CHAPTER 1
ELECTROSTATIC AND ELECTROMAGNETIC THEORY
ELECTROSTATICS '

Coulomb’s Law. The earliest recorded facts in connection with the
subject of electricity were obtained as a result of experiments
carried out by the ancient Greek philosopher Thales of Miletus,
about 600 B.C., and related to the forces of repulsion and attraction
between bodies charged with static electricity. Those facts were
qualitative only, and it was left for Coulomb, many centuries later,
to state them in a quantitative form by his Inverse Square Law,
which is the most fundamental law of electrostatics—
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where F is the force between two small bodies charged respectively
with @, and @, units of electricity, their centres being a distance r
apart, and ¢ is a constant depending upon the medium in which the
bodies are situated, and is called the “permittivity” of the medium.

In the rationalized M.K.S. system of units this expression is
written as
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F-hﬂs newtons . : . (L2)
where @, and @, are the charges in coulombs, r is in metres, and
& =&y, where g, is the primary electric constant, having a value
360 10V and g, is the permittivity of the medium relative to
that of a vacuum. &, = 1 for a vacuum, and air may be considered
to have the same value. In this system two infinitely small bodies
each having unit charge and being 1 metre apart in air experience a
force of 9 x 10° newtons.

Electric Field Round Charged Conductors. If unit positive charge
of electricity be placed in the neighbourhood of a charged body it
will experience a force of attraction or repulsion according as the
charged body is negatively or positively charged. If this unit charge
be allowed to move freely, it will trace out a ““line of electric force.”
For all points on this line the resultant force on the unit charge will
be in a direction tangential to the line at the given point. The
electric field in the neighbourhood of any chﬁed conductor or
system of charged conductors can be represented by such lines of
force, arrow heads placed upon them giving the direction in which
unit positive charge would move along the line.
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The magnitude of the force upon unit positive charge, placed at
any point, is a measure of the “‘electric force” or **field strength” at
that point, it being assumed that the introduction of the unit charge
does not affect the distribution of charge upon the conductors to
which the field is due.

The Electric Field. In the preceding paragraph lines of force are
spoken of as giving the direction of the field at any point. If we
have two adjacent charges of opposite polarity and there are no
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Fig. 1.1. Lines or Erecrric Force Rounp A Posimive CHARGE

other charges in the vicinity, we can visualize lines of force emanating
from one charge and terminating on the other. These lines of force
can be looked upon as representing an electric flux between the
charges. The unit of electric flux is now defined as being the total
flux originating from a unit charge. It follows that

y = @ coulombs

where 1 is the electric flux radiating from a charge of @ coulombs.
If a charge @ is situated at the centre of a sphere of radius 1 metre
then the electric flux density D at the surface of the sphere is given by

D= 4% coulombs per sq. metre

The electrie field strength £ at any point is defined as the force on a
unit charge situated at that point and it follows from Equation (1.2)
that E, at the surface of a sphere of unit radius, is

Q D
==, A . « (1.3)®
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Inmr,e,:l,aof.hat-a=z,andE=e—e.
* Note that this law is similar to the magnetic law—
H = B[u where B = magnetic flux density,

H = magnetic field strength,
p# = magnetic permeability of the mediurm.
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E is also termed the electric force and, since K is the force in
newtons on a charge of 1 coulomb, it will be shown subsequently
that the unit of & 1s 1 volt per metre.

Tubes of Flux. Fig. 1.2 represents a number of lines of electric
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field strength forming a “tube of flux.”” If A and B are two points in
an electric field such that the field strength at A is greater than
that at B, then, from Equation (1.3), the field strength at 4 is

D,

E,=—*
€y

where D, = lines per unit surface of cross-section of the tube at A.
Similarly, at B
Dy

£y

If v is the electric flux in the tube, and @, and a, are the areas of
cross-section of the tube at A and B, these areas being measured
perpendicular to the direction of the field at the points, then
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Electric Field Inside a Charged Spherical Conductor. Imagine
a hollow sphere of conducting material which has been given a
charge of Q positive units of electricity. If its area of surface be S

the density of charge on the surface (which will be uniform) isg

per unit of surface. The electric field at the surface will be at
all points normal to the surface, since the sphere is of conducting
material. This follows from a consideration of the fact that, if it
were not so, the field would have a tangential component which
would produce s movement of charge until the direction of the
field became normal. Consider a point P inside the sphere (Fig. 1.3)
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Fira. 1.3. Fiewp Insmoe A Spaerican CONDUCTOR

at which small areas of surface @, and @, subtend a solid angle
00 as shown. Points 4, and 4, are mid-points of the areas a, and a,.
Angle OA;P = angle OA4,P = a.

Let AP =dy, AP = dy
& = permittivity of the medium inside the sphere.

Then Charge on area a, — % .Gy

” n at=g'al

Since the field is everywhere normal to the surface, the field strength
at P due to charge on a, is

Qa; cofa . .. ..
TmmdmunnA,P

Similarly, the field strength at P due to charge on a, is
%-'-‘ . 4%“391 in direction 4,P
- 2
directly opposite to direction 4,P.
Now, the solid angle subtended at the centre of a sphere of radius

R by any area A4 on its surface isi. -
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Hence,
Solid angle 80 = “1;::“ ¢= “’;:;“ -4

Thus, the field strengths at P due to charges on a, and a, are opposite

and are each equal to 47??8 . 80, giving a resultant field strength due

to these two charges of zero.

As the same is true for all similar pairs of areas such as a, and a,,
the total field strength at any point inside a charged spherical conduclor
is zero.

Field in the Neighbourhood of a Charged Straight Conductor.
Fig. 1.4 (a) represents a long, thin, straight conductor which carries a

Fig. 1.4. ErpcrrosTamio FigLp NEaAr A STRAIGET CONDUCTOR

uniform charge of Q per unit length. P is a point whose perpen-
dieular distance from the conductor is p, and p is small com-
pared with the length of the wire. Consider two elements of the
conductor each of length dx, as shown at N, and N,, the elements
being equidistant from P.

Let NP =DNP=1

Then, if the elements dx are su small that the charges on them can
be considered as concentrated at N, and N,, the forces (¥) upon

unit positive charge placed at P will be each equal to 4%, from

Equation (1.2), where ¢ is the permittivity of the medium.

The directions of these forces will, as shown, each make an angle
of (90 — ¢) with the direction of the conductor, and will together be
equivalent to one force of 2F cos ¢ in direction MP, the horizontal
components neutralizing one another.

The same applies to all such pairs of elements as those shown,
so that the total force upon unit chargeat P—i.e. the field strength at



8 ELECTRICAL MEASUREMENTS
P—due to the whole length of the wire, will be in the direction MP,

and is given by
& 2Q cos ¢
E’“J‘,-u Nomd,,

where £, = total field strength at P, if the distance p is small com-
pared with the length of the wire.

Fia. 1.5. ErLecrrosTtaTic FiELp BETWEEN Two CHARGED PLATES

From Fig. 1.4 (b), it can be seen that, if dz is very small, then
z¢z¢, — dzcos = dr. D

: F = % where d¢ is the angle subtended at P by dx

b - ""“ mm‘#
.E,mj. e ey de = mthedwect:onMP (1.4)

Field in the Space Between Two Charged Parallel Conducting Plates.
Fig. 1.5 represents the two conductisiy plates, which are close
together. Their extent is supposed to be so great as compared with
their distance apart that the electrostatic field on or near their
common axis is unaffected by the fringing field at the edges of the
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plates. Let plate 4 be charged positively and B charged negatively.
Neglecting the edge effects the distribution of charge will be uniform.

Let charge density on A = + ¢ units per unit of surface
B = — ¢ units per unit of surface

”» 3

P is a point between the plates on or near their common axis.
Let their distance apart be D.

A similar method to that set out in the preceding paragraph
can be followed, except that the field strengths at P due to elemental
rings must now be considered instead of elements of length of
conductor as previously considered.

Since the charge on area da is + oda = -+ ods . dz, the force (F)

upon a unit positive charge at P due to this area is + %Iij'

¢ being the permittivity of the medium between the plates. This
force F may be split up into two components, f and f’, perpendic-
ular to and parallel with the plates as shown. Since the components
of all such forces as F' due to the whole of the elemental ring in
a direction parallel to the plates will neutralize one another, the
total force at P due to the whole of the elemental ring will be the
sum of all components such as f perpendicular to the plates. Calling
this total perpendicular force due to the ring f;, we have

s =2z
=
Now f= Fcos¢ = %ﬂi‘:_—'gfmmﬁ
2 = 272
. f’_:J. 4jr£.—d;cus¢.da=£rn;£—pcos¢x2wx
=0

If P = total force at P in a direction perpendicular to the plates
due to all such elemental rings, then

P = |

Jr-'l

O Cos ¢
dme . 12

X 27z .dzx

As in the previous section,

ldd = dx .cos ¢
i.e: cua¢=lg§

&

E== o0
CoPas O 9mrdz.
L% 4orel?
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This force will be one of repulsion if unit positive charge is placed
at P. There will also be an equal force attracting the unit charge to

Fia. 1.6. ILrusTRATING GAUSs's THEOREM

plate B. Thus the total force on unit positive charge at P—i.e.
the field strength at P—is

Bowe Cot o E Ta(lE)

Gauss’s Theorem. Briefly this theorem states that the total
electric flux traversing a surface which completely encloses a charge
of @ units is Q. This holds true whatever the shape of the sur-
rounding surface, and for any dielectric. Consider a small element
of surface ds upon the surface surrounding a charge of + @ (Fig.
1.6 (a)). Let this element subtend a solid angle df at P, and let the
angle between field strength £ at B, due to the charge, and the
normal N at B be ¢. Let the distance PB = L.

Then, electric flux erossing element ds is D eos ¢ . ds

= FEe.cosd.ds
=E%i§.ecosq$.ds
Q



BELECTROSTATIC THEORY 9

Thus the total flux crossing the whole surface is

w=£'—q—-cos¢.ds

47l?
or, since ds.+_wsq6 = solid angle df,
20do
p= BB g rp it kel St e

4

If there are a number of charges inside the surface, some positive
and some negative, then, if the charges are Q,, Q,, etc.,

py=@Q Qi+ttt ..) . ' (T

the flux in the outward direction being considered positive.
Coulomb’s Theorem. This theorem states, in effect, that the
electric field strength at the surface of a conductor, charged to a surface

density of o units per unit of surface, is E , where ¢ is the permittivity

of the medium outside the conductor.
This follows from Gauss’s Theorem. Consider an element of

surface of the conductor ds. This element carries a charge of ods

units. From Gauss's Theorem the flux radiating from this charge

is ¢ .ds, and, since no flux exists inside the conductor, the whole

of this flux passes outwards normally.

o.ds

Thus, electric flux density at the surface D = -

a.

Hence the field strength is

a
: (1.8)
its direction being normal to the surface.

Potential. If unit positive charge is moved towards a positively
charged body, work is done in overcoming the force of repulsion
acting on the charge. If this movement of the unit charge is from
a point P, to some point P, nearer to the positively charged body,
then the point P, is said to be at a higher electric potential than
point P; and the difference of potential between the two points is
defined as the quantity of work required to move unit positive
charge from the point at the lower potential to the point at the
higher potential.

In general, the potential of any point in the vicinity of a system of
charged bodies is defined as the work required to move unit positive
charge from an infinite distance to the point considered, assuming
that the distribution of the charges on the bodies is unaffected by
the approach of the unit charge.
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The unit of potential difference is the volt and is defined as the
potential difference between two points such that 1 joule of work is
done in moving unit positive charge (as defined on p. 1) from the
point at the lower potential to the point at the higher potential, the
potential being assumed unaltered by the presence of the unit charge.

If two points at a very small distance ds apart have a difference
of potential V¥ units, then the work done in moving unit positive
charge from one point to the other up the gradient of potential is
Eds, where E is the average force on the unit charge during the
movement.

Thus dV = — Eds
av

where F is the field strength at any point in an electric field, % being

the potential gradient at the point, the positive direction of s being
down the gradient of potential. Again, the potential difference V
between any two points A and B is given by

B
V“,=f R TR S
A

Potential at a Point Due to a Number of Charges. The potential
at any point I’ distant d from a single charge of @ units is
equal to the work done in bringing unit charge from an infinite
distance up to the point P, i.e.

Potential at P, V,= f E.ds = ;-r%;l
d d

V..=4-3—dvolts ‘ X : . (1.11)

Similarly, the potential at a point P due to a number of charges
Q. Q., etc., distant d,, d,, etc., respectively, from P is given by

@, 9% G ] 1
V = | — —= = + ete. | — - . 1.12)
o i Ime :
¢ being the permittivity of the medium.

If a number of conductors have charges Q;, @, . . - @, then their
potentials V,, V,, . . . ¥, will be given by the expressions

V1=PnQ1+PnQi”§ el PﬂQ‘,et!e.

If all but (say) the second conductor are uncharged and it has unit
charge, then by putting @, =Q;. . . @ =0y = o= 0,and @, =1,
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we find that P, for example, is the potential of the first body
produced by unit charge on the second. The value of Py, is evidently
obtained by considering all the contributions .o which the ele-
mentary charges on the second conductor produce at the first. The
coefficients P are called the ‘“potential coefficients’” of the conductors
and depend only on the geometry of the system.

Green’s Reciprocity Theorem enables us to assert that Py, =
Py, etc., so that in general P, = P,,. Thus, the potential pro-
duced at conduetor m by unit charge on conductor m (all other
charges being zero) is equal to the potential of m produced by unit
charge on n.

Equipotential Surfaces. An equipotential surface is a surface such
that all points on it are at the same potential. Obviously the poten-
tial gradient ‘i—r for such a surface is zero, and from Equation (1.9) it
follows that the field strength along such a surface is also zero. Thus
the lines of electric field strength of the field in which the equipotential
surface is situated have no component along the surface, i.e. they
cut such a surface at right angles.

Capacitance. Consider, again, a number of conductors having
charges Q,, @, @s, etc., and potentials V,, V,, V,, ete. If the geries
of equations

Vy=PuQ+ Py@s+ . . . + Py,
Vo= Py@Q + Pou@s+ . . . + PoyQy, ete,,

is solved for the values of ¢, we obtain

Q=cuVi+ cqVy+ ... +eqV,
Q' = cl’Vl + Cz’V’ + .- s s + c”.V“, etc.
Thus, from the theory of linear simultaneous equations,
Py, Py Py
Py, Py, Py
Ph PS!I Pma
Cn =
l Pl‘l Pll Pul
P}l P!E Pnl
L ool B AR
| Pra Pq By

and the other ¢ values can be found similarly. From the solution
P, = Py it readily follows that ¢,, = cum.
The coefficients ¢,,, ¢, are termed ‘“‘coefficients of capaeitance.”
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By putting V, =1, Vg = V;=. . , = V, = 0 it is easily seen that
¢, is the charge required to produce unit potential on the first
conductor, all the other conductors having zero potential.
1y (Or ¢yy) is the coefficient of induction between the first and
second conductors and is always negative or zero. By putting
Vi=Ve=V,=...=V,=0and Fy=1 it is seen that ¢,
is the charge produced on the first conductor by unit potential on
the second and must be negative for positive potential. Similarly ¢,,

Earth =
@) (b) Earth
Fia. 1.7

 is the charge produced on the second conductor by unit potential on
the first and, as shown above, this is equal to ¢,,.

In the case of a capacitor consisting of two metal plates separated
by an insulator, or “dielectric,”” as in Fig. 1.7 (a), the equations will
reduce to

Q=cuVi+ el
Qs =C12V1 + oV
where ¢, = ¢4,

The equations may be written in the form

@ = (e + ca))Vi—cen(V, — Vi)
Qs = —cplVy — Vi) + (o2 + 19}V

or @ =CuVy+Cy(V, — V)

and Q; = Cpa(Vy — V) + CpoV,

where Cy; = (63 + Cu), Cy = — € = — €3 = Oy, and O
=-(Cag + €1).

Cy, and ('y; are the earth capacitances of the plates and C,, is
usually referred to as the capacitance of the capacitor. These
csll:»acitmces are shown in Fig, 1.7().

n the conventional diagram (b) the conductors of all the capacitors
are understood to have no earth capacitance. Obviously the second
circuit gives exactly the same result as the first. Generally Cy, is
much greater than C,; or C,,.
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If a single conductor is very remote from all other conductors,
the coefficient ', takes a value depending only on the geometry of
the conductor. The value of €}, under these conditions is known as
the “‘self-capacitance” of the conductor,

The coefficients of capacitance are calculated, in any practical
case, by finding the electric field strength at each point due to a
given distribution of charges on the conductors and integrating
along lines between the conductors to find the potential differences.
This gives the potential coefficients P, and by solving the equations,
the coefficients of capacitance can be found.

. In the simple case of a capacitor formed by two conductors with
negligible earth capacitances the capacitance C is given by
— g : : : . (1.13)

If @ is the charge, in coulombs, producing a potential difference of
V volts between the conductors, then € will be given in farads.
This last unit is defined as the capacitance of a field such that a
charge of one coulomb causes a potential difference between the
conductors, between which the field exists, of one volt.

A capacitor is most commonly thought of as an arrangement of
two conductors placed comparatively close together so that a stropg
electric field exists between them. J

Energy Stored in an Electric Field. If two conductors X afid ¥
are  \arged so as to have a potential difference of V volts, then an
electr, static field will exist between them, and this field will reé pre-
sent a' uantity of stored energy, since, from the definition of pbten-
tial, wo * must be done to produce a potential difference between
two poin . If the charges on the.two conductors X and ¥ are
+ @ and — ' nits respectively, and the conductors be considered as
eriginally uncharged, then the potential difference V may be con-
sidere;_ as produced by the transference of  units of charge from
Y to X,

Since the potential difference V is, from Equation (1.13), pro-
portional to the charge at any time, the average potential differ-
ence due to transference of the @ units is 3V, and the work done
during the transference is, from the definition of potential, Q¥
This is obviously equal to the energy stored. Hence—

Energy stored in the field between the conductors .
= 4QV = {VO)V
= $CV2 joules . : : . {(L14)

where C is the capacitance of the field.
Energy Stored per Unit Volume of Dielectric in an Electric Field,
It can be shown experimentally that the energy stored in a capacitor
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is actually stored in the dielectric between the conductors bounding
the field. The energy stored per unit volume of dielectric

£.
3 : o
as shown below, if the field strength is £ and the permittivity is e.

Consider two charged conductors having surface densities of charge
o and o,, whose potentials are V and V,, the charges on the conductors

Charge
8%

(1.156)

Density o Density o,

Potential V Potential V;
Fra. 1.8. Tuse oF FLux BETWEEN Two CrHarcEDp CONDUCTORS

. bejng + Q and — Q (Fig. 1.8). The tube of flux shown starts on area
a, finishes on a,. It contains a flux yp, where

¥ iy
If ¢ is the permittivity of the medium between the conductors, the
field strength at any point P in the tube of flux, distant 2 from end q,
is given by
R R T B L)
[

where a, is the area of cross-section of the tube at P.
Now, on the assumption that the energy stored per unit volume

of the dielectric is %I-,, then the energy stored in an element of the

tube of length dx at P is
e. B2
2

~— and the total energy stored in the tube

i
=f E'E".ﬂz.d.t
2
n

a,.dr
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where [ is the length of the tube,

; i
o S—f—'a,f B, .ds
i u
]
=gf E, .dx from (1.16)
0

1
"_; E,.dx
0

i
=2 % (V = V,), since E,_ . dx is the work

0
done in moving unit charge from a, to a, i.e. the potential difference
(V-V,).

But, since the charge on a is ga the expression -?-E (V - V,) gives

the energy stored in the small capacitor, whose g
plates are a and q, from (1.14), which is, of
course, the same as the energy of the tube of flux
considered.

Thus, the assumption that the energy stored

=y -Q

is correct O

per unit volume of dielectric is 6'2
for this tube of flux and, since the same reasoning
apolies to all such tubes of flux, the assumption
is true generally.

In general, the energy stored in a dielectric the
field strength in which is a variable quantity, as
above, is given by

]

e. I? = Fic. 1.9.
) ELECTROSTATIC
FIELD BETWEEN
Two CHARGED
where E is the field strength at any point and dv is PLATES

an element of volume of the field at this point.*
Forceof Attraction Between Oppositely Charged Parallel Conducting
Surfaces. Fig.1.9 representstwo parallel conducting surfaces of equal
* Note that the expression obtained for the energy stored per unit volume
of dielectric, viz. %. , is similar to the expression for energy stored in a mag-
netie field, i.e. "%ﬂ per unit volume, where

H = the magnetic field strength, and
p = the permeability of the medium (see page 44)
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area and close together, possessing charges of + @ and — @ units.
Since their areas are equal, the surface density of charge (o) is
the same on both surfaces and the field strength in between them is

at all points g, where ¢ is the permittivity of the medium between

them. It is assumed that the effect of the fringing field at the edges
of the surfaces is negligible.
Iet F be the force of attraction between the surfaces. Then,
_if one surface is moved atay from the other by an infinitely small
distance 8z, the work done is F'éz, it being assumed that the move-
ment is so small that the field strength is unaffected by the movement.
If the area of each surface is A, them the increase in the energy

stored, owing to the increase in volume of the dielectric, is A____d::z. i .
which is, of course, equal to the work done.

(1.17)
since Q = Ao.

MaGNETISM

It is convenient, in magnetic theory, to use the concept of a
magnetic pole, i.e. a point at which the magnetic field originates or
terminates. Such a magnetic pole has no physical existence but
derives from the fact that the field due to a magnet can be repre-
sented by two such poles, of opposite polarity, a fixed distance apart.

This concept provides a very useful means for deriving the
equations of the magnetic field. An excellent exposition of modern
field theory will be found in Ref. (24).

Coulomb’s Law. Coulomb’s Inverse Square Law is true for
magnetic quantities as well as for electrostatic guantities. The
force F, in newtons, between two magnetic poles of pole strength m,
and m, webers, distant r metres apart, is

__ _mm,
T dmugurt

(1.18)
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where s, is the primary magnetic constant and has a wvalue
47 x 107, p, is the permeability of the medium, separating the
poles, relative to that of a vacuum (for which g, is unity). It is
custoniary to write u for g . uy. A unit magnetic pole is defined as
giving umt magnetic flux, the unit of flux being the “weber.”

The force between the poles is one of repulsion or attraction,
according to whether they are of like or unlike polarity respectively,
Magnetic poles are considered as being concentrated at a point.

Lines of Force and Magnetic Field Strength. The magnetic
field existing in the neighbourhood of a magnetic pole can be repre-
sented by lines of force similar to the lines of electric force which are
used to represent an electrostatic field, the arrowheads upon the
lines of force indicating the direction in which a unit north pole
would move if placed upon the line of force. The “‘strength” of a
magnetic field at any point is expressed by the “force which would
be exerted on a north pole of unit strength placed at the point,” it
being assumed that the introduction of the unit pole does not
affect the field. Thus, the magnetic field strength at a point, distant r
from a pole of strength m units, in air, is given by

_om
 dmpgr?

The Magnetic Field. A number of lines of force are spoken of
collectively as “magnetic flux” and the number of lines per unit
area of cross-section as the “flux density.” The symbols used to
represent these quantities are ® and B respectively. If a flux @
crosses an area A square metres in a direction perpendicular to the
area, then

H (1.19)

O==B.4 . : i . (1.20)

The units of ® and B are the weber and the weber per square metre
respectively.

Gauss’s theorem can be applied to the magnetic field in a manner
similar to that used in applying it to the electric field; in this case it
states that the total flux which traverses, in a normal direction, a
surface completely surrounding a pole of strength m webers is -
m webers. It follows that the flux density at a distance r metres
from a pole of strength m is given by

m
B=gm
By comparing this result with Equation (1.19) it is clear that
B = p,H in air
or, in any medium,
B = #H . . - (1.21)

2—(T.5700)



18 ELECTRICAL' MEASUREMENTS

The distinction between H and B is that of cause and effect:
H is the magnetic field strength or magnetizing force and B the
magnetie flux density which results from this force. It can be seen
from Equation (1.19) that H is the force in newtons on a unit pole
of strength 1 weber, but the practical unit of H is the “ampere per
metre.”” This is not apparent from the previous equations but
arises from the concept that all magnetic fields are due to electric
currents flowing in loops. The electrons revolving around the
atomic nuclei are, in effect, tiny current loops which give rise to the
field we associate with magnets. The derivation of the practical
unit of A will follow when we consider the field due to an electric
current.,

Magnetic Moment and Intensity of Magnetization of a Magnet.
A magnet having poles of strength m units distant ! apart is said

l’“‘”“‘*l“

m newtons H=/

I

7 !
re
J,J I metres N
=1 N,
m unses I l m units
m hewtons

Fia 1.10. Bar MagNET SBiTuATED IN A MagNETIC FIELD

to have a “magnetic moment” of m/ units. This term arises from
the fact that, if the magnet were placed in a magnetic field of
unit strength so that its magnetic axis (i.e. the line joining its
poles) was perpendicular to the direction of the field, it would be acted
on by two forces each of m units, as shown in Fig. 1.10, these forces
forming a couple whose turning moment is ml. The symbol M is
used to express magnetic moment ; hence

M=ml . . . . (122

The intensity of magnetization J of a magnet is expressed by
pole strength

the ratio il o the magnet being assumed to be
uniformly magnetized.
m
Thus e : : . (1.23)

In the case of a bar magnet, of uniform cross-section 4, and of
length I, the poles being considered at the extreme ends, the mag-
netic moment is ml and the volume of the magnet V is IA.
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- O (L.
ey T A
and thus the intensity of magnetization may be expressed as the

magnetic moment per unit volume, the magnetization being uniform.
If the magnetization is not uniform, J varies at different points

Then =

in the magnet, and is expressed by %%, where 6M is the magnetic
moment of an element of volume 8V taken at the point considered.

e

d L!__l Unit Pole 1
$llg

iR, IR

Intensity of
Magnetization J

(b

Fre. 1.11. MacneTizinG Force 1IN THE AR GAP OF A MAGNETIZED
Iron Bar

Relations Between Intensity of Magnetization, Flux Density, and
Magnetizing Force. In order to determine the connection between
the intensity of magnetization in a magnetized body and the flux
density in the body, consider a long, thin rod of some magnetic
substance (say iron) which has been uniformly magnetized. The
demagnetizing effect of the ends of the rod (see Chap. IX) may be
neglected if it is very long and thin. Now imagine a very narrow
air gap of length d in the rod, with a unit magnetic pole placed in .
the air gap, on the axis of the rod, and equidistant from the bound-
ing faces of the air gap, as shown in Fig. 1.11(a). This unit pole will be
repelled from one face and attracted to the other with equal foices,
since it i8 equidistant from them, and the dircction of these forces
will, of course, be along the axis of the rod.

Let the rod be of circular eross-section, radius r, and let its
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intensity of magnetization be J. Then, as shown in Fig. 1.11(b), the
magnetizing force in the air gap at P, due to the intensity of
magnetization J in the iron rod, can be considered as being produced
by a number of elemental rings of radius z and width dz, having a
pole strength per unit area of J (i.e. intensity of magnetization of J ).

If Fig..1.11 is compared with Fig. 1.5, it will be observed that the
present determination of magnetizing force av P.is almost exactly
similar to the determfation of the electric force at a point P in
between two oppositely-charged surfaces with surface densities of
charge ¢ units per unit of surface. The differences between the two
cases are that instead of o units of charge per unit of surface we
now have J units of pole strength per unit of surface, and that the
integration for the total effect at P of the element rings must be
performed between the limits ¢ = tan—1! dfi2 and ¢ = 0, instead of
the limits ¢ — 7 and ¢ = 0.

The permittivity e also is replaced by the permeability, which
is here taken as u,. Thus, making these necessary modifications,
we have for the total field strength at P due to one circular bounding
surface

qsr-tur"_,'...
k__/‘ 7. 2msin ¢ a4
— dpe, '
.. =0
: 2 J i
i.e. =[-2—%cosq§] e
= ‘_‘ ».
J 2

= “J(g)_,+;_1—

If the air gap is very small, so that g is negligible compared with
the radius r, then
=l

ik - -

This is the force in the gap due to one bounding surface only.
If this is a force of repulsion upon the unit pole at P, then the other
surface, which is of opposite polarity, will attract the unit pole at
P with an equal force. Thus, the total field strength at P is J g
and, gince the introduction of the very narrow air gap does not
affect the intensity of magnetization in the iron, the same would be

b (1.24)
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true in the iron if the air gap did not exist, The flux density, also,
in the air gap is J, which, again, is the flux density which will exist
in the iron due to the intensity of magnetization J.

If this iron rod is placed in a magnetic field of strength H, the
direction of this field being along the axis of the rod and in the same
direction as the intensity J, then the total flux density B in the
iron is pgH + J' where J' is the intensity of magnetization'in the
iron when the rod is situated in the field of intensity H and will, of
course, be different from the intensity of magnetization J, existing
before the rod was placed in the magnetizing field.

If the iron rod has mo magneiization before being placed in the
magnetizing field of strength H, and-if J is the intensity of mag-
netization produced by the field, then

B=uH+J ST

The term .J, which is the flux density which exists due to the
magnetization of the iron itself, is sometimes called the **ferrio
induction.”” ‘‘Ferric induction’ is, therefore, the flux density which
exists in excess of that produced in air by the same magnetizing
force, and the intensity of magnetization is B — u,H.

Equation (1.25) can be written

B = pH = pou ; ; . (1.26)

where p is the “magnetic permeability” of the iron, and u, is the
relative permeability of the iron as compared with that of a vacuum.
It follows that

MR
B ol
If the iron has some residual magnetism before being placed in

the magnetic field, then the ratio B3 being the total flux density

B
uoll’
itr the iron, is not the correct value of the permeability.

If J were directly proportional to H (= kH say) for all valuesof H.
then Equation (1.25) could be written

B = H(uy + k) = pop,H

and the relative permeability x, would be a constant factor. This,
however, is not so, J having a maximum value depending upon the
iron or other magnetic material considered, and p, is thus a variable
factor depending upon the value of H (or B). :

When, during the magnetization of a specimen of magnetic
material, the maximum value of J is attained, further increase in
the magnetizing force H only increases the flux density B by
increasing H (Equation (1.25)), and the matcrial is said to be
“saturated.”
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Fig. 1.12 shows a ical magnetization (B-H) curve for cast
steel. It can be seen that, above a value of B of about 16 Wbh/m?
the increase in flux density as H is increased is very small, which
means that the intensity of magnetization J of the iron is being
increased only very slightly by increase of H.
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The second curve in Fig. 1,12 shows the variation of relative
permeability with magnetizing force H.
Magnetic Susceptibility. The ratio

intensity of magnetization
magnetizing force producing this intensity of magnetization
is called the ““magnetic susceptibility ” of the material and is given
by
Magnetic susceptibility = % . . : - (1.27)
4 gt
H
. Magnetic susceptibility = wu,(p, — 1) . 2 : < (E:28)

from equation (1.25)
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Obvyiously, sinee », = 1 for non-magnetic substances, the magnetic
susceptibility of such substances is equal to u, The magnetic
susceptibility is alternatively defined as —,

Magnetic Potential. This can be defined in a similar way to that
used in the definition of electrostatic potential The work required

to move unit north pole from an infinite distance to a given point is
considered to be the magnetic potential of the point.

when it becomes

Fra. 1.13. PorenTiaL Near o Bar Macgner

Thus, in the M.K.8. system, if H, is the field strength at a distance
« metres from a pole of strength m units, the force upon unit pole
situated at this distance away is H, newtons, and the work done in
moving the unit pole from infinite distance to a point in the neigh-
v m
4 dmpigt®
that the potential at a point distant » metres from a pole of strength
m units, ik air, is given by

V=J B OB L o

bourhood of the pole is H_.dz joules. Also H, = 80

‘I‘JT;!‘«‘;T_z %) dmrpegr i

Potential Near a Short Bar Magnet. Fig. 1.13 represents a bar
magnet whose length [ is small compared with the distande s from
its centre to the point (P) whose magnetic potential is being
considered.

Let the magnet have a pole strength of m units and centre C as
shown, and let the line ACB, perpendicular to PC, eut PS and PN
produced, in B and A respectively. Since PC is great com pared
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with the length of the magnet, PA = PB = r very nearly, and
N;l\C = SBC = 90° very nearly.

Thus PN=PA—AN——-r—%cos¢

PS = PB + BS =r 4 cos ¢

.". Potential at P is

P m m 1
o= oL
r—s—; cos ¢ r—f-écos-;éj’ 4o

the negative sign being due to the opposite polarities of the poles
of strength m units.

m{r-}-écua s,{;)-m(r—écosgﬁ)

1
Vy= ~
- fT cos? ¢ Amig
mlecos .. . .
= ———L if r is great compared with [
M cos ¢
Thus, AN = i (1.30)

where M is the magnetic moment of the bar magnet.

Force of Attraction Between Oppositely-magnetized Surfaces.
Fig. 1.14 represents the ends of two magnetized bars, each of cross-
section 4, the ends having opposite polar-
ity. Let B be the flux density (considered Pull £ newtons
uniform) between them. If u is the per- ==\
meability of the medium between the

poles, the value of H in the field is -g N

Let F be the force of attraction existing

between them. Then if one of the bars is Mognetizing Foree H
moved an infinitesimal distance da farther Flux Density 8

away from the other, the work done Fie. 1.14. Arrracriow

is Fdr. Now, the energy stored per BETWEEN MaoNETIZED
SURFACES

2
unit volume of a magnetic field is %—

(see page 45). Thus, assuming that the value of H is unaltered by the
infinitesimal movement, the increase in the energy stored in the field
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2
is Adz ﬁ-;i-: which is, of course, equal to the work done in over-
coming the force of attraction F.
- Fiz = dde B2

AH?
Fae~y

or, if the field is in air,

F =

1.31
2tig (1.31)
This force is in newtons if 4 is in sq. m and B in webers per sq. m.
Magnetic Shells. A thin iron sheet, magnetized as in Fig. 1.15,
may be thought of as consisting of an infinite number of small bar
magnets, with all the north poles on one side of the sheet and all the

agRFF It Thickness
Xsss ¢

Fie. 1.156. MaaweTio SEELL

gouth poles on the other. This constitutes what is known as a
“magnetic” "shell, and the idea is useful in considering various
problems in electromagnetism. The *strength of the shell” is
defined as “magnetic moment per unit area.” Thus, if m is the
pole strength per unit area and the thickness of the shell is ¢, the
“strength of the shcll” is mt.

ELECTROMAGNETISM

The study of clectromagnetism originated with Oersted’s dis-
covery that a pivoted magnetic needle in the neighbourhood of a
conducting wire is deflected when a current of electricity flows in
the wire. This means that a magnetic field exists around a wire
which carries current, and this leads to the present definition of the
unit of current (the ampere). The ampere is defined as that current
which, if maintained in two straight parallel conductors of infinite
length and negligible cross-section, spaced 1 metre apart in vacuum,
will produce a force between the conductors of 2 X 10-7 newtons
per metre length. The relationship on which this definition is based
will be derived in due course, but for the moment we must accept the
‘unit of current as being the ampere.

Ampere’s Theorem. Ampere showed that the magnetic effect of
a current ¢ units, flowing in a small closed circuit, is the same as
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that of a small bar magnet placed with its axis perpendicular to the
plane of the circuit, provided that the magnetic moment of such a
magnet is equal to usdA, where d4 is the area of the small circuit.

By considering a number of such small circuits placed together as
shown in Fig. 1.16(a), with currents of ¢ units flowing in each, it can
be shown that, for any closed circuit carrying a current of ¢ units,
the magnetic effect is the same as that of a magnetic shell occupying

Fra. 1.16. PoreENTIAL Dum 7o CURRENT IN A CLosep Crrculr

the space enclosed by the circuit, provided the “‘strength” of such
a shell is equal to the current . This constitutes what is known as
Ampere’s Theorem,

Weber showed experimentally that the potential at any point P
distant r from a small closed circuit of area d4 carrying i units of
current is

__dA .icos ¢
! T _‘W—
where ¢ is the angle between the normal to the plane (whose dimen-
sions are small compared with the distance r) and the distance r.

From Equation (1.30), the potential at a distance r from a short
bar magnet is

vV (1.32)

_ Mcosg
b dmpug®
Thus, if the small magnet which is equivalent to the closed cirouit
has magnetic moment M we can write

dA .i.cosp M cosd

4arr® 477;10?‘2
5 A - M
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Again, from Equation (1.32),
v, = 4% .dQ

where dQ ie the solid angle subtended at P by the closed cirouit.
The potential st P due to a large number of small circuits

(Fig.1.16) is ) :
: F"Z%“’% ah -SRI

where Q is the total solid angle subtended at P by all the small
circuits.

It can be seen also that the currents i in the small circuits
neutralize one another at all parts except the outside (as in Fig.
1.16 (b) ), so that the whole is cquivalent to one circuit lying along the
perimeter of the group of small circuits and carrying a current s. Thus
it is shown that, for any circuit ing 1 units of current, the
potential at a point P is 1(2/4m, where g is the solid angle subtended
at the point by the circuit. Again, if each of the small circuits of
Fig. 1.16 (a), each of area dA4, be replaced by a small magnet, of
moment M, then

£=£
o dd

Now, obviously, % is the strength of the magnetic shell formed

by such a replacement of the small circuita by bar magnets of
moment M, and thus the circuit is equivalent to a magnetic shell
having a strength equal to ug.

Potential Energy of a Current and a Magnetic Flux. From the
preceding section it follows that the potential energy of a magnetic
pole of strength m units, at a point P in the neighbouthood of &
closed circuit in which a current ¢ flows, is m—-i;—n, where Q is the solid
angle subtended at P by the circuit. This expression re ts
energy, since, from the definition of potential difierence as the work
done in moving unit pole from one point to another, the work done
in moving m units is mV, = m—f—; :

Now, a magnetic pole of strength m radiates m lines of force
distributed uniformly in all directions. Thus the magretic flux

threading the current-carrying circuit is g X m= %—E
Hence, the potential energy of the current and magnetio flux
= i - - ; . (L34)

where ® is the flux threading through the current-carrying cirouit.
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[Note that, if the flux @ changes with time ¢, then i%? represents
rate of change of energy, i.e. power.]

Forces Due to and Acting upon Current in a Long Straight Con-
ductor. Biot and Savart were the first to examine, by means of &
compass needle, the magnetic field strength at different distances
from a straight conductor which is carrying current. They showed
that the magnetic field strength was “inversely proportional
to the distance from the conductor in which the current flows.”
This is known as the Biot-Savart Law.

Fig. 1.17(a) shows a small element of a conductor of length di
carrying & current i and situated at a distance r from a magnetic

Forefinger (Fiux)

po* Middle Finger

90" (Current i)

o

- = Thumbd
mﬁ"m“ = _11 1 (Force or Motion)
[} '-.-
Sy
(a) ‘\t:""C'ohduc!or (6)

Fia. 1.17. Macneric Fierp Duk To CURRENT IN A CONDUCTOR

pole of strength m units in a direction making an angle of 6 with the
element of conductor.
Laplace established the equation, related to the above case, that
the force upon the element of conductor is
m.i.dlsein0
ol
Now, the flux density at the conductor due to the pole is, by

(1.35)

Equation (1.19), % Hence, the foree is

f = Bidl sin 0

If the conductor is straight and is situated in a uniform field of
flux density B whose direction is perpendicular to the conductor then

R e T

where F is the total force on the conductor. F is in newtons if { is in
metres and 7 in amperes.

If in Fig. 1.17(a) the pole m has north polarity, the force fis, by the
left-hand rule (Fig. 1.17(b) ), perpendicular to the plane of the paper
owlwards.

The Left-hand Rule states that if the thumb, forefinger, and
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middle finger of the left hand are placed mutually at right angles,
then the corresponding directions of magnetic field, current and
force (or motion) are given as shown in Fig. 1.17(b).

The force upon the pole, due to the current in the conductor, is
equal in magnitude, but opposite in direction, to that of the pole upon
midl . ; R
28 S0 ¢ in a direction
pe icular to the plane of the paper inwards.

e force upon unit pole at P (i.e. the magnetizing force at P)
due to the current is

the conductor; force upon the pole is

idl sin 0
4mr:
Now, if the conductor is straight and carries ¢ units of current,
the value of H at a point P, which is perpendicularly distant D from

dH =

(1.37)

Fi6, 1.18. MagNETIC FIELD NEAR A STRAIGHT CONDUCTOR

the conductor, can be found as follows: Consider an element of
conductor dl as in Fig. 1.18. The magnetizing force due to it is,

as above, dH = %di::: 6. The length AB = dlsinf = rdff, and
gin 6 = I—)
r
Thus dH =i 80 44

='%D
and the total magnetizing force at P is
0=+F & V]
3 3 ;0in 0
H= 2f Cin db
Q=0
if D is small compared with the length of the conduotor.

H=E‘_D , , . oL tlaRy
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It follows from this equation that the work done in carrying unit
north pole through a circular path surrounding the conductor is

i
*. Work done = i " ” : . (1.39)

Force Between Two Parallel Current-carrying Conductors. The
forces of attraction or repulsion between two parallel conductors
A, B carrying currents i, and 1, respectively and distant D apart,

H % 27D =

. H Fal =
L] 28 A
...... e )
A== = e e————— R 1)
] ] LIRS =27
Ly 1 | N —
| | e 4
e a A
H ! ttraction
] -
] - R
i
1 ! l s s \\.
B:'_,_L—Fm: == LN
T Ls AR e LN !
2 ] ot N

Fic. 1.19. Foror BeETwrEEN Two ParALLEL CURRENT-CARRYING
CoNDUCTORS

as in Fig. 1.19, can be calculated from the equations obtained in
the previous paragraph. If the currents are in the same direction
(as shown), the force between the conductors is one of attraction,
and if in opposite directions the force is one of repulsion.

Consider the attractive force of unit length of conductor 4 upon
unit length of conductor B adjacent and parallel to it as shown.
Conductor B is situated in a magnetic field, due to 4, of flux density
“;:ll) (from Equation (1.38) ). Hence, from Equation (1.36), the force
per unit length of conductor is

#o‘l‘s
i 2nD

The force of attraction on conductor 4, due to conductor B, is,
by similar reasoning, the same.
Thus, the force per unit length between the conductors is

oty
A 21rD
or, for a length [,
Eale o

2nD
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The force is in newtons if 4, and i, are in amperes and D is in metres.
It is assumed that the distance D is small compared with the
lengths of the conductors, The expression forms the basis of the
definition of the ampere given on p. 60.

The dots, placed on the conductor sections to the right of
Fig. 1.19, indicate that the current in them flows in an outward
direction. A ¢ross so placed indicates inward direction.

@)

2 Ea
Fia. 1.20. Maaneric Fierp ngar Circviar, CURRENT-
cArRvING CoiLs

Magnetic Field Due to Current in a Circular Conductor. Fig. 1.20 (a)
shows a circular conductor carrying ¢ units of current. Consider the
magnetizing force (dH) at a point P, on the axis of the circle, due to
the current in an element dl of the conductor. Then

dl
477 k2
in a direction perpendicalar to the line joining the element to P.

This force may be split up into two components, one in direction
OP produced, namely dH sin 6, and one perpendicular to OP,
namely dH cos §. Considering all such elements of the circular

dH =
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conductor it is seen that the components perpendicular to OP
neutralize one another, leaving, as the force at P, only the sum
of all components in a direction OP produced. Thus the total
magnetizing force at P due to the current is in direction O P, and is

H=Z‘dHainﬁ=£4:i;25inE
= %ﬁ-:—rfsinﬂ
t X 2m?
H="2—7 : (1.41)

At the centre O of the circular conductor R = r,

i

HH = 3 -

Magnetic Field Produced by Two Parallel Coils Carrying the Same

Current. Consider two similar .ciroular coils 4 and B, each of

N turns, and each carrying a current of ¢ units in such direction-

that their magnetic effects are in the same direction, placed coaxially

with their mean planes parallel as in Fig. 1.20 (b). The magnetizing

force at a point P on their common axis and midway between
them is, from Equation (1.41),

2Ni X 2nr* _ Nio?

4 K3 S
r being the radius of the coils and R the distance from P to the mean
circumference of either coil, it being assumed that the cross-sections

of the coils are small compared with the other dimensions involved,
If I metres is the distance between them,

(1.42)

H =

1y B
[ M pr — B
R _r’+(2) —ry

Ni,r®
y A
(9
For a point @ on the axis distant x from coil 4,
Ni.rd
2(rf + )}
Ni. .
27 + (-2

Thus H at P =

H at @ due to coil 4 =

H at @ due to coil B =
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Thus, resultant H at @
Ni.r? Nv.rt

=%rra T AR HO-aT
r2Ni 1 1
= —;z'_ [[fg o :rg)g + " (l—z)’]i] {143]

If the ordinates representing the values of H at various points
along the axis are drawn, the result gives curves as shown in
Fig. 1.20 (b). The curve marked (a) gives H due to coil 4, and that
marked (b) the value of H due to coil B. The curve marked (¢) gives
the resultant value of H, which is seen to fall slightly towards the
midway position P,

If the distance I between the coils is made equal to the radius »
of the coils, Equation (1.43) becomes

r2Ni 1 1
g [(rﬂ Tt A - x}*]ﬁ]
Now [ + (r-2)8 = [7* 4 2* + r* - 2rx}

Expanding we have
[ + a2 + 2 - 2r2]t = (1 4 2D} + g . (r® 4 2?)F (' - 2r2)
3 1 (4 2%i (r® - 2r2)? 4

e & 2.1
If 2= %a.ll terms but the first disappear. I1f z has any value
which is of the same order as T the succeeding terms are small

2
compared with the first. Thus, the resultant magnetizing force is

. TNy 2
H="y [

This arrangement of the two coils produces a field of almost uni-
form H-value between the two coils for a considerable distance on
either side of the mid-point P, and was used by von Helmholtz in
a special form of tangent galvanometer for use in the absolute
measurement of current.*

Force Between Two Parallel Coaxial Circles in which Currents are
Flowing. Consider the two circles 4 and B shown in Fig. 1.20(¢).
They are coaxial, and their planes are parallel. Let circle 4 have
radius @, and carry a current i,, while circle B has radius b, and
carries a current i,. Assume also that the radius b is very small.

* A diagram of the field between two coils 80 placed is given in Maxwell's
Electricity and Magnetism, Vol. II, and the comp thoor{lil given in Gray's
Absolute Measurements in Electricity and Magneitem, Vol. 11, Part 1.
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From Equation (1.41) the value of H at the centre P of cirele £ due

1,a? / -
w; where z is the distance
between the circles. The flux density (considered uniform, since the

e o - o isa?
radius b is very small) inside circle B is therefore 2 @ o
and thus the total flux threading through circle 3 js 40, ™% - 1@

eading throug C 8 55 T At

From Equation (1.34) the potential energy of the coils is

to the current in circle 4 is

po 7H*. 4,0t i = Mo iy . at?
2 @+ TP 2 (@
The force between the circles (of attraction or repulsion, depending

= P.E.

upon the directions of the currents i, and 1) is from the law # — %E
d(P.E.) -
equal to I
y . 2
B P — _ thaTisdy . a%% (1.44)

(a® + x2)8
The force is one of attraction if the currents are in the same
direction, and of repulsion if the currents are in opposite directions.

It can be shown by differentiation that ¥ is maximum when x = g

The complete theory in connection with the force between two
parallel current-carrying coaxial coils, when the radius of neither
may be considered very small, and when they each have a number of
turns giving a finite cross-section, is necessary for the purpose of
measuring current in absolute units by means of a current balanece,
and has been given by Gray (Ref. (10) )and by J. V. Jones (Ref. (11) ).

Magnetic Field of a Solenoid. Consider the solenoid shown in
Fig. 1.21 to be made up of a large number of ciréular eonductors such
a8 that considered above.

Let N = total number of turns on solenoid
1+ = current in the solenoid in ampercs
I = length of solenoid in metres
r = radius of solenoid in metres N
¢ = number of turns per metre length = =

Then, magnetizing force at the centre O of the solenoid due to a
length dl of the solenoid is

dH = cidl x 2™ (from Equstion (1.41))
= C.3.0f X m A41)

in the dircetion of the axis of the solenoid.
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AB = Rdf = dlsin 8

The length
_ Bao
T gin 0
g r* RdO
dH = ¢t X .2_@ . S'ITH
Also gin 0 = i,

Substituting for %in the equation for dH,

dH=‘-f§sinode

76
‘8
®
®
e

gloplolerllellellreleslelc)

N

Fig. 1.21. MaengTic FieLp oF A SoLENOID

The expression for the total value of H at O due to the whole
solenoid is, therefore,

O
Hi= 3 sin 6 dff
6,

where 0, is the limiting value of 0 and is tan! T

i H = ci cos ﬂ,
= I—V: cos 0, : . ¥ . (1.45)

l
or, if the solenoid is very long compared with its radius r,

=

ves the unit of H, the ampere-turn per metre.
unit is the ampere per metre since the product

N3 gince cos b =1,

This expression gi
Strictly speaking the
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Ni is dimensionally amperes, but use of the term ampere-turn helps
to emphasize that H is due to a current loop.

The value of H at one end of the solenoid (at P) is obtained by inte-
grating between the limits #/2 and 0 (if the assumption is made that
| is very great compared with r)

Thus, at one end

R [E%ainﬂdﬂ
0

giving Hp = i—v e o R B
i.e. the H at one end is half that at the centre.

Induction of Electromotive Force, Faraday, in 1831, showed that,
whenever the number of lines of magnetic Jlux linking with an electric
circuit is changed, an electromotive force is induced in the circuit, the
magnitude of which is proportional to the raie of change of flux.

Thus, if e is the e.m.f, induced by a rate of change of flux of @,

e ot 4%
dt
The e.m.f, is also proportional to the number of turns of wire, N, in
the cireuit in which the e.m.f, is induced.

A

v dd

Thus e N T
If e is expressed in volts and ® in webers, then

dd

e=N it—

The unit of magnetic flux is defined by this relationship. The weber
is the magnetic flux which, linking a circuit of 1 turn, produces in it
an e.m.f. of 1 volt as the flux is reduced to zero at a uniform rate, in
one second.

Lenz’s Law states that “the direction of the induced e.m.f. is
such as to tend to oppose the change in the inducing flux.” The mathe-
matical expression of this law, in conjunction with Faraday’s Law,
introduces a negative sign, and gives

d®
e=-N 5 . - . (1.47)

Statically-induced EM.F.s. An e.m.f induced in a stationary
electric circuit, by a change in the magnetic flux linking with it, is
referred to as a “statically induced” e.m.f. as distinet from a
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“dynamically induced” e.m.f., which occurs when an electric
conductor cuts through a stationary flux.

The simplest method of producing a statically-induced e.m.f.
is by inserting one pole of a bar magnet in the space enclosed by a
coil of wire. If the coil forms a closed electric circuit, then, upon
inserting the magnetic pole, the statically induced e.m.f. pmducea
a current in such a direction that its magnetic effect opposes the
magnetic field due to the pole. Upon withdrawing the pole, the
em.f. is in the opposite direction. The current produced by it
then has a magnetic effect in the same direction as that of the
magnetic pole. In each case, therefore, the direction of induced
e.m.f. is such as to oppose the change in the interlinking flux.

Statically induced e.m.f.s are more often produced in a circuit
by alternating current which is flowing in an adjacent circuit, the

Frux Density
8 webers/sq metre

Forefinger
(Fivx)

[ (EMFE]

Thumb (Mot ion)

ettt . Direction of
________ XN persec induced EMF

Direction of Motron
(@) (®)

Fio. 1.22. DyNamicarLy InpoceEp E.M.F.

latter being so placed that some of the flux produced by the current
in it threads through the other circuit. The magnitude of the
induced e.m.f. at any instant depends upon the rate of change of
current in the inducing circuit, and upon the relative positions of
the two circuits.

Dynamically-induced E.M.F.s. Whenever an electric conductor
cuts through a magnetic flux an e.m.f. is “dynamically induced”
in the conductor. This e.m.f. is proportional to “the rate of cutting
flux.” There is no difference, as regards the phenomena involved,
between statically and dynamically induced e.m.fs. It can be
seen that, if the conductor in Fig. 1.22 (¢) forms part of a closed
circuit (shown dotted), and moves left to right, the direction of the
induced e.m.f. is from X to Y, since the flux linking with the circuit
is increased. If the conductor moves right to left the direction of
e.am.f. is ¥ to X, since the interlinking flux is then reduced.

The direction of the e.m.f. is given quite simply by the right-
hand rule. By this rule, the corresponding directions of motion,
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flux, and induced e.m.f.,, are given by the thumb, forefinger, and
middle finger respectively of the right hand, these being so placed
as to be mutually perpendicular (see Fig. 1.22 (b) ).

The magnitude of the induced e.m.f. in a conductor which moves
in a plane perpendicular to the flux, as in Fig. 1.22 (a), is

e = flux cut per second
= B X ares swept out by the conductor per second
. e= Bl R ALt T S v s EEAR)

If I is the length of the conductor XY in metres, and v its velocity
perpendicular to the ficld in metres per second, e is expressed in volts.

If a conductor cuts through magnetic flux whilst moving in a
direction making an angle 6 with that of the lines of force, then the
component of its veloeity in a dircetion perpendicular to the ficld
is v sin 0, and the induced e.m.f. is

e= Blvsin@ . - : . (1.49)

Energy in an Electric Circuif. If the conductor in which the
e.m.f. is induced forms part of a closed circuit, and if a current of
+ units flows in this circuit, then there will be a force opposing the
motion of the conductor through the magnetic field, which force is
given by Equation (1.36) as Bil. Thus, the work done in moving the
conductor a distance z through the field

= Bilz

If the conductor takes a time ¢ sec to pass through distance «
when moving with velocity », then

work done = Bil . vt
= eil
= energy given to the electric circuit
.. Energy given to the electric circuit = eif . . . +(1.50)

Magnetic Hysteresis. This phenomenon is observed when the
current flowing in a solenoid, for the purpose of magnetizing a bar
or ring of iron, or other magnetic material upon which the solenoid
is wound, is reduced. It is found that the flux density in the iron
corresponding to this value of the current is higher than the flux
density, corresponding to the same value of the current, which was
produced when the current was being increased from zero (say) to
some maximum value—i.e. the magnetism lags behind the magnet-
izfifng force producing it. This effect is known as the ‘‘hysteresis
effect.” ;

Consider an iron ring upon which is wound, uniformly, a mag-
netizing winding through which a current can be passed in either
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direction, as in Fig. 1.23. Suppose the ring has, ix}it,ially, no mag-
netism. If the current in the magnetizing winding is increased
from zero to some reasonably high value, the magnetizing force
acting upon the ring is also increased, since H = ? N being the

number of turns on the magnetizing winding, and ! metres the
length of the magnetic path in the ring.
If the flux density in the ring is measured (by means of a search
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coil and ballistic galvanometer as described in Chapter 1X) for
various values of H, and the B-H curve plotted, it will be found
that its shape is as shown by the portion 04 in Fig. 1.24 (a). If the
current is reduced gradually to zero again, after some flux density
B4, has been attained, the curve for descending values of H takes
the form AC, this curve, owing to the hysteresis effect, being above
the ascending curve OA4. The flux density B, remaining in the iron
when H is again zero is referred to as the “residual magnetism.”
This value depends upon the magnitude of B,,. and upon the
material of the specimen, being high for permanent magnet steels,
and very low for such material as silicon sheet steel. Since H is
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now zero, B, = J,, where J, is the intensity of magnetization left in
the iron when the magnetizing force is removed.

The residual flux density, after magnetization up to satura-
tion point, is referred to as the ‘‘remanence” of the iron or steel
concerned. 2

If the direction of the magnetizing current is now reversed, and
gradually increased in this reverse direction until a flux density
B,o: i8 again obtained (but in the opposite direction), the curve
follows the line CDE. The negative value of H required to reduce
the residual flux density to zero, namely OD, is called the “cocrcive
force,” H,, and will of course vary with the material and with
B, .x- The value of the coercive force after previous magnetization
up to saturation point is the “coercivity” of the iron. If the * cycle
of magnetization” is completed by first reducing H to zero and then
increasing it in the opposite direction to produce + B, . again,
the curve follows the line EFGA. The loop so formed is called the
“hysteresis loop.”

In the above, the maximum negative flux density was taken as
being equal to the maximum positive flux density. A similar effect
is observed, of course, if this 18 not so, but in this case the loop is
unsymmetrical. Symmetrical hysteresis loops, or cycles of mag-
netization, are most usual in practice, but when alternating magne-
tism is superimposed upon unidirectional magnetism, unsymmetrical
hysteresis loops will occur. An example of this is found in the core
of aradio transformer, when one of the windings often carries a direct
current in addition to an alternating current. Such an unsym-
metrical loop isshownin Fig. 1.24 (b), where a symmetrical alternating
magnetic field (+ Hpmaz to — Hyyg,) is superimposed upon a steady
field H,, with its corresponding flux density B,, giving + B, and
— B, for the limits of flux density.

It should be noted that, if the steady values of H, and B, are
sufficiently high for the applicatiomof + H,, .. to produce saturation
in the iron or magnetic material then the hysteresis loop is con-
siderably distorted as shown. In such a case B, - B, is not equal to
B, + B, although these quantities would be approximately equal
if the saturation point of the material is not approached, as when
+ Hypaz 80d ~ Hypgar are small. In this latter case the hysteresis loop
would be very nearly the same in shape as the normal symmetrical
loop but would, of course, be displaced relative to the axes of co-
ordinates by H, and B,. The space available will not permit
further consideration of this question, but references to works on
the subject are given in the bibliography (Refs. (4), (7), (8)).

Incremental Permeability. The term “incremental permeability,”
introduced by Dr. Thomas Spooner,* refers to a type of permea-
bility which has become increasingly important with the advance
of radio communication, since it relates to the case of superimposed

* Tryns. A.I.LE.E., Vol. XLII, p. 42.
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direct and alternating magnetizations. Spooner defines it as ‘“the
ratio of AB to AH for any position on a magnetization curve, or
hysteresis loop, where AB and AH may be of any magnitude, but
AH must be in the reverse direction from the immediately preceding
change.”

Referring to Fig. 1.25, the incremental permeability at various
points on the major hysteresis loop is given by AB,/AH,, AB,JAH,,
ete., these being the slopes of the minor
hysteresis loops corresponding ‘to incre-
ments of H as shown.

L. G. A. Sims, discussed and sum-
marized this question in a valuable
paper before the British Association in
September, 1937 (Ref. (13) ). -

Hysteresis Loss. Although no energy
is required merely to maintain a magnetic
field, it is found that energy is required
to bring about a cycle of magnetiza-
tion in a magnetic material. Energy is
required to build up a magnetic field Fia. 1.25.
owing to the opposing e.m.f, which
is induced ' in the magnetizing circuit when the flux in the
magnetic material is increased. This energy is stored in the mag-
netic field, but it is found that the quantity of energy returned to the
magnetizing circuit, when the current is reduced, is less than the
quantity supplied when the field was built up. The difference is
due to “molecular magnetic friction”—as it has been called by
Steinmetz—and the energy absorbed is converted into heat. The
energy absorbed when a magnetic material is passed through one
cycle of magnetization can be shown to be proportional to the area
of the hysteresis loop as below.

Relation between Hysteresis Loss and the Area of the Hysteresis
Loop. Consider the magnetization of a ring specimen of iron by
means of a magnetizing winding as shown in Fig. 1.23.

If the length of magnetic path in the ring is ! metres, and its cross-
section is @ sq. m, if the number of magnetizing turns is N, and
the current in the magnetizing circuit at any instant is i, then the
induced e.m.f. (in volts) at any instant is

s Nd (Ba)
at
where B = flux density in the ring in webers per square metre.
Thus the power supplied at any instant to overcome this back
e.m.f. (i.e. to build up the magnetic field in the ring) is
d (Ba)
dal

+8

*H

=i N
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and the energy supplied in order to build up the magnetic field in

time { sec is
e t Bpgy .
J eM¢=Ja£N.@ dt=aj£N.dB
0

dt’
0 -B,
since, when t = 0, B = B, as shown in Fig. 1.26 in which OF = OE

w B
Now, the magnetizing force acting upon the ring is, at any instant,
given by

Ni

H = T

from which Ni=IH
Bmox
and energy supplied = la J‘HdB

Since la = volume of ring in cubie metres, it follows that the energy
in joules supplied per cubic metre to build up the field

Bﬂlﬂf
= JHdB
_B'

This energy is stored in the magnetic field, and is represented in
Fig. 1.26 by the area FACDF.

Upon reducing the current (and hence the flux) the induced
em.f. is in the same direction as the applied e.m.f.,, so that energy
is now returned to the magnetizing eireuit as the flux is reduced.
From the above reasoning the energy returned during the reduction

B

maxr
of the magnetizing force from H,, . to 0 is | HdB joules per cubic
B'
metre, where B, is the residual flux density.

This energy i8 represented in the figure by the area ECD. Thus
the energy absorbed by the specimen due to hystercsis is the difference
between energy put in and energy returned to the magnetizing
circuit, and is represented by the shaded area FACEF.

If the current is now reversed and the above process repeated, H
being finally brought back to the starting point A of the cycle of
magnetization, the energy in joules ahsorbed per eubic metre per

0

eycle due to hysteresis will be JH dB

0

= area of hysteresis loop
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The area of the loop is, of course, measured to scale, so that the
energy absorbed per cubic metre per cycle in joules
= area of loop in square centimetres X bk (1.51)
where & = flux density in webers per sq. m represented by 1 cm
on B axis
h = number of ampere-turns per m, represented by 1 em
on H axis

Fia. 1.26. HysrEnesis Loss

Vertical Scale: 1 em = b webers per sq. metre
Horizontal Seale: 1 em = A ampere-turns per metre

This expression for the energy loss in terms of the area of the loop
obviously applies whether the loop is symmetrical or not.

Steinmetz Hysteresis Law. Steinmetz has shown that the em-
pirical law :

Wik Bagtt - o, ., Srees

gives the hysteresis loss for iron with sufficient accuracy for most
practioal purposes, provided the maximum flux density B,,,. lies
between 0-1 and 1-2 webers per sq. metre

W, = energy loss in joules per cubic metre per cyéle

k = the hysteresis coefficient of the material, and is
constant for any given material

The magnitude of k varies with the material. Its value for annealed
sheet steel lies between 250 and 500, and for silicon steel is abont 210.

For values of B,,,. above 1-2, the energy loss increases at a higher
rate than the 1:Gth power of B, ., this rate increasing with increasing
values of B, ... For values of 1,,,, below 0-1 also, the loss varies as
some power of B, ., greater than 1-6.
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Fia. 1.28. DemaoNgTIZATION CURVE OF MAGNET STEEL

Steinmetz (Ref. (3) ) has shown that for silicon steel the law
Wy ==l R R : : - (1.53)

maxr
is more nearly correct, k' being about 457
With regard to the hysteresis loss in the case of an unsymmetricai
cycle, Ball has shown (Ref. (7) ) that this obeys the law
W& =k’ ‘Bma.r]'5

but that in this case £” is not constant for any given material but
varies with the average value of the flux density.
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Thus if B, and B arve the limiting values of flux density as in
Fig. 1.24 (b),
B, - B,

S i

max
Also, Ball found that if the average value of the flux density is

B, + B,
Bnu‘_—2

k" =k + CC.BG,L’

where k is the normal hysteresis coefficient of the material.
Thus, in general, energy loss in joules per cubic metre per eycle is
“?h = (k S ﬂB“‘,I")Bli“

W, — [k - u(f’i_;_ga) "“] (EI%E")“ (1.54)

where B, is the lower value of the flux densivy and may, or may not,

be negative.
Values of @ are: for ordinary annealed sheet steel @ = 340, for
annealed silicon sheet steel @ = 320. Obviously if B, = —B,, as

in a symmetrical cycle, Equation (1.54) reduces to W, = kB,

Energy Stored per Unit Volume of Magnetic Field in Air. In the
case of a magnetic field in air or other non-magnetic material, the
hysteresis loop reduces to a straight line, i.e. the hysteresis loss is
zero. If the same scales are used for both B and H, this line makes
an angle of 45° with either axis, as in Fig. 1.27.

The energy stored in the field per cubic metre when the flux

1
density is B, is | HdB
0
= area OAD (to scale)
1

- B,H,
But B, = pyH,, since the field is in air.
R’ il B® _ peH,? .
.. Energy stored in joules per cu.m = S =~ (1:55)

]

Demagnetization Curve (Permanent-magnet Design). In the de-
sign of permanent magnets, in which the flux density in the air
gap is required to be as large as possible, while the magnetism must
be resistant to demagnetizing forces, the remanence, coercivity, and
the demagnetization curve (portion C D of Fig. 1.24 (a) ) of the steel to
be used are of great importance. For good magnet steel the product
B, x H, should be large.

Fig. 1.28 shows the demagnetization curve of magnet steel, this
being a portion of the hysteresis loop for the steel in which the
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maximum magnetization has been up to saturation point, so that
OC represents the remanence and OD the coercivity.

As the demagnetizing force H, is increased, the flux density falls
as shown, and at any point, when the flux density in the steel is
B, there is, remaining in the steel, an m.m.f. per metre length
of path in it of H,. This m.m.f. is that which would drive the flux
across an air gap in the magnetic eircuit of the magnet. The pro-
ducts B, . Hyare plotted. They exhibit a maximum value (B,. Hy) ez
which is a criterion of the value of the steel for permanent-magnet
purposes, The most economical design of magnet is that for which
By and H, are such that their product has this maximum value, (See
Refs. (8), (12), (15), (16), and (17).) The properties of some of the
permanent magnet materials are given in Chap. XVII.

+8
L e

-H /D (@]
a
’
Fic. 1.28. OperaTiION ON REecoin LiNes

Suppose the dimensions of the magnet are: length L,,, cross-
section 4,; and of its air gap: length L,, cross-section 4,; and
let the respective flux densities be B, and B,. Then

m.m.f, across the air gap = m.m.f. in the magnet
i.e. H, . L =tH;. L,
Now, the energy stored in the air gap is
(B,2[2u,) A4, . L, joules

B,4, .B,L, Flux across gap X m.m.f. across gap

2Nr_| 2
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If the flux in the gap is equal to the flux in the magnet, the energy
stored in the gap is
Apn.B, x Hy. L, _B,.H,

3 5 W g
Since the volume of steel is 4,, . L,,, the energy in the air gap is
B Ha

5 per cubic metre

This is obviously maximum when the product B; . H, is maximum,
and, for minimum volume of magnet steel, the magnet must operate
at the values of B, and H, corresponding to this point. The flux
density B, required in the air gap, and the dimensions of the air
gap, are usually known, so the dimensions of the magnet can be
obtained from the following expressions:

B,.A, H,.L
] el § Lm —uShe ]
d H d

In practice, due to leakage, the flux in the magnet is greater than
that in the gap and we must write

K,.B,.A,=B;. A,

K, is a constant dependent upon the magnet circuit configuration
and can have any value between 1-8 and 9-0.

Where a magnet is provided with soft-iron pole pieces, a part F
of the m.m.f. delivered by the magnet is expended in overcoming
the reluctance of the joints and pole pieces, and in this case,

F+H, L,=H;.L,
This can be written in an alternative form,
K Bl =H. L.

where K, is a constant, usually 1-3 and 1-5.
Combining these two expressions,

B, RISBYE B A il
B, K B L. 4. "k LA

The right-hand term is a constant for any given system and is
called the “unit permeance.” It is the slope of a line from the
origin of co-ordinates to the magnet operating point.

It is clear from these considerations that, to achieve a satisfactory
choice of magnet dimensions, it is necessary to have some knowledge
of the factors K, and K, and these can only be determined by trial
on a similar system.

Recoil Loops. Referring to Fig. 1.29, suppose the magnet is
operating at £ and providing flux in an air gap, and the gap is
then completely closed. The magnet operating point will then yun

4,
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along the lower line to the point F'; it will not return to C. If, now,
the gap is restored, the magnet will return along the upper line to E.
A minor hysteresis loop has been traced out which is known as a
xecoil loop. The recoil loop is very narrow and it is a sufficient
approximation to replace it by a straight line called a recoil line.

tabilization. If the magnet is initially operating at point E on
the characteristic, the permeance of the system is given by the line
OF. Suppose that the magnet is now subjected to an external
disturbing field which has a demagnetizing effect and is equivalent
to an increase in air gap; then the operating point moves to G.
When the disturbing field is removed, the operating point must lie
on the original permeance line, but the magnetization now moves
along a recoil line to the point H. There is therefore a permanent
cha.n?e in the operating point and a change in the gap flux. This is
clearly intolerable when the magnet is used in a permanent-magnet
moving-coil instrument, because momentary exposure to an external
field may cause a permanent change in calibration.

Stabilization is carried out by applying a fairly large disturbing
field which forces the magnetization down to point K, and the recoil
is then to M, which is now taken as the normal operating point. If
the magnet is subsequently subjected to a disturbing field it will
move to point L, say, but when this field is removed it will return to
M and there is no permanent change in the operating point.

Modern permanent-magnet materials are often in the form of
short blocks of material, and if these are removed from their pole
pieces, effectively introducing a very large gap, they will then
operate subsequently on a very low recoil line and their magnetic
properties are virtually lost. Because of this, magnets are usually
supplied unmagnetized and are magnetized in the system of which
they form part.

TABLE I

UnraTiowaLzen C.G.S. ForMs oF THE NUMBERED FORMULAE
1w CHAPTER I

Formula Number C.G.8. Form*
Q¢
(1.1) F e ﬁ
(1.2) P= Q:TQE' dynes

* It should be borne in mind that all formulae in Table I, even when
unchanged in form, are in C.G.S. units which differ from the units used in
Chapter I. The primary constants ¢, and g, are both unity in this system, so
that & and p correspond to the relative permittivity and relative permeability
respectively. The electrical quantities @ and V are in electrostatic units, the
current ¢ is in electromagnetic units, all dimensions are in centimetres, and
energy is in ergs (see Chaptoer II and Table 11).

(Note. In Equations (1.38) and (1.40) 1) is a distance,)
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TABLE I—(contd.)
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Formula Number

(1.3)
(1.4)

(1.8)

(1.6)
(1.7)

(1.8)

(1.9)
(1.10)

(1.11)

(1.12)

(1.13)
(1.14)

(1.15)
(1.16)
(1.17)
(1.18)

(1.19)

(1.20)
(1.21)
(1.22)
(1.23)
(1.24)
(1.25)
(1.26)
(1.27)

(1.28)

.G.8 Form*
i P
E
2Q
B, =%
dno
B o
Y = 420
W =an(Q + Qa0 . )
Bt
&
Unechanged
Unchanged
Q
P, = 3
= 11e @y LS ]
"-*g[gl+;;;+dfl4
Unchanged (cm)
Unchanged (ergs)
. Bt
Energy per unit volume = - ergs
. s
Re= 3B
P 2v0.Q
&
F = T2 dynes

H= ‘-‘; oersteds
r

Unchanged (maxwells)
Unchanged (ganss)
Unchanged
Unchanged

h = 2nJ

B=H 4 4aJ

B = uH (gauss)
Unchanged

. -1
Magnetie susceptibility = =

3—(T.3700)

* See footnote on page
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TABLE T—(contd.)

Formula Number C.G.8. Form*
m
(1.29) V==
M cos ¢
(1.30) Pyt
ARB?
(1.31) F = e
dA . icos
(1.32) V, = = ¢
(1.33) ¥, =10
(1.34) Unchanged
m.1.dlsinf
(1.35) fo——a——
(1.36) F = Hil dynes
t.dlsin 0
(1.37) dH = —— =
(1.38) H= % oersteds
(1.39) Work done = 4x7i
_ Ziyigl
(1.40) B =i
P ne Dppd
(1.41) H= "-3‘}—3;1’; oorsteds
(1.42) H — 2%‘ e
: 1 1
= Dy
&40 Hat Q = 2mis [ oot + G =)
__ . Br%,ip.a®
ik P T men
(1.45) H = 4"51“ cbg 0, oersteds
(1.46) H, = 2"!N ! oersteds
(1.47) Unchanged
(1.48) Unchanged
(1.49) Unchanged
(1.50) Unchanged
(1.51) Energy per em? in ergs
= i, % area of loop in sq, em X bh

* See footnote on page 48,
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TABLE I—(contd.)

Formula Number C.G.8. Form*
(1.52) Unchanged
(1.53) Unchanged
(1.54) Unchanged
: B2 H;?
(1.55) Energy stored in ergs per em? = e

* See footnote on page 48.
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CHAPTER 11
UNITS, DIMENSIONS, AND STANDARDS

Absolute Units. An absolute system of units may be defined as a
system in which the various units are all expressed in terms of a
small number of fundamental units. The word “absolute” in this
sense does not imply supreme accuracy: it is used as opposed to
“relative.” Absolute measurements do not compare the measured
quantity with arbitrary units of the same kind, but are made in
terms of appropriate fundamental units.

The Committee of the British Association on Electrical Units and
Standards, in formulating the absolute system of units in 1863, had
the idea “that the units should not be defined by = series of master
standards, each defining one quantity in the way in which the units
of length and mass are defined, but that each electrical unit should
be defined by some natural law which expresses the relation between
the quantity concerned and the fundamental quantities of length,
mass and time, for which internationally accepted standards have
already been established” (Ref. (66) ). Electrical and magnetic
units involve, in addition, the properties of the media in which the
electrical or magnetic actions take place, i.e. the permittivity in the
case of electrostatic forces and the permeability in the case of
magnetic forces.

The British Association Committee on Practical Standards for
Electrical Measurements adopted as the fundamental units of
length, mass and time, the centimetre, gramme, and second
respectively, and thus brought into existence the C.G.S. gystem
of units.

Two systems of C.G.8. units exist: one involving only the permit-
tivity ¢ of the medium as well as units of length, mass, and time;
the other involving permeability as well as units of length, mass,
and time. The first is known as the electrostatic C.G.S. system of
units (e.s.c.g.s. or e.s.u. system), and the second as the electro-
magnetic C.G.8. system (e.m.c.g.s. or e.m.u. system).

The electromagnetic system is the more convenient from the point
of view of most electrical measurements, and is, therefore, much
more generally used than the electrostatic system, If a quantity
is expressed in “C.G.8. units” without the additional designation
“electromagnetic” or ‘‘electrostatic,” it may be taken that the
electromagnetic system is indicated.

In the electrostatic C.G.S. system the permittivity is, for purposes
of definition, taken as unity, as is the permeability in the electro-
magnetic system.

AL
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Dimensions of Velocity, Acceleration, and Force. Since velocity

= li?g;h, this can be expressed in the dimensional notation as

(L]
v] = =
the square brackets indicating that the equality is dimensional only,

and does not refer to numerical values,
Thus, velocity has the “‘dimensions™ [LT"1].

=S T T T,

Similarly,
Acceleration = velasiby — length
time time X time
or, dimensionally,
L
lo] = f = [L77). (2.2

Force — mass x acceleration
thus, representing the dimension of mass by [M],
[F] = [M][LT? = [MLT?] . : (2.3)

Dimensions in Electrostatic and Electromagnetic Systems. From
Coulomb’s Inverse Square Law we have, using the C.G.S. system,*

.9
= elr"
i% R (quantity of electricity)?

e X length?

where ¢ is the permittivity of the medium.
Dimensionally,
[@QF

[F]= .5
b ‘ Q)
e (MLT-) = [[E LEL]
From which
Q=[S . . B

which gives the dimensions of @ in the electrostatic swt.em
Also, in magnetism, the force between two magnetic poles of pole

* Dimensions can be derived in a similar manner using the M.K .8, relation
ships. The results are the same except that &) and p, are included in £ and g,
but see p. 59.
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strengths m; and m,, distant r apart, in a medium of permeability
W is

L i
urt
Bores — pole strength x pole strength
e u X length?
Dimensionally,
. [m]?
7 e il
[MLT%] = (L)
From which
[m] = #iLgM}T'I ! ) : . @8

in the electromagnetic system.

Thus, it is seen that the dimensions of these two quantities, one
electrostatic and one magnetic, involve the dimensions of either ¢
or s« as well as those of length, mass, and time. It will be seen later
that the same holds for all such quantities.

Instead of using either u or £ as the necessary fourth fundamental dimen-
sion, any one of the electrical or magnetic magnitudes could be used. G
Giorgi (ses Ref. (67) ) suggested that quantity of electricity Q might be used
and that this would eliminate fractional exponents in dimensional expressions.
Thus, for example, the product @V (where ¥ = potential) has the dimensiona
of work so that

(QV] = [MIT-]
from which
[V]=[MIT-*Q1]

Dimensions of Permeability (x) and (¢). If they are taken as
fundamental dimensions, the dimensions of these quantities cannot
be expressed in terms of length, mass, and time, but a relationship
between them can be found.

As seen in the preceding paragraph, the dimensions of a quantity
of electricity can be expressed in terms of ¢, etc., a8

[Q] = [T

Now, the force exerted upon a magnetic pole, of strength m units
placed at the centre of a circular wire of radius r due to a current
of i flowing in an arc of the circle of length [ is given by

Quantity of electricity flowing in time t is

R i
Q =t = -;;IT
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Dimensionally,
(MLT-*) [L*] [T]
(W LM T]([L)
substituting the expression for m from the previous paragraph.
s@=petyl. . iEs)

This gives the dimensions of ¢ in the electromagnetic system.
Since @ must have the same dimensions in either system, we have

[SQLEJM}TJ] = [MlLi,u._‘]
G2 B

or 7 T g e (RSN PR RS .
Now, the dimensions [L7] are those of a velocity.
1
;. —— = & velocit
Vit Y

In any system of units the “permeability of free space” u, and
the “permittivity of free space” &, are related by the equation

1
Moo = 3

Where ¢ is the velocity of light in the system of units considered.

From this relationship the dimensions of any electrical quantity
can be converted from those of the electrostatic system to those of
the electromagnetic system, and vice versa.

Dimensions of Electrical and Magnetic Quantities. The dimen-
sions of the various quantities can be derived from the known
relationships between them, as shown below.

1. Electric Current.

__ quantity
Current = e
(LM s
] = Uy = [atl M2 78]

in the E.S. system.

To convert these dimensions to those of the E.M. system—
involving u instead of ¢—substitute ut. LT for ¢! from Equation
(2.7).

Thus, in the E.M. system

U] = [ LT MAT2) = (M LIT)
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2. Electric Polential. By definition,

work
quantity of electricity

Potential =

Thus, representing the dimensions of potential by [V],

in the E.S. system.
Converting to the E.M. system, we have
[V]=[u*. LT . L} M*7) = [t . IEpi7n
in the E.M. system.

3. Magnetic Fluz.

e.m.f. = rate of change of flux

_ flux

~ time

J. Flux = emf. X time
Dimensionally [®] = [¢*LiMT-1] (7] = [¢1LimH)
in the E.S. system, or

[®] = (' L'M71]) in the EM. system.

The dimensions of the most important electrical and magnetic
quantities in both systems, together with the relationships from
which they are derived, are given in Table IT.

Practical and C.G.S. Units. Some of the electromagnetic C.G.8.
units are too small for practical purposes, while others are too 5
The British Association Committee fixed the practical unit of cur-
rent and resistance as {; and 10° electromagnetic units of eurrent and
resistance respectively. The magnitudes of the practical units of
other quantitites, in terms of the absolute electromagnetic units, can
be found from the known relationships connecting the various
quantities and are given in the table.

For example,

e.m,f. = current X resistance

.. The practical unit of e.m.f. = the practical unit of current x
the practical unit of resistance
=15 of the e.m. unit of current

x 10° e.m. units of resistance
= 10% e.m, units of e.m.f.

The International Conference on Electrical Units and Standards
m London, 1908, agreed that the magnitudes of the fundamental



TABLE 11
DMENSIONS 0F ELECTRICAL AND MAGNETIO QUANTTTIES

Dimensions Number of | Ratio— o
ot | e | S o SR, pm | SRR
System Bystem Unit  [|(neglecting L. M, and T)

Quhntity of electrisity .| Q¢ | F = %% Limiut Lhgir-1eb | Qovomd o | 380 b = Lol 103 X To
SR Li |1=9% LiMir-iut | LAT-%ed | Ampere 10-1 b= Lol axa0
E.fn.f or potential . Vb" E= Q::::: !‘ky Limrp—!“'l LiMir—15-t| Volt 100 elpt =3 x 10 3)‘]'_._13.
Resistance . . . R |R= IE LT-% L-Pg~? Ohm 100 £tut = 9 X 10% ”—lm-ﬁ
Capacitance . c g LTty Le Fared 10-* = | 9 x 107
Inductance . . L e= L g "L,u L~y Henry 10% & lpt =9 x 10m ﬁi—bﬁ
Impedance . . Z - ? LT 'u LT} Ohm 10° &3yl =9 x 10% hx_ll'o"'ﬁ'
Pole strength . m | FP= "::"" pimip-ii | Liaie-t
Magnetio fleld intensity . H H= g c-ipbp-1y,-d Lipmip-agh
Magnetioflax . .| @ |e=NZE pumipd | Ziumied
Magnetic flux density B b 5 Lbair-id | IAMbe
Magnetomotive force F |F=H.I Liamir-y-t | Liadr-eet
Permeability = I L-iTg-1
Reluctance . . S 8= ; X i Lyt LT-%
Magnetic potentisl .| ¥ V= Pnh‘f;?nsth Limip-y-t | L r-red
Electrio power . P | P=r=HI LAMT- LMT- | Watt 10" 1 107
Eleotrio energy . | W i g'}:“ X distance | paarzes | M7 m,.., hour|3-8 :?'10” i 36 ]::?'10“
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electrical units should be determined on the E.M.C.G.S. system and
adopted as these fundamentals (i) the Ohm = 10° e.m.u., (ii) the
Ampere = 0-1 em.u., (iii) the Volt = 10*°e.m.u. and (iv) the
Watt = 107 e.m.u.

The eleciromagnetic C.G.S. unit of resistange is defined as the
resistance of a conductor such that 1 erg of energy is expended per
second when unit current passes through it.

The electromagnetic C.G.8. unit of current is defined as the current
which, flowing in the arc of a circle 1 cm in length and 1 cm in
radius, produces a force of 1 dyne on a unit magnetic pole placed at
its centre.

The determination of the number of electrostatic C.G.S. units in
one practical unit can best be illustrated by an example. In the
case of e.m.f., from the corresponding dimensions given in Table II,

1esun. | _ [ Lyt
1 em.u. Limire Fi
Now, if the dimensions of L, M, and 7' are neglected, this ratio is
equal to & ', But it has been shown above that

eyt = a velocity
= 2:008 X 10" cm/sec in the c.g.s
system
1es.u.

S —— = 2:008 x 101
1 e.m.u.

1 e.s.u. of e.m.f. or potential = 2:998 x 10 e.m.u. units of
e.m.f. or potential

Note. In the following conversions the approximation 2-998 = 3
has been used for the sake of simplification.
Thus, if the volt is equivalent to 10* e.m.u. it will be equivalent
108

to3 %X 100~ 3 x 10%
It must be.noted that the above ratio of 11 ::1":1‘
cases-equal 3 X 10', but depends upon the dimensions. Thus, in

e.s.u.

does not in all

| . lesu, : y
the case of capacitance, the ratio g equals, neglecting dimen-
sions of L, M, and 7, the product

1 1
UE =13 100 — § x 10%

from which

——17.,-,-, of 1 e.m.u. of capacitance

1 e.s.u. of capacitance = Fii
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The other practical units can be determined from the four funda-
mental units, and are as follows—

Quantity. The quantity of electricity passed through a circuit by
1 amp in 1 sec is 1 Coulomb

= 107! e.m.u. of quantity
Work or Energy. The unit of work or energy is 1 Joule (or 1 watt-
second), and is the energy expended by 1 watt in 1 sec
1 joule = 107 ergs (C.GG.8. units of work)

Capacitance. A capacitor has unit capacitance—1 Farad—ywhen 1
coulomb of electricity raises the potential difference between its
plates 1 volt.

1 coulomb 10!
] fa.l‘ll-d == ——.l VOl_t_ = W

Inductance. The practical unit of inductance is 1 Henry. It is
the inductance of a circuit such that a rate of change of current in
the circuit of 1 amp per sec induces an e.m.f. of 1 volt.

1 volt e - 485
1 amp per sec 107!
The C.G.S. unit of inductance is 1 cm.
Thus 1 henry = 10° em

= 10-% e.m.u.

1 henry = = 10% sima.

Since the farad is too large a unit for many practical cases, the
microfarad (represented symbolically as *“uF ") or the micromicro-
farad (represented by “‘ uuF" symbolically) are used as more con-
venient units.

In the same way, the millihenry and microhenry are often used
as more convenient units of inductance than the henry.

In the electrostatic system, capacitance has the dimensions Le,
which gives the electrostatic C.G.S. unit as 1 em.

Additional names have been given to several of the C.G.S. units
by the Symbols, Units, and Nomenclature (S.UN.) Committee of
the International Union of Pure and Applied Physics.* The most
important of these are—

The Maxwell (the C.G.S. unit of magnetic flux),

The Gauss (the C.G.S. unit of magnetic flux density),

The Oersted (the C.G.S. unit of intensity of magnetizing field),
The Gilbert (the C.G.S. unit of magnetomotive force).

The name Weber has been given to the practical unit of magnetic
flux (1 weber = 10® maxwells), with 1 weber per square metre as
the corresponding unit of flux density.

* Report published October, 1834.
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The M.K.S. (or Giorgi) System of Units. This system, which uses
the metre, kilogramme and second as the units of length, mass and
time instead of the centimetre, gramme and second, as in the C.G.S.
systems, was originally suggested by Prof. G. Giorgi in 1901, After
international discussions on the matter (Refs. (65), (67) ) the system
was finally adopted by the International Electrotechnical Commission
(ILE.C.) at its meeting in 1938 at Torquay, when the connecting link
between the electrical and mechanical units recommended was the
‘‘permeability of free space with the value of g, = 10-7 in the un-
rationalized system or uy = 4n10-7 in the rationalized system.”
(The question of rationalization which does not form an essential
part of the M.K.S. system but is actually a separate consideration,
will be discussed a little later.)

The M.K.S. system is an absolite system of units, based on its
own definitions. It is independent of the C.G.S. systems, which it
can be used to replace although the long-established C.G.S. systems
are not likely to be entirely discarded for some time to come.

Its great advantage is that its units are identical with the practical
units and are the same whether built up from the electromagnetic or
electrostatic theory. The rather cumbersome conversions necessary
to relate the units of the electromagnetic and electrostatic C.G.S.
systems to those of the practical system—given in Table I1—are
thus avoided.

It is important to remember that, in the M.K.S. system, the
constants u, and &, the “permeability arfd permittivity of free
space,” must be used in their proper places in the expressions for
the particular units being considered. They cannot be omitted,
because they are not unity, as in the C.G.S. systems. From the
relationship

— 1 = ¢ = velocity of light

V tefo

(see also p. 55) it follows that if, in the unrationalized system, uy =
10-7 then ¢, = 1-113 x 10-10. L. H. A. Carr (Ref. 65) suggests that
U, should be given dimensions L~27" and that g, is a pure numeric.
If this is accepted, then the dimensions of the quantities given in
Table IT become the same in the two systems—electromagnetic and
eleetrostatic—and the fourth and fifth columns of the table could
then be replaced by one column (substituting everywherc these
dimensions for g and taking ¢ as dimensionless). Thus, the first three
lines of this replacing column would read

LMir-
Li M 5T—l
L; M!T—l
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Some of the principal derived units, mechanical and electrical,
in the M.K.S, system are given below; some of these units have,
necessarily, been introduced already, in Chapter I, but are included
again here for completeness in the treatment.

Area : . The square metre

Volume - . The cubic metre

Velocity . . The metre per second

Acceleration . The metre per second per second

Force |, : . The Newton, which is the force which

produces, in a mass of 1 kilogramme, an
acceleration of 1 metre per sec? (1 newton
= 10° dynes).
Work or Energy . The Joule, or Newton-metre
Power . : . The Watt, or Newton-metre per second
Electric Current . The Ampere, defined as the constant current
whicki, if maintained in two straight
‘parallel conductors of infinite length, of
negligible circular sections, and placed
1 metre apart in a vacuum, will produce
between these conductors a force equal
to 2 x 10-7 newton per metre of length.

The M.K.8. units of quantity of electricity, e.m.f., resistance,
inductance and capacitance are respectively the Coulomb, Volt,
Ohm, Henry and Farad. The unit of magnetic flux is the Weber,
which is equivalent to 10 maxwells (or lines of foree) so that a rate of
change of 1 weber per second, in the flux linking one turn, produces
unit e.m.f. Flux density is measured in Webers per square metre.

The use of the constant y, = 107, in defining the (unrationalized)
M.K.S. units needs some explanation.

Consider the expression for the force between parallel, current-
carrying conductors. In the electromagnetic C.G.S. system, this is
often written .

— g e
F=21

where F is in dynes, i, and i, are currents in e.m. units and [ and d
are in centimetres.
Strictly the expression should be written

— g hid
F=27%

the figure 1 representing the permeability of air or vacuum.
Now, if F is to be in newtons and the currents i, and i, in M.K.S.
units (i.e. amperes) the expression becomes
f8p.0 1yl
= 2 b2 b = aret 07
F 107 2 s 1
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But, if g, (= 10-7) is included, as it must be in the M.K.S. system,
we have

1yt
F““:2“132‘zﬂu

which is in strict accordance with the M.K.S. definition of the unit
of current when iy, 7,, ! and d are all made equal to unity.

It should be understood clearly that if, in any caleulation, some
medium is involved which has a permeability u, times that of air,
this value must be included in addition to y, so that we would then
have a factor u,u,.

Rationalize! ﬁjystems of Units. The basis of a “‘rationalized”
system of units is the conception of unit flux issuing from wunit
magnetic pole, or from unit charge, instead of a flux of 4., Clearly
“rationalization” is not specially connected with the M.K.S. system :
it could be used with any system founded on the same basic electric
or magnetic definitions. But, if we are to adopt the M.K.S. system,
there is a good argument, for adopting it in rationalized form and
so performing two stages of adoption at the same time. The question
was considered at the I.E.C., Torquay, meeting in 1938 but it was
agreed to postpone formal endorsement until some later date.

In the rationalized system the 4 disappears in some relationships
only to appear in another place in others. The advantage of ration-
alization must then be judged by its effect upon the relationships
which one considers to be most important. In the ‘LE.E. papers
mentioned in Ref. (65) strong arguments forrationalization are offered
as well as some reasons against it. Limitations of space prevent the
statement of these arguments here; the reader specially interested
in the question must be referred to these papers,

In one of the papers, by H. Marriott and A. L. Cullen, a distine-
tion is made between rationalization of theory and that of the units
themselves. Table III, compiled from this paper, shows the differ-
ences between the unrationalized and rationalized forms of some of
the most important formulae. In the table u and ¢ are the absolute
permeability and permittivity of the medium (as distinct from the
values for free space).

In the rationalized system of units the permeability of free space
i8 ptg = 47107 (instead of gy — 10-7 in the unrationalized system).

: Gk : 1-113 x 10=°
Again, the permittivity of free space is do i R
= 8:-854 x 1072 instead of &y = 1-113 x 10-19

E. Bradshaw (Ref. (65) ) gives the relative sizes of the units in the
C.G.S. and rationalized and unrationalized M.K.S. systems, and
Table 1V reproduces some of the relationships for the more com-
monly used quantities.

Relationships Between the Mechanical, Electrical, and Thermal
Practical Units. The relationships connecting the practical units
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TABLE IIIL

RaTrowarizen AxD UnrarioNavLizeép Forms oF ELECTRICAL
AND MagneTic EQUATIONS OR FORMULAE

Equation or Formula Rationalized Unrationalized
3 |

Force I' between isolated electric | P19 poo 199
charges @, and @, distant & &t : &

Electric flux density [) near a uni-|
formly charged plane surface of | D = ¢ D = 4no
charge density o |

Electric field strength £ near a uni-| o 7y
formly charged plane surface of | E = — E=—
charge density o [ € €

Electric flux density D at distancer | ,, = @ p-®
from a point charge @ ; ] =

Electric field E at distance r from a | 7 e 1 @ & Q
point charge @ SHETT R bl ot

Electric potential V' at distance r | ., 1 Q Q
from a point charge ¢ | ' = " iiar BSn

; : 1 ek?

Electric energy density 5 el =

- w

Capacitance of parallel-plate capa- |
citor, of plate area 4 and separa- | O = ié_l - =
tion d 1 dmd

\ | e 2l el

Capacitance of concentric capacitor ¢ = B C =
of radii a, b and length [ log, 3 2 log, -

Capacitance of concentric sphere cap- | o _ 4™ o — 2%
acitor of radii a and b b—a b=a

Force ' between small isolated mag- | o _ 1 mym, ik 1 mym,
netic poles m, and m, distance = p dnz? u &

Magnetic flux density B near a uni-
formiy magnetized plane surface ot ooy % y
of pole strength surface density fi=us B = 4mm
m/

Magnetic field strength H near & uni- . g
formly maghetized plane surface |y _ 7" 7 i 21!
of pole strength surface deasity i I
mﬁ

Magnetic flux density B at distance | 5 _ T ST
r from a point magnetic pole m 4mr? r

1 e

Magnetic energy density 5 pbi? %

Force I between parallel isolated
current elementa 1,0, and I00,. ] 1,681,161, 1,501,601,
The perpendicular distance bet- I'=p —_—— e
ween the two directions of the cur-

rents F, and I, is x
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TABLE III—(contd.)
Equation or Formula Rationalized Unrationalized

Magnetic field §H at distance z from
current element Idl. 0 = angle
between directions I8l and =

Force 8" on current element I8l sit- |

uated in magnetic flux density B.
¢ = angle between the directions
of B and 15l

Magnetic field strength H inside a
long solenoid of n turns per unit
length carrying current 7

Magnetic field H at a distance r from
a long straight wire carrying a
current, [

Ampere-turns for a closed magnetic
path

E.m.f. induced in conduetor &l mov-
ing transversely at velocity v in
magnetic flux density B. ¢ =
angle between the direction of B
and the plane (v, &l)

E.m.f. induced by changing magnetic
flux linkage

Inductance L of single-turn solenoid
of cross-sectional area 4 and
length d

I .,
dH = ma sin 6

8F = BIfl sin ¢
H =nl
I
i
NI=§H.GH
dE = Buvdl sin ¢
dd
E= -2
= e
Le d

6H-=fr£-fain8
o

dF = Bl§lsin ¢

H = 4manl
H=-2—I

r

1
6E = Bvdlsin ¢
-
A==

dmpud
LnT

for the measurement. of mechanical power, energy, and heat, with
those for the measurement of electrical power and energy are so
important that a consideration of them here is. perhaps, not mis-

placed.
Power.
1 h.p. = 33,000 ft-1b per min
= 550 ft-1b per sec
= 6560 % 12 x 264 X 45636 x 98] cm-dynes
(or ergs) per sec
= 746 x 107 ergs per sec
.. Sinee 1 watt = 107 ergs per sec
1 h.p. = 746 watts
746
1 ft-1b per sec = —— = 1-357 watts

550
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TABLE IV
K, = number of M.K.8, unrationalized units in 1 M.K.S,
rationalized unit
K, = number of C.G.8. electromagnetic units in 1 M.K.S.
unrationalized unit
K, = number of C.G.8. electroatatic units in 1 C.G.S.
electromagnetic unit
K, K, = number of C.G.8. slectromagnetic units in 1 M.K.S.
rationalized unit
K,K,K, = number of C.G.8. electrostatic units in 1 M.K.S.
rationalized unit
K,K, = number of C.G.8. electrostatic units in 1 M.K.8.
unrationalized unit
¢ = free space velocity of propagation = 2:998 x 10° metres/sec
. Sym-| M.K.S. Rationalized
Quantity S Unit K,| K, K,
Foree . . F | Newton 1 108 1
Energy 3 . W | Newton-metre : Joule | 1 107 | 1
Power s P | Joulefsec : Watt 1 107 1
Current, I | Ampere b 30 100¢
Charge . . .| @ | Coulomb ¥ ] ot 100e
Charge surface density .| ¢ | Coulomb/metre? 1| 10°¢ 100¢
Potential difference ¥V | Joule/eoulomb : Volt 1 108 b
(100¢c)
Electrie field strength E | Volt/melrs 1 100 o
(100¢
1
g v : ]
Resistance . Rk | Volt/ampero : Ohm 1 10 {T00c):
St 1
Resistivity . p | Ohm-metre 1 1n8 (100c)*
Eleetrie flux : - IJ) Coulomb 47 | 107 100
Electrie flux density .| L | Coulomb/metre® 4n | 10-% 100¢
Capacitance ; o S Coulomb/volt : Farad | 1 10-* | (100c)?
Permittivity : < S Farad/metre 47 | 10711 | (100¢)?
A 1
Magnetic flux @ | Volt-sec : Weber 1 10* (i005)
Magnetic flux density .| B | Weber/metre? 1 104 (_17100'?}
Magneto motive force .| F | Ampere 4 | 102 100¢
Magnetic field strength .| H | Ampere/metre 4 | 1070 100¢
Inductance . ; .| L | Weber/ampere : Henry| 1 10° a ﬁlﬂo]"'
. 1
Pormeability Henry/matre /4w 107 {T00e)
Magnetic pole strength m | Weher Ifdm| 10% {1006} Oll.}c}
Resistance of free space | R, | Ohm 1fdm| 107 .
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Energy.
1 kilowatt-hour (kWh) = 1,000 watt-hours
1 h.p.-hr = 746 watt-hours

= 0:746 kWh

1ftlb = 12 x 2:54 % 4536 X 98] cm-dynes (or ergs)
= 1:3567 x 107 erga
= 1357 joules (or watt-sec)

1-357
=~ B0 x 60 x 1,000 i

or 1 ft-lb = 0-000000377 kWh

Thermal Units,

1 gramme-caloric = 4:18 X 107 ergs

= 4-18 joules (or watt-seconds)
1 B.Th.U. (i.e. the heat required to raise the temperature of 1 1b water 1°F)
= 778 ft-lb
= 778 X 0-000000377 kWh of electrical energy
= 0000293 kWh
1 Contigrade heat unit (i.e. the heat required to raise the temperature of

11b of water 1° C)

|

= g x 778 ft-1b
= 0000528 kWh

Example 1. Calculate the number of kWh of electrical energy obtained
per hour from a generating -plant whese overall efficiency is 18 per eent,
given, i

Number of pounds of coal burnt per hour = 7,0001b

Calorific value of the coal = 12,000 B.Th.U. per Ib
Number of B.Th.U, input per hour = 7,000 x 12,000
Output in B.Th.TU. per hour = (-18 x 84 x 10*

Output in kWh. per hour = (r18 x B4 x 10* x 0-000293
= 4,420 kWh per hour
(The power output is thus 4,420 kilowatts.)

Example 2. Calculate the number of kWh expended in pulling a train of
weight 250 tons, § mile up an incline of 1in 75, at a steady speed of 20 miles
an hour, by means of an electric locomotive, if 70 per cent of the energy
input is usefully employed. Frictional resistance to motion may be taken as
16 1b per ton.

Calculate also the current taken by the motors if the supply voltage is

500 volts. 50
Peactive efior = 59_0_%;—9 + 250 x 161b

— 11,4671b
Work done = 11,467 x 2,640
= 30,260,000 ft-1b

- Energy input = 59-_2;??"'_"00 % 0-000000377 kWh

= 16:3 kWh
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Time taken to travel § mile = é hr

16-3 x 1,000
5 1
10
= 652,000 watts
652,000
500

.. Power input

., Current

= 1,304 amp

Dimensional Equations. If a certain physical quantity y is pro-
portional to the product of two or more other physical quantities,
each of which is raised to some power which is unknown, e.g.
y oc x™z"w?, then the unknown indices m, n, and p can be deter-
mined by substituting their dimensions for the quantities y, z, z,
and w, and equating the corresponding indices of L, M, T, u, and
g, ns in the following example.

Example. The electrical power in a circuit is proportional to the voltage,
and to the resistance of the eircuit, each raised to some power. Determine
these powers by the use of the dimensions of the quantities involved,

Let Poc E™R®
or P=Fk.E™R"

where k is & number which has no dimensiona.
Then, substituting the dimensions of the quantities from Table 11, we have
using the electromagnetic system,

LAMT® = k [(LAMYT-2udym 5 (L1
Equating corresponding indices, we have

For L— i

2= §ﬂl+l‘l
For M—

lm%m, fle.me=2nm=-1
Algo, for T—

-3 ==-2m-n
which is satisfied also by m = 2, n = - 1

For u—
1
0= am + n
which is again satisfied by m = 2, n = =1,
B
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The dimensions of the physical quantities involved can also be
used to check, or detect, possible errors in equations which have
been derived, perhaps, from somewhat complicated theory. This
use is illustrated in the following example.
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Example. It is suspected that an error has been made in the derivation
of the expression
EwM

= V(@*M® + R,R,)* + o’L,R;

for the current in & circuit, in terms of the voltage E, angular velocity w,
mutual inductance M, self-inductance L, and resistances R, and R,. Ascertain
if this is so and, if necessary, make a correction to ensure that the equation is
dimensionally correct.

w, being an angular velocity, has the dimension 7}, and M has, of course,
the dimensions of inductance, i.e. Ly in the E.M. system. Then, substituting
the dimensions of the various guantities in the electromagnetic system, we
have—

I

Left-hand Side Right-hand Side
Liardrd > (pAmdr-audy (1) (Lp)
[T-2L%* + LYt 4 T3 Ly Loyt
Limip-,d

[_(_T'_'h’n" 4 LM T"L‘.u"*

Since the sum of terms which have the same dimensions as one another must
have the same dimensions as its constituent terms, the right-hand side can
be written

Limbp-ayt

E;L‘ﬂ:‘ i T"L"H'li

In order that the dimensions of this expression shall be the same as those
of the left-hand side, the second term in the denominator should have dimen-
sions 7" *L‘u®, so that the dimensions of the denominator as a whole would be

(1 Lot = 7Lt

which would give Lhﬂ‘]““p'b for the dimensions of the right-hand side, and
would thus make the whole equation dimensionally correct.

Thus, the dimensions Ly are missing from the last term in the denominator
of the right-hand side. Since these arc the dimensions of inductance, the
original equation. to be dimensionally correct, should havs read
3 EuM

V{@IM® + BR,) + o'L,R'L
L being an inductance, either relf or mutual.

I

Determination of “‘¢” (i.e. the Ratio of the Electromagnetic to the
Electrostatic Unit of Electricity). It has already been stated that

p'!s_* = a velocity = ¢

and that this velocity can be shown, experimentally, to be that of
light, i.e. 2:998 x 101 or 3 X 10 cm per sec, very nearly.

To determine this velocity, the ratio of the electromagnetic and
electrostatic values of some electrical quantity must be measured.
This ratio can be measured for any of the four quantities——capacit-
ance, resistance, e.m.f., and quantity of electricity. Of these, the
first is perhaps the best, and will be described.
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The method used necessitates the calculation of the capacitance
of some simple form of capacitor in electrostatic C.G.S. units, and
also the measurement of its capacitance in electromagnetic C.G.S.
units in terms of a resistance whose value in electromagnetic C.G.S.
units is known. "

The value of the velocity ¢ can be obtained from the ratio of the
calculated electrostatic value to the measured electromagnetic value
as below. :

Let Cgy be the calculated value of the capacitance in e.s.u.
»n Upy be the measured value in e.m.u.

From Table 1T —

1 e.8.u. of eapacitance - &L — £u neglecting the dimensions
le.m.u. of eapacitance L=my=1 of L and T

But s‘i,u‘i =g, Soep =

Rl =

1 e.s.u. of capacitance
** 1 q.m.u. of capacitance

Gl =

Thus, 1 e.s.u. of capacitance = ci' of 1 e.m.u. of cap.acitance' or the number
of e.s.u. of capacitance in 1 e.m.u = c?.
Now, if a certain length is expressed as L’ ft or L” in.,
? Sl

PP e - No. of inches in 1 ft

By analogy, -6,5 = No. of e.s.u.s of eapacitance in 1 e.mu. — ¢?
EM

: O 2.8
it JC“ c . : : > ‘ . o

Procedure. The capacitance Cy, having been calculated from the
dimensions of the capacitor, Cp, must be measured. There are
several ways of carrying out this measurement of capacitance in
electromagnetic C.G.S. units, the best of which is Maxwell’s bridge
method, described by him in his Electricity and Magnetism, Article
776.

In this method, the capacitor C to be measured is conneeted in
one arm of a bridge network, as shown in Fig, 2.1. A commutator
is also connected in this arm, by means of which the capacitor is
alternately charged and discharged. The commutator is driven by
a small motor, supplied from a steady source, and whose speed can
be varied as required. :

P, Q, and R are non-inductive resistors whose values in absolute
electromagnetic units are known. @ is a sensitive galvanometer,
of resistance g, and b is the resistance of the battery circuit.

The resistances of the leads in the capacitor branch are made
negligibly small.
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When the commutator is in such a position that the moving con-
tact 3 of Fig. 2.1is on contact 2, the capacitor C is discharged and the
currents flowing in the various arms, including the galvanometer
branch, are steady currents from the battery. When contact 3 is
on contact 1, the capacitor is charged to the potential of the battery

‘X~
e B
Ci ammty:’; Ay

3 |
ot 1&
Gz o

. v// ‘['

Fie. 2.1. CrroUIT FOR TRE DETERMINATION OF ¢

and the galvanometer current is altered owing to the varying
current taken by the capacitor while it is being charged. When
the capacitor is fully charged, no current is taken by it, and the
galvanometer current again takes up its steady value.

The galvanometer current can be made zero by suitable adjust-
ment of the resistances P, Q, and R, and of the speed of the com-
mutator,

The expression* for the capacitance of capacitor C is

5 i
Q 1‘(<P+Q+gn@+b+m)
Clxu ) m Qb 3 Qg . {2.9}
_f‘ +}T(Q+_b+R)”l +§(Q+P+9}}_

n is the frequency of the commutator. To a close approximation
Cyye = WQR provided P + R is large compared with Q.

The resistances must be expressed in electromagnetic C.G.S.
units of resistance. If expressed in ohms, the value of C will be in
farads. Many investigators have measured the ratio ¢ by the above
and other methods. From their results it appears that

¢ = 2:008 x 10 cm per sec
while the average value obtained by many investigators for the
velocity of light is 2:9986 x 10" cm per sec. These figures are
taken from the Dictionary of Applied Physics, Vol. II, p. 960, where
a record of much work carried out on the subject is given.

* J. J. Thomson first gave this equation, and the theory from which 1t is
derived is given also in Laws’s Electrical Measurements, p. 364.
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International and Absolute Units. Although the British Associa-
tion Committee on Electrical Measurements adopted th absolute
system of units in 1863, and this was confirmed at an International
Conference on Electrical Units in London in 1908, this conference
decided to specify material standards to be calibrated in absolute
units and thereafter set up or maintained as working standards.
This decision was taken because of the difficulty of making accurate
absolute measurements; but the fundamental standards determined
on the electromagnetic system based on the centimetre, gramme and
cecond—the standards for which were more permanent than elec-
trical ones—remained.

The four units established by these specifications (defined below)
were known as International Units. The Ohm was chosen as the
primary standard.

Derixirions oF INTERNATIONAL Umits. The International Ohia is the
resistance offered to the passage of an unvarying electrie current by a column
of mercury at the temperature of melting ice, of mass 14-4521 g, of uniform
eross-sectional area and of length 106-300 cra.

Although unnecessary for the purposs of definition, the cross-section of such
& column is very nearly 1sq. mm

The International Ampere ia the unvarying electric current which, when
passed through a solution of silver nitrate in water, **in accordance with Speci-
fication II attached to these resolutions,” deposits silver at tha rate of
0-00111800 g por sec.

The International Volt is the steady electric pressure which, applied to &
conductor of rusistance | internatiomal chm, produces & current of 1 inter-
national ampere.

The International Watt is the electrical energy per second expended when
an unvarying electric current of 1 international ampere flows under a pregsure
of 1 international volt.

The centimetre, gramme, and second were selected as the units
of length, mass, and time, by an International Electrical Congress
at Paris in 1881, and were defined by them

One of the main reasons for adopting an absolute system of units
originally was the difficulty of constructing standards which did not
vary appreciably with time. Since then, however, wire resistance
«tandards have been developed which are sufficiently permanent for
their use to act as a better method of maintaining the international
ohm than by occasionally setting up and measuring the ‘“mercury”
ohm. Thus it has become the practice of the national standardizing
laboratories to maintain the international chm by wire resistance
standards.

As also, by 1930, it was clear that the absolute ohm and ampere
could be determined as accurately as the international units, a
decision was finally taken in 1946 to abandon the international units,
reverting to the fundamental units defined in 1908. The date of the
change-over was Ist January, 1948,

Following a number of determinations of the absolute ohm and
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ampere by various national standards laboratories during the period
1934-1942 the National Physical Laboratory has adopted the
following conversion factors—

1 international ohm = 1-00049 absolute ohms

1 e ampere = 0-99985 n ampere
from which, 1 5 volt = 1-:00034 = volts

] i watt = 1-00019 A watts

1 5 henry = 1:00049 ¥ henrys

1 i) farad = (-09951 4 farad

An appendix to Reference 66 gives “Definitions of the Units
recommended by the International Committee on Weights and
Measures for Legal and Similar Purposes.”

Legal Standards. For legal purposes it is necessary to lay down
some simpler, if less accurate, standards than those referred to above.

It was laid down by an Order in Council (London Gazette, 1949,
No. 38683, p. 3810) that the legal standards shall be—

Electrical Resistance. A standard of electrical resistance denominated one
Ohm, agresing in value within one hundredth part of 1 per cent with that of the
fundamental unit, and being the resistance between the copper terminals
of the instrument marked ‘“Board of Trade Ohm Standard verified, 1894
and 1909, to the passage of an unvarying electrical eurrent when the coil of
insulated wire forming part of the aforesaid instrument is in all parts at a
temperature of 14-9° C,

Electrical Current. A standard of electrical eurrent denominated one
Ampere, agreeing in value within one tenth of 1 per cent with the fundamental
unit, and being the eurrent which is passing in and through the coils of wire
forming part of the instrument marked “Board of Trade Ampere Standard
verified, 1894 and 1909," when on reversing the current in the fixed coils the
change in the forces acting upon the suspended coil in its sighted position is
exactly balanced by the force exerted by gravity in Teddington upon the
iridioplatinum weight marked 4 and forming part of the said instrument,

Electrical Pressure. A standard of ecctrical pressure denominated one
Volt, agresing in value within one tenth -of 1 per cent with the fundamental
unit and being the pressure which when applied between the terminals forming
part of the instrument marked “Board of Trade Volt Standard verified, 1894
and 1909 and 1948, causes that rotation of the suspended portion of the
instrument which is exactly measured by the coincidence of the sighting wire
with the image of the fiducial mark 4 before and after application of the
pressure and with that of the fiducial mark B during the application of the
pressure, these images being produced by the suspended mirror and observed
by means of the eyepiece.

The legal standards are maintained at the National Physical Laboratory.

Absolute Measurements. 1. MeasureMENT oF REsisTaxce. In
Table IT resistance has the dimensions L7~ in the electromagnetic
system. The dimensions are those of a velocity, and thus absolute
measurements of resistance involve the measurement of either a
veloeity, or of length and time, which determine a veloeity, Such
measurements often involve the measurement of inductance and
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time, since inductance has the dimensions of length in the electro-
magnetic system.

At least eight different methods have been used, but only one*
can be given here.

Lorenz Method. This method, originally used by Lorenz in 1873,
has since been used for the absolute measurement of resistance,
sometimes in a modified form, by a number of investigators.

At the National Physical Laboratory the latest determination
of the ohm, by this method, was made in the years 1933-1936 (see

— esees

llllllllr Mx«-uw\,--———
Fio. 2.2. LogENz METHOD FOR THE ABSOLUTE MEASUREMENT
or RESISTANCE

P. Vigoureux, N.P.L. Collected Researches, 1938, Vol. 24, p. 277).
For descriptions of American work on the subject see H. L. Curtis,
“A Review of the Methods for the Absolute Determination of the
Ohm,” Journal of the Washington Academy of Sciences, 1942, Vol. 32,
p. 40, H. L. Curtis, C. Moon and C. M. Sparks, “A Determination of
the Absolute Ohm using an Improved Self Inductor,” Journal of
Research of the National Bureau of Standards, 1938, Vol. 21, p. 375
and H. L. Curtis, “Review of Recent Absolute Detetminations of
the Ohm and Ampere,” Journal of Research of the National Bureau
of Standards, 1944, Vol. 33, p. 235.

In the original experiments a circular metal disc, mounted con-
centrically inside a solenoid, was driven at a uniform speed of
rotation.

A steady current was passed through the solenoid, in series with
which was a low resistance R, from the terminals of which leads were
taken to two small brushes, one pressing on the edge of the rotating
disc and another making contact with the disc near its centre. A
sensitive galvanometer was included in one of these leads as shown
in Fig. 2.2.

* Other methods are given in the Dictionary of Applied Physice, Vol. 11,
in the section on ‘ Electrical Measurements."
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As the disec rotates e.m.f.s are induced in it, since it is placed at
right angles to the field of the solenoid. The connections from the
brushes on the disc to the terminals of R are so made that the
induced e.m.f. in the disc is opposed by the voltage drop due to
the solenoid current / in the resistor E. Thus, when the induced
e.m.f. is exactly equal to the voltage drop, /R, no current passes
through the galvanometer, which therefore gives no deflection.

Let M be the mutual inductance between the disc and the solenoid.

i.e. M = the magnetic flux passing perpendicularly through the

disc surface when 1 anfpere flows in the solenoid.

Thus, the flux cutting the disc when I amperes flow through the
solenoid — M1 webers. The speed of rotation of the disc (together
with the current I and resistance R, if necessary) can be adjusted
until no eurrent flows through the galvanometer.

Let N rev per sec be the speed of rotation for zero galvanometer
deflection.

Then e.m.f. induced in the disec = MIN volts

Voltage drop in the resistor = IR volts,

R being expressed in ohms.

Thus MIN = IR
or R = MN ohms ; ; . (2.10)

The value of the mutual inductance M is calculated from the
dimensions of the solenoid and disc, and from their relative positions,
using methods such as those described in Chapter V.

As & check upon this expression from the point of view of the dimensions
of the quantities involved, consider the dimensions of the product MN.
Magnetic flux _ (L2 M} 770y

Current (Lt Mt oy #

[M] =

Revolutions
Seconds

~ [MN] = [L’T'lp]_ which are the dimensions of resistance

[¥N] = = [T]

If the resistance R is that of a column of mercury of known dimen-
sions, the resistivity of mercury can thus be obtained in absolute
measure, from which the resistance of the international unit of
resistance in absolute units can be calculated. Otherwise the resis-
tance R may be some resistance whose magnitude, in terms of the
standard ohm, is known to a high degree of precision.

The em.f.s in the disc may be thought of as exist'ng in an
infinite number of radial elements, each cutting through a field of

i MI MI
flux by oqual 10 area of the disc ~ 77’
the dise in metres. The em.f. across the brushes is thus that
induced in a radial element of length r, moving with a mean linear

where r is the radius of
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velocity of mwrN metres per sec, through a field of flux density

ﬂif. Thus, from Equation (1.48), the e.m.f. induced in this element
nr

(i.e. the e.m.f. across the brushes) is

g-'g. r.arN = MIN volts

which is the same as the expression given above.

Precautions Necessary to Ensure Accuracy of Measurement. To obtain an
accuracy of measurement of the resistance of 1 part in 10,000, both M and N
must be determined with an accuracy of a few parts in 100,000,

The speed N may be determined by stroboscopic methods (see Chapter
XXII) or by a directly driven chronograph, the latter being F. E. Smith’s
method (see Refs. (1), (6) ). He also incorporated a fly-wheel to ensure uniform-
ity of speed.

To obtain the necessary accuracy in the value of M, both the disc and sole-
noid must be carefully constructaed and their dimensions accurately meagured.
The former of the solenoid is usually amarble cylinder, very carefully machined,
the dimensions being obtained by the use of precision measuring apparatus,
Th;;_ winding is of bare copper wire, wound in groovea cut in the eylindrical
surface.

Since the effective dimensions of the dise, when rotating, cannot be obtained
with the same accuracy, the value of M is made aslittle dependent upon these
dimensions as posesible by suitably choosing the dimensions of the solenocid
relative to the digc diameter. The dise is usually of phosphor-bronze.

The effect of the earth's magnetic field upon the e.m.f. induced in the dise
is made small by arranging the plane of the latter in the magnetic meridian.
Two measurements are made—one with the current / reversed—to eliminate
this effect.

To reduce the effects of thermo-electric e.n.f.s at the brush contacts,
F. E, Smith used two phosphor-bronze discs of special construction, and two
solenoids.

The accuracy of such absolute measurements depends upon the
precision with which the component apparatus can be made and
upon that of physical measurements such as those of length and
time. It also depends on the variation of the dimensions with time.

Length can now be measured, under the experimental conditions
applying to such work, to within 0-0001 mm, giving an accuracy of
about one part in a million for the components used in these measure-
mflalmlts. Time, or frequency, can be measured to about one part in ten
million.

The overall uncertainty in the values determined for the ohm is
probably not more than 20 parts in a million, and the most recent
comparisons of the results of determinations at various national
laboratories show a total spread of only 12 parts per million for the
ohm and 4 parts per million for the ampere.

2. MEASUREMENT OF CURRENT. The dimensions of ecurrent, in
the electromagnetic system, being LEM'7T-1,}, the dimensions of
(current)® are LM T2 if u is regarded as non-dimensional. But these
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are the dimensions of force, so that absolute measurements of current
involve the measurement of force.

This force may be exerted in two ways—

(@) By the current in a solenoid upon a suspended magnetic
needle—as in a tangent or sine galvanometer,

(b) By the current in one part of a circuit upon another part of
the circuit in series with it, and carrying the same current—as in an
electrodynamometer or current balance.

Galvanometer methods suffer from the disadvantages that there
is always some uncertainty about the exact position of the poles of
the magnetic needle used, and also that the horizontal component
of the earth’s magnetic field must be separately determined with

.great accuracy before the results of current measurements can be
interpreted.

Electrodyniamometers measure current in terms of the torsion of
a suspension wire or of a bifilar suspension, and this is not very
satisfactory. Methods of measurement which utilize some form of
current balance are therefore probably the most satisfactory, and
are most commonly used.

Tangent Galvanomeler Method. If a current of I amperes flows
in the coil of a tangent galvanometer, it can easily be shown that
the steady deflection 0 (see Fig. 2.3) is such that

1=2;£ta.nﬂ . - LY
where r — the mean radius of the galvanometer coil in metres,
N = number of turns on this coil,
and H — the horizontal component of the earth’s magnetic field
in amperes per metre.

Obviously the current can be obtained from this expression, in terms
of the deflection, the dimensions of the coil, and H.

The following assumptions are made in deriving this expression—

(¢) That the plane of the galvanometer coil lies exactly in the
magnetic meridian, and is exactly vertical.

(b) That the magnetic needle is infinitesimally short.

(c) That the needle is suspended at the exact centre of the coil.

(d) That the axis of the needle is horizontal.

These assumptions are obviously not all justifiable in practice.
Again, unless the galvanometer coil has only a single layer, and is
exactly circular, the value of r may be somewhat uncertain. The
accuracy of the measurement depends, also, directly upon the
accuracy with which H is known for the particular place at which
the measurement is being made. This last is a great disadvantage
of the method, since it usually necessitates a separate—and highly
aceurate—-determination of H, and this is about as difficult a mea-
surement as that of the current itself. Kohlrausch devised a method
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of measuring H and the current simultaneously (see Philosophical
Magazine, Vol. XXXIX), but the method does not appear to have
been adopted generally.

Corrections can be applied to allow for some of the divergencies
between practice and theory. Two of these—given by F. E. Smith
in the Dictionary of Applied Physics, Vol. I1, p. 231—are as follows—

(@) To allow for the fact that all the turns on the galvanometer

Magnetic Needle
~Llength 1

-
3

|
o s

2| 5
38
@) gl-=
R
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Fig. 2.3. TANGENT GALVANOMETER

coil cannot be coincident in space, the value of H at the eentre of
the coil is taken as

NI, r+d+ Vir+d? bt
..__0‘
dd e d 4 Vir- P + b

instead of %::—, as assumed in the elementary theory of the gal-

vanometer. In this expression 2b = axial length of the coil, 2d
= radial depth of the eoil, both in metres. This expression is due
to A. Gray, and is given in his Absolute Measurements,

(b) To allow for the fact that the centre of the needle is not
exactly at the centre of the coil, the correction factor to be applied
to the value of H due to the current is
3 0y + 627 - 2822
Lo 2= re
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where dz, dy, and 0z are the displacements of the centre of the needle
relative to the centre of the coil. These displacements are measured,
of course, in three, mutually perpendicular, directions, éz being
measured along the axis of the coil.

If, however, corrections are to be applied to allow for all depar-
tures from the theoretical assumptions, the method becomes very
cumbersome.

Helmholtz modified the tangent galvanometer by adding a second
coil and Elacing the needle midway between the two coils in the
uniform field produced by this arrangement (see Chapter I). The
correction for axial displacement of the centre of the needle from
the centre of a coil is thus rendered unnecessary.*

Rayleigh Current Balance. The principle of this instrument will
first of all be discussed. If a current-carrying coil is placed with its
plane parallel to that of another current-carrying coil and in such
a position that their axes are coincident, a force—either of attraction
or repulsion—will exist between the coils, depending upon the cur-
rent directions. This force is proportional to the product of the
two currents in the coils. If the coils are connected in series, so
that the same current flows through both, the force between them
is proportional to the square of the current passing. This force
can be measured if one of the coils is movable, and is suspended
from one arm of a balance, the force thus being ‘‘weighed’’; hence
the name “current weigher” given to such instruments. Lord
Rayleigh and Mrs. Sidgwick, in their experiments for the determina-
tion of the electrochemical equivalent of silver, used two parallel
coaxial fixed coils with a moving coil suspended between them, the
three coils being so arranged relative to one another that the force
upon the moving coil was maximum. This arrangement is shown in
Fig. 2.4,

The force acting on the moving coil, and measured by the balance,
is given by

dM

RN | s r W
== o newtons g (2.12)
where 1 is the current in amperes in the three coils in series; M is the
mutual inductance of the coils, and depends upon their numbers of
turns, and upon their dimensions and relative positions; dz is an
element of length along the axis of the three coils. The value of M
can be calculated from the dimensions of the coils by means of

formulae given by Gray (Ref. (7)) or by J. V. Jones (Ref. (8)).

In the above apparatus, if the three coils are so placed that the
moving coil is at a distance of half their radius from each of the

fixed ecoils, the value of %‘i{ becomes dependent only on the ratio

* The theory of this galvanometer is given in Gray's Absolute Mcasurcments
in Electricity and Maqgnetism, Vol, IT, Part 1.
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adius of fixed coil :
e x' i __ Under these circumstances, also, very little
radius of moving coil

error is introduced by a slight inaccuracy in the axial position of the
moving coil (see Chapter I).

Bosscha (Ref. (9)) introduced an electrical method of measuring
the ratio of the coil radii which does away with the necessity for mea-
suring the mean radii of the coils themselves—somewhat uncertain
measurements in the case of multi-layer coils.

The measurement of current in absolute units, by means of the
Rayleigh balance, thus becomes little more than a careful weighing,
very accurate measuréments of dimensions being avoided. This is
perhaps the greatest advantage of this form of current balance.

Fia. 2.4. ARRANGEMENT or COILS IN THE
RaviEigH CURRENT BALANCE

Other advantages, common to all forms of current balance, are that
neither measurement of the horizontal component of the earth’s
magnetic field nor a determination of the torsion constants of &
suspension are required.

The weighing is usually carried out by observing the change in
the weights necessary to balance the moving coil when the current
in it is reversed, this having the effect, of course, of reversing the
force upon the moving coil. It should be noted that the expression
for the force, given above, is in newtons; and, since the weights used
in the weighing will be grammes, the value of g—the acceleration
due to gravity—must be known. In some forms of current balance
the accuracy with which g is known determines the accuracy of the
current measurement,

Many forms of current balance have been constructed on this
principle and have been used for the determination of the ampere in
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absolute units.* At the National Physical Laboratory the most
recent determination of the ampere was made during the vears 1930
36 (see P. Vigoureux, N.P.L. Collected Researches, 1938, Vol. 24,
173).
R In a).]J cases a precision balance of special form is used. Great
care is necessary in the construction to ensure that the flexible leads
for the purpose of leading eurrent into the moving coil or coils exert
no appreciable torque upon the moving system. Other important
points are the selection of truly non-magnetic material for the
bobbins of the coils. Marble is perhaps the best material from this
point of view. Brass is suitable if selected with care. The cooling
of the coils, also, is very important, water jackets being used for the

*

Fia. 2.5, BiriLar Winpina

lixed coils and a water-cooled chamber being provided for the
moving coil.

3. DETERMINATION OF THE Vorr. The value of the volt is
obtained by Ohm’s Law using the values of the ohm and ampere
determined by the methods previously described. In practice the
e.am.f. of a standard cell is determined and the standard cell then
forms, with the ohm, the second available standard.

Standard Resistors. The standard resistor known as the “legal
ohm,” as representing, for general commercial purposes, the unit of
resistance, has already been referred to. Since it is considerably
easier to compare resistances than to deterwine their value in
absolute measure, it is convenient to have available standard
resistors which can be used as reference standards. For general
purposes, measurements of resistance can be made with sufficient
accuracy by comparison with such standards. The values of sub-
standard resistors can be determined by comparison with these,
such sub-standards being used in the calibration of laboratory
standards of resistance.

One form of standard resistor consists of a coil of platinum
silver wire non-inductively wound on a metal bobbin The wire is
wound as shown in Fig. 2.5. In this bifilar method of winding, the

* Detailed descriptions of these pieces of apparatus are given in the Dic-
twnary of Applied Physics, Vol. 11, pp. 236, ete., and in Laws's Electrical
Megsyrements, p. 90.
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wire is doubled back on itself before winding. This gives the effect
of two wires, side by side, carrying currents in opposite directions.
The magnetic fields due to the two currents neutralize one-another,
giving a very small inductance.

The coil is insulated from the metal bobbin by a layer of shellacked
silk which is baked before the wire is wound on. The wire is laid
in one layer in order that the cooling shall be as efficient as possible,
it, being essential that the coil shall not be appreciably heated during
use. After winding, the coil is usually shellacked and baked at a
temperature of about 140° C. This serves the double purpose of dry-
ing out the coil and of annealing the wire, the latter being neces-
sary in order to remove conditions of strain, due to bending, from
the wire, and so ensure greater permanence of the resistance of the
coil. The coil is fixed inside an outer cylindrical metal ease, which
has an ebonite top to which the coil and bobbin are attached, and
the space between the coil and the outer cylinder is filled with paraf-
fin wax. The terminals consist of long copper rods, hard-soldered to
the resistance coil, the ends of these terminals being amalgamated.
In use, the coil is maintained at a constant temperature for some
hours before measurements are made. This is done by immersing
the major portion of it in water.

The Board of Trade ohm is of this form.

More recent designs for standard resistance coils differ mainly in
the new materials used for the coil former; e.g. Barber, Gridley and
Hall (Ref. (73) ) have described the construction at N.P.L. of strain-
free coils which lie in grooves on Perspex discs.

Many other forms of standard resistor have been constructed,
the most important being those designed and constructed by
the Standards Laboratories of different countries, such .as the
German Physikalisch-Technische Reichsanstalt, the American
Bureau of Standards, and the National Physical Laboratory of
this country.*

After experiments with platinum wire and a gold-chromium alloy
it has been concluded that forms of manganin are the best materials
for standard resistance coils. By suitable heat treatments and
mountings, freeing the coils from strain, and by enclosing them in
hermetically sealed containers, it is possible to obtain a constancy
over a year within one part in ten million.

The reference standard of the N.P.L. consists of a group of five or
more coils of nominal yalue 1 ohm which have shown the greatest
relative constancy over preceding years. The average value of the
group is assumed to have remained constant, and values with an
accuracy of one part in a million are assigned to the reference
gtandards for the purpose of international comparisons.

+ Several forms are described in the Dictionary of Applied Physics, Vol. T1,

p. 700, ete., and in the publications mentioned in Refs. (2), (10), (11), (12),
(88). (89), (70), (1), (72), at the end of this chapter.
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Requirements of Standard Resistors. The most important pro-
perties of resistors which are to be used as standards of reference
are—

1. Permanence. The necessity for this property is obvious. In
order to avoid variation, with time, of the resistance value of the
finished standard, annealing during manufacture is essential.
Thorough drying out by baking after covering the wire insulation
with shellac is also necessary, and if the coil or strip is immersed in
oil for cooling purposes, care must be taken to ensure that the oil
is free from acid and water, in order to avoid corrosion of the resis-
tance alloy.

2. Robust and strain-free construction.

3. A small temperature coefficient of resistance, in order that the
correction for temperature variations shall be small.

4. Small thermo-electric effects when a current is passed through
it.

Such resistors should also have as low an inductance as possible
and should be capable of carrying an appreciable current without
overheating,

Low-Resistance Laboratory Standards. In the case of low-resis-
tance standards such as those used for potentiometer work, the
currents to be carried are often very large, and adequate cooling
must be provided, this being done by immersing the resistor in
oil (first-grade paraffin oil being often used for this purpose), the oil
being stirred by a motor-driven stirrer and water cooling being
provided. A distinction should be made, however, between resis-
tors of this latter class and those which are used for reference
purposes only, and are not required to carry large currents. These
low-resistance standards are fitted with potential terminals as well
as current terminals. The potential terminals fix the points on
the resistor between which the nominal resistance of the stan-
dard is measured. The current terminals, by means of which the
resistor is connected to the supply circuit, should be at an appre-
ciable distance from the tapping points of the potential leads in
order that the current distribution shall be uniform throughout the
cross-section of the resistance material, before the tapping points are
roached (see Ref. (13) ).

Fig. 2.6 shows a low-resistance standard of the Drysdale-Tinsley
non-inductive type, designed to carry heavy currents such as may be
required in potentiometer and other work. In addition to the ordi-
nary current and potential terminals, it has, fitted to the potential
terminals, mercury contacts for use in a standardizing bridge (see
Chap. VII). This type of resistor is manufactured by Messrs.
H. Tinsley & Co., and is designed for use with either direct or
alternating currents (up to 1,000 ¢/s). The resistance material used
is manganin, silver-soldered to copper rings, which are screwed to
heavy copper lugs to which they are also soldered with tin-lead

4~—(T.5700)
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solder. The manganin resistance strips are in the form of concentrio
cylinders, through which the current passes axially in opposite
directions, thus giving a very low inductance. A range of resistors
of the type shown in the figure is manufactured, having resistance
values from 0-02 ohm down to 0-0001 ohm. The watts dissipated are
200 for resistors from 0:02 ohm down to 0-005 ohm, and 500 from
0-001 ohm down to 0-0001 ohm.
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¥Fi1e. 2.6, Dryspane-Tinsuey Non-iNnpucTive Low
REsistANcE STANDARD (500 Watt Type)

Resistance Materials. It is desirable that a material to be used in the
construction of standard resistors should possess the following properties—

(@) High resistivity, in order that the standard resistor, when constructed,
may be reasonably compact.

(b) Permanence. There should ba ag little variation in registanes with time
as possible.

(¢) Tt should have & low thermo-electric force with copper.

(d) Low temperature coefficient, in order that the correction for tempera-
ture variation may be small.

(e) It should not easily oxidize, and should be unaffected by moisture,
acids, ete.

In addition, it should, if possible, be easily worked and jointed.

From intercomparison, over a long period of years, by various investigators,
of & number of standard coils made up in 1864 by Mathiessen and Hockin,
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on DBehalf of the British Association, it appeared that platinum was the best
material from the point of view of permanence, though later work has shown

the superiority of manganin.
temperature coefficient—about 0'4 per cent per 1°C. Many

Platinum has the disadvan

of a high

loys, such as

platinum-silver, platinum-iridium, German silver, manganin, eto., have been
used as resistancs materials, and much research, beginning with the work of
Mathiessen (Ref. (14) ) has been carried out upon the subject.,

Manganin. Weston, in 1889, discovered that alloys of copper, manganese,
and nickel, have a very small temperature coefficient. Manganin* is an alloy
of this type. Lindeck (Ref. (12)), Bash, and others, have since further investi-
gated the properties of such alloys, and it has been found that the composition
—=84 per cent copper, 12 per cent manganese, 3:5 per cent nickel, and 0-5 per
cent iron—has an extremely low temperature coeflicient and is most suitable
for resistance purposes.

TABLE V: ProprErTIES OF OTHER RESISTANCE MATERIALS

T%wrmc-
P Temperas electrie
Resistivity e.m.f.
: Composition tura
Material (ADDrox.) tmlg:;{\);un- Coefficient %%31;::, Remarks
(% per * C) (miero-
volta)
Copper 71%
Therlo .| Aluminium 18-5% 47 0-0005 Yery low | Comparatively new mate-
| Manganese 10-6% (at 20° C) | rial. Properties similar to
bon 2% | manganin.
Platinum-silver | 1 part platinum, 2 316 0-03 Bmall ' High temperature coeffi-
parta silver clent.
Constantan .| Copper and nickel 50 - 0-001 40 Cheap. Easy to work.
(at 20°C High thermo-electric
APProx.) e.n.f. Ia a disad vantage.
Eureka .| Copper 60% As |[for Constan|tan.
Nickel 40%,
German silver .| Copper 83% 30 003 35 The presence of zine In
Zino 22%, (at 20° C) alloys produces unstable
Nickel 16% properties.
Platinotd .| German sllver with 34 to 0:02to | 20 Tungsten Iimproves the
addition of about 40 0-03 permanence.
1% tungsten. | |
Nichrome 95 | 0-04 Used for resistors of
(at 20° C) | rougher class, especiall
approx. | at high temperatures.
| non-corrosive.
Platinum . 11 0-36 Used in resistance thermo-
metry.
iron ' 12 0-4 | Used for resiastors when
{ts magnetic properties
and high temperature co-
sfficient are unimportant,
Karma .| Nickel 76% | 133 0002 2 High-value precision

Chromium 20%,
Balance iron and
aluminium,

resistors.

* The name “Manganin'' is a registered trade mark belonging to Isabelien- Huette,

Heusler K -G, (Germany), who first produced this alloy commerecially in 1889,
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Copper-manganese-nickel alloys similar in characteristic to
manganin are made by a number of manufacturers under their own
trade names; a typical example being the alloy Minalpha made by
Johnson Matthey & Co., Ltd. Fig. 2.7 shows a temperature-
resistance curve for Minalpha, and it can be seen that the temperature
coefficient ‘of resistance is practically zero over a limited range of
ter‘il{erature at 26°C.

e resistivity of Minalpha is 41-5 microhm-centimetres at 20°C,
and the temperature coefficient is about +- 0-0004 per cent per' 1°C
at 20°C, as indicated by the curve. The thermo-electric e.m.f.
against copper is — 0-5 microvolts per 1°C.

Resistance alloys show a change in electrical resistance when they
are subjected to mechanical strain, and this is possibly the primary
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Fia. 2.7. Tar TEMPERATURE-RESISTANCE CURVE O0F MINALPHA
(Johnson, Motthey & Co., Lid.)

cause of driff in the value of resistors with time. In order to achieve
the highest stability a strain-free construction must be adopted, i.e.
the resistance wire should be properly annealed after winding and
mounted in such a manner that it is free from mechanical constraints.

The manganin alloys have a strain gensitivity, expressed as the
ratio of percentage resistance change to percentage strain, of about
0-4, which is quite low—a further factor in their favour.

Annealing of manganin to remove initial strains is best done by
heating the material to a temperature of 550°C. If this is done in air
there will be some oxidation of the surface, and the wire must be
pickled in chromic acid and then washed in distilled water to remove
the oxide layer. Annealing in an inert gas prevents oxidation, but
in practice some pickling is still necessary to achieve the utmost
stability. This process cannot be applied to insulated wires, and in
these circumstances the wound resistor is annealed by heating at
about 140°C for at least 10 hours. Resistance standards having
values of 1 and 10 ohms are made with bare wire which has been
subjected to a high-temperature anneal. The resistance coil is
virtually self-supporting and can be mounted with a minimum of
mechanical constraint, thus achieving a virtually strain-free
construction.
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These conditions are not readily realized with higher-value
resistors, which are normally wound with insulated wire on a
supporting bobbin; as a result of this, the long-term stability of
such resistors is not comparable with that of the 1:ohm standards.
The notable feature of the new resistors due to Barber, Gridley and
Hall (Ref. (73) ), previously referred to, is the attainment of a true
strain-free construction with 1,000 ohm coils.

It is a common practice to coat insulated wires after winding
with a protective coating of shellac; the shellac absorbs moisture
from the atmosphere which causes it to swell and stress the wire,
giving rise to small variations of resistance with time.

Current Standards. It is obviously impossible to set up a standard
of current in the same sense that a standard of resistance can be set
up, and in practice the standard cell is maintained as a second
working standard with the ohm. Any voltage can be accurately
measured by comparison with a standard cell, using a precision
potentiometer, and current is therefore measured with the standard
ohm and a standard cell, using a potentiometer.

Kelvin Current Balance. The current balance as used for the
determination of the absolute value of the ampere has already been
described. Lord Kelvin designed an instrument the action of which
depends upon the same principle and which has been used for the
accurate measurement of current. The instrument mentioned in
the definition of the legal ampere is a special form of the Kelvin
balance.

The Kelvin balance is now described as a matter of historical
interest only, because a far higher degree of accuracy in direct-
current measurement can be achieved with a standard resistor and
potentiometer, and in alternating-current measurement by using a
transfer device such as an electrostatic voltmeter or a vacuo-thermo-
junction. These particular devices are described in subsequent
chapters.

The Kelvin balance has been used in the past for the measurement
of currents from 0-1 to 10 amperes. The instrument consists of
six coils, four fixed and two moving, the latter being carried on
a beam which can rotate in a vertical plane, like the beam of a
chemical balance. Instead of a knife edge, as the means of pivoting
this beam, it is suspended at its centre by two flexible copper
ribbons, each consisting of a large number of fine wires. These
ribbons also act as leads to the moving coils. The latter are situated
between the two pairs of fixed coils as shown in Fig. 2.8, all six
coils being connected in series, the connections being such that
the currents flow as shown. Under these conditions the top fixed
coil on the right attracts the adjacent moving coil 4, while the
bottom fixed coil repels 4. On the left the top fixed coil repels
the adjacent moving coil B, while the bottom fixed coil attracts B.
The total effect is thus to cause an anti-clockwise movement of the
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beam carrying the moving coils, This anti-clockwise torque is
balanced by means of weights carried by a small carriage which
runs on a graduated bar attached to the moving beam. This carriage
is moved by mears of cords which pass through holes in the case of
the instrument. To ensure that the weights shall always be placed
in the same position on the carriage, the latter is fitted with two
small conical pins, which fit into holes in the weights.

To use the instrument, a known weight, whose value is suitable
for use with the current to be measured, is placed on the carriage,
and a counterpoise of the same value is placed in the aluminium
V-shaped trough attached to the right-hand -moving coil. The

Stranded Copper Kibbons
(Both in centre of beam actually

o
Fra 2.8. AprancEMENT oF Coimns v Kprviy CURRENT
BALANCE

carriage is then moved to zero at the left-hand end of the graduated
scale, and the clamping device, for removing the weight of the
moving system from the copper ligaments when the instrument is
not in use, is freed. The moving system should then be balanced as
indicated by the pointers—one at each end of the beam—which
move over small vertical scales attached to the base. A means of
adjustment is provided to obtain complete balance with zero current
if this condition should not be obtained without.

When current flows through the instrument, the anti-clockwise
torque produced by it is balanced by moving the carriage, with is
weights, along the scale to the right. If 2l cm is the length of the
scale, and balance is obtained with a movement of the weight of
zom from zero, then, the moving system being suspended at its
centre, the total turning moment due to the weights, each of weight
W grammes (say), is WI—- W(l - x) = Wazg-em. At balance this
turning moment is equal to that due to the current, which latter is
proportional to the square of the current. The current 7 is calcu-
lated from the equation

I=K2yD . : e ael219)

where D is the displacement of the moving weight in scale divisions
for balance, and K is a constant for the instrument which depends
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also upon the weight used. A fixed inspectional scale for approxi-
mate readings is fitted behind the moving scale, the former being
graduated in terms of 24/D. Four sliding weights and four counter-
poise weights are supplied with the instrument, in order to obtain
different ranges, the carriage constituting the smallest of the sliding -
weights. These four weights are in the ratio 1, 4, 16, 64, The first
being the weight of the carriage, the last three are 3, 15, and 63
times the weight of the carriage respectively.

Kelvin balances can be used with alternating current as well
as direct, since, the currents in all the coils being the same (because
they are in series), all the magnetic fields of the coils reverse direction
together, thus producing a turning moment which is always in the
same direction.

Voltage Standards—Standard Cells. The Weston Standard Cell is
now used exclusively as the standard of e.m.f.; it was patented

— Cadmium Sulphate
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Fie. 2.9. WesToN STANDARD CELL

in its original form by Weston in 1892. It has completely supplanted
the earlier Clark cell (Ref. (19) ). The present form of Weston cell is
illustrated in Fig. 2.9. The positive element is mercury covered by a
depolarizer of mercurous sulphate, and the negative element is an
amalgam of 1 part of cadmium and 7 parts of mercury. The
electrolyte is a saturated solution of cadmium sulphate, and to ensure
saturation cadmium sulphate crystals are added to it. Lord
Rayleigh suggested the H-form shown, the two limbs being
hermetically sealed. The connections to an external circuit are made
by platinum wires sealed into the glass.

The present cells are usually of the acid type in which the cadmium
sulphate is dissolved in 0-1 N sulphuric acid. The acid cell is less
subject to irregular variations and has less temperature hysteresis
than the neutral cell.

The e:m.f. of the acid cell is 1-01859 volts at 20° C: it falls by
40 microvolts per 1° C rise in temperature.
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Each limb of the standard cell has a comparatively high tem-
perature coefficient and the overall value is the difference between
the values for the two limbs. Because of this it is important to
ensure that the whole cell is at the same temperature and protected
from draughts. Standard cells must be totally enclosed and
preferably oil-immersed to ensure evenness of temperature.

The temperature coefficient of the standard cell is related to the
solubility of the cadmium sulphate, and unsaturated cells, i.e. with
no crystals undissolved, have a negligible temperature coefficient.
Such cells have a lower stability than the saturated cells but are
often used in industrial applications where wide temperature
variations are encountered.

The internal resistance of the acid-saturated cell is about
1,000 ohms and rises slowly with age. The e.m.f. of these cells does
not change by more than 1 or 2 parts in 10° over several years.

Precautions when Using Btandard Cells. Great care must be taken to susure
that when in use no appreciable current is taken from a standard cell, aa the
e.m.f. is only strictly constant on open circuit. The voltage falls when a
current is taken irom such cells, and although they recover after a time, such
disturbances are undesirable and may lead 1o considerabls errore in measure-
ment. Standard cells are thus only used in null methods of measurement,
auch as in measurements by the potentiometer. A high resistance should be
connected in saries with the standard cell, which protects it during the initial
manipulations of the apparatus and which can be cut out when approximately
balanced conditions are obtained.

Care should be taken also in moving a standard cell, ae any appreciable
shaking up of the chemicals in the cell tends to produce variations of e.m.f.

For storage purposes & dry position having a fairly uniform temperature of
about 16° to 20° C should be selscted. in order to &void troubles from hysteresis
effects due to temperature variations, and to svoid any posaibility of leakage
currents due to moisture on the insulating material between the terminals
of the cell.

The use of & group of standard cells as a working standard in international
comparisons of voltage is described in Refs. (66) and (69).

Standards of Mutual and Self-Inductance. It has been seen
previously (Table IT) that the dimensions of inductance in the electro-
magnetic system are those of length. Thus standards of inductance,
both self and mutual, depend for their value upon their dimensions,
together with the number of turns of wire in them, this latter being
a mere number which has no dimensions.

The self-inductance of a coil, or the mutual inductance of a system
of coils, can be calculated from the dimensions of the coils by the use of
formulae which have been given by many wotkers on this subject.*

In the construction of a primary standard of inductance, whether
mutual or self, some form must be adopted for which a rigidly
accurate formula exists for calculation purposes. The design should
be such as to facilitate the accurate measurement of the dimensions

* References to publications giving such formutae are given ot the end of the
chapter.
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of the standard, for, if the formula used is rigidly correct, the errors
in the calculated value, as compared with the actual value of the
inductance, will depend very largely upon the accuracy of such
measurements. There should, also; be no doubt about what lengths
should be taken as the effective dimensions of the standard. For
this reason the coils are usually single layer, and are often wound
with bare wire laid in a screw thread cut in a marble cylinder.
Other factors influencing the design are that the dimensions should
be subject to as little variation as possible with time in order to
ensure permanence of the inductance of the standard, and also that
the bobbins used for the coils should be absolutely non-magnetic.

It has been found that marble is the best material for the purpose, its
advantages being: (a) it does not warp and is unaffected by moisture and
atmospheric conditions; (b) its electrical resistance is very high, so that it
sorves as an insulator when bare wire is wound on it; (c) its relative permea-
bility (which would be exactly unity for a completely non-magnetic material)
is 0-909988, as given by Coffin (Ref. (25)); (d) its coefficient of expansion is
only about 0:000004 per degree Centigrade; (e) it is comparatively cheap and
easy to wotk, so that any desired shape can be obtained.

It is essential that metal shall be avoided as far as possible in the
construction of such coils, as eddy currents set up in metal parte
may appreciably affect the value of the inductance of the standard.
For the same reason, standards constructed for use with heavy
currents, when the conductors must be of large section. employ
stranded wire to reduce the eddy current effect. Capacitance effects
should also be avoided as far as possible, and the resistance of the
windings should be low compared with the inductance.

Measurements of the dimensions of coils to be used us primary
standards are carried out by means of a precision measuring ap-
paratus, one form of which is described by Coffin (Ref. (25) ).

Primary Standards of Mutual Inductance. Such standards are
always fixed standards—i.e. they are of single value. Variable
standards of inductance will be described in a later chapter. The
general form of such primary standards is a single-layer coil, uni-
formly wound and of circular cross-section, its axial length being
large compared with its cross-sectional diameter, which forms the
primary circuit, with a coil of small axial length placed at its centre,
the latter forming the secondary circuit. The secondary coil may be
wound on top of the primary coil, 80 that their cross-sections are as
nearly coincident as possible, or it may be wound on a separate
bobbin and placed inside the primary coil, the first form being
the better from the point of view of ease of construction and
measurement.

The flux density at the centre of the primary coil is

HolV¥
l

cos B, == B webers per square metre
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where N is the number of turns on the coil, I its axial length in
metres, and i the current, in amperes, flowing in it. 0, is the angle
between the axis of the coil and a line drawn from the centre point
of the axis to a point on the circumference of an end turn of the coil
(see Fig. 1.21).

If the secondary coil, placed at the centre of the primary, has
n turns, and is of cross-section @ sq. m, the flux linkages with this
secondary coil per unit current in the primary (which is the'mutual
inductance) is

n._:?g - —"z:?n—f cos 0,

T,
s M=Enﬂif°ﬁ_"; Rekia e e 14

1t should be noted, however, that in the derivation of Eguation
(2.14) assumptions are involved which are not quite justifiable for
the purpose of calculation of mutual inductance for standards pur-
poses, and that more exact formulae are applied in practice. The
above equation gives a fairly close approximation.

Campbell Primary Standard of Mutual Inductance. The Campbell
type of primary standard (Ref. (26) ) consists of a primary coil of
bare copper wire wound under tension in a screw thread cut in a
marble cylinder. It is a single-layer coil and is divided into two
equal parts connected in series and displaced from one another by
a distance equal to three times the axial length of one of them. The
secondary coil, consisting of a number of layers of wire wound in a
channel cut in the circumference of a marble ring, is placed so
that it is concentric and coaxial with the primary coil cylinder.
This coil is situated midway between the two portions of the primary
coil, and a means of adjustment is provided to enable the coil to
be brought into the correct position relative to the primary coil,

With this construction the magnitude of the mutual inductance
obtainable is much greater than is possible if both primary and
secondary coils are single-layered, whilst the difficulty of accurately
measuring the effective radius of the multi-layered secondary is
overcome by arranging its dimensions so that small variations of
radius or of axial position have a negligible effect upon the mutual
inductance. With the relative positions of the secondary and the
two portions of the primary coil as stated above, maximum mutual
inductance is obtained by making the mean radius of the secondary
coil about 1-46 times that of the primary coil. This means that the
circumference of the secondary coil is situated in the position of
zero magnetic field when current flows in the primary coil (see Fig.
2.10). Thus the mutual inductance will not be appreciably affected
by small errors in measurement of the secondary coil radius, or by
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4 small departure from the true midway position between the two
halves of the primary winding.

The mutual inductance is calculated by J. V. Jones’s formula,
mentioned previously.

fe—p= rum-—--l-}

\'t\‘
—
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Fie. 2.10. ConsTRUCTION oF CAMPBELL PRIMARY STANDARD
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The data for the National Physical Laboratory primary standard constructed
on this principle are, as given by Campbell,

Primary Coil

Number of turns . ; 3 1 75 in each half
Diameter . ‘ : " ; 30 em
Axial length of each half. . . 15em
Distance between inner ends of the

two halves , : . 15 om

Secondary Coil

Number of turns . 2 A 485
Mean diametor . : 5 . 4373, cm
Axial depth . : : : - 1-00 em
Radial depth . : : - « 0-86cm

The mutual inductance of this standard is given as 10-0178 millihenrys.

Secondary Standards of Mutual Inductance. Such secondary
standards are-used as standards of mutual inductance for general
laboratory purposes. Since they are not absolute standards it is
not essential that their dimensions shall be determined with great
accuracy, it being merely essential that they shall have a mutual
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inductance which is as near as possible to the nominal value for
which they are designed. When constructed they are compared
with a primary standard, and their mutual inductance is adjusted,
if necessary, until it is within, say, 1 part in.10,000 of their nominal
value. Such standards are constructed to have nominal values which
are either multiples or fractions of the inductance of the primary
standard.

REQUIREMENTS. Since the most important requirement of such
pieces of apparatus is that their mutual inductance ghall remain
constant under all conditions of use, they should have the following

| characteristice—

(@) Their inductance should not vary with time to any appreciable
extent. For this reason the materials used must be carefully chosen

Marble Bobbin )

R am m e m o

Frimary !3{!& \Slmdary Adjustment

Coil Insuilation Coil Coil
Fic. 2.11. CAMPBELL SEcONDARY STANDARD o¥ MurUar
INDUCTANCE

to avoid warping, and the coils must be firmly fixed in position to
avoid relative displacement.

(b) Their construction should be such that the mutual induetance
varies as little ag possible with changes of temperature.

(c) Their inductance should be independent of the supply fre-
quency as far as possible. To ensure this, the wire used should be
stranded, each strand being insulated from the neighbouring ones,
in order to reduce eddy current effects in the wire. The inter-
capacitance of the windings should be small, also, and the insulation
should be as perfect as possible.

Secondary standards usually consist of two coils wound on a
bobbin of marble or hard, paraffined wood, the coils being separated
by a flange. The wire is stranded copper, with double silk coverings.
After winding, the coils and bobbin are immersed in hot paraffin
wax. When withdrawn and allowed to cool, the wax firmly fixes
the wires in the coils in position.

Adjustment to the value of mutual inductance required is done
by carrying one end of one of the coils through a further arc of
a circle in order to give the effect of a fraction of a turn. Campbell
(Ref. (27) ) gives a method of adjustment utilizing a third coil, of small
diameter, concentric and coaxial with the other two, and connected
in series with the secondary (Fig. 2.11). Adjustment is by alteration
of the number of turns on the small coil, a variation of one in the
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number of turns on the small coil having the effect of a variation of
a fraction of & turn on the larger coil.

Primary Standards of Self-inductance. Although mutual induec-
tances are more generally regarded as the primary standards of
inductance, owing to the greater accuracy with which their values
can be calculated from their dimensions, standards of self-inductance
have been constructed at several of the national laboratories already -
mentioned. Their magnitudes are calculated from formulae Ppre-
viously referred to, and permanence is ensured by winding the coil
of bare hard-drawn copper wire under tension in a screw thread cut
in a marble cylinder which has been very carefully ground so as to
be as nearly truly cy'indrical as possible. Deseriptions of such

——Mean Dia.=3 Ta—"

: :
L—a‘,—-—_\—l
Fra. 2.12. MaxweLy's DiMrNsioNs y¥on SELF-INDUCTANCE
STANDARD

standards at the Bureau of Standards and at the Physikalisch
Technische Reichsanstalt have been given by J. G. Coffiu (Ref. (25) ),
and by Gruneisen and Giebe (Ref. (28) ), respectively. These two coils
are of inductances 216-24 mH and about 10 mH respectively.

Secondary Standards of Self-inductance. As in the case of secon-
dary standards of mutual inductance, self-inductance secondary
standards are constructed to have a nominal value which is usually
a simple fraction of 1 henry. Such standards are compared with a
primary standard of inductance and are used as reference standards
for general laboratory work.

. For the purpose of obtaining the largest possible time constant (i.e. ratio
%?L“—-f) when winding an inductance coil, Maxwell recommended the use
of the relative dimensions given in Fig. 2.12. An approximate formula for the
inductance of a coil having these relative dimensions is

L = 6nN?* x 10°* henrys

where N = number of turns on esil
r = mean radius of the coil in centimetres
Since r = 1-86a
L =11'1xN% x 10-*henrys . ” i . (2.15)

Later work by Shawcross and Wells (Ref. (26) ) on this subject showed
that Maxwell did not consider enough terms in the formuls which he used
in this calculation, and that a coil of shape somewhat similar to that of
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Fig. 2.12 but having a mean diameter 3a (instead of 3-7a) gives a slightly
greater time constant (0-5 per cent greater).
The formula for the inductance of such a coil (dimensions in centirnetres)

L = 1683 N% x 10" henrys
or L = 25:24 N*a x 10°? henrys . : o L 18)
Actually the maximum time constant is obtained by making the mean
diameter 2:95a, but 3a is more convenient and is a sufficiently close approx-
imation.
Coils for use as secondary standards are wound of silk-covered

stranded copper wire on bobbins of marble, or of mahogany impreg-
nated with paraffin. After winding, the coils are immersed in molten

Fig. 2.13. ConsrrucrioN oF SULLIVAN-GRIFFITHS TEMPERATURE-
COMPENSATED SELF-INDUCTANCE STANDARD

paraffin wax for some time. Upon being removed and cooled, the
paraffin wax solidifies and rigidly fixes the coil wires in position.

The chief cause of non-cyclic temperature coefficient and general
instability of inductance is always the non-equality of expansion of
the conductor and the radial dimension () of the former. A design
for stable inductances with sensibly zero temperature coeflicient,
due to W. H. I, Griffiths, is illustrated in Fig. 2.13. Members ( B) of
Keramot are supported rigidly by the end cheeks () of special
laminated Bakelite. The conductor (4), of thin strip copper or
Litzendraht wire, is wound in grooves. The pins (P) form the chief
loeating means for the relative positioning of the 5 and D members.
The temperature coefficient of linear expansion of the [ members
varies with the direction of the radius owing to its laminated
manufacture,

In order that the resultant temperature coefficient of the dimension
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W shall exactly equal that of the linear expansion coefficient of the
conductor 4, the following condition must be satisfied—

(W + X) — BX = 0"(W + ¥) — BY
= 0"(W + Z) — BZ = oW

where ¢', 6", and ¢” are the measured temperature coefficients of
expansion of the D members in the radial directions p, ¢ and r
respectively, and the expansion coefficients of the conductor and B
members are « and § respectively, the latter being uniform in all
directions.

From the above expression it is seen that the radial dimensions
of the pins P,, P,, and P, are given respectively by

o — o
X‘:m-w
Y=§~,,-_:—5ﬁf.w

o — 4"
L=—m— W

=9

Having thus, by the above determination of the correct dimensions
X+ W,Y+ W,and Z + W, ensured that the temperature coefficient
o of the former may be safely replaced by that, «, of the conductor,
it can be shown that the resultant temperature coefficient of induc.
tance is

%L=2a+?{u—ﬂ)—ﬂ

where y is a variable, depending upon the ratio of length to diameter,
which has been enumerated for all possible shapes of coil by
Griffiths.

The principle can be applied to multi-layered coils up to 1 henry
with equal success. The temperature coefficients of irue inductance
are always less than 5 x 10~¢ per deg C and can by careful design be
reduced to 10-¢

Griffiths* shows how the temperature coefficient of these induct-
ances may be affected by frequency within certain bands and
discusses the effects of bhumidity, current and self-cdpacitance upon
their ultimate stability.

Primary Standards of Capacitance. Such standards are capacitors
whose eapacitance can be accurately calculated, by means of an
exact formula, from their dimensions. Capacitance in the electro-
static system of units has the dimensions of length (Table I1). The

* “Recent Improvements in Air Cored Inductances,” Wireless Engineer,
Vol, XIX, No. 220, pp. 8-19 and No, 220, pp. 56-63. (See also H. W.
Bullivan, 1954 catalogue.)
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capacitance of absolute capacitors can thus be expressed in terms of
lengths—i.e. of their dimensions—and 1t is therefore of prime
importance that such dimensions shall be very accurately known
and also that these dimensions shall not vary once the capacitor has
been constructed. Owing to the fact that air is the only dielectric
whose permittivity is definitely known and which is free from
absorption and. dielectric loss (see Chap. IV), it is always used as
the dielectric in primary standard capacitors. Three types have
been used as primary standards, viz. the concentric-spheres type,
the concentric-cylinders type with “guard rings” (see Chap. V),
and the parallel-plate type with guard plates. Of these, the last is

rhaps the least satisfactory, as it requires very careful adjustment
if the calculated value of capacitance is to be accurately realized.
The necessity for thaguard rings and the formulae for the calculation
of the capacitance of these types will be considered in Chapter IV.

The disadvantages of air as a dielectric in such capacitors are as follows—

{(a) Its “dielectric strength™ (see Chap. LV) is low, which necessitates a
comparatively long gap between plates in order to withstand breakdown of the
air when a voltage is applied.

(b) Its permittivity is low compared with solid dielectries, which fact,
combined with the long gap referred to above, means that an air capacitor is
very bulky if the capacitance is to be other than very small.

(¢) Dust particles, settling in the gap between the plates, cause leakage
troubles unless precautions, such as thorough drying of the air in the capacitor,
are taken to avoid this, The minimum distance between plates to ensure
freedom from dust troubles should be 2 to 3 mm.

(d) Since there is no solid dieleetric between the plates to act as a spacer,
the plates must be rigidly fixed in position by supports of some solid dielectrie.
Very few of such insulating materials are satisfactory for this purpose, owing
to their tendency to warp and cause displacement of the plates from their
original position. Fused guartz and amberite are used for such purposes.

Absolute standards of capacitance were originally developed in
connection with the measurement of c—the ratio of the electro-
magnetic to the electrostatic C.G.S. unit of quantity—as described
earlier in the chapter. Rosa and Dorsey (Ref. (30) ) have described
fully several types of absolate standards of capacitance constructed
by them for this purpose.

Standard Air Capacitors for High-voltage Testing. The development
of methods of measuring the dielectric loss and power factor of
capacitors at high voltages (see Chap. 1V) has led to the construction
of several types of standard air capacitors for use in making such
measurements.

These are either of the parallel plate or concentric-cylinder type,
guard rings being employed in each case in order to shield the cap-
scitor from external electrostatic influences and to render more
definite the effective area of the electrodes, so that the area to be
used in calculating the capacitance from the dimensions shall
be subject to no uncertainty. The air gap bétween the plates must
be large in order to withstand the applied voltapes and the edges of

W
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the plates must be rounded in order to avoid brush discharges, which
would produce a loss of power due to jonization of the air at such
edges. For the same reason the surfaces of the plates must be free
from irregularities, which necessitates a very careful grinding of
these surfaces during the construction. High-voltage capacitors of
the parallel-plate type have been used by various investigators,
including Shanklin (Ref. (31) ), who used a high-tension plate
suspended from the ceiling by insulating cord, with two low-tension
plates, one on either gide, the latter being provided with earthed
guard rings. This was used up to 60,000 volts. Rayner, Standring,
Davis, and Bowdler (Ref. (32) ), at the National Physical Labor-
atory, employed 2 somewhat similar construction, the high-tension
plate in this case having & rounded edge of 3in. radiue. A full
description of the capacitor is given by them in the paper referred
to. Dunsheath (Ref. (33) ) has described a parallel-plate capacitor
used by him for the same purpose.

The coneentric-cylinder type of capacitor, developed by Petersen
(Ref. (34) ), has been more generally adopted, and is more satisfactory
than the parallel-plate type owing to the difficulty of efficiently
screening the latter. Petersen’s form consists of a cylindrical low-
tension electrode with & guard cyli der of the same diameter at
each end. This is surrounded by the high-tension cylinder, which is
concentric with the inner one and which projects beyond the ends
of the low-tension cylinder by a considerable length at each end.
The ends of this high-tension cylinder are bell-shaped. Freedom from
brush discharge is thus obtained, whilst the screening is efficient and
the capacitance of the arrangement is easily caloulable, within fairly
narrow limits, from the formula :

1
0 s 100

micromicrofarads . .
1-8 lOg,—J

where [ is the active length in metres of the low-tension electrode, d
being its diameter and D the internal diameter of the outer electrode.

Rayner (Ref. (35) ), Semm (Ref. (36)), Churcher and Dannatt (Refs.
(37) and (50) ), and others have used capacitors of this type. Fig.2.14
shows the construction of a standard capacitor designed by Churcher
and Dannatt for use at 300 kV (r.m.s.). The electrodes are of
machined cast iron having a specially smooth finish to avoid
surface irregularities which cause premature breakdown of the
capacitor when the voltage is applied. The high-tension cylinder
is suspended inside the low-tension cylinder from separate supports,
and is insulated from the latter by & Micarta tube.

An accuracy of 0-2 per cent in the caleulated capacitance of the
capacitor was aimed at in the design. The average breakdown
voltage is 310 kV (r.m.s.).
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The original paper (Ref. (50) ) should be referred to for details.
Fig. 2.14 is drawn to scale, but much detail is omitted in order to
show the main features more clearly.

-gas Capacitors. Fig. 2.15 shows the construction of
the compressed-gas capacitor for a maximum working voltage of
250 kV (r.m.s.) made by Associated Electrical Industries. The
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main features are the high-tension electrode A, consisting of a steel
tube fitting tightly inside a Micarta tube, the latter being long
enough to give the necessary insulation to ground for the working
voltage. Connection from the electrode to the top plate B is made
through a spring contact. The high-tension terminal, with domed
head, is fitted to the centre of a stress distributor €' (used for volt-
ages above 150 kV), which is secured to the top plate by small screws.

The low-tension electrode is supported on a central post term.
inating in the cap D, which acts as a guard ring, this being insulated
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' from the effective part of the electrode by an insulating collar.
The lead from the electrode, which is screened throughout its length,
~ is brought down to a sereened terminal box.

The capacitance of the capacitor is 50uuF, and its loss angle is
less than 0-00001 degree. The gas used may be either air or nitrogen
| and it must be clean and dry. The working gas pressure is 150 1b
. per 8q. in. gauge reading. :

| Secondary Standard Capacitor. Capacitors for use as gecondary
' standards are calibrated capacitors whose dimensions need not be
accurately known since the magnitude of their capacitance, is not
calculated from their dimensions. It is essential that they shall have
a capacitance which does not vary with time, and therefore care must
be exercised in selecting materials which will not warp and so alter
the dimensions. The plates, also, must be rigidly fixed in position,
and, if possible, there should be no appreciable expansion of them
with moderate increases of temperature. The insulation should be
very efficient and the construotion such that leakage is avoided.
Sharp edges must also be avoided in order to eliminate troubles from
brush discharges within the capacitor. Air is used as the dielectric
in such capacitors, in order that they shall be free from dielectric
losses, and the leads to the terminals are made as short as possible,
to reduce the I®R loss to a minimum. A cover, to prevent the
accumulation of dust between the plates, must be provided, and it is
desirable also that the air should be dried before entering the interior,
as moisture is conducive to leakage.

By the use of a number of plates instead of merely two, as in the
primary standards, much greater capacitances can be obtained
without excessive bulk. Capacitances up to about 0-02 uF are
obtainable compared with those of the order of 100 to 200uuF
the case of primary capacitors.

Glazebrook and Muirhead (Ref. (38) ) designed a secondary stan-
dard air capacitor for the committee of the British Association in
1890. It consisted of twenty-four concentric brass tubes, the thickness
of whose walls was about < in. Twelve of these tubes were supported
in a vertical position by a conical brass casting, the outside surface
of which formed a series of twelve steps over which the tubes fitted
and to which they were sorewed. This casting, with its tubes
attached, was carried by three ehonite pillars about 3 in. high. The
other twelve tubes were fitted to a gimilar stepped brass casting,
which was carried by the outside case so that these tubes hung
downwards in the air spaces between the first twelve cylinders.
The terminal of the insulated cylinders was in the form of a brass
rod passing through a central hole in the upper brass casting, and
insulated from it by an ebonite plug, this rod being screwed into the
bottom brass casting. The internal air was dried by a small dish of
sulphuric acid placed inside the case. The capacitance of this
capacitor was about 0-021 u¥F.
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Giebe (Ref. (47) ) in 1909 described a modified form of the above
capacitor constructed by him, and also a plate type which he found
to be superior to the former and which is shown in Fig. 2.16. It
consists of a large number of thin, circular plates of magnalium—a
magnesium-aluminium alloy—with a space of about 2 mm between
successive plates. In one form there are 71 plates in all—35 con-
nected to one terminal and 36 to the other. Hague* gives a full
description of this capacitor.

Messrs. H. W. Sullivan, Ltd., manufacture a range of standard

7 ﬂl‘/[#/’l’l‘llIllf?lllflrl'("’l‘y/ﬂ_/”/"ﬁ_

(From Alterpating Current Bridge Methods. Hague)
Fig. 2,16, Gizsn’s PLAoTE AIr CAPACITOR

air capacitors in which the insulation between the two conducting
systems consists of small pieces of silica-quartz, a material having
very low dielectric loss. Their leng-period permanence is 1 part
in 20,000 and the temperature coefficient less than 1 part per
100,000 per degree centigrade. This extraordinarily low temperature
coefficient is brought about by a method of compensation described
fully by W. H. F. Griffiths (Ref. (63)). These fixed standards of
capacitance have a special terminal system to eliminate errors of
stray lead capacitance. The two main terminals of the capacitor
remain connected to the testing apparatus, and the exactly stand.-
ardized capacitance is inserted by means of a strap (see Fig. 2.17).
Power factors < 0-00001 are obtained at 1,000 ¢/s and maintained

* A.C. Bridge Methods, 2nd Edition, p. 122.

(3
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up to radio frequencies. The three-terminal types have inter-
terminal electrostatic shielding.

The Capacitance Increment Standard due to W. H. F. Griffiths
(H. W. Sullivan, Ltd.) introduces into a calibrating circuit, by a
rotary motion of a variable air capacitor, four very accurately
known capacitances of, say, 100, 200, 300, and 500 uuF or 10, 20,
30, and 50 uuF. These capacitances are inserted strictly as circuit

(H. W. Sullivan, Ltd.)
Fia. 2.17. SuLLIVAN-GRIFFITHS Fixep Air CAPACITOR

increments and may thus be used as a very accurate means of
calibrating variable capacitors by either direct or substitution
bridge methods.

Recent, improvements in precision variable air capacitors (silica
insulated) have been responsible for stabilities which are now meas-
ured in parts in a million. In the Sullivan and Griffiths instrument
the capacitance accuracy is 1 part in 10%, and it is made to be un-
affected by variable stray electrostatic fields in the vicinity of the
terminals and connecting leads by a special screened lead device.
Power factors of 0:00001 or less are maintained up to frequencies of
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10% or 108 ¢/s, and the temperature coeflicient is compensated by
means of a bi-metallic method also due to W. H. F. Griffiths (Ref,
(63) ). Also due to Cirifiiths is the recently invented Decade Variable
Air Capacitor Standard which is capable of very great accuracy and
is described on p. 265.

Laboratory Standards of Capacitance. The secondary standards
described above are unsuitable for general laboratory purposes, As
laboratory standards, capacitors having a sold dielectric instead
of air are used. The dielectrics used for these purposes are mica and
paraffined paper, the former being: the better. Both of these
materials have a permittivity greater than that of air (mica 3 to 8,
paper 2 (about) ), and therefore give a greater capacitance for a
given size than when air is the dielectric, They have also high
resistivity and dielectric strength, both of which characteristics are
necessary for the purpose for which they are used. W, H. F.
Griffiths (. W, Sullivan, Ltd.) has designed fixed-value standards
from 0-01 to 1-0 4F and single and multi-decade standgrds up to
5 uF continuously subdivisible down to 1 #pF having a direct reading
accuracy of 0:01 per cent. Extraordinarily low power factors of
0-00005 are obtained on the higher capacitances. Temperature
coefficients as low as 0-001 per cent per °C are obtained, and the
internal inductance and series resistance are reduced to such low
values that frequency corrections of botl capacitance and power
factor are unnecessary up to quite high frequencies even for an
accuracy of 0-01 per cent (15 ke/s for 1 #F, 200 kefs for 0-01 uF).

Paraffined-paper capacitors are not so reliable as the mica type,
and are not suitable as standards for precision work. They have a
greater dielectric loss (and therefore power factor) than mica cap-
acitors, the power factor as stated by Grover (Ref. (40) ) for a range
of them varying from 0-0017 to 0-017. Grover also found the
frequency variation to be of the order of 4 parts in 1,000 for a
frequency range of 50 to 1,000 ¢/s, the capacitance decreasing with
increase of frequency. The manufacture of Paper and other capacitors
is described by Mansbridge (Ref. (41) ).
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CHAPTER 111
CIRCUIT ANALYSIS

IN alternating current circuits generally, and especially in net.
works, the symbolic (j) notation is of great use in simplifying the
calculation of the various quantities involved For this reason it
will be considered here before proceeding to work in which such
caleulations are necessary.

Fig. 3.1 shows a vector representing (say) a voltage, which, ex-
pressed in the usual trigonometrical notation, is given by

bodise an: sin (wt + @)
This vector could otherwise be defined by stating its resolved com.-

>

el
V2 5

i

Fie. 3.1 RECTANGULAR Co-0RDINATES oF A VEcTor

ponents in the horizontal and vertical directions—i.e. along axes
OX and OY. Thus

v= V¥, ..co8a (horizontally) 4 V. .. sin a (vertically)

The commonest of the symbolic methods employs this means of
expression, the horizontal component being written simply as V,,,,
cos a and the vertical component being distinguished by placing a
letter j in front of it. Thus, symbolically, the vector is expressed as

[V] = Vpazcos a + 3V tuoe 8in @ = Vimax [cos a -+ J 8in a]
or [Fl=a + 5b
L]
where @ and b are its horizontal and vertical components, the brac.
kets [ ] indicating that the notation is symbolic. *

* The fact that a quantity is expressed symbolically may be indicated alao
by a dot placed under the symbol, thus— E, I, ete.

106
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In the same way, the vectors shown in Fig. 3.2 can be represented
symbolically as

[VI] = -iﬂjb
(Vo] =~-c +id
(Ve = —e~if
[Vl = k- jh

respectively, the directions OX and OY being positive and directions
0X' and OY' negative,

Y|+

D
Y= -

Fig. 3.2 SymBoLic REPRESENTATION Fic. 3.3

Actual Value of the Operator *“j”. In Fig. 3.3, the vectors 04,
OB, OC, and OD are all of the same magnitude V. Expressing them
symbolically, we have

04 =V
OB = jV
0C =-V
OD = -jV

From this it appears that the multiplication of a vector V, such as
OA, by j means that it is rotated through 90° in an anti-clockwise
direction. Then, r .tiplying OB by j, we rotate it through another
90° to OC. Thus,

04 xjxj=0C
or j=V=_V
i.e. fr=-1

j=v-1



108 ELECTRICAL MEASUREMENTS

The operator j is thus an imaginary quantity, and can be treated
a8 having the value v/~ 1 in all calculations in which it occurs.
Addition of Vectors. Vectors are added by adding together their
horizontal and vertical components separately. Thus the sum of
vectors [V,]=a+jb and [V =c¢+jd is [V]= (a + ¢) +
j(b + d) and its phase angle relative to the horizontal axis OX is

Fic, 3.4

tan-t ij;—f . The actual magnitude of ¥ is 4/{a + ¢)* -+ (6 & d).

Subtraction of Vectors. If a vector [V,]=a + jb is to be sub.
tracted from a vector [V,] = ¢ + jd, then the resultant is
(V1= [Vel-[Vil=¢ +jd - (a + jb)
=c-a-+j(d-b)

Vie=a + @-bp

d-b
tan—! (—)
c—-a
Multiplication of Complex Quantities. The product of two com plex
quantities [V,] = a + jb and [V,] = ¢ 4 jd is
[(V]= (a + jb) (¢ + jd) = ac + j (bc + ad) + j*d
=ac-bd + j (be + ad)
=4d + 3B
where 4 and B are the horizontal and vertical resolved components
of the product [ V]. The numerical value of V is obviouysly VAT B,

its actual value being

and its phase angle
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As an example, an impedance expressed as [Z) = r + j&, when
multiplied by a current (1] = I, + jl, gives a voltage
(V) = (Ip + L) (r + j)
== :Ihf'— I‘St'} +.'] (I‘,T + Ik.i']
To find the numerical value of V,
¥ = (Iyr = 120 + (Lyr + Lpa)?
= (41 + )
Thus V = (VI} + L) (VP + %)
and since V1,2 + 1,2 = I, we have
V=IVr+ 2
. which is, of course, the result which would be obtained by, trigono-
metrical methods. Fig. 3.4 illustrates this example. The triangle
~ OAB is the ‘aapedaince triangle,” iving the symbolic expression
= r -Ldz for-the impedance, while and OD are the current and
* voltage veeters respectively.
Division of a Vector Quantity by a Complex Quantity. If & vector
quantity a + jb is to be divided by a complex quantity ¢ + jd the

oy B Fgb
quotient 18 prg ¥

Rationalizing the denominator, we have
iy o BB (0= 38) 00 4. (be ~ o) -0
i (¢ + jd) (¢ —jd) ct — jtd?
__ (@c -+ bd) + j (be - ad)
c? | d?
ac + bd . (bc—ad)
TeFa Jaxa
= C +4D

where C and D are the resolved parts of the resultant vector.
The numerical value of V is, as before, given by V = VO - DA,
Other Forms of Representation. ExpoNentiaL Form. This is
really an extension of the trigonometrical form of expression. It
was seen that a vector quantity could be expressed in the form

[V]1= V¥ (cos a + jsina)

If the angle a is in radians, sin @ and cos a can be expanded
below—

o N a¥ Gt
mna—u—[—j—k—li-—i-,?»—k. i
a  a* o

005&==1*E+E—I§_+---
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3 g Ak ol a° @ | a o

.-[VJ—-V[U—E‘i'i |(. Y+ jla= |3+E—|Z+.--J]
= . a?® jad jab a® ja? o
*_V[lﬁ—_?a_l‘—, |$-|_|4+|5 ‘G .‘+[8+”-

Substituting j2 for — 1 in the above we have
3 ja }3113 jat J u‘ Jsuu
V1= ¥ [1+jat I A

J__a’ I

oy o
or [V] = Vein,
since the series is the expansion of ¢/2, where ¢ is the base of natural
logarithms. Thus, if a current [ is given by -_I; where the voltage
V] = Ve and the impedance [Z] = ZeiB, then
I [V] v Veia ild Veila-f)
== 28~z
This is illustrated in Fig. 3.5.

Porar Form (1). This form of rcpresentation, suggested by
Prof. Diamant (Trans. Am. 1.E.E.,
Vol. XXXV, p. 957), has not been
very generally applied, but is never-
theless useful in some types of
problems,

In this method, the vector quan-
tity [V] = V(cos a + j sin a) is ex-
pressed as VJ™, where J represents
an operator which, when applied
to a vector, rotates it through an
angle of 90°. In this respect it is
similar to j. The index m is the ratio
of the angle which the vector makes
with the horizontal axis to one right angle. Thus, in the vector V

Fi16. 3.5. ExroNENTIAL Form
oF REPRESENTATION

a e
mentioned above, m = —’—2 expressing the angles in circular measure,
w

If m is positive, the rotation is anti-clockwise, and if negative the
rotation is clockwise. The three-phase voltage vectorseshown in
Fig. 3.14 could be expressed in this form as

[B,]=EJ°
[E,) = EJ+3
(E,) = EJ-!



CIRCUIT ANALYSIS 111

_Since m = -‘—;% = gand the vector ¥V can be written
™

o B s T
[F]= V(cosmﬁ—l—;smmﬁ)

=V (cos % -+ j sin —E) "from De Moivre’s Theorem

V©+j.nm
= V(™) = VJIm

Thus j and J have the same meaning.

Porar Form (2). Another form of representation which is fairly
frequently used is V/x meaning that the vector is of length V and
is rotated in an anti-clockwise direction, so that it makes an angle
of @ with the horizontal. This form is merely conventional. Using
this mode of expression, the three-phase vectors referred to in the
previous paragraph can be expressed as

(B,) = E[0
(-] - 2'JT
(E,) = E [120° or ﬁ,/.:?

—

[Ey) = E |- 120° or E / ‘—23’—’

The product of two vectors [B,] = Ey/x and [H,] = Ey/f may be
expressed as

E = EEJa + 8

and the quotient of two such vectors as
£y f
E = E [ .8

Application of the Symbolic Method to Aliernating Current
Problems. The application of the rec¢tangular form of representa-
tion to problems in a.c. circuits can be illustrated by means of

f:f.mples. Several different types of circuits and problems are given
OW.

Example 1 (Simple Series Circuit). A sinusoidal voltage of r.m.s. value
100 volts and frequency 50 cycles per second is applied to the circuit shown in
Fig. 3.6. Calculate the current in the circuit and find its phase relative to that
of the applied voltage.
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The impedances in the circuit can be expressed symbolically as—
Impedance of R, = 3
”» Ly = joL, = § x 314 x 0:0159 = Bj
" By =4
Ly = jwLy = § % 314 X 00477 = 15§
1 - 7108 %
@0 = 314 x 318~ 1
[Nore. The negative sign in the capacitor impedance is explained by
considering the current as a horizontal vector, when the voltage drop across
the cepacitor will be vertically downwards (since it lags 80° in phase behind

J;'S(Lﬁis.

I Sobms 07159 hy. Jgﬁms 0477 hy.
]_ R 4 lcl B 4 ‘

' C-—j)(

%-WVM‘J
l

Fia. 3.6

the eurrent). Thus, if the current is expressed symbolically as !, the voltage

drop (given by current x impedance of capacitor) is - § >0 i.e. the impedance
=3
ol

The total impedance of the circuit is the sum of these symbolic expressions.
Thus

[Z] =344+ b5+ 165 -105
=7+ 10f
Then Z' =T 4 10° = 149
Z = V140 = 122
. 100

and the current is T o 8:22 amp

If the current vector is horizontal, so that

I]=822+;.0
the voltage is
[V]=[I][Z] =[8-22 4 5. 0][7 + 10j] = 67-54 + 82:2j

The voltage thus leads the current by an angle ¢ such that tan ¢ = % = _1?0
It is, of course, the angle of the impedance triangle.

Example 2 (Series-parallel Circuit), A sinusoidal voltage, of r.m.s. value
100 volts and frequency 50 cycles per second, is applied to the circuit shown in
Fig. 3.7. Calculate the current in the main cireuit and the currents in the two

brancg circuits. Take the voltage vector ms horizontal, so that [V] = 100
+7.0

Impedance of R, = B

i L, = jwL, = 314 X 0:0477 = 15§ | Total impedance
b “_j_a ———n——_lo‘j = - ] -3&5’.
R 314 x 169 2ch
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Impedance of R, = 10 } Total impedanoce
" L, = jwL, = 314 x 0:0636; = 20; f = 10 4 20§
Ry=1
QRSSO By Y 4 Total impedance
nct o, 20 o il elally
' G, 314 x 318

: 10 - 204
d h OO RN D, - 0
Admittanee of branch 1 10 520, 107 T 208

= 0:02 - 0-04§ = [¥,]
1 74 105
T-10; ~ T 100
= 0:047 4 0-007j = [¥,]

Admittance of branch I1 - =

Dohms 063
Bohms
;z L l
100 voits G
lf‘-sa~ K3 7.3

Fia. 3.7. SERIES-PARALLEL CIRCUIT

Total admittance of the two

branches in parallel = [¥,] + [¥,] = 0-067 4 0-027§
Total impedance of the two 1 0-087 - 0-027j
branches in parallel = 0-067 +0-027; _ 0-067% + 0-027°
= 128 - 516§

Thus the total impedance of the complete cireuit is
8- fif + 12:B - 516§ = 20-8 - 10-16j
and the current I in the main cireuit is given by
= 100 _ 100 (20-8 4 10-165)
20:8 - 10:165 20-8% + 10-16¢
= 188 4+ 1:9j
Its numerical value is therefore ,/3.88% 1. 1.97

I

= 432 amp
and its phase relative to the applied voltage is tan™ ilTDE leading (since the
imaginary term in the expression for the current is positive).
The voltage drop across the two parallel branches is
(3:88 + 1:05)(12:8 — 5:16§) = 6946 + 43
59-46 + 43
10 + 205
(6946 + 4-37)(10 — 20j) _

10% 4 20°

Current in branch I =

137 — 2205

s—(T.5700)
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Its numerical value is 4/1-37% + 2:29* = 2:67 amp and it lags behind the
applied voltage V by an angle tan~! %-%

. 59-46 + 43
Current in branch II = S
_ (69-46 + 4-3)(7 + 107)
7+ 10°
Ite numerical value is 4/2:61% + 4-2? = 4-88 amp and it leads the applied
voltage by a phase angle tan-! ;—2

Adding the two branch currents gives 3-88 -+ 19/ which ia the original
expression for the current in the main circuit.

Application of Symbolic Method to a Network Problem. Fig. 3.8
shows Wien’s arrangement of Maxwell’s method of comparing a self-
inductance with a capacitance by means
of a bridge network. V.G. is a vibration
galvanometer used as a detector for fre-
quencies within the commercial range.

The conditions for balance with this
network are that

L
RE, = RBy=7
as can be seen from the following.

At balance, when no current flows
through the galvanometer circuit,

Fig, 3.8. WiEn Bripae Z Z
NETWORK e 8

Zy, Z,
where Z,, Z,, Z,, and Z, are the impedances of branches I, II, HI,
and IV respectively.
(Z,] = R, + joL

= 2:51 + 42§

[Z;] = R,
[Zs] T Ra
Total admittance of branch IV is
1 1
Y = 5 + -
E il] R‘ ,:-1
wC
2 el L
=~ E A -t R, L
.. Total impedance of branch IV is

1 R,

SARSET T A
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. Bitjel & - :
s R' 'y R‘ = R= (1 +J‘UCRI)
(1 ¥ ijR‘)

Cross-multiplying,
R,R, + joLRy = RyR, + jR,RyCR,
Equating real and imaginary terms, we have

R\R, = R,R,
aud joLR, = jR,RawCR,
from which L= RRC
Thus RR, = R.R, = é : ; : o- (1Y

The symbolic method can be used, also, to calculate the current
in the galvanometer circuit when the bridge network is out
of balance. In Fig. 3.9 the
network is represented simply
by impedances, and the cyclic
currents (used by Maxwell to
simplify network calculations)
X,X 4 Y,and 4, are assumed
to flow in the three meshes as
shown.

Zg is the impedance of the
galvanometer circuit, Z; that
of the alternator branch, and ¥V
the alternator voltage.

Then the current in the gal-
vanometer circuit is (X + ¥ - X) = Y. Using Kirchhoff’s second
law—that the algebraic sum of the potential differences in any closed
circuit is zero— we have

Mesh I.
ZX +Z(-Y) 4 Zy(X-A) =0
or X(Zy + Zy) - ZgY - Z,4 =0
Mesh 11.
ZyX + )+ Z(X + Y- A4) + Z,Y =0
or X(Zs+ Z) + Y23+ 24+ Z)- A2y =0
Mesh 111,
ZA-X)+ Z2(A-X-Y)+ ZeA=V
or —X(Zy+ Z)-YZ+ AZy+ Zy + Zg) =V
Thus the three equations, from which Y is to be obtained, are

X(8, 1By~ FZ,— AZ -0 =0 oW
X(Z, +Z-|)+ }-’(Z,+Z. i ZE}HAZ‘-(]:O . (ii)
~ Xl +2)-YZ+ AlZy+ 2.+ Z)-V =0 . (i)
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expressing the equations in the form most suited to their solution by
the method of determinants., Then, from the algebraic theory of
determinants, we have

Y
2, + 2, - Z, 0
%4 B, - 7, 0
~Zy+2Zy) Zy+Zi+Zy -V
1
= ZJ+Zn —-Zﬁ i ‘r:e
LT, Trrdibgs =2,
~(Zq + Z,) -2, Zy + g+ Zg

or, expressing the determinants by A, and A respectively, we have

F ok A,
e aothatY_E-

AL N
V(Z,\Zy— ZyZ)
v Ziy + Zy - Zy - Zy
Zy + Z, Zy + Zy + Zg -2,
-(Z,-}—Z‘] _Zl. Z,wi—Z‘—{-Za

which is the expression for the galvanometer current. The numerical
value of this current can be obtained, in any particular case, by
substituting in the above equation the symbolic expressions for the
impedances of the various branches.

M
z F
000 00000 >—r
L, L
Fre. 3.10.

The Sign of Mutual Inductance. The introduction of a mutnal
inductance into a network may cause a phase reversal depending
upon the winding directions. It is helpful in many network problems
to understand what is meant by the sign of mutunal inductance.

Fig. 3.10 shows two windings having self-inductances L, and L,
and a mutual inductance M between them. If the windings are
connected together so that the same current passing through both
windings gives a flux in the same direction, then the total self-
inductance of the two windings in series is L; + L, 4 2M (see
also p. 182). The mutual inductance between the windings is then
positive in sign. Reversal of the direction of one winding gives
opposing flux directions; the overall self-inductance is then
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L, + Ly — 2M and the mutual inductance is negative in sign. The
directions of current are fixed. Fig. 3.11 shows the conventional
current directions when the two windings in Fig. 3.10 are separated,
and Fig. 3.12 shows the more usual convention in which the windings
are presumed to circulate common flux in the same direction for the
positive connection.

The self- and mutually-induced voltages are conventionally
assumed to act in the same direction as the current flow but having

= T — >

Fie. 3.11.

negative sign. Hence, for the network shown in Fig, 3.12, if M is
positive the network equations are

E + E, + Byy= RByI,

or : E —joLl, — joMI, = R,
and By + By = IRy + 1,2
or — joLI, — joMI, = LR, + I,Z

A negative connection of M simply necessitates a change in sign of
the terms in M.

The adoption of this convention is not of great importance in
networks containing a single mutual inductance, because it usually
becomes quite apparent during the course of analysis if an error has
been made in the sign. It is essential, however, to adhere to a
convention in the solution of networks containing a number of
mutual inductances.

Network Containing a Mutual Inductance. Fig. 3.13 shows the
connections of Heaviside’s mutual inductance bridge for the de-
termination of a self-inductance in terms of a mutual induectance.
R,, By, Ry, and R, arc non-inductive resistances. while L, and L, are
self-inductances, there being, in addition, mutual inductance M
belween the alternator circuit and branch IV, The inductance L,
forms the secondary of this mutual inductance.
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The treatment of a problem when mutual inductance is present is
somewhat different from that used in the previous bridge network.

Since, at balance, the voltage across the detector branch is zero,
the voltage drops across branches I and IV are equal. Thus

V(B + joLy) = (B + joLi® + joMi . . ()

The mutual inductance term jw M1 represents the voltage induced
in arm IV by a current of i in the alternator branch. The conven-
tion is employed that this voltage is in the opposite direction to the
current ¢, i.e. in the same direction as the current 1”.

Fig. 3.13. HeavisipE BripeE

We have also that
1=+
and, since no current flows in the detector branch, the current in
arm 1I is also i’ and in arm ITII is . Thus

Ry’ = Ry”
Substituting for i in equation (i),
IRy + joly) = (B, + joL)i" + joM(i’ + i)
or V(By + jwLy - joM) = (Ry + jwLy + jwM)i”

Substituting kR, ¢ for 1",
E,
¥ (B + joly - jwd) = (R -+ jol, + jol) 3 &
A ; Beplel oo e | e o TR
+ joL, - joM = L2 2 M =3
R, + joLy - jo g, tlolig +jell g
Equating real and ima.ginary terms we have

R, = _"" or B\R; = R,R, . - - [3-2?
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Also
R R
iwL, — ioM = jol, = oM =t
Jo Ly = jw Jw zR‘+Jw R,
from which
RS(La— M) = Rs{Ls + M) . . . (3.3)

Application of the Symbolic Method to Polyphase Circuit Calcula-
tions. The full consideration of such problems is both outside the
scope of this work and too lengthy for inclusion here, but the
application of the symbolic notation to one three-phase circuit
problem will be considered.

&

120°
m.

£

Fig. 3.14. THREE.PHASE VOLTAGE VECTORS

Fig. 3.14 shows a balanced system of three-phase voltages &,, £,,
and E;. When in the phase positions shown, these can be expressed
symbolically as

[E,] = [E + jo]

[E,] = [~ E cos 60° + jH sin 60°]
= E[-0-5 + 0-866]]

[E;] = [~ E cos 60° - jE sin 60°]
= E [-05 - 0:8664]

The symbolic sum of the voltages is, of course, zero,

Fig. 3.15 shows a three-phase network with alternator phase volt-
ages F,, E,, and £,, having positive directions as shown. 1,, 15, and
I, represent the phase (and line) currents, and z,, 2,, and 2, the line
impedances. P, (, and § are the mesh currents, and Z,, Z,, Z; are
the phase impedances, including the impedances of both alternator
and load phases and the line impedances.

Then, whether the system is balanced or not, the followirg
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Alternator z; Load

s

Fige. 3.15. THREE-PHASZ Crrourr

equations hold, all the quantities being expressed in symbolie
notation.

Mesh P.

Ey\-Z(P-8)=2yP-Q)-E;=0
Mesh Q.

By~ 24(Q - P) - 24(Q-8) - B3 = 0
Mesh 8.

Ey—Zy(S-Q)-Z,(8S-P)-E, =0
Substituting line currents for mesh currents, we have
E,-Z.1, + Z,1,-E, =0
By-Zyly + Zgly— By = 0
By-Z)0,+ Z,1,-E, =0
or By~ By = Z,1,- Z,],
E,~-Ey=Z,1,-Z,0,
U—B =21~ 51
Eliminating I, and 1. by the use of the relationship 1, + I, + [, = 0,
we have

E\-E,  E\-By _ i e
72t =k (147 +7)
) B.-E, & . =k,
I"Z,Z«]*-J_l—{—l Zzl_l_l 1
(z+ztz) #(z+tz+z)
—E AR
S 77, " % e
L+ 2+ 57 L+ 2+ 550
“3 2

Expressions can be found for I, and I, in the same way.
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Fro. 2.16. THREE-PHASE STAR-CONNECTED Loap CIircuir

Example. The three-phase star-connected load shown in Fig. 3.16 (a) is con-
nected to a three-phase system having a line voltage of 440 volts. Assuming
the line voltages to be unaffetted by the unbalanced load, calculate the current
flowing in the branch containing the capacitor. The supply frequency is 50

per sec.

Fig. 3.16 (b) shows the phase relatidbnships of the three line voltages.

Then E,=E,-E, E,,=— E,-E, E,,=E,-E,
where E,, E,, and E, are the phase voltages of the supply as used in the ex.
presaion for I, in the above paragraph.

From the figure,

[Ey] = 440 + 5.0

[Ey] = — 440 cos 60° - j . 440 sin 60°
= — 440 (0-5 + 0-8667)

[Ey] = - 440 cos 60° + j . 440 sin 60°

= = — 440 (0-5 - 0-8664)

The impedances of the 'oad branches are
L s i

=5 - gidwam ~ 310

[Z,] = 6 + 314 X 001595 = 6 + 5j

[Zs] =3 + 314 X 0-0477j = 3 + 155

Then (1] = ——2t— E‘_E'z,z,
Z, + 2+ :.‘" 8l+zl+“2‘_
440
.
L G-10) 6+ 5)

5-1074+6+ 5 + 3+ 15
440 (0-5 — 0-866;)

5-10j + 3 4 165 + ‘—T———-" W’fs;f‘ 15/)

+
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= 440 4 4005 0-8665)
9-78 - 1057 28— 41y
= 440 [0:060 + 0:0234)
= 30:4 4 1015
Thus the numerical value of I, is 1/30-4% 4 10-1* = 32-1 amp and it leads
101
30-4"

E,, by aphase angle tan-*

The application of the symbolic method to alternating current
bridge networks is fully dealt with by Hague (Ref. (1) ), and the
application to general three-phase networks is given by Dover
(Ref. (2) ). As the matter in this chapter is necessarily brief, these
works should be consulted by readers desiring fuller information
on the subject.

Symmetrical Components. The method of calculation referred to
as that of ‘“‘Symmetrical Components” involves, and is an exten-
sion of, the symbolic methods already described. It is especially
ap{)lioable to the solution of problems in connection with unbalanced
polyphase networks, and simplifies the calculation when it would
be very difficult, if not impossible, by other methods. The most
usual polyphase system is, of course, the three-phase, and the
symmetrical components method will be discussed here with
reference to such a system.

The method, which was largely developed by C. L. Fortescue
(Ref. (8) ), involves the analysis of an unbalanced system of three-
phase vectors into three systems which are each balanced but
which have different phase sequences. These are referred to as the
positive-sequence, negative-sequence, and zero-sequence systems respect-
ively and constitute the symmetrical components of the three
original unbalanced vectors. In other words, each of these vectors
is split up into three components, each of which forms part of a
balanced system.

Fig. 3.17 shows positive-, negative-, and zero-sequence systems
of vectors in diagrams (i), (ii), and (iii). Tt must be clearly under-
stood that all vectors are assumed to rotate in an anti-clockwise
direction in accordance with the standard convention. The sequence
is determined, not by any differences in direction of rotation, but by
the order in which the vectors pass any fixed position. Thus, in
the positive sequence this order is a, b, ¢, whereas in the negative
sequence it is a, ¢, b. The three zero-sequence vectors are in phase
with one another so that they pass any fixed position together.
All three systems of vectors are balanced, 8o that E,,, By, and E,,
are all equal in magnitude as are E,q, Epy and E ., and oy, Fyg, Beo.*

In diagram (iv) of Fig. 3.17 the three vectors E,;, Eg, and g, of
diagrams (i), (i), and (iii) are added vectorially to give vector K,,

* The notation used here is that commonly adopted in published work on
ihe subject of symmetrical components.



CIRCUIT ANALYSIS 123

are Ky, Ey,, Ep, and E,,, E,, E,, to give E, and E, respectively.
t will be noticed that the result is an unbalanced system of vectors
E,, E,, and E,. Conversely, the unbalanced system E,, F,, and E, can
be split up into, or replaced by, the three balanced systems shown in
diagrams (i), (i), and (iii), these three diagrams being supposed to

Lositive Sequence

Fra. 3.17 ‘8yMmurTRICAL COoMPONENTS

correspond to the same instant of time, so that they may be
supérposed in one diagram to show the correct phase relationships
hetween the nine vectors,

We must now conmsider the mathematical treatment of sym-
metrical components. For this purpose we introduce a vector or
operator a which is comparable with the operator j already used,
except that the multiplication of a vector by a rotates it through
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an angle of 120° in an anti-clockwise direction instead of by 90° as
does multiplication by j. Referring to Fig. 3.18, OP represents a

Fic. 3.18

vector V (or V + j,0), while OF, is the vector aV and OF, the
vector a*V,
Obviously

OP, = aV =-05V + j.0866V
= (- 05 + j . 0-866)V

and OP, = a?V = - 0-5V - j 0-866V
= (- 0'5 - j 0-866)V

sothat a= -0-5 + j0-866
and a® = -05 -7 0866
Again, if we multiply vector OP, by a we rotate it a further 120°
to OP, so that
*V =0P=Vora®=1*
Summarizing, we have, therefore,

a=-0-5-+7;0-866

a® = - 0:5-j 0-866

ad=1

a*=a* a=-05+ ;0866
and so on.

It is important to note, also, that
l+a+a*=1-05+50-866-05-; 0866 =0 &

Adopting the exponential notetion of page 110, a is the unit vector lo B
or lefi®° go that any veetor Me#), when multiplied by @, becomes
Mef0+122), The vector OF may be written in this notation as Ve’ OF, as
Vei139° and OP, ag Vai0e,

* 1, a and a*® are the cube roots of unity.
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Using the operator a in relation to the symmetrical components
of Fig. 3.17 we have, for example, £, = afi,, and E,, = a*® E,,,
so that we obtain the following equations—

Eyy = a*E,,
E'a: =aL :1. P

gu — E,E } Negative-sequence

EamBg } Positive-sequence

by = @ Ligy

Ea=a'E, system
Ep=E,=E4 Zero-sequence
system

Hence the three unbalanced vectors E,, E,, and E, may be ex-
pressed by the symbolic expressions

EG=EGB+E¢1+E¢3=E¢|)+EM+E=! . . . (1)
Ey = Ey+ Ey + Epy = Eoy + a’Ey; + aB § . (i)
E,=Ep+ Ey+ Eg = Ey + aBy + a®B,, ; . (i)

The symmetrical components E,,, I, and E,, may be derived, in
terms of the three unbalanced vectors K,, K,, and E,, from these
equations as shown below.

Positive-sequence Components. Utilizing the values obtained in
equations (i), (ii), and (iii) we have, for the sum of E,, ak,, and a®E,,

E, + aEy + a*E, = E (1 4+ a + a?)
+ By (1 4+ a®+ a® + By (1 + a? + ab)
= 33,“ gince a! = a,a® = 1
and 1 4+ a 4+ a' = 0

2
Hence By= gk GE;: + ot
Negative-sequence Components. Again, from (i), (ii) and (iii),
E,+ a®E, + aE, = E, (1 + a + a?

+ Egy (1 + a* + a?)

+ Eg (1 + a® 4 a°)
Hence E,= E, + a‘f, + oF,
Zero-sequence Components. Adding (i), (ii) and (iii) we have

Eo+ By + E, = 3E,; + E,, (14 a*+ a)
+Eﬂg(1+ﬂ.+ﬂz}

=0 3En0
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Hence

Buam B Bt t Bt Ee

The zero-sequence components are thus each equal to one-third of the
vector sum of the three unbalanced vectors.

These statements and equations may, from the use of the symbol
E throughout, be taken to apply to voltage vectors, but they apply
in exactly the same way to current or impedance vectors.

From the above, two important facts are imwediately apparent.
First, if a system is balanced, the zero-sequence and negative-
sequence components are both zero, since we may write i, = a’E,
and E, = aF,. from which

P Es+ aE +aE, _E,(1 +a+ a?)
ap = 3 ot 3 =10

g _ Bt oy +aB, E,(+a+a)

0

The positive-sequence components are then equal to the balanced

vectors themselves, since
En1=E“+u8E‘+aSE“=3—E‘¢=E
3 3

Again, although three vectors may not constitute a balanced
gystem, yet if their resultant is zero (i.e. if the vector sum E, + £,
+ E, is zero) the zero-sequence components must be zero since
Eao = (E, + Ey + E,)|3 = 0. It follows, therefore, that in a mesh-
connected system there are no zero-sequence components of voltage,
and in a star-connected three-wire system with an insulated neutral
point there are no zero-sequence components of current.

It must be realized that in the few pages of space here available
no more than a brief introduction to the method of symmetrical
components can be given. For fuller treatment, including the
application of the method to the calculation of networks upon
which there are faults, for which purpose it is particularly suited,
the reader should refer to the works mentioned at the end of the
chapter.

Before concluding, however, the application of the method will
be illustrated by an alternative solution of the problem given on
page 121.

Example. Let E,, E,, and E, be the voltages, line to neutral, applied to
the impedances 1, 2, and 3 in Fig. 3.16 (a).

Then

E,=(5—10/)I; = (65— 10j) Lo + Iss + Ia)
Ey = (6 +5) 1, = (6+5)Ly+ Iny + Tual
G, =1{3+ 15 Iy = (3 + 15) [Jeo + L1 + 1a
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where I,, I,,and I, are the three line currents, expressed in symbolic notation,
and I, 14y, L5 00, their symmetrical components. Since there is no fourth
wire the zero-sequence components I,q, Iy, and I, are zero, so that we have
By = (6—10j) [Ug + Lol . . : 4 - . (=)
By = (6 + 6j) [La + Iyl = (6 + 55) [a%],; + alg] . - (¥
E, = 3+ 15) [{ey + Les) = (8 + 15)) [algy + a®lg] . . - (=)
Now, from the vector diagram of Fig. 3.16 (b),
E,— E,=440; E,— E,=a' . 440; E,— E, = a . 440
From (z) and (y), by subtraction, giving a and a* their known values,
B,— E, = 1,,[366 — 2:3j] + 1,,[12:34 — 12:7j] = 440
Again, from (y) and (z),
E,— E, = 1,,[15:84 — 2:8f] + I, [— 18:84 + 12-8j]
= a*, 440 = — 220 — 381j
And, from (z) and (z),
By— By = Iy [— 195 + 6'1j] + 1, [6:6— 0:17]
= a, 440 = — 220 + 381§

Only the first two of these equations are needed to evaluate I,, and I,,.
First eliminating I,; by multiplying the first equation by [15-84 — 2-8/] and
the second by [3-66 — 2:3j] and subtracting, we have for I,y

Iy = 12:6 4 18-8)
440 — [12:34 — 1271,
3-66 — 2:3)

and I, = = 17-8 — 8-Gj

Then
I, = Iy + I, = 304 4 10:15
which is the same result as previously obtained on page 121.

We may proceed to find I, and I, as follows—
I, = a*la, + al,
= — 38:86 — 95655
Iy = aly, + a'l,
= 8-46 — 0-657

Graphical methods of determining the symmetrical components
of three unbalanced voltages or currents are discussed fully in
Chapter XIII of the book by Wagner and Evans mentioned in Ref.
(7). The measurement of such quantities is also dealt with in
Chapter X1V of the same book. Specially constructed meters for the
analysis of unbalanced voltages and currents into their symmetrical
components are described in a paper by T. A. Rich (Ref. (11) ).

Some Important Network Theorems

Although it is possible to solve the majority of linear network
problems with the aid of Kirchhoff’s laws, in many cases the working
can be simplified by the use of certain network theorems which will
now be stated.
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The Superposition Theorem. 7'he resultant current in any element of
a linear network, due to the simulianeous action of @ number of
generalors, may be found by considering one gemerafor al a time and
adding the currents due to the individual generalors.

The application of the theorem may best be illustrated by means
of an example. The circuit shown in Fig. 3.19 (a) consists of two
alternators in parallel supplying current to a load impedance Z.
The alternators have open-cireuit e.m.f.s. E; and E, and internal
impedances Z, and Z, respectively. This circuit is resolved into the
two circuits in Figs. 3.19 (b) and (c).

Fig. 3.19 (b) shows the circuit with the generator £, removed and

1’ ol
Z Z; & A 2 F t
T 22 4 o
-5[‘; s;f(; e, te, %
@ ; ' |

®) ©

Fia. 3.19. APPLICATION OF THE SUPERPOSITION THEOREM

replaced by a passive Z, equal to its internal impedance; the partial
load current in this case is
E, Ly _ s LG Zg
ZZB_'Z+ZQ— 1 ZZ, + 2,7, 4 ZZ,
Z 4+ Z,
In Fig. 3.19 (¢), £, is removed and replaced by a passive impedance
Z, equal to its internal impedance, and the partial load current is
Zy
22y + ZnZy + Ly
Applying the Superposition Theorem, the load current I is given
by

2 =

Z, +

I'=E2.

— ) W = Elzl"l"Ezzl
I=U'+ ' =gpres -+,

The current contributed by each generator can be found in a
similar manner. J

This theorem can be verified, in general terms, by taking a
network having a number of meshes and generators, and deriving,
by means of Kirchhoff’s laws, an expression for the current in one
mesh: the theory of determinants may usefully be employed for
?his purpose. It will be found that the current [, is expressed in the
orm

I, =bE 4 bl Fl+.. LE,
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where E,, E,, etc., are the generator voltages, and k,, k,, etc., are
constant coefficients expressed in terms of the network impedances.
It is clear from the form of this result that each generator makes an
independent contribution to the current 1.

Thevenin’s Theorem. This is a very useful theorem which often
simplifies calculations when it is required to find the current in one
branch of a network. It is really an extension of the Superposition
Theorem.

The current flowing through an impedance, when this is connected
across any two points A and B of an active network, is found by dividing
the vollage appearing across the two points before the impedance is
inserted by the sum of this impedance and the impedance of the network as
seen from the points A and B. In determining the network impedance all

£
A I
Active Mctive A = I
Network L Network Z Passive  z,
Impedance Z, Impedance Z, Network
8 8

Fic. 3.20. IrLusTrRATING THEVENIN'S THEOREM

the vollage sources must be replaced by passive impedances equal to
their internal impedances.
Referring to Fig. 3.20, the current in the branch Z, when connected

across A and B, is given by

Zli 7 where I is the open-circuit
potential difference appearing across 4 and B when Z is removed,
and Z, is the internal impedance of the active network, measured
between A and B.

A number of different rigorous proofs have been developed for
this theorem but it can be simply justified in the following manner.
Suppose a generator of zero internal impedance and e.m f. £, equal
but opposite in sign to that appearing across AB, is introduced
into Z, and this branch is then closed across 4 B; then no current
will flow in Z. Now, if the generator in Z is removed, it follows from
the Superposition Theorem that the change of current in Z is
737 and this is the actual current in Z when closed on AB.

1

The Star-Delta Transformation. This transformation can be used
to simplify complicated networks. It is of considerable value in the
solution of some bridge networks and examples of its use will be found
in subsequent chapters.

Consider the delta and star arrangement of impedances shown
in Fig. 3.21. If the two circuits are to be equivalent, then the
impedance between corresponding terminals must be the same in both
cases.
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The impedance between terminals 4 and B in the delta network

is
z. — Zl%+ 2y
@I+ 2,17,
and in the star network,
Zyp =2, + Z,
Similar expressions may be derived for the other pairs of terminals
giving the following equations for equivalence—
Z\(Zy + Zy)

Termin&lﬂ AB Za - Z@ = m_—f-_g- {l)
1 2 3

4
Z Z =
& 8
<z
Fie. 3.21. Srar-Derra TRANSFORMATION
: ; _ Zo(Z, + Zy) i
Terminals BC Zy+ Z, = Z + 7,7 7, (ii)
: _ 2%+ 2y
Terminals C A4 Zc -+ Zﬂ = mﬂ . (i)
Subtract (ii) from (i), obtaining
Zy(Zy, — Z,) ;
— — 4 = 2. 3
Z, — Z, _L__Zl Tz (iv)
Add (iii) to (iv) and we obtain the result
Z1Zy

g e A

By symmetry,
2= ZIZE ZEZ.! A
b—-z1+ze+zs Zy+ Z, + Z,

The inverse transformation may be deduced from these results as
follows—

and Z, =

Z,2y, 2,2, 2.7
Zy A Zy+ Zg = éa_—_ ‘zi'=__29:=
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from which
Z,_5 Z,_5%
Zs - zc' Za il zﬂ
Z,7 Y/
N Zy= o) (AR .. PR
O  NTTxhtid L L,
Z: ' Z,
Zl zlztza

= Zalis + 22 + Lol

+ 2 +1
A
8
N C
D
Stgr System of Impedances Equivalent Pair-connected Systen

Fic. 3.22. GENERAL STAr-Musi TRANSFORMATION

_ B2+ BTt Bl

Hence Z,

Ze
Similarly Z, = Za2s + z%z, + ZZ,
_ B = Z. 2y + B2, + 2,2,

Zy

The General Star-Mesh Transformation. The star-delta trans-
formation is a particular case of a more general transformation
(Rosen’s Theorem) which enables a star of impedances having n arms
to be converted to a pair-connected system having E(—n—g:ﬂ arms.

Consider the star of m impedances shown in Fig. 3.22. Let
€i, €my €y v v 0 €n be the potentials of the 'points .A., B, C, W a g
N. Let e, be the potential of the star point 0. For an equivalent
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pair-connected system the currents entering the network at 4, B,
C, ete., must be the same in both systems.
In the star network

iy = Ex =80 ngfi_:’Q,,;N:__ ex — &g
Z Zs Zs
and b b St G . o by =0
N
g GN"-GO
ie. =~ =0
3 7
N N
or Zh’ - 259- =0
A 4N K4y
3 e
: i Zn
from which €g = b
T
Now, "AZ'EA; —;:‘;-3
and; substituting for e,
3 e
goepity - 1 ‘R_'A Zy
- A z.& z_l_
2y
st ! S ©a FA. _ €n g €N
o -]
32
A N
which simplifies to
1 o o B =
iy = S By —ty €A — &g C €r —€n
ZAZ'L Zy Zg Zy
* Zn
or
. ey —e ey —e €y — e
‘A= A NB + A C . + A N
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1t is apparent that

LBk ey

N l_
is the current which would flow in an impedance
s 1
ZaZy 2 7
A 4N

placed between 4 and B, and

€x —EN
Z. 7 y L
uZn 3 4

is the current in an impedance
ZuZx 3 )
A9N £ 70

between 4 and N,

Thus the equivalent pair-connected system is obtained by taking
two terminals at a time and placing between them an impedance of
the form

2,23 2
a7n 2 7

The pair-connected system is constructed by starting with
terminal 4 and joining it to every other terminal with the appropriate
impedance, then repeating the procedure from terminal B with
impedances of the form

7.2 )
on 2

and so on until every pair is connected.
This theorem is of considerable assistance in the study of earth-
capacitance effects in a.c. bridges. See also Ref. (1).
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CHAPTER IV
CAPACITORS, CAPACITANCE, AND DIELECTRICS

General Considerations. In Chapter I capacitance was defined with
reference to a number of condactors having different charges and
being at different potentials. Self- and earth-capacitances were also
discussed. Before proceeding to develop formulae for the capacit-
ances of various common arrangements of conductors encountered
in practice it may be well to give these matters a little further
consideration.

Fig. 4.1 shows a general system of conductors in air, situated at
various distances from earth and from one another. If all these
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ey o7
ariZ L
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Fig. 4.1. SysTem oF CrarceEDp CoNDUcTORS NEAR TO

EARTH

conductors are at the same potential above earth, varying quantities
of electric flux will pass from them to earth, these fluxes depending,
in each case, upon the size and shape of the conductor, and upon
its position relative to earth—i.e. upon the “earth capacitance’ of
each conductor. No flux will pass from one conductor to another,
since they are all at the same potential above earth. The quantities
of positive electricity existing upon the various conductors will be
different, since their earth capacitances are different and their
potentials the same.

Suppose the capacitances of the various conductors to earth are
given by C,, Cg, Co, etc. Suppose now that the conductors are
charged to different potentials V,, Vs, Vo, ete., above earth. In this
case, not only will some flux pass from each conductor to earth, but,
in addition, flux will pass between any one conductor and each of

135
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the others in the system FEach of these inter-conductor fluxes will
be proportional to the difference of potential of the conductors
between which it exists, and its direction will, of course, depend upon
which of the two conductors concerned is at the higher potential.
If eonductor A is at a higher potential than any of the other con-
ductors, fluxes will flow from it, which may be represented by v,
Yacs Yan, and so on, the second suffix letter indicating, in each case,
the conductor to which the particular flux radiated from A flows.
If B is at the second highest potential, the fluxes radiating from it
are — Yga, Yuc, Yo, otc., and for conductor C, - ye,, - yep, yep, ete.,
assuming it to be the third highest in potential. As stated above
there will be, in each case, an earth flux which may be represented
by ya ¥u, o, ete.

It may be supposed that a portion of the total charge of each
conductor is associated with each of the fluxes radiating from that
conductor. These portions of charge will, of course, be proportional
to the corresponding fluxes, and thérefore will be proportional to
the differences in potential between the pairs of conductors. Repre-
senting these portions of charge, in the case of 4 by @5, @,c, Qin,
ete., and in the case of B by @y, @sc, Qun, €tc., and 8o on, we have for
the totul charges on the various conductors

QA = C.;Vs =} GJB{VL- VB) -+ CAC{VA . > Vc] i 7 CAD(VA_ VD] o PR
Qn = CyVy 4 Cin(Vs - Vi) + Cue(Va- Vo) + Con(Va=Vp)+. ..
Qe = CoVeo + Cuc(Vo— Vi) + Cuc(Ve— Vi) + Con(Ve - V) + . . .
(4.1)

Thus, if there are n capacitors, each one has n component capa-
citances, including its earth capacitance.

In most cases in practice we are concerned with two (or it may be
three or four) conductors, which are so near together. compared
with their distances from other conductors and from earth, that the
capacitances due to the latter can be neglected. Thus, in the case of a
capacitor having two plates, 4 and B, near together, it is only the
capacitance €,y which is considered, and this is spoken of as the
capacitance of the capacitor. In the cases ¢onsidered in the following
pages, earth capacitances, and inter-capacitances with conductors
other than those forming the arrangement under consideration, will
be neglected unless otherwise stated. The earth capacitance, and
inter-capacitance with other conductors, may, however, be of con-
siderable importance if the capacitor is of small capacitance and large
dimensions. In the case of capacitors of capacitance {; microfarad
und over, earth capacitances are usually negligible.

Capacitance of Various Systems of Conductors. 1. CapaciTance or
AX TSOLATED SPHERICAL CONDUCTOR. Suppose the spherical con-
ductor to be perfectly insulated and at an infinite distance from all
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other conductors. Let its radius be R metres and let the medium
surrounding it have permittivity &, where & = £¢¢,. & is the per-
,mittivity of a vacuum, and &, the relative permittivity of the
surrounding medium. For air, & = 1.

If a charge of  coulombs be given to the sphere, the electric field
strength at any point outside it is the same as it would be if the
charge were concentrated at the centre of the sphere. Thus, the
field strength at any point P, distant = metres from the centre of
the sphere, is, from Equation (1.2),

-

E=

and the potential of the sphere is given by
©

o e =9

s -L e © = e

.. The capacitance of the Q
isolated sphere = QdmeR ~ dmeR (4.2)

If the sphere is in air, its capacitance is

R
C = > 10° farads

9. CAPACITANCE OF A SpHERICAL Conpucror INsipe A Con-
centrio HoLLow ConpucriNg SPHERE. Let the radii of the inner
and outer sphetes be R, and R, metres respectively, the latter being
the radius of the inner spherical surface of the outer sphere. Let
¢ be the permittivity of the medium between them.

If a charge of 4 ¢ coulombs be given to the inner sphere a charge
of — @ coulombs will be induced on the inner surface of the outer
sphere. Since, as shown in Chapter I, the field strength at any point
inside a hollow ¢harged conductor is zero, the field strength at any
point between the two spheres will be that due to the inner sphere
only. Taking any point P, distant z metres from the centre of the
inner sphere, and, as before, considering the charge on this sphere to
be concentrated at its centre, we have, for the field strength at P,

Q
b= e

The potential differenc: etween the spheres is given by
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Hence, the capacitance of the arrangement is

e Q _ 4meR\R,
=P e (4.3)
(%7

3. CarPacITANCE BETWEEN Two SPHERES AT A RELATIVELY
GREAT D1sTANCE APART. In this case each sphere will have its own
self-capacitance, and also a mutual capacitance with the other
sphere. Suppose that the two spheres have equal and opposite
charges, and are at a relatively great distance apart, and infinitely
distant from all other bodies,*

Under these conditions, if the charges upon spheres 4 and B are
+ @ and — @ coulombs, and their potentials ¥, and V,, then the
capacitance between the spheres is

R
C = Vl_ V.
4 B
+Q =Q
l
fe- D ~

Fia. 4.2. Two CHARGED SPHERES

Let the spheres have radii 2, and R, metres respectively, and let
their distance apart be D metres in air (see Fig. 4.2). Then the poten-

tial at the centre O, of sphere 4 due to its own charge is qu—IT If
the second sphere is distant from sphere 4, the potential at |JO‘,leue:

to the charge on B is — WD’

TR e
A dpeldty, D
By similar reasoning,
, 1 Qg . %
te= s [ Tt D]

* The capacitance of a system of two charged spheres in the general case
has been fully investigated by Russell (Ref. (12) ).
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Thus the capacitance between the spheres
) Q 0 dmegd dmre,
T | O
R D R "D B DR
4dneoR R, D
D(Ry; + R,)- 2R\R,
If the medium is not air but has a permittivity ¢, then
o— dmeR R,D
D(R, + R,)-2R\R,
If the spheres are equal,
C = dmeRD
~ 2(D-R)
where R is the common radius.

or G=

(4.4)

Rassell (loc. cit.) gives the capacitance of the two spheres in parallel, i.e. when
connected by & thin wire so that they are at the same potential, as

4 2315',) D
Ol, = -iwsu \Rl. + R’— D m (4.5}
(in air), using the symbols as above. If the spheres have equal radii R, then
8we, RD 8weRD
0,w——-~—D+R ar C’E_D-l-}?
when in & medium of permittivity &.
For two equal spheres close together, the capacitance between the spheres is
given approximately by

0 = daty g(l + %)(1-2704+ 5 mg,i—' + ﬁﬁ) . (4.8

farads in air, where R is the common radius and z the nearest distance
between them (= D — 2R).

4, Caracitance BerweeN Two Conpucting Prates, Consider
two equal conducting plates, placed parallel to one another, and at a
distance D metres apart, this being small compared with the
dimensions of the plates, so that the fringing effect at the edges of
the plates can be neglected. Let the area of each plate (one side
only) be A sq. m, and let the charges on the plates be 4 @ and
— @ coulombs.

From Chapter I the field strength at a point between the plates is

E, where ¢ is the density - the charge and equals g Then the

potential difference between the plates is
D
Pl © il
77 By |

1]
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e L |

V=QDA" D TR
Suppose that, instead of there being only one dielectric between

the plates, there are several parallel layers of dielectrics of thick-

nesses D,, D,, Dy, ete., and having permittivities ¢,, &,, &, ete.,

respectively, as in Fig. 4.3.

Thus, =

=1 ‘ Arec A iy
Sk s ' / 3;
Surtoce d A F : R R AR v

Surface J

Fi1e, 4.3. DIELECTRICS IN SERIES IN A PLATE
CAPACITOR

Then potential difference between surfaces 1 and 2 is
DI.
T
Vln—'J; -E:I_Adx_ g, d D1
while that between surfaces 2 and 3 is
g
V= ;5 D
and so on. Thus, the total potential difference V between the
parallel conducting plates is
V= V13+V33+ Vu-l_. e

=Q(D1+P_’;+P_’+”_)

A _E; £y £y
and the capacitance between the plates is therefore
ke ?Qf . D AD
( 1+£_:+£_:+...) p (4.8)

£y

Effect of Additional Plates. 1f two more similar plates are added,
one of which is connected to each of the existing plates (Fig. 4.4),
and the same dielectric placed between them, then the effective
area for the whole capacitor thus formed is 34, and the capacitance

is thus increased to 3—§)‘i
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In general, since the use of N plates creates N — 1 spaces (each of
width D) the capacitance of such a capacitor with N plates is

iy SEEL DI v T

By this means the capacitance of a plate capacitor can be made
large whilst using plates with only a comparatively small surface.
area.

Although these formulae must be considered as approximations,
if the plates are close together they are sufficiently accurate for most

.===~._ Fringin
. - L
; >— Fiel
- ]

- e

OO :é: ey aalﬁan
i ——~~ 7" Permittivity € g=

g % ':"I:.-‘j-' . = LJLukﬂ
\ l‘l -i"{ ; D D 1]
\ ,-d- _i; .+ Cavacitance C Capacitance 3C

F1a. 4.4.. PLATE CAPACITOR

practical purposes, even though the capacitor may be in the vicinity
of other conductors.

5. Caracitance BETweEEN Two LonNg, Pararrer CoNpucTING
CyrinpERsS. This problem can be resolved into two separate cases,
namely: (@) when the cylinders are at a distance apart which is
great compared with their diameters; (b) when they are compara-
tively close together.

In the former case it is considerably easier to calculate the capa-
citance between them than in the latter. This ease will be considered
first.

Case (a).

Fig. 4.5 represents two long parallel conducting eylinders, perpendicular to
the plane of the paper, each of diameter d metres placed at a distance D metres
apart in air, D being great compared with d and the cylinders being at a great
distanee from all other conductors.

Let + @ and — @ coulombs be the charges per metro axial length on 4 and
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B tively. In this case it may be assumed that the charges are concen-
tra at the axes of the cylinders.
From Equation (1.4), the field strength at P, distant « from cylinder 4, due

to this cylinder is Tees which is the force (in newtons, if Q is in coulombs and

z in metres) upon unit charge placed at P. This force is in the direction 4B,

e d - d—~

G+ —8

Fra. 4.5. PARALLEL CYLINDERS

Similarly, .cylinder B would exert a force (of attraction) upon unit charge at

P of newtons, also in the direction AB. Thus the total force

upon unit charge at P is 2—%; i = I_Jl—x:] newtons in direction AB. The ’
T 2

potential difference between the cylinders—which is the work done in moving

unit charge from the surface of one cylinder to the surface of the other—is

2ney(D — z)

M-D_g Q@ 71 1 Q
J , [2;,?9 (;*n—_,)]dx=gg;llose=-los¢(ﬂ—w11
"

i.e. potential difference between the cylinders is

... Q: 3D-4
Paig =2t . .. (410)

. The capacitance between the cylinders per meire axial length

wE,

[y 2D -d
log, 3

If the relative permittivity of the medium between the cylinders
is g,, then, of course,

1:21 ¢,

2
10" log,, (? : 1)
or, the capacitance per mile of two such parallel eylinders in air is
1-95

108 log,, (2—‘? = 1)

0= farads per metre length

farads . . : . (41D
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If D is great compared with d,
O== —-ﬂ—-ﬁ farads per mile
108 log‘“) "E‘

Case (b). When the cylinders are comparatively close together
the treatment of the problem differs from that of Case (a), owing to
the fact that the charges of 4+ @ and - @ cannot now be assumed to
be concentrated at the axes of the cylinders. The charges must
now be taken as concentrated along other axes, parallel to and in
the same plane as the axes of the cylinders, but displaced so that the
distance apart of the axes along which the charges are assumed to be
concentrated is now less than the distance D. To derive an expression
for the capacitance in this case the distribution of the electrostatic
field between the cylinders must first be considered.

When the cylinders are at a great distance apart, as in Case (a),
the lines of force of the electrostatic field radiate from the cylinders
uniformly in all directions, each line cutting the surfaces of the
eylinders perpendicularly. Since the potential of a point along any
one line of force decreases as the distance of the point from cylinder
A is increased, a number of equipotential surfaces exist which are
in the form of cylinders concentric with the cylindrical conductors,
the lines of force cutting all of these cylinders perpendicularly.

If the cylindrical conductors are comparatively close together
these equipotential surfaces are still cylinders, but they are not
concentric with the surfaces of the eylindrical eonductors whose
capacitance is to be determined, nor are they concentric with one
another.

It can be shown* that the equations of the traces of these cylin-
drical equipotential surfaces in the plane of the paper are r, = Mr,
where 7, and 7 are the distances of any point on one of the circular
traces from the traces X and Y of the axes along which the charges
+ @ and — Q maly be assumed to be concentrated and from which
the lines of electrostatic force radiate (these lines of force being
circles, as in Fig. 4.6), and M is a constant which differs for different
traces. By giving M different values a series of circular traces is
obtained, as shown in the figure. When M = 1 the trace is a straight
line, this being the trace of a plane the potential of all points on
which is zero.

Now, since the surfaces of the cylindrical conductors are equi-
potential surfaces, the equations of whose traces in the plane of the
paper are given by the above relationship (r, = Mr), it follows that
the traces X and Y are not coincident with the axes of the conduct-
ing cylinders, but are displaced as shown in Fig. 4.6.

* See T. F. Wall's Electrical Engineering, p. 46.
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Calculation of Capacitance. To calculate the positions of the axes whose
traces are X and Y, proceed as below.

Let the points X and ¥ be displaced inwards from the centres of the two
circles which are the traces of the cylindrical conductors A and B by a distance
m in each case, and let their distance apart be [. Then! = D - 2m.

: s b
r'n es of force

; radiating #rom

axes whose traces

Traces of

] Lra/
B

Fio. 4.6. ErecrrostaTio Frerp BETwEEN CHARGED PARALLEL
CyYLINDERS WHICH ARE NEAR TOGETHER

h o - d-mL —-;:%_;f |

N 72

—P
[ D
Fia. 4.7.

Since the surfaces of the eylindrieal conductors are equipoténtial surfaces,
the equation r; = Mr holds for their traces. Consider the point P (Fig. 4.7)
on the trace of cylinder 4 on a line through X perpendicular to the line X¥.

Then (g)' = m? 4+ XP, and XP = M(PY), since for point P, r, = XP
and r = PY,
Allo B 4 XP' = PY
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For the point S,
8- S dr=58Y =1-(3-)
fll= -—2—1'?‘3.!1 - (5—“’1
Since for all points on the circular trace of 4

rlﬂM‘f‘

we have g-m— M [l-(g-m)]lorpoints

M = LL
A % T
(&m)
XP\? . &
Now I + XP' = PY' = (F) - T :
= sl
d
- l- (é '—m)
and (g) = m? 4 XP
d L ]
O d)’ 1 _(E__.) o
an + (ﬁ - m ﬁ_m 2
Wi
P
g -
faaa's D=1 ’ :
Substituting m = —5— and solving for ! we have the solution,
= VDi-d*

If d is small compared with D, we have [ = D, as in Case (a).

Thus, to calculate the capacitance between the cylinders, the treatment is
exactly the same as that of Case (a), except that the charges -+ Q and - ¢
per metre axial length are considered concentrated along parallel axes whose
distance apart is now [ instead of D.

We have then, for the field strength at a point such as N (Fig. 4.7) distant
z from X,

Q Q

B e T el — o

and for the potential difference between the cylinders,

- ()

6—(T.5700)
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or, since l=+vD"—d* and 2m = D -1
= VDi-d* - (d-D) 4.12
L ws.l°g'[1/§'_—"5'+(d-m] o )

Thus capacitance per metre axial length is

e Y wEy

¥ § VDiZds — «(d- D)
8| VDi-a + (d-D)

Rationalizing and simplifying’ we have

0o )

= =

If the permittivity of the medium between the cylinders is &, we
have

mE

- ; . . . (4.13)
- (D + %D! -t

or C =

1-95
farads per mile of double
108 1o, D+ vDi-dt conductor in air
Eio P

These capacitances are given in farads per mile, since the arrange-
ment of two long parallel conducting eylinders is chiefly met with in
overhead transmission lines where the most useful unit of length is
the mile. Formulae for the general case of two parallel cylindrical
conductors have been given by Russell (Ref. (13) ).

6. CapacrTANCE BETWEEN Two Coaxian CYLINDERS. An im-
portant case of this arrangement in practice is, of course, a concentric
cable.

Consider two long conducting concentric cylinders, the diameter
of the inner one being d metres and the inner diameter of the outer
one being D metres. Let 4 @ and — @ coulombs be their charges per
metre axial length. The lines of force of the electrostatic field will
be radial, and the equipotential surfaces will be cylindrical and
coaxial with the two conducting cylinders. The field strength
at some point at a radial distance of z metres from the common axis

of the cylinders will be

is air.

e if the dielectric separating the cylinders
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Thus the potential difference between the cylinders is

L
Q _ @ D d
eyt e 2mre, [log, g log, §]

2
<
. D
e 2me, log, d
The capacitance per metre length is
Q 2me,y

D
log, -

The general expression for a length [ metres, the dielectric having a
permittivity &, is

o=28 . . W
log #
‘d
or C= I8 farads per mile
10' logwE

7. CAPACITANCE OF A SINGLE STRAIGHT CONDUCTOR PARALLEL TO
EarTa. Method of Electric Images. This method is based upon the
concept of an “image” of a conductor placed above the earth’s
surface, this image being of the same size and shaye as the conductor
considered and lying as far beneath the surface of the earth as the
conductor considered is above the surface. The earth’s surface is
thus in the plane of zero potential for these two conductors—con-
sidering the image as being in actual fact a conductor placed at &
distance 2H from the original one, H being the height of this original
conductor above the earth.

Since the earth’s surface is at zero potential, the electrostatic
field from the charged conductor above the earth, to the surface of
the earth, has the same distribution as the field which would exist
between the conductor and the zero potential plane, in the case of
two conductors placed at a distance of 2H apart.

Tig. 4.8 shows the trace of a cylindrical conduetor A lying parallel
to the earth’s surface, and at a height H metres above the earth; 4’
is its image. If conductor 4 has a charge of + @ coulombs per metre
axial length, then the potential difference between it and conductor
A', which is supposed to have — @ coulombs per metre axial length,
is, from Equation (4.10),

A 4H -d
2!’-1;8—')103, 3
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where d is the diameter of the conductors and is assumed small com-
pared with H; V is the potential of 4 above that of the earth, and
is also the potential of A’ below earth potential.

A

i " :Caﬂa’ucm-

M

Fia. 4.8. CyrinDRIcAL CONDUCTOR
PARALLEL TO EARTH

Wty 4H -d
Thus V= 2—17;—0 loga d
and the capacitance per metre length of one conductor to earth is
2me
C= m . . . . . (4.15)

log,

d

where the dielectric has permittivity &.
The capacitance per mile of one conductor to earth in air is
therefore

Oi= —:ﬂ—dfsrads per mile

108 log,, &% d!_

If d is small compared with H (as is usually the case when an over-
head line is considered) then

s 3-89 - 3-89

farads per mile

2H

108 log,, o 108 log,,

d
where r is the radius of the conductor in metres.

If d is not small compared with H, the calculation of capacitance
must be based upon Equation (4.12) instead of Equation (4.10) as
above.

8. CaraciTaANCE BETWEEN Two Lowa, STRAIGHT CONDUCTORS,
PaRrRALLEL TO THE EARTH AND TO ONE ANOTHER. Consider two long
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cylindrical conductors M and N parallel to earth and to one another,
their diameters being d, their distance apart D, and their height
above earth H, metres ; and let M’ and N’ be their images (Fig. 4.9).
Suppose d small compared with H.

D ——vf
U
.r)—a—I

Farces acting of
wnit + charde
placed at
Earth
P DOueto _P e (o
M N
Du ;1 ¢o ﬂ#ﬁ}fﬂ
(a
) '/ - :‘V’ (%)
T e
Fra. 4.9. Two CeArcEp Pararrern CoNDUCTORS NEAR
T0 EARTH

Let M and N have charges of + @ and — @ per metre axial length
respectively and M’ and N’ charges of — @ and - @ units per metre
length respectively.

Consider a point P on the horizontal line joining the centres of
M and N and distant @ metres from M, The field strength at P is due
to all four conductors M, N, M', and N'. Thus field strength at P in
the direction M N is—

Due to M. -—Q—
ey
Q
Due to N. ey e
Due to M's —— cos o = . P S
2me PM’ 2megVAH? -+ a? "VAHE | a2
-
T 2mey(4H? + 2?)
Due to N'. b Mledecnl B

2me V(D — x)® | 4H?
o e QDA
T 2me (D — x)® 4 4H?
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Resultant field strength at P is

AR e e . Ob-n
2neg lz " D-z 4H® 22 (D-2)* + 4H?

and the potential difference between M and N is

D-r
,,=J I (Q+ 0 Qz Q(D-2) )dr

2neg\z ' D-z 4Bt 2* (D-zp + 4I®

where r is the radius of the conductors.
Integrating, we have

2% W D-r 4H? 4 1
V= 211'6‘0 Q [2 loge ; -+ l()g‘ m] {4.16)
If D is great compared with r,
_Q D 412
St 2?;_-;[2 log, < + lo, m—pa]
The capacitance between the conductors is
0= - . FI Azewian
¥ D 4H?
2log, = + 108 g~
s mEy 510 s
= % D SH per metre length in air
b7 \Vam ¢ D“)
or CO= on farads per mile
D 2H
10° log,, 2 (—-——_
¥ 4H® + D?

The capacitance of two parallel cylinders which are at a great
distance from earth was previously found to be

105 195

= farads per mile
2D D
10%logy, - 10%logy %,
D being great compared with r. 2H
Thus the proximity of the earth introduces the term —
in the denominator, as shown above. VAH | e

The capacitance of a system of three or more conductors, parallel
and near to the earth, can be found by similar methods (Refs.
(1), (), (8)).
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Capacitors in Series and Parallel. (a) Series. If a number of
capacitors are connected in series, as in I'ig. 4.10 (a), a potential differ-
ence of V being applied between the outer terminals, there will be
potential differences v,, vy, vy, etc., between the different pairs of

lates.
£ Let the capacitances of the capacitors (neglecting earth capacit-
ances) be C,, C,, Cs, etc. If a quantivy of electricity @ is given to
the system of capacitors by means of a current which flows for a

e

Y, Gi

uz%cz v - JLQ - > g l
U c 1 e—— 1 2 —-QI 3——03 4
& i a |

(a) (b}
F1o. 4.10. CAPACITORS IN SERIES AND IN PARALLEL

short time through them until they are charged to the total potential
difference ¥, then
Q Q

i R g
and so on.
If C is the capacitance of the whole system, the potential difference
for which is V, then

oy e
C—VorV—E,
Thus, since, ¥V = v; + v, + 4,
e_2.¢.¢
BT EdgTes
1 1 1 ik
=TT (4.18)

(b) PARaLLEL. If a potential difference V is applied to a number
of capacitors connected in parallel (Fig. 4.10 (b)), then the potential
difference across the plates of such capacitors is, in each case, V,
but the quantities of electricity given to the capacitors are now
different for the different capacitors. If these quantities are @,
Q,, Qs etc., then

V5= g—'ior @, = 0,

Q

c, or @, = v,Cy

”' =

and so on.
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But yp=g=pw=__ . =F
and the total quantity of electricity is
Q=01+Qa+Qa+ .. =0V
where C is the total capacitance.
Thus CV=C +Cuy +Ciw, + . . .
= V(Cl 5 Cs + Cs-+ |
SO=04+C+C+... . p . (4.19)

Two-core Cable. In the case of multi-core cables generally, the
earth capacitances of the cores cannot be neglected. A two-core cable

fa:tﬁ
-]} <)
Fie. 4.11. CaPACITANCE OF A Two-CORE CABLE

consists essentially of two long parallel conductors embedded in
some insulating material, the whole being enclosed by an earthed,
conducting cylinder, as in Fig. 4.11 (a).

is arrangement; is equivalent to the system of capacitors shown
in Fig. 4.11(b). If the cores are represented by 4 and B, then €,y is
the capacitance between cores, and C, and Cy are the earth tapaci-
tances of the two conductors. We thus have €, and C; in series with
one another, this series circuit being in parallel with C,y, the equiva-
lent arrangement being represented in Fig. 4.11 (). The capacitance

of U, and Cy in series is and when this is connected in

AYB
; Cy + Cy
p%ragel with Cyy, the total, or working, capacitance is C.p 4

AYE
Cy+ Cy

Three-core Cable. The capacitances which exist in the case of &
three-core cable are shown in Fig. 4.12 (a), in which €, is the inter-core
capacitance, and C, the earth capacitance. Diagram (b) shows the
equivalent cirouit of such a cable when used on a three-phase
system of line voltage E.

To facilitate calculations of the charging current per line it is
usual to resolve the system shown in diagram (b) into either an
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equivalent mesh system, as in diagram (c), or an equivaleni star
system as in diagram (d). In the first case, the three capacitances C,
are replaced by three imaginary capacitances C,,, connected in mesh,
in parallel with the inter-core capacitances Cy, and having such values

( } 3 s L
\“ , _—— 5 CS

..-_..l ‘, il v W

: & : |

(9] fed)
Fia. 4.12. CaraciTance oF A THREE-corE CABLE

that the charging current per line is the same as that for the actual
cable. The magnitude of (', is thus determined as follows—

The voltage to neutral (i.e. the voltage across each capacitor Cy)
is /2/4/3 and the charging current taken by each Cyis (£/4/3) . @ Co.

In diagram (c) the current taken by each capacitor Cy, is & . @ Con
and the line current on this account is thus 4/3. E.wC,,.

For equivalence this line current must be equal to (£/4/3) . w Cy.

Thus, V3.E.wC, = ‘\—fg . wCy
or Cp = %9

Hence the total equivalent mesh system consists of three groups of

Oy each in parallel with C,, ie. three capacitances C, - ?“
connected in mesh.
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Diagram (d) shows the equivalent star system, in which the cap-
acitors C, are replaced by three capacitors C, each in parallel with
C, and 0# such values that the line currents are the same as for the
actual cable.

To determine the value of C,—

Current taken by each capacitance €, = ;% . wC,

Now, current taken by each capacitance C, (diagram (b) ) is EwC,,
and the line current on this account = /3 . EwC,.

For equivalence

E

/3
So that the total equivalent star system consists of three groups
of capacitors in star, each consisting of C, and C, in parallel, i.e,
three capacitances of Cy + 30;.

Measurements of Three-core Cable Capacitances. The values of the
capacitances Cy and €, for a given length of cable may be determined
by means of two tests. First, the three cores are connected together
and the capacitance between them and the sheath is measured (see
Fig. 4.13 (a)). The measured capacitance is obviously 3C,.

The second test may be of the capacitance between two cores,
the third being connected to the sheath (Fig. 4.13 (b) ); or between
two cores connected together and the sheath and third core con-
nected together (Fig. 4.13 (c) ).

In the former case the capacitance obtained by the measurement is

Co+ C, _ 3 Ca
9 +Ol_§0'+i

In the latter case the measured value is 2C, -+ 2C,.

The first test obviously enables C, to be determined, and this
value, substituted in either of the expressions obtained above for
the two alternative methods of carrying out the second test, renders
(), ealculable.

Distributed Capacitance. In the foregoing paragraphs it has been
assumed in all cases that the surfaces of the conductors considered
are equipotential surfaces.

There are many important cases in practice when this is not so,
and in these cases the calculation of capacitance cannot be carried
out by the simple methods used above. In wire-wound solenoids we
have capacitance between adjacent turns, and layers, and all the
conductors in one layer are obviously not at the same potential.
The earth capacitances of the turns in the coil also are not all the
same. In such coils we have what is referred to as “‘distributed
capacitance,”

. @C, = 4/3 EwC, or C, = 30,
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The effect of such distributed capacitance is, in many cases, small
for low-frequency work, and an equivalent circuit, which represents
such a coil sufficiently accurately for most purposes, can then be
obtained by assuming the coil itself to be free from capacitance but as
having a simple capacitor connected in parallel with it, and also
having simple capacitors connected between parts of the coil and
earth. The latter represent the distributed earth capacitance, while
the former represents the distributed inter-turn capacitance.

rAieiy
T o o

Fquivalent Circuit
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leasurin,
r'rcuir; s |G |G |G

o
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Fig. 4.13. CABLE CAPACITANCE MEASUREMENTS

If such a coil is to be used for very high frequency work, e.g.
radio frequency work, such approximate methods of representation
are not justifiable, since the distributed capacitance of the coil may,
at such frequencies, become of more importance than its inductance.

Capacitance of a Two-layer Solenoid. Fig.4.14 represents a solenoid
of circular section, having two layers of insulated wire wound con-
tinuously so that, in effect, the layers are connected together at one
end as shown. If a steady potential difference V is applied to the
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terminals @, a’ of the coil, then the potential difference between
layers will vary from V at the left-hand end of the coil to zero at
the right-hand end, and the electrostatic field between adjacent
turns will thus decrease from a maximum to zero, moving from left
to right. Morecroft (Principles of Radio Communication, Chap. II)
calculates the internal capacitance of such a coil by treating it as,
essentially, two coaxial conducting cylinders, whose capacitance, if
the layers of wire are close together compared with the diameter
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Fic. 4.14. CaracITANCE OF A TWO-LAYER SOLENOID

of the coil, is given by the formula for flat plates, assuming at first
that the cylinders are equipotential surfaces.

Thus C = ;)A—, where C is the capacitance when the potential

difference is the same throughout the axial length of the cylinders,
4 being the area of each cylindrical surface, & the permittivity of
the medium, and D the distance between the layers.

If R 18 the radius of the section of the solenoid (assumed the same
for both layers, since their distance apart is small) and L is their

axial length, then 4 = 27zR, and € = %;RL
2meR

o

Actually the potential difference between layers varies along the
axial length from V' to zero. Assuming this variation to be according
to a straight-line law, we have

Energy stored in axial length dz,
c.v®* 2m¢R o

2 AT

, Ov capacitance per

metre axial length is

dW = . dx

PRSI
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where v is the potential difference between layers at any point of

axial distance z from the left-hand end (Fig 4.14). Since —E = I%r
we have v = (1-%) V and
2meR V? z\?
.. Total energy stored is
L
weRV2 a\}
¥ v [ - (1 s Z) da
W_WERV’ il 1- 2 L mweRVAL
N 3 Ll l. . 8B
Thus, if € is the distributed capacitance to be caleulated,
g En
o L’f _ @weRVEL
bl A T
. _ 2meRL
or == 5D (4.20)
Morecroft (loc. cit.) gives the distributed capacitance for a solenoid
of N layers as
i 4 /N -1\? ¥
C' = C, X E(T) .

A where C, is the capacitance between the outermost and innermost
L layers.
Breit (Physical Review, XVIII, p. 133 (1921) ) gives the capacit-
: e & ; 0071
ance for a short single-layer solenoid in air as approximately TI00
farads, where ! is the length (in metres) of one turn of wire on the
solenoid.

Shielding and Guard Rings. In making measurements involving the
use of capacitors it is often desirable—and in some cases absolutely
necessary—to shield pieces of apparatus from the effect of electro-
static fields which are external to the apparatus itself. This is done
by surrounding the apparatus by an earthed metal screen which
may be of thin aluminium or copper sheet, or in the form of a
wire mesh. Charges which may be induced in this screen pass to
earth and have no effect upon the apparatus inside.

Guard rings are used in order to overcome the difficulty of calcu-
lating accurately the capacitance of a capacitor which has a fringing
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electrostatic field at its edges. The distribution of such fringing
fields is somewhat uncertain and this renders exact calculations of
capacitance difficult.
In calculating the capacitance of a parallel-plate capacitor in a
/previous paragraph it was assumed that the effect of the field at the
edge of the plate could be neglected. The simple formula obtained
is rendered much more accurate by the use of a guard ring as shown
in Fig. 4.5, The guard ring consists of a metal plate of the same
thickness as the plate 4 which it surrounds, and from which it is

Flate B
Fie. 4.15. Guarp RiNa

separated by a narrow and uniform air gap. This ring is usually of
the same outside dimensions as the opposing plate B of the cap-
acitor, and is, in use, at the same potential as the plate 4 which it
surrounds. Under these conditions the electrostatic field between
the plates is perpendicular to the plates even up to the extreme
edge of plate 4, the fringing field being now transferred to the
edges of the guard ring. The effective area of the plates to be used
in the capacitance formula is now taken, of course, as the area of
plate 4. '

A formula which correets for the width of the air gap between plate 4 and
the guard ring (which gap should be of zero length if no correction is to be
used) has been given by Maxwell and is

o TR bpd LB d 1 99
0‘-[15'*‘2'9-;0-22&0*@)]Xaxmsﬂ““d" )
where the plate A’ (assumed circular) has a radius R, D is the distance between
the plates, and d the width of the air gap, all in metres, the dielectric being air.

hen no guard ring is used, the edge effect can be taken into account in the
calculation of capacitance by a formula due to Kirchhoff. This formula is

R? R 18R(D + ¢)
e [E 37 Eﬁ[”i“’ﬂ- '—m"'ll

+ tlog, (l + ?)]] % 9—;1—0‘ farads . . (4.23)

where R is the radius of the circular plates of the capacitor, ¢ being the thick-
ness of the plates and D the distance between them, the dielectric being air.

In cylindrical capacitors the guard ring takes the form of two
cylinders, of the same diameter as the cylindrical electrode to which

w SN
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they ase adjacent, and placed one at each end of, and coaxial with,
this electrode. They are connected together and are, in use, charged
to the same potential as the electrode between them. Their use
was described in Chapter IT in connection with high-voltage air
capacitors.

i cs. The broadest definition of a dielectric is, simply,
*‘an insulator.” More precisely, a dielectric is some medium in
which a constant electrostatic field can be maintained without
involving the supply of any appreciable amount of energy from
outside sources. The term ‘‘dielectric” is applied when an insulating
material is used to separate two meighbouring conductors such as
the plates of a capacitor. As will be seen later, dielectrics increase
the capacitance of a system of conductors as compared with the
capacitance of the same system of conductors existing in vacuo.
No dielectrics are at present known which, when placed between
two conductors, decrease the capacitance between them.

Three very important quantities in connection with any dielectric
are—

(a) Tts ““dielectric strength,”
(b) Its “permittivity’” or “‘dielectric constant.”
(¢) Its “dielectric loss angle” or power factor.

(a) DieLEcTrRIC STRENGTH. This may be defined as the ability
of a dielectric to withstand breakdown when a voltage is applied
to it. All insulating materials should, of course, have a very high
resistivity, so that only an extremely small current flows through
them when a voltage is applied. This is, however, an entirely
different property from dielectric strength. If a gradually increasing
voltage is applied between, say, the opposite faces of a slab of an
insulating material, the material becomes electrically strained, the
electrostatic field in it increasing in intensity with increasing
voltage. Eventually a value of the field strength is reached at
which the material “breaks down,” i.e. the material is punctured
and is rendered useless for insulation purposes. This effect is ob-
served in the case of all insulating materials, although the magnitude
of the field strength, or ‘‘potential gradient,” for which it occurs
differs for different materials. In liquid or gaseous dielectrics the
breakdown is only temporary.

The dielectric strength is expressed in volts per millimetre or
per centimetre, or in kilovolts per centimetre, etc.

The true or intrinsic dielectric strength of solid materials can be
measured only if all discharges in the ambient medium are eliminated
and if the heating effect of the applied field is negligible. Such
intrinsic strengths are difficult to measure, but have been obtained
for a few good dielectrics and lie in the region of 5 x 10° V/em.
When the dielectric strength is measured in the conventional manner
between disc or sphere electrodes the breakdown is due to intense
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local concentration of stress at the end of ienic discharges outside
the material, and values from 5 to 50 times lower than the intrinsic
value are obtained. It is these lower values which are quoted in
Table VII (p. 165). The dielectric strength so measured depends on
the geometry of the electrodes, on the nature of the ambient medium
(air or oil) and on the thickness of the specimen, but no exact laws
can be quoted. If the time of a test is prolonged to days or weeks
in order to represent the useful life of the material, still lower
values of breakdown strength are obtained which depend either on
the erosion of microscopic holes through the material by ionic
bombardment or on electrochemical changes in the structure of the
insulation. In low-grade materials, failure may be due to thermal
instability, resulting from the heat liberated by dielectric losses.

When the applied voltage is alternating, the frequency of the
supply affects the dielectric strength; and also, since the maximum
value of the voltage is responsible for the breakdown, the wave-form
of the voltage, as well as its r.m.s. value, is important., The shape
of the electrodes by means of which the voltage is applied is impor-
tant, since the distribution of the electrostatic field depends upon
this shape, which therefore affects the dielectric strength. The true
dielectric strength is the strength at breakdown when the electro-
static field is uniform.

Potential Gradient. In practice the potential gradient is an im-
portant matter. Consider the case of a single-core cable with a
conducting outer sheath. From page 6 we have for the field
strength at a point between two coaxial cylinders, and at a distance
x from their common axis, # = 21?—ex where @ is the charge on the
inner conductor per metre axial length. Since the potential between
two points is given by [Edz, £ is the potential gradient at any
point. If R, is the radius of the core, and R, the internal radius
of the sheath, the potential gradient at the surface of the core is
5%31 ,and at the internal surface of the sheath, Q%RE ; the gradient
in between these points varying as shown in Fig. 4.16 (2). Now, if the
dielectric between the core and sheath consists of only one material,
of permittivity &, which is capable of withstanding, without break-

down, the maximum stress at the core surface, then the outer

@
2ﬂ£H1
laay;:lrs of dielectric, approaching the sheath, will not be economically
u .

Graded Cables. To effect a more economical utilization of the
dielectric between the core and sheath, several different dielectrics,
of permittivities ¢, ¢,, €, ete., are used, these being arranged so
that their permittivities are in descending order as the radius
increases. Cables insulated in this way are referred to as ‘“‘graded”
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cables. Obviously, if the dielectric used could be varied continuously
so that ¢ varied inversely as the radius z, an absolutely uniform
potential gradient could be obtained, between core and sheath, as
shown in the dotted line in Fig. 4.16 (b). Actually the potential
gradient varies in the manner shown in the full-line curve,
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Fies., 4.16. PoTENTIAL GRADIENT IN SINGLE-CORE CABLE

In the previous work the potential difference between two coaxial
cylinders of radii R, and R, was found to be

@ R,
V= é;.r_é log, }—21
from which Q= 2“; i . i . (4.24)
log, ﬁ’
1

Substituting this value for @, we have for the potential gradient
at any radius x '
- R SR P L

x log, B

R

when only one dielectric, of permittivity &, is used.

Another method of obtaining a uniform potential gradient be-
tween two coaxial cylinders is by the interposition of metal inter-
sheaths (consisting of cylindrical sheets of metal foil coaxial with
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the two condactors) in the dielectric, between the charged con
ductors. As an example of the use of such intersheaths, a ‘‘con-
denser bushing" will be considered.

Condenser Bushing. This is a type of bushing which is commonly
used for the terminals of high-voltage transformers and switchgear.
Fig. 4.17 shows a eonductor 4 which is charged to some high voltage
V' This conductor is insulated from the flange B (at earth potential,

%
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Fia. 4.17. NDENSER BusHING

say), by a condenser bushing consisting of some dielectric material
with metal-foil cylindrical sheaths of different lengths and radii
embedded in it, thus splitting up what is essentially a capacitor,
having the high-tension conductor and flange as its plates, into a
number of capacitors in series, The capacitances of the capacitors
formed by the metal-foil eylinders are given by the equation

2l

R
log, =2
O&R

C=

1

| being the axial length of the capacitor and R, and R, the radii of
its eylindrical plates (assumed to be of negligible thickness in the



CAPACITORS, CAPACITANCE, DIELECTRICS 163

case of the metal foil). If these capacitors all have the same capa-
citance, since @ is the same for all (being the charge per metre
axial length of the high-voltage conductor), the potential differences
between their plates will be equal. They can be made to have the
same capacitance by suitably choosing the axial lengths of successive
sheets of foil together with the ratios of their radii E’ If the radial
spaces between successive sheets of foil are made equal and the
lengths adjusted to make the capacitances equal, the potential
gradient in the dielectric is uniform, but the edges of foil sheets lie on
a curve, thus giving unequal surfaces of dielectric between the edges
of successive sheets. This is undesirable from the point of view of

Solid Di sfec:trfc Solid Drefectric Solid Dielectric
/ff:}* Air
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Fia. 4.18. Errecr or DiELEcTRIC THICENESS UPON POTENTIAL
GRADIENT IN A PLATE CAPACITOR

flashover by “creeping” along the surface. If the differences be-
tween the lengths of successive sheets are made equal, the radial
potential gradient is not uniform. A compromise between the two
conditions is usually adopted.

Effect of Varying Thicknesses of Solid Dielectric upon the Potential
Gradient Between Parallel Plates. Fig. 4.18 shows the effect upon the
potential gradient of varying the thiekness of a slab of solid dielectric
which is situated between the plates of a parallel-plate capacitor,
one plate being charged to a potential V volts and the other being
at earth potential. The remaining space is air.

If o is the surface density of charge on the plates and & the per-
mittivity of the solid dielectric, we have—

Potential gradient in solid dielectric = g =K,
Potential gradient in air space = 32, =0,

Thus eEp = & 4
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Also, if d is the thickness of solid dielectric,
Epd+ E (D=-d)=V
Substituting for E;, we have, since ¢ = gy¢,,

P4a ymm-a=v

et iy
D-d(l-l)
Er

Thus, increase of d increases the potential gradient in the air space, as
is shown in Fig. 4.18. Also, if ¢, is much greater than 1. the poten-

or E, . (4.26)

tial gradient in the air space approaches the value

D'ﬁ 3’ which
means that, in this case, the whole of the potential drop is across the
alr space.

The high potential gradient so produced is very likely to cause
breakdown of the air in the case of a thin film of air included between
a solid dielectric and a conducting plate. The air then becomes
ionized, and the insulation will ultimately fail due to damage by
ionic bombardment.

The dielectric strengths of the most important insulating materials
are given in Table VII under the conditions of the customary one-
minute dielectric strength test. The electrodes used in carrying out
tests of dielectric strength are usually flat plates with rounded edges
or smooth spheres of large diameter. In either case a fairly uniform
electrostatic field is obtained.

(b) ReLaTive PErMITTIVITY. This quantity is defined as the ratio

The capacitance of a capacitor having the material
considered as its dielectric

The capacitance of the same capacitor with air as
the dielectric

Strictly, the capacitance in the denominator should be that
when a vacuum exists between the plates, since the relative per-
mittivity of a vacuum is unity, while that of air is about 1-00086.
Most gaseous dielectrics have permittivity of the same order as that
of air, while solid and liquid dielectrics have values of ¢, varying
from about 2 upwards, as shown in Table VIL.

(c) DigLecTrIC Loss AND Powgr Faoror. If a steady voltage
V is applied to the plates of a perfect capacitor a “charging current”’
flows from the supply for a short time and gives to the capacitor a
certain quantity @ of electricity, which is sufficient to produce-a
potential difference between the capacitor plates of ¥ volts. When
this potential difference has been attained, the current ccases to

= £‘_
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TABLE VII

PropPERTIES OF DIELECTRICS

|
Apprgﬁ:eﬂte}]acl.ric Relative Power Factor
Dielectric Permittivity (f = 50 c/s except
Volts/mm £, where noted)
Bakelite . . " . 20,000-25,000 b-6
Bitumen (vuleanized) . ® 14,000 45
Cotton cloth (varnished) . 3,000-4,000 4:5-55 0-2
Ebonite . . ; . 10,000-40,000 28 001
Empire cloth ; " P 10,000-20,000 2
Fibre . . . . . 5,000 6
Glass (plate) x v . 5,000~12,000 6-7 0-008 (f = 800-1,000)
Guttapercha . 3 10,000-20,000 3-5
Hard rubber (loaded) . . 10,000-25,000 8-5-4'5 0-018
Marble . " : . 6,000 8
Miea (Muscovite) . i .| 40,000-150,000 4-5-7 0-0003
Mycalex ' v . . 6-7 0-002-0-005
Paper (dry) . . ‘ ' 4,000-10,000 1-9-2-9 0-:005
Parafin wax . ; & 8,000 2.y 0-0003 (f = B00-1,000)
Polystyrene . p : p 2:6-2-7 0-0002
Polythene . i ; . i 2:3 0-0001
Porcelaln . . . r 9,000-20,000 5-5-8-5 0-005-0-01
Shellac ; ; : 5,000-20,000 2-3-8-8 0-008
Silica (fused transparent) ; 3-8 0-0001-0-0003
Slate . " ¥ s 8,000 8-75
Steatite . . - 41-6'5 0-002
Mineral Insulating ofl . . 25,000-30,000 2-2:5 0-0002
Water p . 5 —_ 40-80
(decreases with
increase of
temperature)

Note. Owing to the different qualitios of the varions materials and to the
variations in results according to the conditions of the test (e.g. frequency,
and temperature), the above figures must be regarded as approxiiaations only.
The properties of dielectrics, including many of the recently introduced plastic
materials, are given in Refs. (39) to (44).

flow, the quantity of electricity @, which has been supplied, being
given by @ = OV, where C is the capacitance and is, of course, de-
pendent upon the permittivity of the dielectric. In a perfect
capacitor, therefore, the dielectric has only one electricul property,
namely that of permittivity. It is found that with all practical
dielectrics the current does not cease after a short time but dies
away gradually over a long period of time as shown in Fig. 4.19.
This means that dielectrics have other properties beyond that of
permittivity.

A very small “conduction” current will, of course flow through
the dielectric because of the fact that the resistance of the dielectric,
though very high, is not infinite. This does not explain, however,
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the phenomena observed in most dielectrics, since the current is
at first larger than that due to plain conduction and also it is not a
constant current, but dies away gradually,

This second phenomenon is referred to as “‘absorption” and
dielectrics in which it occurs are said to be “absorptive.” All
dielectrics are absorptive to some degree. If an absorptive capacitor,
after being charged, is discharged, the discharging connection being
removeéd after a short time, it is found that the potential difference
between the plates gradually rises again, i.e. the capacitor charges
itself. This is known as the “residual” effect. Absorption is explained
by assuming that there is a viscous movement of the molecules or

Current

Time

Fi6. 4.19. CHARGING CURRENT IN AN
IMPERFECT CAPACITOR

ions of a dielectric when the plates between which it is situated are
charged. In charging such a capacitor there are rapid electronic and
molecular movements which correspond to the initial charging
current. Thereafter there are slower molecular and ionic movements
which correspond to the absorption current. Finally, there is a
steady flow of ions which corresponds to the true conduction
current,.

The capacitance of a capacitor may thus be divided into two com-
ponents, viz. the ‘‘geometric capacitance” and the “absorptive
capacitance.” In measuring the capacitance of a capacitor on direct
current, the time of charging is thus very important. The shorter the
charging time (provided this is long enough to charge the capacitor
to the potential difference applied), the nearer the measured capa-
citance approaches the “‘geometric” capacitance. Fig. 4.20 shows the
variation of the quantity of charge with time in an absorptive cap-
acitor. The measurement of resistance of dielectrics must also be
carried out having regard to the time of application of the p.d., since
the current for a given applied voltage varies with time as shown
above.

Dunsheath (Ref. (10) ) represents an absorptive capacitor sym-
bolically, as in Fig. 4.21. The capacitor C, represents the geometric
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capacitance, the resistance R, represents the pure conduction effect,
and C, and R, in series represent the absorption effect. In real
materials the behaviour can rarely be represented by a single circuit
R,0,. There is instead a whole spectrum of similar RC circuits in
parallel, with different values of EC.

With alternating currents the absorption of the dielectric is
intimately connected with the loss of power in the dielectric. In

ption Charge
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the case of air and most other gases, the losses are very small, and
such dielectrics may be regarded as almost perfect.

If a sinusoidal voltage is applied to a perfect capacitor, the —

current which flows into the capacitor leads the voltage in phase
by 90°, as shown in the vector diagram in Fig. 4.22 (a). If the voltage
is

v=V,_,.sinwl
the current in a perfect capacitor of capacitance C farads is

t=wC.V,,. coswt
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Its r.m.s. value is wCV amp, where V is the r.m.s. value of the
applied voltage. Owing to the dielectric loss, the current in capacitors
used in practice leads the voltage by some angle which is slightly
less than 90°, as in Fig. 4.22 (b). The angle ¢ is the “‘phase angle” of
the capacitor, the power factor being cos ¢. The angle , which
equals 90 — ¢, is called the “loss angle.” Obviously the power

factor may also be expressed as sin 4.
In a perfect capacitor ¢ = 90°, and therefore = 0. The dielec-
tric loss in an imperfect capacitor is given by IV cos¢ or IV sin 6,
where I and V are r.m.s. values of

ol current and voltage. Thus the loss in
In A a perfect capacitor is
I I‘I ekl IV gin 6 = 0, since § = 0
% " : A capacitor having dielectrie loss can

Fio. 4.99. Bwrnoiic be represented, at any single frequency,

REPRESENTATION OF AN b}’ & perfecb capacitor in pa.ra.llel with

IuPERFECT CAPACITOR a resistance as in Fig. 4.23, but the value

of the equivalent resistance in general

varies with frequency. The current / in the capacitor can be split

up into a current I, in the resistance branch, in phase with the

voltage, and a current I, in the capacitor branch, leading the voltage
by 90°. These components are shown in Fig. 4.22 (b). Then

I.=@CV = Icosd

where C' is the effective capacitance of the capacitor,

- I
At C'I = u—}r‘j co8 5
The dielectric loss P = [V 8in &
cos &
= V2w tan watts : . 2T

if C is in farads and V in volts.

The works referred to at the end of the chapter should be consulted
by those who wish to carry the study of dielectric loss further. Refs.
(15), (16), and (40) give the effect of frequency and of temperature
upon dielectric loss, W, H. F. Griffiths* has investigated the
question of losses in variable air capacitors.

Measurement of Dielectric Loss and Power Factor. The two groups
of methods of measuring dielectric losses which have been used are—

(a) Wattmeter methods,
(b) Bridge methods.

* Experimental Wireless and The Wireless Engineer, Vol. VIIL, No. 90
March, 1931.
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The cathode-ray oscillograph has also been applied to such
measurements and is still used to investigate the dielectric properties
of non-linear materials which would give no balance in a bridge
circuit. One example of such a material is barium titanate.

(@) WarrMeTER METHODS. These are now very seldom used and
will be described here only briefly.

Fig. 4.24 shows the connection diagram for a dynamometer watt-
meter when used for this purpose. Owing to the very small power
loss and low power factor (usually less than 0-01) the wattmeter
must be very sensitive. A ‘“null” wmethod of use is preferable, the
wattmeter reading being made zero by adjustment of the variable

oh-.f,r*ré?kj
5O F 2
W 4 |
6 | \
P\ |
I ;
e T | v
e (i)
A

Fia. 4.24. WarrmeTeEr METHOD OF MEASURING DIELECTRIC
Loss axnp Power Facror

inductance L in the voltage-coil circuit; this brings about a 90°
phase difference between I, and 1,

Since the loss angle 4§, of the capacitor C under test, is very small,
as is also the angle #, we may write

BY BV

tan § = 0B = 04 *PProx.
P —fié:z, = wCr, approx.
Thus B = tan~'w)Cr,
Agsin 0 o i M o0 thad
1=90-a+ ﬁ’
= 90 - tan™! by + 1) + tan~! wCr,

T

¢ The power factor of the capacitor is cos ¢ and its loss angle
= a-f.
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Obviously, in addition to the value of the variable inductance L,
the values of the inductance [, and resistance r, of the voltage- coil
circuit, of the resistance r, of the eurrent coil and C and @ must be
known.

Rosa (Ref. (18) ) has described several null methods of measure-
ment of dielectrie loss using wattmeters.

Electrostatic Wattmeler Method. This method has been used by
many investigators. Fig. 4.25 (@) shows the connections for the
method as used by Rayner (Ref. (20)). Fig. 4.25 (b) gives the

High Voltage
r'ndf;rg' of
fransformer

Flectrostatic
¥ Wattmeter

L gL
- R | @

Larth ) Dielectric Sample

Fia. 4.25. DievecrrIic L0ss MEASUREMENT BY ELECTROSTATIC
WATTMETER

equivalent diagram showing the instantaneous potentials v, v,, ete.,
at various points; r is a non-inductive resistance.

The moving vane of the electrostatic instrument is connected to
a tapping point on the high-voltage winding of a transformer from
which the supply is obtained.

The sample of insulating material whose dielectric loss is to be
measured is connected as shown and is provided with a guard ring
which is earthed.

From the theory of the electrostatic wattmeter given in Chap. XX,
it can be shown that the mean torque of the wattmeter is propor-
tional to

r i
= (P -+ rl)= 5

where P = diclectric power loss
I = r.m.s. value of the current

Then, if K is the constant of the instrument and D is the deflection,
we have

L& P =
" (P+r-TF =KD

i Wi P—@+ 2 i e )
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If the tapping point on the transformer winding is adjusted so
that n = 2, the second term becomes zero, and we have

2KD
r

P=

This avoids the correction for the power loss in the resistance r.
The voltage used by Rayner in his measurements was 10,000 volts.
(b) Bringe MerHODS. The Schering bridge method is now

the most widely used of all methods of measuring dielectric loss

and power factor. All bridge methods consist essentially of a

Wheatstone bridge network, the battery supply being replaced by

an a.c. supply at either power frequency or some higher frequency.

The detector used depends upon the frequency, a vibration galvano-

Transformer g . Iz
High Voltage ; I;

Winding Cp (Standard

G Air Capacitor
b with Guard Ring)
-~
‘:g———-Scrcens
Frequency ’ C:p’
Meter bi'g

+

Fia. 4.26. CoNNECTIONS OF SCHERING BRIDGE

meter being used for power frequency work and telephones for work
at higher frequencies, the latter being often of the order of 800 to
1,000 cycles per second.

Fig. 4.26 gives the connections of the Schering bridge, which can
be used with high or low voltages. C, is the capacitor whose power
factor is to be measured, R, being an imaginary resistance repre-
genting its dielectric loss component. C, is a standard air capacitor
of the type described in Chapter II. R, and R, are non-inductive
resistors, the former being variable. C, is a variable capacitor.
Earthed screens are provided in order to avoid errors due to inter-
capacitance between the high- and low-voltage arms of the bridge. .
Instead of earthing one poir* on the network as shown in the figure,
the earth capacitance effe.. on the galvanometer and leads is elimin-
ated by means of a “Wagner earth” device (Ref. (22) ), which will be
described in a later chapter. V.G. is a vibration galvanometer of a
special design suited to the purpose. This must have a high current
sensitivity, since the impedances of arms 1 and 2 of the bridge are
usually very high. For the same reason, this method of measure-
ment involves only a small power loss. Since the impedanees of
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branches 3 and 4 are usually small compared with those of arms I
and 2, the galvanometer and the resistances are at a potential of
only a few volts above carth even when a high-voltage supply (of the
order of 100 kilovolts) is used, except in the case of breakdown of
one of the capacitor arms I and II.

In use, the bridge is balanced by successive variation of R, and
C, until the vibration galvanometer indicates zero deflection. Then,
at balance,

v Bacayng B 9
€, =0,. R, costd = Cj. %, aApprox. . . 4.29)
since ¢ is small, and
tan d == R‘ﬂ) 5 C‘ . . i ' (4.30}

where w = 27 X frequency
d = the loss angle of the capacitor, sin & giving the power
factor
C, = the effective parallel capacitance of the test capacitor
O, = the capacitance of the standard capacitor

Theory. Consider first the impedances of the four arms of the bridge num-
bered I, IT, III, and IV in Fig. 4.26.

Arm I. Consider this arm aa consisting of the effective parallel capacitance
of the capacitor whose power factor is to be obtained, in parallel with a
resistance R,, 8s =h1own, the latter representing its loss component.

Total admittance of arm I = i P 1

By =4
wl,
1 .
. E; + joCy
1 R,
.. Impedance of arm I el -1—_~'_—W =2z
: R
b + jolC
Arm II, Impedance = e 400 %
wd,
Arm 111, Impedance = E, = 2z,
R
Arm IV, Impedance = ——'—— = z
pe 1 4+ jwC R,
Under balance conditione,
u_n
T R
R — 1
ie. A%y OGRS S0 8
Rl & joCoR,) R, FOR, L et
1 + jwC R,
Rationalizing, we have
Byl —jwC,Ry) =3 {! -}—ij‘R.]

Ryl + wiCPR,T) ~ wlaR,
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Equating real terms,
TR Gl
1 4 w?C 2R, Cy
Now, from Fig. 4.27, which shows the vector diagram for the capacitor
{C, and R, in parallel) when a voltage E is applied to it,
EwC, wC R,

cosd = e
V1 4 wCy2R,*

1
E —}'?—l'. + I:D'C:’

w'CR,?
1 -+ mlc'tRll

or cos*d =
-

EwC,'

gi' :—E
%

Fie, 4.27, VEcror DiaGraM ¥FOR C; AND R; IN PARALLEL

Substituting cos? § in the equation of real terms obtained above, we have

cos’d _ C,R,
w'C*R, C,
o o C, cos* d

17 w0 R, R,
From Fig. 4.28, showing the complete vector diagram for the bridge net
work under balance conditions,

tan § = wTC‘ = wCR,

RC
(whieh is the expression previously stated), and also
1
Gl ek
WUO= w0~ olGR,

L 1

s (.UO‘R‘ = ;é-l?l

1

% Bo= oo,

Substituting R, in the expression for C, gives
0, = C_»’;tﬁ' cos? §

as previously stated.
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Imperfect Capacitor as a Series Circuit. An alternative method to that of
representing an imperfect capacitor diagrammatically as a perfect capacitor
0, in parallel with a resistance R,, is to represent it as a perfect capacitor C,
in series with a resistance R,. It is much simpler to derive the bridge balance
equations using the series representation.

The impedances in the two cases are

Ry _ By(l — jwO,\R,)

1+ jowC.R, 1+ o'0'R - in the parallel representation
it | 1 1

and R, —_E)‘%' in the series resentation
F ‘‘‘‘‘‘‘‘‘ Sy
A »f:—
bl Lf
i
GL = :
/] T
/
; (hals fig,
e L S e S
o 1 !
/|8 R Sy
H ' /
¥ — A
o > -/
% 0 ;%?r K 4

Fio. 4.28. VeEcTOR DIAGRAM FOR SCHERING BRIDGE UNDER
Bauance CoNDITIONS

By equating the real and imaginary terms in the two impedances we obtain
the relationships

B

1 + w'C32R}?

1 4 @iC,2R,?
w*C R,

R,
and d,

The veetor diagram of Fig. 4.28 needs, perhaps, some explanation.
Vector OA represents the voltage applied to the bridge from the
supply transformer. OB is the voltage drop V, across arm II which,
when no current flows in the vibration galvanometer branch (i.e.
under balance conditions), is equal in magnitude and phase to the
voltage drop across arm I. Vector OC is the drop V, across arm IIT,
which is equal in magnitude and phase to that across arm IV. The
vector sum of OB and OC obviously gives the total bridge voltage
OA. The current I, flowing in arms I and III is represented by vector
OE, while OG represents the current /, flowing in branches II and
IV. OF and OK represent the component parts of current I; when
split up between the capacitance €y and resistance R;. In the same
way OD and OH represent the components of the current I, when
split up between R, and C,.
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The magnitudes of some of the vectors, e.g. OC, are exaggerated
for the sake of clearness. ¥, will, in reality, be very small compared
with ¥, and V.,

A direct-reading Schering bridge for the measurement of permit-
tivity and power factor of solid dielectrics at 1,600 cycles per sec
and voltages of 100-200 is manufactured by Messrs. H. W. Sullivan,
Ltd. This covers a range of capacitance up to 1,000 uuF.

The Cambridge Instrument Co. manufacture both low- and high-
voltage Schering bridges.

Muirhead and Co., Ltd. make a Schering bridge, with a Wagner
earth attachment (see p. 247) which is intended for the measurement
of power factor and permittivity of insulating materials in accor-
dance with the recommendations of British Standard Specification
No. 234.

A portable high-voltage Schering bridge made by H. Tinsley and
Co. has with it a screened, loss-free air capacitor of 100 uuF (within
=+ 4 per cent) and is for use at 11 kV. It may be used up to 150 kV
with a compressed-air capacitor of nominal capacitance 100 uuF
having a power factor 3 0-0001 at 50 cycles per sec. This requires
an air pressure of 250 to 300 Ib per &q. in.

L. Hartshorn (Ref. (45) ) adapted the Schering bridge to the
measurement of very small capacitances (below 1 uuF), and the
Hartshorn form of the bridge is the best method of measuring
the permittivity and dielectric loss of sheet materials. B.S. 234 and
B.S. 903 give detailed specifications for its use for this purpose.

A very full discussion of the Schering bridge, in its various forms,
is given in Hague's Allernaiing Current Bridge Methods.

Dielectric Loss Measurement by Cathode-ray Oscillograph. The
construction of the cathode-ray oscillograph is dealt with in Chap.
XV, For the present purpose it is sufficient to know that it consists
of a vacuum tube having, at one end, a filament which gives off a
stream of electrons in a thin beam, or pencil, when the tube is in
use. This beam passes two pairs of parallel plates, set at right
angles to one another, and is deflected by potential differences
applied to these pairs. A continuous path will be traced out by the
beam on the fluorescent screen of the tube if the p.d.s are alternating.
This path will be a straight line if the p.d.s are sinusoidal and are in
phase but will be an ellipse if they are not in phase. The area of
this ellipse is maximum—for any given maximum values of the two
potential differences—when they are 90° out of phase with one
another, Under these conditions, the semi-axes of the ellipse give the
maximum values of the two potential differences to scale. The elec-
tron beam, having negligible inertia, can immediately take up a
deflected position which is proportional, at any given time, to the
deflecting force.

When used for dielectric loss measurements, a potential difference
proportional to the applied voltage is applied to one pair of plates,
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and one proportional to the integral of current through the dielectric
to the other pair. This is obtained in the form of the p.d. across a
relatively larger capacitor in series with the sample.

It will be shown below that the area of the ellipse traced out by
the electron beam is then proportional to the power loss in the
dielectric. If there is no power loss—as in the case of an air cap-
acitor—the p.d.s applied to the plates are in phase with one another
and the path traced out is a straight line.

A record of the ellipse traced out in power loss measurements can
be obtained photographically.

J. P. Minton (Ref. (23)) used a cathode-ray oscillograph for

Lﬂ.ﬂﬂﬂ.o.J Transformer
= ./

(TOOBU0000000000TTTII00 )

Fia. 4.29 Fig. 4.30

MeasTREMENT oF DigLecTric Loss By C.R. OSCILLOGRAPH

dielectric loss and power factor measurements. The full eircuit
arrangements are given by Hartshorn (Ref. (16) ).

Fig. 4.29 shows a simpler arrangement than that of Minton which,
nevertheless, will serve to illustrate this method of dielectrie loss
measurement,

0, is the dielectric sample and C a loss-free capacitor of much
greater capacitance than C,. The resistor R, shown dotted, may be
used, if desired, for compensating the loss angle of @, The c.r,
oscillograph plates X and ¥ are connected as shown. (If the voltage
on C, is low, an amplifier will be needed between C and the Y plates
since the method is inaccurate unless the voltage on C' is much less
than that on C,.)

In the theory of the method which is given below it is agsumed that
the resistor R is omitted. The vector diagram may then be drawn
as in Fig. 4.30, which shows the voltage V, across C,, the current I,
through both C, and C, and the voltage V; across the latter.



CAPACITORS, CAPACITANCE, DIELECTRICS 177

The power loss in C, is V,/,sin . From the vector diagram, if
Vg = V3 mae SiD @2, then v, = V.., 8in (0t — ).
The on produced by the Y plates is proportional to vy and
we may write
y deflection = a . V; 0 8in (! — 8)

=¢.I‘main(w¢——d)
wc

Also, z deflection = f§ . ¥, 0, 8in it
where a and f are proportionality constants.

Elljpse ahen Power®  Llligee for
Factor=cos @ Unitu Fower Factor

Fig. 4.31., Forus oF OScILLOGRAMS OBTAINED WITH
CATHODL-RAY OSCILLOGRAPH

Now, the area of the ellipse traced out on the oscillograph screen is
s Iam s
=J. a'—aT .8in (wt — 8) . B. Vymaet» CO8 E . di
0
(where 7 is the periodic time)

— % - Ly maxV's mas ["S*V"““’J‘rsin(wt—éjcoaaﬂ.dt
0

=°‘ﬂ_rt+ﬂ"2':?!_‘“£fr[sin{2wx—6)+uin6]d¢
{i]

Thus the area of the ellipse is proportional to V,/,sin é, which is
the dielectric loss.
7—(T.5700
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