
no

-

-

Introducing Operator
Overloading

chapter objecdves

6.1 The basics of operator overloading

6.2 Overloading binary operators

6.3 Overloading the relational and logical

operators

6.4 Overloading a unary operator

6.5 Using friend operator functions

6.6 A closer look at the assignment operator

6.7 Overloading the I subscript operator

.3

195
V

196 TEACH YOURSELF
V

T

us chapter introduces another important C++ feature:
perator overloading. This feature allows you to define the

meaning of the C++ operators relative to classes that you
define. By overloading operators, you can seamlessly add ne
data types to your program.

lZM1
%M(SR7check

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1. Show how to overload the constructor for the following class so
that uninitialized objects can also be created. (When creating
uninitialized objects, give x and y the value 0.)
class myclass

hit x, y;
public:

myclass(int 1, mt j) { x=i; y=j;

2. Using the class from Question 1, show how you can avoid
overloading myclass() by using default arguments.

3. What is wrong with the following declaration?
mt f(int a=O, double balance);

4. What is wrong with these two overloaded functions?

void f(int a);
void f(int. &a);

5. When is it appropriate to use default arguments? When is it
probably a bad idea?

6. Given the following class definition, is it possible to dynamically
allocate an array of these objects?

INTRODUCING OPERATOR OVERLOADING 197
class test {	 6.1 THE BASICS oF OPERATOR OVERLOADING

char *p;

jnt *q;

mt count;

pubi i c

test(char *x,	 rt 'Y,
	 nt c)

P

q =

count =

7. What is a copy constructor and tinder what circumstances is it

called',Y

LTHE BASICS OF OPERATOR
OVERLOADING

Operator overloading resembles function overloading. In fact, Operator
overloading is really just a type of function overloading. However,
some additional rules apply. For example, an operator is always
overloaded relative to a user-defined type, such as a class, Other
differences will be discussed as needed.

When an operator is overloaded, that operator loses none of its
original meaning. Instead, it gains additional meaning relative to the
class for which it is defined.

To overload an operator, you create an Operator function. Most often
an operator function is a member or a friend of the class for which it is
defined. However, there is a slight difference between a member
operator function and a friend operator function. The first part of this
chapter discusses the creation of member operator functions. Then
friend operator functions are discussed.

The general form of a member operator function is shown here:

return-type class-name::operator#(arg-fist)

II operation to be performed

198 TEACH YOURSELF

C++

The return type of an operator function is often the class for which it
is defined. (However, an operator function is free to return any type.)
The operator being overloaded is substituted for the #. For example, if
the + is being overloaded, the function name would be operator +.
The contents of arg-list vary depending upon how the operator
function is implemented and the type of operator being overloaded.

There are two important restrictions to remember when you are
overloading an operator. First, the precedence of the operator cannot
he changed. Second, the number of operands that an operator takes
cannot be altered. For example, you cannot overload the / operator so
that it takes only one operand.

Most C++ operators can be overloaded. The only operators that Vou
cannot overload are shown here:

Also, you cannot overload the preprocessor operators. (The.
operator is highly specialized and is beyond the scope of this book.)

Remember that C++ defines operators very broadly, including such
things as the [] subscript operators, the () function call operators,
new and delete, and the (dot) and -> (arrow) operators. However,
this chapter concentrates on overloading the most commonly used
operators.

Except for the =, operator functions are inherited by any derived
class. However, a derived class is free to overload any operator it
chooses (including those overloaded by the base class) relative to itself.

You have been using two overloaded operators: <<and >>. These
operators have been overloaded to perform console I/O. As
mentioned, overloading these operators to perform I/O does not
prevent them from performing their traditional jobs of left shift and
right shift.

While it is permissible for you to have an operator function perform
any activity—whether related to the traditional use of the operator or
not—it is best to have an overloaded Operator's actions stay within the
spirit of the operator's traditional use. When you create overloaded
operators that stray from this principle, you run the risk of
substantially destructuring your program. For example, overloading
the / so that the phrase "1 like C++ is written to a disk file 300 times is
a fundamentally confusing misuse of operator overloading!

The preceding paragraph notwithstanding, there will be times when
you need to use an operator in a way not related to its traditional

INTRODUCING OPERATOR OVERLOADING 199
62 OVERLOADING BINARY OPERATORS

usage. The two best examples of this are the << and >> operators,
which are overloaded for console I/O. However, even in these cases,
the left and right arrows provide a visual "clue" to their meaning.
Therefore, if you . need to overload an operator in a nonstandard way,
make the greatest effort possible to use an appropriate operator.

One final point: operator functions cannot have default arguments.

O
VERLOADING BINARY OPERATORS

When a member operator function overloads a binary operator, the
function will have only one parameter. This parameter will receive
the object that is on the right side of the operator. The object on the
left side is the object that generates the call to the operator function
and is passed implicitly by this.

It is important to understand that operator functions can be written
with many variations. The examples here and elsewhere in this
chapter are not exhaustive, but they do illustrate several of the most
common techniques.

i. The following program overloads the + operator relative to the
coord class. This class is used to maintain X,Y coordinates.

/1 Overload the + relative to coord class.
include <iostrearn>

using namespace std;

class co9rd
mt x, y; 1/ coordinate values

public:
coord() { x=O; y=O;
coord(inti., mt j) { x=i; yj;
void get_xy(jnt	 ., mt &j) { i=x; j=y;
coosd oerator+(coord ob2);

7/ Overload + relative to coord class.
coord coord::operator+(coord ob2)

200 TEACH YOURSELF

C++

coord temp;

ternp.x = x + oh2.x;

temp.y	 y	 ob2.y;

return temp;

mt main))

coord ol(10, 10), 02(5, 3), o3;
mt X, y;

o3	 ol • o2; 7/ add two objects - this calls operator+()

o3.get_xy(x, y);

Gout c< '(oio2) X: ' << x << ', 	 " << y<< "\n';

return 0;

This program displays the following:
X	 I	 , Y	 1 3

Let's look closely at this program. The operator+() function
returns an object of type coord that has the sum of each
operand's X coordinates in x and the sum of the Y coordinates
in y. Notice that a temporary object called temp is used inside
operator + () to hold the result, and it is this object that is
returned. Notice also that neither operand is modified. The
reason for temp is easy to understand. In this situation (as in
most), the + has been overloaded in a manner consistent with
its normal arithmetic use. Therefore, it was important that
neither operand be changed. For example, when YOU add 10+4,
the result is 14, but neither the 10 nor the 4 is modified. Thus, a
temporary object is needed to hold the result.

The reason that the operator + function returns an object
of type coord is that it allows the result of the addition
of coord objects to be used in larger expressions. For example,
the statement

03 = ol + o2;

INTRODUCING OPERATOR OVERLOADING 201
2 OVERLOAD/NC 8/NARY OPERA TOPS

is valid only because the result Of 01 +o2 is a coord object that
can be assigned to o3. It a different type had been returned, this
statement would have been invalid. Further, by returning a
coord object the addition operator allows a string of additions.
For example this is a valid statement:

o3	 ci • 02	 ci + ('3;

Although there will he situations in which YOU want an Operator
function to return something other than an object for which it is
defined, most of the time operator functions that you create will
return an object of their class. (The major exception to this rule
is when the relational and logical operators are overloaded. This
situation is examined in Section 6.3 ; "O\'er!oadirig the Relatioii
and Logical Operators," later in this chapter.)

One final point about this example. Because a coord object is
returned, the following statement is also perfectly valid:

(o1o2).get_xy(x, y);

Here the temporary object returned by operator + is used
directly. Of course, after this statement has executed the
temporary object is destroyed.

2. The following.version of the preceding program overloads the -
and the = operators relative to the coord class.

II Overload the *, -, and = relative to coord class.
#include <iostream>
using namespace std;

class coord

mt x, y; I/ coordinate values
public:

COOrd() { x=O; y=0;
coord(jnt 1, intj) { x=i; y=j;
void get_xy(int &i, mt &j) f i=x; j=y;
coord operator,(coord ob2);
coord operator-(coord ob2);
coord operator=(coord ob2)

7/ Overload * relative to coord class.

202 TEACH YOURSELF

C++

coord coord::operator(coord ob2)

coord temp;

temp.x = x + ob2.x;

temp.y = y + 0b2.y;

return temp;

// Overload - relative to coord class
coord coord::operator(coord

coord

temp.x = x - ob2.x;
temp.y	 y - ob2.y;

return—temp;

/1 Overload = relative to coord.
coord coord: :operator(coord 0b2)

x = ob2.x;
y = 0b2.y;

return -this; II return the object that is assigned

mt main)

coord 01(10, 10), 02(5, 3), 03;
mt x, y;

03 = ol • 02; II add two objects - this calls operator.()
o3.get_xy(x, y);

cout << '(01+o2) X:	 << x <<	 Y:	 << y << ' \ n";

o3 = ol - 02; II subtract two objects
o3.get_xy(x, y);

cout << (o1-o2) X: 	 << x << ',	 << y <<

o3 = 01; /7 assign an object

INTRODUCING OPERATOR OVERLOADING 203
62 OVERLOADING BINARY OPERATORS

o3.get_xy(x, y);

COut	 (03=01) X:	 <<	 ,	 << y <<

return 0;

The operator—() function is implemented similarly to
operator +(. However, the above example illustrates a crucial
point when you are overloading an operator in which the order
of the operands is important. When the operator+ () function
was created, it did not matter which order the operands were in.
(That is, A+B is the sarneas B+A.) However, the subtraction
operation is order dependent. Therefore to correctly overload
the subtraction operator, it is necessary to subtract the operand
on the right from the operand on the left. Because it is the left
operand that generates the call to operator—(), the s1,l,trLiU11
must be in this order:

x - ob2.x;

When a binary operator is overloaded, the left operand is
'

Remember
'- passed implicitly to the function and the right operand is

passed as an argument.

Now look at the assignment operator function. The first thing
you should notice is that the left operand (that is, the object
being assigned a value) is modified by the operation. This is in
keeping with the normal meaning of assignment. The second
thing to notice is that the function returns * this. That is, the
operator=() function returns the object that is being assigned
to. The reason for this is to allow a series of assignments to be
made. As you should know, in C++, the following type of
statement is syntactically correct (and, indeed, very common):
a = b = c	 ci = 0;

By returning this, the ov rloaded assignment operator allows
objects of type coord to be used in a similar fashion. For
example, this is perfectly valid;

c3 = o2

204 TEACH YOURSELF

V

Keep in mind that there is no rule tnat requires an overloaded
assignment function to return the object that receives the
assignment. However, if you want the overloaded = to behave
relative to its class the way it does for the built-in types, it must
return *this.

3. It is possible to overload an operator relative to a class SO that

the operand on the right side is an object of a built-in type, such
as an integer, instead of the class for which the operator
function is a member, For example, here the + operator is
overloaded to add an integer value to a coord object:

// Overload + for ob + mt as well as ob + ob.

#include <iostream>

using namespace std;

class coord
mt x, y; // coordinate values

public:
coord() { x=O; Y=O;

coord(int i, mt j) { xCi; y=j;

void get_xy(int &i, mt &j) { i=x; j=y;

coord operator+(coord ob2); /7 ob + ob

coord operator+(iflt 1); 7/ ob + mt

II Overload + relative to coord cless.
coord roord::orator+(cOOrd ob2)

coord temp;

temp.x = x + ob2.x;

temp.y = y + ob2.y;

return temp;

Overload + for ob + mt
coord coord::operator.(iflt 1)

coord temp;

temp.x = x +

temp.y = y +

return temp;

INTRODUCING OPERATOR OVERLOADING 205
6.2 OVERLOADING BINARY OPERATORS 'V

11

mt main))

coord ol(10, 10), o2(5, 3)., o3;

mt x, y;

03 = ol + 02; If add two objects - calls operator*(coord)

o3.get_xy(x, y);

cout << "(01+02) X: 	 < x < ",	 " << y <<

03 = ol + 100; II add object . mt - calls operator+(int)

o3.get_xy(x, y);

cout << '(01+100) X: 	 << x << ",	 e< y e<

return 0;

I]

It is important to remember that when you are overloading a
member operator function so that an object can be used in an
operation involving a built-in type, the built-in type must be on
the right side of the operator. The reason for this is easy to
understand: It is the object on the left that generates the call to
the operator function. For instance, what happens when the
compiler sees the following statement?
03	 19 + 01; II mt + ob

There is no built-in operation defined to handle the addition of
an integer to an object. The overloaded operator + (mt i)
function works only when the object is on the left Therefore,
this statement generates a compile-time error. (Soon you will
see one way around this restriction.)

4. You can use a reference parameter in an operator function. For
example, this is a perfectly acceptable way to overload the +
operator relative to the coord class:

/7 Overload + relative to coord class using references.

coord coord: :operator+ (coord &ob2)

coord temp;

206 TEACH YOURSELF

C++

temp.x = x * ob2.x:

Lemp.y = y • ob2.y;

return temp;

One reason for using a reference parameter in an operator
function is efficiency. Passing objects as parameters to functions
often incurs a large amount of overhead and consumes a
significant number of CPU cycles. However, passing the address
of an object is always quick and efficient. If the operator is going
to be used often, using a reference parameter will generally
improve performance significantly.

Another reason for using a reference parameter is to avoid
the trouble caused when a copy of an operand is destroyed. As
you know from previous chapters, when an argument is passed
by value, a copy of that argument is made. If that object has a
destructor function, when the function terminates, the copy's
destructor is called. In some cases it is possible for the
destructor to destroy something needed by the calling object. If
this is the case, using a reference parameter instead of a value
parameter is an easy (and efficient) way around the problem. Of
course, you could also define a copy constructor that would
prevent this problem in the general case.

EXERCISES

1. Relative to coord, overload the * and / operators. Demonstrate
that they work.

2. Why would the following be an inappropriate use of an
overloaded operator?

/
coord coord::operatOr%(coord ob)

double i;

cout << Enter a number:

cm >> i;
cout << root of	 <e I <<	 is

INTRODUCING OPERATOR OVERLOADING 207
63 OVERLOADING THE 9EJA7I0NAL AND LOGICAL OPERATORS

cout << sqr(i);

3. On your own, experiment by changing the return types of the
operator functions to something other than coord. Sec what
typA of errors result.

0
VERLOADING THE RELATIONAL AND
LOGICAL OPERATORS

It is possible to overload the relational and logical operators. When you
overload the relational and logical operators so that they behave in
their traditional manner, you will not want the operator functions to
return an object of the class for which they are defined. Instead, they
will return an integer that indicates either true or false. This not only
allows these operator functions to return a true/false value, it also
allows the operators to be integrated into larger relational and logical
expressions that involve other types of data.

If you are using a modern C++ compiler, you can also have an overloaded
relational or logical operator function return a value of type boo!, although

there is no advantage to doing so. As explained in Chapter 1, the bool type

defines only two values: true and false. These values are automatically
converted into nonzero and 0 values. Integer nonzero and U values are
automatically converted into true and false.

I	 EXAMPLE

1. In the following program, the = = and && operators are
overloaded:

II Overload the == and && relative to coord class.

#include <iostream'

using narnespace std;

class, c44rd

	

mt x,	 ; II coordinate values

208 TEACH YOURSELF

public:
coord() { x=0; y=O;
coord(irit 1, mt j) (x=i; y=j;
yoid get_xy(int &i, mt &j) { ix; j=y
mt operator==(coord ob2);
mt operator&&(coord ob2);

II Overload the == operator for coordj Ot coord::operator==(coord ob2)
return x=ob2.x && y=ob2.y;

II Overload the && operator for coord.
mt coord::operator&&(coord ob2)

return (x && ob2.x) && (y && ob2.y);

"I

jot main()
coord 01(10, 10). o2(5, 3), 03(10, 10), 04(0, 0);

if(ol==o2) cout << ol same as o2\n';
else cout << "01 and o2 differ\n';

if(ol==o3) cout << ol same as o3\n';
else cout << o1 and o3 differ\n;

if(ol&&o2) cout << "ol && o2 is true\n;
else cout << 'ol && o2 is false\n';

if(ol&&o4) cout	 ol && o4 is true\n;
else cout << ol && o4 is false\n';

return 0;

INTRODUCING OPERATOR OVERLOADING 209
64 OVERLOADING A UNARY OFR.I TOR

EXERCISE

1. Overload the < and > operators relative to the coord class.

pVERLOADING A UNARY OPERATOR

Overloading a unary operator is similar to overloading a binary
operator except that there is only one operand to deal with. When you
overload a unary operator using a member function, the function has
no parameters. Since there is only one operand, it is this operand that
generates the call to the operator function. There is no need for
another parameter.

1. The following program overloads the increment operator (+ +)
relative to the coord class:

// Overload •-* relative to coord class.
#include <iostream>
using namespace std;

class coord
mt x, y; II coordinate values

public:

coord() (x=O; y=O,
coord(int i, mt j)
Void get_xy(int &i,
coord operator++ ;

x-i; yj;
mt &j) { ix; j=y;

1/ Overload ++ for coord class.
coord coord: :operator++()

X++;

+

210 TEACHYOURSELF

C++

return *this;

mt main()

coord 01(10, 10);
mt X, y;

++ol; II increment an object
ol.get_xy(x, y);
cout <<	 (-*.ol) X:	 << X <<	 ,	 << y <c \fl'

return 0;

Since the increment operator is designed to increase its operand
by I, the overloaded + + modifies the object it operates upon.
The function also returns the object that it increments. This
allows the increment operator to be used as part of a larger
statement, such as this:
02 =

As with the binary operators, there is no rule that says-you must
overload a unary operator so that it reflects its normal meaning.
However, most of the time this is what you will want to do.

2. In early versions of C++, when an increment or decrement
operator was overloaded, there was no way to determine
whether an overloaded + + or - - preceded or followed its
operand. That is, assuming the preceding program, these two
statements would have been identical:

o1+--;

++01;

However, the modern specification for C++ has defined a way
by which the compiler can distinguish between these two
statements. To accomplish this, create two versions of the
operator + + function. The first is defined as shown in the
preceding example. The second is declared like this:

coord coord: :operator++ (tnt nôtused);

IPliRODUCING OPERATOR OvERLOADING 211
V

6.4 OVERLOADING A UNARY OPERATOR

If the + + precedes its operand, the operator+ +() function
is called. However, if the + + follows its operand, the
operator + + (mt notused) function is used. In this case,
notused will always be passed the value 0. Therefore, if the
difference between prefix and postfIx increment or decrement
is important to your class objects, you will need to implement
both operator functions.

3. As you know, the minus sign is both a binary and a unary
operator in C++. You might be wondering how you can overload
it so that it retains both of these uses relative to a class that you
create. The solution is actually quite easy: you simply overload
it twice, once as a binary operator and once as a unary operator.
This program shows how:

II Overload the - relative to coord class.

#include <iostream>
using namespace std;

class coord
mt x, y; // coordinate values

public:
coord() { x=O; Y=O; }.
coord(int 1, mt j) { x=i; y=j;
void get_xy(int &i, mt &j) { i=x; jy;
cóord operator-(coord ob2); /7 binary minus
coord operator-(); II unary minus

II Overload - relative to coord class.
coord coord::operator-(coord ob2)

coord temp;

temp.x	 x - ob2.x;
temp.y = y - ob2.y;

return temp;

II Overload unary - for coord class.
coord coord: :operator-()

212 ThACH YOURSELF

C++

x
Y=

return *this;

mt main))

coord ol(10, 10), 02(5, 7);
mt x, y;

ol = ol - o2; II subtraction
ol.get_xy(x, y);
cout <<	 (ol-o2) X: ' << x << , 1;	 << y	 \n;

ol = -ol; /7 negation
ol.get_xy(x, y)
cout << '(-ol) X: ' << x << ",	 << y <<

return 0;

As you can see, when the minus is overloaded as a binary
operator, it takes one parameter. When it is overloaded as a
unary operator, it takes no parameter. This difference in the
number of parameters is what makes it possible for the minus to
be overloaded for both operations. As the program indicates,
when the minus sign is used as a binary operator, the
operator-(coord ob2) function is called. When it is used as a
unary minus, the operator-() function is called.

EXERCOM

1. Overload the - - operator for the coord class. Create both its
prefix and postfi.x forms.

2. Overload the + operator for the coord class so that it is both a
binary operator (as shown earlier) and a unary operator. When
it is used as a unary operator, have the + make any negative
coordinate value positive.

INTRODUCING OPERATOR OVERLOADING 213
65 USING FR/END OPERATOR FUNCIIONS

FRIEND OPERATOR FUNCTIONS

As mentioned at the start of this chapter, it is possible to overload an
operator relative to a class by using a friend rather than a member
function. As you know, a friend function does not have a this pointer.
In the case of a binary operator, this means that a friend operator
function is passed both operands explicitly. For unary operators, the
single operand is passed. All other things being equal, there is no
reason to use a friend rather than a member operator function, with
one important exception, which is discussed in the examples.

You cannot use a friend to overload the assignment operator. The assignment
operator can be overloaded only by a member operator function.

1. Here operator + is overloaded for the coord class by using a
friend function:

II Overload the + relative to coord class using a friend.
include <iostream>

using namespace std;

class coord
mt x, y; II coordinate values

public:

coord() (x=O; Y=O;
coord(int i, mt j) (x=i; y=j;
void get xy(int &i, mt &j) { i=x; j=y;
friend coord operator+(coord obl, coord ob2);

II Overload + using a friend.
coord operator .. (coord obi, coord ob2)

coord temp;

temp.x	 obl.x + ob2.x;
temp.y = obl.y + ob2.y;

214 TEACH YOURSELF

C++

return temp;

jot main()

coord ol(10, 10), 02(5, 3), 03;

mt x, y;

o3 = ol * o2; II add two objects	 this calls operator*()

o3.get_xy(x, y);
cout << (ol*o2) X:	 << x << ',	 << y <<

return 0;

Notice that the left operand is passed to the first parameter and
the right operand is passed to the second parameter.

2. Overloading an operator by using a friend provides one very
important feature that member functions do not. Using a friend
operator function, you can allow objects to be used in operations
involving built-in types in which the built-in type is on the left
side of the operator. As you saw earlier in this chapter, it is
possible to overload a binary member operator function such
that the left operand is an object and the right operand is a
built-in type. But it is not possible to use a member function
to allow the built-in type to occur on the left side of the
operator. For example, assuming an overloaded member
operator function, the first statement shown here is legal; the
second is not:

obl	 ob2 * 10; II legal

obi = 10 + ob2; II illegal

While it is possible to organize such statements like the first,
always having to make sure that the object is on the left side of
the operand and the built-in type on the right can be a
cumbersome restriction. The solution to this problem is to make
the overloaded operator functions friends and define both
possible situations.

As you know, a friend operator function is explicitly passed
both operands. Thus, it is possible to define one overloaded
friend function so that the left operand is an object and the right

INTRODUCING OPERATOR OVERLOADING 215
6.5 USING FR/END OPERATOR FUNCTIONS

operand is the other type. Then you could overload the operator
again with the left operand being the built-in type and the right
operand being the object. The following program illustrates
this method:

II Use friend operator functions to add flexibility.

#include <iostream>

using narnespace std;

class coord
mt x, y; If coordinate values

public:
cçord() (x=O; Y=O;
coord(int i, mt j) { x=i; y=j;
void get_xy(int &i, mt &j) { ix; j=y;
friend coord operator+(coord obl, inc i);
friend coord operator+(iflt i, coord obl);

II Overload for ob * mt.
coord operatorc(coord obi, mt i)

coord temp;

temp.x = obl.x * U
temp.y = obl.y + i;

return temp;

II Overload for mt + ob.
coord operator-.-(int i, coord obi)

coord temp;

ternp.x	 obl.x +
temp.y = obl.y * i;

return temp;

mt main()

216 ItACH YOURSEI.F

V C++

coord ol (10, 10);
mt x, y;

01 = ol + 10; II object * integer

ol.get_xy(x, y);
cout << "(01.10) X:	 << x << ", Y:	 << y <<

01 = 99 • 01; II integer * object

ol.get_xy(x, y);
cout <e (99*01) X: " << x <<	 << y <<

return 0;

H

As a result of overloading friend operator functions for both
situations, both of these statements are now valid:

ol = o1 + 10;
ol = 99 * ol;

3. If you want to use a friend operator function to overload either
the + + or - - unary operator, you must pass the operand to the
function as a reference parameter. This is because friend
functions do not have this pointers. Remember that the
increment and decrement operators imply that the operand will
be modified. However, if you overload these operators by using
a friend that uses a value parameter, any modifications that
occur to the parameter inside the friend operator function will
not affect the object that generated the call. And since no
pointer to the object is passed implicitly (that is, there is no this
pointer) when a friend is used, there is no way for the
increment or decrement to affect the operand.

However, if you pass the operand to the friend as a
reference parameter, changes that occur inside the friend
function affect the object that generates the call. For example,
here is a program that overloads the + + operator by using a
friend function:

Overload the ** using a friend.
#include <iostream>
using riamespace std;

(
,.

\ "t	 INTRODUCING OPERATOR OVERLOADING 217
6.5 USING fR/END OPERATOR FUNCTiONS "

class coord
mt x, y; II coordinate values

public:
coord() C x0; y=0;
coord(int i, mt) C x=i; y=j;
void get_xy(int &i, mt &j) C i=x; j=y;
friend coord operator * .(coord &ob);

II Overload ++ using a friend.
coord operator.+(coord &ob) II use reference parameter

ob. x. +;
ob. y, +;

return ob; II return object generating the call

mt main()

coord 01(10, 10);
mt x, y;

*ol; II ol is passed by reference
ol.get_xy(x, y);
cout << '(*.ol) X:	 << x << ", Y:	 << y < e	 \n';

return 0;
Pi

If you are using a modern compiler, you can also distinguish
between the prefix and postfix forms of the increment or
decrement operators when using a friend operator function in
much the same way you did when using member functions. You
simply add an integer parameter when defining the postflx
version. For example, here are the prototypes for both the prefix
and postfix versions of the increment operator relative to the
coord class:

coord operator*(coord &ob); ii prefix
coord operator+,(coord &ob, mt notused); II postfix

218 rEAcH VOURSa

C++.

If the + + precedes its operand, the operator+ +(coord &oh)
function is called. 1-lowever, if the + + follows its operand, the
operator+ +(coord &ob mt notused) function is used. In
this case, zotuscd will he passed the value 0.

EXERCISES

1. Overload the - and / operators for the coord class using friend
functions.

2. Overload the coord class so it can use coord objects in
operations in which an integer value can he miltiplied by
each coordinate. Allow the operations to use either order:
ob * mt or jut * ob.

3. Explain why the solution to Exercise 2 requires the use of friend
operator functions.

4. Using a friend, show how to overload the - - relative to the
coord class. Define both the prefix and postfix forms.

A CLOSER LOOK AT THE ASSIGNMENT
OPERATOR

As you have seen, it is possible to overload the assignment operator
relative to a class. By default, when the assignment operator is applic
to an object, a bitwise copy of the object on the right is put into the
object on the left. If this is what you want, there is no reason to
provide your own operator ()function. However, there are cases
in which a strict bitwise copy is not desirable. You saw some examples
of this in Chapter 3, in cases in which an object allocates memory.
In these types of situations, you will want to provide a special
assignment operation.

INTRODUCING OPERATOR OVERLOADING 219
66 A CLOSER LOOKAT THE ASSIGNMENT OPERA TOP

1. 1 lere is another version of the strtypc class that you have Seen
in various forms in the preceding chapters. However, this
version overloads the = operator so that the pointer p is not
overwritten by an assignment operation.

#include <iostiream>

)include <cstring>

#include <cstdlib>

using namespace std;

class strtype

char *p.

mt len;

public:

strtype(char *s);

-strtype()

cout << Freeing	 << (unsigned) p e<

delete [1 p;

char *get() { return p;

strtype &operator(strtype &ob);

ir

strtype: :strtype(char *s)

mt 1;

1 = strlen(s)+l;

p	 new char [1];

if(!p)

cout << "Allocation error\n";

exit(l)

len	 1;

strcpy(p, s);

220 TEACH YOURSELF

C++

II Assign an object.
strtype &strtype: :operator(StrtYPe &ob)

see if more memory is needed

if(len < ob.len) (II need to allocate more memory

delete [I p;
p	 new char (ob.len];

if(!p)
cout << "Allocation error\n";

exit (1)

len	 ob.len;
strcpy(p, ob.p);
return *this;

mt main()

strtype a("Hello"), b('There');

cout << a.get() <<
cout << b.get() << '\n';

a	 b; II now p is not overwritten

cout << a.get() <<
cout << b.get() <<

return 0;

P1

As you can see, the overloaded assignment operator prevents p
from being overwritten. It first checks to see if the object on the
left has allocated enough memory to hold the string that is being
assigned to it. If it hasn't, that memory is freed and another
portion is allocated. Then the string is copied to that memory
and the length is copied into len.

Notice two other important features about the operator=(
function. First, it takes a reference parameter. This prevents a
copy of the object on the right side of the assignment from being
made. As you know from previous chapters, when a copy of an
object is made when passed to a function, that copy is destroyed

INTRODUCING OPERATOR OVERLOADING 221
6.6 A CL OSER LOOK AT THE ASSIGNMENT OPERA TOR V

when the function terminates. In this case destroying the copy
would call the destructor function, which would free p.
However, this is the same p still needed by the object used as an
argument. Using a reference parameter prevents this problem.

The second important feature of the operator = () function
is that it returns a reference, not an object. The reason for this is
the same as the reason it uses a reference parameter. When a
function returns an object, a temporary object is created that is
destroyed after the return is complete. However, this means
that the temporary object's destructor will be called, causing p
to be freed, but p (and the memory it points to) is still needed
by the object being assigned a value. Therefore, by returning a
reference, you prevent a temporary object from being created.

As you learned in Chapter 5, Creating a copy constructor is
another way to prevent both of the problems described in
the preceding two paragraphs. But the copy constructor
might not be as efficient a solution as using a reference
parameter and a reference return type. This is because
using a reference prevents the overhead associated with
copying an object in either circumstance. As you can see,
there are often several ways to accomplish the same end in
C++. Learning to choose between them is part of
becoming an excellent C++ programmer.

EXERCISE

1. Given the following class declaration, fill in all the details that
will create a dynamic array type. That is, allocate memory for
the array, storing a pointer to this memory in p. Store the size of
the array, in bytes, in size. Have püt() return a reference to
the specified element, and have get() return the value of a
specified element. Don't allow the boundaries of the array to be
overrun. Also, overload the assignment operator so that the
allocated memory of each array is not accidentally destroyed
when one array is assigned to another. (In the next section you
will sec a way to improve your solution to this exercise.)

222 TEACH YOURSELF

C++

class dynarray

mt *p;

mt size;

public:

dynarray(int s); II pass size of array in S

mt &put(int i); II return reference to element I

mt get(int i); II return value of element i

create operator=() function

pvERL0ADING THE (1
SUBSCRIPT OPERATOR

The last operator that we will overload is the [J array subscripting
operator. In C++, the [] is considered a binary operator for the
purposes of overloading. The [] can be overloaded only by a member
function. Therefore, the general form of a member operator[Jo
function iss shown here:

type class-name::operator[]Cint index)

II...

Technically, the parameter does not have to be of type int, but
operator[] () functions are typically used to provide array
subscripting and as such an integer value is generally used.

To understand how the 	 operator works, assume that an object
called 0 is indexed as shown here:

O[9}

This index will translate into the following call to the
operator[Jo function:

O.operator[] (9)	 itTh:

•	 .;::

,	 -

INTRODUCING OPERATOR OVERLOADING 223
6.7 OVERLOADING THE!] SUBSCRIPT OPERATOR

fiat is, the value of the expression within the subscripting operator is
assed to the operator[I() function in its explicit parameter. The

this pointer will point to 0, the object that generated the call.

I. In the following program, arraytype declares an array of five
integers. Its constructor function initializes each member of the
array. The overloaded operator[I() function returns the value
of the element specified by its parameter.

#inelude <iostream>
using namespace std;

const mt SIZE	 5;

class arraytype
irit a[SIZE];

public:
arraytype()

mt i;
for(i=0; i<SIZE; i*+) a[i

mt operator[) (mt i) { return a[i]

mt main()

arraytype ob;
mt i;

for(i=O; i<SIZE; i++)
cout << ob[i] <<

return 0;
II

This program displays the following output:

01234

The initialization of the array a by the constructor in this
and the following programs is for the sake of illustration only. It
is flflf required.

S

224 TEACH YOURSELF

C++

2. It is possible to design the operator[I() function in such a
way that the [J can be used on both the left and right sides of
an assignment statement. To do this, return a reference to the
element being indexed. For example, this program makes this
change and illustrates its use:

#include <lostream>
using namespace std;

const mt SIZE	 5;

class arraytype
mt a[SIZE];

public:
arraytype()
mt i;
for(i=0; i<SIZE; i++) a[i] = i;

int &operator[](int i) { return a[i];

mt main()

arraytype ob;
mt i;

for(i=0; i<SIZE i++)

cout << ob[i] <<

cout <<

II add 10 to each element in the array

for(i=O; i<SIZE; i++)

ob[i] = b[i]+10; 	 II [J on left of =

for(i=0; i<SIZE; i*+)
cout << ob(i] <<

return 0;

This program displays the following output:

01234
10 11 12 13 14

INTRODUCING OPERATOR OVERLOADING 225
El OVERLOADING THE[] SUBSCRIPT OPERATOR

Because the operator[]() function now returns a reference to
the array element indexed by i, it can be used on the left side of
an assignment to modify an clement of the array. (Of course, it
can still be used on the right side as well.) As you can see, this
makes objects of arraytype act like normal arrays.

One advantage of being able to overload the	 operator is that
it allows a better means of implementing safe array indexing.
Earlier in this book you saw a simplified way to implement a
safe array that relied upon functions such as get() and put()
to access the elements of the array. 1-Icre you will see a better
way to create a safe array that utilizes an overloaded []
operator. Recall that a safe array is an array that is encapsulated
within a class that performs bounds checking. This approach
prevents the array boundaries from being overrun. By
overloading the [I operator for such an array, you allow it to be
accessed just like a regular array.

To create a safe array, simply add bounds checking to the
operator[Jo function. The operator[Jo must also return a
reference to the element being indexed. For example, this
program adds a range check to the previous array program and
proves that it works by generating a boundary error:

II A safe array example.
#iriclude <iostream>
#include <cstdlib>
using narnespace std;

const mt SIZE	 5;

class arraytype
mt a[SIZE];

public:
arraytype()

mt i;
for(i=O; i<SIZE; icc) ali] =

mt &operator[) (mt i)

// provide range checking for arraytype.
mt &arraytYPe: :operator[l (mt i)

226 TEACH YOURSELF

C++

if(i<O 11 1> SIZE-1)
cout << \nlndex 'value of
cout << i <<	 is out of bounds.\n
exit(i)

return a(i};

mt main()

arraytype ob;
mt

/7 this is 01<
for(i=O; i<SIZE; i+*)
cout << ob[i] <<

/* this generates a run-time error because
SIZE+lOO is out of range *7

ob[SIZE+lOO] = 99; /7 error

return 0;

H

In this program, when the statement
ob[SIZE+100] = 99;

executes, the boundary error is intercepted by operator[J ()
and the program is terminated before any damage can be done.

Because the overloading of the [I operator allows you to
create safe arrays that look and act just like regular arrays, they
can be seamlessly integrated into your programming
environment. But be careful. A safe array adds overhead that
might not be acceptable in all situations. In fact the added
overhead is why C++ does not perform boundary checking on
arrays in the first place. However, in applications in which you
want to be sure that a boundary error does not take place, a safe
array will be worth the effort.

INTRODUCING OPERATOR OVERLOADING 227
SKILLS CHECK

EXERCISES

1. Modify Example 1 in Section 6.6 so that strtypc overloads the
] operator. Have this operator return the character at the

specified index. Also, allow the [Jto be used on the left side of
the assignment statement. Demonstrate its use.

2. Modify your answer to Exercise I from Section 6.6 50 that it uses
[jto index the dynamic array. That is, replace the get() and
put() functions with the E J operator.

SKILLS CHECK

r
LI 4r
b. 1 IIN

At this point you should be able to perform the following exercises
and answer the questions.

1. Overload the >> and <<shift operators relative to the coord
class so that the following types of operations are allowed:

ob << integer
ob >> integer

Make sure your operators shift the x and y values by the
amount specified.

2. Given the class
class three_d

mt x, y,
public:

three_d(int 1,. mt j, mt k)

X = i; y = j; z =

228 TEACH YOURSELF

C++

three-do	 i x=O; Y=O; z=O;
void get(int &i mt &j, mt &k)

I	 X; j = y; k =

II

overload the +, -, + +, and - - operators for this class.
(For the increment and decrement operators, overload only the
prefix form.)

3. Rewrite your answer to Question 2 so that it uses reference
parameters instead of value parameters to the operator
functions. (Hint: You will need to use friend functions for the
increment and decrement operators.)
How do friend operator functions differ from member operator
functions?

5. Explain why you might need to overload the assignment
operator.

6. Can operator	 be a friend function?

7. Overload the + for the three_d class in Question 2 so that it
accepts the following types of operations:

ob	 int;
mt. + ob;

8. Overload the = =, I =, and operators relative to the three_d
class from Question 2.

9. Explain the main reason for overloQ.ding the [] operator.

INTRODUCING OPERATOR OVERLOADING 229
SKILLS CHECK V

%M rns check

This section checks how well you have integrated material in this
chapter with that from the preceding chapters.

1. Create a strtypc class that allows the following types
of operators:
V string concatena t ion using the + operator

V string assignment using the = operator
V string comparisons using <,	 and = =

Feel free to use fixed-length strings. This is a challenging
assignment, but with some thought (and experimentation), you
should be able to accomplish it.

S

7

4d9

2' .4

Inheritance

chapter objectives

7.1 Base class access control

7.2 Using protected members

7.3 Constructors, destructors, and inheritance

7.4 Multiple inheritance

7.5 Virtual base classes

r ,

23
V

232 TEACH YOURSELF

C++

Y

ou were introduced to the concept of inheritance earlier in
this hook. Now it is time to explore it more thoroughly.
Inheritance is one of the three principles of OOP and, as
such, it is an important feature of C++. Inheritance does
more than just support the concept of hierarchical

classification; in Chapter 10 you will learn how inheritance provides
support for polymorphism, another principal feature of OOP.

The topics covered in this chapter include base class access control
and the protected access specifier, inheriting multiple base classes,
passing arguments to base class constructors, and virtual base classes.

'Review

SkitIs Check

Before proceeding, you should be able to correctly answer the
f011owing questions and do the exercises.

1. When an operator is overloaded, does it lose any of its original
functionality?

2. Must an operator be overloaded relative to a user-defined type,
such as a class?

3. Can the precedence of an overloaded operator be changed? Can
the number of operands he altered?

4. Given the following partially completed program, fill in the
needed operator functions:
#iflclucje <iostream,
using narnespace std;

class array

mt nums(lO);
public:

array()

void set(int n[10]);
void showO;
array operator. (array ob2)
array operator- (array ob2);
inc operaLor=(array ob);

INHERITANCE 233
V

array: :array()

•int i;

for(i=0; 1<10; i.*) nurns[i] = 0;

void array::set(int *)

mt i;

for(i=0; 1<10; 1+4-) nums[i]	 n[i];

void array: :show()

mt 1;

for(i=0; i<10; i*+)
cout << nums[iJ

cout <<

II Fill in operator functions.

mt main()

array ol, o2, 03;

mt i[10] = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

1. set (1)
2. set (1)

03 = ol * 02;
o3 . show ();

o3 = ol - 03;
o3.show;

if(ol==o2) cout << ol equals o2\n;
else COut << ol does not equal o2\n';

234 TEACH YOURSELF
C++

if(ol==o3) rout <c al equals o3\n;
else rout << 'ol does not equal o3\n;

return 0;

Have the overloaded + add each element of each operand.
Have the overloaded - subtract each element of the right
operand from the left. Have the overloaded = = return true if
each clement of each operand is the same and return false
otherwise.

5. Convert the solution to Exercise 4 so it overloads the operators
by using friend functions.

6. Using trre class and support functions from Exercise 4, overload
the + + operator by using a member function and overload the
-- operator by using a friend. (Overload only the prefix forms
of + + and --.)

7. Can the assignment operator be overloaded by using a friend
function?

BASE CLASS ACCESS CONTROL
When one class inherits another, it uses this general form;

class derived-class-name: access base-class-name
II

Here access is one of three keywords; public, private, or protected.
A discussion of the protected access specifier is deferred until the
next section of this chapter. The other two are discussed here.

The access specifier determines how elements of the base class are
inherited by the derived class. When the access specifier for the
inherited base class is public, alTublic members of the base become
public members of the derived class If the access specifier is private
all public members of the bse class become private members of the
derived class. In either case, any private members of the base remain
private to it and are inaccessible by the derived class.

It is important to understand that if the access specifier is private,
public members of the base lieconic private members of the de'

INHERITANCE 235
7.1 BASE CLASS ACCESS CONTROL

class, but these members are still accessible by member functions of
the derived class.

Technically, access is optional. If the specifier is not present, it is
private by default if the derived class is a class. If the derived class is
a struct, public is the default in the absence of an explicit access
specifier. Frankly, most programmers explicitly specify access for the
sake of clarity.

1. Here is a short base class and a derived class that inherits it
(as public):

#include <lostream>
using namespace std;

class base
intX;

public:
void setx(int n) { x = n;
void showx() { cout << x <<

7/ Inherit as public.
class derived : public base
mt y;

public:
void sety(int n) { y 	 n;
void showy() { •coUt << y << '\n'	 }

mt main()

derived ob;

ob.setx(lO); /7 access member of base class
ob.sety(20); II access member of derived class

ob.showx(); 7/ access member of base class
ob.showy); II access member of derived class

return C,

236 TEACH YOURSELF

C++

As this program illustrates, because base is inherited as public,
the public members of base-setx() and showx()- become
public members of derived and are, therefore, accessible by
any other part of the program. Specifically, they are legally
called within main().

2. It is important to understand that just because a derived class
inherits a base as public, it does not mean that the derived class
has access to the base's private members. For example, this
addition to derived from the preceding example is incorrect:

class base
intX;

public:
void setx(int n) (x	 n;

void showx() { cout << x <<

II Inherit as public - this has an error!
class derived : public base
mt y;

public:
void sety(int n) (y = n;

/* Cannot access private member of base class.
x is a private member of base and not available
within derived. */

void show sum() { cout << x+y << '\n'; } II Error!

void showy() { cout << y <<

In this example, the derived class attempts to access x, which
is a private member of base. This is an error because the
private parts of a base class remain private to it no matter how
it is inherited.

3. Here is a variation of the program shown in Example 1; this
time derived inherits base as private. This change causes the
program to be in error, as indicated in the comments.

II This program contains an error.
#include <iostream>
using namespace std;

INHERITANCE 237
77 BASE CLASS ACCESS CONTROL

class base
mt X;

public:

void setx(int n) { x 	 n;
void showx() { cout << x <<

II Inherit base as private.
class derived : private base
mt y;

public:

void sety(int n) (y	 n;
void showy() { cout << y <<

mt main()

derived ob;

ob.setx(lQ); II ERROR - now private to derived class
ob.sety(20) . // access member of derived class - OK

Ob.showx . // ERROR - now private to derived class
ob.showy; II access member of derived class - OK

return 0;

II

As the comments in this (incorrect) program illustrate, both
showx() and setx() become private to derived and are not
accessible outside of it.

Keep in mind that showx() and setx() are still publicwithin base no matter how they are inherited by some derived
class. This means that an object of type base could access these
functions anywhere However, relative to objects of type
derived, they become private. For example, given this fragment:
base base_oh;

base_ob.setx(l); 7/ is legal because base_oi . js of type base

the call to setx() is legal because setx() is public within base.

238 TEACH YOURSELF
V

4. As stated, even though public members of a base class become
private members of a derived class when inherited using
the private specifier, they are still accessible within the
derived class. For example, here is a "fixed" version of the
preceding program:

II This program is fixed.
ttinclude ciostream>
using namespace std;

class base
ifltX;

public:
void setx(int ri) (x 	 n;
void showx() { cout << x <<

II Inherit base as private.
class derived private base
mt y;

public:
II se.tx is accessible from within derived
void setxy(int n, mt m) (setx(n); y =
II showx is accessible from within derived
void showxy() { showx(); cout << y <<

irit main()

derived ob;

ob.setxy(lO, 20);.

ob.showxyU;

return 0;

In this case, the functions setx() and showx() are accessed
inside the derived class, which is perfectly legal because they
are private members of that class.

INHERITANCE 239
7.1 USE CLASS ACCESS COMM

EXERCES

1. Examine this skeleton:

#inc].ude <iostream>
using namespace std;

class mybase {
mt a b;

public:
mt C;
void setab(int i, mt j) { a = i; b =
void getab(int &i, mt &j) { i = a; j 	 b;

class derivedi : public mybase

II

class derived2 : private mybase

mt maino)

derivedi 01;
derived2 02;
mt i, j•;

II

Within main(), which of the following statements are legal?

A. ol.getab(i j);
B. o2.getab(i, j);
C. ol.c	 10;
D. o2.c = 10;

2. What happens when a public member is inherited as public?
What happens when it is inherited as private?

3. If you have not done so, try all the examples presented in this
section. On your own, try various changes relative to the access
specifiers and observe the results.

240 TEACH YOURSELF

C++

USING PROTECTED MEMBERS

As you know from the preceding section, a derived class does not have
access to the private members of the base class. This means that if the
derived class needs access to some member of the base, that member
must be public. However, there will be times when you want to
keep a member of a base class private but still allow a derived class
access to it. To accomplish this goal, C++ includes the protected
access specifier.

The protected access specifier is equivalent to the private specifier
with the sole exception that protected members of a base class are
accessible to members of any class derived from that base. Outside the
base or derived classes, protected members are not accessible.

The protected access specifier can occur anywhere in the class
declaration, although typically it occurs after the (default) private
members are declared and before the public members. The full
general form of a class declaration is shown here:

class class-name
II private members

protected: II optional
If protected members

public:
II public members

f When a protected member of a base class is inherited as public by
the derived class, it becomes a protected member of the derived class.
If the base is inherited as private, a protected member of the base
becomes a private member of the derived class)

A base class can also be inherited as protected by a derived class.
When this is the case, public and protected members of the base class
become protected members of the derived class. (Of course, private
members of the base class remain private to it and are not accessible
by the derived class.)

The protected access specifier can also be used with structures.

INHERITANCE 241
7.2 USING PROTECTED MEMBERS

1. This program illustrates how public, private, and protected
members of a class can be accessed:

t.include eiostrearn>

using namespace std;

class samp

7/ private by default

mt a;

protected: /7 still private relative to samp

mt b;

public:

mt. C;

sarnp(int n, mt m) { a = n; b	 m;

mt geta() { return a;

mt getb() { return h;

mt main))

samp ob(10, 20);

// ob.b = 99; Error b is protected and thus private
ob.c	 30; 7/ OK, c is public

cout <c ob.geta() c< '

cout << ob.getb() << ' ' << ob.c <e

return 0;

As you can see, the commented-out line is not permissible in
main() because bis protected and is thus still private to samp.

2. The following program illustrates what occurs when protected
members are inherited as public:

#include <iostream>

using namespace Std;

242 TEACH YOURSEIJ

C-H-	 -

class base
protected: // private to base
mt a, b; II but still accessible by derived

public:
void setab(int n, mt m) { a = n; b 	 m;

class derived : public base
mt C;

public:

void setc(int n) (c = ii;

II this function has access to a and b from base
void showabc()

	

cout	 a << ' ' << b << ' ' << c <<

mt main()

derived ob;

1* a and b are not accessible here because they are
private to both base and derived. *1

ob.setab(l, 2);
ob.setc(3)

ob. showabc ();

return 0;

Because a and b are protected in base and inherited as public by
derived, they are available for use by member functions of
derived. However, outside of these two classes, a and b are
effectively private and unaccessible.

3. As mentioned earlier, when a base class is inherited as
protected, public and protected members of the base class
become protected members of the derived class. For example,
here the preceding program is changed slightly, inheriting base
as protected instead of public:

IM	 243
7.2 USFNG PR07EC7ED MEMBERS

II This program will not compile.
#include <iostream>

using namespace std;

class base
protected: /7 private to base

mt a, b; // but still accessible by derived

public:
void setab(int n, mt m) { a 	 n; b =

class derived : protected base { II inherit as protected

mt C;
public:

void setc(int ri) { c =

II this function has access to a and b from base
void showabc()

cout	 a << ' ' << b << ' ' << c <<

mt mainO

derived ob;

II ERROR: setab() is now a protected member of base.
ob.setab(l, 2); II setab() is not accessible here.

ob.setc(3)

ob.showabc();

return 0;

As the comments now describe, because base is inherited
as protected, its public and protected elements become
protected members of derived and are therefore inaccessible
within mainO.

244 TEACH YOURSELF

V

EXERWSES

What happens when a protected member is inherited as public?
What happens when it is inherited as private? What happens
when it is inherited as protected?

2. Explain why the protected category is needed.

3. In Exercise I from Section 7.1, if the a and b inside myclass
were made into protected instead of private (by default)
members, would any of your answers to that exercise change?
If so, how?

CONSTRUCTORS, DESTRUCTORS,
AND INHERITANLE

It is possible for the base class, the derived class, or both to have
constructor and/or destructor functions. Several issues that relate to
these situations are examined in this section.

When a base class and a derived class both have constructor and
destructor functions, the constructor functions are executed in order
of derivation. The destructor functions are executed in reverse order.
That is, the base class constructor is executed before the constructor in
the derived class. The reverse is true for destructor functions: the
derived class's destructor is executed beforg the base class's destructor.

If you think about it, it makes sense that constructor functions are
executed in order of derivation. Because a base class has no knowledge
of any derived class, any initialization it performs is separate from and
possibly prerequisite to any initialization performed by the derived
class. Therefore, it must be executed first.

On the other hand, a derived class's destructor must be executed
before the destructor of the base class because the base class underlies
the derived class. If the base class's destructor were executed first, it
would imply the destruction of the derived class. Thus, the derived
class's destructor must be called before the object goes out of existence

So far, none of the preceding examples have passed arguments to
either a derived or base class constructor. However, it is possible to do
this. When only the derived class takes an initialization, arguments are

INHERITANCE 245
7.3 CONSTRUCTORS, DESTRUCTORS AND INHERITANCE

passed to the derived class's constructor in the normal fashion.
However, if you need to pass an argument to the constructor of the
base class, a little more effort is needed. To accomplish this, a chain of
argument passing is established. First, all necessary arguments to both
the base class and the derived class are passed to the derived class's
constructor. Using an expanded form of the derived class's constructor
declaration, you then pass the appropriate arguments along to the base
class. The syntax for passing along an argument from the derived class
to the base class is shown here:

derived-constructor (arg-list) base(arg -list)
II body of derived class constructor

Here base is the name of the base class. It is permissible for both the
derived class and the base class to use the same argument. It is also
possible for the derived class to ignore all arguments and just pass
them along to the base.

1. Here is a very short program that illustrates when base class and
derived class constructor and destructor fictions are executed:

include <lostream>

using namespace std;

class base

public:

baseo)	 cout << "Constructing has: class\n"

-base() { cout << "Destructing base cl-ass\n"

class derived : public base

public:

derived)) { cout << 'Constructing derived class\n";

..derived() { cout << "Destructing derived class\n";

mt main))

246 TEACH YOURSELF

C++
derived 0;

return 0;

This program displays the following output:
Constructing base class

Constructing derived class
Destructing derived class
Destructing base class

As you can see, the constructors are executed in order of
derivation and the destructors are executed in reverse order.

2. This program shows how to pass an argument to a derived
class's constructor:

#inclucje <iostream>
using namespace std;

class base
public:

base() { cout << 'Constructing base class\n;
-base() { cout << "Destructing base class\n';

class derived : public base
inC j;

public:

derived(jnt n)

cout << 'Constructing derived class\n;
j	 n;

-derived() { cout << "Destructing derived class\n';
void showj() { cout << j << '\ri'; }

inC main(

derived 0(10);

o.Showj();

return 0;

NHERflANCE 247
7.3 CONSTRUCTORS DES TRUC TORS AND INHERITANCE

Notice that the argument is passed to the derived class's
constructor in the normal fashion.

3. In the following example, both the derived class and the base
class constructors take arguments. In this specific case, both use
the same argument, and the derived class simply passes along
the argument to the base.

#include <iostream>
using namespace std;

class base
irit i;

public:
baseUnt n)

cout << "Constructing base class\ri";
i = a;

-base() { cout << "Destructing base class\n";

void showi() (cout << i <<

class derived public base
mt j;

public:
derived(int n) : base(n) { II pass arg to base class

cout << "Constructing derived class\n";

j	 n;

-derived()	 cout << "Destructing derived class\n";

void showj() (cout << j << '\n';

mt main()

derived 0(10);

0. showi H;

0. showj ()

return 0;

248 TEACH YOURSELF

C++

Pay special attention to the declaration of derived's constructor.
Notice how the parameter n (which receives the initialization
argument) is both used by derived() and passed to base().

4. In most cases, the constructor functions for the base and
derived classes will not use the same argument. When this is the
case and you need to pass one or more arguments to each, you
must pass to the derived class's constructor all arguments
needed by both the derived class and the base class. Then the
derived class simply passes along to the base those arguments
required by it. For example, this program shows how to pass an
argument to the derived class's Constructor and another one to
the base class:

#include <iostream>
using namespace std;

class base
mt i;

public:
base(int n) {

cout << 'Constructing base class\n';
i	 n;

-base() { cout << Destructing base class\n";
void showi()	 cout << ± <<

class derived : public base
mt j;

public:

derived(int n, mt m) : base(m) { II pass arg to base class
cout << "Constructing derived class\n';
j =

.derived() { cout <e "Destructing derived class\n";
void showj () { cout e< j << '\n'

mt main()

derived 0(10, 20);

INHERITANCE 249
73 CONSTRUCTORS, DESTRUCTORS, AND INHERITANCE

o.showiH;
0. showj H

return 0;

5. It is not necessary for the derived class' constructor to actually

USC an argument in order to pass one to the base class. If the
derived class does not need an argument, it ignores the
argument and simply passes it along. For example, in this
fragment, parameter n is not used by derived(). Instead, it is

simply passed to base();

class base
mt 1;

Public:

base(int n)
cout << "Constructing base class\n";

i	 n;

.-base()	 cout << "Destructing base class\n

void showi() (cout << ± <<

class derived : public base
mt 3;

public:
derived(int n)	 base(n) { /1 pass arg to base class

cout << Constructing derived class\n";

j = 0; II n not used here

-derived() { cout << 'Destructing derived class\n';

void showj() { cout << j <<

EXERCISES

1. Given the following skeleton, fill in the constructor function for
myderived. Have it pass along a pointer to an initialization
string to mybase. Also, have myderivcd() initialize len to the
length of the string.

250 TEACH YOURsEIJ

C++

#include <iostream>

4include <cstring>
using namespace std;

class mybase
char str[80];

public:
mybase(char	 (strcpy(str, s);

char *get() { return str;

class myderived : public mybase
mt len;

public:
// add myderived() here
mt getlen() { return len;
void show() { coUt << get() <<

mt main()

myderived ob(thello);

ob.show;
cout << ob.getlen() << '\n';

return 0;

2. Using the following skeleton, create appropriate car() and
truck() constructor functions. Have each pass along
appropriate arguments to vehicle. In addition, have car()
initialize passengers as specified when an object is created.
Have truck() initialize loadlimit as specified when an
object is created.
include <iostream>

using namespace std;

// A base class for various types of vehicles.

class vehicle
mt num_wheels;
mt range;

public:
vehicle(int w, mt r)

INHERITANCE 251
7.3 CONS TRUCTORS DESTRUCrOp. AND INHERITANC	 '

num_wheels = w; range = r;

void showy))

cout << "Wheels: " << nun wheels <<
cout << 'Range:	 << range <<

}

class car : public vehicle
mt passengers;

public;
II. insert car)) constructor here
void show))

showy));
cout << "Passengers: " << passengers <<

class truck : public vehicle
mt loadlimit;

public:
II insert truck)) constructor here
void show))

showy));
cout << "loadlimit " << loadlirnit <<

mt main))

car c(5, 4, 500);
truck t(30000, 12, 1200);

cout << "Car: \n';
c show)>;
cout	 "\nTruck:\n;

show ()

return 0;

252 ThAIl YOURSELF

V

Have car() and truck() declare objects like ths
car ob(passegers, wheels, range);

truck ob(loadlirriit, wheels, range);

JIv7uLTIPLE INHERITANCE
There are two ways that a derived class can inherit more than one
base class. First, a derived class can be used as a base class for another
derived class, creating a multilevel class hierarchy. In this case, the
original base class is said to be an i ndirect base class of the second
derived class. (Keep in mind that any class—no matter how it is
created—can be used as a base class.) Second, a derived class can
directly inherit more than one base class. In this situation, two or
more base classes are comb iñedo -help create the derived class. There
are several issues that arise when multiple base classes are involved,
and these issues are examined in this section.

When a base class is used to derive a class that is used as a base
class for another derived class, the constructor functions of all three
classes are called in order of derivation. (This is a generalization of the
principR you learned earlier in this chapter.) Also, destructor
functions are called in reverse order. Thus, if class BI is inherited by
Dl, and Dl is inherited by D2, 131's constructor is called first, followed
by DI's, followed by D2 's. The destructors are called in reverse order.

When a derived class directly inherits multiple base classes, it uses
this expanded declaration:

class derived-class-name: access base 1, access base2.access baseN

II ... body of class

Here basel through baseN are the base class names and access is the
access specifier, which can be different for each base class. When
multiple base classes are inherited, constructors are executed in the
order, left to right, that the base classes are specified. Destructors are
executed in the opposite order.

INHERITANCE 253
7.4 MULTJPLE/NHERrTANCF

When a class inherits multiple base classes that have constructors
that require arguments, the derived class passes the necessary
arguments to them by using this expanded form of the derived class'
constructor function:

derived-constructor(a rg-list) base 1 (arg-//st), base2(arg-fist),.
baseN(arg-fist)

II body of derived class constructor

Here basel through baseN are the names of the base classes.
When a derived class inherits a hierarchy of classes, each derived

class in the chain must pass l5ack to its preceding base any
arguments it needs.

EXAMPLES
1

1. Here is an example of a derived class that inherits a class
derived from another class. Notice how arguments are passed
along the chain from D2 to Bi.

II Multiple Inheritance
#iriclude <iostream>
using narriespace std;

class Bl
mt a;

public:
Bl(int x) { a = X;
mt getao f return a;

II Inherit direct base class.
class Dl : pubijU Bi

ifltb;
public:

Dl(int x, mt y) : Bl(y) II pass 	 to BI

b	 x;

mt getb() (return b;

254 TEACH YOURSELF

C++

/7 Inherit a derived class and an indirect base.

class 02 : public Dl
mt C;

public:
D2(int x, mt y, mt z) : Dl(y, z) II pass args to Dl

C = X;

1* Because bases inherited as public, 02 has access
to public elements of both Bl and Dl.

void show()
cout << geta() << ' ' << getb() <<
cout << c << '\n'

mt main()

02 ob(l, 2, 3);

ob. show() ;
/1 geta() and getb() are still public here

cout << ob.geta() <<	 ' << ob.getb() <<

return 0;

The call to ob.show() displays 3 21.In this example, Bi is an
indirect base class of D2. Notic hit D2 has access to the public
members of both Dl and Bi. As you should remember, when
public members of a base class are inherited as public, they
become public members of the derived class. Therefore, when
Dl inherits Bl, gcta() becomes a public member of Dl, which
becomes a public member of D2.

As the program illustrates, each class in a class hierarchy
must pass all arguments required by each preceding base class.
Failure to do so will generate a compile-time error.

The class hierarchy created in this program is
illustrated here:

INHERITANCE 255
7.4 MULT,'PLEINHERITANCE

DI

12

Before we move on, a short discussion about how to draw
C++-style inheritance graphs is in order. In the preceding
graph, notice that the arrows point up instead of down.
Traditionally, C++ programmers usually draw inheritance
charts as directed graphs in which the arrow points from the
derived class to the base class. While newcomers sometimes
find this approach counter-intuitive, it is nevertheless the way
inheritance charts are usually depicted in C++.

2. Here is a reworked version of the preceding program, in which
a derived class directly inherits two base classes:

#include <iostream>
using narnespace std;

// Create first base class.
class Bl

mt a;
public:

Bl(int x) { a =
mt geta() { return a; }

II Create second base class.
class B2

mt b;
public:

B2(int x)

b = x;

256 TEACH YOURSELF
V

mt getb() { return b;

II Directly inherit two base classes.
class 0 : public Bi. public B2

mt C;
public:

II here z and y are passed directly to Bl and B2
D(int x, mt y, mt z) : Bl(z), B2(y)

C	 U

II

/ Because bases inherited as public, 0 has access
to public elements of both BI and B2.

void show()
cout << geta() << ' ' << getb() <<
cout << c <<

mt main()

D ob(l, 2, 3);

ob. show;

return 0;

In this version, the arguments to BI and B2 are passed
individually to these classes by D. This program creates a class
that looks like this:

+1

D

3. The following program illustrates the order in which constructor
and destructor functions are calld when a derived class directly
inherits multiple base classes:

INHERITANCE 257
7.4 MULTIPLE INHERITANCE

include <iostream>
using narnespace std;

class BI
public:

Bl() { cout << Constructing Bl\n";
-B1() { cout << Destructing Bl\n';

class B2
mt b;

public:
132() { cout << Constructing B2\ri"
-.-B2() (cout << "Destructing B2\n;

7/ Inherit two base classes.
class D : public al, public B2
public:

Do	 cout << "Constructing D\n;
.D() { cout << 'Destructing D\n"

mt main()

D ob;

return 0;

This program displays the following:

Constructing Bi
Constructing B2
Constructing D
Destructing D
Destructing B2
Destructing BI

As you have learned, when multiple direct base classes are
inherited, constructors are called in order, left to right, as
specified in the inheritance list. Destructors are called in
reverse order.

258 TEACH YOURSELF

C++

EXERCISES

1. What does the following program display? (Try to6 determine
this without actually running the program.)

#include <iostream>
using namespace std;

class A
public:

AC) C cout	 'Constructing A\ri;
-AC) C cout << Descructing A\n;

class B
public:

B() { cout << 'Constructing B\n;
.B() { cout << "Destructing B\n;

class C : public A, public B
public:

CO) C cout e< Constructing C\r;
-CO) C cout << "Destructing C\n;

mt main()

C ob;

return 0;

2. Using the following class hierarchy, create C's constructor so
that it initializes k and passes on arguments to A() and B().
#irjclude <iostrearn>
using namespace std;

class A
i.nt i;

public:
A(int a) { i = a;

INHERITANCE 259
class B	

7.5 VIRTUAL RASE CLASSES
mt j;

public:
B(int a) { j = a;

class C : public A, public B

mt k;
public:

Create CO) so that it initializes k
and passes arguments to both A)) and B))

_ yIRruAL BASE CLASSES $

A potential problem exists when multiple base classes are directly
inherited by a derived class. To understand what this problem is,
consider the following class hierarchy:

Base	 BaseI	 I
Derivedi	 Derived2I	 1k

Derived 3

Here the base class Base is inherited by both Dcriuedl and Derwcd2.

DeriuecL3 directly inherits both Derivedi and Deriucd2. However, this
implies that Base is actually inherited twice by Dcrivcd3—first it is
inherited through Deriuedl, and then again through Derwed2. This
causes ambiguity when a member of Base is used by DenuccL3. Since
two copies of Base are included in Dcnvcd3, is a reference to a member
of Base referring to the Base inherited indirectly through Derived 2 or to
the Base inherited indirectly through Denved2?.To resolve this

260 TEACH VOURSflj
V -

C++

ambiguity, C++ includes a mechanism by which only one copy of Bw
will be included in Den ved3. This feature is called a virtual base class,

In situations like the one just described, in which a derived class
indirectly inherits the same base class more than once, it is possible t
prevent two copies of the base from being present in the derived
object by having that base class inherited as virtual by any derived
classes. Doing this prevents two (or more) copies of the base from
being present in any subsequent derived class that inherits the base
class indirectly. The virtual keyword precedes the base class access
specifier when it is inherited by a derived class.

F	 -EMMpLEs

1. Here is an example that uses a virtual base class to prevent two
copies of base from being present in derived3.
II This program uses a virtual base class.
#include <iostream>
using namespace std;

class base
public:
mt i;

II Inherit base as virtual.
class derivedj : virtual public base
public:
mt j;

Inherit base as virtual here, too.
class derived2 : virtual public base
public:

mt k;

1* Here, deriveci3 inherits both derivedl and derived2.
However, only one copy of base is present.

*1

class derived3 : public derivedl, public derived2
public:

mt product() { return i * j * k;

INHERITAt4cE 261
7.5 VIRTUAL BASE CLASSES

mt main(

derived3 ob;

ob.i = 10; II unambiguous because only one copy present
ob.j = 3;
ob.k = 5;

cout << 'Product is ' << ob.product() <<

return 0;

If derivedi and dcrivcd2 had not inherited base as virtual, the
statement

ob.i = 10;

would have been ambiguous and a compile-time error would
have resulted. (See Exercise 1, below.)

2. It is important to understand that when a base class is inherited
as virtual by a derived class, that base class still exists within
that derived class. For example, assuming the preceding
program, this fragment is perfectly valid:
derivedi ob;

ob.i = 100;

The only difference between a normal base class and a virtual
one occurs when an object inherits the base more than once. If
virtual base classes are used, only one base class is present in
the object. Otherwise, multiple copies will be found.

EXERCISES

1. Using the program in Example 1, remove the virtual keyword
and try to compile the program. Sec what types of errors result.

2. Explain why a virtual base class might be necessary.

262 TEACH YOURSELF

C++

SKILLS CHECK

r
itN^-

I

Mastery
Skills Check

At this point you should be able to perform the following exercises
and answer the questions.

Create a generic base class called building that stores the
number of floors a building has, the number of rooms, and its
total square fbotage. Create a derived class called house that
inherits building and also stores the number of bedrooms and
the number of bathrooms. Next, create a derived class called
office that inherits building and also stores the number of fire
extinguishers and the number of telephones. Note: Your
solution may differ from the answer given in the back of this
book. However, if it is functionally the same, count it as correct.

2. When a base class is inherited as public by the derived class,
what happens to its public members? What happens to its
private members? If the base is inherited as private by the
derived class, what happens to its public and private members?

3. Explain what protected means. (Be sure to explain what it
means both when referring to members of a class and when it is
used as an inheritance access specifier.)

4. When one class inherits another, when are the classes'
constructors called? When are their destructors called?

5. Given this skeleton fill in the details as indicated in
the comments:

#jnclude <iostredfli>
using namespace std;

class planet
protected:

double distance; // miles from the sun
mt revolve; II in days

public:

INHERITANCE 263
SKILLS CHECK

planet(double d, mt r) { distance = d; revolve =

class earth : public planet
double circumference; II circumference of orbit

public:
/* Create earth(double d, mt r) . Have it pass the

distance and days of revolution back to planet.
Have it compute the circumference of the orbit.
(Hint: circumference = 2r*3.1416.)

*1

/* Create a function called show() that displays the
information. *1

mt main()

earth ob(93000000. 365);

ob.show;

return 0;

6. Fix the following program:

/ A variation on the vehicle hierarchy. But
this program contains an error. Fix it. Hint:
try compiling it as is and observe the error
messages.

*1

#include <iostream>
using narnespace std;

// A base class for various types of vehicles.
class vehicle (

mt num_wheels;
mt range;

public:
vehicle(int w, mt r)

num_wheels = w; range = r;

void show))

264 TEACH VOURSaF

C++

cout << Wheels: " << num_wheels <<
cout << Range:	 << range <<

enum motor (gas, electric, diesel);

class motorized : public vehicle
enum motor mtr;

public:

motorized(enum motor m, mt w, mt r) : vehicle(w, r)

mtr = m;

void showm()
cout e 'Motor:
switch(mtr)

case gas : cout << Gas\n';
break;

case electric : cout << 'Electric\n;
break;

case diesel : cout << Diesel\n";
break;

class road—use : public vehicle
mt pasengers;

public:

road_use(jnt p, mt w, mt r) : vehicle(w, r)

passengers = p;

void showr()

cout << Passengers: " << passengers <<

enum steering (power, rack_pinion, manual };

class car : public motorized, public road—Use
enum steering strng;

public:

INHERJTANCE 265
SKILLS CHECK

car(enum steering s, enum motor m, mt w, mt r, mt p)

road_use(p, w, r), motorized(m, w, r), vehicle(w, r)

strng = S;

void show))

showv() ; showr() ; showm()

cout << 'Steering:

switch)strng)

case power : cout << "Power\n";

break;

case rack_pinion : cout << 'Rack and Pinion\n";

break;

case manual : cout << 'Manual\n";

break;

mt main))

car c(power, gas, 4, 500, 5);

c. show()

return 0;

L!urnuiative
SkUls Check

This section checks how well you have integrated material in this
chapter with that from the preceding chapters.

1. In Exercise 6 from the preceding Mastery Skills Check section,
you might have seen a warning message (or perhaps an error
message) concerning the use of the switch statement within car
and motorized. Why?

2. As you know from the preceding chapter, most operators
overloaded in a base class are available for use in a derived

266 TEACH YOURSELF

C++

class. Which one or ones are not? Can you offer a reason why
this is the case?

3. Following is a reworked version of the coord class from the
previous chapter. This time it is used as a base for another class
called quad, which also maintains the quadrant the specific
point is in. On your own, run this program and try to
understand its output.
1* Overload the +, -, and = relative to coord class. Then

use coord as a base for quad. */
#include <iostream>
using narnespace std

class coord
public:
mt x, y; II coordinate values

coord() { x=O; y=O;
coord(int 1, mt j) { x=i; y=j;
void get_xy(int &i, mt &j) { i=x; j"y;
coord operator+(coord ob2);
coord operator- (coord ob2);
coord operator=(coord ob2);

II Overload + relative to coord class.
coord coord::operator+(coord ob2)

coord temp;

cout << 'Using coord operator*H\n';

- temp.x	 x * ob2.x;
temp.y = y + ob2.y;

return temp;

II Overload - relative to coord class.
coord coord::operator-(coord ob2)

coord temp;

cout << Using coord operator-()\n";

INHERITANCE 267
temp.x	 x - ob2.x;	 SKILLSCHECK V
temp.y = y - ob2.y;

return temp;

II Overload = relative to coord.

coord coord: :operator=(coord ob2)

cout << 'Using coord operator=()\n";

x = ob2.x;

y = ob2.y;

return *this; // return the object that is assigned to

class quad	 public coord

mt quadrant;

public:

quad() (x = 0; y = 0; quadrant = 0;

quad(int x, ixt y) : coord(x, y)

if(x>=O && y>=O) quadrant 	 1;

else if(x<O && ys=O) quadrant = 2;

else if(x<0 && y<0) quadrant = 3;

else quadrant = 4;

void showq()

cout << "Point in Quadrant: " << quadrant <<

quad operator=(coord ob2);

quad quad: :operator= (coord ob2)

cout e< "Using quad operator=()\n';

x = ob2.x;

y	 ob2.y;

if(x>=O && y>=O) quadrant = 1;

else if(x=zO && y>=O) quadrant = 2;

else if(x<0 && y<0) quadrant = 3;

else quadrant = 4;

268 TEACH YOURSELF

C++

return *this;

mt main()

quad ol(10, 10), 02(15, 3), o3;
mt x, y;

03 = ol • o2; II add two objects - this calls operator*()
o3. getxy (x. y);
03 . showq ;
cout << '(01*02) X:	 << x << ", Y:	 << y <<

03	 ol - 02; II subtract two objects
o3.get_xy(x, y);
o3 . showq U;
cout << '(01-02) X: 	 << x << ', 	 << y <<

03 = 01; /1 assign an object
o3.get_xy(x, y);
o3 . showq U;
cout << '(03=01) X: 	 << x << ', Y:	 << y <<

return 0;

II

4. Again on your own, convert the program shown in Exercise 3 so
that it uses friend operator functions.

X
0

w•.

, rz, Introducing the
C++ I/O System

chapter objectives

8.1 Some C++ UO basics

8.2 Formatted I/O

8.3 Using width(), precisionO, and fill()

8.4 Using I/O manipulators

8.5 Creating your own inserters

8.6 Creating extractors

it

270 TEACH YOURSELF

C++

A

IHOUGH you have been using C++-style I/O since the first
chapter of this book, it is time to explore it more fully. Like
its predecessor, C, the C++ language includ

	

system that is both flexible and powerful. It i 	 ant to

	

understand that C++ still supports the entin 	 ystem.

	

However C++ supplies a complete set of object-oricntc 	 itincs.
The major advantage of the C++ !/O system is that it c. .
overloaded relative to classes that you create. Put differently, the
C++ I/O system allows you to scamlessly integrate new types that
you create.

Like the C 1/0 system, the C++ object-oriented I/O system makes
little distinction between console and file I/O. File and console I/O are
really just different perspectives on the same mechanism. The
examples in this chapter use console I/O, but the information
presented is applicable to file I/O as well. (File I/O is examined in
detail in Chapter 9.)

At the time of this writing, there are two versions of the I/O library
in USC: the older one that is based on the original specifications for
C++ and the newer one defined by Standard C++. For the most part
the two libraries appear the same to the programmer. This is because
the new I/O library is, in essence, simply an updated and improved
version of the old onç. In fact, the vast majority of the differences
between the two occur beneath the surface, in the way that the
libraries are implemented—not in the way that they are used. From
the programmer's perspective, the main difference is that the new I/O
library contains a few additional features and defines some new data
types. Thus, the new I/O library is essentially a superset of the old
one. Nearly all programs originally written for the old library will
compile without substantive changes when the new library is used.
Since the old-style I/O library is now obsoletc, this book describes only
the new I/O library as defined by Standard C++. But most of the
information is applicable to the old I/O library as well.

This chapter covers several aspects of C++'s I/O system, including
formatted I/O, I/O manipulators, and creating your own I/O inserters
and extractors. As you will see, the C++ I/O system shares many
features with the C 1/0 system.

INTRODUCING THE C++ I/O SYSTEM 271
V

Before proceeding, you should be able to correctly answer the
Ebliowing questions and do the exercises.

1. Create a class hierarchy that stores information about airships.
Start with a general base class called airship that stores the
number of passengers and the amount of cargo (in pounds) that
can be carried. Then create two derived classes called airplane
and balloon from airship. Have airplane store the type of
engine used (propeller or jet) and range, in miles. Have balloon
store information about the type of gas used to lift the balloon
(hydrogen or helium) and its maximum altitude (in feet). Create
a short program that demonstrates this class hierarchy. (Your
solution will, no doubt, differ from the answer shown in the
back of this book. If it is functionally similar, count it as correct

2. What is protected used for?

3. Given the following class hierarchy, in what order are the
constructor functions called? In what Order are the destructor
functions called?
include <iostream>

using namespace std;

class A
public:

A() { cout << "Constructing A\n';
-A() { cout << "Destructing A\n'; }

class B : public A
public;

B() (Cout << 'Constructing B\n
-B() { cout <e Destructing B\nr

I

272
C++

class C : public B
public:

Co { cout << Constructing C\ri";
-Co { cout << 'Destructing C\n

mt main()

C ob;

return 0;

4. Given the following fragment, in what order are the constructor
functions called?

class myclass : public A, public B, public C

5. Fill in the missing constructor functions in this program:
#jnclude <iostream>
using namespace std;

class base {
mt 1, j;

public:
II need Constructor
void showij() { cout << i << ' ' << j << '\n';

class derived : public base
mt k;

public:
II need constructor

void show() { cout << k << ' '; Showij();

irit main()

derived ob(l, 2, 3);

ob.show;

INTRODUCING THE C-H I/O SYSTEM 273
8.? SOME C++I/OBASICS 1

return 0;

In general, when you define a class hierarchy, you begin with
the most 	 class and move to the most

__ class. (Fill in the missing words.)

_SOME C++ I/O BASICS
3efore we begin our examination of C++ I/O, a feW general comments
ire in order. The C++ I/O system, like the C I/O system, operates
:hrough streams. Because of your C programming experience, you
thould already know what a stream is, but here is a summary. A
;tream is a logical device that either produces or consumes
.nformation. A stream is linked to a physical device by the C++ I/O
ystem. All streams behave in the same manner, even if the actual
Dhysical devices they are linked to differ. Because all streams act the
;ame, the I/O system presents the programmer with a consistent
nterface, even though it operates on devices with differing
:apabilities. For example, the same function that you use to write to
:he screen can be used to write to a disk file or to the printer.

As you know, when a C program begins execution, three predefined
itreams are automatically opened: stdin, stdout, and stdcrr. A similar
thing happens when a C++ program starts running. When a C++
program begins, these four streams are automatically opened:

Stream	 Meaning	 Default Device

cin	 Standard input	 Keyboard

cout	 Standard output	 Screen

cerr	 Standard error	 Screen

clog	 Buffered version of cerr	 Screen

As you have probably guessed, the streams cin, cout, and ccrr
correspond to Cs stdin, stdout, and stdcrr. You have already been
using cin and cout. The stream clog is simply a buffered version of
cerr. Standard C++ also opens wide (16-bit) character versions of
these streams called wcin, wcout, wccrr, and wclog, but we won't be

274 TECH YOURSELF

C++

using them in this book. The wide character streams exist to support
languages, such as Chinese, that require large character sets.

By default, the standard streams are used to communicate with the
console. However, in environments that support I/O redirection, thcs
streams can be redirected to other devices.

As you learned in Chapter 1, C++ provides support for its I/O
system in the header file <iostrcam>. . In this file, a rather
complicated set of class hierarchies is defined that supports I/O
operations. The I/O classes begin with a system of template classes.
Template classes, also called generic classes, will be discussed more
fully in Chapter 11; briefly, a template class defines the form of a clas
without fully specifying the data upon which it will operate. Once a
template class has been defined, specific instances of it can he created
As it relates to the I/O library, Standard C++ creates two specific
versions of the I/O template classes: one for 8-bit characters and
another for wide characters. This book will discuss only the 8-hit
character classes, since they are byfar the most frequently used.

The C++ I/O system is built upon two related, but different,
template class hierarchies. The first is derived from the low-level I/O
Glass called basic _streambuf. This class supplies the basic, low-level
input and output operations and provides the underlying support for
the entire C++ I/O system. Unless you are doing advanced I/O
programming, you will not need to use basic streambufdirectly. Th
class hierarchy that you will most commonly be working with is
derived from basic ius. This is a high-level I/O class that provides
formatting, error-checking, and status information related to stream
I/O. basic _ios is used as a base for several derived classes, including
basic_istream, basic_ostream, and basic_iostrcam. These classes
are used to create streams capable of input, output, and input/output,
respectively.

As explained earlier, the I/O library creates two specific versions of
the class hierarchies just described: one for 8-bit characters and one
for wide characters. The following table shows the mapping of the
template class names to their 8-bit character-based versions (including
some that will be used in Chapter 9):

Template Class	 8-Bit Character-Based Class
basic_streambuf	 streambuf
basic_los	 los

INTRODUCING THE C++ I/O SYSTEM 275
8.2 FORM4 nED 1/0

Template Class

basic_istream

basic_ostream

basic_iostream

basic_fstrearn

basic_ifstrea m

basic_ofstream

-Bit Character-Based Class

earn

• tream

iostream

fstream

ifstream

ofstream

The character-based names will be used throughout the remainder of
this book, since, they are the names that you will use in your
programs. They are also the same names that were used by the old
I/O library. This is why the old and the new I/O libraries are
compatible at the source code level.

One last point: The ios class contains many member functions and
variables that control or monitor the fundamental operation of a
stream. It will be referred to frequently. Just remember that if you
include <iostream> in your program, you will have access to this
important class.

FORMATTED I/O

Until now, all examples in this book displayed information to the
screen using C++'s default formats. However, it is possible to output
information in a wide variety of forms. In fact, you can format data
using C++'s I/O system in much the same way that you do using C's
printf() function. Also, you can alter certain aspects of the way
information is input.

Each stream has associated with it a set of format flags that
control the way information is formatted. The ios class declares a
bitmask enumeration called fmtflags, in which the following
values are defined:

adjustfield	 floatuield	 right	 skipws

basefield	 hex	 scientific	 unitbuf

boolaipha	 inLernal	 showbase	 uppercase

dec	 left	 showpoint

fixed	 • Oct	 showpos

276 TEACH YOURSELF

C
These values are used to set or clear the format flags and are defined
within ios. If you are using an older, nonstandard compiler, it may not
define the fmtflags enumeration type. In this case, the format flags
will be encoded into a long integer.

When the skipws flag is set, leading whitespace characters
(spaces, tabs, and ncwlincs) are discarded when input is being
performed on a stream. When skipws is cleared, whitespace
characters are not discarded.

When the left flag is set, output is left justified. When right is set,
output is right justified. When the internal flag is set, a numeric
value is padded to fill a field by inserting spaces between any sign
or base character. if none of these flags is set, cutput is right justified
by default.

By default, numeric values are output in decimal. However, it is
possible to change the number base. Setting the Oct flag causes output
to be displayed in octal. Setting the hex flag causes output to be
displayed in hexadecimal. To return output to decimal, set the dcc flag

Setting showhase causes the base of numeric values to be shown.
For example, if the conversion base is hexadecimal, the value IF will
he displayed as (lxi F.

By default, when scientific notation is displayed, the e is lowercase.
Also, when a hexadecimal value is displayed, the x is lowercase. When
uppercase is set, these characters are displayed uppercase.

Setting showpos causes a leading plus sign to be displayed before
positive values.

Setting showpoint causes a decimal point and trailing zeros to be
displayed for all floating-point output—whether needed or not.

If the scientific flag is set, floating-point numeric values are
displayed using scientific notation. When fixed is set, floating-point
values are displayed using normal notation. When neither flag is set,
the compiler chooses an appropriate method.

When unitbuf is set, the buffer is flushed after each insertion
operation.

When boolaipha is set, Booleans can be input or output using the
keywords true and false.

Since it is common to refer to the Oct, dcc, and hex fields, they can
be collectively referred to as basefield. Similarly, the left, right, and
internal fields can he referred to as adjustficld. Finally, the
scientific and fixed fields can he referenced as floatficid.

INTRODUCING THE C++ I/O SYSTEM 277
8.2 FORMATTED I/O

To set a format flag, use the sctf() function. This function is a

member of ios. Its most common form is shown here:

fmtflags setf(fmtflags flags);

This function returns the previous settings of the format flags and
turns on those flags specified by flags. (All other flags are unaffected.)
For example, to turn on the showpos flag, you can use this statement:

stream.setfos::showpos);

Here stream is the stream you wish to affect. Notice the use of the
scope resolution operator. Remember, showpos is an enumerated

constant within the ios class. Therefore it is necessary to tell the
compiler this fact by preceding showpos with the class name and the
scope resolution operator. If you don't, the constant showpos will

simply not be recognized.
It is important to understand that sctf() is a member function of

the ios class and affects streams created by that class. Therefore, any
call to sctf() is done relative to a specific stream. There is no concept
of calling sctf() by itself. Put differently , there is no concept in C++
of global format status. Each stream maintains its own format status
information individually.

It is possible to set more than one flag in a single call to setf(),
rather than making multiple calls. To do this, OR together the values
Of the flags you want to set. For example, this call sets the showbase
and hex flags for cout;

cout.setf(ios::showbese I ios::hex);

Because the format flags are defined within the ios class, YOU must
access their values by using ios and the scope resolution operator. For
example, showbase by itself will not be recognized, you must specify
ios::showbase.

The complement of setf() is unsctf(). This member function of

ios clears one or more format flags. Its most common prototype form
is shown here:

void unsetf(fmtflags flags):

The flags specified b y fiag.s are cleared. (Al] other flags arc unaffect(,d.)

278 TEACH YOURSELF

C++-

There will be times when you want to know, but not alter, the
current format settings. Since both setf() and unsetf() alter the
setting of one or more flags, ios also includes the member function
flags(), which simply returns the current setting of each format flag.
Its prototype is shown here:

fmtflags flagsQ;

The flags() function has a second form that allows you to set all
format flags associated with a stream to those specified in the
argument to flags(). The prototype for this version of flags() is
shown here:

fmtflags flags(fmtflags f);

When you use this version, the bit pattern found in if is copied to the
variable used to hold the format flags associated with the stream, thus
overwriting all previous flag settings. The function returns the
previous settings.

1. Here is an example that shows how to set several of the
format flags:

#include <iostream>
u ..	 namespace std;

mt main()

II display using default settings
cout << ±23.23 <<	 hello	 << 100 <<
cout << 10 <<	 ' << -10 <<
cout < 100.0 <<

ii now, change formats
cout.unsetf(ios::dec); II not required by all compilers
cout.cetf(ios::hex I ios::scientifjc);
cout << 123.23 <<	 hello ' <<100 << '\n';

cout.setf(ios::showpos);
cout	 10 <<	 '	 -10

INTRODUCING THE C++ I/O SYSTEM 279
8.2 FORMATTED I/O

cout. setf(jos :showpoint I ios: :fixed)
COUt << 100.0;

return 0;

II

This program displays the following output:

123.23 hello 100

10 -10

100

1.232300e*02 hello 64

a fffffff5

*100.000000

Notice that the showpos flag affects only decimal output. It
does not affect the value 10 when output in hexadecimal. Also
notice the unsctf() call that turns off the dcc flag (which is on
by default). This call is not needed by all compilers. But for
some compilers, the dcc flag overrides the other flags, so it is
necessary to turn it off when turning on either hex or oct. In
general, for maximum portability, it is better to set only the
number base that you want to use and clear the others.

2. The following program illustrates the effect of the uppercase
flag. It first sets the uppercase, showbase, and hex flags. It
then outputs 88 in hexadecimal. In this case, the X used in the
hexadecimal notation is uppercase. Next, it clears the
uppercase flag by using unsetf() and again outputs 88 in
hexadecimal. This time, the x is lowercase.

#include <iostream,

using riamespace std;

mt rflajfl()

Cou t.unsetf(jos: :dec);

I ios::showbase I los: :hex);

cout << 88 <<

COUt.unsetf(ios:.uppercase);

cout e< 88 <<

280 TEACH YOURSELF

C++

return 0;

H

3. The following program uses flags() to display the settings of
the format flags relative to cout. Pay special attention to the
showflags() function. You might find it useful in programs
you write.

#include eiostream>
using namespace std;

void showflagsL;

mt memo

II show default condtion of format flags
showflags()

cout.setf(j os: :oct I ios: :showbase I ±os::fixed);

showflags ()

return 0;

II This function displays the Status of the format flags.
void showflags()

ios::fmtflags f;

f = cout.f1agsI; II get flag settings

if(f & ios::sk jpws) cout << skipws on\n;
else cout s< "skipws off\n;

if(f & ios::ieft) cout ee left on\n;
else couc < "left off\n";

if(f & ios::right) cout << "right on\n";
else cout << "right off\n";

if(f & ios;:interrial) cout << "internal on\n";
else cout << "internal off\n";

INTRODUCING THE C++ I/O SYSTEM 281
2 FORMA 7TED I/O

if(f & ios::dec) cout << 'dec on\n";

else cout << "dec off\n";

if(f & ios::oct) cout << "Oct on\n";

else cout << "Oct off\n

if(f & ios::hex) cout << "hex on\n';

else cout << hex off\n";

if(f & ios::showbase) cout << "showbase on\n';

else cout << 'showbase off\n';

if(f & ios::showpoint) cout << 'showpoint on\n'

else cout << "showpoint off\n';

if(f & ios::showpos) cout << "showpos on\n";

else cout << "showpos off\n";

if(f & ios::uppercase) cout << "uppercase on\n";

else cout << "uppercase off\n";

if(f & ioS::scientjfjc) cout << "scientific on\n";

else cout << "scientific off\n';

if(f & ios::fjxed) cout << "fixed on\n';

else cout << "fixed off\n";

if(f & iOS::unitbuf) cout << "unitbuf on\n";

else cout << unitbuf off\n';

if(f & ios::boolalpha) cout << 'boolaipha on\n";

else cout << "boolalpha off\n";

cout <<

Inside showflags(), the local variable f is declared to be of type
fmtflags. If your compiler does not define fmtflags, declare
this variable as long instead. The output from the program is
shown here:

skipws on

left off

right off

internal off

282 TEACH YOURSELF

C++

dec on
Oct off
hex off
showbase off,
showpoint off
showpos off
uppercase off
scientific off
fixed off
unitbuf off
boolaipha off

skipws on
left off
right off
internal off
dec On
Oct on
hex off
showbase on
showpoint off
showpos off
uppercase off
scientific off
fixed on
unitbuf off
boolalpha off

4. The next program illustrates the second version of flags(). It
first constructs a flag mask that turns on showpos showbase,
oct, and right. It then uses flags() to set the flag variable
associated with cout to these settings. The function showflags()
verifies that the flags are set as indicated. (This is the same
function used in the previous program.)

#include <iostream>
using namespace std;

void showflags)

mt main()

II show default condition of format flags
showf lags ()

INTRODUCING THE C++ iio SYSTEM 283
8.3 USING width C), precisionO. AND 111/0

// showpos, showbare, oct., right are on, others oft

los: : fmtf lags f = los: : showpos I los: : showbase

ios::oct I ios::right;

cout.flags(f);	 II set flags

showf lags)

return 0;

EXERCISES

I. Write a program that sets cout's flags so that integers display a
+ sign when positive values are displayed. Demonstrate that
you have set the format flags correctly.

2. Write a program that sets cout's flags so that the decimal point
is always shown when floating-point values are displayed. Also,
display all floating-point values in scientific notation with an
uppercase E.

3. Write a program that saves the current state of the format flags,
sets showbase and hex, and displays the value 100. Then reset
the flags to their previous values.

USING widthQ, precision(),
AND fill()

In addition to the formatting flags, there are three member functions
defined by ios that set these format parameters: the field width the
precision, and the fill character. These are width(), precision(),
and fill(), rspr'tively.

By default, w	 111e is output, it t	 onilyag much space
as the number	 rs it takec to di	 'ver, you can

284 TEACH YOURSELF

C++

specify a minimum field width by using the width() function. Its
prototype is shown here:

streamsize width(streamsize w;

Here tv becomes the field width, and the previOus field width is
returned. The streamsize type is defined by <iostream> as some
form of integer. In some implementations, each time an output
operation is performed, the field width returns to its default setting, so
it might be necessary to set the minimum field width before each
output statement.

After you set a minimum field width, when a value uses less than
the specified width, the field is padded with the current fill character
(the space, by default) so that the field width is reached. However,
keep in mind that if the size of the output value exceeds the minimum
field width, the field will be overrun. No values are truncated.

By default, six digits of precision are used. You can set this number
by using the precision() function. Its prototype is shown here:

streamsize precision(streamsize p);

Here the precision is set to p and the old value is returned.
By default, when a field needs to be filled, it is filled with spaces.

You can specify the fill character by using the fill() function. Its
prototype is shown here:

char fiII(char ch);

After a call to fill(), ch becomes the new fill character, and the old
one is returned.

1. Here is a program that illustrates the format functions:

#include <iostrearn>
using namespace std;

jilt main(

cout.width(lO);	 II set minimum field width

INTRODUCING THE C++ I/O SYSTEM 285
8.3 USING idthQ, prcisionQ, AND /111(3

Cout << "hello" <<
cout.fill('%'
cout.width(10)
cout << "hello <<
cout.setf(ios::left);
cout.width(10)
cout	 hello' <<

cout.width(10)
cout.precision(10)
cout << 123.234567 <<
cout.width(10)
cout.precision(6)
cout << 123.234567 <<

return 0;

II right-justify by default
set fill character

II set width

II right-justify by default
left-justify
set width
output left justified

II set width

II set 10 digits of precision

set width

II set 6 digits of precision

\n';

This program displays the following output:

hello
%%%%%hello
hello%%%%%
123.234567
123.235M

Notice that the field width is set before each output statement.

2. The following program shows how to use the C++ I/O format
functions to create an aligned table of numbers:

I! Create a table of square roots and squares.
#linclude <iostream>
tinclude <crnath>
using namespace std;

mt main()

double X;

cout.precision(4);
cout <<	 x	 sqrt(x)

for(x	 2.0; x <= 20.0; x*+)
cout.width(7)
cout << x <<

x2\n\n";

286 TEACH YOURSUJ
C++

cout.widt.h(7)
cout << sqrt(x)
cout.width(7)
cout << xx <<

return 0;

This program creates the following table:

	

x	 sqrt (x)
	

x2

	

2
	

1.414
	

4

	

3 1.732
	

9

	

4
	

2
	

16

	

5
	

2.236
	

25

	

6
	

2.449
	

36

	

7
	

2.646
	

49

	

8
	

2.828
	

64

	

9
	

3
	

81

	

10
	

3.162
	

100

	

11
	

3.317
	

121

	

12
	

3.464
	

144

	

13 3.606
	

169

	

14
	

3.742
	

196

	

15
	

3.873
	

225

	

16
	

4
	

256

	

17
	

4.123
	

289

	

18 4.243
	

324

	

19
	

4.359
	

361

	

20
	

4.472
	

400

EXERCISES

1. Create a program that prints the natural log and base 10 log of
the numbers from 2 to 100. Format the table so the numbers are
right justified within a field width of 10, using a precision of five
decimal places.

2. Create a function called center() that has this prototype:

INTRODUCING THE c++ uio SYSTEM 287
8,4 USING I/O MANIPULA TORS

void center(char s);

Have this function center the specified string on the screen. To
accomplish this, use the width() function. Assume that the
screen is 80 characters wide. (For simplicity, you may assume
that no string exceeds 80 characters.) Write a program that
demonstrates that your function works.

3. On your own experiment with the format flags and the
format functions. Once you become familiar with the C++ I/O
system, you will have no trouble using it to format output any
way you like.

USING I/O MANIPULATORS
There is a second way that you can format information using C++'s
I/O system. This method uses special functions called I/O
manipulators. As you will see, I/O manipulators are, in some
situations, easier to use than the ios format flags and functions.

I/O manipulators are special I/O format functions that can occur
within an I/O statement, instead of separate from it the way the jog
member functions must. The standard manipulators are shown in
Table 8-1. As you can see, many of the I/O manipulators parallel
member functions of the jog class. Many of the manipulators shown in
Table 8-1 were added recently to Standard C++ and will be supported
only by modern compilers.

To access manipulators that take parameters, such as setw(), you
must include <iomanip> in your program. This is not necessary
when you are using a manipulator that does not require an argument.

As stated above, the manipulators can occur in the chain of I/O
operations. For example:

cout << Oct << 100 << hex << 100;
cout << setw(10) << 100;

The first statement tells cout to display integers in octal and then
outputs 100 in octal. It then tells the stream to display integers in
hexadecimal and then outputs 100 in hexadecimal format. The seond

288 TEACH YOURSELF

IF

boolalpha

dec

endi

ends

fixed

flush

hex

internal

left

noboolalpha

noshowbase

noshowpoint

noshowpos

noskipws

nounitbuf

nouppercase

Oct

resetiosflags(fmtflags I)

right

scientific

setbaseOnt base)

setfillOnt c/i)

setiosflags(fmtflags f)

setprecisionOnt p)
setw(int w)

showbase

Showpoint

showpos

skipws

unitbuf

uppercase

ws

Purpose

Turns on boolalpha flag

Turns on dec flag

Outputs a newline character and flushes the stream

Outputs a null

Turns on fixed flag

Flushes a stream

Turns on hex flag

Turns on internal flag

Turns on left flag

Turns off boolaipha flag

Turns off showbase flag

Turns off showpoint flag

Turns off showpos flag

Turns off skipws flag

Turns off unitbuf flag

Turns off uppercase flag

Turns on Oct flag

Turns off the flags specified in I

Turns on right flag

Turns on scientific flag

Sets the number base to base

Sets the fill character to ch

Turns on the flags specified in I

Sets the number of digits of precision

Sets the field width to w

Turns on showbase flag

Turns on showpoint flag

Turns on showpos flag

Turns on skipws flag

Turns on unitbuf flag

Turns on uppercase flag

Skips leading white space

Input/Output

Input/Output

Input/Output

Output

Output

Output

Output

Input/Output

Output

Output

Input/Output

Output

Output

Output

Input

Output

Output

Input/Output

Input/Output

Output

Output

Input/Output

Output

Input/Output

Output

Output

Output

Output

Output

Input

Output

Output

Input

L(T5T The Standard C++ I/O Manpu/a(ors V

INTRODUCING THE C++ I/O SYSTEM 289
8.4 USING I/O MANIPULATORS

statement sets the field width to 10 and then displays 100 in
hexadecimal format again. Notice that when a manipulator does not
take an argument, such as Oct in the example, it is not followed by
parentheses. This is because it is the address of the manipulator that is
passed to the overloaded <<operator.

Keep in mind that an I/O manipulator affects only the stream of
which the I/O expression is a part. I/O manipulators do not affect all
streams currently opened for use.

As the preceding example suggests, the main advantages of using
manipulators over the ios member functions is that they are often
easier to use and allow more compact code to be written.

If you wish to set specific format flags manually by using a
manipulator, use setiosflags(). This manipulator performs the
same function as the member function setf(). To turn off flags,
use the resetiosflags() manipulator. This manipulator is equivalent
to unseff().

I	 EXAMPLES

1. This program demonstrates several of the I/O manipulators:

*include <iOstream>
#include <iornanip>
using namespace std;

mt main()

cout << hex << 100 << endi;
Cout << oct << 10 << endi;

cout << setfill('X') << setw(10);
cout << 100 <<	 hi	 << endi;

return 0;

This program displays the following:

64
12
XXXXXXX144 hi

290 TEACH YOURSELF

C++

• 2. Here is another version of the program that displays a table of
the squares and square roots of the numbers 2 through 20. This
version uses I/O manipulators instead of member functions and
format flags.
1* This version uses I/O manipulators to display

the table of squares and square roots.
*include <iostream>
#include <iomanip>
#include <cmath>
using namespace std;

mt main()

double x;

cout << setprecision(4);
cout <<	 x	 sqrt(x)	 x2\n\n';

for(x = 2.0; x <= 20.0; x++)
cout << setw(7) << x << -
cout <<.setw(7) << sqrt(x)
cout << setw(7) << xx <<

return 0;

3. One of the most interesting format flags added by the new I/O
library is boolaipha. This flag can be set either directly or by
using the new manipulators boolaipha or noboolaipha. What
makes boolaipha so interesting is that setting it allows you to
input and output Boolean values using the keywords true and
false. Normally you must enter 1 for true and 0 for false. For
example, consider the following program:

/7 Demonstrate boolaipha format flag.
#inc].ude <iostream>
using namespace std;

mt main()

bool b;

cout << 'Before setting boolalpha flag:

INTRODUCING 1HE C++ I /ó sYsliM 291
94 USING I/O MANIPULATORS

b = true;
cout << b
b = false;
cout << b << endl;

cout << After setting boolalpha flag:

b = true;
cout << boolalpha << b <<

b = false;
coUt << b << endl;

cout << Enter a Boolean value:
cm >> boolalpha >> b; // you can enter true or false

cout << You entered	 << b;

return 0;

'1

Here is a sample run:
Before setting boolalpha flag: 1 0
After setting boolalpha flag: true false

Enter a Boolean value: true
You entered true

As you can see, once the boolaipha flag has been set, Boolean
values are input and output using the words true or false.
Notice that you must set the boolaipha flags for cin and cout
separately. As with all format flags, setting boolaipha for one
stream does not imply that it is also set for another.

EXERCISES

1. Redo Exercises 1 and 2 from Section 8.3, this time using I/O
manipulators instead of member functions and format flags.

2. Show the I/O statement that outputs the value 100 in
hexadecimal with the base indicator (the Ox) shown. Use the
setiosflags() manipulator to accomplish this.

3. Explain the effect of setting the boolaipha flag.

292 TEACH YOURSELF

C++

CREATING. YOUR OWN INSERTER

As stated earlier, one of the advantages of the C++ I/O system is that
you can overload the I/O operators for classes that you create. By
doing so, you can seamlessly incorporate your classes into your C++
programs. In this section you learn how to overload C++'s output
operator <<.

In the language of C++, the output operation is called an insertion
and the << is called the insertion operator. When you overload the <
for output, you are creating an inserter function, or inserter for short.
The rationale for these terms comes from the fact that an output
operator inserts information into a stream.

All inserter functions have this general form:

ostream &operator <<(ostream &stream, class-name ob)

II body of inserter
return stream;

The first parameter is a reference to an object of type ostream. This
means that stream must be an output stream. (Remember, ostream is
derived from the ios class.) The second parameter receives the object
that will be output. (This can also be a reference parameter, if that is
more suitable to your application.) Notice that the inserter function
returns a reference to strewn, which is of type ostream. This is
required if the overloaded <.is going to be used in a series of I/O
expressions, such as

cout << obi << ob2 << ob3;

Within an inserter you can perform any type of procedure. What ar
inserter does is completely up to you. However, for the inserter to be
consistent with good programming practices, you should limit its
operations to outputting information to a stream.

Although you might find this surprising at first, an inserter cannot
be a member of the class on which it is designed to operate. Here is
why: When an operator function of any type is a member of a class,
the left operand, which is passed implicitly through the this pointer, i
the object that generates the call to the operator function. This implie
that the left operand is an object of that class. Therefore, if an

INTRODUCING THE C++ I/O SYSTEM 293
8.5 CREATING YOUR OWN INSER TEAS

overloaded operator function is a member of a class, the left operand
must be an object of that class. However, when you create an inserter,
the left operand is a stream and the right operand is the object that
you want to output. Therefore, an inserter cannot be a member
function.

The fact that an inserter cannot be a member function might
appear to be a serious flaw in C++ because it seems to imply that all
data of a class that will be output using an inserter will need to be
public, thus violating the key principle of encapsulation. However,
this is not the case. Even though inserters cannot be members of
the class upon which they are designed to operate, they can be friends
of the class. In fact, in most programming situations you will
encounter, an overloaded inserter will be a friend of the class for
which it was created.

1. As a simple first example, this program contains an inserter for
the coord class, developed in a previous chapter:

II Use a friend inserter for objects of type coord.
#include <lostream>
using namespace std;

class coord
mt X, y;

public:
coord() (x= 0; y= 0;
coord(int i, mt j) { x = 1; y = j; }
friend ostream &operator<<(ostream &stream, coord ob);

ostream &operator<<(ostream &stream, coord ob)

stream << ob.x << 	 << ob.y <<
return stream;

mt main(

COOLd a(l, 1), b(10, 23);

294 TEACH YOURSELF

C++

cout << a << b;

return 0;

II

This program displays the following:

1, 1
10, 23

The inserter in this program illustrates one very important poin
about creating your own inserters: make them as general as
possible. In this case, the I/O statement inside the inserter
outputs the values of x and y to stream, which is whatever
stream is passed to the function. As you will see in the following
chapter, when written correctly the same inserter that outputs
to the screen can be used to output to any stream. Sometimes
beginners are tempted to write the coord inserter like this:

ostream &operator<<(Ostream &stream, coord ob)

cout << ob.x << ,	 << ob.y <e

return stream;

In this case, the output statement is hard-coded to display
information on the standard output device linked to cout.
However, this prevents the inserter from being used by other
streams. The point is that you should make your inserters as
general as possible because there is no disadvantage to doing so.

2. For the sake of illustration, here is the preceding program
revised so that the inserter is not a friend of the coord class.
Because the inserter does not have access to the private parts of
coord, the variables x and y have to be made public.

Create an inserter for objects of type coord, using

a non-friend inserter. */

#include <iostream>
using namespace std;

class coord
public:

mt x, y; // must be public

INTRODUCING THE C++ I/O SYSTEM 295
8.5 CREATING YOUR OWN INSERTERS

coord() { x = 0; y	 0;

coord(int 1, mt j) { x = i; y =

H

II An inserter for the coord class.
ostream &operator<<(ostream &stream, coord ob)

stream << ob.x <c ,	 << ob.y e<
return stream;

mt main()

coord a(l, 1). b(lO, 23);
cout << a << b;

return 0;

II

3. An inserter is not limited to displaying only textual information.
An inserter can perform any operation or conversion necessary
to output information in a form needed by a particular device or
situation. For example, it is perfectly valid to create an inserter
that sends information to a plotter. In this case, the inserter will
need to send appropriate plotter codcs in addition to the
information. To allow you to taste the flavor of this type of
inserter, the following program creates a class called triangle,
which stores the width and height of a right triangle. The
inserter for this class displays the triangle on the screen.

II This program draws right triangles
#include <iostreams
using namespace std;

class triangle
mt height, base;

public:

triangle(int h, mt b) { height = h; base = b;
friend ostream &operator<<(ostrean &streajn, triangle ob);

II Draw a triangle.
ostrearn &operator<c(ostream &stream, triangle ob)

TEACH YOURSELF
V

C++

mt 1, j, h, k;

=	 = ob.base-l;
for(h=ob.height-1; h; h--)

for(k=i; k; k---)
stream <<

stream <<

if(j=i) {
for(k=j-i-l; k; k--)

stream <<
stream <<

1--;

stream <<

for(k=0; k<ob.base; k * -1-) stream
stream <<

return stream;

mt main()

triangle tl(5, 5)	 t2(10, 10), t3(12, 12);

cout << tl;
cout << endl << t2 << endl << t3;

return 0;

Notice that this program illustrates how a properly designed
inserter can be fully integrated into a "normal" I/O expression.
This program displays the following:

INTRODUCING THE C++ I/O SYSTEM 297
8.5 CREATING YOUR OWN INSERTERS

*

**

* *

*	 *
U

*

**

* *

*	 *

*	 *

*	 *

*	 *

*	 *

*	 *

• *

**

* *

	

*	 *

*	 *

*	 *

*	 *

*	 *

*	 *

*	 *

*	 *

** * ** * * * *

EXERCISES

1. Given the following strtype class and partial program, create an
inserter that displays a string:

tinclude <iostream>
#jnclude <cstring>
#include <cstdlib>
using namespace Std;

class strtype
char *p.

298 TEACH YOURSELF

C++

mt len;
public:

strtype(char *ptr)
-strtype() (delete H p;)
friend ostream &operator .<<(ostream &strearn, strtype &ob);

strtype: :strtype(char *ptr)

len	 strlen(ptr)+l;
p = new char [leni;
if (!p)
cout << Allocation error\n;
exit (1)

strcpy(p, ptr)

II

II Create operator<< inserter function here.

mt main))

strtype sl ('This is a test."),)	 s2 ("I like C++.

cout << sl << ' . \n' << s2;

return 0;

2. Replace the show() function in the following program with an
inserter function:

#include <iostream,
using namespace std;

class planet
protected:

double distance; /7 miles from the sun
mt revolve; ,'/ in days

public:

planet(double d, mt r) (distance = d; revolve 	 r;

class earth : public planet
double circumference; II circumference of orbit

INTRODUCING THE C++ I/O SYSTEM 299
8.6 CREATING EXTRACTORS

public:

earth(double d, mt r) : planet(d, r)

circumference = 2*distance*3.1416;

/* Rewrite this so that it displays the information using
an inserter function. *7

void show))

cout << Distance from sun: 	 << distance <<
cout << Days in obit:	 << revolve <<
cout << "Circumference of orbit:	 << circumference e<

mt main))

earth ob(93000000, 365);

cut << ob;

return 0;

3. Explain why an inserter cinnot be a member function.

CREATING EXTRACTORS

Just as you can overload the << output operator, you can overload the
>> input operator. In C++, the >> is referred to as the extraction
operator and a function that overloads it is called an extractor. The
reason for this term is that the act of inputting information from a
stream removes (that is, extracts) data from it.

The general form of an extractor function is shown here:

istrea m &operator>>Ostream &stream, class-name &obj

II body of extractor
return stream;

300 TEACH YOURSFU

C++

Extractors return a reference to istream, which is an input stream.
The first parameter must be a reference to an input stream. The
second parameter is a reference to the object that is receiving input.

For the same reason that an inserter cannot be a member function,
an extractor cannot be a member function. Although you can perform
any operation within an extractor, it is best to limit its activity to
inputting information.

L EXAMPLES

1. This program adds an extractor to the coord class:
/1 Add a friend extractor for objects of type coord.
#include <iostrearn>
using narnespace std;

class coord
mt x, y;

public:

coord() { x = 0; y	 0;
coord(int i, mt j) { x = i; y =

friend ostream &operator<<(ostre 	 &stream, coord ob);
friend istream &operatOr>>(istre 	 &stream, coord &ob);

	

ostrean-i &operator<<(ostre	 &stream, coord ob)

stream << ob.x << ',	 << ob.y <<
return stream;

PJ

istream &operator>>(j stream &stream, coord &ob)

cout << "Enter coordinates:
stream >> ob.x >> ob.y;
return stream;

0

mt main()

coord a(l, 1), b(l0, 23);

INTRODUCING THE C++ I/O SYSTEM 301
cout << a	 b;	

8.6 CREATING EXThACTORS

cm >> a;

cout << a;

return 0;

Notice how theextractor also prompts the user for input.
Although Such

promptingis not required (or even desired) for
most situations, this function shows how a customized extractor
can simplify coding when a prompting message is needed.

Here an inventoy class is created that stores the name of an
item the number on hand, and its cost. The program includes
both an inserter and an extractor for this class.

include <iostrearns

#include <cstring>

using namesace std;

class inventory

char item[40J; // nameof item

mt onhand; II number on hand

double cost; II cost of item

public:

inventory(char i, mt o, double C)

strcpy(item, i)

onhand	 o;

cost = C;

friend ostream &operator<c(ostream &strea.m, inventory ob);

friend istream &operator>o(istream &stream, inventory &ob);

II

ostream &operator<<(ostrearn &stream, inventory ob)

stream << ob.item << :	 << ob.onhand;
Stream <<	 on hand at $" << obcost <<

return stream;

II

istream &operator>>(istream &stream, inventory &ob)

302 TEACH YOURSELF

C++

cout << "Enter item name:
stream >> ob.item;
cout << Enter number on hand:
stream >> ob.onhand;
cOut << 'Enter Cost:
stream >> ob.cost;

return stream;

mt main()

inventory ob("hammer', 4, 12.55);

cout << ob;

cm	 >> ob;

cout << ob;

return 0;

EXERCISES

1. Add an extractor to the strtype class from Exercise 1 in the
preceding section,

2. Create a class that stores an integer value and its lowest factor.
Create both an inserter and an extractor for this class.

INTRODUCING THE C++ I/O SYSTEM 303
-	 SKILLS CHECK

SKILLS CHECK

21
Master
Skills Check

At this point you should be able to perform the following exercises
nd answer the questions.

I. Write a program that displays the number 100 in decimal,
hexadecimal , and octal. (Use the ios format flags.)

2. Write a program that displays the value 1000.5364 in a
20-character field, lcf justified with two decimal places, using *
as a fill character. (Us (, the ios format flags.)

3. Rewrite your answers to Exercises I and 2 so that they use 1/0
manipulators

4. Show how to save the format flags for cout and how to restore
them. Use either member functions or manipulators

5. Create an inserter and an extractor for this class:

class pwr

mt. base;

inc exponent;

double result-.,• // base to the exponent power
public:

pwr (mt b, mt e)

pwr : pw	 Ut. h, I

base z h;

exponent

result = 1;

for(; e; e--) result	 result * base;

6. Create a class called box that stores the dimensions of a square,
Create an inserter that displays a square box on the screen. (Use
any method You 'like to display the box.)

304 TEACH YOURSELF

V

W
This section checks how well you have integrated material in this

chapter with that from the preceding chapters.

1. Using the stack class shown here, create an inserter that
displays the contents of the stack. Demonstrate that your
inserter works.
#include <iostream>

using narnespace std;

#define SIZE 10

Declare a stack class for characters

class stack
char stck[S IZE]; 7/ holds the stack

mt tos; II index of top-of-stack

public:
stack;
void push(char ch) ; /7 push character on stack

char pop; II pop character from stack

Initialize the stack
stack: :stack()

tos = 0;

Push a character.
void stack: :push(char ch)

if(tos=SIZE)
cout << Stack is full\n;

return;

stck[tos] = ch;
tos++;

INTRODUCING THE C++ I/O SYSTEM 305
SKILLS CHECK

II Pop a character.
char stack: :pop()

if(tos==O)
cout << Stack is empty\n;
return 0; /1 return null on empty stack

tOS - -;
return tck[tos]

2. Write a program that contains a class called watch. Using
the standard time functions, have this class's constructor
read the system time and store it. Create an inserter that
displays the time.

3. Using the following class, which converts feet to inches,
create an extractor that prompts the user for feet. Also, create
an inserter that displays the number of feet and inches.
Include a program that demonstrates that your inserter and
extractor wOrk.

class ft—to—inches
double feet;
double inches;

public:
void set(double f)

feet =
inches	 £ * 12;

41
Advanced C++ I/O

chapter objectives

9.1 Creating your own manipulators

9.2 File I/O basics

9.3 Unformatted, binary I/O

9.4 More unformatted I/O functions

9.5 Random access

9.6 Checking the I/O status

9.7 Customized I/O and files

f::;::.

307
V

308 TEACH YOURSELF

Ctf

T1

f is chapter continues the examination of the C++ 1/0
system. In it you will learn to create your own I/O
manipulators and work with files. Keep in mind that the C++
/0 system is both rich and flexible and contains many

features. While it is beyond the scope of this book to include
all of those features, the most important ones are discussed here. A
complete description of the C++ 1/0 system can be found in my book
C++: The Complete Reference (Berkeley: Osborne/McGraw-Hill).

The C++ I/O system described in this chapter reflects the one defined by
Standard C++ and is compatible with all major	 compilers. If you have an
older or nonconforming compiler, its I/O system will not have all the
capabilities described here.

1	 Review
Skills Check

Before proceeding, you should he able to correctly answer the
following questions and do the exercises.

1. Write a program that displays the sentence "C++ is fun in a
40-character-wide field using a ' lon (:) as the fill character.

2. Write a program that displays the outcome of 10/3 to three
decimal places. Use ios member functions to do this.

3. Redo the preceding program using iYO manipulators.

4. What is an inserter? What is an extractor?

5. Given the following class, create an inserter and an extractor
for it.

class date
char d[9]; II store date as string: rnm/ddlyy

public:
// add inserter and extractor

6. What header must be -included if your program is to use 1/0
manipulators that take parameters?

ADVANCED C++ 110 309
91 CREATING YOUR OWN MANIPULATORS

7. What predefined streams are created when a C++ program
begins execution?

_CREATING YOUR OWN MANIPULATORS
In addition to overloading the insertion and extraction operators, you
can further customize C++'s I/O system by creating your own
manipulator functions. Custom manipulators are important for two
main reasons. First, a manipulator can consolidate a sequence of
several separate I/O operations. For example, it is not uncommon to
have situations in which the same sequence of I/O operations occurs
frequently within a program. In these cases you can use a custom
manipulator to perform these actions, thus simplifying your
source code and preventing accidental errors. Second, a custom
manipulator can be important when you need to perform I/O
operations on a nonstandard device. For example, you could use a
manipulator to send control codes to a special type of printer or an
optical recognition system.

Custom manipulators are a feature of C++ that supports OOP, but
they can also benefit programs that aren't object oriented. As you will
see, custom manipulators can help make any I/O-intensive program
clearer and more efficient.

As you know, there are two basic types of manipulators: those that
operate on input streams and those that operate on output streams. In
addition to these two broad categories, there is a secondary division:
those manipulators that take an argument and those that don't. There
are some significant differences between the way a parametcress
manipulator and a parameterized manipulator are created. Further,
creating parameterized manipulators is substantially more difficult
than creating parameterless ones and is beyond the scope of this book.
However, writing your own parameterless manipulators is quite easy
and is examined here.

All paranictcrlcss manipulator output functions have this skeleton:

ostream &manip-name(ostream &stream)

II your code here
return stream;

310 TEACH YOURSELF

C++

Here manip-name is the name of the manipulator and stream is a
reference to the invoking stream. A reference to the stream is
returned. This is necessary if a manipulator is used as part of a larger
I/O expression. It is important to understand that even though the
manipulator has as its single argument a reference to the stream upon
which it is operating, no argument is used when the manipulator is
called in an output operation.

All paramctcrlcss input manipulator functions have this skeleton:

istrea m &man,p-nameOstream & stream)
{

II your code here
return stream;

An input manipulator receives a reference to the stream on which it
was invoked. This stream must be returned by the manipulator.

It is crucial that your manipulators return a reference to the invoking stream. If
this is not done, your manipulators cannot be used in a sequence of input or
output operations.

EXAMPLES

I. As a simple first example, the following program creates a
manipulator called setup() that sets the field width to 10, the
precision to 4, and the fill character to '.
j flclude <iostream>

using namespace std;

ostrearn &setup(ostream &Stream)

stream.wjjth(1Q)

stream.precision(4)

stream, fill ('

return stream;

mt main(

1,

ADVANCED G- 1/0 311
9.1 CREATING YOUR OWN MANIPULATORS

cout << setup <c 123.123456;

return 0;

As you can see, setup is used as part of an I/O expression in the
same way that any of the built-in manipulators would be used.

2. Custom manipulators need not be complex to be useful. For
example, the simple manipulators atn() and note(), shown
here, provide a shorter way to output frequently used words
or phrases.
#include <iostream>
using namespace std;

II Attention:
ostream &atn(ostream &stream)

stream << "Attention:
return stream;

II Please note:
ostream ¬e(ostream &stream)

stream << 'Please Note:
return stream;

mt main()

cout << atn << 'High voltage circuit\n';
cout << note << 'Turn off all lights\ti"

return 0;

Even though they are simple, if used frequently, these
manipulators save you from some tedious typing.

3. This program creates the gctpass() input manipulator, wIich
rings the bell and then prompts for a password:

312 TEACH YOURSEIF

C++

include <iostream>
#include <cstring>
using namespace std;

II A simple input manipulator
istream &getpass(istream &stream)

cout << '\a'; II sound bell
cout << 'Enter password:

return stream;

mt main()

char pw[80];

do{
cm s> getpass == pw;
while (strcmp(pw, 'password'));

cout << "Logon complete\n";

return 0;

EXERCISES

I. Create an output manipulator that displays the current system
time and date. Call this manipulator td().

2. Create an output manipulator called sethex() that sets output
to hxadecimal and turns on the uppercase and showbase
flags. Also, create an output manipulator called reset() that
undoes the changes made by sethex().

3. Create an input manipulator called skipchar() that reads and
ignores the next ten characters from the input stream,

ADVANCED C++ I/O 313
9.2 FILEI/OBASCS

FILE I/O BASICS
It is now time to turn our attention to file I/O. As mentioned in the
preceding chapter, File I/O and console I/O are closely related. In
fact, the same class hierarchy that supports console I/O also supports
file I/O. Thus, most of what you have already learned about I/O
applies to files as well. Of course, file handling makes use of several
new features.

To perform file I/O, you must include the header <fstream> in
your program. It defines several classes, including ifstream,
ofstream, and fstream. These classes are derived from istream and
ostream. Remember, istream and ostream are derived from ios, so
ifstream, ofstrcam, and fstream also have access to all operations
defined by ios (discussed in the preceding chapter).

In C++, a file is opened by linking it to a stream. There are three
types of streams: input, output, and input/output. Before you can
open a file, you must first obtain a stream. To create an input stream,
declare an object of type ifstream. To create an output stream,
declare an object of type ofstream. Streams that will be performing
both input and output operations must be declared as objects of type
fstream. For example, this fragment creates one input stream, one
output stream, and one stream capable of both input and output:

ifstream in; II input
ofstream out; Ii output
tstream 10;	 II input and Output

Once you have created a stream, one way to associate it with a file
is by using the function open(). This function is a member of each of
the three file stream classes. The prototype for each is shown here:

void iIstream::open (const char ' Rename,
openmode mode = ios::in);

void ofstream::open(const char *filename,
operimode mode = ios::out I ios::trunc);

void fstream::open(const char filename,
openmode mode = ios::in I ios::out);

Here filename is the name of the file, which can include a path
specifier. The value of mode determines how the file is opened. It must

314 TEACH YOURSELF

C++

be a value of type openmode, which is an enumeration defined by ios
that contains the following values:

ios::app

ios::ate

ios::binary

ios::in

ios::out

ios::trunc

You can combine two or more of these values by ORing them together.
Let's see what each of these values means.

Including ios::app causes all output to that file to be appended to
the end. This value can be used only with files capable of output.
Including ios::atc causes a seek to the -'nd of the file to occur when
the file is opened. Although ios::atc causes a seek to end-of-file, I/O
operations can still occur anywhere within the file.

The iosnin value specifies that the file is capable of input. The
ios::out value specifies that the file is capable of output.

The ios::binary value causes a file to be opened in binary mode. By
default, all files are opened in text mode. In text mode, various
character translations might take place, such as carriage
return/linefeed sequences being converted into newlines. However,
when a file is opened in binary mode, no such character translations
will occur. Keep in mind that any file, whether it contains formatted
text or raw data, can be opened in either binary or text mode. The
only difference is whether character translations take place.

The ios::trunc value causes the contents of a preexisting file by the
same name to be destroyed and the file to be truncated to zero length.
When you create an output stream using ofstrcam, any preexisting
file with the same name is automatically truncated.

The following fragment opens an output file called test:

ofstream mystream;
mystream.open(' test');

Since the mode parameter to open() defaults to a value appropriate to
the type of stream being opened, there is no need to specify its value
in the preceding example.

If open() fails, the stream will evaluate to false when used in a
Boolean expression. You can make use of this fact to confirm that the
open operation succeeded by using a statement like this:

ADVANCED C++ I/O 315
9.2 FILE I/O BASICS

if(!mYStrm)
cout << Cannot open file.\n;

II handle error

In general, you should always check the result of a call to open()
before attempting to access the file.

You can also check to see if you have successfully opened a file by
using the is_opcn() function, which is a member of fstream,

ifstream, and ofstrcam. It has this prototype.

bool is_openO;

It returns true if the stream is linked to an open file and false
otherwise. For example, the following checks if mystrcam is currently

open:

jf(mystream.iS_OPenH)
cout << File is not open.\n;

II

Although it is entirely proper to open a file by using the open()
function, most of the time you will not do so because the ifstream,

ofstream, and fstream classes have constructor functions that
automatically open the file. The constructor functions have the same
parameters and defaults as the open() function. Therefore, the most
common way you will see a file opened is shown in this example:

ifstream mystream(myfile'); /1 open file for input

As stated, if for some reason tie file cannot be opened, the stream
variable will evaluate as false when used in a conditional statement.
Therefore, whether you use a constructor function to open the file or
an explicit call to open(), you will want to confirm that the file has
actually been opened by testing the value of the stream.

To close a file, use the member function close(). For example, to
close the file linked to a stream called mystream, use this statement:

mystrearn.close()

The close() function takes no parameters and returns no value.
You can detect when the end of an input file has been reached by

using the cof() member function of ios. It has this prototype:

316 TEACH YOURSELF
V

bool eofO;

It returns true when the end of the file has been encountered and false
otherwise.

Once a file has been opened, it is very easy to read textual data
from it or write formatted, textual data to it. Simply USC the << and
>> operators the same way you do when performing console I/O,
except that instead of using cin and cout, substitute a stream that is
linked to a file. In a way, reading and writing flies by using >> and
<< is like using C's fprintf() and fscanf() functions. All
information is stored in the file in the same format it would be in if
displayed on the screen. Therefore, a file produced by using << is a
formatted text file, and any file read by >> must be a formatted text
file. Typically, files that contain formatted text that you operate on
using the >> and << operators should be opened for text rather than
binary mode. Binary mode is best used on unfbrmattcd files, which are
described later in this chapter.

I. Here is a program that creates an output file, writes information
to it closes the file and opens it again as an input file, and reads
in the information:
#include <iostream>
#include <fstream>
using narnespace std;

mt main()

ofstream fout("test'); II create output file

if(!fout)
cout << "Cannot open output file.\n';
return 1;

fout << He1lo\n
fout << 100 << '	 << hex << 100 << endi;

fout.close()

ADVANCED C++ I/O 317
9.2 FILEI/QBAS/CS

ifstream fin) test); /1 open input file

if(!fin)
cout << Cannot open input file.\n';

return 1;

char str[80];
mt i;

fin >, str '> 1;
cout << str <<	 << i << endi;

f in. close

return 0;

After you run this program, examine the contents of test. It will
contain the following:

Hello
100 64

As stated earlier, when the << and >> operators are used to
perform file I/O, information is formatted exactly as it would
appear on the screen.

2. Following is another example of disk I/O. This prOgram reads
strings entered at the keyboard and writes them to disk. The
program stops when the user enters a $ as the first character in
a string. To use the program, specify the name of the output file
on the command line.
4include <iostream>
#include <fstream>
using namespace std;

mt main(int argc, char *argv[])

if(argci=2)
cout << Usage: WRITE <filename>\n;

return 1;

318 TEACH YOURSELF

C++

ofstrearn out(argv[l]); II output file

if(!out)
cout << 'Cannot open output file.\n;
return 1;

char str[80];
cout << Write strings to disk, '$' to stop\n";

do (
cout
cm >> str;
out << str ee endi;
while (*str

out.close()
return 0;

I]

3. Following is a program that copies a text tile and, in the process,
converts all spaces into I symbols. Notice how eof() is used to
check for the end of the input file. Notice also how the input
stream fin has its skipws flag turned off. This prevents leading
spaces from being skipped.

7/ Convert spaces to s.
#include <i.ostream>
#include <fstream>
using namespace std;

mt main(int argc, char *argv[n

if (argc! =3)
cout << Usage: CONVERT <input> <output>\n;
return 1;

ifstrearn fin(argv[l]); II open input file
ofstream fout(argv[2]); II create output file

if(!fout)

cout << Cannot open output file.\n';
'turn 1;

ADVANCED C++ I/O 319
9.2 FILE I/O BASICS

if(!fin)

cout << Cannot open input file.\n;

return 1;

char ch;

fin.unsetf(ios: :skipwu)	 II do not skip spaces

while(!fin.eof()

fin >> ch;

it(ch==' ') ch = 'I';

if(!fin.eof()) fout << ch;

f in. close

fout.close()

return 0;

4. There are a few differences between C++'s original I/O library
and the modern Standard C++ library that you should be aware
of, especially if you are converting older code. First, in the
original I/O library, open() allowed a third parameter, which
specified the file's protection mode. This parameter defaulted to
a normal file. The modern I/O library does not support this
parameter.

Second, when you are using the old library to open a stream
for input and output using Stream, you must explicitly specify
both the ios::in and the ios::out mode values. No default value
for mode is supplied. This applies to both the fstream constructor
and to its open() function. For example, using the old I/O library
you must use a call to open() as shown here to open a file for
input and output:
fstream mytream;

mystream.open(test, ios::in I ios::out);

In the modern I/O library, an object of type fstream
automatially opens files for input and output when the mode
parameter is not supplied.

Finally, in the old I/O system, the mode parameter could also
include either ios::nocreate, which causes the open()

320 TEACH YOURSELF

-- V

function to fail if the file does not already exist, or
ios::noreplace, which causes the open() function to fail if the
file does already exist. These values are not supported by
Standard C++.

EXERCISES

1. Write a program that will copy a text file. Have this program
count the number of characters copied and display this result.
Why does the number displayed differ from that shown when
you list the output file in the directory?

2. Write a program that writes the following table of information to
a file called phone:

Isaac Newton, 415 555-3423
Robert Goddard, 213 555-2312
Enrico Fermi, 202 555-1111

3. Write a program that counts the number of words in a file. For
simplicity, assume that anything surrounded by whitespace
is a word.

4. What does is_open() do?

UNFORMATTED, BINARY I/O'
Although formatted text files such as those produced by the precedin
examples are useful in a variety of situations, they do not have the
flexibility of unformatted, binary files. Unformatted files contain the
same binary representation of the data as that used internally by your
program rather than the human-readable text that data is translated
into by the <<and >> operators. Thus, unformatted I/O is also
referred to as "raw I/O. C++ supports a wide range of unformatted
file I/O functions. The unformatted functions give you detailed
control over how files are written and read.

ADVANCED C++1/0 321
9.3 UNFORMATTED, 8/N4RY110

The lowest-level unformatted I/O functions are get() and put().
You, can read a byte by using get() and write a byte by using put().
These functions are members of all input and output stream classes,
respectively. The get() function has many forms, but the most
commonly used version is shown here, along with put():

istream &get(char &ch);
ostream &put(char ch);

The get() function reads a single character from the associated
stream and puts that value in ch. It returns areferene to the stream.
If a read is attempted at end-of-file, on return the invoking stream will
evaluate to false when used in an expression. The put() function
writes ch to the stream and returns a reference to the stream.

To read and write blocks of data, use the read() and write()
functions, which are also members of the input and output stream
classes, respectively. Their prototypes are shown here:

istream &read(char bu1 streamsize num);
ostream &write(const char buf, streamsize num);

The read() function reads ni4rn bytes from the invoking stream and
puts them in the buffer pointed to by buf The write() function writes
nurn bytes to the associated stream from the buffer pointed to by buf
The streamsize type is sonic form of integer. An object of type
streamsize is capable of holding the largest number of bytes that
will be transferred in any one 1/0 operation.

If the end of the. file is reached before rium characters have been
read, read() simply stops, and the buffer contains as many characters
as were available. You can find out how many characters have been
read by using the member function gcount(), which has this
prototype:

streams ize gcount();

It returns the number of characters read by the last unformatted
input operation.

When you are using the unformatted file functions, most often you
will open a file for binary rather than text operations. The reason for
this is easy to understand: specifying ios::binary prevents any
character translations from occurring. This is important when the
binary representations of data such as integers, floats, and pointers

322 TEACH YOURSELF

C++

are stored,in the file. However, it is perfectly acceptable to use the
unformatted functions on a file opened in text mode—as long as that
file actually contains only text. But remember, some character
translations may occur.

I. The next program will display the contents of any file on the
screen. It uses the get() function.
#jflcjude <iostream>
# j nclude <fstrearn>	 -
using namespace std;

irit ma j n(jnt argc, char *rgvH)
{

char ch;

if(argc!2)
cout << "Usage; PR <fileriarne>\n';
return 1;

ifstream in(argv1J, ios: :in I los: :binary);
if(in)

cout << 'Cannot open fiie.\n";
return 1;

whi1e(Ijneof)
in-get (ch)
cout << ch;

in. close (

return 0;

2. This program uses put() to write characters to a file until the
user enters a dollar sign:

#iflclude <iostream>
jnclude <fstream>

ADvAJ,icu) C++ I/O 323
9.3 UNFORMATTED, BINARY//U

using nameSpace std;

mt main(int argc, char .rgv[])

char ch;

if(argc=2)
rout << 'Usage: WRITE <filenarne>\n';

return 1;

ofstream out(argv[l1, ios::out I ios::binary);

if(out)
cout e< "Cannot open file.\n";
return 1;

cout <c "Enter a $ to stop\n";
do

cout <<
c in. get (ch)
out.put(ch)
while (ch='$');

out. close (

return 0;

Notice that the progrim uses get() to read characters from cm.
This prevents leading spaces from being discarded.

3. Here is a program that uses write() to write a double and a
string to a file called test:

#include <iostreams
#include <fstream>
#include <cstring>
using namespace std;

mt main()

ofstream out('test", ios::out I ios::binary);

if(!out)

324 TEACH YOURSELF

V

cout << Cnnot open output ffle.\n
return 1;

II

double nurn = 100.45;
char strfl = This is a test

out.write((char *) &num, sizeof(double));
out.write(str, strlen(str));

out. close

return 0;

The type cast to (char *) inside the call to write() is
Note	 necessary when outputting a buffer that is not defined as a

character array. Because of C++'s strong type checking, a
pointer of one type will not automatically be converted into
a pointer of another type.

4. This program uses read() to read the file created by the
program in Example 3:
#include <iostream>
#include <fstreani>
using namespace std;

mt main(

ifstrearn in(test, i.os::in I ios::binary);

if (! in)
cout << Cannot open input file.\n';
return 1;

double num;
char str[801;

in.readNchar *) &num, sizeot(double));
in.read(str, 14);
str[14] = 1 \0';, II null terminate str

ADVANCED C++ i/o 325

9.3 UNFORMA TiED. BINARY//U

cout << num <<	 << str;

in. close

return 0;

As is the case with the program in the preceding example, the
type cast inside read() is necessary because C++ will not
automatically convert a pointer of one type to another.

5. The following program first writes an array of double values to
a file and then reads them back. It also reports the number of
characters read.

II Demonstrate gcount()
include <iostream>
include <fstrearn>

using narnespace std;

mt main(

ofstream out(test', ios::out I ios..binary);

if(!out)
cout <-< Cannot open output file.\n";

return 1;

double nums[4] = (1.1, 2.2, 3.3, 4.4 };

out.writeNchar *) nums, sizeof(nums));
out. close (

ifstream in('test' , ios: :in I ios: :binary)

if(!in)
coot << Cannot open input file.\n;
return 1;

in.read((char *) &nums, sizoot(nums));

mt i;
for(iO; i<4; io.)

326 TEACH VOURSEI.F

C++

COUL << nums[i]

Cout << '\fl'

cout << in.gcount() <<	 characters read\n;

in. close

return 0;

EXERCISES

1. Rewrite your answers to Exercises 1 and 3 in the preceding
section (Section 9.2) so that they use get() put(), read()
and/or write(). (Use whichever of these functions you deem
most appropriate.)

2. Given the following class, write a program that outputs the
contents of the class to a file. Create an inserter function for
this purpose.
class account

mt custnum;

char name[80];
double balance;

public:
account(int c, char	 double b)

custnum =
strcpy(name, n)
balance =

II create inserter here

III

ADVANCED C++ I/O 327
9.4 MORE UNFORMATTED I/O FUNCTIONS

MORE UNFORMATTED I/O FUNCTIONS
In addition to the form shown caflier, there are several different ways
in which the get() function is overloaded. The prototypes for the
three most commonly used overloaded forms are shown here:

istream &get(char buf, streamsize num);
istream &get(char buf, streamsize tium, char del/m);
mt geto;

The first form reads characters into the array pointed to by buf until
either nurn4 characters have been read, a newline is found, or the end
of the file has been encountered. The array pointed to by buf will be
null terminated by get(). If the newlinc character is encountered in
the input stream, it is not extracted. Ipstead, it remains in the stream
until the next input operation.

The second form reads characters into the array pointed to by buf
until either rium-1 characters have been read, the character specified
by delim has been found, or the end of the file has been encountered.
The array pointed to by buf will be null terminated by get(). If the
delimiter character is encountered in the input stream, it is not
extracted. Instead, it remains in the stream until the next input
operation.

The third overloaded form of get() returns the next character from
the stream. It returns EOF if the end of the file is encountered. This
form of get() is similar to Cs getc() function.

Another function that performs input is getline(). It is a member
of each input stream class. Its prototypes are shown here:

istream &getline(char tbul streamsize nurn);
stream &getline(char buf streamsize num, char del/m);

The first form reads characters into the array pointed to by buf until
either nurn-1 characters have been read, a newline character has been
found, or the end of the file has been encountered. The array pointed
to by buf will be null terminated by getlirie(). If the newline

328 TEACH YOURSELF

C++

character is encountered in the input stream, it is extracted, but it is
not put into buf

The second form reads characters into the array pointed to by buf
until either num-1 characters have been read, the character specified
by delim has been found, or the end of the file has been encountered.
The array pointed to by buf will be null terminated by getline(). If
the delimiter character is encountered in the input stream, it is
extracted, but it is not put into buf

As you can see, the two versions of gctline() are virtually identical
to the get(bu.f, nurn) and get(buf, num, delirn) versions of get(). Both
read characters from input and put them into the array pointed to by
buf until either nurn-1 characters have been read or until the delimiter
character or the end of the file is encountered. The difference between
get() and getline() is that getline() reads and removes the
delimiter from the input stream; get() does not.

You can obtain the next character in the input stream without
removing it from that stream by using peek(). This function is a
member of the input stream classes and has this prototype:

mt peeko;

It returns the next character in the stream; it returns EOF if the end of
the file is encountered.

You can return the last character read from a stream to that stream
by using putback(), which is a member of the input stream classes.
Its prototype is shown here:

istream &putback(char c);

where c is the last character read.
When output is performed, data is not immediately written to the

physical device linked to the stream. Instead, information is stored in
an internal buffer until the buffer is full. Only then are the contents
of that buffer written to disk. However, you can force the information
to be physically written to disk before the buffer is full by calling
flush(). flush() is a member of the output stream classes and has
this prototype:

ostream &flushO;

ADVANCED C++ I/O 329
9.4 MORE UNFORMA TIED I/O FUNCTIONS

Calls to flush() might be warranted when a program is going to be
used in adverse environments (in situations where power outages
occur frequently, for example).

I. As you know, when you use >> to read a string, it stops reading
when the first whitcspace character is encountered. This makes
it useless for reading a string containing spaces. However, you
can overcome this problem by using gctlinc(), as this program
illustrates:

7/ Use getline() to read a string that contains spaces.
tlinclude <iostream>
#include <fstrearn>
using namespace std;

mt main()

char str[80];

cout << Enter your name:
cin.getline(str, 79);

cout << str <<

return 0;

In this program, the delimiter used by getline() is the
newline. This makes getline() act much like the standard
gets() function.

2. In real programming situations, the functions peek() and
putback() are especially useful because they let you more
easily handle situations in which you do not know what type of
information is being input at any point in time. The following
program gives the flavor of this. It reads either strings or
integers from a file. The strings and integers can occur in
any order.

330 TEACH youRsa

C++

II Demonstrate peek.
include <iostream>

#include <fstream>
#include <cctype>
using namespace std;

mt main()

char ch;
ofstream out("test', ios::out I ios::binary);

if(nut)
cout << Cannot open Output file.\n';
return 1;

char str[80] , *p.

out << 123 << this is a test << 23;
out << Hello there! << 99 << sdf" << endi;
out. close (

ifstream in("test, ios::in I ios::binary);

if(!in)
cout << 'Cannot open input file.\n';
return 1;

do

p = str;
ch = in.peek(); II see what type of char is next
if(isdigit(ch)
while(isdigit(*p=in.getLl)) p+ * ; II read integer
in.putback(*p); II return char to stream
*p = '\O'; II null-terminate the string
cout	 Integer: '	 atoi(str);

else if(isalpha(ch)) { II read a string
while(isalpha(*p = in . get(.))) p+*;
in.putback(*p); II return char to stream

= '\O'; II null-terminate the string
cout << "String: ' << Str;

else in.getO; II ignore

ADVANCED C++ I/O 331
9.5 RANDOM ACCESS

cout <<

while(!jn.eof());

in. close
return 0;

EXERCISES

1. Rewrite the program in Example I so it uses get() instead of
gctlinc(). Does the program function differently?

2. Write a program that reads a text file one line at a time and
displays each line on the screen. Use getline().

3. On your own, think about why there may be cases in which a
call to flush() is appropriate.

RANDOM ACCESS

In C++'s I/O system, you perform random access by using the
seekg() and seckp() functions, which are members of the input and
output stream classes respectively. Their most common forms are
shown here:

istrea m &seekg (off_type offset, seekdj r or/gin);
ostream &seekp(off_type offset, seekdi r origin);

Here off—type is an integer type defined by ios that is capable of
containing the largest valid value that offset can have. seekdir is an
enumeration defined by ios that has these values:

Value

ios::beg	 Seek from beginning
ios::cur	 Seek from current location
ios::end	 Seek from end

332 TEACI VOURSEL

V C++

The C++ I/O system manages two pointers associated with a file.
One is the get pointer, which specifies where in the file the next input
operation willoccur. The other is the put pointer, which specifics
where in the file the next output operation will occur. Each time an
input or output operation takes place, the appropriate pointer is
automatically sequentially advanced. However, by using the scekg()

and seckp() functions, it is possible to access the file in a
nonsequcntial fashion.

The seckg() function moves the associated file's current get
pointer offset number of bytes from the specified origin. The seekp()
function moves the associated file's current put pointer offset number

of bytes from the specified origin.

In general, files that will he accessed via scekg() and seekp()
should be opened for binary tile operations. This prevents character
translations from occuring which may affect the apparent position of
an item within a tile.

You can determine the current position of each file pointer by using
these member functions:

pos_type teligO;
pos_type telipO;

Here p08_type is an integer type defined by ios that is capable of
holding the largest value that defines a file position.

There are overloaded versions of seckg() and scekp() that move
the file pointers to the location specified by the return values of tel!g()

and tcllp(). Their prototypes are shown here.

istream &seekg(pos_type position);
ostrea m &seekp (pos_type positon);

I.	
EXAMPLES j
1. The following program demonstrates the seekp() function. It

allows you to change a specific character in a file. Specify a file
name on the command line, followed by the number of the byte
in the file yo1p want to change, followed by the new character.
Notice that the file is opened for read/write operations.

#include <lost.rearn>

#include <fsrream>

ADVANCED C++ I/O 333
nç P.ANDOMACCESS

#include <cstdlib>
using namespace std;

mt main(int argc, char *argv[])

if (argc! =4)
cout << Usage CHANGE <filename> <byte> <char>\n;
return 1;

fstreain out(argv[l], ios::in I ios::out I ios::binary);

if(!out)
cout << "Cannot open file.\n;
return 1;

out.seekp(atoi(argv[2J), ios:beg);

out.put(*argv[3]);
out, close 0

return 0;

2. The next program uses seekg() to position the get pointer into
the middle of a file and then displays the contents of that file
from that point. The name of the file and the location to begin
reading from are specified on the command line.

II Demonstrate seekg()
*include <iOStream>
jnclude .<fstream>
*include <cstdlib>
using naniespace std;

irit main(int argc, char *argv[])

char ch;

if(argc!=3)
cout << 'Usage: LOCATE <filename> <loc>\n;
return 1;

334 TEACH YOURSELF

C++

ifstream in(argv[l], ios::in I ios::biflarY)

it(!in)
cout << Cannot open input file.\n;

return 1;

in . seekg(atoi(argV[21)	 ios::beg);

while(!ifl.eOf())
in.get(ch)
cout << ch;

in. close

return 0;

EXERCISES

I. Write a program that displays a text file backwards. Hint: Think
about this before creating your program. The solution is easier
than you might imagine.

2. Write a program that swaps each character pair in a text file. For
example, if the file contains 1 1234", then after the program is
run, the file will contain "2143". (For simplicity, you may
assume that the file contains an even number of characters.)

NECKING THE I/O STATUS

The C++ I/O system maintains status information about the outconi
of each I/O operation. The current status of an I/O stream is
described in an object of type iostate, which is an enumeration
defined by ios that includes these members:

ADVANCED C++ I/O 335
9.6 CI-1ECIJNG THE I/O STATUS

Name	 Meaning

goodbit	 No errors occurred.
eofbit	 End-of-file has been encountered.
failbit	 A nonfatal I/O error has occurred.
badbit	 A fatal I/O error has occurred.

For older compilers, the I/O status gags are held in an mt rather than
an object of type iostate.

There are two ways in which you can obtain I/O status information.
First, you can call the rdstate() function, which is a member of ios. It
has this prototype:

iostate rdstateQ;

It returns the current status of the error flags. As you can probably
guess from looking at the preceding list of flags, rdstate()
returns goodbit when no error has occurred. Otherwise, an error
flag is returned.

The other way you can determine whether an error has occurred is
ly using one or more of these ios member functions.

bool badQ;
bool eof 0;
bool fail();
bool goodQ;

The eof() function was discussed earlier. The bad() function
returns true if badbjt is set. The fail() function returns true if failbit
is set. The good() function returns true if there are no errors.
Otherwise they return false.

Once an error has occurred, it might need to be cleared before your
program continues. To do this, use the ios member function clear(),
whose prototype is shown here:

void clearOostate flags— ios::goodbit);

If flags is goodbit (as it is by default), all error flags are cleared.
Otherwise, set flags to the settings you desire.

330 TEACH VOURSEI

1. The following program illustrates rdstate(). It displays the
contents of a text file. If an error occurs, the function reports it
by using checkstatus.
#iflclude <iostrearn>
#include <fstream>
using namespace std;

void checkstatus(j fstream &in);

mt main(jrit argc, char *argvr])
{
if(argc!2)

cout << "Usage: DISPLAY <filename>\n;
return 1;

ifstreazn in(argv[1J);

if(!in)

cout << "Cannot open input file.\n;
return 1;

char C;
while(in.get(c))

cout << C;

checkstatus(in);

checkstatus(jn); II check final status
in. close ;

return 0;
I

void • checkg tatus (ifstrearn &in)

ioS::jostate i;

i = in.rdstateO;

if(i & ios::eofbjt)

cout << EOF encountered\n";

ADVANCED C++ I/O 337
6

else lf(i & los: :failbit)
cout << 'Non-Fatal I/O error\n';

else if(i & ios::badbjt)
cout << "Fatal I/O error\ri";

II

The preceding program will always report at least one 'error.'
After the while loop ends, the final call to checkstatus()
reports, as expected, that an EOF has been encountered.

. This program displays a text file. It uses good() to detect a file error:
#lnclude <iostream>
#lnclude <fstream>
using namespace std;

mt main(int argc, char *argv[])

char ch;

if(argc=2)

cout << 'PR: <filename>\n";
return 1;

ifstream in(argv[l]);

if (!in) {

cout << 'Cannot open input file.\n';,
return 1;

while(!jn.eof())
in.get(ch);	 -
II check for error
1f(!in.good() &	 !in.eof()) {

cout << 'I/O Error.. .terminating\n";
return 1;

cout << ch;

in. close (

return fl•

338 TEACH YOURSELF

C++

1. Add error checking to your answers to the exercises from the
preceding section.

CUSTOMIZED iiC AND FILES

In the preceding chapter, you learned how to overload the insertion
and extraction operators relative to your own classes. In that chapter,
only console I/O was performed. However, because all C++ streams
are the same, the same overloaded inserter function, for example, can
be used to output to the screen or to a file with no changes
whatsoever. This is one of the most important and useful features of
C++'s approach to I/O.

As stated in the previous chapter, overloaded inserters and
extractors, as well as I/O manipulators, can be used with any stream
as long as they are written in a general manner. If you "hard-code' a
specific stream into an I/O function, its use is, of course, limited to
only that stream. This is why you were urged to generalize your I/O
functions whenever possible.

EXAMPLES 1
I. In the following program, the coord class overloads the <<and

>> operators. Notice that you can use the operator functions to
write both to the screen and to a file.

#include <iostream>
#include <fstream>
using namespace std;

class coord
mt x, y;

public:

coord(int i, mt j) (x = i; y =

friend ostream &operator<<(ostream &strearn, coord ob);
friend istream &operator>>(jstream &stream, coord &ob)

ADVANCW C++ i/O 339

9.7 CUSTOMIZED I/O AND FILES V

ostream &operator<<(0Strea &stream, coord ob)

stream << ob.x << ' ' << ob.y <<

return stream;

II

istreain &operator>>(istream &stream, coord &ob)

stream >> ob.x >> ob.y;

return 'stream;

mt main))

coord 01(1, 2), '02(3, 4);

otstream out("test");

if(!out)
cout << "Cannot open output file.\n';

return 1;

out << ol << o2;

ou t c lose C

ifstream in("test");

if(!in) C

cout << 'Cannot open input file.\n';

return 1;

coord 03(0, 0), 04(0, 0);

in >> o3 ,> o4;

coUt << 03	 o4;

iri.close()

return 0;

340 TEACH YOURSEIJ

C++

2. All of the 1/0 manipulators can be used with files. For example,
in this reworked version of a program presented earlier in this
chapter, the same manipulator that writes to the screen will also
write to a file:
#include <iostream>
jnclude <fstream>
#include <iomanip>
using namespace std;

II Attention:
ostream &atn(ostream &stream)

stream << 'Attention:
return stream;

II Please note:
ostream ¬e(ostream &stiream)

stream << 'Please Note:
return stream;

mt main()

ofstream out('test')

if (lout)
cout << 'Cannot open output file.\n';
return 1;

II write to screen
cout << atn << 'High voltage circuit\n';
cout << note << "Turn off all lights\n";

1/ write to file
out << atn << 'High voltage circuit\n';
out << note << "Turnoff all lights\n";

out.close();

return 0;

ADVANCED C++ I/O 341
SKILLS CHECK

EXERCISE

1. On your own, experiment with the programs from the
preceding chapter, trying each on a disk file.

SKILLS CHECK

=

Mastery
shk

At this point you should be able to perform the following exercises
and answer the questions.

1. Create an output manipulator that outputs three tabs and
then sets the field width to 20. Demonstrate that your
manipulator works.

2. Create an input manipulator that reads and discards all
nonaiphabetical characters. When the first alphabetical
character is read, h....ve the manipulator return it to the input
stream and return. Call this manipulator findaipha.

3. Write a program that copies a text file. In the process, reverse
the case of all letters.

4. Write a program that reads a text file and then reports the
number of times each letter in the alphabet occurs in the file.

5. If you have not done so, add complete error checking t6 your
solutions to Exercises 3 and 4 above.

6. What function positions the get pointer? What function positions
the put pointer?

342 TEACH YOURSELF

C4-4-

W
This section checks how well you have integrated material in this

chapter with that from the preceding chapters.

1. Following is a reworked version of the inventory class
presented in the preceding chapter. Write a program that fills in
the functions store() and retrieve(). Next, create a small
inventory file on disk containing a few entries. Then, using
random I/O, allow the user to display the information about any
item by specifying its record number.
#include .zfstream>
#include <iostreams
#include <cstring>
using namespace std;

#defjne SIZE 40

class inventory
char item[SIZE); II name of item
mt onhand; II number on hand
double cost; II cost of item

public:

inventory(char i, mt o, double c)

I
strcpy(item, 1);
onhànd = 0;
Cost = C;

void store(fstream &stream);
void retrieve(fstream &stream);
friend otream &operator<<(ostreai &stream, inventory ob);
friend istream &operator>>(jstreain &stream, inventory &ob);

ostream &operator<<(ostream &stream, inventory ob)

stream << ob.item << :	 << ob.onhand;
stream <<	 on hand at $' << ob.cost <<

ADVANCED C++ I/O 343
SKILLS CJlEcI(

return stream;

istream &operator>>(istream &stream, inventory &ob)

cout << "Enter item name:
stream >> ob.item;
cout << 'Enter number on hand:
stream >> ob.onhand;
cout << Enter cost:
stream >> ob.cost;

return stream;

2. As ap&4& challenge, on your own, create a stack class for
characters that stores them in a disk file rather than in an array
in memory.

[Qf
Ito +

10
Virtual Functions

chapter obJectives

10.1 Pointers to derived classes

10.2 Introduction to virtual functions

10.3 More about virtual functions

10.4 Applying polymorphism

345
V

346 ThAQI YOURSEI.F

V

Before proceeding, you should be able to correctly answer the
following questions and do the exercises.

1. Create a manipulator that causes numbers to be displayed in
scientific notation, using a capital E.

2. Write a program that copies a text file. During the copy process,
convert all tabs into the correct number of spaces.

3. Write a program that searches a text file for a word specified on
the command line. Have the program display how many times
the specified word is found. For simplicity, assume that
anything surrounded by whitespace is a word.

4. Show the statement that sets the put pointer to the 234th byte in
a file linked to a stream called out.

5. What functions report status information about the C++
I/O system?

6. Give one advantage of using the C++ I/O functions instead of
the C-like I/O system.

&PR.A.w

T

is chapter examines another important aspect of C++: the
irtual function. What makes virtual functions important is
hat they are used to support run-time polymorphism.
olymorphism is supported by C++ in two ways. First, it is
upported at compile time, through the use of overloaded

operators and functions. Second, it is supported at run time, through
the use of virtual functions. As you will learn, run-time polymorphism
provides the greatestflexibility.

At the foundation of virtual functions and run-time polymorphism
are pointers to derived classes. For this reason this chapter begins with
a discussion of such pointers.

VIRTUAL FUNCT1OIS 347
70.7 POINTERS 70 DERIVED CLASSES

I
	 POINTERS TO DERIVED CLASSES

Although Chapter 4 discussed C++ pointers at some length, one
special aspect was deferred until now because it relates specifically to
virtual functions. The feature is this: A pointer declared as a pointer to
a base class can also be used to point to any class derived from that
base. For example, assume two classes called base and derived, where
derived inherits base. Given this situation, the following statements
are correct:

base *p; II base class pointer

base base_nb; II object of type base

derived.derived_ob; II object of type derived

II p can, of course, point to base objects
p &base_ob; /7 p points to base object

II p can also point to derived objects without error

p &derived_ob; II p points to derived object

As the commeng suggest, a base pointer can point to an object of any
class derived from that base without generating a type mismatch error.

Although you can use a base pointer to point to a derived object,
you can access only those members of the derived object that were
inherited from the base. This is because the base pointer has
knowledge only of the base class. It knows nothing about the members
added by the derived class.

While it is permissible for a base pointer to point to a derived object,
the reverse is not true. A pointer of the derived type cannot be used to
access an object of the base class. (A type cast can be used to
overcome this restriction, but its use is not recommended practice.)

One final point: Remember that pointer arithmetic is relative to the
data type the pointer is declared as pointing to. Thus, if you point a
base pointer to a derived object and then increment that pointer, it
will not be pointing to the next derived object. It will be pointing to
(what it thinks is) the next base object. Be careful about this.

348 TEACH YOURSF
V

1. Here is a short program that illustrates how a base class pointer
can be used to access a derived class:
II Demonstrate pointer to derived class.
j flclude <iostream>
using namespace std;

class base
mt X;

public:

void setx(jnt i)	 x =
mt getx() { return x;

class derived : public base
mt y;

public:

void sety(jnt i) { y =

mt .gety() { return y;

mt main()

base *p; // pointer to base type
base b_ob; II object of base
derived d_ob; II object of derived

// use p to access base object
p = &b_ob;
p->setx(1O); II access base object
cout << Base object x:	 << p->getx() <<

II us i to access derived object
P = &d_ob; II point to derived object
p->setx(99); II access derived object

II can't use p to Set y, so do it directly
d_ob.sety(88)

cout << Derived object x: • << p->getx() <<
cout << Derived object y:	 << d_ob.gety() <

return 0;

(y-z

VIRTUAL RJNCTIONS 349
102 INTRODUCTION TO VIRTUAL FUNCTIONS

Aside from illustrating pointers to derived classes, there is no
value in using a base class pointer in the way shown in this
example. However, in the next section you will see why base
class pointers to derived objects are so important.

EXERCISE

1. On your own, try the preceding example and experiment with
it. For example, try declaring a derived pointer and having it
access an object of the base class.

I	 jNTRODUCTION TO VIRTUAL
FUNCTIONS

A virtual function is a member function that is declared within a base
class and redefined by a derived class. To create a virtual function,
precede the function's declaration with the keyword virtual. When a
class containing a virtual function is inherited, the derived class
redefines the virtual function relative to the derived class. In essence,
virtual functions implement the "one interface, multiple methods"
philosophy that underlies polymorphism. The virtual function within
the base class defines the form of the interface to that function. Each
redefinition of the virtual function by a derived class implements its
operation as it relates specifically to the derived class. That is, the
redefinition creates a specific method, When a virtual function is
redefined by a derived class, the keyword virtual is not needed.

A virtual function can be called just like any other member
function. However, what makes a virtual function interesting—and
capable of supporting run-time polymorphism—is what happens when
a virtual function is called through a pointer. From the preceding
section you know that a base class pointer can be used to point to a
derived class object. When a base pointer points to a derived object
that contains a virtual function and that virtual function is called
through that pointer, C++ determines which version of that function

350 TEACH YOURSELF

C++

will be executed based upon the type of object being pointed to by the
pointer. And, this determination is made at run time. Put differently, i
is the type of the object pointed to at the time when the call occurs
that determines which version of the virtual function will be executed
Therefore, if two or more different classes are derived from a base
class that contains a virtual function, then when different obj cts are
pointed to by a base pointer, different versions of the virt' 	 Function
are executed. This process is the way that run-time polymorphism is
achieved. In fact, a class that contains a virtual function is referred to
as a polymorphic class.

L Here is a short example that uses a virtual function:
7/ A simple example using a virtual function.
#include <iostream>
using namespace std;

class base I
public:
mt i;
base(int x) I i =
virtual void func()

coUt << 'Using base version of func()
cout << i

class derivedi : public base
public:

derivedl(int x) : base(x) {)
void func()

cout << Using derivedi's version of f•unc() :
cout << ii << '\n'

ON

class derived2 : public base I
public:.

1p r	 d2(int x	 hase(x) {)

VIRTUAL FUNCTIONS 351
10.2 1NTRODUC7ION TO I4RTtJAL FUI4CI

void func()

cout << Using derived2's version of func()
cout << i.i << '\n'

II
F

mt main))

base, p;
base ob(10);
derivedi d_obl (10);
derived2 d_ob2(10);

p = &ob;
p->func(); II use base's func()

p = &d_obl;
p->funcO; // use derivedi's func()

p = &d_ob2;
p->func(); II use derived2's func()

return 0;

I]

This program displays the following output:
Using base version of funcO: 10
Using derivedi's version of func: 100
Using derived2's version of func(): 20

The redefinition of a virtual function inside a derived class
might, at first, seem somewhat similar to function overloading.
However, the two processes are distinctly different. First, an
overloaded function must differ in type and/or number of
parameters, while a redefined virtual function must have
precisely the same type and number of parameters and the
same return type. (In fact, if you change either the number or
type of parameters when redefining a virtual function, it simply
becomes an overloaded function and its virtual nature is lost.)
Further, virtual functions must be class members. This is not
the case for overloaded functions. Also, while destructor
functions can be virtual, constructors cannot. Because of the

352 TEACH youRsa;•
V

differences between overloaded functions and redefined
virtual functions, the term overriding is used to describe virtual
function redefinition.

As you can see, the example program creates three classes.
The base class defines the virtual function func(). This class is
then inherited by both derivedi and derived2. Each of these
classes overrides func() with its individual implementation.
Inside main(), the base class pointer p is declared along with
objects of type base, derwedi, and derived2. First, p is
assigned the address of oh (an object of type base). When func()
is called by using p, it is the version in base that is used. Next, p
is assigned the address of d_obl and func() is called again.
Because it is the type of the object pointed to that determines
which virtual function will be called, this time it is the
overridden version in derivedi that is executed. Finally, p is
assigned the address of d_ob2 and func() is called again.
This time, it is the version of func() defined inside derived2
that is executed.

The key points to understand from the preceding example
are that the type of the object being pOinted to determines
which version of an overridden virtual function will be executed
when accessed via a base class pointer, and that this decision is
made at run time.

2. Virtual functions are hierarchical in order of irth'etitance.
Further, when a derived class does not override a virtual
function, the function defined within its base class is used.
For example, here is a slightly different version of the
preceding program:

If Virtual functions are hierarchical.
#include <iostream>
using namespace std;

class base
public:

mt i;

base(int x) { i = x;)
virtual void func()

cout << Using base version of funcO:
cout << i-<< '\n';

UA1.RJNC1)O4S 353
10.2 !NJRODLICIION 70 14R7U4L IUNC77O?'LI

class derivedi : public base
public:

derivedl(int x) : base(x) {)
void func()

cout << 'Using derivedi's version of func:
cout <. j*j <

IM

class derived2 : public base
public:

.derived2(jnt x) : base(x) {)
II derived2 does not override func()

mt main()

base *p;
base ob(lQ);
derivedi d_obl (10);
derjved2 d_ob2(10);
p = &ob;
p->func(); II use base's func()

p = &dobl;

p->funcO; 7/ use derivedi's func()
p &d_ob2;
p->furicM; II use bases func()

return 0;

This program displays the following output:
Using base version of func() : 10

Using derivedl's version of func: 100
Using base version of func: 10

In this version, deriyed2 does not override func(). When p
is assigned d_ob2 and func() is called, base's version is used
because it is next up in the class hierarchy. In general, when a

354 TEACH YOtJRSEL.F

C++

derived class does not override a virtual function, the base class'
version is ased.

3. The next example shows how a virtual function can respond to
random events that occur at run time. This program selects
between d_obl and d_ob2 based upon the value returned by
the standard random number generator rand(). Keep in mind
that the version of func() executed is resolved at run time.
(Indeed, it is impossible to resolve the calls to func() at
compile time.)
1* This example illustrates how a virtual function

can be used to respond to random events occurring
at run time.

*1

#include <iostream>
#include <cstdlib>
using namespace std;

class base
public:

mt i;
base(int x) { i = x;
virtual void fuuc()

cout << Using base version of func()
cout << I <<

class derivedl : public base
public:

derivedl(int x)	 base(x) 1)
void func()

cout << "Using derivedl's version of func:
cout	 i'i << '\n'

PO

class derived2 : public base
public:

derived2(int x) : base(x) (I
void func()

VIRTUAl. FUNCTIONS 355
10.2 INTRODUCTION TO VIRTUAL FUNCTIONS

cout << Using der 'ed2's version of func():

cout << ii

I,

mt main))

base *p.

derivedi d_obl (10)
derived2 d_ob2 (10);

mt 1, j;

for(i=0; i<10; i+.)
j = rend));
if((j%2)) p = &d_obl; II if odd use d_obl

else p	 &dob2; 7/ if even use d_ob2

p->funcL; II call appropriate function

return 0;

4. Here is a more practical example of how a virtual function can
be used. This program creates a generic base class called area
that holds two dimensions of a figure. It also declares a virtual
function called getarea() that, when overridden by derived
classes, returns the area of the type of figure defined by the
derived class. In this case, the declaration of getarea() inside
the base class determines the nature of the interface. The actual
implementation is left to the classes that inherit it. In this
example, the area of a triangle and a rectangle are computed.

7/ Use virtual function to define interface.
#include <iostream>
using namespace std;

class area
double diml, dim2; /7 dimensions of figure

public:
void setarea(double dl, double d2)

dimi = dl;
dim2	 d2;

0

356 TEACH YOURSELF

C++

void getdim(double &dl, double &d2)

dl = diml;
d2 = dim2;

virtual double getarea()

cout << "You must override this function\n;

return 0.0;

class rectangle : public area
public:

double getarea()

double dl, d2;
getdim(dl, d2);
return dl * d2;

class triangle : public area
public:

double getareao)

double dl, d2;

getdim(dl, d2)
return 0.5 * dl * d2;

IN

mt main()

area *p;
rectangle r;
triangle t;

r.setarea(3.3, 4.5);
t.setarea(4.0, 5.0);

p	 &r;
cout << "Rectangle has area: " << p->getarea() <<

VIRTUAL FUNCTIONS 357
10.3 MORE ABOUT VIRTUAL FUNCTIONS

P
cout << "Triangle has area: 	 << p->getarea() <<

return 0;

Notice that the definition of getarea() inside area is just a
placeholder and performs no real function. Because area is not
linked to any specific type of figure, there is no meaningful
definition that can be given to getarea() inside area. In fact,
getarca() must be overridden by a derived class in order to be
useful. In the next section, you will see a way to enforce this.

EXERCISES

1. Write a program that creates a base class called num. Have this
class hold an integer value and contain a virtual function called
shownum(). Create two derived classes called outhex and
outoct that inherit num. Have the derived classes override
shownum() so that it displays the value in hexadecimal and
octal, respectively.

2. Write a program that creates a base class called dist that stores
the-distance between two points in a double variable. In dist,
create a virtual function called trav_time() that outputs the
time it takes to travel that distance, assuming that the distance
is in miles and the speed is 60 miles per hour. In a derived class
called metric, override trav_tinie() so that it outputs the
travel time assuming that the distance is in kilometers and the
speed is 100 kilometers per hour.

ffr7oRE ABOUT VIRTUAL FUNCTIONS

As Example 4 from the preceding section illustrates, sometimes when
a virtual function is declared in the base class there is no meaningful
operation for it to perform. This situation is common because often a

358 TEAcH YOURSELF

C-F-F

base class does not define a complete class by itself. Instead, it simply
supplies a core set of member functions and variables to which the
derived class supplies the remainder. When there is no meaningful
action for abase class virtual function to perform, the implication is
that any derived class must override this function. To ensure that this
will occur, C++ supports pure virtual functions.

A pure virtual function has no definition relative to the base class.
Only the function's prototype is included. To make a pure virtual
function, use this general form:

virtual type func-name(parameter-list) = 0;

The key part of this declaration is the setting of the function eual to
0. This tells the compiler that no body exists for this function relative
to the base class. When a virtual function is made pure, it forces any
derived class to override it. If a derived class does not, a compile-time
error results. Thus, making a virtual function pur is a way to
guarantee,that a derived class will provide its own redefinition.

When a class contains at least one pure virtual function, it is
referred to as an abstract class. Since an abstract class contains at least
one function for which nobody exists, it is, technically, an incomplete
type, and no objects of that class can be created. Thus, abstract classes
exist only to be inherited. They are neither intended nor able to stand
alone. It is important to understand, however, that you can still create
a pointer to an abstract class, since it is through the use of base class
pointers that run-time polymorphism is achieved. (It is also
permissible to have a reference to an abstract class.)

When a virtual function is inherited, so is its virtual nature. This
means that when a derived class inherits a virtual function from a base
class and then the derived class is used as a base for yet another
derived class, the virtual function can be overridden by the final
derived class (as well as the first derived class). For example, if base
class B contains a virtual function called f(), and Dl inherits B and D2
inherits Dl, both Dl and D2 can override f() relative to their
respective classes.

VIRTUAL FUNCTIONS 359
70.3 MORE ABOUT VIRTUAL FUNCTIONS

1. Here is an improved version of the program shown in Example
4 in the preceding section. In this version, the function getarea()
is declared as pure in the base class area.
//.Create an abstract class.
#include <iostream>
using namespace std;

class area
double dm1, dim2; II dimensions of figure

public:
void setarea(double dl, double. d2)

dimi = dl;
dim2 = d2;

void getdim(double &dl, double &d2)

dl = dimi;
d2 = dim2;

virtual double getarea() = 0; /7 pure virtual function

class rectangle : public area
public:

double getarea()

double dl, d2;

getdim(dl, d2);
return dl * d2;

class triangle : public area

360 TEACH YOtJRSflF

C++

public:
double getarea()

double dl, d2;

getdim(dl, d2);
return 0.5 * dl * d2;

mt main()

area *p;
rectangle r;
triangle t;

r.setarea(3.3, 4.5);
t.setarea(4.0, 5.0);

p =
cout << "Rectangle has area: 	 << p->.getarea() << '\n';

p =
cout << "Triangle has area:	 << p->getarea() <<

return 0;

Now that getarea() is pure, it ensures that each derived
will override it.

X'The following program illustrates how a function's virtual
nature is preserved when it is inherited:

1/ Virtual functions retain their virtual nature when inherited.
#include <iostream>
using namespace std;

class base (.
public:

virtual void func()

cout << "Using base version of func\n";

VIRTUAL FUNCTIOI'S 361
10.3 MORE ABOUT L'IRJUAL FUNC71O1.IS 'V

class derivedl : public base
public:

void func()

cout << "Using derivedl's.version of func()\n';

// Derived2 inherits derivedi.
class derived2 : public derivedi
public:

void funco)

cout << "Using derived2"s version of func()\n';

mt main().

base *p;
base ob;
derivedi d_obl;
derived2 d_ob2;

p = &ob;
p->funci; /1 use base's func()

p = &d_obl;

p->func; // use derivedi's func()

p &d_ob2;
p->func; II use derived2's func()

return 0;

In this program, the virtual function func() is first inherited
by derivedi, which overrides it relative to itself. Next, derived2
iiherits derivedl. In derived2, func() is again overridden.

Because virtual functions are hierarchical, if derived2 did
not override func(), when d_ob2 was accessed, derivedi's
func() would have been used. If neither derivedi nor
.derivcd2 had overridden func(), all references to it would
have been routed to the one defined in base.

362 TEACH YOURSELF

C++

EXERCISES

1. On your own, experiment with the two example programs.
Specifically, try creating an object by using area from Example
I and observe the error message. In Example 2, try removing
the redefinition of func() within derived2. Confirm that,
indeed, the version inside derivedi is used. -

2. Why can't an object be created by using an abstract class?
3. In Example 2, what happens if you remove only the redefinition

of func() inside derivedi? Does the program still compile and
ru If so, why?

PPLYING POLYMORPHISM

Now that you know how to use a virtual function to achieve run-time
polymorphism, it is time to consider how and why to use it. As has
been stated many times in this book, polymorphism is the_process by
which acommon interface is applied to two or more similr
technically different) situaflôns,thffTthplementing the "one interface,
multiple methods" phild6hy. Polymorphism is important because it
can greatly simplify complex systems. A single, well-defined interface
is used to access a number of different but related actions, and
artificial complexity is removed. In essence, polymorphism allows the
logical relationship of similar actions to become apparent; thus, the
program is easier to understand and maintain. When related actions
are accessed through a common interface, you have less to remember.

There are two terms that are often linked to OOP in general and to
C++ specifically. They are early binding and late binding. It is important
that you know what they mean. Early binding essentially refers to
those events that can be known at compile time. Specifically, it refers
to those function calls that can be resolved during compilation. early
bound entities include "normal" functions, overloaded functions, and
nonvirtual member and friend functions. When these types of
functions are compiled, all address information necessary to call them
is known at compile time. The main advantage of early bin ding (and
the reason that it is so widely used) is that it is veryiflent. Calls to

VIRWAL FUNCTIONS 353
10.4 APPL)ING POL)'MORPH/SM	 '

functions bound at compile time are the fastest types of function calls.
The main disadvantage is lack of flexibility.

hin.di,ng refers to	 that must occur at run time. A late
bound function call is one in which the address of the function to be
called is not known until the program runs. In C++, a virtual function
is a late bound object. When a virtual function is accessed via a base
class pointer, the program must determine at run time what type of
object is being pointed to and thi 	 lect which version of the
overridden function to execute. Tlic main advantage of late binding is
flexibility ajime. Your

.events without having to contain large amounts of "contingency code.'
Its primary disadvantage is that there is more overhead associated
with a function call. This generally makes such calls slower than those
that occur with early binding.

Because of the potential efficiency trade-offs, you must decide when
it is appropriate to use early binding and when to use late binding.

I	 EXAMPLES

Here is a program that illustrates "one interface, multiple
methods." It defines an abstract list class for integer values. The
interface to the list is defined by the pure virtual functions
store() and retrieve(). To store a value, call the store()
function. To retrieve a value from the list, call retrieve(). The
base class list does not define any default methods for these
actions. Instead, each derived class defines exactly what type of
list will be maintained. In the program, two types of lists are
implemented: a queue and a stack. Although the two lists
operate completely differently, each is accessed using the ame
interface. You should study this program carefully.
II Demonstrate virtual functions.
*include <iostrearn>
#include <cstdlib>
#include <cctype>

using namespace std;

class list
public:

list *h i; II pointer to start of list
list	 // pointer to end of list

364 TEACH YOURSELF

C4-+

list *next; // pointer to next item

mt num; II value to be stored

list() { head	 tail	 next = NULL; }

virtual void store(int i) =
virtual mt retrieve() = 0;

II Create a queue-type list.
class queue public list
public:

void store(int U;
mt retrieveQ;

void queue::store(int U

list *item;

item = new queue;
if (item)
cout << Allocation error.\n;

exit(i);

item->nu!n = i;

// put on end of list
if(tail) tail->next = item;

tail	 item;
item->next = NULL;
if (!head) head = tail;

7

mt quàue::retrieve(.)

mt i;
list *p;

if (!head)
cout << 'List empty•.\n'

return

// remove from start of list

i	 head->num;

VIRTUAL FUNCTIONS 365
10.4 APPL Y7NG POt YMORPH/SM

p	 head;
head	 head->next;
delete p;

return 1;

/7 Create a Stack-type list.
class Stack	 public list
public

void store(jnt i);
mt retrieve;

void stack::store(iflt i)

list *item;

item = new Stack;
if(jitem) (

cout << 'Allocation error-. \';
exit(-])

item->num = i;

7/ put on front of list for Stack-like operation
if(head) item->next	 head;
head = item;

if(!tail) tail = head;

mt Stack: :retrieve()

mt i;
list *p;

if(head) {

cout << List empty.\';
return 0;

remove from start of list
i = head->num;	 -
P = head;

head = head->next;

366 TEACH YOURSELF

V

delete p;

return 1;

mt main()

list *p;

II demonstrate queue
queue a_ob;
p = &cLob; 1/ point to queue

p->store(l)
p- >s tore (2
p- >s tore (3

cout << "Queue:
cout << p->retrieve;
cout<< p->retrieve()
cout << p->retrieve();

cout <<

II demonstrate stack
stack sob;
p = &s_ob; II point to stack

p->store(l);
p- >s tore (2
p->store(3)

cout << Stack:
cout << p->retrieve;
cOut << p->retrieve();
cout << p-retrieve();

cout <<

return 0;

2. The main() function in the list program just shown simply
illustrates that the list classes do, indeed, work. However, to

VIRTUAL FUNCTIONS 367
104 APPL VING POL YMOPP1/SM

hrtgin to set wty run-hi.e polymorphism is so powerful, try
using this main() instead:

mt main(

list: *p;

stack Sob;
queue q_ob;
char ch;
i.nt i;

for(iO; i<lO; i++)
cout << Stack or Queue? (S/Q):
cm >> ch;
ch = tolower(ch);
if(ch=='q') p = &q_ob;
else p = &s_ob;
p->store(i)

cout << Enter T to terminate\n;
for(;;)
COut << Remove from Stack or Queue? (S/Q)
cm >> ch;
ch	 tolower(ch);
if(ch=='t') break;
if(ch==q') p = &qob;
else p = &s_ob;
cout << p->retrieve() <<

COut << '\fl'

return 0;

U

This main() illustrates how random events that occur at
run time can be easily handled by using virtual functions and
run-time polymorphism. The program executes a for loop
running from 0 to 9. Each iteration through the loop, you are
asked to choose into which type of list—the stack or the
ucue—you want to put a value. According to your answer,

base pointer p is set to point to the correct object and the
curthnt value of is stored. Once the loop is Finished, 11tin

368 iMCH YOURSELF

C++

loop begins that prompts you to indicate from which list to
remove a value. Once again, it is your response that determines
which list is selected.

While this example is trivial, you should be able to see how
run-time polymorphism can simplify a program that must
respond to random events. For instance, the Windows operating
system interfaces to a program by sending it messages. As far as
the program is concerned, these messages are generated at
random, and your program must respond to each one as it is
received. One way to respond to these messages is through the
use of virtual functions.

EXERCISES

Add another type of list to the program in Example 1. Have
this version maintain a sorted list (in ascending order). Call
this list sorted.

2. On your own, think about ways in which you can apply
run-time polymorphism to simplifr the solutions to certain
types of problems.

SKILLS CHECK

Maste

Skills Check

At this point you should be able to perform the following exercises
and answer the questions.

1. What is a virtual function?

. What types of functions cannot be made virtual?

3. Ilow does a virtual function help achieve run-time
Poly morphism? Be specific.

VIRTUAL FUNCTIONS 369
SKILLS CHECK

4. What is a pure virtual function?

5. What is an abstract class? What is a polymorphic class?

6. Is the following fragment correct? If not, why not?

class base
public:

virtual mt f(int a) = 0;

class derived : public base
public:

mt f(int a, mt b) { return a*h; I
II

7. Is the virtual quality inhcritcd?

8. on your own, experiment with virtual functions at this time.
This is an important concept and you should master the
technique.

(ative
check

This section checks how well you have integrated material in this
chapter with that from the preceding chapters.

1. Enhance the list example from Section 10.4, Example 1, so that
it overloads the + and -- operators. Have the + store an
element and the -- retrieve an element.

2. How do virtual functions differ from overloaded functions?

3. On your own, reexamine some of the function overloading
examples presented earlier in this book. Determine which can
be converted to virtual functions. Also, think about ways in
which a virtual function can solve some of your own
programming problems.

