
CHAPTER 5
User-Defined
Functions

In Chapter 3, we learned the importance of good program design. The basic
technique that we employed was top-down design. In top-down design, the
programmer starts with a statement of the problem to be solved and the
required inputs and outputs. Next, he or she describes the algorithm to be
implemented by the program in broad outline, and applies decomposition to
break the algorithm down into logical subdivisions called sub-tasks. Then, the
programmer breaks down each sub-task until he or she winds up with many
small pieces, each of which does a simple, clearly understandable job. Finally, the
individual pieces are turned into MATLAB code.

Although we have followed this design process in our examples, the results
have been somewhat restricted, because we have had to combine the final MATLAB
code generated for each sub-task into a single large program.There has been no
way to code, verify, and test each sub-task independently before combining them
into the final program.

Fortunately. MATLAB has a special mechanism designed to make sub-tasks
easy to develop and debug independently before building the final program. It is
possible to code each sub-task as a separate function, and each function can be
tested and debugged independently of all of the other sub-tasks in the program.

Well-designed functions enormously reduce the effort required on a large
programming project.Their benefits include:

I. Independent testing of sub-tasks. Each sub-task can be written as an
independent unit.The sub-task can be tested separately to ensure that it
performs properly by itself before combining it into the larger program.
This step is known as unit testing. It eliminates a major source of prob-
lems before the final program is even built.

199

200	 Chapter 5 User-Defined Functions

2. Reusable code. In many cases, the same basic sub-task is needed in
many parts of a program. For example, it may be necessary to sort a list
of values into ascending order many different times within a program or
even in other programs. It is possible to design, code, test, and debug a
single function to do the sorting and then to reuse that function when-
ever sorting is required.This reusable code has two major advantages: it
reduces the total programming effort required, and it simplifies debug-
ging, since the sorting function needs to be debugged only once.

3. Isolation from unintended side effects. Functions receive input
data from the program that invokes them through a list of variables
called an input argument list, and return results to the program
through an output argument list. Each function has its own work-
space with its own variables, independent of all other functions and of
the calling program. The only variables in the calling program that can be
seen by the function are those in the input argument list, and the only vari-
ables in the function that can be seen by the calling program are those in
the output argument list.This is very important, because accidental pro-
gramming mistakes within a function can affect only the variables with-
in function in which the mistake occurred.

Once a large program has been written and released, it must be main-
tained. Program maintenance involves fixing bugs and modifying the program to
handle new and unforeseen circumstances. The programmer who modifies, a
program during maintenance is often not the person who originally wrote it.
In poorly written programs, it is common for the programmer modifying the
program to make a change in one region of the code, and to have that change
cause unintended side effects in a totally different part of the program. This
happens because variable names are reused in different portions of the pro-
gram. When the programmer changes the values left behind in some of the
variables, those values are accidentally picked up and used in other portions of
the code.

The use of well-designed functions minimizes this problem by data hiding.
The variables in the main program are not visible to the function (except for
those in the input argument list), and the variables in the main program cannot
be accidentally modified by anything occurring in the function. Therefore, mis-
takes or changes in the function's variables cannot accidentally cause unintended
side effects in the other parts of the program.

Break large program tasks into functions whenever practical to achieve the
important benefits of independent component testing, reusability, and isolation
from undesired side effects.

5. I Introduction to MATLAB Functions I 20 I

S.1 Introduction to MATLAB Functions
All of the M-files that we have seen so far have been script flies. Script files are

just collections of MATLAB statements that are stored in a file. When a script file

is executed, the result is the same as it would be if all of the commands had been

typed directly into the Command Window. Script files share the Command

Window's workspace, so any variables that were defined before the script file starts

are visible to the script file, and any variables created by the script file remain in

the workspace after the script file finishes executing. A script file has no input

arguments and returns no results, but script files can communicate with other

script files through the data left behind in the workspace.
In contrast, a MATLAB function is a special type of M-file that runs in its

own independent workspace. It receives input data through an input argument

list and returns results to the caller through an output argument list. The gener-

al form of a MATLAB function is

function (outargi, outarg2,	 .1 = fnarne(inargl, inarg2,

% Hi comment line
% Other comment lines

(Executable code)

(return)
(end)

The function statement marks the beginning of the function. It specifies the

name of the function and the input and output argument lists. The input argument

list appears in parentheses after the function name, and the output argument list

appears in brackets to the left of the equal sign. (If there is only one output argu-

ment, the brackets can be dropped.)
Each ordinary MATLAB function should be placed in a file with the same

name (including capitalization) as the function, and the file extent ".m'. For

example, if a function is named My—fun, then that function should be placed in

a file named My_fun.m.
The input argument list is a list of names representing values that will be

passed from the caller to the function. These names are called dummy argu-

ments. They are just placeholders for actual values that are passed from the caller

when the function is invoked. Similarly, the output argument list contains a list of

dummy arguments that are placeholders for the values returned to the caller when

the function finishes executing.
A function is invoked by naming it in an expression together with a list of

actual arguments. A function may be invoked by typing its name directly in the

Command Window or by including it in a script file or another function. The

name in the calling program must exactly match the function name (including

202 1 Chapter 5 User-Defined Functions

capitalization)) When the function is invoked, the value of the first actual argument

is used in place of the first dummy argument, and so forth for each other actual
argument/dummy argument pair.

Execution begins at the top of the function and ends when either a return
Statement, an end statement, or the end of the function is reached. Because exe-
cution stops at the end of a function anyway, the return statement is not actu-

ally required in most functions and is rarely used. Each item in the output argu-

ment list must appear on the left side of at least one assignment statement in the

function. When the function returns, the values stored in the output argument list

are returned to the caller and may be used in further calculations.

The use of an end statement to terminate a function is a new feature of
MATLAB 7.0. In earlier versions of MATLAB, the end statement was only used
to terminate structures such as if, for, while, etc. It is optional in MATLAB
7 unless a file includes nested functions, which are covered later in this chapter.

In this book, we will always terminate functions with an end statement, and we
will include a comment on each end Statement naming the function that it is
associated with. 2 MATLAB doesn't use the Comment, but it is helpful to a pro-
grammer trying to read your code at a later date.

Always terminate your functions with an end statement, and include a comment
on the statement indicating which function the end statement is associated with.

The initial comment lines in a function serve a special purpose. The firsi

comment line after the function statement is called the HI comment line. It should
always contain a one-line summary of the purpose of the function. The special sig-
nificance of this line is that it is searched and displayed by the lookfor com-
mand. The remaining comment lines from the HI line until the first blank line or
the first executable statement are displayed by the help command. They should
contain a brief summary of how to use the function.

A simple example of a user-defined function is shown below. Function
dist2 calculates the distance between points (.t, y) and (x,, y.,) in a Cartesian
coordinate system.

For exainpie, suppose that a function has been declared with the name MY—Fun and placed in file
My Fun. rn. Then this function should be called with the name My Fun, not my_fun or MY—FUN.
If the capoalization fails to match, this will produce an error on Linux, Unix, and Macintosh com-
puters, and a warning on Windows-based computers.

:The end statements at the end of a function will cause a warning if the function is executed on ver-
sions of MATLAB that preceded s1AILAB 7.0.

	

S. I	 Introduction to MATLAB Functions 1 203

function distance = dist2 (xl, yl, x2, y2)
%DIST2 Calculate the distance between two points
% Function DIST2 calculates the distance between
% two points (xl,yl) and (x2,y2) in a Cartesian
% coordinate system.

% Calling sequence:
%	 distance = dist2(xl, yl, x2, y2)

% Define variables:
%	 xl	 -- x-position of point 1
%	 yl	 -- y-position of point 1

%	 x2	 -- x-position of point 2
%	 y2	 -- y-position of point 2
% distance -- Distance between points

% Record of revisions:
Date	 Programmer
	

Description of change

%
%	 01/12/04	 S. J. Chapman
	

Original code

% Calculate distance.
distance = sqrt((x2-xl) . "2 + (y2-yl) . "2);

end % function distance

This function has four input arguments and one output argument. A simple script

file using this function is shown below.

% Script file: test_dist2.m
%
% Purpose:
%	 This program tests function dist2.
%
% Record of revisions:

Date	 Programmer	 Description of change
%= = = =	 == --- =====	 =

%	 01/12/04	 S. J. Chapman	 Original code

% Define variables:
%	 ax	 -- x-position of point a
%	 ay	 -- y-position of point a
%	 bx	 x-position of point b
%	 by	 y-position of point b
%	 result	 -- Distance between the points

% Get input data.
disp('Calculate the distance between two points:');

204 1 Chapter 5 User-Defined Functions

ax = input.LEnter x value of point a:

ay = input(Enter y value of point a:
bx = input(Enter x value of point b:
by = inputLEnter y value of point b:

% Evaluate function
result = dist2 (ax, ay, bx, by);

% Write out result.
fprintf('The distance between points a and b is %f\n,result);

When this script file is executed, the results are:

>> testdist2
Calculate the distance between two points:
Enter x value of point a: 1
Enter y value of point a: 1
Enter x value of point b: 4
Enter y value of point b: 5
The distance between points a and b is 5.000000

These results are correct, as we can verify from simple hand calculations.

Function dist2 also supports the MATLAB help subsystem. If we type

"help dist2," the results are:

>' help dist2
DIST2 Calculate the distance between two points
Function DIST2 calculates the distance between
two points (xl,yl) and (x2,y2) in a Cartesian

coordinate system.

Calling sequence:
res = dist2(xl, yl, x2, y2)

Similarly, "lookf or distance" produces the result

' lookf or distance
DIST2 Calculate the distance between two points
MARA.L Mahalanobis distance.
DIST Distances between vectors.
NBDIST Neighborhood matrix using vector distance.
NBGRID Neighborhood matrix using grid distance.
NEMAN Neighborhood matrix using Manhattan-distance.

To observe the behavior of the MATLAB workspace before, during, and after

the function is executed, we will load function dist2 and the script file

test_dist2 into the MATLAB debugger, and set breakpoints before, during and

after the function call (see Figure 5.1). When the program stops at the breakpoint

	

5.1	 Introduction to MATLAB Functions 1 205

P.	 Tt CA TO Oth. 0tt0, Vadw FOO•

fe	 Mf. O	 Din C StkIee2ZJ03 El E3 5 F53

1
2
3
4	 n:	 ----_

5
6

7
8

12	 - i-:en_ ,r, of p-nr,

13	 - -.	 -.	 r
14
15	 :	 -- -.- p.s..'. ..	 p- -nr

16	 i-un 1- -- I ­ an ­ L,tneen -r

17
18
	

r-trr
19- disp('Caiiu1at thei:tar.Ce hete"I 'c, por.ts;

20- ax = .nnput('Enter x aiUe of point C:

21- ay	 input('Fnnr y vC1ua-f pont
22 - be = input I trIer z	

23- by	 input ErI-r V .O.i-	 f

24
25 .	 •1..re f:.
260* _elult	 dit2 (ax, ey, bx, by):
27
28
29S	 ç- :ntf V .-'	 ...:

diu2.,,,	 ds2 n,

Figure 5.1 M-file test_dist2 and function dist2 are loaded into the debugger, with
breakpoints set before, during, and after the function call.

before the function call, the workspace is as shown in Figure 5.2(a). Note that vari-

ables ax, ay, bx, and by are defined in the workspace, with the values that we

have entered. When the program stops at the breakpoint within the function call,

the function's workspace is active. It is as shown in Figure 5.2(b). Note that vari-

ables xl, x2, yJ., y2, and distance are defined in the function's workspace,

and the variables defined in the calling M-file are not present. When the program

stops in the calling program at the breakpoint after the function call,

the workspace is as shown in Figure 5.2(c). Now the original variables are back,

with the variable result added to contain the value returned by the function.

These figures show that the workspace of the function is different from the work-

space of the calling NI-file.

_____________	 .IgLJ
File Edt '9ew Graç*islMiöow H*

	

I	 Stack:ltust_d

	

I Name	 I Value	 Class

	

- 1	 Ale

	

ay	 1	 double

	

bx	 4	 double

	

by	 5	 double

(a)

Fie Edt Vlew G4ics Wrdow He llo

distance	 5	 double

	

xl	 1	 double

	

x2	 4	 double

	

y 	 1	 double

	

y2	 5	 double

(b)

Fie Edt View Groics W13W HD

.Stack71_&xt2j

	

ax	 1	 double

	

ay	 1	 double

	

bx	 4	 double

	

by	 5	 double
result	 S	 double

(c)

Figure 5.2 (a) The workspace before the function call. (b) The workspace during the function call.
(c) The workspace after the function call.

206

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme 1 207

5.2 Variable Passing in MATLAB:
The Pass-By-Value - Scheme

IATLAB programs communicate with their functions usin g a pass-by-value

scheme. When a function call occurs. MATLAB makes a copy of the actual argu-

ments and passes them to the function. This copying is highly significant, because it

means that even if the function modifies the input arguments. it won't affect the orig-

inal data in the caller. This feature helps to prevent unintended side effects, in which

an error in the function might unintentionally modify variables in the calling program.

This behavior is illustrated in the function shown below. This function has two

input arguments: a and b. During its calculations, it modifies both input arguments.

function out = sample(a, b, c)
fprintf ('In	 sample: a = %f, b = %f %f\ri ,a,b);

a = b(l) + 2*a;
b = a . b;
out = a + b(l);
fprintf('In	 sample: a = %f, b = %f %f\n',a,b);

,A simple test program to call this function is shown below.

a = 2; b = [6 41;
fprintf('Before sample: a = %f, b = %f %f\n,a,b);
out = sample(a,b);
fprintf('After sample: a = %f, b = %f %f\n',a,b);
fprintf('After sample: out = %f\n,out);

When this program is executed, the results are:

test_saitiple
Before sample: a = 2.000000, b = 6.000000 4.000000

In	 sample: a = 2.000000, b = 6.000000 4.000000

In	 sample: a = 10.000000, b = 60.000000 40.000000
After sample: a = 2.000000, b = 6.000000 4.000000
After sample: out = 70.000000

Note that a and b were both changed inside the function sample, but those

changes had no effect oil 	 values
fit 	 calling program.

Users of the C language will be familiar with the pass-by-value scheme, since

C uses it for scalar values passed to functions. 1-lowever C does not use the pass-

by-value scheme svhen passing arrays, so all 	 modification to a dummy

array in a C function can cause side effects fit 	 calling program. MATLAB

improves oil 	 by using the pass-by-value scheme for both scalars and arrays.

the implementation of argunient passing in AItAB is actually more sophisticated luau this dis-

cussion indicates. As pointed out previously. the copy ing associated with pass-hv-vahie takes tip ii lot

oftitne, but it provides protection a gainst unintended side effects. MXI LAB actuall y uses the best of

both approaches: it autaivzes each argunteitl of cacti function and dcterniuites hether or rot the luiutc-

tion modifies that argument. If the function modifies the argument, then ¼lAt AB makes a copy of

IL If it does not niodi f the argument, then MAILA B simply points to the existuig value in the call-

use program. This practice increases speed while still providing protection against side effects'

X

208	 Chapter 5 User-Defined Functions

xample 5.1 —Rectangular-to-Polar Conversion
The location of point in a cartesian plane can he expressed in either the rectan-
gular coordinates (v. i-) or the polar coordinates (r. 0), as shown in Figure 5.3. The
relationships among these two sets of coordinates are given by the following
equations:

x = rcos 0	 (5-1)

v = rsin 0	 (5-2)

r =	 (5-3)

6 = tan'-	 (5-4)

Write two functions rect2polar and polar2rect that convert coordinates
from rectangular to polar form, and vice versa, where the angle 0 is expressed in
degrees.

SOLUTION We will apply our standard problem-solving approac to creating
these functions. Note that MATLAB's trigonometric functions work in radians, so
we must convert from degrees to radians and vice versa when solving this prob-
lem. The basic relationship between degrees and radians is

1800 = v radians	 (5-5)

Figure 5.3 A point Pin a Cartesian plane can be located by either the rectangular coordinates (x, v)
or the polar coordinates (r, 6).

S.2 Variable Passing in MATLAB: The Pass-By-Value Scheme	 209

I. State the problem.
A succinct statement of the problem is;

Write a function that converts a location on a Cartesian plane

expressed in rectangular coordinates into the corresponding

polar coordinates, with the angle 9 is expressed in degrees Also.

write a function that converts a location on a Cartesian plane

expressed in polar coordinates with the angle 0 is expressed in

degrees into the corresponding rectangular coordinates.

2. Define the inputs and outputs.

The inputs to function rect2polar are the rectangular (.v.) location of a

point. The outputs of the function are the polar (r. 9) location of the point. The

inputs to function polar2rect are the polar (r. 9) location of a point.

The outputs of the function are the rectangular (x.t) location of the point.

3. Describe the algorithm.

These functions are very simple, so we can directly write the final

pseudocode for them. The pseudocode for function polar2rect is:

x <- r * cos(theta * pi/180)
Y <- r * sin(theta * pi/180)

The pseudocode for function rect2polar will use the function

atan2, because that function works over all four quadrants of the

Cartesian plane. (Look that function up in the MATLAB Help Browser!)

r<- sqrt(x."2 +y .2
theta <- 180/pi * atan2(y,x)

4. Turn the algorithm into MATLAB statements.

The MATLAB code for the selection polar2rect function is shown

below.

function [x, y] = polar2rect(r,theta)
%POLAR2RECT Convert rectangular to polar coordinates
% Function POLAR2RECT accepts the polar coordinates
% (r,theta), where theta is expressed in degrees,
% and converts them into the rectangular coordinates

% (x,y).

% Calling sequence:
%	 [x, y] = polar2rect.(r. theta)

% Define variables:

r	 -- Length of polar vector

%	 theta	 -- Angle of vector in degrees

%	 x	 -- x-position of point

%	 y	 y-position of point

210	 Chapter 5 User-Defined Functions

% Record of revisions:
Date	 Programmer

%	 01/12/04	 S. J. Chapman

x = r * cos(theta * pi/180);
Y = r * sin(theta * pi/180);

end % function polar2rect

Description of change

Original code

The MATLAB code for the selection rect2polar function is shown below.

function [r, theta] = rect2polar(x,Y)
%RECT2POLAR Convert rectangular to polar coordinates
% Function RECT2POLAR accepts the rectangular coordinates
% (x,y) and converts them into the polar coordinates
% (r,theta), where theta is expressed in degrees.

%
% Calling sequence:
%	 [r, theta] = rect2polar(x,y)

% Define variables:

%	 r	 -- Length of polar vector

%	 theta	 -- Angle of vector in degrees

x	 -- x-position of point

%	 y	 -- y-position of point

% Record of revisions:
Date	 Programmer
= = = =	 = = = = = = = = = =

%	 01/12/04	 S. J. Chapman

r= sqrt(x.2 +y .2);
theta = 180/pi * atan2(y,x);

end % function polar2rect

Description of change

Original code

Note that these functions both include help information, so they will

work properly with MATLAB's help subsystem and with the lookfor

command

5. Test the program.
To test these functions, we will execute them directly in the MATLAB

Command Window. We will test the functions using the 3-4-5 triangle,

which is familiar to most people from secondary school. The smaller
angle within a 3-4-5 triangle is approximately 36.87. We will also test the

function in all four quadrants of the Cartesian plane to ensure that the con-

version are correct everywhere.

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme 	 211

[r, theta] = rect2polar(4,3)
r=

5
theta =

36.8699
>> [r, theta] = rect2polar(-4,3)
r=

5
theta =

143.1301
[r, theta]	 rect2polar(-4,-3)

r=
5

theta =

-143.1301
>> (r, theta] - rect2polar(4,-3)
r=

5
theta =

-36.8699
>> (x, y] - polar2rect(5,36.$699)
x=

4.0000

3.0000	 -
* (x, y] = polar2rect(5,143.1301)
x=

-4.0000

3.0000
>' [x, y] = polar2rect(5,-143.1301)
x=

-4.0000

-3.0000
* (x, y] = polar2rect(5,-36.8699)
x=

4.0000

-3.0000
>>

These functions appear to be working correctly in all quadrants of the
Cartesian plane.

212	 Chapter 5 User-Defined Functions

Example 5.2—Sorting Data
In nianv scientific and engineering applications. it is necessary to take a random

input data set and to sort it so that the numbers in the data set are either all in

ascending order (lowest-to-highest) or all in descending order (highest-to-lowest).

For example, suppose you were a zoologist study ing a large population of animals

and you wanted to identify the largest 5 percent of the animals in the population.

The most straightforward way to approach this problem would be to sort the sizes

of all of the animals in the population into ascending order and take the top 5 per-

cent of the values.
Sorting data into ascending or descending order seems to be an easy job.

After all, we do it all the time. It is simple matter for us to sort the data (10,3,6.

4, 9) into the order (3. 4, 6, 9, 10). How do we do it? We first scan the input data

list (10, 3, 6, 4, 9) to find the smallest value in the list (3), and then scan the
remaining input data (10,6,4,9) to find the next smallest value (4), and so forth,

until the complete list is sorted.
In fact, sorting can be a very difficult job. As the number of values to be sort-

ed increases, the time required to perform the simple sort described increases rap-

idly. since we must scan the input data set once for each value sorted. For very

large data sets, this technique just takes too long to be practical. Even worse, how

would we sort the data if there were too many numbers to fit into the main mem-

ory of the computer? The development of efficient sorting techniques for large

data sets is an active area of research and is the subject of whole courses all by

itself.
In this example, we will confine ourselves to the simplest possible algorithm

to illustrate the concept of sorting. This simplest algorithm is called the selection

sort. It is just a computer implementation of the mental math described above.

The basic algorithm for the selection sort is:

I. Scan the list of numbers to be sorted to locate the smallest value in the list.

Place that value at the front of the list by swapping it with the value cur-

rently at the front of the list. If the value at the front of the list is already

the smallest value, then do nothing.

2. Scan the list of numbers from position 2 to the end to locate the next

•	 smallest value in the list. Place that value in position 2 of the list by swap-

ping it with the value currently at that position. If the value in position 2

is already the next smallest value, then do nothing.

3. Scan the list of numbers from position 3 to the end to locate the third
smallest value in the list. Place that value in position 3 of the list by swap-

ping it with the value currently at that position. If the value in position 3

is already the third smallest value, then do nothing.

4. Repeat this process until the next-to-last position in the list is reached.

After the next-to-last position in the list has been processed, the sort is

complete.

5.2 Variable Passing in MATLAB: The Pass-By-Value Scheme	 213

o 1
Swap

4 >

Swap

3

4

9

No Swap

9 >

Swap

S

Figure 5.4 An example problem demonstrating the selection sort algorithm.

Note that if we are sorting N values, this sorting algorithm requires N-I scans

through the data to accomplish the sort.

This process is illustrated in Figure 5.4. Since there are five values in the

data set to be sorted, we will make four scans through the data. During the first

pass through the entire data set, the minimum value is 3, so the 3 is swapped

with the 10 which was in position I. Pass 2 searches for the minimum value in

positions 2 through 5. That minimum is 4, so the 4 is swapped with the 10 in

position 2. Pass 3 searches for the minimum value in positions 3 through 5.

That minimum is 6, which is already in position 3, so no swapping is required.

Finally, pass 4 searches for the minimum value in positions 4 through 5. That

minimum is 9, so the 9 is swapped with the 10 in position 4, and the sort is
completed.

.4

The selection sort algorithm is the easiest sorting algorithm to understand, but
it is computationally inefficient. It should never be applied to sort large data sets

(say, sets with more than 1000 elements). Over the years, computer scientists

have developed much more efficient sorting algorithms. The sort and

sortrows functions built into MATLAB are extremely efficient and should be

used for all real work.

2 I 4	 Chapter 5 User-Defined Functions

We will now develop a program to read in a data set from the Command

Window, sort it into ascending order, and display the sorted data set. The sorting

will be done by a separate user-defined function.

So.trio, This program must be able to ask the user for the input data, sort the data,

and write out the sorted data. The desigiprocess for this problem is given below.

I. State the problem.
We have not yet specified the type of data to be sorted. If the data is

numeric, then the problem may be stated as follows:

Develop a program to read an arbitrary number of numeric input val-

ues from the Command Window, sort the data into ascending order

using a separate sorting function, and write the sorted, data to the

Command Window.

2. Define the inputs and outputs.
The inputs to this program are the numeric values typed in the Command

Window by the user. The outputs from this program are the sorted data

values written to the Command Window.

3. Describe the algorithm.
This program can be broken down into three major steps

Read the input data into an array

Sort the data in ascending order

Write the sorted data

The first major step is to read in the data. We must prompt the user

for the number of input data values, and then read in the data. Since we

will know how many input values there are to read, a for loop is appro-

priate for reading in the data. The detailed pseudocode is shown below:

Prompt user for the number of data values

Read the number of data values

Preallocate an input array

for ii = l:nuiriber of values

Prompt for next value

Read value

end

Next we have to sort the data in a separate function. We will need to make

nvals-1 passes through the data, finding the smallest remaining value

each time. We will use a pointer to locate the smallest value in each pass.

Once the smallest value is found, it will be swapped to the top of the list

of it is not already there. The detailed pseudocode is shown below:

for ii = l:nvals-1

% Find the minimum value in a(ii) through a(rtvals)

iptr <- ii

5.2 Variable Passing in MATLAB: The Pass- By-Val ueScheme 	 215

for jj == ii+l to nvals

if a(jj) < a(iptr)
iptr <- jj

end
end

% iptr now points to the min value,

% with a(ii) if iptr 	 ii.
if i -= iptr

temp <- a(i)
a(i) <- a(iptr)

a(iptr) <- temp
end

end

so swap a(iptr)

The final step is writing out the sorted values. No refinement of the

pseudocode is required for that step. The final pseudocode is the combi-

nation of the reading, sorting and writing steps.

4. Turn the algorithm into MATLAB statements.
The MATLAB code for the selection sort function is shown below.

function Out = ssort(a)
%SSORT Selection sort data in ascending order
% Function SSORT sorts a numeric data set into
% ascending order. Note that the selection sort
% is relatively inefficient. DO NOT USE THIS
% FUNCTION FOR LARGE DATA SETS. Use MATLABs
% sort function instead.

% Define variables:

%	 a	 -- Input array to sort

%	 ii	 -- Index variable

%	 iptr	 -- Pointer to min value

%	 jj	 -- Index variable

%	 nvals	 -- Number of values in a

%	 out	 -- Sorted output array

%	 temp	 -- Temp variable for swapping

% Record of revisions:
Date	 Programme
	 Description of change

%	 01/12/04	 S. J. Chapman
	 Original code

% Get the length of the array to sort

nvals = size(a,2);

% Sort the input array
for ii = 1:nvals-1

2 I 6	 Chapter 5 User-Defined Functions

% Find the minimum value in a(ii) ti-rough a(n)

iptr = ii;
for jj = ji+i:nvals

if a(jj) K a(iptr)

iptr = jj;
end

end

% iptr now points to the minimusn value, so swam a(iptr)

% with a(ii) if ii -= iptr.
if ii -= iptr

temp	 = a(ii);

a(ii)	 = a(iptr);

a(iptr) = temp;

end
end

% Pass data back to caller

out = a;

end % function ssort

The program to invoke the selection sort function is shown below.

% Script file: test_ssort.m

% Purpose:
% To read in an input data set, sort it into ascending
% order using the selection sort algorithm, and to
% write the sorted data to the Command Window. This

%	 program calls function 'ssort to do the actual

%	 sorting.
%
% Record of revisions:

Date	 Programmer	 Description of change

%= = = =	 -=====-- = = =	 --- ======== --- =======

%	 01/12/04	 S. J. Chapman	 Original code

%
% Define variables:
%	 array	 -- Input data array

%	 ii	 -- Index variable
% nvals	 Number of input values

%	 sorted	 -- Sorted data array

% Prompt for the number of values in the data set
nvals = input(Enter number of values to sort:);

5.2 Variable Passing in MATL.AB: The Pass-By-Value Scheme 1 217

% Preallocate array
array = zeros(l,nvals);

% Get input values
for ii = l:nvals

% Prompt for next value
string =	 Enter value	 int2str(ii)	 : 1;
array(ii) = input(string);

end

% Now sort the data
sorted = ssort(array);

% Display the sorted result.

fprintf (\nSorted data: \n')
for ii = l:nvals

fprintf(%8.4f\n',sorted(ii));

end

5. Test the program.
To test this program, we will create an input data set and run the program

with it. The data set should contain a mixture of positive and negative

numbers as well as at least one duplicated value to see whether the pro-

gram works properly under those conditions.

test_Ssort

Enter number of values to sort: 6
Enter value 1: -5
Enter value 2: 4
Enter value 3: -2
Enter value 4: 3
Enter value 5: -2
Enter value 6: 0

Sorted data:
-5.0000
-2.0000
-2.0000
0.0000
3.0000
4.0000

The program gives the correct answers for our test data set Note that it works

for both positive and negative numbers as well as for repeated numbers.

218	 Chapter 5 User-Defined Functions

5.3 Optional Arguments

Many MATLAB functions support optional input arguments and output argu-

ments. For example, we have seen calls to the plot function with as few as two

or as many as seven input arguments. On the other hand, the function max sup-

ports either one or two output arguments. If there is only one output argument,

max returns the maximum value of an array. If there are two output arguments, max

returns both the maximum value and the location of the maximum value in an array.

How do MATLAB functions know how many input and output arguments are pres-

ent, and how do they adjust their behavior accordingly?
There are eight special functions that can be used by MATLAB functions to

get information about their optional arguments and to report errors in those argu-

ments. Six of these functions are introduced here, and the remaining two will be

introduced in Chapter 7 after we learn about the cell array data type. The func-

tions introduced now are:

• nargin—This function returns the number of actual input arguments

that were used to call the function.
• nargout—This function returns the number of actual ouPut arguments

that were used to call the function.
• nargchk—This function returns a standard error message if a function is

called with too few or too many arguments.
• error—Display error message and abort the function producing the

error. This function is used if the argument errors are fatal.
• warning—Display warning message and continue function execution. This

function is used if the argument errors are not fatal, and execution can continue.

• inputname—This function returns the actual name of the variable that

corresponds to a particular argument number.

When functions nargin and nargout are called within a user-defined

function, these functions return the number of actual input arguments and the num-

ber of actual output arguments that were used when the user-defined function was

called
Function nargctik generates a string containing a standard error message

if a function is called with too few or too many arguments. The syntax of this

function is

message = nargchk(min_argS,rflaX_argS,flUm_g5)

where minargs is the minimum number of arguments, max args is the max-

imum number of arguments, and nurn_args is the actual number of arguments.

If the number of arguments is outside the acceptable limits, a standard error mes-

sage is produced. If the number of arguments is within acceptable limits, then an

empty string is returned.
Function error is a standard way to display an error message and abort the

user-defined function causing the error. The syntax of this function is

error(msg), where msg is a character string containing an error message.

5.3 Optional Arguments I 2119

When error is executed, it halts the current function and returns to the keyboard,

displaying the error message in the Command Window. If the message string is

empty, error does nothing and execution continues. This function works well

with nargchk, which produces a message string when an error occurs and an

empty string when there is no error.
Function warning is a standard way to display a warning message that

includes the function and line number where the problem occurred, but lets

execution continue. The sntax of this function is warning (rnsg), where

msg is a character string containing a warning message. When warning is
executed, it displays the warning message in the Command Window and lists

the function name and line number where the warning came from. If the mes-

sage string is empty, warning does nothing. In either case, execution of the

function continues.
Function inputriarne returns the name of the actual argument used when a

function is called. The syntax of this function is

name = inputname(argno)

where argno is the number of the argument. If the argument is a variable, then

its name is returned. If the argument is an expression, then this function will

return an empty string. For example, consider the function

function rnyfun(x,y,z)

name = inputname(2);
disp([The second argument is named name]);

When this function is called, the results are

myfun(dog, cat)
The second argument is named cat

myfun(1,2+cat)
The second argument is named

Function inputname is useful for displaying argument names in warning and

error messages.

No-

Example 5.3—Using Optional Arguments
We will illustrate the use of optional arguments by creating a function that accepts

an..(x, v) value in rectangular coordinates and produces the equivalent polar rep-
resentation consisting of a magnitude and an angle in degrees. The function will

be designed to support two input arguments, x and v. However, if only one argu-

ment is supplied. the function will assume that the V value is zero and proceed

with the calculation. The function will normally return both the magnitude and

the angle in degrees, but if only one output argument is present, it will return only the

magnitude. This function is shown below.

function [mag, angle] = po1arva1ue(XY)

%POLARVALUE Converts (x,y) to (r,theta)

220 1 Chapter 5 User-Defined Functions

% Function POLAR_VALUE converts an input (x,y)
% value into (r,theta), with theta in degrees.
% It illustrates the use of optional arguments.

% Define variables:
% angle	 Angle in degrees
% msg	 -- Error message
% mag	 -- Magnitude
% x	 -- Input x value
%	 y	 -- Input y value (Optional)

% Record of revisions:
Date	 Programmer
	 Description of change

%	 = = = =	 ====== = = = =

%	 01/12/04	 S. J. Chapman
	

Original code

% Check for a legal number of input arguments.
msg = nargchk(1,2,nargin);

error (msg);

% If the y argument is missing, set it to 0.
if nargin < 2

y = 0;
end

% Check for (0,0) input arguments, and print out
% a warning message.
if x == 0 & y == 0

msg = 'Both x any y are zero: angle is meaningless!
warning(msg);

end

% Now calculate the magnitude.
mag = sqrt(x.2 +

% If the second output argument is present, calcuate
% angle in degrees.
if nargout == 2

angle = atan2(y,x) * 180/pi;
end

end % function polar—value

We will test this function by calling it repeatedly from the Command Window.

First, we will try to call the function with too few or too many arguments.

(mag angle) = polar value
??? Error using ==> polar—value
Not enough input arguments.

S.3 Optional Arguments	 22 I

[niag angle] = polar_value(l,-1,l)
??? Error using ==> polar value
Too many input arguments.

The function provides proper error messages in both cases. Next, we will try to

call the function with one or two input arguments.

[mag angle] = polar—value(l)

mag =
1

angle =
0

	

>> [mag angle]	 polar_value(l,-l)

mag =
1.4142

angle =
-45

The function provides the correct answer in both cases. Next, we will try to call

the function with one or two output arguments.

mag = polar_value(l,-l)
mag =

1.4142

	

[mag angle]	 polar_value(1,-l)

mag =
1.4142

angle =
-45

The function provides the correct answer in both cases. Finally, we will try to call

the function with both x and v equal to zero.

[mag angle] = polar_value(O,O)

Warning: Both x any y are zero: angle is meaningless!
> In d:\book\matlab\chap5\polar_ValUe.m at line 32

mag =
0

angle =
0

In this case, the function displays the warning message, but execution continues.

Note that a MATLAB function ma y he declared to have more output arguments

than are actually used, and this is not an error. ftc function does not actually ha e

222	 Chapter 5 User-Defined Functions

to check nargout to determine if an output argument is present. For example,
consider the following function:

function (zi, z2 = junk(x,y)

zl = x +
z2 = x -
end % function junk

This function can be called successfull y with one or two output arguments.

a	 junk(2,1)
a=

3
>> (a b]	 junk(2,1)
a=

3
b=

1

The reason for checking nargout in a function is to prevent useless work. If a
result is going to be thrown away anyway, why bother to calculate it in the first
place? A programmer can speed up the operation of a program by not bothering
with useless calculations.

This quiz provides a quick check to see if you have understood the con-
cepts introduced in Sections 5.1 through 5.3. If you have trouble with the
quiz, reread the section, ask your instructor, or discuss the material with a
fellow student. The answers to this quiz are found in the back of the book.

I. What are the differences between a script file and a function?

2. How does the help command work with user-defined functions?

3. What is the significance of the HI comment line in a function?

4. What is the pass-by-value scheme? How does it contribute to good
program design?

5. How can a MATLAB function be designed to have optional arguments?
For questions 6 and 7, determine whether the function calls are correct
or not. If they are in error, specify what is wrong with them.

6. Out = testi (6)

function res = testl(x,y)
res = sqrt(x.2 +
end % function testi

7. out = test2(12);

function res = test2(x,y)

error(nargchk(112,nargin))

5.4 Sharing Data Using Global Memory	 223

if nargin == 2

res = sqrt(x.2 *
else

res =
end
end % function test2

5.4 Sharing Data Using Global Memory

We have seen that programs exchange data with the functions they call through a

argument lists. When a function is called, each actual argument is copied, and the
copy is used by the function.

In addition to the argument list, MATLAB functions can exchange data with

each other and with the base workspace through global memory. Global memon

is a special type of memory that can be accessed from any workspace. If a vari-

able is declared to be global in a function, then it will be placed in the global

memory instead of the local workspace. If the same variable is declared to be

global in another function, then that variable will refer to the same inernon loca-
tion as the variable in the first function. Each script file or function that declares
the global variable will have access the same data values, so global rnerno,T pro
vides a way to share data between functions.

A global variable is declared with the global statement. The form of a
global statement is

global varl var2 var3

where van, var2, van3, etc. are the variables to be placed in global memory.
By convention, global variables are declared in all capital letters, but this is not
actually a requirement.

Declare global variables in all capital letter to make them easy to distinguish
from local variables.

Each global variable must be declared to be global before it is used for the
first time in a function .--it is an error to declare a variable to be global after it has
already been created in the local workspace. 4 To avoid this error, it is customary

'[fa variable is declared global after it has alread been defined in a function. NIATL.AB will issue
a warning messa ge and then change the local value to match the global value You should never rely
on this capability, though, because future versions of NIATLAB will not allow it.

224	 Chapter 5 User-Defined Functions

to declare g lobal variables immediately after the initial comments and before the

first	 cutah!c statement in a function.

Good Programming Practice 	 .

Declare global variables immediately after the initial comments and before the
first executable statement of each function that uses them.

Global variables are especially useful for sharing very large volumes of data
among many functions, because the entire data set does not have to be copied
each time a function is called. The downside of using global memory to
exchange data among functions is that the functions will only work for that spe-
cific data set. A function that exchanges data through input arguments can be
reused by simply calling it with different arguments, but a function that
exchanges data through global memory must actually be modified to allow it to
work with a different data set.

Global variables are also useful for sharing hidden data among a group of
related functions while keeping it invisible from the invoking program unit.

You may use global memory to pass large amounts of data among functions
within a program.

-	 -	 -	 :.- -

Example 5.4—Random Number Generator
It is i mpossible to make perfect measurements in the real world. There will always
be some measurement noise associated with each measurement. This fact is an
important consideration in the design of systems to control the operation of such
real-world devices as airplanes. refineries. A good engineering design must take
these measurement errors into account, so that the noise in the measurements will
not lead to unstable behavior (no plane crashes or refinery explosions!).

\lost engineering designs are tested by running .iniuIations of the operation

of the system before it is ever built. These simulations involve creating mathe-
matical models of the behavior of the system and feeding the models a realistic
string of input data. If the models respond correctl y to the simulated input data,
then e can ha e reasonable confidence that the real-world s ystem ill respond

correctly to the real-s orld input data.
The simulated input data supplied to the models must he corrupted by a simu-

lated measurement noise. hich is just a string of random numbers added to the ideal
input data. The simulated noise is usually produced by a ,cnnkmi ,itnn/c)' geii'ivror.

5.4 Sharing Data Usng Global Memory	 225

A random number generator is a function that will return a different and
apparently random number each time it is called. Since the numbers are in fact
generated by a deterministic algorithm, they onl y appear to he random.- flow ever.
if the algorithm used to generate them is complex enou gh, the numbers will he
random enough to use in the simulation.

One simple random number generator algorithm is described below.' It relies
on the unpredictability of the modulo function when applied to lar ge numbers.
Consider the following equation:

= mod (8121n, + 28411, 134456) (5-6)

Assume that n, is a nonnegative integer. Then because of the modulo function,
n_ 1 will be a number between 0 and 134,455 inclusive. Next. ,i 1 .,. I can be fed into
the equation to produce a number n that is also between 0 and 134,455. This
process can be repeated forever to produce a series of numbers in the range

[0, 134455]. If we didn't know the numbers 8121. 28,411, and 134.456 in
advance, it would be impossible to guess the order in which the values of it would
be produced. Furthermore, it turns out that there is an equal (or uniform) proba-

bility that any given number will appear in the sequence. Because of these prop-

erties, Equation (5-6) can serve as the basis for a simple random number genera-
tor with a uniform distribution.

We will now use Equation (5-6) to design a random number generator whose
output is a real number in the range [0.0, 1.0).

SOLUTION We will write a function that generates one random number in the
range 0 !^ ran < 1.0 each time that it is called. The random number will be based
on the equation

ni
ran =

134456

where n, is a number in the range 0 to 134455 produced by Equation (5-7).
The particular sequence produced by Equations (5-6) and (5-7) will depend

on the initial value of no (called the seed) of the sequence. We must provide a way
for the user to specify n 0 so that the sequence may be varied from run to run.

I. State the problem.

Write a function randomO that will generate and return an arra y ran con-
taining one or more numbers with a uniform probability distribution in the
range 0 ^ ran < 1.0, based on the sequence specified by Equations (5-6) and
(5-7). The function should have one or two input arguments (n and m) spec-

For this reason, some people refer to these functions as p.s-eudurwi d in, nun,ber , genera! ,rr
This algorithm is adapted from the discussion found in Chapter = of ,Vumeheul Ree,psa. The .4r iit

Scientific Prssgrarnrning. by Press, Flannery.Teukolskv, and Venerling. Cambridge University Press. 1'36.
The notation [0.0. 1.0) implies that the range of the random numbers is bet'sveen 0.0 and 1.0. inud-

ing the number 0.0, but excluding the number 1.0.

226	 Chapter 5 User-Defined Functions

ifying the size of the array to return. If there is one argument, the function

should generate square array of size n X n. If there are two arguments, the

function should generate an array of size n X m. The initial value of the

seed n (, will be specified by a call to a function called seed.

2. Define the inputs and outputs.

There are two functions in this problem: seed and randomO. The input

to function seed is an integer to serve as the starting point of the

sequence. There is no output from this function. The input to function

randomO is one or two integers specifying the size of the array of random

numbers to be generated. If only argument m is supplied, the function

should generate a square array of size n X n. If both arguments m and n

are supplied, the function should generate an array of size n X m. The Out-

put from the function is the array of random values in the range [0.0, 1.0).

3. Describe the algorithm.
The pseudocode for function randomO is:

function ran = randomO (n, m)

Check for valid arguments
Set m <- n if not supplied
Create output array with zeros function
for ii = l:number of rows

for jj	 l:nuxnber of columns

ISEED <- mod (8121 * ISEED + 28411, 134456)

ran(ii,jj) <- ISEED I 134456

end
end

where the value of ISEED is placed in global memory so that it is saved

between calls to the function. The pseudocode for function seed is trivial:

function seed (new_seed)
new—seed <- round(new_seed)

ISEED <- abs (new_seed)

The round function is used in case the user fails to supply an integer, and the

absolute value function is used in case the user supplies a negative seed.

The user will not have to know in advance that only positive integers are

legal seeds.
The variable ISEED will be placed in global memory so that it may

be accessed by both functions.

4. Turn the algorithm into MATLAB statements.

Function randomO is shown below.

function ran = randomO(n,m)
%RNDOMO Generate uniform random numbers in O.l)
% FuCtiOn R ._NDOL-tO generates an array of uniform

5.4 Sharing Data Using Global Memory 	 227

% random numbers in the range [0, 1) The usage
% is:

% randomo(n)	 - Generate an n x n array
% randomo(n,m) -- Generate an n x m array

% Define variables:
%	 ii	 -- Index variable
%	 ISEED	 -- Random number seed (global)
%	 jj	 -- Index variable

m	 Number of columns
% msg	 Error message

n	 -- Number of rows
ran	 -- Output array

% Record of revisions:
Date	 Programmer	 Description of change

%	 = = = =	 = = = = = = = = = =	 =
%	 01/12/04	 S. J. Chapman	 Original code

% Declare globi values
global ISEED	 % Seed for random number generator

% Check for a legal number of input arguments.
msg = nargchk(12,nargin);
error(msg);

% If the m argument is missing, set it to n.
if nargin < 2

m = fl;
end

% Initialize the output array
ran = zeros(n,m);

% Now calculate random values
for ii = 1:n

for jj = l:m
ISEED = mod(8121*ISEED + 28411, 13445---);
ran(ii,jj) = ISEED / 134456;

end
end

end % function randomO

Function seed is shown below.

function seed(new seed)
%SEED Set new seed for function RANDOMO

228	 Chapter 5 User-Defined Functions

% Function SEED sets a new seed for function

% RNDOM0. The new seed should be a positive

% integer.

% Define variables:

%	 !SEED	 -- Random number seed (global)

% new—seed -- New seed

% Record of revisions:

Da:e	 Programmer	 Description of change

%	 = = = =	 = = = = = = = = = = 	
= =

%	 01/12/04	 S. J. Chapman	 Original code

% Declare globl values
global ISEED	 % Seed for random number generator

% Check for a legal number of input arguments.

msg = nargchk(l,l,nargin);

error (msg)

% Save seed

new—seed = round(new_seed);

ISEED = abs(new_seed);

end % function seed

5. Test the resulting MATLAB programs.
If the numbers generated by these functions are truly uniformly distributed

random numbers in the range 0 !^ ran < 1.0, then the average of many

numbers should be close to 0.5 and the standard deviation of the numbers

should be close to

Furthermore, the if the range between 0 and I is divided into a num-

ber of bins of equal size, the number of random values falling in each bin

should be about the same. A histogram is a plot of the number of values

falling in each bin. MATLAB function hist will create and plot a his-

togram from an input data set, so we will use it to verify the distribution

of random number generated by randomO.

To test the results of these functions, we will perform the following tests:

I. Call seed with new—seed set to 1024.

2. Call raridomO (4) to sec that the results appear random.
3. Call randomO (4) to verify that the results differ from call to call.

4. Call seed again with new—seed set to 1024.
5. Call randomO (4) to see that the results are the same as in (2) above.

This verifies that the seed is properly being reset.
('. Call randomO (2 , 3) to verify that both input arguments are being

used correctly.

	

5.4 Sharing Data Using Global Memory 	 229

Call rardornC (1 22000) and ca I cuknc the a crauc and standard
des iation of the reultme data set u.ine \l \T .-\B functions

and s td. Compare the result, to 0.5 and \ 12

S. Create a histo g ram of the data from (7) to see if appro\ i mate hr equal
numbers of values fall in each bin.

We svihl perform these tests interacti\ ek. checkin g the results as 'Se go.
" seed(1024)
>> randoxnO(4)

ars

	

0.0598	 1.000	 .0905	 0.2060

	

0.2620	 0.6432	 2.6325	 0.8392

	

0.6278	 0.5463	 0.7551	 0.4554

	

0.3177	 0.9105	 .129	 0.62a0
's randomO(4)

ans -

	

0.2266	 0.3858	 0.5876	 0.7830

	

0.8415	 0.9287	 0.9855	 0.1314

	

0.0982	 . 0.6585	 0.0543	 0.4256

	

0.2387	 0.7153	 0.2606	 0.8922

" seed(1024)

>> randomO(4)

ans =

	

0.0598	 1.0000	 0.0905	 0.2060

	

0.2620	 0.6432	 0.6325	 0.8392

	

0.6278	 0.5463	 '.7551	 0.4554

	

0.3177	 0.9105	 0.1289	 0.6230
randomO (2, 3)

ans =

	

0.2266	 0.3858	 . 586

	

0.7880	 0.8415	 0.9287

arr = randomO(1,20000);

mean(arr)

ans -

0.8020

" std(arr)

ans =

0 .2S81

'> hist(arr,10);
>s title('\bfHistogram of the Output of randomO');

x1abe1(Bin')

" ylabe]. (Count)

The results of these tests look reasonable, so the function appears
to be working. The average of the data set ssas 0.5020. which is quite

230	 Chapter 5 User-Defined Functions

Histogram of the Output of randomO
2500

2000

1 500

C

00

1 000

Soc

0	 0.1	 0.2	 03	 0.4	 0.5	 06	 0.7	 0.0	 li.

Bin

Figure 5.5 Histogram of the output of function randornO.

close to the theoretical value of 0.5000, and the standard deviation of

the data set was 0.2881, which is quite close to the theoretical value

of 0.2887. The histogram is shown in Figure 5.5, and the distribution of

the random values is roughly even across all of the bins.

-	 --	 --C- -------	 ft_

\IATLAB includes two standard functions that generate random values from

different distributions. The y are

• rand—Generatcs random values from a uniform distribution on the range

(0. H.
• rar!dn --Generates random values from a normal distribution.

Both of them are much faster and much more "random' than the simple function

that we have created. If you really need random numbers in your programs, use

one of these functions.

5.5 Preserving Data Between Calls to a Funct;on	 231

Functions rand and randn have the followin g callin g sequences:

• rand () —Generates a single random value.
• rand (n) —Generates an n X n array of random values.
• rand (n, m) --Generates an n X in array of random values.

5.5 Preserving Data Between Calls to a Function

When a function finishes executing, the special workspace created for that func-

tion is destroyed, so the contents of all local variables within the function xviI! dis-

appear. The next time the function is called, a new workspace will be created, and

all of the local variables will be returned to their default values. This behavior is

usually desirable, since it ensures that MATLAB functions behave in a repeatable
fashion every time they are called.

However, it is sometimes useful to preserve some local information within a

function between calls to the function. For example, we might which to create a count-

er to count the number of times that the function has been called. If such a counter

were destroyed every time the function exited, the count would never exceed 1

MATLAB includes a special mechanism to allow local variables to be pre-

served between calls to a function. Persistent memory is a special type of mem-

ory that can be accessed only from within the function, but is preserved unchanged
between calls to the function.

A persistent variable is declared with the persistent statement. The
form of a global statement is

persistent varl var2 var3
where van, van2, var3, etc. are the variables to be placed in persistent
memory.

Good Programmi

Lsc	 rir:	 to preserve the values of local variables within a function
between calls to the function.

Example 5.5—Running Averages

It is sometimes desirable to calculate running statistics on a data set on-the-fl y as
the values are bein g entered. The built-in MATL.AB functions mean and std
could perform this function, but we would have to pass the entire data set to them

for recalculation after each new data value is entered. A better result can be
achieved by writin g a special function that keeps tracks of the appropriate running

232	 Chapter 5 User-Defined Functions

sums between calls, and only needs the latest value to calculate the current aver-

aue and standard deviation.
The average or arithmetic mean of a set of numbers is defined as

=(5-8)

where xis sample i out of N samples. The standard deviation of a set of numbers

is defined as

=

Standard deviation is a measure of the amount of scatter on the measurements;

the greater the standard deviation, the more scattered the points in the data set are.

If we can keep track of the number of values N, the sum of the values Ex, and the

sum of the squares of the values yx2 , then we can calculate the average and Stan-

dard deviation at any time from Equations (5-8) and (5-9).
Write a function to calculate the running average and standard deviation of a

data set as it is being entered.

SOLUTION This function must be able to accept input values one at a time and

keep running sums of N, Ex, and Ex2 , which Will be used to calculate the cur-

rent average and standard deviation. It must store the running sums in global

memory so that they are preserved between calls. Finally, there must be a mech-

anism to reset the running sums.

1. State the problem.
Create a function to calculate the running average and standard deviation

of a data set as new values are entered. The function must also include a

feature to reset the running su1s when desired.

2. Define the inputs and outputs.
There are two types of inputs required by this function:

I. The character string reset • to reset running sums to zero.

2. The numeric values from the input data set, presented one value per

function call.

The outputs from this function are the mean and standard deviation of the

data supplied to the function so far.

3. Design the algorithm.
This function can be broken down into four major steps, as follows:

Check for a legal number of arguments
Check for a reset', and reset sums if present
Otherwise, add current value to running sums
Calculate and return running average and std dev

5.5 Preserving Data Between Calls to a Function 	 233

if enough data is available. Return rerc . s Lf
not enough data is available.

The detailed pseudocode for these steps is:

Check for a legal number of arguments
if x == reset

n <- 0
sum_x <- 0
sum—x2 <- 0

else
n <- n + 1
sum_x <- sumx + x
sum—x2 <- sum—x2 + x2

end

% Calculate ave and sd
if n == 0

ave <-
std <- 0

elseif n == 1
ave <- sum_x
std <- 0

else
ave <- sum_x / n
std <- sqrt ((n*sum_x2 - sum_x'2) / (n* (n-i)

end.

4. Turn the algorithm into MATLAB statements.
The final MATLAB function is shown below.

function [ave. std] = runstats(x)
%RtJNSTATS Generate running ave / std deviation
% Function RtJNSTATS generates a running average
% and standard deviation of a data set. The
% values x must be passed to this function one
% at a time. A call to RtJNSTATS with the argument
% reset will reset tue running suns.

% Define variables:
%	 ave	 -- Running average
%	 msg	 -- Error message

n	 -- Number of data values
%	 std	 -- Running standard deviation

sumx	 -- Running sum of data values
%
	

sum x2	 -- Running sum of data values squared
x	 - Input value

234	 Chapter 5 User-Defined Functions

% Record of revisions:
Date	 Programmer
	 Description of change

I	 = = = =	 = = = = = = = = = =
%	 31:13/04	 S. J. Chapman
	 Original code

I Declare persistent values

persistent n	 % Number of input values

persistent sum _x	 % Running sum of values

persistent sum—x2 	% Running sum of values squared

% Check for a legal number of input arguments.
rnsg = nargchk(l,l,nargin);

error (msg)

% If the argument is reset, reset the running sums.

if x == 'reset

n = 0;
sum_x = 0;
sum_x2 = 0;

else
n = n + 1;
sum_x = suin_x + X;

sum—x2 = sum_x2 + x2;

end

% Calculate ave and sd
if n == 0

ave = 0;
std = 0;

elseif n == 1
ave = sum—x;
std =0;

else
ave = sum_x / n;
std = sqrtNn*sum_x2 - sum x'2) / (n*(n_l)))

end

end I function runstats

5. Test the program.
To test this function, we must create a script file that resets rnstats,

reads input values, calls runstats, and displays the running statistics.

An appropriate script file is shown below.

I Script file: test_runstats.m

I

5.5 Preserving Data Between Calls to a Function 	 235

% Purpose:
%	 To read in an input data set and calculate the
%	 running statistics on the data set as the values

are read in. The running stats will be written
%	 to the Command Window.

% Record of revisions:
Date	 Programmer	 Description of chance
= = = =	 = = = = = = = = = =	 =

%	 01/13/04	 S. J. Chapman	 Original code

% Define variables:
%	 array -- Input data array

ave	 -- Running average
%	 std	 -- Running standard deviation
%	 ii	 Index variable
%	 nvals -- Number of input values
%	 std	 -- Running standard deviation

% First reset running sums
[ave std] = runstats(reset);

% Prompt for the number of values in the data set nvals =
input(Enter number of values in data set:);

% Get input values
for ii = l:nvals

% Prompt for next value
string = [Enter value 	 int2str(ii)
x = input(string);

% Get running statistics
lave std] = runstats(x);

% Display running statistics

fprintf(Average = %8.4f; Std dev = %8.4f\n ,ave, s:dl

end

To test this function, we will calculate running statistics b y hand for
a set of five numbers, and compare the hand calculations to the resul:s

from the program. If a data set is created with the follov ins five input
values

3.,	 2.,	 3..	 4..	 2.8

then the running statistics calculated by hand would be:

236 I Chapter 5 User-Defined Functions

Value	 n	 YX	 1 x2	 Average	 StcLdev

	3.0	 1	 3.0	 9.0	 3.00	 0.000

	

2.0	 2	 5.0	 13.0	 2.50	 0.707

	

3.0	 3	 8.0	 22.0	 2.67	 0.577

	

4.0	 4	 12.0	 38.0	 3.00	 0.816

	

2.8	 5	 14.8	 45.84	 2.96	 0.713

The output of the test program for the same data set is:

test_rimatats
Enter number of values in data set: 5
Enter value 1:. 3
Average =	 3.0000; Std dev =	 0.0000

Enter value 2: 2
Average =	 2.5000; Std dev =	 0.7071

Enter value 3: 3
Average =	 2.6667; Std dev =	 0.5774

Enter value 4: 4
Average =	 3.0000; Std dev=	 0.8165.

Enter value 5: 2.8

Average =	 2.9600; Std dev =	 0.7127

so the results check to the accuracy shown in the hand calculations.

5.6. Function Functions

Function functions are functions whose input arguments include the names of
other functions. The functions whose names are passed to the function function

are normally used during the function's execution.
For example, MATLAB contains a function function called f zero. This

function locates a zero of the function that is passed to it. For example, the state-

ment fzero (cos' , [0 p1)) locates a zero of the function cos between

0 and ,r, and fzeio ('exp (x) -2, [0 1]) locates a zero of the function

exp (x) -2 between 0 and 1. When these statements are executed, the result is:

zero('cos',(O Pi])
ans =

1.5708
fzero('exP(X)-2,(O 1])

ans =
0.6931

4

5.6 Function Functions I 237

The keys to the operation of function functions are two special MATLAB

functions, eval and feval. Function eval evaluates a character string as
though it had been typed in the Command Window, while function feval eval-
uates a named function at a specific input value.

Function eval evaluates a character string as though it has been typed in the

Command Window. This function gives MATLAB functions a chance to con-

struct executable statements during execution. The form of the eval function is

eval (string)

For example, the statement x = eval (sin (pi /4)) produces the result

>' x = eval('sin(pi/4)1)

0.7071

An example where a character string is constructed and evaluated using the eval
function is shown below:

X = 1;

str = ['exp (num2str(x) ') —11];
res.= eval(str);

In this case, str contains the character string I exp (1) —1, which eval
evaluates to get the result 1.7183.

Function feval evaluates a named function defined by an M-file at a spec-
ified input value. The general form of the feval function is

feval(fun,value)

For example, the Statement x = feval ('sin' ,pi/4) produces the result

x	 feval('sin',piI4)

0.7071

Some of the more common MATLAB function functions are listed in Table 5.1.
Type help fun_name to learn how to use each of these functions.

Table 5.1 Common MATLAB Function Functions

Function Name	 Description

fminbnd	 Minimize a function of one variable.

Fzero	 Find a zero of a function of one variable.

Quad	 Numerically integrate a function.

Ezplot	 Easy to use function plotter.

fplot	 Plot a function by name.

238	 Chapter 5 User-Defined Functions

.-	 .	 .
Example 5.6—Creating a Function Function

Create a function function that wilt plot any MATLAB function of a single vari-
able between specified starting and ending values.

Sot i. i IO\ This function have two input arguments, the first one containing the
name of the function to plot and the second one containing a two-eIement sector
with the range of values to plot.

1. State the problem.
Create a function to plot any MATLAB function of a single variable
between two user-specified limits.

2. Define the inputs and outputs.
There are two inputs required by this function:

1. A character string containing the name of a function.
2. A two-element vector containing the first and last values to plot.

The output from this function is a plot of the function specified in the first
input argument.

3. Design the algorithm.
This function can be broken down into the following four major steps:

Check for a legal number of arguments
Check that the second argument has two elements
Calculate the value of the function between the

start and stop points
Plot and label the function

The detailed pseudocode for the evaluation and plotting steps is:

n_steps <- 100
step_size <- (xlim(2) - xlim(l)) / n_steps
x.<- xlirn(l):step_size:xlirfl(2)
y <- feval(fun,x)
plot (x, y)
tile(['\bfPlot of function • fun (x)
xlabel \bfx
yla'oel(['\b f ' fun '(x)'])

4. Turn the algorithm into MATLAB statements.
The final \IATLAB function is shown below.

fuuction	 _C}(p9 (fun, xlim)
%QUICKPLOT Generate quick plot of a function

'unction QUICKPLOT generates a quick plot
% of a function contained in a external M-file,
% between user-s pecified x limits.

5.6 Function Functions 	 239

% Define variables:
%	 fun	 --- Function to plot
%	 msg	 -- Error message
%	 fl—steps	 -- Number of steps to olot
%	 step_size	 Step size

x	 -- X-values to plot
%	 y	 -- Y-values to plot
%	 xlim	 Plot x limits
%
% Record of revisions:

Date	 Programmer	 Description of change
%
%	 01/13/04	 S. J. Chapman	 Original code
% Check for a legal number of input arguments.
rnsg = nargchk(2,2,nargi0);
error(msg);

% Check the second argument to see if it has two
% elements. Note that this double test allows theN	 % argument to be either a row or a column vector.
if (size(xlitn,l) == 1 & size(xlim,2) == 2) J

size(xlim,1) == 2 & size(xlim,2) == 1

% Ok--continue processing.
n_steps = 100;
step size = (xlim(2) - xlim(l)) / n_steps;
x = xlim(1) :step size;xlim(2)
y = feval(fiin,x);

plot(x,y)
title([\bfPlot of function	 fun (x) '1)
xlabel(\bfx);
ylabel (['\bf	 fun	 (x) '1):

else
% Else wrong number of elements in xlirn.
error(Incorrect number of elements in xlim.);

end

end % function quickplot

5. Test the program.
To test this function, we must call it with correct and incorrect input aru-
ments. verifying that it handles both correct inputs and errors procrIv.
The results are shown below:

Quickplot ('sin'

??? Error using ==> quickplot
Not enough input arguments.

240	 Chapter 5 User-Defined Functions

Yew iet T001s V jOW H

Plot oIft,1ctIonsncx

06

04

02

-02

-04

-06k

.6	 -4	 2 0	 2	 4	 6	 8
x

Figure 5.6 Plot of sin x versus x generated by function guickplot.

quickp1ot(5in,(_2*Pi 2*pi],3)

??? Error using ==> quickplot

Too many input arguments.

quickp1ot(Bifl,_2*P1)

??? Error using ==> quickplot

Incorrect number of elements in xlirn.

qujckp1ot(Sifl,(_2*Pi 2*pi])

The last call was correct, and it produced the plot shown in Figure 5.6.

5.7 Subfunctions, Private Functions,
and Nested Functions

MATLAB includes several special types of functions that behave differently than

the ordinary functions we have used so far. Ordinary functions can be called by

any other function, as long as they are in the same directory or in any directory

on the MATLAB path.
The scope of a function is defined as the locations within MATLAB from

which the function can be accessed. The scope of an ordinary MATLAB function

t

Function mystats is
accessible from outside the file.

Functions mean and ned:a
are Only accessible from inside
the file.

5.7 Subfunctions Pnvate Functions, and Nested Functions 1 	 241

is the current working directory. If the function t ies in a director on the
MATLAB path, then the scope extends to all NIAI LAB functions in a program.
because they all check the path when trying to find a function with a g iven name

In contrast, the scope of the other function types that we will discuss in the
rest of this chapter is more limited in one way or another.

Subfunct ions

It is possible to place more than one function in a sin g le file. If more thin one
function is present in a file, the top function isa normal or primar y function,
while the ones below it are subfunctions. The primary function should have the
same name as the file it appears in. Subfunctions look just like ordinary func-
tions, but they are only accessible to the other functions within the same file. In
other words, the scope of a subfunction is the other functions within the same file
(see Figure 5.7).

Subfunctions are often used to implement "utility" calculations for a main
function. For example, the file mys tats . m shown below contains a primary func-
tion rnystats and two subfunctions mean and median. Function mys:ats is a
normal MATLAB function, so it can be called by , other MATLAB function in
the same directory. If this file is in a directory included in the MATLAB search
path, it can be called by any other MATLAB function, even if the other function is

File rnystats .m

Figure 5.7 The first function in a file is called the primary function. It should have the same name as
the file it appears in. and it is accessible from outside the file. The remainin g fimctions in
the file are subfunctions they are accessible only from within the file.

242	 Chapter 5 User-Defined Functions

not in the same directory. By contrast, the scope of functions mean and median
is restricted to other functions within the same file. Function mystats can call
them and they can call each other, but a function outside of the file cannot. They are
"utility" functions that perform a part the job of the main function mys tats.

function [avg, med]	 mystats(u)

% MYSTATS Find mean and median with internal functions.
% Function MYSTATS calculates the average and median
% of a data set using subfunctions.

n = length(u);
avg = mean (u,n);
med = median(u,n);

end % function mystats

function a - mean(v,n)
% Subfunction to calculate average.
a = sum(v)/n;

end % function mean

function in median(v,n)
% Subfunction to calculate median.
w = sort(v);
if rem(ri,2) == 1

m = w((n + 1)/2);
else

m = (w(n/2)+ w(n/2 +
end

end % function median

Private Functions
Private functions are functions that reside in subdirectories with the special name
private. They are only visible to other functions in the private directory or
to functions in the parent directory. In other words, the scope of these functions is
restricted to the private directory and to the parent directory that contains it.

For example, assume the directory testing is on the MATLAB search
path. A subdirectory of testing called private can contain functions that
only the functions in testing can call. Because private functions are invisible
outside of the parent directory, they can use the same names as functions in other
directories. This is useful if you want to create your own version of a particular
function while retaining the original in another directory. Because MATLAB
looks for private functions before standard Wile functions, it will find a private
function named test. rn before a non-private function named test. in.

5.7 Subfunctions, Private Functions, and Nested Functions I 243

You can create your own private directories by simply creating a subdirectory

called private under the directory containing your functions. Do not place these

private directories on your search path.

When a function is called from within an M-file, MATLAB first checks the file

to see whether the function is a subfunction defined in the same file. If not, it checks

for a private function with that name. If it is not a private functiori, MATLAB

checks the current directory for the function name. If it is not in the current direc-

tory, MATLAB checks the standard search path for the function.

If you have special-purpose MATLAB functions that should be used only by

other functions and should never be called directly by the user, consider hiding them

as subfunctions or private functions. Hiding the functions will prevent their acciden-

tal use and will also prevent conflicts with other public functions of the same name.

Nested Functions
Nested functions are functions that are defined entirely within the body of another
function, called the host function. They are visible only to the host function in

which they are embedded and to other nested functions embedded at the same

level within the same host function.

A nested function has access to any variables defined with it, plus any vari-
ables defined within the host function (see Figure 5.8). The only exception occurs

if a variable in the nested function has the same name as a variable within the host

function. In that case, the variable within the host function is not accessible.

host—function

nested—function-1

end % nested_function_i

nested—function 2

end % nested—function-2

end % host—function

Variables defined in the host
function are visible inside any
nested functions.

Variables defined within nested
functions are not visible in
the host function.

nested—function- 1 can be
called from within
host—function or
nested—function-2.

nested—function-2 can be
called from within
host—function or
nested—function-1.

Figure 5.8 Nested functions are defined within a host function, and they inherit variables defined
within the host function.

244	 Chapter 5 User-Defined Functions

Note that if a file contains one or more nested functions, then e1en/uu tion in

the file must be terminated with an end statement. This is the only time when the

end statement is required at the end ofa function at all other times it is optional.

Programming Pitfalls
,.tjm	 r i -i	 ii	 d f	 Ct	 ti Cfl). tIm	 I

must be terminated with an end statement. it is an error to omit eui tatcmnnts

in this case.

The following program illustrates the use of variables in nested functions. It

contains a host function test _ nested _i and a nested function funi. When

the program starts, variables a, b, x, and y are initialized as shown in the host

function, and their values are displayed. Then the program calls funi. Since

funi is nested, it inherits a, b, and x from the host function. Note that it does

not inherit y, because funi defines a local variable with that name. When the

values of the variables are displayed at the end of fun 1, we see that a has been

increased by I (due to the assignment statement), and that y is set to 5. When exe-

cution returns to the host function, a is still increased by I, showing that the vari-

able a in the host function and the variable a in the nested function are really the

same. On the other hand, y is again 9, because the variable y in the host function

is not the same as the variable y in the nested function.

function res = test_nested_i

This is the top level function.
% Define some variables.
a = 1; b = 2; x = 0; y = 9;

% Display variables before call to funi
fprintf(Before call to funl:\n');
fprintf('a, b, x, y = %2d %2d %2d %2d\n', a, b, x, y);

9s Call nested function funi
x = funl(x);

% Display variables after call to funi
fprintf('\nAfter call to funl:\n');
fprintf(a, b, x, y = %2d %2d %2d %2d\n, a, b, x, y);

% Declare a nested function
function res = funl(y)

% Display variables at start of call to funi
fprintf(\nt start of call to funl:\n);
fprintf(a, b, x, y = %2d %2d %2d %2d\n, a, b, x, y);

5.7 Subfunctions, Private Functions, and Nested Functions 1 245

y = y + 5;
a = a + 1;
res =

% Display variables at end of call to funl
fprintf(\nAt end of call to funl:\n);
fprintf(a, b, x, y = %2d %2d %2d %2d\n, a, b, x, y);

end % function funi

end % function test_nested_i

When this program is executed, the results are:

>> test—nested-1
Before call to funl:
a, b, x, y = 1 2 0 9

At start of call to funl:

a, b, x, y = 1 2 0 0

At end of call to funl:
a, b, x, y = 2 2 0 5

After call to funl:
a, b, x, y = 2 2 5 9

Like subfunctions, nested functions can be used to perform special-purpose

calculations within a host function.

Use subfunctions, private functions, or nested functions to hide special-purpose

calculations that should not be generally accessible to other functions. Hiding

the functions will prevent their accidental use, and will also prevent conflicts

with other public functions of the same name.

Order of Function Evaluation

In a large program, there could possibly be multiple functions (subfunctions, pri-
vate functions, nested functions, and public functions) with the same name. When

a function with a given name is called, how do we know which copy of the func-

tion will he executed?

246	 Chapter 5 User-Defined Functions

The answer to this question is that MATLAB locates functions in a specific
order as follows:

I. First, MATLAB checks to see whether there is a nested function with the
specified name. If so. it is executed.

2. MATLAB checks to see whether there is a subfunction with the specified
name. If so, it is executed.

3. MATLAB checks for a private function with the specified name. If so, it
is executed.

4. MATLAB checks for a function with the specified name in the current
directory. If so, it is executed.

5. MATLAB checks for a function with the specified name on the MATLAB

path. MATLAB will stop searching and execute the first function with the
right name found on the path.

5.8 Summary

In Chapter 5, we presented an introduction to user-defined functions. Functions

are special types of M-files that receive data through input arguments and
return results through output arguments. Each function has its own independ-

ent workspace. Each normal function (one that is not a subfunction) should
appear in a separate file with the same name as the function, including
capitalization.

Functions are called by naming them in the Command Window or another

M-file. The names used should match the function name exactly, including capi-

talization. Arguments are passed to functions using a pass-by-value scheme,

meaning that MATLAB copies each argument and passes the copy to the func-
tion. This copying is important, because the function can freely modify its input

arguments without affecting the actual arguments in the calling program.

MATLAB functions can support varying numbers of input and output argu-
ments. Function nargin reports then number of actual input arguments used in
a function call, and function nargout reports then number of actual output
arguments used in a function call.

Data can also be shared between MATLAB functions by placing the data in
global memory. Global variables are declared using the global statement.
Global variables may be shared by all functions that declare them. By convention,
global variable names are written in all capital letters.

Internal data within a function can be preserved between calls to that func-

tion by placing the data in persistent memory. Persistent variables are declared
using the persistent statement.

Function functions are MATLAB functions whose input arguments include

the names of other functions. The functions whose names are passed to the
function function are normally used during that function's execution. Examples
are some root-solving and plotting functions.

5.8 Summary 1 247

Subfi.inctions are additional functions placed within a single file. Subfunctions
are accessible onl y from other functions within the same file. Private functions are

functions placed in a special subdirectory called private. They are only acces-

sible to functions in the parent directory. Nested functions are functions com-

pleted defined within the body of another function (called the host function)

Nested functions have access to the variables in the host function as well as to

their own local variables. Subfunctions. private functions, and nested functions

can be used to restrict access to MATLAB functions.

Summary of Good Programming Practice

The following guidelines should be adhered to when working with MATLAB
functions.

1. Break large program tasks into smaller, more understandable functions
whenever possible.

2. Always terminate your functions with an end statement, and include a

comment on the statement indicating which function the end statement is
associated with.

3. Declare global variables in all capital letters to make them easy to distin-

guish from local variables.
4. Declare global variables immediately after the initial comments anc

before the first executable statement each function that uses them.
5. You may use global memory to pass large amounts of data among func-

tions within a program.

6. Use persistent memory to preserve the values of local variables within
function between calls to the function.

7. Use stbfunctions, private functions, or nested functions to hide special.

purpose calculations that should not be generally accessible to other func-

tions. Hiding the functions ill prevent their accidental use, and will also

prevent conflicts with other public functions of the same name.

MATLAB Summary

The following summary lists all of the \IA[LA13 commands and 1Inction
described in this chapior. along with a brief description of each one.

Commands and Functions

?rror	 Displays error message and aborts the function producing the error. This function is
used if the argument errors are fatal.

va1	 Evaluates a character string as though it had been typed in the Command Window.

azplot	 Easy-to-use function plotter.

(continued)

248 1 Chapter 5 User-Defined Functions

Commands and Functions

feval	
Calculates the value of a functionf(x) defined by an M-file at a specific x.

frniri	 Minimize a function of one variable.

fplot	 Plot a function by name.

f zero	 Find a zero of a function of one variable.

g.lobal	 Declares global variables.

hist	 Calculate and plot a histogram of a data set.

inputname	
Returns the actual name of the variable that corresponds to a particular argument number.

nargchk	
Returns a standard error message if a function is called with too few or too many arguments.

nargin	
Returns the number of actual input arguments that were used to call the function.

nargout	
Returns the number of actual output arguments that were used to call the function.

persistent
	 Declares persistent variables.

quad
	 Numerically integrate a function.

rand
	 Generates random values from a uniform distribution.

randn
	 Generates random values from a normal distribution.

return	 Stop executing a function and return to caller.

warning	 Displays a warning message and continues .
 function execution. 1'hi function is used if the

argument errors are not fatal, and execution can continue.

5.9 Exercises

What is the difference between a script file and a function?
When a function is called, how is data passed from the caller to the func-

tion, and how are the results of the function returned to the caller?

What are the advantages and disadvantages of the pass-by-value scheme

used in MATLAB?

5.4 Modify the selection sort function developed in this chapter so that it accepts

a second optional argument, which may be either 'up' or • down'. If the
argument is up', sort the data in ascending order. If the argument is

down', sort the data in descending order. If the argument is missing, the

default case is to sort the data in ascending order. (Be sure to handle the case
of invalid arguments, and be sure to include the proper help information in

your function.)
Modify function raridoinO so that it can accept 0, 1, or 2 calling argu-

ments. If it has no calling arguments, it should return a single random
value. If it has 1 or 2 calling arguments, it should behave as it currently

does.

5.1
5.2

5.3

5.5

5.9 Exercises I 249

5.6 As function randomO is currently written, it will fail if function seed is

not called first. Modify function randornO so that it will function prop-

erly with some default seed even if function seed is never called.
5.7 Write a function that uses function randomO to generate a random value in

the range [- 1.0, 1.0). Make randomO a subfiinction of your new function.
5.8 Write a function that uses function randomO to generate a random value in

the range [low, high), where low and high are passed as calling argu-

ments. Make raridomO a private function called by your new function.
5.9 Dicp Simulation It is often useful to be able to simulate the throw of

a fair die. Write a MATLAB function dice that simulates the throw of a

fair die by returning some random integer between I and 6 every time that
it is called. (Hint: Call randomO to generate a random number. Divide
the possible values out of randornO into six equal intervals, and return the
number of the interval that a given random value falls into.)

5.10 Road Traffic Density Function randomO produces a number with a
un?for,n probability distribution in the range [0.0, 1.0). This function is
suitable for simulating random events if each outcome has an equal prob-

ability of occurring. However, in many events, the probability of occur-
rence is not equal for every event, and a uniform probability distribution
is not suitable for simulating such events.

For example, when traffic engineers studied the number of cars pass-
ing a given location in a time interval of length t, they discovered that the

'	 probability of k cars passing during the interval is given by the equation

- P(k,t) =	 fort 0,>O, and k0, 1,2,...	 (5-10)t)k

This probability distribution is known as the Poisson distribution; it occurs
in many applications in science and engineering. For example, the number
of calls k to a telephone switchboard in time interval t, the number of bac-
teria k in a specified volume t of liquid, and the number of failures k of a
complicated system in time interval t all have Poisson distributions.

Write a function to evaluate the Poisson distribution for any Ic. r,
and A. Test your function by calculating the probability of 0, 1, 2..... 5
cars passing a particular point on a highway in 1 minute, given that A. is
1.6 per minute for that highway. Plot the Poisson distribution for t I and
A.= 1.6.

5.11 Write three MATLAB functions to calculate the hyperbolic sine, cosine,
and tangent functions:

	

e.r -	 e + e	 e' - esinh(x) =	 cosh (x) = - ---tanh(x) = _____

	

2	 2	 Ix+e

Use your functions to plot the shapes of the hyperbolic sine, cosine, and
tangent functions.

250	 Chapter 5 User-Defined Functions

5.12 Write a single MATLAB function hyperbolic to calculate the hyperbol-

ic sine. cosine, and tangent functions as defined in the previous problem. The
function should have two arguments. The first argument will be a string con-

taining the function names I sinh , cosh', or tanh,and the second

argument will be the value of x at which to evaluate the function. The file

should also contain three subfunctions-_S jnhl, coshi, and tanhl—to

perform the actual calculations, and the primary function should call the
proper subfunction depending on the value in the string. [Note: Be sure to

handle the case of an incorrect number of arguments, and also the case of an

invalid string. In either case, the function should generate an error.]

5.13 Cross Product Write a function to calculate the cross product of two

vectors V 1 and V:

>< '2 = (V 1 Vr2	 V,V 1)	 i + (V 1 V 2 -	 2 V1) j

+ (V51 V, - V521) k

where V 1 Vd i+ Vj + V k and V: i + V52 j + V2k.Note

that this function will return a real arlay as its result. Use the function to

calculate the cross product of 'e two vectors V 1 = [-2,4,0.51 and

V = [0.5,3,2].

5.14 Sort with Carry It is often useful to sort an array arrl into ascending

order, while simultaneously carrying along a second array arr2. In such
a sort, each time an element of array arrl is exchanged with another ele-

ment of arri, the corresponding elements of array arr2 are also
swapped. When the sc't is over, the elements of array arri are in ascend-

ing order, while th elements of array arr2 that were associated with

particular elemenS of array arri are still associated with them. For

example, suppo we have the following two arrays:

Element	 arrl	 arr2

1. 6.	 1.

2. 1.	 0.

3. 2.	 10.

After sorting array arrl while carrying along array arr2, the contents of

the two arrays will be:

Element	 arrl	 arr2

1. 1.	 0.

2. 2.	 10.

3. 6.	 1.

5.9 Exercises I 25 I

Write a function to sort one real array into ascending order while carrying

along a second one. Test the function with the following two 9-element
arrays:

a = [1, 11, -6, 17, -23, 0, 5, 1, -1);
b = [31, 101, 36, -17, 0, 10, -8,

5.15 Use the Help Browser to look up information about the standard MATI_AB

function sortrows, and compare the performance of sortrows with the

sort-with-carry function created in the previous exercise. To do this, create
two copies of a 1000 X 2 element array containing random values, and sort
column I of each array while carrying along column 2 using both functions.

Determine the execution times of each sort function using tic and toc.
How does the speed of your function compare with the speed of the stan-
dard function sortrows?

5.16 Figure 5.9 shows two ships steaming on the ocean. Ship I is at position
(x 1 ,y 1) and steaming on heading Oi . Ship 2 is at position (x,,y,) and
steaming on heading 8. Suppose that Ship I makes radar contact with an
object at range r 1 and bearing Ø . Write a MATI_AB function that will cal-
culate the range r2 and bearing Ø at which Ship 2 should see the object.

5.17 Minima and Maxima of a Function Write a function that attempts to
locate the maximum and minimum values of an arbitrary function f(x)
over a certain range. The function being evaluated should be passed to the

function as a calling argument. The function should have the following
input arguments:

first—value—The first value of x to search
last value—The last value of x to search

num_steps—The number of steps to include in the search
func—The name of the function to search

Object
1
01

Ship 1
(x1,y1.01)

Ship 2
(x2 , y,. i9)

Figure 5.9 Two ships at positions (x. i) and (vS. v) respectivel y. Ship I is traveling at heading 0.
and Ship 2 is traveling at heading

25 Z	 Chapter 5 User-Defined Functions

The function houId ha e the following output arguments:

xrni.n --The value Of at hieh the minimum was found

rrinva].ueThe mininiUm value of 1(v) found

anax--The value of x at vhLh the nexirnum was found

max value— The maximum value / found

Be sure to check that there are a valid number of input arguments, and that
the MATLAB help and lookf or commands are properly supported.

5.18
Write a test program for the function generated in the previous exercise.

The test program should pass to the function function the user-defined

function f(x) = x3 -- 5v2 + 5x + 2, and search for the minimum and

maximum in 200 steps over the range - I x -3. It should print out the

resulting minimum and maximum values

5.19 Derivative of a Function The derivative of a continuous function .1(x)

is defined by the equation

+ .x)	 (S-Il)
—f(x) =lim--------	 -

In a sampled function, this definition becomes

(5-12)
.1 •a1

AX

where x x+ 1 - x1 . Assume that a vector vect conta i ns nsarnp sam-

ples of a function taken at a spacing of dx per sample. Write a function

that will calculate the derivative of this vector from Equation (5-12). The
function should check to make sure that dx is greater than zero to prevent

divide-by-zero errors in the function.
To check your function, you should generate a data set whose derivative

is known, and compare the result of the function with the known correct

answer. A good choice for a test function is sin x. Front 	 calculus,

we know that	 (sin x)	 cos x. Generate an input sector containing 100

values of the function sin x starting at x = 0 and ucing a step size x of

0.05. Take the derivative of the vector with your function, and then com-

pare the resulting answers to the known correct answer. 1-low close did

your function come to calculating the correct value for the derivative?

5.20 Derivative in the Presence of Noise We will now explore the effects of

input noise on the quality of a numerical derivatic. First, generate an input

vector containing 100 values of the function sin x starting. at .t = 0 and

using a step size x of 0.05, just as you did in the previous problem. Next,

use function randomO to generate a small amount of random noise with a
maximum amplitude of ± 0.02 and add that random noise to the samples

in your input vector. Note that the peak amplitude of the noise is unis 2 of

the peak amplitude of your signal, since the maximum value of sin is 1.

Now take the derivative of the function using the derivative function that

5.9 Exercises I 253

you developed in Problem 5.19. How close to the theoretical value of the
derivative did you come?

5.21 Linear Least-Squares Fit Develop a function that will ciculatc slope
m and intercept b of the least-squares line that best fits an input dt
The input data points Lv ..". vi1l be passed
a ..

Y. ine equations descrining the siope and intercept of the
ist-squares line given in Example 4.6 in the previous chapter.) Test your

function using a test program and the following 20-point input data set:

Sample Data to Test Least Squares Fit Routine

No.	 x	 y	 No.	 x	 y

	-4.91	 -8.18	 Il	 -0.94	 0.21

2	 -3.84	 -7.49	 12	 0.59	 1.73

3	 -2.41	 -7.11	 13	 0.69	 3.96

4	 -2.62	 -6.15	 14	 3.04	 4.26

5	 -3.78	 -5.62	 15	 1.01	 5.75

6	 -0.52	 -3.30	 16	 3.60	 6.67

7	 -1.83	 -2.05	 17	 4.53	 7.70

8	 -2.01	 -2.83	 18	 5.13	 7.31

9	 0.28	 -1.16	 19	 4.43	 9.05

10	 1.08	 0.52	 20	 4.12	 10.95

5.22 Correlation Coefficient of Least-Squares Fit Develop a function that will
calculate both the slope in and intercept b of the least-squares line that best fits
an input data set and also the correlation coefficient of the fit. The input data

points (x, y) will be passed to the function in two input arrays, x and y. The
equations describing the slope and intercept of the least-squares line are given

in Example 4.6, and the equation for the correlation coefficient is

- ()()
r	 -.	 _________	 (5-13)

[(,2) - (.v)2] [(, i 2) - (.):]

where

Ex is the sum of the x values

' is the sum of the v values

is the sum of the squares of the .v aliies

v is the sum of the squares of the i values

xv is the sum of the products of - the corresponding .v and i values
n is the number of points included in the fit

=

0.5

C-
C

-t 5
0 4

(I.,,

254	 Chapter 5 User-Defined 	 tonS

\

Figure 5.10	 o A plot of sin as a function of V. th no rYISC aLd to the caa '	 \ Ot O)'IO X

a function of x with a 2 0 peak amplitude uniform ran.tcrn noise adei t' the d un.

Test your function usin' •i test clrec r ; crT ani ht	 .

set izlven in the prvc1is prinbi rn

5.23 Recursion A luocuon i s said to be r'ztrs' C ii jOe let l'' 'r n11. et

NIATLAB functions are designed to allow recus'.c o:erotion. To t-t ho

feature. write a MAT1 AB fuoction to evaluatn lhe factorial imc1iei,

which is defined as fotlo 5:

- J(V	 1)\	 I
U

5.9 Exercises	 255

where N is a positive integer. The function should check to make sure that
there is a single argument V and that V is a nonnegative integer. If it is not,
generate an error using the error function. If the input argument is a
nonegative inteeer, the function should evaluate N! using Equation (5-14).

5.24 The Birthday Problem The Birthday Problem is as follows: if there are
a group of n people in a room, what is the probability that two or more of
them have the same birthday? It is possible to determine : answer to this
question by simulation. Write a function that calculates the probability
that two or more of n people will have the same birthday. where n is a call-
ing argument. (Hint: To do this, the function should create an array of size
n and generate n birthdays in the range I to 365 randomly. It should then
check to see if any of the a birthdays are identical. The function should
perform this experiment at least 5000 times and calculate the fraction of
those times in which two or more people had the same birthday.) Write a
test program that calculates and prints out the probability that 2 or more
of n people will have the same birthday lot a = 2, 3.....40.

5.25 Use function rardornO to generate a set of three arrays of random numbers.
The three arrays should be 100, 1000, and 2000 elements long. Then, use
functions tic and toc to determine the time that it takes function ssort
to sort each array. How does the elapsed time to sort increase as a function
of the number of elements being sorted? (Hint: On a fast computer, you will
need to sort each array many times and calculate the average sorting time in
order to overcome the quantization error of the system clock.)

5.26 Gaussian (Normal) Distribution Function randornO returns a uni-
formly-distributed random variable in the range [0. It, which means that
there is an equal probability of any given number in the range occurring
on a given call to the function. Another type of random distribution is the
Gaussian Distribution, in which the random value takes on the classic hell-
shaped curve shown in Figure 5.11. A Gaussian Distribution with all

 of 0.0 and a standard deviation of 1.0 is called a standa,vii:cd no,'nial
distribution, and the probability of any given value occurring in the stan-
dardized normal distribution is given by the equation

P 0 =	 (5-15)

It is possible to generate a random variable with a standardized normal
distribution starting from a random variable with a unitriu distribution in
the range [- I, lj as follows:

Slcct two unithrm random variables .v 1 and v, from the range [- I.
such that x +	 < I. To do this, generate two uniform random vari-
ables in the range [-1. U. and see if the sum of their squares happens to
be less than I. If so, use them. Knot, tr y again.

2. Then each of the values v and v in the equations below will he a
normall y distributed random variable.

(1.4

0.3

0.2

-C

0.1

256	 Chapter 5 User-Defined Functions

>.orflIUI ilntrnhulIou

-4	 -2	 0
Value

Figure 5.11 A Normal probability distribution.

= , [in	 (5-16)

Y2 =
	 ;_In,,.(5-17)

where

r=x+X (5-18)

Write a function that returns a normally distributed random value each

time that it is called. Test your function by getting 1000 random values,

calculating the standard deviation, and plotting a histogram of the distri-

bution. How close to 1.0 was the standard deviation?

5.27 Gravitational Force The gravitational force F between two bodies of

masses in and rn is given by the equation

S	 (5-19)

where G is the gravitation constant (6.672 X 10 - 11 N m2/kg2), rn 1 and ni-,

are the masses of the bodies in kilograms and r is the distance between the
twotwo bodies. Write a function to calculate the gravitational force between

bodies given their masses and the distance between them. Test you func-

tion by determining the force on an 800 kg satellite in orbit 38,000 km

above the Earth. (The mass of the Earth is 5.98 >(10
24 kg.)

5.28 Rayleigh Distribution The Rayleigh distribution is another random num-

ber distribution that appears in many practical problems. A Rayleigh-distrib-

uted random value can be created by taking the square root of the sum of
the squares of two normally-distributed random values. In other words, to

5.9 Exercises I 257

generate a Rayleigh-distributed random value r, get two normally distributed
random values (n j and n,), and perform the following calculation:

=	 + 1411	 (5-20)

(a) Create a function rayleigh (n, m) that returns an n X in array of
Rayleigh-distributed random numbers. If only one arment is sup-

plied [rayleigh (n) J, the function should return an n >< n array of

Rayleigh-distributed random numbers. Be sure to design your function

with input argument checking and with proper documentation for the

MATLAB help system.

(b) Test your function by creating an array of 20,000 Rayleigh-distributed

random values and plotting a histogram of the distribution. What does

the distribution look like?

(c) Determine the mean and standard deviation of the Rayleigh

distribution.

5.29 Constant False Alarm Rate (C FAR) A simplified radar receiver chain

is shown in Figure 5.12a. When a signal is received in this receiver, it con-

tains both the desired information (returns from targets) and thermal

noise. After the detection step in the receiver, we would like to be able to

pick out received target returns from the thermal noise background. We

can do this be setting a threshold level, and then declaring that we see a

target whenever the signal crosses that threshold. Unfortunately, it is occa-

sionally possible for the receiver noise to cross the detection threshold

even if no target is present. If that happens, we will declare the noise spike

to be a target, creating a false alarm. The detection threhold needs to be

set as low as possible so that we can detect weak targets, but it must not

be set too low, or we get many false alarms.

After video detection, the thermal noise in the receiver has a Rayleigh

distribution. Figure 5.12b shows 100 samples of a Rayleigh-distributed

noise with a mean amplitude of 10 volts. Note that there would be one

false alarm even if the detection threshold were as high as 26! The prob-

ability distribution of these noise samples is shown in Figure 5.12c.
Detection thresholds are usually calculated as a multiple of the mean

noise level, so that if the noise level changes, the detection threshold will

change with it to keep false alarms under control. This is known as constant

false alarm rate (CFAR) detection. A detection threshold is typical quot-

ed in decibels. The relationship between the threshold in dB and the

threshold in volts is

Threshold (volts) = Mean Noise Level (volts) X 10	 (5-21)

or

Threshold (volts)	
(5-22)dB = 20 log],,(

Noise Level (ohs)J

0	 20	 40	 60	 80	 100

0

258 1 Chapter 5 User-Defined Functions

RI Ampiitir	 lktctr	 >ipH

(a)

Rayleigh Noise with a Mean Amplitude of 10 Volts

Sanpie Number

(b)

Figure 5.12 (a) A typical radar receiver. (b) Thermal noise with a mean of 10 volts output from the

detector. The noise sometimes crosses the detection threshold. (c) Probability distribution

of the noise Out of the detector.

The false alarm rate for a given detection threshold is calculated as:

= Number of False Alarms
(5-23)

Total Number of Samples

Write a program that generates 1.000,000 random noise samples with

a mean amplitude of 10 volts and a Rayleigh noise distribution. Determine

the false alarm rates when the detection threshold is set to 5, 6, 7, 8, 9, 10,

11, 12, and 13 dB above the mean noise level. At what level should the

threshold be set to achieve a false alarm rate of 10?

5.30 Probability of Detection (Pd) versus Probability of False Alarm (Pju)

The signal strength returned by a radar target usually fluctuates over time.

The target will be detected if its signal strength exceeds the detection

5.9 Exercises	 259

Noise distribution after detection
0.08

007

0.06

0.05

0.04

0.03

0.02

0.01

0	 I	 I	 I	 I	 I
0	 5	 10	 15	 20	 25	 30	 35

Amplitude (volts)
(c)

Figure 5.12 (continued)

threshold for any given look. The probability that the target will be detect-
ed can be calculated as:

= Number of Target Detections	
(5-24)

 Total Number of Looks

Suppose that a specific radar looks repeatedly in a given direction. On each

look, the range between 10 km and 20 km is divided into 100 independent
range samples (called range gates). One of these range gates contains a target
whose amplitude has a normal distribution with a mean amplitude of 7 volts

and a standard deviation of I volt. All 100 of the range gates contain sys-

tem noise with a mean amplitude of 2 volts and a Rayleigh distribution.

Determine both the probability of target detection Pd and the probability of
a false alarm P,;,on any given look for detection thresholds of 8.0, 8.5, 9.0,

9.5, 10.0, 10.5, 11.0, 11.5, and 12.0 dB. What threshold would you use for
detection in this radar? (Hint: Perform the experiment many times for each
threshold, and average the results to determine valid probabilities.)

C H A PT E R 6
Additional Data
Types and Plot
Types

In earlier chapters, we were introduced to three fundamental MATLAB data
types: double, logical, and char. In this chapter, we will learn additional
details about these data types, and then we will study some additional MATLAB
data types.

First, we will learn how to create, manipulate, and plot complex values in the
double data type. Then, we will learn more about using the char data type,
and how to extend MATLAB arrays of any type to more than two dimensions.

Finally, we will learn about some additional data types.The MATLAB data ty-
pes are shown in Figure 6.1.We will learn about the single and integer data
types in this chapter, and discuss the remaining ones on the figure later in this book

The chapter concludes with a discussion of additional types of plots avail-
able in MATLAB.

6.1 Complex Data

Complex numbers are numbers with both a real and an imaginary component.
Complex numbers occur in many problems in science and engineering. For exam-
ple, complex numbers are used in electrical engineering to represent alternating
current voltages, currents, and impedances. The differential equations that describe
the behavior of most electrical and mechanical systems also give rise to complex
numbers. Because they are so ubiquitous, it is impossible to work as an engineer
without a good understanding of the use and manipulation of complex numbers.

A complex number has the general form

cahi	 (6-I)

261

262	 Chapter 6 Additional Data Types and Plot Types

MATLAB Data Types

double	 11	 I	 single

double precision	 single precision
(real and complex) (real and complex)

int8, unitS
int16, uint16
int32, unit32

int64, unint64

integer and unsigned
integer data types

logical	 J	 char

logical data	 character strings

function
handlesj]

function handles

user

L	
cell	

j	
Lstructure	 [classes

	

cell arrays	 structures	 objects

Figure 6.1 MATLAB data types.

where c is a complex number, a and b are both real numbers, and i is N/ 1. The

number a is called the real part and b is called the imaginary part of the com-

plex number c. Since a complex number has two components, it can be plotted as

a point on a plane (see Figure 62). The horizontal axis of the plane is the real axis,

and the vertical axis of the pIaie is the imaginary axs, so tF'at any complex num-

ber a + bi can be represented as a single point a units along the real axis and

b Units along the imaginary axis. A complex number represented this wa y is said

to be in rectangular coordinates, since the real and imaginary axes define the

sides of a rectangle.
A complex number can also be represented as a vector of length z and

angle 9 pointing from the origin of the plane to the point P (see Figure 6.3). A

complex number represented this way is said to be in polar coordinates.

c a + hi = zLO

The relationships among the rectangular and polar coordinate terms a, b, z, and

0 are:

a = zcosO	 (6-2)

b = z sin8	 (6-3)

z= /b 2 	 (64)

9 = tan b—	 (6-5)
a

axis

ax

6.1 Complex Data	 263

imaginary axis

Figure 6.2 Representing a complex number in Rectangular Coordinates.

imaginary axis

Figure 6.3 Representing a complex number in Polar Coordinates.

264	 Chapter 6 Additional Data Types and Plot Types

MATLAB uses rectangular coordinates to represent complex numbers. Each

complex number consists of a pair of real numbers (a, b). The first number (a)

is the real part of the complex number, and the second number (b) is the imagi-

nary part of the complex number.

If complex numbers c 1 and c, are defined as C1 = a 1 + b 1 i and c2	a2 + b2i,
then the addition, subtraction, multiplication, and division of c 1 and c2 are defined as:

c t + c, = (a 1 + a,) + (b 1 + b,)i	 (6-6)

Ci - c, = (a 1 - a,) + (b 1 - b,)i	 (6-7)

	

c l >(c2	(a 'a, - b i b,) + (a l b, + b 1 a 2)i	 (6-8)

	

C1	 a 1 a2 + b 1 b2 	b 1 a2 - a1b2

	

2	 2 + 	2	 2	 (6-9)

	

C2	 a2+b2	 a,+b,

When two complex numbers appear in a binary operation, MATLAB performs

the required additions, subtractions, multiplications, or divisions between the two

complex numbers using versions of the preceding formulas.

Complex Variables

A complex variable is created automatically when a complex value is assigned to

a variable name. This easiest way to create a complex value is to use the intrinsic

values i or j, both of which are predefined to be For example, the fol-

lowing Statement Stores the complex value 4 + 6 into variable ci.

>' ci	 4 + j*3
ci =

4.0000 + 3.0000i

Alternately, the imaginary part can be specified by simply appending an i or jto

the end of a number:

'> ci	 4 + 3i
ci =

4.0000 + 3.0000i

The function isreal can be used to determine whether a given array is real

or complex. If any element of an array has an imaginary component, then the

array is complex and isreal (array) returns a 0.

Using Complex Numbers with Relational Operators

It is possible to compare two complex numbers with the = relational operator to

see if they are equal to each other, and to compare them with the - = operator to see

if they are not equal to each other. Both of these operators produce the expected

results. For example. if c 1 = 4 + 3 and c = 4 - i3, then the relational operation

= c produces a 0 and the relational operation c 1 - =c produces a 1.

6.1 Complex Data 	 265

Ilowever, co/npauison.s viith the > > —, or <= opear)is do 1:01 ptu-
c/na' the expected results. When complex numbers are compared with these rela-
tional operators, only the real pairs of the numbers are compared. For example, if
CI = 4 + i3 and c, = 3 + iS, then the relational operation (I > c produces a tru.
(I) even though the magnitude ofc, is reall y smaller than the ma gnitude of

If you ever need to compare two complex numbers with these operators, you
will probably be more interested in the total magnitude of the number than in the
magnitude of only its real part. The magnitude of a complex number can be calcu-
lated with the abs intrinsic function (see below), or directly from Equation (6-4)

= \a 2 +b 	(6-4)

If we compare the magnitudes of c 1 and c above, the results are more reasonable:
abs(c 1) > abs(c2) produces a 0, since the magnitude of C2 is greater than the
magnitude of c1.

Be careful when using the relational operators with complex numbers. The rela-
tional operators >, >=, <, and <= compare only the real parts of complex
numbers, not their magnitudes. If you need these relational operators with com-
plex number, it will probably be more sensible to compare the total magnitudes
rather than only the real components.

.......

Complex Functions

MATLAB includes many functions that support complex calculations. These
functions fall into three general categories:

I. Type conversion functions. These functions convert data from the complex
data type to the real (double) data type. Function real converts the
real part of a complex number into the double data type and throws away
the Imaginary part of the complex number. Function imag converts the
imaginars part of a complex number into a real number.

2. Absolute value and angle functions. These Functions convert a complex
number to Its polar representation. Function abs (C) calculates the
absolute value of a complex number using the equation

abs(c) = \ /a2 + b2

where c = a + hi. Function angle (c (calculates the angle of a com-
plex number using the equation

angle(c) = atan2(imag(c),rea].(c))

producing an answer in the range — r	 0 15 jr.

266	 Chapter 6 Additional Data Types and Plot Types

Table 6.1 Some Functions that Support Complex Numbers

Function	 Description

Computes the complex conjugate of a number c. If c = a + hi,

then conj (c) = a - hi

real (C)	 Returns the real portion of the complex number c.

:nag (C)	 Returns the imaginary portion of the complex number c.

:srea. (c) Returns true (1) if no element of array c has an imaginary

component. Therefore, -isreal (c) returns true (I) ifan

array is complex.

abs (c)	 Returns-the magnitude of the complex number c.

angle o)	 Returns the angle of the complex number c, computed from the

expression atan2(irnag(c), real (c)).

3. Mathematical functions. Most elementary mathematical functions are

defined for complex values. These functions include exponential functions,

logarithms, trigonometric functions, and square roots. The functions sin,

cos, log, sqrt, etc. will work as well with complex data as they will

with real data.

Some of the intrinsic functions that support complex numbers are listed in

Table 6.1.

Example 6.1—The Quadratic Equation (Revisited)
The availability of complex numbers often simplifies the calculations required

to solve problems. For example, when we solved the quadratic equation in

Example 3.2, it was necessary to take three separate branches through the pro-

gram depending on the sign of the discriminant. With complex numbers available,

the square root of a negative number presents no difficulties, so we can greatly

simplify these calculations.
Write a general program to solve for the roots of a quadratic equation,

regardless of type. Use complex variables so that no branches will be required

based on the value of the discriminant.

SOLUTION

1. State the problem.
Write a program that will solve for the roots of a quadratic equation,

whether they are distinct real roots, repeated real roots, or complex roots,

without requiring tests on the value of the discriminant.

6.1 Complex Data	 267

2. Define the inputs and outputs.

The inputs required by this program are the coefficients a. /. and c of the
quadratic equation

a.i + bx + c 0

The output from the program will be the roots of the quadratic equation.

whether they are real, repeated. or complex.

3. Describe the algorithm.

This task can be broken down into three major sections, whose functions

are input, processing. and output:

Read the input data

Calculate the roots

Write out the roots

We will now break each of the above major sections into smaller, more

detailed pieces. In this algorithm, the value of the discriminant is unim-

portant in determining how to proceed. The resulting pseudocode is:

Prompt the user for the coefficients a, b, and c.
Read a, b, and c

discriminant <- b2 - 4 * a * c

xl <- (-b + sqrt(discriminant)) / (2 * a

x2 <- (-b - sqrt(discrirninant)) / (2 * a

Print 'The roots of this equation are:

Print 'xl = ', real(xl), ' +i 	 , imag(xl)
Print 1 x2 = , real(x2), ' +i	 , imag(x2)

4. Turn the algorithm into MATLAB statements.

The final MATLAB code is shown below.

% Script file: calc_roots2.rri
%.

% Purpose:

% This program solves for the roots of a quadratic equatior.
%	 of the form a*x**2 + b*x + c = 0. It calculates the answers
%	 regardless of the type of roots that the equation possesses.

% Record of revisions:

Date	 Programmer	 Description of change
= = = =	 = =====- = = =	 = = = = = = -_====-_ = = = = = = = = =

%	 01/15/04	 S. J. Chapman	 Original code

% Define variables:

a	 -- Coefficient of x2 term of equatior.
%	 b	 -- Coefficient of x term of equation

C	 -- Constant tern of equation

I

268	 Chapter 6 Additional Data Types and Plot Types

%	 discriminant -- Discriminant of the equation

%	 xl	 -- First solution of equation
%	 x2	 -- Second solution of equation

Pro-.pt the user for the coefficients of the equation
disp (This program solves for the roots of a quadratic);
disp (equation of the form A*X2 + B*X + C = 0.);
a = input (Enter the coefficient A:);
b = input (Enter the coefficient B:);
c = input (Enter the coefficient C:);

Calculate discriminant
discriminant = b"2 - 4 * a * c;

t Solve for the roots
xl = (-b + sqrt(discriminant)) / (2 * a);
x2 = (-b - sqrt(discriminant)) / (2 * a);

% Display results
disp (The roots of this equation are:);
fprintf (xl = (%f) +i (%f)/ n', real(xl) , imag(xl))
fprintf (x2 = (%f) +i (%f) / n', real(x2), imag(x2));

5. Test the program.

Next, we must test the program using real input data. We will test cases in

which the discriminant is greater than, less than, and equal to 0 to be certain

that the program is working properly under all circumstances. From Equat-

ion (3-I), it is possible to verify the solutions to the equations given below:

	

x 2 +5x+6=0	 x=-2, and x=-3

	

x 2 +4x+4=0	 x=-2

	

x 2 +2x+5=0	 x-l±2i

When the above coefficients are fed into the program, the results are

calcroots2
This program solves for the roots of a quadratic
equation of the form A*X2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 5
Enter the coefficient C: 6
The roots of this equation are:
xis (-2.000000) +i (0.000000)
x2	 (-3.000000) ci (0.000000)
calcroots2

This program solves for the roots of a quadratic
equation of the form A*X2 + B*X c C = 0.
Enter the coefficient A: 1

6.1 Complex Data	 269

Enter the coefficient B: 4
Enter the coefficient C: 4
The roots of this equation are:
xl = (-2.000000) +1 (0.000000)
x2 = (-2.000000) +i (0.000000)
" calc_roots2

This program solves for the roots of a q-uairatic
equation of the form A*X2 + B*X + C = 0.
Enter the coefficient A: 1
Enter the coefficient B: 2
Enter the coefficient C: 5
The roots of this equation are:
xl = (-1.000000) +i (2.000000)
x2 = (-1.000000) +i (-2.000000)

The program gives the correct answers for our test data in all three possible

cases. Note how much simpler this program is compared with the quadratic root

solver found in Example 3.1. The complex data type has greatly simplified our
program.

Plotting Complex Data

Complex data has both real and imaginary components, and plotting complex

data with MATLAB is a bit different from plotting real data. For example. con-
sider the function

v(t) = e° 2'(cos t + i sin t)	 6-10)

If this function is plotted with the conventional plot command, only the real
data will be plotted-.-the imaginary part will be ignored. The followin g state-
ments produce the plot shown in Figure 6.4, together with a warning messa ge that
the imaginary part of the data is being ignored.

t = 0:pi/20:4*pi;

y = exp(_0.2*t).*(cos(t)+i*sin(t));
plot(t,y, 'LineWidth',2);
title (\bfPlot of Complex Function vs Time)
xlabel(\bf\itt)
ylabel(\bf\ity(t));

If both the real and imaginary parts of the function are of interest. then
the user has several choices. Both parts can be plotted as a function of time
on the same axes using the statements shown below (see Figure 6.5).

270	 Capzer 6 Additional Data Types and Plot Types

Flo E	 w L-t T	 -4et	 -

Plot of Complex Function vs Time

io6

04

2	 4

Figure 6.4 Plot of v(t) = e 0 '(cos t + i sin t) using the command plot (t, y).

----c ii
rt tit Ves tret Ta WrjOw

Plot of Complex Function vs Tim.

I

oeL0	 2	 4	 6	 5	 10	 U

Figure 6.5 Plot of real and imaginary parts of it) versus lime

C
a.

C
' 02.

E

a

M

6.1 Complex Data	 271

t = O:pi/20:4*pj;

y = exp(_O . 2*t) . * (Cos(t)+j*Sjfl(t)

plot(t,rea1(y),b-,LjneWjdth.2).
hold On;

Plot(t,imag(y),r__',Linewidth,2);
title(\bfPlot of Co;ple>r Function vs Tine
xlabel (\bf\itt)

ylabel (\bf\ity(t))

legend ('real', 'imaginary.);
hold off;

Alternatively, the real part of the function can be plotted versus the imaginary

part. Ifa single complex argument is supplied to the plot function, it automati-

cally generates a plot of the real part versus the imaginary part. The statements to

generate this plot are shown below, and the result is shown in Figure 6.6.

t = O:pi/20:4*pj;

Y = exp(0.2*t).*(Cos(t)+j*Sjfl(t));

plot(y,b-, 'LineWidth',2);
title('\bf p lot of Complex Function');

xlabel ('\bfReal Part')

ylabel (' \bflrnaginary Part')

Fe Ed Vw	 To
--

NototComp(exFunhon	 .

r-

:	 at Part

Figure 6.6 Plot of real versus imaginary parts of v(t).

272	 Chapter 6 Additional Data Types and Plot Types

EY V,e* kpeM I
Plot of Complex Funtl0fl

90
-	 60

/

	

/	 .

	

.1	 .	 •--.

	

I	 0

v

270	 -.

Figure 6.7 Polar plot of magnitude of v(t) versus angle.

Finally, the function can be plotted as a polar plot showing magnitude versus

angle. The statements to generate this plot are shown below, and the result is

shown in Figure 6.7.

t = 3:pi/20:4*ri;
y = exp(_0.2*t.).*(COS(t)+i*sin(t));

polar(angle(y) ,abs(y));
title('\bfPlot of Complex Function);

6.2 String Functions

AMATLAB string is an array of type char. Each character is stored in two bytes

ofnlernorv. A character variable is automatically created when a string is assigned

to it. For example, the statement

str - 'This is a test'

creates a 14-element character array. The output ofwhos for this array is

whos str
Name	 Size	 Bytes	 Class

str	 1xl4	 28	 char array

Grand total is 14 elements using 28 bytes

6.2 String Functions	 273

A special function ischar can be used to check for character arra ys. If a given
variable is of type character, then ischar returns a true (I) value. If it is not.
ischar returns a false (0) value,

The following subsections describe MATLAB functions useful for Inanipu-
lating character strings.

String Conversion Functions

Variables may be converted from the char data type to the double data type
using the double function. Thus the statement double (str) y ields the
result:

>> x = double(str)

Columns 1 through 12

84 104 105 115 32 105 115 32 97 32 116 101
Columns 13 through 14
115 116

Variables can also be converted from the double data type to the char data
type using the char function. If x is the 14-element array created above, then the
statement char (x) yields the result:

z	 char(x)
z=
This is a test

Creating Two-Dimensional Character Arrays

It is possible to create two-dimensional character arrays, but each ron 01, 511 " h an
array must have exact/v the sa,ne length. If one of the rows is shorter than the
other rows, the character array is invalid and wil produce an error. For example.

the following statements are illegal because the two rows have different lengths.

name = ['Stephen J. Chapman'; 'Senior Engineer];

The easiest way to produce two-dimensional character arrays is with the char
function. This function will automatically pad all strings to the length of the
largest input string.

' name - char('Stephen J. Chapman', 'Senior Engineer')
name =
Stephen J. Chapman
Senior Engineer

Two-dimensional character arrays can also be created with function strvcat.
which is described below.

274	 Chapter 6 Additional Data Types and Plot Types

Ue the char function to create two-dimensional character arrays without wor-

rying about padding each row to the same length.

It is possible to remove any extra blanks from a string when it is extracted from

an array using the deblarik function. For example, the following statements

remove the second line front name, and compare the results with and with-

out blank trimming.

	

line2	 name(2,:)
lirie2 =
Senior Engineer
line2trim = deblank(name(2,:))

line2trim =
Senior Engineer

size(line2)
ans =

	

1	 18
s> size (line2_trim)
ans =

	

1	 15

Concatenating Strings
Function s trcat concatenates two or more strings horizontally, ignoring any

trailing blanks but preserving blanks within the strings. This function produces

the result shown below

>' result = strcat('String 1 ,'String 2')

result
String lString 2

The result is String lString 2 1 . Note that the trailing blanks in the first

string were ignored.

Function strvcat concatenates two or more strings vertically, automati-

cally padding the strings to make a valid two-dimensional array. This function

produces the result shown below

x> result = strvcat('Long String 1 ,'String 2')

result =
Long String 1
String 2

6.2 String Functions	 275

Comparing Strings
Strings and substrings can be compared in several ways:

• Two strings, or parts of two strings, can he compared for equality.

• Two individual characters can be compared for equality.

• Strings can be examined to determine whether each character is a letter or
whitespace.

Comparing Strings for Equality
You can use four MATLAB functions to compare two strings as a whole for
equality. They are:

• strcmp determines if two strings are identical.

• strcrnpi determines if two strings are identical ignoring case.

• strncmp determines if the first n characters of two strings are identical

• strncrnpi determines if the first n characters of two strings are identical
ignoring case

Function strcmp compares two strings, including any leading and trailing

blanks, and returns a true (1) if the strings are identical.' Otherwise, it returns a

false (0). Function strcmpi is the same as st.rcrnp, except that it ignores the

case of letters (that is, it treats I a' as equal to A'
Function strncxnp compares the first n characters of two strings, including

any leading blanks, and returns a true (1) if the characters are identical.

Otherwise, it returns a false (0). Function strncmpi is the same as strncmp,

except that it ignores the case of letters.

To understand . these functions, consider the two strings:

stri = hello'

str2 = 'Hello'

str3 = help';

Strings stri and str2 are not identical, but they differ only in the case of one

letter. Therefore, strcmp returns false (0), while strcmpi returns true (I).

>> c = strcmp(strl,str2)

Cs
0

>' C = strcmpi(strl,str2)

Caution: The behavior of this function is different from tIint of the :rcrnp in C. C programmers
can be tripped up by this difference.

276	 Chapter 6 Additional Data Types and Plot Types

Strin gs strland str3 are also not identical. and both strcmp and strcmpi

will return a false tO). }lowevcr, (lie first three characters of strland str3 are
identical. so invoking strncmp with arv value up to 3 returns a true (1):

c = strncmp(strl,Str3,2)

Comparing Individual Characters for Equality and Inequality
You can use MATLAB telational operators on character arro' s to test for equality

one chaiac.,er at a time, as long as the arrays you are comparing have equal

dimensions, or one is a scalar. For example. you can use the cqualitv operator

to determine which charac ters in two strtnOs match:

a	 fate';
b	 cake;
result = a == b

result =

0 1 0 1

	

All of the relational operators >.	 -=	 --I compare The ASCII ai1es

of corresponding characters.
Unlike C, MATLAB does not have an intrinsic function to define a "grcaer

than" or "less than" relationship between two strings taken as a whole. \Ve will

create such a function in an example at the end of this section.

Categorizing Characters Within a String
There are three functions for categorizing characters on a character-by-character

basis inside a string:

• isletter determines if character is letter.

• is space determines ifa character isA hitespace (blank, tab, or new line).

• isstrprop (str	 ctegoy) is a more general function. it de-

termines if a character fails into a user-specified category (e.g - .

betic, alphanumeric, uppercase, lowercase. rumcrie. ccntrl).

To understand these functions, let's create a slrir g named niya tring:

= Rcoo 23

We will use this string to tc'.t the categorizing functions.
Function islet ter oxamines each character in 	 trin' pro t. :ei'g a

logical OUiUi vector of the same length as raystring r!' conamsa 'ri:

in each location correspondirL to 3 character and a false ii) in the fucr lc

For example.

a = isletter(systring)
a =
11110031

6.2 Strng Functions	 277

The first four and the last elements in a are true it because the correspendino

characters ofmystring are letters.

Function isspace also examines each character in the string. producin g a
logical output vector of the same length as rrvs trin g that contains a true (I
in each location corresponding to whitespace and a false tOt in the other loca-

tions. "Whitespace" is any character that separates tokens in MATL.AB: a space.

a tab, a linefeed, carriage return, etc. For example.

a = isspace(mystring)

a=

00001000

The fifth element in a is true (I) hecaise the corresponding character of
mystring is a space.

Function isstrprop is new in MATLAB 7.0. It is a more flexible replace-

ment for isletter, isspace, and several other functions. This function has

two arguments, str and category'. The first argument is the string to

characterize, and the second argument is the type of category to check for. Some
possible categories are given in Table 6.2.

Table 6.2 Selected Categories for Function isstrprop

Category	 Description

alpha	 Return true (1) for each character of the string that is alphabetic, and false
(0) otherwise.

alphanum'	 Return true (I) for each character of the string that is alphanumeric, and
false (0) otherwise.

[Note: This category replaces function isletter.]

crstrl	 Return true (1) for each character of the string is that is a control character,
and false (0) otherwise.

digit	 Return true (I) for each character of the string that is a number, and false
(0) otherwise.

lower	 Return true (I) for each character of the strin g that	 a lowercase letter,
and false (0) otherwise.

wspace	 Return true (1) for each character of the strin g that is whitespace. and fate
(0) otherwise.

[Note: This category replaces function isszace]

upper ,	Return true (1) for each character of the strin g that is all Uppercas e letter.
and false (0) otherwise.

xdigi t '	 Return true (I) for each character of the strin g that is a hexadecimal digit.
and false (0) otherwise.

278	 Chapter 6 Additional Data Types and Plot Types

This function examines each character in the string, producing a logical out-

nut vector of the same length as the input stnnO that contains a true (I) i n each !oca-

non that maches the category, and a f: Le O) in he other locations. For txample. the

following function checks to sec whILh 2haraci.ars in rrysnring are numbers:

a = isstrprop(my3tring,'diit)

C :J C 0 0 1 1 0

Also, the following thnciion checks to see which cha"act I rs in rays tring are

lo'vcrcase etCcrs

a = isstrpro,(mystring,'J.oWer)

CL110001

Use function isstrprop to dete-mic the chtra_te",lica of each cOaracter in

a string array. This function iplas the aicr fmcio's : c-:tr and

isspace, which may be dJted ir a fUtUR. kersion ofMAftAH.

;.-,; ,_,,aT .,	 '		 •

Searching and Replacing Characters Within a String

MATLAB provides several functions for searching and replacing characters in a

string. Consider a string named test;

test = 'This is a test!
Function firids_r returns the starting position of ai occurrences of the

shorter of two strings within a longer string. For example. to find all occurrences

of the string is it'

 = findstr(test,'is')
position =

3	 6

The string is occurs twice it;-in tes a, startin g at po:iiuns and (t.

I-u!lction s trmatcti is another matching t'unciiun, This one 	 ot

heginnng characters of the OOIIS ofa 1-D character array and re-!as a .t ofthoc

rows that start with the pecificd character sequence. [ha km of hs Oan'ien is

result = strro':ch(rrr,arrav;

For example, suppose that we create a 2-D character .ta" V'Ii'L tne

S cr:ca

	

arra y = strycat raaxcrray , rain vah. 	 raer',a I

6.2 String Functions	 2'9

Then the following statement will return the tow numbers of all rows beginnite

X% ith the letters max

>> result = strmatch('max',array)
re5ult =

1
3

Function strrep performs the standard search-and-replace operation. It

finds all occurrences of one string within another one and replaces them by a

third string. The form of this function is

result = strrep(str,src'n,repl)

where str is the string being checked, srch is the character string to search for.

and repi is the replacement character string. For example.

' test = 'This is a test!'
>' result = strrep(test, 'test', 'pest')
result =
This is a pest!

The strtok function returns the characters before the first occurrence of a

delimiting character in an input string. The default delimiting characters consti-

tute the set of whitespace characters. The form of strtok is

[token,remainder] = strtok(string,delim)

where string is the input character string, del im is the (optional) set of delim-
iting characters, token is the first set of characters delimited by a character in

delim, and remainder is the rest of the line. For example,

>' [token,reinainder] = strtok('This is a test!')
token =
This
remainder =
is a test!

You can use the strtok function to parse a Sentence into words: for

example:

function all words = words(input_string)
remainder = input—string;
all—words =
while (any(remainder))

[chopped,remainder] = strtok(remajnder)
all—words = strvcat(all_words,chopped)

end

280	 Chapter 6 Additional Data Types and Plot Types

Uppercase and Lowercase Conversion

Functions upper and lower convert all of the alphabetic characters within a

string to uppercase and lowercase respectively. For example,

>' result = upper('This is test 1!')
result =
THIS IS TEST 1!
'> result = lower('This is test 211)
result =
this is test 2!

Note that the alphabetic characters were converted to the proper case, while the

numbers and punctuation were unaffected.

Trimming Whitespace from Strings

There are two functions that trim leading and .'or trailing whitespace from a string.

Whitespace characters consists of the sp?ces, newlines, carriage returns, tabs,

vertical tabs, and formfeeds.

Function deblank removes any extra trailing whitespace from a string, and

function strtrirn removes any extra leading and trailing whitespace from a

string.

For example, the following statements create a 21-character string with lead-

ing and trailing whitespace. Function deblank trims the trailing whitespace

characters in the string only ''hile function strtrim trims both the leading and

the trailing whitespace ch2' acters.

test—string =	 This is a test.
test string =

This is a test.
length(test string)

ans =
Li

>> teststring_triml= deblank(test string)
test_string_trimi =

This is a test.
>> length(teststring_triml)
ans =

iR
test_stringtrim2 = strtrim(test_string)

test_string_trim2 =
This is a test.
>' length (test_string_trim2)
ans =

6 	 Stg Fun--tons	 281

Numeric-to-String Conversions

MAFLAB contains several functions to convert numeric alues into character
strinOs. We have alread y seen two such functions, nurn2s:r and int2str.
Consider a scalar x:

X = 5317;

By dehult, NIATLAB stores the number x as a 1)< I double array containing
the value 5317. The iiit2str (integer to string) function converts this scalar into

a 1-by-4 char array containing the string 5317

'> x = 5317;

>' y = int2str(x);
> whos

Name	 Size	 Bytes	 Class

X	 lxi	 8	 double array
y	 1x4	 8	 char array

Grand total is 5 elements using 16 bytes

Function num2str converts a double value into a string, even if it does
not Contain an integer. It provides more control of the output string format than

int2str. An optional second argument Sets the number of digits in the output

string, or specifies an actual format to use. The format specifications in the sec-
ond argument as similar to those used by fprintf. For example,

p = nuin2str(pi)
p=

3.1416
p = num2str(pi,7)

p=
3.141593

" p = nuin2str(pi,1910.5e)
p=
3.14159e+000

Both int2str and nurn2str are handy for labeling plots. For example, the
following lines use num2 a tr to prepare automated labels for the x-axis of a plot:

function plotlabel(x,y)
plot (x,y)
stri = num2str(min(x));
str2 = nuni2str(max(x));
out = ['Value of f from	 stri	 to I str2
xlabel (out);

There are also conversion functions designed to change numeric values

into strings representing a decimal value in another base, such as a binary or

282	 .	 . i 	 tTyes

ntjtiofl. For example, the dec2hex function converts a dcc-

:ito the eorr'onding hexadecimal string:

=

(eCflum)

I: 1io; ! thi, t y pe include hex2num, hex2dec, bin2dec,

c2ec, baa2iec, and dec2base. MATLAB includes on-line help for

.11 o f	 C C tui;ct'ons.

I. .•\B lunctiun mat2str converts an array to a string that MATLAB

...:i ..'.),:.:c. lhis S t ring is useful input fora function such as eval, which eval-

uate input juSt a if they cre typed at the MATLAB command line. For

c\Jrnpk. ii .'. c define array a as

" a	 Ii 2 3; 4 5 61

a-

2	 3
4	 5	 6

then the function rr.at2str will return a string containing the result

b = rnat2str(a)

[1 2 3; 4 5 6

Finall y. MATLAB p eludes a special function sprintf that is identical to

function fpriiltf, e'eept that the output goes into a character string instead of

the Command Window. This function provides complete control over the format-

ting of the character string. For example,

..> str = sprintf(The value of p1 = %8.6f.,pi)

str =
The va1ue of pi = 3.141593.

This function is extremely useful in creating complex titles and labels for
plots.

Sting-to . Numeric Conversions

' l.\FL \R tko contains sc cral functions to change character strings into numeric

alu. s. Ihe most topoltant of these function are eval str2double, and

ssc
Fui..inn I c .iluatcs a string containing a MATLAB expression and

ictiu]Is th esult. Thc expression can contain any combination ofMATLAB func-

tion, aale. constants, and operations. For example, the string a containing

the clr.c:s 2 1 3.141592 can be converted to numeric form by the fol-
I1t	 .'

i'...	 Srirt -c-s 	 283

" a = 2 * 3.141592;
b = eval(a)

b=

6.2832
I	 > who

Name	 Size

a	 lxS	 ar ar.v
b	 lxi	 double rioj

Grand total is 9 e1e:er1t using 1 hyz.

Function str2double convcrts character strings into an equivalent double
value. 2 For example, the string a containing the characters 3.141592 mit be
converted to numeric form by the following statements:

>' a = 3.141592;
b str2double(a)

3.1416

Strings can also be converted to numeric form using the function sscanf.
This function converts a string into a number according to a format conversion

character. The simplest form of this function is

value = sscanf(string,format)

where string is the string to scan and format specifies the type of conversion

to occur. The two most common conversion speciliors for sscanf are Id for

decimals and %g I for floating-point runibeis. This function is covered in much

greater detail in Chapter S.
The following examples illustrate tl:o u 	 1	 r.

a	 13.141592;
valuel = sscarif(a,%g')

valuel =
3.1416

value2 = sscanf(a,'9sd')
value2 =

3

Summary

The common i'cIATl\l3 striOO fui:ci

also COilILlIlIS .1 IUhiCt1011--St.iJfl 	 J..	 ..:r1lI[L' .. U

variety 01'reasons i COIiUiKd in the MATt AO .5.. •. i	 .;.

function str2r:urn. You should rccounrze tun LIlUt

lion St r 2 doub 10 in any ,lov code that von Silty.

284	 Chapter 6 Additonal Data Types and Plot Types

Table 6.3 Common MATLAB String Functions

Category	 Function	 Description

General	 I Ccin.ert r	 r	 b - corrc,pording character salucs.
2 Create a 21) harU	 stray from a series of strings.

I	 Cons ert charactoi 	 th - :, 7-:spor.ding numeric codes

bisirks	 Create a string ci 'iank
ark	 Remos e trailing 1 , lii l cspc- frvti a siring

sc trir-	 Rnicie j -ading and tra.!iiz v tterecc from a string

String tests	 jachar	 Retu, -,vs true	 for a c ul ciracier arra)

is letLer	 Roturn: tm: (I) for l:iter rfh: airhThct

isspace	 Returns trus ti) for shitcp'r

iss brprnc	 Ra-n true 1 f'r cbaraJcr m.s. h;n' tte per frcd pr7.erty.

String operations	 srcat	 Concatenate strinOs

strvc at:	 Cnn:atenctc sminc S

s trcccç	 Rs'urns true (I) if f-Ac' str i r	 are rd:nncal

st:crrpi	 Reiurfl nie It if	 tnngs are idcaL	 c-na case

strncrnp	 Rotrirn., tue (Ii if ft't r characters 0f tw t'to are tdentcal

strrscmpi	 Retsimn true (1, if Irrst r. characters of tu ci st-intrs are identical,
ignonag cab:

firidstr	 Find one string within another one
strjust	 Justify string
strmatch	 Find matches for suing.
strrep	 Replace one string ssitit another.
strtok	 Find token in strinO.
upper	 Convert string to uppercase.
lower	 Convert string to lowercase.

Number to string conversion irit2str 	 Convert integer to string.
num2str	 Cc)rrert number to string.
rnat2str	 Consert matrix to string.

sprinbf	 Write formatted data to string
String to number conversion	 eval	 Evaluate the result of,, SI."TLAB exires3n

str2douhie Cons ert string to a double t aue.
str2um	 Concert stnno to number
sacan e	Read formatted data from string

Base Number Conversion	 hex2r::rr	 Cons cr1 IEEE hexadecimal 'rinc to cur
hex2dec	 Cons ert hc\ad:cimal errin g to decimal mt-.-,r.
dec2hex	 Cons ert decimal to hexadecimal string.
bin2clec	 Convert binary string to decimal integer.
dec2bin	 Convert decimal integer to blnar\ str;ng
base2deo	 Consert base B string to decimal integer.
cico2base	 Cons ert decimal integer to base B stong

6.2 String Functions	 285

...........kt,t:.,x'.•'...

Example 6.2—String Comparison Function

In C. function strmcp compares two strings according to the order of their char-

acters in the ASCII table (called the lexicographic order of the characters) and

returns a —1 if the first string is lexicographically less than the second string, a 0

if the strings are equal. and a +1 if the first string is lexicographically greater than

the second string. This function is extremely useful for such purposes as sorting

strings in alphabetic order.

Create a new MATLAB function c_strcmp that compares two strings in

a similar fashion to the C function and returns similar results. The function

should ignore trailing blanks in doing its comparisons. Note that the function

must be able to handle the Situation where the two strings are of different

lengths.

SoLurloN

I. State the problem.
Write a function that will compare two strings stri and str2, and

return the following results:

• —1	 if strl is lexicographically less than str2.
I	 0	 if stri is lexicographically less than str2.
• + I	 ifs tn is lexicographically greater than s t r2.

The function must work properly ifs tn and s tr2 do not have the same

length, and the function should ignore trailing blanks.

2. Define the inputs and outputs.

The inputs required by this function are two strings. stri and str2. The

output from the function will be a - I, 0, or I, as appropriate.

3. Describe the algorithm.

This task can be broken down into four major sections:

Verify input strings
Pad strings to be equal length
Compare characters from beginning to end, looking

for the first difference
Return a value based on the first difference

We will now break each of the foregoing major sections into sinalici-,

more detailed pieces. First, we must verify that the data passed to the

function is correct. The function must have exactl y two arguments and

the arguments must both be characters. The psetidocode for this step is:

% Check for a legal number of iou-ut arguments.
rnsg = nargchk(2,2,nargin)
error (msg)

286	 Chapter 6 Additional Data Types and Hot Types

% Check to see if the argurr'ents are strings

if either argument i. iot a string
Ltr i and str	 :.ti bth be strings

else

(add code here)

end

Next, we must pad the strings to equal len gths. The easiest way to do this is

to combine both strings into a 2-D array using strrca. Note that this

step effectively results in the function ig:ing tiat !in- blanks, because both

strings are padded out to the same length. The pseudocode for this step is:

% Pad strings
strings = strvcat. (etri

Now we must compare each character until we find a di fference, and

rCturn a value based on that difference. One va to do this is to use rela-

tional operators to compare the two strings, creating an array ofOs and is.

We can then look for the first one, which will correspond to the first dif-

ference between the two strings. The pseudocode for this step is:

% Compare strings
diff = strings(]-,:) -= strings(2, :)
if suits(diff) == 0

% Strings match
result = 0

else
% Find first difference
ival = find(dift)
if strings(l,ival) > strings(2,,ival)

result = 1
else

result = -1
end

end

4. Turn the algorithm into MATLAB statements.
The final MATLAB code is shown below.

function result = c_strcmp(strl,str2)
%C_STRCNP Compare strings like C function "srrcmp"
% Function C_STRCMF compares two strings, and returns
% a -1 if stri < str2, a 0 if strl == str2, and a
% +1 if strl > str2.

% Define variables:
%	 diff	 -- Logical array of string differences

6.2 String Functions 1 287

%	 msg	 Error message
%	 result	 -- Result of function
%	 strl	 -- First string to compare
%	 str2	 -- Second string to compare
%	 strings	 -- Padded array of strings

% Record of revisions:
%	 Date	 Programmer
	

Description of change

% 01/16/04	 S. J. Chapman
	

Original code

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error (msg)

% Check to see if the arguments are strings
if --(isstr(strl) & isstr(str2))

error('Both stri and str2 must both be strings!)
else

% Pad strings
strings = strvcat(strl,str2)

% Compare strings
diff = strings(1, :)	 strings(2, :);
if sum(diff) == 0

% Strings match, so return a zero!
result = 0;

else
% Find first difference between strings
ival = find(diff);
if strings(1,ival(l)) > strings(2,ival(l))

result = 1;
else

result = -1;
end

end
end

end % function cstrcmp

5. Test the program.
Next, we must test the function using various strings.

,> result = c_strcinp(String l,'Stririg 11)

288 1 Chapter 6 Additional Data Types and Plot Types

result =
C

>> result = c_strcmp(Striflg 1,Striflg 1 ')

result =
0

> result = cstrcmp(-Striflg 1,'Striflg 2)

result =
-1

>> result	 c_strcmp('String 1,'Striflg O)

result =
1

result = c_strcmp(String, str)

result =
-1

The first test returns a zero, because the two strings are identical. The sec-

ond test also returns a zero, because the two strings are identical except

for trailing blanks and trailing blanks are ignored. The third test returns a

- 1, because the two strings first differ in position 8 and ' 1 ' 2 at

that position. The fourth test returns a I, because the two strings first differ

in position 8 and 1 > '0 1 at that position. The fifth test returns a —1,

because the two strings first differ in position 1. and S	 ' s in the

ASCII collating sequence.
This function appears to be working properly.

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Sections 6.1 through 6.2. If you have trouble with the

quiz, reread the section, ask your instructor, or discuss the material with

a fellow student. The answers to this quiz are found in the back of the

book.

I. What is the value of result in the following statements?

(a) x = 12 + j*5;

y = 5 - 1*13.

result = x -

(h) x = 12 + j*5.

y = 5 -
result = abs(x) > abs(y);

(c) x	 12 + j*5.

y = 5 - i*13;

6.2 String Functions 1 289

result = real (z) - imag(y);

2.If array is a complex array, what does the function
plot (array) do?

3. How can you convert a vector of the char data type into a vector
of the double data type?

For questions 4 through 11, determine whether these statements are cor-
rect. If they are, what is produced by each set of statements?

4. strl = 'This is a test!
str2 = This line, too.

res = strcat(strl,str2);

5. strl = 'Line 1;
str2 = line 2';

res = strcati(strl,str2)

6. stri = 'This is a test! •
str2 = 'This line, too.
res = [stri; str2];

7. strl = ' This is a test!
str2 = This line, too.
res = strvcat(strl,str2)

8. strl = ' This is a test!
str2 = ' This line, too.
res = Strncmp(strl,str2,5);

9. strl = ' This is a test!
res = findstr(strl, 's

10.strl = This is a test!
strl(isspace(strl)) =

11.stri = 'aBcD 1234 !?'
res = isstrprop(strl, 'alphanurn');

12.ctrl = This is a test!
strl(4:7) =upper(strl(4:7));

13.stri =	 456 ; ¼ Note: Three blanks before & after
str2 = ' abc ; % Note: Three blanks before & after
str3 = [stri str2j;
str4 = [strtrim(strl) strtrim(str2)1;
str5 = [dehlank(stri) deblank(str2)];
11 = length(strl);
13 = length(str3);

290	 Chapter 6 Additional Data Types and Plot Types

14 = length(str4);
15 = length(str4);

14. stri = 'This way to the egress.
str2 = 'This way to the egret.
res = strncmp(str1,Str2);

6.3 Multidimensional Arrays

MATI.AB also supports arrays with more than two dimensions. These multidi-

mensional arrays are very useful for displaying data that intrinsically has more

than two dimensions, or for displaying multiple versions of 2-D data sets. For
example, measurements of pressure and velocity throughout a three-dimensional

volume are very important in such studies as aerodynamics and fluid dynamics.

These areas naturally use multidimensional arrays.
Multidimensional arrays are a natural extension of two-dimensional arrays.

Each additional dimension is represented by one additional subscript used to

address the data.
It is very easy to create multidimensional arrays. They can be created either

by assigning values directly in assignment statements or by using the same func-
tions that are used to create one- and two-dimensional arrays. For example, sup-

pose that you have a two-dimensional array created by the assignment statement

> a = (1 2 3 4; 5 6 7 81

a=
1	 2	 3	 4

5	 6	 7	 8

This is a 2 X 4 array, with each element addressed by two subscripts. The array

can be extended to be a three-dimensional 2 X 4 X 3 array with the following

assignment statements.

>' a(:,:,2) = (9 10 11 12; 13 14 15 161;

>' a(:,:,3) = (17 18 19 20; 21 22 23 241

a(:,:,1) =
1	 2	 3	 4

5	 6	 7	 8

a(:,:,2) =
9	 10	 11	 12

13	 14	 15	 16

a(:,:,3) =
17	 18	 19	 20

21	 22	 23	 24

Individual elements in this multidimensional array can be addressed by the array
name followed by three subscripts, and subsets of the data can be created using

6.3 Multidimensional Arrays 1 291

the colon operators. For example, the value of a (2,2, 2) is

' a(2,2,2)
ans =

14

and the vector a(l,1, :) is

>> a(1,1, :)
ans(:,:,1) =

1
ans(:, :,2) =

9
ans(:, :,3) =

17

Multidimensional arrays can also be created using the same functions as
other arrays, for example:

b - ones(4,4,2)
b(:,:,1) =

1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1

b(:,:,2) =
1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1
1	 1	 1	 1

c	 randn(2,2,3)
c(:,:,1) =

	

-0.4326	 0.1253

	

-1.6656	 0.2877
=

	

-1.1465	 1.1892
1.1909	 -0.0376
=
0.3273	 -0.1867
0.1746	 0.7258

The number of dimensions in a multidimensional array can be found using the
ndirns function, and the size of the array can be found using the size function

>' ndiins(c)
ans =

3
'. size(c)
ans =

2	 2	 3

292 1 Chapter 6 Additional Data Types and Plot Types

If you are writing applications that need multidimension al arrays, see the

MATLAB Users Guide for more details on the behavior of various MATLAB

functions with multidimensional arrays.

Use multidimensional arrays to solve problems that are naturally multivariate in

nature, such as aerodynamics and fluid flows.

Also, recall from Chapter 4 that the MATLAB just-in-time compiler cannot

compile loops containing arrays with three or more dimensions. If you are work-

ing with such arrays, be sure to vectorize your code to increase its speed. Do not

rely on the JIT compiler to do the job—it won't.

If you are working \';ilh multidimensional arrays, be sure to vectorize your code

by hand. The MATLAB JIT compiler cannot handle loops containing multidi-

mensional arrays with three or more dimensions.

6.4 Additional Data Types
MATLAB also includes a single

data type and several integer data types. They

are briefly discussed in the following sections.

The single Data Type
Variables of type single

are scalars or arrays of 32-bit single-precision

floating-point numbers. They can hold real, imaginary, or complex values.

Variables of type single occupy half the memory of variables of type double,

but they have lower precision and a more limited range. The real and imaginary

components of each single
variable can be positive or negative numbers in the

range 10-38 to lOu , with six to seven significant decimal digits of accuracy.

The single function creates a variable of type single. For example, the

following statement creates a variable of type single
containing the value 3.1:

>> var = single(3.1)
var =

3.1000

,whos
Name Size	 Bytes	 Class

var	 lxi	 4	 single array

Grand total is 1 element using 4 bytes

6.4 Additional Data Types 	 293

Once a single variable is created, it can be used in MATLAB operations
just like a double variable. In MATLAB, an operation performed between a
single value and a double value has a single result. 3 so the result of the
following statements will be of type single:

" b = 7;
c = var * b

c=
21.7000

" whos
Name	 Size	 Bytes	 Class

b	 lxi	 8	 double array
C	 lxl	 4	 single array
var	 lxi	 4	 single array

Grand total is 1 element using 4 bytes

The availability of mathematical operations with the single data type is a
new feature of MATLAB 7.0. Values of type single can be used just like val-
ues of type double in most MATLAB operations. Built-in functions such as
sin, cos, exp, and so forth all support the single data type, but some M-
file functions may not support single values yet. (For example, comparisons
for near equality between two numbers may be incorrect if the function is expect-
ing double values and instead is passed single values.) As a practical matter,
you will probably never use this data type. Its more limited range and precision
make the results more sensitive to cumulative round-off errors or to exceeding the
available range. You should consider using this data type only if you have enor-
mous arrays of data that could not fit into your computer memory if they were
saved in double precision.

Also, the MATLAB just-in-time compiler cannot compile loops containing
single values. If you are working with such arrays, be sure to vectorize your
code to increase its speed. Do not rely on the JIT compiler to do the job—it Won't.

Integer Data Types

MATLAB also includes 8-, 16-, 32-, and 64-bit signed and unsigned integers. The
data types are int8, uirit8, intl6, uint16, int32, uint32, int64,
and uint64. The difference between a signed and an unsigned integer is the
range of numbers represented by the data type. The number of values that can be
represented by an integer depends on the number of bits in the integer:

number of values = 2"	 (6-11)

where n is the number of bits. An 8-bit integer can represent 256 values (2), a
16-bit integer can represent 65,536 values (216), and so forth. Signed integers use

'CAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C, C++, Java, Basic, etc.), the result of an operation
between a single and a double would be of type double.

294	 Chapter 6 Additional Data Types and Plot Types

half of the available values to represent positive numbers and half for negative

numbers, whereas unsigned integers use all of the available values to represent

positive numbers. Therefore, the range of values that can be represented in the

int.8 data type is —128 to 127 (a total of 256). while the range of values that can

be represented in the uint8 data type is to 255 (a total of 256). Similarly, the

range of values that can he represented in the intl6 data type is —32,768 to

32,767 (a total of 65,536), while the range of values that can be represented in the

uint16 data type is to 65,535. The same idea applies to larger integer sizes.

Integer values are created by the int8 C) , uint8 () , int16

uintl6 ()	 int32 C) , uint32 () , int64), or uint64 C) functions.

For example, the following statement creates a variable of type int8 containing

the value 3:

o var = int8(3)

var =
3

>x whoa
Name	 Size	 Bytes	 Class

var	 lxl	 1	 int8 array

Grand total is 1 element using 1 bytes

Integers can be converted to other data types using the double and single

functions.
An operation performed between an integer value and a double value has

an integer result,' so the result of the following statements will be of type int8:

>> b = 7;

c = var * b

21

>> whoa
Name	 Size	 Bytes	 Class

b	 lxl	 B	 double array

C	 lxl	 1	 int8 array
var	 lxl	 1	 int8 array

Grand total is 3 elements using 10 bytes

MATLAB uses saturating integer arithmetic. If the result of an integer math

operation would be larger than the largest possible value that can be represented

in that data type, the result will be the largest possible value. Similarly, if the

result of an integer math operation would be smaller than the smallest possible

value that can be represented in that data type, the result will be the smallest pos-

sible value. For example, the largest possible value that can be represented in the

'CAUTION: This is unlike the behavior of any other computer language that the author has ever
encountered. In every other language (Fortran, C. C++, Java, Basic, etc.), the result of an operation
between an integer and a double would be of type double.

6.5 Additional Two-Dimensional Plots I 295

intS data type is 127. The result of the operation int8 (100) 4-int8 (SC)

will he 127. because 150 is larger than 127. the maximum value that can be rep-

resented in the data type.
It is unlikely that you will need to use the integer data type unless you are

working with image data. If you do need more information, please consult the

MATLAB documentation.

Limitations of the single and Integer DataTypes

The single data type and integer data types have been around in MATLAB for

a while, but they have been mainly used for purposes such as storing image data.

Before MATLAB 7.0, it was not possible to perform mathematical operations (-4-,

-, etc.) with these data types. NIATLAB is now evolving to make manipulating

these data types easier, but the support is still rough in the current release. There

are significant gaps. For example, you can add a single and a double, or an

integer and a double, but not a single and an integer.

>> a = single(2.1)
a=

2.1000
b	 int16(4)

4
' c = ai-b

??? Error using ==> plus

Class of operand is not supported.

Unless you have some special need to manipulate images, you will probably never

need to use either of these data types.

...	 .
-	 ..

Do not use the single or integer data types, unless you have a special need

such as image processing.

-	 ...

6.5 Additional Two-Dimensional Plots

In previous chapters, we hac learned to create linear, log-tog. scinilo g. and polar

plots. MATLAB supports many additional t ypes of plots that YOU can use to display

your data. This section will introduce you to some of these additional plotting options.

Additional Types of Two-Dimensional Plots

in addition to the t\\ u-dimensional plots that WC hu\ C already seen. MATLAB

..upports manv other more 5pecialiied plots. In fact. the MAT LAB help desk lts

296	 Chapter 6 Additional Data Types and Plot Types

more than 20 types of two-dimensional plots! Examples include stem plots, stair

plots, bar plots, pie plots, and compass plots. A stem plot is a plot in which each

data value is represented by a marker and a line connecting the marker vertically

to the .v axis. A stair plot is plot in which each data point is represented by a hor-

izontal line, and successive points are connected by vertical lines, producing a

stair-step effect. A bar plot is a plot in which each point is represented by a ver-

tical bar or horizontal bar. A pie plot is a plot represented by "pie slices" of vari-

ous sizes. Finally, a compass plot is a type of polar plot in which each value is

represented by an arrow whose length is proportional to its value. These plots are

summarized in Table 64, and examples of all of the plots are shown in Figure 6.8.

Stair, stem, vertical bar, horizontal bar, and compass plots are all similar to

plot, and they are used in the same manner. For example, the following code

produces the stem plot shown in Figure 6.7a.

x = [1 2 3 4 5 6];

y = [2 6 8 7 8 5];

stem(x,y)
title ('\bfExample of a Stem Plot'
xlabel (\bf\itx'
ylabel('\bf\ity)
axis({0 7 0 10]);

Table 6.4 Additional Two-Dimensional Plotting Functions

Function	 Description

bar (x, y) This function creates a vertical bar plot, with the values in x
used to label each bar and the values in y used to determine
the height of the bar.

barh (x, y)	 This function creates a horizontal bar plot, with the values in x
used to label each bar and the values in y used to determine
the horizontal length of the bar.

Compass (x, y)	 This function creates a polar plot, with an arrow drawn from
the origin to the location of each (x, v) point. Note that the
locations of the points to plot are specified in Cartesian coordi-
nates, not polar coordinates.

pie (x)	 This function creates a pie plot. This function determines the
pie lx, explode I	 percentage of the total pie corresponding to each value of x

and plots pie slices of that size. The optional array explode
controls whether or not individual pie slices are separated from
the remainder of the pie.

Stairs (x, y)	 This function creates a stair plot, with each stair step centered
on an (.. .v) point.

stem (x, y)	 This function creates a stem plot, with a marker at each (x, v)
point and a stem drawn vertically from that point to the .v axis.

a

6.5 Additional Two-Dimensional Plot, 	 297

dt	 ht To Wdw

-
10	 Example of Stem Plot

9

8

I

(a)

Y. hmt To0 Wn	 __	 _=Ji;2J_
e. D 0

Examnln nt e..a.n,.	 - -

5	 6	 7I

(/')

Figure 6.8 Additional h pes of 2D plots: (a) stem pJot (b) tJIr plot.

298	
Chapter 6 Addtio' LYta Types and Plot Types

* fl	 C]
ErnpleOtBa0t

(')

-	 u,i,ontaIBtcPIOt	

10 1211

€	 8
5'	

V

(si)

Figure 6.8 (conhillueS /) (c) sertICa bni plot- (so horizonta l bar plot.

6 5 Additional Two-Dimensional Plots 	 299

e Rk ,ie L-et Tc* WOiW

i i1'	 E	 nO
Example of a Pie Plot

58%

(e)

130 Bit View IrOVil Toot WrOw Hep

	

LiD	 E]
Example of a ConpaVe Plot

924

150/	 \30
//	

1

lsai	 0

211	 330
/

	

I	 -

240	 - 3D)
270

(0

Figure 6.8	 Ii wtliiuel/ I (c) pie plot (11 cin1pi's plot

300	 Chapter 6 Additional Data Types and Plot Types

Stair, bar, and compass plots can be created by substituting stairs, bar,
barh, or compass for stem in the above code. The details of all of these plots.

including any optional parameters, can be found in the MATLAB on-line help

system.
Function pie behaves differently from the other plots described previously.

To create a pie plot, a programmer passes an array x containing the data to be

plotted, and function pie determines the percentage of the total pie that each

element of x represents. For example, if the array xis [1 2 3 4], then pie will

calculate that the first element x (1) is 1/10 or 10% of the pie, the second ele-

ment x (2) is 2/10 or 20% of the pie, and so forth. The function then plots those

percentages as pie slices.
Function pie also supports an optional parameter, explode. If present,

explode is a logical array of Is and Os, with an element for each element in

array x. If a value in explode is 1, then the corresponding pie slice is drawn

slightly separated from the pie. For example, the code shown below produces the

pie plot in Figure 6.7e. Note that the second slice of the pie is "exploded".

data = [10 37 5 6 61;

explode = [0 1 0 0 01

pie (data, explode)
title('\bfExample of a Pie Plot');
legend('One' , 'Two, 'Three', 'Four', 'Five');

Plotting Functions
In all previous plots, we have created arrays of data, and passed those arrays to

the plotting function. MATLAB also includes two functions that will plot a func-

tion directly, without the necessity of creating intet mediate data arrays. These

functions are ezplot and fplot.
Function ezplot takes one of the following forms.

ezplot (fun
ezplot(fun, [min xmax]);

ezplot(fun, [0nin xmax], figure);

In each case, fun is a character string containing the functional expression to

be evaluated. The optional parameter [cnin xrnax] specifies the range of the

function to plot. If it is absent, the function will be plotted between —27r and

21r. The optional parameter figure specifies the figure number to plot the

function on.
For example, the following statements plot the function f(x)	 sin xix

between — 41r and 41r. The output of these statements is shown in Figure 6.9.

ezplot(sin(x)/x,[_4*Pi 4*pj])

title('Plot of sin x I x);

grid on;

65 Additional Two-Dimensional Plots 1 301

9e E,it	 freet Toc W,do*
u	 .ij

Rol ot sin x1X

H	 .

T	 .

Os

04/............\..	 ..

02

/.........................i../....

10	 -5	 0	 5	 10
X

Figure 6.9 The function sin x, plotted with function ezplot.

Function fplot is similar to but more sophisticated than ezplot. The first
two arguments are the same for both functions, but fplot has the following
advantages:

I. Function fplot is adaptive, meaning that it calculates and displays more
data points in the regions where the function being plotted is changing

most rapidly. The resulting plot is more accurate at locations where a
function's behavior changes suddenly.

2. Function fplot supports the use of T EX commands in titles and axis
labels, while function ezplot does not.

In general, you should use fplot in preference to ezplot whenever you plot
functions.

Functions ezplot and fplot are examples of the "function functions"
described in Chapter 5.

Use function fplot to plot functions directly without having to create inter-
mediate data arrays.

302	 Chapter 6 Additional Data Types and Plot Types

Histograms
A /itctografll is a plot showing the distribution of values within a data set. To ere-
ate a histogram, the range of values within the data set is divided into evenly

spaced bins, and the number of data values falling into each bin is determined

The resulting count can then be plotted as a function of bin number.

The standard MATLAB histogram function is hist.
The forms of this func-

tion are shown below:

hist (y)

hist(y,flbifls)

hist(Y,X)
[n,xoUt] = hist(Y....

The first form of the function creates and plots a histogram with ten equally spaced

bins, while the second form creates and plots a histogram with
nbifls equally

spaced bins. The third form of the function allows the user to specify the bin centers

to use in an array x; the function creates a bin centered around each element in the
array. In all three of these cases, the function both creates and plots the histogram.
The last form of the function creates a histogram and returns the bin centers in array

xout a:d the count in each bin in array n, without actually creating a plot.

For example, the following statements create a data set containing 10,000

Gaussian random values, and generate a histogram of the data using 15 evenly

spaced bins. The resulting histogram is shown in Figure 6.10.

=jpjii

R eit ie* -eet T	 Wpjow H' -

Figure 6.10 A histogram.

6.6 Three-Dimensional Plots 1 303

y = randn(10000,1);
hist (y, 15)

MATLAB also includes a function rose to create and plot a histogram on
radial axes. It is especially useful for distributions of angular data. You will be
asked to use this function in an end-of-chapter exercise.

6.6 Three-Dimensional Plots

MATLAB also includes a rich variety of three-dimensional plots that can be use-

ful for displaying certain types of data. In general, three-dimensional plots are
useful for displaying two types of data:

I. Two variables that are functions of the same independent variable, when

you wish to emphasize the importance of the independent variable.

2. A single variable that is a function of two independent variables.

Three-Dimensional Line Plots

A three-dimensional line plot can be created with the plot3 function. This func-
tion is exactly like the two-dimensional plot function, except that each point is
represented by x, y, and z values instead just of x andy values. The simplest form
of this function is

plot(x,y, z)

where x, y, and z are equal-sized arrays containing the locations of data points
to plot. Function plot3 supports all the same line size, line style, and color
options as plot, and you can use it immediately using the knowledge that we
acquired in earlier chapters.

As an example of a three-dimensional line plot, consider the following func-
tions:

x(t) = e 02' cos 21

y(t) = e 02' sin 2t	
(6-12)

These functions might represent the decaying oscillations of a mechanical system

in two dimensions, so x and y together represent the location of the system at any
given time. Note that x and are both functions of the same independent variable t.

We could create a series of (x, v) points and plot them using the two-dimen-
sional function plot (see Figure 6.1 la), but if we do so, the importance of time

to the behavior of the system will not be obvious in the graph. The following

statements create the two-dimensional plot of the location of the object shown in

Figure 6.1 Ia. It is not possible from this plot to tell how rapidly the oscillations

are dying out.

t =0:0.1:10;

X = exp(_0.2*t) . cos(2*t);

Two-Dimensional Line Not

-08
-0.5	 -06	 -04	 -02	 0	 0.2	 04	 0.6	 08	 1

x

(a)

Three-Ounensionaf Lifl4Pio

Y	 -	 -I

(b)

Figure 6.11 (a) A tvo-dirnensjonaI line plot showing the motion in (x, v) space of a mechanical
system. This plot reveals nothing about the time behavior of the system. (b) A three-
dimensional line plot showing the motion in (x, v) space versus time for the mechanical
system. This plot clearly shows the time behavior of the system

10

8.

E
4.

0
I	 -

05

-05

0.5

0

-c

-o

-0

6,6 Three-Dimensional Plots	 305

y= exp(.0 . 2*t) .	 sin(2t);
plot (x, y)
title (\bfTwo-Djmensjona1 Line Plot);
xlabel('\bfx);
ylabel (\bfy)
grid on;

Instead, we could plot the variables with plot3 to preserve the time infor-
mation as well as the two-dimensional position of the object. The following state-

ments will create a three-dimensional plot of Equations (6-12).

t = 0:0.1:10;
x=exp(_Q.2*t) .*cos(2*t);
y=exp(_0 . 2*t) .*sin(2*t);

plot3 (x,y, t)
title(\bfThree-Djmensjonal Line Plot);
xlabel (\bfx)
ylabel(\bfy);

ziabel (\bftime)
grid on;

The resulting plot is shown in Figure 6.1 lb. Note how this plot emphasizes time-
dependence of the two variables x and t'.

Three-Dimensional Surface, Mesh, and Contour Plots

Surface, mesh, and contour plots are convenient ways to represent data that is a
function of two independent variables. For example, the temperature at a point is

a function of both the East-West location (x) and the North-South (s) location of

the point. Any value that is a function of two independent variables can be dis-
played on a three-dimensional surface, mesh, or contour plot. The more common

types of plots are summarized in Table 6.5, and examples of each plot are shown
in Figure 6.12.

To plot data using one of these functions, a user must create three equal-sized
arrays. The three arrays must contain the x, v, and z values of every point to be
plotted. As a simple example, suppose that we wanted to plot the four points

(-1, —1,1), (1, —1,2), (-1,1,1). and (1, 1.0). To plot these four points, we

must create the arrays =	 i 1]
	

_ [—I
	

], and z =[
	

].AaY

x contains the x values associated with every point to plot, array y contains the

Y values associated with every point to plot, and array z contains the values

associated with every point to plot. These arra ys are then passed to the plotting
function.

'There are many variations on these basic plot types. Consult the MATLAB Help Browser documen-
tation for a complete description of these variations.

306 1 Chapter 6 Additional Data Types and Plot Types

Table 6.5 Selected Mesh, Surface, and Contour Plot Functions

Function	 Description

mesh (x, y, z)

	

	 This function creates a mesh or wirefi-ame plot, where x is a two-
dimensional array containing the x values of every point to dis-
play, y is a two-dimensional array containing they values of
every point to display, and z is a two-dimensional array contain-
ing the z values of every point to display.

surf (x, y, z)

	

	 This function creates a surface plot. Arrays x • y, and z have the
same meaning as for a mesh plot.

concour (x,y, z) This function creates a contour plot. Arrays x, y, and z have the
same meaning as for a mesh plot.

The MATLAB function eshgrid makes it:easv to create the x and y
arrays required for these plots. The fl.nn of this function is

xy] = rneshcrid(xstart:xinc:xend, ystart:yinc:yend);

here xstart :xinc:xend specifics the x values to include in tl'.. arid and
ystart :yinc :yend specifie6 the y values to be included in the grid.

To crcate a plot, we use meshgrid to create the arrays ofx and i values and

then evaluate the function to plot at each of those (x, y) locations. Finally, we call

function mesh, surf, or contour to create the plot.

For example. suppose that we wish to create a mesh plot of the function

z(x, .v) =	 (6-13)

over the interval —4	 x	 4 and —4	 v n^ 4. The following statements will
create the plot, which is shown in Figure 6.1 2a.

[x,y] = meshgrid(-4:0.2:4);
z=exp(O.5*(x2+y,2));

mesh(x,y,z)

x].abel I \bfx'

ylabel (' \hfy)

zlabel I \bfz

Surface and contour plots may be created by suLsituting the appropriate function
for the mesh function.

6.7 Summary

MATLAB supports complex numbers as an extension of the double data type.
Thev can he deitted using the i or j, both of which are predefined as to be
V- 1. Using complex numbers is straightforward, except that the relational

08

06

0.4

0.2

0
4

4

Moh Plot

08

06

04

02

0	 -.
4	 -	 -

4

U	 -	 - -	 2

-2	
- 0

y	
-4	 -4

(a)

Surfe Plot

q

y	
-4	 -4

(b)

Figure 6.12 (a) A mesh plot of the function z(x, y) = e 0	05h1 (b) A surface plot of the same
function.

307

308 I Chapter 6 Additional Dam Types and Plot Types

Mesh Plot

04

0.2 J

2	 -.	
-	 -	 -- -	 -.	 -

•	 :----	 2

	

-2	 -	
-. 0

-	 -2

4	 -4

ru

Figure 6.12 (continued) (c A contour plot of the same function.

operators >. >=, <, and <= compare onl y the seal pails of complex numbers, not
their magnitudes. They must be used with caution when working with complex
values.	 -

String functions are functions desi gned to work \Vith strings, which are arrays

of type char. These functions allow a user to manipulate strings in a variety of

useful ways. including concatenation. comparison, replacement, case conversion.

and numeric-to-string and string-to-numeric type conversions.
Multidimensional arrays are arra ys with more than two dimensions. They

may be created and used in a fashion similar to one- and two-dimensional arrays.

Multidimensional arrays appear naturally in certain classes of physical problems.
The single data is consists of single-precision floating point numbers.

They are created using the single function. A mathematical operation between
a single 2nd a double value produces a single result.

MATLAB includes signed and unsiened 8-, 16-, 32-, and 64-bit integers. The
integer data types are the int8, uint8, inti6() uintl6, int32,
uint32, :t64, and uint64. Each of these types is created using the corre-
sponding firetion: int8, uint8W int16() uint16() - int32 H,
ujnt32 () - jnt64 () , or ujnt64). Mathematical operations (+,	 etc.) can
be performej oil 	 data types; the result of an operation between an integer and

6.7 Summary I 309

a double has the same type as the integer. If the result of a mathematical opera-

tion is too large or too small to be expressed by an integer data type, the result is

either the largest or smallest possible integer for that type.

MATLAB includes a rich variety of two- and three-dimensional plots. In this

chapter. we introduced Stem, Stair, bar, compass. mesh, surface, and contour plots.

Summary of Good Programming Practice

The following guidelines should be adhered to:

I. Usof the char function to create two-dimensional character arrays with-

out worrying about padding each row to the same length.

2. Use function isstrprop to determine the characteristics of each char-

acter in a string array. This function supercedes the older functions

isletter and isspace, which may be deleted in a future version of

MATLAB.

3. Use multidimensional arrays to solve problems that are naturally multi-

variate in nature, such as aerod ynamics and fluid flows.

4. If you are working with multidimensional arrays, be sure to vectorize you

code by hand. The MATLAB JIT compiler cannot handle loops contain-

ing multidimensional arrays with three or more dimensions.

5. Do not use the single or integer data types, unless you have a special

need such as image processing.

6. Use function fp].ot to plot functions directly without having to create

intermediate data arrays.

MATLAB Summary
The following summary lists all of the MATLAB commands and functions

described in this chapter, along with a brief description of each ore.

abs	 Returns absolute value (magnitude) of a number.

angle

bar (x, y)

barb (x, y)

base2dec

bin2dec

blanks

char

compass (x,y)

conj

Contour

Returns the angle of a complex number, in radians.

Create a vertical bar plot.

Create a horizontal bar plot.

Convert base B string to decimal integer.

Convert binary string to decimal integer.

Create a string of blanks.

(I) Convert numbers to the corresponding character values, (2) Create a 2D character

array from a series of strings.

Create a compass plot.

Compute complex conjugate of a number.

Create a contour plot.

3 I 0 I Chapter 6 Additional Data Types and Plot Types

deblarik

dec 2bas e

dec2bin

double

find

f±ndstr.

hex2num

hex2dec

hi St

full

imag

int2str

ischar

isletter

israel

isstrprop

isspace

lower

mat2str

mesh

meshgrid

nfl z

nonzeros

rium2 st r

nzmax

pie (x)

plot (c)

real

rose

sscanf

Stairs (x, y)

stem (x, y)

str2double

str2num

strcat

strcmp

Remove trailing whitespace from a string.

Convert decimal integer to base B string.

Convert decimal integer to binary string.

Convert characters to the corresponding numeric codes.

Find indices and values of nonzero elements in a matrix.

Find one string within another one.

Convert IEEE hexadecimal string to double.

Convert hexadecimal string to decimal integer.

Create a histogram of a data set.

Convert a sparse matrix into a full matrix

Returns the imaginary portion of the complex number.

Convert integer to string.

Returns true (I) for a chancier array.

Returns true (I) for letters of the alphabet.

Returns true (I) if no element of arra y has an imaginary component.

Returns true (I) a character has the specified property.

Returns true (1) for whitespace.

Convert string to lowercase.

Convert matrix to string.

Create a mesh plot.

Create the (x, v) grid required for mesh, surface, and contour plots.

Number of nonzero matrix elements.

Return a column vector containing the nonzero elements in a matrix.

Convert number to string.

Ambunt of storage allocated for nonzero matrix elements

Create a pie plot.

Plots the real versus the imaginary part of a complex array.

Returns the real portion of the complex number.

Create a radial histogram of a data set.

Read formatted data from string.

Create a stair plot.

Create a stem plot.

Convert string to double value.

Convert string to number.

Concatenate strings.

Returns true (1) if two strings are identical.

120Z00 V C

6.8	 Exercises	 1 3 I I

strcn.p i	 Returns true (I) if two strin gs are identical i gnorinc case.

strjust	 Justify string.

strncaip	 Returns true (I) if first n characters of too strings are identical.

strncnpi	 Returns true (I) if first n characters of two stcings are identical ignorin g case.
strrnacch	 Find matches for string,

strtrim	 Remove leading and trailin g whitespace from a string.

strre p	 Replace one string with another.

s t r t ck	 Find token in string.

strucc	 Predefine a structure array.

strvcat	 Concatenate strings vertically.

surf	 Create a surface plot.

upper	 Con\ ert siring to uppercase

6.8 Exercises

6.1 Figure 6.13 shows a series RLC circuit driven by a sinusoidal AC voltage
source whose value.is 120/00 volts. The impedance of the inductor in this
circuit is Z1 = /27fL. where/is VT. f is the frequency of the voltage
source in hertz, and L is the inductance in henrys. The impedance of the

capacitor in this circuit is Z = --/-----, where C is the capacitance in
2irjC

farads. Assume that R = 100 f ' . L = 0.1 niH, and C = 0.25 nF.

I	 R	 L
—.

Figure 6.13 A series RLC Circuit driven by a sinusoidal AC voltage source. 	 -

3 I 2 I Chapter 6 Additional Data Types and Plot Types

The current I flowing in this circuit is given by Kirchhoff's Voltage

Law to be

=	 120/0° V	 (6-14)

R +j2irfL

(a) Calculate and plot the magnitude of this current as a function of fre-

quency as the frequency changes from 100 kHz to 10 MHz. Plot this

information on both a linear and a log-linear scale. Be sure to

include a title and axis labels.

(b) Calculate and plot the phase angle in degrees of this current as a func-

tion of frequency as the frequency changes from 100 kHz to 10 MHz.

Plot this information on both a linear and a log-linear scale. Be sure to

include a title and axis labels.

(c) Plot both the magnitude and phase angle of the current as a function

f frequency oil 	 subplots of a single figure. Use log-linear scales.

6.2 Wr.:e a function to—polar that accepts a complex number c and returns

two output arguments containing the magnitude mag and angle theta of

the complex number. The output angle should be in degrees.

6.3 Wn:e a function to_complex that accepts two input arguments con-

tain:ng the magnitude mag and angle the:a of the complex number in

degrees and returns the ctriplex number c.

6.4 In a sinusoidal steady-se AC circuit, the voltage across a passive dc-

mer.r is given by Ohm's Law:

V = lZ	 (6-15)

where V is the voltage across the clement, I is the current though the dc-

rner.t. and Z is the impedance of the element. Note that all three of these

values are complex and that these complex numbers are usually specified

in the form of a magnitude at a specific phase angle expressed in degrees.

For example, the voltage might be V = 120L30° V.
Write a program that reads the voltage across an element and the

inwdance of the element and calculates the resulting current flow. The

input values should be given as magnitudes and angles expressed in

derees, and the resulting answer should be in the same form. Use the func-

tior. to—complex from Exercise 6.3 to convert the numbers to rectangu-

lar or the actual computation of the current, and the function to—polar

from Exercise 6.2 to convert the answer into polar form for display.

6.5 Wnte a function that will accept a complex number c and plot that point

on a Cartesian coordinate system with a circular marker. The plot should

include both the x and axes, plus a vector drawn from the origin to the

location of c.

	

6.6 PI the function (r) = be I2fj,I for I)	 t - 10 using the function

: Dt (t, v) . What is displayed oil 	 plot?

6.8	 Exercises	 1 313

:

Figure 6.14 The voltage and current relationship on a passive AC circuit element.

6.7 Plot the function 1(t) = lOe O2J}1 for 0	 t :^- 10 using the function
plot (v). What is displayed on the plot this time?

6.8 Create a polar plot of the function 5(r) = lOe°-2 ' for 0 !^- t	 10
6.9 Plot the function 1(t) = lOe 02'0, for 0 s t 10 using function

plot3, where the three dimensions to plot are the real part of the func-
tion, the imaginary part of the function, and time.

6.10 Euler's Equation Euler's equation defines e raised to an imaginary power
in terms of sinusoidal functions as follows:

e = cos 6 ± / sin 6	 (6-16)

Create a two-dimensional plot of this function as u varies from 0 to 2p.

Create a three-dimensional line plot using function plot3 as u varies from

0 to 2p (the three dimensions are the real part of the expression, the imag-
mary part of the expression, and u).

6.11 Create a mesh, surface plot, and contour plot of the function z =	 0 for
the interval —1	 x 15; I and —27r	 y 15 2,r. In each case, plot the real
part of z versus x and v.

6.12 Write a program that accepts an input string from the user and determines

how many times a user-specified character appears within the string.
(Hint. Look up the 's' option of the input function using the MAT-
LAB Help Browser.)

6.13 Modify the previous program so that it determines how many times a
user-specified character appears within the string without regard to the
case of the character.

6.14 Write a program that accepts a string from a user with the input func-
tion, chops that string into a series of tokens, sorts the tokens into ascen-
ing order, and prints them out.

3 I 4 I Chapter 6 Additional Data Types and Plot Types

6.15 Write a program that accepts a series of strings frcm a user with the input
function, sorts the strings into ascending order and prints them out.

6.16 Write a program that accepts a series of strings from a user with the
input function, sorts the strin gs into ascendin g order disregarding case.

and prints them out,
6.17 MATLAB includes functions upper and lower, which shift a string to

uppercase and lowercase respectively. Create a new function called caps.
which capitalizes the first letter in each word, and forces all other letters
to be lowercase. (Hint. Take advantage of functions upper, lower, and
strtok.)

6.18 Write a function that accepts a character string and returns a logical
array with true values corresponding to each printable character that is not
alphanumeric or whitespace (for example, S. "o, , etc.) and false values
everywhere else.

6.19 Write a function that accepts a character string and returns a logical
array with true values correspondin g to each vowel and false values
everywhere else. Be sure that the tiincttn works properl y fr both lower-
case and uppercase characters.

6.20 Plot the function y = sin .v fur .v between I) and 2 in steps ot Dl.
Create the followin g plot types: (a) stem plot: h) stair plot: () har plot
(d) compass plot. Be sure to include titles and axis labels on all plots.

6.21 Suppose that George. Sam. Bcu'. Charlie. and Suzic contributed S5. SlO.
S7, S5. and S 15 respectively to a collea g ue's going-away present. Create a

pie chart of their contributions. that percentage of the cost was paid by
Sani?

6.22 Plot the function j'(x) = l/Vx over the range 0.1	 x	 10.0 using
function fplot. Be sure to label your plot properly.

CHAPTER 7
Advanced
Features: Sparse
Arrays, Cell Arrays,
Structures, and
Function Handles

This chapter deals with four very useful features of MATLAB: sparse arrays, cell
arra ys, structures, and function handles.

Sparse arrays are a special typeof a;r-ay in which memory is allocated only for
the nonzero elements in the array.The>prode an extremely useful and compact
way to represent large arrays containing mary zero values.

Cell arrays are a very flexible type of array that can hold any sort of data.
Each element of a cell array can hold any type of MATLAB data, and different ele-
ments within the same array can hold different types of data. They are used
exte-isively in MATLAB Graphical User Inte-face (GUI) functions.

Structures are a special type of array with named subcomponents. Each
structure can have any number of subcomponents, each with its own name and
data type. Structures are the basis of MATLAB objects.

Function handles provide an alternative way to access a function. They are
more flexible than simple function names. Function handles make it easy to pass
functions to other functions for processing; in addition, they make it easy to save
data within a function between calls.

7.1 Sparse Arrays

Ve learned about ordinary MATLAB arrays in Chapter 2. When an ordinary array
is deelared, MATLAB creates a memory location for every elem.ii in the array. For
example, the function a = eye (10) creates 100 elements arranged as a 10 X 10
structure. In this array, 90 of those elements are zero! This matrix requires 100

315

3 I 6	 Chapter 7 Advanced Features

elements, but only 10 of them contain nonzero data. This is an example of a sparse

array or sparse matrix. A sparse matrix is a large matrix in which the vast majority

of the elements are zero.

o a	 2 * eye(10);

a=
2	 0	 0	 0	 0	 0	 0	 0	 0	 0

02	 0	 0	 0	 0	 0	 0	 0	 0

0	 02	 0	 0	 0	 0	 0	 0	 0

0	 0	 0	 2	 0	 0	 00	 0	 0

0	 0	 0	 0	 2	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 2	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 2	 0	 0	 0

0	 0	 0	 0	 0	 0	 02	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 2	 0

0	 0	 0	 0	 C	 0	 0	 0	 0	 2

Now suppose that we create another 10 x 10 matrix b defined as follows:

b=

1	 0	 0	 0	 C	 0	 0	 0	 0	 0

0	 2	 0	 0	 0	 0	 0	 0	 0	 0

0	 0	 2	 0	 0	 0 , 0	 0	 0	 0

0	 0	 0	 1	 0	 0	 0	 0	 0	 0

0	 0	 0	 0	 5	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 1	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 1	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 1	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 1	 0

0	 0	 0	 0	 0	 0 • 0	 0	 0	 1

If these two matrices are multiplied together, the result is

,,c=a*b

c=
2	 0	 0	 0	 0	 0	 0	 0	 0	 0

0	 4	 0	 0	 0	 0	 0	 0	 0	 0

0	 0	 4	 0	 0	 0	 0	 0	 0	 0

0	 0	 0	 2	 0	 0	 0	 0	 0	 0

0	 0	 0	 0 10	 0	 0	 0	 0	 0

0	 0	 0	 0	 0	 2	 0	 0	 0	 0

0	 0	 0	 0	 0	 0	 2	 0	 0	 0

0	 0	 0	 0	 0	 0	 0	 2	 0	 0

0	 0	 0	 0	 0	 0	 0	 0	 2	 0

0	 0	 0	 0	 0	 0	 0	 0	 0	 2

It

7.1 Sparse Arrays p 317

The process of multiplying these two sparse matrices together requires 1900 molti-
plications and additions; but because most of the terms being added and multiplied
are zeros, it is largely wasted effort.

This problem gets worse rapidly as matrix size increases. For example.
suppose that we were to generate two 200 X 200 sparse matrices a and b as
follows:

4
a = 5 * eye(200);

b = 3 * eye(200);

Each matrix now contains 20,000 elements, of which 19,800 are zero! Furthermore.

multiplying these two matrices together requires 7,980,000 additions and
multiplications.

It should be apparent that storing and working with large sparse matrices,

most of whose elements are zero, is a serious waste of both computer memo-

ry and CPU time. Unfortunately, many real-world problems naturally Create

sparse matrices, so we need some efficient way to solve problems involving
them.

A large electric power system is an excellent example of a real-world prob-
lem involvin g sparse matrices. Large electric power systems can have a thousand
or more electrical busses at generating plants and transmission and distribution

substations. If we wish to know the voltages, currents, and power flows in.the sys-

tem, we must first solve for the voltage at every bus. For a 1000-bus system, this
involves the simultaneous solution of 1000 equations in 1000 unknowns, which
is equivalent to inverting a matrix with 1,000,000 elements. Solvin g this matrix
requires millions of floating point operations.

However, each bus in the power system is probably connected to an average

of only two or three other busses, so 996 of the 1000 terms in each row of the

matrix will he zeros, and most of the operations involved in inverting the matrix
will be additions and multiplications by zeros. The calculation of the voltages and

currents in this power system would be much '5impler and more efficient if the
zeros could be ignored in the solution process.

The sparse Attribute

MATLAB has a special version of the double data type that is designed to work
with sparse arrays. In this special version of the double data type, only the non-
zero elements of an array are allocated memory locations, and the array is said to
have the "sparse" attribute. An array with the sparse attribute actually saves three

values for each nonzero element: the value of the element itself along with the
row and column numbers where the element is located. Even though three values
must be saved for each nonzero element, this approach is much more memory
efficient than allocating full arrays if a matrix has only a few nonzero elements.

To illustrate the use of sparse matrices, we will create a 10 x 10 identity
matrix:

C.

3 I 8 I Chapter 7 Advanced Features

-

	

	
>> a = eye(10)

a=
1	 0	 0	 0	 0	 0	 0	 0	 0	 0
0	 1	 0	 0	 0	 0	 0	 0	 0	 0
o	 o	 1	 0	 0	 0	 0	 0	 0	 0
o	 o	 0	 1	 0	 0	 0	 0	 0	 0
o	 o	 0	 0	 1	 0	 0	 0	 0	 0
o	 0	 0	 0	 0	 1	 0	 0	 0	 0
o	 o	 0	 0	 0	 0	 1	 0	 0	 0
o	 o	 0	 0	 0	 0	 0	 1	 0	 0
o	 o	 0	 0	 0	 0	 0	 0	 1	 0
o	 o	 0	 0	 0	 0	 0	 0	 0	 1

If this matrix is converted to a sparse matrix using function sparse, the results are:

" as	 sparse(a)
as-

1

	

(22)	 1

	

(3,3)	 1

	

(4,4)	 1

	

(5,5)	 1

	

(6,6)	 1

	

(7,7)	 1

	

(4,8)	 1

	

(9,9)	 1

	

(10,10)	 1

Note that the data in the sparse matrix is a list of row and column addresses, followed

by the nonzero data value at that point. This is a very efficient way to store data as

long as most of the matrix is zero, but ifthei-e are many nonzero elements, it can take
Up even tnore spe than the full matrix because of the need to store the addresses.

If we examine arrays a and as with the whos command, the results are:

> whos

Name	 Size	 Bytes	 Class

a	 10x10	 800	 double array
as	 lOxlO	 164	 double array (sparse)

Grand total is 110 elements using 964 bytes

The a array occupies 800 bytes, because there are 100 elements with 8 b ytes of
storage each. The as array occupies 164 bytes, because there are 10 nonzero ele-
ments with 8 bytes of storage each plus 20 array indices occupying 4 bytes each,

and 4 bytes of overhead. Note that the sparse array occupies much less memory
than the full array.

The function issoarse can he used to determine whether or not a given
array is sparse. han array is sparse. then issparse (array) returns true (I).

7.1 Sparse Arrays	 319

The power of the sparse data tvne call seen by considering a 1000 X 000
matrix z with an average of 4 nonzero elements per row. If this matrix is s:ored
as a full matrix. it will require 8,000.00)) bytes of space. On the other hand if it
is converted to a sparse matrix, the memory usage xviI) drop dramatically.

a, zs = sparse(z);
whos
Name	 Size	 Bytes	 Class
z	 i000x1000	 8000000	 double array
zs	 1000x1000	 51188	 sparse array

Grand tozal is 1003932 elements using 8051188 by--es

Generating Sparse Matrices

MATLAB call sparse matrices by converting a tijIl matrix into a sarsc
matrix with the sparse function or by directly generating sparse matrices with the
MATLAB functions speve, sprard, and sprandri, whieh are the sparse equiv-
alents of eye, rand. and randxi. For example, the expression a = speyc (4)
generates a 4 X 4 sparse matrix.

>' a = speye(4)

(2,2)	 1
(3,3)	 1
(4,4)	 1

The expression b = full (a) converts the sparse matrix into a liii I matriv

b = full (a)
b=

1	 0
0	 1	 0	 0
0	 0	 1	 0
0	 0	 0	 1

Working with Sparse Matrices

Once a matrix is sparse, individual elements can be added to it or deleted from it
using simple assignment statements. For example, the following statement gener-
ates a 4 X 4 sparse matrix, and then adds another nonzero element to it.

>> a = speye(4)

(1,1)	 1
(2,2)	 1
(3,3)	 1
(4,4)	 1	 -

320 I Chapter 7 Advanced Features

a(2,1) - -2

(1,1)	 1

(2,1)	 -2

(2,2)	 1

(3,3)	 1

(4,4)	 1

MATLAB allows Full and sparse matrices to be freely mixed and used in any

combination. The result of an operation between a full matrix and a sparse matrix

may be either a full matrix or a sparse matrix depending on which result is the
most efficient. Essentially any matrix technique that is surrortcd for full inatri-

ces is also available for sparse matrices.
A few of the common sparse matrix functions are listed in Table 7.1.

Table 7.1 Common MATLAB Sparse Matrix Functions

Function	 Description

Create Sparse Matrices

Create a sparse identity matrix.

Create a sparse uniformly-distributed random matrix.

Create a sparse normally-distributed random matrix.

Full-to-Sparse Conversion Functions

Convert a full matrix into a sparse matrix.

Convert a sparse matrix into a full matrix.

Find indices and values of nonzero elements in a matrix.

speye

sprand

sprandn

sparse

full

find

Working with Sparse Matrices

rinz	 Number of nonzero matrix elements.

nonzeros	 Return a column vector containing the nonzero elements in a matrix.

nzrnax	 Amount of storage allocated for nonzero matrix elements.

spones	 Replace nonzero sparse matrix elements with ones.

spalloc	 Allocate space for a sparse matrix.

issparse	 Returns I (true) for sparse matrix.

spfun	 Apply function to nonzero matrix elements.

SPY	 Visualize sparsity pattern as a plot.

Do-

Example 7.1—Solving Simultaneous Equations with Sparse Matrices
To illustrate the ease with which sparse matrices can be used in MATLAB, we

will solve the following simultaneous system of equations with both full and

sparse matrices.

7.1 Sparse Arrays 1 321

l.0x + 0.0x2 + 1Ox3 + 0.0x 4 + O.Ox + 2.0x 6 + 0.0x7 - lOx8 = 3.0
O.Ox 1 + lOx2 + 0.0x3 + O.4x + 0.0x5 ± O.0x6 + O.0x 7 + 0.0x5 2.0

0.5x 1 + O.Ox, + 2.0x3 + O.Ox. + 0.0 x5 + O.OXô - 1Ox 7 + O.Ox = -1.5
0.0x + O.Ox, + O.0x3 + 2.0x 4 + O.0x5 + 1.0x6 + 0.0x7 + O.0x = 1.0
0.Ox 1 + O.0x2 + 1Ox3 + 1.0x4 + 1.Ox + O.0x6 + O.0x 7 + 0.0x 5 = - 2.0
0.Ox 1 + 0.Ox2 + O.0x3 + I.0x + 0.0x5 + 1Ox6 + O.0x7 + 0.0x5 = 1.0
0.5x 1 + O.0x2 + 0,0x3 + 0.0x4 + O.0x5 + 0.0x6 + 1Ox7 + 0.0x5 = 1.0
O.Ox + lOx, + 0.0x 3 + 0.0x4 + 0.0x5 + 0.0x6 + 0.0x7 + 10x8 = 1.0

SOLUTION To solve this problem, we will create full matrices of the equation
coefficients and convert them to sparse form using the sparse function. Then we
will solve the equation both ways. comparing the results and the memory required.

The script file to perform these calculations is shown below.

% Script file: simul.rn

% Purpose:
%	 This program solves a s ystem of 8 linear equations in 8
%	 unknowns (a*x = b), using both full and sparse matrices.

% Record of revisions:
Date	 Programmer f	 Description of change
= = = =	 _-=====-_ = = =	 = = = = = = = = -_========-_ = = =

%	 01/18/04	 S. J. Chapman	 Original code

% Define variables:
%	 a	 -- Coefficients of x (full matrix)
%	 as	 -- Coefficients of x (sparse matrix)
%	 b	 -- Constant coefficients (full matrix)
%	 bs	 -- Constant coefficients (sparse matrix)

x	 -- Solution (full matrix)
%	 xs	 -- Solution (sparse matrix)

% Define coefficients of the equation a*x = b for
% the full matrix solution.
a = [1.0	 0.0	 1.0	 0.0	 0.0	 2.0	 0.0 -1.0;

0.0	 1.0	 0.0	 0.4	 0.0	 0.0	 0.0	 0.0;
0.5	 0.0	 2.0	 0.0	 0.0	 0.0 -1.0	 0.0;
0.0	 0.0	 0.0	 2.0	 0.0	 1.0	 0.0	 0.0;
0.0	 0.0	 1.0	 1.0	 1.0	 0.0	 0.0	 0.0;
0.0	 0.0	 0.0	 1.0	 0.0	 1.0	 0.0	 0.0;
0.5	 0.0	 0.0	 0.0	 0.0	 0.0	 1.0	 0.0;
0.0	 1.0	 0.0	 0.0	 0.0	 0.0	 0.0	 1.01;

b = 1 3.0	 2.0 -1.5	 1.0 -2.0	 1.0	 1.0	 1.01;

322 1 Chapter 7 Advanced Features

% Define coefficients of the equation a*x = b for
% the sparse matrix solution.

as = sparse(a);
bs = sparse(b);

% Solve the system both ways
disp ('Full matrix solution:');

x = a\b

disp ('Sparse matrix solution: ')

xs = as\bs

% Show workspace
disp('Worksace contents after the solutions:')

whos

When this program is executed, the results are:

simul
Full ma:rix soluziion:

0.5100
2.0000

-0.5000
-0.0000
-1.5000
1.0000
0.7500

-1.0000
Sparse matrix solution:
xs =

(1,1)	 0.5000
(2,1)	 2.0000
(3,1)	 -0.5000
(5,1)	 -1.5000
(6,1)	 1.0000
(7,1)	 0.7500

(8,1)	 -1.0000
Workspace contents after the solutions:
Name	 Size	 Bytes	 Class

	

a	 SxS	 512	 double array

	

as	 8x8	 276	 double array (sparse)

	

b	 8xl	 64	 double array

	

bs	 8x1	 104	 double array (sparse)

	

X	 8xl	 64	 double array

	

xs	 8x1	 92	 double array (sparse)

Grand total is 115 elements using 1112 bytes

7.2 Cell Arrays 1 323

The answers are the same for both solutions. Note that the sparse solution
does not contain a solution for x 4 , because that value is zero and zeros aren't car-
ried in a sparse matrix! Also, note that the sparse form of matrix b actually takes

up more space than the full form. This happens because the sparse representation

must store the indices as well as the values in the arrays, so it is less efficient if
most of the elements in an array are nonzero.

-.	 —
/

7.2 Cell Arrays

A cell array is a special MATLAB array whose elements are cells, containers that
can hold other MATLAB arrays. For example. one cell of a cell array might con-
tain an array of real numbers, another an arra y of strings, and yet another a vec-
tor of complex numbers (see Fi g ure 7.1).

[it terms, each element ofa cell array is a pointer to another data
structure, and those data structures can he of difteretti t ypes. Figure 7, illustrates
this concept. ('cli arrays are great ways to collect information about a problem.
since all of the infonnation call 	 kept together and accessed by a sin g le name.

Cell arra\s use braces f, } instead of parentheses () for selecting and display-
in g the contents of cells. This ditIrence is due to the fact that cellarrais contain
data ct,laturec instead of data. Suppose that the cell array a is defined as shown

	

edt Li	 -	 cctt 1.2	 -

I	 3 -7

2	 0	 6	 'ThiS is a text string.'

0	 5

	

tt 2.1	 I cell 2.2

[3+i4	 -5 1
3-i4j	 F

Figure 7.1 The individual elements of a cell array may point to real arrays, complex arrays string,
other cell arrays, or even empty arrays,

324 1 Chapter 7 Advanced Features

Figure 7.2 Each element of a cell array holds a pointer to another data structure, and different cells

in the same cell array can point to different types of data structures.

in Figure 7.2. Then the contents of element a (1, 1) is a data structure containing

a 3 X 3 array of numeric data, and a reference to a (1 • 1) displays the contents

of the cell, which is the data structure.

a(i,i.)

ans

	

	
/

[3x3 double]

By contrast, a reference to a(1, 1) displays the contents of the contents of the cell.

a(1,i.)
ans =

	

_1	 3 —7

	

2	 0	 6

	

0	 5	 1

7.2 Cell Arrays 1 325

In summary, the notation a (1, 1) refers to the contents of cell a (1, 1) (which
is a data structure), while the notation a(1

 1) refers to the contents of the datastructure within the cell.

Be careful not to confuse () with {} Ien adJ	 cII arrays. They are verydifferent operations!

Creating Cell Arrays

Cell arrays can be created in the following two ways:

• By using assignment statements
• By preallocatin g a cell array using the cell function

The simplest way to create a cell array is to directly assign data to individual

cons, one cell at a time. However, preallocating cell arrays is more efficient, so
you should preallocate really large cell arrays.

Allocating Cell Arrays Using Assignment Statements

You can assien values to cell arrays one cell at a time using assignment state-
ments. There are two wa y

s to assign data to cells, known as content indexing andcell indexing.

Content indexing
Involves placing braces "{ around the cell subscripts,tog

ether with cell contents in ordinary notation. For example, the following state-
ment create the 2 X 2 cell array in Figure 7.2:

a{l,11 = [1 3 -7; 2 0 6; 0 5 lJ;
a(1,2) = 'This is a text string.';
a(2,1) = f3+4*j -5; 	 10j 3 - 4*i;
a(2,2} = []

This type of indexing defines the contents of the data structure contained in a cell.Cell indexing
involves placing braces "{ }" around the data to be stored in a

cell, together with cell subscripts in ordinary subscript notation. For example, the
following statement create the 2 X 2 cell array in Figure 7.2:

a(l,l) = (11 3 -7; 2 0 6; 0 5 1]);
a(1,2) = ('This is a text string.');
a(2,l)	 ([3+4*j _5; _10*j 3 - 4*jJ);
a(2,2) = (fl

This type of indexing
creates a data structure containing the spec/led data and

then assigns that data structure to a cell.

326 1 Chapter 7 Advanced Features

These two forms of indexing are completely equivalent, and they maybe frccl

i:cixd in are program.

' Programming Pitfalls

l) n: tte u't t create a cell array with the same name as an existing numeric
array. If you do this. MATLAI3 will assume that you are trying to assign cell

contents to an ordinary array, and it will generate an error message. Be sure to

clear the numeric array before trying to create a cell array with the same name.

Preallocating Cell Arrays with the cell Function
The cel function allows you to preallocate empty cell arrays of the specified

size. For example, the following statement creates an empty 2 X 2 cell array.

a = cell(2,2);

Once a cell array in created, you can use assignment statements to fill values in

the cells.

Using Braces U as Cell Constructors

It is possible to define many cells at oncecy placing all of the cell contents

between a single set of braces. Individual cells on a row are separated b y commas,

and rows are separated by semicolons. For example, the follomg statement cre-

ates a 2 \ 3 cell array:

	

b = ([1 2], 17. [2:4];	
4*	 Hello	 eye(3

Viewing the Contents of Cell Arrays

MATLAB displays the data structures in each element ofa cell array in a condensed

form that limits each data structure to a single line. If the entire data structure can

be displayed on the single line, it is. Otherwise, a summary is displayed. For exam-

ple, cell arrays a and b would be displayed as:

>a

[3x3 double]	 [1x22 char]

[2x2 double]	 I]

b

	

[1x2 double]	 [17]	 [2x1 double]

[3.0000- 4.0000i]	 Hello'	 3x3 double]

Note that MATLAB is displaying the data structures, complete with brackets or

apostrophes, not the entire contents of the data structures.

7.2 CellAt-rays	 327

-	 -
-

porëeupiotroiAr

L1

Figure 7.3 The structure of cell array b is displayed as a nested senes of boxes by function ce111ot

If you would like to see the full Contents ofa cell array, use the celldispfunction. This function displays the contents oft/ic data structures in each cell.
• ce11djp>
a{1,1) =

1	 3	 -
2	 0	 6
0	 5	 1

a(2,1) =

	

3.0000 + 4.0000j	 -5.0000

	

a(1,2) = 0 -10.00001	 3.0000 - 4.00001

This is a text string.
a{2,2} =

C]

For a high-level graphical display of the structure of a cell array, use functioncelipiot. For example, the function cellplot (b) produces the plot shownin Figure 7.3.

Extending Cell Arrays
If

a value is assigned to a cell array element that does not currently exist, the ele-
ment will be automatically created, and any additional cells necessary to preserve

328 1 Chapter 7 Advanced Features

the shape of the array will be automatically created. For example, suppose that

array a has been defined to be a 2 X 2 cell array as shown in Figure 7.!. If the

following statement is executed

a3,3) = 5

the cell array will be automatically extended to 3 X 3, as shown in Figure 7.4.

Preallocating cell arrays with the cell function is much more efficient than

extending the arrays one element at a time using assignment statements. When a

new element is added to an existing array as we did above, MATLAB must create

a new array large enough to include this new element, copy the old data into the

new array, add the new value to the arra y, and then delete the old array: This is a

very time-consuming process. Instead, you should always allocate the cell array

to be the largest size that you can, and then add values to it one element at a time

If you do that, only the new element needs to be added; the rest of the array can

remain undisturbed.

Figure 7.4 The result of assigning a value to a(3, 3) . Note that four other empty cells were created

to preserve the shape of the cell array. 	 -

7.2 Cell Arrays I 329

The program shown below illustrates the advantages of preallocation It cre-
ates a cell array Containing 50,000 strings added one at a time, with and without
preallocatjon

% Script file: test_preallocatem

% Purpose:

This p/ogram tests the creation of cell arrays with
and without preallocation

% Record of revisions:
Date	 Programmer	

Description of change= = = =	 = = = = = = = = = = 	
= = = = = = = ======= = = = = = = =01/18/04	 S. J. Chapman	 Original code

% Define variables:
a	 -- Cell array

%	 maxvals	 -- Maximum values in cell array

% Create array without preallocation
clear all
ma.xvals = 50000;
tic
for ii = l:maxvalg

jj) = ['Element	 iflt2str(jj)];
end

disp(['Elapsed time Without preallocation 	 flum2str(toc)]);

% Create array with preallocation
clear all
ma.,cvals = 50000;
tic

a = cell(1,ma.xvals);
for ii	 l:ma.xvals

a(ii) = ['Element ' int2str(ii)];
end

disp(['Elapsed time with preallocation' nustr(toc)]);

\Vhcn this program is executed using MATLAB 7.0 on a
2.4 6Hz Pentium IV

computer, the results are as shown below. The advantages o: preallocation are
obvious.

" test preal locate

Elapsed time Without preallocation = 11.079
Elapsed time with preallocation 	 = 4. 13

330 I Chapter 7 Advanced Features

Always preallocate all cell arrays before assigning values to the elements of the

array. This practice greatly increases the execution speed of a program.

Deleting Cells in Arrays

To delete an entire cell array, use the clear command. Subsets of cells may be

deleted by assigning an empty array to them. For example, assume that a is the

3 X 3 cell array defined above.

a=

	

[3x3 double]	 [1x22 char]	 H

	

[2x2 double]	 H	 []

	

[1	 [1	 [5]

It is possible to delete the entire third row with the statement

a(3,:) = 11

a

	

[3x3 double]	 [1x22 char]	 [I

	

[2x2 double]	 [I	 []

Using Data in Cell A$-rays
The data stored inside the data structures within a cell array may be used at any
time, with either content indexing or cell indexing. For example. suppose that a

cell array c is defined as

	

C = ([1 2;3 41,	 dogs';	 cats', i}

The contents of the array stored in cell c (1, 1) can be accessed as follows

,. c(1,l)
ans =

1	 2

3	 4

and the contents of the array in cell c (2, 1) can be accessed as follows

, c(2,1)
aris =

cats

Subsets of a cell's contents can be obtained by concatenating the two sets of

subscripts. For example, suppose that we would like to get the element (1,2) from

' data
data =
Line 1
Additional

[Line 1

Line

; ' Additional Line']

7.2 CellArrays I 331

the array stored in cell c (1, 1) of cell array c. To do thi&, we would use the

expression c (1, 1) (1,2), which says: select element (1, 2) from the Contents
of the data structure contained in cell c (1, 1).

C(1,1)(1,)
ans =

2

/

Cell Arrays of Strings

It is often convenient to Store groups of strings in a cell array instead of storing
them in rows of a standard character array, because each string in a cell array can

have a different length, while every row of a cell array must have an identical
length. This fact means that strings in cell arra ys do not have to be padded with
blanks. Many MATLAB Graphical User Interface functions use cell arrays for
precisely this reason, as is shown in Chapter 10.

Cell arrays of strings can be created in one of t\,) ways. Either the individual
strings can be inserted into the array with brackets, or else function cellstr can
he used to convert a 2-D string array into a cell array of strings.

The following example creates a cell array of strings by inserting the strings

into the cell array one at a time; it then displays the resulting cell array. Note that
the individual strings can be of different lengths.

	

' Cellstrin{1}	 'Stephen J. Chapman';

	

cellstring(2)	 'Male';
cellstring{3} = 'SSN 999-99-9999
cellstring

'Stephen J. Chapman'	 Male'	 SSN 999-99-9999'

Function cellstr creates a cell array of strings from a 2-D string array.
Consider the character array

This 2 X 15 character array can be converted into an cell array of strings with the
function ceflstr as follow:

's c = cellstr(data)
c=

'Line 1'
'Additional Line'

and it can be converted back to a standard character array using function char

332 1 Chapter 7 Advanced Features

newdata char(c)
newdata =
Line 1
Additional Line

The Significance of Cell Arrays

Cell arrays are extremely flexible, since any amount of any type of data can be

stored in each cell. As a result, cell arrays are used in many internal bIATLAB

data structures. We must understand them in order to use many features of the

MATLAB Graphical User Interface, which we will stud y in Chapter 10.

In addition, the flexibility of cell arrays makes them regular features of func-

tions with variable numbers of input arguments and output arguments. A special

input argument, varargin, is available within user-defined MATLAB func-

tions to support variable numbers of input arguments. This argument appears as

the last item in an input argument list, and it returns a cell arra y ; therefore, a sin-

gle duntmv input argument can support an y number of actual argiinents. Each

actual argument becomes one element of the cell array returned by varargin.

If it is used varargin must be the last input argument in a function, following

all of the required input arguments.

For example, suppose that we are writing a function that may have any num-

ber of input arguments. This function could be implemented as shown:

function testi (varargin)
disp(['There are 	 int2str(nargin)	 arguments.']);
disp('The input arguments are:');
disp(varargin);

end % function testl

When this function is executed with varying numbers of arguments, the results are:

>' testi
There are 0 arguments.
The input arguments are:
> testl(6)
There are 1 arguments.
The input arguments are:

[6]

testl(l,'test l',(l 2;3 4))
There are 3 arguments.
The input arguments are:

[1]	 'test 1	 [2x2 double]

As you can see, the arguments become a cell array within the function.
A sample function making use of variable numbers of argumenis is shown

below. Function plotline accepts an arbitrary number of I X 2 row vectors,

7.2 CellArrays 1 333

with each vector containing the (x, y) position of one point to plot. The function
plots a line connecting all of the (x, y) values together. Note that this function also
accepts an optional line specification string and passes that specification on to the
plot function.

function plotline (varargin)
%PLOTLINE Plot points specified by [x,y] pairs.
% F)l

x
nction PLOTLINE accepts an arbitrary number of

%	 ,y] points and plots a line connecting them.
% In addition, it can accept a line specification
% string, and pass that string on to function plot.

% Define variables:
% ii	 -- Index variable
% jj	 -- Index variable
% linespec -- String defining plot characteristics
% msg	 -- Error message

% varargin -- Cell array containing input arguments
X	 -- x values no plot

% y	 -- v values no plot

% Record of revisions:
Date	 Programmer	 Description of change
= = = =	 = = = = = = = = = =	 =

%	 01/18/04	 S. J. Chaoma.	 Original code

% Check for a legal number of input arguments.
% We need at least 2 points to plot a line.
msg = nargchk(2,Inf,nargjn);
error (msg)

% Initialize values
jj = 0;
linespec =

% Get the x and y values, making sure to save the line
% specification string, if one exists.
for ii = l:nargin

% Is this argument an [x,y] pair or the line
% specification?
if ischar (varargin{ij})

% Save line specification
linespec = varargin{ii};

else

% This is an fx,yJ pair. Recover the values.
ii = jj + 1;

334 1 Chapter 7 Advanced Features

x(jj) = varargin(ii)(1);

y(jj) = varargiri{ii}(2);

end
end

% Plot function.
if isempty(linespec)

plot(x,y);
else

plot(x,y,linespec);

end

end % function plotline

When this function is called with the arguments shown below, the plot shown
in Figure 7.5 is the result. Try the function with different numbers of arguments
and see for yourself how it behaves.

plotline([0 0], [1 1), [2 4] [3 9), I k--'

There is also a special output argument, varargout, to support variable
numbers of output arguments. This argument appears as the last item in an output

Figure 7.5 The plot produced by function plotline. 	 -

7.2 CellArrays I 335

argument list, and it returns a cell array; therefore, a single dummy output argument
can support any number of actual arguments. Each actuai argument becomes one
element of the cell array stored in varargout.

If it is used, varargout must be the last output argument in a function, fol-
lowing all of the required input arguments. The number of values to be stored in
varargout can be determined from function nargout, which specifies the
number of actual output arguments for any given function call.

A sample function test2 is shown below. This function detects the number
of output arguments expected by the calling program, using the function nargout.
It returns the number of random values in the first output argument and then fills

the remaining output arguments with random numbers taken from a Gaussian dis-
tribution. Note that the function uses varargout to hold the random numbers;
consequently, there can be an arbitrary number of output values.

function [nvals,varargoutj = test2(mult)

% nvals is the number of random values returned
% varargout contains the random values returned
nvalS	 nargout - 1;
for ii= l:nargout-1

:arargout{jj} = randn * mul:;
end

end	 function test2

When this function is -executed, it produces the results shown below.

* test2(4)
ans =

-1
(a b C d] = test2(4)

a=

-1.7303

E.6623
d=

C.5013

Use cell array arguments varargin and varargout to create functions that
support varying numbers of input and output arguments.

336 1 Chapter 7 Advanced Features

Table 7.2 Common MATLAB Cell Functions

Function	 Description

cell	 Predefine a cell array structure.

celldisp	 Display contents of a cell array.

celiplot	 Plot structure of a cell array.

cellstr	 Convert a 2-D character array to a cell array of strings.

char	 Convert a cell array of strings to a 2-D character array.

Summary of cell Functions

The common MATLAB cell functions are summarized in Table 7.2.

7.3 Structure Arrays

An arra

' v

is a data type in which there is a name for the whole data structure, but

individual elements within the array are known onl y by number. Thus, the fifth

element in the array named arr would be accessed as arr (5). All of the indi-

vidual elements in an array must be of the sante ty pe.

A cell array is a data type in which there is a name for the whole data struc-

ture, but individual elements within the arra y are known only by number.

However, the individual elemetits in the cell array may be of di/Ji'renf types.

In contrast, a structure is a data type in which each individual element is has

a name. The individual elements of a Structure are known as fields, and each field

in a structure may have a ditTèrent type. The individual fields are addressed by com-

bining the name of the structure with the name of the field, separated by a period.

Figure 7.6 shows a sample structure named student. This structure has

five fields, called name, addrl, city, state, and zip. The field called

"name" would be addressed as student, name.

A structure array is an array of structures. Each structure in the array will

have identically the same fields, but the data stored in each field can differ. For

example, a class could be described by an array of the structure student. The

first students name would be addressed as student (1) .name, the second

student's city would be addressed as student (2) .9ity, and so forth.

Creating Structure Arrays

Structure arrays can be created in the following two ways:

• A field at a time using assignment statements

• All at once using the struct function	 -

3,

7.3 Structure Arrays 1 337

Figure 7.6 A sample structure. Each element within the structure is called a field, and each field is
addressed by name.

Building a Structure with Assignment Statements

You can build a structure one field at a time using assignment statements. Each
time that data is assigned to a field, that field is automatically created. For exam-
ple. the structure shown in Figure 7.6 can be created with the following statements:

338 I Chapter 7 Advanced Features

student.name'John Doe';
student.addrl='123 Main Street';
student.city ='Anytown';
student.zip='71211'

student =

	

name:	 'John Doe

	

addrl:	 123 Main Street'

	

city:	 Anytown'

	

state:	 'LA'

	

zip:	 7211'

A second student can be added to the structure by adding a subscript to the
structure name (before the period).

student (2).name = 'Jane Q. Public'
student =
lx2 struct array with fields:

name
addrl
city
State

I	 zip

student is now a I X 2 array. Note that when a structure arra y has more than
one element, onl y the field names are listed, not their contents. The contents of
each element can be listed by typin g the element separately in the Command
Window:

>' student(l)
ans =

name:
addrl:
city:

state:
Zip:

' student(2)
aris =

name:
addrl:
city:

state:
Zip:

'John Doe
'123 Main Street'
Anytown'
LA'
'71211'

'Jane Q Public'
[3
[3
[]
[I

Note that all of the fields of a structure are createdfor each array element when-
ever that element is defined, even if they are not initialized. The uninitialized
fields will contain empty arrays, which can be initialized with assignment state-
ments at a later time.

7.3 $tructureAr

	

The field names used in a structure can be recovered at any ti 	 rh
tiianames function. This function returns a list of the field na:::
array of strings, and is very useful for working with structure an,
program.

Creating Structures with the struct Function
The struct function allows you to preallocate a structure or an ar -
tures,The basic form of this function is

starray = struct('fjeldl vail field2 ,val2 ,.•.)

	where the arguments are field names and their initial values. With	 s
function struct initializes every field to the specified value.

To preallocate an entire array with the struct function to the ia:
the array. All of the values before that will be automatically created t t1

time. For example, the statements shown below create an array containin
sturcrnres of type student.

student(1000) = struct('name',p.'ad1[]

'city', 1' 'state . U , 'z± -

student =

lxlOC,D struct array with fields:
name
addrl
city
state -
Z;ip

All of the elements of the Structure are preallocated, which %% ill speed
gram using-the structure.

There is another version of the struct function that will pre:.
array and at the same time assign initial values to all of its field. You wI -
to do this in an end of chapter exercise.

Adding Fields to Structures

If a new field name is defined for any element is a strucrurc array,

automatically added to all of the elements in the array. For example, sul-.
we add some exam scores to Jane Public's record:

student(2).exs = [90 82 881
student =

1x2 Gtruct array with fields:
name
addrl
city
state
zip
exams

340 I Chapter 7 Advanced Features

There is now a field called exams in every record of the array, as shown below.
This field will be initialized for , student (2) , and will be an empty array for all
other students until appropriate assignment statements are issued.

student(1)
ans =

name:
addrl:
City:

state:
zip:

exams:
" student(2)
ans =

name:
addrl:
city:

state:
zip:

exams:

'John Doe'
'123 Main Street
'Anytown'
'LA'
71211

[J

'Jane Q. Public
[1
[I
[I
[]
[90 82 88]

Removing Fields from Structures

A field may bemoved from a structure array using the rmf ield function. The
form of this function is:

struct2 = rmfield(str_array, 'field')

where str_array is a structure array, field' is the field to remove, and
struct2 is the name of a new structure with that field removed. For example,
we can remove the field ' zip' from structure array student with the follow-
ing statement:

•	 Btu2	 rmfield(student,'zip•)
stu2
1x2 struct array with fields:

- name
'addrl

'city
state

	

exa	 -

Using Data in Structure Arrays

Now let's assume that structure array student has been extended to include three
students and all data has been filled in, as shown in Figure 7.7. How do we use
the data in this structure array?

access the information in any field of any array element, just name the
array element	 followed by a period and the field name: 	 -

• name
• 'Job_n Doe' I. name

Jane Q. Public	 [-__........ 'Big Bird

7.3 Structure Arrays 1 341

[_Student
__f

student (1)	 Student (2i
	

student (3)

.addrj.	 J.addrl— 13 MaIN Sree'	 P J. Box 17'

State
•

.addrj.
— 1-3 Sesame stre-

et-city
— Ne. York

State.

-City

I-	
— ' 68	 I.zip

90	 8,

-	

--- '

.wcaa	 •exams	
f49jj

Figure 7.7 The student array Nvith three elements and all fields filled in.

student (2) .add.r].
ans =

P. 0. Box 17
> student(3)ex5
ans =

65	 84	 81

To access an individual item within a field, add a subscript after the field name.
For example, the second exam of the third student is

student (3) exams (2)
ans =

84

The fields in a structure array can be used as arguments in any function that
supports that type of data. For example, to calculate student (2) s exam aver-
age, we could use the function

" mean(studeflt(2) exams)
ans =

86.6667

342 1 Chapter 7 Advanced Features

Unfortunately, we can not extract the values from a given field across mul-

tiple array elements at the same time. For example, we cannot get access to an

array of zip codes with the expression student, zip. That expression returns

the three zip codes of the three students in three separate arrays. If we want to

get the zip codes of all of the students in a single array, we must use a for loop:

forii = i:iength(student)
zip(ii) = student(ii) .zip;

end

Similarly, if we wanted to get the average of all exams from all students, we can-

not use the function mean (student, exams). Instead, we must build up an

array containing all the exam scores by accessing each student's exams separately

and then call mean with that array.

exam_list =
for ii = i:iength(student)

exam—list = [exam_list student(ii) .exams]
end
mean (exam_i is t)

The getfied and setfield Functions

Two MATLAB functions are available to make structure arra ys easier to use in

programs. Function get field gets the current value stored in a field, and func-
tion set field inserts a new value into a field. The structure of function

getfie.d is

f = aetfieid(array, (array_index), 'field,(field_idex))

where the field—index is optional and array—index is optional for a

I-by-I structure array. The function call corresponds to the statement

f = array(array_index) . field (field_index)

but it can be used even if the programmer doesn't know the names of the fields

in the structure array at the time the program is written.

For example, suppose that we needed to write a funtion to read and manipu-

late the data in an unknown structure array. This function could determine the field
names in the structure using a call to fleidnames, and could then read the data
using function get field. To read the zip code of the second student, the func-
tion would be

zip	 getfie1d(student,{2}, zip')
- zip =

68888

7.3 Structure Arrays J 343

Similarly, a program could modify values in the structure using function
setfield. The structure of function setfie].d is

f = setfield(array, (array_index), 'field', ':field_index),value)

where f is the output Structure array, the field_index is optional, and
array index is optional for a I-by-I structure array. The function call corre-
sponds to the statement

arra;(array index) .field(fied 'ndex) = value;

Dynamic Field Names

Beginnin g with MATLAB 7.0, there is an alternative way to access the elements of

a structure: dynamic field names. A dynamic field name is a string enclqsed in

parentheses at a location where a field name is expected. For example, the name of
student I can be retrieved with either static or dynamic field names as shown below:

" student(1).name	 % Static field name
ans =
John Doe
>' student(l).(nqrie) 	 % Dynamic field name
ans=
John Doe

Dynamic field names perform the same function as static field names, but
dtiiainic ieId nanu's can be changed during ;'ro 'urn execution. This allows a
user to access different information in the same function within a program.

For example, the following function accepts a structure array and a field
name and calculates the average of the values in the specified field for all ele
ments in the Structure array. It returns that average (and optionally the number of
values averaged) to the calling program.

function (ave. nvals) = ca1c_average(stn1cture,fje1)
%CALC_AVERGE Calculate the average of values in a field.
% Function CALC_AVERAGE calculates the average value
% of the elements in a particular field of a structure
% array. It returns the average value and (optionally)
% the number of items averaged.

% Define variables:
arr	 -- Array of values to average
ave	 -- Average of arr

%	 ii	 -- Index variable

344 I Chapter 7 Advanced Features

% Record of revisions:

%	 Date	 Programmer	 Description of change
= = = =	 = = = = = = = = = =	 = = = = = = = = ===== = = = = = = = =

%	 01/18/04	 S. J. Chapman	 original code

% Check for a legal number of input arguments.
msg = nargchk(2,2,nargin);
error(msg);

% Create an array of values from the field
arr = H;
for ii = 1:length(structure)

arr = [arr structure(ii).(field));

end

% Calculate average
ave = rrean(arr);

% Return number of values averaged
if nara3ut == 2

nvals = length(arr);
end

end % function calc_average

A program can average the values in different fields by simply calling this

function multiple times with different structure names and different field names.

For example, we can calculate the average values in fields exams and zip as

follows:

[ave,nvals] - calc_average(student, exams)
eve =

83.2222
rvals =

9
ave = calc_average(student,'zip)

eve =
50039

Using the size Function with Structure Arrays

When the size function is used with a structure array, it returns the size of
the structure array itself. When the size function is used with afield from a

particular element in a structure array, it returns the size of that field instead of
the size of the whole array. For example,

7.4 Function Handles I 345

size(student)
ans =

1	 3
size(Btudent(l) .name)

ans =
1	 8

Nesting Structure Arrays

Each field of a structure array can be of any data type, including a cell array or a
structure array. For example, the following statements define a new structure
array as a field under array studen: to carry information about each class that
the student in enrolled in.	 -

student(1) .class(1) n&-1e = 'COSC 2021'
student(J.) .class(2) name = 'PHYS 1001'

student(1) .class(1) instructor = 'Mr. Jones'
student(1) .class(2) instructor = 'Mrs. Smith'

After these statements are issued, s:udent (1) contains the following data.
Note the technique used to access the data in the nested structures.

student (1)
ans =

name: 'John Doe'
addrl: '123 Main Street'

	

city:	 Anytown'

	

State:	 'LA

	

Zip:	 '71211'

	

exams:	 [80 95 84:

	

class:	 [1x2 struct]
> student(1) .clas
ans =

1x2 struct array with fields:
name
instructor

student(1) .class(j.)
ans =

	

name:	 'COSC 2021'
instructor: 'Mr. Jones'

>> student(1).claas(2)
ans =

	

name:	 'PHYS 1001'

	

instructor:	 'Mrs. Smith'
' student(1).c1asa(2).
ans =
PHYS 1001

346 I Chapter 7 Advanced Features

Table 7.3 Common MATLAB Structure Functions

Function	 Description

fieldnames	 Return a list of field names in a cell
array of strings.

getfield	 Get current value from a field.

rmfield	 Remove a field from a structure array.

setfield	 Set new value into a field.

struct	 Pre-define a structure array.

Summary of structure Functions

The common MATLAB structure functions are summarized in Table 7.3 on the

above.

7.4 Function Handles

A function handle is a NIATLAB data t ype that holds information to be used in

referencing a function. When you create a function handle, MATLAB captures all

the information about the function that it needs to ecute it later on. Once the

handle is created, it can be used to execute the function at any time.

As is shown in Chapter 10, function handles are key to the operation of

NIATLAB graphical user interfaces. We will learn about them here, and apply

that knowledge in Chapter 10.

Creating and Using Function Handles

A function handle can be created either of two possible way: the @ operator or the

str2 func function. To create a function handle with the @ operator, just place

it in front of the function name. To create a function handle with the str2 fuhc

function, call the function with the function name in a string. For example, sup-

pose that function roy_f unc is defined as follows:

function res = my_func(x)

res = x.	 - 2*x + 1;

end % function my_func

Then either of the following lines will create a function handle for function

rny_func:

hndl = @my_func
hndl = str2func(my_func);

7.4 Function Handles I 347

Once a function handle has been created, the function can be executed by
naming the function handle followed by an y calling parameters. The result will be
exactly the same as if the function itself were named.

>' hndi = @xny_func
hndl =

@rnyfunc
>> hzidl(4)
ans =

9
my_f unc(4)

ans =
9

Ifa function has no calling paranicters, then the function handle must be followed

by empty parentheses when it is used to call the function:

hi @randn;
>> hl()
ans =

-0.4326

After a function handle is created, it appears in the current workspace with the
data type "function handle":

> whog
Name	 Size	 Bytes	 Class

ans	 lxi	 8	 double array
hi	 lxi	 16	 function handle array
hndl	 lxi	 16	 function handle array

Grand :otai is 3 elements using 40 bytes

A function handle can also be executed using the feval function. This pro-

vides a convenient way to execute function handles within a MATLAB program.

fevai(hndl,4)
ans =

9

It is possible to recover the function name from a function handle using the

func2str function.

func2str(hridl)
ans =
my_f unc

This feature is very useful when we want to create descriptive messages, error mes-_
sages, or labels inside a function that accepts and evaluates function handles. For.

348 I Chapter 7 Advanced Features

example, the function showt below accepts a function handle in the first argument,

and plots the function at the points specified in the second argument. It also prints
out a title containing the name of the function being plotted.

function plotfunc(fun,points)

% PLQTFUNC Plots a function between the specified points.
% Function PLOTFtJNC accepts a function handle, and
% plots the function at the points specified.

% Define variables:
%	 fun	 -- Function handle
% msg	 Error message

% Record of revisions:
Date	 Programmer

%	 01/21/04	 S. J. Chapman

Description of change

Original code

% Check for a le;al number of input argumes.
msg = nargchk(2,:,nargjn).
error (msg)

% Get function name
fname - func2str(fun);

It
% Plot the data and label
plot (points, fun (points)
title([\bfplot of	 fnaine
xlabel (\bfx)
y.LaDeJ.([\bt	 fname	 (x)]);
grid on;

end % function p1tfunc

For example, this function can be used to plot the function sin x from — 2,r to 21r
with the following statement:

plotfunc(@sin, [2*pi;pj/10:2*pi])

The resulting function is shown in Figure 78.

Some common MATLAB functions used with function handles are summa-
rized in Table 7.4.

The Significance of Function Handles

Either function names or function handles can be used to execute most functions.
However, function handles have certain advantages over function names. These
advantages include:

the plot

(x) vs xe]);

7.4 Function Handles I 349

Fle Odt View iet TOds 5W

..	 Plot of inQc) vs

/...	 .

	

•................./

	 .
I	 I

/	 j\
/	

:1

	

•	

/

-8

Figure 7.8 Plot of function sin x from -21 to 27r, created usin g function plot func.

I. Passing Function Access Information to Other Functions. As we saw

in the previous section, you can pass a function handle as an argument in

a call to another function. The function handle enables the receiving func-

tion to call the function attached to the handle. You can execute a function

handle from within another function even if the handle sJi flCtiOfl is not in
the scope oft/ic evaluating Junction. This is because the function handle

has a complete description of the function to execute; the calling function

does not have to search for it.

2. Improved Performance in Repeated Operation. MATLAB performs a

search for a function at the time you create a function handle and then

Table 7.4 MATLAB Functions that Manipulate Function Handles

Function	 Description

Create a function handle.

feval	 Evaluate a function using a function handle.

func2str	 Recover the function name associated with a given function handle.

functions	 Recover miscellaneous information from a funcian handle. The
data is returned in a structure.

str2 func	 Create a function handle from a specified string.

0

to

-02

350 1 Chapter 7 Advanced Features

stores this access information in the handle itself. Once defined, you can

- use this handle over and over without having to look it up again. This
makes function execution faster.

3. Allow Wider Access to Subfuntjons and Private Functions. III

MATLAB functions have a certain scope. The y are visible to other
MAT! AB entities \ ithin that cope but not visible outside of it. You can
call a uiction directly from another function that is within its scope, but
not from a function outside that scope. Subfunctions, private functions,

and nested functions are limited in their visibility to other MATLAB

functions. You can invoke a subfunction only from another function that

is defined within the same M-file. You can invoke a private function only
from a function in the directory immediately above the private subdi-
rectory. You can invoke a nested function only from within the host func-

tion or another nested function at the same level. However, when you

create a handle to a function that has limited scope, the function handle

stores all the information MATLAB needs to evaluate the function
from an y location in the MATLAB environment. If you create a handle
to a subfunction within the M-file that defines the subfunction, you can

then pass the handle to code that resides outside of that M-file and

e'. aluate the subunction from beyond its usual scope. The same holds
true for private functions and nested functions.

4. Include More Functions per M-File for Easier File Management. You

can use function handles to help reduce the number oEM-files required to
contain your functions. The problem with groupin g a number of functions
in one M-file has been that this defines them as subfunctions, and thus

reduces their scope in MATL.AB. Using function handles to access these
subfunctions removes this limitation. This enables you to group func-
tions as you want and reduce the number of files you have to manage.

Function Handles and Nested Functions

When MATLAB invokes an ordinary function, a special workspace is created to

contain the function's variables. The function executes to completion, after which
the workspace is destroyed. All the data in the function workspace is lost, except
for any values labeled persistent. If the function is executed again, a com-
pletely new workspace is created for the new execution.

By contrast, when a host function creates a handle for a nested function and
returns that handle to a calling program, the host function's workspace is created
and remains In existence tor as long as the function handle remains in existence.
Since the nested function has access to the host function's variables, MATLAB

has to preserve the host's function's data as long as there is any chance that the
nested function will be used. This means that we call data in a function
between uses.

This idea is illustrated in the function shown below. When function
count calls is executed, it initializes a local variable current—count to

7.4 Function Handles 1 351

a use:-spccjfjcd initial count and then create and returns a handle to the nest-
ed fution increment count When ir.:rement count is called usingthat fLnctiofl handle, the count is increased b y •Jne and the new value is returned,

function fhandle = count calls(initjai value)

Save initial value in a lc:al variable
% in the host function.

current count = initial value;

Create and return a func tizn handle to the
% nested function below.
fhand].e = @increment count;

% Define a nested function to increment counter
function Count = increment Count
current count = current count + 1;
count = current —count;

end % function incrernen count

end % function count—calls

When this program is executed, the results are as shown below. Each call to the
function handle increments the count by one.

fh = Count Calls(4);
fh()

ans =

5
'> fh()
ar.s =

6
fh()

ans =
7

Even more importantly, each function han&e created for a function has its
own independent workspace. If we create two different handles for this function,
each one will have its own local data and they will be independent of each other.
As you can see, we can increment either counter independently by calling the
function with the proper handle.

	

fbi	 count_calie(g);

	

fh2	 cou.nt_calis(20);
'S fbl()

P	 ans =

5
fbl()

ans=
6

352 I Chapter 7 Advanced Features

fh2()	 -
ans =

21

fhl()
ans =

7

You can use this feature to run multiple counters and so forth within a program

without them interfering with each other.

This quiz provides a quick check to see if you have understood the con-

cepts introduced in Sections 7.1 through 7.4. If you have trouble with the

quiz, reread the section. ask your instructor, or discuss the material with

a fellow student. The answers to this quiz are found in the back of

the book.

I. What is a sparse array? How does it differ from a full array? How can

you convert from a sparse array to a full array and vice versa?

2. What is a cell array? How does it differ from an ordinary array?

3. What is the difference between content indexing and cell indexing?

4. What is a structure? How does it differ from o1inary arrays and

cell arrays?

5. What is the purpose of varargin? How does it work?

6. What is a function handle? How do you create a function handle?

How do you call a function using a function handle?

7. Given the definition of array a shown below, what will be produced

by each of the following sets of statements? (Note: some of these

statements may be illegal. If a statement is illegal, explain why.)

a{1,l} = [1 2 3; 4 5 6; 7 8 91;

a(1,2) = (Comment line);

a(2,l) =
a{22) =a(l,l) -a(l,1}(2,2);

(a)a(l,1)
(b)a{1,l}
(c)2*a(l,1)
(d)2*a(1,1)

(e)a(2,2)
(f)a(2,3) = ([- 17; 17])

(g) a{2,2}(2,2)

8. Given the definition of structure array b shown below, what will be

produced by each of the following sets of statements? (Note: some

7.5 Summary I 353

of these statements may be illegal. If a statement is illegal, explain
why.)

b(l).a = _2*eye(3);

b(l),b = Element 11;
b(l).c = [1 2 31;

b(2) .a = [b(2) .c- 1-1; -2; -31 b(l) .cJ;
b(2),b = Element 2;
b(2).c = [1 0 -1];

(a) b(J.) .a - b(2) .a
(b)strncmp(b(l) .b,b(2) .b,6)
(c)meari(b(l) .c)
(d)mean(b.c)
(t') b

(f)b (1) . ('b)
(g)b(l)

9. What will be returned by the following function, if it is called with
the expression myfun (@cosh)?

function res = myfun(x)
res = func2str(x);
end % function myfun

7.5 Summary

Sparse arrays are special arrays in which memory is allocated only for nonzero

elements. Three values are saved for each nonzero element—a row number, a col-
unmn number, and the value itself. This form of storage is much more efficient

than for arrays for the situation where only a tiny fraction of the elements are

nonzero. MATLAB includes functions and intrinsic calculations for sparse arrays,
so they can be freely and transparently mixed with full arrays.

Cell arrays are arrays whose elements are cells, containers that can hold other
MATLAB arrays. Any sort of data may be stored in a cell, including structure
arrays and other cell arrays. They provide a very flexible way to store data and are

used in many internal MATLAB graphical user interface functions.

Structure arrays are a data type in which each individual element is given a
name. The individual elements of a structure are known as fields, and each field
in a structure may have a different type. The individual fields are addressed by
combining the name of the structure with the name of the field, separated by a

period. Structure arrays are useful for grouping together all of the data related to
a particular person or thing into a single location.

Function handles are a special data type containing all the information
- required to invoke a function. Function handles are created with the @ operator or

354 I Chapter 7 Advanced Features

the str2 func function and are used by naming the handle following by paren-

theses and the required calling arguments. If a function handle is created for a

nested function, the workspace of the host function will be preserved between

calls to the nested function using the function handle.

Create a function handle.

Predefine a cell array structure.

Display contents of a cell array.

Plot structure of a cell array.

Convert a 2-D character array to a cell array of strings.

Evaluate a function using a function handle.

Return a list of field names in a cell array of strings.

Get the name of the function pointed to by the specified
function handle.

Recover miscellaneous information from a function handle

in a Structure.

Get current value from a field.

Convert a sparse matrix into a full matrix

Number of nonzero matrix elements.

Return a column vector containing the nonzero elements
in a matrix.

Amount of storage allocated for nonzero matrix elements.

Remove a field from a structure array.

Set new value into a field.

Allocate space for a sparse matrix.

Convert a full matrix into a sparse matrix.

Create a sparse identity matrix.

Apply function to nonzero matrix elements.

Replace nonzero sparse matrix elements with ones

Create a sparse uniformly-distributed random matrix.

Create a spat-se normally-distributed random matrix.

Write formatted data to string.

Visualize sparsity pattern as a plot

Create a function handle for the function named in a strinS
argument.

Preallocate a structure array

cell

celldisp

ceilpiot

cellstr

feval

fieldnarnes

fun c 2 St

functions

getfield

full

HAI

	 nnz

nonzeros

nzmax

rmf I e 1 d

setfield

spalloc

sparse

speye

spfun

spones

sprand

sprandn

sprintf

SPY

str2 func

St ruc t

7.6	 Exercises 1 355

Summary of Good Programming Practice

The following guidelines should be adhered to:

I. Always preallocate all cell arrays before assigning values to the elements of
the array. This practice greatly increases the execution speed of a program.

2. Use cell array arguments varargin and varargout to create func-
tions that support varying numbers of input and output arguments.

MATLAB Summary

The summary (see page 354) lists all of the MATLAB commands and functions
described in this chapter, along with a brief description of each one.

7.6 Exercises

7.1 Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to the lexicographic order of the
ASCII character Set. (You may use function c_s:rcmp from Chapter 6
for the comparisons if you wish.)

7.2 Write a MATLAB function that will accept a cell array of strings and sort
them into ascending order according to alphabetical order. (This implies
that you must treat 'A' and 'a' as the same letter.)

7.3 Create a sparse 100)< 100 arra y a in which about 5% of the elements
contain normally distributed random values and all of the other elements
are zero (use function sprandn to generate these values). Next, set all of
the diagonal elements in the array to I. Next, define a 100-element sparse
column array b and initialize that arra y with 100 uniforml y distributed
values produced by function rand. Answer the following questions about
these arrays:

(a) Create a full array a_full from the sparse array a. Compare the
memory required to store the full array and the sparse array. Which is
more efficient?

(b) Plot the distribution of values in array a using function spy.
(c) Create a full array b_full from the sparse array b. Compare the

memory required to store the frill array and the sparse array. Which is
more efficient?

(d) Solve the system of equations a * x = b for using both the full

arrays and the sparse arrays. How do the two sets of answers com-
pare? Time the two solutions. Which one is faster?

7.4 Create a function that accepts any number of numeric input arguments and

sums up all of individual elements in the arguments. Test your function 1,9'

356 I Chapter 7 Advanced Features

	

.[J'c [1	 0 31
passing it the four arguments a = lO,b J-2 	 =I-	 1 2 I,d

L2 	 Li 2 oJ
d=[l 5 —2].

7.5 Modify the function of the previous exercise so that it can accept either
ordinary numeric arrays or cell arrays containing numeric values. Test your

function by passing itto the two arguments a and b, where a =
1	 4

b{l} = [1I 5 2], and b{2} = l —2
	 12	 3

2
7.6 Create a structure array containing all of the information needed to plot a

data set. At a minimum, the structure array should have the following
fields:

• x_data	 i-data (one or more data sets in separate cells)
• y_data	 v-data (one or more data sets in separate cells)
• type	 linear, semilogx, etc.
• plc:: —title	 plot title
• x_label	 .1-axis label
• y_label	 Y-axis label
• x_range	 x-axis range to plot
• y_range	 Y-axis range to plot

You mar add additional fields that would enhance your control of the final
plot.

After this structure array has been created, create a MATLAB func-

tion that accepts an array of this structure and produces one plot for each
structure in the array. The function should apply intelligent defaults if
some data fields are missing. For example, if the plot—title field is
an empty matrix, the function should not place a title on the graph. Think
carefully about the proper defaults before starting to write your function!

To test your function, create a structure array containing the data for

three plots of three different types and pass that structure array to your

function. The function should correctly plot all three data sets in three dif-
ferent figure windows.

7.7 Define a structure point containing two fields x and y. The x field will
contain the x-position of the point, and they field will contain they-position
of the point. Then write a function dist3 that accepts two points, and
returns the distance between the two points on the Cartesian plane. Be
sure to check the number of input arguments in your function.

7.8 Write a function that will accept a structure as a argument and return two

cell arrays containing the names of the fields of that structure as well as

the data types of each field. Be sure to check that the input argument is a
structure and generate an error message if it is not.

7.6 Exercises I 357

7.9 Write a function that will accept a structure array ofstudent as defined
in this chapter, and calculate the final average of each one assuming that

all exams have equal weighting. Add a new field to each array to contain
the final average for that student, and return the updated structure to the
callin g program. Also, calculate and return the final class average.

7.10 Write a function that will accept two arguments, the first a structure array

and the second a field name stored in a string. Check to make sure that
these input arguments are valid. If they are not valid, print out an error
messa ge. If they are valid and the designated field is a string, concatenate

all of the strings in the specified field of each element in the array and
return the resulting string to the calling program.

7.11 Calculating Directory Sizes. Function dir returns the contents of a

specified directory. The dir command returns a structure array with four
fields, as shown below:

d - dir('chap7)
0=
35x1 struct array with fields:

name

date

bytes

isdir

The field name contains the names of each file, date Contains the last

modification date for the file, bytes contains the size of the file in bytes,
and isdir is 0 for conventional files and I for directories. Write a func-

tion that accepts a directory name and path and returns the total size of all
files in the directory, in bytes.
Recursion. A function is said to be recursive if the function calls itself.
Modify the function created in Problem 7.11 so that it calls itself when it

finds a subdirectory and sums up the size of all file in the current direc-
tory plus all subdirectories.
Function Generators. Write a nested function that evaluates a polyno-
mial of the form y = ax 2 + bx + c. The host function gen_func
should have three calling arguments—a, b, and c—to initialize the coef-

ficients of the polynomial. It should also create and return a function han-

dle for the nested function eval_func. The nested function
eval_func (x) should calculate a value of y for a given value of x,
using the values of a, b, and c stored in the host function. This is effec-

tively a function generator, since each combination of a, b, and c values
produces a function handle that evaluates a unique polynomial. Then per-
form the following steps:

(a) Call gen_func (1, 2, 1) and save the resiilting function handle in
variable hi. This handle now evaluates the function = x 2 + 2x + I.

7.12

7.13

358 I Chapter 7 Advanced Features

(b) Call gen_func (1, 4, 3) and save the resulting function handle in

variable h2. This handle now evaluates the function y ='—x2 + 4x + 3.

(c) Write a function that accepts a function handle and plots the specified

function between two specified limits.

(d) Use this function to plot the two polynomials generated in parts (a)

and (b) above.

7.14 Function Generators. Generalize the function generator of the previ-

ous problem to handle polynomial of arbitrary dimension. Test it by creat-

ing function handles and plots the same way that you did in the previous

problem. [Hint: Use varagrin.]

7.15 Look up function s truct in the MATLAB Help Browser, and learn how

to preallocate a structure and simultaneously initialize all of the elements

in the structure array to the same value. Then create a 2000 element array

of type student, with the values in every array element initialized with

the fields shown below:

name: 'John Doe
addrl: ':23 Main Street'
city: L.nytOwn
state:	 LA'

zip: '71211'

