
HAFTER VI

DEFINITE INTEGRALS

6.1. Thus far we have defined integration as the inverse of dif-

ferentiation. Now, we shall define integration as a process of summa-
tion. In fact, the integral calculus was invented in the attempt to
calculate the area bounded by curves by supposing the given area
to be divided into an infinite number of infinitesimal parts called
elements, the sum of all these elements being the area required. His-
torically the integral sign is merely the elongated S used by early
writers to denote the sum.

This new definition, as explained in the next article, is of fun-
damental importance, because it is used in most of the applications
of the integral calculus to practical problems.

6.2. Integration as the limit of a sum.

The generalized definition is given in Note 2 below. We first
start with a special case of that definition which is advantageous
for application in most cases.

•	 Letf( x) be a bounded single-valued continuous function defined
in the interval (a, b ),a and b being both finite quantities and b >a;
and let the interval (a, b) be divided into n equal sub-intervals,
each of length h, by the points

a+h,a+Th,...,a+(n-flh,so that nhb_a;

then Lt hlf(a)+f(a+h)+f(a+2b)+...+ f(a+ih))

i.e., shortlyk Lt 0 h	 f ( a + rh), ( nh = b - a),

-(or, Lt-
	

b a Ef
"-4 	 n

(since n-.- when h-O)
'i.e., which doe, not become infinite at any point. See Author,' Differential

Calculus, Art. 1.6.
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Is 4eflned as the definite integral of f ( x) with respect to x between
the limits a and b, and is denoted by the symbol

J 
f(x)dx,

4

where 'a' is called the lower or inferior limit, and 'b' is called the
upper or superior limit.

Cor. Putting a . 0, we get

fx)ühZ f( r ), wh,renh b.

Note 1.	
J

f(x)dx is also sometimes defined .s
a

M

Li	 h	 1	 + rh),k O	 hor U h EO	 ((a + rh);-.-.rO
these definitions differ from one another only In the Inclusion OT exclusion
of the terms hf( a) and hf( a + ih ) ,i.e. ,hf( b) which ultimately vanish.

It should be carefully noted that whichever of these slightly different
forms of the definition we u,., we always arrive at the same result. Some-
times, for the sake of simplicity, we use one or the other of these definitions.

Supposing the Interval (a, b) to be divided Into n equal parts each of
length & by the points x ( a ), x , r2 .......... x ( = b), the definite
Integral

a-I

J
f (x) dx may also be defined as LI	 f(x,)&.

I	 r-o

Note 2. The above definition of a definite integral is a special case of
the more generalized definition as given below.

Let f(x) be a bounded function defined In the interval (a, b) ; indict
the Interval (a, 1') be divided in any manner into it sub-Intervals (equal or
unequal) of lengths & , 82 ........ . 6. In eachsub-interval choose a per-
fectly arbitrary point (which may be within or at either end-point of the in-
;.rvaI :and let these points hex C..
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Let	 Sn	 Z	 6,f(,).
r=I

Now, let n increase indefinitely in such a way that the greatest of the
lengths 6 , . ...... ,, tends to zero. If, in this case, Sri tends to a definite
limit which Is independent of the way in which he interval (a, b) is sub-divided
and the intermediate points C, , C, ....... are chosen, then this limit, when it
exists, Is called the definite integral of f( x ) from a to b.

It can be shown that, when f(x) is a continuous function, the above limit
always exists.

In the present volume, however, In Art. 6.4 we prove that if, in addition
to /(x) being continuous in the interval, there exists a function of which It
Is the differential coefficient then the above limit exists.

In the definition of the Article above, for the sake of simplicity, f ( x) is
taken to be a continuous function, the Intervals are taken to be of equal
lengths, and , ,.... ( are taken as the end-points of the successive
sub-intervals.

The method of unequal sub-divisions of the Interval Is illustrated
in Ex. 5 below.
6.3. Illustrative Examples.

'a

	

Ex. 1. Evaluate froøi first principle	 e'dx.
"a

From the definition,

fn
- I

e'dx = kD h L c'5 , where iih 

	

a	 r - o
Li 0 h[e' + ea	 . .. +u-s 

=	 It. I11 4a

=

= e(eba	 1) h
—r--j ,sincenhb - a,

=e-e',	 [5ince uoè-CI	 }..
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Ex. 2. Find froi,, the defin ition, She vth, of

fxdx.
Jo

From the definition,

J

.1

	

x'dx	 I, £ (rh) 2 .where nh = 1,
C

=h :o h 11 'h' + 2 2 h t + . . + n'h')

=	 Lt	 1h 2 ( 1 2 +2 2 + ...

=	 Lt	 It' I (,, + I )( Zn + I)
1-40	 6

Lt= --	 (2n3h + 3i 2 h 2 .h + nhIt2)

=-(2 + 3J1 + h').since th	 I,

I	 I=-.2=-

Ex. 3. Proveab i,iitiodx =	 -

Here by the definition,

-,,dx= IJ I 	 I
k_0[-+t------I	 (a+(n-.jh)) 2J

I
(where nIt b - a)

Denoting the right-hand .et-le by $ , since, obviously,

j 9 _____and <(a + rIt	 (a + h If a $ (r + I) It)	 F. + ( r - I) h J(a + rk)'

	

wege.S>A[+	
)
+
	(as	 h)(a+nh)]'(,i-I)

[Cs
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(. - a + nh)' i.e., > !	 [since nJ,	 b - a]

	

Also, 5< h	
i	 i
h)	 a(a+h)	 5hija+(nj5h)'

	

/ 1	
- I

1	 /1	 1i.e, <(-_	 , i.e., I---a-h a+(n-1)k	 ks-h b -h

	'1	 1'	 '1	 1
Hence, (s---) <S<(___

	

a	 b	 a - h	 b - li

and this being true for all values of Ii , proceeding to the limit when

h ..-. 0, (-
! clearly tends to (-I -	 and S by definition

r b gjx	 r	 i	becomesj --	 d hence, an	
j b - = - - -

For an alternative method, see Ex. 5; here m = - 2.

Er. 4. Prow by summation,	 sin r dx = cos a - cos b.

n-II

rhI sin x 
dx h O

Li li 1 sin (a +	 ), where A = b - a,
J I

	

	 o
-.	

r-

= L I l ( sin a+jn(a +h)+ sin (a +2h)+...ton terms j

= Li	

2

h	 _______• sin (a +<n - 1)!}	 +nh
sin! li

1L= 	 _	
2

hO sin !h sin 	 + (n - fl.}
2

+h=

	

	 [Cos (a_.h )_ cos ta +un_I 4}jh -.O sin±h

-.2--= Lt [cos (e-4h)-cos(.a+nh-lifl .,since Li
h -sO
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= h 	
Icos(a+ h ) - cos(b--h)I, since a + nh = b,

= cos a- cos b.

Es. S. Evaluate	 x' dx where in is any number, positive or iregal:vc.

.Ia

integer or fraction .but I - 1(0< a < bY

Let us divide the interval (a, b) into n parts by the points of division
a, ra, 2 ,,, ar - , ar",where ar= It i.e.,r

Evidently as u -^, r= (b /a) 1 ' a - 1, so that each oI the intervals

	

r - I ),ar(r - 1) .....ar -	 - I) -40. Now, by the generalized
definition, as given in Note 2, Art. 6.2,

I	 ' dz	 Li	 (a'.a(r -1) + (ar)'.ar(r -1)
J a

+(ar2).(a7)(r - 1)+ .. ton terms]

Ion terms)

= Lt 1' + I *0i

=	 LI aint	
r-1

	

T _ • -i L(r)	 -11
J

Li "1 
{( ! )-.1-1},_.1	 ? •	 a-I	 a

-	 Li
,_.i --T 	 (- 

• _ • )

- b 
M + I

[ 
Since 	 :I__1 being of the form

	

0-L	
1

	

- 7_h Is. -# I )	 in + I

Integral Calculus (main) -9
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Nc*t 1.	 bkln* xn'iou l (a, ' )is tt 'cable in a , 6), a urn-
.ue li teft if 'i.e ,nmatlon S a; giver in N ' i- 1, Art. 62, exists. S, it s
immaLerial in what node we calculate a. The same remark ho!dt or the next
example.

fb

Note.2. !nv eval uating I	 dxn^ - 1,6 > 0) wc may hrst
Jo

evaluPeJ	 zó IC<a<b) s. above, i.then n-iake a-3 0+.
a

EX. 6.	 The de[nitios

b
J- 

a	 log- (0 <a <6)

As In Ex 5, divide the Interval (a . 6) into ,i parts by the points of
division	 a •	 • w' ............... Cr" Y. a,", where a," = 6
I.e.,, = (b/a)' /'. Evidently asn.-+., r (b/a) 1'  -sLsothat
each o the intervals a  - I ),ar(r -. 1) ....-, 0. Now, by the general-
ized definition,

=	 Lt	 (r -

	

 I) =	 Ii	 n(r-.- j)

= Li	 n b a P /1	 I)

.i	 6	 6
= Li I e	 log 	 where h = ! log -.

h-*0L	 h	 a	 n	 a

6 r=log -[slnceLtj_.=I

f
Ex. 7. Find a!, initi The DQIUC of I	 sec' x dx.

Jo

By definition, the required integral

a

I	 U	 it	 sec: 'rh,where nh =..
Ii-. 0 r-1
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Now,scc(r- Hh see rhse rh<sQcrh.sec(r •
since "c increases with XiflO<x4t

I - 	 sin(r+1)-'l
stnh cosrh. cos (r + l)h

- I
( tan (r + 1)1* -tan rh}.

Simdarly,sec(r- l)hsecr	 = --- ( tan rh-tan(r-- 1)h).
sin h

Thus, I lies between It	 ------	 E (tsnrh -tan(r -
. O sin 

r.1
'V

and 
hL.'O	

L	 (tan (r +1)h - tan rhj,

i.e	 (tannh-tnO)and

Since nh = it, and LI ('t / sin l)	 1 ash -. 0, both the above Un,tt
tei d to tan 1r	 i.e., 1.

T ence, I has the value 1.

6.4. kefinition of definite i utegral based on the notion of
boun

We h ye iwo methods of refining definite integrals: one based
on the notion of limits, the 1.er based on the notion of bounds.

The first method based	 he not-cm of limits is given in Note
2, Art. 6.2.

The second method based on tLe notion of bounds Is given
below.

Let the interval (a , b) be divided in any manner into a num-
ber ( say n ) of sub-intervals by takiig interme-diate points

a=Xx1<x2...
Let M, and m be the upper anc2 lower bounds of f( x) in the

r-th sub-interval (x, -' ,x. ) and let 5, denote the length of this
sub-interval. The lower bound (denoted by J ) of the aggregate of
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the sums S = EM, 6. (obtained by considering all possible modes
of sub-division) is called the Upper Integral and is denoted by

I f(x)dx,
and the upper bound (denoted by j ) of the aggregate of the sums
s = Em, 6, Is Zalled the Lower Integral and is denoted by

IF

5
When the lower and upper integrals are equal, i.e., when j =
then f( x) is said to be integrable and the common value is said to
be the integral of f( x) in (a , b ) and is denoted by

Lbf(

It can be shown by what is known as Parboux's theorem that
both the definitions are equivalent when / ( x ) is integrable.

Note. The Integral defined above, when it exists, is called a Rlemann
integral, as it was first obtained by the great mathematician Rlernann.

6.5. Necessary and sufficient càndition for integrability.

We give below, without proof, the necessary and sufficient con
dWon fo. 7 the integrability of a bounded function f( x

If there be at least one pair of sums S , s of f ( x ) for a sub-
division of the interval ( a, h ) su. that

S - 5 < £,

wherec is any arbitrarily small positive number, then f(x) is in-
tegrable.

Note. It can be easily shown that the sum or difference of two or more
functions integrable in (a, b) is also Integrable in (ES, a).

6.6. Integrable functions.
(i) Functions continuous in a closed interval ( a , b ) are in-

tegrable in that interval.
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(ii) Functions with only a finite number of finite disconti-
nuities in a closed interval (a. b ) are integrable in that interval.

(iii) Functinn	 -	 .i aa interval ( a , b
re irtegrah]e in that interval.

6.7 Important Theorems.

1. 1f
)
 ( x ) i integrable in the closed interval (a , h ) and if f ( x)

^O for all x in (a,b ),then

a O(b > a).

Since f (x) ^, 0 in ( a b ), it follows that in the interval (x,. 2 ,
the lower bound In, >_ 0 and therefore

Inr5r ^! 0.

j, which is thi upper bound of the set of numbers s, ^! 0

Since f( x Y i intcgraHc.	 J R x ) dx

and hencc 
5 

f(x)dx ^ 0

Alternatively.

Since f(x)is integrable in(a..b),

b

5 
f(x)dx	 LI f(c

n -4 -

Since f(x)? 0 in(a,b),	 :.	 f(, )2t 0 in(a,b).

Li	 1J(, ), ? 0 in(a,b).

f
f(x)dx ^ 0 in

a



102	 INTEGRAL CALCULUS

Note. It can be shown similarly that if f(x) :5 0 in ( a , b) then

J
f(x)dx	 0.

a

II. If f(x) and g (2) are integrablein (a, Li) and f(x) L, g(x)in
(	 b ), :hen

S:f(x)dx	 5(X) dx (h > a).

Consider the function w ( x )	 f( r )	 g C z

Then Y (x) is integrable irt(a, b)ar,d w( x) ^! 0 in (a, b).

by (1), $	 y ( x ) d x -> 0 in ( a , b ) ,

gfldx ^! 0 in (a,b),

i.e.,	 f(x)dx ->Jg(x)dx.

UI. If Mand in are the upper and lower bounds of the integrable
function f(x)in(a,b),b > a,then

a) S 5 f (x)ix 7^ M (Li - a).

Since	 in 15f(x)5 M in (a,b),

( f ( x ) - m) ^ 0 in ( a , b ) ,

5(1 (x ) - m)dx -,:t 0

f(x)dx ^ rn f dx, i.e., 2! ,n(b	 af a 	 a
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Similarly, since M - f ( x ) ^! 0, we can show that

M(b	 a) 2! s :f(x)ax

Hence the result.

This is known as the First Mean Value Theorem of Integral Cal
Cu

Cor. The above theorem can be written In the form

J
f(x)dx = (b	 a)g,when in

and if further 1(x) is continuous in (a • ) then f(x) attains the value i

forsomovalue of x such that a S %b ,andso

J
i(x)d	 (b -

a

IV. If f(x)and g(x) are integrable in(a,b) and ifg(x)

maintains the same sign throughout (a , b) , then

in and M being the lower and uppet bounds of f(x) in (a .b)

Let us assume, for the sake definiteness, that g ( x) is always
positive in (a b

Now,	 in S f(x) :5 M in (a,b).

Since	 g ( x) is positive,

mg(x) 15 f(x)g(x) 5. Mg(x),

f(x)g(x) —mg(x) ;! 0,

b

J
(f(x)g(x) - mg(x)ldx ;! 0

ex uthors'  Dfferentiai CalCUlus.
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pb

J
f(x)g(x)dx 2!mJ

q	 a	 a

and	 f(x)g(x) - Mg(x) 15 0,

x )g ( x )dx - Mg ( )) dx	 0,

f(x)g(x)dx	
M fbg(x)dx.

bf ab f(X)g(X)dX=J a S(x)dXwhere m ^ <M.

Cor. If further f(x) is continuous then f(x) attains the 'alue j for
some value of x, whore a 5 5b, i.e. , f ( ç ) =

when f(x) is continuous

rb
f(x)g(x)dx = f() J g(x)ds.

.11

Note. This is the generalized form of the First Mean Value Theorem. The
theorem III can be obtained from this by putting g (x) = 1

V. If  (1) is bounded and integrable in the closed interval ( a, b
and if

F(x) 
=ff(t)dtwhere 

x is any point in(a,b), t'en

(1) F( x) is a continuous function of x in ( a , b)

(2) If  ( x ) is continuous throughout ( a , b ), then the derivative
ofF(x)exists at every point of(a.b),id = f ( x ) .
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(3) If f(x)is continuous throughout (a,b) and if •(x)be a

function of x such that '( x) = f( x)throughout ( a , b ) ,then

F(x)	 f(t)dt =(x) -(a).

(1) Let us consider a point x * h in the neighbourhood of x

in ( a , b

Then,	 F ( x + h) = J 1tdt: 

F ( x + h) -F(x) =Jf(t)dt .J f(t)dt

.11

=5	 f(t)dt =
z

by COT. of (Ill), where i lies between the upper and lower bounds
of f( t ) in the interval ( x , x + ,'i 'Sincef( 1) is integrable, m and

M are finite and so is i.

Lt 	 ( F ( x + h)- F(x)) = Lt pth= 0.

Lt	 F ( x + h) = F(x).
h -.0

Thus, F ( x) is a continuous function of x in (a, b ) -

(2) We have F(x+h)-F(x) =Jf( I )dt

= hf(ç). where x 5ç 15x +

since 1(t) is continuous. I See Cor. of (III)

F ( x + h)-F(x) = f(ç). for h;t 0
h.

When h -* 0, —* x and f() ---.f( x ) , since f(t ) is continuous.
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•	 LI	
F(x + h) -F(x)

It	 exists, and	 f(x),

i.e.,	 P(x) = f(x).

(3) Since f ( x ) is continuous throughout ( a , b ), as proved
above,

•	 F'(x) = f(x), i.e.,	 F'(x) =

F'(x) - '(x) = 0.

Let	 i(x)	 F(x) -x).

= 0 everywhere in(n,b).

Hence, i(x)	 F() -(x)=aconstant cin(a,x)(1)

F See Differential Calculus Art. 6.7, Ex. 1. I

When x = a,F(a) =f:f(t)dt = 0.

Since, from (1), F(a)- 	 (a) = c,	 •.	 -$() = C.

Consequently, from (1),F(x) = (x) + c =(x) -(a),

= ( x) -a)

In particular,

J
1(t) d	 •(b)- •(a).

a

Note. The relation given in (3) is known as the Fundamental theosen, of
Integral Calculus. F For an alternative proof, See Art. 6.72. I

6.8. Change of variable in an integral.

To change the variable in the integral  f( x )dx

by the substitution x =	 ( I) , it is necessary that
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(I) 0 ( I ) possesses a derivative at every point of the in-
terval a5 15 , where(a)= a and i( 0)= b, and ' (t);e 0

for any value I in ( a,

(ii) fL( t)l and '(t)are bounded and integrable in(u, ).
When the above conditions hold good, then and then only we have

fa 	 x)dx 
=J:ft ( 

I)) ' (I )dt

Illustration

dxLet	 1 =f	 1 +
-I

Putting x = tan o, we get I = f	 io =
Putting x	 / I, we get

de
I = -	 + t 2 =

The reason for the discrepancy lies in the fact that I lt does not pos-
sess a derivative at 1 0, an interior point of ( - I , I); in fact, the func-
tion itself is undefined when I = 0.

6.9. Primitives and Integrals.

If ' ( x)	 f ( x ) , then 0 ( x) is the primitive of f(x). The in-

tegral of f ( r), on the other hand, is

LI ZJ ( C,)) S. ,or symbolically

1 :	 x ) dx, i.e., the analytical substitute foran area

xin case f ( ) has a continuous graph.

The distinction between the two is that while integrals can be
calculated, primitives cannot be calculated.

The question as to whether a primitive exists and the question
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of the existence of an integral off ( x) in ( a , b ) are entirely inde
pendent questions. It is only in the case of continuous functions that
they are the same.

Indefinite integrals can properl y be dr'c,
of primitives.

The connection between primitives and integrals is represe.
by the Fundamental Theorem of Integral Calculus, viz.,

dx =

Illustration:

I	 I(I) f ( x ) =- x . sin - - -
X

= 0 (x = 0).

Here,	
-

	 % 1 	 = f(x) for x ^t 0 and	 0 for x = 0,

so that primitive exists, but 5	 f(x) dx does not exist.

(ii) f(x) = 0(r	 0), = I(x = 0);hercn(0I)f I(x)dx
exists and = 0, but no primitive exists. 	 0

6.10. Illustrative Examples.

Er. 1. Show that <5 '(4 - x +fl <
0

We have	 4>4.- (x 2 - 0)in(0,1),

or,	 'ii'>I(4_z1 tx5).

	

I	 .	 I	 I

dx

	

5'	 dx, i.e., L <f	 x'

	

. 0	 0
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Again,4 -x 2 <4-. x l * r l in(0,I).

I	 I
:.	 1'4 -x )> '1(4	 r 2 	1)

I	 dx	 I	 dx
j	 •;(4 - x ) > J 	 '1(4 -z 2 +

	

I	 I
I-	 •.	 I	 ,1.it - dr

L'jo j 	- r

Hence the resu l t.

Ex. 2. If	 f(x)dx ex is ts, show 
that 

J 
f(x)dxl sj	 f() j dx.

a	 I

Wc have l f(C )&. + f(	 )6, + . ... + IF 	 I
!1 J(-ç )I I S1 1	 +1 f(2 )11	 I + ........ I f(ç)I I 81.

Lf(ç ), I -'5 £ I f(, )11 6, I
Li I Zf(	 )S, I !; £1.1	 f(, )I I

bf.bf(.)d"l 
S 

r
f(x)I dx.

a

OIherwi

SinccJ	 f(r)dxexis ts ,	
.. J

I 1(x)I dxedsts.
a	 a

We have - f(x)J S f(x) 5 I f(x)I.

fb

	

-f a
 I f(x)I dx5	 f(x)dx^J I f(x)I dx

I

i.e.,	 I 
J	

f(x)dxl	 f(x)I dx
a	 a



IC	 INTEGRAL CALCULUS

6.11. Geometrical Interpretation of 	 1(x) dx.

	

Let the function f ( x ) ,y	 /0which we suppose to be finite
and Continuous in the interval	 D
(a , b) [b > a 1, be represented
graphically and let  =f (x ) be
the equation of the continuous	 C
curve PQ, and let AC, BD
be two ordinates correspond- X' 0	 A A'	 B
ing to the points x = a, x b,	 '

meeting the curve at finite
points.

We have Oil = a, OB =b and .. AB = b - a.

Let AB be divided into n equal parts each of length h

..nh=b-a, Or, a+nh=b.

Let the ordinates be erected thro-ugh the points whose absci-
ssae area + h, a + 2h, ...., a + ( n - I ) h to meet the curve
at finite points.

Let us complete the set of inner rectangles ACC' A' ..... . and
also the Set of outer rectangles.

Let S denote the area enclosed between the curve y = f (x),
two ordinates x = a, x = b, and the x-axis.

Let S 1 denote the sum of the inner rectangles.

S1 < S. I / ( x) monotone increasing I

Now,S 1 =hf(a) + hf(a + h) + .....+ hf(a i- n.-1h)

=h	 £	 f(a+rh).
"0

Let S 2 denote the sum of the outer rectangles. 	 .. S2 > 5



DEFINITh INTEGRALS	 III

	Now, S	 hf(u + h) + hf(a i Zh) +...+ hf(a i- nh)

h Z f(a + rh) — hf(a) i- hf(b) I since a + nh	 bJ.'-0
We hv€. S < S < S2

Now, let the numbr of sub-division increase indefinitely, and
consecjucntly the length of each of the sub-intervals diminishes in-
definitely.

	

This, a	 n •-*	 , ! - 0.

both hf( a ) and hf ( b) —, 0 , since 1(a) and f (b
are finite.

b

	

S'-4	 Lt
Al 0 

h Z f(a + rh) =5 f(x)dx,-.
a

r-1	 b

and S1 --, LI h

	

h-.0	
L f (a + rh) =5	 f(x)dx.

a

Since we have always S 1 < S < S2,

b
S =5 f(x)dx.

a

Thus, 5 f ( x) dx geometrically represts the area of the

space enclosed by the curve y = f ( x), thejordinates x = a , x =
and te x-axis.

Note. The arguments here postulate q'concave curve. Similar argu-
ments apply for a convex curve, or even for curve which alternately rises

	

and falls in the interval. 	 I
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6.12. Fundamental Theorem of integral C4ICUIUS.

If f(x) is integrable in (a, b ) I a <b 1, and if t.ire exists a func-
tion • ( x) such that 4'(x) = f(x)in(a,b), then

L.

J f(x)dx = (b) -
a

Divide the interval (a, b ) into n parts by taking intcrrnedito
points

	

<x,	 b.

Then we have, by the Mean Value Theorem of L'iI(crcntiaj Cal-
culus,

(x) -(x, 1 ) = ( x

N	 n
-	 4'(ç,)&7 = E	 I(r,) -

r-I

[ where 8, = x, -	 I I
= 14 x1 ) - 	 ( x )J+((x2 )-Ø(x, ) j + .....

= 4'(x ) -(x 0 )	 = •( b) -

Lt 
0 E ,' (c,) 8, = ( b) - (a), where Ols the greatest of

the sub-intervals 8,. Since f ( x ), aa1 hence' ( x), is integrable
in (a,b),therefore

b	 b
Li Z 0'(c)8, = I •'(x)dx = f f(x)dx.

J

Note 1. The above theorem establishes & connection between the hit egrs.
Zion as a particular kind of summation, and the integration as an operation uivers,
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to differentiation. This also establishes the existence of the limit of the sum
referred to In Art. 6.2, Note 2.

Note 2. From the above theorem it Is clear that the definite integral is a
function of its upier and low limits and not of the Independent variable x.

Note 3. It should be noted that U the upper limit is the Independent
variable, the lategra! I. not a definite Integral but Pimply another form of
the Indefinite Integral. Thus, suppose If(s) dx	 • (r); then

5f(x)dx =$(x) -( a )	 (x) + aconjtant Jf(x)dx.

6.13. Evaluation of the Definite Integral.

By the help of the above theorem, the value of a definite integral
can be obtained much more easily than by the tedious process of
summation. The success in the evaluation of a definite integral by
this method minly depends upon the success In the evaluation of
the corresponding indefinite integral, as will be seen from me fol-
lowing illustrative examples. The application of the above theorem
In the evaluation of the definite Integra' is very simple.

Suppose we require to evaluate J f ( x ) dx.

First evaluate the indefinite integral Jf(x) dx by the usual methods,
and suppose the result is (x).

Next substitute for x in ( x ) first the upper limit and then the
lower limit, and subtract the last result from the first.

Thus, 5 1 t)dx = $(b) -

Now, 0 (b) -, (a) Is very often shortly written as 10 wl

It should be carefully noted that in a definite integral She arbitrary
constant of integration does not appear.

For, If we write if( x)Jx - •(x) + c - (z), say,

Iniegral GaICL11US (main) - io
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theJf( x)dx W(b)	 a) (0(b) +c) —	 (a) + C

= $(b) —

Thus, while evaluating a definite integral, arbitrary constant ,tad
not be added in the value of She cir?ur• lig indefinite integral.

6.14. Illustrative Examples.

Ex. 1. 
Evaluate  

'r. dx.

J
I x dx =

rx*l	 r	 -t
I x dx	 I	 I = -- I b' - •' I; * + 1*0.
I	 Lfl+1i	 1+IL	 .1a	 a

Ex. 2. Evaluate
J	

Cos 2xdz.
o

cos'rdr=4f2cordx+$(1+cos2x)dxf
=.}x ++ sin 2x.

*12	 1	 1	
x/2

5
	c2xdx=[yx+7sIn2x]

I 	 I
= 3t + T Sin T X.

(1

Er. 3. Evaluate	 dr.fJo

j 1+x	 J	
dx\I+X

= 2$-_!_-_ dx _Jdx = 2 log (I + x)- x.
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i	 +r)- f	 21og2-l-2iogl	 21og2-1.

1• 4. EDaIuattJ__i

I.	 dx	 1	 x
J a+z	 a	 a

Note. Two paints should hc noted when cvJuatl.ig a definite ineg,-aI
for which the indefinite integral involvex an inverse trigonometrical func-
tion.

(I) The result must never be expreir.d In degrees for the ordinary
rules for the differentiation and integration of trigonometrical functions
hold only when the angles are measured in radians.

(Iii) in q tAbstituting the litufta in the Inverse functions, C&C should be
taken to choose the right values of the expressions obtained. UnIr* other-
wise mentioned, usually the principal values 3re used.

6.15. Substitution in a Definite Integral.

While ticrating art integral by the substitution of
a new variaV, it Is sometimes rather troublesometa transform the
result back Into the original variable. In all such cases, while inte-
grating the corresponding intergal between limits ( Le., corespond-
ing definite Integral), we can avoid the tedious process of restoring
the original variable, by changing the limits of the definite integral to
correspond with the change in the z'erlable.

Therefore in a definite integral the substitution should be ef-
fected In three places .l) in the Integrand, (U) in the differential and
(iii) in the limits.
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The following illustrative examples show the procedure to be
employed.
6.16. Illustrative Examples.

E.1. Evaluate	
1	 si,i1xf

Put pin - 'x = 0.	 :. dO	 1
x1) 

dx

0 and I are the limits of x; the corr spdtng limits of 0 where
0 sin -l x are found as follows:

When x = 0,0 = sin 1 0	 0.
When x= I,8= sit) '1 =tc.

*/2	 1/2

1=50 
849=

Note. Of course this example can be VIed out by first finding the
indefinite Integral in terms of r and then subUtuttng the limits.

F'
Ex. 2. Evaluate	

I________
a1 - x 2 dx.

Jo

Put r.asln0. :.dx=acos3d.
Also, when x-O, 0=0,and.ienr=&*,9=f*.

I	 a coi' OdO..	 coe 040.

NowJo	 J (I +cos 20)J0	 0	 uin2e].

i as [e ;+.1n29j

EX. 3. EIlslust.f	 -
a
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Put x	 a Cog 2O+ gin 'O.	 .. dx	 2( - a)ain eco.9d9;

also, x -a = .tn 2 9 a(1 - co. 28) • ( - a)M819,

X = ( I- .1n 2 $) -acos'O

when x	 a,( - a) sin 2 O 0.

sin OO since	 *a.	 ..9=0.

Similarly, when I = PAP - a) c05 0 = 0.

cos $=Q.	 ..

I = 2 ( - a) 1 
J

Mn 2 8 coø'$iO.
a

Also, f(1 - cos 48) dO • 9 - sin 49.

/2
c9)d9 =(-a) 2 [e_.sln4o}

i( -a)2 (l- ! sin 2id - l a: P - a)1.

E. 4. Evaluate
	 dx

uate I 'i(( x -
 a

)(0 -	 ) 
(B	 a). 11. E. E. '791

a

AsinEx.3,ptltr = aco'O+ sin1G.

i
=	 2dO=2.-*11.

0

.1.
4I3)..

0

Put x	 sin 9. Then dx	 cos ode; also when x = 0,9 = 0, and

when x = 9

It
'

cos2OcosO = Icoo Od9	 see 20d$

0	 JO
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*16

- [ 
4.log too (* + 8)]

=}( log tan -4t - log tan 4.%l	 log (2 + 43).

2
EN, S. MOR that 	 =

0

Lt	 sins	 .. cos 0d	 dx,

also when 8 = (, x, 0 and when • = r, x = 1

It	 I
I	 ,ln' 0(1 -	 O). Cos 8i8 =J r' (I-0	 0

f 'x' dx- fx'dr	 [7,]l•[]t	 1	 2

6.17. Series represented by Definite Integrals.
The definition of a definite integral as the limit of a sum enables

us to evaluate easily the limits of the sums of certain series, when
the number of terms tends to infinit y by identifying them with
some definite integrals. This is illustrated in the following ex-
amples.

In identifying a series with a definite integral, it should be
noted thit the definite integral

fJ(
1 )dx =h0 hta + r,when nh = b a,

may be expressed as

Lt b
	

a j (a +	 = f
I-4	 N	 N	 J

	In the special case when a	 0, b	 I , we have h = I/n
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Hence, in this case, we have

Lf !Ef(!) J!(x)dxr

(As if we writer for rn and dx for I / n. I

or, puttting h = I / n,Lt h £f( rh) 
= 5 

f( x ) dx.

I As if we write x for rh and dx for h . I

6.18. Illustrative Examples.

Ex. I. Evaluate	 Li	 +	 +. . .. +	 I . (H. S. '88JLt _ (n +I n+2

Dividing the numerator and denominator of each term of the above

series by. it, the given series becomes

Lt S -+	 + .....+

+.	 1+.
it	 it	 it

S	 n

= Li -	 £	 = Li )i L '--- [putting It = -
'I-.- it	 7•

'I

= 1 ---dx =[log(1

	

	 log 2.
I -tx

Ex. 2. Evaluate

2	 4	 6	 2ii
2 \T

	

((+. )(i^.)(l+.)	 i.I +--iJ

(1	 •l
=

Let A denote the given expression then

log	 -Lr 	 +-4)
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Ex. VI(A)

I,

Li log A = 1.1	 L 2 - log
7-1

1

=J
 2xlog(1 +x2)dr

0

r2

= j

	
log zdz, [putting I +	 = zJ

2

= [zlogz - z] = 2 log 2 -1 = log

Since log Li	 A = Li log  = log 4-
C

Li	 A, i.e., the limit = -
C

+	 +Ex. 3. Pro	 1 +2" +3that	 Li 
m+I

Left side

- 1-

=	
l) (2)fl-+-.fl [(	 N	

-) Ia
I,	 a

Li	 z ( r)
h ( rh T [where hN	 fl	 U

J

1

=	
-

x"dx- r -• i_ ____
o	 I

EXAMPLES VI(A)
I. Find by the method of summation the values of:-

b	 b
6) 5 e	 dx.	 (ii) 5 e h dx.

5 X3 dx	 (iv) 5 (ax + b)dx.
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b

	

(v) f	 sin x dx.	 (vi) f Cosa do .

	

(vii)$
	

x dx.	 (viii) $+ dx.

(ix) I sin nxdx.	 (x) I	 cosec'xdx
oJ

Evaluate the following integrals (Ex. 2 to Lx. 12)

	

,1	

'I 2 (I) 
J 

x 3 I + 3x 4 dx. (h	
_______

t 'J 2ax - x' dx.
0

I H. S. '851 (Ic)	 '	 dx

	

(iii) J	 dx I (x 2 +1)'x(1 + Iogx)

	

I	 0

3.	 fJo
4
	 (i)J sin - ' xdx.

(iii)f( Cos -I x)2dx.

vfxtan -t X) 2 dx

(H. S. '801

(ii)f tan	 xdx.

(iv) f 	 log ( I + 2x ) dr.

(vi)	 x2 I(4 - x 2 )dx.

sin mx sin nx dx.	 I J . E E/82 J
0

•(ii) J cos mx cos nx dx
0

(m, n being integers )
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(jIl) 
5	

sin x sin 2x dx.
0

6. (i)5 sjn 2 nxdx.	 (ii)Jcosanxdx.
°	 (n being an integer)

I

7. .0
I 	 xdx	 ..	 dx

(1) J (l + x 2 )	 5 (a 2 + X  ) 3/2

	

(l$J	 (ax — x	
2 

A(x - 1X5 —x))

l x	 4z

8. () r
	 t

x sin xdx.	 (ii)	 sec x dx.

	

.1 0	 Jo

	

(iii)J	 (secO - tan G) dO
0

I
9. (i) Jo tan x dx.	 (ii)	 tan 2 x dx.

Jo

I	 I
P10. (i)J	 cos 2x cos 3xdx. (ii)J sin 2 xcoOxdx. (H. S. '821

o	 0

.1.	 1
(iii)J x cos x cos 3x dx. (iv)J	 sec'O A.
 a

11.(i) 5 x log r dx.	 (ii)	 x2 sin x dx. (Ii. S. '81 1

(iii) 
52 

sin cos	 ( a 2 sin' 0 + b' cos' )do .
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2•	 dx	 __________
12. )	 a 2 + ,	

(Ii)	
dx

	

J	 x(1+ 2x)'

(ill) Jodx
	

(a>b>O).a + b cos x

(Iv)	

dx

S i - a cos x + 7 (0 < a < I )
0

Show that ( Ex. 13 to Ex. 28 (ii) I:-

13,.-
$ 

lug 2

-dx o1+e'
0

.5

14	 i9.9a =log( . ) log tab).
x

a

S

IS. I sin'	 at = 2atan-' a— log (1 + a2).
I + t	

(H.S.'851

2

16. (05

	

	 T(2 - x)dx =.

dx(ii) $
	 x3TV?T+) = . log f	 H. S. '85 I

17	 2
j(a2+xl)2 dx=-

j
sin xdx	 '

18. J, 
i+052=l+tan	 v

___
19. cos'x.l,l sin xdx =*•

0	
•

C
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dx	 '1
20. (1)5	a 2 cosx +b 2 slnx	 L	 . ( a, b > OJ.

I'zi 

I
' sin 2 xcos 2 X 	1
(sin'x + coax)"	 g

Jo

dx_ log 2.
4 +

0

f2
- 	 dx

	5 + 4 sin x	
tan '

- dx
2. (l 

5

	

5 + 3 cog x	 4 tan-' 4.
0

dx
(II)	 =-'- log 3.

3 + 5 coo x
0

dx
(111)5	 1 + 4cot2x

0

	

dx	 0

23. 5	 + cos 0 cos x
0

cos xdx
24. 1 0 (1 + sinx)(2 + sin x)logf

4*	 sin2.r

25. 5

	

+	
dx

	

dx	 x a 2 +
26. (1)5 (2 cos 2 x +b 2 sir. 'x)'

0
E. E. '88j

(Multiply numerator and denominator by ec 4 x; then put b tan x	 a £5210J
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f 
is2	 x sin x cos x	 __ _____
(a' coB'x+b 2 eln'x)'	 (g+b) .ta,b>OI

.0

f:t'	 1	 1	 2
)2) 

dx = e - -
J (i	 (Iogx	 log 

3

2

1 (1 + x)(1+ 2x— x') =

29. Evaluate the following

1	 2	 11
(a) Lt	 -+	 +	 I.

I-4	 N+2M	 ,I+NINJ

[

ft	 n

I	

1
2+12+nl+22 + ......+ 112 +N-*- 

H. S. '86)

(Ut)	 LI-
	 ) ( n2_22)	 •+(n2(n1)2}]•II -• 

F	 1	 1	 11+..+ -. I.jv) Lt 
LRf	 l(4n2')	 11jp -4

I Write n	 'I( 2m 2 - 11 2 ) in the last term.

[
(v)	 Li	

12	 22
11	 P	 '2'

IC. P.'84 I
ri	 _____	 11

+ ....+ — I .(vi) LI V +	
nl

$-.-	 n	 (n + 1)3+ (n+2)'

tvii) LI
.fl2.(ft_fl2

ft	 . -	 ft2

(viii) Li	 £
r-t	

II

27

28.
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1	 2	 !l	 '/('x) Li((1 + ;)(
1 +	 • (' +-.)}.

) i_((i +.)(i +-) ••e

ft

Lt n+rxt)	 Z	 -
0

(xiI) 
n !_

ri	 I
(xnt) U	 - +I- 	 + 

n .....	 n	 n+l	 +2

[,H. S. '83, '88)

(xiv) Lt — .- [ i ++ .....+ 3-] .IJ.E.F.'86)

r d( + 1)s 4(m + 2) + ... +(xv) LI i-	 1

r ,1-iirn
(xvt) LiI—

N-	 I. fl"

a
dx	

_f0 

4 sintleg-	
J 0 

(x+a)+'IxJ	 cos'e

find the value of a.

31. 11 a be positive and the positive value of the square root
is taken, show that

•1
Jdx

'( I - 2ax + a' )	
2 if a < 1;

-1

-2 ifa>I.
a

32. If ?n and it are positive integers, show that

(i) 5	 sin mx sin	 lx = f
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(ii) f

	

	 sin mx cos ,ixdx = 0.
-x

a
(iii)J	 cos ,nx cos ,gxdx=	

if m * n

	

{	 ifm=n.-	 I

ANSWERS
1.	 Ci) (e	 -• e	 ) .	 (ii) (	 - e	 )1k.	 (iii)

(iv) a $ I,	 (v) I .	 (vi) sin b -sin a.	 (vii) .	 (viii) 2.
(ix) (1 - cos,ia)/n.	 (x) I.

2.	 (U -.	 (ii) . xa .	 (iii) fl	 (iv) ( x + 2

3. 1. 4. 6)5 - I. (ii) . x - . 1og2. (in) x- 2. (iv) .  log 3.
(v) I it ( 3 t - I) + . Iog2	 (vi)-,r -,-43.

in(m -n)x sin( m + n),t (ii) 0.	 (iii)!2(m — ii)	 2(m + n)

(. (i) . x. 00-1 7t . 	 7. (i) 42 - 1 <"	 a 2 '/2

(w) - X.	 8. (i) I .	 (ii) log ('/2 + 1) . (iii) log 2.

9. (O . log2. (ii) I -r.	 10. 6) 1 . (iU-.	 (iii)-(n-3).
a 2 +ab+b2

(iv) 1.	 T	 (ii) n - 2.	 3	 a + b

x (ii) 1og-..	 (iii) '/(a	 -b2) COS4a	 5

GO

12. (U

29. (I)	 log( 1 + rn) . (H) I x. (iiD--x. (iv) + x.m

(v) jlog 2.	 (vi) .	 (vii) j.	 (viii) -}z + I .	 (ix) 4/e

(x) 2e 1/2 ( - i)•	
(Xi) .-+ 4 lo g 2 .	 (xii) j x. (xiii ) log 3

(xiv) 2.	 (Xv) 1 42 -!	 (xvi)	 1	 30.
3.
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6.19. General Properties of Definite Integrals.
b

(1) 5 f(x)dx =5a	 a

Let 	 f(x)dx =(x); ..Jf(x)dx =(b) -(a);

then, Jf(z)dz =$(z); ..5 f(z)dz =(b) -(a).

(ii)5 f(x)dx = 
- 5 f(x)dx.

a	 b

Let 5	 =$(x);	 (b)

and -5 f(x)dx =— I(a)- 4(b)J -$(b) -$(a)
b

Thus, an interchange of She limits changes She sign of the integral.

(iii)J f(x)dx =J f(x)dx	 f(x)dx. (a<c<b).
a	 a	 c

Let 5 f(x)dx $(x); ..5 f(x)dx	 (b) -$(a).

RIghtide	 ($(c)- $(a)) + ($(b) — (c)) • •() -
Generalization.

b	 CA

J f(x)dx	 f(x)Jr +J f(r)x +
a
	 f"' 

C.p

•	 f(x)ix +	 f(x)dx,
Jell

when a < c1 < c2 < .....< c < b.
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a

(iv)f f(x)dx =J f(a - x)dx.
Je

Proof. Puta—xz,..dx—dz;

also when r 0, z a, and when x = a, a = 0.

nghtside = 
_S:I(z)dz 5

0 z)dz =Jf(x)dx.

	

*12	 *12	 /2

Illustration : 5 sin x dx = 5 sin ( - x) dx =f cos x

na	 a

(v)f f(x)dx = n f f(x)dx, iff(x)=f(a + x)

	

J o	 Jo

I C. P. '86 1

Proof.

,2a

J f(x)dx =J f(x)dx+ J f(x)dx+..+J.	 f 
0	 0	 a

Put z + a = x , then dx = dz,

also when x = a, z = 0, and when x 2a, z = a;

	

• 24	 ,a

J
f(x)dx =f (z + a)dz =J f(a +

	

4	 0	 0

a

= f f(x)dz.
do

Similarly, it can be shown that

2'J f(z)dx =J f(x)dx	 f(x)dx;

	

a	 0

Inlegral Calculus (main) -11
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and so on. Thus • each of the integrals on the right side can be

shown to be equal to f  ( x ) dx . Hence the result.

Illustration:

Sincesjn s z	 n'(,t + x)	 .•.	 sin'xdx =

	

Jo	 Jo

2a	 a	 a
NO I f(x)dx =5 f(x)dx +5 Ma - x)dx.

	

Jo	
0	 0

21
Proof.Proof.J f(x)dx	 /(x)dx	 f(x)dx.

0	 0	 a
I By (iii)

Put x F 2a -z in the 2nd integral ; then dx	 - dz,

also when x = a,z = a; and when 	 2a, z =0.

the scccd tegral on the right side, viz.,

2.

ff(x)dx	 ff(2a - z)dz =5 f(2a - z)dz.

BY GO I

	

- x)dx.	 tBy(i)j

Hence the result.

(vii) 5 f(x)dx = 2	 f(x) dx, iff(2a -x) = f(x),

	

and	 5 f(x)dx = 0, iff(2a -x) = -f(x).
a

4	 These two results follow immediately from (Vi).



	

DEFDE INThGRALS	 131

Illustration

Srncesin(, - x) = sin x, and cog (n -x) - - Cos j,
ft*12

Jo
sin x dx = 2	 sin x dx; and	 cos a dx	 0Jo	 Jo 

b	 '--	 2 Jf(inx)dx.
.10	 0

and	 f( co a) dx = 0, If f (cc.s a) is an odd function of cos a.Jo

r+1	 a
(viii) j
	

f(x)dx = f (1(x) + f(- x))dx.
-a

Proof. ff(x)dx=ffx)dx+ff(x)dx

Now, putting a = -

	

ofxdx 
=- 

i:- z)dz=	 f(-z)dz

f 0

Hence, the result follows.
Cor. If f(x)isanoddfuitctionofx, i.e., f(- a) 	 -

p +1

J
f(it)dz	 0,

-a
andUf(r)i5cflfuflcsiotofx,j.e,f(.x)f(x),

a

J
f(x)dx - 2J

-a	 0
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f

p .11/2I	 9In'xdx =0. alf

.11/2	 p/iI	 sin'xdx =2 1	 .SlflSx1Jx.
Jo

6.20. Illustrative Examples.

By the help of the above propertios of definite integrals we can
evaluate many definite integrals without evaluating the correspond.
Ing indefinite integrals, as shown in the following examples.

, 11/2
Lx. 1. SI,o, that 

J
log tin r dx	 0.	 1 H. S. '851

0

11/2'J log tan	 x)dr	 (ay(iv,Ar,.68J

p11/2	 11/2

	

: 

0 log cot: dx = -•f 	 log 	 tan r dx

21	
;

/2
Ex. 2. Show that	

co x) dx	 (C. P.188f 0

11/2 in

dx
fsin (Tx,j +fcos())

11/2.
I	 '4C011Z

J0	 cos x)

r '2 f!7.
o+ 
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1/21/2 rr-x +
1 

1/2	

lI z]	 4 .dx . 	dx= 5 'I( sin x) + q( coo

=)t.

*
Ex. 3. Show that 

1/2	 1/2 
log sin xd* -J 	 log coo xd; 

-
log

-	 0	 0
C. II. '86

	

J iogsinxdr =J
	

log sin 	 x)dx

1/2

	

= I	 logCos xdx.
Jo

By Art. 6.19, (iv))
1/2

21 = I	 log sin x dx + f	 log cos x dx
0

1/2	 1/2
=
 5

( log sin x + log cos x)dx = I	 log (sin x cos x)dx
O	 JO

1/2

	

log 	 2	 0_ ) dx	
1/2

5 	
(log sin 2x - log 2) dx

L 
og 

=

	

fn /2 
log sin 2x dx -	 log 2

Put 2x =z	 dx=.'dz.

1/?	 1

J
log sin 2x dx	 log sin zdz

/2= .flog sin xdx =f log sin zdx = I [By(z), Art. 6.l9,I
0

21 = 1- - log2;	 .. 1 =	 2 log 	 =log
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Ex. 4. Show that	 101( l 	 x)	 = -Iog 2. .( C. II '61 & C. P. 'BSJ

Put x=WO; ..dx=seOOdO;alsowhnx...og.0.
and when x = I, e

)	 I

I 
=J log (I + ,ane)de 

=J	 log (I + tan(., - 0))dQ.

F By Art. 6.79. (iv) I
/	 \	 1-Now, I + tan u E
- - 0	 tan 	 2

	

a = 1 +	 =V4	 /	 l+ tan 0	 I +tanO

I = 5 log + tan	 = f2	
(log 2 - log (1 + tan 0)1 dO

	

5 log2dO - 5	 t:1 + 
tanO)dO	 it. log 2 -

	

21 =	 t. log 2;	 .. I = - log 2.

C *4 

x
Ex. 5. Show that 

J	
—	 dx = 0.I+

-a

	

i = 5	 dx +
	

Xe	
dx = Ii 4 '2 say.

Pu t t ing x = - z in the first integral,

	

a	 2

	

=1	 dz	
r1	C	 xc	 xc	

dz	 C	 xc

	

11=-1	 =-i --p 1+z2	 p I+z 2 	 p	 1 +x

	

a	 0	 a

Hence the result.

6.21. Logarithmic and Exponential Functions.

The fundamental concepts of Calculus furnish a more adequate
theory of logarithmic and exponential functions than the met-hods
adopted in elementary books. There an exponential function is first
introduced, and then logarithm is defined as the inverse function;
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but in the treatment of these functions by the principles of Calculus,
logarithm is first defined by means of a definite integral, and then
exponential function is introduced as the inverse of logari-thm.
From the stand-point of these new definitions, certain impor-
tant inequalities and limits can be obtained more easily and
satisfactorily.

A. Logarithmic Function.

The natural lQgarithm log x is defined as

log x=	 (1)

where x is any positive number, i.e., x > 0

Thus, log x denotes the area under the curve y = I / t from
t = 1 tot = X.

From the definition it follows that log 1 = 0, and I since lit
is continuous for t > 0 1 from the fundamental theorem of Integral
Calculus it follows that log x is a continuous function and has a
derivative given by

d	 1(logx) =	 .	 . .. (2)

Since the derivative is always positive, log x increases steadi-
ly with x (i.e., log x is a monotone increasing function).

Putting I = I / u in the integral for x, we get

dilog x=J z--= _ J 	
du-= -log 1
j 

Putting t = yu I y = a fixed number > 0 I in the integral for
log( xy ), we get

XYdt	 du	 du
log (xy)=f TJ -Lm 	 ; - f

t/y	 I	 I

= logx_log(I/y)IOgX+l0gY ....(4)
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i this way, other well-known properties of logarithms can be
)ped.

ice log x is a continuous monotone function of x, having
ue 0 for x = 1, and tending to infinity as x increases, there

,e some number greater than I such that for this value of x
ye log x = I ,and this number is called e Thus e is defined
equation

	

loge = I, i.e. .r:

	
=	 .	 -	 ... (5)

ponentia unction.

- y = log x	 en we write x = e	 . (6)
n this way exponential e Y is defined for all real values
In particuh' e I = 1 , since log I = 0. As y is a continuous

ion of x, x a continuous function of y.

x = e Y	 so that y = log x, and so

=1 I— =x=eYdx x 	 dy	 dx

i.e. ,	 (e' ) = e	 .	 . . . (7)

More generally, 	 (e -Y = ae Y.
dy

> 0) is defined as ell-$, , so that log a' = x log a

hus,	 10' = e108I0

he inverse function of a 3' is called the logarithm to the base a.

h us, if x = a s', y = log. x.

Some Inequalities and Limits.
i) To prove 2 <e < 3.

	log 2=5I<:<2;	 ..	 <l/t<1.
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5
2 a, i.e. • < I •	 i.e., <5 .. . .. 2 < e.

( dt	
ç2 

di	 fdi	 l du du
J T = J TJ2T=J0TJ0r

(by putting t = 2 - is and  = 2 + u)

	

du	 fdu	 .	 .	 ('di=	
4	

> 
4 J -T
	 i.e., > i. i.e., >j -r

3>e,	 i.e., e<.3

(ii) To prove 
x- 'clog (1 +x) < x(x >0).l+x

	

From definition, log( I + x) = 51	 -
:.<t<1+x.	 :.1/(l+x)<1/t<L

	

I4X	 .i+XiIXdjI	
- j 	 di,

•'I	
I

i.e.	 -----< log (1 1)<x.
1x

( iii) To prove Li 	- log (1 s x ) =1.

I	 IogO+z)
From (u), - -_________ -. < 1, and since I /( I x) and] both1+x	 x

tend to I as x -+0, the required limit = 1.

iv) To prove x LI	
a - I = log a..

................ A .5 , i., .J' log a, and that for X = 0 is log a, it

	

follows, from the definition of the derivative for x 	 0, that
gS_g0

	

Li	 = log a
h 

Putting x for h, the required result follows.
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e' - IWhen a = weget

	

. Lt	 =
-40	 X

xl

-4i:(u) To prove LI -
	

I + - I =

Since A log (1 + xl) =	 it follows that the derivative of log

I + xl)for t = 0 is x. Hence, from the definition of the derivative for
r = 0 we get

Lt log(l	
-

	

+xh)	
x

h	 -

Putting h	 I /.we see that

r\ 
ç _log t,I J+-ç), t.e., ç LI log I 

l+) =x.

Since the exponential (unction is continuous, it follows

LI (t +	 =

If we suppose ç —*	 through positive integral values only, the re-
quired result follows.

Putting x = I we get Lt	 (	 = e.

(vi) To prove	 Lt	 n( j - 1) = log 

Since the derivative of e  = e Y ,and that t,r y = U is I • we have, from
the definition of the derivative for y = 0

L	 C	 C	 C	 -1
h	 -.O	 h

Putting z / n for h where z is any arbitra number, and n ranges
over the sequence of positive integers, we get

(
	

el/ll
Lt	 n	 = I , i.e.,	 LI	 n (	 ( e ) - I ) = z

Z	 j

Putting z = leg x, so that e 	 x, the required result follows.

vii) To prove LI	 = 0, when rz > 0log x

If 1>1 and	 >0, then t<t 0 1
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('dl	 (	 ,D_1logx=J<J I	 dt.ie., <	 ,,.e,, < - forx >1.

Suppose a>

- --- Dforx> I.
But (1 /x) —i O,as r--,since a>
Hence the result.
Note. Replacing x by n, where n is a positive integer,

Lt	 2.8! = 0. when a> 0( n - 	 through positive integral values).
viii) To prove	 Lt	 -- = 0 for all values of pi, however great.

	

From (vii) , x - $ log  .- 0, when x - 	 ,	 0
Putting a = I / 3 in the left side and raising it to the power a, we get

x' (Iogx)" —* 0, as x-e '. Now putting x = e  ,so that log x =y,
the required result follows.

6.23. Two Important Definite Integrals.
A. If n be apositive integer,'

iz

J

	

	 cosx dx	 I C. P. '82)o

	

n-ln-3 n-S	
3[C P '84)

	

- n n-2 n-4 422'

or,	 n-1 n-3 n-S	 4 2
is n-2 n-4	 53

according as n is even or odd.

Proof. Jsinxdx =Jsjn-Ixsinxdx
= sin 'X.(- co s x) + ( n - 1)f sin - 2 x cos xdx

(integrating by parts)

* For other forms of these integrals see S 9.3.
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= - sin" 'x cos x + (ii - 1)J Sin .2x(1 -Sin tx)dx

= - sin ,hxcosx+(n_1)J Sill , 2 xdX_(n_1)J sin" dx.

transposing - (n	 1) Jsin" x dx to the left side and divid-
ing by n, we have

I'	 sin"-'x cos x	 (n- 1)1
I sin "x dx = --	 -- +	 2 x dx .()

J	 1	 fl	 J

52 
s" in "xdx	 L_)_ l 2 	,

n	 nJ
0	 0

n-it
= ---	 sin" 2x di

}-icnce, denoting	 in "x dx by 1, we have

(2)

Changing n into it - 2. n	 4, etc. successively, we have,

from (2),

3fl-	 n.-5
I 4; I_ 4	 - - 1,etc.

fl - i

 -n -- I n - 3	 71 - 5	 3	 1
-.-- 1 '°'

!L	
2

^
n	 n-	 n77 4	 '3

according as n is even or odd.

42x
But i0 =J	 dx

Jw

and Ii 
=	

sin xdx 
= [- 

cos 1 J0	 1.
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Thus, we gt the rquked value of f 2 sin x dx.
U

Exactly in the same way it can be shown that f 2 cos x x dx
0

has precisely the same value as the above integral in either case, n
being even or od( 1.

Otherwise, it can be shown thus

f cos x Li r = f cos	 n - x) dx = 5 sin x dx.

Note. The student can easily detect the law of formation of the factors
in the above f.rrnul, noting that when the index is even, an additional fac-
tor t is written at the enI but when the index is odd, no factor involving

IS introduced. The formula (I) and (2) above are called Reduction For-
mula. (See Chapter IX. I

B. 5 s!n x cos ' x dx, rn , n being positive integers.
0	 (C.P.'BsJ

5 sinxcos'xdx	 cos

n--	 t= cos''x ------- + --- i lcos-xsinxsrn ..- i 'dx

	

ri + I	 in P I

sin - + x[integrating by parts and noting
5
 sin x cos x dx = m + i I

n—i1.
i sinx(1 COS 2x) COS . -2 xdx	,n+I	 7n+iJ

	

n'" 1 xcos - 'x	 U - I t= -	 +	 I sinxcos 2 xdx	m+1	 m+I j
- U	

I Isinxcosxdx.nt+l j
'ee Chapter IX, Art. 9.15.
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Hence, transposing and dividing by	 we have
I Sinxcosxdx

SIfl I XCOS I X	 n — I C
=	 4---IS1flXCOs'2xdx	 (I)m+nJ

(2

	

	 rsln"'.'xcos.ix 72sin xcos xdxI	 '	 =j	 '.0	 0

+ 	 Im +n j
0

n—I	 a

	

i
	

sin 'xcos' 2 xdx.	 . . . (2)M + nj
0

Again, writing f sin'xcCXX Jin. . x(cosxsinx)dx
and integrating by parts and proceeding as above, we get

I. .	 sin_-ix cos , .•IxI sin 'x cos -x dx
j	 rn+n

rn —It.+

	

	 I $In2xcosxdx
in + nj

and hence taking it between the limits 0 and -in, we get

I siri'x cos 'xdx in — II	 sin 2 xcosxdx ....(3)rn+nj
0	 0

Thus, denoting 
J	 sin x cos ' x dx by I., , we have from

(2) and (3)	 0

n — I
Jm,n = 

in +

rn — I	 .	 ... (4)
rn+
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r..i
Again, since	 SiflXCOs'xdx

Jo

rihc

=	 sin' ( . n - x)cos' (-	 - x)dxJo

rIt

= J Sifl'xcos"xdx,
0

=1n	 (5)

By means of the formulae (2) and (3), either index can be
reduced hy 2, and by repetitions of this process we can, since m
and n are positive integers, make the original integral. viz., I,
depend upon one in which the indices are I or 0. The result, there-
fore, finally involves one or other of the following integrals:

5 sin x cos xdx -iJ dx=	

}	 .. (6)f sinxdr = 1; f cos xdx = IJ o	Jo

Thus, finally we have

J
sin mx cos x dx 5	 cos ' x sin ' x dx

0	 0

- l.3.S ... (m - 1).1.3.5 	 (n — 1) n
2'

when both m and n are even integers; and

-	 2.4.6...(m —1)
(n + I)(n + 3)...(n + in)

when one of the two indices, say m, is an odd integer.
By (iv) of Art 6.19,
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jilt

J sin" (4n - x)cos ( .Ix - x)d
0

Ft

=1 0

(I)

From (2) of Art. 6.10(B), we get

n-I= -- . I_, -m+n	 1	 ... (2)
M 	 .1

= m +	
I,._,,,, by (1)

If n is an even integer we can deduce from the (.r t result of
(2)'5y integration

n - I	 n-3
t•	

rn+nmi-n-2""
-	 (ii - 1)(n - 3)...3.I

- (rn + n)(rn + n - 2)...(m + 2)

1.3.5...(n- I)
= -	

+	
i	 sirtxdx.

(rn + n)(rn + n-2) ... (m 

The result now follows from (A) of § 6.23.

Note 1. The above definite Integrals are of great use in the application
of Integral Calculus to practical problems e.g., In the determination of
centre of gravity, in the calculation of area, etc. and also many elementary
definite integrals on suitable substitution reduce to one or other of the above
forms, as shown in the following examples.

6.24. Illustrative Examples.

Ex. 1. Evwluatef x' 4(1	 )dx.

Put x = sin 0; 	 .. dx = cos edO and I -X' =COs  0;

also when x =0, 0 = 0, and when  = 1, 0
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The given integral then reduces to

1.3.5.1 x	 5rI sin'Ocos t OdO =
J

	 14.6.8 1 =
0 

Ex. 2. Evaluate I x 1 (1- x)1dx.
Jo

Put x =ain 1 0; .. dx = 2 sin 0 cos 8 dO
and when x =0,1, we have 0	 0, fit respectively.

4	 16I = 2 f0 sin t $cos 4 OdO = 2 2. = -
o

Ex. 3. Evaluate 
	

Cos 'xdx.
0

Since	 cos ' x = -cos-(x-x)  when it is odd.
and	 = cos (x - x) when it is ever,

by Art. 6.8 (vii), it follows that I = 0 when it is odd,

and	 I = 2 P x cos"x  dx, when it iseven

=2 
n-i	

-2-1--.(By Art. 623(n)1it	 n-2 n-4	 422

EXAMPLES VI(B)

Show that

1.	 + b - x)dx =f f(x)dx.

(ii)J::f(x+ c)dx =f!x.
mb

Gii)
f 

f(nx)dx =.;. ff(x)dx.

Inlegral Calculus (main) -12
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2.
2	 sin x	 dx=	 .

	
C. P.'861

r 2 CO5X—jfl
3. .	 dx..J I + srnxcosx

4.5 (acosx +bsln'x)dx 3w(a + b).[C.P.'851
U

S.	 J	 sin 2x log tan x dx 0.
0

6.	
J

xf(sinx)dx	 f (sin x)dx.
o	 0

.	 j x log sin x dx = .	 log-.

r

.	 I C. P. '75

.
8. I xsrn•xcos 2 xdx =

Jo

9.
fxsinxdx n2

•	 sin4x dx	 0
. fo sin x

II.	 5x.1a2 -x 2 dx= 0.

2*
12.	 1 sin' xcos . xdx = 0.

Jo



Lx. VI(B)	 DEFINTE D11BGRALS

•1
13.	 J log sin (4 * 0 ) do = log".

0
I

14.
	 5

logx	
dx W	 I

I -x 2 )	 = log -2

15.	 1 log (1 + tan 0)dO	 . log 
so

147

tPulFio

(Pug x	 sin 0)

C. P. '76 , '83 1

Ix

16. fxcos 4 xdx =	

12817.(i)5 cos'xdx =n. (ii) 5	 in'xdx

(C.P. '82)

(iii)52 sin 4 Ocos'O dO
- 2048

(iv)f sln 4 x cos 'xdx=
J

	

	 315o 

'C
57

(v)j (1 
+ 

Cos x)'dx--
0

p.'
(vi)J sin 3xcosxdx = 0.	 [H. S.'80J

0

,.II/2(vii) J cos 1 0 dO = 0. (viii) J	 sjn'x dx = 0.o	 -2/2

I
18.(i) I x 3 (1- x)dx

Jo
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(ii)J	 x 3 (1-' x 1 )dx =
0

a

(iii)I
x1 	 3i

dxi(a 2 _2)
0

'd'	 5
(iv)	

xj	 .i -	 =

19. $0X2 
dx	 ----=	 . ( Put x=i Ian O1

r*	 1
20. (i) I	

x sin x	 I
_t•-	 L II. '75, J . E. E. 89 I

J I +cos	 4

sin

0

(ii) + 1).

(iii) I ------- dx	 ! ,t(x-2). IC.H.19641
J sec  tan 

0

(iv) f!---.-
jsin x + co	 2N

(v) (1 +	 1og(42 - 1)1.

(vi)Jcut 
, (I-x+ r')dx=ln-log2.

0

a,b >0).(vii) J	
xdx

a 2 sin 	 +b 2 cosx - 2ab
0
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xdx	 n

(viii) $	 1 + cos 2x + sin 2x = 	
log 2.

0

	_2 -	 log  + 1).
(ix)J	 (2x' - a1 )2	

dx =

0

	vd	 7T1(al +b1)

.', j	 os+bn2x)l =	 4a 
0	 (1.E.E.'88)

I
21. If I = 5 tan "0 dO • show that I,. = .- - I •

Hence find the value of	 tan 'xdx.

22. Show that, if m and n are positive and m is an integer,

1	 1

5 i" -1 (1 - x)"'' dx =50 x"'	 (1 - x)'' dx

0 

1.2.3 .....(m - 1)
=

ANSWERS

21.



CHAPTER VII

INFINITE (OR IMPROPER) INTEGRALS AND INTEGRATION

OF INFINITE SERIES

7.1. Infinite integrals.

In discussing definite integrals we have hitherto supposed that
the range of integration is finite and the intcgrand is continuous in
the range. If in an integral either the range is infinite or the in-
tegrand has an infinite discontinuty in the range (i.e., the intcgrand
tends to infinity at some points of the range), the integral is usual-ly called an Infinite Integral, and by some Writers an Improper Integ
ral. Simple cases of infinite integrals occur in elementary problems;
for example, in the problem of finding the area between a plane
curve and its asymptote. We give below the definitions of infinite
integrals in different cases.

(A) Infinite range.

(I) ft (x ) dx is defined as	 U f f (x)  dx,

provided f( x) is integrable in (a, c), and this limit exists.

(ii)5 f(x)dxis defined as £— 
i f(x)dx,

providedf( x) is integrable in (c, b), and this limit exists.

(iii) If the infinite integrals 1:! x ) dx and 5 f( x ) dx

both exist, we say that 5 . f ( x ) dx exists, and

i:: 
f(x)dx=ff(x)ax+ff(x)dx
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Not,. In the ab4v cases, when the limit tends to a finite number, ie
integral is said to be convergent, when It tends to infinity with a fixed s
it * said to be divergent, and when It does not tend to any fixed limit. Ii.
or infinite, it is said to be oscillatory. When an integral is divergent or
dilatory, some writers say that the integral does not exist or the integral h
meaning. (See Ex. 2. § 7.2 I

(B) Integrand infinitely discontinuous at a point.

(I) If f( x) is infinitely discontinuous only at the end point
i.e.,if f(x)-9aS x —a,then

LI	 ja,cf	 d,c > 0,

provided f( x) be integrable in (a + c , b) and this limit exists.

(ii)if  ( x ) is infinitely discontinuous only at the end point
i.e.,iff(x)—"as x -+b,then

b	 b - E

f f(x)dxisdefinedas Lt 5	
f(x)dx,E > 0,

provided f( x) be integrable in (a. b - c) and this limit exists

(iii) If f( x ) is infinitely discontinuous only at an internal point
(a < c< L'),i.e.,iff(x)—*oas x —,c,thcn

c-e	 fb

fI	 f(x)dx =, Lt	 I	 f(x)dx + £
	 O J
,Lt	 I	 f(

JJ	 —* 
a	 a	 c*C

when E --+0 and c' - 0 independently.

Note. It Sometimes happens that no definite limit exists when c
' tend to zero independently, but that a limit exists when £ = '-' (See E 7.

Art. 7.2. 1 When c c' , the value of the limit on the right side, when it ex
ists, is called the principal value of the improper integral and is very often

	

denoted by PJ	 f(x)dx.
a
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(iv) If a and b are both points of infinite discontinuity,

	then $ f(x)dx is defined as 	 f(x)dx +5	 f(x)dx when

these two i ntegrals exist, as defined above, c being a point betweena and b.

7.2. Illustrative Examples.

	

Ex. 1. Evaluate	 t	 dx.

'C

I 
= C Li-, JI	 e- dx = Li	 (1C C ) = I.-. 

0

Ex. 2. Evaluate Jcosixdr.
0

I = Lt- j cos ix dx = Lt	 but this limit does not exist.(-4 	 (-3	 1
I lence the iniea1 does not exisl.

	

Ex. 3. Evaluate	 dxL +
-	

dx

	

a	

x2 f	
dx

I + a

Ja	
dx

I + x 2 c	 5	 dxa
=	

1 +x 2 =
Li	 Li 	 (tan-'a -tan-'t)—.- 

€
= tan - 'a +,t;

dx	
Li

Ja=

	

_____	

dx
''

I ' ____= Li	 (tan-tan-' a)

	

1 + x 2	 €' -. -	 = Ca
=n - tan 'a -

Although this TigraI does not exist in the manner defined above, it if,
expressed in terms of Dirac's delta function [8(i)] in modern mathematics
Detailed discussion is outside the scope of this book.
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I = (tan'a +it) + ( -I n-tan -l a)	 It.

dx
Ex. 4. Evaluate f 

Jo 	 •

Here	 tends to as x tends to + 0.

dx	 dx
Lt

•1 	
.11

I	 -sO	 X u /3 c O 3(1 -c"3 ) = 3
x2'3t	

.

£

Ex S. Evaluate 5	
dx
TT

-1

Here	 —*	 as x -sO. an interior point of the interval (-L1).

dx	 dx
1J

-j+Jj.
-i	 0

Now, 5LI	 dx = U	 ( - I )-i	 J p0	 t

	

this limit does not exist. soj	 does not exist

Similarly,	 .Lx does not exist.

Note. In examples of this type usually a mistake is committed in this
way

Since 5.dx=_1	
[-n r: 

=-2,

which is wrong.
In this connection, it should be carefully noted that the relation

J
f ( x ) dx = F (b) — F (a ) cannot be used without special examination

a
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unless F' (x) = f 	 for all values of x from a to b, both Inclusive.
Here, since the relation A (- )	 fails to have any meaningdx\ X	 X2

when x = 0, and I) is a value between - I and + i, we cannot direct-
ly apply the Fundamental Theorem of Integral Calculus to evaluate this
definite integral.

Ex. 6. showiltatf e-" cos bxdx=	 b1 a>O.

f oe_1 cos bx dx =	 - ( -	 b sin bx)]C I 
Art. 3.3j

= 2 (e -lc (— acosb+bsink)—(—g)).

I e" cos bxdr = Lt	 I e" cos bxdxJ	 J0	 0

= r

	

	 +b2- - lc (—acosbt + bslnbc)+ ai—.. [a2 j

Now, Lt e(— acosbt + sinbc) = 0.£
Since e - ' —+ 0 andcos bE and sin bc arc bounded. I

I 
0

I	 e'cosbxdx	 a=i	 a2+b2

Er. 7. Evaluate j•	 d
x

The itegrand here is undefined for r = 0.

dx
1	 -c	 i
-- dx = LI	 I	 -	 + , Lt	 I	 .V 	 £0 J X	 -9£0J , I—*
 

= Lt [ log( _')1_ 1 + LI[ log x]

= Lt log e- Lt loge' = Lt log -
as c and e' tend to zero independently.



IWO

INFINITE INTEGRALS ETC.	 155

But this limit is not definite, since it depends upon the ratio a : c'.
which may be anything, £ and a' being both arbitrary positive numbers.

+ dxBut if we put a = a', we get	
1 - =	

log I = 0.f
Thus, although the general value of the integral does not exist, its prin-

cipal value exists.

Note.
5

 .!. , when the range of integration is such that  is neg-

ative throughout, may be written, by putting z = - x, as f ie

dz

= [iogz} ' = [Iog(_ x)}	 ,forlog x is imaginary here.

Ex. S. Evaluate 5 (1 +x2)2 
dx.

Put x = tan 0. .. dx = sec 20 dO ; as x increases from 0 to , 0 in-
creases from 0 tow.

'=1	tan2 0 sec 2 OdO	 a

sec4O	 'f sin' OdO...in

Note. Thus, sometimes an infinite integral can be transformed into an or-
dinary definite integal by a suitable substitution. But whenever a substitution
is used to evaluate an infinite integral, we must see that the transformation
Is legitimate.

Er. 9. Show that 5 e -' x" dx = it !, it being a positive integer.

Let I, denote the given integral.

'C
I, = Lt	 I exdxC-.- J

0
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=
C 

Lt	 ii- e' xI + ii
0
 e'x"' dx

	

—.— LL	 .J	 J0 

I Integrating by parts)
PC

= it LI	 I	 ex" 1 dx, since	 Lt	 e.&' -0.
C—.—

0

I See Das & Mukherjees Differential Calculus,
UT. 1i(,i flsE A u?7ITh, Mffl flu. Z liii). A

= nI	 =n (n - 1 ) I,-2 (as before )

= ,i(n -1)(n - 2)Ia-3 , = etc.

= n(n -1 )(n - 2) ... 2.1 f	 e' dx
Jo

= it ! ,since f e -, dx = 1.	 See Ex. I above)
Jo

7.3. The integral $	 e2dx.

Since e- 1 2 ( = Ile , ' ) is positive and < (for x > 0)I +xt
x

it follows that J	 e = 2dx increases monotonically with X

x
2	 1

and	
x

i	 e-	 dx < i	 • i.e., < tan-'X,
J	 j 1 

dx
+12

o	 °	 f See , 6.7.1
This being true for all positive values of X, however large,

and as tan t X increases with X and -4	 as X -4 o , it follows

x
that 5	

e - ' 2dx monotonically increases with X and is boun-

ded above.
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Thus, the infinite integral j e' dx is convergent.

Denote it by I.
Now, a being any positive number, replace x by ax.

Then, 1	 ae"dx.

ie2 = f ae 2 (1 - -2)dx.
Jo

Since ae - ' " > is a continuous function for all positive
values of x and a (which are independent), assuming the validity
of integration under an integral sign in this case

if e2da =J 
(Jae2(1+ ') da) dx.	 .. (1)

Also for any particular value of x ,f ae 2(1 *da

F_i	 I	 C1(1 +,2)l	 1	 [	 _e2(12)
L 21	 J	 2(1+x2)L

0
I

2(1 + x t ) as

Hence from (I), 12 
=	

1 2.dx

I it=-1--,or, I

i.e.,	 e ' dx = -}

For an alternative proof see Chapter IX, Art. 8.21.
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7.4. The integral- sin bx dx.
0

—

50 

e 
x 
sin bx•	 dx,a>O.

Assuming the validity of differentiation under the integral
sign, we have

=5e-i cos brdx

b2	 a > 0. 1 See Ex. 6 Art. 7.2. J

Now, integrating with respect to b

f dli	 1	 b	 bu = a	 =a—tan-'-4C=tan-'—+Cfl)a 2 ^b l	a	 a	 a
where C is the constant of Integration.

From the given integral, we see that when b 0, u = 0.

from (1), we deduce C = 0.

t	 e-' sin bx	 LiI	 dx = tan-' - .	 ... (2)
j	 x	 a0

Assuming u a continuous function of a, we deduce from (2),
when a —,0,

(	 slnbx	 x

0	

dx =	 , or	 -	 ... (3)

according as b > or < 0.

Cor. When b = I we have

(4)
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Note. There are other method, of obtaining the result. Student, may
consult any text-book on Mathematical Analysis.

7.5. Integration of Infinite Series.

We have proved in Art. 1.4 that the integral of the sum of a
finite number of terms Is equal to the sum of the Integrals of these
terms. Now, the question arises whether this principle can be ex-
tended to the case when the number of terms is not finite. In other
words is it always permissible to integrate an infinite series term
by term ? It Is beyond the scope of an elementary treatise like this
to investigate the conditions under which an infinite series can
properly be Integrated term by term. We should merely state the
theorem that applies to most of the series that are ordinarily met
with in elementary mathematics. For a fuller discussion, students
may consult any text-book on Mathematical Analysis.

Theorem A power series can be integrated term by term throughout
any interval of convergence, but not necessarily extending to the end-
points of the interval.

Thus, if f ( x ) can be expanded in a convergent infinite power
series for all values of x in a certain continuous range, viz.,

	

f(x) =	 + a 1 x +n2 x + .... . to —,

S

then ff(x)ix.J(ao+ MIX +a2 x 2 . ..... ) dx

	

a	 a

Szf a,x'dx,
I

or, 5 X 

f(x)dx s:(ao + M i x +a1 x 2 + ..... ) dx

a,x' dx,
a

provided the intervals (a, b ) and (a, x) lie within the interval o
convergence of the power series.
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E. Find by integration the series for tan 	 x

I
=1_x2+X4_X+ ..... tO.,ifx2<1.

1+

integrating both sides between the limits 0 and x,

dx

J:T2	

JX	
-	 + x 1 - r4 +

tan x=x_x 3 +4x 5_ +r'+ .....-I<x<1.

EXAMPLES VII
Evaluate, when possible, th2 following integrals

1	 (i) f 
I+x2

dx	 xdx

J J x +4
o 

2. (I) f	 dx	 (ii) f	 " dx.
2	 -

3. (i)f--

4.
	 fr

	 sin xdx

	

I	 cos 2x

S. WI'	
dx

x(1+ x)

•;	 (i)f	
'1 +	 x dx1-x

4*

7 (i)1	
xdx

(1+x2)2

r
(i	

dx
i)J

(ii)	
dx

	

I 	 Cos X

	

a	
+

2
(ii)	

dx
2-x

(ii) J	
dx

(1 + x2 )4
0

xdx

.(II)S 74 I



	

Ex. VII	 INPINITh INTEGRALS M.	 161

S. (i) j	
dx	

01) f	 dx
(I - X)'	 j	 (X + l)(x + 2)

Show that (Ex.9 to Ex.22)

9	 J:	
dx	 x

(x'+ a')(x' +b2) = 2ab(a +7 ) .(a,b>OJ

10	 f	
xix.

0

II	 x'dx
(x' +a )(x' + ti'	 2(a	 b))	 +	 ta,b>Of:	 J

12.	 L e- (cos x - sin x )dx	 0. (ii)J	 : dx	 0

(ii) Divide the range (0, -) into two parts (0, 1) and (I

+	 d13	 x

14.	
5 x log xdx = -	 I

(1),(fl>-1).

-	 b15	 e	 sin bxdx	 (a > 0).

	

•	
-

 Jo a' + b'

16 (i)J o	
dx	

25	 dx
	•	 x1+2x cos e+1	 x2+2xcosO+1

0

(ii)

	

	
+(1 +x' )}	 n' — I

where n is an integer greater than one.

inlegral Célculus (main) -13
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xdx	 11
(th)J rr x)(l^z) 4

	

17. 
( . )J	 naxco..x 

dx	 0, or -1

accordirg as a >, <	 0! = .• (a and b bc:g supposed

OsitVe ).

	

(u)5	 sin 2z + cos J._x(sinx +Cosx)ld	 C.

18. sLflXd

	

f 0 	
x	 4

f !±-!j31'..	 i

	

J	 x	 16
0

	

(	 sinmx
20. dx.m,or_Tm

f
according as m>, or < 0.

21.

	

r 'nx'3	 3n
22. I (s-) dx—

	

J	 x	 S
0

23. Find by integration the power series for the following:.

Ci> log (1 + x ) ;	 (ii) log( 1 – x ) ; 	 (iii) sin 'I

Show that :• (Ex.24 t. Ex26)

• C - dx	 ----r	 i sinX 1.3 sin4x
24. 0) j
	

------,	 2 'sin x	 •i-	
+ 1-4 -	 +

•	 f	 dx	 x	 I x 5	1.3 x'
"1>Ji-i	

;(x2 <1).
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xsinx	 x	 x

(iii)J -"i- dx	 x-	
+

b

(iv)5	 -dx	 log	 + (b—a)+ 
442 +

(v)52 sin 2 d where e 2 < 1,

-	 f	 /\21	 /)3\,4
	2 11	 2)	 2.4) 3

dx
(vi) -j---------._-. , where k 2 < I

2 )2	 +(f).k4 
4 ,... I

(vii) + I.

	

J 1 ' x	 3	 5

	dx	 1	 1(viii) •o
	

=	
+ 2.4.5.2' +

--	 ------dx =	 (— 1)	
(2n +

2.	

0

26. (i)I	 dx =	 WeE 1.	 !! 1

	

J i+x	 [	 n'	 6J

{i.

dx= -
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27. (I) Show that if, a > 0,

J
-- dx = -- - +

•1	 I	 I	 I

	

i +x	 a	 a+I 4+2a+3+

Hence deduce the value of the series 1 3 + - - - +

(ii) Show-that, if a > 0, b 0,

dx	
- _____

	

I+x b	 a a+b+
J

	

	
a+2ta+3b

o

28. Show that

J
x 2 Plog (I+x)dx	 2 [h+4••	 -21;711

( integrate by perU. I

ANSWERS

1. (1) 3 X.	 (II) does not exist	 2. (i) !log 3.	 (11)3

3. (I) principal value is  . 	 (ii) principal value is 0

4. (i) does not exist.	 (ii) does not exist.

5. (1) log 2. (ii) does not exist	 6. (I) X .	 ( ii).fr-

7. (I) 3 .	(ii) 0	
S. (i) does not exist. (ii) log 2.

23. (1) z-3x 2 •3x 3 x 4 + ........ . x < I

log 	 +	 --•i +--..... ...... r 2 < 1

	

I x 1	1.3	 x5

	

(ill)' + 2	
-- + .... 27. (i) log 2.



CHAPTER VIII

IRRATIONAL FUNCTIONS

8.1. In the previous chapters we have discussed simple cases
of integrals of irrational functions. We shall now consider here
some harder types of such integrals.

8.2. If the integrand contains only fractional powers of x,
i.e., if the integrand be of the form

Fx)

where F( z)  is a rational function of z,
the substitution is x =

where n is the least common multiple of the denominators of the
fractional exponents of x. I See Ex. I of Examples VIII. I

8.3. If the integrand contains only fractional powers
of (a + bx), i.e., if the intcgrand be of the form

F((a + bx)),

where F( z) is a rational function of z,
the substitution is a + bx = z'

where n is the least common multiple of the denominators of the
fractional exponents of ( a + bx) .L See Lx. 2 & 3 of Examples VIII. I

8.4. Let the integral be of the formI x ( . a + bx • )P dx,

where m, n, p are rational numbers.

(A) If p be a positive integer, expand (a + bx ) P by the
Binomial Theorem and integrate term by term.

I See Lx. 4(1) of Examples VIII.)

(B) If p be a fraction, say, equal to r/ s, where r and a are in-
tegers and s is positive,
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Case I. If 
m + 1 = an Integer or zero,

the substitution Is a + bx =

If 
m + I * an integer or zero, we apply the followingI

Case IT.

Case II. 
If m + 1 +	 • an integer	 or zero,

the	 e-,al substitution Is a + bx' = z'x

If, however, the integer is positive or zero,

alternative subslitutiott is a + bx A =V

If the integer is negative,
the alternative substitution is ax- 2 + b =

which is practically the same as (1) of Case II, sometimes facilitates

the calculation.	 I See Lx. 2 of Art. 8 .8. 1

8.3. The integral of the form I	
dx

+ b)I(cx_1 + d

Here the substitution is cx' + d = x 2 z'

Sometimes trigonometrical substitutions like

x = k tan 0, x = k sin 0 ,.x = k sec 9, etc. facilitate

integration.
I See Er. 28 (ii) of Examples 11 (A) and Lx. 80) and Er. 8(ii) of Ex-

amples V111 .1

8.6. The integral of the form

df	 x
J (px 2 + qx + r)'I( SK I + bx + c)

Here we shall consider two cases only.

Caje I. If px + qx + r breaks up into two linear factors of the

forms (mx + n) and (,n'x + n'), then we resolve
I/( mx t n )( inx + n)) into two partial fractions and the integral

then transforms into the sum (or difference) of two integrals of the
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type (B) of Art. 2.8. (See Ex. 13 of Examples VIII. I

Case IL !Ipx' + qx-+ nsa perfect square, say, (Ix + rn) 2 , then
the substitution is lx + m = liz

In some cases trigonometrical substitutions, as in Art. 8.5, are ef-
fective.

If q = 0 b = 0 the integral reduces to the form given in the
Art. 8.5.

In all these cases, the general substitution is

I iax + bx + c

	

.I I	 I=z.
'4 \px2+qx+r/

Briefly, we have considered integrals of the type

dx

where. P and Q are both linear functions of x and P linear, Q
quadratic I See Art. 2.8(A) and 2.8(B). I and P quadratic, Q quad-
ratic. I See Art. P.5 and 8.6. 1

If P be quad -'it and Q linear, put Q = z

Also we have considered integrals of the type

C 1(x)
pQdX.

where f ( x ) is a polynomial, P, Q being linear or quadratic. I See Ex.
11 to 15 of Examples VIII,

8.7. The integral o f the form

	

f	 1(x)	 _ d
+ 2bx + cx +2bx +	 X

where f ( x ) is a rational function of x

The denominator can be written as

.j((x +_).)+v(x+)+c}

nd hence the substitution is
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x + - z or x - - - a
a	 a

according as f ( x) is expressible In the form

I	 1	 I	 1	 I	 l	 /or

If b - 0, the substitution

	a' +	 = z or x' -	 = a
x l	a'

is sometimes useful. I See Lx. 19 of Examples VIII. J

S.S. Illustrative Examples.

CEx. i. IntcgrsleJ x34(I
dx +x' )

Comparing it with the form of Art. 8.4, we find here

m .-3,ii .3,,=-i,s =3.

si+1Now,	 # an integer, but

i,,+I	 r
+	

- I, (an lnteger).	 ... (I)

	

by Art .8.4, Case It, we put I + x 3 	 zx3

	

X3 (z' - 1)	 1 • 	 X	
(z'	 I )/3	 ... (2)

dx	 (3	 1)l/3 dz .	 ... (3)

denominator =x4:

C	 ,	 * (1 +x' )3/3

• -- j 
ziz - - 1z	 -T	 X2

Alternatively, since (1) is a negative Integer, we can put

+ I = a1

Thus, I	
dx	

,, .jx 4 (x' + l) 1 /3 dx.
' 

( i ( +-))
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Since x' + 1 = z	 .. - x' dx	 z 2 dz.

i = _Jz a 2 dz= etc.

2 
InteRrdIeJ	

dx
Ex

(x2- 2x + 1)4(x 2 -	 I

It is of the form Case II of Art. 8.6.

J

dx

= (x- 1) 2 ((X -1)' + 2)

5	
dz

 z 2 '(z + 
2) ,putting Z — X

It is of the form of Art. 8.5.

2tan' O.J2secO ,	
=•

	

	
S 

'J2sec2Od8	 putting a '2tanO,

= - 5 coseccot 0 d = -.cosce.

I 0 '(z +2),
Since tan O =	 z, cosec

I 'J(z + 2)_ —1- W	 4-2x + 3)
2	 a	 2	 x-1

Ex. 3. Integrate the following

x.	 (iTi) 4 '	 dx.
J 

X +

	

idx (•• )J	 d	 JX - I	 _____

x4+1	 •	 x4+I

•1
(j) J = J 

- X	 dx (dividing the numerator and denominator by at
a 1 +-a

169

j

I	 1(, l +)dxat
= 1,	 1\l
J ( x- — 1 + 2

\	 a,

=j2?2 [onputting x_	 a)

I x l	 I
= . tan	 y=tafl	 I x

-
'/2 )

(Ii) It is similar to (I)
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1_1

2x
dz

=ir	 On Putting

I	 z-'12	 I	 x2 + 1-x'12= 2V log ------ = m log 
2 + +

- I f ( __ + I)- (r 2 - I)(Iii) I	
+	 - dxX.

.:' +
 

dx --If  
x 2 - Ii x 4 + I

_____	
+ I- xV2(x 2 - I=	 tan -' _____	 -	 log

by (1) and (ii)
Ex. 4. intesraeef I	 X	 dx

xx2+x.

_1 (I __)dx

(1-_)dr
J (x++!)2

	f
_•__,•_Z:__	 [putting x+Jzi

f( cosec 0 cot 0
= •	 cot 0	 (putting z = cosec 01

)sin 
-1

= 540 9 COS4	 = cosec - ( 2_! 
	 ri )
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EXAMPLES VIII

Integrate the following :-

	dx.	 (Put xz4.I
J	

1+ c
T(1 +x)

2	 I	 ^	 dx
.1	

2TT4TX+2)
	 (Put x+2=Z.I

dx
3.

r
jYTTT2+x)I3

4. (i)$x(1+X)2dx.	 60J(2+X)dX.

dx
p_____________

5. (i)J -j-	 1-53-2dx.	 x A (2 +X2)Vl

dxf(l .+x '
6. (i) j	 dx.	 (ii) J

(iii) ('1(1
	 dx.

J	 X

P 1( x - x2 
7. 	(I) J --	 dx.	 J 

'Ixl( I - 2x) dx.

dx
8. W 	 TTx2+4)	 S	

dx
TixTTi-)

I Put (I) x = 2 tan 0; (U) x = 3 sec 9 1

P	 xdx	 dx
___________

(x-I ) ( r + 2)	 J.(x2 )3/2 (x -J 

	

f '1(1 +x + x 2 )	 r (x +1(a 2 + x' ))
10. (')	 - dx.	

j	 TT	
dx

C
11. j ( 	

+1) (iI+1) dx

dx
12.

dx

13. 5	 T9)(31+2
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x+3 dx.14. J(x2+5x+7).J(x+2)

	

dx	
(ii)J 

(xt+4x.s-4)dx
15. 1 J (x ' +5x+7 ) .J(x +2 y	 (x2+5x+7)J(x+2)

116	 12+1.	 (i) 	4	 +	
dx.	 (ii) f	 x 2	 1	 dx.

X , + 1 2 + I

17. ,	 +	 dx.f 

18. $ X, + xt + 1dx.

(1_x2)dxf19.	 1i-: x )'I( x + 1)
(1 + x2)dx

20. J (1 - 12 )'I(l -3x +x4

r	
(x2

21. j xt(x 2 +x- 1 -I) X,

x2-x-2
22. x(x-' -x 2 )3/2 dx.f

f	 1+x-2
23. J'J(12 +x.1_flI1

24 Integrate 5

	

	
dx

r(x2_x+2)'

by the substitution z = x + 'I( x 2- x + 2)

and show that the value is I-y Jog I(x2_x+2)+x_42
I(x - x + 2) + x

25. Integrate	 dx
$	 +2X- 1) ' by the substitution

Zx + 4W t 2x - I) and show that the value is
2 tan -' (X + 1(x2 + 2x - I)).
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ANSWERS
1. 41tan	 (,lx)+Iog(1 + 4x)l.

2.2(x+ 2)1/2 — 4(r + 2)" + 4 log (1 +(x+ 2)1/4).

3. 2 tan' (2 + x) 212 . 4. (I) 3 x" + --  x 1' +11

(ii)^ (2+x)"	 (2 +4x)2/2.

________
+ 2	 1 (2 +x )3/2 I. 1 (2+ x2 )I/l

—.	 + J )	 12	 4	 x

6 (I)	
1 (1 +z3 )4/3	

(Ii)	
1	 (1 + xn )(n- 1)/n

—	 4

(iii) - [ Iog sxl .4(1 +x 4 ) 
41 .x 4 ) ]

X2

7.	
2 (X -x2 )3/1	 2 (1-	 )3/2	 4 (1 -2x)211

- T	 3	 xs12	 -

/ x43	 ________
( 

4(x -9))
S. (t) - tan -' (..( x + 4))	 (ii)	 tan -

 (x+ 2) 112 - 2(r + 2)"	 log+ 	4(x+ 2)-43
3	 1(x+ 2 _)__+_73

I (-;).
( 2x + I __________

1O.(i) 4(1 +x +X )	 sinh •'	 3 )-	 (31x))

(ii)	 Ix + 4(1 2 + x 2 )J
N

11. 4(x • 1)+ ,ih1x_.Sjflh

12	
4(42 +4z + 5)

8	 2x+1

13. -sec' (2x + 3) + -3 1 
cosh (5 +35

x + 3)

14.-j tan	 1 4'1(z +
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15.(i)	 tan -i(	 zil) - I
+ 2)	 2	 2)

-log

( x+i(ii) 2 'I( x + 2) -	 tan -'

X	 - I	 (jj)1 log '
	 -- '• +tan-'	

-	 Z

17. xi3ta -'	 - log	 _(	 )	 I

18	 an (
x3

-
) 

1 log x
2 -x + I

2 

Is	 /x'12 \
) 20. sin-1 (-•) 21.

x

22.	 . 23. qlnh -'
2	 )•



MISCELLANEOUS EXAMPLES I

. Integrate the following functions with respect to x

x 2 +c03 2 x 	 sinx
(I)	 -. eorec 2 X. (ii)	

(	
H.S.( 	 '84, '87 I

+1

cog 8x -cos " x	.	 tan  - tan (W) 1 + 2 cos 5x	 (iv) tan a + tan x

3
(v) sec 7 x cow '•

Ii) sec x log ( sec x + -tan x)

(ix) sec x tan x	 + tan2x)

(vi) x 3 ( log x)2

(viii) x cos x

(x) x Cos x.

(XI) (log x ) . (xii) tan -, 04).  (xiii) log (1 + x 2 )

(xlv) x 2 gln -'x (xv) 2' cos x.	 (xvi) e' x4

Integrate the fôflowtAg

2 (i)J It + 1
x - 1 V

•	 ('
X	 ,'

5 log (1 + x) dx.

4 (1)5	
dx	 -

•	 (e	 +e')1

5. (i)f(a + x)'Ja'+xdx

6 (i)J	 dx
•	 (1 +x2)I(i_x2)

7 (j)I	 dx	 -
•	 (x2 - 4)'I(x-1)

S (i)J	 - dx
•	 x2(1 + x2)'

9 (i)J	 dx

(ii)J

X2

(1 +	
di

00  
sin ( log x) dx.yS

dx(ii)5 
(1 + e' )(1 + e')

(11)5 (a 2 +x t )'a

(ii)5
_______ dx
(1 - x'l(1 + x1)

dx(ii)J ( x 2 +1) .t(x 2 + 4)

dx	 -(ii) 5	 + 1)

dx
(ii) 5
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10. (1)	 dxJ'X3 4(x
a - 1)

x+ 111.(i)f x 1 (x -	 )dX

12 (i ) I dx.1+ sin x

13 (i)J xtan-'x	 dx
(1 +x2)312

14. (I) I	 dx
% j I + cos2x

dx15.(05 ;;-;

16 (i)J	 Ixdx
•	 (x + I)(x +2)

x2dx
17. (i)J(x _I )2(	 + 1)

18 G) sin ax
•	 sinx + tanx

19 (i)S e - " dx,

20.(•) f (x - I )(x - dx
(x - 2)(x -3)

dx	 -21.(i)J 4 + 18x + 81

22. (1)5 (1 
—+ X  )312 +

dx 
(1 +

Evaluate the following

3	 1
23(i)J	 x1(I

0

fix
x(x + 1)2

f

+ 1) dx.X3

(ji)fr2+ sin 2x dx,1 + cos 2x

(li)J	
eltlfl-tx

(1 + l ) 3/2 ix.

(ii) f	 dx

, (a sin x + b cos )2

dx(11)5 
x(x - 1)(x + 1)

dx
• (11)5 x'I(x + x - 6)

sin x-dx.60 5 3 cos x + 2 sin x

(ii)	 dx5 x 'I( 5x 2 - 4x

3x2-2x-3	 d
'f(x-1)(x-2)(x)

dx(ii)f (x
1 + 2x + 5)2

I ii) 54x	 J(2 + 2)dx.

() I	 x' sin3xdx.
Jo

'(11)5 sin (2 tan -' 'q	 +
1 -x
 ) ,Ix
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-t
24. (1)1 xlog(1 +4x)dx.	 (U) I Iog(1 + cosx)dx.

J o.	 Jo

25 (i) f	 0

-	 dx	 x dx.

••

	

	

(1+xt)2	 1+x
o

26 (i)J	 dx	 xdx

	

1 
x(1 +.T2)	

0 
(1 + x)(1 + x1)

	_____ 	 dx
27 (i)f	 dx	 __________

•	 1—x+x2	
(Ii)5(12),J(12).

	

o	 0

.28	 f(i)	 x2	 dx

	

- 	 (if)1	
f 

x t + 1 dx.
•	 (x2 + 1) 2 	 x4 + I

	

1	 '1

Show that

29	 Jt
dx

= 0.288 (nearly).I + x)(2 +x)

•1
30. dx	 *

fJ x+'I(a I	 x2)4
0

.1

31. L2

	 dx
_ 1)(3 - x))

a
-32• 	 J 	 a 2 - x' dx= (1 I A )a2 .1 Put x2 a 2 cos 20.•3 + x20

33
I

f	 dx
3+2sln x+ cosxl

0

34	 f -	 dx	 .	 tanI a 1ei b2 e-- 	 lb	 aI-iI paral Calculus (main) -14
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33	
-log(	

1)	 dx	
log?.X+J	 + 

M. If C., C , C2	.	 C denote the coefficients In the ex-
pansion of (1 + x) where n is a positive integer, show that

C0	 C1	 C .	 C. 	 2  1- I..........1	 2	 3	 n+1

ANSWERS
1.	 cotx i. tan - 'x). (II)r cos a+ sin a log sin (x-a).

Vii) isin 3x - . sin 2x 	 tv) sin 2a log sin (x a) - x cos 2a.
lv) cot 1/1 	 (vi) . x' ((logx)' -jIogx +..J.

(vll)(Iog(secx + tan x)) 2. (vili) ( x 3 -6x)sinx +3(x' -2 )cos..

OX) jsec x'I(l + sec 2 1) + -} log ( sec x*

(x) -r sin 3x + uLcos 3x .+ ir sin X + 1 cos x.
(xi) x(1 3 .3l2 +61- 6), when I = log r.

(xil) (x + 1) tan -' ('/x) -'/x.

(xiii) zkg(I +x 2 ) - 2x + 2 tan x.

sinx s j'J( 1 - r ) ..( I - z2 )2.

(xv) -	
2'	 cos I x - cot I (log?))4fl + (log2)21

(xvi) e ' ( z 4 - ix 3 + 12r 2 - 24x + 24).

I	 I +2. (i) tan 'x +	 (ii) -
+ A 2 	 4(1 ,,2)2

3. (i)logr - ( + .) log (14x).(ii)_.22(cos log r+2 sin log x)

4 (j)	 12 ( I + e 2' )' .	 (u)	 (I +e'

. 1)(2x 2 +3a+2a 2 )4(7 +x 2 )+a 3 log (x+ 4(2 +x' )J.

(j)	 (x + a) 2 ( 15x 2 - 12ax +43o2 ).
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'1(1 +r) $ z'12
6. (I) v2 tan'	 (ii)	 log '1(1 7 z 1 ) -- x '12

1	 2 'l(x - 1) - x43	 I	 (	 x'13
7. (I)	 log '1( x 2 - 1) + 43	 (ii)	 tan	 x + 4) )

2+3x 2	 3 	 _______I
U) - 2x(1 + 

z')2 tanx. (it).5. (I) log	
+8.

2x2 --1	 ,	 l(x2	 I)

	

(x 2 + 1).	 10. (j) sec 1 +
	 2r1(II)

x	 X
(ii) log-- -•l'x	 J+x

L+ 3L 	 + 2 log+6x 2	x-1	 ________.(li)logUr+'1(x' +i))'1	 +x 2 )-

12. (i) x ( t i x - sec x) + log( 1 + sin x >	 (it)e' .in x

x - tan x	 (a +
3	 > VT + x 2)	 (ii) ( I + a I M 1 + X 2_)

14. () 11 sec x + log ( sec x . tan x	 (ii)	 - Cos x
(a sin x + b Cos x)

I	 I + '12 sIn x	 1	 1 + sin 15.(i)	 log 1 -. '12 •	 -	 log j----

(iI){x'1(1_x2)_Co5X}.

16. (I) 242 tan-'	 - 2 tan -' 4r.

x	 I	 I	 I
(1) log-1 +	 ^ .tanx.

17. (i) ! log (x -1)	 ri	 1)	
4 log(x 1 • 1).

2(x+3)(ii)\j. cog' q	 5x

IL (0logtan-x - tan' jX.

(ii) -(2x - 3log(3cox + 2sinx)}.

19. (I) e - ( . + 1) log ( i	 $ 1) . (it) sinh	 (-	 )
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20. Ci) x + 2 (log (x -2) - Iog(x -3)).

(II) 9 log (x- 3)-.- SIog(r - 2)- log (;c 	 1).

21. (1) 	 ( tan'	 x + —

 

	

r+1	 ri-I
- tan -2 + 8  + 2z + 5)

2 2 i- xI(2 + x ) — 222. (i) 2 tan '(1 + x )1	 . (ü) 3(x + '1(2 + x2))

23. Ci) j-t	 (ii)1 -	 . 24. (1) -	 — 2 log f) . 	( i	 n log 1-

	

27	 U

25. (i).	 (ii)i/v2.	 26. (i)- log 2.	 (ii)  - ii.

2.27. (1)	 13.	 00	 .	 28. (j) --L(ii)	 cot	 2.



CHAPTER IX

INTEGRATION BY SUCCESSIVE REDUCTION

AND BETA AND GAMMA FUNCTIONS

9.1. Reduction Formulae.

It has been mentioned in Art. 1.6 that, in some cases of integra-
tion, we take recourse to the method of successive reduction of the
integrand which mostly depends on the repeated application of in-
tegration by parts. This is specially the case when the Integrands
are complicated in nature and depend on certain parameter or
paramtturs These parameters may be positive, negative, negative
or fractional indices, as for example, x "C", tan" x, (x 2 

+42)./2,

sin x cos x • etc. To obtain a complete integral of these
trigonometric or algebraic functions, we first of all define these in-
tegrals by the letters 1, 1. U , etc., introducing the parameter or
parameters as suffixes, and connect them with certain similar other
integral or integrals whose suffixes are lower than that of the
original integral. Then by repeatedly changing the value of the suf-
fixes, the original integral can be made to rest on much simpler in-
tegrals. This last integral can be easily evaluated and knowing the
value of this last integral, by the process of repeated substitution,
the value of the original integral can be found out. The formula in
which a certain integral involving some parameters is connected
with some integrals of lower order is called a Reduction Formula. In
most of the cases the reduction formula is obtained by the process

of integration by parts. Of course, in some cases the method of dif-

ferentiation (See § 9.19 below) or other special devices are adopted

(See § 9.20). In the next few pages methods of finding the reduction
formula of certain integrals are dlscl!sscd

Case I. Integrals involving one parameter.

9.2. Obtain a reduction formula for 5 
x' e" dx

Let 1=5x_ e'dx.	 ... (1)
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Integrating by parts.

I	 e	 nx e'5 dx= x—	 X. e" dx,	 (2)

xe" nor, .1 =	 a	 -	 (3)

Note 1. It may be observed that the integral on the right-hand side of
(2) is of tfe same form as the Integral in (I) except for the power of x, which
is,' - I ,and which can be obtained from (I) replacing iby i - I on both

	

aides. If n be a positive irtng' , 	: cevcly""

	

""
finally depend upon to =Ie'-' dx	 e'/a, and Is thus known.

Note 2. In evaluating (3) from (U we could Integrate r first, but L- that
case I, would have been connected with 1, ., i.e, with an Integral whose
suffix is greater than that of the original one, which is not usually desirable.
A little practice will enable the students to choose the right function.
9.3. Obtain reduction formula for

(L) 5 sin xdx;5 sin xdx.

(II) 5 co." x dx;f cosx dx.

(i) As in Article 6.23A(I) of the book,
I =fain'.xdx

-	 sin' - ' x
n	 +

. COS x	
,t - ' fsin-2 xdx.

sin	 'XCOSX	 n – I

	

II	
+	 ...	 ( 1)• I -

is the required reduction formula.

Also by (I), taking limits of integration from 0 to -L ,
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J.JsInhxdx=iJa_z(hI>1)	 ...(2)

Similarly,

(lj) i. = Jcosxix COS	 :,mn x 
+ 

It - I '_••n.'	 (C.P.'861

and	 j. =	 cos 'x dx = I. -	 (,s > I). ... (4)

Note. If the integrand be sinh ux or cosh I x a similar process may be
adopted.
9.4. Obtain reduction formula for

(i)Jtan 'x dx ;	 ( ii) 5	 tan x dx.	 C. P. '89

( n , a positive integer)

Here, 1.	 5 tan x dx = Jtan 2 x. tan 1 x dx

= 5tan , 2 x.(sec'x - 1 d
= 5tan" 2 x. sec 2xdX _J tan ' 2xdx

tan— x=	 -
Thus,

tan,-Ix
=	 —i2.	 ... (1)

n — I
Also, taking limits from 0 to ii,

_l4	 x W4 #14r
-	 tanxdx = tan--' I	 -J tan 2 xdx by (I)
fJ o

	

	a	 a
I

=	 1.-a .	 ... (2)

Note 1. If n be a positive integer.
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J
tan"xdx - tanx tan s-3 x tan'-5x

- ti — I -	 +

If n be odd, the last term js ( - 1) )/ 'J tan x
- I) (I)/2log,ec x.

If n be even, the last term is( - I)(- - 2 )/ 2f tan 2 x dx
- J	 tanx - x).

Note 2. If the thtegrands be cot- x, tanh ' x, coth 'x the same processmay be adopted.

9.5. Obtain a reduction formula for 5 sec" x dx.

I. .fsecxdx =fsec'-2 x. sec'xdx.

Integrating by parts,

I. = sec-2x. taflx_ 5(n_2)sec . - 3 xsec x.tan x tan xdx

= Sec -2 x tan x—(n - 2)5 see - x( see 1 x_ 1)dx

= Sec -2 xtanx_(n_2) [f see . xdx _J See .-2xd1J

Transposing and simplifying,

sec'2X tan x n - 215=	 +	 12.	 •.. (1)n — I	 n_I
Note. U the Integrands are cosec r. sech -x, cosech x then proceed-

ing as above we can get the reduction formula for each of them.

9.6. Obtain a reduction formula for 
5 

e" cos ' x dx.

Let 1 = e cosxdx.

Integrating by parts,

ecosx	 nt
+ - I 

e_ 
COS'X.Slflxdxa	 aj
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e' cosx P1 rS
=	 + - I - cos-' x. sin x - - Ie"a	 a La

x ((it n - 1 ) cos" - 2 x (- sin x) .sin x+ cos - x.cos x} dx]

ne"
= - COS ' x +- cos'' x. sin x

a	 a'

_$e{(n_1)cos'2x(cos2x_1)+ COS x)dx

- e" cos''x(acosx + n sin x)
a2

-- [nfc'- cos"xdx - (n_1)5e cos2xdx].

Transposing,

(	 n1)	 e" COS , -'x(a COS x+n sin x) 
1+— I,.=	 +a'	 a'	 a2

e"cos 1 x(acosx +n sin x)	 n(n-1)
+	 —I_

n'+a'

9.7. Obtain a reduction formula for j ( x' + a2 )" dx.

Let I	 f (x' +a' )" dx.

Integrating by parts (taking I as the second factor),

= x(x ' + a 2 ) -5 n(x' + a 2 )-I .2x.xdx

x(x' +a' )_2nJ (x' +a' )- -1 (x ? +a' -a )dx
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= x(x 2 + a )' - 2n  (x 2 + 0) dx

+ 2na2J(x i + a')' dx.

Transposing,

	

(	 + 2n) I, = x ( z' + a ) + 2na2L-i

- x(x 1 + a)	 2na
2n + I	 ^ 2n + 1 lr.i

Note. It may be noted that here ,i need not be an integer.

Put n = and compare with § 3.5 (C).

9.5. Obtain a reduction formula for 5 ( 
ax 2 + bx + c ) dx

Let 1=5(axz+bx+C)1x

If a be positive,

1. = a' 5 
(z 2 ± k ) dx, where z =x +

4
and k2 

=ac - b (1)
4a3.. . 

and if a be negative, say, = -a',

(a')' 
5 

(k 2 -z 2 )' dx,

b4a'c+b'
where	 z = x -	 , and k 

=	 4a'	
... (2)

But (1) and (2) are similar to that of § 9.7 above, and can be

evaluated by the same process.

	

9.9. Obtain a reduction formula for	

dx

	

dx
Let	 I	 ,then I,-i	 J(X2 +a')'
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Integrating by parts.
I	

- ( n - 1).2x.x
(1 2 + at )..-1 -J	 (x' +a 2 )	 dx

'x2+a2-a'

+ 2(n - l)J (x + a2) dx
(1 2 +a2

x
= X ?	 2). 	

+2(n-I)l_ - 2(n-1)4 2 1

Traisposing.

2(n - I )a 1 
=	

I

 (1 2 +a' ).-1 + ( 2n - 3)I-i

-3
i.e., I. =	 I	 x

2(n - I)a 2 (x2 + a	 2( 
2n
n - I)a'

9.10. Obtain a reduction formula for	
dx

5 (ax z + bx + c )

dx	 (I)Let	 I.	
i ( ax 2 + bx + c)

If a be positive,

1.	
I f 	 dz
;;j (z' ±k 1 )n

	

b	
k2	

4ac - b 2	 . . 
. ( 2)where	 z = x +	 ,	 -	 4a'

and if a be negative, say, = - a'

	

- r-J	

dz

and kl	 4a'c +	 (3)where	 z	 x -	 4a'

Both (2) and (3) can be integrated by the same process as in
§ 9.9 above.
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Note. In Article 5.1, Case IV of the book, we have remarked that when
the iritegrand is a rational fraction in which the denominator contains fac-
tors real, quadratic but some repeated, in general a reduction formula is req-
uired. Thus, to integrate such functions, separate repeated and non-repeated
quadratic factors and for repeated quadratic factors, use the result of the
above Article.

xdx
9.11. Obtain a reduction formula for 

j J( ax I + bx + c)

where is is any positive integer.

xdx
Let 1'J1(	 +bx+c)

-	 b
Noting that x - 

2ax + b -
 2a

1.	x'-t dx	
—$	

dx.aJ (2ax	
2a \T(ax2+bx+c)

+b)	 b ________

N0wJ (2ax+b)Xjdx
Jax 2 +bx + c)

= 2a +bx+c . x_J2(n_1)x 2 4YT1 4bx+cdx

__________(ax2 +bx+c) dx
= 2xI\x2+x+c_2(fl_1)J	 \I(aX2+bx+C)

= 2x

	

	 -.Jaxi+bx+c_2(n-fl1 al.	 + CI,, ? 1.

n-I r
I,, =_.Tax2+bx+c__-_ [aIm + cI,,i +cI,,2

a	 a

b
---I,,

-1
= —	 + bx + c- (is .- 1)!,,

a

	

(2n - flb	 (is- 1)c
-	 --	

I,,a-?
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Transposing and simplifying.

I=— 'Jax+bx+c (2n - 1)b 1	 (n - 1)c._ I -	 In-i

	

an	 -	 lan	 an

Case II. Reduction formula involving two parameters.

9.12. Obtain a reduction formula for $ x ( log x ) dx

n, a positive integer).

Here, since two parameters m, n are involved, we shall define
the integral by the symbol In,

=Jx ( log r)n dx.

Integrating by parts,

	

X	

logx)-_--Jn (logx)11 
.x " dxI,	 m+1	 x

	

-	 t.logx) -	 "m- $x"( log x'dx

(logx)*	 n
m+1

i.e., l. '.= - -m	 (logx	 n
) - 211 + I

Note 1. Here we have connected 1...,. with I. , - i and by succes-
sive change the power of log r can be reduced to zero, i.e.. after n opera-
tion, we shall get a term in, • i.e., Jr - dx, which is easily Integrable.
Thus, by step by step substitution, I.. . can be evaluated. It may be noted
that when two parameters are involved this is the usual practice.

Note 2. Students must be cautious in defining these integrals. Here, as
for illustration, In,.. * I.

9.13. Obtain reduction formulz for

____	 dx(ll)5 xm (a + bx)'
(1) J 

(a + bz)M 
dx;
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t(a + bx)
0) Lot	 i	 dx.	 (n # 11

J	 x

Integrating by parts.

—	 dx.(a+ bx)'	 Mb f (a+ bx)''
=	 +

— (71 - I )x'	 It - I 	
X.

(a + bx)m	 mb	
(1)

= - (i* - 1)x"1 + n-

dx
(ii) Let I. , .
	 (a + Fr

Integrating by parts,

I	 nb f	 dx
	(m_1)x 1 (a+bx)	 ni-I) x' (a +bx)"'

I
= - (rn - I)x	 (a +

-	 n
1)	

(a + bx) -a dx	 ... (2)
MX-x' (a +

I
- Thx'T+bxi

an- 71	
+

rn-I	 rn-I

an	 1	 rn+n- I

	

(rn - 1)x	 (a + bx)a+ rn

Changing n to 71 -1 on both sides.

I	 in+n-2
Im	 a(n_1)xm (a+bx)' +

Note. Formula (2) or (3) can be taken as the reduction formula for (ii).
(3) Is more rapidly converging. The other ways in which these integrals can
be expressed are left to the students. s See also S 2.2, Er. 9 .1
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9.14. Obtain reduction formula for

(Of xM(1 -x) ix;	 (ii) 5 a x" (1 O N dx.

(I) Let!.,. =Jxm (1 -x) dx

+ 1j	 .(1- x)-' dxm+1	 m+

r
m,1	 mi-lj

	

- x)"	 i	 r
m+i

Transposing and simplifying,
x' •1 (1- x)'	 n+Im1.

	

ni+n+I	 m+n+1

(ii) I1J,	 5 
x-( 1 	 x) dx, by above, this

L	 in+n+1	 J	 m+n+1'''
0

+ 1J_...-t.
Note. In Integral Calculus J..	 Is usually denoted as P., the first

tulerwn integral. It is also referred to as the Beta-function.
[See § 911 below.

It is interesting to note that J	 =
Le.,	 a..... = A.'. although 1 , . *

9.15. Obtain reduction form ukr for

(i) 1,=5.inxcoaxdx;
I

(ii) j_	
J	

sin " x cos 'x dx

(m , n being positive integers.
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iii itria.ieu.	 •

and obtained
Sjfl ,N•I XCOS ,II X	 n - I

1_,. =	 +

	

?n+fl	 m + n

sin"xcos'x	 m - I
or = -	 +	 J,,... 2	 in a ;nilar

rn + t	 m + n
way, and when m and n are positive integers.

n—i	 rn—I
m+n 2 m+

Using § 6.19 (i"), we also see that J... = J, .

9.16. Obtain a reduction formula for 5	 dx. I n ^ t

Lt i...	 fsin"xcos-"xax.	 . .	 (fl

Consider 1'..q	 fsinPxcosxdx

	

p+q	 p+q
(byS9.lS above l

Changing q to q + 2,
5j1F4IO$*IX	 g + I

	

p+q+2	
.*•pq2.rP.

Transposing,

r	
-	 SXC	

(
X p sq + 2	

2
--	 q+I	 r	 pq.2.'..	 )

Iq	 1* 01
Now replace p by in and q by - is in (2) and use the defini

tion (I).

Then,. (2) becomes

	

. 
= 

I sin 	 m—n+2
I_, 	 fl - I cos'x - n —1
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f	

cos
x

9.17. Obtain a y cdu1ior formula for 
J

. [ n ^ 1 1

r .
	Let I_ 

=	 - 
dx --j

Consider, as before,

1'pç 
=J sin hx cog xdX

pi-g + 2- -	 +	 !p.q.2
q+I	 q+1

I as in § 916 (2) above I

Replacing p by - m and q by - n and using the def. of !.,

	

Im , =	 +

	

1	 1	 m+n-2

	

n - 1 stn"xco g	x	 n-I

9.18. Obtain a reduction formula for

i=Jcos"xcosnxdx

	

connecting with (I) I_	 ,.	 (ii) 1	 ,,	 ( m	 n

(i) Let

= J Cos "'x Cos nxdx

cos-x. sin nx m
sinx) sin nxdx

(I)
Since sin nx sin x = co

g (n - flx - co g nx Cos x,

COSXSIflflX	 m=	 + - •cos" x.( Cos (n — l)x
n	 nj

- cos flX COS x ) dx

Cos 'x sin nx	 7fl F
=M	 + -;	

-

Inleqral Calculus (main) -15
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Simplifying,

Cos x sin nxm
= m + i	 + +

(ii) From (1),

COS'X sin flX	 In+—
	
(cc "'x sin x). sin ,xdx.

Again integrating by parts.

COS x sin nx + m r	 COS' 	 sin x cos uxJr.,..	 ..l --
It	 n	 fl

+ if ((m-1 )COS -2x(-sjnx)siiix

• Cos -tx. Cos x) Cos nxdx]

COS 'x sin nx m( Cos ' -1 x Cos nx sin x)
-	

f((m_i)cos-2x(cos2x -1)

• cosMx)cosnxdx

- cos	 1 x(nsjnnxcosx - mcosnxsjfl.x)
nz

+ mf ((m -1 + 1) cos'x cos nx

-(m- 1)cos'2xcosnx)dx

cos	 x ( n sin nx cos x - m cos nx sin x)
n 

+	 - (m - 1)1..-2,r. ]
Transposing and dividing,

fl Sin I1X COS X - 11% Cos flX Sin X
= COS	 IX

mm-1)
- n 2 - m2
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There arc three other integrals of a similar type.

(i)fcos . x sin nxdx, (ii)J sin xcos nxdx

and (Iii)Jsin x sin nx dx,

which can be treated in a similar manner, and connected by a red uc-
ion formula cithi with 1.. 	 - or with 1,., 2 . In each case.

Foi instance,

(?n + P1 )Jco5"'x sin nxdx = - cos 'x cos nx +m

(n 1 -. rn 2 )$ sin "x cos i*dx

= (nsinnxsinx + mcosnxCosx)sjfl-'x

- m(m -	 ; etc.
Case III. Special devices.

9.19. Obtain a reduction formula for	 dx
5 (a + b cos x)

Let	 I	 5
dx

(a + bcosx)

Consider P =	
sin I(1)

(a +b cos x)"-1
dP
dx

-	 ((a + bcosx)-112

- cosx(a+ bcosx) + (n -1) b(I— cosx)
(a + bcosx)'

(n - 1)b + acosx— (,i - 2)bcosx
(a + b Cos x)"

- A + 8(a .bcosx) + C(a + bcosx)3
-	 ('	 (say).	 ...(2)a + bcosx) 
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Then comparin g thc corIhcjcnts

A + H a 4- C a	 - I ) I' U	 'Call a c! '	 01 2 )b

Solving

A	 -(n-1)-,	 (2n - J),C	 -	 (3)

substituting those val uec of A B C in 2 we git

d 	 -	 (	 -	 1)1 a	 -	 )	 I
dx	 b	 a _4b  cos t

(2 pi	 )an	 2
-.

1, tc,rating both sde with rcs 'cct to x , and using the de in!-
tioi4 of 11

( n	 1 ) a	 /,2 )	 ( 2 - .3) a	 ii - 2

g ill x
-	 (	 - I t( a - b	 (a	 b cos x)

	

(2n -3a	 ( n--2)
+ (h	

I.,	
(n-1)(a-b)1" 2

A !ter,iati'Jr ,nct.z -!

I..vt I' = -------- ----------and V - . a	 -'co-
( a .	 )	 I

V - a
COS I

=

.Jf'	 d f in I	 COS 1	 si ( ( - b sin .v'Ix=
	 - 1)

V - a (n -flb	 f -•a
= WnT + v

(n - 1)(u 2 ..j,2)	 a 2 -3)	 (n -2)- -
	 by"	 -4-	 -



	

t41 t(,J Tft). H'' st?('(	 '.vr REDt(IJ')N

Intrting both sides w r t. 1 and ung tht' definition

	

C dx	
I }t result lollows

	

Note. When n , apositivc itog	 pc.$ d ap1hcation l the
abovc tJito,ri IOrniiIj, I. will tj!tirnaIcv dcl,tid or j	 ehta ho.	 Ov
intrabIe	 '-r P 6 4 2

	

9.20. Otauz rCduL lionmulj' ar 
5 

x	 a + bx ) P dx.

In this integral, usually denoted as b ine yn ial diJt rrnli215, t rer

,nctQrs ate rivo!ved and this intcgtil, written a

5	
I'x	 li can be conraa'a ted	 iIt at N , ON

of h-' lntgr.i

a

	

LI) '	 dx

	

(Iv) 17 , , • r	 ( a 4

i - )P d 

	

(Si) t.,	 .	 J	 -	 a -	 h

	

Ii) I.,	 r	 )-	 h	 i - t:.atiig b:

	

-

	

- -

	

ía)	 'Ia"	 )1	 _i.;	 I	 -

	

Il	 -	 a	 .n	 '	 I
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Again, as above,

=

	

	 (a + bx" )P
fll+ I

nbptx
- m + I jr (a + bx'	 + ?JX )p-1 dx

[writingx ..s =-x .'(a +bx -a)].

Transposing and simplifying,

	

x 1 (a + bx" )r +	 anp
,ip +m -+I 	 np+ ,n +	 .(2)

Changing p to p + i in (2) and transposing, we get a connec-
tion with the integral (iii). VZ

x"' (a + bx' )p.1

=	 an(p-s. I)

, (p + 1) + m + I
+ an (p + I)

Also changing m to m- n and p top + i in (I) and transpos-
ing, we get

x'	 (a + bx 4 )p-.l
nb(p + I)

M- n + I
- nb(p + 1) LP.l	 ... (4)

To get a connection with	 and I. ,,, write

X . = _!_	 nbx	
)nb

= _i. 1 X 111 .(	 fbx ).nb.xhIi dx.,*b J

Integrating by parts and simplifying.
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- XI (a +bx' )F.I

- b( "p +m + 1)

a(m - ,i + 1)
- b(np + ,n + 1)

Changing m to m + n in (5) and transposing.

x' (a + bx )p*I

-	 a(m + 1)

b(np + m + fl +1),	 ... (6)a ( m + 1)

These six formulae of L,., can be obtained by another method

Write P =x"' (a +bx' )U

where )and p are the smaller indices of x and (a + bx ) respoc
tively in the two expressions whose integrals are to be connected.

Findand express it as a linear combination of the two in-
tegrands. On integration the result can be obtained.

To illustrate the above statements we shall find a connection of
with

Ikvidcntly X =m, pp. .. P,:X* I (a+bx' )p.1

dP- =(m+1)x(a+bx)P+I+(p+1)x- *.nbxI(a +bx

=(m+1)x(a+bx)P.(a+bx')
+ n b ( p + fl x" (a +bx")F

=(m+I)ax(a +bx)'
+ b(np +n+m+1)x"(a +bx)F

Integrating with respect to x,

P = (m+ 1 1 4	 +b(np + n +ivi +

- x(a+bx")P' b(np+n+m+1)
- - a( m + I ) -	 a ( m + I)

which is the same as (6).
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Similarly, the other five results can be obtained.

For another illustration see sum no. 7, § 922.

.21. Beta and Gamma functions.

In many problems in the applications of Integral Calculus, the
USC of the Beta and Gamma functions often facilitates calculations.
So we give below an account of those functions —their definitions
and important properties, some of which are, however, men-
tioned without any proof.

Definitions

(A)5 x' -1 (1– x)"-' dx denctcdhyB(m,n)
0	 j?n>0,n>O)

is called the First Eulerian integral or Beta function.

(B)	 e- x -1 dx denoted b y r ( n)	 n > 0]
1C.P.'84,'81

is called the Second Eulcnan integra l or Gamma function.

Here m and n are positive but they need not be integers.

Properties

(i) By property (iv) of Art. 6.19, we get

f
(1 - i)-I dx	 1xi (1 -	 )- 1 dx.

O	 .10

B(m,n)	 B(n,m).

(ii) r (1)	 e • dx	 1 .	 See Ex.1 of Art. 7.2.

* Results (v), (vi) and (vii) are given without any proof here The procfs are
based on "double integration" which i s treated in chapter 20 ot the
present book. Nevertheless, the results are extremely important in
applications and are to be carefully rcniembercd.
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(iii) As in Ex. 9, Illustrative Examples Art. 7.2, it can be shown

that even when n is not a posit;'r ir.rr,

	

dx = nJc	 lC.P.'SO

r(n+1)=nF(i).

When ii is a positive iptr,

r( n + 1)= n!	 IC.P.85,'BSl

(iv) Writing kx for . in (U)	 iy get

kxn ldL_.L!) .lk>O,n>OIICP631

(v) B(m,ri)

	

	 IC.II.'86)
I ( m +

(v:)	 in)r1.-ni).-(O<in< 1).
sin mit

('ii) PIh.; r	 '--.	 (vii	 I C. II. '86

sIn
V ( ) I () =	 = it.

11

r()	 C.P'821

Alternatively, we can dcdt' thc v3ltI' of I	 in the follow-

ing way.

Putting in -= it = - in (v)

	

f1'	 )2dx
1(1)	 2

I on puttli

Il	 : i
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Hence the result.

(viii) B(m,n) =f 
(1 x'-'dx	

-f 
- xi'-' dx

+ x)"' - 
0 

(1 + x)'

9.22. Standard Integrals.

(1)5
• L,

	

	 r(2-J) r(.59-!)
sin PO.co 3 q J =

o	 g+2	 [q>-il21
Left side = 5	 (sinO )Il (1 - sin 2 O )q12 do

0

4 • I

= -
f' 1	 (1-x)1dx

Ion putting 	 sin  0

= - B ( p + 1 ' g + 
1) = Right side by (v).2	 2

(Compare § 6.23 B. I

r(P)
(2) 5 sin0O

0	

f cosOdO= - ________
o	 r(P2)

The proof is similar to (1). 1 Compare § 6.23 A. I

(3)5	 e-'dx =.'/,i. C. P. '83J
0

Left side = -1 C -4f  	 - 1 dz	 I on putting x 3 = zI

=.}r(-)by(I3)., by(vii),I Compare Art. 7.3J
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9.23. illustrative Examples.

Ex. I. Obtain a reduction formula for 
5 

tan x dx and hence or

otherwise find the values of (1) 
5 

tan x dx; (ii) Jtan* x dx.

From § 9.4 formula (1), 1.. =J tan xdx _tx

	

-
	 - 1_2

(I)	 Is =Jtan s xax =tanx -Is,

= tan I x -	 where I 
= 

5 tan x dx = log sec x.

1=.tanhr_tan1x+Iogsecx.

(ii) 14 = tan 'x	 14 ; 14 = tan ) x -12
tan 5x

I = —.--- - lo, where Jo = 5 dx = x.

tan'x	 Ian 3 r 	taflX
14	 I

[Compare § 9.4., Note I in these two cases

Ex. 2. Obtain a reduction formula for 
5 

sec' x dx.

Hence find the values of (i)5secx dx. (ii) 5 sec' x dx.

-From § 9.5,I, =fsec xax sec 2 xtanx	 n -2+
n-I

	

sec 4 ztanx	 4
(I)	 1..	 =5 se xdx =	 + --I

s'xtanx 2
14	

ec3
	 +	 1312 _J sec Zxdx.LInx.

14	 xtsccx tan x 4 sec 1 anx 2.4

5	 +1	 3	 +fltanx.
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(ii) Also,	 1 7 =Jsec 7 xdx =
	

0tx + -Is

	scc-' x tan x	 3	 sc. x tan x	 I
4

= f sec x Jx = log ( sec x + tan

1, = sec x tail  sec x tan x + 3.5 sec x tan x

	

.—	 -
6	 6	 4	 4

-
6	 2

11 5

	

+	 6 log ( see x * tan x >.

	

Ex. 3. Ol'tain a reduction formula for 	 e -	 co., "x dx,	 ( a	 0
Jo

and hence find the value of 	 ,	 COS I x dx

From § 9.6. rpladng a	 -- a

I,, =	 e	 I d
Jo

" cs" 1x(-oos 
&	 * 

	

C	 n(n--1)=	 In 2 I since	 1:	 e	 ;- -n .4'	 fl +Q

is the rc'qiIi red red LJCtI on formula.

I	
4	 54	 4	 20

	

4	 3.2	 4
13	 32 t43.4	

I,	 ••i

	

4	 4 7UI
1 - 1 2 + 4

E. 4. Obtain a reduction for J •	 )PI77

dxHence find the value of J --j-------------- -
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Let F, 
= 5	 kscgriting by parts

	

K	 S=	 ______________

(x 2 + a1	 '	 I (r-a 2 )(/ii.	 2xdx
.1

4

i-a 2 gj7
--	

(	 ,aZ)i)i dx

= 1i	 + iil,	 ni21,

Changing n to n - 2 on hoti sides,

	

I	 _____	 n-I
= T TTY' ( x 2 * TTfl^ + 1 2.

The result can he obtained from	 q 7 by 5 tibstituti ti v (n/2)
p'ace of n and changing the definition of 1,,

• 17 f
	d

	 I	 4 1
-	 i-Sa2

15
I 	 x	 2	 1
--j --r---• •. +	 13 =	 1iTTi7F
1	 r 4	 x	 2.4	 x

Z(T7i5sii +3.5.(22)3/•T;_T
. 5. With the help of  reduction formula, find the value of

Scos 'x

From	 9-1 6, we ;c't he gin c ri! form of the red uc tlnii form ula as

S
sin"x 

ix =	
I	 sill	

-
"' 1 x	 ni—n + 2co^lx- ______	 !, • 2lfltIJ.n - lcos" 1 x 	 i-I

	

-	
15,4 1	

-	 3
5=	

'	 - 'i	 -
2 -	 - 

S
 - 1;

c(lSr	 I
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Also 15 , 0 = f sin s xdx

sin 'x Cos x	 4 sin'x cosx	 4 2
5	 --	 3	 — ii.coSx

(from § 9.3 (1) 1.

I sin'x	 I six	 I sn'xI35 -	
-	

n'
W cos'x

I	 .	 4 sin'xcosx 4 2
+ . 

Slfl X COS X +	 + K T COS I.

Ex. 6. From the reduction formula for 5 cos " x CO5 nx dx obtain the value of

5 cos 3 X COS Sr dx.

From § 9.18 (I), 1.	 = 5 cos - x cos ,ix dx

- Cos _x sin nx ,,t

,+,I	 + m+n
Here in = 3,n = 5;

	

-	 x

	

13 , 5 =J ' COS s x Cos 5xdx -
	 8
 COS' 

r sin 5 + 3
 ••

cos 2
x 

Sin 4x 2	 cosxsln3x	 1
124 =	 6	 +	

=	 4	
+	 1O3

10.2 = COS 2x dx =f	 -i--
c09 3 x sin 5xcos 2 x sin 4x cos x sin 3x sin 2x

8	 +	 16	 +	 32

Ex. 7. With the help of the different reduction formula jbr

f
m (s+ bx I )F dx, find the values of

(i)5x 3 (a + bx 2 )' dx. (ii)J (	 b2 )4 dx.

(i) Here m = 3, ii = 2, p = 4, and since p = 4 is positive,

(I) can be connected with § 9.20(1) or (2).
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Using (1),

= 14 (a + bx2 )4	 2b.42.4
4	 - •j

x' (a + bx 2 )'	 2.b.3
- b.2.2.6	 6

x' (a + W)2 21.2
172.2	

8	 '9.'.

x'° (a + bx 2 ) 2.b
10 

J dx --	
- 12

x 4 (a + W)4 bx' (a +	 ) + b 2 x' (a -+b- 2 )2='3.2.4	 -	
4

- -(..+  bz 2 ) b 4 x'2
10

Using § 9.20 (2) the result can be obtained in a different form,

(II) For this, the suitable formulae are § 9.20 (3) or (4).
Using (3), replacing p by - 4,

I	 11	 2(-3)+3+11324	
- 2(— 3) (a + bx)" -2a ( - 3)

I _________	 I
6a (a + bx t )3 + '3 13.2.3

_--2
	 I	 2(-2)+3+113.2.3	

2a( 	 ) (a -+b, I )2	 2a(-. 2)	 13.2.2

X4
- 4a(a +bx')2

I	 x'	 I
6a (a + bx' )3+ iY.	 (a + bx2 )2

Ex. 8. Find the reduction formula for f 	x dx
j (a + 2bx + cx')'" x	 I),

x dxand hence obtain the value of 2J 
(r' - 4x + 5)
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=f	 Ix- 	 (m+2br+cxi)

x 2 dx
Consider 1.. 2	 = -	 Integrating by parts.

(a + 2'x + cr 

	

n (	 x!(2cr+?i)
(rn_I)(a+2bx.cx 2 )rn_1J (a+2t,x+cx2)hiX

	

n(	 C	 x'dx
(rn1)(a+2bx+cx2I

C

j (a + 2bx+ cx2)'

Changing ri to ( n - 1) on both sides,

n-I
(,n_1)(a+2bx+cxZ)-1 rn-I

 .(2cI,, , , +2b1).

Dividing and transposing,

i__N 2c(n - l)(a + 2bx +crhjT

+ rn - I	
1. - 2,. -1 _! '- - L'	 (I)2c(n -1) c

x 2 dx	 (a+2bx+cx2)Also,	 fbx.cxi)"IJ (a + Zbx +cx2)N dx

=	 + 21, I_. , , +

Substituting and simplifying,

	

•	 2b(rn- n)I__N c(2n-rn-l)(a+2bx+cx1)'-T + c(2n_rn1)'N

a(m -1)
+ c(2i- rn - 1) I2N -	 •.. (2)

Either of (I) or (2) may be regarded as a reduction formula.

ilence, using (2),(a = 5, b = - 2, c = ],here).
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i•4	
[ -	 -	 )	

- 4 (. 1) 12,4 +

12. 4
4 (-2)

I -, SIx	 4x	
5)3Jf	

5	 1.4 4T

r	 1	 1' -4(-3)

dr

I - oT'	 4. - 5) j	 — 6

2	 2
jI

	

(	 4x)4J	 ((i-2+I}

dz

	

T.	 I	 z = 2 - x I

ar	 2 1 using § 9.9 successively = X (say)

Then	 11, r - _!! .2),

2 124x 4	 21
'2 4 - -	 +

3$9t.	 4
3.5 1	5

I):

4443	 46
354	 3,51•$	 '2

= - T 
+ 2

.
Yf.	 &sin zdz(n >0), thell prove thatJ.

ii,+ 't't - lu. 2 =

lntcgritin

	

I.. = [ -	 -}	 f

Inlegral Calculus (main) -lb
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X-2 sin zdx

{[ ' $^P. J - 0

'I ( -. U
'I ( P - 1)

jam
1

LL	 il$ -	 ____ ----L-dx, V = I	 (LJi.)dx,

	

fJ	 J	 SIfl X

beinp ex i g,t shot' fj

	

=	 =

J 

*/ 2 in (2* + 1)a •- Mr(7M - )x
o

J ' 2 2.coi 2nxsi=	 --.	 --- :x . 
J cos 2*x dx

0	
-;;	

2 
C

,. in2nx
£ I	 £.fl I - 0 k'raIt egral values of *.L 

	

- 5.1	 511-1	 .

*/2
Now, S2 - 5 .!.	 h

Sin, x

	

S.i .i =511	 *.

Also, V	 + I)x — sin 2*x

	

,1 , 1 -	 - dx

.ls(2,i + 1)x.Mnx
dx

fX/2 
m(2* +	 x

30	 sin x
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v,-v,,, 1 . s,, =4 * , v,. -v	 .4 * ...., V3 - V1 =4*.
adding, V, -V1 =(n- 1)rcI2.

	Since V 1 = f	 dx =4 * ,	 :. V. =4**.
a

EL 11. Show that

2cor () =-x ;	 (0 r(4)r( 1 )	 .	 ;

ciu,f sii 4 eti'ede .1 4* 
5in'ecc3eda = fr*.

0	 0

wr(f)r(!+i) .4r()
[since r( * + 1).x r(R),A..9.2J (Eli))

r( .13' 53 r(

	

-	 .-	 -	 )	 -2-r (-i)

	

.-'/*.	 I by Art. 9.21 (vii)

(ii) Left ilde.r(4)r(1-4)i7_.

(iii) By Art. 9.21 (A)(1),

r()r(i-) !.&L1*L!1 3i	 a aa	 *	 a
First Integra,. 

i	 r (6)	 -	 5!	 = 31-2 x
By Art -6-19 (lv), Second Integral - First Integral.

Ex. 12. 
show 

met r 	 '•4)	 +

	

2r( +T	 IC.fi.'asj

r(++)_r(2*+3)(	
+i)____	 2iu - I

-	 2

2* -I ___
2 r (2a2_ i)	 by Art. 9.21 (1W)

- 1	 _____
2 r(2*23.i)

2* - 1 2* -

	

-	 r (2* - 3
2	 2	 2
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2n-12n-3 2n -S	 S31	 f
-	 2	 2	 2

I By repeated apptiat ion of the re.z.lt o f the above Artiek

(Zn- 1\(2n - 3)(2n -	 c31
It

=	 2'	
(1)

Now multiply the nt:rneIator and Jenorniflator of (I) by
21t	 2 )( Zn - 4 )	 4.2

2m 2n1X2' -:c2i- 3	 5.4i2)
• r(n +) =

Nr( 1.	 I
-2-,-T;

J , , • i	 I
=

Note. The .ih,vc	 .	 1,e written %O the t'rii

1(u)! .n

It is an irnpoTta:o j	 Ut Vzn u. I 	 .1hei1R4ti45

Note. 2. The ng' ide of (1) ...n be wnttr as	 C ) ",here the

notation ( a ), den	 (a 1 I	 • 2 )	 (a	 n- I

•	 .r ( '), 1j).

Ex. 1i.Shou. ), lI 8fmn)L(m •	 ,1)=ti.l)g(n *l,mI

	

r(,ir(n	 1(m	 n)1(l'	 rlrm)r(n)
Left side -	 _______r(M+n)	 1(1	 ,, + n)	 rti +,n+n)

rc:r(lC'	 )
Sitiarlv, right de	 -------	 -.•

Hence the result

E*. U. ftafio1e

f
Jo

ad Md its t'.2111C when Ca	 -

rs. ia tip. When  .0. Y  0.x -1 /



iNtEGRAtiON BY SUCCESSIVE REtWCTIOM 	 213

.1

i._j I y&I (I - y)ki dy
a

-	 .2k I r(a + k)1(	 ..k

	

r(u .	 2k)

w:1cii 1

	

F( 2k •	 )

114 _LLLLLL2
1(2k + i ,r I & -. 1)

Ibvix U and \cte 2 of Art 9.23

2 k

FXAMI'LI.S t\

I. Ot'Liin a i..-dusti'r t'rrr.il.i t.r 	 'e	 '	 ( n* -	 ) and

hen,v find kh4 v.duc of j i'.	 dz

2. that I	 'e" 1	 (a'' ' -	 a 2 x 1 . 6at - 6).

3. Find the rdunort to, ,nula for

(1)1 cot " td.i.	 4i0 1 cowc

4. It I,.	 s:.h O .1k), then ch,w i)tt

nL	 .inh '	 9	 0 - ( ii - I ) I

5. ("bi.un	 .'r.-	 icti'n t)n..ut.e tot

(i) I tan	 OJt$	 (Ill) J cch0dO

6. 'Show li.t if 1. -' f  ' sn	 i- dt then

•4	 ill tx	 rbI,',2	 , 

	

-r - - ----------------	 '	 Fit + -	 I.. - 2.
a' s r 1 b 1 	 a2 + 00
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7. If I = Ix • cos bx dx and J = 1 xN sin bx dx, then show that

	

(I) bI	 x sin bx - nj,, -

(ii) bJ = - x" cosbx -,- nI,..-i

(iii) b21 .x- l (bxsinbx + ncosbx)- n(n- 1)I.2.

(iv) b'J =x"-' (n sjnbx -bxcosbx)-n(n-1 )J,-.

8. Find the values of the integrals:

	

(i)J (x 2 -6x + 7)S dx. (ii)	
dxJ (x 1 +

	

(iii) f	 dx	 (iv)	
r x dx

- 2x + 2)J (x 2 + x + I)

9. Show that

i	 (a2 + x 2 )fl dx= x(a 2 + x  )12
4-

na2
n+1

find also 13

	

'40. If I	 1(1 + x 3	edx(n >1), deduce that

I	 (1 +x 2
 ) - 2nx—e(1+ x2)'1

	a	 42

+ 2n(2n -1)	 4n(n -
1_i -a 2	at

11. Show that ifu =1 x x 'Ia  -x'dx,then

	

-	 x' (a 2 -x2 )32	 n -1 
2 U-2

-	 rz+2

12. Find the reduction formulae for

	

f	 xdx	 • (	 dx
J'I( 2ax - x 2 )	

( Ii )J x"q ( x 2 - 1)

13., If 1,. = Ix 'Ia - x dx, then prove that

(2n + 3)1k = 2an1 1 - 2"(a -
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Hence, evaluateJ X 3 47X - x2dx.
0

14. 11 u	 I	
x dx	 , then show thatJI(ax + bx + C)

(n+1)au, +(2n+1)bu, +ncu,.. 1 .x Iax2 +bx

15. If 1 = I (sin x+ COS x)"dx, then show that

= -(sin  + COS x)2. 
COS 2x + 2(i -

16. Show that

(I)	
J

dx	 2n- 3
-	 (1 +X 2) r 2n_2I_t

0

f

-	 dx	 1.3.5.7 ,
(1 + x )	 = 2.4.6.8

17. Show that, if I, 
= j	 cos" x dx and J,	 J	 sin

(I) I	 = J .	 (ii)I	 I	 (n >2).

18. With a suitable substitution, using the previous :cmp-
find the values of

I	 -

	- - x
	 dx

(jS
_ 
	 ) dx	 (ii) 

5 (1	 2

0	 0

(Ii being a positive integer)

19. Prove that if u 	 j x tan - x dx th;a

	

in +)u + ( ii - 1)U,..2	 y-
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20. If n a 2and 1.	 (1 - x3). cos ,n--cdx. then

show that ,, 1 I, = 2n(2, - 1 )I,	 - 4n(n - 1)1, 2

/2

21. If U. 
= $	

0 sin O dO and n> I • then orov that
0

i—I
u, = --u..2

Pt	 7I

for '	 dx22. 0) Obtain a .eduction formula	
j	 •

and (ii) evaluate	 dxf (1	 )	
Fat

0

23. If 0(n) =
J
	x - log r dx, then show that
o

+ 2)— (2n +1)o(n	 1)+ i 2 '(n)	 U.

"/4
24. If I.	 I	 tan "0 dO, then prove that

Jo

+	 =

25. Show that
J 

x t (log 0 . Ix =

0

26. If .,	 a fx	 (1 - x) - I dx, then show th
Jo

( m - 1) ( n	 1)!
a	 =

(m + n- I)!
m and n being integers, each 1
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Ho

27. It m • i are positive integers. then show that

L.a,-x)dx rn±fl

Hence prove th3t I,. , =	 m r

2$. 1-iid he v.iIt", of

ut)

	

I• 44SX	 r
(r )	 --------

. If I..,	 --	 4 .;nt .1%	 bji	 :-Ic

(7n -- ,,	 in	 n-- 2

- i ) "j I I I	 - 

30. Obtain . rdti ' i I rrru,i Ijr

co5'r sjfl ndx, und i * Ic tbt , vj'tit

c,sx si -1 32 dx

31. 1, 1.,	 J 51.1	 2 (( 4 S nr .1	 4'iI

'72 coc 1 O

i_rn

32. If I.,.	 -J'	 Sin -.% j.I)% P!
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,*/2

	

JN	 &1flX sin nxdx, then show that
0

(m + n)IM	 = 3fl . fl* -mJ, • ,. 1 (in>

*/2
33. If f(m. it) 

= J
	 Cos x Cos nxdx,then show that

0

f(m,n) 
= 

m
m + 

f(m - 1fl 1) 
m(m-I)
m2 82f(m-2,n)

'it
M -	 - Lit + 1),

and henceshowthat f(m,m) - ____

- 2*1

34. Obtain areducUon formula iorf 	 dx
+ b sin x ),

35. Find the values of

	

(i)J
x	 dx	

.(il)f	 dx
(1 + Cos a Cos x) 3 	 (1+k sin x)k<l)

36. Using the integral I x(a + bx ), dx, find the values of

xs (1 ^ x' )7/2 dx.	 1(1 + 2x' )fl dx.f 

I Use § 9.20 (5). I	 I Use § 9.20 (4). 1

•1 dx
x' '1(1 -x2
	

Use § 9.20(6).l

37. Find the reduction formula for 5 x' T2-ax- x 2 dx.
•2a	 _______

Hence show thatJ x 42
_

ax - x' dx	
6m*2 (2m+1)!

= ,i - __________

0	 2	 (m+2)!
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38. If I	
10 

xe-

- =10 
xe' sin xdx,

then prove that (m being an integer > 1)

(i) I = . j m(1.._ i -J.,..i ).(ii)J,,, =m(1 1 +J_ 1 ).

(iii) I.. -MI.	 +m(m - 1)1,2 =0.

39. Show that 	 sin 2nx cot xdx =
0

40. (1) ! u, = J cos nO cosec 0 dO, then show that

2 cos ( n - 1,) 8- U.•_2 =
n-i

	

(ii)if 
P.

5
 sin (2n - 1) dx ,	 dx	

=	 x,
J 

s'n2nx
sin x	 sinBx

then show that n(P, 1 - P. )	 sin 2nx

and Q, i - Q = P. .

41. Prove that, if

I = 1-o_-!X
 dx where n is a positive integerJo I - cosx

or zero, then J, 2 +J =21,..i

Hence prove that	 A = -
J	

sin it
s,n 1 0	 2

0

sinnO	 =42. (i) Prove that J

	

	
A0 or it according assin 0

0
n is an even or odd positive integer.
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(ti BY I	 a reduction f(),mulj or o t herwise, prove that

.irnO
a po;!ve Integer.

43.	 it 'I I' .1 p&icitive u ltvgc r , then

I	 .0'	 t	 P? i

diI -	 t

and dJue that j.:
	

fT- ) di

41. if 1.,, ,.
	 J	 eo ' x ,i ii -- axthen show that

I	 I	 _ ?I	 2	 2"'1, ,	 J :'	 •.-	 --	 ---.-	 I
1	 2	 :3	 ri

45. SF.:,w that	 t'	 ' ;in x dx

n(n- U'n-2)..	 1.2	 1
n')a' .(,1.2)2)	 ( a 1 3' )a?

if n is

n ( n	 1	 i	 2 ) .	 2 .1	 1
n	 I.i2 -	 2a

it P7 7' CVCfl

•tt. If 1,	 J	
'c 0	 ' sin	 )	 JO . then prove that

a'	 )	 -- I )(a	 h 2 )f,
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47.1(1,	 Jta	 2h sinco ..x -.'on'x) 'ixthp
prove that

'(fl,- 1)(ab.hl1,.?	 22'i i- 1,(u +t')1..,4 4i1,

h	 ns 2 r	 Sal I k)	 ( '	 a) '.,n i Cos x
-	

a cos I x * 2h sin T .	 b sin a x ) -

I Ai'y the a !tri nat iw inn hoi of ' 19
48 Show that

tiJ	 •A)'M	 r)'ñ.	 2r-q	
Ftp-.-q.2

-, -1 •q > - ii

Put I .-	 2y J

I-On• I )F(ii • 1)
UiIJIA

j'n	 .1.'i>-H

I	 -	 b	 l7I	 I

49 So ' tbct

J 
e'-	 d	 -I (	 2	 )	

>
0	 Put I 2	 y

5) c•,-th

r	 •

J
r I d t w 

f 1.
	 d

0	 0

I rut I	 z -

SI. S'wtht

( .111)U(IrI 'fl	 =	 ( n,I)8( i

= in 13 	 - rnn).
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52. Show that

........ ..... .F() =4
0 	 1679

Combine 1st and last factor, 2nd and last but one etc. and apply for-
ula (vi), § 9.21.1

53. Show that

$	 dx
(1 —x')" -	 . (Putx' = z.j

0

54.- Show that the sum of the series

I	 I	 m(m+1)
n+I	 n+2	 2

+ m ( m +I)(m + 2)

	

3!	 n+4
- r(n +I)r(I —m)
- Fn—m+2) , where n>_I and m<I

'R. S.	 n + 1,1 - m) = I 	 (1 z)	 x, etc.]

55. Show that

f

i	 sin 21 	 r(m)r(n)
(asjn2O+bco32e)_.dOa.b.r(3

I Apply Art. 9.21 (viii).

ANSWERS

1.	 1.a

e ,:f14 = - 	 1x444 + 4x0 + 121 2 . 2 + 24xg + 241.

cot*' 	 eotxeosec - x	 i.-23. () In	 -	 I..2 .(tl)!,.- I	 - i
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tanh 19ecb 2 9tanhQ	 -2

	

_j+I._z.(U)I.	
it-I

[ (r2-6x+7) 5 20	 2016.8. (i) (x-3)	 -jj- (x'-6x+7) + j.j_,(xZ -6xi7)'

20.16.12.8

	

_____	 _______	 2016.12.8.4 12OI612(X2 6x7)1 

	

11.9.75	 + 209753 (x - 6x	 - 11.9.7.5.3 I
5x	 5x	 5

(Ii')	 T^I)424 (x i + 1) 2 16(x2	 fl+jt*flX

	

2x+1	 2x+1	 4	
'(2x+1tTx+1) + 3(x 2 •x + 1) + 3T3 

tan	
)

2x + 5x + 7(iv	 fiT_2x+2_j.a1nh1.(x_1).

9. j x	 + r )1l1	 82X (g2 + x2 )1I2

3
4 -F 8 4 log(41 t + xy).

12. (1) iiI, = - x" t 42ix -x + (2t - I )al_

- I	 it- 2
(it - 1)x"'	 it -I	

13.

IS. (,) I_hui.3	 ..!,lfnl.odd
it	 n-2	 3

and
n 3	 1 it

it is even.....

	

(ft) 2R_32N_$	 Ix
2it-22n-4...

	

and	 If it	 I.

	

I	 x	 2it-222. (I) 15	 2it -1 (1+ x')	 '1(1 +zt) 2it
2ii-2 2n-4	 2

(ii) 2i,-1 2iu-3

28	 (Ii)-	 8	 cos4z 4cos2x 8 *in x
40% 3 un 3 x + 3 uln x + 3

(lv) 2 11 tan"' x + 2 too t/2x_cot5flz).
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.,-o.	 -	 x cis nr	 P1	 1 i ,, =	 --	 I - -3

34. (n .-I)(a	 b2)!,1 +(2n3)a1, i-(	 -2)I

35. (i)	 ( 2 + cos (1 ) COSC sit

I	 k	 2	 ( Li n	 . . k
(ii) 

I-.- k 2 I + -k. n z	 - k )	
(an	 - )

36. IL	 1j. 991 	 + s ]

(ii)	 (1 •	 t ' )	 ( x	 - I )	 (iii) 2 '3

	

I (2.' - * 2 )3fl	 C2jn * 1 la
37. 1.. = - _______-	 - -- ______ - I.

	

PU -- 2 	 m * 2



CHAPTER X

AREAS OF PLANE CURVES

I Quadrature J

10.1. Area, in Cartesian Co-ordinates.

Suppose we want to determine the area A 1 bounded by tht
curve y = f ( x ), the x-axis and two fixed ordinates x a and x b
The function f( x ) is supposed to be single-valued, finite and con-
tinuous in the interval ( a , b)

JY F

X
Fig.]

Consider the variable area QLNP = A, say, bounded b)
the Curve y f ( x ) , the x-axis, the fixed ordinate QL wherc
OL = a and a variable ordinate PN where ON = x. Clearly.
A has a definite value for each value of x and is thus a function 

of
x. When x is increased by an amount Ax ( NN' ). A assumes ar.increment E4 = the area PNN'P'. Now, if f ( x 1 ) and f( x )-be
the greatest and the least ordinates in the interval Ax,

such that x :5 x1 :5 x + tx,x x,	 x
Clearly the area AA lies between the inscribed and circumscribed
rectangles UN' and FN'

i.e., f(x )x <z.4 <f( x 1 )x.

(1)
The process of finding the area bounded by any defined contour line I!called Quadrature, the term meaning 'the investigation of the size of a
square which shall have the same area as that of the region under con
derat ion'

inkgrai Calculus (main) -17
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Now, as Ax approaches zero, by the continuity of the
functionf ( x) at x f ( x1 and f ( x1 ) both approach f ( x), and

dAA A 	 relation- tends to - . Hence, as the relaon (1) is always true
Ax	 dx

we get in the limit

dA
dx

by definition, A = Jf( x ) dx + C u F( x) + C, where C
is an arbitrary constant, and F ( x) an indefinite integral of f ( x)
Now, when x = a, PN coincides with QL ,and the area becomes

zero. Also, when x = b, the area A becomes the required area A.

0	 F ( a ) + C and A = 1(b) + C.

F(b)— F(a)	 f(x)dx.
a

The definite integral

1:1 ( 
x ) dx, i.e.,	 y dx

-:herefore, represents the area bounded by the curve y = f ( x) , the

and the two fixed ordinates x = a and x = b.

Note. Aim alternative method of proof of the above result, depending
)fl the deflruom oi a definite Integral 6s a summation, has been given in
Vt. 6.11.

Cor. 1. In thesan%e way, It can be shown that the area bounded by any

:urve, two given abs*iss (y = c , y	 d ) and the y-axls is

J 
xdy.

Cot. e. If the axes be oblique, o being the angle between them, the cor-
esponding formula for the areas would be

gin 0 
J

y dx and sin to 
J 

x dy respectively.
a	 C
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10.2. Illustrative Examples.

Ex. 1. Find she area of the quadrant of the ellipse	 +	 =
between the major and minor axes	 a

Y

Fig.2
Clearly, the area being bounded by the curve, the x-axis and the or-

dinates x = 0 and x = a. the required area

fI..
=	 ydx

Jo

=	
Ja2 - x 2 dx	 [since -s --	 I for the curvea

0

= 
b-	

a 
COS

O.a COS OdO( putting z = a sin O)
a

ab
=	

.X/2 
(1 +cos2O)dO = ab

T
8 + sin 20

---- j.

óz IT T1
Cot. 1. The area of the whole ellipse is clearly four times the above,

i.e., = nab.

COT. 2. Putting b = a and proceeding exactly as before, the area of a
quadrant of the circle x 2 s y 2 =a 2 is.*a2 ,and the area of the whole
circle =
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E,. 2. Determine the area bounded by She parabola y 2 = 4ax and any double
e,dinate of it, say, r x1.

The area OPN is bounded by
the curve y' = tax, thex-axis and
the two ordinates r = 0 and r

X	 r1

area O!'N 
= ox,

y dx =	 'I4axdx
f0	 JO

I The Pos i tive va lue of y is taken
since we aro considering the positive
side of the y-axis.

(5- 	 L
hg.3

•i	
1r

3/2 = xi y 1 	 (wherey =PN ='Tiar 1 .

The parabola being symmetrical about the raxi, the required area
POQ

y1 =e y
= the area of the rectangle contained by PQ and ON,

the area of the circumscribed rectangle.

Cor. The area bounded by the parabola and its latus rectum =

Ex. 3. Find the whole area of the cvc!oid x = a (0 sin 0), y = a (1 - cos O,
bounded by its base,

The area of half the cycloid,
viz., area AOC, is evidently
bounded by the curve, they-axis
and the abscissae y = Oand y = 2a.
Hence, this area is given by

fxdy
Jo

Fig.4

=j 	
a(t3 + sin0),asjnod9

0
r since y = a(1 - cosfl)
I	 x =a(6 + sing)
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= 
a [ 

-OcosO +sinO + + (O _.sin20)1=.7.

Hence, the whole area of the cycloid is 3ita
Note. It should be noted here that if AM be drawn perpendicular from

OM
A on ZTX4 , the expression J	 y dx represents the area

0
and not the area OAC.

Ex. 4. Find She area of the loop of She curve

xy z + (x + a) 1 (x + 2a) =0.
i-lore lotus first of all trace the

curve. Th e equation can be put in 	 'I'the formy 2 = - (Cr + a) 2 (x + 2a)}/.
We notice that y = 0 at the
points B and A where x = - a
and x = - 2a, and y -. ±
when x -, 0. For positive values
of x, as also for negative values of
x less than - 2a, y 2 is negative and
so y is imaginary. There is thus no	

Ipart of the curve beyond C) to the
right, or beyond A (.z = - 2a ) to	

FigSthe left. From A to B , for each
value of z , y has two equal and opposite finite values and a loop is thus
formed within this range, symmetrical about the x-ais From B to 0, each
value of x gives two equal and opposite values of y which gradually in-
crease in magnitude to as x aproaches 0. The curve, therefore, is as shown
In the figure.

The required area of the loop = 2 . area APB

= 2.Jdx = 2f
	 JPT3a)d

and substitut i ng z for x + 2a. this reduces to

21
J

	

	(a - z)	
Z	 dz

o
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=21Elije .2astn- cos-; aea Cos $
Jo

[putting z 2a	 2 81

7,2 
ER

I 	 cos8(l - cose)d9 2a 2 (i 1)
Jo

=a 2 (4- it).

10.3. Area between two given curves and two given or-

InIPS.

Y	 P2

] 

Q2

O)t M ! PNQ2 x

Let the area required
be bounded by two
given curves y = f ( x
and y = fz ( x ) and two
given ordinates x =a and
x = b, indicated by Q Q2
P2 P 1 Qi in the (figure - 6),
where OM =a and ONb.

Clearly, area Qi Q2 P2 P I Q	 area P 1 MP 2 -. area Q1 MNQ2

	

b	 b

=S f, ( x)dx 
J-8 

12
a

b

=J (fl x- ji (x))dx
a

b

	

=1	 (yt _y2)dx,

=

where yt and Y2 denote the ordinate s 0f the two curves P . P2 and

Q Qz corresponding to the same abscisS'
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10.4. Illustrative Examples.
Ex. 1. Find the area above the x-axis. • ,tcluded between the parabola y 1 = ax

and the circle x 2 +y 1 = 2ax.	 11. E. E. 891

The abscissa of the common
points of the curves y 1 = ax	 y
and x 2 + y t = 2ax aregiven
by r + ax = 2ax, i.e., x () and
x = a.

We are thus to find out the 	 .2
area between the curves and the
ordinates x = 0 and x a
above the x-axis (i.e., for positive
values only of the ordinates).

The required area is there-
fore	 Fig-7

J
(y1 - ya ) dx I where yi 2 = 2ax - x 2 and y2 = ax]

0

=J(2ax_x2 -.)dx.

Now, putting x = 2a sin 2O,

J
'I2ax - x 1 dx = J

	
Za sin

oo 

=
 a25

I/4.	 X/4
(1— cos49)dO =a2 [9stn40]	 =

Also, f SrdX = 'Ia [. x"2	=	 a2

Hence, the required area is	 a2 -4 a 2 = a2 ( -

Ex. 2. Find, by integration, the area of the ellipse

ax  + 2hxy + by 
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The equation can be put in the form

by  + 2hxy +(ax 1 - 1) = 0.
V

Fig. 8

If y y2 
be the values of y corresponding to any value of x, we

have

22
y1 -Y2 

=4I,2x 2 t'(ax l _U'4b-(ab-h2)X2,

ab - h 2 being positive here, since the.conlc is an ellipse.

The extreme values of x , where thp ordinates touch the ellipse, are
given by

fb
- v2 = 0, i.e., X _.±.s1j ab - h2

The required area can be treated as bounded by two curves, MP,L, LP1M

respectively, both satisfying the given equation, but one having a single
value y for y coresponding to any value of x, and the other also having a

	

single value ys for the same value of x. 	 -

Hence, the area required

sb-h 2	 _________

= I	 (yi —y2 )dx	 I 	Tiiab -h 2 )x 2 dxbj
44

1 b
ab-112	 ab

and putting '( ab - h 2 ) x = lb sin 9, this becomes

2	
2

sf2

ab-	 ) 1 cos2OdO _____
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Note. The area of the ellipse can also be obtained as follow.:

Assuming the equation of the ellipse referred to its major and minor

axes as axes of co-ordinates to be 	 +	 = I by the theory of Invar-

lanta as given in Conic Sections, we know that --j . -- = at' - h'.

Now I from Ex. 1, COT. 1, Art. 102 1 the area of the ellipse Is

it

na= 1b— hr)

	Ex. 3. Find the area between the curve y'	 ((a - x )3 /(a + x )) and the

asymptote.
To trace the curve, we notice that y is imaginary for values of x greater

than a or less than - a. At x = a,	 Y

y = 0, and froma to_a,foreaCh_
value of x,y has twoequal and
op,.osite values, tending to ±
as x apcoaches - a. At x = a. the
x-axis touches both the branches. 	 x'	 o	 A x
The figure is, therefore, as
sh:wn, symmetrical about the

The required area between

	

the curve and its asymptote i q	Fi.9

therefore

21 ydx	
21a	

dr
a^X

and substituting z for a + x this reduces to

.25

21
Jo

Cos 0 4a sin 9 cos 940 I where z 2a sin 
29

=21 2acos19j-.
Jo

1.3 5

	

= 160 
Jo
 cos'OdO =165 2	- =355'
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10.5. Areas in Polar co-ordinates.

Let r = f(0)bea
curve APB, where 1(0)
is supposed to be a finite,
continuous and single-
valued function in the in-
tervala < 0< P. The area
bounded by the curve, and
the radii vectors 8=a and
0 is given by the
definite integral

I 5 r dO,	 i.e., } L( f ( 0 )) 2 dO.

Let A denote the area P0,1 , bounded by the curve, the given
radius vector 04, i.e., 0 =,a, and the variable radius vector OP
at vectorial angle 0 a < 0 < Then for each value of 0, A hasa definite value and so A is a function of 0 If Q be the neighbour-ing point r + Ar, 0 + AO on the curve, we have

EA = the infinitesimal change in A due to a change AO in 8
= the elementary area POQ

and this clearly lies between the circular sectorial areas OPN andOQM, where PN and QM are arcs of circles with centre 0.
Thus, -I r2 AO	 <A .z i2 (r +

i.e.,	 !(f(9))2 << . ( f(O +0))2AO 2

Now, proceeding to the limit, and remembering that 
f ( 8being continuous, 1(8 + O)-3 f(0) as z0 -i 0, we get

dA
= i (f(0)) ,	 i.e., .}T2

Thus,	 A =}f r 2 dO +C = F(0) + C, say.
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Now, taking P coincident with A and 8 respectively and

denoting the required area AOB by A 1 , we get

0 = F(a) + C and A = F( ) + C.

U

where	 A 1 = F() - F(a)= -L
 

J

o r1dO

Note. I. The curve APB is here assumed as concave towards 0. A

similar proof with corresponding modifications holds even if the curve be
convex, or partly Concave and partly convex or wavy, in fact of any form.

Note. 2. 
As in the case of area in Cartesian coordinates, the above

result can also be deduced directly from the definition of a definite integral

as a summation.

Cor. The area bounded by the two curves r1 = f (8) and r2 =f2 (0)

and two given radii vectors 0 = a and B	 is

(r2 1 - r, 1 )dO.

Alternative proof

Let AB be the curve, OA and OB be the radii vectors cor-

responding to 0 = a and 0 =

Divide 5 - a into n parts each equal to h, and draw the cor-

responding radii vector s. Let P and Q be the points on the curve

corresponding to B = a i-rh and 8 =a + (r + l)h and let Us

suppose 0goes on increasing from a to 3 . With centre 0 and

radii OP , OQ respectively draw arcs PN , QM as in the figure.

Then the area OPQ lies in magnitude between

4 0P 2 .h and !QQI.h,

i.e., between 4(f(° +rh)j'h and 4tfta + (r +
	

It

 adding up all the areas like OPQ, it is clear that the area

AOB lies between

Il—a	
n-I

4 E jf(a +rh)) t h and!	 £
7-0
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Now, let it .-. , so that h -, 0 ; then as the limit of each of
the above two sums is

if (f(0))'dO,
a

it follows that the area AOB is also equal to the definite integral.

10.6. Illustrative Examples.
Ex. 1. Find the area bounded by the cardioide r = a (I - cos 0)

Fig. II

The curve is symmetri-
cal about the Initial line,
since replacing 8 by-8,
does not alter. Beginning
from 0 = 0 and gradually in-
creasing 0 to X , the cor-
responding values of r are
noticed, and the curve is easi-
ly traced in the figure - 11.

evidently, from the above article,	
Now, the required area is

2.fr2 dO = a25 (1- cosO)' dO = a - 	 =na'

Note. It should be noted that the area bounded by the cardioide whose
equation is r= a( I  + cos 0) is also	 -

Ex. 2. Find the area of a loop of the curve r = a cos 20.

Fig. 12



Fig. 13
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In tracing the curve, we notice that, as 0 increases from 0 to . n, r
diminishes from a to 0, the portion AP, 0 being thus traced. As 0 increases
from to tr, r is negative throughout, and the corresponding portion of
the curve which is traced is OP, 14I13 0. Then as 0 increases from 1 it to . it,
r remains positive and the portion OP4 A'5 0 of the curve is traced. As
8 increases from i it to in, r is again negative and we get the portion
OP4 B'P7 0 of the curve. Finally, when 0 increases from I it to 2it, r is posi-
tive and the portion OP. AO of the curve is described. The curve thus con-
sists of four equal loops as shown in the figure.

It t5 now clear from the figure that, area of one loop

= 2. area APO

f7It

=	
r2 dO = a2 

J	
cos 2 29d0 = -ira.

0	 0

Cor. Hence, the entire area of the curve, i.e., the sum of the areas of the
4 loops =.}itai.

Note. All curves of the type r = a sin nO, or r a cos nO may be
similarly traced, by dividing each quadrant into n equal parts, and increas-
ing 0 successively through each division. If r be found positive, the traced
portion of the curve will be in the same division; if r be negative, the traced
part will be in the diametrically opposite division. Anyway, when the curve
is completely traced, it will be found to consist of it equal loops if n be odd,
and 2n equal loops if it be even.

Ex. 3. (i) Find the area of the loop of the fohum of Descartes,

x + y' =3azy.

(ii) Find also the area included
between the fo!ium and its asymptote
and show that ills equal to the areof
the loop.	 X

(I) Transforming to cor-
responding polar co-ordinates by
putting x = r cos 8. y r sin 9,
the polar equation to the curve be-
comes

cos 0 sin 0
cos'O + sin 39	

- (1)
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As 0 increases from 0 to +2,r at just increases from 0 to (3a I '2),
reaching the maximum at 0 = .. 2, and then diminishes to 0 again, thus
forming a loop in the first quadrant.

The required area of this loop is
I 2
	

3

	

-	 -X	1 [2	 9a2 I	 sin OcosO

	

= — i	 r2dO=—i	 .3	 3 3d8
	2j	 2 j	 (sin Otcos 0)

9a2J
t1dI=	

(1 +t)	 lputtmg I = tanOl
0

	9a 2	 LI
j 	

2a	
-.-- Lt	 I -	 1	

+2 r - -	
0
(1 +i)	 2 £-9 .. L. 1 +

(ii) The equation of the asymptote of the folium is

	

X +y+a=0.	 ... (2)

Its polar equation is r = 	
-a

	

 sin 0 + cos 9	 .

Now, r-.

	

	 If (sIn 0 + cos 0) - 0, i.e., If tan 0 -4 -1

i.e.. if0-s.2.

the direction of the asymptote is e -.

The asymptote intersects the two axes at A and B • where

OA =a and OB = a, i.e., OA = OB.

Hence, the area of AOAB = + a2 .	 ... (4)

Area between the folium and Its asymptote = the triangular area
OAB + the limiting value of twice the area between the curve and the
asymptote in the second quadrant (from symmetry)

= !gZ + the limiting value of twice the curvilinear area OKPQAO

+2o (say).

Draw a radius vector	 rr,lonit an angle 0 with the r-axls, such that
< 8 c w. Suppose It cuts the curve and the asymptote at P and Q

respectively.
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Let us denote the curvilinear area OXPQAO by S, the triangular area
OQAO by S1 , and the curvilinear area OKPO by S2

SS1-_S2.

oS = 0Lt ,1 (S -Si).

Now, applying the formula for area in polar co-ordinates, i.e., J r 1 dO
and using equations (1) and (3), we get

I r
	 a' do	

f	 9a2sin2OcosO dOS	 LJ0(slnO + cos 9) 2	(ain30s cos3$)2

...!i2 (I -1),say.

Now,
	

sec1OdO4.8	
- j(sinO + cos9)'	 (1 i- tanO)'

on multiplying the numerator and denominator by sec 2 0)

= J At	 putting t = 1 tan 91

I	 I
-	 I+ tan O'

r1	 ______
= 1.i + tan oJ 0 = 1 + tan 

C 
sin 1 8 cos 'OdO	 f tan2Osec2O

AgainJ (sIn8 +cos 3 o) 9 J (1 +tan3O)

on multiplying the numerator and denominator by sec '0)

l putting 1+ tan 3OtI

11	 1	 1
-	 = -	 (I + tan 10

3
12 = (	 ) [i + tanOI 0 I + -tan -18 -3.

$ 1g2I2	
1	 1

i+tanOl+tan6J
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a,[2
tan 2 O- tan $-2]+ I + tan 'O

(tanG + I)(tanO-2)= a 1
 [2 + (1 + tan O)( I	 tan 0 + tan l0)J

tan 0 - 2=g1 
[2+1 - tan  + tan 2 9 1

Now, 0= Lt	 S=a2.
3Z	 2

8—.-
4

the required area = +a 1 + 2a =2a2  = the area of the loop.
Lx. 4. Show that the area between the folium of Descartes and its asymptote

is eqI4aI to She area of its hop, each being 	

B
equal to .1al

The equation of the tolium is
x l +	 = 3axv.	 x'D

Turn the axes through i n ; that is	 C
substitute (x - y)/'12 and (x + y)/42	 N Q yfor x and y respectively. Then the
given equation transforms into 	 Fig. I4

I _x 2 3c-x

	

	 Iwhere c = -a.c+x

C. xl
Here c + x = 0, i e., x = - c is the equation of the asymptote MN

OA =3c,OD = - c.
the required area a between the Folium and the asymptote

. 

t

0

Li I 1=I(3i
5c	 +

- 
.

Lt I 
0	 x(3c-x)

t-+CJ I 'l((x +C)(3c - x))

•0

=2 Lt	 ydx	 2

2

,f	
x(3c -x)Let I =	 ..3c_x))4x=f(1_2cose)(1 +cose)de

on putting x = c - 2c Co. 9, so that Co. 0 =
2c 

X
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= -20 f (cosO + cos2O)dO

= -2c 2 (sinO +sin29)

=_2c( sin( Cos -)+ 	 sin (2 cos - 1--)).

= 2 ( 20 ) LL [sin(cos -' 2c /

	+ sin	 os-

	

putting 	 _2

	

2a1	 Eo•	 1
Again L, the area of the loop )SAC,

= 2 area of the portion OBA

	

3c	 .3c
= 2J ydx	 x0c - x) dx.(x +c)(3c - x)}

	

0	 0
Putting, as before, x = c - 2c co. 0,

.,3c-_)+(-' c-x\IC XI. =	 (- 2c ) [ ifl (
	 2c	 h1

4c 1 3 43 a2[on putting c	 /a1.
asin0

Lx. 5. Find the area between the cissoid r =	 and its asymptote.cos 0
The curve way be traced either from its polar equation or by con-

verting it to Cartesian form,
and the figure will be as
shown. The asymptote is 	 Q
easily found to be the line
x = a or in polar co-ordinates 	 ______________
r cos e = a Now, let 5P—Q— be	 Q	 A X
any radius vector at an
angle e to the x-axis, inter-
secting the curve and its
asymptote at P and Q respec-
tivclv.	 Fig.15

Integral Calculus (main) -18
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$

Area OAQPO

	

	 2 - r2 2 ) dO I where r = OQ '2 = OP)
2 Jo

_! t (_.f.2 _ m2)d9
- J 0 	 cos 2 0	 cos-e

70
(1 +sIn18)d9

a 2 f3	 sin28
- 2	 2	 4
Now, the required area bvtwen the curve and the asymptote is c1ar1y

(there being symmetry about the x-axis, and since the direction of the
asymptote is given bye =

OLII	 [2ç(e_-°)J =a2(4.Jt)1rfl2.

Lx. 6. Find the area common to the Cardiodr r = a (1 + cos 9 ) end the
circler =!a,  and also the area of the remainder of the Card bide.

At the common point P of
the two curves, we have

i	 r + cos 9.

) I	 --	 cos 9 = j or,O =1t.

c	 The required area is easily
N	 seen to be

	

t-ig.lô	 2 area OCP 1-area PQO)

a 2 (1 + cos 9>2d0}= 2 (- J	
(4a) 

dO + -

= a 2 .4w i-a 2 ( 4 (w - n)+ 2 (sin x - sin Ix)
+	 Si(n 2w - sin! w

(!2.±)a2
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Again, the area of the remainder of the Cardioide, i.e., APCR

= 2.area APC =
( y2 - p22 )dO

ri*
(a (1 i- cos O)2 _!i dO

0

= a2 f	 (2 cos O scos29 -.)ae
0

I	 '3	 1'3	 31	 I9 i3	 I
=a2t_jE.

Note. The whole area of the Cardloide is evidently the sum of these
two, i.e., = . ra	 [ See Ex. I thove.j

10.7. The sign of an area.

In the expression $ y dx for an area we tacitly assume that
the ordinate y is positive throughout the range (a, b) and that x in-
creases from atob,i.e.,b>a.	 y
In this case the area calcu-
lated by the above formula
will be positive. If, however, 	 +	 C 8
y be negative or if Li <a while	 0 A	 -
y is positie, i.e., in moving 	 Qalong the curve from x = a to
x = Li we are moving paral- 	 Fig. 17
iel to the negative direction of the x-axis, the calculated area will
be negative.

If, therefore, we proceed to calculate the total area where, in
the range ( a , b) , y is positive for some portion and negative for
the rest, as in the above figure , by using the formula

Jay 
dx, the calculated result will give us the difference of the
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magnitude of the two areas ACP and CQB, which may be posi-
tive or negative or even zero if the magnitudes of the two areas are
equal.

Hence, if our object be to get the sum total of the magnitudes
of the two areas, we should calculate each part separately by the

formula of the type	 y dx, i y dx, the results being found to

be associated with their proper signs. We shall now discard the
signs and consider the sum of the magnitudes.

In each individual case, therefore, we should first of all have a
Q	 clear idea of the figure and

_-	 the area to be calculated, and
then we should proceed. For

S	 instance, notice that in the
figure -18, area PACR is +

R	 area CRSD is - and area

three-valued and in calculat-

SDBQ is +, and that for the
+ range DC of the x-axis, y is

O A
ing the area PACR we are toFig. 19	 use one value of y for the

portion in the formula 5 y dx, for calculating the area CRSD

we are to use a second value of y In the formula 5 y dx, the
C

upper limit d being less than c for this part, and lastly for the area
SDBQ we are to use the third value of y for this part in the formula

'

f ydx. If we take the algebraic sum of the three areas, with their
J

proper signs, wjet the area bounded by the curve, the x-axis and
the ordinates AP and BQ.
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Similarly, in the formula . 5	 r 2 dO in polar co-ordinates

aif A < a, i.e., if 0 diminishes in moving along the curve from 0 = a
to 0 = ft , the calculated area 	 Qwill be negative. Then area
OPR is + , area ORS is -,
area OSQ is + • the area
bounded by PRSQ and the
radii vectors OP , OQ being
their algebraic sum. Also for
the range SOR, for eadi value
of 0 , r has three values, and 0,4d
we must use the right value in 	 Fig 19
each case for that part when
moving along PR or along RS or along SQ in the expression r'dO

10.8. Areas of closed curves.

y l	 Yl	
IOA KJ1_____

OjA jBX cE 2 ar	 x

(i)	 (ii)	 (iii)

Fig. 20

In a closed curve given by Cartesian equation, clearly for
each value of x there will be two values of y , say, y, and Y1
[See figure (i)J. The extreme values of y,say, a and b, are obtained

byputing y1 = yi . Now J	 (y1 -y2 ) dx will give the positive

value of the required area, provided b > a and y1 > y2 . This
amounts, as it were, to the determination of the area between two
curves having the same equation as the given one, but y being
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single-valued in each, the proper value being chosen for each part.
The method has been illustrated in Ex. 2, Art. 10.4.

In polar curves, if the origin be within the curve See [figure (ii)I.

- J	 r 2 dO gives the desired area.
0

If the origin be outside, corresponding to each value of S there
are two values of r, say, r1 and r2 See [figure (iii)]. The extreme
values of 0 , namely a and 0 , are obtained by putting r1 =

Mow, if r1 > r2 and 0 > a, the positive value of the area will be

given by the expression I f- $ ( 
r1 - r 2

In fact, the area OAPB is given by 5 r1 2 dO and is positive,
a

while	 r2 2 dO gives the area OBQA with negative sign, the

algebraic sum of the two giving the desired area.

In the case of closed curves there is another method of calculat-
ing the area. Let ( x , y) be the Cartesian co-ordinates of a point on
the curve whose polar co-ordinates are (r. 0 ) , then x = r cos 0,
y = rsin0.

Now, if I be a single variable parameter in terms of which x, y
and, therefore, r, 0 of any point on the curve can be expressed, we
have

dxdr	 .	 dO

dr
dt =- sin 0+r cos 0 dO-

dxx- -=r
dt	 dt	 dt
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Hence, the area which is expressed by the integral I  r 2 dO can as
well be expressed by the line integral

J(x ._ y4)dtdt
along the curve, the limits of t for the closed curve being such that
the point (x , y) returns to its initial position. The rule of signs for
the area is that the above expression is positive when the area lies
to the left of a point describing the curve in the direction in which
I increases.

10.9. Approximate evaluation of a definite integral Simp-
son's rule.

In many cases, a definite integral cannot be obtained either be-
cause the quantity to be integrated cannot be expressed as a math-
ematical function or because the indefinite integral of the function
itself cannot be determined directly. In such cases formula of ap-
proximation are used. One such important formula is Simpson's
rule. By this rule the definite integral of any function (or the area
bounded by a curve, the x-axis and two extreme ordinates ) is ex-
pressed in terms of the individual values of any number of or-
dinates within the interval, by assuming that the function within
each of the small ranges into which the whole interval may be
divided can be represented, to a sufficient degree of approxima-
tion, by a parabolic function.

Simpson's Rule : An approximate value of the definite integral

fa y dx, where y f(x)

-hI(y 1 +Yz.i )+ 2(y1 + i + ... + y	 )

+ 4(y + y1 + ...

-where h = 
b 2n a 

and y , y , y, ,.. . are the values of y when

x = a, a -t- h,a i- 2h,



X
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In words, the above rule can be written as

4 h ( sum of the extreme ordinates + 2 . sum of the re-
maining odd ordinates + 4. sum of the remaining even or-
dinates ].

Let PQ be the curve y= f(x)andPL,QM be the ordinates
x = a, x = L. Divide the interval LM into 2n equal intervals each

of length h bythep6ints N2 , N3 .... . sothat h = ( b -a)/2n
and let V1 N2 V3 N3 ........ . be the ordinates at N2 ,N3 ........
Then PL = y1, P2 N2 = yz. P3 N3 y , . . . Through PP2 P3 draw a
parabola having its axis parallel to the y-axis, and let its equation
referred to parallel axes through N2 (a + h , ) be

y=a+bx+cx2.

Then, the area bounded by the parabolic arc PP 2 P3 , the or-
dinates of P. P3 and the x-axis ( such to be called hereafter short-
ly as the area under the parabola)

'I

(a + bx + cx 2 ) dx = 2h(a +4chZ ).. (2)
-h

Since P (-h,y 1 ),P2 (O,yl ),P3(h,y)arcpointsonthe
parabola (1),

Y, =a_bhich 2 , y2 =a,y3 =a i- bhi-ch2

from which we get a = y2,c =	 t Y'2h 2
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from (2), area under the parabola = - h (y1 + 43(2 + Y

Now, area of the 1st strip (ordinates y,, y,, 3(3 ) under the curve

	

y = f ( x) is approximately	 area under the parabola

	

_ILI	 A+ 'Yz +3f

Similarly, area of the 2nd strip (ordinates ya. 3(4, ys ) under the

curve is approximately = h (ya + 4y 4 + 3(5 ) area of the 3rd

strip (ordinates ys, y' . 3(7 4 under the curve is approximately

= - It (ys + 4y + y, ) ; and area of the nth strip under the curve

is approximately

= J h(y,. 1 + 4y1 + Yb	 ).

summing all these, area under the curve, i.e., 5 
y dx is appro

xtmately

+ y2.) + 2(3( 3 +3(5 + •.. +3(3-i )
+4(3(2 +3(4 + . +	 )).

Note. It should be noted that the closer the ordinates, the more ap-

proximate is the value.

Simpon's rule is sometimes called Parabolic rule.

Ex. Given e l =Le =2.72.e 2 =7.39,e 3 =20.09.e 4 =54.60;verify

Simpson's rule by finding an approximate value of 
J 

£ dx. taking 4 equal

intervals, and compare it with its exact value.

Hence,a = 0,b = 4,n = 2,6	 1,y =f(x) = c'

by Simpson's rule we get the approximate value

It (( y,	 ys ) 4	 4 ( Y • y0l

= •!,, h C( e"	 e 4 	 .- 2e 2 + 1 ( r	 + e. 3 )l

ii Ii	 4 'i + 2 ' 7 39 + 4 ( 2.	 + 2009 )I

53.87

Exact value	
[ e'
	 = e 4 - 1	 54 60 - I = 53.60

error = 53.87 - 53.60 = 0.27 ( approximately)
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EXAMPLES X

1. Find the area of a hyperbola xy = 0 bounded by the x-axis,
and the ordinates x = a,x =b.

2. Find the area of the segment of the parabola y =(x - IM x)
cut off by the x-axis.

3. Find the area bounded by the x-axis and one arc of the sine
curve y = sin x.

4. In the logarithmic curve y = ae', show that the area be-
tween the x-axis and any two ordinates is proportional to the dif-
ference between the ordinates.

5. Find, by integration, the area of the triangle bounded b y the
line y = 3x, the x-axis and the ordinate x = 2 . Verify your result
by finding the area as half the product of the base and the altitude.

6. Show that the area bounded- by the parabola 'Jr + 'ly = Va
and the co-ordinate axes is - a,

7. Show that the area bounded by the semi-cubical parabola
y 2 = ax I and a double ordinate is . of the area of the rectangle
formed by this ordinate and the abscissa.

S. Show that the area of

(i) the astrojd x 213 + y 2/3 = a 2/3 is . 7La2

(ii) the hypo-cycloid	
) + 01 ) ... = I is .itab;

2	 2(iii) the evolute (ax) 2/3 + (by) 2/3 = (a 2 - b 2)2/3 is - It (a - b 2)

9. Find the area enclosed by the curves : (a > 0

(I) x (I + f2 ) = I	 t2 ;y (I + t 1 ) = 2t
(ii) x = 3 cost ;y	 2 sift

(iii)x = a cost(I - cost);y = asint(I - cost).

(iv) x	 a (2 Cost + cos 2t);y = a( sin t + sin 2t).
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10. Find the area of the segment cut off from y 2 	 4x by the

line 	 x.

ii. Find the area bounded by the curve y 2 = x' and the line

y = 2x.

12. Find the area of the portion of the circle x I + y	 1

which lies inside the parabola y 2 = I - x

13. (i) Show that the area bounded by the parabolas y 1 = 4ax

and x 1 = 4ay is --a2

(ii) Find the area bounded by the curves

y 2 - 4x - 4= 0 and y t + 4x -4 = 0.

14. Prove that the curves Y 2=4x and x' =4y divide the square

bounded by x = 0 , x = 4 , y = 0, y = 4 into three equal areas.

15. The curves y = 4x 2 and y 2 = 2x meet at the origin 0 and

at the point P. forming a loop. Show that the straight line OP

divitles the loop into two parts of equal area.

16. (i) Find the area included between the ellipses x 2 + 2y 2 = a1

and 2x 2 +y t =at

(ii) Show that the area common to the two ellipses

x 2	 V2_+ .-. = 1 and_+=1(l2>t7)T2 
b2

2a
is 2ab tan -'	

b

17. Find the area of the following curves (a > 0)

(i) a 2 y 2 = a 2 x 2 -

(ii) (y - x ) = a' - X 2 . ( See Ex. 2, Art. 10.4. 1

(iii) (x 2 + y2 )2 = a(x -y' ).

(iv) (x 2 + y2 )2 = a'x 2 + b2y2

(Transform (iii) and (iv) to I'olar. I
(v) x = a cos O + b sin O.y = a' cos O +b' sin O.

(vi) z	 a sin 2t, y	 a Sin t.
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18. Find the area of the loop of each of the following curves
(a > 0)

(i) y	 x(x - 1)2

(ii) ay' = x 2 (a - x)

(iii) y 2 = x (x + a).

I -	 •1 ..t2(iv) x =

	

	 ______1+t2,y=tI+12,

(v) X = a(1 - t 2 ),y = at(] _i2),(_I 15

19. Find the area of the loop or one of two loops ( where such
exist ) of the blowing Curves (a> 0

(i) x(x 2 + y 2 ) =a(x2 - y 2 ).

(ii) y 2 (a 2 + x' ) = x 2 (a2 - x 2 ).

(iii) y'(a - x)= x 2 (a + x).

(iv) y 2 = x 2 (4 - x 2 ).

(v) x2 = y 2 (2 - y )

20. Find the whole area included between each of the follow-
ing curves and its asymptote: (a > 0)

(i) x 2 y 2 = a 2 (y 2 - x 2 )

(jj) y 2 (a - x)= x3

(iii) y 2 (a - x) =x 2 (a + x).

(iv) x 2 y 2 + a'b' = 42y2

(v) xy 2 = 4a,(2a - x)

21. Find the area of the following curves: (a > 0)

(i) r = a sin 0

(ii) r 2 = a 2 sin 20;r a = a 2 cos20.

(iii) r 2 (a 2 sin 7 O + b2 cos 2 O) = a2b2
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(iv) r = a sin 30

(v) r = a( sin 20 + cos 20).

(vi) r 2 = a 2 cos 2 O + b  sin 10

(vii) r = 3 + 2 cos O.

22. Show that

(i) the area included between the hyperbolic spiral ro = a and
any two radii vectors is proportional to the difference between the
lengths of those radii vectors;

(ii) the area included between the logarithmic spiral r = e
and any two radii vectors is proportional to the difference between
the squares of those radii vectors.

23. Find the area of a loop of the following curves : (a > 0)

(i) x 1 + y 4 = 2a 2 xy.	 [Transform to Polar.

(ii) r 2 = a 1 cos 20.

(ill) y2 = a 2 cos 40.

24. Find the area of the ellipse 9x 2 + 4y 2 - 18x-- 16y -1 = 0.

25. If for the curve x ( x 1 + y 2 ) a (x2 - y 2 ) (a > 0),
A be the area between the curve and its asymptote and L be the
area of its loop, show that A + L = 4a2

26. Show that for the curve

y 2 (a + x) -x 2 (3a - x) (a >0),

the area of its loop and the area between the curve and its asy-
mptote are both equal to (3 '13) a2

27. Show that the area Included between one of the branches
of the curve x 2 y 2 a 2 (x 2 + y 2 ) ( d > 0) and the asympi te is
equal to the total area o( the curve (1 1 + y2 )2 = a 2 (2 - y 2 )
(a> 0).
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28. If p = f ( r) be the equation of a curve, show that its

area = - i 	 .dr
2j -1( r 2 	p2i

taken between the proper limits.

29. If p	 f ( w) be the equation of a curve, show that its

CLEarea = I 
J p ( p + du/ ) du

taken between the proper limits.

30. U) Show that the sectorial area of the equi-angular spiral
p = r sin a included between the zwo radii vectors r 1 and r2

is .( r2 2 -	 ) tan a

(ii) Show that the area of the lemniscate a l p 0 is a

For half  loop rvaries from 0 to a.J

31. Find an approximate value of

0.2

J	
(1 - 2x 2 >113 dx, taking 2 equal intervals.

o

Given f ( 0.1 ) = 0.99334,f(0.2) = 0.9725

where f(x) = (I -2x2)1/3.

32. Find the approximate value of

2	

, taking 10 equal intervals, and calculate the error.dx

ft X

Given	 f( 1.1 ) = 0.90909
1(1 . 2) = 0.83333
f(1.3) = 0.76923
f(1.4) = 0.71429
f(1.5) = 0.66667

Iwhere f(x) = -;

f(1.6) = 0.62500
f(1.7) = 0.58824
1(1.8) = 0.55556
f(1.9)	 0.52632
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33. Evaluate

5

2
'( 2 + sin x) dx, using 4 equal intervals,

given when x = 00', 2230', 45'O', 6730', 90 0',

J( 2 s- sin x) = 1.414, 1.544, 1.645, 1.710, 1.732.

34. Obtain an approximate value of

5 
-__dx 

2 taking 4 equal intervals, and hence obtain an

approxima°te value of n correct to four places of decimals.

35. A river is 80 metre wide. The depth d in metre at a dis-
tance x metre from one bank isiven by the following table:

x = 0 10 20 30 40 50 60 70 80

d=0 4 7	 9 12 1514	 8	 3

Find approximately the area of the cross-section.

36. Use Simpson's rule, taking five ordinates, to find approx-
imately to two places of decimal the value of

- 1/x)dx.

ANSWERS

1.	 c log . 	2. 41.	 3. 2.	 9. (i) R.	 (ii) 6it.

ita . ( iv) 6ita 2 .	 10. 4 .	 31. 3.2.	 32. 47t 1-4.

13. (ii)	 . 16. (I) 2I2a 1 sin'	 - .	 17. (i) 4a 2	 (ii) 7r2

(iii) a 2	 (IV) 4 it (a	 + 6' ) .	 (v) it (at" - a'b)	 (vi) a 2

18. (I)	 -.	 (ii) j!.a 2	 (iii) !-a 5/2	 (iv) 2 - 4 it	 (v) -a 2
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19. (I) 2a 2 (J - I) . ( ii) a 2	
2 - 1) . (Iii) 2a 2 (1 -.1	 . (iv) !_

(v) -42 .	 20. (I) 4a 2	 () !no 2	 (iii)2a2 (1 + It . ( v) 2itab

2	 21. (i) +ita 2	 (ii) a 2; a 2 (jjj ) nab .	 (iv) '. ,ta I

(v) na 2	 NO 1. 7c (a 2 + b 2 ) .	 (vii) 11 it

23. (i) I na 2 . (ii)	 a2	 (iii) a2 .	 24. 6n.	 31. 0.1982.

32. 0.69315; error = 0.00001 . 	 33. 2546.	 34. 3.1416

35.	 7101711 .	 36. 0.84.


