PART Ill: Related Topics

Chapter 10

Logic and Propositional Calculus

10.1 INTRODUCTION

Many proofs in mathematics and many algorithms in computer science use logical expressions such
as

- “IF p THEN q" or “IF p; AND p;. THEN ¢; OR 4,7

It is therefore necessary to know the cases in which these expressions are either TRUE or FALSE: what
we refer 1o as the truth values of such expressions. We discuss these issues in this chapter.

We also investigate the truth value of quantified statements, which are statements which use the
logical quantifiers “for every” and “there exists".

10.2 PROPOSITIONS AND COMPOUND PROPOSITIONS

A proposition (or statement) is a declarative sentence which is true or false, but not both. Consider,
for example, the following eight sentences:

(i) Paris is in France. (v) 9<6.

(i) 1+1=2 (vi) x =2 is a solution of x* = 4,
(i) 2+2=23. (vil) Where are vou going?
(iv) London is in Denmark. (vii) Do your homework.

All of them are propositions except (vii) and (viii). Moreover, (i), (i), and (vi) are true, whereas, (iii),
(iv), and (v) are false.

Compound Propositions

Many propositions are composite, that is, composed of subpropositions and various connectives
discussed subsequently. Such composite propositions are called compound propositions. A proposition
is said to be primitive if it cannot be broken down into simpler propositions, that is. if it is not composite.

EXAMPLE 10.1

(a) "Roses are red and violets are blue” is a compound proposition with subpropositions "Roses are red” and
“Violets are blue".

(b) “John is intelligent or studies every night™ is a2 compound proposition with subpropositions “John is intelli-
gent” and “John studies every night". y

{¢) Theabove propositions (i) through (vi) are all primitive propositions; they cannot be broken down into simpler
propositions.
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230 LOGIC AND PROPOSITIONAL CALCULUS [CHAP. 10

The fundamental property of a compound proposition is that its truth value is completely
determined by the truth values of its subpropositions together with the way in which they are
connected to form the compound propositions.

The next section studies some of these connectives.

10.3 BASIC LOGICAL OPERATIONS

This section discusses the three basic logical operations of conjunction, disjunction, and negation
which correspond, respectively, to the English words “and”, “or”, and “not™,

Conjinction p A g

Any two propositions can be combined by the word “and" to form a compound proposition called
the conjunction of the original propositions. Symbolically,

PAg
read “"p and ¢, denotes the conjunction of p and g. Since p A ¢ is a proposition it has a truth value, and
this truth value depends only on the truth values of p and ¢. Specifically;

Definition 10.1: If p and g are true, then p A g is true; otherwise p A g is false.

The truth value of p A ¢ may be defined equivalently by the table in Fig. 10-1(a). Here, the first line
is a short way of saying that if p is true and q is true, then p A g is true. The second line says that if p is
true and g is false, then p A ¢ is false. And so on. Observe that there are four lines corresponding to the
four possible combinations of T and F for the two subpropositions p and ¢. Note that g A ¢ is true only
when both p and g are true.

PP
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(a) “pand g" (h)“porg™ (¢) "not p"

Fig. 10-1

EXAMPLE 10.2 Consider the following four statements:

(i) Parisisin Franceand 2+ 2 =4. (iit) Pars is in England and 2+ 2 = 4.
(1) Paris is in France and 24 2 = 5. (iv) Paris is in England and 2 4+ 2 = §.

Only the first statement is true. Each of the other statements is false since at least one of its substatements is false.

Disjunction, p v ¢

Any two propositions can be combined by the word *“or™ to form a compound proposition called
the disjunction of the original propositions. Symbolically,

pYq

read “'p or ¢"', denotes the disjunction of p and ¢. The truth value of pV ¢ depends only on the truth
values of p and g as follows.
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Definition 10.2: If p and g are false, then p v g is false; otherwise p Vv g is true.

The truth value of p V ¢ may be defined equivalently by the table in Fig. 10-1 (). Observe that pV g
is false only in the fourth case when both p and g are false.

EXAMPLE 10.3 Consider the following [our slatemenls:

(i) Parisisin Franccor24+2=4. (iii) Parisism England or 2 +2 = 4.
(i) Paris isin France or 2+2=5. (iv) Parisis in England or 2 +2 = 5.

Only the last statement (iv) is false. Each of the other statements is true since at least one of its substatements is true.

Remark: The English word “or™ is commonly used in two distinct ways. Sometimes it is used in
the sense of “p or g or both™, i.e., at least one of the two alternatives occurs, as above, and sometimes it
is used in the sense of *'p or ¢ but not both”, i.e., exactly one of the two alternatives occurs. For example,
the sentence "“He will go to Harvard or to Yale” uses “or” in the latter sense, called the exclusive
disjunction. Unless otherwise stated, ““or™ shall be used in the former sense. This discussion points
out the precision we gain from our symbolic language: p V ¢ is defined by its truth table and always
means “'p and/or g".

Negation, - p

Given any proposition p, another proposition, called the negation of p, can be formed by writing "1l
is not the casc that . . . or “It is false that . . .*" before p or, if possible, by inserting in p the word *“not™.
Symbolically,

P

read “‘not p”, denotes the negation of p. The truth value of = p depends on the truth value of p as
follows.

Definition 10.3: If p is true, then = p is false; and if p is false, then = p 1s true.

The truth value of ~ p may be defined cquivalently by the table in Fig. 10-3(c). Thus the truth value
of the negation of p is always the opposite of the truth value of p.

EXAMPLE 10.4 Consider the following six statements.

(a,) Paris is in France. i () 2+2=15.
{e3) Tt is not the case that Paris is in France. (by) It is not the case that 2+ 2 =5,
(ay) Paris is not in France. (b)) 24245

Then (a,) and (a,) are each the negation of (a,): and (b;) and (b+) are each the negation of (h). Since (a) is true,
(a7) and (ay) are false; and since (b)) is false, (b;) and (by) are true.

Remark: The logical notation for the connectives “and™, “or”, and “not™ are not completely
standard. For example, some lexts usc:

p& g, p-qorpg for pAg
p+q . for pvyg
pl.por~p for = p
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10.4 PROPOSITIONS AND TRUTH TABLES

Let P(p,q,...) denote an expression constructed from logical variables P.q, ..., which tuke on the
value TRUE (T) or FALSE (F), and the logical connectives A, V. and - (and others discussed
subsequently). Such an expression P(p,q,...) will be called a proposition.

The main property of a proposition P(p,q,...) is that its truth value depends exclusively upon the
truth values of its variables, that is, the truth value of a proposition is known once the truth value of each
of its variables is known. A simple concise way to show this relationship is through a truth table. We
describe a way to obtain such a truth table below.

Consider, for example, the proposition =(p A ~g). Figure 10-2(a) indicates how the truth table of
=(p A —g) is constructed. Observe that the first columns of the table are for the variables Py, and
and that there are enouzh rows in the table to allow for all possible combinations of T and F for these
variables. (For 2 variables. 4 rows are necessary; for 3 variables, 8 rows are necessary; and, in general,
for n variables 2" rows are required.) There is then a column for each “elementary” stage of the
construction of the proposition, the truth table at each step being determined from the previous slages
by the definitions of the connectives A, \V, —. Finally we obtain the truth value of the proposition, which
appears in the last column.

The actual truth table of the proposition =(p A ~g) is shown in Fig. 10-2(h). It consists precisely of
the columns in Fig. 10-2(a) which appear under the variables and under the proposition; the other
columns were merely used in the construction of the truth table.

pla|-~alpr~a|-(pr-a plal|-tpa-g
rlel vl ¥ T 3 T
rlE el T F T|F F
rlele| » T FlT T
FIFrlT]| ¥ T F|F T
(a) (&)
Fig. 10-2

Remark: In order to avoid an excessive number of parentheses, we sometimes adopt an order of
precedence for the logical connectives. Specifically:

= has precedence over A which has precedence over v.

For example, —p A g means (—~p) A ¢ and not —(p A g).

Alternative Method for Constructing a Truth Table
Another way to construct the truth table for ~(p A —¢) follows:

(a) First we construct the truth table shown in Fig. 10-3. That is, first we list all the variables and the
combinations of their truth values. Then the proposition is written on the top row to the right of its
variables with sufficient space so that there is a column under each variable and each connective in
the proposition. Also there is a final row labeled “Step™.

=~ N T )

I I
M- |

Fig. 10-3
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(b) Next, additional truth values are entered into the truth table in various steps as shown in Fig. 10-4.
That is, first the truth values of the variables are entered under the variables in the proposition, and
then there is a column of truth values entered under each logcial operation. We also indicate the
step in which each column of truth values is entered in the table.

The truth table of the proposition then consists of the original columns under the variables and
the last step, that is, the last column entered into the table.

= 2lgl~ {p N = g) rlej= (p AN 7 g}
T|T T T T | T T F|T
T{F T F T|F T T|F
F{(T F ) F|T F F|T
F|F F F F|F F T|F
Step 1 1 Step 1 211
* (@ &)
Ppleg|l~ (p A = gq) 2l ' B N
T|T T|FlE|T TlITIT | T)RIE]'T
T|F Tl [P F F|T|F|T|T|T]|F g
F|T F|F|F|T. F|F|T|F|F|F|T
F|F FIlELTIE" FIEIT|E|F|TILE
Step |« R = O 1 A Step 4 |1 312 |1
() (d)

Fig. 104

10.5 TAUTOLOGIES AND CONTRADICTIONS

Some propositions P(p,q,...) contain only T in the last column of their truth tables or, in other
words, they are true for any truth values of their variables. Such propositions are called taurologies.
Analogously, a proposition P(p,g,...) is called a contradiction if it contains only F in the last column of
its truth table or, in other words, if it is false for any truth values of its variables. For example, the
proposition “p or not p", that is, p V = p, is a tautology, and the proposition *p and not p", that is,
p A—p,is a contradiction. This is verified by looking at their truth tables in Fig. 10-5. (The truth tables
have only two rows since each proposition has only the one variable p.)

P "rIPV“P P |-P|PA"P

T F T T F F

F TI T F T F

(@ pVv-=p BypAr-p
Fig. 10-5

Note that the negation of a tautology is a contradiction since it is always false, and the negation of a
contradiction is a tautology since it is always true.
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Now let P(p,q,:..) be a tautology, and let Py(p,q,...), P2(p,q,...) ... be any propositions. Since
P(p,q,...) does not depend upon the particular truth values of its variables p, ¢, ..., we can substitute P,
for p, P, for g, ... in the tautology P(p,q,...) and still have a tautology. We state this result formally.

Theorem 10.1 (Principle of Substitution): If P(p,g,...) is a tautology, then P(P,, P,,...) is a tautology
for any propositions Py, Py,....

10.6 LOGICAL EQUIVALENCE

Two propositions P(p,q,...) and Q(p,q,...) are said to be logically equivalent, or simply equivalent
or equal, denoted by L

P(.q,..) = 0p-dr. )

if they. have identical truth tables. Consider, for example, the truth tables of =(p Aqi and —pV g
appearing in Fig. 10-6. Observe that both truth tables are the same, that is, both propositions are false in
the first case and true in the other three cases. Accordingly, we can write

S(pAg)=-pV g
In other words, the propositions are logically equivalent.

plalepral-tpag p|gl-r|-a|-rv-a

tlr| T F r[T|F|F F

tlr]| F T rlrlelx T

Flr] * T FlrlT|F T

Flr] F T elelr|rl 7t
(@ ~(pnq) (b) ~pv-gq

Fig. 10-6

4

Remark: Consider the statement
“It is not the case that roses are red and violets are blue™
This statement can be written in the form —(p A g), where
p is “roses are red” and g is “'violets are blue™
However, as noted above, ~(p A g) = —~pV —g. Thus the statement

“Roses are not red, or violets are not blue”

has the same meaning as the given statement.

10.7 ALGEBRA OF PROPOSITIONS

Propositions satisfy various laws which are listed in Table 10-1. (In this table, T and F are restricted
to the truth values “true” and ““false™ respectively.) We state this result formally.

Theorem 10.2: Propositions satisfy the laws of Table 10-1.
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Table 10-1 Laws of the Algebra of Propositions

Idempotent laws

(la) pvp=p (1h) pAp=p
Associative laws

(2a) (pva)Vr=pVvigVr) (2b) (pAg)Ar=pA(qAr)
Commutative laws

(3a) pvg=qVp (3b) prg=qAp

Distributive laws
(4a) pvi(gAar)=(pvan(pvr)  (4h) palgvr)=(paq)vipAr)

Identity laws
’ (Sa) pvT=p (5h) pAF =p
(6a) pvT=T (6b) pAF=F
Complement laws
(Ta) pv-p=T (8a) -T=F
(76) pA-p=F (88) -F=T
Involution law
(9) -~-p=p
DeMorgan's laws
(10a) ~(pvag)=-pn~y (10h) ~Apng)=-pV g

10.8 CONDITIONAL AND BICONDITIONAL STATEMENTS

Many statements, particularly in mathematics, are of the form “If p then ¢, Such statements are
called conditional statements, and arc denoted by

=y

The conditional p — g is frequently read “p implies ¢ or “p only if 47,
Another common statement is of the form “p il and only if 4. Such statements are called hicondi-
tional statements, and are denoted by

P—q
The truth values of p — g and p — ¢ are defined by the tables in Fig. 10-7. Observe that:

(a) The conditional p — ¢ is false only when the first part p is true and the second part ¢ is false.
Accordingly, when p is false, the conditional p — g is true regardless of the truth value of g.
(6) The biconditional p «— g is true whenever p and ¢ have the same truth values and false otherwise.

| 9| Py | ¢ | peog

mTo=- -
M=M= |
=M
- -
M= T |
4mm-|t

(a) p— g (h) perg

Fig. 10-7
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The truth table of the proposition - pV ¢ appears in Fig. 10-8. Observe that the truth tables of
—pVgandp — gare identical, that is, they are both false only in the second case. Accordingly, p — g is
logically equivalent to = p Vv g; that is,

P—g=E-pVy

In other words, the conditional statement “If p then ¢" is logically equivalent to the statement *“Not por
q" which only involves the connectives V and = and thus was already a part of our language. We may
regard p — ¢ as an abbreviation for an oft-recurring statement.

P I q |"P ] “pVgq
TIT|E s
T|F F F
F 1% T T
F|F|T T
AR
Fig. 10-8

10.9 ARGUMENTS

An argument is an assertion that a given set of propositions Py, P, ..., P,, called premises, yields
(has as a consequence) another proposition Q. called the conclusion. Such an argument is denoted by

Py Py P00
The notion of a “logical argument™ or “valid argument™ is formalized as follows.

Definition 10.4:  An argument P, Py,..., P, - Q is said to be valid if Q is true whenever all the premises
Py, Py,..., P, are truc. An argument which is not valid is called a failacy.

EXAMPLE 10.5
(a¢) The following argument is valid:

p.p— qt g (Law of Detachmenr)

The proof of this rule follows from the truth table in Fig. 10-9. Specifically, p and p — g are true simul-
taneously only in Case (row) 1, and in this case g is true.

Fig. 109

(h) The lollowing argument 1s a lallacy:
r—q qtp

For p — g and g are both true in Casc (row) 3 in the truth table in | 1g. 10-9, but in this case p is false.
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Now the propositions Py, P;,..., P, are true simultaneously il and only if the proposition
Py APy A~ AP, is true. Thus the argument Py, Py, ..., P, F Q is valid il and only if Q is true whenever
Py A PyA--- AP, is true or, equivalently, if the proposition (Py A Py A -+ A P,) — Qs a tautology. We
state this result formally.

Theorem 10.3: The argument Py, P,,...,P,-Q is valid if and only if the proposition
(PyAPyA---AP,) — @ is a lautology.

We apply this theorem in the next example.

EXAMPLE 10.6 A fundamental principle of logical: reasoning states:
“If p implies ¢ and g implies r, then p implies r~
That is, the following argument is valid:
p—q, q—r + p—r (Law of Syllogism)
This fact is verificd by the truth table in Fig. 10-10, which shows that the following proposition is a tautology:
i lp—=@)Alg—n)—(p—r)

Equivir.cntly, the argument is valid since the premises p — g 'and ¢ — r are true simultaneously only in Cases (rows)
1. 5. 7. 8 and in these cases the conclusion p — ris also true. (Observe that the truth table required 2* = 8 lines since
there are three variables, p,q,r.)

pleg|r|lp = @99 A (@ = A = (p =+ 1
dENENESEIESETEEES D ESED EEE:
i 7y F T T T F T F F E T F F
T F T T F F F F T T i I T T T
T|F|Fr]|TlFlE|lRP]lEFEYIT|RlT|lT|E|F
FlglTir]lrleolriclrlolzslEe |T]T
F T F F T T F T F F T F 3 6 F
i O I - ol O] R I o G T T
F F F F T F T F 3 F i 3 F T F

Step I 2 1 k) 1 2 I 4 1 2 |

Fig. 10-10

We now apply the above theory to arguments involving specific statements. We emphasizé that the
validity of an argument does not depend upon the truth values nor the content of the statements
appearing in the argument, but upon the particular form of the argument. This is illustrated in the
following example.

EXAMPLE 10.7 Consider the following argument:

Sy: If a man is a bachelor, he is unhappy.
S.: Il a man is unhappy, he dies young.

S:  Bachelors die young.

Here the statement § below the line denotes the conclusion of the argument, and the statements 5, and §, above the
line denote the premises. We claim that the argument 5y, 5 b S is valid. Far the argument is of the form

P—q. g—=r k p—r

where p is "“He is a bachelor™, g is “He is unhappy™ and r is ""He dies young''; and by Example 10.6 this argument
(law of syllogism) is valid.
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10,10 LOGICAL IMPLICATION
A proposition P(p,q,...) is said to logically imply a proposition Q(p.¢....), wrillen
Plp.g....) = Qlp.g....)

il Q(p,g....) is true whenever P(p,q....) is true.

EXAMPLE 10.8 We claim that p logically implics p ' ¢. For consider the truth table in Fig. 10-11. Observe that p
is true in Cases (rows) 1 and 2, and in these cases p Vg is also true. Thus p = pv g,

rvaq

'-'.'I'.-i-il":
T4 |e
m-H-HA| <

=

Fig. 10-11

Now if Q(p.q....) is true whenever P(p.q. ...} is true. then the argument
Plp.g....)F Qip.g....)
is valid; “und conversely.  Furthermore, the argument £+ Qs valid if and only if the conditional
statement £ — @ is always truc, i.c. a tautology. We state this result formally,
Theorem 10.4:  For any propositions P(p.q....) and Q(p.g,...) the following three statements are

cguivalent:

(1) P(p.q....) logically implics Q(p.q. ...).
(i) The argument P(p,q,...) F Q(p.q....) is valid.
(i) The proposition P(p.q....) — Q(p.g,...) is a tautology.
We note that some logicians and many texts use the word “implies” in the same sense as we use

“logically implies™, and so they distinguish between “implies™ and “if . . . then”. These two distinct
concepts are, of course, intimately related us seen in the above theorem.

i

10.11  PROPOSITIONAL FUNCTIONS, QUANTIFIERS

Let 4 be a given set. A propositional finction (or an apen sentence or condition) defined on A is an
expression

P(x)

which has the property that p(a) is true or false for each ¢ € 4. That is. p(v) becomes a statement (with a
truth value) whenever any element « € A is substituted for the variable v. The set A is called the domain

of p(x). and the set T, of all clements of A4 for which p(a) is true is called the truth ser of p(x). In other
words,

T,={x:x€ A4, p(x)is true) or T, = {x: p(v)}

Frequently, when 4 is some set of numbers, the condition p(x) has the form of an equation or inequality
involving the variable x.
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EXAMPLE 10.9 Find the truth set T, of cach propositional function p(v) defined on the set P = {1,2,3,.}.
() Let p(x) be "x4+2>7". Then
Ti=lviveP. x4 25T ={6. 7.8}
consisting ol ill integers greater than 5.
(h) Let p(x) be "x +5< 3" Then
To=fx:xeP, v+5<3 =9
the empty set. In other words. p(x) is not true for any positive inleger in P
(¢) Letp(x)be"v+5> 1" Then
To={vxeP, x+5>1}=P
Thus p(x) is true for every element in P.

Remark: The above example shows that if p{v) is a propositional function defined on a set 4 then
p(x) could be true for all x € A, for some v € A, or for no x € 4. The next two subsections discusses
quantifiers related to such propositional functions,

Universal Quantifier
Let p(x) be a propositional function defined on a set 4. Consider the expression
(Wa e A)p(x) or Yo piy) (10.1)
which reads “For every v in A, p(v) is a true statement™ or. simply. “For all v, plx)". The symbol
v

which reads “for all" or “for every" is called the wniversal quantifier. The statement (10.1) is equivalent
to the statement

To,={v:x€e 4 plx)} =4 (10.2)

that is, that the truth set of p(x) is the entire set A,

The expression p(x) by itsell is un open sentence or condition and therefore has no truth value.
However, ¥x, p(x) that is. p(x) preceded by the quantifier ¥, does have a truth value which follows from
the equivalence of (/6.7) and (10.2). Specifically:

Q: W{x:x€ A p(x)} = A4 then ¥x, p(v) is true; otherwise, ¥x, p(x) is false.

EXAMPLE 10.10
{a) The proposition (Yir € P) (n+ 4 > 3) is true since
{n:n+d>3}={1,23,. }=P
(h) The proposition (¥rn ¢ P) (n+ 2 > 8) is fulse since
{(m:n+2>8)={78__}#P
(¢) The symbol ¥ cin be used to define the intersection of an indexed collection {A, :ie I} ol sets A, as Tollows:

M4 :ie={x:¥iel ve A}
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Existential Quantifier
Let p(x) be u propositional function defined on a set 4. Consider the expression
{(3x e A)p(x) or v, p(x) (10.3)

which reads “Therc exists an v in A such that p(x) is a true statement™ or, simply, **For some x, plx).
The symbol

3

which reads “there exists™ or “for some™ or “for at least one” is called the existential guantifier.
Statement (/0.3) is equivalent to the statement

T,={x:x€A, p(x)} # & (10.4)

1.e., that the truth set of p(v) is not empty. Accordingly. 3x. p(x). that is. p(x) preceded by the existential
quantifier 3 docs have a truth value. Specifically,

Qr: If {x: p(x)} # & then 3x,p(x) is true; otherwise, 3x, p(x) i+ Ise.

EXAMPLE 10.11
(@) The proposition (3n € P) (n +4 < 7) 15 true since
(nn+d<T)={1.2)# @
(h) The proposition (3In € P) (n + 6 < 4) is false since
(:n+6<d4l=2
(¢) The symbol 3 can be used to define the union of an indexed collection {A,:i€ 1)} of sets 4, as follows:
UAziel)={x:3iel, xe 4,)

Notation

Let 4 = {2,3,5} and let p(x) be the sentence “x is a prime number™ or, simply “x is prime™. Then
the proposition

*“Two is prime and three is prime and five is prime" (%)
can be denoted by
P APBIAP(S)  or  Ala€ 4, pla)
which is equivalent to the statement
"“Every number in A is prime” or Yae A, p(a) ()
Similarly, the proposition
“Two is prime or three is prime or five is prime"
can be denoted by

r@R)vpB3)vp(S) or  V(a€ A, pla))
which is equivalent to the statement
*“At least one number in A4 is prime™ or 3a € 4, pla)
Alternatively, we can write
Aa€ A, pla)) = Ya€ A, pla) and V(a€ 4, pla)) = Jaea, pla)
where the symbols A and v/ are used instead of ¥ and ~.
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Remark: If 4 were an infinite set, then a statement of the form (*) could be made since the sentence
would not end; but a statement of the form (s#+) can always be made, even when A is infinite.

10.12 NEGATION OF QUANTIFIED STATEMENTS

Consider the statement: “All math majors arc male™, Its negation is either of the following equiva-
lent statements:

“Itis not the case that all math majors are male™
“There exists at least one math major who is a female (not male)”
Symbolically, using M to denoted the set of math majors, the above can be writlen as
= (Vx € M) (x is male) = (3x € M) (x is not male)
or, when p(x) denotes “x is male™,
~(¥x € M)p(x) = (3Ix € M)~ p(x) or =V p(x) = vap(x)

The above is true for any proposition p(x). That is:
Theorem 10.5 (DeMorgan): —(Vx e A)p(x) = (3x € A)=p(v).

In other words, the following two statements are equivalent:

(1) Itis not true that, for all « € A, pla) is true.
(2) There exists an @ € 4 such that pla) is false.

There is an analogous theorem for the negation of a proposition which contains the existentiul
quantifier.

Theorem 10.6 (DeMorgan): - (3x € A)p(x) = (¥x € A)=p(x).
That is, the following two statements are equivalent:

(1) Itis not true that for some a € A, pla) is true,
(2) Foralla€ 4, p(a) is false.

-

EXAMPLE 10.12
(a) The following statements are negatives of each other:
“For all positive integers n we have n+ 2 > §"
“There exists a positive inleger n such that n + 2 R
(b) The following statements arc also negatives of each other:
“There exists a college student who is 60 years old"
“Every college student is not 60 years old”

Remark: The expression = p(x) has the obvious meaning; that is:

“The statement = p(a) is true when p(a) is false. and vice versa™

Previously, ~ was used as an operation on statements; here — is used as an operation on propositional
functions. Similarly, p(x) A g(x), read “p(x) and g(x)", is defined by:

“The statement p(a) A g(a) is true when p(a) and ¢(a) are true”
Similarly, p(x) V g(x), read *p(x) or g(x)", is defined by:

"The statement p(a) V g(a) is true when p(a) or gla) is true™
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Thus in terms of truth sets:
(i) —p(x) is the complement of p(x).
(i) p(x) A g(x).is the intersection of p(x) and g(x).
(i1i) p(x)V g(x) is the union of p(x) and ¢(x).

One can also show that the laws for propositions also hold for propositional functions. For example, we
have DeMorgan's laws:

S(P) AUx)) = p(x) Voglx) © and = (p(x) Vg(x)) = ~p(x) A = glx)

Counterexample

Theorem 10.6 tells us that to show that a statement Vx, p(x) is false, it is equivalent 1o show
that 3x=p(x) is true or, in other words, that there is an element x, with the property that p(xy) is
false. Such an clement x; is called a counterexample to the statement ¥x, p(x).

EXAMPLE 10.13

(a) Consider the statement Vx € R, || # 0. The statement is false since ( is a counterexample, that is, [0] # 0 is
not true.

(h) Consider the stalement ¥x € R, ¥ > v. The statement is not true since, for example, 1/2 is a counterexample.
v« gw 3 u *
Specifically, (1/2)° = 1/2 is not true, that is, (l;’Z)z < I/2

(¢) Consider the statement ¥x € P, x> > v. This statement is truc where P is the set of positive integers. In other
words, there does not exist a positive integer n for which W<

Propositional Functions with More than One Variable

A propositional function (of n variables) defined over a product set 4 = A, x - - x A, is an
expression

p('thxlv ¥ 'lel)

which has the property that p(a,.«y,...,a,) is true or false for any n-tuple (ay,...,q,) 1n 4. For
example,

x+2y+3z<18

is a propositional function on P’ = P x P x P. Such a propositional function has no truth value.
However, we do have the following:

Basic Principle: A propositional function preceded by a quantifier for each variable. for example,
Vx 3y, p(x,y) or 3xVy 3z, plx,»,2)

denotes a statement and has a truth value.

EXAMPLE 10.14 Let B={1,2,3,...,9) and let p(x,y) denote “x + y = 10", Then p(x.y) is a propesitional
function on A = B = B x B.

(@) The following is a statement since there is a quantifier for each variable:
¥x 3y, p(x, ) that is, “For every x, there exists a y such that x + y = 107

This statement is true. For example, if x =1, let y =9:if x = 2, let y = &, and so on.
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(b) The following is also a statement:
3y ¥x, plx,y), that is, “There exists a y such that, for every x, we have x +y = 10"

No such y exists; hence this statement is false.

Warning! Observe that the only difference between (a) and (b) in the above Example 10.14
is the order of the quantifiers. Thus a different ordering of the quantifiers may yield a different
statement.

We note that, when translating quantified statements into English, the expression “such that”
frequently follows “there exists’.

Negating Quantified Statements with More than One Variable

Quantified statements with more than one variable may be negated by successively applying
Theorems 10.5 and 10.6. Thus each ¥ is changed to 3, and each 3 is changed to V as the negation
symbol — passes through the statement from left to right. For example

- [Wx3y3z, p(x,y,z)] = 3x~[3y3z, p(x,y,2)] = xVy[- 3z, plx,y,2)

I

IxVyVz, ~p(x,y,2)

Naturally, we do not put in all the steps when negating such quantified statements,

EXAMPLE 10.15
(a) Consider the quantified statement:
“Every student has at least one course where the lecturer is a teaching assistant™
Its negation is the statement:
“There is a student such that in every course the lecturer is not a teaching assistant™
(b) The formal definition that L is the limit of a sequence a),a, ... follows:
Ve >0, In€P, ¥Yn > nmg, |a, - L] <€
Thus L is not the limit of the sequence a;, @,... When
3e>0, VP, 3n>ng, la,—L| > ¢

. Solved Problems

PROPOSITIONS AND LOGICAL OPERATIONS

10.1. Let p be “It is cold” and let ¢ be "It is raining™. Give a simple verbal sentence which describes
cach of the following statements: (@) —-p; (P) pAg (c)pVag: (d) gV -p.

In each case, translate A, V and ~ 1o read “‘and”, “‘or”, and “'Itis false that” or “not”, respectively, and
then simplify the English sentence.

(a) Itis not cold. (¢) Itis cold or it is raining,
(b) 1Itis cold and raining. (d) It is raining or it is not cold. .
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10.2. Let p be “Erik reads Newsweek", let g be “Erik reads The New Yorker", and let r be “Erik reads
Time”. Write each of the following in symbolic form:

(a) Erik reads Newsweek or The New Yorker, but not Time.

(k) Erik reads Newsweek and The New Yorker, or he does not read Newsweek and Time.
(¢) It is not true that Erik reads Newsweek but not Time.

(d) 1t is not true that Erik reads Time or The New Yorker but not Newsweek.
Use v for “"or”, A for "“and™ (or, its logical equivalent, “but”), and — for “not” (negation).

(@) pva)A-r (B)(pAg)v=lpAry () ~pA-r) (d)~[(rve)A-pl

TRUTH VALUES AND TRUTH TABLES

10.3. Determine the truth value of each of the following statements:

(@ 4+2=5and 6+3=9. (c) 4+45=9and 1+2=4
(b) 3+2=5and6+1="7. (d) 3+2=5and4+7=11

The statement “p and ¢'" is true only when both substatements are true, Thus:
(a) false, (b) true; (c) false; (d) true.

10.4. Find the truth table of ~p A gq.

See Fig. 10.12, which gives both methods lor constructing the truth table.

plti!“ﬂ"?a'\q gl | e op Ay g
b G 1 o O F TIT [ EyTyE|T
T|E|F F T|F|F|T|F|F
FEIiTl I B ElTIT[ElX|T
2 F F|F|T{F|F|F

Stepl 2 1 3 1

(a) Method | (b) Method 2
Fig. 10-12

10.5. Venify that the proposition pV —(p A q) is a tautology.

Construct the truth table of p vV = (p A ¢) as shown in Fig. 10.13. Since the truth value of pv = (p A gq) is
T for all values of p and ¢, the proposition is a tautology.

|prg|-terg|rv-(rrg

A
T
F
F
F

mm- -
M-

e e B
- -

Fig. 10-13
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10.6. Show that the propositions = (p A ¢) and ~p V —¢ are logically equivalent.

Construct the truth tables for = (p A g) and ~pV ~g as in Fig. 10.14. Since the truth tables are the same
(both propositions are false in the first case and true in the other three cases), the propositions - (p A g) and
—~pV —g are logically equivalent and we can write

~(pAg)=-pV—q

plalpag|-trra p|lal-r|-a]-pPv-4
s gl [ o PR F T|T|F|F F
T|F| F T el Bl BT T
FlT| F T gl |t | ¢ T
FliF{ F T O e ol [
(@ ~(pn g by ~pVv-—g
Fig. 10-14

10.7. Using the laws in Table 10-1 to show that ~(pV @)V (=pAg) =~ p.

Statement Reason

() ~(pvevi-prg =(-pA-g)Vimphg) DeMorgan's law
(2) =-ph(—-gVyg) Distributive Jaw

(3) =-pAt Complement law
4) =-p Identity law

CONDITIONAL STATEMENTS

10.8. Rewrite the following statements withoul using the conditional:

(a) 1f it is cold, he wears a hat.
(b) 1f productivity increases, then wages rise.

Recall that “If p then g" is equivalent to “Not p or ¢"; thatis, p — ¢ =-pVg. Hence,

(@) It is not cold or he wears a hat,
(b) Productivity does not increase or wages rise.

10.9. Determine the contrapositive of each statement:

(a) 1If John is a poet, then he is poor.
(b) Only il Marc studies will he pass the test.

(@) The contrapositive of p — g is ~¢ — —p. Hence the contrapositive of the given statement is
“If John is not poor, then he is not a poet"

(b)) The given statement is equivalent to “If Marc passes the test, then he studied”. Hence its contra-
positive is

“If Marc does not study, then he will not pass the test”
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10.10. Write the negation of each statement as simply as possible.

(a) If she works, she will earn money.
(h) He swims il and only if the water is warm.
(c) If it snows, then they do not drive the car.

(¢) Note that —~(p — ¢) = p A —q; hence the negation of the statement follows:

“She works or she will not earn money™

(h) Note that = (p ++ g) = p +— =g = —p « g, hence the negation of the statement is either of the follow-
ing:

“He swims if and only if the water is not warm™
“He does not swim if and only il the water is warm™
(¢) Note that =(p — =¢) =pA-—~g=png Hence the negation of the statement follows:

“It snows and they drive the car™

ARGUMENTS
10.11. Show that the following argument is a fallacy: p — ¢, ~p F —gq.

Construct the truth table for [(p— ¢)A-p] — —g as in Fig. 10.15. Since the proposition
[(» — @){A=p] — 4 is not a tautology, the argument is a fallacy. Equivalently, the argument is a fallacy
since in_third line of the truth table p — ¢ and = p are true but —y is false.

plalp=a|-rlr=ar-p|-g|llp=qn-p=—gq
il = | # F F T
t|r| F | ¥ F T T
el T |7 T F F
rlel s |x T T T
Fig. 10-15

10.12. Determine the validity of the following argument: p — ¢, ~g¢ + —p.

Construct the truth table for [(p— g)A-g|— -p as in Fig. 10.16. Since the proposition
[(p — q) V ~g] — = p is a tautology, the argument is valid.

Plelllp = @ A = q] = — p
TITITITITIFLENT | T FE T
TIFYTIEIERELIFITILEITIELT
FITTRiTIRIRl AT T 2R
FIFIFITLE|lT]| T LFEl T]E5E

Step P BV ELRI L EL R 'S & §

Fig. 10-16



CHAP. 10] LOGIC AND PROPOSITIONAL CALCULUS 247

10.13. Prove that the following argument is valid: p — g, r = g. r =p.

Construct the truth tables of the premises and conclusion as m Fig. 1017, Now, p -+ ~gq.r — g, and r
are true simultaneously only in the ifth line of the table, where = p is also true. Hence. the argument is vahid.

plal r]lp=—a|r*qa| 4
el ] F T F
I ol e F T F
3 T FI|T T F F
4 i § F F i T F
5 F i i T T T
6 F T F T T T
7 F FI|T T F T
g F E F T T T
Fig. 10-17

10.14. Test the validity of the following argument:

If two sides of a triangle are equal, then the opposite angles are cqual.
Two sides of a triangle are not equal.

The opposile angles are not equal.

First translate the argument into the symbolic form p — ¢, ~p b~ g where pis " Two sides of i triangle
are equal” and g is “The opposite angles are equal™. By problem 10,11, this argument is o fallacy.

Remark: Although the conclusion does follow from the second premise and axioms of Euclidean
geometry, the above argument does not constitute such a proof since the argument is
fallacy.

10.15. Determine the validity of the following argument:

If 7 is less than 4. then 7 is not a prime number.
7 is not less thun 4,

7 is a prime number,

First translate the argument into symbolic form. Let p be 7 is less than 47 and ¢ be 7 is u prime
number". Then the argument is of the form :

n—=q.pky
Now, we construct a truth table as shown in Fig. 10.18. The above argument is shown 1o be a fullacy

since, in the fourth line of the truth table. the premises 7 — =vg and = p are true, but the conclusion ¢ is false.

Remark: The fact that the conclusion of the argument happens to be a true statement is irrelevant
to the fact that the argument presented is a fallacy

|=¢|p>-q] -p

mm <D
mad4m4d]|e
- 4=
e B B B .|

3
T
F
T

Fig. 10-18



248 LOGIC AND PROPOSITIONAL CALCULUS [CHAP. 10

10.16. Show that p A ¢ logically implies p « q.

Consider the truth tables of p A g and p + ¢ shown in Fig. 10.19. Now p A ¢ is true only in the first line
of the table and, in this case, the proposition p « g is also true. Thus p A ¢ logically implies p — ¢.

p|lalprg|peg

Flrl 7 T

T|F| F F

FlT] ¥ F

FlE| F 2
Fig. 10-19

QUANTIFIERS AND PROPOSITIONAL FUNCTIONS
10.17. Let 4 = {1,2,3,4,5}. Determine the truth value of each of the following statements:

(@) (3xe A)(x+3=10) (¢) (3x€ A)(x+3<5)
(b) (Vx € A)(x+3< 10) (d) (YxeA)(x+3<T7)

(@) False. For no number in 4 is a solution to x + 3 = 10.
(#) True. For every niumber in -4 satisfies x + 3 < 10.
(¢) True. Forif xy=1.then x; +3 <5, ie, | is a solution.

(«) False. Forifl x, = 5, then xy + 3 is not less than or equal 7. In other words, 5 is not a solution 1o the
given condition.

10.18. Determine the truth value of each of the following statements where U = {1, 2,3} is the universal
set.
(a) AxVy, P <y+ 10 (h) IxVy, X3 4+1P < 12; (¢) YaVy, & +12 < 12,
(@) True. Forif x =1, then 1, 2, and 3 are all solutions to | < y+ 1.
(b} True. For each xg, let y = 1; then .\'E. + 1 < 12 is a true statement.

(¢) False. Forif xy =2and y, = 3, then x{ 4% < 12 is not a true stalement.

10.19. Negate each of the following statements:
(a) Ax¥y. p(x,y):  (b) ¥ ¥y, plx,p): (c) 3y IxVz, plx,p, z).
Use - Vxp(x) = 3x-p(x) and - Jxp(x) = Vx-p(x):
(@) ~(IxVy, plx,»)) = Va3yoplx,p).

(b) =(¥xV¥y, p(x,y)) = 3xAp=p(x,y).
() =(3p3IxVz, plx,y,2)) = VypV¥x Iz=plx,p,2).

10.20. Let p(x) denote the sentence '‘x + 2 > 5". State whether or not p(x) is a propositional function
on each of the following sets:  (a) P, the set of positive integers: (b)) M = {-1,-2,-3,... 1
(¢) C. the sel of complex numbers.
(a) Yes.
(b) Although p(x) is false for every element in M, p(x) is still a propositional function on M.

(c) No. Note that 2i + 2 > 5 does not have any meaning. In other words, inequalities are not defined for
complex numbers.
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10.21. Negate each of the [ollowing statcments: (a) All students live in the dormitories. (b) All
mathematics majors are males. (¢) Some students are 25 (years) or older.

Use Theorem 4.5 to negate the quantifiers.

(a) At least one student does not live in the dormitories. (Some students do not live in the dormitories.)
(h) Al least one mathematics major is female. (Some mathemalics majors are female.)
(¢) None of the students is 25 or older. (All the students are under 25.)

Supplementary Problems

PROPOSITION AND LOGICAL OPERATIONS

10.22, Let p be “Audrey speaks French™ and let ¢ be “Audrey speaks Danish”. Give a simple verbal sentence
which describes each of the following:

(@)pvag, B)prg ()pA—q. (d)~pV-g (¢) ~—pi ) ~(-pA-g).

10.23. Let p denote “He is rich™ and let ¢ denote “He is happy”. Write each statement in . %l form using p
and g. Note that “He is poor™ and “"He is unhappy™ are equivalent to = p and -y, respectively.

(a) If he is rich, then he is unhappy. {c) It is necessary to be poor in order to be happy.
(b) He is neither rich nor happy. (d) To be poor is to be unhappy.

10.24. Find the truth table for: (a) pVv g, (b) ~pA-g.
10.25. Verify that the proposition (p A g) A= (pV ¢) is a contradiction,

ARGUMENTS
10.26. Test the validity of each argument;

(a) If it rains, Erik will be sick. (b) If it rains, Erik will be sick.
It did not rain. Erik was not sick.
Erik was not sick. It did not rain.

10.27. Test the validity of the following argument:

If I study, then I will not fail mathematics,
If I do not play basketball, then I will study.
But | failed mathematics.

Therefore | must have played basketball.

10.28. Show that p « - ¢ does not logically imply p — g.
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QUANTIFIERS

10.29. Let 4 = {1,2,...,9,10}. Consider each of the lollowing sentences. If it is a statement, then determine its
truth value. If it is a propositional function, determine its truth set,

(@) (Vx€ A)(3y € A)(x+y< 14) () (VxeA)(¥ye d)(x+y<l4)
() (¥ye A)(x+y< 14) (d) (3ye A)(x+y<14)

10.30. Negale each of the following statements:

(a) If the teacher is absent, then some students do not complete their homework.
(h) All the students completed their homework and the teacher is present.
(¢) Some of the students did not complete their homework or the teacher is absent.

10.31. Negate each of the statements in Problem 10.17.

10.32. Find a counterexample for each stutement where U = {3,5,7,9} is the universal set:

(@) ¥x, x4+ 327, (h)Vx, xisodd; (c)Vx, xisprime; (d) Vx,|x|=x.

Answers to Supplementary Problems

10.22. Ineach case, translate A, V, and — to read “'and”, “"or”, and “It is false that" or “not", r‘especlively; and then
simplify the English sentence.

10.23. (a)p— —gq; (b)=pA-q (¢)g— -p. (d)~pe— g

10.24. The truth tables appear in Fig. 10-20.

|

| ~¢ | pv-gq

Pl pl e |-pn-g
AW T t|{T]E|® F
el 7 T T|F|F|T P
FlT| F F elrlT|P F
Flrl = T rlFr{TlT T

(a) ()

Fig. 10-20

10.25. 1t is a contradiction since its truth table in Fig. 10-21 is false for all values of p and ¢.

p|lalprgleval-wve [(praAr-(pve)
¥ i = T F F \
T F F T F F
F|T| F | T F F
F F F F T F
. Fig. 10-21

10.26. First translate the arguments into symbolit form: (a) p— ¢, ~pF—-gq, (b)p—gq, ~gqt+ —p.
By Problem 10.11, argument (a) is a fallacy. By Problem 10.12, argument (b) is valid.
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10.27. Translate the argument into the following symbolic form where pis *I study™. g is 1 fail mathematics™, and
ris 1 play basketball™:

10.28.

10.29.

10.30.

10.31.

10.31.

p—q ~r—p qkr

Construct the truth tables as in Fig. 10.22 where the premises p — —g, ~r— p, and g are true simul-
taneously only in the fifth row of the table, and in that case the conclusion r is also true. Hence the
argument is valid.

plalr|-ale=-g|-r|-r=p
T {r|r[fr| ¢ [F| T B )
tlirlelrl # || 7 AEN R M7 5 o
tlelr|r] T |F]| T || ¥ F T
r|le|lrlT] * || T rlelx | T F
elrlvle]l © |B| 7 FlT| F | T T
elcyele]l = || ¥ rlel T F T
e{rlrlrl-7 |7 | =
yiwlelrl = lz| F

Fig. 10-22 Fig. 10-23

Method 1. Construct the truth tables of p — =g and p — g as in Fig. 10.23. Note that p « —g is true in
line 2 of the truth table whereas p — g is [alse.

Method 2. Construct the truth table of the proposition (p < —g) — (p — ¢). 1t will not be a tautology;
hence, by Theorem 10.4, p — —gq does not logically imply p — 4.

(a)
(6)

. (€)

(d)

(a)
(k)
(€)

(a).
(&)

(a)
(&)
()
(d)

The open sentence in two variables is preceded by two quantifiers; hence it is a stalement. Moreover,
the statement is true.

The open sentence is preceded by one quantifier; hence it is a propositional function of the other
variable. Note that for every y € A, xo +y < 14 if and only if xo = 1,2, 0r 3. Hence the truth set
is {1,2,3}.

It is a statemnent and it is false: if x, = 8 and yg = 9, then xg + yp < 14 is nol true.

It is an open sentence in x. The truth set is A itself.

The teacher is absent and all the students completed their homework.
Some of the students did not complete their homework or the teacher is absent,
All the students completed their homework and the teacher is present.

(Vx e A)(x +3#10)
(3x€ A)(x+3210)

(c)
(d)

(Vxe A)(x+325)
(Ixe A)(x+3>T)

Here 5, 7, and 9 are counterexamples.

The stalement is true; hence no counterexample exists.
Here 9 is the only counterexample,

The statement is true; hence there is no counterexample.



Chapter 11

Boolean Algebra

11.1 INTRODUCTION

Both sets and propositions satisfy similar laws which are listed in Tables 1-1 and 10-1 (appearing in
Chapters 1 and 10, respectively). These laws are used to define an abstract mathematical structure called
a Boolean algebra, which is named after the mathematician George Boole (1813-1864).

11.2 BASIC DEFINITIONS

Let B be a nonempty set with two binary operations + and «, a unary operation ', and two distinct
elements 0 and |. Then B is called a Boolean algebra if the following axioms hold where a, b, ¢ are any
elements in B:

[B)] Commutative laws:

(la) a+b=b+a (1b) axb=b=xa
[B,] Distributive laws:

(2a) a+ (bxc)=(a+b)*{a+) (26) ax(b+e)=(ashb)+(axc)
[B;] Mdentity laws:

(3a) a+0=a (35) axl=u
[Bs] Complement laws:

(4a) a+a' =1 (4b) a+a'=0

We will sometimes designate a Boolean algebra by (8, +,+,",0, 1) when we want to emphasize its six
parts. We say 0 is the zero element, | is the unif clement and «' is the complement of a. We will usually
drop the symbol * and use juxtaposition instead. Then (2b) is written a(b + ¢) = ab + ac which is the
familiar algebraic identity of rings and fields. However, (2a) becomes a + bc = (a + b)(a + ¢), which is
certainly not a usual identity in algebra.

The operations 4, + and ' are called sum, product, and complement respectively. We adopt
the usual convention that, unless we are guided by parentheses, ' has precedence over #, and * has
precedence over +. For example,

a+bxcmeans a+ (b*c) and not (a+ b) * ¢ axb’ means a= (h') and not (axb)’

Of course when a + b » ¢ is written a + bc then the meaning is clear.

EXAMPLE 11.1
(a) Let B = {0, 1}, the set of hits (binary digits), with the binary operations of + and » and the unary operation
defined by Fig. 11-1. Then B is a Boolean algebra. (Note ‘ simply changes the bit, ic., 1’ =0and 0' = 1.
{1 © 2 |1 o
[ S | i 0 =
ol 1 o ofo o0

Fig. 11-1
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(b) Let B"=BxBx --xB(n factors) where the operations of +. + and " are defined componentiwise using
Fig. 11-1. For notational convenience, we write the elements of B” as n-bil sequences withoul commas. €.g..
x = 110011 and » = 111000 belong to B". Hence

x4y = 111011, x + v = 110000, X' =001100

Then B" is a Boolean algebra. Here 0 = 000 - -0 is the zero element, and | = 111+~ 1 is the unit clement. We
note that B" has 2" elements.

(c) Let Dyg={1,2,5,7,10.14,35,79}, the divisors of 70, Define +, + and ' by

70
a+ b =lem(a,h), a+ b= ged(u,b), u':?

Then Dy is a Boolean algebra with | the zero clement and 70 the unit element.

(d) Let € be a collection of sets closed under the set operations of union. intersection, and complement. Then 4 is
a Boolean algebra with the empty set @ as the zero clement and the universal set U as the unit element,

Subalgebras, Isomorphic Boolean Algebras

Suppose C is a nonempty subset of a Boolean algebra B. Wesay Cisa subalgebra of Bif Citsell1s u
Boolean algebra (with respect lo the operations of B). We note that C is a subalgebra of Bif and only if
C is closed under the three operations of B, i.e., +, , and ', For example, {1,2,35,70} is a subalgebra of
Dy in Example 11.1(c).

Two Boolean algebras B and B’ are said 10 be isomorphic if there is a one-to-one correspondence
f: B — B' which preserves the three operations, i.e., such that

fla+b)=f(@)+S(b), flasb)=[(a)«f(h)  and fla") =1(a)’

for any elements a,b in B.

1.3 DUALITY

The dual of any statement in a Boolean algebra B is the statement obtained by interchanging the
operations + and =, and interchanging their identity elements 0 and 1 in the original statement. For
example, the dual of

(1+a)=(h+0)=b 15 (Oxa)+(bel)=b

Observe the symmetry in the axioms of a Boolean algebra B. That is, the dual of the set of axioms of Bis
the same as the original set of axioms. Accordingly. the important principle of duality holds in B,
Namely,

Theorem 11.1 (Principle of Duality): The dual of any theorem in a Boolean algebra is also a theorem.

In other words, if any statement is a consequence of the axioms of a Boolean algebra, then the dual
is also a consequence of those axioms since the dual statement can be proven by using the dual of each
step of the proof of the original statement.
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Using the axioms [B, | through [B], we prove (Problem 11.5) the following theorem.

Theorem 11.2: Let a,b, ¢ be any clements in a Boolean algebra B.

(i) Idempotent laws:

(S¢) a+a=ua

Boundedness laws:

(6a) a+1=1

Absorption laws:

(Ta) a+(axb)=a
Associative laws:

8a) (a+b)+c=a+(b+c)

Theorem 11.2 and our axioms still do not contain all

(i)

(iii)

(iv)

(3h) a*a=a

(66) a+x0=0
(7h) ax(a+b)=a

(8h) (axb)*c=ax(bxc)
the properties of sets Irsted in Table 1-1. The

next two theorems (proved in Problems 11.6 and 11.7) give us the remaining properties.

Theorem 11.3:  Let a be any element of a Boolean algebra 8.

(i) (Uniqueness of Complement)

Ifa+x=1and axx=0, then x =

(ii) (Involution law) (a)’
(iii) (9a)0'=1, (96) |

a
=0

Theorem 11.4 (DeMorgan’s laws): (10a) (a+b)' = a' + b".

1.5 BOOLEAN ALGEBRAS AS LATTICES

i
a .

(10b) (a+b)' =a' +b".

By Theorem 11.2 and axiom [B;], every Boolean algebra B satisfies the associative, commutative,

and absorption laws and hence is a lattice where + and *

are the join and meet operations, respectively.

With respect to this lattice, a+ 1 = | impliesa< 1 and a+0 =0 implies 0 < g, for any element a € B.

~Thus B is a bounded lattice. Furthermore, axioms [B;]
complemented.

and [By] show that B is also distributive and

Conversely, every bounded, distributive, and complemented lattice [ satisfies the

axioms [By] through [B4). Accordingly, we have the following

Alternate Definition: A Boolean algebra B is a bounded

, distributive, and complemented lattice.

Since a Boolean algebra B is a lattice, it has a natural partial ordering (and so its diagram can be
drawn). Recall (Chapter 7) that we define @ < b when the equivalent conditionsa+b=banda*bh=a

hold. Since we are in a Boolean algebra, we can actuall
theorem (proved in Problem 11.8) applics.

y say much more. Specifically, the following

Theorem 11.5: The following are equivalent in a Boolean algebra:

(Na+h=0, (Daxh=a,

MNa" +b=1,

@) axh' =0.

Thus in a Boolean algebra we can write ¢ < b whenever any of the above four conditions is known

to be true.

EXAMPLE 11.2

(@) Consider a Boolean algebra of sets. Then set A proccdcs. sel Bif 4 is a subset of B. Theorem |1.4 states that if
A C B, as illustrated in the Venn diagram in Fig. 11-2, then the following conditions hold:

() AUB=B, (2) ANB=4, (3) AUB=U,

@) ANnKE =g@.
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A is a subset of B
Fig. 11-2

(k) Consider the Boolean algebra of the proposition calculus. Then the proposition P precedes the proposition @ if
P logically implies @, e, il P = Q.

11.6 REPRESENTATION THEOREM

Let B be a finite Boolean algebra. Recall (Section 7.9) that an clement a in B is an atom if a
immediately succeeds 0, that is if 0 << a. Let 4 be the set of atoms of B und let P(A4) be the Boolean
algebra of all subsets of the set A of atoms. By Theorem 7.15, each x # 0in B can be expressed uniquely
(except for order) as the sum (juin) ol atoms, i.e. elements of A Say,
Xx=a +a;+ --+aq

15 such a representation. Coensider the function f: B — P(A) defined by
S(x) = {ayay, .. -, a,)

The mapping is well-defined since the representation is unique.

Theorem 11.6: The above mapping f: 8 — #(A4) is an isomorphism.

Thus we see the intimate relationship between set theory and abstract Boolcan algebras in the sense
that every finite Boolean algebra is structurally the same as a Boolean algebra of sets.

If a set 4 has n elements, then its power sel 2(A4) has 2" elements. Thus the above theorem-gives us
our next result.

Corollary 11.7: A finite Boolean algebra has 2" elements for some positive integer n.

EXAMPLE 11.3 Consider the Boolean algebra Dy = {1,2.5,...,70} whose diagram is given in Fig. 11-3{a).
Note that A = {2,5,7} is the set of atoms of Dy. The following is the unique representation of each non-atom
by atoms:

10=2Vv5, 14=2v7, WB=5vT, T0=2v5v7

Figure 11-3(h) gives the diagram of the Boolean algebra of the power set #(A4) of the set 4 of atoms. Observe that
the two diagrams are structurally the same.

70 A
10 14 a5 {2, 5} {2, 7} {5, 7}
[P ] [ ]
(a) Dy (B) #(4)

Fig. 11-3



256 BOOLEAN ALGEBRA [CHAP. 11

11.7 SUM-OF-PRODUCTS FORM FOR SETS

This section motivates the concept of the sum-of-products form in Boolean algebra by an example of
set theory. Consider the Venn diagram in Fig. 11-4 of three sets A, B,C. Observe that these sets
partition the rectangle (universal set).into cight numbered sets which can be represented as follows:

() AnBnC (3) AnENC (5) AnBNC (7) A'nB'NC
(2) AnBnC (4) AnBNC (6) A NnBNC* (8) AnBNC
Each of these eight sets is of the form A" N B N C*. where
A'=Aor A, #' = R or B, C"=CorC
Consider any nonemplty sct expression £ involving the sets A, B, and C, say,
E=[(ANB)YuA'NC)IN[BUCY N(4AuC))

* Then £ will represent some area in Fig. 11-4 and hence will uniquely equal the union of one or more of
the eight sets.

Fig. 114

Suppose we now interpret a union as a sum and an intersection as a product. Then the above eight
sets arc products, and the unique representation of E will be a sum (union) of products. This unigue
representation of E is the same as the complete sum-of-products expansion in Boolean algebras which
we discuss below. '

-

11.8 SUM-OF-PRODUCTS FORM l."'OR BOOLEAN ALGEBRAS

Consider a set of variables (or letters or symbols), say, x|, x3,...,%,. A Boolean expression E in
these variables. sometimes written E{x,,..... x,). is any variable or any expression built up from the
variables using the Boolean operations +, = and ', (Maturally, the expression £ must be well-formed,
that is, where + and + are used as binary operations, and ‘ is used as a unary opgration.) For example,

E = (x+y'2) +(xpz' +x'v)’ and Ey = ((xp'z' +») +x'z)

are Boolean cxpressions in x,y, and z,

A literal is a variable or complemented variable, such as x, x, y, y', and so on. A fundamental
product is a literal or a product of two or more literals in which no two literals involve the same variable.
Thus

2, 't % 9. X2
are fundamental products, but xyx'z and xyzy are not. Note that any product of literals can be reduced
to either 0 or a fundamental product, e.g., xyx'z = 0 since xvx' = 0 (complement law), and xyzy = xyz
since y)' = y (idempotent law).
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A fundamental product P, is said to be conrained in (ot included in) another fundamental product P,
if the literals of P, are also literals of P,. For example, x'z is contained in x"vz, but x'z is not contained
in xy’z since x' is not a literal of x»'z. Observe that if P, is contained in Py, say P; = Py = Q. then, by the
absorption law,

P1+P3:P|+P|*Q= P,
Thus, for instance, x'z + x'yz = x'=.
Definition: A Boolean expression £ is called a sum-of-products expression if E is a fundamental product
or the sum of two or more (undu.n]cmu] products none of which is contained in another.

Definition: Let E be anv Boolean expression. A sum-of-products form of E is an equivalent Boolean
sum-of-products expréssion. Yy

EXAMPLE 11.4 Consider the expressions
E =xz'+p's+xp: and Ey=xz'+x'y=' + ¢z

Although the first expression E; is 4 sum of products, it is not a sum-of-products expression.  Specifically, the
product x:' is contained in the product xyz’. However, by the absorption law, E; can be expressed as

Ei=x'+yc+xpc =x"+xpz’ +p'z=n2"+ "2

This yields a sum-of-products form for £,. The second expression E; is already a sum-of-products expression.

Algorithm for Finding Sum-of-Products Forms

The following four-step algorithm uses the Boolean algebra laws to transform any Boolean expres-
sion £ into an equivalent sum-of-products expression:

Algorithm 11.8A: The input is a Boolean expression E. The output is a sum-of-products expres-
sion equivalent to E.

Srép 1. Use DeMorgan's laws and involution to move the complement operation into any
parenthesis until finally the complement operation only applies to variables. Then E
will consist only of sums and products of literals.

Step 2. Use the distributive operation to next transform E into a sum of products.

Step 3. Use the commutative, idempotent, and complement laws to transform each productin £
into 0 or a fundamental product.

Step 4. Use the absorption and identity laws to finally transform E into a sum-of-products
expression.

EXAMPLE 11.5 Suppose Algorithm 11.8A is applied to the following Boolean expression:
E=((xn)2)'((x' + 20" +=2"))
Step I. Using DeMorgan’s laws and involution, we obtain
E=((x)"+ )< +2) + (0 +2')) = (xr+ =)(xz" + 33)
E now consists only of sums and products of literals.
Srep 2. Using the distributive laws, we oblain
E = xyxz’ +xyyz +x2'z' +yz2’

E now i1s a sum of products,
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Step 3. Using the commutative, idempotent, and complement laws, we obtain
E=xpz' +xp24+x2"40
Each term in £ is a lundamental product or 0,
Step 4. The product ac’ is contained in abe’; hence, by the absorption law,
x2' 4 (xt"wy) = xd’

Thus we may delete gbe’ from the sum. Also, by the identity law for 0, we may delete 0 from the sum.
Accordingly,
E = xy=+xz'

E is now represented by a sum-of-products expression.

Complete Sum-of-Products Forms

A Boolean expression E = £(x,,X»,...,X,) is said to be a complete sum-of-products expression if £
is a sum-of-products expression where each product P involves all the n variables, Such a fundamental
product P which involves all the variables is called a minterm, and there is a maximum of 2" such
products for n# variables. The following theorem applies.

Theorem 11.8: Every nonzero Boolean expression £ = E(x;,x;,...,x,) is equivalent to a complete
sum-of-products expression and such a representation is unique.

The above unique representation of £ is called the complete sum-of-products forn of E. Recall that
Algorithm 11.8A tells us how to transform £ into a sum-of-products form. The following algorithm
shows how to transform a sum-of-products.form into a complete sum-ol-products form.

Algorithm 11.8B: The input is a Boolean sum-of-products expression £ = E(x;,X3,...,%,). The
outpul is a complete sum-of-products expression equivalent to E.

Step 1. Find a product P in E which does not involve the variable x;, and then multiply P by
x;+x/, deleting any repeated products. (This is possible since x,+x/ =1, and
P+P=P)

Step 2. Repeat Step | until every product P in E is a minterm, i.e., every product P involves all
the variables.

EXAMPLE 11.6 Express E(x,y,z) = x(»'z)" in its complete sum-of-products form.
(a) Apply Algorithm 11.8A to £ to obtain
E=x(y'z) =x(y+z')=xy+xz
Now E is represented by a sum-of-products expression.
(b) Apply Algorithm 11.8B to obtain
; E=xy(z+2)+x2'(y+ ') =xyz + _\'y‘;' + xp2’ + xp'’
= xyz + xyz’ +xp'z!

Now E is represented by its complete sum-of-products form.

Warning: The terminology in this section has not been standardized. The sum-of-products form
for a Boolean expression E is also called the disjunciive normal form or DNF of E. The complete sum-of-
products form for E is also called the full disjunctive normal form, or the disjunctive canonical form, or the
minterm canonicul form of E.
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11.9 MINIMAL BOOLEAN EXPRESSIONS, PRIME IMPLICANTS

There are many ways of representing the same Boolean expression £. Here we define and investigate
a minimal sum-of-products form for . We must also define and investigate prime implicants of £ since
thé minimal sum-of-products involves such prime implicants. Other minimal forms exist, but their
investigation lies beyond the scope of this text.

Minimal Sum-of-Products

Consider a Boolean sum-of-products expression E. Let E; denote the number of literals in E
(counted according to multiplicity), and let Eg denote the number of summands in E. For instance,
supposc

E=xyz' + x'yli 4+ .\'y":'r + x'yzt

Then £, =3 +3+4+4=14and Eg=4.
Suppose £ and F are equivalent Boolean sum-of-products expressions. We say E is simpler than Faf
(i E, < F,and Es < F), or (i) E;, < Fp and Es < Fi.

We say £ is minimal if there is no equivalent sum-of-products expression which is simpler than E. We
note that there can be more than one equivalent minimal sum-of-products expression.

Prime Implicants
A fundamental product P is called a prime implicant of a Boolean expression £ if
P+E=E
t;u: no other fundamental product contained in P has this property. For instance, suppose -
E=xy' +xpz' +x5'v'
One can show (Problem 11.15) that
x2!+E=E but x+E#E and <:'+E#E

Thus xz' is a prime implicant of E.
The following theorem applies.

Theorem 11.9: A minimal sum-of-products form for a Boolean expression E is a sum of prime
implicants of E.

The following subsections give a method for finding the prime implicants of E based on the notion
of the consensus of fundamental products. This method can then be used to find a minimal sum-of-
products form for E. Section 11.10 gives a geometric method for finding such prime implicants.

Consensus of Fundamental Products

Let P, and P, be fundamental products such that exactly one variable, say x,. appears uncom-
plemented in one of P, and. P; and complemented in the other. Then the consensus of Py and Py is
the product (without repetitions) of the literals of P and the literals of P, after x; and x; deleted. (We
do not define the consensus of P, = x and P; = x")

The following lemma (proved in Problem 11.19) applies.

Lemma 11.10:  Suppose Q is the consensus of 7, and Py. Then Py + P, + Q@ = P, + P,.
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EXAMPLE 11.7 Find the consensus Q of P, and P, where:
(@) Py =xyz'sand P, = xy'1.
Delete y and y' and then multiply the literals of Py and Py (without repetition) to obtain Q = xz's1.
() Py=xy' and Py = .
Deleting y and y' yields @ = x.
() Pi=x"yzand P, = x'y1.

No variable appears uncomplemented in one of the products and complemented in the other. Hence P
and P, have no consensus.

(d) Py =x"yzand Py = xpz’.

Each of x and z appear complemented in one of the products and uncomplemented in the other. Hence P,
and P; have no consensus.

Consensus Method for Finding Prime Implicants

The following algorithm, called the consensus method, is used to find the prime implicants of a
Boolean expression.

Algorithm 11.9A  (Consensus Method): The input is a Boolean expression
E=Pi+Py+ -+ P,

where the P's are fundamental products. The output expresses £ as a sum of its

prime implicants (Theorem 11.11). '
Step 1. Delete any fundamental product P, which includes any other fundamental product P;.
(Permissible by the absorption law.)
Step 2. Add the consensus of any P, and P, providing Q does not include any of the P's.
(Permissible by Lemma 11.10.)
Step 3. Repeat Step | and/or Step 2 until neither can be applied.

The following theorem gives the basic property of the above algorithm.

Theorem 11.11: The consensus method will eventually stop, and then E will be the sum of its prime
implicants.

EXAMPLE 11.8 Let £ = xyz + x'z’ + xyz’ + x'y'z + x'yz". Then:

E=xpz4+x'z" 4 xp2' + x"y'z (x'yz" includes x'z')
=xpz4xy 4+ xpz' + x4 xy (Consensus of xyz and xyz’)
=x'z"+x'y'z + xy (xyz and xpz' include xy)
=xz' +xyrexp+xy (Consensus of x'z’' and x'y'z)
=x'z"+xp+ 2"y’ {xy'z includes x'y")
=x"z"+xp+xy' + 2 (Consensus of x'z' and xy)

Now neither stép in the consensus method will change E. Thus E is the sum of its prime implicants, which are x'z’,
L) ’
xy,xy,and yz',

Finding a Minimal Sum-of-Products Form

The consensus method (Algorithm 11.9A) can be used to express a Boolean expression E as a sum ol

all its prime implicants. Using such a sum, one may find a minimal sum-of-products form for E as
follows. i
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Algorithm 11.9B: The input is a Boolean expression £ = P, + Py +---+ P, where the P’s are
all the prime implicants of E. The output expresses E as a minimal sum-of-
products,

Step 1. Express each prime implicant P as a complete sum-of-products.

Step 2. Delete one by one those prime implicants whose summands appear among the sum-

mands of the remaining prime implicants.

EXAMPLE 11.9 We apply Algorithm 11.9B to
E=x"z'+xy+x»y 4+
(By Example 11.8, E is now expressed as the sum of all its prime implicants.)

Step-1. Express each prime implicant of £ as a complete sum-of-products to obtain:

x'd =x'r+y) = et eyl
v = xp(z+2') = xpz +
sy = xly'(z+2) =xy'z 42yl

ya'(x+ x7) = xpt oy

Step 2. The summands of x'z" are x’yz and x'y'z’ which appear among the other summands. Thus delete x'z" o
i .
obtain

E=xy+xy'+ yz!

The summands of no other prime implicant appear among the summands of the remaining prime implicants, and
hence this is a minimal sum-of-products form for E. In other words, none of the remaining prime implicants is
superfluous, that is, none can be deleted without changing E.

11.10. KARNAUGH MAPS

Karnaugh maps, where minterms involving the same variables are represcnted by squares, are
pictorial devices for finding prime implicants and minimal forms for Boolean expressions involving at
most six variables. We will only treat the cases of two, three, and four variables. In the context of
Karnaugh maps, we will sometimes use the terms “squares” and “minterm" interchangeably. Recall
that a minterm is a fundamental product which involves all the variables, and that a complete sum-of-
products expression is a sum of minterms.

First we need to define the notion of adjacent products. Two fundamental products P, and P, are
said to be adjacent if P, and P, have the same variables and if they differ in exactly one literal. Thus
there must be an uncomplemented variable in one product and complemented in the other. In parti-
cular, the sum of two such adjacent products will be a fundamental product with one less literal
(Problem 11.51).

EXAMPLE 11.10 Find the sum of the following adjacent products Py and Py
(@) P, =xyz’ and P, = xy'z’.

Pyt Py=vyz’ 4 xr's = xz'(p 4+ ) = x2'(1) = x2'
(b) Py=x'yztand Pp='1o 1

P4 Py=x'yzt+ Xyt=xprz 4+ 2" = xw(l) = x "vi
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() Py=x"yztand Py = xyz's.

Here P, and P; are not adjacent since they differ in two literals. In particular,
Py 4+ Py=xyzi+oyz't = (' +x)p{z+ 2" = (1)p(1) = 3t
“(d) Py =xypz'and Py = xyz1.

Here #| and P, are not adjacent since they have different variables. Thus, in particular, they will not
appear as squares in the same Karnaugh map.

Case of Two Variables

The Karnaugh map corresponding to Boolean expressions E = E(x, y) with two variables x and yis
shown in Fig. 11-5(a). The Karnaugh map may be viewed as a Venn diagram where x is represented by
the points in the upper half of the map, shaded in Fig. 11-5(b), and y is represented by the points in the
left Iralf of the map, shaded in Fig. 11-5(c). Thus x" is represented by the points in the lower half of the
map, and y’ is represented by the points in the right hall of the map. Accordingly, the four possible
minterms with two literals,

xy, xy', X'y, xy
are represented by the four squares in the map, as labeled in Fig. 11-5(d). Note that two such squares
are adjacent, as defined above, if and only if the squares are geometrically adjacent (have a side in
common).

)F y ¥ y ¥ y = ¥
23 x x x| x
x x - 4 =] aty |y
(a) () x shaded (c) y shaded (d)
Fig. 11-5

Any_complete sum-of-products Boolean expression E(x,y) is a sum of minterms and hence can be
- represented in the Karnaugh map by placing checks in the appropriate squares. A prime implicant of
E(x, y) will be either a pair of adjacent squares in £ or an isolated square, i.e., a square which is not
adjacent to any other square of £(x,y). A minimal sum-of-products form for E(x,y) will consist of a
minimal number o{ prime implicants which cover all the squares of E(x,y) as illustrated in the next
example. ' .

EXAMPLE 11.11 Find the prime implicants and a minimal sum-of-products form for each of the following
complete sum-of-products Boolean expressions:

(@) Ey = xy+xy's (B) Ey=xy+x'y+x"y'; (¢) B, =xp+x'y'.
This can be solved by using Karnaugh maps as follows:
{a) Check the squares corresponding to xy and xp’ as in Fig. 11-6(a). Note that E, consists of one prime

implicant, the 1wo adjacent squares designated by the loop in Fig. 11-6(a). This pair of adjacen! squares
represents the variable x, so x is a (the only) prime implicant of £,. Consequently, £, = x is its minimal sum.

(#) Check the squares corresponding to xy, x'y, and x’y’ asin Fig. 11-6(h). Note that E, conlains two pairs of
adjacent squares (designated by the two loops) which include all the squares of E,. The vertical pair represents
y and the horizontal pair represents x'; hence y and x' are the prime implicants of £;. Thus £ = x' + y is its
minimal sum.



CHAP. 11] BOOLEAN ALGEBRA 263

] ¥ ¥ ¥ y y
w02 | & " m t| ¢
x NSV x v
(a) E, . (b E, (e) E,
l~'ig..ll-6

(¢} Check the squares corresponding to vy and 'y’ as in Fig. 11-6(c]. Note that E; consists of two isolated
squares which represent xy and x’y’; hence xy and v’y are the prime implicants of £y and Ey = v+ ¥’y is’its
minimal sum.

Case of Three Variables

The Karnaugh map corresponding to Boolean expressions £ = E(x, v, z) with three variables x, y, z

is shown in Fig. 11-7(a). Reccall that there are exactly eight minterms with three variables:
vz xpels w2 mle e 802 e Xl

These minterms are listed so that they correspond to the eight squares in the Karnaugh map in the
obvious way. '

Furthermore, in order that every pair of adjucent products in Fig. 11-7(a) arc geometrically adja-
cent, theright and left edges of thc map must be identified. This is equivalent to cutting out, bending,
and gluing the map along the identified edges to obtain the cylinder pictured in Fig. 11-7(4), where
adjacent products are now represented by squares with one edge in common.

(a)
Fig. 11-7

Viewing the Kamaugh map in Fig. 11-7(a) as a Venn dmgmm. the ureas represented by the variables
x,y, and z are shown in Fig. 11-8. Specifically, the variable is still represented by the points in the
upper half of the map. as shaded in Fig. | 1-8(a). and the variable y is still represented by the points in the
left half of the map, as shaded in Fig. 11-8(h). The new vun.lble = n reprcs-..nlcd by the points in the left
and right quarters of the map, as shaded in Fig. 11-8(¢). Thus x', y’. and =" are represented, r respectively,
by points in the lower half, right half, and middle two quarters of the map.

y'z' ¥z ¥z » yz' ¥z vz » ye yz

(a) x shaded (&) y shaded (c) z shaded

Fig. 11-8
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By a basic rectangle in the Karnaugh map with three variables, we mean a square, two adjacent
squares, or four squares which form a one-by-four or a two-by-two rectangle. These basic rectangles
correspond to fundamental products of three, two, and one literal, respectively. Moreover, the funda-
mental product represented by a basic rectangle is the product of just those literals that appear in every
square of the reclangle.

Suppose a complete sum-of-products Booleun expression £ = E(x,y,z) is represented in the
Karnaugh map by placing checks in the appropriate squares. A prime implicant of E will be a maximal
hasic rectangle of E, i.e.. a basic rectangle contained in E which is not contained in any larger basig
rectangle in £, A minimal sum-of-products form for E will consist of a minimal cover of E, that is, a
minimal number of maximal basic rectangles of E which together include all the squares of £,

EXAMPLE 11.12 Find the prime implicant» and a minimal sum-of-products form for each of the following
complete sum-of-products Boolean expressions:

I

(a) E;
(h) E

i
xyz+ vz’ +x'v2! +x'y'z

1l

xyz+ayz + o'z xvr 4 oy
(€) Ex=xve4 ' +xyz" +xv+x'y'2

This can be solved by using Karnaugh maps as follows:

(@) Check the squares corresponding 1o the four summands as in Fig. 11-9(a). Observe that E, has three prime
implicants (maximal basic rectangles). which are circled; these are xy, yz', and x'y'z. All threc are needed to
cover 1. hence the minimal sum for E| is

Ey=xy4p2" +x'y'z

(h) Check the squares corresponding to the five summands as in Fig. 11-9(6). Note that £, has two prime
implicants, which are circled. One is the two adjacent squares which represents xy, and the other is the
two-hy-two square (spanning the identified edges) which represents z. Both are needed lo cover E;, so the
minimal sum for £, is : '

Ey=xy+:z

(¢) Check the squares corresponding to the five summands as in Fig. 11-9(c). As indicaled by the loops, E; has
four prime implicants, xy, yz', x'z', and x'y'. However, only one of the iywo dashed ones, i.c., one of yz' or
x'z", is needed in a minimal cover of E;. Thus E; has two minimal sums:

Es=xy4+y="+xy =xp4+x"2" 4+ xy".

»z ¢ Dt ooy yr Yz . as yi iz

”
7 " 2)- 7 ;Qif/'
v 4 (

(a) E, ®)E, @&

Fig. 11-9
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Case of Four Variables

The Karnaugh map corresponding to Boolean expressions E = E{x,y,z,1) with four variables
x,y,z,t is shown in Fig. 11-10. Each of the 16 squares corresponds to one of the 16 minterms with
four variables,

xyzt, .t.l'z."', .1‘}':’!’, .1"1':"!, i _\"y:'r
: 2t at’ £l 't
xy
o

. oy

x'y

[

Fig. 11-10

This is indicated by the labels of the row and column of the squarc. Observe that the top line and the left
side are labeled so that adjacent products differ in precisely one literal. Again, we must identify the left
edge with the right edge (as we did with three variables) but we must also identify the top edge with the
bottom edge. (These identifications give rise to a donu!-shdprd surface called a rorus, and we may view
our map as really being a torus.)

A basic rectangle in a four-variable Karnaugh map is a square, two adjacent squares, four squares
which form a one-by-four or two-by-two rectangle, or eight squares which form a two-by-four rectangle.
These basic rectangles correspond to fundamental products of four, three, two, and one literal,
respectively. Again, maximal basic rectangles are the prime implicants. The minimizing technique
for a Boolean expression E(x,y,z,1) is the same as before.

EXAMPLE 11.13 Find the fundamental product P represented by the basic rectangle in the Karnaugh maps
shown in Fig. 11-11,

In each case, find the literals which appear in all the squares of the basic rectangle; P is the product of such
literals. :

-

(@) x,y,and " appear in both squares; hence P = x)':".
(b) Only y and z appear in all four squares; hence P = y=.
{c) Only r appears in all eight squares; hence P = &.

z't r r 7't

H @ B S gt o F 20

ol xy{ _"’y | / 4

« |V ¥ ¥V 4

vy xy e s

=y s | v “y| vV v
(a) (b) ()

Fig. 11-11
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EXAMPLE 11.14 Find a minimal sum-of-products form for E = xy’ + xyz + x'y 2" ¢ x'yat’

Check all the squares representing each fundamental prodnct Tl-.at is, check all four squares represcnlmg xy',
the two squares representing xyz, the lwo squares representing x'y'z " and the one square representing x yzt', as in
Fig. 11-12. A minimal cover of the map mns:sts of the three designated basic rectangles. “The two-by-two squares
represent the fundamental products xz and y'z’, and the two adjacent squares (on top and bottom) represents yrt'.
Hence the following is 2 minimal sum for E: .

E=xz+y'z +yz

2 Zr It
vian
_ Y,

x'y v

SE

Fig. 1112«

S_olved Problems

BOOLEAN ALGEBRAS
11.1.  Write the dual of each Boolean equation: (a) (a+1)*(0+a') =0, (b)a+a'b=a+b.
(a) To obtain the dual equation, interchange + and #, and interchange 0 and'l. This yields
(@a+0)+(1+a)=1- : '

(b) First write the equation using +: a+ (a’ + ) = a+ b. Then the dual isa(a"+ b) = a = b, which can
we written as :
a(a' + b) = ab

11.2. Recall (Chapter 7) that the set D,, of divisors of m is a bounded, distributive lattice with
a+b=avhb=Ilem(a,b)anda+b =aAb=ged(a,b). (a) Show that D,, is a Boolean algebra
if m is square free, i.e., if m is a product of distinct primes. (b) Find the atoms of D,,.

(a} We need only show that D,,, is complemenlcd Let x bein D, and let x" = m,fx Since m is a product of
distinct primes, x and x' have different divisors. Hence x+x’=ged(x,x’)=1 and
x+x' =lem(x,x') = m. Recall that | is the zero element (lower bound) of D, and that m is the
identity element (upper bound) of D,,. Thus x' is a complement of x, and so D,, is a Boolean algebra.

(6) The atoms of D, are the prime divisors of m.

11.3. Consider the Boolean algebra Dy .

(a) List its elements and draw its diagram.

(b) Find the set 4 of atoms.

{¢) Find two subalgebras with eight elements.

(d) Is X ={1,2,6,210} a sublattice of D;,? A subalgebra?
(e) Is Y ={1,2,3,6} a sublattice of D;,? A subalgebra?
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11.4.

11.5.

(a)

(&)
()
(d)

(e)
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The divisors of 210 are 1, 2, 3, 5, 6. 7. 10, 14, 15. 21, 30, 35, 42, 70, 105 and 210. The diagram of Dy,
appears in Fig. 11-13,

A ={2,3,5,7}, the set of prime divisors is 210.
B={1,2,3,35,6,70, 105,210} and C = {1,5,6,7, 30,35,42,210} are subalgebras of Dy,,.

X is a sublattice since it is linearly ordered. However, X' is not a subalgebra since 35 is the complement
of 2 in Dy but 35 does not belong 1o X. (In fact, no Boolean algebra with more than two elements is
linearly ordered.)

¥ is a sublattice of D,y since it is closed under + and . However, Y is not a su balgebra of D, since it
is not closed under complements in Dy, e.g., 35 = 2" does not belong to ¥. (We note that ¥ itself is a
Boolean algebra, in fact, ¥ = Dg.)

e
TN

Fig. 11-13

Find the number of subalgebras of Dyyq.

()

(ii)
(iii)

{iv)

A subalgebra of Dy must contain two, four, eight or sixteen elements.

There can be only one two-element subalgebra which cansists of the upper and lower bounds, lLe.,
{1,210}

Since Dyyo contains sixteen elements, the only sixteen-element subalgebra is D, itsell.

Any four-element subalgebra is of the form {1, x,x’, 210}, i.e., consists of the upper and lower bounds
and a nonbound element and its complement. There are fourteen nonbound elements in D5, and so
there are 14/2 = 7 pairs {x,x’}. Thus Dy, has seven 4-element subalgebras.

Any eight-element subalgebra S will itself contain three atoms 51,51, 5. We can choose s5; and s; to be
any two of the four atoms of D;;0 and then 53 must be the product of the other two atoms, e.g., we can
let 5y 2, 5, =3, 53 = 5.7 =135 (which determines the subalgebra B above), or we can let 5, = 5,

2
s and s from the four atoms of Dy and so Dy;g has six 8-element subalgebras.

53 =T.5 = 23 = 6 (which determines the subalgebra € above). There are (4) = 6 ways to choose

Accordingly, Dy has | + 1 + 7+ 6 = 15 subalgebras.

Prove Theorem 11.2: Let a, b, ¢ be any elements in a Boolean algebra B.

(i)

(ii)

(1ii)

(iv)

Idempotent laws:

(5a) a+a=a (5b) ara=a
Boundedness laws:

(6a) a+1=1 (6h) ax0=0
Absorption laws:

(7a) a+(atb'l~ru (7h) ax(a+b)=a

Associative laws:
(8a) (@a+b)+ec=a+(b+c) (8b) (axb)sc=ax(bxc)
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The proofs follow:

(5b) a=asl=as(a+a')=(axa)+(asa’)=(asa)+0=asa

(5a) Follows from (5b) and duality.

(6b) as0=(as0)+0= (@a»0)+(a*a')=a*(0+a')=as+(a"+0)=asa’' =0
(6a) Follows from (66) and duality.

(7b) as(a+b)=(a+0)s(ag+b)=a+(0sh)=a+(bs0)=a+0=a

(7a) Follows from (76) and duality.

(8b) Let L=(a+h)+c and R=a=(b+c). We need to prove that L =R We first prove that
a+ L =a+ R. Using the absorption laws in the last two steps,

a4+ L=a+((ashb)ec)=(a+(ash))*s(at+c)=as(a+c)=a
Also, using the absorption law in the last step,
a+R=a+(as(bse))=(a+a)s(a+ (bsc))=as(a+(bsc))=a
Thus @+ L = a+ R. Next we show that a’ + L =a' + R. We have
a'+ L=a'+((ash)sc)=(a"+(asb))+(a" +¢)
=((a"+a)«(a’ +b))* (a' +¢) = (1#(a"+8))* (a’ +¢)
=(@' +b)sla’ +c)=a"+(bsc) .

Also,

a'+R=a +(ar(brc))=(a"+a)«(a’ +(b+))
=ls(a’"+(bsc))=a"+(bec)

Thus a' + L = a' + R. Consequently

L=0+L=(ava"Y+L=(a+L)*(@a"+L)=(a+R)*(a"+R)
=(a%a')+R=0+R=R

(8a) Follows from (8b) and duality.

11.6. Prove Theorem 11.3: Let a be any element of a Boolean Algebra B.

(i) (Uniqueness of complement) If a+ x =1 and @+ x =0, then x = a".
(ii) (Involution law) (a')’ = a
Gii) (9a)0'=1. (9b)1'=0.
(i) We have
a'=a"+0=d"+(asx)=(a'+a)s(a' +x)=1+(a"+x)=a"+x
Also, .
’ x=x+0=x+(axd)=(x+a)s(x+a')=1 o[.r+a')=x_+a'

Hence x=x+a' =a' +x=4¢'.

(ii) By definition of complement, a + @’ = | and a + @' = 0. By commutativity,a’ +a=1landa’»a=0.
By uniqueness of complement, a is the complement of a', that is, a = (a')".

(i) By boundedness law (6a), 0 + | = |, and by identity axiom (3b), 0 = | = 0. By uniqueness of comple-
ment, | 1s the complement of 0, that is, | = 0’. By duality, 0 =1".
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1L.7. Prove Theorem 11.4 (DeMorgan's laws):
(10a) (a+b) =a' +b'". (10b) (a*b) =a'+b'

(10a) We neced to show that {a+b}+{a #b')=1 and (a+4)+(a'+b') =0; then by uniqueness of
complement, a’ + b’ = (a+ b)'. We have

(@+b)+(@eb)=bta+(a'sb)=b+(a+a’)e(a+b)
=b+le(a+b)=b+a+b' =b+b +a=1+a=1
Also,

(a+b)s(a'sb')=((a+b)ea')sb’
=((asa’)+(bea'))sd'=(0+ (bea'))sbd"
=(biﬂ’)-brz(b.b‘)ta‘zﬂ-a'=o

Thusa'«d' = (a+8)".
{106) Principle of duality (Theorem 11.1).

11.8. Prove Theorem 11.5: The following are equivalent in a Boolean algebra:
Ma+b=b, (asb=a, B)a'+b=1, (@ asb =0.

By Theorem 7.8, (1) and (2) are equivalent. We show that (1) and (3) are equivalent. Suppose (1) holds.
Then g

d+b=a"+(@+b)=(a"+a)+b=1+b=1
Now suppose (3) holds. Then
at+b=ls(a+b)=(a"+b)s(a+b)=(a"sa)+b=0+b=bh

Thus (1) and (3) are equivalent.
We next show that (3) and (4) are equivalent. Suppose (3) holds. By DeMorgan’s law and involution,

0=1"-(a"+b) =a"+b' =ast'
Conversely, if (4) holds then

1=0"=(asb') =a’"+b"=a’+b
Thus (3) and (4) are equivalent. Accordingly, all four are equivalent.

11.9. Prove Theorem 11.6: The mapping f: B — 2(A) is an isomorphism where B is a Boolean
algebra, #(A) is the power set of the set A4 of atoms, and
f().') el {als a, .. ‘Iall}
where x = a, + - + a, is the unique representation of a as a sum of atoms.
Recall (Chapter 7) that if the a's are atoms then o = a; but a,a; = 0 for a; # a;. Suppose x,y arein B
and suppose
x=ai+-+a,+b +---4+b,
y=b+--+b+ey 4+
where
A= {a.,....a,.b.....,b,,cl,...,c,,dh.“ ,d*}

is the set of atoms of B. Then
xty=a+-Ha.+b+ b +ey+---+¢
xy=b|+‘--+b,
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Hence
Slx+ )= (a1, Byye By €lyererty}
o3 (T B, Fe U TSRO
= /() U ()
J(xy)={b,.... b}
= {ﬂ‘.....ﬁ,.h;.'....b.]n{hh....h,.c].....c,}
=f(x)nsS(y)
Lety=cy+- +c¢,4+dy+ --+dy. Thenx+yr=1and xv=0 and so y = x". Thus

S = {er, oo aendyy o) = by, e} = ()

Since the representation is unique, [ is one-to-one and onto.- Hence f is a Boolean algebra isomorphism.

BOOLEAN EXPRESSIONS

11.10.

1111,

11.12,

Reduce the following Boolean products to cither 0 or a fundamental product:
(@) xpx'z;  (B) xyzy: (c) xyz'yx; (d) xpz"ypx'z".

Use the commutative law x* y =y x, the complement law xsx' =0, and the idempotent law
X*zx=Xx

(@) zpx'z=xx'yz=0yz=0
(b) xyzy = xyyz = xyz

(¢) xyz'px=xxyyz’ = xpz’

(d) xyz'yx'z' =xx'ypz'z" =0y’ =0

Express each Boolean expression £(x, v, z) as a sum-of-products and then in its complete sum-of-
products form:

(@) E=x(xp' +x'y+y'z)y (B) E=z(x"+y)+p".

First use Algorithm 11.8A to express E as a sum-of-products, and then use Algorithm 11.8B to express
E as a complete sum-of-products.
(@) First we have E = xxy' + xx'v + .r_n_-': =xy' +xp'z. Then

E=xy(z+:+xye=xp'z+xp2" +xp'z2=xp'z 4 xp'z’
(k) First we have
E=:zx"+0)+y =x's4+pz 4y
Then

™
i

Xetyz k' =x"z(04+ )+ rz(x + x) + 3 (v + 3z +2)
yz4xyza ez axyz b ols o2 4 0z 2
e

xyz4xp'z 4+ xp’z +xyr 4 XYz 42

L]

Express E(x,y,z) = (x" 4 »)' + x’y in its complete sum-of-products form.

Wehave £ = (x"+ y) + x'y = +xp" + x'y, which would be the complete sum-of-products form of E if
E were a Boolean expression in x and y, However, it is specified that E is a Boolean expression in the three
variables x, y, and = Hence,

E=x"+xvy=0'c+z)+x3z+2) =024 x3"2" 4+ x"pz + x'y:’

is the complete sum-of-products form of E.
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11.13.

11.14.

11.15.

Express each Boolean expression £(x, y, z) as a sum-of-products and then in its complete sum-of-
products form:

(a) E=y(x+12)5 (B) E=x(xp+ 3"+ x')).

(@) E=p(x'(pz))=px'(0" +2") = px"y + xpz" = xps’
which already is in its complete sum-of-products form.
(h) First we have E = xxy + 13"+ xx’v = vy + vy’ Then

E=xpc+2)+xp'z+2) =+ 0z’ + o'+ xp's’
Express each set expression E(A4, B, C) involving sets A, B, C as a union of intersections:
(@) E=(AUB)'N(C'UB), (b)E=(BNC)N(A UC)

Use Boolean notation,  for complement, + for union and = (or juxtaposition) for intersection, and then
express E as a sum of products (union of intersections).

(@) E=(A+B)(C'+B8)=A'B(C'+B)=A'BC'+A4'B'B=A'B'C" or E=ANENC
(b) E=(BCY(A'+C) = (B '+ C'YAC) = AB'C' + AC" or E=(ANBENCHU(ANC)

Let E=xy' 4+ xyz’' +x'yz". Provethat (a)xz'+E=E; (B)x+E#E. (¢)z'+E+#E.

Since the complete sum-of-products form is unique, 4 + E = E. where A # 0. il and only if the sum-
mands in the complete sum-of-products form for 4 are among the summands in the compleie sum-of-
products form for E. Hence, first find the complete sum-of-products form for E;

E=xy'(z+2)4xpz' +xyp' =0z 4 o2 4z +x02!
(a) Express xz' in complete sum-ol-products form:
x2'=x(p4+ ) ="+ 00"
Since the summands of xz' arc among those of E, we have xz' + E = E.
(k) Express x in complete sum-of-products form:
x=x(r+ M+ )=+ + 0’z 4 '
The summand xyz of x is not a summand of E; hence x+ E # E.

(¢) Express z* in complete sum-of-products form:
P S [ (VR B IO L B (LA B g T S o -l

The summand x'y'z' of ' is not a summand of E; hence =" + E # E.

MINIMAL BOOLEAN EXPRESSIONS, PRIME IMPLICANTS

11.16.

For any Boolean sum-of-products expression E. we let £; denote the number of literals in £
(counting multiplicity) and Es denote the number of summands in £. Find E; and Ejg for each of
the following:

(@) E=xy'z+x'z" +yz' +x (¢) E=xpt" + x"y'zt + x2"t
BYE=x"y'z+xyz+y+yz'+x'z (@) E=(xy" +2) +x

Simply add up the number of literals and the number of summands in each expression:
(@) Ep=3+2+2+1=8, Ec=4.
(b)) Er=3+3+14242=11, Es=35.
(¢) E,=3+4+3=10, Ey=3.

(d) Because E i not wrilten as a sum of products, £ and Eg are not defined.
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11.17. Given E and F are equivalent Boolean sum-of-products, define:

(@) E is simpler than F; (b) E is minimal.

(@) E is simpler than F if E, < F, and Eg < Fs.orif £, < F; and E5 < F;.
(6) E is minimal if there is no equivalent sum-of-products expression which is simpler than E.

11.18. Find the consensus @ of the fundamental products P, and P; where:

(@) Py =xp'z', Py = xpt (¢) Py =xp'z', Py=x"y'21
(b) Py =xyz't, Py=xz1  (d) P, = xpz’, P, = xz't

The consensus @ of P, and P, exists if there is exactly one variable, say x,, which is complemented in
one of Py and P, and uncomplemented in the other. Then Q is the product (without repetition) of the literals

= in Py and P, after x; and x| have been deleted.

(a) Delete y' and y and then multiply the literals of Py and P, (without repetition) to obtain @ = xz't.
() Deleting z" and z yields Q@ = xyr.

(¢) They have no consensus since both x and : appear complemented in one of the products and un-
complemented in the other.

(d) They have no consensus since no variable appears complemented in one of the products and un-
complemented in the other. .

11.19. Suppose Q is the consensus of P, and Py. Prove that P\ + P, + Q= P, 4 P;.

Since the literals commute, we can assume without Joss of generality that
Py=ama;---a,, Py=biby - b0, Q=aay---abhy---b,

Now, Q =Q(/+1') = Qr+ Or'. Because Q1 contains Py, P, + Q1 = P;; and because @1’ contains Py,
Pz +Qf'= P:- Hence

P|+P1+Q=P1+P2+Qf+Q"‘—‘(P|+Ql)+(Pz+Q")=Pl+P2

11.20. Let E = xp' + xyz’' + x'yz'. Find: (a) the prime implicants of E; (h) a minimal sum for E.

(a) Apply Algorithm 11.9A (consensus method) as follows:

E=xy' +xyz' +x'yz' + xz' (Consensus of xy’ and xyz')
=xy' +x'yz' + xz' (xyz' includes xz’)
=xy' +x'yz' 4 xz' 4y’ (Consensus of x'yz’ and xz')
=xp’ +xz' 4y (x'yz’ includes yz")’

Neither step in the consensus method can now be applied. Hence xy', xz', and pz’ are the prime
implicants of £,

(h) Apply Algorithm 11.9B. Write each prime implicant of E in complete sum-of-prodiicts form obtain-
ing:
' =x(z+2)=xpz 4+ 00’2’
x' = x4+ y) = + 02
y' =y (x4 x) = xpz’ + x'y2’
Only the summands xyz’ and xy'z’ of xz' appear among the other summands and hence xz' can be
eliminated as superfluous. Thus £ = xp’ + yz' is a minimal sum for E.
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1L.21. LetE = xy+ y't +x'yz' + xy'zt’. Find: (a) the primeimplicantsof £; () a minimal sum for £.
{a) Apply Algorithm 11.9A (consensus method) as follows:

E=xy+y't+x"yz" +xp'zt’ + xzt’' (Consensus of xy and xy'z1")
' =xp+yt+xyz" 4 xz’ (xp'zt’ includes xzt')

=xp 4 y'r4 Xy’ x4y (Consensus of xy and x'yz’)
=xy+ y't4 xzt' +y2! (x'yz" includes yz")
=xy+ 4zt 4y’ 4 (Consensus of xy and y'r)
=xy+y't+xzt’ +yz' + xt+xz (Consensus of xzr' and )
=xy+yi+yz +xt+xz (xz¢" includes xz2)
=xy+yt+y’ +xt+xz+2"t (Consensus of »'r and yz)

Neither step in the consensus method can now be applied. Hence the prime implicants of £ are xy, 1",
- yz', xt,xz, and z'1.

(#) Apply Algorithm 11.9B. Write each prime implicant in complete sum-of-products form and then delete
one by one those which are superfluous, i.e. those whose summands appear among the other
summands. This finally yields .

E=py't+xz+y2

as a minimal sum for E.

KARNAUGH MAPS _
11.22. Find the fundamental product P represented by each basic rectangle in the Karnaugh map in

Fig. 11-14.
yE, vy pE T w_oy Yy vz oy oy ¥z
x 4/:- I x| ¥ v +
x' g 7 x' |V 7
(a) (&) (5]
Fig. 11-14

In each case find those literals which appear in all the squares of the basic rectangle; then P is the
product of such literals.

(a) x' and z’ appear in both squares; hence P = x'z’.
() x and = appear in both squares; hence P = xz.
(¢) Only 2z appears in all four squares; hence P = =.

11.23. Let R be a basic rectangle in a Karnaugh map for four variables x,y,z,r. State the number of
literals in the fundamental product P corresponding to R in terms of the number of squares in R.

P will have 1, 2, 3, or 4 literals according as R has 8, 4, 2, or | squares.
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11.24, Find the fundamental product P represented by each basic rectangle R in the Karnaugh map in

Fig. 11-15.
() zr '’ 't x F 2'r 2l - a 2'r 't

xy xy o\ |V |V |V

o w|/ 7 o

5 iy N72AVARAY

@) ®) ©
Fig. 11-15

In each case find those literals which appear in all the squares of the basic rectangle; then P is the
preduct of such literals. (Problem 11,23 indicates the number of such literals in P)

(a) There are two squares in R, so P has three literals. Specifically, x’, »’, t' appear in both squares; hence
sq

P=x'y't.

(b) There are four squares in R, so P has two literals, Spexifically, onlv v* and ¢ appear in all four squares;
hence P = y'r.

(c) There arc cight squares in R, so P has only one literal. Specifically, only y appears in all eight squares;
hence P =y,

11.25. Let £ be the Boolean expression given in the Karnaugh map in Fig. 11-16.

(@) Write £ in its complete sum-of-products form. (5) Find a minimal form for E.

2t @ ' z't
xy 4 D
xy’

x'y' v
x'y v
Fig. 11-16

(a) List the seven fundamental products checked to obtain
E=xpz"t" + xyz't 4+ xp'zt 4+ xp'2t" + x"y'2t 4 x'y'2t’" + x'y2't'

(b) The two-by-two maximal basic rectangle represents p'z since only y' and z appear in all four squares.
The horizontal pair of adjacent squares represents xyz', and the adjacent squares overlapping the top
and bottom edges represent yz't’. As all three rectangles are needed for a minimal cover,

E=y'z4xyz’ +y2't'

is the minimal sum for E.
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11.26. Consider the Boolean expressions E, and E; in variables x,y,z,t which are given by the
Karnaugh maps in Fig. 11-17. Find a minimal sum for (a) E;; () E;.

zt P G | Ej zt' 2"t 't
xy I', xy / |/ .
> \J v |V v |y
|\ |V w|(V N\ /v | V)
x'y x'y ./ /
(@) E, (b)Y E,

Fig. 11-17

(a) Onlyy' ar..npears in all eight squares of the two-by-four maximal basic rectangle, and the designated pair
of adjacent squares represents xzi’. As both rectangles are needed for a minimal cover, thus the

following is the minimal sum for E;:
E =y +xa’

The four corner squares form a two-by-two maximal.basic rectangle which represents yr, since only y
and 1 appear in all the four squares. The four-by-one maximal basic rectangle represents x'y’, and the

two adjacent squares represent y'zt’. As all three rectangles are needed for a minimal cover, hence the

following is the minimal sum for E;:

(8)

Ey=yr+x'y +y'zt’
L ]

11.27. Consider the Boolean expressions E, and E; in variables x,y,z, 1 which are given by the
Karnaugh maps in Fig. 11-18. Find a minimal sum for; (a) E;; (b) E;.
o S o | o Fig 5 I

't
v v

a

!.I'
xy v
/

=
&
~
=

i

'y g v

1‘ I/~
H—-
b}

R

-
e
-
0]
b
(~
2
=
W

(a) E, L ) E

Fig. 11-18

(a) Thm are five prime implicants, designated by the four loops and the dashed circle. However, the
dashed circle is not needed to cover all the sqliares, whereas the fourloops are required. Thus the four

loops give the minimal sum for E;; that is,

v E =xzt' +xp'2' + x'y'z 4 x'2'1
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(b) There are five prime implicants, designated by the five loops of which two are dashed. Only one of the
two dashed loops is needed to cover the square x'y'Z’t’. Thus there are two minimal sums for E; as
follows:

Ex=x'y+y+xy't’ +y2't' =x'y+yr+ xp't" +x'2't’

11.28. Use a Karnaugh map to find a minimal sum for:

(@) Ey=x"y'z'+x'yz' + xy'z+ xpz’.
(b) Ey=x'yz' +x'yz+xy'z+xyz’ + xyz.
Each term in E, and E, contains the three variables x, y, z, and hence it corresponds to a square in the
= Karnaugh map (with three variables).

(a) Checking the appropriate squares gives the Karnaugh map in Fig. 11-19(a). Therc are three prime
implicants, as indicated by the three loops, which form a minimal cover of £;. Thus a minimal form
for E, follows:

E =y’ +x'2' + xy'z

(b) The Karnaugh map appears in Fig. 11-19(b). There are two prime implicants, as indicated by the two
loops, which form a minimal cover of ;. Thus a minimal form for E, follows:

Ey=xz+y
v | yr s iy yr ¥z
x v ) @ x|V m
D D
(a) (2]

Fig. 11-19

11.29. Use a Karnaugh map to find a minimal sum for:

(@) Ey=x'yz+x'yz't+y'zt’ +xyzt’ + xy'2't".
(b) Ey=y't' +y'2't +x'y'zt+ yzt'.

- (a) Check the two squares corresponding to each of x'yz and y'zt’, and check the square corresponding 10

each of x'yz't, xyzt', and xp'z't’. This gives the Karnaugh map in Fig. 11-20(a). A minimal cover
consists of the three designated loopsé Thus a minimal sum for E; follows:

Ey=zt' +xp't' + x'nt

(b) Check the four squares corresponding to zt’, check the two squares corresponding to each of y'z'tand
yzt’, and check the square corresponding to x'y'zt. This gives the Karnaugh map in Fig. 11-20(6). A
minimal cover consists of the three designated maximal basic rectangles. Thus a nijnimal sum for E,
follows: .

E=zt' + xy't +x'ypt
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" gyt

zt =o' 't z't zt zt' 'l z't
» V) »| (V)
| K| v = Al |2
=y / v v\ 1)
xyl l\/} v x'y v N
(a) E; (b) Ey
Fig. 11-20

Supplementary Problems

BOOLEAN ALGEBRAS

11.30.

11.31.

11.32.

11.33.

11.34,

11.35.

11.36.

11.37.

11.38.

Write the dual of each Boolean expression:

(a) a(a’ + b) =ab; ®) (a+)(a+0)=a; (c) (a+b)(b+c)=ac+b

Consider the lattices D, of divisors of m (where m > 1).

(a) Show that D, is a Boolean algebra if and only if m is square-free, that is, m is a product of distinct
. primes,

() If D, is a Boolean algebra, show that the atoms are the distinct prime divisors of m.
-

Consider the following lattices: (a) Dyi  (b) Dss; (c) Dygi  (d) Dyso. Which of them are Boolean
algebras, and what are their atoms?

Consider the Boolean algebra Dy q.

(a) List its elements and draw its diagram. (b) Find all its subalgebras.
(¢) Find the number of sublattices with four elements. (d) Find the set A of atoms of Dyq.
(e) Give the isomorphic mapping f: Dyjp — #(4) as defined in Theorem 11.6.

Let B be a Boolean algebra. Show that: (a) Forany xin B,0<x < 1. (b)a<bifand only iry' <a'.

An element x in a Boolean algebra is called a maxterm if the identity | is its only successor. Find the
maxterms in the Boolean algebra Dy, pictured in Fig. 11-13.

Let B be a Boolean algebra. (a) Show that complements of the atoms of B are the maxterms. (b) Show
that any element x in B can be expressed uniquely as a product of maxterms.

Let B be a 16-clement Boolean algebra and let S be an 8-element subalgebra of B. Show that two of the
atoms of S must be atoms of B.

Let B= (B, +,%,',0,1) be a Boolean algebra. Define an operation A on B (called the symmetric difference)
by

xBy=(x+y)+(x"+)
Prove that R = (B, A, +) is a commutative Boolean ring.
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1139, Let R= (R,+, +) be a Boolean ring with identity | # 0. Define
x'=14+% x+py=x+y+x-y, xsp=x-y
Prove that B = (R, +,s,',0,1) is a Boolean algebra.

BOOLEAN EXPRESSIONS, PRIME IMPLICANTS
11.40. Reduce the following Boolean products to either 0 or a fundamental product:
(@) xy'zxy"s (b) xyz'sy'ts; (c) xy'xz'ty’; (d) xpz'ty't

11.41. Express each Boolean expression E(x, y,z) as a sum-of-products and then in its mmp!e!'e‘sum-ol‘-prodmu
form: :

(@) E=x(xy' +x'y +3'2). (b) E=(x+y2)p+2). () E=(x'+)) +y'z

11.42. Express each Boolean expression E(x, y,z) as a sum-of-products and then in its complete sum-of-products
form:

(@) E=(xy)'(x" +xpz).  (B) (x+3)'(x). (c) E=p(x+yz)"

11.43. Find the consensus Q of the fundamental products P, and P, where:

(a) Py = xy'z, Py = xyt (c) Py =xy'zt, Py = xyz’
&) Ph=xyz't', Pa=xzt" (dY Py=xy't, Py=xz1

11.44. For any Boolean sum-of-products expression E, we let E, denote the number of literals in E (counting
multiplicity) and Eg denote the number of summands in E. Find E, and Ej for each of the following: '

(@) E=xyz't+x'yt+xy'zt. (b) E=xyzt+xt' +x'y't 4+

-

11.45. Apply the cansensus method (Algorithm 11.9A) to find the prime implicants of each Boolean expression:
(@) Ei=xy'z' +x'y+x"y'z' + x'yz. ]

LI

(6) ~E; = xp" + x"2't + xyzt’ + x'y'zt".

LI

() Ey=xyzt+xpz't' +x2't + x'y'2" + x'yz"1.

11.46. Find a minimal sum-of-products form for each of the Boolean expressions in Problem 11.45.

KARNAUGH MAPS
11.47. Find all possible minimal sums for each Boolean expression E given by the Karnaugh maps in Fig. 11-21.

oy yr yz 2w ¥y yz ;» o Y ys

|V |V x| vV V|V x v v

N/ /Y v NV
@ @ T~ ® ©

- m. I l“zl
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11.48. Find all possible minimal sums for each Boolean expression E given by the Karnaugh maps in Fig. 11-22.

zt ' zlr’ Kz‘l ] H 4 G ‘zt o' £ 2t

x v v/ w| V||V ol V v
¥ /| " o' |V o' i
Xy 4 xy 4 x'y
||V v/ =7 B
(a) ) (©
Fig. 11-22

-

11.49. Use a Karnaugh map to find a minimal sum for each Boolean expression:

(@) E=xp+x'y+x"y. (b)) E=x+x"yz+xy'z"

11.50. Use a Karnaugh map to find a minimal sum for each Boolean expression:

F_ri

(@ E=y'24y"20 +2't. (B) E=y"z14 x2t" + xy'2’.

11.51. Show that the sum of two adjacent products will be a fundamental product with one fewer literal.

Answers to Supplementary Problems

11.0. (a)a+a'b=a+b; (b)a-0+a-1=a; (c)ab+be=(a+c)b
11.32. (b) Dss; atoms 5 and 11;  (d) Dyso; atoms 2, 5 and 13

11.33. (a) There are eight elements 1, 2, 5, 10, 11, 22, 55, 110. See Fig. 11-23(a).
(b) There are five subalgebras: {1,110}, {1,2,55,110}, {1,5,22,110}, {1,10,11,110}, Dy;0.
(c) There are fifteen sublattices which include the above four three subalgebras.
(d) a={2,511} :
(e) See Fig. 11-23(b),

110
m////£xxxxﬁ
i
2 5 1 12 5 11 1w 2 55 110
T~ Lid L b4 o1
@, {21, (5), {11}, 42, 5}, {2, 11}, (5, 11}, 4
@Dy, : (8) f: Dy ——=P(4)

Fig. 11-23



1138,

11.36.

11.40.

11.41.

11.42,

11.43.

11.44,

11.45.

11.46.

11.47.

11.48.

11.49.

11.50.

BOOLEAN ALGEBRA

Maxterms: 30, 42, 70, 105

(b) Hinr. Use duality. / -

(a) xy'z (B)0; () xp'z't; (d)O

(a)
(6)
(c)

(a)
(&)
(e)

E=xy+xp'z=xy'2"+ xy'z
E=xy+xz' = xyz+xyz’ +xy'z’
E=xy'+y'z=xyz+xp'z +x'y'z

E=xpz' +x'y' =xpz" + x'y'z 4 x"y's’
rorr

E=x"y'=x'y'z+xyz
E=x"yz'

(a) @ =xzt; (b) @ = xyt’; (c) and (d) Does not exist.

[ﬂ} E;_ﬂbll, Es=3; (ﬁ) EL=]1. Es=4

r 17 _r
(a) x'y, x'2', y'2z"; (B) xy', xzt’, y'zt’, x'z't, y'z't; (c) xya2t, x2'0, Y2, XTy'2 X2

(a)
&)
(e)

(a)
(b)
()

(a)
(8)
(c)

E= x}y+xl:f

E=xy +xzt' + x'2't +y'2"t

E = xyzt + x2't' + x"y'z' + x'2't
E=xy'+x'y+yr=xy' +x'y+xz'
E=xy'+x'y+z

E=x'+z

E=x'y4+z' +xz't +xy'z=x"y+2t' + xz't +xp"t1
E=yz4y' 420"+ xy'7"
E=x'y+yi+xy't +x'a=x"y+p+xy't' +y'n

(@) E=x"+y; (b) E=xz'+yz

(@E=y'+2't; B)E=xy'+zt"+y'nt
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