EXAMINATION QUESTIONS

(The authors are responsible for the answers)

CHAFTER I

(1) Show that the energy stored in a capacitor is given by the expression $\frac{1}{2} C V^{2}$.

An air capacitor of capacitance 0.005 microfarad is connected to a direct voltage of 500 volts, disconnected, and then immersed in oil with a dielectric constant of $2 \cdot 5$. Find the energy stored in the capacitor before and after immersion, and account for the difference.
(Lond, Univ., Elec. Tech.)
Ans. Before immersion $625 \times 10^{-6} \mathrm{~J}$.; after immersion $250 \times 10^{-6} \mathrm{~J}$.
(2) A long straight cylindrical wire of very small diameter is suspended in free space and has on it a charge Q per unit length. Calculate directly from the inverse square law the strength of the electric field at a point far removed from the ends of the wire and at a distance x from the wire, where x is very.large compared with the diameter of the wire. What will be the form of the equipotential surfaces and what will be the difference of potential between two points distant x_{1} and x_{2} from the wire?

If $Q=0.00333$ microcoulomb per metre, $x_{1}=2 \mathrm{~cm}$ and $x_{2}=20 \mathrm{~cm}$, what is the difference of potential in volts between the two points?
(Lond. Univ., Elec. Meas.)
Ans. 136 V.
(3) Calculate the strength of the magnetic field at the centre of a single-turn square coil of 1 ft side when carrying a current of 20 amp . Prove the formula employed.

Ans. $59 \mathrm{~A} / \mathrm{m}$.
(4) A solenoid is 2 ft long and 1 in . diameter, and is uniformly wound with 600 turns of insulated wire. Calculate the strength of the magnetic field at the centre when the current is 2 amp . If a secondary coil of 50 turns is wound round the central part of the solenoid and is connected to a ballistic galvanometer through a resistance which makes the total resistance of the circuit 10,000 ohms, calculate the quantity of electricity discharged through the galvanometer on reversing the current of 2 amp in the primary winding. Estimate the error due to assuming the solenoid infinitely long.
(Lond. Univ., Elec. Meas.)
Ans. $19.7 \times 10^{2} \mathrm{~A} / \mathrm{m} ; 1.25 \times 10^{-8}$ coulomb; error 9 parts in 10,000 .
(5) Draw diagrams showing the magnetic field around two parallel straight conductors carrying current (a) in the same direction, and (b) in opposite directions.

If two conductors 3 in . apart each carry $1,000 \mathrm{amp}$ in the same direction, find the direction and magnitude per inch run of the force on each conductor.
(Lond. Univ., Elec. Tech.)
Ans. 6.78 grammes wt. (0.0666 newton) attraction.
(6) Two coils each of 20 cm diameter and 100 closely wound turns of fine wire are mounted coaxially 10 cm apart. A current of 1 amp is passed through the coils in series, the connections being such that the fields are additive. Plot a curve showing the field strength along the axis of the coils.

Prove any formula used.
(Lond. Univ., Elec. Meas.)
(7) The demagnetization curve for a sample of permanent-magnet steel after hardoning and ageing is as follows-

Permanent flux density in webers per square metre	0.65	0.59	0.52	0.43	0.31	0.14
Demagnetizing ampere- turns per centimetre	4	12	20	28	36	44

The air-gap flux density in a moving-coil instrument where this steel is used is to be $0.09 \mathrm{~Wb} / \mathrm{m}^{2}$, the length of the single gap is to be 0.12 cm , and the area of the gap $10 \mathrm{~cm}^{2}$. To ensure the necessary permanence, the ratio of the area of the gap divided by its length to the area of cross-section of the magnet divided by its length is to be 300. Assuming the loakage flux to be equal to the useful flux, and regarding all the leakage as being concentrated at the pole shoes, calculate the necessary length and cross-sectional area of the magnet.

To what extent is the above-mentioned ratio applicable to all permanent magnet steels ?

Ans. $11.5 \mathrm{~cm}, 3.2 \mathrm{~cm}^{2}$.
(8) What are the criteria of the most suitable characteristics of a permanent magnet for use in a measuring instrument such as a moving-coil ammeter? Deduce the magnetic condition in which the permanent magnet should be operated in order that its volume may be a minimum, assuming given gap dimensions and flux density in the gap.
(Lond. Univ., Elec. Meas.)

CHAPTER II

(9) What is meant by the dimensions of a quantity ? Derive the dimensions of potential difference in the electrostatic system in terms of Mass, Length, and Time.

In the course of a calculation an expression of the following form was arrived at-

$$
I=E\left\{\frac{1}{Z_{1}}+\frac{j \omega M}{Z_{2}}\left(\frac{1}{R}+\frac{C}{L}\right)\right\}
$$

Show that there must have been an algebraical error, and point out the term or terms which require correction.
(Lond. Univ., Elec. Meas.)
Ans. The term $\frac{C}{L}$ should be multiplied by some quantity having the dimensions of resistance (or impedance).
(10) The voltage V across the coils of a telephone receiver when a current I is flowing through them may be written

$$
V=I\left(Z+\frac{A^{2}}{z}\right)
$$

where

$$
\begin{aligned}
Z & =R+j \omega L \\
A & =2 B_{0} \frac{N}{\mathscr{R}} \\
z & =r+j\left(\omega m+\frac{s}{\omega}\right) \\
R & =\text { the resistance } \\
L & =\text { the inductance, and } \\
N & =\text { the number of turns of the receiver coils } \\
B_{0} & =\text { the fux density in the air gap } \\
\mathscr{R} & =\text { the reluctance of the magnetic circuit }
\end{aligned}
$$

and r, m, and s are the equivalent mechanical resistance, mass, and atiffness of the receiver diaphragm.

Suggest a suitable unit for each of the quatities involved.
Find the dimensions of each quantity, and so make a dimensional check of the equation.
(Lond. Univ., Elec. Meas.)
Ans. Dimensions-

(11) (i) The expression for the mean torque T of an electrodynamic wattmeter may be written,

$$
T \propto M^{P} E^{\tau} Z^{t}
$$

where $M=$ the mutual inductance between fixed and moving coils
$E=$ applied voltage
$Z=$ impedance of the load circuit.
From the dimensions of quantities involved determine p, q, and t.
(ii) In the same way, determine a, b, c, and g in the following expression for the eddy current loss W per centimetre length of round wire -

$$
W \propto f^{a} B_{\max } d^{c} \rho^{\rho}
$$

where $f=$ frequency
$B_{\text {max }}=$ maximum flux density
$d=$ diameter of the wire
$\rho=$ resistivity of the material.
Ans. (i) $p=1, q=2, t=-2$; (ii) $a=2, b=2, c=4, g=-1$.
(12) Give a concise account of the M.K.S. (Giorgi) system of units, and compare the advantages and disadvantages of this system with those of the C.G.S. electromagnetic system.
(Lond. Univ., Elec. Meas.)
(13) What is meant by the "dimensions" of an electrical or magnetic quantity?
Obtain the dimensions of resistance and magnetic flux in the C.G.S. electromagnetic system, and of charge and energy in the C.G.S. electrostatic system.

Briefly explain what is meant by a "rationalized" system of dimensions.
(Lond. Univ., Elec. Meas.)

CHAPTER III

(14) Three non-inductive resistances of 1,000 ohms are star-connected to a three-phase supply with 200 volts between lines. What will be the reading on a voltmeter connected between one of the lines and the star point thus formed, if the voltmeter also has a non-inductive resistance of $1,000 \mathrm{ohms}$?
(Lond. Univ., Elec. Meas.)
Ans. 86.6 volts.
(15) An alternating current circuit contains a coil of inductance L_{1}; near this, tut not connected to it, is a coil of inductance L_{2}, across which is connected a resistance R. If the mutual inductance between the two coils is M, calculate the effective inductance and resistance of the first circuit.
(Lond. Univ., Elec. Meas.)

$$
\text { Ans. Res. }=\frac{\omega^{2} M^{2} R}{R^{2}+\omega^{2} L_{2}{ }^{2}} ; \text { ind. }=\left(L_{1}-\frac{\omega^{2} M^{2} L_{2}}{R^{2}+\omega^{2} L_{2}{ }^{2}}\right)
$$

(16) An alternating current passes through a non-inductive resistance R and an inductance L in series. Find the value of the non-inductive resistance
which can be shunted across the inductance without altering the value of the main current.
(Lond. Univ., Elec. Meas.)

$$
\text { Ans. } \frac{\omega^{2} L^{2}}{2 R}
$$

(17) The impedances of the three phases of a star-connected load (no neutral wire) are $5+j 20,12+j 0$, and $1-j 10$ in order. The line voltage is 400 volts. Find the line currents.
(Lond. Univ., Elec. Meas.)

Ans. $0.5-29.65 j, 16 \cdot 24-11 \cdot 5 j,-16.74+41 \cdot 15 j$.

(18) Three branch circuits consisting respectively of (i) 5 ohms resistance and 0.025 henry inductance, (ii) 4 ohms resistance and 300 microfarads capacitance, (iii) 0.01 henry inductance and 500 microfarads capacitance, are connected in parallel. A resistance of 3 ohms is then connected in series with the combination. Using the symbolic " j " notation, calculate the currents in the main circuit, and in the three branches, when an alternating voltage $v=100 \sin 314 t$ is applied to the whole circuit.

$$
\begin{aligned}
\text { Ans.. } i & =20 \cdot 2 \sin \left(314 t+37^{\circ} 55^{\prime}\right), \\
i_{1} & =6 \cdot 9 \sin \left(314 t+93^{\circ} 20^{\prime}\right), \\
i_{2} & =5 \cdot 64 \sin \left(314 t+33^{\circ} 35^{\prime}\right), \\
i_{3} & =19.9 \sin \left(314 t+54^{\circ} 10^{\prime}\right) .
\end{aligned}
$$

(19) Two coils. of self-inductance 0.01 henry and 10 henrys, and resistance 0.3 ohm and 300 ohms respectively, have a coefficient of coupling of 0.9 .

Calculate the change in effective resistance of the first coil when a resistance of 100 ohms is connected to the terminals of the second, the frequency being $50 \mathrm{c} / \mathrm{s}$.
(Lond. Univ., Elec. Meas.)
Ans. 0.318 ohm.
(20) Explain the essential principle of the method of symmetrical components as applied to the solution of asymmetrical polyphase a.c. network problems.

Show how a direct measurement of the positive and negative sequence components of an unbalanced three-phase current system can be made. Give a diagram of connections and indicate what the observations signify with regard to the actual currents in the three lines. (Lond. Univ., Elec. Meas.)
(21) Explain, with the aid of a diagram of connections, a method of measuring the symmetrical components of the currents in an unbalanced 3 -phase, 3 -wire system.

If in such a system the line currents, in amperes, are

$$
I_{r}=10-j 2 ; I_{v}=-2-j 4 ; I_{b}=-8+j 6
$$

calculate their symmetrical components. (Lond. Univ., Elec. Meas.)
Ans. $I_{R 0}=I_{70}=I_{B 0}=0$.

$$
\begin{aligned}
& I_{R 1}^{R 0}=7 \cdot 89+j 0 \cdot 732 ; \quad I_{Y 1}=a^{2} I_{R 1} ; I_{B 1}=a I_{R 1} \\
& I_{R 2}=2 \cdot 113-j 2 \cdot 732 ; \quad I_{Y 2}=a I_{R 2} ; \quad I_{R 2}=a^{2} I_{n 2}
\end{aligned}
$$

(22) An unbalanced star-connected load is supplied from symmetrical three-phase mains. The load impedances are Z_{a}, Z_{i}, Z_{e} and the positive phase sequence is a, b, c. Calculate the value of the positive phase-sequence current when the line voltage of the three-phase balaneed supply is 400 V and $Z_{a}=0+j 10 \Omega, Z_{b}=0-j 5 \Omega$ and $Z_{c}=10+j 0 \Omega$.

Ans. $36 \cdot 6 \mathrm{~A}$.
(Lond. Univ., Elec. Theory and Meas. Part III)

CHAPTER IV

(23) Calculate the capacitance of a spherical capacitor if the diameter of the inner sphere is 20 cm , and that of the outer sphere is 30 cm , the space between
them being filled with a liquid with a relative permittivity of 2. Express your answer in microfarads.

Ans. $\frac{2}{3} \times 10^{-4}$ microfarad.
(24) A capacitor is made up of two parallel metal discs separated by three layers of dielectric of equal thickness but having relative permittivities of 2,3 , and 4 respectively. If the metal discs are 6 in . diameter and the distance between them 0.3 in ., calculate the potential gradient in each dielectric and the total energy stored in each when a potential difference of 1,000 volts is applied between the discs.

Ans. $1,815,1,210,907.5$ volts per $\mathrm{cm} ; 13.51 \times 10^{-6}, 8.98 \times 10^{-6}$, $6.755 \times 10^{-6} \mathrm{~J}$
(25) Calculate the capacitance of the following system-

Two conductors $\frac{8}{8} \mathrm{in}$. diameter, and 400 yd long, lying parallel to each other and to an earthed plane, their height above the plane being 3 ft . The conductors are 3 ft apart.

Ans. 1,980 micromicrofarads.
(26) Capacitance measurements on a three-phase cable were made as follows-

Capacitance per mile between the sheath and one conductor connected together and the other two conductors connected together $=0,45$ microfarad.

Capacitance per mile between the three conductors connected together and the sheath $=0.50$ microfarad.

The potential between the conductors is 3,300 volts and the frequency is 50 cycles per second.

Find the charging current flowing to each conductor in a 20 -mile length of the cable.
(Lond. Univ., Elec. Meas.)
Ans. $4 \cdot 1 \mathrm{amp}$.
(27) Discuss the difficulties of constructing a standard capacitor for use in the high-voltage arm of a Schering bridge working on voltages above 100 kV .

A capacitor bushing forms arm $A B$ of a Schering bridge, and a standard capacitor of $500 \mu \mu \mathrm{~F}$ capacitance and negligible loss forms arm AD. Arm $B C$ consists of a non-inductive resistance of 300 ohms. When the bridge is balanced, the resistance and capacitor in parallel in the remaining aım $C D$ have values of 72.6 ohms and $0.148 \mu \mathrm{~F}$ respectively. The frequency is 50 s / s. Calculate from first principles the capacitance and the dielectric loss angle of the bushing.
(Lond. Univ., Elec. Meas.)
Ans. $121 \mu \mu \mathrm{~F} ; 0^{\circ} 11 \cdot 6^{\prime}$.

CHAPTER V

(28) Annular shaped iron stampings are built up to form a ring 8 in . inside diameter and 10 in . outside diameter and 1 in . thick. The square cross-section is wound with 1,000 turns to form a toroidal coil. If the resistance of the wire is 200 ohms, and the relative permeability of the iron is 800 , what current will flow under an impressed alternating voltage of 100 volts, $50 \mathrm{c} / \mathrm{s}$?

What would be the effect of replacing the stampings by a solid iron core?
Ans. 0.288 amp .
(29) A ring 1 ft mean diameter is made of round iron 1 in . diameter, and is uniformly wound with 500 turns of copper wire $\mathbf{0 . 0 5} \mathrm{in}$. diameter. A second winding of 1,000 turns of wire 0.025 in . diameter is uniformly wound over the first. Assuming the iron to have a relative permeability of 800 , calculate the

ELECTRICAL MEASUREMENTS

self-inductance of each winding and the mutual inductance between them; express your answers in practical units.

Ans. $0.133,0.532,0.266$ henry.
(30) Define the practical unit of mutual inductance.

Two coils with terminals $T_{1} T_{2}$ and $T_{3} T_{4}$ respectively are placed side by side. Measured separately, the inductance of the first coil is 1,200 microhenrys, and that of the second coil is 800 microhenrys.

With T_{2} joined to T_{3} the inductance between T_{1} and T_{4} is 2,500 microhenrys. What is the mutual inductance between the two coils, and what would be the inductance between T_{1} and T_{2}, with T_{2} joined to T_{4} ?

Prove any formula used.
(Lond. Univ., Elec. Tech.)
Ans. $M=250$ microhenrys, $\mathrm{L}=1,500$ microhenrys.
(31) A toroidal coil is uniformly wound with 250 turns. The core is of marble with a rectangular cross-section $2 \frac{1}{2} \mathrm{in}$. deep and 2 in . wide; the outer diameter of the toroid is 6 in ., and the inner diameter is 2 in .

Find the inductance of the toroid, proving any formula used.
Ans. 0.873 millihenry.
(Lond. Univ., Elec. Meas.)
(32) Explain the advantages of using a mutual inductance as a primary standard of inductance.

Estimate the mutual inductance between two parallel coaxial single-turn circular coils of diameter 40 cm and 4 cm respectively. The planes of the coils are 25 cm apart.

Justify the expressions used in this calculation.
(Lond. Univ., Elec. Meas.)
Ans. $0.00096 \mu \mathrm{H}$.

CHAPTER VI

(33) The diagram gives the connection of Anderson's bridge for messuring the inductance L and resistance R of anknown impedance between the points A and B. Find R and L if balance is obtained when $Q=S=1,000$ ohms, $P=500$ ohms, $r=200$ ohms, and $C=2 \mu \mathrm{~F}$.

Draw a vector diagram showing the voltage and current at every point of the network when the voltage across $A C$ is 10 volts and the frequency is 100 cycles per second.
(Lond. Univ., Elec. Meas.)
Ans. $R=500$ ohms, $L=1.4$ henrys.
(34) Explain how an inductance may be measured by comparison with a standard capacitor in an alternating-current bridge.
The four arms of a Wheatstone bridge arrangement are as follows: $A B$ is an inductive resistance $L r_{1}, B C$ is a non-inductive resistance $\mathrm{r}_{3}, C D$ is a capacitor of capacitance C shunted by a resistance $r_{4}, D A$ is a non-inductive resistance r_{2}. An alternating-current supply is connected between the points A and C and a telephone receiver across the points B and D. Work out the conditions for balance and show that the result is independent of the frequency of the supply.
(C. and G. Final, Elec. Eng., II.)

$$
\text { Ans. } r_{1} r_{4}=r_{2} r_{3}=\frac{L}{C}
$$

(35) In a balanced bridge network, $A B$ is a resistance of 500 ohms in series with an inductance of 0.18 henry, $B C$ and $D A$ are non-inductive resistances of 1,000 ohms, and $C D$ consists of a resistance R in series with a capacitance C. A potential difference of 5 volts at a frequency of $5,000 / 2 \pi$ is established between the points A and C.

Draw to scale a vector diagram showing the ourrents and potential differences in the bridge, and from it determine the values of R and C.

Check the result algebraically.
(Lond. Univ., Elec. Meas.)
Ans. 472 ohms; $0.235 \mu \mathrm{~F}$.
(36) It is required to measure the inductance and resistance of an ironcored choke of about 1 henry at frequencies varying from 50 to $3,000 \mathrm{o} / \mathrm{s}$ and with direct current flowing through it. An oscillator, standard capacitors, and non-inductive resistance boxes are available.

Describe a suitable a.c. bridge and detector, mentioning any precautions necessary to ensure accuracy in the result. Derive the equation of balance of the bridge used.
(Lond. Univ., Elec. Meas.)
(37) Describe a suitable a.c. bridge method for measuring, at a frequency of 500 cycles per second, the self-inductance and effective resistance of a coil of approximately 0.2 henry inductance and 5 ohms resistance. Draw the vector diagram for the balance conditions and give the equations for balance.
(Univ. Lond., Elec. Meas.)
(38) Describe briefly the construction and method of adjustment of one type of vibration galvanometer. Compare its advantages and disadvantages with those of a telephone receiver for use in a.c. measurements at various frequencies.

Derive an expression for the sensitivity of the tuned galvanometer, showing how it is dependent on frequency and damping. (Lond. Univ., Elec. Meas.)
(39) A 4 -arm unbalanced a.c. bridge is supplied from a source having negligible impedance. The bridge has non-reactive resistors of equal resistance R in adjacent arms. The third arm has an inductor of resistance R and reactance X, where X is numerically equal to R. The fourth arm has a variable non-reactive resistor. The detector is connected between the junction of the first and second arms and the junction of the third and fourth arms and has a resistance R and negligible reactance. Determine the value of the variable resistor when the detector current is in quadrature with the supply current. (Lond. Univ., Elec. Theory and Meas., Part III)

Ans. 1.37 R.

(40) A T-network has series arms $A B$ and $B D$, each being a coil of inductance $3 \mu \mathrm{H}$ and loss resistance 6Ω at $12 \mathrm{Mc} / \mathrm{s}$. The shunt arm $B E$ is a variable resistor R, and the series arms are bridged by a calibrated variable capacitor C connected between A and D. A voltage at $12 \mathrm{Mc} / \mathrm{s}$ is applied between A and E.

Show that there is one combination of R and C for which no voltage appears between D and E, and evaluate these two quantities.

An unknown capacitance connected between A and D can be measured by noting the change in C required to restore the null condition. Explain the advantages of this method.
(Lond. Univ., Elec. Meas.)
Ans. $R=4,250 \Omega ; C=29 \cdot 4 \mu \mu \mathrm{~F}$.
(41) A balanced bridge has the following components connected between its five nodes, A, B, C, D and E -

Between A and $B: 1,000$ ohms resistance

" $\quad \underset{C}{B}$ " \quad| $C:$ |
| :--- |
| D |, $000 \quad, \quad$ an inductor

" $\quad C \quad, \quad D$: an inductor
" D " $A: 218$ ohms resistance
" A " $E: 469$
" $\quad E \quad$ " $B: 10 \mu \mathrm{~F}$ capacitance
" E " C : a detector
" B " D : a power supply (a.e.)
Derive the equations of balance and hence deduce the resistance and inductance of the inductor.
(Lond. Univ., Elec. Theory and Meas., Part III)
Ans. $R=218 \Omega ; L=7.89 \mathrm{H}$.

CHAPTER VII

(42) The four arms of a Wheatstone bridge have the following resistances: $A B 100, B C 10, C D 4, D A 50$ ohms.

A galvanometer of 20 ohms resistance is connected across BD. Calculate the current through the galvanometer when a potential difference of 10 volts is maintained across $A C$.
(Lond. Univ., Elec. Tech.)
Ans. 0.00513 amp .
(43) Describe the Kelvin double bridge for the comparison of small resistances.

Give the theory of the bridge, and detail the arrangements necessary in order that the greatest precision possible may be obtained.
(Lond. Univ., Elec. Meas.)
(44) Describe with a diagram of connections the loss-of-charge method of determining the insulation resistance of a length of cable. Prove the formula used for this determination, and calculate the insulation resistance of a short length of cable in which the voltage falls from 100 to 80 in 20 sec , the capacitance being 0.0003 microfarad.
(Lond. Univ., Elec. Tech.)
Ans. 298,000 megohms.
(45) Describe a method by which the insulation resistance to earth of each of a pair of live mains can be measured by a voltmeter of known resistance. Discuss the limitations of the method.
The following readings were taken with a 250 volt, 1,000 ohms per[volt,
voltmeter-

$$
\begin{aligned}
& \text { Between two mains } \\
& \text { Positive main to earth } \quad: \quad \\
& \text { Negative main to earth } \quad: \quad 188 \text { volts } \\
& \hline
\end{aligned}
$$

Calculate the insulation resistance of each main.
(Lond. Univ., Elec. Meas.)
Ans. Positive $500,000 \Omega$; negative $26,600 \Omega$.
(46) A moving-coil galvanometer has a sensitivity of 4 cm per microampere, with a scale 1 metre distant, and the time of free oscillation is 2.8 sec.

If the galvanometer is dead beat when the total circuit resistance (coil and external circuit) is 2,500 ohms, find the moment of inertia of the moving system.

Prove any formula used.
Ans. $2.7 \times 10^{-7} \mathrm{~kg}-\mathrm{m}^{2}$.
(Lond. Univ., Elec. Meas.)
(47) What is meant by critical damping, and to what extent should this condition be approached in the case of an ordinary moving-coil type of instrument ?

The coil of a moving-coil galvanometer has 300 turns and is suspended in a uniform magnetic field of $0.1 \mathrm{~Wb} / \mathrm{m}^{2}$ by a phosphor-bronze strip, of which the torsion constant is 2×10^{-7} newton-metre per radian. The coil is 2 cm wide and $2 \frac{1}{2} \mathrm{~cm}$ high, with a moment of inertia of $1.5 \times 10^{-7} \mathrm{~kg}-\mathrm{m}^{2}$.
If the galvanometer resistance is 200 ohms, calculate the value of the resistance which, when connected across the galvanometer terminals, will give critical darniping. Assume the damping to be entirely electromagnetic.

Ans. 450 ohms.

CHAPTER VIII

(48) In the measurement of a low resistance by means of a potentiometer the following readings were obtained-
$\begin{array}{lll}\begin{array}{l}\text { Voltage drop across low resistance under test } \\ \text { Voltage drop across a } 0.1 \text { ohm standard resistance connect- } \\ \text { ed in series with the "unknown" }\end{array} & 0.83942 \text { volt } \\ \text {. } & . & 1.01575 \text { volt }\end{array}$
The resistance of the standard at the temperature of the test is 0.10014 ohm. Upon setting the potentiometer dials to zero and breaking the current passing through the "unknown" resistance, the thermal e.m.f. of the latter produced a galvanometer deflection equivalent to 23 microvolts, the direction of the deflection being the same as that produced by an increase of the potentiometer reading during the voltage drop measurements.

Calculate the resistance of the "unknown."
Ans. 0.08276_{g} ohm.
(49) Explain the principle of one type of co-ordinate a.c. potentiometer. Draw a diagram of the scheme of connections and describe how the potentiometer is standardized.

Measurements for the determination of the impedance of a coil were made on a co-ordinate potentiometer as follows-

Voltage across a 1Ω standard resistance in series with the coil, +0.952 V on in-phase dial, -0.34 V on quadrature dial.

Voltage across a $10: 1$ potential divider connected to the terminals of the coil, +1.35 V on in-phase dial, +1.128 V on quadrature dial. Calculate the resistance and the reactance of the coil.

$$
\text { Ans. } R=8.82 \Omega ; X=15 \Omega .
$$

(Lond. Univ., Elec. Meas.)
(50) A current of 10 A at a frequency of $50 \mathrm{c} / \mathrm{s}$ was passed through the primary of a mutual inductor having a negligible phase defect. The voltages at the primary and secondary terminals were measured on a co-ordinate potentiometer and are given below.

With secondary winding open-circuited,

$$
\begin{array}{cc}
\text { secondary volts } & -2.72+j 1.57 \\
\text { primary volts } & -0.211+j 0.352
\end{array}
$$

primary yolts winding short-circuited, primary volts $\quad-0.051+j 0.329$
The phase of the primary current relative to the potentiometer current was the same in both tests.

Determine the self- and mutual inductances of the inductor.
(Lond. Univ., Elec. Theory and Meas., Part III)
Ans. $M=1.0 \mathrm{mH}, L_{1}=0.114 \mathrm{mH}, L_{2}=18.06 \mathrm{mH}$.
(51) Describe two d.c.-a.c. transfer devices which might be used for standardizing a.c. potentiometers, one for low frequencies and the other for high frequencies. State the advantages and disadvantages of each device. Discuss the errors of potentiometer measurements at high frequencies.
(Lond. Univ., Elec. Theory and Meas., Part III)

CHAPTER IX

(52) What are the conditions to be fulfilled by a ballistic galvanometer? Describe the construction of such an instrument, and explain how to determine the constant and the logarithmic decrement.

The periodic time of an undamped reflecting ballistic galvanometer is 10 sec , and a current of 0.1 mA gives a steady deflection of 200 scale divisions. Find the quantity of electricity which produces a swing of 100 divisions. What is the quantity of electricity corresponding to this swing if the instrument has a decrement of 1.03 ?
(C. and G. Final)

Ans. 0.0000795 coulomb; 0.000121 coulomb.
(53) Explain carefully how the construction of a fluxmeter differs from that of a moving-coil ammeter or voltmeter.

A certain fluxmeter has the following constants-
Air-gap flux density, $5 \times 10^{-3} \mathrm{~Wb} / \mathrm{m}^{2}$.
Turns on moving coil, 40.
Area of moving coil, $7.5 \mathrm{~cm} .^{2}$
If a 10 -turn search coil of $2 \mathrm{~cm}^{2}$ area, which is connected to the fluxmeter, is reversed in a uniform field of flux density $5 \times 10^{-2} \mathrm{~Wb} / \mathrm{m}^{2}$, calculate the deflection of the meter.

Why is it necessary to keep the resistance of the moving coil, and of the search coil and leads, low? How may a correction for an unavoidably high resistance in the search coil be made?

Ans. $76 \frac{1}{2}$.
(54) State the theory underlying the action of the Chattock magnetic potentiometer. Describe the instrument, and show how it can be calibrated and used in conjunction with a ballistic galvanometer for the measurement of difference of magnetic potential.

The constant of a given potentiometer was obtained by aid of a coil of 300 turns in which a current of 0.6 amp was reversed. The resulting throw of the galvanometer was 157 scale divisions. It was then used to measure the magnetic potential difference between two points and the throw was 304 scale divisions. Find the magnetic potential difference, and state the units in which it is measured.
(Lond. Univ., Elec. Meas.)
Ans. 695 amperes.
(55) Describe a method for finding the $B-H$ curve of bar specimens.

An iron ring of 3.5 sq . cm cross-sectional area with a mean length of 100 cm is wound with a magnetizing winding of 100 turns. A secondary coil with 200 turns of wire is connected to a ballistic galvanometer having a constant of 1 microcoulomb per scale division, the total resistance of the secondary circuit being 2,000 ohms. On reversing a current of 10 amp in the magnetizing coil, the galvanometer gave a throw of 100 scale divisions. Calculate the flux density in the specimen and the value of the permeability at this flux density.
(C. and G. Final)

Ans. $B=1 \cdot 428, \mu_{r}=1,136$.
(56) Describe a standard form of apparatus for measuring the iron losses in steel sheets at specified values of flux density and frequency by means of a wattmeter.

The following test results were obtained on a sample of steel stampings at $50 \mathrm{e} / \mathrm{s}$ -

Volts	Amperes	Watts
4.9	0.20	9.5
69.3	0.30	16.8
91.8	0.46	27.5
100.5	0.52	32.5
11.5	0.64	39.0
118.0	0.77	44.8

Mean width of the plates, 3 cm ; mean thickness, 0.0489 cm ; number of plates, 51 ; total weight, $24 \cdot 2 \mathrm{lb}$; number of magnetizing turns in coil, 600. Allowing 2 watts copper loss in the magnetizing winding, calculate the iron loss in watts per pound at a flux density of $1 \mathrm{~Wb} / \mathrm{m}^{2}$, and $50 \mathrm{c} / \mathrm{s}$.

Ans. 1-18 W/lb.
(57) Describe a method of using an a.c. potentiometer for measuring the loss in an iron ring made up of thin stampings. Explain how the loss may be calculated in terms of the maximum density, and state any assump. tions made.
(Lond. Univ., Elec. Meas.)

CHAPTER X

(58) An open space is illuminated by four lamps each giving 300 candelas in every direction below the horizontal. They are suspended 23 ft above the ground at the corners of a rectangle 20 ft by 15 ft . Calculate the illumination in lumens per sq. ft of a horizontal surface 3 ft above the ground (a) at the middle of the shorter side, and (b) at the mid-point of the rectangle.

Describe briefly a portable photometer suitable for testing the accuracy of your calculations.

Ans. $1.72 \mathrm{~lm} / \mathrm{ft}^{2} ; 1.83 \mathrm{~lm} / \mathrm{ft}^{2}$.
(59) Define the following terms: (a) mean spherical intensity; (b) lumen; (c) illumination; (d) brightness. What is the illumination at the edge of a circular table 6 ft in diameter lit by one 100 cd lamp 4 ft above the centre ?

Ans. $3.2 \mathrm{~lm} / \mathrm{ft}^{2}$.
(60) Describe a good type of portable illumination photometer suitable for outdoor use; explain how it can be calibrated and discuss the various sources of error in its use.

If two lamps giving 500 candelas in every direction are suspended 30 ft high and 100 ft apart, compare the illumination of the horizontal road surface under one lamp with that midway between them.

Ans. $3 \cdot 76: 1$.
(61) How would you determine the constants α and β in the expression Luminous intensity $=\alpha V^{\beta}$ for a glow lamp, where V is the lamp
voltage? voltage ?
Taking the value $\beta=4.5$ for a tungsten-filament vacuum lamp, determine the percentage variation of luminous intensity due to a voltage variation of ± 4 per cent from the normal value.

Ans. 19.2 per cent above normal, 16.75 below normal.
(62) A road is to be illuminated by means of lamps supported at a height of 20 ft , and arranged 100 ft apart. Determine the necessary distribution of luminous intensity in a vertical plane in order that the lamps may produce a uniform horizontal illumination on the ground along a line vertically beneath a pair of lamps. The illumination due to a lamp at a greater distance than 50 ft may be neglected.

Ans. $I_{\theta}=\frac{I_{0}}{\cos ^{3} \theta}$, where θ is the angle between the line vertically down through the lamp and the line joining the lamp to any point on the road between the lamps.
$I_{0}=I$ vertically under a lamp.
(63) Define luminous flux, luminous intensity, and illumination, and state and define the units in which they are measured.

Describe the construction and use of a photo-electric photometer.
(64) Describe an apparatus by means of which the mean spherical intensity of a 1,000-watt gas-filled lamp can be determined by a single reading. Explain the principle involved and discuss the precautions which must be taken to ensure accuracy.

CHAPTER XI

(65) Describe with connection diagram how the peak value of a high voltage may be measured by means of a neon tube. Explain how the method is applied to the calibration of an extra-high-voltage voltmeter. How would you arrange to detect with certainty the striking of the neon tube?
(C. and G. Final)
(66) What methods may be used in testing cables for dielectric strength at very high voltages? Explain the difficulties that occur when tests with alternating voltages are made on long lengths of cable, and state what difference there is (if any) in the dielectric strength of (a) paper (b) air, when tested respectively with alternating and direct voltages.
(67) Describe an equipment for the production of high voltages for surge or impulse tests. Explain the action of the circuit described, and show precisely how the shape of the impulse wave can be controlled.
(C. and G. Final)

CHAPTER XII

(68) Describe the Murray loop method of localizing an earth fault on a length of cable.

In a test for a fault to earth on a 520 yd length of cable having a resistance of $1 \cdot 10$ ohms per $1,000 \mathrm{yd}$, the faulty cable is looped with a sound cable of the same length but having a resistance per $1,000 \mathrm{yd}$ of $2 \cdot 29 \mathrm{ohms}$. The resistances of the other two arms of the testing network, at balance, are in the ratio $2 \cdot 7: 1$. Calculate the distance of the fault from the testing end of the cable. Ans. 432 yd .
(69) Describe a method by which the position of a fault to earth on a long feeder may be found approximately by a "loop" test.

What methods may be used for finding the position of the fault when a break in the conductor occurs without affecting the insulation resistance very seriously?

CHAPTER XIII

(70) Show that, if α_{1} be the resistance-temperature coefficient of a conductor at $t_{1}{ }^{\circ} C$ expressed as a fraction, the coefficient at $t_{2}{ }^{\circ} \mathrm{C}$ is given by

$$
\alpha_{2}=\frac{1}{\frac{1}{\alpha_{1}}+\left(t_{2}-t_{1}\right)}
$$

A specimen of copper wire has a resistivity of $1.6 \times 10^{-6} \mathrm{ohm}-\mathrm{cm}$ at $0^{\circ} \mathrm{C}$, and a temperature coefficient of $\frac{1}{254 \cdot 5}$ at $20^{\circ} \mathrm{C}$. Find the temperature coefficient and the resistivity at $60^{\circ} \mathrm{C}$.
(C. and G. Final)

Ans. $\frac{1}{294 \cdot 5} \cdot 2.009 \times 10^{-6}$ ohm-cm.
(71) Describe a method for measuring the temperature rise in the fieldmagnet windings of a direct-current generator? Explain briefly how the final temperature rise of a machine may be estimated from the curve of temperature rise at the beginning of the heat run.
(72) D9scribe suitable methods for the measurement of the temperature of the following-
(a) The centre portion of the winding of a field coil on an electrical machine.
(b) A small quantity of molten metal.
(c) The interior of a furnace.

State why each method described is the most suitable for its purpose.
(73) Describe how the measurement of temperature can be made electrically-
(a) by thermocouples,
(b) by a bridge method suitable for moderately high temperatures,
(c) at very high temperatures.

Discuss the precautions necessary to avoid error in each case.
(Lond. Univ., Elec. Theory and Meas., Part III)

CHAPTER XIV

(74) An electromagnet of the type used for moving-coil loudspeakers has a central circular core and uniform air gap. The field in the air gap is uniform and radial. The electromagnet is arranged with the central core vertical so that an aluminium ring placed in the gap at the top of the central core could fall freely through the air gap under gravity. If the density of the radial flux is B and the ring has a cross-sectional area A with mean circumference L, and the material has a resistivity ρ and a density D, derive an expression for the velocity attained by the ring at any instant after it has begun to fall.
(Lond. Univ., Elec. Meas.)

$$
\text { Ans. } v=\frac{g \rho D}{B^{2}}\left[1-\mathrm{e}^{-\frac{\mathrm{B}^{2}}{\rho \mathrm{D}} \mathrm{t}}\right]
$$

CHAPTER XV

(75) An electromotive force, $e=2,000 \sin \omega t+400 \sin 3 \omega t+100 \sin 5 \omega t$ is connected to a circuit consisting of a resistance of 10 ohms, a variable inductance, and a capacitance of 30 microfarads arranged in series with a
thermal ammeter. Find the value of the inductance which will give resonance with the triple-frequency component of the voltage and estimate the readings on the arnmeter and on a thermal voltmoter connected across the supply when resonant conditions exist. ($\omega=300$.)

Ans. 0.0411 henry; $31.7 \mathrm{amp} ; 1,442$ volts.
(76) Derive an expression for the r.m.s. value of a complex wave-form of voltage.

Analysis of the wave-form of the voltage generated by an alternator shows that there are third and fifth harmonics having amplitudes equal, respectively, to 30 per cent and 20 per cent of that of the fundamental. The third harmonic lags behind the fundamental by 20 degrees and the fifth harmonic by 10 degrees. A dynamometer voltmeter connected to the alternator terminals gives the same reading as is produced by 150 volts d.c. Derive an expression for the instantaneous value of the voltage in the circuit.
(Lond. Univ., Elec. Meas.)
Ans. $v=200 \sin \omega t+60 \sin \left(3 \omega t-\frac{\pi}{3}\right)+40 \sin \left(5 \omega t-\frac{5}{18} \pi\right)$.
(77) Explain why alternating voltage and current wave-forms usually contain no even harmonics. In what practical instances may even harmonics occur?

A rectifier gives a current wave which has a sinusoidal form but with the negative half-wave completely suppressed. The maximum height of the wave is 100 amp . Determine (i) the steady component and (ii) the fundamental of the wave.
(Lond. Univ., Elec. Meas.)
Ans. $31.8 \mathrm{amp} ; 50 \sin \theta$.
(78) A voltage, represented by $300 \sin \omega t$ volts, is applied to a circuit consisting of a non-inductive resistance of 20 ohms in series with a luminous discharge lamp and produces a current represented by

$$
(5 \sin \omega t-2 \sin 3 \omega t) \text { amp }
$$

Calculate the power absorbed by the resistance and by the lamp; also the power factor of the lamp and of the complete circuit.
(Lond. Univ., Elec. Meas.)
Ans. 290 watts; 460 watts; $0.838 ; 0.93$.
(79) Describe and give the theory underlying the operation of some form of electric harmonic analyser. A certain periodic wave that repeats itself every half-cycle is found to have ordinates y corresponding to angles θ degrees as follows-

θ	0	15	30	45	60	75	90	105	120	135	150	165	180
y	$1 \cdot 4$	$3 \cdot 9$	$5 \cdot 2$	$5 \cdot 5$	$5 \cdot 3$	$5 \cdot 0$	$5 \cdot 2$	$5 \cdot 7$	$6 \cdot 4$	$6 \cdot 3$	$4 \cdot 9$	$2 \cdot 0$	$\frac{-2 \cdot 7}{}$

Determine the amplitude and phase of the third harmonic present in the wave.
(Lond. Univ., Elec. Meas.)
Ans. $1 \cdot 83$, leading $221^{\circ}{ }^{\circ}$ relative to the fundamental.
(80) Explain how the amplitude of the harmonics in a supply voltage of complex wave-form may be determined experimentally with the aid of a dynamometer wattmeter and a beat-frequency oscillator of pure wave-form.

A single-phase load takes a current of

$$
4 \sin \left(\omega t+\frac{\pi}{6}\right)+1.5 \sin \left(3 \omega t+\frac{\pi}{3}\right) \text { amperes }
$$

from a source represented by $360 \sin \omega t$ volts. Calculate the power dissipated by the circuit and the circuit power factor.
(Lond. Univ., Elec. Meas.)
Ans. $623.5 \mathrm{~W} ; 0.837$.
(81) A coil of 200 turns, wound on a rectangular former 10 cm long and 8 cm wide, is placed with its longer side parallel with and 5 cm distant from a current-carrying conductor, the plane of the coil being arranged so that it contains the conductor.

Calculate the e.m.f. induced in the coil by a current

$$
i=10 \sin 314 t+5 \sin 942 t
$$

flowing in the conductor. What is the mutual inductance between the coil and the conductor?

Ans. $e=-[0.012 \cos 314 t+0.018 \cos 942 t] ; M=3.82$ microhenrys.
(82) A critically-damped Duddell oscillograph is required to reproduce the 13th harmonic of a $50 \mathrm{c} / \mathrm{s}$ wave with relative amplitude correct to within 2 per cent.

What should be the natural frequency of the movement?
What will the relative phase angle departure of the 13th harmonic be?
(Lond. Univ., Elec. Meas.)
Ans. $4,590 \mathrm{e} / \mathrm{s} ; 16^{\circ} 7^{\prime}$.
(83) Sketch and describe briefly the essential features of a cathode-ray tuke and suggest a simple method of providing a time-base that is practically linear.

Derive an expression for the electrostatic deflection in centimetres per volt. State any approximations used. Assume that the screen is flat and perpendicular to the centre line of the tube and neglect fringing effects at the edges of the deflecting plates.
(Lond. Univ., Elec. Meas.)

CHAPTER XVI

(84) A capacitor of capacitance C, charged to a voltage V, is discharged at $t=0$ through a resistance R in series with a leaky capacitor of capacitance C_{2} and leakage conductance G, initially uncharged. Derive an expression for the voltage that will develop across C_{2}.
(Lond. Univ., Elec. Theory and Meas., Part III)

$$
\text { Ans. } v=\frac{V}{C_{2} R\left(m_{1}-m_{2}\right)}\left(e^{m_{1} t}-e^{m_{2} t}\right)
$$

where m_{1} and m_{2} are the roots of the equation

$$
D^{2}+D\left[\frac{G}{C_{2}}+\frac{1}{C_{2} R}+\frac{1}{C R}\right]+\frac{G}{R C_{2} C}=0
$$

(85) Derive an expression for the current in a circuit containing resistance and inductance, due to an alternating voltage connected to the circuit at time $t=0$.

If the resistance is 10.0 ohms, the inductance 2.5 henrys, and the circuit is connected to a 200 volt, $50 \mathrm{c} / \mathrm{s}$ supply at the instant when the voltage is a maximum, draw the first four cycles of the current wave.
(86) A sinusoidal voltage of $1,000 \mathrm{~V}$ and frequency 50 cycles per second is suddenly switched on to an inductive circuit of reactance 40 ohms and resistance 2.5 ohms. If the switch is closed when the instantaneous value of the voltage is zero, what will be the value of the current half a cycle later in time?
(Lond. Univ., Elec. Meaş.)
(87) Derive an expression from which the instantaneous current flowing in a circuit of inductance L and resistance R may be calculated at any time t after applying a voltage $V \cos (\omega t+\phi)$.

From the expression find the ratio of the maximum value to which the current rises to the steady-state maximum value, when the voltage is applied at the instant when it is zero, taking $R=20$ ohms, $L=0.1$ henry, and $\omega=1,000 \pi$.
(Lond. Univ., Elec. Meas.)
Ans. $\quad i=\frac{V}{\sqrt{R^{2}+\omega^{2} L^{2}}} \sin (\omega t+\phi+\alpha)+A e^{-\frac{R t}{L}}$, where $\alpha=\tan ^{-1} \frac{R}{\omega L}$ and A is a constant depending on the initial conditions; 1.8 (approx.).
(88) Two coils, A and B, have mutual inductance between them, coil A having an inductance of 1 H . When the two coils are connected in series, it is found that the total inductance is either 2.3 H or 0.7 H , deperiding upon the method of connection.

The series connection is now removed and a p.d. given by

$$
v=100 \sin 314 t \text { volts }
$$

is switched aeross A at an instant 10 milliseconds after the instant of zero voltage, B being on open circuit.

Assuming that the coils have no resistance, find (a) the maximum value of the current in $A,(b)$ the value of the e.m.f. across $B, 12$ milliseconds after the switch was closed, and (c) the current in A at this instant.

Sketch the waveform of the primary current.
Deduce an expression (without evaluating it) for the current, if the coil A has resistance.
(Lond. Univ., Elec. Theory and Meas., Part III)
Ans. (a) 0.636 A ; (b) 23.5 V ; (c) 0.573 A .

CHAPTER XVIII

(89) The coil of a 150 -volt moving-iron voltmeter has a resistance of 400 ohms and an inductance of 0.75 henry. The current drawn by the instrument when placed on a 150 volt d.c. supply is 0.05 amp . Estimate-
(a) The temperature coefficient of the instrument per degree centigrade.
(b) The alteration of the reading between direct current and alternating current at $100 \mathrm{c} / \mathrm{s}$.
(c) The oapacitance of the capacitor necessary to eliminate this frequency error. Show the method of connecting the capacitor.
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $0.00066 \mathrm{ohm} / \mathrm{ohm} /{ }^{\circ} \mathrm{C} ; 1.17$ per cent low at $100 \mathrm{e} / \mathrm{s} ; 0.111$ microfarad in parallel with the series resistance.
(90) Derive an expression for the torque of a moving-iron ammeter.

A resonating circuit was made by connecting a moving-iron ammeter in series with a $2.5 \mu \mathrm{~F}$ capacitor, and the resonance frequency, f in c / s, was determined with an ammeter deflection θ radians. It was found that f varied with θ in accordance with the expression

$$
f=1,000 \mathrm{e}^{-\theta / 6}
$$

The control torque of the ammeter is 11×10^{-6} newton-metre per radian. Determine the current in the circuit when $\theta=1.5$ radians.
(Lond. Univ., Elec. Theory and Meas., Part III)
Ans. 77 mA .
(91) The control spring of a moving-iron ammeter exerts a torque of 5 dynecm per degree [5×10^{-7} newton-metre per degree], and the inductance of the coil varies with the pointer deflection according to-

Deflection (degrees)	:	20	40	60	80
Inductance $(\mu \mathrm{H})$	657	700	750	790	

Determine the deflection produced by a current of 0.5 A .
Deriye any expression used, and suggest a suitable method for measuring the variation of inductance with deflection.

Ans. 31°.
(Lond. Univ., Elec. Meas.)
(92) A moving-coil ammeter, a thermal ammeter, and a resistance of100 ohms are connected in series with a rectifying device across a sinusoidal alternating supply at 200 volts. If the device has a resistance of 100 ohms to current in one direction, and of 500 ohms to current in the opposite direction, calculate the readings on the two ammeters, the power taken from the mains, and that dissipated in the rectifying device.

Ans. $0.3 \mathrm{amp} ; 0.74 \mathrm{amp} ; 133.3$ watts; 77.8 watts.
(93) Give a sketch showing the construction of a moving-coil voltmeter.

If the moving coil consists of 100 turns wound on a square former which has a length of 3 cm and the flux density in the air gap is $0.06 \mathrm{~Wb} / \mathrm{m}^{2}$, calculate the torque acting on the coil when it is carrying a current of 12 milliamp.

Ans. $0.66 \mathrm{~g}-\mathrm{cm}\left(6.48 \times 10^{-5}\right.$ newton-metre).
(94) An instrument spring, constructed of phosphor-bronze strip, has the following dimensions: length of strip, 370 mm ; thickness of strip, 0.073 mm ; breadth of strip, 0.51 mm .

If E (Young's modulus for phosphor-bronze) be taken as $1.15 \times 10^{6} \mathrm{~kg}$ per cm^{2}, estimate the approximate torque exerted by the spring when it is turned through an angle of 90°.

(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $0.0805 \mathrm{~g}-\mathrm{cm}\left(0.79 \times 10^{-5}\right.$ newton-metre).
(95) The moving coil of a permanent-magnet ammeter is wound with 10 turns of copper wire, and has a resistance of 0.1 ohm . The total torque exerted by the control springs is $0.02 \mathrm{~g}-\mathrm{cm}\left(1.96 \times 10^{-6}\right.$ newton-metre) per degree. When the terminals are connected to a Grassot fluxmeter, and a scale angle of 90° is traversed by the ammeter pointer, a linkage of 3×10^{-3} weber; turns is indicated.

Estimate the temperature coofficient of the ammeter when operating off a shunt having a drop of 0.075 volt at full load.

Ans. $0.00062 \mathrm{ohm} / \mathrm{ohm} /{ }^{\circ} \mathrm{C}$.
(96) State the causes of change of accuracy in moving-coil instruments with change of temperature. Explain how compensation is made in ammeters for change of electrical resistance of the moving coil with change of temperature.

It is required to oonstruct a resistor of $5 \cdot 0$ ohms with a resistance-temperature coefficient of 8×10^{-5} per ${ }^{\circ} \mathrm{C}$. Platinoid and manganin wire of cross-sectional area $0.4 \mathrm{~mm}^{2}$ are available and are to be connected in series. Calculate the lengths required if the resistivity of platinoid is $34 \cdot 4$ microhm- cm , and its resistance-temperature coefficient is $2.5 \times 10^{-4} \mathrm{per}{ }^{\circ} \mathrm{C}$; corresponding figures for manganin are $48 \mathrm{microhm}-\mathrm{cm}$, and 2×10^{-5} per ${ }^{\circ} \mathrm{C}$. All figures refer to $0^{\circ} \mathrm{C}$.
(Lond. Univ., Elec. Meas.)

> Ans. $151-3 \mathrm{~cm}$ platinoid. 308 cm manganin.
(97) A dynamometer ammeter is fitted with two field coils having a total resistance of 3.0 ohms and a total inductance of 0.12 henry, and a moving coil of resistance 30 ohms and inductance 0.003 henry. Calculate the temperature coefficient for changes of external temperature, and the error in reading when the instrument is calibrated with direct current and used on alternating current, $50 \mathrm{c} / \mathrm{s}$, for each of the following arrangements-
(a) When the moving coil is shunted direct across the field coils.
(b) When the moving coil is shunted across a non-inductive resistance placed in series with the field coils.
(c) When connected as in (b), the non-inductive resistance having a value of 10 ohms, a suitable swamp resistance being placed in series with the moving coil.
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $0.004,41.1$ per cent low; $0.0024,0.04$ per cent low; $0.0006,0.003$ per cent low.
(98) Find the expression for the deflection of a quadrant electrometer in terms of the potentials of the two pairs of quadrants and the needle.

Hence explain the use of the instrument as (i) a voltmeter, and (ii) a wattmeter.
(99) Explain the action of a shaded-pole ammeter, showing by means of a sketch the direction of movement of the disc relative to the magnet poles. How is adequate damping secured, and how is the spread of the scale controlled? What are the advantages of this type of instrument for switchboard use, and to what errors is it subject?
(Lond. Univ., Elec. Meas.)
(100) Describe the principle and action of a shaded-pole motor. Explain how the torque is produced; show clearly in which direction it acts, and in what way it depends on the frequency.

How is the shaded-pole device applied in a.c. ammeters?
(Lond. Univ., Elec. Meas.)
(101) A metal rectifier is used for the measurement of a sinusoidal alternat. ing current. The rectifier consists of four units arranged in bridge, each unit having approximate forward and reverse resistances of 5 ohms and 500 ohms respectively. The moving-coil indicator has a resistance of 20 ohms. Determine the indication when the r.m.s. input current is 4 milliamperes.

Ans. 3.26 mA .
(Lond. Univ., Elec. Meas.)

CHAPTER XIX

(102) A soft-iron voltmeter for a maximum reading of 120 volts has an inductance of 0.6 henry and a total resistance of 2,400 ohms. It is calibrated to read correctly on a $60 \mathrm{c} / \mathrm{s}$ circuit. What series resistance would be necessary to increase its range to 600 volts? Draw up suitable workshop instructions for making up the resistance.
(Lond. Univ., Elec. Meas.)
Ans. 9,660 ohms.
(103) The capacitance of an electrostatic voltmeter reading from 0 to 2,000 volts increases uniformly from 45 to 55 micromicrofarads as the pointer moves from zero to full-scale deflection. It is required to increase the range of the instrument to 20,000 volts by means of an external air capacitor.

Calculate the area of a pair of capacitor plates suitable for the purpose. If the capacitor is adjusted to make the full-scale reading correct, what will be the error per cent at half-scale reading?

Ans. $175 \mathrm{sq} . \mathrm{cm}$, assuming the distance (A.M.I.E.E., Meters and Meas. Insts.) cent high.
(104) Discuss the reasons why the errors of a current transformer are usually greater with relatively small loads than at rated full load.

At its rated load of 25 VA , a 100/5-ampere current transformer has an iron loss of 0.2 W and a magnetizing current of 1.5 A . Calculate its ratio error and phase angle when supplying rated output to a meter having a ratio of resistance to reactance of 5 .
(Lond. Univ., Elec. Meas.)
Ans. -1.07 per cent; $0^{\circ} \mathbf{4 5}^{\prime}$.
(105) Why is it important to use high-grade magnetic material for the laminations of current transformers? Discuss some of the advantages gained by substituting nickel-iron for silicon-iron in current transformer construction.
(Lond. Univ., Elec. Meas.)
(106) An $8 / 1$ current transformer has an accurate current ratio when the secondary is short-circuited. The inductance of the secondary is 60 millihenrys and its resistance is 0.5 ohm , and the frequency is $50 \mathrm{c} / \mathrm{s}$. Estimate the current ratio and phase-angle error when the instrument load has a resistance of 0.4 ohm and an inductance of 0.7 millihenry. State the assumptions made.
(Lond. Univ., Elec. Meas.)
Ans. S.001; $0^{\circ} 2^{\prime}$ assuming no iron loss, constant permeability, and magnetizing current $=1$ per cent of primary current.
(107) A voltage transformer, ratio $1,000 / 100$ volts, has the following constants-

Primary resistance $\quad: \quad$	$\quad 94.5$ ohms	
Secondary resistance	$:$	0.86 ohm
Primary reactance	$:$	$66 \cdot 2 \mathrm{ohms}$
Equivalent reactance	$:$	66.2 ohms
Magnetizing current	$: \quad 0.02 \mathrm{amp}$ at 0.4 power factor	

Calculate-

(i) The phase angle at no load between primary and secondary voltages.
(ii) The load in volt-amperes at unity power factor at which the phase angle will be zero.
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $0^{\circ} 4^{\prime}, 18 \cdot 1$ volt-amperes.
(108) The primary magnetizing current of a nickel-iron-cored current transformer with bar primary. nominal ratio 100/1, operating on an external burden of 1.6 ohms non-inductive, the secondary winding resistance being 0.2 ohm , is 1.9 amp , lagging 40.6° to the secondary volts reversed, there being 100 secondary turns. With 1.0 amp flowing in the secondary calculate-
(a) The actual ratio of primary to secondary current.
(b) The phase angle between them, in minutes.
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $101 \cdot 45,42 \mathrm{~min}$.
(109) Discuss the advantages and disadvantages of using a highly permeable alloy for the construction of the cores of current transformers. Explain the meaning of the term burden.

A bar-type current transformer of toroidal construction requiros 400 ampere-turns to magnetize it, and 300 ampere-turns to supply the iron losses, for each volt per turn induced in the secondary winding at rated frequency. Across the secondary terminals is connected an impedance of 2 ohms with a phase angle ϕ, and the resistance of the secondary winding is 0.5 ohm. The nominal ratio is $1,000 / 5$ amperes, and it is required to minimize both ratio and phase errors. Determine the necessary values of N and ϕ, where N is the number of secondary turns.
(Lond. Univ., Elec. Meas.)
Ans. 194; $64^{\circ} 40^{\prime}$.

CHAPTER XX

(110) In a test by the three-voltmeter method, the following readings were obtained: Across the mains, 180 volts; across the non-inductive resistance of 6 ohms, 88 volts; across the load, 106 volts. Calculate the self-inductance and effective resistance of the load and the power supplied to it.

Ans. Eff. res. $=5 \cdot 22 \Omega ;$ Reactance $=5 \cdot 0 \Omega ;$ Power $=1,120 \mathrm{~W}$.
(111) Describe the two-wattmeter method of measuring power in a threephase circuit.

If the readings of the wattmeter are 3 kW and 1 kW respectively, the latter reading being obtained after reversing the connections to the current coil of the wattmeter, calculate the power and the power factor.

Ans. $2 \mathrm{~kW}, 0.277$.
(112) A small single-phase transformer is connected across a single-phase supply in series with a low-resistance ammeter A_{1}. In parallel with the transformer and across the same terminals is connected a resistance of 100 ohms in series with another ammeter A_{2}. A third ammeter A_{3} is placed directly in series with the supply mains. If the readings on the three ammeters are: $A_{1}, 10.0 \mathrm{amp} ; A_{2}, 1.0 \mathrm{amp} ; A_{3}, 10.5 \mathrm{amp}$, find (a) the watts input into the transformer; (b) the power factor of the load due to the transformer.

Ans. $462.5 \mathrm{~W} ; \mathbf{0} 462$.
(A.M.I.E.E., Meters and Meas. Insts.)
(113) The power flowing in a three-phase, three-wire, balanced-load system is measured by the two-wattmeter method. The reading on wattmeter A is 5,000 watts, and on wattmeter B is $-1,000$ watts.
(a) What is the power factor of the system?
(b) If the voltage of the circuit is 440 , what is the value of capacitance which must be introduced into each phase to cause the whole of the power measured to appear on wattmeter A ?
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. $0 \cdot 359 ; 5 \cdot 43$ ohms.
(114) A dynamometer-pattern wattmeter has a field system which may be considered as long compared with the diameter of the moving coil. The flux density B in the field coils is $0.01 \mathrm{~Wb} / \mathrm{m}^{2}$. The mean diameter of the moving coil is 3 cm , and it is wound with 500 turns of copper wire.

If the current through the moving coil is 0.05 amp and the wattmeter is measuring the power flowing in a circuit having a power factor of $0 \cdot 7$, estimate the torque, if the axes of the field and moving coils are at (a) 45°, and (b) 90°.

Ans. $0.89 \mathrm{~g}-\mathrm{cm}\left(8.74 \times 10^{-6}\right.$ newton (A.M.I.E.E., Meters and Meas. Insts.) metre)

CHAPTER XXI

(115) Show that the eddy-current torque on a metallic disc rotating between the poles of a permanent magnet is directly proportional to the angular velocity of the disc. How would the torque be expected to vary with the position of the magnet poles relative to the axis of the disc? What use is made of this device in the construction of energy meters, and what part does it play in the operating mechanism? (Lond. Univ., Elec. Meas.)
(116) In a simple bipolar form of a.c. energy meter, the distance between the pole centres is 1.5 cm and the effective radius of action is 2.5 cm . The fluxes produced by the series and shunt magnets are 3.5×10^{-6} and 2.75×10^{-6}
weber (r.m.s.) respectively, their phase displacement being 82°. The aluminium driving disc is 0.06 cm thick and its resistivity may be taken as 3 microhm-cm.

Neglecting the edge effect of the disc, calculate its speed if the wrake magnet exerts a braking torque of 7.5×10^{-7} newton-metre when the speed is 1 revolution per minute. Frequency $=50 \mathrm{e} / \mathrm{s}$.

Ans. $\mathbf{4 0 . 4}$ r.p.m.
(117) A large consumer has a kVA demand and a kVAh tariff, measured (by mutual agreement) by "sine" and "cosine" watt-hour type meters, each equipped with a Merz demand-indicator. The tariff is 10 s . per month per kVA + fd. perkVAh. Render the consumer his bill for one month of 30 days, based on the following readings: "Sine" meter advance 90,000 reactivekVAh, demand indicator 150 reactive-kVA. "Cosine" meter advance 120,000 kWh , demand indicator 200 kW .

What are his average monthly power factor and load factor, and his total cost per unit?
(A.M.I.E.E., Meters and Meas. Insts.)

Ans. 0.719d. per unit. Average load factor $=$ Average power factor $=\mathbf{0 . 8}$.

CHAPTER XXII

(118) Describe a direct-reading frequency meter for measuring a frequeney of the order of either $(a) 50$ cycles per second or (b), 500 cycles per second. Suggest a suitable method for calibrating the instrument.
(Lond. Univ., Elec. Meas.)

IN DEX

Abraham-Villard voltmeter, 480
Absolute-
instruments, 634
measurements, 71
units, 52, 70
Absorption in dielectrics, 166, 317
A.C.-
bridge methods, 211
errors in, 244
potentiometers, 359
applications of, 368
method of iron-loss testing, 430
stabilizer, 369
Air-
density factor, 472
friction damping, 641
Ammeter-
calibration of, 356, 368
errors in, 657
shunts, 710
types of, 656
Ampere, 57
definition of, 25
international, 70
legal, 71
Ampere-hour meters, 813
Ampère's theorem, 25
Amplifier-detectors, 269
Anderson bridge, 215
Anemometer, hot-wire, 310
Anode-bend voltmeter, 699
Arnold method of current transformer testing, 749
Aron clock meter, 825
Attracted-disc electrometer, 686
Attraction-
between charged parallel surfaces, 15
between magnetized surfaces, 24
type moving-iron instruments, 658
Auto-repeater, 905
Ayrton universal shunt, 331
Ayrton-Perry inductometer, 258
Balancing in instruments, 640
Ballistic galvanometer, 374
calibration of, 380
flux measurement with, 383
method of capacitance measurement, 232
method of mutual inductance measurement, 226.

Bar-and-yoke methods, 401
Barlow method of measuring threephase power, 776
Betteridge apparatus for magnet testing, 416
$B-H$ curve, determination of, 394
Biff method of current transformer testing, 746
Bifilar winding, 79
Biot-Sayart law, 28
Bismuth spiral, 389
Blavier test, 510
Bridge measurements, source of, error in, 244
Bridge Megger, 323
Brightness, 436
Brooks and Weaver inductometer, 259
Bunsen photometer head, 442
Burrows double-bar-and-yoke permeameter, 406
Butterworth bridge, 218
Butterworth-Tinsley mutual inductometer, 261
c, determination of, 67
Cable-
graded, 160
multicore, capacitance of, 152
tests with high-voltage d.c., 460 , 483
testing, 503
Cables, fault localization in, 510
Caesium resonator, 863
Cambridge reflecting wattmeter, 787
Campbell-
bridge for iron-loss measurements, 427
constant-inductance rheostat, 256
frequency bridge, 867
-Larsen a.c. potentiometer, 367
method-
of mutual-inductance measurement, 227
of self-inductance measurement, 239
mutual inductometer, 260
standards of mutual inductance, 90
vibration galvanometer, 275
Candela, 436
Capacitance, 11
between conducting plates, 139

Capacitance (Contd.)-
between two long parallel cylinders, 141
between two spheres, 138
definition of, 13
distributed, 154
earth, 135
geometric, 166
measurement of, 231
of cables, 152, 154
of conductors parallel to earth, 147
of systems of conductors, 136
practical unit of, 58
standards of, 95
Capacitance-divider method of testing voltage transformers, 755
Capacitor-
air decade, 265
bushing, 162
multipliers, 715
potential divider, 473
square-law, 264
variable, 262
Capacitors-
for high voltages, 96
in series and parallel, 151
standard, 95
Carey-Foster slide-wire bridge, 304
Cascade connection of transformers, 465
Cathode-follower, 902
Cathode-ray oscillograph, 175, 596
dielectric loss measurement with, 175
Celsius temperature scale, 524
C.G.S. units, 56

Chattock magnetic potentiometer, 388
Circular coil-
magnetic field of, 31
self-inductance of, 194
Circular turn, inductance of, 187
Clock meters, 825
Clothier and Medina method of testing voltage transformers, 756
Coaxial-
circles, forces between, 33
coils, mutual inductance between, 190
cylinders, oapacitance between, 146
Coercive force, 40
Commutator meters, 817
Complex wave-forms, 564
r.m.s. value of, 586
power with, $58 \overline{7}$
Concentric-
circles, mutual inductance between, 187

Concentric (Contd.) -
coils, mutual inductance between, 192
spheres, capacitance between, 137
Constant-inductance rheostat, 256
Constant of inertia of vibration galvanometer, 275
Constant.resistance deflectional potentiometer, 349
Control-
constant of vibration galvano meter, 276
gear for h.v. testing, 469
of instruments-
gravity, 638
spring, 636
Corona effect, 469
Coulomb, 58
Coulomb's-
law, 1, 16
theorem, 9
Counting-rate meter, 906
Coupling, coefficient of, 182
Coursey factor, 195
Creep of meters, 823
Crompton potentiometer, 343
Curie balance, 415
Current-
absolute measurement of, 74
absolute unit of, 25
balance-
Kelvin, 85
Rayleigh, 77
E.M.C.G.S. unit of, 57
measurement of by potentiometer, 356
transformers, 717
characteristics of, 727
demagnetization of, 734
design of, 721
errors introduced by, 720
reduction of errors in, 731
testing of, 743
use of, 733
wave-forms, 581
Current-doubling effect, 625
Cylinders-
capacitance between, 141
electrostatic field between, 143
Cylindrical conductors, eddy currents in, 546

Damped oscillations, 490
Damping -
eddy-current, 558
in D'Arsonval galvanometer, 337
in instruments, 635, 641
D'Arsonval galvanometer, 333

D'Arsonval galvanometer (Contd.)theory of, 335
measurement of constants, 339
Delon mechanical rectifier, 483
Demagnetization-
curve, 45
of current transformers, 734
of magnetic specimens, 399
Demagnetizing factors, 400
De Sauty bridge, 233
Detectors for a.c. bridges, 268
Dial tests for meters, 835
Dielectric -
absorption, 166, 317
breakdown, nature of, 501
loss and power factor, 164
measurement of, 168, 502
strength, 159
Dielectrics, 159
properties of, 165
in series, 163
Diesselhorst potentiometer, 351
Differential cathode-follower, 905
Digital display, 916
Dimensional equations, 66
Dimensions, 53
Diode-
valve, 885
voltmeter, 700
Displacement constant of vibration galvanometer, 275
Drysdale-
phase shifter, 360
plug permeameter, 410
standard wattmeter, 801
-Tinsley a.c. potentiometer, 360
Ducter ohmmeter, 325
Duddell-
oscillograph, 590
theory of, 592
square-law capacitor, 264
vibration galvanometer, 272
Dynamometer-
m.c. instruments, 674
power-factor meter, 872
wattmeter, 779, 800
Dynatron oscillator, 890

Earth-

capacitances in a.c. bridges, 246
connections, resistance of, 327
overlap test, 510
Ebonite, testing of, 502
Eddy-ourrent-
damping, 558, 643
errors in a.c. bridges, 248
loss. 417

Eddy currents-
effect of, 545
in ármature conduotors, 556
in cylindrical conductors, 546
in iron core, 550
in iron plates, 205
in thin sheets, 548
nature of, 545
Electric field, 2
Electricity Supply (Meters) Act (1936), 357, 832

Electrodynamometers, 75
Electrolytes, resistance of, 328
Electrolytic meters, 808
Electromagnetic oscillograph, 589
Electromagnetism, 25
Electrometer-
attracted-dise, 686
Kelvin absolute, 686
Lindemann, 501
quadrant, 682
Electronic-
counters, 914,916
high-resistance test set, 320
repeater, 829
Electrostatic-
instruments, 681
oscillograph, 596
voltmeters, theory of, 681
commercial forms of, 687
for h.v., 479, 689
wattmeter, 170,792
Elliott transmission system, 830
E.M.F., induction of, 36

Energy -
in electric circuit, 38
meters, 807
practical unit of, 58
stored in electric field, 13
stored in magnetic field, 45
Equipotential surfaces, 11
Equivalent sine wave, 588
Ewing-
double-bar method, 403
isthmus method, 411

Fahy simplex permeameter, 408
Farad, 58
Faraday's law, 36
Fault-localizing bridges, 518
Faults in high-voltage cables, 487
Feebly magnetic materials, testing of, 414
Felici's method of mutual inductance measurement, 224
Ferraris induction instrument, 693
Ferric induction, 21, 373

Fery variable-focus pyrometer, 539
Fisher loop test, 516
Fixed-focus radiation pyrometer, 538
Flat coils, self-inductance of, 197
Fleming and Clinton commutator method, 231
Flicker photometers, 445
Fluid friction damping, 642
Flux-
density, magnetic, 17
distribution in thick iron plates, 552
eddy-current effect on, 550
electric, 3
electric, tubes of, 3
Fluxmeter, 384
theory of, 385
shunted, 386
Force-
between charged parallel surfaces, 15
between magnetized surfaces, 24
between parallel conductors, 30
due to current in long straight conductor, 28
Form-factor meter, 706
Four-arm bridge network; 211
Fourier's theorem, 564
Frequency -
bridges, 867
errors, compensation for, 696
in a.c. bridges, 248
in m.i. instruments, 664
measurement, 862
meters, 868, 869
standards, 862
Friction errors in instruments, 657
Frost-point hygrometer, 901
Gall-Tinsley a.c. potentiometer, 362, 430
Galvanometer-
ballistic, 374
constants, measurement of, 339
damping constant, 275
D'Arsonval, 333
displacement constant, 275
inertia constant, 275
tangent, 75
vibration, 269
Gas thermometers, 523
Gauss, 58
Gauss's theorem, 8
Geometric capacitance, 166
Geometrical mean distance, 188
Giebe air capacitor, 100
Gilbert, 58
Giorgi (M.K.S.) system, 59

Glazebrook and Muirhead standard air capacitor, 99
Glynne electronic stabilizer, 836
Grassot fluxmeter, 384
as a quantity meter, 819
Gravity control of instruments, 638
Ground faults in cables, 510
Grover series-inductance capacitance bridge, 235
Guard rings, 157
Guild flicker photometer, 446
Gumlich's method of magnetic test. ing, 413

Hall effect devices, 391
Harmonic-
analyser, 577
analysis, 567
Harmonics-
even, 566
in a.c. wave-forms, 563
Hartshorn method of self-inductance measurement, 240
Hay bridge, 214
for superposed d.c. and a.c. measurements, 219
Heaviside bridge, 118, 220
Heaviside-Campbell bridge, 221
Helmholtz tangent galvanometer, 77
Henry, 58
Heterostatic connection, 682
Hoydweiller's modification of Carey. Foster bridge, 229
High-frequency high-voltage tests, 462
High resistance, measurement of, 313, 320
High voltage -
control gear, 469
d.c. tests, 460, 484
high-frequency tests, 462,489
low-frequency tests, 460
measurements, 471
surge tests, 462, 494
transformer, 464
voltmeters, 479
Ho and Koto oscillograph, 596
Hobson's method of current trans. former compensation, 731
Holophane Lumeter, 452
Hot-wire anemometer, 310
Humidity meter, 312
Hysteresis-
coefficient, 43
orror in m.i. instruments, 664
loop, 39
determination of, 396

Hysteresis (Contd.)-
loss, 41, 399
in small specimens, 431
magnetic, 38
Idiostatic connection, 682
Illiovici permeameter, 404
Illumination, 435
definitions, 435
laws of, 437
photometers, 451
Images, method of, 147, 186
Impulse -
ratio, 497
tests, 462, 494
Incremental permeability, 40
Inductance-
mutual, 181
standards of, 89
unit of, 182
practical unit of, 58
self., 180
in series, 182
measurement of, 208
of a wire parallel to earth, 186
of parallel cylinders, 183
standards of, 88, 93
with superposed d.c. and a.c., 219
Induction-
forric, 21
instruments, 692
method of fault localization, 521
of e.m.f., 36
regulator voltage control, 468
watt-hour meters, 820
wattmeters, 789
Inductively-coupled ratio bridges, 242
Inductor-
iron-cored, 200
variable, 257
Instruments-
classification of, 634
indicating, 635
integrating, 651
recording, 647
rectifier, 703
Instrument transformers, 716
testing of, 743
use of, with wattmeters, 768
Insulating-
materials, testing of, 501
oils, testing of, 503
Insulation-
resistance, 314
measurement of, with power on, 326
testing sets, 321

Insulators, testing of, 498
Integrating -
instruments, 651
sphere, 449
theory of, 450
Internal flux in conductor, 184
International -
conference on electrical units, 70
temperature scale, 524
units, definitions of, 70
Ionic-wind voltmeter, 481
Iron-
loss, measurement of, 417, 424
by a.c. potentiometer, 430
with flux wave-form control, 426
powders, measurements on, 428
j, 106
Joule, 58

Kelvin-

absolute electrometer, 686
bridge ohmmeter, 296
current balance, 85
double bridge, 290
electrostatic voltmeter, 688
temperature scale, 524
-Varley slide, 332
Kilovolt-amperes, measurement of, 849
Kipping time-base, 575
Kohlrausch method of measuring resistance of electrolytes, 328
Kuriyama bridge, 223
Laboratory standards-
capacitance, 102
low resistance, 81, 289
Lambert's cosine law, 437
Laplace-
equation, 28
transformations, 630
Larmor precession, 393
Leakage -
errors in a.c. bridges, 248
factor, measurement of, 387
indicators, 691
in potentiometers, 347
Leeds and Northrup vibration galvanometer, 273
Left-hand rule, 29
Legal standards, 71
Lenz's law, 36
Light, 435
meter, 455
Lindemann electrometer, 501
Linear speed, measurement of, 861

Lloyd-Fisher magnetic square, 419
Logarithmic decrement, 378
Loop tests, 513
Lorenz method of resistance measurement, 72
Loss angle of capacitor, 168
Loss-of-charge method of resistance measurement, 315
Low resistance-
measurement of, 286
standards, measurement of induc. tance of, 240
Lumen, 436
Lumen-hour, 437
Luminance, 412
Luminous-
flux, 435
intensity, 435
mean horizontal, 436, 446
mean spherical, 436, 447
measurement of, 441
standards, 438
Lummer-Brodhun photometer head, 443

Macbeth illuminometer, 451
Magnetic-
balance, 390, 415
field, 17
field due to current in a conductor, 29
field, measurement of by Hall effect, 39
field strength, measurement of, 389
flux, measurement of, 383
hysteresis, 38
moment, 18
permeameters, 40
pole, 16
potentiometer, 388
resonance, nuclear, 392
shells, 25
susceptibility, 22
testing of rods, 399
testing with alternating current, 417
with intense fields, 411
Magnetization-
curve, 22, 38
determination of, 394
intensity of, 18
Magnetizing force, 21
Magnetometers, 371
Magnets, permanent, 45, 645
Manganin, 83
Marx surge generator, 494
Maximum-demand indicators, 841

Maxwell, 58
bridge for determination of $c, 69$
bridge for iron-loss measurements, 425
method for mutual inductance measurement, 226
self-inductance bridge, 212
Maxwell's dimensions for selfinductance standard, 93
Measuring instruments, effects utilized in, 634
Medium resistance, measurement of, 297
Megger insulation tester, 323
Megger capacitance meter, 324
Mercury-
motor meters, 813
thermometers, 523
Merz-Price demand indicator, 843
Meter testing, 832
Meters for special purposes, 840
Method of reversals, 394, 397
Mica capacitors, 102
M.K.S. units, 1, 59

Moisture meter, 313
Moore heavy-current wattmeter, 781
Motor meters, 811
errors in, 812
Moullin thermionic voltmeter, 700
Moving-coil instruments, 665
design data for, 674
errors in, 673
extension of range of, 670
Moving-coil vibration galvanometer,
Moving-iron instruments, 658
design data for, 665
errors in, 660
power-factor meters, 876
synchroscope, 879
theory of, 660
Moving-magnet vibration galvanometer, 270
Multi-core cable, capacitance of, 152
Multipliers, voltmeter, 712
Mumetal, 721
Murray loop test, 513
Mutual inductance-
measurement of, 224
network containing, 117
sign of, 116
standards of, 88
Nagaoka factor, 194
Nalder-Lipman power-factor meter 877
National Physical Laboratory pormeameter, 409

Negative feed-back, 894
Neon lamp, 477, 604
Network theorems, 127
Nickel-iron alloys, 721
Nit, 436
Non-inductive windings, 255
Non-sinusoidal wave-forms, 564
Nuclear magnetic resonance, 392
Oersted, 58
Ohm, 57
international, 70
legal, 71
Board of Trade, 80
Ohmmeter, 322
Kelvin bridge, 296
Evershed's Ducter, 324
Oil, testing of, 503
One-wattmeter method, 775
Open-circuit faults in cables, 519
Optical pyrometer, 541
Oscillation method of magnet testing, 373
Oscillators, 249
Wien bridge, 250
Oscillographs, 589
Osmosis, electric, 487
Owen bridge, 236
Paraffined paper capacitors, 102
Parallel-
coils, magnetic field of, 32
cylinders-
capacitance between, 141 inductance between, 183
plates, electrostatic field between, 6
Peak-
factor, 473
voltage, measurement of, 475
Pentode valve, 890
Permanent magnets, 645
design of, 45
recoil loops, 47
stabilization, 48
testing of, 416
Permeability-
incremental, 40
magnetic, 17, 21
of free space, 55
Permeameters, 402
Permittivity, 1
of free space, 55
relative, 164
Petch-Elliott current transformer testing set, 751
$p \mathrm{H}$ meters, 358
Phantom loads, 836

Phase-
anglecapacitor, 168
current transformer, 719
voltage transformer, 738
error in induction meters, 822
shifter, 360
-splitting circuit, 364, 366
Photo-electric cell, 453, 457
Photometer-
bench, 441
heads, 442
Pivots, friction at, 644
Plate capacitor, capacitance of, 139
Platinum-
resistance thermometers, 526
resistance variation of, 525
temperature, 526
Pointers, instrument, 646
Pole, unit magnetic, 17
Polygonal coils, self-inductance of, 198
Polyphase-
circuits, symbolic treatment of, 119
meters, testing of, 839
watt-hour meters, 825
wattmeters, 799
Porcelain insulators, testing of, 498
Post-deflectional acceleration in c.r tubes, 601
Potential -
at a point, 10
connections, 286
difference, unit of, 10
distribution along suspension insulator string, 499
dividers for h.v. circuits, 467
due to a current in a closed circuit, 26
energy of current and magnetic flux, 27
gradient, 160
magnetic, 23
Potentiometer-
a.c., 359
constant-resistance deflectional, 349
construction, 346
Diesselhorst, 351
high-precision, 353
method of low-resistance measurement, 289
principle of, 342
range-changing network for, 346
vernier, 347
Power-
factor meters, 872
factor with non-sinusoidal wave. forms, 588

Power (Contd.)-
loss in instruments, 655
measurement without a wattmeter, 770
practical unit of, 57
Practical electrical units, 56
Prepayment meters, 841
Pressure, measurement of, 309
Price's guard-wire method, 314
Pyrometers, 524
Q-factor and its measurement, 911
Q-meter, 913
Quadrant electrometer, 682
Quantity of electricity-
measurement of, 374
unit of, 1, 58
Quick-response recorders, 648, 909
Radiant efficiency, 435
Radiation-
pyrometers, 538
Stefan-Boltzmann law of, 539
Rationalization, 1, 59, 61
Rayleigh-
and Niven's formulae for self. inductance, 187
current balance, 77
formulae for mutual inductance, 191
Reactive power measurement, 804
Reason electrolytic meter, 809
Record-
Cirscale instruments, 661, 667
generator for speed measurement, 855
Recording instruments, 647
Rectifier-
instruments, 703
mechanical, 483
thermionic, 484
Reduction factor, 437
Relay method for capacitance measurement, 232
Remanence, 40
Remote indication, 829
Repulsion-type m.i. instruments, 658
Residual -
errors in a.c. bridges, 248
magnetism, 39
Residuals of resistors, 254
Resistance-
absolute measurement of, 72
boxes, 252
effective, 557
E.M.C.G.S. unit of, 57
high-frequency, 203

Resistance (Contd.)-
materials, 82
measurement of by potentiometer, 354
potential dividers, 714
Resistors-
measurement of self-inductance of, 239
by Campbell's method, 239
by Hartshorn's method, 240
residuals of, 254
standard, 79
variable, 252
Resistivity-
of electrolytes, 328
surface, 319
volume, 319
Resonance-
curves of vibration galvanometer, 275, 283
frequency meter, 869
with harmonics, 585
Reversing ratios, 304
Ring specimens, magnetic testing of, 394
Rotational speed measurements, 855
Rousseau's construction, 447
Ryall crest voltmeter, 477
Schering-
and Schmidt galvanometer, 270
bridge, 171
Screening -
electrostatic, 157
magnetic, 244
of bridge components, 245
Secondary instruments, 634
Self-demagnetization, 399
Sensitivity-
a.c. bridges, 268

Kelvin double bridge, 295
Wheatstone bridge, 301
vibration galvanometer, 283
Servo-mechanisms, 896
Servo-operated pen recorders, 650
Servo-systems using velocity feedback, 899
Shaded-pole induction instruments, 697
Shielded high-voltage potential divider, 755
Shielded resistor, 245
Shielding, electrostatic, 157
Shunts for ammeters, 710
Siemens-Halske h.v. voltmeter, 479
Single-phase meters, 821
testing of, 838
Single strip, magnetic testing of, 424

Skin effect, 201
in coils, 204
in iron plates, 205
reduction of, 203
Smith bridge, 528
Solenoid-
capacitance of, 156
magnetic field of, 34
Sphere-gap, 471
Spherical conductor-
capacitance of, 137
field inside, 4
Spielrein formula for self-inductance, 197
Spring control of instruments, 636
Stabilizer, a.c., 369
Standard-
cells, 87
platinum thermometer, 527
resistors, 79
Standards, legal, 71
Star-delta transformation, 129
Star-mesh transformation, general, 131
Stefan-Boltzmann law, 539
Steinmetz hysteresis law, 43
Step-by-step method of magnetic testing, 396
Straight conductors-
capacitance between, 148
capacitance to earth, 147
electrostatic field near, 5
inductance of, 186
magnetic field near, 29
Strain gauge measurements, 306
Stray-field errors in a.c. bridges, 244
Stroboscopic methods, 857
Sub-standard lamps, 440
Sullivan-Griffiths-
decade air capacitor, 265
self-inductance standard, 94
standard capacitors, 100
variable inductors, 262
Summation-
metering, 847
methods, 801
Summator, 848
Superposition theorem, 128
Supply meters, 807
Supports in indicating instruments, 644
Surface-
leakage, 314
resistivity, 319
Surge test, 462, 494
Swamping resistor, 670
Symbolic notation, 106

Symmetrical components, 122
Synchroscopes, 878
Tachometer, 855
Tangent galvanometer, 75
Tapped transformer for voltage control, 468
Telephones in a.c. bridges, 268
Temperature-
effect on insulation, 318
errors, 670
indicators and recorders, 529, 535
Tesla coil, 491
Testing sets, 707
Tetrode valve, 888
Thermal converters, 676
meters, 676
Thermionic valve, physics of, 882
Thermionic voltmeters, 699
Thermo-electric-
e.m.f., 524, 532
in potentiometers, 355
junction, 532
pyrometers, 529
Thermo-junction, 474
Thermometers, 523
Thermokraftfrei potentiometer, 351
Thermopiles, 541.
Thevenin's theorem, 129
Three-ammeter method, 210, 771
Three-phase power measurement, 772
Three-voltmeter method, 209, 771
Threshold voltage, 481
Thyratron valve, 893
Time-
base for cathode-ray oscillograph, 603
constants of resistors, 254
of electrification, effect of, 317
switch, 844
Toroidal coils, self-inductance of, 198
Torque -
dynamometer wattmeter, 783
electrostatic instruments, 681, 683
induction instruments, 696, 698, 790
permanent-magnet moving-coil instruments, 665
moving-iron instruments, 660
Torque/weight ratio, 640
Torsion wattmeter, 779
Transfer error, 680
Transformers-
current, 717
voltage, 735

Transient phenomena-
in circuits containing a number of meshes, 620
with a.c., 623
with d.c., 611
Transistor, 918
Triode valve, 886
Trivector meter, 851
Tuned detectors, 268
Two-rate meters, 849
Two-wattmeter method, 773
Ulbricht sphere, 450
Unipivot instruments, 667
Units-
absolute, 52, 79
C.G.S., 52, 57
international, 70
M.K:S., 59
practical, 56
rationalized systems, 61
Universal shunt, 331
Unrationalized C.G.S. formulae, 48
Vacuo-thermo-junctions, 677
precision measurements with, 679
Vacuum-enclosed electrostatic voltmeters, 689
Valve rectifier, 484
Variable-
capacitor, 262
inductor, 257
resistor, 252
Varley loop test, 515
Velocity feed-back, 897
Vernier potentiometer, 347
Vibration galvanometer, 269
natural frequency of, 278
theory of, 274
Volt, 57
box, 356
international, 70
legal, 71
Voltage-
measurement by potentiometer, 356
regulation, 465
standardizer, 357
Voltage-amplifier, pentode, 891
Voltage-drop tests on cables, 512
Voltage transformers, 735 characteristics of, 741 design considerations, 739

Voltage transformers (Contd.)errors introduced by, 739
testing of, 752
Voltmeter-
calibration of, 356, 368
errors in, 657
multipliers, 712
thermionic, 699
Volume resistivity, 319
Wagner earthing device, 247
Water purity, measurement of, 329
Watt, 57
international, 70
Watt-hour mercury meters, 816
Wattmeter-
calibration by electrostatic wattmeter, 797
connections, 767
correction factor, 765, 770
electrostatic, 170, 792
errors, 764
induction, 789
measurements in single-phas circuits, 764
method of iron-loss measurement, 419
polyphase, 799
reflecting, 787
theory of, 783
testing of, by a.c. potentiometer, 368
types of, 779
Wave-filter, 249
Wave-form, 563
current, 581
determination of, 589
errors in a.c. bridges, 248
Weber, 58
Weighing, electric, 308
Weston-
frequency meter, 871
standard cell, 87
synchroscope, 878
Wheatstone bridge, 298
precision measurements with, 302
applications of, 306
Wien bridge, 114, 237
Wind-direction indicator, 901
Work-function, 884
Wright-
electrolytic meter, 809
maximum-demand indicator, 841

