
CHAPTER

Introduction
to MATLAB

MATLAB (short for MATrix LABoratory) is a special-purpose computer program
optimized to perform engineering and scientific calculations. It started life as a
program designed to perform matrix mathematics, but over the years it has
grown into a flexible computing system capable of solving essentially any techni-
cal problem.

The MATLAB program implements the MATLAB programming language, and
provides a very extensive library of predefined functions to make technical pro-
gramming tasks easier and more efficient. This book introduces the MATLAB
language as it is implemented in MATLAB Version 7 and shows how to use it to
solve typical technical problems.

MATLAB is a huge program, with an incredibly rich variety of functions. Even
the basic version of MATLAB without any toolkits is much richer than other tech-
nical programming languages. There are more than 1000 functions in the basic
MATLAB product alone, and the toolkits extend this capability with many more
functions in various specialties. This book makes no attempt to introduce the user
to all of MATL,AB's functions. Instead, it teaches a user the basics of how to write,
debug, and optimize good MATLAB programs as well as a subset of the most impor-
tant functions.justas importantly, it teaches the programmer how to use MATLABs
own tools to locate the right function for a specific purpose from the enormous
choice available.

2	 Chapter I Introduction to MATLAB

I . I The Advantages of MAT LAB

\IATLAB has many ad\aata g es compared to con\ amonal computer Ianguaees
for technical problem solving Amon g them are:

I. Ease ofUse

IATL.AB is an interpreted language. like many versions of Basic. Like

Basic, it is very easy to use. The pro g ram can be used as a scratch pad to

evaluate expressions t yped at the command line, or it can be used to exe-
cute large pre-written programs. Programs may be easil y written and

modified with the built-in integrated development environment and

debu gged with the M.ATLAB debugger. Because the language is so easy

to use, it is ideal for the rapid prototvping of new programs.

Many program development tools are provided to make the program

easy to use. They include an integrated editordebugger. on-line docu-

mentation and manuals, a workspace browscr. and extensive demos.

2. Platform Independence

\IATLAB is supported on many different computer systems, providing a

large measure of platform independence. At the time of this writing, the lan-

guage is supported on Windows NT/2000X Linux, several versions of

Unix. and the Macintosh. Programs written on any platform will run on all

of the other platforms, and data files written on any platform may be read
transparently on any

I
other platform As a result, programs written in

MATLAB can migrate to new platforms when the needs of the user change.

3. Predefined Functions

MATLAB comes complete with an extensive library of predefined func-

tions that provide tested and pre-packa ged solutions to many basic tech-
nical tasks. For example, suppose that you are writing a program that must

calculate the statistics associated with an input data set. In most lan-

guages, you would need to write our own subroutines or functions to

implement calculations such as the arithmetic mean, standard deviation,

median, etc. These and hundreds of other functions are built right into the

MATLAB language, making your .iob much easier.
In addition to the large library of functions built into the basic

NIATL.\B language. there are many special-purpose toolboxes available to
help solve complex problems in specific areas. For example. a user can buy

standard toolboxes to solve problems in signal processing, control systems.

communications. image processin g, and neural networks, among many
others. There is also an cx!ensie collection office user-contnbuted MAT-

LAB prograt: is that are shared throu gh the \ l.ATLAB Web site.

4. De ice-Independent Plotting

Lnlike most other computer lan gua ges. \IATL.\B has many inte g ral plot-
tin g and ima g ing commands. The plots and images can he displa yed on any

raphical output device supported by the computer on which \I.-\TL.AB is

1.3 The MATLAB Environment	 3

R111111112. This capabilit y makes MATLAB an outstanding tool br visual-
izing technical data.

5. Graphical User Interface

MATLAB includes tools that allow a programmer to interactively con-
struct a g raphical user interface (GUI) for his or her pro g ram. With this
Capabilit y, the prog rammer can design sophisticated data-anal y sis pro-
g rains that call 	 operated by relativel y inexperienced users.

6. .\I.tTLAB Compiler

MATLAB's flexibility and platform independence is achieved by compil-
in g MATLAB programs Into a device-independent p-code, and then inter-
preting the p-code instructions at runtime. This approach is similar to that
used by Microsoft's Visual Basic language. Unfortunately, the resulting
programs can sometimes execute slowl y because the MATLAB code is
interpreted rather than compiled. We will point Out features that tend to
slow program execution when we encounter them.

A separate MATLAB compiler is available. This compiler can com-
pile a MATLAB program into a true executable that runs faster than the
interpreted code. It is a great way to convert a protot ype MATLAB pro-
gram into ail 	 suitable for sale and distribution to users.

1.2 Disadvantages of MATLAB

M.ATLAB has two principal disadvanta ges. The first is that it is an interpreted
langua ge and therefore call 	 more slowly than compiled languages. This
problem call mitigated by properly structuring the MATLAB program, and by
the use of the MATLAB compiler to compile the final MATLAB program before
distribution and general use.

The second disadvanta ge is cost: a full copy of MATLAB is five to tell
more expensive than a conventional C or Fortran compiler. This relatively high
cost is more than offset by the reduced time required for an engineer or scientist
to create a working program, so MATL..\B is cost-effective for businesses.
I lowever, it is too expensive for most individuals to consider purchasing.
Fortunatel y, there is also an inexpensive Student Edition of NIATLAI3. which is a
great tool for students ishin g to learn the language. The Student Edition of
MAFL \R is essentiall y identical to the full edition.

1.3 The MATLAB Environment

[he fundamental unit of data ill MAT LAB pro g ram is the arra y. An arra y is
a collection of data al ucs organiied into rows and columns and known b y a si ii-
gle name. Individual data values vtthin an arra y may he accessed b y includin g the
name of the arra y I lIo\\ed by subscripts in parentheses that identify the row and

4 I Chapter I Introduction to MATLAB

column of the particular value. Even scalars are treated as arra ys by MATLAB-

they are simply array s with only one row and one column. We will learn how to

Create and manipulate MATLAB arrays in Section 1.4.
When MATLAB executes, it can display several types of windows that

accept commands or display information. The three most important types of
windows are Command Windows, where commands may be entered: Figure Win-

dows, which display plots and graphs: and Edit Windows, which permit a user to

create and modify MATLAB programs. We will see examples of all three types

of windows in this section.
In addition, MATLAB can display other windows that provide help and that

allow the user to examine the values of variables defined in memory. We will

examine some of these additional windows here. We will examine the others

when we discuss how to debug MATLAB programs.

The MATLAB Desktop
When you start MATLAB Version 7, a special window called the MATLAB desk-

top appears. The desktop is a window that contains other windows showing

MATLAB data, plus toolbars and a "Start" button similar to that used by

Windows 2000 or XP. By default, most MATLAB tools are "docked" to the desk-

top, so that they appear inside the desktop window. However, the user can choose

to "undock" any or all tools, making them appear in windows separate from the

desktop.
The default configuration of the MATLAB desktop is shown in Figure 1.1.

It integrates many tools for managing files, variables, and applications within the

MATLAB environment.
The major tools within or accessible from the MATLAB desktop are:

• The Command Window

• The Command History Window

• The Start Button
• The Documents Window, including the Editor/Debugger and Array Editor

• The Figure Windows

• The Workspace Browser

• The Help Browser

• The Path Browser

We will discuss the functions of these tools in later sections of this chapter.

The Command Window
The right hand side of the default MATLAB desktop contains the Command

Window. A user can enter interactive commands at the command prompt (>) in

the Command Window, and they will be executed on the spot.

1 	 The MATLAB Environment	 5

e Et Yew D	 De4tep Wr.jsw FIV

t	 CrnreeDclory J	 .:i_JJ3J
Shoilculs .c How to Add -	- 	 --

CSnr,.J I WP,XIOW	
P 00

AJF,Ies L	 F,,Tyre	 MA TL tIE
)014 dater	 • ._lt9d52 -	 r5t 20E4 20 427ePo'.ark,:r- -
3 COIL_and -	 -

	 2 1t0052	 5 7.0.5.14112 p :4 Erute3eas.
34 at J ..-e--
	

FeE roarl' :2,

Jrapti dos	 : IC

Chap' dot	 ECtC Fi I.	 4 1 02 _JCd 23:1	 .4 Fart ('ache.	 Tvç	 'help tlis r h	cl.-	 5-, tee
[Jdotf	 T4FtIe	 4)C 1 1 20 A 0543

Fe	 4	 2004 tF 11
	 To -t sta-ted, select "MATLAB Ih-V ft m -he H u Ip SCSU

1,	 .5	 1	 0(14 IS,
	 >0 -

rd

Figure 1.1 The default MATLAB desktop. The exact appearance of the desktop may differ slightly
on different types of computers.

As an example of a simple interactive calculation, suppose that you want to
calculate the area of a circle with a radius of 2.5 m. This can be done in the
MATLAB Command Window by typing:

" area = pi * 2.52
area =

19.6350

MATLAB calculates the answer as soon as the Enter key is pressed, and Stores the
answer in a variable (really a I X I array) called area. The contents of the vari-
able are displayed in the Command Window as shown in Figure 1.2, and the var-
iable can be used in further calculations.. (Note that ir is predefined in NIATLAI3,
so we can just use pi without first declaring it to he 3.141592 . . .

If a statement is too long to type on a single line, it may he continued on
successive lines by typing an ellipsis (. . .) at the end of the first line, and then
continuing on the next line. For example, the following t\\o stotcinents are
identical.

6	 Chapter I rtroductori to MATLAB

Ft Edt Ctt VQfldC* fl	 ___

4 stan I

Figure 1.2 The Command Window appears on the right side of the desktop. Users enter commands
and see responses here.

xi = 1 4- 1/2 + 1/3 + 1/4 - 1/5 + 1/6;

and

xi = 1 + 1/2 + 1/3 + 1/4
+ 1/5 + 1/6;

Instead of typing commands directl y in the Command Window, a series of
commands can be placed into a file, and the entire file can be executed by typing
its name in the Command Window. Such files are called script files. Script files
(and functions, which we will see later) are also known as M-files, because they
hae a file extension of". ra".

The Command History Window

The Command History window displays a list of the commands that a user has
entered in the Command Window. The list of previous commands can extend back
to pre\ious executions of the program. Commands remain in the list until they are
deleted. To re-execute an\ command- simpl y double-click it with the left mouse

.3 The MATLAB Environment 1 7

FIN Edt	 -*

Stmilrtgs Zi HGwiO Add

-	 -	 ,c LO' m.&OWrlCi&*	 -

I
Maine	 C'ass	

M A	 . A A

-		 :.tAi.a	 47.-'Me'A1.

Fnr.,ary .,	 C4

U'-	 U	 IA n- .UvOe 'ieI t1bUsUA-.-0'

get '-rI'-2,	 "MATUAB Help" from te Heir ncr....

2

1	 1 4	 . ..	 -

Cn1rC

E..dte Sm'Ubon

C

di

Figure 1.3 The Command History Window,sho\ing tto commands being deleted

button. To delete one or more commands from the Command History window.

select the commands and right-click them with the mouse. A popup menu \N ill be
displayed that allows the user to delete the items (see Figure 1.31.

The Start Button

The Start Button (see Figure 1.4) allows a user to access MATLAB tools, desk-

top tools, help files, etc. It t orks just like the Start button on a Windows desktop.

To start a particular tool, just click on the Start Button and select the tool from

he appropriate sub-menu.

The Edit/Debug Window

An Edit WindoNN is used to Creaic new NI-files or to' fl,UdtlV existin g ones. .'sn
Edit \\ udow is c reo ted automat icil k Micii you ci caic a ncv NI-file om open am

existing one. You can create a new NI-file v ith the "File Ne NI-file' scletiun

from the desktop mii nit or by clicking tire	 toolbar icon. ' on can open d1`1 C\ I

in g NI-file s ill the "File Open' select on from the desktop menu mi b y k I eking

the	 toolbar icon.

8	 Chapter I I'c cducuon to r1TLAB

I
Tt'X	 •

•

,, -	 i C,rt Or.tOry
refnw 5r Fie..

t irires	 ij Elr-r
0
Oerfl

Sian

Figure 1.4 The Start Button, which allows a user to select from a wide variety of MATLAB and

desktop tools

An Edit Window displaying a simple NI-file called caic_area .mis shown

in Figure 1.5. This file calculates the area of a circle given its radius and displays

the result. By default, the Edit Window is an independent window not docked to

the desktop, as shown in Figure 1.5(a). The Edit Window can also be docked to the

M.ATLAB desktop. In that case, it appears within a container called the

Documents \Vindow, as shown in Figure 1.5(h). We will learn how to dock and

undock a window later in this chapter.
The Edit Window is essentially a programming text editor with the

MATLAB languages features highlighted in different colors. Comments in an

NI-file appear in green, variables and numbers appear in black, complete charac-

ter strings appear in magenta, incomplete character strings appear in red, and lan-

guage keywords appear in blue.
After an NI-file is sa\ed, it may be executed by typing its name in the

Command Windo. For the M-file in Figure 1.5, the results are:

caic_area

The area of he circle is 19.635

The Edit \Vindo\\ also doubles as a debugger. as c shall see in Chapter 2.

Figure Windows
\ Figure \Vindo i u.cd tO displ	 \I\fl \B g raphic ' . .-\ figure call he a tv0-

or three-dimensional plot o(data. an image, or a graphical user interface

3-I45j -

4-
S

Fig.....

it T t Debug eort	 Dtp
Mf

-

r
2

"I
ñJ

scmpl

(a)

Da. b'cnret CI Cctcp Vni-. hit-

-J	 BE

ure 1.51.5	 h	
I \T I \R Fdti. d'.pI\ed a-. ai :Ids-reIIdcnt	 indo'-.	 / 	 [he \I \ I

iinr. II-,d to the \I \TI \B is-.btp.

tO	 Chapter I	 rodu-t,,	 MATLAB

GU1 A simple script file that calculates and plots the function sin .i is shown
below:

This t4-file calculates and plots the
lfonctioo sin(x) for C	 x <= 6.
x = O:O.i:b;

= 310(x);

P lc (x,y)

If this file is saved under the name s in_x rn. then a user can execute the file by
typing "sin-Y." in the Command Window. When this script file is executed.
MATLAB opens a figure window and plots the function sin x in it. The resulting

plot is shown in Figure 1.6.

Docking and Undocking Windows

MATLAB windows such as the Command Window, the Edit Window, and Figure
Windows can either be docked to the desktop, or they can be undocked. When a
window is docked, it appears as a pane within the MATLAB desktop. When it is
undocked it appears as an independent window on the computer screen separate
from the desktop. When a window is docked to the desktop, the upper right-hand
corner contains a small button with an arrow pointing up and to the right (.!i).
If this button is clicked, then the window will become an independent window.

	

Fi Et	 s4rt T)OE Wr1ow He,

08

06

04

02

0

-02

.Oi

Figure 1.6 \IATLAB plot of sin x versus x.

1.3 The MATLAB Erwiroimert 	 II

When the indow is an independent window, the upper right-hand corner con-
tains a small button with all pointing down and to the right 2J) . If this
button is clicked, then the window will be redocked with the desktop. Figure l,
shows the Edit Window ill both its docked and undocked state. Note the undoeR
and dock arrows in the upper ri g ht hand corner.

The MATLAB Workspace
A statement such as

z = 10;

creates a variable named Z, Stores the value 10 in it, and saves it in a part of com-
puter memory known as the workspace. A workspace is the collection of all the
variables and arrays that can be used by MATLAB when a particular command,
M-file, or function is executing. All commands executed in the Command Window
(and all script files executed from the Command Window) share a common work-
space, so they can all share variables. As we will see later, MATLAB functions dif-
fer from script files in that each function has its own separate workspace.

A list of the variables and arrays in the current workspace can be generated
with the whos command. For example, after M-files caic_area and sin_x
are executed, the workspace contains the following variables:

>> whos
Name	 Size	 Bytes	 Class

area	 lxl	 3	 double array
radius . lxi	 8	 double array
string	 1x32	 64	 char array
X	 lxEl	 488	 double array
y	 lx6l	 488	 double array

Grand total is 156 elements using 1056 bytes

Script file calc area created' riables area, radius, and string, while
script file sin_x created variables x and y. Note that all of the variables are in
the same workspace, so if two script files are executed in succession, the second
script file can use variables created by the first script file.

The contents ofanv variable or array may he determined by t yping the appro-
priate name in the Command Window. For example. the contents of at ring can
he found as follows:

string
string =

The area of the circle is

A variable can be deleted from the workspace \ ith the ci 	 r command.
The clear command takes the form

clear van ':ar2

I 2 1 Chapter I Introduction to MATLAB

where -ari and var2 a';c tine names of the variables to he deleted. The corn-

iniand clear variables or simply clear deletes all variables from the cur-

rent workspace.

The Workspace Browser
The contents of the current workspace can also be examined with a GUI-based
Workspace Browser. The Workspace Browser appears by default in the upper left-
hand corner of the desktop. It provides a graphic display of the same information
as the whos command, and it also shows the actual contents of each array if the
information is short enough to fit within the display area. The Workspace
Browser is dynamically updated whenever the contents of the workspace change.

A typical Workspace Browser window is shown in Figure 1.7. As you can
see, it displays the same information as the whos command. Double-clicking on

Wr4O- Her	 93 ED E3 19 F
/ caaD1c	

--

St.k F-

SflotWuts 4. flixIO Aid
X

L-LI.
ara	 '0650	 dhabd	 .______J	 6.	 78	 9

a	 0 uS'	 4i111111111_cl	 u	 I	 I	 n nor	 a 70 5 L	 C en a-.

T ;tr;ng	 The area of inc rr 	 char	 S...
<1l do'	 doIe	-	 -	 .--.
<1u51dnn5e'	 dante	 :	 . .IIi.........III L	 ..

Lli
CUflGflt DflIaI

x

Cd d \b,,ôL',matib\3e\reVl\chaP1
area	 ç. i * 1.52

--sin—i
iihOS

_. .__L__.._-__...-

I±±iii
area	 ian	 -
raOius	 lxi8 double array
strIng	 1x32	 64 char array

ladS	 446 double array
leCi	 484 doable array

156 .nicoer.n using 1056 byte?

A

Figure 1.7 The Workspace Browser and the Array Editor, The Array Editor is invoked by double-
clicking a variable in the Workspace Browser. It allows a user to change the values
contained in a variable or array.

1.3 The MATLAB Environment 1 13

any variable in the window will bring up the Array Editor, which alKws the user
to modify the information stored in the variable.

One or more variables may be deleted from the workspace by selecting them
in the Workspace Browser with the mouse and pressing the delete key, or by right-
clicking with the mouse and selecting the delete option.

Getting Help
There are three ways to get help in MATI,.AB. The preferred method is to use the

Help Browser. The Help Browser can be started by selecting the ii icon from the

desktop toolbar, or by typing helpdesk or helpwin in the Command Window. A

user can get help by browsing the MATLAB documentation, or he or she can search
for the details of a particular command. The Hlp Browser is shown in Figure 1.8.

Coolants ! li d ,.! Seanofli Denitsi

• 4 Release Notes
4 instaliatic.n
3 5.CATLAE

o	 Es-	 i nk
3 Ir000C PrcceEi V To,:,IL,,;o

a - Maptind TosS on
a 4parti al [atfereribal Equation Toolbon

4 Signal Pro(-Booing Toolbox
4 Splir°e Toolbou

+	 Symbolic Math Tboihc-a

4 Srnultnk
• 4 PeaI'Time iAiin-idoei5 Tqrde't

4 ReaCTlrse WoO-shop
• Real-Time Wors000p Embedded Coder
-4 Requirements Management Interface
• Smullnk Accelerator

c 4 Sir-nulInk Fioed Point
s4 Simulink VerifIcation Validabon

4 Stale flow

Release Notes
Summarizes new features, bug fixes, upgrade issues. etc

MATLAB Documentation
Provides complete information about using MATLAB.

Documentation for Other Products
Use the Contents pane in the Help browser

MathWorks Web Site
Links to wetwmathworksCOm for additional information about products and
services.

mIt [se i4 - Begin l0i

Beoin Here

What's New

Product Information

Getting Help

• Overview
Runs a short demonstration highlighting the main features of the Help
browser,

- Getting Help
Provides instructions for using the Help browser and-other help methods.

Technical Support
Links to solutions and other troubleshootirlQ resources on

Figure 1.8 The 1-leip Browser.

14	 Chapter I Irtroductiori to MATLAB

There are also two command-line oriented ways to get help. The first way is
to type help or help followed by a function name in the Command Window.
If you just type help. MATLAB will display a list of possible help topics in the
Command Window. If a specific function or a toolbox name is included, help will
be provided for that particular function or toolbox.

The second way to get help is the lookfor command. The lookfor
command differs front help command in that the help command search-
es for an exact function name match, while the lookfor command searches
the quick summary information in each function for a match. This makes
lookfor slower than help, but it improves the chances of getting back use-
ful information. For example, suppose that you were looking for a function to
take the inverse of a matrix. Since MATLAB does not have a function named
inverse, the command "help inverse" will produce nothing. On the
other hand, the command "lookfor inverse" will produce the following
results:

>> lookf or inverse
INVHILB	 Inverse Hubert matrix.
ACOS	 Inverse cosine.
ACOSH	 Inverse hyperbolic cosine.
ACOT	 Inverse cotangent.
ACOTH	 Inverse hyperbolic cotangent.
ACSC	 Inverse cosecant.
ACSCH
	

Inverse hyperbolic cosecant.
ASEC
	

Inverse secant.
ASECH
	

Inverse hyperbolic secant.
AS IN
	

Inverse sine.
AS INN
	

Inverse hyperbolic sine.
ATAN
	

Inverse tangent.
ATAN2
	

Four quadrant inverse tangent.
ATANH
	

Inverse hyperbolic tangent.
ERF I NV
	

Inverse error function.
INV
	

Matrix inverse.
P INV
	

Pseudoinverse.
IFFT
	

Inverse discrete Fourier transform.
IFFT2
	

Two-dimensional inverse discrete Fourier transform.
IFFTN
	

N-dimensional inverse discrete Fourier transform.
I PERMUTE Inverse permute array dimensions.

From this list, we can see that the function of interest is namd inv.

A Few Important Commands

If you are new to MATLAB, a few demonstrations may help to give you a feel for
its capabilities. To run MATLAB's built-in demonstrations, type demo in the
Command Window or select "demos" from the Start Button.

1.3 The MATLAB Environment	 15

The contents of the Command Window can be cleared at an y time using the
dc command, and the contents of the current Figure ".'ii:dow can he cleared at

any time using the clf command. The Nariables in the workspace call cleared
with the clear command. As we have seen, the contents of the workspace persist

between the executions of separate commands and NI-files, so it is possible for

the results of one problem to h3 \e an effect oil next one that ou may attempt
to solve. To avoid this possibilit y, it is a good idea to issue the clear command

at the start of each new independent calculation.

Another important command is the abort command. If all appeal's to

he running for too long, it may contain an infinite loop, and it will ne er term i-

nate. In this case, the user can regain control by typing control-c (ahhre iated C)

in the Command Window. This command is entered by holding do n the control

key while typing a "c." When MATLAB detects a "c, it interrupts the running

program and returns a command prompt.

The exclamation point (!) is another important special character. Its special

purpose is to send a command to the computer's operating system. Any characters

after the exclamation point ill be sent to the operating system and executed as

though they had been typed at the operating system's command prompt. This fea-

ture lets you embed operating system commands directly into MATLAB programs.

Finally, it is possible to keep track of everything done during a MATLAB

session with the diary command. The form of this command is

diary filename

After this command is typed, a copy of all input and most output typed in the

Command Window is echoed in the diary file. This is a great too for recreating

events when something goes wrong during a MATLAB session. The command

"diary off" suspends input into the diary file, and the command "diary
on" resumes input again.

The MATLAB Search Path
NI \TL\B has a search path that it uses to find NI-files. MATL.AB's NI-files are

organized in directories on your file system. Many of these directories of NI-files

are ided along with NI ATI AR, and users may add others. If a user enters a

name at th MA[LAB prompt, the MATLAB interpreter attempts to find the

name as follows:

I It looks for the name as a \ariablc. If it is a %anable. NIA'l I AR displas

the current contents of the ariahle.

2. It checks to see if the name is an NI-file in the current dii'ectoi\. It' it is,

\I.\TL.\B executes that function or command.

.. It checks to see if the name is all 	 in any directory in the search

path. If it is. NI.\TL.\B executes that function or conini:ind

Note that NIA'l LA B checks for anable names first, so it i on dome a %0n -

able nIT/I !/u same haute a a UM ABB /i/)u'1Ii/) oh' (0/11/Ha/I/I. iliai /0/0 1)0/) 0/'

unwand /i.'coflie.c ina	 !/'// This is a conlinon mistake made b y no ice Liscis.'

16	 C.	 Ifjtloduct,o to MATLAB

è Programming Pitfalls
Ne Cr use a ariable ith the same name as a NI TL .\B function or command.

If ou do so. that function or command ill become inaccessible.

Also, if there is more than one function or command ith the same name, the

Ji'.sr one found oil search path will he executed, and all of the others ill he

inaccessible. This is a common problem for no ice users, since they sometimes

create NI-files with the same names as standard MATLAB functions, making

theta iaaceea bk'.

' Programming Pitfalls
Never create an NI-file ith the same name as a MATLAB function or command.

MATLAB includes a special command (which) to help you fin i out just

which version of a file is being executed and where it is located. This can be

fij i cflan9 , S'ak 0 effect mined abLy

1.1.01._AS search pith

Aad Fold,

Md with Suhihidors

Meun S ow,,

Moin to 90cm

,,r	 .t*	 -..r

	

- 7	 f	 37 31.2

._i	 AA	 bl.elf,

	

- r stat	 . icac n'at at
r,tat't, - 'n,., 3t^at ratt.r

- an ctah'\t. . t i,'ffldt at data:._r
.,i	 r-aatab'.t .)Lha,vr at abC

_j r rat abt\t l7,1.a'tibat at\trlft,r

ralab' I. bvavna'Ot.Sçar'..

cr3t ah73... b 305_aatat
_j' i-crst7t . -Lbax\n-at at gracr

J	 'r -it 5t1.t	 :c -,rna'at graçt =

_J	 r-al-3t0001 Sc'- ;37r_a

['-31. abTt :i b	 n-at ab.iracr
I '1ar 7- r

	

rIat at 7	 ra '[PS at

	

r atal.'	 17 aara:..cc I 'ur

.J1	 .rrrat[t	ct_a-

Sune!	
De'a.lt
	

Hill!

Figure 1.9 The Path Tool

.4 Using MATLAB as a Scratch Pad I 17

useful in finding filename conflicts. The format of this command is which
functionnarne, where functjonnarne is the narr fthe function that you
are trying to locate. For example, the cross-product function cross. m can he
located as follows:

which cross

C:\Matlab7\toolbox\matlab\specfun\cross.m

The MATLAB search path can be examined and modified at any time by
selecting "Desktop Tools/Path" from the Start Button, or by t yping editpath
in the Command Window. The Path Tool is shown in Figure 1.9. It allows a user
to add, delete, or change the order of directories in the path.

Other path-related functions include:

• addpath—Add directory to MATLAB search path.

• path—Display MATLAB search path.

• path2rc—Adds current directory to MATLAB search path.

• rmpath—Remove directory from MATLAB search path.

1.4 Using MATLAB as a Scratch Pad

In its simplest form, MATLAB can be used as a scratch pad to perform mathe-

matical calculations. The calculations to be performed are typed directly into the
Command Window, using the symbols -4- , -, 'i', I, and " for addition, subtraction,
multiplication, division, and exponentiation, respectively. After an expression is

typed, the results of the expression will be automatically calculated and displayed.

For example, suppose we would like to calculate the volume of a cylinder of
radius rand length 1. The area of the circle at the base of the cylinder is given by
the equation

.4 =	 (1-I)

and the total volume of the cylinder will be

Vs .41	 (1-2)

If the radius of the cylinder is 0.1 in
and the length is 0.5 m, then the volume of

the cy linder can be found using the MATLAB statements (user inputs arc sho%N n
in bold face):

A=pi*O.12

0. 3314
V=A*O.5

V=
0.0157

Note that pi is predefined to he the value 3.141592Also, note that the \aluO
stored in A was saved by NIATL.A13 and reused \\hCn we calculated V.

18	 Ch2pter I Introduction to MATLAB

Quiz 1.1

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Chapter I. Ii you have trouble with the quiz. reread
the sections. ask your instructor, or discuss the material with a fellow
student. The answers to this quiz are found in the back of the book.
I. What is the purpose of the Nl.-\TLAB Command Window? The Edit

Window? The Figure Window?

2. List the different ways that you can get help in MATLAB.

3. What is a workspace? How can you determine what is stored in a
MATLAB workspace?

4. How can you clear the Contents of a workspace?

5. The distance traveled by a ball falling in the air is given by the equation

X = X0 + v0t + 1at

Use MATLAB to calculate the position of the ball at time t = 5 s if
xO = 10 m, V0 = 15 rn/s, and a = — 9.81 rn/sec2.

6. Suppose that x = 3 and y = 4. Use MATLAB to evaluate the fol-
lowing expression:

x 2, 3

(x -

The following questions are intended to help you become familiar
with MATLAB tools.

7. Execute the M-files calcarea . m and s inx rn in the Command
Window (these M-files are available from the book's Web site). Then
use the Workspace Browser to determine what variables are defined
in the current workspace.

8. Use the Array Editor to examine and modify the contents of vari-
able x in the workspace. The type the command plot (x, y) in the
Command Window. What happens to the data displayed in the Figure
Window?

1.5 Summary

In this chapter, we learned about the basic types of MATLAB windows, the work-
space, and how to get on-line help. The MATLAB desktop appears when the pro-
gram is started. It integrates many of the MATLAB tools in a single location.
These tools include the Command Window, the Command History Window, the

1.6	 Exercises	 I 9

Start Button, the Workspace Browser, the Array Editor, and the Current Directory

Viewer. The Command Window is the most important of the windows. It is the

one in which all commands are typed and results are displayed.

The Edit Debug Window is used to create or modify M-files. It display s the
contents of the NI-file with the contents of the file color-coded accordin g to
function: comments, keywords, strings, and so forth. This window can he docked

to the desktop, but by default it is independent.

The Figure Window is used to display graphics.

A MATLAB user can get help by using either the Help Browser or the

command-! me help functions help and look for. The Help Browser allows full

access to the entire MATLAB documentation set. The command-tine function

help displays help about a specific function in the Command Window.

Unfortunately, you must know the name of the function in order to get help about

it. The function lookfor searches for a given string in the first comment title of

every MATLAB function, and displays any matches.

When a user types a command in the Command Window, MATL..B searches

for that command in the directories specified in the MATLAB path. It will exe-

cute the first NI-file in the path that matches the command, and any further

M-files with the same name will never be found. The Path Tool can be used to

add, delete, or modify directories in the MATLAB path.

MATLAB Summary
The following summary lists all of the MATLAB special symbols described in

this chapter, along with a brief description of each one.

Special Symbols

+	 Addition

-	 Subtraction

*	 Multiplication

/	 Division

Exponentiation

1.6 Exercises

1.1	 The following N1.\TLAB statements plot the function vi.i	 .	 for

the range 0	 .v	 10.

X = 0:0.1:10;

y = 2 * exp(0.2 *

plot (x,y)

20	 Chapter I Ii troduct on to MATLAB

Use the NIATLAB Edit kk'indoxk to create a ne empt y M-filc, type these

statements into the file, and sae the file with the name testl M. Then,
cxeCutC the program by typing the name testl in the Command \Vindo.

What result do you get?

1.2 (ict help on the MATLAB function exp using: 01.1 The "help exp" com-
mand tped in the Command Window and (h) the Help Browser.

1.3 Use the lookfor command to determine how to take the base-10 loga-

rithm of a number in MATLAB.

1.4 Suppose that it - I and v = 3. Evaluate the following expressions using

M ATLAB.

4u
(a) 3

v

21
(h)

(it + v)
V.,

(c

(ci)

1.5 Use the MATLAB Help Browser to find the command required to show

MATLAB's current directory. What is the current directory when MATLAB
starts up?

1.6 Use the MATLAB Help Browser to find Out how to create a new directory

from within MATLAB. Then, create a new directory called mynewdir
under the current directory. Add the new directory to the top of MATLAB's
path.

1.7 Change the current directory to mynewdir. Then open an Edit Window
and add the following lines:

% Create an input array from -2pi to 2*pi
t = _2*pi:pj/10:2*pj;

% Calculate sin(t)
x = abs(sin(t));

% Plot result
plot(t,x)

Save the file with the name test2 .m, and execute it by typing test2 in
the Command Window. What happens?

1.8 Close the Figure Window, and change back to the original director) that

NIATLAB started up in. Next type "test2" in the Command Window.
What happens, and why?

C H A P T E R 2
MATLAB Basics

In this chapter, we introduce some basic elements of the MATLAB language. By

the end of the chapter, you will be able to write simple but functional MATLAS

programs.

2.1 Variables and Arrays

The fundamental unit of data in an y M.\TLAB program is the array All arra y is

a collection of data values organized into rows and columns and kno\\ n by a S111-

21c name. Individual data values within all are accessed by including the

name of the array follovcd by subscripts in parentheses that idcniit'v the row and

column of the particular value. Even scalars are treated as arra y s by MATI.AR— -

they are simply arrays with onl y one row and one column.

Arrays can be classified as either vectors or matrices. The term "vector" is

usually used to describe all with only one dimension, while the term

"matrix" is usually used to describe an array with two or more dimensions. In this

text, we will use the tcrnl "vector" when discussing one-diniensiotlal arra ys and

the term ''matrix when discussing arras with two or more ditiiencionI's. I a par-

ticular discussion applies to both types of array s, we will use the g eneric term

"array " (See Figure 2.1)
The size of all is specified by the number of ro\ and tile number of

columns in the array, with the number of rows mentioned first. The total number

of elements in the array will he the product of the IIIIII1 11CI Ot Io's and the nuin-

her of col Lnllns. For example. tile sires of the fol lowinu arrays are

21

22	 Ciapter 2 N1ATLAB Basics

Size

2

a - 3 4	 This k 3 Y 2 matrix, containin g 6 elements

b - [I 2 3 4]	 This is a I x 4 array containing 4 elements,
knon as a row sector

2	 This is a 3 X 1 arri'. containin g 3 elements.

3	 knon as a column vector.

Individual elements in an array are addressed by the array name followed by the

row and column of the particular element. If the array is a row or column vector, then

only one subscript is required. For example, in the above arrays a (2, 1) is 3 and
c(2) =2.

A MATLAB variable is a region of memory containing an array that is

known by a user-specified name. The contents of the array may be used or mod-

ified at any time by including its name in an appropriate MATLAB command.

MATLAB variable names must begin with a letter, followed by any combi-

nation of letters, numbers, and the underscore (_) character. Only the first 63

Row! MEMEN
Row EMEMM
Row MMMMM
Row .MMMMM

Co! I Col 2 Col 3 Col 4 Col 5

array a r r

Figure 2.1 An array is a collection of data values organized into rows and columns.

2 	 23

characters are significant: if more than 63 are used, therem ainine char.ieer 	 II
he ignored. If two variables are declared with names l.a onl differ in the '-i4th
character, NIATLAB will treat them as the same %ar i abic . NIATLAI3 o, ill
warnjn' if it has to truncate a lon g anahie name to £13 characteo.

Programming Pitfalls

iii	 names are unique in the first 63 characters.
Otherxtse, MATLAB ill not be able to tell the difference hetxeen them.

When writing a program, it is important to pick meanin g ful names for the
variables. Meaningful names make a program much easier to read and to main-

tam. Names such as day, month, and year are quite clear es en to a person

seeing a program for the first time. Since spaces cannot he used in MATLAB

variable names, underscore characters can be substituted to create meanir,gful
names. For example, exchange rate might become exchange—rate.

T'
Always give your variables descriptive and easy-to-remember names. For exam-

ple, a currency exchange rate could be given the name exchange —rate. This
practice will make your programs clearer and easier to understand.

...

It is also important to include a data dictionary in the header of an y program
that you write. A data dictionary lists the definition of each variable used in a pro-

gram. The definition should include both a description of the contents of the item
and the units in which it is measured. A data dictionary may seem unnecesarv

while the program is being written, but it is invaluable when you or another ncr-

son have to go back and modify the program at a later time

;ood Programming Practice

C !C.iL .1 !''l dII '1.1 '\ br C IJ pr r,Im to make program maintenance easier.

Until NI.ATLAB 65, the maximum number oisi gnit'iLant characters in a xariahle flame 	 : I:	 -
are writing a program that mighi he run on NI.\TLAB 6 I or earlier, be sure to limit % 0 1, sanab

names to 31 characters or less Otherx se, your proerani ni g ht nork proper1;. on '0 \1 I \ 1 0

when It is executed on all earlier '. er,ion

24	 Chapter 2 MATLAB Basics

The MATLAB language is case-sensitive, which mans that uppercase and

lowercase letters are not the same. Thus the variables name, NAME, and Name are

all different in MATLAB. You must be careful to use the same capitalization every

time that variable name is used. While it is not required, it is customary to use all

lowercase letters for ordinary variable names.

_
Be sure to capitalize a variable exactly the same way each time that it is used.

It is good practice to use only lower-case letters in variable names.

The most common types of MATLAB variables are double and char.

Variables of type double consist of scalars or arrays of 64-bit double-precision

floating-point numbers. They can hold real, imaginary, or complex values. The

real and imaginary components of each variable can be positive or negative num-

bers in the range i008 to 10308, with 15 to 16 significant decimal digits ofaccu-

racy. They are the principal numerical data type in MATLAB.

A variable of type double is automatically created whenever a :i.nerical

value is assigned to a variable name. The numerical values assigned to double

variables can be real, imaginary, or complex. A real value is just a number. For

example, the following statement assigns the real value 10.5 to the double

variable var:

vaz = 10.5;

An imaginary value is defined by appending the letter ± or j to a number. For

example, 101 and —4j are both imaginary values. The following statement

assigns the imaginary value 41 to the double variable var:

var = 41;

A complex value has both a real and an imaginary component. It is created by

adding a real and an imaginary number together. For example, the following state-

ment assigns the complex value 10 + 101 to variable var:

var = 10 + 101;

Variables of type char consist of scalars or arrays of 16-bit values, each

representing a single character. Arrays of this type are used to hold character

strings. They are automatically created whenever a single character or a charac-

ter string is assi gned to a variable name. For example, the followin g statement

creates a variable of t ype char whose name is comment and stores the speci-

fied string in it. After the statement is executed, comment will be a I X 26

character array.

comment = This is a character string'

12	 Initializing Variables in MATLA 7	 25

In a language such as C. the type of every variable muct he explicitl y declared
in a program before it is used. These languages are said o oe strongly typed. In
contrast. MATLAB is a weakly typed language. Variables ma y be created at any
time by simply assigning values to them, and the t ype of data assigned to the van-
able determines the type of variable that is created.

2.2 Initializing Variables in MATLAB

MATLAB variables are automatically created when the y are initialized. Ther g are
three common ways to initialize a variable in MATLAB:

1. Assign data to the variable in an assignment statement

2. Input data into the variable from the keyboard.

3. Read data from a file.

The first two ways are discussed here, and the third approach is discussed in

Section 2.6.

Initializing Variables in Assignment Statements
The simplest way to initialize a variable is to assign it one or more values in an

assignment statement. An assignment statement has the general form

var = expression

where var is the name of a variable, and expression is a scalar constant, an

array, or combination of constants, other variables, and mathematical operations

(+, —,etc.). The value of the expression is calculated using the normal rules of

mathematics, and the resulting values are stored in named variable. Simple exam-

pies of initializing variables with assignment statements include

var = 40i;

var2 = varl5;
array = [1 2 3 4];

X = 1; y = 2;

The first example creates a scalar variable of type double, and Stores the
imaginary number 40i in it. The second example creates a scalar variable and

stores the result of the expression var / 5 in it. The third example Creates a vari-

able and stores a 4-element row vector in it. The last example shows that mul-

tiple assignment statements can be placed on a single line, provided that they

are separated by semicolons or commas. Note that if any of the variables had

already existed when the statements were executed, their old contents would

have been lost.
As the third example shows, variables can also be initialized with arrays or-

data. Such arrays are constructed using brackets ([1) and semicolons. All of the
elements ofan array are listed in row order. In other words, the values in each row

26	 Chapter 2 MATLAB Basics

are listed from left to right, with the topmost row first and the bottom most row

last. Individual values within a row are separated by blank spaces or commas, and

the rows themselves are separated by semicolons or new lines. For example the fol-

lowing expressions are all legal arrays that can be used to initialize a variable:

This expression creates a I X I array (a scalar) containing
the value 3.4. The brackets are not required in this case.

3 .	 This expression creates a I X 3 array containing the row

vector[l	 2	 3].

=	 2	 3 :: I	 This expression creates a 3 X I array containing the column

vector 2

L3

2 . 5; 4	 5	 6]	 This expression creates a 2 X 3 array containing

2 3
the matrix 15 6

1 1, 2,	 This expression creates a 2 X 3 array containing the matrix

4	
6 The end of the first line terminates the first row.

This expression creates an empt y array, which contains no
rows and no columns. (Note that this is not the same
as an array containing zeros.)

The number of elements in every row of an array must be the same, and the num-

ber of elements in every column must he the same. An expression such as

[1 2 3; 4 5];

is illegal because row I has three elements while row 2 has only two elements.

't Programminj Pitfalls

lie number ut elements in c\ cry row of an ra y must be the same, and the
un.hcr of clemcnts in C\ cry column must he the a;ne. Attempts to define an

rra\ xNith ditferent numbers of elemLnts in is io s or diflerent numbers ofele-

ment in its columns s\ ill produce an error when the statement is executed.

12 IntiahzingVanables in MATLAB	 27

The expressions used to initialize arrays can include algebraic operafor; and

all or portions ofpre iousl\ defined arra ys. For example. the assi gnment statemet':

a = [0	 1+7];

b = [a(2) 7 al;

will define an array a	 [0 5] and an array b - [5 7 0 5].

Also, not all of the elements in an arrayneed he defined hcn it i created

If a specific array element is defined and one or more of the elements before it

are not, then the earlier elements ill automaticall y he created and initoliied to

zero. For example, if c is not previously defined, the statement

c(2,3) = 5;

rl
will produce the matrix c = L o

0 o
o o sj Similarly. an array can be extended h

specifying a value for an element beyond the currently defined size. For example.

suppose that array d = [1 21. Then the statement

d(4) = 4;

will produce the array d	 [I 2 0 41.
The semicolon at the end of each assignment statement shown above has a

special purpose: it suppresses the automatic echoing of values that normally

occurs whenever an expression is evaluated in an assignment statement. If an

assignment statement is typed without the semicolon, the results of the statement

are automatically displayed in the command windo:

>' e = [1, 2, 3; 4, 5, 61

e
123

456

If a semicolon is added at the end of the statement, the echoing disappears.

Echoing is an excellent way to quickly check your work, but it seriously slows

down the execution of MATLAB programs. For that reason, we normally sup-

press echoing at all times.
However, echoing the results of calculations makes a great quick-and-dirty

debugging tool. If you are not certain what the results of a specific assignment

statement are, just leave off the semicolon from that statement, and the results 'a ill

be displayed in the command window as the statement is executed.

Use a semicolon at the end of all MATLAB assignment statements to suppress

echoing of assigned values in the Command Window. This greatly speeds pro-

gram execution.

28	 Chapter 2 MATLAB Basics

If you need to examine the results of a statement during program debugging,
you may remove the semicolon from that statement only so that its results are
echoed in the Command Window.

	

•	 •;	 •	 ..

Initializing with Shortcut Expressions

It is easy to create small arrays by explicitly listing each term in the array, but
what happens when the array contains hundreds or even thousands of elements?
It is just not practical to write out each element in the array separately!

MATLAB provides a special shortcut notation for these circumstances using
the colon operator. The colon operator specifies a whole series of values by
specifying the first value in the series, the stepping increment, and the last value
in the series. The general form of a colon operator is

first: incr: last

where first is the first value in the series, incr is the stepping increment, and
last is the last value in the series. If the increment is one, it may be omitted. For
example, the expression 1:2:10 is a shortcut for a 1 X 5 row vector containing the
values 1.3,5,7, and 9.

" x = 1:2:10
x=
13579

With colon notation, an array can be initialized to have the hundred values ir
2,r 3,r

100' 100	
it as follows:

'

angles= (0.01:0.01:1.00) *pj;

Shortcut expressions can be combined with the transpose operator (')
to initialize column vectors and more complex matrices. The transpose oper-
ator swaps the row and columns of any array that it is applied to. Thus the
expression

f - [l:4

generates a 4-element row vector [1 2 3 4], and then transposes it into the

'j.
4-element column vector f = 2 Similarly, the expressions

2.2	 Initializing Variables In MATLAB	 29

g = 1:4;
h = [g gi;

I	 I

will produce the matrix h = [

	 .

Initializing with Built-In Functions

Arrays can also be initialized using built-in MATLAB functions. For example.
the function zeros can be used to create an all-zero array of any desireddesired size.
There are several forms of the zeros function. If the function has a single
scalar argument, it will produce a square array using the single argument as both
the number of rows and the number of columns. If the function has two scalar
arguments, the first argument will be the number of rows, and the second argu-
ment will be the number of columns. Since the size function returns two Val-
ues containing the number of rows and columns in an array, it can be combined
with the zeros function to generate an array of zeros that is the same size as
another array. Some examples using the zeros function follow:

a = zeros(2);
b = zeros(2,3);
c = [1 2; 3 4];
d = zeros(size(c)

These statements generate the following arrays:

	

ro ol	 ro o o
a=Lo i

	

rI 21	
d	 I

ro
0]c1	 I

	L 3 4J	 LO 0

Similarly, the ones function can be used to generate arrays containing all
ones, and the eye function can be used to generate arrays containing identity
matrices, in which all on-diagonal elements are one, while all off-diagonal ele-
ments are zero. Table 2.1 contains list of common MATLAB functions useful for
initializing variables.

Initializing Variables with Keyboard Input
It is also possible to prompt a user and initialize a variable with data that he or se
types directly at the keyboard. This option allows a script file to prompt a user for
input data values while it is executing. The input function displays a prompt
string in the Command Window and then waits for the user to type in a response.
For example, consider the following statement:

rny_val = input (Enter an input value:');

30	 Chapter 2 MATL.AB Basics

Table 2.1 MATLAB Functions Useful for Initializing Variables

Function	 Purpose

-	 .	 Generates an n X n matrix of zeros.

Generates all Fl X rn matrix of zeros.

a: :e srr	 Generates a matrix of zeros of the same size as err.

-	 Generates an n X n matrix of ones.

Generates an X rn matrix of ones.

r'.es s : :e (arr)	 Generates a matrix of ones of the same size as arr.

eye,	 Generates an n)< n identity matrix.

eye	 Generates an n X to identity matrix.

I	 Returns the length of a sector, or the longest dimension of a 2-D array.

size a:	 Returns to values specifying the number of rows and columns in err.

When this statement is executed, MATLAB prints Out the string Enter an
input value: , and then waits for the user to respond. If the user enters a sin-
gle number, It may just be typed in. If the user enters an array, it must be enclosed
in brackets. In either case, whatever is typed will be stored in variable my_val
when the return key is entered. If only the return key is entered, then an empty
matrix will be created and stored in the variable.

lfthe input function includes the character s as a second argument, then
the input data is returned to the user as a character string. Thus, the Statement

>' ml = input(nter data:);
Enter data: 1.23

Stores the value 1.23 into ml, while the statement

> in2	 input(Enter data:
Enter data: 1.23

stores the character string I 1 .23 1 into in2.

Quiz 2.1

I his quiz pros ides a quick check to see if you have understood the con-
cepts introduced in Sections 2.1 and 2.2. If you hac trouble with the
quiz, reread the sections, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.

I What is the difference between an array, a matrix, and a \cctor?

2. .\nswCr the Following questions for the array shown below.

2.3

2.3	 Multidimensional Arrays	 31

	

r 1.1	 —3.2	 3.4	 0.6

	

c = 0.6	 1.1	 —0.6	 3.1

	

L 1.3	 0.6	 5.5	 0.0

(a) What is the size of c?

(1) What is the value of c (2,3)?

(c) List the subscripts of all elements containini.r the value 0,6.

3. Determine the size of the following arrays. Check you answers by

entering the arrays into MATLAB and using the whoa command or

the Workspace Browser. Note that the later arrays may depend on the

definitions of arrays given earlier in this exercise.

(a)u = [10 20*1 10+201

(b)v = [-1; 20; 3];

(c)w = [1 0 -9; 2 -2 0; 1 2 31;

(d)x = [u' v];

(e) y(3,3) = -7;
(f)z = [zeros(4,1) ones(4,1) zeros(1,4)'];

(g) v(4) = x(2,1)

4. What is the value of w (2, 1) above?

5. What is the value of x(2, 1) above?

6. What is the value of y (2, 1) above?

7. What is the value of v (3) after statement (g) is executed?

Multidimensional Arrays

As we have seer, MATLAB arrays can have one or more dimensions. One-

dimensional arrays can be visualized as a series of values laid out in a column.

with a single subscript used to select the individual array elements (Figure 2.2a).

Such arrays are useful to describe data that is a function of one independent

variable, such as a series of temperature measurements made at fixed intervals

of time.
Some types of data are functions of more than one independent variable. For

example, we might wish to measure the temperature at five different locations at

four different times. In this case, our 20 measurements could logically be grouped

into five different columns of four measurements each, with a separate column

for each location (Figure 2.2b). We will use two subscripts to access a given ele-

ment in this array: the first one to select the row and the second one to select the

column. Such arrays are called two-dimensional arrays. The number of elements

in a two-dimensional array will be the product of the number of rows and the

number of columns in the array.

32	 Chapter 2 MATLfiB Basics

Rowl ___ØI	 I	 Row -_-ØIr

Row 	 Row

Row 	 Row

Row
Row 4 -I

Co13
Co12

Coll I

al(i.row)	 a2(irow,icol)

	

(a)	 (b)

One-Dime rsiore I Array	 Two-Dimensional Array

Figure 2.2 Representations of one- and two-dimensional arrays.

MATLAB allows us to create arrays with as many dimensions as necessary
for any given problem. These arrays have one subscript for each dimension, and an
individual element is selected by specifying a value for each subscript. The total
number of elements in the array will be the product of the maximum value of each
subscript. For example, the following two statements create a 2 X 3 X 2 array C:

c(:,:,1)[i. 2 3; 4 5 6];
c(:,:,2)(7 8 9; 10 11 121;
whos c

Name	 Size Bytes	 Class

C	 2x3x2	 96	 double array

This array contains 12 elements (2 X 3 X 2). It contents can be displayed Just

like any other array.

'S C
cH,:,1) =

	

:i	 2	 3

	

4	 5	 6
=

	

7	 8	 9

	

10 11	 12

2 3	 Multidimensional Arrays	 33

Storing Multidimensional Arrays in Memory

A two-dimensional array with in rows and r. columns will contain m ..' r. ele-

ments. and these elements will occupy m >' r successive locations in the com-

puter's memory. How are the elements of the array arranged in the computer's-
memory? MATLAR always allocates array elements in column major order.

That is, MATLAB allocates the first column in memory, then the second, then

the third, etc., until all of the columns have been alloated. Figure 2.3 illustrates

this memor y allocation scheme for a 4 X 3 array a. As we can see, element
a (1, 2) is really the fifth element allocated in memory. The order according

to which elements are allocated in memory A ill become important when we dis-
cuss single-subscript addressing in the next section, and low-level PO functions
in Chapter 8.

This same allocation scheme applies to arrays with more than two dimcn-

sions. The first array subscript is incremented most rapidly, the second sub-

script is incremented less rapidly, etc., and the last subscript in incremented

most slowly. For example, in a 2 X 2 X 2 array, the elements would be allo-
cated in the following order; (1,1,1), (2.1,1). (1.2.1). (2,2,1). (1.1,2). (2,1,2).

(1,2,2), (2,2,2).

Accessing Multidimensional Arrays with One Dimension

One ofMATLAB's peculiarities is that it will permit a user or programmer to treat

a multidimensional array as though it were a one-dimensional array whose length

is equal to the number of elements in the multidimensional array. If a multidi-

mensional array is addressed with a single dimension, then the elements will be

accessed in the order in which they were allocated in memory.

For example, suppose that we declare the 4 X 3 element array a as follows;

'> a = (1 2 3; 4 5 6; 7 8 9; 10 11 121

a=

	

1	 2	 3

	

4	 5	 6

	

7	 8	 9

	

10	 11	 12

Then the value of a(S) will be 2, which is the value of element a (1, 2), because

a (1, 2) was allocated fifth in memory.

Under normal circumstances, you should never use this feature of MATLAB.

Addressing multidimensional arrays with a single subscript is a recipe for confusion

Always use the proper number of dimensions when addressing a multidimen-

sional array.

34	 Chapter 2 MATLAB Basics

1	 2	 3

4	 5	 6

7	 8	 9

10	 11	 12

a

(a)

1

4	 a(2,1)

a(3,1)

a	 a(4,1)

a(1,2)

5	 a(2,2)

8	 a(3,2)

j	 a(4,2)

a(1,3)

a(2.3)

9	 a(3.3)

.2	 a(4,3)

(1:)

Arrangement
in Computer
Memory

Figure 2.3 (a) Data values for array a. (b) Layout of values in memory for array a.

24 Subarrays	 35

2.4 Subarrays

It is possible to select and use subsets of MATLAB arrays as though the\ were

separate arrays. To select a portion of an a tray, just include a list of alt ofthe ele-

ments to be selected in the parentheses after the array name. For example, sup-

pose that array arri is defined as follows:

arri = [1.1	 -2.2	 3.3	 -4.4	 5.5];

Then arrl(3)isjust the number 3.3,arrl([1 4])is the arrav[1.1-4.4,

and arri (1:2:5) is the array [1.1 3.3 5 5].
For a two-dimensional array, a colon can be used in a subscript to select all

of the values of that subscript. For example, suppose

arr2 = [1 2 3;	 -2	 -3 -4;	 3	 4	 5];

This statement would create an array arr2 containing the values

	

ri	 2

—2 — 3 —4 . With this definition, the subarray arr2 (1, :) would be

	

L 3	 5]

1	 3

[123], and the subarrayarr2(:,1:2:3) would be2

13

The end Function
MATLAB includes a special function named end that is very useful for creating

array subscripts. When used in an array subscript, end returns the highest value

taken on by that subscript. For example, suppose that array arr3 is defined as

follows:

arr3 = [1 2 3 4 5 6 7 8];

Then arrl(5:end) would be the array [5 6 7 8], and array (end)

would be the value 8.

The value returned by end is always the highest value of a given subscript.

If end appears in different subscripts, it can return different values within the

same expression. For example, suppose that the 3)< 4 array arr4 is defined as

follows:

arr4 = [1 2	 3	 4;	 5	 6 7	 8;	 9	 10	 11	 :2:;

Then the expression arr4 (2: end, 2 : end) would return the array

	

1

6	 7	 8	
Note that the first end returned the value 3, while the second

L1 0 11 12J

end returned the value 4!

36	 Chapter 2 MATLAB Basics

Using Subarrays on the Left-Hand Side
of an Assignment Statement

It is also possible to use subarrays on the left-hand side of an assignment state-

ment to update only some of the values in an array, as long as the shape (the num-

ber of rows and columns) of the values being assigned matches the shape of the

subarray. If the shapes do not match, then an error will occur. For example, sup-
pose that the 3 X 4 array arr4 is defined as follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =

	

1	 2	 3	 4
6	 7	 8

	

9 10 11	 12

Then the following assignment statement is legal, since the expressions on both

sides of the equal sign have the same shape (2 X 2):

>> arr4(1:2,(1 4)) = (20 21; 22 231
arr4 =

	

20	 2	 3 21

	

22	 6	 7 23
9 10 11 12

Note that the array elements (1,1), (1,4), (2,1), and (2,4) were updated. In con-

trast, the following expression is illegal, because the two sides do not have the
same shape.

x arr5(1:2,1:2) = (3 41

??? In an assignment A(matrix,matrix) = B, the num-
ber of rows in B and the number of elements in the
A row index matrix must be the same.

For assignment statements involving subarrays, the shapes of the subarravs on
either side of the equal sign must match. MATIAB will produce an error if they
do not match.

There is a major difference in MATLAB between assigning values to a sub-

array and assigning values to an array. If values are assigned to a subarray, on/v
those values are updated, it all oilier values in the arra y remain unchanged.
On the other hand, if values are assigned to an array, the entire contents ofthe

2.4 Subarrays	 37

arra^v are deleted and replaced h.1 the new values. For example, suppose that the

3 >< 4 array arr4 is defined as follows:

arr4 = [1 2 3 4; 5 6 7 8; 9 10 11 12]
arr4 =

1	 2	 3	 4
5	 6	 7	 8
9 10 11 12

Then the following assignment statement replaces the specifIed elements of arr4

>' arr4(1:2,(i. 41)	 (20 21; 22 231
arr4 =

20	 2	 3 21
22	 6	 7 23
9 10 11 12

In contrast, the following assignment statement replaces the entire contents of

arr4 with a 2 X 2 array:

>> arr4 = [20 21; 22 231
arr4 =

20 21
22 23

Be sure to distinguish between assigning values to a subarray and assigning val-

ues to an array. MATLAB behaves differently in these two cases.

Assigning a Scalar to a Subarray

A scalar value on the right-hand side of an assignment statement always matches
the shape specified on the left-hand side. The scalar value is copied into every ele-

ment specified on the left-hand side of the statement. For example, assume that

the 3 X 4 array arr4 is defined as follows:

arr4 = [1 2 3	 4;	 5	 6	 7	 8;	 9	 10	 11 121;

Then the expression shown below assigns the value one to four elements of the array.

arr4(1:2,1:2) = 1
arr4 =

1	 1	 3	 4
1	 1	 7	 8
9 10 11	 12

38	 Chapter 2 MATLAB Basics

2.5 Special Values

MATLAB includes a number of predefined special values. These predefined val-

ues may he used at any time in MATLAB without initializing them first. A list of

the most common predefined values is given in Table 2.2.

These predefined values are stored in ordinary variables, so they can be

overwritten or modified by a user. If a new value is assigned to one of the prede-

fined variables, then that new value will replace the default one in all later calcu-

lations. For example, consider the following statements that calculate the circum-

ference of a 10-cm circle:

circi = 2 * p1 * 10

ID i = 3;
c4 rc2 = 2 * p1 * 10

In the first statement, pi has its default value of 3.14159. . . , so circi is

62.83 19, which is the correct circumference. The second statement redefines p1

to be 3, so in the third statement circ2 is 60. Changing a predefined value in the

program has created an incorrect answer and has also introduced a subtle and hard-

to-find bug. Imagine trying to locate the source of such a hidden error in a 10,000-

line program!

Table 2.2 Predefined Special Values

Function	 Purpose

Pi	 Contains 7r to 15 significant digits

i, j	 Contain the value i(\/1).

Inf	 This symbol represents machine infinity. It is usually generated
as a result of a division by 0,

NaN	 The symbol stands for Not-a-Number. It is the result
of an undefined mathematical operation, such as the division of
zero by zero.

c1oc	 This special variable contains the current date and time in the
form of a 6-element row vector containing the year, month.
day. hour. minute, and second.

date	 Contains the current data in a character strings format, such as
24-Nov-19 98.

eps	 This variable name is short for "epsilon". It is the smallest
difference between two numbers that can be represented
on the computer.

are	 A special variable used to store the result of an expression
if that result is not explicitly assigned to some other variable.

25	 Special Values	 39

Never redefine the meaning of a predefined variable in MATLAB It is a recipe

for disaster, producing subtle and hard-to-find bugs.

Quiz 2.2	 I

This quiz provides a quick check to see if you have understood the concepts

introduced in Sections 2.3 through 2.5. lfou have trouble with the quiz,

reread the sections, ask your instructor, or discuss the material with a fel-

low student. The answers to this quiz are found in the back of the book

I. Assume that array c is defined as shown, and determine the contents

of the following sub-arrays:

	

ri.i	 —3.2	 3.4	 0.6

	

C = 0.6	 Li	 0.6 3.1

	

L1.3	 0.6	 5.5	 0.0

(a) c(2,:)
(b) c(:,end)

(c) c(1:2,2:end)

(d) c(6)

(e) c(4:end)

(f) c(1:2,2:4)

(g) c([1 3],2)
(h) c([2 21,[3 3])

2. Determine the contents of array a after the following Statements are

executed.

(a)a = (123; 456; 7891;

a([3 1],:) = a([1 3],:);

(b)a = [123; 456; 789];

a([1 31,:) = a(12 21,:);

(c) a - [123; 456; 7891;

a = a([2 2],:);

3. Determine the contents of array a after the followin g statements are

executed.

(a) a = eye(3,3)

b = [1 2 3];

a(2, :) = b;

40	 Chapter 2 MATLAB Basics

(hi a = eye (3,3);
b = [4 5 61;
a(:,3) =

(ci a = eye(3,3);
b = [789];
a(3,:) = b([3 1 2]);

(ci) a = eye(3,3)
b = [7 8 91;

a(3:) = b([3 12]);

2.6 Displaying Output Data

There are several Ways to display output data in MATLAB. This simplest way is

one we have already seen—just leave the semicolon off of the end of a statement

and it will be echoed to the Command Window. We will now explore a few other
ways to display data.

Changing the Default Format
When data is echoed in the Command Window, integer values are always displayed

as integers, character values are displayed as strings, and other values are printed

using a default format. The default format for MATLAB shows four digits after

the decimal point, and it may be displayed in scientific notation with an exponent

if the number is too large or too small. For example, the statements

X = 100.11

y = 1001.1

z = 0.00010011

produce the following output

X=

100.1100

y -
I. :011e+003

z =
1. OOile-004

This default format can he changed using the format command. The format

command changes the default format according to the values given in Table 2.3.
The default format can he modified to display more significant digits of data, to

force the display to he in scientific notation, to display data to two decimal dig-
its, or to clitiiinaie c\tra line feeds to make more data visible in the Command

\Vtndo\v at a single tulle. Experiment with the commands in Table 2.3 for yourself.

2 6 D sphy ng Output Dan	 41

Table 2.3 Output Display Formats

Format Command	 Results	 Example'

4 chLits after deinuI default fori u	 ..

l4 di g its atterdecimal	 31:345

format s-ort	 5 digits plus exponent 	 . 2346e+0C 2

format snrr :	 5 total digits with or ithout e\p000n1	 .345

forroat 1 no a	 15 digits plus e\ponent	 - 234:6089 1234=

format long g	 IS total di g its 'aith or '.ithout exponent	 12 . 345679921234 C

format bank	 'dollars and cents' format	 12.35

format hex	 hexadecimal display of bits	 402 8b fcd3 2 f7 07 a

format	 at	 approximate ratio of small integers	 200C

format compac'	 suppress extra line feeds

format loose	 restore extra line feeds

format *	 Only signs are printed	 -

The data alue used for the example is 12. 3478901234567 in all cases

The disp function

Another way to display data is with the disp function. The disp function

accepts an array argument. and displays the value of the array in the Command

Window. If the array is of type char, then the character string contained in the

array is printed out.
This function is often combined with the functions num2 s t r (conx CII a num-

ber to a string) and int2str (convert an integer to a string) to create messages

to be displayed in the command window. For example, the following NIATLAB

statements will display "The value of pi = 3.1416" in the Command Window.

The first statement creates a string arra y containing the message. and the second

statement displays the message

str = ['The value of p1 =	 numstr(pi)]

diap (str)

Formatted Output with the fprintf Function

An oxen more flexible xxav to displaY data is with the fprint f function The

fprir.tf function displays one or more xalues together with related text and tCtS

the programmer control the xxa y. the displayed values appear. The general form of

this function %% hen it is used to print to the Command Windoxx is

f printf (format,data)

42	 Chapter 2 MATLAB Basics

Table 2.4 Common Special Characters in fprintf Format Strings

Format String	 Results

Display value as an integer.

Display value in exponential format.

% f 	 Display value in floating point format.

Display value in either floating point or exponential format,
whichever is shorter.

\r,	 Skip to a new line.

where format is a string describing the way the data is to be printed, and data
is one or more scalars or arrays to be printed. The format is a character string
containing text to be printed plus special characters describing the format of the
data. For example, the function

fprintf('The value of pi is %f \n,pi)

will printout' The value of pi is 3 . 141593' followed by a line feed. The
characters %f are called conversion characters; they indicate that the a value in
the data list should be printed out in floating point format at that location in the
format string. The characters \n are escape characters; they indicate that a line
feed should be issued so that the following text starts on a new line. There are
many types of conversion characters and escape characters that may be used in an
fprint f function. A few of them are listed in Table 2.4, and a complete list can
be found in Chapter 8.

It is also possible to specify the width of the field in which a number will be dis-
played and the number of decimal places to display. This is done by specifying the
the width and precision after the % sign and before the f. For example, the function

fprintf('The value of pi is %6.2f \n,pi)

will print Out 'The value of pi is 3 .14 followed by a line feed. The
conversion characters % 6 . 2 f indicate that the first data item in the function
should be printed Out in floating point format in a field six characters wide,
including two digits after the decimal point.

The fprintf function has one very significant limitation: it displays on/v
the 'ealpoi-tion u/a complex value. This limitation can lead to misleading results
when calculations produce complex answers. In those cases, it is better to use the
disp function to display answers.

For example. the followin g statements calculate a complex value x and dis-
play it using both fprintf and disp.

x = 2 * (1 - 2"i)3;
str = ['dis p : x = ' num2str(x)];
disp(str)

fprintf ('fprintf: x = %8 . 4f\n' ,x)

2.7 Data Files	 43

The results printed Out by these statements are

disp: x = -22+4i
fprintf: x = -22.0000

Note that the fprintf function ignored the imaginary part of the answer.

The fprintf function displays only the real part of a complex number, which
can produce misleading answers when working with complex values.

2.7 Data Files

There are many ways to load and save data files in MATLAB, most of which are
addressed in Chapter 8. For the moment, we will consider only the load and
save commands, which are the simplest ones to use.

The gave command saves data from the current MATLAB workspace into
a disk file. The most common form of this command is

save filename varl var2 var3

where filename is the name of the file where the variables are saved, and
van, var2, etc. are the variables to be saved in the file. By default, the file
name will be given the extent "mat," and such data files are called MAT-files. If
no variables are specified, then the entire contents of the workspace are saved.

MATLAB saves MAT-files in a special compact format that preserves many
details, including the name and type of each variable, the size of each array, and
all data values. A MAT-file created on any platform (PC, Mac, Unix, or Linux)
can be read on any other platform, so MAT-files are a good way to exchange data
between computers if both computers run MATLAB. Unfortunately, the MAT-file
is in a format that cannot be read by other programs. If data must be shared with
other programs, then the -ascii option should be specified, and the data values
will he written to the file as ASCII character strings separated by spaces.
However, the special information (e.g., variable names and types) is lost when the
data is saved in ASCII format, and the resulting data file will be much larger.

For example, suppose the array x is defined as

x = [1.23 3.14 6.28; -5.1 7.00 01;

the command "save x. dat x -ascii" will produce a file named x. dat
containing the following data:

1.2300000e+000 3.1400000e+000 6.2800000e+000
-5.1000000e+000 7.0000000e+000 0.0000000e+000

44	 Chapter 2 MATLAB Basics

This data is in a format that can he read h\ spreadsheets or by programs written

in other computer lan guages, so it makes it eas y to share data between MATLAB

prog rams and other applications.

Good Programming Practice	 .

If data must be exchanged between MATLAB and other programs, save the

MATLAB data in ASCII format lithe data will onl y be used in NIATLAB, sa'e

the data in MAT-file format.

MATLAB doesn't care what file extent is used for ASCII files. Hov.ever, it

is better for the user if a consistent naming con\ention is used and an extent of

"dat" is a common choice for ASCII files.

Good Programming Practice

II	 H	 \rtl t	 ' filc extent to distinguish them from MAT-

files, which have a "mat" file extent.

The load command is the opposite of the save command. It loads data

from a disk file into the current MATLAB workspace. The most common form

of this command is

load filename

where filename is the name of the file to be loaded. If the file is a MAT-file,

then all of the variables in the file will be restored, with the names and types

the same as before. If a list of variables is included in the command, then only

those variables will be restored. If the given filename has no extent, or if the

file extent is .mat, then the load command will treat the file as a MAT-file.

MATLAB can load data created by other programs in space-separated ASCII

format. If the given filename has any file extent other than .mat, then the

load command will treat the file as an ASCII file. The contents of an ASCII file
will be converted into a MATLAB array having the same name as the file (with-

out the file extent) that the data was loaded from. For example, suppose that an

.ASCII data file named x. dat contains the following data:

	

1.23	 3.14	 6.28

5.1	 7.00	 0

Then the command "load x. dat" will create a 2 X 3 array named x in the

current workspace, containing these data values.

2.8 Scalar and Array Operations 1 45

The load statement can be forced to treat a file as a MAT-file by specifying
the -mat option. For example, the statement

load -mat x.dat

would treat file x.dat as a MAT-file even though its file extent is not . mat.
Similarly, the load statement can be forced to treat a file as an .ASCII file by
speciving the -ascii option. These options allow the user to load a file prop-
erly even if its file extent doesn ' t match the MATLAB conventions

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Sections 2.6 and 2.7. If you have trouble with the quiz.

reread the sections, ask your instructor, or discuss the material with a fel-

low student. The answers to this quiz are found in the back of the book.

1. How would you tell MATLAB to display all real values in exponen-
tial format with 15 significant digits?

2. What do the following sets of statements do? What is the output from
them?

(a) radius = input (Enter circle radius: \n
area = pi * radius"2;
str = ['The area is	 num2str(area)];
disp(str)

(h) value = int2str(pi);
disp(['The value is	 value

3. What do the following sets of statements do? What is the output from
them?

value = 123.4567e2;
fprintf(value = %e\n,value);
fprintf('value = %f\n ,value);
fprintf('value = %g\n',value);
fprjntf('value = %12.4f\n,value);

2.8 Scalar and Array Operations

Calculations are specified in MATLAB with an assignment statement, whose
general form is

variable name = expression;

The assignment statement calculates the value of the expression to the right of the
equal sign, and assigns that value to the variable named on the lefi of the equal sign.

46 1 Chapter 2 MATLAB Basics

Table 2.5 Arithmetic Operations Between Two Scalars

Operation	 Algebraic Form	 MATLAB Form

Addition	 a + b	 a * b

Subtraction	 0 - I'	 a - b

Multiplication	 a X h	 a * b

Division	
a / b

Exponentiation	 a	 a	 b

Note that the equal sign does not mean equality in the usual sense of the word.

Instead, it means: store the value of expression into location

variable .name. For this reason, the equal sign is called the assignment

operator. A statement like

ii = ii + 1;

is complete nonsense in ordinary algebra, but makes perfect sense in MATLAB.

It means: take the current value stored in variable ii, add one to it, and store the

result back into variable ii.

Scalar Operations
The expression to the right of the assignment operator can be any valid combina-

tion of scalars, arrays, parentheses and arithmetic operators. The standard arith-

metic operations between two scalars are given in Table 2.5.
Parentheses may be used to group terms whenever desired. When parentheses

are used, the expressions inside the parentheses are evaluated before the expres-

sions outside the parentheses. For example, the expression 2 	
((8+2) / 5) is

evaluated as shown below

2	 ((8+2)/5) = 2	 (10/5)

=22

=4

Array and Matrix Operations
MATLAB supports two types of operations between arrays, known as array

operations and matrix operations. Array operations are operations performed

between arrays on an element-by-element basis. That is, the operation is per-

formed on corresponding elements in the two arrays. For example, if a

1 1 2] and
b =[].

then a + b = [. Note that for these opera-

tions to work, the number of rows and columns in both arra ys must be the same.

If not. MATLAB will generate an error message.

2.8 Scalar and Array Operations 	 47

Array operations may also occur between an array and a scalar. If the operation

is performed between an array and a scalar, the value of *:it scalar is applied to every

element of the array. For example, if
= [

]. then a +
4 = [

6]

In contrast, matrix operations follow the normal rules of linear algebra,

such as matrix multiplication. In linear algebra. the product c = a)< b is defined

by the equation

c(i, j) =	 a(i, k)h(k,/)
k= 1

	l 	 1

	 1-21

	 E
For example, ifa =	 - land b = 	, then a)< b =

13 4i 	I_i	 L—li H
Note that for matrix multiplication to work, the number of colunns in ma!ri.r.a

must be equal to the number of rows in matrix b.
MATLAB uses a special symbol to distinguish array operations from matrix

operations. In the cases where array operations and matrix operations have a differ-

ent definition. MATLAB uses a period before the symbol to indicate an array oper-

ation (for example,). A list of common array and matrix operations is given in

Table 2.6 on page 49.
New users often confuse array operations and matrix operations. In some cases,

substituting one for the other will produce an illegal operation, and MATLAB will

report an error. In other cases, both operations are legal, and MATLAB will perform

the wrong operation and come up with a wrong answer. The most common problem

happens when working with square matrices. Both array multiplication and matrix

multiplication are legal for two square matrices of the same size, but the resulting

answers are totally different. Be careful to specify exactly what you want!

Be careful to distinguish between array operations and matrix operations in your

MATLAB code. It is especially common to confuse array multiplication with

matrix multiplication.

Example 2.1
Assume that a, b, c, and d are defined as follows:

	

ol	 r - i 21

	

a[, iJ	 1]

r31	 -

48	 Chapter 2 MATLAB Basics

What is the result of each of the following expressions?

(a) a + b	 (e) a + c

(b)a .	 b	 (f)a+ ci
(c)a *b	 (g)a .	 ci

(d)a * C	 (h)a * ci

Soii TI()\

r
(a) This is array or matrix addition: a + b

= L2

o
2 2

HI 0
(b) This is element-by-element array multiplication: a 	 * b

= L
[-1 2

(c) This is matrix multiplication: a * b
= L —2 5

I,](d) This is matrix multiplication: a * c
= 8

(e) This operation is illegal, since a and c have different numbers of columns.

r6
(f) This is addition of an array to a scalar: a + d

= L7 5 6

[5 0
(g) This is array multiplication: a 	 * d	

[10 5

o
(h) This is matrix multiplication: a * b = I

L'05- -
The matrix left division operation has a special significance that we must

understand. A 3)< 3 set of simultaneous linear equations takes the form

a 11 x 1 + a 1 x2 + a 1 x3 =

a 21 x 1 + a—x, + a,IX3 = b	 (2-I)

a 31 x 1 + a32x2 + a33x3 = b3

which can be expressed as

Ax = B	 (2-2)

[a, ^ a 1 , a13 	

[b

b,.11

whereA= a: 	 a, a1 3	 B=h .andx	 x:

XIa 31	 a;:	 a 33	 :

Equation (2-2) can he solved for x using linear algebra. The result is

x = A'B	 (2-3)

2.8 Scalar and Array Operations I 49

Since the left division operator A \ B is defined to b'. 4-nv (A) x B, the left
division operator solves a system of simultaneous equations in a single state-
ment!

Use the left division operator to solve systems of simultaneous equations.

Table 2.6 Common Array and Matrix Operations

Operation	 MATLAB Form	 Comments

Array Addition	 a + b	 Array addition and matrix addition are
identical.

Array subtractionand matrix subtraction
are identical.

Element-by-element multiplication of a
and b. Both arrays must be the same
shape, or one of them must be a scalar.

Matrix multiplication of a and b. The
number of columns in a must equal the
number of rows in b.

Matrix division defined by a * nv (b)
where mv (b) is the inverse of matrix b.

Matrix division defined by mv (a) * b,
where mv (a) is the inverse of matrix a.

Array Subtraction	 a - b

Array Multiplication	 a.* b

Matrix Multiplication	 a * b

Array Right Division

Array Left Division

Matrix Right Division	 a/b

Matrix Left Dix ision 	 a \ b

a ./ b	 Element-by-element division of a and b:
a(i, j (I b(i, j) . Both arrays must
be the same shape, or one of them must
be a scalar.

a .\ b	 Element-by-element division of a and b,
but with b in the numerator: b (i
a (i, j) . Both arrays must be the same
shape, or one of them must be a scalar.

Array Exponentiation a . b Element-by-element exponentiatiort of a
and b: a Ii j) b (i, j) . Both arrays
must he the same shape, or one of them
must be a scalar.

50	 Chapter 2 MATLAB Basics

2.9 Hierarchy of Operations

Often, many arithmetic operations are combined into a single expression. For

example, consider the equation for the distance traveled by an object starting from

rest and subjected to a constant acceleration:

distance = 0.5 * accel * time 	 2

There are two multiplications and an exponentiation in this expression. In such an

expression, it is important to know the order in which the operations are evaluated.

If exponentiation is evaluated before multiplication, this expression is equiva-

lent to

distance = 0.5 * accel * (time 	 2)

But if multiplication is evaluated before exponentiation, this expression is equiv-

alent to

distance = (0.5 * accel * time) 	 2

These two equations have different results, and we must be able to unambiguous-

ly distinguish between them.
To make the evaluation of expressions unambiguous, MATLAB has estab-

lished a series of rules governing the hierarchy or order in which operations are

evaluated within an expression. The rules generally follow the normal rules of

algebra. The order in which the arithmetic operations are evaluated is given in

Table 2.7.

Table 2.7 Hierarchy of Arithmetic Operations

Precedence	 Operation
The contents of all parentheses are evaluated,
starting from the innermost parentheses and working

outward.

2	 All exponentials are evaluated, working from left

to right.

3	 All multiplications and divisions are evaluated, working

from left to right.

4	 All additions and subtractions are evaluated, working
from left to right.

2.9 Hierarchy of Operations 	 51

- .	 ,,_Ifl.n*wn&' N

Example 2.2

Variables a, b, c, and d have been initialized to the following values:

a=3;	 b=2;	 c=5;	 d=3;

Evaluate the following MATLAB assignment statements:

(a) output = a*b+c*d;

(b) output = a*(b+c)*d;

(c) output = (a*b)i(c*d);

(d) output = a"b"d;
(e) output = a"(b"d);

SOLUTION

(a) Expression to evaluate: -	 output = a*b+c*d;

Fill in numbers:	 output = 3*2+5*3;

First, evaluate multiplications
and divisions from left to right: output = 6 + 5 * 3

output = 6 + 15;

Now evaluate additions:	 output = 21

(b) Expression to evaluate: 	 output = a* (b+c) *d;

Fill in numbers:	 output	 3*(2+5)*3;

First, evaluate parentheses: 	 output = 3*7*3;

Now, evaluate multiplications

and divisions from left to right: output = 21 * 3
output = 63;

(c) Expression to evaluate: 	 output = (a*b) + (c*d)

Fill in numbers:	 output = (3*2)+(5*3)

First, evaluate parentheses: 	 output = 6 + 15;

Now evaluate additions:	 output = 21

(d) Expression to evaluate:	 output = a"b"d;

Fill in numbers:	 output = 3"2"3;

Evaluate exponentials

from left to right:	 output = 9"3;
output = 729;

(e) Expression to evaluate:	 output = a" (b"d)

Fill in numbers:	 output = 3'(2-3);

First, evaluate parentheses: 	 output = 3"8;

Now, evaluate exponential: 	 output	 6561;

t&tfl*VY . c.

As we see in the foregoing example, the order in which operations are per-

formed has a major effect on the final result of an algebraic expression.

S2	 Chapter 2 MATLAB Basics

It is important that every expression in a program be made as clear as possi-
ble. Any program of value must not only be written but also must be maintained
and modified when necessary. You should always ask yourself: "Will I easily
understand this expression if I come back to it in six months? Can another pro-
grammer look at my code and easily understand what I am doing?" If there is any
doubt in your mind, use extra parentheses in the expression to make it as clear as
possible.

jj^,.;Prograniining-,
"I

Use parentheses as necessary to make your equations clear and easy to understand.

If parentheses are used within an expression, then the parentheses must be
balanced. That is, there must be an equal number of open parentheses and close
parentheses within the expression. It is an error to have more of one type than
the other. Errors of this sort are usually typographical, and they are caught by
the MATLAB interpreter when the command is executed. For example, the
expression

(2 + 4) / 2)

produces an error when the expression is executed.

	

Quiz 2.4	 I
This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 2.8 and 2.9. If you have trouble with the
quiz, reread the sections, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.

1. Assume that a, b, c, and d are defined as follows, and calculate the
results of the following operations if they are legal. Ifan operation is,
explain why it is illegal.

	

a= [I

	

r 2 11	 [0 —ii

	

—1 2]	 L3	 1]

d=-3

(a)result = a . C;

(b)result = a * [c c];
(c) result = a * [c c]

2.10 Built-In MATLAB Functions i 53

(d) result = a + b * C;

(e) result = a + b .	 C;	
I 2 11

2. Solve for x in the equation Ax = B, where A =	 2 3 2 and

-I 0 iJ

B= ['I].
0

2.10 Built-in MATLAB Functions

In mathematics, a function is an expression that accepts one or more input values and

calculates a single result from them. Scientific and technical calculations usually require

functions that are more complex than the simple addition, subtraction, multiplication,

division, and exponentiation operations that we have discussed so far. Some of these

functions are very common, and are used in many different technical disciplines.

Others are rarer and specific to a single problem or a small number of problems.

Examples of very common functions are the trigonometric functions, logarithms,

and square roots. Examples of rarer functions include the hyperbolic functions,

Bessel functions, and so forth. One of MATLAB's greatest strengths is that it comes

with an incredible variety of built-in functions ready for use.

Optional Results

Unlike mathematical functions, MATLAB functions can return more than one
result to the calling program. The function max is an example of such a function.

This function normally returns the maximum value of an input vector, but it can

also return a second argument containing the location in the input vector where

the maximum value was found. For example, the statement

maxval = max ([1 -5 6 -3])

returns the result maxval = 6. However, if two variables are provided to Store

results in, the function returns both the maximum value and the location of the

maximum value.

[maxval index] = max ([1 -5 6 -3])

produces the results maxval = 6 and index = 3.

Using MATLAB Functions with Array Inputs

Many MATLAB functions are defined for one or more scalar inputs, and produce

a scalar output. For example, the statement y = sin (x) calculates the sinc of x
and stores the result in y. If these functions receive an array of input values, then

S4	 Chapter 2 MATLAB Basics

they will calculate an array of output values on an element-by-element basis. For

example, if x = [0 p1/2 p1 3 *pi / 2 2 *Pi], then the statement

y = sin(x)

will produce the result y = [0 1 0 -1 0]

Common MATLAB Functions
A few of the most common and useful MATLAB functions are shown in Table 2.8.

These functions will be used in many examples and homework problems. If you

need to locate a specific function not on this list, you can search for the function

alphabetically or by subject using the MATLAB Help Browser.
Note that unlike most computer languages, many MATLAB functions work

correctly for both real and complex inputs. MATLAB functions automatically

calculate the correct answer, even if the result is imaginary or complex. For

example, the function sqrt (-2) will produce a runtime error in languages

such as C or Fortran. In contrast, MATLAB correctly calculates the imaginary

answer:

sqrt(-2)

aris =
0 + 1.4142i

2.11 Introduction to Plotting

MATLAB's extensive, device-independent plotting capabilities are one of its

most powerful features. They make it very easy to plot any data at any time. To

plot a data set, just create two vectors containing the x andy values to be plotted,

and use the plot function.
For example, suppose that we wish to plot the function y = - lOx + 15

for values of x between 0 and 10. It takes only three statements to create this

plot. The first statement Creates a vector of x values between 0 and 10 using the

colon operator. The second statement calculates the y values from the equation

(note that we are using array operators here so that this equation is applied to
each x value on an element-by-element basis). Finally, the third statement Cre-

ates the plot.

X = 0:1:10;

Y = x.2 - 10 . *x + 15;

plot(x,y)

When the plot function is executed, MATLAB opens a Figure Window and

displays the plot in that window. The plot produced by these statements is shown

in Figure 2.4 on page 56.

2.11	 Introduction to Plotting	 55

Table 2.8 Common MATLAB Functions

Function	 Description

Mathematical Functions

abs (x)

acos (x)

angle (x)

as in (x)

atan(x)

atan2 (y, x)

cos (x)

exp (x)

Calculates l x

Calculates cos x.

Returns the phase angle of the complex value x, in radians.

Calculates sin

Calculates tan

Calculates tan	 - oer all four quadrants of the circle (results in

radians in the range - 7r tan

Calculates cos x, with x in radians.

Calculate ev.

log (x)	 Calculates the natural logarithm logx

[value, index] = max (x)	 Returns the maximum value in vector x, and optionally the
location of that value.

[value, index] = min(x)	 Returns the minimum alue in vectorx, and optionally the
location of that value.

mod (x, y)	 Remainder or modulo function.

sin (x)	 Calculates sin x, with x in radians

sqrt (x)	 Calculates the square root ofx.

tan (x)	 Calculates tan x, with x in radians

Functions

cell (x)
	 Rounds x to the nearest integer towards positive infinity:

ceil(3.l)=4 and ceil(-3.l)-3.

fix (x)
	 Rounds x to the nearest integer towards zero:

fix (3.1) = 3 and fix (-3.1) - -3.

floor (x)
	 Rounds x to the nearest integer towards minus infinity:

floor (3.l) -3 and floor (-3.1) --4.

round (x)
	 Rounds x to the nearest integer.

String Conversion Functions

char (x)	 Converts a matrix of numbers into a character string
For ASCII characters the matrix should contain numbers 	 127

double (x)	 Cons ens a character string into a matrix of numbers.

int2str (x)	 Converts .i into an integer character string.

nurn2 s tr (x)	 Cons erts v into a character string.

str2num (s)	 Consents character strings into a numeric array.

56	 Chapter 2 MATLAB Basics

Fle E0t sw FFt TOOK Wreo. He

t D	 D

El

10

-s

-10
2	 4

Figure 2.4 Plot of v - 	 - lOv + 15 from 0 to 10.

Using Simple xy Plots

As we saw above, plotting is very, easy in MATLAB. Any pair of vectors can be

plotted versus each other as long as both vectors have the same length. However,

the result is not a finished product, since there are no titles, axis labels, or grid
lines on the plot.

Titles and axis labels can be added to a plot with the title, xlabel, and
ylabel functions. Each function is called with a string containing the title or

label to be applied to the plot. Grid lines can be added or removed from the plot

with the grid command: grid on turns on grid lines, and grid off turns off

grid lines. For example, the statements below generate a plot of the function
v = X 2 - lOx + 15 with titles, labels, and gridlines. The resulting plot is shown
in Figure 2.5.

X = 0:1:10;
Y = x.	 - 10.*x + 15;

plot(x,y)

title ('Plot of y = x.2 - 10*x + 15');
xlabel ('x);
ylabel ('y');
grid On;

	

2.11	 Introduction to Plotting	 57

Fe Eit	 L,t To*

Pioiofy=x2-10x.15

10

- .

0	 2	 .	 4	 6	 8	 10
x

Figure 2.5 Plot of 1, =
	 - lOx + 15 with a title, axis labels, and gridlines.

Printing a Plot

Once created, a plot may be printed on a printer with the print command, by

clicking on the "print" icon in the Figure Window, or by selecting the "File/Print"

menu option in the Figure Window.

The print command is especially useful because it can be included in a

MATLAB program, allowing the program to automatically print graphical

images. The form of the print command is:

print <options> <filename>

If no filename is included, this command prints a copy of the current figure on

the system printer. If a filename is specified, the command prints a copy of the

current figure to the specified file.

Exporting a Plot as a Graphical Image

The print command can be used to save a plot as a graphical image byspeci-

fyin g appropriate options and a file name.

print <options> <filename>

There are many different options that specify the format of the output sent to

a file. One very important option is -dt± ff. This option Specifies that the output

S8	 Chapter 2 MATLAB Basics

Table 2.9 print Options to Create Graphics Files

Option	 Description

-cieps	 Creates a monochrome encapsulated posteript image.

-depsc	 Creates a color encapsulated postcript Image.

-djpeg	 Creates a JPEG image.

-dpn g	Creates a Portable Network Graphic color Image.

-di f f	 Creates a compressed TIFF image.

will be to a file in Tagged Image File Format (TIFF). Since this format can be

imported into all of the important word processors on PC, Mac. Unix. and Linux

platforms, it is a great way to include MATLAB plots in a document. The fol-

lowing command will create a TIFF image of the current figure and store it in a

file called my—image. tif:

print —dtiff my_image.tif

Other options allow image files to be created in other formats. Sriv of the

most important image file formats are given in Table 2.9.

In addition, the "File/Export" menu option on the Figure Window can be

used to save a plot as a graphical image. In this case, the user selects the file name

and the type of image from a standard dialog box (see Figure 2.6).

Multiple Plots
It is possible to plot multiple functions on the same graph by simply including

more than one set of (x, y) values in the plot function. For example, suppose that

we wanted to plot the functionf(x) sin 2x and its derivative on the same plot.

The derivative off(x) = sin 2x is:

sin	 2cos	 (2-4)
dt

To plot both functions on the same axes, we must generate a set of at values

and the corresponding v values for each function. Then to plot the functions,

we would simply list both sets of (x, v) values in the plot function as shown

below.

x = O:pi/100:2*pi;
yl = sin(2*x)

= 2*cos(2*x);

plot (x,yl,x,y2)

The resulting plot is shown in Figure 2.7.

2. 11	 Introduction to Plotting	 1 59

Ie Enj.t Ww iet Toc \Ow
l Q U .l:

PI04QtyX 2 -10.	 15
15r	 -

10

5	
I-i"ri C-1

0 e nnnne	 -	 Save]

Savesb-pe umI1scl	 Cancel

IC

Figure 2.6 Exporting a plot as an image file using the File Export menu Item.

-	 JgJ1J
Le t± e]rta t—Toot c-tep rl&

.ti 110 0 ID

0

.10j

Figure 2.7 Plot offlv	 sin 2v and !t = 2 cos 2x on the same axes.

60	 Chapter 2 MATLAB Basics

Line Color, Line Style, Marker Style, and Legends

MATLAB allows a programmer to select the color ofa line to be plotted, the style

of the line to be plotted and the type of marker to be used for data points on the

line. These traits may be selected using an attribute character string after the .v and

i vectors in the plot function.
The attribute character string can have up to three characters, with the first

character specifying the color of the line, the second character specifying the

style of the marker, and the last character specifying the style of the line. The

characters for various colors, markers, and line styles are shown in Table 2.10.

The attribute characters may be mixed in any combination, and more than

one attribute string may be specified if more than one pair of (x, y) vectors are

included in a single plot function call. For example, the following statements

will plot the function y = - lox + 15 with a dashed red line, and include the

actual data points as blue circles.

X = 0:1:10;

Y = x.2 - 10 . *x + 15;

plot(x,y, 'r--',x,y, bo);

Legends may be created with the legend function. The basic form of this

function is

legend(stringl' , 'string2pos)

Table 2.10 Table of Plot Colors, Marker Styles, and Line Styles

Color	 Marker Style	 Line Style

Y	 yellow	 •	 point

m	 magenta	 o	 circle

C cyan	 X	 x-mark

r	 red	 •1-	 plus

g	 green
	 *	 Star

b	 blue	 s	 square

W white	 d	 diamond

k	 black	 v	 triangle (down)

triangle (up)

triangle (left)

triangle (right)

P	 pentagram

h	 hexagram

<none>	 no marker

-. solid

dotted

dash-dot

--	 dashed

<none>	 no line

2.11	 Introduction to Plotting	 1 61

Table 2.11 Values of pos in the Legend Command

Value	 Legend Location

'NW'	 Above and to the left

NL'	 Above top left corner

'NC'	 Above center of top edge

'NR'	 Above top right corner

'NE 	 Above and to right

At top and to left

'TL'	 Top left corner

'TC	 At top center

'TR'	 Top right corner

'TE'	 At top and to right

'MW'	 At middle and to left

ML'	 Middle left edge

MC.	 Middle and center

'MR	 Middle right edge

114E.At middle and to right

'SW	 At bottom and to left

BL	 Bottom left corner

BC	 At bottom center

'BR	 Bottom right corner

BE	 At bottom and to right

'SW	 Below and to left

'SL'	 Below bottom left corner

sc	 Below center of bottom edge

'SR	 Below bottom right corner

'SE'	 Below and to right

where stringl, string2, etc. are the labels associated with the lines plotted,

and pos is an string specifying where to place the legend. The possible values for

pos are given in Table 2.11, and are shown graphically in Figure 2.8.

The command legend off will remove an existing legend'.

Before MAILAB 7.0, the pos parameter took a number in the range 0-4 to specify the location of
a legend. This usage is now obsolete but is still supported for backwards compatibility.

62	 Chapter 2 MATLAB Basics

i: 711 1 1 	 NC	 Limits of Plot Axes

TL TC T

	

M MC	 S. I is

I s: BC BR I ES

521 31 SC SR SE

Figure 2.8 Possible locations for a plot legend.

Fie Est 51w kt TOCIS Wr,do, F-,
Di	 LEk €,k"?	 P

Plot of I(x) sri2x) ajid its deiiwIe

--	 d Iç

/

U	 2	 3	 4	 5	 6	 7
-	 x

Figure 2.9 A complete plot with title, axis labels, legend, grid, and multiple line styles.

An example of a complete plot is shown in Figure 2.9, and the statements to

produce that plot are shown below. They plot the functionf(x) = sin 2x and its

derivative on the same axes, with a solid black line forf(x) and a dashed red line

for its derivative. The plot includes a title, axis labels, a legend in the top left cor-
ner of the plot, and grid lines.

x = O:pi/100:2*pi;

yl = sin(2*x)

= 2*cos(2*x);

2.1 I	 Introduction to Plotting 	 63

plot(x,yl, k-,x,y2, b--);

title)PJ.ot of f(x) = sin (2x) and its derva -
tive
xlabe]. (x);
ylabel (y);

	

legend (f(x)', d/dx f(x)	 tl)
grid on;

Logarithmic Scales

It is possible to plot data on logarithmic scales as well as linear scales. There are

four possible combinations of linear and logarithmic scales on the x and v axes.
and each combination is produced by a separate function.

I. The plot function plots both and y data on linear axes.
2. The semilogx function plots x data on logarithmic axes and data on

linear axes.

3. The semi logy function plots x data on linear axes andy data on loga-

rithmic axes.

4. The loglog function plots both x and v data on logarithmic axes.

All of these functions have identical calling sequences—the only difference is

the type of axis used to plot the data. Examples of each plot are shown in

Figure 2.10.

Linear Plot	 Seimlog x Plot

	

30	 30

	

20	 20	 .

	

10	 10

___________ 0

	

Co	 5	 10	 10'	 100
X	 x

Sem,tog y Plot	 Loglog Plot

	

10	 -	 10	 .

:-

10° 'o-

	

0	 5	 10	 10	 10°
X	 x

Figure 2.10 Comparison of linear, semi log x, semilog v, and log-log plots.

64	 Chapter 2 MATLAB Basics

2.12 Examples
The following examples illustrate problem-solving with MATLAB.

Example 2.3—Temperature Conversion
Design a MATLAB program that reads an input temperature in degrees

Fahrenheit, converts it to an absolute temperature in kelvins, and writes Out the

result.

SOLUTION The relationship between temperature in degrees Fahrenheit (°F) and

temperature in kelvins (K) can be found in any physics textbook. It is

T (in kelvins) = [T(in °F) - 32.01 + 273.15	 (2-5)

The physics books also give us sample values on both temperature scales, which

we can use to check the operation of our program. Two such values are:

The boiling point of water 	 212° F	 373.15 K

The sublimation point of dry ice	 110° F	 194.26 K

Our program must perform the following steps:

1. Prompt the user to enter an input temperature in °F.

2. Read the input temperature.

3. Calculate the temperature in kelvins from Equation (2-5).

4. Write out the result, and stop.

We will use function input to get the temperature in degrees Fahrenheit and

function fprintf to print the answer. The resulting program is shown

below.

% Script file: temp—conversion

% Purpose:
% To convert an input temperature from degrees
%	 Fahrenheit to an output temperature in kelvins.

% Record of revisions:
%	 Date	 Programmer	 Description of change

= = = =	 = = = = = = = = = = 	 =

% 01'03/04	 S. J. Chapman Original code
%

2.12	 Examples	 1 65

% Define variables:
%	 tempf	 -- Temperature in degrees Fahrenheit
%	 temp_k	 -- Temperature in kelvins

% Prompt the user for the input temperature.

temp_f = input(Enter the temperature in degrees Fahrenheit:);

% Convert to kelvins,
temp_k	 (5/9) * (temp_f - 32) + 273.15;

% Write out the result.

fprintf(%6.2f degrees Fahrenheit = %6.2f
kelv j ns.\n , . . . temp f,tempk)

To test the completed program, we will run it with the known input values
given above. Note that user inputs appear in bold face below

temp conversion
Enter the temperature in degrees

212.00 degrees Fahrenheit = 373.
temp_conversion

Enter the temperature in degrees

-110.00 degrees Fahrenheit = 194

Fahrenheit: 212
15 kelvins.

Fahrenheit: -iio
26 kelvins.

The results of the program match the values from the physics book.

In the previous program, we echoed the input values and printed the out-

put values together with their units. The results of this program make sense

only if the Units (degrees Fahrenheit and kelvins) are included together with

their values. As a general rule, the units associated with any input value should

always be printed along with the prompt that requests the value, and the units

associated with any output value should always be printed along with that value.

I -

Always include the appropriate Units with any values that you read or write in a
program.

The above program exhibits many of the good pro g
ramming practices that

we have described in this chapter. It includes a data dictionary defining the mean-

ings of all of the variables in the program. It also uses descriptive variable names,

and appropriate Units are attached to all printed values.

RL Load

66	 Chapter 2 NIATLAB Basics

Example 2.4—Electrical Engineering: Maximum PowerTransfer to a Load

Figure 2.11 shows a voltage source V 120 V with an internal resistance R of
50 Q supplying a load of resistance RL. Find the value of load resistance RL that

will result in the maximum possible power being supplied by the source to the

load. How much power be supplied in this case? Also, plot the power supplied to

the load as a function of the load resistance RL.

Voltage source

Figure 2.11 A voltage source with a voltage V and an internal resistance R5 supplying a load of
resistance RL.

SOLUTION

In this program, we need to vary the load resistance RL and compute the power
supplied to the load at each value of RL. The power supplied to the load resistance
is given by the equation

= I 2RL	(2-6)

where I is the current supplied to the load. The current supplied to the load can
be calculated by Ohm's Law:

V	 V
1 = — =	(2-7)

RIOT R5 + RL

The program must perform the following steps:

1. Create an array of possible values for the load resistance RL. The array
will vary R, from I 0 to 100 Q in I Q steps.

2. Calculate the current for each value of R1.

2.12 Examples	 67

3. Calculate the power supplied to the load for each value of RL.
4. Plot the power supplied to the load for each value of R. and deterrnne the

value of load resistance resulting in the maximum power.

The final MATLAB program is shown below.

% Script file: calc_power.rn

% Purpose:
%	 To calculate and plot the power supplied to a load as
%	 as a function of the load resistance.
%
% Record of revisions:

Date	 Programmer	 Description of change
%= = = =	 =-== ======	 =
%	 01/03/04	 S. J. Chapman	 Original code

% Define variables:
% amps -- Current flow to load (amps)

p1	 -- Power supplied to load (watts)
% rl	 -- Resistance of the load (ohms)

rs	 -- Internal resistance of the power source (ohms)
% volts -- voltage of the power source (volts)

% Set the values of source voltage and internal
resistance volts = 120;
rs = 50;
% Create an array of load resistances
rl = 1:1:100;

% Calculate the current flow for each resistance
amps = volts ./ (rs + rl

% Calculate the power supplied to the load
p1 = (amps .	 2) •* ri;

% Plot the power versus load resistance
plot(rl,pl)
title('Plot of power versus load resistance);
xlabel(Load resistance (ohms));
ylabel (Power (watts)
grid on;

When this program is executed, the resting plot is shown in Figure 2.12. From
this plot, we can see that the maximum power is supplied to the load when the loads
resistance is 50 Q. The power supplied to the load at this resistance is 72 warts.

68	 Chapter 2 MATLAB Basics

B2 View kO,t TQ w".

Plot of power versus load resrsianee

70	 --	 -	 -

60- ...
.........................

1::i. ..II.....
20

10

20	 40	 60	 80	 100
Load resrsiance (otsos)

Figure 2.12 Plot of power supplied to load versus load resistance.

.4

Note the use of the array operators . . , and . I in the above program.

These operators cause the arrays amps and p1 to be calculated on an element-

by-element basis.

- •	 -'.civr	 .
Example 2.5—Carbon 14 Dating

A radioactive isotope of an element is a form of the element that is not stable.

Instead, it spontaneously decays into another element over a period of time.

Radioactie decay is an exponential process. If Q0 is the initial quantity of a

radioactive substance at time 1 0, then the amount of that substance which will

be present at any time (in the future is given by

Q(i) =	 (2-8)

where A IS the radioactive decay constant.

Because radioactive decay occurs at a known rate, it can be used as a clock

to measure the time since the decay started. If we know the initial amount of the

radioactive material 0 1 present in a sample, and the amount of the material Q left

2. I 2 Examples	 69

at the current time, we can solve fort in Equation (2-8) to determine hoAx long the

decay has been going on. The resulting equation is

tdc = - loge	(2-9)

Equation (2-9) has practical applications in many areas of science. For exam-

ple, archaeologists use a radioactive clock based on carbon 14 to determine the

time that has passed since a once-living thing died. Carbon 14 is continually taken

into the body while a plant or animal is living, so the amount of it present in the

body at the time of death is assumed to be known. The deca y constant A of carbon
14 is well known to be 0.00012097/year, so if the amount of carbon 14 remaining

now can be accurately measured, then Equation (2-9) can be used to determine

how long ago the living thing died. The amount of carbon 14 remaining as a func-

tion of time is shown in Figure 2.13.

Write a program that reads the percentage of carbon 14 remaining in a sample,

calculates the age of the sample from it, and prints Out the result with proper units.

Decay of Carbon 14

r	 I	 I	 -
0	 1000	 2000	 3000	 4000	 5000	 6000	 7000	 8000	 9000	 10000

Years

Figure 2.13 The radioactive decay of carbon 14 as a function of time. Notice that 50 percent of the
original carbon 14 is left after about 5730 years have elapsed.

100

90

80

70

' 60
C

50

' ::

20

10

70	 Chapter 2 MATLAB Basics

S0LLTION Our program must perform the following steps:

1. Prompt the user to enter the percentage of carbon 14 remaining in the sample.

2. Read in the percentage.

3. Convert the percentage into the fraction Qo

4. Calculate the age of the sample in years using Equation (2-9).

5. Write out the result, and stop.

The resulting code is shown below.

% scr
i
pt file: c14_date.m

% Purpose:
% To calculate the age of an organic sample from the
% percentage of the original carbon 14 remaining in

%	 the sample.

% Record of revisions:
Date	 Programmer	 Description of change

= = = =	 = = = = = = = = = = 	 =

%	 01/03/04	 S. J. Chapman	 Original code

%
% Define variables:

% age	 -- The age of the sample in years

% landa	 -- The radioactive decay constant for
carbon-14, in units of 1/years.

% percent	 -- The percentage of carbon 14 remaining
at the time of the measurement

% ratio	 -- The ratio of the carbon 14 remaining at
the time of the measurement to the

%	 original amount of carbon 14.

% Set decay constant for carbon-14
landa = 0.00012097;

% Prompt the user for the percentage of C-14 remaining.
percent = input('Enter the percentage of carbon 14 remaining:\n

% Perform calculations
ratio = percent / 100;	 % Convert to fractional ratio

age = (-1.0 / landa) * log(ratio); % Get age in years

% Tel the user about the age of the sample.
string = ['The age of the sample is num2str(age) 	 years.'];

dispstring)

2.13 Debugging MATLAB Programs 11 71

To test the completed program, we will calculate the time it takes for half of
the carbon 14 to disappear. This time is known as the ha4-Ii/' of carbon 14.

c14 date
Enter the percentage of carbon 14 remaining:
50
The age of the sample is 5729.9097 years.

The CRC Handbook of Chemistry and Ph ysics states that the half-life of
carbon 14 is 5730 years, so output of the program agrees with the reference
book.

-.--	 lILY

2.13 Debugging MATLAB Programs

There is an old say ing that the only sure things in life are death and taxes. We
can add one more certainty to that list: if you write a program of any signifi-

cant size, it won't work the first time you try it! Errors in programs are known

as bugs, and the process of locating and eliminating them is known as debug-
ging. Given that we have written a program and it is not working, how do we
debug it?

Three types of errors are found in MATLAB programs. The first type of error
is a syntax error. Syntax errors are errors in the MATLAB statement itself, such

as spelling errors or punctuation errors. These errors are detected by the MAT-

LAB compiler the first time an M-file is executed. For example, the statement

x = (y + 3) / 2);

contains a syntax error because it has unbalanced parentheses. If this statement
appears in an M-file named test .m, the following message appears when test
is executed.

>' test
??? x = (y + 3) / 2)

Missing operator, comma, or semi-colon.

Error in ==> d:\book\matlab\chapl\testm
On line 2 ==>

The second type of error is the run-time error. A run-time error occurs
when an illegal mathematical operation is attempted during program execution

(for example, attempting to divide by 0). These errors cause the program to return
In or NaN, which is then used in further calculations. The results of a program
that contains calculations using Inf or NaN are usually invalid.

72	 Chapter 2 NIATLAB Basics

The third type of error is a logical error. Logical errors occur when the pro-

gram compiles and runs successfully but produces the wrong answer.

The most common mistakes made during programming are ripographical

errors. Some typographical errors Create invalid MATLAB statements. These errors

produce syntax errors that are caught by the compiler. Other typographical

errors occur in variable names. For example, the letters in some variable names

might have been transposed, or an incorrect letter might be typed. The result will

be a new variable, and MATLAB simply creates the new variable the first time

that it is referenced. MATLAB cannot detect this type of error. Typographical

errors can also produce logical errors. For example, if variables veil and ve12

are both used for velocities in the program, then one of them might be inadver-

tently used instead of the other one at some point. You must check for that sort of

error by manually inspecting the code.
Sometimes a program will start to execute, but run-time errors or logical

errors occur during execution. In this case, there is either something wrong

with the input data or something wrong with the logical structure of the pro-

gram. The first step in locating this sort of bug should be to check the input

data to the program. Either remove semicolons from input statements or add

extra output statements to verify that the input values are what you expect them

to be.

If the variable names seem to be correct and the input data is correct, then

you are probably dealing with a logical error. You should check each of your

assignment statements.

1. If an assignment statement is very long, break it into several smaller

assignment statements. Smaller statements are easier to verify.

2. Check the placement of parentheses in your assignment statements. It is a

very common error to have the operations in an assignment statement

evaluated in the wrong order. If you have any doubts as to the order in

which the variables are being evaluated, add extra sets of parentheses to

make your intentions clear.
3. Make sure that you have initialized all of your variables properly.

4. Be sure that any functions you use are in the correct units. For example,

the input to trigonometric functions must be in Units of radians, not

degrees.

If you are still getting the wrong answer, add output statements at various
points in your program to see the results of intermediate calculations. If you can

locate the point where the calculations go bad, then you know just where to look

for the problem, which is 95 percent of the battle.
If you still cannot find the problem after taking all of these steps, explain

what you are doing to another student or to your instructor, and let them look at

the code. It is very common for people to see just what they expect to see when

they look at their own code. Another person can often quickly spot an error that

you have overlooked time after time.

2. 14 Summary	 73

To reduce your debugging effort, make sure that during your program design
you:

I. Initialize all variables.

2. Use parentheses to make the functions of assignment statements clear.

MATLAB includes a special debugging tool called a simholic debugger. A
symbolic debugger is a tool that allows you to walk through the execution of your

program one statement at a time, and to examine the values of any variables at

each step along the way. Symbolic debuggers allow you to see all of the interme-

diate results without having to insert a lot of output Statements into your code. We
will learn how to use MATLAB's symbolic debugger in Chapter 3.

2.14 Summary

In this chapter, we have presented many of the fundamental concept.s required to

write functional MATLAB programs. We learned about the basic types of MATLAB

windows, the workspace, and how to get on-line help.

We introduced two data types: double and char. We also introduced

assignment Statements, arithmetic calculations, intrinsic functions, input/output
statements, and data files.

The order in which MATLAB expressions are evaluated follows a fixed hier-

archy, with operations at a higher level evaluated before operations at lower lev-
els. The hierarchy of operations is summarized in Table 2.12.

The MATLAB language includes an extremely large number of built-in func-
tions to help us solve problems. This list of functions is much richer than the list
of functions found in other languages like Fortran or C, and it includes device-

independent plotting capabilities. A few of the common intrinsic functions are

Table 2.12 Hierarchy of Operations

Precedence	 Operation
1	 The contents of alt parentheses are e\aluated, starting from the

innermost parentheses and working outward.

2	 All exponentials are evaluated. working from left to right.

3	 All multiplications and divisions are evaluated. orkin g from left
to right.

4	 All additions and subtractions are ealuated. working from left to
right

74	 Chapter 2 MATLAB Basics

summarized in Table 2.8, and many others will be introduced throughout the

remainder of the book. A complete list of all MATLAB functions is available

through the on-line Help Browser.

Summary of Good Programming Practice

Every MATLAB program should be designed so that another person who is

familiar with MATLAB can easily understand it. This is very important, since a

good program may be used for a long period of time. Over that time, conditions

will change, and the program will need to be modified to reflect the changes. The

program modifications may be done by someone other than the original pro-
grammer. The programmer making the modifications must understand the origi-

nal program well before attempting to change it.
It is much harder to design clear, understandable, and maintainable programs

than it is to simply write programs. To do so, a programmer must develop the dis-

cipline to properly document his or her work. In addition, the programmer must

be careful to avoid known pitfalls along the path to good programs. The follow-

ing guidelines will help you to develop good programs:

I. Use meaningful variable names whenever possible. Use names that can be

understood at a glance, like day, month, and year.

2. Create a data dictionary for each program to make program maintenance

easier.

3. Use only lower-case letters in variable names, so that there won't be errors

due to capitalization differences in different occurrences of a variable

name.

4. Use a semicolon at the end of all MATLAB assignment statements to sup-

press echoing of assigned values in the command window. If you need to

examine the results of a statement during program debugging, you may

remove the semicolon from that statement only.

5. If data must be exchanged between MATLAB and other programs, save the

MATLAB data in ASCII format. If the data will be used only in MATLAB,

save the data in MAT-file format.

6. Save ASCII data files with a "dat" file extent to distinguish them from

MAT-files, which have a "mat" file extent.

7. Use parentheses as necessary to make your equations clear and easy to

understand.

8. Always include the appropriate units with any values that you read or

write in a program.

MATLAB Summary
The following summary lists all of the MATLAB special symbols, commands,

and functions described in this chapter, along with a brief description of each

one.

2.14 Summary	 75

Special Symbols

Array constructor

Forms subscripts

Marks the limits of a character string

Comma, separates subscripts or matrix elements

I. Suppresses echoing in command window
2. Separates matrix rows
3. Separates assignment statements on a line

Marks the beginning of a comment

Colon operator, used to Create shorthand lists

+	 Array and matrix addition

-	 Array and matrix subtraction

*	 Array multiplication

*	 Matrix multiplication

• /	 Array right division

\	 Array left division

/	 Matrix right division

\	 Matrix left division

Array exponentiation

•	 Transpose operator

Commands and Functions

• • •	 Continues a MATLAB statement on the following line.

abs (x)	 Calculates the absolute value of x

ans	 Default variable used to store the result of expressions not assigned to another variable

acos (x)	 Calculates the inverse cosine ofx. The resulting angle is in radians between 0 and it.

as in (x)	 Calculates the inverse sine of x. The resulting angle is in radians between —r,2
and ,r/2.

atan (x)	 Calculates the inverse tangent of x. The resulting angle is in radians between - 7r/2
and ,r/2.

atan2 (y, x)	 Calculates the inverse tangent of;/x. valid over the entire circle. The resulting angle is
in radians between - ir and Jr.

ceil (x)	 Rounds x to the nearest integer towards positive infinity: floor (3.1) 	 4 and
floor (-3.1) = -3.

(continued

76	 Chapter 2 MATLAB Basics

Commands and Functions (Continued)

Converts a matrix of numbers into a character string. For ASCII characters the matrix

should contain numbers 	 127.

rlck

x)

C

isp

C

dcble

epa

ext(x)

eye (n, m)

fix (x)

floor (x)

format +

format bank

format compact

format hex

format long

format long e

format long g

format loose

format rat

format short

format short e

format short g

fprintf

grid

i

Inf

inpot

intlstr

legend

lenth (arr)

Current time

Calculates cosine of x, where x is in radians.

Current date

Displays data in command window

Open HTML Help Browser directly at a particular function description.

Converts a character string into a matrix of numbers.

Represents machine precision	 -

Calculates e

Generates an identity matrix

Rounds to the nearest integer towards zero: fix (3 .1) = 3 and fix (-3.1) = -3.

Rounds x to the nearest integer towards minus infinity: floor (3 .1) = 3 and

floor(-3.1) =-4.

Print + and - signs only

Print in "dollars and cents" format

Suppress extra linefeeds in output

Print hexadecimal display of bits

Print with 14 digits after the decimal

Print with 15 digits plus exponent

Print with IS digits with or without exponent

Print with extra linefeeds in output

Print as an approximate ratio of small integers

Print with 4 digits after the decimal

Print with 5 digits plus exponent

Print with 5 digits with or without exponent

Print formatted information

Add/remove a grid from a plot

Represents machine infinity ()

Writes a prompt and reads a value from the keyboard

Converts x into an integer character string.

-I

Adds a legend to a plot

Returns the length of a vector, or the longest dimension of a 2-13 array.

2.15	 Exercises	 77

Commands and Functions (Continued)

load	 Load data from a file

log (x)	 Calculates the natural logarithm of-v,

loglog	 Generates a log-log plot

lookfor	 Look for a matching term in the one-line MATLAB function descriptions.

max (x)	 Returns the maximum value in vector x. and optionally the location of that value

mm (x)	 Returns the minimum value in vector x. and optionally the location of that value

mod In, ml	 Remainder or modulo function.

NaN	 Represents not-a-number

num2str (x)	 Converts into a character string.

ones (ri, In)	 Generates an array of ones

pi	 Represents the number it

plot	 Generates a linear xv plot

print	 Prints a Figure window

round (x)	 Rounds x to the nearest integer

save	 Saves data from workspace into a file

semilogx	 Generates a log-linear plot

semilogy	 Generates a linear-log plot

sin(x)	 Calculates sine ofx, where is in radians.

size	 Get number of rows and columns in an array

sqrt	 Calculates the square root of a number

str2nuin	 Converts a character string into a number

tan (x)	 Calculates tangent of x, where xis in radians.

title	 Adds a title to a plot

zeros	 Generate an array of zeros

2.15 Exercises

2.1 Answer the following questions for the array shown below.

0.0	 1.1	 —6.6	 2.8 3.4
arrayl =
	 2.1 0.1	 0.3 —0.4 1.3

	

—1.4 5.1	 0.0

(a) What is the size of arrayl?

(b) What is the value of arrayl (4,1) °

78	 Chapter 2 MATLAB Basics

(c) What is the size and value of arrayl (: , 1 : 2)?

(d) What is the size and value of arrayl ([1 31 ,end)?

2.2 Are the following MATLAB variable names legal or illegal? Why?

(a)dogl
(b)idog
(c)Do_you_know_the_Way_to_San_jose

(d)_help
(e)What's—up?

2.3 Determine the size and contents of the following arrays. Note that the

later arrays may depend on the definitions of arrays defined earlier in

this exercise.

(a) a = 1:2:5;
(b) b = [a	 a' a'];
(c)c=b(1:2:3..1:2:3);

(d) d = a + b(2,:);
(e) w = [zeros(1,3) ones(3,1) 	 3:5'1;

(f)b([1 3],2) = b([3 1],2);

2.4 Assume that array arrayl is defined as shown, and determine the con-

tents of the following sub-arrays:

	

r 1.1	 0.0

I	 0.0	 1.1
arrayl = I

	

2.1	 0.1

[-1.4 5.1

(a)arrayl(3,
(b)arrayl(:,3)
(c)arrayl(1:2:3, [3 3 4])
(d)arrayl ([1 11

2.1 —3.5 6.0

	

—6.6	 2.8 3.4

0.3 —0.4 1.3

	

0.0	 1.1 0.0

2.5 Assume that value has been initialized to lWr, and determine what is

printed out by each of the following statements.

disp (['value =	 num2str(value)]);
disp (['value = ' int2str(value)]);
fprintf('value = %e\n' ,value);
fprintf('value = %f\n ,value);
fprintf('value = %g\n' ,value);
fpriritf(value = %12.4f\n',value);

2.6 Assume that a, b. c, and dare defined as follows, and calculate the results

of the following operations ifthey are legal. Han operation is. explain why

it is illegal.

2.15	 Exercises	 79

	

[2-21	
-1]

	

aL i 	2]	 b=L	 2

	c =
	

d = eye(2)

(a)result = a +
(b)result = a *
(c)result = a *
(d)result = a * C;

(e)result = a .	 C;

(f)result = a \ b;

(g)result = a .\ b;

(h)result = a	 b;

2.7 Evaluate each of the following expressions.

(a) 11 / 5 + 6

(b) (11 / 5) + 6

(c)11 / (5 + 6)

(d) 3	 2	 3
(e) 3	 (2	 3)
(f) (3	 2)	 3
(g)round(-11/5) 4- 6

(h)ceil(-11/5) + 6

(i)floor(-11/5) + 6

2.8 Use MATLAB to evaluate each of the following expressions.

(a) (3 - 5i)(-4 + 61)

(b) cos1(1.2)

2.9 Solve the following system of simultaneous equations for x:

	

-2.0 x1 + 5.0 x2 + 1.0 x 3 + 3.0 x 4 + 4.0 x. - 1.0 x. =	 0.0

	

2.0 x1 - 1.0 x2 - 5.0 x3 - 2.0 x4 + 6.0 x. + 4.0 X =	 1.0
-l.0x 1 + 6.0 x, - 4.0 x, - 5.0x 4 + 3.0 x. - 1.0 x. = -6.0

4.0 x1 + 3.0 x2 - 6.0 x3 - 5.0 x, - 2.0 x. - 2.0 x. = :0.0
-3.0 x. ± 6.0 x + 4.0x + 2.0x, - 6.0 x. + 4.0x = -6.0

2.0 x1 + 4.0 x2 + 4.0 x3 + 4.0 x. + 5.0 x. - 4.0 x. = - 2.0

2.10 Position and Velocity of a Ball If a stationary ball is released at a height

h, above the surface of the Earth with a vertical velocit y v, the pcsitton

and velocity of the ball as a function of time will be given by the equations

	

/i (t) =	 gt 2 + vof	 (2-10

I (t) = gt + 1-0	 2-11

v2)

V

80	 Chapter 2 MATLAB Basics

where g is the acceleration due to gravity (-9.l m/s). h is the height

above the surface of the Earth (assuming no air friction), and v is the ver-

tical component of velocity. Write a MATLAB program that prompts a

user for the initial height of the ball in meters and velocity of the ball in

meters per second, and plots the height and velocity as a function of time.

Be sure to include proper labels in your plots.

2.11 The distance between two points (x 1 , y) and (x, i') on a Cartesian coor-

dinate plane is given by the equation

d =	 - x,) 2 + (y	 Y2)	 (2-12)

I

Figure 2,14 Distance between two points on a Cartesian plane.

(See Figure 2.14.) Write a program to calculate the distance between any

two points (x y 1) and (x2, y ,) specified by the user. Use good programming

practices in your program. Use the program to calculate the distance

between the points (2, 3) and (8, —5).

2.12 Decibels Engineers often measure the ratio of two power measurements in

decibels, or dB. The equation for the ratio of two power measurements in

decibels is

P.,
dB = 101og 11	(2-13)

where P., is the power level being measured, and P is some reference

power level.

(a) Assume that the reference power level P 1 is I milliwatt, and Write a

program that accepts an input power P and converts it into dB with

respect to the I mW reference level. (Engineers have a special unit

for dB power levels with respect to a I rnW reference: dBm.) Use

good programming practices in your program.

2.15	 Exercises	 81

(b) Write a program that Creates a plot of power in watts versus pwer ir
dBm with respect to a I mW reference levd. Create both a liiar x
plot and a log-linear xv plot.

2.13 Hyperbolic cosine The hyperbolic cosine function is defined by the equation

cosh =
	 2	

(2-14

Write a program to calculate the hyperbolic cosine of a user-supplied value
x. Use the program to calculate the hyperbolic cosine of 3.0. Compare the
answer that your program produces io the answer produced by the MAT-
LAB intrinsic function cosh (x). Also, use MATLAB to plot the function
cosh (x). What is the smallest value that this function can have? At what
value of x does it occur?

2.14 Energy Stored in a Spring The force required to compress a linear spring
is given by the equation

F = kx	 (2-15)

where F is the force in newtons and k is the spring constant in newtons per
meter. The potential energy stored in the compressed spring is given by.
equation

Spring I	 Spring 2	 Spring 3	 Spring 4

Force (N)	 20	 24	 22	 20
Spring constant k (N/rn)	 500	 600	 700	 800

E = kx 2	 (2-16)

where E is the energy in joules. The following information is available for
four springs:
Determine the compression of each spring, and the potential energy stored
in each spring. Which spring has the most energy stored in it?

2.1S Radio Receiver A simplified version of the front end of an
AM

radioradio receiver
is shown in Figure 2.15. This receiver consists of an RLC tuned circuit con-
taining a resistor, capacitor, and an inductor connected in series. The RLC cir-
cuit is connected to an external antenna and ground as shown in the picture.

The tuned circuit allows the radio to select a specific station out of all
the stations transmitting on the AM band. At the resonant frequency of the
circuit, essentially all of the signal V0 appearin g at the antenna appears
across the resistor, which represents the rest of the radio. In other words.
the radio receives its strongest signal at the resonant frequency. The reso-
nant frequency of the LC circuit is given by the equation

+

VR

82	 Chapter 2 MATLAB Basics

	

Antenna T
	

C

Ground -

Figure 2.15 A simplified version of the front end of an AM radio receiver.

Jo	 2,VT	
(2-17)

where L is inductance in henrys (H) and C is capacitance in farads (F).

Write a program that calculates the resonant frequency of this radio set

given specific values of L and C. Test your program by calculating the fre-

quency of the radio when L = 0.1 mH and C = 0.25 nF.

2.16 Radio Receiver The voltage across the resistive load in Figure 2.15 vanes

as a function of frequency according to Equation (2-18).

R
VR =	 (2-18)

R2+(L)

where w = 2vf and f is the frequency in hertz. Assume that L = 0.1 mH,

C = 0.25 nF, R = 50 fl, and V0 = 10 rnV

(a) Plot the voltage on the resistive load as a function of frequency. At

what frequency does the voltage on the resitive load peak? What is

the voltage on the load at this frequency? This frequency is called

the resonant frequency Jo of the circuit,

(b) If the frequency is changed to 10 percent greater than the resonant

frequency, what is the voltage on the load? How selective is this

radio receiver?

(c) At what frequencies will the voltage on the load drop to half of the

voltage at the resonant frequency?

2. 15	 Exercises	 1 83

.7" ------------

 1

/

Figure 2.16 An object moving in uniform circular motion due to the centripetal acceleration a.

2.17 Suppose that two signals were received at the antenna of the radio receiv-
er described in the previous problem. One signal has a strength of I V at
a frequency of 1000 kHz, and the other signal has a strength of I Vat 950

kHz. How much power will the first signal supply to the resistive load R?

How much power will the second signal supply to the resistive load R?

Express the ratio of the power supplied by signal Ito the power supplied
by signal 2 in decibels. How much is the second signal enhanced or sup-
pressed compared to the first signal?

2.18 Aircraft Turning Radius An object moving in a circular path at a con-

stant tangential velocity v is shown in Figure 2.16. The radial acceleration
required for the object to move in the circular path is given by the

Equation (2-19)

a =	 (2-19)

where a is the centripetal acceleration of the object in rn/s 1 , v is the tan-

gential velocity of the object in m /s, and r is the turning radius in meters.
Suppose that the object is an aircraft, and answer the following questions

about it:

(a) Suppose that the aircraft is moving at Mach 0.85. or 85% of the
speed of sound. If the centripetal acceleration is 2 g, what is the
turning radius of the aircraft? (Note: For this problem, you may
assume that Mach I is equal to 340 ms, and that 1	 = 9.8l rn/s).

(b) Suppose that the speed of the aircraft increases to Mach IS. What is
the turning radius of the aircraft now?

84	 Chapter 2 NIATLAB Basics

(c) Plot the turning radius as a function of aircraft speed for speeds
between Mach 0.5 and Mach 2.0, assuming that the acceleration
remains 2 g.

(d) Suppose that the maximum acceleration that the pilot can stand is 7 g.
What is the minimum possible turning radius of the aircraft at Mach
1.5?

(e) Plot the turning radius as a function of centripetal acceleration for
accelerations between 2 g and 8 g, assuming a constant speed of
Mach 0.85.

CHAPTER 3
Branching
Statements and
Program Design

In the previous chapter, we developed several complete working MATLAB pro-
grams. However, all of the programs were very simple, consisting of a series of
MATLAB statements that were executed one after another in a fixed order. Such
programs are called sequential programs. They read input data, process it to pro-
duce a desired answer, print out the answer, and quit. There is no way to repeat
sections of the program more than once, and there is no way to selectively exe-
cute only certain portions of the program depending on values of the input data.

In the next two chapters, we will introduce a number of MATLAB state-
ments that allow us to control the order in which statements are executed in a
program. There are two broad categories of control statements: branches,
which select specific sections of the code to execute, and loops, which cause
specific sections of the code to be repeated. Branches will be discussed in this
chapter, and loops will be discussed in Chapter 4.

With the introduction of branches and loops, our programs are going to
become more complex, and it will get easier to make mistakes. To help avoid
programming errors, we will introduce a formal program design procedure
based on the technique known as top-down design.We will also introduce a com-
mon algorithm development tool known as pseudocode.

3.1 Introduction to Top-Down Design Techniques

Suppose that you arc an engineer working in industry, and that you need to write

a program to solve some problem. How do you begin?
When given a new problem, there is a natural tendency to sit down at a key-

board and Start programming without "wasting" a lot of time thinking about the

85

86	 Chapter 3 Branching Statements and Program Design

problem first. It is often possible to get away with this "on the fl y" approach to

programming for very small problems, such as many of the examples in this book.

In the real world however, problems are larger. and a programmer attempting this

approach will become hopelessly bogged down. For larger problems. it pays to

completely think out the problem and the approach you are going to take to it

before writing a single line of code.

We will introduce a formal program design process in this section, and then

apply that process to every major application developed in the remainder of the

book. For some of the simple examples that we will be doing, the design process

will seem like overkill. However, as the problems that we solve get larger and larger,

the process becomes more and more essential to successful programming.

When I was an undergraduate, one of my professors was fond of saying,

"Programming is easy. It's knowing what to program that's hard." His point was

forcefully driven home to me after I left university and began working in industry on

larger-scale software projects. I found that the most difficult part of my job was to

understand the problem I was trying to solve. Once! really understood the problem,

it became easy to break the problem apart into smaller, more easily manageable

pieces with well-defined functions, and then to tackle those pieces one at a time.

Top-down design is the process of starting with a large task and breaking it

down into smaller, more easily understandable pieces (sub-tasks) which perform

a portion of the desired task. Each sub-task may in turn be subdivided into smaller

sub-tasks if necessary. Once the program is divided into small pieces, each piece

can be coded and tested independently. We do not attempt to combine the sub-

tasks into a complete task until each of the sub-tasks has been verified to work

properly by itself.

The concept of top-down design is the basis of our formal program design

process. We will now introduce the details of the process, which is illustrated in

Figure 3.1. The steps involved are:

Clearly state the problem that you are Irving to solve.
Programs are usually written to fill some perceived need, but that need

may not be articulated clearly by the person requesting the program. For

example, a user may ask for a program to solve a system of simultaneous

linear equations. This request is not clear enough to allow a programmer

to design a program to meet the need; he or she must first know much

more about the problem to be solved. Is the system of equations to be

solved real or complex? What is the maximum number of equations and
unknowns that the program must handle? Are there any symmetries in the

equations which might be exploited to make the task easier? The program

designer will have to talk with the user requesting the program, and the

two of them will have to come up with a clear statement of exactly what

they are trying to accomplish. A clear statement of the problem will prevent

misunderstandings, and it will also help the program designer to properly

organize his or her thoughts. In the example we were describing, a proper

statement of the problem might have been:

3.1 Introduction to Top-Down Design Techniques 	 87

Start

State the problem you
are trying to solve

Define required inputs
and outputs

Decomposition

Design the algorithm

Stepwise refinement

Convert algorithm into
Fortran statements	 I	 Top-down design process

Test the resulting
Fortran program

Finished!

Figure 3.1 The program design process used in this book.

Design and write a program to solve a system of simultaneous linear

equations having real coefficients and with up to 20 equations in 20.

unknowns.

2. Define the inputs required by the program and the ou tputs 1(1 he P ro -

duced b y the program.
The inputs to the program and the outputs produced by the program must

he specified so that the new program will properly fit into the overall

88	 Chapter 3 Branching Statements and Program Design

processin g, scheme. III above example, theLOeffICICLIts of the equa-
tions to be solved are probably in some pre-existing order, and our new
program needs to be able to read them in that order. Similarl', it needs to
produce the answers required by the programs that may follow it in the
overall processing scheme, and to write out those answers in the format
needed by the programs following it.

3. Design thc algo;itlini that lou intend to implement in the pu gram.

An algorithm is a step-by-step procedure for finding the solution to a
problem. it is at this stage in the process that top-down design techniques
come into play. The designer looks for logical diN isions within the prob-
1cm, and divides it up into sub-tasks along those lines. This process is
called decomposition. If the sub-tasks are themselves large. the designer
can break them up into even smaller sub-sub-tasks. This process contin-
ues until the problem has been divided into many small pieces, each of
which does a simple, clearly understandable job.

After the problem has been decomposed into small pieces, each
piece is further refined through a process called stepwise refinement. In
stepwise refinement, a designer starts with a general description of what
the piece of code should do, and then defines the functions c ;e piece
in greater and greater detail until they are specific enough to be turned
into MATLAB statements. Stepwise refinement is usually done with
pseudocode, which will be described in the next section.

It is often helpful to solve a simple example of the problem by hand
during the algorithm development process. If the designer understands the
steps that he or she went through in solving the problem by hand, then he
or she will be in better able to apply decomposition and stepwise refine-
ment to the problem.

4. Turn the algorithm into AL4TLAB statements.

If the decomposition and refinement process was carried Out properly, this
step will be very simple. All the programmer will have to do is to replace
pseudocode with the corresponding MATLAB statements on a one-for-one
basis.

Test the resulting 1IATLAB program.
This step is the real killer. The components of the program must first
be tested individually, if possible, and then the program as a whole
must be tested. When testing a program, we must verify that it works
correctly for all legal input data sets. It is very common for a program
to be written, tested with some standard data set, and released for use,
onl y to find that it produces the wrong answers (or crashes) with a dif-
ferent input data set. If the algorithm implemented in a program
includes different branches, we must test all of the possible branches
to confirm that the program operates correctly under every possible
circumstance.

3.1 Introduction to Top-Down Design Techniques 	 89

Large programs typically go through a series of tests before they are released

for general use (see Figure 3.2). The first stage of testing is sometimes called unit

testing. During Unit testing, the individual sub-tasks of the program are tested

separately to confirm that they work correctly. After the unit testing is complet-

ed, the program goes through a series of builds during which the individual sub-

tasks are combined to produce the final program. The first build of the program

Start

Unit testing of

individual subtasks

Subtasks validated separately

Successive builds

(adding subtasks to the D As many times as necessary

program)

Subtasks combined into program

Alpha release	 I) As many times as necessary.

Worst bugs fixed

Beta release	 I) As many times as necessary

Minor bugs fixed

Finished program

Figure 3.2 A typical testing process for a large program.

L

90	 Chapter 3 Branching Statements and Program Design

typically includes only a few of the sub-tasks. It is used check the interactions
among those sub-tasks and the functions performed by the combinations of the sub-
tasks. In successive builds, more and more sub-tasks are added, until the entire
program is complete. Testing is performed on each build, and any errors (bugs)
that are detected are corrected before moving on to the next build.

Testing continues even after the program is complete. The first complete ver-
sion of the program is usually called the alpha release. It is exercised by the pro-
grammers and others very close to theni in as many different ways as possible,
and the bugs discovered during the testing are corrected. When the most serious
bugs have been removed from the program, a new version called the beta release
is prepared. The beta release is normally given to "friendly" outside users who
have a need for the program in their normal day-to-day jobs. These users put the
program through its paces under many different conditions and with many differ-
ent input data sets, and they report any bugs that they find to the programmers.
When those bugs have been corrected, the program is ready to be released for
general use.

Because the programs in this book are fairly small, we will not go through
the Sort of extensive testing described above. However, we will follow the basic
principles in testing all of our programs.

The program design process may be summarized as follows:

1. Clearly state the problem that you are trying to solve.
2. Define the inputs required by the program and the outputs to be produced

by the program.
3. Design the algorithm that you intend to implement in the program.
4. Turn the algorithm into MATLAB statements.
5. Test the MATLAB program.

Follow the steps of the program design process to produce reliable, understand-
able MATLAB programs.

In a large programming project, the time actually spent programming is sur-
prisingly small. In his book The Mythical Man-Month' , Frederick P. Brooks, Jr.
suggests that in a typical large software project, 1/3 of the time is spent planning
what to do (steps I through 3). 1/6 of the time is spent actually writing the program
(step 4), and fully 1/2 of the time is spent in testing and debugging the program!
Clearly, anything that we can do to reduce the testing and debugging time will be
very helpful. We can best reduce the testing and debugging time by doing a very

T/,tf,thjca/ f -%fon p/, Anniversan Edition, by Frederick P. Brooks Jr.. Addison-Wesley, 1995.

3.3 The Logical Data Type 1 1 9 I

careful job in the planning phase, and by using good programming prances. Good
programming practices will reduce the number of bugs in the program, and will
make the ones that do creep in easier to find.

3.2 Use of Pseudocode

As a part of the design process, it is necessary to describe the algorithm that you
intend to implement. The description of the algorithm should be in a standard
form that is easy for both you and other people to understand, and the description
should aid you in turning your concept into MATLAB code. The standard forms
that we use to describe algorithms are called constructs (or sometimes structures),
and an algorithm described using these constructs is called a structured algorithm.
When the algorithm is implemented in a MATLAB program, the resulting pro-
gram is called a structured program.

The constructs used to build algorithms can be described - in a special way
called pseudocode. Pseudocode is a hybrid mixture of MATLAB and English. It
is structured like MATLAB, with a separate line for each distinct idea or segment
of code, but the descriptions on each line are in English. Each line of the
pseudocode should describe its idea in plain, easily understandable English.
Pseudocode is very useful for developing algorithms, since it is flexible and easy
to modify. It is especially useful since pseudocode can be written and modified
with the same editor or word processor used to write the MATLAB program—no
special graphical capabilities are required.

For example, the pseudocode for the algorithm in Example 2.3 is:

Prompt user to enter temperature in degrees Fahrenheit
Read temperature in degrees Fahrenheit (temp_f)
temp_k in kelvins < (5/9) * (temp_f — 32) + 273.15
Write temperature in kelvins

Notice that a left arrow (<—) is used instead of an equal sign () to indicate that
a value is stored in a variable, since this avoids any confusion between assignment
and equality. Pseudocode is intended to aid you in organizing your thoughts
before converting them into MATLAB code.

3.3 The Logical DataType

The logical data type 2 is a special type of data that can have one of onl y two

possible values: true or false. These values are produced by the two special

functions true and false. They are also produced by two types of MATLAB
operators: relational operators and logic operators.

The logical data t ype was introduced in MATI.AB 65.

92	 Chapter 3 Branching Statements and Program Design

Logical values are stored in a single byte of memory, so they take up much
less space than numbers, which usuall y occupy 8 bytes.

The operation of many MATLAB branching constructs is controlled by logical
variables or expressions. If the result of a variable or expression is tnie, then one
section of code is executed. If not, then a different section of code is executed.

To create a logical variable, just assign a logical value it to in an assign-
ment statement. For example, the statement

al = true;

creates a logical variable al containing the logical value true. If this variable is
examined with the wtios command, we can see that it has the logical data type:

whos al
Name	 Size 'Bytes Class
al	 lxi	 1	 logical array

Unlike programming languages such as Java, C++, and Fortran, it is legal in
MATLAB to mix numerical and logical data in expressions. If a logical value is used
in a place where a numerical value is expected, true values are converted to I and
false values are converted to 0, and then used as numbers. If a numerical value
is used in a place where a logical value is expected, non-zero values are converted
to true and 0 values are converted to false, and then used as logical values.

It is also possible to explicitly convert numerical values to logical values, and
vice versa. The logical function Converts numerical data to logical data, and the
real function converts logical data to numerical data.

Relational Operators

Relational operators are operators with two numerical or string operands that
yield a logical result, depending on the relationship between the two operands.
The general form of a relational operator is

a1 op a,

where a 1 and a, are arithmetic expressions, variables, or strings, and op is one of
the following relational operators:

Table 3.1 Relational Operators

Operator	 Operation

==	 Equal to
Not equal to

>	 Greater than
> =	 Greater than or equal to

Less than
Less than or equal to

3.3 The Logical Data Type 	 93

If the relationship between a 1 and a, expressed by the operator is true, then

the operation returns a true value; otherwise, the operation returns false.

Some relational operations and their results are given below:

Operation	 Result

3 < 4	 true l)

3 <= 4	 true (1)

3 == 4	 false 101

3 > 4	 false (0)

4 <= 4	 true (1)

A < '3'	 true (1)

The last relational operation is true because characters are evaluated in alphabet-

ical order.
Note that both true and 1 are shown as the result of true operations, and

both false and 0 are shown as the result of false operations. MATLAB is a bit

schizophrenic about how the results of logical operations are displayed. When a

relational operator is evaluated in the Command Window, the result of the opera-

tion will be displayed as a 0 or 1. When it is displayed in the Workspace Brower,

the same value will be show as false or true (see Figure 3.3).

Relational operators may be used to compare a scalar value with an array. For

example, if =1	 0 and = 0, then the expression a> b will yield the

[false

true falsel	 ri	
in the Command

ol
logical array	 I(shown as I	 Vvindow).

	

 true J	 [0 lJ

Relational operators may also be used to compare two arrays, as long as both

1
-2lolro

arrays have the same size. For example. if a = 	
I] and

b = [2 -

[

true false
then the expression a >= b will yield the logical array 	 I (shown

true true J

as [I
01 in the Command Window). if the arrays have different sizes, a run-

time error will result.
Note that since strings are really arrays of characters, relational operators

call on/l' compare Iwo strings if the y are of equal lengths. If they are of unequal

lengths, the comparison operation xviii produce all We will learn of a more

general way to compare strings in Chapter 6.
The equivalence relational operator is written with two equal signs. \vhlIc the

assignment operator is written with a single equal sign. These are very ditrent oper-

ators that brginning programmers often confuse. The == symbol is a comparison

operation that returns a logical result, while the = symbol assigns the alue of the

94 11 Chapter 3 Branching Statements and Program Design

Fe Edt DeUig Desktop Wndow H,	 --
L2	 ^'	 (° C.eD.,oO,y	 IIlJEi
Shoriculs	 How to Add	 -

_-

ti	

,	 ,!nrnIvcir,.r.

J
Nrne 	 C t4 A T I	 S

	

1)0 •C	 cyg' 1°34-	 4 TI' Mo''d ro'.

	

Vot OCt 7.0.C.14 -3	 P14	 ioo)'r

February 23, 2004

F-joreni

1:omInflJ History	 p x

it	 1

10 Og Toolbox Oath Cethe. 'lyre 'help toolbox path cathe'

T.' get started, selert 'MATLAB Help' from the Help menu.

result = 10 ,- 5
rosuit

LI
Or

Figure 3.3 The result of a relational operator is a true or false value that can be stored in a
logical variable. In the example shown here, the result of the operator 10 > 5 is
displayed as a I on the Command Window and as a true in the Workspace Browser,

expression to the right of the equal sign to the variable on the left of the equal

sign. It is a very common mistake for beginning programmers to use a single
equal sign when trying to do a comparison.

Be careful not to confuse the equivalence relational operator (=-) v ith the
assignment operator (=).

In the hierarchy of operations, relational operators are evaluated after all
arithmetic operators have been evaluated. Therefore, the following two expres-
sions are equivalent (both are true).

7 + 3 < 2 + 11

(7 + 3) < (2 + 11)

3.3 The Logical Data Type 1 95

A Caution About the == and -= Operators

The equivalence operator (==) returns a true value (1) when the two values

being compared are equal, and a false (0) when the two values being compared

are different. Similarly, non-equivalence operator (-=) returns a false (0) when

the two values being compared are equal, and a true (1) when the two values

being compared are different. These operators are generally safe to use for com-

paring strings, but they can sometimes produce surprising results when two

numeric values are compared. Due to roundoff errors during computer calcula-

tions, two theoretically equal numbers can differ slightly, causing an equality or

inequality test to fail.

For example, consider the following two numbers, both of which should be

equal to 0.0.

a = 0;
b = sin'(pi)

Since these numbers are theoretically the same, the relational operation a == b

should produce a I. In fact, the results of this MATLAB calculation are

>> a = 0;

>' b = sin(pi);
>> a == b

ans =
0

MATLAB reports that a and b are different because a slight roundoff error in

the calculation of sin (pi) makes the result be 1.2246 X 10-16 instead of

exactly zero. The two theoretically equal values differ slightly due to roundoff error!

Instead of comparing two numbers for exact equality, you should set up your

tests to determine if the two numbers nearly equal to each other within some

accuracy that takes into account the roundoff error expected for the numbers

being compared. The test

'> abs(a - b) < 1.OE-14
ans =

1

produces the correct answer, despite the roundoff errors in calculating a and b.

Be cautious about testing for equality with numeric values, since roundoff errors

may cause two variables that should be equal to fail a test for equality. Instead,

test to see if the variables are nearly equal within the roundoff error to be expected

on the computer you are working with.

96	 Chapter 3 Branching Statements and Program Design

Table 3.2 Logic Operators

Operator	 Operation

&	 Logical AND

&&	 Logical AND with shortcut evaluation

Logical Inclusive OR

I	 Logical Inclusive OR with shortcut evaluation

xor	 Logical Exclusive OR

Logical NOT

Logic Operators
Logic operators are operators with one or two logical operands that yield a logi-

cal result. There are five binary logic operators: AND (& and &&), inclusive OR

(I and I I), and exclusive OR (xor), and one unary operator: NOT (-). The gen-

eral form of a binary logic operation is

11 op 12

and the general form of a unary logic operation is

op lj

where 11 and 12 are expressions or variables, and op is one of the logic operators

shown in Table 3.2.

If the relationship between 1 and 1, expressed by the operator is true, then the op-

eration returns a value of true (displayed as 1 in the Command Window); oth-

erwise, the operation returns a value of false (0 in the Command Window).

The results of the operators are summarized in truth tables, which show the

result of each operation for all possible combinations of!, and 12 . Table 3.3 shows

the truth tables for all logic operators.

Logical ANDs
The result of an AND operator is true if an only if both input operands are true.

If either or both operands are false, the result is false, as shown in Table 3.3.

Note that there are two logical AND operators: && and &. Why are there two

AND operators, and what is the difference between them? The basic difference

between && and & is that && supports short-circuit evaluations (or partial evalua-

tions), while & doesn't. That is, && will evaluate expression i and immediately

return a false value if 1, is false. If 1 1 is false, the operator never evaluates

1,, because the result of the operator will be false regardless of the value of 1. In

contrast, the & operator always evaluates both 1 and 1, before returning an answer.

A second difference between && and & is that && only works between scalar

values, while & works with either scalar or array values, as long as the sizes of the

arrays are compatible.

3.3 The Logical Data Type 1 97

Table 3.3 Truth Tables for Logic Operators

Inputs	 and	 or	 xor	 not

11	 1.	 11 & 12	&& 1,	 11 I	 !,	 xor(I, I.)

false	 false	 false	 false	 false	 false	
false	 true

false	 true	 false	 false	 true	 true	 true	 true

true	 false	 false	 false	 true	 true	 true	 false

true	 true	 tree	 true	 true	 true	 false	 false

When should you use && and when should you use & in a program? Most of

the time, it doesn't matter which AND operation is used. If you are comparing

scalars, and it is not necessary to always evaluate 1 2 , then use the && operator. The

partial evaluation will make the operation faster in the cases where the first

operand is false.
Sometimes it is important to use shortcut expressions. For example, suppose

that we wanted to test for the situation where the ratio of two variables a and b is

greater than 10. The code to perform this test is:

x = a / b > 10.0

This code normally works fine, but what about the case where b is zero? In that

case, we would be dividing by zero, which produces an Inf instead of a number.

The test could be modified to avoid this problem as follows:

x = (b '= 0) && (a/b > 10.0)

This expression uses partial evaluation, so if b = 0, the expression a/b > 10. 0

will never be evaluated, and no Inf will occur.

Use the & AND operator if it is necessary to ensure that both operands are eval-

uated in an expression, or if the comparison is between arrays. Otherwise, use

the && AND operator, since the partial evaluation will make the operation faster

in the cases where the first operand is false. The & operator is preferred in

most practical cases.

Logical Inclusive ORS

The result ofan inclusive OR operator is true if either of the Input operands are

true. If both operands are false, the result is false, as shown in Table 3.3.

Note that there are two inclusive OR operators: I I and I . Why are there

two inclusive OR operators, and what is the difference between them? The basic

98 1 Chapter 3 Branching Statements and Program Design

difference between I I and I is that I I supports partial evaluations, while I doesn't.

That is, I I will evaluate expression l and immediately return a true value if l
is true. If 1, is true, the operator never evaluates 1,, because the result of the

operator will be true regardless of the value of l. In contrast, the I operator

always evaluates both l and 12 before returning an answer.

A second difference between I I and I is that I I only works between scalar

values, while I works with either scalar or array values, as long as the sizes of the

arrays are compatible.

When should you use J and when should you use I in a program? Most of

the time, it doesn't matter which OR operation is used. If you are comparing scalars,

and it is not necessary to always evaluate l,, use the I I operator. The partial evalua-

tion will make the operation faster in the cases where the first operand is true.

Good Programming Practice

are evaluated in an expression, or if the comparison is between arrays.

Otherwise, use the I I operator, since the partial evaluation will make the operation

faster in the cases where the first operand is true. The I operator is preferred

in most practical cases.

Logical Exclusive OR
The result of an exclusive OR operator is true if and only if one operand is

true and the other one is false. If both operands are true or both operands are

false, then the result is false, as shown in Table 3.3. Note that both operands

must always be evaluated in order to calculate the result of an exclusive OR.

The logical exclusive OR operation is implemented as a function. For example,

a = 10;
b = 0;
x = xor(a, h);

This result is true. The value of a is non-zero, so it will be converted to true.
The value of b is zero, so it will be converted to false. Therefore, the result of
the xor operation will be true.

Logical NOT

The NOT operator is a unary operator, having only one operand. The result of a

NOT operator is true if its operand is false, and false if its operand is
true, as shown in Table 3.3.

Using Numeric Data with Logic Operators

Real numeric data can also be use with logic operators. Since logic operators
expect logical input values, MATLAB converts non-zero values to true and zero

3.3 The Logical Data Type 	 99

values to false before performing the operation. Thus, the result of -5 is
false (0 in the Command Window) and the result of -0 is true (1 in the
Command Window).

Logic operators may be used to compare a scalar value with an array. For

example, if a =
[false

true false]
and b = false, then the expression true

1	 r €a & b will yield the	 rfalse false	result
Lfalse false]

(displayed as
Lo

o	
]

in the

Command Window). Logic operators may also be used to compare two arrays, as

	

[false	
llong as both arrays have the same size. For example, if

a =true false
 true J

true true
and	

= [false false]'
then the expression a i b will yield the result

true true

false true]
(displayed(displayed as [
	

] in the Command Window), If the
[

arrays have different sizes, a runtime error will result.

Logic operators may not be used with complex or imaginary numeric data.
For example, an expression such as "2i & 21" will produce an error when it is
evaluated.

Hierarchy of Operations
In the hierarchy of operations, logic operators are evaluated after all arithmetic
operations and all relational operators have been evaluated. The order in which
the operators in an expression are evaluated is:

1. All arithmetic operators are evaluated first in the order previously

described.

2. All relational operators (==, -=, >, >=, <, <=) are evaluated, working

from left to right.

3. All -. operators are evaluated.

4. All & and && operators are evaluated, working from left to right.

5. All , 11 , and xor operators are evaluated, working from left to right.

As with arithmetic operations, parentheses can be used to change the default

order of evaluation: Examples of some logic operators and their results are given
below.

Example 3.1

Assume that the following variables are initialized with the values shown, and

calculate the result of the specified expressions:

valuel = true
value2 = false
value3 = 1

100	 Chapter 3 Branching Statements and Program Design

value4 = -10

value5 = 0

value6 = [1 2; 0 1]

Expression	 Result	 Comment

(a) -va]uel	 false

(b) -value3	 false	 The number I is converted to true before
operation is applied

-10 is converted to true and 0 is converted to
false before the operation is applied

-10 is converted to true and 0 is converted to
false before the operation is applied

valuel is converted to the number I before the
addition is performed

The logical valuel is converted to the number I
before the addition is performed. The number
value4 is converted to true before the NOT is
performed. Then -value4 is evaluated to be
false. This false value is converted to 0 before
the addition, so the final result is 1 + 0 = I.

(i) value3 && value6	 Illegal	 The && operator must be used with scalar operands.

(j) value3 & value6	
[true true]	

AND between a scalar and an array operand.
false true

The - operator is evaluated before other logic operators. Therefore, the parenthe-
ses in part (f) of the above example were required. If they had been absent, the
expression in part (f) would have been evaluated in the order (-value3) &
value 5.

Logical Functions
MATLAB includes a number of logical functions that return true whenever the
condition they test for is true, and false whenever the condition they test for is

false. These functions can be used with relational and logic operator to control the
operation of branches and loops.	 -

A few of the more important logical functions are given in Table 3.4.

(c) valuel I value2	 true
(d) valuel & value2	 false

(e) value4&value5	 false

(f) -(value4&value5) true

(g) valuel + value4	 -9

(h) valuel + (-value4) I

3.3 The Logical Data Type I 10 I

Table 3.4 Selected MATLAB Logical Functions

Function	 Purpose

ischar (a)	 Returns true if a is a character array and false otherwise.

isempty (a(Returns true if a is an empty array and false otherwise.

isinf (a)	 Returns true if the value of a is infinite (Inf) and false otherwise.

isnan (a)	 Returns true if the value of a is NaN (not a number) and false otherwise.

isnun'eric (a)	 Returns true if a is a numeric array and false otherwise,

logical (a)	 Converts numerical values to logical values: if a value is non-zero, it is converted to

true. If it is zero, it is converted to false.

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Section 3.3. If you have trouble with the quiz, reread

the sections, ask your instructor, or discuss the material with a fellow

student. The answers to this quiz are found in the back of the book.

Assume that a, b, c, and d. are as defined, and evaluate the following

expressions.

a = 20;	 b = -2;

c=0;	 d=l;

I. a > b115

2. b > d

3. a > b && c > d

4. a == b

5. a && b > C

6. --b

Assume that a, b, c, and d are as defined, and evaluate the following

expressions.

a = 2;

ro
= L2 0

7, -(a > b)

8. a > c && b > c

9. c <= d

r
b = [— 210

[-2 1 2
d= L 010'

102
	

Chapter 3 Branching Statements and Program Design

10. logical (d)

II. a * b > C

12.a * (b > c)

Assume that a. b. c, and d are as defined. Explain the order in which

each of the following expressions are evaluated, and specify the results

in each case:

a=2;	 b3;

c=10;	 d=0;

13.a*b2 > ac

14.d. I	 b > a
15.(d	 b) > a

Assume that a, b, c, and d are as defined, and evaluate the following

expressions.

a = 20;	 b = -2;

C = 0;	 d = Test

16.isinf(a/b)

17.isinf(a/c)

18.a > b && ischar(d)

19.isempty(c)

20. (-a) & b

21. (-a) + b

3.4 Branches

Branches are MATLAB Statements that permit us to select and execute specific

sections of code (called blocks) while skipping other sections of code. They are vari-

ations of the if construct, the switch construct, and the try/ catch construct.

The if Construct

The i f construct has the form

if coritrol_expr_1

Statement 1
Statement 2

elseif cont.rolexpr2

Statement 1
Statement 2

IBlock I

Block 2

3 	 B'anches	 103

else
Statement 1
Statement 2	 Block 3

end

where the control expressions are logical expressions that control the operation
of the if construct. If control_expi-.. l is true (non-zero), then the program exe-
cutes the statements in Block 1, and skips to the first executable statement fol-
lowing the end. Otherwise, the program checks for the status of
control_expr_2. If control _expi2 is true (non-Zero), then the program executes
the statements in Block 2, and skips to the first executable statement following
the end. Hall control expressions are zero, then the program executes the state-
ments in the block associated with the else clause,

There can be any number of elseif clauses (0 or more) in an if construct,
but there can be at most one else clause. The control expression in each clause
will be tested only if the control expressions in every clause above it are false (0).

Once one of the expressions proves to be true and the corresponding code block is

executed, the program skips to the first executable statement following the end. If
all control expressions are false, then the program executes the statements in the
block associated with the else clause. If there is no else clause, then execution
continues after the end statement without executing any part of the if construct.

Note that the MATLAB keyword end in this construct is coinpiet ely differ-
ent from the MATLAB function end that we used in Chapter 2 to return the high-
est value of a given subscript. MATLAB tells the difference between these two
uses of end from the context in which the word appears within an M-file.

In most circumstances, the control expressions will be some combination of
relational and logic operators. As we learned earlier in this chapter, relational and
logic operators produce a true (1) when the corresponding condition is true and a

false (0) when the corresponding condition is false. When an operator is true, its

result is non-zero, and the corresponding block of code will be executed.
As an example of an if construct, consider the solution of a quadratic equa-

tion of the form

2+hx+c=0	 (3-1)

The solution to this equation is

—b ±	 - 4ac
.1 =

2a	
13-2)

The term b - 4ac is known as the discriminant of the equation. If h - 4ac > 0.
then there are two distinct real roots to the quadratic equation. lfh - 4ac = 0. then
there is a single repeated root to the equation, and if b ' 4ac < 0. then there are
two complex roots to the quadratic equation.

Suppose that we wanted to examine the discriminant of a quadratic equation
and to tell a user whether the equation has two complex roots, two identical real

104	 Chapter 3 Branching Statements and Program Design

roots, or two distinct real roots. In pseudocode, this construct would take the

form

if (b"2 - 4*a*c) < 0
Write rnsg that equation has two complex roots.

elseif (b**2 - 4 . *a*c) == 0

Write rnsg that equation has two identical real roots.

else
Write msg that equation has two distinct real roots.

end

The MATLAB statements to do this are

if (b2 - 4*a*c) < 0

disp ('This equation has two complex roots.);

elseif (b2 - 4*a*c) == 0
disp(This equation has two identical real roots.');

else
disp ('Thi s equation has two distinct real roots.);

end

For readability, the blocks of code within an if construct are usually indented

by 2 or 3 spaces, but this is not actually required.

Always indent the body of an if construct by 2 or more spaces to improve the

readability of the code.

It is possible to write a complete if construct on a single line by separating

the parts of the construct by commas or semicolons. Thus the following two con-

structs are identical:

if x < 0

y = abs(x);
end

and

if x < 0; y = abs(x); end

However, this should only be done for very simple constructs.

Examples Using if Constructs

We will now look at two examples that illustrate the use of if constructs.

3.4 Branches	 105

,a'tt.LrCi. .. c.,a%at, ',Daci.J- q?.At.c'...' .ft7.t	 4	 -	 _,- rv . ft	 t.	 '.Y .tt

Example 3.2—The Quadratic Equation

Write a program to solve for the roots of a quadratic equation, regardless of type.

SO[ti b's We will follow the design steps outlined earlier in the chapter.

I. State the problem.

The problem statement for this example is ver y simple. We want to write

a program that will solve for the roots of a quadratic equation, whether

they are distinct real roots, repeated real roots, or complex roots.

2, Define the inputs and outputs.

The inputs required by this program are the coefficients a, b, and c of the

quadratic equation

ax2 +bx+c=O	 (3-I)

The output from the program will be the roots of the quadratic equation,

whether they are distinct real roots, repeated real roots, or complex roots.

3. Design the algorithm.

This task can be broken down into three major sections, whose functions

are input, processing, and output:

Read the input data
Calculate the roots
Write out the roots

We will now break each of the above major sections into smaller, more

detailed pieces. There are three possible ways to calculate the roots,

depending on the value of the discriminant, so it is logical to implement

this algorithm with a three-branched if construct. The resulting

pseudocode is:

Prompt the user for the coefficients a, b,and c.
Read a, b,and c
discriminant <- b2 - 4 * a * c

if discriminant > 0
xl <- (-b + sqrt(discriminant))I(2 * a
x2 <- (-b - sqrt(discriminant))/(2 * a
Write msg that equation has two distinct real roots.
Write out the two roots.

elseif discriminant == 0
xl <- -b /(2 * a
Write msg that equation has two identical real roots.
Write out the repeated root.

else
real_ part <- -b (2 * a

106	 Chapter 3 Branching Statements and Program Design

.mag_part <- sqrt (abs (discriminant)) / (2 * a
;;rite msg that equation has two complex roots.
:rite out the two roots.

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown in below:

Script file: calc_roots.m

Purpose:
This program solves for the roots of a quadratic equation
of the form a*x**2 + b*x + c = 0. It calculates the answers

regardless of the type of roots that the equation possesses.

Record of revisions:
Date	 Programmer
	 Description of change

01/02/04	 S. J. Chapman
	 Original code

Define variables:

a	 -- Coefficient of x2 term of equation

b
	 -- Coefficient of x term of equation

C	 -- Constant term of equation
discriminant -- Discriminant of the equation

irnag_part	 -- Imag part of equation (for complex roots)

real—part	 -- Real part of equation (for complex roots)

xl
	 -- First solution of equation (for real roots)

x2
	 -- Second solution of equation (for real roots)

% prompt the user for the coefficients of the equation
disp (This program solves for the roots of a quadratic
dsp (equation of the form A*X2 + B*X + C = 0.
a = input ('Enter the coefficient A: 1;
b = input (Enter the coefficient B:
c = input ('Enter the coefficient C:
% Calculate discriminant
discriminant = b2 - 4 * a * C;

% Solve for the roots, depending on the value of the discriminant
if discriminant > 0 % there are two real roots, so.

xi = (-b + sqrt(discriminant)) / (2 * a
x2 = (-b - sqrt (discriminant)) / (2 * a
disp ('This equation has two real roots: '
fcrintf ('xl = %f\n', xl);
f printf (x2 = %f\n', x2);

%

%

%

%

3.4 Branches	 107

elseif discriminant == 0 % there is one repeated root, so.

xl = (-b) / (2 * a);
disp ('This equation has two identical real roots:
fprintf ('xl = x2 = %f\n', xl);

else % there are complex roots, so

real—part = (-b) / C 2 * a
imag_part = sqrt C abs C discriminant)) / C 2	 a
disp ('This equation has complex roots:');
fprintf('xl = %f +i %f\n', real —part, imag_part);
fprintf('xl = %f -i %f\n', real —part, irnag_part C;

end

5. Test the program.

Next, we must test the program using real input data. Since there are three

possible paths through the program, we must test all three paths before we

can be certain that the program is working properly. From Equation (3-2).

it is possible to verify the solutions to the equations given below:

	+ 5x + 6 = 0	 x = —2, and x = —3

	

x2 +4x+40	 x-2

—1± 12

If this program is executed three times with the above coefficients, the

results are as shown below (user inputs are shown in bold face):

> calc_root8
This program solves for the roots of a quadratic
equation of the form A*X2 + B*X + C = C.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
This equation has two real roots:
xl = -2.000000
x2 = -3.000000
> caic_roots
This program solves for the roots of a q-adratic
equation of the form A*X2 + B*X + C = C.
Enter the coefficient A: 1
Enter the coefficient B: 4
Enter the coefficient C: 4
This equation has two identical real roots:
xl = x2 = -2.000000
'> cab_roots
This program solves for the roots of a -.adratic

108	 Chapter 3 Branching Statements and Program Design

equation of the form A*X2 + B*X + C = 0.

Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5

This equation has complex roots:

xl = -1.000000 +i 2.0000001

xl = -1.000000 -i 2.000000

The program gives the Correct answers for our test data in all three

possible cases.

Example 3.3—Evaluating a Function of Two Variables

Write a MATLAB program to evaluate a functionf(x, y) for any two user-specified

values x and Y. The functionf(x, y) is defined as follows.

x+y x Oandy - O

f(') =	
Y2 x Oandy<O

X,}	
x<O and y^:O

1x2 + Y2 x<Oandy<O

SOLUTION The functionf(x, y) is evaluated differently depending on the signs of

the two independent variables x and y. To determine the proper equation to apply,

it will be necessary to check for the signs of the x andy values supplied by the user.

I. State the problem.
This problem statement is very simple: Evaluate the functionf(x, v) for

any user-supplied values of x andy.

2. Define the inputs and outputs.
The inputs required by this program are the values of the independent

variables x and y. The output from the program will be the value of the

frmnctionf(x. .v).

3. Design the algorithm.
This task can he broken down into three major sections, whose functions

are input, processing, and output:

Read the input values x and y
Calculate f(x,y)
Write out f(x,y)

We will now break each of the above major sections into smaller, more
detailed pieces. There are four possible ways to calculate the functionf(x. y),
depending upon the values of x and v, so it is logical to implement this
aloriihm with a four-branched if construct. The resulting pseudocode is:

3.4 Branches	 I 09

Prompt the user for the values x and y.
Read x and y
if x 2: 0 and y > 0

fun <- x + y
elseif x 2: 0 and y < 0

fun <- x + y2
elseif x < 0 and y ^ 0

fun <- x2 + y
else

fun <- x2 + y2
end

Write out f(x,y)

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

% Script file: funxy.m

% Purpose:
%	 This program solves the function f(x,y) for a

user-specified x and y, where f(x,y) is defined as:

x + y	 x >= 0 and y >= 0
%	 x+y2	 x>=O and y<o

f(x,y) =	 x2 + y	 x < 0 and y >= 0
%	 x2 +	 x < 0 and y < 0

% Record of revisions:
Date	 Programmer	 Description of change

%	 = = = =	 = = = = = -===--	 =
%	 01/03/04	 S. J. Chapman	 Original code
%

% Define variables:
x	 -- First independent variable

%	 y	 -- Second independent variable
%	 fun	 -- Resulting function

% Prompt the user for the values x and y
X = input (Enter the x coefficient: •);
y = input (Enter the y coefficient:);

% Calculate the function f(x,y) based upon
% the signs of x and y.
if x >= 0 && y >= 0

fun = x +

I 10	 Chapter 3 Branching Statements and Program Design

e.seif x >= U && y < 0

fun = x + y2;
elseif x = 0 && y >= 0

fun = x2 +
ese

fun = x2 +

end

% Write the value of the function.
disp (['The value of the function is I num2str(fun)]

5. Test the program.
Next, we must test the program using real input data. Since there are four

possible paths through the program, we must test all four paths before we

can be certain that the program is working properly. To test all four possible

paths, we will execute the program with the four sets of input values (x, y) =

(2, 3). (2, —3), (-2, 3), and (-2, —3). Calculating by hand, we see that

f(2, 3) = 2 + 3 = 5

f(2, —3). = 2 + (_3)2 = n

f(-2,3) = (_2) 2 + 3 = 7

f(-2, —3) = (_2)2 + (_3)2 = 13

If this program is compiled, and then run four times with the above val-

ues, the results are:

funxy
Enter the x coefficient: 2
Enter the y coefficient: 3
The value of the function is 5
" furucy
Enter the x coefficient: 2
Enter the y coefficient: -3
The value of the function is 11

funxy
Enter the x coefficient: -2
Enter the y coefficient: 3
The value of the function is 7
>> funxy

Enter the x coefficient: -2
Enter the y coefficient: -3
The value of the function is 13

The program gives the correct answers for our test values in all four

possible cases.

3.4	 Branches	 I I I

Notes Concerning the Use of if Constructs
The if construct is very flexible. It must have one if statement and one e:- ! d
statement. In hetcen, it can have any number of esei f clauses, and may alsohave one else clause. With this combination of features it is possible to imple-
ment any desired branching Construct.

In addition, if constructs may be nested. Two if constructs are said to he
nested if one of them lies entirely within a single code block of the other one The
followin g two if Constructs are properly nested,

if x > 0

if y < 0

end

end

The MATLAB interpreter always associates a given end statement with the
most recent if statement, so the first end above closes the if y < C statement.
while the second end closes the if x > 0 Statement. This works well for a prop-
erly written program, but can cause the interpreter to produce confusing error mes-
sages in cases where the programmer makes a coding error. For example, suppose
that we have a large program containing a construct like the one shown below.

if (testi)

if (test2)

if (test3)

end

end

end

This program contains three nested if constructs that may span hundreds of lines
of code. Now suppose that the first end statement is accidentally deleted during an
editing session. When that happens, the MATLAB interpreter will automatically
associate the second end with the innermost if (tes :3) construct, and the third
end with the middle if (test2) . When the interpreter reaches the end of the
file, It will notice that the first if (test 1) construct was never ended, and it vjlj
generate an error message saying that there is a missing end. Unfortunately, it
can't tell where the problem occurred, so we will have to go back and manually
search the entire program to locate the problem.

I I 2 1 Chapter 3 Branching Statements and Program Design

It is sometimes possible to implement an algori thm using either multiple

else if clauses or nested if statements. In that case, a programmer may choose

whichever style he or she prefers.

-
Example 3.4—Assigning Letter Grades

Suppose that we are writing a program that reads in a numerical grade and assigns

a letter grade to it according to the following table:

	

95 < grade	 A

	

86 < grade	 95	 B

	

76 < grade	 86	 C

	

66 < grade	 76	 D

	

0 <grade	 66	 F

Write an if construct that will assign the grades as described above using (a)

multiple elseif clauses and (b) nested if constructs.

SOLUTION

(a) One possible structure using elseif clauses is

if grade > 95.0
disp(The grade is A.);

elseif grade > 86.0
disp(The grade is B.');

elseif grade > 76.0
disp('The grade is C.);

elseif grade > 66.0
disp('The grade is D.');

else
disp(The grade is F.);

end

(b) One possible structure using nested if constructs is

if grade > 95.0
disp(The grade is A.);

else
if grade > 86.0

disp('The grade is B.);
else

if grade > 76.0
disp(The grade is C.);

else
if grade > 66.0

disp(The grade is D.');
else

disp('The grade is F.');

3.4	 Branches	 I I 3

end
end

end
end

mr.a-Xcs,fltfl,.etw n'	 - '- ..-

It should be clear from the above example that if there are a lot of niutualk
exclusive options, a single if Construct with multiple elseif clauses will be
simpler than a nested if construct.

For branches in which there are many mutuall y cxctusi' c options, use a single if
construct with multiple elseif clauses in preference to nested if constructs.

The switch Construct

The switch construct is another form of branching construct. It permits a
programmer to select a particular code block to execute based on the value of a

single integer, character, or logical expression. The general form of a switch
construct is:

switch (swi tch_expr)
case case_expr_1,

Statement 1
Statement 2

case case_exp.r_2,
Statement 1
Statement 2

otherwise,
Statement 1
Statement 2

end

}

Block I

Block 2

I

Block n

If the value of ssiitch_e.pr is equal to case_expr_1, then the first code block wiL
be executed, and the program will jump to the first statement following the end
of the switch construct. Similarly, if the value of swirc/i . expr is equal to
case_expr_2, then the second code block will be executed, and the program wilt
jump to the first statement following the end of the switch construct The same
idea applies for any other cases in the construct. The otherwise code block

I 14	 Chapter 3 Branching Statements and Program Design

is optional. If it is present, it will be executed whenever the value of

swi tch..expr is outside the range of all of the case selectors. If it is not present

and the value of swi tch_expr is outside the range of all of the case selectors,

then none of the code blocks will be executed. The pseudocode for the case con-

struct looks just like its MATLAB implementation.

If many values of the swi tch_expr should cause the same code to execute,

all of those values may be included in a single block by enclosing them in brackets,

as shown below. If the switch expression matches any of the case expressions in

the list, then the block will be executed.

switch (switch_expr)
case (case_expr_1, case_expr_2, case_expr_3),

Statement 1
Statement 2	 Block I

otherwise,
Statement 1
Statement 2	 Block

end

The switch_expr and each case_expr may be either numerical or string values.

Note that at most one code block can be executed. After a code block is exe-

cuted, execution skips to the first executable statement after the end statement.

Thus if the switch expression matches more than one case expression, only the
first one of them will be executed.

Let's look at a simple example of a switch construct. The following state-

ments determine whether an integer between I and 10 is even or odd, and print

out an appropriate message. It illustrates the use of a list of values as case selec-

tors, and also the use of the otherwise block.

switch (value)
case {1,3,5,7.9},

disp('The value
case (2,4, 6,8,10),

disp(The value
otherwise,

disp('The value
end

is odd.');

is even.');

is Out of range. '

The try/catch Construct

The try/ catch construct is a special form branching construct designed to trap

errors. Ordinarily, when a MATLAB program encounters an error while running,

the program aborts. The try/ catch construct modifies this default behavior. If

an error occurs in a statement in the try block of this construct, then instead of

3.4 Branches	 115

aborting, the code in the catch block is executed and the program keeps run-
ning. This allows a programmer to handle errors within the program without caus-
ing the program to stop.

The general form of a try/catch construct is:

try
Statement 1
Statement 2	 Try Block

catch
Statement 1
Statement 2	 Catch Block

end

When a try/catch construct is reached, the statements in the try block of a
will be executed. If no error occurs, the statements in the catch block will be
skipped, and execution will continue at the first statement following the end of the
construct. On the other hand, if an error does occur in the try block, the program
will stop executing the statements in the try block, and immediately execute the
statements in the catch block.

An example program containing a try/catch construct follows. This pro-
gram Creates an array, and asks the user to specify an element of the array to
display. The user will supply a subscript number, and the program displays the
corresponding array element. The statements in the try block will always be exe-
cuted in this program, while the statements in the catch block will only be
executed of an error occurs in the try block.

% Initialize array
a	 [1 -3 2 5];
try

% Try to display an element

index = input('Enter subscript of element to display:);
disp(f'a(' int2str(index) ') = 	 num2str(a(index))]);

catch

% If we get here an error occurred
disp ([Illegal subscript: ' int2str (index)]

end

When this program is executed, the results are: z

>> try_catch
Enter subscript of element to display: 3
a(3) = 2

try_catch

Enter subscript of element to display: 8
Illegal subscript: 8

I I 6	 Chapter 3 Branching Statements and Program Design

Quiz 3.2

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Section 3.4. If you have trouble with the quiz,

reread the section, ask your instructor, or discuss the material with a

fellow student. The answers to this quiz are found in the back of the

book.

Write MATLAB statements that perform the functions described

below.

1. If x is greater than or equal to zero, then assign the square root of x

to variable sqrt_x and print out the result. Otherwise, print out an

error message about the argument of the square root function, and set

sqrt_x to zero.

2. A variable fun is calculated as numerator /denominator. If

the absolute value of denominator is less than 1.OE-300, write

"Divide by 0 error." Otherwise, calculate and print out fun.

3. The cost per mile for a rented vehicle is SI .00 for the first 100 miles,

S0.80 for the next 200 miles, and S0.70 for all miles in excess of 300

miles. Write MATLAB Statements that determine the total cost and

the average cost per mile for a given number of miles (stored in vari-

able distance).

Examine the following MATLAB statements. Are they correct or incor-

rect? If they are correct, what do they output? If they are incorrect, what

is wrong with them?

4. if volts > 125
disp('WARNING: High voltage on line.);

if volts < 105
disp('WARNING: Low voltage on line.');

else
disp('Line voltage is within tolerances.);

end

5. color = 'yellow';
switch (color
case 'red'.,

disp('Stop now!');
case 'yellow'

disp('Prepare to stop.');
case green',

d±sp(Proceed through intersection.');
otherwise,

disp('Illegal color encountered.');
end

3.5 Additional Plotting Features	 117

6. if temperature > 37

disp(Human body temperature exceeded.-);
elseif temperature > 100

disp(Boiling point of water exceeded.
end

3.5 Additional Plotting Features

This section describes additional features of the simple two-dimensional plots

introduced in Chapter 2. These features permit us to control the range of x and v
values displayed on a plot, to lay multiple plots on top of each other, to create

multiple figures, to create multiple subplots within a figure, and to provide

greater control of the plotted lines and text strings. In addition, we will learn how
to Create polar plots.

Controlling x- and y-axis Plotting Limits

By default, a plot is displayed with x- and y-axis ranges wide enough to show

every point in an input data set. However, it is sometimes useful to display only

the subset of the data that is of particular interest. This can be done using the axis
commandJfiinctjon (see the Sidebar on the next page about the relationship between
MATLAB commands and functions).

Some of the forms of the axis command'function are shown in Table 3.5
below. The two most important forms are shown in bold type—they let a

Table 3.5 Forms of the axis Function/Command

Command

This function returns a 4-element row vector containing
[anin —ax yrnin yrnaxi, where cnin, xmax,

ymin, and ymax are the current limits of the plot.

This function Sets the x and y limits of the plot to the
specified values.

This command sets the axis increments to be equal on
both axes.

This command makes the current axis box square.

T his command cancels the effect of axis equal and axis square.

This command turns off all axis labeling, tick marks, and
background.

V = axis;

axis (1 —in ,ax ymin ymaxfl;

axis equal

axis square

axis normal

axis oft

axis on	 This command turns on all axis labeling, tick marks, and
background (default case).

I 18	 Chapter 3 Branching Statements and Program Design

Command/Function_Duality
Some MATLAB commands seem to be unable to make up their minds whether

they are commands or functions. For example, sometimes axis seems to be

a command and sometimes it seems to be a function. Sometimes we treat it

as a command: axis on, and other times we might treat it as a function:

axis ([0 20 0 35]). How is this possible?

The short answer is that MATLAB commands are really implemented by

functions, and the MATLAB interpreter is smart enough to substitute the func-

tion call whenever it encounters the command. It is always possible to call the

command directly as a function instead of using the command syntax. Thus

the following two statements are identical:

axis On;
axis (on);

Whenever MATLAB encounters a command, it forms a function from the

command by treating each command argument as a character string and call-

ing the equivalent function with those character strings as arguments. Thus

MATLAB interprets the command

garbage 1 2 3

as the following function call:

garbage (' 1' , '2', '3'

Note that only functions with character arguments can be treated as con:-
n,ands. Functions with numerical arguments must be used in function form

only. This fact explains why axis is sometimes treated as a command and some-

times treated as a function.

programmer get the current limits of a plot and modify them. A complete list of

all options can be found in the MATLAB on-line documentation.
To illustrate the use of axis, we will plot the functionf(v) = sin x from

—27r to —21r. and then restrict the axes to the region to x !—^ it and 0 yS I.

The statements to create this plot are shown below, and the resulting plot is shown

in Figure 3.4a.

x = _2*pi:pi/20:2*pi;

y = sin(x);
plotx,y)
title (p lOt of sin(x) vs x
grid on;

The current limits of this plot can he determined from the baste axis function.

3.5 Additional Plotting Features	 11 9

-H-

	

Fle Et Vvw l4t T9	 -	 -

11 ci^ 61 a	 Ell O
PIOI OISMWVS x

09	 ...

04-

0.2

...	

...

L.:.:,L
.;,................................

-0.6-. .J...

-09

--I	 I	 I
-5	 4	 -4	 -2	 0	 2	 4	 6

(a)

Fl Edit	 trt Toc vdw

jJ F.fl

Plot of sin(x) vs x

1	 -
08

07H....

0 .6	 ..

0.5	 ---.. 	 .

04

03-

02

01

	

05	 I	 1.6	 2	 25	 3

(b)

Figure 3.4 (a) Plot of sin x versus x. (b) Closeup of the region [0 it 0 1:

20	 Chapter 3 Branching Statements and Program Design

>> limitSa.XiG

limits =

-8 8 -1 1

These limits can be modified with the function call axis ([0 pi 0 1]) . After

that function is executed, the resulting plot is shown in Figure 3.4b.

Plotting Multiple Plots on the Same Axes

Normally, a new plot is created each time that a plot command is issued, and the

previous data is lost. This behavior can be modified with the hold command.

After a hold on command is issued, all additional plots will be laid on top of the

previously existing plots. A hold off command switches plotting behavior back

to the default situation, in which a new plot replaces the previous one.
For example, the following commands plot sin x and cos x on the same axes.

The resulting plot is shown in Figure 3.5.

x = -pi:pi/20:pi;
yl = sin(x);

= cos(x);
plot(x,yl, b-);

hold on;

plot(x,y2 k--);
hold off;

legend ('sin x', cos x);

F4e tit Ye tt To V,j,W

	

/	 \

	

/	
\f

06	 /

04 I
02

	

/	 I

0	 /	 I

I	 /	 /

-04

•1
-08

-2	 -1	 0	 1	 2	 3	 4

Figure 3.5 Multiple curves plotted on a single set of axes using the hold command

3.5	 Additional Plotting Features	 121

Creating Multiple Figures
MATLAB can create multiple Figure Windows, with different data displa yed in
each window. Each Figure Window is identified by a Jigwe numbel . , which is a
small positive integer. The first Figure Window is Figure 1, the second is Fi gure 2.
etc. One of the Figure Windows will be the current figure, and all new plotting
commands will be displayed in that window.

The current figure is selected with the figure function. This function takes
the form "figure (n) ", where n is a figure number. When this command is
executed, Figure n becomes the current figure and is used for all plottin g com-
mands. The figure is automatically created if it does not already exist. The current

figure may also be selected by clicking on it with the mouse.
The function gcf returns the number of the current figure. This function can

be used by an M-file if it needs to know the current figure.

The following commands illustrate the use of the figure function. They create
two figures, displaying e' in the first figure and ev in the second one.

figure (1)
x	 0:0.05:2;

yl = exp(x);
plot (x,yl)
figure (2)

= exp(-'x);
plot (x,y2)

Subplots

It is possible to place more than one set of axes on a single .figure, creating mul-
tiple subplots. Subplots are created with a subplot command of the form

subplot (m, ii, p)

This command divides the current figure into m)< n equal-sized regions,
arranged in rn rows and n columns, and creates a set if axes at position p to receive
all current plotting commands. The subplots are numbered from left to right

and from top to bottom. For example, the command subplot (2, 3, 4) would
divide the current figure into six regions arranged in two rows and three columns,

and create an axis in position 4 (the lower left one) to accept new plot data (see
Figure 3.6).

If a subplot command creates a new set of axes that conflict with a previ-
ously existing set, then the older axes are automatically deleted.

The commands below create two subplots within a single window, and display

the separate graphs in each subplot. The resulting figure is shown in Figure 37.

figure (1)
subp1ot(2, 1,1)
x = -pi:pi/20:pi;
Y = sin(x);

I 22	 Chapter 3 Branching Statements and Program Design

1Qt1

	

'le Eft AM irt TOc	 jOw

	

-	 -

08

0.

04

0:	

05	 1

Figure 3.6 The axis created by the subplot (2, 3,4) command.

	

1LIi	 ___•;.	 ,,jpflJ

	

Re Edt	 kert r	 wr-ow

-

1	
SUbpI0i1te

05

-05

-4	 .	 0	 1	 2	 3	 4

-	 Subpi2ite

05

0

-Os

4 .3	 2	 U	 1	 2	 3	 4

Figure 3.7 A fi gure containing to subplots.

plot (x,y)
tit.le(Subplot 1 title')

subplot (2, 1, 2)

x = -pi:pi/20:pi;

Y = cos(x);

plot(x,y)

title(Subplot 2 title

3.5 Additional Plotting Features 1 123

Enhanced Control of Plotted Lines

In Chapter 1 we learned how to set the color, style, and marker type for a line. It

is also possible to set four additional properties associated with each line:

• width—specifies the width of each line in points

• MarkerEdgeCOlor—specifies the color of the marker or the edge

color for filled markers
• MarkerFaceCOlOr—specifies the color of the face of filled markers.

• MarkerS ize—specifies the size of the marker in points.

These properties are specified in the plot command after the data to be plotted

in the following fashion:

plot(x,y, PropertyNarne' ,value, . .

For example, the following command plots a 3-point wide solid black line with

6-point wide circular markers at the data points. Each marker has a red edge and

a green center, as shown in Figure 3.8.

x = O:pi/15:4*pi;

y = exp(2*sifl(x));

plot(x,y, '-ko, 'LineWidth ,3.0, MarkerSize' 6,.
MarkerEdgeColor, r 'MarkerFaceColor , g

Enhanced Control of Text Strings
It is possible to enhance plotted text strings (titles, axis labels, etc.) with format-

ting such as bold face, italics, etc., and with special characters such as Greek and

mathematical symbols.
The font used to display the text can be modified by stream modifiers. A

stream modifier is a special sequence of characters that tells the MATLAB inter-

preter to change its behavior. The most common stream modifiers are:

• \bf—Bold face
• \ I t—Italics
• \rm—Restore normal font

• \ fontname (Eon tname) —Specify the font name to use

• \fontsize(fofltSiZe)—Specify font size
• _(xxx)---The characters inside the braces are subscripts

• (xxx)—The characters inside the braces are superscripts

I 24	 Chapter 3 Branching Statements and Program Design

ILirz.	 -

Fe Et Vew Irst Tools VOW HeP

1.17 ou l Uri

Figure 3.8 A plot illustrating the use of the LineWidth and Marker properties.

Once a stream modifier has been inserted into a text string, it will remain in effect

until the end of the string or until cancelled. Any stream modifier can be followed

by braces { }. If a modifier is followed by braces, only the text within the braces

is effected.
Special Greek and mathematical symbols may also be used in text strings.

They are created by embedding escape sequences into the text string. These

escape sequences are the same as those defined in the TeX language. A sample of

the possible escape sequences is shown in Table 3.6; the full Set of possibilities is

included in the MATLAB on-line documentation.

If one of the special escape characters \, C), _,or must be printed, pre-

cede it by a backslash character.
The following examples illustrate the use of stream modifiers and special

characters.

String	 Result

\tau_(ind) versus \omega_{\itm}	 T,,d versus W,,,

\theta varies from O\circ to 90\circ 	 6 varies from O°to9O°

\bf{B}_(\itS}	 B

3.5 Additional Plotting Features 1 125

Table 3.6 Selected Greek and Mathematical Symbols

Character	 Character	 Character
Sequence	 Symbol	 Sequence	 Symbol	 Sequence	 Symbol

\alpha	 a	 \ini	 S

\beta	 J3	 \cong

\gamma	 y	 \Gamma	 F	 \sim	 -

\delta	 &	 \Delta	 A	 \inftv

\epsilon	 C
	

\pm
	 +

\eta	 fl
	

\leq
	 <

'theta	 8
	

\geq
	 >

\lamda
	

\Lamda	 A	 \neq

\mu	 9	 \propto

\nu	 v	 \div	 ±

\pi	 it	 \Pi	 H	 \circ

\phi	 0	 \leftrightarrow	 <—>

\rho	 p	 \leftarrow

\sigma	 a	 \Sigma	 I	 \rightarrow	 ->

\tau	 T	 \uparrow	 1'

\omega	 \Omega	 Q	 \downarrow

Polar Plots

MATLAB includes a special function called polar, which plots data in polar

coordinates. The basic form of this function is

polar (theta, r)

where theta is an array of angles in radians, and r is an array of distances. It is

useful for plotting data that is intrinsically a function of angle.

Example 3.5—Cardioid Microphone
Most microphones designed for use on a stage are directional microphones,

which are specifically built to enhance the signals received from the singer in

the front of the microphone while suppressing the audience noise from behind the

microphone. The gain of such a microphone varies as a function of angle accord-

ing to the equation

Gain = 2g(I + cos9)
	

(3-3)

where g is a constant associated with a particular microphone, and 9 is the angle

from the axis of the microphone to the sound source. Assume that g is 0.5 for a

	

126	 Chapter 3 Branching Statements and Program Design

particular microphone, and make a polar plot the gain of the microphone as a
function of the direction of the sound source.

Sot ii io	 We must calculate the gain of the microphone versus angle and then
plot it with a polar plot. The MATLAB code to do this is shown below.

Script file: microphone.rn

% Purpose:
This program plots the gain pattern of a cardioid

	

%	 microphone.
%
% Record of revisions:

Date	 Programmer	 Description of change
= = = =	 = = = = = ----- 	 ====== --- = = = = = = = = = = = =

01/05/04	 S. J. Chapman	 Original code

% Define variables:

	

%	 g	 -- Microphone gain constant

	

%	 gaint	 -- Gain as a function of angle
theta	 -- Angle from microphone axis (radians)

% Calculate gain versus angle
g = 0.5;
theta = 0:pi/20:2*pi;
gain = 2*g*(1#cos(theta));

% Plot gain
polar (thata,gain, 'r-');
title (\bfGain versus angle \theta);

The resulting plot is shown in Figure 3.9 on page 127. Note that this type
of microphone is called a "cardioid microphone" because its gain pattern is
heart-shaped.

•CL

Example 3.6—Electrical Engineering: Frequency Response of a Low-Pass Filter

A simple low-pass filter circuit is shown in Figure 3.10. This circuit consists of a
resistor and capacitor in series, and the ratio of the output voltage V, to the input
voltage U is given by the equation

(3-4)
1 +j2rfRC

I I..
(1

3.5 Additional Plotting Features 1 127

1iTI
Et	 irt Toct WrciDw H

	G 	 i:
Gain versus angle 0

90 2

	

120	 60

180	 0

Figure 3.9 Gain of a cardioid microphone.

Figure 3.10 A simple low-pass filter circuit.

where V, is a sinusoidal input soltage of frequency 1, R is the resistance in ohms,
C is the capacitance in farads, andj is \/'J (electrical engineers uscj instead
oft for VET, because the letter i is traditionall y reserved for the current in a
circuit).

Assume that the resistance R - 16 kL and capacitance C	 I pF. and plot
the amplitude and frequency response of this filter.

Sot i • i ION The amplitude response of a filter is the ratio of the amplitude of the
output olta ge to the amplitude of the input voltage, and the phase response of
the filter is the difference between the phase of the output olt:ige and the phase

128 1 Chapter 3 Branching Statements and Program Design

of the input voltage. The simplest way to calculate the amplitude and phase

response of the filter is to evaluate Equation (3-4) at many different frequencies.

The plot of the magnitude of Equation (3-4) versus frequency is the amplitude

response of the filter, and the plot of the angle of Equation (3-4) versus frequency

is the phase response of the filter.
Because the frequency and amplitude response of a filter can vary over a

wide range, it is customary to plot both of these values on logarithmic scales.

On the other hand, the phase varies over a very limited range, so it is custom-

ary to plot the phase of the filter on a linear scale. Therefore, we will use a

loglog plot for the amplitude response, and a semilogx plot for the phase

response of the filter. We will display both responses as two sub-plots within a

figure.
The MATLAB code required to create and plot the responses is shown

below.

% Script file: plot_filter.m

% Purpose:
This program plots the amplitude and phase responses

of a low-padd RC filter.

% Record of revisions:
%	 Date	 Programmer	 Description of change

%	 = = = =	 = = = = = = = = = =	 =

01/05/04	 S. J. Chapman	 Original code

% Define variables:
%	 amp	 -- Amplitude response

%	 C	 -- Capacitiance (farads)
%	 f	 -- Frequency of input signal (Hz)

%	 phase	 -- Phase response
%	 R	 -- Resistance (ohms)

%	 res	 -- Vo/Vi

% Initialize R & C
R = 16000;	 % 16 k ohms
C = 1.OE-6;	 % 1 uF

% Create array of input frequencies
f = 1:2:1000;

% Calculate response
res = 1 ./ (1 + j*2*pi*f*R*C);
% Calculate amplitude response
amp = abs(res);

3.5 Additional Plotting Features 1 129

% Calculate phase response
phase = angle(res);

% Create plots
subplot (2, 1, 1)
loglog(f, amp);
title(Amplitude Response)
xlabel('Frequency (Hz)');
ylabel('Output/Input Ratio);
grid On;

subplot (2, 1, 2)
semilogx(f, phase);
title ('Phase Response)
xlabel('Frequency (Hz)');
ylabel('Output-Input Phase (rad) ');
grid on;

The resulting amplitude and phase responses are shown in Figure 3.11. Note

that this circuit is called a low-pass filter because low frequencies are passed

through with little attenuation, while high frequencies are strongly attenuated.

No-

Example 3.7—Thermodynamics: The Ideal Gas Law

An ideal gas is one in which all collisions between molecules are perfectly elas-

tic. It is possible to think of the molecules in an ideal gas as perfectly hard billiard

balls that collide and bounce off of each other without losing kinetic energy.

Such a gas can be characterized by three quantities: absolute pressure (P),

volume (V) and absolute temperature (T). The relationship among these quanti-

ties in an ideal gas is known as the Ideal Gas Law:

PV = nRT	 (3-5)

where P is the pressure of the gas in kilopascals (kPa), V is the volume of the gas

in liters (L), n is the number of molecules of the gas in units of moles (mol), R is
the universal gas constant (8.314 L-kPaImolKl, and Tis the absolute tempera-
ture in kelvins (K). (Note: I mol = 6.02 >< 1023 molecules)

Assume that a sample of an ideal gas contains I mole of molecules at a tem-

perature of 273 K, and answer the following questions.

(a) How does the volume of this gas vary as its pressure varies from I to

1000 kPa? Plot pressure versus volume for this gas on an appropriate set

of axes. Use a solid red line, with a width of 2 pixels.

130	 Chapter 3 Branching Statements and Program Design

Fl, E	 w 55.r To.	 Wr,io	 -ie	 -.

L4

100
	 Amplitude Response

C
C

-1
10

=

8

100	 10'	 10	 10
Frequency (HZ)

Pflase Response

V
-os	 ----..... ----.

1
-1 -- H	 H

- .-.-..---	 -
-15 --- ,..-.__..._

8.	 .	 H.

Frequency (HZ)

Figure 3.11 The amplitude and phase response of the lo-pass filter circuit.

(b) Suppose that the temperature of the gas is increased to 373 K. How does
the volume of this gas vary with pressure now? Plot pressure versus vol-
ume for this gas on an the same set of axes as part (a). Use a dashed blue
line, with a width of 2 pixels.

Include a bold face title and x- and y-axis labels on the plot, as well as leg-
ends for each line.

SOLUTION The values that we wish to plot both vary by a factor of 1000, so an
ordinary linear plot will not produce a useful plot. Therefore, we will plot the data
on a log-log scale.

Note that we must plot two curves on the same set of axes, so we must issue
the command hold on after the first one is plotted, and hold off after the plot
is complete. It will also be necessary to specify the color, style, and width of each
line, and to specify that labels be in bold face.

A program that calculates the volume of the gas as a function of pressure and
creates the appropriate plot is shown below. Note that the special features con-
trolling the style of the plot are shown in bold face.

3.5	 Additional Plotting Features 1 131

% Script file: ideal_gas.rn
%
% Purpose:	 -

This program plots the pressure versus volume of an
ideal gas.

% Record of revisions:
Date	 Programmer	 Description of change
= = = =	 = = = = = = = = = = 	 =

01/05/04	 S. J. Chapman	 Original code

% Define variables:
%	 n	 -- Number of atoms (mol)
%	 P	 Pressure (kPa)

%	 R	 -- Ideal gas constant (L kPa/mol K)
%	 T	 -- Temperature (K)
%	 V	 -- volume (L)

% Initialize nRT
n = 1;	 % Moles of atoms

R = 8.314;	 % Ideal gas constant

T = 273;	 % Temperature (K)

% Create array of input pressures. Note that this
% array must be quite dense to catch the major
% changes in volume at low pressures.

P = 1:0.1:1000;

% Calculate volumes
V = (n * R * T) .1 P;

% Create first plot
figure(l)
loglog(P, V, r-, LineWidth', 2);
title(\bfVolurne vs Pressure in an Ideal Gas);
xlabel (\bfPressure (kPa))
ylabel (\bfVolume (L)
grid on;
hold on;

% Now increase temperature
T = 373;	 % Temperature (K)

% Calculate volumes
V = (n * R * T) .1 P;

132	 Chapter 3 Branching Statements and Program Design

Fie E.t View irot TO	 'Miow

O eD
Volume vs Pressure In an lddal Gas

10

1oo	 .lo	 lo	 10
Pressure (iPa)

Figure 3.12 Pressure versus volume for an ideal gas.

% Add second line to plot
figure(I)
loglog(P, V, b--', LinaWidth, 2);
hold off;

% Add legend
legend('T = 273 K, T = 373k);

The resulting volume versus pressure plot shown in Figure 3.12.

Annotating and Saving Plots

Once a plot has been created by a MATLAB program, a user can edit and anno-
tate the plot using the GUI-based tools available from the plot toolbar. Figure 3.13
shows the tools available, which allow the user to edit the properties of any
objects on the plot, or to add annotations to the plot. When the editing button
(i) is selected from the toolbar, the editing tools become available for use.
When the button is depressed, clicking any line or text on the figure will cause it
to be selected for editing, and double-clicking the line or text will open a Property
Editor window that allows you to modify any or all of the characteristics of that
object. Figure 3.14 shows Figure 3.12 after a user has clicked on the blue line to
change it to a 3-pixel-wide dashed line.

3.5	 Additional Plotting Features I 133

Iw	 -
FM aR Vie Lnoet rc	 WdOw I-i5

	

o	 otJ

The Plot Broweef. CItdng
iss loot enables no plot

The EdIt Tool. CI,cicrlg this toolbow0er
allows a us to select and eotl p101

features
InaeIl Legend Tool.

Figure 3.13 The editing tools on the figure toolbar.

The figure toolbar also includes a Plot Tools button (a). When this button

is depressed, the Plot Browser is displayed. This tool gives the user complete con-

trol over the figure He or she can add axes, edit object properties, modify data

values, and add annotations such as lines and text boxes. Figure 3.15 on page 135

shows Figure 3.12 after the user has added an arrow and annotation to the plot.
When the plot has been edited and annotated, you can save the entire plot in

a modifiable form using the "File/Save As" menu item from the Figure Window.
The resulting figure file (* . fig) contains all the information required to re-create

the figure plus annotations at any time in the future.

Quiz 3.3

This quiz provides a quick check to see if you have understood the

concepts introduced in Section 3.5. If you have trouble with the quiz,

reread the Section, ask your instructor, or discuss the material with a fellow

student. The answers to this quiz are found in the back of the book.

1. Write the MATLAB statements required to plot sin x versus cos 2x

from 0 to 27r in steps of ,r/10. The points should be connected by a
2-pixel-wide red line, and each point should marked with a 6-pixel-

wide blue circular marker.

2. Use the Figure editing tools to change the markers on the previous

plot into black squares. Add an arrow and annotation pointing to the

location x = Jr on the plot.

134	 Chapter 3 Branching Statements and Program Design

	

Fie Eit \New irmet Tcrrk WFNw Het)_ -	-
Oo

Volume vs PresSure in an Ideal Gas

—T —23k
.	T_373F.

los

—J

lO
0

10L
I	 2	 51 1

	

	1)
Pressure (Wa)

S spa5 Name	 2parrrcr	 Ins:eCo,

S Dale Soelce F-	 J	 L.	 1	 j	 j
Y Dala Saerce	 Marker nsoe	 J j6 U	 j .:] t•J

Figure 3.14 Figure 3.12 after the blue line has been modified using the editing tools built into the
figure toolbar.

Write the MATLAB text string that will produce the following expressions:

3. f(x) = sin a cos 2Ø

4. Plot of x2 versus x

Write the expression produced by the following text strings:

5. \tau\it_m)

6. r \bf\itx_{1}'2) + x_{2}(2} \rm(units: \bfm2}
\rm)

7. How do you display the backslash (\) character in a text string?

3.6 More on Debugging MATLAB Programs

It is much easier to make a mistake when writing a program containing branches

and loops than it is when writing simple sequential programs. Even after going

through the hill design process, a program of any size is almost guaranteed not to

—J

102

0

10'

TOO -
100

102	• 'va,pables

- .X.,flQ!iQfl$

QUO PU.!.'.

t, Tea! U.I,Cw

I	 Bo,

C Rectangle

o EU.pne

	

1	 2

	

10	 IC	 j	 10

Pressure (kPa)	 Note: Vol = 30 L at 100 kPa

3.6 More on Debugging MATLAB Programs 	 135

.JctJ.i
Fk Bit y'e irnt To0 Window FlEty

D11 	+: Q	 D

E'ilU& 01VSSS
Volume vs Pressure in an Ideal Gas

I 5ito	 1o.i

Line Style.	 Head Sly!.	 00.' 01	 Irspeclo,

Line Wdth F10	 j	 -led WOO! [. .1

Color	 ,4J	 -	 Head Length

Figure 3.15 Figure 3.12 after the Plot Browser has been used to add an arrow and annotation.

be completely correct the first time it is used. Suppose that we have built the pro-

gram and tested it, only to find that the output values are in error. How do we go

about finding the bugs and fixing them?
Once programs start to include loops and branches, the best way to locate an

error is to use the symbolic debugger supplied with MATLAB. This debugger is

integrated, with the MATLAB editor.
To use the debugger, first open the file that you would like to debug using

the 'File Open" menu selection in the MATLAB Command Window. When the
file is opene& it is loaded into the editor and the syntax is automatically color-

coded. Comments in the file appear in green, Nariables and numbers appear in

black, character strings appear in purple, and language keywords appear in blue.

Figure 3.16 shows an example Fdit Debug window containing the file

caic_rootS . m.
Let's say that we would like to determine '.' hat happens when the program is

executed. To do this, we can set one or more breakpoints by right-clicking the

136 1 Chapter 3 Branching Statements and Program Design

jjj
Fk Edt Text Cd TOt Othg Dertcç Wrdow	 -	 --	 - --

8
9

13
14
15	 .	 -	 .'tt	 r	 r!rLc

17
18
19
20	 /	 lust .:u_	 .t
21	 -.	 -- S.: ii :;1-ti:r.	 fir
22
Za	 -fl--	 ctt--equai,.
24- dx9p (T:.:ç-rogram sfives fir the r	 .V	 lhirV	 fl
25- drsp ('.tn cf th fl—r. -'	 fl
26- a = input ('Enter the :efr jr A
27- b = input (rntet the ccetfl:-.
28	 c = input (tte tV.

29
30	 . - i.,te .113' rVtiraflt

31- dVsrrimjnant = b2 - 4 a a
32
33
34- it discriminant > 0	 tAe_ 3. t ­,

35
36	 xl	 I -b + sqrt(drscrrminant) I / I 2 * a I;
37-	 *2 = I-b - sqrt(drscrimnant) I / (2 *a
38	 disp iT-_n-.	 r =-n - r
39 -	 Sprints I -	 xlI
40 -	 SprintS	 = - - - V V	 x2)
I cut_mats flt	 pmk.m

Figure 3.16 An Edit/Debug window with a MATLAB program loaded.

mouse on the lines of interest and choosing the "Set/Clear Breakpoint" option.

When a breakpoint is set, a red dot appears to the left of that line containing the
breakpoint, as shown in Figure 3.17.

Once the breakpoints have been set, execute the program as usual by typing

caic_roots in the Command Window. The program will run until it reaches

the first breakpoint and stop there. A green arrow will appear by the current line

during the debugging process, as shown in Figure 3.18. When the breakpoint is
reached, the programmer can examine and /or modify any variable in the work-

space by typing its name in the Command Window. When the programmer is sat-

isfied with the program at that point, he/she can either step through the program

a line at a time by repeatedly pressing FlO, or else run to the next breakpoint by

3.6 More on Debugging MATLAB Programs 	 137

I.-
1e Et Test Cd TOOiS DQ Desktop VWiOw H* a

	

r	 Mf,	 4iOI
7	 -
a

10
11	 .	 ..

3	 .
4

6	 :.il.t ?e: !r.	 t

7	 '_rre ,-u,'	 c__71	 t t e -r .t: ii

8	 ..:.

9	 :e.. t,:t.	 Pee.. r:t :1 ej:-lt.. .,.	 Ic: -	 _-,. r

3	 t.t	 t.it.r	 r.	 •.-c::	 _'.l	 .f ri..-i.ct.r
4	 duap ('This rrt:sn -:_:-e itt th	 r--:ts Cr a iuEAr:t: 'I;

5- drsp I	 sif il.-	 551	 C -1.

6	 a = input (tnt-s the c:fic ..ert
7	 b = input ('tsr-s :_e
8 - c = input ('Ente:hr	 I;

38	 -
31 0 discriminant = b2 - 4	 a * C;

33
34	 lf discriminant , OL'-
35
36-	 xl = I -b -- sqrt(discniminant) I / (2 *

37	 <2 = (-b - sqrtldsscrs.miflantl I / 12 * a .
38	 dssp (Tb..s .,-	 ';r.t.i-i

39 -	 tprintf1 -	 S ' , xl)

.40	 Ipnintf I -.... 	. x21

jc*ic_oetns .iek.n.l

Figure 3.17 The window after a breakpoint has been set. Note the red dot to the left of the line with
the breakpoint.

pressing F5. It is always possible to examine the values of any variable at any

point in the program.
When a bug is found, the programmer can use the Editor to correct the

MATLAB program and save the modified version to disk. Note that all break-
points may be lost when the program is saved to disk, so they may have to be set

again before debugging can Continue. This process is repeated until the program

appears to be bug-free.
To other very important features of the debugger are found on the

"Breakpoints" menu. The first feature is "Set/Modify Conditional Breakpoint."

A conditional breakpoint is a breakpoint where the code only stops if some
condition is true. For example, a conditional breakpoint can be used to stop exe-

cution inside a for loop on its 200h execution. This can be very important if a

138 1 Chapter 3 Branching Statements and Program Design

- •5
Fie Et Text C4 Td Cu C.esc Wnjow fr	 -	 -	 -.

C IQ IQ Dt ID	 SckIrooJ 0 ID6 19 F7

Mi

--

23	 -	 -
24- dsp
25- drsp V :. -	 -
26- a = input ('flt_r

27- b = input (r'--rt.-. ---------- 	 -.
28- c = input l . '-	 - -	 - -: - - --

29

30	 - -,
31 eedjs .:rjjujnant = V2 - 4	 a * C;

4'	 , discriminant > 0	 -	 - -	 - -. - -

a- 	 xl	 I -b - sqrt (discruanart)) / 1 2 * a

7,,	 x2	 -b - sqrt(diacr.munarit) I /	 2 * a I;

8- duap
9- fpruntf I'.	 -.	 -. .., xi)
0-
	

fpr.ntf v.-: -	 - - -, x2>

Junkm

Figure 3.18 A green arrow will appear by the current line during the debugging process.

bug only appears after a loop has been executed many times. The condition that
causes the breakpoint to stop execution can be modified, and the breakpoint can
be enabled or disabled during debugging.

The second feature is "Set Error Breakpoints for All Files." If an error is
occurring in a program that causes it to crash or generate warning messages, the
programmer can turn this item on and execute the program. It will run to the point
of the error and stop there, allowing the programmer to examine the values of
variables and exactly what is causing the problem.

A final critical feature is found on the "Debug" menu, It is "Check Code with
M-Lint." M-Lint is a program that examines one or more M-files and reports any
examples of improper or questionable usage. It is a great tool for locating
errors, poor usage, or obsolete features in MATLAB code, including such

3.7 Summary 1 139

things as variables that are defined but never used. You should always run M-Lint

over your programs when they are finished as a final check that everything has

been done properly.
Take some time now to become familiar with the Editor/Debugger and its

supporting tools—it is a very worthwhile investment.

3.7 Summary

In Chapter 3 we have presented the basic types of MATLAB branches and the

relational and logic operations used to control them. The principal type of branch

is the if construct. This construct is very flexible. It can have as many elseif

clauses as needed to Construct any desired test. Furthermore, if constructs can

be nested to produce more complex tests. A second type of branch is the switch

construct. It may be used to select among mutually exclusive alternatives speci-

fied by a control expression. A third type of branch is the try/catch construct.

It is used to trap errors that might occur during execution.

Chapter 3 also included additional information about plots. The axis com-

mand allows a programmer to select the specific range of x and data to be plot-

ted. The hold command allows later plots to be plotted on top of earlier ones, so

that elements can be added to a graph a piece at a time. The figure command

allows the programmer to create and select among multiple Figure Windows, so

that a program can create multiple plots in separate windows. The subplot

command allows the programmer to create and select among multiple plots within

a single Figure Window.
In addition, we learned how to control additional characteristics of our plots,

such as the line width and marker color. These properties may be controlled by

specifying PropertyName ,value pairs in the plot command after the data

to be plotted.
Text strings in plots may be enhanced with stream modifiers and escape

sequences. Stream modifiers allow a programmer to specify features like bold

face, italic, superscripts, subscripts, font size, and font name. Escape sequences

allow the programmer to include special characters such as Greek and mathe-

matical symbols in the text string.
The MATLAB symbolic debugger and related tools such as M-Lint make

debugging MATLAB code much easier. You should invest some time to become

familiar with these tools.

Summary of Good Programming Practice

The following guidelines should be adhered to when programming with branch
or loop constructs. By following them consistently, your code will contain fewer

bugs, will be easier to debug, and will be more understandable to others who may

need to work with it in the future.

140 1 Chapter 3 Branching Statements and Program Design

1. Follow the steps of the program design process to produce reliable, under-
standable MATLAB programs.

2. Be cautious about testing for equality with numeric values, since round-
off errors may cause two variables that should be equal to fail a test for
equality. Instead, test to see if the variables are nearly equal within the
roundoff error to be expected on the computer you are working with.

3. Use the & AND operator if it is necessary to ensure that both operands are
evaluated in an expression, or if the comparison is between arrays.
Otherwise, use the && AND operator, since the partial evaluation will
make the operation faster in the cases where the first operand is false.
The & operator is preferred in most practical cases.

4. Use the I inclusive OR operator if it is necessary to ensure that both
operands are evaluated in an expression, or if the comparison is between
arrays. Otherwise, use the J I operator, since the partial evaluation will
make the operation faster in the cases where the first operand is true.
The I operator is preferred in most practical cases.

5. Always indent code blocks in if, switch, and try/ catch constructs
to make them more readable.

6. For branches in which there are many mutually exclusive options, use a
single if construct with multiple elseif clauses in preference to nested
if constructs.

MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

Commands and Functions

axis	 (a) Set the x and limits of the data to be plotted.
(b)Get the x and limits of the data to be plotted.
(c)Set other axis-related properties.
Select a Figure Window to be the current Figure Window, If the selected
Figure Window does not exist, it is automatically created.
Allows multiple plot commands t write on top of each other.
Selects a block of statements to execute if a specified condition is satisfied.
Returns a I if a is a character array and a 0 otherwise.
Returns a I if a is an empty array and a 0 otherwise.
Returns a I if the value of a is infinite (Int) and a 0 otherwise.
Returns a I if the value of a is NaN (not a number) and a 0 otherwise.
Returns a I if the a is a numeric array and a 0 otherwise.
Converts numeric data to logical data, with non-zero values becoming
true and zero values becoming false.

figure

hold
if construct
ischar(a)
isernpty(a)
isinf (a)
isnan (a)
isnumeric (a)
logical

3.8 Exercises 1 141

Commands and Functions

polar	 Create a polar plot.

subplot Select a subplot in the current Figure Window. If the selected subplot

does not exist, it is autothatically created. If the new subplot conflicts
with a previously existing set of axes, they are automatically deleted.

switch construct	 Selects a block of statements to execute from a set of mutually-exclusive
choices based on the result of a single expression.

try/catch construct	 A special construct used to trap errors. It executes construct the code in

the try block. If an error occurs, execution stops immediately and

transfers to the code in the catch construct.

3.8 Exercises

3.1 Evaluate the following MATLAB expressions.

(a)5.5 >= 5

(b)20 > 20

(c)xor(17 - p1 < 15, p1 < 3)

(d)true > false

(e)--(35/17) == (35/17)

(f)(7 <= 8) == (3/2 == 1)

(g)17.5 && (3.3 > 2.)

3.2 The tangent function is defined as tan6 = sin 9/cos 9. This expression can

be evaluated to solve for the tangent as long as the magnitude of cos9 is

not too near to 0. (If cos 9 is 0, evaluating the equation for tan9 will pro-

duce the non-numerical value Inf.) Assume that 9 is given in degrees, and

write the MATLAB statements to evaluate tan6 as long as the magnitude

of cos9 is greater than or equal
to 10— If the magnitude of cos9 is less

than 10_ 20, write out an error message instead.

3.3 The following statements are intended to alert a user to dangerously high
oral thermometer readings (values are in degrees Fahrenheit). Are they cor-

rect or incorrect? If they are incorrect, explain why and correct them.

if temp < 97.5
disp('Temperature below normal');

elseif temp > 97.5
disp ('Temperature normal
elseif temp > 99.5
disp('Temperature slightly high')

elseif temp > 103.0
disp(Temperature dangerously high')

end

142	 Chapter 3 Branching Statements and Program Design

3.4 The cost of sending a package by an express deliver y service is S12.00 for
the first two pounds. and S4.50 for each pound or fraction thereof over two
pounds. If the package weighs more than 70 pounds. a S15.00 excess
weight surcharge is added to the cost. No package over 100 pounds will
be accepted. Write a program that accepts the weight of a package in
pounds and computes the cost of mailing the package. Be sure to handle
the case of overweight packages.

3.5 In Example 3.3, we wrote a program to evaluate the functionf(x,) for any
two user-specified values x and v, where the function I(x, y) was defined
as follows.

x+i	 x Oandy - O
x+v2 x O and v<0

f(x,v) =
X- + , V x<Oandy-0
x2 + 2 x<O and y<0

The problem was solved by using a single if construct with four code
blocks to calculatef(x, y) for all possible combinations of and y. Rewrite
program funxy to use nested if constructs, where the outer construct
evaluates the value of x and the inner constructs evaluate the value of y.

3.6 Write a MATLAB program to evaluate the function

y(x)'ln	 -
I —x

for any user-specified value of x, where is a number <1.0 (note that In
is the natural logarithm, the logarithm to the base e). Use an if structure
to verify that the value passed to the program is legal. If the value of x is
legal, calcu!ate y(x). If not, write a suitable error message and quit.

3.7 Write a program that allows a user to enter a string containing a day of the
week ('Sunday', 'Monday', 'Tuesday', etc.), and uses that a switch con-
struct to convert the day to its corresponding number, where Sunday is
considered the first day of the week and Saturday is considered the last
day of the week. Print out the resulting day number. Also, be sure to han-
dle the case of an illegal day name! (Note: Be sure to use the s option
on function input so that the input is treated as a string.)

3.8 Suppose that a student has the option of enrolling for a single elective dur-
ing a term. The student must select a course from a limited list of options:
"English," "History," "Astronomy," or "Literature." Construct a fragment
of MATLAB code that will prompt the student for his or her choice, read
in the choice, and use the answer as the case expression for a CASE con-
struct. Be sure to include a default case to handle invalid inputs.

3.9 Ideal Gas Law The Ideal Gas Law was defined in Example 3.7. Assume
that the volume of I mole of this gas is 10 L, and plot the pressure of the
gas as a function of temperature as the temperature is changed from 250
to 400 kelvins. What sort of plot (linear, semilogx, etc.) is most appropri-
ate for this data?

3.8 Exercises 1 143

3.10 Antenna Gain Pattern The gain G of a certain microwave dish anten-
na can be expressed as a function of an g le by 11. equation

G(0) = sine 40 for- 7r

where 0 is measured in radians from the boresite of the dish, and sine x =
sin x/x. Plot this gain function on a polar plot, with the title Antenna
Gain vs 8" in bold face.

3.11 The author of this book now lives in Australia. Australia is a great place

to live, but it is also a land of high taxes. In 2002, individual citizens and
residents of Australia paid the followin g income taxes:

Taxable Income (in A$) Tax on This Income

SO-S6,000	 Nil.

$6,001-S20,000	 17 for each $1 over $6.000

S20,001-S50,000	 S2,380 plus 30c for each $I over S20,000

$50,001-$60,000	 $1 1,380 plus 42c for each SI over 550,000

Over $60,000	 S15,580 plus 47c for each $1 over 560,000

In addition, a flat 1.5% Medicare levy is charged on all income. Write a

program to calculate how much income tax a person will owe based on

this information, The program should accept a total income figure from

the user, and calculate the income tax. Medicare Levy, and total tax
payable by the individual.

3.12 Refraction When a ray of light passes from a region with an index of
refraction n 1 into a region with a different index of refraction n.. the light
ray is bent (see Figure 3.19). The angle at which the light is bent is given
by SnelLt Law

	

,l I sin 0 = n, sin 82	 (3-6)

where 0 is the angle of incidence of the light in the first region. and 0, is
the angle of incidence of the light in the second region. Using Snell's Law.

it is possible to predict the angle of incidence of a light ray in Region 2 if
the angle of incidence 0 1 in Region I and the indices of refraction ii and
n, are known. The equation to perform this calculation is

	

02 = sin' '(sin 01	(-7)

Write a program to calculate the angle of incidence (in degrees) of a light
ray in Region 2 given the angle of incidence 0 1 in Region I and the indices
of refraction n 1 and ,,. (Note. If n 1 >n,, then for some angles 0. Equation
(3-7) will have no real solution because the absolute value of the quantity

144	 Chapter 3 Branching Statements and Program Design

Region I

Region 2

(0

lrik'x of Ret'r tn

Index ofRefrrn2:

1)2

je'	 Refra'

i'Refra

Figure 3.19	 :yc
pa

fr frac
p	 sfi
re	 .tio

(b)

Is as it passe
a region with
-ay of light ber
ion with . 1 higt

<2

medium in
ex of refract
towards the
- refraction i

the	 rtjc

	

2,) It	 ray of

	

with	 her r' .iex

	

fñera	 light

	

th'Iow	 te'

ni

b

0

will be grc

egion I. an

to recogn
ograni sho

tween the

lary,

i 10. When

t passes intt

operly ham

eate a plo
s, and the

all light

it all. You

lition.)
'e incider

V on the

"I

I 1 ()

3.8 Exercises	 145

Figure 3.20 A simple high-pass filter circuit.

Test your program by running it for the following two cases: (a) ,t=
1.0, n, = 1.7, and 9 = 45° (b) n 1 = 1.7, n,	 1.0, and f = 45°.

3.13 Assume that the complex functionf(t) is defined by the equation

f(t) = (0.5 - 0.25i)t - 1.0

Plot the amplitude and phase of functionffor 0 t ^ 4.
3.14 High-Pass Filter Figure 3.20 shows a simple high-pass filter consisting

of a resistor and a capacitor. The ratio of the output voltage V0 to the input
voltage Vi is given by the equation

- = j2irfRC
(3-8)

V	 I +j2irfRC

Assume that R = 16 kfl and C = 1 uF. Calculate and plot the amplitude
and phase response of this filter as a function of frequency.

3.15 The Spiral of Archimedes The spiral of Archimedes is a curve
described in polar coordinates by the equation

r = kO (3-9)

where r is the distance of a point from the origin, and 0 is the angle of that
point in radians with respect to the origin. Plot the spiral of Archimedes
for 0 :5 0 !^ Or when k = 0.5. Be sure to label you plot properly.

3.16 Output Power from a Motor The output power produced by a rotating
motor is given by the equation

P = rJ\0 co, (3-10)

where t1\ [) is the induced torque on the shaft in newton-meters, w, is the

rotational speed of the shaft in radians per second, and P is in watts.

Assume that the rotational speed of a particular motor shaft is given by the

equation

= 188.50 - e02')rad/s

146	 Chapter 3 Branching Statements and Program Design

and the induced torque on the shaft is given by

ti\D = Me 0 . 21 N m

Plot the torque, speed, and power supplied by this shaft versus time for

o t 10 s. Be sure to label your plot properly with the symbols tIND

and w,wherc appropriate. Create two plots, one with the power displayed

on a linear scale, and one with the output power displayed on a logarith-

mic scale. Time should always be displayed on a linear scale.

3.17 Plotting Orbits When a satellite orbits the Earth, the satellite's orbit

will form an ellipse with the Earth located at one of the focal points of the

ellipse. The satellite's orbit can be expressed in polar coordinates as

P
1 =	 (3-Il)

I - ECOSe

where r and 6 are the distance and angle of the satellite from the center of

the Earth, p is a parameter specifying the size of the size of the orbit, and

is a parameter representing the eccentricity of the orbit. A circular orbit has

an eccentricity E of 0. An elliptical orbit has an eccentricity of 0 !^ E 1. If

E > 1, the satellite follows a hyperbolic path and escapes fron the Earth's

gravitational field.

Consider a satellite with a size parametcrp = 1000 km. Plot the orbit

of this satellite if (a) E = 0; (b) E = 0.25; (c) c = 0.5. How close does each

orbit come to the Earth? How far away does each orbit get from the EaIth?

Compare the three plots you created. Can you determine what the param-

eterp means from looking at the plots?

CHAPTER 4
Loops

Loops are MATLAB constructs that permit us to execute a sequence of state-

ments more than once. There are two basic forms of loop constructs: while

loops and for loops. The major difference between these two types of loops

is in how the repetition is controlled.The code in a while loop is repeated an

indefinite number of times until some user-specified condition is satisfied. By

contrast, the code in a for loop is repeated a specified number of times, and the

number of repetitions is known before the loops starts.

4.1 The while Loop

A while loop is a block of statements that are repeated indefinitely as long as

some condition is satisfied. The general form of a while loop is

while expression

Code block

end

The controlling expression produces a logical value. If the expression is true.

the code block will be executed, and then control will return to the while state-

ment. If the expression is still true, the statements will be execited again. This

process will be repeated until the expression becomes false. When control

returns to the while statement and the expression is false, the program will

execute the first statement after the end.

147

48	 Chapter 4 Loops

The pseudocode corresponding to a while loop is

while exr

end

We will now show an example statistical analysis program that is imple-

mented using a while loop.

Example 4.1—Statistical Analysis
It is very common in science and engineering to work with large sets of numbers,
each of which is a measurement of some particular property that we are interest-

ed in. A simple example would be the grades on the first test in this course. Each

grade would be a measurement of how much a particular student has learned in

the course to date.
Much of the time, we are not interested in looking closely at every single

measurement that we make. Instead, we want to summarize the results of a set of

measurements with a few numbers that tell us a lot about the overall data set. Two

such numbers are the average (or arithmetic mean) and the standard deviation of

the set of measurements. The average or arithmetic mean of a set of numbers is

defined as
N

=

	

	 (4-1)
N=1

where x1 is sample i out of N samples. If all of the input values are available in an

array, the average of a Set of numbers can be calculated by the MATLAB func-

tion mean. The standard deviation of a Set of numbers is defined as

flNN \2
- (x)

	S = /	 ='	 i=l	 (4-2)

	

"1	 N(N-1)

Standard deviation is a measure of the amount of scatter on the measurements;

the greater the standard deviation, the more scattered the points in the data set are.

If all of the input values are available in an array, the standard deviation of a set

of numbers can be calculated by MATLAB function std.

Implement an algorithm that reads in a set of measurements and calculates

the mean and the standard deviation of the input data set.

Sot LTlo\ This program must be able to read in an arbitrary number of meas-

urements, and then calculate the mean and standard deviation of those measure-

ments. We will use a while loop to accumulate the input measurements before

performing the calculations.

4	 The while Loop	 149

When all of the measurements hac been read, we must hae some way of
telling the program that there is no more data to enter. For now. we will assume
that all the input measurements are either positive or zero, and we will use a neg-
ative input value as a flag to indicate that there is no more data to read If a
negative value is entered, then the program will stop readin g input values and will
calculate the mean and standard deviation of the data set.

1. State the problem.
Since we assume that the input numbers must be positive or zero, a prop-
er statement of this problem would be: calculate the average and the stan-
dard deviation of a set of ,neasure,nents, assuming that all of the meas-
urements are either positive oi'zero, and assuming that we do not know in
advance how many measurements are included in the data set. A negative
input value will mark the end of the set of measurements.

2. Define the inputs and outputs.
The inputs required by this program are an unknown number of positive
or zero numbers. The outputs from this program are a printout of the mean
and the standard deviation of the input data set. In addition, we will print
out the number of data points input to the program, since this is a useful
check that the input data was read correctly.

3. Design the algorithm.
This program can be broken down into three major steps

Accumulate the input data
Calculate the mean and standard deviation
Write Out the mean, standard deviation, and nurn

ber of points

The first major step of the program is to accumulate the input data.
To do this, we will have to prompt the user to enter the desired numbers.
When the numbers are entered, we will have to keep track of the number
of values entered, plus the sum and the sum of the squares of those val-
ues. The pseudocode for these steps is:

Initialize n, sum x, and sum—x2 to 0
Prompt user for first number
Read in first x
while x >= 0

n <- n + 1
sum_x <- sum_x + x
sum_x2 <- sum_x2 + x2
Prompt user for next number
Read in next x

end

[so	 Chapter 4 Loops

Note that we have to read in the first value before the while loop starts so

that the while loop can have a value to test the first time it executes.
Next,we must calculate the mean and standard deviation. The

pseudocode for this step is just the MATLAB versions of Equations (4-1)

and (4-2).

xbar <- sum_x / n
std_dev <- sqrt((n*sumX2 - sum_x2)/(fl*(fl_1)))

Finally, we must write out the results.

Write out the mean value x_bar
Write out the standard deviation std_dev
Write out the number of input data points n

4. Turn the algorithm into MATLAB statements.

The final MATLAB program is shown below.

Script file: stats_l.m

Purpose:
To calculate mean and the standard deviation of
an input data set containing an arbitrary number

of input values. 	 -

Record of revisions:
Date	 Programmer

%
	

01/07/04	 S. J. Chapman

Description of change

Original code

Define variables:

n	 -- The number of input samples
std_dev -- The standard deviation of the input samples

sum_x	 -- The sum of the input values
sum x2 -- The sum of the squares of the input values

-- An input data value

xbar	 -- The average of the input samples

% initialize sums.
n = 0; sum_x = 0; sum—x2 = 0;

s Road in first value
x = lnput(Enter first value:);

% While Loop to read input values.

while x >= 0

4.1 The	 Ic Loop	 151

6 Accumulate sums.
n

sum X = sum + x;
sum x2 = sum x2 + x2;

Read in next value
X = input(Enter nextValue:

end

% Calculate the mean and standard deviation
x_bar = sum _x / n;
std_dev = sqrt((n * sum—x2 - sum_x2)/(n *

% Tell user.

fprintf(The mean of this data set is: 	 %f\n, x_bar);
fprintf(The standard deviation is: 	 %f\n, stddev);
fprintf(The number of data points is: 	 %f\n, n);

5. Test the program.

To test this program, we will calculate the answers by hand for a simple

data set, and then compare the answers to the results of the program. If we
used three input values: 3, 4, and 5, then the mean and standard deviation
would be

-	 I
X =	 = yl2) = 4

-
V/N x? - (

N)i
S	

N(N-1)	 -

When the above values are fed into the program. the results are

>' stats_i
Enter first value: 3
Enter next value: 4
Enter next value: 5
Enter next value: -1
The mean of this data set is: 4.000030
The standard deviation is: 1.000000
The number of data points is: 3.000000

The program gives the Correct answers for our test data set,

I 5.	 Chapter 4 Loops

In the example above, we failed to follow the design process completely. This

failure has left the program with a fatal flaw! Did you spot it?
We have failed because we did not completely test the program for all possi-

ble ripes of inputs. Look at the example once again. If we enter either no num-

bers or only one number, then we will be dividing by zero in the above equations!
The division-by-zero error will cause divide-by-zero warnings to be printed, and

the output values will be NaN. We need to modify the program to detect this prob-

lem, tell the user what the problem is, and stop gracefully.

A modified version of the program called stats_2 is shown below. Here,

we check to see if there are enough input values before performing the calcula-

tions. If not, the program will print out an intelligent error message and quit. Test

the modified program for yourself.

% Script file: stats_2.m

% Purpose:
%	 To calculate mean and the standard deviation of

%	 an input data set containing an arbitrary number

%	 of input values.

% Record of revisions:
Date	 Programmer	 Description of change

%	 = = = =	 = = = = = = = = = = 	 =
01/07/04 S. J. Chapman	 Original code

% 1. 01/07/04 S. J. Chapman	 Correct divide-by-O error if
0 or 1 input values given.

% Define variables:
% n	 -- The number of input samples

%	 std_dev	 -- The standard deviation of the input samples

% sum_x	 -- The sum of the input values

%	 sum_x2	 -- The sum of the squares of the input values

%	 x	 -- An input data value
% xbar	 -- The average of the input samples

% Initialize sums.
n = 0; sumx = 0; sum_x2 = 0;

% Read in first value
x = inputYEnter first value:);

% While Loop to read input values.
while x >= 0

% Accumulate sums.
n = n + 1;

4.2 The fc Loop	 153

sum_x = sumx +
sumx2 = sumx2 + x"2;

% Read in next value
x = input) Enter next value:

end

% Check to see if we have enough input data.
if n < 2	 Insufficient information

disp(At least 2 values must be entered!);

else	 There is enough information, so
calculate the mean and standard deviation

x_bar = surn_x / n;
std_dev = sqrt((n * suzn_x2 - sum _x"2)I(n * (n-i)))

% Tell user.

fprintf(The mean of this data Set is:	 %f\n, xbar);
fprintf(The standard deviation is: 	 %f\n, std_dev);
fprintf(The number of data points is:	 %f\n, n);

end

Note that the average and standard deviation could have been calculated with
the built-in MATLAB functions mean and std if all of the input values are saved
in a vector, and that vector is passed to these functions. You will be asked to cre-

ate a version of the program that uses the standard MATLAB functions in an exer-

cise at the end of this chapter.

4.2 The for Loop

The for loop is loop that executes a block of statements a specified number o

times. The for loop has the form

for index = expr
Statement 1

• -	 Body

Statement n
end

I 54	 Chapter 4 Loops

where index is the loop variable (also known as the loop index) and expr is

the loop control expression. The columns in expr are stored one at a time in the

variable index and then the loop body is executed, so that the loop is executed

once for each column in expr. The expression usually takes the form of a vector

in shortcut notation first: incr: last.

The statements between the for statement and the end statement are known

as the body of the loop. They are executed repeatedly during each pass of the for

loop. The for loop construct functions as follows:

I. At the beginning of the loop, MATLAB generates the control expression.

2. The first time through the loop, the program assigns the first column of

the expression to the loop variable index, and the program executes the

statements within the body of the loop.

3. After the statements in the body of the loop have been executed, the pro-

gram assigns the next column of the expression to the loop variable

index, and the program executes the statements within the body of the

loop again.

4. Step 3 is repeated over and over as long as there are additional columns in

the control expression.

Let's look at a number of specific examples to make the operation of the for

loop clearer. First, consider the following example:

for ii = 1:10
Statement 1

Statement n
end

In this case, the control expression generates a I X 10 array, so statements I

through n wilt be executed 10 times. The loop index ii will be I on the first time,

2 on the second time, and so on. The loop index will be 10 on the last pass through

the statements. When control is returned to the for statement after the tenth pass,

there are no more columns in the control expression, so execution transfers to the

first statement after the end statement. Note that the loop index ii is still set to

10 after the loop finishes executing.

Second. consider the following example:

for ii = 1:2:10
Statement 1

Statement n
end

In this case, the control expression generates a I)< 5 array, so statements I

through n will be executed 5 times. The loop index ii will be I the first time, 3

the second time, and so on. The loop index will be 9 on the fifth and last pass
through the statements. When control is returned to the for statement after the

fifth pass. there are no more columns in the control expression. so execution

4 	 The for Loop	 155

transfers to the first statement after the end statement. Note that the loop index
ii is still Set to 9 after the loop finishes executing.

Third, consider the following example:

for ii = [5 9 7]
Statement 1

Statement n
end

Here, the control expression is an explicitlywritten 1 >< 3 array, 50 Statements I
through n will be executed three times with the loop index set to 5 the first time,
9 the second time, and 7 the final time. The loop index ii is still Set to 7 after the
loop finishes executing.

Finally, consider the example:

for ii = [1 2 3.;4 5 61
Statement 1

Statement n
end

In this case, the control expression is a 2)< 3 array, so statements I through n will

be executed three times. The loop index ii will be the column vector[] the

first time, [2] the second time, and [] the third time. The loop index ii is

still set to
6 after the loop finishes executing. This example illustrates the fact

that a loop index can be a vector.
The pseudocode corresponding to a for loop looks like the loop itself:
for index = expression

Statement 1

Statement n
end

Example 4.2—The Factorial Function
To illustrate the operation of a for loop, we will use a for loop to calculate the
factorial function. The factorial function is defined as

N! =i	 N=O
N! = N * (N-i) * (N-2) *	 * 3 * 2 * 1	 N > 0

I 56	 Chapter 4 Loops

The NIATLAB code to calculate N factorial for positive value of N would be

n_factorial = 1
for ii = l:n

n_factorial = n_factorial * jj;

end

Suppose that we wish to calculate the value of 5L If is 5, the for loop con-

trol expression would be the row vector [1 2 3 4 5]. This loop will be exe-

cuted 5 times, with the variable ii taking on values of 1, 2, 3, 4, and 5 in the suc-

cessive loops. The resulting value of n_factorial will be I X 2 X 3 X

4 X 5 = 120.	
1

Example 4.3—Calculating the Day of Year

The day of year is the number of days (including the current day) which have

elapsed since the beginning of a given year. It is a number in the range 1 to 365

for ordinary years, and 1 to 366 for leap years. Write a MATLAB program that

accepts a day, month, and year, and calculates the day of year corresponding to

that date.

SOLUTION To determine the day of year, this program will need to sum up the

number of days in each month preceding the current month, plus the number of

elapsed days in the current month. A for loop will be used to perform this sum.

Since the number of days in each month varies, it is necessary to determine the

correct number of days to add for each month. A switch construct will be used

to determine the proper number of days to add for each month.

During a leap year, an extra day must be added to the day of year for any

month after February. This extra day accounts for the presence of February 29 in

the leap year. Therefore, to perform the day of year calculation correctly, we must

determine which years are leap years. In the Gregorian calendar, leap years are

determined by the following rules:

I. Years evenly divisible by 400 are leap years.

2. Years evenly divisible by 100 but not by 400 are not leap years.

3. All years divisible by 4 but not by 100 are leap years.

4. All other years are not leap years.

We will use the mod (for modulo) function to determine whether or not a year is

evenly divisible by a given number. If the result of the mod function is zero, then

the year is evenly divisible.
A program to calculate the day of year is shown below. Note that the program

sums up the number of days in each month before the current month a nd that it

uses a switch construct to determine the number of days in each month.

4.2 The fo Loop	 157

Script file: doy.m

Purpose:

This program calculates the day of year Corresponding
to a specified date. It illustrates the use switch and
for Constructs.

Record of revisions:
Date	 Programmer	 Description of change

01/07/04	 S. J. Chapman	 Original code

Define variables:
day	 -- Day (dd)
day—of—year	 -- Day of year
ii	 -- Loop index
leap—day	 -- Extra day for leap year
month	 -- Month (mm)
year	 -- Year (yyyy)

% Get day, month, and year to convert
disp('This program calculates the day of year given the);
disp(current date.,);

month = input ('Enter current month (1-12):
day	 = input('Enter current day(1-31):);
year = input('Enter current year(yyyy):);

% Check for leap year, and add extra day if necessary
if mod(year,400) == 0

leap—day = 1;	 % Years divisible by 400 are leap years
elseif mod(year,100) == 0

leap—day = 0;	 % Other centuries are not leap years
elseif mod(year,4) == 0

leap—day = 1;	 % Otherwise every 4th year is a leap year
else

leap—day = 0;	 % Other years are not leap years
end

% Calculate day of year by adding current day to the
% days in previous months.
day_of_year = day;
for ii = l:month-1

%

%

158	 Chapter 4 Loops

Add days in months from January to last month

switch (ii)
case {1,3,5,7, 8,10,12),

day_of_year = day_Of_year + 31;

case (4,6,9,11),
day—of—year = day—of—year + 30;

case 2,
day_of_year = day—of—year + 28 + leap_day;

end

end.

% Tell user
fprintf('The date %2d/%2d/%4d is day of year %d.\n ,

month, day, year, day_of_year);

We will use the following known results to test the program:

1. Year 1999 is not a leap year. January 1 must be day of year 1, and

December 31 must be day of year 365.

2. Year 2000 is a leap year. January 1 must be day of year 1, and December

31 must be day of year 366.

3. Year 2001 is not a leap year. March 1 must be day of year 60, since January

has 31 days, February has 28 days, and this is the first day of March.

If this program is executed five times with the above dates, the results are

>' doy
This program calculates the day of year given the

current date.
Enter current month (1-12) : 1

Enter current day(1-31)	 1

Enter current year (yyyy) :	 1999

The date 1/ 1/1999 is day of year 1.
>> doy
This program calculates the day of year given the

current date.
Enter current month (1-12)	 12

Enter current day(l-31) :	 31

Enter current year (yyyy) :	 1999

The date 12/31/1999 is day of year 365.

" doy
This program calculates the day of year given the

current date.
Enter current month (1-12)	 1

Enter current day(1-31) :	 1

Enter current year(yyyy):	 2000

The date 1/ 1/2000 is day of year 1.

4.2 The for Loop	 159

doy
This program calculates the day of year g-- -,- en :he

current date.
Enter current month (1-12) : 12
Enter current day(1-31) :	 31
Enter current year (yyyy) : 	 2000
The date 12/31/2000 is day of year 366.

>' doy
This program calculates the day of year g:ven the

current date.
Enter current month (1-12): 3
Enter current day(1-31) : 	 1
Enter current year (yyyy) : 	 2001

The date 3/ 1/2001 is day of year 60.

The program gives the correct answers for our test dates in all five test cases.

Example 4.4—Statistical Analysis
Implement an algorithm that reads in a set of measurements and calculates the

mean and the standard deviation of the input data Set, when any value in the data

set can be positive, negative, or zero.

SOLUTION This program must be able to read in an arbitrary number of meas-

urements, and then calculate the mean and standard deviation of those measure-

ments. Each measurement can be positive, negative, or zero.

Since we cannot use a data value as a flag this time, we will ask the user for

the number of input values, and then use a for loop to read in those values. The

modified program that permits the use of any input value is shown below. Verify

its operation for yourself by finding the mean and standard deviation of the fol-

lowing five input values: 3., –1., 0., I., and –2.

Script file: stats3.m

Purpose:
To calculate mean and the standard deviation of
an input data set, where each input value can be
positive, negative, or zero.

Record of revisions:
Date	 Programmer
	 Description of change

01/08/04	 S. J. Chapman
	

Original code

60	 Chapter 4 Loops

% Define variables:
%	 ii	 -- Loop index
%	 n	 -- The number of input samples
%	 std_dev -- The standard deviation of the input samples
%	 sumx	 -- The sum of the input values
%	 sum_x2	 -- The sum of the squares of the input values
% x	 -- An input data value
% xbar	 -- The average of the input samples

% Initialize sums.
sum_x = 0; sum_x2 = 0;

% Get the number of points to input.
n = input(Enter number of points: ');

% Check to see if we have enough input data.
if n < 2	 % Insufficient data

disp ('At least 2 values must be entered.');

else % we will have enough data, so let's get it.

% Loop to read input values.
for ii = l:n

% Read in next value
x = input(Enter value:);

% Accumulate sums.
sum_x = sum_x + x;
sum_x2 = sum_x2 + x"2;

end

% Now calculate statistics.
x_bar = sum_x / n;
sd_dev = sqrt((n * sum_x2 - sum-x^2) / (n * (n-i)));

% Tell user.
fprintf('The mean of this data set is: 	 %f\n', x_bar);
fprintf('rhe standard deviation is: 	 %f\n', std _dev);
fprintf('The number of data points is:	 %f\n, n);

end

EM

4.2 The fo Loop	 161

Details of Operation

Now that we have seen examples of a for loop in operation. we must examine

some important details required to use for loops properly,

I. Indent the bodies of loops. It is not necessary to indent the body of a

for loop as we have shown above. NIATLAB will recognize the loop

even if every statement in it starts in column I. However, the code is much

more readable if the body of the for loop is indented, so you should

always indent the bodies of loops.

Always indent the body of a for loop by two or more spaces to improve the

readability of the code.

-

Don't modify the loop index within the body of a loop. The loop index

of a for loop should not be modified an within the both of the

loop. The index variable is often used as a counter within the loop, and

modifying its value can cause strange and hard-to-find errors. The exam-

ple shown below is intended to initialize the elements of an array, but

the statement "ii = 5" has been accidentally inserted into the body of the

loop. As a result, only a (5) is initialized, and it gets the values that

should have gone into a (1), a (2), etc.

for ii = 1:10

Error!

a(ii) = <calculation>

end

Never modify the value of a loop index within the body of the loop.

3. PreaUocating Arrays. We learned in Chapter 2 that it is possible to

extend an existing array simply by assigning a value to a higher array ele-

ment. For example. the Statement

arr = 1:4;

162 1 Chapter4 Loops

defines a 4-element array containing the values 11 2 3 4] If the

statement

arr(8) = 6;

is executed, the array will be automatically extended to eight elements,

and will contain the values [1 2 3 4 0 0 0 6] Unfortunately,

each time that an array is extended, MATLAB has to (1) create a new

array. (2) copy the contents of the old array to the new longer array, (3)

add the new value to the array, and then (4) delete the old array. This

process is very time-consuming for long arrays.

When a for loop Stores values in a previously undefined array, the

loop forces MATLAB to go through this process each time the loop is

executed. On the other hand, if the array is preallocated to its maximum

size before the loop starts executing, no copying is required, and the code

executes much faster. The code fragment shown below shows how to pre-

allocate an array before the starting the loop.

square = zeros(1,100);
for ii = 1:100

square(ii) = ii"2;
end

Always preallocate all arrays used in a loop before executing the loop. This

practice greatly increases the execution speed of the loop.

4. Vectorizing Arrays. It is often possible to perform calculations with

either for loops or vectors. For example, the following code fragment

calculates the squares, square roots, and cube roots of all integers between

I and 100 using a for loop.

for ii = 1:100
square(ii) = ii2;
square_root(ii) =
cube—root(ii) = ii'(1/3);

end

The following code fragment performs the same calculation with vectors.

ii = 1:100;

square = ii.2;
square_root = ii."(1/2);
cube—root(ii) = ii."(1/3);

4.2 The for Loop	 163

Even though these two calculations produce the same answers, they are
not equivalent. The version with the for loop can be more than 15 times
slower than the vectorized version! This happens because the statements
in the for loop must be interpreted' and executed a line at a time by

MATLAB during each pass of the loop. In effect, MATLAB must inter-

pret and execute 300 separate lines of code. In contrast, MATLAB only

has to interpret and execute 4 lines in the vectorized case. Since MAT-

LAB is designed to implement vectorized statements in a very efficient

fashion, it is much faster in that mode.

In MATLAB, the process of replacing loops by vectorized statements
is known as vectorization. Vectorization can yield dramatic improve-
ments in performance for many MATLAB programs.

If it is possible to implement a calculation either with a for loop or using vec-
tors, implement the calculation with vectors. Your program will be much faster.

The MATLAB Just-in-Time (JUT) Compiler
A just-in-time (JIT) compiler was added to MATLAB 6.5 and later versions. The

JIT compiler examines MATLAB code before it is executed and, where possible,

compiles the code before executing it. Since the MATLAB code is compiled

instead of being interpreted, it runs almost as fast a vectorized code. The uT com-

piler can sometimes dramatically speed up the execution of for loops.
The uT compiler is a very nice tool when it works, because it speeds up the

loops without any action by the programmer. However, the JIT compiler has

many limitations that prevent it from speeding up all loops. A full list of JIT

compiler limitations appears in the MATLAB documentation, but some of the

more important limitations are:

1. The JIT only accelerates loops containing double, logical, and char
data types (plus integer data types that we haven't met yet). If other data

types such as cell arrays or structure S2 appear in the loop, it will not be
accelerated.

2. If an array in the loop has more than two dimensions, the loop will not be
accelerated.

3. If the code in the loop calls external functions (other than buil(-in func-
tions), it wilt not be accelerated.

But see the next item about the MATLAB Just-In-Time compiler.
We will learn about these data types in Chapter 7.

164 1 Chapter 4 Loops

4. If the code in the loop changes the data type of a variable within a loop,
the loop will not be accelerated.

Because of these limitations, a good programmer using vectorizatiOfl can
malmost always create a faster progra than one relying on the uT compiler.

Do not rely on the JIT compiler to speed up your code. It has many limitations,
and a programmer cantypically do a better job with manual vectorization.

Example 4.5—Comparing Loops and Vectors
To compare the execution speeds of loops and vectors, we will perform and time
the following four sets of calculations.

1. Calculate the squares of every integer from I to 10,000 in a for loop

without initializing the array of squares first.
2. Calculate the squares of every integer from Ito 10,000 in a for loop, using

the zeros function to preallocate the array of squares first, but calling an exter-
nal function to perform the squaring. (This will disable the JIT compiler.)

3. Calculate the squares of every integer from I to 10,000 in a for loop,
using the zeros function to preallocate the array of squares first, and cal-
culating the square of the number in-line. (This will allow the JIT com-
piler to function.)

4. Calculate the squares of every integer from I to 10,000 with vectors.

SOLUTION This program must calculate the squares of the integers from 1 to
10,000 in each of the four ways described above, timing the executions in each
case. The timing can be accomplished using the MATLAB functions tic and
toc. Function tic resets the built-in elapsed time counter, and function toc
returns the elapsed time in seconds since the last call to function tic.

Since the real-time clocks in many computers have a fairly coarse granulari-
ty, it may be necessary to execute each set of instructions multiple times to get a
valid average time.

A MATLAB program to compare the speeds of the four approaches is shown
below:

% Script file: timirigs.tn

% Purpose:
% This program calculates the time required to

4.2 The for Loop I 165

%	 calculate the squares of all integers from 1 to

%	 10,000 in four different ways:

%	 1. Using a for loop with an uninitialized output

%	 array.

%	 2. Using a for loop with a pre-allocated output

array and NO JIT compiler.

%	 3. Using a for loop with a pre-allocated output

array and the JIT compiler.

%	 4. Using vectors.

% Record of revisions:
Date	 Programmer	 Description of change

%
%	 01/09/04	 S. J. Chapman	 Original code

% Define variables:

%	 ii, jj	 -- Loop index

% averagel	 -- Average time for calculation 1

% average2	 -- Average time for calculation 2

% average3	 --	 rage time for calculation 3

% average4	 --	 erage time for calculation 4

% maxcount	 -- Number of times to loop calculation

% square	 -- Array of squares

9 Perform calculation with an uninitialized array

9 square". This calculation is done only once

% because it is so slow.
maxcount = 1;	 % Number of repetitions

tic;	 % Start timer

for jj = l:maxcouflt
clear square	 % Clear output array

for ii = 1:10000
square(ii) = ii"2; 	 % Calculate square

end
end
averagel = (toc)/maxcouflt; % Calculate average time

% Perform calculation with a pre-allocated array

9 square, calling an external function to square
% the number. This calculation is averaged over 10

% loops.
maxcount = 10;	 % Number of repetitions

tic;	 % Start timer

I 66	 Chapter 4 Loops

for jj = l:maxcount
clear square
square = zeros(l, 10000);
for ii = 1:10000

square(ii) = sqr(ii);
end

end

average2 = (toc)/maxcount;

% Clear output array
% Pre-initialize array

% Calculate square

% Calculate average time

% Perform calculation with a pre-allocated array
"square". This calculation is averaged over 100

% loops.
maxcount = 100;	 % Number of repetitions
tic;	 % Start timer
for jj = l:maxcount

clear square	 % Clear output array
square = zeros(1.10000); 	 % Pre-initialize array
for ii = 1:10000

square(ii) = ii2;	 % Calculate square
end

end

average3 = (toc)/maxcount;	 % Calculate average time

% Perform calculation with vectors. This calculation
% averaged over 1000 executions.
maxcount = 1000;	 % Number of repetitions
tic;	 % Start timer
for jj = l:maxcount

clear square	 % Clear output array
ii = 1:10000;	 % Set up vector
square = ii.2;	 % Calculate square

end

average4 = (toc)/maxcount;	 % Calculate average time

% Display results
fprintf(Loop I uninitialized array 	 = %8.4f\n', average].);
fprintf(Loop / initialized array / no JIT = %8.4f\n', average2);
fprintf(Loop / initialized array / JIT 	 = %8.4f\n, average3);
fprintf(Vectorized 	 = %8.4f\n, average4);

When this program is executed using MATLA8 7.0 on a 2.4 GHz Pentium
IV computer, the results are:

>> timings
Loop / uninitialized array 	 = 0.1100
Loop / initialized array / no JIT = 0.1797

4.2 The for Loop	 167

Loop / initialized array / JIT 	 = 0.0005

Vectorized	 = 0.0001

The loop with the initialized array and the loop with the initialized array but

no JIT were very slow compared with the loop executed with the JIT compiler or

the vectorized loop. The vectorized loop was the fastest way to perform the cal-

culation, but if the JIT compiler works for your loop, you get most of the accel-

eration without having to do anything! As you can see, designing loops to allow

the JIT compiler to function' or replacing the loops with vectorized calculations

can make an incredible difference in the speed of your MATLAB code!	
.4

The break and continue Statements

There are two additional statements that can be used to control the operation of

while loops and for loops: the break and continue statements. The

break statement terminates the execution of a loop and passes control to the

next statement after the end of the loop, while the Continue statement termi-

nates the current pass through the loop and returns control to the top of the loop.

If a break statement is executed in the body of a loop, the execution of the

body will stop and control will be transferred to the first executable statement

after the loop. An example of the break statement in a for loop is shown below.

for ii = 1:5
if ii == 3;

break;
end
fprintf(ii = %d\n,ii);

end
disp([End of loop!']);

When this program is executed, the output is:

>> test break

ii = 1

ii = 2

End of loop!

Note that the break statement was executed on the iteration when ii was 3, and

control transferred to the first executable statement after the loop without execut-

ing the fprintf statement.

The MATLAB Profiler can help you speed up your code. This tool can identif y loops that do not get
speeded up by the uT compiler, and tell you why they can't be accelerated. See the MATL.AB docu-
mentation for details about the Profiler.

I 68 1 Chapter 4 Loops

If a continue statement is executed in the body of a loop, the execution of the

current pass through the loop will stop and control will return to the top of the loop.

The controlling variable in the for loop will take on its next value, and the loop will

be executed again. An example of the continue statement in a for loop is

shown below.

for ii = 1:5
if ii == 3;

continue;
end
fprintf(ii = %d\n',ii);

end
disp ([End of loop!']);

When this program is executed, the output is:

test—continue

ii = 1

ii =2

ii = 4

ii = 5

End of loop!

Note that the continue statement was executed on the iteration when ii was

3, and control transferred to the top of the loop without executing the fprintf

statement.

The break and continue statements work with both while loops and

for loops.

Nesting Loops

It is possible for one loop to be completely inside another loop. If one loop is

completely inside another one, the two loops are called nested loops. The fol-

lowing example shows two nested for loops used to calculate and write Out the

product of two integers.

for ii = 1:3
for jj = 1:3

product = ii * ji;
fprintf(%d * %d = %d\n,ii.jj,product);

end
end

In this example, the outer for loop will assign a value of Ito index variable ii,

and then the inner for loop will be executed. The inner for loop will be exe-

cuted 3 times with index variable ii having values 1, 2, and 3. When the entire

inner for loop has been completed, the outer for loop will assign a value of 2

4.2 The for Loop 1 169

to index variable ii, and the inner for loop will be executed again. This

process repeats until the outer for loop has executed 3 times, and the resulting

output is

1*1=1

1*2=2

1*3=3
2*1=2
2*2=4
2*3=6
3*1=3
3*2=5
3*3_9

Note that the inner for loop executes completely before the index variable of the

outer for loop is incremented.

When MATLAB encounters an end statement, it associates that statement

with the innermost currently open construct. Therefore, the first end state-

ment above closes the "for j = 1 : 3" loop, and the second end statement

above closes the "for ii = 1: 3" loop. This fact can produce hard-to-find

errors if an end statement is accidentally deleted somewhere within a nested

loop construct.

If for loops are nested, they should have independent loop index variables.
If they have the same index variable, then the inner loop will change the value of

the loop index that the outer loop just Set.

If a break or continue statement appears inside a set of nested loops,

then that statement refers to the innermost of the loops containing it. For exam-

ple, consider the following program

for ii = 1:3
for jj = 1:3

if ii == 3;
break;

end
product = jj * jj;
fprintf(%d * %d = %d\n' ,iijj,product);

end
fprintf(End of inner loop\n);

end
fprintf(End of outer loop\n');

If the inner loop counter ii is equal to 3, then the break statement will be

executed. This will cause the program to exit the innermost loop. The program
will print out "End of inner loop", the index of the outer loop will be increased

by I, and execution of the innermost loop will start over. The resulting output

values are

I 70 1 Chapter 4 Loops

1 * 1 = 1
1*2=2

End of inner loop
2*1=2
2*2=4

End of inner loop

3	 1=3
3*2=6

End of inner loop
End of Outer loop

4.3 Logical Arrays and Vectorization

We learned about the logical data type in Chapter 3. Logical data can have one
of two possible values: true (1) or false (0). Scalars and arrays of logical
data are created as the output of relational and logic operators.

For example, consider the following statements:

a = l 23; 456; 789];
b = a > 5;

These statements produced two arrays a and b. Array a is a double array con-
r l 2 31

tairting the values 4 5 6 while array b is a logical array containing the

L7 8 9]
0 0 0

.values 0 0 1 When the whos command is executed, the results are as

11	 I	 I
shown below.

>> whoa
Name	 Size	 Bytes	 Class

a	 3x3	 72	 double array
b	 3x3	 9	 logical array

Grand total is 18 elements using 81 bytes

Logical arrays have a very important special property—the y can serve as a
mask for arithmetic operations. A mask is an array that selects the elements of
another array for use in an operation. The specified operation will be applied to
the selected elements, and not to the remaining elements.

For example, suppose that arrays a and b are as defined above. Then the state-
ment a (b) = sqrt (a (b)) will take the square root of all elements for . which the
logical array b is true, and leave all the other elements in the array unchanged.

4.3 Logical Arrays and Vectorizatiori 	 171

>> a(b) = sqrt(a(b))
a=

	

1.0000	 2.0000	 3.0000

	

4.0000	 5.0000	 2.4495

	

2.6458	 2.8284	 3.0000

This is a very fast and very clever way of performing an operation on a subset of

an array without needing loops and branches.

The following two code fragments both take the square root of all elements

in array a whose value is greater than 5, but the vectorized approach is much

faster than the loop approach.

for ii = l:size(a,1)
for jj = 1:size(a,2)

if a(ii,jj) > 5
a(ii,jj) = sqrt(a(ii,jj));

end
end

end

b = a > 5;
a(b) = sqrt(a(b));

Example 4.6—Using Logical Arrays to Mask Operations
To compare the execution speeds of loops and branches versus vectorized

code using a logical array, we will perform and time the following two sets

of calculations.

I. Create a 10,000-element array containing the values, 1, 2.....10,000.

Then take the square root of all elements whose value is greater than 5000

using a for loop and an if construct.

2. Create a 10,000-element array containing the values, 1, 2.....10,000.

Then take the square root of all elements whose value is greater than 5000

using a logical array.

SOLUTION This program must create an array containing the integers from I to

10000, and take the square roots of those value that are greater than 5000 in each

of the two ways described above.
A MATLAB program to compare the speeds of the two approaches is shown

below:

% Script file: logicall.m

% Purpose:
%	 This program calculates the time required to

%	 calculate the square roots of all elements in

172 1 Chapter 4 Loops

%	 array a whose value exceeds 5000. This is done

%	 in two different ways:

%	 1. Using a for loop and if construct.

%	 2. Using a logical array.

% Record of revisions:
Date	 Programmer	 Description of change

= = = =	 = = = = = = = = = =	 =

%	 01/10/04	 S. J. Chapman	 Original code

% Define variables:

%	 a	 -- Array of input values

% b	 -- Logical array to serve as a mask

%	 ii, jj	 -- Loop index
%	 averagel	 -- Average time for calculation 1

%	 average2	 -- Average time for calculation 2

% maxcount	 -- Number of times to loop calculation

% month	 -- Month (mm)

%	 year	 -- Year (yyyy)

% Perform calculation using loops and branches.

maxcount = 1;	 % One repetition

tic;	 % Start timer

for jj = 1:maxcoUflt

	

a = 1:10000;	 % Declare array a

for ii - 1:10000

if a(ii) > 5000

	

a(ii)	 sqrt(a(ii));

end
end

end
averagel = (toc)/maxcount; % Calculate average time

% Perform calculation using logical arrays.

maxcount = 10;	 % One repetition

tic;	 % Start timer

for jj = 1:maxcount
a	 1:10000;	 96 Declare array a

b = a > 5000;	 % Create mask

a(b) = sqrt(a(b));	 % Take square root

end
average2 = (toc)/maxcount; % Calculate average time

4.3 Logical Arrays and Vectorization 1 173

% Display results
fprintf(Loop I if approach =	 %8.4f\n,

averagel)
fprintf(Logical array approach = %8.4f\n

average2)

When this program is executed using MATLAB 7.0 on a 2.4 GHz Pentium IV
computer, the results are:

logicall
Loop I if approach =	 0.1200
Logical array approach = 0.0060

As you can see, the use of logical arrays can speed up code execution by a factor
of 20!

Where possible, use logical arrays as masks to select the elements of an array
for processing. If logical arrays are used instead of loops and i f constructs,
your program will be much faster.

Creating the Equivalent of if /else Constructs
with Logical Arrays

Logical arrays can also be used to implement the equivalent of an if / else con-
struct inside a set of for loops. As we saw in the preceding section, it is possi.
ble to apply an operation to selected elements of an array using a logical array a
a mask. It is also possible to apply a different set of operations to the unselecte
elements of the array by simply adding the not operator (-S) to the logical mask
For example, suppose that we wanted to take the square root of any elements in
two-dimensional array whose value is greater than 5 and to square the remaininl
elements in the array. The code for this operatioti using loops and branches is

for ii = l:size(a,l)
for jj = 1:size(a,2)

if a(ii.jj) > 5
a(ii,jj) =sqrt(a(ii,jj));

else
a(ii,jj) =a(ii,jj)2;

end
end

end

174 1 Chapter 4 Loops

The vectorized code for this operation is

b = a > 5;

a(b) = sqrt(a(b));

a(-b) =

The vectorized code is enormously faster than the loops-and-branches version.

Quiz 4.1

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Sections 4.1 through 4.3. If you have trouble with the

quiz, reread the section, ask your instructor, or discuss the material with

a fellow student. The answers to this quiz are found in the back of

the book.
Examine the following for loops and determine how many times

each loop will be executed.

1.for index = 7:10

2. for jj = 7:-1:10

3. for index = 1:10:10

4. for ii = -10:3:-7

5. for kk = [0 5 ; 3 3]

Examine the following loops and determine the value in ires at

the end of each of the loops.

6. ires = 0;
for index = 1:10

ires = ires + 1;
end

7. ires = 0;
for index = 1:10

ires = ires + index;
end

8. ires = 0;
for indexi = 1:10

for index2 = index1:10
if index2 == 6

break;
end
ires = ires + 1;

end
end

4.4 Additional Examples 1 175

9. ires = 0;
for indexi = 1:10

for index2 = index1:10
if index2 == 6

continue;
end
ires = ires + 1;

end
end

10. Write the MATLAB statements to calculate the values of the function

I sin' for all (where sin t > 0

	

= lo	 elsewhere

for —61r S t :5 6r at intervals of rI10. Do this twice, once using

loops and branches, and once using vectorized code.

4.4 Additional Examples

No-

Example 4.7—Fitting a Line to a Set of Noisy Measurements
The velocity of a falling object in the presence of a constant gravitational field is

given by the equation

v(t) = at + V0	 (4-3)

where v(t) is the velocity at any time 1, a is the acceleration due to gravity, and v0 is

the velocity at time 0. This equation is derived from elementary physics—it is known

to every freshman physics student. If we plot velocity versus time for the falling

object, our (v, t) measurement points should fall along a straight line. However, the

same freshman physics student also knows that if we go out into the laboratory and

attempt to measure the velocity versus time of an object, our measurements will not

fall along a straight line, They may come close, but they will never line up perfectly.

Why not? Because we can never make perfect measurements. There is always some

noise included in the measurements, which distorts them.
There are many cases in science and engineering where there are noisy sets

of data such as this, and we wish to estimate the straight line which "best fits" the

data. This problem is called the linear regression problem. Given a noisy set of

measurements (x, v) that appear to fall along a straight line, how can we find the

equation of the line

Y = nix + b	 (4-4)

I 76 1 Chapter 4 Loops

that "best fits" the measurements? If we can determin& the regression coefficients

in and b, then we can use this equation to predict the value of y at any given x by

evaluating Equation (4-4) for that value of x.
A standard method for finding the regression coefficients in and b is the

method of/east squares. This method is named "least squares" because it pro-

duces the line y = mx + b for which the sum of the squares of the differences

between the observed y values and the predicted y values is as small as possible.

The slope of the least squares line is given by

	

- £±- (x)	 (4-5)m -
	 - (x)

and the intercept of the least squares line is given by

b=j — rn	 (4-6)

where

>x is the sum of the x values

x2 is the sum of the squares of the x values

xy is the sum of the products of the corresponding x and values

is the mean (average) of the x values

is the mean (average) of the y values

Write a program that will calculate the least-squares slope m and y-axis inter-

cept b for a given set of noisy measured data points (x, y). The data points should

be read from the keyboard, and both the individual data points and the resulting

least-squares fitted line should be plotted.

SOLUTION

I. State the problem.

Calculate the slope m and intercept b of a least-squares line that best fits

an input data set consisting of an arbitrary number of (x, y) pairs. The

input (x, y) data is read from the keyboard. Plot both the input data points

and the fitted line on a single plot.

2. Define the inputs and outputs.
The inputs required by this program are the number of points to read, plus

the pairs of points (x, y).
The outputs from this program are the slope and intercept of the least-

squares fitted line, the number of points going into the fit, and a plot of

the input data and the fitted line.

3. Describe the algorithm.
This program can be broken down into six major steps

Get the number of input data points
Read the input statistics
Calculate the required statistics

4.4 Additional Examples 1 177

Calculate the slope and intPrcept
Write out the slope and intazcept
Plot the input points and the fitted line

The first major step of the program is to get the number of points to
read in. To do this, we will prompt the user and read his or her answer with
an input function. Next we will read the input (x,) pairs one pair at a
time using an input function in a for loop. Each pair of input value
will be placed in an array ([x y]), and the function will return that array
to the calling program. Note that a for loop is appropriate because we
know in advance how many times the loop will be executed.

The pseudocode for these steps is shown below below.

Print message describing purpose of the program
n_points <- input('Enter number of [x

y]

pairs:);
for ii = 1:n—points

temp <- input(Eriter [x y] pair:
x(ii) <- temp(l)
y(ii) <- temp(2)

end
Next, we must accumulate the statistics required for the calculation.

These statistics are the sums x, y, x 2 , and xy. The pseudocode

for these steps is:

Clear the variables sum.-x, sum_y, xum_x2, and sum_y2
for ii = 1:n—points

sum_x <- surn_x + x(ii)
sum._y <- sumy + Y(ii)
suxn_x2 <- sum_x2 + x(ii)'2
suxn_xy <- surn_xy + x(ii)*y(ii)

end
Next, we must calculate the slope and intercept of the least-squares

line. The pseudocode for this step is just the MATLAB versions of
Equations (44) and (4-5).

x_bar <- sum_x / n_pointS
y_bar <- sum_y / n_points
slope <- (sum_xy-sum_x * y_bar)I(sum_x2 - sum_x * x_bar)

y_int <- y_bar - slope * x_bar

Finally, we must write out and plot the results. The input data points
should be plotted with circular markers and without a connecting line,
while the fitted line should be plotted as a solid 2-pixel-wide line. To do
this, we will need to plot the points first, set hold on, plot the fitted
line, and set hold off. We will add titles and a legend to the plot for
completeness.

I 78 I Chapter 4 Loops

4. Turn the algorithm into MATLAB statements.
The final MATLAB program is shown below:

% Purpose:
%	 To perform a least-squares fit of an input data set

%	 to a straight line, and print out the resulting slope

%	 and intercept values. The input data for this fit

%	 comes from a user-specified input data file.

%
% Record of revisions:

Date	 Programmer	 Description of change
= = = =	 = = = = = = = = = =	 = = = = = = = = = = = = -======-- =

%	 01/10/04	 S. J. Chapman	 Original code

% Define variables:
%	 ii	 -- Loop index
%	 n_points	 -- Number in input [x y] points

%	 slope	 -- Slope of the line

%	 sum_x	 -- Sum of all input x values
% sum—x2	 -- Sum of all input x values squared

% sum_xy	 -- Sum of all input xy yalues

% sum_y	 -- Sum of all input y values

%	 temp	 -- Variable to read user input
% x	 -- Array of x values
% x_bar	 -- Average x value
% y	 -- Array of y values
% y_bar	 -- Average y value
% y_int	 -- y-axis intercept of the line

disp('This program performs a least-squares fit of an);
disp('input data set to a straight line.');
n_points = input(Enter the number of input [x yJ points: ')

% Read the input data
for ii = 1:n—points

temp = inputEnter [x

y]

pair:);
X(ii) = temp(l);
y(ii) = temp(2);

end

% Accumulate statistics
sum_x = 0;
sum_y = 0;
sum_x2 = 0;
suxn_xy = 0;

4.4 Additional Examples 1 179

for ii = 1:n—points
suxn_x = suln_x + x(ii)
sum_y = suirt._y + y (ii);
sum—x2 = sum x2 + x(ii)^2;
suxn_xy = sumxy + x(ii) *

end

% Now calculate the slope and intercept.
x_bar = sunl_x / n_points;
y_bar = sum_y I n_points;
slope = (sunl_xy - sum_x * y_bar) / (sum—x2 - sum_x * x_bar);
y_int = y_bar - slope * x_bar;

% Tell user.

disp('Regression coefficients for the least-squares line:');
fprintf(' Slope (m)	 = %8.3f\n', slope);
fprintf(' Intercept (b)	 = %8.3f\', y_int);
fprintf(' No of points	 = %8d\ri', fl—points);

% Plot the data points as blue circles with no
% connecting lines.
plot(x,y, 'bo');
hold on;

% Create the fitted line
xmin = min(x);
nax = max(x);

ymin = slope * xrnin + y_int;
ymax = slope * xmax + y_int;

% Plot a solid red line with no markers
plot([xrnin anaxj,[ymin ymax], 'r-', 'Linewidth',2);
hold off;

% Add a title and legend
title ('\bfLeast-Squares Fit');
xlabel (\bf\itx'
ylabel (' \bf\ity'
legend('Input data', 'Fitted line');
grid on

5. Test the program.

To test this program, we will try a simple data set. For example, if every

point in the input data set actually falls along a line, then the resulting

slope and intercept should be exactly the slope and intercept of that line.

I 80 I Chapter 4 Loops

Thus the data set

[1.1 1.1]

2.2 2.21

[3.3 3.31
[4.4 4.4]
[5.5 5.5]
[6.6 6.6]
[7.7 7.71

should produce a slope of 1.0 and an intercept of 0.0. If we run the pro-

gram with these values, the results are:

lsqfit
This program performs a least-squares fit of an

input data set to a straight line.
Enter the number of input [x y] points: 7

Enter [x y] pair: 11.1 1.11

Enter [x y] pair: 12.2 2.23
Enter [x y] pair: (3.3 3.33

Enter [x y] pair: (4.4 4.41

Enter [x y] pair: (5.5 5.51

Enter [x y] pair: (6.6 6.61

Enter [x y] pair: (7.7 7.71
Regression coefficients for the least-scr.lareS line:

Slope (m)	 = 1.000

Intercept (b) = 0.000

No of points	 = 7

Now let's add some noise to the measurements. The data set becomes

[1.1 1.01]

[2.2 2.30]
[3.3 3.05]
[4.4 4.28]
[5.5 5.75]
[6.6 6.48]
[7.7 7.84]

If we run the program with these values, the results are:

'> lsqfit
This program performs a least-Squares fit of an

input data set to a straight line.
Enter the number of input [x y] points: 7

Enter [x y] pair: 11.1 1.013

Enter [x y] pair: (2.2 2.303

Enter [x y] pair: (3.3 3.051

8

7

6

5

4

3

2	 3	 4	 5	 6	 7	 8

4.4 Additional Examples I 181

Least-Squares Fit

x

Figure 4.1	 ita set with a least-squares fitted line.

:er [x y] pair: (4.4 4.281
r [x y] pair: (5.5 5.751
rr [x y] pair: (6.6 6.481

[x y] pair: (7.7 7.841
uession coefficients for the least-squares line:
ope (rn)	 = 1.024
tercept (b) = -0.120
of points	 = 7	 -

I v e calculate the answer by hand, it is easy to show that the program

gives the correct answers for our two test data sets. The noisy input data

et and the resulting least-squares fitted line are shown in Figure 4.1.
.4

t	 -.•

ample uses several of the plotting capabilities that we introduced in

Ch	 I uses the hold command to allow multiple plots to be placed on the

san	 C LineWidth property to set the width of the least-squares fitted line,

and	 quences to make the title bold face and the axis labels bold italic.

I 82	 Chapter 4 Loops

- --
Example 4.8—Physics—The Flight of a Ball

If we assume negligible air friction and ignore the curvature of the Earth, a ball
that is thrown into the air from any point on the Earth's surface will follow a par-
abolic flight path (see Figure 4.2a). The height of the ball at any time (after it is
thrown is given by Equation (4-7)

Y(t) =	 + vt + !gt2	 (4-7)

where v0 is the initial height of the object above the ground, v is the initial ver-
tical velocity of the object, and is the acceleration due to the Earth's gravity. The
horizontal distance (range) traveled by the ball as a function of time after it is
thrown is given by Equation (4-8)

X(t) = xo +	 (4-8)

where x0 is the initial horizontal position of the ball on the ground, and v, is the
initial horizontal velocity of the ball.

Origin	 Impact	 .v

(a)

(b)

Figure 4.2 (a) When a ball is thrown upwards, it follows a parabolic trajectory (b) The horizontal and
vertical components of a velocity vector vat an angle 6with respect to the horizontal.

4.4 Additional Examples 	 183

lfthe hail is thron with some initial valoitv i i' an anole ot t9 deorec
respect to the Farth's surface, then the initial 110ri7o: ai and Crti at comonen:
of velocity will be

I. = i COS 9

I Slfl 9	 (4.- It)

Assume that the ball is initiall y thro n from position a = 0. () ith
an initial eIocity v of20 meters per second at an initial aflOic of9 de g ree, \\rlte
a program that will plot the trajectory of the ball and also determine the horizon-
tat distance traveled before it touches the ground again. The prograni should plot
the irajectories of the ball for all angles 0 from 5 to 3 in It) steps and should
determine the horizontal distance traveled for all angles 0 from 0 to 90 in I -
steps. Finally, it should determine the angle (9 that maximizes the range of the ball
and plot that particular trajectory in a different color with a thicker line.

SOLUTION To solve this problem, we must determine an equation for the time
that the ball returns to the ground. Then, we can calculate the (x,v) position of the
ball using Equations (4-7) through (4-10). Uwe do this for man y times between 0
and the time that the ball returns to the ground, we can use those points to plot the
ball's trajectory.

The time t the ball will remain in the air after it is thro\n ma y be calculated
from Equation (4-7). The ball will touch the ground at the time t for which
y(t) = 0. Remembering that the ball will start from ground level (v(0) 0). and
solving for t, we get:

v(t) =	 + t•t - gt	 (4-7)

o = 0 +	 + 9(2

0 = (v l) + gt)t

so the ball will be at ground level at time t = 0 (when we threw it). and at time

2v

g

From the problem statement, we know that the initial elocit is 20 meters
per second, and that the ball will be thrown at all angles from 0 to 90 in I steps
Finally, any elementary ph ysics textbook will tell us that the acceleration due to
the earth's gravity is —9.81 meters per second squared

Now let's appl y our design technique to this problem.

I. State the problem.
A proper statement of this problem ould be: ('afro/arc i/ic i'a'n 11!.!? c

ha/I would travel It hen it is thmis n with an initial velocirl of 1, 01 20 in
at an initial angIe 0 Calculate this range/or all angles hera ccii (J
900 in /	 Determine the angle 0 that sit/I result in the n:sixjnutn:

I 84	 Chapter 4 Loops

range for the ball. Plot the trajectory of the ball for angles between 5° and

85° in 100 increments. Plot the maximum-range trajectory in a different

color and with a thicker line. Assume that there is no air friction.

2. Define the inputs and outputs.
As the problem is defined above, no Inputs are required. We know from

the problem statement what v0 and 9 will be, so there is no need to input

them. The outputs from this program will be a table showing the range of

the ball for each angle 9, the angle 9 for which the range is maximum,

and a plot of the specified trajectories.

3. Design the algorithm.
This program can be broken down into the following major steps

Calculate the range of the ball for 8 between 0 and 900

Write a table of ranges
Determine the maximum range and write it out
Plot the trajectories for 8 between 5 and 850
Plot the maximum-range trajectory

Since we know the exact number of times the loops will b' repeated,

for loops are appropriate for this algorithm. We will now refine the

pseudocode for each of the major steps above.
To calculate the maximum range of the ball for each angle, we will first

calculate the initial horizontal and vertical velocity from Equations (4-9) and

(4-10). Then we will determine the time when the ball returns to Earth from

Equation (4-I1). Finally, we will calculate the range at that time from

Equation (4-7). The detailed pseudocode for these steps is shown below.

Note that we must convert all angles to radians before using the trig functions!

Create and initialize an array to hold ranges

for ii = 1:91
theta <- ii - 1
vxo <- vo * cos(theta*conv)
vyo <- vo * sin(theta*conv)

max—time <- -2 * vyo / g
range(ii) <- vxo * max—time

end

Next, we must write a table of ranges. The pseudocode for this step is:

Write heading
for ii = 1:91

theta <- ii - 1
print theta and range

end

The maximum range can be found with the max function. Recall

that this function returns both the maximum value and its location. The

pseudocode for this step is:

4.4 Additional Examples 	 185

[maxrange index] <- max(range)

Print out maximum range and angh- (=index-1)

We will use nested for loops to calculate and plot the trajectories.

To get all of the plots to appear on the screen, we must plot the first tra-
jectory and then set hold on before plotting any other trajectories.
After plotting the last trajectory, we must set hold off. To perform this

calculation, we will divide each trajectory into 21 time steps. and find

the x andy positions of the ball for each time step. Then, we will plot

those (x, y) positions. The pseudocode for this step is:

for ii	 5:10:85

% Get velocities and max time for this angle
theta <- ii - 1
vxo <- vo * cos(theta*conv)
vyo <- vo * sin(theta*conv)

max—time <- -2 * vyo I g

Initialize x and y arrays
for jj = 1:21

time <- (jj-l) * max_timel20
x(time) <- vxo * time
y(time) <- vyo * time + 0.5 * g * time"2

end
plot(x,y) with thin green lines
Set "hold on" after first plot

end
Add titles and axis labels

Finally, we must plot the maximum range trajectory in a different

color and with a thicker line.

vxo <- vo * cos(max_angle*conv)
vyo <- vo * sin(max_angle*conv)

max—time <- -2 * vyo / g

Initialize x and y arrays
for jj = 1:21

time <- (jj-l) * max_time/20
x(jj) <- vxo * time
y(jj) <- vyo * time 4- 0.5	 g * time2

end
plot(x,y) with a thick red line
hold off

4. Turn the algorithm into MATLAB statements.

The final MATLAB program is shown below.

186 1, Chapter 4 Loops

% Script file: ball.m

% Purpose:

%	 This program calculates the distance traveled by a

%	 ball thrown at a specified angle "theta" and a

%	 specified velocity "vo" from a point on the surface of

%	 the Earth, ignoring air friction and the Earth's

%	 curvature. It calculates the angle yielding maximum

%	 range, and also plots selected trajectories.

% Record of revisions:
Date	 Programmer	 Description of change

= = = =	 = = = = = = = = = =	 =

%	 01/10/04	 S. J. Chapman	 Original code

% Define variables:

%	 cony	 -- Degrees to radians cony factor

%	 gravity	 -- Accel. due to gravity (mls"2)

%	 ii, jj	 -- Loop index

%	 index	 -- Location of maximum range in airay

% maxangle	 -- Angle that gives maximum range (deg)

% maxrange	 -- Maximum range (in)

%	 range	 -- Range for a particular angle (in)

%	 time	 -- Time (s)

%	 theta	 -- Initial angle (deg)

%	 traj_time	 -- Total trajectory time (s)

%	 vo	 -- Initial velocity (m/s)

%	 vxo	 -- X-component of initial velocity (m/s)

%	 vyo	 -- Y-component of initial velocity (m/s)

%	 x	 -- X-position of ball (m)

%	 y	 -- Y-position of ball (m)

% Constants
cony = p1 / 180 % Degrees-to-radians conversion factor

g = -9.81;
	 % Accel. due to gravity

vo = 20:
	 % Initial velocity

%Create an array to hold ranges
range = zeros(1,91);

% Calculate maximum ranges
for ii = 1:91

theta = ii - 1;
vxo = vo * cos(theta*conv);

vyo = vo * sin(theta*conv)

4.4 Additional Examples	 187

max-time = -2 * vyo / g;
range(ii) = vxo * max time;

end

% Write out table of ranges
fprintf (Range versus angle theta:\n);
for ii = 1:91

theta = ii - 1;

fprintfL %2d	 %8.4f\n,theta, range(ii));
end

% Calculate the maximum range and angle
[maxrange index] = max(range);
maxangle = index - 1;
fprintf ('\n'Iax range is %8.4f at %2d degrees.\n'

maxrange, maxangle)

% Now plot the trajectories
for ii = 5:10:85

% Get velocities and max time for this angle

theta = ii;
vxo = vo * cos(theta*conv);
vyo = vo * sin(theta*conv);

max_time = -2 * vyo / g;
% Calculate the (x,y) positions
x = zeros(1,21);
y = zeros(1,21);
for jj = 1:21

time = (jj-1) * max-time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0•5 * g * time2;

end
plot(x,y, b);
if ii == 5

hold on;
end

end

% Add titles and axis lables
title ('\bfTrajectory of Ball vs Initial Angle \theta'

xlabel (\bf\itx \rm\bf (meters))
ylabel ('\bf\ity \rm\bf (meters)');
axis ([0 45 0 25]);
grid on;

188	 Chapter 4 Loops

% Now plot the max range trajectory
vxo = vo * cos (maxangle*conv)
vyo = vo * sin(maxangle*conv)

max_time = -2	 / g;

% Calculate the (x,y) positions

x = zeros(1.21);
y = zeros(1,21);
for jj = 1:21

time = (jj-1) * max_time/20;
x(jj) = vxo * time;
y(jj) = vyo * time + 0.5 * g * time2;

end
plot(x,y, r , LineWidth ,3.0);
hold off

The acceleration due to gravity at sea level can be found in any physics
text. It is about 9.81 mlsec2, directed downward.

5. Test the program.
To test this program, we will calculate the answers by hand for a few of
the angles, and compare the results with the output of the program.

6 V,,o = v0 cos8 VYO = v0 Sin t2 =	 x =

00	 20m/s	 Om/s	 Os	 Om

50	 19.92 mIs	 1.74 rn/s	 0.355 s	 7.08 m

400	 15.32 m/s	 12.86 m/s	 2.621 s	 40.15 rn

450	 14.14 m/s	 14.14 mIs	 2.883 S	 40.77 m

When program ball is executed, a 91-line table of angles and ranges is
produced. To save space, only a portion of the table is reproduced below.

>> ball
Range versus angle theta:

	

0	 0.0000

	

1	 1.4230

	

2	 2.8443

	

3	 4.2621

	

4	 5.6747

	

5	 7.0805

	

40	 40.1553

	

41	 40.3779

	

42	 40.5514

4.4 Additional Examples 	 189

43	 40.6754
44	 40.7499
45	 40.7747
46	 40.7499
47	 40.6754
48	 40.5514
49	 40.3779
50	 40.1553

85	 7.0805
86	 5.6747
87	 4.2621
88	 2.8443
89	 1.4230
90	 0.0000

Max range is 40.7747 at 45 degrees.

The resulting plot is shown in Figure 4.3. The program output matches our

hand calculation for the angles calculated above to the 4-digit accurac y of

Trajectory of Ball vs Initial Angle 0
25

20

15	 I	 ./

o

X (meters)

Figure 4.3 Possible trajectories for the ball.

90	 Chapter 4 Loops

the hand calculation. Note that the maximum range occurred at an angle

of-l-;

This example uses several of the plotting capabilities that we introduced

in Chapter It uses the axis command to set the range of data to display,

the hold command to allow multiple plots to be placed on she same axes, the

:inehidth property to set the width of the line corresponding to the maximum-

ran ge trajectory, and escape sequences to create the desired title and x- and Y-

axis labels.
However, this program is not written in the most efficient manner, since there

are a number of loops that could have been better replaced by vectorized state-

ments. You will be asked to rewrite and improve ball .m in Exercise 4.11 at the

end of this chapter.

4.5 Summary

There are two basic types of loops in MATLAB, the while loop and the for

loop. The while loop is used to repeat a section of code in cases where we do

not know in advance how many times the loop must be repeated. The for loop

is used to repeat a section of code in cases where we know in advance how many

times the loop should he repeated. It is possible to exit from either type of loop at

any time using the break statement.

Summary of Good Programming Practice

The fbllowing guidelines should be adhered to when programming with loop con-

structs. By following them consistently, your code will contain fewer bugs, will

he easier to debug, and will be more understandable to others who may need to

\\ork with it in the future.

I. Always indent code blocks in while and for constructs to make them

more readable.

. Use a while loop to repeat sections of code hen ou don't know in

advance how often the loop m ill be executed.
it. Use a for loop to repeat sections of code when you know in advance how

often the loop ill be executed.
4. Never modiv the values of a for loop index while inside the loop.

\lavs preallocate all arras used in a loop before executing the loop.

This practice greatly increases the execution speed ot'the loop.

(If it is possible to implement a calculation either with a for loop or using
cctors, implement the calculation with vectors. Your program will he

much faster.

4.6	 Exercises	 I 9 I

7. Do not rel y oil J11 compiler to speed up your code. I ha tssrn I rn-
tations. and a programmer can typicall y do a better oh w.th itsatsual cc-
tori zat ion.

S. Where possible. use logical array s as masks to select the e1ement5 of an
array for processing. if logical arrays are used iisteacl of loops and
constructs, your program will he much faster.

MATLAB Summary

The following summary lists all of the NIATLAB commands and functions
described in this chapter, along with a brief description of each one.

Commands and Functions

break	 Stop the execution of a loop, and transfer uontrc.l is the first
statement after the end of the loop.

Continue	 Stop the execution of a loop, and transfer control to the top of
the loop for the next iteration.

for loop	 Loops over a block of statements a specified number of times,

tic	 Resets elapsed time counter.

roc	 Returns elapsed time since last call to tic.

while loop	 Loops over a block of statements until a test condition becomes
0 (false).

4.6 Exercises

4.1 Write the MATLAB statements required to calculate t(t) from the equation

I_ 3 , + 5 t-0
(t) =

1'-5	 r<0

for values oft between —9 and 9 in steps of0.5. Use loops and branches to
perform this calculation.

4.2 Rewrite the statements required to solve Exercise 4.1 using vectorization.

4.3 Write the MATLAB statements required to calculate and print out the

squares of all the even integers between 0 and 50. Create a table consisting

of each integer and its square, with appropriate labels o\er each column.
4.4 Write an NI-file to evaluate the equation Y(x) = - 3x - 2 for all 'al-

ues ofx between - I and 3. in steps of 0.1. Do this twice, once with a icr

loop and once with Vectors. Plot the resulting function using a 3-poinz-
thick dashed red line,

4.5 Write an NI-file to calculate the factorial function Nl. as defined in

Example 4.2. Be sure to handle the special case of 0 Also, he sure to
report an error if N is negative or not an integer.

192	 Chapter 4 Loops

4.6 Examine the following for statements and determine how many times

each loop will be executed.

(a) for ii = -32768:32767

(b) for ii = 32768:32767

(c) for kk = 2:4:3

(d) for jj = ones(55)

4.7 Examine the following for loops and determine the value of ires at

the end of each of the loops, and also the number of times each loop

executes.

(a) ires = 0;
for index = -10:10

ires = ires + 1;

end

(b) ires = 0;
for index = 10:-2:4

if index == 0
continue;

end
ires = ires + index;

end

(c) ires = 0;
for index = 10:-2:4

if index == 0
break;

end
ires = ires + index;

end

(d) ires = 0;
for indexi = 10:-2:4

for index2 = 2:2:indexl
if index2 == 6

break
end
ires = ires + index2;

end
end

4.8 Examine the following while loops and determine the value of ires at

the end of each of the loops and the number of times each loop executes.

(a) ires = 1;
while mod(ires,lO) -= 0

ires = ires + 1

end

4.6 Exercises	 193

(b) ires = 2;
while ires <= 200

ires= ires"2;
end

(c) ires = 2;
while ires > 200

ires = ires2;
end

4.9 What is contained in array arri after each of the following sets of state-
ments are executed?

(a) arri = [1 2 3 4; 5 6 7 8; 9 10 11 121;
mask = mod(arrl,2) == 0;
arrl(mask) = -arrl(mask);

(b) arri = ti 2 3 4; 5 6 7 8; 9 10 11 121;
arr2 = arri <= 5;
arrl(arr2) = 0;

arrl(-arr2) = arrl(-arr2).2;

4.10 How can a logical array be made to behave as a logical mask for vector
operations?

4.11 Modify program ball from Example 4.8 by replacing the inner for
loops with vectorized calculations.

4.12 Modify program ball from Example 4.8 to read in the acceleration due
to gravity at a particular location and to calculate the maximum range of

the ball for that acceleration. After modifying the program, run it with
accelerations of —9.8 m/sec2 , —9.7 m/sec 2, and —9.6 rn/sec 2 . What effect
does the reduction in gravitational attraction have on the range of the ball?

What effect does the reduction in gravitational attraction have on the best
angle 6 at which to throw the ball?

4.13 Modify program ball from Example 4.8 to read in the initial velocity
with which the ball is thrown. After modifying the program, run it with

initial velocities of 10 m/sec, 20 m/sec, and 30 rn/sec. What effect does
changing the initial velocity v0 have on the range of the ball? What effect
does it have on The best angle 9 at which to throw the ball?

4.14 Program lsqfit from Example 4.7 required the user to specify the
number of input data points before entering the values. Modify the pro-
gram so that it reads an arbitrary number of data values using a while
loop, and stops reading input values when the user presses the Enter key

without typing any values. Test your program using the same two data sets
that were used in Example 4.7. (Hint: The input function returns an

empty array ([]) if a user presses Enter without supplying any data. You
can use function i sempty to test for an empty array, and stop reading
data when one is detected.)

94	 Chapter 4 Loops

4.15 Modify program lsqf it from Example 4.7 to read its input values from

an ASCII file named inputi .dat. The data in the file will be organ-
ized in rows, with one pair Qf(x, v) values on each row, as shown below:

	

1.1	 2.2

	

2.2	 3.3

Test your program using the same two data sets that were used in Example
4.6. (Hint: Use the load command to read the data into an array named

±raputl, and then store the first column of input 1 into array x and the
second column of input into array y.)

4.16 \IATLAB Least-Squares Fit Function MATLAB includes a standard
function that performs a least-squares fit to a polynomial. Function poly-
fit calculates the least-squares fit of a data set to a polynomial of order N:

p(x) = a,x' + a_1x'	 + ''' + a 1x + a0	 (4-12)

where N can be any value greater than or equal to I. Note that for N = I,
this polynomial is linear equation, with the slope being the coefficient a1
and the v-intercept being the coefficient a 0 . The form of this function is

P = polyfit(x,y,n)

where x and y are vectors of x and y components and n is the order of
the fit.

Write a program that calculates the least-squares fit of a data set to a

straight line using polyf it. Plot the input data points and the resulting

fitted line. Compare the produced by the program using polyfit with the

result produced by lsqf it for the input data set in Example 4.6.
4.17 Program doy in Example 4.3 calculates the day of year associated with any

given month, day, and year. As written, this program does not check to see

if the data entered by the user is valid. It will accept nonsense values for

months and days, and do calculations with them to produce meaningless

results. Modify the program so that it checks the input values for validity

before using them. If the inputs are invalid, the program should tell the user

what is wrong and quit. The year should be a number greater than zero, the

month should he a number between I and 12, and the day should be a num-

ber between I and a maximum that depends on the month. Use a switch

construct to implement the bounds checking performed on the day.
4. 18 Write a MATL.AB program to evaluate the function

= In

for any user-specified value ofx, where In is the natural logarithm (loga-
rithm to the base e). Write the program with a while loop, so that the
pro g ram repeats the calculation for each legal value of x entered into
the program. When an illegal value of x is entered, terminate the pro-
g ram. (.\lly .v ^ I is considered an illegal value.)

4.6 Exercises	 I 95

'•fl

Figure 4.4 A semiconductor diode.

4.19 Fibonacci Numbers The nth Fibonacci number is defined by the fol-
lowing recursive equations:

PH =
f(2) = 2

f(n) = f(n - 1) + f(n —2)

Therefore, f(3) f(2) +f(l) 2 + I = 3, and so forth for higher
numbers. Write an M-file to calculate and write Out the nth Fibonacci
number for a > 2, where n is input by the user. Use awhile loop to per-
form the calculation.

4.20 Current Through a Diode The current flowing throu gh the semicon-
ductor diode shown in Figure 4.4 is given by the equation

Jo(e 11- I)	 (4-13)
where il , = the voltage across the diode, in volts

= the current flow through the diode, in amps

jo = the leakage current of the diode, in amps

q = the charge on an electron. 1.602 X 10	 coulombs
k = Boltzmann's constant, 1.38 X 1023jouleK
T = temperature, in kelvins (K)

The leakage current I of the diode is 2.0 PA. Write a program to calcu-
late the current flowing through this diode for all voltages from - 1.0 \' to
+0.6 'vç in 0.1 V steps. Repeat this process for the followin g temperatures:
75°F and 100°F, and 125°F. Create a plot of the current as a function of
applied voltage, with the curves for the three different temperatures
appearing as different colors.

4.21 Tension on a Cable A 200-pound object is to be hung from the end of
a rigid 8-foot horizontal pole of negligible weight, as shown in Figure 4.5.
The pole is attached to a wall by a pivot and is supported by an 8-foot
cable that is attached to the wall at a higher point. The tension on this cable
is given by the equation

('I,
- a2	 -,-

I 96	 Chapter 'l Loops

Figure 4.5 A 200-pound weight suspended from a rigid bar supported by a cable.

where T is the tension on the cable, W is the weight of the object, ic is the

length of the cable, ip is the length of the pole, and d is the distance along

the pole at which the cable is attached. Write a program to determine the dis-

tance d at which to attach the cable to the pole in order to minimize the

tension on the cable. To do this, the program should calculate the tension on

the cable at regular one-foot intervals from d = 1 foot to d = 7 feet, and

should locate the position d that produces the minimum tension. Also, the

program should plot the tension on the cable as a function of d, with appro-

priate titles and axis labels.
4.22 Bacterial Growth Suppose that a biologist performs an experiment in

which he or she measures the rate at which a specific type of bacterium

reproduces asexually in different culture media. The experiment shows

that in Medium A the bacteria reproduce once every 60 minutes, and in

Medium B the bacteria reproduce once every 90 minutes. Assume that a

single bacterium is placed on each culture medium at the beginning of the

experiment. Write a program that calculates and plots the number of bac-

teria present in each culture at intervals of three hours from the beginning

of the experiment until 24 hours have elapsed. Make two plots, one a lin-

ear xy plot and the other a linear-log (semi logy) plot. How do the num-

bers of bacteria compare on the two media after 24 hours?

4.23 Decibels Engineers often measure the ratio of two power measurements in

decibels, or dB. The equation for the ratio of two power measurements

in decibels is

P,
dB	 101og	 (4-15)

4.6 Exercises	 197

where P is the power level being measured, and P 1 is some reference

power level. Assume that the reference power level P 1 is I watt, and write

a program that calculates the decibel level corresponding to power levels

between I and 20 watts, in 0.5 W steps. Plot the dB-versus-power curve

on a log-linear scale.

4.24 Geometric Mean The geometric mean of a set of numbers x 1 through

x, is defined as the nth root of the product of the numbers:

	

geometric mean =	 v1x2x. .	 (4-16)

Write a MATLAB program that will accept an arbitrary number of posi-

tive input values and calculate both the arithmetic mean (i.e., the average)

and the geometric mean of.the numbers. Use a while loop to get the

input values, and terminate the inputs when a user enters a negative num-

ber. Test your program by calculating the average and geometric mean of

the four numbers 10, 5, 2, and 5.

4.25 RMS Average The root-mean-square (rms) average is another way of

calculating a mean for a set of numbers. The tins average of a series of num-

bers is the square root of the arithmetic mean of the squares of the numbers:

	

rms average =	 (4-17)

Write a MATLAB program that will accept an arbitrary number of posi-

tive input values and calculate the tins average of the numbers. Prompt the

user for the number of values to be entered, and use a for loop to read in

the numbers. Test your program by calculating the rms average of the four

numbers 10, 5, 2, and 5.

4.26 Harmonic Mean The harmonic mean is yet another way of calculating

a mean for a set of numbers. The harmonic mean of a set of numbers is

given by the equation:

harmonic mean =
	 +	 :... +	

(4-18)

Write a MATLAB program that will read in an arbitrary number of posi-

tive input values and calculate the harmonic mean of the numbers. Use any

method that you desire to read in the input values. Test your program by

calculating the harmonic mean of the four numbers 10, 5, 2, and 5.

4.27 Write a single program that calculates the arithmetic mean (average). rms

average, geometric mean, and harmonic mean for a set of positive num-

bers. Use any method that you desire to read in the input values. Compare

these values for each of the following sets of numbers:

(a) 4, 4, 4, 4, 4, 4, 4

(b) 4,3,4, 5, 4, 3, 5

(c) 4, 1,4,7,4, 1,7

(d) 1, 2, 3, 4, 5, 6, 7

198	 Chapter 4 Loops

O\ cmii S tcn1

Figure 4.6 An electronic s ystem containing three subsystems with known MTBFs.

4.28 Mean Time Between Failure Calculations The reliability of a piece of

electronic equipment is usually measured in terms of mean time between

failures iMTBF), where MTBF is the average time that the piece of equip-

ment can operate before a failure occurs in it. For large systems contain-
ing many pieces of electronic equipment, it is customary to determine the

MTBFs of each component, and to calculate the overall MTBF of the sys-

tem front failure rates of the individual components. If the system is

structured like the one shown in Figure 4.6, every component must work

in order for the whole system to work, and the overall system MTBF can
be calculated as

NITBF =	 -	 (4-19)

+	 +...+	 -

	

MTBF 1 MTBF	 MTBF,,

Write a program that reads in the number of series components in a sys-

tell1 and the MTBFs for each component, and then calculates the overall
MTBF for the s ystem. To test your program. determine the MTBF for a
radar svstcnl consisting of an antenna subsystem with an MTBF of 2000

hours. a transmitter with all of 800 hours, a receiver with an MTBF

of 3000 hours, and a computer with an \ITBF of 5000 hours.

