CHAPTEHR

User-Defined
Functions

In Chapter 3, we learned the importance of good program design. The basic
technique that we employed was top-down design. In top-down design, the
programmer starts with a statement of the problem to be solved and the
required inputs and outputs. Next, he or she describes the algorithm to be
implemented by the program in broad outline, and applies decomposition to
break the algorithm down into logical subdivisions called sub-tasks. Then, the

" programmer breaks down each sub-task until he or she winds up with many
small pieces, each of which does a simple, clearly understandable job. Finally, the
individual pieces are turned into MATLAB code. _

Although we have followed this design process in our examples, the results
have been somewhat restricted, because we have had to combine the final MATLAB
code generated for each sub-task into a single large program.There has been no
way to code, verify, and test each sub-task independently before combining them
into the final program.

Fortunately, MATLAB has a special mechanism designed to make sub-tasks
easy to develop and debug independently before building the final program. It is
possible to code each sub-task as a separate function, and each function can be
tested and debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large
programming project. Their benefits include:

I. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit. The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is known as unit testing. It eliminates a major source of prob-
lems before the final program is even built.

199

200

Chapter 5 User-Defined Functions

2. Reusable code. In many cases, the same basic sub-task is needed in
many parts of a program. For example, it may be necessary to sort a list
of values into ascending order many different times within a program or
even in other programs. It is possible to design, code, test, and debug a
single function to do the sorting and then to reuse that function when-
ever sorting is required.This reusable code has two major advantages: it
reduces the total programming effort required, and it simplifies debug-
ging, since the sorting function needs to be debugged only once.

3. Isolation from unintended side effects. Functions receive input
data from the program that invokes them through a list of variables
called an input argument list, and return results to the program
through an output argument list. Each function has its own work-
space with its own variables, independent of all other functions and of
the calling program. The only variables in the calling program that can be
seen by the function are those in the input argument list, and the only vari-
ables in the function that can be seen by the calling program are those in
the output argument list. This is very important, because accidental pro-
gramming mistakes within a function can affect only the variables with-
in function in which the mistake occurred.

Once a large program has been written and released, it must be main-
tained. Program maintenance involves fixing bugs and modifying the program to
handle new and unforeseen circumstances. The programmer who modifies a
program during maintenance is often not the person who originally wrote it.
In poorly written programs, it is common for the programmer modifying the
program to make a change in one region of the code, and to have that change
cause unintended side effects in a totally different part of the prograrm. This
happens because variable names are reused in different portions of the pro-
gram. When the programmer changes the values left behind in some of the
variables, those values are accidentally picked up and used in other portions of
the code.

The use of well-designed functions minimizes this problem by data hiding.
The variables in the main program are not visible to the function (except for
those in the input argument list), and the variables in the main program cannot
be accidentally modified by anything occurring in the function. Therefore, mis-
takes or changes in the function's variables cannot accidentally cause unintended
side effects in the other parts of the program.

Break large program rtasks into functions whenever practical to achieve the
important benefits of independent component testing, reusability, and isolation
from undesired side effects.

5.1 Introduction to MATLAB Functions | 201

5.1 Introduction to MATLAB Functions

All of the M-files that we have seen so far have been script files. Script files are
just collections of MATLAB statements that are stored in a file. When a seript file
is executed, the result is the same as it would be if all of the commands had been
typed directly into the Command Window. Secript files share the Command
Window's workspace, so any variables that were defined before the seript file starts
are visible to the script file, and any variables created by the script file remain in
the workspace after the script file finishes executing, A seript file has no input
arguments and returns no results, but script files can communicate with other
script files through the data left behind in the workspace.

In contrast, a MATLAB function is a special type of M-file that runs in its
own independent workspace. It receives input data through an input argument
list and returns results to the caller through an output argument list. The gener-
al form of a MATLAB function is

function [outargl, outarg2., ...] = fname(inargl, inarg2, ...)
% H1 comment line
% Other comment lines

(Executable code)
(return)
(end)

The function statement marks the beginning of the function. It specifies the
name of the function and the input and output argument lists. The input argument
list appears in parentheses after the function name, and the output argument list
appears in brackets to the left of the equal sign. (If there is only one output argu-
ment, the brackets can be dropped.)

Each ordinary MATLAB function should be placed in a file with the same
name (including capitalization) as the function, and the file extent “.m". For
example, if a function is named My_fun, then that function should be placed in
a file named My_fun.m.

The input argument list is a list of names representing values that will be
passed from the caller to the function. These names are called dummy argu-
ments. They are just placeholders for actual values that are passed from the caller
when the function is invoked. Similarly, the output argument list contains a list of
dummy arguments that are placeholders for the values returned to the caller when
the function finishes executing.

A function is invoked by naming it in an expression together with a list of
actual arguments. A function may be invoked by typing its name directly in the
Command Window or by including it in a script file or another function. The
name in the calling program must exactly match the function name (including

202

Chapter 5 User-Defined Functions

capitalization).! When the function is invoked, the value of the first actual argument
is used in place of the first dummy argument, and so forth for each other actual
argument/dummy argument pair.

Execution begins at the top of the function and ends when either a return
statement, an end statement, or the end of the function is reached. Because exe-
cution stops at the end of a function anyway, the return statement is not actu-
ally required in most functions and is rarely used. Each item in the output argu-
ment list must appear on the left side of at least one assignment statement in the
function. When the function returns, the values stored in the output argument list
are returned to the caller and may be used in further calculations.

The use of an end statement to terminate a function is a new feature of
MATLAB 7.0. In earlier versions of MATLAB, the end statement was only used
to terminate structures suchas 1f, for, while,etc. Itis optional in MATLAB
7 unless a file includes nested functions, which are covered later in this chapter.
In this book, we will always terminate functions with an end statement, and we
will include a comment on each end statement naming the function that it is
associated with.? MATLAB doesn't use the comment, but it is helpful to a pro-
grammer frying to read your code at a later date.

Always terminate your functions with an end statement, and include a comment
on the statement indicating which function the end statement is associated with.

The initial comment lines in a function serve a special purpose. The firsi
comment line after the function statement is called the H1 comment line. It should
always contain a one-line summary of the purpose of the function. The special sig-
nificance of this line is that it is searched and displayed by the 1cokfor com-
mand. The remaining comment lines from the H1 line until the first blank line or
the first executable statement are displayed by the help command. They should
contain a brief summary of how to use the function.

A simple example of a user-defined function is shown below. Function
dist2 caleulates the distance between points (x,, ¥,) and (x5, ,) in a Cartesian
coordinate system.

For example, suppose that a function has been declared with the name My _Fun and placed in file
My_Fun.m. Then this function should be called with the name My_Fun, not my_fun or MY FUN,
If the capitalization fails to match, this will produce an error on Linux, Unix, and Macintosh com-
puters, and a warning on Windows-based computers.

*The end statements at the end of a function will cause a warning if the function is executed on ver-
sions of MATLAB that preceded MATLAB 7.0.

5.1 Introduction to MATLAB Functions | 203

function distance = dist2 (x1, yl, x2, ¥2)
%$DIST2 Calculate the distance between two points

% Function DIST2 calculates the distance between

% two points (x1,yl) and (x2,y2) in a Cartesian

% coordinate system.

%

% Calling sequence:

% distance = dist2(x1, yl, x2, vy2)

% Define variables:

% x1 -- x-position of point 1

% vl -- y-position of point 1

% %2 -- x-position of point 2

$ y2 -- y-position of point 2

% distance -- Distance between points

% Record of revisions:

% Date Programmer Description of change
% =_=== ====s==s==== s ESEESESESESESE========
% 01/12/04 S. J. Chapman Original code

% Calculate distance.
distance = sqgrt((x2-x1).°2 + (y2-yl)."2);

end % function distance

This function has four input arguments and one output argument. A simple script
file using this function is shown below.

% Script file: test_dist2.m

%

% Purpose:

% This program tests function dist2.

%

% Record of revisions:

% Date Programmer Description of change
%) EEEEe T =====S=S===SS===========
% 01/12/04 S. J. Chapman Original code

%

% Define variables:

% ax -- x-position of point a

% ay -- y-position of point a

% bx -- x-position of point b

% by -- y-position of point b

% result -- Distance between the points

% Get input data.

disp('Calculate the distance between two points:');

204 | Chapter 5 User-Defined Functions

ax = input ('Enter x value of point
ay = input('Enter y value of point
bx = input ('Enter x value of point
by = input('Enter y value of peoint

Co R

% Evaluate functicn
result = dist2 (ax, ay. bx, by);

% Write out result.
fprintf ('The distance between points a and b is %f\n',6 result);

When this script file is executed, the results are:

» test_dist2

Calculate the distance between two points:
Enter x value of point a: 1

Enter vy value of point a: 1

Enter x value of point b: 4

Enter y value of point b: 5

The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.
Function dist2 also supports the MATLAB help subsystem. If we type
“help dist2, the results are:

» help dist2

DIST2 Calculate the distance between two points
Function DISTZ calculates the distance between
two points (x1,yl) and (x2,y2) in a Cartesian
coordinate system.

Calling sequence:
res = dist2(xl, yl, x2, y2)

Similarly, “1ookfor distance” produces the result

» lookfor distance

DIST2 Calculate the distance between two points
MAHAL Mahalanobis distance.

DIST Distances between wvectors.

NBDIST Neighborhood matrix using wvector distance.
NBGRID Neighborhood matrix using grid distance.
NBMAN Neighborhood matrix using Manhattan-distance.

To observe the behavior of the MATLAB workspace before, during, and after
the function is executed, we will load function dist2 and the script file
test_dist2 into the MATLAB debugger, and set breakpoints before, during and
after the function call (see Figure 5.1). When the program stops at the breakpoint

Fi*

Figure 5.1

5.1 Introduction to MATLAB Functions | 205

S =lolx|

B editor - D:vbook \mallab ' 3e' revl wchapS ' test_dist2m

Fle EGU Ted Cdf Todk Debug Desktop Widow Hebs e x
nsl]:-nnnrl urma Bnunm =)
1 $1 2 =

2

3

4

a

&

7 = s

] e

9 -

10

11 i -

12 s

13

14

158

16 razuly 4 nts

17%

li B Een Input J&TA.

1!_;" disp{'Calculate the distance between Two polints:');

20= ax = input('Enter x Falue &t g

212 ay = input('Enter y value ¢ a: *¥;

22* by = input{'Enter x value of r h: b i

23= by = lnput{'Enter ¥ value ¢ ! !

24

250 | Evaluate funttion

2682 result = dist2 lax, sy, bx, by):

215

28 1 S@rite out teaglt,

9! fprmt!l""h- diztancs matwean polnt= 4 and b is ¥f\n',resulc);
m

| dis2m -WE PP TS R P RS A

M-file test_dist2 and function dist2 are loaded into the debugger, with
breakpoints set before, during, and after the function call.

before the function call, the workspace is as shown in Figure 5.2(a). Note that vari-
ables ax, ay, bx. and by are defined in the workspace, with the values that we
have entered. When the program stops at the breakpoint within the function call,
the function’s workspace is active. It is as shown in Figure 5. 2(b). Note that vari-
ables x1, x2, y1, y2.and distance are defined in the function’s workspace,
and the variables defined in the calling M-file are not present. When the program
stops in the calling program at the breakpoint affer the function call,
the workspace is as shown in Figure 5.2(c). Now the original variables are back,
with the variable result added to contain the value returned by the function.
These figures show that the workspace of the function is different from the work-
space of the calling M-file.

206

V"Jfl“\{.lﬂ(e

double
double
double
double

5
H x1 1 double
EH x2 4 double
Hy1 1 double !
Hy2 5 double :

double

H ax 1

H ay 1 double
B bx 4 double
Hby 5 double
B result 5 double

Figure 5.2 (a) The workspace before the function call. (b) The workspace during the function call.

fc) The workspace after the function call.

i

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 207

5.2 Variable Passing in MATLAB:
The Pass-By- alue Scheme

MATLAB programs communicate with their functions using a pass-by-value
scheme. When a function call occurs, MATLAB makes a capy of the actual argu-
ments and passes them to the function. This copying is highly significant. because it
means that even if the function modifies the input arguments, it won't affect the orig-
inal data in the caller. This feature helps to prevent unintended side effects, in which
an error in the function might unintentionally modify variables in the calling program.

This behavior is illustrated in the function shown below. This function has two
input arguments: a and b. During its calculations, it modifies both input arguments.

function out = sample(a, b, c)

fprintf('In sample: a = %f, b = %f %f\n',a,b);
a = bll) + 2*a;

boo@ o b

out = a + b(l);

forintf('In sample: a = %f, b = %f %f\n',a,b);

A simple test program to call this function is shown below.
&8 =2 b= [® 4);

fprintf('Before sample: a = %f, b
out = sample{a,b);

fprintf ('After sample: a = %f, b = %f %f\n',a,b):
fprintf('After sample: out = %f\n',out);

$f %f\n',a,b);

When this program is executed, the results are:
» test_sample

Before sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 2.000000, b = 6.000000 4.000000
In sample: a = 10.000000, b = 60.000000 40.000000
After sample: a = 2.000000, b = 6.000000 4.000000

After sample: out = 70.000000

Note that a and b were both changed inside the function sample, but those
changes had no effect on the values in the calling program.

Users of the C language will be familiar with the pass-by-value scheme. since
C uses it for scalar values passed to functions. However C does nof use the pass-
byv-value scheme when passing arrays, so an unintended modification to a dummy
array in a C function can cause side effects in the calling program. MATLAB
improves on this by using the pass-by-value scheme for both scalars and arravs.’

The implementation of argument passing in MATLAR 1s actually more sophisticated than this Jdis-
cussion indicates. As pointed out previously, the copying associated with pass-by-value takes up a lot
af time, but it provides protection apainst unintended side effects. MATLAB actually uses the best of
both approaches: it analyzes each argument of each function and determines w hether or not the fune-
tion modifies that argument. If the function modifies the argument. then MATLAB makes a copy of
it 1f it does not modify the argument, then MATLAB simply points 10 the existing value in the call-
ing program. This practice increases speed while stll prov iding protection against side effects’

208 | Chapter 5 User-Defined Functions

AT

3BT T T e T S T T VN S R T e LA R

ixample 5.1—Rectangular-to-Polar Conversion

The location of a point in a cartesian plane can be expressed in either the rectan-
gular coordinates (x,) or the polar coordinates (r,), as shown in Figure 5.3. The
relationships among these two sets of coordinates are given by the following
equations:

x = rcos @ (5-1)

y = rsin B (5-2)

r= Va2 +) (5-3)

=tan"'2 (5
e

Write two functions rect2polar and polar2rect that convert coordinates
from rectangular to polar form, and vice versa, where the angle 6 1s expressed in
degrees.

SoLuTtion We will apply our standard problem-solving approaca to creating

.~ these functions. Note that MATLAB’s trigonometric functions work in radians, so

we must convert from degrees to radians and vice versa when solving this prob-
lem. The basic relationship between degrees and radians is

180° = r radians (5-5)

Figure 5.3 A point P in a Cartesian plane can be located by either the rectangular coordinates (x, v)

or the polar coordinates (r, 8).

= -y

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 209

|. State the problem.

A succinct statement of the problem is:

Write a function that converts a location on a Cartesian plane
expressed in rectangular coordinates into the corresponding
polar coordinates, with the angle 8 is expressed in degrees. Also,
write a function that converts a location on a Cartesian plane
expressed in polar coordinates with the angle 6 is expressed in
degrees into the corresponding rectangular coordinates.

. Define the inputs and outputs.

The inputs to function rect2polar are the rectangular (x, y) location of a
point. The outputs of the function are the polar (r, 8) location of the point. The
inputs to function polar2rect are the polar (r. 8) location of a point.
The outputs of the function are the rectangular (x. v) location of the point.

. Describe the algorithm.

These functions are very simple, so we can directly write the final
pseudocode for them. The pseudocode for function polar2rect is:

X <- ¥ * cos(theta * pi/180)
y <- ¥ * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function
atan2, because that function works over all four quadrants of the
Cartesian plane. (Look that function up in the MATLAB Help Browser!)

r£- BHYEl X.%2 + ¥ %2)
theta <- 180/pi * atan2(y,x)

Turn the algorithm into MATLAB statements.
The MATLAB code for the selection polar2rect function is shown
below.

function [x, y] = polar2rect(r,theta)
%POLAR2RECT Convert rectangular to polar coordinates

P oP P oP of P 9P

P of P P o

Function POLARZRECT accepts the polar coordinates
(r,theta), where theta is expressed in degrees,
and converts them into the rectangular coordinates

Calling seguence:

y] = polar2rect(r,theta)

variables:
-- Length of polar wvector

theta -—- aAngle of vector in degrees

-- x-position of point
-- y-position of peint

210 | Chapter 5 User-Defined Functions

% Record of revisions:

% Date Programmer Description of change
% ==== e N =:=====::::=-_—‘—'::====:
% 01/12/04 S. J. Chapman Original code

x = r * cos(theta * pi/180);
y = r * sin(theta * pi/180);

end % function polar2rect
The MATLAB code for the selection rect2polar function is shown below.

function [r, theta] = rect2polar(x,y)

$RECT2POLAR Convert rectangular to polar coordinates

% Function RECT2POLAR accepts the rectangular coordinates
% (x,y) and converts them into the polar coordinates

% (r,theta), where theta is expressed in degrees.
%
%
%

Calling sequence:
[r, thetal = rect2polar(x,y)

% Define variables:

% r -- Length of polar vector

% theta -- Angle of wvector in degrees

% x -- x-position of point

% v -- y-position of point

% Record of revisions:

% Date Programmer Description of change
% ———m b+ ¢+t + + 4+ 3+ 4+ b
% 01/12/04 S. J. Chapman Original code

r = sqril x. 22+ ¥ 2)i
theta = 180/pi * atan2(y.x);

end % function pelar2rect

Note that these functions both include help information, so they will
work properly with MATLAB's help subsystem and with the 1ookfor
command.

5. Test the program.
To test these functions, we will execute them directly in the MATLAB
Command Window. We will test the functions using the 3-4-5 triangle,
which is familiar to most people from secondary school. The smaller
angle within a 3-4-5 triangle is approximately 36.87°. We will also test the
function in all four quadrants of the Cartesian plane to ensure that the con-
version are correct everywhere.

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 211

» [r, theta] = rect2polar(4,3)
) i —
5
theta =
36.8699
» [r, theta] = rect2polar(-4,3)
o =
5
theta =
143.1301
» [r, theta] = rect2polar(-4,-3)
b R —
5
theta =
-143.1301
» [r, theta] = rect2polar(4,-3)
r =
5
theta =
-36.8659
» [x, y] = polar2rect(5,36.8699)
g =
4.0000
y:
3.0000
» [x, y] = polar2rect(5,143.1301)
X =
-4.0000

3.0000

» [x, y] = polar2rect(5,-143.1301)
M =
-4.0000
y =
-3.0000

» [x, y] = polarZrect(5,-36.8699)
X =
4.0000 !
y =
-3.0000

»

These functions appear to be working correctly in all quadrants of the
Cartesian plane. .
-

R . o T el S e P I | T 2 s T e, A . oy s 2 Ao G

212

>

Example 5.2—Sorting Data

Chapter 5 User-Defined Functions

In many scientific and engineering applications, it is necessary to take a random
input data set and to sort it so that the numbers in the data set are either all in
ascending order (lowest-to-highest) or all in descending order (highest-to-lowest).
For example, suppose you were a zoologist studying a large population of animals
and you wanted to identify the largest 5 percent of the animals in the population.
The most straightforward way to approach this problem would be to sort the sizes
of all of the animals in the population into ascending order and take the top 5 per-
cent of the values. !

Sorting data into ascending or descending order seems to be an easy job.
After all, we do it all the time. It is simple matter for us to sort the data (10, 3, 6,
4, 9) into the order (3, 4, 6, 9, 10). How do we do it? We first scan the input data
list (10, 3, 6, 4, 9) to find the smallest value in the list (3), and then scan the
remaining input data (10, 6, 4, 9) to find the next smallest value (4), and so forth,
until the complete list is sorted.

In fact, sorting can be a very difficult job. As the number of values to be sort-
ed increases, the time required to perform the simple sort described increases rap-
idly, since we must scan the input data set once for each value sorted. For very
large data sets, this technique just takes too long to be practical. Even worse, how
would we sort the data if there were too many numbers to fit into the main mem-
ory of the computer? The development of efficient sorting techniques for large
data sets is an active area of research and is the subject of whole courses all by
itself.

In this example, we will confine ourselves to the simplest possible algorithm
to illustrate the concept of sorting. This simplest algorithm is called the selection
sort. It is just a computer implementation of the mental math described above.
The basic algorithm for the selection sort is: ;

1. Scan the list of numbers to be sorted to locate the smallest value in the list.
Place that value at the front of the list by swapping it with the value cur-
rently at the front of the list. If the value at the front of the list is already
the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next
smallest value in the list. Place that value in position 2 of the list by swap-
ping it with the value currently at that position. If the value in position 2
is already the next smallest value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third
smallest value in the list. Place that value in position 3 of the list by swap-
ping it with the value currently at that position. If the value in position 3
is already the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached.
After the next-to-last position in the list has been processed, the sort is
complete.

A s 8 ekl o Rk

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 213

> 3 3 3 3
10 4 4 1

4 10 10)
9 g 9 > 10

]

Swap Swap No Swap Swap

Figure 5.4 An example problem demonstrating the selection sort algorithm.

Note that if we are sorting N values, this sorting algorithm requires N-1 scans
through the data to accomplish the sort.

This process is illustrated in Figure 5.4. Since there are five values in the
data set to be sorted, we will make four scans through the data. During the first
pass through the entire data set, the minimum value is 3, so the 3 is swapped
with the 10 which was in position 1. Pass 2 searches for the minimum value in
positions 2 through 5. That minimum is 4, so the 4 is swapped with the 10 in
position 2, Pass 3 searches for the minimum value in positions 3 through 5.
That minimum is 6, which is already in position 3, so no swapping is required.
Finally, pass 4 searches for the minimum value in positions 4 through 5. That
minimum is 9, so the 9 is swapped with the 10 in position 4, and the sort is
completed.

-4

The selection sort algorithm is the easiest sorting algorithm to understand, but
it is computationally inefTicient. /t showld never be applied to sort large data sets
(say, sets with more than 1000 elements). Over the years, computer scientists
have developed much more efficient sorting algorithms. The sort and
sortrows functions built into MATLARB are extremely efficient and should be
used for all real work.

214

Chapter 5 User-Defined Functions

We will now develop a program to read in a data sct from the Command

Window. sort it into ascending order, and display the sorted data set, The sorting
will be done by a separate user-defined funcuon.

SoLuTion This program must be able to ask the user for the input data. sort the data,
and write out the sorted data. The design process for this problem is given below.

for ii

1. State the problem.

We have not yet specified the type of data to be sorted. If the data is
numeric, then the problem may be stated as follows:

Develop a program to read an arbitrary number of numeric input val-
ues from the Command Window, sort the data into ascending order
using a separate sorting function, and write the sorted data to the
Command Window.

. Define the inputs and outputs.
The inputs to this program are the numeric values typed in the Command
Window by the user. The outputs from this program are the sorted data
values written to the Command Window.

. Describe the algorithm.
This program can be broken down into three major steps

Read the input data into an array
Sort the data in ascending order
Write the sorted data

The first major step is to read in the data. We must prompt the user
for the number of input data values, and then read in the data. Since we
will know how many input values there are to read, a £or loop is appro-
priate for reading in the data. The detailed pseudocode is shown below:

Prompt user for the number of data values
Read the number of data values
Preallocate an input array
for ii = 1l:number of values

Prompt for next value

Read value
end

Next we have to sort the data in a separate function. We will need to make
nvals-1 passes through the data, finding the smallest remaining value
each time. We will use a pointer to locate the smallest value in each pass.
Once the smallest value is found, it will be swapped to the top of the list
of it is not already there. The detailed pseudocode is shown below:

= l:nvals-1

% Find the minimum wvalue in a(ii) through a(nvals)
iptr <- ii

5.2 Variable Passing in MATLAB: The Pass-By-Value'Scheme | 215

for- 33 == 34+l toovals
if a(jj) < af{iptr)
iptr <= jj
end
end

% iptr now points to the min value, so swap a(iptr)
% with a(ii) if iptr -~= ii.
if 4 == iptr
temp <- af(i)
a(i) =<- aliptr)
aliptr) <- temp
end
end

The final step is writing out the sorted values. No refinement of the
pseudocode is required for that step. The final pseudocode is the combi-
nation of the reading, sorting and writing steps.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is shown below.

function out = ssort(a)
$SSORT Selection sort data in ascending order

Record of revisions:
Date Programme Description of change

% Function SSORT sorts a numeric data set into
% ascending order. Note that the selection sort
% is relatively inefficient. DO NOT USE THIS

% FUNCTION FOR LARGE DATA SETS. Use MATLAB's

% "sort" function instead.

% Define variables:

% a -- Input array to sort

% i -- Index variable

% iptr -- Pointer to min value

% 33 -- Index variable

% nvals -- Number of values in "a”

% out -- Sorted output array

% temp -— Temp variable for swapping
%

%

%

S. J. Chapman Original code

@0
(=]
o)
=t
baon
o
o
'S

% Qet the length of the array to sort
nvals = sizel(a,2);

% Sort the input array
for ii = l:nvals-1

216

Chapter 5 User-Defined Functions

% rFind the minimum value in a(ii) thkrough a(mn)
iptr = ii;

for jj = ii+l:nvals
if al33) < alipkr)
il o ol
end
end

% iptr now points to the minimum value, so swap a(iptr)
% with a(ii) if ii ~= iptr.

if ii -= iptr
temp = a(ii);
a(ii) = aliptr);
aliptr) = temp;
end
end

%

Pass data back to caller

out = a;

end % function ssort

%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

The program to invoke the selection sort function is shown below.

Script file: test_ssort.m

Purpose:
To read in an input data set, sort it into ascending
order using the selection sert algorithm, and to
write the sorted data to the Command Window. This
program calls function "ssort" to do the actual
sorting.

Record of rewvisions:
Date Programmer Description of change

01/12/04 S. J. Chapman Original code

Define variables:

array -- Input data array

5 -- Index variable

nvals -- Number of input values
sorted -- Sorted data array

Prompt for the number of values in the data set

nvals = input('Enter number of walues to sort: B

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme | 217

% Preallocate array
array = zeros(l,nvals):

% Get input values
for ii = 1l:nvals

% Prompt for next value
string = ['Enter value ' int2str(ii) ': '];
array(ii) = input({string);

end

% Now sort the data
sorted = ssortlarray):

% Display the sorted result.
fprintf ('\nSorted data:\n');
for ii = 1l:nvals

fprintf (' %8.4f\n',sorted(ii));
end

5. Test the program.
To test this program, we will create an input data set and run the program
with it. The data set should contain a mixture of positive and negative
numbers as well as at least one duplicated value to see whether the pro-
gram works properly under those conditions.

» test_ssort
Enter number of values to sort: 6

Enter value 1: =5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: =2
Enter value 6: 0

Sorted data:
=-5.0000
-2.0000
-2.0000

0.0000
3.0000
4.0000

The program gives the correct answers for our test data sct. Note that it works
for both positive and negative numbers as well as for repeated numbers.

T S S e Tl 2 P D s B] T T e T N i s T o s SRS T

218 | Chapter 5 User-Defined Functions

5.3 Optional Arguments

Many MATLAB functions support optional input arguments and output argu-
ments. For example, we have seen calls to the plot function with as few as two
or as many as seven input arguments. On the other hand, the function max sup-
ports either one or two output arguments. If there is only one output argument,
max returns the maximum value of an array. If there are two output arguments, max
returns both the maximum value and the location of the maximum value in an array.
How do MATLAB functions know how many input and output arguments are pres-
ent, and how do they adjust their behavior accordingly?

There are eight special functions that can be used by MATLAB functions to
get information about their optional arguments and to report errors in those argu-
ments. Six of these functions are introduced here, and the remaining two will be
introduced in Chapter 7 after we learn about the cell array data type. The func-
tions introduced now are:

® nargin—This function returns the number of actual input arguments
that were used to call the function.

® nargout—This function returns the number of actual outrut arguments
that were used to call the function.

® nargchk—This function returns a standard error message if a function is
called with too few or too many arguments.

® error—Display error message and abort the function producing the
error. This function is used if the argument errors are fatal.

® warning—Display wamning message and continue function execution. This
function is used if the argument errors are not fatal, and execution can continue.

® inputname—This function returns the actual name of the variable that
corresponds to a particular argument number.

When functions nargin and nargout are called within a user-defined
function, these functions return the number of actual input arguments and the num-
ber of actual output arguments that were used when the user-defined function was
called.

Function nargchk generates a string containing a standard error message
if a function is called with too few or too many arguments. The syntax of this
function is

message = nargchk{min_args,max_args,num_args) H

where min_args is the minimum number of arguments, max_args is the max-
imum number of arguments, and num_args is the actual number of arguments.
If the number of arguments is outside the acceptable limits, a standard error mes-
sage is produced. If the number of arguments is within acceptable limits, then an
empty string is returned.

Function error is a standard way to display an error message and abort the
user-defined function causing the error. The syntax of this function is
error('msg'), where msg is a character string containing an €rror message.

53 Optional Arguments | 219

When error is executed, it halts the current function and returns to the keyboard,
displaying the error message in the Command Window. If the message string is
empty, error does nothing and execution continues. This function works well
with nargchk, which produces a message string when an error occurs and an
empty string when there is no error.

Function warning is a standard way to display a warning message that
includes the function and line number where the problem occurred, but lets
execution continue. The syntax of this function is warning ('msg"'), where
msg is a character string containing a warning message. When warning is
executed, it displays the warning message in the Command Window and lists
the function name and line number where the warning came from. If the mes-
sage string is empty, warning does nothing. In either case, execution of the
function continues,

Function inputname returns the name of the actual argument used when a
function is called. The syntax of this function is

name = inputname(argno);
where argno is the number of the argument. If the argument is a variable, then

its name is returned. If the argument is an expression, then this function will
return an empty string. For example, consider the function

function myfun(x,y,z)
name = inputname(2);
disp(['The second argument is named ' name]);

When this function is called, the results are

» myfun(dog,cat)

The second argument is named cat
» myfun(1l,2+cat)

The second argument is named

Function inputname is useful for displaying argument names in warning and
Srror messages.

.‘M P g T S SR e = S e S]

Example 5.3—Using Optional Arguments
We will illustrate the use of optional arguments by creating a function that accepts
an (x, y) value in rectangular coordinates and produces the equivalent polar rep-
resentation consisting of a magnitude and an angle in degrees. The function will
be designed to support two input arguments, x and y. However, if only one argu-
ment is supplied, the function will assume that the v value is zero and proceed
with the calculation. The function will normally return both the magnitude and
the angle in degrees, but if only one output argument is present, it will return only the
magnitude. This function is shown below.

function [mag, angle] = polar_value(x,¥)
$POLAR_VALUE Converts (x,y) to (r, theta)

220 | Chapter 5 User-Defined Functions

% Function POLAR_VALUE converts an input (x,y)

% value into (r,theta), with theta in degrees.

% It illustrates the use of optional arguments.

% Define variables:

% angle -- Angle in degrees

% msg -- BError message

% mag -- Magnitude

% X -- Input x value

% Y -- Input y value (optiocnal)

% Record of revisions:

% Date Programmer Description of change
% _—=== —_—mEsss===== et i e e A &
% 01/12/04 5. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(l,2,nargin);
error (msg) ;

% If the y argument is missing, set it to 0.
if nargin < 2

y = 0;
end

% Check for (0,0) input arguments, and print out

% a warning message.

if % == ®w == 0
msg = ‘Both X any y are zero: angle is meaningless!';
warning(msg) ;

end

% Now calculate the magnitude.
mag = sgrt(x.*2 + y¢.%2);

% If the second output argument is present, calcuate
% angle in degrees.
if nargout ==
angle = atan2(y,x) * 180/pi;
end

= end % function polar_value

We will test this function by calling it repeatedly from the Command Window.
First, we will try to call the function with too few or too many arguments,

» [mag angle] = poiar_value
??? 'Error using ==> polar_value
Not enough input arguments.

5.3 Optional Arguments | 221

» [mﬁg angle] = polar wvalue(l,-1,1)
??? Error using ==> polar_value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to
call the function with one or two input arguments.

» [mag angle] = polar wvalue(l)

mag =
1
angle =
0
» [mag angle] = polar_value(l,-1)
mag =
1.4142
angle =
-45

The function provides the correct answer in both cases. Next, we will try to call
the function with one or two output arguments,

» mag = polar_value(l,-1)
mag =
1.4142 ;
» [mag angle] = polar value(l,-1)
mag =
1.4142
angle =
-45

The function provides the correct answer in both cases. Finally, we will try to call
the function with both x and y equal to zero.

» [mag angle] = polar_value(0,0)

Warning: Both x any y are zero: angle is meaningless!
> In d:\book\matlab\chapS\polar value.m at line 32
mag =

0
angle =

0
In this case. the function displays the warming message, but execution continues,

i PR RS N R TN T e ST TR A

Note that a MATLAB function may be declared to have more output argumenis
than are actually used. and this is not an error. The function does not actually have

2212

Chapter 5 User-Defined Functions

to check nargout to determine if an output argument is present. For example,
consider the following function:

function [zl, 22] = junk(x,y)
71 = x + v;
Ta = M = ¥y

end % function junk
This function can be called successfully with one or two output arguments.

» a = junk(2,1)

a =
3
» [a b] = junk(2,1)
a =
3
b=
1

The reason for checking nargout in a function is to prevent uscless work. If a
result is going to be thrown away anyway, why bother to calculate it in the first
place? A programmer can speed up the operation of a program by not bothering
with useless calculations.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 5.1 through 5.3. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the matérial with a
fellow student. The answers to this quiz are found in the back of the book.

1. What are the differences between a script file and a function?

2. How does the help command work with user-defined functions?
3. What is the significance of the Hl comment lin¢ in a function?
4

. What is the pass-by-value scheme? How does it contribute to good
program design?

5. How can a MATLAB function be designed to have optional arguments?

For questions 6 and 7, determine whether the function calls are correct
or not. If they are in error, specify what is wrong with them.

6. out = testl(6);

function res = testl(x,y)
res = sgrt{x.”2 + y."2);
end % function testl

7. out = test2(12);

function res = test2(x,y)

error (nargchk(1l;2,nargin));

5.4 Sharing Data Using Global Memory | 223

if navgin == 2

res = sart(x."2 + y."2);
else

res = x;
end

end % function test?2

5.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through a
argument lists. When a function is called, each actual argument is copied, and the
copy is used by the function.

In addition to the argument list, MATLAB functions can exchange data with
each other and with the base workspace through global memory. Global memory
is a special type of memory that can be accessed from any workspace. If a vari-
able is declared to be global in a function, then it will be placed in the global
memory instead of the local workspace. If the same variable is declared to be
global in another function, then that variable will refer to the same memony loca-
tion as the variable in the first function. Each script file or function that declares
the global variable will have access the same data values, so global memory pro=
vides a way to share data between functions.

A global variable is declared with the global statement. The form of a
global statement is

global varl varZ var3 . .

where varl, var2, var3, etc. are the variables to be placed in global memaory.
By convention, global variables are declared in al! capital letters, but this is not
actually a requirement.

Declare global variables in all capital letter to make them easy to distinguish
from local variables,

Each global variable must be declared to be global before it is used for the
first time in a function—it is an error to declare a variable to be global after it has
already been created in the local workspace.* To avoid this error, it is customary

*If a variable is declared global after it has already been defined in a function. MATLAB will 1ssue
a warning message and then change the local value to match the global value You should never rely
on this capability, though, because future versions of MATLAB will not allow i,

224 Chapter 5 User-Defined Functions

1o declare global variables immediately after the initial comments and before the
first executable statement in a function.

et g Ier =

Declare global variables immediately after the initial comments and before the
first executable statement of each function that uses them.

R R TR T R i S T

Global variables are especially useful for sharing very large volumes of data
among many functions, because the entire data set does not have to be copied
cach time a function is called. The downside of using global memory to
exchange data among functions is that the functions will only work for that spe-
cific data set. A function that exchanges data through input arguments can be
reused by simply calling it with different arguments, but a function that
exchanges data through global memory must actually be modified to allow it to
work with a different data set.

Global variables are also useful for sharing hidden data among a group of
related functions while keeping it invisible from the invoking program unit.

You may use global memory to pass large amounts of data among functions
within a program.

(i s e
|
BN S VERE R) e e S e L TR R ST I g AT TN

Example 5.4—Random Number Generator

It is impossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes, refineries. A good engineering design must take
these measurement errors into account, so that the noise in the measurements will
not lead 1o unstable behavior (no plane crashes or refinery explosions!).

Most enginecring designs are tested by running simulations of the operation
of the system before it is ever built. These simulations involve creating mathe-
matical models of the behavior of the system and feeding the models a realistic
string of input data. If the models respond correctly to the simulated input data,
then we can have reasonable confidence that the real-world system will respond
correctly to the real-world input data.

The simulated input data supplied to the models must be corrupted by a simu-
lated measurement noise, which is just a string of random numbers added to the ideal
input data. The simulated noise is usually produced by a random mumber generator.

5.4 Sharing Data Using Global Memory 225

A random number generator is a function that will return a different and
apparently random number each time it is called. Since the numbers are in fact
generated by a deterministic algorithm, they only appear to be random.® However,
if the algorithm used to generate them is complex cnough. the numbers will be
random enough to use in the simulation.

One simple random number generator algorithm is described below " It relics
on the unpredictability of the modulo function when applied to large numbers.
Consider the following equation:

fe) = mod (8121 n, + 28411, 134456) (5-6)

Assume that »; is a nonnegative integer. Then because of the modulo function,
1, Wil be a number between 0 and 134,455 inclusive. Next. #,_, can be fed into
the equation to produce a number n,, , that is also between 0 and 134.455. This
process can be repeated forever to produce a series of numbers in the range
[0, 134455]. If we didn’t know the numbers 8121, 28,411, and 134.456 in
advance, it would be impossible to guess the order in which the values of » would
be produced. Furthermore, it turns out that there is an equal (or uniform) proba-
bility that any given number will appear in the sequence. Because of these prop-
erties, Equation (5-6) can serve as the basis for a simple random number genera-
tor with a uniform distribution.

We will now use Equation (5-6) to design a random number generator whose
output is a real number in the range [0.0, 1.0)".

Sorution We will write a function that generates one random number in the
range 0 < ran < 1.0 each time that it is called. The random number will be based
on the equation

oo B
G ANET VT =1
where n, is a number in the range 0 to 134455 produced by Equation (3-7).

The particular sequence produced by Equations (35-6) and (5-7) will depend
on the initial value of n; (called the seed) of the sequence. We must provide a way
for the user to specify i so that the sequence may be varied from run to run

1. State the problem.
Write a function random0 that will generate and return an array ran con-
taining one or more numbers with a uniform probability distribution in the
range 0 < ran < 1.0, based on the sequence specified by Equations (5-6) and
(5-7). The function should have one or two input arguments (n and m) spec-

“For this reason, some people refer to these functions as pseudorandom number generutors

“This algorithm is adapted from the discussion found in Chapter 7 of Numerical Recipes: The 4r of
Scientific Programming, by Press, Flannery, Teukolsky. and Venterling, Cambridge University Press, 1336,
"The notation [0.0, 1.0) implies that the range of the random numbers is between 0.0 and 1.0, includ-
ing the number 0.0, but excluding the number 1.0.

226

Chapter 5 User-Defined Functions

ifying the size of the array to rewrn. If there is one argument, the function
should generate square array of size n X n. If there are two arguments, the
function should generate an array of size n X m. The initial value of the
seed n, will be specified by a call to a function called seed.

2. Define the inputs and outputs.

There are two functions in this problem: seed and random0. The input
to function seed is an integer to serve as the starting point of the
sequence. There is no output from this function. The input to function
random0 is one or two integers specifying the size of the array of random
numbers to be generated. If only argument m is supplied, the function
should generate a square array of size n X n. If both arguments m and n
are supplied, the function should generate an array of size n X m. The out-
put from the function is the array of random values in the range [0.0, 1.0).

3. Describe the algorithm.
The pseudocode for function random0 is:

function ran = random0 (n, m)
Check for wvalid arguments
Set m <- n if not supplied
Create output array with "zeros" function
for ii = l:number of rows
for jj = l:number of columns
ISEED <- mod (B121 * ISEED + 28411, 134456)
ran(ii,jj) <- ISEED / 134456
end
end

where the value of ISEED is placed in global memory so that it is saved
between calls to the function. The pseudocode for function seed is trivial:

function seed (new_seed)
new_seed <- round(new_seed)
ISEED <- abs(new_seed)

The round function is used in case the user fails to supply an integer, and the
absolute value function is used in case the user supplics a negative seed.
The user will not have to know in advance that only positive integers are
legal seeds.

The variable TSEED will be placed in global memory so that it may
be accessed by both functions.

4. Turn the algorithm into MATLAB statements.
Function random0 is shown below.

function ran = randoml(n,m)
%RANDOM0 Generate uniform randem numbers in [0,1)
% Function RAZNDOMO generates an array of uniform

54 Sharing Data Using Global Memery | 227

% random numbers in the range [0,1). The usage

% is:

%

% random0 (n) -- Generate an n x n array

% random0(n,m) -- Generate an n x m array

% Define variables:

% ii -- Index variable

% ISEED -- Random number seed (glocbal)

% 33 -- Index variable

% m == Number of columns

% msg -- Error message

% n -- Number of rows

% ran -- Output array

% Record of revisions:

% Date Programmer Description of change
% e EETO oSS Sn=So==msoocoo=m====c—=—
% 01/12/04 S. J. Chapman Original code

%

% Declare globl values

global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(l, 2,nargin);
error (msg) ;

% If the m argument is missing, set it to n.
if nargin < 2

m = 7
end

% Initialize the output array
ran = zeros(n,m);

% Now calculate random values
for ii = lim
for 33 = l:m
ISEED = mod(8121*ISEED + 28411, 13445¢);
ran{ii,jj) = ISEED / 134456;
end
end

end % function random0
Function seed 1s shown below

function seed(new_seed)
%$SEED Set new seed for function RANDOMO

228

Chapter 5 User-Defined Functions

% Function SEED sets a new seed for function

% RANDOMO. The new seed should be a positive

% integer.

3 Define variables:

% ISEED —-- Random number seed (global)

% new _seed -- New seed

% Record of revisions:

% Date Programmer Description of change
% e 1 3+ +—+—— :::::::::::::::::::::
% 01/12/04 5. J. Chapman Original code

%

% Declare globl wvalues

global ISEED % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(l,1,nargin);

error (msg) ;

% Save seed
new_seed = round(new_seed);
ISEED = abs(new_seed);

end % function seed

5. Test the resulting MATLAB programs.
If the numbers generated by these functions are truly uniformly distributed
random numbers in the range 0 < ran < 1.0, then the average of many
numbers should be close to 0.5 and the standard deviation of the numbers

1
should be close to 7]-5

Furthermore, the if the range between 0 and 1 is divided into a num-
ber of bins of equal size, the number of random values falling in each bin
should be about the same. A histogram is a plot of the number of values
falling in cach bin. MATLAB function hist will create and plot a his-
togram from an input data set, so we will use it to verify the distribution
of random number generated by random0.

To test the results of these functions, we will perform the following tests:

Call seed with new_seed set to 1024,

Call random0 (4) to see that the results appear random.

Call random0 (4) to verify that the results differ from call to call.

Call seed again with new_seed set 1o 1024,

. Call random0 (4) to see that the results are the same as in (2) above.
This verifies that the seed is properly being reset.

6. Call random0 (2, 3) to verify that both input arguments are being

used correctly.

td —

lad

s

L

5.4 Sharing Data Using Global Memory 229

Call random0 (1,20000) and caleulate the average and standard
deviation of the resulting data set using MATLAB functions mea:
! . |
and std. Compare the results to 0.3 and ——
12
8. Create a histogram of the data from (7) 1o see if appronimately equal
numbers of values fall in each bin.

We will perform these tests interactively. checking the results as we go.
» seed(1024)
» random0 (4)

ans =
0.0598 1.0000 0.0905 0.2080
C.2620 0.6432 0.632 0.8392
0.6278 0.5463 0551 0.4554
0.3177 0.9105 01289 0.6230

» randomO (4)

ans =
0.2266 0.3858 0.5876 0.7880
0.8415 0.9287 0.9855 0.1314
0.0982 0.6585 0.0543 0.4256
0.2387 8. TLE3 0.2608 0.8922

» seed(1024)

» random0 (4)

ans =
0.0598 1.0000 0.0905 0.2080
0.2620 0.6432 0.6325 0.8392
0.6278 0.5463 0.7551 0.4554
0.3177 0.9105 0.1289 0.6230

» random0(2,3)

ans =
0.2266 0.3858 0.5876
0.7880 0.8415 0.9287

» arr = randomO(1,20000);
» mean(arr)
ans =
0.5020
» std(arr)
ans =
0.2881
hist (arr,10);
title('\bfHistogram of the Output of random0');
xlabel ('Bin')
ylabel('Count')
The results of these tests look reasonable, so the function appears
to be working. The average of the data set was 0.5020. which 15 quite

¥ ¥ ¥ ¥

230 Chapter 5 User-Defined Functions

Histogram of the Output of random(

2500 T T 1 _i
—
2000~ A [.
1500 |
g |
=
o
Q
1000
500
0
0 0.1 0.2 03 0.4 0.5 0.6 0.7 0.8 0.9 1
Bin
Figure 5.5 Histogram of the output of function random0.
close to the theoretical value of 0.5000, and the standard deviation of
the data set was 0.2881, which is quite close to the theoretical value
of 0.2887. The histogram is shown in Figure 5.5, and the distribution of
the random values is roughly even across all of the bins. -
R TR TR R R AR LAk Lg SEEL TSI TR, " SR

MATLAB includes two standard functions that generate random values from
different distributions. They are

® rand Generates random values from a uniform distribution on the range
[0. 1)
® randn- Generates random values from a normal distribution.

Both of them are much faster and much more “random’ than the simple function
that we have created. If you really need random numbers in your programs, us¢
one of these functions.

5.5 Preserving Dara Beowesn Calls to a Function | 231

" 3 = o .
Functions rand and randn have the following calling sequences:

® rand () —Generates a single random value.
® rand (n)-—Generates an n X n array of random values
® rand {n,m)—Generates an n X s array of random values

5.5 Preserving Data Between Calls to a Function

When a function finishes executing, the special workspace created for that func-
tion is destroyed, so the contents of all local variables within the function will dis-
appear. The next time the function is called. a new workspace will be created. and
all of the local variables will be returned to their default values. This behavior is
usually desirable, since it ensures that MATLAB functions behave in a repeatable
fashion every time they are called.

However, it is sometimes useful to preserve some local information within a
function between calls to the function. For example, we might which to create a count-
er to count the number of times that the function has been called. If such a counter

- were destroyed every time the function exited, the count would never exceed 1

MATLAB includes a special mechanism to allow local variables to be pre-
served between calls to a function. Persistent memory is a special type of mem-
ory that can be accessed only from within the function, but is preserved unchanged
between calls to the function.

A persistent variable is declared with the persistent statement. The
form of a global statement is

persistent varl var2 var3 .

where varl,var2, var3, etc. are the variables to be placed in persistent
memory.

Use persistent memory to preserve the values of local vari
between calls to the function,

L-wmmw R T e T e L T S TE TN R T T T TR SERIING T

Example 5.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on-the-ly as
the values are being entered. The built-in MATLAB functions mezn and std
could perform this function, but we would have to pass the entire data set to them
for recalculation after each new data value is entered. A better result can be
achieved by writing a special function that keeps tracks of the appropriate running

232

Chapter 5 User-Defined Functions

cums between calls. and only needs the latest value to calculate the current aver-
age and standard deviation.
The average or arithmetic mean of a set of numbers is defined as

F=—2Jx (5-8)

where x, is sample 7 out of N samples. The standard deviation of a set of numbers

is defined as -
N -
(2)
i=

JM{.N 5= l)

Standard deviation is a measure of the amount of scatter on the measurements;
the greater the standard deviation, the more scattered the points in the data set are.
If we can keep track of the number of values N, the sum of the values S x, and the
sum of the squares of the values S%, then we can calculate the average and stan-
dard deviation at any time from Equations (5-8) and (5-9).

Write a function to calculate the running average and standard deviation ofa
data set as it is being entered.

SoLuTion This function must be able to accept input values one at a time and
keep running sums of N, Xx, and 31, which will be used to calculate the cur-
rent average and standard deviation. It must store the running sums in global
memory so that they are preserved between calls. Finally, there must be a mech-
anism to reset the running sums.

1. State the problem.
Create a function to calculate the running average and standard deviation
of a data set as new values are entered. The function must also include a
feature to reset the running sums when desired.

2. Define the inputs and outputs.
There are two types of inputs required by this function:

|. The character string ' reset ' to reset running sums to zero.
2. The numeric values from the input data set, presented one value per
function call.

The outputs from this function are the mean and standard deviation of the
data supplied 1o the function so far.

3. Design the algorithm,
This function can be broken down into four major steps. as follows:

Check for a legal number of arguments

Check for a 'reset', and reset sums if present
Otherwise, add current value to running sums
Ccalculate and return running average and std dev

ol =

55 Preserving Data Between Calls to a Function 233

if enough data is available. Return zeros i
not enough data is available.

()

The detailed pseudocode for these steps is:

Check for a legal number of arguments
if x == ‘reset’
n <- 0
sum_x <- 0
sum x2 <- 0
else
n<=n4+1
sum X <- sum_x + X
sum x2 <= sum X2 + X2
end

% Calculate ave and sd

if @ ==

ave <- 0

std <- 0
elseif n ==

ave <- sum_x

std <- 0
else

ave <- sum_x / n
std <- sgrt((n*sum_x2 - sum_x"2)/(n*(n-1)))
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown below.

function [ave, std] = runstats(x)
%¥RUNSTATS Generate running ave / std deviation

%

o of P P

P o OO P dP df of

P

Function RUNSTATS generates a running average
and standard deviation of a data set. The
values x must be passed to this function one

at a time. A call to RUNSTATS with the argument
‘reset' will reset tue running sums.

Define variables:

ave -- Running average

msg -- Error message

n -- Number of data wvalues

std -- Running standard deviation

sum x -- Running sum of data wvalues

sum_x2 -- Running sum of data wvalues sguarsd

x -- Input wvalues

234

Chapter 5 User-Defined Functions

%

% Record of revisions:

% Date Programmer Description of change
% ==== ———4— 44— :::::::::::::::::::::
% 01/13/04 S. J. Chapman Original code

% Declare persistent values

persistent n % Number of input values
persistent sum x % Running sum of values
persistent sum x2 % Running sum of values squared

% Check for a legal number of input arguments.
msg = nargchk(l,1,nargin);
error (msg);

% If the argument is 'reset', reset the running sums.
if x == "raset!
n = D2
sam- = O
sum_x2 = 0;
else
o B - M e
SUmM_ X = Sum X + X;
sum_x2 = sum_x2 + X"2;
end

% Calculate ave and sd

if n ==
ave =
std =

elseif
ave
std

else

ave = sum_x / n;

std = sgrt((n*sum_x2 - sum_x"2) / (n*(n-1))):

n =i
n o o
[== =
=

n
o

end

end % function runstats

5. Test the program.
To test this function, we must create a script file that resets runstats,
reads input values, calls runstats, and displays the running statistics.
An appropriate script file is shown below.

% Script file: test_runstats.m
k-

e

Ayl -

e 4

5.5 Preserving Data Between Calls to a Function 235

% Purpose:

% To read in an input data set and calculate the

% running statistics on the data set as the values
% are read in. The running stats will be writtex

% to the Command Window.

%

% Record of revisions:

% Date Programmer Description of chance
% === S

% 01/13/04 §. J. Chapman Original code
P

% Define variables:

% array -- Input data array

% ave -- Running average

% std -- Running standard deviation

% i -- Index variable

% nvals -- Number of input wvalues

% std -- Running standard deviation

% First reset running sums

[ave std] = runstats('reset');

% Prompt for the number of values in the data set nvals =
input ('Enter number of values in data set: '):

% Get input wvalues
for ii = 1:nvals

% Prompt for next value
string = ['Enter value ' int2str(ii) ': 'J:
x = input(string) ;

% Get running statistics
[ave std] = runstats(x);

% Display running statistics
fprintf('Average = %8.4f; Std dev = %B.4f\n',ave, s=d);:
end
To test this function, we will calculate running statistics by hand tor
a set of five numbers, and compare the hand calculations to the results

from the program. If a data set is created with the following five input
values

3o Zo By 4 28 2-%)

then the running statistics calculated by hand would be:

236 | Chapter 5 User-Defined Functions

Value n x it Average Std_dev
3.0 1 3.0 9.0 3.00 0.000
2.0 2 5.0 13.0 2.50 0.707
3.0 3 8.0 22.0 2.67 0.577
4.0 4 12.0 38.0 3.00 0.816
28 5 14.8 4584 2.96 0.713

The output of the test program for the same data set is:

» test_runstats
Enter number of values in data set: 5
Enter value 1:. 3

Average = 3.0000; std dev = 0.0000
Enter value 2: 2

Average = 2.5000; std dev = - 0.7071
Enter value 3: 3

Average = 2.6667; Std dev = 0.5774
Enter value 4: 4 -

Average = 3.0000; Std dev = 0.8165
Enter value 5: 2.8

Average = 2.9600; Std dev = 0.7127

so the results check to the accuracy shown in the hand calculations. -

M

5.6 Function Functions

Function functions are functions whose input arguments include the names of
other functions. The functions whose names are passed to the function function
are normally used during the function’s execution.

For example, MATLAB contai'ns a function function called fzero. This
function locates a zero of the function that is passed to it. For example, the state-
ment fzero('cos', [0 pi]) locates a zero of the function cos between
0 and &, and fzero('exp(x)-2',[0 1]) locates a zero of the function
exp (x) -2 between 0 and 1. When these statements are executed, the result is:

» fzero('cos',[0 pil)
ans =

1.5708
» fzero('exp(x)-2',[0 11)
ans =

0.6931

- g Sy ——

~ A ———

& e

o

et Dt .-1...‘..——‘.-,--‘....-._ PENUREE ™ S, 1 T

5.6 Function Functions | 237

The keys to the operation of function functions are two special MATLAB
functions, eval and feval. Function eval evaluates a character string as
though it had been typed in the Command Window, while function feval eval-
uates a named function at a specific input value,

Function eval evaluates a character string as though it has been typed in the

- Command Window. This function gives MATLAB functions a chance to con-

struct executable statements during execution. The form of the eval function is
eval (string)
For example, the statement x = eval('sin(pi/4) ') produces the result

» x = eval('sin(pi/4)")
x -3
0.7071

An example where a character string is constructed and evaluated using the eval
function is shown below:

s o
str = ['exp(' num2str(x)') -1'];
res .= eval(str);

In this case, str contains the character string 'exp (1) -1, " which eval
evaluates to get the result 1.7183.

Function feval evaluates a named function defined by an M-file at a spec-
ified input value, The general form of the feval function is

feval (fun, value)
For example, the statement x = feval ('sin',pi/4) produces the result

» ¥ = feval('sin',pi/4)
¥ =
0.7071

Some of the more common MATLAB function functions are listed in Table 5.1.
Type help fun_name to learn how to use each of these functions.

Table 5.1 Common MATLAB Function Functions

Function Name Description
fminbnd Minimize a function of one variable.
Fzero Find a zero of a function of one- variable.
Quad Numerically integrate a function.

) Ezplot Easy to use function plotter.

fplot Plot a function by name.

238 Chapter 5 User-Defined Functions

>

BSEPTTR TeNE A ey e T A e TR AP R TR LS S

Example 5.6—Creating a Function Function

£

i of

. g

-+

Create a function function that will plot any MATLAB function of a single vari-
able between specified starting and ending values.

SoLuTion This function have two input arguments, the first one containing the
name of the function to plot and the second one containing a two-element vector
with the range of values to plot.

1. State the problem.
Create a function to plot any MATLAB function of a single variable
between two user-specified limits.

2. Define the inputs and outputs.
There are two inputs required by this function:

1. A character string containing the name of a function.
2. A two-element vector containing the first and last values to plot.

The output from this function is a plot of the function specified in the first
input argument.

3. Design the algorithm.
This function can be broken down into the following four major steps:

Check for a legal number of arguments

Check that the second argument has two elements

calculate the value of the function between the
start and stop points

Plot and label the function

The detailed pseudocode for the evaluation and plotting steps is:

n_steps <- 100

step_size <- (xlim(2) - xlim(1l)) / n_steps
Xx.<- x1lim(l):step size:x1im(2)

y <- feval (fun,x)

plot (x,y)

title(['\bfPlot of function ' fun '(x)'])
xlabel ("\bfx"')

viabel (['\bE! fan '(x}"1)

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown below.

nction quickplot(fun,xlim)

UICKPLOT Generate quick plot of a function
FTunction QUICKPLOT generates a gquick plot

of a function contained in a external M-file,
between user-specified x limits.

B T

SEEEADT A Y EANTIE brany

DU ITNVA DRI PIN [T SRLIRA (PO D SANTTRL T U

5.6 Function Funcrions 239

%t Define variables:

% fun -- Function to plot

% msg -- Error message)

% n_steps -- Number of steps to plot

% step_size -- Step size .

% x -- X-values to plot

% 3% == Y-values to plot

% x1im -~ Plot x limits

%

% Record of rewvisions:

% Date ﬁrogrammer Description of changse
% ==== —EETEom=—= :—T:::::::::::::::::::
% 01/13/04 S. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error (msg) ;

% Check the second argument to see if it has two
% elements. Note that this double test allows the
% argument to be either a row or a column vector.
if (size(xlim,1) == 1 & size(xlim,2) =

(size(xlim,1) == 2 & size(xlim,2) =

% Ok--continue processing.
n_steps = 100;
step_size = (x1im(2) - x1im(1)) / n_steps;
x = xlim(1) :step_size:x1im(2);
Yy = feval (fun,x);
plot(x,y):
title(['\bfPlot of function ' fun)y v T
xlabel ('\bfx');
ylabel (['\bf' fun '(x)']);:
else
% Else wrong number of elements in xlim.

error('Incorrect number of elements in x1lim. ') ;
end

end % function guickplot

5. Test the program,
To test this function, we must call it with correct and incorrect input argu-
ments, verifying that it handles both correct inputs and errors properly.
The results are shown below:

» gquickplot('sin')
??? Error using ==> quickplot
Not enough input arguments.

240 Chapter 5

User-Defined Functions

Fle Edt View Veart Tock Wrdow Heb
D=Q@&(hAaTBE 0ai=0 =
i S PR SR

1
L oBt

D&r

Figure 5.6 Plot of sin x versus x generated by function quickplot.

» guickplot('sin’, [-2*pi 2*pi],3)
2727 Error using ==> quickplot
Too many input arguments.

» q:uickplot('sin',-z*pi)
27?? Error using ==> quickplot
Incorrect number of elements in xlim.

» quickplot('sin', [-2*pi 2*pi])

The last call was correct, and it produced the plot shown in Figure 5.6. -

M

5.7 Subfunctions, Private Functions,
and Nested Functions

MATLAB includes several special types of functions that behave differently than
the ordinary functions we have used so far. Ordinary functions can be called by
any other function, as long as they are in the same directory or in any directory
on the MATLAB path.

The scope of a function is defined as the locations within MATLAB from
which the function can be accessed. The scope of an ordinary MATLAB function

sy b

o b bl Las g,

-3

(P WFOITFam ctaeta < apinbt.

5.7 Subfunctions, Private Functions, and Nested Functions | 241

is the current working directory. If the function 'ies in a directory on the
MATLAB path, then the scope extends to all MATLAB functions in a program.
because they all check the path when trying to find a function with a given name

In contrast. the scope of the other function types that we will discuss in the
rest of this chapter is more limited in one way or another.

Subfunctions

It is possible to place more than one function in a single file. If more than one
function is present in a file, the top function is a normal or primary function,
while the ones below it are subfunctions. The primary function should have the
same name as the file it appears in. Subfunctions look just like ordinary func-
tions, but they are only accessible to the other functions within the same file. In
other words, the scope of a subfunction is the other functions within the same file
(see Figure 5.7).

Subfunctions are often used to implement “utility” calculations for a main
function. For example, the file mystats .m shown below contains a primary func-
tion mystats and two subfunctions mean and median. Function mystatsisa
normal MATLAB function, so it can be called by any other MATLARB function in
the same directory. If this file is in a directory included in the MATLAB search
path, it can be called by any other MATLAB function, even if the other function is

File mystats.m

Function mystars is
nyRtals <——— T accessible from outside the file.
mean
'-l._.\‘--
L T Functions mean and ==d:a-
! J are only accessible from inside
|_— the file.
median /

Figure 5.7 The first function in a file is called the primary function. It should have the same name as
the file it appears in, and it is accessible from outside the file, The remaining functions in
the file are subfunctions; they are accessible only from within the file.

242

Chapter 5 User-Defined Functions

not in the same directory. By contrast, the scope of functions mean and median
is restricted to other functions within the same file. Function mystats can call
them and they can call each other, but a function outside of the file cannot. They are
“utility” functions that perform a part the job of the main function mystats.

function [avg, med] = mystats(u)

% MYSTATS Find mean and median with internal functions.
% Function MYSTATS calculates the average and median

% of a data set using subfunctions.

n length(u);
avg = mean(u,n);
med = median(u,n);

end % function mystats

function a = mean(v,n)
% Subfunction to calculate average.
a = sum(v) /n;

end % function mean

function m = median(v,n)
% Subfunction to calculate median.
w = sort(v);

if rem(n,2) == 1

m = wi{n + 1)/2);
else

m= (w(n/2)+ w(n/2 + 1))/2;
end

end % function median

Private Functions

Private functions are functions that reside in subdirectories with the special name
private. They are only visible to other functions in the private directory or
to functions in the parent directory. In other words, the scope of these functions is
restricted to the private directory and to the parent directory that contains it.

For example, assume the directory testing is on the MATLAB search
path. A subdirectory of testing called private can contain functions that
only the functions in testing can call. Because private functions are invisible
outside of the parent directory, they can use the same names as functions in other
directories. This is useful if you want to create your own version of a particular
function while retaining the original in another directory. Because MATLAB
looks for private functions before standard M-file functions, it will find a private
function named test.m before a non-private function named test.m.

5.7 Subfunctions, Private Functions, and Nested Functions | 243

You can create your own private directories by simply creating a subdirectory
called private under the directory containing your functions. Do not place these
private directories on your search path,

When a function is called from within an M-file, MATLAB first checks the file
to see whether the function is a subfunction defined in the same file. If not, it checks
for a private function with that name. If it is not a private function, MATLAB
checks the current directory for the function name. If it is not in the current direc-
tory, MATLAB checks the standard search path for the function.

If you have special-purpose MATLAB functions that should be used only by
other functions and should never be called directly by the user, consider hiding them
as subfunctions or private functions. Hiding the functions will prevent their acciden-
tal use and will also prevent conflicts with other public functions of the same name.

Nested Functions

Nested functions are functions that are defined entirely within the body of another

function, called the host function. They are visible only to the host function in
which they are embedded and to other nested functions embedded at the same
level within the same host function.

A nested function has access to any variables defined with it, plus any vari-
ables defined within the host function (see Figure 5.8). The only exception occurs
if a variable in the nested function has the same name as a variable within the host
function. In that case, the variable within the host function is not accessible.)

Variables defined in the host

host_function

function are visible inside any
nested functions.

nested_function_1

PR

Variables defined within nested
functions are not visible in

end % nested_function_1 "% the host function.

LT

nested_function_1 can be

end % host_function

called from within
host_function or
nested_function_2.

nested_function_2 can be
called from within
host_function or
nested_function_1.

[P D - S RN SRR L S

Figure 5.8 Nested functions are defined within a host function, and they inherit variables defined
within the host function

244 Chaprer 5 User-Defined Functions

Note that if a file contains one or more nested functions. then every function in
the file must be terminated with an end statement. This is the only time when the
end statement is required at the end of a function—at all other times it is optional,

If a file contains one or more nested functions, then every function in the file
must be terminated with an end statement. It is an error to omit end statements
in this case.

The following program illustrates the use of variables in nested functions. It
contains a host function test_nested_1 and a nested function funl. When
the program starts, variables a, b, x, and v are initialized as shown in the host
function, and their values are displayed. Then the program calls funl. Since
fun1 is nested, it inherits a, b, and x from the host function. Note that it does
not inherit v, because fun1 defines a local variable with that name. When the
values of the variables are displayed at the end of fun1, we see that a has been
increased by 1 (due to the assignment statement), and that y is set to 5. When exe-
cution returns to the host function, a is still increased by 1, showing that the vari-
able a in the host function and the variable a in the nested function are really the
same. On the other hand, v is again 9, because the variable y in the host function
is not the same as the variable y in the nested function.

function res = test_nested 1

% This is the top level function.
% Define some variables.
a = b = Zeiseisl iy ey

% Display variables before call to funl
fprintf('Before call to funl:\n');
fprintf('a, b, %, ¥y = %2d %2d %2d %2d\n', a, b, x, ¥);

% Call nested function funl
x = funl(x);

% Display variables after call to funl
fprintf('\nAfter call te funl:\n');
fprintf('a, b, x, y = %24 %2d %24 %¥2d\n', a, b, x, ¥):

% Declare a nested function
function res = funl(y)

% Display variables at start of call to funl
fprintf('\nAt start of call teo funl:\n');
fprintf('a, b, x, ¥ = %24 %24 %2d %2d\n', a, b, X, ¥l

5.7 Subfunctions, Private Functions, and Nested Functions | 245

¥=x* 2
a=a+ 1;
res = y;

% Display variables at end of call to funl
fprintf('\nAt end of call to funl:\n');
fprintf('a, b, x, y = %2d %2d %24 %2d\n', a, b, x, y);

end % function funl
end % function test_nested_ 1
When this program is executed, the results are:

» test_nested_1
Before call to funl:
a, b, . ¥ =12 0%

At start of call to funl:
a, b.x. 2 =2200

At end of call to funl:
afb:x;y=2205

After call to funl:
a; b; ¥, F=2 25 9

Like subfunctions, nested functions can be used to perform special-purpose
calculations within a host function.

Use subfunctions, private functions, or nested functions to hide special-purpose
calculations that should not be generally accessible to other functions. Hiding
the functions will prevent their accidental use, and will also prevent conflicts
with other public functions of the same name.

R S L N D R P e [T R

Order of Function Evaluation

In a large program, there could possibly be multiple functions (subfunctions, pri-
vate functions, nested functions, and public functions) with the same name. When
a function with a given name is called, how do we know which copy of the func-
tion will be executed?

246 Chapter 5 User-Defined Functions

-

The answer to this question is that MATLAB locates functions in a specific
order as follows:

L. First, MATLAB checks to see whether there is a nested function with the
specified name. If so, it is executed.

2. MATLAB checks to see whether there is a subfunction with the specitied
name. If so, it is executed.

3. MATLAB checks for a private function with the specified name. If so, it
15 executed.

4. MATLAB checks for a function with the specified name in the current
directory. If so, it is executed.

5. MATLAB checks for a function with the specified name on the MATLAB
path. MATLAB will stop searching and execute the first function with the
right name found on the path.

5.8 ~ Summary

In Chapter 5, we presented an introduction to user-defined functions. Functions
are special types of M-files that receive data through input arguments and
return results through output arguments. Each function has its own independ-
ent workspace. Each normal function (one that is not a subfunction) should
appear in a separate file with the same name as the function, including
capitalization.

Functions are called by naming them in the Command Window or another
M-file. The names used should match the function name exactly, including capi-
talization. Arguments are passed to functions using a pass-by-value scheme,
meaning that MATLAB copies each argument and passes the copy to the func-
tion. This copying is important, because the function can freely modify its input
arguments without affecting the actual arguments in the calling program.

MATLARB functions can support varying numbers of input and output argu-
ments. Function nargin reports then number of actual input arguments used in
a function call, and function nargout reports then number of actual output
arguments used in a function call.

Data can also be shared between MATLAR functions by placing the data in
global memory. Global variables are declared using the global statement.
Global variables may be shared by all functions that declare them. By convention,
global variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that func-
tion by placing the darta in persistent memory. Persistent variables are declared
using the persistent statement.

Function functions are MATLAB functions whose input arguments include
the names of other functions. The functions whose names are passed to the
function function are normally used during that function’s execution. Examples
are some root-solving and plotting functions.

58 Summary | 247

Subfunctions are additional functions placed within a single file. Subfunctions
are accessible only from other functions within the same file. Private functions are
functions placed in a special subdircctory called private. They are only acces-
sible to functions in the parent dircctory. Nested functions are functions com-
pleted defined within the body of another function (called the host function).
Nested functions have access to the variables in the host function as well as to |
their own local variables. Subfunctions, private functions, and nested functions
can be used to restrict access to MATLAB functions,

Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Always terminate your functions with an end statement, and include a
comment on the statement indicating which function the end statement is
associated with.

3. Declare global variables in all capital letters to make them easy to distin-
guish from local variables.

4. Declare global variables immediately after the initial comments anc
before the first executable statement each function that uses them.

5. You may use global memory to pass large amounts of data among func-
tions within a program.

6. Use persistent memery to preserve the values of local variables within =
function berween calls to the function.

7. Use subfunctions, private functions, or nested functions to hide special-
purpose calculations that should not be generally accessible to other func-
tions. Hiding the functions will prevent their aceidental use, and will alsc
prevent conflicts with other public functions of the same name.

MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter. along with a brief description of cach one.

Commands and Functions

STroxY Displays error message and aborts the function producing the error This function is
used if the argument errors are fatal.

zval Evaluates a character string as though it had been typed in the Command Window
z2zplot Easy-to-use function plotter,

{continued)

248 | Chapter 5 User-Defined Functions

Commands and Functions

feval
fmin
fplot
fzero
global
hist
inputname
nargchk
nargin
nargout
persistent
(gquad
rand

; randn
return

warning

Calculates the value of a function f(x) defined by an M-file at a specific x.

Minimize a function of one variable. 3

Plot a function by name.

Find a zero of a function of one variable.

Declares global variables.

Calculate and plot a histogram of a data set.

Returns the actu;l name of the variable that corresponds to a particular argument number.
Returns a standard error message if a function is called with too few or too many arguments.
Returns the number of actual input arguments that were used to call the function.

. Returns the number of actual output arguments that were used to call the function.

Declares persistent variables.

Numerically integrate a function.

Generates random values from a uniform: distribution.
Generates random values from a normal distribution.
Stop executing a function and return to caller.

Displays a warning message and continues function execution, This function is used if the
argument errors are not fatal, and execution can continue.

5.9 Exercises

5.1 What is the difference between a script file and a function?

5.2 When a function is called, how is data passed from the caller to the func-
tion, and how are the results of the function returned to the caller?

5.3 What are the advantages and disadvantages of the pass-by-value scheme
used in MATLAB?

5.4 Modify the selection sort function developed in this chapter so that it accepts
a second optional argument, which may be either "up' or 'down’. If the
argument is ‘up", sort the data in ascending order. If the argument is
' down ", sort the data in descending order. If the argument is missing, the
default case is to sort the data in ascending order. (Be sure to handle the case
of invalid arguments, and be sure to include the proper help information in
your function.)

5.5 Modify function random0 so that it can accept 0, 1, or 2 calling argu-
ments. If it has no calling arguments, it should return a single random
value. I it has 1 or 2 calling arguments, it should behave as it currently
does. '

5.6

5.7

5.8

5.9

5.10

5.9 Exercises | 249

As function random0 is currently written, it will fail if function seed is
not called first. Modify function random0 so that it will function prop-
erly with some default seed even if function seed is never called.
Write a funetion that uses function random0 to generate a random value in
the range [—1.0,1.0). Make random0 a subfunction of your new function.
Write a function that uses function random0 to generate a random value in
the range [1ow, high), where 1low and high are passed as calling argu-
ments. Make random0 a private function called by your new function,
Dicg Simulation It is often useful to be able to simulate the throw of
a fair die. Write a MATLAB function dice that simulates the throw of a
fair die by returning some random integer between 1 and 6 every time that
it is called. (Hint: Call random0 to generate a random number, Divide
the possible values out of random0 into six equal intervals, and return the
number of the interval that a given random value falls into.)
Road Traffic Density Function random0 produces a number with a
uniform probability distribution in the range [0.0, 1.0). This function is
suitable for simulating random events if each outcome has an equal prob-
ability of occurring. However, in many events, the probability of occur-
rence is not equal for every event, and a uniform probability distribution
is not suitable for simulating such events.

For example, when traffic engineers studied the number of cars pass-
ing a given location in a time interval of length 1, they discovered that the
probability of k cars passing during the interval is given by the equation

; k
'P(k,r)zefh%’:—) fort20,A>0, andk=0,1,2,... (5-10)

This probability distribution is known as the Poisson distribution; it occurs
in many applications in science and engineering. For example, the number
of calls & to a telephone switchboard in time interval t, the number of bac-
teria & in a specified volume ¢ of liquid, and the number of failures & ofa
complicated system in time interval ¢ all have Poisson distributions.

Write a function to evaluate the Poisson distribution for any k. f,
and A. Test your function by calculating the probability of 0, 1,2, . . ., 5
cars passing a particular point on a highway in 1 minute, given that A is
1.6 per minute for that highway. Plot the Poisson distribution for ¢ = 1 and
A=16.
Write three MATLAB functions to calculate the hyperbolic sine, cosine,
and tangent functions:

X et + g% ' R
sinh(x) = f—zi cosh(x) = T, tanh(x) = “2; +_:-x

Use your functions to plot the shapes of the hyperbolic sine, cosine, and
tangent functions.

250

Chapter 5 User-Defined Functions

5.2

5.13

5.14

Write a single MATLAB function hyperbolic to calculate the hyperbol-
ic sine. cosine. and tangent functions as defined in the previous problem. The
function should have two argumnents. The first argument will be a string con-
taining the function names 'sinh’, ' cosh', or ' tanh', and the sccond
argument will be the value of x at which to evaluate the function. The file
should also contain three subfunctions—sinh1, coshl, and tanhl—to
perform the actual caleulations, and the primary function should call the
proper subfunction depending on the value in the string, [Note: Be sure 10
handle the case of an incorrect number of arguments, and also the case of an
invalid string. In either case, the function should generate an error]

Cross Product Write a function to calculate the cross product of two
vectors V and V3

VX Vy= (FuVa — VeVa)i+ (VaVa = VaVa)d
W (VxIV\'Z o VIZV}-IJ K

where V, = Vi + ¥y j + VakandVy = Vi + Vi + Vak Note
that this function will return a real array as its result. Use the function to
calculate the cross product of e two vectors Vv, = [-2,4,05] and
Y, = [0.5,3, 2].

Sort with Carry It is often useful to sort an array arrl into ascending
order, while simultaneously carrying along a second array arr2. In such
a sort, each time an element of array arrlis exchanged with another ele-
ment of arrl, the cerresponding elements of array arr2 are also
swapped. When the soit is over, the elements of array arr1 are in ascend-
ing order, while th: elements of array arr2 that were associated with
particular elements of array arrl are still associated with them. For
example, suppos ¢ we have the following two arrays:

Element arrl arr2
1. 6. : L
2. L. 0.
E 25 10.

After sorting array arr 1 while carrying along array arr2, the contents of
the two arrays will be:

Element arrl arrz
1z 1. 0.
2 2 10

L
(=4}
-

5.9 Exercises | 251

Write a function to sort one real array into ascending order while carrying
along a second one. Test the function with the following two 9-element

arrays:
&= [1, 13, =6, A7, -23; 6, 5, 1, <A
b= [31, 101, 36, -17. 0, 10, -8, -1, =115

5.15 Use the Help Browser to look up information about the standard MATLARB
function sortrows, and compare the performance of sortrows with the
sort-with-carry function created in the previous exercise. To do this, create
two copies of a 1000 X 2 element array containing random values, and sort
column 1 of each array while carrying along column 2 using both functions,
Determine the execution times of each sort function using tic and toc.
How does the speed of your function compare with the speed of the stan-
dard function sortrows?

5.18 Figure 5.9 shows two ships steaming on the ocean. Ship 1 is at position
(x1,1) and steaming on heading 6;. Ship 2 is at position (x3,y5) and
steaming on heading 6,. Suppose that Ship 1 makes radar contact with an
object at range 7| and bearing ¢,. Write a MATLAB function that will cal-
culate the range r, and bearing ¢, at which Ship 2 should see the object.

5.17 Minima and Maxima of a Function Write a function that attempts to
locate the maximum and minimum values of an arbitrary function flx)
over a certain range. The function being evaluated should be passed to the
function as a calling argument. The function should have the following
input arguments:

first_walue—The first value of x to search
last_wvalue—The last value of x to search
num_steps—The number of steps to include in the search
func—The name of the function to search

3 __ o Object
’ >
——==""n %
\\
\
Ship 1 . r\\
(X1, ¥s. 64) 20 i
\\ :
\.-
4
Ship 2
(%2, ya, &)

Figure 5.2 Two ships at positions (x,, v,) and (x,, vy) respectively, Ship 1 is traveling at heading #,,
and Ship 2 1s traveling at heading 9, .

252

Chapter 5 User-Defined Functions

5.18

5.19

5.20

The function should have the following output arguments:

wmin—The value of x at which the minimum was found
min_value—The minimum vatue of f(x) found
semax—The value of x at which the maximum was found
max_value—The maximum value 7 (1) found

Be sure to check that there are a valid number of imput arguments, and that
the MATLAB help and lookfor commands are properly supported.
Write a test program for the function generated in the previous exercise.
The test program should pass to the function function the user-defined
function f(x) = 3 = 5¢ + 5y + 2, and cearch for the minimum and
maximum in 200 steps over the range —1 = x =< 3. It should print out the
resulting minimum and maximum values.

Derivative of a Function The derivative of a continucus function 1(x)
is defined by the cquation

d Lo Jlerax =1 -
Z'ﬂx) i J}}I—“ﬂ- Ax (5-11)
"In a sampled function, this definition becomes
) = f) = fix) -
i Ax (5-12)

where Ax = X4, — X, Assume that a vector vect contains nsamp sam-
ples of a function taken at a spacing of dx per sample. Write a function
that will calculate the derivative of this vector from Equation (5-12). The
function should check to make sure that dx is greater than zero to prevent
divide-by-zero errors in the function.

To check your function, you should generate a data set whose derivative
is known, and compare the result of the function with the known correct
answer. A good choice for a test function is sin x. From elementary calculus,

{4 5 . . s
we know that = (sinx) = cos x. Generate an input vector containing 100
X

values of the function sin x starting at x = 0 and using a step stz Arxof
0.05. Take the derivative of the vector with your function, and then ¢oim-
pare the resulting answers to the known correct answer. How close did
your function come to calculating the correct value for the derivative?

Derivative in the Presence of Noise We will now explore the eficets of
input noise on the quality of a numerical derivative. First, gencrate an input
vector containing 100 values of the function sin x starting at x = 0 and
using a step size Ax of 0.05, just as you did in the previous problem. INext,
use function random0 to generate a small amount of random noise with a
maximum amplitude of =0.02 and add that random noise to tie samples
in your input vector. Note that the peak amplitude of the noise 15 nlv 2% of
the peak amplitude of your signal, since the maximum value of sinx 1s L.
Now take the derivative of the function using the derivative function that

5.9 Exercises | 253

you developed in Problem 5.19. How close to the theoretical value of the
derivative did you come?

5.21 Linear Least-Squares Fit Develop a function that will calculate slope
m and intercept b of the least-squares line that best fits an input data s

The input data points (x.»:) will be p sad.ﬁgu-’-"- LIRS sty S P
arrays - = ¥+ Ui A€ equations describing the slope and intercept of the

least-squares line given in Example 4.6 in the previous chapter.) Test your
function using a test program and the following 20-point input data set:

Sample Data to Test Least Squares Fit Routine

No, x y No. X y
I —4.91 —8.18 11 —0.94 0.21
2 —3.84 —7.49 12 0.59 1.73
3 -2.41 =711 13 0.69 3.96
B —2.62 —6.15 14 3.04 4.26
5 —3.78 =562 15 1.01 5.75
6 =052 —-3.30 16 3.60 6.67
7 —1.83 —2.05 17 4.53 7.70
8 =201 —2.83 18 3 *3
9 0.28 - 116 19 443 9.05

10 1.08 0.52 20 4.12 10.95

5.22 Correlation Coefficient of Least-Squares Fit Develop a function that will
calculate both the slope m and intercept b of the least-squares line that best fits
an input data set and also the correlation coefficient of the fit. The input data
points (x, y) will be passed to the function in two input arrays, x and v. The
equations describing the slope and intercept of the least-squares line are given
in Example 4.6, and the equation for the correlation coefficient is

o(Z0) - (S9(S)

g (5-13)

J | 62) - (29| 2) - (%)

where
>« is the sum of the x values
Sy is the sum of the v values
7 is the sum of the squarcs of the v values
E}': is the sum of the squares of the v values
Zxv is the sum of the products of the corresponding x and v values
n is the number of peints included in the fit

b

154

Chaprer 5 User-Defined runctions

T v
| &
i
-
-
L]
3
=
E
b
-.5
-5

Pror o7 sy withou, ddded s

Gy peorpitied iy TIdei RS

T [T 0] % R O, 0 L) =i e - SEC L
0 | 2 3 4 3
1
fix;

Figure 5.10 (u A plotofsin ¢ as a function of x v.ith no noise acided to the data (F+ A plot of s x as
a function of ¥ with a 2% peak amplitude uniform random notse added to the dra.

5.23

Test your function using a test driver program and the 20-poict input Jata

set given n the previous problem,

Recursion A function is said to be recursrie if fhe function calls aseld

MATLAB functions are designed to allow recursive ogeration. To te-t this

feature, write a MATLAR function to evaluate the factorial functics,

which is defined as follows:

NN - 1) N=1)
{5-14y

1 N =G

N =

5.24

5.25

5.26

59 Exercises | 255

where N is a positive integer. The function should check to make sure that
there is a single argument N, and that ¥ is a nonnegative integer. If it is not,
generate an error using the exror function. If the input argument is a
nonegative integer, the function should evaluate A! using Equation (5-14).
The Birthday Problem The Birthday Problem is as follows: if there are
a group of n people in a room, what is the probability that two or more of
them have the same birthday? It is possible to determine .. : answer to this
question by simulation. Write a function that calculates the probability
that two or more of n people will have the same birthday, where n is a call-
ing argument. (Hinr: To do this, the function should create an array of size
n and generate n birthdays in the range 1 to 365 randomly. It should then
check to see if any of the n birthdays are identical. ‘The function should
perform this experiment at least 5000 times and calculate the fraction of
those times in which two or more people had the same birthday.) Write a
test program that calculates and prints out the probability that 2 or more
of n people will have the same birthday for n = 2.3, ..., 40.

Use function random0 to generate a set of three arrays of random numbers.
The three arrays should be 100, 1000, and 2000 elements long. Then, use
functions tic and toc to determine the time that it takes function ssort
to sort each array. How does the elapsed time to sort increase as a function
of the number of elements being sorted? (Hinr: On a fast computer, you will
need to sort each array many times and calculate the average sorting time in
order to overcome the quantization error of the system clock.)

Gaussian (Normal) Distribution Function random0 returns a uni-
formly-distributed random variable in the range [0, 1), which means that
there is an equal probability of any given number in the range occurring
on a given call to the function. Another type of random distribution is the
Gaussian Distribution, in which the random value takes on the classic bell-
shaped curve shown in Figure 5.11. A Gaussian Distribution with an aver-
age of 0.0 and a standard deviation of 1.0 is called a srandardized normal
distribution, and the probability of any given value occurring in the stan-
dardized normal distribution is given by the equation

1 2

= (5-13)

plx)
It is possible to generate a random variable with a standardized normal
distribution starting from a random variable with a uniform distribution in
the range [—1. 1) as follows:

1. Select two uniform random vanables vy and v» from the range [—1. 1)
such that 1; o+ 15 < 1. To do this, generate two uniform random vari-
ables in the range [— 1. 1), and see 1f the sum of their squares happens 1o
be less than 1. If so. use them. [f not, try again.

Then each of the values v and v; in the equations below will be a
normally distributed random variable,

=]

256 | Chapter 5 User-Defined Functions

04—

s

e
(]

Probahility of oecurrince
i

l'c
.;.,‘—|—||||1II1I‘.||

Normal distribution

Value

Figure 5.11 A Normal probability distribution.

5.27

5.28

¥ = -r—zl—Fxl (5-16)
;
yom By
where
r=x + 13 (5-18)

Write a function that returns a normally distributed random value each
time that it is called. Test your function by getting 1000 random values,
calculating the standard deviation, and plotting a histogram of the distri-
bution. How close to 1.0 was the standard deviation?
Gravitational Force The gravitational force F between two bodies of
masses m, and m, is given by the equation

- Gﬂhml

F=25 . (5-19)

rt

where G is the gravitation constant (6.672 X 10~"" N m¥kg’), m and m;
are the masses of the bodies in kilograms and r is the distance between the
two bodies. Write a function to calculate the grav itational force between two
bodies given their masses and the distance between them. Test you func-
tion by determining the force on an 800 kg satellite in orbit 38.000 km
above the Earth. (The mass of the Earth is 598 % 10* ke.)

Rayleigh Distribution The Rayleigh distribution is another random num-
ber distribution that appears in many practical problems. A Rayleigh-distrib-
uted random value can be created by taking the square root of the sum of
the squares of two normal ly-distributed random values. [n other words, to

5.29

59 Exercises | 257

generate a Rayleigh-distributed random value r, get two normally distributed
random values (n; and n3), and perform the following calculation:

r=Vnl +nd (5-20)

(a) Create a function rayleigh(n,m) that returns an n X m array of
Rayleigh-distributed random numbers. If only one arsiument is sup-
plied [rayleigh (n)], the function should return an n X n array of
Rayleigh-distributed random numbers. Be sure to design your function
with input argument checking and with proper documentation for the
MATLAB help system.

(b) Test your function by creating an array of 20,000 Rayleigh-distributed
random values and plotting a histogram of the distribution. What does
the distribution look like?

(¢) Determine the mean and standard deviation of the Rayleigh
distribution.

Constant False Alarm Rate (CFAR) A simplified radar receiver chain
is shown in Figure 5.124. When a signal is received in this receiver, it con-
tains both the desired information (returns from targets) and thermal
noise. After the detection step in the receiver, we would like to be able to
pick out received target returns from the thermal noise background. We
can do this be setting a threshold level, and then declaring that we see a
target whenever the signal crosses that threshold. Unfortunately, it is occa-
sionally possible for the receiver noise to cross the detection threshold
even if no target is present. If that happens, we will declare the noise spike
to be a target, creating a false alarm. The detection threshold needs to be
set as low as possible so that we can detect weak targets, but it must not
be set too low, or we get many false alarms.

After video detection, the thermal noise in the receiver has a Rayleigh
distribution. Figure 5.125 shows 100 samples of a Rayleigh-distributed
noise with a mean amplitude of 10 volts. Note that there would be one
false alarm even if the detection threshold were as high as 26! The prob-
ability distribution of these noise samples is shown in Figure 5.12¢.

Detection thresholds are usually calculated as a multiple of the mean
noise level, so that if the noise level changes, the detection threshold will
change with it to keep false alarms under control. This is known as constant
Jalse alarm rate (CFAR) detection. A detection threshold is typical quot-
ed in decibels. The relationship berween the threshold in dB and the
threshold in volts is

Threshold (velts) = Mean Noise Level (volts) < 108 (3-21)

or

Threshold (volts))

dB = 20 log ,(-
€1 Mean Noise Level (vohs),

258 | Chapter 5 User-Defined Functions

” 5 Video -
RE Amphiier it Display
fa)
Rayleigh Noise with a Mean Amplitude of 10 Voits
30 T T T T
e) DasctionThreshold
B0
2
10
0
0 20 40 €0 80 100
Sample Number
(&

Figure 5.12 (1) A typical radar receiver. () Thermal noise with a mean of 10 volts output from the
detector. The noise sometimes crosses the detection threshold. (¢) Probability distribution
of the noise out of the detector.

The false alarm rate for a given detection threshold is calculated as:

_ Number of False Alarms
Total Number of Samples

' (5-23)

Write a program that generates 1,000,000 random noise samples with

a mean amplitude of 10 volts and a Rayleigh noise distribution. Determine

the false alarm rates when the detection threshold is sett0 5, 6, 7, 8, 9, 10,

11, 12, and 13 dB above the mean noise level. At what level should the
threshold be set to achieve a false alarm rate of 10™*?

5.30 Probability of Detection (£,) versus Probability of False Alarm (Py)

The signal strength returned by a radar target usually fluctuates over time.

The target will be detected if its signal strength exceeds the detection

0.08

0.07+

0.06 -

005

0.02

0.01+

59 Exercises | 259

Noise distribution after detection

T T e = 1

- - Mean Noise

[= Noise probability distribution
Detection Threshold

1 1
10 15 20 25 30 35
Amplitude (volts)

fc)

Figure 5.12 (continued)

threshold for any given look. The probability that the target will be detect-
ed can be calculated as:

Number of Target Detections

(5-24)
tha! Number of Looks

Pd=

Suppose that a specific radar looks repeatedly in a given direction. On each
look, the range between 10 km and 20 km is divided into 100 independent
range samples (called range gates). One of these range gates contains a target
whose amplitude has a normal distribution with a mean amplitude of 7 volts
and a standard deviation of 1 volt. All 100 of the range gates contain sys-
tem noise with a mean amplitude of 2 volts and a Rayleigh distribution,
Determine both the probability of target detection P and the probability of
a false alarm Py, on any given look for detection thresholds of 8.0, 8.5, 9.0,
9.5,10.0,10.5,11.0, 11.5, and 12.0 dB. What threshold would you use for
detection in this radar? (Hinr: Perform the experiment many times for each
threshold, and average the results to determine valid probabilities.)

ar

¥

I J— Ny = - 4= - A 4

-
= ..
-
b
.
LA
L
v
e
.
B . sd
e
.
. - B * bl
.
r v
>, N N < N
- = . N
"
.
-
=
Ll i
- .h.
" i = »
M
N
L}
.
. *
= = B = B — —— iy, o PR Y - - o
L
R a
o = 5

CHAPTER

Additional Data
Types and Plot
Types

In earlier chapters, we were introduced to three fundamental MATLAB data
types: double, logical, and char. In this chapter, we will learn additional
details about these data types, and then we will study some additional MATLAB
data types.

First, we will learn how to create, manipulate, and plot complex values in the
double data type. Then, we will learn more about using the char data type,
and how to extend MATLAB arrays of any type to more than two dimensions.

Finally, we will learn about some additional data types.The MATLAB data ty-
pes are shown in Figure 6.1.We will learn about the single and integer data
types in this chapter,and discuss the remaining ones on the figure later in this book.

The chapter concludes with a discussion of additional types of plots avail-
able in MATLAB.

6.1 Complex Data

Complex numbers are numbers with both a real and an imaginary component.
Complex numbers occur in many problems in science and engineering. For exam-
ple, complex numbers are used in electrical engineering to represent alternating
current voltages, currents, and impedances. The differential equations that describe
the behavior of most electrical and mechanical systems also give rise to complex
numbers. Because they are so ubiquitous, it is impossible to work as an engineer
without a good understanding of the use and manipulation of complex numbers.
A complex number has the general form

c=a+ Ml (6-1)

261

262 | Chapter 6 Additional Data Types and Plot Types

MATLAB Data Types

doutle single intg, units | logical ‘ char
n s | int16, uint16 L .

double precision

Figure 6.1

single precision int64, unint64 logical data character strings
(real and complex) (real and complex)

int32, unit32

integer and unsigned

integer data types
user function
b Stxire classes [] handles
cell arrays structures objects function handles

MATLAB data types.

where ¢ is a complex number, a and b are both real numbers, and i is \/—_l The
number a is called the real part and b is called the imaginary part of the com-
plex number ¢. Since a complex number has two components, it can be plotted as
a point on a plane (see Figure 6.2). The horizontal axis of the plane is the real axis,
and the vertical axis of the plaae is the imaginary axs, so that any complex num-
ber @ + bi can be represented as a single point a units along the real axis and
b units along the imaginary axis. A complex number represented this way is said
to be in rectangular coordinates, since the real and imaginary axes define the
sides of a rectangle.

A complex number can also be represented as a vector of length z and
angle @ pointing from the origin of the plane to the point P (see Figure 6.3). A
complex number represented this way is said to be in polar coordinates.

c=a+ bi=1z.0

The relationships among the rectangular and polar coordinate terms @, b, z, and
0 are:

a = zcosh (6-2)
b = zsin8 (6-3)
z=Va + B (6-4)
§ woami 2 (6-5)

a

(=]

1M e ST ITAT Sy -

6.1
imaginary axis
A
P
L]
" a+ bi
4 real axis

Figure 6.2 Representing a complex number in Rectangular Coordinates.

imaginary axis
A

a+b

.

real axi

Figure 6.3 Representing a complex number in Polar Coordinates.

Complex Data

263

264 | Chapter 6 Additional Data Types and Plot Types

MATLARB uses rectangular coordinates to represent complex numbers. Each
complex number consists of a pair of real numbers (a, b). The first number (a)
is the real part of the complex number, and the second number (b) is the imagi-
nary part of the complex number.

If complex numbers ¢, and ¢, are defined as ¢y = a; + bjiandc, = a3 + baf,
then the addition, subtraction, multiplication, and division of ¢, and ¢, are defined as:

¢+ = (aj + ﬂ'z) + (b| + bg)l (6-6)
o~ =(a—a) + (b — by)i (6-7)
(4] X €y = (ﬂ'ial = b]bz} + (a|b2 + b;az)i (6—3)
(o] aydy == b|bz b,a; a2 ﬂlbg 2
G- + 6-9
€ a + b} a3 + b} : ©9)

When two complex numbers appear in a binary operation, MATLAB performs
the required additions, subtractions, multiplications, or divisions between the two
complex numbers using versions of the preceding formulas.

Complex Variables

A complex variable is created automatically when a complex value is assigned to
a variable name. This easiest way to create a complex value is to use the intrinsic
values i or 1, both of which are predefined to be V' —1. For example, the fol-
lowing statement stores the complex value 4 + i3 into variable c1.

» cl =4 + i*3
cl =
4.0000 + 3.00001

Alternately, the imaginary part can be specified by simply appending an i or j to
the end of a number:

» cl= 4 + 31
o=
4.0000 + 3.00001

The function isreal can be used to determine whether a given array is real
or complex. If any element of an array has an imaginary component, then the
array is complex and isreal (array) returns a 0.

Using Complex Numbers with Relational Operators

[t is possible to compare two complex numbers with the == relational operator to
see if they are equal to cach other, and to compare them with the ~= operator to see
if they are not equal 1o each other. Both of these operators produce the expected
results, For example, if ¢; = 4 + i3 and ¢; = 4 — i3, then the relational operation
¢,==¢, produces a 0 and the relational operation ¢| ~=c; producesa 1.

6. Complex Data 265

However, comparisons with the >, < >= gr <= operarors do not pro-
dhice the expected results. When complex numbers are compared with these rela-
tional operators, only the real parts of the numbers are compared. For example, if
¢ =4 + 3andc, = 3 + 18, then the relational operation ¢, > ¢, produces a true
(1) even though the magnitude of ¢, is really smaller than the magnitude of ¢+

If you ever need to compare two complex numbers with these operators, you
will probably be more interested in the total magnitude of the number than in the
magnitude of only its real part. The magnitude of a complex number can be calcu-
lated with the abs intrinsic function (see below). or directly from Equation (6-4)

lel = V@ + (6-4)

[f we compare the magnitudes of ¢ and ¢, above, the results are more reasonable:
abs(c;) > abs(c,) produces a 0, since the magnitude of ¢ is greater than the
magnitude of ¢,

i) i

. Be careful when using the relational operators with complex numbers. Th

e rela-

tional operators >, >=, <, and <= compare only the real parts of complex
numbers, not their magnitudes. If you need these relational operators with com-
plex number, it will probably be more sensible to compare the total magnitudes
rather than only the real components.

Complex Functions

MATLAB includes many functions that support complex calculations. These
functions fall into three general categories:

1. Type conversion functions. These functions convert data from the complex
data type to the real (double) data type. Function real converts the
real part of a complex number into the double data type and throws away
the imaginary part of the complex number. Function imag converts the
imaginary part of a complex number into a real number.

2. Absolute value and angle functions. These functions convert a complex
number to its polar representation. Function abs (c)calculates the
absolute value of a complex number using the equation

abs(c) = Va* +
where ¢ = a + bi. Function angle (c) calculates the angle of a com-
plex number using the equation
angle(c) = atan2(imag(c),real(c))

producing an answer in the range —n =< 8 < .

266 Chapter 6 Additional Data Types and Plot Types

Table 6.1 Some Functions that Support Complex Numbers

Function Description

conj(c) Computes the complex conjugate of a number c. Ife =a + bi,
then conj (e)=a — bi

real(c) Returns the real portion of the complex number c.

imag(c) Returns the imaginary portion of the complex number c.

isreal(c) Returns true (1) if no element of array c has an imaginary
component. Therefore, ~isreal (c¢) returns true (1) if an
array is complex.

zbs (c) Returns_the magnitude of the complex number c.

zngle(c) Returns the angle of the complex number ¢, computed from the

expression atan2 (imag (c), real(c)).

3. Mathematical functions. Most elementary mathematical functions are
defined for complex values. These functions include exponential functions,
logarithms, trigonometric functions, and square roots. The functions sin ;
cos, log, sqrt, etc. will work as well with complex data as they will
with real data.

Some of the intrinsic functions that support complex numbers are listed in
Table 6.1.

M

Example 6.1—The Quadratic Equation (Revisited)

The availability of complex numbers often simplifies the calculations required
to solve problems. For example, when we solved the quadratic equation in
Example 3.2, it was necessary to take three separate branches through the pro-
gram depending on the sign of the discriminant. With complex numbers available,

_ the square root of a negative number presents no difficulties, so we can greatly
simplify these calculations.

Write a general program to solve for the roots of a quadratic equation,
regardless of type. Use complex variables so that no branches will be required
based on the value of the discriminant.

SOLUTION

1. State the problem.
Write a program that will solve for the roots of a quadratic equation,
whether they are distinct real roots, repeated real roots, or complex roots,
without requiring tests on the value of the discriminant.

n

oF o0f P P O P 0P OP OP OF O P OP oP o0 oe

6.1 Complex Data 267

2. Define the inputs and outputs,

Script file:

Purpose:

The inputs required by this program are the coefficients a. b. and ¢ of the
quadratic equation

ax’+br+c=0

The output from the program will be the roots of the quadratic equation,
whether they are real, repeated, or complex.

. Describe the algorithm.

This task can be broken down into three major sections, whose functions
are input, processing, and output;

Read the input data
Calculate the roots
Write out the roots

We will now break each of the above major sections into smaller. more
detailed pieces. In this algorithm, the value of the discriminant is unim-
portant in determining how to proceed. The resulting pseudocode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and ¢
discriminant <- b*2 - 4 * g * ¢

x1l <- (-b + sqrt(discriminant)) / (2 * a)
x2 <- (-b - sqrt(discriminant)) / (2 * a)
Print 'The roots of this equation are: '
Print 'x1 = ', real(xl), ' +i ', imag(xl)
Print 'x2 = ', real(x2), ' +i ', imag(x2)

. Turn the algorithm into MATLAB statements.

The final MATLAB code is shown below.

calc_roots2.m

This program solves for the roots of a quadratic equation
of the form a*x**2 + b*x + ¢ = 0. It calculates the answers
regardless of the type of roots that the eguation possesses.

Record of revisions:

Date

01/15/04

Programmer Description of change

S. J. Chapman Original code

Define wvariables:

a
b
=

-- Coefficient of x"2 term of equation
-- Coefficient of x term of equation
-- Constant term of equation

268

Chapter 6 Additional Data Types and Plot Types

% discriminant -- Discriminant of the equation

% x1 -- First solution of equation

£ %2 -- Second solution of equation

% Prompt the user for the coefficients of the eguation
disp ('This program solves for the roots of a quadratic ');
éisp ('equation of the form A*X*2 + B*X + C = 0. ");

& = input ('Enter the coefficient A: ');

b = input ('Enter the coefficient B: ');

c = input ('Enter the coefficient C: ');

tu

Calculate discriminant
discriminant = b*2 - 4 * a * ¢;

% Solve for the roots

xl = (-b + sgrt(discriminant)) / (2 * a);

%2 = (-b - sqgrt(discriminant)) / (2 * a);

% Display results

disp ('The roots of this equation are:');

fporintf ('x1 = (%£f) +i (%f)/ n', real(xl), imag(xl)):
fprintf ('x2 = (%f) +i (%f) / n', real(x2), imag(x2));

5. Test the program.

Next, we must test the program using real input data. We will test cases in
which the discriminant is greater than, less than, and equal to 0 to be certain
that the program is working properly under all circumstances. From Equat-
ion (3-1), it is possible to verify the solutions to the equations given below:

X+ +6=0 x=-2andx = -3
YA +4=0 x= -2
P+ +5=0 x=-1%x2

When the above coefficients are fed into the program, the results are

» calec_roots2

This program sclves for the roots of
equation of the form A*X"2 + B*X + C
Enter the coefficient A: 1

Enter the coefficient B: 5

Enter the coefficient C: 6

The roots of this egquation are:

x1 = (-2.000000) +1i (0.000000)

%2 (-3.000000) +1i (0.000000)

» calc roots2

This program solves for the roots of
equation of the form A*X*2 + B*X + C
Enter the coefficient A: 1

a

gquadratic
Qi

cquadratic
0.

J=in

P

o8

6.1 Complex Data 269

Enter the coefficient B: 4
Enter the coefficient C: 4

The roots of this equation are:
x1 (-2.000000) +i (0.000000)
x2 (-2.000000) +i (0.000000)
» calc_roots2

This program solves for the roots of a quadratic
equation of the form A*X"2Z + B*X + C =
Enter the coefficient A: 1

Enter the coefficient B: 2

Enter the coefficient C: &

The roots of this equation are:

x1 = (-1.000000) +i (2.000000)

xZ2 = (-1.000000) +i (-2.000000)

The program gives the correct answers for our test data in all three possible
cases. Note how much simpler this program is compared with the quadratic root
solver found in Example 3.1. The complex data type has greatly simplifiad our
program.

-

%

Plo&ing Complex Data

Complex data has both real and imaginary components, and plotting complex
data with MATLAB is a bit different from plotting real data. For example. con-
sider the function

y(t) = e "¥(cost + isiny) (6-10)

If this function is plotted with the conventional plot command, enly the real
data will be plotted—the imaginary part will be ignored. The following state-
ments produce the plot shown in Figure 6.4, together with a warning message that
the imaginary part of the data is being ignored.

t 0:pi/20:4*pi;

Yy = exp(-0.2*t) . *(cos(t)+i*sin(t));

plot(t,y, "LinewWidth',2);

title('\bfPlot of Complex Function vs Time'):
xlabel (*\bENLEE') ;

ylabel ("\bE\ity(t) ")

JI‘

If both the real and imaginary parts of the function are of interest. then
the user has several choices. Both parts can be plotted as a function of time
on the same axes using the statements shown below (see Figure 6.5).

270

Chapter 6 Additional Data Types and Plot Types

Figure 6.5 Plot of real and imaginary parts of v(f) versus time.

| e SR OS 11 | T S T LI LN

6.1 Complex Data 271

t = 0:pi/20:4%pi;

¥y = exp(-0.2*t) . " (cos(t)+i*sin(t));
plottt,real(y],'b—','Linawidth',z);

hold on;

plot(t,imag{y},'r—-','Linewidth',Z);
title('\bfPlot of Complex Functiecr wvs Time ')
xlabel ('\bENitE');

ylabel (*\bENity(t)');

legend ('real', 'imaginary');

hold off;

Alternatively, the real part of the function can be plotted versus the imaginary
part. If a single complex argument is supplied to the plot function. it automati-
cally generates a plot of the real part versus the imaginary part. The statements to
generate this plot are shown below, and the result is shown in Figure 6.6.

L= lrpay20edtpis

y = exp(-0.2*t) ,*(cos(t)+i*sin(t));
plot(y,'b-', 'Linewidth',2);
title({'\bfPlot of Complex Function');
xlabel ('\bfReal PBart'):

ylabel ('\bfImaginary Part');

=== magrary
bl Lo

Figure 6.6 Plot of real versus imaginary parts of »(t).

272 Chapter 6 Additional Data Types and Plot Types

Figure 6.7 Polar plot of magnitude of y() versus angle.

Finally, the function can be plotted as a polar plot showing magnitude versus
angle. The statements to generate this plot are shown below, and the result is

shown in Figure 6.7.
t = 0:pi/20:4*ri;
y = exp(-0.2%t) .*(cos(t)+i*sin(t));

polar (angle(y),abs(y));
title('\bfPlot of Complex Function');

6.2 String Functions

A-MATLARB string is an array of type char. Each character is stored in two bytes
of memory. A character variable is automatically created when a string is assigned

to it. For example, the statement
' str = '"This is a test'j
creates a 14-element character array. The output of whos for this array is
» whos str

Name Size
str 1x14 28 char array

Bytes Class

Grand total is 14 elements using 28 bytes

6.2 String Functions 273

A special function ischar can be used to check for character arrays. If a given
vaniable is of type character, then ischar returns a true (1) value. If it is not,
ischar returns a false (0) value. :

The following subsections describe MATL AB functions useful for manipu-
lating character strings.

String Conversion Functions

Variables may be converted from the char data type to the double data type
using the double function. Thus the statement double (str) vields the
result;

» x = double(str)
X o=
Columns 1 through 12
84 104 105 115 32 105 115 32 97 32 316 3103
Columns 13 through 14
115 116

Variables can also be converted from the double data type to the char data
type using the char function. If x is the 14-element array created above, then the
statement char (x) yields the result:

» Zz = char(x)
ZF =
This 1s a test

Creating Two-Dimensional Character Arrays

It is possible to create two-dimensional character arrays, but each row of such an
array must have exactly the same length. If one of the rows is shorter than the
other rows, the character array is invalid and will produce an error. For example,
the following statements are illegal because the two rows have different lengths

name = ['Stephen J. Chapman';'Senior Engineer']:

The easiest way to produce two-dimensional character arrays is with the char
function. This function will automatically pad all strings to the length of the
largest input string.

» name = char('Stephen J. Chapman', 'Senior Engineer')
name =

Stephen J. Chapman

Senior Engineer

Two-dimensional character arrays can also be created with function strveat,
which is described below.

274

Chapter 6 Additional Data Types and Plot Types

<

Uge the char function to create two-dimensional character arrays without wor-
rying about padding cach row to the same length.

BRSSO SN

It is possible to remove any extra blanks from a string when it is extracted from
an array using the deblank function. For example, the following statements
remove the second line from array name, and compare the results with and with-
out blank trimming.

» line2 = name(2,:)

line2 =

Senior Engineer

» line2 trim = deblank(name(2,:))
line2_trim =

Senior Engineer

» size(linel)

ans =

1 18
» size(line2_trim)
ans =

1 15

Concatenating Strings

Function strcat concatenates two or more strings horizontally, ignoring any
trailing blanks but preserving blanks within the strings. This function produces
the result shown below

» result = strcat('String 1 ','String 2')
result -
String 1String 2

The result is 'String 1String 2. Note that the trailing blanks in the first
string were ignored.

Function strvcat concatenates two or more strings vertically, automati-
cally padding the strings to make a valid two-dimensional array. This function
produces the result shown below

» result = strvcat{'Long String 1 ', 'String 2')
result =

Long String 1

String 2

ot B e il ol s tecakes, taih Sdesde - sedat

reu g m

L L ah i

B

s Fuurar

62 String Functions 275

Comparing Strings

Strings and substrings can be compared in several ways:
L]

® Two strings, or parts of two strings, can be compared for equality

® Two individual characters can be compared for equality.

® Strings can be examined to determine whether each character is a letter or
whitespace.

Comparing Strings for Equality

You can use four MATLAB functions to compare two strings as a whole for
equality. They are:

strcmp determines if two strings are identical.

strempi determines if two strings are identical ignoring case. .
strncmp determines if the first n characters of two strings are identical
strncmpi determines if the first n characters of two strings are identical
ignoring case

Function strcmp compares two strings, including any leading and trailing
blanks, and returns a true (1) if the strings are identical.! Otherwise, it returns a
false (0). Function strcmpi is the same as strcmp, except that it ignores the
case of letters (that is, it treats 'a' asequalto '&'))

Function strncmp compares the first n characters of two strings, including
any leading blanks, and returns a true (1) if the characters are identical.
Otherwise, it returns a false (0). Function strnempi is the same as stracmp,
except that it ignores the case of letters.

To understand these functions, consider the two strings:

strl = ‘'hello’;
str2 = 'Hello!';
str3d = 'help';

Strings strl and str2 are not identical, but they differ only in the case of one
letter. Therefore, strcmp returns false (0), while strcmpi returns true (1).

» ¢ = stromp(strl,str2)
C =

0
» ¢ = strcmpi(strl,str2)
c =

1

"Caution: The behavior of this function is different from that of the 2= remp 1in €. C programmers
can be tripped up by this difference.

276

Chapter 6 Additional Data Types and Plot Types

Strings st 1 and st.r3 are also not identical, and both st xcmp and strempi
will return a false (0). However, the first three characters of str1 and str3 are
identical, so invoking strnemp with any value up to 3 returns a true (L)

» ¢ = stroncmp(strl,str3,2)

[S |

Comparing Individual Characters for Equality and Inequality
You can use MATLAB telational operators on character arrays to test for equality
one character at a time, as long as the arravs you are comparing have equal
dimensions. or one is a scalar, For example, you can use the equality operator
(==) to determine which characters in two strings match:

» a = "fate';
» b = '‘cake';
» result = a == b
result =
B Ay,
All of the relational operators (>. >=, <. <=, ==, ~=) comnare the ASCII values

of corresponding characters.
Unlike C, MATLAB docs not have an intrinsic function to define a “'greater

than” or “less than” relationship between two strings taken as a whole. We will
create such a function in an example at the end of this section.

Categorizing Characters Within a String
There are three functions for categorizing characters on a character-by-character
basis inside a string:
® jsletter determines if a character is a letter.
® isspace determines if a character is whitespace (blank, tab, or new line).
® igstrprop ('str', ‘categorv') isamore gencral function. It de-
termines if a character falls into a user-specified category (e.g. alphe-
betic, alphanumeric, upperease, lowercase, numerie, comral).

To understand these functions, let’s create a siring named my s Zring:

'Rocm 232

‘I‘r

1s

‘1’
i
Il

mys Ig

We will use this string to test the categonizing functions,

Function isletter examines each character in the string. producing a
logical output vector of the same length asmystring that contams a frue (1)
in each location corresponding to a character and a false (7) in the other locations.
For example,

» a = isletter(mystring)

a =

2L e R o ¢ S TR

des sl v stonfo s witfer m nesigen |

ond 1Q1 ~ 1y T

TE

RC N PR S

6.2 String Functions 277

The first four and the last elements in a are true (1) because the corresponding
characters of mystring are letters.

Function isspace also examines each character in the string. producing a
logical output vector of the same length as myst ring that contains a true (1)
in each location corresponding to whitespace and a false (0) in the other loca-
tions. “Whitespace™ is any character that separates tokens in MATLAB: a space.
a tab, a linefeed, carriage return, etc. For example,

» a = isspace(mystring)
a - s
Ao T TR A N [

The fifth element in a is true (1) because the corresponding character of
mystring is a space.

Function isstrpropis new in MATLAB 7.0, It is a more flexible replace-
ment for isletter, isspace, and several other functions. This function has
two arguments, 'str' and 'category'. The first argument is the string to
characterize, and the second argument is the type of category to check for. Some
possible categories are given in Table 6.2.

Table 6.2 Selected Categories for Function isstrprop

Category Description

‘alpha’ Return true (1) for each character of the string that is alphabetic, and false
(0) otherwise.

‘alphanum’ Return true (1) for each character of the string that is alphanumeric, and
false (0) otherwise. '
[Note: This category replaces function islatter]

= Return true (1) for each character of the string is that is a control character,
and false (0) otherwise.

"digit’ Return true (1) for each character of the string that is a number, and false
(0) otherwise. :

“lower Return true (1) for each character of the string that is a lowercase letter.
and false (0) otherwise.

‘wspace' Return true (1) for each character of the string that 1s whitespace. and false
(0) otherwise.
[Note: This category replaces function isscace.|

‘upper’ Return true (1) for each character of the string that 15 an uppercasz letter.
and false (0) otherwise.

'xdigitc’ Return true (1) for each character of the string that is a hexadecimal digit.

and false (0) otherwise.

278 Chapter 6 Additional Data Types and Plot Types

This function examines cach character n the string, producing 2 logical out-
put vector of the same length as the input string that contams a true (1) in each loca-
tion that maiches the category, and a flce (0} in the other locations. For example. the
following function checks to see which characters in mystring are numbers:

» a = isstrprop(mystring,'digit’')

=

c

LI]

goo11y9

Also. the following function checks to see which charactars in mystring are
lowercase letters:

a = isstrprop(mystring,'lower')

= T

SRR TS T L P i O S
Use function isstrprop to determime the characteristics of cach character in

a string array. This function replaces the »ider functions isletter and
isspace, which may be deleted m a future version of MATLAB.

VS S R N e e P S BS E DA TR LT R A

ABEIER

Searching and Replacing Characters Within a String

MATLAB provides several functions for searching and replacing characters in a
string. Consider a string nemcd test:

test = 'This is a test!';

Function £indstr returns the starting position of all occurrences of the
shorter of two strings within a longer string. For example. to find all occurrences
of the string 'is' inside test,

» position = findstr(test,'is')
positicn =
3 &

The string 'is' occurs twice within tesc, starting at postiions 3 and 6.
Function strmatcl is another matching function. This ane Tooks ai the

beginning characters of the rows of a 2-D character arrsy and remrrns o bt of those

rows that start with the specified character sequence. Tie lorm of tus function is

result = strmatchlistr.arrayl;
For example, suppose that we create a 2-1 character wiay wih tae baschion
strveat:

array = stryveat!(maxarray', 'min value', 'mex valde'

et

6.2 String Functons | 279

Then the following statement will return the row numbers of all rows beginning
with the letters 'max"':
» result = strmatch('max',array)
result =
1
3

Function strrep performs the standard search-and-replace operation. It
finds all occurrences of one string within another onc and replaces them by a
third string. The form of this function is

result = strrep(str,srch, repl)

where str is the string being checked, srch is the character string to search for,
and repl is the replacement character string. For example,

» test = 'This is a test!'’

» result = strrep(test,'test', 'pest')
result =

This is a pest!

The strtok function returns the characters before the first occurrence of a
delimiting character in an input string. The default delimiting characters consti-
tute the set of whitespace characters. The form of strtok is

[token, remainder] = strtok(string,delim)

where string is the input character string, delim is the (optional) set of delim-
iting characters, token is the first set of characters delimited by a character in
delim, and remainder is the rest of the line. For example,

» [token,remainder] = strtok('This is a testl')
token =

This

remainder =

is a test!

You can use the strtok function to parse a sentence into words: for
example:

function all_words = words(input_string)
remainder = input_string;
all words = '';
while (any(remainder))
[chopped, remainder] = strtok(remainder);
all_wordsl = strvcat(all_words, chopped);
end

280

Chapter 6 Additional Data Types and Plot Types

Uppercase and Lowercase Conversion

Functions upper and lower convert all of the alphabetic characters within a
string to uppercase and lowercase respectively. For example, i

» result = upper('This is test 1!°')
result =

THIS IS TEST 1!

» result = lower('This is test 2!')
result =

this is test 2!

Note that the alphabetic characters were converted to the proper case, while the
numbers and punctuation were unaffected.

Trimming Whitespace from Strings

There are two functions that trim leading and’ct trailing whitespace from a string.
Whitespace characters consists of the spzces, newlines, carriage returns, tabs,
vertical tabs, and formfeeds.

Function deblank removes any extra frailing whitespace from a string, and
function strtrim removes any extra leading and trailing whitespace from a
string.

For example, the following statements create a 21-character string with lead-
ing and trailing whitespace. Function deblank trims the trailing whitespace
characters in the string only. *hile function strtrim trims both the leading and
the trailing whitespace cheracters.

» test_string = ' This is a test.
test_string =
This is a test.
» length(test string)
ans =
21
» test string triml= deblank(test_string)
test_string_triml =
This 1s a test.
» length(test_string triml)
ans =
18
» test string trim2 = strtrim(test_string)
test_string trim2 =
This is a test.
» length(test_string trim2)
ans =
15

6.2 String Functions 281

Numeric-to-String Conversions

MATLAB contains several functions to convert numeric values into character

strings. We have already seen two such functions, num2s=r and int2str.
Consider a scalar x:

x = 5317;

By default, MATLAB stores the number x as a 1 X 1 double array containing
the value 5317. The int2str (integer to string) function converts this scalar into
a I-by-4 char array containing the string '5317':

» x = 5317;

» y = int2str(x);

» whos
Name Size Bytes Class
® 1xl 8 double array
34 1x4 8 char array

Grand total is 5 elements using 16 bytes

Function num2str converts a double value into a string, even if it does
not contain an integer. It provides more control of the output string format than
int2str. An optional second argument sets the number of digits in the output
string, or specifies an actual format to use. The format specifications in the sec-
ond argument as similar to those used by fprint£. For example,

» p = num2str(pi)

p =

3.141¢

» p = num2str(pi,7)

p =

3.141593

» p = num2str(pi, '%10.5e"')

p =

3.14159e+000

Both int2str and num2str are handy for labeling plots. For example, the
following lines use num2str to prepare automated labels for the x-axis of a plot:

function plotlabel(x,y)

plot (x,y)

strl = num2str(min(x)):

str2 = num2str (max(x));

out = ["“Valug of £ Erom * strl * Ea " SEE2);
xlabel (out);

There are also conversion functions designed to change numeric values
into strings representing a decimal value in another base, such as a binary or

2562 z Add=anst i Fpos and Plet Types

fosud Lewesentation. For example, the dec2hex function converts a dec-
vabie it the corresponding hexadecimal string:

afag

et I Amr T hex (dec_num)

teactions of this type include hex2num, hex2dec, bin2dec,
=2dec, and dec2base. MATLAB includes on-line help for

tions,

bese fm

uates input strings just as if they were typed at the MATLAB command line. For
exomple. 1f we define array a as

»a = [12 3; 4 5 6]
5 =

2 3
5 6

s

then the function mat2stxr will return a string containing the result

» b = mat2str(a)
H o=

{12 3; 45 6]

Finally. MATLAB includes a special function sprintf that is identical to
function £printf, except that the output goes into a character string instead of
the Command Windo'v. This function provides complete control over the format-
ting of the character string. For example,

» str = sprintf('The value of pi = %8.6f."',pi)

=y =

The value of pi = 3.141593,

This function is extremely useful in creating complex titles and labels for
plots.

String-to-Mumeric Conversions

MATLAR ulso contains several functions to change character strings into numeric
valucs, The most important of these function are eval, strZdouble, and
sscant

Fupction eval avaluates a string containing a MATLAB expression and
retinms the result. The expression can contain any combination of MATLAB func-
tions. varighles, constants. and operations. For example, the string a containing
the chareetors *2 * %,141582 " can be converted to numeric form by the fol-
lowing stutetncnts.

b Sering Functions 283

a= "2 * 3,141592";
» b = eval(a)

b =
6.2832
» whos
Name Size nytes Clazs
a 1x83 ig chay array
b Ll] double array

Grand total is 9 elements using & hyteas

Function str2double converts character strings into an equivalent double
value.? For example, the string a containing the characters '3.141592" ¢an be
converted to numeric form by the following statements:

» a = '3,141592';
» b = str2double(a)
Y =

3.141s6

Strings can also be converted to numeric form using the function sscanf.
This function converts a string into a number according to a format conversion
character. The simplest form of this function is

value = sscanf (string, format)

where string is the string to scan and format specifies the type of conversion
to occur. The two most common conversion specifiers for sscanf are ' 34" for
decimals and '%g" for floating-point numbers. This function is covered in much
greater detail in Chapter 8.

The following examples illustrate the use of ssc=nf.

» a = "3,141592"';
» valuel = sscanf(a, '%g')

valuel =
3.1416
» value2 = sscanf(a,'%d')
valuez =
3
Summary
The common MATILAB string funcrion. v ek Table 3
"MATLAB also contains a [unction-- st.rla B e L I U [T DT Y
variety of reasons mentioned 1n the MATLADL duovntane st radouble is batter than
function str2num. You should recogmaze tunction =0 Jio n woer seee b Bt cotwianes s Thing

tion strZdouble in uany new code that voa wille,

284

Chapter 6 Additional Darta Types and Flot Types

Table 6.3 Common MATLAB String Functions

Category Function Description
General ~nar

double

Flanks

deblark

skrtrim
String tests ischar
isletter
isspace
isstrprop
String operations strecat
strvcat
stremp
strompi
strncmp
strncmpi

findstr
strjust
strmatch
strreﬁ
strtok
upper
lower
Number to string conversion int2str
num2str
mat2str
sprintf

String to number conversion eval

str2double

strZnum

sscanf
Base Number Conversion hex2num
hex2dec
decZhex
bin2dec
declbin
baseZdec
declbase

(1) Coanvert numbers I ihe corresponding character values.
(2} Create a 20 -haracic® array from a series of strings.
Convert characters ¢ the = rrasponding numeric codes.
Create a string cf Manks

Remove frailmg v hitespa== from a siring.

Remove izading and tra hing whitespace from a string.
Returns true (1) for a choracler arra

Returns true (1) for letters of the alphahct

Returas true (1) for whitespar2

Returns true (1) for charazters mathune the speaified property.

Concatenate strings.

s verticahs

Concatznate stri
Returns true (1) 1f fao striegs are 1dentical,
Returns true (1) if two strings are ideneal, 12

Roturns true (1) if first o characters of twa striags are wdentical
Retumns trac (1) if first o characters of two strings are identical,
ignoring case.

Find on2 string within another one.

Justify string

Find matches for string.

Replace one string with another.

Find token in string,

Convert string to uppercase.

Convert string to lowercase.

Convert inleger to string.

Convert number to string.

Convert matrix to string.

Wnite formatted data to string.

Evaluate the result of a MATLAB expression,
Caonvert string to a double value.

Convert string lo number

Read formarted data from string.

Convert IEEE hexadecimal string te 72ukle
Convert hexadecimal stning to decimal intzger,
Convert decimal to hexadecimal string.
Convert binary string to decimal integer,
Convert decimal integer to binary string.
Convert base B string to decimal integer.
Convert decimal integer to base B string.

6.2 String Functions | 285

|
O el L e S I S ST T VT 0 7 7y e B e R M DA S

Example 6.2—String Comparison Function

In C, function strmep compares two strings according 1o the order of their char-
acters in the ASCII table (called the lexicographic order of the characters) and
returns a — 1 if the first string is lexicographically less than the second string, a 0
if the strings are equal, and a +1 if the first string is lexicographically greater than
the second string. This function is extremely useful for such purposes as sorting
strings in alphabetic order.

Create a new MATLAB function c_strcmp that compares two strings in
a similar fashion to the C function and returns similar results, The function
should ignore trailing blanks in doing its comparisons. Note that the function
must be able to handle the situation where the two strings are of different
lengths.

SOLUTION

1. State the problem.
Write a function that will compare two strings strl and str2, and
return the following results:

" —] if strl is lexicographically less than str2.
= 0 if strl is lexicographically less than str2.
o+] if strl is lexicographically greater than str2.

The function must work properly if str1 and str2 do not have the same
length, and the function should ignore trailing blanks.

2. Define the inputs and outputs.
The inputs required by this function are two strings, str1 and str2. The
output from the function will be a —1, 0, or 1, as appropriate.

3. Describe the algorithm.
This task can be broken down into four major sections:

Verify input strings

Pad strings to be equal length

Compare characters from beginning to end, looking
for the first difference

Return a value based on the first difference

We will now break cach of the foregoing major sections into smaller,
more detailed pieces. First. we must verify that the data passed to the
function is correct. The function must have exactly two arguments, and
the arguments must both be characters. The pscudocode for this step is;

% Check for a legal number of input arguments,
msg = nargchk(2,2,nargin)
error (msg)

286

| Chapter 6 Additional Data Types and Flot Types

% Check to see if the arguments are strings
if either argument ig not a string
ervor('strl and str2 m:st both be strings')

(add code here)
end

Next, we must pad the strings to equal lengths. The easiest way to do this is
to combinge both strings into a 2-D array using strvcat. Note that this
step effectively results in the function igur ing teailing blanks, because both
strings are padded out to the same length. The pseudocode for this step is:

% Pad strings
strings = strvcat(strl,ste

Now we must compare each character until we find a difference, and
return a value based on that difference. One way 1o do this 15 1o use rela-
tional operators to compare the two strings, creating an array of Os and 1s.
We can then look for the first one, which will correspond to the first dif-
ference between the two strings. The pscudocode for this step is:

% Compare strings
diff = strings(l,:) -= strings(2,:)
if sum(diff) ==
% Strings match
result = 0
else
% Find first difference
ival = find(diff)
if strings(l,ival) > strings(2,ival)
result = 1
‘else
result = -1
end
end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

function result = c_strcmp(strl,str2)
%$C_STRCMP Compare strings like C functien "sftrcmp®

%
%
%

ap o

Function C_STRCMP compares two strings, and returns
a -1 if strl < str2, a 0 if strl == strz, and a
#1 FE wirl = strd.

Define variables:
diff -~ Logical array of string differences

62 String Functions | 287

% msg -- Error message

% result -- Result of function .

% strl -- First string to compare

% str2 -- BSecond string to compare

% strings -- Padded array of strings

% Record of revisions:

% Date Programmer Description of change
% i —3-- L e 3+t 5+ + T T T
% 01/16/04 5. J. Chapman Original code

% Check for a legal number of input arguments.
msg = nargchk(2, 2,nargin);
error (msqg) ;

% Check to see if the arguments are strings
if ~(isstr(strl) & isstr(str2))

error('Both strl and str2 must both be strings!')
else

% Pad strings
strings = strvcat({strl,str2);

% Compare strings
Jdiff = sEringsil.3) == strings(2.3);
if sum(diff) ==

% Strings match, so return a zero!
result = 0;
else

% Find first difference between strings

ival = find(diff);

if strings(1,ival(l)) > strings(2,ival(l))
result = 1;

else
result = -1;

end

end

end % function c_strcmp

5. Test the program.
Next, we must test the function using various strings,

» result = c_stremp('String 1','String 1')

288 | Chapter 6 Additional Data Types and Plot Types

result =
0
» result = c_strcmp('String 1+,'String 1 ')

result =
0
» result = c_strcmp('String 1','String 2')
result =
-1
» result = c_strcmp('String 1','String 0')
result =
1
» result = c_strcmp('String',‘str'}
result =
-1

The first test returns a zero, because the two strings are identical. The sec-
ond test also returns a zero, because the two strings are identical except
for trailing blanks and trailing blanks are i gnored. The third test returns a
—1. because the two strings first differ in position 8 and '1' <'2"' at
that position. The fourth test returns a 1, because the two strings first differ
in position 8and '1' > '0" at that position. The fifth test returns a — 1,
because the two strings first differ in position 1, and 'S' < 's’ in the
ASCII collating sequence.
This function appears to be working properly.

T N T e T T Y I RS T R A SR AT s A T AT

T AR TR G

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 6.1 through 6.2. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with
a fellow student. The answers to this quiz are found in the back of the
book.
1. What is the value of result in the following statements?
(ay x = 12 + 1*35;
y = 5 - %13
result = x > ¥

(b) % = 12 + 1*5;

v & 5= 1#13;

result = abs(x) > abs(y):
(c) 2% = 12 + 1*5;

v =5 g 1T

. strl

. strl

. BEXl

6.2 String Functions | 289

result = real(x) - imagly);

2. If array is a complex arrav, what does the function
plot (array) do?

3. How can you convert a vector of the char data type into a vector
of the double data type?

For questions 4 through 11, determine whether these statements are cor-
rect. If they are, what is produced by cach set of statements?

. strl = 'This is a test! Yz
str2 = 'This line, too.':
res = strcat(strl,str2);

. gtrl = "Line 1';
str2 = 'line 2';
res = strcati(strl,stzr2);

'This is a test! ';
str2 "This line, too.';
res = [strl; str2);

I

'This is a test! *:
str2 'This line, too.';
res = strvcat(strl,str2);

'This is a test! ';
str2 'This line, too.';
res = strncmp(strl,str2,5);

Il

. strl = 'This is a test! ';
res = findstr(strl,'s');

. strl = 'This is a test! ';
strl(isspace(strl)) = x;

. strl = 'aBeD 1234 [7';
res = isstrprop(strl, 'alphanum');

. BEEL = “Mhas i & tegeLr
strl(4:7) = upper(scrl(4:7));

. strl = ' 456 '; % Note: Three blanks before & after
stx2 = ' abc '; % Note: Three blanks before & after
strd = [strl str2):
strd = [strtrim(strl) strtrim(str2)]:
str5 = [deblank(strl) deblanki(strz)]:

11 = length(stril);
13 = length{str3):

290 | Chapter 6 Additional Data Types and Plot Types

14,

14 = length(strd);
15 = lengthistrd);

strl = 'This way to the egress.';
str? = 'This way to the egret.'
res = strncmp(strl,str2);

M

6.3_ Multi_(_!imengional Arrays

MATLAR also supports arrays with more than two dimensions. These multidi-
mensional arrays arc very useful for displaying data that intrinsically has more
than two dimensions, or for displaying multiple versions of 2-D data sets. For
example, measurements of pressure and velocity throughout a three-dimensional
volume are very important in such studies as aerodynamics and fluid dynamics.
These areas naturally use multidimensional arrays.

Multidimensional arrays are & natural extension of two-dimensional arrays.
Each additional dimension is represented by one additional subscript used to
address the data.

It is very easy to create multidimensional arrays. They can be created either
by assigning values directly in assignment statements or by using the same func-
tions that are used to create one- and two-dimensional arrays. For example, sup-
pose that you have a two-dimensional array created by the assignment statement

»a=1[12234; 56 7 8]

a =
1 2 3 4
5 6 T 8

Thisisa2 X 4 array, with each element addressed by two subscripts. The array
can be extended to be a three-dimensional 2 X 4 X 3 array with the following
assignment statements.

» af:,:,2) = [9 10 11 12; 13 14 15 16];
» a{:,:,3) = [17 18 19 20; 21 22 23 24]

als, 2,1} =
1 2 3 4
5 6 7 8
alz;z,2) =
9 10 b= 12
13 14 15 16
Bilis it B =
17 18 19 20
21 22 23 24

Individual elements in this multidimensional array can be addressed by the array
name followed by three subscripts, and subsets of the data can be created using

6.3 Mulddimensional Arrays | 291

the colon operators, For example, the value of a (2, 2, 2) is

» a(2,2,2)
ans =
14
and the vectora (1,1, 1) is
» a(l,1,:)
anstied) =
1
ansi(:, +2) =
9
ans(:,:,3) =
17

Multidimensional arrays can also be created using the same functions as
other arrays, for example:

» b = ones(4,4,2)

b{:;:,1) =
1 1 1 1
1 1 1 1
1 1 1 il
1 1 | L 1
bl t,2.2) =
1 i B 1 1
1 & i 1
1 1 1 1
1 1 1 1
» ¢ = randn(2,2,3)
o lEmedl =
-0.4326 0.1253
-1.6656 0.2877
o (A e
-1.1465 1.1892
1.1909 -0.0376
gl oAl =
0, 3273 -0.1867
0.1746 D.7258

The number of dimensions in a multidimensional array can be found usin g the
ndims function, and the size of the array can be found using the size function
» ndims(c)
ans =
3
» size(c)
ans =

292 | Chapter 6 Additional DataTypes and Plot Types

If you are writing applications that need multidimensional arrays, see the
MATLAB Users Guide for more details on the behavior of various MATLAB
functions with multidimensional arrays.

Use multidimensional arrays to solve problems that are naturally multivariate in
nature, such as acrodynamics and fluid flows.

Also, recall from Chapter 4 that the MATLAB just-in-time compiler cannot
compile loops containing arrays with three or more dimensions. If you are work-
ing with such arrays, be sure to vectorize your code to increase its speed. Do not
rely on the JIT compiler to do the job—it won’t.

If you are working with multidimensional arrays, be sure to vectorize your code
by hand. The MATLAB JIT compiler cannot handle loops containing multidi-
mensional arrays with three or more dimensions.

L%

6.4 Additional Data Types

MATLAB also includes a single data type and several integer data types. They
are briefly discussed in the following sections.

The single Data Type

Variables of type single are scalars or arrays of 32-bit single-precision
floating-point numbers. They can hold real, imaginary, or complex values.
Variables of type single occupy half the memory of variables of type double,
but they have lower precision and a more limited range. The real and imaginary
components of each single variable can be positive or negative numbers in the
range 107% to 10%*, with six to seven significant decimal digits of accuracy.
The single function creates a variable of type single. For example, the
following statement creates a variable of type single containing the value 3.1:

» var = single(3.1)

var =
3.1000
» whos :
Name Size Bytes Class
var 1x1 4 single array

Grand total is 1 element using 4 bytes

64 Additional Data Types | 293

Once a single variable is created, it can be used in MATLAB operations
just like a double variable. In MATLAB, an operation performed between a
single value and a double value has a single result.’ so the result of the
following statements will be of type single:

» b= 7;
» c =var * b
c =
21.7000
» whos
Name Size Bytes Class
b 12l 8 double array
c 1x1 B single array
var 1xl 4 single array

Grand total is 1 element using 4 bytes

The availability of mathematical operations with the single data type is a
new feature of MATLARB 7.0. Values of type single can be used just like val-
ues of type double in most MATLAB operations. Built-in functions such as
sin, cos, exp, and so forth all support the single data type, but some M-
file functions may not support single values yet. (For example, comparisons
for near equality between two numbers may be incorrect if the function is expect-
ing double values and instead is passed single values.) As a practical matter,

" you will probably never use this data type. Its more limited range and precision
make the results more sensitive to cumulative round-off errors or to exceeding the
available range. You should consider using this data type only if you have enor-
mous arrays of data that could not fit into your computer memory if they were
saved in double precision.

Also, the MATLAB just-in-time compiler cannot compile loops containing
single values. If you are working with such arrays, be sure to vectorize your
code to increase its speed. Do not rely on the JIT compiler to do the job—it won't.

Integer Data Types

MATLAB also includes 8-, 16-, 32-, and 64-bit signed and unsigned integers. The
data types are int8, uint8, int16, uintl6, int32, uint32, int64,
and uint64. The difference between a signed and an unsigned integer is the
range of numbers represented by the data type. The number of values that can be
represented by an integer depends on the number of bits in the integer:

number of values = 2" (6-11)

where n is the number of bits. An 8-bit integer can represent 256 values (2%), a
16-bit integer can represent 65,536 values (2'°), and so forth. Signed integers use

'CAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C, C++, Java, Basic, etc.), the result of an operation
between a single and a double would be of type double.

294

Chaprer 6 Additional Data Types and Plot Types

half of the available values to represent positive numbers and half for negative
numbers, whereas unsigned integers use all of the available valucs to represent
positive numbers. Therefore, the range of values that can be represented in the
int8 data type is —128 to 127 (a total of 256), while the range of valucs that can
be represented in the uint8 data type is 0 to 255 (a total of 256). Similarly, the
range of values that can be represented in the int16 data type is —32,768 to
32,767 (a total of 65,536), while the range of values that can be represented in the
uint16 data type is 0 to 65,535. The same idea applies to larger integer sizes.

Integer values are created by the int8(), uint8(), intl6(),
uint16(), int32(), uint32(), int64(), or uinted () functions.
For example, the following statement creates a variable of type int8 containing
the value 3:

» var = int8(3)

var =
3
» whos
Name Size Bytes Class
var 1x1 1: int8 array

Grand total is 1 element using 1 bytes
Integers can be converted to other data types using the double and single
functions. '

An operation performed between an integer value and a double value has
an integer result,* so the result of the following statements will be of type int8:

» b = 7;
»¢c=var * b
Cc =
od:
» whos
Name Size Bytes Class
b 1x1 8 double array
c 1x1 1 int® array
var 1x1 1 int8 array

Grand total is 3 elements using 10 bytes

MATLAB uses saturating integer arithmetic. If the result of an integer math
operation would be larger than the largest possible value that can be represented
in that data type, the result will be the largest possible value. Similarly, if the
result of an integer math operation would be smaller than the smallest possible
value that can be represented in that data type, the result will be the smallest pos-
sible value. For example, the largest possible value that can be represented in the

SCAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C, C++, Java, Basic, etc.), the result of an operation
between an integer and a double would be of type double.

6.5 Additional Two-Dimensional Plots | 295

int8 data type is 127. The result of the operation int8(100) + int8(50)
will be 127. because 150 is larger than 127, the maximum value that can be rep-
resented in the data type.

It is unlikely that you will need to use the integer data type unless you are
working with image data. If you do need more information, please consult the
MATLAB documentation.

Limitations of the single and Integer Data Types

The single data type and integer data types have been around in MATLAB for
a while, but they have been mainly used for purposes such as storing image data.
Before MATLAB 7.0, it was not possible to perform mathematical operations (+,
—., etc.) with these data types. MATLAB is now evolving to make manipulating
{hese data types casier, but the support is still rough in the current release. There
are significant gaps. For example, you can add a single and a double, or an
integer and a double, but not a single and an integer.

» a = single(2.1)

a =
2.1000
» b = intl6(4)
0=
4

» ¢ = a+b
??? Error using ==> plus
Class of operand is not supported.

Unless you have some special need to manipulate images, you will probably never
. .
need to use either of these data types.

Do not use the single or integer data types, unl
such as image processing.

RS TR AR A S e AR

5.5 Additional Two-Dimensional _Plots

In previous chapters, we have learned to creare linear, log-log, semilog. and polar
plots. MATLAB supports many additional types of plots that you can use to display
vour data. This section will introduce you to somc of these additional ploting options.

Additional Types of Two-Dimensional Plots

in addition to the two-dimensional plots that we have already scen. MATLAR
supports many other more specialized plots. In fact. the MATLAB help desk lists

296

Chaprer 6 Additional Data Types and Plot Types

more than 20 types of two-dimensional plots! Examples include stem plots, stair
plots, bar plots, pie plots, and compass plots, A stem plot is a plot in which each
data value is represented by a marker and a line connecting the marker vertically
to the x axis. A stair plot is a plotin which each data point is represented by a hor-
izontal line, and successive points are connected by vertical lines, producing a
stair-step effect. A bar plot is a plot in which each point is represented by a ver-
tical bar or horizontal bar. A pie plot is a plot represented by “pie slices™ of vari-
ous sizes. Finally, a compass plot is a type of polar plot in which each value is
represented by an arrow whose length is proportional to its value. These plots are
summarized in Table 6.4, and examples of all of the plots arc shown in Figure 6.8.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to
plot. and they are used in the same manner. For example, the following code
produces the stem plot shown in Figure 6.7a.

== [1 2 3 48 6]

=12 6 8 T 8 b5l=

stem (x,y):

title('\bfExample of a Stem Plot');
xlabel ('\bE\itx"');

ylabel ("\bf\ity');

axis ([0 7 0 101);

Table 6.4 Additional Two-Dimensional Plotting Functions

Function Description
bar(x,y) This function creates a vertical bar plot, with the values in x
used to label each bar and the values in v used to determine
. the height of the bar.
barh (x,v) This function creates a horizontal bar plot, with the values in x

used to label each bar and the values in y used to determine
the horizontal length of the bar.

Compass (x,y) This function creates a polar plot, with an arrow drawn from
the origin to the location of each (x, ¥) point. Note that the
locations of the points to plot are specified in Cartesian coordi-
nates, not polar coordinates.

pie(x) This function creates a pie plot. This function determines the

pie(x, explode) percentage of the total pie corresponding to each value of x
and plots pie slices of that size. The optional array explode
controls whether or not individual pie slices are separated from
the remainder of the pie.

Stairsi(x,y) This function creates a stair plot, with each stair step centered
on an (x, ¥) point.

stem(x,y) This function creates a stem plot, with a marker at each (x, v)
point and a stem drawn vertically from that point to the x axis.

6.5 AdditionafTwo-Dimensional Plots | 297

. Example ofa Stom Pl o

rh)

Figure 6.8 Additional Bypes of 2D plots: (a) stem plot; (b stair plat;

298 Chapter 6 Additional Data Types and Plot Types

Example of 3 Bar Flot |

JFiqre 1
Fig cEdr View et ’fo.ls \urld:m Heb Ll
cﬁga L &a"“‘ﬁ"é Bd em

Example 01' a8 Hoﬂzanhl. B-r Pﬁut

T &

Figure 6.8 (comtinued) (v) vertical bar plot. (d horizontal bar plot.

Figure 6.8

6.5 Additional Two-Dimensional Plots

J Figure 1

o@gée haaNw w0 »O
Example of a Pie Plot |
%

16%

fe)

J Figure 1
e Edt View Imsert Toos Window Hep

NeE& » &anhs ¢ 08 =0
Example of a Compass Plot

e -
0
R T S -
- B
./‘ \
150/ \ 30
J N\
- ‘: ™ Ili
| ‘
180} r |0
| |
I| ¥
\ /
210 430
240 st 390
270

{eantinued) fe) pre plot: (1) compass ,~]u1

299

300

Chapter 6 Additional Data Types and Plot Types

Stair, bar, and compass plots can be created by substituting stairs, bar,
barh, or compass for stemin the above code. The details of all of these plots,
including any optional parameters, can be found in the MATLAB on-line help
S}’Stﬂi'ﬂ,

Function pie behaves differently from the other plots described previously.
To create a pie plot, a programmer passes an array x containing the data to be
plotted, and function pie determines the percentage of the total pie that each
element of x represents. For example, if the array x is [1 2 3 4], thenpie will
calculate that the first element x (1) is 1/10 or 10% of the pie, the second ele-
ment x (2) is 2/10 or 20% of the pie, and so forth. The function then plots those
percentages as pie slices.

Function pie also supports an optional parameter, explode. If present,
explode is a logical array of 1s and 0s, with an element for each element in
array x. If a value in explode is 1, then the corresponding pie slice is drawn
slightly separated from the pie. For example, the code shown below produces the
pie plot in Figure 6.7e. Note that the second slice of the pie is “exploded™.

data = [10 37 5 6 6]:

explode = [0 1 0 0 0];
pie(data,expleode);

title('\bfExample of a Pie Plot');
legend('One', 'Two', 'Three', 'Four', 'Five'};

Plotting Functions

In all previous plots, we have created arrays of data, and passed those arrays to
the plotting function. MATLAB also includes two functions that will plot a func-
tion directly, without the necessity of creating inteumediate data arrays. These
functions are ezplot and fplot.

Function ezplot takes one of the following forms,

ezplot(fun);
ezplot (fun, [xmin xmax]);
ezplot (fun, [xmin xmax], figure);

In each case, fun is a character string containing the functional expression to
be evaluated. The optional parameter [xmin xmax] specifies the range of the
function to plot. If it is absent, the function will be plotted between —=2m and
27, The opticnal parameter figure specifies the figure number to plot the
function on.

For example, the following statements plot the function f(x) = sinx/x
between —47 and 47. The output of these statements is shown in Figure 6.9.

ezplot ('sin(x)/x', [-4*pi 4*pi]);
title('Plot of sin x / x'});
grid on;

6.5 Additional Two-Dimensional Plots | 301

J Figpre 1

Figure 6.9 The function sin x/x, plotted with function ezplot.

Function fplot is similar to but more sophisticated than ezplot. The first
two arguments are the same for both functions, but fplot has the following
" advantages: :

1. Function £plet is adaptive, meaning that it calculates and displays more
data points in the regions where the function being plotted is changing
most rapidly. The resulting plot is more accurate at locations where a
function’s behavior changes suddenly.

2. Function £plot supports the use of T, X commands in titles and axis
labels, while function ezplot does not.

In general, you should use £plot in preference to ezplot whenever you plot
functions.
Functions ezplot and fplot are examples of the “function functions”

described in Chapter 5.

Use function £fplot to plot functions directly without having to create inter-
mediate data arrays.

302

Chapter &

Additional Data Types and Plot Types

Histograms

Figure 6.10

A histogran is a plot showing the distribution of values within a data set. To cre-
ate a histogram, the range of values within the data set is divided into evenly
spaced bins, and the number of data values falling into each bin is determined.
The resulting count can then be plotted as a function of bin number.

The standard MATLAB histogram function is hist. The forms of this func-
tion are shown below:

hist (y)

hist (y,nbins)
hist(y.,x):

[n,xout] = ik iy, .l

The first form of the function creates and plots a histogram with ten equally spaced
bins, while the second form creates and plots a histogram with nbins equally
spaced bins. The third form of the function allows the user to specify the bin centers
to use in an array x; the function creates a bin centered around each element in the
array. In all three of these cases, the function both creates and plots the histogram.
The last form of the function creates a histogram and returns the bin centers in array
xout and the count in each bin in array 1, without actually creating a plot.

For example, the following statements create a data set containing 10,000
Gaussian random values, and generate a histogram of the data using 15 evenly
spaced bins. The resulting histogram is shown in Figure 6.10.

-} Figure 1
D& k&

ao® 0B

=

A histogram

g

6.6 Three-Dimensional Plots | 303

y = randn(10000,1);
hist(y,15);

MATLARB also includes a function rose to create and plot a histogram on
radial axes. It is especially useful for distributions of angular data. You will be
asked to use this function in an end-of-chapter exercise.

6.6 Three-Dimensional Plots

MATLAB also includes a rich variety of three-dimensional plots that can be use-
ful for displaying certain types of data. In general, three-dimensional plots are
useful for displaying two types of data:

1. Two variables that are functions of the same independent variable, when
you wish to emphasize the importance of the independent variable.
2. A single variable that is a function of two independent variables.

Three-Dimensional Line Plots

A three-dimensional line plot can be created with the plot 3 function. This fune-
tion is exactly like the two-dimensional plot function, except that each point is
represented by x, y, and z values instead just of x and y values. The simplest form

of this function is g

plot tXJYI' z} H

where x, y, and z are equal-sized arrays containing the locations of data points
to plot. Function plot3 supports all the same line size, line style, and color
options as plot, and you can use it immediately using the knowledge that we
acquired in earlier chapters.

As an example of a three-dimensional line plot, consider the following func-

tions:

x(1) = e ¥ cos 2t 1B
y(1) = %% sin 21
These functions might represent the decaying oscillations of a mechanical system
in two dimensions, so x and y together represent the location of the system at any
given time. Note that x and y are both functions of the same independent variable 1.
We could create a series of (x,) points and plot them using the two-dimen-
sional function plot (see Figure 6.11a), but if we do so, the importance of time
to the behavior of the system will not be obvious in the graph. The following
statements create the two-dimensional plot of the location of the object shown in

Figure 6.11a. It is not possible from this plot to tell how rapidly the oscillations
are dying out.

0:0.1:10;

exp(-0.2*t) .* cos(2*t});

t
x

Two-Dimensional Line Plot
1 T T T T T r v T

08

0.6}

04-

0.2

— e

a - + -
<03 -06 -0.4 -02 0 0.2 04 0.6 08 1

fal

Three-Cwmensional l.l'&"o(

10 |
8
2 |
64
v
E
= ad
2"‘?
|
0.
I ™
S s
- =3 1
Ds ‘\'\. - -5
e - 3
_]
05 S e i
17 4
¥ x
(b)

Figure .11 (a) A two-dimensional line plot showing the motion in (x, y) space of a mechanical
system. This plot reveals nothing about the time behavior of the system. (h) A three-
dimensional line plot showing the motion in (x,) space versus time for the mechanical
system. This plot clearly shows the time behavior of the system.

6.6 Three-Dimensional Plots | 305

Y = exp(-0.2%t) .* sin{2*t);

plot(x,y);

title({'\bfTwo-Dimensional Lires Plot');

xlabel ('\bfx');

vlebel ("\bfy'):

grid omn;

Instead, we could plot the variables with pZot3 to preserve the time infor-
mation as well as the two-dimensional position of the object. The following state-
ments will create a three-dimensional plot of Equations (6-12).

to= 050512103
X = exp(-0.2*t) .* cos(2*t):
¥y = exp(=0.2*%E) .* sin(2*%):

plot3(x,v,t);
title('\bfThree-Dimensional Line Plot');
xlabel ('\bfx'):;

ylabel ('\bfy"'):

zlabel('\bftime');

grid on;

The resulting plot is shown in Figure 6.115. Note how this plot emphasizes time-
dependence of the two variables x and 1.

€
Three-Dimensional Surface, Mesh, and Contour Plots

Surface. mesh, and contour plots are convenient ways to represent data that is a
function of wo independent variables. For example, the temperature at a point is
a function of both the East-West location (x) and the North-South (1) location of
the point. Any value that is a function of two independent variables can be dis-
played on a three-dimensional surface. mesh, or contour plot. The more common
types of plots are summarized in Table 6.5, and examples of each plot are shown
in Figure 6.12.5

To plot data using one of these functions, a user must create three equal-sized
arrays. The three arrays must contain the x, y, and z values of every point to be
plotted. As a simple example, suppose that we wanted to plot the four points
(—=1,-1,1), (1,—1,2), (=1, 1, 1), and (1, 1. 0). To plot these four points, we

: -1 1 -1 -1 1 2
must create the arrays x = Y = ,and z = . Array

E =1] 1 1 1 0
x contains the x values associated with every point to plot, array v contains the
¥ values associated with every point to plot, and array z contains the z values
associated with every point to plot. These arravs are then passed to the plotting

function.

*There are many variations on these basic plot types. Consult the MATLAB Help Browser documen-
tation for a complete description of these variations.

306 | Chapter 6 Additional Data Types ard Plot Types

Table 6.5 Saleg:id Mesh, Surface, and Contour Plot Functions
Function D;lcﬂpdon

mesh(x,y,z) This function creates a mesh or wireframe plot, where x is a two-
' dimensional array containing the x values of every point to dis-
play, v is a two-dimensional array containing the y values of
every point to display, and z 15 a two-dimensional array contain-
ing the z values of every point to display.

surf(x,y,z) This function creates a surface plot. Arrays x, y, and z have the
same meaning as for a mesh plot.

contour (x,y,z) This function creates a contour plot. Arrays x, vy, and z have the
same meaning as for a mesh plot.

The MATLAB function meshgrid makes-it'easy to create the x and y
arrays required for these plots. The form of this function 1s

[*y] = meshgrid(xstart:xinc:xend, ystart:yinc:yend);

where xstart:xinec:xena specifies the x values to include in the: orid and
ystart:yinc:yend specifies the v values to be included in the grid.

To create a plot, we use meshgrid to create the arrays of ¥ and 1 values and
then evaluate the function to plot at each of those (x, y) locations. Finally, we call
function mesh, surf, or contour to create the plot.

For example. suppose that we wish to create a mesh plot of the function

z(x. .‘,} = g 0 08—y] (6-13)

over the interval —4 =< x < 4 and —4 = y = 4. The following statements will
create the plot, which is shown in Figure 6.12a.

[%,¥] = meshgrid(-4:0.2:4);

zZ = exp(-0.5%(x."2+y."2));

mesh(x,v.z):

xlabel ('\bfx');

ylabel('\bfy');

zlabel ('\bfz');
Surface and contour plots may be created by substituting the appropriate function
for the mesh function.

6.7 Ssummary

MATLAB supports complex numbers as an extension of the double data type.
They can be delined using the 1 or j, both of which are predefined as to be
V=1. Using complex numbers is straightforward, except that the relational

Mesh Plot

(a)

Surface Plot

L]

(b}

Figure 612 (a) A mesh plot of the function z(x, y) = ¢7° S +0.501-4) (b) A surface plot of the same
function.

307

308 | Chapter 6 Additional Data Types and Plot Types

Mesh Plot

(¢4

Figure 6.12 (continued) (¢ A contour plot of the same function.

operators >. >=, <, and <= compare only the real parts of complex numbers, not
their magniudes. They must be used with caution when working with complex
values. . :
String functions are functions designed to work with strings, which are arravs
of type chax. These functions allow a user to manipulate strings in a variety of
useful ways. including concatenation, comparison, replacement, case conversion,
and numeric-to-string and string-to-numeric type conversions.

Multidimensional arrays are arrays with more than two dimensions. They
may be created and used in a fashion similar to one- and two-dimensional arrays,
Multidimensional arrays appear naturally in certain classes of physical problems.

The single data is consists of single-precision floating point numbers.
They are created using the single function. A mathematical operation between
a single znd a double value produces a single result,

MATLAB includes signed and unsigned 8-, 16-, 32-, and 64-bit integers. The
integer data types are the int8, uint8, intl6(), uintl6, int32,
uint32, int64, and uint64. Each of these types is created using the corre-
sponding furction: int8(), uintB(), intl6(), uintl6(). int32(),
uint32 (). int64(), oruinté4 (). Mathematical operations (+, —. etc.) can
be performed on these data types; the result of an operation between an integer and

67 Summary | 309

a double has the same type as the integer. If the result of a mathematical opera-
tion is too large or too small to be expressed by an integer data type, the result is

cither the largest or smallest possible integer for that type.
MATLAB includes a rich variety of two- and three-dimensional plots. In this
chapter, we introduced stem, stair, bar, compass, mesh, surface, and contour plots.

Summary of Good Programming Practice

The following guidelines should be adhered to:

1. Usg the char function to create two-dimensional character arrays with-
out worrying about padding each row to the same length.

2. Use function isstrprop to determine the characteristics of each char-
acter in a string array. This function supercedes the older functions
isletter and isspace, which may be deleted in a furure version of
MATLAB.

3. Use multidimensional arrays to solve problems that are naturally multi-

variate in nature, such as aerodynamics and fluid flows.

If you are working with multidimensional arrays, be sure to vectorize you

code by hand. The MATLAB JIT compiler cannot handle loops contain-

ing multidimensional arrays with three or more dimensions.

5. Do not use the single or integer data types, unless you have a special
need such as image processing. .

6. Use function fplot to plot functions directly without having to create
intermediate data arrays.

-~

MATLAB Summary

The following summary lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

abs
angle
bar(x,y)
barh(x,vy)
base2dec
bin2dec
blanks

char

compass (x,¥)
conj

contour

Returns absolute value (magnitude) of a number.
Returns the angle of a complex number, in radians.
Create a vertical bar plot.

Create a horizontal bar plot.

Convert base B string to decimal integer.

Convert binary string to decimal integer.

Create a string of blanks.

(1) Convert numbers to the corresponding character values. (2) Create a 2D character
array from a series of strings.

Create a compass plot.

Compute complex conjugate of a number.

Create a contour plot.

310 | Chapteré

deblank:"
dec2base
dec2bin
double
find
findstr
hexZnum
hex2dec
hist
full
imag
int2str
ischar
isletrer
isreal
isstrprop
isspace
lower
mat2str
mesh
meshgrid
nnz
nonzeros
num2str
nzmax
pie(x)
ploc(e)
real
roses
sscanf
stairs(x,y)
stem(x,y)
str2double
strZnum
strcat

strcmp

Additional Data Types and Plot Types

Remove trailing whitespace from a string.

Convert decimal integer to base B string.

Convert decimal integer to binary string.

Convert characters to the corresponding numeric codes.
Find indices and values of nonzero elements in a matrix.
Find one string within another one.

Convert IEEE hexadecimal string to double.

Convert hexadecimal string to decimal integer.

Create a histogram of a data set.

Convert a sparse matrix into a full matrix

Returns the imaginary portion of the complex number.
Convert integer to string.

Returns true (1) for a character array.

Returns true (1) for letters of the alphabet.

Returns true (1) if no element of array has an imaginary component.
Returns true (1) a character has the specified property.
Returns true (1) for whitespace.

Convert string to lowercase,

Convert matrix to string.

Create a mesh plot.

Create the (x, v) grid required for mesh, surface, and contour plots.
Number of nonzero matrix elements.

Return a column vector containing the nonzero elements in a matrix.
Convert number to string.

Amount of storage allocated for nonzero matrix elements
Create a pie plot.)

Plots the real versus the imaginary part of a complex array.
Returns the real portion of the complex number.

Create a radial histogram of a data set.

Read formatted data from string.

Create a stair plot.

Create a stem plot.

Convert string to double value.

Convert string to number.

Concatenate strings.

Returns true (1) if two strings are identical.

68 Exercises | 311

strermpi Returns true (1) if two strings are identical ignoring case.
strjust Justify string.

strncmp Returns true (1) if first nn characters of two strings are identical.
strncmpi Returns true (1) if first n characters of two strings are identical ignoring case.
strmetch Find matches for string.

strtrim Remove leading and trailing whitespace from a string

strrep Replace one string with another.

strtok Find token in string,

struct Predefine a structure array.

strvcat Concatenate strings vertically.

surf Create a surface plot.

upper Convert string to uppercase

6.8 Exercises

6.1

120200V

Figure 6.13 shows a series RLC circuit driven by a sinuscidal AC voltage
source whose value.is 120/0° volts. The impedance of the inductor in this
circuitis Z; = j2mfL, where jis V/=1. f is the frequency of the voltage
source in hertz, and L is the inductance in henrys. The impedance of the

capacitor in this circuit is Z- = —j-——, where C is the capacitance in

S/

farads. Assume that R = 1000, L = 0.1 mH, and C = 0.25 nF.

3
Pl
s}

Figure 6.13 A series RLC circuit driven by a sinusoidal AC voltage source.

312 | Chapter 6

Additional Data Types and Plot Types

6.2

6.3

6.4

6.5

6.6

The current I flowing in this circuit is given by Kirchhoff’s Voltage
Law to be =

‘) o
- 120/0° V (6-14)

R + j2rfL

~I2zfC

(a) Calculate and plot the magnitude of this current as a function of fre-
quency as the frequency changes from 100 kHz to 10 MHz. Plot this
information on both a linear and a log-linear scale. Be sure to
include a title and axis labels.

(b) Calculate and plot the phase angle in degrees of this current as a func-
tion of frequency as the frequency changes from 100 kHz to 10 MHz.
Plot this information on both a linear and a log-linear scale, Be sure to
include a title and axis labels.

(¢) Plot both the magnitude and phase angle of the current as a function
sf frequency on two subplots of a single figure. Use log-linear scales.

Wrize a function to_polar that accepts a complex number ¢ and reurns
two output arguments containing the magnitude mag and angle theta of
the complex number. The output angle should be in degrees.

Write a function to_complex that accepts two input arguments con-
taining the magnitude mag and angle theza of the complex number in
degrees and returns the gpmplex number c.

In a sinusoidal steady-sfite AC circuit, the voltage across a passive ele-
mert is given by Ohm’s Law:

V=I£ (6-13)

where V is the voltage across the element, [is the current though the cle-
mert, and Z is the impedance of the element. Note that all three of these
values are complex and that these complex numbers are usually specified
in the form of a magnitude at a specific phase angle expressed degrees.
For example, the voltage might be V. = 120£30° V.

Write a program that reads the voltage across an element and the
impedance of the element and calculates the resulting current flow. The
input values should be given as magnitudes and angles expressed in
degrees, and the resulting answer should be in the same form. Use the func-
tion to_complex from Exercise 6.3 to convert the numbers to rectangu-
lar for the actual computation of the current. and the function to_polar
from Exercise 6.2 to convert the answer into polar form for display.

Write a function that will accept a complex number c and plot that point
on 2 Cartesian coordinate system with a circular marker. The plot should
include both the x and y axes, plus a vector drawn from the origin to the
locztion of c.

Plot the function v(1) = 10&' "% for 0 = 1 = 10 using the function
plst (t,v). What is displayed on the plet?

6.8 Exercises | 313

™

Figure 6.14 The voltage and current relationship on a passive AC circuit element,

6.7
6.8
6.9

6.10

6.11

6.12

6.13

6.14

Plot the function v(r) = 10€'~°"%" for 0 < 1 < 10 using the function
plot (v). What is displayed on the plot this time?

Create a polar plot of the function v(z) = 10e! ™92 for 0 < ¢ < 10.
Plot the function v(f) = 10" for 0 < ¢ =10 using function
plot3, where the three dimensions to plot are the real part of the func-
tion, the imaginary part of the function, and time.

Euler’s Equation Euler’s equation defines e raised to an imaginary power
in terms of sinusoidal functions as follows:

e = cosB + isin6 (6-16)

Create a two-dimensional plot of this function as u varies from 0 to 2p.
Create a three-dimensional line plot using function plot3 as u varies from
0 to 2p (the three dimensions are the real part of the expression, the imag-
inary part of the expression, and u). '

Create a mesh, surface plot, and contour plot of the functionz = e+ for
the interval =1 =< x =< | and —27 < y < 2x. In each case, plot the real
part of z versus x and y.

Write a program that accepts an input string from the user and determines
how ‘many times a user-specified character appears within the string.
(Hint: Look up the 's' option of the input function using the MAT-
LAB Help Browser.)

Modify the previous program so that it determines how many times a
user-specified character appears within the string without regard to the
case of the character.

Write a program that accepts a string from a user with the input func-
tion, chops that string into a series of tokens, sorts the tokens into ascend-

ing order, and prints them out,

314 | Chapter 6 Additional Data Types and Plot Types

6.15

6.16

6.17

6.18

6.19

6.20

6.21

6.22

Write a program that accepts a series of strings frem a user with the input
function, sorts the strings into ascending order; and prints them out.

Write a program that accepts a series of strings from a user with the
input function, sorts the strings into ascending order disregarding casc.
and prints them out. _

MATLAB includes functions upper and lower, which shift a string to
uppercase and lowercase respectively. Create a new function called caps.
which capitalizes the first letter in each word, and forces all other letters
to be lowercase. (Hint: Take advantage of functions upper, lower, and
strtok.)

Write a function that accepts a character string and returns a logical
array with true values corresponding to each printable character that is nor
alphanumeric or whitespace (for example, S, %, #, etc.) and false values
everywhere else.

Write a function that accepts a character string and returns a logical
array with true values corresponding to cach vowel and false values
everywhere else. Be sure that the function works properly for both lower-
case and uppercase characters,

Plot the function v = ¢™" sinx for x between 0 and 2 in steps of 0.1
Create the tollowing plot types: (@) stem plot: tb) stair plot: (2) har plot:
(d) compass plot. Be sure to include titles and axis labels on all plots.
Suppose that George. Sam, Betty, Charlie, and Suzie contributed S35, S10.
§7, 85. and 15 respectively to a colleague's going-away present, Create a
pie chart of their contributions. What percentage of the cost was paid bv
Sam?

Plot the function r(x) = 1/Vx over the range 0.1 = x = 10.0 using
function £plot. Be sure to label your plot properly.

e,

CHAPTER

Advanced
Features: Sparse
Arrays, Cell Arrays,
Structures, and
Function Handles

This chapter deals with four very useful features of MATLAB: sparse arrays, cell
arrzys, structures, and function handles.

Sparse arrays are a special type of array in which memory is allocated only for
the nonzero elements in the array. Theyprovide an extremely useful and compact
way to represent large arrays containing many zero values,

Cell arrays are a very flexible type of array that can hold any sort of data.
Each element of a cell array can hold any type of MATLAB data, and different ele-
ments within the same array can hold different types of data. They are used
extensively in MATLAB Graphical User Interface (GUI) functions.

Structures are a special type of array with named subcomponents. Each
structure can have any number of subcompanents, each with its own name and
data type. Structures are the basis of MATLAB objects.

Function handles provide an alternative way to access a function. They are
more flexible than simple function names. Function handles make it easy to pass
functions to other functions for processing; in addition, they make it easy to save
data within a function between calls.

7.1 Sparse Arrays

We learned about ordinary MATLAB arrays in Chapter 2. When an ordinary array
is declared, MATLAB creates a memory location for every elemzni in the array. For
example, the functiona = eye (10) creates 100 elements arrangedasa 10 X 10
structure. In this array, 90 of those elements are zero! This matrix requires 100

-

315

elements, but only 10 of them contain nonzero data. This is an example of a sparse
array or sparse matrix. A sparse matrix is a large matrix in which the vast majority

L]
-
o
s
s 9
£
R 7
[+
: -
2 2
Il o "
= g
o =t
g =1 g 0
m &unu- R ©
G
2 5.
P~
1
b=
&
=
)
L]
™
Jomra— 1 T e

Now suppose that we create another 10 X 10 matrix b defined as follows:

e

If these two matrices are multiplied together, the result is

» cma*h

¢

7.1 SparseArrays | 317

The process of multiplying these two sparse matrices together requires 1900 malt-
plications and additions; but because most of the terms being added and multiplied
are zeros, it is largely wasted effort. ;

This problem gets worse rapidly as matrix size increases. For example,
suppose that we were to generate two 200 X 200 sparse matrices a and b as

follows:

n

a
b

§
5 * eye(200);
3 * eye(200);

Each matrix now contains 20,000 elements, of which 19,800 are zero! Furthermore.
multiplying these two matrices together requires 7,980,000 additions and
multiplications.

It should be apparent that storing and working with large sparse matrices,
most of whose elements are zero, is a serious waste of both computer memo-
ry and CPU time. Unfortunately, many real-world problems naturally create
sparse matrices, so we need some efficient way to solve problems involving
them.

A large clectric power system is an excellent example of a real-world prob-
lem involving sparse matrices. Large electric power systems can have a thousand
or more electrical busses at generating plants and transmission and distribution
substations. If we wish to know the voltages, currents, and power flows in the Sys-
tem, we must first solve for the voltage at every bus. For a 1000-bus system, this
involves the simultaneous solution of 1000 equations in 1000 unknowns, which
is equivalent to inverting a matrix with 1,000,000 elements. Solving this matrix
requires millions of floating point operations.

However. each bus in the power system is probably connected 10 an average
of only two or three other busses, so 996 of the 1000 terms in cach row of the
matrix will be zeros, and most of the operations involved in inverting the matrix
will be additions and multiplications by zeros. The ealculation of the voltages and
currents in this power system would be much simpler and more efficient if the
zeros could be ignored in the solution process.

The sparse Attribute

MATLAB has a special version of the double data type that is designed to work
with sparse arrays. In this special version of the double data type, only the non-
zero elements of an array are allocated memory locations, and the array is said to
have the “sparse” attribute. An array with the sparse attribute actually saves three
values for each nonzero element: the value of the element itself along with the
row and column numbers where the element is located. Even though three values
must be saved for each nonzero element, this approach is smuch more memory
efficient than allocating full arrays if a matrix has only a few nonzero elements.

To illustrate the use of sparse matrices, we will create a 10 X 10 identity

matrix:

318 | Chapter 7 Advanced Features

-

» a = eye(10)
a =

Lo B o Y o Y e T e Y o Y o TR o 1 Y
OoOD oD O oo
Cooooooroo
COoOD0O0OO0OO0 KOO0 Q
(=R = = i T e R e e T o B
CoOoOoOPrPROoDOoOOO O
oo rOoOOCOOC OO
coroooocoao
O OO OO0OCOO0OOD
Hooocoooooo

If this matrix is converted to a sparse matrix using function sparse, the results are:

» as = sparse(a)
ag =
(
{

L

)
i 2)
+3)
(4,4)

(5,5)

(6,6)

(7,7)

(8,8)

(9.9)
(10,10)

LTI O S

Ll e N T e

Note that the data in the sparse matrix is a list of row and column addresses, followed

by the nonzero data value at that paint. This is a very efficient way to store data as

long as most of the matrix is zero, but if there are many nonzero elements, it can take

up even more space than the full matrix because of the need 1o store the addresses.
If we examine arrays a and as with the whos command, the results are:

» whos
Name Size 3ytes Class
a 10x10 800 double array
as 10x10 164 double array (sparse)

Grand total is 110 elements using 964 bytes

The a array occupies 800 bytes, because there are 100 elements with 8 bytes of
storage each. The as array occupies 164 bytes, because there are 10 nonzero ele-
ments with 8 bytes of storage each plus 20 array indices occupying 4 bytes each,
and 4 bytes of overhead. Note that the sparse array occupies much less memory
than the full array.

The function issparse can be used to determine whether or not a given
array is sparse. If' an array is sparse, then igsparse (array) retumns true (1),

oo

e e

7.1 Sparse Arrays 319

The power of the sparse data type can be seen by considering a 1000 x 1000
matrix z with an average of 4 nonzero elements per row. If this matrix is s:ored
as a full matrix. it will require 8,000,000 bytes of space. On the other hané. if it
is converted to a sparse matrix, the memory usage will drop dramatically,

» Z8 = sparse(z);

» whos
Name Size Eytes Class
z 1000x1000 8000000 double array
pod 1000x1000 51188 sparse array

Grand total is 1003932 elements using 8051188 bytces

Generating Sparse Matrices

MATLAB can generate sparse matrices by converting a full matrix into a sparse
matrix with the sparse function or by directly generating sparse matrices with the
MATLAB functions speve, sprand, and sprandn, which are the sparse equiv-
alents of eye, rand. and randn. For example. the expression a = speye (4)
generates a 4 X 4 sparse matrix,

» a = speye(d)
a =
(1,1})- 1
(2,2) 1 €
(3.3) 1
(4,4) 1
The expression b = full (a) converts the sparse matrix into a full matnx.

» b = full(a)
b =

|

L= B = TS
(=10 = B]
o oo
=0 o

A

Working with Sparse Matrices

Once a matrix is sparse, individual elements can be added to it or deleted from it
using simple assignment statements. For example, the following statement gener-
ates a4 X 4 sparse matrix, and then adds another nonzero element to it.

» a = gpeye(4d)
a =
L1 1
(2,2) 1
{3,3) 1
(4,4) 1 =i

320 | Chapter 7 Advanced Features

» a(2,1) = =2

a = ;
(1,1) 1
(2,1} -2
(2,2) 1
(3,3) 1
(4,4) 1

MATLARB allows full and sparse matrices to be freely mixed and used in any
combination. The result of an operation between a full matrix and a sparse matrix
may be either a full matrix or a sparse matrix depending on which result is the
most efficient. Essentially any matrix technique that is supported for full matri-

ces is also available for sparse matrices.
A few of the common sparse matrix functions are listed in Table 7.1.

Table 7.1 Common MATLAB Sparse Matrix Functions

Function Description

Create Sparse Matrices e

Create a sparse identity matrix.

speye
sprand Create a sparse uniformly-distributed random matrix.
sprandn Create a sparse normally-distributed random matrix.
— Full-to-Sparse Conversion Functions -
sparse Convert a full matrix into a sparse matrix. X
full Convert a sparse matrix into a full matrix.
find Find indices and values of nonzero elements in a matrix.
Working with Sparse Matrices) .,
nnz Number of nonzero matrix elements.
Nonzeros Rc;tum a column vector containing the nonzero elements in a matrix.
nzmax Amount of storage allocated for nonzero matrix elements.
spones Replace nonzero sparse matrix elements with ones.
spalloc Allocate space for a sparse matrix.
issparse Returns 1 (true) for sparse matrix.
spfun Apply function to nonzero matrix elements.
spy Visualize sparsity pattern as a pl_ot,
’ AL T SR e A (]

B T e IS S T ST I S R S T
Example 7.1—Solving Simultaneous Equations with Sparse Matrices

To illustrate the ease with which sparse matrices can be used in MATLAB, we
will solve the following simultaneous system of equations with both full and
sparse matrices.

W:PdePcPdﬂdeded’deﬁdﬂdﬂdﬂﬂﬂw

oo oe

1.0.1'] + 0.01’3
0.0x, + 1.0x,
0.5x, + 0.0x,
0.0x; + 0.0x,
0.0x, + 0.0x,
0.0x; + 0.0x,

7.1 Sparse Arrays

+ 1.0x3 + 0.0x, + 0.0x5 + 2.0x, + 0.0x7 — 1.0x¢
+ 0.0x; + 0.4x; + 0.0x5 + 0.0x, + 0.0x; + 0.0xg
+ 2.0xy + 0.0x; + 0.0 x5 + 0.0x; — 1.0x; + 0.0x
+ 0.0x; + 2.0x; + 0.0x5 + 1.0x, + 0.0x; + 0.0x;
+ 1.0x; + 1.0xy + 1.0x5 + 0.0x, + 0.0x; + 0.0xg
+ 0.0x; + 1.0x; + 0.0xs + 1.0x; + 0.0x; + 0.0x5

| 321

3.0
20
=
1.0
=20
1.0

0.5x; + 0.0x; + 0.0x; + 0.0x, + 0.0x5 + 0.0x; + 1.0x; + 0.0x3 = 1.0
0.0x; + 1.0x; + 0.0x; + 0.0x; + 0.0x5 + 0.0x, + 0.0x; + 1.0x3 = 1.0

SoLution To solve this problem, we will create full matrices of the equation

coefficients and convert them to sparse form using the sparse function. Then we

will solve the equation both ways. comparing the results and the memory required.
The script file to perform these calculations is shown below.

Script file: simul.m

Purpose:
This program sclves a system of 8 linear equations in 8

unknowns (a*x = b), using both full and sparse matrices.

Record of revisions:

Date Programmer g' Description of change
01/18/04 S. J. Chapmzn Original code
Define variables:
a -- Coefficients of x (full matrix)
as -- Coefficients of x (sparse matrix)
b -- Constant coefficients (full matrix)
bs -- Constant coefficients (sparse matrix)
>3 -- Solution (full matrix)
xS -- Solution (sparse matrix)

Define coefficients of the egquation a*x = b for
the full matrix solution.

= [1.0 p.¢ 1.0 0.0 @.0 2.0 0.0 =1,0;
0.0 1.0 0.0 0.4 0.0 0,0 0.0 0.0;
g¢.8 0.0 220 00 6.0 0.0 =30 0Dy .
g.0 0.0 0.0 2.0 0.0 1.0 0.0 0.0:
6.0 o0 1.0 1.6 I.60 @©.,0 0.0 0.0;
.0 0.0 0¢.0 1.0 0.0 1.0 0.0 0.0:
0:5 00 0.0 090 Q.0 0.0 1.0 0.0 <a
0.0 1.0 0.0 0.0 0.0 0.0 0.0 1.0];

=_[3:0, 2,0 =1.5 1.0 =2.0 . 1.0 1.0 1,0)";

B W

322

| Chapter 7 Advanced Features

% Define coefficients of the equation.a*x = b for
% the sparse matrix solution:

as = sparse(a); '

bs = sparse(b);

% Solve the system both ways
disp ('Full matrix solution:'):

% = a\b :

disp ('Sparse matrix solution:');
xs = as\bs

’
% Show workspace
disp('Workspace contents after the solutions:')

whos

When this program is executed, the results are:

» simul
Full mactrix solution:
‘\c:
0.5600
2.0000
-0.5000
-0.0000
©=1.5000
1.0000
Q0.7500
-1.0000
Sparse matrix solution:
%S =
L, 0.5000
(2,1) 2.0000
{31} -0.5000
(5.1) -1.5000
(6,1) 1.0000
7,1 0.7500
(8,1) -1.0000
Workspace contents after the solutions:
Name Size Bytes Class
a 3x8 512 double array
as 8x8 276 double array (sparse)
b 8x1 64 double array
bs 8x1 104 double array (sparse)
x gx1 64 double array

xS 8x1 92 double array (sparse)

Grand total is 115 elements using 1112 bytes

72 CellArrays | 323

The answers are the same for both solutions. Note that the sparse solution
does not contain a solution for Xy, because that value is zero and zeros aren’t car-
ried in a sparse matrix! Also, note that the sparse form of matrix b acrually takes
up more space than the full form. This happens because the sparse representation
must store the indices as well as the values in the arrays, so it is less officient if
most of the elements in an array are nonzero,

.

7.2 cCell Arrays

. -
%

Acell array is a special MATLAB array whose elements are cells, containers that
can hold other MATLAB arrays, For example, one cell of a cell array might con-
tain an array of real numbers, another an arrav of strings. and yet another a vee-
tor of complex numbers (see Figure 7.1).

In programming terms, cach element of a cell array is a pointer to arother data
structure. and those data structures can be of different tvpes. Figure 7.2 illustrates
this concept. Cell arrays are great ways to collect information about z problem,
since all of the information can be kept together and accessed by a single name.

Cell arrays use braces {} instead of parentheses () for selecting and display-
ing the contents of cells. This difference is due to the fact that cell arravs contain
data structures instead of data. Suppose that the cell array a is defined as shown

EE =]

cell 1.2

‘This is a text strng.”

T

cell 1.1
1 j -
2 0
Lo s
cell 2.1

I+id -5
i 3-j4

|

cell 2.2

l_'

I
[] '

|
i
S

Figure 7.1 The individual elements of a cell array may point to real arrays, complex arrays. string,
other cell arrays, or even empty arrays.

324 | Chapter 7 Advanced Features

| -~

g ——— T

‘This is a
text string.’
3(1?)/ a(1,2) /

a(2,1) [a(2,2)

e [————

Figure 7.2 Each ¢lement of a cell array holds a pointer to another data structure, and different cells
in the same cell array can point to different types of data structures.

in Figure 7.2. Then the contents of elementa (1, 1) is a data structure containing
a3 X 3 array of numeric data, and a reference to a (1,1) displays the confents
of the cell, which is the data structure.

» a(l,1)
ans =
[3x3 double]

By contrast, a reference toa{1, 1} displays the contents of the contents of the cell.

» a{1,1}
ans =
R
g. 0 .6

72 Cell Arrays | 325

In summary, the notation a (1,1) refers to the contents ofcella(1,1) (which
is a data structure), while the notation a{l,1} refers to the contents of the data
structure within the cel].

T Trear.

Be careful not to confuse O with {} when addressing cell arrays. They are very

different 5perations!

Creating Cell Arrays
Cell arrays can be created in the following two ways:

® By using assignment statements
® By preallocating a cell array using the cel1 function

The simplest Way to create a cell array is to directly assign data to individual
cells, one cell at a time. However, preallocating cell arrays is more efficient, so
you should preallocate really large cell arrays,

Allocating Cell Arrays Using Assignment Statements 5
You can assign values to cell arrays onc cell at a time using assignment state-
ments. There are two wavs to assign data 1o cells, known as content indexing and

cell indexing,

Content indexing involves placing braces “{}" around the cell subscripts,
together with cell contents in ordinary notation, For example, the following state-
ment create the 2 X 2 cel] array in Figure 7.2:

a{l,1} = [1 3 -7; 2 ¢ 67085 1}

afl;2} = '"This is 5 text string.';
a{2,1) = [3+4+% —2; =10%1 3 - 4*i]s
a{2,2} = [];

This type of indexing defines the contents of the data structure contained in a cell.

Cell indexing involves placing braces “{}” around the data to be stored in a
cell, together with cell subseripts in ordinary subscript notation. For example, the
following statement create the 2 x 2 cell array in Figure 7.2:

a(l,;1) = @[1 3 ~7: B O 6: 0 5 1]}

af{l,2) = {'This is a text string,'}:
a(2,1) = {[3+4~1 =53 -10#*1i 3 - 4*11});
al2,2) = {[1};

This type of indexing creates a data Structure containing the specified data and
then assigns that data structure to a cell.

326 | Chapter 7 Advanced Feztures

These two forms of indexing are completely equivalent, and they may be freely
mixed in any program.

= -

Do not attempt to create a cell array with the same name as an existing numeric

array. If you do this, MATLAB will assume that you are trying to assign cell
contents to an ordinary array, and it will generate an error message. Be sure to
clear the numeric array before trying to create a cell a

rrav with the same name.

Preallocating Cell Arrays with the cell Function

The cell function allows you to preallocate empty cell arrays of the specified
size. For example, the following statement creates an empty 2 X 2 cell array.

a=cell(2,2);

Once a c¢ll array in created, you can usc assignment statements to fi
the cells.

11 values in

Using Braces {} as Cell Constructors

It is possible to define many cells at once‘ny placing all of the cell contents
between a single set of braces. Individual cells on a row are separated by commas,
and rows are separated by semicolons. For example, the following statement cre-
ates a 2 N 3 cell array:

poe CTL B0, I7: (2480 3474, 'Hello', eye(3)}

Viewing the Contents of Cell Arrays

MATLARB displays the data structures in each element of a cell array in a condensed
form that limits each data structure to a single line. If the entire data structure can
be displayed on the single line, it is. Otherwise, a summary is displayed. For exam-
ple, cell arrays a and b would be displayed as:

» a
a =
[3x3 doublel] [1x22 char] /
[2x2 double] il
» b
b -~
[1x2 doublel [171 [2x1 doublel
[3.0000- 4.00001) ‘Hello' 3x3 double]

Note that MATLAB is displaying the data structures, complete with brackets or
apostrophes, not the entire contents of the data structures.

72 CellArrays | 327

Figure 7.3 The structure of cell array b is displayed as a nested series of boxes by function cellplot.

5

If you would like to see the full contents of a cell array, use the cel ldisp
function, This function displays the contents of the data structures in each cel]

» celldisp(a)

a1l =
1 3 4
2 0 8
0 s 1
atd. 13 =

3.0000 + 4.00001 -5.0000
0 -10.0000i 3.0000 - 4.00001
af{l,2} =
This is a text string.
a(2,2) =
[]

For a high-level graphical display of the structure of a cell array, use function
cellplot. For example, the function cellplot (b) produces the plot shown
in Figure 7.3.

Extending Cell Arrays

If a value is assigned to a cell array element that does not currently exist, the ele-
ment will be automatically created, and any additional cells necessary to preserve

328 | Chapter 7 Advanced Features

the shape of the array will be automatically created. For example, suppose that
array a has been defined to be a 2 X 2 cell array as shown in Figure 7.1. If the
following statement is executed

a{3,3}) = 5

the cell array will be automatically extended 10 3 X 3, as shown in Figure 7.4.
Preallocating cell arrays with the ce11 function is much more efficient than
extending the arrays one element at a time using assignment statements. When a
new element is added to an existing array as we did above, MATLAB must create
a new array large enough to include this new element, copy the old data into the
‘new array, add the new value to the array, and then delete the old array. This is a
very time-consuming process. Instead, you should always allocate the cell array
to be the largest size that you can, and then add values to it onc element at a time.
If you do that, only the new element needs to be added; the rest of the array can
i remain undisturbed.

cell 1,1 7 cell 1,2 cell 1.3
1 -
2 0 6 *Thisisa text string," []
0 1
cell 2.1 cell 2,2 cell 2.3
3+id -5 3
|
: [—fl{) 3-;'4] 8 L] b
cell 3,1 cell 3,2 cell 3,3

Figure 7.4 The result of assigning a value to a{3,3). Note that four other empty cells were created

L3

to preserve the shape of the cell array. -

]

72 CellArrays | 329

The program shqwn below illustrates the advantages of preallocation. It cre-
ates a cell array containing 50,000 strings added one at a time, with and without

preallocation,

Script file: test_preallocate.m

Purpose:

This BFogram tests the creation of cell arrays with

and without prealloca tion.

Date Programmer

01r18/04 S. J. Chapman
Define variables:
a == Cell array

%

%

%

2

%

%

¥ Record of revisions:
%

%

%

%

%

g

% = Maximum values in

maxvals
% Create array without vreallocation
clear all
maxvals = 50000;
tic
for ii = 1l:maxvals

a{ii) = ['Element °* int2str(ii)];
end

disp(['Elapsed time without preallocation = °

% Create array with Preallocation
clear all
maxvals =
tic
a = cell(l,maxvals);
for ii = 1:maxvals
a{ii} = ['Element *
end
disp(

50000;

int2str(ii)];

['Elapsed time

Description of change

Original code

cell array

num2str(toc)])z

with preallocation = num2str(toc)])i

When this program is executed using MATLAB 7.0 on a 2.4 GHz Pentium IV

computer, the results are as shown
obvious,

» test_preallocate
Elapsed time

without pPreallocation =
Elapsed time with pPreallocation

below. The advantages or preallocation are

13.079
4.313

1}

330 | Chapter 7 Advanced Features

Always preallocate all cell arrays before assigning values to the elements of the

array. This practice greatly increases the execution speed of a program.

Deleting Cells in Arrays
To delete an entire cell array, use the clear command. Subsets of cells may be
deleted by assigning an empty array to them. For example, assume that a is the
3 % 3 cell array defined above.

"

¥
a
[3x3 double] [1x22 char] []

[2x2 double] [] (]
[] {1 [5]

It is possible to delete the entire third row with the statement

» a(3,:) = []
a = €

[3x3 double] [1x22 char] 1
[2x2 double] [1 (]

Using Data in Cell Atrays

The data stored inside the data structures within a cell array may be used at any
time. with either content indexing or cell indexing. For example. suppose that a

cell array c is defined as
e = {[1 2:3 4), 'dogs’'; 'cats', i}

The contents of the array stored in cell c(1,1) can be accessed as follows

» e{1,1}
ans =
1 2
3 4 7

and the contents of the array incell (2, 1) can be accessed as follows

» c{2,1}

ans =

cats

Subsets of a cell’s contents can be obtained by concatenating the two sets of
subscripts. For example, suppose that we would like to get the element (1, 2) from

72 CellArrays | 331

the array stored in cell ¢ (1,1) of cell array <. To do this, we would use the
expression c{1,1} (1, 2), which says: select element (1, 2) from the contents
of the data structure contained in cell e, 1),

» e{1,13(1,2)
ans =
2

/

Cell Arrays of Strings

It is often convenient to store groups of strings in a cell array instead of storing
them in rows of a standard character array, because each string in a cell array can
have a different length, while every row of a cell array must have an identical
length. This fact means that strings in cell arrays do not have to be padded with
.blanks, Many MATLAB Graphical User Interface functions use cell arrays for
precisely this reason, as is shown in Chapter 10.

Cell arrays of strings can be created in one of two ways. Either the individual
strings can be inserted into the array with brackets, or else function cellstr can
be used to convert a 2-D string array into a cell arrav of strings.

The following example creates a cell array of strings by inserting the strings
into the cell array one at a time: it then displays the resulting cell array. Note that
the individual strings can be of different lengths.

cellstring{1l) = 'Stephen J. Chapman';

»
» cellstring{2)} = 'Male’;
» cellstring{3} = 'SSN 999-99-9999"';
» cellstring
'Stephen J. Chapman' 'Male' 'SSN 999-99-99g9:+

Function cellstr creates a cell array of strings from a 2-D string array.
Consider the character array

» data = ['Line 1 '7'Additional Line']

data =
Line 1
Additional Line

This 2 X 15 character array can be converted into an cell array of strings with the
function cellstr as follow:

» ¢ = cellstr(data)
o=
‘Line 1
'Additional Line’

and it can be converted back to a standard character array using function char

332 | Chapter 7 Advanced Features

» newdata = char(c)
newdata =

Line 1

Additional Line

The Significance of Cell Arrays

Cell arrays are extremely flexible, since any amount of any type of data can be
stored in each cell. As a result. cell arrays are used in many internal MATLAB
data structures. We must understand them in order to use many features of the
MATLAB Graphical User Interface, which we will study in Chapter 10.

In addition, the flexibility of cell arrays makes them regular features of func-
tions with variable numbers of input arguments and output arguments. A special
input argument, varargin, is available within user-defined MATLAB func-
tions to support variable numbers of input arguments. This argument appears as
the last item in an input argument list, and it returns a cell array; therefore, a sin-
gle' dummy input argument can support any number of actual arguments. Each
actual argument becomes one element of the cell array returned by varargin.
Ifit is used, varargin must be the last input argument in a function, following
all of the required input arguments.

For example, suppose that we are writing a function that may have any num-
ber of input arguments. This function could be implemented as shown:

function testl (varargin)

disp(['There are ' int2str(nargin) ' arguments.']):;
disp('The input arguments are:');

disp (varargin) ;

end % function testl
When this function is executed with varying numbers of arguments, the results are:

» testl

There are 0 arguments.
The input arguments are:
» testl(6)

There are 1 arguments.
The input arguments are:

(6] 4
» testl(l,'test 1',[1 2;3 4])
There are 3 arguments.
The input arguments are:

[1] ‘test 1° [2x2 double]

As you can see, the arguments become a cell array within the ﬁmctioE.
A sample function making use of variable numbers of arguments is shown
below. Function plotline accepts an arbitrary number of 1 X 2 row vectors,

72 CellArrays | 333

with each vector containing the (x, y) position of one point to plot. The function
plots a line connecting all of the (x, y) values together. Note that this function also
accepts an optional line specification string and passes that specification on to the
plot function.

function plotline(varargin)

$PLOTLINE Plot points specified by [x,y] pairs.

$ Function PLOTLINE accepts an arbitrary number of
% [x,y] points and plots a line connecting them,

% In addition, it can accept a line specification

% string, and pass that string on to function plot.
% Define variables:
% ii -- Index variable
% 33 -- Index wvariable
% linespec -- String defining plot characteristics
% msg -- Error message
¥ wvarargin -- Cell array containing input arguments
£ x -- % values to plot
2 v -- ¥ values to plot
Record of revisions:
Date Programmer Description of changs
01/18/04 S. J. Chapma# Original code

Check for a legal number of input arguments.
We need at least 2 points to plot a line...
msg = nargchk(2,Inf,nargin);

error (msg) ;

P op P dP df op

. % Initialize values
33 = 0;
linespec = '';
% Get the x and y values, making sure to save the line
% specification string, if one exists.
for ii = 1l:nargin
% Is this argument an (x,y] pair or the line
% specification?
if ischar(varargin{ii})
% Save line specification
linespec = varargin{ii};

else
% This is an [x,y] pair. Recover the values.
33 = 33 ® 15

334 |

Chapter 7

Advanced Features

varargin{ii} (1) ;
varargin{ii} (2);

x(33)
y(3ij)

il

end
end

% Plot function.

if isempty(linespec)
plot(x,y);

else
plot(x,y,linespec);

end

end % function plotline

When this function is called with the arguments shown below, the plot shown
in Figure 7.5 is the result. Try the function with different numbers of arguments
and see for yourself how it behaves.

"plotline([0 01,1 1],[2 41,3 9], 'k--");

There is also a special output argument, varargout, to support variable
numbers of output arguments. This argument appears as the last item in an output

€

 Houre |

Figure 7.5 The plot produced by function plotline. &

7.2 CellArrays | 335

argument list, and it returns a cell array; therefore, a single dummy output argument
" can support any number of actual arguments. Each actual argument becomes one
element of the cell array stored in varargout.

Ifitis used, varargout must be the last output argument in a function, fol-
lowing all of the required input arguments. The number of values to be stored in
varargoit can be determined from function nargout, which specifies the
number of actual output arguments for any given function call,

A sample function test2 is shown below. This function detects the number
of output arguments expected by the calling program, using the function nargout.,
It returns the number of random values in the first output argument and then fills
the remaining output arguments with random numbers taken from a Gaussian dis-
tribution. Note that the function uses varargout to hold the random numbers:
consequently, there can be an arbitrary number of output values.

function [nvals,varargout] = test2 (mult)
% nvals is the number of rander values returned
% varargout contains the random values returned

nvals = nargout - 1;

for i = 1:nargout-1
varargout{ii} = randn * mulz;

end

end ® function test2

When this function is executed, it produces the results shown below.

» test2(4)
ans =

-1
» [a b c d] = test2(4)
a =

3
b =

-1.7303
& =

-6.6623
d =

€.5013

Use cell array arguments varargin and va rargout 1o create functions that

support varying numbers of input and output arguments.

336

Chapter 7

Advanced Features

Table 7.2 Common MATLAB Cell Functions

Function Description

cell Predefine a cell array structure.

celldisp Display contents of a cell array.

cellplot Plot structure of a cell array.

cellstr Convert a 2-D character array to a cell array of strings.
char Convert a cell array of strings to a 2-D character array.

Summary of cell Functions

The common MATLAB cell functions are summarized in Table 7.2.

7.3 Structure Arrays

An arrav is a data type in which there is a name for the whole data structure, but
individual elements within the array are known only by number. Thus, the fifth
element in the array named arr would be accessed as arr (5) . All of the indi-
vidual elements in an arrav must be of the same tvpe. €

A cell array is a data type in which there is a name for the whole data struc-
ture, but individual elements within the array are known only by number.
However. the individual elements in the cell arrav may be of different types.

In contrast, a structure is a data type in which each individual element is has
a name. The individual clements of a structure are known as fields. and each field
in a structure may have a different type. The individual fields are addressed by com-
bining the name of the structure with the name of the field. separated by a period.

Figure 7.6 shows a sample structure named student. This structure has
five fields, called name, addrl, city, state, and zip. The field called
“name” would be addressed as student . name. _

A structure array is an array of structures. Each structure in the array will
have identically the same fields, but the data stored in each field can differ. For
example, a class could be described by an array of the structure student. The
first student’s name would be addresséd as student (1) .name, the second
student’s city would be addressed as student (2) . gity, and so forth.

Creating Structure Arrays

Structure arrays can be created in the following two ways:

= A field at a time using assignment statements
= All at once using the struct function

7.3 Structure Arrays | 337

]
il
student &
/
namea
Jokn Doe
addrl
123 Main Street
city
Anvzown
state
zip
=213

Figure 7.6 A sample structure. Each element within the structure is called a field. and each field is
addressed by name.

Building a Structure with Assignment Statements

You can build a structure one field at a time using assignment statements. Each
time that data is assigned to a field, that field is automatically created. For exam-
ple. the structure shown in Figure 7.6 can be created with the following statements;

338 | Chapter 7 Advanced Features

» student.name='John Doe';

» student.addrl='123 Main Street';
» student.city ='Anytown';

» gtudent.zip='71211"*

s

tudent =
name: 'John Doe'
addrl: '123 Main Street'
city: 'Anytown'
state: ‘LA
zZ1ip: ‘73211

A second student can be added to the structure by adding a subscript to the
structure name (hefore the period).

» gtudent(2) .name = 'Jane Q. Public®
student =
1x2 struct array wlth flelds

name

addrl

city

state

zip

student is now a | X 2 array. Note that when a structure array has more than
one element, only the field names are listed, not their contents. The contents of
each element can be listed by typing the element separately in the Command

Window:
» gtudent (1)
ans =
name: 'John Doe’
addrl: '123 Main Street'
city: 'Anytown'
state: 'LA'
zip: “T1221°
» student (2)
ans =
name: 'Jane Q. Public®
addrl: []
ity L)
state: [1
zip: [1

Note that all of the fields of a structure are created for each array element when-
ever that element is defined, even if they are not initialized. The uninitialized
fields will contain empty arrays, which can be initialized wlth a551gnmenl state-
ments at a later time.

7.3 Structure Arr e | #2¢

The field names used in a structure can be recovered at any tin ¢ usiy
fieldnames function. This function returns a list of the field na:: .o »
array of strings, and is very useful for working with structure arrc s = 3n ¢
program.

Creating Structures with the struct Function

The struct function allows you to preallocate a structure or an ar~ . .- saIc-
tures/The basic form of this function is

'str':arr_ay = struct('fieldl’',vall, 'field2',val2, ...4

where the arguments are field names and their initial values. With ¢ s sy
function struct initializes every field to the specified value,

To preallocate an entire array with the struct function to the /as; vadl
the array. All of the values before that will be automatically created at tho s
time. For example, the statements shown below create an Array containing |
sturctires of type student . '

student (1000) = struct('name’, [].'addrl’, [],
: ‘ci:y',P,‘state‘.[],'::’_'

student =
1x1000 struct array with fields:

name

addrl

city

state

zip
All of the elements of the structure are preallocated, which will speed up any rng.
gram using the structure.

There is another version of the struct function that will preallcai

array and at the same time assign initial values to all of its field. You will | _. .|
to do this in an end of chapter exercise.

Adding Fields to Structures

If a new field name is defined for any element is a structure array, the £ |4 is
automatically added to all of the elements in the array. For example, sup, Vit
we add some exam scores to Jane Public’s record:

» student (2).exams = [90 82 88]
student =
1x2 struct array with fields:
name
addri
city
state
z1ip
exams

340 | Chapter 7 Advanced Features

o

Y e
There is now a fielfcalled exams in every record of the array, as shown'below.
This field will hg}initiaiized forggtudent (2), and will be an empty array for all
other students until appropriaf_é:issignmcnt statements are issued.

» student (1)
ans =

name:

addrl:

citys:

state:

zip:

v exams:

» student (2)
ans =

name:

addrl:

city:

state:

zip:

exams :

B,

John Doe

'123 Main Street'
'Anytown'

LA

i s B B

(]

'Jane Q. Public®
[]
[]
[]

[]
[90 82 88]

Removing Fields from Structures
A field may be gmoved from a structure array using the rmfield function. The

form of this function is:

struct2 =

where str_array is a structure array,
struct2 is the name of a new structure with that field removed. For example,

rmfield(str_array, 'field')

*field' is the field to remove, and

_we can remove the field " zip"' from structure array student with the follow-

\ _ ing statement:

» gtu2 = rmfield(student, 'zip')

%,

% Stu2 =

".1x2 struct array with fields:

+

. name
%, addrl
Y city

state

eXang

Using Data-in Structure Arrays

Now let’s assume that structure array student has been extended to include three
students and all data has been filled in, as shown in Figure 7.7. How do we use
the data in this structure array?

"o access the information in any field of any array element, just name the
array element followed by a period and the field name: -

73 StructureArrays | 34|

-

=grin

i
student
]
student(2) F student (3)
‘ll----l—-n_ et] Ry
- name .name «name
— Jokn Doe r— 'Jare). Public' —— Eig Bird'
.addril .addrl .addrl
— 123 MAin Street’ | ‘P. 3, Bex 17 e—]I} Sesame Strest”®
.city - .city .city
—— e —— Now ere — e, York*
-state .State .State
— ‘M — Y
.zi) W21 .21
P - 4 "HEZIE" -—p— *10(18"
-exams . 'migf 55 g8 - EXHAMB :s 5y gy
——— T "D s e e v s B39 haee =

Figure 7.7 The student array with three elements and all fields filled in.

» student (2).addr1l
‘ans =
P. O, Box 17
» student (3) .exams
ans =

65 84 81

To access an individual item within a field, add a subscript after the field name.

For example, the second exam of the third student is
» student (3) .exams (2)
ans =
84
The fields in a structure array can be used as arguments in any function that
supports that type of data. For example, 1o calculate student (2) s exam aver-
age, we could use the function

» mean(student (2). exams)

ans =
86.6667

342

I

Chapter 7 Advanced Features

Unfortunately, we can not extract the values from a given field across mul-
tiple array elements at the same time. For example, we cannot get access to an
array of zip codes with the expression student . zip. That expression returns
the three zip codes of the three students in three separate arrays. If we want to
get the zip codes of all of the students in a single array, we must use a for loop:

for ii = 1l:length(student)
zip(ii) = student(ii).zip;
end

Similarly, if we wanted to get the average of all exams from all students, we can-
not use the function mean (student .exams). Instead, we must build up an
array containing all the exam scores by accessing each student’s exams separately
and then call mean with that array.

exam_list = []; .
for ii = l:length(student)
exam_list = [exam_list student(ii).exams]);
end
mean (exam_list)

The getfie¥d and setfield Functions

Two MATLAB functions are available to make structure arrays easier to use in
programs. Function get field gets the current value stored in a field and func-
tion setfield inserts a new value into a field. The structure of function
getfieldis

getiield(array, {array_index}, 'field', {field_index})

where the field_index is optional and array_index is optional for a
I-by-1 structure array. The function call corresponds to the statement

f = array(array index) .field(field_index);

but it can be used even if the programmer doesn’t know the names of the fields
in the structure array at the time the program is written.

For example, suppose that we needed to write a fungtion to read and manipu-
late the data in an unknown structure array. This function could determine the field
names in the structure using a call to £ieldnames, and could then read the data
using function get £ield. To read the zip code of the second student, the func-
tion would be

» zip = getfield(student, {2}, 'zip")
- zip =
68888

e 18 PAm e

7.3 Structure Arrays | 343

Similarly, a program could modify values in the structure using function
setfield. The structure of function setfield is

f = setfield(array, (array_index)}, 'fielg' ,{field index},wvalue)

where £ is the output structure array, the field_index is optional, and
array_index is optional for a 1-by-1 structure array. The function call corre-
sponds to the statement

array(array_index).field(field_index) = value;

Dynamic Field Names

Beginning with MATLAB 7.0, there is an alternative way to access the elements of
a structure: dynamic field names. A dynamic field name is a string enclgsed in
parentheses at a location where a field name is expected. For example, the name of
student | can be retrieved with either static or dynamic field names as shown below:

» student (1) .name % Static field name
ans =

John Doe

» student(1).('ngne"') % Dynamic field name
ans =

John Doe

Dynamic field names perform the same function as static field names, but
dynamic ficld names can be changed during progvam execution. This allows a
user to access different information in the same furction within a program.

For example, the following function accepts a structure array and a field
name and calculates the average of the values in the specified field for all ele-
ments in the structure array. It returns that average (and optionally the number of
values averaged) to the calling program.

function [ave, nvals] = calc_average (structure, field)
%CALC_AVERAGE Calculate the average of values in a field.

%

%
k1
%

9 P dP oo oo

Function CALC_AVERAGE calculates the average value
of the elements in a particular field of a structure
array. It returns the average value and (opticnally)
the number of items averaged.

Define variables:

arr -— Array of values to average
ave -- Average of arr
i3 -- Index wvariable

344 |

Chapter 7 Advanced Features

% Record of revisions: -

% Date Programmer Description of change
% e ot T] —=s=======S=S===========
% 01/18/04 5. J. Chapman Original code

%

%

Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error (msg) ;

% Create an array of values from the field

arr = [];
for ii = 1:length(structure)

arr = [arr structure(ii).(field)];
end

% Calculate average
ave = mzanfarr);

% Return number of values averaged
if nargout ==

nvals = length(arr);
end

5

end % function calc_average

A program can average the values in different fields by simply calling this
function multiple times with different structure names and different field names.
For example, we can calculate the average values in fields exams and zip as

follows:

» [ave,nvals] = calc_average(student, 'exams’')
ave =
83.2222
nvals =
9
» ave = calc_average(student, 'zip')
ave =

50038

Using the size Function with Structure Arrays

When the size function is used with a structure array, it returns the size of
the structure array itself. When the size function is used with a field from a
particular element in a structure array, it returns the size of that field instead of
the size of the whole array. For example,

74 Function Handles | 345

—— by

; » size(student)

ans =
1 3
» pize(student (1).name)
ans =
1 8

Nesting Structure Arrays

Each field of a structure array can be of any data type, including a cell array or a
structure array. For example, the following statements define a new structure
array as a field under array studens to carry information about each class that

the student in enrolled in, i

student (1) .class(1).naze = 'COSC 2021'
student (1) .class(2).name = 'PHYS 1001
student (1) .class(1).instructor = 'Mr. Jones"
student(1l).class(2).instructor = 'Mrs. Smith'’

After these statements are issued, szudent (1) contains the following data.
Note the technique used to access the data in the nested structures.

» student (1)
ans = ’ g
name ; ‘John Doe*
addrl: '123 Main Street'
city: 'Anytown'
state: "LA!'
Zips YF1Z3an
exams: [B80 95 B4:
class: [1x2 struct]
» student(l).class

ans =
1x2 struct array with fields:
name
instructor
» student(1l).class(1)
ans =
name: 'COSC 2021°
instructor: ‘Mr. Jones'
» student(l).class(2)
ans =
name: ‘'PHYS 1001
instructor: 'Mrs. Smith'
» student(l).class(2).name
ans =

PHYS 1001

=

346 | Chapter 7 Advanced Featres

~Table 7.3 Common MATLAB Structure Functicns

Function Description

fieldnames Return a list of field names in a cell
array of strings.

getfield Get current value from a field.

rmfield Remove a field from a structure array.

setfield Set new value into a field.

struct Pre-define a structure array.

Summary of structure Functions

The common MATLAB structure functions are summarized in Table 7.3 on the

above.

7.4 Function Handles

A function handle is a MATLAB data type that holds information to be used in
referencing a function. When you create a function handle, MATLAB captures all
the information about the function that it needs to ecute it later on. Once the
handle is created. it can be used to execute the function at any time.

As is shown in Chapter 10, function handles are key to the operation of
MATLAB graphical user interfaces. We will learn about them here, and apply

that knowledge in Chapter 10.

Creating and Using Function Handles

A function handle can be created either of two possible way: the @ operator or the
str2func function. To create a function handle with the @ operator, just place
it in front of the function name. To create a function handle with the str2 func
function, call the function with the function name in a string. For example, sup-
pose that function my_func is defined as follows:

function res = my func(x)

reg = w02 = P4 4 1

end % function my_ func
Then either of the :i‘ollowing lines will create a function handle for function
my_func:

hndl
hndl

@my_func
str2func{ 'my_func');

]

7.4 Function Handles | 347

Once a function handle has been created, the function can be executed by
naming the function handle followed by any calling parameters. The result will be
exactly the same as if the function itself were named.

» hndl = @my_func
hndl =
@my_func
» hndl(4)
ans =
I

prj

» my_ func(4)
ans =
3
If a function has no calling parameters, then the function handle must be followed
by empty parentheses when it is used to call the function:

» hl = @randn;
» hl()
ans =
-0.4326
After a function handle is created. it appears in the current workspace with the
data type “function handle™:

» ﬁhon

Name Size Bytes Class

ans 1x1 8 double array

hl 1x1 16 function_handle array
hndl 1xl 16 function_handle array

Grand total 1s 3 elements using 40 bytes

A function handle can also be executed using the feval function. This pro-
vides a convenient way to execute function handles within a MATLAB program.

» feval (hndl,d)
ans =
9

It is possible to recover the function name from a function handle using the
func2str function.

» func2str(hndl)
ans =
my_func

‘This feature is very useful when we want to create descriptive messages, error mes-_.
sages, or labels inside a function that accepts and evaluates function handles. For

348 | Chapter 7 Advanced Features
example, the function shown below accepts a function handle in the first argument,
and plots the function at the points specified in the second argument. It also prints
out a title containing the name of the function being plotted.

function plotfunc(fun,points)

% PLOTFUNC Plots a function between the specified points.
% Function PLOTFUNC accepts a function handle, and

% plots the function at the points specified.

% Define variables:

% fun -- Function handle

% msg —-=- Error message

%

% Record of revisions:

% Date Programmer Description of change
% === ====oooo—c— S====s===============
% 01/21/04 5. J. Chapman Original code

%

Check for a lezal number of input arguments.
msg = nargchk(2,.,nargin);
error {msg) ;

% Get function nzme
fname = func2str(fun);

% Plot the data znd label the plot
plot(points, fun(points)) ;
title(['\bfPlot cf ' fname (x) vs x']);
xlabel ('\bfx');
ylabel (['\bf' fname '(x)']);

. grid on;

end % function plotfunc
For example, this function can be used to plot the function sin x from — 27 t0 21
with the following statement:
plotfunc(€sin, [-2*pi :pi/10:2%pi])

The resulting function is shown in Figure 7.8.
Some common MATLAB functions used with function handles are summa-
rized in Table 7.4.

The Significance of Function Handles

Either function names or function handles can be used to execute most functions.
However, function handles have certain advantages over function names. These
advantages include:

-~ .

7.4 Function Handles | 349

A Figuee 1
Fle EdT Wiew . Ireet Took - Window Hep 00
Deda tlaans v iB D

rdh o g, o e

Plotofenfovex _

Figure 7.8 Plot of function sin x from —2r to 2, created using function plot fune.

1. Passing Function Access Information to Other Functions. As we saw
in the previous section, you can pass a function handle as an argument in
a call to another function. The function handle enables the receiving func-
tion to call the function attached to the handle. You can execute a function
handle from within another function even if the handle 5 function is not in
the scope of the evaluating function. This 1s because the function handle
has a complete description of the function to execute; the calling function
does not have to search for it.

2. Improved Performance in Repeated Operation. MATLAB performs a
search for a function at the time you create a function handle and then

Table 7.4 MATLAB Functions that Manipulate Function Handles

Function Description

@ Create a function handle.

feval Evaluate a function using a function handle.

func2str Recover the function name associated with a given function handle,
functions Recover miscellaneous information from a function handle. The

data is returned in a structure.
str2func Create a function handle from a specified string.

350

r

Chapter 7 Advanced Features

stores this access information in the handle itself, Once defined, you can

- use this handle over and over without having to look it up again. This

makes function execution faster.

Allow Wider Access to Subfunctions and Private Functions. All

MATLAB functions have a certain scope. They are visible to other

MATL AB entities within that scope but not visible outside of it. You can

call a function directly from another function that is within its scope, but

not from a function outside that scope. Subfunctions, private functions,
and nested functions are limited in their visibility to other MATLAB
functions. You can invoke a subfunction only from another function that
is defined within the same M-file. You can invoke a private function only
from a function in the directory immediately above the private subdi-
rectory. You can invoke a nested function only from within the host func-
tion or another nested function at the same level. However, when you
create a handle to a function that has limited scope, the function handle
stores all the information MATLAB needs to evaluate the function
from any location in the MATLAB environment. If you create a handle

10 a subfunction within the M-file that defines the subfunction, you can

then pass the handle to code that resides outside of that M-file and

evaluate the subfunction from beyond its usual scope. The same holds
true for private functions and nested functions.

4. Include More Functions per M-File for Easier File Management. You
can use function handles to help reduce the number of M-files required to
contain your functions. The problem with grouping a number of functions
in one M-file has been that this defines them as subfunctions, and thus
reduces their scope in MATLAB. Using function handles to access these
subfunctions removes this limitation. This enables you to group func-
tions as you want and reduce the number of files vou have to manage.

(FY]
.

Function Handles and Nested Functions

When MATLAB invokes an ordinary function, a special workspace is created 1o
contain the function’s variables. The function executes to completion, after which
the workspace is destroyed. All the data in the function workspace is lost, except
for any values labeled persistent, If the function is executed again, a com-
pletely new workspace is created for the new execution.

By contrast, when a host function creates a handle for a nested function and
returns that handle to a calling program, the host function’s workspace is created
and remains in existence for as long as the Sunction handle remains in existence.
Since the nested function has access to the host function’s variables, MATLAB
has to preserve the host's function’s data as long as there is any chance that the
nested function will be used. This means that we can save data in a Junetion
between uses. '

This idea is illustrated in the function shown below. When function
count_calls is executed, it initializes a local variable current_count to

351

74 Function Handles

a user-specified initial count and then creates and returns a handle to the nest-
ed furction increment _count. When inzrement_count is called using
that function handle, the count is increased by one and the new value is returned.

function fhandle = count_calls(initial value)

t Save initial value in a lecal variable
§ in the host function.
current_count = initial_ value;

% Create and return a functizn handle to the
% nested function below.
fhandle = @increment_count;

% Define a nested functio= to increment counter
function count = increment count

current_count = current_ccunt + 1;

count = current_count;

end % function increment_count

end % function count_calls

When this program is executed. the results are 1s shown below, Each call to the
functicn handle increments the count by one. €

» fh = count_calls(4);
» fh()
ars =
5
» fh()
ans =
6
» £h()
ans =
7
Even more importantly, each Junction handle created for a Junction has its
own independent workspace. If we create two diferent handles for this function,
each one will have its own local data and they will be independent of each other.
As you can see, we can increment either counter independently by calling the

function with the proper handle.

» fhl = count_calls(4);

» fh2 = count_calls(20):

» fhi()

ans =
5

» fhil() =

ans = k
6

352 | Chapter 7 Advanced Features

» £h2()
ans =

21

» fhl()
ans =

7

You can use this feature to run multiple counters and so forth within a program

without them interfering with each other.

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Sections 7.1 through 7.4, If you have trouble with the

quiz, reread the section, ask your instructor, or discuss the material with

a fellow student. The answers to this quiz are found in the back of

the book.

|. What is a sparse array? How does it differ from a full array? How can

you convert from a sparse array to a full array and vice versa?

What is a cell array? How does it differ from an ordinary array?

What is the difference between content indexing and cell indexing?

What is a structure? How does it differ from oflinary arrays and

cell arrays?

What is the purpose of varargin? How does it work?

6 What is a function handle? How do you create a function handle?
How do you call a function using a function handle?

7. Given the definition of array a shown below, what will be produced
by eich of the following sets of statements? (Note: some of these
statements may be illegal. If a statement is illegal, explain why.)

a{l,1y = {1 2 3: 45 86; 7 8 8);

B

Lh

al(l,2) = {('Comment line'};
a(2.1} = j:
a{2,2) = a{1,1} - a{1,1}(2,2);
(@) a(l,1)
() a{l,1}

(c) 2*a(l,1l)

(d) 2*a{l,1}

(e) a{2,2)

(fHa(z,3) = {[-17: 17])

(g) a{2,2}(2,2)

8. Given the definition of structure array b shown below, what will be
produced by each of the following sets of statements? (Note: some

7.5 Summary | 353

of these statements may be illegal. If a statement is illegal, explain

why.)
b(l).a = -2*eye(3):
b(l).b = *Element v
Bi{l)ve = [1 2 3]3
b{2).a = [b(l).c' [-1; -2; =37 Bil).e"];
b(2).b = 'Element 2';
B8 = [0 1]

(@) b(l).a - b(2).a

(b) strnemp(b(1).b,b(2) .b,6)

(c) mean(b(l).c)

(d) mean(b.c)

(e) b

()b(1l).('b")

g b(1)

9. What will be returned by the following function, if it is called with
the expression my fun (€cosh)?

function res = myfun(x)
res = func2str(x);
end % function myfun

7.5 Summary

Sparse arrays are special arrays in which memory is allocated only for nonzero
clements. Three values are saved for each nonzero element—a row number, a col-
umn number, and the value itself, This form of storage 15 much more efficient
than for arrays for the situation where only a tiny fraction of the elements are
nonzero. MATLAB includes functions and intrinsic calculations for sparse arrays,
so they can be freely and transparently mixed with full arrays.

Cell arrays are arrays whose elements are cells, containers that can hold other
MATLARB arrays. Any sort of data may be stored in a cell, including structure
arrays and other cell arrays. They provide a very flexible way to store data and are
used in many internal MATLAB graphical user interface functions.

Structure arrays are a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and each field
in a structure may have a different type. The individual fields are addressed by
combining the name of the structure with the name of the field, separated by a
period. Structure arrays are useful for grouping together all of the data related to
a particular person or thing into a single location.

Function handles are a special data type containing all the information

" required to invoke a function. Function handles are created with the @ operator or

354 | Chaﬁer? Advanced Features

the str2 func function and are used by naming the handle following by paren-
theses and the required calling arguments. If a function handle is created for a
nested function, the workspace of the host function will be preserved between
calls to the nested function using the function handle.

@

cell
celldisp
cellplot
cellstr
feval
fieldnames

funcistr

functions

getfield
full
nnz

NONZercs

nzmax
rmfield
setfield
spalloc
sparse
speye
spfun
spones
sprand
sprandn
sprintf
spY
str2func

struct

Create a function handle.

Predefine a cell array structure.

Display contents of a cell array.

Plot structure of a cell array. -
Convert a 2-D character array to a cell array of strings.
Evaluate a function using a function handle.

Return a list of field names in a cell array of strings.

Get the name of the function pointed to by the specified
function handle.

Recover misce!laneous information from a function handle
in a structure.

Get current value from a field.
Convert a sparse matrix into a full matrix
Number of nonzero matrix elements.

Return a column vector containing the nonzero elements
in a matrix.

Amount of storage allocated for nonzero matrix elements,
Remove a field from a structure array.

Set new value into a field.

Allocate space for a sparse matrix.

Convert a full matrix into a sparse matrix.

Create a sparse identity matrix.

Apply functien to nonzero matrix elements.

Replace nonzero sparse matrix elements with ones
Create a sparse uniformly—distributed random matrix.
Create a sparse normally-distributed random matrix.
Write formatiad data to string.

Visualize sparsity pattern as a plot

Create a function handle for the function named in a string
argument.

Preallocate a structure array

7.6 Exercises | 355

Summary of Good Programming Practice

The following guidelines should be adhered to:

. Always preallocate all cell arrays before assigning values to the elements of

the array. This practice greatly increases the execution speed of a program.

2. Use cell array arguments varargin and varargout to create func-

tions that support varying numbers of input and output arguments,

MATLAB Summary

The summary (see page 354) lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

7.6 Exercises

7.1

7.2

7.3

7.4

Write a MATLAB function that will aceept a cell array of strings and sort
them into ascending order according to the lexicographic order of the
ASCII character set. (You may use function c_stremp from Chapter 6
for the comparisons if you wish.) 3

Wnite a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to alphaberical order. (This implies
that you must treat ‘A" and ‘a’ as the same letter.)

Create a sparse 100 X 100 array a in which about 5% of the elements
contain normally distributed random values and zll of the other elements
are zero (use function sprandn to generate these values). Next, set all of
the diagonal elements in the array to 1. Next, define a 100-element sparse
column array b and initialize that array with 100 uniformly distributed
values produced by function rand. Answer the following questions about
these arrays:

(a) Create a full array a_full from the sparse array a. Compare the
memory required to store the full array and the sparse array. Which is
more efficient?

(b) Plot the distribution of values in array a using function spy.

(c) Create a full array b_full from the sparse array b. Compare the
memory required to store the full array and the sparse array. Which is
more efficient? g

(d) Solve the system of equations a * x = b for using both the full
arrays and the sparse arrays. How do the two sets of answers com-
pare? Time the two solutions. Which one is faster?

Create a function that accepts any number of numeric input arguments and
sums up all of individual elements in the arguments. Test your function by

356

Chapter 7 Advanced Features

1.5

7.6

T 4

7.8

' | 4 1 0 3
passing it the four argumentsa = 10,b= (-2 [c=|-5 1 2 |and
2 1 20

d=[l 5 -2].
Modify the function of the previous exercise so that it can accept either
ordinary numeric arrays or cell arrays containing numeric values. Test your

1 4
function by passing it to the two arguments a and b, where a = [_2 3:’-

b{l}=[l 5 2],andb{2}=|:; _f:‘

Create a structure array containing all of the information needed to plot a
data set. At a minimum, the structure array should have the following
fields:

B x data x-data (one or more data sets in separate cells)
® v _data v-data (one or more data sets in separate cells)
B typs linear, semilogx, etc.

® ploz_title plottitle

®m x label v-axis label

"y label y-axis label

B x range x-axis range to plot

® vy range y-axis range to plot

You may add additional fields that would enhance your control of the final
plot, ’

Atter this structure array has been created, create a MATLAB func-
tion that accepts an array of this structure and produces one plot for each
structure in the array. The function should apply intelligent defaults if
some data fields are missing. For example, if the plot_title field is
an empty matrix, the function should not place a title on the graph. Think
carefully about the proper defaults before starting to write your function!

To test your function, create a structure array containing the data for
three plots of three different types and pass that structure array 10 your
function. The function should correctly plot all three data sets in three dif-
ferent figure windows.

Define a structure point containing two fields x and y. The x field will
contain the x-position of the point, and the y field will contain the y-position
of the point. Then write a function dist3 that accepts two points, and
returns the distance between the two points on the Cartesian plane. Be
sure to check the number of input arguments in your function.

Write a function that will accept a structure as a argument and return two
cell arrays containing the names of the fields of that structure as well as
the data types of each field. Be sure to check that the input argument is a
structure and generate an error message if it is not.

7.9

7.10

.11

7.12

7.13

76 [Exercises | 357

Werite a function that will accept a structure array of student as defined
in this chapter, and calculate the final average of each one assuming that
all exams have equal weighting, Add a new field to each array to contain
the final average for that student, and return the updated structure to the
calling program. Also, calculate and return the final class average.

Write a function that will accept two arguments, the first a structure array
and the second a field name stored in a string. Check to make sure that
these input arguments are valid. If they are not valid, print out an error
message. If they are valid and the designated field is a string, concatenate
all of the strings in the specified field of each element in the array and
return the resulting string to the calling program.

Calculating Directory Sizes. Function dir returns the contents of a
specified directory. The dir command returns a structure array with four
fields. as shown below:

» d = dir('chap7"')

a =
36x1 struct array with fields:
name
date
bytes
isdir

The field name contains the names of each file, date containsﬁhe last
modification date for the file, bytes contains the size of the file in bytes,
and isdir is 0 for conventional files and 1 for directories. Write a func-
tion that accepts a directory name and path and returns the total size of all
files in the directory, in bytes.

Recursion. A function is said to be recursive if the function calls itself.
Modifv the function created in Problem 7.11 so that it calls itself when it
finds a subdirectory and sums up the size of all file in the current direc-
tory plus all subdirectories. *

Function Generators. Write a nested function that evaluates a polyno-
mial of the form y = ax* + bx + ¢. The host function gen_func
should have three calling arguments—a, b, and c—to initialize the coef-
ficients of the polynomial. It should also create and return a function han-
dle for the nested function eval_func. The nested function
eval_func (x) should calculate a value of y for a given value of x,
using the values of a, b, and c stored in the host function. This is effec-
tively a function generator, since each combination of a, b, and ¢ values
produces a function handle that evaluates a unique polynomial. Then per-

form the following steps:

(a) Call gen_func(1,2,1) and save the regulting function handle in
variable h1. This handle now evaluates the function y = x? + 2x + 1.

358 | Chapter 7 Advanced Features

7.14

7.15

(b) Call gen_func(1,4,3) and save the resulting function handle in
variable h2. This handle now evaluates the function y =-x* + 4x + 3.

(¢) Write a function that accepts a function handle and plots the specified
function between two specified limits.

(d) Use this function to plot the two polynomials generated in parts (a)
and (b) above.

Function Generators. Generalize the function generator of the previ-
ous problem to handle polynomial of arbitrary dimension. Test it by creat-
ing function handles and plots the same way that you did in the previous
problem. [Hint: Use varagrin.]

Look up function struct in the MATLAB Help Browser, and learn how
to preallocate a structure and simultaneously initialize all of the elements
in the structure array to the same value. Then create a 2000 element array
of type student, with the values in every array element initialized with
the fields shown below:

name: 'John Doe’

addrl: '123 Main Street’
city: ‘Anytown’
state: ‘LA’
zip: ‘71211

