
PART III: Related Topics

Chapter 10

Logic and Propositional Calculus

10.1 INTRODUCTION

Many proofs in mathematics and many algorithms in computer science use logical expressions such

rM

"IF p THEN q"	 or	 "IF Pi AND P2. THEN q 1 OR q2"

It is therefore necessary to know the cases in which these expressions are either TRUE or FALSE: what
we refer to as the truth values of such expressions. We discuss these issues in this chapter.

We also investigate the truth value of quantified statements, which are statements which use the
logical quantifiers "for e'ery" and "there exists".

10.2 PROPOSITIONS AND COMPOUND PROPOSITIONS

A proposition (or statement) is a declarative sentence which is true or false, but not both. Consider,

for example, the following eight sentences:

(i) Paris is in France.	 (v) 9 < 6.

(ii) I + I = 2.	 (vi) x = 2 is a solution of x7 = 4.

(iii) 2 + 2 = 3.	 (vii) Where are you going?

(iv) London is in Denmark. 	 (viii) Do your homework.

All of them are propositions except (vii) and (viii). Moreover. (i), (ii). and (vi) are true, whereas. (iii).
(iv), and (v) are false.

Compound Propositions

Many propositions are composite, that is, composed of subproposilions and various connectives

discussed subsequently. Such composite propositions are called compound propositions. A proposition

is said to he primitive if it cannot he broken down into simpler propositions, that is, if it is not composite.

EXAMPLE 10.1

(a) "Roses are red and violets are blue" is a compound proposition with subpropositions "Roses arc red' and
"Violets are blue".

(h) "John is intelligent or studies every night" is a compound proposition with subproposilions "John is intelli-
gent" and "John studies every night".

(c) The above propositions (i) through (vi) are all primitive propositions: they cannot be broken down into simpler
propositions.
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The fundamental property of a compound proposition is that its truth value is completely

determined by the truth values of its sit hpropositions together with the way in which they are
connected to form the compound propositions.

The next section studies some of these connectives.

10.3 BASIC LOGICAL OPERATIONS

This section discusses the three basic logical operations of conjunction, disjunction, and negation
which correspond, respectively, to the English words "and", "or", and "not".

Conjunction p A q

An y two propositions can be combined by the word "and" to form a compound proposition called
the cozjunc(ioi, of the original propositions. Symbolically.

pAq

read "p and q". denotes the conjunction of  and q. Since p A (j is a proposition it has a truth value, and
this truth value depends only on the truth values of p and q. Specifically:

Definition 10.1: If p and q are true, then p  q is true; otherwise p A q is false,

The truth value of  A q may be defined equivalently by the table in Fig. 10-I (a). Here, the first line
is a short way of saying that if  is true and q is true, then p  q is true. The second line says that if  is
true and q is false, then p A q is false. And so on. Observe that there are four lines corresponding to the
four possible combinations of T and F for the two subpropositions p and q. Note that q A q is true only
when both p and q are true.

P	 q I p A q	 p	 q p V q	 p	 p

T T	 I	 T T	 T	 T F
I F	 F	 T F	 I	 F T
F T	 F	 F T	 T
F	 F	 F	 F	 F	 F

(a)"p and q"	 (b)"porq"	 (c) "not p"

Fig. 10-I

EXAMPLE 10.2 Consider the following four statements:

(i) Paris is in France and 2 + 2 = 4.	 (iii) Paris is in England and 2 + 2 = 4.

(ii) Paris is in France and 2 + 2 = 5.	 (iv) Pans is in England and 2 + 2	 5.

Only the first statement is true. Each of the other statements is false since at least one of its substatements is false.

Disjunction, p V q

Any two propositions can be combined by the word "or" to form a compound proposition called
the disjunction of the original propositions. Symbolically,

pVq

read "p or q", denotes the disjunction of p and q. The truth value of p V q depends only on the truth
values of p and q as follows.
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Definition 10.2: If  and q arc false, then p V q is false; otherwise p V q is true.

The truth value of  V q may be defined equivalently by the table in Fig. 10-1(h). Observe that j' V q

is false only in the fourth case when both p and q are false.

EXAMPLE 10.3 Consider the following four statements:

(i) Paris is in France or 2 + 2 = 4. 	 (iii) Paris is in England or 2 + 2 = 4.

(ii) Paris is in France or 2 + 2 = S. 	 (Iv) Paris is in England or 2 1- 2 = 5.

Only the last statemeit (iv) is false. Each of the other statements is true since at least one of its substatentents is true.

Remark: The English word "or" is commonly used in two distinct ways. Sometimes it is used in

the sense of "p or q or both", i.e.. at least one of the two alternatives occurs, as above, and sometimes it

is used in the sense of "p or q but not both", i.e., exactly one of the two alternatives occurs. For example,
the sentence 'He will go to Harvard or to Yale" uses "or" in the latter sense, called the exclusive

disjunction. Unless otherwise stated. "or" shall be used in the former sense. This discussion points

out the precision we gain from our symbolic language: p V q is defined by its truth table and always

means "p and/or q".

Negation, - p

Given any proposition p, another proposition. called the negation of p, can be formed by writing "It

is not the case that .....or "It is false that .....before p or, if possible, by inserting in p the word "not''.

Symbolically.

read "not p", denotes the negation of p. The truth value of p depends on the truth value of p as

follows.

Definition 10.3: If p is true, then -, p is false; and if p is false, then - p is true.

The truth value of p may he defined equivalently by the table in Fig. 10'3((-). Thus the truth value

of the negation of p is always the opposite of the truth value of p.

EXAMPLE 10.4 Consider the following six statements.

(a) Paris is in France.	 (h1) 24-2 = 5.

(a ? ) It is not the case that Paris is in France.	 02) It is not the case that 2 + 2 =

( ax) Paris is not in France.	 (hi) 2 + 2	 5.

Then (a) and (ax) are each the negation of (as): and (h 2 ) and (h i ) are each the negation of (h 1 ). Since (a 1 ) is true,

(02) and (0) are false, and since (b 1 ) is false, (b,) and (fr) are true.

Remark: The logical notation for the connectives "and". "or". and "not" are not completely

standard. For example, some texts use:

	

p&q,pqorpq	 for pAq

p + q	 .	 for pVq

p',p or p	 for - p



232	 LOGIC AND PROPOSITIONAL CALCULUS	 (CHAP. 10

10.4 PROPOSITIONS AND TRUTH TABLES

Let P(p, q,...) denote an expression constructed from logical variables p q,..., which take on the
value TRUE (T) or FALSE (F). and the logical connectives A. V. and -, (and others discussed
subsequently). Such an expression P(p,q .... ) will be called it

The main property of a proposition Pp, q,...) is that its truth value depends exclusively upon the
truth values of its variables, that is, the truth value of a proposition is known once the truth value of each
of its variables is known. A simple concise way to show this relationship is through a truth table. We
describe a way to obtain such a truth table below.

Consider, for example, the proposition -'(p A -'q). Figure 10-2(a) indicates how the truth table of
-(p A -'q) is constructed. Observe that the first columns of the table are for the variables p, q,... and
and that there are enough rows in the table to allow for all possible combinations of T and F for these
variables. (For 2 variables, 4 rows are necessary; for 3 variables, 8 rows are necessary; and, in general,
for ii variables 2" rows are required) There is then a column for each "elementary" stage of the
construction of the proposition, the truth table at each step being determined from the previous stages
by the definitions of the connectives A, v, -. Finally we obtain the truth value of the proposition, which
appears in the last column.

The actual truth table of the proposition -'(p A -'q) is shown in Fig. 10-2(h). It consists precisely of
the columns in Fig. 10-2(a) which appear under the variables and under the proposition; the other
columns were merely used in the construction of the truth table.

p	 q	 q pA -'q -'(pA'q.)	 p	 q	 '(pA-q)

I I F	 F	 I	 T I	 I
T F I	 T	 F	 I F	 F
F T F	 F	 T	 F	 I	 I
F F T	 F	 F F	 T

(a)	 (h)

Fig. 10-2

Remark: In order to avoid an excessive number of parentheses, we sometimes adopt an order of
precedence for the logical connectives. Specifically:

-, has precedence over A which has precedence over V.
For example, -'p A q means (-'p) A q and not -'(p A q).

Alternative Method for Constructing a Truth 'Table

Another way to construct the truth table for -'(p A -'q) follows:

(a) First we construct the truth table shown in Fig. 10-3. That is, first we list all the variables and the
combinations of their truth values. Then the proposition is written on the top row to the right of its
variables with sufficient space so that there is a column under each 'ariabland each connective in
the proposition. Also there is a final row labeled "Step".

P	 q	 - (p A

I T
T F
F T
F F

Step

Fig. 10-3
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(a) p V

p — p pAp

I	 F I	 F
F T	 F

(b) p A —p
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(b) Next, additional truth values are entered into the truth table in various steps as shown in Fig. 10-4.
That is, first the truth values of the variables are entered under the variables in the proposition, and
then there is a column of truth values entered under each logciat operation. We also indicate the
step in which each column of truth values is entered in the table.

The truth table of the proposition then consists of the original columns under the variables and
the last step, that is, the last column entered into the table.

p	 q	 (p	 A	 -'	 q)

IT	 I	 I
I F	 I	 F
F T	 F
F F	 F	 F

Step	 1
(a)

-,	 (p	 A	 q)

I I	 T F F I
T F	 I I I F
F T	 F F FT
F F	 F F I F

Step	 .-	 1	 3	 2	 I
(c)

p	 q	 -,	 (p	 A	 -,	 q)

T T	 I	 F I
IF	 T	 IF
F I	 F	 F T
F F	 F	 T F

Step	 1	 2	 I
(b)

P	 q	 (p A	 q)

T T T I F F T
F I F I TI F
F F T F	 F F I
F F T F	 FT F

Step	 4	 1 1 3	 2	 I
(d)

Fig. 10-4

105 TAUTOLOGIES AND CONTRADICTIONS

Some propositions P(p, q .... ) contain only T in the last column of their truth tables or, in other
words, they are true for any truth values of their variables. Such propositions are called tautologies.
Analogously, a proposition P(p, q .... ) is called a contradiction if it contains only F in the last column of
its truth table or, in other words, if it is false for any truth values of its variables. For example, the
proposition "p or not p", that is, p V -' p, is a tautology, and the proposition 'p and not p", that is,
p A -'p, is a contradiction. This is verified by looking at their truth tables in Fig. 10-5. (The truth tables
have only two rows since each proposition has only the one variable p.)

Fig. 10-5

Note that the negation of a tautology is a contradiction since it is always false, and the negation of a
contradiction is a tautology since it is always true.
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Now let P(p, q,;..) be a tautology, and let P 1 (p q,. . .), P2 (p, q .... ).. be any propositions. Since

P(p, q .... ) does not depend upon the particular truth values of its variables p, q_., we can substitute P1

for p. P2 for q,.. in the tautology P(p, q,...) and still have a tautology. We state this result formally.

Theorem 10.1 (Principle of Substitution): if P(p, q,. ..) is a tautology, then P(P 1 , P2 ,..) is a tautology

for any propositions P 1 . P2, - - - -

10.6 LOGICAL EQUIVALENCE

Two propositions P(p, q,.) and Q(p, q,...) are said to be logically equivalent, or simply equivalent

or equal, dentted by

if they. have identical truth tables. Consider, for example, the truth tables of -'(p A q) and p V -'q
appearing in Fig. 10-6. Observe that both truth tables are the same, that is, both propositions are false in
the first case and true in the other three cases. Accordingly, we can write

-(pAq)

In other words, the propositions are logically equivalent.

p	 q	 pAq	 '(pAq)

TI	 I	 F
I F	 F	 I
F I	 F	 I
F F	 F	 I

(a) '(pAq)

p	 q I —p -' q 	 pV'q

TT	 F	 F	 F
I F F	 I	 I
F I I F	 T
F F T T	 T

(b) pVq

Fig. 10-6

Remark: Consider the statement

"It is not the case that roses are red and violets are blue"

This statement can be written in the form -'(p A q), where

p is "roses are red" and q is "violets are blue"

However, as noted above, -'(p A q) -' p V -'q. Thus the statement

"Roses are not red, or violets are not blue"

has the same meaning as the given statement.

10.7 ALGEBRA OF PROPOSITIONS

Propositions satisfy various laws which are listed in Table 10-I. (In this table, T and F are restricted
to the truth values "true" and "false" respectively.) We state this result formally.

Theorem 10.2: Propositions satisfy the laws of Table 10-I.
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Table 10-1 Laws of the Algebra of Propositions

Idempoteni laws

(Ia) pVpp	 (1/)) pApp

Associative laws

(2a) (pvq)vrpv(qVr)	 (2/)) (pAq)ArEpA(qAr)

Commutative laws

(3a) pVqqVp	 (3/)) pAqqAp

Distributive laws

(4a) pv(qAr)E(pVq)A(pVr)	 (4/)) pA(qvr)=(pAq)V(pAr)

Identity laws

(5o) p V T p	 (5/)) pAFp
(6a) p V T T	 (6/)) p A F F

Complement laws

(7a) pV -'pT	 (ta) - TEF
(7b) pA -'pF	 (Sb) - FT

Involution law

(9) - --'pp

l.kMorgan's laws

(lOu) -.'(pVq)--pAq	 (10/))	 (pAqL=-pV--q

10.8 CONDITIONAL AND BLCOND1TIONAL STATEMENTS

Many statements, particularly in mathematics. are of the form "lip then q". Such statements are
called conditional statements, and are denoted by

P --. q

The conditional p -. q is frequently read "p implies q" or "p only if q".
Another common statement is of the form "p if and only if q". Such statements are called hicondi-

tional statements, and are denoted by

The truth values of p -. q and p .-. q are defined by the tables in Fig. 10-7. Observe that:

(a) The conditional p -. q is false only when the first part p is true and the second part q is false.
Accordingly, when p is false, the conditional p -. q is true regardless of the truth value of q.

(b) The biconditional p - q is true whenever p and q have the same truth values and false otherwise.

P	 q I p-Pq	 p	 q I p4-q

T T	 T	 T T	 T
T F	 F	 T F	 F

F I	 T	 F T	 F

F F	 T	 F F	 T

	

(a) p-sq	 (6) p+-q

Fig. 10-7
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The truth table of the proposition -'p V q appears in Fig. 10-8. Observe that the truth tables of
-'p V q and p -. q are identical, that is, they are both false only in the second case. Accordingly, p -. q is
logically equivalent to -'p V q: that is,

p - q -' p V q

In other words, the conditional statement "lfp then q" is logically equivalent to the statement "Not p or
q" which only involves the connectives V and and thus was already a part of our language. We may
regard p - q as an abbreviation for an oft-recurring statement.

P	 q	 -'p I -'pVq

IT F	 I
I F F	 F
F T I	 T
F F T	 I

p  q

Fig. 10-8

10.9 ARGUMENTS

An argument is an assertion that a given set of propositions P 1 . P,. . ., P, called premises, yields
(has as a consequence) another proposition Q. called the conclusion. Such an argument is denoted by

P1,P2.....P,-Q

The notion of a "logical argument" or "valid argument" is formalized as follows.

Definition 10.4: An argument P 1 , P2 ,..., P, I- Q is said to be valid if Q is true whenever all the premises
P 1 ,P2 ,. . . , P are true. An argument which is not valid is called af/lacy.

EXAMPLE 10.5

(a) The following argument is valid:

p.p -. q q (Lan' of Detachment)

The proof of this rule follows from the truth table in Fig. 10-9. Specifically. p and p - q are true simul-
taneously only in Case (row) I, and in this case q is true.

(h) The following argument is a fallacy:

P	 q I p-*q

IT	 I
IF	 F
F I	 I
F F	 T

Fig. 10-9

p - q, q - p

For p -. q and q are both true in Case (row) 3 in the truth table in I i g. 10-9, but in this case p is false.
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Now the propositions P 1 , P,,.., P., are true simultaneously if and only if the proposition
P 1 A P, A . . A P,, is true. Thus the argument P, P2 ,.., P I- Q is valid if and only if Q is true whenever
P, A P2 A ... A P,, is true or, equivalently, if the proposition (P 1 A P2 A ... A P,,) - Q is a tautology. We
state this result formally.

Theorem 10.3: The argument P 1 P2 .....P,, I- Q is valid if and only if the proposition

	

(P 1 A P2 A	 A F,,)	 Q is a tautology.

We apply this theorem in the next example.

EXAMPLE 10.6 A fundamental principle of logical , reasoning states:

"If p implies q and q implies r, then p implies r"

That is, the following argument is valid:

p q, q— r - p r (Law of Syllogism)

This fact is verified by the truth table in Fig. 10-10, which shows that the following proposition is a tautology:

Equiv iitly, the .irgument is valid since the premises p -. qand q -. r are true simultaneously only in Cases (rows)
I, 5, 7, 8 and in these cases the conclusion p - r is also true. (Observe that the truth table required 2 8 lines since
there are three variables, p, q, r.)

P	 q	 r	 ((p	 -.	 q)	 A	 (q	 -.	 r))	 -.	 (p	 -.	 r)
T I T T T I I I T I I I T I

	

I I F I T T F T F F I T F	 F
I F I I F F F F I I T T I I
I	 F	 F	 I	 F	 F	 F	 F	 r	 F	 T T	 F	 F
F T T F T T I I I I I F T T
F T F F I I F I F F T F T F
F F I F I F I F I T I F I I
F	 F	 F	 F	 T	 F	 T	 F	 I	 F	 T	 F	 I	 F

	

Step	 I	 2	 I	 3 1	 1 1 2 1	 1	 4	 t	 2	 I

Fig. 10-10

We now apply thc above theory to arguments involving specific statements. We emphasize that the
validity of an argument does not depend upon the truth values nor the content of the statements
appearing in the argument, but upon the particular form of the argument. This is illustrated in the
following example.

EXAMPLE 10.7 Considci the following argument:

S 1 : If a man is a bachelor, he is unhappy.

':	 If a man is unhappy, he dies young.

S: Bachelors die young.

Here the statement S below the line denotes the conclusion of the argument. and the NlatcmcnLs S and S above the
line denote the premises. We claim that the argument S , S F- S is valid. For the argument is of the form

p - q.q --. r F- p -'r

where p is "He is it 	 q is "He is unhappy" and r is "He dies young"; and by Example 10.6 this argument
(law of syllogism) is valid.
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10.10 LOGICAL IMPLICATION

	

A proposition P(p, q. - .) is said to Iui':aI/i- imp/v it 	 Q(p. q....). written

P(p.q .... ) ----> Q( p . q .... )

if Q(p, q. . .) is true whenever P(p, q....) is true.

EXAMPLE 10.8 We claim that p logicall y implic' p V q For consider the truth table in Fig. 10- 11. Observe that p
is true in Cases ( r(ss) I and 2. and in these cases p V q is also true Thus p	 p V (f.

	

5/	 p V q

	

T I	 T
T F

	

F	 I	 r

	

F	 F	 F

Fig. 10- 11

Now if Q(p, q _.)  is true whenever P(p. q. . . .) is true, then the argument

P(p,q. ... ) I- Q(p.q....)

is valid; and conversely. Furthernl')re, the argument P k () is valid if and onl y if the conditional
statement P	 Q is always true, i.e., it tautology. We state this result formally.

Theorem 10.4. For an y propositions f'(p, q — .). .) and Q(p, q. . . .) the following three statements are
equivalent:

(i) P(p. q.... ) logically implies Q(p. q....
(ii) The argument P(p, q. . . .) - Q(p. q .... ) is valid.

(iii) The proposition P(p. q .... )	 Q(p, q .... ) is a tautology.

We note that some logicians and many texts use the word "implies'' in the same sense as we use
"logically implies", and so they distinguish between "implies' and "if ... then". These two distinct
concepts are, of course, intimately related as seen in the above theorem.

10.11 PROPOSFUIONAI, FUNCTIONS, QUANTIFIERS

Let .4 be a given set. A /iropo,vj/jo,, ( ,/ fwu-tw,, (or an ape;: .veuteme or condition) defined on A is an
expression

/)(x)

which has the property that ((,) is true or false for each a i A. That is. ,;(.t) becomes a statement (with a
truth valu:) whenever an y element a E A is substituted for the variable .v. The set A is called the domai,,
olp( ). and the set T of all elements of A for which p(a) is true is called the frw/ xci of /)(.v) - In other
words,

	

Tr = (.v: .v E A. p(.v) is ti'Lie}	 or	 7 = {.v: p(.v)}

Frequently, when A is some set of numbers, the condition p(v) has the form of an equation or inequality
involving the variable .v.
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EXAMPLE 10.9 Find the truth set T1, of each propositional kinction i'( ) defined on the set P = { 1.2. 3.

(a) Let p(s) be "v-+ 2> 7". Then

E i'.s 4 27}={(.7,8,..}

consisting ol ill integers greater than S.

(h) Let p(x) be 's + 5 c 3". Then

11, = {v: v C I', v + 5 <3J	 0

the empty set. In other words. p( x) is not true for an y positive integer in P.
(c) Let p(x) be 's + 5> I". Then

Tr = (v:x E P. .v +5	 I) = P

Thus p( v) is true for every element in I'.

Remark: The above example shows that if p( v) is a propositional function defined oil set .4 then
p(x) could be true for all v E A, for some .v € A. or for no .v .4. The next two subsections discusses
quantifiers related to such propositional functions.

Universal Quantifier

Let p(x) he a propositional function defined oil set A. Consider the expression

(V.v E A)pLv)	 or	 V.v p(.v)

which reads "For every .v in .4, p(s) is a true statement" or, simply, ''For all v, p( v)'. The symbol

V

which reads "for all'' or "for every" is called the u,,io'r.suf quwilifier. The statement (/0/) is equivalent
to the statement

To = .v:.v c A. p(.') } = A	 (10.2)

that is, that the truth set of p(x) is the entire set A.
The expression p(.v) by itself is an open sentence or condition and therefore has no truth value.

However, Vx, p(.v) that is. p(.v) preceded by the quantifier V. does have it value which follows from
the equivalence of (10.1) and (10.2). Specifically:

Q :	 If {.v : . € .4. ()} = .4 then Vx, p(.v) is true: otherwise. V.v. p(x) is false.

EXAMPLE 10.10

(a) The proposition (Vu E P) (ii + 4 > 3) is true since

{u:n+4 >3) = ( t.2......}	 I'

(h) The proposition (Vu C P) (ii -4 2 > 8) is false since

(it :fl4-2>8) z {78 	 p

(c) The symbol V can be used to define the intersection of an indexed collection { .4, 1 E F of sets l as follows:

n( ,4 , : i E I)	 )v:VIE F. sEA,)
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Existential Quantifier

Let p(x) be a propositional function defined on a set A. Consider the expression

	

(x E A)p(x)	 or	 3.v, p(x)	 (10.3)

which reads "There exists an .v in A such that p( v) is a true statement" or. simply, "For some .v, p(x)".
The symbol

3

which reads "there exists" or "for some" or "for at least one" is called the existential qua tififter.
Statement (/0.3) is equivalent to the statement

TP = {x:x E A, p(x)}	 0	 (10.4)
i.e., that the truth set of It( v) is not empty. Accordingly, 3v,p(x), that is, p(.v) preceded by the existential
quantifier 9 does have a truth value. Specifically,

If {x: p(.v)}	 0 then 3v,p(x) is true: otherwise. 3.%:,p( v) i ,	ke.

EXAMPLE 10.11

(a) The proposition (3n E P) (it 4 < 7) is true since

{n: it + 4< 71 = {i,2} ^ 0
(b) The proposition (n E P) (a + 6 < 4) is false since

(a: it + 6 < 4) = 0
(c) The symbol 9 can be used to define the Union of an indexed collection IA,: I C I) of sets .4, as follows:

U(A,:icI)=(x:3iE it , xc-A,)

Notation

Let A = {2, 3, 51 and let p(x) be the sentence "x is a prime number" or. simply "x is prime". Then
the proposition

"Two is prime and three is prime and live is prime"	 (*)
can be denoted by

	

p(2) A p(3) A p(5)	 or	 A(aE A, p(a))

which is equivalent to the statement

"Every number in A is prime"	 or	 Va e A, p(a)
	

(ss)

Similarly, the proposition

"Two is prime or three is prime or live is prime"
can be denoted by

	

p(2) Vp(3) Vp(S)	 or	 V (a € A, p(a))

-	 which is equivalent to the statement

"At least one number in A is prime"	 or	 3a E A, p(a)

Alternatively, we can write

A(a E A, p(a))	 Va E A, p(a)	 and	 V (a E A, p(a))	 3a e a, p(a)

where the symbols A and \J are used instead of V and
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Remark: If A were an infinite set, then it 	 of the form (*) could he made since the sentence
would not end; but a statement of the form (*.) can always be made, even when A is infinite.

10.12 NEGATION OF QUANTIFIED STATEMENTS

Consider the statement: "All math majors are male". Its negation is either of the following equiva-
lent statements:

"It is not the case that all math majors are male"

"There exists at least one math major who is it female (not male)"
Symbolically, using M to denoted the set of math majors, the above can he written as

(V.v € M) (x is male)	 (iv E M) (x is not male)

or, when p(x) denotes "x is male",

€ M)p(x)	 (iv E M)-' p(x)	 or	 -'Vx,1(.v)	 2v-p(x)

The above is true for any proposition p(.v). That is:

Theorem 10.5 (DeMorgan): -(Vx E A)p(v) (3x €

In other words, the following two statements are equivalent:
(1) It is not true that, for all a E A, p(a) is true.
(2) There exists an a € A such that p(a) is false.

There is an analogous theorem for the negation of a proposition which contains the existential
quantifier.

	

Theorem 10.6 (DeMorgan): -'(3x E A)p(x)	 '.v E A)-p(.v).

That is, the following two statements are equivalent:

(I) It is not true that for some a E A, p(a) is true.
(2) For all a E A, p(a) is false.

EXAMPLE 10.12

(a) The following statements are negatives of each other:

"For all positive integers u we have n + 2 > 8"

"There exists a positive integer n such that a + 2	 8"
(b) The following statements are also negatives of each other:

"There exists a college student who is 60 years old"

"Every college student is not 60 years old"

Remark: The expression -'p(x) has the obvious meaning: that is:

"The statement -p(a) is true when p(a) is false, and vice versa"

Previously, - was used as an operation on statements; here - is used as an operation oil
functions. Similarly, p(x) A q(x), read "p(x) and q(.v)", is defined by:

"The statement p(a) A q(a) is true when p(a) and q(a) are true"
Similarly, p(x) v q(x), read "p(x) or q( v)", is defined by:

"The statement p(a) V q(a) is true when p(a) or q(a) is true"



242	 LOGIC AND PROPOSITIONAL CALCULUS	 (CHAP. 10

Thus in terms of truth sets:

(I) -p(x) is the complement of p(x).
(ii) p(x) A q(x) is the intersection of p(x) and q(x).
(iii) p(x) V q(.v) is the union of p(x) and q(.x).

One can also show that the laws for propositions also hold for propositional functions. For example. we
have DeMorgan's laws:

(p(x) A q(x))	 -'p(x) V -'q(.v)	 and	 -'(p(x) V q(x))	 -p(x) A -'q(x)

Counterexample

Theorem 10.6 tells us that to show that a statement Yx, p(x) is false. it is equivalent to show
that3x—p(x) is true or, in other words, that there is an clement .v 0 with the properly that p(x0 ) is
false. Such an clement x0 is called a counterexample to the statement Yx, p(x).

EXAMPLE 10.13

(a) Consider the statement Vx E R, lvi / 0. The statement is false since 0 is a counterexample, that is. 101 34 0 is
not true.

(h) Consider the statement Vx € R. v 2 2 x. The statement is not true since, for example. 1/2 is a counterexample.
Specifically, (1/2) .> 1/2 is not true, that is. (1/2)2 < 1/2.

(c) Consider the statement Yx E P. v 2 	.. This statement is true where P is thc set of positive integers. In other
words, there does not exist a positive integer n for which n < U.

Propositional Functions with More than One Variable

A propositional function (of n variables) defined over a product set A = A 1 )<	 x A,, is an
expression

p(x1,x2......

which has the property that p(a 1 .(12,.. . , a) is true or false for any t-tuplc (a 1 ,...,a,) in A. For
example,

x+2y+32< 18

is a propositional function on 113 = P x P x P. Such a propositional function has no truth value.
However, we do have the following:

Basic Principle: A propositional function preceded by a quantifier for each variable, for example,

Vx 3y, p(x,y)	 or	 3xYy 3z, p(x,v,:)

denotes a statement and has a truth value.

EXAMPLE 10.14 Let B = { 1,2,3__ 9) and let p(x,t) denote "x +3, = tO". Then p(.v.v) is a propositional
function on A = 52 = B x B.

(a) The following is a statement since there is a quantifier for each variable:
Yx 3 y, p(r,v)	 that is,	 "For every x, there exists a t such that x + .i 	0"

This statement is true. For example, if v = I, let ; = 9; if x = 2. let .v 	 It, and so on.
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(b) The following is also a statement:

3y Yx, p(x, y),	 that is,	 "There exists a y such that, for every x, we have x + y = 10"

No such y exists; hence this statement is false.

Warning! Observe that the only difference between (a) and (b) in the above Example 10.14

is the order of the quantifiers. Thus a different ordering of the quantifiers may yield a different

statement.

We note that, when translating quantified statements into English, the expression "such that"
frequently follows "there exists".

Negating Quantified Statements with More than One Variable

Quantified statements with more than one variable may be negated by successively applying
Theorems 10.5 and 10.6. Thus each V is changed to 3, and each 3 is changed to V as the negation
symbol -, passes through the statement from left to right. For example

-' [Vx3v3z, p(x,y,z)	 3.v- [3y3z, p(x,y,z)]	 3xVy- 3z, p(x,y,:)

3xV.yVz, - p(x,y,z)

Naturally, we do not put in all the steps when negating such quantified statements.

EXAMPLE 10.15

(a) Consider the quantified statement:

"Every student has at least one course where the lecturer is a teaching assistant"

Its negation is the statement:

"There is a student such that in every course the lecturer is not a teaching assistant"

(b) The formal definition that L is the limit of a sequence a 1 ,a2 ,... follows:

Ye > 0, 3n0 EP, Yn > n0 , la, - LI <e

Thus L is not the limit of the sequence a t , a2 ,... when

3€ > 0, Yn0 E P, 3n > n0, la, - LI ^! e

Solved Problems

PROPOSITIONS AND LOGICAL OPERATIONS

10,1. Let p be "It is cold" and let q be "It is raining". Give a simple verbal sentence which describes
each of the following statements: (a) -'p; (h) p A q; (c) p vq; (d) q V -p.

In each case, translate A, V and - to read "and", "or", and "It is false that" or "not", respectively, and

then simplify the English sentence.

(a) It is not cold.	 (c) It is cold or it is raining.

(b) It is cold and raining.	 (d) It is raining or it is not cold.
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10.2. Let p be "Erik reads Newsweek", let q be "Erik reads The New Yorker", and let r be "Erik reads
Time". Write each of the following in symbolic form:

(a) Erik reads Newsweek or The New Yorker, but not Time.

(/,) Erik reads Newsweek and The New Yorker, or he does not read Newsweek and Time.

(c) It is not true that Erik reads Newsweek but not Time.

(d) It is not true that Erik reads Time or The New Yorker but not Newsweek.

Use V for "or", A for "and" (or, its logical equivalent, "but"), and - for "not" (negation).

(a) (p V q) A -'r; (b) (p A q) V - (p A r); (c) - (p A -' r); (d) -.((r V q) A -'p1.

TRUTH VALUES AND TRUTH TABLES

10.3. Determine the truth value of each of the following statements:

(a) 4 + 2 = 5 and 6 + 3 = 9.	 (c) 4+5=9 and l+2=r4.

(h)3+2=5 and ô+l=7.	 (d) 3+2=5 and 4+7=ll.

The statement "p and q" is true only when both substatements are true. Thus:

(a) false, (b) true; (c) false; (d) true.

10.4. Find the truth table of -'p A q.

See Fig. 10. 12, which gives both methods for constructing the truth table.

p	 q	 . p	 p/\q

IT F	 F
I F F	 F
F T T	 T
F F T	 F

(a) Method I

p	 q	 - 'p	 A	 q
IT F T F T
T F F T F F
F I T F I I

	

F F	 I F	 F	 F

	

Step	 2	 I	 3	 I
(b) Method 2

Fig. 10-12

10.5. Verify that the proposition p V - (p A q) is a tautology.

Construct the truth table of p V --' (p A q) as shown in Fig. 10.13. Since the truth value ofp V (p A q) is
T for all values of p and q, the proposition is a tautology.

p	 q pAq -(pAq) pV(pAq)

I I	 I	 F	 I
T F	 F	 T	 T
F I	 F	 I	 I
I	 F	 F	 T	 T

Fig. 10-13
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10.6. Show that the propositions - (pAq) and - pV -'q are logically equivalent.

Construct the truth tables for - (p A q) and -'p V -, q as in Fig. (0.14. Since the truth tables are the same
(both propositions are false in the first case and true in the other three cases), the propositions (p A q) and

-'p V -'q are logically equivalent and we can write

(pAq) -' pV -'q

p	 q p A	 q --(ptq)

T IT	 .F

T F	 F	 T

F T	 F	 I

F F	 F	 T

(a) -'(pAq)

p	 q	 p -'q -'pV -'q

T T F	 F	 F

I F	 F.	T	 I

F T T	 F	 T
F F I	 I

(b) - pVq

Fig. 10-14

10.7. Using the laws in Table 10-1 to show that (p V q) V (-' pA q)	 P-

Statement

(I) -'(p V q) V (pA q) (pA -'q) V (-'p A q)
(2) -'pA('qVq)
(3) - 'pAt
(4)

Reason

DeMorgan's law
Distributive law
Complement law
Identity law

CONDITIONAL STATEMENTS

10.8. Rewrite the following statements without using the conditional:

(a) if it is cold, he wears a hat.

(b) if productivity increases, then wages rise.

Recall that "If p then q' is equivalent to "Not p or q'; that is, p	 q	 -'p V q. Hence.

(a) It is not cold or he wears a hat.

(b) Productivity does not increase or wages rise.

10.9. Determine the contrapositivc of each statement:

(a) If John is a poet, then he is poor.

(b) Only if Marc studies will he pass the test.

(a) The contrapositive of p -k q is -'q -. -'p. Hence the contrapositive of the given statement is

"if John is not poor, then he is not a poet"

(b) The given statement is equivalent to "If Marc passes the test, then he studied". Hence its contra-
positive is

"If Marc does not study, then he will not pass the test"
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10.10. Write the negation of each statement as simply as possible.

(a) If she works, she will earn money.
(h) He swims if and only if the water is warm.
(c) If it snows, then they do not drive the car.

(a) Note that -'(p -. q) p A q; hence the negation of the statement follows:

"She works or she will riot earn money"

(h) Note that -' (p —. q) p -. q	 -'p	 q; hence the negation of the statement is either of the follow-
ing:

"lie swims if and only if the water is not warm"

'He does not swim if and only if the water is warm

(c) Note that - (j) -. -'q) pA -'-'q p A q. Hence the negation of the statement follows:

'It snows and they drive the car"

ARGUMENTS

10.11. Show that the following argument is a fallacy: p -. q, -'p I- -'q.

Construct the truth table for [(p -. q) A —pi — -' q as in Fig. 10.15.	 Since the proposition
[(p	 q)(ApJ	 -'q is not a tautology, the argument is a fallacy. Equivalently, the argument is a fallacy
since in third line of the truth table p	 q and p are true but -'q is false.

P	 q p-q	 p I (p-. q)A p	 q I [(p-.q)A -p) --q
T T	 I	 F	 F	 F	 T
I F	 F	 F	 F	 T	 I
F I	 T	 T	 I	 F	 F
F F	 I	 T	 T	 T	 I

Fig. 10-15

10.12. Determine the validity of the following argument: p -- q. -'q F- -'i,.

Construct the truth table for [(p	 q) A -'q[ — -'p as in Fig. 10.16.	 Since the proposition
ftp -. q) V -'q] -. -'p is a tautology, the argument is valid.

p	 q I R p -.	 q)	 A - qJ	 -.	 p
I T T I T F F T T F T
I F T F F F I F T F T
F I F T T F F T T T F
F F F T F TI F T T F

Step	 1	 2	 I	 3	 2 1 1 1 4	 2	 1

Fig. 10-16
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10.13. Prove that the following argument is valid: p - -q, r	 q. r I- p.

Construct the truth tables ofthe premises and conclusion as in 1-ig. 10 .17. Now. p	 ' q. r - ' q. and r
are true smultaneousIy only in the fifth line of the table, where -pis also true. Hence. the argument is valid.

p I q 	 p--q I r-q	 q

I	 T	 T	 T	 F	 1	 F
2 T T F	 F	 T	 F
3 T	 F I	 T	 F	 F
4 T F F	 T	 T	 F
5 F I I	 I	 T	 I
6 F T F	 T	 1	 T
7 F	 F T	 I	 F	 I
8 F F F	 T	 T	 T

Fig. 10-17

10.14. Test the validity of the following argument:

If two sides of it triangle are equal, then the opposite angles are equal.
Two sides of it triangle are not equal.

The opposite angles are not equal.

	

First translate the argument into thi' s inholic form p - ' q. p 1	 _ where p is ''Two sides nI a triangle
are equal" and q is ''The opposite angles -ire equal. By problem 10.11. this ,iriiiiiit is a fallacy.

Remark: Although the conclusion does follow from the second premise and axioms of Euclidean
geometry, the above argument does not constitute such a proof since the argunient is it
fallacy.

10.15. Determine the validity of the following argument:

If 7 is less than 4, then 7 is not a prime number.
7 is not less than 4.

7 is it prime number.

First translate the argument into s ymbolic form. Let p he "7 is less than 4" and q he "7 is a
number". Then the argument is of the form

- q. -p H (/

Now, we construct a truth table as shown in rig. 10.18. The above argument is shown to be a fallacy

	

since, in the fourth line of the truth table, the premises p	 'q and -'p are true. but the conclusion q is fake.

Remark: The fact that the conclusion of the argument happens to he it trite matenwnt is Irrelevant
to the fact that the argument presented is a fallacy

P	 q	 -q I p-+'q -'p

I I	 F	 F	 F
I F I	 I	 F
F I F	 T	 T
F F T	 I	 I

Fig. 10-18
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10.16. Show that p A q logically implies p 	 q.

Consider the truth tables of  A q and p -• q shown in Fig. 10.19. Now p  q is true only ill the first line
of the table and, in this case, the proposition p	 q is also true. Thus p A q logically implies p -. q.

P	 q I pAq p4-sq

T T	 T	 I

I F	 F	 F
F T	 F	 F
F F	 F	 T

Fig. 10-19

QUANTIFIERS AND PROPOSITIONAL FUNCFIONS

10.17. - Let A = {l, 2,3,4, 5). Determine the truth value of each of the following statements:

(a) (x E A)(x + 3 = 10)	 (e) (x E A)(.v ± 3 < 5)

(h) (Yx A) (,v + 3 < 10)	 (ci) (Vx E A)(x + 3 < 7)

(a) False. For no number in A is a solution to x -4- 3 = 10.
(h) True. For every number in 4 satisfies x + 3 < 10.
(c)	 True. For if .V () = I. then x0 1- 3 < 5, i.e.. I is a solution.
(d) False. For if .v 5 = 5. then V() + 3 is not less than or equal 7. In other words. 5 is not a solution to the

given condition.

10.18. Determine the truth value of each of the following statements where U = (1,2.3) is the universal
set:

(a) iv Vv, x2 <y+ l	 (h) 3xYt', .v2 -i- 112< 12	 (c) VxVj , , v 2 +t2 < 12.

(a) True. For if .v = I, then I, 2, and 3 are all solutions to I < v + I.
(h) True. For each x 0 , let v	 l then x ± I < 12 is a true statement.
(c) False. For if .v = 2 and y = 3, then x + 	 < 12 is not a true statement.

10.19. Negate each of the following statements:

(a) 3x it'. p(x,y)	 (h) V.vVv, i'(x,.v); (c) 3v 3xY:, p(x,t', :).

Use -' V.vp(x)	 3x-p(x) and -, xp(x)	 Yx-p(.v):

(a) -, (3x Yr. p(x, .r))	 Vx 3r-.p(x,i').
(b) - (Yx V), p(x,y))	 x y-p(x,y).
(c) -(s 3xYz, p(x.y,:)) 	 YyV.v 3:-p(x,i',z).

10,20. Let p(x) denote the sentence "x + 2 > 5". State whether or not p(x) is a propositional function
on each of the following sets: (a) P, the set of positive integers; (b) M = { - I, -2, -3,.
(e) C, the set of complex numbers.

(a) Yes.
(h) Although p(x) is false for every element in M, p(.) is still a propositional function on M.

(c) No. Note that 2i + 2 > 5 does not have any meaning. In other words, inequalities are not defined for
complex numbers.
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10.21. Negate each of the following statements: (a) All students live in the dormitories. (b) All
mathematics majors are males. (e) Some students are 25 (years) or older.

Use Theorem 4.5 to negate the quantifiers.

(a) At least one student does not live in the dormitories. (Some students do not live in the dormitories.)
(h) At least one mathematics major is female. (Some mathematics majors are female.)
(c) None of the students is 25 or older. (All the students are under 25.)

Supplementary Problems

PROPOSITION AND LOGICAL OPERATIONS

10.22. Let p be "Audrey speaks French" and let q be 'Audrey speaks Danish". Give a simple verbal sentence
which describes each of the following:

(a) p V q; (h) p  q; (c) p 	 q:	 1) -p V -q; (e)	 -n p; (f) -'( -np A - q).

10.23. Let p denote "He is rich" and let q denote 'He is happy". Write each statement in 	 p". tic form using p
and q. Note that "He is poor" and "He is unhappy" are equivalent to -'p and -'q. lespCctively.

(a) If he is rich, then he is unhappy. 	 (c) It is necessary to be poor in order to be happy.
(b) He is neither rich nor happy. 	 (d) To be poor is to be unhappy.

10.24. Find the truth table for: (a) p V -. q (b) -'p A -'q.

10.25. Verify that the proposition (p A q) A -, (p V q) is a contradiction.

ARGUMENTS

10.26. Test the validity of each argument:

(a) If it rains, Erik will be sick
It did not rain.

Erik was not sick.

(b)	 If it rains, Erik will be sick.
Erik was not sick.

It did not rain.

10.27. Test the validity of the following argument:

If I study, then I will not fail mathematics.
If I do not play basketball, then I will study.
But I failed mathematics.

Therefore I must have played basketball.

10.28. Show that p .-. -'q does not logically imply p -. q.
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QUANTIFIERS

10.29. Let A = (1,2,..., 9, 101. Consider each of the following sentences. If it is a statement, then determine its
truth value. If it is a propositional function, determine its truth set.

(a) (VxEA)(3yEA)(x-Iy< 14)	 (c) (VXEA)(VyEA)(x+),< 14)

(b) (V)'EA)(x+y< 14)	 (d) (yEA)(x+y< 14)

10.30. Negate each of the following statements:

(a) If the teacher is absent, then some students do not complete their homework.

(1,) All the students completed their homework and the teacher is present.

(c) Some of the students did not complete their homework or the teacher is absent.

10.31. Negate each of the statements in Problem 10.17.

10.32. Find a counterexample for each statement where U 	 13, 5. 7,9) is the universal set:

(a)Vx,x-f3>7; (h)Vx,xisodd; (c) Vx, x is prime; (d)Vx,Ix!=x.

Answers to Supplementary Problems

10.22. In each case, translate A, V. and -to read "and", "or', and "It is false that" or "not, r'espectively; and then
simplify the English sentence.

10.23. (a)p—. -' q; (b) -'pA-' q; (c)q—.-'p; (d) - 'p — --'q

10.24. The truth tables appear in Fig. 10-20.

p	 q	 -'q I pV—q

I T	 F	 T
I F	 T	 I
F T	 F	 F
F F	 T	 I

(a)

p	 q I -p I -'q	 'pA-'q

IT F	 F	 F
T F F T	 F
F T I F	 F
F F T T	 I

(b)

Fig. 10-20

10,25. It is a contradiction since its truth table in Fig. 10-21 is false for all values of p and q.

p	 q pAq pVq "(pVq) (pAq)A'(pVq)

IT	 T	 T	 F	 F
T F	 F	 T	 F	 F
F T	 F	 T	 F	 F

F F	 F	 F	 T	 F

Fig. 10-21

10.26. First translate the arguments into symbolit form: (a) p -. q. -'p I- -'q, (h) p -. q, -'q F- -'p.
By Problem 10. H, argument (a) is a fallacy. By Problem 10. 12, argument (h) is valid.
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10.27. Translate the argument into the following symbolic form where pis "I study", q is "I fail mathematics", and

r is 'l play basketball":

p--'-'q,	 r — p, ql- r

Construct the truth tables as in Fig. 10.22 where the premises p - q. - r -. p, and q are true simul-

taneously only in the fifth row of the table, and in that case the conclusion r is also true. Hence the

argument is valid.

	Fig. 10-22	 Fig. 10-23

10.28. Method I. Construct the truth tables of p — -' q and p - q as in Fig. 10.23. Note that p '-. -' q is true in

line 2 of the truth table whereas p -+ q is false.

Method 2. Construct the truth table of the proposition (p —. 	 - (p -. q). It will not be a tautology;

hence, by Theorem 10.4. p '-. - does not logically imply p -' q.

10.29. (a) The open sentence in two variables is preceded by two quantifiers; hence it is a statement. Moreover.
the statement is true.

(b) The open sentence is preceded by one quantifier; hence it is a propositional function of the other

variable. Note that for every yE A. x0 +v < 14 if and only if x0 = 1,2,.or 3. Hence the truth set

is (1,2,3).
(c) It is a statement and it is false: if x0 = S and y = 9, then x0 ± v0 < 14 is not true.

(d) It is an open sentence in x. The truth set is A itself.

10.30. (a) The teacher is absent and all the students completed their homework.

(b) Some of the students did not complete their homework or the teacher is absent.

(c) All the students completed their homework and the teacher is present.

10.31. (a	 (Yx E A)(x + 3 j4 10)	 (c) (Yx E A)(x + 3 > 5)

	

(b) (axE A)(x+ 3 > 10)	 (d) (3x E A)(x+ 3>7)

10.32. (a) Here 5, 7, and 9 are counterexamples.

(b) The statement is true; hence no counterexample exists.

(c) Here 9 is the only counterexample.

(d) The statement is true; hence there is no counterexample.



Chapter 11

Boolean Algebra
11.1 INTRODUCTION

Both sets and propositions satisfy similar laws which are listed in Tables i-I and 10-I (appearing in
Chapters I and 10, respectively). These laws are used to define an abstract mathematical structure called
a Boo/can algebra, which is named after the mathematician George Boole (1813 1864).

11.2 BASIC DEFINITIONS

Let B be a nonempty set with two binary operations + and *, a unary operation ', and two distinct
elemehts 0 and I. Then B is called a Boo/can algebra if the following axioms hold where a, b, c are any
elements in B:

[131] Commutative laws:
(la) u+b=b+a

[132] Distributive laws:
(2a) a + (h * c) = (a + h) * (a + e)

[3] Identity laws:
(3cz) a-}-O=a

[4] Complement laws:
(4a) a+a''=l

(lb) a*h=hi'a

(2h) a*(h+e) = (a*/)+(o*c)

(3h)	 (1 * 1	 0

(4h) a*a'=O

We will sometimes designate a Boolean algebra by (B, +, *,' ,0, I when we want to emphasize its six
parts. We say 0 is the zero element, I is the unit element and a' is the complement of a. We will usually
drop the symbol and use juxtaposition instead. Then (2b) is written a(h -I- c) = oh + ac which is the
familiar algebraic identity of rings and fields. However, (2a) becomes a + be = (a + h)(a + c), which is
certainly not a usual identity in algebra.

The operations +, * and ' are called sum, product, and complement respectively. We adopt
the usual convention that, unless we are guided by parentheses, ' has precedence over *, and * has
precedence over +. For example,

	

a + b * c means a+ (b t c) and not (a ± h) * c	 at b' means a * (h') and not (a * b)'

Of course when a + b * c is written a + be then the meaning is clear.

EXAMPLE 11.1

(a) Let B = {0, l}, the set of hits (binary digits), with the binary operations of + and * and the unary operation
defined by Fig. Il-I. Then B is a Boolean algebra. (Note ' simply changes the bit, i.e., I' = 0 and 0' =

+	 I	 0	 •	 1	 0	 I	 0
I	 I	 I1	 1	 0	 0	 1_
o	 i	 o	 0	 0	 0

Fig. Il-I
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(b) Let B" = B x B x	 x B (,i factors) where the operations of -f, s and are defined component wise using
Fig. Il - I. For notational convenience, we write the elements of B" as it-bit sequences without commas. e.g..

= 110011 and  = LI 1000 belong to B 5 . Hence

,X+)' =  11101 I,	 x *v	 110000.	 x' = 001100

	Then B" is a Boolean algebra. Here 0 	 000 . . 0 is the zero element, and I = Ill ... I is the unit clement. We

note that B" has 2" elements.

(c) Let D70 = { 1,2,5,7,10. 14, 35,79}, the divisors of 70. Define 1. * and ' by

a + b = Lcm(a, h),	 a * h gcd(a, h),	 a' =

Then D70 is a Boolean algebra with I the zero clement and 70 the unit clement.

(d) Let 1W be a collection of sets closed under the set operations of union, intersection, and complement. Then 1. is

.a Boolean algebra with the empty set 0 as the zero element and the universal set U as the unit element.

Sublgebras1 Isomorphic Boolean Algebras

Suppose C is a nonempty subset of a Boolean algebra B. We say C is a suhalgebra of B if C itself is it

Boolean algebra (with respect to the operations of B). We note that (.' is a subalgebra of B if and only if

C is closed under the three operations of B, i.e., +, *, and '. For example. (I, 2, 35, 701 is a suhalgebra of

D70 in Example 11.1(c).

Two Boolean algebras B and B' are said to be isomorphic if there is a one-to-one correspondence

f: ,B	 B' which preserves the three operations, i.e., such that

	

f(a+b) =f (a) +f(b),	 f(a*b) =f(u) * f(h)	 and	 f(a') =1(a)'

for any elements a,b in B.

11,3 DUALITY

The dual of any statement in a Boolean algebra B is the statement obtained by interchanging the

operations + and x, and interchanging their identity elements 0 and I in the original statement. For

example, the dual of

(l+a)s(h+O)b	 is	 (0*a)+(b*1)=h

Observe the symmetry in the axioms of a Boolean algebra B. That is, the dual of the set of axioms of B is

the same as the original set of axioms. Accordingly, the important principle of duality holds in B.

Namely,

Theorem 11.1 (Principle of Duality): The dual of any theorem in a Boolean algebra is also it

In other words, if any statement is a consequence of the axioms of a Boolean algebra, then the dual

is also a consequence of those axioms since the dual statement can he proven by using the dual of each

step of the proof of the original statement.
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11.4 BASIC THEOREMS

Using the axioms 13 1 1 through [ 134 ], we prove (Problem 11.5) the following theorem.

Theorem 11.2: Let a,hc be any elements in a Boolean algebra B.

(i) Idempotent laws:

(5u) a + a = a	 (Sb) a*aa
(ii) Boundedness laws:

(6a) a -- I = I	 (6h) a * 0	 0
(iii) Absorption laws:

(7a) a + (a * h) = a	 (7/)) a * (a + h) a
(iv) Associatire lows:

(8a) (a+h)+c=a+(b+c)	 (Sb) (a*h)*c=a*(b*c)

Theorem 11.2 and our axioms still do not contain all the properties of sets listed in Table I - I. The
next two theorems (proved in Problems 11.6 and 11.7) give its the remaining properties.

Theorem 11.3: Let a be any element of a Boolean algebra B.
(i) (Uniqueness of Complement)

If a ± .v = 1 and a * x = 0, then x a'.
(ii) (Involution law) (a')' = a
(iii) (9a) 0' = 1,	 (9b) I' = 0

Theorem 11.4 (DeMorgan's laws): (lOa) (a+h)'=a'*h'.	 (lOb) (a*b)'=a'-'-b'.

11.5 BOOLEAN ALGEBRAS AS LATTICES

By Theorem 11.2 and axiom [13 1 ], every Boolean algebra B satisfies the associative, commutative,
and absorption laws and hence is a lattice where + and * are the join and meet operations, respectively.
With respect to this lattice, a + I = I implies a < I and a * 0 = 0 implies 0 < a, for any element a E B.

....Thus B is a bounded lattice. Furthermore, axioms [13 2] and [B4 ] show that B is also distributive and
complemented. Conversely, every bounded, distributive, and complemented lattice L satisfies the
axioms [B 1 ] through [B4]. Accordingly, we have the following

Alternate Definition: A Booleari algebra B is a bounded, distributive, and complemented lattice.

Since a Boolean algebra B is a lattice, it has a natural partial ordering (and so its diagram can be
drawn). Recall (Chapter 7) that we define a < h when the equivalent conditions a + b = b and a * h = a
hold. Since we are in a Boolean algebra, we can actually say much more. Specifically, the following
theorem (proved in Problem 11.8) applies.

Theorem 11.5: The following are equivalent in a Boolean algebra:

(1)a-i-h=b,	 (2)a * ba,	 (3)a'-f-b= 1,	 (4)a*b'=0.

Thus in a Boolean algebra we can write a < b whenever any of the above four conditions is known
to be true.

EXAMPLE 11.2

(a) Consider a Boolean algebra of sets. Then set A precedes set B if A is a subset of B. Theorem 11A states that if
A C B, as illustrated in the Venn diagram in Fig 11-2, then the following conditions hold:

(l)AuB=B,	 (2) AnB=A,	 (t) AUBU,	 (4) AflB'=Ø.
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( M)
.4 is a subset of B

Fig. 11-2

(h) Consider the Boolean algebra of the proposition calculus. Then the proposition P precedes the proposition Q if
P logically implies Q, i.e.. if P	 Q.

11.6 REPRESENTATION THEOREM

Let B be a finite Boolean algebra. Recall (Section 7.9) that an clement a in B is an atom if a
immediately succeeds 0, that is if 0 << a. Let A be the set of atoms of B and let P(A) he the Boolean

algebra of all subsets of the set A of atoms. By Theorem 7.15, each x -?^ 0 in B can be expressed uniquely
(except for order) as the sum (join) of atoms, i.e. elements of A Say,

= a I +	 4 a

is such it representation. Consider the function 1: B	 P(.4 ) defined by

.1(v)	 fil l ,a 2 .....a,}

The mapping is well-defined since the representation is unique.

Theorem 11.6: The above mapping ./': B - :(A) is an isomorphism.

Thus we see the intimate relationship between set theory and abstract Bookan algebras in the sense
that every finite Boolean algebra is structurally the same as a Boolean algebra of Sets.

If a set A has it elements, then its power set :9(A) has 2" elements. Thus the above theorem-gives us
our next result.

Corollary 11.7: A finite Boolean algebra has 2 elements for some positive integer n.

EXAMPLE 11.3 Consider the Boolean algebra D(} = { 1,2.......70} whose diagram is given in Fig. 11.3(u).
Note that A = (2, 5,7) is the set of atoms of D70 . The following is the unique representation of each non-atom
by atoms:

	

I0=2v5,	 14=2v7,	 35=5v7,	 70=2v5v7

Figure 11-3(b) gives the diagram of the Boolean algebra of the power set 30(A) of the set A of atoms. Observe that
the two diagrams are structurally the same.

7I0

10

	

35	 {2,5}	 (2,71	 (5.7)

	

2><57	 (2ll5){7}

	

I	 I

	

I	 .	 0

	

(a)D	 (h)'(A)

Fig. 11-3
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11.7 SUM-OF-PRODUCTS FORM FOR SETS

This section motivates the concept of the sum-of-products form in Boolean algebra by an example Of
set theory. Consider the Venn diagru'u in Fig. 11-4 of three sets A, B, C. Observe that these sets
partition the rectangle (universal set).into eight numbered sets which can he represented as follows:

(I) An/inC	 (3) An/inC	 (5) An/inC	 (7) AflhiflC

(2) AnBnC'	 (4) An/inC	 (6) AflBflC c 	 (8) AnffnC

Each of these eight sets is of' the form A' fl Ii' fl C. where

A'=AorA',	 B' =//or/i',	 C=(orC'

Consider any noncmpty set expression E involving the sets A, B. and C, say.

E = [(A n K)r u (A' n (")[ n [if u C)' n (4 u C)1

Then E will represent some area in Fig. 11-4 and hence will uniquely equal the union of one or more of
the eight sets.

Fig. 11-4

Suppose we now interpret a union as it sum and an intersection as a product. Then the above eight
sets are products, and the unique representation of E will he a sum (union) of products. This unique

representation of E is the same as the complete sum-of-products expansion iii Boolean algebras which
we discuss below.

11.8 SUM-OF-PRODUCTS FORM FOR BOOLEAN ALGEBRAS

Consider a set of variables (or letters or symbols), say. x i , xi , .....,. A Boo/can expression E in
these variables, sometimes written E(x1......,,). is any variable or any expression built up from the

variables using the Boolean operations +, * and '. (Naturally, the expression E must be well-formed,
that is, where + and * are used as binary operations, and is used as a unary opç'ation.) For example.

r	 I	 ,	 I	 .	 II	 I	 I
E 1 =(x-l-vz) +(xr: +.vv)	 and	 L2=((xyz +y) +xz)

are Boolean expressions in x,v, and Z.

A literal is a variable or complemented variable, such as x, x', v, y', and so on. A fundamental
product is a literal or a product of two or more literals in which no two literals involve the same variable.

Thus
I	 I	 I	 Ixz ,	 Z, X, y ,	 X ,yz

are fundamental products, but x'x': and xyzy are not. Note that any product of literals can be reduced

to either 0 or it fundamental product, = 0 since .x' = U (complement law), and xy:y = xyz
since yr = .1' (idempotent law).

LA
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A fundamental product P 1 is said to be contained in (or included in) another fundamental product P2

if the literals of P are also literals of P,. For example, .v': is contained in x'i:, but x': is not contained
in xv': since x' is not a literal of vi":. Observe that if P 1 is contained in P. say P2 P1 * Q. then, by the
absorption law.

P1+P.,=P±P1*Q=P

Thus, for instance, x': + x ' v: = x':.

Definition: A Boolean expression E is called a .sum-ofproducis expression if E is a fundamental product
or the sum of two or more iundan1ental products none of which is contained in another.

Definition: Let E be an y Boolean expression. A ,v uni-of-ji roduct.s flirn, of E is an equivalent Boolean
sum-of-products expression.

EXAMPLE 11.4 Consider the expressions

E =.v:'+i":-l-xv:'	 and	 E2 =x:'+x'i:'+Xy':

Although the first expression El is a sum of products, it is not a sum-of-products expression. Specifically, the
product .r:' is contained in the product vi:'. However, by the absorption law. E 1 can be expressed as

E1 =.:'4v':+x':'=x:'+Xv:'+I':X'+V'

This yields a sum-of-products form for E. The second expression E2 is already a sum-of-products expression.

Algorithm for Finding Sum-of-Products Forms

The following four-step algorithm uses the Boolean algebra laws to transform any Boolean expres-
sion E into an equivalent sum-of-products expression:

Algorithm 11.8A: The input is a Boolean expression E The output is a sum-of-products expres-
sion equivalent to E.

Step 1. Use DcMorgan'a laws and involution to move the complement operation into any
parenthesis until finally the complement operation only applies to variables. Then E
will consist only of sums and products of literals.

Step 2. Use the distributive operation to next transform E into a sum of products.

Step 3. Use the commutative, idempotcnt, and complement laws to transform each product in E
into 0 or a fundamental product-

Step 4. Use the absorption and identity laws to finally transform E into a sum-of-products
expression.

EXAMPLE 11.5 Suppose Algorithm 11.8A is applied to the following Boolean expression:

E = ((xr)':)'((x' + :)(v' +

Step 1. Using DeMorgan's laws and involution, we obtain

E= ((x,i)"+:')((x'+:)'+(j"+:')')= (xv+:')(x:'-v:)

E now consists only of sums and products of literals.

Step 2. Using the distributive laws, we obtain

xs'x:' + xiv: +.v: ': ' +

E now is a sum of products.
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Step 3. Using the commutative, idempoteni, and complement laws, we obtain

E = xi ,:' + xy: + x:' 4 0

Each term in E is a fundamental product or 0.

Step 4. The product ac' is contained in abc'; hence, by the absorption law,

+ (x:' sc') =

Thus we may delete abc' from the sum. Also, by the identity law for 0, we may delete 0 From the sum
Accordingly,

E = x: 4-

E is now represented by a sum-of-products expression.

Complete Sum-of-Products Forms

Boolean expression E = E(x 1 , ,...,x,,) is said to be a complete sum-of-products expression if E
is a sum-of-products expression where each product P involves all the it variables. Such a fundamental
product P which involves all the variables is called a mintern,, and there is a maximum of 2" such

products for it variables. The following theorem applies.

Theorem 11.8: Every nonzero Boolean expression E = E(v1,x2......,,) is equivalent to a complete
sum-of-products expression and such a representation is unique.

The above unique represcntatioii of E is called the complete swn-oFproduc1s ./rin of E. Recall that

Algorithm 11.8A tells its how to transform E into a sum-of-products form. The following algorithm
shows how to transform a sum-of-products form into a complete sum-of-products form.

Algorithm 11.8B: The input is a Boolean sum-of-products expression E = E(x 1 , x2 ,...,x). The
output is a complete sum-of-products expression equivalent to E.

Step 1. Find a product P in E which does not involve the variable .v,, and then multiply P by

x 1 + 4, deleting any repeated products. (This is possible since x, + 4 = 1, and

P + P = P.)
Step 2. Repeat Step I until every product P in E is a minterm, i.e., every product P involves all

the variables.

EXAMPLE 11.6 Express E(x, i':) = x(y':)' in its complete sum-of-products form.

(a) Apply Algorithm II .8A to E to obtain

E = .v(v'z)' = x(v + z') = xv +

Now E is represented by a sum-of-products expression.

(h) Apply Algorithm 11.88 to obtain

E = x y(: + z') + xz'j' + y') = xy2 + xy:' + xy:' + xv':'

= 'Cy: + xy:' + xy':'

Now E is represented by its complete sum-of-products form.

Warning: The terminology in this section has not been standardized. The sum-of-products form
for a Boolean expression £ is also called the di.sjunc-tive iiornwl form or DNF of E. The complete sum-of-

products form for £ is also called the full disjunciit'c normal form, or the disjunctive canonical form, or the
minlerm canonical form of E.
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11.9 MINIMAL BOOLEAN EXPRESSIONS, PRIME IMPLICANTS

There are many ways of representing the same Boolean expression L. Here we define and investigate

a minimal sum-of-products form for E. We must also define and investigate prime implicants of E since

the minimal sum-of-products involves such prime implicants. Other minimal forms exist, but their
investigation lies beyond the scope of this text.

Minimal Sum-el-Products

Consider a Boolean sum-of-products expression E. Let E, denote the number of literals in E

(counted according to multiplicity), and let E5 denote the number of summands in E. For instance,

suppose
E = xy:' + x 'v's + xy ':'i

Then	 3+3 + 4+4= 14 and E5 = 4.

Suppose E and F are equivalent Boolean sum-of-products expressions. We say E is simpler than F if

(i) E1 <FJ and ES < FL ,	 or	 (ii) E, < F1 and E5 < FL

We say E is minimal if there is no equivalent sum-of-products expression which is simpler than E. We

note that there can be more than one equivalent minimal sum-of-products expression.

Prime Implicants

A fundamental product P is called a prime imp licant of a Boolean expression E if

P+E=E

but no other fundamental product contained in P has this property. For instance, suppose
I	 I

E = xi* ' + xVz + .v i:

One can show (Problem 11.15) that

xz'+E=E	 but	 x+EE
	

and	 z'+EE

Thus x' is a prime implicant of E.
The following theorem applies.

Theorem 11.9: A minimal sum-of-products form for a Boolean expression E is a sum of prime

implicants of E.

The following subsections give a method for finding the prime implicants of E based on the notion

of the consensus of fundamental products. This method can then be used to find a minimal sum-of-

products form for E. Section 11.10 gives a geometric method for finding such prime implicants.

Consensus of Fundamental Products

Let P 1 and P2 be fundamental products such that exactly one variable, say x. appears uncorn-

plemented in one of P and P2 and complemented in the other. Then the consensus of P 1 and P2 is

the product (without repetitions) of the literals of P 1 and the literals of P2 after Xk and 4 deleted. (We

do not define the consensus of P = x and P, = x'.)
The following lemma (proved in 1rob1em 11.19) applies.

Lemma 11.10: Suppose Q is the consensus of P 1 mid P2 . Then P 1 + P2 + Q = P 1 + P2.
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EXAMPLE 11.7 Find the consensus Q of P 1 and P2 where:
(a) P 1 = xyz's and P2 = xy'i.

Delete v and y' and then multiply the literals of P 1 and P2 (without repetition) to obtain Q = xz'st.
(b) P 1 = xy' and P2 = y.

Deleting v and y' yields Q = x.
(c) P 1 = x'yz and P2 = x'vt.

No variable appears uncomplemented in one of the products and complemented in the other. Hence P1
and P2 have no consensus.

(d) P 1 = x'yz and "2 =

Each of .r and z appear complemented in one of the products and uncomplemented in the other. Hence P,
and P2 have no consensus.

Consensus Method for Finding Prime Implicants

The following algorithm, called the consensus method, is used to find the prime implicants of a
Boolean expression.

Algorithm 1I.9A (Consensus Method): The input is a Boolean expression
P+ P2 +	 Pm

where the P's are fundamental products. The output expresses E as a sum of its
prime implicants (Theorem 11.11).

Step 1. Delete any fundamental product P, which includes any other fundamental product P1.
(Permissible by the absorption law.)
Step 2. Add the consensus of any P, and P3 providing Q does not include any of the P's.
(Permissible by Lemma II .10.)
Step 3. Repeat Step I and/or Step 2 until neither can be applied.

The following theorem gives the basic property of the above algorithm.

Theorem 11.11: The consensus method will eventually stop, and then E will be the sum of its prime
implicants.

EXAMPLE 11.8 Let £ xvz + x'z' + XYZ' + x 'y'z + x
£ = xy: + x'z' ± xyz' ± x'y'z

= xyz + x'j" + xyz + x';": + xy
= x'z' + x'y'z + .vy

,	 r•	 p	 I	 I	 I=xz +Xyz+xy+xy
= x':' + .ry + x'y'

I,	 II	 I=x; +xy+xy +j'z

Then:

(x 'yz ' includes x'z1)
(Consensus of xy: and xyz')
(xyz and xyz' include xy)
(Consensus of x'z' and x1y'z)
(x'y'z includes x'j")
(Consensus of x'z' and xy)

Now neither step in the consensus method will change E. Thus E is the sum of its prime implicants, which are x'z',
xy, x'y', and yz'.

Finding a Minimal Sum-of-Products Form

The consensus method (Algorithm 11 .9A) can be used to express a Boolean expression E as a sum of
all its prime implicants. Using such a sum, one may find a minimal sum-of-products form for E as
follows.
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Algorithm 11.9B: The input is a Boolean expression E = P 1 ± P2 + + P,,, where the P's are

all the prime implicants of E. The output expresses E as a minimal sum-of-

products.
Step I. Express each prime implicant P as a complete sum-of-products.

Step 2. Delete one by one those prime iniplicants whose summands appear among the sum-
mands of the remaining prime implicants.

EXAMPLE 11.9 We apply Algorithm 11.913 to

E = .v':' + xv + x'v' -I

(By Example 11.8. F is now expressed as the sum of all its prime implicants.)

Siep-!. Express each prime implicarit of E as a complete sum-of-products to obtain:

x':' = x':'(v + y') = x i v:' F
xv = xv(: + :') = xv: + xv:'

+ :') = x'v': + .
± .r') = xv:' +

Step 2. The summands of x':' arc x'v: and x'v':' which appear among the other summands. Thus delete x':' to

obtain
£ = xv + x'v' + :

The summands of no other prime implicant appear among the summands of the remaining prime imphcants. and
hence this is a minimal sum-of-products form for E. In other words, none of the remaining prime iniplicants is

superfluous, that is, none can be deleted without changing F.

11.10 KARNAUGH MAPS

Karnaugh maps, where minterms involving the same variables are represented by squares, are
pictorial devices for finding prime implicants and minimal forms for Boolean expressions involving at
most six variables. We will only treat the cases of two, three, and four variables. In the context of
Karnaugh maps, we will sometimes use the terms "squares" and "minterm" interchangeably. Recall
that a minterm is a fundamental product which involves all the variables, and that a complete sum-of-
products expression is a sum of minterms.

First we need to define the notion of adjacent products. Two fundamental products P 1 and P2 are

said to be adjacent if P and P2 have the same variables and if they differ in exactly one literal. Thus
there must be an uncomplemented variable in one product and complemented in the other. In parti-
cular, the sum of two such adjacent products will be a fundamental product with one less literal

(Problem 11.51).

EXAMPLE 11.10 Find the sum of the following adjacent products P and P2:

(a) P 1 = xyz' and P2 = xy':'.

P 1 +	 i:' + xv':' = xz'(v + y') = x:'( I) =

(b) P 1 =x'yzt and "2 =

P 1 fp2=x'y::+x'y:'tx'yt(:+:') =x'vi(l) =x'yt
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(c) P 1 = X 'yzl and P2 = xv:':.

Here P 1 and P2 are not adjacent since they differ in two literals. In particular.

P 1 + P2 = x'y:z + viz'! = (x' + x)y(: + : ' )i = ( I )v( I): =

(d) Pi = xyz ' and P2

Here P 1 and P2 are not adjacent since they have different variables. Thus, in particular, they will not
appear as squares in the same Karnaugh map.

Case of Two Variables

The Karnaugh map corresponding to Boolean expressions E E(x, r) with two variables x and v is
shown in Fig. 11-5(a), The Karnaugh map may be viewed as a Venn diagram where x is represented by
the points in the upper half of the map, shaded in Fig. 11-5(b), and y is represented by the points in the
left half of the map, shaded in Fig. 11 -5(c). Thus .v' is represented by the points in the lower half of the
map, and y' is represented by the points in the right half of the map. Accordingly. the four possible
minterrns with two literals,

	

.\,	 .V ' ,	 X,

are represented by the four squares in the map, as labeled in Fig. 11-5(d). Note that two such squares
are adjacent, as defined above, if and only if the squares are geometrically adjacent (have 'a side in
common).

Y	 v'	 y	 '	 y	 v	 v

X	 x	 x	 x	 xy	 xy'

C'	 X'y	 X'y'

(a)	 (h) x shaded	 (c) y shaded	 (d)

Fig. 11-5

Any complete sum-of-products Boolean expression E(x,),-) is a sum of minterms and hence can be
represented in the Karnaugh map by placing checks in the appropriate squares. A prime implicant of
E(x,y) will be either a pair of adjacent squares in E or an isolated square, i.e., a square which is not
adjacent to any other square of E(x,y). A minimal sum-of-products form for E(x,y) will consist of a
minimal number of prime implicants which cover all the squares of E(x,y) as illustrated in the next
example.

EXAMPLE 11.11 Find the prime implicants and a minimal sum-of-products form for each of the following
complete sum-of-products Boolean expressions:

(a) Ei = xy + xy'. (h) E1 = xp + x'y + x';'; (e) E 1 = xy + x';".

This can be solved by using Karnaugh maps as follows:

(a) Check the squares corresponding to xi and xy' as in Fig. 11-6(a). Note that E consists of one prime
implicant, the two adjacent squares designated by the loop in Fig. 11-6(a). This pair of adjacent squares
represents the variable x, SO XIS a (the only) prime implicant of E. Consequently, E1 = xis its minimal sum.

(b) Check the squares corresponding to xy, .v'y, and x'v' as in Fig. 11-6(h). Note that E2 contains two pairs of
adjacent squares (designated by the two loops) which include all the squares of E2 . The vertical pair represents
;' and the horizontal pair represents x'; hence;' and v' are the prime implicants of E2 . Thus E2 .v' +y is its
minimal sum.
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Fig. 11-6

(c) Check the squares corresponding to xy and v'i' as in Fig. 11 .6(c). Note that E consists of Iwo isolated
squares which represent xY and x'y'; hence xv and .v'v' are the prime implicants of E3 and E = vi + .v'y' is'its
minimal sum.

Case of Three Variables

The Kãrnaugh map corresponding to Boolean expressions E = E(.v, i',:) with three variables v v,:
is shown in Fig. 11 .7(a). Recall that there are exactly eight nuntcrius with three variables:

II	 I	 I	 I	 I	 I	 F	 I
'ij - 	 xv:	 x :	 vi :,	 .v v:	 .v i: ,	 x ) :	 x v

These minterms are listed so that they correspond to the eight squares in the Karnaugh map in the
obvious way.

Furthermore, in order that every pair of adjacent products in Fig. 11-7(a) are geometrically adja-
cent, theright and left edges of the map must be identified. This is equivalent to cutting out, bending,
and gluing the map along the identified edges to obtain the cylinder pictured in Fig. 11-7(b). where
adjacent products are now represented by squares with one edge in common.

.rz	 yr	 vz'v:

(a)	 (5)

Fig. 11-7

Viewing the Karnaugh map in Fig. 11-7(u) as a Venn diagram, the areas represented by the variables
x,y, and : are shown in Fig. 11-8. Specifically, the variable .v is still represented by the points in the
upper half of the map, as shaded in Fig. 11-8(a), and the variable v is still represented by ihe points in the
left half of the map, as shaded in Fig. 11-8(h). The new variable: is represented by the points in the left
and right quarters of the map, as shaded in Fig. 11-8(c). Thus x', V. and :' arc represented, respectively,
by points in the lower half, right half, and middle two quarters of the map.

yr	 yz	 Y 	 •IZ

x

	

r-i

(a) x shaded
	 (b)y shaded

	 (c)zshaded

Fig. Il-S
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By it basic rectangle in the Karnaugh map with three variables, we mean a square, two adjacent
squares, or four squares which form a one-by-four or a two-by-two rectangle. These basic rectangles
correspond to fundamental products of three, two, and one literal, respectively. Moreover, the funda-
mental product represented by it basic rectangle is the product of just those literals that appear in every
square of the rectangle.

Suppose a complete sum-of-products Boolean expression L = E(x, ),, z) is represented in the
Karnaugh map by placing checks in the appropriate squares. A prime implicant of E will be a maximal
/,a.wc rectangle of E. i.e., a basic rectangle contained in E which is not contained in any larger basic
rectangle in E. A minimal sum-of-products form for £ will consist of a minimal corer of E. that is, a
minimal number of maximal basic rectangles of E which together include all the squares of E.

EXAMPLE 11.12 Find the prime implicanu. and a minimal sum-of-products form for each of the following
complete sum-of-products Boolean expressions:

(a) E 1 = xy: 4 si: ' + x ' iz ' + x'i":

(h) £2 = xy: + vi:' + .cj": +	 +

(c) E = si: + Si: ' + .v'i:' 4 xr': + 'y'

This can be solved by using Karnaugh maps as follows:

(a) Check the squares corresponding to the four summands as in Fig. 11-9(a). Observe that E 1 has three prime
in1t i1iciiit (maximal basic rectangles), which are circled; these arc xy. ri', and x'v':. All three are needed to
cove, I., hence the minimal sum for F 1 is

= .vj + r:' -+

(h) Check the squares corresponding to the live summands as in Fig. 1I-9(h). Note that E2 has two prime
implicants, which are circled. One is the two adjacent squares which represents x,r, and the other is the
two-by-two square (spanning the identified edges) which represents :. Both are needed to cover E2 , so the

uni for E is

E2 = .5)' -1-

(c) Check the squares corresponding to the live summands as in Fig. 11-9(c). As indicated by the loops E3 has
four prime implicants, xy, yz', x'z', and v'v'. However, only one of the two dashed ones, i.e., one ofyz' or
xj ' : ' . is needed in a minimal cover of E3 . Thus E3 has two minimal sums:

E = xy + ' 4 X)" = X) + 5 ': ' + .6'

zz

411114̂ E WE N 0 IN
0 LIM E m 0 E ON(a)E,	 (b) E2	 (c) £3

Fig. !1-9
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Case of Four Variables

The Karnaugh map corresponding to Boolean expressions E = E(.v, v,:, i) with four variables
x,y,z,t is shown in Fig. 11-10. Each of the 16 squares corresponds to one of the 16 minterms with
four variables,

x':t,	 .vr:t',	 xyz'l 	 vi':'! ,...,x'_i':'l
zi	 Z1'	 :1'	 Zr

xy

XY

x'y'

X 

Fig. 11-10

This is indicated by the labels of the row and column of the square. Observe that the top line and the left
side are labeled so that adjacent products differ in precisely one literal. Again, we must identify the left
edge with the right edge (as we did with three variables) but we must also identify the top edge with the
bottom edge. (These identifications give rise to a donut-shaped surface called a torus, and we may view
our map as really being a torus.)

A basic rectangle in a four-variable Karnaugh map is a square, two adjacent squares, four squares
which form a one-by-four or two-by-two rectangle, or eight squares which form a two-by-four rectangle.
These basic rectangles correspond to fundamental products of four, three, two, and one literal,
respectively. Again, maximal basic rectangles are the prime implicants. The minimizing technique
for a Boolean expression E(x,y,:,t) is the same as before.

EXAMPLE 11.13 Find the fundamental product P represented by the basic rectangle in the Karriaugh maps
shown in Fig. Il - Il.

In each case, find the literals which appear in all the squares of the basic rectangle; P is the product of such
literals.

(a) x,y, and :' appear in both squares; hence P = xy':'.

(6) Only y and : appear in all four squares; hence P = y:.

(c) Only t appears in all eight squares; hence P = i.

(a)	 (b)	 (C)

Fig. Il-Il
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EXAMPLE 11.14 Find a minimal sum-of-products form for E = xy ' + xyz +x 'y 'z ' +.x'yzi'.
Check all the squares representing each fundamental product. That is. check all four squares representing xy',

the two squares representing xyz, the two squares representing x 'y ' z ' and the one square representing x 'yzi ' , as in
Fig. 11-12. A minimal cover of the map consists of the three designated basic rectangles. The two-by-two squares
represent the fundamental products xz and v ' z ' , and the two adjacent squares (on top and bottom) represents yrl'.
Hence the following is a minimal sum for E.

E=xz+y'z'+yzt'

Solved Problems

BOOLEAN ALGEBRAS

11.1. Write the dual of c.tch Boolean equation: (a) (a * 1) * (0 + a') = 0;. (b) a + a'b = a + b.

(a) To obtain the dual equation, interchange s- and *, and interchange 0 and'l. This yields

(a+0) + (I * a') = I

(b) First write the equation using *: a + (a' * b) = c + b. Then the dual is a * (a ' ± b) = a * b. which can
we written as

a(a' + b) ab

11.2. Recall (Chapter 7) that the set D m of divisors of in is a bounded, distributive lattice with
a+b=aVh=lcm(a,b) and a*b = aAb=gcd(a,b). (a) Show that Dm is  Boolean algebra
if in is square free, i.e., if in is a product of distinct primes. (b) Find the atoms of Dm.

(a) We need only show that D,,, is complemented. Let x be in D. and let x' = mix. Since in is a product of
distinct primes, x and x' have different divisors. Hence x * x ' = gcd(x, x') = I and
x + x' = Icm(x, x') = in. Recall that I is the zero element (lower bound) of D,,, and that m is the
identiy element (upper bound) of Dm. Thus x' is  complement of x, and so Dm is a Boolean algebra.

(b) The atoms of D. are the prime divisors of m.

11.3. Consider the Boolean algebra D210.

(a) List its elements and draw its diagram.

(b) Find the set A of atoms.

(c) Find two subalgebras with eight elements.

(d) Is X = {1,2,6,210} a sublauice of D 2 ? A subalgebra?

(e) is Y = { 1,2, 3, 61 a subiattice of D20? A subalgebra?
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(a) The divisors o1210 are I, 2,3,5, 6. 7, 10, 14, 15, 21, 30, 35, 42, 70. 105 and 210. The diagram ofD210
appears in Fig. 11-13.

(b) A = (2,3,5,7). the set of prime divisors is 210.
(c) B = (1,2,3,35,6,70, 105,2101 and C = (1,5,6,7,30,35,42, 210) are subalgebras of D215.

(d) X is a sublattice since it is linearly ordered. However, X is not a subalgebra since 35 is the complement
of 2 in D, 19 but 35 does not belong to X. (In fact, no Boolean algebra with more than two elements is
linearly ordered.)

(e) Y is a sublattice of D210 since it is closed under + and s. However, Y is not a subalgebra of D210 since it
is not closed under complements in D210 , e.g.. 35 = 2' does not belong to Y. (We note that V itself is a
Boolean algebra, in fact. V = D6.)

7 2Io ^^

10	 42	 70	 105

Fig. 11-13

11.4. Find the number of subalgebras of D20.

A suhalgebra of 13210 must contain two, four, eight or sixteen elements.
(i) There can be only one two-clement subalgebra which consists of the upper and lower bounds, i.e.,

(1.210).
(ii) Since D210 contains sixteen elements, the only sixteen-element subalgebra is D210 itself.
(iii) Any four-element subalgebra is of the form (I, x. x', 210), i.e., consists of the upper and lower bounds

and a nonbound element and its complement. There are fourteen nonbound elements in D210 and so
there are 14/2 = 7 pairs {x, v'}. Thus D 10 has seven 4-element suhalgebras.

(iv) Any eightclement subalgebra Swill itself contain three atoms i,5', s 3 . We can chooses 1 and S2 to be
any two of the four atoms of 13 210 and then s must be the product of the other two atoms, e.g.. we can
let .v " 2, 2 = 3. 53 = 5 . 7 = 35 (which determines the subalgebra B above), or we can let s 1 = 5.

\= 7. .c = 2 . 3 = 6 (which determines the subalgebra C above). There are (4
 2) = 6 ways to choose

s i and '2 from the four atoms of D210 and so D210 has six 8-element subalgebras.
Accordingly, D21Q has I + I + 7 + 6 = IS subalgebras.

11.5. Prove Theorem 11.2: Let a,h,c be any elements in a Boolean algebra B.

(i) Idempoteni laws:
(5a) a+a=a

(ii) Boundedness laws:
(6a) a+l=l
Absorption laws:
(7a) a--(a*h)rra

(iv) Associative laws:
(8a) (a+h)+c=a+(h+c)

(5/)) a*a=(:

(6/)) a*0=0

(7/)) a*(a+h)=a

(Sb) (a*h)*c'=ci*(h*c)
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The proofs follow:

(Sb) a=a*l =a.(a+a')=(a*a)+(a*a')=(a*a)+O=a*a

(5a) Follows from (5b) and duality.
(6/i) a*O=(asO)+O=(asO)+(a*a')=as(O+a')=a*(a'+O)=a*a'=O

(6a) Follows from (6b) and duality.
(7b) at(a+b)=(a+O)*(a+h)=a+(O.h)=a+(hsO)=a+O=a

(7a) Follows from (7b) and duality.
(Sb) Let L = (a * b) * c and R = a * (b * c). We need to prove that L = R. We first prove that

a + L = a + R. Using the absorption laws in the last two steps.
a+L=a+((ash).c)=(a±(ash))s(a+c)=as(a+c)=a

Also, using the absorption law in the last step,
-	 a+ R = a+ (as (us c)) = (a+a) s(a + (bc)) as (a +(h c)) = a

Thus a+L=a+R. Next we show that a'+ L = a'+ R. We have

a'+L=a'+((asb)sc)=(a'+(asb))*(a'+c)

= ((a' + a) (a' + 1,)) * (a' + c) = (1 * (a' + b)) * (a' + c)

=(a'+b)s(a'+c)=a'+(h*c)

Also,

a' + R = a' + (a * (b * c)) = (a'+ a) (a'+ (b * c))
=1 x(a'+(h*c))=a'+(hsc)

Thus a' + L = a'+ R. Consequently

L=O+L=(asa')+Lr=(a+L)s(a'+L)=(a+R)s(a'+R)

= (a * a') + R 0 + R = R

(8a) Follows from (8/i) and duality.

11.6. Prove Theorem 11.3: Let a be any element of a Boolean Algebra B.

(i) (Uniqueness of complement) if a + x = I and a * x = 0, then x = a'.
(ii) (Involution law) (a')'	 a
(iii) (9a)0'=l.	 (9b) I'=O.

(i) We have

a'=a'+O=a'+(a*x)=(a'+a)s(a'+x)= l*(a'+x)=a'+x

Also,

Hence r = .r + a' = a' + x =a'.

(ii) By definition of complement, a + a' = I and a * a' = 0. By commutativity, a'+ a = I and a' * a = 0.
By uniqueness of complement, a is the complement of a', that is, a = (a')'.

(iii) By houndedness law (6a), 0 + I = I, and by identity axiom (3/i). 0 * I = 0. By uniqueness ofcomple-
ment, I is the complement of 0, that is, I = 0'. By duality. 0	 1'.
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11.7. Prove Theorem 11.4 (DeMorgan's laws):

(l Oa) (a+b)'=a'*be.	 (lOb)(asb)'=a'+b'
(IOa) We need to show that (a + b) + (a' * b

e
) = I and (a + b) s (a'* b') = 0 then by uniqueness of

complement, a'*b' = (a+b)'. We have

=	 I.  (a4-b') = b +0+ be = b +b'+ a I+a=
Also,

(a+b)*(a'*be) = ((a+b) ea')*b'
= ((a * a') + (b * a')) * be = (0 + (b * a')) *
= (b * a') a be = (b • b') so' Os a t = 0

Thus a'* be = (a + b)'.
(lOb) Principle of duality (Theorem 11.1).

I I.S. Prove Theorem 115: The following are equivalent in a Boolean algebra:

(l)a+b=b,	 (2)a*b=a,	 (3)a'+b=1,	 (4)a*b'=0.
By Theorem 7.8, (1) and (2) are equivalent. We show that (I) and (3) are equivalent. Suppose (1) holds.

Then

a' + b = a'+ (a + b) = (a'+ a) + 1, = 1 + 1, =
Now suppose (3) holds. Then

Thus (I) and (3) are equivalent.
We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan's law and involution.

0 = I' - (a'+ b)' = a"*!,' = asb'
Conversely, if (4) holds then

1=0' = (asb')'=a'+b" =a'+b
Thus (3) and (4) are equivalent. Accordingly, all four are equivalent.

11.9. Prove Theorem 11.6: The mapping f: B -+ (A) is an isomorphism where B is a Boolean
algebra. (A) is the power set of the set A of atoms, and

1(x) = fa ll 02,.. .
where x = a	 + a,, is the unique representation of a as a sum of atoms.

Recall (Chapter 7) that if the a's are atoms then a = a but a,aj = 0 for aj i4 o. Suppose x, y are in B
and suppose

y=b1+'••+b1+c1 +...+c,
where

A = ( ai,...,a,,bi,...,b:,ell. ,., ell d1.... . dk}

is the set of atoms of B. Then

xy=bi+...+b:
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Hence
J(x 4- y) = (a j ,..,, a,,h1..... b,,c1 .....c,)

= (a,_., a_ h j .....h,}u(h1 ...,	 c,)
=J(.v) Uf(y)

f(.vr) = {h1.....h,}
{a1.....ri,,h1,;..,h) n{h 1 	 c,}

= [() nj ()

Let v=c1+-•+e,+d1-1---I-d5. Then x+i=l and xv=O, and sos=x'. Thus

J(x')	 (e,	 '''(' ............= {a1 .... . a,,b1 .........= (1(x))

Since the representation is unique, is one-to-one and onto: Hence] is a Boolean algebra isomorphism.

BOOLEAN EXPRESSIONS

11.10. Reduce the following Boolean products to either 0 or a fundamental product.

(a) xyx'z; (b) xvzy; (c) xrz'yx; (d) .vv:'tx':'.

Use the commutative law .v *y = * x, the complement law x * ,v' = 0, and the idempotcnt law
X * x =

(a) zyx': = XX ')': 0j: = 0

(b) xyzy = xyyz = xy:
(c) xy: 'yx = XXI'). ' =
((i) xv:'vx':' = xx'vyz':' = Or:' = 0

11.11. Express each Boolean expression E(.v, y, z) as a sum-of-products and then in its complete sum-of-
products form:

I(a)E=x(xr I 
-l-xI )'+vz)	 (b)E=z(.v I +r)+i'.

First use Algorithm 11.8A to express E as a sum-of-products, and then use Algorithm 11.8B to express
E as a complete sum-of-products.

(a) First we have E = xxy ' + .vx'r -- xv ' : = vv' + xv ':. Then

£ = xv'(z + :') 4- xv ': = VI": + x)': + xv ' : = xv ' : +x)-'z'

(h) First we have

E = :(x ' +))+v ' = x ' : +vz +,v'
Then

E = x': +vz +Y ' = x':(y 4 y') + v:(x + x') + ;'(x + x')(: + :')
I	 ft	 I	 I	 11	 II	 ill=x:+x'z+x:+xi:-1-,v:+x: +Xi+Xy

X) .-T 4- xy ' : + xy':' + x'I: + x'y': +

11.12. Express E(x,v,z) = (.v'+ )-)' + x'y in its complete sum-of-products form.

We have E = (.v' + .1 1)' + .v'y = +xv' + x'r, which would be the complete sum-of-products form of LII
E were a Boolean expression in x and Y. However, it is specified that E is a Boolean expression in the three
variables x, y, and	 Hence,

E = xy' + x'v = .vp'(: + z') + x'v(z + z') = x)': + xy'z' + x'y: + x'v:'

is the complete sum-of-products form of E.
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11.13. Express each Boolean expression E(x,v,z) as a sum-of-products and then in its complete sum-of-
products form:

(a)E=v(x+v:)' (h)E=x(xv+i'+x'v).

(a)E = y(x'(':)') = yx'(' + :') = vx'y' + .v'v:' =

which already is in its complete sum-of-products form.

(h) First we have E = xxv t- vi ' -I	 = vi + vr'. Then

E = xy(: + :') + .rv'(: + :') =xy: + si:' + .vv': 4 vy"Z,

11.14. Express each set expression E(A, B, C) involving sets A, B, C as a union of intersections:

(a) E = (AU B)' n (C U B); (b) E = (B fl C)' fl (A' U C)'

Use Boolean notation, 'for complement. + for union and • (or juxtaposition) for Intersection, and then
express E as a sum of products (union of intersections).

(a) E=(A-1-B)'(C'-l-B)= A'B'(C'-f B)= A'B'C'+A'B'B= A'B'C' or E= A'flgflC
(b) E = (B(')'(A' + C)' = (8'+ C')(AC') = .48'C' + ,1C' or F = (An B' n (')u(A n ()

11.15. Let E=xv' +xtz'+x'i'z'. Prove that (a) x:' +E = E; (h) x+ £	 E, (c) :' + F 54 E.

Since the complete sum-of-products form is unique. A + E = F. where A 54 0, if and only if the sum-
mands in the complete sum-of-products form for A are anions the summands in the complete sum-of-
products form for E. Hence, first find the complete sum-of-products form for F:

E=x"(:+z')+xi':'±x'v:'=xi':+xv':'-xv:'+x'v:'

(a) Express x:' in complete sum-of-products form:

= x:'() , + Y') = .s: 4 xv':'

Since the summands of x:' are among those of E. we have x:' + F = E.

(b) Express x in complete sum-of-products form:

x= x(	 )")(: + : ') = vi: + vi': ' + xv': +

The summand vi: of .v is not a summand of E: hence .v + F j4 F.

(e) Express :' in complete sum-of-products form:

-:'(X + x')(' + v') = xv:' + vj ': ' + x':' +

The summand x'v':' of:' is not a summand of F; hence :' + E F.

MINIMAL BOOLEAN EXPRESSIONS, PRIME IMI'LICANTS

11.16. For any Boolean sum-of-products expression E. we let E1 denote the number of literals in F
(counting multiplicity) and E5 denote the number of summands in F. Find E, and Es for each of
the following:

(a) E = xy'z + x'z' + yz + .v 	 (c) E = x1 ' t ' + x')-'z1 + x:'t

(b) E= x'y':+ xv:+v+v:'-l-x':	 (d) F = (xv'+ :)' +xv'

Simply add up the number of literals and the number of summands in each expression:

(a) EL = 3+24-2+l = '8,	 Esr4.
(1,) EL =3+3+l+2+2 = ll,	 L5=5.
(c) E = 3+4+3= l0.	 E,=3.	 -

(d) Because E k not written as a sum of product". E, and Es are not defined.
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11.17. Given E and F are equivalent Boolean sum-of-products, define:

(a) E is simpler than F; (h) E is minimal.

(a) F is simpler than FIT EL <FL and F5 :5 F5, or if EL S FL and E5 <Ps.
(b) E is minimal if there is no equivalent sum-of-products expression which is simpler than E.

11.18, Find the consensus Q of the fundamental products P 1 and P2 where:
(a) P 1 = xv's', P2 = x)'I	 (r) P 1	xy'z', P2 = x'y'zs
(h) P 1 = x),:':, P2	 .VZI	 (d) P 1 = XI'Z. P2 = .ZI

The consensus Q of P and P2 exists if there is exactly one variable, say -' Ck- which is complemented inone of P and P2 and uncompiementcd in the other. Then Q is the product (without repetition) of the literals
- in P1 and P2 after xt and x have been deleted.

(a) Delete y' and ' and then multiply the literals of P 1 and P2 (without repetition) to obtain Q = xz'i.
(h) Deleting z' and z yields Q = xyl.
(c) They have no consensus since both x and z appear complemented in one of the products and Un-

complemented in the other.

(d) They have no consensus since no variable appears complemented in one of the products and Un-
complemented in the other.

11.19. Suppose Q is the consensus of P, and P2 . Prove that P 1 + P2 + Q = P 1 -t- P2.
Since the literals commute, we can assume without loss of generality that

P 1 = a,a2	a,l.	 P2 = h,!,2 ... h,,',	 Q = a 1 a2 . a,h 1 h2 . . .
Now, Q = Q(t + r') = Qi + Qe'. Because Qi contains P i, P i + Q = P 1 ; and because Qt' contains P2.2 + Qi' = P2 . Hence

P l +P2+Q = P1+ p2 +Q g +Q1'(p 1 +Q:)+(P2+Qs')=p,+p2

11.20. Let E = xv' + xyz' + x',pz'. Find: (a) the prime iniplicants of E; (1,) a minimal sum for E.
(a) Apply Algorithm 11.9A (consensus method) as follows:

E = sy' + xyz' + x'y:' + x:'
= xv' + x'y:' + xz'
= xy ' + x'y:' + xz' + y:'
= x / +.v:' + ys,

(Consensus of xy' and xyz')
(xyz' includes xz')
(Consensus of x'yz' and xz')
(x'yz' includes ys')

Neither step in the consensus method can now be applied. Hence xv', x:', and z' are the prime
implicants of F.

(h) Apply Algorithm 11.9B. Write each prime implicant of E in complete sum-of-prodticts form obtain-
ing:

I	 I	 I	 ,xy =xy(z+:)=xv:+x). I I

= xz'(y + y') = xy::' + xy'z'
yr' = ) -Z' (X + .s') = xyz' +

Only the sunimandsxyz' and xv's' of x:' :' . pear among the other summands and hence x:' can be
eliminated as superfluous. Thus E = xy' + yz ' is a minimal si'n for E.
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11.21. Let E = xy + y't + x 'yz ' + x"zi'. Find: (a) the prime implicants of E. (h)a minimal sum for F.

(a) Apply Algorithm 11.9A (consensus method) as follows:

E = xy +' I + x'y:' + x 'u ' + x:i'
= xy + yr + x'yz ' + xzi'
= xv + y'i + X'): ' + x:1' + y:'

= xy + y ' t + X:1' +

= xy + y ' i + xzt' + y:' + Xl
= xy + y ' l + x:1' + yz' + xl + x:
= X)'+y1+ .I + xl +xz
= xy + y'i + + Xl + xz +

(Consensus of vi and vi':,')

(v'-z' includes .s:i')

(Consensus of .vy and .v'v:')
Vy_ # includes i':)

(Consensus of xv and v'l)
:(Consensus of x' and :)

(xt' includes sfl.:)

(Consensus of r ' l and y:')

Neither step in the consensus method can now be applied. Hence the prime impiicants of F are xv.
yz ' ,xe,xz, and :'l.

(b) Apply Algorithm 11.9B. Write each prime implicant in complete sum-of-products form and then delete
one by one those which are superfluous, i.e. those whose summands appear among the other
summands. This finally yields	 -

F = + xz +Y:'

as a minimal sum for E.

KARNAUGH MAPS

11.22. Find the fundamental product P represented by each basic rectangle in the Karnaugh map in
Fig. 11-14.

(a)

HMO
MEMO

(b)

F
EMMIN
INm m7som LIN

Fig. 11-14

In each case find those literals which appear in all the squares ot' the basic rectangle; then P is the
product of such literals.

(a) x' and z' appear in both squares; hence P =
(b) x and z appear in both squares; ttence P = xz.
(c) Only z appears in all four squares; hence P =

11.23. Let R be a basic rectangle in a Karnaugh map for four variables x, v, z, t. State the number of
literals in thefundamental product P corresponding to R in terms of the number of squares in R.

P will have 1, 2. 3, or 4 literals according as R has 8, 4, 2, or I squares.



NONEiiU.-
xv

XY

X

1,-p

21	 Zr'	 z't'	 ft

I-p

xv,

X 

XY

xv,

x,y.

1,-p

V.	 zt'	 2'!'	 2'!

XY

xv'

I-p

x,y
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11.24. Find the fundamental product P represented by each basic rectangle R in the Karnaugh map in
Fig. 11-15.

to)	 (b)	 (c)

Fig. 11-15

In each case find those literals which appear in all the squares of the basic rectangle; then P is the
product of such literals. (Problem 11.23 indicates the number of such literals in P.)
(a) There are two squares in R, so P has three literals. Specifically,	 I' appear in both squares; hence

P = x'j;'t'.
(b) There are four squares in R, so P has two literals. Specifically, only V and : appear in all four squares;

hence P = y':.
(c) There are eight squares in R, so P has only one literal. Specifically, only y appears in all eight squares;

hence P = y.

11.25. Let E be the Boolean expression given in the Karnaugh map in Fig. 11-16.

(a) Write E in its complete sum-of-products form. (b) Find a minimal form for E.

:	 zs	 z'e	 2':

Fig. 11-16

(a) List the seven fundamental products checked to obtain

£ = xyz'I' + xyz' + xy'zt + xy'zt' + x';"zl + X 'y'zI' + x'yz't'

(b) The two-by-two maximal basic rectangle represents y'z since only ," and z appear in all four squares.
The horizontal pair of adjacent squares represents xv:'. and the adjacent squares overlapping the top
and bottom edges represent yz't'. As all three rectangles are needed for a minimal cover,

E=y'z+xyz'+yz't'

is the minimal sum for L



XY

xy'

X 

XY

xy

XY

zy

x,y

XY

x,y,

X 

xy

XY

x'y
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11.26. Consider the Boolean expressions E1 and E2 in variables x,y,z, i which are given by the
Karnaugh maps in Fig. 11-17. Find a minimal sum for (a) E1 ; (b) E2.

ii	 zt	 z'?	 si	 St	 zt	 z't'	 ft

(a) El(b)E2

Fig. 11-17

(a) Only y' appears in all eight squares of the two-by-four maximal basic rectangle, and the designated pair
of adjacent squares represents xzt '. As both rectangles are needed for a minimal cover, thus the
following is the minimal sum for E1:

E1 = y' + xzl'

(b) The four corner squares forma two-by-two maximal basicrectangle which represents yt, since only y
and (appear in all the four squares. The four-by-one maximal basic rectangle represents x 'y ' , and the
two adjacent squares represent y'zI'. As all three rectangles are needed for a minimal cover, hence the
following is the minimal sum for E2:

E2=v1+x'y'+y'z:'
fo

11.27. Consider the Boolean expressions E1 and E2 in variables x, y, z, I which are given by the
Karnaugh maps in Fig. 11-18. Find a minimal sum for: (a) E 1 ; (b) E2.

it	 it'	 Z ' 1 1	 ft	 it	 Zr	 ft • it

(a) E,( b) E,

Fig. il-IS

(a) There are five prime implicants, designated by the four loops and the dashed circle. However, the
dashed circle is not needed to cover all the squares, whereas the four loops are required. Thus the four
loops give the minimal sum for E1 ; that is,

E1 = xii' + xy'z' + x'y'z + x'z't'
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(h) There arc five prime implicants, designated by the five loops of which two are dashed. Only one of the
two dashed loops is needed to cover the square x'y'z'14. Thus there are two minimal sums for E7 as

follows:

E2 = x 'y + yt + Xyt f + y'Z ' I ' = x'y + yl + Xyl , + X12'l'

11.28. Use a Karnaugh map to find a minimal sum for:

1	 I

(a) E 1 =xy
I
z + x

I
y:

I
 +xyIz+xyz.

(b) E2 = x'yz' + x'yz + xy'z + xyz' + xyz.

Each term in E 1 and E2 contains the three variables x,y,z, and hence it corresponds to a square in the
Karnaugh map (with three variables).

(a) Checking the appropriate squares gives the Karnaugh map in Fig. 11-19(a). There are three prime
implicants, as indicated by the three loops, which form a minimal cover of E 1 . Thus a minimal form

for E1 follows:

E1 =yz'+x'z'+xy'z

(b) The Karnaugh map appears in Fig. 11-19(b). There are two prime implicants, as indicated by the two
loops, which form a minimal cover of E2 . Thus a minimal form for E2 follows:

E2 = XZ +y

IN M M IN
LN M M

(a)

Fig. 11-19

11.29. Use a Karnaugh map to find a minimal sum for:

(a) E 1	 .r 1yz + x'yz't + y'zt 1 + xyzt ' + xy1z1!'.

(b) E2 = y't' + y'z'f + x'y'zt + yr:1.

(a) Check the two squares corresponding to each of x'yz and y'zt', and check the square corresponding to

each of x'yz', xyz:', and xy 1z. This gives the Karnauh map in Fig. 11-20(a). A minimal cover
consists of the three designated loop9b Thus a minimal sum for E 1 follows:

E1 =zz'±xy't'+xy!

(b) Check the four squares corresponding to 21', check the two squares corresponding to each of y'z': and

yzt', and check the square corresponding to x'y'zl. This gives the Karnaugh map in Fig. 11-20(b). A
minimal cover consists of the three designated maximal basic rectangles. Thus a minimal sum for E2

follows:

E2=z1'+xy':'+x'yt	 --



xl	 xl'	 it'	 ftzi	 zr	 z'r'	 zr

xy

:ty'

xy

x.y

X.Y.

XY

ZY

x,y

CHAP. Ill	 BOOLEAN ALGEBRA
	

277

(a) E1	 (b) E,

Fig. 11-20

Supplementary Problems

BOOLEAN ALGEBRAS

11.30. Write the dual of each Boolean expression:

(a)a(a'+b)''ab; (b)(a+l)(a+O)=a; (c)(a+b)(b+c)=ac+b.

11.31. Consider the lattices Dm of divisors of m (where in> I).

(a) Show that D. is a Boolean algebra if and only if in is square-free, that is, m is a product of distinct

primes.

(b) If D. is a Boolean algebra, show that the atoms are the distinct prime divisors of in.

11.32. Consider the following lattices: (a) D20 ; (b) D55 ; (c) D; (d) 13 1 . Which of them are Boolean

algebras, and what are their atoms?

11.33. Consider the Boolean algebra 13110.

(a) List its elements and draw its diagram. (b) Find all its subalgebras.

(c) Find the number of sublattices with four elements. (d) Find the set A of atoms of D110.

(e) Give the isomorphic mapping f; 13 110 -. ?(A) as defined in Theorem 11.6.

11.34. Let B be a Boolean algebra. Show that: (a) For any x in B, 0 x < I. (b) a < b if and only if b' <a'.

11.35. An element x in a Boolean algebra is called a maxterm if the identity 1 is its only successor. Find the

maxterms in the Boolean algebra 13 0 pictured in Fig. 11-13.

11.36. Let B be a Boolean algebra. (a) Show that complements of the atoms of B are the maxterms. (b) Show

that any element x in B can be expressed uniquely as a product of maxterms.

1137. Let B be a 16-element Boolean algebra and let S be an 8-element subalgebra of B. Show that two of the

atoms of S must be atoms of B.

11.38. Let B = (B, +, a,' 0, I) be a Boolean algebra. Define an operation A on B (called the symmetric difference)

by

xAy = (x * y') + (x' y)

Prove that R = (B, A, a) is a commutative Boolean ring.



278	 BOOLEAN ALGEBRA	 [CHAP. II

11.39. Let R (R, +, .) be a Boolean ring with identity I 36 0. Define

x'=I+X, x+y=x+y+x•y, xsy=x.y

Prove that B = (R, +, *,' , 0, I) is a Boolean algebra.

BOOLEAN EXPRESSIONS, PRIME IMPLICANTS

11.40. Reduce the following Boolean products to either 0 or a fundamental product:

(a) xy'zxy'; (b) xyz'sy':s; (c) xy'x:'zy'; (d) xyz':y't

11.41. Express each Boolean expression E(x,y,z) as a sum-of-products and then in its complete sum-of-products
form:

(a) E x(xy' + x'y + y'z). (b) E = (x + y'z)(y + z'). (c) E = (x ' + )')' + y'z.

11.42. Express each Boolean expression E(x,y,z) as a sum-of-products and then in its complete sum-of-products
form:

(a) E=(x'y)'(x'-i-xyz'). (b) (x-fy)'(xy')'. (c) E=y(x+yz)'.

11.43. Find the consensus Q of the fundamental products P 1 and P2 where:

(a) P1 = xyz, P2 = xyt	 (c) P 1 = xy 'zi, P2 xyz'
(b) P1 = xyz ' r ' , P2 = xzz'	 (d) P 1 = xy ' i, P2 = xz:

11.44. For any Boolean sum-of-products expression E. we let E L denote the number of literals in E (counting
multiplicity) and E5 denote the number of summands in E. Find EL and E for each of the following:

(a) E=xyz':+x'y:+xy'zi. (b) E=xyzi+xz'+x'y':+-yi

11.45. Apply the consensus method (Algorithm 11.9A) to find the prime impticants of each Boolean expression:

(a) E1 = xy'z' + x'y + x'y'z' + x'yz.
I(b)-E2 =xy I +x Iz I l+xyzl I +xyIzlI .

(c) E3 =xyzt+xyz'l'--xz'z'-i-x1v'z'+x'yz'1.

11.46. Find a minimal sum-of-products form for each of the Boolean expressions in Problem 11.45,

KARNAUGH MAPS

11.47. Find all possible minimal sums for each Boolean expression E given by the Karnaugh maps in Fig. 11-21.

ys yz' yz Y 1

X,

(a)

0

yz yz' y'z I Y 1

xv'	 .1	 /

X, / /	 VI

(b)

Fig. 11-21

	

yx	 yx'	 y'z'	 y'z

	

xl	 I

x,

(c)
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• 11.48. Find all possible minimal sums for each Boolean expression E given by the Karnaugh maps in Fig 11-22.

V	 it'	 z t'	 't	 it	 it'	 ZI'	 zi	 it	 it 	 Z'1
1
	z'f

XY

I,

xy

x'y

XY

xy

X 

X 

XY

xy,

xy

x.y

OMENOMENU-.U,..

U...U-.ONEma'.

U...S-.U...U.-
(a)	 (b)

	 (c)

Fig. 11-22

11.49. Use a Karnaugh map to find a minimal sum for each Boolean expression:

(a) E = xy + x'y + x'y'. (b) E = x ± x'y_- + xy'z'.

11.50. Use a Karnaugh map to find a minimal sum for each Boolean expression:

(a)E = y'z +y'z'r' + z't. (h) E = y'zt + x::' + x"z'.

11.51. Show that the sum of two adjacent products will be a fundamental product with one fewer literal.

Answers to Supplementary Problems

11.30. (a) a + a#b = a + b; (b) a-0+  a• I = a; (c) ab + bc = (a + c)b

11.32. (b) D55 ; atoms 5 and 11; (d) D 13 : atoms 2, Sand 13

11.33. (a) There are tight elements I, 2, 5, 10, II, 22, 55, 110. See Fig. 11.23(a).
(b) There are five subalgebras:(1,llO),(I,2,55,llo),{1,5,22,l1o},{I,lo,Il,llo}.D1lo.
(c) There are fifteen sublattices which include the above four three subalgebras.
(d) A={2,5,ll}
(e) See Fig. 11-23(b).

I	 2	 $	 II	 10	 22	 55	 ItO

H 1I	
0,421, (5), (II). f2,5). (2. U), (S. ll),A

(a) D110	 .	 (b) f: D110-P(A)

Fig. 11-23
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1135, Maxterms: 30, 42, 70, lOS

11.36. (b) Hint: Use duality.

11.40. (a) xy'z; (b) 0; (c) xy'z'l; (d) 0

11.41. (a) E=xy'+xy'z=xy'z'+xy'z
(b) E=xy+xz'=xyz+xyz'+xy'z'
(c) £ = xy' + y'z = xy'z + xy'z' + .x'y'z

11.42. (a) E= xyz'+x'y' .=xyz'+x'y'zi-x'y'z'
(b) E = x'y' = x'y'z + x'y'z'
(c) E = x'yz'

11.43. (a) Q xzt; (b) Q = xyt'; (c) and (d) Does not exist.

11.44. (a)EL =ll,Es=3; (b)EL=ll,E5-4

11.45. (a) x'y, x'z', y'z '; (b) xy', xz:', yzt', x'z'r, y'z't; (c) xyzt, XZf ' , y'z'i', x'y'z', x'Z't

11.46. (a) E—x'y+x'z'
(b) E=xy+xz1#+xzt+yIz1
(c) E = xy2I + xz't' ± X'y 'Z ' + X'Z't

11.47. (a) £ = xy' +x'y +yz = xy' + x'y+xz'
(b) E=xy'+x'y+z
(c) E=x'+z

11.48. (a) E = x'y + zi + xz't +xy'z = x'y + zi' + xz't + xy'i
(b) E=yz+yt'+zz'+xy'z'
(c) E=x'y+yI+xy't'+x'zt—X'y+Yt+XY't'+Y'Zt

11.49. (a) E = x'+ y; (b) E = xz' +yz

11.50. (a) E=y'+z't; (b) E—.xy'+zi'+y'zi


