
Chapter 1

Crystal Properties and Growth of
Semiconductors

In studying solid state electronic devices we are interested primarily in the
electrical behavior of solids. However, we shall see in later chapters that the
transport of charge through a metal or a semiconductor depends not only on
the properties of the electron but also on the arrangement of atoms in the
solid. In the first chapter we shall discuss some of the physical properties of
semiconductors compared with other solids, the atomic arrangements of var-
ious materials, and some methods of growing semiconductor crystals. Topics
such as crystal structure and crystal growth technology are often the subjects
of books rather than introductory chapters; thus we shall consider only a few
of the more important and fundamental ideas that form the basis for under-
standing electronic properties of semiconductors and device fabrication.

Semiconductors are a group of materials having electrical conductivities in- 1.1
termediate between metals and insulators. It is significant that the conduc- SEMICONDUCTOR
tivity of these materials can be varied over orders of magnitude by changes MATERIALS
in temperature, optical excitation, and impurity content. This variability of
electrical properties makes the semiconductor materials natural choices for
electronic device investigations.

Semiconductor materials are found in column IV and neighboring
columns of the periodic table (Table 1-1). The column IV semiconductors, sil-
icon and germanium, are called elemental semiconductors because they are
composed of single species of atoms. In addition to the elemental materials,
compounds of column III and column V atoms, as well as certain combina-
tions from II and VI, and from IV, make up the compound semiconductors.

As Table 1-1 indicates, there are numerous semiconductor materials. As
we shall see, the wide variety of electronic and optical properties of these semi-
conductors provides the device engineer with great flexibility in the design of
electronic and optoelectronic functions. The elemental semiconductor Ge was
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Table 1-1. Common semiconductor materials; (a) the portion of the periodic table where
semiconductors occur; (bi elemental and compound semiconductors.

widely used in the early days of semiconductor development for transistors
and diodes. Silicon is now used for the majority of rectifiers, transistors, and
integrated circuits. However, the compounds are widely used in high-speed
devices and devices requiring the emission or absorption of light. The two-
element (binary) 111—V compounds such as GaN, GaP, and GaAs are com-
mon in light-emitting diodes (LEDs). As discussed in Section 1.2.4,
three-element (ternary) compounds such as GaAsP and four-element (qua-

ternary) compounds such as lnGaAsP can be grown to provide added flexi-
bility in choosing materials properties.

Fluorescent materials such as those used in television screens usually
are II—VI compound semiconductors such as ZnS. Light detectors are com-
monly made with In Sb, CdSe, or other compounds such as PbTe and HgCdTe.
Si and Ge are also widely used as infrared and nuclear radiation detectors.
An important microwave device, the Gunn diode, is usually made of GaAs
or InP. Semiconductor lasers are made using GaAs, AIGaAs, and other
ternary and quaternary compounds.

One of the most important characteristics of a semiconductor, which
distinguishes it from metals and insulators, is its energy band gap. This prop-

erty, which we will discuss in detail in Chapter 3, determines among other
things the wavelengths of light that can be absorbed or emitted by the semi-
conductor. For example, the band gap of GaAs is about 1.43 electron volts
(eV), which corresponds to light wavelengths in the near infrared. In con-
trast, GaP has a band gap of about 2.3 eV, corresponding to wavelengths in
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the green portion of the spectrum.' The band gap Eg for various semicon-
ductor materials is listed along with other properties in Appendix III. As a
result of the wide variety of semiconductor band gaps, light-emitting diodes
and lasers can be constructed with wavelengths over a broad range of the
infrared and visible portions of the spectrum.

The electronic and optical properties of semiconductor materials are
strongly affected by impurities, which may be added in precisely controlled
amounts. Such impurities are used to vary the conductivities of semicon-
ductors over wide ranges and even to alter the nature of the conduction
processes from conduction by negative charge carriers to positive charge car-
riers. For example, an impurity concentration of one part per million can
change a sample of Si from a poor conductor to a good conductor of electric
current. This process of controlled addition of impurities, called doping, will

be discussed in detail in subsequent chapters.
To investigate these useful properties of semiconductors, it is neces-

sary to understand the atomic arrangements in the materials. Obviously, if
slight alterations in purity of the original material can produce such dra-
matic changes in electrical properties, then the nature and specific arrange-
ment of atoms in each semiconductor must be of critical importance.
Therefore, we begin our study of semiconductors with a brief introduction
to crystal structure.

In this section we discuss the arrangements of atoms in various solids. We 1.2
shall -distinguish between single crystals and other forms of materials and CRYSTAL LATTICES
then investigate the periodicity of crystal lattices. Certain important crystal-
lographic terms will be defined and illustrated in reference to crystals hav-
ing a basic cubic structure. These definitions will allow us to refer to certain
planes and directions within a lattice. Finally, we shall investigate the dia-
mond lattice; this structure, with some variations, is typical of most of the
semiconductor materials used in electronic devices.

1.2.1 Periodk Structures

A crysl1ine- solid is distinguished by the fact that the atoms making up the
crystal are arranged in a periodic fashion. That is, there is some basic arrange-
ment of atoms that is repeated throughout the entire solid. Thus the crystal
appears exactly the same at one point as it does at a series of other equiva-
lent points, once the basic periodicity is discovered. However, not all solids
are crystals (Fig. 1-1); some have no periodic structure at all (amorphous
solids), and others are composed of many small regions of single-iystai ma-
terial (polycrystalline solids). The high-resolution micrograph shown in Fig.

The conversion between the energy E of a pFiolon of light (eV) ond its wavelength 	n) is 1, - 1.24/E for

GaAs, Ii - 1.24/1.43 -0.87 isin.
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(a) Crystalline	 (b) Amorphous	 (c) Polycrystalline
Figure 1-1
Three types of solids, classified according to atomic arrangement: (a) crystalline and (b) amorphous ma-
terials are illustrated by microscopic views of the atoms, whereas (c) polycrystalline structure is illustrated
by a more macroscopic view of adjacent single-crystalline regions, such as (a).

6-33 illustrates the periodic array of atoms in the single-cr ystal silicon of a
transistor channel compared with the amorphous Si0 7 (glass) of the oxide
layer.

Th_podic ar gment. of atoms in a crytajis called the lattice. Since
there are many different ways of placing atoms in a volume, the distances
and orientation between atoms can take many forms. However, kn every case
the lattice contains a volume, called a unit cell, which is representative of the
entire lattice and is regularly repeated throughout the crystal. As an exam-
ple of such a lattice, Fig. 1-2 shows a two-dimensional arrangement of atoms
with a unit cell ODEF. This cell has an atom at each corner shared with ad-
jacent cells. Notice that we can define vectors a and b such that if the unit cell
is translated by integral multiples of these vectors, a new unit cell identical
to the original is found (e.g., O'D'E'F'). These vectors a and b (and c if the
lattice is three dimensional) are called the basis vectors for the lattice. Points
within the lattice are indistinguishable if the vector between the points is

r=pa+qb-4-sc	 (I—I)
where p , q, and s are integers.

The smallest unit co that can be peated to form the lattice is ca lled
aprimiiecelTJn many lattices, however, the pr iti cell is not the most
convenje,jij work with.The importance of the unit cell lies in the fact that
we can analyze the crystal as a whole by investigating a representative vol-
ume. For example, front unit cell we can find the distances between near-
est atoms and next nearest atoms for calculation of the forces holding the
lattice together: we can look at the fraction of the unit cell volume filled by
atoms and relate the density of the solid to the atomic arrangement. But
even more important for our interest in electronic devices, the properties of
the periodic crystal lattice determine the allowed energies of electrons that
participate in the conduction process. Thus the lattice determines not only the
mechanical properties of the crystal but also its electrical properties.



Figure 1-2
A two-dimensional
lattice showing
translation of a
unit cell by
r = 3 + 2b.
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Figure -3
Unit cells for three
types of cubic lat-
tice structures.

Simple cubic	 Body-centered cubic 	 Face-centered cubic

1.2.2 Cubic Lattices

'the simplest three-dimensional lattice is one in which the unit cell is a cubic
volume, such as the three cells shown in Fig. 1-3. The simple cubic structure
(abbreviated sc) has an atom located at each corner of the unit cell.The body-
centered cubic (bcc) lattice has an additional atom at the Center of the cube,
and the face-centered cubic (fcc) Unit cell has atoms at the eight corners and
centered on the six faces.

As atoms are packed into the lattice in any of these arrangements, the dis-
tances between neighboring atoms will be determined by a balance between the
forces that attract them together and other forces that hold them apart. We shall
discuss the nature of these forces for particular solids in Section 3.1.1. For now,
we can calculate the maximum fraction of the lattice volume that can be filled
with atoms by approximating the atoms as hard spheres. For example. Fig. 1-4
illustrates the packing of spheres in a face-centered cubic cell of side a. such that
the nearest neighbors touch. The dimension a for a cubic unit cell is called the
lattice constant. For the fee lattice the nearest neighbor distance is one-half the
diagonal of a face, or 1 (a V ).Therefore, for the atom centered on the face to
just touch the atoms at each corner of the face, the radius of the sphere must be
one-half the nearest neighbor distance, or (a V2 ).
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Fgure 1-4
Packing of hard
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lattice.
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EXAMPLE 1-1	 Find the fraction of the fcc unit cell volume filled with hard spheres as in Fig.
1-4.

SOLUTION Each corner atom in a cubic Unit cell is shared with seven neighboring
cells; thus each unit cell contains of a sphere at each of the eight corners
for a total of one atom. Similarly, the fcc cell contains half an atom at each
of the six faces for a total of three. Thus we have

Atoms per cell = I (corners) + 3 (faces) = 4

Nearest neighbor distance = (aV)

Radius of each sphere = (aV)

Volume of each sphere = ir	 =

Maximum fraction of cell filled

- no. of spheres X vol. of each sphere
-	 total vol. of each cell

- 4 x (7iaV)/24
-	 a3

6	
74 percent filled

/

/2



Figure 1-5
A (214) crystal
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Therefore, if the atoms in an fcc lattice are packed as densely as possible,
with no distance between the outer edges of nearest neighbors, 74 percent
of the volume is filled. This is a relatively high percentage compared with
some other lattice structures (Prob. 1.14).

1.2.3 Planes and Directions

In discussing crystals it is very helpful to be able to refer to planes and di-
rections within the lattice. The notation system generally adopted uses a set
of three integers to describe the position of a plane or the direction of a vec-
tor within the lattice. The three integers describing a particular plane are
found in the following way:

1. Find the intercepts of the plane with the crystal axes and express
these intercepts as integral multiples of the basis vectors (the plane
can be moved in and out from the origin, retaining its orientation,
until such an integral intercept is discovered on each axis).

2. Take the reciprocals of the three integers found in step 1 and reduce
these to the smallest set of integers h, k, and 1, which have the same
relationship to each other.as the three reciprocals.

3. Label the plane (hkl).

The plane illustrated in Fig. 1-5 has intercepts at 29, 4b, and Ic along the EXAMPLE 12
three crystal axes. Taking the reciprocals of these intercepts, we get 1 , ,and
1. These three fractions have the same relationship to each other as the in-
tegers 2, 1, and 4 (obtained by multiplying each fraction by 4). Thus the plane
can be referred to as a (214) plane.

z1

I	 (214)
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The three integers h, k, and I are called the Miller indices; these three
numbers define a set of parallel planes in the lattice. One advantage of tak-
ing the reciprocals of the intercepts is avoidance of infinities in the notation.
One intercept is infinity for a plane parallel to an axis; however, the recipro-
cal of such an intercept is taken as zero. If a plane contains one of the axes, it
is parallel to that axis and has a zero reciprocal intercept, if a plane passes
through the origin, it can be translated to a parallel position for calculation of
the Miller indices. If an intercept occurs on the negative branch of an axis,
the minus sign is placed above the Miller index for convenience, such as (hkl).

From a crystallographic point of view, many planes in a lattice are equiv-
alent; that is, a plane with given Miller indices can be shifted about in the lat-
tice simply by choice of the position and orientation of the unit cell. The
indices of such equivalent planes are enclosed in braces I I instead of paren-
theses. For example, in the cubic lattice of Fig. 1-6 all the cube faces are crys-
tallographically equivalent in that the unit cell can be rotated in various
directions and still appear the same. The six equivalent faces are collective-
ly designated as (100).

A direction in a lattice is expressed as a set of three integers with the
same relationship as the components of a vector in that direction. The three
vector components are expressed in multiples of the basis vectors, and the
three integers are reduced to their smallest values while retaining the rela-
tionship among them. For example, the body diagonal in the cubic lattice
(Fig. 1-7a) is composed of the components la, lb, and ic; therefore, this di-
agonal is the [111] direction. (Brackets are used for direction indices) As in

(0()l)

Figure 1-6
Equivalence of the
cube faces ((100)

planes) by rotation
of the unit cell within

the cubic lattice.
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Figure 1-7
Crystal directions
in the cubic lat-
tice.
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(a)	 (h)

the case of planes, many directions in a lattice are equivalent, depending only
on the arbitrary choice of orientation for the axes. Such equivalent direction
indices are placed in angular brackets ). For example, the crystal axes in the
cubic lattice 11001, [0101, and [00]] are all equivalent and are called (100) di-
rections (Fig. 1-7b).

Comparing Figs. 1 -6 and 1-7, we notice that in cubic lattices a direction
[hkl] is perpendicular to the plane (hkl). This is convenient in analyzing lat-
tices with cubic unit cells, but it should be remembered that it is not neces-
sarily true in noncubic systems.

1.2.4 The Diamond Lattice

The basic lattice structure for many important semiconductors is the dia-
mond lattice, which is characteristic of Si and Ge. In many compound semi-
conductors, atoms are arranged in a basic diamond structure but are different
on alternating sites. This is called a zincb/ende lattice and is typical of the
Ill-V compounds. One of the simplest ways of stating the construction of
the diamond lattice is the following:

The diamond lattice can be thought of as an fee structure with an
extra atom placed at a14 + b/4 + c14 from each of the fee atoms.

Figure 1-8a illustrates the construction of a diamond lattice from an
fcc unit cell. We notice that when the vectors are drawn with components
one-fourth of the cube edge in each direction, only four additional points
within the same unit cell are reached. Vectors drawn from any of the other
fee atoms simply determine corresponding points in adjacent unit cells. This
method of constructing the diamond lattice implies that the original fcc has
associated with it a second interpenetrating fcc displaced by X. Y. %. The two
interpenetrating fee sub!atrices can be visualized by looking down on the unit
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Figure 1-8
Diamond lattice structure: (a) a unit cell of the diamond lattice constructed by placing atoms 1, , from

each atom in an kc; (b) top view (along any (100) direction) of an extended diamond lattice. The colored

circles indicate one fcc sublottice and the block circles indicate the interpenetrating fcc.

cell of Fig. 1-8a from the top (or along any (100) direction). In the top view
of Fig. 1-8b, atoms belonging to the original fcc are represented by open cir-
cles, and the interpenetrating sublattice is shaded. If the atoms are all simi-
lar, we call this structure a diamond lattice; if the atoms differ on alternating
sites, it is a zincblende structure. For example, if one fcc sublattice is com-
posed of Ga atoms and the interpenetrating sublattice is As, the zincblende
structure of GaAs results. Most of the compound semiconductors have this
type of lattice, although some of the II-VI compounds are arranged in a
slightly different structure called the wurtzite lattice. We shall restrict our
discussion here to the diamond and zincblende structures, since they are typ-
ical of most of the commonly used semiconductors.

EXAMPLE 1-3 Calculate the densities of Si and GaAs from the lattice constants (Appendix
III), atomic weights, and Avogadro's number. Compare the results with den-
sities given in Appendix III. The atomic weights of Si, Ga, and As are 28.1,
69.7, and 74.9, respectively.

SO&.IJflON	 For Si: a = 5.43)< 10 cm, 8 atoms/cell,

8	 8
a3 - (5.43 10-')'= 

X 1012atoms/cm'

5 x 10(atoms/cm3) x 28.1(g/mole) = 2.33 g/cm
3density =	

x 109atoms/mole)



Crystal Properties and Growth of Semiconductors

For GaAs: a = 5.65 X 10-8 cm,4 each Ga,As atoms/cell

4	 4
= 2.22 X 1022 atoms/cm'

a 3 = (5.65 x iO)

2.22 x 1022(69.7 + 74.9)	 3density =
	 6.02 x 1023	 5.33 g/cm

A particularly interesting and useful feature of the 111—V compounds
is the ability to vary the mixture of elements on each of the two interpene-
trating fcc subtattices of the zincblende crystal. For example, in the ternary
compound AIGaAs, it is possible to vary the composition of the ternary alloy
by choosing the fraction of Al or Ga atoms on the column Ill sublattice. It is
common to represent the composition by assigning subscripts to the various
elements. For example, AlGa 1 As refers to a ternary alloy in which the col-
umn Ill sublattice in the Lincblende structure contains a fraction x of Al
atoms and 1—x of Ga atorns.The composition Al 0 3Ga )7As has 30 percent Al
and 70 percent Ga on the column III sites, with the interpenetrating column
V sublattice occupied entirely by As atoms. It is extremely useful to be able
to grow ternary alloy crystals such as this with a given composition. For the
AlGa1 As example we can grow crystals over the entire composition range
from x = 0 to x = 1, thus varying the electronic and optical properties of the
material from that of GaAs (x = 0) to that of AlAs (x = 1). To vary the prop-
erties even further, it is possible to grow four-element (quaternary) com-
pounds such as InGa 1 AsP_ having a very wide range of properties.

It is important from an electronic point of view to notice that each atom
in the diamond and zincblende structures is surrounded by four neatest
neighbors (Fig. 1-9). The importance of this relationship of each atom to its
neighbors will become evident in Section 3.1.1 when we discuss the bonding
forces which hold the lattice together.

The fact that atoms in a crystal are arranged in certain planes is im-
portant to many of the mechanical, metallurgical, and chemical properties of
the material. For example, crystals often can be cleaved along certain atom-
ic planes, resulting in exceptionally planar surfaces. This is a familiar result
in cleaved diamonds for jewelry; the facets of a diamond reveal clearly the
triangular, hexagonal, and rectangular symmetries of intersecting planes in
various crystallographic directions. Semiconductors with diamond and
zmcblende lattices have similar cleavage planes. Chemical reactions, such as
etching of the crystal, often take place preferentially along certain directions.
These properties serve as interesting illustrations of crystal symmetry, but in
addition, each plays an important role in fabrication processes for many semi-
conductor devices.

11
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Diamond lattice

unit cell, showing
the four nearest
neighbor struc-

ture. (From Elec-

trons and Holes in

Semiconductors

by W. Shockley,
© 1950 by Litton
Educational Pub-
lishing Co., Inc.;
by permission of

Van Nostrand
Reinhold Co.,

Inc.)

12	 Chapter 1

1.3 The progress of solid state device technology since the invention of the tran-
BULK CRYSTAl. sistoiiu 1948 has depended not only on the development of device concepts

GROWTH but also on the improvement of materials. For example, the fact that inte-
grated circuits can be made today is the result of a considerable breakthrough
in the growth of pure, single-crystal Si in the early and mid - 1950s. The re-
quirements on the growing of device-grade semiconductor crystals are more
stringent than those for any other materials. Not only must semiconductors
be available in large single crystals, but also the purity must be controlled
within extremely close limits. For example, Si crystals now being used in de-
vices are grown with concentrations of most impurities of less than one part
in ten billion. Such purities require careful handling and -treatment of the
material at each step of the manufacturing process.

1.3.1 Starting Materials

The raw feedstock for Si crystal is silicon dioxide NOD. We react Si02 with
C in the form of coke in an arc furnace at very high temperatures (-1800
°C) to reduce Si02 according to the following reaction:

Si02 + 2C -+ Si + 2C0	 (1-2)

This forms metallurgical grade Si (MGS) which has impurities such as
Fe, Al and heavy metals at levels of several hundred to several thousand
parts per million (ppm). Refer back to Example 1-3 to see that I ppm of Si
corresponds to an impurity level of 5 x 10 16cm 3. While MGS is clean enough
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for metallurgical applications such as using Si to make stainless steel, it is
not pure enough for electronic applications; it is also not single-crystal.

The MGS is refined further to yield semiconductor-grade or electronic-
grade Si (EGS), in which the levels of impurities are reduced to parts per bil-
lion or ppb (1 ppb5 X 1013cm). This involves reacting the MGS with dry
HCI according to the following reaction to form trici ilorosilane, SiHCI 1, which
is a liquid with a boiling point of 32°C.

Si + 3HCI - SiHCI1 + H2	(1-3)

Along with SiHCI 31 chlorides of impurities such as FeCl3 are formed
which fortunately have boiling points that are different from that of SiHCI.
This allows a technique called fractional distillation to be used, in which we
heat up the mixture of SiHCI3 and the impurity chlorides, and condense the
vapors in different distillation towers held at appropriate temperatures. We
can thereby separate pure SiHCI 3 from the impurities. SiHCI 3 is then con-
verted to highly pure EGS by reaction with H2,

2SiHCI3 + 2H2 -4 2Si + 6HCI	 (1-4)

1.3.2 Growth of Single Crystal Ingots

Next, we have to convert the high purity but still polycrystalline EGS to single-
crystal Si ingots or boules. This is generally done today by a process common-

ly called the Czochralski method. In order to grow single-crystal material, it is
necessary to have a seed crystal which can provide a template for growth. We
melt the EGS in a quartz-lined, graphite crucible by resistively heating it to the
melting point of Si (14 12°C).

A seed crystal is lowered into the molten material and then i s raised
slowly, allowing the crystal to grow onto the seed (Fig. 1-10). Generally, the
crystal is rotated slowly as it grows to provide a slight stirring of the melt
and to average out any temperature variations that would cause inhomoge-
neous solidification. This technique is widely used in growing Si, Ge, and
some of the compound semiconductors.

In pulling compounds such as GaAs from the melt, it is necessary to pre-
vent volatile elements (e.g., As) from vaporizing. In one method a layer of
B201, which is dense and viscous when molten, floats on the surface of the
molten GaAs to prevent As evaporation. This growth method is called liquid-
encapsulated Czochralski (LEC) growth.

In Czochralski crystal growth, the shape of the ingot is determined by
a combination of the tendency of the cross section to assume a polygonal
shape due to the crystal structure and the influence of surface tension, which
encourages a circular cross section. The crystal facets are noticeable in the ini-
tial growth near the seed crystal in Fig. 1-10(b). However, the cross section
of the large ingot in Fig. 1-11 is almost circular.

13
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Figure 1-10
Pulling of a Si crys-

tal from the melt
(Czochralski

method): (a) sche-
matic diagram of
the crystal growth
process; (b) on 8-

in. diameter, (100)
oriented Si crystal
being pulled from

the melt. (Photo-
graph courtesy of

MEMC Electronics
Intl.)
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Figure 1-11
Silicon crystal grown by the Czochrolski method. This large single-crystal ingot provides 300 mm (12-in.)
diameter wafers when sliced using a saw. The ingot is about 1.5 m long (excluding the tapered regions),
and weighs about 275 kg. (Photograph courtesy of MEMC Electronics Intl.)

In the fabrication of Si integrated circuits (Chapter 9) it is economical
to use very large Si wafers, so that many IC chips can be made simultaneously.
As a result, considerable research and development have gone into meth-
ods for growing very large Si crystals. For example, Fig. 1-11 illustrates a 12-
inch-diameter Si ingot, 1.5 m long, weighing 275 kg.

1.3.3 Wafers

After the single-crystal ingot is grown, it is then mechanically processed to
manufacture wafers- The first step involves mechanically grinding the more-



Figure 1-12
Steps involved in
manufacturing Si
wafers: (a) A 300
mm Si cylindrical
ingot, with a
notch on one
side, being
loaded into a
wire saw to pro-
duce Si wafers;
(b) a technician
holding a cassette
of 300 mm
wafers. (Photo-
graphs courtesy
of MEMC
Electronics Infi.)
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or-less cylindrical ingot into a perfect cylinder with a precisely controlled di-
ameter. This is important because in a modern integrated circuit fabrication
facility many processing tools and wafer handling robots require tight toler-
ances on the size of the wafers. Using X-ray crystallography, crystal planes in
the ingot are identified. For reasons discussed in Section 6.4.3, most Si in-
gots are grown along the (100) direction (Fig. 1-10). For such ingots, a small
notch is ground on one side of the cylinder to delineate a 1110) face of the
crystal. This is useful because for (100) Si wafers, the 11101 cleavage planes are
orthogonal to each other. This notch then allows the individual integrated
circuit chips to be made oriented along 11101 planes so that when the chips
are sawed apart, there is less chance of spurious cleavage of the crystal, which
could cause good chips to be lost.

Next, the Si cylinder is sawed into individual wafers about 775 p.m thick,
by using a diamond-tipped inner-hole blade saw, or a wire saw (Fig. 1-12a).
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The resulting wafers are mechanically lapped and ground on both sides to
achieve a flat surface, and to remove the mechanical damage due to sawing.
Such damage would have a detrimental effect on devices. The flatness of the
wafer is critical from the point of view of "depth of focus" or how sharp an
image can be focussed on the wafer surface during photolithography, as dis-
cussed in Chapter 5. The Si wafers are then rounded or "chamfered" along
the edges to minimize the likelihood of chipping the wafers during process-
ing Finally, the wafers undergo chemical-mechanical polishing using a slur-
ry of very fine SiO 2 particles in a basic NaOH solution to give the front
surface of the wafer a mirror-like finish. The wafers are now ready for inte-
grated circuit fabrication (Fig. 1-12b). The economic value added in this
process is impressive. From sand (Si0 2 ) costing pennies, we can obtain Si
wafers costing a few hundred dollars, on which we can make hundreds of mi-
croprocessors, for example, each costing several hundred dollars.

1.3.4 Doping

As previously mentioned, there are some impurities in the molten EGS. We
may also add intentional impurities or dopants to the Si melt to change its
electronic properties. At the solidifying interface between the melt and the
soli,ce will be a certain distribution of impurities between the two phas-
es. An important quantity that identifies this property is the distribution co-
efficient kd, which is the ratio of the concentration of the impurity in the solid
C. to the concentration in the liquid CL at equilibrium:

kd= 
Cc-
	 (I-S)

C,

The distribution coefficient is a function of the material, the impurity,
the temperature of the solid-liquid interface, and the growth rate. For an im-
purity with a distribution coefficient of one-half, the relative concentration
of the impurity in the molten liquid to that in the refreezing solid is two to
one. i'hus the concentration of impurities in that portion of material that so-
lidifies first is one-half the original concentration Co. The distribution coef-
ficient is thus important during growth from a melt. This can be illustrated by
an example involving Czochralski growth:

EXAMPLE 1-4

	

	 A Si crystal is to be grown by the Czochralski method, and it is desired that
the ingot contain 10" phosphorus atoms/cm'.

(a) What concentration of phosphorus atonis should the melt contain to
give this impurity concentration in the crystal during the initial
growth? For P in Si, kd = 035.
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(b) If the initial load of Si in the crucible is 5 kg, how many grams of
phosphorus should be added? The atomic weight of phosphorus is 31.

(a) Assume that C = kaCL throughout the growth.Thus the initial con- SOLUTION
centration of P in the melt should be

= 2.86 x 10cm3

(b) The P concentration is so small that the volume of melt can be cal-
culated from the weight of Si. From Example 1-3 the density of Si is
2.33 gIcnl 3 . In this example we will neglect the difference in density
between solid and molten Si.

5000 g of Si
= 2 146 cm 3 of Si

2.33 g/cm3

2.86 X 1016 cm X 2146 cm' =6.14 x 10°Patoms

6.14 X 10 19 atoms X 31 g/mole
316 x 103gofP

6.02 x J(P atoms/mole

Since the P concentration in the growing crystal is only about one-third
of that in the melt, Si is used up more rapidly than Pin the growth. Thus the
melt becomes richer in P as the growth proceeds, and the crystal is doped
more heavily in the latter stages of growth. This assumes that kd is not var-
ied; a more uniformly doped ingot can be grown by varying the pull rate
(and therefore led) appropriately. Modern Czochralski growth systems use
computer controls to vary the temperature, pull rate, and other parameters
to achieve fairly uniformly doped ingots.

One of the most important and versatile methods of crystal growth for de- 1.4
vice applications is the growth of a thin crystal layer on a wafer of a corn- EPflAXIAL
patible crystal. The substrate crystal may be a wafer of the same material as GROWTH
the grown layer or a different material -with a similar lattice structure. In this
process the substrate serves as the seed crystal onto which the new crystalline
material grows. The growing crystal layer maintains the crystal structure and
orientation of the substrate. The technique of growing an oriented single-
crystal layer on a substrate wafer is called epiraxial growth, or epiraxy. As we
shall see in this section, epitaxial growth can be performed at temperatures
considerably below the melting point of the substrate crystal. A variety of
methods are used to provide the appropriate atoms to the surface of the
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growing layer. These methods include chemical vapor deposition (CVD),2
growth from a melt (liquid-phase epitaxy, LPE), and evaporation of the ele-
ments in a vacuum (molecular beam epiraxy, MBE). With this wide range of
epitaxial growth techniques, it is possible to grow a variety of crystals for de-
vice applications, having properties specifically designed for the electronic or
optoelectronic device being made.

1.4.1 Lattice Matching in Epitaxiol Growth

When Si epitaxial layers are grown on Si substrates, there is a natural match-
ing of the crystal lattice, and high-quality single-crystal layers result. On the
other hand, it is often desirable to obtain epitaxial layers that differ somewhat
from the substrate, which is known as heteroepitaxy. This can be accomplished
easily if the lattice structure and lattice constant a match for the two mate-
rials. For example, GaAs and AlAs both have the zincblende structure, with
a lattice constant of about 5.65 A. As a result, epitaxial layers of the ternary
alloy AIGaAs can be grown on GaAs substrates with little lattice mismatch.
Similarly, GaAs can be grown on Ge substrates (see Appendix III).

Since AlAs and GaAs have similar lattice constants, it is also true that
the ternary alloy AlGaAs has essentially the same lattice constant over the
entire range of compositions from AlAs to GaAs. As a result, one can choose
the composition x of the ternary compound AlGa 1 As to fit the particular
device requirement, and grow this composition on a GaAs wafer. The re-
sulting epitaxial layer will be lattice-matched to the GaAs substrate.

Figure 1-13 illustrates the energy band gap Ex as a function of lattice
constant a for several 111—V ternary compounds as they are varied over their
composition ranges. For example, as the ternary compound InGaAs is varied
by choice of composition on the column III sublattice from InAs to GaAs, the
hand gap changes from 0.36 to 1.43 eV while the lattice constant of the crys-
tal varies from 6.06 A for InAs to 5.65 A for GaAs. Clearly, we cannot grow
this ternary compound over the entire composition range on a particular bi-
nary substrate, which has a fixed lattice constant. As Fig. 1-13 illustrates, how-
ever, it is possible to grow a specific composition of 1nGaAs on an lnP substrate.
The vertical (invariant lattice constant) line from lnP to the InGaAs curve
shows that a midrange ternary composition (actually, In 053Ga047As) can be
grown lattice-matched to an InP substrate. Similarly, a ternary InGaP alloy
with about 50 percent Ga and 50 percent In on the column III sublattice can be
grown lattice-matched to a GaAs substrate. To achieve a broader range of alloy
compositions, grown lattice-matched on particular substrates, it is helpful to

'The generic term chemical 'apor deposition ind.,d.s d.posilion of layers that may be polycrystalline or
amorphous. When a CVD procees results in a S lecryslol epitoxial by.,, 0 more specific ten's is s'opor•
psose epcy (IPE).
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Figure 1-13
Relationship between band gap and lattice constant for alloys in the lnGaAsP and AlGoAsSb systems.
The dashed vertical lines show the lattice constants for the commercially available binary substrates
GaAs and lnP. For the marked example of lnGo,_As, the ternary composition x = 0.53 can be grown
lattice-matched on lnP, since the lattice constants are the same. For quaternary alloys, the compositions
on both the Ill and V sublattices can be varied to growlattice-matched epitoxial layers along the dashed
vertical lines between curves. For example, lnGa i .As.P,_ can be grown on loP substrates, with result-
ing bond gaps ranging from 0.75 eV to 1 .35 eV. In using this figure, assume the lattice constant a of a
ternary alloy varies linearly with the composition x.

use quaternary alloys such as InGaAsP. The variation of compositions on both
the column III and column V sublattices provides additional flexibility in choos-
ing a particular band gap while providing lattice-matching to convenient binary
substrates such as GaAs or InP.

In the case of GaAsP, the lattice constant is intermediate between that
of GaAs and GaP, depending upon the composition. For example, GaAsP
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crystals used in red LEDs have 40 percent phosphorus and 60 percent ar-
senic on the column V sublattice. Since such a crystal cannot be grown directly
on either a GaAs or a GaP substrate, it is necessary to gradually change the
lattice constant as the crystal is grown. Using a GaAs or Ge wafer as a sub-
strate, the growth is begun at a composition near GaAs. A region -25 Jim
thick is grown while gradually introducing phosphorus until the desired As/P
ratio is achieved The desired epitaxial layer (e.g., 100 ltm thick) is then grown
on this graded layer. By this method epitaxial growth always occurs on a
crystal of similar lattice constant. Although some crystal dislocations occur
due to lattice Strain in the graded region, such crystals are of high quality
and can be used in LEDs.

In addition to the widespread use of lattice-matched epitaxial layers, the
advanced epitaxial growth techniques described in the following sections
allow the growth of very thin 

(P- I OOA) layers of lattice-mismatched crystaIs
If the mismatch is only a few percent and the layer is thin, the epitaxial layer
grows with a lattice constant in compliance with that of the seed crystal (Fig.
1-14). The resulting layer is in compression or tension along the surface plane

SiGe

Si

I < t.

IIILIII
/	 \	 /

t>I

Figure 1-14
11eteroepitoxy and misfit dislocations For example, in heteroepitaxy of a SiGe layer on Si, the lattice
mismatch between SiGe and Si leads to compressive strain in the SiGe layer. The amount of strain de-
pends on the mole fraction of Ge. (a) For layer thicknesses less than the critical layer thickness, t,
pseudomorphic growth occurs. (b) However, above t,,, misfit dislocations form at the interface which may
reduce the usefulness of the layers in device applications.
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as its lattice constant adapts to the seed crystal (Fig. 1-14). Such a layer is
called pseudomorphic because it is not lattice-matched to the substrate with-
out strain. However, if the epitaxial layer exceeds a critical layer thickness,
t, which depends on the lattice mismatch, the strain energy leads to forma-
tion of defects called misfit dislocations. Using thin alternating layers of slight-
ly mismatched crystal layers, it is possible to grow a strained-layer super/attice
(SLS) in which alternate layers are in tension and compression. The overall
SLS lattice constant is an average of that of the two bulk materials.

1.4.2 Vapor-Phase Epitaxy

The advantages of low temperature and high purity epitaxial growth can
be achieved by crystallization from the vapor phase. Crystalline layers can
be grown onto a seed or substrate from a chemical vapor of the semicon-
ductor material or from mixtures of chemical vapors containing the semi-
conductor. Vapor-phase epitaxy (VPE) is a particularly important source
of semiconductor material for use in devices. Some compounds such as
GaAs can be grown with better purity and crystal perfection by vapor epi-
taxy than by other methods. Furthermore, these techniques offer great
flexibility in the actual fabrication of devices. When an epitaxial layer is
grown on a substrate, it is relatively simple to obtain a sharp demarcation
between the type of impurity doping in the substrate and in the grown
layer. The advantages of this freedom to vary the impurity will be dis-
cussed in subsequent chapters. We point out here, however, that Si inte-
grated-circuit devices (Chapter 9) are usually built in layers grown by VPE
on Si wafers.

Epitaxial layers are generally grown on Si substrates by the controlled
deposition of Si atoms onto the surface from a chemical vapor containing
Si. In one method, a gas of silicon tetrachloride reacts with hydrogen gas to
give Si and anhydrous HCI:

SiCI4 + 2H2	Si + 4HCI	 (1-6)

If this reaction occurs at the surface of a heated crystal, the Si atoms re-
leased in the reaction can be deposited as an epitaxial layer. The HCl remains
gaseous at the reaction temperature and does not disturb the growing crys-
tal. As indicated, this reaction is reversible. This is very important because it
implies that by adjusting the process parameters, the reaction in Eq. (1-6) can
be driven to the left (providing etching of the Si rather than deposition). This
etching can be used for preparing an atomically clean surface on which epi-
taxy can occur.

This vapor epitaxy technique requires a chamber into which the gases can
be introduced and a method for heating the Si wafers Since the chemical re-
actions take place in this chamber, it is called a reaction chamber or, more sim-
ply, a reactor. Hydrogen gas is passed through a heated vessel in which SiC!4

21
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Figure 1-15
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is evaporated; then the two gases are introduced into the reactor over the sub-- -
strate crystal, along with other gases containing the desired doping impurities.
The Si slice is placed on a graphite susceptor or some other material that can
be heated to the reaction temperature with an rf heating coil or tungsten halo-
gen lamps. This method can be adapted to grow epitaxial layers of closely con-
trolled impurity concentration on many Si slices simultaneously (Fig. 1-15).

The reaction temperature for the hydrogen reduction of SiC!4 is ap-
proximately 1150-1250°C. Other reactions may he employed at somewhat
lower temperatures, including the use of dichlorosilane (SiH 2Cl2) at 1000-
1100 0 C, or the pyrolysis of silane (SiH 4) at 1000°C. Pyrolysis involves the
breaking up of the silane at the reaction temperature:

Sil-14 —) Si + 211 2	(1-7)

There are several advantages of the lower reaction temperature
processes, including the fact that they reduce migration of impurities from the
substrate to the growing epitaxial layer.

In some applications it is useful to grow thin Si layers on insulating sub-
strates. For example, vapor-phase epitaxial techniques can be used to grow
—lp.m Si films on sapphire and other insulators. Ibis application of VPE is
discussed in Section 9.3.2.

Vapor-phase epitaxial growth is also important in the Ill-V com-
pounds, such as GaAs, GaP, and the ternary alloy GaAsP, which is widely
used in the fabrication of LEDs. Substrates are held at about 800°C on a ro-
tating wafer holder while phosphine, arsine, and gallium chloride gases are
mixed and passed over the samples. The GaCl is obtained by reacting anhy-
drous HCI with molten Ga within the reactor. Variation of the crystal com-
position for GaAsP can be controlled by altering the mixture of arsine and
phosphine gases.
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Another useful method for epitaxial growth of compound semiconduc-
tors is called metal-organic vapor-phase epitaxy (MOVPE). or organometal-
lic vapor-phase epiraxy (OMVPE). For example, the organometallic compound
trimethylgallium can be reacted with arsine to form GaAs and methane:

(CHGa 4- AsH - GaAs + 3CH 4	(I S)

This reaction lakes place at about 700 C C, and epitaxial growth of high-
quality GaAs layers can be obtained. Other compound semiconductors can
also be grown by this method. For example, trimethylaluminum can be added
to the gas mixture to grow AIGaAs.This growth method is widely used in the
fabrication of a variety of devices, including solar cells and lasers. The con-
venient variability of the gas mixture allows the growth of multiple thin lay-
ers similar to those discussed below for molecular beam epitaxy.

1.4.3 Molecular Beam Epftaxy

One of the most versatile techniques for growing epitaxial layers is called
molecular beam epitaxy (MBE). In this method the substrate is held in a high
vacuum while molecular or atomic beams of the constituents impinge upon
its surface (Fig. 1-16a). For example. in the growth of AIGaAs layers on
GaAs substrates, the Al, Ga, and As components, along with dopants, are
heated in separate cylindrical cells. Collimated beams of these constituents
escape into the vacuum and are directed onto the surface of the substrate. The
rates at which these atomic beams strike the surface can be closely controlled,
and growth of very high quality crystals results. The sample is held at a rela-
tively low temperature (about 6000 C for GaAs) in this growth procedure.
Abrupt changes in doping or in crystal composition (e.g., changing from
GaAs to AlGaAs) can be obtained by controlling shutters in front of the in-
dividual beams. Using slow growth rates (!5 I p.m/h), it is possible to control
the shutters to make composition changes on the scale of the lattice con-
stant. For example, Fig. 1-16b illustrates a portion of a crystal grown with al-
ternating layers of GaAs and AlGaAs only four monolayers thick. Because
of the high vacuum and close controls involved, MBE requires a rather so-
phisticated setup (Fig. 1-17). However, the versatility of this growth method
makes it very attractive for many applications.

As MBE has developed in recent years, it has become common to re-
place some of the solid sources shown in Fig. 1-16 with gaseous chemical
sources. This approach, called chemical beam epitaxv. or gas-source MBE,
combines many of the advantages of MBE and VPE.

23
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Figure 1-6
Crystal growth by molecular beam epitaxy (MBE): (a) evaporation cells inside a high -vacuum chamber
directing beams of Al, Go, As, and dopants onto a GaAs substrate; (b) scanning electron micrograph
of the cross section of an MBE-grown crystal having alternating layers of GaAs (dark lines) and
AIGoAs (light lines). Each layer is four monolayers (4 x a12	 11 .3A) thick. (Photograph courtesy of

Bell Laboratories.)
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1.1 Using Appendix 111, which of the listed semiconductors in Table 1-1 has the PROBLEMS
largest band gap? The smallest? What are the corresponding wavels if
light is emitted at the energy E? Is there a noticeable pattern in the band gap
energy of Ill-V compounds related to the column III element?

1.2 For a hoc lattice of identical atoms with a lattice Constant of 5A, calculate the
maximum packing fraction and the radius of the atoms treated as hard spheres
with nearest neighbors touching

1.3 (a) Label the planes illustrated in Fig. P1-3.

(a)	 (b)

(h) Draw equivalent (111), (10), (110) directions in a cubic lattice; use a unit
cube for illustrating each set of equivalent directions.

1.4 Calculate the volume density of Si atoms (number of atoms/cm3) given that the lat-
tice constant of Si is 5.43 A. Calculate the areal density of atoms (number/cm 2 ) on
the (110) plane. Calculate the distance between two adjacent (111) planes in Si
passing through nearest-neighbor atoms
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1.5 The atomic radii of In and Sb atoms are approxiilately 1.44 A and 1.36 A, re-
spectively Using the hard-Sphere approximation, find the lattice constant of
lnSb (zincblende structure), and the volume of the primitive cell. What is the
atomic density on the (110) planes? (Hint: The volume of the primitive cell is
1/4 the fee unit cell volume.)

1.6 Sodium chloride (NaCI) is a cubic crystal that differs from a sc in that alter-
nating atoms are different; each Na is surrounded by six.Cl nearest neighbors
and vice versa in the three-dimensional lattice. Draw a to-dimensional NaCl
lattice looking down a (100) direction and indicate a unit cell. Remember the
Unit cell must he repetitive upon displacement by the basis vectors.

1.7 Sketch a view down a (n O) direction of a diamond lattice, using Fig. 1-9 as a

guide. Include lines connecting nearest neighbors.
1$ Show by a sketch that the bce lattice can be represented by two interpenetrat-

ing sc lattices. To simplify the sketch, show a (100) view of the lattice.

1.9 (a) Find the number of atoms/cm 2 on the (100) surface of a Si wafer.

(b) What is 
the distance (in A) between nearest In neighbors in InP?

1.10 The ionic radii of Na (atomic weight 23) and Cl (atomic weight 35.5) are 1.0
and 1.8 A, respectively. Treating the ions as hard spheres, calculate the density

of NaCl. Compare this with the measured density of 2.17 glcm3.

III The atoms seen in Fig. 1--8b along a (100) direction of the diamond lattice are
,t all coplanar. Taking the top plane of colored atoms in Fig. I -8a to be (0).
the parallel plane a14 down to be (i) , the plane through the center to be (i).
and the second plane of black atoms to be (i) . label the plane of each atom in
Fig. l-8h.

1.12 How many atoms are found inside a unit cell of a simple cubic, body-centered
cubic, and face-centered cubic crystal? How far apart in terms of lattice constant
a are nearest-neighbor atoms in each case, measured from center to center?

1.13 Draw a cube such as Fig. 1-7 and show four Illlj planes with different orien-

tations. Repeat for I 110) planes.

1.14 Find the maximum fractions of the unit cell volume that can be filled by hard
spheres in the sc, bee. and diamond lattices.

1.15 Calculate the densities of Ge and lnP from the lattice constants (Appendix
Ill), atomic weights, and Avogadro's number. Compare the results with the
densities given in Appendix III.

1.16 Beginning with a sketch of an fee lattice, add atoms at (, . ) from each fee
atom to obtain the diamond lattice. Show that only the four added atoms in
Fig. 1-8a appear in the diamond unit cell.

1.17 Assuming the lattice constant varies linearly with composition x for a ternary alloy
(e.g.,see the variation for InGaAs in Fig. 1-13), what composition of AlSbAs 1 , is

lattice matched to In?? What composition of 1nGa 1 ,P is lattice-matched to GaAs?

What is the band gap energy in each case?
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1.1$ A Si crystal is lobe pulled from the melt and doped with arsenic (kd = 0.3). If
the Si weighs 1 kg, how many grams of arsenic should be introduced to achieve

iQ' CM- 3 doping during the initial growth?
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Chapter 2

Atoms and Electrons

Since this book is primarily an introduction to solid state devices, it would be
preferable not to delay this discussion with subjects such as atomic theory,
quantum mechanics, and electron models. However, the behavior of solid
state devices is directly related to these subjects. For example, it would be
difficult to understand how an electron is transported through a semicon-
ductor device without some knowledge of the electron and its interaction
with the crystal lattice. Therefore, in this chapter we shall investigate some of
the important properties of electrons, with special emphasis on two points:
(1) the electronic structure of atoms, and (2) the interaction of atoms and
electrons with excitation, such as the absorption and emission of light. By
studying electron energies in an atom, we lay the foundation for under-
standing the influence of the lattice on electrons participating in current flow
through a solid. Our discussions concerning the interaction of light with elec-
trons form the basis for later descriptions of changes in the conductivity of
a semiconductor with optical excitation, properties of light-sensitive devices,
and lasers.

First, we shall investigate some of the experimental observations which
led to the modem concept of the atom, and then we shall give a brief intro-
duction to the theory of quantum mechanics. Several important concepts will
emerge from this introduction: the electrons in atoms are restricted to cer-
tain energy levels by quantum rules: the electronic structure of atoms is de-
termined from these quantum conditions; and this "quantization" defines
certain allowable transitions involving absorption and emission of energy by
the electrons.

2.1 The main effort of science is to describe what happens in nature, in as corn-
INTRODUCTION plete and concise a form as possible. In physics this effort involves observing

TO PHYSICAL natural phenomena, relating these observations to previously established
MODELS theory, and finally establishing a physical model for the observations. The

primary purpose of the model is to allow the information obtained in present
observations to be used to understand new experiments. Therefore, the most
useful models are expressed mathematically, so that quantitative explana-
tions of new experiments can be made succinctly in terms of established prin-
ciples. For example, we can explain the behavior of a spring-supported weight
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moving up and down periodically after an initial displacement, because the
differential equations describing such a simple harmonic motion have been
established and are understood by students of elementary physics. But the
physical model upon which these equations of motion are based arises from
serious study of natural phenomena such as gravitational force, the response
of bodies to accelerating forces, the relationship of kinetic and potential en-
ergy, and the properties of springs. The mass and spring problem is relative-
ly easy to solve because each of these properties of nature is well understood.

When a new physical phenomenon is observed, it is necessary to find
out how it fits into the established models and "laws" of physics. In the vast
majority of cases this involves a direct extension of the mathematics of well-
established models to the particular conditions of the new problem. In fact,
it is not uncommon for a scientist or engineer to predict that a new phe-
nomenon should occur before it is actually observed, simply by a careful
study and extension of existing models and laws. The beauty of science is
that natural phenomena are not isolated events but are related to other
events by a few analytically describable laws. However, it does happen oc-
casionally that a set of observations cannot be described in terms of exist -
ing theories. In such cases it is necessary to develop models which are based
as far as possible on existing laws, but which contain new aspects arising
from the new phenomena. Postulating new physical principles is a serious
business, and it is done only when there is no possibility of explaining the
observations with established theory. When new assumptions and models
are made, their justification lies in the following question: "Does the model
describe precisely the observations, and can reliable predictions he made
based on the model?" The model is good or poor depending on the answer
to this question.

In the 1920s it became necessary to develop a new theory to describe
phenomena on the atomic scale. A long series of careful observations had
been made that clearly indicated that many events involving electrons and
atoms did not obe y the classical laws of mechanics. It was necessary, there-
fore, to develop a new kind of mechanics to describe the behavior of parti-
cles on this small scale. This new approach, called quantum mechanics,
describes atomic phenomena very well and also properly predicts the way in
which electrons behave in solids—our primary interest here. Through the
years, quantum mechanics has been so successful that now it stands beside
the classical laws as a valid description of nature.

A special problem arises when students first encounter the theory of
quantum mechanics. The problem is that quantum concepts are largely math-
ematical in nature and do not involve the "common sense" quality associat-
ed with classical mechanics. At first, many students find quantum concepts
difficult, not so much because of the mathematics involved, but because they
feel the concepts are somehow divorced from "reality." This is a reasonable
reaction, since ideas which we consider to be real or intuitively satisfying are
usually based on our own observation. Thus the classical laws of motion are
easy to understand because we observe bodies in motion every day. On the
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other hand, we observe the effects of atoms and electrons only indirectly,
and naturally we have very little feeling for what is happening on the atom-
ic scale. It is necessary, therefore, to depend on the facility of the theory to
predict experimental results rather than to attempt to force classical ana-
logues onto the nonclassical phenomena of atoms and electrons.

Our approach in this chapter will be to investigate the important experi-
mental observations that led to the quantum theory, and then to indicate how
the theory accounts for these observations. Discussions of quantum theory must
necessarily be largely qualitative in such a brief presentation, and those topics
that are most important to solid state theory will be emphasized here. Several
good references for further individual study are given at the end of this chapter.

2.2 The experiments that led to the development of quantum theory were con-
EXPERIMENTAL cerned with the nature of light and the relation of optical energy to the en-

OBSERVATIONS ergies of electrons within atoms. These experiments supplied only indirect
evidence of the nature of phenomena on the atomic scale; however, the cu-
mulative results of a number of careful experiments showed clearly that a new
theory was needed.

2.2.1 The Photoelectric Effect

An important observation by Planck indicated that radiation from a heated sam-.
pie is emitted in disciete units of energy, called quanta; the energy units were de-
scribed by hv, where v is the frequency of the radiation, and h is a quantity now
called Planck's constant (h = 6.63 x 10 -3'J-s). Soon after Planck developed this
hypothesis, Einstein interpreted an important experiment that clearly demon-
strated the discrete nature (quantization) of light. This experiment involved ab-
sorption of optical energy by the electrons in a metal and the relationship between
the amount of energy absorbed and the frequency of the light (Fig. 2-1). Let us
suppose that monochromatic light is incident on the surface of a metal plate in
a vacuum. The electrons in the metal absorb energy from the light, and some of
the electrons receive enough energy to be ejected from the metal surface into the
vacuum. This phenomenon is called the photoelectric effect. If the energy of the
escaping electrons is measured, a plot can be made of the maximum energy as a
function of the frequency v of the incident light (Fig. 2-1b).

One simple way of finding the maximum energy of the ejected elec-
trons is to place another plate above the one shown in Fig. 2-la and then cre-
ate an electric field between the two plates. The potential necessary to retard
all electron flow between the plates gives the energy E.,,. For a particular fre-
quency of light incident on the sample, a maximum energy Em is observed
for the emitted electrons. The resulting plot of E vs. v is linear, with a slope
equal to Planck's constant. The equation of the line shown in Fig. 2-lb is
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(2-I)

where q is the magnitude of the electronic charge. The quantity 4) (volts)
is a characteristic of the particular metal used. When 4 is multiplied by
the electronic charge, an energy (joules) is obtained which represents the
minimum energy required for an electron to escape from the metal into
a vacuum. The energy q4) is called the work function of the metal. These
results indicate that the electrons receive an energy hv from the light and
!ose an amount of eileigy q in escaping from the surface of the metal.

This experiment demonstrates clearly that Planck's hypothesis was correct
—light energy is contained in discrete units rather than in a continuous distribu-
tion of energies. Other experiments also indicate that, in addition to the wave na-
ture of light, the quantized units of light energy can be considered as localized
packets of energy, called photons Some experiments emphasize the wave nature
of light, while other experiments reveal the discrete nature of photons. This du-
ality is fundamental to quantum processes and does not imply an ambiguity in the
theory.

2.2.2 Atomic Spectra

One of the most valuable experiments of modern physics is the analysis of
absorption and emission of light by atoms. For example, an electric discharge
can be created in a gas, so that the atoms begin to emit light with wavelengths
characteristic of the gas. We see this effect in a neon sign, which is typically
a glass tube filled with neon or a gas mixture, with electrodes for creating a
discharge. If the intensity of the emitted light is measured as a function of

3

Figure 2-1
The photoelectric
effect: (a) elec-
tions are ejected
from the surface
of a metal when
exposed to light
of frequency I) in
a vacuum; (b) plot
of the maximum
kinetic energy of
ejected electrons
vs. frequency of
the incoming
light.
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wavelength, one finds a series of sharp lines rather than a continuous distri-
bution of wavelengths. By the early 1900s the characteristic spectra for sev-
eral atoms were well known. A portion of the measured emission spectrum
for hydrogen is shown in Fig. 2-2, in which the vertical lines represent the po-
sitions of observed emission peaks on the wavelength scale. Wavelength (k)
is usually measured in angstroms (1 A = 10- 10 m) and is related (in meters)
to frequency by A = clv, where c is the speed of light (3 X 108 mis). Photo en-
ergy hv is then related to wavelength by

E=hv= hc—	 (2-2)

The lines in Fig. 2-2 appear in several groups labeled the Lyman,
Balmer, and Paschen series after their early investigators. Once the hydrogen
spectrum was established, scientists noticed several interesting relationships
among the lines. The various series in the spectrum were observed to follow
certain empirical forms:

	

Lyman: v = cRP
1 

- 
11 

/ , n = 2,3,4,...	 (2-3a)
\ 

	

Balmer: v = 
cR( - .-), 

n = 3,4,5,...	 (2-3b)

	

Paschen: V = cR( - -k), n = 4,5,6,...	 (2-3c)

where R is a constant called the Rydberg constant (R = 109,678 cm). If
photon energies hv are plotted for successive values of the integer n, we no-
tice that each energy can be obtained by taking sums and differences of
other photon energies in the spectrum (Fig. 2-3). For example, E42 in the
Balmer series is the difference between E41 and E 1 in the Lyman series.
This relationship among the various series is called the Ritz combination

Lyman	 Balmer	 Paschen-.-_------______

Figure 2-2
Some important

lines in the emis-
sion spectrum of

hydrogen.
0	 2	 4	 6	 8	 10	 12	 14	 16	 18	 20

A (thousands of an*rosns)
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principle. Naturally, these empirical observations stirred a great deal of in-
terest in constructing a comprehensive theory for the origin of the photons
given off by atoms.

The results of emission spectra experiments led Niels Bohr to construct a
model for the hydrogen atom, based on the mathematics of planetary systems.
If the electron in the hydrogen atom has a series of planetary-type orbits
available to it, it can be excited to an outer orbit and then can fall t. any one
of the inner orbits, giving off energy corresponding to one of the lines of Fig.
2-3. To develop the model, Bohr made several postulates:

1. Electrons exist in certain stable, circular orbits about the nucleus.
This assumption implies that the orbiting electron does not give off
radiation as classical electromagnetic theory would normally require
of a charge experiencing angular acceleration; otherwise, the elec-
tron would not be stable in the orbit but would spiral into the nucle-
us as it lost energy by radiation.

2. The electron may shift to an orbit of higher or lower energy, thereby
gaining ot losing energy equal to the difference in the energy levels
(by absorption or emission of a photon of energy hv).

£2

hr

El	 hv =	 - E 1	 (2-4)

3. The angular momentum p of the electron in an orbit is always an
integral multiple of Planck's constant divided by 21r (h/27r is often
abbreviated h for convenience). This assumption,

2.3

THE BOHR MODEL
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Pe =1111,	 fl =1,2,3,4,,..	 (2-5)

is necessary to obtain the observed results of Fig. 2-3.

If we visualize the electron in a stable orbit of radius r about the pro-
ton of the hydrogen atom, we can equate the electrostatic force between the
charges to the centripetal force:

•+

(2-6)
Kr'	 r

where K = 47re in MKS units, m is the mass of the electron, and v is its ve-
locity. From assumption 3 we have

Pe =mw' =nh	 (2-7)

Since n takes on integral values, r should be denoted by r, to indicate
the nth orbit. Then Eq. (2-7) can be written

m2v2 = 	 (24)

Substituting Eq. (2-8) in Eq. (2-6) we find that

q2	 _'__ . _
rI	 (2-9)

= mr

Kn2h2
=	 (2-10)r	 2" mq

for the radius of the nth orbit of the electron. Now we must find the expres-
sion for the total energy of the electron in this orbit, so that we can calculate
the energies involved in transitions between orbits.

From Eqs (2-7) and (2-10) we have
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n/i
(2-11)

mr, 

= nhq 2 - q2
Kn2/i2Knh	 (2-12)

Therefore, the kinetic energy of the electron is

1	 mq4
K. E. 2'22K2n2h2	 (2-13)

The potential energy is the product of the electrostatic force and the dis-
tance between the charges:

mq4
P. E.	

K2n/i2	 (2-14)

Thus the total energy of the electron in the nth orbit is

E = K. E. + P. E. = 2K2n2h2
	 (25)

The critical test of the model is whether energy differences between
orbits correspond to the observed photon energies of the hydrogen spec-
trum. The transitions between orbits corresponding to the Lyman, Balmer,
and Paschen series are illustrated in Fig. 2-4.The energy difference between
orbits n j and n2 is given by

4mq-	
2K2	 -	 (2-16)

The frequency of light given off by a transition between these orbits is

35

Figure 2-4
Electron orbits
and transitions in
the Bohr model
of the hydrogen
atom. Orbit spoc-
ng is not drawn

to scale.
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mq 1/1	 1\
	= [2K2 l 2hRn - -..)	

(2-17)

The factor in brackets is essentially the Rydberg constant R times the
speed of light c. A comparison of Eq. (2-17) with the experimental results
summed up by Eq. (2-3) indicates that the Bohr theory provides a good
model for electronic transitions within the hydrogen atom, as far as the early
experimental evidence is concerned.

Whereas the Bohr model accurately describes the gross features of the
hydrogen spectrum, it does not include many fine points. For example, ex-
perimental evidence indicates some splitting of levels in addition to the lev-
els predicted by the theory. Also, difficulties arise in extending the model to
atoms more complicated than hydrogen. Attempts were made to modify the
Bohr model for more general cases, but it soon became obvious that a more
comprehensive theory was needed. However, the partial success of the Bohr
model was an important step toward the eventual development of the quan-
tum theory. The concept that electrons are quantized in certain allowed en-
ergy levels, and the relationship of photon energy and transitions between
levels had been established firmly by the Bohr theory.

2.4 The principles of quantum mechanics were developed from two different
QUANTUM points of view at about the same time (the late 1920s). One approach, de-

MECHANICS veloped by Heisenberg, utilizes the mathematics of matrices and is called
matrix mechanics. Independently, Schrodinger developed an approach uti-
lizing a wave equation, now called wave mechanics. These two mathematical
formulations appear to be quite different. However, closer examination re-
veals that beyond the formalism, the basic principles of the two approaches
are the same. It is possible to show, for example, that the results of matrix me-
chanics reduce to those of wave mechanics after mathematical manipula-
tion. We shall concentrate here on the wave mechanics approach, since
solutions to a few simple problems can be obtained with it, involving less
mathematical discussion.

2.4.1 Probability and the Uncertainty Principle

It is impossible to describe with absolute precision events involving individ-
ual particles on the atomic scale. Instead, we must speak of the average val-
ues (expectation values) of position, momentum, and energy of a particle
such as an electron. It is important to note, however, that the uncertainties
revealed in quantum calculations are not based on some shortcoming of the
theory. In fact, a major strength of the theory is that it describes the proba-
bilistic nature of events involving atoms and electrons. The fact is that such
quantities as the position and momentum of an electron do not exist apart
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from a particular uncertaint y. The magnitude of this inherent uncertainty is
described by the Heisenberg uncertainty principle:'

In any measurement of the position and momentum of a particle,
the uncertainties in the two measured quantities will be related by

L x)p 1 	 (2-18)

Similarly, the uncertainties in an energy measurement will be re-
lated to the uncertainty in the time at which the measurement
was made by

(AE) (At) z1	 (2-19)

These limitations indicate that simultaneous measurement of position
and momentum or of energy and time are inherently inaccurate to some degree.
Of course. Plancks constant h is a rather small number (6.63 >< li) J-s), and
we are not concerned with this inaccuracy in the measurement of x and p for
a truck, for example. On the other hand, measurements of the position of an
electron and its speed are seriously limited by the uncertainty principle.

One implication of the uncertainty principle is that we cannot proper-
ly speak of the position of an electron, for example, but must look for the
"probability" of finding an electron at a certain position. Thus one of the im-
portant results of quantum mechanics is that a probability density function can
be obtained for a particle in a certain environment, and this function can be
used to find the expectation value of important quantities such as position,
momentum, and energy. We are familiar with the methods for calculating
discrete (single-valued) probabilities from common experience. For example,
it is clear that the probability of drawing a particular card out of a random
deck is '52' and the probability that a tossed coin will come up heads is 1/,.The
techniques for making predictions when the probability varies are less fa-
miliar, however. In such cases it is common to define a probability of finding
a particle within a certain volume. Given a probability density function P(x)
for a one-dimensional problem, the probability of finding the particle in a
range from x to x + dx is P(x)dx. Since the particle will be somewhere, this
definition implies that

J
P()dx = 1	 (2-20)

if the function P(x) is properly chosen. Equation (2-20) is implied by stating
that the function P(x) is normalized (i.e.. the integral equals unity).

is often coiled the principle of ind.teminocy.
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To find the average value of a function of x, we need only multiply the
value of that function in each increment dx by the probability of finding the
particle in that dx and sum over all x. Thus the average value of f(x) is

(1(x)) = JJx)P(x)dx	 (2-21a)

If the probability density function is not normalized, this equation
should be written

J(x)P(x)d.x

(1(x)) = -	 (2-21b)

J

2.4.2 The Schrödinger Wave Equation

There are several ways to develop the wave equation by applying quantum con-
ceptsto various classical equations of mechanics. One of the simplest approaches
is to consider a few basic postulates, develop the wave equation from them, and
rely on the accuracy of the results to serve as a justification of the postulates. In
more advanced texts these assumptions are dealt with in more convincing detail.

Basic Postulates

1. Each particle in a physical system is described by a wave function
4(x, y, z, t). This function and its space derivative (äI'/x + Aflay +
a'I'Iaz) are continuous, finite, and single valued.

2. In dealing with classical quantities such as energy E and momentum
we must relate these quantities with abstract quantum mechanical

operators defined in the following way:

Classical variable	 Quantum operator

X	 x

1(x)	 J(x)

h.
p(x)	

jh
I al

and similarly for the other two directions.
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3. The probability of finding a particle with wave function Tin the vol-
ume dx dy dz is Yi' dx dy dz. 2 The product 'Y'4' is normalized ac-
cording to Eq. (2-20) so that

.1 4AVdxdvdz=1

and the average value (Q) of any variable Q is calculated from the
wave function by using the operator form Q,, defined in postulate 2:

(QJQpl'dx dvdz

Once we find the wave function 1' for a particle, we can calculate its
average position, energy, and momentum, within the limits of the uncer-
tainty principle.Thus. a major part of the effort in quantum calculations in-
volves solving for W within the conditions imposed by a particular physical
system. We notice from assumption 3 that the probability density function
is 'V1', or h112.

The classical equation for the energy of a particle can be written:

Kinetic energy ± potential energy = total energy
(2-22)

1,
— p +	 V	 = E
2m

In quantum mechanics we use the operator form for these variables
(postulate 2); the operators are allowed to operate on the wave function T.
For a one-dimensional problem Eq. (2-22) becomes 

h2 a2 l'(x t) 
+ V(x)'I'(x, t) 

= - äI'(x, t)	
(2-23)

2m	 ax2 	 j 	 at

which is the SchrOdinger wave equation. In three dimensions the equation is

h2	 h
(2-24)

I at

where VI' is

al*	 a24'	 a2'i'
- + + -
ax2 	ay-	 n3z2

2.3y* is the complex con1tate of 4', obtained by reversing the sign on each j . Thus

3Th6 operational interpretation of (a/a.42 is the second derivative forn, /a; the square of i is —1

39



40	 Chapter 2

The wave function I' in Eqs. (2-23) and (2-24) includes both space and
time dependencies. It is common to calculate these dependencies separately
and combine them later. Furthermore, many problems are time independent,
and only the space variables are necessary. Thus we try to solve the wave equa-
tion by breaking it into two equations by the technique of separation of vari-
ables. Let 'I'(x, r) be represented by the product (x)4(t). Using this product
in Eq. (2-23) we obtain

A, 8241(x)	 h	 8
- i---	

•	 ((t) + V(44i(x)(() = --- tp(x -	 (2-25)
)at

Now the variables can be separated to obtain the time-dependent equa-
tion in one dimension,

I d4(t)LE

I dt +	
(t)	 (2-26)

and the time-independent equation,

d24i(x)2m

	

+ -- [E - V(x)],(x) =
	

( 2-27)

We can show that the separation constant E corresponds to the ener-
gy of the particle when particular solutions are obtained, such that a wavc
function	 corresponds to a particle energy E,,.

These equations are the basis of wave mechanics. From them we can de-
termine the wave functions for particles in various simple systems. For cal-
culations involving electrons, the potential term V(x) usually results from an
electrostatic or magnetic field.

2.4.3 Potential Well Problem

It is quite difficult to find solutions to the Schrodinger equation for most re-
alistic potential fields. One can solve the problem with some effort for the hy-
drogen atom, for example, but solutions for more complicated atoms are
hard to obtain. There are several important problems, however, which illus-
trate the theory without complicated manipulation. The simplest problem is
the potential energy well with infinite boundaries. Let us assume a particle
is trapped in a potential well with V(x) zero except at the boundaries x = 0
and L, where it is infinitely large (Fig. 2-5a)

V(x)=0, O<x<L	
(2-28)

V(x)=x, x=0,L

Inside the well we set V(x) 0 in Eq. (2-27)

d24i(x) 2m
+-- Eijj(x) = 0, 0 <x < L	 (2-29)

d7 h
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V(x)

()	 L
X

(a)	 (b)	 (c)

This is the wave equation for a free particle; it applies to the potential
well problem in the region with no potential V(x).

Possible solutions to Eq. (2-29) are sin kx and cos kx, where k is
In choosing a solution, however, we must examine the boundary

conditions. The only allowable value of iji at the walls is zero. Otherwise, there
would be a nonzero 42 outside the potential well, which is impossible be-
cause a particle cannot penetrate an infinite barrier. Therefore, we must choose
only the sine solution and define k such that sin kx goes to zero at x = L.

= A sin kx, k	 (2-30)

The constant A is the amplitude of the wave function and will be evaluat-
ed from the normalization condition (postulate 3). If 'i is to be zero at x = I, then
k must be some integral multiple of 'rrIL.

n=1,2,3,...	 (2-31)

From Eqs. (2-30) and (2-31) we can solve for the total energy E for
each value of the integer ii.

 Bit
-

	

L	 —
 (2-32)

n2'ir2h2

	

E. = 2mL2	
(2-33)

Thus for each allowable value of n the particle energy is described by
Eq. (2-33). We notice that the energy is quantized. Only certain values of en-
ergy are allowed. The integer ii is called a quantum number; the particular
wave function and corresponding energy state E. describe the quantum
stare of the particle.
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Figure 2-5
The problem of a
particle in a po-
tential well: (a)
potential energy
diagram; (b)
wove functions in
the first three
quantum states;
(c) probability
density distribu-
tion For the
second state.
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The quantized energy levels described by Eq. (2-33) appear in a vari-
ety of small-geometry structures encountered in semiconductor devices. We
shall return to this potential well problem (often called the "particle in a
box" problem) in later discussions.

The constant A is found from postulate 3.

LL dx .I0 A 2 (sin	 x)ix = A2

Setting Eq. (2-34) equal to unity we obtain.

2̂: fl1T
A=L, S1flX

(2-34)

(2-35)

The first three wave functions 4i, 4,, 413 , are sketched in Fig. 2-5b. The
probability density function 4,"4,, or I4,I, is sketched for *2 in Fig. 2-5c.

2.4.4 Tunneling

The wave functions are relatively easy to obtain for the potential well with
infinite walls, since the boundary conditions force 4, to zero at the walls. A
slight modification of this problem illustrates a principle that is very impor-
tant in some solid state devices—the quantum mechanical tunneling of an
electron through a barrier of finite height and thickness. Let us consider the
potential barrier of Fig. 2-6. If the barrier is not infinite, the boundary con-
ditions do not force 4, to zero at the barrier. Instead, we must use the condi-
tion that 4, and its slope d4,/dx are continuous at each boundary of the barrier
(postulate 1). Thus 4, must have a nonzero value within the barrier and also
on the other side. Since 4, has a value to the right of the barrier, 4'4' exists

Figure 2-6
Quantum mechan-

ical tunneling;
(a) potential

barrier of height
Vo and thickness

W; (b) probability
density For an
electron with

energy E < V0, in-
dicating a non-

zero value of the
wove function be-
yond the barrier.

(a)

101 

Exponential decrease

/ inside barrier

b) I /	 - !*I2 t 0 beyond barrier

X
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there also, implying that there is some probability of finding the particle be-
yond the barrier. We notice that the particle does not go over the barrier; its
total energy is assumed to be less than the barrier height V0 . The mechanism
by which the particle "penetrates" the barrier is called tunneling. However,
no classical analogue, including classical descriptions of tunneling through
barriers, in appropriate for this effect. Quantum mechanical tunneling is in-
timately bound to the uncertainty principle. If the barrier is sufficiently thin,
we cannot say with certainty that the particle exists only on one side. How-
ever, the wave function amplitude for the particle is reduced by the barrier
as Fig. 2-6 indicates, so that by making the thickness W greater, we can re-
duce i4i on the right-hand side to the point that negligible tunneling occurs.
Tunneling is important only over very small dimensions, but it can be of great
importance in the conduction of electrons in solids, as we shall see in Chap-
ters 5, 6 and 11.

Recently, a novel electronic device called the resonant tunneling diode
was developed. This device operates by tunneling electrons through parti-
cle in a potential well" energy levels of the type described in Section 2.4.3.

The Schrodinger equation describes accurately the interactions of-particles
with potential fields, such as electrons within atoms. Indeed, the modern un-
derstanding of atomic theory (the modern atomic models) comes from the
wave equation and from Heisenberg's matrix mechanics. It should be point-
ed out, however, that the problem of solving the Schrodinger equation di-
rectly for complicated atoms is extremely difficult. In fact, only the hydrogen
atom is generally solved directly; atoms of atomic number greater than one
are usually handled by techniques involving approximations. Many atoms
such as the alkali metals (Li, Na, etc.), which have a neutral core with a sin-
gle electron in an outer orbit, can he treated by a rather simple extension of
the hydrogen atom results. The hydrogen atom solution is also important in
identifying the basic selection rules for describing allowed electron energy
levels. These quantum mechanical results must coincide with the experi-
mental spectra, and we expect the energy levels to include those predicted
by the Bohr model. Without actually working through the mathematics for
the hydrogen atom, in this section we shall investigate the energy level
schemes dictated by the wave equation.

2.5.1 The Hydrogen Atom

Finding the wave functions for the hydrogen atom requires a solution of the
Schrodinger equation in three dimensions fora coulombic potential field.
Since the problem is spherically symmetric, the spherical coordinate system
is used in the calculation (Fig. 2-7). The term V(x, y, z) in Eq. (2-24) in be
replaced by V(r, 0, ), representing the Coulomb potential which the electron
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experiences in the vicinity of the proton. The Coulomb potential varies only
with r in spherical coordinates

V(r, 0,4)) = V(r) = - (4)	 -	 (2-3)

as in Eq. (2-14).
When the separation of variables is made, the time-independent equa-

tion can be written as

4,(r, o, 4)) = R(r)0l)(4>)	 (2-37)

Thus the wave functions are found in three parts. Separate solutions
must be obtained for the r-dependent equation, the 0-dependent equation,
and the 4)-dependent equation. After these three equations are solved, the
total wave function 4, is obtained from the product.

As in the simple potential well problem, each of the three hydrogen
atom equations gives a solution which is quantized. Thus we would expect a
quantum number to be associated with each of the three parts of the wave
equation. As an illustration, the 4)-dependent equation obtained after sepa-
ration of variables is

+ inF = 0	 (2-38)

where m is a quantum number. The solution to this equation is

= Ae'	 (2-39)

where A can be evaluated by the normalization condition, as before:
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= 1	 (2-40)

A2feu1P4eht4 d4> = A2f 0 = 2irA 2	 (2-41)

Thus the value of A is

(2-42)

and the 0-dependent wave function is

(2--43)

Since values of 4, repeat every 2ir radians, (I) should repeat also.This oc-
curs if m is an integer, including negative integers and zero. Thus the wave
functions for the 4,-dependent equation are quantized with the following se-
lection rule for the quantum numbers:

m =...,-3,-2,-1,0,+l,+2,+3_.	 (2_44)

By similar treatments, the functions R(r) and 0(0) can be obtained,
each being quantized by its own selection rule. For the r-dependentequa-
tion, the quantum number n can be any positive integer (not zero), and for
the 0-dependent equation the quantum number I can be zero or a positive
integer. However, there are interrelationships among the equations which
restrict the various quantum numbers used with a single wave function

ji(r, 0, 4>) = R(r)0, (0),,,(4,)	 (2-45)

These restrictions are summarized as follows:

n=1,2,3,	 (2-46a)

1=0,1,2.....(n-i)	 (2-46b)

m = -1.... . -2, -1,0, +1, +2.... . +1	 (2-46c)

In addition to the three quantum numbers arising from the three parts
of the wave equation, there is an important quantization condition on the
"spin" of the electron. Investigations of electron spin employ the theory of
relativity as well as quantum mechanics; therefore, we shall simply state that
the intrinsic angular momentum s of an electron with 4i, specified is

h
S= ±	 (2-47)

That is, in units of h, the electron has a spin of 1 , and the angular mo-
mentum produced by this spin is positive or negative depending on whether
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the electron is "spin up" or "spin down." The important point for our dis-
cussion is that each allowed energy state of the electron in the hydrogen
atom is uniquely described by four quantum numbers: n, I, m and s.4

Using these four quantum numbers, we can identify the various states
which the electron can occupy in a hydrogen atom. The number n, called

the principal quantum number, specifies the "orbit" of the electron in Bohr
terminology. Of course, the concept of orbit is replaced ' probability den-
sity functions in quantum mechanical calculations. It is common to refer to
states with a given principal quantum number as belonging to a shell rather

than an orbit.
There is considerable fine structure in the energy levels about the Bohr

orbits, due to the dictates of the other three quantum conditions. For ex-
ample, an electron with n 1 (the first Bohr orbit) can have only F = 0 and

m 0 according to Eq. (2-46), but there are two spin states allowed from

Eq. (2-47). For n = 2,1 can be 0 or 1, and m can he -1,0, or +1.The vari-
ous allowed combinations of quantum numbers appear in the first four
columns of Table 2-1. From these combinations it is apparent that the elec-
tron in a hydrogen atom can occupy any one of a large number of excited
states in addition to the lowest (ground) state t1,. Energy differences be-

tween the various states properly account for the observed lines in the hy-
drogen spectrum.

2.5.2 The Periodic Table

The quantum numbers discussed in Section 2.5.1 arise from the solutions to
the hydrogen atom problem. Thus the energies obtainable from the wave
functions are unique to the hydrogen atom and cannot be extended to more
complicated atoms without appropriate alterations. However, the quantum
number selection rules are valid for more complicated structures, and we can
use these rules to gain an understanding of the arrangement of atoms in the
periodic table of chemical elements. Without these selection rules, it is diffi-
cult to understand why only two electrons fit into the first Bohr orbit of an
atom, whereas eight electrons are allowed in the second orbit. After even
the brief discussion of quantum numbers given above, we should be able to
answer these questions with more insight.

Before discussing the periodic table, we must be aware of an im-
portant principle of quantum theory, the Pauli exclusion principle. This

rule states that no two electrons in an interacting system 5 can have the

same set of quantum numbers n, F, m, s. In other words, only two elec-

trons can have the same three quantum numbers n, 1, m, and those two

must have opposite spin. The importance of this principle cannot be

many texts the numbers we have called in and , are referred to as m, and In3, respectively.

'An interacting system is one in which electron wove functions overtop—in this case on atom with two or

more electrons.
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overemphasized; it is basic to the electronic structure of all atoms in the
periodic table. One implication of this principle is that by listing the var-
ious combinations of quantum numbers, we can determine into which
shell each electron of a complicated atom fits, and how many electrons are
allowed per shell. The quantum states summarized in Table 2-1 can be
used to indicate the electronic configurations for atoms in the lowest en-
ergy state.

In the first electronic shell (n = 1),! can be only zero since the maxi-
mum value of 1 is always n - 1. Similarly, m can he only zero since m runs
from the negative value of Ito the positive value of I. Two electrons with op-
posite spin can fit in this 4; l qo state; therefore, the first shell can have at most
two electrons. For the helium atom (atomic number Z = 2) in the ground
state, both electrons will be in the first Bohr orbit (n = 1), both will have I = 0
and m = 0, and they will have opposite spin. Of course, one or both of the He
atom electrons can be excited to one of the higher energy states of Table 2-1
and subsequently relax to the ground state, giving off a photon characteris-
tic of the He spectrum.

Table 2-1 Quantum numbers to n 3 and allowable states for the electron in a
hydorgen atom: The first four columns show the various combinations of ann,
numbers allowed by the selection rules of Eq. (2-46); the lost two columns indicate
the number of allowed states (combinations of n, 1, m, and s) for each 1 (subshell)
and n (shell, or Bohr orbit).

n)Im
1	 0	 0

I

-1

0

1

Allowable states
s/n	 in subshell

2

.5

2

6

10

Allowable states
in complete shell

2

8

18
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As Table 2-1 indicates, there can be two electrons in the I = 0 subshell,
six electrons when 1 1, and ten electrons for! = 2. The electronic con-
figurations of various atoms in the periodic table can be deduced from this
list of allowed states. The ground state electron structures for a number of
atoms are listed in Table 2-2. There is a simple shorthand notation for elec-
tronic structures which is commonly used instead of such a table. The only
new convention to remember in this notation is the naming of the I values:

1=0,1,2,3,4,...

s,p,d.f,g,

This convention was created by early spectroscopists who referred to
the first four spectral groups as sharp, principal, diffuse, and fundamental.
Alphabetical order is used beyond f With this convention for 1, we can write
an electron state as follows:

F6 electrons in the 3p subshell
/3p6

(n=3) L(1-1)

For example, the total electronic configuration for Si (Z = 14) in the
ground state is

1s22s22p63s23p2

We notice that Si has a closed Ne configuration (see Table 2-2) plus four
electrons in an outer n = 3 orbit (3s3p 2).These are the four valence electrons
of Si; two valence electrons are in an s state and two are in a p state. The Si elec-
tronic configuration can be written [Ne] 3s 23p2 for convenience, since the Ne
configuration 1s22s22p6 forms a closed shell (typical of the inert elements).

Figure 2-8a shows the orbital model of a Si atom, which has a nucleus
consisting of 14 protons (with a charge of + 14) and neutrons, 10 core electrons
in shells n = I and 2, and 4 valence electrons in the 3s and 13p subshells. Figure
2-8b shows the energy levels of the various electrons in the coulombic poten-
tial well of the nucleus. Since unlike charges attract each other, there is an at-
tractive potential between the negatively charged electrons and the positively
charged nucleus. As indicated in Eq. (2-36), a Coulomb potential varies as hr
as a function of distance from the charge, in this case the Si nucleus. The po-
tential energy gradually goes to zero when we approach infinity. We end up get-
ting "particle-in-a-box" states for these electrons in this potential well, as
discussed in Section 2.4.3 and Eq. (2-33). Of course, in this case the shape of
the potential well is not rectangular, as shown in Fig. 2-5a, but coulombic, as
shown in Fig. 2-8b. Therefore, the energy levels have a form closer to those of
the FL atom as shown in Eq. (2-15), rather than in Eq. (2-33).
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Table 2-2 Electronic configurations for atoms in the ground state.

n=1	 2	 3	 4

I0	 0 1	 0	 1	 2	 0

Atomic	 Is 2s 2p 3s 3p 3d 4s 4p
number Ele-
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to

Ionization or Zero Energy Level

Nucleus

(h)

Figure 2-8
Electronic structure and en'3rgy levels in a Si atom: (a) The orbital model of a Si atom showing the 10
core electrons (ri	 1 and 2, and the 4 valence electrons (n 3); (b) energy levels in the coulombic po-
tential of the nucleus are ako shown schematically.
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If we solve the Schrodinger equation for the Si atom as we did in Sec-
tion 2.5.1 for the H atom, we can get the radial and angular dependence of
the wavefunctions or "orbitals" of the electrons. Let us focus on the va-
lence shell, n = 3, where we have two 3s and two 3p electrons. It turns out
that the 3s orbital is spherically symmetric with no angular dependence,
and is positive everywhere. It can hold 2 electrons with opposite spin ac-
cording to the Pauli principle. There are 3 p-orbitals which are mutually
perpendicular. These are shaped like dumb-bells with a positive lobe and
a negative lobe (Fig. 2-9). The 3p subshell can hold up to 6 electrons, but
in the case of Si has only 2. Interestingly, in a Si crystal when we bring in-
dividual atoms very close together, the s- and p-orbitals overlap so much
that they lose their distinct character, and lead to four mixed ,sp3 orbitals.
The negative part of the p orbital cancels the s-type wavefunction, while the 	 F-,

positive part enhances it, thereby leading to a "directed" bond in space. As
shown in Fig. 2-9, these linear combinations of atomic orbitals (LCAO) or
"hybridized" sp 3 orbitals point symmetrically in space along the 4 tetrago-
nal directions (See Fig. 1-9). In Chapter 3 we shall see that these "directed"
chemical bonds are responsible for the tetragonal diamond or zinchiende
lattice structure in most semiconductors. They are also very important in the
understanding of energy bands, and in the conduction of charges in these
semiconductors.

The column IV semiconductor Ge (Z = 32) has an electronic structure
similar to Si, except that the four valence electrons are outside a closed w= 3

Figure 2-9
Orbitals in a Si
atom: The spheri-
cally symmetric
"3" type wave
functions or or-
bitals are positive
everywhere, while
Hie three mutually
perpendicular "p"
type orbitals (p,,
Py, p) are dumb-
bell shaped and
hove a positive
lobe and a ne9O-
tive lobe. The four
SP  "hybridized'
orbitals, only
one of which is
shown here, point
symmetrically in
space and lead to
the diamond lat-
tice in Si.
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shell. Thus the Ge configuration is [Ar] 3d' 04s24p2.There are several cases in
Table 2-2 that do not follow the most straight-forward choice of quantum
numbers. For example, we notice that in K (Z = 19) and Ca (Z = 20) the 4s
state is filled before the 3d state; in Cr (Z = 24) and Cu (Z = 29) there is a
transfer of an electron back to the 3d state. These exceptions, required by
minimum energy considerations, are discussed more fully in most atomic
physics texts.

PROBLEMS 2.1 (a) Sketch a simple vacuum tube device and the associated circuitry for mea-
suring Em in the photoelectric effect experiment. The electrodes can be
placed in a sealed glass envelope.

(b) Sketch the photocurrent I vs. retarding voltage V that you would expect to
measure for a given electrode material and configuration. Make the sketch
for several intensities of light at a given wavelength.

(c) The work function of platinum is 4.09 eV. What retarding potential will be
required to reduce the photocurrent to zero in a photoelectric experiment
with Pt electrodes if the wavelength of incident light is 2440 A? Remem-
ber that an energy of q is lost by each electron in escaping the surface.

2.2 Point A is at an electrostatic potential of + 1V relative to point Bin a vacuum.
,A,ielectron initially at rest at B moves to A. What energy (expressed in J and
eV) does the electron have at A? What is its velocity (m/s)?

23 (a) Show that the various lines in the hydrogen spectrum can he expressed in
angstroms as

X(A) 
911n2n2
U" - UI

where n 1 = 1 for the Lyman series, 2 for the Balmer series, and 3 for the
Paschen series, The integer n is larger than n1.

(b) Calculate A for the Lyman series to n = 5, the Balmer series ton = 7, and
the Paschen series to n = 10. Plot the results as in Fig. 2-2. What are the
wavelength limits for each of the three series'?

2.4 Show that the calculated Bohr expression for frequency of emitted light in
the hydrogen spectrum, Eq. (2-17), corresponds to the experimental expres-
sions, Eq. (2-3).

2.5 (a) The position of an electron is determined to within 1 A. What is the mini-
mum uncertainty in its momentum?

(b) An electron's energy is measured with an uncertainty of 1 eV. What is the
minimum uncertainty in the time over which the measurement was made?

2.6 The de Brogue wavelength of a particle A = h/mv describes the wave-particle
duality for small particles such as electrons. What is the de Brogue wavelength
(in A) of an electron at 100 eV? What is the wavelength for electrons at 12
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keV, which is typical of electron microscopes? Comparing this to visible light,
comment on the advantages of electron microscopes.

2.7 A sample of radioactive material undergoes decay such that the number of

atoms N(r) remaining in the unstable state at time tis related to the number N,,
at t = 0 by the relation N(t) =N, exp( -tlT). Show that T is the average lifetime

(t) of an atom in the unstable state before it spontaneously decays. Equation
(2_21b) can be used with t substituted for x.

2.8 Given a plane wave ti = Aexp(jkx) what is the expectation value for p, 2 and

p where p is momentum?

2.9 A free electron traveling in the s-direction can be described by a plane wave,
with a wave function of the form 41 k (x) = Ae', where k is a wave vector, or
propagation constant. Use postulate 3 and the momentum operator to relate
the electron momentum (ps) to k.

2.10 An electron is described by a plane-wave wavefunction 4(x. t) = Ae"-" Cal-

culate the expectation value of the x .component of momentum, the y-component
of momentum and the energy of the electron, (Give values in MKS units.)

2.11 Calculate the first three energy levels for an electron in a quantum well of
width IOA with infinite walls.

2.12 What do Li, Na, and K have in common? What do F. Cl, and Br have in com-
mon? What are the electron configurations for ionized Na and Cl?
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Chapter 3

Energy Bands and Charge
Carriers in Semiconductors

In this chapter we begin to discuss the specific mechanisms by which Current
flows in a solid. In examining these mechanisms we shall learn why some
materials are good conductors of electric current, whereas others are poor
conductors. We shall see how the conductivity of a semiconductor can be
varied by changing the temperature or the number of impurities. These fun-
damental concepts of charge transport form the basis for later discussions of
solid state device behavior.

In Chapter 2 we found that electrons are restricted to sets of discrete ener-
gy levels within atoms. Large gaps exist in the energy scale in which no en-
ergy states are available. In a similar fashion, electrons in solids are restricted
to certain energies and are not allowed at other energies. The basic differ-
ence between the case of an electron in a solid and that of an electron in an
isolated atom is that in the solid the electron has a range, or band, of avail-
able energies. The discrete energy levels of the isolated atom spread into
bands of energies in the solid because in the solid the wave functions of elec-
trons in neighboring atoms overlap, and an electron is not necessarily local-
ized at a particular atom.Thus, for example, an electron in the outer orbit of
one atom feels the influence of neighboring atoms, and its overall wave func-
tion is altered. Naturally, this influence affects the potential energy term and
the boundary conditions in the Shrodinger equation, and we would expect
to obtain different energies in the solution. Usually, the influence of neigh-
boring atoms on the energy levels of a particular atom can he treated as a
small perturbation, giving rise to shifting and splitting of energy states into
energy bands.

3.1.1 Bonding Fçrs in Solids

The interaction of electrons in neighboring atoms of a solid serves the very
important function of holding the crystal together. For example, alkali halides
such as NaCl are typified by ionic bonding. In the NaCl lattice, each Na atom

3.1
BONDING
FORCES AND
ENERGY BANDS
IN SOLIDS
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Figure 3-1
Different types of

chemical bonding
in solids (a) an

example of ionic
bonding in NaCI;

(b) covalent
bonding in the Si

crystal, veiwed
along a <100>

direction (See
also Figs. 1-8

and 1-9).

Na
Cl -

(a)

[a..

Two electrons per bond
(b)

is surrounded by six nearest neighbor Cl atoms, and vice versa. Four of the
nearest neighbors are evident in the two-dimensional representation shown
in Fig. 3-1a.The electronic structure of Na (Z = 11) is [Ne] 3s, and Cl (Z 17)
has the Structure [Nej3s23p5 . In the lattice each Na atom gives up its outer 3s
electron to a Cl atom, so that the crystal is made up of ions with the electronic
structures of the inert atoms Ne and Ar (Ar has the electronic structure
[Ne]3s23p6). However, the ions have net electric charges after the electron ex-
change. The Na - ion has a net positive charge, having lost an electron, and
the Cl - ion has a net negative charge, having gained an electron.
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Each Na ion exerts an electrostatic attractive force upon its six Cl
neighbors, and vice versa. These coulombic forces pull the lattice together
until a balance is reached with repulsive forces. A reasonably accurate cal-
culation of the atomic spacing can be made by considering the ions as hard
spheres being attracted together (Example 1-1).

An important observation in the NaCl structure is that all electrons
are tightly bound to atoms. Once the electron exchanges have been made
between the Na and Cl atoms to form the Na and Cl ions, the outer orbits
of all atoms are completely filled. Since the ions have the closed-shell con-
figurations of the inert atoms Ne and Ar, there are no loosely bound electrons
to participate in current flow: as a result. NaCl is a good insulator.

In a metal atom the outer electronic shell is only partially filled, usu-
ally by no more than three electrons. We have already noted that the alkali
metals (e.g., Na) have only one electron in the outer orbit. This electron is
loosely bound and is given up easily in ion formation. This accounts for the
great chemical activity in the alkali metals, as well as for their high electri-
cal conductivity. In the metal the outer electron of each alkali atom is con-
tributed to the crystal as a whole, so that the solid is made up of ions with
closed shells immersed in a sea of free electrons. The forces holding the lat-
tice together arise from an interaction between the positive ion cores and the
surrounding free electrons. This is one type of metallic bonding. Obviously,
there are complicated differences in the bonding forces for various metals,
as evidenced by the wide range of melting temperatures (234 K for ft 13 K
for W). However, the metals have the sea of electrons in common, and these
electrons are free to move about the crystal under the influence of an elec-
tric field.

A third type of bonding is exhibited by the diamond lattice semicon-
ductors. We recall that each atom in the Ge, Si, or C diamond lattice is sur-
rounded by four nearest neighbors, each with four electrons in the outer
orbit. In these crystals each atom shares its valence electrons with its four
neighbors (Fig. 3-Ib). Bonding between nearest neighbor atoms is illustrat-
ed in the diamond lattice diagram of Fig. 1-9. The bonding forces arise from
a quantum mechanical interaction between the shared electrons. This is
known as covalent bonding; each electron pair constitutes a covalent bond.
In the sharing process it is no longer relevant to ask which electron belongs
to a particular atom—both belong to the bond. The two electrons are indis-
tinguishable, except that they must have opposite spin to satisfy the Pauli
exclusion princi,le. Covalent bonding is also found in certain molecules,
such as H,.

As in the case of the ionic crystals, no free electrons are available to
the lattice in the covalent diamond structure of Fig. 3-lb. By this reasoning
Ge and Si should also he insulators. However, we have pictured an idealized
lattice at 0 K in this figure. As we shall see in subsequent sections, an elec-
tron can he thermally or optically excited out of a covalent bond and there-
by become free to participate in conduction. This is an important feature of
semiconductors.
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Compound semiconductors such as GaAs have mixed bonding, in which
both ionic and covalent bonding forces participate. Some ionic bonding is to
be expected in a crystal such as GaAs because of the difference in place-
ment of the Ga and As atoms in the periodic table. The ionic character of
the bonding becomes more important as the atoms of the compound become
further separated in the periodic table, as in the II-VI compounds.

3.1.2 Energy Bonds

As isolated atoms are brought together to form a solid, various interactions
occur between neighboring atoms, including those described in the preced-
ing section. The forces of attraction and repulsion between atoms will find a
balance at the proper interatomic spacing for the crystal. In the process. im-
portant changes occur in the electron energy level configurations, and these
changes result in the varied electrical properties of solids.

In Fig. 2-8, we showed the orbital model of a Si atom, along with
the energy levels of the various electrons in the coulombic potential well
of the nucleus. Let us focus on the outermost shell or valence shell, n = 3,
where two 3s and two 3p electrons interact to form the four "hybridized"
sp3 ctrons when the atoms are brought close together. In Fig. 3-2, we
schematically show the coulombic potential wells of two atoms close to
each other, along with the wave functions of two electrons centered on the
two nuclei. By solving the SchrOdiriger equation for such an interacting
system, we find that the composite two-electron wave functions are linear
combinations of the individual atomic orbitals (LCAO). The odd or anti-
symmetric combination is called the anti-bonding orbital, while the even
or symmetric combination is the bonding orbital. It can be seen that the
bonding orbital has a higher value of the wave function (and therefore the
electron probability density) than the anti-bonding state in the region be-
tween the two nuclei. This corresponds to the covalent bond between the
atoms.

To determine the energy levels of the bonding and the anti-bonding
states, it is important to recognize that in the region between the two nuclei
the coulombic potential energy V(r) is lowered (solid line in Fig. 3-2) com-
pared to isolated atoms (dashed lines). It is easy to see why the potential en-
ergy would be lowered in this region, because an electron here would be
attracted by two nuclei, rather than just one. For the bonding state the elec-
tron probability density is higher in this region of lowered potential energy
than for the anti-bonding state. As a result, the original isolated atomic en-
ergy level would be split into two, a lower bonding energy level and a high-
er anti-bonding level. It is the lowering of the energy of the bonding state that
gives rise to cohesion of the crystal. For even smaller inter-atomic spacings,
the energy of the crystal goes up because of repulsion between the nuclei, and
other electronic interactions. Since the probability density is given by the
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Antibonding orbital

Atomic orbitals

Figure 3-2
Linear combinations of atomic orbitals (LCAO): The LCAO when 2 atoms are brought together leads to
2 distinct "normal" modes--a higher energy anti-bonding orbital, and a lower energy bonding orbital.
Note that the electron probability density is high in the region between the ion cores (covalent "bond"),
leading to lowering of the bonding energy level and the cohesion of the crystal. If instead of 2 atoms,
one brings together N atoms, there will be N distinct LCAO, and N closely-spaced energy levels in a
bond.

square of the wave function, if the entire wave function is multiplied by -1,
it does not lead to a different LCAO. The important point to note in this dis-
cussion is that the number of distinct LCAO, and the number of distinct en-
ergy levels depends on the number of atoms that are brought together. The
lowest energy level corresponds to the totally symmetric LCAO, the highest
corresponds to the totally anti-symmetric case and the other combinations
lead to energy levels in between.

Qualitatively, we can see that as atoms are brought together, the ap-
plication of the Pauli exclusion principle becomes important. When two atoms
are completely isolated from each other so that there is no interaction of
electron wave functions between them, they can have identical electronic
structure& As the spacing between the two atoms becomes smaller, howev-
er, electron wave functions begin to overlap. The exclusion principle dictates
that no two electrons in a given interacting system may have the same quan-
tum state; thus there must be at most one electron per level after there is a
splitting of the discrete energy levels of the isolated atoms into new levels be-
longing to the pair rather than to individual atoms.
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Figure 3-3
Energy levels in Si as a function of inter-atomic spacing. The core levels (n - ,2) in Si are completely
filled with electrons. At the actual atomic spacing of the crystal, the 2N electrons in the 3s sub-shell and
the 2N electrons in the 3p sub-shell undergo sp3 hybridization, and all end up in the lower 4N states
(valence band), while the higher lying 4N states (conduction band) are empty, separated by a
bandgop.

In a solid, many atoms are brought together, so that the split energy
levels form essentially continuous bands of energies. As an example, Fig. 3-3
illustrates the imaginary formation of a silicon crystal from isolated silicon
atoms. Each isolated silicon atom has an electronic structure I s2 2s22P63s'3P2
in the ground state. Each atom has available two is states, two 2s states, six 2p
states, two 3s states, six 3p states, and higher states (see Tables 2—I and 2-2).
If we consider N atoms, there will be 2N, 2N, 6N, 2N, and 6N states of type
Is, Zs, 2p, 3s. and 3p. respectively. As the interatomic spacing decreases, these
energy levels split into bands, beginning with the outer (n - 3) shell. As the
"3s" and "3p" bands grow, they merge into a single band composed of a mix-
ture of energy levels. This band of "3s-3p" levels contains 8N available states.
As the distance between atoms approaches the equilibrium interatomic spac-
ing of silicon, this band splits into two bands separated by an energy gap Er
The upper band (called the conduction band) contains 4N States, as does the
lower (valence) band. Thus, apart from the low-lying and tightly bound "core"
levels, the silicon crystal has two bands of available energy levels separated
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by an energy gap E wide, which contains no allowed energy levels for elec-
trons to occupy. This gap is sometimes called a "forbidden band," since in a
perfect crystal it contains no electron energy states.

We should pause at this point and count electrons. The lower "is" band
is filled with the 2N electrons which originally resided in the collective is
states of the isolated atoms. Similarly, the Zr band and the 2p bands will have
2N and 6N electrons in them, respectively. However, there were 4N electrons
in the original isolated n 3 shells (2N in 3s states and 2N in 3p states).
These 4N electrons must occupy states in the valence band or the conduction
band in the crystal. At 0 K the electrons will occupy the lowest energy states
available to them. In the case of the Si crystal, there are exactly 4N states in
the valence band available to the 4Nelectrons.Thus at 0 K, every state in the
valence band will be filled, while the conduction band will be completely
empty of electrons. As we shall see, this arrangement of completely filled
and empty energy bands has an important effect on the electrical conductivity
of the solid.

3.1.3 Metals, Semiconductors, and Insulators

Every solid has its own characteristic energy band structure. This variation
in band structure is responsible for the wide range of electrical characteris-
tics observed in various materials. The silicon band structure of Fig. 3-3, for
example, can give a good picture o' why silicon in the diamond lattice is a
good insulator. To reach such a conclusion, we must consider the properties
of completely filled and completely empty energy bands in the current con-
duction process.

Before discussing the mechanisms of current flow in solids further, we
can observe here that for electrons to experience acceleration in an applied
electric field, they must be able to move into new energy states. This implies
there must be empty states (allowed energy states which are not already oc-
cupied by electrons) available to the electrons. For example, if relatively few
electrons reside in an otherwise empty band, ample unoccupied states are
available into which the electrons can move. On the other hand, the silicon
band structure is such that the valence band is completely filled with electrons
at OK and the conduction band is empty. There can be no charge transport
within the valence band, since no empty states are available into which elec-
trons can move. There are no electrons in the conduction band, so no charge
transport can take place there either. Thus silicon has a high resistivity typi-
cal of insulators.

Semiconductor materials at 0 K have basically the same structure as
insulators—a filled valence band separated from an empty conduction band
by a band gap containing no allowed energy states (Fig. 3-4). The difference
lies in the size of the band gap Eg, which is much smaller in semiconductors
than in insulators. For example, the semiconductor Si has a band gap of about
1.1 eV compared with 5 e for diamond. The relatively small band gaps of
semiconductors (Appendix III) allow for excitation of electrons from the
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Figure 3-4
Typical band

structures at 0 K.
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lower (valence) band to the upper (conduction) band by reasonable amounts
of thermal or optical energy. For example, at room temperature a semicon-
ductor with a 1-eV band gap will have a significant number of electrons ex-
cited thermally across the energy gap into the conduction band, whereas an
insulator with E = 10 eV will have a negligible number of such excitations.
Thus an important difference between semiconductors and insulators is that
the number of electrons available for conduction can he increased greatly in
semiconductors by thermal or optical energy.

In metals the bands either overlap or are only partially filled.Thus elec-
trons and empty energy states are intermixed within the bands so that elec-
trons can move freely under the influence of an electric field. As expected
from the metallic band structures of Fig. 3-4, metals have a high electrical
conductivity.

3.1 .4 Direct and Indirect Semiconductors

The "thought experiment" of Section 3.1.2, in which isolated atoms were
brought together to form a solid, is useful in pointing out the existence of
energy bands and some of their properties. Other techniques are generally
used, however, when quantitative calculations are made of band structures.
In a typical calculation, a single electron is assumed to travel through a per-
fectl y periodic lattice. The wave function of the electron is assumed to be in
the form of a plane wave 1 moving, for example, in the x- direction with prop-
agation constant k, also called a wave vector. The space-dependent wave
function for the electron is

'Discussions of plane waves are available in most sophomore physics texts or in introductory electromag.
netict texts.
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Figure 3-5
Direct and indi-
rect electron
transitions in
semiconductors:
(a) direct transi-
tion with occom-
pcinying photon
emission; (b) indi-
rect transition via
a defect level.
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1 k(x) = U(k r,X)e•fk	(3-I)

where the function U(k,, x) modulates the wave function according to the pe-
riodicity of the lattice.

In such a calculation, allowed values of energy can be plotted vs. the
propagation constant k. Since the periodicity of most lattices is different in
various directions, the (E, k) diagram must be plotted for the various crystal
directions, and the full relationship between E and k is a complex surface
which should be visualized in three dimensions.

The band structure of GaAs has a minimum in the conduction hand and
a maximum in the valence band for the same k value (k = 0). On the other
hand, Si has its valence band maximum at a different value of k than its con-
duction band minimum. Thus an electron making a smallest-energy transi-
tion from the conduction hand to the valence band in GaAs can do so without
a change in k value; on the other hand, a transition from the minimum point
in the Si conduction hand to the maximum point of the valence band requires
some change in k.Thus there are two classes of semiconductor energy bands;
direct and indirect (Fig. 3-5). We can show that an indirect transition, involv-
ing a change in k, requires a change of momentum for the electron.

Assuming that U is constant in Eq. (3-1) for an essentially free electron, EXAMPLE 3-1
show that the x-component of the electron momentum in the crystal is given
by (p) =
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SOLUTION	 From Eq. (3-1)

= Ue'

Using Eq. (2-21b) and the momentum operator,

J 
Ue1l	 --(e')dxax

fu2dx

hkj U2 dx
=	 = /1k.

U2dX

This result implies that (E, k) diagrams such as shown in Fig. 3-5 can be
considered plots of electron energy vs. momentum, with a scaling factor /1.

The direct and indirect semiconductors are identified in Appendix 111.
In a direct semiconductor such as GaAs, an electron in the conduction band
can fall to an empty state in the valence band, giving off the energy difference
E. as a photon of light. On the other hand, an electron in the conduction band
minimum of an indirect semiconductor such as Si Cannot fall directly to the
valence band maximum but must undergo a momentum change as well as
changing its energy. For example, it may go through some defect state (E1)
within the band gap. We shall discuss such defect states in Sections 4.2.1 and
4.3.2. In an indirect transition which involves a change in k, the energy is gen-
erally given up as heat to the lattice rather than as an emitted photon. This
difference between direct and indirect band structures is very important for
deciding which semiconductors can be used in devices requiring light output.
For example, semiconductor light emitters and lasers (Chapter ) generally
must be made of materials capable of direct band-to-band transitions or of
indirect materials with vertical transitions between defect states.

Band diagrams such as those shown in Fig. 3-5 are cumbersome to draw
in analyzing devices, and do not provide a view of the variation of electron
energy with distance in the sample. Therefore, in most discussions we shall use
simple band pictures such as those shown in Fig. 3-4, remembering that elec-
tron transitions across the band gap may be direct or indirect.

3.1 .5 Voriction of Energy Bonds with Alloy Composition

As 111-V ternary and quaternary alloys are varied over their composition
ranges (see Sections 1.2.4 and 1.4.1), their band structures change. For example.
Fig. 3-6 illustrates the band structure of GaAs and AlAs, and the way in which
the bands change with composition x in the ternary compound AlGa 1 LAs.
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Figure 3-6
Variation of direct and indirect conduction bands in AIGaAs as a function of composition: (a) the (E,k)
diagram for GaAs, showing three minima in the conduction bond; (b) AlAs bond diagram; (c) positions
of the three conduction band minima in AlGa 1 .As as x varies over the range of compositions horn
GaAs (x - 0) to AlAs (x - 1). The smallest band gap, E 9 (shown in color), follows the direct F band to
x - 0.38, and then follows the indirect X bond.
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The binary compound GaAs is a direct material, with a band gap of 1.43 eV
at room temperature. For reference, we call the direct (k = 0) conduction band
minimum F.There are also two higher-lying indirect minima in the GaAs con-
duction band, but these are sufficiently far above F that few electrons reside
there (we discuss an important exception in Chapter 10 in which high-field ex-
citation of electrons into the indirect minima leads to the Gunn effect). We
call the lowest-lying GaAs indirect minimum L and the other X. In AlAs the
direct F minimum is much higher than the indirect X minimum, and this ma-
terial is therefore indirect with a band gap of 2.16 eV at room temperature.

In the ternary alloy AiGa 1 As all of these conduction band minima
move up relative to the valence band as the composition x varies from 0
(GaAs) to 1 (AlAs). However, the indirect minimum X moves up less than
the others, and for compositions above about 38 percent Al this indirect min-
imum becomes the lowest-lying conduction band.Therefore, the ternary alloy
AlGaAs is a direct semiconductor for Al compositions on the column 111 sub-
lattice up to about 38 percent, and is an indirect semiconductor for higher Al
mole fractions. The band gap energy Er is shown in color on Fig. 3-6(c).

The variation of energy bands for the ternary alloy GaAsj .Pr is gen-
erally similar to that of AlGaAs shown in Fig. 3-6. GaAsP is a direct semi-
conductor from GaAs to about GaAsP 4 and is indirect from this
composition to Gal? (see Fig. 8-11). This material is often used in visible
LEDs.

Since light emission is most efficient for direct materials, in which elec-
trons can drop from the conduction band to the valence band without chang-
ing k (and therefore momentum), LEDs in GaAsP are generally made in
material grown with a composition less than x = 0.45. For example, most red
LEDs in this material are made at about x = 0.4, where the F in is still
the lowest-lying conduction band edge, and where the photon resulting from
a direct transition from this hand to the valence band is in the red portion of
the spectrum (about 1.9 eV). The use of impurities to enhance radiative re-
combination in indirect material will be discussed in Section 8.2.

3.2 The mechanism of current conduction is relatively easy to visualize in the
CHARGE CARRIERS case of a metal; the metal atoms are imbedded in a "sea" of relatively free

IN SEMI- electrons, and these electrons can move as a group under the influence of an
CONDUCTORS electric field. This free electron view is oversimplified, but many important

conduction properties of metals can he derived from just such a model. How-
ever, we cannot account for all of the electrical properties of semiconduc-
tors in this way. Since the semiconductor has a filled valence band and an
empty conduction band at 0 K. we must consider the increase in conduction
band electrons by thermal excitations across the band gap as the temperature
is raised. In addition, after electrons are excited to the conduction band, the
empty states left in the valence band can contribute to the conduction process.
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The introduction of impurities has an important effect on the energy band
structure and on the availability of charge carriers. Thus there is considerable
flexibility in controlling the electrical properties of semiconductors.

3.2.1 Electrons and Holes

As the temperature of a semiconductor is raised from 0 K. some electrons in
the valence band receive enough thermal energy to be excited across the
band gap to the conduction band. The result is a material with some elec-
trons in an otherwise empty conduction band and some unoccupied states in
an otherwise filled valence band (Fig. 3_7).2 For convenience, an empty state
in the valence band is referred to as a hole. If the conduction band electron
and the hole are created by the excitation of a valence band electron to the
conduction band, they are called an electron-hole pair (abbreviated EHP).

After excitation to the conduction band, an electron is surrounded by
a large number of unoccupied energy states. For example, the equilibrium
number of electron-hole pairs in pure Si at room temperature is only about
1010 EHP/cm3 , compared to the Si atom density of 5 x 1022 atoms/cm3 . Thus
the few electrons in the conduction band are free to move about via the many
available empty states.

The corresponding problem of charge transport in the valence band is
somewhat more complicated. However, it is possible to show that the effects
of current in a valence band containing holes can be accounted for by sim-
ply keeping track of the holes themselves.

In a filled band, all available energy states are occupied. For every elec-
tron moving with a given velocity, there is an equal and opposite electron mo-
tion elsewhere in the band. If we apply an electric field, the net current is zero
because for every electron j moving with velocity v1 there is a corresponding
electron]' with velocity -v3 . Figure 3-8 illustrates this effect in terms of the
electron energy vs. wave vector plot for the valence band. Since k is proportional

Figure 3-7

E,	 Electron-hole
pairs in a
semiconductor.

21n Fig 3-7 and in subsequent discussions, we refer to the battorn of lbe conduction band as f, and the

lop of the valence bond 05 f,
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to electron momentum, it is clear the two electrons have oppositely directed
velocities. With N electrons/cm 3 in the band we express the current density using
a sum over all of the electron velocities, and including the charge -q on each
electron. In a unit volume,

J=(-q)v=O (filled band)	 (3-2a)

Now if we create a hole by removing the jth electron, the net current
density in the valence band involves the sum over all velocities, minus the con-
tribution of the electron we have removed.

J	 q)Y1 Vi	 q)v1	 th electron missing)	 (3-2b)

But the first term is zero, from Eq. (3-2a). Thus the net current is +qv,.
In other words, the current contribution of the hole is equivalent to that of
a positively charged particle with velocity v1 , that of the missing electron. Of
course, the charge transport is actually due to the motion of the new un-
compensated electron (j'). Its current contribution (-q) (—v1) is equivalent
to that of a positively charged particle, with velocity +v 1 . For simplicity, it is
customary to treat empty states in the valence band as charge carriers with
positive charge and positive mass.

A simple analogy may help in understanding the behavior of holes. If
we have two bottles, one completely filled with' water and one completely
empty, we can ask ourselves "Will there be any net transport of water when
we tilt the bottles?" The answer is "no". In the case of the empty bottle, the
answer is obvious. In the case of the completely full bottle also, there cannot
be any net motion of water because there is no empty space for water to
move into. Similarly, an empty conduction band completely devoid of elec-
trons or a valence band completely full of electrons cannot give rise to a net
motion of electrons, and thus to current conduction.

Next, we imagine transferring some water droplets from the full bottle
into the empty bottle, leaving behind some air bubbles, and ask ourselves
the same question. Now when we tilt the bottles there will be net transport
of water: the water droplets will roll downhill in one bottle and the air bub-
bles will move uphill in the other. Similarly, a few electrons in an otherwise
empty conduction band move opposite to an electric field, while holes in an
otherwise filled valence band move in the direction of the field. The bubble
analogy is imperfect, but it may provide a physical feel for why the charge and
mass of a hole have opposite signs from those of an electron.

In all the following discussions we shall concentrate on the electrons in
the conduction band and on the holes in the valence band. We can account
for the current flow in a semiconductor by the motion of these two types of
charge carriers. We draw valence and conduction bands on an electron energy
scale E, as in Fig. 3-8. However, we should remember that in the valence



Energy Bands and Chore Carriers in Semiconductors 	 69

I'--

Figure 3-8
A valence bond with all states filled, including states j and f, marked for discussion. The 1th electron
with wave vector k1 is matched by an electron at j' with the opposite wave vector -k 1 . There is no net
current in the band unless an electron is removed. For example, if the jth electron is removed, the motion
of the electron at j is no longer compensated.

band, hole energy increases oppositely to electron energy, because the two
carriers have opposite charge. Thus hole energy increases downward in Fig.
3-8 and holes, seeking the lowest energy state available, are generally found
at the top of the valence band. In contrast, conduction band electrons are
found at the bottom of the conduction band.

It would be instructive to compare the (E, k) band diagrams with the
"simplified" band diagrams that are used for routine device analysis (Fig. 3-9).
As discussed in Examples 3-1 and 3-2, an (E, k) diagram is a plot of the total
electron energy (potential plus kinetic) as a function of the crystal-direction-
dependent electron wave vector (which is proportional to the momentum
and therefore the velocity) at some point in space. Hence, the bottom of the
conduction band corresponds to zero electron velocity or kinetic energy, and
simply gives us the potential energy at that point in space. For holes, the top
of the valence band corresponds to zero kinetic energy. For simplified band
diagrams, we plot the edges of the conduction and valence bands (i.e., the
potential energy) as a ftinction of position in the device. Energies higher in
the band correspond to additional kinetic energy of the electron. Also, the fact
that the band edge corresponds to the electron potential energy tells us that
the variation of the band edge in space is related to the electric field at dif-
ferent points in the semiconductor. We will show this relationship explicitly
in Section 4.4.2.

In Fig. 3-9, an electron at location A sees an electric field given by the
slope of the band edge (potential energy), and gains kinetic energy (at the ex-
pense of potential energy) by moving to point B. Correspondingly, in the (E, k)
diagram, the electron starts at k = 0, but moves to a non-zero wave vector kB.
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Figure 3-9
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The electron then loses kinetic energy to heat by scatteriugmechanisms (dis-
cussed in Section 3.4.3) and returns to the bottom of the band at B.The slopes
of the (E. x) band edges at different points in space reflect the local electric
fields at those points. In practice, the electron may lose its kinetic energy in
stages by 'a series of scattering events, as shown by the dashed lines.

3.2.2 Effective Mass

The electrons in a crystal are not completely free, but instead interact with
the periodic potential of the lattice. As a result, their "wave-particle" motion
cannot he expected to he the same as for electrons in free space. Thus, in ap-
plying the usual equations of electrodynamics to charge carriers in a solid, we
must use altered values of particle mass. In doing so, we account for most of
the influences of the lattice, so that the electrons and holes can be treated as
"almost free" carriers in most computations. The calculation of effective mass
must take into account the shape of the energy bands in three-dimensional
k- space, taking appropriate averages over the various energy bands.

EXAMPLE 3-2 Find the (E. k) relationship for a free electron and relate it to the electron
mass.
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From Example 3-1, the electron momentum is p = nzv = hk. Then	 SOLUTION

1
E = - my2 = 

1p2
- - = 

h2
- k-

2	 2rn 2m

Thus the electron energy is parabolic with wave vector k. The electron
iss is inversely related to the curvature (second derivative) of the (E. k)

- ationship. since

d2E
dk2

Although electrons in solids are not free, most energy bands are close to
parabolic at their minima (for conduction bands) or maxima (for valence
bands). We can also approximate effective mass near those band extrema
from the curvature of the band.

The effective mass of an electron in a band with a given (E, k) rela-

tionship is found in Example 3-2 to be

h2=	 (3-3)
d2E/dk2

Thus the curvature of the band determines the electron effective mass.
For example, in Fig. 3-6a it is clear that the electron effective mass in GaAs
is much smaller in the direct F conduction band (strong curvature) than in
the L or X minima (weaker curvature, smaller value in the denominator of
the m* expression).

A particularly interesting feature of Figs. 3-5 and 3-6 is that the cur-
vature of d2 E/dk2 is positive at the conduction band minima, but is negative
at the valence band maxima. Thus, the electrons near the top of the valence
band have negative effective mass, according to Eq. (3-3). Valence band elec-
trons with negative charge and negative mass move in an electric field in the
same direction as holes with positive charge and positive mass. As discussed
in Section 3.2.1, we can fully account for charge transport in the valence band
by considering hole motion.



Conduction band

M k7

72	 Chapter 3

For a band centered at k = 0 (such as the r band in GaAs), the (E, k)
relationship near the minimum is usually parabolic:

E=—k'+E	 (3-4)2m*

Comparing this relation to Eq. (3-3) indicates that the effective mass
m* is constant in a parabolic band. On the other hand, many conduction
bands have complex (E, k) relationships that depend on the direction of elec-
tron transport with respect to the principal crystal directions. In this case, the
effective mass is a tensor quantity. However, we can use appropriate averages
over such bands in most calculations.

Figure 3-I0a shows the bandstructures for Si and GaAs viewed along two
major directions. While the shape is parabolic near the band edges (as indicat-
ed in Figure 3-5, and Example 3-2), there are significant non-parabolicities at
higher energies. The energies are plotted along the high symmetry [111] and
[100] directions in the crystal.The k = 0 point is denoted as F. When we go along

L [ill]	 F	 [100] X	 L [111]	 F	 [100]	 X

Wave vcIor

(a)
	

(h)

Figure 3-10
Realstic bandstructures in semiconductors: (a) Conduction and valence bands in Si and GaAs along
[111] and [100]; (b) ellipsoidal constant energy surface for Si, near the 6 conduction band minima
along the Xdirections. (From Chelikowsky and Cohen, Phys, Rev. B14, 556, 1976).
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the [100] direction, we reach a valley near X, while we reach the L valley along
the [111) direction. (Since the energies are plotted along different directions, the
curves do not look symmetric.) The valence band maximum in most semicon-
ductors is at the F point. It has three branches: the heavy hole band with the
smallest curvature, a light hole band with a larger curvature, and a split-off band
at a different energy. We notice that for GaAs the conduction band minimum and
the valence band maximum are both at k = 0; therefore it is direct bandgap. Sil-
icon, on the other hand, has 6 equivalent conduction minima at X along the 6
equivalent (I 00 directions: therefore, it is indirect.

Figure 3-10b shows the constant energy surface for electrons in one of
the six conduction bands for Si. The way to relate these surfaces to the band-
structures shown in Fig. 3-10a is to consider a certain value of energy, and de-
termine all the k vectors in 3 dimensions for which we get this energy. We find
that for Si we have 6 cigar-shaped ellipsoidal equi-energy surfaces near the
conduction band minima along the six equivalent X-directions, with a longi-
tudinal effective mass, m1, along the major axis, and two transverse effective
masses, rn,, along the minor axes. For GaAs, the conduction band is more or
less spherical for low energies. On the other hand, we have warped spherical
surfaces in the valence band. The importance of these surfaces will be clear in
Section 3. 4.1 when we consider different types of effective masses in semi-
conductors.

In any calculation involving the mass of the charge carriers, we must use
effective mass values for the particular material involved. In all subsequent dis-
cussions, the electron effective mass is denoted by Pn,i and the hole effective
mass by m: . The ñ subscript indicates the electron as a negative charge earn-
er, and the p subscript indicates the hole as a positive charge carrier.

There is nothing mysterious about the concept of an "effective" mass,
ma', and about the fact that it is different in different semiconductors. Indeed,
the "true" mass of an electron, m, is the same in Si, Ge or GaAs—it is the
same as for a free electron in vacuum. To understand why the effective mass
is different from the true mass, consider Newton's second law which states
that the time rate of change of momentum is the force.

dp/dt = d(mv)/dt = Force	 (3-5a)

An electron in a crystal experiences a total force Fit + F,m, where F,1
is the collection of internal periodic crystal forces, and is the externally
applied force. It is inefficient to solve this complicated problem involving
the periodic crystal potential (which is obviously different in different semi-
conductors) every time we try to solve a semiconductor device problem. It
is better to solve the complicated problem of carrier motion in the periodic
crystal potential just once, and encapsulate that information in what is called
the bandstructure, (E, k), whose curvature gives us the effective mass, m,*. The
electron then responds to external forces with this new 	 Newton's law is
then written as:

d(mv)/dt = Fe.	 (3-5b)



74	 Chapter 3

This is clearly an enormous simplification compared to the more de-
tailed problem. Obviously, the periodic crystal forces depend on the details
of a specific semiconductor; therefore, the effective mass is different in dif-
ferent materials.

Once we determine the band curvature effective mass components from
the orientation-dependent (E, k), we have to combine them appropriately
for different types of calculations We shall see in Section 3.3.2 that when we
are interested in determining the numbers of carriers in the bands, we have
to use a "density-of-states" effective mass by taking the geometric mean of
the band curvature effective masses, and the number of equivalent band cx-
trema. On the other hand we will find in Section 3.4.1 that in problems in-
volving the motion of carriers, one must take the harmonic mean of the band
curvature effective masses to get the "conductivity" effective mass.

3.2.3 Intrinsic Material

A perfect semiconductor crystal with no impurities or lattice defects is called
an intrinsic semiconductor. In such material there are no charge-carriers at
0 K, since the valence band is filled with electrons and the conduction band
is empty. At higher temperatures electron-hole pairs are generated as va-
lence band electrons are excited thermally across the band gap to the con-
duction band. These EHPs are the only charge carriers in intrinsic material.

The generation of EHPs can he visualized in a qualitative way by con-
sidering the breaking of covalent bonds in the crystal lattice (Fig. 3-11). If one
of the Si valence electrons is broken away from its position in the bonding
structure such that it becomes free to move about in the lattice, a conduction
electron is created and a broken bond (hole) is left behind. The energy re-
quired to break the bond is the band gap energy E This model helps in vi-
sualizing the physical mechanism of EHP creation, but the energy band
model is more productive for purposes of quantitative calculation. One im-
portant difficulty in the "broken bond" model is that the free electron and the
hole seem deceptively localized in the lattice. Actually, the positions of the
free electron and the hole are spread out over several lattice spacings and
should be considered quantum mechanically by probability distributions (see
Section 2.4).

Figure 3-11
Electron-hole

pairs in the
Covalent bonding

model of the
Si crystal.
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Since the electrons and holes are created in pairs, the conduction band
electron concentration n (electrons per cm 3) is equal to the concentration of
holes in the valence band p (holes per cm). Each of these intrinsic carrier
concentrations is commonly referred to as n,. Thus for intrinsic material

n=p=ni	(3-6)

At a given temperature there is a certain concentration of electron-
hole pairs n. Obviously, if a steady state carrier concentration is maintained,
there must be recombination of EHPs at the same rate at which they are gen-
erated. Recombination occurs when an electron in the conduction band
makes a transition (direct or indirect) to an empt y state (hole) in the valence
band, thus annihilating the pair. If we denote the generation rate of EHPs as
g- (EHP/cm3-s) and the recombination rate as Ti , equilibrium requires that

= g1	 (3-7a)

Each of these rates is temperature dependent. For example, g(T) in-
creases when the temperature is raised, and a new carrier concentration ,i, is
established such that the higher recombination rate r(T just balances gen-
eration. At any temperature, we can predict that the rate of recombinaiioii
of electrons and holes r, is proportional to the equilibrium concentration of
electrons no and the concentration of holes Pui:

P=a,fl0 p0 =c,J1=g	 (3-7h)

The factor a, is a constant of proportionality which depends on the particu-
lar mechanism by which recombination takes place. We shall discuss the cal-
culation of ni as a function of temperature in Section 3.3.3; recombination
processes will be discussed in Chapter 4.

3.2.4 Extrinsic Material

In addition to the intrinsic carriers generated thermally, it is possible to create
carriers in semiconductors by purposely introducing impurities into the crys-
tal. This process, called doping, is the most common technique for varying the
conductivity of semiconductors. By doping, a crystal can he altered so that it
has a predominance of either electrons or holes. Thus there are two types of
doped semiconductors, n-type (mostly electrons) and p-type (mostly hotes)
When a crystal is. doped such that the equilibrium carrier concentrations no
and Pu are different from the intrinsic carrier concentration n, the material is
said to be extrinsic.

When impurities or lattice defects are introduced into an otherwise
perfect crystal, additional levels are created in the energy band structure,
usually within the band gap. For example, an impurity from column V of the
periodic table (P.As, and Sb) introduces an energy level very near the con-
duction band in Ge or Si. This level is filled with electrons at 0 K, and very
little thermal energy is required to excite these electrons to the conduction
band (Fig. 3-12a).Thus at about 50-100 K virtually all of the electrons in the
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Figure 3-12
Energy band

model and chemi-
cal bond model of

dopants in semi-
conductors: (a)

donation of elec-
trons from donor
level to conduc-

tion band; (b) ac-
ceptance of

valence band
electrons by on
acceptor level,

and the resulting
creation of holes;
(c) donor and ac-

ceptor atoms in
the covalent bond-
ing model of a Si

crystal.

T0K
	

1' 50K

F

Si

/W\ - -
	

DI

4 4//
impurity level are "donated" to the conduction band. Such an impurity level
is called a donor level, and the column V impurities in Ge or Si are called
donor impurities. From Fig. 3-12a we note that the material doped with donor
impurities can have a considerable concentration of electrons in the con-
duction band, even when the temperature is too low for the intrinsic EHP
concentration to be appreciable. Thus semiconductors doped with a signifi-
cant number of donor atoms will have n0 >> (n e , Po) at room temperature.

This is n-type material.
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Atoms from column HI (B,Al, Ga, and In) introduce impurity levels in
Ge or Si near the valence band. These levels are empty of electrons at 0 K
Fig. 3-12b). At low temperatures, enough thermal energy is available to ex-
cite electrons from the valence band into the impurity level, leaving behind
holes in the valence band. Since this type of impurity level "accepts" electrons
from the valence band, it is called an acceptor level, and the column III im-
purities are acceptor impurities in Ge and Si. As Fig. 3-12b indicates, doping
with acceptor impurities can Create a semiconductor with a hole concentra-
tion Po much greater than the conduction band electron concentration n0

(this type is p-type material).
In the covalent bonding model, donor and acceptor atoms can be visual-

ized as shown in Fig. 3-12c. An As atom (column V) in the Si lattice has the four
necessary valence electrons to complete the covalent bonds with the neighbor-
ing Si atoms plus one extra electron. This fifth electron does not fit into the bond-
ing structure of the lattice and is therefore loosely bound to the As atom. A small
amount of thermal energy enables this extra electron to overcome its coulom-
bic binding to the impurity atom and be donated to the lattice as a whole. Thus
it is free to participate in current conduction.This process is a qualitative model
of the excitation of electrons out of a donor level and into the conduction hand
(Fig. 3-12a). Similarly, the column H! impurity B has only three valence elec-
trons to contribute to the covalent bonding (Fig. 3-12c), thereby leaving one
bond incomplete. With a small amount of thermal energy, this incompleti.bond
can be transferred to other atoms as the bonding electrons exchange positions.
Again, the idea of an electron "hopping" from an adjacent bond into the in-
complete bond at the B site provides some physical insight into the behavior of
an acceptor, but the model of Fig. 3-12b is preferable for most discussions.

We can calculate rather simply the approximate energy required to ex-
cite the fifth electron of a donor atom into the conduction band (the donor
binding energy). Let us assume for rough calculations that the As atom of
Fig. 3-12c has its four covalent bonding electrons rather tightly bound and
the fifth "extra" electron loosely bound to the atom. We can approximate
this situation by using the Bohr model results, considering the loosely bound
electron as ranging about the tightly bound "core" electrons in a hydrogen-
like orbit. From Eq. (2-15) the magnitude of the ground-state energy (n = 1)
of such an electron is

mq4

E = 2	
(3-s)

K2h2 

The value of K must be modified from the free-space value 41T€ 1j used
in the hydrogen atom problem to

K = 4ir€0 €, (3-9)

where Er is the relative dielectric constant of the semiconductor material. In
addition, we must use the conductivity effective mass m typical of the semi-
conductor, discussed in more detail in Section 3.4.1.
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EXAMPLE 3-3	 Calculate the approximate donor binding energy for GaAs (e, = 13.2, m

= 0.067m0)

SOLUTION	 From Eq. (3-8) and Appendix II we have

E - mq4 - 0.067(9.11 x 10)(1.6 x UJ 19)4

- 8(e1-)2 h2 - 8(8.85 X 10 12 X 13 .2)2(6 . 63	 10)2

= 8.34 x	 = 0.0052 eV

Thus the energy required to excite the donor electron from the n = 1
state to the free state (n = =) is 5,2 me V. This corresponds to the energy
difference E,—Ed in Fig. 3-10a and is in very close agreement with actual
measured values.

Generally, the column V donor levels lie approximately 0.01 eV below
the conduction band in Ge, and the column III acceptor levels lie about 0.01
eV above the valence band. In Si the usual donor and acceptor levels lie
about 0.03-0.06 eV from a band edge.

In III-V compounds, column VI impurities occupying column V sites
serve as donors. For example, S. Se, andTe are donors in GaAs, since they sub-
stitute for As and provide an extra electron compared with the As atom.
Similarly, impurities from column II (Be, Zn, Cd) substitute for column III
atoms to form acceptors in the Ill—V compounds. A more ambiguous case
arises when a Ill-V material is doped with Si or Ge, from column IV. These
impurities are called amphoreric, meaning that Si or Ge can serve as donors
or acceptors depending on whether they reside on the column III or column
V sublattice of the crystal. In GaAs it is common for Si impurities to occupy
Ga sites. Since the Si has an extra electron compared with the Ga it replaces,
it serves as a donor. However, an excess of As vacancies arising during growth
or processing of the GaAs can cause Si impurities to occupy As sites, where
they serve as acceptors.

The importance of doping will become obvious when we discuss elec-
tronic devices made from junctions between p-type and n-type semiconduc-
tor material. The extent to which doping controls the electronic properties of
semiconductors can be illustrated here by considering changes in the sample
resistance which occur with doping. In Si, for example, the intrinsic carrier
concentration n, is about 1010 cm' 3 at room temperature. If we dope Si with
10 As atoms/cm 3 , the conduction electron concentration changes by five
orders of magnitude. The resistivity of Si changes from about 2 x io fl-cm
to 5 fl-cm with this doping.

When a semiconductor is doped n-type or p-type, one type of carrier
domiiates. In the example given above, the conduction band electrons out-
number the holes in the valence band by many orders of magnitude. We refer
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Atoms from column 111 (B, Al, Ga, and In) introduce impurity levels in
Ge or Si near the valence band. These levels are empty of electrons at 0 K
Fig. 3-12b). At low temperatures, enough thermal energy is available to ex-
cite electrons from the valence band into the impurity level, leaving behind
holes in the valence band. Since this type of impurity level "accepts" electrons
from the valence band, it is called an acceptor level, and the column III im-
purities are acceptor impurities in Cie and Si. As Fig. 3-12h indicates, doping
with acceptor impurities can create a semiconductor with a hole concentra-
tion Po much greater than the conduction band electron concentration n0

(this type is p-type material).
In the covalent bonding model, donor and acceptor atoms can be visual-

ized as shown in Fig. 3-12c.An As atom (column V) in the Si lattice has the four
necessary valence electrons to complete the covalent bonds with the neighbor-
ing Si atoms, plus one extra electron. This fifth electron does not fit into the bond-
ing structure of the lattice and is therefore loosely bound to the As atom. A small
amount of thermal energy enables this extra electron to overcome its coulom-
bic binding to the impurity atom and be donated to the lattice as a whole. Thus
it is free to participate in current conduction.This process is a qualitative model
of the excitation of electrons out of a donor level and into the conduction hand
(Fig. 3-12a). Similarly, the column III impurity B has only three valence elec-
trons to contribute to the covalent bonding (Fig. 3 .-12c), thereby leaving one
bond incomplete. With a small amount of thermal energy, this incomp1eabond
can be transferred to other atoms as the bonding electrons exchange positions.
Again, the idea of an electron "hopping" from an adjacent bond into the in-
complete bond at the B site provides some physical insight into the behavior of
an acceptor, but the model of Fig. 3-12b is preferable for most discussions.

We can calculate rather simply the approximate energy required to ex-
cite the fifth electron of a donor atom into the conduction band (the donor
binding energy). Let us assume for rough calculations that the As atom of
Fig. 3-12c has its four covalent bonding electrons rather tightly bound and
the fifth "extra" electron loosely bound to the atom. We can approximate
this situation by using the Bohr model results, considering the loosely bound
electron as ranging about the tightly bound "core" electrons in a hydrogen-
like orbit. From Eq. (2-15) the magnitude of the ground-state energy (n = 1)
of such an electron is

mq4

E 2K 2h2	 (3-8)

The value of K must be modified from the free-space value 4, rTE j used
in the hydrogen atom problem to

K=4iree,	 (3-9)

where e is the relative dielectric constant of the semiconductor material. In
addition, we must use the conductivity effective mass m typical of the semi-
conductor, discussed in more detail in Section 3.4.1.
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EXAMPLE 3'3	 Calculate the approximate donor binding energy for GaAs (r = 13.2, m
= 0.067m0).

SOLUTION	 From Eq. (3-8) and Appendix II we have

F
- 0.067(9.11 x 10-")(-'t.6 X ifl'9)

- 8(c0€)2h2 - 8(8.85	 12 X 13 . 2)2(6 . 63	 10_)2

= 8.34 X 10 22 J = 0.0052 eV

Thus the energy required to excite the donor electron from the n =
state to the free state (n = =) is 5.2 meV. This corresponds to the energy
difference ErFd in Fig. 3-1 Oaand is in very close agreement with actual
measured values.

Generally, the column V donor levels lie approximately 0.01 eV below
the conduction band in Ge, and the column Ill acceptor levels lie about 0.01
eV above the valence band. In Si the usual donor and acceptor levels lie
about 0.03-0.06 eV from a band edge.

In Ill-V compounds, column VI impurities occupying column V sites
serve as donors. For example, S. Sc. and Te are donors in GaAs, since they sub-
stitute for As and provide an extra electron compared with the As atom.
Similarly, impurities from column II (Be, Zn, Cd) substitute for column III
atoms to form acceptors in the Ill—V compounds. A more ambiguous case
arises when a 111-V material is doped with Si or Ge, from column IV. These
impurities are called amphoteric, meaning that Si or Ge can serve as donors
or acceptors depending on whether they reside on the column III or column
V sublattice of the crystal. In GaAs it is common for Si impurities to occupy
Ga sites. Since the Si has an extra electron compared with the Ga it replaces,
it serves as a donor. However, an excess of As vacancies arising during growth
or processing of the GaAs can cause Si impurities to occupy As sites, where
they serve as acceptors.

The importance of doping will become obvious when we discuss elec-
tronic devices made from junctions between p-type and n-type semiconduc-
tor material. The extent to which doping controls the electronic properties of
semiconductors can be illustrated here by considering changes in the sample
resistance which occur with doping. In Si, for example, the intrinsic carrier
concentration n1 is about 1010 cm -3 at room temperature. If we dope Si with
10 1 As atoms/cm3 , the conduction electron concentration changes by five
orders of magnitude. The resistivity of Si changes from about 2 X io fl-cm
to 511-cm with this doping.

When a semiconductor is doped n-type or p-type. one type of carrier
dominates. In the example given above, the conduction band electrons out-
number the holes in the valence band by many orders of magnitude. We refer
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to the small number of holes in n-type material as minority carriers and the
relatively large number of conduction band electrons as majority carriers
Similarly, electrons are the minority carriers in p-type material, and holes
are the majority carriers.

3.2.5 Electrons and Holes in Quantum Wells

We have discussed single-valued (discrete) energy levels in the band gap aris-
ing from doping, and a continuum of allowed states in the valence and con-
duction bands. A third possibility is the formation of discrete levels for
electrons and holes as a result of quantum-mechanical confinement.

One of the most useful applications of MBE or OMVPE growth of
multi-layer compound semiconductors, as described in Section 1.4, is the fact
that a continuous single crystal can be grown in which adjacent layers have
different band gaps. For example, Fig. 3-13 shows the spatial variation in con-
duction and valence bands for a multilayer structure in which a very thin
layer of GaAs is sandwiched between two layers of AlGaAs, which has a
wider band gap that the GaAs. We will discuss the details of such hetero-
junctions (junctions between dissimilar materials) in Section 5.8. It is inter-
esting to point out here, however, that a consequence of confining electrons
and holes in a very thin layer is that these particles behave according to the
particle in a potential well problem, with quantum states calculated in Section

Ga. As -

	

(Ac	 Al. (i	 As

Figure 3-13
Energy bond discontinuities for a thin layer of GaAs sandwiched between layers of wider band gap
AIGoAs. In this case, the GaAs region is so thin that quantum states are formed in the valence and con-
duction bands. Electrons in the GaAs conduction band reside on'particle in a potential well" states
such a E1 shown here, rather than in the usual conduction band states. Holes in the quantum well occu-
py similar discrete states, such a Eh.
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2.4.3. Therefore, instead of having the continuum of states normally avail-
able in the conduction band, the conduction band electrons in the narrow-
gap material are confined to discrete quantum states as described by Eq.
(2-33), modified for effective mass and finite harrier height. Similarly, the
states in the valence band available for holes are restricted to discrete levels
in the quantum well. This is one of the clearest demonstrations of the quan-
tum mechanical results discussed in Chapter 2. From a practical device point
of view, the formation of discrete quantum states in the GaAs layer of Fig.
3-13 changes the energy at which photons can be emitted. An electron on one
of the discrete conduction band states (E 1 in Fig. 3-13) can make a transition
to an empty discrete valence band state in the GaAs quantum well (such as
Eh), giving off a photon of energy Eg + E + Eh, greater than the GaAs band
gap. Semiconductor lasers have been made in which such a quantum well is
used to raise the energy of the transition from the infrared, typical of GaAs,
to the red portion of the spectrum. We will see other examples of quantum
wells in semiconductor devices in later chapters.

3.3 In calculating semiconductor electrical properties and analyzing device be-
CARRIER havior, it is oftert necessary to know the number of charge carriers per cm 

CONCENTRATIONS in the material. The majority carrier concentration is usually obvious in heav-
ily doped material, since one majority carrier is obtained for each impurity
atom (for the standard doping impurities). The concentration of minority
carriers is not obvious, however, nor Is the temperature dependence of the
carrier concentrations.

To obtain equations for the carrier concentrations we must investigate
the distribution of carriers over the available energy states. This type of dis-
tribution is not difficult to calculate, but the derivation requires some back-
ground in statistical methods. Since we are primarily concerned here with
the application of these results to semiconductor materials and devices, we
shall accept the distribution function as given.

3.3.1 The Fermi Level

Electrons in solids obey Fermi—Dirac statistics. 3 In the development of this
type of Statistics, one must consider the indistinguishability of the electrons,

3Exonples of other types of statistics are Moxv.'elI-Boltzmonn For classical particles )e.g., gas) and Bose-
Einstein for photons. For two discrete energy le,els, E and E2 with E2 > F,), classical got atoms follow a
Boltzmann distribution; the number n 2 of atoms in state F. is related to the number n 1 iii F, at thermal equi.
thrium by

rL2 N2

assuming the two levels hove N., and N, number of states, respectively. The exponential term exp(-AE/kfl
is commonly called the Boltzmann factor. It appears also in the denominator of the Fermi-Dirac distribution
function. We shall return to the Boltzmann distribution in Chapter 8 in discussions of the properties of

lasers.
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their wave nature, and the Pauli exclusion principle. The rather simple result
of these statistical arguments is that the distribution of electrons over a range
of allowed energy levels at thermal equilibrium is

AE) =
	

I
 1 +	 (3-10)

where k is Boltzmann's constant (k = 8.62 x 10 eVIK = 1.38 x 10 i/K).
The function ftE), the Fermi-Dirac distrit'ution function, gives the probabil-
ity that an available energy state at E will be occupied by an electron at ab-
solute temperature T The quantity EF is called the Fermi level, and it
represents an important quantity in the analysis of semiconductor behavior.
We notice that, for an energy E equal to the Fermi level energy EF, the oc-
cupation probability is

f(EF) = f1 + et'==	 (3-11)

Thus an energy state at the Fermi level has a probability of'/, of being
occupied by an electron.

A closer examination of ft E) indicates that at 0 K the distribution takes
the simple rectangular form shown in Fig. 3-14. With T = 0 in the denomi-
nator of the exponent,f(E) is 1/(1 + 0) = 1 when the exponent is negative
(E< Ep), and is 1/(1 + )= O when the exponent ispositive (E> E,This
rectangular distribution implies that at 0 K every available energy state up
to EF is filled with electrons, and all states above EF are empty.

At temperatures higher than 0 K, some probability exists for states
above the Fermi level to be filled. For example, at T = T1 in Fig. 3-14 there
is some probability f(E) that states above EF are filled, and there is a corre-
sponding probability [1 - f(E)] that states below EF are empty. The Fermi
function is symmetrical about EF for all temperatures: that is, the probabili-
tyf(E + E) that a state AE above EF is filled is the same as the probabil-
ity [1 - f(E1 - E)I that a state A E below EF is empty. The symmetry of the

Figure 3-14
The Fermi-Dirac
distribution
function.
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distribution of empty and filled states about Ef makes the Fermi level a nat-
ural reference point in calculations of electron and hole concentrations in
semiconductors.

In applying the Fermi-Dirac distribution to semiconductors, we must
recall that f(E) is the probability of occupancy of an available state at E.

Thus if there is no available state at E (e.g., in the band gap of a semicon-
ductor), there is no possibility of finding an electron there. We can best vi-
sualize the relation between ftE) and the hand structure by turning the ftE)

vs. E diagram on its side so that the E scale corresponds to the energies of the
band diagram (Fig. 3-15). For intrinsic material we know that the concen-
tration of holes in the valence band is equal to the concentration of elec-
trons in the conduction band. Therefore, the Fermi level EF must lie at the

middle of the band gap in intrinsic material 
.4 Since ftE) is symmetrical about

EF, the electron probability "tail" of jE) extending into the conduction band
of Fig. 3-15a is symmetrical with the hole probability tail fi - f(E)] in the va-
lence band. The distribution function has values within the band gap between

Figure 3-15
The Fermi distribu-

tion function
applied to

semiconductors:
(a) intrinsic materi-

al; (b) n-type ma-
serial; (c) p-type

material.

f(E) 1	 1/2 0

(c) p-type

AcuoIly the intrinsic Ep is displaced slightly from the middle of the gap, since the densities of ovoilable

states in the valence and conduction bonds are not equal (Section 3.321.
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E and E,,, but there are no energy states available, and no electron occu-
pancy results from ftE) in this range.

The tails in f(E) are exaggerated in Fig. 3-15 for illustrative purpos-
es. Actually, the probability values at E and E, are quite small for intrin-
sic material at reasonable temperatures. For example, in Si at 300 K, n =

1010 CM-3, whereas the densities of available states at E, and E are on
the order of io' CM-3. Thus the probability of occupancy ftE) for an indi-
vidual state in the conduction band and the hole probability [1 - ftE)] for
a state in the valence band are quite small. Because of the relatively large
density of states in each band, small changes in f(E) can result in significant
changes in carrier concentration.

In n-type material there is a high concentration of electrons in the con-
duction band compared with the hole concentration in the valence band (re-
call Fig. 3-12a). Thus in n-type material the distribution functionftE) must lie
above its intrinsic position on the energy scale (Fig. 3-15b). SinceftE) retains
its shape for a particular temperature, the larger concentration of electrons at
E in n-type material implies a correspondingly smaller hole concentration
at E. We notice that the value of ftE) for each energy level in the conduction
band (and therefore the total electron concentration n0) increases as Ef moves
closer to E Thus the energy difference (E - EF) gives a measure of n; we
shall express this relation mathematically in the following section.

For p-type material the Fermi level lies near the valence band (Fig. 3-15c)
such that the [1 - J(E)J tail below E, is larger than the f(E) tail above Er. The
value of (EF - Es,) indicates how strongly p- type the material is.

It is usually inconvenient to draw AE) vs. Eon every energy band dia-
gram to indicate the electron and hole distributions. Therefore, it is common
practice merely to indicate the position of EF in band diagrams. 'Ibis is suffi-
cient information, since for a particular temperature the position of EF im-
plies the distributions in Fig. 315.

3.3.2 Electron and Hole Concentrations at Equilibrium

The Fermi distribution function can be used to calculate the concentrations
of electrons and holes in a semiconductor, if the densities of available states
in the valence and conduction bands are known. For example, the concen-
tration of electrons in the conduction band is

n.= 1N(E)dE	 (3-12): 

where N(E)dE is the density of states (cm -' ) in the energy range dE. The
subscript 0 used with the electron and hole concentration symbols ( n0,p0) in-
dicates equilibrium conditions. The number of electrons per unit volume in
the energy range dE is the product of the density of states and the probabil-
ity of occupancy f(E). Thus the total electron concentration is the integral
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over the entire conduction band, as in Eq. (3-12). 5 The function N(E) can be
calculated by using quantum mechanics and the Pauli exclusion principle
(Appendix IV).

It is shown in Appendix IV that N(E) is proportional to E', so the
density of states in the conduction band increases with electron energy. On
the other hand, the Fermi function becomes extremely small for large ener-
gies.The result is that the product ftE)N(E) decreases rapidly above E,-, and
very few electrons occupy energy states far above the conàuction band edge.
Similarly, the probability of finding an empty state (hole) in the valence band
[1 - ftE)] decreases rapidly below E, and most holes occupy states near
the top of the valence band. This effect is demonstrated in Fig. 3-16, which
shows the density of available states, the Fermi function, and the resulting
number of electrons and holes occupying available energy states in the con-
duction and valence hands at thermal equilibrium (i.e., with no excitations ex-
cept thermal energy). For holes, increasing energy points down in Fig. 3-16,
since the E scale refers to electron energy.

The result of the integration of Eq. (3-12) is the same as that obtained
if we represent all of the distributed electron states in the conduction band
by an effective density of stares N located at the conduction band edge E.
Therefore, the conduction band electron concentration is simply the effective
density of states at E, times the probability of occupancy at E6

n0 = NjE)	 (3-13)

In this expression we assume the Fermi level EF lies at least several k 
below the conduction band. Then the exponential term is large compared
with unity, and the Fermi function f(E,) can be simplified as

E) = j + eT
e- (E,-E,	 (3-14)

Since kT at room temperature is only 0.026 eV, this is generally a good
approximation. For this condition the concentration of electrons in the con-
duction band is

[n0 = 1nIe - (E, - EJ	 (3-1)

The effective density of states N is shown in Appendix IV to be

N, = 2(2')	 (3-16)

tThe upper limit is actually improper in Eq. 13-12), since the conduction band does not extend to infinite
energy. This is unimportant in the calculation of flu, however, since E) becomes negligibly small for large
values of E. Most electrons occupy states near the bottom of the conduction bond at equilibrium.

6The simple expression for noobtained in Eq. (3-13) is the direct result of integrating Eq. (3-12), as in Ap-
pendix IV. Equations (3-15) and (3-19) properly include the effects of the conduction and valence bonds
through the density.of-states terms.
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(b) n-Iype
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Figure 3-16
Schematic band diagram, density of states, Fermi—Dirac distribution, and the carrier concentrations for
(o) intrinsic, (b) n-type, and {c) p-type semiconductors at thermal equilibrium.

Since the quantities in Eq. (3-16a) are known, values of N, can be tab-
ulated as a function of temperature. As Eq. (3-15) indicates, the electron
concentration increases as E F moves closer to the conduction band.'fhjs is the
result we would predict from Fig. 3-15b.

Jut Eq. (3-16a). rn is the density-of-states effective mass for electrons.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, let us consider the 6 equivalent conduction band
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minima along the X-directions for Si. Looking at the cigar-shaped equl-
energy surfaces in Fig. 3-10b, we find that we have more than one band cur-
vature to deal with in calculating effective masses. There is a longitudinal ef-
fective mass m, along the major axis of the ellipsoid, and the transverse

effective mass rn, along the two minor axes. Since we have (m') 312 appearing
in the density-of-states expression Eq. (3-1 6a), by using dimensional equiv-
alence and adding contributions from all 6 valleys, we get

	

(m)32 = 6(m1 rn,2)'"2	 (3-16h)

It can be seen that this is the geometric mean of the effective masses.

EXAMPLE 3-4	 Calculate the density-of-states effective mass of electrons in Si.

SOLUTION	 For Si, rn1 = 0.98 m0; m, = 0.19 rn0 from Appendix III.
There are six equivalent X valleys in the conduction band.

m' = 62 '3 [0 .98(0 . 19)2 ] '3 mo = 1.1 m0

Note: For GaAs, the conduction band &jui-energy surfaces are spheri-
cal. So there is only one band curvature effective mass, and it is equal to the
density-of-states effective mass (= 0.067 m0).

By similar arguments, the concentration of holes in the valence band is

	

Po = Nj1 - f(E,,)] 	 (1-17)

where N is the effective density of states in the valence band. The probabil-
ity of finding an empty state at E is

1 - f(E3 = 1 - + etkT e' E)/T (3-18)

for EF larger than E,, by several kT From these equations, the concentration
of holes in the valence band is

	

= N ,,e_Z T	 (3-19)

The effective density of states in the valence band reduced to the
band edge is

-N,,	
(21Tm*k 3/2

	
(3-20)

-	 h2 )
As expected from Fig. 3-15c, Eq. (3-19) predicts that the hole concen-

tration increases as EF moves closer to the valence band.
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The electron and hole concentrations predicted by Eqs. (3-15) and (3-19)
are valid whether the material is intrinsic or doped. provided thermal equilibri-
um is maintained. Thus for intrinsic material, EF lies at some intrinsic level E, near
the middle of the band gap (Fig. 3-I5a), and the intrinsic electron and hole con-
centrations are

= Ne__'kT, p = N,e,)kI	 (3-21)

The product of no and p0 at equilibrium is a constant for a particular ma-
terial and temperature, even if the doping is varied:

flop0 = (NeEE	 )(iVe . ') = NjV.e L -E)/T (3-22a)

Nr.N,e -Flk T

njp = (Ne	 _E.)/kT)(Ne_(E_ E.)/kT) = NN,e E,/kT 	 (3-22b)

The intrinsic electron and hole concentrations are equal (since the car-
riers are created in pairs). n = p; thus the intrinsic concentration is

n=	 (3-23)

The constant product of electron and hole concentrations in Eq. (3-22)
can be written conveniently as

= fl	 (3-24)

This is an important relation, and we shall use it extensively in later
calculations. The intrinsic concentration for Si at room temperature is ap-
proximatelyn1 = 1.5 X 10'°cm.

Comparing Eqs. (3-21) and (3-23), we note that the intrinsic level E is
the middle of the band gap (E, - E, Eg12), if the effective densities of States
N and N. are equal. There is usually some difference in effective mass for elec-
trons and holes, however, and N and N, are slightly different as Eqs. (3-16) and
(3-20) indicate. The intrinsic level Ej is displaced from the middle of the band
gap, more for GaAs than for Ge or Si.

Another convenient way of writing Eqs. (3-15) and (3-19) is

no =	 (3-25a)

Pc = n e(E,_E,)/kT	 (3-25h)

obtained by the application of Eq. (3-21).This form of the equations indicates
directly that the electron concentrations is n when EF is at the intrinsic level
E1 , and that no increases exponentially as the Fermi level moves away from
E toward the conduction band. Similarly, the hole concentration Pc varies
from , to larger values as Emoves from E toward the valence hand. Since
these equations reveal the qualitative features of carrier Concentration so
directly, they are particularly convenient to remember.
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EXAMPLE 3-5	 A Si sample is doped with 10 17 As atoms/cm'. What is the equilibrium hole
concentration Po at 300 K? Where is E F relative to E,?

SOLUTION	 Since N,> n 1 , we can approximate no =Nd and

= =
	

1020 = 2.25 X iO cmPo	
0	 1017

From Eq. (3-25a), we have

io'
- = kTin = 0.0259 in	 = 0.407 eV

The resulting band diagram is:

Er
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3.3.3 Temperature Dependence of Carrier Concentrations

The variation of carrier concentration with temperature is indicated by Eq.
(3-25). Initially, the variation of no and Po with T seems relatively straight-

forward in these relations. The problem is complicated, however, by the fact
that n has a strong temperature dependence [Eq. (3-23)] and that EF can
also vary with temperature. Let us begin by examining the intrinsic carrier
concentration. By combining Eqs. (3-23), (3-1a), and (3-20) we obtain

n,(T) =
	27rk	 )3/4 	(3-26)

The exponential temperature dependence dominates n(T), and a plot
of in n, vs. 1031T appears linear (Fig. 3-17). In this figure we neglect varia-
tions due to the T 3 dependence of the density-of-states function and the fact

'When plotting quantities such as carrier concentration, which invohw a Boltzmann factor, it is common to use
on inverse temperature scale. This allows terms which ore exponential in l/Tto appear linear in the semi-
logarithmic plot. When reading such graphs, remember that temperature increases horn right to left.
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Figure 3-17
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that Eg varies somewhat with temperature.e The value of n 1 at any tempera-
ture is a definite number for a given semiconductor, and is known for most
materials. Thus we can take ni as given in calculating n0 orp0 from Eq. (3-25).

With ni and T given, the unknowns in Eq. (3-25) are the carrier con-
centrations and the Fermi level position relative to E 1. One of these two

'For Si the band gap E. varies From about 1.11 eV at 300 K to about 1 16 eV at 0 K.
'Core must be taken to use consistent units in these calculations. For example, if on energy such as E, is

epres.d in electron volts (eV), it should be multiplied by q 11.6 x 10 	 C to convert to joules if ks in
J/K; alternatively, E. con be kept in eV and the value of kin eV/K can be used At 300 K we con use
kT 0.0259 eV and f9 in eV.
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quantities must be given if the other is to be found. If the carrier concentra-
tion is held at a certain value, as in heavily doped extrinsic material. E1 can
be obtained from Eq. (3 -25). The temperature dependence of electron con-
centration in a doped semiconductor can be visualized as shown in Fig. 3-18.
In this example, Si is doped n-type with a donor concentration Nd of 1013
cm. At very low temperatures (large 11fl, negligible intrinsic FHPs exist,
and the donor electrons are bound to the donor atoms. As the temperature
is raised, these electrons are donated to the conduction hand, and at about
100 K (10001T = 10) all the donor atoms are ionized. This temperature range
is called the ionization region. Once the donors are ionized, the conduci ion
band electron concentration is no Nd = 1015 cm, since one electron is ob-
tained for each donor atom. When every available extrinsic electron has been
transferred to the conduction band, no is virtually constant with temperature
until the concentration of intrinsic carriers n i becomes comparable to the ex-
trinsic concentration Nd . Finally, at higher temperatures n, is much greater
than Nd , and the intrinsic carriers dominate. In most devices it is desirable
to control the carrier concentration by doping rather than by thermal EHP
generation- Thus one usually dopes the material such that the extrinsic range
extends beyond the highest temperature at which the device is to be used.

3.3.4 Compensation and Space Charge Neutrality

When the concept of doping was introduced, we assumed the material con-
tained either Nd donors or N acceptors, so that the extrinsic majority carrier
concentrations were no - N, 

Or P0 - N, respectively, for the n-type or p-type
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Figure 3-19
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material. If often happens, however, that a semiconductor contains both
donors and acceptors. For example, Fig. 3-19 illustrates a semiconductor for
which both donors and acceptors are present, but Nd > N. The predomi-
nance of donors makes the material n-type, and the Fermi level is therefore
in the upper part of the band gap. Since Ef is well above the acceptor level E,
this level is essentially filled with electrons. However, with EF above E,, we can-
not expect a hole concentration in the valence band commensurate with the
acceptor concentration. In fact, the filling of the E states occurs at the ex-
pense of the donated conduction band electrons. The mechanism can be vi-
sualized as follows: Assume an acceptor state is filled with a valence band
electron as described in Fig. 3-12b, with a hole resulting in the valence band.
'Ibis hole is then filled by recombination with one of the conduction band
electrons. Extending this logic to all the acceptor atoms, we expect the resul-
tant concentration of electrons in the conduction band to be Nd - N instead
of the total Nd. This process is called compensation. By this process it is pos-
sible to begin with an n-type semiconductor and add acceptors until N Nd
and no donated electrons remain in the conduction band. In such compensated
material, no = n, = Po and intrinsic conduction is obtained. With further ac-
ceptor doping the semiconductor becomes p-type with a hole concentration
of essentially N - Nd.

The exact relationship among the electron, hole, donor, and acceptor
concentrations can be obtained by considering the requirements for space
charge neutrality. If the material is to remain electrostatically neutral, the
sum of the positive charges (holes and ionized donor atoms) must balance the
sum of the negative charges (electrons and ionized acceptor atoms):

	

p0 +N=n0 +N; 	.	 (3-27)

Thus in Fig. 3-19 the net electron concentration in the conduction band is

	

± (zv; - N;)	 (3-28)
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If the material is doped n-type (n (, >> P0) and all the impurities are
ionized, we can approximate Eq. (3-28) by no = Nd - N

Since the intrinsic semiconductor itself is electrostatically neutral and
the doping atoms we add are also neutral, the requirement of Eq. (3-27)
must be maintained at equilibrium. The electron and hole concentrations
and the Fermi level adjust such at Eqs. (3-27) and (3-25) are satisfied.

3.4 Knowledge of carrier concentrations in a solid is necessary for calculating cur-
DRIFT OF rent flow in the presence of electric or magnetic fields. In addition to the val-

CARRIERS IN ties of n and p, we must he able to take into account the collisions of the
ELECTRIC AND charge carriers with the lattice and with the impurities. These processes will

MAGNETIC FIELDS affect the ease with which electrons and holes can flow through the crystal,
that is, their mobility within the solid. As should he expected, these collision
and scattering processes depend on temperature, which affects the thermal
motion of the lattice atoms and the velocity of the carriers.

3.4.1 Conductivity and Mobility

T'hc charge carriers in a solid are in constant motion, even at thermal equi-
librium. At room temperature, for example, the thermal motion of an indi-
vidual electron may be visualized as random scattering from lattice vibrations,
impurities, other electrons, and defects (Fig. 3-20). Since the scattering is ran-
dom, there is no net motion of the group of n electrons/cm 3 over any period
of time. This is not true of an individual electron, of course. The probability
of the electron in Fig. 3-20 returning to its starting point after some time (is
negligibly small. However, if a large number of electrons is considered (e.g.,
10 CM-3 in an n-type semiconductor), there will he no preferred direction
of motion for the group of electrons and no net current flow.

/	 ..

Figure 3-20
Thermal motion of

an electron in a
solid.

I	

,
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If an electric field Z, is applied in the x-direction, each electron expe-
riences a net force -q from the field. This force may be insufficient to alter
appreciably the random path of an individual electron; the effect when av-
eraged over all the electrons, however, is a net motion of the group in the
-x-direction. If p is the x-component of the total momentum of the group.
the force of the field on the n electrons/cm 3 is

=	 (3-2)
df	 td

Initially, Eq. (3-29) seems to indicate a continuous acceleration of the
electrons in the -x-direction. This is not the case, however, because the net
acceleration of Eq. (3-29) is just balanced in steady state by the decelera-
tions of the collision processes. Thus while the steady field 'if does produce
a net momentum P-.r' the net rate of change of momentum when collisions
are included must be zero in the case of steady state current flow.

To find the total rate of momentum change from collisions, we must
investigate the collision probabilities more closely. If the collisions are truly
random, there will be a constant probability of collision at any time for each
electron. Let us consider a group of N0 electrons at time t = 0 and define N(t)
as the number of electrons that have not undergone a collision by time t. The
rate of decrease in N(t) at any time t is proportional to the number left un-
scattered at t,

= 1N(t)	 (3-30)
dt 

where r - 'is a constant of proportionality.
The solution to Eq. (3-30) is an exponential fuction

N(t)=Noe vt	(3-31)

and i represents the mean time between scattering events. 10 called the mean
free time. The probability that any electron has a collision in the time inter-
val dt is dt/ .Thus the differential change in p due to collisions in time dr is

dp 5 =p	 (3-32)

The rate of change of p due to the decelerating effect of collisions is

dps^	 = -	 (3-33)
dt collisions

'°Equotions (3-30) and (3-31) ate typical of events dominated by rondon processes, and the forms of
these equations occur often in many branches of physics and engineering. For example, in the radioactive

decoy of untabte nuclear isotopes, No nuclide, decoy exponentially with a mean lifetime i Other exam-
pies will be found in this text, including the absorption of light in a semiconductor and the r.combnotiom
of excess EHP,.
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The sum of acceleration and deceleration effects must be zero for
steady state. Taking-the sum of Eqs. (3-29) and (3-33), we have

- nq = 0	 (3-34)

The average momentum per electron is

	

-qi	 (3-35)

where the angular brackets indicate an average over the entire group of elec-
trons. As expected for steady state, Eq. (3-35) indicates that the electrons
have on the average a constant net velocity in the negative x-direction:

(V r)	 (3-36)
M*	 m,

Actually, the individual electrons move in many directions by thermal
motion during a given time period, but Eq. (3-36) tells us the net drift of an
average electron in response to the electric field. ibe drift speed described
by Eq. (3-36) is usually much smaller than the random speed due to the ther-
mal motion V(h.

The current density resulting from this net drift is just the number of
electrons crossing a unit area per unit time (nv)) multiplied by the charge
on the electron (-q):

= -qn(v)	
(337

ampere coulomb electrons cm

Lsm2 - electron	 cm3	 s

Using Eq. (3-36) for the average velocity, we obtain

nq2t= -	 (3-38)

Thus the current density is proportional to the electric field, as we ex-
pect front Ohm's law:

J=(r, where	 —t	 (3-39)

The conductivity u(f-cm)' can be written

qt
cr = qni,,, where IL,,	 --	 (3-40a)

The quantity ,. called the electron mobility, describes the ease with
which electrons drift in the material. Mobility is a very important quantity in
characterizing semiconductor materials and in device development.
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Here m1' is the conductivity effective mass for electrons, different from
the density-of-states effective mass mentioned in Eq. (3-16b). While we use
the density-of-states effective mass to Count the number of carriers in bands,
we must use the conductivity effective mass for charge transport problems.
To illustrate how it is obtained from the band curvature effective masses
mentioned in Section 3.2.2, once again let us consider the 6 equivalent con-
duction band minima along the X-directions for Si, with the band curvature
ongitudinal effective mass, rn1. along the major axis of the ellipsoid, and the
transverse effective mass, rn, along the two minor axes (Fig. 3-10b). Since we
have 11m' in the mobility expression Eq. (3-40a), by using dimensional
equivalence, we can write the conductivity effective mass as the harmonic
mean of the band curvature effective masses.

1-	 +
1/1	 (3-40b)- I—  

m* 3 m, m,/

Calculate the conductivity effective mass of electrons in Si. 	 EXAMPLE 3-6

ForSi,m 1 = 0.98m 0;m, = 0.19m0 (Appendix Ill) 	 SOLUTION
There are 6 equivalent X valleys in the conduction band.

1/rn	 11301,n + 11m r + i/,n) = 1/3(1/rn 1 + 21rn)

1/	 1	 2	 \

3 0.98 m0 + 0.19 m0)

rn' = 0.26 m0

Note: For GaAs. the conduction hand equi-energy surfaces are spheri-
cal. So there is only one band curvature effective mass (The density of states
effective mass and the conductivity effective mass are both 0.067 m0.)

The mobility defined in Eq. (3-40a) can be expressed as the average par-
ticle drift velocity per unit electric field. Comparing Eqs. (3-36) and (3-40a),
we have

3-4l)

The units of mobility are (cm/s)/( V/cm) = cm2[V-s, as Eq. (3-41) sug-
gests. The minus sign in the definition results in a positive value of mobility,
since electrons drift opposite to the field. 	 -

The current density can be written in terms of mobility as

	

J=qnji	 (3-42)
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This derivation has been based on the assumption that the current is
carried primarily by electrons. For hole conduction we change n top, -q to
+q, and is,, to Vm where p = + (v)/ is the mobility for holes. If both elec-
trons and holes participate, we must modify Eq. (3-42) to

L
= q(n	 -1- pt) = (T	 (3-43)

Values of pU,, and p are given for many of the common semiconductor
materials in Appendix III. According to Eq. (3-40), the parameters deter-
mining mobility are m* and mean free time t. Effective mass is a property of
the material's band structure, as described by Eq. (3-3). Thus we expect m
to be small in the strongly curved F minimum of the GaAs conduction band
(Fig. 3-6), with the result that p., is very high. In a more gradually curved
band, a larger m* in the denominator of Eq. (3-40) leads to a smaller value
of mobility. It is reasonable to expect that lighter particles are more mobile
than heavier particles (which is satisfying, since the common-sense value of
effective mass is not always apparent). The other parameter determining mo-
bility is the mean time between scattering events, t. In Section 3.4.3 we shall
see that this is determined primarily by temperature and impurity concen-
tration in the semiconductor.

3.4.2 Drift and Resistance

Let us look more closely at the drift of electrons and holes. If the semicon-
ductor bar of Fig. 3-21 contains both types of carrier, Eq. (3-43) gives the
conductivity of the material. The resistance of the bar is then

pL L 1
R=—=--	 (3-44)

Wt Wt or

Electric field
Current
Hose motion Electron motion
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where p is the resistivity (fl-coi). The physical mechanism of carrier drift re-
quires that the holes in the bar move as a group in the direction of the elec-
tric field and that the electrons move as a group in the opposite direction.
Both the electron and the hole components of current are in the direction of
the t field, since conventional current is positive in the direction of hole flow
and opposite to the direction of electron flow. The drift current described by
Eq. (3-43) is constant throughout the bar. A valid question arises, therefore,
concerning the nature of the electron and hole flow at the contacts and in the
external circuit. We should specify that the contacts to the bar of Fig. 3-21 are
ohmic, meaning that they are perfect sources and sinks of both carrier types
and have no special tendency to inject or collect either electrons or holes.

If we consider that current is carried around the external circuit by elec-
trons, there is no problem in visualizing electrons flowing into the bar at one
end and out at the other (always opposite to 1). Thus for every electron leav-
ing the left end (x 0) of the bar in Fig. 3-21, there is a corresponding elec-
tron entering at x = L, so that the electron concentration in the bar remains
constant at n. But what happens to the holes at the contacts? As a hole reach-
es the ohmic contact at x = L, it recombines with an electron, which must be
supplied through the external circuit. As this hole disappears, a corresponding
hole must appear at x = 0 to maintain space charge neutrality. It is reasonable
to consider the source of this hole as the generation of an EHP at x = 0, with
the hole flowing into the bar and the electron flowing into the external Circuit.

Find the resistivity of intrinsic Si at 300 K. 	 EXAMPLE 3-7

From Appendix III, p, = 1350 and AP = 480 cm2JV-s for intrinsic Si. Thus, SOLUTION
SIflC no = Po

cri = q(p, + p.)n1 = 1.6 X 10b9(1830)(1.5 x 1010)

= 4.39 x 10- 6 (f)-'

P, = 47
1
— 1 =2.28 X 10 cl-cm

3.4.3 Effects of Temperature and Doping on Mobility

The two basic types of scattering mechanisms that influence electron and
hole mobility are lattice scattering and impurity scattering, in lattice scatter-
ing a Carrier moving through the crystal is scattered by a vibration of the lat-
tice, resulting from the temperature. 1 ' The frequency of such scattering events

' 1CoII.ctive vibraflon, of atoms in the crystal are cofl.d phesso.,s. Thus lattice scotlering is also known as
phonon scattering.
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Figure 3-22
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increases as the temperature increases, since the thermal agitation of the lat-
tice becomes greater. Therefore, we should expect the mobility to decrease
as the sample is heated (Fig. 3-22). On the other hand, scattering from crys-
tal defects such as ionized impurities becomes the dominant mechanism at
low temperatures. Since the atoms of the cooler lattice are less agitated, lat-
tice scattering is less important; however, the thermal motion of the carriers
is also slower. Since a slowly moving carrier is likely to he scattered more
strongly by an interaction with a charged ion than is a carrier with greater mo-
mentum, impurity scattering events cause a decrease in mobility with de-
creasing temperature. As Fig. 3-22 indicates, the approximate temperature
dependencies are 7 2 for lattice scattering and T 2 for impurity scattering.
Since the scattering probability of Eq. (3-32) is inversely proportional to the
mean free time and therefore to mobility, the mobilities due to two or more
scattering mechanisms add inversely:

11	 1
—=—+—+..,	 (345)
J.	 1'-j	 2

As a result, the mechanism causing the lowest mobility value domi-
nates, as shown in Fig. 3-22.

As the concentration of impurities increases, the effects of impurity
scattering are felt at higher temperatures. For example, the electron mobili-
ty it, of intrinsic silicon at 300 K is 1,350 cm2I(V-s). With a donor doping con-
centration of loll cm 3 , however, is 700 cm2/( V-s). Thus the presence of the
iO ionized donors/cm3 introduces a significant amount of impurity scatter-
ing. This effect is illustrated in Fig. 3--23, which shows the variation of mobility
with doping concentration at room temperature.
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Figure 3-23
Variation of mobility with total doping impurity concentration (N 0 + Nd) for Ge, Si, and GaAs at 300 K.

3.4.4 High-Reid Effects

One assumption implied in the derivation of Eq. (3-39) was that Ohm's law
is valid in the carrier drift processes. That is, it was assumed that the drift cur-
rent is proportional to the electric field and that the proportionality constant
(or) is not a function of field %. "Ibis assumption is valid over a wide range of
%. However, large electric fields (> 103V/cm) can cause the drift velocity and
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Figure 3-24
Saturation of elec-
tron drift velocity

at high electric
fields for Si.

therefore the current J = -qnv 1 to exhibit a sublinear dependence on the
electric field. This dependence of o• upon W is an example of a hot carrier ef-
fect, which implies that the carrier drift velocity v j is comparable to the ther-
mal velocity Vth.

In many cases an upper limit is reached for the carrier drift velocity in
a high field (Fig. 3-24). This limit occurs near the mean thermal velocity
(=' i(V cmls) and represents the point at which added energy imparted by the
field is transferred to the lattice rather than increasing the carrier velocity. The
result of this scattering limited velocity is a fairly constant current at high
field. This behavior is typical of Si, Ge, and some other semiconductors. How-
ever, there are other important effects in some materials; for example, in
Chapter 10 we shall discuss a decrease in electron velocity at high fields for
GaAs and certain other materials, which results in negative conductivity and
current instabilities in the sample. Another important high-field effect is
avalanche multiplication, which we shall discuss in Section 5.4.2.

3.4.5 The Hall Effect

If a magnetic field is applied perpendicular to the direction in which holes
drift in a p-type bar, the path of the holes tends to be deflected (Fig. 3-25).
Using vector notation, the total force on a single hole due to the electric and
magnetic fields is

F=q(+vx)	 (3-46)

In the y-direction the force is

F,, = q(%,- v )	 (3-47)
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Figure 3-25
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The important result of Eq. (3-47) is that unless an electric field 'e_, is
established along the width of the bar, each hole will experience a net force
(and therefore an acceleration) in the -y-direction due to the qv. product.
Therefore, to maintain a steady state flow of holes down the length of the bar,
the electric field	 must just balance the product v3;

= v t 	 (3-4)

so that the net force F, is zero. Physically, this electric field is set up when the
magnetic field shifts the hole distribution slightly in the -y-direction. Once
the electric field , becomes as large as v3.. no net lateral force is experi-
enced by the holes as they drift along the bar. The establishment of the elec-
tric field W I is known as the Hall effect, and the resulting voltage VAB =
is called the Hall voltage. If we use the expression derived in Eq. (3-37) for
the drift vclocity (using q and Pu for holes), the field Z, becomes

	

f.--=RJJ3,. R,1 -L	 (3-49)
qp0 	 qp0

Thus the Hall field is proportional to the product of the current densi-
ty and the magnetic flux density. The proportionality constant Rff = (qp-1)'

is called the Hall coefficient. A measurement of the Hall voltage for a known
current and magnetic field yields a value for the hole concentration 

p0

Po
1	 J, - (I/wt). =	 (3-50)qRH q	 q(Vfl/w) qtV

Since all of the quantities in the right-hand side of Eq. (3-50) can be
measured, the Hall effect can be used to give quite accurate values for car-
rier concentration.
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If a measurement of resistance R is made, the sample resistivity p can
be calculated:

Rwt Vc/i
p(fl—cm)=--—= 

L/wt	 (3-51)

Since the conductivity if = I/p is given by qp-p0, the mobility is simply
the ratio of the Hall coefficient and the resistivity:

0	 i/p	 Rif
(3-52)

qp 0 q(1/qR) p

Measurements of the Hall coefficient and the resistivity over a range of
temperatures yield plots of majority carrier concentration and mobility vs.
temperature. Such measurements are extremely useful in the analysis of semi-
conductor materials. Although the discussion here has been related to p-type
material, similar results are obtained for n-type material. A negative value
of q is used for electrons, and the Hall voltage VAR and Hall coefficient RH are
negative. In fact, measurement of the sign of the Hall voltage, is a common
technique for determining if an unknown sample is p-type or n-type.

EXAMPLE 3-8	 A sample of Si is doped with 1017 phosphorus atoms/cm'. What would you ex-
pect to measure for its resistivity? What Hall voltage would you expect in a
sample 100 p.m thick if 1, = imA and	 = 1 kG = 10 Wb/cm'?

SOLUTION	 From Fig. 3-23, the mobility is 700 cm 2/(V-s). Thus the conductivity is

= qp.n0 = (1.6 x l0_19) (700) (1017) = 11.2(Ci— cm) -1

 Po is negligible. The resistivity is

p = CT 1 = 0.0893 Q— cm

The Hall coefficient is

Rh.= —(qn0)'' = — 625 cm3/C

from Eq. (3-49), or we could use Eq. (3-52).The Hall voltage is

VAR	
R (io A)(10 Wb/cm2) 

(-62.5 cm3/C) = —62.5 p.V
=	 II
	 10-2 cm

3.5 In this chapter we have discussed homogeneous semiconductors. without
INVARIANCE OF variations in doping and without junctions between dissimilar materials. In
THE FERMI LEVEL the following chapters we will be considering cases in which nonuniform
AT EQUILIBRIUM doping occurs in a given semiconductor, or junctions occur between differ-
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ent semiconductors or a semiconductor and a metal. These cases are crucial
to the various types of electronic and optoelectronic devices made in semi-
conductors. In anticipation of those discussions, an important concept should
be established here regarding the demands of equilibrium. That concept can
be summarized by noting that no discontinuity or gradient can arise in the
equilibrium Fermi level EF.

To demonstrate this assertion, let us consider two materials in intimate
contact such that electrons can move between the two (Fig. 3-26). These may
be, for example, dissimilar semiconductors, n- and p-type regions, a metal and
a semiconductor, or simply two adjacent regions of a nonuniformly doped semi-
conductor. Each material is described by a Fermi-Dirac distribution function
and some distribution of available energy states that electrons can occupy.

There is no current, and therefore no net charge transport, at thermal
equilibrium. There is also no net transfer of energy. Therefore, for each en-
ergy E in Fig. 3-26 any transfer of electrons from material 1 to material 2
must be exactly balanced by the opposite transfer of electrons from 2 to 1.
We will let the density of states at energy E in material I be called N1(E)
and in material 2 we will call it N2(E). At energy E the rate of transfer of
electrons from 1 to 2 is proportional to the number of filled states at E in ma-
terial I times the number of empty states at E in material 2:

	

rate from Ito 2 N 1 (E)f1(E) N2(E)[1 - f2(E)]	 (3-53)

where f(E) is the probability of a state being filled at E in each material, i.e.,
the Fermi-Dirac distribution function given by Eq. (3-10). Similarly,

rate from 2 to	 N2(E)f2(E) N 1 (E)[l — f1 (E)]	 (3-54)

At equilibrium these must be equal:

	

N 1 (E)f1 (E) N2 (E)[1 — f2 (E)] = N2(E)f2(E) N(E)[1 - f1 (E)]	 (3-55)

F

Figure 3-26
Two materials in
intimate contact at
equilibrium. Since
the net motion of
electrons is zero,
the equilibrium
Fermi level must
be constant

-*. x	 throughout.
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Rearranging terms, we have, at energy E,

NfN2 - N 1J'1 N2f2 = NN 1 - NfNJ	 (3-56)

which results in

f, (E) =f2(E), that is, [I +- e	 kTy1 = [1 + e')'	 (357)

Therefore, we conclude that E = E,.. That is, there is no discontinu-
ity in the equilibrium Fermi level. More generally, we can state that the Fermi
level at equilibrium must be constant throughout materials in intimate con-
tact. One way of stating this is that no gradient exists in the Fermi level at
equilibrium:

dX
	 (3-58)

We will make considerable use of this result in the chapters to follow.

PROBLEMS 3.1 It was mentioned in Section 3.2 that the covalent bonding model gives a false
impression of the localization of carriers. As an illustration, calculate the ra-
dius of the electron orbit around the donor in Fig. 3-12c, assuming a ground
state hydrogen-like orbit in Si. Compare with the Si lattice constant. Use

= 0.26m 0 for Si.

3.2 Calculate values for the Fermi function f(E) at 300 K and plot vs. energy in eV
as in Fig. 3-14. Choose EF = I eV and make the calculated points closer to-
gether near the Fermi level to obtain a smooth curve. Notice that jE) varies
quite rapidly within a few kTof Er.

3.3 A semiconductor such as Si has a bandstructure about the minimum along [100]
described approximately by  = E0 - A cos(ck) - B{cos(f3k) i- cos(3k)j. What
is the density-of-states effective mass associated with the X minimum? [Hint:
cos(2x) = I - 2x2 for small x.

3.4 At room temperature, an unknown, intrinsic, cubic semiconductor has the fol-
lowing bandstructure: there are 6 X minima along the <100> directions, if
rn(F) = 0.065rn0, rn() = 0.30m 0 (for each of the Xminima and = 0.47m0,
at what temperature is the number of electrons in the F minima and the X min-
ima equal if the r to X energy separation is 0.35 eV, and the bandgap is 1.7 eV
(m0 = free electron mass)?

3.5 Consider n-type GaAs and assume that the total number of conduction elec-
trons, n, is independent of temperature. The density-of-states effective mass,
m, in the L valley is 15 times larger than in the F valley. Also the energy sep-
aration, E,, between the F and L minima is 0.35 eV, and the mobility in the I
minimum is 50 times that in L. Calculate and sketch how the conductivity varies
from low T(<< E)k) to high T(>> EJk). What is the ratio of the conductivi-
ties at 1000°C and 300°C?
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ent semiconductors or a semiconductor and a metal. These cases are crucial
to the various types of electronic and optoelectronic devices made in semi-
conductors. In anticipation of those discussions, an important concept should
be established here regarding the demands of equilibrium. That concept can
be summarized by noting that no discontinuity or gradient can arise in the
equilibrium Fermi level EF

To demonstrate this assertion, let us consider two materials in intimate
contact such that electrons can move between the two (Fig. 3-26). These may
be, for example, dissimilar semiconductors, n- and p-type regions, a metal and
a semiconductor, or simply two adjacent regions of a nonuniformly doped semi-
conductor. Each material is described by a Fermi-Dirac distribution function
and some distribution of available energy states that electrons can occupy.

There is no current, and therefore no net charge transport, at thermal
equilibrium. There is also no net transfer of energy. Therefore, for each en-
ergy E in Fig. 3-26 any transfer of electrons from material 1 to material 2
must be exactly balanced by the opposite transfer of electrons from 2 to 1.
We will let the density of states at energy E in material I be called N(E)
and in material 2 we will call it N2 (E). At energy E the rate of transfer of
electrons from 1 to 2 is proportional to the number of filled states at E in ma-
terial I times the number of empty states at £ in material 2:

	

rate from ito 2 N 1 (E)f ( ) N2(E)[1 - f2(E)]	 (3-53)

where fiE) is the probability of a state being filled at £ in each material, i.e.,
the Fermi-Dirac distribution function given by Eq. (3-10). Similarly,

	

rate from 2 to i N2(E)f,(E) N1(E)[1 - f1 (E)]	 (3-34)

At equilibrium these must be equal:

	

N1 (E)f1 (E) . N2(E)[I - f2(E)] = N,(E)f2(E) . N1 (E)[1 - f1 (E)}	 (3-55)

F

Figure 3-26
Two materials in
intimate contact at
equilibrium. Since
the net motion of
electrons is zero,
the equilibrium
Fermi level must
be constant

-k x	 throughout.
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Rearranging terms, we have, at energy E,

NJ1N2 - Nf1 N2f2 = N2f2N1 - N7J2NJ1	 (3-56)

which results in

f, (E) =f2(E), that is. [1 +	 = [1 +	 (357)

Therefore, we conclude that EFI = E,. That is, there is no discontinu-
ity in the equilibrium Fermi level. More generally, we can state that the Fermi
level at equilibrium must be constant throughout materials in intimate con-
tact. One way of stating this is that no gradient exists in the Fermi level at
equilibrium:

dE
dx 

F=0	
(3-58)

We will make considerable use of this result in the chapters to follow.

PROBLEMS 3.1 It was mentioned in Section 3.2 that the covalent bonding model gives a false
impression of the localization of carriers. As an illustration, calculate the ra-
dius of the electron orbit around the donor in Fig. 3-12c, assuming a ground
state hydrogen-like orbit in Si. Compare with the Si lattice constant. Use

= 0.26m 0 for Si.

3.2 Calculate values for the Fermi function f(E)  at 300 K and plot vs, energy in eV
as in Fig. 3-14. Choose EF = I eV and make the calculated points closer to-
gether near the Fermi level to obtain a smooth curve. Notice that f(E) varies
quite rapidly within a few kTof EF.

3.3 A semiconductor such as Si has a bandstructure about the minimum along [100]
described approximately by  = E0 - A cos((xk) - B I cas( k ) + cos(I3k)}. What
is the density-of-states effective mass associated with the X minimum? [Hint:
cos(2x) = I 2x2 for small x.]

3.4 At room temperature, an unknown, intrinsic, cubic semiconductor has the fol-
lowing bandstructure: there are 6 X minima along the <100> directions, if

= 0.065,n, rn(X) = 0.30m0 (for each of the X minima and m; = 0.47m,
at what temperature is the number of electrons in the F minima and the Xmin-
ima equal if the r to X energy separation is 0.35 eV, and the bandgap is 1.7 eV
(m0 free electron mass)?

3.5 Consider n-type GaAs and assume that the&otal number of conduction elec-
trons. n, is independent of temperature. The density-of-states effective mass,
niT, in the L valley is 15 times larger than in the F valley. Also the energy sep-
aration, E,, between the F and L minima is 0.35 eV, and the mobility in the I'
minimum is 50 times that in L. Calculate and sketch how the conductivity varies
from low T("z< E)k) to high T>> E)k). What is the ratio of the conductivi-
ties at 1000°C and 300°C?
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3.6 Calculate the band gap of Si from Eq. (3-23) and the plot of n• vs. 10001T
(Fig. 3-17). hint: the slope cannot be measured directly from a semilogarithmic
plot; read the values from two points on the plot and take the natural loga-
rithm as needed for the solution.

3.7 Show that Eq. (3-25) results from Eqs. (3-15) and (3-19). If no = 1016 ç3

where is the Fermi level relative to E in Si at 300 K?

3.8 Derive an expression relating the intrinsic level E, the center of the band
gap E r/2. Calculate the displacement of E from EJ2 for Si at 300 K, assum-
ing the effective mass v'ues for electrons and holes are tim 0 and 0.56m0,
respectively.

3.9 (a) Explain wi' .jes are found at the top of the valence band, whereas elec-
trons a- round at the bottom of the conduction band.

(b) Explain why Si doped with 10 14 em-3 Sb is n-type at 400 K but similarly
doped Ge is not.

3.10 A Si sample is doped with 6 X 10 15 cm -3 donors and 2 x 10' cm acceptors.
Find the position of the Fermi level with respect to E at 300 K. What is the
value and sign of the Hall coefficient?

311 (a) Show that the minimum conductivity of a semiconductor sample occurs
when no = n 1\/7. Hint: begin with Eq. (3-43) and apply Eq. (3-24).

(b) What is the expression for the minimum conductivity mj?

(c) Calculate a,, for Si at 300 K and compare with the intrinsic conductivity.

3.12 (a) A Si bar 0.1 cm long and 100 m 2 in cross-sectional area is doped with
10' cm phosphorus. Find the current at 300K with 1OV applied. Repeat
for a Si bar 1 .m long.

(h) How long does it take an average electron to drift 1 itm in pure Si at an
electric field of 100 V/cm? Repeat for lO V/cm.

3.13 A perfect Ill-V semiconductor (relative dielectric Constant = 13) is doped with
column VI and column 11 impurities. Given that 'w,, = 1000 cm 2fV-s, p.,, 500
cm'/V-s, what energy levels are introduced in the bandgap? (The mean free
time = 0.1 ps for electrons and 0.4 ps for holes.)

3.14 In soldering wires to a sample such as that shown in Fig. 3-25, it is difficult to
align the Hall probes A and B precisely. If B is displaced slightly down the
length of the bar from A, an erroneous Hall voltage results. Show that the true
Hall voltage VE can be obtained from two measurements of V48 , with the mag-
netic field first in the +z-direction and then in the -z-direction.

3.15 We put 11 electrons in an infinite 1-D potential well of size 100 A. What is the
Fermi level at OK? What is the probability of exciting a carrier to the first ex-
cited state at T = 300 K? Use the free electron mass in this problem.

3.16 Use Eq. (3-45) to calculate and plot the mobility vs, temperature p.(T) from 10 K
10500K for Si doped with Nd = 1014,1016 , and 10' donors cm - '. Consider the
mobility to be determined by impurity and phonon (lattice) scattering. Impu-
rity scattering limited mobility can be described by
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i1= 3.29 x io
N1m/mo)h12[ln(1 + z) -N,,

I + z]

where

z = 1.3 x I013,1(m1m0)(N)-'

Assume that the ionized impurity concentration N is equal to Nd at all tem-
peratures.

The conductivity effective mass m for Si is 0.26 m 0. Acoustic phonon (lattice)
scattering limited mobility can be described by

= 1.18 )< 10 5c I(m/mO) 2 T 312 AC 2(EY
where the stiffness (c1 ) is given by
C1 = 1.9 )< 1012 dyne cm 'for Si

and the conduction hand acoustic deformation potential (E C) is

EAC = 9.5 eV for Si

3.17 Rework Prob. 3.16 considering carrier freeze-out onto donors at low T That
is, consider

Nd
N 

= I + exp(Ea/kT)

as the ionized impurity concentration. Consider the donor ionization energy
(Ed) to be 45 meV for Si.

3.18 Hall measurements are made on a p-type semiconductor bar 500 i.th wide and
20 pm thick. The Hall contacts A and B are displaced 2 pm with respect to
each other in the direction of current flow of 3 mA. The voltage between A
and B with a magnetic field of 10 kG (1kG = iO Wh/cm 2) pointing out of the
plane of the sample is 3.2 mV. When the magnetic field direction is reversed the
voltage changes to —2.8 mV. What is the hole concentration and mobility?

3.19 For a hypothetical semiconductor, we have = p.,, = 1000 cm2/V-s and N = N

= iO cm-'. If the conductivity of the intrinsic semiconductor at 300 K is 4 X

10 (fl-cm)', what is the conductivity at 600 K?

3.20 An unknown semiconductor has E = 1.1 eV and N. = Nr. It is doped with
lollCM  donors where the donor level is 0.2 eV below E. Given that Ens
0.25 eV below E, calculate n, and the concentration of electrons and holes in
the semiconductor at 300 K.

3.21 Referring to Fig. 3.25, consider a semiconductor bar with w = 0.1 mm, 1=10 p.m
and L = 5 mm. For = 10 kG in the direction shown (1 kG =10-5Wb/cm2)
and a current of lmA, we have VAB = — 2 mV, V-0 = 100 mV. Find the type, con-
centration and mobility of the majority carrier.
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Chapter 4

Excess Carriers in Semiconductors

Most semiconductor devices operate by the creation of charge carriers in ex-
cess of the thermal equilibrium values. These excess carriers can be created
by optical excitation or electron bombardment, or as we shall see in Chap-
ter 5, they can be injected across a forward-biased p-n junction. However
the excess carriers arise, they can dominate the conduction processes in the
semiconductor material. In this chapter we shall investigate the creation of
excess carriers by optical absorption and the resulting properties of photo-
luminescence and photoconductivity. We shall study more closely the mech-
anism of electron-hole pair recombination and the effects of carrier trapping.
Finally, we shall discuss the diffusion of excess carriers due to a carrier gra-
dient,-which serves as a basic mechanism of Current conduction along with
the mechanism of drift in an electric field.

4.1 An important technique for measuring the band gap energy of a semicon-
OPTICAL ductor is the absorption of incident photons by the material. In this experi-

ABSO PT! 1 ment photons of selected wavelengths are directed at the sample, and relative
transmission of the various photons is observed. Since photons with ener-
gies greater than the band gap energy are absorbed while photons with en-

ergies less than the band gap are transmitted, this experiment gives an
accurate measure of the band gap energy.

It is apparent that a photon with energy hv ^!! Eg can be absorbed in a
semiconductor (Fig. 4-1). Since the valence band contains many electrons
and the conduction band has many empty states into which the electrons may
be excited, the probability of photon absorption is high. As Fig. 4-I indicates,
an electron excited to the conduction band by optical absorption may ini-
tially have more energy than is common for conduction band electrons (al-
most all electrons are near Er unless the sample is very heavily doped).Thus
the excited electron loses energy to the lattice in scattering events until its ve-
locity reaches the thermal equilibrium velocity of other conduction band elec-

'In this context the word "optical" does not necessarily imply that the photons absorbed are in the visible
port oF the spectrum. Many semiconductors absorb photons in the infrared region, but this is included in
the term "optical absorption."

108
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Figure 4-1
Optical absorp-
tion of a photon
with hv > E9: (a)
an EHP is created
during photon ab-
sorption; (b) the
excited electron
gives up energy
to the lattice by
scattering events;
(c) the electron re-
combines with a
hole in the va-
lence band.

(C)

hv E

SDt,fl 1t

trons. The electron and hole created by this absorption process are excess car-

riers; since they are out of balance with their environment, they must even-
tually recombine. While the excess carriers exist in their respective bands.
however, they are free to contribute to the conductivity of the material.

A photon with energy less than E. is unable to excite an electron from
the valence band to the conduction band. Thus in a pure semiconductor,
there is negligible absorption of photons with hv < Fg .This explains why
some materials are transparent in certain wavelength ranges. We are able to
"see through" certain insulators, such as a good NaC1 crystal, because d'ge
energy gap containing no electron states exists in the material. If the band gap
is about 2 eV wide, only long wavelengths (infrared) and the red part of the
visible spectrum are transmitted on the other hand, a band gap of about
3 eV allows infrared and the entire visible spectrum to he transmitted.

If a beam of photons with hv > E falls on a semiconductor, there will
be some predictable amount of absorption, determined by the properties of
the material. We would expect the ratio of transmitted to incident light in-
tensity to depend on the photon wavelength and the thickness of the sample.
To calculate this dependence, let us assume that a photon beam of intensity
1 (photonslcm2-s) is directed at a sample of thickness 1 (Fig. 4-2).The beam
contains only photons of wavelength ), selected by a monochromator. As
the beam passes through the sample, its intensity at a distance x from the
surface can be calculated by considering the probability of absorption with-
in any incremeit dx. Since a photon which has survived to x without ab-
sorption has no memory of how far it has traveled, its probability of
absorption in any dx is constant. Thus the degradation of the intensity
-dI(x)/dx is proportional to the intensity remaining at x:

(4-1)
dx

The solution to this equation is

1(x)=10e 	(4-2)
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Figure 4-2
Optical absorp-
lion experiment.

Figure 4-3
Dependence of

optical absorption
coefficient x for a
semiconductor on
the wavelength of

incident light.

hv(eV)--------..

and the intensity of light transmitted through the sample thickness I is

I, =	 (4-3)

The coefficient a is called the absorption coefficient and has Units of
cm . This coefficient will of course vary with the photon wavelength and
with the material. In a typical plot of a vs. wavelength (Fig. 4-3), there is neg-
ligible absorption at long wavelengths (hv small) and considerable absorp-
tion of photons with energies larger than E. According to Eq. (2-2), the
relation between photon energy and wavelength is £ = hc/X. If E is given in
electron volts and X in micrometers, this becomes E = 1.24/X.

Figure 4-4 indicates the band gap energies of some of the common
semiconductors, relative to the visible, infrared, and ultraviolet portions of
the spectrum. We observe that GaAs, Si, Ge. and InSb lie outside the vis-
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Figure 4-4
Band gaps of
some common
semiconductors
relative to the op-
tical spectrum.
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ible region, in the infrared. Other semiconductors, such as GaP and CLIS,
have band gaps wide enough to pass photons in the visible range. It is im-
portant to note here that a semiconductor absorbs photons with energies
equal to the band gap. or larger. Thus Si absorbs not only band gap light
(-1 [Lm) but also shorter wavelengths, including those in the visible part
of the spectrum.

When electron—hole pairs are generated in a semiconductor, or when carri-
ers are excited into higher impurity levels from which they fall to their equi-
librium states, light can be given off by the material. Many of the
semiconductors are well suited for light emission, particularly the compound
semiconductors with direct band gaps. The general property of light emis-
sion is called luminescence. 2 This overall category can be subdivided according
to the excitation mechanism: If carriers are excited by photon absorption,
the radiation resulting front recombination of the excited carriers is called
photoluminescence: if the excited carriers are created by high-energy electron
bombardment of the material, the mechanism is called cathodoluminescenee,
if the excitation occurs by the introduction of current into the sample, the re-
sulting luminescence is called elcctrolu,ninesce,zce. Other types of excitation
are possible, but these three are the most important for device applications.

4.2.1 Photoluminescence

The simplest example of light emission from a semiconductor OCCUS for di-
rect excitation and recombination of an FHP, as depicted in Fig. 3-5a. If the
recombination occurs directly rather than via a defect level, band gap ligit
is given off in the process. For stead y State excitation, the recombination of
EHPs occurs at the same rate at the generation. and one photon is emitted

'The emission processes considered here should not be confused with radiation duo to incandescence
which occurs ri heated rooteriolsi The various luminescent mechanisms can be considered cold' process.
Os as compared to the "hot" process of incandescence, which increases with temperature In foci, most lu-
minescent processes become more efficient as the temperature is lowered.

4.2
LUMINESCENCE
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for each photon absorbed. Direct recombination is a fast process, the mean
lifetime of the EHP is usually on the order of 10-8 s or less. Thus the emis-
sion of photons stops within approximately 10 s after the excitation is
turned off. Such fast luminescent processes are often referred to as fluores-
cence. In some materials, however, emission continues for periods up to sec-
onds or minutes after the excitation is removed. These slow processes are
called phosphorescence, and the materials are called pho,phors. An exam-
ple of a slow process is shown in Fig. 4-5. This material contains a defect
level (perhaps due to an impurity) in the band gap which has a strong ten-
dency to temporarily capture (rap) electrons from the conduction band.
The events depicted in the figure are as follows; (a) An incoming photon
with hv 1 > E is absorbed, creating an EHP; (b) the excited electron gives
up energy to the lattice by scattering until it nears the bottom of the con-
duction band; (c) the electron is trapped by the impurity level E, and re-
mains trapped until it can be thermally reexcited to the conduction band
(d); (e) finally direct recombination occurs as the electron falls to an empty
state in the valence band, giving off a photon (hv2 ) of approximately the
band gap energy. The delay time between excitation and recombination can
he relatively long if the probability of thermal reexcitation from the trap (d)
is small. Even longer delay times result if the electron is retrapped several
times before recombination. If the trapping probability is greater than the
probahiIy of recombination, an electron may make several trips between
the trap and the conduction band before recombination finally occurs. In
such material the emission of phosphorescent light persists for a relatively
long time after the excitation is removed.

The color of light emitted by a phosphor such as ZnS depends primar-
ily on the impurities present, since many radiative transitions involve impu-
rity levels within the band gap. This selection of colors is particularly useful
in the fabrication of a color television screen.

One of the most common examples of photo luminescence is the fluo-
rescent lamp. Typically such a lamp is composed of a glass tube filled with gas

t\
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Figure 4-5
Excitation and re-

combination
mechanisms in
photolumines-

cence with a trap-
ping level for

electrons.
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(e.g., a mixture of argon and mercury), with a fluorescent coating on the in-
side of the tube. When an electric discharge is induced between electrodes in
the tube, the excited atoms of the gas emit photons, largely in the visible and
ultra-violet regions of the spectrum. This light is absorbed by the luminescent
coating, and the visible photons are emitted.'fhe efficiency of such a lamp is
considerably better than that of an incandescent bulb. and the wavelength
mixture in light given off can he adjusted by proper selection of the fluores-
cent material.

A 0.46- 1im-thick sample of GaAs is illuminated with monochromatic light of EXAMPLE 4-1
hi , = 2 eV.The absorption coefficient a is 5 x 104 cm.The power incident
on the sample is 10 mW.

(a) Find the total energy absorbed by the sample per second (us).

(b) Find the rate of excess thermal energy given up by the electrons to
the lattice before recombination (J/s).

(c) Find the number of photons per second given off from recombination
events, assuming perfect quantum efficiency.

(a) From Eq.(4 3).

I, = 10e " = 10 cxp(-- 5 X 10 >< 0.46 x 10 1)

SOLUTION

Thus the absorbed power is

10 - 1 9 niW = 9 X 10 .1/s

2eV

t0•0s q	 .•.• ....I.se....*...
• * 0• ..fl..,. n..........,...
•	 Ot..g....,..I *s••••l .1101
•.,.I.I. .l•s0I••l4••• .....o.

Figure 4-6
Excitation and
band-to-bond
recombination
leading to photo-
luminescence.
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(b) The fraction of each photon energy unit which is converted to heat is

- 1.43
=0.285

Thus the amount of energy converted to heat per second is

0.285 )< 9 x 10 = 2.57 X 10 J/s

(c) Assuming one emitted photon for each photon absorbed (perfect
quantum efficiency), we have

9 X 103J/s
= 2.81 >< 1016 photons/s

1.6 X 10 9 J/eV X 2eV/photon

Alternative solution: Recombination radiation accounts for 9 - 2.57 =
6.43 mW at 1.43 eV/photon.

6.43 >< 10-'
= 2.81 x 1016 photons/s

1.6 x 10	 x 1.43

4.2.2 Electroluminescence

There are many ways by which electrical energy can be used to generate
photon emission in a solid. In LEDs an electric current causes the injection
of minority carriers into regions of the crystal where they can recombine
with majority carriers, resulting in the emission of recombination radiation.
This important effect (injection electroluminescence) will be discussed in
Chapter 8 in terms of p-n junction theory.

The first electroluminescent effect to be observed was the emission of
photons by certain phosphors in an alternating electric field (the Destriau ef-
fect). In this device, a phosphor powder such as ZnS is held in a binder ma-
terial (often a plastic) of a high dielectric constant.When an a-c electric field
is applied, light is given off by the phosphor. Such cells can be useful as light-
ing panels, although their efficiency has thus far been too low for most ap-
plications and their reliability is poor.

-	 4.3 When excess electrons and holes are created in a semiconductor, there is a
CARRIER LIFETIME corresponding increase in the conductivity of the sample as indicated by Eq.

AND PHOTO- (3-43). If the excess carriers arise from optical luminescence, the resulting in-
CONDUCTIVITY crea.c in conductivity is called photoconductivity. This is an important effect,

with useful applications in the analysis of semiconductor materials and in the
operation of several types of devices. In this section we shall examine the mech-
anisms by which excess electrons and holes recombine and apply the recom-
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bination kinetics to the analysis of photoconductive devices. However, the im-
portance of recombination is not limited to cases in which the excess carriers
are created optically. In fact, virtually every semiconductor device depends in
some way on the recombination of excess electrons and holes. Therefore, the
concepts developed in this section will be used extensively in the analyses of
diodes, transistors, lasers, and other devices in later chapters.

4.3.1 Direct Recotnbinohon of Electrons and Holes

It was pointed out in Section 3.1.4 that electrons in the conduction band of a
semiconductor may make transitions to the valence band (i.e., recombine with
holes in the valence band) either directly or indirectly. In direct recombina-
tion, an excess population of electrons and holes decays by electrons falling
from the conduction band to empty states (holes) in the valence band. Encr-
gy lost by an electron in making the transition is given up as a photon. Direct
recombination occurs spontaneously; that is, the probability that an electron and
a hole will recombine is constant in time. As in the case of carrier scattering,
this constant probability leads us to expect an exponential solution for the
decay of the excess carriers. In this case the rate of decay of electrons at any
time t is proportional to the number of electrons remaining at t and the num-
ber of holes, with some constant of proportionality for recombination,tx,..The
net rate of change in the conduction band electron concentration is the ther-
mal generation rate cxn from Eq. (3-7) minus the recombination rate

	

dn(t)	 2= n,n - crn(t)p(t)	 (4-4)

Let us assume the excess electron—hole population is created at I = 0, for
example by a short flash of light, and the initial excess electron and hole con-
centrations An and zp are equal. 3 Then as the electrons and holes recombine in
pairs, the instantaneous concentrations of excess carriers 8n(t) and p(t) are also
equaimus we can write the total concentrations of Eq. (4-4) in terms of the equi-
librium values no and Po and the excess carrier concentrations n(t) = p(t).
Using Eq. (3-24) we have

An(t) -	 2'di -. an1 - a,[n0 + 8n(t)][p0 + p(r)]

= -czr[(no + p 0)n(x) + 8n2(t)]

This nonlinear equation would be difficult to solve in its present form.
Fortunately, it can be simplified for the case of low-level injection. If the excess
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"V4 will use MIt and bp(l to rneai, instantaneous excess carrier concentrations, and An, .p for their vat.
ues at t 0, later we will use similar symbolism for spatial distribution., such as 8n(x$ and Anx 0).
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carrier concentrations are small, we can neglect the Sn 2 term. Furthermore, if
the material is extrinsic, we can usually neglect the term representing the equi-
librium minority carriers. For example, if the material is p-type (p0 > no), Eq.
(4-5) becomes

dSn(t) = -a,p
06n(t)	 (4-)

dt

The solution to this equation is an exponential decay from the original ex-
cess carrier concentration n:

= ne''' = ne"'	 (4-7)

Excess electrons in a p-type semiconductor recombine with a decay con-
stant; = (a,p0), called the recombination lifetime. Since the calculation is
made in terms of the minority carriers,; is often called the minority carrier life-
time. The decay of excess holes in n-type material occurs with r p = (c1,n0 '. In
the case of direct recombination, the excess majority carriers decay at exactly the
same rate as the minority carriers.

There is a large percentage change in the minority carrier electron con-
centration in Example 4-2 and a small percentage change in the majority
hole wncentration. Basically, the approximations of extrinsic material and
low-level injection allow us to represent n(t) in Eq. (4-4) by the excess con-
centration Sn(t) and p(t) by the equilibrium value p0. Figure 4-7 indicates
that this is a good approximation for the example.A more general expression
for the carrier lifetime is

= .,(no + p0)	
(4-8)

This expression is valid for n- or p-type material if the injection level is low.

EXAMPLE 4-2 A numerical example may be helpful in visualizing the approximations made
in the analysis of direct recombination. Let us assume a sample of GaAs is
doped with lO acceptors/cm'. The intrinsic carrier concentration of GaAs
is approximately 106 cm -3 ; thus the minority electron concentration is
no n 2Ip0 = 10- 'cm - '. Certainly the approximation of p 0 no is valid in this
case. Now if 1014 EHP/cm3 are created at r = 0, we can calculate the decay of
these carriers in time. The approximation of Sn 4p is reasonable, as Fig. 4-7
indicates. This figure shows the decay in time of the excess populations for a
carrier recombination lifetime of; = r,, = 10 s.
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4.3.2 Indirect Recombination; Trapping

In column IV semiconductors and in certain compounds, the probability of
direct electron-hole recombination is very small (Appendix III). There is
some band gap light given off by materials such as Si and Ge during recom-
bination, but this radiation is very weak and may be detected only by sensi-
tive equipment. The vast majority of the recombination events in indirect
materials occur via recombination levels within the band gap, and the result-
ing energy loss by recombining electrons is usually given up to the lattice as
heat rather than by the emission of photons. Any impurity or lattice defect
can serve as a recombination center if it is capable of receiving a carrier of
one type and subsequently capturing the opposite type of carrier, thereby
annihilating the pair. For example, Fig. 4-8 illustrates a recombination level
Er which is below EF at equilibrium and therefore is substantially filled with

Figure 4-7
Decoy of excess
electrons and
holes by recombi-
nation, for An -
AP - 0.1 p, with
no negligible, and
i- 10 ns (Exam-
ple 4-2). The ex-
ponential decoy
of 8n(t) is linear
on this semilogo-
rithrnic graph.
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Figure 4-8
Capture processes

at a recombina-
tion level: (a) hole
capture at a filled

recombination
center; (b) elec-

tron capture at an
empty center.

E,'

• .4I..flfl4* *.L. 14. 15eMe
-.........,t,.t,

electrons. When excess electrons and holes are created in this material, each
EHP recombines at E, in two steps: (a) hole capture and (b) electron capture.

Since the recombination centers in Fig. 4-8 are filled at equilibrium,
the first event in the recombination process is hole capture. It is important
to note that this event is equivalent to an electron at E falling to the valence
hand, leaving behind an empty state in the recombination level.Thus in hole
capture, energy is given up as heat to the lattice. Similarly, energy is given up
when a conduction band electron subsequently falls to the empty state in E,.
When both of these events have occurred, the recombination center is back
to its original state (filled with an electron), but an E.HP is missing. Thus one
EHP recombination has taken place, and the center is ready to participate in
another recombination event by capturing a hole.

The carrier lifetime resulting from indirect recombination is somewhat
more complicated than is the case for direct recombination, since it is nec-
essary to account for unequal times required for capturing each type of car-
rier. In particular, recombination is often delayed by the tendency for a
captured carrier to he thermally reexcited to its original band before cap-
ture of the opposite type of carrier can occur (Section 4.2.1). For example, if
electron capture (b) does not follow immediately after hole capture (a) in Fig.
4 8, the hole may be thermally reexcited to the valence band. Energy is re-
quired for this process, which is equivalent to a valence band electron being
raised to the empty state in the recombination level. This process delays the
recombination, since the hole must be captured again before recombination
can be completed.

When a carrier is trapped temporarily at a center and then is reexcit-
ed without recombination taking place, the process is often called temporary
trapping. Although the nomenclature varies somewhat, it is common to refer
to an impurity or defect center as a trapping Center (or simply trap) it after
capture of one type of carrier, the most probable next event is reexcitation.
If the most probable next event is capture of the opposite type of carrier,
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the center is predominately a recombination center. The recombination can
be slow or fast, depending on the average time the first carrier is held before
the second carrier is captured. In general, trapping levels located deep in the
band gap are slower in releasing trapped carriers than are the levels located
near one of the hands. This results from the fact that more energy is required,
for example, to reexcite a trapped electron from a Center near the middle of
the gap to the conduction band than is required to reexcite an electron from
a level closer to the conduction band.

As an example of impurity levels in semiconductors, Fig. 4_94 shows
the energy level positions of various impurities in Si. In this diagram a su-
perscript indicates whether the impurity is positive (donor) or negative (ac-
ceptor) when ionized. Some impurities introduce multiple levels in the band
gap: for example, Zn introduces a level (Zn) located 0.31 eV above the va-
lence band and a second level (Zn) near the middle of the gap. Each Zn im-
purity atom is capable of accepting two electrons from the semicOnducor,
one in the lower level and then one in the upper level.

_1-
•Li (0033)	 P' (0044) As (0.049) 'Sb (0.019)

0.1

0.2
	 S (0.18)

((.3

((.4
	 Ni-•(0.35)	 -Y (0.37)

((.5
-	 Zn (0.55)-

	 Mn' (0.53)	 Au (0.54)

• Cu (0.49)

0.4
Au' (0.35)

0.3	 -Zn- (0.31)

0.2	 -Ni-(0.22)
	 Cu* (0.24)

In (O.1)
I) I

0	
B(0.04S	 c(a (0.05)	 A! (0.057)•

'4.

'RIernces S M Sze and j . C. Irvin 'ResistivPy, Mobility, and Impurity Levels in GaAs, Ge and 5 of
300 K," Solid Store E(ocron,c, vol.. 1 1, pp. 599-602 Ue ne 1968) r E. Schibli and A G. Mimes, Deep
impurities in Silicon," Mofrenols Science and Engineering vol. 2, pp 173- 180 (196?),

Figure 4-9
Energy levels of
impurities in Si.
The energies dre
measured from
the nearest band
edge (E, or
donor levels are
designated by a
plus sign and ac-
ceptors by a
minus sign.
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I )>Figure 4-10
Experimental

arrangement for	
Samplephotoconductive 	 -	

Idecay measure-
ments,andatypi-

cal oscilloscope	 Flash generator	 Filter	
Itrace,

I	 'flit,

The effects of recombination and trapping can be measured by a pho-
toconductive decay experiment. As Fig. 4-7 shows,a population of excess elec-
trons and holes disappears with a decay constant characteristic of the particular
recombination process. The conductivity of the sample during the decay is

o(t) = q[n(t)ji,, + p(t)p.]	 (4-9)

Therefore, the time dependence of the carrier concentrations can be moni-
tored by recording the sample resistance as a function of time. A typical ex-
perimental arrangement is shown schematically in Fig. 4-10. A source of
short pulses of light is required, along with an oscilloscope for displaying the
sample voltage as the resistance varies. Microsecond light pulses can be ob-
tained by periodically discharging a capacitor through a flash tube contain-
ing a gas such as xenon. For shorter pulses, special techniques such as the
use of a pulsed laser must be used.

4.3.3 Steady State Carrier Generation; Quasi-Fermi Levels

In the previous discussion we emphasized the transient decay of an excess
EHP population. However, the various recombination mechanisms are also
important in a sample at thermal equilibrium or with a steady state EI-fP
gencration- recombinationbalance. 5 For example, a semiconductor at equi-
librium experiences thermal generation of EHPs at a rate g(7) = g- described
by Eq. (3-7). This generation is balanced by the recombination rate so that
the equilibrium concentrations of carriers no and Po are maintained:

g(T) = ,n =a	 U,floPo	 (4-10)

This equilibrium rate balance can include generation from defect centers as
well as band-to-band generation.

5The term equilibrium refers to a condition of no external excitation except for teroperoture, and no net mo-
tion of charge (e.g., a sample at o constant temperature, in the dark, with no fields applied). Steady state
refers to a noneqvilibriurn condition In winch all processes are constant and are balanced by opposing
processes (e.g., a sample with a constant current or a constant optical generation of EHPs just balanced
by recombination).
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If a steady light is shone on the sample, an optical generation rate
will be added to the thermal generation, and the carrier concentrations n
and p will increase to new steady state values. We can write the balance be-
tween generation and recombination in terms of the equilibrium carrier con-
centrations and the departures from equilibrium Sn and Sp:

g(T)+g0 =cçnp=ct,(n0 + 8n)p0 + Bp)	 (4-11)

For steady state recombination and no trapping, Sn bp; thus Eq. (4-11)
becomes

g(T)	 = ctn1p0 + .,[ (no + p0)Sn + 6n2]	 (4-12)

The term a np0 is just equal to the thermal generation rate g(T).Thus,
neglecting the 8n2 term for low-level excitation, we can rewrite Eq. (4-12) as

g0 = ct,(n0 + Po)' 2 = Sn
 :-	

(4-13)

The excess carrier concentration can be written as

Sn =	 = g.,Tn	 (4-14)

More general expressions are given in Eq. (4-16), which allow for the
case Tp # 'rn , when trapping is present.

As a numerical example, let us assume that 10' EHPIcm 3 are created opti- EXAMPLE 4-3
cally every microsecond in a Si sample with no = 10 14 cm -1 and i-, = -r,, =
2 sec. The steady state excess electron (or hole) concentration is then
2X iO cm from Eq. (4-14).While the percentage change in the majority elec-
tron concentration is small, the minority carrier concentration changes from

Pc = n11n0 = ( 2.25 x 1020)110 14 = 2.25 X 106 cm 3	 (equilibriiun)

to

P = 2 x 10' CM-3	 (stead. state)

Note that the equilibrium equation npo = n cannot be used with the sub--
scripts removed; that is, np :# n2 when excess carriers are present.

It is often desirable to refer to the steady state electron and hole con-
centrations in terms of Fermi levels, which can be included in band diagrams
for various devices. The Fermi level EF used in Eq. (3-25) is meaningful only
when no excess carriers are present. However, we can write expressions for
the steady state concentrations in the same form as the equilibrium expres-
sions by defining separate quasi-Fermi levels F and F,, for electrons and
holes. The resulting carrier concentration equations
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can be considered as defining relations for the quasi-Fermi levels.6

EXAMPLE 4-4	 In Example 4-3, the steady state electron concentration is

= n. + 8n = 1.2 x 10 14 = (1.5 x 10")e (1,

where kT= 0.0259 eV at room temperature.Thus the electron quasi-Fermi
level position F - E, is found from

F,, - E = 0.0259 ln(8 )< iO) = 0.233 eV

and F. lies 0.233 eV above the intrinsic level- By a similar calculation, the
hole quasi-Fermi level lies 0.186 eV below E (Fig. 4-11). In this example, the
equilibrium Fermi level is 0.0259 ln(6.67 X 10) = 0.228 eV above the in-
trinsic level.

The quasi-Fermi levels of Fig. 4-11 illustrate dramatically the devia-
tion from equilibrium caused by the optical excitation; the steady state F. is
only slightly above the equilibrium E,-, whereas F,, is greatly displaced below
Er. From the figure it is obvious that the excitation causes a large percent-
age change in minority carrier hole concentration and a relatively small
change in the electron concentration.

In summary, the quasi-Fermi levels F,, and F,, are tne steady state ana-
logues of the equilibrium Fermi level EF. When excess carriers are present,
the deviations of F,, and F from EF indicate how far the electron and hole
populations are from the equilibrium values no and p,.). A given concentration
of excess EHPs causes a large shift in the minority carrier quasi-Fermi level

'In some texts the quasi-Fermi level is called IM.REF, which is Fermi spelled backward.
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compared with that for the majority carriers. The separation of the quasi-
Fermi levels F,, - is a direct measure of the deviation from equilibrium (at
equilibrium F = F, = EF). The concept of quasi-Fermi levels is very useful
in visualizing minority and majority carrier concentrations in devices where
these quantities vary with position.

4.3.4 Photoconductive Devices

There are a number of applications for devices which change their resistance
when exposed to light. For example, such light detectors can be used in the
home to control automatic night lights which turn on at dusk and turn off at
dawn. They can also be used to measure illumination levels, as in exposure
meters for cameras. Many systems include a light beam aimed at the photo-
conductor, which signals the presence of an object between the source and
detector. Such systems are useful in moving-object counters, burglar alarms,
and many other applications. Detectors are used in optical signaling systems
in which information is transmitted by a light beam and is received at a pho-
toconductive cell.

Considerations in choosing a photoconductor for a given application in-
clude the sensitive wavelength range, time response, and optical sensitivity of
the material. In general, semiconductors are most sensitive to photons with
energies equal to the band gap or slightly more energetic than band gap. Less
energetic photons are not absorbed, and photons with hv E. are absorbed
at the surface and contribute little to the bulk conductivity. Therefore, the table
of band gaps (Appendix III) indicates the photon energies to which most semi-
conductor photodetectors respond. For example, US (Eg = 2.42 eV) is com-
monly used as a photoconductor in the visible range, and narrow-gap materials
such as Ge (0.67 eV) and lnSh (0.18 eV) are useful in the infrared portion of
the spectrum. Some photoconductors respond to excitations of carriers from
impurity levels within the band gap and therefore are sensitive to photons of
less than band gap energy.

The optical sensitivity of a photoconductor can be evaluated by exam-
ining the steady state excess carrier concentrations generated by an optical
generation rate 90 If the mean time each carrier spends in its respective
band before capture is T. and r,,, we have

Sn =rg,,and &p = 'rg0	 (4-Ifs)

and the photoconductivity change is

	

Aff = qg0,(r,,p,, +	 (.117)

For simple recombination, r andrp will be equal. If trapping is pre-
sent, however, one of the carriers may spend little time in its band before
being trapped. From Eq. (4-17) it is obvious that for maximum photocon-
ductive response, we want high mobilities and long lifetimes. Some semi-
conductors are especially good candidates for photoconductive devices
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because of their high mobility; for example, LnSb has an electron mobility of
about 105 cm2/V-s and therefore is used as a sensitive infrared detector in
many applications.

The time response of a photoconductive cell is limited by the recombi-
nation times, the degree of carrier trapping, and the time required for carri-
ers to drift through the device in an electric field. Often these properties can
be adjusted by proper choice of material and device geometry, but in some
cases improvements in response time are made at the expense of sensitivity.
For example, the drift time can be reduced by making the device short, but this
substantially reduces the responsive area of the device. In addition, it is often
desirable that the device have a large dark resistance, and for this reason,
shortening the length may not be practical. There is usually a compromise be-
tween sensitivity, response time, dark resistance, and other requirements in
choosing a device for a particular application.

4.4 When excess carriers are created nonurriformly in a semiconductor, the elec-
DIFFUSION OF tron and hole concentrations vary with position in the sample. Any such spa-

CARRIERS tial variation (gradient) in n and p calls for a net motion of the carriers from
regions of high carrier concentration to regions of low carrier concentration.
This type of motion is called diffusion and represents an important charge
transport process in semiconductors. The two basic processes of current con-
duction are diffusion due to a carrier gradient and drift in an electric field.

4.4.1 Diffusion Processes

When a bottle of perfume is opened in one corner of a closed room, the scent
is soon detected throughout the room. If there is no convection or other net
motion of air, the scent spreads by diffusion. The diffusion is the natural re-
sult of the random motion of the individual molecules. Consider, for exam-
ple, a volume of arbitrary shape with scented air, molecules inside and
unscented molecules outside the volume. All the molecules undergo random
thermal motion and collisions with other molecules. Thus each molecule
moves in an arbitrary direction until it collides with another air molecule,
after which it moves in a new direction. If the motion is truly random, a mol-
ecule at the edge of the volume has equal probabilities of moving into or out
of the volume on its next step (assuming the curvature of the surface is neg-
ligible on the molecular scale). Therefore, after a mean free time i, half the
molecules at the edge will have moved into the volume and half will have
moved Out of the volume. The net effect is that the volume containing scent-
ed molecules has increased. This process will continue until the molecules
are uniformly distributed in the room. Only then will a given volume gain as
many molecules as it loses in a given time. In other words, net diffusion will
continue as long as gradients exist in the distribution of scented molecules.
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Carriers in a semiconductor diffuse in a carrier gradient by random
thermal motion and scattering from the lattice and impurities, For example,
a pulse of excess electrons injected at x = 0 at time t = 0 will spread out in
time as shown in Fig. 4-12. Initially, the excess electrons are concentrated at
x = 0; as time passes, however, electrons diffuse to regions of low electron
concentration until finally n(x) is constant.

We can calculate the rate at which the electrons diffuse in a one-
dimensional problem by considering an arbitrary distribution n(x) such as Fig.
4-13a. Since the mean free path I between collisions is a small incremental
distance, we can divide x into segments I wide, with n(x) evaluated at the
center of each segment (Fig. 4-13b).

Figure 4-12
Spreading of a
pulse of electrons
by diffusion.

Figure 4-13
An arbitrary elec-
tron concentration
gradient in one di-
mension: (a) divi-
sion of n(x) into
segments of
length equal to a
mean free path
for the electrons;
(b) expanded
view of two of the
segments centered
at x0.
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The electrons in segment (1) to the left of x 0 in Fig. 4-13b have equal
chances of moving left or right, and in a mean free time i one-half of them
will move into segment (2).The same is true of electrons within one mean free
path of x0 to the right; one-half of these electrons will move through x 0 from
right to left in a mean free time.Therefore, the net number of electrons pass-
ing x0 from left to right in one mean free time is 1 (n 1 lA) - (n2L4), where the
area perpendicular to xis A. The rate of electron flow in the +x-direction per
unit area (the electron flux density d,) is given by

-I
= -(n 1 - n,)	 (4-18)2t

Since the mean free path 1 is a small differential length, the difference
in electron concentration (n 1 - n 2 ) can he written as

n(x) -n(x + Ax) -- n 2 =	 Ax	 (4-19)

where xis taken at the center of segment (1) and Ax = 1. In the limit of small
Ax (i.e.. small mean free path! between scattering collisions), Eq. (4-18) can
he written in terms of the carrier gradient dn(x)Idx:

12	 n(x) - n(x + Ax) _12 (!n())
4, (x) =	 lim. 	 (4-20)n	 2t r-u	 Ax	 2t	 dx

ihe quantity ['/21 is called the electron diffusion coefficient7 D_ with
units cm 2/s. The minus sign in Eq. (4-20) arises from the definition of the de-
rivative; it simply indicates that the net motion of electrons due to diffusion
is in the direction of decreasing electron concentration. This is the result we
expect. since net diffusion occurs from regions of high particle concentra-
tion to regions of low particle concentration. By identical arguments, we can
show that holes in a hole concentration gradient move with a diffusion co-
efficient D. Thus

4,,1(x)=

	

	 (4-2!a)
dn(x

dx

(4-21h)

The diffusion current crossing a unit area (the current density) is the
particle flux density multiplied by the charge of the carrier:

Jn (diff.) = - (- q)D,	 = +qD 
d-(x)	

(4-22a)

'If motion in three dimensions were included the diffusion would be smaller in the xdirection. Actually, the
diffusion coefficient should be calculated from the true energy distributions and scattering mechanisms. Df
fus!or, coefficients are usually determined experimentally for o particular material, as described in Section
44.5.
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J(diff.)= -(+q)DP J- 1 =	 (4--•22h)

It is important to note that electrons and holes move together in a car-
rier gradient [Eqs. (4-21)], but the resulting currents are in opposite directions
[Eqs. (4-22)] because of the opposite charge of electrons and holes.

4.4.2 Diffusion and Drift of Carriers; Built-in Fields

If an electric field is present in addition to the carrier gradient. the current
densities will each have a drift component and a diffusion component

dn(x)	 (4-23a)
J(x) = qpn(x)(x) + qD, - j----

drift	 diffusion

	

Jx)=qp(x)-(x) -	 ( 4-23h)
dx

and the total current density is the sum of the contributions due to elec-
trons and holes:

J(x) = J(x) + i(x)	 (4-24)

We can best visualize the relation between the particle flow and the cur-
rent of Eqs. (4-23) by considering a diagram such as shown in Fig. 4-14. In this
figure an electric field is assumed to be in the x-direction, along with carrier
distributions z(x) and p(x) which decrease with increasing x. Thus the deriva-
tives in Eqs. (4-21) are negative, and diffusion takes place in the +x-direction.
The resulting electron and hole diffusion currents [J (duff.) and J (dift)] are in
opposite directions, according to Eqs. (4-22). Holes drift in the direction of the
electric field [4, (drift)], whereas electrons drift in the opposite direction because
of their negative charge. The resulting drift current is in the +x-direction in
each case. Note that the drift and diffusion components of the current are ad-
ditive for holes when the field is in the direction of decreasing hole concentra-
tion, whereas the two components are subtractive for electrons under similar
conditions. The total current may be due primarily to the flow of electrons or

4i(dift) and 46, (drift)

• J,,(difL) andf1(drifi)

	

.	 ,(diff.)

,(dritL)

J,(diff.)

• J,,(drift.)

Figure 4-14
Drift and diffusion
directions for elec-
trons and holes in
a carrier gradient
and an electric
field. Particle flow
directions are in-
dicated by
dashed arrows,
and the resulting
currents are indi-
cated by solid
arrows.
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holes, depending on the relative concentrations and the relative magnitudes
and directions of electric field and carrier gradients.

An important result of Eqs. (4-23) is that minority carriers can contribute
significantly to the current through diffusion. Since the drift terms are pro-
portional to carrier concentration, minority carriers seldom provide much drift
current. On the other hand, diffusion current is proportional to the gradient of
concentration. For example, in n-type material the minority hole concentration
p may be many orders of magnitude smaller than the electron concentration
n, but the gradient dp/dr may be significant. As a result, minority carrier cur-
rents through diffusion can sometimes be as large as majority carrier currents.

In discussing the motion of carriers in an electric field, we should in-
dicate the influence of the field on the energies of electrons in the band di-
agrams. Assuming an electric field (x) in the x-direction, we can draw the
energy bands as in Fig. 4-15, to include the change in potential energy of
electrons in the field. Since electrons drift in a direction opposite to the
field, we expect the potential energy for electrons to increase in the direc-
tion of the field, as in Fig. 4-15. The electrostatic potential V(x) varies in
the opposite direction, since it is defined in terms of positive charges and is
therefore related to the electron potential energy E(x) displayed in the fig-
ure by °V(x) = E(x)I(-q).

From the definition of electric field,

dV(x)
(x) = - dx
	 (4-25)

we can relate (x) to the electron potential energy in the band diagram by
choosing some reference in the band for the electrostatic potential. We are
interested only in the spatial variation °Y(x) for Eq. (4-25), Choosing E, as a
convenient reference, we can relate the electric field to this reference by

Figure 4-15
Energy band dia-

gram of a semi-
conductor in an

electric field (x).

E, 000
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r	 d°lt(x)	 dI E, 	 1 dE.
(4-26)=-]=-J IT

Therefore, the variation of band energies with (x) as drawn in Fig. 4-15
is correct. The direction of the slope in the bands relative to W is simple to re-
member: Since the diagram indicates electron energies, we know the slope in
the bands must be such that electrons drift "downhill" in the field. Therefore,
points "uphill" in the band diagram.

At equilibrium, no net current flows in a semiconductor.Thus any fluc-
tuation which would begin a diffusion current also sets up an electric field
which redistributes carriers by drift. An examination of the requirements for
equilibrium indicates that the diffusion coefficient and mobility must be re-
lated. Setting Eq. (4-23b) equal to zero for equilibrium, we have

(x)=	 _i (4 27)
p. p(x) dx

Using Eq. (3-25b) forp(x),

(4-28)

The equilibrium Fermi level does not vary with x, and the derivative of
Ej is given by Eq. (4-26). Thus Eq. (4-28) reduces to

ED kT
(4-29)

This result is obtained for either carrier type. This important equation
is called the Einstein relation. It allows us to calculate either D or p, from a
measurement of the other. Table 4-1 lists typical values of D and fi, for sev-
eral semiconductors at room temperature. It is clear from these values that
Dip. - 0.026 V.

An important result of the balance of drift and diffusion at equilibri-
um is that built-in fields accompany gradients in E [see Eq. (4-26)]. Such
gradients in the bands at equilibrium (Er constant) can arise when the band
gap varies due to changes in alloy composition. More commonly, built-in
fields result from doping gradients. For example, a donor distribution Na(x)

Table 4-1 Diffusion coefficient and mobility of electrons and holes for intrinsic
semiconductors at 300 K. Note: Use Fig. 3-23 for doped semiconductors.

Ge	 100	 50	 3900	 1900

Si	 35	 12.5	 1350	 480

GaAs	 220	 10	 8500	 400
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causes a gradient in n0(x), which must be balanced by a built-in electric field
i(x).

EXAMPLE 4-5 An intrinsic Si sample is doped with donors from one side such that Nd =
No exp(-ax). (a) Find an expression for (x) at equilibrium over the range
for which Nd n,. (b) Evaluate (x) when a = I (p.m'. (c) Sketch a band
diagram such as in Fig. 4-15 and indicate the direction of.

SOLUTION	 (a) From Eq. (4-23a),

f(x)= -
	 dn/ir _2i' N0(-a)e	

+— a.L,,	 1	 q	 Noe-	 q

We notice for this exponential impurity distribution, f(x) depends
on abut not on No or x.

(b) (x) = 0.0259(10) = 259 V/cm
(c)

n(x)

N0

ni

E

e 

E,

4.4.3 Diffusion and Recombination; The Continuity Equation

In the discussion of diffusion of excess carriers, we have thus far neglected the
important effects of recombination. These effects must be included in a de-
scription of conduction processes, however, since recombination can cause a
variation in the carrier distribution. For example, consider a differential length
& of a semiconductor sample with area A in the yz-plane (Fig. 4-16). The hole
current density leaving the volume, J(x + .x), can be larger or smaller than
the current density entering, J(x), depending on the generation and recom-
bination of carriers taking place within the volume. The net increase in hole
concentration per Unit time, 9p/3t, is the difference between the hoc flux per
unit volume entering and leaving, minus the recombination rate. We can con-
vert hole current density to hole particle flux density by dividingJ by q. The
current densities are already expressed per unit area; thus dividing J(x)/q



J(x)

Area, A cm	 -
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Figure 4-16
Current entering
and leaving a

J (x +	 volume iIr.A.

by Ax gives the number of carriers per Unit volume entering taxA per Unit
time, and (L'q)J(x + x)/Ax is the number leaving per unit volume and time;

3p	 1 i,,(x) - J(x + x) -

Rate of	 increase of hole concentra - - recombination

	

hole buildup - tion in &A per unit time	 rate

As Ax approaches zero, we can write the current change in derivative form:

	

ap(x,t) lap	 1p
at	 at	 q 6	 r

The expression (4-31a) is called the continuity equation for holes. For
electrons we can write

An I
(4-31h)

atqx ;

since the electronic charge is negative.
When the current is carried strictly by diffusion (negligible drift), we can

replace the currents in Eqs. (4-31) by the expressions for diffusion current;
for example, for electron diffusion we have

J(diff.) =qD	 (4-32)
An
ax

Substituting this into Eq. (4-31b) we obtain the diffusion equation
for electrons,

1 aan	 An 6n
= D,, -

37 
-	 -	 ( 4-33a)

and similarly for holes,
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[^

AP	 'Ap 8P_^ = D-
	

(4-331)

These equations are useful ir,soIving transient problems of diffusion
with recombination. For example, a pulse of electrons in a semiconductor
(Fig. 4-12) spreads out by diffusion and disappears by recombination. To
solve for the electron distribution in time, n(x,r),we would begin with the dif-
fusion equation, Eq. (4-33a).

4.4.4 Steady State Carrier Injection; Diffusion Length

In many problems a steady State distribution of excess carriers is maintained,
such that the time derivatives in Eqs. (4-33) are zero. In the steady state case
the diffusion equations become

d 2a,z -	 (4-34a)
-	 -

d28p _LP_ 8P

	

	 (4-34h)

(ste u/v slate)

where L,, V75 is called the electron diffision length and L P is the dif-
fusion length for holes. We no longer need partial derivatives, since the time
variation is zero for steady state.

The physical significance of the diffusion length can he understood best
by an example. Let us assume that excess holes are somehow injected into a
semi-infinite semiconductor bar at x = 0. and the steady state hole injection
maintains a constant excess hole concentration at the injection point 6p(x = 0)
= Ap. The injected holes diffuse along the bar, recombining with a character-
istic lifetime 'r1,. In steady state we expect the distribution of excess holes to
deca y to zero for large values of x. because of the recombination (Fig. 4-17).
For this problem we use the stead y state diffusion equation for holes, Eq.
(4-34b). The solution to this equation has the form

p(x) = C 1 e'; +	 (4_35)

We can evaluate (' and C. from the boundary conditions. Since recom-
bination must reduce ?p(x) to zero for large values of x, bp = 0 at x = x and
therefore C1 = 0. Similarly, the condition bp = p at x = 0 gives C = p, and
the solution is

(43)
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Figure 4-17
Injection of holes
at x 0, giving a
steady state hole
distribution p(x)
and a resulg
diffusion current
density J(x).

P (x)

	

-- L	
p(x) = p 0 +

=	
dp(x)

0L

The injected excess hole concentration dies out exponentially in x due
to recombination, and the diffusion length L represents the distance at which
the excess hole distribution is reduced to lie of its value at the point of in-
jection. We can show that L is the average distance a hole diffises before re-
combining. To calculate an average diffusion length, we must obtain an
expression for the probability that an injected hole recombines in a particu-
lar interval A. The probability that a hole injected at x = 0 survives to x
without recombination is p(x)Ip = exp(-xIL), the ratio of the steady
state concentrations at x and 0. On the other hand, the probability that a hole
at x will recombine in the subsequent interval dx is

	

p(x)— p(x+ 4_(dP(x)/dx)dx1L	 (437)
p(x)	 bp(x)

Thus the total probability that a hole injected at x 	 0 will recombine
in a given dx is the product of the two probabilities:

(e"dx) =e''dx	 (4-3)
LP

Then, using the usual averaging techniques described by Eq. (2-21),
the average distance a hole diffuses before recombining is

x= jxdx = L	 (43))

The steady state distribution of excess holes causes diffusion, and there-
fore a hole current, in the direction of decreasing concentration. From Eqs.
(4-22b) and (4-36) we have

	

J(x) = -qD	 = -qD	 = q	 Ape 1 ' = q	 p(x) (4-40)
dx	 dx	 LP	 LP



134	 Chapter 4

Since p(x) = Pa + 8p(.x), the space derivative involves only the excess
concentration. We notice that since ?p(x) is proportional to its derivative for
an exponential distribution, the diffusion Current at any x is just proportion-
alto the excess concentration 8p at that position.

Although this example seems rather restricted, its usefulness will be-
come apparent in Chapter 5 in the discussion of p-n junctions. The injection
of minority carriers across a junction often leads to exponential distributions
as in Eq. (4-36), with the resulting diffusion current of Eq. (4-40).

4.4.5 The Haynes-Shockley Experiment

One of the classic semiconductor experiments is the demonstration of drift
and diffusion of minority carriers, first performed by J.R Haynes and
W. Shockley in 1951 at the Bell Telephone Laboratories. The experiment al-
lows independent measurement of the minority carrier mobility and dif-
fusion coefficient D. The basic principles of the Haynes-Shockley experiment
are as follows: A pulse of holes is created in an n-type bar (for example) that
contains an electric field (Fig. 4-1 9); as the pulse drifts in the field and spreads
out by diffusion, the excess hole concentration is monitored at some point
down the bar; the time required for the holes to drift a given distance in the
field gives a measure of the mobility; and the spreading of the pulse during
a given time is used to calculate the diffusion coefficient.

In Fig. 4-1 8 a pulse of excess carriers is created b y a light flash at some
point x = 0 in an n-type semiconductor (n0 Pa). We assume that the excess
carriers have a negligible effect on the electron concentration but change
the hole concentration significantly. The excess holes drift in the direction
of the electric field and eventually reach the point .i = L. where they are

Figure 4-18
Drift and diffusion
of a hole pulse in
an n-type bar: (a)
sample geometry;

)b) position and
shape of the pulse

for several times
during its drift
down the bar.

I izhi riuI

() /-

(a)

AP

= 0  I

(b) JL '	 -
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monitored. By measuring the drift time t, we can calculate the drift veloci-

ty 'td and, therefore, the hole mobility:

Va	 (4-41)

Vd	 (4-42)

Thus the hole mobility can he calculated directly from a measurement of the
drift time for the pulse as it moves down the bar. In contrast with the Hall ef-
fect (Section 3.4.5), which can he used with resistivity 10 obtain the majori-
ty carrier mobility, the Haynes Shockle y experiment is used to measure the
minority carrier mobility.

As the pulse drifts in the field it also spreads out by diffusion. By mea-
suring the spread in the pulse, we can calculate D.To predict the distribution of
holes in the pulse as a function of time, let us first reexamine the case of diffu-
sio,n of a pulse without drift, neglecting recombination (Fig. 4-12). The equation
which the hole distribution must satisfy is the time-dependent diffusion equation.
Eq. (4-33b). For the case of negligible recombination (T long compared with the
times involved in the diffusion), we can write the diffusion equation as

a3p(x. t) 
=D 

a2 p(x, t)	 (4-43)
at	 ''	 ax2

The function which satisfies this equation is called a gaussian distribution,

p(x, t) = [
2'v	

I 	 (4)

where .P is the number of holes per unit area created over a negligibly small
distance at! = tiThe factor in brackets indicates that the peak value of the
pulse (at x = 0) decreases with time. and the exponential factor predicts the
spread of the pulse in the positive and negative x-directions (Fig. 4-19). If we
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Figure 4-19
Calculation of D
from the shape of
the 8p distribution
after time td. No
drift or recombi-
nation is included.
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Figure 4-20
The Haynes-

Shockley experi-
ment: (o) circuit

schematic; (b) typ-
ical trace on the

oscilloscope
screen.

A
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designate the peak value of the pulse as 6h at any time (say Id), we can use
Eq. (4-44) to calculate D from the value of Zip at some point x. The most con-
venient choice is the point &12, at which bp is down by lie of its peak value
8. At this point we can write

e	 = e_24	 (4-45)

	

D -	 (4-4(,
16ç

Since Ax cannot be measured directly, we use an experimental setup
such as Fig. 4-20, which allows us to display the pulse on an oscilloscope as
the carriers pass under a detector. As we shall see in Chapter 5, a forward-
biased p-n junction serves as an excellent injector of minority carriers, and a
reverse-biased junction serves as a detector. The measured quantity in Fig.
4-20 is the pulse width At displayed on the oscilloscope in time. It is related
to Ax by the drift velocity, as the pulse drifts past the detector point (2).

AX = tV = At

	

td

	 (4-47)

EXAMPLE 4-6 An n-type Ge sample is used in the Haynes-Shockley experiment shown in
Fig. 4-20. The length of the sample is 1 cm, and the probes (1) and (2) are sep-
arated by 0.95 cm. The battery voltage E0 is 2 V.A pulse arrives at point (2)

14	 L

	

R1	
,	 (1)	 (2)	

R2

1	 '	 1Pulse rm

	

	 N'--- = VJ-

	

Sen.	 4	 E 2T .j	
.1) _____ 

1 1L -----------H'H
(a)
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0.25 ms after injection at (I); the width of the pulse At is 117 p.s. Calculate the
hole mobility and diffusion coefficient, and check the results against the Ein-
stein relation.

	

-	 0.95/(0.25 x 10 ' =
2/1	

1900 cm'/(V-s)	 SOLUflON

(..r) 2	 (rL)7

166

(117 x 0.95)2 x 10 12

/s2

	

-	 16(0 .25) 1 x 10 ° = 49.4 cm

	

22.	 = 0,026 =
1900	 q

4.4.6 Gradients in the Quasi-Fermi Levels

In Section 3.5 we saw that equilibrium implies no gradient in the Fermi level
EF In contrast, any combination of drift and diffusion implies a gradient in
the steady state quasi-Fermi level.

We can use the results of Eqs. (4-23), (4-26), and (4-29) to demon-
strate the power of the concept of quas i -Fermi levels in semiconductors [see
Eq. (4-15)]. If we take the general case of nonequilibrium electron concen-
tration with drift and diffusion, we must write the total electron current as

dn(x)
J,(x) = qp.	 -r,n(x)(x) qD,, -a--	 (4-48)

where the gradient in electron concentration is

-	 fn e"] -	 (	 -	 (4 49)

	

r	 kTkr	 dx)

Using the Einstein relation, the total electron current becomes

	

J,(x) = qp.n(x)(x) +n(x)[s -	 4-501

But Eq. (4-26) indicates that the subtractive term in the brackets is just
#(x), giving a direct cancellation of qp,,n(x)(x) and leaving

J(x) = p.,n(x) dF 	 (4-51)
dr

Thus, the processes of electron drift and diffusion are summed up by the
spatial variation of the quasi-Fermi level. The same derivation can be made
for holes, and we can write the current due to drift and diffusion in the form
of a modified Ohm's law
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J(x) = qn(x) d(F/q) = 0(x) 
d(F,,/q)

(4-52a)
dx	 cLr

J(x) = q.a,,.p(x) d(F/q) = r(x) d (4-52b)
dx	

(F/q)
dx

Therefore, any drift, diffusion, or combination of the two in a semi-
conductor results in currents proportional to the gradients of the two quasi-
Fermi levels. Conversely, a lack of current implies constant quasi-Fermi levels.

PROBLEMS	 4.1 With EF located 0.4 eV above the valence band in a Si 	sample, what charge
state would you expect for most Ga atoms in the sample? What would be the
predominant charge state of Zn? Au? Note: By charge state we mean neutral,
singly positive, doubly negative, etc.

4.2 A Si sample is doped with 10 em' Sb. How many Zn atoms/cm 3 must be

added to exactly compensate this material (n0 = p0 =

4.3 Construct a semilogarithmic plot such as Fig. 4-7 for GaAs doped with 2 X iO
donors/cm3 and having 4 x 10 14 EHP/cm 3 created uniformly at t = 0. Assume
that	 Sr,, = SOns.

4.4 Calculate the recombination coefficient ci,, for the low-level excitation de-
scribed in Prob. 4.3. Assume that this value of a, applies when the GaAs sam-
ple is uniformly exposed to a steady state optical generation rate g, = 1020
EHP/cm-s. Find the steady state excess carrier concentration An = h.p.

4.5 A sample is doped with donors such that n0 = Gx for n0 ' n, where G is a con-
stant. Find the built-in electric field (x).

4.6 A Si sample with I015/cm3 donors is uniformly optically excited at room tem-
perature such that 10' 9/cm 3 electron-hole pairs are generated per second. Find
the separation of the quasi-Fermi levels and the change of conductivity upon
shining the light. Electron and hole lifetimes are both 10 p.s D = 12 cm2/s.

4.7 An n-type Si sample with Nd 10" cm - ' is steadily illuminated such that
gw = 102] F.HP/cm-s. lfr,, = i1, = 1p.s for this excitation, calculate the separation in
the quasi-Fermi levels, (F - Fr). Draw a band diagram such as Fig. 4-11.

4.8 For a 2 c long doped Si bar (Nd = 10" cm - ') with a cross-sectional area = 0.05 cm 2,
what is the current if we apply IOV across it? If we generate 102° electron-hole

pairs per second per cm' uniformly in the bar and the lifetime r,, = 'r 104s,
what is the new current? Assume the low level a, doesn't change for high level
injection. If the voltage is then increased to 100,000 V, what is the new cur-
rent? Assume p.., = 500 cm 2! V-s, but you must choose the appropriate values

for electrons.

4.9 Design and sketch a photoconduct& using a 5-p.m-thick film of CdS, assuming
that T = = 10 6 s and Nd = 10 cm 3 .The dark resistance (with g = 0) should
be 10 Mi and the device must fit in a square 0.5 cm on a side; therefore, some
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sort of folded or zigzag pattern is in order. With an excitation of g,p = 10
EHP/cm3-s, what is the resistance change?

4.10 In a very long p-type Si bar with cross-sectional area = 0.5 cm2 and N = 1017cnf',
we inject holes such that the steady state excess hole concentration is 5 X 1016 cm
at x = 0. What is the steady state separation between F,, and Er at x = 1000A?
What is the hole current there? How much is the excess stored hole charge? As-
sume p..,, = 500 cm2/V-s and r, 10 "s.

4.11 Assume that a photoconductor in the shape of a bar of length L and area A has
a constant voltage V applied, and it is illuminated such that g p EHP/cm3-s are
generated uniformly throughout. If p.,, 5 p.,,, we can assume the optically in-
duced change in current AI is dominated by the mobility p.,, and lifetime T. for
electrons. Show that A l = qALg0 'r,,/'r, for this photoconductor, where ; is the
transit time of electrons drifting down the length of the bar.

4.12 For the steady state minority hole distribution shown in Fig. 4_1 i, find the expres-
sion for the hole quasi-Fermi level position E - F,,(x) while p(x) p0 (i.e., while
F,, is below EF) . On a band diagram, draw the variation of F,,(x). Be careful—when
the minority carriers arc few (e.g., when 6p is n), 1, still has a long way to go to reach
EF.

4.13 Boron is diffused into an intrinsic Si sample. giving the acceptor distribution
shown in Figure P443. Sketch the equilibrium band diagram and show the di-
rection of the resulting electric field, for N(x) n. Repeat for phosphorus,
with N(x) n•.

4.14 The current required to feed the hole injection at x = 0 in Fig. 4-17 is obtained
by evaluating Eq. (4-40) at x = 0. The result is 4(x 0) = qAD,4p/L,,.Show that
this current can he calculated by integrating the charge stored in the steady
state hole distribution 8p(x) and then dividing by the average hole lifetime 're.
Explain why this approach gives I (x = 0).

4.15 We wish to use the Haynes-Shockley experiment to calculate the hole lifetime
1, in an n-type sample. Assume the peak voltage of the pulse displayed on the
oscilloscope screen is proportional to the hole concentration under the collec-
tor terminal at time 1,., and that the displayed pulse can be approximated as a
gaussian, as in Eq. (4-44). which decays due to recombination by e'j ' 'The
electric field is varied and the following data taken: For td = 200 p.s. the peak is
20 mV: for 'd = 50 p.s, the peak is 80 mV. What is

Figure P4-13
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4.16 Consider a sample of GaAs (n, = 10 cm 3 at 300 K) doped with 1015 donors per

cm 3 illuminated with the 5145 A line of an argon ion laser. For GaAs at 5145
A, = 10 cm - '. Calculate and plot the steady state excess electron profile n(x)

in the region within 5 p.m of the surface for photon fluxes of 10', 1017, and 10'

photons cm 1 s -' using low-level injection assumptions and directly solving Eq.
(4-12). For this problem, assume that T. =,r, = 10 "s. Neglect diffusion.

4.17 For the sample of Prob. 4-16, calculate and plot the steady state excess electron
profile fn(x) in the region within 5 gm of the surface for a photon flux of 10'
photons cm - ' s using low-level injection assumptions and directly solving
Eq. (4-12) for values of n, of 10 ", 10 7 , and 10 5 cm 7 s

4. IN Using the results of Prob. 4-16 obtained for a photon flux of 10' s photons cm—s-
calculate and plot the transient excess carrier profile. 1.2, and S ns after the laser
flux is interrupted, by integrating Eq. (4-5) within each depth interval, using
10 ' cm' s for a,. In this case, ignore carrier diffusion.

4.19 Assume an n . type semiconductor bar is illuminated over a narrow region of its
length, such that An = p in the illuminated zone, and excess carriers diffuse
away and recombine in both directions along the bar. Assuming 8n p, sketch
the excess carrier distribution and, on a hand diagram, sketch the quasi-Fermi
levels F,, and F,, over several diffusion lengths from the illuminated zone. See
the cautionary note in Prob. 4-12.
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