3

Behavior of Dielectrics in

Alternating Fields

Tn this chapter we shall discuss the essential aspects of the behavior of
dielectric materials when subjected to alternating fields. The discussion is
based on the atomic models employed in the preceding chapter, and from
the behavior of these models in alternating fields we shall arrive at the
frequency dependence of the macroscopic dielectric constant. As a result
of the discussion it will become evident that the dielectric constant under
these conditions is in general a complex guaniity of which the imaginary
part is a measure for the dielectric losses of the material. The discussion
in this chapter is by no means complete and serves mainly to illustrate the
principles leading to the complex dielectric constant and its interpretation.

3.1 Frequency dependence of the electronic polarizability

Let us return at this point to the atomic model employed in section 2.3,
and let us inquire what results would be obtained for the polarizability a.
when the model is subjected to an alternating field. For simplicity we shall
assume a nucleus of charge +e and a single electron, the latter being rep-
resented by an electron cloud of total charge —e distributed homogeneously
through the volume of a sphere of radius R; the center of the sphere in the
absence of an external field coincides with the nucleus (see Fig. 2.5). Since
the nucleus is much heavier than the electron cloud, we may consider the
nucleus to a good approximation to be at rest, the electron cloud carrying
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out the motion forced on it by the s-c field. The first problem is, of course,
to set up the differential equation which describes the motion of the elec-
tron cloud. First consider the following problem: suppose the electron
cloud is displaced by an amount z, relative to the nucleus and then the
system is left to itself. What is the differential equation which describes
the motion of the electron cloud under these circumstances? From the
discussion in section (2.3) it follows that wne force which tends to drive
the center of the cloud to the nucleus is given by

F = —ez/ireR? = —az (3.1)
where z is the displacement. The force F is called the restoring foree and a
the restoring force constant. Hence, if there were no damping, and in the
absence of an applied field, the equation of motion of the electron clowt
would be identical with that for a harmonic oscillator, viz.,

s -
e

where m is the mass of the cloud, i.c. the electron mass. It is well known
that the solution of (3.2) is .

T = 7y 8in (wet + &) (3.3)
where x; and & are integration constants, and where wy = (a/m)" is the
natural or resonance angular frequency. An estimate of the order of mag-
nitude of wo is obtained by putting in (3.1) R = 10~ m; this gives with
m = 0.9 X 107% kg a value of wo== 10" radians sec—!. Hence, the fre-
quencies we are talking about lie in the ultraviolet part of the electromag-
netic spectrum.

Lixpression (3.2) is incomplete in the sense that it does not take into
account the emission of electromagnetic radiation by the system; the
emission results from the time variation of the acceleration of the electron
cloud and leads to damping. In the mechanical case, damping of the oscil-
lating particle would result from the viscosity of the medium in which the
particle moves and it is well known that this damping leads to a term pro-
portional to the velocity of the particle in the equation of motion. It can
be shown that, in the electrical case under consideration, the damping due
to radiation may be represented in a similar way; i.e., instead of (3.2) we
should write

—ar (3.2)

d’z dz
moap = —ax = 2b a (3.4)
where the last term is the damping term. The constant b is related to the
natural frequency ws in the following manner

2 = poetwld/Game (3.5)
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where g = 1.257 X 107 henry m~' is the magnetic permeability of vac-
uum, and ¢ = 2.9979 X 10*m sec™! is the speed of light. Substituting
numerical values, the reader may verify that 2b/m < w, result which
will be used later.

We are now in a position to write down the equation of motion of the
electron cloud in the presence of an alternating external field. Let the field
be applied in the z-direction and let it be represented by Ey cos wl, w being
the angular frequency. The force on the electron cloud resulting from the
field is then —eE, cos wt and the equation of motion is

d*x

oy dx
4 }I‘E = —ar — Zb (H_ - EED 08 wl {3-6}

To solve this equation for z(t) it is convenient to use complex notation.
Thus, we shall write*

E, cos wt = Re [Ewi] = E, Re [¢/] (3.7)
and we shall assume the solution to be of the form
z(t) = Re [A™ ev] . (3.8)

where A* is in general a complex amplitude. Substituting the last two
expressions into (3.6) one obtains

: Re {[-w“d‘ + 8 4* _i_jge_)."."’At + e EU:I e"""} -
m m m

From this it follows that the expression in square brackets is zero; writing

a/m = wi in accordance with the definition of the natural frequency wo,

we find
(e/m)Eq

* _
A w — wi — J(2b/in)

(3.9)

What is the induced dipole moment as function of time? In general,
mina(l) = —ex(t) so that we find from (3.8) and (3.9)
e ) Byt

i = R [ = G Gy
Since the coefficient of Ewe™ is a complex quam.‘it.y, we see that the statie
definition pina = .8 cannot be applied in this case. We are therefore com-
pelled to introduce a complex polarizability o by means of the {ollowing
expression

(3.10)

uina(t) = Re [aiEee’] (3.11)
where
- et/m
‘T 3 — o+ i(2be/m)

*Re [ ] means “real partof [ ]". Comples quantities will be provided with an
asterisk superseript.

(3.12)
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Writing cut the real and imaginary parts of (3.12) we find

e wi — w? . 2hw/m
@ = (wi — w?)? + (db%w?/m?) J (wi — w?)? + (4bw?/m?)
= a; — jay (3.13)

where o) and o)’ represent, respectively, the real and imaginary parts of
the polarizability.

We shall now discuss the frequency dependence of the real and imagi-
nary parts of «f, referring to Fig. 3.1. First of all, we note that for w = 0

Gy, Ge

Se

¢z)‘mw%

I

L] w
|
|

2b

m N

-

Fig. 3.1. Schematic represcntation of the frequency dependence
of the real and imaginary parts of and &, respectively, of the
electronic polarizability for a single electron.

the imaginary part vanishes, the reul part being equal to the static value
e*/mwf. The real part is positive for all values w < w and negative for all
values w > wp; the real part is zero for w = wo. Remembering that 2b << ws,
it is noted that aj is essentially constant from zero frequency up to fre-
quencies which become comparable to wo. In the region where w is nearly
equal to wy, the behavior can be discussed conveniently by introducing the
variable
Aw = w — w with Aw K wg
We may then write approximately

wh — @' = (w0 + w)(wo — @) =2 2wphw
and the real part becomes

ko [ 2wpdw _ €  (Aw)/2uw
T m dwl(Aw)? + 4bRel/m®t T m (Aw)? + b%/m?

This expression has a maximum for Aw = b/m and a minimum for Aw =
—b/m, as illustrated in Fig. 3.1. The dampings coeflicient 2b is thus a

(3.14)
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measure for the distance between the maximum and minimum in the dis-
persion curve (o, versus ).

The imaginary part af vanishes for » = 0 as well as for w — «. In the
vicinity of w = wo, we may write by introducing the variable Aw,

oo __ED/2mPw0
% (o) + o/m?
Thus, o exhibits a maximum for Aw = 0, i.e. for w = wy; the magnitude
of the maximum i8 (o) mex = €/2wb. The width of the bell-shaped curve
for a corresponding to half the maximum value is readily found to be
2b/m.

The consequences of a complex electronic polarizability for the dielec-
tric behavior will be discussed later, but it may be said here already that
the imaginary part of the polarizability gives rise to absorplion of energy by
the system from the field.

The model discussed above was limited to the existence of one clectmn.
In general an atom contains a number of electrons, each of them corre-
sponding to a particular force constant a; and a particular damping con-
stant b;. Consequently, the atom in general will have a series of wy, values

(3.14a)

L £
Oy e ay

| ] /\
w1 Wo2 Wy —»

Fig. 3.2. Schematic representation of the frequency dependence
of the real and imaginary parts of the polarizability of an atom;
in this case there are a series of resonance frequencies wu, wem, ete.

w

and the polarisabiﬁt& will exhibit a frequency dependence as indicated
schematically in Fig. 3.2.

3.2 lonic polarization as a function of frequency

The frequency dependence of the ionic polarizability can be discussed
in complete analogy with the electronic polarizability, the difference be-
tween the two cases being of a quantitative nature only. When two ions
in a molecule or solid are displaced relative to each other, the restoring
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foree which tends to drive them back to their equilibrium positions is to a
good approximation proportional to the displacement. Hence, the forces
are harmonic. The masses of the particles in the present case are, of course,
those of atoms rather than of electrons. As a result, the natural frequencies
of the ionic vibrations lie in the infrared part of the electromagnetic spec-
trum, corresponding to wo = 10 radians per second. Thus, the ionic po-
larizability of a molecule will also be a complex quantity which may be
written in the form

o = of — jod! (3.15)
The real part of as a function of the frequency w of an applied field exhibits
the same features as those represented for af in Tig. 3.2; the only difference
is that the ws; values for which the maxima and minima occur are now dis-
placed to the infrared region. Similarly, af’ s a function of frequency will
exhibit various bell-shaped maxima, one for each of the characteristic fre-
quencies wo;-

3.3 The complex dielectric constant of non-dipolar solids

On the basis of the information obtained in the preceding two sections,
let us consider the frequency dependence of the dielectric constant of a
gclid, assuming the solid contains no permanent dipoles. The last restric-
tien is not particularly severe in the case of solids, because usualiy the
dipoles are not able to rotate anyway. In the solid state, and also in the
Jiquid state, the applied field must be replaced by the internal field E,, as
discussed in section 2.6. For simplicity we shall assume that the internal
field is given by the Lorentsz field (2.33), so that

E(t) = E(t) + P(t)/3e (3.16)
where P(¢) is the electric dipole moment per unit volume at the instant 2.
Let us assume that the solid contains N units per m* from which the solid
may be built up by a three-dimensional stacking. Let each of these units
be characterized by an electronic polarizability o} and an ionic polariza-
bility of. In accordance with (3.11) we may then write

P(t) = N Re[(a} + o})Ey ] (3.17)

where E}, is the complex amplitude of the internal field; w is the frequency
of the applied field. Note that in general, P(t) will not be in phase wtth the
applied field, or with the internal field. Consequently, the relationship de-
rived for static fields [see (2.9)]:

P = e, — 1)E
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is not valid in the case of an alternating field, and we shall therefore define
a complez relative dielectric constant € such that

P(t) = & Re [(¢ — 1)Eoe?] (3.18)

where it has been assumed that the applied field is given by Eo cos wt. Note
that by introdueing the complex ¢, we have introduced the possibility of
a phage difference between P(t) and E(t). Substituting (3.18) into (3.16)
we may then write

E{f) = Re [Q‘f—‘?’tﬂ E’uef“'] = Re [Ebei] (3.19)

Equating (3.17) and (3.18), and substituting (3.19) into (3.17) we find
i WO -

:t T8 "5 N(ot + o) (3.20)

The reader may compare this result with the Clausius-Mosotti expression
(2.38) derived for the static case under the same assumption, viz. a Lorentz
field for E..

The main point of the present discussion is this: the complex dielectric
constant of non-dipolar solids is determined by the complex polarizabii-
ities of and af. Consequently, the behavior of the real and imaginary parts
of the polarizabilities as function of frequency will be reflected in the fre-
quency dependence of the dielectrie constant. One thus arrives at the con-
clusion that the real and imaginary parts of ¢ defined by

& =€ — Jjg' (3.21)
are functions of the frequency of the applied field, and that these functions
are determined by a¥(w) and af(w).

What practical value do these results have for the electrical engineer?
This depends on the frequency range in which one happens to be interested.
According to the preceding sections, o} and «f are real as long as the fre-
quencies lie below infrured frequencies. Hence, up to microwaves, € is
essentially real for the materials under discussion and their behavior is the
same as it is in statie fields. The solids discussed here, however, are ideal-
ized in the sense that many of them contain ions which may be displaced
over one or more interatomic distances under influence of an external field;
this is the case, for example, in glassy materials, and to some extent even
in crystalline materials. Such processes may lead to an imaginary part of

the dielectric constant, and to dielectric losses as will be seen in subsequent
sections.
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3.4 Dipolar relaxation

So far in this chapter we have discussed only the frequency dependence
of the electronic and ionic polarization. From the electrical engineering
point of view, the frequeney dependence of the orientational polarizalion in
liquids and glassy substances is perhaps of greater importance, since it
gives rise to dielectric losses in the frequency range between zero and many
thousand megacycles, depending upon the substance. Although the dis-
cussion refers in particular to permanent dipoles rotating in liquids, the
results have much wider applicability.

Consider & liquid containing N permanent dipoles u, per unit volume.
Suppose it has been subjected for a long time to a d-c field E: let the ori-
entational polarization in equilibrium with the field be P,. When at the
instant { = ( the field is suddenly switched off, the polarization will not
instantaneously become zero, because there is a certain time required for
the rotation of the dipoles. Without going into the details of the molecular
processes involved, we shall assume that the polarization as function of
time decays to zero in accordance with the formula (see Fig. 3.3a)

Pit) = Pe—tr (3.22)
The quantity r has the dimensions of time and is called the relaration time.
In a liquid, 7 increases as the viscosity of the liquid increases, as one would

IPm 1- Pit)
By B —-—————e -
Decay Build-up
0 ’ — 0 —_—
la) (b)

Fig. 3.3. Tllustrating in (a) the decay of the orientational polar-
ization of a liquid upon switching-off the field at ¢t = 0. In (b) a
field is switched on at ¢ = 0; the curve represents the growth of
the orientational polarization with time.

expect from qualitative arguments. The rate of change of the polarization
is evidently given by

E = _ES —tr = _.Pn t)
dt Eolt) > r° B

T

(3.23)
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Note that the smaller the instantaneous value Py(t), the smaller the rate
at which the decay takes place. Since the ultimate value P,(=) = 0, we
may also write (3.23) as follows:

2P = L[Pu=) - P.O) (3.24)

The reason for writing the result in this particular form will become ob-
vious later.

Suppose now that an external field has been absent for a long time, and
that at ¢ = 0 a field F is switched on. What will P,(¢) be during the build-
up to the ultimate equilibrium value P,? From analogy with similar phys-
ical processes the reader will recognize that the answer to this guestion is
[see Fig. 3.3(b)) L

Po(l) = P(1 —e=t/r) (3.25)
The rate of increase is then

L P =Lt o = 1P, - P (3.26)

Since P, = P,(«) in the present case, note that (3.24) and (3.26) have the
same form. In other words, during build-up as well as during decay, the rate
of change of P,(f) is, apart from the factor 1/7, equal to the ultimate value
corresponding to the field £, minus the instantaneous value P,(f).

The foregoing discussion should be considered as a preparation for the
actual question we wish to consider in this section, viz.: given that the
equilibrium wvalue of the orientational polarization in a static field E is
equal to

P, = &(ex — 1)E (3:27)

where €, is that part of the dielectric constant which measures only the
orientational polarization, what is P,(tf) when one applies an alternating
field E\ cos wt? In order to answer this question, consider expression (3.24),
which was found to hold for decay as well as for build-up, and which we
shall now assume to hold also in the case of a-c fields. At the instant ¢, the
external field is B, cos wf and hence at that instant the dipoles are aiming for
a P,(=) equal to es(en — 1)K, cos wl. Consequently, the differential equa-
tion for P.(t) may be written as follows:

2 Pt) =} [elen — DEo co8 ut — Pi)] (3.28)

To solve this equation let us introduce a complex dielectric constant €%
[allowing for the possivility of phase differences between P,(¢) and E(f)]
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by means of the relation
Py(t) = & Re [(o — 1)Eoe’™] (3.29)
Substitution into (3.28) then leads to

o 1o =1
€0 l= 1+ ij (330}

Hence, for alternating fields, the orientational part of the dielectric con-
stant becomes complex, and is a function of the static value &0 and of wr.
Writing out the real and imaginary parts, we obtain

1 .
ru'"'-:(‘fﬂ_l)[l_l,_w:r: Jl+w"r‘] (331)
For the polarization we find from (3.29) and (3.31)
P = SR peosut + L= panut  (332)

Note that the first term on the right-hand side is in phase with the applied
field, whereas the second term lags by 90 degrees. The frequency depend-
ence of the in-phase and the out-of-phase components are represented in
Fig. 3.4. It is observed that the in-phase component of P,(¢) begins to dis-

P L
14wt

1
wr=l —rloguw

Fig. 3.4. A schematic plot of 1/{1 + «**) and wr/(1 + ') a8
a function of the logarithm of the frequency.

appear when wr becomes comparable to unity. When wr 3> 1, the dipoles
cannot follow the field variations and hence the polarization vanishes. The
out-of-phase component of P,(f) has the same bell shape as the imaginary
part of the electronic and ionic polarizabilities, and is a measure for the
absorption of energy as we shall see in the next section. By way of illus-
tration we give here some values for 7 derived from dielectric measurements
for ice and propyl aleohol at various temperatures.
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Propyl Alcohol:
Temp. (°C): 20° 0 —-20° —40° -60°
10"7 (sec): 0.9 1.6 3.2 74 26

Ice:
Temp. (°C): =5° =22°
10%r (sec): 2.7 18

Note that as the temperature is reduced, the relaxation time increases and
the frequency for which wr = 1 decreases. Note also that the relaxation
time is about 104 times as long in ice as in liquid propyl alcohol.

The differential equation for P,(f), (3.28), also applies to the follow-
ing situation: With reference to Fig. 3.5 suppose an ion in a particular solid

Fig. 3.5. The fully drawn curve
represents the potential energy
of a positive ion as funotion of a
coordinate which coincides with
the line joining two possible po-
gitions for the ion, A and B. The
dashed curve corresponds to the
potential energy in the presence
of a field as indicated.

can occupy two positions A and B of equal energy, the two positions being
separated by a potential energy barrier ¢. In the absence of an external
field the probability that the particle will be found in 4 is the same as that
for B. When an external field is applied, position B may be preferred if the
energy of the particle is lower there than when it resides in A. For a solid
containing a significant number of such ions, the process of the ions “jump-
ing” into preferred B-sites may contribute appreciably to the dielectric
constant. In an alternating field, these ions will contribute in accordance
with the formulas derived above, and  must then be interpreted as the
average time required for an ion to jump from A to B. It can be shown that
jumping times of this kind depend on the poténtial barrier ¢ and on the
temperature as follows:

T = Ae$/T (3.33)

where A isa constant; k is Boltzmann’s constant (= 1.38 X 10~ joule per
degree. Thus, as T increases, r decreases, as one would expect from quali-
tative arguments. In non-crystalline materials such as glasses, it is quite
likely that there exists a variety of potential barriers ¢, and hence a variety
of r-values. Evidence for this will be presented in the next section.
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3.5 Dielectric losses

In the preceding sections we have discussed the frequency dependence
of the electronic, ionic and orientational contributions to the polarization.
Since these contributions are additive, a material may be characterized by
a complex dielectric constant

& = — je& (3.34)
in which the real and imaginary parts ¢ and ¢’ incorporate all three con-
tributions. In the present section we shall show that the imaginary part
gives rise to absorption of energy by the material from the alternating
field. For this purpose consider a parallel plate condenser filled with a
material characterized by € the functions e(w) and ¢'(w) are assumed to
be given. Let the applied alternating voltage produce a field Eq cos wi.
Suppose that at a given instant the charge per unit area on the plates is
+Q(t). Since the flux density is numerically equal to the charge density,
we must have D(t) = Q(t). Also, since the current density is equal to
J(t) = dQ/dt we may write '

dD

J(t) = a (3.35)

On the other hand, since E(f) = Re [Ewe*] we may write in accordance
with the meaning ~f the complex dielectric constant
D{t) = Re [ae;Ew’] = ekl Re [¢re™'] (3.36)
Subst-itutix;g (3.34) into this expression we find for the currenv density
from (3.35)
J(t) =eFoRe [(¢ — je&)jwe’]

= welole cos wt — & sin wt] (3.37)

Note that the imaginary part € of the dielectric constant determines the
component of the current which is in phase with the applied field. Also,
the real part of the dielectric constant, ¢, is coupled with a time factor
which is 90 degrees out of phase with the applied field. The reader will
readily recognize that, on the average, the last term in (3.37) does not give
rise to absorption of energy, whereas the term containing ¢ does. The
instantaneous power per m® absorbed by the medium is given by J(OE();

hence, each second the material absorbs an amount of energy per m® given
by

W) = 217 P JOE® ded (3.38)
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Substituting J(¢) from (3.37) one readily finds

W(t) = (w/2)e E3 (3.39)
Thus, the absorption of energy is proportional to the imaginary part of the
complex dielectric constand; whenever there is emergy dissipated in the me-
dium we speak of dielectric losses.

It follows from (3.37) that a condenser containing a lossy dielectric may
be represented by an equivalent circuit which consists of a pure capacitance
and a parallel resistance, the latter being inversely proportional to €'w.
It is customary to characterize the losses of a dielectric at a certain fre-
quency and temperature by the so-called “logs-tangent,” tan 8, defined as

tan § = &' /e; (3.40)
The physical meaning of the angle § may be derived from expression (3.37).
If there are no losses, ¢/ = 0 and the current density is then given by
weoFoe! cos (wt + 90°); i.e., the current leads the field by 90 degrees. Under
these circumstances § = 0. If there is a current component in phase with
the field, the resulting current will no longer lead the field by 90 degrees
but by 90° — 3§, as indicated in Fig. 3.6.

Fig. 3.6. Tllustrating the vector
relationship between the field
vector Eg, the current vector
wepes Eo which leads the field by
90 degrees and the current vec-
tor weser Ea which is in phase
with the field. The loss angle §
is indicated.

The dielectric losses in the radio frequency region are usually due to
dipole rotation or to ions jumping from one equilibrium position to another.
Losses in this region may also be due to a small degree of d-c conductivity
of the material, but this subject will not be discussed here. The dielectric
losses associated with the ionic vibrations, the frequencies of which fall in
the infrared region, are usually referred to as infrared absorption. Simi-
larly, the losses in the optical region, associated with the electrons, are
referred to as optical absorption. The occurrence of absorption in the optical
region is the source of the color of materials. For example, a crystal of NaCl
is transparent in the visible region; this means that there is negligible ab-
sorption for the corresponding frequencies. However, after the NaCl has
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Fig. 3.7. The optical ahsorption as a function of wavelength re-
gulting from F-centers in & KBr erystal, at room temperature.
[After A. von Hippel, E. P. Grosa, T. G. Telatis, and M. Geller,
Phys. Rev. 91, 568 (1953)]

been exposed to X-rays, one finds that it has turned yellow-brown. The
reason for this is that, after irradiation with X-rays, a relatively small
number of electrons, which have been transferred to positions in the lattice
Table 3.1. THE REAL FART OF THE RELATIVE DIELECTRIC CONBTANT, &, AND THE

LOBS TANGENT OF VARIOUS DIELECTRICS AT A NUMBER OF FREQUENCIES. (Selected from
A. von Hippel, Dreleciric Materials and A pplications)

Frequency in cycles | er second

Material 100 10 10° 10* 3 x 10°
Pyranol 1467 g 4,42 4.40 4.40 4,08 2.84
10* tan 8 | 36 4 25 1300 1200
Cable oil 5314 o 2.25 2.25 2.22
10'tan & | 3 04 18
Teflon - 2.1 2.1 2.1 21 2.1
10¢tand | 5 3 2 2 1.5
Polystyrene o 2.50 2.56 2.56 2.55 2.55
10*tand | 05 0.5 0.7 1.0 33
Polyethylene o 2.25 2.25 2.95 2.25 225
10%tans | 5 3 4 3
Nylon 66 o 3.88 3.60 333 3.10 3.03
104 tan 3 | 144 233 257 210 128
Bakelite BM-120 o 4.87 462 438 3.95 3.70
10% tan 5 | 300 200 280 380 438
Glass (Corning 0010) « 6.68 6.57 6.43 6.33 6.1
10°tan & | 77 ° 35 16 2 60
Porcelain No. 4462 o 8.99 8.95 8.95 805 8.90
10*tan 3 | 22 8.0 2.0 4.0 11



76 Dielectrics in Alternating Fields Seec. 3.5

where they are not bound so strongly as they wefe before, give rise to res-
onance frequencies lying in the visible part of the spectrum. When white
light passes through the erystal, a fraction of thé light corresponding to a
narrow frequency region is absorbed, and the trahsmitted light is therefore
colored. The centers which are responsible for tRis particular type of ab-
sorption are called F-centers (Farbe is the German word for color); they
consist of electrons occupying positions in which n'ggative ions are missing.
This type of color center occurs in all alkali halides as well as in other ionic
erystals. An example of F-center absorption in KBr is given in F ig. 3.7;
note the bell shape of the curve.

We finally give in Table 3.1 values for the real part of the dielectric
constant, ¢, and for tan § for various materials at a number of frequencies.
For a collection of data for a large number of materials, the reader is re-
ferred to Dielectric Materials and Applicaiions, edited by A. R. von Hippel
and cited at the end of the preceding chapter.

References
See those given at the end of Chapter 2.

Problems

3.1 (a) Consider a gas containing N similar atoms per m? of a polar-
izability . On the basis of expression (3.10) for the induced dipole moment,
resulting from an alternating field, show that the dielectric constant of the
gas is given by

Ne/me
wi — & + j2bw/m

(b) Consider two parallel metal plates with a separation of 1 m,
The space between the plates is oceupied by the gas referred to under (a).
Show that the admittance per m? plate area of this condenser is given by

. Net/m
¥ =
(c) Cousider the circuit in the figure. Show that the admittance of this

¢
| P
ir

¢ =14

——JI-—-\_mu—'\N\,—J

Cs L R
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circuit is given by

| SR J“-l’/fa
Ll L i s s
where wf = 1/LC,.
(d) Compare the results obtained under (b) and (¢), and show that
the condenser mentioned under (b) has an equivalent circuit as indicated
under (e) with the following identifications:

Ci=ea; L=m/Ne; R=2b/Net; Cy= Ne*/mud

3.2 (a) Consider a parallel arrangement of a ecapacitance C and a re-
sistance /2. An external voltage V(t) = V, cos wt is applied to this arrange-
ment. Show tkat the total current 1(2) is given by

i(f) = (Vo/R) cos wt — CwVy sin wt

(b) Consider a parallel plate condenser with a lossy dieleetric between
them. At an angular frequency w let the diclectric be characterized by a
complex dielectric constant ¢; = ¢ — je;'. The area of the plates is 1 m?,
the distance between them 1 m. For an applied voltage V(1) = V, cos wi
show that the current through the lossy condenser is given by

2(l) = (eoer’'w Vi) c0s wi — (eoe; Vow) sin wi

(¢) Compare the results obtained under (a) and (b) and note the occur-
rence of current components in phase and out of phase with the applied
field. Show that the lossy condenser can be represented by an equivalent
circuit consisting of a parallel R-C arrangement with

R=1/gfw and C = g

(d) What is the loss tangent of the condenser in (b) expressed in terms
of the equivalent R and C?

(e) Are the elements of the equivalent circuit independent of the fre-
quency? :

3.3 (a) Suppose a dielectric has a complex dielectric constant given
by € = e + € where €% refers to the dipole orientations and e,; is a real
quantity referring to the electronic and ionic polarizations. Assume that
% is determined by a simple relaxation time 7, as in formula (3.30). Con-
sider the space between two parallel metal plates filled with this dielectrie.
If the distance between the plates is 1 m, show that the admittance of the
condenser per m? plate area is equal to

S CIED
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(b) Consider the circuit in the figure. Show that the admittance of this

¢,
: M
A 1

[ S— )

_..”.._W,,..-

c; R

circuit is equal to

o a Ch
B -J"’[C' i +J'wr]
where r = RC,.

(¢) ¥rom a comparison of the results obtained under (a) and (b) show
that the circuit is the equivalent of the condenser under (a) with the follow-
ing identification:

Ci = eale+1); Ci=elewn—1); B=1/[ale—1)]

3.4 A parallel plate condenser has an area of 10 cm? and a separation
of 0.1 mm. The space between the plates is filled with polyethylene. An
alternating voltage with an amplitude of 2 volts is applied at a frequency
of | megacyele. Given that at this frequency the real part of the relative
dielectric constant is 2.25 and the loss tangent is4 X 1074, find the elements

of an equivalent parallel R-C circuit. Also calculate the energy dissipation
per second.

3.6 For a polar liquid, make a qualitative sketch of the real and imag-
inary parts of the dielectric constant at two temperatures as a function of
the frequency of an applied radio frequency field.

3.6 For a polar liquid, make a gualitative sketch of the real and imag-
inary parts of the dielectric constant as a function of temperature at a
given radio frequency.



4

Magnetic Properties of Materials

In this chapter we attempt to explain the differences between the
various types of magnetic materials in terms of the magnetic properties
of atoms and the interactions among these atoms. The chapter is divided
into two parts. Part I is intended to refresh the reader’s memory on some
fundamental concepts concerning magnetic fields, and to illustrate the
essence of the atomic theory of magnetic dipoles with reference to simple
models. In part II the information gathered in the first part is used to
discuss the atomic interpretation of dia-, para-, ferro-, antiferro- and ferri-
magnetism.

Part I. Preparatory Discussion

4.1 Summary of concepts pertaining to magnetic fields

In this section the reader is reminded of some fundamental concepts
which are discussed in detail in courses on magnetic fields. The magnetic
Sflux density in a point of space is de +ted by a vector B. In the mks sys-
tem, the unit of flux density may be defined in terms of the force exerted
by a magnetic field on a current-carrying wire. Consider, in Fig. 4.1, an
element dl of a wire carrying a current of I amperes; in a magnetic field of
flux density B, the force on the element dl is given by

dF = 1x Bd (4.1)

Thus, the direction of the force dF is perpendicular to the vectors I and B,
and coincides with the direction in which a right-handed screw advances

79
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dl

dF

Fig. .1. Illustrating the force dF exerted by a magnetic flux
density B on an element of wire dl carrying a current L

when rotated from I to B. The magnitude of the force is equal to

dF = [B dl sin (1.2)
where « is the angle between I and B as indicated in Fig. 4.1. Since the
proportionality constant in (4,1) has been chosen equal to unity, the units
of B are fixed * v the units of F (in newtons), I (in amperes), and dl (in

meters). Thus, B is expressed in newton amp~ m~'. One usually calls
1 newton amp~! m~! = 1 weber m™* (4.3)
Magnetic fields are produced by electric currents; the magnetic flux

density produced in a given point by such currents is governed by the law
of Biot and Savart. With reference to Fig. 4.2, consider an element dl of

4B

Fig. 4.2. Tllustrating the contribution to the flux density, dB,
resulting from a current-carrying element dl.

a wire earrying a current [ as indicated. The flux density eontributed by
this element in a point P, located at the end of a vector r as indicated, is
given by

B = bty oy (1.4)
4arrd

Here, u, is usually referred to as the permeability of free space; it is numer-
ically equal to 4z X 1077 = 1.257 X 10-* henry m™* (or weber m™ amp—"),
The quantity p, is the relative permeability of the medium; it is a pure
number which is equal to unity for vacuum. At this point we may remark
that uo (s € in the dielectric case) has no physical significance other than
that it appears as a result of the particular system of units used here. The
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quantity g, (as ¢ in the dielectric case) is the only parameter which can
be interpreted in terms of the atomic properties of the medium. According
to (4.4), the direction of the flux density dB is perpendicular to the vectors
I and r, and coincides with the direction in which a right-handed screw
advances when rotated from I to r. The magnitude of the Hux density
contributed by the element dl in Fig. 4.2 is

Eoldr .
dB = dnrt I dl sin & (4.5)

where « is the angle between I and r as indicated.

As a particular application of the law of Biot and Savart, we leave it
up to the reader to show that the magnitude of the flux density produced
in a point P by an infinitely long wire carrying a current I is given by

Bp = ,quJf?'.ra (4.6)

where a is the distance to point P from the axis of the wire.

In the mks system, the units of the magnetic field intensity, H, are de-
termined from the notion that the line integral of H along a closed curve
is equal to the total current enclosed. Thus, with reference to Fig. 4.3 we
write

fH-cn=1 4.7)

where I represents the current in amperes enclosed by the cur!.-Pe chosen.
Thus, the magnetic field intensity H is expressed in amperes m~'. Apply-

a‘_’h‘h“'\.

© a®

. ®

0] ® ©
© 0'®

Fig. 4.3. The line integral of H

along the closed eurve is equal M s

to the total current I enclosed .

by the curve; the current in this Fig_'r“"' :;:Gm sookan :’gml{gh

; : a wire carrying a current flowing

case r. :
flows:iate te: paps out of the paper; the magnetic

field produced in point £ is in-

dicated.

ing thia to the case of an infinite wire carrying a current 7, let us caleulate
the magnetic field intensity in a point P at a distance a from the axis of
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the wire. Because of the cylindrical symmetry of the problem at hand,
we choose as the closed path a circle of radius a (see Fig. 4.4). Then,
since H is tangent everywhere along the circle, we simply have

fﬂ-dt=2mH—I

or H = I/2xa (4.8)

Since for the same problem, the flux density is given by (4.6), we arrive
at the well-known relation between B and H:

B = pou,H (4.9)

In this derivation, we have assumed tacitly that B and H are parallel
vectors; i.e., we have assumed an isotropic medium. We have also as-
sumed that a relative permeability u, can be defined for the material in
question. This implies that there exists a unique relationship between B
and H in the material, which excludes ferromagnetic materials; the prop-
erties of the latter will be discussed in later sections.

4.2 The magnetic dipole moment of a current loop

An essential difference between magnetism and electricity is that in
the latter we encounter separate positive and negative charges, whereas
in magnetism there are no separate positive and negative poles. This is a
consequence of the interpretation of magnetic fields in terms of the motion
of electric churges. In the present section we remind the reader of the fact
that a current loop produces, at large distances, a magnetic feld which is
identical with that of a magnetic dipole moment; proofs of this statement
can be found in textbooks on field theory. In order to illustrate the equiv-
alence of a current loop and a magnetic dipole, we choose an example
which is particularly suitable for the subject matter to be discussed in
subsequent sections; although we shall consider a simple case, the result
is of general validity.

In Fig. 4.5 consider a rectangular wire carrying a current I as indi-
cated; the plane of the rectangle is perpendicular to the paper. We further
assume the presence of a homogeneous magnetic flux density B, and con-
gider the forces acting on the current-carrying parts of the rectangle.
Making use of expression (4.1) one finds for the magnitude of the forces
exerted on the elements PS and QR

F = (PS)IB (4.10)

The directions of the two forces are as indicated in Fig. 4.5. It also follows
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Fig. 4.5. Rectangular current loop PQRS, carrying a current [
and subjected to a homogencous flux density B. The resultant
forces on the rectangle are indicated by F.

from (4.1) that the forces exerted on the elements PQ and RS will cancel
each other. Hence, the flux densitly exerts a torque T on the rectangle,
tending to rotate it to the right, equal to
IB(PS)(PQ) cos 0 (4.11)
where 8 is the angle indicated. Denoting the area of the loop by 4, we
may write '
T = IBA cos@ (4.12)
For later comparison, let n denote a unit vector in the direction normal to
the rectangle, and pointing upwards, as indicated in Fig. 4.5. The direc-
tion of n is the same as that in which a right-hand serew would advance
when rotated in the direction of the current flow. Since the angle between
n and B is (90° — 8), we may write
’ T=IAnx B (4.13)

where the magnitude of the cross-product is equal to B sin (n, B) =Bcosd.
At this point, we remind the reader that the torque produced by an electric
field E on an electrie dipole p is equal to u % E (see section 2.5). We thus
see that, apart from a constant, expression (4.13) is indistinguishable from
that for the torque exerted on a magnetic dipole moment with its direction
along the unil vector n. Although other choices are possible with regard to
the units in which one wishes to express magnetic dipole moments, we
shall define the magnetic dipole moment. u.. associated with the current
loop as . i .

’ pm = 0lA . (4.14)
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Thus, .. is expressed in ampere m?, and the torque on s magnetic dipole
produced by a flux density B is according to (4.14) and (4.13) given by

T=p.xB (4.15)
Although we have derived the equivalence of a current loop and a mag-

netic dipole moment for a special geometrical form of the loop, it can be
shown that the results apply for a current loop of any shape.

4.3 The magnetization from a macroscopic viewpeint

In the macroscopic deseription of electric fields, we encountered three
vectors: the flux density D, the field intensity E, and the polarization P;
the latter represents the electric dipole moment per unit volume in the
material. In section 2.2 we derived a relationship between P and E, lead-
ing to the formula

P = qle, — 1NE (4.16)
from which follows, in combination with the formula D = et E,
D=oE+P T (@

In the case of magnetic fields one also encounters three vectors: the fux
density B, the field intensity H and the magnetization M; the latter is
defined as the magnetic dipole moment of the material per m3 Since we
decided in the preceding section to express magnetic dipole moments in
ampere m’, M must have the dimensions of ampere m? m™? = ampere m—1.
Hence; M and H have the same dimensions in this system. Note that in
the electrie ease, I has the same dimensions as D rather than as E; the
reader should thus consider D and I7 as correspending quantities, rather
than D and B, in spite of the similar names of the latter two quantities.
Although we de not wish to enter here into a detailed discussion concern-
ing the relationship between the electric and magnetic field vectors, we
may point out two reasons for the correspondence between D and H, and
between £ and B. One rcason lies in the fact that both E and B are de-
fined from force-laws; £ from Coulomb’s law between two charges, B from
the force exerted by a magnetic field on a current [see (4.1)]. The other
reason concerns the definitions of D and F: D is defined from the theorem
of Gauss by a surface integral [see (2.1)], and H is defined in terms of a
line integral (see (1.7)). Since D and H, and E and B are corresponding
quantities, it is not surprising that the formulas encountered in magnetism
are not analogous to those in dielectrics when considered on the basis of
the names of the various quantities; this is somewhat unfortunate, but
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one has to live with this situation unless one is willing to introduce a com-
pletely new nomenclature.

We shall now proceed to derive a relationship between the macroscopie
quantities B, H and M, following the line of thought used in section 2.2
for the derivation of expression (4.16). By comparing that section with
the discussion below, the reader will discover the correspondence between
D and H, and between B and ¥ mentioned earlier. Consider a solenoid of
length L, carrying a current I; the total number of turns is N. The space
inside the solenoid is filled with an isotropic homogeneous material of rela-
tive permeability g, We shall agsume the solenoid to be ideal in the sense
that it produces a homogeneous magnetic field in the material (except

Fig. 4.6. Illustrating a cylindrieal piece of material subjected to
a homogeneoua field H produced by a solenoid (not drawn). The
lines at the surface of the cylindrical cavity of volume dl dA rep-
resent the ecurrent required to keep the flux density inside the
cavity equal to the flux density outside the cavity.

near the ends), as indicated in Fig. 4.6. As shown in textbooks on fields,
the magnitude of this field is given by
H = NI/L (4.18)

This formula also follows from (4.7) by choosing an appropriate path of
integration. Note that (1.18) does not contain any parameter character-
istic of the material inside the solenoid. The flux density in the material
is then in accordance with (4.9) given by

B = pu.NI/L (4.19)
Suppose now that we cut out of the material a small cylinder with its axis
parallel to the original field direction, as indicated in Fig. 4.6. The cross
section of the eylinder will be denoted by dA, its length by dl. How can
we achieve a flux density inside the cavity that remains the same as it was
when the material was present? Presumably, we are requiring that

Bi= B, = puH (4.20)
where the subscript ¢ refers to “inside the cavity”’ and the subseript o
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refers to “outside the cavity.” Bince inside the cavity we have u, = 1;
the requirement (4.20) may be written in the form

poH i = pouH or H, — H = (u, — 1)H (4.21)
Hence, in order to leave the flux density inside the cavity the same as the
flux density outside, the magnetic field H, inside the cavity must be larger
than that outside by an amount (4, — 1)H. This can be achieved by let-
ting a current flow along the inside of the cylindrical surface in the same
direction as the current in the solenoid, as indieated in Fig. 4.6. How
much current is required to produce the extra field (ur — 1)H inside the
cavity? Making use of the physical meaning of (4.18), the answer is evi-
dently (u, — 1)H dl. However, when this current is allowed to flow, the
cavity current corresponds to a magnetic dipole moment equal to

bm = (ur — 1)H dl dA (4.22)
Since this current serves the same purpose with regard to a uniform flux
density as did the material in the cavity before it was taken out, we con-

clude that in a homogeneous magnetic field, the material carries a mag-
netic dipole moment per m? equal to
M= (s—1H=yH (1.23)
where M is called the magnetization. This relation between M and H
serves the same purpose in the discussion of magnetic materials as does
expression (1.16) in the case of dielectrics. Thus, expression (4.23) forms
the link between the macroscopic theory and the atomic interpretation of the
permeability p,. The proportionality constant x is called the magnelic
susceplibility of the material,
The relationship between B, H, and M follows immediately from (4.23);
multiplying both sides by s, we find

poM = po(u, — )H or B = w(H + M) (4.24)
The last expression corresponds to (4.17) in the electric case,

4.4 Orbital magnetic dipole moment and angular momentum
of two simple atomic models

In the preceding sections we have discussed some important concepts
pertaining to the macroscopic theory of magnetism. In the present sec-
tion we shall consider the magnetic dipole moment and its relation to the
angular momentum of two simple atomic models, These ‘models are not
correct in the sense that they do not represent our present status of knowl-
edge concerning atoms, However, it is useful to consider the properties
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of these classical models because they exhibit the essential features found
in the quantum mechanical interpretation of atoms.

(i) Circular Bohr orbit. The first model we shall consider is depicted
in Fig. 4.7. It consists of an electron describing a cireular orbit of radius
R with a stationary nucleus at the center. The charges of the nucleus and

Fig. 4.7. Illustrating an elec-
tron describing a circular orbit
around a proton. The orbital
magnetic dipole moment is di-
rected into the paper,

electron are denoted, respectively, by +e and —e. We also assume the
electron to rotate with a constant angular velocity of w radians per second.
For the direction of rotation indicated in Fig. 4.7, the motion of the elec-
fron in its orbit gives rise to a magnetic dipole moment u.. directed into
the paper and perpendicular to it. The magnitude of the current associated
with the electron motion is evidently equal to ef, where f = w/2s repre-
sents the frequency of rotation. Thus, according to (4.14) the magnetic
dipole moment of the orbit is .

|pn| = xR%w/2r = jewR? (4.25)

This magnetic dipole moment is called the orbital magnetic dipoic moment,
because it results from the motion of the electron in its orbit around the
nucleus. 1t is of interest to note that there exists a relationship of general
validity between the orbital magnetic dipole moment and the orbital
angular momentum. For the particular case at hand, this relationship may
be derived by noting that the angular momentum M, is defined as the
vector

M, =R X mv (4.26)
where v is the velocity of the electron and R the vector which determines
its position. Thus, with reference to Fig. 4.7, M, is & vector perpendicular
to the paper and directed outwardly. Note that M, and .. have opposite
directions; this is a consequence of the negative charge of the electron.
Applying (4.26) to the problem under discussion, we find that

M, = maR? 4.27)
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From (4.25) and (4.27) it then follows that
o = —o M, (4.28)

Thus, at least for this particular case, we see that the orbital magnetic
moment is equal to (—e/2m) times the angular momentum. We shall see
later that (4.28) holds for any charge distribution and so may be consid-
ered to have general validity for orbital motion of electrons; it is not valid
for the electron spin or for the nuclear spin, as we shall see in subsequent
sections.

From the quantum theory of atoms it follows that the angular mo-
mentum of an electron orbit can most conveniently be expressed in units
of h/2x, where h is Planck’s constant [h = 6.62 X 107 joule sec; note
that according to (4.26), M, has the same dimensions as A]. For that rea-
son, one has introduced as an atomic unit of magnetic moment the so-called
Bohr magneton, defined as

e h eh
1 Bohr magneton = ey =

= §.27 X 10 ampere m'’ (4.20)

Since the orbital angular momentum of electrons is of the order of h/2x,
the orbital magnetic moment of an electron in an atom is of the order of
1 Bohr magneton.

(ii) A spherical charge cloud. As a second example let us consider an
atomic model similar to the one used in section 2.3 in the discussion of the

N,

Fig. 4.8. Illustrating the calou-
lation of the etic dipele
moment u. associsted with the
rotational motion of a charge
—e distributed homogeneoualy
throughout a sphere of radius E.
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polarizabyity of an atom. In Fig. 4.8 consider a point charge +e sur-
rounded by a negative charge —e¢, the latter being distributed homogene-
ously throughout a sphere of radius R. Assuming that the negative charge
cloud rotates with & constant angular frequency w around an axis paksing
through the center of the sphere, what is the magnetic moment of the
gystem? In view of the axial symmetry of the problem we first consider
the contribution to the magaetic moment from the charge moving in the
cyhndnca.l shell between p and s + dp indicated in Fig. 4.8. The height
of this cylinder is evidently equal to

h = 2(R* — pt)1/? (4.30)

The current associated with this shell, i.e. the charge passing per second
through a cross section k dp, is equal to

: di = guph dp (4.31)

e
(4:’ /3)R*

represents the charke density in the cloud. Thus, the contribution to the
magnetic dipole moment is

where :_ ¢ = (4.32)

dpm = 7p* di = xghwp® dp (4.33)
Henee, the total magnetic moment of the system is given by
- f ohet dp (4.34)

substituting ¢ and & from (4.30) and (4.32), and carrying out the integra-
tion one finds
o = — R (4.35)

The minus sign means that for the configuration given in Fig. 4.8, ma
points downwards, as indicated. Comparing the results (4.25) and (4.35)
for the two quite different models, it is noted that in both cases the mag-
nitude of the magnetic moment is determined by ewR?, and that the resuits
differ only with regard to the numeriesl constant.

Let us now return for a moment to the expression (4.33), which repre-
sents the contribution to u. from the cylindrical shell between 5 and
(p + dp). What is the angular momentum associated with the charge
moving in this shell? Applying (4.26) we readily find

m o,
dM, = [m 2rp h dp:’ wp - p (4“)

where the term in square brackets represents the mass of the charge be -
tween p and (p + dp); we have assumed here that the mass is distributed
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homogeneously because we had assumed a homogeneous charge distribu-
tion. From (4.23) and (4.36), making use of (4.32), it thus follows that
dpue = —— dM, (1.37)

2m

This result is identical with that obtained for the circular orbit discussed
under (). Note that the variable p does not occur in {4.37) and that the
relationship between dm. and dM, holds for any volume element of the
charge distribution.

4.5 Lenz's law and induced dipole moments

In this section we shall pursue the properties of the models discussed
in the preceding section somewhat further by investigating the influence
of a magnetic field on their behavior. Before doing so, the reader is re-
minded of the well-known law of Lenz. Thus, in Fig. 4.9(a) consider a
loop of wire subjected to a magnetic flux which varies with time. Let ¢ be
the total flux enclosed by the loop at some instant ¢{. Then, if de/dt is not
squal to zero, an electric field is set up in the wire, giving rise to an induced
current with a direction such that the magnetic field produced by the
current counteracts the d¢/dt. Expressed mathematically, this law takes
the form

fE cdl = —de/dt (4.38)

The line-integral of the electric field along a closed curve is equal to minus
the rate of change of the flux enclosed by the curve; the minus sign indi-
cates that the current produced by the electric field counteracts de/dt.
This law may be applied to any region of space; i.e., the wire loop men-
tioned only serves the purpose of u. ‘ecting the existence of an electric
field.

14 is of interest to realize the difference in behavior between a wire loop
and the atomic models to be discussed below with regard to the effect of &
varying magnetic flux. Assume, for example, that the flux enclosed by
the wire loop varies with time as indicated in Fig. 4.9(b). For ¢ = 0,
é = 0; the flux then increases linearly with time until the constant value
¢ is reached for ¢ = k. How does the induced current vary with time in
this case? According to circuit theory, we may write

L% 4 Biw —i‘&% (4.39)
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Fig. 4.9. The direction of the electric field produced in a wire
loop as a result of a change in the enclosed flux ig indicated in (a).
(b) represents an assumed ¢(t} relationship. (c) and (d) represent
the current indueed in the wire loop, respectively, for non-zero
resistance and for zero resistance.

where L is the self inductance and R the resistance of the loop. In our case,
d¢/dt is constant for the period between 0 and #, and zero for the period
t > &. The solution of equation (4.39), assuming & 3> L/R, will look as
indicated schematically in Fig. 4.9(c) for the loop with resistance. Thus,
the induced current drops to zero after i because there is no longer an
electric field. The atomic models to be discussed below are found to be-
have quite differently. The reason is, that the electrons in an atom suffer
no resistance, whereas the conduction electrons in a metal wire do. The
point we want to make here is that the atomic models behave as ¢ wire loop
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with zero res‘iswnc& In fact, if K is zero, (4.39) reduces to
(4.40)

8o that foruthe ¢(f) given in Fig. 4.9(b), a wire without resistance would
earry an induced current i = ¢/L as indicated in Fig. 4.9(d). Note that
in this case the current remains constant for ¢ > &. Thus, a permanent
change has been accomplished; the current can be made equal to zero only
by reducing the flux ¢ to zero. We shall now proceed to discuss the influence
of a varying magnetic flux on the two atomic models of the preceding
section.

(i) Circular Bohr orbit. Suppose in the absence of a magnetic field an
electron of charge —e describes a circle around a nucleus of charge +¢;
let It be the radius of the orbit, and we the angular frequency. The orbital
magnetic dipole moment in the absence of a field is according to (4.25)
equal to

Mo = —FeR we (4.41)

Suppose now that the magnetic flux density is increased from zero to some
value B, where B is directed into the paper in Fig. 4.10. Assuming for

— e

Fig. 4.10. The electron describes a circular orbit around a pro-
ton with an initial velocity vy as indicated. A magnetic field of
flux density B into the paper is applied. The electric field E and
the force F resulting from the change in magnetic flux are indi-
cated.

simplicity that the radius of the orbit remains constant, the electron will
experience an electric field E, tangential to the orbit everywhere, equal to
_1 d¢ _ _RdB
2xR di 2 di
This follows immediately by applying (4.38) to the present case. The

E=— (4.42)
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force on the electron during the period that B changes with time is then

equal to
P = —¢E = ?zﬁf—d‘f (4.43)

The direction of the force F for the configuration in Fig. 4.10 is indicated;
it is observed that this force tends to accelerate the electron. Now, accord-
ing to classical mechanics, a force acting during a period d¢ changes the
momentum of a particle in accordance with the equation

Fdt = d(my) = mdv (4.44)
where v is the velocity of the particle. In our case, let w(t) be the angular
frequency of the electron in its orbit at the instant {. It then follows from
(4.43) and (4.44) that

eR dB e
S B dt = mR dw or rIw::Q;n‘.B (4.45)

Assuming that for B = 0 the angular frequency is we, we find that for any
value B the angular velocity is given by

w=m+§%33i=-m+wn (4.46)

where w; is called the Larmor angular frequency. Since the angular fre-
quency of the electron has changed upon applica%ion of the magnetic field,
the orbital magnetic dipole moment has also changed. In fact, before the
field was applied the orbital magnetic moment was

Mme = —Fel 7w
and after the field has been applied it is

. o
Mo = -‘ie}i’-uq “ S R’B
The magnetic dipole moment induced by the field is therefore
82
Mmind = Pm — Mme = HZ;‘R’B (4.47)

Note that the induced dipole moment has a direction opposite to the applied
magnetic field, in contrast with the electric dipole moment induced by an
electric Tield (see section 2.3); this result is independent of the initial di-
rection of rotation, as the reader may verify for himself. Also note that
since the electron suffers no resistance, it will keep its new angular fre-
quency w as long as B remains constant; it thus behaves as the wire loop
of zero resistance discussed at the beginning of this section.

An alternative derivation of (4.46) and (4.47) may be given in the
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following manner: With reference to Fig. 4.11, consider an electron moving
in a circular orbit of radius B around the nucleus. In the presence of a
magnetic field of flux density B, the stability of the orbit requires equi-
librium between three foreces: (z) the centrifugal force mv?/R; (b) the

—

Fig. 4.11. Tilustratiug the equilibrium condition for u circular
orbit described by an electron around a proton in the presence of
a magnetic field of lux density B into the paper.

Coulomb force €*/4reR? due to attraction by the nucleus; (¢) the “Lorentz
force” —ev X B due to the magnetic field. For the configuration in Fig.
4.11 we thus require

my? 1 e*
B " degmi T 9B
1 ¢ eB
e i
or‘ w Tre mB} - < (4.48)

In the absence of a magnetic field, let the angular frequency of rotation
be wy; then according to (4.48) we obtain by putting B = 0

1 ¢
of = 4xe mR?
In the presence of a magnetic field we may therefore write (4.48) in the
form

(4.49)

P S T f i (4.50)

Now, we == 10 radians per second for the motion of an electron in an atom
(see section 3.1). Since the magnetic fields used in the laboratory are of
the order.of B = 1 weber m~? or less, we see that eB/m 2<’10"! per second
which is much smaller than w,. Making use of this, one finds readily by
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solving for « from (4:50) !

wsw+§n3 (4.51)

which is the same as (4.46). The reader may be somewhat astonished by
the fact that (4.51) is an approximation whereas it looks as if (4.46) is
exact.. This is only an apparent contradiction and is a result of the fact
that in both derivations we have assumed R to be independent of B, which
is itself an approximation, valid only as long as eB/m < w,.

(ii) Homogeneoys spherical charge distribution. Let us now consider
the model consisting of a charge e distributed homogeneously through-
out a sphere of radius [2; a point charge +e is located at the center of the

4 m tinduced)
(a) {b)

Fig. 4.12. Illustrating the geometry pertaining to the calculation
of the magnetic dipole moment induced by 2 homogeneous flux
density B in a spherical charge cloud —¢, In (b) & top view is
given, illustrating the cylindrical shell of charge between p and
p + dp, the electric field E and the force F exerted on the shell
of charge.

.

sphere so0-as to make the “atom” neutral. In the absence of a magnetic
field, let the negative charge cloud rotate around a vertical axis, passing
through the center of the sphere, with an angular frequency wy as indicated
in Fig. 4.12(a). The magnetic dipole moment of the system is then directed
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downwards in Fig. 4.12(a), and is given by I '

Pme = — peRwg (4.52)
[see equation (4.35)].

Let us now apply a magnetic field of flux density B, where B is directed
vertically upwards in Fig. 4.12(a). In order to calculate the induced
moment in this case we proceed as follows. As in the preceding section,
consider the charge rotating in a cylindrical shell between p and p + dp of
height h = 2(R? — p?)"% As long as the flux changes, the electric field
produced at a distance p from the axis is obtained by applying (1.38),
giving .

g _-ld0_ _pdB

- _2rpd¢ T T2dt

The feld E is tangential to the circle of radius p and has a direction as

indieated in Fig. 4.12(b). The force exerted by this field on the negative

charge thus tends to increase the angular frequeney for the configuration

assumed in Fig. 4.12(b). The charge in the cylindrical shell divided by

the mass in the eylindrical shell is simply equal to —e/m, assuming that

both charge and mass are distributed homogeneously. From Newton’s
law (4.44) it thus follows that '

(4.53)

*ﬁEﬂ=pM (4.54)

and since E(p) is given by (4.53) we find
dw = 2‘; dB (1.35)
Since this result is independent cf p, it holds for the whole sphere of charge.

Therefore, if for B = 0 the angular frequency is equal to w), we find that
for any flux density B the angular frequency is given by

€

w = ay + B = w,+ wr (4.56)

2m
This result is identical with (£.46) and it will be evident to the reader that
the Larmor frequency induced by the magnetic field is independent of the
particular charge distribution assimed. The magnitude of the induced
dipole moment, of course, does depend on the model. In fact, from (4.35)
and (4.56) it follows that for the model under discussion

82
Hoind = "'m R:B (4-57)

which differs from (4.47) for a cireular orbit by a numerical factor. In the
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derivation given we have assumed tacitly that the charge distribution
is independent of the flux density of the applied magnetic field; for prac-
tical flux densities.obtainable in the laboratory this assumption & justified.
Note that the induced moment is independent of the initial angular
frequency wy of the charge distribution. Hence, a magnetic dipole moment
given by (4.57) will be induced in the atomic model, independent of
whether the model has a “permanent” magnetic dipole moment or not,

Part [1. Atomic Interpretation of Magneiic
Properties of Malerials

4.6 Classification of magnetic materials

I this part of the chapter we shall discuss the most essential features
of the various types of magnetic materiuls in terms of the magnetic prop-
erties of the atomic dipoles and the interactions between them. The first
distinetion we can make is that between materials whose atoms CArTy
permanent magnetic dipoles and those in which permanent magnetic dipoles
are absent; the term permanent magnetic dipole is used here in the same
sense as in the corresponding dielectric case: i.e, a permanent dipole exists
even in the absence of a field. Materials which lack permanent magnetic
dipoles are called diamagnetic. 1f there are permanent magnetic dipoles
associated with the atoms in a material, such a material may be paramag-
netse, ferromagnelic, antiferromagnelic, or ferrimagnetic, depending on the
interaction between the individual dipoles. Thus, if the interaction be-
tween the atomie permanent dipole moments is zero or negligible, 3 mate-
rial will be paramagnetie. If the dipoles interact in such a manner that
they tend to line up in parallel, the material will be ferromagnetie. If
neighboring dipoles tend to line up so that they are antiparallel, the mate-
rigl is antiferromagnetic or ferrimagnetic, depending on the magnitudes
of the dipoles on the two “‘sub lattices,” as indicated schematiecally for a
one-dimensional mode! in Tig. 4.13. Note that in the ferromagnetic case,
there is a large resultant magnetization, whereas in an antiferromagnetic
configuration the magnetization vanishes. In the case of ferrimagnetic
materials, there may he a relatively large net magnetization resulting
from the tendency of antiparallel alignment of neighboring dipole moments
of unequal magnitude. Ferrimagnetic materials are thus similar to ferro-
magnetic ones in the sense that both kinds may exhibit a large magnetiza-
tion. On the other hand, ferrimagnetic materials resemble antiferromag-
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netic materials with respect to the tendency for antiparallel alignment of
neighboring dipole moments.

We should add here a remark to the effect that induced dipole moments
occur in all materials. In fact, in section 4.5 we showed that a dipole mo-
ment induced by a magnetic field in a particular atomic model was inde-

SN\

ferro- :
‘ ‘ 1 1 Fig. 4.13. Schematic illustre-

tion of a paramagnetic, ferro-
magnetic, antiferromagnetic, and

ferrimagnetic arrangement of
I l antiferro- spins.

!

l l i ferri-

pendent of the magnetic dipole moment present in the absence of the field.
In this sense then, all materials are diamagnetic. However, when perma-
nent dipole moments are present in numbers comparable to the total
number of atoms, the properties of the permanent dipoles usually over-
shadow the diamagnetic effects and for that reason the classification given
above is meaningful.

In the present section we only wish to introduce the classification of
magnetic materials; the actual properties of the various kinds of magnetic
materials will be discussed in subsequent sections. A summary of the
definitions of the various classes of magnetic materials is given in Table 4.1.

Table 4.1. CLASSIFICATION OF MAGNETIC MATERIALS ON THE BASIE OF THE OCCURRENCE
OF PERMANENT ATOMIC MAGNETIC DIPOLES, AND TFHE INTERACTION PETWEEN THEM

Classification Permanent dipoles Interaction between neighboring dipoles

Diamagnetic No

Paramagnetic " Yes Negligible

Ferrnmagnetic Yes Parallel orientation

Antiferromagnetic Yes Antiparallel orientation of equal moments

Ferrimagnetic Yes Antiparallel orientation of unequal momenta
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4.7 Diamagnetism

The link between the macroscopic and atomic interpretation of mag-
netism is provided by the formula for the magnetic dipole moment per
unit volume, derived in section 4.3,

M= (u — 1)H = xH ' (4.58)
It was stated in that seciion that (4.58) has meaning only if one can define
the relative permeability u, for the material under discussion; thus (4.58)
i valid for diamagnetic and paramagnetic materials at all temperatures,
but for the other classes only above a certain temperature, as we shall see
in later sections. The permeability u,, or the susceptibility x for a dia-
magnetic or paramagnetic specimen can be determined, for example, by
measuring the force exerted on a specimen in an inhomogeneous field
(Gouy balance). In Table 4.2 we have given the susceptibility for some

Tabie 4.2. THE BUSCEPTIBILITY OF BOME DIAMAGNETIC MATERIALS
(AT ROOM TEMPERATURE)

Material X = —1 Material y o= =1
ALO, ~0.5 x 10-* Cu -0.9 x 10°*
BaCl; —2.0 X 10°¢ Au —3.6 X 10°*
NaCl —-1.2 %x.10°% Ge —0.8 X 10~¢
Diamond -2.1 % 10°¢ Si —0.3 X 10~*
Graphite =12 X 10-¢ Se —1.7 X 10~*

" diamagnetic materials, We should note that in the case of metals and
semiconductors the susceptibility contains a small paramagnctic con-
tribution associated with the spins of the conduction electrons (the elec-
tron spin will be taken up in the next section). It is observed that for
these diamagnetic materials the permeability is given approximately by
pe=1-—- 10"

As long as the electronic structure of the materiai is independent of tem-
perature, the diamagnetic susceptibility is also essentially independent of
temperature. For most engineering cpplications, g of a diamagnetic
material may be taken as equal to unity.

1t is of interest to investigate to what extent the theory of section 4.5
is in agreement with the observed values. From the discussion in section
4.5 it will be evident that an actual calculation of the induced dipole mo-
ment would require a detailed knowledge of the clectronic structure of the
atom. However, an estimate of the order of magnitude of the diamagnetic
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ﬁroperties may be obtained by making use of expression (4.57). Assuming
that an atom contains, say, 10 electrons, we estimate from (4.57) that the
induced magnetic moment should be of the order of

i S on . € p
o R*B R H
ind m Moty

Taking R = 107 m and assuming N =2 5 X 10* atoms per m?, we find
from M = Numisa = xH a value for x of the order of 107%, in agreement
with the experimental values quoted in Table 4.2. There thus seems little
doubt that the interpretation of diamagnetism in terms of Lenz’s law
acting on an atomic scale is essentially correct.

4.8 The origin of permanent magnetic dipoles in matter

According to the classification given in section 4.6, the properties of
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic mate-
rials are determined by the presence of permanent magnetic dipoles. In
this section we shall discuss the various contributions to the permanent
magnetic dipole moment of the atomic constituents of matter. According
to the results obtained in section 4.4 we can say that whenever a charged
particle has an angular momentum, the particle will contribute tu the
permanent dipole moment. In general, there are three contributions to
the angular momentum of an atom:

(i) orbital angular momentum of the elecirons,
(i1) eleciron spin angular momenitum,
(iii) nuclear spin angular momentum.

Each of these forms of angular momentum corresponds to & permanent
magnetic dipole moment and the total magnetic dipole moment of an
atom is obtained by adding the components in an appropriate manner.
The rules governing the addition of these components are derived from

quantum mechanies and will not be discussed in this book, except in some

simple cases. We shall now discuss the contributions separately.

(i) Orbital magnetic dipole moments. The relationship between the
orbital magnetic dipole moment and the orbital angular momentum has
been discussed in terms of a classical model already in section 4.4; we
obtained there the relationship [see (4.28)]

€
o= = (4.28)

and this remains valid in the quantum theory. However, quantum theory '

shows that the orbital angular momentum of an electron in an atcm
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exhibits certain features which are not exhibited by classical models. In
section 1.2 we mentioned that the orbital state of motion of an electron in
an atom is described by three quantum numbers n, | and m;. The prin-
cipal quantum number n determines the energy of the electron; the orbital
quantum number | determines the orbital angular momentum, and the
magnelic quantum number m; determines the component of the angular
momentum along an external field direction. The quantum numbers can
accept only discrete va'ues, and the rules pertaining to these values as
derived from quantum mechanics are the following:

n=123,...
I=0,1,...,(n—1) (4.59)
m=4L{(0-1),...,0,—1,..., =1

The physical meaning of the magnetic quantum number m; can be under-
stood within the framework of our present discussion from the following
considerations, In atomic physics, angular momentum is measured in
units of h/2x, where h (= 6.62 X 10~* joule sec) represents Planck’s
constant. Thus, an electron for which { = 0 has no angular momentum
and as a consequence of (4.28) also no orbital magnetic dipole moment.
An electron for which I = 1 can orient itself in such a manner in an applied
magnetic field that the components of the angular momentum along the
field direction are given by the possible values of m; as follows:
(R/2x), 0, —(h/2x)

These components correspond to the m, values 1, 0, — 1, dictated by (4.59).
Hence, for [ = 1, the possible components of the orbital magnetic dipole
moment are given by [see (4.28)]

—(eh/dxm), 0, = (eh/4xm) (4.60)
as indicated schematically in Fig. 4.14. The reader is reminded here of

equation (4.29), which defines the frequently encountered quantity
eh/4rm as 1 Bohr magneton. In general then, the component of the orbital

Mp==le=u
Fig. 4.14. Tllustrating the three \\
poasible components of the mag- H \
netic dipole moment in an ex- \
ternal field H, aseociated with 1Bobe
an orbital momentum quantum magnston
number | = 1.The total angular o
momentum is artually equal to /
(h/2e) VIT + 1), and in this ¥
sense the figure ia somewhat 4
misleading. |
my=]t—
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magnetic dipole moment along an external field is equal to —m Bokr
magnetons. From the theory of the periodic table, discussed in Chapter 1,
and from the remarks just made, one can readily show that a completely
filled electronic shell contributes nothing to the orbital permanent dipole
moment of an atom. Consider, for example, the L-shell, corresponding to
n = 2. The possible l-values are then 0 and 1. For I = 0 there is no mag-
netic dipole moment anyway. For [ = 1 we have m; = 1, 0, —1 and if
these states are all occupied, the sum of their components vanishes accord-
ing to (4.00). In general then, one can only expect a resultant orbital
magnetic moment in atoms containing incompletely filled electronic shells,
and even then the resultant may be zero. Of particular interest to the
physicist in this respect are the transition elements; i.e., those elements
which have incompletely filled inner shells. A look at Table 1.1, giving
the electron configurations of a number of atoms, shows that the elements
21 through 28 (the iron group) full in this category. Similarly, elements
39 through 45, 58 through 71 (the rare earths) and 89 through 92 are
transition elements. For the electrical engineer, the elements of the iron
group are of greatest importance. However, in the solid state the orbital
magnetic moments of these elements or their compounds are “frozen in."”
Thus, although the free atoms do have a resultant orbital magnetic mo-
ment, the contribution of these moments to the magnetic properties in
the solid state is negligible. The reason is that in the iron group the in-
completely filled shell lies near the outside of the atoms and is thus highly
susceptible to interaction with neighboring atoms in the lattice. As a
resnlt of this interaction the dipole moments cannot orient themselves in
an external field. In this respect they behave in a way similar to the
immobile permanent electrie dipole moments in a solid (see Section 27

We should remark here, that for the elements of the rare earths group,
the penmanent orbital dipole moments do contribute to the magnetic
susceptibility, In these elements, the incomplete shells lie relatively deep
inside the atom, so that they interact with neighboring atoms to a much
smaller degree than do the iron group clements.

in subsequent sections, the contribution from the orbital magnetic
dipoles will be neglected, but the reader should realize that this is not
always permissible,

(ii) Electron spin magnetic moment. In order to explain the details
of atomic speetra, Uhlenbeck and Goudmit in 1925 introduced the hy-
pothesis that the electron itself has an angular momentum; i.e., an angular
momentumn over and above that corresponding to its orbital motion in an
atom. The angular momentum of the electron itself is referred to as the



Sec. 4.8 Magnetic Properties of Materials 103

spin of the electron. Since the electron has a charge, the spin produces a
magnetic dipole moment. According to quantum theory, the spin angular
momentum along a given direction is either +h/4x or —h/4x; ie., it can
accept only two possible orientations in an external magnetic field. The
relationship between the spin angular momentum and the spin magnetic
dipole moment is given by

Pm spin = ‘-iMnmln (4.61)

which differs from (4.28) by a factor of 2 on the right-hand side. Thus,
the relationship hetween angular momentum and magnetic dipole moment
for the electron spin cannot be understood in terms of a simple classical
picture of a rotating sphere of charge. As a result of (4.61) the spin dipole
moment components along an external field are

e h e h
i sl 2
-+ 3 +1 Bohr magneton or ic .l Bohr magneton  (4.62)

as indicated in Fig. 4.15. In & many-electron atom, the individual spin
magnetic moments are added in accordanee with certain rules. Here, as
in the case of orbital moments, completely filled shells contribute nothing

Fig. 4.15. Illustrating the two f
possible moment components as- rB
sociated with the electron spin

in an exteinal field H; 8 repre-

sents 1 Bohr magneton. lﬁ

to the resultant spin moment. However, an atom such as Na, with one
valence electron, has a resultant dipole moment equal to that produced
by the valence electron. A sodium ion, Na+, on the other hand, has no
resultant spin moment, because the electronic shells are completely occu-
pied. For engineering applications the atoms or ions of the iron group
elements are of greatest interest. In Table 4.3 we give the spin configura-
tion associated with the electrons in the incompletely filled. 3d-shell (n = 3,
I = 2) for these elements. The configurations apply to the free atoms as
well as to the divalent ions of these elements. In the metallic state, the
situation is more complicated and Table 4.3 does not apply. For example,
in metallic iron, the average number of Bohr magnetons per atom is 2.2
rather than 4 for the free atom or the Fe' jon; the non-integral number
of Bohr magnetons per atom in the metallic state can be explained in
terms of the energy band structure of the transition metals.
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Table 4.3. NUMBER OF ELECTRONS IN THE 3d-5TATE (n = 3, | = 2) AND ALIGNMENT
OF INDIVIDUAL BPINS FOR THE FREE ATOMB OR DIVALENT IONS OF THE IRON GROUP
ELEMENTS; CALCIUM AND COPPER HAVE BEEN ADDED FOR COMPARISON

Atomic
number Element 3d Resultant epin in Bohr magnetons
20 Caleium 0 0
21 Scandium 1 1.7
22 Titanium 2 2% 3
23 Vanadium 3 o s |
24 Chromium 4 LEE T8
25 Manganese 5 ETTTF1%F
26 Tron 6 E£TYT YT A
27 Cobalt 7 - T s N il s e |
28 Nickel 8 > S R o il i
29 Copper 10 e i1t tiLlLid

(iii) Nuclear megnetic moments. The angular momentum associated
with the nuclear spin is measured in units h/2, and is of the same order
of magnitude as the electron spin and the orbital angular momentum of
the electrons. However, the mass of the nucleus is larger than that of an
electron by a factor of the order of 10°. Consequently, the magnetic
dipole moment associated with the nuclear spin is of the order of 10~
Bohr magnetons. Since the nuclear dipole moments are small compared
to those associated with the electrons, we may neglect the influence of
the former on the magnetic properties of the materials of interest in this
book.

In summary then, we shall consider in the following sections only the
properties of the electron spin system, assuming that neither the orbital
magnetic moments nor the nuclear magnetic moments contribute to the
properties of the materials. It should be kept in mind that these omissions
are imposed by the limited scope of this book, and that the physicist may
be interested, for example, in studying the -properties of the nuclear spin
system.

4.9 Paramagnetic spin systems

In this section we shall consider the susceptibility of a material in as
far as it is determined by the presence of electron spin magnetic dipole
moments. For simplicity, we shall deal only with a system of spins of one
Bohr magneton (such as the scandium atom in Table 4.3); in that case
an individual dipole can acéept only two possible components along an
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applied field direction, viz. +1 or —1 Bohr magneton. For atoms with
larger spin moments, the caleulations are somewhat more complicated,
but the essential features are the same. In the present section we shall
assume that the interaction between the spins is negligible, so that the
field at the position of a given spin may be taken equal to the applied
field H. This ulso implies that the flux density at the position of a given
spin is assuined to be B = uH. In making this assumption, we confine
ourselves in this section to paramagnetic materials (see the classification
in Table 4.1).

Let there be N spins per m® in the material. In the absence of an ap-
plied field, there are as many “up” spins as “down’’ spins, so that the
magnetization M = 0. In a field H, there will be a preference for the
dipoles to line up parallel to the field, and some magnetization will result.
At a temperature T, let there be N, dipoles per m* parallel to the field,
and N, antiparailel; we must then require

N,+N.=N (4.63)
For convenience we shall denote a Bohr magneton by 8, where § = eh/4xm.
The maguetization is then given by

M = (N, — N.)B (4.64)
Since the maeroscopic susceptibility is given by
x =p —1=M/H (4.65)

we wish to express N, — N. in terms of H, because we shall then be able
to express x in terms of atomic quantities. As indicated in Fig. 4.16, the

Energy
Fig. 4.16. Illustrating the en- . el
ergy difference between spin Wa f e
magnetic dipoles parallel and 2u BH

antiparallel to an external field. |
Wp —————— Parallel

energy of a magnetic dipole in the field with antiparallel orientation is
larger than that with parallel orientation. The energy differen~e can be
calculated from the fact that the torque, according to (4.15), is 'n general
given by p,, X B, which in our case reduces to uopta X H. It is lelt to the
reader to show that the energy difference between antiparallel and parallel
orientation is given by

W, — W, = 2usH (4.66)
According io Boltzmann's statistics then, we have for the ratio Nu/Njp
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the expression
NJ/Ny = exp [(W, — W.,)/kT]
= exp (—2uBH/KT) (4.67)
Thus, we know the sum and the ratio of N, and N,. It follows from (4.63)
and (4.67) that
No = N _ N exp (wBH /kT)
* 7 1+ exp (—2uBH/kT)  exp (uBH/kT) + exp (—uBH/kT) i

P N - N exp (—uaBH /kT)
® 7 1+ exp (2uBH/kT)  exp (mBH/kT) + exp (—uBH /kT)
Substituting these expressions into (4.64) we find for the magnetization
M = N tanh (u8H /kT) (4.69)
In Fig. 4.17 we have plotted M/NB as a function of the variable
z = uBH/kT. Note that for £ < 1, tanh (z) =z, and that for z>» 1,

1 .o _______________________
e

B Slope unity, / tanh i{z)
M /,
v € z

2

L L | 1
0 5 10 15 2.0

x=puoSH/RT

Fig. #.17. The fully drawn curve represents M /N as a function
of r = pBH/kT. For z « 1, tanh(r) = z, corresponding to a
line through the origin of elape unity.

tanh (z) approaches unity. Hence, for strong fields and low temperatures,
the magnetization approaches NB; i.e., it approaches the situation in
which all dipoles are lined up in paraliel with the field. An example of a
paramagnetic salt exhibiting saluration of the magnelization is given in
Fig. 4.18. For normal temperatures and for not too high fields, u8H < kT
and under those circumstances r < 1, 8o that

M = NufH/kT  for  wBH <kT (4.70)
In practice, the condition uBH < kT is satisfied more often than not. For

example, even for a relatively strong field uf{ = 1 weber m~* we have
woBH = 9 X 102 joule, whereas at room temperature kT =<4 X ly™
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Fig. 4.18. The magnetic mo-
ment in Bohr magnetons per Fig- 4.19. The reciprocal of the
Fo** ion in ferric ammonium susceptibility as s function of T '
alum ss a function of wH/T; for a paramagnetic material, ii-

note the observed approach to lustrating the Curie law.
the ssturation value of 53. [After

W, E. Henry, Phys. Rev. 88, 559

(1952)]

joule. Assuming that (4.70) is valid, we find from (4.65) and (4.70) for
the susceptibility

x = pr — 1 = Np/kT = c/T (4.71)
Thus, the susceptibility varies as 1/T'; it is instructive in this connection
to compare the similar problem of orientational polarization in dielectrics,
discussed in section 2.5. The law expressed by (4.71) is known as the
Curie law of paramagnetism; it is illustrated in Fig. 4.19. The constant
C = NuB/k is called the Curie constant.

An estimate of the magnitude of x (or ur) at 8 given temperature may
be made by taking N 225 X 10 m™. Putting in numerical values for the
other quantities in (4.71), one finds x = 0.3/T; i.e., x is of the order of
10-* at room temperature. Experimentally determined values are given
in Table 4.4; it is observed that these are of the estimated order of magni-

Table 4.4. SUSCEPTIBILITIES OF SOME PARAMAGNETIC MATEHRIALS
AT ROOM TEMPERATURE

Substance x = —1 Substance x =g — 1
CrCly 1.5 X 10°* FesO4 1.4 X 107
CryOs 1.7 X 107 Fes (SO 2.2 X 10~
Co0O 58 x 107 FeCls 3.7 X107
CoS0,-H O 2.0 X 10°* FeS80, 2.8 X 10°*

MnSO, 38 X107 Ni8Os 1.2 X107
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tude. It should be realized that the measured susceptibility includes a
diamagnetic contribution which has not been considered in the present
section. However, since susceptibilities are additive quantities, and since
Xdia = 10~% according to the results in section 4.7, we see that xdia K Xpera
at room temperature and below.

For many applications in clectrical engineering, it is a good approxi-
mation to take the relative permeability u, of paramagnetic substances
equal to unity. As far as applications of paramagnetic materials are con-
cerned, we may mention here that paramagnetic salts are the working
material used in obtaining very low temperatures (< 1°K) by adiabatic
demagnetization: the principle of this method is discussed in the books
by Kittel and by Dekker, given in the list of general references. Also,
paramagnetic salts have entered the group of electrical engineering mate-
rials a few years ago because they are the essential material used in the solid
state maser (microwave amplification through stimulated emission by radia-
tion). The principle of operation of a maser is discussed in van der Ziel's
book (page 590 ff), cited in the general references.

4.10 Some properties of ferromagnetic materials

Each ferromagnetic material has a characteristic temperature above
which its properties are quite different from those below that temperature.
This temperature is called the ferromagnelic Curie temperature and will be
denoted here by . In this section we shail discuss briefly some of the
characteristic features of ferromagnetic behavior in the two temperature
regions.

(i) T > 6, In the region above the ferromagnetic Curie temperature,
the behavior of a ferromagnetic material is somewhat simnilar to that of
a paramagnetic material. Thus. there exists a unique relationship between -
B and H, and between M and H. One can thus define the susceptibility
x = M/H = p, — 1, where x and have a definite meaning. In this
region, the susceptibility depends on temperature in accordance with the
so-called Curie-Weiss law

gy =1mCHT =0 for TH (4.72)

C is called the Curie constant; 9 is the “‘paramagnetic’ Curie temperature.
This expression is not valid in the region close to 8, as may be seen from |
Fig. 4.20; note that in this figure 1/x is plotted as a function of T. Com-
parison of Fig. 4.20 and Fig. 4.19 shows that the ferromagnetic case and
the paramagnetic case are very similar; the only difference is that for &
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Fig. 4.20. The reciprocal of the
susceptibility as a function of
temperature for a ferromagnetic
material above the ferromag-
netic Curie temperature, 67, The
paramagnetic Curie temperature
# is obtained by extrapolution of
the straight portion of the curve

B, By
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Fig. 4.21. Schematic represen-
tation of the hysteresis loop for
a ferromagnetic material. The
virgin curve starts at the origin.

which satisfies the Curie-Weiss
law.

truly paramagnetic material § = 0. The paramagnetic Curie temperature
8 is usuallv somewhat higher'than the ferromagnetic Curie temperature
(see Fig. 4.20); for the ferromagnetic elements of the iron group, for
example, these temperatures are, in degrees absolute:

Fe Co Ni
... 1043 1303 631
P 1093 1428 650

(ii) T < 8. Below the ferromagnetic Curie temperature, ferromag-
netic materials exhibit the well-known hysterests in the B versus H eurves.
A schematic representation of this behavior is given in Fig. 4.21. Starting
with a virgin specimen, B varies reversibly with H for small fields. Since
there is no hysteresis in this region, one defines the “initial" permeability
4 in the same weay as the permeability of a paramagnetic material. As
the field H is increased, B begins to increase rapidly and ultimately
approaches a saturation value By Along the virgin curve, one can still
speak of a differential permeabilily defined by 1+ (dM/dH), but evi-
dently this value is a function of H itself. The differential permeability
may become very large, as is evident from the values given in Table 4.5
for high-permeability materials. Upon reducing the value of H from the
saturation region to zero, it is observed that there remains a flux density
B, (remanent flur density). Since H = 0, the material must be spon-
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taneously magnetized; in fact, the magnetization corresponding to B, is
equal to M, = B,/u. The occurrence of sponlaneous magnelization is
characteristic of ferromagnetic materials; in this respect they behave in
a way similar to ferroelectrics.

The field —H, required to reduce the flux density to zero is called the
coercive force. The coercive force of ferromagnetic materials varies over
a wide range of values. For example, the coercive force of supermalloy,
used in pulse transformers, is approximately 1 ampere m~!, whereas that
for a high stability permanent magnet may be as high as 10* ampere m~*.
The coercive force thus determines to a large extent the practical appli-
cations for which a given material may be used. Some dats referring to
the magnetic properties of a number of ferromagnetic materials are given
in Table 4.5.

Table 4.5. S0ME DATA PERIAINING TO FERROMAGNETIC MATERIALS (Baat ia the aatu-
ration flux density; B, is the rémanent flux density; H, is the coercive force nnd (bte ) max
is the maxithum differential permeability.)

High permeability
materials (o) max By (weber m~*) | H, (amp m™)
Iron 5000 2.1 80
4% Bi-Fe 7000 20 40
Mu metal 108 0.65 4
Supermalloy 8 x 10* i 08 0.16
Permanent magnet
materials B, (weber m™) | H, (amp m™)
Carbon steel 1 4000
Alnico V 1.25 44,000
Platinum-Cabalt 0.45 2 X 10%

4.11 Spontaneous magnetization and the Curie-Weiss law

In this section we shall discuss the atomic interpretations of spon-
taneous magnetization and of the Curie-Weiss law, Before doing this, we
wish to point out that a piece of valuable information regarding the inter-
pretation of ferromagnetic behavior may be gained by considering the
magnitude of the remanent flux demsity of permanent magnets. We see
from Table 4.5 that B, =~ 1 weber m™ for these materials, and since
H = 0 we conclude that the remanent magnetization M, = B,/u =~ 10¢
ampere m~. On the other-hand, we know that an atomic dipole is of the
order of 1 Bohr magneton, i.e. 2210~ ampere m?. We thus require ap-
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proximately 10%* atomic dipoles per m?, all lined up in parallel, to obtain
the observed magnetization. However, the number of atoms in a solid is
approximately 10% per m?, so that the observed M, indicates parallel align-
ment of essentially all the dipoles in the malerial. This notion brings us to the
first hypothesis of Weiss, who by 1907 had already suggested that in
ferromagnetic materials the internal field seen by a given dipole is equal
to the applied field plus a contribution from the neighboring dipoles which
tends to align it in the same direction as its neighbors. Weiss expressed
this mathematically by stating that the internal field H; is given by*

H =H+ M (4.73)

H is the applied field and 4M is a measure for the tendency of the en-
vironment to align a given dipole parallel to the magnetization already
existing. The proportionality constant vy is the internal field constant; it
determines the strength of the interaction between the dipoles (see the
classification of magnetic materials in Table 4.1). We shall now show
that & field of the type (4.73) is consistent with (a) the Curie-Weiss law
and, (b) the occurrence of spontaneous magnetization. As a model we
shall again consider a system of N spins per m?, each giving rise to a mag-
netic moment of 1 Bohr magueton, B, either parallel or antiparallel to an
external field. The magnetization of such a system may be obtained im-
mediately from expression (4.69) for the paramagnetic case, by replacing
H by H,. Hence,

M = NB tanh [:—2‘753 (H + m)] (4.74)

At this point it is convenient to distinguish between two temperature
regions:

(i) High temperatures. At sufficiently high temperatures, the term
in square brackets in (4.74) will become small compared to unity. Then,
gince tanh z 22 r for £ & 1, we may approximate (4.74) by

M = (NuB/kTYH + yM) (4.75)
Solving this equation for M, one fiuds for the susceptibility of the material
M N uob*/k (

x=H-T—Nyaf’Tfk=T—'o (4.76)

Note that this expression is identical in form with the Curie-Weiss law
(4.72). For the model studied here, we have

C = NuB/k and ¢ =+C (4.77)

® Compare expression (2.32) for the case of dielectrica.
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Since € and 8 can be determined from 1aeasurements of the susceptibility
as a function of temperature, the internal field constant y can be calculated.
One finds for ferromagnetic materials y = 10°. This value is about a
thousand times as large as one would obtain on the assumption that the
internal field is due to the magnetic interaction of the atomic dipoles (see
problem 4.11). In fact, the forces acting between the dipoles in a ferro-
magnetic material cannot be explained in terms of classical physics; they
are due to the wave nature of the electrons and in wave mechanics are
called exchange forces.

(ii) Spontaneous magnetization below the Curie temperature. It fol-
lows from (4.76) that the Curie-Weiss law can hold only for temperatures
T > 6, because for T = 0 the susceptibility would become infinite. This
fact suggests already that at T = 6, spontaneous magnetization may
occur (non-vanishing M for’H = 0); this is confirmed by the following
arguments. In (4.74) let us put H = 0, and ask the question as to whether
that equation permits a non-vanishing value for M. It is convenient to
introduce a new variable

z= -rp.ﬁM/H‘ (4.78)
so that (4.74) may be written (with H = 0) in the form
M/NB = M/M,, = tanhz (4.79)

Here, My, = NB represents the saturation value of the magnetization,
since it gives the magnetization for parallel alignment of all the dipoles, and
is evidently the maximum value that can be cbtained. A plot of M /My,

—> x=yupBM/kT

Fig. 4.22. Schematic illustration of the graphical solution of
equation (4.79) for the spontaneous magnetization. For the tem-
perature T,(< 6) the value of Mi/Meu is obtained from the in-
tersection of the line ¢T,/8)z and the tanh(z) curve. For T 2> ¢
the spontanecus magnetization vanishes.
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as function of z is given in Fig. 4.22. According to (4.78), we should also
have
M M kT T

Mo " N N =0 " (4.80)
where the last equality follows from (4.77). Now, for a given temperature
T, (4.80) in a plot of M /M, versus z represents a straight line with a slope
equal to T/6. Since M /M . must satisfy both (4.79) and (4.80), the value
of M /M. for the temperature T is given by the intersection of the straight
line and the tanh r curve, as indreated in Fig. 4.22. When this procedure
is repeated for different temperatures, one can finally plot M/Mu as
function of 7/8, as shown in Fig. 4.23. Note that for T 2 6, the spon-

10 —v—ro—
-\\‘)\4‘
BF \
R
'MB:: s Fa.
o COo
1' ’ + Ni +
2 !
I (L, - ._L_.__J——-\n
2 4 6 B 10

—= T/

Fig. 4.23. The curve represents the relutive spontaneous mag-
netization as a function of 7/6 ohtained from the procedure
illustrated in Fig. 4.22. The points represent measured values
for nickel, cobalt, and iron.

taneous magnetization vanishes. The reason for this can be seen in Fig.
4.22. When T = 6, expression (4.80) gives M /M., = z, but this line is
just the tangent of the tanh z curve at the point 2 = 0. For T 2 6, the
only intersection between (4.80) and (4.79) is the point z = 0; i.e., there
is no longer a spontaneous magnetization. In Fig. 4.23, experimental
points have been indicated, and the agreement with the theoretical curve
is seen to be quite good. The reader should realize that the materials for
which the experimental points have been plotted have widely different 8
and M values, as indicated in Table 4.6. The spontaneous magnetization
becomes equal to My, only at T = 0, but it is evident from the curve in
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Table 4.6. SATURATION VALUE OF THE SPONTANEOUS MAGNETIZATION AND FERRO
MAgNETIC CURIE TEMPERATURES FOR THE FERROMAGNETIC METALS

Metal Mgqt (amp m~!) Curie temp. (°K)
Fe 1.76 X 10 1043
Co 1.45 X 10* 1393
Ni 0.51 x 10* 631

Fig. 4.23 that for iron and cobalt even at room temperature, the spon-
taneous magnetization is nearly equal t0 M ..

It is noted that the theory given predicts the same value for the
ferromagnetic Curie temperature as for the paramagnetic Curie temper-
ature, whereas experimental values of 8, and 8 difiered somewhat. This
diserepancy between theory and experiment must be ascribed to the simple
form of the internal field &xpressed by (4.73). On the other hand, it
must be admitted that this simple equation explains the spontaneous
magnetization and the Curie law satisfactorily as far as the essential
features are concerned.

4.12 Ferromagnetic domains and coercive force

After the discussion in the preceding section, the question may be
raised as to how one can explain the fact that a piece of iron may not
exhibit a resultant magnétization, and how one can explain the hysteresis
in the B versus H curves of ferromagnetic materials. This brings us to
the second hypothesis of Weiss. According to Weiss, a virgin specimen of
iron consists of a number of regions or domains (=10-% m or larger) which
are spontaneously magnetized in accordance with the formulas derived
in the preceding section. However, the direction of the spontaneous magneti-
zation varies from domain lo domain, and consequently, the resultant
magnetization may be zerc or nearly zero; this is indicated by the domain
configuration in Fig. 4.24(a). If an external field H is applied, the domains
with the proper direction of epontaneous magnetization grow at the
expense of those that are mugnetized in other directions by virtue of a
motion of the domain walls [see Fig. 4.24(b)]. Ultimately, as the field is
increased, the whole specimen may become one single domain, and satu-
ration has been achieved. Thus, the hysteresis curve is associated with th.
motion of domain walls and, to some extent by domain rotation. The
latter takes place as a result of the fact that spontaneous magnetization
occurs only along certain directions in the crystal; when a field is applied
in another arbitrary direction, the magnetization will rotate from an “easy”
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Fig. 4.24. The domain configu-
ration in (a) has zero resultant
magnetization, In (b) & mag-
netic field has been applied and
the domain walls have moved
g0 as to produce o net magneti-
zation along the applied field
direction.

la) (b}

direction to & “hard” direction. Since the hysteresis loop is interpreted
in terms of domain wall motion, the coercive foree must be determined
by the “mobility” of the walls. The mobility of the domain walls is in
turn determined by impurities, lattice imperfections, etc. and to some
extent it is possible to “design’ materials which require a large or a small
coercive force. It may be mentioned here that the well-known Barkhausen
effect is due to irregular fluctuations in the motion of domain walls; in
earlier days, the efect had been aseribed to rotetion of domains.

The most direet evidence for the existence of domains is provided by
the so-called Bitter powder patterns. A drop of a colloidal suspension of
ferromagnetic particles is placed on a well-prepared surface of the speci-
men: sinee there are strong local magnetic fields near the domain
boundaries, the particles congregate there and the domain structure may
be observed under a microscape.

4.13 Antiferromagnetic materials

In the discussion of ferromagnetic materials it was pointed out that
the tendency for parallel slignment of the eleciron spins was due to
quantum mechanical exchange forces. In certain materials, for example
when the distanice between the interacting atoms is small, the exchange
forces produce a tendency for antiparallel alignment of electron spins of
neighboring atoms. This kind of interaction is encountered in antiferro-
magnetic and in ferrimagnetic materials. It is of interest to note that
certain properties of antiferromagnetic materials were predicted befere
antiferromagnetism was discovered experimentally. Thus, Néel and
Bitter in the thirties made a theoretical study of the properties of anti-
ferromagnetic models, and a few years later, in 1938, antiferromagnetism
was discovered in MnO by Bizette, Squire and Tsai. Since that time, a
number of other materials has been found to be antiferromagnetic. From
the experiméntal point of view, the mosi characteristic feature of an
antiferromagnetio material is the occurrence of a rather sharp maximum
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18}
12+ Fig. 4.25. The susceptibility of
103y MnF; (polycrystalline) as a func-
} tion of temperature, The maxi-
1 8l mum i8 characteristic of an anti-
ferromagnetic transition. [After
de Haas, Schultz, and Koolhaas,

Physica, 1, 57 (1940)]
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1 1 1

100 200 300
= TI'K)

in the susceptibility-versus-temperature curve, as may be seen from the
Wplﬁ given in Fig. 4.25 for Mn}, The temperature for which this
maximurmn oceurs is called the Néel temperature, Tyv. The Néel temperature
plays a similar role in antiferromagnetic materials as does the ferromag-
netic Curie temperature in ferromagnetie materials. Thus, above the Néel
temperature, the susceptibility is observed to follow the equation

¢

X=T 1o e

where (' is the Curie constant and # the paramagnetic Curie temperature.
Below the Néel temperature, the spin system tends to be “ordered” in a
way similar to the spin system in a ferromagnetic material, except that at
T = 0 half the spins are oriented in cne direction end the other half in
the opposite direction. Confining ourselves for the moment to the high
temperature region, it is of interest to recapitulate the results for the
susceptibility versus temperature behavior for para-, ferro-, and anti-
ferromagnetic materials:

para- ferro- antiferro-
x=0/T x=C/(T — 8 x=C/(T + 9) (4.82)
for T > 6, for T > Tx

The difference between the three groups of materials is illustrated in
Fig. 4.26 in terms of a plot of 1/x versus temperature.

We shall now consider a simple model of an antiferromagnetic ma-
terial. With reference to Fig. 4.27, consider a body centered cubic lattice,
We shall distinguish in this lattice between A-sites and B-sites, as indi-
cated in Fig. 4.27. Each A-site is surrounded by eight B-sites, and each
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Fig. 4.26. [llustrating the recip- Fig. 4.27. Representation of
roeal susceptibility as a function two sub-lattices, A and B; the
of temnperature for a paramag- spins on the 4-latiice tend to
netie, ferromeagoetic, and anti- line up antiparallel to those on
ferromagnetic material. the B-lattice.

B-site is surrounded by eight A-sites. We shall assume that all sites ara
occupied by identical atoms with a magnetic dipole moment of 1 Bohr
magneton which can orient itself either in the “up” or the “down” di-
rection. Also, we shall assume that an atom at an A-site tends to align
its spin opposite to the spins of the neighboring atoms on the B-sites, and
vice versa. In order to describe this mathematically, we introduce an
internal field H, for the atoms on A-sites and an internal field H; for the
&toms on B-sites. Following a procedure similar to that used in section
4.11 for a ferromagnetic material, we may then write

H,=H - M, and H, = H - yM, (4.83)
Here, M. and M, represent the magnetizations of the A-sub-lattice and
of the B-sub-lattice respectively. The minus signs represent the as-
sumption that an 4 atom tends to align its dipole moment opposite to the
direction of the magnetization of the B-lattice; the internal field constant
v determines the strength of the exchange interaction. The magneti-
zations M, and M, may be obtained again from formula (4.69) by replacing
H by the appropriate internal fields. Hence, if there are N atoms per m?
on the A-lattice and an equal number of atoms on the B-lattice, we find

M, = Np tanh [:Lg (H — -,-M,,)]
(4.89)
M, = N§ tanh [ﬁ (H — -,M.)]

At sufficiently high temperatures, we may make use of the fact that
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tanh 22 z for z < 1, so that then (4.84) reduces to
M, = (NB%u/kT)(H — M)
(4.85)
M, = (N@%0/kT)(H — vM.)
The total magnetization of the material is given by
M=M,+M, (4.86)
and consequently may be caleulated by adding the two (4.85) equations;
this gives
M = (NuB/kT)(2H — yM) (4.87)
Since the net magnetization M must have the same direction as H, we
may consider (4.87) as a scalar equation. Solving for M/H we thus find
for the susceptibility at high temperatures
x = M/H = 2C/(T 4 ~C) = 2C/(T 4+ 6) (4.88)
where C = Nu*/k and i = ~yC

il

Note that this model indeed gives a susceptibility as required by the
experimentally derived equation (4.81).

At low temperatures, the approximation involved in going from (4.84)
to (4.85) is no lgnger justified. In fact, at 7 = 0, the spin system is com-
pletely ordered in the sense that all spins on A-sites are oriented in parallel
and all apins on the B-sites are oriented in parallel. Thus, at low tempera-
tures, M, amd M, are very large, though oppositely directed. As the
temperature is raised from zero, the magnetizations M. and M, of the
two sub-lattices in the absence of a magnetic field vary with temperature
in a fashion similar to the spontaneous magnetization of a ferromagnetic
material. The spontaneous magnetizations of the sub-lattices disappears
at the Néel temperature T¥. We shall not discuss here the solution of
equation (4.84) for the temperature region below 7Ty; it may suffice to
say that the behavior of the experimentally observed susceptibility curve
(see Fig. 4.25) can be understood in terms of the model under discussion.
However, we may discuss here the occurrence of a Néel temperature for
the model. This can be done on the basis of the simpler formulas (4.85),
because at the Néel temperature itself the spontaneous magnetization of
the sub-lattices vanishes, as can be seen {from Fig. 4.23; i.e,, at the Néel
temperature itself formulas (4.85) should still be valid. Let us investigate
then, by putting H = 0 in (4.85), for what temperature spontuneous
magnetization of the sub-lattices becomes possible. Rewriting (4.85) for
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B-site is surrounded by eight A-sites. We shall assume that all sites are
occupied by identical atoms with a magnetic dipole moment of 1 Behr
magneton which can orient, itself either in the “up” or the “‘down” di-
rection. Also, we shall assume that an atom at an A-site tends to align
its spin opposite to the spins of the neighboring atoms on the B-sites, and
vice versa. In order to deseribe this mathematically, we introduce an
internal field H, for the atomns on A-sites and an internal field H, for the
atoms on B-sites. I'ollowing a procedure similar to that used in section
4.11 for a ferromagnetic material, we may then write

H=H-4M, and H,=H - M, (4.83)
Here, M, and M, represent the magnetizations of the A-sub-lattice and
of the B-sub-lattice respectively. The minus signs represent the as-
sumption that an A atom tends to align its dipole moment opposite to the
direction of the magnetization of the B-lattice; the internal field constant
v determines the strength of the exchange interaction. The magneti-
zations M, and M, may be obtained again from formula (4.69) by replacing
H by the appropriate internal fields. Hence, if there are N atoms per m?
on the 4-lattice and an equal number of atoms on the B-lattice, we find

M, = NB tanh [ﬁ (H — YM.)]
(4.84)
M, = Np tanh [ 22 (i VM) |

At sufficiently high temperatures, we may make use of the fact that
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tanh 2 z for z < 1, so that then (4.84) reduces to
M, = (NFu/kT)(H — vM,)
(4.85)
M, = (NF%u/kT)(H — vM.,)

The total magnetization of the material is given by
M=M, | M, (4.86)

and consequently may be calculated by adding the two (4.85) equations;
this gives
M = (Nu®/kT)(2H — yM) (4.87)

Since the net magnetization M must have the same direction as H, we
may consider (4.87) as a scalar equation. Solving for M/H we thus find
for the susceptibility at high temperatures

M/H = 2C/(T + ~C) = 2C/(T + 6) (4.88)
Nuaf*/k and 0 =C

Note that this model indeed gives a susceptibility as required by the
experimentally derived equation (4.81).

At low temperatures, the approximation involved in going from (4.84)
to (4.85) is no longer justified. In fact, at 7' = 0, the spin system is com-
pletely ordered in the sense that all spins on A-sites are oriented in parallel
and all apins on the B-sites are oriented in parallel. Thus, at low tempera-
tures, M, amd M, are very large, though oppositely directed. A= the
temperature is raised from zero, the magnetizations 4, and M, of the
two sub-lattices in the absence of a magnetic field vary with temperature
in a fashion similar to the spontaneous magnetization of a ferromagnetic
material. The spontaneous magnetizations of the sub-lattices disappears
at the Néel temperature Tn. We shall not discuss here the solution of
equation (4.84) for the temperature region below Ty; it may suffice to
say that the behavior of the experimentally observed susceptibility eurve
(see Fig. 4.25) can be understood in terms of the model under diseussion.
However, we may discuss here the occurrence of a Néel temperature for
the model. This ean be done on the basis of the simpler formulas (4.85),
because at the Néel temperature itself the spontaneous magnetization of
the sub-lattices vanishes, as can be seen from Fig. 4.23; i.e,, at the Néel
temperature itself formulas (4.85) should still be valid. Let us investigate
then, by putting [ = 0 in (4.85), for what temperature spontuneocus
magnetization of the sub-lattices becomes possible. Rewriting (4.85) for

f

X

where [ &

I
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H = 0 we obtain
M, +%7Mb =0
(4.89)
()
?TM:: + Mh =0

For T > T, these equations have the trivial solutions M, = M, = 0;
i.e, there is no spontaneous magnetization of the sub-lattices above the
Néel temperature. If spontaneous magnetization of the sub-lattices is
supposed to set in for T = Ty, we must require that (4.89) has non-
trivial solutions for M, and M, at the temperature T = T'y. This permits
us to caleulate Ty, because the requirement just stated is equivalent to
the requirement that the determinant of the coefficients of M, and M,
vanishes. Hence

C 2
(ﬂ 'y) =1 o Ty=Cy=90 (4.90)

where the last relationship follows from (4.88). Note that for the model
employed here, the Néel temperature turns out to be the same as the
paramagnetic Curie temperature 8. (The reader is reminded of the fact
that in the ferromagnetic case the simple model employed also gave
8 = 6.) According to measurements of @ and T'~, there is a considerable
difference between Ty and 6, as may be seen from Table 4.7, This indi-
cates that the model used here was actually too simple. In fact, one can
show that if one takes into account antiferromagnetic interactions not only
between nearest neighbors, but also between next nearest neighbors, the
model above would give Ty < 8. The model discussed here must there-
fore be eonsidered as an approximation; it predicts the general features
of antiferromagnetism correctly, but not the details. It should also be
realized that usually the particular body-centered structure assumed in
Fig. 4.27 does not apply to the material under study. In Table 4.7 we give
values of Ty and 6 for some antiferromagnetic materials.

The question can be raised as to what independent experimental evi-
dence there exists to support the assumption that in an antiferromagnetic
material neighboring spins have opposite directions. The answer is that
such evidence has been obtained from neutron diffrastion studies. The
neutrons, because of their magnetic moment, can “see’”’ the difference
between an “up” spin and a “down” spin and the diffraction patterns
(similar to X-ray diffraction patterns) show that the antiparallel spin
alignment actually ocours in these materials.
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Table 4.7. NfeL TEMPERATURE (T'w) AND PARAMAGNETIC CURIE TEMPERATURE (@)
FOR BOME ANTIFERROMAGNETIC MATERIALS

Material Tw(°K) 6(°K)
MnF, 72 113
MnO, 84 316
MnO 122 610
MnS 165 528
FeO 108 570
NiF,s 73 116
CoQ 202 280

4.14 Ferrimagnetic materials

Of the ferrimagnetic materials, the so-called ferrites are of greatest
interest from the elcetrical engineering point of view; they behave as
ferromagnetic materiais in as much as they show spontaneous magneti-
zation below a certain temperature. As far as their conductivity is con-
cerned, they behave as semiconductors. The d-c resistivity of ferrites is
many orders of ten higher than that of iron; consequently, the eddy
current problem preventing penetration of magnetic flux into the material
is much less severe in ferrites than in iron. Ferrites can therefore be used
for frequencies up to microwaves in transformer cores and are of great
technical importance in this respect.

The chemical formula of simple ferrites may be written as
Me2+Fe2+(2-, where Me'+ may represent a variety of divalent metallic
jons, such as Fer*, Co*t, Mn**, Zn™, Cd*", Mg**, ete. Symbolically, one
may write the formula as a “mixture” of MeQ and Fe;0;, although a
ferrite is actually a solid solution of two such oxides.

Since the oxides contain ions, the magnetic properties should be pre-
dictable to a good degree of approximation from the magnetic properties
of the ions. Thus, from Table 4.3 we expect, for example, each Fe** ion
to correspond to 4 Bohr magnetons, and each Fe** to 5 Bohr magnetons.
Now, a material such us Fe**Feit 01~ exhibits & saturation magnetization
which amounts to 48 (8 = 1 Bohr magneton) per “molecule” F eHFeldtOl-.
It is evident that if the spins of all the ions were lined up in parallel one
should find 4 + (2 X 5) = 14 Bohr magnetons per molecule. This dis-
crepancy was explained in 1948 by Néel in terms of a model consisting of
two sub-lattices, somewhat similar to the AB lattice in Fig. 4.27, for which
he assumed an antiferromagnetic interaction between A-sites and B-sites.
An important role in this interpretation is played by studies of the atomic
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arrangement in ferrites, from which it has been possible to identify the
A- and B-sites.

Because of the intimate relationship between the magnetic properties
of ferrites and the crystal structures of ferrites, a few remarks may be
made here concerning this problem. The oxygen ions in a ferrite form
a close-packed face-centered cubic structure. In this arrangement it is
found that for every four O* ions, there are two oclahedral ‘‘holes” (sur-
rounded by six O ions) and 1 tetrahedral “hole” (surrounded by four O*-
jons). The metal ions are distributed over these octahedral and tetra-
hedral sites. The tetrahedral sites may be identified with the A-sites, and
the octahedral sites with the B-sites mentioned earlier. Thus, the octa-
hedral sub-lattice has twice as many sites as the tetrahedral one. This
has been represented schematically in Fig. 4.28. Now, in Fe**Fe3* 04~

Felt Felt
Fig., 4.28. Schematic repregen- Beites
{ation c_)f TFe?* and Fe't ions in —(:i)—--—--—- b aia)
magnetite. There are two Fe?*
ions and one Fe** ion per mole- g 5P 5B
cule of Fey0y, as irdicated. The A .. . . A-sites
net moment per molecule is 48, " (tetrahedral)

Felt

(magnetite), for example, the Fe** ions occupy half of the octahedral
sites; the Fe'* jons occupy the other hulf of the octahedral sites, and the
tetrabedral sites (see Fig. 4.28). Hence, if there exists an antiferromagnetic
interaction between A- and B-sites, we see from Fig. 4.28 that the Fe?!
magnetic moments just cancel each other, so that the magnetization of
Fe;0, should be equal to that produced by the Fe** ions alone, i.e. 43 per
molecule; that is in agreement with experiment.

The behavior of other ferrites may be explained in similar terms.
We may mention here an interesting feature of ferrites, which shows again
the importance of the atomie arrangement for the properties of these
materials: it is observed that if in FesO,, some of the magneric Fe't ions
are replaced by non-magnetic ions such as Zn** or Cd**, the magnetization
increases! The reason for this peculiar behavior is the following: Zinc ions
go preferably into tetrahedral positions, thereby forcing some of the Felt
jons from tetrahedral to octahedral sites, Since the Zn®** jons have no
magnetie dipole moment, the net magnetization increases, as may be scen
from Fig. 4.29. It will be evident that these materials lend themselves,
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Folt Fot Fedt Feit
__________ o __¢N___ Besites
ey i octahedral
4p 6 68 58
5

___.._o _________________ A-sites

tetrahedral
Zn 2+ Fe 3+

Fig. 4.29. Schematic representation of the ionic distribution in
magnetite after replacing half of the Fe?* ions by Zn®*, The Zn**
ions prefer tetrahedral positions and force Fe**ions to move into
octahedral sites.

within certain limits, to designing materials with prescribed spontaneous
magnetization.

References

L. F. Bates, Modern Magnetism, 3d ed., Cambridge, London, 1951.

E. W. Gorter, “Saturation Magnetization and Crystal Chemistry of
Ferrimagnetic Oxides,”” Philips Research Reports, 9, 295, 321, 403
(1954); see also Proc. IRE, 43, 1945 (1955).

J. L. Snock, New Developments in Ferromagnetic Materials, Elsevier, New
York, 1947.

J. van den Handel, “Paramagnetism,” Advances in Electronics and Electron
Physics, 6, 463 (1954).

Problems

4.1 A linear conductor carries a current of 10 amperes along the posi-
tive z-direction. Find the force per meter length on the conductor if it is
subjected to a homogeneous flux density of 0.5 weber m~* along the
z-direction.

4.2 A linear conductor in air carries a current of 5 amperes; caleulate
the flux density produced by 1 em of the conductor in a point at a distance
of 1 m normal to the 1 cm section.

4.3 Show by means of Biot and Savart’s law that the flux density
produced by an infinitely long straight wire, carrying a current 7, in a
point at a distance @ normal to the wire is given by wou.d/2wa.

4.4 Two infinite parallel conductors carry parallel currents of 10
amperes each, Find the magnitude and direction of the force between
the conductors per meter length if the distance between them is 20 eph.
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4.5 An clectron with velocity vestor v moves in combined electric
and magnetic fields E and B. Write down the expression for the foree on
the electron (the “Lorentz force’).

4.6 Show that an electron with a velocity perpendicular to the di-
rection of a homogeneous magnetic field of flux density B describes a
circular path with an angular veloeity of rotation equal to ¢B/m.

4.7 A charge of e coulombs is distributed homogeneously over the
surface of a sphere of radius B meters. The sphere rotates with an angular
velocity w about an axis passing through its center. Show that the mag-
netic dipole moment of the sphere is equal to tewR? Also show that the
angular momentum of the sphere is §mwR?, where m is the total mass of
the charge.

4.8 Consider a charge of ¢ coulombs distributed homogeneously over
the surface of a sphere of radius /2 meters. if the sphere is initially at rest,
show that after application of a flux density of B weber m—?, the charge
distribution will rotate with sn angular velocity w = (¢/2m)B, where m
is the total mass of the charge.

4.9 The magnetic field strength in a piece of copper is 10° ampere
m—>. Given that the magnetic susceptibility of copper is —0.5 X 107%,
find the flux density and the magnetization in the copper.

4.10 The magnetic field strength in a piece of FeaOs is 10° ampere m ™,
Given that the susceptibility of Fe,0; at room temperature is 1.4 X 1078,
find the flux density and the magnetization in the material; compare the
answers with those of the preceding problem. What is the magnetization
at the temperature of liquid nitrogen?

4.11 Consider two point dipoles, each with a strength of 1 Bohr
magneton; the dipoles. are parallel to each other and parallel to the line
joining their centers. If the distance between the dipoles is 2 angstrom,
caleulate the energy of one dipole in the field of the other and show that
the result is equivalent to k7 with 7 =~ 1°K. (This shows that ferro-
magnetie interactions cannot be explained classically, because the inter-
action energy should be of the order of kT where T = 8, =< 1000°K).

412 The saturation value of the magnetization of iron is 1.75 X 10¢
ampere m~'. Given that iron has a body-centered cubie structure with an
elementary cube edge of 2.86 angstroms, caiculate the average number of
Bohr magnetons contributed to the maguaetization per atom.

4.13 A paramagnetic system of spins is subjected to a homogeneous
field of 10* ampere m~! at a temperature of 300°K. Find the average mag-
netic moment along the field direction per spin in Bohr magnetons. Answer
the same question for liquid helium temperature.



