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Behavior of Dielectrics In

Alternating Fields

In this chapter we shall discuss the essential aspects of the behavior of
dielectric materials when subjected to alternating fields. The discussion is
based on the atomic models employed in the preceding chapter, and from
the behavior of these models in alternating fields we shall arrive at the
frequency dependence of the macroscopic dielectric constant. As a result
of the discussion it will become evident that the dielectric constant under
these conditions is in general a complex quantity of which the imaginary
part is a measure for the dielectric losses of the material. The discussion
in this chapter is by no means complete and serves mainly to illustrate the
principles leading to the complex dielectric constant and its interpretation.

3.1 Frequency dependence of the electronic polarizability
Let us return at this point to the atomic model employed in section 2.3,

and let us inquire what results would be obtained for the polarizability
when the model is subjected to an alternating field. For simplicity we shall
assume a nucleus of charge +e and a single electron, the latter being rep-
resented by an electron cloud of total charge - e distributed homogeneously
through the volume of a sphere of radius R; the center of the sphere in the
absence of an external field coincides with the nucleus (see Fig. 2.5). Since
the nucleus is much heavier than the electron cloud, we may consider the
nucleus to a good approximation to be at rest, the electron cloud carrying
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out the motion forced on it by the a-c field. The first problem i, of course,
to set up the differential equation which describes the motion of the elec-
tron cloud. First consider the following problem: suppose the electron
cloud is displaced by an amount zo relative to the nucleus and then the
system is left to itself. What is the differential equation which describes
the motion of the electron cloud under these circumstances? From the
discussion in section (2.3) it follows that tne force which tends to drive
the center of the cloud to the nucleus is given by

F	 —e2x/4,-€o[?3 = — ax	 (3.1)
where x is the displacement. The force F is called the restoring force and a
the restoring force constant. Hence, if there were no damping, and in the
absence of an applied field, the equation of motion of the electron e1tl
would be identical with that for a harmonic oscillator, viz.,

d2x
m

	

dr
=—ax	 (3.2)

where m is the mass of the cloud, i.e. the electron mass. It is well known
that the solution of (3.2) is

X = Xo sin (wot+) (3.3)
where x0 and 6 are integration constants, and where wo = (a' IM)"' is the
natural or resonance angular frequency. An estimate of the order of mag-
nitude of wo is obtained by putting in (3.1) R	 10 11 m; this gives with
at = 0.9 )c 101 kg a value of w 1011 radians sec. Hence, the fre-
quencies we are talking about lie in the ultraviolet part of the electromag-
netic spectrum.

Expression (3.2) is incomplete in the sense that it does not take into
account the emission of electromagnetic radiation by . the system; the
emission results from the time variation of the acceleration of the electron
cloud and leads to damping. In the mechanical case, damping of the oscil-
lating particle would result from the viscosity of the medium in which the
particle moves and it is well known that this damping leads to a term pro-
portional to the velocity of the particle in the equation of motion. It can
be shown that, in the electrical case under consideration, the damping due
to radiation may be represented in a similar way; i.e., instead of (3.2) we
should write

d2x	 0dx
M	 —ax - bb	 (3.4)

where the last term is the damping term. The constant b is related to the
natural frequency coo in the following manner

2b =jze2/rnw	 (3.5)
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where j = 1.257 X 10 henry m' is the magnetic permeability of vac-

uum, and c = 2.9979 X 10 1 rn see' is the speed of light. Substituting

numerical values, the reader may verify that 2b/rn < c, a result which

will be used later.
We are now in a position to write down the equation of motion of the

electron cloud in the presence of an alternating external field. Let the field
be applied in the i-direction and let it be represented by E0 cos wt, w being

the angular frequency. The force on he electron cloud resulting from the

field is then —cEo cos wt and the equation of motion is

m	 —ax - 2b	 - el'o cos wt	 (3.6)
dt'	

(It

To .olve this equation for x(t) it is convenient to use complex notation.

Thus, we shall write*

E0 cos et = Re [Eoe'] = E0 Re [e]	 (3.7)

and we shall assum3 the solution to be of the form

x(t) = Re [A * e i''] . (3.8)

where A* is in general a complex amplitude. Substituting the last two
expressions into (3.6) one obtains

Re {[_en* + A + j	 A + E0] e} = o
in	 rn	 in

From this it follows that the expression in square brackets is zero; writing

cr/n = in accordance with the definition (if the natural frequency wo,

we find
Je/m)Eo	 (3.9)

-	 - j(2b in)

What is the induced dipole moment as function of time? In general,

pd(t) = -ex(t) so that we find from (3.8) and (3.9)

	

L(e/)E0e°	 (3.10)= Re	 -	 +j(21)w/in) 

Since the coefficient of Eoe"' is a complex quantity, we see that the static

definition Pi.d = a,E cannot be applied in this case. We are therefore com-

pelled to introduce a complex polarizabilitii a by means of the rollowing

expression
= Re [aEoe]	 (3.11)

where
elm 

=	 -,	 (3.12)
- 

2 + j(2bw/m)

Re [ 3 means "real part of [ 3". Complei quantities will he provided with an

asterisk superscript.
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Writing out the real and imaginary parts of (3.12) we find

	

* e r	 - a2	 2ha'm

	

= j [(	 - 2)2 + (4b2a2/m2) - (a - ,2)2	 (41)2o.2/m2)

(3.13)

where cs and a' represent, respectively, the real and imaginary parts of
the polarizability.

We shall now discuss the frequenc y dependence of the real and imagi-
nary parts of a, referring to Fig. 3.1. First of all, we note that for a = 0

Fig. 3.1. Schematic representation of the frequency dependence
of the real and imaginary parts o 11 and c ' , respectivel y , of the
electronic polarizability for a single electron.

the imaginary part vanishes, the real part being equal to the static value
e2,/ina. The real part is positive for all values a a0 and negative for all
values a > we; the real part is zero for a = w. Remembering that 2b <ao,

it is noted that a is essentially constant from zero frequency up to fre-
quencies which become comparable to coo. In the region where a is nearly
equal to oa, the behavior can be discussed conveniently by introducing the
variable

Aw = we - 0 with 4.W <<Wa

We may then write approximately

Wo-	 (we + a) (a0 - a) 2aow

and the real part becomes

e2	 2wow	 e2	 (a)/2woa -	 -
M 4a(&)2 + 4b2a2/rn2 m (&)2 + b2/m2	

(3.14)

This expression has a maximum for Aw = b/rn and a minimum for Aw
—b/m, as illustrated in Fig. 3.1. The dampings coefficient 2b is thus a
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measure for the distance between the maximum and minimum in the dis-

persion curve (a versus u).
The imaginary part a' vanishes for to 0 as well as for w —p co. In the

vicinity of co wo, we may write by introducing the variable Aw,

e2b/2m2wn	 (3.14a)
= (w) 2 + b21m2

Thus, a' exhibits a maximum for Xw = 0, i.e. for w = wo; the magnitude
of the maximum is (a')m = e2 12wob. The width of the bell-shaped curve
for a' corresponding to half the maximum value is readily found to he
2b/m.

The consequences of a complex electronic polarizability for the dielec-
tric behavior will be discussed later, but it may be said here already that
the imaginary part of the polarizability gives rise to absorption of energy by

the system from the field.
The model discussed above was limited to the existence of one electron.

In general an atom contains a number of electrons, each of them corre-
sponding to a particular force constant a, and a particular damping con-
stant b. Consequently, the atom in general will have a series of Wo, values

Fig. 3.2. Schematic representation of the frequency dependence
of the real and imaginary parts of the polarizahility of an atom;
in this case there are a series of resonance frequencies 	 etc.

and the polarizabilit' will exhibit a frequency dependence as indicated
schematically in Fig. 3.2.

3.2 Ionic polarization as a Function of Frequency

The frequency dependence of the ionic polarizability can be discussed
in complete analogy with the electronic polarizability, the difference be-
tween the two cases being of a quantitative nature only. When two ions
in a molecule or solid are displaced relative to each other, the restoring
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force which tends to drive them back to their eciuilibrium positions is to a
good approximation proportional to the displacement. Hence, the forces
are harmonic. The masses of the particles in the present case are, of course,
those of atoms rather than of electrons. As a result, the natural frequencies
of the ionic vibrations lie in the infrared part of the electromagnetic spec-
trum, corresponding to 1014 radians per second. Thus, the ionic po-
larizability of a molecule will also be a complex quantity which may be
written in the form

.	 F
-	 (3.15)

The real part a,' as a function of the frequency w of an applied field exhibits
the same features as those represented for in Fig. 3.2; the only difference
is that the wo i values for which the maxima and minima occur are now dis-
placed to the infrared region. Similarly, 4' as a function of frequency will
exhibit, various bell-shaped maxima, one for each of the characteristic fre-
quencies

3.3 The complex dielectric constant of non-dipolar solids

On the basis of the information obtained in the preceding two sections,
let us consider the frequency dependence of the dielectric constant of a
eclid, assuming the solid contains no permanent dipoles. The last restric-
tion is not particularly severe in the case of solids, because usually the
dipoles are not able to rotate anyway. In the solid state, and also in the
liquid state, the applied field must be replaced by the internal field E, as
discussed in section 2.6. For simplicity we shall assume that the internal
field is given by the Lorentz field (2.33), so that

= E(t) + P(t)/3o	 (3.16)

where P(t) is the electric dipole moment per unit volume at the instant t.
Let us assume that the solid contains N units per in from which the solid
may be built up by a three-dimensional stacking. Let each of these units
be characterized by an electronic polarizability a and an ionic polariza-
bility a. In accordance with (3.11) we may then write

P(t) = N Re [(a + a')E e"'J	 (3.17)

where E& is the complex amplitude of the internal field; is the frequency
of the applied field. Note that in general, P(t) will not be in phase with the
applied field, or with the internal field. Consequently, the relationship de-
rived for static fields [see (2.9)]:

-

P	 ,. - 1)E
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is not valid in the case of an alternating field, and we shall therefore define
a complex relative dielectric constant el, such that

P(t) = to Re [( - 1)E0e5"] (3.18)

where it has been assumed that the applied field is given by E0 cos wt. Note
that by introducing the complex €, we have introduced the possibility of
a phase difference between P(t) and E(t). Substituting (3.18) into (3.16)
we may then write

= Re r_+ 2) Eoei t] = Re [Eei'4]	 (3.19)
[3

Equating (3.17) and (3.18), and substituting (3.19) into (3.17) we find

= -N(a + a)	 (3.20)
2	 .Eo

The reader may compare this result with the Clausius-Mosotti expression
(2.38) derived for the static case under the same assumption, viz, a Lorentz
field for E.

The main point of the present discussion is this: the complex dielectric
constant of non-dipolar solids is determined by the complex polarizabil-
ities a and a. Consequently, the behavior of the real and imaginary parts
of the polarizabilities as function of frequency will be reflected in the fre-
quency dependence of the dielectric constant. One thus arrives at the con-
elusion that the real and imaginary parts of 4 defined by

=	 -	 (3.21)

are functions of the frequency of the applied field, and that these functions
are determined by a() and ao).

What practical value do these results have for the electrical engineer?
This depends on the frequency range in which one happens to be interested.
According to the preceding sections, a and a j are real as long as the fre-
quencies lie below infrared frequencies. Hence, up to microwaves, is
essentially real for the materials under discussion and their behavior is the
same as it is in static fields. The solids discussed here, however, are ideal-
ized in the sense that many of them contain ions which may be displaced
over one or more interatomic distances under influence of an external field;
this i the case, for example, in glassy materials, and to some extent even
in crystalline materials. Such processes may lead to an imaginary part of
the dielectric constant, and to dielectric losses as will be seen in subsequent
sections.



See. 3.4	 Dielectrics in Alternating Fields 	 69

3.4 Dipolar relaxation

So far in this chapter we have discussed only the frequency dependence
of the electronic and ionic polarization. From the electrical engineering
point of view, the frequency dependence of the orientational polarization in
liquids and glassy substances is perhaps of greater importance, since it
gives rise to dielectric losses in the frequency range between zero and many
thousand megacycles, depending upon the substance. Although the dis-
cussion refers in particular to permanent dipoles rotating in liquids, the
results have much wider applicability.

Consider a liquid containing N permanent dipoles ju, per unit volume.
Suppose it has been subjected for a long time to a d-c field E; let the ori-
entational polarization in equilibrium with the field be P0. When at the
instant. t = 0 the field is suddenly switched off, the polarization will not
instantaneously become zero, because there is a certain time r'quired for
the rotation of the dipoles. Without going into the details of the molecular
processes involved, we shall assume that the polarization as function of
time decays to zero in accordance with the formula (see Fig. 3.3a)

P0 (t) = P 0e"	 (3.22)

The quantity r has the dimensions of time and is called the relaxation time.
In a liquid, i- increases as the viscosity of the liquid increases, as one would

P(t)

P0
I P(t)

P. [-------

Build-up

=

0	 0

(a)	 (bi

Fig. 3.3. Illustrating in (a) the deca y of the orientational polar-
ization of a liquid upon switching-off the field at t = 0. In (b) a
field is switched on at t 0; the curve represents the growth of
the orientational polarization with time.

expect from qualitative arguments. The rate of change of the polarization
is evidently given by

P(t) =	 et1 =
	 (3.23)
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Note that the smaller the instantaneous value P,,(t), the smaller the rate
at which the decay takes place. Since the ultimate value P(o) = 0, we
may also write (3.23) as follows:

P0(t) = 1 [P,(x) - P(t)]	 (3.24)

The reason for writing the result in this particular form will become ob-
vious later.

Suppose now that an external field has been absnt for a long time, and
that at I = 0 a field E is switched on. What will P) be during the build-
up to the ultimate equilibrium value P0? From analogy with similar phys-
ical processes the reader will recognize that the answer to this question is
[see Fig. 3.3(b)]

P0(t) = P(1 -. e-' /,.)	 (3.25)
The rate of increase is then

It P0(t) =	 e' = 1 [P - P)]	 (3.26)

Since P. = P0(oo) in the present case, note that (3.24) and (3.26) have the
same form. Iii other words, during build-up as well as during decay, the rate
of change of P 0(t) is, apart from the factor 11i, equal to the ultimate value
corresponding to the field E, minus the instantaneous value P(t).

The foregoing discussion should be considered as a preparation for the
actual question we wish to consider in this section, viz.: given that the
equilibrium value of the orientational polarization in a static field E is
equal to

P. =	 - 1)E	 (3.27)

where € is that part of the dielectric constant which measures only the
orientational polarization, what is P0(t) when one applies an alternating
field E. cos wt' In order to answer this question, consider expression (3.24),
which was found to hold for decay as well as for build-up, and which we
shall now assume to hold also in the case of a-c fields. At the instant t, the
external field is E0 cos wt and hence at that instant the dipoles are aiming for
a i'() equal to €o(E - 1)E0 cos wt. Consequently, the differential equa-
tion for P0(t) may be written as follows:

P(i) = [( - 1)E0 cos wt - P(t)]	 (3.28)

To solve this equation let us introduce a complex dielectric constant to
[allowing for the postoility of phase differences between P,(t) and E(t)]
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by means of the relation

	

= eo Re [(A - 1)Eoeit]	 (3.29)

Substitution into (3.28) then leads to

- tO - 1	 (3.30)A - 1 - 1 + j0)1

Hence, for alternating fields, the orientational part of the dielectric con-
stant becomes complex, and is a function of the static value €, o and of WT.

Writing out the real and imaginary parts, we obtain

A	 1 = (E,ø - 1) 
[i +

10)21.2 - 1 ±W211]	
(3.31)

For the polarization we find from (3.29) and (3.31)

P) = €(e,o	 1) E
0 cos wt 

+1)wr 
PJ0 sin Wt	 (3.32)

1+r2	 1+w212

Note that the first term on the right-hand side is in phase with the applied
field, whereas the second term lags by 90 degrees. The frequency depend-
ence of the in-phase and the out-of-phase components are represented in
Fig. 3.4. It is observed that the in-phase component of P,,(t) begins to dis-

....4.. log .

FIg. 3.4. A schematic plot of 1/(l + w') and .,,/(1 + w1i'2) as
a function of the logarithm of the frequency.

appear when 0)1. becomes comparable to unity. When wi>> 1, the dipoles
cannot follow the field variations and hence the polarization vanishes. The
out-of-phase component of P(t) has the same bell shape as the imaginary
part of the electronic and ionic polarizabilities, and is a measure for the
absorption of energy as we shall see in the next section. By way of illus-
tration we give here some values for i-derived from dielectric measurements
for ice and propyl alcohol at various temperatures.
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Pro pyi Alcohol:
Temp. (°C):	 200 	 I)	 —20°	 400 —00

lOr (see):	 0.9	 1.6	 3.2	 7.4	 20

Ice:
Temp. (°C): —5° —22°
10° (see):	 2.7	 18

Note that as the temperature is reduced, the relaxation time increases and
the frequency for which wr = 1 decreases. Note also that the relaxation
time is about lO times as long in ice as in liquid propyl alcohol.

The differential equation for P0(t), (3.28), also applies to the follow-
ing situation: With reference to Fig. 3.5 suppose an ion in a particular solid

J7\" '\\
\ /A	 --

B

Fig. 3.5. The fully drawn curve
represents the potential energy
of a positive ion as function of a
coordinate whichcoincides with
the line joining two possible po-
sitions for the ion, A and B. The
dashed curve corresponds to the
potential energy in the presence
of a field as indicated.

can occupy two positions A and B of equal energy, the two positions being
separated by a potential energy barrier o. In the absence of an external
field the probability that the particle will be found in A is the same as that
for B. When an external field is applied, position B may be preferred if the
energy of the particle is lower there than when it resides in A. For a solid
containing a significant number of such ions, the process of the ions "jump-
ing" into preferred B-sites may contribute appreciably to the dielectric
constant. In an alternating field, these ions will contribute in accordance
with the formulas derived above, and r must then be interpreted as the
average time required for an ion to jump from A to B. It can be shown that
jumping times of this kind depend on the potential barrier 0 and on the
temperature as follows:

(3.33)

where A is a constant; k is Boltzmann's constant (= 1.38 X 10_ 25 joule per
degree. Thus, as T increases, decreases, as one would expect from quali-
tative arguments. In non-crystalline materials such as glasses, it is quite
likely that there exists a variety of potential barriers 0, and hence a variety
of r-values. Evidence for this will be presented in the next section.
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3.5 Dielectric losses

In the preceding sections we have discussed the frequency dependence
of the electronic, ionic and orientational contributions to the polarization.
Since these contributions are additive, a material may be characterized by
a complex dielectric constant

-	 (3.34)

in which the real and imaginary parts € and €' incorporate all three con-
tributions. In the present section we shall show that the imaginary part
gives rise to absorption of energy by the material from the alternating
field. For this purpose consider a parallel plate condenser filled with a
material characterized by €; the functions t() and €'(a) are assumed to
be given. Let the applied alternating voltage produce a field E0 cos wt.

Suppose that at a given instant the charge per unit area on the plates is
±Q(t). Since the flux density is numerically equal to the charge density,
we must have D(t) = Q(t). Also, since the current density is equal to
J(t) = dQ/dt we may write

J(t) =
dD 	(3.35)
dt

On the other hand, since E(t) = Re [Eoe'] we may write in accordance
with the meaning nf the complex dielectric constant

D(t) = Re [Eoe i '] = toEo Re [ t e3t]	 (3.36)

Substituting (3.34) into this expression we find for the current density
from (3.35)

J(t) =eo.Eo Re [(E,'- j')j,ei]

=	 cos wt - sin wt]	 (3.37)

Note that the imaginary part t ' of the dielectric constant determines the
component of the current which is in phase with the applied field. Also,
the real part of the dielectric constant, c,, is coupled with a time factor
which is 90 degrees out of phase with the applied field. The reader will
readily recognize that, on the average, the last term in (3.37) does not give
rise to absorption of energy, whereas the term containing ' does. The
instantaneous power per m 3 absorbed by the medium is given by J(t)E(t);
hence, each second the material absorbs an amount of energy per m l given

by

W(t)	 J(t)E(t) d(wt)	 (3.38)
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Substituting J(t) from (3.37) one readily finds
W(t) = (12)"e'E	 (3.39)

Thus, the absorption of energy is proportional to the imaginary part of the

complex dielectric constant; whenever there is energy dissipated in the me-
dium we speak of dielectric 1088e8.

It follows from (3.37) that a condenser containing a lossy dielectric may
be represented by an equivalent circuit which consists of a pure capacitance
and a parallel resistance, the latter being inversely proportional to
It is customary to characterize the losses of a dielectric at a certain fre-
quency and temperature by the so-called "loss-tangent," tan 6, defined as

tan ô = (3.40)
The physical meaning of the angle 8 may be derived from expression (3.37).
If there are no losses, c' 0 and the current density is then given by

cos (wt + 900); i.e., the current leads the field by 90 degrees. Under
these circumstances 6 = 0. If there is a current component in phase with
the field, the resulting current will no longer lead the field by 90 degrees
but by 90° - 8, as indicated in Fig. 3.6.

Fig. 3.6. Illustrating the vector
relationship between the field
vector E,, the current vector

which leads the field by
90 degrees and the curre,pt vec-
tor .s'Eo which is in phase
with the field. The lose angle 8
is indicated.

Eo

The dielectric losses in the radio frequency region are usually due to
dipole rotation or to ions jumping from one equilibrium position to another.
Losses in this region may also be due to a small degree of d-e conductivity

of the material, but this subject will not be discussed here. The dielectric
losses associated with the ionic vibrations, the frequencies of which fall in
the infrared region, are usually referred to as infrared absorption. Simi-
larly, the losses in the optical region, associated with the electrons, are
referred to as optical absorption. The occurrence of'absorption in the optical
region is the source of the color of materials. For example, a crystal of NaCl
is transparent in the visible region; this means that there is negligible ab-
sorption for the corresponding frequencies. However, after the NaCl has
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4000	 5000	 60)

Wavelength (A)

Fig. 3.7. The optical absorption as a function of wavelength ye-

suiting from P'-centers in a KBr crystal at room temperature.

[After A. von Iliptx'I, E. P. Gross, T. G. Telatis, and M. Geller,
Phys. Rev. 91, 568 (1053)]

been exposed to X-rays, one finds that it has turned yellow-brown. The
reason for this is that, after irradiation with X-rays, a relatively small
number of electrons, which have been transferred to positions in the lattice

Table 3.1. THE REAL PART OF THE RELATIVE DIELECTRIC CONSTANT, 
s, AND THE

LOSS TANOF.NT OF VARIOUS DIELECTRICS AT A NUMBER OF FREQUENCIES. (Selected from

A. von Hippel, Dielectric Malerials and Applications)

Frequency in cycles i er second

Material	 10	 10'	 10'	 10'	 3 X 10'

2.84
1200

2.22
18

2.1
1.5

2.55
3.3

2.25
3

3.03
128

3.70
438

6.1
60

8.90
11

Pyranol 1467	
104 tan 8

Cable oil 5314	
0' tan 8

Teflon	
10' tan 

Polystyrene	
10' tan 8

Polyethylene	
10' tan 6

Nylon 66	
10' tan 8

Bakelite BM-120	 e,
104 tan 8

,.Glass (Corning 0010) 0' 
&10, tan

Porcelain No. 4462
10' tan a

4.42
36

2.25
3

2.1
5

2.59
0.5

2.25
5

3.88
144

4.87
300

6.68
77

8.90
22

4.40
4

2.25
0.4

2.1
3

2.56
0.5

2.25
3

3.60
233

4.62
200

6.57
as

8.95
0.0

4.40	 4.08
25	 1300

2.1
	

2.1
2
	

2

2.56
	

2.55
0.7
	 1.0

2.25
	 2.25

4

3.33
	 3.10

257
	 210

4.36
	

3.95
280
	

380

6.43
	

6,33
16
	

23

8.95
	 8.95

2.0
	 4.0
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where they are not bound 80 strongly as they were before, give rise to res-
onance frequencies lying in the visible part of tIe spectrum. When white
light passes through the crystal, a fraction of thk light corresponding to a
narrow frequency region is absorbed, and the trasmitted light is therefore
colored. The centers which are responsible for this particular type of ab-
sorption are called F-centers (Farbe is the German word for color); they
consist of electrons occupying positions in which negative ions are missing.
This type of color center occurs in all alkali halides as well as in other ionic
crystals. An example of F-center absorption in KBr is given in Fig. 3.7;
note the bell shape of the curve.

We finally give in Table 3.1 values for the resJ part of the dielectric
constant, e,, and for tan & for various materials at ajwnber of frequencies.
For a collection of data for a large number of materials, the reader is re-
ferred to Dielectric Material,s and Applications, edited by A. R. von Hippel
and cited at the end of the preceding chapter,

Rderences

See those given at the end of Chapter 2.

Problems

3.1 (a) Consider a gas containing N similar atoms per m l of a polar-
izabihty a. On the basis of expression (3.10) for the induced dipole moment
resulting from an alternating field, show that the dielectric constant of the
gas is given by

- 1 Ne),'mt,— +22+i2b/

(b) Consider two parallel metal plates with a separation of 1 m.
The space between the plates is occupied by the gas referred to under (a).
Show that the admittance per m2 plate area of this condenser is given by

+ Ne2/m[	 2 2 +j2b/mj
(c) Consider the circuit in the figure. Show that the admittance of this

C
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circuit is given by

Y = jCiw + 2	 -
2 + jR/L

where	 = 1/LC2.
(d) Compare the results obtained under (b) and (c), and show that

the condenser mentioned under (b) has an equivalent circuit as indicated
under (c) with the following identifications:

= t; L = m/Ns2 ; ft = 2b/Ne2 ; C2 = Ne2/nu

3.2 (a) Consider a parallel arrangement of a capacitance C and a re-
sistance R. An external voltage V(t) = V0 cos (4 is applied to this arrange-
ment. Show f hat the total current 1(1) is given by

i(t) = (V0/R) cos (4 - CCVO sin (4

(b) Consider a parallel plate condenser with a lossy dielectric between
them. At an angular frequency w let the dielectric be characterized by a
complex dielectric constant = 4 - j'. The area of the plates is 1 m2,
the distance between them 1 m. For an applied voltage V(t) Vo cos (4
show that the current through the lossy condenser is given by

i(t) = (tof'wVo) cos 4 - ((oVo) sill (4

(c) Compare the results obtained under (a) and (b) and note the occur-
rence of current components in phase and out of phase with the applied
field. Show that the lossy condenser can be represented by an equivalent.
circuit consisting of a parallel R-C arrangement with

R = 1/o ,O) 	and	 C =

(d) V'Tliat is the loss tangent of the condenser in (b) expressed in terms
of the equivalent R and C?

(e) Are the elements of the equivalent circuit independent of the fre-
quency?

3.3 (a) Suppose a dielectric has a complex dielectric constant given
by = t.. + A where A refers to the dipole orientations and € is a real
quantity referring to the electronic and ionic polarizations. Assume that
A is determined by a simple relaxation time r, as in formula (3.30). Con-
sider the space between two parallel metal plates filled with this dielectric.
If the distance between the plates is 1 m, show that the admittance of the
condenser per m 2 plate area is equal to

= jweo [ + 1 + 1 +3()T
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(b) Consider the circuit in the figure. Show that the admittance of this

R

circuit is equal to

j.)[c1 +
where r = RC,.

(c) From a comparison of the results obtained under (a) and (b) show
that the circuit is the equivalent of the condenser under (a) with the follow-
ing identification:

C1 = tO(t.j + 1); C,	 - 1); R =	 1)]

3.4 A parallel plate condenser has an area of 10 cm 2 and a separation
of 0.1 mm. The space between the plates is filled with polyethylene. An
alternating voltage with an amplitude of 2 volts is applied at a frequency
of 1 megacycle. Given that at this frequency the real part of the relative
dielectric constant is 2.25 and the loss tangent is 4 X 10, find the elements
of an equivalent parallel R-C circuit. Also calculate the energy dissipation
per second.

3.5 For a polar liquid, make a qualitative sketch of the real and imag-
inary parts of the dielectric constant at two temperatures as a function of
the frequency of an applied radio frequency field.

3.6 For a polar liquid, make a qualitative sketch of the real and imag-
inary parts of the dielectric constant as a function of temperature at a
given radio frequency.
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Magnetic Properties of Materials

In this chapter we attempt to explain the differences between the
various types of magnetic materials in terms of the magnetic properties
of atoms and the interactions among these atoms. The chapter is divided
into two parts. Part I is intended to refresh the reader's memory on some
fundamental concepts concerning magnetic fields, and to illustrate the
essence of the atomic theory of magnetic dipoles with reference to simple
models. In part II the information gathered in the first part is used to
discuss the atomic interpretation of dia-, para-, ferrc>-, antiferro- and fern-
magnetism.

Part I. Preparatory Discussion

4.1 Summary of concepts pertaining to magnetic fields

In this section the reader is reminded of some fundamental concepts
which are discussed in detail in courses on magnetic fields. The magnetic
flux density in a point of space is de ted by a vector B. In the mks sys-
tem, the unit of flux density may be defined in terms of the force exerted
by a magnetic field on a current-carrying wire. Consider, in Fig. 4.1, an
element dl of a wire carrying a current of I amperes; in a magnetic field of
flux density B, the force on the element dl is given by

dF=IxBdL	 (4.1)
Thus, the direction of the force dP is perpendicular to the vectors I and B,
and coincides with the direction in which a right-handed screw advances

79
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dF

Fig. 4.1. Illustrating the force dF exerted by a magnetic flux
density B on an element of wire dl carrying a current 1.

when rotated from I to B. The magnitude of the force is equal to

(IF	 TB dl sin of	 (4.2)

where a is the angle between I and B as indicated in Fig. 1.1. Since the
proportionality con.tant• in (1.1) has been chosen equal to unity, the units
of B are fixed ' v the units of F (in newtons), I (in amperes), and dl (iii

meters). Thus, B is expressed in newton amp m'. One usually calls

1 newton amp' m = 1 weber m 2	(4.3)

Magnetic fields are produced b y electric currents; the magnetic flux

density produced in a given point b y such currents is governed by the law

of Biot and Savart. With reference to Fig, 4.2, consider an element dl of

/I_/

Z dl

Fig. 4.2. Illustrating the contribution to the flux deusity, dB,
resulting from a current-carrying element dl.

a wire carrying a current I as indicated. The flux density contributed by

this element in a point P, located at the end of a vector r as indicated, is

given by

dB 
= 0p,a.1 x r	 (4.4)

47rr'

Here, go is usually referred to as the pern:ea&iliy of free space; it is numer-

ically equal to 41r X 10' = 1.257 X lO henry m' (or weber m' amp').

The quantity JA, is the relative permeability of the medium; it is a pure
number which is equal to unity for vacuum. At this point we may remark

that WO (as Ec in the dielectric case) has no physical significance other than
that it appears as a result of the particular system of units used here. The
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quantity ju, (as s, in the dielectric case) is the only parameter which can
he interpreted in terms of the atomic properties of the medium. According
to (4. 1), the direction of the flux density dB is perpendicular to the vectors
I and r, and coincides with the direction iii which a right-handed screw
advances when rotated from I to r. The magnitude of the flux density
contributed by the element dl in Fig. 4.2 is

dB = POA,
Idl sin a	 (4.5)4,rr2

where a is the angle between I and r as indicated.
As a particular application of the law of Biot and Savart, we leave it

up to the reader to show that the magnitude of the flux density produced
in a point P by an infinitely long wire carrying a current I is given by

= p.o,rI/2ira	 (4.6)

where a is the distance to point I' from the axis of the wire.
In the mks system, the units of the magnetic field intensity, H, are de-

termined from the notion that the line integral of H along a closed curve
is equal to the total current enclosed. Thus, with reference to Fig. 4.3 we
write

H•dl=I	 (47)

where I represents the current in amperes enclosed by the curve chosen.
Thus, the magnetic field intensity II is expressed in amperes rn- 1 . Apply-

dl

Fig. 4.3. The line integral of H
along the closed curve is equal
to the total current I enclosed
by the curve; the current in this
case flows into the paper.

Fig. 4.4. Cross section through
a wire carrying a current flowing
out of the paper; the magnetic
field produced in point P is in-
dicated.

ing thisto the case of an infinite wire carrying a current I, let us calculate
the magnetic field intensity in a point P at a distance a from the axis of
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the wire. Because of the cylindrical symmetry of the problem at hand,.
we choose as the closed path a circle of radius a (see Fig. 4.4). Then,
since H is tangent everywhere along the circle, we simply have

fl.2aH.nJ

or	 H = I/2xa	 (4.8)

Since for the same problem, the flux density is given by (4.6), we arrive
at the well-known relation between B and H:

B = AopH	 (4.9)

In this derivation, we have assumed tacitly that B and H are parallel
vectors; i.e., we have assumed an isotropic medium. We have also as-
sumed that a relative permeability 1A , can be defined for the material in
question. This implies that there exists a unique relationship between B
and H in the material, which excludes ferromagnetic materials; the prop-
erties of the latter will be discussed in later sections.

4.2 The magnetic dipole moment oF a current loop

An essential difference between magnetism and electricity is that in
the latter we encounter separate positive and negative charges, whereas
in magnetism there are no separate positive and negative poles. This is a
consequence of the interpretation of magnetic fields in terms of the motion
of electric, charges. In the present section we remind the reader of the fact
that a current loop produces, at large distances, a magnetic field which is
identical with that of a magnetic dipole moment; proofs of this statement
can be found in textbooks on field theory. In order to illustrate the equiv-
alence of a current loop and a magnetic dipole, we choose an example
which is particularly suitable for the subject matter to be discussed in
subsequent sections; although we shall consider a simple case, the result
is of general validity.

In Fig. 4.5 consider a rectangular wire carrying a current I as indi-
cated; the plane of the rectangle is perpendicular to the paper. We further
assume the presence of a homogeneous magnetic flux density B, and con-
sider the forces acting on the current-carrying parts of the rectangle.
Making use of expression (4.1) one finds for the magnitude of the forces
exerted on the elements PS and QR

F = (PS)IB	 (4.10)

The directions of the two forces are as indicated in Fig. 4.5. It also follows
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F

P

B

F

Fig. 4.5. Rectangular current loop PQRS, carrying a current I
and suhieted to a honiogeneous flux density H. The resultant
force- on the rectangie are indicated by F.

from (4.1) that the forces exerted on the elements PQ and RS will cancel
each other. Hence, the flux density exerts a torque T on the rectangle,
tending to rotate it to the right, equal to

IB(PS)(PQ) cos8	 (4.11)

where 9 is the angle indicated. Denoting the area of the loop by A, we
may write

T IBA cosO	 (4.12)

For later comparison, let n denote a unit vector in the direction normal to
the rectangle, and pointing upwards, as indicated in Fig. 4.5. The direc-
tion of n is the same as that in which a right-hand screw would advance
when rotated in the direction of the current flow. Since the angle between
n and B is (90° - 0), we may write

T=IAn.xB	 (4.13)

where the magnitude of the cross-product is equal to B sin (n, B) = B cos 0.
At this point, we remind the reader that the torque produced by an electric
field E on an electric dipole It is equal to IA x E (see section 2.5). We thus
see that, apart from a constant, expression (4.13) is indistinguishable from
that for the torque exerted on a magnetic dipole moment with its direction
along the unit vector ii. Although other choices are possible with regard to
the units in which one wishes to express magnetic dipole moments, we
shall define the magnetic dipole moment 1A. associated with the current
loop as

=nIA	 (4.14)
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Thus,	 is expressed in ampere m 2, and the torque on a magnetic dipole
produced by a flux density B is according to (4.14) and (4.13) given by

(4.15)
Although we have derived the equivalence of a current loop mW a mag-
netic dipole moment for a special geometrical form of the loop, it can be
shown that the results apply for a current loop of any shape.

4.3 The magnetization From a macroscopic viewpoint

In the macroscopic description of electric fields, we encountered three
vectors: the flux density D, the field intensity B, and the polarization P;
the latter represents the electric dipole moment per unit volume in the
material. In section 2.2 we derived a relationship between P and B, lead-
ing to the formula

P =	 - 1)E	 (4.16)
from which follows, in combination with the formula D

D€6E+P	 (417)
In the case of magnetic fields one also encounters three vectors: the flit
density B, the field intensit y H and the magnetization M; the latter is
defined as the magnetic dipole moment of the material per m'. Since we
decided iii the preceding section to express magnetic dipole moments in
ampere m 2 , JT must, have the dimensions of ampere m 2 m ampere m.
Ucitce, 11 and 11 have the same dimensions in this system. Note that in
the electric case, P has the same dimensions as I) rather than as E; the
reader should thus consider D and II as corresponding quantities, rather
than I) and B, in spite of the similar names of the latter two quantities.
Although we do not wish to enter here into a detailed discussion concern-
ing the relationship between the electric and magnetic field vectors, we
may point out two reasons for the correspondence between D and H, and
between E and B. One reason lies in the fact that both B and B are de-
fined from force-laws; B from Coulomb's law between two charges, B from
the force exerted by a magnetic field on a current [see (4.1)]. The other
reason concerns the definitions of D and II; D is defined from the theorem
of Gauss by a surface integral [see (2.1)]. and H is defined in terms of a
line integral (see (-1.7)). Since D and H, and E and B are corresponding
quantities, it is not surprising that the formulas encountered in magnetism

e not analogous to those in dielccics when considered on the basis of
the names of the various quantities; this is somewhat unfortunate, but
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one has to live with this situation unless one is willing to introduce a com-

pletely new nomenclature.
We shall now proceed to derive a relationship between the macroscopic

quantities B, H and M, following the line of thought used in section 2.2
for the derivation of expression (4.16). By comparing that section with
the discussion below, the reader will discover the correspondence between
D and Ii, and between B and E mentioned earlier. Consider a solenoid of
length L, carrying a current I; the total number of turns is V. The space
inside the solenoid is filled with an isotropic homogeneous material of rela-
tive permeability &,. We shall assume the solenoid to be ideal in the sense
that it produces a homogeneous magnetic field in the material (except

:	 ..._

Fig. 4.6. Iii I.'r	 - H	 .	 .	 tj to
a hornogeneous field If produced h v a solenoid riot drawn). The
lines at the surface of the c y lindrical cavity of volume  dl dA rep-
resent the current required to keep the flux deity ins ide the
cavity equal to the thix density oitide the cavity.

near the ends), as indicated In Fig. 4.6. As shown in textbooks on fields,
the magnitude of this field is given by

H = NI/L	 (4.19)

This formula also follows from (4.7) by choosing an appropriate path of
integration. Note that (4.18) does not contain any parameter character-
istic of the material inside the solenoid. The flux density in the material
is then in accordance with (4.9) given by

B = M,,.i,NI/L	 (4.19)

Suppose now that we cut out of the material a small cylinder with its axis
parallel to the original field direction, as indicated in Fig. 4.6. The crass
section, pf the cylinder will be denoted by dA, its length by dl. How can
we achieve a flux density inside the cavity that remains the same as it was
when the material was present? Presumably, we are requiring that

B, B, =	 (4,20)

where the subscript i refers to "inside the cavity" and the subscript 0
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refers to "outside the cavity." Since inside the cavity we have M	 I,

the requirement (4.20) may be written in the form
p!!, = *,.H or H.	 II	 (i - 1)11	 (4.21)

Hence, in order to leave the flux density inside the cavity the same as the
flux density outside, the magnetic field If, inside the cavity must be larger
than that outside by an amount (, - 1)!!. This can be achieved by let-
ting a current flow along the inside of the cylindrical surface in the same
direction as the current in the solenoid, as indicated in Fig. 4.6. How
much current is required to produce the extra field ( 1)11 inside the
cavity? Making use of the physical meaning of (4.18), the answer is evi-
dently ( - 1)11 dl. However, when this current is allowed to flow, the
cavity .urront corresponds to a magnetic dipole moment equal to

g. = (, - 1)11 dl dA	 (4.22)
Since this current serves the same purpose with regard to a uniform flux
density as did the material in the cavity before it was taken out,, we con-
clude that in a homogeneous magnetic field, the material carries a mag-
netic dipole moment per m 3 equal to

M = Cu, - 1)H = xH (4.23)
where M is called the magnetization. This relation between M and H
serves the same purpose in the discussion of magnetic materials as does
expression ( .4.16) in the case of dielectrics. Thus, expression (4.23) forms
the link between the macrorro pie theory ov 'i the atomic interpretation of the
permeability it,. The proportionalit.y constant x is called the magnetic
susceptibilthj of the material.

The relationship between B, H, and M follows immediately from (4.23);
multiplying both sides by Ako, we find

Aom = 1,06U, - l)H or B = (H + M)	 (4.24)

The last expression uorresponds to (4.17) in the electric case.

4.4 Orbital magnetic dipole moment and angular momentum
of two simple atomic models

In the preceding sections we have discussed some important concepts
pertaining to the macroscopic theory of magnetism. In the present sec-
tion we shall consider the magnetic dipole moment and its relation to the
angular momentum of two simple atomic models. These models are not
correct in the sense that they do not represent our preent status of knowl-
edge concerning atoms. However, it is useful to consider the properties



Fig. 4.7. Illustrating an elec-
tron describing a circular orbit
around a proton. The orbital
magnetic dipole moment is di-
rected into the paper.
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of these classical models because they exhibit the essential features found
in the quantum mechanical interpretation of atoms.

(I) Circular Bohr orbit. The first model we shall consider is depicted
in Fig. 4.7. It consists of an electron describing a circular orbit of radius
R with a stationary nucleus at the center. The charges of the nucleus and

electron are denoted, respectively, by +e and —e. We also assume the
electron to rotate with a constant angular velocity of w radians per second.
For the direction of rotation indicated in Fig. 4.7, the motion of the elec-
tron in its orbit gives rise to a magnetic dipole moment p. s,, directed into
the paper and perpendicular to it. The magnitude of the current associated
with the electron motion is evidently equal to ef, where f = ,/2i repre-
sents the frequenc y of rotation. Thus, according to (4.14) the magnetic
dipole moment of the orbit is

= R'en/2v = 4e&R 2	 (4.25)
This magnetic dipole moment is called the orbital magnetic dipoie moment,
because it results from the motion of the electron in its orbit around the
nucleus, it is of interest to note that there exists a relationship of genraI
validity between the orbital magnetic dipole moment and the orbital
angular momentum. For the particular case at hand, this ,relationship may
be derived by noting that the angular momentum M. is defined as the
vector

R x my	 (4.26)

where v is the velocity of the electron and R the vector which determines
its position. Thus, with reference to Fig. 4.7, M. is a vector perpendicular
to the paper and directed outwardly. Note that M. and , have opposite
directions; this is a consequence of the negative charge of the electr3n.
Applying (4.26) to the problem under discussion, we find that

= mw!? 2	 (4.27)



Fig. 4.8. II1ustratig the calcu-
lation of the m4netic dipole
moment A. ss.ociated with the
rotational motion of a charge
—e distributed homogeneously
throughout a Where of radius R.
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From (4.25) and (4.27) it then follows that

= - M. (4.2)

Thus, at least for this particular case, we see that the orbital magnetic
moment is equal to (—e/2m) times the angular momentum We shall see
later that (4.28) holds for any charge distribution and so may be consid-
ered to have general validity for orbital motion of electrons; it is not valid
for the electron spin or for the nuclear spin, as we shall see in &ibeequent
sections.

From the quantum theory of atoms it follows that the angular mo-
mentum of an electron orbit can most conveniently be expressed in units
of h/2i-, where h is Planck's constant [h = 6.62 X 10 joule see; note
that according to (4.26), M has the same dimensions as h]. For that rea-
son, one has introduced as an atomic unit of magnetic moment the so-called
Bohr magneton, defined as

1 Bohr magneton = 
eheh
 -2m 2r 4rm

9.27)< i& ampere m 1 (4.29)

Since the orbital angular momentum of electrons is of the order of h/2r,
the orbital magnetic moment of an electron in an atom is of the order of
1 Bohr magneton.

(ii) A spherical charge cloud. As a second example let us consider an
atomic model similar to the one used in section 2.3 in the discussion of the
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polarizabjty of an atom. In Fig. 4.8 consider a point charge +e sur-
rounded by a negative charge — c, the latter being distributed homogene-
ouly throughout a sphere of radius R. Assuming that the negative charge
cloud rotates with & constant angular frequency w around an axis paing
through the center of the sphere, what is the magnetic moment of the
system? In view of the axi&1 symmetry of the problem we first consider
the contribution to the magnetic moment from the charge moving in the
cylindrical shell between p and p + dp indicated in Fig. 4.8. The height
of this cylinder is evidently equal to

A	 2(R! -	 111	 (4.30)
The currit associated with this shell, i.e. the charge passing per second
through a cross section A d, is equal to

	

di.#piidp	 (4.31)

where	 qr	
- (43)ft$	 (4.32)

rresenta %	 h*rè deity in the cloud. Thus, the contribution to the
M&(etic dipole moment is

=	 di = xqhp dp	 (4.33)

Heiice, the total magnetic moment of the system is given by

= 1(
	 qhp l dp	 (4.34)

substituting q and h from (4.30) and (4.32), and carr ying out the integra-
tion one finds

	

= —eR 1i. 	 (4.35)

The minus sign means that for the configuration given in Fig. 4.8, pg.
points downwards, as indicated. Comparing the results (4.25) and (4.35)
for the two quite different, models, it is noted that in both cases the mag-
nitude of the magnetic moment is determined by ecRt, and that the results
differ only with regard to the numerical constant.

Let us now return for a moment to the expression (4.33), which repre-
sents the contribution to m. from the cylindrical shell between p and
(p + dp). What is the angular momentum associated with the charge
moving in this shell? Applying (4.26) we readily find

	

dM. = [(43) R 2T1P]. . p	 (4.9)

where the term in square brackets represents the mass of the charge be -
tween p and (+ dp); we have assumed here that the mass is distributed
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homogeneously because we had assumed a homogeneous charge distribu-
tion. From (4.33) and (4.36), making use of (4.32), it thus follows that

=	 (4.37)

This result is identical with that obtained for the circular orbit discussed
under (i). Note that the variable p does not occur in (4.37) and that the
relationship between dp. and dM. holds for any volume element of the
charge distribution.

4.5 Lenr's law and induced dipole moments

In this section we shall pursue the properties of the models discussed
in the preceding section somewhat further by investigating the influence
of a magnetic field on their behavior. Before doing so, the reader is re-
minded of the well-known law of Lenz. Thus, in Fig. 4.9(a) consider a
loop of wire subjected to a magnetic fl ux which varies with time. Let 0 be
the total flux enclosed by the loop at sonic instant t. Then, if 4/& is not

equal to zero, an electric field is set up in the wire, giving rise to an induced
current with a direction such that the magnetic field produced by the
current counteracts the d/di. Expressed mathematically, this law takes

the form

E . dl - —d/d	 (4.38)

The line-integral of the electric field along a closed curve is equal to minus
the rate of change of the flux enclosed by the curve; the minus sign indi-
cates that the current produced by the electric field counteracts d/&.

This law may be applied to any region of space; i.e., the wire loop men-

tioned only serves the purpose of uecting the existence of an electric

field.
It is of interest to realize the difference in behavior between a wire loop

and the atomic models to be discussed below with regard to the effect of a
varying magnetic flux. Assume, for example, that the flux enclosed by
the wire loop varies with time as indicated in Fig. 4.9(b). For t = 0,

= 0; the flux then increases linearly with time until the constant value
is reached for t	 ..How does the induced current vary with time in

this case? According to circuit theory, we may write

-	
d	 (4.39)



5• 4•5	 Magnetic Properties of Materials	 91

C:iLiiiI	 (a)

to

(b(

ROO

I

Fig. 4.9. The direction of the eledric field produced in a wire
loop as a result of a change in the enclosed flux is indicated in (a).
(b) represents an assumed (t) relationship. (c) and (d) represent
the current induced in the wire loop, respectively, for non-zero
resistance and for zero resistance.

where L is the self inductance and /? the resistance of the loop. In our cas,
d/dt is constant for the period between 0 and t, and zero for the period
£ > £. The solution of equation (4.39), assuming L1I?, will look as
indicated schematically in Fig. 4.9(c) for the loop with resistance. Thus,
the induced current drops to zero after to because there is no longer an
electric field. The atomic models to be discussed below are found to be-
have quite differently. The reason is, that the electrons in an atom suffer
no resistance, whereas the conduction electrons in a metal wire do. The
point we want to make here is that the atomic models behave as a wire loop
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with zero resistance. In fact, if B is zero, (4.39) reduces to

(4.40)dt

so that forathe #(t) given in Fig. 4.9(b), a wire without rtance would
carry an ihdueed current i = as indicated in Fig. 4.9(d). Note that
in this case the current remains constant for t> t.. Thus, a permanent
change has been accomplished; the current can be made equal to zero only
by reducing the flux o to zero. We shall now proceed to discuss the influence
of a varying magnetic flux on the two atomic models of the preceding
section.

(i) Circular Bohr orbit. Suppose in the absence of a magnetic field a
electron of charge —e describes a circle around a nucleus of charge +e;
let B be the radius of the orbit, and the angular frequency. The orbital
magnetic dipole moment in the absence of a field is according to (4.25)
equal to

(4.41)

Suppose now that the magnetic flux density is increased from zero to some
value B, where B is directed into the paper in Fig. 4.10. Assuming for

/
/

/
R	 F--cE.

+5	 II
•	 IIB	 /V

/
'-'-..---- ---

Fig. 4.10. The electron describes a circular orbit around a pro-
too with an initial velocity Ve as indicated. A magnetic field of
flux density B into the paper is applied. The electric field E and
the force F resulting from the change in magnetic flux are indi-
cated.

simplicity that the radius of the orbit remains constant, the electron will
experience an electric field E, tangential to the orbit everywhere, equal to

E	
1d	 RdB

	

2,Rd2d	 (.

This follow, immediately by applying (4.38) to the present case. The
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force on the electron during the period that B changes with time is then
equal to

F = —eE =

	

	 (4.43)
2 d4

The direction of the force F for the configuration in Fig. 4.10 is indicated;
it is observed that this force tends to accelerate the electron. Now, accord-
ing to classical mechanics, a force acting during a period di changes the
momentum of a particle in accordance with the equation

F dt = d(mv)	 mdv	 (4.44)

where v is the velocity of the particle. In our case, let be the angular
frequency of the electron in its orbit at the int.ant L It then follows from
(4.43) and (4,44) that

eR dl?-- - dt = mR d4, or dw = -'- dB	 (4.45)
2m

Assuming that for B = 0 the angular frequency is w., we find that for any
value B the angular velocity is given by

(4.46)

where CO L is called the Larinor angular frequency. Since the angular fre-
quency of the electron has changed upon application of the magnetic field,
(he orbital magnetic dipole moment has also changed. in fact, before the
field was applied the orbital magnetic moment was

—eR2wo

and after the field has been applied it is

= —eR - RB

The magnetic dipole moment induced by the field is therefore

IA. M = I',. -	 = --- R 	 (4.47)
4m

Note that the induced dipole moment has a direction opposite to the applied

magnetic field, in contrast with the electric dipole moment induced by an
electriclield (see section 2.3): this result is independent of the initial di-
rection of rotation, as the reader may verify for himself. Also note that
since the electron suffers no resistance, it will keep its new angular fre-
quency w as long as B remains constant; it thus behaves as the wire loop
of zero resistance discussed at the beginning of this section.

An alternative derivation of (4.46) and (4.47) may be given in the
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following manner: With reference to Fig. 4.11, consider an electron moving
in a circular orbit of radius R around the nucleus. Iii the presence of a
magnetic field of flux density B, the stability of the orbit requires equi-
librium between three forces: () the centrifugal force mv 2/R; (b) the

-

2 
+evB

4oR2

+1	 I
I'

/
- ----

Fig. 4.11, Ulustrating the equilibrium condition for a circular
orbit described by an electron around a proton in the presence of
a magnetic geld of flux density B into the paper.

Coulomb force e2/4eoR 2 due to attraction by the nucleus; (c) the "Lorentz
force" —ev x B due to the magnetic field. For the configuration in Fig.
4.11 we thus require

my2	 1 e2
— = -- + evB
B	 4ireR

1	 e2or	 w2— — --+ 
eB
— w 	 (4.48)

4wernR 3 m

lie the absence of a magnetic field, let the angular frequency of rotation
be wo; then according to (4.48) we obtain by putting B = 0

2	 1	 e
= 4reo mR3 (4.49)

In the presence of a magnetic field, we may therefore write (4.48) in the
form

= '4+	 (4.50)M

Now, u% 10 radians per second for the motion of an electron in an atom
(see section 3.1). Since the magnetic fields used in the laboratory are of

the order.of B 1 weber m 2 or less, we see that eB/m 10" per second
which is much smaller than wo. Making use of this, one finds readily by
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solving for w from (4:50)

2rn
	 (4.51)

which is the same as (4.46). The reader may be somewhat astonished by
the fact that (4.51) is an approximation whereas it looks as if (4.46) is
exact.. This is only an apparent contradiction and is a result of the fact
that in both derivations we have assumed R to be independent of fl, which
i5 itself an approximation, valid only as long as eB/m

(ii) Homogeneous spherical charge distribution. Let us now consider
the model consisting of a charge e distributed homogeneously through-
out a sphere of radius 1?; a point charge +e is located at the center of the

B J-

im(induced)

(a)	 (b)

Fig. 4.12. Illustrating the geometry pertaining to the calculation
of the magnetic dipole moment induced by a homogeneous flux
density B in a spherical charge cloud —e. In (b) & top view is
given, illustrating the cylindrical shell of charge between p and
p ± dp, the electric field E and the force F exerted on the shell
of charge.

sphere so as to make the "atom" neutral. In the absence of a magnetic
field, let the negative charge cloud rotate around a vertical axis, passing
through thc center of the sphere, with an angular frequency as indicated
in Fig. 4.12(u). The magnetic dipole moment of the system is then directed
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downwards in Fig. 1.12(a), and is given by
=	 (4.52)

[see equation (4.35)].
Let us now apply a magnetic field of flux density B, where B is directed

vertically upwards in Fig. 4.12(a). In order to calculate the induced
moment in this case we proceed as follows. As in the preceding section,
consider the charge rotating in a cylindrical shell between p and p -F- dp of
height h 2(R2 - p2)° 2. As long as the flux changes, the electric field
produced at a distance p from the axis is obtained by applying (4.38),
giving

F=--=- (4.53)
2,,p 71	 2 (U

The field E is tangential to the circle of radius p and has  direction as
indicated in Fig. 4.12(h). The force exerted by this field on the negative
charge thus tends to increase the angular Irequenry for the configuration
assumed in Fig. 4.12(b). The charge in the cylindrical shell divided by
the mass in the c ylindrical shell is simply equal to -elm, assuiiing that
both charge and mass are distributed homogeneously. From Newton's
law (4.14) it thus follows that

---Edt=pd.	 (4.54)

and since E(p) is given by (4.53) we find

dw = .L dB	 (t55)
2rn

Since this result is independent of p, it, holds for the whole sphere of charge.
Therefore, if for B 0 the angular frequency is equal to w, we find that

for any flux density B the angular frequency is given by

(4.56)
m.

This result, is ideriiical with ( t.46t and it will be evident to the reader that
the Larmor frequency induced by the magnetic field is independent of the
particular charge distribution assumed. The magnitude of the induced
dipole moment. , of course, does depend on the model. In fact, from (4.35)
and (4.56) it follows that for the model under discussion 	 -

LL iud =R
2B 	 (4.57)

i 07n

which differs from (4.47) for a circular orbit by a numerical factor. In the
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derivation riven we have assumed tacitly that the charge distribution
is independent of the flux density of the applied magnetic field; for prac-
tical flux denities.obtaJnahle in the laboratory this assumption i justified,

Note that the induced moment is independent of the initial angular
frequency ut, 01 the charge distribution. Hence, a magnetic dipole moment
given by (4.57) will be induced in the atomic model, independent of
whetir the model has a "permanent" magnetic dipole moment, or not.

Part H. Atomic In!erpretatj(rn of Magnetic
Properties of Materials

4.6 Classification of magnetic materials

In this part Ztf the chapter we shall discuss the most essential features
of the various types of magnetic materials in terms of the magnetic prop-
erties of the atomic dipoles and the interactions between them. The first
distinet.iou we can make is that between materials whose atoms carry
permanent magnetic dipoles and those in which permanent, magnetic dipoleM
are absent; the term permanent magnetic dipole is used here in the same
sense as in the corresponding dielectric case: i.e.,a permanent dipole exists
even in the absence of a Fi eld . Materials which hick permanent magnetic
dipoles are called diamagnetic. If there are permanent magnetic dipoles
associated with the atoms in a material, such a material mmiv be pararnag-
netc, ferromagnetic, antiferroniagic1jc or ferriinagnetjc, depending on the
interaction between the individual dipoles. Thus, if the interaction be-
tween the atomic permanent dipole moments is zero or negligible, a mate-
rial will be paramaglietic. If the dipoles interact in such a manner that
they tend to line up in parallel, the material will be ferromagnetic. If
neighboring dipoles tend to line up so that they are antiparallel, the mate-
rial is antiferromagnetic or ferrimagnetjc, depending on the magnitudes
of the dipoles on the two "sub lattices." as Indicated schematically for a
one.-dirneiona1 mode! in Fig. 4,13. Note that in the ferromagnetic case,
there is a large resultant, magnetization whereas in an antiferromagnetic
configuration the magnetization vanishes. In the case of ferriniagnetic
materials, there may he a relatively large net magnetization resulting
from the tendency of ant .iparailel alignment of neighboring dipole moments
of unequal magnitude. Ferrimagnetic materials are thus similar to ferro-
magnetic ones in the sense that both kinds may exhibit, a large magnetiza-
tion. On the other hand, ferrimagnetic materialsresemble antiferrornag-
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netic materials with respect to the tendency for antiparallel alignment of
neighboring dipole momenta.

We should add here a remark to the effect that induced dipole momenSs

occur in all materials. In fact, in section 4.5 we showed that a dipole mo-
ment induced by a magnetic field in a particular atomic model was jade-

/\J para-
ferm

	

I	 I	 Fir. 4.I3. Schematic iiivatra-
tion of a paramagnetic, ferro-
magnetic, antiferromagnetic, and

4	 +	 I	 ferrimagnetic arrangement of
antiferro-	 spins.

	

it	
1	 ferri.

pendent of the magnetic dipole moment present in the absence of the field.
In this sense then, all materials are diamagnetic. However, when perma-
nent dipole moments are present in numbers comparable to the total
number of atoms, the prcperties of the permanent dipoles usually over-
shadow the diamagnetic effects and for that reason the classification given

above is meaningful.
In the present section we only wish to introduce the classification of

magnetic materials; the actual properties of the various kinds of magnetic
materials will be discussed in subsequent sections. A summary of the
definitions of the various classes of magnetic materials is given in Table 4.1.

Table 4.1. CLASSIFICATION OF MAGNETIC MATERIALS ON THE BASIS OF THE OCCURRENCE

OF PERMANENT ATOMIC MAGNETIC DIPOLES, AND THE INTERACTION BETWEEN THEM

	

Classification
	 Permanent dipoles
	 Interaction between neighboring dipoles

Diamagnetic	 No

	

Paramagnetic	 Yes	 Negligible

	

FerrnmagfletiC	 Yes	 Parallel orientation

AntiferromagnetiC	 Yes	 Antiparallel orientation of equal moments

	

FerrimagnetiC	 Yes	 Antiparaliel orientation of unequal moments
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4.7 Diamagnetism

The link between the macroscopic and atomic interpretation of mag-
netism is provided by the formula for the magnetic dipole moment per
unit volume, derived in section 4.3,

M - (itt - 1)H	 (4.58)

It was stated in that section that (4.58) has meaning only if one can define
the relative permeability IA, for the material under discussion; thus (4.58)
i valid for diamagnetic and paramagnetic materials at all temperatures,
but for the other classes only above a certain temperature, as we shall see
in later sections. The permeability u,, or the susceptibility x for a dia-
magnetic or paramagnetic specimen can be determined, for example, by
measuring the force exerted on a specimen in an inhomogeneous field
(Gony balance). In Table 4.2 we have given the susceptibility for some

Table 4.2. THESUSCEPTIBILITY OF SOME DIAMAGNETIC MATERIALS

(AT ROOM TEMPERATURE)

Material	 x	 - I	 I	 Material	 - 1

AhO,	 -0.5 x 10'	 Cu	 -0.9 > 10

BaCI,	 —2.0 >< 1U	 Au	 —3.6 x 10

NaCl	 —1.2 )(10'	 Ce	 —0.8 x 10

Diamond	 —21 X l0	 Si	 —0.3 X 10'

Graphite	 —12 X 10- 1 	Sc	 —1.7 X 10

diamagnetic materials. We should note that in the case of metals and
semiconductors the susceptibility contains a small paramagnetic con-
tribution associated with the spins of the conduction electrons (the elec-
tron spin will be taken up in the next section). It is observed that for
these diamagnetic materials the permeability is given approximately by

,u,.	 1 --

As long as the electronic structure of the material, is independent of tem-
perature, the diamagnetic susceptibility is also essentially independent of
temperature. For most engineering npplications, of a diamagnetic
material may be taken as equal to unity.

It is of interest to investigate to what extent the theory of section 4.5
is in agreement with the observed values. From the discussion in section
4.5 it will be evident that an actual calculation of the induced dipole mo-
ment would require a detailed knowledge of the electronic structure of the
atom. However, an estimate of the order of magnitude of the diamagnetic
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properties may be obtained by making use of expression (4.57). Assuming
that an atom contains, say, 10 electrons, we estimate from (4.57) that the
induced magnetic moment should be of the order of

ILnd	 RIB = _• R2l4H
In	 M

Taking R 1CY 10 m and assuming N 5 X 1028 atoms per m 3 , we find

from M = Nu. ,s = xH a value for x of the order of 10 1 , in agreement
with the experimental values quoted in Table 4.2. There thus seems little
doubt that the interpretation of diamagnetism in terms of Lens's law
acting on an atomic scale is essentially correct.

4.8 The origin of permanent magnetic dipoles in matter

According to the classification given in section 4.6, the properties of
paramagnetic, ferromagnetic, antiferromagnetic, and ferrimagnetic mate-
rials are determined by the presence of permanent magnetic dipoles. In
this section we shall discuss the various contributions to the permanent
magnetic dipole moment of the atomic constituents of matter. According
to the results obtained in section 4.4 we can say that whenever a charged
particle has an angular momentum, the particle will contribute to the
permanent dipole moment. In general, there are three contributions to
the angular momentum of an atom:

(i) orbital angular momentum of the electrons,

(ii) electron spin angular momentum,

(iii) nuclear spin angular momentum.

Each of these forms of angular momentum corresponds to a permanent
magnetic dipole moment and the total magnetic dipole moment of an
atom is obtained by adding the components in an appropriate manner.
The rules governing the addition of these components are derived from
quantum mechanics and will not be discussed in this book, except in some
simple cases. We shall now discuss the contributions separately.

(i) Orbital magnetic dipole moments. The relationship between the
orbital magnetic dipole moment and the orbital angular momentum has
been discussed in terms of a classical model already in section 4.4; we
obtained there the relationship see (4.28)]

e
=
	 M.
	

(4.28),

and this remains valid in the quantum theory. However, quantum theory
shows that the orbital angular momentum of an electron in an at3m
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exhibits certain features which are not exhibited by classical models. In
section 1.2 we mentioned that the orbital state of motion of an electron in
an atom is described by three quantum numbers a, I and m 1. The prin-
cipal quantum number n determines the energy of the electron; the orbital
quantum number 1 determines the orbital angular momentum, and the
magnetic quantum number m 1 determines the component of the angular
momentum along an external field direction. The quantum numbers can
accept only discrete vaues, and the rules pertaining to these values as
derived from quantum mechanics are the following:

a = 1,2,3,
1	 0, 1, . . . , (n - 1)	 (459)

The physical meaning of the magnetic quantum number m: can be under-
stood within the framework of our present discussion from the following
considerations. In atomic physics, angular momentum is measured in
units of h/2r, where h (= 6.62 X 10—" joule sec) represents Planck's
constant. Thus, an electron for which I = 0 has no angular momentum
and as a consequence of (4.28) also no orbital magnetic dipole moment.
An electron for which l = 1 can orient itself in such a manner in an applied
magnetic field that the components of the angular momentum along the
field direction are given by the possible values of rn 1 as follows:

(h/2-), 0, - (h/2s)

These components correspond to the m, values 1, 0, - 1, dictated by (4.59).
Hence, for 1 1, the possible components of the orbital magnetic dipole
moment are given by [see (4.28)]

- (eh/4m), 0, + (eh/4wm) (4.60)

as indicated schematically in Fig. 4.14. The reader is reminded here of
equation (4.29), which defines the frequently encountered quantity
eh/4wm as 1 Bohr magneton. In general then, the component of the orbital

Fig. 4.14.4.14. Illustrating the three
possible components of the meg-	 H
netic dipole WOWeut in an ex-
ternal field H, associated with	

i 1 Bohran orbital momentum quantum
number i - 1.The total angular 	 I mi-oJ maneton

momentum is actually equal to 	 I
(h/25. ) i/i _(l+ 1), and in this	 I
sense the figure is somewhat	 I	 /

I	 /misleading.	 4 -
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magnetic dipole moment along an external field is equal to - m Bohr
magnetons. From the theory of the periodic table, discussed in Chapter 1,
and from the remarks just made, one can readily show that a completely
filled electronic shell contributes nothing to the orbital permanent dipole
moment of an atom. Consider, for example, the L-shell, corresponding to
ii 2. The possible i-values are then 0 and 1. For 1 = 0 there is no mag-
netic dipoe moment anyway. For I = I we have m, = 1, 0, —1 and if
these states are all occupied, the sum of their components vanishes accord-
jug to (4.60). In general then, one can only expect a resultant orbital
magnetic moment in atoms containing incompletely filled electronic shells,
and even then the resultant may be zero. Of particular interest to the
physicist in this respect are the transition elements; i.e., those elements
which have incompletely filled inner shells. A look at Table 1.1, giving
the electron configurations of a number of atoms, shows that the elements
21 through 28 (the iron group) fall in this category. Similarly, elements
39 through 4., 58 through 71 (the rare earths) and 89 through 92 are
transition elements. For the electrical engineer., the elements of the iron
group are of greatest importance. However, in the solid state the orbital
magnetic moments of these elements or their compounds are 'frozen in."
Thus, although the free atoms do have a resultant orbital magnetic mo-
meiit, the contribution of these moments to the magnetic properties in
the solid state is negligible. The reason is that in the iron group the in-
completely filled shell lies near the outside of the atoms and is thus highly
susceptible to interaction with neighboring atoms in the lattice. As a
result of this interaction the dipole moments cannot orient themselves in
an external field. In this respect they behave in a way similar to the
immobile permanent electric dipole moments in a solid (see Section 2.7).

\Vc should remark here, that for the elements of the rare earths group,
the percinanent orbital dipole moments do contribute to the magnetic
5U5((itl)1ity. In these elements, the incomplete shells lie relatively deep
inside the atom, so that they interact with neighboring atoms to a much
smaller degree than do the iron group elements.

In sui)setplent sections, the contribution from the orbital magnetic
dipoles will he neglected, but the reader should realize that this is not
always permissible.

(ii) Electron spin magnetic moment. In order to explain the details
of atomic spectra, Uhlenheck and Goudmit in 1925 introduced the hy-
pothesis that the electron itself has an angular momentum; i.e., an angular
momentum over and above that corresponding to its orbital motion in an
atom. The angular momentum of the electron itself is referred to as the
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spin of the electron. Since the electron has a charge, the spin produces a
magnetic dipole moment. According to quantum theory, the spin angular
momentum along a given direction is either +h/4r or —h/4r; i.e., it can
accept only two possible orientations in an external magnetic field. The
relationship between the spin angular momentum and the spin magnetic
dipole moment is given by

AM ivin = — -S Malvin(4.61)

which differs from (4.28) by a factor of 2 on the right-hand side. Thus,
the relationship between angular momentum and magnetic dipole moment
for the electron spin cannot be understood in terms of a simple classical
picture of a rotating sphere of charge. As a result of (4.61) the spin dipole
moment components along an external field are

eh
+; -

h	 +1 Bohr magneton or --e i-- T' Bo hr magneton (4.62)

as indicated in Fig. 4.15. In a many-electron atom, the individual spin
magnetic momenta are added in accordance with certain rules. Here, as
in the case of orbital moments, completely filled shells contribute nothing

H
Fig. 4.15. Illustrating th two	 f
possible moment components as-	 I
ociated with the electron spin

in an extcnaI field H; repre-
sents I Bohr magneton.

to the resultant spin moment. However, an atom such as Na, with one
valence electron, has a resultant dipole moment equal to that produced
by the valence electron. A sodium ion, Na+, on the other hand, has no
resultant spin moment, because the electronic shells are completely occu-
pied. For engineering applications the atoms or ions of the iron group
elements are of greatest interest. In Table 4.3 we give the spin configura-
tion associated with the electrons in the incompletely fi Ned, 3d-shell (n	 3,

= 2) for these elements. The configurations apply to the free atoms as
well as to the divalent ions of these elements. In the metallic state, the
situation is more complicated and Table 4.3 does not apply. For example,
in metallic iron, the average number of Bohr magnetons per atom is 2.2
rather than 4 for the free atom or the Fe2+ ion; the non-integral number
of Bohr rnagnetons per atom in the metallic state can be explained in
terms of the energy band structure of the transition metals.
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Table 4.3. NUMBER 01 ELECTRONS IN THE 3d-STATE (n - 3, 1 - 2) AND ALIGNMENT

OF INDIVIDUAL SPINS FOR THE FREE ATOMS OR DIVALENT IONS OF THE IRON GROUP

ELEMENTS; CALCIUM AND COPPER HAVE BEEN ADDED FOR COMPARISON

Atomic
number	 Element	 3d	 Resultant spin in Bohr magnetons

20
	 Calcium	 0

	
0

21
	 Scandium	 1

	
1 I

22
	

Titanium	 2
	

2 I I
23
	

Vanadium	 3
	

3 I II
24
	 Chromium	 4

	
4 I III

25
	

Manganese	 5
	

5 I 1111
26
	

Iron	 6
	

4 I 11111
27
	

Cobalt
	

7
	

3 I 11111.!.
28
	

Nickel
	

S
	

2 I IIIiIl,-
29
	

Copper	 10
	

0 I III11i

(iii) Nuclear magnetic moments. The angular momentum associated
with the nuclear spin is measured in units h/2w, and is of the same order
of magnitude as the electron spin and the orbital angular momentum of
the electrons. However, the mass of the nucleus is larger than that of an
electron by a factor of the order of 10. Consequently, the magnetic
dipole moment associated with the nuclear spin is of the order of 10
Bohr magnetons. Since the nuclear dipole moments are small compared
to those associated with the electrons, we may neglect the influence of
the former on the magnetic properties of the materials of interest in this
book.

In summary then, we shall consider in the following sections only the
properties of the electron spin system, assuming that neither the orbital
magnetic moments nor the nuclear magnetic moments contribute to the
properties of the materials. It should be kept in mind that these omissions
are imposed by the limited scope of this book, and that the physicist may
be interested, for example, in studying the -properties of the nuclear spin
system.

4.9 Paramagnetic spin systems

In this section we shall consider the susceptibility of a material in as
far as it is determined by the presence of electron spin magnetic dipole
moments. For simplicity, we shall deal only with a system of spins of one
Bohr magneton (such as the scandium atom in Table 4.3); in that case

an individual dipole can acôept only two possible 'components along an
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applied field direction, viz. +1 or —1 Bohr magneton. For atoms with
larger spin moments, the calculations are somewhat more complicated,
but the essential features are the same. In the present section we shall
assume that the interaction between the spins is negligible, so that the
field at tin position of a given spin may be taken equal to the applied

field H. 'l'his ilso implies that the flux density at the position of a given
spin is assumed to be B = ,oH. In making this assumption, we confine

ourselves in this section to paramagnetic materials (see the classification

in Table 4.1)
Let there be N spins per m 3 in the material. In the absence of an ap-

plied field, there are as many "up" spins as "down' spins, so that the
magnetization M = 0. In a field 11, there will be a preference for the
dipoles to line up parallel to the field, and some magnetization will result.
At a temperature T, let there be N 5 dipoles per m 3 parallel to the field,

and N antiparnilel; we must then require
N 9 + N = N	 (463)

For convenience we shall denote a Bohr rnagneton by 0, where 0 = eh/4in.

The magnetization is then given by

	

M = (N 9 - N).8	 (4.64)

Since the macroscopic susceptibility is given by

	

X = - 1 = M/H	 (4.65)

we wish to express N 9 - N. in terms of II, because we shall then be able
to express x in terms of atomic quantities. As indicated in Fig. 4.16, the

Energy

Fig. 4.16. Illustrating the en- 	 w	 Antipafle1
ergy difference between spin
magnetic dipoles parallel and
antiparallel to an external field.

	

WP	 Parallel

energy of a magnetic dipole in the field with antiparallel orientation is
larger than that with parallel orientation. The energy differene can be
calculated from the fact that the torque, according to (4.15), is :n general

given by ju. x B, which in our case reduces to J.Lo,,, x H. It is kt to the
reader to show that the energy difference between antiparallel and parallel
orientation is given by

- 11" 5 = 2,fiH	 (4.66)

According to Boltzmann's statistics then, we have for the ratio N0/N9
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the expression
N./N, exp [(W, - W,)/kT]

exp (-2pa6H/kT)	 (4.67)

Thus, we know the sum and the ratio of N. and N,,. It follows from (4.63)

and (4.67) that

N =
	 N	 Nexp(,soH/kT)
1 + exp (-2po9H1kT) exp (pet9H/kT) + exp (—gi8H1kT)

(4.68)

N -
	 N	 Nexp(—H/kfl

N. - 1 + exp (2tie,8II/kT) exp (,oflhI/kT) + exp (H/kT)

Substituting these expressions into (4.64) we find for the magnetization

M = NO tanh (po$H/kT)	 (4.69)

In Fig. 4.17 we have plotted M/N9 as a function of the variable
x = paGH/kT. Note that for x << 1, tanh (x) ; and that for z>> 1,

x'-sL0H/kT

Fig. 4.17. The fully drawn curve represents MlNp as a function
of x - p$H/kT. For r << I, tanh(z) x, corresponding to a
line through the origin of slope unity.

tanh (z) approaches unity. Hence, for strong fields and low temperatures,
the magnetization approaches N; i.e., it approaches the situation in
which all dipoles are lined up in parallel with the field. An example of a
paramagnetic salt exhibiting saturation of the magnetization is given in
Fig. 4.18. For normal temperatures and for not too high fields, peH <<kT

and under those circumstances x << 1, so that
M NitefiH/kT	 for	 p$hf <kT	 (4.70

In practice, the condition yoflH <<kT is satisfied more often than not. For
example, even for a relatively strong field AU 1 weber m' we have
wOH as 9 X 10' joule; whereas at room temperature kT 4 X 10'

0
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Fig. 4.18. The magnetic mo-
ment in Bohr magnetons per 	 Fig. 4.19. The reciprocal of the
Fe ion in ferric ammonium 	 su,eeptibility as a function of T
alum as a function of ,jeff/T;	 for a paramagnetic material, ii..
note the observed approach to 	 lustrating the Curie law.
the saturation value of 5,9. [After
W. E. Henry, Phy. Rev. 88, 559
(1952)1

joule. Assuming that (4.70) is valid, we find from (4.85) and (4.70) for
the susceptibility

X = - 1 = Nsc/kT m CIT	 (4.71)

Thus, the susceptibility varies as l i T ; it is instructive in this connection
to compare the similar problem of orientational polarization in dielectrics,
discussed in section 2.5. The law expressed by (4.71) is known as the

Curie law of paramagnetism; it is i l lustrated in Fig. 4.19. The constant

Nz0 /k is called the Curie constant.

An estimate of - the magnitude of x (or 	 at a given temperature may

be made by taking N 5 X lOs' m. Putting in numerical values for the

other quantities in (4.71), one finds x 0 . 3! T ; i.e., x is of the order of
10 at room temperature. Experimentally determined values are given
in Table 4.4; it is observed that these are of the estimated order of magni-

TabI. 4.4. SUSCUPrIBILMrS OF SOME PARAMAGNETIC MATEHIA8

AT ROOM TEMPRR.aruBE

Substance	 X — A, - 1	 Substance	 x - — I

CyCI1	 1.5 x 10'	 Fe103	 1.4 X 10'

Cr,O,	 1.7 x jo-I	 Fe,(804)*	 2.2 X 10'

coo	 5.8 X 10'	 FeCI4	 3.7 X 10'
C0801H40	 2.0 x 10'	 FeSO,	 2.8 X 10'
MnSO4	3.6 X 10'	 NiSO,	 1.2 X 10'
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tude. It should be realized that the measured susceptibility includes a
diamagnetic contribution which has riot, been coniderecl ill present
section. However, since susceptibilities are additive quantities, and since

10 according to the results in section 4.7, we see that Xda < x,-
at room temperature and below.

For many applications in electrical engineering, it is a good approxi-
mation to take the relative permeability p, of paramagnetic substances
equal to unity. As far as applications of paramagnetic materials are con-
cerned, we may mention here that paramagnetic salts are the working
material used in obtaining very low temperatures ( < l°K) by adiabatic

demagnetization: the principle of this method is discussed in the books
by Kittel and by Dekker, given in the list of general reference-s. Also,
paramagnetic salts have entered the group of electrical engineering mate-
rials a few years ago because they are the essential material used in the solid
state maser (microwave amplification through stimulated emission by radia-
tión). The principle of operation of a maser is discussed in van der Ziel's
book (page 590 if), cited in the general references.

4.10 Some properties of ferromagnetic materials

Each ferromagnetic material has a characteristic temperature above
which its properties are quite different from those below that temperature.
This temperature is called the ferromagnetic Curie temperature and will be

denoted here by 0,. In this section we shall discuss briefly some of the
characteristic features of ferromagnetic behavior in the two temperature
regions.

(i) T > 0,. In the region above the ferromagnetic Curie temperature,
the behavior of a ferromagnetic material is somewhat similar to that of
a paramagnetic material. Thus, there exists a unique relationship between
B and H, and between M and II. One can thus define the susceptibility

x = M/H = iu, - 1, where x and p, have a definite meaning. In this

region, the susceptibility depends OIL temperature in accordance with the

so-called Curie-Weiss law

x=,i._1_C/(T_0)	 for	 T>0j	 (4.72)

C is called the Curie constant; 0 is the "paramagnetic" Curie temperature.

This expression is not valid in the region close to 0, as may be seen from
Fig. 4.20; note that in this figure 1/x is plotted as a function of T. Com-
parison of Fig. 4.20 and Fig. 4.19 shows that the ferromagnetic case and
the paramagnetic case are very similar; the only difference is that for a
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1/x

of

Fig. 4.20. The reciprocal of the
susceptibility as a function of
temperature for a ferromagnetic
material above the ferromag-
netic Curie temperature, 6j. The
paramagnetic Curie temperature
6 is obtained b y extrapolation of
the straight portion of the curve
which satisfies the Curie-Weiss
law.

Fig. 4.21. Schematic represen-
tation of the hystereCis loop for
a ferronmegnetiC material. The
virgin curve starts at the origin.

truly paramagnetic material 9 0. The paramagnetic Curie temperature

0 is usually somewhat higher' than the ferromagnetic Curie temperature
see Fig. 4.20); for the ferroniaglietic elements of the iron group, for

example, these temperatures arc, in degrees absolute:

Fe	 Co	 Ni

8. . .	 1043	 1393	 631

9 . . .	 1093	 1428	 650

< 6,. Below the ferromagnetic Curie temperature, ferromag-
netic materials exhibit the well-known hysteresis in the B versus H curves.

A schematic representation of this behavior is given in Fig. 4.21. Starting
with a virgin specimen, B varies reversibly with H for small fields. Since

there is no hysteresis in this region, one defines the "initial" permeability

ii., in the same way as the permeability of a paramagnetic material. As
the field H is increased, B begins to increase rapidly and ultimately

approaches a saturation value B. Along the virgin curve, one can still

speak of a differential permeability defined by I + (dM/dH), but evi-

dently this value is a function of H itself. The differential permeability
may become very large, as is evident from the values given in Table 4.5
for high-permeability materials. Upon reducing the value of H from the

saturation region to zero, it is observed that there remains a flux density
B., (remanent flux density). Since H = 0, the material must be spon-
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taneously magnetized; in fact, the magnetization corresponding to B, is
equal to M, = B,/p. The occurrence of spontaneous magnetization is
characteristic of ferromagnetic materials; in this respect they behave in
a way similar to ferrocleetrics.

The field —H. required to reduce the flux density to zero is called the
coercive force. The coercive force of ferromagnetic materials varies over
a wide range of values. For example, the coercive force of supermalloy,
used in pulse transformers, is approximately 1 ampere m', whereas that
for a high stability permanent magnet may be as high as 106 ampere rn'.
The coercive force thus determines to a large extent the practical appli-
cations for which a given material may be used. Some data referring to
the magnetic properties of a number of ferromagnetic materials are given
in Table 4.5.

Table 4.5. SOME DA% PEnf.UNINO TO FERROMAGNETIC MATERIALS	 is the satu-
ration flux density; B, in the remanent flux density; H, is the coercive force and

is the mnxlthum differential permeability.)

High permeability
materials	 B,, (weber rn') I H. (amp m1)

Iron	 1	 5000	 2.1	 80
4% Si-Fe	 7000	 2.0	 40
Mu metal	 10'	 0.65	 4
Supermalloy	 8 X 10'	 1	 0.8	 0.16

Permanent magnet
materials	 B,- (weber m') H. (amp rn-')

Carbon steel	 1	 4000
Alnico	 1	 1.25	 44,000
Platinum-Cobalt	 0.45	 2 X 10'

4.11 Spontaneous magnetization and the Curie-Weiss law

In this section we shall discuss the atomic interpretations of spon-
taneous magnetization and of the Curie-Weiss law. Before doing this, we
wish to point out that a piece of valuable information regarding the inter-
pretation of ferromagnetic behavior my be gained by considering the
magnitude of the rewanent flux density of permanent magnets. We see
from Table 4.5 that B, I weber m for these materials, and since
H 0 we conclude that the remanent magnetization M,- B,/po ft 10
ampere m'. On the other-hand, we know that an atomic dipole is of the
order of I Bohr magneton, i.e. 1O ampere W. We thus require ap-.
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proximately 1011 atomic dipoles per m', all lined up in parallel ., to obtain
the observed magnetization. However, the number of atoms in a solid is
approximately 10 1 per m 3, so that the observed M, indicates parallel align-

ment of essentially all the dipoles in the material. This notion brings us to the
first hypothesis of Weiss, who by 1907 had already suggested that in
ferromagnetic materials the internal field seen by a given dipole is equal
to the applied field plus a contribution from the neighboring dipoles which
tends to align it in the same direction as its neighbors. Weiss expressed
this mathematically by stating that the internal field Hi is given by*

H 1 = H + yM	 (4.73)

H is the applied field and yM is a measure for the tendency of the en-
vironment to align a given dipole parallel to the magnetization already
existing. The proportionality constant y is the internal field c,nstant; it
determines the strength of the interaction between the dipoles (see the
classification of magnetic materials in Table 4.1). We shall now show
that a field of the type (4.73) is consistent with (a) the Curie-Weiss law
and. (b) the occurrence of spontaneous magnetization. As a model we
shall again consider a system of N spins per m*, each giving rise to a mag-
netic moment of I Bohr maguetun, 0, either parallel or antiparallel to an
external field. The magnetization of such a 'system may be obtained im-
mediately from expression (4.69) for the paramagnetic case, by replacing
H by H,. Hence,

M = No tanh	 (H + -'Al)]	 (4.74)

At this point it is convenient to distinguish between two temperature
regions:

(i) High temperatures. At sufficiently high temperatures, the term
in square brackets in (4.74) will become small compared to unity. Then,
since tanh x x for z < I, we may approximate (4.74) by

M (N,S2/kT)(H + 1M)	 (4.75)

Solving this equation for M, one finds for the susceptibility of the material

M	 N,82/k	 C	 (4.76)X HT_N1y/k T-8

Note that this expression is identical in form with the Curie-Weiss law
(4.72). For the model studied here, we have

C N0$/k	 and	 6 = -,'C	 (4.77)

Compare expreiMon (2.32) foi the case of dielectrics.
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Since C and 8 can be determined from measurements of the susceptibility
as a function of temperature, the internal field constant y can be calculated.
One finds for ferromagnetic materials y 10. This value is about a
thousand times as large as one would obtain on the assumption that the
internal field is due to the magnetic interaction of the atomic dipoles (see
problem 4.11). In fact, the forces acting between the dipoles in a ferro-
magnetic material cannot be explained in terms of classical physics; they
are due to the wave nature of the electrons and in wave mechanics are
called exchange forces.

(ii) Spontaneous magnetization below the Curie temperature. It fol-
lows from (4.76) that the Curie-Weiss law can hold only for temperatures
T > 0, because for T = 8 the susceptibility would become infinite. This
fact suggests already that at T = 0, spontaneous magnetization may
occur (non-vanishing M forH = 0); this is confirmed by the following
arguments. In (4.74) let us put If = 0, and ask the question as to whether
that equation permits a non-vanishing value for M. It is convenient to

introduce a new variable
x = 7M/k7	 (4.78)

so that (4.74) may be written (with H = O) in the form

MIN = M/M	 tanh x	 (4.79)

Here, M = NO represents the saturation value of the magnetization,
since it gives the magnetizhtion for parallel alignment of all the dipoles, and
is evidently the maximum value that can be obtained. A plot of M/M

T-8
/

._-ø.

Fig. 4.22. Schematic illustration of the graphical solution of
equation (4.79) for the spontaneous magnetization. For the tem-
perature .T1( < 0) the value of M,/M...1 is obtained from the in-
tersection of the Line (T,/0)z and the tsnh(z) curve. For 7' >> 8

the spontaneous magnetization vanishes.
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as function of x is given in Fig. 1.22. According to (4.78), we should also
have

MM	 kT	 T
- N$ =
	 =	 (40)

where the last equality follows from (4.77). Now, for a given temperature
T, (4.80) in a plot of AI/M-, versus x represents a straight line with a slope
equal to T/8. Since M/M must satisfy both (4.79) and (4.80), the value
of M/M for the temperature T is given by the intersection of the straight
line and the tanh x curve, as indicated in Fig. 4.22. When this procedure
is repeated for different temperatures, one can finally plot M/M as

function of T/8, as shown in Fig. 4.23. Note that for T	 e, the spon-

to

.8

.6
M

t	 .4

.2

.2	 .4	 .6	 .8	 1.0
T/8

Fig. 4.23. The curve represents the relative spontaneous ms.g-
netization as a function of 778 obtained from the procedure
illustrated in Fin. 4.22. The points represent measured values
for nickel, cobalt, and iron.

taneous magnetization vanishes. The reason for this can be seen in Fig.
4.22. When T = 8, expression (4.80) gives M/M... = x, but this line is
just the tangent of the tanh z curve at the point x = 0. For T 0, the
only intersection between (4.80) and (4.79) is the point x = 0; i.e., there
is no longer a spontaneous magnetization. In Fig. 4.23, experimental
points have been indicated, and the agreement with the theoretical curve
is seen to be quite good. The reader should realize that the materials for
which the experimental points have been plotted have widely different 8

and M values, as indicated in Table 4.6. The spontaneous magnetization
becomes equal -to M. t only at T = 0, but it is evident from the curve in
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Table 4.6. SATURATION VALVE or THE SPONTANEOUS MAGNETIZATION AND FERRO

MAGNETIC Cuniz TEMPERATURES FOR TH E FERROMAGNETIC MEAL

Metal	 M.t (amp m) Curie temp. (BK)

Fe	 1.75 X 10'	 1043
Co	 1.45 x 10'	 1393
Ni	 0.61 x 10'	 631

Fig. 423 that for iron and cobalt even at room temperature, the spon-
taneous magnetization is nearly equal to M,,.

It is noted that the theory given predicts the same value for the
ferromagnetic. Curie temperature as for the paramagnetic Curie temper-
ature, whereas experimental values of 91 and 8 differed somewhat. This
discrepancy between theory and experiment must be ascribed to the simple
form of the internal field éxpressed by (4.73). On the other hand, it
must be admitted that this simple equation explains the spontaneous
magnetization and the Curie law satisfactorily as far as the essential
features are concerned.

4.12 Ferromagnetic domains and coercive Force

After the discussion in the preceding section, the question may be
raised as to how one can explain the fact that a piece of iron may not
exhibit a resultant magntiation, and how one can explain the hysteresis
in the B versus H curves of ferromagnetic materials. This brings us to
the second hypothesis of Weiss. According to Weiss, a virgin specimen of
iron consists of a number of regions or domains ( 10 m or larger) which
are spontaneously magnetized in accordance with the formulas derived
in the preceding section. However, the direction of the spontaneous magneti-
zation varies from domain, to domain, and consequently, the resultant
magnetization may be zero or nearly zero; this is indicated by the domain
configuration in Fig. 4.24(a). If an external field H is applied, the domains
with the proper direction of Fpontaneous magnetization grow at the
expense of those that are magnetized in other directions by virtue of a
motion of the domain walls [see Fig. 4.24(b)]. Ultimately, as the field is
increased, the whole specimen may become one single domain, and satu-
ration has been achieved. Thus, the hysteresis curve is associated with th
motion of domain walls and, to some extent by domain rotation. The
latter takes place as a result of the fact that spontaneous magnetization
occurs only along certain directions in the cr ystal; when a field is applied
in another arbitrary direction s the magnetization will rotate from an "easy"
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Fig. 4.24. The domain configu-
ration in (a) ha zero resultant
magnetization. In (h) a mag-
netic field has been applied and
the domain walls have moved
co as to produce a net magneti-
zation along the applied field
direction

-b. H

__ H
Ib)

direction to a "hard" direction. Since the hysteresis loop is interpreted
in terms of domain wall motion, the coercive force must be determined
by the "mobility" of the walls. The mobility of the domain walls is in
turn determined by impurities, lattice imperfections, etc. and to some
extent it is possible to "design" materials which require a large or a small
coercive force. It may be mentioned here that the well-known Barkhausen
effect is due to irregular fluctuations in the motion of domain walls; in
earlier days, the effect had been ascrib ed to rotation of domains.

The most direct evidence for the existence of domains is provided by
the so-called Bitter powhr patterns. -k drop of a colloidal suspension of
ferromagnetic particles is placed on a m ,61-prepared surface of the speci-
men; since there are strong local rncgacLio fields near the domain
boundaries, the particles congregate there and the domain structure may
be observed under a. microscope.

4.13 Antilerromagnetic materials

In the discussion of frroaiagnetio materials it was pointed out that
the tendency for parallel aEgnment of the electron spins was due to
quantum mechanical exchange forces. In certain materials, for example
when the distance between the interacting atoms is small, the exchange
forces produce a tendency for antiparaltel alignment of electron spins of
neighboring atoms. This kind of interaction is encountered iii antiferro-
magnetic and in ferrimagnetic materials. It is of interest to note that
certain properties of antiferromagnetic materials were predicted before
antiferromagnetism was discovered experimentally. Thus, Ned and
Bitter in the thirties made a theoretical study of the proper ics of anti-
ferromagnetic models, and a few years later, in 1938, anti ferromagnetism
was discovered in MnO by Bizette, Squire and Tsai. Since that time, a
number of other materials has been found to l:e antiferroma.gnetie. From
the experimnt.al pomt of view, the most characteristic feature of an
cnt.iferromagnetio material is the occurrence of a rather sharp maximum
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Fig. 4.25. The susceptibility of
MnF, (polycrystalline) as a func-
tion of temperature. The maxi-
mum is characteristic of an anti-
ferromagnetic transition. (After
do llaaa, Schultz, and Koolhaaa,
Phjstca, 7, 57 (1940)]
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in the susceptibility-versus-temperature curve, as may be seen from the
expIe given in Fig. 4.25 for MnF 2 . The temperature for which this
maximum occurs is called the N&I temperature, TN. The Née! temperature
plays a similar role in antiferromagnetic materials as does the ferromag-
netic Curie temperature in ferromagnetic materials. Thus, above the Ned

temperature, the susceptibility is observed to follow the equation

C
XT+O	 (4.81)

where C is the Curie constant and e the paramagnetic Curie temperature.
Below the Mel temperature, the spin system tends to be "ordered" in a
way similar to the spin system in a ferromagnetic material, except that at
T 0 half the spins are oriented in one direction and the other half in
the opposite direction. Confining ourselves for the moment to the high
temperature region, it is of interest to recapitulate the results for the
susceptibility versus temperature behavior for para-, ferro-, and anti-
ferromagnetic materials:

	

para-	 ferro-	 aniferro-

x CIT	 x C/(T - 0)	 x C/(T + 0)	 (4.82)
forT>0,	 for T>Ty

The difference between the three groups of materials is illustrated in
Fig. 4.26 in terms of a plot of l/x versus temperature.

We shall now consider a simple model of an antiferromagnetic ma-
terial. With reference to Fig. 4.27, consider a body centered cubic lattice.
We shall distinguish in this lattice between A-sites and B-sites, as indi-
cated in Fig. 4.27. Each A-site is surrounded by eight B-sites, and each
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Fig. 4.26. Illustrating the recip- 	 Fig. 4.27. Representation of
rocal susceptibility as a function 	 two sub-Lttice, A and B; the
of temperature for a paramag-	 spins on the A-lattice tend to
netic, ferromagnetic, and anti- 	 line up antiparalki to those on
fecroinagnetic material, 	 the B-lattice.

B-site is surrounded by eight A-sites. We shall assume that all sites are
occupied by identical atoms with a magnetic dipole moment of 1 Bohr
magneton which can orient itself either in the "up" or the "down" di-
rection. Also, we shall assume that an atom at an A-site tends to align
its spin opposite to the spins of the neighboring atoms on the B-sites, and
vice versa. In order to describe this mathematically, we introduce an
internal field H for the atoms on A-sitesand an internal field Hb for the
atoms on B-sites. Following a procedure similar to that used in section
4.11 for a ferromagnetic material, we may then write

H. = H -	 and H = H - TM.	 (4.83)

Here, M and Mb represent the magnetizations of the A-sub-lattice and
of the B-sub-lattice respectively. The minus signs represent the as-
sumption that an A atom tends to align its dipole moment opposite to the
direction of the magnetization of the B-lattice; the internal field constant

determines the strength of the exchange interaction. The magneti-
zations M and Mb may be obtained again from formula (4.69) by replacing
H by the appropriate internal fields. Hence, if there are N atoms per m3

on the A-lattice and an equal number of atoms on the B-lattice, we find

M = NO tanh[ (H -

(4.84)

M6 = N tanh [ (H -

At sufficiently high temperatures, we may make use of the fact that
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t.anh 2t x for z << 1, so that then (4.84) reduces to
M = (NO2 1kT)(H - yM,)

(4.85)
Mb (N 0/kT)(H -

The total magnetization of the material is given by

M = M. ± M 6	(4.86)

and consequently may be calculated by adding the two (4.85) equations;
this gives

	

M = (Np0/kfl(2H - 1M)	 (4.87)

Since the net magnetization M must have the same direction as H, we
may consider (4.87) as a scalar equation. Solving for Mill we thus find
for the susceptibility at high temperatures

X = M/II = 2C/(T + yG) 2C/(7'+ 8) 	 (4.88)

where	 C Np/k	 and	 U = yC

Note that this model indeed gives a susceptibility as required by the
experimentally derived equation (4.81).

At low temperatures, the approximation involved in going from (4.84)
to (4.85) is no lQnger justified. In fact, at T = 0, the spin system is com-
pletely ordered in the sense that all spins on A-sites are oriented in parallel
and all spins on the B-sites are oriented in parallel. Thus, at low tempera-
tures, M anid M,, are very large, though oppositely directed. As the
temperature is raised from zero,zero, the magnetizations AL and Mb of the
two sub-lattices in the absence of a magnetic field vary with temperature
in a fashion similar to the spontaneous magnetization of a ferromagnetic
material. The spontaneous magnetizations of the sub-lattices disappears
at the Mel temperature TN. We shall not discuss here the solution of
equation (4.84) for the temperature region below TN; it may suffice to
say that the behavior of the experimentally observed susceptibility curve
(see Fig. 4.25) can be understood in terms of the model under dicursion.
However, we may discuss here the occurrence of a NéeI temperature for
the model. This can be done on the basis of the simpler formulas (4.85),
because at the Mel temperature itself the spontaneous magnetization of
the sub-lattices vanishes, as can he seen from Fig. 4.23; i.e., at the Ned

temperature itself formulas (4.85) should still be valid. Let us investigate
then, by putting H = 0 in (4.85), for whnt temperature sontancous
magnetization of the sub-lattices becomes pos sible. Rewriting (4.85) for
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Fig. 4.26. Illustrating the recip-
rocal susceptibility as a function
of temperature for a paramag-
netic, ferromagnetic, and anti-
ferromagnetic material.

Fig. 4.27. Reprenntation of
two sub-lattices, A and B; the
spins on the A-lattice tend to
line up antiparall,d to tho,e on
the B-lattice.

B-site is surrounded by eight .4-sites. We shall assume that all sites are
occupied by identical atoms with a magnetic dipole moment of 1 Bohr
rnagneton which can orient itself either in the "up" or the "down" di-
rection. Also, we shall assume that an atom at an A-site tends to align
its spin opposite to the spins of the neighboring atoms on the B-sites, and
vice versa. In order to describe this mathematically, we introduce an
internal field H,. for the atoms on A-sites and an internal field Hb for the
atoms on B-sites. Following a procedure similar to that used in section
4.11 for a ferromagnetic material, we may then write

H. = H - M,,	 and	 Hb ' H - yM	 (4.83)

Here, M. and Mb represent the magnetizations of the A-sub-lattice and
of the B-sub-lattice respectively. The minus signs represent the as-
sumption that an A atom tends to align its dipole moment opposite to the
direction of the magnetization of the B-lattice; the internal field constant
'y determines the strength of the exchange interaction. The magneti-
zations Al., and Mb may be obtained again from formula (4.69) by replacing
If by the appropriate internal fields. Hence, if there are N atoms per m3

on the A-lattice and an equal number of atoms on the B-lattice, we find

M. No tanh[ (H -

(4.84)

Mb = N6 tanh[ (H -

At sufficiently high temperatures, we may make use of the fact that
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tanh a4 z for x <1, so that then (4.84) reduces to

M	 (N'/kT)(H - -yMb)
(4.85)

Mb = (Nf3o1kT)(H - 7M0)

The total magnetization of the material is given by

	

M M ± M	 (4.86)

and consequently may be calculated by adding the two (485) equations;
this gives

	

M = (Npo/kT)(2H	 - yM)	 (4.87)

Since the net magnetization M must have the same direction as H, we
may consider (4.87) as a scalar equation. Solving for MIII we thus find
for the susceptibility at high temperatures

	

X = M/H = 2C/(T + yC) 	2C/(T + 6)	 (4.88)

where	 C = Np32/k	 and	 0 =

Note that this model indeed gives a susceptibility as required by the
experimentally derived equation (4.81).

At low temperatures, the approximation involved in going from (4.84)
to (4.85) is no longer justified. In fact. at T 0, the spin system is com-
pletely ordered in the sense that all spins on A-sites are oriented in parallel
and all spins on the B-sites are oriented in parallel. Thus, at low tempera-
tures, M amd Mb are very large, though oppositely directed. As the
temperature is raised from zero, the magnetizations M and Mb of the
two sub-lattices in the absence of a magnetic field vary with temperature
in a fashion similar to the spontaneous magnetization of a ferromagnetic
material. The spontaneous magnetizations of the sub-lattices disappears
at the Mel temperature TN. We shall not discuss here the solution of
equation (4.84) for the temperature region below Ty; it may suffice to
say that the behavior of the experimentally observed susceptibility curve
(see Fig. 4.25) can be understood in terms of the model under discussion.
However, we may discuss here the occurrence of a Nel temperature for
the model. This can be done on the basis of the simpler formulas (4.85),
because at the Néel temperature itself the spontaneous magnetization of
the sub-lattices vanishes, as can be seen from Fig. 4.23: i.e., at the Mel
temperature itself formulas (4.85) should still be valid. Let us investigate
then, by putting 11 = 0 in (4.85), for what temperature spontaneous
magnetization of the sub-lattices becomes possible. Rewriting (4.85) for
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H = 0 we obtain

C

	

	
(4.89)

7M,, + M 6 0

For T > TN, these equations have the trivial solutions M = M = 0;
i.e., there is no spontaneous magnetization of the sub-lattices above the
Mel temperature. If spontaneous magnetization of the sub-lattices is
supposed to set in for T T, we must require that (4.89) has non-
trivial solutions for M and Mb at the temperature T = TN This permits
us to calculate TN, because the requirement just stated is equivalent to
the requirement that the determinant of the coefficients of M, and Mb
vanishes. Hence

(C )2 
= 1	 or	 TN Cy = 8	 (4.90)

where the last relationship follows from (4.88). Note that for the model
employed here, the Mel temperature turns out to be the same as the
paramagnetic Curie temperature 0. (The reader is reminded of the fact
that in the ferromagnetic case the simple model employed also gave
Of 0.) According to measurements of 0 and TN, there is a considerable
difference between TN and 0, as may be seen from Table 4.7. This indi-
cates that the model used here was actually too simple. In fact, one can
show that if one takes into account antiferromagnetjc interactions not only
between nearest neighbors, but also between next nearest neighbors, the
model above would give TN < 0. The model discussed here must there-
fore be considered as an approximation; it predicts the general features
of antiferromagnefism correctly, but not the details. It should also be
realized that usually the particular body-centered structure assumed in
Fig. 4.27 does not apply to the material under study. In Table 4.7 we give
values of T2v and 8 for some antiferromagnetie materials.

The question can be raised as to what independent experimental evi-
dence there exists to support the assumption that in an antiferromagnetjc
material neighboring spins have opposite directions. The answer is that
such evidence has been obtained from neutron diffra4ion studies. The
neutrons, because of their magnetic moment, can "see" the difference
between an "up" spin and a "down" spin and the diffraction patterns
(similar to X-ray diffraction patterns) show that the antiparallel spin
alignment actually occurs in these materials.
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Table 4.7. N16EL TEMPERATURE (TN) ANT) PfrRAMAGNETIC CURIE TEMPERATURE (9)

FOR SOME ANT!FERItOMAONETIC MATERIALS

Material	 TN(°K)	 o(K)

MnF,	 72	 113
MnO:	 94	 316
MnO	 3 22	 610
MnS	 165	 528
FeO	 198	 570
NiF,	 73	 116
COO	 292	 280

4.14 Ferrimagnetic materials

Of the ferrimagnetic materials, the so-called ferrites are of greatest
interest from the electrical engineering point of view; they behave as
ferromagnetic materials in as much as they show spontaneous magneti-
zation below a certain temperature. As far as their conductivity is con-
cerned, they behave as semiconductors. The d-c resistivity of ferrites is
many orders of ten higher than that of iron; consequently, the eddy
current problem preventing penetration of magnetic flux into the material
is much less severe in ferrites than in iron. Ferritce can therefore be used
for frequencies up to microwaves in transformer cores and are of great
technical importance in this respect.

The chemical formula of simple ferrites may be written as
Me2+Fe0, where Me2+ may represent a variety of divalent metallic
ions, such as Fe2+, C624 , Mn2+, Znz±, Cd2 , Mg24 , etc. Symbolically, one
may write the formula as a "mixture" of MeO and Fe203 , although a
ferrite is actually a solid solution of two such oxides.

Since the oxides contain ions, the magnetic properties should be pre-
dictable to a good degree of approximation from the magnetic properties
of the ions. Thus, from Table 4.3 we expect, for example, each Fe z+ ion
to correspond to 4 Bohr magnetons, and each Fe to 5 Bohr magiietons.
Now, a material such as Fe2+FeO exhibits a saturation magnetization
which amounts to 40 ( 1 Bohr magneton) per "molecule" Fe2+Fe0.
It is evident that if the spins of all the ions were lined up in parallel one
should find 4 + (2 x 5) 14 Bohr mn.gnetoas per molecule. This dis-
crepancy was explained in 1948 by Mel in terms of a model consisting of
two sub-lattices, somewhat similar to the A13 lattice in Fig. 4.27, for which
he assumed an antiferromagnetic interaction between A-sites and B-sites.
An important role in this interpretation is played by studies of the atomic
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arrangement in ferrites, from which it has been possible to identify the
A- and B-sites.

Beause of the intimate relationship between the magnetic properties
of ferrites and the crystal structures of ferritcs, a few remarks may be
made here concerning this problem. The oxygen ions in a ferrite form
a close-packed face-centered cubic structure. In this arrangement it is
found that for every four 02 ions, there are two oc(aidrai "holes" (sur-
rounded by six 0 ions) and I tetrahedral "hole" (surrounded by four 02
ions). The metal ions are distributed over these octahedral and tetra-
hedral sites. The tetrahedral sites may be identified with the A-sites, and
the octahedral sites with the B-sites mentioned earlier. Thus, the octa-
hedral sub-lattice has twice as many sues as the tetrahedral one. This
has been represented schematically in Fig. 4.28. Now, in Fe2+Fe0

re 2+	 Fe3+
Fig. 4.28. Schematic represen- P-rites
tation of	 and Fe' 1008 In (octahedral)
magnetite. There are two Fe' 

	
(tetrahedral)

ions and one Fe-ion per mole-
cole of Fe,O,, as indicated. The	 A-sites

net moment per molecule is 4,5.

Fe

(magnetite), for example, the Fe2 ions occupy half of the octahedral
sites; the Fe' ions occupy the other half of the octahedral sites, and the
tetrahedral sites (see Fig. 428). hence, if there exists an antiferromagnetic
interaction between A- and B-sites, we see from Fig. 4.28 that the Fe'
magnetic moments just cancel each other, so that the magnetization of
Fe804 should be equal to that produced by tha Fe2l ions alone, i.e. 43 per
molecule; that is in agreement with experiment.

The behavior of other ferrites may he explained in similar terms.
We may mention here an interesting feature of ferrites, which shows again
the importance of the atomic arrangement for the properties of these
materials: it is observed that if in Fe80 4 , some of the magnc"ic Fe.z+ ions
are replaced by non-magnetic ions such as ZnS+ or Cd2+, the iignetization
increases! The reason for this peculiar behavior is the folIowii.: Zinc ions
go preferably into tetrahedral positions, thereby forcing some of the Fe'
ions from tetrahedral to octahedral sites. Since the Zn2+ ions have no
magnetic dipole moment, the net magnetization increases, as may be seen
from Fig. 4.29. It will be evident that these materials lend themselves,
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Fe 2+	 Fe Fe 3+	 Fe 3+

4)4) octahedral

513

O	 (f'	
tetrahedral

Fig. 4.29. Schematic representation of the ionic distribution in
magnetite after replacing half of the F& ions by Zn. The Zn
ions prefer tetrahedral positions and force Fa t ions to move into

octahedral sites.

within certain limits, to designing materials with prescribed spontaneous
magnetization.
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Problems

4.1 A linear conductor carries a current of 10 amperes along the posi-
tive x-direction. Find the force per meter length on the conductor if it is
subjected to a homogeneous flux density of 0.5 weber m 2 along the
z-direction.

4.2 A linear conductor in air carries a current of 5 amperes; calculate
the flux density produced by 1 cm of the conductor in a point at a distance
of 1 m normal to the 1 cm section.

4.3 Show by means of Biot and Savart's law that the flux density
produced by an infinitely long straight wire, carrying a current I, in a
point at a distance a normal to the wire is given by poI/27ra.

4.4 Two infinite parallel conductors carry parallel currents of 10
amperes each. Find the magnitude and direction of the force betveer
the conductors per meter length if the distance between them is 20 c.
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4.5 An electron with velocity vector v moves in combined electric
and magnetic fields E and B. Write down the expression for the force on
the electron (the ''Lorentz force'').

4.6 Show that an electron with a velocity perpendicular to the di-
rection of a hwnogeneOUS magnetic field of flux density B describes a
circular path with an angular velocity of rotation equal to eR/rn.

4.7 A charge of e coulombs is distributed homogeneously over the
surface of a sphere of radius 1? meters. The sphere rotates with an angular
velocity w about an axis passing through its center. Show that the mag-
netic dipole moment of the sphere is equal to lewR- Also show that the
angular momentum of the sphere is j mwRI , where rn is the total mass of
the charge.

4.8 Consider a charge of e coulombs distributed homogeneously over
the surface of a sphere of radius R meters. II the sphere is initially at rest,
show that after application of a flux density, of B weber m, the charge
distribution will rotate with an angular velocity w = (e/2m)B, where m

is the total mass of the charge.

4.9 The magnetic field strength ill piece of copper is 10 6 ampere
m'. Given that the magnetic susceptibility of copper is —0.5 X 10,
find the flux density and the magnetization in the copper.

4.10 The magnetic field strength in a piece of Fe203 is 10 ampere m.
Given that the susceptibility of Fe 20 at room temperature is 1.4 X 10,
find the flux density and the magnetization in the material; compare the
answers with those of the preceding problem. What is the magnetization
at the temperature of liquid nitrogen?

4.11 Consider two point., dipoles, each with a strength of 1 Bohr
mnagneton; the dipoles are parallel to each other and parallel to the line
joining their cen'ters. If the distance between the dipoles is 2 angstrom,
calculate the energy of one dipole ill 	 field of the other and show that
the result is equivalent to kT with T	 1K. (This shows that ferro-
magnetic interactions cannot be explained classically, because the inter-
action energy should be of the order of kT where T of	 1000°K).

4.12 The saturation value of the magnetization of iron is 1.75 X 10
ampere rn_i . Given that iron has a body-centered cubic structure with an
elementary cube edge of 2.86 angstroms, caiculate the average number of
Bohr magnetons contributed to the magnetization per atom.

4.13 A paramagnetic system of spins is subjected to a homogeneous
field of 106 ampere m at a temperature of iOO'K. Find the average mag-
netic moment along the field direction per spin in Bohr magnetons. Answer
the same question for liquid helium temperature.


