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Combined Local Global Optical Flow Approach 
for Image Sequences  

Kazi Md. Shahiduzzaman and Md. Al-Amin Bhuiyan 

Abstract—This paper addresses the optical flow analysis and the smoothing effect in Local and Global Differentiation. There 
are lots of Local and Global methods and their variants available. But in this paper, as a prototype of local methods least-square 
fit of Lucas and Kanade has been employed, while the Horn and Schunck approach has been considered as the representative 
for a global method. Each of these methods has their advantages and shortcomings. Which are mentioned in their respective 
section. As a consequence, the proposed made from the hybridization algorithm incorporates the advantages of both field and 
posses less disadvantages. Improvement is made in our algorithm using the spatio-temporal approach and appropriate differen-
tiation approximation. 

Index Terms— Optical flow, Combined Local Global Method, Spatiotemporal optical flow. 

 

1 INTRODUCTION

N In the clinical practice the motion detection process 
mainly relies on the expertise’s visualization inspection 

or the manual measurement which is time consuming 
and at the same time it may vary from the expert to ex-
pert. The motion detection process is very important for 
the analysis of blood flow through the brain, the cardiac 
motion i.e. the myocardial motion in order to determine 
the abnormality by an effective means. The motion detec-
tion process helps the physician to their diagnoses pro-
cess. Not only limited to medical analysis, motion detec-
tion also expands to stereo analysis, tracking and multi-
media production. The effective and accurate determina-
tion of motion is a challenging topic in Computer Vision. 
B.D. Lucas T. Kanade published a paper named “An it-
erative registration technique with application to Stereo” 
[1] which is known as the Local Method of Optical Flow. 
This method provides noise robustness. At the same time 
B.K.P Horn and B.G Schunk published their work named 
“Determining the Optic Flow” [2]. This method is known 
as Global method which provides 100 percent density in 
the optical flow. There were also derivatives of these 
methods among which Black and Anandan’s optical flow 
spatiotemporal approach was mentionable. Andres et. al. 
published the paper “Lucas/Kanade meets Horn Schunk: 
Combining Local and Global Optic Flow Methods” [3] 
which is a noble approach to combine all the advantages 
of Local and Global methods. The most recent work about 
optical flow was done by Ahmad et. al. on their “CLG 
optical flow approach and frequency analysis of cranial 
ultrasonogram image Sequence” [4] In this paper they 

introduced CLG optical flow to the cranial ultrasonogram 
image sequences to determine the direction of blood flow 
through the brain. In this paper the optical flow analyzes 
was primary factoring but in addition the smoothing ef-
fect in Local and Global Differentiation and Pre-
smoothing has also been analyzed. There are lots of Local 
and Global methods and their variants available. This 
research addresses on Combined Local Global (CLG) ap-
proach, i.e., the least-square fit of Lucas and Kanade has 
been used as a prototype of local methods, while the 
Horn and Schunck approach has been used as a repre-
sentative for a global method.  
The rest of the paper is organized as follows. Section II 
describes the basics of combined local global method. The 
proposed algorithm for CLG is described in section III. 
Section V illustrates the experimental results. Finally, Sec-
tion VI concludes the paper.          

2 COMBINED LOCAL GLOBAL METHOD  
The Optical flow is the pattern of apparent motion of ob-
jects, surfaces, and edges in a visual scene caused by the 
relative motion between an observer (an eye or a camera) 
and the scene. Sequences of ordered images allow the 
estimation of motion as either instantaneous image veloc-
ities or discrete image displacements.  
The Horn–Schunck method of estimating optical flow is a 
global method which introduces a global constraint of 
smoothness in the flow over the whole image. Thus, it 
tries to minimize distortions in flow and prefers solutions 
which show more smoothness. The flow is formulated as 
a global energy function which is then sought to be min-
imized:  
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where Ix, Iy and It are the derivatives of the image intensi-
ty values along the x, y and time dimensions respectively 

Tvu ],[v , is the optical flow vector, and the parameter 
α (>0) is a regularization constant.  
 
2.1 Spatial Approach 
In order to design a combined local–global (CLG) meth-
od, the notations expressed in Eq. 2-5 are used [5]. 
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It becomes evident that the Lucas–Kanade method mini-
mizes the quadratic form illustrated in Eq. 6 
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The Horn–Schunck technique minimizes the function 
shown in Eq. 7. 
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This terminology suggests a natural way to extend the 
Horn–Schunck function to the desired CLG functional. 
After replacing the matrix )( 30 fJ  by the structure ten-
sor )( 3 fJ   with some integration scale ρ > 0, Eq. 8 can 
been found. 
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Its minimizing flow field (u, v) satisfies the Euler– La-
grange equations represented in Eq. 9 and 10. 
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2.2 Spatiotemporal Approach 
The previous approaches used only spatial smoothness 
operators. Rapid advances in computer technology, how-
ever, make it now possible to consider also spatiotem-
poral smoothness operators. Formal extensions in this 
direction are straightforward. In general, one may expect 
that spatiotemporal formulations give better results than 
spatial ones because of the additional de-noising proper-
ties along the temporal direction. In the presence of tem-
poral flow discontinuities smoothing along the time axis 
should only be used moderately. However, even in this 
case one can observe the beneficial effect of temporal in-
formation. A spatiotemporal variant of the Lucas–Kanade 
approach simply replaces convolution with 2-D Gaussi-
ans by spatiotemporal convolution with 3-D Gaussians. 
This still leads to a 2×2 linear system of equations for the 

two unknowns u and v. Combining the temporal extend-
ed variant of both the Lucas–Kanade and the Horn–
Schunck method, spatiotemporal version of our CLG 
function like Eq. 11 is found.  
 

 



],0[

2
33 )()()(

T

T
CLG dxdywwfJwwE     (11) 

where convolutions with Gaussians are now to be under-
stood in a spatiotemporal way and it is shown in Eq. 12. 
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Due to the different role of space and time the spatiotem-
poral Gaussians may have different standard deviations 
in both directions. If mnJ is the component (n,m) of the 
structure tensor, )( 3 fJ  , the Euler–Lagrange equations  
are given by Eq. 13 and Eq. 14. 
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If the spatial Laplacean is replaced by the spatiotemporal 
Laplacian, Eq. 15 will be obtained. 

  .113  yyxx                                                      (15) 

3 PROPOSED ALGORITHM FOR CLG  

The unknown functions  on a rectangular pixel grid of 
size h are ),,( tyxu and ),,( tyxv and iu  is the approxima-
tion to u at some pixel i with i = 1,. . . ,N. Gaussian convo-
lution is realized in the spatial/spatiotemporal domain by 
discrete convolution with a truncated and renormalized 
Gaussian, where the truncation took place at 3 times the 
standard deviation. Symmetry and reparability has been 
exploited in order to speed up these discrete convolu-
tions. Spatial derivatives of the image data have been ap-
proximated using a sixth-order approximation with the 
stencil (−1, 9,−45, 0, 45,−9, 1)/(60h). Temporal derivatives 
are either approximated with a simple two two-point 
stencil or the fifth-order approximation (−9, 125, −2250, 
2250, −125, 9)/(1920h). If mniJ  is the component (n, m) of 
the structure tensor  )( fJ   in some pixel i and N(i) de-
notes the set of (4 in 2-D, 6 in 3-D) neighbours of pixel i, 
then a finite difference approximation to the Euler–
Lagrange equations are given by Eq. 16 and Eq. 17. 
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where i = 1,. . . ,N. This sparse linear system of equations 
has been solved the Successive Over-Relaxation (SOR) 
method because of its simplicity and efficiency. If the up-
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per index denotes the iteration step, the SOR method can 
be written as Eq. 18 and Eq. 19. 
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where }),({)( ijiNiiN  , }),({)( ijiNiiN    
 
Here )(iN denotes the number of neighbours of pixel i 
that belong to the image domain. The relaxation parame-
ter ]2,0[ has a strong influence on the convergence 
speed. For ω = 1 one obtains the well-known Gauss–
Seidel method. Usually the used values for ω are between 
1.9 and 1.99. This numerically inexpensive over relaxation 
step results in a speed-up by one order of magnitude 
compared with the Gauss–Seidel approach. The flow 
components for the first iteration are initialized by 0. The 
specific choice of the initialization is not critical since the 
method is globally convergent. It should be noted that the 
iteration scheme does not require many computations per 
step, since one may compute expressions of type 

nmiJh )/( 2   before entering the iteration loop. Moreo-
ver, any practical implementation requires only a single 
vector of size N for storing each of the two flow compo-
nents u and v. Since the components are updated sequen-
tially, there is no need for two vectors for the iteration 
levels k and k+1. The algorithm is applied on a sequence 
of image with T frames in this paper.   
 
Algorithm 1 (Optical Flow Field Construction) 
Input: A sequence of images with T frames, iteration k for 
SOR, , w and  . 
Output: Its Optical Flow Field 
Method: The Optical Flow Field is constructed in the fol-
lowing steps. 

1. Read files in array of matrix.  
2. For every frame, t,  perform the following steps: 

i. Pre-smooth using the Gaussian Kernel 
with standard deviation . 

ii. Calculate the deviation of image 
tyx fff ,, . 

iii. Compute the velocity u, v of image t us-
ing Successive Over-Relaxation (SOR) 
method for k iteration.  

iv. Calculate the resultant velocity and an-
gle and draw. 

v. Save in file.   
3. End  

4 EXPERIMENTAL RESULTS 
The effectiveness of the method has been justified over 
some experiments. All the applications and experiments 
have been done on MATLAB 7.9 R2009a and Windows 
XP service pack 2. The computer’s configuration was Intel 
Core 2DUO 2.2 GHz, 2 GB RAM. The proposed algorithm 
has been applied in the famous Yosemite Picture se-
quence, which is universally used for Optical flow check-
ing. It is necessary to tweak the parameters to get the cor-
rect result as the ground truth flow. Here in this paper it 
is presented the ground truth flow of the Yosemite pic-
ture 8th and 9th frame along with the Yosemite picture 
itself. In the Yosemite picture the proposed algorithm is 
approximately accurate except for the cloud region flow. 
The flow field density around the cloud region is a bit 
diverging and out of order comparing with the ground 
truth flow. There was other part where it was a little bit 
off the track but that was all the matter of parameter op-
timization and also image differentiation approximation 
try outs. The main problem was to implement the optical 
flow algorithm in a manner where the differentiation ap-
proximation and parameters would coincide with each 
other to provide a better result. The parameters are actu-
ally application dependent i.e for different applications 
the parameters are also different. Here the proposed 
method has been applied on 32 sequences of medical im-
ages. Parameter value was also changed. For the Yosemite 
sequence, the used values for α, σ, ρ, h and w are 0.5, 
1.77,15,1 and 1.9, respectively. For the medical images 
α=1, σ=0, ρ=5, h=1, w=1.99 shows the best result among 
various combination of values we’ve tried. The 1st frame 
of Yosemite sequence is shown in fig. 1. Fig. 2 shows the 
ground truth flows of Yosemite image sequence. 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 

(a)                        (b) 
Fig 1  The Yosemite image sequence (a) Yosemite with clouds  
(b) Yosemite without clouds 

(a)      (b)  
Fig 2 Ground truth flow field of the Yosemite image sequence 
a) With clouds b) Without clouds 
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Fig. 3 illustrates the optical flow of Yosemite with clouds 
using global flow and Local flow method. 

 
 
 
 
 
 
 
 

 
 
 
The developed algorithm has been tested in this Yosemite 
image and the found optical flow field is illustrated in fig. 
4. 

 
 
 
 
 
 
 
 

 
 
 
 
As mentioned before that α is the regularization constant 
used to regularize the flow field. It has a significant role 
in optical flow determination. The results showing the 
effect of α in the flow field are furnished in fig. 5 and fig. 
6, respectively. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

From these figures it is obvious that too much regulariza-
tion diminishes the top flow of the Clouds. That is each 
application may have the regularization parameter 
changed than the optimal value got here. Optical flow 
results best when α is from 0.05 to 0.09 for 100 to 1000 
iteration. The pre-smoothing plays a significant role in the 
algorithm. Optimum values were thus found out by ex-
perimenting with the value of Standard Deviation of the 
Gaussian Kernel of Pre-smoothing constraint. Fig. 7 
shows the optical flow field using Hybrid Local Global 
method for various values of α. 
 
 

 
 
 
 
 
 
 
 

 
 
 
The parameter w works as a converging constant. It fas-
tens the converging process of the Successive Over-
Relaxation iterative method. It is seen from experience 
that it does not affect the optical flow as a whole. But 
higher iteration number changes the flow a little bit. Fig. 8 
shows the optical flow field using Hybrid Local Global 
method for various values of α, w, and σ. 
 
It is clear from the figure that optical flow surely deterio-
rates because of too much smoothing. The optical flow 
spreads in the region where it should not be. The pre-
smoothing value was also tested with other values of α, w. 
The result was same, optical flow spreads. The best result 
occurs for σ=1.77 to 1.95. Another parameter which affects 
the optical flow is called integration scale of derivation, 
Kρ of standard deviation ρ. It helps the velocity con-
straints to produce smoother velocity flow. But greater 
values of ρ tend to lessen the flow field. 
 
 
 
 
 
 
 
 
 
 
 
 

(a)      (b)  
Fig 3 Optical Flow of Yosemite with clouds using a) Horn-
Schunk (Global Flow) method b) Lucas-Kanade (Local Flow) 
method  

 (a)         (b) 
Fig 4 Optical Flow of Yosemite using developed algorithm a) 
With clouds b) Without clouds. The value of parameters used 
are α=.07, σ=1.77, ρ=15, h=1, w=1.91 (optimum value deter-
mined) 
 

(a)     (b) 
Fig 5 Optical flow field using Hybrid Local Global method a) using 
α=.001, ite=100, ρ=15, w=1.91 b) using α=.008, ite=100, ρ=15, 
w=1.91 

(a)                    (b) 
Fig 6: Optical flow field using Hybrid Local Global method 
a) using α=.2, ite=100, ρ=15, w=1.91 b) using α=.5, 
ite=100, ρ=15, w=1.91 
 

(a)    (b) 
Fig 7: Optical flow field using Hybrid Local Global method 
a) using α=.07, ρ=15, w=1.91, σ=5  
b) using α=.07, ρ=15, w=1.91, σ=10 
 

(a)     (b) 
Fig 8: Optical flow field using Hybrid Local Global method a) 
using α=.07, w=1.91, σ=1.77, ρ=16   b) using α=.07, w=1.91, 
σ=10, ρ=46 
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CLG has been applied on 32 medical images which show 
the motion detection of blood flow. Among them 6 frames 
has been shown in fig. 9.   
 
 
 
 
 
 
 
 
 
        (a)   (b) 
 
 
 
 
 
 
       (c)   (d) 
      
 
 
 
 
 
       (e)   (f) 
 
 
 
 
In this research, Gaussian noise has been considered to 
compare the performance of different methods with the 
proposed method. Here the mean is 0 and the variance of 
Gaussian noise is changeable. The used parameter to 
compare the performances is Amplitude error which is 
represented in Eq. 20. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    %100*
V

VVError Amplitude 




                     (20) 

Where 

V and V  are the Estimated and Real vectors.  

 
Table I represents the comparison of performance of dif-
ferent methods. Fig. 10 illustrates the characteristic of per-
formance of different methods. 
 
Table 1 and Fig. 10 reveal that the error for the CLG 
method is less than both the global and local method. So 
the Combined Local-Global Method is less affected by 
noise. 

 

TABLE 1 

COMPARISON OF PERFORMANCES OF DIFFERENT METHODS 

    Variance  

 

Method           

.006 .012 .018 .024 .030 .036 .042 .048 .054   .06  

Value of Amplitude Error 

Local Method 14.55 29.58 33.89 32.46 32.26 33.63 34.21 31.12 33.10 32.42 

Global Method 7.08 11.87 15.28 17.27 18.70 19.81 20.80 21.32 22.15 23.1 

CLG Method  0.00 0.00 0.00 .0003 .0048 0.056 0.34 1.61 4.40 23.03 

Fig 9: Application of our Algorithm in the Medical images to 
determine the blood flow. Parameters used α=.9, σ=0, ρ=5, 
w=1.99 (with prior contrast improvement) 
 

Fig 10: Performance Comparison between Combine Local-
Global Method with Local Method and Global Method of Opti-
cal Flow 
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7 CONCLUSION  
This paper presents the detection and analysis of motion 
through optical flow employing combined local global 
approach. Combination of the Local and Global methods 
definitely reduces the error and increases robustness to 
noise. This method may also serve as an example of using 
normaliser or regulariser with the local flow vectors as 
smoothness constraint. Experimental results and evalua-
tions demonstrate that this proposed measure may pro-
vide excellent result over a large range of applications 
with a little amount of tweaks. Our next approach is to 
pay more efforts to the Numerical Methods and sharper 
approximations so that it will produce more accurate re-
sults. This algorithm still needs to be applied efficiently in 
the medical images, as the parameter values may change 
based on applications. This method is a linear one. Using 
non-linear penalizers as in the Bruhn and Weickert’s pa-
per, this method may be improved. Also it can be extend-
ed to Bigun’s structure tensor method into global energy 
function. Multi-resolutional approach may also be found 
using the penalizers with a little mathematical work. 
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