CHAPTER VI
DEFINITE INTEGRALS

6.1. Thus far we have defined integration as the inverse of dif-
fersntiation. Now, we shall define integration as a process of summa-
tion. In fact, the integral calculus was invented in the attempt to
~ calculate the area bounded by curves by supposing the given area
to be divided into an infinite number of infinitesimal parts called
elements, the sum of all these elements being the area required. His-
torically the integral sign is merely the elongated S used by early
writers to denote the sum.

This new definition, as explained in the next article, is of fun-
damental importance, because it is used in most of the applications
of the integral calculus to practical problems.

6.2. Integration as the limit of a sum.

The generalized definition is given in Note 2 below. We first
start with a special case of that definition which is advantageous
for application in most cases.

Let f(x) be a bounded *single-valued continuous function defined
in the interval (a,b), a and b being both finite quantities and b > a;
and let the interval (a4, b) be divided into n equal sub-intervals,
each of length h, by the points

a+h,a+2k,...,a+(n-1), sothat nh=b - a;
then Lt hif@+fa+M+f@+2h)+...+ fa+n-1h)
-1
ie., shunlyhfzfo h L f(a +rh),(nh =b -a),
r=0

o, At ”‘“z;(utb-a)—;)

B3 n

(since n — = when h—0)
* i.e., which does not become infinite at any point. See Authors’ Differential
Caleulus, Art. 1.6,
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Is defined as the definite integral of f( x ) with respect to x between
the limits a and b, and is denoted by the symbol

b
I f{x)dx,
a

where ‘a’ is called the lower or inferior limit, and ‘b‘ is called the
upper or superior limit.
Cor. Putting a = 0, we get
b n-1

flx)ds = Lt h £ f(rh), wherenh = b.
0 red

L]
Note 1. J. f(x)dx is also sometimes defined as
L

n-1 n
hl-'-t'ﬂ h 'fn fla + rh), or n'-'-'.o h'flf(cli-rh};

these definitions differ from one another only In the inclusion or exclusion
oftheterms hf(a) and hf(a + nh),ie., hf(b) which ultimately vanish.

It should be carefully noted that whichever of these slightly different
forms of the definition we use, we always arrive at the same result. Some-
times, for the sake of simplicity, we use one or the other of these definitions.

Supposing the interval (&, b ) to be divided into n equal parts each of

length Ar by the points % (=2), % ,%,........, x, ( = b), the definite
integral
b n-1
I f{x) dx may also be defined as '{._!.- Z f(x)ax..
s . r=0

Note 2. The above definition of a definite integral is 2 special case of
the more generalized definition as given below.

Let f( x ) be a bounded function defined in the interval (a, b ) ; and let
the interval ( a, b) be divided in any manner into n sub-intervals (equal or
unequal) of lengths & ,8,,....... + 8 . In each sub-interval choose a per-
fectly arbitrary point (which may be within or at either end-point of the in-
terval) : and let these points bex =0, , &, ........ X
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]
lﬂ Sn = I- arf( c r, .
r=1
Now, let x increase indefinitely in such a way that the greatest of the
lengths &, . &,,. ..., 3, tends to zero. If, in this case, 5, tends to & definite
limit which is independent of the way in which the interval ( a, b ) is sub-divided
and the intermediate points §y, {a, . .. ., L. are chosen, then this limit, when it
exists, is called the definite integral of f( x ) from a to b.

It can be shown that, when f (x ) is a continuous function, the above iimit
always exisls.

In the present volume, however, in Art. 6.4 we prove that if, in addition
tof (x ) being contihiuous in the interval, there exisis a function of which it
is the differential coefficient then the above limil exists,

In the definition of the Article above, for the sake of simplicity, f(x ) is
taken 1o be a continuous function, the intervals are taken to be of equal
lergths, and {;, §;, . ..., {. are taken as the end-polnts of the successive
sub-intervals.

The method of unequal sub-divisions of the interval s illustratec
in Ex. 5 below.

6.3. Tllustrative Examples.

b
Ex. 1. Evaluals from first principle J' erdx .

From the definition,

b n-1
J- e*dr = Lt k I e®*™ wherenh=b - a,
a

k=0 e
=hg’0 kf'f'+t“"+...+¢"l"'1“']
=5Uo Booef[1 veb ey 4 eln-1)h)
o
eM . ]
- a
=y ¥

k
= gt b-a_ 3 i =h -
e (e 1). n:’n 2 s | , sincenk =b - a,
. = el g8 [:lincc L -;——k =1
‘ " NS0 eM-1 e
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Ex. 2. Find from the defimition, the value of

oo

From the definition,

1 L]
x3dr = Lt_ h I (rh)?, where nh = 1,
o h=0 P

= Lt h[1%h? 4+ 22h2 4+ ... + n2kt)
-0

= Lt [R3(12 +2% ¢+ ... +n?)]
-+ .

nim+ 1)2n ¢+ 1)
Hat 6

l_.} (2n3h? 4 3m2k*. b + nk.h?)

Lt (2 + 3k + h?),since nh =1,
=

Ex.3. Proveab iul'lbj

Here by the definition,

1 1 1 1 1 X
: I ré=uon [ty T LM YT 1) =]
. (where nh=b - a),
Denoting the righi-hand series by 3, since, obviously,

1 1 1

{n+rh)’u3{n+rhh t{n-l)h}a"dcla+(r—1}h}(n+ rh) "’
1 ) 1
LS oA [ntum RVEY Ty R TITE rET 3) &

L. ’[(*'nk) (nﬂl a+2h (ntxl-”k'“l"")]'
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(1 “ua)"‘ "'F [’"‘“""“’“]

1 1 1
Nee. 5% "[_‘“_u-m MT7EY ) *'“*{n+<a-2m{s+(n-m1]'

ie, < [(——"‘ 1) (n a+h (n-r(nl—Z}h_a:{n-l)i:)]
R (,1;_. - -+(n1-1)h)' ks € ('-_1—1" TI:T') '

Hence, (;—-—l <s<( :

b a-h b-h

and this being true for all values of 4, ptonending to the limit when

k-0, ‘Eh = h) clearly tends to : - -) and § by definition
b
dx dx 1 1
benumu.-x—r.mdhence‘[';-r--‘——-i.
For an alternative method, see Ex. 5 ; here m =— 2,

b
Ex.4. Prove bysnmmu.lim,-[ sin xdx = cosa -cosb .
a

] n=1
I sinxde = [t h I sin{a + rh), where nh = b - a,
h=0
a r-o
= Lt _h [sina+sin(a +h) +sin(a +2h)+...tonterms]
A0
1
A sin 5 nh
=hﬂnh.sin{¢+(n ”2} sln%h
1
- I 1 { _ 1'}
":.ir'.'namwz““""'"m a+(n ]!2

HJ

...i__ i % b = o

Ic{'-nﬂ ﬂn'h [uos a h) cus{a (2n I‘Zf
]

1 1 ¥ —— i
h[__sl_..{s.:u:us{rc-—;a‘:)—e:t:lu.'.(‘l +nk—;k)|,:im:e s‘:‘.u oy 1,
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x o | = L =
'nt-'iu{cm“ !h} cos(b :h}l,slncen+uh b,

= cos a- cos b.

b
Ex. 5. Em]uauj x™ dx where m is any number , positive or regative,
L]
integer or fraction but # - 1(0 < a < b).

Let us divide the interval ( a, b ) Into n parts by the points of division
a, ur,ar?,..,,ar® -1, ar®, where ar®= b, ie, 1 = (b/a)iim.

Evidentlyas n ==, r= (b/a)'/=-»1, sothatench of the intervals
G ), e tr= 1), covor® =i{e = 1) 0. Now, by the generalized

definition, as given in Note 2, Art. 6.2,

b
J‘:"‘dxz Lt lemalr-1) + (ar)™ar(r =1)
)

n —+ =

+(ar2)™ (ari}r - 1)+ ... to n terms]

= Lt ‘n-l(,__:lH}*,n’l.ﬁr!fnol}
r-—+1
+ ... lon terms ]

(,ntl)l_,]
= + I =
= 'f:'tla" (r 'l)-———,-:-'—lt*:i-“—, [m+120)

= po =1 mael
S am et Lo 1}

- 4 ek (1))

r=1 ’

Lt __l:_'a__fl___i (bntl_'-al)

r=1 r
pm m+ 1
T Ime-dl
[Since 'y”-’T':jl—_—-.Mnsolthelwm

0 1 1
0 grgl tnol)r‘=1ufl']

Inlegral Calculus (main) -9
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Note 1. ™ being continuous in(a, b )ls integrablein (a,b), 8 uni-
que limit of the summation $,, 2: given in Note 2, Arb. 6.2, exists. So it 1s
iovmaterial in what mode we calculate it. The same remark holds for the next
example.

»
Note. 2. !nwn!uatlngj sMdx[m# - 1,0 > 0) we may first
1]

[ ]
ewlunreI T%dn [0<a<d)] 28 above, m ‘I then make a - 0+ .
L
Ex. 6. Show from the definition
b
I :—dxalogf - (0 cac<b)

As in Ex. 5, divide the interval (&, b ) into n parts by the points of

division &, e ,er? ... ........, &ar"" ), ar” where ar" = b,
e, r = (bja)l/s, Evldentlyls n—ee, re(b/a)l/* 51, sothat
cach of theintervals a(r - 1),ar(r - 1) .... = 0. Now, by the general-
ized definition,
'1 " 1
J-‘;‘xz . kzl _;'r_r'_f“ri‘”*—l)

Lt Z(r-1)= It n{r-1)
na. PR

Lt nf(b/a)ve - 1]
L

i

ek -1 b 1
alto [ & lng:],whereh:;log-

o
=log-:-[sh1cc hl’j.,%:l].

1'
Ex. 7. Find ab initio the value afj sec?xdx.

By definition, the required integral
n

Izh_.o h rf: sec’rh, where nh = in.
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Now,sec{r— 1) h sec rhesecirh<secrh.sec(r + 1) h,
since ¢ ¥ increases with x inG<x < in.

1 qin{(r41)h—rl'l

o apeh eredy o100 S f . ek O
a Shasl . "R 2 Snh conh.coR (r + 1ON

= S’nh{lm(rfl)h-tanrh].
”» . — i
Similarly, sec (r = 1) h.secrh = ——— (tan rh — tan (r 1)k].

h
Thus, i lies belween h!fu P rf : {(tenrh ~tan(r - 1) h)}

and Lt -,-’5—3 I f{tan{r +1)h - tanzh ),
h—0 sinh 5 o3

: h R
e Lcsi h{lannh—tanﬁlmd f m{lan(n-r'l}h—lsnh},

Since nh x-:—!t,and Lith/sink) = 1 ash — 0, both the above limilt:
tendtotan 7. re, 1.

i Tence, I has the value 1.

6.4. Definition of definite integral based on the notion of
bourna .

Weh ve iwo methods of defining definite integrals : one based
on the notion of limits, t/:v utter based on the notion of bousnds.

The first method based cn the notion of limits is given in Note
2, Art. 6.2,

The second method based on the notion of bounds is given
below.

Let the interval (2, b ) be divided in any manner into a num-
ber ( say n) of sub-intervals by taking interme-diate points

=X € X, € X3 ... .€C Xq_1 € Xy = b,
Let M, and m, be the upper and lower bounds of f(x)inthe
r-th sub-interval ( x, .y , x, ) and let §, denote the length of this
sub-interval. The lower bound ( denoted by ] ) of the aggregate of
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the sums 5 = IM, 3, (obtained by considering all possible modes
of sub-division ) is called the Lipper Integral and is denoted by

b
J f(x)dx,
[ ]

and the upper bound ( denoted by j ) of the aggregate of the sums
s =Im,5,is called the Lower Integral and is denoted by

b
I f(x)dx.

When the lower and upper integrals are equal, ie, when j = ],
then f( x) is said to be integrable and the common value is said to
be the integral of f(x)in {a,¥)and is denoted by

b
If{x)dx.
a

It can be shown by what is known as Darboux’s theorem that
both the definitions are equivalent when f ( x ) is integrable.

Note. The integral defined above, when It exists, i3 called a Riemann
integral, as it was first obtained by the great mathematician Riemann.

6.5. Necessary and sufficient condition for integrability.
We give below, without proof, the necessary and sufficient con-
dition fov the integrability of a bounded function f(x).
If there be at least one pair of sums S, s of f(x) for a sub-
division of the interval (a, &) such that

S§-s«<eg,
where £ is any arbitrarily small positive number, then f(x)is in-
tegrable.

Note. It can be easily shown that the sum or difference of two or more
functions integrable in (a, b ) is also integrable In (b, 2 ).

6.6. Integrable functions.

(i) Functions continuous in a closed interval (a, b ) are in-
tegrable in that interval.
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(1i) Functions with only a finite number of finite disconti-
nuities in a closed interval (a, b ) are integrable in that interval.

(iii) Functione srmetr=- ool bounded in aninterval (a2, &)
are integrable in that interval.

6.7. Important Theorems.

1. If f(x) isintegrable in the closed interval (a, b ) and if f(x)
20 forall x in (a,b), then

b
I flx)dx = 0¢HE > 5},
a

Since f(x)20in(a,}), it follows that in the interval (x,.,, x,)
the lower bound m, 2 U and therefore

s =Em, 6, 2 0.

j, which is the upper bound of the set of numbers s, 2 0.,

b
Since f(x)isintegrable,; = ; fCx)dx
‘

b
and hence j f(x)dx 2 0.
a

Alternatively.

Since f(x)isintegrablein(a,b),
b
_[. f(x)dx = Lt Ef(G)5 .

Since f(x)> 0 in(a,b), -~ f(§ )2 0in(a,b).
Lt Ef(,)8,20in(a,b).

b
j flx)dx 2 0 in (a,b).
a



1@ INTEGRAL CALCULUS

Note. _lt can be shown similarly thatif f(x) € 0 in(a,b) then

b
j f(x)dx £ 0.
'l

L If f(x) and g (x)are integrablein (a,b)and f(x) 2 g(x)in
{a,b), then

L} b
J. f(x)dxajl gl(x) de (b > a).
a a

Consider the function y(x) = f(x) - g(x).

Then w(x)isintegrablein(a,b)and w(x)2 0 in (a,b).
b
by (D), I W(x)dx 20 in (a,b),
a

b
e ., J‘ [f(x) - g(x)dx 20 in (a,b),

.

b
IL If M and m are the upper and lower bounds of the integrable
function f(x)in(a, k), b > a,then

: b
f(x)dx 2j g(x)dx,
a

b
wkl - sjf{x}.ix::_ MCh ~ ),

Since m<f(r)< Min (a,b),
(fCx) =m)} 20in (a,b),

]
J' {f(x) ~mldc2 0.

b b
I f{x)d’x‘ng de, ie., 2m(b - a).
.
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Similarly, since M -f(x)2 0, we can show that

]
M(b = a) zI fx)dx.
a

Hence the result.

This is known as the First Mean Value Theorem of Integral Cal-
culus.

Cor. The above theorem can be written in the form

b
J f(x)dx = (b - a)p,when m S SM;
a

and if further f(x) is continuous in (&, b)then f{x) attains the valuep
for some value § of x suchthat a €§ <  and so

b
I f(x)dx = {b-a)fl(l).
a

IV. If f(x)and g (x) areintegrablein(a,b) andif g(x)
maintains the same sign throughout (a,b), then

b b
J-f{x)g(x}d:x:uj g(x)dx, where m s <M,
a a

m and M being the lower and upper bounds of f(x) in (a,b).

Let us assume, for the sake definiteness, that g ( x) is always
positivein(a,b).

Now, ms f(x)<s Min (a,b).
Since g (x) is positive,
mg(x) < f(x)g(x) s Mg(x),
flx)g(x) -mg(x) 20,

b
I. (f(x)g(x) - mg(x)dx 20 .

* See Authors’ Differential Calculus.




104 INTEGRAL CALCULUS

b b
¥y J f(x)g{x)d.tzmj g(x)dx
| a a
and f(x)g(x) - Mg(x) <0,

b

I [f(x)g(x)dx - Mg(x))dx < 0,

b b
ie., I [(r)g(x)dstJ‘ g(x)dx.
a a

b b b
m.[ g (x)dx sjj(x}g(x)dstI g(x)dx,
a a a

5

Cor. If further f(x) is continuous , then f({x) attains the value p for
some value { of x, whereaz st b, ie, f(§)=p.

b b
f{x)g{x)d'xzuj g(x)dx, where m <pu s M.
a

<. when f( x) is continuous

b b
J Hx)gtuldx-f{ﬁlj glx)dx.
s a
Note. This is the generalized form of the First Mean Value Theorem. The
theorem III can be obtained from this by putting g (x) = 1.

V. If f(1)is bounded and integrable in the closed inierval (a, b)
and if

x
F(x) =J- f(t)dt, where x isany pointin(a,b), then
a

(1) F(x)isacontinuous function of x in(a,b).

(2) If f(x)is continuous throughout (a , b ), then the derivative
of F (x) exists at every point of (a ,b)and = f(x).
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(3) If f(x)is continuous throughout (a ,b)and if ¢ (x)be a
function of x such that ¢"(x) = f(x)throughout (a,b), then

Flx) =I fCt)dt =4 (x) —4(a).

(1) Let us consider a point x + h in the neighbourhood of x
in(a,b).
x+h
Then, F(x + h) =J' f(t)a,

x+h

I
F[x+hJ—F(I)='J f(t}d!--[ flt)adt

1+ h

=I fit)dt = ph,
x
by Cor. of (1), where p lies between the upper and lower bounds
of f(t)intheinterval (x,x + k) Sincef(t)isintegrable,m and
M jare finite and so is J.

.I:Ha {F(x + h)- F(x)) = hl._jupk: 0.

It Fix +h)=F{x})
h =0

Thus, F (x)isacontinuous functionof x in(a,b).

“k
(2) Wchavef[x+h)-—?{x}=‘[ fC1)de

x

= hf(), wherex s <x + k,
since f (1) is continuous. [ See Cor. of (111} ]

F(x + h) -F(x)
h

When h—» 0,6 x and f(L) —f(x),since f(1)is continuous.

= f(L),for h+ 0.
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= i F(x + h) -F(x)
ik h{’fo k

exists, and = f(x),

LE, Fix)=Ff(x).
(3} Since f( x) is continuous throughout (a, b ), as proved
above,

F'{x) = f(x) ie, F(x) =20 (x),
Fr{x)-~-4§(x)=40.
Let V(x)=F(x)-6(x).

wi(x) = 0 everywherein(a,b).

Hence, w(x)= F(a) -6 (x) = a constant cin(a, x) (1)
[ See Differential Calculus, Art. 6.7, Ex. 1. |

a
When x = a,F(a) =j fCt)de = 0.
a

Since, from (1), F(a)- ¢ (a) = ¢, - -¢(a) =c.
Consequently, from (1), F(x) = ¢(x) + ¢ =6(x) -¢(a),

x
ie, J flr)dt = ¢(x) —d(a) .
In particular,

b
J. [(t) dt = ¢(b)-o¢(a).
a

Note. The relation given in (3) is known as the Fundamental theorem of
Integral Calculus. [ For an alternative proof, See Art. 6.12. )

6.8. Change of variable in an integral.

b
To change the variable in the integral J. flx)dx

by the substitution x = ¢ (t), it is necessary that
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(i) () possesses a derivative at every point of the in-
terval s t< P, where¢(a)=a and ¢(B)=b,and ¢’ (t)#0
for any valuet in (a, ).

(ii) fl®(t)and ¢’ (t)arebounded and integrable in («, B).
When the above conditions hold good, then and then only we have

b B
J f(x)dx =f floCed) o (t)dt.
1 a

llustration :

"
dx
Let ‘"_fl T+

Putting x = tan 8, we get [ =J. de =

Putting x = 1 /1, we get

1
= R A
,"_J-llrt'"

The reason for the discrepancy lies in the fact that 1/t does not pos-
sess a derivative at ¢ = 0, an interior point of (= 1, 1) ; in fact, the func-
tion itself is undefined whent = 0.

6.9. Primitives and Integrals.

If ¢’C(x) = f(x),then$ (x)istheprimitive of f(x). The in-
tegral of f ( x ), on the other hand, is

" L_l’ a Lf(L )8, , or symbolicaily

]

b
J- f(x)dx,ie., theanalytical substitute for an area
a

in case f(x) has a continuous graph.

The distinction between the two is that while integrals can be
calculated, primitives cannot be calculated.

The question as to whether a primitive exists and the question
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of the existence of an integral of f(x)in (a,b)are entirely inde
pendent questions. It is only in the case of continuous functions that
they are the same.

Indefinite integrals can properly be described as the Calcs
of primitives,

The connection between primitives and integrals is represe

by the Fundamental Theorem of Integral Calculus, viz.,

b
J' F'(x)dx = F(b) - F(a).

a
Hlustration :

i) f(x) =r.sin:}-;--lj;'t:o:}sxl1 Lx o2 Q)

Here, T‘i {-;-Izz sinhi—,} =f(x)for x#2 0 and = 0 forx = 0,

+1
so that primitive exists, but J- f(x)dx does not exist.
-1

1
fii)f(11=U(IifU).=l[x=0);hercin(0,1)j f(x)dx
exists and = 0, but no primitive exists, £

6.10. Illustrative Examples.

1
1 dx n
Ex. 1. Showtha:§< U?_—#__—_"("""" ’s)qz .
We have 4> 4- (x?-x%)in(0,1),

or, ﬁ)d(Q_xl +x7).

1 . 1 ]
E i Rt T e u

L

! G 2 1 dx
Bk L FETTET”

0 0
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Again, 4 -x* < 4- x? +x% in(0,1).

1 1
W4 -x7)” W4 -73+2%) "

' dx 5 A dx
nJ{l—x‘) aJ{-l-x‘&x")'

Foad P aaly. P __ d

L 2 i F3 v "R —-—at T &5}
0 Jo

Hence the result.
b b b

Ex. 2. Ifj f(r)dxcx:'su,shaw!hntlj f{z)d‘x|SJ- | fex)l dx
a a a

Wehavel f(8 )8 +f(&)8 + ...+ f(8a )8y
LA I &1 L fel ]l T winininnn L fegall 8,1,
ie. [EfGIS) sElfigallsl.
Ll )8!l sclreg)lgl.

b b
II f(x)drlsj fex)l dx.
a a
Otherwise ;
5 b
SinceI f(x) dx exists, J | fCx)] dx exists.
a a

Wehave =| f(x)] s f(x) sl f(x)].

b b ] :
-j !f{ledxsj ftxu;sf | 'fex)l dx
L}

b ]
ie., lj {(x}dxls.[ [ f(x)] dx .
a

a
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b
6.11. Geometrical Interpretation of-[ f(x)dx.
a

Let the function f (x ), Y
which we suppose to be finite
and continuous in the interval
(a,b)[b> 2], be represented
graphicallyand lety = f (x) be
the equation of the continuous
curve PQ, and let AC, BD i
be two ordinates correspond- X' O AA
ing to the points x=a,x=b, g Fig.1
meeting the curve at finite ¥
points.

Wehave OA =4, OB =b and » AB =b - a.
Let AB be divided into n equal parts each of length .

. nh =b-a, or,a +nh==»5.

Let the ordinates be crected thro-uzh the points whose absci-
ss2 area + h,a +2h, ....,a +(n -1)A to meet the curve
at finite points.

Let us complete the set of inner rectangles ACC*' A", . ..., and
also the set of outer rectangles.

Let S denote the area enclosed between the curve y =f(x),
two ordinates x = a,x = b, and the x-axis.

Let S, denote the sum of the inner rectangles.

$: < §. [f(x) monotone increasing |

Now, S, =hf(a) + kf(a + h) + ..... + hf(a + n-1h)
mn-1
= h Z f(a+rh).
r=20

Let 5, denote the sum of the outer rectangles. -85 >8.
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Now, S; = hf(e + h) + hf(a + 2h) +....+ hf(a + nh)

s -1
= h I f(&+ rh) -hf(a) + hf(b) [since a + mh = b ).

* w0
We have, 5§, < 5 < §,.

Now, let the number of sub-division increase indefinile!y, and
consequently the length of each of the sub-intervals diminishes in-
definiteiy.

Thus, as n — e, h — 0.

both Af(a) and hf(b) — 0 ,since f (a) and f (b)
are finite.

1

n - h
a5 - yLt, B I f(n+rh)=j f(x)dx,
s 0 a

-1 ]
and S, » Lt h I f(a+rh}=J f(x)dx.
=0 a

Since we have always S, < § < §,,

b
s =I f(x)dx.

b :
Thus, I f(x) dx geometrically represghts the area of the
a

!
space enclosed by the curve y = f(x ), thefordinates x= a,x = b,
and the x-axis,
' Mote. The arguments here postulate afconcave curve. Similar argu-
ments apply for a convex curve, or even form curve which alternately rises
and falls in the interval. /
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6.12. Fundamental Theorem of Integral Calculus.
If f(x)isintegrablein(a,b)[a<b],and if there exists a func-
tion ¢ (x) suchthat¢’' (x) = f(x)in(a,b), then

b
I F(x)dx = $(b) ~ ¢(a).
a
Divide the interval (a, b) into n parts by taking intermediate

points
@ =X < X < X5 €oruun €x¥n =5,
Then we have, by the Mean Value Theorem of Differential Cal-
culus,
OCx) —0(x-1) =(x, = x,_ 1)¥L,) [, 1€ Lptii ]

n n
L ¥(E)8 = £ [d(x) - d(x,,)]
r=1 r=1

{whereﬁ,=x,_xr_ll
(0 (2 )= (X )]+ (@ (xs)=0(x, )]+ .....
----- O (xn )0 (X 3 )] + 9 (X)) =P (xa )]
$(xa) -9(xg) =¢(b)-¢(a).
A BEEuE@’(Q,JS.-=¢(b)—¢(a),whereolsthegreatestof

the sub-intervals &, . Since f (x ) , amd hence ¢’ ( 1), is integrable
in (a,b), therefore

}

b b
LT 0(E)8 =J' 0’(x)dr=I flx)dx.
a 8

b
J‘ flx)dx =9(b) -4 (a)

Note 1. The above theorem establishes & connection between the inlegra-
tion as a particular kind of summation, and the integration as an operation inverse
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to differentiation. This also establishes the existence of the limit of the sum
referred to in Art. 6.2, Note 2,

Note 2. From the above theorem it is clear that the definite integral is ¢
function of its wpper and lower limits and not of the independent variable x .

Note 3. It should be noted that if the upper limit is the independent
variable, the integral is not a definite integral but simply another form of
the indefinite integral. Thus, suppose [f(x)dx = ¢ (x); then

x
I f(x)dx =¢(x) -9(a) =#(x) + aconslant -Iﬂx)ix.
a

6.13. Evaluation of the Definite Integral.

By the help of the above theorem, the value of a definite integral
can be obtained much more easily than by the tecious process of
summation. The success in the evaluation of a definite integral by
this method mhinly depends upon the success in the evaluation of
the corresponding indefinite integral, as will be seen from tne fol-
lowing illustrative examples. The application of the above theorem
in the evaluation of the definite integra! Is very simple.

b
Suppose we require to evaluate I f(x)dx.
[ ]

First evaluate the indefinite integral | f(x)dx by the usual methods,
and suppose the result is § ( x ).

Next substitute for x in¢ ( x ) first the upper limit and then the
lower limit, and subtract the last result from the first.
b
Thus, J' fCx)dx = §(b) - 9(a).

»
Now, & (b) - ¢ (a) is very often shortly written as [¢ (x)]
a

It should be carefully noted that in a definite integral the arbitrary
constant of integration does not appear.
For, if we write [f(x)dx = 9(x) + ¢ = w(x),say,

Inlegral Galculus {main) -10
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L]
thenI flx)de=w(b)-w(a)=[9(b)+c)-(6(a) + ¢
a

= 4(b) - 9(a).
Thus, while evaluating a definite integral, arbitrary consiant mpesd
not be added in the value of the corresy ~4ing indefinite integral.
6.14. IMNustrative Examples,

b
Ex. 1. wauanI "™ dx.
[}

LED ]
I,.¢,=.=£._
n+1

"™ b [x-.l = l blol mal . 1 O
n+1] na+1 i ol 2t

=/2
Ex.2. Ewhml‘rI cos?x dx.
1]

J'm’:rdx =—;-I 2cos? xdx =%J‘{l+ cos 2x ) dx

=3x + ;sin2x

x/2 1 x/2
J- ros‘xdx:[—-x+-i—sm2x]
0 0

a-j--

I
+ — i =
n ‘SDK

P

.

i
1 -x

1+x
1]

J:::-“'I(nx -1) @

: :zfmar-Iax=zrogct +x)-x

Ex. 3. Ewluﬂn‘[ dx.
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1
w1 =l 21001 +x}—:] = 2log2-1-2logl = 2log2-1.
Q

"o
Ex. 4. wamtltjn = i
dx 1 R
_[ahxl”i'm‘"?'

a
*.fzr[-l:zn"'-i] e—lun"!——]—hn"ﬂ
e & 0 A a

2. .2
] [Ty
Note. Two palnts should be noted when evaluating & definite integral
for which the indellnite intagral involves sn inverse trigonometrical func-
tien. '

=~
[

(i) The result must never be expressed in degrees ; for the ordinary
rules for the differentiation and integration of trigonometrical functions
hold only when the angles are measured in rsdians.

{iii) In substituting the limits in the inverse functions, care should be
faken to choose the right values of the expressions obtained. Unless other-
wise mentioned, usually the principal values are used.

6.15. Substitution in a Definite Integral.

While iniegrating an indefinite integral by the substitution of
a new varialv'e, it {s sometimes rather troublesome {o transform the
result back into the original variable. In all such cases, while inte-
grating the corresponding intergal between Hmits ( /.., corespond-
ing definite integral), we can avoid the tedious process of restoring
the original variable, by chenging the limits of the dsfinite iniegral to
correspond with the change in the variable,

Therefore in a definite integral the substitution should be ef-
fected in three places (i) in the integrand, (i) in the differential and
(iif) in the limits.
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The following illustrative examples show the procedure to be
employed.
6.16. Illustrative Examples.

L 1
Ex. 1. Evaluate Vf!i‘!':';%

Put sin-'x = 8. s 40 tw—!:‘*rjﬁr.

0 end 1 arethelimitsof x; the corresponding limitsof 6 where
8 = sin-1x are found as follows :

Whenx-ﬂ,ﬂ-aln‘0= 0.
When x = 1,0 =sin"'1 = {x.

.'=Jmue= [$9]

0 0

/2

1
e g1
g

Note . Of course this example can be worked out by first finding the
indefinite integral in terms of x and then substituting the limits.

[ ]
Ex. 2. Eu!uauf vai — x7 dx,
]

Put *x=as8in®. - dr =ascos2dd.
Also, when x =0, 8 = 0, and when » sa,Bn%],

] i=
.'.I-I alcoet 8d0 = a‘I coil 940,
° ]

1 1 1
Now, Im’lﬂ-ij(l tﬁu!ﬂ]d’ﬁni[. *3 i.n!‘]

l'l
.'.I-l‘1 0 +4sin28 X sina?,
1[ 1 ]' ins

[
Ex. 3. E-hilttj \Q: — GNP - x)dx.
a
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Put x = « cos?@ + Bsinté. ndx = 2(p-a)sin Gcos0d8;
also, x - = Psin?8— a(1 - coa?8) = (B - a)sin’@,
f-x=p(1-9in?0) -zcos?@ = (B - a)cos?B.
+ when x = a,(p - a@)sin?® = 0.
. gin@=0 sincepzra . 0=0
Similarly, when x = B, (B - a)cosi® = 0.
L cos@=@. . 0=ix.

x/2 .
=2(B~u.)3j sin?@ cos?0 de.
(]

Now, sin?0 cos?@ =}. 4sin?6cos?@ ={sin’20 =4(1 - cosdd).

Also, Iu - cos48)dd = 0 - Lsind0.
/2 x/2
. ;=z¢p_a)z-;r (1~ cos 48) 40 -i(ﬁ-u)’ [o—-l‘m«]
0 0
LB -a)t[fn -jsin2x] =gx (P - a)t.

dx
x - a)p -

P
Ex. 4. Eulhuuj o (B> a). []EE. 791
a

AsinEx. 3, putx = acos?8+ Psin’b.
1

1% 1
]=J 2‘0:2.3~R=:.
0

dx
DV(1-x1)

i
Ex. 5. smmmjﬂ n =1llog(2 + V3).

Put x = 8 nO Thcn dx = cos84de; alsowhenx = 0,8 = 0, and
when x=-'i 8=
n

1
i Ej"‘ cos 8 40

cos l!cosa m““
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x/6
- [ tlogtan (s + ”].,

= $[{logtan 3« ~ logtan ;%] =flog(2 + V3),

]

ix
El.‘..ﬂqﬁlht] sin ¢ Bcos’ 0 de ’é'
' 0

Lat sing = x. L cos8 4R = dx;

oiso when® = Q, x = Oandwhen 8 =%, x = 1.

Ly 1
J:I' s8in®8(1 - 5in?0) . cos B 49 =J 6 (1~ x?)dx
0 0

S U TN 3 E) SRR

6.17, Series represented by Definite Integrals.

Tha definition of a definite integral as the limit of a sum enables
us to evaluate easily the limits of the sums of certain series, when
the number of terms tends to infinity by identifying them with
some definite integrals. This is illustrated in the following ex-
ampies.

In identifying a serics with a definite integral, it should be
noted that the definite integral

-]
J flxydx = Lt hEf(a + h), whennk = b - a,
a

L

may bec expressed as

iii -b--”;l—"-i:f(a+rb"“) :J‘bﬂxux.

L] L

inthe special case when 2 = 0, b = 1, wehaveh = 1/n,
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Hence, in this case, we have
e o) <[ e,
1]
[ As if we writex for r/n anddx for 1/n.]

1
or, putttinghzlln,hé:okl:j(n‘:)=J- f{x)dx.
0

[ As if we write x for rk and dx for h.]
6.18. Illustrative Examples.

Ex.1. Evaluate Lt {——!--1- 2 ++-—l—} [H.5.'88]
n-re LR+l m+2 n+n

Dividing the numerator and denominator of each term of the above
scries by m, the given series becomes

L]
1 1 1
= Lt; nl* -. - saneaia + 2
R 142 1#= 1 %
n n n
n n
1 1 1 1
-t Loy oy [peeeneg ]
r-ll+-ﬂ- rm 1

'y 1

I 1+xdr=[log(l +r)] =log2.
Q ]
Ex. 2. Evaluate

o o—
n?

i (et PO EPB) (2T ).

Let A denote the given expression ; then

"2 rt
logA=$l—u-—,log(l *Tf)'
r=



1
--J' 2xlog (1 +x?)dx
0

2
=J- log x dz, [putting 1 + x? = z]
1

2

= [zlugz - z] =2log2 -1 = I::;gz1 .
1

Since log n!:f- A =H!;t.-logd =log% :

Lt AL, tholimu=_‘_
n—5 e e
Ex. 3. Prove that Lt l""'zh"‘3":.l....+n"'=
n — == nm+ M'I-I
Left side

]

Ber [ @Y ()]

n

r=1

x“l l
J‘ ¥ m+ 1 “m'bl'

EXAMPLES VI(A)

] b
(i) J e~%dx . (ii)I ekx gy
L a

1 1
{smj il (iV)I (ax + b)dx.
n 0

. Find by the method of summation the values of :-

Ex.viA)

n
L i I ( ) ! h L (rh) [where h =-]-]
n—= n i n
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-;-u b

) I sin xdx , (vi)j cos 0 46 .
0 a
1 ‘

5 % 1

(vii) j Vxdx, (vni)I - dx.

0 1
T S

{ix) J- sin nxdx. (x)I cosec?x dx.

e %s

Evaluate the following integrals ( Ex. 2 to Ex. 12 ) :-

1 2
2 {i)j 23 VT + 37 dx. uaf V2ax —xtdx.
0 /]
el d ' d
i X + & X
(iin) jl W .[H.5."85] (l?JIu W
1
. I i dx., [H.S. 80
0
1 1
4. (i)I sin-' xdx . (ii)f tan-' xdx .
[} 0
1 1
(iii.)I (cos-' x)2dx. (iv) J xlog(1 + 2x)dx,
0 0

1 1
{v)J x(tan-* x)*dx. (vi)I x? V(4 - x? )dx.
0 0
B =
L tz:f sin mx sin nxdx. [J.EE.'82)
]

. x
(ii)J cos mx cos nxdx . (m, n being integers )
0
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x/2
(ili)I oo enin Bade,
0

3 x
6. (I)I sindnuds. (ii)j cosvuilx.
0 [1]

( n being an integer )

1 «
. xdx . dx
m WLW- ('I’I (af +x71)A
. 0
a | —% (v ' i
anux-— xt) e 2\’((1—1){5-:)] '
'-;-u i
8. (i)J xsinxdx. (ii)I sec xdx .
0 0
ix
(iii}J- {sec® - tan 6 ) do.
0
4 3o
9. (i)J- tanxdx. (ii)I tan?x dx .
0 0

1 1
—l'x ?!
10. (i)J. cos 2x cos 3x dx .(ii)J. sin'xcos?xdx. [H.5.'82 )
0 (]

—‘t l"
(iii) I X cOs x cos 3x dx. (iv)j sec'9d9 .
0 0

x?sinxdx.[H.S. 81

Ve
11. (i}j x log x dx. (ii)I
1
ix

(iii)I singcosoV(atsin? ¢ + b? cos?¢)dd.
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3 ! dx
aof o w | IS eIl

o dx

(huj s s e (a>b>0).

(iv)J 2u°”+‘,(0<a¢1).

Show that ( Ex. 13 fo Ex. 28 (ii) ]:-

log 2
er 3
13 » Iu -f—;-—;;dr = |OS‘2— .

a
log x b
I. HE;—:!: =}log(d—)log(ab).

)
15. Ia sin -} 1%—d!=‘.2xztan‘acl—h:}g(].i-n')

[H.S.'85]
2
16. mj E STNZ = D)dx =4
{Iﬂj 1*3)\(‘:4_” =1log 3. [H.S.85)

17 f e o 1
* Lc‘r;—m?““'z:-

18 J * sinxdx

LEREET X gt
1 + coslx 4 V2

19. I cos’x. Y sinxdx =3

6
0
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dx L3
" (i)ju atcosix +bisinix  2ab e m_//

i
@i “*  sin?xcoslx _ 3
. (sin’x + cos®x)? 6 -
T
X
-l
zi. & 4+55inx $log 2.

3

(ll)‘[ 53 4sinx n-}t.an" 1.

3cosx ?

' d
%3, ﬁ)j §T_x___ =1ttan-' 1.

1
(“]J' 3+ 5cosx ok Lol

aa T3 dx i
- (m)lo 1 + 4cot?x

. A

=

K
dx 0
ok L ] + cosBcosx _ sin@ °

e

cos x dx
e 4
%, Jo (1 + sinx)(2 +sinx) s

1
-
‘ sin 2x =
% I sin‘x + cos‘x g
< dx x a! + b?
26 Jo (atcosix +bisinix)? 4 ab? -18:430}
[J.E.E."88)

( Multiply numerator and denominator by sec'x ; then put b tanx = alan 8]
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xsln xcos x
an L(c'con'x-rb* sin'x)"x h&'(-+b} Ak 8]

‘[;_1_}.,, 2
log x ~ (Tog x)1 B

n
», “’I 1H{z=—zx} &

{ii)J (1 +x)\'(l +2x x) T AL

29. Evaluate the following :-

(i) Lt [ 1 +—L+ ..... + 1
N —p o= n+m ® o+ 2Im n 4+ nm
| n n n 2
() u&‘- [u3+11+ WL QA Tavdwis * B+ u‘]'
[H.S.'86]

1 i 1
i) Lt [«.! TON(RI-29) *“*V{n:-(n-nﬂ]‘

1 1 1
v & Vi Han-in ot T;]'
[Write n =¥(2n? = n? ) in the last term. |

12 21 nl
‘V)ul-'.l-[n'+1’+ni+2’+ """ +'27']'

" 1 nt n? 1
(vh) ag-[n+(n+!}’+(n+2)‘+ """ *E]'

i) Lt =1 +-——————"'""“”’]
L] XL v .

win ' H(:‘::)
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0 1 A1) (4 2) e (0 D"

{].E.E."86)
nl V'
w o {(1+5) 0+ 5) (2]
D 2 n+r
Wbl A weee
i i
G L. X HEILTET
i) Lt %+nil*;—l+'—i+ ..... 4 §‘;]
' [H.S.’83,'85)
xiv) 1g 23 [1+‘+ s V. LLE. B85}
A YR T """" ¥y o §TT
) N+ 1)+ Wm+2)+ ...+ Y2n
(XVJ ll-i-[ 8\‘” ].
i nlgun
(x\n}n-[_..!_ [—';;

s Gl dx '}'ﬂ!‘..?_‘._?
— . Vx+a)+ ¥z~ , Cosi€ -

find the value of a .

31. If e be positive and the positive value of the square root
is taken, show that

'1 dz
_"_’J{]—?.ax-rn')zz“acl;

=£if¢)1,
]

32. If m and n are positive integers, show that

0.
" T if men
(IJI smm.rsmmdx:{'ifmr"‘
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% :
(ii) I sin mx cos nxdx = 0.
-1

K
if m# n
im}j cos mx cos nxdx = { & 5 o
-K =
ANSWERS
A FE R S B (i) (e® - el )/k. (i) § .

iviza + b. (v 1. (vi) sinb —sine. (vii)%. (viii) 2.
(ix) (1 — cosna)/n. (x) 1.

2. () G jma?. GiDF. (iV)E(x + 2).
3. 1L 4 @jx-1. ()jx-Jlog2. (il) x-2. (iv)3log3.

) ix(in-1) +1:-lug2 (vi) in -{-43.

sin(m -n)x sin{m + n)n

2 1 2(m - n) 2(m + n)

(i) 0. (iii) g_

6 i @Win LOR 1.6 g . Gidx

iv) ix. 8. 1. (i) log(V¥2 + 1). (iii) log 2.
(3log2. GiY1-3x. 10 (). (D% (i) f{n-3).

oot

2
W3 1L @3 ) -2, L
x : - 1 b
M E . Gblegi- ) gmr—pr e (1)

Wit . 2.0 l.« log (1+m). ()ix. Gidin. (iv)ix.
(V) $log2. (b}, (vidim. (vil)ix + 1. (ix)d/e.
(x) 2e M2 (x-4) {xi) % +_;. log 2. (xdi) 3x . (xii) log3.

(xiv) 2. (xv) } V2 - % (xvi) ¢! . 30. -,-';._-
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6.19. General Properties of Definite Integrals.

b b
u:f f(x) dx =j' f(z)dz.
a a
b
LetI fla)dy =9 (x); _I' Flx)dx =9 (b) -¢(a);
a
b
then, Jf(z)dz=0(z); I FUB il = (B) ~4Ca).
[}
b a
(if) fix)dx = - Fix)dx.
'[a Ib
b
Let _[ flxvax =0 oo [ flerds =0 (b) -4 00);
a

a
and — I fla)dx =- [9(a)- ¢(B)] =9(b) ~¢(a).
b
Thus, an interchange of the limits changes the sign of the integral.

b < »
(i) J' £(x) dx =J' §(x) dn +_[ fix)dx. La<e<h).
a a < v

]
Lﬂj flx)dx =¢(x); J f(x)dx =9(b) -9(a).
a

Rightside = (#(c)- 9(a)) + (90) - 9(e)) = 6(2) - §(a).
Generalization.

] & a
I fix)dx -I f{xld.reJl flx)dx + ....
a [ ]

+J. f(r)lx lI f(!Jﬁ'

when a < ¢, < <..... «::.-:lr.
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a a
{iv]j undxz_[ (s - x)dx.
L] [ ]

Proof. Put & -x =z, dx = -dz;

alsowhen x =0, z =a, andwhen x =a, z = 0.

= ° . .
. right side = -I f(z)dz =J f(z)dz =J' Hx)ds,
a 0 ]
x/2 x/2
Hluslmlion:-[ sin x dx =I sin --x)dx r cos x
0

na a
mj f{x)dx:nj £(x)dx, if f(x)=f(a + x)
1] [ ]

[C.P.'86 ]
Proof .

na la na

I f{x)d’x-J f(x)dx+I f(x)dx+ .. I:' ”.ftx

Put z + a = x, then dx = dz,

alsowhen * =a,z =0, and when x =22, z = a;

2a a ]
.'.If(x)dx=jf(:+a}d: =I f(a + x)dx
1 0 0

=J' flx)dx.
0

Similarly, it can be shown that

la 1a a
I f(x)dz =I f(r)dx-f fCx)dx;
22 [ ] []

Inlegral Calculus (main) -11
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and so on. Thus, each of the integrals on the right side can be

&
shown to be equal to I f(x)dx.Hence the result.
0

Hlustration :

[} x

sin'xdx =4 J sintx dy .

Sincesin®x = sin®(x + x) , j
(4]

2a a a
(vilj £(x) dx =_[ f{x]dx-rj £l2n« ).
] [ L]

2 . 2
Proof.J f(x)dx =J ftx)dx +I flx)dx.

: ? ‘ [ By Gii))
Put x = 2a -z in the 2nd integral ; thendx = — dz,
alsowhen x = 2,z = a; and whenx = 20,z =0,

. the second integral on the right side, viz.,

2a 0 [
J fCx)dx =-J' f(2a - 2)dz =J‘ fl2 - 3)dz.
a a 0
[ By (i) ]
3 j,‘(za—x)dx. ) [By(i)]
0

Hence the result.

2a a
wmj £(x)dx = zj F(x)dx, iff(2 -x) = f(x),
0 [}

2a
and j f(x)dx =0, iff(22 -x) =~ f(x),

These two results follow immediately from (vi).

[
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Ilustration :

Sincesin(x- x) = sin x,and cos (R -x) = - cosx,

x R/ x
I sinxd:=2j. slnxdx;andj cosxdy = 0,
0 0 0

f’ x/2
g g .._;.:_'_1,-' fislnz }ds «2 J' fisinx)dx,
0

0
K
and j fQcosxjdx =0, if f (cosx)isanodd functionof cos x.
0

+a
(viii}J l{xldx=j (£(x) + £(- x)) dx.
-2 0

+a 0 + &
Pmof.J f(x)dx :J' fux)dx +I fx)dx.
- -a 0

Now, putting x = -z,

Q 0 a
I f(x)a'x=—.[ f(—z)dz-.'[ f(-2)dz
- a 0

a
=j f(—:r)d:r.
0

Hence, the result follows,
Cor. If f(x)isan odd function of x , i, f(~- x) == f(x),
+a
I flx)dx = 0,
-2

and if f(x)isan even functionof x, i, f(-2) = f(x),

+a f ]
I f(x)dx = zI f(x)dx.
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Mustration

vx/2
J. sin®xdx =0, and

-%/2
+x/1 &/2

I sin¥xdx =2 I sin®xdx.
-x/2 9

6.20. Illustrative Examples.

By the help of the above properties of definite integrals we can
evaluate many definite integrals without evaluating the correspond
ing indefinite integrals, as shown in the following examples.

x/2
Ex. 1. Siw!lmrf log tan xdx = 0. [H.5 '85)
0
x/2 %
I= log hn(i—x)dx [ By (iv), Art. 6.8 )
0
r/2 x/2
-J’ Iogcotxdz=-j logtanxdx = - I.
[ 0
2 =0; & T 890,
g s Sowibet [ L T T
e Tsinz) + Weosr) ¥ =3+ [C.P8g)

,=I"“ \/T“E) 2
o N (] V(=5 9]

. O
Y(cosx)  V(mn =

&/2 ozt —
A = sin x . » dx 4 : : X
q(unx) + ¥ 1 _j 3 N o ¥ ) i g
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Y(sinx) + ‘\"(l:osz)

z-r/: Joes o e j:h‘x []I/l

| =in.
/2

log sin x dx -J logcos x dx = !lo;-l- i
o 2 2

®x/2

Ex. 3. Show that j
e 0
[C.H.'86 ]
. x/2 ~x/2 =
J' iogsinxdr:J Iugsln(-z--x)dx
o 1]
=/2
— I log cosxdx .
0
[By Art. 6.19,(iv) ]
x/2
log sinxdx + Jl log cos x dx
0

R/2

0

x/2
(logsm: + log cos x ) dx =J. Jog (sin x cos x ) dx
[

n

0 ]

n/2
log sin 2x dx - lug 2

n

. x/2
I El;h)dxz‘l‘ (logsin2x - log 2 ) dx

Put2x = z; o dx=gdz.
®/2 1 E 4
j log sin 2x dx = EJ. log sin z dz
o 0

/1
= % J‘ log sin x dx =f logsinxdx = I [ By(vii), Art. 6.19, ]
a 0

goom K PR | W M.
3 _{_-51582. ..f——zlogz- 2’032
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1 " ]
Ex. 4. Sﬁu!lutj i”‘“‘ﬁ,‘-’h = 3log2. [C.H'616CP.85]
Q

Put x = tan®; . dr = sec?80d0; also whenx = 0,0=0;
andwhen x = 1, 8 =}x.

1= ix
.'.l’-Jl log (1 + tan®)do -I Iog{'l-rlan(%x—o}}de,
9 ¢ [ By Art. 6.19, (i) ]

x 1-tand 2 .
Now, 1 + tan(‘—‘a) - *T+tne "1+ tand’

1 1
. Ol 2 3
A | =‘[ Ingl—;——— de =J‘. [log2 - log (1 + tan 8)} de

tan @
" 1=
=I log 2 do - I log(1 + tanB@)de =in.log2 - I.

o 0

w2 =3n.log2; :.!:Elogz_
+& 1‘8:!

Ex. 5. Show that m— i = 0,
5y et

e Ifrl » .'l!:ll
=J_‘i_+_.tfd: ‘!Ia l—:x—zﬂ-l‘:h 4’:5‘!y.

Putting x = - z in the first integral,
0 u:’ ] zez, a nx‘

A =_[ ﬁ'?z‘”—f mz“‘”'_f Tep =l
a 0 Q

Hence the result.

6.21. Logarithmic and Exponential Functions.

The fundamental concepts of Calculus furnish a more adequate
theory of logarithmic and exponential functions than the met-hods
adopted in elementary books. There an exponential function is first
introduced, and then logarithm is defined as the inverse function;
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but in the treatment of these functions by the principles of Calculus,
logarithm is first defined by means of a definite integral, and then
exponential function is introduced as the inverse of logari-thm.
From the stand-point of these new definitions, certain impor-
tant inequalities and limits can be obtained more easily and
satisfactorily.

A. Logarithmic Function.

The natural lpgarithm log x is defined as

x
logx=‘[%, wpe (1)
1

where x is any positive number, ie,x > 0.

Thus, log x denotes the area under thecurve y = 1/1¢ from
£t =1 tol =x,

From the definition it follows that log 1 = 0, and [ since 1/t
is continuous for ¢ > 0] from the fundamental theorem of Integral
Calculus it follows that log x is a continuous function and has a
derivative given by

d 1
-&;(lngx)=:—r. —

Since the derivative is always positive, log x increases steadi-
ly with x (ie.,log x is a monotone increasing function ).
Putting t = 1/ u in the integral for x, we get
x vifE )
Iugr:j%£=—j %:-logl. wen \3)
1 1

x

Putting t = yu [y = a fixed number > 0] in the integral for
log ( xy ), we get !

¥ 4t * du *du ' du
103 ( xy ’ = I T = I T; = : - —-H—
1 17y 1 1

= logx-log(1/y) =logx+logy. --- (4)
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" this way, other well-known properties of logarithms can be
sped.
nce log x is a continuous monotone function of x » having
lue 0 for x = 1, and tending to infinity as xincreases, there
oe some number greater than 1 such that for this value of x
velogx = 1, and this number is called e. Thus ¢ is defined
* equation

[ 4
loge:'l,rﬂe.,j ?:1. iwa D)
1

cponential Function.

© ¥y =logx, ‘hen we write x= e? ... (B)

n this way ihe exponential e ¥ is defined for all real values
In particulare® = 1, since log 1 = 0.As y isa continuous
ion of x,x is a continuous function ofy.

x=¢¥, sothaty = log x, and so

dy 1. dx_ e
pri i = dy—1/dx =x = ey,
i.e..zgter}=cl‘. e (7

More generally, Fd}-‘- (e ) = geey.
a2 > 0)isdefined as e*l°s+ , sp that loga* =xloga.
Thus, 10* = exlog10
The inverse function of a¥ is called the logarithm to the base a.
Thus, if x = a¥, y = log, x.
. Some Inequalities and Limits.

1) Toprove 2 <e < 3.

o)
lngz=J' Tl & FRISELL.
1
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2 2 €
I %1<J. dt, e, <1, i.e.,<‘[ %‘- R S J 3 1S
1 1 1

[l 7LB-1,

(byputlmgl =2 -umandt =2 + u)

1 ¢
*4.[ —--——fb-lj %,i.t.,:l, :'.c.,:-j %!-,
0 1

L3 »e, ie, e<

du
Z-l-u

(ii) To prove

2 .
i x(tog(]i-r}-:x{x:-[l).

I+x"
From definition, log (1 +x)=J T
1
Y oebe T x LT f (14 s) e 11k £ Y.
1+ 1+x 1+x
1 di
E+Xj dt (J Tﬂ.j de,
1 1 1
a i =
ie, —;—lcios(l +41) < x.
1
(iii) To prove x,—'fﬂ ;!ﬂg(l +x) =
From (ii), ¥ —E—“—-—L- -~ <1, andsincel /(1+x) and1 both
tendto 1 asx — 0. the rr.'qu:red limit = 1.
(iv) Torprove Lt gr=1 =
P x50 x Tee

Sirc e duvalive via T isa”loga, and that for x = Oislog &, it
follows, from the definition of the derivative for x = 0, that

a* - g° 3 FEE |
Ao R ot g Wi =3 = BGR,

Putting x for h, the required result follows.
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.
When a = £, weget Lt ittt =1.
P x

x L]
(v) Toprove n!_._l._ {Io-"-} - et

Since % fog (1+ xt) = l—’— . it follows that the derivative of log

+xt
(1 + xt)for t = 0 is x. Hence, from the definition of the derivative for
x = 0, weget

log(1 + xh) _
n’:fo h -

Putting h = 1/ {, we see that

;g_;log(l . {-) ie., ;.Lr_log(‘l " _E_)‘=,.

Since the exponential function is continuous, it follows

;I_.l-('[-r%){:c'.

If we suppose { — = through positive integral values only, the re-
quired result follows.

1 y"
Putting x = 1, we get “I,_:_ (1\+;) = e.

(oi) To prove "!:_E n('ﬁ-!):fugx
Since the derivativeof e¥ =¢¥ ,andthattor y = Ois 1, we have, from
the definition of the derivativefory = 0,
eN _ g0 ek -1
— ir L L]
h E{ 0 h o h—D h
Putting z / n for h where z is any arbitrar. number, and n ranges
over the sequence of positive integers, we get
et/n _ 1
Lt {n—-—-—--}=l,i.e..n1,! n{"(e*)-1)=1z.

n—s e z

Putting z =lcg x,sothat ¢* = x, the required result follows.

Lwii) Tuprav:ll_,j_'—ax—x = 0,whena > 0.

xl‘l

Ift >1 andp > 0, thent-' <tb 1,



DEFINITE INTEGRALS 139

*a * s xh 1 xB
o logx = < <) 18- g e, < — Lie, < forx > 1.
> Il‘ -[ g P

Suppose a> B.
B
.'.Ucl—qa—x -3 ‘.e.,clﬂ?l—_’forr>l,

iy~
But (1/x®°%) > 0,23 x» =, since a > B,

Hence the result.
Note. Replacing x by n, where nisa positive integer,

i (;: - 1—0"5;'-' =0, whena>0(n— e through positive integral values ).

a
(i) To prove ¥ Lt -z—r- = 0, for all values of n, however grea.
3.

From (vii), x~B logx -5 0, when x — o, forf > 0.

Putting @ = 1 /P in the left side and raising it to the power a, we get
x ' (logx)® — 0,as x - . Now putting r = e¥ +sothatlogx =y,
the required result follows

6.23. Two Important Definite Integrals.

A. If n be apositive integer,

ix i*
J sintx dx =J cos x dx [C.P.82]
0 0
n-1n-3 n-5 3 1n 2
'"Tn—!n-d' ..???,[C.P. 84|
- _nh-1n-3 n-5 _5'31
‘ " n n-2n-4° - S

according as n is even or odd.
Proof. [sinxdx =[sin" 1x_sin xdx

= sin"-1x.(—cosx) + (R - 1)[sin"-2xcos x dx
(integrating by parts )

* For other forms of these integrals see § 9.3,
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— sin"-'xcosx + (n - 1)[sin*-2x(1 -sin?x)dx

~ sin*lxcosx+(n-1)fsin*-2xdx-(n-1)[sin" dx.

. transposing - (n - 1 ) fsinmxdx to the left side and divid-
ing by n, we have

sin'-lxcosr+ (n —

Isin"xdz = — 1)J‘sirl"“n:f:t.(])

n n
1 1 1
=% 5% 3K
1 in®-1 i " 1
J Si,,,x,,“[_zm____*_ﬁiﬁ_i] JL.I.J i Aerets
fn "
(1] o 0
k!
o ROETS 2
e e N sin®-2xdzx.
' o
La
Hence, denoting [ sin"x dx by I,, we have
* o
n-—1
R e P viwsi:. KB
n

Changing n into n- 2, n - 4, etc. successively, we have,
from (2),

n -5
In—z - “;"_"'5 R =‘;’:'—"i la.s , €LC.
wo=1%=3 n=2>5 3.1
e n n-2 n-4 '?'.JID‘
n-1n-3 n-5 4 2
--!n= " Ho— D n—ﬂ"'._"-rﬁ—h'

according as n is even or odd.
ix
But I = ‘[ dr =4n
4]
_%I ‘-;t
and [ =J sin xdx = [~ cos .r] = 1.
0 "o
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Thus, we get the required value of I sin ®xdx.
0

o

1x

2

Exactly in the same way it can be shown that I cos " xdx

0
has precisely the same value as the above integral in either case, n
being even or odd.

Otherwise, it can be shown thus :

x 1 ix
J. cos” xdr= J. cos " (3w - x)dx =j sin ™ xdx.

0 (1 (]

Noie. The student can easily detect the law of formation of the factors
in the above formul®, noting that when the index is even, an additional fac-
tor }x is written at the end but when the index is odd, no factor involving
® is introduced. The formula (1) and (2) above are called Reduction For-
mula. [ See Chapter [X. ]

o

§ i .
B. I sin™x costxdx, m, n being positive integers.
0 [C.P."88]

Isin"xcus'xa’r J- cos *“lx (sinmxcosx)dx

. 1]
sinm+lx n -1 : ¥
= cosn-lg 20 + —— lcos"-2xsinxsinm+! vdx
m + 1 m+1

i " ; . sinm+ly
4 U l 1 D e———
integrating by parts and noting | sin™x cos x dx 3

sin®+*lyxcosm-1y pn-|

inm = 2 n-2
s + i s x (1- cosx) cos xdx

sin™*!xcos®-ly n -1 ,
sinm"xcos"-2 xdx
m+ 1 m+1

_-n-!
m+ 1

Isin-xcos"xdxA

* See Chapter IX, Art. 9.15.
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Hence, transposing and dividing by i’:—t—! » we have

; + 1
| sinmxcos"xdx
sinm+1ycpsn-1 "- . ,
g 7 n_”; sinmxcos™ 2xdx. . (1)
1 1
: I‘sin-"xcos"lx i
sin™xcos"xdx =
'S T S, -
0 0
1
w=§ Fe
e "I sin™xcos"-2xdx
n 1 "i*
=N‘I_-I-_ll sln"xcos"'ixn'x. sww (23

Again, writing Isin"xt_‘cs';;.'; :—!sin=- ix(cosnxsinx)dx

and integrating by parts and proceeding as above, we get

sinm-ixycosn+ly
m+n

Jsin"xcos"xdx =

m -~ 1
m+n

I sin™-2xcos"xdx

and hence taking it between the limits 0 and ", we get

2 m-1 H;".
I sin'xcos-xdz=~—+;lj sinm-2xcos*xdx. .. (3)
0

m
4]

1
5 1.9
Thus, denoting I sin™x cos"xdx by I, , we have from
(2) and (3) ¢

1'|-1l ;

m,a =

N g ce ()
m -1

"mea s

Im,n



DEFINITE INTEGRALS 143
Again, sinceI sin™x cos"xdx
=J sin'(—;x—x)cos'(-}t—x)dx

= I sin"xcos™xdx,

«es (5)

Im,n =]u,m .

By means of the formule (2) and (3), either index can be
reduced by 2, and by repetitions of this process we can, since m
and n are positive integers, make the original integral, viz., I, ,
depend upon onein which the indices are 1 or 0. The result, there-
fore, finally involves one or other of the following integrals :

vaf=

1.3 = x %
J. sinxco;xd:=%;J d,=.2.;;

0 0

i (8 - 3 ... (8)

1
2 )
I sinxd’x=1;I cosxdr = 1
0 0

Thus, finally we have

x —;t
! sin ™x cos ™ x dx =J cos My gin"x dx
0 ']

= 135...(m ~-1).135...(n - 1) x
- 246....(m + n) %
when both m and n are even integers ; and

_ 246....(m - 1)
“(n+1Nn+3)...(n+m "’
when one of the two indices, say m , is an odd integer.

By (iv) of Art 6.19,
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1=
In,» =ju sin® (im - x)cos™ ($x - x)dx
0

=
=Jl sin®"xcos™mxdx
0

=

=In4ln . v (1)
From (2) of Art. 6.10(B), we get
-1
Jll,l = x -,n,ll-l
A )
- Iu-2.s, by (1)

If » is an even integer we can deduce from the first result of
(2) by integration
n—-1 n -3
m+nm+n-2

_ (a =1 Xn =33, ..91 .
“*tm+n)dm+n-2)....m+2)" "°

is
135...{(n-1) I: sin®xdx .
0

lru,ll = -I..'...‘ L SIS

FTm+n)dm+n-2)...(m+2)
The result now follows from (A) of §6.23.

Note 1. The above definite integrals are of great use in the application
of Integral Calculus to practical problems ; e.g, In the determination of
centre of gravity, in the calculation of area, etc. ; and also many elementary
definite integrals on suitable substitution reduce to one or other of the sbove
forms, as shown in the following examples.

6.24. Illustrative Examples.

1
Ex. 1. Emi‘uﬂef xé (1 -x?)dx.
0
Put x = sin@; s dx = cos@ddand 1 -x? =cos? @;

also when x =0, 8 = 0, andwhenx =1, ':-"-l.
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The given integral then reduces to

i 1351 % 5n
J.o sin®Bcos?8d6 = 34687 - 3¢ °

1 3

Ex. 2. Ebaluatej x? (1- x)1dx.
0

Put x =&in?8; .. dx = 2sinBcosBdd

and when x =0,1, wehave 8 = 0, ;7 respectively.

1
( i 24 16
= 5 4 = — O —
I=12 Io sin®Bcos'odd = 2 555 75

k1
Ex. 3. Ewluauj cos"xdx.
0

Since Cos"x = -cos"(x - x) when n isodd,
and =cos"(x - x) when n isever,

by Art. 6.8 (vii), it follows that I =0 when n is odd,

=%
and I = 2J.1 cos"xdx, when n iseven
0

n-1n-3 n-5

- 31 x
=2 p oriawee ﬂ_‘...-z‘?-i.lﬂydrr.5,23fﬂil

EXAMPLES VI(B)
Show that :-

b b
%, v:i)j fla+b - x)dx .—.J' f(x)drx.
b-¢c b
(ii)I flx + ¢)dx ==J. f(x)dx.
[ R 4 a

b 1 nb
cimj' ﬂuz)dn;] fCx)dx.
[ ] na

Iﬁlegral Calculus (main) -12
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ix

. inx =
2. —— .1 A = .
s xdx-‘. [C.P."86]

1x
3 ' cosx - sinx
. 5 1+ sinxcosx

dz = &.
L

4, J (acos?x +bsintx)dxr =ix(a + b).[C.P."85)
0

il
5. j sin2x log tanxdx = 0.
[}

= =
6. ! xf(sinx)dx -%xj- f(sinx)dx.
] Q
=
A I x log sin xdx = {x? log 1. [C.P.75)
0
=
8. J xsinxcosixdx = % ‘
o
] x
9. -L xsin?xdx S

* sin4
10. I _1."_:.{:,[]'
sin x

+a

11. J xVat —xtdx=0.
-d

2x
12, J- sin' Jxcossixdr = 0.
0
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1

13. I logsin(}®0)de = log 1. [Put 1= = x] *
4
1
log x L3 1
14, IoJ(.l—_Emdx e log-i : [Put x = sin 0]
ix

1s. I'log(1+une)de-’-8‘logz. [C.P."76,°83 ]
(]

" 3
16. J'o xcosixdx = ﬁx' .

i= 5 1= 128
17. (i)‘[o coséx dx -5:. (ii) In sin*xdx = 38 -
{C.P. '82)
3% : 7
(iii) L sin ‘0 cos'@ 0 = EEI"s' .
ix
) i sintxcos®x dx = o
(iv ) 8 -
" 5n
(v)j (1 +cosx)’dx = T
i
=
{Vi)I sinxcos®xdx = 0. [H.5.°80]
0
= +x/2
(vii).[ c0s70d8 = 0. (viii)I sin?xdx = 0.
0 -xf2

1
18._(i)-[nx' (1-x)%dr = 3 .
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= : 3 2
3 =1 F - ——
(ll)qu (1 xIde-sa.

L 4
) | gy dx = oo
0

iv) x¢dx 5
. r‘-"m iz

I . B
19, I (X’ —zx - 2'}]2 _"‘3—2—*‘)' [p“fx=]‘.]ﬂ"s’
y x sin x mt
20. mju TEH0E gy T (CH.75,].E.E.'89]
LA :
. sin - _
(“}I R el g(¥2 + 1).

n{t1-2).[C.H. 19641

-

(i) I L T
0

secy - tanx

(w)I I Ko log(v2+ 1), [C.P.1977)

x
\’f‘

. T 1
mjn =21+ plog(V2 - 1.

Secx + Cusec X

(vi) j cot-' (1 -x + xthdr :%t:—]osz‘

=
. xdx _®?
iR ‘[o 2% sinix +b?cosix  2ab a8 S0
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xdx

149

1 + cos 2x + sin2x

n
—1-6‘1052.

]

1

¥ dx _ miet +b%)
b J {al cos?x +b?sinix)? 4adb* ;
" [].E.E.“88)

e 1
21. 1 Iy =j tan® B d6, show thatl, = s (g In-2

0

"

Hence find the value ofj tantx dx.

22. Show that, if m and

1
I an-1 (1 = x)™-Vdx
0

0

n are positive and m is an integer,

1
J xm-1(1 - x)e-ldx

o

ANSWERS



CHAPTER ViII

INFINITE (OR IMPROPER) INTEGRALS AND INTEGRATION
OF INFINITE SERIES

7.1. Infinite integrals.

In discussing definite integrals we have hitherto supposed that
the range of integration is finite and the integrand is continuous in
the range. If in an integral either the range is infinitc or the in-
tegrand has an infinite discontinuty in the range (i.e., the integrand
tends to infinity at some points of the range), the integral is usual-
ly called an Infinite Integral, and by some writers an Improper Integ
ral. Simple cases of infinite integrals occur in elementary problems;
for example, in the problem of finding the area between a plane
curve and its asymptote. We give below the definitions of infinite
integrals in different cases.

(A) Infinite range.

- E
(i) j f(x)dxis defined as t{..!" I f(x)dx,
a a

provided f( x) is integrable in (@, € ), and this limit exists,

b b
(ii) I f(x)dx is defined as Lt I flx)dx,
- o E

provided f(x) is integrable in ( €, b), and this limit cxists.

a -
(iii) If the infinite integrals J- flx)dx andJ. f(x)dx
- - a

+ o

both exist, we say thatj - f(x)dx exists, and

*

I ) f(x)dx-[_. f(x)dx +J'-f(x)dx_
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Note. In the abdve cases, when the limit tends to a finite number, the
integral i$ said to be convergent, when it tends to infinity with a fixed sion,
it i said to be divergent, and when it does not tend to any fixed limit, fi
or infinite, it is said to be oscillatory. When an integral is divergent or
cillatory, some writcrs say that the integral does not exist or the integral ha
meaning. | See Ex. 2, §7.2]

(B) Integrand infinitely discontinuous al a point.
(i) If f(x) is infinitely discontinuous only at the end point
ie.,if f(x) s eas x —» a, then

b b
I f(x)dxisdefinedas Lt J f(x)dv,e > 0,
a

2+cC
provided f(x) beintegrablein (a+¢, b ) and this limit exists.
(ii) If f (x) is infinitely discontinuous only at the end point |
ie,iff(x)—wmas x — b, then
b b-E
J f(x)dxisdefined as Lt J flx)dx,e >0,
a a

provided f(x)beintcgrablein (a,b-€)and this limit exists

(iii) If f(x)is infinitely discontinuous only at an internal point

(aceck)ie, iff(x)-semas x = ¢, then
b c-€ b
J flx)dx :cl_.’!a I f(:r)d:cd-g,l.._!’t| j ‘f(;_-
a a ctE

when € = 0 and € — 0 independently. _

Note. It Sometimes happens that no definite limit exists when € and
€' tend to zero independently, but that a limit exists when € =&’ . (See Ex. /7

Art.7.2. ] When € =€, the value of the limit on the right side, when it ex
ists, is called the principal value of the improper integral and is very often

b
denoted by PI f(x)dx.
a



152 INTEGRAL CALECULUS

(v) If a and b are both points of infinite discontinuity,

b € b
then J' fx)dx is defined asJ' f(x)dx +I f(x)dx when
a a C
these two integrals exist, as defined above, ¢ being a point between
a2 and b,

7.2. Illustrative Examples.

-

Ex. 1. Enalunrej e-* dx.
0

'3
I = Lt I :'*dx:cl.!” (1-¢-€) = 1.
(1]

Ex. 2. Evalualej cos tx dx .
o

E 5
Ji= : Lt J cos lx dx = . Ef ﬂllif ; but this limit does riot exist.
0

llfnce the integral does not exist.’

dx

1 + x1

Ex. 3. Ew}ml:j

T e T dx
e lax"‘ 1 4igt”

o dx 2 dx
— ey =l - -
J. 1 4+ x? :J;"-- Jl[ 1 + xt m-y—- (lan-'a - tan-1¢)

= tan"'a +In;
r

R = ‘ o = Lt (tan-'g’—tan-' q)
1 +x2 ¢S L 1+ S

=%n - tan-'g .

'_K!lhough this integral does not exist in the manner defined above, it is
cxpresscd in terms of Dirac’s delta function [8 ()] in modern mathematics ,
Detailed discussion is outside the scope of this book.
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I=(tan'a +3n) + (§R~-tan-'a) = =w.

1
dx
Ex. 4. Ebniuak-[o <5 -

Here %, tends to e as rtendsto + 0.
X

1 1
dx dx
L 75 = e Ho ,[ gl Yty =E

i dx
Ex. 5. Eu!unl:j T
x
-1

Here ?15 —» 2 as x — 0, an interior point of the interval (-1,1).

Udr 111'
Iwy <SE%E) S
-1 [1]

1 1
Now,J- %: Lt .‘_’:= Lt (1_1);
0 x E—=D0 s x €E—0 E

1
this limit does not exist. SOI —gi: does not exist .
0

0
Similarly,J '_?? does not exist.
-1

Note. In examples of this type usually a mistake is committed in this
way :

+1
Since -l—dx:—l, de:[-l] == 12,
x? x Xt x

-1 s
which is wrong.

In this connection, it should be carefully noted that the relation

b
I f(x)dx =F(b)-F(a)cannot be used without special examination
a
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unless F'(x) = f(x)for all values of x from a to b, both inclusive.

Here, since the relation I: (- -:-) = ;:l-, fails to have any meaning

when x = 0,and 0 is a value between - 1 and + 1, we cannot direct-
ly apply the Fundamental Theorem of Integral Calculus to evaluate this
definite integral,

Ex. 6. Sha;nlhsl‘[ e-**cos bx dx = _:L“ ,a>0.
al + b?

0

£ —ax ¢ _ : =
J- €~ cos bxdx = [e { ':?’f’b: bints) [Art.3.3]
0 0

- Fh_’ {e""€ (- acosbe +bsinbe)-(-a)}.

»e € \
J- e~% coshxdx = Lt J. &~ 8% cos bx dx
0 == Jy

- 1 et (. ]
= L [ s (e (-acoste + bsinbe)+ a) |
Now, Lt e *(-acosbe + sinbe) = 0.
€ e :
[ Since ¢-*¢ — 0 and cos be and sin be are bounded. ]

IQ e~ “*cosbrdx = W .

+ 1
Ex. 7. Ewa‘nam‘[ «-E:- ‘
1

The itegrand here is undefined for ¥ = 0,

+ 1 -E 1
la-u, [“2, y [ %
.lx E—=0 -y x £ —0 i x

-€ 1
Lt[log{—x)] +Lt[logx]
-1 e

Lt log e~ Liloge = Lt log %

I

"

as £ and ¢’ tend to zero independently.
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But this limit is not definite, since it depends upon the ratio & : ¢’,
which may be anything, € and e’ being both arbitrary positive numbers.

2 !ldx
But if we put & = £, we get J —;==I:_l'o log1 = 0.
-1

Thus, although the general value of the integral does not exist, its prin-
cipal value exists.

-e
Note. J- d—: ,» When the range of integration is such that x is neg-
-1

“dz

z
1

ative throughout, may be written, by putting z = - x, as

= [logz]! --[Io.g(-x)]-g , forlog x is imaginary here.
1 -1

x?
Ex. 8. E‘P‘ll‘ﬂl!‘[o mdx
Put x = tan@. .. dxr = sec?04d0;as xincreases from 0 toe, 0in-

creases from 0 lo%-x.

ix . . ix
I= w, sint0do=L1gx.
o sect@ o ‘

Note. Thus, sometimes an infinite integral can be transformed into an or-
dinary definite integal by a suitable substitution. But whenever a substitution
is used to evaluate an infinite integral, we must see that the transformation
is legitimate.

Ex. 9. Show :Iullj €e~* x" dx = n, n being a positive integer.
0

Let I, denote the given integral.

E—s

[ 4
In = Lt I e~ % xn dy
0
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PR R

[ integrating by parts ]

n

e
n Lt J e-*x"-1 dx, since Lt e €. g™ =0.
E = o= 0 £~ =

[ See Das & Mukherjees’ Differential Calculus,

Chapier un dieciCiuiinini€ LOIMS, sum Y. £ 1. |

nly_.1 =n(n - 1)I,-2 (as before)

[

n(n =1)n -2)ly_3, = etc.

n({n-1Xn-2) ... 2.1-[ e * dr
o

il

n!,sinceI e-*dx = 1. [See Ex.1above]
0

7.3. The integralj e-*"dx.
- 0

Since ¢-*’ (= ‘lfe':}is ositive and < s L famx > GY
P 1 +xt

X

it follows that-[ e-* dx increases monotonically with X,
0
X X
d ;
and e-+ldx < A58 , le, < tan' X,
§ " 1 % =

[Sce § 6.7.]
This being true for all positive values of X, however large,
and as tan-' X increases with X and — jmas X 5=, it follows

X

that J e-*dx monotonically increases with X, and is boun-
0

ded above.
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Thus, the infinite inlegralj- e-* dx is convergent.
0
Denote itby I.

Now, a being any positive number, replace x by ax.

Then, I .=J' ae-2"x" dx .
1]

le-+’ =j ae-¢'(1 + gy,
0

Since ae-+* (1 + r1) js a continuous function for all positive
values of x and a {which are independent), assuming the validity
of integration under an integral sign in this case

II 8"!dd =I [I gg“"“"’dﬂ} dx . s Y
0 0_ 0

E
Also for any particular value ofr.j ae-*"(1+x) dg

L} .

]

= [—-1 1 g-lzll*l’)] -;—1-—[1 _c‘sl{'l»:‘lI]
21 +x2 o4 2(1+x?)

—)mast -5 oo,

Hence from (1), I? = "l-—-l—dr
. 1 21 #xY
=J—-g-, or, I = iim,
ie., Ia e""dx = —;—\!_ﬂ-
0

* For an alternative proof see Chapter IX, Art. 8.21.
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7.4. The lnlegralj lh‘Tb-,-‘- dx.
0

I..atu=J. ﬂ;’i'lb—xdx,c)ﬂ.
0

Assuming the validity of differentiation under the integral
sign, we have

7Y =Jo e-% cos bxdx

=ﬁ ,a>0. [SeeEx.6Ar.7.2.]

Now, integrating with respect to b,

a? + b?
where C is the constant of integration.

- =¢J'_..__.db -ea'}tan-' -:—'+C- tan-! %'FC---U}

From the given integral, we see that when b = 0, u = C.

from (1), wededuce C = 0.

Iu wa-tan-'g. s ()

Assuming u a continuous function of a, we deduce from (2), '
when a -0,

“ sinbx x n
In -T-dx=2—.or e )
accordingas b > or < 0.

Cor. When b = 1 we have

~ sinx F
J‘u —= dx,.z._ ... (4)
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Note. There are other methods of obtaining the result. Students may
consult any text-book on Mathematical Analysis.

7.5. Integration of Infinite Series.

We have proved in Art. 1.4 that the integral of the sum of a
finite number of terms is equal to the sum of the integrals of these
terms. Now, the question arises whether this principle can be ex-
tended to the case when the number of terms is not finite. In other
words, is it always permissible to integrate an infinite series term
by term ? It is beyond the scope of an elementary treatise ljke this
- to investigate the conditions under which an infinite series can
properly be integrated term by term. We should merely state the
theorem that applies to most of the series that are ordinarily met
with in elementary mathematics. For a fuller discussion, students
may consult any text-book on Mathematical Analysis.

Theorem A power series can be integrated term by term throughout
any interval of convergence, but not necessarily extending to the end-
points of the interval.

Thus, if f(x) can be expanded in a convergent infinite power
series for all values of x in a certain continuous range, viz.,

flx) =ap + ayx + 2322 + ..., to e,
b b
then I flx)dx -:I (@ + ayx + @yx? + .,... Ydx
a a
3

- zJ' a;xt di,

a
x x
or.J‘ flx)dx -I (28 + &yx +a43x2 + ..... ldx
[ ] [ ]

= I.J- 4, x" dx,
[}

provided the intervals (&, b)and (a, x) lie within the interval of
convergence of the power series.
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Ex. Find by inlegration the series for tan~' x.

3
1 + x1

-, integrating both sides between the limits 0 and x,

x d x
I T;xx’ =I (1 —xt + x4 —-xF + ,..)dx.
G 0

tan'x=x-3x + {x% -tx7 v+, -1 <x <.

EXAMPLES VII

Evaluate, when possible, the following integrals :

1. m_[ ol WES (u)j “"
1 + x? xt + 4
0
Z, mI ﬂd” x (ii)j i,
2 N 0
+1 + =
3 m_[ ‘:—f . (u)j 2
1 -
n x
sin x dx ; dx
4 (UJ' cos 'x \“)J. 1 + cosx
i dx (i) 2. dx
3 m_[ x(1 + x) . 2-x
" — -
1 - d
6. (i) —— dx (ulj T
xdx 't xdx
% “’,[ mre . W #5

Vi
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2
dx
s (i)L (1 -x)° (“}I (x+1](:+1}

Show that : { Ex.9 to Ex.22)

9 dx | =
: 5 (x2+ a2 )(x? +b2)  2ab(a + b)

|a,b>0)

xdx,

1 [
5 J-o (x7+ a1 Xa* +67) - ar-p: 8 3-[a,6>0]

-

x1dx ®
H: ,[ (1'+4'N11+b=)'§(¢+b)~ [a,b>0)

12. (I)I e-* (cosx - sinx)dx = 0. (u}I = dx = 0

[ (ii) Divide the range (0, =) into two parts (0, 1) and (1, ). ]

+ -

dx
> J FURTI RS
: 1
14. Jx'lngrd::-m(ﬂ>—l}.

0

o b
15 I e sin bx dx =‘-:+—b1(4>0).

26 (l)j x=+2.tc058+1 ZJ- x'+2_xc099+1

n
“”I (x +4(1 +x ) At -1

where n is an integer greater than one.

lnlegral C‘ﬁlculus (main) -13
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i & xdx B TR
llil)L e R+ &
17, (nj sinax cosX gy wix, 0, oryn
0

accordingas @ >, <, or = ¢ (aand b being supposed
2ositive ). -

(ii)j“ (sin 2x + cos 2x)? -x(sln.r + cosx)’dr Sin
]

!
s

A o
18. I sntx .. . X
0 I

® sinsx 3
16. Io - dx -l-a K.

" sint*mx n n
20. j‘o =3 d:a-i-m,or--i-m

accordingas m>, or < 0.
T (sinx y x
21. J'u( 2XY ax =7 .

22, j:(%‘i)’ dx -%’5 !

23. Find by integration the power series for the following .

(i) log (1 +2); (ii) log (1 =x); (iii) sin-'x.
Show that :- (Ex.24 to Ex.26)

:  dx - 1 sin?x 1.3 sin‘x
24. () J.m}elhmxll +3°% +53479 +]
x3 1

) dx z 11 x )
0 e e T B R
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x
(iii).j =
= 0
bl-at b3 -g
+ .

| Y es b
i = dx=log 24 (b-a)+ 228l
{iv) I. ¥ dx los a + (b a)+ 291 3'3!

X3 x$

b 4
o m  a
el Al 5 A s )

1
- —:‘
(v}J Y1 -etsintg d9, where e? < 1,

=;—{1-(2 ey 24 5 ‘}

-

X
i dx

: m} . Wherek? < 1,
-3 {1+ (%—)’k’;(ﬁ—’)’.k- AR

(viI} [

r.ni""

1
(vii)j __t.'l_x____: '1'
Iuld-ar’ ]

wiid B
iii R TN T e 2323 T 2452

1
25. J'-
o

1
. log x s =
26, ) ._._.E_.. .=...‘_ 1 —_
(1"‘0]+xd’x 7" UMI.,-G.I

—
T
+

‘t -
dx = ¥ (- .o
o‘ D (2n + 1)

nt

1 .
(ii}I Pgll-x) o
o
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27. (i) Show thatif, a > 0,

1
walldx=-:—- 1 . TR 1 s
0

1+x a+1 a+2 a+3

Hence deduce the value of theseries 14 + -3+ .....
(ii) Showsthat, if @ > 0.0 0,
1

_.£::—dx=-]—— l -+ 1 - 1 -+
nl+x' B Rl g 2h R B

28. Show that

1
Bl 1 1
x?log (1+x)dx = 5= |55 +33 Y- * - 1) 2p
'[o Zp[l.l 34 (2}1—})2,]
[ Integrate by parts. |

ANSWERS

f. ()4x (i) doesnotexist. 2. @ Lilog3. (i) %
3. (i) principal valueis0. (i) principal valueis 0.
4. (i) does not exist. (ii) does not exist.
s. (i) log2. (i) doesnotexist. 6. (D%. (i) 3=
2 (i)l‘-. (i) 0. 8. (i) does not exist. (ii) log2.
23. (i) x=§x* #3E2= ¥ #oinn Lxt <

log 2 +3’-——-£-'-‘ 4-3-%1 ......... L |

Gi) - [x +3x? +3x? +..

3 5
(iii)x+-;-’—3-+l-'l‘ X ... 17 0 gl



CHAPTER VI
IRRATIONAL FUNCTIONS

8.1. In the previous chapters we have discussed simple cases
of integrals of irrational functions. We shall now consider here
some harder types of such integrals.

8.2. If the integrand contains only fractional powers of:,
i.e., if the integrand be of the form

3
_ Fixr),
wlilere F(z) isa rational function of z,
the substitutionis x = z»,

where n is the least common multiple of the denominators of the
fractional exponents of x. [ See Ex. 1of Examples VIII. )

. 83. If the integrand contains only fractional powers
of (a + bx), ie., if the integrand be of the form

1
Fl(a + bx)*),

where F(z)is a rational function of z,

the substitutionis a + bx = 2%,
where n is the least common multiple of the denominators of the
fractional exponents of (& + bx ) .| See Ex. 2 & 3 of Examples VIII. }

B.4. Let the integral be of the form
| x= (a + bx* )P dx,
where m,n, p are rational numbers.

(A) Ifp be a positive integer, expand (& + bx* )? by the
Binomial Theorem and integrate term by term.
[ See Ex. 4(i) of Examples VIII . )

(B) If p be a fraction, say, equal to r/s, wherer and s are in-
tegers and s is positive,
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m+ 1

Case I. If = an integer or zero,

the substitutionis a + bx* = z*.

AL : 1 # an integer or zero, we apply the following

Case II.

m+ 1 r

Cease II, If + o = an integer or zero,

the general substitution is a + bx® = z9x" . a1 )

if, however, the integer is positive or 2zero, .
alternative substitution is a + bx?® =2z3 .

If the integer is negative , {
the alternative substitution is ax-* + b = z*,
which is practically the same as (1) of Case 11, sometimes facilitates
the calculation. {See Ex. 10f Art. 8 .8.]

dx
V(cx?t +.d)

8.5. The integral of the form L Y

Here the substitution is <x? + d = x* 2%,

Sometimes trigomomelrical substitutions like
x = ktan 8, x = ksin0,x = ksec®, etc. facilitate
integration,

[ See Ex. 28 (ii) of Examples Il (A) and Ex.8(i) and Ex. 8(ii) of Ex-
amples VIII .|

8.6. The integral of the form

dx
(px? + qx + r)V(ax? + bx + <) 3
Here we shall consider two cases only.

Case I. 1f px? + gx + r breaks up into two linear factors of the
forms (mx + nm) and (m'zx + n'), then we resolve
(1/( mx +n )X m'x+n) into two partial fractions and the integral
then transforms into the sum (or difference) of two integrals of the
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type (B) of Art. 2.8. [ See Ex. 13 of Examples VIII . |

Case II. 1f px? + qx + r is a perfect square, say, (Ix +m)?, then
the substitutionislx +m = 1/z.

In some cases trigonometrical substitutions, as in Art. 8.5, are ef-
fective.

Ifqg = 0, b = 0 the integral reduces to the form given in the
Art. 8.5, i

In all these casas, the general substitution is
‘\/ ( ax? + bx + ¢ )
= ZX. .
PX'+ qx + 1
Briefly, we have considered integrals of the type

dx
PVQ ’
where P and Q are both linear functions of x and P linear, Q
quadratic [ See Art. 2.8(A)and 2.8(B). ) and P quadratic, Q quad-
ratic. [ See Art. 2.5 and 85.)

If P begquadratic and Q linear, put Q= 217,
Also we have considered integrals of the type

f(x) d

Fva 9
where f(z)isa polynomial, P, Q being linear or quadratic. [ See Ex.
11 to 15 of Examples VIII. ]

8.7. The integral of the form

fix)
JVCaxt + 2bx? & cx? + 2bx + a)
where f(x)is a rational function of x.

dx ,

The denominator can be written as

N (2o F) (e d) o)

ind hence the substitution is
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x +-l--z or I—l-z,
X x
accarding as f( x) is expressible in the form
(= 1)0(x+3) o (o )a(s-
If b = 0, the substitution
x'+;1-;-=z orx"--’-:*;=z

is sometimes useful. [ See Ex. 19 of Examples VIII. ]

8.8. Illustrative Examples.
Ex. 1. Jﬂh‘nhj ;’-W‘hrs .

Comparing It with the form of Art. 8.4, we find here

m-—s,nss,r--—'l,s-a.

Now, L. : : # an integer, but

-"—'-—:—1¢-'-"--1,(lnlnteg!r). m

by Art.8.4, Case Il weput 1 + x3 = z3x3

x3 (2% -1) = 1. .‘.x-ﬁ'j—!)m. . @
3)

z?
dx l—(—"—_—-l—)m“ .
. denominator = x%z = (T'_-?l_m J

1 j., = fat e gllent) |

Alternatively, since (1) is a negative integer, we can pul
) +1 =22,
L -Ir‘{r’ +1)-12 dx,

el Y €1 ) i
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Since - + 1 =22, s -xYdxe xldz.
] =-|z'ztdz= etc
Ex. 2. Inlegrate ' dx
s L4 (x7- 2x + 1) ¥(x? =0 + 3)
It is of the form Case 11 of Art. 8.6.

Vs dx 4
(x-1) V{(zx=1)* + 2]
& tti = ‘l
= W) . pu ﬂg! X = .
It is of the form of Art. 8.5.
2
I= ﬁﬁ% , putting z =¥21an 8,
=-;— Icos-ececmeda = —fcosec .
Ty Y(z? + 2)
S&ncetanO-q—z—z,comﬂs——-—-——z i d
PRETS) 1 Lie +2)_ _1¥(x? -2x +3)
S z 2 x -1 K
Ex. 3. Integrate the following :
. x? ¢+ 1 s x2-1 1
(i) J‘" i dx . (ii }I!—‘-Tidx. (iii ) jmd:.
1+ ;‘T ;
I =I T & ( dividing the numerator and denominator by x?)
xt =

1

L - dx :

J( )) =J'-!—,%5 [ on putting x—lxszl
,_._

! -1

5.5 tan-! > = tan-! (
=\ T2 ?i - x V2
(i1) It is similar to (i} .
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(1 )l . '
PECILYBRE.
— dx
b (++1)-2
= -i———-“ [ on puttin x+—1—-=l
b L] PRGNS x
A o :-#2:1l 2 + 1-xv2
w2 8:+?2 _27503:’+1+;2'
g <x=+1)-(z=-1)
ﬂmf._i xt 4 1
? 4+ 1 xt -1
i e TR E P

S T z*-l) ll x? 4+ 1-xv2
L (132 TR BT 22 B

[ by (i) and (ii) ]
1 - x? dx
L+ 2% Y1 427430 °

Ex. 4. In tegrale

-f=j 'I -x‘(l-z—l,-)dz

O 9 Y CETEORRL )

_J' ("'5)"
(e )G Dgg 2 0

dz 3 < 1
f‘?rﬁ—T; UpNting Wie' s %]

cosec 8 cot @
= J‘m 48 [ putting z = cosec 8 }

BIT At =) | 4 2 x
de =8 = cosec 'z = cosec '(__x—_ )--sm '(1_7}1

)
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EXAMPLES VIII

Integrate the following :

1 + Nx
: 1 j‘ﬂx’(l-’-x)x [Put x = 2 .]
dx :
25 ) IFD A ) UPk o s Tmcatiad
3 dx
S & P R TR R S KRS
4. @] Ve(1+ Wyx)rdx, (ii)J»'(Z«-\fodx‘
.-' x? 5 dx
5 (1}‘ m,dr {n}j (T s )A
PN +22) 1 dx
6. ('.}d 5 dr (11)JWI‘(1 T )
(iif) Ii%g—ﬂldx.
A (i)j’“’;,‘”dx. (}I \’x?i(l -2x)

. drx
% mj-(x‘ F i V(xt + 4) (“]I(xa = nﬂﬂ ~9)
[Put (i)x = 2tan ®; (i) = = 3secB]

x?! dx 7 dx
9. mj(:-—l)\'(r*-Z} . (”)I{I-Z)’”[:"S}'”

r V(1 +x + xt) P {x +¥ar + x1))"
10. {1)' o P dx . {u)I Wal + x0) d
11 f x? + 2x + 4
x (r+lH(3‘+1)
12 [ ..
' (4x? + 4:+1H(41'+4x+5)
13.

I(Z:'-r 9x + g)f(x’ + 3x + 2)
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14.
15.
16..
17.
18.
19.
20.
21,
22.

23,

INTEGRAL CALCULUS Ex. VI

x+ 3
(x4 5x + 7)V(x + 2)
(x2 +dx+4)dx

mJl {x‘+5x+7)\3(x+2) (i )J-(:r’ +5r+7)V(x+2)

o] == d i el
ljx' :t"+1llr (‘ij'+x’ £

xi
J.x'+x*+ldx'

1
jx‘ + xt +1dx.

- {1 - x1)dx
(1 + x2)V(x% +1) °

(1 + x?)dx
(1 - x2)v(1 =3x7 4 x*

fxt~ x-1)
Jx-ﬂz* a1

xt - x-2
II(I-! - x1 )’n dx'

1 + x-2
4(x*+x’—1}

x

24. lntegrat.e J Nt =33 3) "
by the substitution z= x + ¥(x? - x + 2)

and show that the value isvlilog

V(x? - x+2) +x -2
Wx? =1+ 2) + x + V2

dx

25. Integrate J‘n’“’ 5 s ﬂy the substitution

Z=x + V(x? + 2x - 1) and show that the value is
2tan-' [x + Y(x? + 2x - 1)).
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ANSWERS
1. 4tan-? (Nx) ¢ 3log (1 + Vx)l.
2. 2(x+ 23171 — 4(x + 2)V% + dlog(1 + (x+ 2)4 ).

3. 2tan-1 (2 + x4 (D) %x'" ‘,.;_2{ X\ 4 1_5?‘,1»;

(i) & (2+x) --§ (2 +vx)¥2,

5
3
8, (i)-‘rTx‘——:%- (if) - 1{2 f:’l)ﬂ-'%(z.,,:liin
g4 (m-1)mn
6. o -3 UL (11)1‘_““+::_)1 .

(iii}-; [l°8(-"-“ V(1 +2%) _\'(1:,1) ]

-x1)3 | x s %

7. (1;_2 (x,x il ('“'"'25“ ::’ri)n_.% (13’3‘,,;«:.
8. (I)-\%hn" (W_:t_“f_n) @ 5l an-s et 29)
VY(x +2)- V3

+ e o R
9. (i) (x+ 2)M2 2{-‘*2}“:*-{3103 (x + 2) +Y¥3
x -5
(i) 5 ‘J(x_z
) Y 2x + 1 5 1-x
10. () W(1+x 1-1")-53’“"' '(‘13 )"i"h : 33{14-:))'
(il}lT[:-r\"(l‘ + x3)w

11. ¥(x? + 1)+ sinh-'x -q;-slnh" —::—’;)

1 Y(4x? +4x + 5)

"_i 2x ¢+ 1
2 i 1 - 5 +3x
13.3!&: ’(2x+3}+mcosh' -m)

z + 1

2 -
14. B tan -} m
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A )__,08:“3 V(x + 2)

15. (i) - .,.,-;(
7 VIV(x + 2) x+ 349z 2)
x +1

(i) 2¥(x + 2) --‘;23- tan-! Bz +2)

2= x4 1

1 EOR L |
6.0 g nt It Gy log 22t L

1 af xV3 1 x1-x 41
"‘:z_\’:‘*."" T=xt) ¢ 708 Ty
im‘ x 3 10 x? =3+ 1
I—r’ s e

19. Tsm '( ) 20. sin ! ).21. N{at +:‘+1)

x i xt-1
22?(—1—:_—;3-—) . 23, sinh t(-—-—r—)



~+ MISCELLANEOUS EXAMPLES I
1. Integrate the foliowing functions with respect to x :-

x® +cos’x o sinx 3 LS
(1) ~——=.cosec?x. (ii) snlxoa) [ H.S.'84, 871

xt + 1
... cosBx —cosx .. . tana - tanx
() T 3coss5r V) ane =+ tanx
ki

(v) secd x cosecTx . . ~(vi) x? (log x)?
(vii) secxlog (secx + tanx). (viil) x3? cos x

{ix) secxtanx V(2 + tan?x). (x) xcos'x,

(xi) (logx)? . (xii) tan-' (Vx). (xii) log (1 + x?)
(xiv) x? sin-'x. (xv} 2% cosx, (xvi) e* x*

Integrate the following :-

= . )
2. ﬂ}j(,i'—':ll‘)‘dz. (ii) (1—:';;-\—; dx
3. [ RBLLE X g, ap [ HnUoEx) 4,
| dx ; P Y dx
= (". (ex + e-x)2° m). (1 +e* )1 +¢e7)
r
. () (a+ x)Va? +xdx. tii)I(n' +x1)Va +xdx,

dx dx
L (1 + x2)¥(] - x2) ‘m)Jl(I - x4 9(1 + x?)

P dx dx
G Kot yr e bl ‘"’J- s Wx + 4)
oo dx :
kel BTy “”J TN xt + 1)

dx . dx
9' m_[x(x’-fl) i m’jx'?(r'-&l)
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dx
' “"I x(x + 1) "

: dx
el M T O

11. () I x—.-(%j_—l'i—}

12. (I][mdx.

X tan -

13, (i)j W dx .

14. “)I 411- sm2x

1 + cos 2x

> ‘”Im -

Vrdx
16 "’I(x T 1Nz +3)"

{Ii)I sin (2 tan-!

& [ e

1)3(xt + 1)

xdx
7.0 f 5=

: ax
ot (')J- sinx + tanx

1.0 [ S8 e
(x - 1)x ~ 4)

20. ()

i) 3x1
e P T bl R (x-1Xx-2)(x-3)

& mI x4 18.:' + 81

dx

o m_[(l-rx)m-r{‘l +x)N

Evaluate the following :

L e U
zstmj 301 = x) 84
o

Misc . |

dx .

¢ 2 + sin 2x
(11)'[8 T + cos 2x Ha

gllllwlx
(”)I (1 T xt ) dx .

(“)I'\’(x + 1)

(i) dx
(asinx +bcosx)?

l—x)d

dx
1) (x2 + 1)

dx

% ﬁi)jx\f{x' +x-6)"

m)J’ lin xdx

3cosx + 2sinx
dx

“"I NS - dx 7 1)

-2x - 3

d

m)‘l‘(xl - Z.t + 5)2 °
'ii)J‘v’x +Y(x* + 2)dx.

’3
{ii)J‘ x? sin3xdx.
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-
24. (i)J xlog (1 +1x)dx. (iDJ log(1 + cosx)drx.
i

e dx
# "’L v ‘“’_f T 4

. = dx o = xdx
26‘(')_[1 x(1+3)° (“)Io(li—x)(ld—:')'
7o —& i [ o

' A 1-x+x2° o(1-!-:‘)1!(‘1—.!')'

V2
_xt=1 x! + 1
28, (l)j iR dx . (if) Il g dr .

Show that :-

' dx

29. _L (1 + 2)2 +x)

= (.288 (nearly) .

[]
L]

dx
sl T e

- 'E dx "
: 14((:—1)(3-:)]'3'
I.. 1
N e e (3 -3) e thust s
dx .
. 3+ 2sinx + cosx 4
= dx 1 a2
34. J‘n‘.‘l‘rb“_‘lallﬂ': '

inlearal Calculus (main) -14
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- d ;
35. I ]08(11-'}) 1—";'1;"! nlog2. |Pulx = tani.]
o

3, If G, C ,Cy,....., Cy denote the coefficients in the ex-
pansion of (1 + x)~-where nis a positive integer, show that

& C C, C. Z2mel _ 1
§ TR TTE® nei "W+l mel
ANSWERS

1. () (- cotx + tan-'x). (i) xcosa + sinalogsin(x ~a).
(i) 3sin3x - 3sin2x. (iv) sin2alogsin(x + @)~ x cos2a.
(v) ~3cot 5y, (vi) $x* {(logx)? -Jlegx + %),
(vii) § (log (sec x + tan x)}2. (vili) (x? ~6x)sinx+3(x? -2)cos.
(ix) jsecx V(1 +sec?x) + Llog(secx+ Vseciz + 1).
() Frsindx + £<cos3x + 2rsinx + Jeosx.
(xi) x(I* -3I* +6l - 6), when! =logx.
(xii) (x + 1)tan-" (Vx) -Vx.
(xiii) xlog(1 +x?) —2x + 2tan-"x. 5
(xiv) 3x¥ sin x4 31 -x¥) -3(1 - x7)3,
7+
Vi1 + (log2)7)
(avi) e” (2% = 4x? + 1257 - 24x + M),

1 + 221
4(1 +:7)17

(xv} cos {r - cot-! (log 23} .

(i) -

1
: -3 T
2. () an'x ¢ g .

3. (i)logf—(1*:—)108(1*l‘)‘(ii]-—;r“(coslogxi-Zlinlung
6 () =01 « e )V (i) - (1 427 )1,

5. (i) .'..{21:‘ +3ax +2a? )v(a? 4 x?) 4+ La’log(x+ V(a? +22)),

3
(ii) i%g(x + 2)?(15x% - 12ax + 431 ).
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. | y N2 &(1+:’)4142
¢ ) g tan! (r—“u -"r;)- “"75'“87"——!—*:1 T D) - 32

2¥(x? - 1) - xV3 | Xy
7. (i)TIOSW (i) g3 tan ‘(i'_i“_u +n)'

; 2+32 3 ; _Y(1ex?) x
8. (i)~ Tl sz) 2 tan-'x. {ii) g .. (i) hgm

oy 22t =1 : ) Y(x? - 1)

() e V(x? 4 1), 10. () sect'x ¢ =0

i . ST

Uty “Tae"

1

1. m“3“5” +2%0g 221 (i tog ((x + V(x? + 1)) ‘SL:_E_.I

12. (i) x(tnx - secx) ¢+ log(1l # sinx), (i)e* anx.

x - tan- ” { & x)ase-tz
13. (i) 0 431, - D (1 +@a3W(1 +x2) °

- CO8 X
a(asinx + beosx)’

14. (i) 3{seex + log(sccx +tanz)}. (ia)

1 +¥2sinx 1 + sinx

15. (i) lo 1— log
' _'_ g — Y2sinx 2 1 - sinx

(ii)?l:\r(l— x?)-cos 'x}.

16. (i) 242 tan? ‘Jt;— - 2tan ' Vr.

! i
+ = lan-'x.
2

x
() log
-] ¥ =

17. (1}2103(1— ) - «%Iog(r’ + 1)

2(x-1)

(1) 4 ; cos ! '\’"_'"'2“5: £
18. (i) jlog tan 3x - jtan? jx
(i) §{2x -~ 3log(3cosx + 2sinx)}.

-1
19. (i) ¢* —(m + 1)log(e* + 1). (ii) sinh-! (}l -
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20. (i) x + 2{log(x = 2) =log(x - 3)).
(ii) 9log(x-3) - Slogl{x~2) - log{«-1).

1 3 3:}
zl.ti]-s--‘[tan‘ xfm—-—!:‘_g i

1 o, 2+ 1 z+1
ﬂi)f;lan' 5= YT s

) 2 x? ¢ xV(2 +x?)-2
22. G) 2tan-' (1 ¢ )2 D 3 T 2]

23, DAn. (D2- L m?. 28 (D301 -2l0g}). (iD) xlogi.

25. () g®. Gidx/v¥2. 26. (Djleg2. (i) yx.

27. (i) %’Eﬁ. (i) 53}.:, . 28, (i)~ 1.GD) ?.'li cot-1 2.



CHAPTER IX
INTEGRATION BY SUCCESSIVE REDUCTION

AND BETA AND GAMMA FUNCTIONS

9.1. Reduction Formula.

It has been mentioned in Art. 1.6 that, in some cases of integra-
tion, we take recourse to the method of successive reduction of the
integrand which mostly depends on the repeated appliication of in-
tegration by parts. This is specially the case when the integrands
are complicated in nature and depend on certain parameter or
paramcters. These parameters may be positive, negative, negative
or fractional indices, as for example, x"e* tan"x, (x? +a?) n/2,
sin ™ x cos ~ x , etc. To obtain a complete integral of these
trigonometric or algebraic functions, we first of all define these in-
tegrals by the letters I, ], U, etc., introducing the parameter or
parameters as suffixes, and connect them with certain similar other
integral or integrals whose suffixes are lower than that of the
original integral. Then by repeatedly changing the value of the suf-
fixes, the original integral can be made to rest on much simpler in-
tegrals. This last integral can be easily evaluated and knowing the
value of this last integral, by the process of repeated substitution,
the value of the original integral can be found out. The formula in
which a certain integral involving some parameters is connected
with some integrals of lower order is called a Reduction Formula. In
most of the cases the reduction formula is obtained by the process
of integration by parts. Of course, in some cases the method of dif-
ferentiation (Sec §9.19 below) or other special devices arc adopted
(See § 9.20). In the next few pages methods of finding the reduction
formula of certain integrals are discussed

Case I. Integrals involving one parameter.

9.2. Obtain a reduction formula for I xn e dx.

Let I..=Ix'e"dx. cew KED
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Integrating by parts,

Ix" e% gy = g ‘:-—:J‘x'-'c"dx, s o 2Y
o LwiiEloA g e (D)
a a

Note 1. It may be observed that the integral on the right-hand side of
(2) is of the same form as the integral in (1) except for the power of x, which
Isn — 1, and which can be obtained from (1) replacing nbyn - 1 on both
sides. If n be a positive integrr, 7-n 22n¥ing cuccessively 2 abova, 1 weih
finally depend upon I, =/e%* dx = e /4, and is thus known.

Note 2. In evaluating (3) from (1) we could Integrate x" first, but i. that
case I, would have been connected with I, . 1, i.e, with an integral whose
suffix is greater than that of the original one, which is not usually desirable.
A little practice will enable the students to choose the right function.

9.3. Obtain reduction formula for
®/2
) I sinx dx;J' sinx dx.
]

x/2
(ii) Icos"tdx;"‘ cos*xdx.
0

(i) Asin Article 6.23A(1) of the book,
Iy = Isln "xdx

sin"-!' x . cosx .
n

Ijsin"" xdx.

sin "-! x cos x n -1
" l,. = - = + = I..,}_ con (1)

is the required reduction formula.

Also by (1), taking limits of integration from 0 to ix,
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ol
Ja = I sin*xdx = 2
L]
Similarly,

=l g alnm 1) .o @

(i) I, = jcna!xdx _cost-ixsinzx -1, @

" " (C.P.'86)

ik B =I co.-,¢,=":‘ Log (a2 e 1O
(]

Note. If the integrand be sinh®x or cosh™x asimilar process may be
adopted.

9.4. Obtain reduction formula for

x/4
(ilItm"xdx ; (ii) I tan®ox dx . " JC.P.'89]
( m, a positive integer ) .

Here, I, = Ilan' xdx = Itan"’ x.tan?xdx
= jtan‘“’ x.(seclx - 1)dx

='jtan'-1 x . seclxdx -Itan"":dx

- tan"-!lx
o ke
Thus ,
ta n-1
o= —E - hes b 0
Also, taking limits from 0 to {x,
s tan®-' x 1 x
I..I tan"x dx -[ == Ian' 1xdx by (1)

1
“_1_;__,, il D)
Note 1. If n be a positive integer,
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; -1 -3 -5
tan'xdx=tm.' x tan" x_'_lan" x
n -1 n-3 n-5

If n beodd, thelasttermis ( = 1)("~1% 2 an y gy

=(=-1) ("-1¥2|gp gec .

If n be even, the last termis ( — 1)("+2)/2[yan1 x gy

=(-1)"+2¥2(tanx - 1),

Note 2. If the integrands be cot™x, tanh " x , coth *
may be adopted.

9.5. Obtain a reduction formula for J sec"x dx .

x the same process

=Jlsec"xdx =J-sec"-3x.sec'.tdx.
Integrating by parts,
In =sec™-2x tanx- | (n-2)secn-3 X sec x.tan r . tan x dx

= sec" 2xtanx ~(n - Z)J-sec"z x(sec?x - 1)dx

= sec" " 2xtanx-(n-2) [Isec' x dx »J‘sec'"lxdx]

Transposing and simplifying,

-2 -
uc:' —xllanx +l"l‘-zI i - ior I

I, =

Note. If the integrands are cosec™ r, sech ™ x ~cosech™x then proceed-
ing as above we can gel the reduction formula Ior each of them.

9.6. Obtain a reduction formula for I e cos"x dx.
Let I, = Ie" cos*xdx.

Integrating by parts,
e cos"x
Iy =——m—

n .
- -Ie" cos"!x sinxdx
a a
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ar ' ax
- I3 [E-- cos*-1 x. sinx—-:-tj'c“
X [(n—‘l Ycos™-2x (- sin x) .sin x + cos "-1x.cos r} dx]

ar axr

i T ey cos™-1 x . sinx
a at?

- %Je" [ (n—l)cos"“x(cos‘.r—l)-rcns"x} dx

_ e~ cos" " 'x(acosx + nsinx)
= =3

- [nJc" cos"xdx- (n-1 )Ie" cos"'dex] .

Transposing,
1 ax n-1 1 =
(I g .1'_:),":‘ cos x{ac:uszurnsmx} +n(nz 1)1‘_2'
a a a
_e*™ cos""!'x(acosx + nsinx) l‘l(l'|-1)'I
il n? + a? TR w AR

9.7. Obtain a reduction formula forJ (x* +a?)n dx,

Let I, = J- (x? +a?)" dx,
Integrating by parts ( taking 1 as the second factor),

L= xlxt +a*}'—jn(x= + at)=-1 2r, xdx

= x(x!+a? )'-Zrljl (x? +a® )n-1(x? 4+a? -uI‘ ) dx
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=x(x* + a? )" - 25-[(11 + al)" dx

K Zmlljtx' + at)n-1 dx,
Transposing,
(1 + 2n) I, = x(x? +at )" + natl, .

Y R ow x(x? + at)" 2ma®
L TR Zn+1 "

Note. It may be noted that here n need not be an integer.
Put n= l and compare with §3.5 (O).

9.8. Ob!amareductmnjormulaforj (ax? + bx + c¢)* dx
Let I. = J (ax? + bx + ¢)" dx.
If a be positive,
L =a® J- (z?% k* )" dx, where z =x + —;;,_

4ac ~ b?
and k? =-_T;’_—; sew ()

and if a be negative, say, = - a,

L (@ )'I(H _z1)ndx,

4a’c + b?
z=x-2-;;,andk'=——-i—;-,—-. s (D)
But (1) and (2) are similar to that of § 9.7 above, and can be
evaluated by the same process.

where

; s dx
\ 9.9. Obtain a reduction formula forj GreaiTe (n=1]

dx _ dx
Let I. sj(-x—'—:-‘—:F i then la-1 -Jl"'(x__: q.__a!]ll-l
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Integrating by parts,

x J‘-{n-l}.!x.x

={x! + at)n-1~ (x! +a2 )" dx

,l‘l

+2(,,_1;I.£:.2.!.___.£d;

R .
s (x? +at )n-1 (x? + @ )"

+2(n=-1)1l4.y - 2(n-1)a?l,

LI -
T (x? +at)r-1

Transposing,

X

2(n - 1)atl, = Tﬁ,—)';-_',d- (2n = 31,1,
ie, I =; Y
€l =3 n -1)at(x? +at)r-1 2(m=-1)a? ™'’
. : dx
9.10. Obtain a reduction formula for | T 77"
J‘(ax‘ +bhx+c) i
If a be positive,
I 1 dz
N = ﬂlI(zl tk! }ﬁ !
b dac ~ b?
where z=1+2¢,k’=T, sin k4
and if a be negative, say, = -a’,
f et
Bt (k=)
b da’c + b?
where x-x—g,andk':T— sss ()

Both (2) and (3) can be integrated by the same process as in
§ 9.9 above.
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Note. In Article 5.1, Case IV of the book, we have remarked that when
the integrand is a rational fraction in which the denominator contains fac-
tors real, quadratic but some repeated, in general a reduction formula isreq-
uired. Thus, tointegrate such functions, separate repeated and non-repeated
quadratic factors and for repeated quadratic factors, use the result of the
above Article,

x » dx
X2+ bx +¢c)’

9.11. Obtain a reduction formula farI Wa

where n is any positive integer.

Let I, = il
= JJ(axt + bx + ¢) °
Noting that x* = -25%:1_—?1"1 .

MEN g © 0 o SRR | xn
b =2 ) Waxt +bx+c)” - 2aju(nx=+bx+c)dx

N (2ax + b)
OW. | Jax? +bx + ¢)

xn-1 dx

]

2\'01‘+bx+c.x'-‘—J2[n—l}x"'3 Vax? + bx + cdx

n-12 1
= 2x"-"Nax? + bx+c-2(n-1) 2 . (ax? +bx+c)
v(axt + bx+c)

= 2xn-t Vax? e bx+c-2(n-1)[aly +bix.2 + cla-2 ],
n-1 =

S '\fﬂx‘+bx+c—"——} [a!.+bl..|+cl..;]
a a

S

Iu'l

2
2a

vaxt + bx + ¢c- (n - 1)1,

n-1

(2n -3k, _(n-1Dc,

2a a -
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Transposing and simplifying,

x?! —m—e—— . (2n -1)b T (n-=-1)c
Vvax® + bx+c¢ = e Loy = = | -

Case II. Reduction formula involving two parameters.

9,12, Obtain a reduction formula for Ix“‘ ( log x )~ dx
(n, apositive integer ).

Here, since two parameters m, n are involved, we shall define
the integral by the symbol I .«

=Ix" (log x )~ dx .

Integrating by parts,

[ ...x...:.'._l(I ll N(ID x)-—l_!. xn‘ldx
7S Rle. Al 8 x

m+ 1

mal - n - . el
“me1 L o8%) m+1,|l"t Hogrjr=tida
mel
me 1 (08X = o T,
el = n
fity Lo ® s lﬂogx} “ == ) S

Note 1. Here we have connected [y o With In,» -1 and by succes-
sive change the power of log x can be reduced to zero, i.e., after n opera-
tions we shall get a term I, o, ie,[/x™ dx, which is easily integrable.
Thus, by step by step substitution, s« can be evaluated. [t may be noted
that when two paramcters are involved this is the usual practice.

Note 2. Students must be cautious in defining these integrals. Here, as
for illustration, [m, s 2 I, = -

9.13. Obtain reduction formula for

i (a + bx)™ , dx
o J‘——‘_—dx, u“jx"ltd-bl)'
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190
(1) Let In,» = “:———fx—}-:dx. [n=1])
Integrating by parts,

I ___(a+ bx)™ mb (8+ bx)n-t o
= n—-1)x*1t" n-1 x®- 1 :

: (a + bx)m mb
R e TS LR n-'.ll"‘""'“ e D)

’ dx
@ Let 1nn = [ oy

Integrating by parts,

I _ 1 ub dx
moaS T o1)am- 1 (a+ bx )" m-1) x"-1 (a +bx)**?

1
=T m-1)xm1(a+ bx)"

n (g + bx) —a
T 1_[1"(& + bx)n+?

1
=T {m-1)xm-1(a + bx)"

dx o 68T

n_, , _an
el m-1

Ilhll¢l.

m-1
1 m+ n-1

n ﬂ"l =
"m< 1™ Tim <~ 1)x=-1 (a4 bx) T m- 1

I .

Changing n to n -1 on both sides,

- 1 m+n-2
Im.»= ain-1)x™1{(a+bx)r-!? (n_llllm.nﬂ-u)

Note. Formula (2) or (3) can be taken as the reduction formula for {if).
(3) is more rapidly converging. The other ways in which these integrals can
be expressed are left to the students. | See also §2.2, Ex. 9 B



INTEGRATION BY SUCCESSIVE REDUCTION 191
9.14. Obtain reduction formulz for
' 1
(llI:"(l-:)"d!: (il)j x™ (1 -x)rdx.
L]

() Let Im.n =Jx'(1 ~EY® %

- sl (1-x)"+ 2 xmel (1-2x)m-1tdx
T m+ 1 ’
-l 5 -
% = (1) e Ir"(b-ﬂ"' (1-(1-x))dx
m+ 1 m+1
xm+1(]1 - x)* n
Transposing and simplifying.
I _ KmEl (= x)" n I
i m+n +1 PRI (i

1
(i) If Ju, u sj x7(1 -x)* dx, by above, this

]
1
x.!l(]_x}l "
==[ m+ a4+ 1 ]+m+n+1‘f"""'
Jm,n = "‘—'!———f-,--i-

Mmoo+ n o+ 1

Note. In Integral Calculus [m , « i5s usually denoted as Pu , », the first
Eulerian integral. It is also referred to as the Beta-function.

[ Sce § 9.21 below. )
It is interesting to note that Ju » = [a. m,
I‘"‘l nl.l = pg'- ﬂhhﬂugh f." * "’.-'

9.15. Obtain reduction formula for

) Inm;a =Iain":col'xd:;
T
D) Jau.» sJ' sin™x cos "x dx

’ ( m, n being positive integers .
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in Arucic v.ed, Luse L vl o ; i Ll
and obtained
I _sin-*'xcosﬂ'lx+ n-1 I
Wl m+n IR e
sinm-1xcos™*1x m - 1 ’ .
or = - K In-2,a inasimilar

m+n m+n
way, and when mand n are positive integers.

n- 1 m- 1
b = Ty Imen2 " gy It

Using §6.19 (iv), we also sec that Jum x = [a . m-

sin™x

g dx. [n = 1]

9.16. Obtain a reduction formula forI
Let I, . = [sln"zcos"xd:. eeo A1)
Consider I, 4 =Jsin Pxcostxdx

- sin?+*1xcos?-!x g -1 r

P+ p g Tt
[ by §9.15 above |

Changing q to g4 + 2,

r . sin”*'xcos"*'x . g+ 1
pig»d p+q+ 2 -p+q+2"'

Transposing, -

sin?*lxcos"*lx +q +
f'," = - '+1 —— Pq:.’zrr'o! (2)
g+ 1=0])
Now replace p by mand g by -n in(2) and use the defini
tien (1).

Then, (2) becomes

1 % 1 -in‘*':-m-n-i-l
=% " n-1cos*1x n-1

l-,l-—ll
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. i dx
9.17. Obtain a reduction fornula for Isinm T (nz1]

dx
Lot In,» _J- sin™x cos"x

Consider, as before,

[ -=Isin'xcos"xdx
__sinfrlxcosrlx p +g + 2
N q+1 q9+1

[ as in §9.16 (2) above )

l',,..} E

Replacing p by —-mand 4 by - n and using the def. of I »,

I | 1 m+n—2!
™ T n - 1sinm lxcoshoix n-1 L

9.18. Obtain a reduction formula for
By 2 Jcos mx cos nx dx,

connecting with (i) I .1 a1, (ii) In 2.0 (m=t n}

(i) Let

la,x = Jcos"xcus nxdx

cos™x . .sinnx m . )
AR cosm-1x, (- sinx)sinnxdx
(1)
Sincesinnxsinx =cos{(n - 1)x- cosnxcosx,
cOs™Xx sin nx m
o = P S [ M 1x.{cos(n- 1)x

- cosnxcos x ) dx

cos™xsinnx m
=__FT__“‘+_H 'H—l,n-l "Im.- '

Inlegral Calculus (main) -15
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Simplifying,

I _ €os™x sin nx m_,
™" "m+n s

(ii) From (1),

cos™ x sin nx m 2 N
S e e I (ce:w-txsinx).sinnxdrx.

Again integrating by parts,

’n,n

i =cos"xsinnx+m[ cos™" ! x sin x cos nx
R i sl LECL SR
n n n

+ %I {(m-1)cos™-2x(~-sinx)sinzx

+ cos™-1x.cosx)cos nxdx]
_ cos™xsinnx m(cos™-xcosnxsinx)
- n - ni

+ "—H:Il(m-l)cos“'?x(cos*x -1)

+ cos™x) cos nxdx

cos™-'x(nsinmxcosx - mcos nx sinx)
=
nt

+ n—":J.[(m—l + 1) cos™x cos nx

~(m-1)cos™-2xcos nx}dx
cos™-1x(nmsinnxcosx — mcos nxsinx)
=
ni

m -
tai[ M- m -0 ]
Transposing and dividing,

N sin NX cOS X — m cos nx sin x
cosm-1x
nt - m1l
mim- 1) \

Im,n =
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There arﬁ three other integrals of a similar type.
() J cos™xsinnxdx, (ii) I sin™ x cos nx dx
and (iii) I sin™ x sin nx dx,

which can be treatec in a similar manner, and connected by a reduc-
tion formula cithes with I, .y »-1 or with In.2,s In cach case.

For instance,
(m + n)J'cos"'xsin nxdx = - cos™xcosnx +m Im. 1,a-1
(nt - m’)jsin"'x:nsnzd:

= (nmsinnxsinx + mcosmxcos x)sinm-1x
-m({m=1){n.1,0; ctc.
Case 1II. Special devices.

dx
(a + bcosx)» *

9.19. Obtain a reduction formula for
dx

ke = (a + bcosx)"
4 sin x

Consider P = (T—m (1)
d_.P
dx

_ Cosx(@a+bcoex)" - (n-1)@+bcosx)"-2(=bsin x).sin x
((a + becosx)n-1)2

cosx(a+ beosx) + (n~1) b(1~- cos?x)
(a + becos x )™

_(m=-1)b + acosx- (n - 2)bcosix
= (a + bcosx )"

A+ B(a +bcosx) + C(a + becosx)?

s (a + bcosx)* (say ). R )
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Then comparing the coefficients,
A+B.a+Cat=(n-1)b,B . b+2Cab=u,Cha= _(y -2
Solving
at o
A-——(u—-l)-—-——s——— B =(2n );.(‘:—-—5—. 2 d3)

. substituting these values of A, B, Cin (25, we got

dP_ (s — 1T¥ar —p1) 1
dx =~ = b (a + beosx)r
L (203 1 n-2 1
b W +bcosx)n ! v (a+bcecosx)n ?

[ntegrating both sides with respect to x, and using the defini-

tion of 1, ,

Cmis 10 g3 b)) (2n-3)a n- 2
E 5 =t & S s S *"_""T"'_ i‘u . o= b fn-.’
V. i e b —— $in X
" T "(n-1)at-bti{a + beosx)" !
{2n-3)a (n-21) I
Tla=1at b Y ta-1tar —ba ) VA
Alternative method.
Let P = : “_”_‘ — and V = a + beosax,
(a +bcosxe)n-!
V—-a
COSI:-T r
::!_I"__d_ :-in.t)_::usx (n 1)5“‘(_’1_"ﬂ”
dx T\ vai) TR T v
V - a (H-I)b
TR * [3
{m —1)a? -b2) a(2n-3) (n-12)

o bV pV= 1~ hin 2
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Integrating both sides w. r £ v and using the definition

4
Iy - J -:r-,—: , the result follows

Note, When 1 15 a positive infeger. by a repeated apphication of the
above reduction formula, l, will ultimatoly dcpc'nd on l, , which is casily
integrrable (See b d 2 ).

9.20. Obtan reduchion [vimule fru'J xm{a +bxr)rdx.

In this integral, usually denoted as bimomial differentials, three
paramcters are involved and this inh_-y,ral, wrnitien as

Bl B J 7 (a« by )7 dx, can be connected with any onc

of the integra!s below -

W) bow o ¢ =fam 2 fa « bx® Y Lo
fAF B fam (g b bam e dx
G 3 a o - Fa® ta wiba® Jo Vida
(V) In oo qpon =da% ® G+ han Pl g
)k A s =] B B b b 3P dy
U s 3 jamie L ¢ ha® yrda
() Tmow g =§28™ (5« Fa7 07 dx Intograting by pants
ame |l
b g e Ses g 3 BEM
» m .+ 3
] -
—— g =« Bam )r iy i
mo+ |
ik . il
e TSR (FEL ' s g \
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Again, as above,

xm+l

llm.ll,.p' = {(a + bx= )P

m+ 1

nbp

x-
e IT (a + bx" —a)(a + bxn)r-1 dx

[writing:"" = % x"(a +bx" -a)].

Transposing and simplifying,

xm+1 (g & bx" 3 . anp
np +m + 1 np+ m + 1

Iu,n,y - jn,n.p-l (2)

Changing p to p + 1in(2) and transposing, we get a connec-
tion with the integral (iii), viz,
xm+1 (g 4 bxn )p+1

an(p+ 1)

Im,n,p = -

n(p+1)+ma+1
+ an(p + 1) Inw,pon. eee (3)
Also changing m to m— n and ptop + 1 in(1) and transpos-
ing, we get

] xv*-+l(¢+bx- )p&l
Wi S nb(p + 1)

m=-n + 1
- m’--l.ﬂ,! +1 - e (4)

To get a connection with In-s,x,, and Iny.,, ., write

x® = % (x"'"‘.nb:“‘ )
o Ilm,m,p = -:—b-‘[x""".{u #bx? )P . pb.x"-1 dx.

Integrating by parts and simplifying,
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xm-nel (g 4 by Ypel
b(np +m + 1)

’u_u,p =

a(m-n+1)
_b(np+m+1)

B s B

Changing m to m +n in (5) and transposing,

I _:-*l‘g.'.bxi )'4|
MR == a(m+ 1)

b(np + m +n +1)
- alm+ 1) IIH--,._,. ... (6)

These six formula of Im,», » canbeobtained by another method

Write P =%+ (a +bx~ -1,
where Aand p are the smaller indicesof x and (a+ bx" ) respec
tively in the two expressions whose integrals are to be connected.

Find ;-,f- and express it as a linear combination of the two in-
tegrands. On integration the result can be obtained.

To illustrate the above statements we shall find a connection of
Im,n,p Withlasn,n,p -

licroevidently A =m, p=p. o P=x"*1 (a+bxm)r+1

% =(m+ Dx"(@+bxm)rtl+(p+1)xm+1 nbxn-1(a + bx"

=(m + 1)x™(a +bx*)?.(a + bx")
+nb(p + 1)x™*" (a +bx"~)r

=(m+1)ax™(a +bx")P
+b(np +n+m+1)x=+"(a +bx")r.

Integrating with respect to x, _
P=(m+ 1 'ala,n,p tb(np+rn+m+ 1)lmin.np:

x®*1(@a+bx=)r*! b(mp+rn+m+1)
a(m+ 1) a(m+ 1)

e Jﬂ.l.! = l-on.u.p

which is the same as (6) .
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Similarly, the other five results can be obtained.
For another illustration see sum no. 7,580.32.

4.21. Beta and Gamma functions.

In many problems in the applications of Integral Calculus, the
usc of the Beta and Gamma functions often facilitates calculations.
So we give below an account of those functions —their definitions
and important propertics, some of which are, however, men-
tioned without any proof.”

Definitions :

1
(A)J- xm-1 (1 - x)nr-1 dx denoted by B (m , n)
0 [m>0,n>0]
is called the First Eulerian integral or Beta function.

(B).r e * xn-1 dx denotedbyT(n) In > 0]
0 [C.P.'84, 58 |
is called the Second Eulerian integral or Gamma function.
Here m and n are positive but they need not be integers.
Properties :
(i) By property (iv) of Art. 6.19, we get

1 1
J x®=k (1 =am=i dx =J x®-1 (1 - x)m-1 gy,
0

0

B(m,n) =8B(n,m).

(ii) rm=‘[ etidE = 1. [ See ExJof Art. 7.2.]
0
& 741} &1,

* Results (v), (vi) and (vii) are given without any proof here. The proofs are
based on “‘double integration”” which 1s treated in chapter 20 of the
present book. Nevertheless, the results are extremely important in
applications and are to be carefully remembered.
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(iii) Asin Ex.9, lllustrative Examples Art. 7.2, it can be shown
that even when n is not a posilior inleger,

I e".\'dx:nj e %a® by |C.P. 80|
0

0
Fr{n+1)=nl(n).
When n is a positive ipteger,
Ttal¢ 1) = il | C. P."'85,°88 |
(iv) Writing kx for aan (B v o casily get

J’ & Y ,'L‘:" bk 50,6 s D) (€ P 85
Q

FimiTn)
Jimiiing | C. H."86 )

(\-") B{m,nl:- f-.lull'“'ilﬂ'.'

(Q <m <1},

(v) TH{m)N{1-m) = -

sin mn
(vii) Putiie o= L {vo, weget | C. I 86 )
FL TG = ——1:—- .9t
t sin Lu
F() =vn. 1 ¢ P2

Alternatively, we can deduce the value of T (3 1n the follow-
ing way.
Putting m =n = Jia(v),

‘ 1

!"t-;)['ll) . -t -
et o g A . H . 4
D LA J 1 (1 x} X

)
n

7 4
2 J d0 | on putting 2 an’d )
0

. |
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Hence the result,

T xm-ldx P T oxe-tdy
(viii) B{m ,n) —L (1 +«x)men 'Iu (1 + x)men

9.22. Standard Integrals.
3 (P_;_l) ¥ (3_;_1 ) p>-1
zr(2+29+2) q>-1

L
(n J. ? sinPBcos90 40 =

l
Left side :I (sin?® )P (1 - sin?0 )91 4O
0

. 1
=%Jl x 7 '(1-x) T Tl
0
[ on putting x = sin? @ |
+ 1 + 1 : ;
=48 (25— . 431) - Rightside by (w).

[ Compare §6.23 B. |

)

K

(2)‘[ linPBBG I cosr()dﬂ— e

)

The proof is similar to (1) . [ Compare § 6.23 A. |

(3)j e-xldx =1vVx. [C.P.'83]
- 1

Left side =%J- e-* z"'_]dz [ on putting x? = z |
0

1T (3)by (B) = 1 V& by (vii) , [ Compare Art. 7.3 |
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9.23. Illustrative Examples.

Ex. 1. Obtain a reduction formula for I tan ™ x dx and hence or
otherwise find the values of (i) Itm’ xdx; (ii) J tan® x dx .

LIES |
From § 9.4 formula (1), I. =jlm":dx =£:—HTE~ In-2.

@ o Is ;—Itan’xdx =%lan‘r =1,
Iy =%tan’r ~I, , where I, =J- tan xrdx = logsccx.

Iy =%tan‘x - Jtan?x +logsecx.

bl

(i) I =4tan’x -I, ; I, ={tan?x -1, ;

\nl

I = -‘—?-.'1‘--1 - Iy, where Iy =J. dx = x.
tan®xr tan’x tanx
f‘ = 5 = 3 + 1 -X, ¥
[ Compare §9.4., Note 1 in these two cases . ]

Ex. 2. Oblain a reduction formula for‘[m"x dx .

Hence find the values of (i) jse«:‘: dx . (i) jscc' xdx.

= _sec" 2xtanx n-12
From § 9.5, I, -Isec xudx = = +H_1I..-:.
L]
W - L alecegan HERIRE 8,
5 ]
~ secixtanx 2
li==————+3 hih = |secirdr =tanx.
uc':lan: 4 seci’xtanx 24
Iy = 5 's 3— 33“!!2
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5
(D) Also, I, = J‘ St g o Mg

&
J
+ = s ;
6 6
sec’x tan x
Iy =

.;_3
4

i SCCx tan x 1
i by, iy = 3 3 h
B —Isrcxdr = log (secx + tana ).
I = scctx tan x L 3 seclztanx *3.5 s x lan x
TS 6 6 4 6 2
135,
‘2.4.6 log (scex + tanx ).
Ex. 3. Obtain a reduction formula forJ’ e ™ cos"xdr, ta > 0)
]
and hence find the w!uru,fj e 4% ops Sy dx
i
From § 9.6, replacing a by - a,
- =J ™% con"x dx
o
a8 cos® bx(- ooy + msin:) Y minm 11
S = == # e Iy
nl + a t nlo4
a nin-1) i
= o ety gy I ;[unrc'xi_T:‘-'_'f s Ulard oo i)
Is the required reduction formula.
S SO . SR T S
TOWT BTy BT aoqr VTt @
4 % 4 4 t:
h =3,+£i" 33 -41, ’| -—"_:,'EI?EI.’\.
MR I 1 o 708
L A T * T 3485
Ex. 4. Obtlain a reduction for —2———?7
(L L B
dx
Hence find the value of

(x? + at )71
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5 d
Let [, = J'(_x-‘-_-!'ni‘_im Integrating by parts,
i u x
I T +anyit 7 I..“.: e Ty xdx
o
_ x x? 4+ g1 _g1
T (xT vty TN T gy &

a

—— . H
“,’.1*,1,-;!"”" natly., 2.

Changing n to n - 2 on both sides,

L ,,f,:.. srr e =2Y hy 3 = (n=2)a 1L, .

In .2 =

P x " n—‘_i_*_f
R (xt y giyinayn Y 7 o 2 )pk TEeTE

The result can be obtained from §0 7 by substituting  (n/2)
it place of n and changing the definition of [, .

Y T S N g

TR {x? +¢3j77’_ Sal (x1 41 )52 'm 5 -

| = —-l—- X _2_ Iy 1 __L o

S T 3 {Xl+l:j5” r,]c‘ $ ¢ 43 T e (x? pqigiac
1 x 1 x 24 x

I = g; (xlyag?)sit * 35a' (x7+a2)t 43_5‘1- {xl4 gd)ira °
X, 5. With the help of a reduction formula, find the value of
iea &
J. sin'rx d[
cos *x
From § 916, we et the general form of the reduction formula as

_J‘sm"xl .. L csigme by m—nv2’ 2]
= e m.n- .

1 = X = -
A cosy n-lcos" lx n -1
| _ lsin*x 1 I I 1 sinfx }_!
8T Scosty el 3 cos'x 3%
sin*r 5
I 2 e 5.0

COs x 1
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Also Is o= | sin® xdx

. sin‘xcosx 4 sin?x cosx t_l__g_
- 5 B 3 5 3 o8
[from §9.3() ).
g i 1 sin®x 1 sin‘x 1 sin‘x
= "5 cosSx 15 cos®x 5 cosx
'_I__ At 4 sin?xcosx 4__3‘_0’!
- 5 3 5 3 )

Ex. 6. From the reduction formula for J €08 ™ x cos nx dx obtain the value of

Ims’x cos 5x dx.

From § 9.18 (i), Im,» =jcos"xms|u dx

__cos"‘rsinux‘_ m
- m+n m +
Here m = 3,n =5;

"Iﬂ-l,l-l -

3
sl =Icos’xcos§xdx = wri -g— L,

tos’xsin4z 2
Koy s ———=

cos x sin 3 1
: ghaihs =S5y

3 t 7l
bis =Jcos2:d:¢ = ";z' p
1y g = SO3°xsin5r  coslrsindx cosxsin3r  sin2x
. 8 16 32 64

Ex. 7. With the help of the different reduction formula for

J‘x" (a+ bx™ )7 dx, find the values of

ﬁ)j;l‘ltﬂ‘rb!’ )‘dx flljjm—s;-i—)‘d

(i) Here m =3, n = 2, p = 4,and since p = 4 is positive,
~ (i) can be connected with § 9.20(1) or (2).
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Using (1),

x' (@ + bx? )¢ 2b4
haa = 3 = laaia

x* (a + bx? ) 2013
Is,2.5 = 3 -5 baa

x¥(a + bx?)? 22
) - Iy, 2.y,

x (a2 + bx?) 2
Liza — -ﬁfn.i.o.

Iu.‘l.o ‘Izn dr = j:l .

n

I7.2,2

"

12
I < x'(a + bx?)* bx‘(c+b:’)’*b‘x'{n+bﬁji
3,.2.4 4 = 3 4
_ b?x19 (g 4 bxl) M b‘_z_l‘_
10 T2

Using § 9.20 (2) the result can be obtained in a different form.
(ii) For this, the suitable formula are § 9.20 (I or (4).
Using (3), replacing p by - 4,

I T 1 x4 +2(—3)+3flf
e 2a(-3)(a + bx1)? 2a(- 3) WA
i B
6 (a+ bxt)s * g M
x4 1 20=2)%3 %1

”-'-”'2:(-2)(.+bx=n’ 2a(- 2) bhaa

x!

IR UL

o] _,_'_'_ xl . 1 xi
choae =g (a + bx?)s ' 1221 (@ + bx1)?

x™dx

Ex. 8. Find the reduction formuia for G s ol

(ﬂ #- I}.l

2
. x3dx
d h ——
and hence obtain ¢ cufutof".o (8 - + 550
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e 3 x"dx
e (a + 2bx + cx? )= °

x™-2 dy
(a + 2bx + cx?)

Consider In.1,x = + Integrating by parts,

-] m-1
I x n‘[ X (2cx + 2b) -

-{I‘H-I)(g+2br,“|,.fm‘_l (a+2bx +cx? )or!

= ™ 1 n {2 _xndx
(M—i‘tﬁa+2bxtcx‘)"+m—l 3 (@ +2bx +cxi) "1

m-1
+ 2b F o dx }

(a + 2bx + cx? )n+ 1

Changing m to(n - 1) on both sides,

I xm-1 n-
N Ly xy e R ML ARRE TSI}

Dividing and transposing,
™1
In.w == 2c{n ~1¥a + 2bx +cxt )"-1

m - 1 b
+m1’u1-1-?f-11. eros KD
x™- 24y x"-2 (g 4+ 2br+cxl)
Also, In-2.x-1 J‘{a+2bz+cr')“*‘_'[(n*2bx +cxt)m

=alm-2.n+ 2b l|'l!—l,n + flm,n .
Substituting and simplifying,

R ' 2b(m-n)

In.n =- c(2n-m-1)a+2bxscx?)n-T ¥ c(Zn—m—l)""l"‘
a({m-1)
i T -

Either of (1) or (2) may be regarded as a reduction formula.
Hence, using (2),{(a = 5,6 = -2, ¢ = 1, here)
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; xt =i 1) 52
) Bes Joutlety, 3,
e T ¥ (x1? 4x¢5}‘“ 5 il VAl
1 ? - 4(-3),
hoy= T B xt  ds 4 5)7 & 2.4 ¢

ﬂl

1 'I
1.‘_" dx
= e ———
s {x? -4z « 5)¢ J [(x =2V & 1 )¢

d
:-j -t—z—?—:—T)-'- Ipul!mg % a2 "3'
1)

= f;;} - ﬁ; QIan V2 [using § 99 successively | = A (say)
124
Then Jl-" £ o= _b-g- +2k,
2 % 4 21
e s -5 TN
%% 46
h . - '3. 3 1“3 A

T
C T F5E 1548 T 6N

-

23
— 1 vy
* g An

.r—r'.a.l

x/1

/

Ex. 9. Jfus I th s v dxi{n > D), then prove that
L[]

Mgt m(m - | )ug.g :n{‘;l‘ll""

Imtegrating b partg
x/1 X1
H.=[--t'cm:] ~n[ ™1 cos 1 dx
L |

Inlegral Calculus (main) -16
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n {[x“‘l ﬂnz]:ﬂ— (n-1) :1 x"-2 gin zdx]

=R {3%)* Y —n(n~1) Ux-z.
Ua ¢ (m = 1)up-a = o " fx)n=1

= . L —
Ex. 10. if 5, -J" M‘;ﬂﬁu‘ Va =J' (sml nx ) ix,
@ sin x 5 sin X

being on intiger, iian show that
Suei = Se *i‘*. Vet ~ Vo = Sy, .
Obtain e vajne # Va -

dx

®/2
M By = =J’ sin (20 4+ I)xﬁ;:&n{h—l)x
0

®/1 x/2
=I 2.cos Inxgin x dewd o
[ oin x o

_2[unm]:”

n = 0 for all integral vaiues of n.
Sl-f] - SI = sj-l ........ = 5; .
2/2 %/2
sin =
MNow, § = ) ‘":“--L dr-}—-

s‘.;l =S, -i".

®/2
sin?(#n ¢+ 1)x ~sininx
Also, Vg,oy = Vy = . SNy

dx

®2 a2 ¢ 1)x.6nx
. siniy

dx

-

®/2
#in (2n +'l)x & = By
0 in



INTEGRATION BY SUCCESSIVE REDUCTION 2n

L Va=Vuo =S, "%‘r Va-1 -Va-2 --l-l. o, Vg =V t;'l.
v adding , Vg =V, = (n-1)x/2.

®/2
Since V, = I dx =-.:-x, & Ve =-}ut.
0

Ex. 11. Show that
OF () =% @ T Hrih=Lx;

.f. ',l
{iil’JJ. sin'0 cos®0 46 -I sin*Gcosi0de = ﬁ!l‘"
0 0

BT (3)=T(§+1) =§r(§)
[since F'(m ¢+ 1) = T (m), Are. 9.21 (iii) ]
8 53 -1 531 .1
=3r(301) =337 () =33r (1+1) =333" ()
FVR. by Ari. 9.21 (vi) ).
(i) Left side -nhru—p-;;‘-;-' [ by Art.9.21 (0i) )
(1) By Art. 9.21 (A) (1), -;’5 x.

, 1 mhre Piimmiiie
First Integral = _2-'_-?'?6} = 5 =373 5

By Art.6.19 (iv), Second Integral = First Integral.

F(m+1)

IR CES) BYCFON

.-_i'_‘r(%:-‘) (by Art. 921 (i) )
.25—'...![‘(2"3..1)
a2y

Ec.12 Showthat I'(n+§) « D2t LVE 00,
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_2:!-]2!1—32!:—-5 _5_!_1_‘.(1)
- 2 2 2 SC - T ¥ 2

[ By repeated application of the result of the above Artieic. |

- (Zn=1%2n - 3N2n - 5).. "5'31\'11

5 m
Now multiply the numerator and denominator of (1) by
Ini2n - 2M2n - 4) 412
20(2m = 1M 2n - 20 2n=3) .. R4 AT
3 Ty i .
sPUm el so—srr iy 3n =20, ...2221 "
Ft2nas 1) i
o TR D DT ) T b
I"'iin ] LI
TR
Nate. The above result coo be wnttenan the ferm
FePPiing s2% LRI TR )

ttis animportand osult often usedan Thigher NMathematies

Note. 2. The right side of (1) can be wrilten as (3. T'( %) where the

nolation (a )y denates afa + 1 Ha » 20 (@ +n - i) ¢
P e ) = (I TR .
Ex.13. Show hat B(m m)Bi(m + n 1) =l*n i )B(n + 1, m)
Fim)T(n) Fim + n)TCL) r_tlll"i.m)l"(n}
Left side T(maon) TUsmeny  T(l+m+nm)
(i f L
Simiiarly, nght side = SLmn e

Hence the result

Ex. 14. [raluate

1
j gosh=t g Lg)b-t dx
0

ard find ils nalue when a =} = ‘1

l'ut x =ty ;.J:-—H’;.whmx._-D,y:(?,:;l p 1
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1
"::J ga« B2 y--l—1(1 _,)Gol-t‘,
e

e <) F{a + KT (P ¢+ )
: r{a*a::l"

When oo =P = ;—.
Ttk -4)rees 3)

: Tk
¥ Ed T2k e 1)

(2 + IIVR(ENTLE)
Wk e 1h0(k+ 1)

r
= p
S | )

[ by 'z 12and Nete(2ief Art 9.23 )
(in
I _‘31.'-.-;_"

El

EXAMPLES IX

1. Obtain a reductior tormualator ) a%e **da,(n# = 1) and
hence find the value of fate #* dx

2 ‘:shuwth.ltf e vy = E-; {a'a - Jalx? 4+ bar - A).

3. Find the reduction tormula for
(i) § cot™ vdx. (i ] coseex dx .
4. It Iy = !} sinh*0.40, then show that
nly, ==inh" Hcash® - (n=- 1) L 2.
5. Obtain the reduction tormualae for

()] tanh=0Jn (1) ] sechn04do.

6. Show *thatif L, = [eor sin"bvdy, then

g, o AENEE MO COS DY o gn 2 by ain=1)
T PERETRL i a? +nth?

l..?.
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7. 1§ 1, =) x" cosbxdx and ], =/ x* sin bxdx, then show that
(i) bl, = x™ sinbx = MJa_-1 .
(ii) bjy = — x" cosbx + nlu-1 :
(iii) b2I, = x*-1(bxsinbx + ncosbx)- n(n- 1)I..1.
(iv) b2J, =x"-1 (nsinbx —bxcosbx)-n(n-1)/a-2.
8. Find the values of the integrals :

W [ (x -6x + 70 x. (ii}‘[-{-;,—i’:—l-,—‘ .

dx x3dx

(“i)'[ T ewe TP (w).[i'— 2x + 2)
\9. Show that
I =I(¢l+x:).nd,=x(l'+x=)m -

n+1 +n+l
find also I; .

IR-I :

\10. If I, = | (1 +x2)=e= dx(n >1),deduce that

L .}e"(l +x1)n ——1:—'53"(11- x2)n-

2n(2n -1)
‘3

- _4_"(_"_‘..’_)" 5.

11. Show that ifu, =] x® Yat —x?dx, then

xl-l(“l _xl,”t n-1 4
o = n + 2 TR e LY VAR

12. Find the reduction formula for
x"dx .
“’I W 2ax - 27) ° “"J. n,;(xl-n

13. If I, = [x» ¥a —x dx, then prove that
(2n + 3)I. = 2anly.1 - 2x"(a - x ).
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[ ]
Hence, evaluatej. x?Jax - x?dx.
0

x*dx

14. If u, = T vhsse)” then show that

(n+1)auy,; +3(2n+1) buy +ncuy.; = x" Vax? ¢+ bx + ¢

15. If I, = | (sin x + cos x) ®dx, then show that
nl, = -(sinx + cosx)*2.cos2x + 2(1-1)1,.:

16. Show that

dx 2n-3
W I =Ic (T+x)" 2n-2 b1
B dx 1357 =
“”Lu T T " 2468 2
x/2

x/2
17. Show that, if I, =J‘ cos*xdx and |, =J. sinnx
0 0

n-1
n

@5 = (ii) I = Loz {n > 2)

18. With a suitable substitution, using the previous s xampl:
find the values of

1 -
X" _ i dx
(nj EPEN] dx | (u)j RETOLE
0 0 L
{ n being a positive integer )

1
19. Prove that if u, =j x" tan-'x dx, then
0

(n +1)uy + (0 - 1)1, .2 -;——-}"- .



216 INTEGRAL CALCULLS Ex.IX

+1
20. f m 2 2and [, =J. (1 - x? )" cos mxdx, then
=

showthatm? [, = 2n(2n = 1)1, . - 4n(n - 1)1, ;.

x/2
21, If U, =I *0sin=04d0 and n > 1, then prove that
0
n - 1
U.. = . U.. 2 +'; "
dx
TN e x )

22. (i) Obtain a ceduction formula for j N

dx
(1 + ¥t )~ ~(1 +x1)°
[}

i Tut < =ta1 8]

and (ii) evaluateJ‘

23. If ¢(n) =I e *xn-1 log rdx, then show that
0

O0(n + 2)=(2n+1)0(n + 1)+ nid{n) - 0.
x/4
24. If I, -I tan"@ 48, then prove that
0

nllhi.i & Eon) &1,

1
25. Show thaLI x*-! (log € )" dx = ——m—
0

1
26, If B -I x™-) (1 -x)*~ 1 dx, then show Lhat
0

_ (m-1)!(n - 11!
Bow = Bem = (m+ n-1)!

(mand n being integers, each > 1) .
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27. 1t m,n are positive integers, then show that

b

, #lh - a)
l-l.nz[ (x -ap™(b - ¥yvdx ___“.-I_‘_
v m+n + |
a
. wim ey = a)™
Hence pravethat [o o = =y
28, Find the values ot
. .l
! [ sintroostady (1) J sint iy costedr.
{tos’y . r d
G | Sy (V) | e
siintx J SHY PR 058 R
20, If i 5 = leos=vsin®xdx then <] that

(m + nim+n- 2110 .
= {(i -1)sinty =(m = 1Y¥cosixjcos™ Viwa" dx
+ (m I 15 I e .

30. OCbtain 2 reduction formuia tor

bl # [ cos™xsin nrdx, and deduce the value ol

Y

L 4
f costx sin Ja dv.
|

3. 0 Ja o = Jsiamaens ax duv, then show that

MCOS TC0s NY ¢ rsin sl

I = — — -~ &in™
a n! - m?
m{m 1) .
i mi tm' 1, n

/2
a2 n Lis —.j sin™xoos nrat amd

a
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x/2
Ju.n -J 5in ™ x sin nx dx , then show that
0

(m+ n)ln,n = SiNINK =M1 01 (m>1).

=/2
33. If f(m,n) -I cos™x cos nx dx , then show that
0

ftm,n) = = f(rn—l,ﬂ—l?:m(m-nf(m—lu)

m+ n m! - n?
m
maefim=1,m 0 1),
and hence show that f(m,m) = Tmelc
" ‘dx ~
34. Obtain a reduction formula for

(@ + bsinx )~
35. Find the values of

: dx dx
(I)J; (1+cosacosx)? '('nj m,(kccl},

36. Using the integral | x™(a + bx* )7 dx, find the values of

(i)J'xsn +x1) dx. (i) J'“—}’————- v,

ztl )1!!

[Use § 9.20(5). ) [ Use § 9.20 (4). ]

1
{iii)I‘ W(‘:L-F) . [Use § 9.20(6).]
7

37. Find the reduction formula for [ x™ Y2ax - x? dx.

2a

' " a®+2 (2m+ 1)1
HenccshDWlhilIn* 2ax -x'dx==% 2™ (m+2)Im!"’
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38. If I, -I x™e-* cos xdxand
i}

-
Im =I x"e-* sinxdx,
0
then prove that ( m being an integer > 1)

W) la=im(la.y =Jn1) (@D ]n=im(la_1+])n-1).
(iii) Jm = mla_y +3m(m - 1)1, =0.

1z
3

39, Showthatj. sin2nxcot xdx =im.
1]

40. () '/ u, = J cos n@ cosec 80, then show that
_2cos(n-1)8

Uy = Hy-2 = n - 1
(i) If P, ZJ sin{IZf: - ”xdx, Q. =J‘ sirln:;x i,
sin x sinix

then show that n(P,,; - P, ) = sin 2nx
and anl" Qu=Plr|-
41. Prove that, if

.1
Ju = L-@cm dx , where n i itive int
... 0 g ; n is a positive integer

orzero, then [y.2 + Jo =2]0uy -

H h i sinnB nmn
ence prove t atJ.ﬂ Sinid dg = =5
* sin n0

42. (i) Prove thatI d0 = 0 orn according as
0

sin 0

n is an even or odd positive integer.
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O By means ol a reduction formiula or otherwise, prove that

sindal r berng a posttive integer
—im—is’ gl y 1%, n buing q sitIve tnteger.
sin?0 EE b

i

43, Show that iyt m vy positive integer, then

{ cos 0 -2 )E - cosne s I
. 1 - cosx
" sin IR %
and deduce !h.}tj ( — £ = 2n%
’ s
I._1!_-"
4. 15 1, . J coa™a sin ax dx, then show that
4]
; 1 2@ Im
tau‘:;‘]l"+'-2'-*"j"* "';1-]
45. Show that [ € " sintxdx
A& - 1w oY B2 1

tu? v n?)fa? « (n - 237). .(a? 4+ 37 )at + 1

thn is udd ;

_ S e ] Q0 = 2 e B
Y
!

)=

la? 5 (- 232 )...0a? + 231

i s even,
: J tavos @ 4+ bsin@)" 40, then prove that

nin el g™ & 4 Bk 1) ¢ (p 1Mat «h2) ],

? -
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Ssintx) "dx then

47. W0 L = J tacosix + 2k sin2con x 4

prove that
inis

G o R Y O I

4(n + 1) ab -~k )], .2

_ o~ hlcos'x sinty) + (b-a)sinycosa
“ (aecusiy + chsinyoosy « bsintx)n'i

| Apply the alternative methed of § 9 19 )

48, Show that

oh
B—pr.
il 01 e aibdi « gEennsELLTHED
Cip+q+2)

1
[p‘;—l,q)—]l

| Put | =z = 2y}
[Cim « D01 ¢ 1)

4
< aml e et

”“J- SR it TTmen+ 2D

b
Im=>-1,n>-11

49 Show tmet

j (rr"‘-r" d.l:-lll (na. 1-).:12!.; 1]

50. Showtha

i A L . . .
Lz rd.cxjaz dv = 7

| fut xy = 2.}
51. Show that

Him, aAYB(m +mn 1) =B(n, NBCa+1,m)

B(l,m)B(I + m,n).

"
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Ex.IX
52. Show that
r{%}r(%) ...... r(%] z-'l._u‘
[ Combine 1st and last facror, 2nd and last but one etc. and apply for-
ula (vi), §9.21. )

53. Show that
1

dx
J-TT__}'Tm'=

[Putxt =z .|
o

wiA

54. Show that the sum of the series

1 1 m{m + 1) 1
g Rl Sl | n+ 3
m(m +1)¥m + 2) 1
+ 3 w s at e toe

_T(n +1)T (1 -m)
= (e e D) .where n > -1 andm < 1.

1
[R.S.=B(n +1,1 -m) =J‘

55. Show that

z"(]~x)"‘dz,et¢.]
0

1
T*  ginm-1gcosn-1p 46 =1 L{m)T(n)
A (@sin?8@ + bcos2g )m+n amb T (m +n) *

[ Apply Art.9.21 (viii) . ]

ANSWERS
T P T

-
Iy = - 5'-;— [x%a% + 4x%2% + 12x%a% & 24xa + 24].
LED| -3 =
. I, =~ 9.!._.’.’._;.,, ()1, w-SOtxcosec”- 1z n-2

=1 n -1 e LU
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tanh*-18 sech®-2 8 n-
D A R R e T

. (27 -6x47)% 20 20.16
0. 0 a-3) [EE I B a7y e TS0 —6x 0

201612, , : 2016128 20.16.12.8.4
- TTe7s (X7 taps7ss (e T -S7ss |-

x 5x Sx 5 s
ST TIP  HGT A DV G s 1) Teme's:

(it 2r + 1 " 2x + 1 +‘un-32’+l)
Ay Elxf rx+ 1) Tz +x+ 1) 373 V3 '

(iv) 3’-‘-:—*-55’—'74:' =2z + 2-4sinht (x - 1),

(it}

9. _] x{at+ xt )2 +§ .l:{‘i + x? }lf!

4
+ %l'hg(x#il' + xt).

12, (i) nly = -~ x"~V Y2ax =x? + (2m = 1)ala-; .

; x? - 1 n-2 7xal
i I, w("_‘,x-_li- n—ll"'!' 13. 356 -
wootol2o2 2 inisodd
ll'ld-!:-'l ::32 ..... r!z-—;- ,if n is even.

2n -32m -5 |
(u)"il—_i—i'—_‘ ..... -i-i .Ifn>!

lndg,lfu-l.

1 x n -2
2N & T o1 (12T V(1 220)" 2--'-11"‘"
2n -2 2n -4 2
= s L &

5x 8 cos'sy 4cos’x Bnzx
2. 0 gooe W 75 - W 55055 * Teins 3

(v) 2[§tan®? x +2 tan’/x - Jcot®z].
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- Cos ™ x cos arx : ] 1

k1 S P g m*nln a1 3

bcosx .
- 1_pt T e— - - =
34. (i’l l)‘ﬂ b )!.-(d’mn‘Q'{zﬂ 3}0’1. 1 (n J}J‘_?

i5. (i) ; (2 ¢+ cos?a)cosee’p .

ai 1 kcosa 2 ¢ ‘{'..:n%x¢i
T ot 1w ke Cl= g0 150 A0 W1 -t |
o k1Y R PR )

36. (i) s b ['3“.‘1' -36xi 4+ 5].
() 201 « 20733 (2> ~ 1) (i) 293 .

» 1 (Qox - x2 )M 2m o+ 1)a

I Ty o - moe 2 m+ 2

I o1 -



CHAPTER X
AREAS OF PLANE CURVES

[ Quadrature |
10.1. Areas in Cartesian Co-ordinates.

Suppose we want to determine the area A, bounded by the
curvey = f(x), the x-axis and two fixed ordinates x = a and x=b
The function f ( x ) is supposed to be single-valued, finite and con-
tinuous in the interval (a, b).

Y F
P P
Q R
r/ H
ol NN MX
Fig.1
Consider the variable area QLNP = A, say, bounded by
the curve y = f (x), the x-axis, the fixed ordinate QL wherc
OL = a and a variable ordinate PN where ON = x. Clearly,
A has a definite value for each value of x and is thus a function oi
X.When x is increased by an amount Ax(= NN’), A assumcs ar.

increment AA = thc arca PNN'P’. Now, if f(x, ) and f(x; )be
the greatest and the least ordinates in the interval Ax,

suchthat x < x, <x + Ax,x Sx; € x + Ax,
clearly the area AA lies between the inscribed and circumscribed
rectangles FIN and FN*

ie., f(x3)Ax <AA <f(x, )Ax.

f(x3)<§—f<f(x.). D

* The process of finding the area bounded by any defined contour line is
called Quadrature , the term meaning ‘the investigation of the size of 2
Square which shall have the same area as that of the region under consi
deration’

inlegral Calculus (main) -17
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Now, as Ax approaches zero, by the continuity of the
function f(x) at x f(x, }and f(x; )both approach f(x), and

also % tends to % . Hence, as the relation (1) is always true,

we get in the limit

.dA
4 3z =f(x).
». by definition, A = f(x)dx +C = F(x) + C, whereC
is an arbitrary con’stant, and F (x) an indefinite integral of f{x)

.Now, when x = &, PN coincides with QL , and the area becomes
zero. Also, when x = b, the area A becomes the required area A,.

o 0 =F{a)+ Cand A, = F(b) + C.

b
5 Ay W BOBY= Fiwd =j £(x)dx.
a

The definite integral
b

b
J' f(x]dx,:'.c.,J ydx
a a
‘herefore, represents the area bounded by the curve y = f(x), the
v-axis and the lwd fixed ordinates x = a and x = b.

Note. #n alternative method of proof of the above result, depending
n the definimop of a definite integral 4s a summation, has been given in
Art. 6.11.

Cor. 1. In the'same way, it can be shown that the area bounded by any
‘urve, two given abscisse (y =c,y = d)and the y-axis is

* pd
j_ x dy .
€
Cor. 4. If the axes be oblique, @ being the angle between them, the cor-

~esponding formula for the areas would be

b d
sin mj y dx and sin mI x dy respectively.
a €
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10.2. Hlustrative Examples.
2 1
Ex. 1. Find the area of the quadran: of the ellipse z_: + -1,- =1
: ’ a b
between the major and minor axes.

i

ErriEl

-
N

Fig.2
Clearly, the area being bounded by the curve, the x-axis and the or-
dinates x = 0 and x = &, the required area

“
=j ydx
L

» 2 1
=ju -:- Val - rtdx [ since %f-r -g-,- = 1 for thecurve]
b (2
-—‘j. acosB.acos 8d0(pultingx = asinB)
o
®/2 x/2
=2 (1+cwza)de=-';3[o+";2“].
0 o
ab x 1
e &l

Cor. 1. The area of the whole ellipse is clearly four times the above,
i.c., = xab .

Cor. 2. Putting b = a and proceeding exactly as before, the area of
quadrant of thecircle x? +y? =a? isma?, and the area of the whole
circle = ma?
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Ex. 2. Determine the arca bounded by the parabola y? = 4ax and any double
ordinate of it, say, x = x,.
The areca OPN is bounded by

Y P thc curve y? = 4ax, the x-axis and
the two ordinatesx =0 and r=x, .

e -~ area OPN =I y dx tJ- Viax dx

o 11 [N X
]
U " [ The positive value of y is taken

Q SINCe We are considering the positive
Fig.3 side of the y-axis. ]

=N14a. %1, 312 :_%x, " (wherey, =PN =+4ax, ).

Es
The parabola being symmetrical about the x-axis, the required arca
POQ
= 2 *—Xn 17 -—tt ¥i
= the area of the rectangle contained by PQ and ON,
¥ =3 I the area of the circumseribed rectangle.
Cor. The area bounded by the parabola and its latus rectum = %n‘

Ex. 3. Find the whole area of the eyeloid x =a (08 +5inB), y =a(l-cos ),
bourded by its base.

The arca of half the cycloid,
viz, area AOC, is evidently
-» A bounded by the curve, the y-axis
and the absciss® y =0and y = 2a.
Hence, this area is given by

la
J x dy
0

" sincey = a(1 - cos®)
:Iu a(® + sinB) _.asin0de [ x=2(08+ 3inb)

H
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X
e al [ -Bcos @ +sin@ +%(B --}sinze)] =%M1 a
o

Hence, the whole arca of the cycloid is 3na?
Note. It should be noted here that if AM be drawn perpendicular from

oM
A on OX |, the expression J ¥ dx represents the arca 0VAM
o
and not the arca QAC

Ex. 4. Find the area of the loop of the curve
w4 (x +a)(x+ 2)=0.

Here let us first of all trace the
curve. The equation can be put in
the formy? =~ ((x +a)(zx + 2a)j/x.
We notice that y = 0 at the P
points B and A wherex = - 4
and x = - 22, and ¥ = 1 o
when x - 0. For positive values
of x,asalso for negative values of \
x lessthan - 2a, ylis negative and \
S0 yisimaginary. There is thus no
part of the curve beyond O 1o the
right, or beyond A(2 = - 2a) 1o Fig.§
the left. From A to B , for cach
value of x,y has two equal and opposite finite values and a loap is thus
formed within this range. symmetrical about the x-axis. From B to O, cach
valuc of x gives two equal and opposite values of ¥ which gradually in-
creasein magnitude to = as x aproaches 0. The curve, therefore, is as shown
in the figure.

b
-

The required area of the loop = 2. arca APB

-a -a
=2_J ydr=2.l’ ‘\/_(—x.%(.’_t_?“_}dx
-la -2a

and substituting z for x + 2g . this reduces to

a
z
2'[0 (a -2) 2—;—-_—3#3
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1]

=/2 1
ZJ acoseﬂ-i‘——!-.hsin-g c:ml3 40
5 cnsTo 2 2

[pulung z = 2asin? %]

x/2 n
h‘j cos8(1 - cosB)dd= h'(l _i)
0

="ia’(4-u).

10.3. Area between two given curves and two given or-
dinates.

Let the area required
be bounded by two
given curves y = fi(x)
and y = f( x) and two
given ordinates x =4 and
x = b, indicated by Qi Q:
P, P, Q.in the (figure - 6),
whereOM =aand ON =b.

rig.6

Clearly, area Q,Q:P,P,Q, = area P,MP, —. area Q:MNQ,

b b
j f (x) dx -j'. f (x)dx
a [

n

b
-[ oo pnd

b
=j- (y, -y2)dx,

where ¥ and y; denote the ordinates of the two curves p,f; and
(o] corresponding to the same abscissa X .
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10.4. Ilustrative Examples.

Ex. 1. Find the area above the x-axis, included between the parabola y? = ax
and the circle x* + y? = 2ax . [J.E.E. "89]

The abscissa of the common
points of the curves y? = ax ¥
and x? + y! = 2ax arc given
by x? +ax=2ax,ie,x -0 and
X=a.

We are thus to find out the o
area between the curves and the X
ordinates r = 0 andx = a
above the x-axis (i.e., for positive
values only of the ordinates ).
The required area is there-
fore Fig.7
a ;
I (y1 - ya)dxr [wherey,? =2ax-x? and y,;? =ar]
0
a
=J- (V2ax —x? ~Yax)dx.
0
Now, putting x = 22 sin?8,
a x/4
J V2ax - x? dx = 2a sin @ cos 8 . 4a sin O cos 0 d6
0 0
%/4 K/4
=a‘I (1- cos 49)de =¢=[s-’““° a2
4 4
0 0
T 2 .,
Also, Vaxdx =Va [—x-"“] ==a?,
0 3 0 3

B EgroZ = ,(5__2)
Hence, the required area is T -get=i ri :

Ex. 2. Find, by integration, the area of the ellipse
ax? 4+ 2hxy + by? = 1.
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The equation can be put in the form
by? + 2hxy +(ax? - 1) =0.
Y P,
<]
/ L
.-/ P " -
' OJ'/N ) ’

Y!
Fig.8
If yi, y: bethe values of y corresponding to any value of x, we
have

nW-" =% Yhix? - b(ax? - 1) =-:-\’b- (ab - h? }x?,
ab - h? being positive here, since the.conic is an cllipse.

The extreme values of x, where thg ordinates touch the ellipse, are

given by
wi-ve =0, ie, x =i*\/ ST

The required area can be treated as bounded by two curves, MP,L, LP:M
respectively, both satisfying the given equation, but one having a single
value y, for y coresponding to any value of x, and the other also having a
single value y, for the same value of x.

Hence, the arca required

.\’__!_ 1,_"_..
“J" = 2 Veb-k!

(yi —y2)dx= -EJ- Jb- (ab -h?)x? dx
]
2
and putting V(ab - h?*) x = Vb sin 8, this becomes

b
-k lb-h!

JEESE

ab

= 2 .ncos’edﬂ = ..
La(lb—h!) g Yab - k1)
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Note. The area of the ellipse can also be obtained as follows :

Assuming the equation of the ellipse referred to its major and minor

] 2
axes as axes of co-ordinates to be -%5 + <= = 1, by the theory of invar-

iants as given in Conic Sections, we know that —l-, i 1 2 ap=nr.
al’ p?

Now [ from Ex. 1, Cor. 1, Art. 10.2 ] the area of the ellipse is

n
nap = - LD
Ex. 3. Find the area between the curve y? = {(a - x)3/(a +x))and the
asymplote.

To trace the curve, we notice that y is imaginary for values of x greater
than a or less than-a . At x =4,
yzo,and!romato—n,ior each___ \
value of x,y has twoequal and
oposite values, tendingto £ =
as x aproaches —a. Al x =g, the

i s s

x-axis touches both the branches. X’
The figure is, therefore, as
shown, symmetrical about the
x-axis,

The required area between Y
the curve and its asymptote is Fig9
therefore

o il a —
2 ydx = ZJ ‘\’ !i—-x—)- dx
a+ x
“.a a
and substituting z for @ + x this reduces to
s 14
2| (e-2) MELE
Jo0
'%t cos 8 "
= 2 2a cos18 2= 4asin B cos 848 [ where 2 =2asin28]
Jo sin @
i® 3
13 x
1 L] = ?T — — = x.,
= 16a j cos'8dd =162 54 2 Ira
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10.5. Areas in Polar co-ordinates.

Let r = f(B)bea

B curve APB,wkeref(G)

is supposed to be a finite,

Q continuous and single-

M valued function in the in-

P tervalo < 6 < B, Thearea

bounded by the curve, and

A the radii vectors 8 = and

o * 8 B is given by the
definite integral

Fig.10

L (g (£(8)) do
3 J r 4 12, 5— J .
[+ [

Let A denote the area POA , bounded by the curve, the given
radius vector .C-)_.;i ,ie.,08 =a,and the variable radius vector OP
at vectorial angle 8.« < 8 < B. Then for each value of 8 , A has
a definite value and so A is a function of 8. If Q be the neighbour-
ing pointr + Ar,8 + A8 on the curve, we have

AA

1]

the infinitesimal change in A dueto achange A0 in @

. = the elementary area POQ
and this clearly lies between the circular sectorial areas OPN and
OQM , where PN and QM are arcs of circles with centre O.

Thus, _;r'ae < AA <~:(r+Ar}3AB,

ie., JUenr <2 <tifco a0,

Now, proceeding to the limit, and remembering that f( @)
being continuous, f(8 + A8) —» f(8) as 48 — 0, we get

:—g:%{f{ﬂ)}’, ie, 4r2.

Thus, A=-}l r* d8 +C = F(8) + C,say.
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Now, taking P coincident with A and ‘B respectively and
denoting the required area AOB by A, , weget

D:F(u)+CandA1=F(B)+C.

B
where A.=-F(B)—F(a)=l,j ride.

a

Note. 1. The curve APB is here assumed as concave towards O. A
similar proof with corresponding modifications holds even if the curve be
convex, or partly concave and partiy convex or wavy, in fact of any form.

Note. 2. As in the case of area in Cartesian co-ordinates, the above
result can also be deduced directly from the definition of a definite integral
as a summation.

Cor. The area baunded by the two curves 1, = fi (8) andr, =f2 (8)
and two given radii vectors 8 =0 and 8= P is

% L
-EJ‘ (rp? —nt)de.
a

Alternative proof

Let AB be the curve, OA and OB be the radii vectors cor-
responding to 6 =a and 0= B.

Divide p —a into n parts, each equal to h, and draw the cor-
responding radii vector s. Let P and Q be the pointson the curve
corresponding to 8 = « +rhand 8 =a + (r + 1)k and let us
suppose 6 goes on increasing from o to B . With centre O and
radii OP , OQ respectively draw arcs PN, QM as in the figure.
Then the area OPQ lies in magnitude between

10P*.h and 10Q*. h,
ie., betweeni(f(a +rh]l*h and 3[fla + (r + 1)h)1th.

Hence, adding up all the areas like OPQ, it is clear that the area
AOB lies between

n-1 | B
1 ¢ (fla+rkil*h and E [fla+(r+l}h}]’h-
r=0 r=0
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Now, let n — o, 50 that k — 0 ; then as the limit of each of
the above two sums is ‘

B
! J (f(0))do,
a
it follows that the area AOB is also equal to the definite integral.
10.6. Illustrative Examples.
Ex. 1. Find the area bounded by the cardioider = a(1 -cos®9).

P The curve is symmetri-

cal about the initial line,

since replacing @ by -9, r

does not alter, Beginning

) o X from 8 = 0 and gradually in-

creasing € to m, the cor-
responding values of r are
noticed, and the curve is easi-
ly traced in the figure - 1.

Fig. 11

evidently, from the above article,

Now, therequired area is

x x
2_;J‘ 'r2d9=nlj ‘l_cusg;l,m=‘,3'%“__'%m:'
o 0

Note. It should be noted that the area bounded by the cardioide whose
equationis r= a(1 + cos 8)isalso3nal.

Ex. 2. Find the area of a foop of the curve r = a cos 28.
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In tracing the curve, we notice that, as 8 increases from 0 to {7,
diminishes frum a to 0, the portion AP, O being thus traced. As ﬂmcreatscs
from {x to 3x, r is negative throughout, and the corresponding portion of
the curve which is traced is OP,BP;O . Then as 8 increases from :It to ’n'
r remains, p-osuive and the portion OP¢A’sO of the curve is traced. As
8 lncreascs from iR tol ST, is again negative and we get the portion
OP¢B'P; 0 of the l:urve Fmally, when 8 increases from 2 $® to 2m,r is posi-
tive and the portion OPy AO of the curve is described. 'T'he curve thus con-

sists of four equal loops as shown in the figure.
It is now clear from the figure that, area of one loop

2.area AP,O

1 % * ar
2,-2-J- rtdd = a? j cos?20d0 = jma?.
0 0

Cor. Hence, the entire area of the curve, i.e., the sum of the arcas of the
4 loops =jmat.

Note. All curvesofthetype r = a sinnB, or r = a cosnd may be
similarly traced, by dividing each quadrant into n ecqual parts, and increas-
ing 8 successively through each division. If r be found positive, the traced
portion of the curve will be in the same division ; if r be negative, the traced
part will be in the diametrically opposite division. Anyway, when the curve
is completely traced, it will be found to consist of n equal loops if n be edd,
and ’n equal loops if n be even.

Ex. 3. (i) Find the area of the loop of the folium of Descartes,
E N\

-
Sy

x? % y? =3axy.

(ii) Find also the area included
between the folium and its asymptole
and show that it is equal to the area of
the loop. X' A

%

5\

(i Transforming to cor- F
responding polar co-ordinates by \
puttingx = rcosB,y = rsin@,
the polar equation to the curve be- Fig.13
comes

"iWA

2 3acos Bsin @ - m
" cos?B +sin3@
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As 0 increases from 0 m—a: r at first increases from 0 to(3a / v2),
reaching the maximum at @ =1x, and then diminishes to 0 again, thus
forming a loop in the first quadur!t

The required area of this loop is

-

17 922 (1™  sin?0cos?8
- 2 & —n 0c08°0
=2L r ‘9‘2 J.“ (sin30 + ms’B)’da

1 ]
]

9g2 l‘dl 3a? 1
3_2—:--- (1+t} 3 :H—l_1+t’*1]
=3g12
=2a?.

(ii) The equation of the asymptote of the folium is
x+y+a=0. —— ]
-a

Its polar equationis r = Y R e @

Now, r— e if(sin® + cos8)— 0, i~,iftan 8 —» -1,
ie, if0-23x.
. the direction of the asymptote is & - -:-u 2
The asymptote intersects the two axes at A and B, where
OA =a and OB = a,ic, OA = OB.
Hence, the area of AOAB = 3al. e @)

Area between the folium and its asymptote = the triangular area
OAB + the limiting value of twice the area between the curve and the
asymptote in the second quadrant ( from symmetry )

a? + the limiting value of twice the curvilinear area OKPQAO
=38 +20 (say). .. (5)

Draw a radius vector OPQ » ~Vingan angle 8 with the x-axis, such that
%g < @ < x . Suppose it cuts the curve and the asymptote at P and Q

respectively.
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Let us denote the curvilinear area OKPQAQ by S, the triangular area
OQAQ by S, ,and the curvilinear area OKPO by S; .

$§=8§-5.
. a0 = u; $=!.l;(S1—5,

03 3%

Now, applying the formula l'or area in polar co-ordinates, i.c., ]i"' d8
and using equnllons (1) and (3), we get

[ __arde * 947 gin20cos?8 de]
=3 {sh\B+cm0)’ o (sin?@ + cos?B)?

=3at (I -h),say.

N 48 " secl do
OW, | (3in0 + cos8)t J (1 + tan®)?

( on multiplying the numerator and denominator by sec?@)

:’—, [ putting ¢t = 1+ tan 8]
. —" S
t 1 +tan®’

[lftanll] ‘l+lm0 =1

Ansin sin?8cos?BdB tan?@sec?® P
gain, | TSinTe +cos’8)? | (1 +tan’0)?

on multiplying the numerator and denominator by sec*8)

5‘% [ putting 1 + tan®@=1¢]

11 1 1

E e

=
_ 1 1 " 3 -
=9 (_5 ) [l +Ian’8]°_ 1 + tan?@

. l,[ 1
b 8 3 * 2+l+lm0"1+tan’8
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sd [2 ,fan?0 - tan@ - 2
"2 1 +tan’@

-E,:[z* {tan® + 1)(tan@ - 2)

2 (1 + tan®)(1 - tan® + tan?@)
al [ tan @ - 2 ]

2 1 -tanB + tanl®@

Now, o = Lt 5:.;.42,

8 ——
4
the required area = ;a? + 20 =3a? = the arca of the loop.

Ex. 4. Show that the area between the folium of Descartes and its asymptole
is equal to the area of its lcop, each being P
equd“a!nf, y 2

The equation of the folium is
x? + y? = Jaxry. x D

Turn the axes through 1‘-1:; that is
substitute (x-y)/vY2 and (x + y) /2 o'y
for x and y respectively. Then the y
given equation transforms into Fig.14

2 o X3¢ - x
S T+ ¥

gy (5
y= T € q»x -
Here c+x = 0, i.e, x =-c isthe equation of the asymptote MN

OA =3¢,0D = -¢.
. the required arca ¢ between the Folium and the asymptote

0 0
2 E - X
=3 .é.‘c_l._l vl =% .L.ic'[, =\“c”)‘=
0
_ 3 x(3% - x)
V3 IH:I Vi(x +c)(3c-x)ldx'

x(3c r)
Vi(x+¢ 't 3c-x) .t]}

, where ¢ = Tn

Let I = dz=2¢‘j(l—2co’9)('{+cos9)dﬂ

[onputting x = ¢~ 2ccos0,s0thatcos® = -'%‘]
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= -2:’-.[ (cosB + cos208)d8

-2c(sin @ +1sin29)

~2¢t {isin (cos1"5F) + 3 sin (2o =)}
o = gi(-2) u, [ 423 |
+§s'm(2cmrl %)]l

= - 2a?, i[onpultmgc:—ﬁ ] ,_%.:_

Again L, the area of the loop JBAC,
= 2 area of the portion OBA

ic 2 ic
=2I ydx:-\a
/]

x(3¢ - x)

?i(z +c)M3c - x ]

Putting, as before, x = ¢ - 2(: cos @,

o) o (55

2
T
dc?
=5

Ex. 5. Find the area belween the cissoid r = T

) (o 22)]]

-:; 3 =;¢’[onpumngr: = -}!‘] .

inl
ass. 9 and its asymptote .

The curve may be traced either from its polar equation or by con-

verting it to Cartesian form,
and the figure will be as
shown. The asymptote is
easily found to be the line
x = g orin polar co-ordinates
rcos® = a.Now,let OPQ be
any radius vector at an
angle @ to the x-axis, inter-
sccting the curve and its
asymptote at P and Q respec-
tivelv.

Inlegral Calculus {main) -18

Fig.15
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i r?
Area OAQPO = -2.[ (n? -rpt)dé [wherer, = 0OQ, r; =0P)
0
1[0 (et _,sin‘e ),
2 —J-u (cosio_' cos @ ) »
2 p®
a
=-§J (1 +sin?0)de
0

al 3 sin 28
“i’[5°' 3 }

Now, the required area between the curve and the asymptote is clearly
(there being symmetry about the x-axis, and since the direction of the
asymptote is given by 8 =1n)

et (3, 820\ _,1 (3 1xy 23
oH1x [2 = (3e-57 )] =a? (3.}%) = pmat.

Ex. 6. Find the area common lo the Cardioider = a1 + cos 8)end the
circle r = 3a, and also the area of the remainder of the Cardiaide.

At the common point P of
the two curves, we have

_:=1+c059‘
. e =1
;o8B =3, or,8 =3

The required area is easily
seen to be

2 {area OCP + area PQO}

]
-
3

x 1 =
c§n=de+-,J a=(1+c:os0)‘d0}
1.4

1

X
———
ol -
e—

0 3

]

24! sx+al {3(x - §n)+ 2 (sinn- sin3%)

¢ (sin2n - sin} n )
7 93 .,
= (-il'i——"—s )t ;
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Again, the area of the remainder of the Cardioide, i.e., APCR

1 (3"
2,areaAPC=2.§~I (n? -r1)de
0

£ 3
j [a? (1 +cos®)? -3a?)d0
1]

o

n
(2cos B + jcos26 - 3)de

3 .18 31 [9»’3 ‘.}
- F oo QR 00 = AL Py R (o e
_n{22+42433 a 3 rik i
Note. The whole area of the Cardioide is evidently the sum of these
two, i.e., =%u2 . [ See Ex. 1 chove. )

10.7. The sign of an area.

b

In the expression y dx for an area we tacitly assume that
the ordinatey is pusitiw‘:‘throughout the range (s, b) and that x in-
creases fromatob,ie., b>a. Y p
In this case the area calcu-
lated by tke above formula “-\
will be positive, If, however, il cB X
y be negativeorif b<a while 0’ A \‘J_
¥ is positive, e, in moving Q

along the curvefromzx = a to

x = b we are moving paral- Fig1?

lel to the negative direction of the x-axis, the calculated area will
be negative.

If, therefore, we proceed to calculate the total area where, in

therange (2,b),y is positive for some portion and negative for
the rest, as in the above figure , by using the formula

b
j ydx, the calculated result will give us the difference of ;he
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magnitude of the two areas ACP and CQB, which may be posi-
tive or negative or even zero if the magnitudes of the two areas are
equal.

Hence, if our object be to get the sum total of the magnitudes
of the two areas, we should calculate each part separately by the

© b
formula of the typeI ydx, I y dx, the results being found to
. 3 = .
be associated with their proper signs. We shall now discard the
signs and consider the sum of the magnitudes.

In each individual case, therefore, we should first of all have a
y clear idea of the figure and
the area to be calculated, and
then we should proceed. For
instance, notice that in the
figure -18, area PACR is + ,
area CRSD is - and area
SDBQ is +, and that for the
range DC of the x-axis, y is
O A D three-valued and in calculat-

ing the area PACR we are to

Fig.18 use one value of y for the

4
portion in the formula J‘ y dx , for calculating the area CRSD
"

d
we are to use a second value of y in the formula I ydx, the
[4

upper limit 4 being less than c for this part, and lastly for the area
SDBQ we are to use the third valueof y for this part in the formula

»
I ydx . If we take the algebraic sum of the three areas, with their
d

proper signs, we get the area bounded by the curve, the x-axis and
the ordinates AP and BQ.
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" p
Similarly, in the formula % j r? d8 in polar co-ordinates

if B<a,ie,if8 diminishes in mgving along the curve from 8 =
to 8 = B, the calculated area
will be negative. Then area
OPR is + ,area ORSis -,
area OSQ is + , the area
bounded by PRSQ and the
radii vectors OP , @ being
their algebraic sum. Also for
therange SOR, for each value
of 8, r has three values, and
we must use the right value in Fig.19

each case for that part when

moving along PR or along RS or along SQ in the expression r?46 .

10.8. Areas of closed curves.

(if) (iii)

Fig.20
In a closed curve given by Cartesian equation, clearly for
cach valueof x there will be two values of y,say,y, and y,
[See figure (i)]. The extreme values of y, say,2 and b, are obtained

b
by puting v, = .NowJ. (¥ —y2 )dx will give the positive
L ]

value of the required area, provided b >a and y, > y, . This
amounts, as it were, to the determination of the area between two
curves having the same equation as the given one, but y being
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single-valued in each, the proper value being chosen for each part.
The method has been illustrated in Ex. 2, Art. 10.4.

In polar curves, if the origin be within the curve See [figure (ii)),

1 =
% I r1d0 gives the desired area.
0

If the origin be outside, corresponding to each value of © there
are two values of r, say, r, and r; See [figure (iii)l. The extreme
values of 8, namely a and B, are obtained by putting n =r .
Now, ifr, >r; and B > «, the positive value of the area will be

p
given by the expression %J (n?-ryt)de,
a
- B
In fact, the area OAPB is given by I r, 2 d8 and is positive,
a

a
while %I 7; ? dO gives the area OBQA with negative sign, the
B

algebraic sum of the two giving the desired area.

In the case of closed curves there is another method of calculat-
ing the area. Let ( x, y ) be the Cartesian co-ordinates of a point on
the curve whose polar co-ordinates are (r,8),then x = rcos®,
¥y = rsin@.

Now, if ¢ be a single variable parameter in terms of which x, y
and, therefore, r, 8 of any point on the curve can be expressed, we
have

dx dr : do
o E‘—cose —rsmeﬁ 5
dy _ dr . do
at = 3t ’"‘9.* rcos® T

. dy  dx .48
5 % -V H UK *
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Hence, the area which is expressed by the integral 1| r? d6 can as
well be expressed by the line integral

3_[(" at ~ Y dt)‘“

along the curve, the limits of ¢ for the closed curve being such that
the point (x, y) returns to its initial position. The rule of signs for
the area is that the above expression is positive when the area lies
to the left of a point describing the curve in the direction in which
t increases.

10.9. Approximate evaluation of a definite integral : Simp-
son’s rule.

In many cases, a definite integral cannot be obtained either be-
cause the quantity to be integrated cannot be expressed as a math-
ematical function or because the indefinite integral of the function
itself cannot be determined directly. In such cases formula of ap-
proximation are used. One such important formula is Simpson‘s
rule. By this rule the definite integral of any function ( or the area
bounded by a curve, the x-axis and two extreme ordinates ) is ex-
pressed in terms of the individual values of any number of or-
dinates within the interval, by assuming that the function within
each of the small ranges into which the whole interval may be
divided can be represented, to a sufficient degree of approxima-
tion, by a parabolic function.

Simpson’s Rule : An approximate value of the definite integral
b
J- ydx,where y = f(x)
a

=2hl(y, +¥ine1 )+ 2(ys +ys + ..o +¥Y1a-1)
+4(y: +y + ...+

b -
where h = 5= 2 and Y1 .Y2,¥ ,...arethe values of y when

x=a,a + h,a + 2h,
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In words, the above rule can be written as

% h [ sum of the extreme ordinates + 2.sum of the re-
maining odd ordinates + 4. sum of the remaining even or-
dinates ].

Let PQ bethecurve y= f(x).and -P_L, m be the ordinates
x = a,x =b.Divide the interval LM inio 2n equal intervals each

Y

of length h by the points N; ,N; ,....sothat h = (b -a)/ 2n
and let bN; PFaNy , .. ...... be the ordinates at Ny, N5, . ......
Then PL =y, P;N; =y;, P;N; =vy;, ... Through PP;P; draw a
parabola having its axis parallel to the y-axis, and let its equation
referred to parallel axes through N, (a + h,0)be

y=a+ bx +ex?. wes (1)

Then, the area bounded by the parabolic arc PP, P;, the or-
dinates of P, Py and the x-axis { such to be called hereafter short-
ly as the area under the parabola )

h
.-.]" (@ + bx + ex?)dx = 2h(a +3ch?). ... (2)
-k

Since P (-h,y, ), P; (0,y;), Py (k,y;)are points on the
parabola (1), )

S W =a ~-bh + Ch!,y;[: a,y =8+ bh+ch:
Vi -2+ %
T

from whichweget a = y,, ¢
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- from (2), area under the parabola = ;h(y, + 4y2 +¥ ).

Now, area of the 1st strip (ordinates y,, ¥2. ¥s ) under the curve
y = f(x) is approximately = area under the parabola
='}h(y| + 43; +y‘,}.
Similarly, area of the 2nd strip (ordinates y,, ¥4, ¥s ) under the
curve is approximately = 3h(ys + 4y, +y; ); area of the 3rd

strip (ordinates ys, ye, y- 9 under the curve is approximately
=31h(ys+ 4y +yr) . and area of the nth strip under the curve

is approximately

= l’h(y,_,._1 + 4y’:n + Van i

b
- summing all these, area under the curve, td; J. y dx is appro
a

ximately

'_'"ih[{yl. + Vin )+ 2‘!{) +ys + ... + Y- )
+A4(y; +¥ + ...t Y ).
Note. It should be noted that the closer the ordinates, the more ap-
proximate is the value.

Simpon’s rule is sometimes called Parabalic rule.
Ex. Givene® =1,e' =272, =7.39,¢? =20.09, et =54.60; verify

Simpson's rule by finding an approximate value of J.‘ e+ dx, taking 4 equal
intervals, and compare it with ils exacl value ’
Hence, a = 0, b =4,n =2, h =1,y = f(x) =e*.
.. by Simpson's rule we get the approximate value
Lhilly, + ys) 425 + 4y +y0l
=Lk le® = e%) + 20 4 A(e! + &7 )]
=2 1+ 54al + 2x'739 + 4(2.72 + 20.09)]

= AMARY
4

[E"] :('—1-1546'.}—]:53.60.
G

- error = 53.87 - 53.60 =0 .27 ( approximately)

L]

Exact oalue
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EXAMPLES X

1. Find the area of a hyperbola xy = ¢? bounded by the x-axis,
and the ordinatesx = a2, x =b.

2. Find the area of the segment of the parabola y =(x - 1)(4 - x)
cut off by the x-axis.

3. Find the area bounded by the x-axis and one arc of the sine
curve y = sinx.

4. In the logarithmic curve y = ae*, show that the area be-
tween the x-axis and any two ordinates is proportional to the dif-
ference between the ordinates.

5. Find, by integration, the area of the triangle bounded by the
line y = 3x, the x-axis and the ordinate x = 2, Verify your result
by finding the area as half the product of the base and the altitude.

6. Show that the area bounded by the parabola Vx + Vy =va
and the co-ordinate axes is 1q? .,

7. Show that the area bounded by the semi-cubical parabola
¥? = ax? and a double ordinate is + of the area of the rectangle
formed by this ordinate and the abscissa.

8. Show that the area of

(i) the astroid x’ 4 y¥ = as s Inma?;
2/3 /3
(i) the hypo-cycloid (%) - (-f) et 3 nab ;

aigs — (a?__b!)‘l
(iii) the evolute (ax) 2 + (by) 23 =(at — p2)1 g i T
9. Find the area enclosed by the curves: (2 > 0)

(i) x(1 +t2)=1 _ £2 5y (1 + t2)=2.

(i) x = 3cost;y = 2sint.

(iii) x = a cost(1 - cost);y = asint(1 - cost),

n

(iv) x =a(2cost + cos2t);y = a(sint +5in 2t ).
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10. Find the area of the segment cut off from y? = 4x by the
liney = x.

11. Find the area bounded by the curve y* = x3 and theline
y=12x.

12. Find the area of the portion of the circle x* + y* =1,
which lies inside the parabola y? =1 - x.

13. (i) Show that the areca bounded by the parabolas y? = 4ax
and x? = day is §-a?.
(ii) Find the area bounded by the curves
y? —4x-4=0and y? + 4x -4 =0,
14. Prove that the curves y?= 4x and x? =4y divide the square
bounded by x = 0,x = 4,y = 0,y = 4 into three equal areas.

15. The curves y = 4x? andy’ =2x meetat the origin O and
at the point P, forming a loop. Show that the straight line OP
divides the loop into two parts of equal area.

16. (i) Find the area included between the ellipses x*+ 2y =a?’
and 2x? +yi=a?.

(ii) Show that the area common to the two ellipses
x? 1 x?
= *E-; =1 and TR

> 2ab
is 2ab tan-! ;:"F

¥Low ita 500

al

17. Find the area of the following curves : (& > 0)

(i) aly? = a?x? - x*.
(i) (y — x)? = a? - x*. [SeeEx.2, Art. 10.4. )
(iii) (x? + y?)? = a*(x? -yt).
(iv) (x* + y?)? = a’x* + biy?.

[ Transform (iii) and (iv) to Polar. ]
(v) x =acos® + bsin®,y = @ cos® +b'sinb.
(vi) x = asin2t, y = 4 sint.
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18. Find the area of the loop of each of the following curves :
(a >0)
() yr=x(x-1)2,
(ii) ay? = x?(a - x).
(iii) y? = x? (x + a).

_ 1= 1 -4

(iv) x i_-ir_fT'y"'l_:l_” (-1<sts1).

W) x =a(l -t?),y=at(1 -12),(-1<1<1).
19. Find the area of the loop or one of two loops ( where such
exist ) of the folowing curves : (2> 0)
() x(x* + y?) =a(x? - y2).
(i) y2 (@? + x?) = x2 (g2 - x2).
(i) y? (a - x)=x2(a + x).
(iv) y? = x2 (4 - x7),
V) x? = y2(2 - y).
20. Find the whole area included between each of the follow-
ing curves and its asymptote: (a > 0)
() x?y? = a2 (y? - x1),
(i) y2 (a - x)= x? .
Gi) y? (@ - x) =x3(a + x).
(iv) x?y? + a?h? = g2y2
(V) 2y? = 4a? (22 - x),
21. Find the area of the following curves: (a > 0)
(i) r = asin®.
(ii) r' =a?sin20;r? = g2 ¢cos 20.

(iii) r?* (a? sin?@ + b? cos?0) = q1p2 .
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(iv) r = a sin30.
(v) r = a(sin20 + cos20).
(vi) 72 = @a? cos?0 + b?sin?0.

(vii) r = 3 + 2cos8.

22. Show that

(i) the area included between the hyperbolic spiral r@ = 2 and
any two radii vectors is proportional to the difference between the

lengths of those radii vectors ;

(ii) the area included between the logarithmic spiral r =¢*®
and any two radii vectors is proportional to the difference between
the squares of those radii vectors.

23. Find the area of a loop of the following curves :(a > 0)
(i) x* + y* = 2a'xy. [Transform to Polar .|
(ii) r? = a? cos26.

(iii) r? = a? cos 4@ .

24. Find the area of the ellipse 9x?+4y? - 18x-16y-1=0.

25. If for the curve x(x* + y?) = a(x? - y?)(a > 0),
A be the area between the curve and its asymptote and L be the
area of hsluop, show that A + L = 4a? ,

26. Show that for the curve
yi(a +x)=x*(3a-x)(a>0),

the area of its loop and the area between the curve and its asy-
mptote are both equal to (3V3)a?.

27. Show that the area included between one of the branches
of the curve x?y? =g? (x? + y?)(a > 0)and the asympt-teis
equal to the total area of the curve (x? + y?)? = a? (x? - y?)
(e >0).
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28. If p = f(r) be the equation of a curve, show that its

area = i A dr
2 Y(rt - pt)
taken between the proper limits.
29. If p = f(y) be the equation of a curve, show that its

area = -12— jp (;H- ‘-;-‘if,)dw

taken between the proper limits.

30. (i) Show that the sectorial area of the equi-anguiar spiral
p = r sina included between the iwo radii vectors r, and r;
ist{n? -ni)tana.

(ii) Show that the area of the lemniscatea?p=r? is a? .
[ For half a loop r varies from 0 1o a.]
31. Find an approximate value of

0.2
j (1 - 2x? )1~ dx, taking 2 equal intervals.
0

Given f(0.1)= 0.99334,f(0.2) = 0.9725
where f(x) = (1 -2x?)3,

32. Find the approximate value of

2
d
‘[ ?x , taking 10 equal intervals, and calculate the error.
1

Given f(1.1) = 0.90909 f(1.6) = 0.62500
f(1.2)= 083333 f(1.7) = 058824
f(1.3)= 076923 f(1.8) = 0.55556
f(1.4)= 071429 f(1.9) = 052632
£(1.5) = 0.66667

where f(x) =

|
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33. Evaluate

ix
1

J- ¥(2 + sinx)dx, using 4 equal intervals,
0

given when x = 070", 22° 30, 457 0°, 67730, 90" 0,
V(2 + sinx) = 1.414, 1.544, 1.645, 1.710, 1.732,

34. Obtain an approximate value of

1
J' 1 d.tx: taking 4 equal intervals, and hence obtain an

Wl :
approximate value of m correct to four places of decimals.

35. A river is 80 metre wide. The depth 4 in metre at a dis-
tance x metre from one bank isgiven by the following table :

x=0 1020 30 40 50 60 70 80
d=0 47 9 12 1514 8 3
Find approximately the area of the cross-section.

36. Use Simpson’'s rule, taking five ordinates, to find approx-
imately to two places of decimal the value of

2
I V{x = 1/x)dx.
1

ANSWERS
1. ¢! 105-2 2. 411, 3. 2. 9. (i), (ii) 61 .
(iii) Ima? . (iv)6ma?. 10, 3. 11 32 12. 31 + 3.
B .16 0 22tsin o . 17 D dar. GDmi
(iii) a?. (iv)%n’(c' +b2). (v) m(abl - a'h). {vi) ;a' .
18, () L (Dker. (GiDEe¥. (V2 -in. (el

157
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19. 02 1-3m). (Wa? (3 x-1). ()22 (1-4x). (iv) &
(V) §V2. 20, ()da?. (D) fma?. (i) 202 (1 +2n). (iv)2mab

) dma? . 21, (i)-}u‘. (il) a?;a?. (iii) mab. (i\r):—ml_‘
(V)ma?. (vi) 3m(a? + b?). (vii) 11m.-
23. () ;ma? . (i) ja?. (i) ja?. 24. 6n. 31 0.1982.

32. 0.69315; error = 0.00001 . 33, 2.546. 34. 3.1416.

35, 710m? . 36. 0.84 .



