
-
1

An Overview of C++

chapter objectives

1.1 What is object-oriented programming?

1.2 Two versions of C-f+

1.3 c++ console I/O

1.4 C++ comments

35lasses: A first look

1.6 Some differences between C and C++

1.7 Introducing function overloading

1.8 C++ keywords

I._wy

1
V

2 TEACH YOuRSElF

C++

C

++ is an.enhanced version of the C language. C++ includes
everything that is part of C and adds support for object-
oriented programming (OOP for short). In addition, C++
contains many improvements and features that simply
make it a "better C," independent of object-oriented

programming. With very few, very minor exceptions, C++ is a superset
of C. While everytjnng that you know about the C language is fully
applicable to C++, understanding its enhanced features will still
require a significant investment of time and effort on your part.
However, the rewards of programming in C++ will more than
justify the effort you put forth.

The purpose of this chapter is to introduce you to several of the
most important features of C++. As you know,'the elements of a
computer language do not exist in a void, separate from one another
Instead, they work together to form the complete language. This
interrelatedness is especially pronounced in C++. In fact, it is difficult
to discuss one aspect of C++ in isolation because the features of C++
are highly integrated. To help overcome this problem, this chapter
provides a brief overview of several C++ features. This overview will
enable you to understand the examples discussed later in this book.
Keep in mind that most topics will be more thoroughly explored in
later chapters.

Since C++ was invented to support object-oriented programming,
this chapter begins with a description of OOP. As you will see, many
features of C++ are related to OOP in one way or another. In fact, the
theory of OOP permeates C++. However, it is important to understand
that C++ can be used to write programs that are and are not object
oriented. How you use C++ is completely up to you.

At the time of this writing, the standardization of C++ is being
finalized. For this reason, this chapter describes some important
differences between versions of C++ that have been in common use
during the past several years and the new Standard C++. Since this
book teaches Standard C++, this material is especially important if
you are using an older compiler.

In addition to introducing several important C++ features,
this chapter also discusses some differences between C and C++
programming styles. There are several aspects of C++ that allow
greater flexibility in the way that you write programs. While some
of these features have little or nothing to do with object-oriented

AN OVERVIEW OF C++ 3
7.7 W1-L4T IS OBJECT-ORIENTED PROGRAMMiNG

programming, they are found in most C++ programs, so it is appropriate
to discuss them eariX in this book.

Before you begin, a few general comments about the nature and
form of C++ are in order. First, for the most part, C++ programs
physically look like C programs. Like a C program, a C++ program
begins execution at main(). To include command-line arguments,
C++ uses the same argc, argv convention that C uses. Although C++
defines its own, object-oriented library, it also supports all the
functions in the C standard library. C++ uses the same control
structures as C. C++ includes all of the built-in data types defined by C.

This book assumes that you already know the C programming
language. In other words, you must be able to program in C before
you can learn to program in C++ by using this book. If you don't know
C, a good starting place is my book Teach Yourself C, Third Edition
(Berkeley: Osborne/McGraw-Hill, 1997). It applies the same systematic
approach used in this book and thoroughly covers the entire C language.

This book assumes that you know how to compile and execute a program
using your C++ compiler. If you don 'tyou will need to refer to your compilers
instructions. (Because of the differences between compilers, it is impossible
to give compilation instructions for each in this book) Since programming is
best learned by doing, you are strongly urged to enter, compile, and run the
examples in the book in the order in which they are presented.

WW

	

	 IS OBJECT-ORIENTED
PROGRAMMING?

Object-oriented programming is a powerful way to approach the task
of programming. Since its early beginnings, programming has been
governed by various methodologies. At each critical point in the
evolution of programming, a new approach was created to help the
programmer handle increasingly complex programs. The first
programs were created by toggling switches on the front panel of the'
computer. Obviously, this approach is suitable for only the smallest
programs. Next, assembly language was invented, which allowed
longer programs to be written. The next advance happened in the
1950s when the first high-level language (FORTRAN) was invented.

By using a high-level language, a programme1was able to write
programs that were several thousand lines long. t-lowever, the method

4TEACH YOURSELF

C++

of programming used early on was an ad hoc, anything-goes approach.
While this is fine, for relatively short programs, it yields unreadable
(and unmanageable) "spaghetti code" when applied to larger programs.
The elimination of spaghetti code became feasible with the invention
of structured programming languages in the 1960s. These languages
include Algol and Pascal. In loose terms, C is q structured language,
and most likely the type of programming you have been doing would
be called structured programming. Structured programming relies on
well-defined control structures, code blocks, the absence (or at least
minimal use) of the GOTO, and stand-alone subroutines that support
recursion and local variables. The essence of structured programming
is the reduction of a program into its constituent elements. Using
structured programming, the average programmer can create and
maintain programs that are up to 50,000 lines long.

Although structured programming has yielded excellent results
when applied to moderately complex programs, even it fails at some
point, after a program reaches a certain size. To allow more complex
programs to be written, a new approach to the job of programming was
needed. Towards this end, object-oriented programming was invented.
OOP takes the best of the ideas embodied in structured programming
and combines them with powerful new concepts that allow you to
organize your programs more effectively. Object-oriented programming
encourages you to decompose a problem into its constituent parts.
Each component becomes a self-contained object that contains its own
instructions and data that relate to that object. In this way, complexity
is reduced and the programmer can manage larger programs.

All OOP langyages, including ç±-+iare three common defining
traits: encapsulation, polymorphism, and inheritance. Let's look at
these concepts now.

ENCAPSULATiON

çgpulation is the mechanism that binds together code and the
data it_manipulate .s, and keeps both safe from outside interference
and misuse. In an object-oriented language, code and data can be
combined in such a way that a self-contained "black box" is created.
Whençpde and data are linled together in thi s 	anoct is
created. In other words, an object is the device that supports
encapsulation.

AN OVERVIEW OF C4-I- 5
1.7 i4 T IS OBJECT-OPJFRrED PROGRAMMING?

Within an object, code, data, or both may be private to that object or
public. Private code or data is known to and accessible only by anothet
part of the object. That isivate code or data cannot be accessed by a
piece of the program that exists outside the object. When code or data
is public, other parts of your program can access it even though it is
defined within an object. Typically, the public parts of an object are
used to provide a controlled interface to the private elements of
the object

For all intents and purposes, an object is a variable of a user-defined
type. It may seem strange that an object that links both code and
data can be thought of as a variable. However, in object-oriented
programming, this is precisely the case. Each time you define a new
type of object, you are creating a new data type. Each specific instance
of this data type is a compound variable.

POLYMORPHISM

Polymorphism (from the Greek, meaning "many forms") isquljly
that allows one name to be used for two ormorcreecthutthnjc&Ly
d['ferent purposes. As it relates to OOP, polymorphism allows one
name to specify a general class of actions. Within a general class
of actions, the specific action to be applied is determined by the type
of data. For example, in C, which does not significantly support
polymorphism, the absolute value action requires three distinct
function names: abs(), labs(), and fabs(). These functions
compute and return the absolute value of an integer, a long integer,
and a floating-point value, respectively. However, in C++, which
supports polymorphism, each function can be called by-the same
name, such as abs(). (One way this can be accomplished is shown
later in this chapter.) The type of data used to call the function
determines which specific version of the function is actually executed.
As you will see, inC-H-, it is possible to use one function name for
ifàir different purposes. This is called function overloading.

Móreèràlfy,e concept of poly hismiscaracterized by
the idea of "one interface, multiple methods," which means using a
generic interface for a group of related activities. The advantage of
polymorphism is that it helps to reduce complexity by allowing one
interface to specify a general class of action. It is the compiler's job to
select the specific action as it applies to each situation. You, the

6 TEACH YOURSELF

C++

programmer, don't need to do this selection manually. You need only
remember and utilize the general interface. As the example in the
preceding paragraph illustrates, having three names for the absolute
value function instead of just one makes the general activity of
obtaining the absolute value of a number more complex than it
actually is.

Polymorphism can be applied to operators, too. Virtully all
programming languages contain a limited application of polymorphism
as it relates to the arithmetic operators. For example, in C, the + sign
is used to add integers, long integers, characters, and floating-point
values. In these cases, the compiler automatically knows which type
of arithmetic to apply. In C++, you can extend this concept to other
types of data that you define. This type of polymorphism is called
opçjgpverloading.

The key point to remember about polymorphism is that it allows
you to handle greater complexity by allowing the creation of standard
interfaces to related activities.

INHERITANCE

Inheritance is the process by which one object can acquire the properties
of another. More specifically, an object can inherit a general set of
properties to which it can add those features that are specific only to
itself. Inheritance is important because it allows an object to support
the concept of hierarchical classification. Most information is made
manageable by hierarchical classification. For example, think about
the description of a house. A house is part of the general class
called building. In turn, building is part of the more general class
structure, which is part of the even more general class of objects that
we call man-made. In each case, the child class inherits all those
qualities associated with the parent and adds to them its own defining
characteristics. Without the use of ordered classifications, each object
would have to define all characteristics that relate to it explicitly.
However, through inheritance, it is possible to describe ar object by
stating what general class (or classes) it belongs to along with those
specific traits that make it unique. As you will see, inheritance plays
a very important role in OOP.	 .

AN OVERVIEW OF c++ 7
1.2 IWO VERSIONS OF C++I	 EXAM

1 Encapsulation is not entirely new to OOP. To a degree,
encapsulation can be achieved when using the C language. For
example, when you use a library function, you are, in effect,
using a black-box routine, the internals of which you cannot
alter or affect (except, perhaps, through malicious actions).
Consider the fopen() function. When it is used to open a file,
several internal variables arc created and initialized. As far as
your program is concerned, these variables are hidden and not
accessible. However, C++ provides a much more secure
approach to encapsulation.

2. In the real world, examples of polymorphism are quite
common. For example, consider the steering wheel on your car.
It works the same whether your car uses power steering,
rack-and-pinion steering, or standard, manual steering. The
point is that the interface (the steering wheel) is the same no
matter what type of actual steering mechanism (method) is used.

3. Inheritance of properties and the more general concept of
classification are fundamental to the way knowledge is
organized. For example, celery is a member of the vegetable

class, which is part of the plant class. In turn, plants are living
organisms, and so forth. Without hierarchical classification,
systems of knowledge would not be possible.

EXERCISE

1. Think about the way that classification and polymorphism play
an important role in our day-to-day lives.

Two VERSIONS OF C++

At the time of this writing, C++ is in the midst of a transformation. As
explained in the preface to this book, C++ has been undergoing the
process of standardization for the past several years. The goal has been

a TEACH YOURSELF

C++

to create a stable, standardized, feature-rich language that will suit the
needs of programmers well into the next century. As a result, there
are really two versions of C++. The first is the traditional version that
is based upon Bjarne Stroustrup's original designs. This is the version.
of C++ that has been used by programmers for the past decade. The
second is the new Standard C++, which was created by Stroustrup and
the ANSI/ISO standardization committee. While these two versions
of C++ are very similar at thcir core, Standard C++ contains several
enhancements not found in traditional C++. Thus, Standard C++ is
essentially a superset of traditional C++.

This book teaches Standard C++. This is the version of C++ defined
by the ANSI/ISO standardization committee, and it is the version
implemented by all modern C++ compilers. The code in this book
reflects the contemporary coding style and practices as encouraged
by Standard C++. This means that what you learn in this book will be
applicable today as well as tomorrow. Put directly, Standard C++ is
the future. And, since Standard C++ encompasses all features found in
earlier versions of C++, what you learn in this book will enable you to
work in all C++ programming environments.

However, if you are using an older compiler, it might not accept
all of the programs in this book. Here's why: During the process of
standardization, the ANSI/ISO committee added many new features to
the language. As these features were defined, they were implemented
by compiler developers. Of course, there is always a lag time between
the addition of a new feature to the language and the availability of
the feature in commercial compilers. Since features were added to
C++ over a period of years, an older compiler might not support one
or more of them. This is important because two recent additions to
the C++ language affect every program that you will write—even the
simplest. If you are using an older compiler that does not accept these
new features, don't worry. There is an easy workaround, which is
described in the following paragraphs.

The differences between old-style and modern code involve two
new features: new-style headers and the namespace statement. To
demonstrate these differences we will begin by looking at two versions
of a minimal, do-nothing C++ program. The first version, shown here,
reflects the way C++ programs were written until recently. (That is, it
uses old-style coding.)

AN OVERVIEW OF C- 	 9
7.2 IWO VERSIONS OF C++

1*

A traditional-style C++ program.
*1

#include <iostream.h>

mt main()

1* program code *1

return 0;

Since C++ is built on C, this skeleton should be largely familiar, but
pay special attention to the #include statement. This statement
includes the file iostream.h, which provides support for C++'s I/O
system. (It is to C++ what stdio.h is to C.)

Here is the second version of the skeleton, which uses the
modern style:

1*

A modern-style C++ program that uses
the new-style headers and a namespace.

*1

*include <iostream>
using namespace std;

mt main()

/ program code */

return 0;

Notice the two lines in this program immediately after the first
comment; this is where the changes occur. First, in the #include
statement, there is no h after the name iostream. And second,
the next line, specifying a namespace, is new. Although both the
new-style headers and namespaces will be examined in detail
later in this book, a brief overview is in order now.

THE NEW C++ HEADERS

As you know from your C programming experience, when you use a
library function in a program, you must include its header file. This is

10 TEACH YOURSELF

C++

done using the #include statement. For example, in C, to include the
header file for the I/O functions, you include stdio.h with a statement
like this:

#include <stdio.h>

Here stdio.h is the name of the file used by the I/O functions, and the
preceding statement causes that file to be included in your program.
The key point is that the #include statement includes a file.

When C++ was first invented and for several years after that, it
used the same style of headers as did C. In fact, Standard C++ still
supports C-style headers for header files that you create and for
backward compatibility. However, Standard C++ has introduced a new
kind of header that is used by the Standard C++ library. The new-style
headers do not specify filenames. Instead, they simply specify standard
identifiers that might be mapped to files by the compiler, but they
need not be The new-style C++ headers are abstractions that simply
guarantee that the appropriate prototypes and definitions required by
the C++ library have been declared.

Since the new-style header is not a filename, it does not have a .h
extension. Such a header consists solely of the header name contained
between angle brackets. For example, here are some of the new-style
headers supported by Standard C++:

<iostream>
<fstream>
<vector>
<string>

The new-style headers are included using the #include statement.
The only difference is that the new-style headers do not necessarily
represent filenames.

Because C++ includes the entire C function library, it still supports
the standard C-style header files associated with that library. That is,
header files such as stdio.h and ctype.h are stillavailable. However,
Standard C++ also defines new-style headers that you can use in place
of these header files. The C++ versions of the standard C headers
siipply add a c prefix to the fi 1 'name and drop the h. For example,
hiew-style C++ header for math.h is <cmath>, and the one for

string.h is <estring> . Although it is currently permissible to include
n-style header file when using C library ftincti 	 dS apprucii is

AN OVERVIEW OF C++

1.2 114't VERSIONS OF C++

deprecated by Standard C++. (That is, it is not recommended.) For this
reason this book will use new-style C++ headers in all #include
statements. If your compiler does not support new-style headers for
the C function library, simply substitute the old-style, C-like headers.

Since the new-style header is a recent addition to C++, you will still
find many, many older programs that don't use it. These programs
instead use C-style headers, in which a filename is specified. As the
old-style skeletal program shows, the traditional way to include the
I/O header is as shown here:

tinc1ude <iostream.h>

This causes the file iostream.h tobe included in your program. In
general, an old-style header will use the same name as its corresponding
new-style header with a .h appended.

As of this writing, all C++ compilers support the old-style headers.
However, the old style headers have been declared obsolete, and their
use in new programs is not recommended. This is why they are not
used in this book.

WhJIQ still common in existing C++ code, Old-style headers are obsolete.

M01MESPACIM

When you include a new-style header in your program, the contents
of that header are contained in the std namespace. A narnespace is
simply a declarative region. The purpose ofa namespace is to localize
the names of identifiers to avoid name collisions. Traditionally, the
names of library functions and other such items were simply placed
into the global namespace (as they are in C). However, the contents
of new-style headers are placed in the std namespace. We will look
closely at namespaces later in this book. For now, you don't need to
worry about them because you can use the statement

using namespace Std;

to bring the std ti -' rnespare into visibility (i.e., to	 '1 into the
'l names-act) .	 nent I	 ,	 c is

12 TEAM YOUIELF

V C4-+

no difference between working with an old-style header and a
new-style one.

WOMUNG 	
AN OLD COMPFLEN

As mentioned, both nanlespaces and the new-style headers are recent
additions to the C++ language. While virtually all new C++ compilers
support these features, older compilers might not. If you have one of
these older compilers, it will report one or more errors when it tries to
compile the first two lines of the sample programs in this book. If this
is the case, there is an easy workaround: simply use an old-style
header and delete the namespace statement. That is, just replace

*include <iostream>
using namespace std;

with

#include <jostream.h>

This change tranorms a modern program into a traditional-style
one. Since the old-style header reads all of its contents into the global
namespace, there is no need for a nanlespace statement.

One other point: For now and for the next few years, you will see
many c++ programs that use the old-style headers and that do not
include a name8pace statement. Your C++ compiler will be able to
compile them just fine. For new programs, however, you should use
the modern style because it is the only style of program that complies
with Standard C++. While old-style programs will continue to be
supported for many years, they are technically noncompliant.

1. Before proceeding, try compiling the new-style skeleton
program shown above. Although it does nothing, compiling it
will tell you if your compiler supports the modern C++ syntax.
If it does not accept the new-style headers or the namespace
statement, substitute the old-style header as described.
Remember, if your compiler does not accept new-style code,
you must make this change for each program in this book.

AN OVERVIEW OF C++

1.3 C++ CONSOLE 110

~ C++ CONSOLE lID

13

'"

Since C++ is a superset of C, all cle ments of the C language are also
contained in the C++ language . This implies that all C programs are
also C++ programs by default. (Actually, the re are some very minor
exceptions to this rule, which are discussed later in this book.)
Therefore, it is possible to write C++ programs that look just like C
programs. While there is nothing wrong with this pe r se , it does mean
that you will not be taking fu!l advantage of C++. To get the maximum
benefit from C++, you must write C++-style programs. This means
using a coding style and features that are unique to C++.

Perhaps the most comlllon C++-specific feature used by C++
programmers is its approach to console I/O. While you may still use
functions such as printf() and seanf() , C++ provides a new, and
better, way to perform these types ofl l O operations. In C++, I/o. is
performed using I/O operators instead of I/O functions . Tht< output
operator is «and the input operator is >>. As you know, in C, these
are the left and right shift operators, respectively. In C++, they still
retain their original meanings (left and right shift) but they also take
on the expanded role of performing input and output. Consider this
C++ statement:

c out « "Thi s st r i ng is ou ~put t o t he screen. \ n " ;

This statement causes the string to be displayed on the computer's
. creen. eout is a predefined stream that is automatically linked to
the console when a C++ program begins execution. It is similar to C's
stdo'ut. As in C, C++ console I/O may be redirected, but for the rest
of this discussion, it is assumed that the console is being used .

By using th.e «output operator, it is possible to output any of C++'s
basic types. For example, this statement outputs the value 100.99:

cou t « 100 . 99 ;

In general, to output to the console, use this form of the < < operator:

cout « expression;

Here expression can be any valid C++ expression-including a nother
output expression.

14 TEACH YOURSELF

C++

To input a value from Me Keyboard, use the >> input operator. For

cxample, this fragment inputs an, integer value into num:

mt rium;

cm >> num;

Notice that num is not preceded by an &. As you know, when you use

C's scanf() function to input values, variables must have their addresses
passed to the function so they can receive the values entered by the
user. This is not the case when you are using C++'s input operator.
(The reason for this will become clear as you learn more about C++.)

In general, to input values from the keyboard, use this form of >>:

cm > variable;

The expanded roles of << and >> are examples of operator overloading.

In order to use the C++ I/O operators, you must include the header

<iostream> in your program. As explained earlier, this is one of
C++'s standard headers and is supplied by your c++ compiler.

g1L't:.I

1. This program outputs a string, two integer values, and a double
floating-point value:

4tinclude <iostream>

using namespaCe std;

mt main()

il-it i, j;

double d;

i	 10;

j	 20;

d	 99.101;

AN OVERVIEW oF C++ 15
7.3 C++ CONSOLE I/O

cout << "Here are some values:
cout << 1;

cout <<
cOut <<
cout << '
cout << d;

return 0;

II

The output of this program is shown here.

Here are some values: 10 20 99.101

be
If you are working with an older compiler, it might not

Now	
accept the new-style headers and the namespace
statemenjs used by this and other programs in this book If
this is the case, substitute the old-style code described in
the preceding section.

2. It is possible to output more than one value in a single I/O
expression. For example, this version of•the program described
in Example 1 shows a more efficient way to code the I/O
statements:

#jnclude <iostream>
using namespace std;

mt main()

mt i, j;
double d;

i = 10;
j = 20;
d = 99.101;

cout << Here are some values:
cout << I	 ' ' << j << ' ' << d;

return 0;

16 TEACH YOURSELF

C++

Here the line

cout << i <<	 , << j << ' ' <<

outputs several items in one expression. In general, you can use
a single statement to output as many items as you like. If this
seems confusing, simply remember that the << output operator
behaves like any other C++ operator and can be part of an
arbitrarily long expression.

Notice that you must explicitly include spaces between items
when needed. If the spaces are left out, the data will run
together when displayed on the screen.

3. This program prompts the user for an integer value:

#include <iostream>
using namespace std;

mt main()

mt i;

cout << 'Enter a value:

cm >> 1;
cout << Here's your number: ' << i <<

return 0;

Here is a sample run:

Enter a value: 100
Here's your number: 100

• As you can see, the value entered by the user is put into i.

4. The next program prompts the user for an integer value, a
floating-point value, and a string. It then uses one input
statement to read all three.

#include <iostream>

using namespace std;

mt main()

mt i;

ANOVERVIEWOFC++ 17
float f;	 1.3 C++ CONSOLE I/O

char s[80];

cout << Enter an integer, float, and string:

cm >> i s> f s> s;

cout << Here's your data:
COUt << 1 << ' ' << f << ' '

return 0;

As this example illustrates, you can input as many items as you
like in one input statement. As in C, individual data items must
be separated by whitespace characters (spaces, tabs, or
ncwlincs).

When a string is read, input will stop when the first
whitespace character is encountered. For example, if you enter
the following into the preceding program

10 100.12 This is a test

the program will display this:

10 100.12 This

The string is incomplete because the reading of the string
stopped with the space after This. The remainder of the string
is left in the input buffer, awaiting a subsequent input operation.
(This is similar to inputting a string by using scanf() with the
%s format.)

5. By default, when you use >>, all input is line buffered. This
means that no information is passed to your C++ program until
you press ENTn. (In C, the scanf() function is line buffered, so
this style of input should not be new to you.) To see the effect of
line-buffered input, try this program:

j nclude <iostrern>

using namespace std;

mt main()

char ch:

cout << Enter keys, x to stop.\n;

18 TEACH YOURSELF

C++

do
Cout <<
cm >> ch;

while (ch

return 0;

When you test this program you will have to press ENTER after
each key you type in order for the corresponding character to be
sent to the program.

EXERCIM

1. Write a program that inputs the number of hours that an
employee works and the employee's wage. Then display the
employees gross pay. (Be sure to prompt for input.)

2. Write a program that converts feet to inches. Prompt the user
for feet and display the equivalent number of inches. Have your
program repeat this process until the user enters 0 for the
number of feet.

3. Here is a C program. Rewrite it so it uses C++-style I/O
statements..

1* Convert this c program into C++ style.
This program computes the lowest common

denominator.
*1

#include <stdio.h>

mt main (void)

mt a, b, d, mm;

prmntt(Eflter two numbers:);

scanf('%d%d, &a, &b);

mm	 a > b ? b : a;

for(d = 2; d<mmn; d++)
if(((a%d)=0) && ((b%d)==0)) break;

AN OVERVIEW OF C++ 19
1.4 C++ COMMENTS

if(d==miri)
printf("No common denominators\n)
return 0;

printf(The lowest common denominator is %d\n, d);

return 0;

II

C++ COMMENTS

In C++, you can include comments in your program two different
ways. First, you can use the standard, C-like comment mechanism.
That is, begin a comment with /* and end it with /. As with C, this
type of comment cannot be nested in C++.

The second way that you can add a remark to your C++ program
is to use the single-hoc Colmncnt. A single-line comment begins with a
II and stops at the end of the line. Other tlian the physical end of the
line (that is, a carriage-return/linefeed combination), a single-line
comment uses no comment terminator symbol.

Typically, C++ programmers use C-like comments for multilinc
commentaries and reserve C++-style single-line comments for
short remarks.

EXAMPLES

1. Here is a program that contains both C and C++-style comments:

This is a C-like comment.

This program determines whether

an integer is odd or even.
*1

#jnclude <iostream>

using namespace std;

20 TEACH YOURSELF

C++

mt main()

mt mum; II this is a C++ single-line comment

// read the number

coot << 'Enter number to be tested:

cm >> num;

II see if even or odd

if((num%2)==0) cout << Number is even\n';

else cout << Number is odd\n;

return 0;

'I

2. While multiline comments cannot be nested, it is possible to
nest a single-line comment within a multilinc comment. For
example, this is perfectly valid:

1* This is a multiline comment

inside of which // is nested a single-line comment.

Here is the end of the multiline comment.

*1	 -

The fact that single-line comments can be nested within
nlultilinc comments makes it easier for you to "comment out"
several lines of code for debugging purposes.

£XLBCISES

1. As an experiment, determine whether this comment (which
nests a C-like comment within a C++-style, single-line
comment) is valid:

1/ This is a strange/* way to do a comment I

2. On your own, add comments to the answers to the exercises in
Section 1.3.

AN OVERVIEW OF C++ 21
1.5 CLASSES: A FIRST LOOK

CLASSES: A FIRST LOOK

Perhaps the single most important fature of C++ is the class. The
class is the mechanism that is used to create objects. As such, the class
is at the heart of many C++ features. Although the subject of classes is
covered in great detail throughout this book, classes are so fundamental
to C++ programming that a brief overview is necessary here.

A class is declared using the class keyword. The syntax of a
class declaration is similar to that of a structure. Its general form is
shown here:

class class-name
// private functions and variables

public:
II public functions and variables
object-list

In a class declaration, the object-list is optional. As with a structure, you
can declare class objects later, as needed. While the class-name is also
technically optional, from a practical point of view it is virtually
always needed. The reason for this is that the class-name becomes
a new type name that is used to declare objects of the class.

Functions and variables declared inside a class declaration are said
to be members of that class. By default, all functions and variables
declared inside a class are private to that class. This means that they
are accessible only by other members of that class. To declare public
class members, the public keyword is used, followed by a colon. All
functions and variables declared after the public specifier are accessible
both by other members of the class and by any other part of the
program that contains the class.

Here is a simple class declaration:

class myclass

II private to myclass

mt a;

public:

void set_a(int num);

mt get-a(;

22 TEACH YOURSELF

C++

This class has one private variable, called a, and two public functions,
set–a() and gct_a(). Notice that functions are declared within a class
using their prototype forms. Functions that are declared to be part of a
class are called member functions.

Since a is private, it is not accessible by any code outside myclass.
However, since set—a() and get—a() are members of myclass, they
can access a. Further, get—a() and set—a() are declared as public
members of myclass and can be called by any other part of the
program that contains myclass.

Although the functions gct_a() and sct_a() are declared by
myclass, they are not yet defined. To define a member function, you
must link the type name of the class with the, name of the function.
You do this by preceding the function name with the Ta—ss i7ai^i—e

followed by two colons. The two colons are called the scope resolution
operator. For example, here is the way the member functions set,,a
and gct_a() are defined:

void myciass: : seta (iflt nurn)

a = num;

mt. myclass: :get_a()

return a;

Notice that both set _a() and get—a() have access to a, which is
private to myclass. Because set—a() and gct_a() are members of
myclass, they can directly access its private data.

In general, to define a member function you must use this form:

ret-type class-name.:func-narneCoarameter-IestJ

II body of function

Here class-name is the name of the class to which the function belongs.
The declaration of myclass did not define any objects of type

myclass—it only defines the type of object that will he created when
one is actually declared. To create an object, use the class name as a

AN OVERVIEW OF C++ 23
1.5 CLASSES:A FIRSTLOOI(

type specifier. For example, this line declares two objects of type
inyclass:

myclass obi, ob2; // these are objects of type rnyclass

A class declaration is a logical abstraction that defines a new type. It
determines what an object of that type will look like. An object declaration
creates a physical entity of that type. That is, an object occupies memory
space, but a type definition does not

Once an object of a class has been created, your program can
reference its public members by using the dot (period) operator in
much the same way that structure members are accessed. Assuming
the preceding object declaration, the following statement calls set—a()

for objects obi and ob2;

obl.seta(10)	 // sets obis version of a to 10

ob2.set_a(99)	 7/ sets ob2's version of a to 99

As the comments indicate, these statements set obis copy of a to 10
and ob2s copy to 99. Each object contains its own copy of all data
declared within the class. This means that obi's a is distinct and
different from the a linked to ob2.

Each object of a class has its own copy of evety variable declared within
the class.

EXAMPLES

1. As a simple first example, this program demonstrates myclass,
described in the text. It sets the value of a for obi and ob2 and
then displays a's value for each object:

#include <iostrearn>

using namespace std;

class myclass

/1 private to myclass

mt a;

24 TEACH YOURSELF

C++

public:
void set_a(int num);
mt get-_a I

void myclass::sct_a(iriL num)

a = num;

inti rnyclass: :get_a()

return a;

irit main()

myc]ass obi, ob2;

obi. set_a (10)
ob2.set_a(99)

cout << obl.get_a() <<
cout << ob2.get_a() <<
return 0;

As you should expect, this program displays the values 10 and
99 on the screen.

2. In myclass from the preceding example, a is private. This
means that only member functions of myclass can access it
directly. (This is one reason why the public function get_a() is
required.) If you try to access a private member of a class from
some part of your program that is not a member of that class, a
compile-time error will result. For example, assuming that
myclass is defined as shown in the preceding example, the
following main() function will cause an error:

I! This fragment contains an error.
4inc1ude <lostream>
using namespace std;

mt main()

AN OVERVIEW OF C++ 25
,.5 CL4SSES:A FIRST LOOK

myciass obi, ob2;

obl.a = 10; II ERROR! cannot access private member

ob2.a = 99; II by non-member functions.

cout<< obl.get_a() <<

cout << ob2.get_a() =<

return 0;

3. Just as there can be public member functions, there can he
public member variables as well. For example, if a were declared
in the public section of myclass, a could be referenced by any
part of the program, as shown here:

#include <jostream>

using namespace std;

class myclass

public:

II now a is public

mt a;

II and there is no need for set_aC) or get_a()

mt main()

myclass obl, ob2;

// here a is accessed directly

obl.a = 10;

ob2.a = 99;

cout << obl.a <<

cout << ob2.a <<

return 0;

In this example, since a is declared as a public member of
myclass, it is directly accessible from main(). Notice how the
dot operator is used to access a. In general, when you are calling
a member function or accessing a member variable from outside

26 TEACH YOURSELF

C++.

its class, the object's name followed by the dot operator followed
by the member's name is required to fully specify which object's
member you are referring to.

4. To get a taste of the power of objects, let's look at a more
practical example. This program creates a class called stack that
implements a stack that can be used to store characters:

#include <jostream>

using namesPace std;

#defixie SIZE 10

II
Declare a stack class for characters

class stack {
char stck(SIZEI II holds the stack

irit tos; // index of top of stack

public:
void init; /1 initialize stack

void push(char ch); II push character on stack

char pope; II pop character from stack

II Initialize the stack
void stack::iflit()

tos	 0;

II Push a character.
void stack: :push(char ch)

jf(tos==SIZE)
cout << "Stack IS full";

return;

stck[tOS)	 ch;

tos++;

}

// pop a character.

char stack: :pop()

if(tos=0)

AN OVERVIEW OF C++ 27
1. 5 CLASSES.' A FIRST WOIC!,

cout << 'Stack is empty;

return 0: II return null on empty stack

tos--;
return stck[tos];

irit main(

stack si, s2; II create two stacks

mt i;
// initialize the stacks

sl.init()
s2.init()

si. push C' a'
s2 . push (x'
sl.push('b'
s2 .push('y')
sl.push('C'
s2 . push ('z'

for(i=O; i<3; i++) cout << 'Pop si: " << si.pop(> <<

for(i=O; i<3; i .i-*) cout << "Pop s2: " << s2.pOp() <<

return 0;

This program displays the following output:

Pop Si: C

Pop si: b
Pop si: a
Pop s2: z
Pop s2: y
Pop s2: x

Let's take a close look at this program now. The class stack
contains two private variables: stck and tos. The array stick
actually holds the characters pushed onto the stack, and tos
contains the index to the top of the stack. The public stack
functions are init(), push(), and pop(), which initialize
the stack, push a value, and pop a value, respectively.

28 TEACH YOURSELF

C++

Inside main(), two stacks, Si and s2, arc created, and three
characters arc pushed onto each stack. It is important to
understand that each stack object is separate from the other.
That is, the characters pushed onto si in no way affect the
characters pushed onto s2. Each object contains its own copy
of stck and tos. This concept is fundamental to understanding
objects. Although all objects of a class share their member
functions, each object creates and maintains its own data.

EXERCISES

1. If you have not done so, enter and run the programs shown in
the examples for this section.

2. Create a class called card that maintains a library card catalog
entry. Have the class store a book's title, author, and number
of copies on hand. Store the title and author as strings and the
number on hand as an integer. Use a public member function
called store() to store a book's information and a public
member function called show() to display the information.
Include a short main() function to demonstrate the class.

3. Create a queue class that maintains a circular queue of integers.
Make the queue size 100 integers long. Include a short main()
function that demonstrates its operation.

SOME DIFFERENCES BETWEEN C AND
C++

Although C++ is a superset of C, there are some small differences
between the two, and a few are worth knowing from the start. Before
proceeding, let's take time to examine them.

First, in C, when a function takes no parameters, its prototype has
the word void inside its function parameter list. For example, in C, if a

AN OVERVIEW OF C++ 29
1.6 SOME DIFFERENCES BETWEEN C AND C++

function called fl() takes no parameters (and returns a char), its
prototype will look like this:

char fl(void);

However, in C++, the void is optional. Therefore, in C++, the
prototype for f'1 () is usually written like this:

char fro;

C++ differs from C in the way that an empty parameter list is
specified. If the preceding prototype had occurred in a C program, it
would simply mean that nothing is said about the parameters to the
function. In C++, it means that the function has no parameters. This is
the reason that the preceding examples did not explicitly use void to
declare an empty parameters list. (The use of void to declare an
empty parameter list is not illegal; it isjust redundant. Since most C++
programmers pursue efficiency with a nearly religious zeal, you will
almost never see void used in this way.) Remember, in C++, these
two declarations are equivalent:

char fl();

char fi(void);	 -

Another subtle difference between C and C++ is that in a C++
program, all functions must be prototype . Remember, in C,
prototypes are recommended but chnically optional. 	 they
are required. As the examples from the previous section show, a
member function's prototype c'ntained in a class also serves as its
general prototype, and no other separate proto.ype is required.

A third difference between C and C++ is that in C++, if a functiori
is declared as returning a value, it must return a value. That is, if a
function has a return type other than void, any return statement
within that function must contain a value. In C, a non-void function
is not required to actually return a value. If it doesn't, a garbage value
is "returned."

In C, if you don't explicitly specify the return type of a function, an
integer return type is assumed. C++ has dropped the "default-to-int"
rule. Thus, you must explicitly declare the return type of all functions.

One other difference between C and C++ that you will commonly
encounter in C++ programs has to do with where local variables can
be declared. In C, local variables can be declared only at the start of a

30 TEACH YOURSELF

C++

block, prior to any "action" statements. In C++, local variables can be
declared anywhere. One advantage of this approach is that local
variables can be declared close to where they are first used, thus
helping to prevent unwanted side effects.

Finally, C++ defines the bool data type, which is used to store
Boolean (i.e., true/false) values. C++ also defines the keywords true
and false, which are the only values that a value of type bool can
have. In C++, the outcome of the relational and logical operators is a
value of type bcjol, and all conditional statements must evaluate to a
bool value. Although this might at first seem to be a big change from
C, it isn't. In fact, it is virtually transparent. l-Icre's why: As you know,
in C, true is any nonzero value and false is 0. This still holds in C++
because any nonzero value is automatically converted into true and
any 0 value is automatically converted into false when used in a
Boolean expression. The reverse also occurs: true is converted to I
and false is converted to 0 when a bool value is used in an integer
expression. The addition of bool allows more thorough type checking
and gives you a way to differentiate between Boolean and integer
types. Of course, its use is optional; boo] is mostly a convenience.

1. In a C program, it is common practice to declare main() as
shown here if it takes no command-line arguments:

irit main(void)

However, In C++, the use of void is redundant and
unnecessary.

2. This short C++ program will not compile because the function
sum() is not prototyped:

II This program will not compile.

flinclude <iostream,

using namespace std;

mt mainC)

mt a, b, C;

cout << Enter two numbers:

AN OVERVIEW OF C++ 31
1.6 SOME DIFFERENCES BETWEEN C AND C++

cm >> a >> b;
c = sum(a, b);

cout << Sum is: ' << C;

return 0;

II This function needs a prototype.

sum(int a, mt b)

return a+b;

Here is a short program that illustrates how local variables can
be declared anywhere within a block:

include <lostream>

using namespace std;

mt main()

mt i; II local var declared at start of block

cout << Enter number:

cm >> i;

II compute factorial

mt j, fact=l; II vars declared after action statements

for(j=i; j>=1; j--) fact = fact *

cout << 'Factorial is	 << fact;

return 0

The declaration of j and fact near the point of first use is of
little value in this short example; however, in large functions,
the ability to declare variables close to the point of their first
use can help clarify your code and prevent unintentional
side effects.	 -

32 TEACH YOURSEU

C++

4. The following program creates a Boolean variable called
outcome and assigns it the value false. It then uses this variable
in an if statement.

#include <lostrearn>
using namespace std;

mt main()

bool outcome;

outcome = false;

if (outcome) cout << "true;
else cout << 'false';

return 0;

As you should expect, the program displays false.

EXERC(S

1. The following program will not compile as a C++ program.
Why not?

II This program has an error.
#include <iostream>
using namespace std;

mt main()

f()

return 0;

}	 -'	 '.	 ,	 -,:•'	 .1,.	 -

All OVERVIEW OF c++ 33

11 IATTR000CING FUNCTION OVERLOADING

void f()

cout << ."this won't work;

2. On your own, try declaring local variables at various points in a
C++ program. Try the same in a C program, paying attention to
which declarations generate errors.

I
NTRODUCING FUNCTION
OVERLOADING

After classes, perhaps the next most important and pervasive C++
feature is function overloading. Not only does function overloading
provide the mechanism by which C++ achieves one type of
polymorphism, it also forms the basis by which the C++ programming
environment can be dynamically extended. Because of the importance
of overloading, a brief introduction is given here.

In C++, two or more functions can share the same name as long
as either the type' of their arguments differs or the number of their
arguments differs—or both.lWhen two or more functions share the
same name, they are said to 	 uerloaded. Overloa e unctions can

allowing related
operations to be referred to by the same name.

It is very easy to overload a function: simply declare and define all
required versions. The compiler will automatically select the correct
version based upon the number and/or type of the arguments used to
call the function.

It is also possible in C++ to overload operators. However, before you can fully
understand operator overloading, you will need to know more about C++.

34 TEACH YOURSELF

V	
C-f-f

EXAMPLES

1. One of the main uses for function overloading is to achieve
compile-time polymorphism which embodies the philosophy of
one interface, many methods. As you know, in C programming,
it is common to have a number of related functions that differ
only by the type of data on which they operate. The classic
example of this situation is found in th.0 standard library.
As mentioned earlier in this chapter, the library contains the
functions abs(), labs(), and fabs(), which return the absolute
value of an integer, a long integer, and a floating-point value,
respectively.

However, because three different names are needed due to
the three different data types, the situation is more complicated
than it needs to be, In all three cases, the absolute value is being
returned; only the type of the data differs. In C++, you can
correct this situation by overloading one name for the three
types of data, as this example illustrates:

#jnclude eiostream>

using namespace std;

II Overload abs() three ways

mt abs(int n);

long abs(long n);

double abs (double n);

mt main()

cout << 'Absolute value of -10: 	 << abs(-10) <e
cout << "Absolute value of -lOL: 	 << abs(-10L) e<
cout << Absolute value of -10.01: 	 << abs(-40.01) <<

return 0;

II abs() for ints

mt abs(int n)

cout << In integer absH\n;

AN OVERVIEW OF C++ 35
1.7 INTRODUCING FUNCTION OVERLOADING

return n<0 ? -n : n;

II

// abs() for longs
long abs(long n)

cout .< "In long absH\n"
return n<0 ? -n : fl;

II abs() for doubles
double abs(double n)

cout << "In double absH\n';
return n<0 ? -n :

As you can see, this program defines three functions called
abs()—one for each data type. Inside main(), abs() is
called using three different types of arguments. The compiler
automatically calls the correct version of abs() based upon the
type of data used as an argument. The program produces the
following output:

In integer abs()
Absolute value of -10: 10

In lbng abs()
Absolute value of -10L: 10

In double abs()
Absolute value of -10.01: 10.01

Although this example is quite simple, it still illustrates the
value of function overloading. Because a single name can
be used to describe a general class of action, the artificial
complexity caused by three slightly different names—in this
case, abs(), fabs(), and labs()—is eliminated. You now must
remember only one name—the one that describes the general
action. It is left to the compiler to choose the appropriate specific
version of the function (that is, the method) to call. This has the
net effect of reducing complexity. Thus, through the use of
polymorphism, three names have been reduced to one.

36 TEACH YOURSELF

C-I-f

While the use of polymorphism in this example is fairly
trivial, you should be able to see how in a very large program,
the "one interface, multiple methods" approach can be quite
effective.

2. Here is another example of function overloading. In this case,
the function datc() is overloaded to accept the date either as a
string or as three integers. In both cases, the function displays
the date passed to it.

#iriclude <lostrearn>

using namespace std;

void date(char *date); /1 date as a string
void date(int month, mt day, mt year); /1 date as numbers

mt main))

date) 8/23/99'

date(8, 23, 99);

return 0;

/1 Date as string.

void date(char *date)

cout << 'Date: " << date <<

/1 Date as integers.

void date(int month, mt day, mt year)

cout << "Date: " << month <<

cout <<. day << "i' << year <<

This example illustrates how function overloading can provide
the most natural interface to a function. Since it is very common
for the date to be represented as either a string or as three
integers containing the month, day, and year, you are free to
select the most convenient form relative to the situation at hand.

3. So far, you have seen overloaded functions that differ in the data
types of their arguments. However, overloaded functions can also
differ in the number of arguments, as this example illustrates:

AN OVERVIEW OF C++ 37
7.7 INTRODUCING FUNCTION OVERLOADING

#include <lostream>

using namespace std;

void fl(int a);

void fl(int a, mt b);

mt main()

fl (10);

f1(10, 20);

return 0;

void fl(int a)

cout << In fl(int a)\n";

void fl(int a, mt b)

cout << "In fl(int a, mt b)\n;

4. It is important to understand that the return type alone is
not a sufficient difference to allow function overloading. If
two functions differ only in the type of data they return, the
compiler will not always be able to select the proper one to call.
For example, this fragment is incorrect because it is inherently
ambiguous:

II This is incorrect and will not compile.

mt fl(int a);

double fl(int a);

fl(10); II which function does the compiler call???

As the comment indicates, the compiler has no way of knowing
which version of fI() to call.

38 TEACH YOURSELF

V

EXRCES

1. Create a function called sroot() that returns the square root of
its argument. Overload sroot() three ways: have it return the
square root of an integer, a long integer, and a double. (To
actually compute the square root, you can use the standard
library function sqrt().)

2. The C++ standard library contains these three functions:

double atof(const char s);
ant atoiconst char s);
long atol(const char s);

These functions return the numeric value contained in the
string pointed to by s. Specifically, atof() returns a doub1',
atoi() returns an integer, and atol() returns a long. Why is it
not possible to overload these functions?

3. Create a function called min() that returns the smaller of the
two numeric arguments used to call the function. Overload
min() so it accepts characters, integers, and doubles as
arguments.

4. Create a function called sleep() that pauses the computer for
the number of seconds specified by its single argument.
Overload sleep() so it can be called with either an integer or a
string representation of an integer. For example, both of these
calls to sleep() will cause the computer to pause for 10 seconds:

sleep (10)
sleep(10")

Demonstrate that your functions work by including them
in a short program. (Feel free to use a delay loop to pause
the computer.)

AN OVERVIEW OF C++ 39
SKILLS CHECK

C++
KEYWORDS

C++ supports all ot the keywords defined by C and adds 30 of its own.
The entire set of keywords (helloed by ('++ is shown in Table 1-1.
Also, earl y versions ot (++ delined the ovcrload ke y word, hot it is
now obsolete.

SKILLS CHECK

Mastery
Skills Check

At this point you should he able to perform the following exercises and
answer the c1ncstlI)l1s.

Give hi ic Id seril)Iions of polyniorpliism, encalisulatiOlI, and
ilIhleiitIiiI(.

2. I tow can c000lients be in(lncl(d iii a C-I--f-- program?

3. Write a program that USCS C++-st y le hO to input two integers
front 	 keyboard and then displa ys the result of raising the
first to the power of the second. (for example, if the user enters
2 and 4 the result is 21, or 16.)

asm	 const cast	 explicit

auto	 continue	 extern

boot	 default	 false

break	 delete	 float

case	 do	 for

catch	 double	 friend

char	 dynamic—cast gob

class	 else	 if

coust	 enum	 inline

•Lit!W'U The C++ Keywords V

nt	 register	 switch

long	 reinterpret—cast template

mutable	 return	 this

namespace short 	 throw

new	 signed	 true

operator	 sizeof	 try

private	 static	 typedef

protected	 static—cast	 typeid

public	 struct	 typename

union

unsigned

using

virtual

void

volatile

wch&r_t

while

40 TEACH YOURSELF

C++

4. Create a function called revstr() that reverses a string.
Overload re'v_str() so it can be called with either one character
array or two. When it is called with one string, have that one
string contain the reversal. When it is called with two strings,
return the reversed string in the second argument. For example:

char si[80}, s2[80];

strcpy(si, hello");

rev_str(sl, s2); II reversed string goes in s2, si untouched
rev_str(sl); II reversed string is returned in si

5. Given the following new-style C++ program, show how to
change it into its old-style form.

include <iostream>

using namespace std;

mt f(int a);

mt main()

cout << f(lO);

return 0;

mt f(int a)

return a * 31415•

6. What is the bool data type?

2
Introducing Classes

chapter objectives

Constructor and destructor functions

Constructors that take parameters

--2.3 Introducing inheritance

'.-24 Object pointers

2.5 Classes, structures, and unions are related

— 2.6 In-line functions

v2.7 Automatic in-lining

41
V

42 TEACH YOURSELF

C++

T

LS chapter introduces classes and objects. Several important
opics are covered that relate to virtually all aspects of C++
rogTamming, so a careful reading is advised.

Review

Skills Check

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1. Write a program that uses C++-style I/O to prompt the user for
a string and then display its length.

2. Create a class that holds name and address information. Store all
the information in character strings that are private members of
the class. Include a public function that stores the name and
address. Also include a public function that displays the name
and address. (Call these functions store() and display().)

3. Create an overloaded rotate() function that left-rotates the bits
in its argument and returns the result. Overload it so it accepts
ints and longs. (A rotate is similar to a shift except that the bit
shifted off one end is shifted onto the other end.)

4. What is wrong with the following fragment?

*include <iostream>
using namespace std;

class myclass

mt i;
public:

I

mt main()

INTRODUCING CLASSES 43
21 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

rnyclass ob;
ob.i	 10;

ONSTRUCTOR AND DESTRUCTOR
FUNCTIONS

If you have been writing programs for very long, you know that it is
common for parts of your program to require initialization. The need
for initialization is even more common when you are working with
objects. In fact, when applied to real problems, virtually every object
you create will require some sort of initialization. To address this
situation, C++ allows a coistruc(orfirnction to be included in a class
declaration. A class's constructor is called each time an object of that
class is created. Thus, any initializations that need to be performed on
an object can be done automatically by the constructor function.

A constructor function has the same name as the class of which itjs
ias nQ return type For ex am class that

contains a constructor function:

*include <iostream>

using namespac std;

class myclass

mt a;

public:

myclass(); 1/ constructor
void showL);

rnyclass::Inyclass)

cout << 'In cotructoi\n;
a = 10;

void myc1ass :show()

44 TEACH YOURSELF

C++

cout << a;

mt main()

myclass oh;

ob. show() ;

return 0;

ifl this simple example, the value of is initialized by the
constructor myclass(). The constructor is called when the object ob
is created. An object is created when that object's declaration
statement is executed. It is important to understand that in C++, a
variable declaration statement is an "action statement." When you are
programming in C, it is easy to think of declaration statements as
simply establishing variables. However, in C++, because an object
might have a constructor, a variable declaration statement may, in
fact, cause a considerable number of actions to occur.

Notice how myclass() is defined. As stated, it has no return type.
According to the C++ formal syntax rules, it is illegal for a constructor
to have a return type.

For global objects, an object's constructor is called once, when the
program first begins execution. For local objects, the constructor is
called each time the declaration statement is executed.

The complement of a constructor is the destructor. This function is
called when an object is destroyed. When you are working with
objects, it is common to have to perform some actions when an object
is destroyed. For example, an object that allocates memory when it is
created will want to free that memory wheriit is destroyed. The name
of a destructor is the name of its class, preceded by a " i . For example,

this class contains a destructor function:

#include <iostream>

using nainespaCe std;

class rnyclass
mt a;

public:

INTRODUCING GLASSES 45
2 1 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

tnyclass() ; II constructor

-myclass(); II destructor

void showfl;

myclass: :myc1ss()

coUt << In constructor\n;

a = 10;

rnyclass : niyc1ass ()

cout << Destructing...

void rnyclass: :show()

cout << a <e

mt main()

myclass ob;

ob.show;

return 0;

A class's destructor is called when an object is destroyed. Local
objects are destroyed when they go out of scope. Global objects are
destroyed when the program ends.

It is not possible to take the a& ;ess of either a constructor or a
destructor.

Technically, a constructor or a destructor can perform any type of operation.
The code within these functions does not have to initialize or reset anything
related to the class for which they are defined. For example, a constructor for
the preceding examples could have computed pi to 700 places. However,
having a constructor or destructor perform actions not directly related to the
initialization or orderly destruction of an object makes for veiy poor
orogramming style and should be avoided

46 TEACH YOURSELF

C++

I EXAMPLES

1 You shou l d recall that the stack class created in Chapter 1
required an initialization function to set the stack index
variable. This is precisely the sort of operation that a constructor
function was designed to perform. Here is an improved version
of the stack class that uses a constructor to automatically
initialize a stack object when it is created:

#include <iostream>
using namespace std;

#define SIZE 10

// Declare a stack class for characters.
class stack

char stck[SIZE]; I/ holds the stack
irit tos; 1/ index of top of stack

public:

stack(); // Constructor

'id push(char ch); I/ push character on stack

:iar pop(); II pop character from stack

// Initializ(. the stack.

stack::stack()

cout << Constructing a stack\n

tos	 0;

II gush a character.

void stack: :push(char ch)

if(tos=SIZE) {

cout << Stack is full\n;

return;

stck[tos] = ch;
to s + +.;

II

INTRODUCING CLASSES 47
21 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

II Pop a character.

char stack::pop()

if(tos==O)
coUt << Stack is empty\n;

return 0; II return null on empty stack

tOS - -;
return stck[tos];

mt main()

Create two stacks that are automatically initialized.

stack sl, s2;

mt i;

si . push ('a'

s2 push ('x'

sl.push('b')

s2.push('y'

si . push (' C'
s2 . push ('z'

for(i=0; i<3; i++) cout << Pop sl: 	 << sl.pop() <<

tor(i=0; i<3; i++) cout << Pop s2: ' << s2.pop() <<'\fl';

return 0;

As you can see, now the initialization task is performed
automatically by the constructor function rather than by a
separate function that must be explicitly called by the program.
This is an important point. When an initialization is performed
automatically when an object is created, it eliminates any
prospect that, by error, the initialization will not be performed.
This is another way that objects help redie program complexity.
You, as the programmer, don't need to wWy about initialization—
it is performed automatically when the object is brought
into existence.

48 TEACH vouRsELr

C++

2. Here is an example that shows the iieed for both a constructor
and a destructor function. It creates a simple string class, called
strtype, that contains a string and its length. When astrtype
object is created, memory is allocated to hold the string and its
initial length is set to 0. When a strtype object is destroyed, that
memory is released.

#include <iostream>
#include <cstring>
#fnclude <cstdlib>
using narnespace std;

#define SIZE 255

class strtype
char *p;

mt len;
public:

strtype(); /1 constructor
-strtype() ; //destructor
void set(char *ptr);
void show();

1/ Initialize a string object.
strtye: :strtype()

p = (char *) malloc(SIZE);
if(!p) •{
cout << Allocation error\n";
exit (1)

*p . '\O'
len = 0;

)

/1 Free memory when destroying string object.
strtype: :-strtype()

cout << Freeing p\n;
free (p)

)

INTRODUCING CLASSES 49
21 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS

void strtype::set(Char *ptr)

if(strlen(p) > SIZE)

cout << String too big\n;

return;

strcpy(P ptr)
lerr = strlen(p);

void strtype: :show()

cout e< ç	 - length:	 << len;

cout <e

mt main))

strtype si, s2;

sl.set('ThiS is a test.,.);

s2.setLI like C ");

sl.show()

s2. show))

return 0;

This program uses malloc() and free() to allocate and free
memory. While this is perfectly valid, C++ does provide another
way to dynamically manage memory, as you will see later in
this book.

The preceding program uses the new-style headers for the
C library functions used by the program. As mentioned in
Chapter 1, if your compiler does not support these headers,
simply substitute the standard C header files. This applies
to other programs in this book in which C library functions

are used.

50 TEACH YOURSELF

C++

3. Here is an interesting way to use an object's constructor and
destructor. This program uses an object of the timer class to
time the interval between when an object of type timer is
created and when it is destroyed. When the object'destructor
is called the elapsed time is displayed. You could use an object
like this to time the duration of a program or the length of time
a function spends within a block. Just make sure that the object
goes out of scope at the point at which you want the timing
interval to end.

#include <iostream,
#include <ctime,

using namespace std;

class timer

clock_t start;

public:

timer)); II Constructor
-. timer()	 /7 destructor

timer: :timer()

Start = clock));

timer: :-timer()

clock_t end;

end = clock;

cout << Elapsed time: 	 << (end-start)

CLOCKS—PER—SEC <<

mt main()

timer ob;

char C;

7/ delay

INTRODUCING CLASSES

21 CONSTRUCTOR AND DESTRUCTOR FUNCTIONS -

cout << Press a key followed by ENTER:

cm >> C;

return 0;

II

This program uses the standard library function clock(), which
returns the number of clock cycles that have taken place since
the program started running. Dividing this value by
CLOCKS-PER-SEC converts the value to seconds.

EXERCISES

1. Rework the queue class that you developed as an exercise in
Chapter 1 by replacing its initialization function with a constructor.

2. Create a class called stopwatch that emulates a stopwatch that
keeps track of elapsed time. Use a constructor to initially set the
elapsed time to 0. Provide two member functions called start()

and stop() that turn on and off the timer, respectively. Include
a member function called show() that displays the elapsed
time. Also, have the destructor function automatically display
elapsed time when a stopwatch object is destroyed. (To simplify,
report the time in seconds.)

3. What is wrong with the constructor shown in the following
fragment9

class sample

double a, b, C;

public:

double sampleM; // error. ..hy?

i2..

52 TEAC' • 'JRSELF
V.

CONSTRUCTORS THAT TAKE
PARAMETERS

It is possible to pass arguments to a constructor function. To allow
this, simply add the appropriate parameters to the constructor
function's declaration and definition. Then, when you declare an
object, specify the arguments. To see how this is accomplished, let's
begin with the short example shown here:

tinclude	 ;rream>
using namespace std;

class myclass
mt a;

public:
myclass(int. x); II constructor
void

myclass: :myclass(in x)

cout << In constructor\n;
ax;

void myclass::show()

cout << a <<

mt main()

myclass ob(4)

ob.show();

return 0;

Here the constructor for myclas8 takes one parameter. The value
passed to myclass() is used to initialize a. Pay special attention to
how ob is declared in main(). The value 4, specified in the parentheses
following ob is the argument that is passed to myclass()'s parameter
x, which is used to initialize a.

INTRODUCING CLASSES 53
2.2 CONSTRUCTORS THAT TAKE PARAMETERS V

Actually, the syntax for passing an argument to a parameterized
constructor is shorthand for this longer form:

myclass ob = myclass(4)

However, most C++ programmers use the short form. Actually, there
is a slight technical difference between the two forms that relates to
copy constructors, which are discussNLlatcr in this book. But you don't
need to worry about this distinction r.' w.

Unlike constructor functions, destructor functions cannot have parameters.
The reason for this is simple enough to understand: there exists no mechanism
by which to pass arguments to an object that is being destroyed

1. It is possible—in fact, quite common—to pass a constructor
more than one argument. Here niyclass() is passed two
arguments:

include <iostream>

using namespace std;

class myclass

mt a, b;

public:

myclass(iflt x, mt y); II constructor

void showfl;

myclass: :myclass(int x, mt y)

cout << 'In constructor\n's

a =

b =

'I

void rnyclass: :show()

cout << a	 ' ' << b <<

54 TEACH YOURSELF
C++

mt main()

rnyclass ob(4, 7);

ob.show()

return 0;

Here 4 ispassed to x and 7 is passed to y. This same general
approach is used to pass any number of arguments you like (up
to the limit set by the compiler, of course).

2. Here is another version of the stack class that uses a
parameterized constructor to pass a name" to a stack. This
single-character name is used to identify the stack that is being
referred to when an error occurs.

#include <ioStream>

using namespace std;

define SIZE 10

II Declare a stack class for characters.

class stack

char stck[SIZE]; // holds the stack

mt tos; II index of top of stack

char who; I! identifies stack

public:

stack(char C); // constructor
void push(char ch); 7/ push character on stack

char popO; 7/ pop character from stack

II Initialize the stack.

stack: :stack(char c)

tos = 0;

who =c;

cout << Constructing stack 	 << who <<

7/ Push a character.

void stack::push(char ch)

INTRODUCING CLASSES 55
22 CONSTRUCTORS THAT TAKE PARAMETERS

if(tos==SIZE

cout << 'Stack	 << who << 	 is full\n

return;

stck[t os] = ch;

tos. *;

'I

/1 Pop a character.

char stack: :pop()

if(tos==O)

cout << 'Stack	 << who <<	 is empty\n;

return 0; II return null on empty stack

tOS - -;

return stck[tos];

mt main(

II Create two stacks that are automatically initialized.

stack	 l(W), s2('B');

intl 1;

sl.push('a')

s2 . push I

si .push ('b'

s2 . push (y'

sl.push('c')

s2 - push ('z'

/1 This will generate some error messages.

for(i.=0; i<5; i+.) cout << Pop si:	 << sl.pop() <<

for(iO; i<5; 1+.) cout << Pop s2:	 << s2.pop() <<

return 0;

Giving objects a 'name," as shown in this example, is especially
useful during debugging, when it is important to know which
object generates an error.

is

56 TEACH YOURSELF

C4-1-

3. Here is a different way to implement the strtypc class (developed
earlier) that uses a parameterized constructor function:

include <jostream>

#include <cstring>

#include <cstdlib>

using namespace std;

class strtype

char *p;

mt len;

public:

strtype(char *ptr)

"-strtype ()

void show();

strtype: :strtype(char *ptr)

len = strlen(ptr);

p = (char *) nialloc(len+l);

if(p)

cout << "Allocation error\n;

exit (1)

strcpy(p, ptr);

PO

strtype: :-strtype()

cOut << 'Freeing p\n";

free(p)

void strtype::show()

cout << p << " - length: " << len;

cout <<	 -

mt main(

strtype sl("This is a test."), s2('I like C++.");

INTRODUCING CLASSES 57
22 CONSTRUCTORS THAT TAKE PARAMETERS "

Si. show
s2.show()

return U;

In this version of strtypc, a string is given an initial value using
the constructor function.

4. Although the previous examples have used constants, you can
pass an object's constructor any valid expression, including
variables. For example, this program uses user input to
construct an object:

#inciude <iostream>

using namespace std;

class rnyclass

mt i, j;

public:

myclass(jnt a, mt b);

void show();

myclass::myclass(jnt a, mt b)

i = a;

j=b;

void myclass: :show()

cOut << i << ' , << j <<

mt main()

mt x, y;

cout << 'Enter two integers:

cm >s X >>

II use variables to construct ob

rriyciass ob(x, y);

58 TEACH YOURSELF

V

ob. show() ;

return 0;

This program illustrates an important point about objects. They
can be constructed as needed to fit the exact situation at the
time of their creation. As you learn more about C++, you will
see how useful constructing objects "on the fly" is.

EXERCISES

1. Change the stack class so it dynamically allocates memory for
the stack. Have the size of the stack specified by a parameter to
the constructor function. (Don't forget to free this memory with
a destructor function.)

2. Create a class called t_and_d that is passed the current system
time and date as a parameter to its constructor when it is
created. Have the class include a member function that displays
this time and date on the screen. (Hint: Use the standard time
and date functions found in the standard library to find and
display the time and date.)

3. Create a class called box whose constructor function is passed
three double values, each of which represents the length of one
side of a box. Have the box class compute the volume of the box
and store the result in a double variable. Include a member
function called vol() that displays the volume
of each box object.

INTRODUCING CLASSES 59
23 IN, '(JUCING INHERITANcE

NTRODUCING INHERITANCE

Although inheritance is discussed more fully in Chapter 7, it needs
to be introduced at this time. As it applies to C++, inheritance is the
mechanism by which one class can inherit the properties of another.
Inheritance allows a hierarchy of classes to be built, moving from the
most general to the most specific.

To begin, it is necessary to define two terms commonly used when
discussing inheritance. When one class is inherited by another, the
class that is inherited is called the base class. The inheriting class is
called the derived class. In general, the process of inheritance begins
with the definition of a base class. The base class defines all qualities
that will be common to any derived classes. In essence, the base class
represents the most general description of a set of traits. A derived
class inherits thos le general traits and adds properties that are specific
to that class.

To understand how one class can inherit another, let's first begin
with an example that, although simple, illustrates many key features
of inheritance.

To start, here is the declaration for the base class:

II Define base class.
class B

mt i7
public:

void set_i(int n);
mt get_i

Using this base class, here is a derived class that inherits it:

II Define derived class.
class D : public B

mt j;
public:

void set_j(int n);
mt mul (

60 TEACH VOURSEL.F

C++

Look closely at this declaration. Notice that after the class name D
there, is a colon followed by the keyword public and the class name B.
This tells the compiler that class D will inherit all components of class
B. The keyword public tells the compiler that B will be inherited such
that all public elements of the base class will also be public elements
of the derived class. However, all private elements of the base class
remain private to it and are not directly accessible by thederived class.

Here is an entire program that uses the B and D classes:

/7 A simple example of inheritance.
#include <iostrearn>

using namespace std;

II Define base class.

class B

mt i;

public:

void set_i(int n);

mt get_jO;

II Define derived class.

class D :. public B

mt j;

public:

void set_j(int n);

mt mul ()

II Set value i in base.

void B::set_i(int n)

I = n;

II Return value of i in base.

mt B::get_i()

return i;

'' Set value of j in derived.

INTRODUCING CLASSES 61
23 INTRODUCING INHERITANCE

void D:;set_j(int n)

jn;

II Return value of base's i times derived's j.

mt D::mul()

// derived class can call base class public member functions

return j * get_i ()

mt main()

D ob;

ob.set_i(lO); // load i in base

ob.set_j(4); ti load j in derived

cout << ob.mul(); II displays 40

return 0;

)

Look at the definition of mul(). Notice that it calls get_i(), which is
a member of the base class B, not of D, without linking it to any
specific object. This is possible because the public members of B
become public members of D. However, the reason that mul() must
call getJ() instead of accessing i directly is that the private members
of a base class (in this case, 1) remain private to it and not accessible
by any derived class. The reason that private members of a class are
not accessible to derived classes is to maintain encapsulation. If the
private members of a class could be made public simply by inheriting
the class, encapsulation could be easily circumvented.

The general form used to inherit a base class is shown here:

class derived-class-name: access-specifier base-c/ass-name { .

62 TEACH YOURSELF

C++

Here access-specifier is one of the following three keywords: public,
private, or protected. For now, just use public when inheriting a
class. A complete description of the access specifiers will be given
later in this book.

1. Here is a program that defines a generic base class called fruit
that describes certain characteristics of fruit. This class is inherited
by two derived classes called Apple and Orange. These classes
supply specific. information to fruit that are related to these
types of fruit.

II An example of class inheritance.
#include <iostream>
#iriclude <cstring>
using namespace std;

enum yn (no, yes);
enum color (red, yellow, green, orange);

void out(enum yn x);

char c[J =
"red", 'yellow", "green', "orange');

Generic fruit class.
class fruit
II in this base, all elements are public
public:

enum yn annual;
enum yn perennial;
enum yn tree;
enum yri tropical;
enum color cir;
char name(401;

II Derive Apple class.
cl,,ass Apple : public fruit
/enum yn cooking;

enum yn crunchy;

C

INTRODUaNG CLASSES 03
23 FN7RODUC(NG /NHEPJTANE

enum yn ting;
public:	 -.

void seta char n, enum color c, enum yn ck enum yn crchy,
enum yn e);

void show();

II Derive orange class.
class Orange :.public fruit

enum yn juice;
enum yn sour;
enum yn eating;

public:

void seto(char *n, enuni color c, enum yn j, enuxn yn sr,
enum yn e);

void showU;

void Apple::seta(char 	 enum color c, enum yn ck,
enum yn crchy, enum yn e)

strcpy(name, n);
annual = no;
perennial = yes;

tree = yes;
tropical	 no;
dr	 c;
cooking	 ck;
crunchy = crchy;
eating = e;

void Orange: :seto(char *n, enum color c, enum yn j,
enum yn sr, enum yn e)

strcpy(name, n);
annual = no;
perennial = yes;
tree = yes;
tropical = yes;
dr =
juice =
sour = sr;

64 ThAGNYOUIEJ
V

eating e;

void Apple: :show()

cout << name << " apple is: 	 <<

cout << "Annual: 	 out(annual);

cout << "Perennial:	 out(perenriial);

cout << "Tree: ; out(tree);
cout << "Tropical: "; out(tropical);
cout << "Color:	 << c[clr] <<
cout << "Good for cooking: "; out(cooking);

cout << 'Crunchy:	 out(crunchy)

cout < "Good for eating: "; out(eatiflg);

coutc< "\n;

void Orange: : show (>

bout << name << " orange is: " <<

cout << "Annual: ";out(arinual);
cout << "perennial:	 out(perennial);

cout << "Tree: "; out(tree);
cout << "Tropical:	 out(tropical);

cout << "Color: " << c[clr] <<
cout << "Good for juice: "; out(juice);

cout << "Sour: "; out(sour);
cout<< "Good for eating: "; out(eating);

cout <<

void out (enuin yn x)

if(x==flO) cout << "no\n";
else cout << "yes\n";

mt main U

Apple al a2;
Orange 01,. o2;

al.seta(*Red Delicious", red, no, yes, yes);

INTRODUCING CLASSES 65
23 /WTRODUCING INHERITANCE

a2.seta("Jonathan", red, yes, no, yes);

ol.seto('Navel, orange, no, no, yes);
o2.seto(Valencia', orange, yes, yes, no);

al. show();
a2. show()

ol.show()
o2. show()

return 0;

As you can see, the base class fruit defines several
characteristics that are common to all types of fruit. (Of course,
in order to keep this example short enough to fit conveniently
in a book, the fruit class is somewhat simplified.) For example,
all fruit grows on either annual or perennial plants. All fruit
grows either on trees or on other types of plants, such as vines
or bushes. All fruit has a color and a name. This base class is then
inherited by the Apple and Orange classes. Each of these classes
supplies information specific to its type of fruit.

This example illustrates the basic reason for inheritance.
Here, a base class is created that defines the general traits
associated with all fruit. It is left to the derived classes to supply
those traits that are specific to each individual case.

This program illustrates another important fact about
inheritance: A base class is not exclusively "owned" by a derived
class. A base class can be inherited by any number of classes;

EXERCISE

1. Given the following base class,

class area_cl
public:

double height;

66 TEACH YOURSELF

C++

double width;

create two derived classes called rectangle and isosceles that
inherit area_cl. Have each class include a function called area()
that returns the area of a rectangle or isosceles triangle, as
appropriate. Use parameterized constructors to initialize
height and width.

pBJEcr POINTERS

So far, you have been.accessing members of an object by using the dot.
operator. This is the correct method when you are working with an
object. However, it is also possible to access a member of an object via
a pointer to that object. When a pointer is used, the arrow operator (->)
rather than the dot operator is employed. (This is 'exactly the same
way the arrow operator is used when given a pointer to a structure.)

You declare an object pointer just like you declare a pointer to any
other type of variable. Specify its class name, and then precede the
variable name with an asterisk. To obtain the address of an object,
precede the object with the & operator, just as you do when taking the
address of any other type of variable.

Just like pointers to other types, an object pointer, when incremented,
will point to the next object of its type.

EXAMPLE

1. Here is a simple example that uses an object pointer:

#include <iostream>

using namespace std;

class myclass

mt a;

public:

rnyclass(int x) ; II constructor

INTRODUCING CI.ASSES 67
2.4 OBJECT POINTERS

mt get();

myclass: :myclass(int x)

a	 X;

mt myclass: :get()

return a;

¶

mt main(

myclass ob(120); /7 create object

myclass *p; /7 create pointer to object

p = &ob; /7 put address of ob into p

cout	 Value using object:	 << ob.get;
cout <<

cout << Value using pointer: 	 < p->get;

return 0;

Notice how the declaration

myclass *p;

creates a pointer to an object of myclass. It is important to
understand that creation of an object pointer does not create an
object—it creates just a pointer to one. The address of oh is put
into p by using this statement:
p = &ob;

Finally, the program shows how the members of an object can
be accessed through a pointer.

We will come back to the subject of object pointers in
Chapter 4, once you know more about C++. There are several
special features that relate to them.

68 TEACH vouRsaF

C++

CLASSES, STRUCTURES, AND
ARE RELATED

As you have seen, the class is syntactically similar to the structure.
You might he surprised to learn, however, that the class and the
structure have virtually identical capabilities. In C++, the definition
of a structure has been expanded so that it can also include member
functions, including constructor and destructor functions, in just the
same way that a class can. In fact, the only dificrence between a
structure and a class is that, by default, the members of a class are
private but the members of a structure are public. The expanded
syntax of a structure is shown here:

struct type-name
II public function and data members

private:
II private function and data members
object-list,

In fact, according to the formal C++ syntax, both struct and class
create new class types. Notice that a new keyword is introduced. It is
private, and it tells the compiler that the members that follow are
private to that class.

On the surface, there is a seeming redundancy in the fact that
structures and classes have virtually identical capabilities. Many
newcomers to C++ wonder why this apparent duplication exists. In
fact, it is not uncommon to hear the suggestion that the class keyword
is unnecessary.

The answer to this line of reasoning has both a "strong' and "weak"
form. The "strong" (or compelling) reason concerns maintaining
upward compatibility from C. In C++, a C-style structure is also perfectly
acceptable in a C++ program. Since in C all structure members are
public by default, this convention is also maintained in C++. Further,
because class is a syntactically separate entity from struct, the
definition of a class is free to evolve in a way that will not be compatible
with a C-like structure definition. Since the two are separated, the
future direction of C++ is not restricted by compatibility concerns.

The "weak" reason for having two similar constructs is that there is
no disadvantage to expanding the definition of a structure in C++ to
include member functions.

INTRODUCING CLASSES 69
2.5 CLASSES siRucruREs. AND UNIONS ARE RELATED

Although structures have the same capabilities as classes, most
programmers restrict their use of structures to adhere to their C-like
form and do not use them to include function members. Most
programmers USC the class keyword when defining objects that
contain both data and code. However, this is a stylistic matter and is
subject to your own preference. (After this section, this book reserves
the USC of struct for objects that have no function members.)

If you find the connection between classes and structures
interesting so will you find this next revelation about C++: unions and
clas1cs are also related. In C++, a union defines a class type that can
contain both function's and data as members. A union is like a structure
in that, by default, all members are public until the private specifier i
used. In a union, however, all data members share tl-w same memory
location (just as in C). Unions can contain constructor and destructor
functions. Fortunately, C unions are upwardly compatible with
C++ unions.

Although structures and classes seem on the surface to be
redundant, this is not the case with unions. In an object-oriented
language, it is important to preserve encapsulation. Thus, the union's
ability to link code and data allows you to create class types in which
all data uses a shared location. This is something that you cannot do
using a class.

There are several restrictions that apply to unions as they relate to
C++. First, they cannot inherit any other class and they cannot be
used as a base class for any other type. Unions must not have any
static members. They also must not contain any object that has a
constructor or destructor. The union, itself, can have a constructor and
destructor, though. Finally, unions cannot have virtual member
functions. (Virtual functions are described later in this book.)

There is a special type of union in C++ called an anonymous union.
An anonymous union does not have a type name, and no variables can
be declared for this sort of union. Instead, an anonymous union tells
the compiler that its members will share the same memory location.
However, in all other respects, the members act and are treated like
normal variables. That is, the members are accessed directly, without
the dot operator syntax. For example, examine this fragment:

union { II an anonymous union
mt i;

char ch(4J;

70 TEACH Y0uR$aF

C++

i	 10; II access i and ch directly
ch[Qj =

As you can see, i and ch are accessed directly because they are not
part of any object. They do, however, share the same memory space.

The reason for the anonymous union is that it glI'cs you a simple
way to tell the compiler that you want two or more variables to share
the same memory location. Aside from this special attribute, members
of an anonymous union behave like other variables.

Anonymous unions have all of the restrictions that apply to normal
unions, plus these additions. A global anonymous union must be
declared static. An anonymous union cannot contain private
members. The names of the members of an anonymous union must
not conflict with other identifiers within the same scope.

EXAMPLES

I. Here is a short program that uses struct to create a class:

#include <iostream>
#include <cstring>
using namespace std;

II use struct to define a class type
struct st_type
sttype(double b, char *fl);
void showfl;

private:

double balance;
char name[401;

st_type::st_type(double b, char *)

balance	 b;
strcpy(name, n);

void st_type: :show()

cout << Name:	 << name;
cout << : $ << balance;
if(balance<0.0) cout << ***;
cout <<

IwmooucnIG cl.AssFs 7

2.5 CLASSES STRUC1URE.S AND UNIONS ARE RELA lED

0

mt main()

St_type accl(100.12, 'Johnson');

st_type acc2(-12.34, HedrickS');

accl.show()

acc2 . show ()

return 0;

Notice that, as stated, the members of a structure are public by
default. The private keyword must be used to declare private
members.

Also, notice one difference between C-like structures and
C++-like structures. In C++, the structure tag-name also becomes
a complete type name that can be used to declare objects. In C,
the tag-name requires that the keyword struct precede it before
it becomes a complete type.

Here is the same program, rewritten using a class:

#include <iostream>

#include <cstring>
using namespace std;

class cl_type

double balance;

char name[401;

public:

cl_type(double b, char *);

void show();

cl_type::cl_tYPe(dOuble b, char *)

balance =

strcpy(name, n);

void cl_type: :show()

cout << Name:	 << name;

cout < ": $' << balance;

72 TEACH YOURSELF
V	 ra.,

if(balance<O.0) cout <<

cout <<

mt main()

cl_type accl(100.12, 'Johon);

cl_type acc2(-12.34, Hedicks);

accl. show ()

acc2 show()

return 0;

}

2. Here is an example that uses a union to display the binary bit
pattern byte by byte s contained within a double value.

include <iostream>

using namespace std;

union bits

bits(dc,uble n);

void show—bits(;

double d;

unsigned char c[sizeof (double)];

bits::bits(double n)

d = n;

void bits: :show_bits()

mt i, j;

for(j = sizeof(double)-l; j>=O; j--) {

cout << Bit pattern in byte 	 << j <<
for(i = 128; i; i >>= 1)

if(i & c[j]) cout << 1;

else cout <<

cout <<

INTRODUCING MASSES 73
25 CIASSE STRUCTURES AND UNIONS ARE RELATED

mt main()

bits Ob(1991.829);

ob.showbjts).

return 0;

The output of this program is

Bit pattern in byte 7: 01000000
Bit pattern in byte 6: 10011111
Bit pattern in byte 5: 00011111
Bit pattern in byte 4: 01010000
Bit pattern in byte 3: 11100101
Bit pattern in byte 2: 01100000
Bit pattern in byte 1: 01000001
Bit pattern in byte 0: 10001001

3. Both structures and unions can have constructors and
destructors The following example shows the strtype class
reworked as a structure It contains both a Constructor and a
destructor function.

#jnclude <iostream>
#include <cstrings
jnClude <cstd].jb>
using namespace std;

struct strtype
Strtype(char *ptr);
-Strtype()
void Showf);

private:
char *p;

mt len;

	

strtype: : strtype(ch	 *ptr)

len	 Strlefl(ptr);

P = (char) malloc(lefl+1);

74 TEACH YOURSELF

C++

if(!p)
cout << "Allocation error\n;

exit(l)

strcpy(p, ptr);

strtype: :-strtype()

cout << "Freeing p\n";

free(p);

void strtype: :show()

cout << p <<	 - length:	 << len;

cout <<

mt main()

strtype sl(".This is a test.') s2(*I like C++.");

sl.showO;
s2. show()

return 0;

4. This program uses an anonymous union to display the
individual bytes that comprise a double. (This program assumes

that doubles are 8 bytes long.)

// Using an anonymous union.
*include <iostream>

using namespace std;

mt main()

• union
unsigned char bytes(8];

double value;

mt i;

INTRODUCING CLASSES 75
26 (N-LINE FUNCJIONS

value = 859345.324;

II display the bytes within a double
for(i=O; 1<8; i.,.)
cout << (int) bytes[i]

return 0;

As you can see, both value and bytes are accessed as if they
were normal variables and not part of a union. Even though
they are declared as being part of an anonymous union, their
names are at the same scope level as any other local variable
declared at the same point. This is why a member of an
anonymous union cannot have the same name as any other
variable known to its scope.

[XERCISS

1. Rewrite the stack class presented in Section 2.1 so it uses a
structure rather than a class.

2. Use a union class to swap the low- and high-order bytes of an
integer (assuming 16-bit integers; if your computer uses 32-bit
integers, swap the bytes of a short int).

3. Explain what an anonymous union is and how it differs from a
normal union.

JNLINE FUNCTIONS

Before we continue this examination of ctasss, a short but related
digression is needed. In C++, it is possible to define functions that are
not actually called but, rather, are expanded in line, at the point of
each call. This is much the same way that a C-like parameterized

0

76 TEACH YOURSELF

C++
macro works. The advantage of in-line functions is that they have no
overhead associated with the function call and return mechanism.
This means that in-line functions canoe executed much faster than
normal functions. (Remember, the machine instructions that generate
the function call and return take time each time a function is called.
If there are parameters, even more time overhead is generated.)

The disadvantage of in-line functions is that if they are too large and
called too often, your program grows larger. For this reason, in general
only short functions are declared as in-line functions.

To declare an in-line function, simply precede the function's
definition with the inline specifier. For example, this slort program
shows how to declare an in-line function:

II Example of an in-line function
#include <iostream>
using namespace std;

inline ir,t even(int x)

return (x%2)

mt main()

if(even(10)) cout << 1.0 is even\n';
if(even(11)) cout << 11 is even\n";

return 0;

In this example, the function even(), which returns true if its
argument is even, is declared as being in-line. This neans that the line

if(even(10)) cout<< "10 is even\n;

is functionally equivalent to

jf(!(10%2)) cout << 10 is even\n;

This example also points out another important feature of using
inline: an in-line function must be defined before it is first called. If it
isn't, the compiler has no way to know that it is supposed to be expanded
in-line. This is why even() was defined before main().

INIR000CING CLASSES 77
2.6 IN-LINE FUNCl/ONS

The advantage of using inline rather than. parameterized macros
Is twofold. First, it provides a more structured way to expand short
.'unctions in line. For example, when you are creating a parameterized
macro, it is easy to forget that extra parentheses are often needed to
nsure proper in-line expansion in every case. Using in-line functions

jrevents such problems.
Second, an in-line function might be able to be optimized more

:horoughly by the compiler than a macro expansion. In any event,
++ programmers virtually never use parameterized macros, instead

elying on inline to avoid the overhead of a function call associated
vith a short function.

It is important to understand that the inline specifier is a request,
tot a command, to the compiler. If, for various reasons, the compiler
s unable to fulfill the request, the function is compiled as a normal
unction and the inline request is ignored.

Depending upon your compiler, several restrictions to in-line
unctions may apply. For example, some compilers will not in-line a
unction if it contains a static variable, a loop statement, a switch or a

to, or if the function is recursive. You should check your compiler's
ser manual for specific restrictions to in-line functions that might
ffect you.

any in-line restriction is violated, the compiler is free to generate a
ormal function.

EXAMPLES

Any type of function can be in-lined, including functions that
are members of classes. For example, here the member function
divisible() is in-lined for fast execution. (The function returns
true if its first argument can be evenly divided by its second.)

Demonstrate in-lining a member function.

#include <iostream>

using namespace std;

class sarnp

mt i. i;

78 TEAcH VOURSEI.F

C++

public:
samp(int a, mt b);,
mt divisibleO; II in-lined in its definition

samp::samp(int a, mt b)

I = a;
j = b;

/ Return 1 if i is evenly divisible by j.
This member function is expanded in line.

*1

inline mt samp::divisible()

return (i%j)

mt main()

samp obl(10, 2), ob2(10, 3);

II this is true
if(obl.divisible) cout << '10 divisible by 2\ri';

II this is false	 I

if(ob2.divisible) cout << '10 divisible by 3\n;

return 0;

2. It is perfectly permissible to in-line an overloaded function. For
example, this program overloads min() three ways. Each way
is also declared as inline.

#include 'ziostream>
using namespace std;

-	 II Overload min() three ways.

.1/ integers
inline • int min(int a, mt b)

retin a .<b ? a : b;

INTRODUCING CLASSES 79
II
	

26 IN-LINE FUNCIJONS

II longs
inline long min(long a, long b)

return a.zb ? a	 b;

II doubles

inline double miri(double a, double b)

return a<b ? a : b;

mt main()

cout << min(-10, 10) <<

cout << min(-10.01, 100.002) <<

cout << min(-10L, 1214 <<

return 0;

1. In Chapter 1 you overloaded the abs() function so that it could
find the absolute value of integers, long integers, and doubles.
Modify that program so that those functions are expanded
in line.

2. Why might the following function not be in-lined by your compiler?

void fl()

mt i;

for(i=0; i<10; i++) cout <<

80 TEACH YOURSELF
-

A

UTOMATIC IN-LINING
If a Member Function's aetinition is stiort "en-ough, the definition can be
included inside the class declaration. Doing so causes the function to
automatically become an in-line function; if possible. When a function
is defined within a class declaration, the inline keyword is no longer
necessary. (However, it is not an error to use it in this situation.) For
example, the divisible() function from the preceding section can be
automatically in-lined as shown here:

#include <iostream>
using namespace std;

class sazup

mt i, j;
public:
samp(int a, mt b);

J divisible() is defined here and automatically
in-lined. */

mt divisible() { return (i%j);

samp::samp(jnt a, mt b)

i = a;

j=b;

ifit main()

samp obl(lO, 2), ob2(10, 3);

II this is true

if(obl.divjsjble) cout << '10 divisible by 2\n';

II this is false

if(ob2.divjsib1e) cout << '10 divisible by 3\n';

return 0;

As you can see, the code associated with divisible() occurs inside the
declaration for the class samp. Further notice that no other definition

IpamoDuciNG CLASSES 81
27 AUTOMiIICFN-UN/NG

of divisible() is needed--or permitted. Defining divisible() inside
samp causes it to be made into an in-line function automatically.

When a function defined inside a class declaration cannot be made
into an in-line function (because a restriction has been violated), it is
automatically made into a regular function.

Notice how divisible() is defined within samp, paying particular
attention to the body. It occurs all on one line. This format is very
common in C++ programs when a function is declared within a class
declaration. It allows the declaration to be more compact. However,
the samp class could have been written like this:

class samp
mt i, j;

public:
smp(int a, mt b);

/ divisible() is' defined here and automatically
in-lined. *1

mt divisible!)

return (i%j)

I;

In this version, the layout of divisible() uses the more-or-less
standard indentation style. From the compiler's point Of view, there is
no difference between the compact style and the standard style.
However, the compact style is commonly found in C++ programs
when short functions are defined inside a class definition.

The same restrictions that apply to "normal" in-line functions apply
to automatic in-line functions within-a class declaration.

1. Perhaps the most common use of in-line functions defined
within a class is to define constructor and destructor functions.
For example, the samp class can more efficiently be defined
like this:

#include <iostream>
using namespace std;

82 TEAbI YOURSELF

C++

class samp
mt i, j;

public:

II inline constructor

samp(int a, mt b) (i	 a; j	 b;)

mt divisible() { return (i%j)

The definition of samp() within the class samp is sufficient,
and no other definition of samp() is needed.

2. Sometimes a short function will be included in a class
declaration even though the automatic in-lining feature is of
little or no value. Consider this class declaration:

class myclass
mt 1;

public:
myclass(int n) { i = n;
void show() (cout << 1;

Here the function show() is made into an in-line function
automatically. However, as you should know, I/O operations
are (generally) so slow relative to CPU/memory operations that
any effect of eliminating the function call overhead is
essentially lost. Even so, in C++ programs, it is still common to
see small functions of this type declared within a class simply
for the sake of convenience, and because no harm is caused.

EXERCISES

1. Convert the stack class from Section 2.1, Example 1, so that it
uses automatic in-line functions where appropriate.

2. Convert the strtypc class from Section 2.2, Example 3, so that it
uses automatic in-line functions.

INTRODUCING CLASSES 33
SKILLS CHECK

SKILLS CHECK

GOWMA
7

Mast-
SMIs Check

At this point you should be able to perform the following exercises and
answer the questions.

1. What is a constructor? What is a destructor? When are they
executed?

2. Create a class called line that draws a line on the screen. Store
the line length in a private integer variable called len. Have
line's constructor take one parameter: the line length. Have the
constructor store the length and actually draw the line. If your
system doesnot support graphics, display the line by using .
Optional: Give line a destructor that erases the line.

3. What does the following program display?

Itinclude <iostream>

using namespace std;

mt main()

mt i = 10;

long 1	 1000000;

double d	 -0.0009;

cout << i	 ' ' << 1 << '	 << d;

cout <<

return 0;

4. Add another derived class that inherits area_cl from Section 2.3,
Exercise 1. Call this class cylinder and have it compute the
surface area of a cylinder. Hint: The surface area of a cylinder is
2 pi * R2 + pi * D * height.

84 TEACH YOURSELF

C++

5. What isan in-line function? What are its advantages and
disadvantages?

6. Modify the following program so that all member functions are
automatically in-lined:

#include <iostream>
using namespace std;

class myclass
mt 1, j;

public:
myclass(int x, mt y);
void showO;

myclass::rnyclass(int x, mt y)

i = X;

j =

void myclass: :show()

cout << i <<	 << j <<

mt main(.)

myclass count(2, 3);

count.show();

return 0;

7. What is the difference between a class and a structure?
8. Is the following fragment valid?

union
float f;
unsigned mt bits;

INTRODUcING CLASSES 85
SJ'JLLS CHECJ("

C477
eftative

scheck

This section checks how well you have integrated material in this
chapter with that from the preceding chapter.

Create a class called prompt. Pass its constructor function a
prompting string of your own choosing. Have the constructor
display the string and then input an integer. Store this value in a
private variable called count. When an object of type prompt is
destroyed ring the bell on the terminal as many times as the
user entered.

2. In Chapter 1 you created a program that converted feet to
inches. Now create a clas that does the same thing. Have the
class store the number of feet and its equivalent number of
inches. Pass to the class's constructor the number of feet and
have the constructor display the number of inches.

3. Create a class called dice that contains one private integer
variable. Create a function called roll() that uses the standard
random number generator, rand(), to generate a number
between I and 6. Then have roll() display that value.

1

r
++

3

A Closer Look
at Classes

chapter objectIves

3.1 Assigning objects

3.2 Passing objects to functions

3.3 Returning objects from functions

3.4 An Introduction to friend functions

.	 :

87
V

88 TEACH YOUJEIJ

C++

I

N this chapter you continue to explore the class. You will learn
about assigning objects, passing objects to functions, and returning
objects from functions. You will also learn about an important
new type of function: the friend.

Skills Check

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1. Given the following class, what are the names of its constructor
and destructor functions?

class widgit
mt x, y;

public:

II .	 fill in constructor and destructor functions

2. When is a constructor function called? When is a destructor
function called?

3. Given the following base class, show how it can be inherited by
a derived class called Mars.

class planet
mt moons;

double dist_from_sun;
double diameter;
double mass;

public:

II

}

4. There are two ways to cause a function to be expanded in line.
What are they?

5. Give two possible restrictions to in-line functions.

6. Given the following class, show how an object called oh that
passes the value 100 to a and X to c would be declared.

A CLOSER LOOK AT CLASSES 89
a ASS1GNNG OBJECTS "

class sample
mt a;
char C;

Public:

sample(jnt x, char ch) { a = x; C	 ch;

ASSIGNING OBJECTS

One object can be assigned to another provided that both objects are of
the same type. By default, when one object is assigned to another, a
bitwise copy of all the data members is made. For example, when an
object called ol is assigned to another object called 02, the contents ofall of 01's data are copied into the equivalent members of 02. This is
Illustrated by the following program:

II An example of object assignment.
#include <iostreajn>
using namespace std;

class myclass
mt a, b;

public:

void set(int i, mt j) { a = i; b =
void show() { cout << a <<	 ' << b <<

mt main()

myclass ol, 02;

Ol.set(10, 4);

II assign ol to o2
02 = ol;

ol.show();
o2.show();

return 0;

90 TEACH YOURSELF

C++

Here, object ol has its member variables a and b set to the values 10
and 4, respectively. Next, ol is assigned to oZ. This causes the current
value of ol.a to be assigned to oZ.a and ol.b to be assigned to o2.b.
Thus, when run, this program displays

10 4

10 4

Keep in mind that an assignment between two objects simply makes
the data in those objects identical. The two objects are still completely
separate. For example, after the assignment, calling ol.set() to set
the value of ol.a has no effect on o2 or its a value.*.

I	 EXAMPLES

1. Only objects of the same type can be used in an assignment
statement. If the objects are not of the same type, a compile-
time error is reported. Further, it is not sufficient that the types
just be physically similar—their type names must be the same.
For example, this is not a valid program:

// This program has an error.
#include <lostream>
using namespace std;

class myclass
mt a, b;

public:
void set(int i, mt j) { a	 i b = j;
void show() { cout << a << ' ' << b <<

7* This class is similar to myclass but uses a
different class name and thus appears as a different

type to the compiler..
*7

class yourclass

mt a, b;
public:

void set(int 1, in j) { a = 1; b =

void show() { cout << a << ' ' << b <<

I;

A CLOSER LOOK AT CLASSES 91
mt main()
	

It ASXSMMG&4=
11

myclass ol;
yourclass o2;

ol.set(10, 4);

02 = 01; II ERROR, objects not of same type

ol . show();
o2. show ();

return 0;

In this case, even though myclass and yourclass are physically
the same, because they have different type names, they are
treated as differing types by the compiler.

2. It is important to understand that all data members of one object
are assigned to another when an assignment is perforthed. This
includes compound data such as arrays. For example, in the
following version of the stack example, only si has any
characters actually pushed onto it. However, because of the
assignment, 92's stck array will also contain the characters
a, b, and c.
#include <iostream>
using namespace std;

#def j ne SIZE 10

II Declare a stack class for characters.
class stack
char stck(SIZE); II holds the stack
mt tos; II index of top of stack

public:

stack(); II constructor
void push(char ch); II push character on stack
char pope; II pop character from stack

II Initialize the stack.
stack: :stack()

92 TEACH YouRSELF

C4-4

cout << 'Constructing a stack\n";
tos = 0;

II Push a character.
void stack: :push(char ch)

if(tos=SIzE)
cout << "Stack is full\n;
return;

stck[tos]	 ch;
tos++;

II Pop a character.
char stack: :pop()

if(tos==0)
cout << 'Stack is empty\n";
return 0; /7 return null on empty stack

tos--;

return stck(tos);

mt main()

Ii Create two stacks that are automatically initialized.
stack sl, s2;
mt i;

sl.push('a');
si .push('b')
sl.push('c')

// clone sl

s2 = 51; 7/ now sl and s2 are identical

for(i=0; i<3; i++) cout << "Pop sl: " << sl.pop() <<

A CLOSER LOOK AT cL.ASSES 93
37 ,4SS/GN/NG OBJECTS

for(i=O; 1<3; i) cout c< Pop s2:	 << s2.pop() e<

return 0;

3. You must exercise some care when assigning one object to
another. For example, here is the strtype class developed in
Chapter 2, along with a short main(). See if you can find an
error in this program.

This program contains an error.

include <iostream>

#inciude <cstring>

#include <cstdlib>

using namespace std;

class strtype

char *p;

mt len;

public:

strtype(char *ptr)

-strtype()

void showH;

strtype: :strtype(char *ptr)

len = strlen(ptr);

p = (char *) malloc(len+l);

if(!p)

cout << Allocation error\n

exit(l)

strcpy(p, ptr);

strtype: :-strtype()

cout	 Freeing p\n;

free(p)

94 TEACH YOURSELF

C++

void strtype::show()

cout << p << ' - length:	 << len;

cout <<

}

mt main()

strtype sl('This is a test.'), s2(I like C+..");

sl .show()

s2. show()

II assign si Lo s2 - - this generates an error

s2 = sl;

sl.show()

s2. show()

return 0;

The trouble with this program is quite insidious. When si and
s2 are created, both allocate memory to hold their respective
strings. A pointer to each object's allocated memory is stored in
p. When a strtypc object is destroyed, this memory is released.
However, when si is assigned to s2, s2's p now points to the
same memory as si's p. Thus, when these objects are
destroyed, the memory pointed to by si's p is freed twice and
the memory originally pointed to by s2's p is not freed at all.

While benign in this context, this sort of problem occurring
in a real program will cause the dynamic allocation system to
fail, and possibly even cause a program crash. As you can see
from the preceding example, when assigning one object to
another, you must make ur,e you are not destroying
information that may be needed later.

A CLOSER LOOK AT CLASSES- 95
Si ASSIGNING OBJECTS

1. What is wrong with the following fragment?
II This program has an error.

#include <iostream>

using namespace std;

class cli

mt i,

public:

cli(i,nt a, mt b) f i 	 a; j	 b; }

class c12

mt i, j;

public:

c12(irit a, mt b) i i = -a; j = b; }
II

mt main()

c 1 x(iO, 20);

c12 y(O, 0);

x=y;

}

2. Using the queue class that you created for Chapter 2, Section
2.1, Exercise 1, show how one queue'can be assigned to another.

3. If the queue class from the preceding question dynarica11y
allocates memory to hold the queue, why, in this situaon, can
one queue not be assigned to another?

96 TEACH YOURSELF

'•	 PASSING OBJECTS TO FUNCTIOi

Objects can be passed to functions as arguments in just the same wal
that other types of data are passed. Simply declare the function's
parameter as a class type and then use an object of that class as an
argument when calling the function. As with other types of data, by
default all objects are passed by value to a function.

I	 EXAMPLES

ere is a short example that passes an object to a function:

#include <lostream>

using namespace std;

class samp

jnt 1;

public:

samp(-flt n) { i = n;

mt get_i() { return i;

If Return square of o.i.

mt sqr_it(samp 0)

return o.get_i	 * o.get_i()

I]

mt main()

sarnp a(lO), b(2);

coUt << sqr_it(a) <<

cout << s r^:i-t(b) <<

return 0;

This program creates a class called samp that contains one
integer variable called i. The function sqr_it() takes an
argument of type samp and returns the square of that object'
value. The output from this program is 100 followed by 4.

A CLOSER LOOK AT CLASSES 97
3.2 PASSING OBJECTS TO FUNC17ONS

As stated, the default method of parameter passing in C++,
including objects, is by value. This means that a bitwise copy of
the argument is made and it is this copy that is used by the
function. Therefore, changes to the object inside the function
do not affect the calling object. This is illustrated by the
following example:

Remember, objects, like other parameters, are passed

by value. Thus changes to the parameter inside a

function have no effect on the object used in the call.

*1

#include <iostream>

using namespace std;	
C

class samp

mt i;

public:

samp(int n) { i =

void set_i(int n) { i = n;

mt get_i() { return i;

/* Set o.i to its square. This has no effect on the

object used to call sqr_it(), however.

*1

void sqr_it(smp 0)

o.set_i(o.get_i() * o.get_i());

cout << 'Copy of a has i value of ' << o.get_iH;

cout <<

mt main()

samp a(lO);

sqr_it(a); II a passed by value

cout << "But, a.i is unchanged in main:

cout << a.get_i(); II displays 10

return 0;

98 TEACH YOURSELF

C++

The output displayed by this program is
Copy of a has i value of 100
But, a.i is unchanged in main: 10

3. As with other types of variables, the address of an object can be
passed to a function so that the argument used in the call can be
modified by the function. For example, the following version of
the program in the preceding example does, indeed, modify the
value of the object whose address is used in the call to sqr_it().
1*

Now that the address of an object is passed to sqr_itO,
the function can modify the value of the argument whose
address is used in the call.

#include <iostream>
using namespace std;

class samp
mt i;

public:
samp(int n) { i = n; }
void set_i(int n) { i = n;
mt get_iO { return i;

1* Set o.i to its square. This affects the calling
argument.

*1

void sqr_it(sarnp *)

o->seti (o->get_i C) * o->get_i C)

cout << "Copy of a has i value of ' << o->get_i();
cout <<

}

mt maino)

samp a(l0);

sqr_it&a); II pass a's address to sqr_it()

cout << 'Now, a in maino) has been changed:
.ciPt iH;	 II displays 100

A CLOSER LOOK AT CLASSES 99
return 0;	 3.2 PASS/NO OBJECTS TO FUNCTIONS

This program now displays the following output:

Copy of a has i value of 100

Now, a in main() has been changed: 100

When a copy of an object is made when being passed to a
function, it means that a new object comes into existence Also,
when the function that the object was passed to terminates, the
copy of the argument is destroyed. This raises two questions.
First, is the object's constructor called when the copy is made?
Second, is the object's destructor called when the copy is
destroyed? The answer may, at first, seem surprising.

When a copy of an object is made to be used in a function
call, the constructor function is not called. The reason for this is
simple to understand if you think about it. Since a constructor
function is generally used to initialize some aspect of an object,
it must not be called when making a copy of an already existing
object passed to a function. Doing so wodid alter the contents of
the object. When passing an object to a function, you want the
current state of the object, not its initial state.

However, when the function terminates and the copy is
destroyed, the destructor function is called. This is because the
object might perform some operation that must be undone
when it goes out of scope. For example, the copy may allocate
memory that must be- released.

To summarize, when a copy of an object is created because it
is used as an argument to a function, the constructor function is
not called. However, when the copy is destroyed (usually by
going out of scope when the function returns), the destructor
function is called.

The following program illustrates the preceding discussion:

#include <iöstrearfl>

using namespace std;

class samp

mt i;

public:

samp(int n)

i = fl;

100 TEACH YOURSELF

C++

cout << "Constructing\n';

-sampo J cout << 'Destructing\n;

mt get_ j o 0 return i;

/1 Return square of o.i.

mt sqr_it(samp 0)

return o.get_i() * o.get_i();

mt main(

samp a(10);

cout << sqr_it(a) <<

return 0;

II

This function displays the following:

Constructing

Destructing

100

Destructing

As you can see, only one call to the constructor function is
made. This occurs when a is created. However, two calls to the
destructor are made. One is for the copy created when a is
passed to sqr_it(). The other is for a itself.

The fact that the destructor for the object that is the copy of
the argument is executed when the function terminates can be a
source of problems. For example, if the object used as the
argument allocates dynamic memory and frees that memory
when destroyed, its copy will free the same memory when its
destructor is called. This will leave the original object damaged
and effectively useless. (See Exercise 2, just ahead in this
section, for an example.) It is important to guard against this
type of error and to make sure that the destructor function of
the copy of an object used in an argument does not cause side
effects that alter the original argument.

A CLOSER LOOK AT CLASSES 101
32 PASSING OBJECTS TO FUNCTIONS "

As you might guess, one way around the problem of a
parameter's destructor function destroying data needed by the
calling argument is to pass the address of the object and not the
object itself. When an address is passed, no new object is
created, and therefore, no destructor is called when the function
returns. (As you will see in the next chapter, c++ provides a
variation on this theme that offers a very elegant alternative.)
However, an even better solution exists, which you can use
after you have learned about a special type of constructor called
a copy Constructor. A copy constructor lets you define precisely
how copies of objects are made. (Copy constructors are
discussed in Chapter 5.)

EXERCISES

1. Using the stack example from Section 3.1, Example 2, add a
function called showstack() that is passed an object of type
stack. Have this function display the contents of a stack.

2. As you know, when an object is passed to a function, a copy of
that object is made. Further, when that function returns, the
copy's destructor function is called. Keeping this in mind, what
is wrong with the following program?

7/ This program contains an error.
#include <iostream>
include <cstdlib>

using namespace std;

class dyna
mt *p;

public:
dyria(int U;

-dyna() { free(p); cout << freeing \n;
mt. get() { return *p;

dyna::dyna(jnt ii

p = (mt *) malloc(sizeof(jflt));
if('p) (

102 TEACH YOURSELF

cout << Allocation failure\n';

exit(l)

i;

)

II Return negative value of *ob.p

mt neg(dyna ob)

return -ob.get();

}

mt main()

dyna o(-10);

cout << o.get() <<

cout << neg(o) <<

dyna 02(20);

cout << o2.get()

cout << neg(o2) <<

cout << o.get() << \n;

cout << neg(o) << \n;

return 0;

RETURNING OBJECTS FROM
FUNCTIONS

Just as you can pass objects to functions, functions can return objects.
To do so, first declare the function as returning a class type. Second,
return an object of that type using the normal return statement.

There is one important point to understand about returning objects
from functions, however: When an object is returned by a function, a
temporary object is automatically created which holds the return

A CLOSER LOOK AT CLASSES 103
33 RETURNING OBJECTS FROM FUNCTIONS

value. It is this object that is actually returned by the function. After
the value has been returned, this object is destroyed. The destruction
of this temporary object might cause unexpected side effects in some
situations as is illustrated in Example 2 below.

1. Here s an example of a function that returns an object:

II Returning an object

#include <iostream>

#include <cstrings

using namespace std;

class samp

char s[80];

public:

void showN { cout << S <<

void set(char *str) { strcpy(s, str);

// Return an object of type samp

samp input()

char sF801;

samp str;

cout << Enter a string:

cm >> s;

str. set (s)

return str;

mt main()

samp ob;

1/ assign returned object to ob

ob inputN;

ob.showN;

—turn 0;

104 TEACH YOURSELF

C++ --

In this example, input() creates a local object called str and
then reads a string from the keyboard. This string is copied into
str.s, and then str is returned by the function. This object is
then assigned to ob inside main() when it is returned by the
call to input().

2. You must be careful about returning objects from functions if
those objects contain destructor functions because the returned
object goes out of scope as soon as the value is returned to the
calling routine. For example, if the object returned by the
function has a destructor that frees dynamically allocated
memory, that memory will be freed even though the object that
is assigned the return value is still using it. For example,
consider this incorrect version of the preceding program:

II An error generated by returning an object.
#jriclude <iostream>
#iriclude <cstring>
#include <cstdlib>
using namespace std;

class samp
char *S;

public:
samp() (s = '

-samp() { if(s) free(s); cout << Freeing s\n';
void show() { cout << S <<

void set(char *str);

// Load a string.
void samp::set(char *str)

s = (char *) malloc(strlen(str)+l);
if(!s)

Cout << Allocation error\n';
exit(l)

strcpy(s, str);

II

II Return an object of type samp.
samp input()

A CLOSER LOOK ATCLASSES *05
3.3 RETURNING OBJECTS FROM FUNCTIONS

char s[803;

samp str;

cout << "Enter a string:

Cifl>>S;

str.set(s);

return str;

mt main()	 .-.	 -	 -":--•	 -

samp ob;

/7 assign returned object to ob

ob = input; 7/ This causes an errorH1
ob.show);

return 0;

The output from this program is shown here: 	 -
Enter a- string: Hello
Freeing s

-Freeing s

Hello	
.

Freeing s

Null pointer assignment

Notice that samp's destructor function is called three times.
First, it is called when the local object str goes out of scope
when input() returns. The second time " samp() is called is
when the temporary object returned by input() is destroyed.
Remember, when an object is returned from a function, an
invisible (to you) temporary object is automatically generated
which holds the return value. In this case this object is simply a
copy of str, which is the return value of the function. Therefore,
after the function has returned, the temporary object's
destructor is executed. Finally, the destructor for object ob, -
inside main(), is called when the program terminates.

The trouble is that-in this situation, the first time the
destructor executes, the memory allocated to hold the strinr

106 TEACH YOURSELF

C++

input by input() is freed. Thus, not only do the other two calls
to samp's destructor try to free an alrçady released piece of
dynamic memory, but they destroy the dynamic allocation
system in the process, as evidenced by the run-time message
"Null pointer assignment." (Depending upon your compiler, the
memory model used for compilation, and the like, you may or
may not see this message if you try this program.)

The key point to be understood from this example is that
when an object is returned from a function, the temporary
object used to effect the return will have its destructor function
called. Thus, you should avoid returning objects in which this
situation is harmful. (As you will learn in Chapter 5, it is
possible to use a copy constructor to manage this situation.)

EXERCISES

1. To illustrate exactly when an object is constructed and
destructed when returned from a function, create a class called
who. Have who's constructor take one character argument that
will be used to identify an object. Have the constructor display a
message similar to this when constructing an object:

Constructing who #x

where x is the identifying character associated with each object.
When an object is destroyed, have a message similar to this
displayed:

Destroying who #x

where, again, x is the identifying character. Finally, create a
function called make _who() that returns a who object.
Give each object a unique name. Note the output displayed by
the program.

2. Other than the incorrect freeing of dynamically allocated
memory, think of a situation in which it would be improper to
return an object from a function.

A CLOSER LOOK ATGLASSES 107
3.4 AN INTRODUCTION TO FR/END FUNC77ONS

N INTRODUCTION TO FRIEND
FUNCTIONS

There will be times when you want a function to have access to the
private members of a class without that function actually being a
member of that class. Towards this end, C++ supports friend
functions, friend is not a nicmhcr of a class but still has access to its
private elements.)

Two reasons that friend functions are useful have to do with
operator overloading and the creation of certain types of I/O
functions-?You will have to wait until later to see these uses of a friend
in action. However, a third reason for friend functions is that there
will be times when you want one function to have access to the private
members of two or more different classes. It is this use that is
examined here.

A friend function is defined as a regular, nonmember function.
However, inside the class declaration for which it will be a friend, its
prototype is also included, prefaced by the keyword friend. To
understand how this works, examine this short program:

II An example of a friend function..

#include <iostream>

using namespace std;

class myclass

mt n, d;

public:
myciass(int i, ,int j) (ri	 i; d = j;)

II declare a friend of myclass

friend mt isfactor(myclass ob);

/ Here is friend function definition. It returns true

if d is a factor of n. Notice that the keyword

friend is not used in the definition of isfactor()

•1

mt is!actor(myclass ob)

if(Hob.n % ob.d)) return 1;

else return 0;

0

108 TEACH YOURSELF

C++

mt main()

myclass obl(10, 2), ob2(13, 3);

if(isfactor(obl)) cout << 2 is a factor of 10\n';

else cout << 2 is not a factor of 10\n';

if(isfactor(ob2)) cout << 3 is a factor of 13\n";

else cout << "3 is not a factor of 13\n";

return 0;

In this example, mydass declares its constructor function and the
friend isfactor() inside its class declaration. Because isfactor() is a
friend of myclass, isfactor() has access to its private members.
This is why, within isfactor(), it is possible to directly refer to ob.n
and ob.d.

It is important to understand that a friend function is not a member
of the class for which it is a friend. Thus, it is not possible to call a
friend function by using an object name and a class member access
operator (a dot or an arrow). For example, given the preceding
example, this statement is wrong:

obl.isfactor(); II wrong; isfactor() is not a member function

Instead, friends are called just like regular functions.
Although a friend function has knowledge of the private elements of

the class for which it is a friend, it can only access them through an
object of the class. That is, unlike a member function of myclass,
which can refer to n or d directly, a friend can access these variables
only in conjunction with an object that is declared within or passed to
the friend function.

The preceding paragraph briigs up an important side issue. When a member
function refers to a private element it does so directly because a member
function is executed only in conjunction with an object of that class. Thus,
when a member function refers to a private element the compiler knows
which object that private element belongs to by the object that is linked to the
function when that member function is called.. However, a friend function is
not linked to any object It simply is granted access to the private elements of
a class. Thus, inside the friend function, it is meaningless to refer to a private
member without reference to a specific object.

A CLOSER LOOK AT CLASSES 109
3.4 AN INTRODUCTION To FRIEND FUNCIIONS 'V

Because friends are not members of a class, they will typically be
passed one or more objects of the class for which they are friends. This
is the case with isfactor(). It is passed an object of myclass, called
ob. However, because isfactor() is a friend of myclass, it can access
oh's private elements. If isfactor() had not been made a friend of
myclass, it would not be able to access ob.d or ob.n since n and d are
private members of myclass.

A friend function is not a member and cannot be qua//fled by an object name.
It must be called just like a normal function.

A friend function is not inherited. That is, when a base class
includes a friend function, that friend function is not a friend of a
derived class.

One other important point about friend functions is that a friend
function can be friends with more than one class.

EXRMPLES

1. One common (and good) use of a friend function occurs when
two different types of classes have some quantity in common
that needs to be compared. For example, consider the following
program, which creates a class called car and a class called
truck, each containing, as a private variable, the speed of the
vehicle it represents:

#inclucje <iostream>
using namespace std;

class truck; II a forward declaration

class car

mt passengers;
mt speed;

public:

car(int p, mt s) { passengers = p; speed =
friend jot sp_greater(cr c, truck t);

class truck

jOt weight;

110	 YWFMU
C++

mt speed;

public:
truck(int w, mt s) { weight = w, speed = s;)

friend mt •sp_greater(Car C, truck t);
j

dt)
/* Return positive if car speed faster than truck.

Return 0 if speeds are the same.
Return negative if truck speed faster than car.

*1

mt sp_greater(car c, truck t)

return c.speed - t.speed;

ii 'J(I ai LIOItJIUJI t))i!t''

mt main()	
nfl-i- n.th tl(ii .f1-J	 I1W)

{	
LIT) b' ;i-i)

mt t;
car cl(6, 55), c2(2, 120);
truck tl(10000, 55), t2(20000, 72);

cout << "Comparing ci and tl:\n";

t	 sp_greater(cl, ti);
if(t<0) cout << 'Truck is faster.\fl";
else if(t==0) cout << "Car and truck speed is the same.\n";

else cout << "Car is faster.\fl";

cout << "\nComparing c2 and t2:\n";

t = sp_greater(C2, t2);
if(t<0) cout << 'Truck is faster.\n"; 	 -
else if(t==0) cout << "Car and truck speed is the same. \n';

else cout << "Car is faster.\n";

return 0;

This program contains the function sp_ greater(), which is a

friend function of both the car and truck classes. (As stated, a
function can be a friend of two or more classes.) This function
returns positive if the car object is going faster than the truck
object, 0 if their speeds are the same, and negative if the truck
is going faster.

This program illustrates one important C++ syntax element:
the forward declaration (also called a forward reference). Because

A CLOSER LOOK AT CLASSES 11
a4 AN /WTRODuC7ION TO FRIEND FUM71

sp.... greater() takes parameters of both the car and the truck
classes, it is logically impossible to declare both before including
sp_ greater() in either. Therefore, there needs to be some way
to tell the compiler about a class name without actually
declaring it. This is called a forward declaration. In C++, to tell
the compiler that an identifier is the name of a class, use a line
like this before the class name is first used:

class class-name;

For example, in the preceding program, the forward
declaration is

class truck;

Now truck can be used in the friend declaration of sp_greater()
without generating a compile-time error.

A function can be a member of one class and a friend of
another. For example, here is the preceding example rewritten
so that sp_greater() is a member of car and a friend of truck:
#include 'ziostream>
using namespace std;

class truck; // a forward declaration

class car

mt passengers;
mt speed;

public:

car(int p, mt s) { passengers = p; speed 	 s;
mt sp_greater(truck t);

class truck {
mt weight;	 •'	 :'	 H

mt speed;
public:

truck(int w, mt s) I weight = w, speed = s; }

*II note new use of the scope resolution operator
friend irit car::sp_greater(truck t);

112 TEHYoUIar

C++

Return positive if car speed faster than truck.

Return 0 if speeds are the same.
Return negative if truck speed faster than car.

*1

mt car::sp_greater(truck t)

/* Since sp_greater() is member of car, only a

truck object must be passed to it. /

return speed-t . speed;

mt main()

mt t;
car cl(6, 55), c2(2, 120);
truck tl(10000, 55), t2(20000, 72);

cout << 'Comparing cl and tl\n;
t = cl.sp_greater(tl); II evoke as member function of car

if(t<0) cout << Truck is faster.\n';

else if(t= "O) cout << Car and truck speed is the same.\n';
else cout << 'Car is faster.\n';

cout << '\nComparing c2 and t2:\n';

t	 c2.sp_greater(t2); II evoke as member function of car

if(t<O) cout << 'Truck is faster.\n';
else if(t==0) cout << 'Car and truck speed is the same. \n';

else cout << 'Car is faster.\n;

return 0;

Notice the new use of the scope resolution operator as it occurs
in the friend declaration within the truck class declaration. In
this case, it is used to tell the compiler that the function
sp...greater() is a member of the car class.

One easy way to remember how to use the scope resolution
operator is that the class name followed by the scope resolution
operator followed by the member name fully specifies a
class member.

In fact, when referring to a member of a class, it is never
wrong to fully specify its name. However, when an object is

A CLOSER LOOK AT CLASSES 113
3.4 AN ,NmODUC77ON To FR/END FUNCT7ONS

used to call a member function or access a member variable, the
full name is redundant and seldom used. For example,

t	 cl.sp_greater(tl);

can be written using the (redundant) scope resolution operator
and the class name car like this:
t = cl.car: :sp_greater(tl)

However, since ci is an object of type car, the compiler already
knows that 8p-greater() is a member of the car class, making
the full class specification unnecessary.

EXERCISE

Imagine a situation in which two classes, called pri and pr2,
shown here, share one printer. Further, imagine that other parts
of your program need to know when the printer is in use by an
object of either of these two classes. Create a function called
inuse() that returns true when the printer is being used by
either and false otherwise. Make this function a friend of both
pri and pr2.

class pri
mt printing;
II

public:
prl() { printing = 0;
void set..print(int status) (printing = status;
II

class pr2
mt printing;
II

public:

pr2() (printing = 0;
void set.print(int status) { printing = status;
II

I

114 TEAcHYOuRsELF
V

SKILLS CHECK

IL	 Maste

chk

Before proceeding, you should be able to answer the following
questions and perform the exercises.

1. What single prerequisite must be met in order for one object to
be assigned to another?

2. Given this class fragment,

class samp
double *p;

public:
samp(double d)

p	 (double *) malloc(sizeof (double));
if(!p) exit(l); II allocation error

-.. samp() {free(p);

samp obl(123.09), ob2(0.0);

ob2 = obl;

what problem is caused by the assignment of obi to ob2?
3. Given this class,

class planet
mt moons;
double dist_from_sun; II in miles
double diameter;
double mass;

public:

double get_miles() (return dist_from_sun;

A CLOSER LOOK ATCLASSES 115
SKIUS CHECK

create a function calleO light() that takes as an argument an
object of type plane d returns the number of seconds that it
takes light from the sun to reach the planet. (Assume that light
travels at 186,000 miles per second and that dist_from_sun is
specified in miles.)

4. Can the address of an object be passed to a function as an
argument?

5. Using the stack class, write a function called loadstack() that
returns a stack that is already loaded with the letters of the
alphabet (a-z). Assign this stack to another object in the calling
routine and prove that it contains the alphabet. Be sure to
change the stack size so it is large enough to hold the alphabet.

6. Explain why you must be careful when passing objects to a
function or returning objects from a function.

7. What is a friend function?

cIvo

This section checks how well you have integrated the material in
this chapter with that from earlier chapters.

1. Functions can be overloaded as long as the number or type of
their parameters differs. Overload loadstack() from Exercise 5
of the Mastery Skills Check so that it takes an integer, called
upper, as a parameter. In the overloaded version, if upper is 1,
load the stack with the uppercase alphabet. Otherwise, load it
with the lowercase alphabet.

2. Using the strtype class shown in Section 3.1, Example 3, add a
friend function that takes as an argument a pointer to an object
of type strtype and returns a pointer to the string pointed to by
that object. (That is, have the function return p.) Call this
function get_string().

116 TEACH YOURSELF

3. Experiment: When an object of a derived class is assigned
to another object of the same derived class, is the data
associated with the base class also copied? To find out, use
the following two classes and write a program that demonstrates
what happens.

class base
inta;

public:
void load_a(int n) 	 a = n;
int get—a({ return a; }

class derived : public base
intb;	 -

public:
void load_b(int n) { b	 n;
mt get—b({ return b;

1 -

-1	 .	 K	 - iL)	 .1	 •

;

-1

,.	 ..	 :

'- r'	 -:•-,i

	

'	 €'

!1
Arrays, Pointers,
and References

chapter objectIve.

4.1 Arrays of objects

4.2 Using pointers to objects

4.3 The this pointer

4.4 Using new and delete

4.5 More about new and delete

4.6 References

4.7 Passing references to objects

4.8 Returning references

4.9 Independent references and restrictions

xt
r •
L 1;

117
V

1I 8 TEACH YOURSELF

C++

is chapter examines several important issues involving
arrays of objects and pointers to objects. It concludes with a
discussion of one of C++'s most important innovations: the
reference. The reference is crucial to many C++ features, so
a careful reading is advised.

@PRch,ck

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1. When one object is assigned to another, what precisely takes
place?

2. Can any troubles or side effects occur when one object is
assigned to another? (Give an example.)

3. When an object is passed as an argument to a function, a copy of
that object is made. Is the copy's constructor function called? Is
its destructor called?

4. By default, objects are passed to functions by value, which
means that what occurs to the copy inside the function is not
supposed to affect the argument used in the call. Can there be a
violation of this principle? If so, give an example.

5. Given the following class, create a function called make—sum()
that returns an object of type summation. Have this function
prompt the user for a number and then construct an object
having this value and return it to the calling procedure.
Demonstrate that the function works.

class summation
mt flUm;
long sum; , // summation of num

public:
void set _sum(i	 n);
void show—sumo)

cout << num <<	 summed is << sum <<

ARRAYS, POINTERS, AND REFERENCES 119
47 ARRAOFO8JEC1S

IT

void summation::set_SUm(iflt n)

mt i

num =

sum = 0;

for(i=1; i<=n; i++)

sum += i;

6. In the preceding question, the function set_sum() was not
defined in line within the summation class declaration. Give a
reason why this might be necessary for some compilers.

7. Given the following class, show how to add a friend function
called isneg() that takes one parameter of type myciass and
returns true if num is negative and false otherwise.

class myclass

mt nurn;

public:

myclass(int x) (num =

8. Can a friend function be friends with more than one class?

-	 ARRAYS OF OBJECTS

As has been stated several times, objects are variables and have the
same capabilities and attributes as any other type of variable.
Therefore, it is perfectly acceptable for objects to be arrayed. The
syntax for declaring an array of objects is exactly like that used to
declare an array of any other type of variable. Further, arrays of
objects are accessed just like arrays of other types of variables.

EXAMPLES 1
I. Here is an example of an array of objects:

#include <iostream>

using namespace std;

120 TEACH YOURSELF

class samp

mt a;

public:

void set_a(int n) { a = 0;

mt get_aC) { return a;

mt main()

sarnp ob[4);

mt 1;

for(i=O; i<4; i++) ob[i].set_a(i);
0

for(i=O; i.z4; i+*) cout << ob[i]. get_a();

cout <<

return 0;

II

This program creates a four-element array of objects of type
samp and then loads each element's a with a value between 0
and 3. Notice how member functions are called relative to each
array element. The array name, in this case oh, is indexed; then
the member access operator is applied, followed by the name of

e member function to be called.

%Nf—,-Iclass type includes a constructor, an array of objects can be
initialized. For example, here oh is an initialized array:
II Initialize an array.

#i.nclude <i-ostream>

using namespace std;

class samp

mt a;

public:

samp(int 0) { a =

mt get_aC) { return a;

mt main()

samp ob(41	 (-1, -2, -3, -4);

iw ys, POiPiT4 AND REFERENCES 121
4.7 ARM VS OF OB,JEC7S

mt i;

for(i-O; i<4; i++) cout << ob[i).get_a() <<

cout <<

return 0;

This program displays -1 -2 -3 -4 on the screen. In this
example, the values -1 through -4 are passed to the oh
constructor function.

Actually; the syntax shown in the initialization list is
shorthand for this longer form (first shown in Chapter 2):

samp ob[4) = (samp(-l), samp(- 2),
samp(-3), sarnp(- 4));

However, the form used in the program is more common
(although, as you will see, this form will work only with arrays

0,,ample,

whoseconstructors take only one argument).
 can also have multidimensional arrays of objects. For

 here is a program that creates a two-dimensional array
of objects and initializes them:

II Create a two-dimensional array of objects.
*include <iostream>
using namespace std;

class samp
mt a;

public:
samp(int n) { a = ri;
mt get—a((return a;

mt main()

samp ob[4][21 =
1, 2,
3, 4,
5, 6,
7, 8

122 TEACH YOURSELF
V

mt i;

for(i=O; i<4; i++)-(
cout << ob(i)[O] .get_a() <<
cout << ob(i](l].get_a() <<

Cout <<

return 0;
1
J

This program displays
12
34
56
78

V)t. .qrrx

•f 1011 1 " F(I

4. As you know, a constructor can take more than one argument.
When initializing an array of objects whose constructor takes
more than one argument, you must use the alternative form of
initialization mentioned earlier. Let's begin with an example:
#include <iostream>
using namespace std;

class samp {
mt a, b;

public:

samp(irit n, mt rn) { a = n; b = m;
mt get—a({ return a;
mt get—b({ return b;

mt main()

samp ob[4] (2] =

samp(1, 2), samp(3, 4),
samp(5, 6), samp(7, 8),
sarnp(9, 10), samp(11, 12),
samp(13, 14), samp(15, 16)

•• q

ARRAYS. POINTERS. AND REFERERCES 123
ti ARMVSOFOBJECTS

mt 1;

for(i=O; i.z4; i++)
coUt << ob[i][03.get_a(> <<

cout << ob(i)[O).get_b() <<

cout << obi](1] .get_a () <<

cout << ob(i) [11 .get —b() <<

coUt <<

return 0;

In this example, samp's constructor takes two arguments. Here,
the array ob is declared and initialized in main() by using
direct calls to samp's constructor. This is necessary because the
formal C++ syntax allows only one argument at a time in a
comma-separated list. There is no way, for example, to specify
two (or more) arguments per entry in the list. Therefore, when
you initialize arrays of objects that have constructors that take
more than one argument, you must use the "long form"
initialization syntax rather than the "shorthand form."

You can always use the long form of initialization even if the
object takes only one argument It's just that the short form
is more convenient in this case.

The preceding program displays

12

34

56

78

9 10

11 12

13 14

15 16

; jj -i	 .?U)1I aI.

1	 f.

$

124 TEAcH YOURSELF

C++

EXERCISES

1. Using the following class declaration, create a ten-element array
and initialize the ch element with the values A through J.
Demonstrate that the array does, indeed, contain these values.
#include <iostream>
using namespace std;

class letters
char ch;

public:
letters(char c) { ch	 c;
char get_ch() (return ch;

2. Using the following class declaration, create a ten-element
array, initialize num to the values 1 through 10, and initialize
sqr to num's square.
#iriclude <iostream>
using riamespace std; 	 .')•

fI,!J'.
class squares (

mt rium, sqr;
public:

squares(int a, mt b) (num = a; sqr = b;
void show() {cout << num << ' ' << sqr << \n'; } 	 .

3. Change the initialization in Exercise I so it uses the long
form. (That is, invoke letters' constructor explicitly in the
initialization list.)

!SING POINTERS TO OBJECTS

As discussed in Chapter 2, objects can be accessed via pointers
As you know, when a pointer to an object is used, the object's
members are referenced using the arrow (->) operator instead of
the dot (.) operator.

ARRAYS, POINTERS, AND	 4CEs 125
42 USING POIN7ERS TO OBJECTS

Pointer arithmetic using an object pointer is the same as it is for any
other data type: it is performed relative to the type of the object. For
example, when an object pointer is incremented, it points to the next
bbject. When an object pointer is decremented, it points to the
previous object.

1. Here is an example of object pointer arithmetic:
II Pointers to objects.
#include <iostream>
using namespace std;

class saxnp

mt a, b;
public:
samp(int n, mt m) { a	 n; b = iii;

mt get—a({ return a;
mt get—b({ return b;

mt main()

samp ob[4] =
samp(l, 2),
samp(3, 4),
samp(5, 6),
sarnp(7, 8)

mt i;

sainp *p;
p = ob; II get starting address of array

for(iO; i<4; i*i-)
cout << p->get_a() <<
cout << p->get_b() <<
P++; II advance to next object

Cout <<

126 TEACH vouRsaF

C++

return 0;

This program displays

12
34
56
78

As evidenced by the output, each time p is incremented, it
points to the next object in the array.

EXERCISES

1. Rewrite Example 1 so it displays the contents of the oh array in

reverse order.

2. Change Section 4.1, Example 3 so the two-dimensional array is
accessed via a pointer. Hint: In C++, as in C, all arrays are
stored contiguously, left to right, low to high.

E this POINTER

C++ contains a special pointer that is called this. this is a pointer th
is automatically passed to any member function when it is called, an
it is a pointer to the object that generates the call. For example, givel
this statement,

ob. fl(); II assume that ob is an object

the function Fl () is automatically passed a pointer to oh—which is
the object that invokes the call. This pointer is referred to as this.

It is jrnpbrtãflt to understand that only member functions
are passed, . this pointer. For example, a friend does not have a

this pointer.

ARRAYS, POINTERS. AND REFERENCES 127
4.3 THE this P01AlTER

1. As you have seen, when a member function refers to another
member of a class, it does so directly, without qualifying the
member with either a class or an object specification. For
example, examine this short program, which creates a simple
inventory class:

// Dthnonstrate the this pointer.
4tinclude <iostream>
#include <cstring>
using namespace std;

class inventory
char item[201;
double cost;
mt on_hand;

public:
inventory(char i, double c, mt o)

strcpy(item, 1);
cost = C;

on—hand = 0;

void showO;

void inventory: :show()

cout << item;
cout << : $" << cost;
cout <<	 On hand:	 << on—hand <<

mt main()

inventory ob("wrench, 4.95, 4);

ob. show O;

return 0;

As you can see, within the constructor inventory() and the
member function show(), the member variables item, cost,

128 TEP6CH
C++

and on_hand are referred to directly. This is because a member
function can be called only in conjunction with an object.
Therefore, the compiler knows which object's data is being
referred to.

However, there is an even more subtle explanation. When a
member function is called, it is automatically passed a this
pointer to the object that invoked the call. Thus, the preceding
program could be rewritten as shown here:

II Demonstrate the this pointer.
*include <iostream>

$include <cstring>
using narneSpaCe std;

class inventory
char item(20];

double cost;
mt on—hand;

public:
inventory(char *1, double C, mt a)

strcpy(this->it€m, i); II access members

this->cOSt	 C; II through the this

this->on_hand = o; II pointer

void showO;

void inventory: :show()

cout << this->iterfl; / use this to access members

cout <<	 $" << this->cOSt;

cout << • On hand: 	 << this->ori_hafld <<

)

mt main()

inventory ob(wrench", 4.95, 4);

ob. show()

return 0;

ARRAYS, POINTERS AND REFERENCES 129
4.3 THE this POINTER

Here the member variables are accessed explicitly through the
this pointer. Thus, within show(), these two statements
are equivalent:

cost	 123.23;
this->cost = 123.23;

In fact, the first form is, loosely speaking, a shorthand for
the second.

While no C++ programmer would use the this pointer to
access a class member as just shown, because the shorthand
form is much easier, it is important to understand what the
shorthand implies.

The this pointer has several uses, including aiding in
overloading operators. This use will be detailed in Chapter 6.
For now, the important thing to understand is that by default, all
member functions are automatically passed a pointer to the
invoking object.

EXERCE

Given the following program, convert all appropriate references
to class members to explicit this pointer references.

tinc1ude <iostream>
using namespace std;

class myclass
mt a, b;

public:
myclass(int n, mt m) { a = n; b =
jot add() { return a*b;
void showfl;

void myclass: :show()

mt t;

t = addO; II call member function
cout << t <<

II

130 TEACH YOURSELF

C++

irit main()

myclass ob(10, 14);

ob.sliowO;

returh 0;

--	
new AND delete

Up to now, when memory needed to be allocated, you have been using
malloc(), and you have been freeing allocated memory by using
free(). These are, of course, the standard C dynamic allocation
functions. While these functions are available in C++, C++ provides a
safer and more convenient way to allocate and free memory. In C++,
you can allocate memory using new and release it using delete. These
operators take these general forms:

p-var = new type;

delete p-var;

Here type is the type specifier of the object for which you want to
allocate memory and p-var is a pointer to that type. new is an operator
that returns a pointer to dynamically allocated memory that is large
enough to hold an object of type type. delete releases that memory
when it is no longer needed. delete can be called only with a pointer
previously allocated with new. If you call delete with an invalid
pointer, the allocation system will be destroyed, possibly crashing
your program.

If there is insufficient available memory to fill an allocation request,
one of two actions will occur. Either new will return a null pointer or
it will generate an exception. (Exceptions and exception handling are
described later in this book; loosely, an exception is a run-time error
that can be managed in a structured fashion.) In Standard C++, the
default behavior of new is to generate an exception when it cannot
satisfy an allocation request. If this exception is not handled by your

ARRAYS, POINTERS, AND REFERENCES 131
4.4 USING new AND delete

program, your program will be terminated. The trouble is that the
precise action that new takes on failure has been changed several
times over the past few years. Thus, it is possible that your compiler
will not implement new as defined by Standard C++.

When C++ was first invented, new returned null on failure. Later
this was changed such that new caused an exception on failure.
Finally, it was decided that a new failure will generate an exception by
default, but that a null pointer could be returned instead, as an option.
Thus, new has been implemented differently at different times by
compiler manufacturers. For example, at the time of this writing,
Microsoft's Visual C++ returns a null pointer when new fails. Borland
C++ generates an exception. Although all compilers will eventually
implement new in compliance with Standard C++, currently the only
way to know the precise action of new on failure is to check your
compiler's documentation.

Since there are two possible ways that new can indicate allocation
failure, and since different compilers might do so differently, the code
in this book will be written in such a way that both contingencies are
accommodated. All code in this book will test the pointer returned by
new for null. This handles compilers that implement new by
returning null on failure, while causing no harm for those compilers
for which new throws an exception. If your compiler generates an
exception when new fails, the program will simply be terminated.
Later, when exception handling is described, new will be re-examined
and you will learn how to better handle an allocation failure. You will
also learn about an alternative form of new that always returns a null
pointer when an error occurs.

One last point: none of the examples in this book should cause
new to fail since only a handful of bytes are being allocated by any
single program.

Although new and delete perform functions similar to malloc()
and free(), they have several advantages. First, new automatically
allocates enough memory co hold an object of the specified type. You
do not need to use sizeof, for example, to compute the number of
bytes required. This reduces the possibility for error. Second, new
automatically returns a pointer of the specified type. You do not need
to use an explicit type cast the way you did when you allocated
memory by using malloc() (see the following note). Third, both new
and delete can be overloaded, enabling you to easily implement your
own custom allocation system. Fourth, it is possible to initialize a

132 TEACH YOURSELF

C++

dynamically allocated object. Finally, you no longer need to include
<C8tdlib> with your programs.

In C, no type cast is required when you are assigning the return value of

malloc() to a pointer because the void * returned by malloc() is
automatically converted into a pointer compatible with the type of pointer on
the left side of the assignment However, this is not the case in C++, which
requires an explicit type cast when you use mallocO. The reason for this
difference is that it allows C++ to enforce more rigorous type checking.

Now that new and delete have been introduced, they will be used
instead of nialloc() and frecO.

I	 EXAMPLES

1. As a short first example, this program allocates memory to hold
an integer:

II A simple example of new and delete.

#include <iostream>
using namespace std;

mt main()

inC *p;

p = new int; II allocate room for an integer

if(!p)
cout << "Allocation error\n;

return 1;

1000;

cout << Here is integer at p: 	 << *p <<

delete p; II release memory

return 0;

ARRAYS, POINTERS, AND REFERENCES 133
4.4 USING new AND delete

Notice that the value returned by new is checked before it is
used. As explained earlier, this check is meaningful only if
your compiler implements new in such a way that it returns
null on failure.

2. Here is an example that allocates an object dynamically:

/1 Allocating dynamic objects.

#include <iostrearrt>

using namespace std;

class samp

mt i, j;

public:
void set_ij(iflt a, mt b) { i=a; jb;

mt ge ..product() { return j*j;

mt main()

samp p;

p	 new samp; // allocate object

it(!p)
cout << 'Allocation error\n;

return 1;

p .->set_ij(4. 5);

cout << 'Product is: ' << p->get_product() <<

return 0;

EXERCISES

1. Write a program that uses new to dynamically allocate a float, a
long, and a char. Give these dynamic variables values and
display their values. Finally, release all dynamically allocated
memory by using delete.

134 TEACH YOURSELF

C++

2. Create a class that contains a persons name and telephone
number. Using new, dynamically allocate an object of this
class and put your name and phone number into these
fields within this object.

3. What are the two ways that new might indicate an
allocation failure?

—'s— MORE ABOUT new AND delete

This section discusses two additional features of new and delete. First,
dynamically allocated objects can be given initial values. Second,
dynamically allocated arrays can be created.

You can give a dynamically allocated object an initial value by using
this form of the new statement:

p-var= new type (initial-value);

To dynamically allocate a one-dimensional array, use this form of new:

p-var= new type [size];

After this statement has executed, p-var will point to the start of an
array of size elements of the type specified. For various technical
reasons, it is not possible to initialize an array that is dynamically'
allocated.

To delete a dynamically allocated array, use this form of delete:

delete [] p-var;

This syntax causes the compiler to call the destructor function for
each element in the array. It does not cause p-var to be freed multiple
times. p-var is still freed only once.

For older compilers, you might need to specify the size of the array that you
are deleting between the square brackets of the delete statement This was
required by the original definition of C++. However, the size specification is
not needed by modern compilers.

ARRAYS, POINTERS, AND REFERENCES 135
4.5 MORE ABOUT new AND delete

1. This program allocates memory for an integer and initializes
that memory:
// An example of initializing a dynamic variable.

#include <iostrearfl=

using namespace std;

mt main(

mt *p;

p = new int(9); 7/ give initial value of 9

jf(p)
cout << 'Allocation error\n;

return 1;

cout << Here is integer at p:	
<< *p <<

delete p ; /7 release memory

return 0;

As you should expect, this program displays the value 9, which
is the initial value given to the memory pointed to by p.

2. The following program passes initial values to a dynamically
allocated object:
7/ Allocating dynamic objects.

#include <iostream>

using namespace std;

class samp

mt i, j;

public:
samp(int a mt b) { i=a; j=b;

inC get—product((return i*j;

InC main()

136 TEACH YOURSELF
V

samp *p;

p	 new samp(6, 5) II allocate object with initialization
if(!p)
cout << Allocation error\rl;
return 1;

cout << 'Product is: " << p->get_product() <<

delete p;

return 0;

When the samp object is allocated, its constructor is
automatically called and is passed the values 6 and 5.

3. The following program allocates an array of integers:
II A simple example of new and delete.
#include <lostream>
using namespace std;

mt main()

mt *p;

P = new mt [5]; ii allocate room for 5 integers

// always make sure that allocation succeeded
if(!p)

cout << "Allocation error\n";
return 1;

mt i;

for(i=O; 1<5; i++) p[1] = i;

for(i=O; m<5; i++)

cout << "Here is integer at p [" << I << "J: ";
cout << p[il <<

ARRAYS, POINTERS, AND REFERENCES 137
4.5 MORE ABOUT new AND deIe

delete H P; II release memory

return 0;

This program displays the following:

Here is integer at p[01: 0
Here is integer at p[l) : 1
Here is integer at p[2] 2
Here is integer at p[31: 3
Here is integer at p[4); 4

4. The following program creates a dynamic array of objects:

// Allocating dynamic objects.
#include <iostream>
using namespace std;

class samp
mt i,

public:
void set_ij(int a, mt b) { i=a; j=b;
mt get_product() { return j*j;

mt main()

samp *p;
mt i;

p = new samp [10]; II allocate object array

if (!P)
cout << Allocation error\n;
retuin 1;

for(i=O; i<lO; i++)
ptij .set_ij (i, i)

for(i=O; i<10; i++)
cout << "Product [<< i <<] is:
cout << p [i]. get. produc t () <<

delete H p;

138 TEACH YOURSELF

return 0;

This program displays the following:

Product [0] is: 0
Product [1] is: 1
Product [21 is: 4
Product [3] is: 9
Product [4) is: 16
Product [5] is: 25
Product [6] is: 36
Product (7) is: 49
Product [8] is: 64
Product (9) is: 81

5. The following version of the preceding program gives samp a
destructor, and now when p is freed, each element's destructor
is called:

/1 Allocating dynamic objects.
#include <jostream>
using namespace std;	 -

class samp
mt i, j;

public:

void set_ij(int a, mt b) (ia; j=b;
-samp() (cout << 'Destroying... \n';
mt get—product({ return i'j;

mt main()

samp *p;
mt i,

p = new samp (10]; II allocate object array
if(!p)
cout << 'Allocation error\n';
return 1;

for(i=0; i<10; i++)
p[i] .set_ij (i, i)

,.muiS, POINTERS, AND REFERENCES 139
4.5 MORE ABOUTOeWAND delete

'V

for(i=0; 1<10; i*+)
cout << Product (' << I << '1 is:
coot << p[i] .get_product() <<

delete [I p;
return 0;

This program displays the following:

Product [0] is: 0
Product [1] is: 1
Product [2] is: 4
Product [3] is: 9
Product [4] is: 16
Product (5] is: 25
Product [6] is: 36
Product [7] is: 49
Product [8] is: 64
Product [9] is: 81
Destroying...
Destroying...
Destroying...
Destroying...
Destroying...
Destroying...
Destroying...
Destroying...
Destroying ...
Destroying...

As you can see, samp's destructor is called ten times—once for
each element in the array.

EXERCES

1. Show how to convert the following code into its equivalent that
uses new.

char *p;

p = char *)	 11oc(100);

140 TEAcH YOURSELF

C++

strcpy(p, 'This is a test');

Hint: A string is simply an array of characters.

2. Using new, show how to allocate a double and give it an initial
value of -i 23.0987.

REFERENCES
C++ contains a feature that is related to the pointer: the reference. A
reference is an implicit pointer that for all intents and purposes acts
like another name for a variable. There are three ways that a
reference can be used. First, a reference can be passed to a function.
Second, a reference can be returned by a function. Finally, an
independent reference can be created. Each of these applications of
the reference is examined, beginning with reference parameters.

Without a doubt, the most important use of a reference is as a
parameter to a function. To help you understand what a reference
parameter is and how it works, let's first start with a program that uses
a pointer (not a reference) as a parameter:

#include <iostream>
using namespace std;

void f(jnt *fl); 7/ use a pointer parameter

mt main()

mt i = 0;

f(&i)

cout << Here is i's new value: 	 << i << '\n';

142 TEACH YOURSELF

C++

reference, it is no longer necessary—Or even legal—to apply the *
operator. Instead, each time n is used within f(), it is automatically

treated as a pointer to the argument used to call f(). This means thai
the statement

n = 100;

actually puts the value 100 into the variable used to call f(), which, i
this case, is i. Further, when f() is called, there is no need to preced

the argument with the &. Instead, because f() is declared as taking;
reference parameter, the address to the argument is automatically

passed to f().
To review, when you use a reference parameter, the compiler

automatically passes the address of the variable used as the argumeil
There is no need to manually generate the address of the argument 1
preceding it with an & (in fact, it is not allowed). Further, within the
function, the compiler automatically uses the variable pointed to by
the reference parameter. There is no need to employ the * (and
again, it is not allowed). Thus, a reference parameter fully automate
the call-by-reference parameter-passing mechanism.

It is important to understand that you cannot change what a
reference is pointing to. For example, if the statement

were put inside f() in the preceding program, n would still be

pointing to i in main(). Instead of incrementing n, this statement
increments the value of the variable being referenced (in this case,

Reference parameters offer several advantages over their (more
less) equivalent pointer alternatives. First, from a practical point of
view, you no longer need to remember to pass the address of an
argument. When a reference parameter is used, the address is
automatically passed. Second, in the opinion of many programmem
reference parameters offer a cleaner, more elegant interface than tI
rather clumsy explicit pointer mechanism. Third, as you will see in
the next section, when an object is passed to a function as a referer
no copy is made. This is one way to eliminate the troubles associat
with the copy of an argument damaging something needed elsewh

ARRAYS, POINTERS, AND REFERENCES 143
4.6 REFERENCES 'V

when its destructor function is called.

1 The classic example of passing arguments by reference is a
function that exchanges the values of the two arguments with
Which it is called. Here is an example called swapargs() that
uses references to swap its two integer arguments:

4inc1ude <iostream>

using namespace std;

void swapargs(int &x, mt &y);

1)
mt main()

mt i, j;

I = 10;

j = 19;

coUt << "1: " << 1 <<

cout << "j:	 <<	 <<

swapargs(i, j);

cout << "After swapping:

Cout << ' i: " << 1 <<

cout << "j: ' << j <<

return 0;

void swapargs(int &x mt &y)

mt t;

t = X;

X

Y = t;

If swapargs() had been written using pointers instead of
references it would have looked like this:

144 TEACH YOURSELF
C++

void swapargs(int x, mt *y)

mt t;

t
*x	 *y;

= t;

As you can see, by using the reference version of swapargs(),
the need for the * operator is eliminated.

2. Here is a program that uses the round() function to round a
double value. The value to be rounded is passed by reference.
#include <iostream>
#include <cmath>
using namespace std;

void round(doub].e &num);

mt main()

double i	 100.4;

cout << I	 rounded is
round (i);
cout << i <<

I = 10.9;
cout << i <<	 rounded is
round (I);
COUt << I <<

return 0;

void round(double &num)

double frac;
double val;

II decompose num into whole and fractional parts
frac	 modf(num, &val);

	

if(frac < 0.5) num	 val;

ARRAYS. POINTERS, AND REFERENCES 145
else nurn = val,1.0;

4.6 REFERENCES

round() uses a relatively obscure standard library function
called medf() to decompose a number into its whole number
and fractional parts. The fractional part is returned; the
whole number is put into the variable pointed to by modfO's
second parameter.

EXERCISES

1. Write a function called neg() that reverses the sign of its
integer parameter. Write the function two ways—first by using a
pointer parameter and then by using a reference parameter.
Include a short program to demonstrate their operation.

2. What is wrong with the following program?

II This program has an error.
#include <iostream>
using namespace std;

void triple(double &nurn);

mt main()

double d = 7.0;

triple(&d)

cout << d;

return 0;

II Triple nun's value.
void triple(double &num)

nurn= 3 *num;

3. Give some advantages of reference parameters.

146 TEACH YOURSELF

C-H-

pASSING REFERENCES TO OBJECTS
As you learned in Chapter 3, when an object is passed to a function by
use of the default call-by-value parameter-passing mechanism, a copy
of that object is made. Although the parameter's constructor function
is not called, its destructor function is called when the function
returns. As you should recall, this can cause serious problems in some
instances—when the destructor frees dynamic memory, for example.

One solution to this problem is to pass an object by reference. (The
other solution involves the use of copy constructors, which are
discussed in Chapter 5) When you pass the object by reference, no
copy is made, and therefore its destructor function is not called when
the function returns. Remember, however, that changes made to the
object inside the function affect the object used as the argument.

It is critical to understand that a reference is not a pointer. Therefore, when an
object is passed by reference, the member access operator remains the dot
(), not the arrow (->).

1. The following is an example that demonstrates the usefulness of
passing an object by reference. First, here is a version of a
program that passes an object of myclass by value to a function
called f():

#include <iostrearn>

using namespace std;

class myclass

mt. who;	 -

public:

rriyclass(int n)

who = n;

cout <-< "Constructing	 << who << "\n";

ARRAYS, POINTERS, AND REFERENCES 147
V

4.7 PASSING REFERENCES TO OBJECTS

myclass() { cout << "Destru cting
 ' << who <<

mt id() { return who;

// o is passed by value.

void f(rnyclass o)

cout << "Received	 << o.id() <<

irit main()

myclasS x(l);

f (x);

return 0;

This function displays the following:

constructing 1

Received 1
Destructing 1

Destructing 1

As you can see, the destructor function is called twice—first
when the copy of object 1 is destroyed when f() terminates and

again when the program finishes.
However, if the program is changed so that f() uses a

reference parameter, no copy is made and, therefore no
destructor is called when f() returns:

include <iostream>

using namespaCe std;

class myclasS

mt who;

public:

myclaSs(iflt n)

who = n;
cout << .constructing	 << who <<

myclasS() { cout << "Destructing 	
<< who << \fl; }

mt id() (return who;

148 TEACH YOURSELF

C-I-f

II Now o is passed by reference.
void f(myclass &o)

/7 note that . operator is still used!
cout << Received	 << o.id() <<

mt main()

myclass x(1);

f (x);

return 0;

This version displays the following output:
Constructing 1
Received 1
Destructing 1

e.—b., When accessing members of an object by using a
reference, use the dot operator, not the arrow.

EXERCISE

1. What is wrong with the following program? Show how it can be
fixed by using a reference parameter.
II This program has an error.
#include <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;

class strtype
char *Q;

public:
strtype(char *s);

ARRAYS, POINTERS, AND REFERENCES 149
-strtype() { delete [I p ; }	 48 RETURNING REFERENCES V

char *get() { return p;

strtype: :strtype(char *s)

mt 1;

1 = strlen(s)+l;

p	 new char [1];
if(!p)

cout <<. "Allocation error\n
exit (1)

strcpy(p, s);

void show(strtype x)

char

S = x.getL;
cout << s <<

mt main()

strtype a(Hello), b(There);

show (a)
show(b);

return 0;

RETURNING REFERENCES

A function can return a reference. As you will see in Chapter 6,
returning a reference can be very useful when you are overloading

I 50 TEACH YOURSELF

C++

certain types of operators. However, it also can be employed to allow a
function to be used on the left side of an assignment statement. The
effect of this is both powerful and startling.

1. To begin, here is a very simple program that contains a function
that returns a reference:

/1 A simple example of a function returning a reference.

#include <iostream>

using namespace std;

mt &f(); II return a reference

mt x;

mt main()

H) = 100; II assign 100 to reference returned by H)

cout << x <<

return 0;

II Return an mt reference.

mt &f()

return x; // returns a reference to x

Here function f() is declared as returning a reference to an
integer. Inside the body of the function, the statement

return X;

does not return the value of the global variable x, but rather, it
automatically returns x's address (in the form of a reference).
Thus, inside main(), the statement

H) = 100;

puts the value 100 into x because f() has returned a
reference to it.

To review, function f() returns a reference. Thus, when f()
is used on the left side of the assignment statement, it is this

ARRAYS. POINTERS, AND REFERENCES 151
4.8 RETURNING REFERENCES

reference, returned by f(), that is being assigned to. Since f()
returns a reference to x (in this example), it is x that receives
the value 100.

2. You must be careful when returning a reference that the object
you refer to does not go out of scope. For example, consider this
slight reworking of function f():

II Return an mt reference.
mt &f()

mt x; Ii x is now a local variable
return x; II returns a reference to x

In this case, x is now local to f() and will go out of scope when
f() returns. This effectively means that the reference returned
by f() is useless.

AML
Some C++ compilers will not allow you to return aMd Note
reference to a local variable. However, this type of problem
can manifest itself in other ways, such as when objects are
allocated dynamically.

3. One very good use of returning a reference is found when a
bounded array type is created. As you know, in C and C++, no
array boundary checking occurs. It is therefore possible to
overflow or underfiow an array. However, in C++, you can
create an array class that performs automatic bounds checking.
An array class contains two core functions—one that stores
information into the array and one that retrieves information.
These functions can check, at run time, that the array
boundaries are not overrun.

The following program implements a bounds-checking array
for characters:
I! A simple bounded array example.
#include <iostream>
tinc1ude <cstdlibs
using namespace std;

Class array I
irit size;

152 TEACH YOURSELF

V

char *p;
public:

array(int flum);
-array() { delete 1] p;
char &put(int i);
char get(int 1);

array: :array(int num)

p = new char [nun];
if (!p)

cout << 'Allocation error\n;
exit(l)

size = num;

II Put something into the array.
char &array::put(int i)

if(i<O 11 i>=size)
cout << "Bounds errorH!\n";
exit (1);

return p[i]; 7/ return reference to p1±]

7/ Get something from the array.
char array: :get(int i)

if(i<O Ii i>=size)

cout << 'Bounds errorH!\n";
exit (1)

return p ill; II return character

mt main()

array a(lO);

ARRAYS. POINTERS, AND REFERENCES 153
4.8 REflJR.NING REFERENCES

a.put(3)
a.put(2) =

cout << a.get(3) << a.get(2);
Cout <<

/1 now generate run-time boundary error
a.put(11) =

return 0;

This example is a practical use of functions returning
references, and you should examine it closely. Notice that the
put() function returns a reference to the array element
specified by parameter i. This reference can then be used on
the left side of an assignment statement to store something in
the array—if the index specified by i is not out of bounds. The
reverse is get(), which returns the value stored at the specified
index if that index is within range. This approach to maintaining
an array is sometimes referred to as a safe array. (You will see a
better way to create a safe array later on, in Chapter 6.)

One other thing to notice about the preceding program is
that the array is allocated dynamically by the use of new. This
allows arrays of differing lengths to be declared.

As mentioned, the way that bounds checking is performed in
this program is a practical application of C++. If you need to
have array boundaries verified at run time, this is one way to do
it. However, remember that bounds checking slows access to
the array. Therefore, it is best to include bounds checking
only when there is a real likelihood that an array boundary will
be violated.

154 TEACH YOURSELF

C++

EXERCISES

1. Write a program that creates a two-by-three two-d1flensiOflal
safe array of integers. Demonstrate that it works.

2. Is the following fragment valid? If not, why not?

mt &f();

mt *X;

X -

JNDEPENDENT REFERENCES AND
RESTRICTIONS

Although not commonly used, the independent reference is another type
of reference that is available in C++. An independent reference is a
reference variable that in all effects is simply another name for
another variable. Because references cannot be assigned new values,
an independent reference must be initialized when it is declared.

Because independent references are sometimes used, it is important that you
know about them. However, most programmers feel that there is no need for
them and that they can add confusion to a program. Further, independent
references exist in C++ largely because there was no compelling reason to
disallow them. But for the most part their use should be avoided

There are a number of restrictions that apply to all types of
references. You cannot reference another reference. You cannot
obtain the address of a reference. You cannot create arrays of
references, and you cannot reference a bit-field. References must be
initialized unless they are members of a class, are return values, or are
function parameters.

ARRAYS, POINTERS, AND REFERENCES 155
4.9 INDEPENDENT REFERENCES AND RESTRICTIONS

mr
References are similar to pointers, but they are not pointers.

I EXAMPLESi

1. Here is a program that contains an independent reference:

#include <iostream>

using namespace std;

mt main(

intx;
mt &ref = x; // create an independent reference

X— 10; II these two statements

ref = 10; II are functionally equivalent

ref = 100;
// this prints the number 100 twice

CoUt << x << ' ' << ref <<

return 0;

In this program, the independent reference ref serves as a
different name for x. From a practical point of view, x and ref
are equivalent.

2. An independent reference can refer to a constant. For example,
this is valid:
conSt mt &ref = 10;

Again, there is little benefit in this type of reference, but you
may see it from time to time in other programs.

156 TEACH YOURSELF

C++

EXERCISE

1. On your own, try to think of a good use for an
independent reference.

- SKILLS CHECK

Maste
. heck

At this point, you should be able to perform the following exercises
and answer the questions.

1. Given the following class, create a two-by-five two-dimensional
array and give each object in the array an initial value of your
own choosing. Then display the contents of the array.
class a_type
double a, b;

public:
a—type(double x, double y)
a = X;

b =

void show() { cout << a <<
<< b << \n'; }

2. Modify your solution to the preceding problem so it accesses the
array by using a pointer.

3. What is the this pointer?
4. Show the general forms for new and delete. What are someadvantages of using them instead of malloc() and free()7
5. What is a reference? What is one advantage of using a reference

parameter?

ARRAYS. POINTERS, AND REFERENCES 157
SKILLS CHECK

6. Create a function called recip() that takes one double
reference parameter. Have the function change the value of that
parameter into its reciprocal. Write a program to demonstrate
that it works.

GPCumulative

C.-.1%S k I I Is ^Ch.. k

This section checks how well you have integrated material in this
chapter with that from the preceding chapters.

1. Given a pointer to an object what operator is used to access a
member of that object?

2. In Chapter 2, a 8trtype class was created that dynamically
allocated space for a string. Rework the strtype class (shown
here for your convenience) so it uses new and delete.
#iflclude <iostream>

#include <cstring>

#jflciude <cstdljb>

using namespace std;

class strtype

char *p;

mt len;
public:

strtype(char *ptr)

-strtype()

Void showH;

strtype: :strtype(char *ptr)

len = strlen(ptr);

p = (char) malloc(len+1).
if(!p) {

cout < 'Allocation error\n';
exit (1);

strcpy(p, ptr);

158 TEACH YOURSELF

C++

strtype: :-strtype()

cout << "Freeing p\n;

free(p)

void strtype: :show()

cout << p <<	 - length:	 << len;

cout <<

mt main()

strtype sl("This is a test."), s2("I like C++.);

si . show ()
s2. show()

return 0;

3. On your own, rework any program from the preceding chapter
so that it uses a reference.

5

L

(JH

Function Overloading

chapter objectIves

5.1 Overloading constructor functions

5.2 Creating and using a copy constructor

5,3 The overload anachronism

5.4 Using default arguments

5.5 Overloading and ambiguity

5.6 Finding the address of an
overloaded function

159

160 TEACH YOURSELF

C++

I

N this chapter you will learn more about overloading functions.
Although this topic was introduced early in this book, there are
several further aspects of it that need to be covered. Among the
topics included are how to overload constructor functions, how to
create a copy constructor, how to give functions default

arguments, and how to avoid ambiguity when overloading.

Review

Skills Check

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1.What is a reference? Give two important uses.
2. Show how to allocate a float and an intby using new. Also,

show how to free them by using delete.
3. What is the general form of new that is used to initialize a

dynamic variable? Give a concrete example.
4. Given the following class, show how to initialize a ten-element

array so that x has the values 1 through 10.
class samp
mt X;

public:
samp(int n) { x	 n;
mt getx() { return x;

5. Give one advantage of reference parameters. Give one
disadvantage.

6. Can dynamically allocated arrays be initialized?
7. Create a function called mag() using the following prototype

that raises num to the order of magnitude specified by order:
void mag(long &num, long order);

FUNCTION OVERLOADING 161
5.1 OVERLOADING CONSTRUCTOR FUNC7I0WS

ror example, if num is 4 and order is 2, when mag()
returns, num will be 400. Demonstrate in a program that
the function works.

Q
VERLOADING CONSTRUCTOR
FUNCTIONS

It is possible—indeed, common—to overload a class's constructor
function. (It is not possible to overload a destructor, however.) There
are three main reasons why you will want to overload a constructor
function: to gain flexibility, to support arrays, and to create copy
constructors. The first two of these are discussed in this section. Copy
constructors are discussed in the next section.

One thing to keep in mind as you study the examples is that
there must be a constructor function for each way that an object
of a class will be created. If a program attempts to create an object
for which no matching constructor is found, a compile-time error
occurs. This is why overloaded constructor functions are so common
to C++ programs.

I	 EXAMPLES

1. Perhaps the most frequent use of overloaded constructor
functions is to provide the option of either giving an object
an initialization or not giving it one. For example, in the
following program, 01 is given an initial value, but o2 is not.
If you remove the constructor that has the empty argument
list, the program will not compile because there is no
constructor that matches a noninitialized object of type samp.
The reverse is also true: If you remove the parameterized
constructor, the program will not compile because there is no
match for an initialized object. Both are needed for this
program to compile correctly.

162 TEACH YOURSELF
V

#include <iostream>
using namespace std;

class myclass
mt X;

public:

7/ overload Constructor two ways
myclass() { x = 0;) 7/ no initializer-
myclass(tnt n) { x	 n;) 7/ initializer
mt getx() (return x;

jot main()

myclass 01(10); II declare with initial value
myclass 02; /7 declare without iritializer

cout << "01: " << ol.getx() <e
cout =< "02: " << o2.getx() <<

return 0;

2. Another common reason constructor functions are overloaded is
to allow both individual objects and arrays of objects to occur
within a program. As you probably know from your own
programming experience, it is fairly common to initialize a
single variable, but it is not as common to initialize an array.
(Quite often array values are assigned using information known
only when the program is executing.) Thus, to allow
noninitialized arrays of objects along with initialized objects,
you must include a constructor that supports initialization and
one that does not.

For instance, assuming the class myclass from Example 1,
both of these declarations are valid:
myclass ob(10);
myclass ob[5);

By providing both a parameterized" and a parameterless
constructor, your program allows the creation of objects that are
either initialized or not as needed.

Of course, once you have defined both parameterized and
parameterless constructors you can use them to create

FUNCTION OVERLOADING 163
5.1 OVERLOADING CONSTRUCTOR FUNC7IONS 'V

initialized and noninitialized arrays. For example, the following
program declares two arrays of type nayclass; one is initialized

and the other is not:
*include <jostream>

using namespaCe std;

class myclaSs

mt x;

public:

ii overload constructor two ways

rnyclass() { x = 0; } II
no initializer

rnyclass(iflt fl) { x	 n;) // initializer

mt getx() { return x;

mt main()

myclass ol[10]; II
declare array without initializers

II declare with initializers
myclaSS o2[10] = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

mt 1;

or(i=O; i<10; i)

cout	 o1[<< i << ' 	
<< olEil .getx()

cout <<

cout << o2[" << i <<]: ' << o2[i] .getx()

cout <<

return 0;

In this example, all elements of ol are set to 0 by the
constructor function. The elements of o2 are initialized as

shown in the program.
3. Another reason for overloading constructor functions is to allow

the programmer to select the most convenient method of
initializing an object. To see how, first examine the next
example, which creates a class that holds a calendar date. It
overloads the date() constructor two ways. One form accepts

164 TEACH YOURSELF
V

the date as a character string. In the other form, the date is
passed as three integers.

include <iostream>
j nclude <cstd j o> // included for sscanf()
using namespace std;

class date

mt day, month, year;
public:

date(char str);

date (mt m, mt d, mt y)

day = d;
month

year = y;

void show()

cout << month << 'I' << day <<
cout << year <<

date: :date(char *str)

sscanf(str, %d%*c%d%*c%d. &month, &day, &year);

mt main()

II construct date object using string

date sdate('12/31/99');

// construct date object using integers
date idate(12, 31, 99);

sdate.show()

idate.show();

return 0;

The advantage of overloading the date() constructor, as shown
in this program, is that you are free to use whichever version
most conveniently fits the situation in which it is being used.
For example, if a date object is being created from user input,
the string version is the easiest to use. However, if the date

FUNCTiON OVERLOADING 165
5.1 OVERLOADING CONSTRUCTOR FUNCTIONS 'V

object is being constructed through some sort of internal
computation, the three-integer parameter version probably
makes more sense.

Although it is possible to overload a constructor as many
times as you want doing so excessively has a destructuring
effect on the class. From a stylistic point of view, it is best to
overload a constructor to accommodate only those situations
that are likely to occur frequently. For example, overloading
date() a third time so the date can be entered in terms of'
milliseconds makes little sense. However, overloading it to
accept an object of type time_t (a type that stores the system
date and time) could be very valuable. (See the Mastery Skills
Check exercises at the end of this chapter for an example that
does just this.)

There is one other situation in which you will need to overload
a class's constructor function: when a dynamic array of that
class will be allocated. As you should recall from the preceding
chapter, a dynamic array cannot be initialized. Thus, if the class
contains a constructor that takes an initializer, you must include
an overloaded version that takes no initializer. For example,
here is a program that allocates an object array dynamically;
#include <iostream>
using namespace std;

class myclass
mt X;

public:
/1 overload constructor two ways
myclass() { x	 0; } // no initializer
myclass(j nt fl) { x = n;	 /1 initializer
mt getx() { return x;
void setx(jnt n) { x = n;

mt main()

myclass *p;

myclass ob(l0); ii initialize single variable

p = new myclass[10] . // can't use initializers here
if(!p)

166 TEACH YOURSELF

V

cout << 'Allocation error\n";
return 1;

H

mt 1;

II initialize all elements to ob
for(i=0; i<10; i++) pill	 oh;

tor(i=0; 1<10; i++)
cout << "p[<< I << '1: " << p[i].getX();
cout <<

return 0;

Without the overloaded version of myclass() that has
no initializer, the new statement would have generated
a compile-time error and the program would not have
been compiled.

EXERCISES

1. Given this partially defined class

class strtype
char *p;
mt len;

public:
char *getstring() { return p;
mt getlength() { return len;

add two constructor functions. Have the first one take no
parameters. Have this one allocate 255 bytes of memory (using
new), initialize that memory as a null string, and give len a
value of 255. Have the other constructor take two parameters.
The first is the string to use for initialization and the other is the
number of bytes to allocate. Have this version allocate the
specified amount of memory and copy the string to that

FUNCTION OVERLOADING 167
5.2 CREA TING AND US/NC A COPY CONSTRUCTOR

memory. Perform all necessary boundary checks and
demonstrate that your constructors work by including a
short program.

2. In Exercise 2 of Chapter 2, Section 2.1, you created a stopwatch
emulation. Expand your solution so that the stopwatch class
provides both a parameterless constructor (as it does already)
and an overloaded version that accepts the system time in the
form returned by the standard function clock(). Demonstrate
that your improvement works.

3. On your own, think about ways in which an overloaded
constructor function can be beneficial to your own
programming tasks.

_CREATING AND USING A COPY
CONSTRUCTOR

One of the more important forms of an overloaded constructor is the
copy constructor. As numerous examples from the preceding chapters
have shown, problems can occur when an object is passed to or
returned from a function. As you will learn in this section, one way to
avoid these problems is to define a copy constructor.

To begin, let's restate the problem that a copy constructor is
designed to solve.l When an object is passed to a function, a bitwise
(i.e., exact) copy of that object is made and given to che function
parameter that receives the object. However, there are cases in which
this identical copy is not desirable. For example, if the object contains
a pointer to allocated memory, the copy will point to the same
memory as does the original object. Therefore, if the copy makes a
change to the contents of this memory, it will be changed for the
original object too! Also, when the function terminates, the copy will
be destroyed, causing its destructor to be called. This might lead to
undesired side effects that further affect the original object.

168 TEACH YOURSELF

V

*

Copy constructors do not affect assignment operations.
Remember

A similar situation occurs when an object is returned by a function.
The compiler will commonly generate a temporary object that holds a
copy of the value returned by the function. (This is done automatically
and is beyond your control.) This temporary object goes out of scope
once the value is returned to the calling routine, causing the
temporary object's destructor to be called. However, if the destructor
destroys something needed by the calling routine (for example, if it
frees dynamically allocated memory), trouble will follow.

At the core of these problems is the fact that a bitwise copy of the
object is being made. To prevent these problems, you, the
programmer, need to define precisely what occurs when a copy of an
object is made so that you can avoid undesired side effects. The way
you accomplish this is by creating a copy constructor. By defining a
copy constructor, you can fully specify exactly what occurs when a
copy of an object is made.

It is important for you to understand that C++ defines two distinct
types of situations in which the value of one object is given to another.
The first situation is assignment. The second situation is initialization,
which can occur three ways:

V when an object is used to initialize another in a declaration
statement,

V when an object is passed as a parameter to a function, and
V when a temporary object is created for use as a return value by

a function.

The copy constructor only applies to initializations. It does not apply
to assignments.

By default, when an initialization occurs, the compiler will
automatically provide a bitwise copy. (That is, C++ automatically
provides a default copy constructor that simply duplicates the object.)
However, it is possible to specify precisely how one object will
initialize another by defining a copy constructor. Once defined,
the copy constructor is called whenever an object is used to
initialize another.

FUNCTION OVERLOADING 169
5,2 CREATING AND USING A COPY CONSTRUCTOR

The most common form of copy constructor is shown here:

classname (const c/as.sname &obj)
II body of Constructor

Here obj is a reference to an object that is being used to initialize
another object. For example, assuming a class called myclass, and that
y is an object of type myclass, the following statements would invoke
the myclass copy constructor:

myclass x = y; II y explicitly initializing x

funcl(y);	 II y passed as a parameter

y = func2L;	 II y receiving a returned object

In the first two cases, a reference to y would be passed to the copy
constructor. In the third, a reference to the object returned by func2()
is passed to the copy constructor.

1. Here is an example that illustrates why an explicit copy
constructor function is needed. This program creates a very
limited 'safe" integer array type that prevents array boundaries
from being overrun. Storage for each array is allocated using
new, and a pointer to the memory is maintained within each
array object.

7* This program creates a 'safe' array class. Since space

for the array is dynamically allocated, a copy constructor

is provided to allocate memory when one array object is

used to initialize another.

*7

#include <iostream>

#include <cstdlib>

using namespace std;

class array

mt p;

mt size;

public:

array(int sz) { II constructor

170 TEACH YOURSELF

C++

p = new int[sz];
if(p) exit(1);
size = SZ;
cout << 'Using 'normal' constrUctor\n';

-array() {delete El p;}

II copy constructor
array(const array &a);

void put(int i, mt j)
if(i>=O && i<size) p[i] = j;

mt get(int 1)
return p[il;

}

7* Copy constructor.

In the following, memory is allocated specifically
for the copy, and the address of this memory is assigned
to p. Therefore, p is not pointing to the same
dynamically allocated memory as the original object.
*1

array::array(const array &a)
mt i;

size = a.size;
p = new int[a.size]; 7/ allocate memory for copy

if(!p) exit(l);
for(i=O; i<a.size; i++) p[i] = a.p[i); // copy contents
cout << 'Using copy constructor\n';

mt main()

array num(lO); II this calls normal' constructor
mt i;

II put some values into the array
for(i=O; i<lQ; i+.) num.put(i, i);

FUNCTION OVERLOADING 171
5.2 CREATING AND USING A COPY CONSTRUCTOR

/1 display mum
for(i=9; i>=O; i--) cout << num.get(i);

cout <<

/7 create another array and initialize with num
array x = num; // this invokes copy constructor

II display x
for(i=O; i<lO; i.+) cout << x.get(i);

return 0;

When num is used to initialize x, the copy constructor is called,
memory for the new array is allocated and stored in x.p, and
the contents of num are copied to x's array. In this way, x and
num have arrays that have the same values, but each array is
sarate and distinct. (That is, num.p and x.p do not point to
the same piece of memory.) If the copy constructor had not
been created, the bitwise initialization array x = num would
have resulted in x and num sharing the same memory for their
arrays! (That is, num.p and x.p would have, indeed, pointed to
the same location.)

The copy constructor is called only for initializations. For
example, the following sequence does not call the copy
constructor defined in the preceding program:

array a(10);
array b(10);

b = a; II does not call copy constructor

In this case, b = a performs the assignment operation.
2. To sec how the copy constructor helps prevent some of the

problems associated with passing certain types of objects to
functions, consider this (incorrect) program:

II This program has an error.
#jnclude <iostream>
#include <cstring>
#include <cstdlib>
using namespace std;

172 TEACH YOURSELF

C++

class strtype
char *p;

public:
strtype(char s);
-. strtype() { delete [] p;
char *get() (return p;

strtype: :strtype(char *s)

mt 1;

1	 strlen(s)+l;

p = new char [1];
if(!p)
cout << Allocation error\n';
exit(l);

strcpy(p, s);

void show(strtype x)

char *S;

S	 xgetO;
cout << s <<

mt main()

strtype a('Hello), b("There');

show (a)
show(b);

return 0;

In this program, when a strtype object is passed to show(), a
bitwise copy is made (since no copy constructor has been
defined) and put into parameter x. Thus, when the function

FUNCTION OVERLOADING 173
5.2 CREAT/NGAND USING A COPYCONSTRU-0R V

returns, x goes out of scope and is destroyed. This, of course,
causes x's destructor to be called, which frees x.p. However, the
memory being freed is the same memory that is still being used
by the object used to call the function. This results in an error.

The solution to the preceding problem is to define a copy
constructor for the strt3 pe class that allocates memory for the
copy when the copy is created. This approach is used by the
following, corrected, program:
1*

This program uses a copy constructor to allow strtype objects
to be passed to functions. */

#iflclude <iostreams
#iflclude <cstring>

#inc].ude <cstdlib>

using nanespace std;

class strtype

char *p;

public:

strtype(char *); // constructor
str type(const strtype &o); II copy constructor
-strtype() (delete (1 p; } 7/ destructor
char *get(return p;

/7 'Normal constructor
strty-pe: :Strtype(char *s)

mt 1;

1 = strlen(s)+l;

P = new char ill;
if(!p)

cout << "Allocation error\n';
exit (1)

strcpy(p, S);
PJ

II Copy constructor
str type::strtype(cofls strte &o)

174 TEACH YOURSELF

C++

mt 1;

1 = strlen(o.p)+l;

p = new char [1]; II allocate memory for new copy

if(!p)
cout << 'Allocation error\n;

exit(l)

strcpy(p, o-p); II copy string into copy

void show(strtype x)

char *0;

S = x.get();

cout << S <<

mt main()

strtype a("Hello'), b("There');

show (a)
show (b)

return 0;

Now when show() terminates and x ,goes out of scope, the
memory pointed to by x.p (which will be freed) is not the same
as the memory still in use by the object passed to the function.

EXERCISES

1. The copy constructor is also invoked when a function generates
the temporary object that is used as the function's return value
(for those functions that return objects). With this in mind,
consider the following output:

FUNC11ON OvERLOAD$NG 175
5.2 CREATING AND USING A COPY CONSTRUCTOR

Constructing normally
Constructing normally
Constructing copy

This output was created by the following program. Explain why,
and describe precisely what is occurring.

include <iostream>

using namespace std;

class myclass
public:

myclass ()
myclass(const myclass &o);
rnyclass f;

7/ Normal constructor
myclass: :myclass()

cout << 'Constructing normally\n';

II

// Copy constructor
myclass::myclass(const myclass &o)

cout << 'Constructing copy\n';

/7 Return an object.
myclass myclass: : f ()

myclass temp;

return temp;

mt main()

myclass obj;

obj = obj.fL;

return 0;

176 TEACH YOURSEJ
C++

2.2. Explain what is wrong with the following program and then fix it.
II This prograñi contains an error.

#include -iostream>

#include <cstdlib>

using narnespace std;

class myclass

mt *p;

public:

rnyclass(int U;

-myclass() (delete p;

friend inL getval(myclass 0);

myclass: :myclass(int i)

p = new int;

if(!p)

cout << Allocation error\n;

exit (1)

*p = 1

mt getval(myclass 0)

return *OP ; // get value

mt main()

myclass a(l), b(2);

Cout << getval(a) <<	 << getval(b);

cout << "\n';	 -

cout << getval(a) <<	 << getval(b);

return 0;

3. In your own words, explain the purpose of a copy constructor
and how it differs from a normal constructor.

FUNCTION OVERLOADING 177
5.4 USING DEFAUL ARGUMENTS

_THE OVERLOAD ANACHRONISM
ff

When C++ was first invented, the keyword overload was required to
create an overloaded function. Although overload is now obsolete and
no longer supported by modern C++ compilers, you may still see
overload used in old programs, so it is a good idea to understand how
it was applied.

The general form of overload is shown here,

overload func-name;

where fIrnc-name is the name of the function to be overloaded. This
statement must precede the overloaded function declarations. For
example, this tells the compiler that you will be overloading a function
called tinier():

overload timer;

overload is obsolete and no longer supported by modern C++ compilers.

U
SING DEFAULT ARGUMENTS

There is a feature of C++ that is related to function overloading. This
feature is called the default argument, and it allows you to give a
parameter a default value when no corresponding argument is
specified when the function is called. As you will see, using default
arguments is essentially a shorthand form of function overloading.

To give a parameter a default argument, simply follow that
parameter with an equal sign and the value you want it to default to if
no corresponding argument is present when the function is called. For
example, this function gives its two parameters default values of 0:

void f(int	 mt b=O);

Notice that this syntax is similar to variable initialization. This function
can now be called three different ways. First, it can be called with both
arguments specified. Second, it can be called with only the first
argument specified. In this case, b will default to 0. Finally, f() can be

178 TEACH YOURSEI.F

C++

called with no arguments, causing both a and b to default to 0. That is,
the following invocations of f() are all valid:

fO; I! a and b default to 0

f(lO); II a is 10, b defaults to 0

f(10, 99) II a is 10, b is 99

In this example, it should be clear that there is no way to default a
and specify b.

When you create a function that has one or more default
arguments, those arguments must he specified only Once: either in the
function's prototype or in its definition if the definition precedes the
function's first use. The defaults cannot be specified in both the
prototype and the definition. This rule applies even if you simply
duplicate the same defaults.

As you can probably guess, all default parameters must be to the
right of any parameters that don't have defaults. Further, once you
begin to define default parameters, you cannot specify any parameters
that have no defaults.

One other point about default arguments: they must be constants or
global variables. They cannot be local variables or other parameters.

1. Here is a program that illustrates the example described in the
preceding discussion:

// A simple first example of default arguments.

#include <iostream>

using riamespace std;

void f(int a0, mt b=0)

cout << a:	 << a << ,	 << b;

cout << '\n'

mt main()

f()

f (10);

f(lO, 99);

FUNCTION OVERLOADING 179
5.4 USING DEFAULT ARGUMENTS

return 0;

As you should expect, this program displays the
following output:

a: 0, b: 0

a: 10, b: 0

a: 10, b: 99

Remember that once the first default argument is specified all
following parameters must have defaults as well. For example,
this slightly different version of f() causes a compile-time error:

void f(int	
mt b) /7 wrong! b must have default, too

cout << "a:	 << a << , b: ' << b;

cout << '\fl'

2. To understand how default arguments are related to function
overloading, first consider the next program, which overloads
the function called rect_area(). This function returns the area

of a rectangle.

II Compute area of a rectangle using overloaded functions.

#include <iostream>

using namespace std;

/7 Return area of a non--square rectangle.

double rect_area(double length, double width)

return length * width;

II Return area of a square.

double rect_area(double length)

return length * length;

mt main()

cout << "10 x 5.8 rectangle has area:

cout << rect_area(lO.O, 5.8) <<

180 TEACH YOIJRSEIJ

C++

cout << "10 x 10 square has area:
cout << rectarea(100) <<
return 0;

In this program, rect_arca() is overloaded two ways. In the
first way, both dimensions of a rectangle are passed to the
function. This version is used when the rectangle is not a
square. However, when the rectangle is a square, only one
argument need be specified, and the second version of
rect_area() is called.

If you think about it, it is clear that in this situation there is
really no need to have two different functions. Instead, the
Second parameter can he defaulted to some value that acts
as a flag to rect_area(). When this value is seen by the
function, it uses the length parameter twice. Here is an
example of this approach:
/1 Compute area of a rectangle using default arguments.
j.nclude <iostream>
using namespace std;

// Return area of a rectangle.

double rect_area(double length, double width = 0)

if(!width) width = length;
return length * width;

mt main()

cout << '10 x 5.8 rectangle has area:
cout << rect_area(lO.0, 5.8) <<

cout << "10 x 10 square has area:
cout << rectarea(lOO) <<

return 0;

Pj

Here 0 is the default value of width. This value was chosen
because no rectangle will have a width of 0. (Actually, a
rectangle with a width of 0 is a line.) Thus, if this default value

FUNCLON OVERLOADING 181
54 USING DEFAULTARGUMENTS

is seen, rect_area() automatically uses the value in length for
the value of width.

As this example shows default arguments often provide a
simple alternative to function overloading. (Of course, there are
many situations in which function overloading is still required.)

3. It is not only legal to give constructor functions default
arguments, it is also common. As you saw earlier in this
chapter, many times a constructor is overloaded simply to allow
both initialized and uninitialized objects to he created. In many
cases, you can avoid overloading a constructor by giving it one
or more default arguments. For example, examine this program:

include <iostrearp>
using namespace std;

class rryclass
mt X;

public:
/* Use default argument instead of overloading

inyclass's Constructor. */
rnyclass(int n	 0) { x = n;
mt getx() { return x;

mt main))

myclass 01(10); II declare with initial value
myclass 02; 7/ declare without initializer

cout << '01: " << oi.getx() <<
cout << '02: " << o2.getx)) <<

return 0;

As this example shows, by giving n the default value of 0, it is
possible to create objects that have explicit initial values and
those for which the default value is sufficient.

4. Another good application for a default argument is found when
a parameter is used to select an option. It is possible to give that
parameter a default value that is used as a flag that tells the
function to continue to use the previously selected option. For
example, in the following program, the function print()

182 ThACH YOURSELF

C++

displays a string on the screen. If its how parameter is set to
ignore, the text is displayed as is. If how is upper, the text is
displayed in uppercase. If how is lower, the text is displayed in
lowercase. When how is not specified, it defaults to -1, which
tells the function to reuse the last how value.

#include <iostream>

#include <cctype>
using namespace. st.d;

const. mt ignore = 0;
const mt upper = 1;
const mt lower	 2;

void print (char	 mt how = -1)

mt main()

print(HeJ.lo There\n 	 ignore);

prmnt("Hello There\n", upper);
print ("Hello There\n) ; // continue in upper
print(Hello there\n', lower);

print('ThaLs all\n); II continue in lower

return 0;

II

Print a string in the specified case. Use

last case specified if none is. given.
*1

void print(char	 mt how)

static mt oldcase = ignore;

II reuse old case if none specified
if(how<0) how = oldcase;
while(*s)

switch(how)
case upper: cout << (char) toupper(*s)

break;
case lower: cout << (char) tolower(*5)

break;
default: cout <<

S.,;

H

FUNCTION OVERLOADING 183
5.4 USING DEFAULTARGUMENTS

oldcase	 how;

This function displays the following output:

Hello There

HELLO THERE

HELLO THERE

hello there

that's all

5. Earlier in this chapter you saw the general form of a copy
constructor. This general form was shown with only one
parameter. However, it is possible to create copy constructors
that take additional arguments, as long as the additional
arguments have default values. For example, the following is
also an acceptable form of a copy constructor:

rnyclass(coflSt myclass &obj, mt xO)

1/ body of constructor

As long as the first argument is a reference to the object being
copied, and all other arguments default, the function qualifies as
a copy constructor. This flexibility allows you to create copy
constructors that have other uses,

6. Although default arguments are powerful and convenient, they
can be misused. There is no question that, when used correctly,
default arguments allow a function to perform its job in an
efficient and easy-to-use manner. However, this is only the case
when the default value given to a parameter makes sense. For
example, if the argument is the value wanted nine times out ten,
giving a function a default argument to this effect is obviously a
good idea. However, in cases in which no one value is more likely
to he used than another, or when there is no benefit to using a
default argument as a flag value, it makes little sense to provide a
default value. Actually, providing a default argument when one is
not called for destructures your program and tends to mislead
anyone else who has to use that function.

As with function overloading, part of becoming an excellent
C++ programmer is knowing when to use a default argumeri
and when not to.

184 TEACH YOURSELF

C++

EXERCISES

1. In the C++ standard library is the function strtol(), which has
this prototype:

long strtol(const char start, const s end, mt base;

The function converts the numeric string pointed to by start
into a long integer. The number base of the numeric string is
specified by base. Upon return, end points to the character
in the string immediately foilowing the end of the number.
The long integer equivalent of the numeric string is returned.
base must be in the range 2 to 38. However, most commonly,
base 10 is used.

Create a function called mystrtol() that works the same as
strtol() except that base is given the default argument of 10.
(Fed free to use strtol() to actually perform the conversion. It
requires the header <cstdlib>.) Demonstrate that your version
works correctly.

2. What is wrong with the following function prototype?
char *f(char p, mt x	 0, char *q);

3. Most C++ compilers supply nonstandard functions that allow
cursor positioning and the like. If your compiler supplies such
functions, create a function called myclreol() that clears the
line from the current cursor position to the end of the line.
However, give this function a parameter that specifies the
number of character positions to clear. If the parameter is
not specified, automatically clear the entire line. Otherwise,
clear only the number of character positions specified by
the parameter.

4. What is wrong with the following prototype, which uses a
default argument?

mt [(it count, mnt max	 count);

FUNc1ION OVERLOADING 185
55 OVERLOAD/NC INDAMBIGUITY

-.	 OVERLOADING AND AMBIGUITY
When you arc overloading functions, it is possible to introduce
ambiguity into your program. Overloading-caused ambiguity can be
introduced through type conversions, reference parameters and
default arguments. Further, some types of ambiguity are caused by the
overloaded functions themselves. Other types occur in the manner in
which an overloaded function is called. Ambiguity must be removed
before your program will compile without error.

EXAMpLES 1
One of the most common types of ambiguity is caused by C++'s
automatic type conversion rules. As you know, when a function
is called with an argument that is of a compatible (but not the
same) type as the parameter to which it is being passed, the
type of the argument is automatically converted to the target
type. In fact, it is this sort of type conversion that allows a
function such as putchar() to be called with a character even
though its argument is specified as an mt. However, in some
cases, this automatic type conversion will cause an ambiguous
situation when a function is overloaded. To see how, examine
this program:

1/ This program contains an ambiguity error.

#include <iostream>

using namespace Std;

float. f(float 1)

return i I 2.0;

double f(doub].e I)

return i / 3.0;

mt main()

float x	 10.09;

double y = 10.09;

186 TEACH YOURSELF

C++

coUt << f(x); // unambiguous - use f(float)

° cout << f(y); ii unambiguous - use f(double)

cout << f(10); II ambiguous, convert 10 to double or float??

return 0;

As the comments in main() indicate, the compiler is able to
select the correct version of f() when it is called with either a

float or a double variable. However, what happens when it is
called with an integer? Does the compiler call f(float) or
f(doublc)? (Both are valid conversions) In either case, it is
valid to promote an integer into either a float or a double.
Thus, the ambiguous situation is created.

This example also points out that ambiguity can be
introduced by the way an overloaded function is called. The fact
is that there is no inherent ambiguity in the overloaded versions
of f() as long as each is called with an unambiguous argument.

2. Here is another example of function overloading -that is not
ambiguous in and of itself. However, when this function is
called with the wrong type of argument, C++'s automatic
conversion rules cause an ambiguous situation.

II This program is ambiguous.
4include <iostream>
using namespace std;

void f(unsigned char c)

cout << C;

void f(char c)

cout << C;

mt main()

f('c');
f(86), // 'which f() is called???

FUNCTiON ovEnLoAuINo 187
5.5 OVERLOADING AND AMB/GUIT'Y

return 0;

Here, when f() is called with the numeric constant 86, the
compiler cannot know whether to call f(unsigncd char)
or f(char). Either conversion is equally valid, thus leading
to ambiguity.

3. One type of ambiguity is caused when you try to overload
functions in which the only difference is the fact that one uses a
reference parameter and the other uses the default call-by-value
parameter. Given C++'s formal syntax, there is no way .for the
compiler toknow which function to call. Remember, there is no
syntactical difference between calling a function that takes a
value parameter and calling a function that takes a reference
parameter. For example:
// An ambiguous program.

#include <iostream>

using narnespace std;

mt f(int a, mt b)

return a*b;

II this is inherently ambiguous

mt f(int a, mt &b)

return a-b;

mt main()

mt x=l, y=2;

cout << f(x, y); II which version of LU is called???

return 0;

Here, f(x, y) is ambiguous because it could be calling either
version of the function. In fact, the compiler will flag an error
before this statement is even specified because the overloading

188 TEACH YOURSELF

C++

of the two functions is inherently ambiguous and no reference
to them could be resolved.

4. Another type of ambiguity is caused when you are overloading a
function in which one or more overloaded functions use a
default argument. Consider this program:
II Ambiguity based on default arguments plus overloading.
#include <iostream>
using namespace std;

mt f(int a)

return a*a;

mt f(int a, mt b = 0)

return a*b;

mt main()

cout << f(lO, 2); II calls f(int, int)
cout << f(lO); /1 ambiguous - call f(int) or f(int, int)???

return 0;

Here the call f(10, 2) is perfectly acceptable and unambiguous.
However, the compiler has no way of knowing whether the call
f(10) is calling the first version of f() or the second version
with b defaulting.

UERCE

1. Try to compile each of the preceding ambiguous programs.
Make a mental note of the types of error messages they
generate. This will help you recognize ambiguity errors when
they creep into your own programs.

FUNCTION OVERLOADING 189
56 FINDING THE ADDRESS OFAN OVERLOADED FUNCJ7ON

THE ADDRESS OF AN
OVERLOADED FUNCTION

To conclude this chapei, you will learn how to find the address of an
overloaded function. Just as in C, you can assign the address of a
function (that is, its entry point) to a pointer and access that function
via that pointer. A function's address is obtained by putting its name
on the right side of an assigrt 'ent statement without any parentheses

or arguments. For example, if zap() is a function, assuming proper
declarations this is a valid way to assign p the address of zap():

p	 zap;

In C, any type of pointer can be used to point to a function because
there is only one function that it can point to. However, in C++ the
situation is a bit more complex because a function can be overloaded.
Thus, there must be some mechanism that determines which
function's address is obtained.

The solution is both elegant and effective. When obtaining the
address of an overloaded function, it is the way the pointer is declared

that determines which overloaded function's address will be obtained.
In essence, the pointer's declaration is matched against those of the
overloaded functions. The function whose declaration matches is the
one whose address is used.

1. Here is a program that contains two versions of a function

called space(). The first version outputs count number of

spaces to the screen. The second version outputs count
number of whatever type of character is passed to ch. In

main(), two function pointers are declared. The first one is
specified as a pointer to a function having only one integer
parameter. The second is declared as a pointer to a function
taking two parameters.

1* Illustrate assigning function pointers to

overloaded functions.
#include <iostrem>
using Pamespa'e std;

190 TEACH YOURSELF

1'

II Output count number of spaces.
void space(jnt count)

for(; count; count--) cout <<

II Output count number of chs.
void space(j nt Count, char ch)

for) ; count; Count--) cout ee ch;

lt majfl()

7* Create a pointer to void function with
one mt parameter.

void (*fpl) (int)

/* Create a pointer to void function with
one mt parameter and one character parameter. *1

void (*fp2) (int, char);

fpl = space; // gets address of space(int)

fp2 = space; II gets address of space(int, char)

fpl(22) ; /7 output 22 spaces
cout << '

fp2(30, 'x'); II output 30 x's
cout <<

return 0;

PC

As the comments illustrate, the compiler is able to determine
which overloaded function to obtain the address of based upon
how fpl and fp2 are declared.

To reiew: When you assign the address of an overloaded
function to a function pointer, it is the declaration of the pointer
that determines which function's address is assigned. Further,
the declaration of the function pointer must exactly match one
and only oi of the overloaded fUflctiors. Ifit does not,

mbiguit will }' introduced, causing a cornp jlfjmp error.

FUNCTiON OVERLOADING 1 u
SKILLS CHECK

EXERCISE

1. Following are two overloaded function. Show how to obtain the
address of each.

mt dif(int a, mt b)

return a-b'

.ioat dif(float a, float b)

turfl a-b

SKILLS CHECK

waste
SkIIIs Check

At this point you should be able to perform the following exercises
and answer the questions.

1. Overload the thte() constructor from Section 5., Example 3,
so that it accepts a parameter of type time. t. (Rememoer,
time_t is a type defined by the standard time and date furicons
found in your C++ compiler's library.)

2. What is wrong with the following fragment?

class samp
mt a;

public:
sarnp(int i) { a = i;
// .

192 TEACH YOURSELF

C++

mt ma.1()

samp x, y(lO);

3. Give two reasons why you might want (or need) to ovedoad a
class's constructor.

4. What is the most common general form of a copy constructor?

5. What type of operations will cause the copy constructor to
be invoked?

6. Briefly explain what the overload keyword does and why it is
no longer needed.

7. Briefly describe a default argument.

8. Create a function called rcverse() that takes two parameters.
The first parameter, called str, is a pointer to a string that will
be reversed upon return from the function. The second
parameter is called count, and it specifics how many characters

of sir to reverse. Give count a default value that, when present,
tells reverse() to reverse the entire . string.

9. What is wrong with the following prototype?
char *wordwrap(char *str, mt size=O, char ch);

10. Explain some ways that ambiguity can bo introduced when you
are overloading functions.

11. What is wrong with the following fragment?

void compute(double *num, mt divisorl);
void comput.e(doubie *num)

II .

compute (&x)

FUNCTION OVERLOADING 193
SKILLS CHECK

12. When you are assigning the address of an overloaded function to
a pointer, what is it that determines . inch version of the

function is used?

(

This section checks how	 11 von have integrated material in this

chapter w i th that from the preceding chapters.

1. Create a function called order() that takes two integer
reference parameters. If the first argument is greater than the
second argument, reverse the two arguments. Otherwise, take
no action. That is, order the two arguments used to call order()
so that, upon return, the first argument will be less than the
second. For example, given

tnt x-1, yO;
order(x, y);

following the call, x will be 0 and y will be 1.

2. Why are the following two overloaded functions inherently
ambiguous?

tnt f(int a);
tnt f(int &a);

3. Explain why using a default argument is related to function
overloading.

4. Given the following partial class, add the necessary constructor
functions so that both declarations within main() are valid.

(Hint: You need to overload samp() twice.)

194 TEAcH YOURSELJ'
'V

class samp
mt a;

Public:
II add constructor functions
mt get—a((return a;

mt main(,)

samp ob(88); II mit oh's a to 88

sarnp obarrayrlo); // nOflinitjalized 10-element array

5. Briefly explain why copy constructors are. needed.

U

