye • xF(a-y+i, fl -y+i, 2-y, z)	 xF(0,0,.5) a i/vc,

and the complete solution is 	 y a 4 F(i, 1. . z) # B/p'7,

12. Solve in series (s -x')y " + 4(1-z)y' -	 • 0.

Here. a+ 18+i 4. V 4. a8 • 2; then a • 1. 8 a 2. y • 4 or a • 2,	 . 1. 7 • 4.

For either choice, YL • F(1,24,x) • F(2.1.4.x)

	

3j2	 3	 5q1

• 1+-+_+.__+_+__+ .......
2	 10	 5	 7	 28

Since -/-  4. the fourth term in y, has zero for denominator. However, one of a--y+2 , 6 --Y + 2
in the third term is zero so that

Yt - Zf(-2.-1,-3,z) • x- 5 F(-I.-2,-2,x) • z(1-x)

and the complete solution is

	

	
1 -xy • 4F(1,2.4,x) 4

13. Show that	 a) F(a,8, 18,x) • ( 1—I)a,	 b) xF(1.1,2.-x) • ln(1+x).

a) f(a.,8.fl.x) - 1 +	 + a(a.1)/3(8+1) 2 
+

1 . 2 . 8($+ 1)

lax + a(a+1) 5 2 + a(a+1)(a+2) 5 +- 1 

	

21	 31

b) x?(1.1,2,—z) • x (1+ !(_x) +	 22(_5)2 + 1-2-3-1-2-3 (_x)5 +
1 • 2	 1'2'2•3	 1•23•2'34

1	 12	 11a x(1 — -x + -z - —x 4........4 •
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SUPPLEMENTARY PROBLEMS

14. Compute a) P4 (2) = 55.3750. b) J(1)	 0.7652. C) .J(1)	 0.4401. d) F(1.1.10.-1)0.9147.

15. Verify each of the following by using the series expansion of P (x).

a) (x 2 _1)P(x) . (p+1)(P4.1(x) -xP0 (x)]	 p(xP,(x) _P.,1(x)].

b)P 41 (x) r xP(x) 4. (p+1)P(x).

C) (2p+ 1)P(x)	 P,1(x) - P 1 (x)	 ![(p + 1)P 41 (x) +

16. If Pa (2)a and P,(2) = b. show that	 -

a) P'(2) = 2 (b-2a), b) P,'(2) = (2b-a). C) P8 (2).	 (306-7a), d) P81 (2)	 (52b-14a).

17. If J, (2)	 a and J 1 (2)	 b, show that a) J,(2)	 b - a, b) J(2) = a - 4b, c) J(2)	 a.

18. Show that the change of independent variable x 2 .t reduces the Legendre equation to a Gauss equation.

19. a) Show that the change of dependent variable y = xz transforms y" + y • 0 into a Bessel equation.

b) Write the solution of the Besse] equation as y = C1zJ(x)	 and show that

and J(x) may bedefined as 
=-% ainx and bxc08x respectively.

c) Show that if the relations of Problem 8 are to hold for k • ± 4. then a b.

Note. These functions are defined with a	 ft

20. Use the substitution y x'z and then x	 (3t/2)2"3 to show that y"+xy 0 is a special case of

the Besse] equation, and solve.

Hint:	 z" + tz' # (t 2 - 1/9)z • 0.

	

5	 6
xAns. y	

X
 Ax --+ ______

22 3	 2,22327

5	 6
z	 x

	

3 . 2	 21 32 
2.5

9
X

_ + .......]

31 2 35 7.13

x

31 35 2.5.8

21. Solve (x 2 - 3x + 2)y" + 4xy' + 2y = 0 after reducing it to a Gauss equation by a substitution of the

form .z=z+i.

Hint: y AF(1.2.-4,x-1) + B(x.- 1)5 F(6,7,6.x-1) is not a complete solution since the sixth term of

F(1.2.-4,x-1) becomes infinite.

Ans. y	 A F(1, 2,8.2-x) + B(2-x)7F(-6.-5.-6,2-x)

22. Express each of the following as Gauss functions.

a) _!__ • F(1, /3, 3, x)	 d) eX = ha F(a. 1, 1. a/a)
1-x

b) arc sin 	 • xF(1 1.	
. 3

. x 2	

3.
	 x2

e) am a = 11• zF(a,8,-- —).
CL Cc13	22	 404

c) arc tan x • a F0. . . -z )



CHAPTER 28

Partial Differential Equations

PARTIAL DIFFERENTIAL EQUATIONS are those which contain one or more partial derivatives. They
must, therefore, involve at least two independent variables. The order of a partial differential equation is
that of the derivative of highest order-irk the equation. For example, considering z as dependent variable
and x, y as independent variables,

1)

	

	 x— + y	 - z
	 or
	

1) xp + yg = z
x

is of order one and

	

2	 2

+	 +	 = o
	

or
	

2) r 4- 3s 1' t = 0

	

?ix'ôy	 y2

is of order two. In writing l') and 2'), use has been made of the standard notation:

	

P —	 q= — . T=. S=— p t'— •

Partial differential equations may be derived by the elimination of arbitrary constants from a given
relation between the variables and by the elimination of arbitrary functions of the variables. They also

ay arise in connection with geometrical and physical problems.

J'IMINATION OF ARBITRARY CONSTANTS. Consider z to be a function of two independent variables
x and y defined by

3) g(x,y,z,a,b) = 0,

in which .9 and b are two arbitrary constants. By differentiating 3) partially with respect to x and y, we
obtain

4) =
x	 Bzx	 BX	 B z

and

L9	 =	 +	 =5) .	 —+
ay	 a zy	 ay	 az

In general, the arbitrary constants may be eliminated from 3), 4), 5) yielding a partial differential equation
of order one

6) f(x,y,z,p,q) = 0.

EXAMPLE I. Eliminate the arbitrary constants a and b from	 ax2, y 2 + ab.

Differentiating partially with respect to x and .,	 have

as
and

ay

Solving for a and b from these equations and substituting in the given relation, we obtain

231
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2	 (E)x+ ()y2 (.)(!)	 or	 pg + 2pr 2 y + 2qxy2 	 4xyz,

a partial differential equation of order one.

If z is a function of x and y defined by a relation involving but one arbitrary constant, it
is usually possible to obtain two distinct partial differential equations of order one by eliminating the
constant,

EXAMPLE 2. Eliminate a from z • a(z + y).

Differentiating with respect to x gives p a, so that the partial differential equation 2 • p(. + y) is
obtained. Similarly, differentiation with respect to ygives q • a and the equation z - q(x+y).

If the number of arbitrary constants to be eliminated exceeds the number of independent variables,
the resulting partial differential equation (or equations) is usually of order higher than the first.

EXAMPLE 3. Eliminate a,b,c from z • a.x+ by+cxy.

Differentiating partially with respect to x and y, we have

	

(I)	 p • a + cy	 and	 (ii) q • b + cx.

These, together with the given relation, are not sufficient for the elimination of three constants. Dif-
ferentiating (i) partially ,with respect tOx, we have

2
• - • r • 0,

zz x2

a partial differential equation of order two. Differentiating (ii) partially with respect to y ,we have

2
I q • I!
Ty	

• o.	 of order two.

Differentiating (i) partially with respect to y or (ii) with respect to X. we obtain

• q •	 • * • C.

	From(i), p- a+sy and a • p - sy; from (ii), b	 q-sx.

Substituting for a,b,c in the given relation. we-obtain

or order two.	
2	 (p - sy)z I (q-.x)y + sxy • px + qy - sxy.

Thus, we have three partial differential equations r = 0, t 0, 2 px + qy - :xy of the same (minimum)
o er associated with the given relation.

Sec also Problems 1-4.
E MINATION OF ARBITRARY FUNCTIONS. Let u=u(x,y, g) and v=v(x,y.z)be independent

functions of the variables x, y, 2, and let

7)	 ON. V ) = 0

be an arbitrary relation between them. Regarding z as the dependent variable and differentiating part.
ially with respect to  andy, we obtain

8)+	 +	
= 0	 and

	

vx	 Bz



9)	 + q) ++ q!!) = 0.
uy	 z	 vy	 z

Eliminating	 and	 from 8) and 9), we have
ZV

u	 BUZV vI

dx P— I

'au +q	 !+q!
By	 z	 y	 zi

= (!!+p)(!+q!) - ( LU BY
Bx	 z y	 Bz	 y	 z dx	 z

-	 - u v	 u V	 U V	 U V	 U %'

-	
+p(-—--)+q(--—--) = 0.

Writing	 ¼P =	 -	 !.	 ?'.Q =-	 -
ay z	 x Zx	 Bx ZY By ax

this takes the form
Pp + Qq =

a partial differential equation linear in pand q and free of the arbitrary function 4(u. v).

EXAMPLE 4. Find the differential equation arising from	 (z/x 3 . y/x) 0.	 where 0 is an arbitrary

function of the arguments.

We write the functional relation in the form	 u, v) '0 with u = z/x 3 and v y/x. Differentiating

partially with respect to x and y, we have

-	 +	 (- L)	 o.	 +	 • o.
3	 v z2	

Z

The elimination of 	 and	 yields
BU

p1* 5 - 3z/x	 —y/z2
- 3z/x 5 +	 0	 or	 pz + qy • 3z-.

q/x 5	1/x

The arbitrary functional relation may also be given by -L • 	 or z - x3 f() where f is an arbitrary
X5

function of its argument. Using v y/x and differentiating z	 x3 f(v) with respect to x and y yields

p • 3x2 f(v) + X3	 3*21(v)	 1 5 ( L)(_ .L )	 3x2f(v) -
dvr	 du	 x2

q	 z	 L 1V• x()() = x2f'(v).

When f'(v) is eliminated from these, we have

px + qy	 3x5f(v)	 31

as before.	 See also Problems 5-8.



SOLVED PROBLEMS

I. Eliminate a and b from z	 (x2 + o)(y2 4. b).

Differentiating partially with respect to x and y. p	 2(y 2 + b)	 and q	 2y(x 2
4.
a). Then

• b =	 • 
12+0 •	 . and z	 (x 2 + a)(y 2 + b)	 (1 )(L) or pq	 4zyz

2x	 TY	 2y 2x

We could also eliminate a and 6 as follows: pq 4xy(y2 . b)(x 2 + a) = 4xyz.

2. Find the differential equation of the family of spheres of radius 5 with centres on the plane x y.

The equation of the family of spheres is I) (x -a)2 + (y -a)2 (z - 6)2 25, a and 6 being arbitrary

constants. Differentiating partially with respect to x and y, and dividing by 2, we have

(x-a) + (z-b)p	 0 and (y-a) + ( z-6)q x0.

Let z - b -a; then x - a =pa andy - a =q.. Making these replacements in I), we get

.i2 (p2 +	 + 1)	 25.

Now x - y • (p -q).. Then.	 _:1, . 2 p 2 + 
9

2 1)	
(x •Y) (p2 + q2 + I)	 25,and the required

P q	
(Pc)

differential equation is cx - 
Y2
) (p2 +	 + 1) = 25(p -9)2.

3. Show that the partial differential equation obtained by eliminating the arbitrary constants a.c from

2	 ax • h(o) y • c, where h(u) is an arbitrary function of 4. is free of the variables x,y.z.

Differentiating x = ax + h(a) y +	 partially with respect to x and y. we obtain p a and q h(a).

The differential equation resulting from the elimination of a is q = h(p) or f(p.q)	 o. where I is an

arbitrary function of its arguments. This equation contains p and q but none of the variables X.Y.Z.

4. Show that the partial differential equation obtained by eliminating the arbitrary constants a and 6 from

Z • ax + by + f(a.L}),

the extended C/al raut equation, is
x • px + gy + f(p.q).

Differentiating z	 ax +6y +f(a,b) with respect to x and y yields p r a and q = b, and the required

differential equation follows immediately.

5. Find the differential equation arising from 4(x+y+z. 2 2+y 2-2 2 )	 0.

Let u • x +y + z. v x x 2 + y -	 so that the given relation is (u.v)	 0.

Differentiation with respect to x and y yields

1 + p) +	 - 2p)	 0	 ( 1 + ) 4. 	 22q) - o. Eliminating	 and	 . we have

1+p 2z2z
= 2(y -z) + 2p (y + z) - 29(z +x) • 0	 Ui	 (y + z)p - ( z z)q	 x - y.

1.q 2y-2xq
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6. Eliminate the arhitrars Cunction	 (x + y) from z '	 + y).

Let x + y r u so that the given relation is z

Differentiating with respect to x and  yields p	 = ' ( u) and q
du

Thus, p	 q is the resulting differential equation.

7. The equation of any cone with vertex at P0 (x0 ,y0 , Zo) is of the form
X-X

' , L_i )	 o.
2 -X	 2 —

Find the differential equation.

x -x0Let —	 u.	 _:-	 v so that the given relation is 	 (u, v)	 0.
2-20	 2-20

Differentiating with respect to x and Y. we have

(p YY0	 = o
2	 dv—	

(z-z)	 (z — 20) 2

q X — 0 

2	
1	 '	 = 0.

(z -20)	 (z -Zn) 
2

Eliminating LO and Llk we obtain p(x — x0)	 q(y y)	 2 - 2o.

8. Eliminate the arbitrary functions f(x) and g(y) from z	 y f(x) + x (y)

Differentiating partially ;ith respect to x andy, we have

I) p	 y f'(x)	 g(y)	 and	 2)	 q = f(x) + x g'(y).

Since it is not possible to eliminatef. g ,f'. g'irom these relations and the given one, we find the second
partial deri a lives

3) r = yf"(x).	 s = f'(x) + g ' ( y ).	 t

From I) and 2)c find f'(x) =	 p-g(y))	 and g'(y) = ! q_f(x)). Hence,

S	 P(X) + g Yy ) = -[p-g(y)] + -[q-f(x)].

Thus. zys = x[p_ g(y)J + y [q _f(x)] = px + qy - ly f(x) + x g(y)) = px + qy -2 is the resulting
partial differential equation.

Note that the differential equation is of order to although, in general, a higher order is expected. How-
ever, since one of the relations 3) involves only the first derivatives off and g it is possible to eliminate
f, g, P. g' between this relation, 1), 2), and the given relation.

9. Find the differmnal equation of all surfaces cutting the family of cones z 2 + y
2 — a 2 z 2	 0 orthogonally.

Let z f(x,y) be the equation of the rcqured surfaces. At a point P(x,y,z)Ofl the surface, a set of

direction numbers of the normal to the surface is (p. q, -i). Likewise, at P a set of direction numbers of

the normal to the cone through P is x.y,-.az) . Since these directions are orthogonal.
px + qy +	 0.

The elimination of a2 between this and the given equation yields the required differential equation

31	 z(px+qy) + x 2 + y2 = 0.
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10. A surface which is the envelope of a one-parameter family of planes is called a developable surface, (Such
a surface can be deformed (developed) into a plane without stretching or tearing.) Obtain the differential
equation of developable surfaces.

Let z	 f(x,y) be the equation of a developable surface.

	

The tangent plane at a point (xo, Yo, z	 of the surface has equation

I) F	 (x -xo)p	 (y - yo) q - (z -z0 ) r 0.

	

Now when p and q satisfy a relation	 (p.9) c 0. I) is a one-parameter family of planes having

	

f(x,y) as envelope. Thus	 (p,q)	 0 or q	 X(p) is the required differential equation.

The cone of Problem 9 is a developable surface since p 	 • q .i satisfies

	

a 2 (p2 . 9 2 ) - 1	 0.

11. Eliminate the arbitrary functions 0, and q5, from

1 (y+mz) + 02(y+ii2x)w 451 ( u ) +

in which *	 & 2 are fixed constants.

Differentiating partially, we obtain

r 2

	

2	 dv	 du
2	 + 2 d24 	 d

	

td	
•*	

2 •
	 $ =	

2	 2 
dv 2 	 du 	 dv2

	

2	 2
	*t 	 r

Eliminatingwe have	 *1	 S	 - 2 2 )r - (a - it)s + ( J
 

a2 - sIa ) t	 0

	

ciu2	 dv2

	

1	 1	 t

	

or, Since at ' 2'	 r -	 + a)s + * a(	 0.

12. Show that (a) z	 + by 5 and (b)	 z = ax  + bx 2y + cry2 + dy/x give rise to the same differential
equation.

a) Differentiating	 i,t5	 3 partially with respect to x and y , we have

P 3ax 2 and q = 3by2.
ThuS,pr + qy	 3(a-z5 + by 5 )	 az is the resulting differential equation.

b) Differentiating	 ax 5 + bz 2y + cry 2 + dy'/x partially with respect to x and y. we have
2 2bxy cy2 - dy"/x 2 and q 6x2 + 2cxy 4dy3/x.

Thus, px qy 3(ar 5 + 6X2  cry2 + dy'/z) 3z as before.

The fact that these two equations, one with two arbitrary constants and the other with four, give rise
to the same differential equation will indicate the subordinate role which the arbitrary constant will play
here. In its place we will have arbitrary functions. Since (a) may be written as

	

z . ax 5	 by' . x5[u+b(y/z)5]
while (h) may be written as

z	 x 3 [a + b(y/z) + c(y/z)2 + d( y/x ))	 x5.h(y/x),

each is a particular case of z x 3.f(y/x) considered in Example 4.
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SUPPLEMENTARY PROBLEMS

Eliminate the arbitrary constants a.b.c from each of the following equations.

13. z	 (x—a)2 • (y.-b)2 	 Ans.	 4z	 p2

14. z • axy + b	 xp - yq • 0

15. 4x+by+cz1	 r.O, s0, or 1.0

16. x • axe' + ja2 e 2 + b	 q	 xp + p2

17. z •	 y/22..a2 + 6	 pq • xp + yq

IS. x 2 /0 2 
+ y2 /6 2 + z 2/c 2 • 1	 xzr xp2 — zp • 0. yzt + yq 2 - xq 0, or za + pq • 0

Eliminate the arbitrary constants o,6 and the arbitrary functionsi.f.g.

19. z	 x24(x_y) or I(Z/x t , x—y) • 0
	

Ans.	 2s •zp+xq

20, zyz •4(x4.y+.z)
	

x(y - z)p + y(z - x)q • z(x - y)

21. z • (x.y)(x 
7 

-y 2)
	

yp + xq • z

22. 2 • f(x) + C
y g W
	

t — q • 0

23. x	 J(z) + g(y)	 ps - qr • 0

24. z	 f(xy) 4 s (x.y)	 Ans.	 x(y - x)r - ( yT -x 1 ): + y(y -x)t + (p-q)(x+y) • 0

25. z • f(x + 2) + g(x y)	 Ans.	 qr - (1 + p # g)s + (1 + p)t • 0

26. z • ax 1 gy	 p - xr • 0 or S • 0

2
27. z • (a

7 	 2
+ 2)x + axy # bx + $( y • ax)	 r - 21 4 rt - a	 2

28. Find the differential equation of all spheres of radius 2 having their centres in the sOy plane.

Hint: Eliminate a and b from ()7 
+ y -.b>2 + 

2	 Ans. z 7 (p1 + q + 1) • 4

29. Find the differential equation of planes having equal x- and y- intercepts.	 Ans. p - q • 0

30. Find the differential equation of all surfaces of revolution having the a- axis as axis of rotation.

Hint: Eliminate	 from a • (p (/x + y 2 )	 y2).	 Ans. yp-xq • 0



CHAPTER 29

Linear Partial Differential Equations of Order One

THE PARTIAL DIFFERENTIAl. EQUATIONS of order one

l)	 px 4 qy = 3z	 and	 1,) px 2 + qy = z5

are called linear to indicate that the y are of the first degree in p and q. Note that, unlike linear ordinary
differential equations, there is no restriction on the degree of the dependent variable z.

All partial differential equations of order one which are not linear, as

2)	 p2 + q 2 	 1
	

and	 2,) p + in q	 2z,

are called pron-linear,

LINEAR PARTIAL DIFFERENTIAL. EQUATIONS OF ORDER ONE. Equation 1,) was obtained in
Chapter 28, Example 4, from the arbitrary functional relation

(z/x, y/x) = 0

or its equialent z/x 5 = f(y/x). This solution. involving an arbitrary function, is called the 'm'ral ia/u-lion of 1k).

The differential equation was also obtained (Chapter 28, Problem 12) by eliminating the arbitrary
constants from

4) 1 = ax 3 + by3
and from

Z = x3 + bx 2y + cxy 2 + c,'/x.

A study of the problems of that chapter indicates that relations involving two arbitrary constants usually
yield non-linear partial differential equations of order one, while those involving more than two arbitrary
constants yield equations of order higher than one. However, as was pointed out in Chapter 28. Problem
12. both of these relations are particular cases of the arbitrary functional relation 3). It is clear then that
the general solution of I) yields a much greater variety of solutions than that obtained (in the case of
ordinary differential equations) through the appearance of arbitrary constants; for example,

x/x 3	A sin(y/x) 2 + B cos(y/x) + C ln(y/x) +	 + E(y/x)2
is included in the general solution 3).

THE GENERAL SOLUTION. A linear partial differential equation of order one, involving a dependent
variable z and two independent variables x and y, is of the form

5) Pp # Qq = R

where P, Q, R are functions of x, y, z.

If P = 0 or Q = 0, 5) may be solved easily. Thus, the equation Lz = 2x + 3y has as solution z =

x 2 + 3xy + (y) , where 0 is an arbitrary function.

3)

238
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6)

Lagrange (educed the problem of finding the general solution of 5) to that of solving an auxiliary
system (called the Lagrange system) of ordinary differential equations

dx -	 - di
P	 Q	 R

by showing (see Problem 7) that

7) Cu. v) = 0,	 (4,. arbitrary)

is the general solution of 5) provided U = u(x,y, z) = a and v = v(x,y, z) = b are two independent
solutions of 6). Here, a and b are arbitrary constants and at least one of u, v must contain z.

EXAMPLE 1. Find the general solution of

pz + qy	 3z.

The auxiliary system is	
dx	 dy di

From	 , we obtain u z/x	 a; and from	 - LY . we obtain v y/x
X	 32	 x	 y

Thus, the general solution is 	 (z/x. y/x) 0, where 4, is arbitrary.

Of course. from LY =	 . we obtain z/y . c, and we may write
y	 3z

0	 or	 ),(z/y,y/x)	 0,

where qj and X are arbitrary. However these are all equivalent and we shall call any one of them the
general solution.

The above procedure may be extended readily to solve linear first order differential equations involving
more than two independent variables.

EXAMPLE 2. Find the general solution of

	z 	 z
X - 4. y - + t	 xyt,Bz

	

x	 73y	 7

being the dependent variable.

	

dx	 dy	 dt	 d
The auxilary system is	 -	 -	 -	 -

	

x	 y	 t	 xyt

We obtain readily u x/y a • v	 t/y	 6.
A third independent solution may be found by using the multipliers yl , xt, xy. -3. Since

x(yt) + y(xt) + t(xy) + (xyt)(-3)	 0.

ytdx + xtdy + xydt - 3 d	 0

and	 xy, - 3z	 c.

Thus, the general solution is 4,/y, t/y, xyt -32)	 0.
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COMPLETE SOLUTIONS. If u = a and v =b are two independent solutions of 6) and if a8 are arbit-
rary constants,

8)	 U = av + /3
is called a complete solution of 5). Thus, for the equation of Example 1.

x/x 3 = a(y/x) + /3
is a complete solution.

A complete solution 8) represents a two-parameter family of surfaces which does not have an envelope,
since the arbitrary constants enter linearly. It is possible, however, to select one-parameter families of
surfaces from among 8) which have envelopes. As shown in Problem 8, these envelopes (surfaces) are
merely particular surfaces of the general solution.

SOLVED PROBLEMS

Find the general solution of	 + aq	 1.

The auxiliary system is 	 .
2	 3

From	 • we have x - 2: - a; and from	 • we have x -	 a b. Thus, the general solution

is	 q6 (x -2:, 3x -2y)	 0.

The complete solution x -2: • a(3x - 2y) + ,8 is a two-parameter family of planes. The one-parameter
family determined by taking /3 a 2 has equation

A) x -2: • a(3x -2y) +
Differentiating A) with respect to a yields o • 3* - 2y + 2a or a - (3z -2y).

Substituting for a in A), we obtain the envelope, a parabolic cylinder, x - 2z 	 (3x -
This cylinder is clearly a part of the general solution.

Find the general solution of y2 :p - x 2 zq a 
x2 

Y.

	

dyThe auxiliary equations are	 • -_- = dz
7	 2	 2yx	 -xx	 xy

From 42	 or z dx + ydy 0, we have y2 + 2 .  a; from 
y z — 2 

we have x5 +	 6.

Thus, the general solution is (y2+z, x+y) • 0.

"Find the general solution of (y -z)p + (x - y) q • : - z.

The auxilary system is .±_	 ±_ •

	

Y-2	 z-y	 :-x

Since (y-z)+(x-y) +(z-x)	 0. dz+dy+dz 0 and r+ye: • a.
Since x(y-z)+z(x-y)+y(:_x) = 0. xdx + zdy+ydz -0 and x 2 +2y2 - 6.
Thus, the general solution is 	 q5 (x+2yz. z+y+:) • 0.
The complete solution *2 + Zy: a ci(z +y +x) + 6 represents a family of hyperboloids.



LINEAR PARTIAL EQUATIONS OF ORDER ONE 	 241

	

/ind the general solution of (2 
- Y -	 + 22yq 2xz.

The auxiliary system is	 2
dx	 dy	 dz

	

— 2 - 2	 a

From ±. ., we obtain y/z a.
2xy 2zz

From	 =	 or
dx	 xdx+ydy+zdz	 xdx+ydy+zdz	 dz	 2(x dx +ydy + z dz)
-	 ____________________________________
2xx	 x(i 2 - Y 2-	 + y(2xy) s z (2xz)	 x(x2 +Y + 2 2 )	 2	 2 

•Y 
2 • 2

2	 2	 2
•	 I +	 +2we obtain	 b.

2

	

2	 2	 2
Thus, the general solution is 

k. x + Y + 2	
o.

The complete solution x2 + y2 + z2 ay + ,8z consists of the spheres through the origin with centres on
the plane yOz.

4lve ap + bq + cz 0.

The auxiliary system is 	 --. From	 . we obtain ay - bx	 A.

	

a	 b	 -cx	 a	 6
dx	 dx • 	cIf a 0. — = - yie 'ds In z	 - —x in B or z = Br'0. and the general solution may be-cx	 a	 a

- cx /a
written as 2	 C	 t^(oy-bx). If 5	 ,	

dx	 dy	 -cy/b

	

-	
= ... yields z	 Ce	 • and the general solution

may be written as	 -c y1 b
'/'( ay- Si).

lve I)	 q+zO.	 2)p-39 +2z'0.	 3)	 +3q+5z=0.	 4) q+2z=O.

I) Comparing with Problem S above, a 2. 6 1. c=1.

The general solution is z 	 a_2(2y_x) or x	 e/J(2y—x).

2) Here, a 1, 6 —3. c 2. The general solution is z	 e' 2 ' cy + 3x) or 2	 (y + ax).

3) The gencr	 olution is z	 - 3%) or I	 4'(2y-3x).

4) The general solution is	 e24(-x)	 e2ib(x).

dx- dy - di

11,711 

Show	 . herethat if u= u(x,y,	 a and v	 independent solutions 01v(x,y.x) = b are two mdci	
Q H

— - - - -x 

P,Q.R are functions Of x,y,r, then (u,v)	 0. with 45 arbitrar, is the general solution of Pp 4 Qq	 H

Taking the differentials of u	 and u b. e ha\c

I4•—dy+—dxO,	 dz+ — dy	 dz.0.
zz	 BY	 -62

Since u and i' are independent functions, we ma solve for the ratios

dx:dy:dx- - -	 -)	 ( f -)	 P:Q:B.—)	
Z X B1 Bz	 x By	 y BX

But these are the relations (see Chapter 28) defining P.Q.R in the equation Pp+ Qq = H hosc general
solution is c(u,v)	 0.
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8. Let u • av + 8 be a complete solution of Pp + Qq B. From this two-parameter family of surfaces,
select a one-parameter family by setting 	 = h(a), where his it gien function ofa.and obtain the enelope.

The envelope of the family

I) u	 ,v 4 h(a)

is obtained by eliminating a between I) and

2) o = v + h'(a).

Solving 2) for a	 v)	 and substituting in 1), we have

3) v..(v) + h[(v))

Now)) is a part of the general solution (u.v) 0. Thus unlike the case of ordinary differential equations.
the envelope is not a new locus.

If h(a) is taken as an arbitrary function of a, )(v) is an arbitrary function of v, and 3),s the general
solution. Thus, the general solution of a lineai partial differential equation of order one is the totality
of envelopes of all one-parameter families I) obtained from a complete solution. It is to be noted that
when h(a) is arbitrary, the elimination of a between I) and 2) is not possible. thus, the general solution
cannot be obtained from the complete solution.

9. Show that the conditions for exactness of the ordinary differential equation

.(x.y) M(x,y)d + M(x.y) N(x,y)dy	 0

is a linear partial differential equation of order one. Thus, shos how to find an integrating factor of
Mdx+Ndy =0. (See Chapter 4.)

If	 jMdx i- u Ndy	 0

is exact, then !(,.M) = '-(.iN)	 or	 M	 - N	
Bx	 By

This is a linear partial differential equation of order one for which the auxiliary s ystem is

d LL

-N	 U
3x 3y

Any solution, involving ju, of this system is an integrating factor of Mdx N dy = 0.

Writing I) in the form
BN 3M

2)	 dx = ____	 it is e dent that if
-N	 U

3N 3M	 a1v 2W

i	 ..	 3
-	

= f(x). then	 ff(x)dx i
= e	 s an integrating	 :r or it Bx	 gy.	

Jgydy Is an
-N	 hi

integrating factor. Moreover, if the equation is linear (that is. y' Py	 Q . then M P) - ç,	 i and 2)

becomes Pdx and	
fpd.x i

= e	 s an integrating factor.

	

Py-Q	 M

10. Find an integrating factor for (2xy - y 2 )dz - (2x	 xy)dy = 0.	 (Sec Problem 9 ahoc

Here M	 2x 5 y-y 2 .	 N	 -(2x+xy). 2x 5 -2y. 	-	 -(&xy).
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We seek a solution inolving	 of	 dx	 dy	 d ju

2x # zy	 2x3y - y2	 j.. (y - lox 5)

From	 d	 -2ydx-3xdy	 -2ydx.-3zdy	 d
or	

-2yd.x-3xdy
- =

2(y-iOx 3 )	 -2y(2x +xy)_3x(Zx 3 y-y 2)	 xy(y - lox 5)	 XY

	we obtain in 4= -2 in x - 3 in y. Thus,	 x2y3 is an integrating factor.

II. Find the integral surface of x 2p + y 2 q +	 = 0	 which passes the hyperbola
xyx+y. z=i.

The auxiliar y system is 
dx	 dy 	di
-	 - = -

-	 x2	 y2	 -z2

From	 am uwe obtain	
X + 2 a, and from	 =	 we obtain v = y 

+i
- b.- 

	

2	 xZ	 2	 2

We first eliminate xo,yo, Xo between x0 y0 x0 + y , z0 i and	 u 
= X0 + Z0	 2-- = a	 and

	

xozo	 xo

	

Yo 20	 Yo	 5. Sol ing the latter for x 0	 Yo	 and substituting in x 0y0 X0 4 Yo.-
)ØX0	 Yo	 a - i	 b - i

1
	we obtain	

1	 1
- + - or a+ 5 3 as the relation which must exist between a and

(a-1)(b-1)	 a-i	 b - i

b. Then the equation of the required surface is

	

a+b • u+v = _ i+L_1 	
3	 or	 2xy+x(x+y)	 3xyz.

xx	 yx

SUPPLEMENTARY PROBLEMS

Find the general solution of each of the following equations.

12. piqz

13. 3p+4q2

14. yq - xpz

15. zip + yzq xy

2	 2	 216. xp+yqz

17. yp_xq+x2_y2.o

18. yip - xxq xy

19. xp#yq -x

20. x(y-i)p + y(z-z)q	 z(x-y)

21. x(y2 - z 2 )p + y(2 2 -x2 )q	 z(x2-y2)

Ails.	 z

3y-4.x	 f(3z-2x) or 4(3y_4x, 3x-2x) •O

c(xy.XZ) = 0

y - xg(xy-22)

X - y = xy(1/x - 1/2)

ct(x
2 	 2

+ y • xy - z )	 0

2 2 	 7	 2
95(X +y • y 4-2 )	 0

22
x + x = ycbx -z )

(xyZ. x+y+i) • 0

(xyi, x
2 +y 2 +2 2

 )	 0

22. Find the equation of all thesurfaces whose tangent planes pass through the point (0.0,1).
Hint: Solve xp+-yq a i — i.	 tins. z • 1 +xc(y/x)

23. Find the equation of the surface satisfying 4yzp • q + 2y = 0 and passing through y2 + 
2	 • x *	 2.

-32	
Am y2 +2 2 +x+z 3



CHAPTER 30

Non-linear Partial Differential Equations of Order One

COMPLETE AND SINGULAR SOLUTIONS. Let the non-linear partial differential equation of order one
I)	 f(x.y,z,p,q)	 0

be derived from

2) g(x,yz,a,b)	 0

by eliminating the arbitrary constants a and b. Then 2) is called a (or the) complete solution of I).

This complete solution represents a two-parameter family of surfaces which may or may not have an
envelope. To find the envelope (if one exists) we eliminate a and b from

g =o, Lg =O,	 =0.
If the eliminant

3) k(x.y,z) = 0

satisfies I), it is called the singular solutio,r of 1), if
X(x,y,z) = '(x y z).i(x,y,z)

and if If = 0 satisfies I) while ' = 0 does not, 47 = 0 is the singular solution. As in the case of ordinary
differential equations (Chapter 10), the singular solution may he obtained from the partial differential
equation by eliminating p and q from

f=o Lf =o	 =o.
ap

EXAMPLE I. It is readily verified that z = ax + by (a2 
6

2 ) is a complete solution of Z	 px qy - (p2+ q 2 ). Eliminating a andb from

• z ax - by + a2 + 62	 0,	 26 • —x + 2a =0,	 = —y + 26 = 0.
Bb30

ve have	 2 
+ Y 2	 (X	 y2)	 (x2 + y'). This satisfies the differential equation and is the

singular solution. The complete solution represents a two-parameter family of pla'nes which envelope
the paraboloid x 2 +y2 41.

GENERAL SOLUTION. If, in the complete solution 2). one of the constants, say b, is replaced by a known
function of the other, say b = 0(a) , then

g(x,y,z,a,(a)) = 0

is a one-parameter family of the surfaces of I). If this family has an enelope. its equation may he found
as usual by eliminatina from

9(x,y.z.8,0(e)) = 0	 and	 -ì 4(x,y,z,a,(a)) = 0

and determining that part of the result which satisfies I).

244
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EXAMPLE 2. Set b . (c)	 a in the complete solution of Example I. The result of eliminating a

from g • 2- a(x + y) + 2a 2 0 and	 -(x + y) + 4a • 0 is z • !(X + y) 2 which can be readily shown

to satisfy the differential equation of Example 1 . This is a parabolic cylinder with its elements parallel
to the zOy plane.

The totality of solutions obtained b y varying (a) is called the general solution of the differential
equation. Thus, from Example 2, 8z = (x + y) 2 is included in the general solution of the differential
equation of Example I.

When b = (a), 0 arbitrary, is used, the elimination of a between

=O and

is not possible hence, we are unable to express the general solution as a single equation, involving an
arbitrary function, as we were in the case of the linear equation.

SOLUTIONS. Before considering a general method for obtaining a complete solution of I), we give special
procedures for handling four types of equations.

TYPE 1: f(p, q) = 0.	 Example: p2 -	 = 1.

From Problem 3, Chapter 28, it follows that a complete solution is

4) z = ax+h(a)y+c,
where f(a,h(a)) = 0, and a and c are arbitrary constants.

The equations for determining the singular solution are

z = ax + h(a)y + C.	 0 = x + h 1 (a) Y.	 0 = 1.

Thus, there is no singular solution.

The general solution is obtained by putting c = c(a), 	 arbitrary, and eliminating a between

5) x = ax + h(a)y + (a) and	 0 = x 4 h'(a)y 4-

The first equation of 5) for a stipulated function (a) represents a one-parameter family of planes and
its envelope (apart of the general solution) is a developable surface. (See Problem 10, Chapter 28.)

EXAMPLE 3. Solve p 2 - q 2 = 1.

Here f(p,q) • p 2 -q 2 - 1 • 0,	 f(a,h(a)) = a - [h (a))'-I • 0 and	 h(a) • (a 2 -

A complete solution is z	 ax + (a2 -	 y + C.

A neater form is obtained by putting a see a; then h(a) • tan a and we have

• x see a + y tan a + c.

If we set c	 = 0, the result of eliminating a from

x - zseca+ytana,	 O=x tan a+y sec a or 0.z sin a+y

is	 22•z2_.y2.

This developable surface (cone) is a part of the general solution of the given differential equation

Note that we might have taken h(a) • —(a 2 - 0 and obtained as a complete solution

z = ax - (a 1 - 1)y + C.
See also Problems 1-2.
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TYPE!!: z = px + qy + f(p,q).	 Example: z px + qy + 3p•/3q1/

From Problem 4, Chapter 28, it follows that a complete solution is

6)	 z=ax+by+f(ab)
This is known as the extended Clairaut type, for obvious reasons. This complete solution consists of a
two-parameter family of planes. The singular solution (if one exists) is a surface having the complete
solution as its tangent planes.

EXAMPLE 4. Solve z = px + qy + 3 1"5 q)J5

A complete solution is z = ax 4. by + 3 h/3 1/3

-2/3 1/5The derivatives with respect to a and & are x + a	 &	 a and y + a1/3 6
... 2/5 0.

	

1/3 1/3	 3Then	 ax+by	 -. 2a b •	 xy=a-1/ b- 1/5

and, substituting in the complete solution, we obtain the singular solution

z = a 
1,/3 b113	 1/xy	 or	 xyz a 1,

See also Problems 3-4

TYPE!!!: f(z,p.q) = 0.	 Example: z = p2 + q2.

Assume z =	 + ay) = 1(u), where a is the acbitrary constant. Then

z	 dzu	 dz	 dzu	 dzand	 q=–=.
du 'by	 du

When these are substituted in the given differential equation, we obtain an ordinary differential equation
of order one

	

dx	 dxf(z - a—) = 0
du' du

whose solution is the required complete solution.

EXAMPLE 5. Solve z	 p 2 + q2.

Put z = F(x + ay) 1(u). Then p = dz/du, q a dz/du, and the given equation may be reduced to
dz2	 2dZ2

2 (—) + a (—)
du	 du

Solving 
du	

or	 du.	 we obtain	 211 __L-u + k .

Thus, a compLete solution is 4(1 + a2 )z	 (x + ay + 6)2, a family of parabolic cylinders.

Taking the derivatives with respect to a and 6, we have

8az - 2(x+4y+b)y	 .	 x + ay + b 0.

The singular solution is	 a.	
gee also Problems 5.7.

TYPE/V. f1 (x,p) = f5 (y,g).	 Example: p–x 2 = q+y2.

Set f, (x, p) = a f2 (y. q) = a, where a is an arbitrary constant, and solve to obtain

P = F, ( X , a)	 and	 q = F2(y,a).
Since zisa function of x and y, dx = p dx +gdy	 F1 (x,8) cbc + F,(y.a)dy.

Thus,
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7) z = fFj (xa)dx + fF,,(y.a)dy +

containing two arbitrary constants, is the required complete solution.

EXAMPLE 6. Solve	 P -9 x2 + Y 	 or	 p - x 2	 q + y2.

Setting p_x 2 a, q+y 2 a. we obtain	 p-a+x 2 . qa-y2.
Integrating dz	 p dx + qdy	 (a+ z2 )dx + (a -.. y 2 )dy,	 the required complete solution is

z2 ax + 1/3 + ay - y 3 /3 + &. There is no singular solution,

See also Problems 8-9.

TRANSFORMATIONS. As in the case of ordinary differential equations, it is possible at times to find a
transformation of the variables which will reduce a given equation to one of the above four types.

The combination px, for example, suggests the tr2nsfor:nation X in x, since then

z	 3zdX	 1z=	 -
T
___ = __=___	 and	 px-
,	 TX_ 	 x

_ 
X

Thus, q = px + p 2 x 2 becomes LZ=	 + (! )2, of Type I.
y	 Bx	 BX

Similarly. the combination qy suggests the transformation V = in y.

The appearance of E,	 in an equation suggests the transformation Z = in z since then

P 	 =!	 =z	 and	 E=; similarly,	 .
_6X	 dZx	 z	 z

Thus, 1= (P)2 becomes E = ( )2 of Type I.z	 z	 BY	 TX

See also Problems 10-14.

COMPLETE OLUTION. CIIARPIT'S METHOD. Consider the nor-linear partial differential equation

I)	 f(x,yz,p,q)	 0.

Since z is a function of x and y, it follows that

8) di = pr + qdy.

Let us assume p = u(x. Y. z. ),where a is an arbitrary (.onstant, substitute in I) and solve to obtain
q = v(x, y, z, a). For these values of p and q,8) becomc

8)	 di = udx + vciy.
Now if 8) can be integrated, yielding

9) g(x,y,z.a,b) = 0,
this is a complete solution oil).

AMPLE 7. Solve pg + qx

Take p	 a -x, substitute in pg + gx Y. and solve for q	 y/a.
Substituting in dx p dx	 gdy, we have dz	 (a -x)Q'x + (y/a)dy. an integrable equation, with

solution

i	 2	 2

	

z	 ax -	 y /a k	 or	 2az	 2a2x - ax 2 +_y 2 *
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Since the success of the above procedure depends upon making a fortunate choice for p, it cannot
be suggested as a standard procedure. We turn now to a general method for solving I). This consists
in finding an equation

10)	 F(x,y,z,p,q) = 0

such that I) and 10) may be solvcd for p = P(x, y , z) and q =Q(x, y, z), (that is, such that

f	 df

p Bq
I I)	 = 

F	 Bp'	
0.	 identically),

p ?iq

and such that for these values of p and q the total differential equation

8)	 dx	 pdx + qdy = P(x,y,z)dx + Q(x,y,z)dy

is integrable, that is, P 29- Q LP -	 +	 0.
Zz	 z By Bx	 Bx By

Differentiating I) and 10) partially with respect to x and y, we find

'	 +12) - + p— +
ZX	 3z	 BpBx	 Bqx

13) Lf + qL + Lf LP +	 = 0.
By	 BP By	 BqBy

14)
BpBx	 BqBx

15)
By	 Py	 BqBy

Multiplying 12) by L . 13) by L . 14) by -	 . 15) by -	 ,and adding, we obtain (noting that

ZP -

By Bx

ZX	
+ (+qL(p+qL)O

	

Bx Bp	 By	 Bz Bq	 Bp Bx	 Bq By	 Bp	 Bq Bz

This is a linear partial differential equation in F, considered as a function of the independent variables
x, y, z, p, q. The auxiliary system is

dp	 -	 dq	 -	 dx	 dF16) - _______
Bf'

+q	 _	 -	 _(pL+q)	 0
Bx	 Bz	 By	 BE	 Bp	 Bq	 Bp	 Bq

Thus, we may take for 10) any solution of this system which involves p or q, or both, which contains an
arbitrary constant, and for which II) holds.
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EXAMPLE 8. Solve q — xp + p2.

and

+ P 	 •	 o,	 •p	 * q L )	 -2p2.xp.q.

The auxiliary c\tcni (16) is	 dq
dx	 (1)	 32

-p	 0	 -2p.x	 1	 -2p24rp49

- yFrom	 e have in p - y 	 In a or p ae
-p

Using the g!en differential equation, q	 -'p + p2	 -ax

Then dz p dx - qdy becomes dz	 ae dx + (-axe + ae)dy. Integrating,
- y	2 -2-pz = axe	 ,a e	 +

There is no cingular solution
Sec also Problem IS.

SOLVED PROBLEMS

(In these solutions, the equations leading to the general solution A ill not be given.)

TYPE!: fp,g) •

I. Solve p + q = 9.

A complete solution is z = a	 by + c, where a 2 + b 2 = 9,

The equations for determining the singular solution are

Z	 ax + A	 y	 c,	 0 z x -.	 a	
,	 0	 1.	 Thus, there is no singular solution.

2. Solve pq + p + ç

A complete so!;	 n is z	 ax 4 by c. where ab a b = 0. or x = ax - -__ y	 C.

There is no singu ir solution.

TYPE :z=x+ qy + f(p,q).

3. Solve z*px+qy+p2+pq+q2

A complete solution is z	 ax	 by 4 a 2 + tb	 b2.

Differentiating the complete solution with respect to a and b, we have

	

0	 x + 2 + b,	 0 = y + a + 2b.

Solving to obtain a	 ( y 2x)/3, b r (x - 2y )13 and substituting in the complete solution, the singular
solution is 3 z z xv - x 2 -

4. Solve 2 = px + qy	 p2q.

	A complete solution is	 ax by 20. The equations obtained by differentiating with respect
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to  and bare o x + 2ab 2 and o y 2a 7 b. Then a	 _[i. 6 = - jiiand the singular solution

sr 2	 5,—r
is	 -	 - ,1 - + I!-!Y:!	 - 3	 2/52/5

	VZ 4 2 V 16	 4

TYPE!!!: f(x,p,q)	 0.

5. Solve 4(1k jS)	 924pq.

Assume z Fx ay	 F(u). Then p dz- . q	
dx

a - . and the given equation becomes
du	 du

3V'	 2
4(1	 = 9az	 or 

	
dz = 2du.

du

Integrating, /a(1 + z 3 )	 • b, and a complete solution is a(1 + z)	 (x + ay + 6)2.

Using the results of differentiating this with respect to a and 6.

1 +	 2(1 ay 4 6y	 and	 0 z 2(x + ay 6)

the singular solution is z + 1	 0.

6. Solve p(1-q 2 )	 q(1-z).

Assume z F(x ay) = F(u). Then p	 • q	 a	 and the given equation becomes
du

dx	 2 dx 2	 dx	 dx	 dz 2 -
— ) [I((—) j	 a—(1-z)	 or	 (—)[1-a+az-a2(—) ) - o.
du	 du	 du	 du	 du

dx	 2dz2	 cidz
Then - o and x c; or j_a+az-a —) = 01	

-a+
	 du and

du	 du

2/ia+az =u+b	 x#ay*b	 or	 4(1-o=a2)	 (x+ay+6)2.

Each of z	 c and 4(1 - a az)	 (x ay 6)2 is a solution the latter is a complete solution. Using it,
the equations for obtaining the singular solution are

g = 4(1-a+02) - (x+ay+b) 2 = 0,	 = 4(-1+z) - 2y(x+ay.6)	 0.	 -2(x+oyib) = 0;

there is no singular solution.

7. Solve 1 + p2 = qz.

Assume z F(x + ay) F(u). Then p	 • q a	 J the given equation becomes

dz2	 dx
( )- az—+1=0	 or	 ____	 du.

du	 ax_/a2x2_4

Rationalizing the left member of the latter equation, we obtain (ax + /a22 - 4)dx = 2 thz whose

solution is az 2 +	 [	
/22 -4 - 2 In(az +	 22	 2(u + b).

a2

A complete solution is then a 2 z2 + az/2z2 - 4 - 4 ln(az + /22 4 )	 4a(x * ay • 6).

Note that a 2 z 2 - ax /a2z2_ 4 * 4 ln(ax + /a2z2 -4)	 4a(x + ay + b).obtained from	
dx

az • /a2z2_4
=	 du, is also a complete solution.
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T}PEIV: f(x,p) = f2(yq).

8. Solve vp - /	 3x	 o or v'p + 3.	 v'.

Set	 . 3x z a and V	 a. Then p	 (a - 3x) 2 and q = a2 A complete solution is

2 Jpdx + fqdy	 6	 fa 3-)2 d- + a 2 jdy + h or	 z	 - (a _3) 
+ a 2

 
 + b.

There is no sinoular solution.

9. Sohe q	 -px	 p2.

Set p 2 -px	 a and q a. Then p =	 x /2= 4a .

A complete solution is z	 J(x	 ç2 
* 4a )dz	 afdy + 6

or z	 (x2 .	 + aIn(x +	 )	 ay + 6.

Another complete solution is obtained by the method of Charpit in Example 8.
There is no singular solution.

USE OF TRA,VSFO1MA T1O.VS.

-1	 -1
, =t 21	 p2	 q2

= 1.10. Solve pq = x y 2	 or
'

x	 y

The transformation

Z	 Z dx	 _1 P I	 Z	 Z dy	 -t
Z =—	 =-	 =-. - =-- z —. - -- •z g—

i-i	 A141	 n=1	 X	 xdX	 '	 Y	 ydY

	

reduces the given differential equation to 
BZ Z
- -	 1,
aX Y

This equation is of Type I and its solution is 2	 aX +	 + c.

	

*+1	 fl•

A complete solution of the given equation is	 =	 +

i-i	 u#1	 a(rt+1)

There is no singular solution.

IL	 2 2Solve x p + y 
2 2
q = 2.

I) The transformation

V	 In x •	F	 In y,	 2 = 2z'.	 = pxz,	 =	 qyz

	

ôX	 xd)	 Y	 ydY

Z2	 Z2	 Z2	 Z -2	 fTypel.reduces the gi\en equation to z(—)	 z(-)	 z	 OT	 ( )	
(L
	

1.

X

A complete solution is 2	
2	 2

aX ^ bY + c or 4z	 (a In + 6 in y + c)2 where a + 6	 i. The singular

solution is z	 0.

	

2	 2d	 -	 -
2)The transformation X in x.	 In Y. p -	 - - - - -. q - - -

	

x	 BXdX	 x	 yy

2	 Z 2
reduces the given differential equation to 	 -	 +	 = Z.	 of Type Ill.

	

x	 Y

EWN
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We set z = F(X+aY) 1(u). Then Lz - dx Bu	 dz	 dx	 dx	 and-
dXdua.)	 du	 dY	 du

dz2	 2d22
i a (—) • z	 or	 - = du.

du

Integrating. 2/1Ta 2 z	 u + b = X +aY+ b	 in x	 a in y + 5.

A complete solution is 4(1 a 2 )z = ( In x	 a my	 5)2• 
The singular solution is z = 0.

Solve 4xyz	 pq + 2px 2 y	 2qxy
2

'1z dYLet x = X, y = r. Then p -
-	 dx	

2X	 and	 = 2Y
U	 -aq = Y dy

Substituting in the given equation, we have z	 X -	 Y l-	 Z

TX
 Z
- of Type II.

x	 Y	 Y

A complete solution is x = aX + bY + aS	 or	 z	
2 4. by  + aS.

Eliminatinga and S from this and 0 x 2 b 0 =y2+ a, obtained by differentiating it with respect to
a and S. the singular solution is found to be x + x 2 y2 0.

221 ,?coive p x	 z -qy).

z	 zdX	 izThe transformation y =lny.	 XInx.	 P	 ;; -- '	 q- - reduces the

	

XdX	 x 	 yY
given equation to .-fl	 Z 2	

- —). of T pe Ill.

We se z	 F(A * a))	 F(u). Then	 z	 dz	 dx	 d2 2	 2	 dza —, and A becomes (_)	 z - az —.duy	 du	 du	 du

zdzThen	 z(/T - a).	 2	 ( / T - a) du.	 and	 2	
V'	 - a) (u b).nz	 (du	 2

A complete solution is In z 2	 2	
- a) (In x + a in y	 5)

There is no singular solution.

Solve p 2	q2	2 2 (x • y)	 or	 ()2	 (q)2 = x + Y.
2	 z

The transformation Z in z	 p r z - . q	 x -	 reduces the given equation to
ax	 'ay

22	 Z 2	
- y - 

()2	 of Type IV.( ) +(—) rx.y	 or	 (x	 yax	 By

Set ()2 -	 a = - ( Z)2	 Then	 a + x) and	 (y -a).
Bx 	 By

A complete solution is	 Z	 [(a x)dx + fy -a)dy +

2	 512	 2	 5/2	or in z	 -(a • x)	 -(y - a)	 + 5.3
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CHARPIT'S METHOD.

2 2	 2 2	 2	
'

I	 olve 16p z	 9q 2	 4: -	 = 0.

Let f(x,y.z.p,q)	 16p
2
 z 2 + 9q 

2 2
z + 4: 2 - 4.

Then	 0	 3:4,2z18qz	 z	 L	 32p2	 L	 iBq: 2 , and theauxiharysystefli

-ax By 	 B:	 Bp

	

dp	 dq	 dx	 dy	 dx is

	

I+p1	 L+ q L	 L	 [

,ax	 B:	 By	 B:	 Bp	 Bp	 Bq

dp	 dq	 dx	 dy	 dz

	

2	 22	 22

	32p3 ' + l8pq
2 2 + 8pZ	 32p 2 

gz + 18q 5
z 	 sqz	 .-32pz 2	 -18gz	 -32p 

2 Z
2 18q z

Using the multipliers 	 4:, 0, 1, 0, 4p,	 we find

	

4z(32p 3 z	 lBpqz + 8p2) + 1(-32p:)	 4p(-32p2Z - 189 2 : 2 )	 0

and so
	

dx + 4pdz + 4zdp	 0.

Then x + 4pz	 a and p -	 Substituting for p in the given differential equation, we find

4z

2
(x — a) + 9q z	

2
4: - 4 o. Using the root q	 /12	 2 2  

di	 pdx + qdy	 -	 dx	
2 
A_x- 2 dy or	 dy	 3[z dx + (x-a)dx)

___ 
+ -

	

4:	 3:	 2	 - (x J3

Then y - b	 -	 - (x - a) 2 or 
(x - a) 2 	(v - b) 2 ^ : 2 = i is a complete solution.

2	 4	 9/4

This is a family of ellipsoids with centres on the zOy plane. The semi-axes of the ellipsoids are 2 units

parallel to the x-axis, 3/2 units parallel to the 7 -axis, and I unit parallel to thez - axis.  The singular solution

consists of the parallel planes z = ± 1.

Another complete solution may be found by noting that the equation is of Type Ill. Using F(x + ay)

	F(u) and setting p	 and q a	 the given equation becomes

	

du	 du

16:2 
(dZ )2	 2 2 dx 2	 2	 z dx	 2	

du.	 Then

	

- +9az(—) 44: -4 = 0	 or
/jia2

T	 2	 (u+b) 
=	 2

/16+9a 2 	/16+9a2

This complete solution (16k 
92) (1 - : 2 )	 4 (x # ay + b)2 represents a family of elliptic cylinders with

elements parallel to the xOy plane. The major axis of a cross Section lies in the zOy plane and the minor axis

is 2 units parallel to the z-axis.
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SUPPLEMENTARY PROBLEMS

Find a complete solution and the singular solution (if any).

16. pq 2	
Ans. zb 2x+by+c

2	 217	 2	 2P P 9	 z ax+by+c where b

18* pq I p	 q	 (b — I)a	 bx + 6(b-1)y + c

19. £	 px	 qy + pq	 z	 ax + by + ab; s. s., z	 —xy

20. p 2 +q2	 2	 24z	 z(l+a )	 (x^ay+b) ; B.S., z	 0
221. px I + q	 z2  - 2/z ..4a 2 	 402 In	 * 42 ..42 )

	 4(x + ay + b)

22	 22	 22 (p +9	 2+1)	 1	 (1#a )(1—1 
2 	2)	 (x+ay+b)	 2 _ B.S., z	 i	 a

223. p + pq	 4z	 (1 + a)z	 (x + ay 6 2)	 B.S., 2	 0

24. p2 - x	 q 2 - y	 3(z-b)	 2(x+a)51'2 +

25. yp - x 2
9

2	x2y	 4(o - l)y 5 = (3z -	 b)
2	 2	 226. (1 —y )xq + y p = 0	 (2z— ax 

2 + 6)2 
= 4a(y 2 — 1)

27	 +	
-

2	 2	 2• X p	 - t	 0	 x in z	 a + (a - 1)x in y + bx
Hint: Use X liz. Y in y • Z	 in z.

28	
+ 2	 2	 2• x p + y zq - 2z • 0	 xy in z	 oy + (0 2 -2)x + bxy

Hint : Use X=i/x, Yi/y.Z.1nz.

29	 +2	 2	 2• XP	 x(zy+a+by)2 +cy2

30.
2p2	

2	 2 y -qzo	 z	 a 2	 2z+ay +6

31. q = zp + p 2	z • 2axe + 2a2 e 2 + 6

32	 2	 2	 2	 2 2	 2•	 - y p + y q • 0	 yl - 2(oxy+ ay + a + by)

dp	 dxHint:	 pz=a and q • (1 -5	 2	 Z'	 2P	 —pz	 y

33. pq + 2z(y+l)p + y+2)q - 2(y+l)z	 0

Ans. x	 ax + 6(y2 + 2y+a);	 S. S. z + x(y2 + 2y)	 0



CHAPTER 31

Homogeneous Partial Differential Equations of Higher Order

r- - ̂ 	 with Constant Coefficients

AN EQUATION SUCH AS

2	 2 ______ +	
+ 5xy-I)	 (x + y )	 * 2x — + x 

z
- + x

z
- + yz— 	-

x 5 	axay2	 ay 5	 xy	 ôx	 By 	 -

which is linear in the dependent variable z and its partial derivatives is called a linea, partial differential
equation. The order of 1) is three, being the order of the highest ordered derivative,

A linear partial differential equation such as

2) x2 1! +	 ______	 ?.z	 2xy	 +2	 + = x +y
x 5 	 x2y	 axoy2	 y3

in which the derivatives involved are all of the same order, will be called homogeneous, although there is no
agreement among authors in the use of this term.

HOMOGENEOUS LINEAR DIFFERENTIAL EQUATIONS WITH CONSTANT COEFFICIENTS.
Consider	 -

3) A LZ + B	 = 0,
3x

2
4) A	 + B	 + C	 = 0,

x 2 	 y2

5) A-!+BiL+Ci!x+2y,
	xy 	 2

in which the numbers A .8, C are real constants.

It will be seen as we proceed that the methods for solving equations 3)-5) parallel those used in solving
the linear ordinary differential equation

f(D) y = Q(x)	 where D =
dx

We shall employ two operators, D = A and D y
= A , so that equations 3)-5) may be written as

	

Bx	 BY

3') f(D,,D)z = (AD, + BD)z = 0,

4') f(D.D)z = (AD + BDX DY + CD)z = 0,

5') = (AD + BDX PY # CD)z = x + 2y.

255
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Equation 3') is of order one and the general solution (Chapter 29) is z =	 - x)	 arbitrary.

Suppose now that z = (y + mx) = (u), 0 arbitrary. is a solution of 4'): then substituting

- d4' u	 dc$'	 u - dct
Dx	 ôx - du x 	 du	 Y	 "ôy = du 'ày - dii

in 4') we obtain	 4 (Am 2+Bm+c)	 0.
du

Since g5 is arbitrary, d2O/du2 is not zero identically: hence, m is one of the roots in = in1 • in 2 of Am  + Bin

+ C = 0. If in1 j m 2 . z = 5 (y+m ix) and z = 01 (y+m2 x) are distinct solution o14'). Clearly,

Z = 4(y+m 5 x) + 02(y+,n2x)

is also a solution; it contains two arbitrary functions and is the general solution.

More generally, if

6) f(D.D)z	 (D—m1D)(D—m2D) ....... (Dr_mnDy)z	 0

and if in1 0 in,	 ........ é inn, then

7) z	 j(y+mix) + 4 2 (y+m,x) 4. ...... . +	 y+nIx)

is the general solution of f(D,D,)z = 0.

EXAMPLE I. Solve (D;2 - DD - 6D)z	 (D + W) (D - 3D): • 0.

Here, at • —2, At, • 3. and the general solution is y	 4y-2x) + 02y+3x).

See also Problems 1-2.

If m1 = an, = .....= m	 l4i	 so that 6) becomes

6')	 f(D.D)z =	 ..... (D_flID ) Z = 0,

the part of the general solution given by the corresponding k equal factors is

4(y+mx) + x4,(y+m ix) + x2 b,(y+M I X) + .....+ x(y+m1x).

and the general solution of 6')is

Z = i1(y+mix) + Xi,(y+MIX) + .....+ x1q(y+mix) + 11+.(Y +m,,1x)

+ .....+

where	 .....	 are arbitrary functions.

EXAMPLE 2. Solve (D - DP - 8DD + 12D)z • (D, - 2D 2 (D + 3D)z . 0.

Here, a •	 • 2, as = -.3 and the general solution is z • r/i(y +2x) + 49(y + 20 + (/(y - 3*).
See als.' Problems 3-4
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If one of the numbers, say m 1 of 6) is imaginary then another, say m2 is the coujutzate ol m 1 . Let
m = a + hi and m 2 = a - bi so that 6) becomes

6) f(D,D)z = [Dx_(a +b i )Dy)[Dx_(a_bi)D)(D_m 3D) ..... (D—niD)z = 0.

The part of the general solution given by the first two factors is

4'2 arbitrary, real functions), arid the general solution of' 6 ') is

z = (y+ ax + ibx) +	 + ax - ibx) + i 1 2 ( y + ax + ibx)_. 2 ( y + ax - ibx)]
4	 + m ax) + ........+	 +

ExAaI'I:F 3. Soke D— DD + 2D.D — 5DD +

(D - D)2 [D	 +(1 + VThD,][D +	 — i vThD,] z o.

Here. m =	 1,	 —	 +	 = -	 —	 and the general solution is

2	 (y +x) + xc 2 (y •x)	 c (y —	 I + L VTr)xJ +	 -	 — 1 vTTix)

	

*	 -	 + ivfl' ) x) _ 4 {y —	 -

See also Problem 5.

The general solution of

5')	 !(D.D)z = (AD + BDX D'Y + CD)z = x + 2y

consists of the general solution of the reduced equation

4')	 t(D,D)z = (AD +BDXDY + CD)z = 0

plus any particular Integral o15 ). We shall speak of the general solution o14)as the ewnp/c'menulri' fun.
(tion of5').

In setting up procedures For obtaining a particular integral of

8)	 f(D.D,)z = ( D_n7i Dy)( D_maD) .....(D—mD)z	 F(x,y),

we define the operator	 b the identity
f ( D D)

f(D D)	 1 F(x,y) = f(x,y).
f ( D , D)

The particular integral. denoted by

z	 1	 F(x,y) =	 1	 F(x,y),

	

1(D.D)	 (Dr— m 5 Dy)(D_ m 2D)..... (Di— mD)

maN he 'mind, as in Chapter 13. by solving n equa1ion of the first order

9) U, =	 u2z = u =
ul'D - m,1D. 	-' m 1 D	 — rn1D,
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Notc that each of the equations of 9) is of the form

tO)	 p -	 = (x,y)

and that we need only a solution the simpler the better. In Problem 6 below, the following rule is established

for obtaining one such solution of 10): Evaluate z = fg(x,a-mx)dx, omitting the arbitrary constant

of integration, and then replace a by y + n.

EXAMPLE 4. Solve (D -	 - 6D)z	 W + 2D),)(Dx - 3D,)z = x + y.

From Example I, the complementary function is z 	 ( y - 2x) +	 (y + 3x).

To obtain the particular integral denoted by	 z1
	 +

Dx + 2D D- 3D

a) Set u • 
D -3D	

)') and obtain a particular integral of (D - 3D)u = x +y.

Using the procedure of Problem 6, we have	 u f(x a -3x)dx	 - 2 ...amJ, repJangahv y + 3x.

U

	 xy+2x2.

b) Set 2 	
D + 2D 

U	
D # 2D

1 	 (Xy 
+ 2 	 and obtain a particular integral of

(D + 2D)2	 xy # 2x2.

Then	 2	 f[xa #2.r) + 2x21dx	
1 2	 3	 2	 1 5

+ -x-	 + -x	 and, replacing a by y2x, z	 1 Y
2	 3

Thus the general solution is z	 4(y -2x) + 2(y3x)+ !2 + !x'.

Sec also Problems 8-9.

The method of undetermined coefficients may be used if F(x,y) involves sin (ax + by) Or cos

(ax + by).

EXAMPLE 5. Solve

(D,-,+ 5 D,,Dy + 5D)z	 (D -	 + V' )DY ][DX -	 -	 = x sin(3x-2y).

The complementary function is z =	 + (_5 +	 +	 f.y + (-5 - Vg)x).
Take as a particular integral

Ax Sln(3x-2y) + Bx cos(3x-2y) + C sin(3x -27) + D COS(3x-2y). Then

Dz (6A-9D)coS(3x - 2y) - (6B+ 9C)sln(3x - 27) - 9Ax sin (3z - 2y) - 9Bx cos (3x - 2y).

DDz = (-2A+6D)COS(3x-2y) + (2B+6C)sin(3x-2y) + 6Ax sIn(3x-2y) + 6Bx Cos (3x-2y),

D;z	 = - 4D eoB(3x -2y) - 4C Sifl(3x-2y) - 4Ax sin(3x-2y) - 4Bx Cos (3x-2y),

and	 + 5DD	 5D)z = Ax sin(3x-2y) + Bx coa(3x-2y) * (C+ 4B) sln(3x-2y)

" (D-4A) cos(3x-2y)	 x Sifl(3x-2y).

Then A = 1, B = C = 0. D 4 and the particular integral is
z	 x sin(3x - 2y) + 4 cos(3x - 2y).	 The general solution is

2	 tIY +	 + /)x) +	 +	 - V)xJ + x Slfl(3x-27) + 4 coS(3x-2y).
See also Problem 10.
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Short methods for obtaining particular integrals. analogous to those of Chapter 16, may be used.

1	 'Y	 1
a)	

Xe	 =	 e	 proided f(a,b) ^ 0.
f(Dx,D))	 f(a,b)

If f(R, b)	 0,"rite f(D,D ) = (Dt-	 D 
)r 
g(D D)	 here g(a, b)	 0; then

x Y	 b 

r
1	 1

e a t 	
1	 1	 -	 1	 X ax.by

e	 =	 e	 - -

(D -	
g(D.D)	 g(a,b) (D -	

(a, b) r!

b)

proidcd

1	 sin (ax + by)	
1	 - sin(e'c + by)

f(DDD,D)	
f(-a2,-ab,-b2)

1 cos (ax + by) 
=	 1	 cos(ax + by)

f(D,DD,D)	
((-a2 ,-ab,--b2)

-ab, -b2 )	 0.

and

L\AMPLE 6. Solve	 2D)2	 (Lx _DY)(Dx_2D,)1	
2x.5y	 Y+	 n(x-2y).

The cornpkmentar) function is z	 t(Y	 )	 (Y 4 2x).

1	 Zx+5y	 1	 2X4 5y	 1 2x.5y
Now	 e	 e	 - e	 is one term of the

- 3DD + 2D	 22_ 3-2-3 + 232	 4

particular integral. Since 0, (y +	 i neltidc' e x +,	 e	 rite

1	 zsy-	 1	 1	 x+y	 t(	 1	 X+Y)	 -	 I	 .Y

	

____ ____	 __ 	
e r—ZC

.2D 

e	 -	
_ a,D-2D	 1 -21 Dy

11
Also.	 sln(x-2y)	 -	 --	 - sin(x-2y)	 -! sln(x-2y).

	

2	 Is

	

D -3D, 20	 -J	 2(-1) (_2) 

1 ax+3y	 x+y
	Thus. the general solution is 	 z	 (y	 + 2(Y + 2fl	 - e	 - xe	 -	 sin(x - 2y).

4

If F(x, y) is a pol)noniIal. that	 Fx, y) = 1 p,jx,y5,	 here i, j iie pcisiti\e integers or zero

and Pq are constants, the proced	 w+trated helo mar he used

EXAMPLE 7. Solve (D,2 -D .DY 'iJ'')z = I +y.	 (Example 4.)

For a particular integral.

1	 1	 1	 1
(x+y)	 +	 ](x+y))	 —(x+y+—)

-

D.'-L-6D	 D 1---6	

D
L1 

Dx

1	 1
-x + -xy.	 Notcihat D(x+)	 land—	 —	 1 5 1 2

(x+ y .x)	 2,x .y) 
3	 2

D 
See also Problenas ii - 1 3



SOLVED PROBLEMS

I. Solve (D	 2 DD - D D	 2L ) z	 (D - D) (D + D) (D + 2 ) z = 0.

Here M,	 1. m 2 =	 M3	 -2 and the general solution is

&(Y +z) + 2 (y-x) +

2. Solve (D - 5DD	 5D D	 3D)z	 - 3D )[D -(1 + V)D)(1 -(1 - 1 ) D ] 2 . 0.

Here B	 3. 2 = 1 v'. RI 3	 1- V-2 and the general solution is

z =	 * 3z) +	 21Y + ( 1 + v')x) + 01 1 Y + ( 1 V)x).

3. Solve (D	 3DD - 4D)z	 (D - D)(D + 2D,)2 z	 a.

Since m = 1, m	 -2. the general solution is

	

Z	 (y +x) + 02 (y - 2X ) + x(y-2x).	 Another form of the
general solution is 	 z	 01(y+x) + 2 (y-2x) + Y3(Y-7_).

4. Solve (fl - 211 + D)z	
-	 ) 2(	

+ D)2 z 	 0.

Here	 = 1 •	 -1 and the general solution is

z	 = 'I 1 (y=x) + x 2 (y+x)	 0 3 (y-x) + xS±4(y-x).

5. Solve (D _2DD	 5D)z = [ D -(1 +2L)D),][D_ U-2LD)2	 a.

Since	 1 + 2. M2 = 1 - 2i, the general solution is
z	 rI1(y+x +2x) + i(y+x-2x) +	 •x +2Lx) -	 (y •x-2Lx)),

where	 real functions.

If v.e take	 = cos u and	 2(u)	
'3 
• then since

e	 = cos bx + t sin bx,	 sin bx	
2t

1 ix	 -ibx
—(e 

1 ttx -ibxe	 cos bx - L Bin bx,	 coa bx	 + e

+x +2x	 cos (y +x) C08 lix) - Stfl(y +x) Sin(21x)

= cos(y'+x) cosh 2x - i Sifl(y+x) sinh 2.z

4'j(y+x-21x)	 Co8(y+x) cos(2Lx) + Slfl(y+x) Bin(21x)

= COS(y+x) cosh 2x + 1 sin(y x) sinh 2x

y.x.2ix	 ys-2tx	 y•z 21*	 -2tx	 y+x962 (y +x +21x) -	 +x -21x)	 e	 - e	 = e	 (e	 - e	 )	 2ic	 Slfl2x.

Thus, we obtain as a pirticular integral

= fCos(y+x) cosh 2* - i Sifl(y+x) slnh 2x)	 [cos(y+x) cosh 2x	 i 81(y+x)sinh2x]
# t(2te	 sin 2x)	 2 Cos (y.-x) cosh 2x - 2e	 sin 2*.

Note that z is a real function of x and y.



HOMOGENEOUS PARTIAL EQUATIONS, CONSTANT COEFFICIENTS 	 261

6. Show that it particular integral of p - .q	 g(x.y) may he found by In tegratmg di g(x,a_x)dx.Oflhittiflg

the arbitrary constant 01 integratIon. and then replacing a by y +

The ILI\iliiirV system	
dx	 dy	 di

is --	 Integrating the equation formed with the first to terms.
1	 -	 g(x.y)

we have y + ax	 a. Usin g this rcation, the equation

dx	 dz	 dx	 di
becomes	 - = ___________

	

19 (x,y)	 1	 g(x,n.*x)

Then z Jg(x ,a-i.x)dx and. in order that no arbitrary constants he invoked. we replace a by y * x in

the solution.

7. Using the procedure of Problem 6. find particular integrals of

	

a	 p . 3q	 cos(2x + y). 	 h1 p - 2q	 (y

4!, Here m r -3 and g(x,y)	 coscax 4y).

Then z = fgx.a-xdx fcos(2x a 3x)dx	 sn(5x + a) and. replacing a h> y— 3x. the icquired

particular integral is 	 sin (2x + y).

ix	 1	 2	 5x	 25x

	

z = fg(x.a_txdx	 J(a-2x 1)e	 dx	 (a 4 1)e	 -	 +
e.

Replacing a h> y + 2x, we h	 -	 • -	 -	 -ae	 - xe•	 ix	 2	 ix	
2 e 

ix 	
1(y * 5 )e 

ix

	

3	 9	 3	 3

8. Sol'e cD	 2D5 D, - 8D)z	 (D5 - 2D)(D5 + 4D)z	 v'2x • 3y

The complementary function is a	 q6, (y - 2x) +	 - 4x).

To obtain the particular inteeral denoted h -
	 /+ 3y.	 e obtain from

-	 . (_2D)(D+4D,)	 -

(D	 4D)u	 I + 3y the solution u	 J (	 3( -
	 ) )112 dx	 f[2x + 3(a + 4.)]' 

/2 
dx

	

f(14x 
3)112 dx	 (14x 

3)1/2	 1(	
3y)512

and from	 D- 2D z	 u —1 (2x + 3y)312 	 the solution

	

L j [(2x 4 3(a -
	 3' 2 dx = - _L(3 -	 5/2	 - 1	 5/2

a 4x)	 (2x+3y)
21	 210	 210

	1 	 5/2
The eneral solution is	 + 2x)	 - tx) - —(2x 3y)

210

9. Sole	 (D - 2D)2 (L&	 3D)z	
2.x+y.

The complementary function is z =	 ( y 2x)	 x(k2(y + 2x) +	 -3x).

To obtain the particular integral denoted by - 	 e	 •	 c obtain from
( Dx _2Dy ) W - 2D,) (D, + 3D)

x.y	 2x4(3.5X)	 5x+3	 I 5c.J	 I

	

3D )u	
2

e	 the solution	 u	 dx = e	 - e	 -
5	 5
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from (D-2D)	 2x+y the solution	 !j x+) j 	1	 . !	 "v • ii * - e C	 -
 

Xe	 Xe
5	 5	 5	 5

1	 x + the solution z = -	 • —x	 —1fxedz	
1 2ea	 x C	• 	 1 2,yand front (-2D>x	 u • -Xe	

5	 10	 10

The general solution is z'	 1(y+2x) + x 9 (y+2x) + ,(y-3x) + —x 
2 

c 
2r,y

10

10, Sole (D, + DD - D,D - D)z - (D +	
)2 

(I -	 )z	 X cos 2y.

The complementary function	 •	 + x4'2(y -x) + 03 (Y + Z)-

Take as a particular integral z • Ae COB 2y + BeX sin 2y. Then

D,z	 • AeZ coo 2y + Be" sin 2y, D D,z • -4Ae cos 2y - 4BeX sin 2y.

L1,Dz	 _2ACX sin 2y + 2BeX coB 2y,	 Dz	 • 84eX sin 2y - 8BeX cos 2y.

Substituting in the given differential equation, we have

(5A + 1OB)eX cos 2y + (SB - IOA)eX Bin 2y	 ex cos 2y, so that 4 1/25 and 8 2/25,

The particular integral is z	 e' COB 2y + 1 e x sin 2y, and the general solution is
25	 25

 0 1 (Y- x ) + x2(y-x) + 1 X	 2(y+z) # —e COB 2y + —e Bin 2y.25	 25

II, Solve (	 - 2DD)z - D(D - 2D)	 y.2 • C

The complementary function is 	 y) + 2(Y

1A particular integral is given by	 1	
e 

2x +
	 z 3y. The first term yields

	

2x	 12x
D,- -2DD,

(2)	 2(2)(0)
1

	

e	 • -e	 Writing the second term2_ 

1	 1	
—(1+ 2	 + •.)z3y	

D	 Drx
	(x5

	 2
y + —x )	 —(x y + r ),

D 2 	D,.	 D D.
D.

5	 6
we obtain

5	 6	
l2x	 x	 x-	 +

X	
The general solution is 	 •	 +	 (y+ Zr) + -e +	 -20	 4	 20	 60

12, Solve	 (D - 7DXD - 6D)z	 (D + D),) (D, + 21)3,)(D - 3D)z • Slfl(z +2y) +

The complementary function sz	 (y -x)	 (y -Zx) +	 • 3x). A particular integral is given

by	
2	 2 

Bin(x + Zy) 4	
2(Dx+Dy)(Dx_DxDy.6Dy)	 (Dx3Dy)(Dx+3DrDy42Dy

2
)

(Note. The separation in the first term is one of convenience, i.e.. we could have written
1	

2 
Bln(x • 2y). The separation in the second term is necessary. however, since

(D + 2D) (D- 2D, -3D)

Sx+ ye	 is part of the term 4)(y + 3x) of the complementary function.)
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2	
2 slri(x + 2y) •
	 1	 1	

81fl(x + 2y)
(L1+D)(D-DD,-6D,) 	 £ç+D-1+2#24

1 (L . by) ain(x+2y)	 - 	 cos (x +2y).
25(3)

1	 e5X 4Y •	 1

(D-,)(L+3DxDy+2D)	 L1-3D., 9+9+23D 

For the first term:

I L-D
+ 2y)

25	 2

For the second term:

______ 3x + Y

20 rA4 _3D	 20

	1 	 5—y
The general solution is z • 	 'j(y -x) +	 - 2x)	 '3(Y 3.z) -	 cos(x+2y) + —xe

15	 20

	

13. Solve (D -1D - 6D)z	 coa(x - y) + 2 + xy # y3.

The reduced equation is that of Problem 12. A particular integral is given by

2 
CO8(X -y) 

+	 12	
5 (x
	 +

	

Dy ) (lJ2r - DD - 6D,)	 D, 7DD, eD,

(Note that coz -y is part of the complementary function; hence, the corresponding factor (D + D)

must be treated scparately)

	

For the first tern):	
1	 e08 (x -y)	 !	 1

	 Cos (x -y). We must solve
(D+D,)(DDDy_6D)	 4

(D + D,u • Co5(x -y). obtaining u	 fco8x-(a +x))à •	 fco8() dx

	

• z Cos (_a) •	 xco(x-y).

	

For the second term:	
1	 (x + xy 2 + y 5	

1
)	 _________________ 2

	 2

D_'7D-6D,5 

2	

D2	
D5 (x #sy +y5)

D D;

1 (1 + 7	 +	
2	 2	 5	 1	 2	 2	 5	 7	 6

	

)(x +zy + y ) • -	 + xy + 7 +	 (Zx+6y) + —(6))
•;; x	 x	 z D., X

1 2 	 5	 '7• —(z + xy + y ) •	 (2x + 67)	
36	 5 b	 1	 21y	 1	 2	 1 3 5

+	 — X +	 x(1+	 ) + — Xy 4 —X

X	

72	 60	 24	 6'

The general solution is

2	 41(y-, • 0(y-20 + I(Y #31) + i xcos(x - y) 4	 +	 x(1 +21y)

	1 	 2	 153
4	 Xy + Xy.

	

24	 6
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SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

14. (0 - 8D, D, + 15D)z	 0.	 .4ns. z S (y + 3x) +	 + 5x)

15. (D - 2DXDY - D; ) z	 0.	 Ans. z •	 y+x(1+V)] +

16. (D - 4DrDy 4Dz	 0.	 Ans. z	 cby + 2x) 4 x q52(Y 2x)

17. (D,	 2DD - DD; - 2D)z	 0.	 Ans. z	 +

18. + D1J)z = 0.	 Ans.	 z	 + 03 (r)	 y 4 (x) + 4 (Y X)

19. D + 5DrDy	 6D )z	 eX_).	 4ns. z	 ty -2x) + 2(y3.x) +

2	 2	 22
u,	 (D +	 = r y

Ans.	 z = 01 (y + x) + t (Y -) •	 - 02(Y ix)) + .(lSx 14 y_xb)

21.	 (D - 3DD	 4D)z = e2X.	 .4n.	 '1(y_x)	 i'2 (y+2x) + x(y+2x) +

22.	 (D + 2flD., - L1. D - 2D)z	 (y+2)eX.	 Ans. z	 4(y+x)	 02 (y-x) +	
+ y1X

23.	 (4 -3L1LA, -4DI- # 12L)z	 Sin(y+2x).

Ans.	 z = 'I t (y-2x) +	 y+2x) + 4(y+3x) + xsin(y +2x)

24.	 (D, - 3DXD • 2D)z =	 An.. z	
(k

	 + x2(y+x)	
525

2x) + 
8

—(x+2y) 7/2

25.	 (L + DD - 6 
D.
	

2	 2
z =x

3	 14	 152
Ans. z = i(Y) +	 + 3 (y-3x) •	 -	 +

y*x	 y-2x	 y.226. (D -	 + 

54,D2
 - 2D)z	 e	 + e	 + e

1	 1An.c. z = 4 1 (y+x) + x 42(y+x) + 3 (y+2x) 
-x 2 y.x	 y-2x

e	 -	 + ze
y.2x

2	 T6

27. (D - 2DD	
2,c

a 2e +x

Ans. z =	 + z0(y) 03(y+ 2x) + 
1
-e 

2x 
+ 

1
—x 

5	 1
+ —x

6

4	 20	 60

28 . (D - 3DZD - 2D)z = cos(x + 2y) - e(3 + 2x).

Ans. z = ^)j(y-x) • X((y ...x)	 ck3(Y + 2x) * !. S1nx + 2y) + xe'
27



CHAPTER 32

Non-homogenous Linear Equations with Constant Coefficients

A NON-HOMOGENEOUS LINEAR partial differential equation with constant coefficients such as

f(D.D)z	 (D-D+3D,+D +2)z	 (D +D +1) (D c -D +2)z = x24-xy

is called reducible, since the left member can he resoI ed into factors each of which is of the first degree

in Dx D, while

f(D . .D)z = (DXDY + 2D)z = D(D + 2D)z = Cos(x-2y),

which cannot he so resolved. is cal led irreducible.

EDU.1BLE NON-HOMOGENEOUS EQUATIONS. Consider the reducible non-homogeneous equation

I) f(D,D,)z = (aD + h 1 D, + cj)(a 2 D + b7 D + C2) .... . (a,D1 4 bD, + C)Z = 0,

where the a j , b i , c	 are constJnts An y solution of

2) (8Dx+biDy+Cj)Z = 0

is a solution of I). From Pr,hlem 5. Chapter 29. the general solution of 2) is
-Cx/Q..

3) z=e '	 (ay-bx),	 Ai ^0.

or

3')	 z =	 b(ay - bx) ,	 0.

with	 and k arbitrary functions of their argument. Thus, if no two Factors of I) are linearly dependent
(that is. if ' no factor is a mere multiple of another), the general solution of I) consists of the sum of 
arbitrary functions of the types 3) and 3')

EXAMPLE I. Solve	 (2Dx + DY 4 1) (Di - 3D 2)z = 0.

The general solution is z	 e 01 (2y -x)	
2X
02 (Y + 3x). Note that the first term on the right

may be replaced by eJ2i(2yx) and the second by e 2 02 (Y + 3x).

EXASII'LE2.Solve	 (2D+3D,_5)(D42Dy)(D2)(Dy+2)z	 0.

The general solution is z	
x/2	

(2y- 3x)	 2(Y- 2z) + e 
2X 0. (Y) 

+

See also Problems 1-2.

It

if

4) f(DD,)z =	 +b,1D +c 1 )'"(a,D •bD+ c,)z = 0,4 .

where no two of the n faLlors are linearl y dependent except as indicated, the part of the general solution
corresponding to the k repeated factors is

e(4 1 (a 1 y-b1 x) +x 2 (a y -bx) +	 + x'i(ay-bx)).

265



266	 NON-HOMOGENEOUS LINEAR, CONSTANT COEFFICIENTS

EXAMPLE 3. Solve (2Dm +	 + 5)( - 2D + 1)22 • 0.

The general solution is	 z • e(2y-x)	 e[2(y 2x) + z	 (y + 2x)3.

See also Problem 3

THE GENERAL SOLUTION OF

5) f(D,D): = (a	 + bfl +c j)(8 zD + b2 D + c 2 ) ... ( an D+ bD +c,)x = F(x,y)

is the sum of the general solution of 1). (now called the complementary function of 5). and a particular
integral of 5),

6) z =	 1	 F(x,y).
f (Dx .D )

The general procedure for evaluating 6) as well as short methods applicable to particular forms of
F(x. y) are those of the previous chapter.

EXAMPLE 4. Solve	 f(D.D)z	 (D — DD, - 2D 4 2D - 4D)z

(D - 2Dy)(Dx+Dy*2)i 	 yX +

The complementary function is z	 (y 2x) 4	 x).

To evaluate	 I	 yeX	 I	 yeZ,	 e first solve ( +	 + 2)u yeX
f(D . D )	 (D_2D+D,+2

whose auxiliary system is	 We obtain y x + a readily and the equation
1	 1	 yeX_2u

du	 dx or	 2u = ye	 (x + a)eX. This linear equation has e2x as integrating factor, hence.
X	 1	 dxye -2u

2x	 r	 3x	 I	 I 3x	 1	 3x	 1	 3x	 1	 1cze	 J(x+a)e dx = —xc x
 - —e	 + 

I n
	 Ix
	 - —e 

3x +	 5x— (y — x)e	 and3	 9	 3	 3	 9	 3

1	 x	 lx
U = - ye - e

We then solve ( - 2D)z	 ii	 yeX - !x obtaining the required particular integral (see

Problem 6, Chapter 31)

1	 x	 2 x	 2x-z	 f [!( - 2x)eX - !e]dz	 ae --
9

	

ze f -C 	 —e

	

Ix	 5x = !	 5
)e x .

	

+2x)eX - 3x e  + —
9

e	 (3 y + _

To evaluate
(D - 2Dy) (Dx + D,+23'	

>. '.e sohe (D + D + 2)U = 3xe -y whose auxiliarysystem

•	 dx = dy 	 du	 dyis -	 = 	 - ' Then y = x a, and from	 -	 - or1	 1	 3xe— 2u	 3xe-2u	 1
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du	 -y	 -y	 2y
- + 2u	 3xe	 3(y-a>e	 ue	 3(y_a)eYdy	 3(y_1-a)e	 3(x-1)e' and
dy

ii	 3(x - 1)e. Solving in turn (D. 2D)z	 u	 3(x - 1)e, the required particular integral is

r	 -0.2x	 3	 -a.2x	 3 -a.2x	 3	 3 -yz	 3J (x - j)e	 dx	 -(Xe	 .- -c	 ) = -(x - -)e

The general solution is z 	 (y 2x)	 'e 02 (y  ) + (y + 5-)e
x 3+ -(x - !)e - '.

3	 3	 2	 '

EXAMPLE 5. Solve f(Dx. 
DV) 

2	 (D — DD - 2D + 6D - 9D + 5)z
2x+y	 x+y= (L +	 4	 - 2D 4. 1)i	 e	 + C

-
The complementary function is z • e	 y -x) + C-x (y +

For the particular integral corresponding to the first term of F(x.y), we use

1x.by	 1	 ax.by
e	 e	 ,	 f(a.b) fi 0,

f(D.D)	 f(a,b)

I	 2X+y	 1	 2x+y	 2x+y
and obtain	 e	

1
e	 • -e

- 2	 + 6	 - 9D + 5	
4-2-2+12-95	 8

- 

1	 x,y	 x+y
In evaluating	 • we note that 1(1,1) = a. This means that e	 is a part of the

fWX•0y

complementary function. (To see this, take 	
y+2x

2Y + 2x) = e	 +	 (y + 2x); then

y42x	 y+x	 -x
e 2 (y+ 2x)	 c-r [e	 'I2(Y +2x)]	 + e 'I'2(Y +2x). ) We write

1	
e

	 —	 1	 r.y	 1	 1	 x+y	 1 xsy=	 —	 • -
f(DD)	 D_2D+1D+D,#5	 7D.2D+1	 7

The general solution is z	 e-"0 1 (y -x) + e _X 2(y	 1 2X+Y+ 2x) + -e	 + 1-Xe X+Y

8	 7

See also Problems 4-5.

The use of the formula

7)	 1	 e aX
	 1	 V = V(x,y),

D )
	

f ( D + a , D+ b)

is illustrated below.

2	 2X4y
EXAMPLE 6. Solve (D +	 — 2D	 • DW + 3D - 2x - (x + 2y)e

The complementary function is z 	 46(y) + 02 (y) + e 0,(y-3x). A particular integral is

1	 2	 2x+y	 2x.y	 1	 2(x # 2y)e	 e	 (x i. 2y),

D ( DX + 3D - 2)	 (D, 2)2 (D + 3D + 3)

Setting (D 4- 3D + 3)u	 x2 + 2y, the auxiliary system is 
dx	 dy	 du
- -

—35	 1	 3	 x2+2y-3u



Then y = 3x + a, and from 
2

du	 dx	 du

- 3u -	
Or	 + 3u	 2

x + 2y, we have
dz

ax	
f 

2	 Sr	 x 1 2 16	 16	 2	 1 2	 2	 16	 2
(x + 6x + 2a)e dx	 e (-x + —x - - + -a) and u= -x - -x - - -y.

3	 9	 27 3	 3	 g	 27 3

2Next, setting (D + 2)	 u and making use of the integrating factor e • y being regarded as a constant

Zr	 2x 1 2 2	 16 2	 1 2	 5	 17 1	 Zr 
and v r !2 -	

- 17
1	 —X ----+ -y e	 fe (x - x -	 + y)	 =	

- 18	 108 
3y)e	

6	 18	 108 3)"

Finally. setting (L1 + 2)w	 v, we have

2X2x12	 5	 17	 1	 12	 2	 7	 1	 Zr
we	 (-x -.—x---+-y)dx

6808	 312	 9	 216	 6

12	 2	 7	 1and w	 —x - -x + - +
12	 9	 216	 6

Then z we 
2x.y

and the genera] solution is

Zr	 1 2	 2	 7	 1	 2x+y
— -z =	 + x't'2 (y) + e	 3(3y-x) + (j-	 y)e

9
x - -X+ 

218
- + 6

See also Problems 6-7.

IRREDUCIBLE EQUATIONS WITH CONSTANT COEFFICIENTS. Consider the linear equation with
constant coefficients

8) f(DxDy)	 = 0.

Since DD(ce + bY ) = car b3 e + • where a, b. c are constants, the result of substituting
a

9) z=ce x + by

in 8) is c f(a, b)ea	 = 0. Thus. 9) is a solution of 8) provided

10) f(a.b) = 0,

with c arbitrary. Now for any chosen value of  (orb) one or more values of  (ora) are obtained by means
of 10). Thus, there exist infinitely many pairs of numbers (a t , b ) satisfying 10). Moreover,

z	 Cie '.herc f(a. b) = 0,

is a solution of 8).

If	 f(Dx.Dy)z = (Dx+hDy+k)é(Dx.Dy)Z,

then any pair (a, b) for which a + hb + k = 0 satisfies 10). Consider all such pairs(a .b) = (-hb- k, bc).
By II),

co	 CD

ce
-(hb+k)x+ by = e -kz	 ce&(y_hx)= 

i=1	 i=1
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is a solution of 8) corresponding to the linear factor ( 1& + hD +k) of f(D, Dy).

-This is, of course, e hx qS(y-hx), 0 arbitrary, used above. Thus, iff(D . D ) has no linear factor, II)
will be called the solution of 8); however, iff(D , D) has m < n linear factors, we shall write part of the
solution involving arbitrary functions (corresponding to the linear factors) and the remainder involving
arbitrary constants.

EXAMPLE 7. Solve f(D.Dz	 (Di! +D+Dz	 0.

The equation is irreducible. Here f(a,b)	 a 2 + a + b r o so that for any a	 a. b = -a(c + 1).

Thus the solution is
CD	 cc

ce

	

" I ';- 
a (a+1)y	 with c i and a arbitrary constants.

EXAMPLE 8. Solve (D.2D)(D_2D +1)(DD)z - 0.

Corresponding io the linear factors we have 	 - 2x) and e 2 (y 4. 2z) respectively.

For the irrc	 bk factor D -D	 we have a-b 2 = a or a	 62.

The required solution is
co	 2

-	 .x.b.y
- 2x)	

x
+ e	 • x) +	 e	 v. ith c	 and '6, arbitrary constants.

In obtaining a particular integral of f(D D ) z = F(x, y) ,all procedures used heretofore are available.

EXAMPLE 9. Solve f(D.D)z	 (D_D)z	 e23.

2
Fro.	 S, the complementary function is	 Z	 ce

For the particular integral:	
1	 +5'Y	 1	 2X+Y	 -

2_(3)2 
e

Co	 2
1

The required solution is	 z =	

by	 2.x+ 3ye 	-
t =1

Sec also Problems 8-I1.

THE CAUCHY (ORDINARY) DIFFERENTIAL EQUATION f(xD)y = F(x) is transformed into a
linear equation with constarñ coefficients by me ns of the substitution x = e z (see Chapter 17). The
analogue in partial differential equations is an equation of the form

f ( xD, yD) z =	 crs r y	= F(x,y),	 c S =constant.

which is reduced to a linear partial differential equation with constant coefficients by the substitution

U	 Vx=e, ye
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EXAMPLE 10. Solve (x2E + ZXYDXDY — xD)z z5/y2.

The substitution x	 y	 e" xfl z • Dz, yD,z • D, z,	 x2D,z	 D(fl. -1):,

xyD	 DDz. Y2D,	 D,x	 Dv (Dv — 1)z	 transforms the given equation into

( DD_.1 ) + 2DD — D,, I z	 + 2D_2)x

whose solution is	 z	 01 (v) # E 2u , ( v — 2u) —	 e32t1.

Thus, the general solution (expressed in the original variables) is

z •	 (1n y) + x2 (1nL)	 !._	 or	 g	 + X2 412 (L) —

See also Problems 12- 13

co!.VFfl PROBLEMS

REDt..	 -

1. Solve (D - D + 3D - 3D)z - (D —	 + D + 3>z • 0.

The general solution is	 z	 ,,(y +x)	 e-52 (Y—x).

2. Solve D, (2D — D + 1)(D + 2D — t)z z 0.

T	 z	 41(y)	 e'(2v+z) +	 4y2x).

3. Solve	 (2D + 3D —	 -	 0.	 I .	 rul solution is

z • e ' [2y-3x) + x(2y_3x)) + e [,(y#3x) + Y0(Y+3Z) + y248(y+3z)).

4. Solve	 r	 r 2 - 3D,)z	 D,C2D+D-3)z • 3 cos(3x-2y).

The complementar) .nction .s z	 5(x) +e 5y 0,(2y — x). 	 A particular integral Is

1
"(3x-2y)	 3	

Cos (ax-2y)	 3	
cos (3x- 2y)

2DD+D-3D	 2(6)-4-3D,	 8-3D 

3(8+3Dy)	 3Cos (3x — 2y)	 •	 (8 + 3D) coa(3x 2y) 	
50

(4 c08(3x — 2y) + 3 aLn(3x- 2y)].
64-9D

The general solution is z	 + e 5 02 (2yz) + .2.	 CoB(3x-2y) + 3 8111(3x-2y)).
50

S. Solve D(Ll,, + D,- 1)(D+ 3D —'2)2 • x 2 - 4xy+ 2y2.

The complementary function is z -	 . e x 4i3 (yz) + e2'	 (y-3x)

A particular integral is denoted by 2	
1	 2

Cx — 4xy	 22y ).
D(D+Dy1)(D+3D_2)
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To evaluate it. consider	 1	

-

	

(x	 4y 4 2y 2) •	
1	

(x2 - 4xy + 2y2)

	

D+3D),-2 	 -1+(D+3D,)

•	 (-i - 4(D+3D) - (D.+3D)2 -
	

4.y+2y2)

	

- 4xy + 2y2 ) - (-5x + 4y ) - 7/21	 - 5(x2 - 4zy + 2y2 - 5x + 4y + 7/2).

Consider next 	 - 5	
4xy+2y 5x+4y+7/2)

2	 1	
(x2-4xy + 2y2 - 5x + 4y + 7/2)

DD-1
 (x2-
	 1-(D1+ D,)

r 5[1 +(L&+Dy)+(Dx+D),)2+...)(x2_4xy+2y2_5x+4y+7/2)	 +(x2-4zy+2y2-7x+4y+).

Ftnallv.	 z	 ±(x2_4xy+2y2_7x+4y+k)	 5(x3/3_2x2y+2xy2_7z2/244.xy4x/2).
Dx

The general solution is

z	 e x 02 (Y -x) + e2	 (Y - 3x) +	 - 12x 2 y + 12xy2 - 21x 2 # 24zy + 3x).

TYPE	
f(D D,)

1	 axsbye	 V(x,y).

6. Solve	 (4+Dy_1)(Dx+Dy_3)(Dx#Dy)Z	 f
X+y+2
 COS(2x-y).

The complementary function is	 z	 ex j (y-x) + e3X 2 (y-x) + 03 (y-x).

+2For the particular integral. 	 1	
e 
x+y cos(2r - y)

	( D + D,, - 1)( +	 -3

• C	 e
x+y	 1	

Cos (2x-y)
(4+Dy+1)(4+Dy_1D+Dy+2)

•	 y+2	
1	

Cos (2x-y) = - x+y+2	 1	
Cos (Zx-y)it

	D +D,+ 2

1 r+y+	 fl, + Dy -2	
-	 ! xy+2

DX+2DXDY+D,

e	 (D+D-2) cO(2x-y)-	

4

1 X+y+2
• - - C	 sin(2x-y) + 2 coo (2x-y)). 	 The general solution is10

x
2	 e 4(y_x) + e	 2(y-x) + Sy-x) - 1

	 xly,2
e	 [81ri(2x-y) + 2coa(2x-y)).10

7. Solve	 Dx W -2	 D + D2	 e
x+2y 2

(x + 4y 2).

The complementary function is 	 z •	 +	 + Zx)

For the particular integral

1	 x+ 2y 2	 2	 x+2y	 1	 2	 2	
firste	 (x +4y ) • e	 Cx + 4y )	 weD (D - 2D,W 4 D 	 (Dx+1)(Dx_2D_3)(D+D+3)
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1	 1find u	 1	 2(x +4y 2 )	 ________ 
2 2

(x + 4y )

	

D + D+3	 1 +

1
- !(f+D) + ! (DX+DY)

2 4 ..... 
j(x

2
 4y2)

11_2	 2 - 
2

(x+4y )+ 2	 (Dx2+ 36y2 -6*-24y+10),—

	

. 
4 4y	

3

then v	 -	 U	1 	 1	 1	 ![i	 (2D,D) + 1(Wt)2 --

i+	 —	
= _3

1
- - —(9* 2 + 36y 

2
- 72y + 58).

61

and finally.	 z	 _-L__ u	 (1—Dr " D +. . .)v 	 - !(912 + 36y2 - 18* - 72y + 76).
D+1	 8

The general solution is

	

(Y)	 (Y + 2x) + <k.,(y —x) -	 ( 9x2 + 36y2 - lax- 72y+

TYPE. IRREDUCIBLE EQLATIOXS.

2	8. Solve f(L.D)z	 (4—D)2	 e

	

CD	
?ix +by

The complementary function is Z	 ce	 from Example 9.
i -

1The short method for evaluating the particular integral 	 e 
x+y cannot be used, since f(a.b)

f (D .

1(1.1)	 0. We shall use the method of undetermined coefficients, assuming the particular integral

to be of the form i Axex+y
 + Bye

x4y.

2 2	 x+y	 x+yyNow Dz = (A Ax+By)e
x,
 . Dz	 (Ax+2B+By)e

x+y and (DD) z (A-2B)e	 e	 hence

A - 2B = 1. Taking A 1. B • 0, we have as particular integral	 z	 xe; taking A 0. B -

we have x - -	
x +yye	 and so on. Choosing the first, the required solution is

2
bx+bØ'	 x,y

	

2 -	 + Xe
=1

9. Solve (2D -	 + D)z = x2y.

co	 ax.by	 2
The complementary function is 	 z -	 ce	 ,	 2a

2
 - + ai

i-1

The particular integral	 1	 2	 1	 1	 2
(x _ y>	 (x- --	 — y)

2D,—DID	 D 1L+2D

-	 1+ A+2D	 (f)X+2J))2	 2	 1	 2	 2* + 4	 2+ ...]x —y) = —-(x	 y4	 +

D	 D;



NON-HOMOGENEOUS LINEAR, CONSTANT COEFFICIENTS

	1	 2	 2	 2 22	 13	 1	 I.	 l's	 1	 6

	

—(x —y+xy •2	 Y ' / 12)	 -	 Y +	 - j-'Y	 -
-

vTy1221	 1	 's	 1The required solution is z 	 ce	 y 
+ 

.- y3	
'si

— xy -	 - -y 6

10. Find a particular integral of (D+DY DX — DY_ D)Z 	 i,(2. +y).

A particular integral is given by

1	 1Slfl(2x#y)	 sln(2x+y)
(D+D),)W_D_D2	 (-4+D)(D—D+ 1)

1
=	 Sin(2x+y) -	

1
	 81fl(2x+y)

	

DX DY_ D;_4D+5D,_4	 5D-4D-5

5D-4L+ 5
BIfl(2x 4 y) • - -1. [s 81fl(2x + y) - 3 CO8(2x +y)].

25D40D+i6_25

The method of undetermined coefficients with z A sln(2x + y) + B coa(2. +y) may also be used here.

II. Find a particular integral of (L - 2D + 5)(D +D + 3)z . e 54' sin (x - 2y).

	

A particular integral is	 1	
Sifl(z - 2y)

(D 2Dy 4 5)(D+by+3)

	

5xsy	 1
sin(x2y) •	 81fl(x-2y)

z_ 21)y)(D 4 8D +D + 16)	 (D-2D)(6D +D + 15)

-	 1	
Sin(x-2y)	 ! e 3X 's Y	 1	

lfl(x-2y)
6D_i1DD_2D.+I5D..3oD	 5	 3L_6D_4

273

• 1 5x.4y ___________________

—36ED+36D—	
81fl( —2y) 1	

(3D-6D+4) Bin(x-2y)
1205

-	 1	 3x.'sy
[15 Cos	 2y) + 4 Slfl(x...2y)).

TYPE. f (x D, yD)z = 0.

12. Solve	 (xE - yDD)Z	 0	 or	 (x'y2Df4 - x 2 y3ii)z = 0.

Thesubstitution x	 • V	
x3y2DDz -

x 2 y3 DD z	 - 1 )D (D - 1)(D - 2)z	 transforms the given equation into

—1) (Dr, —1) (L - A)2 - 0.	 The required solution is
z • 011 (v) +	 2 (u) + e 1'	 v) + et 4 (u) + ;%( u + U)	 or, in the original variables,
z • 01 (Iny ) + 0, ( 1n x) * x'3 (1n y) + y 4 (1n x) + 0(1fl xy)

- 05 (y)+ 02 (r) + x%L',(y) + y''4 (x) + 4'8(xy).
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13. Solve (x2 L - 4y'fl - 4yD - 1)z	 x2 y5 my.

The substitution x • e u, y e
V
	 transforms the given equation into

[DIs (DIs -1) - 4D, (D, - 1) - 4D, - 11	 (D- 4D -	 - 1) Z 	 ye

1
A particular integral of this equation is given by

D- 4 Dv- -D. -1

214+5V	 1 21+3V	 1
• e	 v = e	 -	 V.

(D. 2)2 - 4(D	
3)2 - 

(D.,, 2) - 1	 D - 4D + 3i1,, - 24D - 35

	By inspection, a solution of (D- 4D + 3D - 24Db -35)w	 is found to b	 1	 24
i k'	 —V+-----•

35	 (35)2

1
Hence, the particular integral is z	 - —e 

2is+3t' (35v-24).
(35)2

The required solution of the given differential equation is

as,bv	 1	 2Is+3v
C	 - - e	 (35v -24)	 or, in the original variables.

1225
CD

z

a b	 1	 2	
35	 y - 24).	 - 4b -	 - 1 0.ycz	 -	 x 

1225
—

.1

SUPPLEMENTARY PROBLEMS

Solve each of the following equations.

14. (D.D +1)W-2D, -1)2 - o.	 Anc. z	 e_X4(y_x) + eX02(y +2x)

15. (D+2D-3)(D+D-1)z - o.	 Ans. z	 e 3 j 3' (y-. 2X) + ek(yx)

16. (2D+D, +1)CD,.3DD_3D)z • o.	 Ans. z =	 (y) + e'#2 (2y-z) # e'3(y-3x)

2X q53

17. (D,rDy +D) (Dc _ Dy 2)X - 0.	 Ans. x	 t(x)	 c^'rs(y—x)	 e(y+x)

18. •0.

Ans. z 01 (y- 2x) + *-'96.(y 2x) + e 	 [ 4),,(y -2z) + y414(y_201

19. (D+D,D+D,_2)2 • tn(x+2y).

Ans. z - 01(Y—x) + e4i2 (y_x) + _.L (e coe(x+2y) - 9 Bln(x+2y))
117

20. (D+D-1)(L+2D+2)x • e + 'y +

Ans. z - e
x 

s 1 (y--x) + e"'4(y-2x)	 xy	
3	 1 sx+

+ - +	 e—
2	 78

1 x	 1 -xx-
21. D,+DrD,+Dy_1)z = e + e .	 Ans.	 z eZ0t(Y) + e5 syx + —

2 
xc - 

2
—xc
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22. (D—DD;—D + Lft,) 2 - (x+2)/x.	 ,4n.r.	 z	 01 (y) + 02 (y+x) + e 3 (y—x) + In

23. (3D,D -2D-D)z	 cos (3y + 2x).	 AFIV	 + c y 452(3Y + 2x) -	 sin(3y + 2x)

zK - 5y
24. - e	 . An	 =	 - I	 .	 0e	 e

6

25. (3L2L,
2 

+Dx-1)z - 3e x.y sin(x by).

Ans.	 z	 c 
i 

e	 - e
x+y	 2 Cos (x + y),	 30 - 26. 2 + a - 1	 0

x+y
26. D .2L1D .. 2D +3)z	 e	 cos (x +2y).

QxsY1 x.y
An...	 z	 , c e	

- 13
- e	 COS(x + 2y),	 + 2a b - 26 + 3 • 0

	

-2x 2	 2
27. D +D ; Dy +D2 +	 + 1)z	 e	 (x + 2y ).

	

V	
X4bY	 I -2x	 2	 2

An,c.	 z	 , ce	 - e	 (9x +	
2

IBy + 18.x + 12y + 16), 	0
27

2x
28. (DD, +	 —2)z • e	 cos 3x + e sin 2.

0X+bY	 1 2y	 1 x	 2
Airs. x	 ce	 - -

16 
e cos 3x - -

20 e 
(cos 2y + 3 sin 2y).	 ab + b —2 0

29. (xyD,D7 —y2D.-3xt1 + 2yL4)z	 0.	 Ans.	 z	 (1n xy)	 y(1n x)	 ,&(xy) 4 yi2(x)

30. x2y sin(In x2).

A pis.	 z = 1 (x 3 y) +	 (y/x) -	 x2y[4 cos(ln 22) • 7 sin(ln x2>]

31. ( x
2 D' +xyDD, - 2y2D xD - 6D )z	 0.	 Ans. z	 0, (ylx

2 ) + x212(xy)

32. ( x2 —y4a,-2y2D2 +xD,-2yD,)z x ln(y/x) - 1/2.

Ans. z	 i(x2y) + 2 (y/x) +	 1n 
)2 

fl7 + f mx my

33. =xy

5y
3

—Ans.	 z - z(y ) + y4'2 (x) + 3 (xy) - 1 x

—36

275



CHAPTER 33

Partial Differential Equations of Order Two
with Variable Cofficjents

I H E MOST GENERAL LINEAR PAR11 AL DIFFFRENJ1,.1. EQUATION of order mo in Iwo independentvariables has the form

I)	 Rr+Ss+Tffpp+q+_

where R, S. T P, Q, Z, Fare functions of x and y unIv and not all R, S T are zero.

Before considering the general equation, a number of special types ill he treated.

TYPE I.

2i)	 r =	 = FIR = F1(x,y)

2b)	 S =	 = F/S = F2(x,y)
B

	

2e) t =	 = FIT = F3(x,y).
3Y 2

These are reducible equations with conIint coeffic ien is (Chapter 32), but a more direct method of solvingwill be used here.

EXAMPLE I. Solve	 $ x - y.

Integrating s	 xy with respect to, p
	 Y-	 + 0W. sP arbitrary.

Inte p,rating this relation itli respect to x,	 z = jz 2y - xy 2 + 1(x) +

here	 =	 and	 y) are arbitrary functions.dx

TYPE II

3u)	 Rr + pp = R LP + pp = FZx

3hj	 Ss+Pp = S.- E+Pp = F
By

3()	 Ss+Qq	 S+Qq	 F

3/)	 Tt + Qq = T -	 + Qq = F.
BY

These a reessenhjiII linear mJi,
variable.	

ujri• diflrentiaI equations oforder one in luJi p 	 or q) i the dcpendeni

276
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5x+ 2y
EXAMPLE 2. Solve xr 2p	 (9x 6)e

Considering pas the dependent variable, x as the independent variable, and y a s constant, the equation

is z	 + 2p	 (9x + 6)e 
+2y 

for s hiLh x is an Integrating factor.

Integrating z 2 P- + 2xp	 (9x2 + 6x)f
5.x+2y 

• we have

	

2	 !(9x2. 6xte2	 I	 X+2)(1 - X + X	 (92 + 6x)z 

2 5x42y	 dz	 5+2y	 1
3x e	 • ' (y)	 or	 p	 -	 3e	 + - q(y).

ZiX	 x2

Then z	 e 3 
.2	 -	

+	 2 (y) is the required solution.
x

TYPE III

4a)

4b)

Rr + Ss + Pp = F

Ss 4 Tt + Qq = F

or	 R-E + S	 = F — Pp
3X	 -ay

or	 S Lq + T Lq = F - Qq.

These are linear partial differential equations of order one with p(orq) as dependent variable and x, y as
independent variables.

EXAMPLE 3. Solve 2xr - ys • 2p 7 4xy2 or 2x ip — y	 4x Y2 - 2p.
x	 y

Using the method of Lagrange Chapter 29). the auxiliary system is 
dx	 dy	 dp

24xy - 2p

From the first two ratios, we obtain readil y xy 2 c a.

By inspection. 2y(2x)	 2py(—y) - Y 2 (41y
2

-2p) = 0. Thus.

2ydx 2py dy — y 2 dp 0	 or	 2	
- y2 dp - 2py dy	 0.	 and	 £ - 2,	 b.

2
y	y

The general solution is p/y2 - 2x	 (xy2). Then

22 2	 222P	 -	 2xy	 y i,b(xy 2 )	 and	 z	 x y +	 (xy2) +	 ( y ). where	 - c j (xy )	 y
ZiX	 ax

TYPE IV
2

Sa)	 Rr + Pp + Zz = F	 or	 R -_ + P	 + Zz = F
x2

Sb)	 Tt + Qq + Zz = F	 or	 T	 + Q L + Zz = F.
By 2	 By

These are essentially linear ordinary differential equations of order two with x as independent sariable
in Sci) and y as independent variable in Sb)
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EXA1PLE 4. Solve t - 2	 2
xq + x z	 (x —2)e 5x+2y

The equation may be written as (D - 2xD	
2

+ x )x	 - x)2 z	 3x+ 2y2.
(x - 2>e

The complementary function is z	 e(z) + xe 
xy 2 (x) and a particular integral is

1
2 (z-2)e"2'	 '-2	 5x+2y 

(D_x)	 (2x)2	 x-2
3x+2y

The required solution is z	 e	 + xe xy 
2 (x) + e

-2

See also Problems I-S.

LAPLA CE'S TRANSFORMATION. This transformation on

1)
	

Rr 4 Ss + Tt + Pp + Qq + Zz = G(u,v)

consists of changing from the independent variables x,y to a new set u, v, where

6) U = u(x,y), v = v(x,y)

are to be chosen so that the resulting equation is simpler than I). By means of 6). we obtain

Z.

	

= -	 Lu U	
2VUY

r	 + ( ZUU	 +	 +	 + (z 0i +

$ zUU 	 4	 + Z 0(V, )2 + zU Uxx + zuxx •

S	 + (zi& + Zv ),	 (zu +U +ZV	 +

+Z U	 +Z V
xy

=	 + : ( u,u + uv,) +Z V t)

-	 2(U)2 + 2Z	
2

UV, + z(v) 
+"UUYY +BY

Let

I')	 R'z	 + S 1zUV + T ' z	 + P ' zV + Q'z + Zz =

be obtained by making the above replacements in I) and rearranging. We shall need only thecoefTtcients

R ( u,) 2 + Su,u, + T(u,)2 and T' = R(v,)' + Svv, 4 T(v,,)?.

We note that both are of the form

7) R (SC, )2 
+ S ,e, + T(4)' = (at, + bfy ) (e C, +

i) Suppose b/a 4 f/e; (hen, if for u we take any solution of of. + bey = 0 and for v any solution of
+ f = 0, I) is transformed into I')with R'-_ T'= 0.
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EXAMPLE 5. Solvea x 2 (y-1)r - x(y2 – 1)s + y(y-1)t + zyp - q	 0.

	

h) y(+y)(r–s) - xp - yq - 2	 0.

a) Here 7) is x2(y...1)()2 - x(y2_ 1 ) f, + y (y -1)(e
y
	 0

or x2 ( )2 - x(y^1)4 + Y(4)2	 _Ye)(xe_4)	 0.

Now x -4 a is satisfied by	 u = xy and x -4 = 0 is satisfied by f =	 xe. Moreover, it is

easily shown that these solutions also satisfy the given differential equation. Hence, the required solution is

	

Z	 0(xy) +

b	 Here 7)is Y(x+y)[()2_e4]	 0 or	 0.

Now	 -4 0 is satisfied by e=	 y and	 0 by	 Y. However, neither of these solutions will

satisfy the given differential equation.

We take u.x+y and v.y. Then p=z. g=i+z .	 s	 + z., . and the given di1reren.

tial equation becomes

zut, - zz., - yx., - yz. - z	 0	 or	 uvz1	 + U2U + vz + z • 0.

This may be written as

1	 1	 1	 1	 1z	 1	 1z	 1+ -Z + --2	 —(-- + -2) + –(--.	 -Z ) = C— + -)(—	 -z) • 0.
+ 

v	 u v	 ,	 I,	 u	 v	 BU u av	 v

L' 1	 w	 ILet - + -z • w; then - + –w a and	 Ji(v). NowV	 U

z	 1— + -z

	

2v	 +	 (u),	 and	 Z	 j(V) +

where -4(v)	 v.q(v) and c'(u). •	 v). The required solution is	 z	 + 
dv	 X+7	 y

EXAMPLE 6. Solve x2  – y2   + Pr – qy • x2.

Here 7) is x2 (')2 - 
Y2(4)2	

(x_y4)(x +g>	 a.

Now x e,	 a is satisfied by	 xy and x 
+ 4 = 0 by	 sly. It is found readily that these

solutions satisfy the reduced equation x2 r -y2 t + px - qy 0; hence, the complementary function is
2 • j (x/y) +	 (xy). However, this complementary function may be obtained along with the particular
integral as follows. Take u xy and v x/y; then

2	 21	 x	 2	 1	 2	 x	 x	 2xP • yz + - z0V . q XL - -.	 r y Z	 + 2214V + j 'vv	 x z - 2 
2	 + -, VV + j IV-

Y	 y	 y	 y	 y

and the given equation becomes 4x 2z = x2 or

Integrating first with respect to u,	 z,	 41 ( v) +

and then with respect to v,	 (v) •	 + uv = q5(z/y) + 2 (xy) +

where	 -ot(')
du

See Problems 9-10.
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ii) Suppose b/a = f/e then R( )2 +	 T( )2 = m (a + b' )2 This case is treated in

Problem 11.

NON-LINEAR PARTIAL DIFFERENTIAL EQUATIONS OF ORDER TWO. One possible method for
solving a given non-linear partial differential equation of order two

8) F(x, y, z, p, (7, r, s, t) = 0

is suggested by several of the examples of linear equations above. In each of Examples 1-3, the first step
consisted in finding a relation Qf the form

9) U = ji(v),	 , arbitrary,

where u = u(x, y, z, p, q) and v = v(x, y, z, P. q), from whichwhich the given differential equation could
be derived by eliminating the arbitrary function. Such a relation 9) is called an intermediate integral of 8).
For example,p xy + jy 2 = (x) Is an intermediate integral of s = x - y , (Example I).

It can be shown that the most general partial differential equation having

u = /i(v),	 ii arbitrary,

where u	 u(x,y, z,p,q) and v = v(x,y, z, p, q), as intermediate integral has the form

10) Rr + Ss + Tt + U(rt—s 2 ) = V.

where R. S, T, U, V are functions of X. y, Z . P. q. However, it is evident from the definitions of R,S.. -, V
that not every equation of the form 10) has an intermediate integral. The discussion below concerns
Monge's method for determining an intermediate integral of IC). assuming that one exists.

TYPE: Rr + Ss + Tit = V. Consider the equation

II)	 Rr + Ss + Tit 	 V,

that is, 10) with U identically zero. Since we seek z as a function of x and y, we have always

121) dx = —Zdx + ! dy = prix + qdy,
ZX	 'ay

122) dp =	 dx +	 c, = r dx + s dy,
,ax	 ZY

123) dq =	 dx +	 c1, = s dx + t dy.
BX	 By

	

dp— sdy	 = dq - SdXSolving the latter two for r	 and substituting in II). we obtain

	

= ________	 ________
dx	 dy

R'' + Ss +	 = V ordx

13)	 s[R(dy)2 - Sdxdy + T(dx) 2 ]	 Rctydp + Tdxdq - Vdxdy.
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The equations

14,)
	

R(dy)2 - S dxdy + T(thc)Z = o

14.)
	

Rdydp + Tdxdq - Vdxdy = 0

are called %Io!lges cc/nations.

Suppose R(')2 - S dxdy +T()2	(Ady	 B)2	 0. lUr,oS\
U = u(x, Y. z P. q) = a, v = v(x, Y. z, p, q) = b satisfy the system

I	 AdyBdx=0I Rdydp + Tdxdq - Vdxdy = 0,

then	 u = (v)

is an intermediate integral of II) since a = a, v = b satisfy 13) and, hence. lit.

Sunpose R(dy) 2 - S thc.' iT(dx) 2 = (Ady +Bdx)(A 2 dy +B2 dx) = 0.
where A, B2 A, B, ^ 0 indenticallv. We now have two systems

A1dy+Bd,c=0	
and	 {	 A2dy+B2d=Q

Rdydp + Tdxdq Vdxdy = U	 Rdydp + Tdxdq - Vdxdy = 0.

If either system is integrable. we are led to an intermediate integral of II); if both are integrable. we have
two intermediate interals at our disposil. Procedures for finding a solution ala given equation for v. hich
intermediate inteorals have been obtained will he discussed in the examples and solved problems.

EXAMPLE 7. Sole q(yq + z)r - p(2yq + its	 yp 2 t + p 2 q	 0.

Here R	 z), S	 - p(2yq-z), T yp 2 , V - p2g ; Mongcsequationsare

S dxdy	 T(dx)2 	 q(yq +z)(dy)2 . p(2yq + z)dxdy# yp2(dx)2

( q dy + p dx )[(yg + x)dy + ypd.x) = 0

and	 Bdydp * Tdxdq - Vdidy	 q(yq+ x)dydp yp 2 dxdq + p 2qcizdy 0.

;dy + pdx 0
We seek a solution of the system [ 

q(vq + z)dy	 yp2dx dq + p 7 q dx dy T 0.

Combining the first equation and l2) se have di 0 and i = a. Substituting in the second equation
dy	 -p dx/q, obtained from the first, we obtain

*	 - py U • q dy)	 0.

We add -p dx a to this, ohtaincn

Yg . 2idp -p(y+qdy . dz)	 U	 or	
dp = y+qdy.dz
p	 yq.z

tb solution	 5.	 yq	 f x) is an intermediate interal. The L;iringe system for

-	 dx	 xy	 dl F rom 	 dhi first order eqa.li!on is	 -_-	 -- . F ram	 z
= - \SC obtain yx	 a, and I ran	 dx	 dxt -	 - we

f(z)	 -	 -y	 1	 Rx
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obtain x • f fz)	 =	 6. Thus, the required solution is

S	 + 02(yz).

[	 (yq + z)dy + ypd.x	 0
Consider next the second system I 	 2	 2q(Yqez)dYdp +ypdxdq +pqdxdy	 0.

From the first equation. pdx # q dy -z dy/y: then dx	 -i dy/y and yx • a. Substituting from the
first equation, the second becomes

qydp-pydq_pqdy=0	 or	 f_Z=0

with solution qy/p	 b. Then qy	 p•g (yz ) is an intermediate integral. The Lagrange s ystem is
g(yz)

• dz	 0. Then x	 a and the first equation	 has solution x	 -f g(ya)	 2(ya) • 6.
-y	 g(ya) -y 	y

We thus obtain x &(z) +	 as before.

The solution may also be obtained by using the tso intermediate integrals simultaneousl y . Upon solving

them for p =	 z
	 q

1(z) - g(yz)	 yf(z) - g(yz)]

and substituting in pdx	 qdy = dz, we have yz dx	 zg(yz)dy = yfx)dz - yg(yz)dz,

Writing f(z) e 'ft (z) and g(yz)	 - yz g 1 (yz ). this equation becomes

dx	 f5(z)dx + g, (yz) (z dy	 ydz)

and. integrating.	 x = 01 M 	3(2).	
See also Problems 12-16

TYPE: Rr t Ss + Tt + U(rt - s 2 ) = V. Consider equation 10) Aith U	 0. By substituting

= dp 
--5  ,	 =	 _____ as in the preceding type, we obtain

dx	 dy

sIR(dy) 2 -Sdxdy+T(dx) 2 +U(dxdp*d)., dq)] = Rdydp*Tdxd(7+Udpdq-Vdxdy.

The equations

15)	 R(dy)2 - Sdxdy + T(dx) 2 	U(dxdp+ciyciq) = 0

151)	
Rdydp + Tdxdq + Udpdq -	 y = 0

are called Manges equations. Note that when U = 0, the	 .icion ire 14 and 14,) Hoscer, unlike
14 k ) and 14,), neither can he factored.

We shall attempt to choose X = >.(x, y, z, p, q) so as lo obtain a factorable combination

16 X[R(dy) 2 - S dx dy + T(thc)2 + U(dx dp + dydg))	 R dy dp T dxdq + U dpdq - V dx dy
= (ady+bdx+cdp)(2dy+3dx+ydq)

= aa.(dy) 2 + ( aj + ba) chr dy +b3(dx) 2 c.dxdp+.idydqcidydp

+ b)dxdq+cdpdq	 0.
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Comparing coefficients, we have

aa=TX, a+ba=-SX-V, b,8=TX, c=L/.\=.y, ca=R, by=T, cyU.
The first relation will he satisfied by taking a = X and a = R; this choice determines b = T/U.	 = XU, c

1, ) = U-  The remaining relation a,3+ ba = -SX- V

takes the form	 Uk2 +	 = -Sk - V	 or
U

17) UY +SUX+TR+UV= 0.

In general 17) will hase tso distinct roots X = X1,	 = X; thus. 16) can he factored as

18) (k1LJdy + Tthc + Udp)(Rdy + k 1 U	 + Udq) = 0	 and

18)	 (XU' + Tdx + tidp)(Rdy + X 1 UdX + Udq)	 0.

There are four s ystems to be considered. The system X1 Udy + T + Udp = 0, k1 U' + T + LJdp	 0

implies (X1 - k,)Udy = 0 and, hence, unless X	 k, Udy= 0 identically. Similarly, the system,
Rdy + XVdx+ U	 = 0. Rdy + X,Udx + Udq = 0 implies Udx 0 identicall y . We therefore shall use
only the systems

19)
•\L/dy+Tdx+Udp= 0	

and	 I X 2 Udy+Tdx+Udp 0
Rdy+k 9 Uctc+Udg = 0	 I. Rdy+X 1 Udx+Uckj = 0.

Each system, if integrable. ields an intermediate integral of 10).

EXAMPLE 8. Solve 3, - 2(rt - 	 2.

Here. R-0.  S • 3, 7-0. U. -2, V-2. Then U2X' + silk + TR + UV • 4k2 - 6X - 4 • 0,	 -
and k 2. We seek solutions of the systems

Udy + Tdx + Udp dy - 2dp • 0	
and	 { k

2 tldy + Td,x (Jdp -4dy - 2dp 0
LRdy+X2Udx+Udq---4dx_2dq=o	 Rdy+XjUdx+Udqd.x_2dqo.

From the first system. y - 2p a and 2x + q = b; then (i) y - 2p f(2x + q) is an intermediate integral.
From the second system, 2y . p a and x - 2q 6; then  (ii) 2y + p • (x - 29) is an intermediate integral.
Since q appears in the argument of both f and S. it is no longer possible to obtain a solution of the given
equation involving two arbitrary functions by solving for p and q and substituting in dx	 p dx + q dy.

We shall attempt to find a solution involving arbitrary constants from the intermediate integral y-2p
f(2x + q). To obtain an inte g rable equation, take f(2x + q)	 a(2x + q) + . where a and 0 are arbitrary

constants. The Lagrange system for

y-2p.a(2x+q)+/3	 or	 2p*aq.y-2ax-/3
is	

dx	 dy	 dx

a

From the first two members, ax	 2y + f . Substituting for ax. the last two members become

dy	 dx
a	 -3y-.2-B

or adz • - 3y - 2 -i)dy and ax - 32 -
	 y -. 8,, +

Thus, ax .	 - (2	 +,6)y +	 - 2y) isa solution of the given equation nol'.ing one arhitrar

function and two arbitrar y constants.

—37
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Treating the second intermediate integral similarly, we take 2y p • y(z -2q) •	 or p 2y9 =-yx-

2y+ 5 , where y and S are arbitrary constants. The corresponding Lagrange system is	
di

1 2y yx-2y+S

From the first two members, y 2 + If. Now the first and third members become dz di

1	 -3yx-2e+&

and z	 -	 -2x + Si 4 i • Thus z = y2 - ( 2y-S)x + 4 2 (y-2yx) is also a solution involving

one arbitrary function and two arbitrary constants.

A solution involving two arbitrary functions of parameters X and A will next be found. Set 2x + q X
and x - 2q • u so that x	 (2X+ t)/5. Then (i) and (ii) become y —2p = f(X) and 2y+ p • g(), and
y	 (f (K) + 2g (J))/5. Now

(iii) p	 — f(X)] • — 2y • g()	 and

(iv) q	 — 2x	 (x —..L).

Substituting the second value of p and the first value of q in di	 p d + qdy, we have
di - (-2y g(14)dz + (X — 2x)dy

• - 2(ydx.xdy) +	 g(j t)[2dX+d1j] +

• - 2(ydx+xdy) +	 (Xg'(J4)d.t+g()dX) + ![Xf'(X)+f(X))dX - f(X)dX +

and	 - 2xy + Xg() + ! Xf(X) - 1 (X) +

— 2xy + Xy - ctj(X) *

This solution may have been obtained by using the first value of  in (iii) and the second value of q in (iv).
See also Problems 17-18.

SOLVED PROBLEMS

2
I. Solve r 2 x2e' or 1!. X e2 -y

ax2

One integration with respect to x yields p --	 .. e	 + 4(y ), and the second integration with

respect to x yields z	 _	 + 4 5 (y) +
12

2. Solve xy2
3
 • I —
 

U
2
 Y.

Integrating -i- - 	 xy - 4xy 1 with respect to y,	 LZ = —	 — Ix my +
Xy

Integrating this with respect to	 ,	 —	 In —	 in y • 01(x)

where	 1(x) • ,(z).	 .2iflEtiO viiiidm .
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3. Solve zys - px	 y2,

	

y	- p

Integrating
2

y

2
. ! with respect to y, 'e ct	 +	 (x) or	 -. + y(x).

x	
'.	

y	 x	 az	 x

Integrating ith respect to x. We gel z	 y 2 ln x + y 1 (x) + 2(Y).	 here	 .1(x)
dx

4. Solve t - xq W - sin y - x COS y.

Integrating L9 - xq	 -(sin y + x cos y), using the integrating factor 	 we obtain

eq . fY(sjny + x cos y)dy	 ecosy	 (x) or	 q =	 C08y +

A second integration, with respect toy. ye!ds z • sin y + eXY 
t(X ) +

where &(x) = iI1(x)1x.

5. Solve sy - 2xr - 2p	 &xy.

The auxillar) sstem for the equation 2x - - y_L.	 .6.y - 2p is 
dx	 dy	 dp
-	 - =

y	 2x	 -y	 -Gxy-2p

From the first and second ratios, we find xy 2 	 a. B y inspection.

2y(2x) - (2yp+2xy 2 )(-y)	 y2 (- €xy-2p)	 0

so that	 2y5dx - (2yp+2xy 2 )dy + y 2dp = 0,

or 
y 7 (dp + 2xdy + 2y dx) - 2y (p + 2xy)dy . 0,

	 and	 p + 2XJ	 6

Thus, we obtain as solution p + 2xy = y2 (xy2 ). Then

-2xy + yt 'i(xy 2 ) and	 z	 - x2y +	 (xy 2 ) +	 ( y ),	 where -	 1 (xy 2 )	 y2 p(xy2).
•ax

6. Solve xs + yt + q	 l0x3y.

The auxiliary system for the equation x	 +
	

-	
dx	 dy	 dq

lOxy q is -
X	 Y	 Z	

1Qz5y-q

From the first two ratios. z/y • a, B y inspection.

(9-8xy)x - 2X()
	

x(lOz 5y-q)	 0

so that (q_8x 3y)dx - 2xdy + xdq . 0.	 or	 x dq + qdx	 8x5ydx + 2xdy,

and	 qx = 2x
I' 
y + 6.

The general solution is qr	 2.xy . 4,(y/x: ). Thus,

= xy • !	 and	 x3y2	 () +1(x), where
X 



ii	 22	 37. Solve t-q--(--1)z	 xy -xy +2xy..Zx 5.x 

The equation may be written as [D — Dy —
	 — 1))z	 xy

2
 — x

2 
y
2 

+ 2r 3y - Zr3.

The complementary function is z e ylx 
01 W +	 #2(x).

For a particular integral wetry z Ay 2 + By + C. where A.B.0 are functions of x or constants. Then

ID; - D, — !(! -1))z = 2.4-2Ay-B - (I - 1)(Ay2+ By.C) = xy 2 -x 2y 2 4 2xy_2x 3, identicall y . Eqwit-

ing coefficients of the several powers of y. we have

-	 - -)A	 x.(1 - x),	 -2A - (..? - )B	 2x 3 .	 24 - B -	 -	 -2x3.

Then A	 -x 3 . B C 0 ana the required solution is z	 e'1(x) + e'Xcf.,,(x) - z'y2.

8. Solve y, + p - yq - z	 (1 - x)(i 4 in y)

This equation is solved readily by noting that it may be put in the form

1 i 	 i -x— 
+ - — - — - - . —(_ + -x) - ( + -x) • —(1 + in y).ax By	 Yx	 y	 Y	 a, ay Y	 y Y	 Y

2	
h	 be	 1Setting	 =	 + z	 e equation comes — - w • ----

x
(1 + in y) for which e-x is an Integratingy

factor. Then

e	 ____
-x	 1 +lfl SX (e_X _ Ze_x )dx 	 14 in Y(xe_X) + '(y) and .	 x 

1 + in y________	 x
y	 y

In turn, integrating	 1	 1 + in	 x-. 2	 x	 + e /i(y), using the integrating factor y, we findY
	 y

j-Y1 + in y)dy 4 eXfyt(y) dy	 xy In 	 + ex 's(Y)

LA PLA CE'S TR.4 .VSFORM,4 TION.

9. Solve t - *	 p - qi * 11ri + z,/x = 0.

Setting c	
-	 o and solving, we have	 z and	 x y.

For the choice u r x and	 x y,	 p	 x	 q 1 ZVI	+	 and i - z, Substituting

in the given equation. we hae	 - z + 1-(2 -.z) • —(-- z) + 1

	

-(
z
 -	 = 0.U	 j

Let —
av	 au

 - z w; then —	 w-	 0 and u • u_ - z) •U

Integrating	 - 2	 (u) we have e'z =	 (v) + (u) or z	 e	
(u) +
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x	
1In the original variables,	 z	 e

4y

-	 + y) + e	 #(x)	 - fx + y) + r g(z),	 wherex	
x.y	

x

	

f(x 4y ) • er,y 
kt(X +y )	 and	 g(x) -

	

10. Solve xys — x 2 
r — px — qyl z	 —2x 

2 
Y.

From	 2- x ()
2
	 XX(Y, - z>	 0. we obtain if • y and	 - zy.

Using u • zy, v -y, p	 yx	 2, q - xz+ z, r • y x, • •	 the given differ-

ential equation becomes

	

1	 1	 or
U V2 - —z - -z + —z"	 v "	 u V	

-V	
- v	 u av v

- 2u2

	

z 1	 w	 2u	 d!Let - - -z v; then - -	 an	 . — +

	

V V •	 -	 + 11(v) or w

Integrating	 - - - - • -	 + U ir(v), we have ! ut + u' 5 (v)	 ,(u) or
V V 2 Vt

	

2	 2

	

U	 U

	

z • - + uv J, 1 (v) + V	 (u)	 - + U >(v) + v

	

V	 V

In the original variables,	 S • xy X 1 y> + y r,(xy) + X2 	 41(y) + y/1(xy)	 2

II. Solve x 2 r - 2xys + y1 t - xp + 3yq • 8y/x.

Here x I>2 -
	 • (	 - 7) • 0. and since the factors are not distinct we

obtain only	 - xy.

We set u .zy and take V =y; then p . yz, g - xz + z,. r a y
t zuu.-	 + xyz +

a x 2 z 4 2XZUV + z , and the given differential equation becomes

y2z	 + 3yz,,, - 8y/x	 or	 v2z	 + 3V2V a

an equation of the Cauchy type. However, it is seen that v is an integrating factor: hence

v 3 z 	 + 3v 2 z	 8v5/u	 and	 vz • 2v'/u +VV

	

2v	 2	
1Then z	 — 4 !(U)	 and	 1' - - — (u) + 01 (u)-

	

U	 U	 2v2

a	 .. + --41 (u ) +
U

a
a (k, (icy) + 1

2 
s(xy) •

Y

or z • . ry) + x 2 	 (zy) +	 •	 where	 i(xy) - x
2 
y2 ,(xy).x
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MONGE'S METHOD.

12. Solve qs - p	 q.
2 5The Monge equations are q dzdy • p(dx)	 0 and p dxdq + q dxdy • 0.

From the first equation, q dy pdx - 0. then dx p dx + qdy 0 and z a.

Substituting qdy . -pdx in the second equation yields dq - q2dx 0; thus 1/9 + z • b and
11q + x • f(x) or (x - f(z)]q	 -1 is an intermediate integral.

The required solution is obtained by solving this first order equation; thus

xx - ff(x)dx	 -y + 2(X)	 or	 y xx • &(z) + c(x), where	 (z) .1(1).

13. Solve q tr - 2pqs + p2t =

The Monge equations are (q dy + pdx)!	0 and q2 dydp P2 dxdq - pq 2 drdy 0.

From the firs( equation, qdy • pdz 0: then dx • pdx + qdy -a and z •a.

Substituting q dy - pdx in the second yields -q dp + p dq + pq dx - 0 or -	 +	 dx • 0 and

eq/p • b. Thus eXq - p f(x) z 0 is an intermediate integral. The Lagrange system for this equation is

• --, dx • 0.
f ( z )	_

From the second equation. z	 c. Then	 xe first becomes	 -±Y-dy 
with solution e'/f(c) + y • d.

	

f(c)	 X—e
As required solution, we find

- X1,()	 2(z)	
X 

ix(x) • O.m. where	 (z)	 - 111(z).

14. Solve x(r+2xj+x t t)	 p +

The Monge equations are (dy)2 - 2x dxdy + x(dxr	 (dy - xdx)2 • 0

and xdydp + x 5 dxdq - (p+2x 5 )dxdy	 0.

We seek a solution of the system dy - xdx • 0,	 x dydp + x 3 dxdq - (p+2x 5 )dx dy 0.

From the first equation. 	 2 - 2y a. Substituting dy • x dx in the second, we get

xdp + 2	 - (p+2x)dx 0.

Using the integrating factor l/z 2 , we obtain the intermediate integral p +xq x 5 +xf(x 2 - 2y),

The Lagrange system is•
	 dx	 . The first two members yield x - ly c and then

1	 x	 x 3 +xf(x -2y)

xdthe first and third become -	 dx 	 Solving.
x5+xf(c)

2
2	 + z f (c ) + (c)	 or	 z	 x + x2 f(z 2 _2y) + (x2-2y).

15. Solve q(l + q)r - (1+ 29)(1 + p)s + (1 + p)2 t • 0.

The Monge equations are
q(1+9)(dy)2 + ( 1+2q)(l*p)dxdy+ (i#p) 2 (dz) 2 	[gdy + (1+p)dx)[(l+q)dy + (1+p)dx] -0

and	 q(14q)dydp + (1+p)t dxdq = 0.
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Consider first the system

qdy # (1+p)dx	 0

9(1+q)dydp + (1#p)t dxdq	 0.

Front 	 first equation. pd.x + q dy -dx; then di	 -dx and x + z a. The substitution of

q dy • - (1 +p)dx in the second ields

-(1.q)dp + (1 # p)dq	 0

From which c obtain !L.E	 b. Thus. !.-f	 f(x • z) is an intermediate integral.

	

1+q	 1+q

Consider next the system

(1+q)dy + (1#p)dx = 0

q(1.q)dydp + (1+p)2 dxdq	 0.

	

From the first. pdx + q dy	 -(dx • dy) so that di • -(dx dy) and x + y + i it a. The substitution of
(14 q)dy • -(1 + p)dx in the second g iN es 	 dp (1 • p)dq	 0 ' hich is satisfied by	 !__ • &.	 Thus.
1+p

g(x y + Z) is an nierniLdia te integ ral.

	

Solviiii the io nterniedate integrals or p •	 f- 
* q	 _L.... and substituting in the relation

pdx • qdy di, ssc hie	
g - f

	

(fg 4 1- g)dx + fdy	 (g _f)di.	 fgdx	 -f(dx + dy • di) + g(dz + di),

	

d.x+dy+dz	 dx+di

	

cix • - ___________ +,
	 and	 x • 1 (x +7 + ) + ^m (x + x).

	

g(x#y+z)	 f(x+z)

16. Solve

Monge's equations are

xq2 (dy)2 +	 - z + Zpx)dx dy + (1 + p)(z+ px)(dx)2	(q dy + (1+ p)dx] [xq dy + (x + px)dx) • 0

and

Consider first the system

	

qdy + (1+p)dx	 0
(x-z)xq'dydp + (1+p)(2+px)(x_g)dx_ (1+p)q 2 (x+z)dxdy	 0.

From the first equation. p dx • qdy -dx; thendz • -dxand x + i • a. Substituting 9 d • -(1 +p)dz.
a - : in the second, we have

i)	 - (ax -a)xqdp + (2x-4)(a-x+px)dq + (1+p)gadx • 0.

To solve this equation, consider x as a constant so that dx • 0. Then if becomes

	

-(Zx-. a)xq 4 + (2x - a)(a -x + px)dq • 0	 or	 x(q 4 - pdq) - (a - x)dq 0
and X +a - X 

lb() To determine	 we take the differential of this relation.

q(xdp4pdx-dx) - (xp+a-x)dq -
and obtain	 x94 - 9p d9 q 24-pqdz + 9 d + 4 d - xdq.

From i).	 xq4 - —a)a — z i. (1+p)qadx 
• (a)dq	

(1+ p)qadx

2x-u
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then	 q24- pqdx	 qdx + adq - xdq r (a_z)dq	 (i+p)qadx
2x-a

2(px + a -dq	 x) 
dz	 ---dx	 iud	 _-_	 b	 f(x+z).

q(2x.-a)	 2.-a	 2x-u

Thus. XP + a - X •	
+ z) is an intermediate integral.

q(2x-a)	 q(x - x)

Consider next the sstein

	

qdy + ( Z#px)dx	 0

(z-2)xq 2dydp+(i+p)(z+px)(x-z)dxdq-(1+p)q t (x+1)dxdy	 0.

From the first equation. pdx qdy = -z dx/z; then di	 — zdx/x and xz a. Substituting xq dy

— (z + px)dx, z a/x in the second. we have

2	 2	 2ii)	 -xqx - a)dp + x(I'i ' p)(x -a)dq + (1+p)q(x +a)dx	 0.

Considering x as a constant, this becomes q dp - (1 + p)dq o and v.e have 1+ p-k--. • /1(x). From this

2relation we find qdp -(14 p)dq	 q2 dJi, while from ii) gdp(l+p)dq	 + p)q(x#

x(r 2 - a)

Then d4- (1+p)q(x 2 +(2) 
ds	

tgX2 
+ a)	 dx	 2x dx— 4 -)iJ , in 1' a — in x + lfl(x 2 - a) + in 5.

22	 2	 z	 2q X(X -a)	 x(x -a)	 x -a

2b(x -  a)	 ______
and /1	 •_1. Ti US,	 * 8(xz) is an intermediate integral.

X	 q	 q(x - z)

Solving the two intermediate integrals, we find p LLi and q ._-L_ then

	

xg-f	 xg - f

dz a pdx + qdy	 L-Lid + ._J d	 or f(x+z)(dx+dz) + dy a zg(xz)dx + xg(xz)dX.
xg_f	 xg-f

Thus. y +	 + fl = ?8 (xz) is the required solution.

17. Solve	 3r +s + t + (rt — 2 ) a

Here,. R=3. S=T=U=1. V--9; then

+ SUX + TR + UV	 + X — 6 • a	 and	 X 5 • 2. k, - -3.

We seek solutions of the system (see equations 19)

	

1Udy + Tdx + Udp • 2 dy + dx + dp 0, Rdy	 ix + lJdq a 3 d — 3 d # dq • 0

and X1Udy+Tdz+Udp.-3dy+dx+dp * 0, Rdy	 tdx+Udq	 3dy+2dx +dq -0.

From the first system, we have 2y+x+p .0, 3y-3x+ q b; thus. p + 2y x f(q+ 3y-3z) isan inter-
mediate integral. From the second system, we have — 3y + x + p c, 3y + 2x • q • d; thus, p - 3y + z

g(q + 3y + 2x) is an intermediate integral. Since q appears in the argument of both f and g. it will not
be possible to solve for p and q as before, and it will not be possible to find a solution involving two ar -
bitrary functions. We give two solutions involving arbitrary constants.

Replacing the arbitrary function j of the first intermediate integral by (q + 3y- 3x) +,8. we obtain

p+2y+x -- cq+3y-3x) +$	 or	 p - a,q = (3-2)y - (3a+ 1)z + /3
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.dxdy	 dx	 dx d
From	 we find y + ax1.for which the Langrange system is T	 (3a — 2)y - (3a + 1)x +	 1

thii	 •	 dz	 dx	 and
1	 (3a — 2)y — (3a + 1)x +)3	 -(3a2 + a + 1)x + 3a - 2 + 48

X	 — (3a2 + a + 1)x 2 + (3c- +/3)x + 77	 — 4(3a2 +a+  1)x 2 + (3a.y + 3a2 x — 2y- 2a.x+fl)x +71.

Thus, z	 (32 —	 - 1)x 2 + (3a - 2)xy + 3x +	 ( y + ax) is a solution involving one arbitrary function

and two arbitrary constants.

Replacing the arbitrary function g(q + 3y + 2x) of the second intermediate integral by the linear function
y(q + 3y + 2x) + 8 , we obtain

p-3y+x .y(q+3y+2x)+S	 or	 p - yq • 3(y#i)y + (27-1)z + 8

dy
for which the Lagrange system ' 

dx
T	

4. From	 1 -we get
3y + 1)y + (27- 1)x +8	 i	 -y

dz
y + -lx	 ; then	 and

1	 3(7+1)74 (2y- 1) + 5 	 -(3y2 +y+1)x + 3y + 34' S

z - — (3y2 +y+1)x2 + (3y +3+8)x +

Thus, x	 (3y2+ 57- 1)x2 + 3(7 + 1)xy + Sx + 2 (y+yx) is also a solution.

18. Solve xqr # (p+q)a + ypt 4 (xy-1)(rt-i t ) + pq 0.

Here, R-zq, S-p+q. T-y-p. U=xy-1, Va-pq; then

UY + SU + TR + LIV (zy — i>2)2 +	 + q)(xy — 1)k + pq • 0	 and	 X1 _.L.
xy-1

Consider first the system

neither equation is integrabt

[ 
-pdy + ypdx + (xy-.1)dp -0

I xqdy_qdx +(xy-1)dqO

/

The system is not integrable since

Consider next the system	 - qdy + ypdx + (zy -1)dp a o. z  dy - pdx + (zy - 1)dq	 0.

We multiply the second equation by y. add the first, and divide by xy - ito obtain q dy + dP + ydq
and thus p + yq a. Again, we multiply the first equation by x, add the second, and divide by xy - 1
to obtain p dx + .x dp + dq a 0 and thus xp+ q b. However, the form of the resulting intermediate
integral xp+ q f(yq+ p) or yq +p ag(xp+ q) does not permit a solution involving two arbitrary functions.

To obtain a solution, involving one arbitrary function and two arbitrary constants, we replace f(yq +
by the linear function a(yq+p) + 48 in the first form of the intermediate integral above and have

(x-a)p + (i .. ay)q - 0.

The corresponding Lagrange system is -- • -±- a 	 . From the first two members we obtain
x-a	 1-ay	 413

a ln(x - a) + ln(t- ay) a in ' or (x — a) (1- ay) S . and from the first and third members we get

• /3 ln(x-a) + 77. Thus, the solution is

z a j3 ln(x - a) +	 [(x-a)(1-ay)).



SUPPLEMENTARY PROBLEMS

Ans.	 z - x	 + 02(y) +

2 01 W +	 y ) + 1 (xy+xy)

2	 Y't(z) *	 + Ilfl(zy)

22 • x	 (y) +

z - .j(y) mx + q5,(y) + l/z

z •y 2 01 (X) + 469 (z) + zyt my

z • y 951 (X) + 4% - lifl(zy)

z - e 4'1(x ) + cti,CX> - zye

z -	 +	 +. Zy'

£ •#i(Z 2— y  2) + , (y)	 e

2 • 01(x 
2 
y) + #	

*
j(x) + x y 2

01 (x/y ) +,(y) +x 2 1y ix 3

Solve

19. r -xy

2
U. *X 

2 +y
II	 2j . t	 - K 5ifl(xy)

22. zr — po

23. zr	 1/z2

24. y-q2x2y

25. ys - p xy2 s1(xy)

26. t +q

27. r + s - 3y 2

28. xyr + zts - yp

29. 2yt-zz+3q.sly

30. xr +ya +p • 8xyt + 9x2

LAPLACE'S TRANSFORMATION.

31. 6r - s - t	 18y - 4x	 Ans. i -	 (x3y) + 2 (x.2y) + y(2x2+y2
32. x (xy - )r - (x 2y 1 - 1): + y(zy -1) t + (x - l)p + (y - l)q = 0	 Ans. z	 4 4yX

.,33. x(y-.x)r -	
2 

—x
2 
)s + y(y—z)t +(y+x)(p—q) • 2(x*y+l)

Hint: Let z+y=u, xy-v.	 Ans. z 961(x+y) + 951 (xy) + x - y	 mx

34. (y - l)r - (y2 - l)a + y(y - l)t + p - q 2yeiy>

Ans. z •	 + y) + 2(yex ) + (x + y>y e

35. xyr_ (x'_yt ) s_ xye;py_qx - 2(x2 -y')	 Ans. z - 1(2+ y2) + 2 (y/z ) - zy
36. r - 2, + t + p - q - e --(2y -3) -	 Ans. z 4(z + y) + e" 4 3 (z 4 y) + xe" +

Hint: Let x+y-u. y-v.

37. y2 (r - 2, + t) - y(p -	 - z y2	 Ans. z - y 4 (x + y) +	 ,(x + y) +

MONGE'S METHOD.

38	 (ex _ l)(qr _ pa) • pqeX	 1.1.	 p = &(z).	 G-S.: z =	 +	 (y) +
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39. r-3s-lOt	 -3 1.1:	 p+2q • 1 (y+5x), p-5q • i2(y-2X)

I	 qbi(Y5) + 44(y-2z) + xy

ti.:	 p - qo(z).	 G.s.: xç61(z) + Y

i.i.:	 p 	 p + I •

= f(x+Z) + g(x+y)

40. q2 	 2
r-2pqs+p 	 • 0

41. qr-(1s-p+q)S+(1'P)0

42. (j _ q)2 r _ 2(2 _p_2q. P9 ) 1 2.P)t •0	 2—p 
= 0(y+2x—z)

G.s.: x + yj6t(y+2X_2)	 4.(y+2X...2)

43. 5r_10s+4t-(rt2 2) 9 -1

	

1.1.:	 3y+4*-p a f(57+7x-q), 7y+4z-p • g(5y+3x-q)

2	 2x2+3xy+ yZ 	 x+'.t(y+o.X) or x

44. 2r - BE + 2* + (rt - 2) • 4

	

I-I.	 2y+2x+P • f(2y+4x+q)	 4y+2x+p. g(2y+22+9)

	

Sot.	 z • ax 2+x_(x+y)f+4(y+cu)	 or z -

45. 3r_6m+41-(rtJ) a 3

	

).:	 3y+4x—p = f(3y+3xq).	 Sol.:	 z = 2x 2 3z+y	 y'
I.	

+8x+((Y+a.X).

46. yr_p.+t+Y(rt.12) • —1

Sot.	 6a2 z s 2y3 - 3c&2 y2 + Oa.y + 6,8y + 4(az + y
+ x • f(q + y).2).

47. xqr_(x+y)s+YPt+XY(* 1 ) • I—pq

	

i.i.:	 xp+y - f(yq+x).	 Sot.:	 z • ax + yja. + fi lnx+


