
Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 02 Issue 01

Mar 2012 ATC-30228014©Asian-Transactions 1

Abstract— The Web has myriad of useful information, but its

dynamic, unstructured nature makes them difficult to locate the

desired information. A general-purpose search engine, such as

Google or AltaVista usually generates thousands of hits, many

of them irrelevant to the user query. A knowledge based search

assistant is developed which reduces the time and cost of

information accumulating of common interest groups. When

the users from a common network search on similar topics then

an intelligent agent minimize the searching effort of a user by

utilizing the previous experience of the users they have

gathered from their surfing behaviours. Additionally the agent

incrementally updates its database by analyzing its perception,

which gradually increases its recall rate. A search assistant that

accumulates knowledge from user activity and gathers

information would provide a convenient searching environment

with minimum effort within shortest possible time.

Index Terms— Personalized Searching, Web User

Satisfaction, Keyword Clustering, Computer Support

Cooperative Work (CSCW), Search Assistant.

I. INTRODUCTION

earching on a specific topic in the Web is a difficult task

because of having plenty of information throughout the

whole world. Search engines help, but the number of Web

pages now exceeds two billion, making it difficult for

general purpose search engines to maintain comprehensive,

up to date search indexes. Moreover, as the Web grows ever

larger, so does information overload in query results. A

surfer requires traversing unnecessary spots of information

before finding out the specific field of interest. The

procedure one passes is repeated by another user whenever a

search for a similar type of topic or keyword has appeared.

This searching would not be necessary if the user knew

someone with similar search criteria whose search-request

has been satisfied with a result that is hiding within the pages

returned by some popular search engines. This situation is

very frequent in an organization where many people have

similar interests. Students, faculty members and researchers

of a university, corporate personnel in a corporate office,

Md. Mahbubul Alam Joarder is Associate Professor of the Institute of

Information Technology, University of Dhaka, Dhaka-1000, Bangladesh.

(email: joarder@univdhaka.edu).

Khaled Mahmud is Lecturer of the Institute of Business Administration,

University of Dhaka, Dhaka-1000, Bangladesh. (Phone: +8801712536013;

e-mail: khaled@iba-du.edu).

Bulbul Ahamed is Senior Lecturer of the department of Computer

Science and Engineering, Northern University Bangladesh. Dhaka- 1205,

Bangladesh. (e-mail: bulbul2767@gmail.com).

and doctors in hospitals form some common user group that

would result in common interest in searching. The searching

experience of one surfer can be used for future users to

eliminate some mundane repeated procedures for a group of

people.

This paper introduces a knowledge based search assistant

for a set of users that is implemented through a server agent

and a client agent. The server agent scrutinizes the proxy log

for search requests to the search engines like Google, Yahoo

or MSN. The search keywords, criteria along with the

returned URLs are stored in a database. The browsing

activity of a surfer is monitored and the liking or disliking

towards a page is also measured. The liking of a particular

user toward a web page would increase the rank of the URL

that corresponds to a specific search keyword. On the

contrary, disliking toward a web page would decrease the

rank of the URL corresponding against the search topic. A

new user making search request with similar keywords

would be served with the already searched materials so that

the searching effort is minimized.

Several works have been done for improving performance

of web searching. Cabri et al. [1] proposed Supporting

Cooperative WWW Browsing which is a proxy-based

Approach. In this work they have designed a new proxy

server, which support cooperative www browsing. Several

approaches have already been taken to utilize users’

browsing information to help other users. Alexa [2] is such a

tool that gathers information from the users who install that

toolkit. Group Asynchronous Browsing proposed by

Wittenburg et al. [3] on the World Wide Web is a technique

to gather peoples’ favorite pages by retrieving Bookmark or

hot list information from popular browsers and serves the

collected data to the users through HTML pages.

II. SYSTEM ARCHITECTURE

The accumulated knowledge based search assistant

divided into two components: the client component and the

server component which is depicted in Figure 1. The client

component resides in user machine which monitors the

pages browsing and saving for a particular topic. The client

component periodically sends the collected information to

the server component. The server component accumulates

the information perceived from different client component

and apply clustering algorithm proposed by Seung-Shik [4]

to cluster the similar URL for a particular search keyword

and persist them in the database. In addition the server

component sends the list of URLs to the client component

An Opportunity Cost Approach for Measuring

Performance of An Intelligent Knowledge

Based Search Assistant

Md. Mahbubul Alam Joarder, Khaled Mahmud, and Bulbul Ahamed

S

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 02 Issue 01

Mar 2012 ATC-30228014©Asian-Transactions 2

and the client component is responsible for displaying the

URLs when the user searches on the search engines.

A. Server Component

The server component is the core of the system, which

manages the decision-making system. It consists of three

modules as shown in Figure 2.

Keywords clustering module

Jussara and Cao [5] proposed the keywords clustering

module which monitors the browsing log in the proxy server

such as Squid [6]. Any URL users browse is checked if that

belongs to any of the popular search engine query (Google,

Yahoo, and MSN); the searching is analyzed to extract the

keywords. In our implementation we use the squid proxy

server and its access log file is monitored for that purpose.

The extracted information conform the following data

structure:

 i) The originating IP address

 ii) The time of the request

 iii) The search keyword

 iv) URLs returned by the search engine

The originating IP and the time of the requests are stored

to distinguish the individual user and send them feedback of

query. The keywords are periodically clustered using a

clustering algorithm [7]. The clustering algorithm creates a

cluster by the words of each search pattern (Term).

If n is the number of clusters in C, then

C = { C1, C2, …, Cn }

Each cluster Ci is initialized by Term, T that is not

assigned to the existing cluster, and T is a seed Term or

keyword of Ci . The center of each cluster is Ccenter.When a

new cluster is created; expansion and reduction steps are

repeated until it reaches a stable state from the start state.

Word set, Wt of a Term T is a set of words w1, w2 … wn that

are extracted form the search pattern that is proxy log file.

Wt = {w| w is a word that is extracted from T}

The clustering is necessary as many search keywords

actually mean almost the same thing. Searching with

“Artificial Intelligence” and “Artificial Intelligence Tutorial”

actually represent almost the same query. One who looks for

“Artificial Intelligence Tutorial” may be satisfied with a

good page from search result of “Artificial Intelligence”; and

vice versa. For this reason, resulting URLs are stored with

respect to their originating search keyword cluster center,

not the entire search topic.

The clustering algorithm incrementally builds the different

cluster at the time of users browsing. In this algorithm we

always compare the similarity of the new keyword and

center keyword of the existing cluster. The new keyword put

into the highest similarity cluster and updates the center of

the cluster. If the similarity of the new keyword is less than

the threshold then it create a new cluster, put the new

keyword into the new cluster and assign the center of this

new cluster by this new keyword. Figure 3 illustrates the

keyword-clustering algorithm.

Decision Making Module

The decision making module find out the URLs, which

fall in a particular search keyword. For a given instant it is

possible to send several queries to the server by the

particular user and browse the desired URLs for the

respective search pattern. This module generates a query to

the respective search engine by the keyword that the user

used and retrieves the URL list and stores them. When the

client traverses the web pages, then this module matches the

stored URLs and the URLs the client actually surfed. The

matched URLs of the two lists are the original URLs the

client actually browses for a particular keyword.

This module also determines rank of a particular URL.

The rank of a URL indicates its relative importance and

predilection of the user. Importance of a URL judges from

the number of users visiting it, amount of time each user

spends in the page or the tendency toward preserving the

URL for future use. The search assistant formulates the

Fig. 1. High level system architecture.

Fig. 2. Information flow in the system.

Fig. 3. keyword clustering algorithm.

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 02 Issue 01

Mar 2012 ATC-30228014©Asian-Transactions 3

following rule to calculate the rank of a URL:

R(k, u) =
i

 { L(k, u, i) + T(k, u, i) + S(k, u, i) }

Here, R(k, u) = The Rank of a URL u associated with a

particular keyword k

L(k, u, i)=Whether a URL u has ever been browsed by an

individual user i for the keyword k: returns 1 for yes, 0 for

no

T(k, u, i)= Time in minute a URL u has been browsed by

an individual user i for the keyword k

S(k, u, i) = Whether a page having URL u has ever been

saved by an individual user i for the keyword k: returns 1 for

yes, 0 for no.

If the page is saved then

 S(k, u, i) / T(k, u, i) =5

In experiment we provide more importance on page

saving event and consider it 5 times of browsing time.

Client feedback Module

The client feedback module finds the highest-ranking

URLs from the database for a particular term or search

pattern and send it to the client when user initiate search to

the search engine through the proxy server. First it finds the

highest similar cluster for the keyword stored in the

database. Now it finds the URL list for the keyword from the

cluster and sorts them in descending order according to their

ranking and sends back to client. The client feedback

module algorithm works according to the Figure 4.

B. Client Component

The client agent continuously monitors the user activities

and sends gathered information like current active browser

URL and the URL of the pages that the user save to the

disk.. Active browser URL is necessary for the server to

measure the time a user spends on a particular page. This

URL in turn could be associated with a keyword that was

used when the search engine was employed. If the URL can

be associated with such a keyword, calculation for ranking

the page is performed by the server. The saved pages

represents higher importance as users usually save pages that

are important and may be needed in future use.

III. PERFORMANCE COST MODEL

For measuring the search cost, we designed a cost

function for both search assistant and traditional search

engine which will measure the performance cost in time.

During the traditional search query execution process, for

each query term QT, user will get a set of URLs, Ut = {u1, u2,

u3 … un}

Beside, the knowledge base search assistant query

execution process, for the query term T, user will get a set of

URLs, Uk = {u1, u2, u3 … ur}

And the user desired URLs set is Ud = {u1, u2, u3 … uj}

The URLs list of Uk is populated in such a way that Uk is

a subset of Ut so that Uk Ut.

And Ud Ut and is also Ud Uk is also true.

Using traditional search engine, for a query term QT , the

total time required to find the desired URLs set Ud from

URLs set Ut is calculated by the following equation

Ft (QT) = CT (QT) + ET (QT) +
Utu

ut

Where, CT is communication time for the query measure

by as follows:

CT (QT) = Treq (QT) + Tres (QT)

Here, Treq (QT) and Tres (QT) are request and response time

respectively.

Again, ET is query execution time for the search engine

for query term, QT .

Finally, tu is time spent in each element of URLs set Ut.

Similarly, for our knowledge base search assistance, for

query term QT , the total time required to find the desired

URLs set Ud from URLs set Uk is calculated by the

following equation

Fk (QT) = CT (QT) + ET (QT) +
Uku

ut

Finally, the Opportunity Cost [8] of using traditional

search engine instead of our knowledge base search agent is

calculated by the following equation:

OC (QT) = Ft (QT) - Fk (QT)

IV. PERFORMANCE MEASUREMENT

The performance of any type of search engine depends on

user satisfaction. As there is no benchmarking dataset for

measure the performance of these kind of search agent. So a

data set is populated to measure the performance of the

agent.

Initially some user groups are created, where the members

of each group always search for similar type of subjects.

After that, the members of each group are divided in to two

parts, where each part contains 50% of the group members.

First 50% of group members are used to train up the search

agent knowledge base. Finally the rest of the members are

used to test the performance of the agent.

For performance testing, the remaining group members

are divided in 1:2 ratios. First half is tested using traditional

search engine and the rest of the members are tested using

our search agent for similar type of key word for each group.

Table 1 depicts the sample query term and the time

required finding desired information with and without using

the search assistant. From Figure 5 we see that when a user

uses the search assistant, it takes less time to find desire

information and the opportunity cost is high if use general

purpose search engine instead of search agent.

Fig. 4. Procedure for client feedback module

Asian Transactions on Computers (ATC ISSN: 2221-4275) Volume 02 Issue 01

Mar 2012 ATC-30228014©Asian-Transactions 4

V. CONCLUSION

Accumulated knowledge based search assistant gathers

knowledge from user searching behaviors that provides a

convenient searching environment with minimum effort

within a shortest possible time. Introduction of the server

agent has centralized the searching capability of a large

group of users. Search assistant provides a global depository

of knowledge for future use. Users of common interest need

not go through a monotonous and mundane search

procedure.

REFERENCES

[1] G. Cabri, L. Leonardi and F. Zambonelli. “Supporting Cooperative

WWW Browsing: a Proxy-based Approach.” Proceedings of the 7th

Euromicro Workshop on Parallel and Distributed Processing.

Madeira (P), IEEE CS Press, pp. 138–145.1999.

[2] Alexa. 2000. Available: url: http://www.alexa.com

[3] K. Wittenburg, D. Das, W. Hill and L. Stead. “Group asynchronous

browsing on the World Wide Web”. Proceedings of the 4th

International WWW. 1995.

[4] K. Seung-Shik. “Keyword-based Document Clustering”. Proceedings

of the sixth international workshop on Information retrieval with

Asian languages - Volume 11. Sappro, Japan, pp. 132 – 137. 2003.

[5] A. Jussara, and P. Cao. “Measuring proxy performance with the

Wisconsin Proxy benchmark”. Journal of Computer Networks and

ISDN Systems. Volume 30, Issues 22-23, pp. 2179-2192. 1998.

[6] Squid. Open source proxy server. 1996. Available: http://www.squid-

cache.org.

[7] D. Koller and M. Sahami. Hierarchically classifying documents using

very few words. Proceedings of the Fourteenth International

Conference on Machine Learning, Morgan Kaufmann Publishers Inc.

San Francisco, CA, pp. 170 – 178. 1997.

[8] McConnell, C. Microeconomics: Principles, Problems, and Policies.

McGraw-Hill Professional. ISBN 0072875615. 2005.

Md. Mahbubul Alam Joarder was born

in 1968 at Kushtia, Bangladesh. He had his

BSc (Hons) in Applied Physics and

Electronics from University of Dhaka. He

had his MSc from the same discipline. He

completed his Phd from Ibaraki University,

Japan from Dept of Computer Science and

Engineering.

 Now he is working as Director of the

Institute of Information Technology,

University of Dhaka. Prior to joining

University of Dhaka he was working in Institute of Scientific

Instrumentation (I.S.I), UGC, Agargoan, Sher-e-bangla Nagar, Dhaka. He

also worked as PiL Advisor, Microsoft Bangladesh Ltd. He is also working

as academic advisor of renowned private universities. He is also working

jointly with JICA, KOICA and many other esteemed multinational

companies. He has research interest in technology, business, e-learning, e-

governance and social issues. He has published his articles in prestigious

journals and conferences in home and abroad. He has two books published:

"Introduction to C and X Window Programming - Guiding Very Beginners

to Developer Level" and “Text Book on ICT for class IX & X” Approved

by National Curriculum of Text Book (NCTB), Ministry of Education,

Government of The Peoples Republic of Bangladesh.

 He is member of Applied Synergetic Group (Japan)(since 1998),

Bangladesh Computer Society (BCS). He is also member, Editorial Board,

Journal of Computer Science. He is also House tutor of Salimullah Muslim

Hall, Dhaka University, Bangladesh. He is working as moderator, Debating

Club , University of Dhaka. He is the Chairman of Job placement, IIT,

University of Dhaka.

Khaled Mahmud was born in 1984 at Pabna,

Bangladesh. He was graduated from Bangladesh

University of Engineering and Technology

(BUET) in Computer Science and Engineering.

He had his MBA (Marketing) from Institute of

Business Administration, University of Dhaka.

He was awarded gold medals both in his

secondary and higher secondary school level for

excellent academic performance.

 He is now working as Lecturer at Institute of

Business Administration, University of Dhaka. He previously worked as

Assistant Manager in Standard Chartered Bank. Prior to Standard

Chartered he was working in TwinMOS Technology Bangladesh. He has

research interest business, technology, e-learning, e-governance, human

resource management and social issues. He has his articles published in

journals and conferences of USA, Canada, Australia, Malaysia, Thailand,

South Korea and Bangladesh. He has one book published: “Strategic

Alliances in the Software Industry” (LAP Lambert Academic Publishing

AG & Co. KG, 2011).

 Bulbul Ahamed was born in 1982 at

Munshiganj district, Bangladesh. He has

completed his Bachelor in Computer Science and

Engineering from Northern University

Bangladesh. He has completed his MBA from the

same university (MIS & Markting). Now he is

pursuing his MSc in Computer Science and

Engineering in United International University,

Bangladesh.

 He is now working as senior lecturer in the

Northern University Bangladesh. He has research interest in Business and

Information Technology. He has published articles in the journal of

Business and Technology (Dhaka), Northern University Bangladesh.

TABLE I

TIME REQUIRE TO SEARCH IN DIFFERENT CLUSTER

Group

no

Query Term Time required

without agent

Time required

 using agent

1 machine learning 1h:20min 0h:17min

2 Java 0h:35min 0h:08min

3 microarray 0h:50min 0h:10min

4 neural network 0h:40min 0h:05min

5 J2EE tutorial 0h:30min 0h:04min

6 microcontroller project 0h:55min 0h:07min

0

0.5

1

1.5

1 2 3 4 5 6

Group no

T
o

ta
l

ti
m

e
 s

p
e
n

d
 (

h
o

u
r)

without agent

with agent

opportunity cost

Fig. 5. Comparative performance of search assistance with general purpose

search engines with opportunity cost.

