Appendix I

Definitions of Commonly Used Symbols ${ }^{1}$

a	Chapter 1: unit cell dimension (\AA); Chapter 6: metallurgical channel half-width for an FET (cm)
a, b, c	basis vectors
A	area (cm^{2})
\mathscr{B}	magnetic flux density ($\mathrm{Wb} / \mathrm{cm}^{2}$)
B	base transport factor for a BJT
B, E, C	base, emitter, collector of a BJT
c	speed of light (cm / s)
C	capacitance/area in MOS ($\mathrm{F} / \mathrm{cm}^{2}$)
$\mathrm{C}_{i} \mathrm{C}_{\text {d }}, \mathrm{C}_{i i}$	insulator, depletion, interface-state MOS capacitance/area ($\mathrm{F} / \mathrm{cm}^{2}$)
C,	junction capacitance (F)
C_{s}	charge storage capacitance (F)
D, D_{n}, D_{p}	diffusion coefficient for dopants, electrons, holes ($\mathrm{cm}^{2} / \mathrm{s}$)
D, G, S	drain, gate, source of an FET
e	Napierian base
e^{-}	electron
E	electric field strength (V/cm)
E	energy ${ }^{2}(\mathrm{~J}, \mathrm{eV}$); battery voltage (V)
E_{a}, E_{d}	acceptor, donor energy level (J, eV)
E_{c}, E_{v}	conduction band, valence band edge (J, eV)
E_{F}	equilibrium Fermi level (J, eV)
E_{E}	band gap energy (J, eV)
E_{i}	intrinsic level (J, eV)
$E_{r} E_{1}$	recombination, trapping energy level (J, eV)
$f(E)$	Fermi-Dirac distribution function
F_{n}, F_{p}	quasi-Fermi level for electrons, holes (J, eV)
g, $\mathrm{gop}^{\text {of }}$	EHP generation rate, optical generation rate ($\left.\mathrm{cm}^{-3} \cdot \mathrm{~s}^{-1}\right)$

[^0]| g_{m} | mutual transconductance ($\left.\Omega^{-1}, \mathrm{~S}\right)$ |
| :---: | :---: |
| h | Planck's constant ($\mathrm{J}-\mathrm{s}, \mathrm{eV}-\mathrm{s}$); Chapter 6: FET channel half-width (cm) |
| \hbar | Planck's constant divided by 2π ($\mathrm{J}-\mathrm{s}, \mathrm{eV}-\mathrm{s}$) |
| $h v$ | photon energy (J, eV) |
| h, k, l | Miller indices |
| h^{+} | hole |
| i, I | current ${ }^{3}$ (A) |
| I (subscript) | inverted mode of a BJT |
| i_{B}, i_{C}, i_{E} | base, collector, emitter current in a BJT (A) |
| $I_{C O}, I_{E O}$ | magnitude of the collector, emitter saturation current with the emitter, collector open (A) |
| $I_{C S}, I_{E S}$ | magnitude of the collector, emitter saturation current with the emitter, collector shorted (A) |
| I_{D} | channel current in an FET, directed from drain to source (A) |
| I_{0} | reverse saturation current in a p-n junction (A) |
| j | $\sqrt{-1}$ |
| J | current density ($\mathrm{A} / \mathrm{cm}^{2}$) |
| k | Boitzmann's constant ($\mathrm{J} / \mathrm{K}, \mathrm{eV} / \mathrm{K}$) |
| $\mathrm{k}_{N}, \mathrm{k}_{\mathrm{P}}$ | transconductance of NMOSFET, PMOSFET divided by $V_{D}\left(A / V^{2}\right)$ |
| k | wave vector (cm^{-1}) |
| k_{d} | distribution coefficient |
| K | scaling factor |
| K | $4 \pi \epsilon_{0}(\mathrm{~F} / \mathrm{cm})$ |
| l, L | length (cm) |
| L_{D} | Debye length (cm) |
| \bar{l} | mean free path for carriers in random motion (cm) |
| m, m^{*} | mass, effective mass (kg) |
| m_{n}^{*}, m_{p}^{*} | effective mass for electrons, holes (kg) |
| m_{l}, m_{t} | longitudinal, transverse electron effective mass (kg) |
| $m_{l h}, m_{h h}$ | light, heavy hole effective mass (kg) |
| m_{0} | rest mass of the electron (kg) |
| M | avalanche multiplication factor |
| m, n | integers; exponents |
| n | concentration of electrons in the conduction band (cm^{-3}) |
| n | n -type semiconductor material |
| n^{+} | heavily doped n-type material |
| n_{i} | intrinsic concentration of electrons (cm^{-3}) |
| n_{n}, n_{p} | equilibrium concentration of electrons in n-type. p-type material $\left(\mathrm{cm}^{-3}\right)$ |
| n_{0} | equilibrium concentration of electrons (cm^{-3}) |
| N (subscript) | normal mode of a BJT |
| N_{a}, N_{d} | concentration of acceptors, donors (cm^{-3}) |
| N_{a}^{-}, N_{d}^{+} | concentration of ionized acceptors, donors (cm^{-3}) |
| N_{c}, N_{v} | effective density of states at the edge of the conduction band, valence band $\left(\mathrm{cm}^{-3}\right)$ |
| p | concentration of holes in the valence band (cm^{-3}) |
| p | p -type semiconductor material |

[^1]```
 p* heavily doped p-type material
 P
 pi
 p
 po
 q
 Q..Q
 Qd
 Q;
 Qi
 Qm
 Q}\cdot\mp@subsup{Q}{0}{
 Q
 Qot
 Rp,\DeltaR
 r,R resistance (\Omega)
 RH
 S subthreshold slope (mV/decade)
 t
 t
 t
 tsd
 T
 v.V
 v
 V
 VCB
 V
 \mp@subsup{V}{n}{}},\mp@subsup{V}{p}{
 V
V
V
v, v
w
W
Wb
x
x
```



```
Z
\alpha
heavily doped p-type material
momentum (kg-m/s)
intrinsic hole concentration \(\left(\mathrm{cm}^{-3}\right)=n_{i}\)
equilibrium concentration of holes in n-type, p-type material (\(\mathrm{cm}^{-3}\))
equilibrium hole concentration (\(\mathrm{cm}^{-3}\))
magnitude of the electronic charge (C)
total positive, negative charge (C)
depletion region charge/area (\(\mathrm{C} / \mathrm{cm}^{2}\))
oxide fixed charge/area (\(\mathrm{C} / \mathrm{cm}^{2}\))
effective MOS interface charge/area (\(\mathrm{C} / \mathrm{cm}^{2}\))
interface trap charge/area (\(\mathrm{C} / \mathrm{cm}^{2}\))
mobile ionic charge/area (\(\mathrm{C}_{\mathrm{cm}}{ }^{2}\))
charge stored in an electron, hole distribution (C)
mobile charge/area in FET channel (\(\mathrm{C} / \mathrm{cm}^{2}\))
oxide trapped charge/area \(\left(\mathrm{C} / \mathrm{cm}^{2}\right)\)
projected range, straggle (cm)
resistance (\(\Omega\))
Hall coefficient (\(\mathrm{cm}^{3} / \mathrm{C}\))
subthreshold slope (\(\mathrm{mV} /\) decade)
time (s)
sample thickness (cm)
mean free time between scattering collisions (s)
storage delay time (s).
temperature (\(\mathbf{K}\))
voltage \({ }^{4}(\mathbf{V})\)
potential energy (J)
electrostatic potential (V)
voltage from collector to base, emitter to base in a BJT (V)
voltage from drain to source, gate to source in an FET (V)
electrostatic potential in the neutral \(n, p\) material \((V)\)
contact potential (V)
Chapter 6: pinch-off voltage for an FET; Chapter 11:forward breakover
voltage for an SCR (V)
MOS threshold voltage, flat-band voltage (\(V\))
velocity, drift velocity (\(\mathrm{cm} / \mathrm{s}\))
sample width (cm)
depletion region width (cm)
base width in a BJT, measured between the edges of the emitter and
collector junction depletion regions (cm)
distance (cm), alloy composition
distance in the neutral n region, p region of a junction, measured from the edge of the transition region (cm)
penetration of the transition region into the n region, p region, measured from the metallurgical junction (cm)
atomic number; dimension in \(z\)-direction (cm)
emitter-to-collector current transfer ratio in a BJT
```

[^2]| $\alpha$ | optical absorption coefficient ( $\mathrm{cm}^{-1}$ ) |
| :---: | :---: |
| $\alpha$, | recombination coefficient ( $\mathrm{cm}^{3 /} \mathrm{s}$ ) |
| $\beta$ | base-to-collector current amplification factor in a BJT |
| $\gamma$ | emitter injection efficiency; in a p-n-p, the fraction of $i_{E}$ due to the hole current $i_{\varepsilon_{p}}$ |
| ¢, $\Delta$ | incremental change |
| $\delta n, \delta p$ | excess electron, hole concentration ( $\mathrm{cm}^{-3}$ ) |
| $\Delta n_{p}, \Delta p_{n}$ | excess electron, hole concentration at the edge of the transition region on the p side, n side $\left(\mathrm{cm}^{-3}\right)$ |
| $\Delta p_{C}, \Delta p_{E}$ | excess hole concentration in the base of a BJT, evaluated at the edge of the transition region of the collector, emitter junction $\left(\mathrm{cm}^{-3}\right)$ |
| $\boldsymbol{\epsilon}, \boldsymbol{\epsilon}_{\boldsymbol{r}} \boldsymbol{\epsilon}_{0}$ | permittivity, relative dielectric constant, permittivity of free space $(\mathrm{F} / \mathrm{cm}) ; \epsilon=\epsilon, \epsilon_{0}$ |
| $\lambda$ | wavelength of light ( $\mu \mathrm{m}, \AA$ ) |
| $\mu$ | mobility ( $\mathrm{cm}^{2} / \mathrm{V}-\mathrm{s}$ ) |
| $v$ | frequency of light ( $\mathrm{s}^{-1}$ ) |
| $p$ | resistivity ( $\Omega-\mathrm{cm}$ ); charge density ( $\mathrm{C} / \mathrm{cm}^{3}$ ) |
| $\sigma$ | conductivity ( $\Omega$ - cm$)^{-1}$ |
| $\tau_{d}$ | dielectric relaxation time (s); in a BJT, delay time (s) |
| $\tau_{n}, \tau_{p}$ | recombination lifetime for electrons, holes (s) |
| $\tau_{t}$ | transit time (s) |
| $\phi$ | flux density ( $\left.\mathrm{cm}^{2}-\mathrm{s}\right)^{-1}$; potential (V), dose ( $\mathrm{cm}^{-2}$ ) |
| $\phi_{F}$ | $\left(E_{i}-E_{F}\right) / q(\mathrm{~V})$ |
| $\phi_{s}$ | surface potential (V) |
| $\Phi$ | work function potential (V) |
| $\Phi_{B}$ | metal-semiconductor barrier height (V) |
| $\Phi_{m s}$ | metal-semiconductor work function potential difference (V) |
| 中, $\Psi$ | time-independent, time-dependent wave function |
| $\omega$ | angular frequency ( $\mathrm{s}^{-1}$ ) |
| () | average of the enclosed quantity |

Note: for de voltoge and current, capital symbols with capital subscripts are used; lowercase symbols with lowercase subscripts represent a-c quantities; lowercase symbols with capitol subscripts represent total ( $-c+d c$ ) quantities. For voltoge symbols with double subscripts, $V$ is positive when the potential at the point referred to by the first subscript is higher than that of the second point. For example, $V_{G O}$ is the potential difference $V_{G}-V_{0}$.

## Appendix II

## Physical Constants and Conversion Factors ${ }^{1}$

| Avogadro's number | $N_{A}=6.02 \times 10^{23}$ molecules/mole |
| :---: | :---: |
| Boltzmann's constant | $\hat{k}=1.38 \times 10^{-23} \mathrm{~J} / \mathrm{K}$ |
|  | $=8.62 \times 10^{-5} \mathrm{eV} / \mathrm{K}$ |
| Electronic charge (magnitude) | $q=1.60 \times 10^{-19} \mathrm{C}$ |
| Electronic rest mass | $m_{0}=9.11 \times 10^{-31} \mathrm{~kg}$ |
| Permittivity of free space | $\begin{aligned} \epsilon_{0} & =8.85 \times 10^{-14} \mathrm{~F} / \mathrm{cm} \\ & =8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m} \end{aligned}$ |
|  |  |
| Planck's constant | $h=6.63 \times 10^{-34} \mathrm{f}-\mathrm{s}$ |
|  | $=4.14 \times 10^{-15} \mathrm{eV}$-s |
| Room temperature value of $k T$ | $k T=0.0259 \mathrm{eV}$ |
| Speed of light | $c=2.998 \times 10^{10} \mathrm{~cm} / \mathrm{s}$ |
|  | Prefixes: |
| $1 \dot{A}$ (angstrom) $=10^{-8} \mathrm{~cm}$ | milli, $m=10^{-3}$ |
| $1 \mu \mathrm{~m}$ (micron $)=10^{-4} \mathrm{~cm}$ | micro, $\mu^{-}=10^{-6}$ |
| $1 \mathrm{~nm}=10 \dot{A}=10^{-7} \mathrm{~cm}$ | nano, $n=10^{-9}$ |
| $2.54 \mathrm{~cm}=1 \mathrm{in}$. | pico, $p$ - $=10^{-12}$ |
| $1 \mathrm{eV}=1.6 \times 10^{-19} \mathrm{~J}$ | kilo, k - $=10^{-3}$ |
|  | mega-, $M$ - $=10^{6}$ |
|  | giga-, G $=10^{\circ}$ |

A wavelength $\lambda$ of $1 \mu \mathrm{~m}$ corresponds to a photon energy of 1.24 eV .

[^3]
## Appendix III <br> Properties of Semiconductor Materials

|  |  | $\begin{gathered} E_{\rho} \\ (\mathrm{ov}) \end{gathered}$ | $\begin{gathered} \mu_{n} \\ \left(\mathrm{~cm}^{2} / \mathrm{V}-\mathrm{s}\right) \end{gathered}$ | $\underset{\left(\mathrm{cm}^{2} / V_{-s}\right)}{\mu_{p}}$ | $\begin{gathered} m_{n}^{0} / m_{0} \\ \left(m_{1}, m_{1}\right) \end{gathered}$ | $\underset{\substack{m_{p}^{*} / m_{o} \\\left(m_{m}, m_{s k}\right)}}{ }$ | $a(\dot{A})$ | $\epsilon_{4}$ | Density <br> $\left(\mathrm{g} / \mathrm{cm}^{3}\right)$ | Melting point ( Cl |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Si | (i/D) | 1.11 | 1350 | 480 | 0.98, 0.19 | 0.16, 0.49 | 5.43 | 11.8 | 2.33 | 1415 |
| Ge | (i/D) | 0.67 | 3900 | 1900 | 1.64, 0.082 | 0.04, 0.28 | 5.65 | 16 | 5.32 | 936 |
| SiC $(\alpha)$ | (i/W | 2.86 | 500 | - | 0.6 | 1.0 | 3.08 | 10.2 | 3.21 | 2830 |
| AIP | (i/Z) | 2.45 | 80 | - | - | 0.2, 0.63 | 5.46 | 9.8 | 2.40 | 2000 |
| AlAs | (i/Z) | 2.16 | 1200 | 420 | 2.0 | 0.15, 0.76 | 5.66 | 10.9 | 3.60 | 1740 |
| AlSb | (i/Z) | 1.6 | 200 | 300 | 0.12 | 0.98 | 6.14 | 11 | 4.26 | 1080 |
| Gop | (i/Z) | 2.26 | 300 | 150 | 1.12,0.22 | 0.14, 0.79 | 5.45 | 11.1 | 4.13 | 1467 |
| GaAs | (d/Z) | 1.43 | 8500 | 400 | 0.067 | 0.074, 0.50 | 5.65 | 13.2 | 5.31 | 1238 |
| GoN | (d/Z, m | 3.4 | 380 | - | 0.19 | 0.60 | 4.5 | 12.2 | 6.1 | 2530 |
| GaSb | (d/Z) | 0.7 | 5000 | 1000 | 0.042 | $0.06,0.23$ | 6.09 | 15.7 | 5.61 | 712 |
| $\ln P$ | (d/Z) | 1.35 | 4000 | 100 | 0.077 | 0.089, 0.85 | 5.87 | 12.4 | 4.79 | 1070 |
| $\ln A_{5}$ | (d/Z) | 0.36 | 22600 | 200 | 0.023 | 0.025, 0.41 | 6.06 | 14.6 | 5.67 | 943 |
| InSb | (d/Z) | 0.18 | $10^{5}$ | 1700 | 0.014 | 0.015, 0.40 | 0.48 | 17.7 | 5.78 | 525 |
| ZnS | (d/z, W) | 3.6 | 180 | 10 | 0.28 | - | 5.409 | 8.9 | 4.09 | $1650^{\circ}$ |
| ZnSe | (d/Z) | 2.7 | 600 | 28 | 0.14 | 0.60 | 5.671 | 9.2 | 5.65 | $1100^{\circ}$ |
| ZnTe | (d/Z) | 2.25 | 530 | 100 | 0.18 | 0.65 | 0.101 | 10.4 | 5.51 | $1238^{\circ}$ |
| CdS | (d, W, $/$ ) | 2.42 | 250 | 15 | 0.21 | 0.80 | 4.137 | 8.9 | 4.82 | 1475 |
| CdSe | (d/m) | 1.73 | 800 | - | 0.13 | 0.45 | 4.30 | 10.2 | 5.81 | 1258 |
| CdTe | (d/Z) | 1.58 | 1050 | 100 | 0.10 | 0.37 | 0.482 | 10.2 | 6.20 | 1098 |
| PbS | $(i / M)$ | 0.37 | 575 | 200 | 0.22 | 0.29 | 5.936 | 17.0 | 7.6 | 1119 |
| PbSe | (i/H) | 0.27 | 1500 | 1500 | - | - | 6.147 | 23.6 | 8.73 | 1081 |
| PbTe | (i/M) | 0.29 | 6000 | 4000 | 0.17 | 0.20 | 6.452 | 30 | 8.16 | 925 |

All values at 300 K .
*Vaporizes

The first column lists the semiconductor, the second indicates band struciure type and crystal structure. Definitions of symbols: $i$ is indirect; $d$ is direct; $D$ is diamond; $Z$ is zincblende; $W$ is wurtzile; $H$ is halite $(\mathrm{NaCl})$. Values of mobility are for material of high purity.
Crystals in the wurtzite structure are not described completely by the single laltice constant given here, since the unit cell is not cubic. Several II-VI compounds can be grown in either the zincblende or wurtzite structures.
Many values quoted here are approximale or uncertain, particularly for the $\mathbb{I}-\mathrm{V} /$ and $\mathrm{V}-\mathrm{V} \mid$ compounds. The gaps indicate that the values are unknown.
For electrons, the first set of band curvature effective masses is the longitudinal mass, the second set the transverse. For holes, the first set is for light holes, the second for heavy holes.

## Appendix IV

## Derivation of the Density of States in the Conduction Band

In this derivation we shall consider the conduction band electrons to be essentially free. Constraints of the particular lattice can be included in the effective mass of the electron at the end of the derivation. For a free electron, the three-dimensional Schrödinger wave equation becomes

$$
\begin{equation*}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \psi=E \psi \tag{IV-1}
\end{equation*}
$$

where $\psi$ is the wave function of the electron and $E$ is its energy. The form of the solution to Eq. (IV-1) is

$$
\begin{equation*}
\psi=(\text { const. }) e^{j \mathbf{k} \cdot \boldsymbol{r}} \tag{IV-2}
\end{equation*}
$$

We must describe the electron in terms of a set of boundary conditions within the lattice. A common approach is to use periodic boundary conditions, in which we quantize the electron energies in a cube of material of side $L$. This can be accomplished by requiring that

$$
\begin{equation*}
\psi(x+L, y, z)=\psi(x, y, z) \tag{IV-3}
\end{equation*}
$$

and similarly for the $y$-and $z$-directions. Thus our wave function can be written as

$$
\begin{equation*}
\psi_{n}=A \exp \left[j \frac{2 \pi}{L}\left(\mathbf{n}_{x} x+\mathbf{n}_{y} y+\mathbf{n}_{z} z\right)\right] \tag{IV-4}
\end{equation*}
$$

where the $2 \pi \mathrm{n} / L$ factor in each direction guarantees the condition described by Eq. (IV-3), and $\boldsymbol{A}$ is a normalizing factor. Substituting $\psi_{n}$ into the Schrödinger equation (IV-1), we obtain

$$
-\frac{\hbar^{2}}{2 m} A \nabla^{2} \exp \left[j \frac{2 \pi}{L}\left(\mathbf{n}_{x} x+\mathbf{n}_{y} y+\mathbf{n}_{z} z\right)\right]=E A \exp \left[j \frac{2 \pi}{L}\left(\mathbf{n}_{x} x+\mathbf{n}_{y} y+\mathbf{n}_{z} z\right)\right](I V-5)
$$

Let us determine the number of allowed states per unit volume as a function of energy [the density of states, $N(E)$ ] in various cases such as 1,2 , or 3 - dimensions. We first count states in $\mathbf{k}$-space, then we can use the bandstructure, $E(\mathbf{k})$, to convert to $N(E)$.

For the the 3-D case in Eq. (IV-5), the components of the $\mathbf{k}$-vector are $\mathbf{k}_{x}=2 \pi \mathbf{n}_{x} / L, \mathbf{k}_{y}=2 \pi \mathbf{n}_{y} / L$, and $\mathbf{k}_{z}=2 \pi \mathbf{n}_{z} / L$. Since there is one $\mathbf{k}$-state for every distinct choice of integer quantum numbers, ( $\mathbf{n}_{x}, \mathbf{n}_{y}, \mathbf{n}_{z}$ ), the volume per k-state is $(2 \pi)^{3} / L^{3}=(2 \pi)^{3} / V$, where $V=L^{3}$ is the three-dimensional volume. Hence, the number of states for 3-D in a $\mathbf{k}$-space of $\Delta \mathbf{k}$, taking into account the factor of 2 spin degeneracy, is

$$
\begin{equation*}
\left\{\frac{L^{3}}{(2 \pi)^{3}} \Delta \mathbf{k}\right\} \times(2) \text { spin } \tag{IV-6a}
\end{equation*}
$$

The number of states per unit volume for 3-D is

$$
\begin{equation*}
\frac{2}{(2 \pi)^{3}}(\Delta \mathbf{k}) \tag{IV-6b}
\end{equation*}
$$

In general, for p-dimensions we can generalize this expression as

$$
\begin{equation*}
\text { Number of states per unit volume }=\frac{2}{(2 \pi)^{p}}(\Delta \mathbf{k}) \tag{IV-7a}
\end{equation*}
$$

We can then transform from $\mathbf{k}$-space to $E$-space using the $E(\mathbf{k})$ bandstructure relationship by setting

$$
\begin{equation*}
N(E) \Delta E=\frac{2}{(2 \pi)^{p}}(\Delta \mathbf{k}) \tag{IV-7b}
\end{equation*}
$$

As described in Sec. 3.2.2, the simplest bandstructure is parabolic:

$$
\begin{equation*}
E(\mathbf{k})=\frac{\hbar^{2} k^{2}}{2 m^{*}} \tag{IV-8a}
\end{equation*}
$$

This is often a good approximation, particularly near the bottom of the conduction band or top of the valence band. Using this, we get the relation between $\mathbf{k}$ and $E$ as follows:

$$
\begin{gather*}
k=\sqrt{\frac{2 m^{*} E}{\hbar^{2}}}  \tag{IV-8b}\\
d k=\left\{\sqrt{\frac{m^{*}}{2}} \frac{1}{\hbar}\right\} \frac{1}{\sqrt{E}} d E \tag{IV-8c}
\end{gather*}
$$

For $p=3$ we have the 3-D case, which is typical of bulk semiconductors. The volume in $\mathbf{k}$-space between two constant- $k$ spherical surfaces at $k$ and $k+d k$ is (Figure IV-1a):

$$
\begin{equation*}
\Delta \mathbf{k}=4 \pi k^{2} d k \tag{IV-9a}
\end{equation*}
$$

neglecting terms with $d k$ multiplied by itself.
The density-of-states then becomes:

$$
\begin{equation*}
N(E) d E=\frac{2}{(2 \pi)^{3}} 4 \pi k^{2} d k=\frac{\sqrt{2}}{\pi^{2}}\left(\frac{m^{*}}{\hbar^{2}}\right)^{3 / 2} E^{1 / 2} d E \tag{IV-9b}
\end{equation*}
$$

We see that if we plot $N(E)$ versus $E$, we get a parabolic density-of-states function in 3-D for a parabolic bandstructure relationship (Figure IV-2a).

For $p=2$, we get a so-called 2-D electron gas (2-DEG) or hole gas. This can arise, for example, in a quantum well (Section 3.2.5) or in the inversion layer of a MOSFET.

In this case, the "volume" in $\mathbf{k}$-space is the annular region between two circles, $k$ and $k+d k$, as shown in Figure (IV-1b), where

$$
\begin{equation*}
\Delta \mathbf{k}=(2 \pi k) d k \tag{IV-10a}
\end{equation*}
$$

again neglecting $d k^{2}$.
Using Eq. IV-7a, this leads to a density of states (per unit area)

$$
\begin{equation*}
N(E) d E=\frac{2}{(2 \pi)^{2}}(2 \pi k) d k=\frac{m^{*}}{\pi \hbar^{2}} d E \tag{IV-10b}
\end{equation*}
$$

We see that for 2-D, the density of states is a constant in energy, unlike the parabolic density of states for 3-D (Figure IV-2b). Actually, for the 2-DEG
(a)


$$
3-D
$$

(b)

$2-D$
(c)


Figure IV-la-c

Volume in k-space:
(a) 3-D systems;
(b) 2-D systems;
(c) 1-D systems.

Figure $\mathbf{N - 2}$
Density of states:
(a) in 3-D or bulk;
(b) in 2-D electron or hole gases; (c) in 1-D quantum "wires".

in a quantum well or inversion layer (see Chapter 6) we must add the various constant 2-D densities-of-states for the different "particle-in-a-box" levels that were discussed in Sections 2.4 .3 and 3.2.5, leading to a so-called "staircase" density of states.

For $p=1$, we get 1-D quantum "wires." These more esoteric structures can be grown, for example, by MBE or MOCVD. In this case, the "volume" in $\mathbf{k}$-space in the region between $\mathbf{k}$ and $k+d k$ in 1-D is (Figure IV-1c):

$$
\begin{equation*}
\Delta \mathbf{k}=2(d \mathbf{k}) \tag{IV-11a}
\end{equation*}
$$

Using Eq. IV-7a, this leads to a density of states

$$
\begin{equation*}
N(E) d E=\frac{2}{(2 \pi)^{1}}(2 d k)=\frac{\sqrt{2 m^{*}}}{\pi \hbar \sqrt{E}} d E \tag{IV-11b}
\end{equation*}
$$

By examining the density of states in 3,2 and 1-D (Eqs. IV-9b, IV-10b and IV-11b, respectively) we notice a very interesting trend. Every time we go to a lower dimensionality system, the dependence of density of states on energy changes by $1 / \sqrt{E}$. In fact, one finds that for $0-D$ quantum "dots" the density of states is indeed proportional to $1 / E$. In the 1 and $0-D$ cases, we see that the density of states has singularities in energy, which has very important implications for semiconductor devices. Unfortunately, those discussions are beyond the scope of this book.

To include the probability of occupation of any energy level $E$, we use the Fermi-Dirac distribution function:

$$
\begin{equation*}
f(E)=\frac{1}{e^{\left(E-E_{n} / k T\right.}+1} \tag{IV-12}
\end{equation*}
$$

The concentration of electrons in the range $d E$ is given by the product of the density of allowed states in that range and the probability of occupation. Thus the density of occupied electron states $N_{e}$ in $d E$ is

$$
\begin{equation*}
N_{e} d E=N(E) f(E) d E \tag{IV-13}
\end{equation*}
$$

For the 3-D case we may calculate the concentration of electrons in the conduction band at a given temperature by integrating Eq. (IV-13) across the band:

$$
\begin{equation*}
n=\int_{0}^{\infty} N(E) f(E) d E=\frac{1}{2 \pi^{2}}\left(\frac{2 m}{\hbar^{2}}\right)^{3 / 2} e^{E_{\|} / k T} \int_{0}^{\infty} E^{1 / 2} e^{-E / k T} d E \tag{IV-14}
\end{equation*}
$$

In this integration we have referred the energies in the conduction band to the band edge ( $E_{\mathrm{c}}$ taken as $E=0$ ). Furthermore, we have taken the function $f(E)$ to be

$$
\begin{equation*}
f(E)=e^{\left(E_{f}-E\right) / k T} \tag{IV-15}
\end{equation*}
$$

for energies such that $\left(E-E_{F}\right) \geqslant k T$.
The integral in Eq. (IV-14) is of the standard form:

$$
\begin{equation*}
\int_{0}^{\infty} x^{1 / 2} e^{-a x} d x=\frac{\sqrt{\pi}}{2 a \sqrt{a}} \tag{IV-16}
\end{equation*}
$$

Thus Eq. (IV-14) gives

$$
\begin{equation*}
n=2\left(\frac{2 \pi m k T}{h^{2}}\right)^{3 / 2} e^{E_{f} / k T} \tag{iV-17}
\end{equation*}
$$

If we refer to the bottom of the conduction band as $E_{c}$ instead of $E=0$, the expression for the electron concentration is

$$
\begin{equation*}
n=2\left(\frac{2 \pi m_{n}^{*} k T}{h^{2}}\right)^{3 / 2} e^{\left(E_{r}-E_{c}\right) / k T} \tag{IV-18}
\end{equation*}
$$

which corresponds to Eq. (3-15). We have included constraints of the lattice through the effective mass of the electron in the crystal, $m_{n}^{\circ}$.

## Appendix V Derivation of Fermi-Dirac Statistics

In this section, we will give a simplified derivation of Fermi-Dirac statistics. We will not go through all the details, but will instead point out the physical assumptions involved. The distribution function is determined by calculating the number of distinct ways $\left(W_{k}\right)$ we can put $n_{k}$ indistinguishable electrons in $g_{k}$ states at an energy level $E_{k}$, subject to the Pauli exclusion principle.

The assumptions are:

1. Each allowed state has a maximum of one electron (Pauli principle).
2. The probability of occupancy of each allowed (degenerate) quantum state is the same.
3. All electrons are indistinguishable.

The number of distinct ways we can put the electrons in a particular level is

$$
\begin{equation*}
W_{k}=\frac{\left(g_{k}\right)\left(g_{k}-1\right)\left(g_{k}-\overline{n_{k}-1}\right)}{n_{k}!}=\frac{g_{k}!}{\left(g_{k}-n_{k}\right)!n_{k}!} \tag{V-1}
\end{equation*}
$$

For $N$ levels in a band, the number of distinct ways we can put in the various electrons gives us the so-called "multiplicity function,"

$$
\begin{equation*}
W_{b}=\prod_{k} W_{k}=\prod_{k} \frac{g_{k}!}{\left(g_{k}-n_{k}\right)!n_{k}!} \tag{V-2}
\end{equation*}
$$

If we ask, "What is the most probable distribution of the $n_{k}$ electrons in the various $E_{k}$ levels (degeneracy of $g_{k}$ in level $E_{k}$ )?", the statistical mechanical answer is:

In thermal equilibrium, the distribution which is most disordered (i.e., has the maximum entropy, or which can occur in the largest number of ways) is the most probable.

We therefore have to maximize $W_{b}$ with respect to $n_{k}$.
We assume here that the total number of electrons in the band is fixed.

$$
\begin{equation*}
\sum_{k} n_{k}=n=\text { constant } \Rightarrow \sum_{k} d n_{k}=0 \tag{V-3}
\end{equation*}
$$

We also assume that the total energy in the band is constant.

$$
\begin{equation*}
E_{t o t}=\sum_{k} E_{k} n_{k}=\text { constant, implying } \sum_{k} E_{k} d n_{k}=0 \tag{V-4}
\end{equation*}
$$

To maximize or minimize some function $f\left(x_{i}\right)$ of $q$ variables $x_{i}(i=1, \ldots, q)$ subject to the constraints that $g\left(x_{i}\right)$ and $h\left(x_{i}\right)$ are constant, we use the method of Lagrange undetermined multipliers.

We have

$$
\begin{array}{cl}
d f=0 & \text { (for extremal value of } f \text { ) } \\
d g=0, d h=0 & \text { (because } g \text { and } h \text { are constant) } \tag{V-6}
\end{array}
$$

Introducing two Lagrange undetermined multipliers $\alpha$ and $\beta$, we get

$$
\begin{gather*}
\sum_{i} \frac{\partial}{\partial x_{i}}\left[f\left(x_{i}\right)+\alpha g\left(x_{i}\right)+\beta h\left(x_{i}\right)\right] d x_{i}=0 \\
\frac{\partial}{\partial x_{i}}\left[f\left(x_{i}\right)+\alpha g\left(x_{i}\right)+\beta h\left(x_{i}\right)\right]=0 \tag{V-7}
\end{gather*}
$$

for $i=1, \ldots q$

$$
\begin{equation*}
g\left(x_{i}\right)=\text { const. } \quad h\left(x_{i}\right)=\text { const. } \tag{V-8}
\end{equation*}
$$

We thus get $(q+2)$ equations in $(q+2)$ unknowns of $\left(x_{i}, \alpha, \beta\right)$
We apply this technique to our problem at hand. Instead of maximizing $W_{b}$, we maximize $\ln W_{b}$ instead because it makes the mathematics simpler. Since the log function increases monotonically with the argument. maximizing one is the same as maximizing the other.

$$
\begin{equation*}
\ln W_{b}=\sum_{k}\left[\ln \left(g_{k}\right)!-\ln \left(g_{k}-n_{k}\right)!-\ln \left(n_{k}\right)!\right] \tag{V-9}
\end{equation*}
$$

To simplify these terms, we use Stirling's approximation for factorials of large numbers. $\ln x!=x \ln x-x$ for large $x$.

$$
\begin{align*}
\ln W_{b} & =\sum_{k}\left[g_{k} \ln \left(g_{k}\right)-g_{k}-\left(g_{k}-n_{k}\right) \ln \left(g_{k}-n_{k}\right)+\left(g_{k}-n_{k}\right)-n_{k} \ln \left(n_{k}\right)+n_{k}\right] \\
& =\sum_{k}\left[g_{k} \ln \left(g_{k}\right)-\left(g_{k}-n_{k}\right) \ln \left(g_{k}-n_{k}\right)-n_{k} \ln \left(n_{k}\right)\right] \tag{V-10}
\end{align*}
$$

Now $d g_{k}=0$ because these are system constraints. We then get

$$
\begin{equation*}
d\left(\ln W_{b}\right)=\sum_{k} \frac{\partial\left[\ln W_{b}\right]}{\partial n_{k}} d n_{k}=\sum_{k} \ln \left(\frac{g_{k}}{n_{k}}-1\right) d n_{k}=0 \tag{V-11}
\end{equation*}
$$

Also, from the two constraints we get

$$
\begin{equation*}
\sum_{k} d n_{k}=0 \text { and } \sum_{k} E_{k} d n_{k}=0 \tag{V-12}
\end{equation*}
$$

Then,

$$
\begin{gather*}
\sum_{k}\left[\ln \left(\frac{g_{k}}{n_{k}}-1\right)-\alpha-\beta E_{k}\right] d n_{k}=0  \tag{V-13}\\
\ln \left(\frac{g_{k}}{n_{k}}-1\right)-\alpha-\beta E_{k}=0 \tag{V-14}
\end{gather*}
$$

From this,

$$
\begin{equation*}
\frac{n_{k}}{g_{k}}=f\left(E_{k}\right)=\frac{1}{1+e^{\alpha+B E_{k}}} \tag{V-15}
\end{equation*}
$$

From basic thermodynamics, it can be shown that

$$
\begin{equation*}
\alpha=-\frac{E_{F}}{k T}, \quad \beta=\frac{1}{k T} \tag{V-16}
\end{equation*}
$$

to get the Fermi-Dirac distribution function,

$$
\begin{equation*}
f\left(E_{k}\right)=\frac{1}{\exp \left[\frac{E_{k}-E_{F}}{k T}\right]+1} \tag{V-17}
\end{equation*}
$$

For the limit of high energies,

$$
\begin{equation*}
E \gg E_{F}, \quad f(E)=\exp \frac{E_{F}-E}{k T} . \tag{V-18}
\end{equation*}
$$

This is the classical Maxwell-Boltzmann limit of the Fermi-Dirac distribution function. Once we have the probabilities of electron occupancy, the probability of hole occupancy becomes

$$
\begin{equation*}
1-f(E)=\frac{1}{\exp \frac{E_{F}-E}{k T}+1} \tag{V-19}
\end{equation*}
$$

Figure $\mathbf{V}$ - 1 Example showing three energy levels in a band, having different degeneracies, $g$, and electron occupancies, $n$, as shown.

## Appendix VI

## Dry and Wet Thermal Oxide Thickness Grown on $\mathrm{Si}(100)$ as a Function of Time and Temperature ${ }^{1}$




## Appendix VII <br> Solid Solubilities of Impurities in $\mathbf{S i}^{1}$


${ }^{1}$ From F. A. Trumbore. "Solid Solubilities of Impurity Elements in Si and $\mathrm{Ge}_{\boldsymbol{e}}$ " Bell System Technical Journal 39, no. 1, pp. 205-233 (Janvary 1960| copyright 1960, The American Telephone and Telegraph Co., reprinied by permission. Alterations have been made to include later data.

## Appendix VIII <br> Diffusivities of Dopants in Si and $\mathrm{SiO}_{2}{ }^{1}$

'Silicon diffusivity dala from C. S. Futer ond 1. A. Ditbemberger. "Diffusion of Donor and Acceptor Elements in Silicon." J. Appl. Physics, 27 (1956), 544.
$\mathrm{SiO}_{2}$ diffusivity dara from M. Ghezzo and D. M. Brown. "Diffusivity Summary of $\mathrm{B}, \mathrm{Ga}, \mathrm{P}, \mathrm{As}$ and Sb in $\mathrm{SiO}_{2}, "$ J. Electrochem. Soc. 120 (1973), 146.


Diffusivity of various impurities in $\mathrm{SiO}_{2}$

| Element | $D_{o}\left(\mathrm{~cm}^{2} / \mathrm{sec}\right)$ | $E_{A}(\mathrm{eV})$ |
| :--- | :--- | :--- |
| Boron | $3 \times 10^{-4}$ | 3.53 |
| Phosphorus | 0.19 | 4.03 |
| Arsenic | 250 | 4.90 |
| Antimony | $1.31 \times 10^{16}$ | 8.75 |

## Appendix IX

## Projected Range and Straggle as Function of Implant Energy in $\mathbf{S i}^{1}$

'from 1. F. Gabbens, W. S. Jotrasen and S. W. Mydroiv. Projected Range Skotistics: Semiconductors and Relotad Materiols. Stroudsburg: Dowden, Hutchison and Ross, 1975.



## Index

## Boldfaced numbers refer to illustrations.

## A

Abrupt junctions, 210-11,211, 218-19, 219, 220
Absorption
energy, 33
excess carriers, 108-141
lasers, 397-98, 398
light, 28, 397-98, 398
optical absorption, 108-11, 109, 110
Absorption coefficient, 110
A-c conductance, junctions, 210
Acceleration tube in ion
implantation system, 149, 149
Acceptors/acceptor level in
doping, 77
trapping, 118-20,118
Affinity rule, 227-32
Aluminum (Al), 11, 12, 294
contacts/interconnections, 225, 441-44, 442
heteroepitaxy, 18
metallization, 156-57, 157
ultrasonic bonding, 478
AlGaAs, 2, 11
alloy composition and variations of energy bands, 64, 66
fiber optic communications, 394, 395
heteroepitaxy, 18
heterojunction bipolar transistors (HBT), 373-74, 373
heterojunctions, 227-32
lasers, 407, 409, 410
light-emitting diodes (LED), 392
modulation doping, 252-54
molecular beam epitaxy (MBE), 23, 24, 25
quantum well, potential well problems, 79-80,79
Alloy composition and variations of energy bands, 19, 64, 65, 66
Amorphous solids, 3,4
Amphoteric impurities in semiconductors, 78
Amplifiers/amplification
bipolar junction transistor
(BJT), 325-29
field-effect transistors (FET), 242-44
Anderson affinity rule, 227-22
Angular momentum of electron in orbit, $33,45=46$
Anisotropic etching, 155
Annealing, 150
ICs, 433
rapid thermal anneal (RTA), 433
Anode gate, power devices, 513
Anode terminal, power devices, 505
Anti-punchthrough, MOSFET, 313
Anti-bonding states, 58
Antimony (Sb), 75, 225
Application-specific ICs
(ASIC), 421, 425
Arrhenius dependence of diffusivity, 144
Arsenic (As), 75
Aspect ratios, 440
Asymmetrical effects, bipolar junction transistor (BJT), 351
Atoms and electrons (See also quantum mechanics), 28-54
Attenuation of light, fiber optic communications, 393-94, 394
Au (See gold)

Avalanche breakdown, 186, $188-90,188,190,193$, 354-56, 355
Avalanche multiplication, 100, $188-90,188,190,193$ bipolar junction transistor (BJT), 354-56, 355 power devices, 509-510 Avalanche photodiodes (APD), 385-86, 388, 394

## B

Back-end processing, 156, 436
Ball bond, 477, 478, 479
Ball grid arrays (BGA), 482
Balmer series, 32,35
Band gap (See also energy gaps), 2-3,79
absorption coefficient, 110 junctions, 191-92, 227-32 optical absorption, 108-11, 109, 110
Bardeen, 241-42, 329
Base current, bipolar junction transistor (BJT), 324-25, 325
Base narrowing, bipolar junction transistor (BJT), 353-54, 354
Base resistance, bipolar junction transistor (BJT), 357-59, 358
Base spreading resistance, bipolar junction transistor (BJT), 357
Base transport factor, bipolar junction transistor (BJT), 326
Base-to-collector current amplification factor, bipolar junction transistor (BJT), 327
Base-width modulation, bipolar junction transistor (BJT), 353-54

Base-width narrowing, power devices, 509
Basis vectors in crystal lattice, 4
Batch fabrication methods for ICs, 416
Beryllium (Be), acceptors, 78
Beveling of edge, 192
Biasing
bipolar junction transistor
(BJT), 340-46
MOSFET, 300-1
Bias-temperature stress test, metal oxide
transistor/MOSFET, 280
Bilateral devices/diodes, 513-14, 514,
Binary-compound semiconductors, 2
Binding energy of donor materials, 77-78
Bipolar FET (BiFET), 515
Bipolar ICs, 421
Bipolar junction transistor (BJT), 241-42, 322-78, 349 amplification, 325-29 asymmetrical effects, 351 avalanche breakdown, 354-56, 355
base current, 324-25, 325
base narrowing, 353-54, 354
base resistance, 357-59,358
base spreading resistance, 357
base transport factor, 326
base-to-collector current
amplification factor, 327
base-width modulation, 353-54
biasing, $340-46$
buried or sub-collector, 331
capacitance and charging time, 365-68,366
charge control analysis, $344-46$
collector junction, 324
collector/base current relation, 326-27
common base bias 324
common-emitter circuits, 328-29
coupled-diode model, 340-44, 341
current transfer ratio, 326, 339-40
cutoff frequency, 347-48, 348, 368
delay time, 351
diffusion equation, in base region, 333-34, 333
doping, 331-32, 351, 352-53, 352, 371
drift in base region, 352-353
Early effect, 353-54
Ebers-Moll equation/model, 342-44, 343, 344, 350, 359
emitter crowding, 357-359
emitter injection efficiency, 326
emitter junction, 324
equivalent circuits, 342-44,
343, 344
fabrication processes, 329-32
fall time, 351
frequency limitations, 365-71
graded doping. 352-53, 352
Gummel numbers, base, emitter, 361
Gummel plot, 362,362
Gummel-Poon model, 359-62, 363
heterojunction bipolar transistors (HBT), 371-74
high-frequency transistors, 369-71, 370
hybrid-pi model, 336, 368
injection levels, 356-57
interdigitated geometry, 359, 359
inverted mode, 341-42
Kirk effect, 363-65, 364
LOCOS, 330, 331
minority carrier distribution, 332-40
nonuniformity effects, 351
normal active mode bias, 340
polysilicon emitter (polyemitter), 332
recombination of base current, 326
rise time, 351
saturation, 347, 348-49, 349
self alignment, 330, 332
series resistance effects, 351, 357-59,358
spacers, 331
switching, 346-51, 346
terminal current approximation, 337-39,337
terminal currents, 334-39
thermal effects, 356-57
transconductance, 367-68
transit time, 328, 368-69
Webster effect, 369
Bipolar/CMOS (BiCMOS), 424
Bird's beak defect, 428
Bit line/word line, 441
Blocking state, power devices, 504, 505,507-8,508
Body effect, MOSFET, 300-1, 466

Body-centered cubic (boc) lattice,5
Bohr model for atoms and electrons, 33-36, 35, 43, 46, 47
Boltzmann factor, 80,397
Bond-and-etch-back SOI (BE-SOI), ICs 438
Bonding. ICs, 476-78, 478
Bonding forces in solids, 55-58,56
Boro-phospho-silicate glass (BPSG), 435
Boron (B), 77, 145-46 $\mathrm{B}_{2} \mathrm{O}_{3}, 13$
Bose-Einstein statistics, 80
Brattain, 241-42, 329
Breakdown diodes, 186, 193-94, 194
Built-in fields and diffusion, 1 27-30
Buik negative differential conductivity (BNDC), microwave devices, 496
Buried channel CCDs, 447
Buriêd chapnel operation, 433-34
Buried or sub-collector, bipolar junction transistor (BJT), 331
Burrus diodes, fiber optic communications, 395
Bytes or words in memory, 462

## C

Capacitance/capacitors bipolar junction transistor (BJT) and charging time, 365-68,366
ICs 418, 429, 440-41, 441, 444-45, 445
ideal MOS capacitor, 260-72, 261
MOSFET, time-dependent measurement, 280
Miller overlap capacitance
MOS, 444-45
MOSFET, 304
p-n junctions, 202-10
Zerbst plotting of capacitance, 281,282
Capillary, in IC bonding, 477
Carbon Dioxide $\left(\mathrm{CO}_{2}\right)$ lasers, 400
Carrier injection, junctions, 174-83
Carrier lifetime, minority carrier
lifetime, 116
Cathode gate, power devices, 513
Cathode terminal, power devices, 505
Cathodoluminescence, 111
Cadmium (Cd)
acceptors, 78

Cadmium sulfide (CdS)
band gap, 111, 111
light-emitting diodes
(LED), 392
CdSe, 2
light-emitting diodes (LED), 392
CdTe
Gunn effect, 499
Central processing units (CPU), ICs, 450
Central valley or minimum, conduction band, 494
Centripetal force, 34
Ceramic column grid arrays, 483
Channel length modulation, MOSFET, 313
Channel length reduction, 3
Channel stops
ICs, 427
metal oxide transistor (MOS), 260
MOSFET, 260, 299-300
Charge carriers, 66-104 avalanche multiplication, 100
binding energy of donor materials, 77-78
Boltzmann factor, 80
Bose-Einstein statistics, 80
compensation, $90-92,91$
concentrations of carriers, $80-92$
conduction bands, 68-70, 79-80,79
continuum of allowed states, 79
density of states, effective, 84-88,85
doping effect on electron mobility, 97-98,99
doping in semiconductors, 75-79,76
drift and resistance, 96-97
drift, electric and magnetic fields, 92-102, 92
effective mass, 70-74, 77
electron-hole pairs (EHP), 67-70,67,74-75,74, $79-80,79$
equilibrium, at Fermi level, 102-4
equilibrium, electron-hole pairs and carrier concentrations, 83-88
excess carriers, 108-41
extrinsic semiconductor material, 75-79,76
Fermi levels, $80-83,81,82,102-4$
Fermi-Dirac statistics, $80-83$, 81, 82

Hall effect, 100-102, 101
heavy hole bands, 73
heterojunctions, 79-80,79
high-field effects, 99-100
hot carrier effects, 100
impurity scattering, 97-98,98
intrinsic semiconductor
materials, 74-75, 87
lattice scattering, 97-98,98
light hole bands, 73
Maxwell-Boltzmann statistics, 80
mean free time, 93
minority vs majority carriers, 79
mobility of electrons, 92-102,92
n -dopants in semiconductors, 75-79
p-dopants in semiconductors, 75-79
quantum welis, 79-80,79
recombination processes, 75
resistance, 96-97
scattering mechanisms, 93,97$98,98,100$
space charge neutrality, 90-92
split-off band, 73
steady state, 93,94
temperature dependence of carriers, 88-90,89, 90
temperature effects on electron mobility, 97-98,98
true vs. effective mass, 73
valence bands, 67-70, 69, 7980,79
wave-particle motion of electrons, 70
Cnarge control approximation, junctions, 180
Charge coupled device (CCD), 444-48, 446, 447
Charge sharing, MOSFET, 313-14
Charge storage capacitance, junctions, 202
Charge transfer devices, 444-48
Chemical beam epitaxy, 23
Chemical mechanical polishing (CMP), 154, 428
Chemical vapor deposition (CVD), 18, 150-51,332, 435, 436
Chromatic dispersion, fiber optic communications, 394
Classes of clean rooms, in IC fabrication, 421
Cleavage planes of crystals, 11
Coherent light, 379, 396, 397
Collector, collector junction, bipolar junction transistor (BJT), 324

Collector/base current relation, bipolar junction transistor (BJT), 326-27
Common-base bias, bipolar junction transistor (BJT), 324
Common-emitter circuits, bipolar junction transistor (BJT), 328-29
Compact disc (CD), 404
Compensation, 90-92,91
Complementary error function, 145
Complementary MOS (CMOS), 421. 423-39, 423
back-end processing, 436
bipolar/CMOS (BiCMOS), 424
bird's beak defect, 428
boro-phospho-silicate glass
(BPSG), 435
buried channel operation, 433-34
capacitance, 429
channel stops, 427
chemical mechanical
polishing (CMP), 428
conformal LPCVD, 430
corner effect, 428
CVD, 435, 436
defects, 428-29
doping, 429, 435
drain induced barrier lowering
(DIBL), 426, 430
dual-gate CMOS, 434
electromigration
phenomenon, 435
gates, 429
inverters, 451
isolation regions, 427
Kooi effect, 429
latchup, 424, 426
lateral moat encroachment defect, 428
lightly doped drain (LDD), 430, 431
LOCOS, 427, 428
LPCVD, 426, 428, 429, 430, 435
Miller overlap capacitance, 429
MOSFETs, 430, 432, 433-36
NMOS devices, 430, 433-34
overcoating, 436
overlapping capacitance, 429
parasitic bipolar structures, 424
plugs, 435
PMOS devices, 430, 432, 432-34
polycide, 435
reactive ion etching (RIE), 426
self-aligned silicide
(SALICIDE), 424-25, 425,
434-35
self-alignment, 426-27
shallow trench isolation
(STI), 428
sidewall oxide spacers, 430
source/drain extension or
tip, 430
source/drain, 434-35, 435
spiking problems, 435
tanks, 425-26,425
threshold voltages, 427
tubs or wells, 424
twin-well CMOS, 426
vias, 436
voltage transfer characteristics
(VTC), 455, 456
white ribbon effect, 429
Compound semiconductors, 1.2
Concentrations of carriers, 80-92
Conductance
MOSFET, 287
negative, in microwave devices, 486
Conducting state, power devices, $504,505,507-8,508,508-9$
Conduction bands, 60-61,68-70, 79-80,79
Conductivity, 28
effective mass, 95
Conductivity modulation, 193, 217
Conductivity-modulated FET
(COMFET), 516-17
Conformal LPCVD, 430
Constants, physical constants and conversion factors, 523
Contact potential, 159-63, 232
junctions and, carrier injection vs., 212-14, 212, 213
Contacts, ICs, 441
Continuity equation, 130-32,131
Continuum of allowed states, 79
Conversion factors, physical constants, 523
Copper (Cu), contacts/
interconnections, 441-44,442
Corner effect, 428
Coulomb potential, 43-44, 48,50
Coupled-diode model, bipolar junction transistor (BJT), $340-44,341$
Covalent bonding, 57-58, 77
Critical layer thickness, 20
Crossovers, ICs, 444
Crystal properties, 1-27
basis vectors in lattice, 4
body-centered cubic (bcc) lattice, 5
bulk crystal growth processes, $12-17,14,15$
chemical beam epitaxy, 23
chemical vapor deposition
(CVD) epitaxy, 18
cleavage planes of crystals, 11
covalent bonding, 57-58
cubic lattice structures, 5-7,6
Czochralski single-crystal growth process, 13-14, 14, 16-17
diamond lattice structures, 9-11,10, 12
doping in semiconductors, 75-79,76
effective mass, 70-74
epitaxial crystal growth process (epitaxy), 17-25
face-centered cubic (fcc) lattice, 5, 6
gas-source molecular beam epitaxy (MBE), 23
heteroepitaxy, 18-21, 19, 20
lattice constant, 5, 10-11
lattice matching in epitaxial growth process, 18-21, 19, 20
lattice structures, 3-11
liquid-encapsulated CzochralsKi (LEC) singlecrystal growth, 13
liquid-phase epitaxy (LPE), 18
metal-organic vapor-phase epitaxy (MOVPE), 23
metallic bonding, 57
Miller indices for crystal lattices, 8-9
misfit dislocations in heteroepitaxy, 20-21, 20
molecular beam epitaxy (MBE), 18), 23, 24, 25
organometallic vapor-phase epitaxy (OMVPE), 23
periodic structures in crystal lattices, 3-4, 4, 5
planes and directions in crystal lattice, 7-9, 7, 8, 9
polycrystalline solids, 3,4
primitive cell in crystal lattice, 4
pseudomorphic layers, 21
reaction chamber or reactor for epitaxy, 21-22, 22
silicon dioxide as starting material for
semiconductors, 12-13
simple cubic lattice, 5
single-crystal ingot growth processes, 13-14, 14
strained-layer superlattice
(SLS) structures, 21
sublattices, $9-10,10$
unit cells in lattice, 4,5
vapor-phase epitaxy (VPE), 21-23, 22
wafer manufacture, semiconductors, 14-16, 15
wurtzite lattice, 10
zincblende lattice, 9,11
Cu (See Copper)
Cubic lattice structures, 5-7,6
Current flow, 28, 61, 169-74
Current transfer ratio, bipolar junction transistor (BJT), 326
Cutoff frequency, BJT, 347-48, 348, 368
Czochralski single-crystal growth process, 13-14, 14, 16-17

Damascene copper etching process, ICs, 443-44
Dark current, photodetectors, 387
Debye screening length, metal oxide transistor/MOSFET, 265,279
Decay, photoconductive decay, 120
Decoders, row/column, 462
Deep depletion
ICs, 445
metal oxide transistor/
MOSFET, 281
Degenerate semiconductors, 487
Delay time, bipolar junction transistor (BJT), 351
Density of state, $84-88,85$, 525-29,528
effective mass, 86
Depletion approximation, 165
Depletion capacitance, junctions, 204, 205
Depletion layer photodiodes, 385
Depletion mode MOSFET, 299
transistors, 257, 258
Depth-of-focus in photolithography, 154
Diamond lattice structures, 9-11, 10, 12
Dichlorosilene ( $\mathrm{SiH}_{2} \mathrm{Cl}_{3}$ ), 13
Die, 151
Dielectric constant, MOSFET, 297
Dielectric relaxation time, 497
Diffraction-limited minimum geometry, 154
Diffused junctions, 157
Diffusion capacitance, junctions, 206, 207, 208-10
Diffusion currents, junctions, 171-72

Diffusion equation, bipolar junction transistor (BJT), in base region, 333-34, 333
Diffusion processes, 124-38, 125
Arrhenius dependence of diffusivity, 144
built-in fields, 127-30
carrier injection, junctions, 174-83
coefficient, 144
complementary error function, 145
continuity equation, 130-32, 131
diffusion currents, junctions, 171-72
dopant diffusivity, Si and $\mathrm{SiO}_{2}, 537-38$
drift, 127-30
Einstein relation, 129
electron diffusion coefficient, 126
gradients in quasi-Fermi levels, 137-38
Haynes-Shockley experiment in drift and diffusion, 134-37
length of diffusion, 132-34
p-n junctions, 144-46, 145
random motion and diffusion, 124-26, 125
recombination, 130-32,131
silicon, 144 -46, 145
$\mathrm{SiO}_{2}, 144-46,145$
Diffusivity, 144
Digital ICs, 418
Digital versatile disc (DVD), 404
Diode equation, 177, 178
Diodes
bilateral devices/diodes, 513-14,514
breakdown diodes, 186, 193-94, 194
Burrus diodes, 395
diode equation, 177, 178
Esaki diodes, 486
Gunn diodes, 486, 500
ICs, 439
ideal diodes, 190
impact avalanche transit time (IMPATT) diodes, 491-93,491
long diode, 207
narrow base diodes, 198, 202
photodiodes, 173, 379-90
p-n-p-n devices, 504-11,505
Read diode, 491-93, 491
reference diodes, 194
Schottky barrier diodes, 220-24
Shockley diodes, 505
short diode, 207
switching diodes, 201-2
tunnel diodes, 486-90, 488
varactor diodes, 210-11
voltage regulators, 194
Zener diodes, 194
Direct semiconductors, 62-64, 63,65
Dispersion, fiber optic
communications, 394
Displacement current, 206, 510
distributed Bragg reflector (DBR)
mirrors, 389-90, 389, 408-9
Distribution coefficient $K_{d}$ in
semiconductor doping, 16-17
Donor/donor level in doping, 76-79
trapping, 118-20
Doping in semiconductors, 16-17, 75-79, 76
amphoteric impurities in semiconductors, 78
bipolar junction transistor (BJT), 331-32.351-53, 352, 371
diffusivity for Si and $\mathrm{SiO}_{2}$, 537-38
electron mobility vs. doping, 97-98,99
heterojunction bipolar transistors (HBT), 371-74, 372
ICs, 425-26, 429, 435
junctions, 192
modulation doping, 252-54
ohmic contacts, 225
trapping, 118-20
tunnel diodes, 487
Double-heterojunction lasers, 407-9, 408
Double-diffused MOSFET
(DMOS), 516-18
Drain
ICs, 434-35, 435
junction FETs (JFET), 245
metal oxide transistor (MOS), 256-57
MOSFET, 256-57,287, 288, 289
Drain induced barrier lowering (DIBL), 289, 311-13, 312, 426, 430
Drift
bipolar junction transistor (BJT), 352-53
built-in fields and diffusion, 127-30
diffusion, 127-30
drift current, junctions, 172, 180-81
electric and magnetic fields, 92-102,92
equilitrium, 160
Haynes-Shockley experiment in drift and diffusion, 134-37, 134-36
high-field effects, 99-100
microwave devices, 496-99, 497,498
resistance, 96-97
Drift current, junctions, 172, 180-81
Drift tube in ion implantation system, 149, 149
Dual-gate CMOS, 434
Dual-inline package (DIP) ICs, 482
$d v / d t$ triggering, power devices, 510-11
Dynamic RAM (DRAM), 420, 421, 449-51, 450, 461, 464-70, 464, 465
Dynamic resistance, tunnel diodes, 489

## E

Early effect, bipolar junction transistor (BJT), 353-54
Ebers-Moll equations, bipolar junction transistor (BJT), 342-44, 343, 344, 350, 359
Effective channel length in MOSFET, 304
Effective mass, 70-74, 77
Einstein coefficients, lasers, 398
Einstein relation, 129, 161
Electric fields
diffusion, 128
drift, 93-96, 128
Hall effect, 100-102, 101 high-field effects, 99-100 junctions, 170
Electroluminescence, 111,114,390
Electromigration phenomenon, ICs, 435
Electron affinity, 222, 227-32
Electron-hole pairs (EHP), 67-70, 67, 74-75, 79-80, 79
equilibrium, carrier
concentrations, 83-88
indirect recombination, 117-20, 118 photoluminescence, 111-14, 113, 114 quasi-Fermi levels, 120-23
recombination processes, 115-20
steady state carrier
generation, 120-23
Electronic structure of atoms, 28
Electrostatic force, 34, 35
Electrostatic potential barrier, junctions, 170
Elemental semiconductors, 1,2
Emission of energy/light, 28, 33
Emission spectra of lasers, 404-5, 405
Emitter crowding, bipolar junction transistor (BJT), 357-59
Emitter injection efficiency, bipolar junction transistor (BJT), 326
Emitter, emitter junction, bipolar junction transistor (BJT), 324
Energy bands, 55-66
alloy composition and variations of energy bands, 18,64, 65
bandstructures for semiconductors, 72-73, 72
bonding forces in solids, 55-58,56
conduction bands, $60-61$
covalent bonding, 57-58
direct semiconductors, 62-64. 63, 65
energy gaps, 60-61
energy levels and bonding/ anti-bonding states, 58
forbidden bands, 61
heavy hole bands, 73 indirect semiconductors, 62-64, 63, 65
insulators, 61-62
ionic bonding, 55-57
light emission, 66
light hole bands, 73
linear combinations of atomic orbitals (LCAO), 58-59,59
metallic bonding, 57
metals, 61-62
mixed bonding, 58
Pauli exclusion principle, 59,81
potential energy, 55
separation in junctions, 170
split-off band, 73
valence bands, $60-61$
wave vectors, $62-64,63$
Zener breakdown, 186-87, 187
Energy gaps, 60-61
Energy levels of electrons, 28, $33,43,48,50$
bonding/anti-bonding states, 58
Energy of electrons, 35, 39, 43, 69

Enhancement-mode transistors, 257, 258
Epitaxial crystal growth process
(epitaxy), 17-25
Equilibrium, 120
contact potential, 159-63
diffusion and drift, 160
Einstein relations, 161
electron-hole pairs and carrier concentrations, 83-88
Fermi levels, 83-88, 102-4, 129, 161, 163-64
junctions, 157-69, 159, 227-32
metal oxide transistor/ MOSFET, 273,273
space charge, 164-69,164
Esaki diodes, 486
Etching, 155-56
Damascene copper etching process, 443-44
Excess carriers, 108-41
carrier lifetime, minority carrier lifetime, 116
diffusion processes, 124-38, 125
gradients in quasi-Fermi levels, 137-38
Haynes-Shockley experiment in drift and diffusion, 134-37
indirect recombination, 117-20, 118
luminescence, 111-14
photoconductive decay, 120
photoconductive devices, 123-24
photoconductivity, 114-15
quasi-Fermi levels, 120-23
steady state carrier generation, 120-23
steady state carrier injection, 132-34
trapping, 118-20
Expectation values, 36
Extraction of carriers, 183
Extrinsic semiconductor
material, 75-79,76

## F

Face-centered cubic (fcc) lattice, 5, 6
Fall time, bipolar junction transistor (BJT), 351
Fan out, ICs, 460
Fast interface state density, metal oxide transistor/MOSFET, 279-80,281
Fat zero inCCDs, 447

Fermi levels, 80-83, 81, 82, 530-32
bipolar junction transistor (BJT), 360
degenerate semiconductors, 487
equilibrium, 83-88, 102-4, 129. 161,163-64
gradients in quasi-Fermi levels, 137-38
junctions, 161, 170, 225-26, 226, 227-32
Maxwell-Boltzmann limit, 532
quasi-Fermi levels, 120-23, 179-80
temperature dependence of carriers, $88-90,89,90$
Fermi-Dirac statistics, $80-83,81$, 82, 530-32
Ferroelectrics, 297
Fiber optic communications, 392-94, 393
attenuation of light, 393-94, 394
avalanche photodiodes, 394
chromatic dispersion, 394
dispersion, 394
graded-index optical fiber, 393,393
index of refraction, 393
lasers, 394
losses, 393
multilayer heterojunction LEDs, 395-96
multimode fibers, 395
p-i-n photodectors, 394
pulse dispersion, 394
Rayleigh scattering of light, 393-94, 394
single-mode fibers, 395
step-index optical fiber, 393, 393
Field ionization (See Zener effect)
Field-effect transistors (FET), 241
amplification, 242-44
bipolar FET (BiFET), 515
bipolar junction transistor (BJT), 241-42
conductivity-modulated FET (COMFET), 516-17
depletion-mode transistors, 257, 258
double-diffused MOSFET (DMOS), 516-18
enhancement-mode transistors, 257, 258
GaAs MESFET, 251-52, 252
gain-enhanced MOSFET (GEMFET), 515
high electron mobility transistor (HEMT), 252-54
input impedance in, 242
insulated gate FET
(IGFET), 255
insulated gate bipolar transistor (IGBT), 515-18,516
insulated gate rectifier (IGR), 515
insulated gate transistor (IGT), 515
junction FETs (JFET), 241, 244-51, 244
load lines, 242-43, 242, 243
metal oxide semiconductor FET (MOSFET), 241, 255-316
metal-insulator semiconductor (MISFET), 241, 255
metal-semiconductor FET
(MESFET), 241, 251-55, 252
modulation doped FET
(MODFET), 252-54
on-off states, 242
pseudomorphic HEMTs, 254
separately doped FET
(SEDFET), 254
switching, 242-44
two-dimensional electron gas FET (2-DEG FET or TEGFET), 254
unipolar transistors, 241
Fill factor, solar cells, 384
Fixed oxide charge, 274
Flash memory, 421, 461, 470-73,
471, 472, 474
Flat band condition, MOSFET,
261, 263, 273, 273, 286
Flip-fiops, 454, 463, 478-79, 480
Floating gates, 470-72,471
Fluorescence, 2,112
Flux density, 126
Forbidden bands, 61
Forward resistance, junctions, 191
Forward-blocking state, power devices, 505, 507-8, 508
Forward-conducting state, power devices, 505, 507-8, 508
Fowler-Nordheim tunneling
flash memory, 473, 473
metal oxide transistor/
MOSFET, 283, 284, 285
Fully depleted SOI devices, ICs, 438
Furnaces
diffusion/oxidation, 14
horizontal/vertical, 14

## G

Gallium (Ga), 10, 11, 77
Gallium-Arsenide (GaAs), 2, 10, 13
alloy composition and variations of energy bands, 64, 66
annealing process, 150
band diagram, 495
band gap, 110-11,111
conduction bandstructures, 72-73, 72
donor/acceptors, 78
drift, space charge domains, 496-99, 497, 498
effective and true mass, 73
energy bands, 63
fiber optic communications, 394,395
Gunn effect, 499
heteroepitaxy, 18, 19-20
heterojunction bipolar transistors (HBT), 373-74, 373
heterojunctions, 227-32
high-field effects, 99
intrinsic carrier concentration vs. temperature, 89
lasers, 400, 402, 405-7, 409, 410
MESFET, 251-52, 252
microwave devices, 500
mobility variation vs doping impurity concentration, 98
modulation doping, 252-54
molecular beam epitaxy
(MBE), 23, 24, 25
photodetectors, 388
photoluminescence, 113-14, 114
quantum well, 79-80,79
vapor-phase epitaxy (VPE),
21-23
GaAsP, 2, 11
Gunn effect, 499
heteroepitaxy, 19-20
lasers. 400.404
light-emitting diodes (LED). 390-92
vapor-phase epitaxy (VPE). 22
Gain-bandwidth product,
photodetectors. 386-87
Gain-enhanced MOSFET
(GEMFET), 515
GaN, 2
lasers, 403
light-emitting diodes (LED). 390, 392
GaP. 2
band gap. 111, 111
heteroepitaxy, 20
vapor-phase epitaxy (VPE), 22
Gas-source molecular beam epitaxy (MBE), 23

Gate-triggering, SCRs, 512
Gate-induced drain leakage (GIDL), 315-16, 316
Gates
ICs, 429
junction FETs (JFET), 245.
247-49. 247, 248
MOS, 433. 434
SCR, 511-12
Gates, logic gates, 458-61, 458
Gauss's law, 165
Generation, in junctions, 172-73, 215-16, 215
Germanium (Ge), 2.9
band gap, 110-11, 111
covalent bonding, 57
effective and true mass, 73
extrinsic material, 75, 77
fiber optic communications, 394 heteroepitaxy, 20
high-field effects, 99
intrinsic carrier concentration vs. temperature, 89
mobility variation vs. doping impurity concentration. 98
recombination processes, 117
rectification properties, 192
Goleticontacts/interconnections. 441-44
Graded doping, bipolar junction transistor (BJT), 352-53. 352
Graded index separate confinement heterostructure (GRINSCH) lasers, 408
Graded junctions. 157.218-19, 219, 220
Graded-index optical fiber, 393, 393
Gradients, 124
Gradual channel approximation. junction FETs (JFET), 249
Ground state, 46, 48. 49
Guard ring. 192. 192
Gummel-Poon model, bipolar junction transistor (BJT). 359-62, 362. 363
Gunn diodes, 486, 494-95, 499, 500

## H

Hall effect. 100-2, 101
Halo implants. MOSFET, 313
Haynes-Shockiey experiment in drift and diffusion, 134-37. 134-36
Heavy hole bands. 73
Heisenberg uncertainty principle. 37.391

He-Ne lasers, 400
Heteroepitaxy, 18-21, 19, 20
Heterojunction bipolar
transistors (HBT), 371-74, 372
Heterojunction lasers, 406-9, 407, 408
Heterojunctions, 79-80, 79, 226-32, 229, 370
$\mathrm{HgCdTe}, 2$
High electron mobility transistor (HEMT), 252-54, 253
High-frequency transistors, bipolar junction transistor (BJT), 369-71, 370
High-field effects, 99-100
Holding current, SCRs, 512
Holes (See electrons-hole pairs (EHP))
Homojunctions, 226, 406
Hot carrier/hot eiectron, 100 flash memory, 472-73, 472
MOSFET, 307-11, 309
Hybrid ICs, 418-20, 419
Hybrid-pi model, bipolar junction transistor (BJT), 366, 368
Hydrogen atom model, 43-46, 44
Hyperabrupt junctions, 210-11,211

Ideal diodes, 190
Ideality factor, 214-15
Impact avalanche transit time
(IMPATT) diodes, 491-93, 491
Impact ionization, 188-90, 188,
190, 193
Implanted junctions, 157
Impurity scattering, $97-98,98$
InAlGaN lasers, 403
Incoherent light, 395
Index of refraction, fiber optic communications, 393
Indirect recombination, 117-20, 118
Indirect semiconductors, 62-64, 63, 65
Inductor for ICs, 441
InGaAs
fiber optic communications, 394
heteroepitaxy, 18
lasers, 409
photodetectors, 388
InGaAsP
fiber optic communications, 394 heteroepitaxy, 19
lasers, 410
modulation doping, 253-54

InGaN lasers, 404
Injection electroluminescence, 114,390
Injection of carriers, 174-83
contact potential vs. carrier
injection, 212-14, 212, 213
InP
fiber optic communications, 394
Gunn effect, 499
heteroepitaxy, 18, 19
lasers, 410
microwave devices, 500
$\mathrm{InSb}, 2$
band gap, 110-11,111
Insulated gate bipolar transistor (IGBT), 515-18, 516
Insulated gate FET (IGFET), 255
Insulated gate transistor
(IGT), 515
Insulators, energy bands, 61-62
Integrated circuits, 415-85, 416
amplifiers, 418
analog communication circuits, 418
application-specific ICs (ASIC), 421, 425
back-end processing, 436
batch fabrication methods, 416
bipolar ICs, 421
bipolar/CMOS (BiCMOS), 424
bird's beak defect, 428
bond-and-etch-back SOI (BE-SOI), 438
boro-phospho-silicate glass (BPSG), 435
buried channel CCDs, 447
buried channel operation, 433-34
capacitors, 418, 440-41, 441, 444-45,445
central processing units (CPU), 450
channel stops, 427
charge coupled device (CCD), 444-48, 446, 447
chemical mechanical polishing (CMP), 428
complementary MOS (CMOS)
ICs, 421, 423-39, 423
conformal LPCVD, 430
contacts, 441
corner effect, 428
crossovers, 444
CVD, 435,436
Damascene copper etching process, 443-44
deep depletion, 445
defects. 417, 428-29
depletion, 438,445
developmental history and
evolution of ICs, 420-22
digital ICs, 418
diodes, 439
doping, 425-26, 429, 435
drain induced barrier lowering (DIBL), 426, 430
dual-gate CMOS, 434
dynamic RAM (DRAM), 420,
421, 449-51, 450, 461,
464-70, 464, 465
electromigration phenomenon, 435
expansion during fabrication, 428-29
fabrication, 425-37
fan out, 460
fat zero in CCDs, 447
flash memory, 421, 461, 470-73, 471, 472, 474
flip-chips, $454,463,478-79,480$
fully depleted SOI devices, 438
gates, 429
hybrid ICs, 418-20, 419
inductors, 441
integration benefits, $416-18$, 439-44
interconnections, 441-44, 442
isolation regions, 427
junctionless devices, 438
Kooi effect, 429
large scale integration (LSI), 417,420
latchup, 424, 426
lateral moat encroachment defect, 428
lightiy doped drain (LDD), 430, 431
linear ICs, 418
LOCOS, 427, 428
logic circuits, 418, 451, 452-61
logic gates, 458-61, 458
LPCVD, 426, 428, 429; 430, 435
market for ICs, 421
medium scale integration (MSI), 420
memory circuits, $418,420,421$, 450-51, 461-74
microprocessors, 450
Miller overlap capacitance, 429
miniaturization, 417
monolithic ICs, 418-20, 423-44
Moore's Law, 420, 422
MOS ICs, 421
MOSFETs, 430, 432, 433-36

NMOS devices, 430, 433-34
noise immunity or margin, 455
overcoating, 436
overlapping capacitance, 429
packaging, 479-82, 481
pads, 444
parasitic bipelar structures, 424
plugs, 435
PMOS devices, 430, 432, 432-34
polycide, 435
potential wells, 445
propagation delay, 460
random access memory
(RAM), 461, 462
rapid thermal anneal
(RTA), 433
RC time constants, 443-44
reactive ion etching (RIE), 426
resistors, 418, 439-40, 439
sacrificial or dummy oxide growth, 429
scaling and dimensions, 420-22
self-aligned silicide
(SALICIDE), 424-25, 434-35
self-alignment, 426-27
separation by implantation of oxygen (SIMOX), 437-38
shallow trench isolation (STI), 428
sheet resistance, 440, 443
$\mathrm{Si} / \mathrm{SiO}_{2}$ contacts/ interconnections, 441-44, 442
sidewall oxide spacers, 430
silicon on insulator (SOI), 437-39, 437
simulation program with integrated circuit emphasis, 461
small scale integration (SSI). 420
source/drain extension or tip, 430
source/drain, 434-35, 435
spiking problems, 435
static RAM (SRAM), 421, 461. 463-64,463
tanks in CMOS ICs, 425-26,425
testing, 474-76
thermal relaxation time, 445
thick-vs. thin-film
technology, 419-20
threshold voitages, 427
transistors, 418
tubs or wells in CMOS ICs. 424
twin-well CMOS, 426
ultra large scale integration (ULSI), 420-21, 449-73
very large scale integration (VLSI), 420
vias, 436
voltage transfer characteristics
(VTC), 453-58, 454
white ribbon effect. 429
wire bonding, 476-78, 478
yield of ICs, 417
Interconnections, ICs, 441-44, 442
Interdigitated geometry, bipolar
junction transistor (BJT), 359, 359
Interface charge, metal oxide transistor/MOSFET, 274-75, 274
Interface states, 274
Intrinsic semiconductor materials, 74-75,87
Intrinsic vs. Extrinsic photodetectors, 386
Inversion/inversion regions
MOSFET, 291-93
lasers, 401-2, 402, 403
Inversion, strong inversion, metal oxide transistor/MOSFET, 263-70, 263, 268, 273
Inverters, 451
Ion implantation, 147-50, 148,
149, 297-300, 298
Ionic bonding, 55-57
Ionization
field ionization (See Zener effect)
impact ionization, 188-90, 188, 190. 193
ionization region, 90
Isolation or field regions, 260, 427
Isotropic etching, 155

## J

Johnson noise, photodetectors, 387
Junction capacitance, 202-5
Junction FETs (JFET). 241, 244-51, 244
current-voltage
characteristics, 249-51
drain, 245
gate, 245
gate control, 247-49, 247, 248
gradual channel
approximation, 249
mutual transconductance, 250
pinch-off, 245-46, 246
source, 245
Junctions, 142-40

## K

Kinetic energy, 35, 39, 69
Kirk effect, 363-65, 364
Kooi effect, 429

## L

Large scale integration (LSI), 417,420
Lasers, 28, 379, 396-10
absorption of light, 397-98, 398 AlGaAs lasers, $407,409,410$
$\mathrm{CO}_{2}$ lasers, 400
coherent light, 396, 397
distributed Bragg reflector (DBR) mirrors, 408-9
double-heterojunction lasers, 407-9, 408
Einstein coefficients, 398
emission spectra, 404-5, 405
energy density, 397
fabrication of semiconductor laser, 405-6, 406
$\geqslant$ fiber optic communications, 394
GaAs lasers, 400, 402, 405-7, 406, 409, 410
GaAsP lasers, 400,404
GaN lasers, 403
graded index separate confinement heterostructure (GRINSCH) lasers, 408
$\mathrm{He}-\mathrm{Ne}$ lasers, 400
heterojunction lasers, 406-9. 407, 408
homojunction lasers, 406.
InAlGaN lasers, 403
InGaAs lasers, 409
InGaAsP lasers, 410
InGaN lasers, 404
InP lasers, 410
inversion regions, 401-2, 402, 403
materials used in lasers, 410
monochromatic light, 397
negative temperature, 398-99
optical resonant cavities, 398-400, 399
p-n junction lasers, 400
population inversion, 398-404, 401
quasi-Fermi levels, 401
ruby lasers, 400
semiconductor lasers, 390, 400-10
separate confinement lasers, 408. 409
spontaneous vs. stimulated emission of light, 396-97,396
vertical cavity surface-emitting lasers (VCSELS), 408-9, 409
Latchup, 424, 426
Lateral moat encroachment defect. 428
Lattice constant. 5, 10-11
Lattice matching in epitaxial
growth process, 18-21, 19, 20
Lattice scattering, 97-98,98
Lattice structures, crystal (See
also crystal properties), 3-11
Lead bond, 477
Light emission, 35-36, 66
Light hole bands, 73
Light-emitting diodes (LED),
$66,379,390-96$
fiber optic communications, 392-94, 393
injection electroluminescence, 390
multilayer heterojunctions, 395-96
optoelectronic isolators, 392
semiconductor lasers, 390
Lightly doped drain (LDD), 308-9, 430, 431
Linear combinations of atomic orbitals (LCAO), 51-52, 58-59,59
Linear ICs, 418
Linear regime, metal oxide transistor/MOSFET, 259
Liquid-encapsulated Czochralski
(LEC) growth, 13-14, 14
Liquid-phase epitaxy (L.PE), 18
Load lines, field-effect transistors
(FET), 242-43, 242, 243
Local oxidation of silicon
(LOCOS) fabrication, 428
bipolar junction transistor (BJT), 330, 331
ICs. 427
metal oxide, 260
MOSFET, 304, 314-15
Logic circuits, 418
Logic gates, 458-61, 458
Longitudinal effective mass, 72
Low pressure chemical vapor deposition (LPCVD), 150-51, 150, 294, 428
bipolar junction transistor

ICs, 426, 429, 430, 435
Luminescence, 111-14
Lyman series, 32, 35

## M

Magnetic fields Hall effect, 100-2, 101
Masks in photolithography, 151-52, 153
Mass separator in ion implantation system, 149, 149
Mass, effective mass, 70-74
Mass, true vs. Effective mass, 73
Matrix mechanics, 36
Maxwell-Boltzmann limit, 80,532
Mean free time, 93
Medium scale integration (MSI), 420
Memory circuits, $418,420,421$. 450-51, 461-74
Metal-oxide semiconductor FET (MOSFET), 241-42, 286-16, 287, 430, 432, 433-35, 515-18
anti-punchthrough, 313
bias-temperature stress test, 280
body effect, 300-1, 466
capacitance,
time-dependent, 280
capacitance-voltage
relationship, 270-71,
277-80,278
capacitor, ideal MOS, 260-72,261
channel length modulation, 313
channel stop implants, 260 ,
299-300
charge sharing, 313-14
$\mathrm{C}_{\mathrm{i}}$ control, 295-96
cross-sectional view, 295
current-voltage characteristics, 283
Debye screening length, 265, 279
deep depletion, 281
depletion-mode, 257, 258, 299
dielectric constant materials, 297
direct tunneling, 283,285, 285
double-diffused MOSFET
(DMOS), 516-18
drain, 287, 288, 289
drain-induced barrier lowering
(DIBL), 289, 311-13, 312
enhancement mode, 257, 258
equivalent circuits, 304-5,305
equilibrium, 273,273
fabrication. 259
fast interface state density, 279-80
flat band condition, 261, 263 , 273,273, 286
Fowler-Nordheim tunneling, 283,284
gain-enhanced MOSFET (GEMFET), 515
gate electrode choice vs. threshold, 294-95
gate-induced drain leakage (GIDL), 315-16, 316
halo implants, 313
hot carrier degradation, 309-11,309
hot electron effects, 307-11
ICs. 436
insulated gate bipolar transistor (IGBT), 515-18, 516
interface charge, 274-75,274
inversion, strong inversion, 263-70, 291-93
inverters, 451
ion implantation for threshold adjustment, 297-300,298
isolation or field regions, 260
lightly doped drain (LDD), 308-9
linear regime, 259
local oxidation of silicon (LOCOS), 260, 304, 314-15
LPCVD, 294
Miller overlap capacitance, 304
mobile ion determination, 279-80
mobility degradation parameters, 292-93
mobility models, 290-93
narrow width effect, 314-15, 315
noise immunity or margin, 455
output characteristics, $286-88$
pinch-off, 293, 313
pinning of bandbending, 265
pocket implants, 313
real surface effects, 272-75
reverse short channel effect
(RSCE), 314
roll off, 314
saturation, 259, 288, 289, 291, 293
scaling, 307, 307
self-aligned fabrication process, 259-60
self-aligned gates, 304
short channel effect (SCE), 313-15,314
short channel, 289, 293, 294, $307,308,313-15,314$

Tape-automated bonding (TAB), ICs, 482
Target chamber in ion implantation system, 149, 149
Temperature dependence of carriers. $88-90,89,90$
Temperature effects on electron mobility, 97-98.98
Terminal currents, bipolar junction transistor (BJT), 334-39
Ternary-compound semiconductors, 2, 11
Thermal budget, 144
Thermal oxidation process 142-44. 143
Thermal relaxation time, ICs, 445
Thermal runaway, hipolar junction transistor (BJT). 357
Thermionic emission, 226
Thermocompression bond. 477
Thick- vs. Thin-film technology. 419-20
Threshold voltage ICs, 427 metal oxide transistor/ MOSFET, 257, 269-70, . 275-77, 276
roll-off, 286, 287, 293-300, 315
Through-hole mounted ICs, 480
Thyristors, 424, 511
Time-dependent dielectric breakdown (TDDB), 283
Transconductance bipolar junction transistor (BJT), 367-68
MOSFET, 287
Transconductance, mutual transconductance, junction FETs (JFET), 250
Transfer characteristics, MOSFET, 288-89.290
Transferred electron mechanism, microwave devices, 494
Transient and a-c conditions, junctions, 194-211
Transistors
bipolar FET (BiFET), 515
bipolar junction transistor (BJT), 241-42, 322-78
conductivity-modulated FET (COMFET), 516-17
depletion-mode transistors, 257, 258
double-diffused MOSFET (DMOS), 516-18
enhancement-mode transistors, 257, 258
field-effect transistors (FET). 241
frequency limitations. 365-71
GaAs MESFET. 251-52, 252
gain-enhanced MOSFET (GEMFET), 515
heterojunction bipolar transistors (HBT). 371-74, 372
ICs. 418
insulated gate bipolar transistor (IGBT). 515-18.516
insulated gate FET (IGFET), 255
insulated gate transistor (IGT), 515
junction FETs (JFET), 241, 244-51, 244
metal-oxide semiconductor FET (MOSFET). 241-42, 286-16, 287
metal-oxide transistor (MOS), 255-85, 256
metal semiconductor FET
(MESFET). 241, 251-55, 252
metal-insulator semiconductor (MISFET), 241
metal-insulator-semiconductor (MIS) transistor, 255
modulation doped FET (MODFET). 252
point contact transistors as early BJTs, 329
pseudomorphic HEMTs, 254
separately doped FET
(SEDFET), 254
two-dimensional electron gas
FET (2-DEG FET or
TEGFET), 254
unipolar transistors, 241
Transit time, 328, 368-69, 490-93
Transition region, junctions, 160,
170,214-16, 215
Transitions between energy
levels (orbits) of electrons. 28,
33. 34-35, 34, 35

Transverse effective mass, 72
Trench capacitor, 470
islolation, 428
Trapping, 118-20
Triacs, 514
Triggering mechanisms, power devices, 509-11
Tubs or wells in CMOS ICs, 424

Tunnel diodes. 486-90, 488
Tunneling
flash memory, 473.473
Fowler-Nordheim tunneling, 283, 284. 285 metal oxide transistor/ MOSFET. 283, 285, 285 quantum mechanics, 42-43, 42
Twin-well CMOS, 426
Two-dimensional electron gap, 232
Two-dimensional electron gas
FET (2-DEG FET or TEGFET), 254
Type N negative resistance, tunnel diodes, 489

U
Ultra large scale integration (ULSI), 420-21, 449-73
Ultrasonic bonding, 477
Uncertainty principle, 36-38
Unipolar transistors, 241
Unit cells in crystal lattice, 4,5
Universal mobility degradation curves, 291

V
Vacuum level, 229
Valence bands, 60-61, 67-70,69, 79-80, 79
Valley current, tunnel diodes, 489
Vapor-phase epitaxy (VPE), 21-23, 22
Varactor diodes, 210-11
Vertical cavity surface-emitting lasers (VCSELS), 438-9,409
Very large scale integration (VLSI), 420
Vias, in ICs, 436
Voltage regulators, 194
Voltage transfer characteristics (VTC), ICs, 453-58, 454
Voltage triggering in power devices, 509
Voltage-variable capacitance. junctions, 205
Voltage-controlled negative resistance, tunnel diodes, 489

## W

Wafer manufacture, semiconductors, 14-16, 15
Wave mechanics, 36

Wave nature of light, 31
Wave vectors, energy bands, 62-64, 63
Wavelengths of spectral emissions, 32
Wave-particle motion, 70
Weak inverse, 266
Webster effect, bipolar junction transistor (BJT), 369
Wedge bond, 478,479
Well problem (See potential well problems)
White ribbon effect, ICs, 429
Wire bonding, ICs, 476-78, 478
Words or bytes in memory, 462
Work function of metals, 31 , 220-22
junctions, 227-32
metal oxide transistor/
MOSFET, 260, 262-64, 263, 272-73, 273
Wurtzite lattice, 10

## X

X-ray lithograph, 154

Y
Yield, 417

## Z

Zener diodes, 194
Zener effect, 186-87, 187, 486, 488

Zerbst plotting of capacitance, 281, 282
Zincblende lattice structures, 9, 11
Zinc (Zn)
impurity energy levels, 119-20, 119
$\mathrm{ZnS}, 2,112$
light-emitting diodes
(LED), 392
photoluminescence, 112, 114
ZnSe
Gunn effect, 499
light-emitting diodes (LED), 392
ZnTe
light-emitting diodes
(LED), 392
$\mathrm{ZrO}_{2}, 297$

Junction Depletion: $\quad C_{j}=\epsilon A\left[\frac{q}{2 \epsilon\left(V_{0}-V\right)} \frac{N_{d} N_{a}}{N_{d}+N_{a}}\right]^{1 / 2}=\frac{\epsilon A}{W}$
$\begin{aligned} & \text { Stored charge } \\ & \text { exp. hole dist.: }\end{aligned} Q_{p}=q A \int_{0}^{\infty} \delta p\left(x_{n}\right) d x_{n}=q A \Delta p_{n} \int_{0}^{\infty} e^{-x_{n} / L_{\rho}} d x_{n}=q A L_{p} \Delta p_{n}$.
$I_{p}\left(x_{n}=0\right)=\frac{Q_{p}}{\tau_{p}}=q A \frac{L_{p}}{\tau_{p}} \Delta p_{n}=q A \frac{D_{p}}{L_{p}} p_{n}\left(e^{q V / k T}-1\right)$
$G_{s}=\frac{d I}{d V}=\frac{q A L_{p} p_{n}}{\tau_{p}} \frac{d}{d V}\left(e^{q V / k T}\right)=\frac{q}{k T} I$
Long p $-\mathrm{n}: \quad i(t)=\frac{Q_{p}(t)}{\tau_{p}}+\frac{d Q_{p}(t)}{d t}$

## MOS-n CHANNEL

Oxide: $\quad C_{i}=\frac{\epsilon_{i}}{d} \quad$ Depletion: $C_{d}=\frac{\epsilon_{s}}{W} \quad \operatorname{mOS}: C=\frac{C_{1} C_{d}}{C_{i}+C_{d}}$
Threshold: $\quad V_{T}=\underbrace{\Phi_{m s}-\frac{Q_{i}}{C_{i}}}-\frac{\mathrm{Q}_{d}}{\mathrm{C}_{i}}+2 \phi_{F}$
Flat band
Inversion: $\quad \phi_{s}$ (inv.) $=2 \phi_{F}=2 \frac{k T}{q} \ln \frac{N_{a}}{n_{i}} \quad(6-15) \quad W=\left[\frac{2 \epsilon_{,} \phi_{s}}{q N_{a}}\right]^{1 / 2}$
$\mathrm{Q}_{d}=-q N_{a} W_{m}=-2\left(\epsilon_{s} q N_{a} \phi_{F}\right)^{1 / 2} \quad(6-32) \quad$ At $V_{F B}: \quad C_{F B}=\frac{C_{i} C_{\text {debye }}}{C_{i}+C_{\text {dehyc }}}$
Debye screening length: $\quad L_{D}=\sqrt{\frac{\epsilon_{s} k T}{q^{2} p_{0}}} \quad$ (6-25) $\quad C_{\text {debye }}=\frac{\sqrt{2} \epsilon_{s}}{L_{D}}$

$I_{D}=\frac{\bar{\mu}_{n} Z C_{i}}{L}\left[\left(V_{G}-V_{T}\right) V_{D}-\frac{1}{2} V_{D}^{2}\right](6-49)$
Saturation: $\quad I_{D}($ sat. $)=\frac{1}{2} \bar{\mu}_{\mathrm{n}} C_{i} \frac{Z}{L}\left(V_{G}-V_{T}\right)^{2}=\frac{Z}{2 L} \bar{\mu}_{n} C_{i} V_{D}^{2}$ (sat.) (6-53)
$g_{m}=\frac{\partial I_{D}}{\partial V_{G}} \quad: \quad g_{m}($ sat. $)=\frac{\partial I_{D}(\text { sat. })}{\partial V_{G}}=\frac{\mathrm{Z}}{\mathrm{L}} \bar{\mu}_{\mathrm{n}} C_{i}\left(V_{G}-V_{T}\right)$
For short $L: \quad I_{D}=Z C_{( }\left(V_{G}-V_{I}\right) \mathbf{v}_{s} \quad(6-60)$
Subthreshold slope: $S=\frac{d V_{G}}{d\left(\log l_{p}\right)}=\frac{k T}{q} \ln 10\left[1+\frac{\mathrm{C}_{d}+\mathrm{C}_{t}}{\mathrm{C}_{i}}\right]$

## BJT-p-n-p

$$
I_{E p}=q A \frac{D_{r}}{L_{p}}\left(\Delta p_{E} \operatorname{ctnh} \frac{W_{b}}{L_{p}}-\Delta p_{C} \operatorname{csch} \frac{W_{b}}{L_{p}}\right) \quad \text { (7-18) } \quad \begin{align*}
& \Delta p_{E}=p_{n}\left(e^{q V_{r / k} / k T}-1\right)  \tag{7-18}\\
& \Delta p_{C}=p_{n}\left(e^{q V_{C / k} / k T}-1\right)
\end{align*}
$$

$I_{C}=q A \frac{D_{p}}{L_{p}}\left(\Delta p_{k} \operatorname{csch} \frac{W_{b}}{L_{p}}-\Delta p_{C} \operatorname{ctnh} \frac{W_{b}}{L_{p}}\right)$
$I_{H}=q A \frac{D_{p}}{L_{p}}\left[\left(\Delta p_{E}+\Delta p_{C}\right) \tanh \frac{W_{h}}{2 L_{p}}\right]$
$B=\frac{I_{c}}{I_{L p}}=\frac{\operatorname{csch} W_{b} / L_{p}}{\operatorname{ctnh} W_{h} / L_{p}}=\operatorname{sech} \frac{W_{h}}{L_{p}} \simeq 1-\left(\frac{\mathrm{W}_{\mathrm{b}}^{2}}{2 \mathrm{~L}_{\mathrm{p}}^{2}}\right)$
(Base transport factor)
$\gamma=\frac{I_{E p}}{I_{E n}+I_{E p}}=\left[1+\frac{L_{p}^{n} n_{n} \mu_{n}^{p}}{L_{n}^{p} p_{p} \mu_{p}^{n}} \tanh \frac{W_{b}}{L_{p}^{n}}\right]^{-1} \approx\left[1+\frac{W_{b} n_{n} \mu_{n}^{p}}{L_{n}^{p} p_{p} \mu_{p}^{n}}\right]^{-1}$
(Emitter injection efficiency)
$\frac{i_{C}}{i_{E}}=B \gamma \equiv \alpha$

$$
\begin{equation*}
\frac{i_{C}}{i_{B}}=\frac{B \gamma}{1-B \gamma}=\frac{\alpha}{1-\alpha} \equiv \beta \quad(7-6) \quad \frac{i_{C}}{i_{B}}=\beta=\frac{\tau_{p}}{\tau_{t}} \tag{7-3}
\end{equation*}
$$

(Common base gain)


[^0]:    'This list does not include some symbols that are used only in the section where they are defined. Units are given in common semiconductor usoge, involving cm where appropriate; it is important to note, however, that calculations should be made in the MKS system in some formulas.
    ${ }^{2}$ in the Bolizmann foctor $\exp (-\Delta E / k), \Delta E$ can be expressed in $J$ or eV if $k$ is expressed in $J / K$ or eV/K, respectively.

[^1]:    ${ }^{3}$ See note at the end of this list.

[^2]:    ${ }^{4}$ See nole ot the end of this list.

[^3]:    ${ }^{1}$ Since cm is used as the unit of length for many semiconductor quantities, caution must be exercised to avoid unit errors in colculations. When using quantities involving length in formulas which contain quantities measured in MKS units, it is usually best to use all MKS quantities. Conversion to standard semiconductor usage involving em can be occomplished as a last step. Similar caution is recommendod in using J and eV as energy units.

