CHAPTER XI
LENGCTH OF PLANE CURVES

[ Rectification ] i
11.1. Lengths determined from Cartesian Equations.

We know from Differe-tial Calculus that if s be the length of
the are of a curve measured from a fixed point A on it to any point
P, whose Cartesian ~-ordinates are (a, b)and (x,y) respec-
tively, then

ds —————— ’ dy \?
a—x=secv=\41+tan'\p= 1+ 7&)

w denoting the angle made by the tangent at P to the x-axis.

Thus, we can wr' &

S:I-\’l +(-3£ =dz+(',

dy . " 7 &
where ;7 is expressed in terms of x from the equation to the curve
and C is the integration constant. If the indefinite integral

J“\,I +(g—¥ 1dx z

be denoted by F(x), thensince s = 0 when P coincides with A,
ie,whenx= a,weget

0 = F(a) +C,whence C = -F(a).

1 ]
This, s=F(x)—Ha)=j' \}l+(-§£’dx.

*The process of finding the length of an arc of a curve, i.e., “of finding a
straight line whose length is the same as that of a specified arc’ is called
Rectification. For the definition of the lemgth of an arc of a curve, see
Authors’ Differential Calculus, Appendix.
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Hence, between two points having x; and x; as abscissa the
length of the curve is given by

X3 ) I, m————
8; — 8 =J -\/ 1+ g: dx«j ‘\/ 1 -.-(g}'f):d;
X2
=j -ﬂ 1+ (g—-';: Idx. weie 1)

If it be convenient to get 3—, and accordingly 3—, in terms
of y ,instead of x, from the equation to the curve, we can use
the result

ds dx )l

-_— 1 +f=—
dy dy
whence the length AP is given by

¢ _I 1’ 1+ d") dy,

where rls expressed in terms of y .

Also the length of the curve between the two points whose or-
dinates are y, and y; respectively will be

LN ey )
§; - B =I 1+('§'; dy. = (2)
ra

If both x and y are expressed in terms of a common variable
paramcter t and so s is also a function of t, we can write

70 () (e - 2%
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Thus, as before, the length of the curve between two points on
it for which t = #, and t = t; respectively will be given by

e N (o

All the above cases can be included in a single result ir the dif-
ferential form

= vdxt + dy? , ce. (4)

where the right-hand side is expressed in the differential form in
terms of a single variable from the given equation to the curve .
This , when integrated between. proper limits , gives the desired
length of the curve .

Note . In the above formula (1), (2) and (3}, it is assumed that

;;{ ::, :-; ;,— are all continuous in the range of integration .

11. 2. Illustrative Examples .

Ex. 1. Find the length of the arc of the parabole y* = 4ax measured from the
verlex to one extremity of the latus rectum

i, RN E
| ere, Zyn = 4a, o de ¥ (%x) "N =x

The abscissa of the vertex and one extremity of the Jatus rectum are 0
and a respectively. Hence , the required lengh

j.\jl_...(_l—‘,_-[ 3\_‘_:,,,

2 I+ e &
= o'\]{x(:oﬂl
L[]

= [-Jx(x + 20 + alog(Vx 4 v(x +.|)]
0

a{VZ +log(l + v2)}.
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Ex. 2. Determine the length of amarcof the cycloid z = a (B + sin@),
y =al(l - cos0), measured from the vertex ( e, theorigm )

. Ei_,/ dry _“‘.'z)’
Her, 1 (da) ! (m

=av(l + cosB)? + sin?Bh = Zacos 38
Alsoattheoriging = 0. Hence the required length, from 8~ ' loany
point @, 1s
]
s =J 22 cos ;8d0 =dasin 0
Ba
Cor. 1. Since atthe .*-emity of the cycloid {i=, at the cu~p v = 25

we have 8 = nthere. Thus, the length of a wmpfe?e cyclowd beang, < able th
length trom the vertex to the extremity is 2 4a sin & TR o=t

Cor.2, s' =16a?sin? 20 = 8aa(1 - cosB) =Bay.
Ex. 3. Find the whole length of the loop of the curve

Jay? = x(x - a)?.

We notice here that, for negative values of x,yisimarinny and so

there is no part of the curve on the negative side of the x-axis 4, it st the
points where x = « ani . = g

¥ I wehavey = 0. Botween e two

| / points, for every valuc <« there

k.. 3 are equal and oppositc i lucs of v

8 T / a loop being thereby fornied. Fo r'

X ?K-/"%( ;-___? each valueof x greoovthan a y
| i i has two equal >ud pposite

S values, and with v irncr asing, y

i "\ continually increases n mag

Y nitude. The curve is thus traced

4! as in the adjoining hgur. The ex-

wemities of tie loop are given
by ¥ = Uand r = 2.

Now, from the equ tion 1a the curve,

&y;:"uh-c)' + 2x(x -a) =(x-a)(dxr-a);
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_ ds | dy \? _ (x —a)i(3x-a)i
'E}"'\ll*(Ef "\/'+ 36aly?

~ f (3x -a)? 3x +a
k' = 2V 3ex) :

2ax

the half length of the loop is

n3)4adx_ 1 [331,,,”2«1]
P'.?\f,‘:.:x} T 2V(3a) ‘3

0

i) |22
RVED) [2‘ ' ]"1‘3* 3 VA,
The wholelengthiof the loop, therefore, from the symmetry of the curve, o
= 1 \'- 3¢
3 ;

11.3. Lengths determined from polar equations.
From the formula
48

tan ¢ =rE—Q , COSQ = r-‘i’r , 8in o =rai_s-

dr ds
in Differential Calculus, where s represents the length of the arc
of a curve from any fixed point A of it to a variable point P whose
poelar co-ordinates are (r, 8) and ¢ denotes the angle between the
radius vector to the point and the tangent at the point, we can write

lds . 4] 1 _,’l ..l.(ﬁ)z
rde'mﬂc¢_‘1+cm¢" ]+r3 7 :
y d___s_..,‘ 2 51)!
whence 95 r? o+ 7 : : ... (1)

Again,
ds a0 y?
E—=sec¢=\'1+tan? = 1 +r’(;). i A2)

From (1) and (2), thelength of an arc of the curves can be ex-
pressed in either ¢f the forms

L
s =je ‘\JI" +(a'(':) de,
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or, s -J‘:\Il + r? (gﬁr),dr.

-
where r, ,8, and r;, 8, are the polar co-ordinates of the extremities
of the required arc. In the first form, r as also i—;—are expressed in
terms of 8 from the given polar equation to the curve. In the second
from, -‘;; is expressed in terms of r.

Both (1) and (2) can be combined in a single differential form
ds = Ydr? + ride?.

Note. it is assumed in the above formula that ‘;’5 5 ':—: are continuous in
the range of integration.

Ex. Find the perimeter of the Cardioide r =a (1 - cos 0 ), and show that
the arc of the upper half of the curve is bisected by 8 = 3x. [C.P. 1949 ]

HHere, since r =a (1 —cma},-i'{-;=naln0.

Hence, the length of any arc of the curve, measured from the origir,
where 8 = 0, to any point, is given by

]
|=I -\}rli-(%-;-lda
0
]
=J Yal (1 - cos@)? + a? sin28d0
0

] ]
8.[ hsin£d8=4¢[4cos l;—] =4l('|- msg)_
o 2 2 8 2

Thus, the length of the upper half of the curoe, which clearly croends rom
B#=0to 0 =x,Iis 4a(1 -~ cos-;-!) = da. [ See Figure Fx 1 Art 104}

The whole perimeter is clearly double of this, and thus = 8a

Again, the length of the curve from @ = 0 to 8 = 3 x is
4a(1-costx) = 2a, and 30 the line 8 = §x bisect the arc of the
upper nalf of the curve.
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11.4. Lengths determined from pedal equations.

From the formula ;—' = cos$ and p= r sin ¢ in Differential
Calculus, we can write

@1 1 5 1 " r
dr ~cos¢  V(1-sin?e) ‘\/ ( P’ )‘ Vr® —p?) *
T
fl

whence the length of an arc of the curve extending fromr = r,
to r = r, will be given by

" rdr

3 = \J( r? - P 2 L
n
where p is to be replaced in terms of r from the given pedal equa-
tion to the curve.

Ex. Find the length of the arc of the parabola p? = ar from r = a
to r = 2a.

The required length is given by

. rdr = rdr

o ';l{r’ ) 4 V(rT —ar)

"

2
[Jr' -ar +alog(Vr +Vr —c)]
a

aV2 + alog(V2 + 1) =a [V2 +log (1 + ¥2)].
11.5. Length of an arc of an Evolute.

We know from Differential
Calculus that the difference be-
tween the radii of curvature at
two points of a given curve is
equal to the length of the cor- P
responding arc of its evolute. 0

Thus, if p, and p, bethe O X
radii of curvatureat P and Q of

Y
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a given curve PQ,p and g being the corresponding points n the
evolute, the length of the arc pq of the evolute =p, - p, .

In fact p, q are the centres of curvature and so ﬁ-ﬁ and Qg are
the radii of curvature at P and Q of the curve PQ , and if the
evolute be regarded as a rigid curve, and a string be unwound from
it, being kept tight, then the points of theunwinding string describe
a system of parallel curves, one of which is the given curve PQ , of
which pq is the evolute. PQ is called the involute of pg.

Ex. Calgulate the entire length of the evolute of the ellipse

[C.P.1918 ]

—_—
a

Fig.3
a,b,a’, b’ being the centres of curvature of the cllipseat A, B, A, B’
respectively, the evolute, as shown in the figure, consists of four similar por-
tions, the portion apb corresponding to the part APB of the given cllipse.

Now, from Differential Calculus, it is known that at any point on the
ellipse, the radius of curvature "

alp?
gm0

where p is the perpendicular from the centre on the tangent at the point.
Thus, the length of the arc apb of the evolute

alb? gip? al b?
St S b el S

Hence, the entire length of the evolute of the ellipse

(5-4)
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11.6. Intrinsic Equation to a Curve.

If s denotes the length of an arc of a planc curve measured
from some fixed point A on it up to an arbitrary point P, and if
v be the inclination of the tangent to the curve at P to any fixed
line on the plane (¢g., the x-axis ), the relation between s and v
is called the Intrinsic Equation of the curve.

It should be noted that the intrinsic equation of a curve deter-
mines only the form of the curve, and not its position on the plane.

(A) Intrinsic Equation derived from Cartesian Equation.

Let the Cartesian equation to
the curvebe y = f(x).Then vy
denoting the angle between the
tangent at any point P and the
x-axis ,

tan v =% = f (x) .01

x
1
Also, s = arc AP =J -\#1 +(%) dx
a

x
=I \f]*{f'{x)}’dx=F(:),say, cui 1C2X
a

‘a’ denoting the abscissaof A, and "x’ that of P.

Now, the x-eliminant between (1) and (2), ( which will be a
relation between s and y), will be the required intrinsic equation
of the curve.

If the equation to the curve be given in the parametric
form x = f[(t),y = ¢ (1), wecan write

dy dy /dx _ &' (1)

dx ~dt fdt ~ fT(t)” t

]

tan y =
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w5 = [ NG () o

i
I VI (O™ 7 (07 (D)2 at
L

]

n

F(t), say, v k)
where 1, is the value of the parameter t at A .

The t-eliminant between (1) and (2) will be the required intrin-
sic equation to the curve.

(B) Intrinsic Equation derived from Polar Equation.

Let r = f(0) be the
polar equation to a curve.

Let ¢ denote the angle
between the tangent and the
radius vector at any point
P(r,8), v the angle made
by the tangent with the ini-

x tialline, and s the length of
the arc AP where A (a,a)

Fig3 is a fixed point on the curve,
_ 40 _ f(8)
Then,tan::-ra-r_f,(e}, sacs 1Y
v =84+, : ST |
']
and 5 =J. '\Ir’ +(d_dg)= de
a
8
« [ T do-Feo),say. ... @
a

Now, eliminating ¢ and 6 between (1), (2) and (3), we geta
relation betweens and vy, which is the required intrinsic equation
of the curve.
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(C) Intrinsic Equation derived from Pedal Equation.
Let p = f(r) be the pedal equation to the curve.
Then, as in Art. 114,

> rdr i rdr
o= TP~ ] e o i
a a

Also, from Differential Calculus, p denoting the radius of cur-
vature,

¥
o = ap —r(-—r) . sy K2
Eliminating r between (1) and (2), we get a relation of the
form

ds dy 1 . _ ds
dw‘¢{s]’0r' d's"»p(s)'"w_ b(s)’

which, when the right side is iniegrated, wi'l give the regired in-
trinsic equation,

11.7. Illustrative Examples.

Ex. 1. Obtain the intrinsic equation of the Catenary y = ¢ cosh r in the
form s =c tan y. )

Here, tan y= % = sinh —; T

Also, measuring s from the vertex, where x = 0,
I
[ 7 dy % 1
5 :J- 1+ (ﬂ dx
dx
0
X pee——
=j Vl +sinh? —dv
u -

X x
= cosh = dx =[csmh ir-] = ¢sinh L
3 [ el c

Hence, from (1) ,5 = ¢ tanw.
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Ex. 2. Obtain the intrinsic equation of the evcloid

x=ag(0+sin8), y=a(l -cos0)
taking the vertex as the fixed point and the tangent at that point as ihe fixed lire.

As shown in Ex. 2, Art. 11.2, the length of the arc of the above cycloid
measured from the vertex is given by

. 8
"‘“""ﬁ i (1)
il B JAE el
Also, tan y ar = de / de a1l + cos@) G 2
]

Y=g Hence, from (1), s = 4u sin y,
which is the required intrinsic equation
Ex. 3. Find the intrinsic equation of the Cardiorde

=a{l -cost),
the arc being measured from the cusp ( ie., where 6 = 0).

Here, w =8 + ¢ R o )
g d8 1 - cos@ [:]
and tan ¢, i.e., -rd_r " ial tan 7
S =—;-9. v (2}

Also by the Ex., Art. 11.3, we have

I‘Jr’f ) dﬂ_4a(14ms—)

Since, from (1) and (2), ¥ =0 -I'-!- =%8‘ le. B _-,%w'
» from(3), s = 4a (1~ cos }y), the required intrinsic equation.

Ex. 4. Find the Cartesian equation of the curve for which the intrinsic tqua
lionis s = ay.

dx dx ds

Here, ‘E = = E\? = COSya
dx =a cosydy. L X =asinyg + ¢, FEE ¢
XL AR

Again, b s dy sin ya.

dy =a sinydy. . y=-acosy + d. sy A2)
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From (1) and (), L'!lmina'lmg W, we get

(x - 1% + (y - d)? =a?, therequired Cartesian equat. n.

EXAMPLES XI
1. Find the lengths of the following :
(1) the perimeter of the circle x7 + yt =at;

(i) the arc of the catenary y = % (e Wy 'm) from the
vertex to the point (x,,y, );

(i) the perimeter of the astroid x#? + yi3 = g2 ;
. . . x W y @9 .
(iv) the perimeter of the hypo-cycloid (n ) 4 (b ) =1
(v} the peru. ter of the evolute
(ax ) 4 (by)d = (g1 - p2 )23,
(v} the are of the semi-cubical parabola ay? = 17 from the
cusp to any point (x,y ).

2. It < bethelength of anarcof 3ay? = x(x -2)? measured
from the or  nto the point (x, y), show that 3s? = 4x? + Jy?.

b, Show that the length of the arc of the parabola y? = 4ax
wh  h is ‘ntercepted between the points of intersection of the para-
b0+ and the straight line 3y = 8xisa(log2 + ).

4. “tow that the complete perimetei of the curve

1 —1? 2t

IS e g 1)

r = 18 2n

5. If for a curve
rsin® + ycos® = f'(0)
and x cosB - ysin® =f"(0),

show that s = [(@)+f”(0)+ ¢, where ¢ is5a constant.
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6. Find the length of the arcs of the following curves :

(i) x = e®sinB
v = £0 cos @

} from@ = 0 to8 = 5m.

(i) x = a(cos® + BsinO) ~ ~
e BLeE - SumD) } from 0 = 0 08 =0,
(i) x = +sin26(1 + cos 26)
y = ccos20 (1 - cos20)

from the origin to any point.

7. Show that the perimeter of the cllipse x = 4 cos 0,y
= bsin @, is given by

Iy e? 1.3y et 13532 gt
2‘"‘[1‘('2) 17\ 23] 37 \24% '5““}'
8. Compare the pcri:ﬁeters of the two conics

%—=+L;= 1 and %+%§= 1.
9. Find the lengths of the lcﬁ;op of each of the following curves:
() 9y? = (x + 7)Nx + 4)7;
(i) x =12,y =t -§1°.
10. Find the lengths of the following :
(1) aquadrant of thecircle r = 2asin@;
(ii) tre ar of the parabola r(1+cos8)= 2 from 0 - 0
to® 3n -
i) the are fthe o qui-angular spiral r = ae Ecota hetween
tre radii vectors roant v,

11. 1f = be the length of the curve + = @ tanh 8 between the
origin and @ = 2n,and A the area between the same points, show
that A = a (s —- an)
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12. Show that the arca between the curve

v =% (e e -fe"l"),

the x-axis and the ordinates at two points on the curve is equal to
@ times the length of the arc terminated by those points.

13. Show that in the astroid x?? + y#? =g
(i) 5o x2,

(i) p? + 4s? = éas,
s being measured from the point for which x =0.
14. Show that
(i) inthe cycloid x= a(8 + 5in@).y =a (1 - cos@),
p* + st =16a?,
the arc being measured from the vertex ( where 8 = 0 -
(ii) in the catenary y= ¢ cosh (x/¢c),
¥y =¢p = ¢t + 52,
the arc being measured from the vertex ;

(iii) in the cardioide r= a(1+cos@), sz + 9p? =16a1l
the arc being measured trom the vertex (ie.,8 = 0).

15. Show that the length of the arc of the hyperbola xy =a?
between the points x = b andx = ¢ is equal to the arc of the curve
, P? (@' 4 rt) = a‘r? befween the limits r =b and r = ¢,

16. Show that the length of the arc of the evolute
27ay? = 4(x - 2a )* of the parabola y? = dax, from the cusp
to one of the points where the cvolute mects the
parabola,is 22(3+v3- 1). :

17. Find the intrinsic equation of each of the following curves,
the fixed point from which the arc is measured being indicated in
each casc

(1) the parabola y? =4ax ... (vertex),

(i) the astroid x*° 4y =ai3 __ (one of the cusps),
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(i1i) the semi-cubical parabolaay? =x? .. (cutp),
(iv} thecurve y =a logsec (x/a)...(origin),
(v) the equi-angular spiral r = gc®'® ... (puint 1, 0),

{(vi) the involute of the circle, viz.,

vrt - at

g ==L
a

a
- cot ': x f.pomta,U).

18. Find the intrinsic equation of each of the following vurves:
(i) » = r sina, '
(i) pt =r? - at,

19. Find the intrinsic equation of the curve for w hich the length
of the arc measured from the origin varies as the square root of the
ordinate. Also obtain the Cartesian co-ordinates of any point on the
curve in terms of any parameter.

20. If s = ctan y is the intrinsic equation of a curve, show
that the Cartesian equationis y =ccosh(x /¢, given that when
y=0,x=0and y =c.

ANSWERS

1. () 2za; (i) 34 (r e "'“); (iii) 64 ;

. a? +ab +b? al b1y
(iv) 4 — : hr}‘(b_?)’
.. Ba 9x \?
(vl)-ﬁ,[(l‘fz —1].
6. (V2(e®2-1) (i) ;a0 (iif) $¢ sin 38 .
5. M1 2 9. (1) 4¥3; (i) 443,
10. (0 ima, Gi)v * log (V2 + 1% (iii) (r; ~n )seca.

17. () § - acosec Ycot y + ajog{cosecy + cotw);

[E5) I "--'.’i: vinly,



LENGTHS OF PLANE CURVES 7

(iii) 275 =8a (secly - 1); ({v)s=nloglan{%v +%s),‘
(v) s =usec.u{¢“*“’°°“‘-l}; (vi) s =%w1.
18. (i) 5§ =CeVro ; (ii) s =%¢v’.

19. s =dasiny, x =a(8+ sinB), y =a(l - cosh).

Inlegral Calculus (main) -20



CHAPTER XII
VOLUMES AND SURFACE-AREAS OF SOLIDS OF REVOLUTION

12.1. Solids of revolution, the axis of revolution being the
x-axis.

Let a curve LM, whose Cartesian equation isgiven by
y = f(x) say, be rotated about the ~-axis so as to form a solid of

Fig.1

revolution, and let us consider the portion LL’M’M of this solid
bounded by x =x, and x = x,. We can imagine this solid to be
divided into an infinite number of infinitely thin circular slices by
planes perpendicular to the axis of revolution OX”. If PN and P'N’
be two adjacent ordinates of the curve, where the co-ordinates of
Pand P are (x,y) and (x +Ax,y + Ay) respectively, the
volume of the corresponding slice, which has its thickness Ax , is
ultimately equal to ny? Ax.’

Hence, the total volume of the solid considered ( bounded by
x =x, and x = x; ) is given by

X1
= 2 = 1
V= Lt Inayax _nJ- y? dx.
™

*Strictly, the volume of the slice between my, ? Ax and ny;  &x where y,
and y; are the greatest and the least values of y within the range PP’ and
thus equals ny? Ax , where y lies between y, and y; and is thus the
ordinate for some point within the range PP’ nolnecessarily of P). Thus,
Lt Iny?ax = [yldx. [See Art. 6.2. Note 2.]
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length measured upto P from any fixed point on the curve LM,
the surface-area of the ring-shaped element generated by rotating
PP’ is ultimately 2ny . As .

Hence, the required surface-area is given by

5
S=ML—l|D 2(2ﬂyﬂs) = L-sI’ }'d’
1
[ si , s, beingthe values of s for the points L, M ]

X3 T
=2nI y'\} 1+ (%{ ’dx.

Cor.1. When the axis of revolution is the y-axis, and we consider the por-
tion of the solid bounded by v =y, andy = y; respectively,

Y2
V= n:J‘ xidy,
Y1

52 . Y2 dx % :
andS-ZnJ :dl-sz :r.-\f‘.l +(-—- dy.
dy
5 n

Cor. 2. Even if the curve revolved be given by its polar equation ( the
axis of revolution being the initial line ), and the portion of the volume con-
sidered be bounded by two parallel planes perpendicular tc the initial line,
we may change to corresponding Carlesian co-ordinates, with the initial line
as the x-axis, by writing x = r cos®, y = r sin 8.

Thus,

I3 3;
V=xj y'dx:nj r?sin?@.d(rcos®),
xy 91

53 8

S :ij yds:?rrj rsin®.Vdr? + ride?,
5 8,

where r is expressed in terms of 8 from the given equation of the

curve, or, if convenient, we may use r as the independent variable and

express 8 interms of r from the equation, the limits being the cor-

responding values of r.
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Alternative proof of
(1) Volume of a solid of revolution.

Let a curve CD, whose equation is y = f(x), be rotated
r D about the r-axis so as
,( to form a solid of
4 revolution. To find the
volume of the solid
generated by the revolu-
tion about the x-axis, of
the area AFDC bounded
by the curvey = f(x), the
ordinates at A and B and
I the x-axis, let a and b be
+ the abscissae of Cand D .

Fad Divide AB into n
equal parts, each equal to h, and draw ordinates at the points of
division, Let the ordinatesatx = a + rthand x =a + (r + 1)h
be PL and QM, and let us suppose y goes on increasing as x in-
creases from ato b,

Draw PN perpendicular on OM, and QR perpendicular on
LP produced . Then the volume of the solid generated by the
revolution of the arca LMQP lies in magnitude between the
volumes generated by the rectang'as LMNP and LMQR,

ie, betweenn[f(a +rh)]*hk andr([f(a + (r+1)h}lth,
Hence, adding up the volumes generated by all areas like

LMQP, it is clear that the required volume lies in magnitude
between

n-tl o

n L [fla+rh)l*handn X [fla+ (r+ 1)k))hK.

r=0 "re0

Now lct m — e, sothat h— 0;then as the limit of each of the
above two sums is



VOLUMES AND SURFACE-AREAS mn

] b
n‘.J [}'(r)]'d:,l’:.,ﬂj y*dx,
a [ ]

it follows that the required volume is also equal to this
definite inlcgral.

(i) Surface-area of a solid of revolution.

Let the length of the arc from C upto any point P(x,y)be s
and suppose that the surface-area of the solid generated by the
revolution of the arc CD_about the x-axis is required. As in the case
of the volume, divide AD into nequal parts, each equal to h, and
erect ordinates at the points of division. Let the ordlnales at
x =a+ rhvand ¥ = a +(r + 1)h be PL and QM , and let the
arc PQ be equal to | The surface-area of the solid generated by
the revolution of LMQP about the x-axis lies in magnitude be-
tween the cu-ved surface of two right circular cylinders, each
of thickness | "/ ne of radius PL and the other of radius QM ,
1.e., between

2nf(a + rh) 1l and2nfla + (r + 1) h} 1.

Hence, adding up all surface-arcas generated by elementary
arcas like PQ, it is clear that the required surface-area lies in mag-
nitude between

n - n-1

2n E —Lj{n +rh}h anertE -:;f[a +(r+ 1)Yh)h.

r=0 r =0

Now let n 5 e ,sothat h — 0;then [/ h tending to;xi, the
limit of each of *hie above two sums is

2rrJr f(x) == & I J yds.

Hence, the required surface-area is also equal to this definite
gral,
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12.2. Illustrative Examples.

Ex. 1. Find the volume and area
of the curved surface of a paraboloid of
revolution formed by revolving the
parabola y* = 4ax about the x-axis,
and bounded by the section x = x, .

X
Here, y = 2Vax.
. Ay a
“dx T x -
Now the required volume Fig.3
Xy X
U=‘EI y'dx=lI 4ax dx = 2max, -—-%!r.ny.’
0
(where y, is the extreme ordinale, so that y,? = dax,? ) = T-AInin =g

( the volume of the corresponding cylinder, with the extreme cu'cula.r section as
the base and height equal to be abscissa ).

Also, the required surface-area

*1 dy '\ *3 a
s =z;j y*\’l +(§ dx =z::j mnfl += da
o o e

X, 8
lx\faI Va +xdx == xYa(@+ x ) —q32 ),

3
0

Ex. 2. The part of the parabola y* = 4ax bounded by the latus rectum revol-
ves about the tangent ai the vertex. Find the Y
volume and the area of the curved surface of the L
reel thus gemerated. ? E

Here the axis of revolution being the y- 0 :is X
axis, and the extreme values of y being evi- é i .
dently %22, L
the required volume Fig.3

+ 2 + ‘
v=;I x'dy=:j Tg‘—‘dy [sincey? =4ax]
-2 - 2a
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2a)¢

Also the required surface-area
+2a 3
5=2#I:da=2x‘[ . r'\gl +(:—; dy
-
™. 3 i dx
;ZE.I”.{-"JI-‘&_:" [’inmd_y_=-2‘:_]

*+=K
=4M’I tan?0 sec’0 do [ putting y = 2atan 9]
.

-
»

im
=4M’I . (sec30- sec29)dg

]
il

- -

+
= 4na? [%lansecla-%tanesece-%logtan(-}x i-%BJ'] |
-1%
4
=4ma? [3V2 - llogcot 1% ] = ma? [3¥2-log(V2+1)].
Ex. 3. Find the volume and the surface-area of the solid 8enerated by revolv-
ng the cycloid x = a (9 + sin B8),y =a(1 + cos 8 ) about its base,

The equations show that the cyclotd has the x-axis as its base ; the ex-
treme values of x are given by 6= tx,ie, x =tan.

The required volume

ax x
V:a:J. y‘dx:m’-‘. (1+ cos@8)?ds
- ax -x

x
=8u’J- qt)s‘%ﬂdﬁz‘im’.—gn':m:’a’.
-

The required surface-area

s =21':J-yds =2Ix fy\’dx‘ +dy?
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=
= ZKJ- a(1+cosB).Y{a(l +cosB)db)? +(-asinBdo)?
-

x
=2u’J' (1 +cosB)V2(1 +cos®)de

T
s,

= 8
=BM'J- cos";@dﬂ:&m’.T=
-x

Ex. 4. Find the volume and the surface-area of the solid generated by “evolu-
ing the cardioide r = a (1 - cos ) about the initial line.

Here, since the curve is symmetrical about the initial lirie, the solid of
revolution might as well be considered to be formed by revo ving the upper
half of the curve about the initial line. The extreme points of the carve arc
givenby 8 =0 and 6 ==n.

The required volume
1% =3Iy= dx = x.[r’sin‘ﬂ.d(rcosﬂ}

=m’I (1-cos8)?sin?@.d((1 - cos8)cos@)

=m’Jl° (1- cos08)?sin?8(- sin@ + 2sinBcosB)de
9

[ x increases as B diminishes from x 10 0|

+ ]
=M:j (1-2z)2(1 - 2*)(1 - 2z)dz [putting z= cos0]
-1

=8 ngd
=3ma’,
The required surface-area

L3 =2njyd: = ZHIrsinB.\!dr’ + ridp

x
=2::J a(1-cos®)sin8Y¥{asin0d0)? +ai{1-cosB)? 4a?
0

x
=2m‘j (1 - cose)sinﬁ\h(l -¢cos0)do
0
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L]

2
2421&’]‘ ¥ dz [ putting z = 1 - cos 8]

2V2mat . 3(2)%7 =Fmat.

12.3. Solids of revolution, axis of revolution being any line
in the plane.

If the given cusi : LM berevolved about any line AE its plane,

Y PP and the portion considered

of the solid of revolution

formed be bounded by the

planes perpendicular -0 AB

through the points A and B

respectively, then PN

A= being the perpendicular on

()] B b4 AB from any point P on

Fig4 the curve, PN’ the con-

tiguous perpendicular, the volume of the portion considered i-
given by

V =Lt In. PNT. NN’ = ‘I'{J- PN?. 1(AN).

Also, the surface-arca of the portion considge:ed is given by
S = LtI2n.PN.(clementary arc PP’ )= 2n] PN .ds.

Frnm tne given equation of the curve and oftne line, AR, PN,.
asalso AN and ds are expressed BN
in terms of a single variablc,
and the correspording valucs
of the variable for the points A
and B are taken as the nmits
of integratior

Ex. A gquadrant of a circle, of

s a, revolves round its chord.
* volume and the surface-area 7 L . T
lid spindle thus generated. Fig.5
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P being any point on the quadrant APB, where m LAOP =9  clear.
ly AP = 2asin 18and m £ PAN --m.{POB (3x-0).
~ PN =2asinl 70sin (g -38) = a (cos(® —-1:) - cosin};
AN =2asin ! Bccs( r -—9) a [sln;u + sin (6 - :ul]_
Elementary arc Pp* = g 40
Also, for the solid formed, limits of 8 are 0 and L 7 R respectively.
Hence, v -nIPN? d(AN)

1

=%

=M'J‘l {cns(o-llu)-cos}u}’cos(e—%x]de
O:
'1-*

=na? Icog‘(e—-—r:)-i'zcns‘(e-—rt) +—:os(9-—u)]d0
0

T‘ i 1 1
:m’j [?°°5(39—%u)+;c03{8-;ﬂ:1
0
_?;i cos(20 -1n) + H]dﬁ

= na’ [ I—Iz-sin(39 -3im) —Z—Jrzsinfzo -3m)
x
+—i— —~x}-;;-—ﬂ]l

s 1[]-3:!)
= evz_ )

1
Also, § =21|:J’ PN .ado
0

X
:2:[.:‘J- {cos (8 —-%rr)~cos%n}d0
0

-

+if
=2mat [sin(e - 1x) ~ﬁe_|



VOLUMES AND SURFACE-AREAS 283

12.4. Theorem of Pappus or Guldin.

If a plane area bounded by a closed curve revolves through any angir
about a straight line in its own plane, which does not intersect the curve,
then

() The volume of the solid generated is equa to the product of the
revolving area and the length of the arc described by the centroid of the
area.

(IN The surface-area of the solid generated is equal to the product of
the perimeter of the revolvirg area into the length of the arc described by
the centroid of that perimeter.

Proof.

() Let 8A be any element of the area whose distance from the
axis of rotation is z . Tren, 8 being the angle through which the

Fig.6
area is rotated, the length of the arc described by 8A is 20,
and hence the elementary volume described by the elument
5A is 20 .8A .

The whole volume described by the given a-. - therefore

= I3¢ BA = 0Xz.BA =0zA ( rom Elementary Statics)
[ where A is the total area of the curve and z is the distance of its
centroid from the axis of revolution |

= AzO = area of the closed curve x length of the arc
described by its centroid.
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(IT) Let 8s be the length of any element PP’ of the perimeter
of the given curve, and z° its distance from the axis of revolution.
The elementary surface traced out by the element &s is ultimately
z'0.8s.

The total surface-area of the solid generated is therefore

< 12'8.8s = 8Lz’ . 8s = 62’s ( from Elemcai~ry Statics )
{ where s is the whole perineter of the curve, and z° the distance
of the centroid of this perimeter from the axis |

= 52’0 = perimeter x length of the arc described by its
centroid.

Note. The atove results hold even if the axis of rotat :n touch-s the
closed curve.

Ex. 1. Find the volume and surface-area of 2 solid tyre, a being the
radius of its section, and b that of the core.

The tyre is clearly generated by revalving a circle of radius a about an
axis whose distance from the centre of the circle is b

The centre of the circle is the centroid of both the area of the circle as
also of the perimeter of the circle, and the length of the path described by it
is evidently 2nb .

Hence, the required volume =mna? x2nb = 2nla?p
and the required surface-area =2ra « 2nb = 4nab

Ex. 2. Show that the volume of the sold forme. by the rotition aboul the line
8 =0 of the area bounded by the curve r = f(8)and the lines 8 =8, ,0=6;is

8;
%xj r?sin 0de.
8,

Hence, find the volume of the solid generated by revolving the car-
dioide v = a (1~ cos 0 ) about the initial line.

Dividing the area in question into an infinite number of elementary
arcas (asin the figure, § 10.5 ) by radial lines through the origin, let us con-
sider one such elementary area bounded by the radii veciors inclined al
angles 8 and @ + 48 to the initial line, their lengths being r and r + dr,
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eay. This elementary area is ultimately in the form of a triangte, whose arca
istr(r + dr)sindé, ie, }r? d9 upto the first order. Its C.G. is, neglect-
ing infinitesimals, at a distance 3 r from the origin and its perpendicular
distance from the initial line is ultimately 3 r sin 8 . The elementary volume
obtained by revolving the elementary area about the initial line is therefore,

by Pappus’ theorem, ultimately equal to
2n.lrsing. irde z%r:r’ sin 040 .

Hence, integrating between the extreme limits 8 =8, and 8 =0, , the
total volume of the solid of revolution in question is

8y
!IJ‘ 3 gin 8 40.
6

|

In case of the cardioide ® = a ( 1 — cos 8), the extreme limits for 8 are
easily seen to be 0 and , and so the volume of the solid of revelution
generated by it is

®
%x‘l‘ 23 (1- vos 0)? sin 048, which on putting 1 - cos 8 =z
0
easily reduces to

24 5
f" mas .

l.l-blm

: 2
%m’j z’dz:?m’.
0

EXAMPLES XII

1. Find the volumes of the solids generated by revolving, about
the x-axis, the areas bounded by the following curves and lines :

() y =sinx;x = 0,x =m.
(i) y = 5x-x1;x=0,x=38.
(i) y* = 9x,;y =3x.

{ivVVx +Vy =Va;x=0;y = 0.

2. Show that the volume of a right circular cone of height k
and base of radius 4 is math.
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3. Thecircle x* + y* = a? revolves round the x-axis ; show
that ‘he surface-area and the volume of the whole sphere generated
are respectively 4ma? and jma?.

4. Prove that the surface area and the volume of the ellipsoid
formed by the ravolution of the ellipse x? /a? +y? /b? =1

(i) rounc its major axis are respectively
2nab V1 -e? +e-'sin ‘Ve)and $mab?,

and (ii) round its minor axis are respectively

1+e
1-e

2::{::1 +£log } andimlb
€ .3 ’
5. Show that the curved surface and volume of the catenoid
formed by the revclution, about the x-axis, of the area bounded by

a g Y - :
the catenary y = 2 ( L g ) the y-axis, the x-axis, and an

ordinate are respectively

n (sy +ex)and $mu(sy +ax),
s being the length of the arc between (0, 2)and (x,y).

6. The arc of the astroid x = a cos?8,y = a sin?8, from
=0t 8 =%n, revolves about the x-axis ; show that the velume
and the surface-area of the solid generated are respectively & ma?

and $ma? . '

7. A cycloid revolves round the tangent at the vertex ; show
that the volume and the surface-area of the solid generated
are m?a2?* and -’,—’-na’ respectively, a being the radius of the
generating circle.

8. The portion between the two consecutive cusps of the cy-
cloidx = 2(0+ sin0),y =a(1 + cos 0)is revolved about the
x-axis ; show that the area of the surface so formed is to the area of
the cycloid as 64:9. | Nagpur, 1934 )
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9. Show that the surface-area of the spherical zone contained
between two parallel planes = 2ma x the distance between the two
planes, where a is the radius of the sphere.

10. Show that the volume of the solid generated by the revolu-
tion of the upper-half of the loop of the curve y? = x? (2- x)
about OX is3x.

11. Show that the volume of the solid produced by the revolu-
tion of the loop of the curve y* (2 + x) = x? (a - x) about the
x-axis is 2m2® (log2 - 3). [P. P.1935 ]

12. Show that the surface-area and the volume of the solid
generated by the revolution abeut the x-axis of the loop of the curve
x =1t1,y = t-11t? arerespeciively 3n and 3n.

13. The smaller of the two arcs into "which the parabola
y? = Bax divides the circle x? + y? =9a? is rotated about the
x-axis. Show that the volume of the solid generated is 3-ma? .

14, Ifthecurve r = @ + b cos8(a > b) revolves about the
initial line, show that the volume generated is {m: (a2 + b)),

15. The following curves revolve round their asymptotes ; find
the volume generated in each case :

(i) y* (2a - x) = x3;
(i) y(a? + x?) =a?; [ P.P. 1933)
(i) (@~ x)y? = atx.

16. An arc of a parabola is bounded at both ends by the latus
rectum of length 4a . Find the volume generated when the arc is
rotated about the latus rectum. [ Nagpur, 1935 |

17. Show that the volume of the solid formed by revolving the
ellipsex = acos @,y = bsin® about the linex = 2a is4n?a?.

18. Show that, if the area lying within the cardioide
r =2a(1+cos8)and outside the parabola r (1 + cos 0)=2a
revolves about the initial line, the volume generated is 18na?
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19. Show that the volume of the solid generated by revolution
about OY of the area bounded by OY, the curve y? =x3 and the
line y = 8 is¥n.

20. The arc of a parabola from the vertex to one extremity of
the latus rectum is revolved about the corresponding chord. Prove
that the volume of the spindle so formed is (2¥5 / 75 ) ma? .

ANSWERS

Lo@irt. G B Gi) Ik, V) e

15. (D 2n%a?; (i) ym?e?; (i) Jn?a® . 16.%nad.



CHAPTER XIl
CENTROIDS A‘ND MOMENTS OF INERTIA

13.1. Centroid.

It has been proved in elementary statics that if a system of par-
ticles having masses m, . M, My, ... have their distances paral-
lel to any co-ordinate axis given by x , ¥ , % ... ., then the
corresponding co-ordinate of their centre of mass will be given by

myx, + MpXy +. .. _me
My o+ My 4o Im

X =

Similarly, ; = %EE , etc.

Now, if, instead of a system of stray particles, we get a con-
tinuous body, we may consider it to be formed of an infinite num-
ber of infinitely small elements of masses, and in this case it may
be shown, as in the other cases, viz., determination of lengths, areas,
etc, the summation, E, will be replaced by the integral sign.

Thus, if §m bean element of mass of the body at a point whose
co-ordinates are ( x,y){or,inthree dimensions, x,y, z) the posi-
tion of the centre of mass of the body will be given by

T | xdm - Jydm
Be g FoPE
the limits of integration being such as to include the whole body.

In practice, the elementary mass Sm is proportional to the ele-
ment of length 8s , or element of area, or element of volume of the
corresponding element, according as we proceed to find the centr- -
oid of an arc, or area, or volume, and the limits of integration then
will be the limits of the corresponding element.

13.2. Centroid of a thin rod.
(i) When the rod is uniform.

Let OA be a rod of length a and let us take ‘DAY as x-axis.

Inlegral Calculus (main) -21 A
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™ Let P, Q be two neighbour-
P Q A X ing points on the rod at distances
i x and x + 8x from O, so that
% PQ =38x.Letp be the density
amd a be the uniform cross-section ~* the rod. Then the element of
mass 8m at P = a.8xp, where « .nd p are constants.

Let x bethe distance of its C.G. from O.Then taking moment
about O, we have

x.Zadxp = Zadxp.x,
i.., x Z8x = Lxbx (on dividing both sides by the constants «, p).

L —
o

. -Lxdx & x']
L.dx [ ]

The limits of integration are taken as such, since for the whole
rod x varies from 0 to 4.

Thus, the C. G. of a uniform thin rod is at its mid-point .
(ii) When the rod is of wvariable density.

(1)

MI-—I

Suppose the density p at the point P be a known function of
its distance from one end, say, O.Then p= f(x).

Here, proceeding as above, the element of mass &m at P
=l p=a.bxf(x).
xfuﬁxf(x)s‘}:uﬁxf(x).x,
ie, x Lf(x)8x=Xxf(x)8x,dividing by the constant o .
L
J xf(x)dx
X = —— e 2

4
r 2t v S
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Substituting the known value of f{ x), in any case, and Integrat-
ing, the final value of x is obtained.

For example, if the density at any point of the rod varies as the
distance from the extremity O, then f(x) = kx, where k isa
constant, and therefore

= a [} 2
= xtdx I xdx = = a, i (90
} Baf) chag

Note. If o be the cross-section of erod at & point P onitand p be the
density there, then ap ( i.c, mass per unit length ) is called the fine-den-
sity of the rod at P. By the single word ‘density ’ {s usuaily meart volume-
density, i.e., mass per unit volume.

If in the case (ii) it is glven that the line-density A at any point P paries
as its diztance from O, then 8m (the element of mass) st P would be
A 8x . Now we can proceed as in (3).

13.3. Centroid of an arc.

Let (x,y) be the co-ordinates of any point P on the arc AB,
and p be th-densityat P, Let s be |y
the length of the arc CP measured
from a fixed point C on the arec.
Then 8s = elementary arc PQ at P, A
and hence c/

——B

f 0s = element of mass
at P(=58m).

o . X
- - Fl‘,a
Let (x,y) be the co-ordinates of
the C.G.of thearc AB.Then, as in (4) of Art.10.1, we have

- Jxdm Jpxds - fydm [ py ds
T el il ke ¢t 1 AR

the limits of integration extending from A to B.

When p is constant , the formula (1) becomes

-~  fxds = fyds
X = W’y-—fz'—, ..-(2)
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The formulza (1) and (2) are fundamental formula for the doier-
mination of the C.G. of an arc and this can be easily transformed

when the equation of the curve is given in Cartesian co-ordinates
(general or parametric), or in polar co-ordinates.

Note 1. In the application of the above integrals the following results
should be noted. When the equation of the curve is

1‘11- (%).dx.
dx \?
‘\/.I + (*E-y—).dy,
T . FduNd
Qi) x =o(t), y:m(l},dl:\}(%’:\- v (gf).m.

{iv) fir.8) =0 ﬁ's:'\’r* . (-E-’):.dg
L - dB ]

[ T day

ds = Il(r:{—’).ﬂr,

and x =rcosd,y = rsin@.

(i) y=/f(x),ds

(i) x=f(y). ds

it

Note 2. The C. C. in such casc- is generally not on the azc AR .
. 13.4. Centroid of a plane area,
Case | Carlesian,

Suppose the area is bounded by the curve y = f{x), theaxis

of yand theordinates x=ux,  r=x
Y ;’f 2
Let (x,y),(x + 8x.y + &)

be the co-ordinates of P aad a

A neighbouring point 2 on the

L curve. Divide the whole area into
elementary strips like  PMNQ , by

drawing lines parallel to the y-axis.

. T ———y % The area of the strip = ydx ul-

P
K ,."{:f timately, since dx is very small.
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Let the area be homogenecous and let p be the surface-densily
of the strip PMNQ . Then &m , the element of mass of the strip
PMNQ = ydx p and the C.G. of the strip PMNQ is ultimately at
the point (x,3¥)¢ with sufficient accuracy for our purpose ). Let
( Xy ybe the C. G. of the area AKLB . Then, taking moments about

OY and respectively, we have

x.Zpy.dx=Ipybx.x; ;..‘:py.51=£py§1_—;y.

Cancelling cut the constant p from both sides, we get in the
limit

X X3
J xy dx j y?dx
% s ;.' i
k‘ r 1 ‘I r
I y dx I y dx
Xy Xy

where v has to be expressed in terms of x from the equation of
the curve.

Note. The surface-density p at any point of an arca is oA, where 0 1s
the volume-density and A is the thickness at the point.

Case 1l. Polur.

Lot the area_A0# be bounded by the curve 7 = f (8) and the
radii vectors OA, OB (® = « and 8 = P)sothat mz XOA =q,
mZXOB = B.

Let O bu the origin, GX the initial line and DY the y-axis.

Let the whole arca be divided into elementary triangular strips
like OFQ by radii vectors drawn
from O . Let the cc-ordinates of
P,Qbetr,6),(r+8r0+80).
Thenm £ PUQ = 80,

Now, area of the strip
OPQ =4 r? 80 ultimately, since
89 is very small. Then the C.C. of Fig 4
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the strip OPQ s a point G, in OPQ , whose co-ordinates are ul-
timately (4rcos @, 47 sin 0) ( with sufficient degree of accuracy
for our purpose). Let p bethe surface-density of the strip. Then
elementary mass 8m of the strip OPQ s 1r? 80.p, situated
atG, .Let(x, ¥ ) be the co-ordinates of the C.G. of the area AOB.

Therefore, taking moments about the y-axis and the x-axis, we
have

IZirtp8 = Lirtp.lrcos0.80;
‘Z3rip8 = Zirip.2rgin 0.50,

Cancelling out from both sides 3P, sincep Isconsta nt, we have
finally in the limit

i m)

B B
J. rd cos 0 do J' r’sin 6 do
S e
j rt do I r:de
a a

where r = f(8) from the equation to the bounding curve.

13.5. Centroid of the volume and surface of revolution of a
uniform solid.

Suppose a solid is formed by the revolution of the curve
y = f(x)about the x-axis DX and suppose it is bounded by two
ordinates AL , BM correspondingtox = x, and x =1x,.

(1) The volume generated by the element of area PNN'P’ ,where
(x,y)arethe co-ordinates of

Y M
L PP P, 1s (the area of the circle
\ described by PN ) x ( the
gl thickness between the two
IN

o 3! N X circles described by PN

5 and P'N’) and = my? 8z ul-
timately [ since PN =y, and
Sxisvery small |, If p be the
Pig.5 density of the slice bounded
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by the two circles, then 5m the element, of mass of the strip
= p.ny? 8x. The C. G. of the element from symmetry, lies on oY,
and is ultimately at a distance x from O.Hence, if (x, y) be the
co-ordinates of the C. G. of the volume generated by the area
ALMB , then, taking moment about the y-axis, we have

x.Lpnytdx =Zpry!dx.x.
As the solid is of uniform density, cancelling out px from both

sides, we get o

x3
I yix dx
Lylxdx _ "x

Ly?dx . n
I ydx

x = 7

and from symmetry,; =0,

(ii) The area of the surface generated by the revolution of the
arc PP ( = 8s ) about ©X is ( the circumference of the circle
described by PN)x (length of thearc PP*)and = 2xy . 8s ultimate-
ly, since PN =y and &8s is small. If p be the surface—density,
then Sm the element ‘of mass of the belt = p.2xy.%s.

The C. G. of the belt from symmetry lies on _‘Ur and is ul-
timately at a distance x from O.Hence, if (x,y ) be the co-or-
dinates of the C. C. of the surface generated by LM , then, taking
moment about the y-axis, we have

xEp2nyds = Lp.2nyds.x. ;
* As the surface is of uniform density, cancelling out 2xp from
both sides, we get

Lyds.x _Jyxds
Tyds Jyds '

In the integration, the limits for s correspond to x =X, and x; .

X=

Cor. When the equation of the curve is given in polar co-ordinates, say,
r =f(8), the above formul can easily be transformed into the following
forms by the relations between Cartesian and polar co-ordinates, viz.,
x=rcos B,y =rsind.
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Jlr’-uin’ 0 cos edie(rcose).de

Solid : {;- ¥ =0

. d
Jr’ sin? Bcosaﬁ (rcos8).de
taken between proper limits .

ds
2 H —
_ Ir schosBde.dB

Surface : X == ¥ =0
{ J.rsinod—s.do

de
taken between proper limits.
13.6. Illustrative Examples.
Ex. 1. Find the centroid of an wire in the form of a circular arc.

Let AB be a wire in the form of a circular arc ¢! adius ‘a’ ., which

y B subtends an .ngle 2a at its
centre O .
P Take O as origin, and OX,
g which bisects the arc AB, ac
o ! ] = X x-axis ..

Then, by symmetry, the
centroid G lics somewhere on

ax .

Fig.6 & Now, 8 denoting the vee-

tonal angle of the point P on the

arc, the element PP there has a length a d6, and the abscissa of P is a cos

8 . Also, to cover the whole arc, ® extends between the limité - a to a .
Hence, the abscissa OC of the centroid ¢ is given by

o
J . wd¢cos5@.padd
_J_.'rdm a

D Jdm = a
I- pado
a

( p denoting the linear densit, of ‘he wire )
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a
I cos 848
-a _¢25inu_ sin

a 2a T«
I do
-a
Cor. The distance of the centroid of a semi-circular arc from the centre

is 2a /=

Ex. 2, Find the centre of gravity of 1 uniform lamina bounded by parabola and
a double ordinale of it.

Let the lamina be bounded by a parabola y? =4ax and a double or-
dinate RMR’ given by x =x,.

b pp__R

By symmetry, the centroid lies on ﬂ
the x-axis and hence y = 0. o x

Divide the lamina into elementary M
strips by lines paralel to the y-axis. QQ' R’
Consider the strip PQQ'P", where the
co-ordinates of P are (x,y) . The )
length PQ is 2y and the breadth NN’ Fig7

is &x . Hence the areca of the strip is ultimately 2y 8x . The limits of x, to
cover the area considered, are clearly 0 tor,

Hence, for the required centre of gravity,

x, =
er’m I x ydx.o
0

X = — ——

n
J. dm j 2ydr . ©
0

( where ais the surface-density of the lamina )

T x
I r.2 V4ax dx . o j x¥? dx é:.”’
= 2 = - = :'}' 1.
x 7 5
I 2Vlaxdx o J. x*? dx %:.J”
0 0
Thus, the centre of gravity divides the length OMn the raticof 3 ©5
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- Ex. 3. Find the centre of gravity of a uniform lamina in the form of a quadran:
of the ellipse x? fa? +y? /bt = 1, [P.P 1935]

Let AOB be the quadrant considered. Divide it into elementary strips
by lines parallel to the y-axis. The area
of the elementary strip corresponding
to the point P, whose co-ordinates
x are (x,y),isultimately y &, and

Of N JA the centroid of this element i3 at the
\_’_—/ middle point of the strip (which is
supposed infinitely thin ) and thus

Fig.8 has its co-ordinates (x, 4 / 2). The
¢ limits of x for the quadrant con-

sidered are evidently 0 and a.

Hence, the C. G. of the area considered will be given by, (x ",y ")
denoting the co-ordinates of the centroid of the element dm which is taken
here as the strip,

a
Ix'dm I x.ydx.o .
0 [ o being the surface-

i T density of the lamina ]
Idm J- ydx. o

a
J x{—\’u’~x’dxc
s [si‘nce-x—:i-’;:l]
lb a b
J ;\'I' *-Xidl.o
0

a lx
I xVal —x1 4 I: sin B cos? 8 48
0 0
= . = a lt
j Val - x1 2y J.:cos’ﬂdﬁ
0 0
1 [ putting x = asin 9]
3 4a

“ETE TR
22
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a a
; J-y‘dnl I{ydx c j — (e - x?)dx
.... o 1
¥ = s T b
Idm wix.o I 3 a! —xldx
0 0
i
cos? B de 2
1 0 1 3 4b
17 s Lyvodus
cos?04do i3
0

Cor. The centroid of half the ellipse bounded by the minor axis is on the major
axis at a distance 4a / 3x from the centre.

Also, the centrold of a semi-circular area of radius ‘a’ is on the radius
bisecting it, at a distance 44 / 3x from the centre.

Ex. 4. Find the centre of gravity of a solid hemisphere,

learly, the hemisphere may be supposed w be generated by .evolving
a circular quadrant APB about one bounding rldjua OA , which we may
choose as r-axis. By symmetry, the
centre of gravity of the hemisphere
will be on O% . Now divide the
hemisphere into infizitely thin cir-
cular slices by planes perpendicular
to the axis of revolution DX . An ele-
ment of such slice, corresponding to
the point P, has its volume ultimate-
lyequaltory? & (x,y being the
Cartesian co-ordinates of P),and the
x co-ordinale of its centreis x.

Hence, if p be the density of the solid hemisphere and a its radius, the
position c” the C. G. |s given by

Fig.9

e — [sincex? +y? =al]

a L]
Ix.uy‘dx.p J x(a? - x?)dx
- 0

4 a
J' nyldx.p I (a? —x?)dx
0 0
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13.7. Moment of Inertia.

[f a system of particles have massesm, ,my, m; . .and if r,, 1,
Ty . . be their distances from a given line, then Z mr? is defined a:
the moment of inertia of the system of particles about the given line

If M be the total mass of the system m, , m; , elc., it is usual
to express the moment of inertia of the system about any line in the
form Mk?, where k represents a length and is called the radius of
gyration of the system about the given line.

If, instead ot a system of particles, it is a body in the form of a
thin wire or a lamina or a solid of which we want te find the mo-
ment of ine:tia about a given line, we may consider the body to be
made up of an infinite number of " \finitely small elements of mas-
ses, and then the summation Zmr? reduces to the integral f r? dm,
where the limits are such as to cover the whole body.

13.8. Two important theorems of moments of inertia.

(a) Ifathinlamina ( thickness negligible ) has its momenis of in-
ertia about two perpendicular axes in its plane respectively equal to ||
and I , then the moment of inertia abuut a normal to the plane through
their point of intersectionis I, + I .

Take the given perpendicular aves as x-axis and y-ax’<, I, and
I; being the respective moments of inertia. Consider an element of
mass oM = odxdy at the point P ( 0 = surface-density). Its mo-
ment of inertia about OX = dI, = y? odxdy . Similarl; 41 ( that
about OF ) =x? gdxdy . Also, dI = moment of inertia of the ele-
;..ont about a normal to the plane at the vrigin ( point of intersec-
tion of the given axes ) = (x? + y? ) odxdy ; for tne distance of
P(x,y)from the origin ( or the normal to the plane)
= "VY(x?% + y?) .Thus,dl = dI, + dl, is true for every point P .
Ther fore, integrating between proper limits over the whaole arca,
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I=[[Cxt +y?)odxdy =[[x? odxdy +[[ytodxdy =1, +1, .
N. B. This theorem is true even if ¢ isa functionof(x,y).

(b) The theorem of parallel axes in the case of a lamina is : The mo-
nent of inertia of a thin lamina ( thickness negligible ) about any given
line in its plane is equal to that about a parallel line through its C. G.,
together with the moment of inertia of the whole mass concentrated at the
C. G. about the given line.

G is the centre of gravity. Take Y& parallel to the ljre BA‘}
as x-axis. Let'C Gy (y-axis)cut BA at B.LetGB = h = distance of
the given line from G.Consider an element of mass odxdy at
P(x,y),0 = surface-density. PN = perpendizularon BA=h-y.
w PIM3 = (h -y)? .Then,

I ( moment of inertia about BA) = [[o (h -y ) dxdy
= h? [j cdxdy - 2k || yodxdy +[f oy* dxdy
= Mh? -0 + I, ... (i), where M = [l gdxdy.
= mass of the lamina ,

I, = foy? dxdy = moment of intertia about G,
also, v (distance of C. G. from ‘Cx’ = 0, here)
H Gydxdy / M .

[l oydxdy = 0.
Thus, from (i) we get the theorem.

13.9. Tliustrative Examples.
Ex. 1. Find the moment of iriertia of a thin wniform siraight rod of mass M

and length 2a aboul ils perpendicular Y
bisector. |
An infinitesi:nal element of length B O PA

Bz at P, whose distance from the mid- |
dle point of the rod is x, hae its mass
M&x / (28} . Hence, the momen! of inerfia
f the rod about the perpendicular bisector o7 is gven by
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Ex. 2. Find the momm of inertia of a thin uniform lamina in the form of a
rectangle about an axis of symmetry through its cenire,

Let 22 and 2b be the lengths of the adjacent sides AD and AB of the
rectangular lamina ABCD, and Y
the axes of symmetry D A

through lis centre O, which are Q e P
parallel to them. i

M being the mass of the o X
lamina, the surface-density is
clearly M /(4ab) . Now, divide
the la.lliina into thin strips paral-
lel to OX, and consider any strip
PQ at a distance y from o'
whose breadth is 8y. The mass of the strip is then evident-
ly { M/( 4ab )} 2a 8y . Every portion of it being ultimately at the same dis-
tance y from © , the moment of inertia of the whole lamina about the
x-axis {s given by

On |
= <]

+b
j =I ¥ A’izaa‘y
-b
v b?
= M? :

Similarly, the moment of inertia of the lamira about OF is given by

al
Iy =M 3 -
Ex. 3. Find the moment of inertia of a tkin uniform elliptic lamina about its
axes.

Let x*/a? + y?/b? =1 bethe equation to the ellipse, Its area is known
to be mab , if M be its mass, the surface-density is M /( mab ) . Dividing the
lamina into thin strips by lines parallel to the x-axis, an elementary strip at
a distance y from the x-axis has its length 2x=(2a / b)¥(b? - y? ) from
the equation of the elliptic boun dary. Thus, 8y being the breadth of the
strip, {ts mass is

M s
ab " = b ks

Hence , the moment of inertia of the lamina about the x-axis is
given by
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1 b
Is =J. yl.k 2 S VET -yt

. sin?Bcos?0d0 [puttingy = bsin 8]
-.;;

1 2
o MBI m 8

% 8 4
Similarly, the moment of inertia of the lamina about the y-axis is given

by

ZM“J”%‘

a1
.I"r =M -:‘- .
Cor. The moment of inertia of a thin uniform circular disc of mass M

and radius a about any diameteris M(a? /4).

Ex. 4. Find the moment of inertia of @ thin uniform circular plate about an
axis through its centre perpendicular to its plane.

Let M be the mass and a the radius of the circular lamina, so that its
surface-density is M /(ma?).

Divide the lamina into infinitely thin concentric rings by circles con-
centric wilh the boundary. Any
elementary ring between circles of
radii r and r + & has ils area ul-
timateiy equal to 2nr &r and so iis
massis [ M /(na?)] 2rrbr. Asevery
part of the ring is ultimately at the
same distance r from the axis in
question which is perpendicular toits Fig.12
plane through the centre, the moment
of inertia of the ring about the axis is ultimately [M /(ma?)] 2nrér.r? .

Hence, the required moment of inertia of the disc about the axis
is given by

& J
I=I DL, J2mr . dr . r?

al
wm(ee 2M at a?
= = r dr=—‘—TT“:MT

o
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Ex. 5. Find the moment of inertia of a sphere about a diameter.

If M be the mass and a the radius of the sphere, the volume of the
sphere is known to be $ma? , and hence its density is M /( $mad).

Take the diameter about which the moment of inertia is required to be
the x-axis. Divide the sphere into infinitely thin circular slices by planes per-
pendicular to this axis. An elementary slice between the planes x and
x + 8x has its volume ultimately equalto n(a? -x*)&x, since ils radius
is Y(a? —x?). [SceFig Ex. 4, Art 136.) Hence the moment of inertia of
this slice about the x-zxis, which is perpendicular to its plane through its
centre, 15 ultimately

- Lge 1
-!%a.n(n* - xt)8x .2 2: . |see Ex. 4 above.]
3

Hence, the required moment of inertia of the whole sphere about the
diameter is given by

+a
= M 2 2 g =xt
I-I_.-;—K;T.ﬂ(ﬂ -x1)dx 3

+a
= %g’i’ (a¥ —2a%x? + x% )dx

-a
_3M 4 : 2’ .2.'."_5)__2 2
=323 ¢_2¢--2a.3+5 —5M¢

EXAMPLES XIII

1. Show that the C.G. of a thin hemispherical shell is at the mid-
dle point of the radius perpendicular to its bounding plane.

2. Show that the C.G. of (i) a solid right circular cone is on the
axis at a distance from the base equal to ; of the height of
the cone ; (ii) a thin hollow cone without base is on the axis at a
distance from the base equal to § of the height of the cone.

3. Find the centroid of the whole arc of the cardioide
r = a{(1 + cos8).

4. Find *he centroid of thz area bounded by the cycloid
x =a(0 + sin®), y = a (1 ~ cosB)and its base.
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5. Find the centroid of the sector of a circle.

6. Find the centroid of the arc of the parabola y?! = 4ax in-
cluded between the vertex and one extremity of the latus rectum.

7. Find the position of the centroids of the following areas :
(i) Aloopof thecurvey? (a4 + x) = x?(a - x).

(ii) Area bounded by thecurve y? (22 - x) = x*,
and its asymptote. :

(iii) Area bounded by y? =4ax and y =2x.
(iv) One loop of r =a cos 28.

8. Find the C. G. of the arc which is in the first quadrant of
the cycloid x = a(0 +sin@),y = a(1 —-cos0).

9. Find the centroid of the area of the astroid x¥% + y ¥/ =g
3 ]ying in the first quadrant.

10. Find the centroid of the area between the sine curve
y = sinx andy = 0, where0 £ x < x.

11. Find the C. G. of the area of the parabola

(-E )mI + (% )m = 1 between the curve and the axes.

12. Find the centroid of the area of half the cardioide
r=a(1 + cos®)bounded by 6 = 0.

13. Find the centroid of the area of the right loop of the lem-
niscate r?* = a? cos 26 .

14. Find the C. G. of the solid formed by the revolution of the
quadrant of the ellipse ( x2/a? + y?/b?) = 1 about its (i) major
axis, (ii) minor axis. '

15. Find the centroid of the (i) surface and (ii) solid generated

by revolving half of the cardioide r = a(1 + cos 8) bounded
by 8 = 0 about the initial line.

uUnlearal Calculus (main) -22
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16. Find the C. G. of the surface formed by the revolution of
the parabola y? = 2x cut off by the line ¥ = 4 about the axis of
the parabola.

17. An equilateral triangle of sii. "a’ revolves round its base
which is fixed. Find the volume of th. solid generated.

18. Find the moment of inertia of a solid right circular cylinder
of radius a about its axis.

19. Obtain the moment of inertia of a solid right circular cone
of height h and semi-vertical angle a aboul its axis.

20. Prove that the moment of inertia about an axis through the
centre perpendicular to the plane of a thin circular ring whose outer
and inner radii are @ and b is %M (a? + b?), where M denotes
the mass of the ring.

21. Find the moment of inertia of a rectangular parallelopiped,
the lengths of whose edges are respectively 2a, 2b, 2¢ about an
axis through its centre parallel to the edge 2a .

22. Show that the moment of inertia of a thin hollow
spherical shell of radius @ and mass M about a diameter
is M(2a2 /3).

23, Shaw that the moment of inertia of a parabolic area of latus
rectum 4a, cut off by an ordinate at a distance h from the vertex,
. is 2Mh? about the tangent at the vertex, and § Mah about the axis,
M being the mass of the area.

24. Show that if a thin lamina has its moments of inertia about
two perpendicular axes in its plane respectively equal to I, and I,
then the moment of inertia about a noimal to the plane through
their point of intersectionis I, + I, .

25. Prove the Theorem of parallel axes in the case of a lamina,
namely, that the moment of inertia of a thin lamina about any given
line in its plane is equal to that about a parallel line through its C,
G. together with the moment of inertia of the whole mass con-
centrated at the C.G. about the given line.
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26. Find the moment of inertia of the circumference of the circle
of radius ‘a * about a diameter.

27. Find the radius of gyration of a circle of radius ‘a’ about a
diameter.

28. Find the moment of inertia of the surface of a sphere of
radius ‘a ' about a diaméter.

29. Find the moment of inertia of a truncated cone about its
axis, the radius of its ends being 2 “ and b’

30. Find the moment of inertia of an isosceles triangle, each of
whose equal sides is ‘2 * about the perpendicular from the vertex
upon the opposite side.

31, Find the moment of inertia of the area bounded by
r? = alcos 28 about its axis.

32. Find the moment of inertia of a circular area of radius @’
about the line whose perpendicular distance from its centre is 4.

33. Find the moment of inertia of a rectangular parallelopiped
whose sides are 2a, 2b, 2c about its edge 2a.

34. Show that the moment of inertia of a thin uniform rod of
length 22 and mass M about a line through one end perpendicular
to the rod is M §a?.

35. Show that the moment of inertia of a thin uniform lamina
in the form of a rectangle whose sides are 22 and 2b about an axis
perpendicular to the plane of the lamina at the point of intersection
of the diagonals of the lamina is 1 (a? +b? ) M.

36. Show that the moment of inertia of a thin uniform elliptic
lamina whose semi-axes are 4 and b about the line through the
centre of the ellipse and perpendicular to its plane is % (a? + b?) M.

' [ See Ex.39.1

37. Show that the moment of intertia of the area of a lemnis-
cate of Bernoulli r? = c? cos 20 about the line in its plane through
the origin and perpendicular to its axis is Mc? (3n + 8)/48.
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38, ABC is a uniform Iriansular lamina and [ is the length of
the perpendicular drawn from A on BC . If M be the total mass of
the lamina, then show that the moment of inertia of the lamina
about BC is { MI* .

39. (i) Show that the moment of inertia of a uniform el-
liptic lamina of mass M, the equation of the ellipse being
x*/a? +y*/b? = 1,about a diameter making an angle 8 with
the major axisis M (&? sin?@ + b? cos?0)/4.

(ii) If r be the length of the semi-diameter of the ellipse
in the above case, then show that the moment of inertia
is M a2b? /(4r2).

(iii) If, in th= above case , p be the length of the perpendicular
from the centre of the ellipse on the tangent parallel to the semi-
diameter, then show that thc moment of inertia about the tangent
is 3 Mp.

ANSWERS
3.x=3a,y=0. 4. E=0,§=§c.

S. On the radius, bisecting the sector, at a distance }a '—i%? from the

centre, 2a being the angle of the sector at the centre, and « the radius.

5 = _¢_3v'2-lo (¥2 + 1) A 2V2-1
X W viog(2+1) ' YT T W elog( 4+ 1) "
- o - B -
7.(l)x=%-3{_-—'-‘-,y=0. M):sT.yaﬂ-
i - - 1284 -
(i) x =32,y =a. (ile-5z—18-3i.y=0
- - - - _ 25a
8. x =(x -})a,y =}a. 9. Tmy e
- - x oy 1
Iﬂ.xﬂ%x,yw-}l. 'll.%l-gz-—g.
-  16a - nav2

ll;'ﬂ‘:-.ol"ﬁ- 13. x = .;-ﬂ.
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Mx=}a, y=0; () x =0,y =3b.

15. (1) For surface x = 501,} = 0; (i) Forvolume x = 32 7.0,
a Ty

16.?:%52.;::0. 17.'“'7’.

1a.M-;—’. 19-%Mh‘lm’n. 21.M-!%:.

26, %‘. 27. § 28. 1—-“——;': 29..%‘ 'i—:—:—-gi,)
30. -“-%‘-‘-'. 31 %—' z—g ;

32, M(d=+-:-.:). n.'l—;‘—(bi +e1).

N.B. M is the mass in each case.



CHAPTER XIV
ON SOME WELL-KNOWN CURVES

14.1. We give below diagrams, equations, and a few charac-
teristics of some well-known curves which have been used in the
preceding pages in obtaining their properties. The student is sup-
posed to be familiar with conic sections and graphs of circular func-
tions, so they are not given here.

14.2. Cycloid. .

The cycloid is the curve traced out by a point on the circum-
ference of a circle which rolls ( without sliding ) on a straight line.
A

|
|
|
|
I

I
1
D

o X
Fig.1
x=a(0 - sinB) y=a(l - cos8)
Let P be the pointon the circle MP, called the generating
circle, which traces out the cycloid. Let the line OMX™ on which the

circle rolls be taken as x-axis and the point O on OX", with which
P was in contact when the circle began rolling, be taken as origin.

Let 2 be the radius of the generating circle and C its centre,
P the point (x,y)onit, and letm ZPCM =0.Then 0 isthe angle
through which the circle turns as the point P traces out the locus.

. OM = arc PM = a0 .
Let PL be drawn perpendicular to 0xX .

. x = OL OM - LM = a8 - PN = g0 - a sin @
a(® - sin9).
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y=PL=NM=CM-CN =a-acosB
=a(l1-cosf).

Thus, the parametric equations of the cycloid with the starting
point as origin and the line on which the circle rolls, called base,

as x-axis , are
x = a(0 -sind),y = a(l-cos®). was (1)

The point A at the greatest distance from the base OX is
called vertex. Thus, for the vertex, y, ie., @ (1~ cos®)is maxi-
mum. Hence,cos 8 =-1,ie., 8 = ®.

-+ AD = a(1 -cosm) =2a. .. vertexis(am,6 2a).
For O and O, y = 0. cos® =1. . 8 =0and 2rn.

As the circle rolls on, arches like OAQ’ are generated over and
over again, and any single arch is called a cycloid.

5

x=a(0 + sin@) y=a(1 -cosB)

Since the vertex is the point (ax, 22), the equation of the cycloid
with the vertex as the origin and the tangent at the vertex as the
x-axis can be obtained from the previous equations by transfer-
ring the origin to (an, 22 ) and turning the axes throughm, i.e., by
writing

an + X' cos® - y sin®w and 22 + X' sin® + y' cos ™ for x
and y respectively. '

Hence, a(0 - sin@) = an - X',
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or, .r‘-a(n—ﬂ)+nain9-a(9"+sin9‘),
where® = n- 0,
and a(1 - cosb) = 24 -y,

or, ¥V =2a-a8+acosh =a+acosh
=8 -agcos(x -0)=a(1 -cos0’).

Hence, (dropping dashes) the equation of the cycloid with the ver-
tex as origin and the tangent at the vertex as x-axis is

x=a(0 +s8inb), y = a(1- casB). eee (2)
In this equation, 8 = 0 for vertex,@=xfor 0 and 8 = ~x for O".
The characteristic properties are :

(i) Forthecycloid x = a(8 - sin®),y = a(1 - cos®),
radius of curvature = twice the length of the normal.

(ii) The evolute of the cycloid is an equal cycioid.

(iii) For the cycloid x = a(® + sinB), y = a(1 - cos8),
v = 10 and s = 8ay, s being measured from the vertex.

(iv) Thelength of the above cycloid included between the two
cusps is 8a . s
(v) Intrinsic equationis s = 4asiny.

Note. The above equation (2) can also be obtained from the
Fig. (1) geometrically as follows :

If (x°,y’) be the co-ordinates of P referred to the vertex as origin
and the tangent at the vertex as x-axis, '

X =lD=0OD~-OL=@gx~-x=a(x-0)+asind,
Yy=AD-PL =28 -y=2a-a(1-cosB)=a(l + cosB).

Hence, writing @ (or 8) for x - 6, etc.

14.3. Catenary.

The catenary is the curve in which a uniform heavy flexible
string will hang under the action of gravity when suspended from
two points, It is also called the chainette.
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Its equation, as shown in books on Statics, is

y = ccnlhl:-é (c"" +r"‘).

C is called the vertex; OC = ¢ OX is called the directrix .

The characteristic properties are .

(i) The perpendicular from the foot of the ordinate upon the

tangent at any point is of con-
stant length.

(ii) Radius of curvature
at any point = length of the
normal at the point ( the centre
of curvature and the x-axis
being on the opposite sides of
the curve ).

Y

T

i

i

£
O N X
Fig.3

(iii) y? = ¢? +s?, s being measured from the vertex C.

(iv) s =ctany,y=csecy. (v) x=clog(secy+tany).

14.4. Tractrix,
Its equation is

g avar = oF 2 1 !_-‘Q_L feriy
a y 5 1°8 7+ @' - y?) ’

or, x =af(cost + logtan1t),y = a sint.
g 2 y

Here, OA = a.The characteristic properties are :

(i) The portion of the tan-
gent intercepted between the
curve and the x-axis is con-
stant. '

(ii) The radius of curva-
ture varies inversely as the

Y
A

o| T X

Fig.4
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normal (the centre of curvature and the x-axis being on the opposite
sides of the curve ).
(iii) The evolute of the tractrix is the catenary
y = a cosh(x/a).
14.5. Four-cusped Hypo cycloid,

Its equation is (E)m + (-E )m =1,

or, X = a cos3d,
y = b sin%¢ .

Here, OA = OA' =a;
OB = OB’ =b.

Fig.5

a? +ab + b?

The perimeter of the hypo-cycloid ABA'B’ is 4 S

The astroid is a special case of this, when @ = b.

14.6. Astroid.

Its equationis x?? 4 y13 = a3

I

or, X

Here, OA

acos’d, y = asin?0.

OB =0A" = OB = a.

The whole figure lies completely within a circle of rudius 2 and
centre O . The points A, A°, B, B’ are called cusps. It is a special
type of a four-cusped hypo-
cycloid. [See§ 145

The characteristic property of
this curve is that the tangent at any
point to the curve intercepted be-
tween the axes is of constant

Fig.6 length.
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The perimeter of the astroid x** + yus = a? isba.
14.7. Evolutes of Parabola and Ellipse.
(i) The equation of the evolute of the parabola y? = dax is
27ay? = 4(x - 2a)?.
The curve is called a semi-cubical parabola.

Transferring the origin to (22,0 ), its equation assumes the
form y? = kx> where k=4/(27a), Y
which is the standard equation of
the semi-cubical parabola with its
vertex at the origin.

Hence, the vertex C of the ANSC X
evoluteis (2a,0).

(ii) The equation of the
evolute of the ellipse
x? /a? + yr/b? =] 18 Fig.7

(ax)?” + (by)w? = (a?-b2)23,
which can be written in the form

€ ().
whete & =(a? =§*) /e, B =(a? -b2)/b.

AP
The area of the evolute is -’i"u _(a__ﬁ_} -
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The length of the evolute is 4 ( :—1 --b‘—z ) :
Hence, it is a four-cusped hypo-cycloid.

14.8. Folium of Descartes.

Its:'equation is x* + y? = 3axy.
It is symmetrical about the line y = x.

The axes of co-ordinates are tangents at the origin, and there is
a loop in the first quadrant.

It has an asymptote x + y + 2 = 0 and its radii of curvatures at
Y the origin are each = 3a.

The area included between the
curve and its asymptote

= the area of the loop of the

Fig.9

14.9. Logarithmic and Exponential Curves.

Fig.10
(i) y = logx (i) y = e*.
(i) x is always positive; y = 0 when x = 1,and as x
becomes smaller and smaller, y, being negative, becomes numeri-
cally larger and larger. For x > 0, the curve is continuous.
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(i) x may be positive or negative, but y is always positive
and y becomes smaller and smaller, as x, being negative, becomes
numerically larger and larger. The curve is continuous for all
values of x.

14.10. Probability Curve.

The equation of the ‘prob- Y
ability curveis y = e~ *" .
The x-axis is an /
asymptote. _//
The area betw_ccn the curve 3o I ) X
and the asymptote is Y
Fig.11

=9,J' e-v'dx = 2.1V =x.
o

14.11, Cissoid of Diocles.

Its Cartesian equation is
y*(2a - x) = x3.

OA = 2a;x =2a isan

asymptote. A X
Its polar equation is
& 2a sin0
cos 0 Fig.12

14.12. Strophoid.

The equation of the curve
is
a+ x
] =X

OA = OB = a.

yl = x?

Fig.13
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OCBPO is a loop .

x = a is an asymptote.

I N ;
The curve y* = x1 is similar, just the reverse of

a + x

strophoid, the loop being on the right side of the origin and the
asymptote on the left side.

14.13. Witch of Agnesi.
The equaticn of the curve is

% xy? =4a? (22 - x).

Here, OA = 2a.

This curve was first dis-
cussed by the ltalian lady
mathematician Maria Gactaua

Fig.14 Agnesi, Professor of Mathe-
matics at Bologna.

14.14. Logarithmic (or Equiangular) spiral.

Its equationis r = ae®ta (or, r = ge™® ).
where cot @ or m is constant.

(i) The tangent at any point makes a constant angle with the
radius vector (§ = a ).

(ii) Its pedal, inverse,
polar reciprocal and evolute are
all equiangular spirals.

(ii1) The radius of curva-
ture subtends a right angle at
the pole.

Fig.15

Note. Because of the property (i), the spiral is called equiangular,
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14.15. Spiral of Archimedes.

Its equation is 1 = af .

Its characteristic property
is that its polar subnormal is
constant.

14.16. Cardioide.
Its equation is (i) r=a(l1+cos@), or (i) r= a(1-cosb).
In(i), ® = 0 forA,and 6 == for O.
In (ii),® == for A,and® = 0 for O.

Y Y
0 AX A o\ X
Fig.17
(i) r =a(1 + cosB). (ii) r =a(1 - cosB).

In both cases, the curve is symmetrical about the initial line
which divides the whole curve into two equal halves and for the
upper half @ varies from 0 ton,and OA =2a.

The curve (ii) is really the same as (i) turned through 180"

The curve passes through the origin, its tangent there being the
initial line, and thetangent at A is perpendicular to the initial line.

The evolute of the cardioide is a cardioide.
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The perimeter of the cardioide is 8a .

Note. Because of its shape like a human heart, it is called a cardioide.
The cardioider = a(1 + cos 8) is the pedal of the circle r = 2a cos 8 with
respect to a point on the circumference of the circle and inverse of the

parabolar = a /(1 + cos8).
14.17. Limacon.
The equation of the curve is
r=a+ bcosB.

When a > b, we have the outer curve, and when 2 < b, we
Y have the inner curve with the
loop.

When @ = b, the curve
reduces to a cardioide. [ See

X fig.in § 14.16..]
Limacon is the pedal of a
Y circle with respect to a point
outside the circumference of
Fig.18 the circle.

14.18. Lemniscate.
Its equationis r? = a? cos 20,
or, (x* + y1)? = a?(x? - y1),

It consists of two equal
loops, each symmetrical about
the initial line which divides
each loop into two equal halves.

AWAX OA = OA" = a.

Fig.19

r! =a?lcos20.

Y
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The tangznts at the originare y = +x.

For the upper half of the right-hand loop 8 varies from
0to1m.

A characteristic property of it is that the product of the distan-
ces of any point on it from (£ & / ¥2,0) is constant.

The area of the lemniscate isa? .

The lemniscate is the pedal of the rectangular hyperbola

rt cos 20 = a? . The curve rep- ¥ A}
resented by r? = a? sin 20 is

also sometimes called lemnis- @
cate or rose lemniscate , to distin- 6] %
guish it from the first

lemniscate, which is sometimes @

called Lemniscate of Bernoulli A

after the name of the mathe- y

matician J. Bernoulli who first Fig20
studied its properties. r? = a?sin20.

The curve consists of two equal loops, situated in the first and
third quadrants, and symmetrical about the line y = x. It is the
first curve turned through 45°.

The tangents at the origin are the axes of x and v.
The area of the curve is a? .

14.19. Rose-Petals (r =asinn8, r = acosnb ).

The curve represented by r =asin30,0r r = a cos 38 is
called a three-leaved rose, each consisting of three equal loops. The
order in which the loops are described is indicated in the figures
by numbers. In each case, OA = OB = OC = &, and mZ AOB
= m£ZBOC = m£COA = 120°.

The curve represented by r =4 sin 20 ,0r r=a cos 28 is called
a four-leaved rose , each consisting of four equal loops. In each case,
OA =:OB = OC = OD = @ and m£AOB = m£BOC = m£COD
= m£DOA ="90°.

inlegral Calculus (main) -23
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C(3)

AT} N\
&C/’ RN A1)

Fg.22
T =asin 2§, r=aco820.

The class of curves represented by r=a sinn8, orr =acos ne,
where n is & positive integer, is called rose-petal , there being n
or 2n equalloops accordingas n isodd or even , all being arranged
symmetrically about the origin and lying entirely within a circle
whose centre is the pole and radius ¢ .

14.20. Sine Sipral(r*=as ginng, or, r*"=a* cosnd ).

The class of curves represented by (i) r* = a® sin nd,
or () r™ = &* cos n@ is called sine spiral and embraces severa)
important and well-known curves as particular cases.
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Thus, for thevalues n =- 1,1, - 2, + 2,-1 and 4 the sine
spiral is respectively a straight line, a circle, a rectangular hyper-
bolz, a lemniscate, a parabola and a cardioide.

For (i) ¢ = nB; for (i)¢ = Ix + nb
The pedal equation in both the cases is
P = N+ 1 'f‘- )



DIFFERENTIAL EQUATIONS

CHAPTER XV
INTRODUCTION AND DEFINITIONS

15.1. Definition and classification.

A differential equation is an equation involving differentials (or
differential coefficients) with or without the variables from which
these differentials (or differential coefficients) are derived.

The following are examples of differential equations :

83

d:-'!" I 5 &
(-;{ l=ax‘ +bx + ¢ S
?J_'.o @
per”
%1- 5(%)t+ 2y =0 s (DY
xg?z‘+}a?r-0 N ()]
g%',u%'po. e

Differential equations are divided Into two classes, viz., Ordi-
nary and Partial.

An’ ordinary differential equation is one in which all the differen-
tials (or derivatives) involved have reference to a single indepen-
dent variable. '

A partia! differential equation is one which contains partial dif-
ferentials (or derivatives) and as such involves two or more inde-
pendent variables.
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Thus, in the above set, equations (1), (2), (3), (4) and (5) are or-
dinary diferential equations and equations (6) and (7) are partial
differential equations.

In order to facilitate discussions, differential equations are clas-
sified according to order and degree.

The order of a differential equation is the order of the highest
derivative (or differential) in the equation. Thus, equations (1) and
(2) are of the first order, (3) and (5) are of the second order, and (4)
is of the third order.

The degree of an algebraic differential equation is the degree,
of the derivative (or differential) of the highest order in the equa-
tion, after the equation is freed from radicals and fractions in its
derivatives. Thus, equations (2) and (4) are of the second degree.

Note. Strictly speaking, the terin ‘degree ’ is used with reference to
those differential equations only which can be written as polynomials in the
derivatives.

We shall consider in this treatise only ordinary differential
equations of different orders and degrees.

15.2. Formation of ordinary Differential Equations.

Let f(x,y,c) =0 - D
be an equation containing x, y and one arbitrary constant € .

Differentiating (1), we get

o . sy,
%t Sudx =0 = 3

Equation (2) will, in general, contain ¢, . If ¢, be eliminated
tween (1) and (2), we shall get a relation involving x , y and i‘—,
which will evidently be a differential equation of the first order.

Similarly, if we have an equation

flx,y,a.,a)=0 v Q)
containing two arbitrary constants ¢, and ¢, , then by differentiat-
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ing this twice we shall get two equations. Now, between these two
equations and the given equation, in all three equations, if the two
arbitrary constants ¢, and ¢, be eliminated, we shall evidently
get a differential equation of the second order.

In general, if we have an equation

FUX W 0L G v § =10 B € )]
containing n arbitrary constants ¢, ,¢;, ..., G, then by differen-
tiating this n times we shall get n equations. Now, between these
n equations and the given equation, in all (7, + 1)-equations, if
the n arbitrary constants ¢, ,c;, ..,¢. be ohmmated we shall
evidently get a differential equation of the nth order , for there
being n differentiations the resulting equation must contain a
derivative of the nth order.

Note. From the process of forming a differential equation from a given
primitive, it is clear that since the equation obtained by varying the arbitrary
constants in the primitive represents a certain system or family of curves,
the differential equation (in which the constants do not appear) expresses
some properties common to all those curves. We may thus say that a dif-
ferential equation represents a family of curoes all satisfying same common proper-
ties. This can be considered as the geometrical interpretation of the
differential equation.

15.3. Solution of a Differential Equation.

Any relation connecting the variables of an equation and not
involving their derivatives, which satisfies the given differential
equation, i.e., from which the given differential equation can be
derived, is called a solution of the differential equation. Thus,

y = e* + C, where C is any arbitrary constant,

and y = Ax + B, where A and B are arbitrary constants,
are respectively the solutions of the differential equations (1} and
(3) of Art. 15.1.

From the above, it is clear that a differential equation may have
an unlimited number of solutions, for each of the different relations
* A relation containing n arbitrary constants may, in certain cases, give rise

to a cﬁfﬂential equation of order less than n.
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obtained by giving particular values to the arbitrary constant or
constants in the solution of the equation satisfies the equation and
hence, is a solution of the equation ; thus y = x - V11, y=2x-3,

¥y = -4x,etc. are all solutions of the differential equation (3) of
Art. 15.1.

The arbitrary constants A, B, C appearing in the solution are
called arbitrary constants of integration.

The solution of a differential equation in which the number of
independent arbitrary constants is equal to the order of the equation
is called the general or complete solution (or complete primitive ) of
the equation,

The solution obtained by giving particular values to the ar-
bitrary constants of the general solution is called a particular solu-
tion of the equation.

Thus, y = Ax + B isthe general solution, andy = x - v'ﬁ,
¥ = 2x - 3,y = - 2x are all particular solutions of the equation
(3) of Art. 15.1.

There is another kind of solution called the singular solution,
which will be discussed in a subsequent chapter. [ See Art. 17.5 )

By a proper manipulation of the arbitrary constants in the
general solution of a differential equation, the general solution is
very often written in different forms ; it should be noted, however,
that each of these forms determines the same relation between the
variables. This will be subsequently illustrated in the worked out
examples.

When an equation is to be solved, it is generally implied that
the complete solution is required.

It sometimes happens that the process of solving a differential
€quation leads to integrals which cannot be evaluated in terms of
known elementary functions. In such a case, the equation is con-
sidered as having been solved when it has been reduced to an ex-
pression involving integrals and it is then said that the solution of
the equation has been reduced to quadrature.
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Note. 1. The arbitrary constants in the solution of a differential equa-.
tion are said to be independent, when it is impossible to deduce from the
solution an equivalent relation containing fewer arbitrary constants. Thus,
the two arbitrary constants A, B in the equation y = Ae** B are notinde-
sendent since the equation can be writtenas y = AeP .e* = Ce*

Note. 2. In this elementary treatise, we shall not concern ourselves with
the question whether a differential equation has a solution or what are the
conditions under which it will have a solution of a particular character ; in
fact, we shall assume without proof the following fundamental theorem of
differential equation, viz.,

An ordinary differential equation of order n has a solution involving n in-
dependent arbitrary constants, and this solution is unique.

15.4. Illustrative Examples.

Ex. 1. Find the differential equation of all straight lines passing through the
origin.

Let y = ve 1)
be the equa.tion of any straight line passing through the origin

Differentiatifg (1), E§= m. vie, 102D
Eliminating m between (1) and (2), we get

y =x %{ , the required differential equation.

Ex. 2. Find the differential equation from the relation
x =acost + b sint,
a and b being arbitrary constants.
Differentiating the given relation twice with respect to t, we get

X, = -asint +bcost—and
x; = —acost -bsint = -~ (acost + bsint) = - x.

nx3 +x=0,ie, :“+x = 0 is the required differential equation.

Ex. 3.Eliminate a and b from y = alan-'x+ b .
Differentiating the given relation with respect tox, ¥

rl=1—+?' .‘.{|+!:)y1=‘,
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Differentiating, (1 +x? )y, +2xy, = 0.
This is the required eliminant.
EXAMPLES XV

1. Show that the differential equation of a system of concentric
circles having the centres at the origin is xdx + ydy= 0. Inter-
pret the result geometrically.

2. Prove that the differential equation of all circles touching
the x-axis at the originis (x? - y?)dy - 2xydx = 0.

3. (i) Show that the differential equation of all parabolas
(a) having their axes parallel to the y-axisis y, = 0;

(b) with foci at the origin and axes along the x-axis is
ynt+ 2y -y = 0;
(ii) Show that the differential equation of the family of circles
xt +y? +2gx + 2y + c=0is(1 + »*)y -3 a1 =0;
(iii) Show that the differntial equation of the family of car-
dioides7 = a(1 + cos@)is(1 + cos@)dr+ rsin8dé = 0.

4. Show that the differential equation of the system of rectan-
gular hyperbolas xy =¢? isx dy + ydx = 0,and interpret the
result geometrically ; deduce that the tangent intercepted between
the axes is bisected at the point of contact.

5. Vertify that y +x + 1 = 0 is a solution of the differential
equation (y- x)dy - (y? -x?)dx = 0.

6. Show that V = (A /r) + B isa solution of the differen-
tial equation

4V, 2 4V
dr? r dr
7. Find the differential equation from the relation
(i) y = Asinx + Bcosx +xsinx; [J.E.E."89]
(ii) y = Ae* + Be-*; [J.E.E."84]

0.
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(iii) y = Acosx + Bsinx + Ccoshx + D sinh x,
where A,B,C.D are arbitrary constants.

8. Eliminate @ and b from each of the relations
(i) y =alogx + b; (i) xy = aex + be-=;
(iii) ax? + py? = 1. [C. P.1945]
(ivlr =a+ bcoso.

9. (i) Show that the differential equation, whose gencra
solution is y=6x+x?,isy = Xy, -+xty,
(ii) Show that
y=cosx,y =sinx,y =g, COS X,y =¢ sin xare all
solutions of the differential equation y, + y = 0.
{in (D) and (ii), ¢, , €2 arearbitrary constants. |
10. Show that the differential equations, whose general solu-
tions are
(i}y=Asinx+Bcosr, [C.P.'88)

(i) y = Asinhx + Bcosh x,
where A and B are arbitrary constants, are respectively

d? d?
a;{*l-&‘ = 0 and a-;}:—y = D
ANSWERS

1. The radius vector and the tangent at any point are mutually perpen-
dicular.

4. The radius vector and the tangent at any point are equally inclined
tc the x-axis.

7.y +y; = 2cosx, (i) y -y =0. (iii) v, -y = 0.
8. () xy +y, = 0. (D) xy; + 2y, = y,
(i) x(yy2 + ') =yy . (iv)ra = r, cot.



