Atoms and Aggregates of Atoms

1 Introduction

The physical behavior of a given material may be characterized by a
set of macroscopie, measurable quantities, such as the electrical conduc-
tivity of the material, its coefficient of expansion, its magnetic permea-
bility, its dielectric constant, ete. In general, these quantities are functions
of externally variable parameters, such as temperature, pressure, frequency
of the applied field, ete. The functionzl relationships between the charac-
teristic quantities end the variable parameters can be established from
experimental results, and constitute an important part of our technical
and scientific knowledge. In this book we shall be concerned with problems
which arise when one asks why a certain functional relationship between a
characteristic quantity and a parameter exists. We shall try to answer
such a question in terms of the properties of the atoms which constitute
the material; i.e. we shall accept the idea that materials consist of atoms,
and that atoms consist of nuclei and electrons, and shall attempt to derive
the observed relationships in terms of our knowledge of atoms. Actually
we shall, in most cases, assume a much simpler “model’”’ for the atomic
constituents than is justified in terms of our present-day knowledge of
atoms. The reason for this is that in most cases the caleulations involved
in arriving at a certain relationship would be too complicated if they were
attempted on the basis of first principles. For example, it is impossible to
caleulate exactly the dielectric constant of a material. On the other hand,
we can learn a great deal about the behavior of dielectrics if we are willing
to accept certain simplifications concerning the structure and properties
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2 Atoms and Aggregates of Atoms Sec. 1.1

of the atoms. Simplified atomic models will thus play an important role
in the discussions in this book. The reader should always realize that the
results of calculations pertaining to such models cannot be expected to
provide exact numbers. The main purpose of the model is that it can pro-
vide the correct functional relationship between certain quantities, and
thereby provide insight into the essential mechanism which determines
such a relationship. On the basis of this understanding predictions can
frequently be made concerning the properties of a large group of materials.
In other words, the atomic models unif Yy our understanding of the properties
of materials and as such prove their scientific usefulness,

In this book we shall discuss only a limited number of properties. In
particular we shall be concerned with the dielectric and magnetic proper-
ties of materials used in electrical engineering, and with the mechanism of
electrical conductivity. The materials under diseussion are in most cases
erystalline solid materials. It is desirable to realize from the beginning that
the properties of solids are not simply given by the sum total of the prop-
erties of the atoms which make the solid. In fact, & property such as the
electrical conductivity of a solid ean be understood only as a consequence
of the strong interaction between the atoms. This interaction may change
the properties of the individual atoms to such an extent that the properties
of the solid may be completely different from those of the separate atoms,

In this first chapter we shail present some material which will be used
in later chapters. It seems in order, for example, to make some remarks
about atoms and their structure, about the arrangement of atoms in solids,
and about the interaction between atoms in solids. Since this is not a book
on the physics of atoms or a general book on the physics of solids, it may
suffice to give here only the most essen tial elements of these subjects. In
the remaining chapters, these subjects will be extended as the need arises.

1.2 The hydrogen atom according to the old and new
quantum mechanics

There is a vast amount of experimental evidence which shows that an
atom consists of a positively charged nucleus and & number of negatively
charged electrons which revolve about the nucleus. The nucleus may be
considered to be built up of & number of neutral particles (neutrons) and a
number of positively charged protons. The charge of the nuecleus is thus
determined by the number of protons it contains, Z; the charge per proton
ise =160 X 10 coulomb. In & neutral atom, the number of electrons
is equal to Z, the charge carried by each electron being equal to —¢. The
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mass of an electron is m = 9.107 X 107" kg, and is approximately 1836
times smaller than that of a proton or a neutron. Hence, practically the
whole mass of an atom is concentrated in the nucleus.

The size of an atom is not a well-defined quantity, but may be said to be
of the order of 1 angstrom = 107 m. The classical radius of an electron
and of a nucleus, on the other hand, is only of the order of 10~ m; con-
sequently, in terms of a classical representation of electrons, an atom is
essentially “empty.” In terms of the wave mechanical interpretation,
however, it is better to think of the electrons revolving about the nucleus
as a continuous charge distribution. The shape of the charge distribution
is determined by the state of motion of the electron. The difference be-
tween a semi-classical representation of an electron and the wave mechan-
ical representation may be illustrated by discussing briefly the structure
of the hydrogen atom according to the old quantum theory of Bohr (1913),
and by comparing this result with that obtained on the basis of wave me-
chanics (Schrodinger, Heisenberg, 1924).

A hydrogen atom consists of an electron moving in the field of a proton.
Assuming the electron revolves as a point-like particle in a circular orbit of
radius r around the proton, the stability of the orbit requires equilibrium

Fig. 1.1. Illustrating the forces
corresponding to a eircular orbit
of an electron in a hydrogen
atom.

between the attractive Coulomb force on the electron and the centrifugal
force. Hence, we must require with reference to Fig. 1.1

mu* ¢!

r 47@?2 (1.1

Here, v is the velocity of the electron in the orbit and & = 8.854 X 102
farad m~. The total energy of the electron, W, in this state of motion is
equal to the kinetic energy, (1/2)ms? plus the potential energy due to the

Coulomb field of the proton. Defining the potential energy of the electron
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for r — = as zero, we thus may write

1 Cal
Womgmet— (1.2)
Substituting for (1/2)mv* from (1.1) into (1.2) we obtain
8’
= -STtnT (13)

The minus sign indicates that the electron has less energy in the orbit r
than it would have if r were infinite. In other words, the electron is bound
in the field of the nucleus, the energy required to take it away from the
nueleus being equal to the positive quantity —W. Up to this point, the
treatment falls completely within the realm of classical physies. However,
it is well known that this classical atomic model is unstable because the
energy would decrease continually as a result of emission of electromag-
netic radiation; ultimately, the electron would spiral into the nucleus. In
order to retain the stability of the orbit, Bohr postulated a quantum condi-
tion on the motion of the electron by assuming that only those circular
orbits are stable for which the angular momentum is equal to an integer
times h/2x, where h = 6.62 X 10~ joule sec represents Planck’s con-
stant. Mathematically this quantum conditicn for a circular orbit reads

mvr = nh/2x where n=1,23,... (1.4)

On the basis of this postulate one finds a set of encrgy levels W, which the

orbiting electron may assume. Thus, by substituting for +* from (1.4) into
(1.1) one obtains for the possible radii of the circular orbits

(ohﬂ

wimet

ra =

n? = 0.529 X 10~ n? meter (1.5)

Thus, the smallest, radius the electron orbit can assume is 0.529 angstroms;
the next possible radii are 4, 9, 16, etc. times as large. In accordance with
{1.3) this means that the energy of the electron can accept only a series of
discrete values, W,, given by

Wa = —8—%% i—, = —%‘,ﬁ electron volts (1.6)
(One electron volt = 1 ev = 1.6 X 10~" joule.) Thus, in its lowest state
(the ground stale) the electron is bound to the field of the proton to the ex-
tent of 13.6 ev, i.e. it takes an energy of 13.6 ev toionize the hydrogen atom.
The energy levels are represented schematically in Fig. 1.2. As explained
in some detail in courses on atomic physics, this energy level diagram agrees
satisfactorily with certain parts of the emission and absorption spectra of
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Fig. 1.2. Energy levels of an
electron in a hydrogen atom; the
levels for n > 5 have not been
indicated. The vertical arrows
indicate transitions from higher
levels to the ground state; these
transitions correspond to emis-
sion of electromagnetic radia-
tion.

Electron energy

n=1 —13.6ev

hydrogen, if one makes the further postulate that a transition of the elec-
tron from an energy level W, to another level W, is associated with the
emission or absorption of electromagnetic radiation of a frequency » such
that -
hy = [Wa — Wal 1.7)
The ad hoc postulate of Bohr expressed by equation (1.4) obtains a
definite physical meaning when considered in the light of wave mechanics.
We shall not enter into this subject here, and it may suffice to make some
general remarks. In wave mechanics, particles are desecribed by waves;
the intensity of the waves in a certain volume element in space is inter-
preted as representing the probability of finding the particle in this volume
element. Thue, wave mechanics is stafistical in the sense that it does not
give a definite answer as to where the particle “is” at a certain instant; it
tells us only what the probability is of finding it in a certain small volume ele-
ment in space. Consequently, in describing an electron in an atom in terms
of wave mechanics one ends up with a certain charge distribution of a
“smeared-out” electron. The wave function, which represents these waves
and hence determines the charge distribution associated with the electron,
satisfies the so-called Schrédinger wave equation. This equation is a partial
differential equation which replaces the classical Newtonian equations of
motion. When applied to the problem of an electron moving in the field of
a proton, it turns out that physically acceptable solutions for the wave
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funection exist only for specific integer values of three quantum numbers:

the principal quantum numbern = 1,2, 3, ... (1.8)

the angular momentum quantum number I =0,1,...,(n — 1) (1.9

the magnetic quantum number m; =1, ({ — 1) ..., —( — 1), =1
(1.10)

In quantum mechanics then, the quantum numbers arise as a natural con-
sequence of the wave naiure of maiter; for a discussion of the experimental
evidence which supports this notion, we refer the reader to texthooks on
the subject. The principal quantum number fulfills the same role as the
quantum number n in the theory of Bohr; i.e., the energy levels obtained
from wave mechanics are the same as those given by the Bohr formula (1.6).
As a result of the wave nature of the electrons, however, the interpretation
of the motion of the electron in the ground state in terms of a circular orbit
in the Bohr theory is replaced by an interpretation in terms of a charge
distribution in the wave mechanical theory. For example, the charge den-
sity associated with an electron moving about the nucleus in the ground
state of a hydrogen atom is given by

e(r) = —(e/xri)e-2/m (1.11)

where r, is equal to 0.529 angstroms, i.e. ry is equal to the radius of the first
Bohr orbit; see Fig. 1.3(a). The total charge corresponding to this charge

— —4xr?

—= =plr]

— P ry —
(@) (b)

Fig. 1.3. A schematic representation of the electronic charge
density p(r) of a hydrogen atom in the ground state is given in
(a). In (b) the integrand of expression (1.12) is represented sche-
matically; r; is the first Bohr radius of the hydrogen atom.

distribution is, of course, equal to the electronic charge; i.e.
fr T dwrio(r) dr = —e (1.12)

as may readily be verified by the reader. The amount of charge contained
in a shell between two concentric spheres of radii » and r + dr is presumably
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given by the integrand in expression (1.12). The integrand has its max-
imum value for 7 = ry, as indicated in Fig. 1.3(b). Hence, in the wave me-
chanical theory, the maximum of the charge distribution in the ground
state occurs for a distance from the nucleus equal to the first Bohr radius.

The quantum number ! determines the angular momentum of the elec-
tron, whereas m; determines the component of the angular momentum along
a prescribed direction, which may be, for example, the direction of an ex-
ternal magnetic field. The physical meaning of these quantum numbers
will be discussed further in the chapter dealing with the magnetic prop-
erties of atoms.

1.3 Nomenclature pertaining to electronic states

In the preceding section it was noted that the state of motion of the
electron in a hydrogen atom can be deseribed by three quantum numbers
n, L and m, and a set of these numbers is said to define the state of the elec-
tron. In the lowest energy level (n = 1) the quantum numbers i and m;
must both be zero in accordance with the rules (1.9) and (1.10). Thus, the
ground state of the hydrogen atom is defined by n = 1, 1 = 0 and m; = 0.
If the electron is in a higher energy level, say in the level corresponding
to n = 2, various states are possible. In fact, by applying the rules (1.9)
and (1.10) we find the possible states

n= =0 m;=0
mn= I=I m|=l

1.13
n = =1 mp =0 ( )
n= l=1 m; = —1

Each of these states corresponds to a particular charge distribution of the
“smeared-out” electron in wave mechanics. In atomic physics, states with
a particular l-value have a particular name. Thus, a state with [ = 0 is
called an “s-state’: a state with [ = 1 is called a “p-state,” etc. These
names are derived from the nomenclature used in the elassification of spec-
tral lines of atoms. We give here the names for the states corresponding to
various values of I:
I=01 2 3 4 ...
name the (1.14)
. s pd f g ... -states

We may now raise the question: for a given value of the principal quantum
number n, how many electronic states are possible? Presumably, what we
are asking for is the number of different sets of n, I, m, values which exist,
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for a given value of n, assuming that the quantum numbers satisfy the
rules (1.9) and (1.10). To answer this question, we first note that according
to (1.10) there are (2l 4+ 1) possible values of m; for a given value of L
Furthermore, according to (1.9) I can accept a total of n different values
for a given value of n. Hence, the total number of states corresponding to
a given value of n is equal to

L

2;1(21-}-1)=1+3+...[2(n—1)+1]=n‘ (1.15)

Thus, for n = 2, there are 2* = 4 different states, which is confirmed by
the result in (1.13); for n = 3, there are 9 different states, etc. It is em-
phasized that an energy level is not equivalent with an electronic state; an
energy level is determined by the value of n, and such a level thus corre-
sponds to n? states. It should be mentioned here that actually the energy
of an electron is also determined to some extent by the quantum numbers
l and m,; however, the differences in energy between an electron in the
state, n, i, mu, and an electron in the state n, Ly, my is very small compared
to the energy difference between two states of different n-values.

The group of states corresponding to a given value of the principal
quantum number 7 is referred to as a shell of electrons. Thus, the states
corresponding to n = 1 form the K-shell; those corresponding to n = 2
form the L-shell, ete. Hence,

n=1 2 3 4 5

correspond to the
K L M N O ... -shells

1.4 The electron configuration of atoms

In an atom containing more than one eix *tron, the nomenclature given
for the electronic states is retained. In delermining the states of the
electrons in a many-electron atom, the Pauli exclusion principle must be
introduced. This principle says that a given quantum state determined by
three quantum numbers n, I, m; can be occupied by not more than two electrons.®
For example, the K-shell of an atom corresponds to n = 1 and thus con-
tains only 1 state, viz. n = 1, I = 0 and m = 0. According to the Pauli
exclusion principle, there can be no more than 2 electrons in the K-shell.
Similarly, the L-shell, corresponding to6 n = 2 has 4 different sets of values
n, I, m; and hence can contain no more than 2 X 4 = 8 electrons. In gen-

* The factor 2 arises from the spin quanium number, a,whichmq.woeptt.wu possible
values; for further details, see section 4.8.
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eral, the electron shell corresponding to the principal quantum number
n can contain no more than 2n? electrons.

These rules are important for the interpretation of the periodic system
of the elements in terms of the electron configuration of the atoms. For

Table 1.1. THE ELECTRON CONFIGURATION oF THE FIRST 30 BLEMENTS

K L M N
n=1 n=2 n=3 n=4
Atomic 1—0!=0[-1l=01-[t-21-05-]{-21-3
Number Z | Element 8 8 P 8 P d 8 P d f

1 H 1

2 He 2

3 Li 2 1

4 Be 2 2

5 B 2 2 i

6 C 2 2 2

7 N 2 2 3

8 0 2 2 4

] F 2 2 5

10 Ne 2 2 6

11 Na 2 2 (] 1

12 Mg 2 | 2|61} 2

13 Al 2 2 6 2 1

14 Si 2 2 6 2 2

15 P 2 2 6 2 3

16 s 2| 26| 2 \ 4

17 Cl 2 2 6 2 5

18 A 2 2 6 2 6

1% K 2 2 8 2 6 1

20 Ca 2 2 6 2 6 2

21 - Be 2 2 6 2 6 1 2

22 Ti 2 2 6 2 6 2 2

23 v 2 2 6 2 6 3 2

24 Cr 2 2 6 2 6 5 1

25 Mn 2 2 6 2 6 5 2

26 Fe 2 2 6 2 6 6 2

27 Co 2 2 6 2 6 7 2

28 Ni 2 2 6 2 6 8 2

29 Cu 2 2 6 2 6 10 1

30 Zn 2 2 6 2 (i} 10 2

31 Ga 2 2 6 2 6 10 2 1

32 Ge 2 2 (i3 2 6 10 2 2
33 As 2 2 6 2 6 10 2 3
34 Se 2 2 6 2 6 10 2 4
35 Br 2 2 6 2 6 10 2 5

a6 Kr 2 2 8 2 6 10 2 6
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further reference we give in Table 1.1 the electron configuration of a number
of atoms. This table shows that up to element 19 (potassium), the filling
of the electronic states is completely regular in the sense that higher levels
are not filled until lower levels are occupied by the maximum allowable
number of electrons, In the element potassium, however, we note that the
4s-level contains one electron while the 3d-states are still unoccupied (4s
means n =4, | = 0; 3d means n = 3, I = 2). This situation’of incom-
pletely filled 3d-states persists until in element, 29 (copper) the 3d-states
are oecupied by the maximum number of electrons, viz. 10. A group of
elements for which parts of an inner shell are not occupied by electrons is
called a group of transition elements. The particular group for which the
Jd-states are partly empty is called the iron group. In the chapter dealing
with the magnetic properties of materials we shall see that these properties
are determined to a large extent by the incompletely filled inner states.

Our knowledge concerning the electron configuration of atoms has con-
tributed a great deal to the understanding of the periodicity of the chemical
properties as expressed by the arrangement of the elements in the periodic
table. The reason is that the chemical properties of atoms are determined
mainly by the outer electron configuration. Thus, elements such as the alkali
metals (Li, Na, K, Rb and Cs) all have one outer electron, and all behave
chemically in a similar fashion. The reason for the important role played
by the outer electrons in determining the chemical properties of atoms is
readily understood. When an atom A is brought elose to another atom B,
the electrons in the A atom will be subjected to forces which were not
present in the absence of B. H owever, the inner electrons in the A stom are
under influence of the strong Coulomb field produced by the nucleus of
atom A and hence the perturbing fields produced by atom B are of much
less consequence than they are for the more weakly bound outer electrons.
The perturbing fields may thus distort the charge distribution of the outer
electrons of A and B atoms to such an extent that a chemical bond may
result. The nature of the chemical bond will be discussed briefly in the
next section.

1.5 The nature of the chemical bond and the classification
of solids

Although we do not intend to discuss the nature of the various kinds
of chemical bonds in any detail here, a few genera) remarks may be in order
because the type of bonding between atoms determines to a large extent
the electrical and other physical properties of solid materials. From a
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purely phenomenological point of view, we may argue that in a solid mate-
rial there are two types of forces acting between the atoms: (a) atiractive
forces, which keep the atoms together so as to form a solid, (b) repulsive
forces which become noticeable when one attempts to compress a solid.
These arguments apply as well to liquids and, in fact, to single molecules.
It is important to realize, however, that the mere existence of attractive
and repulsive forces between atoms is not sufficient to guarantee the for-
mation of a stable chemical bond. This may be illustrated by considering
the following model: Suppose two atoms A and B exert attractive and re-
pulsive forces on each other such that the potential energy of B in the field
of A is given by

W) = -2+ 8 (1.16)

T r

where r is the distance between the centers of the atoms; n and m are ar-
bitrary positive powers, and a and #3 are positivésconstants which determine
the strength of the attractive and repulsive forces, respectively. The zero
of energy is chosen such that for r —s , the potential energy of the par-
ticles in each other’s field vanishes, For the moment we are not concerned
about the physical origin of these forces. The question is, will these par-
ticles form a stable chemical compound or not? The answer is, that this
will only be the case if the function W (r) exhibits a minimum for a finite
value of r, as illustrated in Fig. 1.4. If such & minimum exists, the two

W
I
1 | _ Repulsive
| ey
Fig. 1.4. Representation of the “
potential energy between two 0 ,}\
atoms as a function of their dis- | *rg e
tance from one another. The |
stable molecule corresponds to | Resultant
the separation ry, the energy |
then being & minimum, }
Attractive
;"/ energy
]

atoms will form a stable compound with a distance between them equal
to the value r, for which the minimum in W(r) occurs; the energy required
to dissociate the molecule is then equal to the positive quantity — W ().
In order for W(r) to exhibit a minimum, the powers n and m in (1.16) must
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satisfy a certain conditien, viz.

m>n (1.17)
In other words, the attractive forees must vary more slowly with r than
the repulsive forces. Qualitatively, this is evident from the shape of
the attractive and repulsive energy in Fig. 1.4. Mathematically, this can
be shown as follows: If W(r) exhibits a minimum for = 7, then we must
require

(dW/dr}l‘—n =0 or fs'_a = (m/n)(ﬁ/a) (1-18)
and at the same time
1 1
(Lot Ot LT 4 e pe o

The condition (1.17) then follows immediately by substituting ry from
(1.18) into (1.19).

The forces acting between atoms are of an electrostatic nature and, as
mentioned in the preceding section, are determined essentially by the ex-
tent to which the wave functions of the outer electrons are perturbed by
the presence of other atoms at close proximity. On the basis of the type
of chemical bond, solids may be classified as follows:

(i) Tonie crystals (NaCl, KF)
(ii) Valence erystals (diamond, 8i, Ge, SiC)

(iii) Metals (Cu, Ag, Fe)

(iv) van der Waals crystals (solid argon, organic crystals)

With reference to each of these classes we shall now make some general
remarks concerning the chemical bonds in these materials.

(i) Ionic crystals. Ionic crystals are formed by combining two or more
kinds of atoms which differ considerably in their tendencies to give off 8r to
accept electrons. For example, when sodium and chlorine atoms are com-
bined, the energy of the solid in which the sodium atoms become positive
ions and the chlorine atoms become negative ions is lower than that in
which the atoms remained ncutral. The outer 3s electrons of the sodium
atoms are transferred to the chlorine atoms which thereby obtain a stable
configuration of 6 electrons in the 3p-states. Now, the ionization of a free
sodium atom requires an energy of 5.1 ev, whereas the energy gained by
putting an electron on a neutral Cl atom is 4 ev. One might get the im-
pression that transfer of an electron from sodium to chlorine is unfavorable
in the sense that the net energy expended is positive. This is indeed the
case if the two atoms are a great distance apart. However, when the Nat
ion and the Cl~ ion are brought together so that their nuclei are separated
by only a few angstroms, energy is gained as a result of the Coulomb attrac-
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tion between the tons. Thus, in the solid state, sodium chloride is built up
of Nat and Cl~ ions, rather than of neutral atoms. The Coulomb forces
between these ions are mainly responsible for keeping the ions together.
Since the electrons in these ions are all rather tightly bound, ionic crystals
exhibit in general, no electrical conductivity which can be associated with
the motion of electrons. However, at elevated temperatures they do show
some electrical conductivity associated with the motion of ions under
influence of an electric field.

Ionic solids are formed particularly between elements on the left- and
on the right-hand sides of the periodic table. Thus, the alkali halides
formed between the alkali metals Li, Na, K, Rb, Cs and the halogens F3,
Cls, Bry, Iz are strongly ionic. On the other hand, a compound such as BaS
is probably somewhat less ionic; i.e., the barium atoms do not part com-
pletely from their two outer valence electrons. Taking an element such
as In from the third column in the periodic table and an element such as
Sb from the fifth column gives rise to a compound (in this case indium
antimonide) which has very little ionic character at all. These remarks
indicate that the classification given above refers to extreme cases and that
many solids must be considered as having a chemical bond which lies
somewhere between groups (i) and (ii), for example.

Many truly ionie crystals, such as the alkali halides, are transparent
for visible light. This property can also be explained in terms of the electron
configuration of the material.

(ii) Valence crystals. In valence crystals such as diamond, silicon
and germanium, the atoms remain neutral. This is not surprising for ele-
ments because all atoms are equivalent and there is no reason to assume
that some would be ionized while others were not. In a case such as silicon
carbide, the atoms are still predominantly neutral, even though they are
of different kinds. However, in the case of silicon carbide there may be a
slight ionicity involved in the bond because the atoms are different. In a
true valence erystal, the binding between the atoms is accomplished by
the sharing of valence electrons. This will be discussed further in the chapter
on semiconductors. These valence or homopolar bonds can be understood
only in terms of a wave mechanical theory. In principle, this type of bond
is similar to that which exists between two hydrogen atoms in a hydrogen
molecule. Valence bonds can be extremely strong, as witnessed by the
hardness of materials such as diamond or carborundum.

(iii) Metals. In metals the valence electron wave functions are so
strongly perturbed by the presence of neighboring atoms that the sharing
of these electrons goes 8o far as to make them highly mobile. In other
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words, the valence electrons in ¢ metal cannot be associaled with particular
atoms; they belong to all atoms. There is a resemblance between valence
crystals and metals because in both cases valence electrons are shared with
other atoms. However, in a valence ecrystal the valence electrons are
shared only between nearest neighbor atoms, whereas in & metal the va-
lence electrons are shared by all atoms. Thus, a metal may be considered
to consist of an assembly of positive ions embedded in a sea of negative
valence electrons. The attractive forces which keep the atoms together
arise mainly as a consequence of the Coulomb attraction between the sys-
tem of positive ions and the negative charge distribution corresponding
to the valence electrons. The similarity between valence bonds and metallic
bonds will be discussed further in the chapter dealing with semiconductors.
It will be argued there that if one considers the elements in the fourth col-
umn of the periodic system in the order: diamond, silicon, germanium, gray
tin, and lead, one finds a gradual transition from an extreme valence bond in
diamond to a metallic bond 1n lead.

(iv) van der Waals crystais. It is well known that the atoms of the
rare gases such as helium, argon, and neon are chemically extremely inac-
tive; they form no compounds with other atoms. In other words, the outer
clectron wave functions are not easily perturbed by the presence of other
atoms. This chemieal inactivity indicates a high degree of stability of the
outer electron shell. This is also the reason why these materisls remain in
the gaseous state at normal temperatures. At very low temperatures, how-
ever, a gas like argon will form a solid and the question arises as to what
keeps these chemically inactive atoms together. In terms of a classical
picture, these weak attractive forces arise as a consequence of the fact that
an electron revolving around a nucleus may be considered to represent a
rotating electric dipole. Such a dipole will induce a dipole in a neighboring
atom such that a dipole-dipole attraction between the atoms results. The
process by which a dipole is induced in an atom by means of an electric
field will be discussed in detail in the chapter on dielectrics. From a math-
ematical analysis of the forces acting between neutral atoms it follows that,
besides the dipole-dipole interaction just mentioned, there are higher order
interactions of the kind dipole-quadrupole, quadrupole-quadrupole, ete.
'All these forces together are referred to as van der Waals forees.

The same kind of forces act between neutral molecules; i.e., many or-
ganic molecules form aggregates in which the molecules are held together
by van der Waals forces.

A summary of the classification above is given in Fig. 1.5. Starting in
the upper left-hand gorner,\we find metals in which the valence electrons
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Monoatomic si Valence
metals Ge‘, - crystals
(Ag, Cu) Bi diamond)
8i04 wan der Waals
: crystals
SiC (A, CH,)
Alloys Tonic erystala
{NiCu) Mg;Shy [NaCl)

Fig. 1.5. Classification of solids; see text.

are shared by all atoms. Related to this group are the valence erystals in
which the valence electrons are shared by nearest neighbors. Intermediate,
between these two cases are, at least at room temperature, the semicon-
ducting elements such as Ge and Si. At absolute zero, Ge and Si belong in
the class of true valence crystals, as we shall see in the chapter on semi-
conductors. There are also cases which may be considered intermediate
between valence and van der Waals solids, such as sulfur, phosphorus, and
selenium. Going now to the lower left-hand corner of Fig. 1.5 we see me-
tallic alloys such as nickel-copper. If two metals A and B differ chemically
to an appreciable extent, the A atoms may have the tendency to become
positive ions whereas the B atomssmay have the tendency to becomne nega-
tive ions. Thus, an alloy of magnesium and antimony forms a rather def-
inite eompound of chemieal composition Mg,Sh,, corresponding to Mg*
and Sb*= ions, although it is by no means a purely ionic compound. A case
like this is intermediate between an alloy and an ionie crystal. Intermediate
between ionic crystals and valence crystals are compounds such as SiC and
810q; here the bonds are partly ionic and arise partly from the sharing of
electrons. Materials such as FeS and Ti0; are intermediate between ionic
and van der Waals crystals. Thus, we may have ionic bonds in layers of
atoms, the layers being held together partly by van der Waals forces.

1.6 Atomic arrangements in solids

Most solids to be discussed in this book are crystalline; i.e., the atoms
or ions are stacked in a regular manner. The fact that a material is crystal-
line does not necessarily imply that this regular stacking extends through-
out the volume of a macroscopic specimen. In fact, one generally deals
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with polycrystalline materials consisting of grains within which the atomic
arrangement is essentially regular, but showing irregularities as one goes
from one grain to another through the so-called grain boundaries. These
grains may be small, say 10~ m in diameter, or large. If the atoms are
stacked in a regular manner throughout a macroscopic specimen, one
speaks of a single crystal. It should be mentioned here that even in a single
erystal or inside a single grain, there are always certain irregularities or
defects. Thus, in general there will be atoms missing at places where they
ought to occur in a perfect crystal; one refers to such defects as vacant
lattice sites. Similarly, there is always a certain number of atoms which
occupy positions which in a perfect crystal should not be occupied; such
atoms are referred to as inferstitial aloms. In many cases these defects are
very important in explaining the physical properties of materials. For
example, the ionic conductivity of the alkali halides is due to the presence
of vacant lattice sites; if there were no vacant lattice sites, the ions could
not move about and the ionic conductivity would be zero at all tempera-
tures. Similarly, in ionic crystals and in metals diffusion of atoms takes
place by virtue of the presence of vacant lattice sites or interstitial atoms.

Besides the defects just mentioned, there are, of course, always a certain
number of foreign atoms present in a material. These impurities may de-
termine to a large extent certain physical properties of the material. This
is most dramatically illustrated in the case of semiconduciors, where the
electrical conductivity may be changed by several orders of magnitude by
the addition of a fraction of a percent of certain impurities. This subject
will be discussed in some detail in Chapter 6. Then there are defects known
as dislocations; these defects are responsible for the plastic deformation of
materials. We shall not discuss this subject here, and the reader is referred
to the literature on the subject. From these remarks it is evident that an
important part of the study of materials is concerned with the study of
lattice imperfections. In this section, however, we are concerned not so
much with the imperfections as with the regularity of the atomic arrange-
ments in “perfect” crystals.

The most characteristic property of a crystal is its periodictly of struc-
ture. By this we mean that a erystal may be considered as a repetition in
three dimensions of a certain unit pattern, much as certain types of wall-
paper have this property in two dimensions. It is not our intention to go
into any details concerning crystal structures because it is not necessary for
the kind of discussion given in subsequent chapters. It may suffice to gives
few examples. In Fig. 1.6 we have presented the crystal structure of NaCl;
this structure is typical of the alkali halides, except for the rubidium and
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cesium salts. The dots and circles represent the positions of the Na+ and
CI~ nuelei. In an actual crystal neighboring jons “touch” each other
and are thus much larger than indicated by the circles and dots (apart

pletely equivalent lattice of (- ions. By stacking cubes of this kind in
three dimensions; Le., by repeating the pattern of Fig. 1.8 periodically, a
perfect erystal of NaCl would be obtained.

Another example of a face-centered cubic lattice is given in Fig. 1.7, in
which all atoms are identical. This is an arrangement found in many
metals, such as Cu, Ag, Ay, AL, Ni, and a number of others. Several metals
crystallize in what is known as a body-centered cubic structure, represented
in Fig. 1.8; in this case the corners of a cube and the center of the cube are
occupied by.identical atoms, This structure is found, for example, in Li,
Ns, K, and Fe,

An example of a somewhat more complicated structure is given in Fig,
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Fig. 1.8. Tfe body-centered
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Fig. 1.9. The structure of Cu,0.
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1.9, for cuprous oxide (CusO). Here, the oxygen atoms (or ions) satisfly a
body-centered cubie arrangement, whereas the copper atoms are arranged
at the corners of a tetrahedron around the central oxygen atom.

One may ask: How does one know that the atoms in a given material
are arranged in a particular fashion? The answer is that such information
can be obtained from X-ray or electron diffraction patierns. The principle
of X-ray diffraction may be illustrated briefly with reference to Fig. 1.10.
The horizontal lines represent planes of atoms in a crystal, the distance

2

1
\ [} // Fig. 1.10. Illustrating Bragg re-

flection of X-rays by a set of
£k equidistant atomic planes.

d sin A

between these planes being of the order of a few angstroms. Suppose a
monochromatic beam of X-rays of a certain wavelength A is incident on
the set of planes, the angle between the incident beam and the planes
being 6. If there exists a certain relationship between X, 8, and the distance
d between successive planes, reflection of the X-ray beam may be observed.
In general then, for an arbitrary value of 8, assuming A and d to be fixed, no
reflection will be observed. The condition which 8 must satisfy in order to
observe reflection is evidently that the rays reflected by successive planes
are in phase. Thus, if the phase difference between 1 and 2 in Fig. 1.10 is
zero, these rays will reinforce each other, and at the same time they will
reinforee other rays reflected against deeper lying planes. The condition
for reinforcement is clearly that the path difference between 1 and 2 must
be equal to an integer times the wavelength of the X-ray beam. Thus,
9dginf =n\ where n=1,23,... (1.20)
By measuring the angles 8 for which reflection oceurs one can thus find the
distance between subsequent planes of the set under consideration. From
o more detailed analysis one can, in fact, find the arrangement of atoms in
the basic unit from which the erystal can be built up. Condition (1.20) is.
known as the Bragg eondition for X-ray reflection from a certain set of
planes.
Not all materials are erystalline, although for most solids the crystalline
state is the natural one because the energy of the ordered atomic arrange-
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ment is usually lower than that of an irregular packing of atoms. How-
ever, when the atoms are not given the opportunity to arrange themselves
in an orderly manner, by inhibiting their mobility during solidification,
an amorphous material may be formed. This is the case, for example, in
the formation of soot. In other cases, the molecules may be extremely long
and irregular in shape, so that an orderly arrangement may not be obtained
easily, as in the case of polymers. In some materials, such as glass, the
solid state corresponds to a supercooled liquid in which the molecular
arrahgement of the liquid state is frozen in. Due to the high viscosity of
the liquid, crystals do not have time to grow under normal conditions, and
an amorphous material is formed. Upon annealing, such glassy materials
may crystallize (deviirify), as observed in the case of quartz.

In the remaining chapters we shall have ample opportunity to indicate
the importance of the regular or irregular stacking of atoms on the prop-
erties of materials.
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Problems

1.1 Given that one gram molecule of a gas at 0°C and a pressure of
760 mm mercury occupies a volume of 22.414 liters, and assuming Avo-
gadro’s number is 6.025 X 10%, compute the number of molecules per m?
in a gas at 0°C and 760 mm mercury (Loschmidt's number).

1.2 A residual pressure of 10-"* mm mercury in a vacuum tube is con-
sidered very good vacuum; estimate the number of gas molecules per m?
in such a tube at room temperature.

1.3 According to the kinetic theory of gases, the average kinetic energy
of a gas molecule at an absolute temperature 7 is equal to (3/2)kT, where
k is Boltzmann's constant. What is the average energy, expressed in elec-
tron yolts, at room temperature (T = 300°K)? If the gas is hydrogen,
what is the order of magnitude of the velocity of the molecules at T =
300°K?
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1.4 Calculate the velocity of an electron with a kinetic energy of 1 ev;
what is the velocity of a proton with a kinetic energy of 1 ev?

1.5 Calculate the kinetic energy, the potential energy, and the total
energy of an electron in the ground state of a hydrogen atom according to
the theory of Bohr.

1.6 Caleulate the energy and radii of the first four Bohr orbits for an
electron in a hydrogen atom.

1.7 An electron in a hydrogen atom makes a transition from a quantum
state of principal quantum number n = 2 to the ground state. What is
the energy and what is the frequency f of the emitted light quantum? In
what region of the electromagnetic spectrum do you place this frequency?

1.8 According to wave mechanics, the wavelength A of an electron is
related to the momentum p of the electron by means of the so-called
de Broglie formula A = h/p, where h is Planck’s constant. Show that the
wavelength of an electron with kinetic energy of V electron volts is given
by A = (150/V)"* angstroms.

1.9 Show that Bohr's quantum postulate for circular orbits is equiv-
alent to the statement that the eircumference of the orbit is equal to an
integer times the wavelength of the electron.

1.10 In an electron-difiraction experiment one wishes to have a wave-
length of the electrons of 0.5 angstrom. What accelerating voltage is re-
quired to obtain this wavelength?

1.11 According to wave mechanics, the charge distribution correspond-
ing to the electron in the ground state of a hydrogen atom is an exponential
function of the type p(r) = A exp (—2r/r) where A and r; are constants
and r represents the distance from the nucleus. Given that the total charge
must be equal to —e, show that A = — ¢/nr} (see formula 1.11).

1.12 Show that the integrand in formula (1.12) has its maximum value
forr = n.

1.i3 On the basis of the rules pertaining to the possible values of the
orbital and magnetic quantum numbers [ and m,, set up a table which gives
all possible quantum states for the principal quantum number n = 3 [in
analogy with (1.13) for n = 2].

1.14 Assume the energy of two particles in the field of each other is
given by the following function of the distance r between the centers of
the particles:

W(r) = —(a/r) + (B/™)
where « and g are constants.

(a) Show that the two particles form a stable compound forr = =
(Bﬁ .|’J C!) Iﬂ_
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(b) Show that in the stable configuration the energy of attraction is
8 times the encrgy of repulsion (in contrast with the fact that the attrac-
tive force is-equal to the repulsive foree!).

(¢) Show that the total potential energy of the two particles in the
stable configuration is equal to

—(7/8)(a*/88)" = —(7/8)a/r0.
(d) Show that if the particles are pulled apart, the molecule will break

assoon ast = (368/a)"" = ry(4.5)'7, and that the minimum force required
to break the molecule is equal to

[a®7/(368)*7][1 — 8/(36)*7].
1.16 Suppose an atom A has an ionization energy of 5 ev, and an atom
B has an electron affinity of 4 ev (i.e., an energy of 4 ev is gained by attach-
ing a free electron to atom B). Suppose atoms A and B are 5 angstroms
apart. What is the energy required to transfer an electron from A to B?

1.16 The edge of the elementary cube of a body-centered cubic lattice
is @ meter. How many atoms are there on the average per cube of a@?
meter?? Answer the same questions for a face-centered cubie lattice and
for a simple cubie lattice (atoms only at the corners of the elementary cube).

1.17 Suppose identical atoms are arranged in a simple cubic lattice;
the atoms may be considered as hard spheres of radius RB. The edge of the
elementary cube, a, is equal to 2R so that neighboring atoms touch each
other. Show that the fraction of the volume oceupied by atoms is /6 =
0.523.

1.18 Consider a body-centered cubic lattice of identical atoms; the
atoms may be considered as hard spheres of radius R. Atoms along a body
diagonal touch each other. Show that the fraction of the volume occupied

by atoms in this arrangement is (xV'3)/8 = 0.68.

1.19 Consider a face-centered cubic lattice of identical atoms with ra-
dius K. Atoms along a face diagonal touch each other. Show that the frac-
tion of the volume occupied by atoms in this arrangement is (xV2)/6 =
0.74. (Note that this is the most economical way of stucking identical
spheres; compare answers to problems 1.17 and 1.18.)

1.20 Two kinds of atoms, A and B, form a crystal with the same struc-
ture as OsCl. Considering the atoms as hard spheres of radii r. and n,
show that the atoms along & body diagonal of the elementary cube cannot
touch each other if the ratio r./7s (or 75/7,) is larger than 1.37.

1.21 Two elements A and B form a eompound AB which erystallizes
in the sodium chloride structure. Assuming the atoms may be considered
as hard spheres of radii r, and rs, show that atoms along a cube edge cannot
touch each other as soon as the ratio of the radii is larger than 2.44.
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1.22 Copper crystallizes in a face-centered cubic lattice, the cube edge
being 3.608 angstroms at room temperature. A single crystal of copper has
been cut so that the surface of the crystal is parallel to one of the faces
of the elementary cube. A monochromatic beam of X-rays with a wave-
length of 1.658 angstroms is incident on the surface of the crystal. Show
that the planes parallel to the surface reflect the X-rays if the angle be-
tween the beam and the surface is approximately 27 deg or 67 deg.

1.23 The X-ray beam with a wavelength of 1.658 angstroms mentioned
in the preceding problem is obtained by electron bombardment of a nickel
target. What is the minimum anode voltage required in the X-ray tube to
produce this wavelength? Suppose that instead of X-rays one uses elec-
trons of the same wavelength, what would be the required accelerating
voltage? (see problem 1.8).

1.24 From the data given for copper in problem 1.22, calculate the
number of atoms per m? in this material.



2

Dielectric Properties of Insulators
in Static Fields

In this chapter we deal with the behavior of insulators in static fields;
their behavior in alternating fields wi'l be discussed in the next chapter,
1t would undoubtedly be more elegant to start immediately with time-
dependent fields, and to treat the static behavior as a particular case cor-
responding to zero frequency. From the student’s point of view, however,
there are advantages in dealing with the simpler case first because it gives
him a chance to absorb the fundamental concepts at a more leisurely pace.
Once these concepts are well understood, the transition to the concept
of the complex dielectric constant and its interpretation becomes a good
deal easier.

The questions to be discussed in this chapter are of the following
nature: What is the relationship between the macroscopic measurable di-
electric constant and the afomic structure of & material? Why do some
materials have a high and others a low dielectric constant? Why do the
dielectric constants of some materials depend on temperature, whereas in
other cases they do not? What happens to the dielectric constant when a
substance melts or solidifies? These and other questions will be discussed
in terms of simplified atomic “models.” These models are not necessarily
the best representation of atoms known to physicists, but they serve
mainly to illustrate the basic ideas underlying more sophisticated calcu-
lations. The first two sections are devoted to the macroscopic theory of
the dielectric constant as one finds it expounded in much more detail in

23
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textbooks on.field theory. The remainder of the chapter deals with the
utontic interpretation of the dielectric constant.

2.1 The static dielectric constant

The reader may be reminded at this point of some fundamentals con-
cerning electric fields. One of the most useful theorems in this arca is
that of Gauss. It states that the total electric flux ¢ emanating from a
closed surface is equal to the total charge enclosed by that surface. De-
noting the charges enclosed by the surface by @), Qs, ..., Qi ..., Qu,
where the Q's may be positive and negative, this theorem may be expressed
mathematically by means of a surface integral as follows:

n

o= fp-a5= 50 a
Here, D represents the flur density in coulombs m~ at the center of the
surface element represented by the outwardly directed vector dS; the inte-
gration extends over the entire closed surface. When one deals with a
continuous charge distribution of density p instead of with discrete charges,
the sum on the right-hand side of (2.1) must, of course, be replaced by
the volume integral of p, the integration extending over the entire volume
enclosed by the surface under consideration.

The electric field sirength E in any point of space, i.e. the force per unit
charge, is related to the flux density in that point by

D = eeE (2.2

Here, ¢, = 8.854 X 10~ farad m™' represents the dielectric constant or
permittivity of a vacuum; ¢ is called the relative dielectric conslani or the
relative permitiivily of the material. It is important to emphasize that e
enters only as a result of using a particular system of units, in our case
mks units: e therefore has no other physical meaning than that of a funda-
mental conversion factor. The relative dielectric constant, ¢, on the other
hand is determined by the atomic structure of the material and it is with
the physical interpretation of this quantity that we shall deal below. Note
thut e, is a dimensionless quantity which is equal to 1 for vacuum. For
all substances, ¢, > 1 for reasons that will be explained. It should also be
mentioned here that expression (2.2) refers only to tsotropic materials; i.e.,
to materials for which the dielectric and other physical properties are
independent of the direction in which they are measured. In crystals, for
example, the diclectric constant generally depends on the direction along
which it is measured relative to the crystal axes. In polycrystalline
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materials, on the other hand, with a random distribution of the grains,
the directional effects disappear and (2.2) is applicable. For single crystals
one cannot, in general, use (2.2) and the dielectric constant should then
be replaced by a tensor quantity. Unless stated otherwise, we shall assume
isotropic materials. From the fact that E is expressed in newton coulomb—!
and from the fact that ¢ is dimensionless, the reader can readily verify
from (2.2) that & has the dimensions of farad m—1,

A method for measuring ¢, for a particular material emerges from the
following reasoning: consider a parsallel plate condenser as indicated in
Fig. 2.1. The area of the plates is A and the distance between them d;

Fig. 2.1. Charged parallel plate
condenser; flux lines are indi-
cated.

assume the charge per unit area on the plates is 4-¢. Neglecting end-
effects, the flux lines run from the positive to the negative plate in a
direction perpendicular to the plates. By applying the theorem of Gauss
in a suitable manner the reader will readily verify that the magnitude of
the flux density is given by D = ¢; this will be true whether or not the
space between the plates is filled with an insulating material. It thus
follows from (2.2) that the field strength in the region between the plates
is given by

E = D/aer = g/eoes (2.3)

Since the voltage difference between the two plates is simply given by
Ed (homogeneous field!), the capacitance of the system is equal to
C = gA/Ed = e A/d. Hence, if Cy, represents the capagitance when
the space between the plates is evacuated, one immediately finds ¢, from
the relation

& = C/Cure (2.4)

Thus, « can be determined expetimentally be measuring the capacitance
with and without the dielectric.
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2.2 Polarization and dielectric constant

In this section we shall show that in a dielectric subjected to an electric
field £, each volume element may be thought of as carrying an electric
dipole moment which is proportional to the field strength. As we shall see
later, the result obtained is of fundamental importance because it provides
a link between the maeroscopie dielectric constant and the atomic theory
of this quantity.

The electric dipole moment of a neutral system of point charges
Q@ ...,Q, ..., Q. isdelined as a vector given by

n= 'E Qir; (2.5)

where 1, represents a vector drawn from the origin of a ecoordinate systerr
to the position of the charge Q,; the charges Q; may, of course, be either
positive or negative, but their sum 2 @, must be zero to comply with the
neutrality of the system. As shown in problem 2.8 at the end of this
chapter, the vector m is independent of the choice of the origin of the eo-
ordinate system; if it were not, it would be a useless concept. In mks
units, an electric dipole moment is evidently expressed in coulomb meters,
In its simplest form, a dipole moment consibts of two equal point charges
of opposite sign, +Q, separated by a distance d. Choosing the origin of
the coordinate system to eoincide with the negative ¢harge, the dipole
moment in this case has a magnitude equal to @d, and is represented by &
vector pointing from the negative charge in the direction of the positive
charge, as indicated in Fig. 2.2.

e I Fig. 2.2. Dipole and dipole mo-
4 ment vector g for two equal
~harges of opposite sign sepa-

_#T rated by a distance d.

Let us now turn to the stutement nude in the beginning of this section
by considering the simple case of a homogeneous and isotropic dielectric
subjected to a homogeneous electric field £ produced between two charged
parallel plates. Let the flux density be D = &eF. Suppose now that we
were to cut out of the dieleetric a emall volume element dz dy dz where dz
is chosen perpendicular to the plates, as indieated in Fig. 2.3. This would
evidently result in a distortion of the field; i.e., it would no longer be
homogeneous. Let us consider the following question: how can the field
be kept homogenecous, and equal to the original field £? This can be
achieved in two ways:
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Fig. 2.3. Illustrating a cavity ,{" ~
dz dy dz cut away [rom & dielec- " dz
tric between Ltwo charged plates. |
J dy
dx
E

(a) By inserting the material again in the cavity produced. This answer
is trivial, but nevertheless plays a role in the argument, as we shall see
later.

(b) In attempting to produce a homogeneous field in the presence of
the cavity, we evidently require that if K, and [, represent the field
strengths respectively inside and outside the cavity

B, =8, =E

Since inside the cavity there is no material, this requirement, when ex-
pressed in terms of the flux densities 1J; and D, inside and outside the
cavity, becomes

D,/ = D./etr = D /eoe, (2.6)
Hence, if the flux density inside the cavity is made ¢ times as small as
the flux density outside the cavity, we have succeeded in making the field
homogeneous in the presence of the cavity. Now, according to the theorem
of Gauss, a change in flux density at a surface can be achieved only if
the surface carries an electric charge. Thus, with reference to Fig. 2.4, if

Fig. 2.4. Illustrating reduction = -
of & flux deneity D, in passing R S G
acroes a plane to the value D; as D, > D,
a result of the presence of nega- —_——
tive charges on the surface. ¥ >
¢ e

we desire a flux density D, to be reduced to a flux density D, upon crossing
a surface, the surface should be provided with a charge density of
— (D, — D;J coulomb m~%. In our problem, therefore, the field can be
made homogeneous by placing a negative charge of — (D, — D.) dy dz on
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the left-hand face of the cavity in Fig. 2.3, and a positive charge of
(D, — D,) dy dz on the right-hand face. This system of charges is ap-
parently neutral, and corresponds to a dipole moment

(D, — D,) dz dy dz (2.7)

The direction of the dipole moment vector is from left to right in Fig.
2.3, i.e. parallel to the applied field E. Now, according to (2.6) we have
D./D; = ¢, so that (2.7) may be written as

Di(e, — 1) dzdydz = «(er — 1)E dzdydz (2.8)

What conclusion can we draw from these arguments? Since answer (a)
achieves the same result as providing the cavity with a dipole moment
given by (2.8) we conclude that the material which previously occupied
the cavity carried a dipole moment given by (2.8). Thus, a dicleciric
subjected to @ homogeneous field carries a dipole moment P per unit volume
which, according to (2.8) may be written as

P = e, — 1)E (2.9)

The dipole moment per unit volume P is called the polarization of the
dielectric. It is expressed in coulomb m~? and is proportional to the field
strength as long as ¢, is independent of ¥, which it is for normal dielectrics
below the breakdown field. It is emphasized that in the derivation of
(2.9) nothing was said about the physical state of the dielectric; hence, it
is valid for gases, liquids and solids. It will become evident helow that
(2.9) provides the link between the macroscopic and alomic theory of di-
electrics.

9.3 The atomic interpretation of the dielectric constant of
monoatomic gases

The simplest, though for most purposes not the most practical, kinds
of materials are the rare gases such as helium and argon. These gases are
simple from a theoretical point of view because, first of all, in a gas the
average distance between the atoms or molecules is large enough so that
one can neglect interaction between them, and furthermore, if we restrict
ourselves to the rare gases, the molecules consist of single, atoms. For-
getting for the moment the discussion of the preceding two sections, let
us consider the problem from the atomic point of view and investigate
what can be said about the properties of a rare gas when it is subjected to
an electric field £. First consider a single atom consisting of a positive
nucleus of charge Ze, and Z electrons moving around the nucleus, Since
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the nucleus has a diameter of the order of 107 m, whereas the radius of
the electron cloud is of the order of 107" m, we may consider the nucleus
for our purpose a8 a point charge. As a crude model for the electron
cloud, let us assume that the total negative charge —Ze is distributed
homogeneously throughout a sphere of radius R, where R = 10~ m

{a)

Fig. 2.5. Atomic model in the absence of a field is given in {a);
the shift of the negative charge cloud relative to the nucleus re-
sulting from the field E is presented schematically in (b). In prae-
tice, z << R.

[see Fig. 2.5(a)]. Although this model is a far cry from what one knows
about atoms, the results that we obtain give the correct order of magnitude
for the quantities of interest. When this atomic model is placed in the
field E, the nucleus and the electric cloud will evidently try to move in
opposite directions because of the opposite signs of their charges. How-
ever, as they are pulled apart, a force will develop beiween them which
tends to drive the nucleus back to the center of the sphere. Consequently,
an equilibrium will be obtained in which the nucleus is shifted slightly
relative to the center of the electron cloud in the direction of E. Quanti-
tatively, this shift may be calculated for this model as follows: assume
that in equilibrium with the field E, the nucleus is displaced by the amount
r as indicated in Fig. 2.5(b); we shall assume here that the shape of the
electron cloud is not influenced by the field; i.e., it is assumed to remain
a sphere of radius R. The force on the nucleus along the field direction is
7¢E. The electron cloud can be divided into two regions: one inside an
imaginary sphere of radius z, and one between the two spherical surfaces
of radii z and R. By applying Gauss theorem, the reader will readily
verify that the charge in the latter region does not exert a force on the
nucleus. The only force exerted on the nuecleus is that produced by the
negative charge inside the sphere of radius z; the charge inside this sphere
is equal to — Zez?/R’. The force exerted by this charge on the nucleus
can be obtained by concentrating the charge in the center and applying
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Coulomb's law; since the total force on the nucleus must be zero in equi-
librium, we obtain

: |
ZeE = IE; e (Z:;" s (2.10)

Hence, in equilibrium the nucleus will be displaced relative to the center
of the sphere by the amount

z = (AreR?/Ze)E (2.11)
Note that z is proportional to the field strength and that the problem
dealt with is analogous to that in which a mechanieal force ia exerted on
a particle bound with an elastic force to a certain equilibrium position.

What have we learned by deriving (2.11)? In order to see this, consider
first the atom in the absence of the field E. If we were to probe the space
outside the atom with an infinitesimally small test charge, we would
detect no field at all, because the system is neutral and has no dipole
moment (nucleus coineides with the center of the negative charge cloud!).
In the presence of the field, the system is still neutral, but has a non-zero
dipole moment because the nucleus and the center of the charge cloud are
separated by a distance . The atom will thus appear to carry a dipole
moment (see section 2.2) equel to

pisa = Zexr = ixeR'E = aE (2.12)
Here, the subscript “ind” refers to the word “induced’’; the dipole moment
is induced by the field because it was not there in the absence of the field.
The induced dipole moment is proportional to the field strength and the
proportionality factor a, is called the elecironic polarizability of the atom;
“electronic,” because the dipole moment results from a shift of the elec-
tron cloud relative to the nucleus. Note that a, is proportional to R?, i.e.
to the volume of the electron cloud.

S0 far, we have considered only a single atom. Consider now a rare
gas containing N atoms per m', subjected to a homogeneous field E.
Neglecting any interaction between the dipoles induced in the atoms,
which is a good approximation for a gas, we find for the polarization of
the gas, i.e. the electric dipole moment per unit volume

P = NeE (2.13)

Comparing this expreesion with the macroscopic equation (2.9) for P, we
conclude that for rare gases

aler — 1) = Na, (2.14)

In other words, we have obtained a relationship befween the measurable

guanéity ¢ ond the atomic constani a,. Let us now investigate to what
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extent there exists agreement between theory and experiment. The di-
electric constant of He, measured at 0°C and 1 atmosphere, is found
experimentally to be ¢ = 1.0000684; under these conditions, the gas con-
tains approximately N = 2.7 X 10" atoms per m'. For the model used
above we find from (2.12) and (2.14)

¢ — 1 =4xNR! (2.15)
Calculating R from this expression and the numerical values of ¢ and N,
one obtains R = 0.6 X 10~*° meter, which is indeed the correct order of
magnitude for the radius of an atom. Thus, even though the model is
rather crude, the results indicate that the interpretation is essentially
correct. By way of illustration we give here the polarizability o, of rare
gas atoms in 10~* farad m? as units.

He Ne A Kr Xe
a,... 018 035 1.43 218 3.54

Note that the polarizability increases as the atoms become larger, in sgree-
ment with the results obtained for the model.

Let us now estimate the order of magnitude of the relative shift x
of the nucleus and the center of the electron cloud, because this is the
quantity which, together with the number of atoms per unit volume,
determines ¢,. For a field of, say, 10° volts per meter we obtain from (2.11)
with R =~ 10 m and Z = 10, z =7 X 107" m, which is very small
indeed compared to the radius of the atom. The perturbing influence of
an applied field on an atom is apparently very slight.

We note that the electronic polarizability of an atom is determined
completely by its electronic structure; as long as the structure remains
the same, a, remains the same. This notion is important because the elec-
tron structure of an atom is essentially independent of temperature,
unless the temperature is extremely high. Thus, for normal temperatures,
a, is independent of lemperalure. Consequently, if the number of atoms
per unit volume is kept constant, the dielectric constant will also be inde-
pendent of temperature. This is indeed what has been found experimentally
for the rare gases. If the number of atoms per unit volume ‘is allowed to
change, the dielectric conctant is simply proportional to this number.

2.4 Qualitative remarks on the dielectric constant of
polyatomic molecules

The dlelectric constant of polyatomic gases depends in many cases on
temperature even if the number of molecules per m?® is kept constant; in
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other cases it may be constant. Some examples are given in Fig. 2.6 and
in this section we shall deal with the physical interpretation of these ob-

8k CH4Cl
=
I 6
= Fig. 2.6. The relative dielectric
=] /CHgCIz constant as a function of tem-
1 4+ perature (°K) for some gases at
a pressure of 1 atmoaphere.
CCl,
2=
CH,
L 1 |
¢ 25 3.0 35
—» 1000/T

servations. First of all, it should be realized that if two different atoms
A and B form a chemical bond, one of the two is more apt to part with
one or more of its valence electrons than the other. Thus, when Z,e and
Zge represent the nuclear charges of the two atoms, and if atom A bhas the
tendency to give valence electrons to B, one finds on the average more
than Zg electrons around the nucleus B and fewer than Z, electrons
around the nucleus A. One says that atom A is more eleciropositive than
B. Consequently, the bond between A and B is at least partly ionie (it
i8 not nceessary that A parts with an integral number of electrons; an
electron may spend more time near B than near A, so that on the average,
A has parted only with a fraction of the electron). If the bond between
A and B has ionic character, it is evident that the molecule AB carries an
electric dipole moment even in the absence of an applied field. For obvious
reasons, such a dipole moment is called permanent, and will be denoted
by the vector u,. The magnitude of the dipole moment is given by the
product of the average charge transferred from A to B and the inter-
nuclear distance. For a molecule consisting of more than two atoms,
several bonds may carry a permanent dipole moment and the resulting
permanent dipole moment of the molecule as a whole is obtained by
vector addition of the moments associated with the various bonds. This
is illustrated in Fig. 2.7 for two hypothetical cases corresponding to the
type ABA. It is observed that the resultant dipole moment may be zero,
viz. if the molecule has a center of symmetry.
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A

B

(a)

(b)

Fig. 2.7. Two possible eonfigurations of a molecule A:B. In (a)
the resultant dipole moment is zero; in (b) there is & resultant
dipole moment given by the vector sum of the dipole moments of
the individual ionic bonds.

It will be evident that molecules such as Oa, H,, N; etc., which consist
of similar atoms, caITy no permanpent dipole moment.

When an external field E is applied to & molecule carrying a permanent
dipole moment g, the external field will tend to align u, glong the direction
of E, since E exerts a torque on . The contribution of this process of
orientation of the permanent dipoles to the polarization P is called the
orientational polarization, and will be denoted by P, Furthermore, the
effect of an external field will be to shift the electron clouds in the molecule
relative to the respective nuclei. In & molecular gas, therefore, we also
have electronic polarization, as in a monoatomic gas, the only difference
being that the molecules consist of more than one atom. In analogy with
the electronic polarizability of a single atom, one defines the electronic
polarizability of a molecule as the dipole moment induced per unit field
strength resulting only from shifts of the electron clouds relative to the
nuclei, i.e.

Bina = B (2.16)
It is understood that this induced dipole moment represents an AVerage
“value, the average being taken over all possible orientations of the molecule
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relative to the field; this stipulation is necessary because the induced
dipole moment of a molecule such as AB evidently depends on the angle
between the direction of E and the line joining the nuclei of the molecule.

Besides the two contributions to the polarization of a molecular gas
just mentioned, there is a third contribution which is referred to as the
tonic polarization. This contribution takes account of the fact that wher
in a molecule some of the atoms have an excess positive or negative charge
(resulting from the ionic charazeter of the bonds), an electric field will
tend to shift positive ions relative to negative ones. This leads to an in
duced moment of different origin from the moment induced by electror
clouds shifting relative to nuclei. The difference between ionic and elec
tronic polarization may be illustrated with reference to the string of ion
represented in Fig. 2.8. The electronic polarizability measures the shift o

(a]

(b)

E

Fig. 2.8. A string of positive and negative ions is represented in
(&) in the absence of a field, In (b) all electron elouds are shifted
to the left as a result of the field, but the nuclei have been fixed;
this corresponds to electronic polarization. In (c) the polarized
ions are displaced relative to each other: the positive ions to the
right, the negative ions to the left. In (e) therefore there is elec-
tronic as well as ionic polarization.

the electron clouds in the ions relative to the nuclei to which they belong.
The ionic polarizability measures the shift of the ions relative to each
other. A molecule may thus be characterized by an ionic polarizability
a; defined in a way similar to a.. :

Summarizing this section, we can distinguish between the following
contributions to the polarization in a polyatomic gas:
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(i) the orientational polarization (P.);
(ii) the electronic polarizalion (P.);
(ii) the fonie polarization (P,).

The total polarization is given by the sum of these three quantities.

9.5 Quantitative discussion of the dielectric constant of
polyatomic gases

Consider a gas containing N molecules per m*. We shall assume the
molecules carry a permanent electric dipole moment g} the electronio
and ionic polarizabilities of the molecules will be denoted respectively by
. and a;. The questions we shall answer in this section are these: What
is the relationship between the dielectric constant e and the afomic
quantities given? Does this relationship agree with experimental infor-
mation of particular gases, and if so, what can one learn from such
information?

From what has been said in the preceding section, we can write down
the electronic and ionic contributions to the total polarization immedi-
ately as

P,+ Pi = N(a, + a)E (2.17)

where E is the applied field. We mentioned before that o. iz independent
of the temperature 7' as long as the electronic structure of the molecule
remains unaltered. By the same token, o, will be independent of temper-
ature if the electronic structure does not change. We thus conclude that
for the usual temperatures of interest, (@, + a,) may be considered inde-
pendent of T'.

A caleulation of the orientational polarization P. is somewhat more
complicated; we shall see that P, does depend on temperature. Consider
a system of N permanent dipoles of magnitude u, in the absence of a '
field; let the temperature be T. Since there is no preference for any
particular direction, the vector sum of all the individual p,’s will vanish;
i.e., there is no polarization in the absence of a field. Suppose we choose
an arbitrary direction and call this the z-axis. The number of molecules
N (6) dé for which the direction of p, at a given instant lies within an angle
between 6 and (6 + d6) with the z-axis is then simply proportional to the
solid angle 2 sin 6 d6, as indicated in Fig. 2.9. Suppose now, a field E is
applied along the z-direction. The number of molecules for which the
direction of p, at 8 given instant now lies within an angle between 8 and
(0 + df) with the z-axis is no longer proportion. to 2r sin § d6, for the
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de

Fig. 2.9. Illustrating the geometry used in calculating N () ds.
The area of the shaded ring between 6 and 8 + df is equal to
2 sin 0 df.

gimple reason that the field E makes the xz-axis a preferred direction; we
shall show in fact, that the number is given by

N(6) d9 = A2 sin 0 d8 exp [(u,E cos 6)/kT) (2.18)
where k is Boltsmann’s constant (= 1.38 3 10~3 joule per-degree C), and
A is a constant of proportionality determined by the total number of
dipoles N under consideration. To derive (2.18), first consider the energy
of a dipole p, in the external field E. As indicated in Fig. 2.10, the torque

Fig. 2.10. Tllustrating the forces exerted by a field E on the two

charges of a dipole. The torque produced is equal to QEd sin ¢ =

upk gin 8.
produced by the field on g, is equal to u,E sin 6. Let us arbitrarily set
the energy of a dipole in the field equal to zero if 6 = 90 deg. The energy
W (6) of the dipole for an arbitrary angle 6 is then given by

W) = f“_w wE 6in0ds = —u,E o080 = —p,+ B (219)

From Fig. 2.11 we see that the energy is lowest for a dipole p, parallel to
E, and highest for a dipole antiparallel to E. In other words, small angles
8 are preferred over large ones. In fact, if there were no thermal motion,
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all dipoles would line up along the externa! field direction. The reader
who is familiar with the elements of Boltzmann statistics will now recog-
nize that the population corresponding to a solid angle 2x sin 6 df must be
weighted by a Boltzmann factor exp [— W (6)/kT] so that (2.18) follows
immediately from this and (2.19).

Our next task is to find an expression for P, on the basis of our result
(2.18). It will be evident that P, is parallel to E; i.e., we are interested in
finding the sum of the components of the individual g, along the direction
of E. Since a dipole u, which makes an angle 8 with E has a component
along E equal to p, cos 8, one may write

Py = [ N(®) 5 uycost (2.20)

Substituting (2.18) into (2.20) and making use of the fact that
N= j: N(6) d9, the constant 2r4A may be eliminated and one obtains

5 fo it cos 8 exp [(upE cos 6)/kT) sin 0 do
L" exp [(upF cos 8)/kT] sin 6 d8

Introducing the new variable y = (u,FE cos 0)/kT and writing for con-
venience u,E/kT = a, the reader may verify that this leads to

P,

(2.21)

+a
P, = (NKT/E) % = Np, I:coth i ﬂ = Np,L(@ (2.22)
a e' y
The function L(a) defined by (2.22) is called the Langevin function; it
first appeared in a study by Langevin (1905) of the similar problem of
orientation of magnetic dipoles in & magnetic field. The function L(a) is
represented in Fig. 2.12. For large values of a it approaches unity and
hence P, approaches Nu, Physically, this corresponds to the situation
in which u,E/kT is so large that one approaches complete alignment of
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Fig. 2.12. The Langevin function L(a); for ¢ <1, L(a) = a/3.

the dipoles along the field direction. In practice, this approach to
saturation of the orientational polarization is never encountered in the
case of gases; in fact, for practical purposes we may assume
a = upB/kT < 1. This can be seen as follows: the magnitude of a perma-
nent dipole moment may be anticipated to be of the order of the product
of an electronic charge and one angstrom. Tt is for this reason that electric
dipole moments are usually expressed in so-called debye units:

1 debye unit = 10~ esu angstrom = 3.33 X 107 coulomb meter

Dehye postulated the existence of permanent dipoles in molecules in 1912
and has contributed a great deal to our present understanding of dielectrics.
Assuming for the moment permanent dipole moments of 1 debye unit,
one finds even for a strong fieid of 107 volts per meter at room temperature,
a =~ 0.01, which is small compared to 1. Under these circumstances
expression (2.22) simplifies to

P, = NupE/3kT (2.23)

Thus, the orienlational polarization 1s inversely proportional to the temperalure
and proportional to the square of the permanent dipole moment. Note that
the slope of the Langevin function for small values of a is 4. Also note
that this derivation shows clearly that the tendency of the external field
to align the dipoles is counteracted by the thermal motion, resulting in
a decreasing value of P, with increasing T.

The total polarization of a polyatomic gas is given by the sum of
(2.17) and (2.23), i.e.

P = N(ae+ a: + u3/3kT)E (2.24)

Comparing this with the general relation (2.9) from the maeroscopic
theory, we find that the dielectric constant e, is related to the molecular
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properties as follows:

wler = 1) = Nae + a: + p2/3KT) (2.25)

Let us now turn to the question of how this result ean be compared
with experimental information. It is observed that if the diclectric
constant € is plotted as u function of 1/T, expression (2.25) predicts the
result to be a straight line. The slope of this line is determined by uf; the
intercept with the axis 1/7 = 0 provides a measure for a, + «i. In Fig.
2.6 we showed some experimental results which indecd confirm the temper-
ature dependence predicted by (2.25). From such measurements one can
evidently calculate the permanent dipole moment of the molecules as well

‘a/mﬁm

ope

Fig. 2.13. Nlustreting toe rela-
tionship between ¢ and 1/7 as
predicted by expression (2.25).
From the slope one can deter-
mine the permanent dipole mo-
ment of the molecules, and from P
the intercept of the ordinate, Pt

obtained by extrapolation, the
gum (e 4 o) may be found. ]M“ﬂ'm‘

— ElEp=1]

~

— 1/T

as the sum a, + a;, provided the number of molecules per m? is known,
as indicated in Fig. 2.13. By way of illustration, we give in Table 2.1 some
permanent dipole moment in debye units obtained from measurements
of the dielectric constant in the gas phase. From the results obtained,

Table 2.1. EXPERIMENTALLY DETERMINED PERMANENT DIPOLE
MOMENTS OF VARIOUS MOLECULES (IN DEBYE UNITS,
8.33 X 107® couLoMD METER)

Molecule ™ Molecule By
NO 0.1 COy 0
CcO 0.11 Cs, C
HCl 1.04 0 1.84
HBr 0.79 H,8 0.93
HI 0.38 CH, 0
NO. 0.4 CH,Cl 1.15

one may derive certain conclusions with regard to the structure of the
molecules. For example, the fact that CO, has no resultant dipole moment,
whereas each of the CO bonds does have a dipole moment, indicates that
in this molecule the two bonds make an angle of 180 degrees with each
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other; the CO; molecule thus must look like this: O=C=0. On the other
hand, a molecule such as ;0 does have a resultant gy, which indicates that
the two OH bonds make an angle different from 180 degrees, and that the
molecule has a triangular ferm (see Fig. 2.7). Dielectric constant measure-
ments have been used a great deal as a tool for investigating molecular
gtructure, but this subject lies outside the scope of the present text.

2.6 The internal field in solids and liquids

A detailed interpretation of the dielectric properties of solids and
liquids is considerably more complicated than for gases, but a semi-
quantitative understanding may be achieved on the basis of the concepts
developed in the preceding sections. The main problem which arises in
the case of solids and liquids is the calculation of what is known as the
local or internal field E,, which is defined as the field acting at the location
of a given atom. In the case of a gas, we assumed that the internal field
was equal to the applied field E, and as long as the density of molecules
is reasonably low, this is a good approximation. However, in solids and
liquids the molecules or atoms are so close together that the field seen by
& given particle is determined in part by the dipoles carried by surrounding
particles; in general, therefore, E; is nol equal lo the applied field E.

To illustrate this for a simple example, consider an infinite string of
similar equidistant atoms of polarizability ., as indicated in Fig. 2.14.*

B A By

Fig. 2.14. Tllustrating a string of atoms of polarlzability =, in an
external field parallel to the string, The induced dipole moments

are indicated.
Giver. an external field E applied in a direction parallel to the string, what
is the internal field at the position of a given atom? With reference to
Fig. 2.14 let the field seen by atom A be E;; from the symmetry of the
problem it is evident that E; will be parallel to E and furthermore, in the

* The author noticed this particular model in the present context for the first time

in & set of lecture notes of Professor D, J. Epstein (M.I.T.), who kindly gave his per-
miesion to include it in this book.



Sec. 2.6 Properties of Insulators in Static Fields 41

example chosen, the field scen by the other atoms will be the same. The
dipole moment induced in each of the atoms of the string is thus

Bing = o.E, (2.26)
and our problem is to evaluate E,. Clearly, E, must be equal to the applied
field E plus the field produced at the location of A by the dipoles on all
other atoms. Let us proceed to calculate the ficld produced at the center
of A by the dipole on atom B, in Fig. 2.14; we shall assume that the dipoles
may be considered as point dipoles. According to field theory, the po-
tential around a point dipole p in vacuum is given by

1 L
Vir, ) = 51— B ";“ (2.27)

where r is the distance from the dipole and 8 is the angle between r and .
The field around a dipole, therefore, has two componente given by
_ ﬂ _ 1 2ucosé

or “ire P Wk

E, =
and

13V 1 using
raf  dweg 1°
These components are indicated in Fig. 2,15. Thus, the field produced by
B, at the location of atom A is obtained from the last two expressions by

(2.29)

Fig. 2.15. Tlustrating the field
components E, and Fj in a point
P resulting from a dipole gs.

putting r = a and 6 = 0; this gives a contribution of ping/2xea’® in the
direction of E. It is readily verified that the field produced at A by the
dipole on By is equal to that produced by B,. Following the same procedure

for the other atoms in the string, we find for the internal field at A
E'_E+(Flnd) é _1_‘

7&a?) w1 1

where n accepts the integer values 1, 2, 3 .... Substituting siea from

(2.30)
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(2.26) into (2.30) we can evpress E; in terms of the applied field E. The
sum in (2.30) is approximately equal to 1.2, and we obtain
L E __E
1 — 1.2a/wea® 1 —§
Since the constant B is positive, we conclude that the actual field seen by
an alom in the string 1s larger than the applied field E. Physically this means
that for the model chosen here, the dipoles cosperale with each other in
the sense that a large dipole moment on a given atom helps induce a
dipole moment in its neighbors, which in turn induce a dipole moment in
the former, ete. It is observed;that the cooperation becomes stronger as the
polarizability of the aloms increases and as the distance belween them de-
creases. Tt is also observed that the internal field is determined in general
by the structure of a given material, i.e. by the surroundings scen at the
position of a given atom. An accurate calculation of the internal field in
solids and liquids is in general very complicated and for our purposes it
may be sufficient to point out a general feature of the relation between
the internal and applied fields. We note that the last term in (2.30) is
proportional to the dipole moment induced in the atoms. It is not sur-
prising therefore that caleulations of E; in a three-dimensional case
always give results which may be written in the form

E:= E + (y/a)P (2.32)

where I is the dipole moment per unit volume and where v is & pro-
portionality constant which is referred to as the internal field conslant;
has been introduced in (2.32) only for the purpose of making v a
dimensionless quantity. In general, the numerical value of # is of the order
of unity; for the linear chain of Fig. 2.14, for example, it follows immedi-
ately from (2.30) that ¥ = 1.2/x. A particular case which one encounters
frequently in the literature on dielectrics is that corresponding to v = §.
One speaks in that case of the Loreniz field, given by

Eitoreatz = IF + P/3e (2.33)

A derivation of this expression may be found in the references given at
the end of this chapter; it holds only in particular cases, as when the atoms
in a solid are surrounded cubically by other atoms. One should, therefore,
be careful in applying the specific value v = }, unless the particular
symmetry conditions are met for which it has been derived. A further
warning should be given here pertaining to the interpretation of the di-
electric constant of liquids in which the molecules carry permanent dipoles
(polar liquids). The internal field as it tends to orient the dipoles along

(2.31)
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the direction of the external field is generally different from the internal
field as it is used to calculate the contribution to the polarization resulting
from a, and a;. At first sight, this may seem strange; in fact, this difference
was not realized until it was pointed out by Onsager in 1936. In the
material before that time, this oversight had resulted in erroneous interpre-
tations of the dielectric behavior of polar liquids. For a discussion of the
internal field in liquids we refer the reader to Bottcher’s book.

2.7 The static dielectric constant of solids

In this section the general features of the dielectric behavior of solids
will be discussed; for data concerning specific materials the reader is re-
ferred to Diclectric Materials and Applications, edited by von Hippel. The
special behavior of ferroelectric and piezoelectric materials is dealt with
in subsequent sections.

It is convenient to distinguish between three groups of solids in con-
nection with their dielectric behavior:

(i) Elemental dielectrics. These are materials built up from only one
kind of atoms, such as diamond, phosphorus, ete. It will be evident that
in such materials there are no permanent dipoles or ions, so that the only
contribution to the polarization is that due to the relative displacement
of electron clouds and nuclei. Hence, for these materials P = P, and
P;=PFP,=0. ]jenoting the electronic polarizability per atom by «., we
may write

P = Na,E; (2.34)
where E, is the internal field and N represents the number of atoms per
m?®. In writing expression (2.34) it has been assumed that the internal
field is the same for all atoms. Since E, is generally given by an expression
like (2.32), we may write

P = NaJE + (v/e)P) (2.35)
from which we can find P in terms of the applied field E as
P = —Nak (2.36)

1-— (anﬂff 6LI)

In order to obtain an expression for the dielectric constant ¢ in terms of
the atomic quantities we turn to the macroscopic expression (2.9); from
it and (2.36) we then find

Na,

1 = ‘}rNﬁ./to (2-3‘]

ole, — 1) =
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In case we assume vy = 4 (see preceding section), the same procedure
leads to the so-called Clausius-Mosotti expression

ot Y Na,

&+2 3e
The dielectric constant is thus determined by N, a. and v. It should be
noted that in general, . is not the same as the polarizability of the free
atoms, because the binding between the atoms affects the valence elec-
trons; however, the two values may be nearly the same. The distance
between the atoms in a solid is affected only slightly by temperature, and
therefore IV, a., v, and the dielectric constant ¢ are in first approximation
independent of temperature for the materials under discussion. By way
of illustration we give here the dielectric constant e, for three elements in
the fourth group of the periodic table, all three having the diamond
structure.

(2.38)

Diamond 8i Ge
i 568 12 16

Although silicon and germanium are poor insulators, one can still speak
of a dielectric constant for such materials, It may be worthwhile to point
out that (& — 1) for these and for most other solids is of the order of unity
or ten, whereas for gases at normal temperature and pressure the same
quantity is of the order of 10~* or 10", This difference of course reflects
the difference in the number of atoms per unit volume, as may be seen
from (2.37). In fact, a representative figure for the number of atoms
per m in a solid or liquid is N =2 5 X 10% m™*. Accurate values in specifie
cases may be obtained from X-ray diffraction data; such data provide
informution about the crystal structure and the interatomic distances.
(ii) Tonic dielectrics without permanent dipoles. In ionic crystals
such as the alkalide halides, the total polarization is made up of electronic
and ionic polarization, i.e.
P=pP,+ P (2.39)
A crystal of this kind, when considered as a huge molecule, has no perma-
nent electric dipole moment, because the sum

pp = Zex:
1

(see section 2.2) vanishes; hence, P, = 0. The dielectric behavior of such
materials is more complicated than that of group (i) from the point of
view of quantitative interpretation; the internal field at the positive ion
sites, for example, is in generai different from that at the negative ion sites.
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Without going into details with reference to the interpretation, it may be
of interest to point out that the ionic polarization P; usually constitutes a
considerable fraction of the total polsrization. Experimentally this has
been established as follows: when one measures the dielectric constant at
frequencies of approximately 5 X 10" see™!, corresponding to the visible
part of the electromagnetic spectrum, the relatively heavy positive and
negative ions can no longer follow the rupid field variations. Consequently,
one measures in that region unly the electronic polarization P,. Since a
measurement of the static dielectric constant gives P, + P, it is thus
possible to find P, and P, separately. Quantitatively this may be expressed
in the following manner: Let ¢, represent the static value of the relative
dielectric constant; we may then write in accordance with (2.9)
&len — DE = P, + P; (2.40)
Similarly, when e, represents the diclectric constant measured at optical
frequencies, one may write
wle. — 1)E = P, (2.41)

From these expressions it is obvious that the difference befween €, und ¢,
is @ megsure for the tonic polarizalion. The values of ¢, and e, given in
Table 2.2 for alkah habdes illustrate cicarly that the static dielectric con-

Table 2.2. STATIC AND OFTICAL DIELECTRIC CONSTANTS, ¢4 AND ¢ ¥OR ALEAL!
HALIDES; 7 REPRESENTS THE INDEX GF REFRACTION

Solid e P Solid € =
P — |

LiF .27 1.92 | KF 6.05 1.85
LiCl 11.05 2.75 l Kci 4.68 2.13
Likr 12.1 3.16 i KBr +.78 2.33
Lil 11.03 3.80 | i 494 2.69
NaF 6.0 1.74 I RbF 5.91 1.93
NaCl 5.62 295 i RbCI 5.0 2.19
NaBr 5.99 2.62 | RbBr 5.0 233
Nal 6.60 2.01 | RbI 5.0 2,67

stant of these materials contains an appreciable contribution from the dis-
placement cf the positive ior lattice relative to the negative ion lattice in
an external field. It should be mentioned here that in the optical region of
the eclectromagnetic spectrum, ong measures the dieleetric constant by
determining the index of refroclion n. According to Maxwell’s theory of
electromagnetic waves, ¢, = n* [or materials with o magnetic permeability
equal to that of vacuum.

It may be of interest to point out that there exists a relationship be-
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tween the difference (&, — ¢.) and the compressibility of these materials.
This may be seen as follows: The compressibility of a material is defined
as the fractional change in volume per unit change in pressure. It is evi-
dent that the compressibility of a material will be smail for “hard"” atoms
and large for “soft” atoms. In the case of an ionie solid, the applied field
tends to shift the positive ion lattice in a direction opposite to that in
which the negative ions tend to move, so that for a system of “hard” ions,
the ionic polarization per unit applied field will be smaller than for a
system of “soft” ijons. Thus, in general one expects large values of
(ers — €re) to be accompanied by large values of the mechanical compressi-
bility of the material; this notion is in agreement with experimental
evidence.

(iii) Solids containing permanent dipole moments. The molecules in
many solids carry permanent electric dipole moments; solid nitrobenzene
(CeHNOg) is an example of this group. The dielectric constant in the
vicinity of the melting point of this material is represented in Fig. 2.16.

40t Salid : Liquid
P o s i |
80 - \L
d 15 i
£ €r
1 20+ t 10}
10 }- B
A
OI 'l':'l!’ t 1 i L 1 i
270 280 200 300 % 100 125 150 176

— TK) —= T'K)

Fig. 2.17. Therelative dielectric
constant of solid and liquid HC1

Fig. 2.16. Relative diclectric
constunt of nitrobenzene as a

funetion of temperature in the
vicinity of the melting point.
[After C. P. Smyth and C. &

as a function of temperature.
[After C. P, Smyth and C. B.
Hitcheock, J. Am. Chem. Soc.,

Hitcheook, J. Am. Chem. Soc.,
53, 12060 (1933)]

55, 1830 (1933)] -

L)
It is observed that as the material freezes, the dielectrie constant ¢ de-
creases abruptly from a value near 35 to a much lower value. It is also
observed that in the solid siate € is independent of temperature, whereas
in the liquid state it decreases with increasing temperature. These ob-
servations ean be understood qualitatively on the basis of the concepts



Sec. 2.7 Properties of Insulators in Static Fields 47

developed in the preceding sections. Tn the liquid state, ¢ is determined
by the clectronie, ionie, and orientatior:al contributions. The decrease of
¢, with increasing temperature must evidently be ascribed to the fact
that the orientational contribution decresses withi temperature, as it dees
in the case of gases [see formula (2.25)]. The sudden drop in € 2t the melt-
ing point is interpreted as meaning that even though the solid contains
permanent dipoles, these are “frozen” in the solid state and can no longer
be aligued by an external field. Thus, in the aolid state one only measures
the contributions to & associated with clectronic and ionic polarization.
This also explains the fact that in the solid state the temperature de-
pendence of ¢ has disappeared.

In some solids, the permanent dipoles may still contribute to the
polarization, although their motion may be strongly inhibited. An example
is given in Fig. 2.17. Tt is observed that as HC] goes from the liquid state
to the solid state at 159°K, ¢ increascs abruptly by a small amount; this
is due to the change in density upon solidification. However, in the solid
state, ¢ keeps increasing with decreasing temperature, indicating the
presence of orientational polarization. It is not until a temperature of
100°K has been reached that e drops sharply, & result of the fact that the
dipoles have become immobile.

After what has been said concernicg the static dielectric constant
of solids, there is little to be added about the same quantity in the case
of liquids. In general, & will decrease with increasing temperature as a
result of a reduction in the orientational polarization. 1f there are no
permanent dipoles present, e is nearly independent of temperature.

2.8 Some properties of ferroelectric materials

For the dielectric materials discussed in the preceding sections, the
polarization is a linear function of the applied field. There are, however,
a number of substances for which the polarization of a specimen depends
on its history; i.e., the polarization in these materials is not a unique
function of the field strength. In particular, these materials exhibit
hysteresis effects, similar to those observed in ferromagnetic materials;
they are therefore called ferroeleciric materials. An example of a hysteresis
loop associated with the polarisation versus field strength is given in Fig.
2.18. When an electric field is applied to a “virgin” specimen of a ferro-
electric material, the polarization increases along a curve such as 0ABC
in Fig. 2.18. When the field is reduced, it is observed that for E = 0, a
certain amount of remanent polarization, P,, is still present. In other
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Fig. 2.18. Schematic representation of a hysteresis curve for a
ferroelectric material. P, represents the remanent polarization,
P, the spontaneous magnetization. The slope along BC is due to
“normal” dielectric polarization. E, is the coercive field.

words, the material is spontancously polarized. In order to make the po-
larization equal to zero, a field in the opposite direction must be applied;
this field iz called the coercive field, and is denocted by FE. in Fig. 2.18,

The hysteresis loop may be explained qualitatively in the following
manner: the direction of the spontaneous polarization is generally not the
same throughout a macroscopic specimen. In fact, the specimen may be
considered to consist of a number of domains which are themselves spon-
taneously polarized, but with the direction of polarization varying from
.one domain to another. Thus, a virgin macroseopic specimen may have
zero polarization as a whole; i.e., the resultant of the polarization vectors
of the individual domains may vanish. Upon applieation of an electric
field, the domains for which the polarization points along the direction
of the applied field grow at the expense of other domains for which the
polarization points in other directions. This process corresponds to the
curve OARB in Fig. 2.18. Ultimately, the specimen may have become one
single domain, and the further slight ircrease of P with increasing applied
field is due to “normal” polarization as discussed in preceding sections.
The domain structure can be studied in ferroelectric materials, for exam-
ple, by employing polarized light, which makes domains visible. In Fig.
2.19 we have illustrated schematically how the polarization of a crystal
of BaTiO; (barium titanate) may change direction under the influence of
a field which has a direction opposite to that of the spontaneous polariza-
tion. Domains with & polarization parallel to the applied field evidently
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. A
Fig. 2.19. Schematic represen-
tation of new domains resulting o e
from application of a field E di- —_—
rected oppoeitely to the spon- — —
tancous polarization of a speci- -
men. —_—

grow in the form of thin needles of approximately 10* m width; these do-
mains grow essentially in the forward direction until ultimately the polariza-
lion of the specimen lies along the applied field direction. This process s
quite different from that encountered in ferromagnetism, as we shall see
in Chapter 4.

The spontaneous polarizaiion, which is the most characteristic property
of a ferroelectric material, usually vanishes above a eertain temperature
8;; this temperature is called the ferroelectric Curie temperature. In the
ferroelectric region, i.e. below 6, the diclectric constant is evidently a
function of the field strength and is no longer a “constant.” One can, of
course, define a differential relative dielectric constant defined on the
basis of (2.9) by the equation

«le — 1) = dP/dE (2.42)
When one speaks of “the dielectric constant” in the ferroelectric region
one usually means e, defined by (2.42) along the virgin ourve at the origin.
The dielectric constant so defined may reach very high values in the
vicinity of the ferroelectric Curie temperature, as may be seen from Fig.
2.20 for barium titanate ceramic.

Above the Curie temperature, the dielectric constant varies with

temperature in accordance with the so-called Curie-Weiss law

e= C/(T —0) (2.43)
where C is a constant and 8 is a characteristic temperature which is usually
a few degrees smaller than the ferroelectric Curie temperature 8.

Classification of ferroeleciric materials. There are various groups of
ferroelectric muoterials which may be classified on the basis of their
chemical composition and structure.
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Fig. 2.20. Diclectric constant of barium titanate ceramic ns a
function of temperature. The fully drawn and the dashed curves
correspond respectively to a peak field strength at 1 ke of 56 and
1100 volts per cm. The sharp peaks occur at the ferroeleciric
Curie temperature ;. (After W. B. Westphal, Laboratory for In-
sulation Research, M.I.T.)

(i) The first solid which was recognized to exhibit ferroelectric
properties is Rochelle sall, the sodium-potassium salt of tartaric acid
(NaKCH,0,-4H;0). Tt has the peculiar property of being ferroelectrio
only in the temperature region between —18°C and 23°C; i.e., it has two
ransition temperatures. The spontaneous polarization of this material

— 10°P, [coulomb-m™?%)

L 1 1 1 1 ! - 1
250 260 270 280 20 300 810
—TI'K)
Fig. 2.21. Spontaneous polarization of Rochelle salt as a func-

tion of temperature. [After J. Halblitzel, Helv. Phys. Acta, 12,
489 (1939)]
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is represented in Fig. 2.21. Rochelle salt is representative of the tartrate
group of ferroelectric materials; other members of this group are those in
which a fraction of the potassium in Rochelle salt is replaced by NH,,
Rb or TL '

(ii) Tn 1935 Busch and Scherrer discovered ferroelectric properties in
KH,PO,, which is a typical example of the dihydrogen phosphates  and
arsenates of the alkali metals. The spontaneous polarization of this ma-
terial is given in Fig. 2.22 as a function of temperature. The shape of this
curve resembles that of the spontaneous magnetization in iron, as we shall
see in Chapter 4. In this case, there is only one Curie temperature, viz,
8 = 123°K.

5
=
'E 4
B 3
- 2
a..
8 1
T 0 i 1 H L ] L
100 106 110 116 120 125
- T (K]
Fig. 2.22. Spontaneous polar- Fig. 2.23. The cubie structure
ization of KH:PQ, as a function of BaTiO; above the ferroclec-
of temperature. [After A. von tric Curie temperature.

Arx and W. Bantle, Helv. Phys.
Acta, 16, 221 (1943)]

(iii) Probably the best-known ferroelectric material is barium titanate
BaTiO;; it is a representative of the so-called oxygen octahedron group of
ferr~eleciric materials. The reason for this name is that above the Curie
temperature (@ = 120°C), BaTiO; corresponds to the cubic structure pre-
sented in Fig. 2.23. In this structure, the Ba®* ions occupy the corners of
a cube; the centers of the cube faces are occupied by O*~ ions. The oxygen
ions form an octahedron, at the center of which the small Ti** ion is
located. The Ti¢* ion is considerably smaller than the space which is
available inside the oxygen octahedron. It thus brings with it a high ionic
polarizability for two reasons: (a) it has & charge of 4e and, (b) it can be
displaced over a relatively large distance. We shall see that this may be the
explanation for the occurrence of spontaneous polarization in BaTiO,.

There is an intimate relationship between the ferroelectric properties
and the atomic arrangement in ferroelectric materials. Above 120°C,
BaTiO, has the cubic structure indicated in Fig. 2.23. When the tempera-
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ture is lowered through the critical temperature of 120°C, the materiai
becomes spontaneously polarized and at the same time the structure
changes. The direction of spontaneous polarization may lie along any of
the cube edges, giving a total 6. possible directions for the spontaneous
polarization. Along the direction of spontaneous polarization of a given
domain, the material expands, whereas perpendicular to the polarization
direction it contracts. Thus, the material is no longer cubie, but corre-
gponds to a so-called tetragonal structure. BaTiO; has two more transition
temperatures: one at 5°C, where the spontaneous polarization changes its
direction from one of the cube edges to a direetion corresponding to a face
diagonal in Fig. 2.22; and one at —80°C where the spontaneous polari-
zation changes from a direction corresponding to a face diagonal to one
along a body diagonal, Associated with each of these ferroclectric tran-
sitions 1s a change in the crystal strueture of the material. These three
transition temperatures are reflected in the dielectric constant and in the
spontaneous polarization of $he material, as may be seen from Figs. 2.24

10,00C -

8000 -

¢-axig

i i 1 I 1
90 130 170 210 250 280 330 970 410
— T(K)

Fig. 2.24. The dielectric constant of BaTiO; as a funetion of tem-
perature. [After W. J. Merz, Phys. Rev. 76, 1221 (1949)]

and 2.25. The spontaneous polarization represented in Fig. 2.25 was
measured along a cube edge over the whole temperature rsage. Thus,
the magnitude in the region between 193°K and 278°K i obtained by
multiplying the value given in Fig. 2.25 by V'2 (P, in that region is directed
along a face diagonal!). Similarly, to obtain the-magnitude of P, in the
region below 193°K, one should multiply ths value in Fig. 2.24 by V3



Sec. 2.8 Properties of Insulators in Static Fields 23

- 100 P, (coulomb-m™}
[+-]

o e 1 1 . 1 ) { B 1
120 180 240 300 360

— T (K]

Fig. 2.25. The spontaneous polarization of BaTi0; measured
along a cube edge. [Alter W. J. Merz, Phys. Rev, 76, 1221 (1949)]

(P, directed along body diagonal in this case!). Essentially, therefore, the
magnitude of the spontaneous polarization below about 30N°K is constant.

9.9 Spontaneous polarization

Although we do not intend to give here a detailed discussion of the
theory of ferroelectricity, a few remarks should be made with reference to
the occurrence of spontaneous polarization. Tn section 2.7 we noted that
in normal solid dielectrics the internal tield may be written in the form

E.=E + (v/a)P (2.41)
where E is the applied field, P the polarization and v the internal ficld
constant. Although the internal field may be different for different atomic
| nsitions in the solid, for the sake of argument we shall assume (2.44) to
be valid for all atoms in a hypothetical solid. Suppose this hypothetical
solid ean be built up by a three-dimensional stacking of units such as the
cube in Fig. 2.23 in the case of BaTiO,. Let there be N of these units per
m? and let the total polarizability per unit be a. The polarization of the
material may then be written as

P = NaE, = NalE + (v/«)P] *(2.45)
from which we find upon solving for P
NaE
| CORES — 9.4
1 — (Nav/e) (3:40)

Does this formula indicate the possibility of spontaneous polarization?
Vhat we are asking for is actually this: in the absence of an external field
(% = 0), does (2.46) allow a non-vanishing value for P? The answer is,
that such a solution indeed exists, viz. when the denominator in (2.46)
equals zero. In other words, if Nay/e = 1, spontanceus polarization is
possible. Physically, this means that if the interaction between the atoms
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is large enough (large v), and if Ne is large enough, spontaneous polari-
zation may occur, We may also look at this from a somewhat different
point of view. Consider the string.of atoms in Fig. 2.18 in the absence of
an external field. The string may then occur in two states: (i) the atoms
are not polarized; i.e., they carry no dipoles; (ii) the atoms induce in each
other dipoles such that the string is spontaneously polarized. Which of
these two states is realized depends on the energy of the system in the
two states. If the energy of the string in the spontaneously polarized
state is lower than that of the unpolarized state, the spontaneously po-
larized state will be the stable configuration of the system; if the energy
of the spontaneously polarized string is higher than that of the unpolarized
string, the system will not be spontaneously polarized.
Still another way of looking at the condition for spont.a.neous polari-

zation emerges by writing (2.46) in the form

£ Na e A

B 1= (Nay/e) T 1= Ap
where 8 = y/e. In this form, the last expression reminds us of the gain
of an amplifier with an amplification 4 and a feedback factor g (see Fig.
2.28). If there were no feedback; i.e., if the internal field were the same as

(2.47)

In A Out Fig. 2.26. Schematic represen-
= E tation of an amplifier with gain
A A and a feedback loop 8. The
total gain is given by expression

the applied field, corresponding to 8 = y = 0, the “gain’’ (which in this
case corresponds to the polarization per unit field) would be simply
Na = A. As a result of the feedback associated with the internal field
constant v, the gain is in gencral larger than Na, and may become infinite
if AB = Nay/g = 1.

It will be evident from the discussion that a high polarizability o is
one of the factors which is favorable for the occurrence of spontaneous
polarization. In this connection we remind the reader of a remark made
earlier in connection with the high ionic polarizability associated with the
T1** jon in BaTiO;; thi is presumably one of the factors which give rise
to the spontaneous polarization in this material.

The next question which arises is this: why does spontaneous po-
larization usually occur only below a certain temperature? We shall con-
sider here one possible cause for the existence of a Curie temperature. Let
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us start from equation (2.46), assuming that this expression applies
in the nonferroelectric region (T 2> 6). From the gencral expression
P = &le — 1)E it then follows that the dielectric constant of the material
satisfies the relation:
Na/e

1 - Nav/e
Let us inquire about the temperature dependence of &, assuming for sim-
plicity that « and v are temperature independent and that only N is a
funetion of temperature. If \ represents the coefficient of volume expansion
of the material, then we have evidently

L1dN _ _
NdT = A (2.49)

The minus sign indicates that as T increases the volume increases and
hence N decreases. Now, in “normal” dielectrics for which ¢ is of the order
of unity or ten, the influence of expansion of the material with incressing
temperature has very little influence on ¢ if « and vy are independent of
T. However, we see from (2.48) that if at a certain temperature T the
quantity N(T\)ay/« is only slightly smaller than 1, cooling of the sample
may increase N sufficiently to make Nov/e equal to 1 for some tempera-
ture 6; below T\, with the result that spontaneous polarization may set in
at T = 8, At the same time, ¢, — 1 would be very large in the vieinity
of the critical temperature (see Fig. 2.27). These qualitative arguments

(2.48)

e — 1=

Fig. 2.27. Schematic represen- 1
tation of & — 1 as a function of er—1 |
Navy/a, saccording to formula 1 |
(2.48). The value Nay/ea =1 |
corresponds to the ferroelectric [
Curie temperature; Navy/eo <1

corresponde  to temperatures ]
above the ferroelectric Curie |
temperature. 1

— Naq/e,

show that a Curie temperature may arise in a material of high ¢, simply

as a result of the contraction of the material upon cooling.
Assuming the model is correct, how does e, vary with temperature in the
vicinity of the Curie temperature? Solving for N from (2.48) we find
e —1

h e —————————
S alm—1y+1 (#:00)
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Differentiating both sides with respect to T' and dividing through by N
we obtain

Lav _ __de 1

NdT ~ T dT (e — 1) [(e = 1)y + 1]
The temperature coefficient of ¢ is thus related to the coefficient of ex-
pansion in aceordance with (2.51) if v and « are assumed to be tempera-
ture-independent. Now in the vicinity of the critical temperature 6, the
dielectric constant ¢, 3> 1 and since, according to section 2.6, the internal
field constant is of the order of unity (or perhaps larger in ferroelectric
materials), one may write (2.51) in the approximate form

(2.51)

de" ~ 2

ar = — Aver (2.52)
How does the dielectrie constant near T = 8, but in the region T 2 6,
vary with temperature? Evidently for T = #, we have N(#))ay/e = 1

so that aeccording to (2.48) &(f) = . Hence we obtain from (2.52)

f_-de—:; = )y j:dT

s0 that upon integration we obtain

PR .
el =
We see that this expression is exactly of the form (2.43); i.e., this model
provides us with the experimentally observed Curie-Weiss law for the
dielectric constant above the critieal temperature (see also Fig. 2.19).
Note, however, that in this model the ferroelectric Curie temperature 6,
is identical with the temperature 8 in the Curie-Weiss law, whereas experi-
mentally 8 is usually a few degrees lower than 6.
1t is of interest to note that for BaTiO; the coefficient of expansion
A 2=23 X 10-% per degree and the observed Curie constant 1/A\y 22 105
Consequently, there is also reasonable agreement as far as the order of
magnitude of the Curie constant for BaTiO, is concerned between the
model and experiment, if one assumes y = 1.

for T > ﬂ; (253)

2.10 Piezoelectricity

In our previcus discussions we have seen that an applied electric field
induces dipole moments in atoms or ions, and generally displaces ions
relative to each other. Consequently, the dimensions of a specimen
undergo slight changes. Mechanical stresses also change the dimensions
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of a specimen but in general such changes do not produce a dipole moment.
In other words, in most materials dielectric polarization produces a me-
chanical distortion, but & mechanical distortion does not produce polari-
zation. This electromechanical effect, which is present in all materials,
is called electrosiriction. In purely electrostrictive materials, the mechani-
cal deformation produced by a polarization in a given direction is the same
as that produced by a polarization in the opposite direction; i.e., mechani-
cal changes can be expressed as a series expansion containing only terms
with even powers of P. A simple example of a material with only electro-
strictive properties is given in Fig. 2.28. Note that the basic unit from
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Fig. 2.28. A two-dimensional square lattice with only electro-
gtrictive properties. Application of a field along the positive
z-direction produces the same mechanical deformation as a field
along the negative z-direction. The dashed square represents the
basic unit, and has a center of symmetry.

which this material can be built contains a center of symmetry; i.e., starting
from the center and drawing a vector to one of the surrounding ions, one
finds a similar ion at a position corresponding to a vector of equal length
drawn in the opposite direction.

There are solid dielectric materials, however, for which the sign of
a mechanical deformation produced by a polarization P changes when the
direction of the polarization is reversed. Such mechanical deformations
then contain at least one term with an odd power of P. These materials
do become polarized upon application of a mechanical stress and are
called piezoelectric; they are of practical importance because they permit
conversion of mechanical into electrical energy and vice versa. A two-
dimensional example of such a material is represented in Fig. 2.20. The
basic unit from which this material can be built evidently lacks a center of
symmetry, and this is a requirement for a piezoelectric material.

We note that if in Fig. 2.29 we apply a tension along the z-direction,
the angle 8 will inerease, thus giving rise to a polarization in the positive ,
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* Fig. 2.29. A two-dimensional structure with piezoelectric prop-
erties; the dashed triangle lacks a center of symmetry.

y-direction. But if the unit is compressed along the z-direction, # will
decrease and the polarization will lie along the negative y-direction. On
the other hand, application of tension or compression to the basic unit in
Fig. 2.28 produces no polarization at all, because of the symmetry of the
unit. For a detailed discussion of the piezoelectric effect the reader is
referred to the books listed below.
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Problems

2.1 A charge of @ coulombs is distributed homogeneously over the sur-
face of a sphere with a radius of R meters; the sphere is in vacuum. Find
the flux density D, the field strength F and the potential V as a function
of the distance r from the center of the sphere for 0 € r < «; assume
V(e) = 0.

2.2 A charge of Q coulombs is distributed homogeneously throughout
the volume of a sphere of radius B meters; the sphere ig in vacuum, Find
the flux density D, the field strength E and the potential V as a function
of the distance from the center of the sphere for 0 £ B < «; assume
V(o) = 0.
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2.3 Find the capacitance C of an isolated conducting sphere of radius
R meters in vacuum. If the sphere is charged with Q coulombs, what is
the energy stored? Assume the potential is zero at infinity.

2.4 Consider two coaxial metal cylinders of radii B, and R,. The space
between them is filled with a dielectric with a relative dielectric constant e,.
The potential difference applied between the two cylinders is V volts. Find
the charge on the cylinders and the capacitance of the system per meter
length (neglecting end effects).

2.6 Electrolytic condensers are manufactured by anodic oxidation of
aluminum; the thickness of the aluminum oxide layer formed in this manner
is proportional to the anode voltage employed, and amounts to approxi-
mately 0.1 micron per 100-volt anode voltage. Find the approximate ca-
pacitance for a strip of aluminum of 5 cm by 40 em, oxidized on both sides
to an anode voltage of 500 volts if ¢, = 8 for ALO,.

*2.6 In the design of oscillator-tank circuits one is frequently faced with
the requirement of temperature-independent tuning. If T and C are the
equivalent self inductance and capacitance of the eircuit, show that this
requirement may be expressed mathematically as

1dL_ 1dC
LdT ' CcdT
where T"is the temperature.

=0

2.7 A condenser of 1 microfarad contains titanium oxide (TiOy) as a
dielectric with ¢ = 100. For an applied d-c voltage of 1000 volts, find the
energy stored in the condenser as well as the energy stored in polarizing
the titanium oxide. Answer the same questions for a l-microfarad mica .
condenser, assuming a dielectfic constant ¢, = 5.4 for mica.

2.8 Consider a neutral system of point charges, Qi, Qs, ..., Q.. .,
which are located at the endpoints of a set of vectors gy X0y o iy g s
drawn from the origin of a coordinate system. Show that the dipole mo-
ment u = E‘ Qir: is independent of the choice of the origin of the coordinate

system. (Hint: shift the origin to another point, write down an expression
for p in the new system, and show that Mnew = feold)-

2.9 With reference to a two-dimensional Cartesian coordinate system
z, y, four point charges are located as follows: a charge of @ coulombs in
the point (0, 0); —Q in (1, 0); 2Q in (1, 1); and —2Q in (0, 1); the numbers
refer to meters. Find the magnitude and direction of the dipole moment
of the system.

2.10 An electrolytic condenser consisting of an oxidized aluminum
sheet with an effective surface area of 400 cm? has a capacitance of 8 micro-
farads; the dielectric constant of AlLQ; is ¢ = 8. A potential difference of
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10 volts is applied between the aluminum and the electrolyte. Whatis the
field strength and what is the total dipole moment induced in the cxide
layer?

2.11 A particle of charge @ coulombs is bound elastically to an equi-
librium position with a force constant f newton m™. What is the polar-
izability of the system?

2.12 Assuming that the polarizability of an argon atom is equal to
1.43 X 10~ farad m?, calculate the relative dielectric constant of argon
at 0°C and 1 atmosphere.

2.13 According to wave mechanics, an electron in the ground state of
a hydrogen atom corresponds to a charge distribution given by expression
(1.11). Assuming that the form of the charge distribution remains constant
for small applied electrie fields, caleulate the polarizability of the hydrogen
atom by the method used in section 2.3; assume that the displacement of
the charge cloud relative to the nucleus < r,. Compare the answer with
expression (2.12).

2.14 An atom of polarizability « is placed in a homogeneous field E.
Show that the energy stored in the polarized atom is equal to jeB™

2.16 An atom has a polarizability of 10 farad m?; it finds itself at a
distance of 10 angstroms from a proton. Calculate the dipole moment in-
duced in the atom and the force with which the proton and the atom attract
each other.

2.16 A sealed-off vessel with two electrodes to measure the dielectric
constant of a gas has a pressure of 760 mm of mercury at 300°K. The di-
electric constant at 300°K is found to be ¢ = 1.006715; at 450°K, & =
1.005970. Find the number of molecules in the gas per m?, the dipole mo-
ment of the molecules and the polarizability of the molecules.

2.17 A point dipole of u coulomb m finds itself at a distance of a
meters from the center of an atom of polarizability « farad m?; the direc-
tion of p is parallel to the line joining the dipole and the center of the atom.
Find the dipole moment induced in the atom.

2.18 Repeat problem 2.17 for the configuration in which p is perpen-
dicular to the line joining the dipole and the center of the atom.

219 The centers of two identical atoms of polarizability « farad m*
are separated by a distance of a meters. A homogeneous electric field E is
applied in a direction parallel to the line joining the centers of the two
atoms. Find the internal field E; at the position of each of the atoms. If
a = 2 X 104 farad m? and @ = 5 X 107° m, what is the ratio between
E H 3Ild E?
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2.20 Repeat problem 2.19 for an applied field E perpendicular to the
line joining the centers of the two atoms.

2.21 Consider a solid containing N identical atoms per m?*; the polar-
izability of the atoms is a farad m®. Assuming a Lorentz internal field,
derive the Clausius-Mosotti relation.

2.99 A solid contains 5 X 107 identical atoms per m?, each with a po-
larizability of 2 X 10~ farad m? Assuming that the internal field is given
by the Lorentz formula, calculate the ratio of the internal field to the ap-
plied field.

2.23 Consider the following two infinite arrays of identical equidis-
tance potr.t dipoles:

— — — .- — .-+ (ferroelectric)
1t L 1 --- | -+ (antiferroelectric)

The distance between neighboring dipoles is the same in the two configura-
tions. From an examination of the field produced at the position of a given
dipole by all other dipoles in the array, argue which of the two configura-
tions is the more stable one.



