
CHAPTER XI

LENC1'I-I OF PLANE CURVES

t Rectification

11.1. Lengths determined from Cartesian Equations.

We know from Diffcrc • iai Calculus that if s be the length of
the arc of a curve measured from a fixed point A on it to any point

11 ,  whose Cartesian "-ordinatcs are ( a, b ) and ( x, y ) respec-
tively, then

ds

Tr = sec,	 t tartly '. dxl'

i denoting the angle made by the tangent at P to the x-axis.

Thus, we can wr

s =$Ji ,() 2 dX + C,
dx

where - is expressed in terms of from the equation to the curve
and C is the integration constant. If the indefinite integral

djJ.Ji +(ax
be denoted by F ( x ) , then since s = 0 when P coincides with A,

i.e., when x = a, we get

0	 F(a) +C,whcnce C = —F(a).

Thus, a = F(x)— F(a) r f [i + (1 dx.
\ dx/*

The process of finding the length of an arc of a curve, i.e., 'of finding a
straight line whose length Is the same as that of a specified arc' is called
Rectification. For the definition of the length of an arc of a curve, see
Authors' Differential Calculus, Appendix.

Inlegral Calculus (main) -19
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Hence, between two points having x 1 and x2 as abscissa the
length of the curve is given by

.12

	

- s 
= J	

1jTT ix - '

	

a	 a

	

=f1 
.JdX.	 (1)

If it be convenient to get and accordingly , in terms
of y, instead of x, from the equation to the curve, we can use
the result

dsI	 /dx\2
—=.'I1+I--
dy v	 CL),

whence the length AP is given by

dx 2

	

=J	 1+ (;)

where dx is expressed in terms of y

Also the length of the curve between the two points whose or-
dinates are y1 and yi respectively will be

	

III-	
=f2	

1+ ( . )2 dy.	 (2)

If both x and y are expressed in terms of a common variable
param'ter t and so s is also a function of I, we can write

	

ic	 NI1 + ( 
\ 2 dx-

di it dxJ

\	 )
(.i? (since

+ ' dt/	 di	 dx dl)

En



LENGTHS OF PLANE CURVES 	 259

Thus, as before, the length of the curve between two points on
it for which t = f and t = 1 1 respectively will be given by

dx

	

Si - Ii JN (j) +	 )id .	 (3)

All the above cases can be included in a single result in the dif-
ferential form

	

= Jdx1 _. d y 1	 (4)

where the right-hand side Is expressed in the differential form in
terms of a single variable from the given equation to the curve
This , when integrated between. proper limits, gives the desired
length of the curve

Note In the above formula (1), (2) and (3) • it Is assumed that
dy dx di dya- . are all continuous in the range of Integration.

11. 2. Illustrative Examples

Ex. 1. Find the length of the arc of She parabola y 2 r 4ax measured from the
ertex to one extremity of the latus rectum

lere 2y = ,	 or,	 =	 -	 2a
dx	 dx	 y	 '(4ax)	 "Jx

The abscissie of the vertex and one extremity of the latus rectum are 0
and a respectively. Hence, the required length

S =Jj 1 +() 
di 5\J••-

a
I	 x+a

+ I"

= ;x (z + Z., t mIo('x	 ,(x

= a {I2 t log (1 + 42)).
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Ex. 2. L)ete-,-iine the length of an arc of the cylci.l z	 a ( 0	 sin 0 ),
y	 a( I	 cos 0),mesuredfrom the vcc(ie,thec':in)

ds	 !7'	 2Id'.I lore,	 -- = '	 -..	 +	
O

-
dO	 '4 dO/	 \d

a	 cos 0 ) 2	 =	 cos 0

Also at the origin 0 - U Hence the requited length, from 0 -- '' to any
point 0

2a COS -8d0 =4a sin 0
J3

Cur. 1. Since at th	 -"mity of the cycloid ( i o , at the	 j =

we have 0	 tt there. Thus, the length of a complete cycloid bning : ible th
length irom the vettex to the extremity is?. la sin -In =Fj

Cor. 2. s' = 164 I sin 2 - 0 = 8a.a (1	 cos 0) Say

E. 3 F :nd tIn whole length of the loop of the curve

3ay 1 =	 - a)2.

\e flutiCe here that, for negat i ve values o f x , y is ir.ii	 nd '
there is no 1,art of the curve on the negative side of the x-a xi 	 \.	 at

- poin t s where x	 =
we havey	 0. I'i .'v:-"- ..c two

 points, for every vaIu.. .i
are equal and oppositi. 	 ot v,

	

-	
-'	 a loop being thereb y '- - fl ... d. F. r

x	 —.	 ,	 each value of x gee -ian a
has two equal a -J
values, and with r -t	 asing,

	

'...	 continually increases	 n rnag
nttuje. Th,	 rve is t-* ,s traced

as in the adie' iiy tigsii	 cx-
i,'mltiei it '.	 ,op are given

1. , ra. I'd xa.

)tfl the eq tion to th, curve

dv
6ay	 (a — a) + 2x(x - a)	 (x — a)(3x- a);
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ds	 I	 a)2
_(Y	 /	 ( x - a)2(3x-

	

=	 1.dr

/	
(3r -a) 2 	31 + a=	

* 12ax = 2.!(3 -ax )

the h It length of the loop is

	

J

*o + a	 I
U	 a

	

2 ( .,JX)	 2\(3a) { 3	 x	 + a 21 
10

I	 F.,	 1	 2a	 2 '13a.
The hcie length ol Ike loop, therefore, from the symmetr of the curve,

11.3. Lengths determined from polar equations.

From the formulae

dtan	 =r -
O
-- , cos 0 = dr , sine	 Lo

in Differential Calculus, where s represents the length of the orc
of a curve from any fixed point A of it to a variable point P whose
polar co-ordinates are ( r 0 ) and 0 dencts the angle between the
radius vector to the point and the tangent at the point, we can write

I ds -- I /Jy\2
cosec = I i + cot	 =_ji +— (-)-

ds	 /dr2
whence	 '. 

r2 + () do
Again,

ds
sec 0 ' i + tan 2 Q =	 (2)dr

From (1) and (2), the length of an arc of the curvc5 can be ex-
pressed in either of the forms

.62 ' dr
(o) dO,
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fZ. dr ,
dO 2

or,	 a =f	 Ji + r 2	dr,
C'

where r, 01 and r2 ,0, are the polar co-ordinates of the extremities
of the required arc. In the first form, r as also j",—' are expressed in
terms of, 0 front the given polar equation to the curve. In the second
from, - Is expressed in terms of r.

Both (1) and (2) can be combined in a single differential form

do = 1dr 2 + r2d92

Note It is assumed in the above formula that ,	 are continuous in
the range of integration.

Ex. Find the perimeter of the Cardioide r a (1 - cos 0 ) , and show that
the arc of the upper half of the curve is bisected by 0 = I n.	 C. P. 1949 I

tsr
Here, since r = a (1 - cos 0), - = a sin 0.do
Hence, the length of any arc of the curve, measured from the origir.

where 0	 0, to any point, is given by

I 4,5=5

p9

=J 'La' (1 - cos O)' + a 2 sin'8d0
0

0

	

= 4a	 cos 01 ] r 4a(1	 cos

Thus, the leth of the upper half of the curve, whkh	 yc, ..nd' .
e=o toe =n, 114a(1_ Cos jR) =4a. I See Figure Fri Art IOt.I

The whole perimeter is clearly double of this, and thus 	 Se

Again, the length of the curve from 0	 0 to 6	 x is
4a( I - cos n) = 2g , and so the line 0	 bisect the arc of the
Upper nail of the curve.
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11.4. Lengths determined from pedal equations.
dr

From the formulae	 cos 0 and p = r sin $ in Differential
Calculus, we can write

ds	 I	 1	 1	 r
dv	 cos$'I(1_sin2$)J	

2)'

whence the length of an arc of the curve extending from r =
to r = r2 will be given by

rdrs	 J .I(i.1 -p2)

where p is to be replaced in terms of r from the given pedal equa-
tion to the curve.

Ex. Find the length of the arc of the parabola P2	 ar from r = a
to r = 2a.

The required length is given by

24

fa	
rdr

	

__	

F
-	 vr,2 _p2	 a

1(,2-a,)

= {1r-I - a, +i log ('1r +4r

= a'2 • alog(42 + 1) =a 142 +log(1 + 42)J.

11.5. Length of an arc of an Evolute.

We know from Differential
Calculus that the difference be-

	

tween the radii of curvature at	
P

two points of a given curve is
equal to the length of the cor-
responding arc of its evolute.	

Q

	

Thus, if Pi and Pz be the	 0;	 X
	radii of curvature at P and Q of	 Fiji
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a given curve PQ, p and q being the corresponding points n the
evolute, the length of the arc pq of the evolute = Pi - P2

In fact p, q are the centres of curvature and so and Q are
the radii of curvature at P and Q of the curve PQ , and if the
evolute be regarded as a rigid curve, and a string be unwound from
it, being kept tight, then the points of the unwinding string describe
a system of parallel curves, one of which is the given curve PQ, of
which pq is the evolute. PQ is called the involute of pq.

Es. Ca(ulate the entire length of the evolule of the ellipse

T2 	 b'	 lCP.l98l

U

Fig.3
a , b, a', b' being the centres of curvature of the ellipse at A , B, A', 8'

respectively, the evoluie, as shown in the figure, consists of four similar por-
tions, the portion apb corresponding to the part APB of the given ellipse

Now, from Differential Calculus, it is known that at any point on the
ellipse, the radius of curvature

alb'

where p is the perpendicular from the centre on the tangent at the point.

Thus, the length of the arc apb of the evolute

a l b'	 a 2 b 2 a	 b1
= Pa - PA 

=	 -. '	 = T -
Hence, the entire length of the evolute of the ellipse

4	 b1
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11.. Intrinsic Equation to a Curve.

If $ denotes the length of an arc of a plane cui ye measured
from some fixed point A on it up to an arbitrary point P. and if

he the inclination of the tangent to the curve at P to any fixed
line on the plane (e.g., the x-axis ), the relation between s and

is called the Intrinsic Equation of the curve.

It should be noted that the intrinsic eqution of a curve deter-
mines only the form of the curve, and not its position on the plane.

(A) Intrinsic Equation derived from Cartesian Equation.

Let the Cartesian equation to
thecurvebe y = f(x).Then y
denoting the angle between the
tangent at any point P and the
x-axis,

tan 'y	 = f'(x). ...(1)
dx

Also, s = arc AP = 5 

X	

+ ( Y2 ix
a

	

=s:	

(f'(x))dx = F(x),say,	 ... (2)

'a' denoting the abscissa of A, and 'x that of P

Now, the x-elirninant between (I) and (2), ( which will be a
relation between s and Nfl, will be the required intrinsic equation
of the curve.

If the equation to the curve be given in the parametric

form x = f(t),y = Q(t),wc can write

t	 -
AM  - -	 /d	 = 4i'(t)	 ... (1)an	
dx - dl I dl

	 T7—( 't)
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dx ' 1
Also	 s = f-J (-) + ( )

l 
dt

=5 VIPMP + tG'(t)

= F(t),say,	 ..	 (2)
where t, is the value of the parameter i at A

The -eliminant between (1) and (2) will be the required intrin-
sic equation to the curve.

(B) Intrinsic Equation derived from Polar Equation.

Let r =f(G) bethe
polar equation to a curve.

Let 0 denote the angle
between the tangent and the
radius vector at any point
P(r,0), W the angle made
by the tangent with the ini-

x	 tial line, and s the length of
the arc fl p where A (a,a)
is a fixed point on the curve.

...	 (1)
Then, tan	 = r dO

	 L )- f'( 0)dr
Y =0+t,,	 ... (2)

8
and	 s 	 Nf(drydO

dOa

= 5v (f( 0))' + If' (0)1 1 dO = F(0),say. ... (3)0 

Now, eliminating Q and 0 between (1), (2) and (3), we get a
relation between s and 'v, which is the required intrinsic equation
of the curve.
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(C) Intrinsic Equation derived from Pedal Equation.
Let p = f( r) be the pedal equation to the curve.

Then, as in Art. 11.4,

I
F 	 Vrdr 	(	 rdr

s_J(r2p2)_J(r2_(f(r)l7F(	 say. ...(1)

Also, from Differential Calculus, p denoting the radius of cur-
vature,

ds	 dr	 r

Eliminating r between (1) and (2), we get a relation of the
form

LW 1	 ( dds	 s

7W_	 ds=(s), or,	 - -	 s)	 =j TT5
wt'ch, when the right side is inegratcd, wil give the reqired in-
trinsic equation.

11.7. Illustrative Examples.
tt. I Obtain the intrinsic equation of the Calerzary y = c cosh	 in the

form s =c tan w

	

A'	 xHere, tan W =	= sanh -.	 (1)

	

dx	 c
Mao, measuring s from the vertex, where r = 0,

S

x

o 
JT 

dx I

=J:tszn1' --
x

=	 cosh .-- dx = [ c srnh -	 c sinh -

	

C	
0

Hence, from (1) , s = c tan w
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Ex. 2. Obtain the intrinsic equation of the cycloid

x = a(O+ sin6), y = a(1J -coO)
taking the vertex as the fixed point and the tangent at that point as the fixed line.

As shown in Ex. 2, Art 11.2, the length of the arc of the above cycloid
measured from the vertex is given b)

$ =4a sin '

	

dt,	 dAlso, tan	 1dx	 a sin O	 0

	

i = - = - / - 	 t a n -

	

dx	 aO	 dO	 a (1	 coscot, 0 )	 2

e=	 .Hence, front (i),s =4 sin	 ,
which is the required intrinsic equation

Ex. 3. Find the inS rins:J equation of She Cardtmde

r = a (1 - cos 0
the arc being mea..ured from the cusp ( i.e. u here 0 = 0 ).

Here, V =8+ 4'	 .	 (1)

	

dO 1- cos $	 6and tan , i.e., 	 r—dr = sin 	 = tan -2

	

• =8.	 . .	 (2)
Also by the Ex., Art. 11.3. we have

S	
+ (fr)2	

= 4. ( Icos) ...

Since, from (1) and (2), w = 0 +0 = . 0, i.e. 0 =

	from (3), s = 4a (1 - cos I W	 the required intrinsc equation.
Ix. 4. Find the Cartesian equation of the curve for which the intrinsic equa

lion is S =

dx	 dxdsHere - 
= 7s

 - cos s,aTy 	 diq

dx=a cos ,d.	 ..x=a sin W+c	 ... (i)

Again, 
dW ds TV	 fl

•	 dy = a sin S41 d.	 .. y = - a cos w 4 d.	 . . . (2)
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From (1) and (2) ehrninating • i, we get
-	 - d)	 the required Cartesian equa z. ,.

EXAMPLES XI
1. Find the lengths of the following

(i) the peri1ntter of the circle x + y	 = a2

(n) the arc of thi catenary y = -y3 ( 
e/a + e -x/a) from the

vertex to the point ( x y

(II) t he .criincter of the atroid x 213	 y 2/3 = a 2/3

(Iv) the perimeter of the hypo-cycloid ( )?•
	

Q.) ' r 1;

v) the periJ. :tor of the evolute
(ax)"' + (by)2/3  = (a2  - 

b
2
 )

the arc of the semi-cubical parabola ay 2	 x 3 from the
cu'todny point (x,y).

. l	 be -he length ofan arc ol 3ay 2 = x ( x -n) measured
frunthur lto the point (x.y), show that 3s 2 =4x 2 +3y1.

. ;hw that the length of the arc of the parahoa y 2 = 4ax
w, h k ntercepttd between the points of intersection of the para-
bo mo the straight lino 3y = 8x is a (log 2 +f)

•L 	 that the complete perimctci of the -irve
_f?	 2

r =+ 2 Y =	 is 27r

. If for a curve
sin 	 i- y cos o =f'(0)

and	 x cosi)	 y sin O r'

show that	 s	 f(0) i-f" (0) + c, where c is a constant
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6. Find the length of the arcs of the following curves

(I) x = e° sin 91
=

	 from 9 = () to 0 = - 7j

cc 

(ii) X	 fl (cos 9 + 0 sin 8 )	 } from 0 = 0 to 0 = 0,

	

y = a( sin 8	 O Cos O)

(iii) x = - sin 28 ( l t cos 20

Y r c cos 2O(l - cos 2O)
from the origin to any point.

7. EThow that the perimeter of the ellipse x = a cos 9 , y

= b sin 0, is given by

,' 1\' e 2 il.3 \2 e 4 	 /1.3.5\ 2 e'

	

2alttl -)	 - i)	 -
8. Compare the perimeters of the two conies

	

2	 2	 2	 1

-	 = I and	 + L =

	

9	 7	 36 28

9. Find the lengths of the loop of each of the following cur% CS:

(i) 9y 2 = ( x + 7)(x -,- 4)2;

(ii) x =t 1 ,y = t	 -1 t

10. Find the lengths of the following

i) a qiadrant of the circle r = 2a sin 

	

,ii) t , o av, ,f the parabola r (1 + cos 0) = 2 from 0	 0

to 	 -ti-

ti . ir	 (the	 .i-angut,ir spiral r = ac e ot between

t.e ra.iil v, tors	 a'

	

11. It z be the ienth ol : curvi'	 = a tanh -10 between the

	

origin and 0 - 2i, azd	 the area between the same points, show

	

that A = a	 - Or
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12. Show that the area between the curve

Y =i (e 'i

the x-axis and the ordinates at two points on the curve is equal to
a times the length of the arc terminated by those points.

13. Show that in the ast.roid x" 3 - y 117 = 02/3

(I) 5oe X'1

(ii) p' + 42 = 6as,
s being measured from the point for which x = 0.

14. Show that

(i) in the cycloid x = a ( 0 + sin 0) y = a (1 - cos 0 ),
p 2 + s =16a1,

the arc being measured from the vertex ( where 0 = 0

(ii) in the catenary y = c cosh (x / c),

yl = cp = C 2 + S2
the arc being measured from the vertex;

(iii) in the cardioide r = a (1 + cos 0 	 + 9p 2 = 16a1
the arc being measured from the vertex (i.e., 0 = 0)

15. Show that the length of the are of the hyperbola xy = a 2
bt ween tht points x b and x = c is equal to the arc of the curve
p  (a' 4 y4 ) = a'r 2 be;ween the limits r =b and r = c.

16. Show that the length of the arc of the cvolute
27ay = 4 ( x 2a )3 of the parabola y 2 = 4ax, from the cusp
to one of the points where the evolute meets the
parabola, is 2a (3 43 - 1)

17. Find the intrinsic equation of each of the following curve.,
the fixed point from which the arc is measured being indicated in
each case

(i) the parabola y 2 = 4ax .	 (vertex),

00 the astroid X1/3 + y2/3 =a 213	 . (one of the cusps),



272	 INTEGRAL CALCULUS	 t xi

(iii) the semi-cubical parabola ay 2 =	 (CU,

(iv) the curve y = a log sec ( x / a )	 (origin),

() the equi-angular spiral r = ac  °'	 (point	 0),

(vi) the involute of the circle, viz.,

o	
[TJu2	 a

cot(point a,O)
a	 r

18. Find the intrinsic equation of each of the following curves:
r sin a,

(ii) p 2 =	 __ a1

19. Find the intrinsic equation of the curve for hich thc tongth
of the arc measured from the origin varies as the square roc of the
ordinate. Also obtain the Cartesian co-ordinates of any point n the
curve in terms of any parameter.

20. It s = c tan W is the intrinsic equation of a curve, show

that the Cartesian equation is y = c cosh ( x / c' , given thai when

= O,x = 0 and 	 =c.

ANSWERS

( x /a-
	 (iii) 6a;i.	 0) 2ita;	 OD-141-141 e 	 e

(iv)	
a 2 + ab +b2	 (v) 4 (a2	 !.);

g+b

	

	 a

9x \ 28a
+	

-

	

6.	 (042t'' 2 	I,	 (ii)aO2	 (iii)Csin

2.	 9. (1) 4 43	 4 43

(	 'a ,	 •	 2 s 1);	 (iii) ( r 2 -	 ) 5CC Q

	

17.	 s - co	 w co I V 4. a tog C osec ji + cot iv);

-, 32'in 2II
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(Iii) 27s = 8a (sec 3 W - 1); (Iv) s = a log tan (j w +

(v) s =aeca(e(V)c0. 1);	 (vi) a =!aV2

18. 6) a =Cc V CIt I ;	 00S = l aw,.

19. a =4asin; x = a(+ sinO), y =a(I - cosO).

Inlegral Calculus (main) -20
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CHAPTER XII

VOLUMES AND SURFACE-AREAS OF SOLIDS OF REVOLUTION

12.1. Solids of revolution, the axis of revolution being the
x-axis.

Let a curve LM, whose Cartesian equation is given by

y = f (x) say, be rotated about the 'v -axis so as to form a solid of

Fig.!
revolution, and let us consider the portion LL'M'M of this solid
bounded by x = x and x = x 2 . We can imagine this solid to be
divided into an infinite number of infinitely thin circular slices by
planes perpendicular to the axis of revolution 0Y3 . If PN and P'N'

be two adja.ent ordinates of the curve, where the co-ordinates of
Pand P are ( x , y) and (x + Ax ,y + Ay)respectively, the
volume of the corresponding slice, which has its thickness Ax , is
ultimately equal to ity2 AX.

Hence, the total volume of the solid considered (bounded by
x = x1 and x = x2 ) is given by

- xl

V = 
Ax 0

Lt Z my 'x =7rj y1 dx.
-.

• Strictly, the volume of the slice between iy1 2 Ax and nY2 
2 Ax where

and y2 are the greatest and the least values of y within the range PP and
thus equals ny I !.x , where y lies between y and Y2 and is thus the
ordinate for some point within the range PP' (not necessarily of P). Thus,
Li Iny 2 Ax = I y 2 dx. [See Art. 6.2. Note 2.1
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length measured upto P from any fixed point on the curve LM,
the surface-area of the ring-shaped element generated by rotating
PP' is ultimately 27ty. As.

Hence, the required surface-area is given by

S = U L ( 2nytss)= 2. 5 y ds

I s , s being the values of s for the points L , M

=2EfY' .]i+ (I)i.

Cor. 1. When the axis of revolution is the y-axis, and we consider the por-
tion of the solid bounded by y = y1 and  = y2 respectively,

YZ

V =7E	 x2dy,
yl

and S	 2715 xds 2115 x\j1 + (!)'

Coy. 2. Even if the curve revolved be given by its polar equation ( the
axis of revolution being the initial line ), and the portion of the volume con-
sidered be bounded by two parallel planes perpendicular tc the initial line,
we may change to corresponding Cartesian co-ordinates, with he initial l'ne
as the x-axis.bywriting x = r cos O, y = r sin 0.

Thus.

V = 71	 y2x	 r2 sin 2 O.d(r cos o),

522f	 _

S	 yds = 2n J rsin8.'/dr
________

+ rtdO2,

where r is expressed in terms of 8 from the given equation of the
curve, or, if convenient, we may use r as the independent variable and
express 8 in terms of r from the equation, the limits being the cor-
responding values of r
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Alternative proof of

( i ) Volume of a solid of revolution.

Let a curve CD, whose equation is y	 f ( x ) , be rotated
about the x-axis so as

/ to form a solid of
revolution. To find the
volume of the solid
generated by the revolu-
tion about the x-axis, of
tte area ABDC bounded
by the curve y = f( x), the
ordinates at A and B an
the x-axis, let a and b be

V X the abscissa of Cand L).

Fig 	 -Divide AB into n
equal parts, each equal to h , a nd draw ordinates at the points of
division. Let the ordinates at x a + rh and x = a + ( r + I ) h
be PL and QM, and let us suppose y goes on increasing as x in-
creases from a to b

Draw PN perpendicular on 15m—  QR perpendicular on
LP produced . Then the volume of the solid generated by the
revolution of the area LMQP i c es in magnitude between the
volumes gpnerated by the rectang!os LMNP ad LMQR

i.e., between ht[f(a+rh)Jlh and n If( a+(r+I)h}J2h

Hence, adding up the volumes generated by all areas like
LMQP, it is clear that the required volume lies in magnitude
between

it L	 [f(a +rh)l i h and n 1	 If{a t (r '.- l)h)12h.
a	 . r_a

Now let n -, , so that h —+ 0 ;thenas the limit of each of the
above two sums is
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flfa1f(X12dX 
ie.,$byzdx,

it follows that the required volume is also equal to this
definite integral.

ii) Surface area of a solid of revolution.

Let the length of the arc from C upto any point P ( x, y ) be s
and suppose that the surface-area of the solid generated by the
revolution of the arc CD about the x-axis is required. As in the case
of the volume, divide flL into n equal parts, each equal to h , and
erect ordinates at the points of division. Let the ordinates at

= a -, rh.arid x = a + ( r + 1) h be PL and QM, and let the
ar PQ be equal to 1 The surface-area of the solid generated by
the revolution of 1.MQP about the -axis lies in magnitude be-
tween the cuo\ed surf,,ce of two right circular cylinders, each
of thickness I no of radius PL and the other of radius QM,
i.e. , between

2irf(a + rh)l and 2itf(a + (r + 1)h)l.

Hence, adding up all surface-areas generated by elementary
areas like PQ, it is clear that the required surface-area lies in mag-
nitude between

2.	 f(a +rh)h and 2nff(a + (r + 1)hjh.

Now let n -- oo, so that h -4 0; then I I h tending tot, the
limit of each of 'he above two sums is

bb

f(x) 
ds—dx, i.e.,	 it	 yds.

	j 	 dx	 -

Hence, the required surface-area is also equal to this definite
ral.
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12.2. Illustrative Examples.
Ex. I. Find the volume and area

of the curved surface of a paraboloid of
revolution formed by revolving the
parabola y 2 = 4ax about the x-axis,
and bounded by the section x = x.

Here, y = 2.f.

dxV x
Now the required volume

xI	 Pr1

	

V = ,
	

y 2 dx=	 U. d. =2*ax, 2 =*xy12

	

0	 0
(where yi Is the extreme ordinate, so that y 1 2 = 4ax1 2 ) =2 y1	

=(the volume of the corresponding cylinder, with the extreme circular section as
the base and height equal to be abscissa).

Also, the required surface-area

S =2*5 Y\/I +()2 dX =21
Jo

= 41tIa5'Ia +xdx = . x4a((a+ x )3/2 -a311).

Ex. 2. The part of the parabola y 2 = 4ax bounded by she latus rectum revol-
ves about the tangent at the vertex. Find the 	 y
volume and the area of the curved surface of the	 L
reel thus generated.

Here the axis of revolution being they- 	 X
axis, and the extreme values of y being evi-
dently i2a,	 L

the required volume	 Fig.3

	

•.2a	 .21
v=xI	 z?d_xf	 -1dy	 Esince y2=4ax)

	

J2I	 '-21 j
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R	 (g)S	 4=	 2 r- = - JT

Also the required surface-area

S =2nf xds = 21tf	 'tJl +(y
dx =	 1

=2JJ	
1I
4a	 4a	 since dy2aJ

= 4xa2f tan 2 0 sec  0 dO	 I putting y = 2a tan 01

= 4ita2f (sec30- sec 20)dO

=4a 2 [+tanosec2o_taneseCo_.logtafl( 	
+ +O)J

r42 I42 -logcot . ,J =g2 [3'12-Iog('12 + 1)1.

Ex. 3. Find She volume and the surface-area of She solid generated by reolv-ng the cycloid x = a (0 + sin 0) y = a (1 + cos 9 ) about its base.

The equations, show that the cycloid has the x-axis as its base, the ex-treme values of  are given by 0 = * v, i.e.. x =±ax.
The required volume

- ax	 x
V=,t I Y 2 dxia 3 j (1+ Cos O)'4g

-x

=8&l3jCOS'!Od9_..a35R523

The required surface-area

5 =2ifyds = 2x fy .ldx I +dy2
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= 21t	 a( + Cos 0) 4(a(1 +cose)de) I+(-aslnede)'

=2lra l J (I + cos 9)42(1 + -cos O)dO

8	 6.4=8jta 2 j cos' 10 d =87ta'.- =

Ex. 4. Find the volume and the surface-area of the solid generated by evolv-
ing the cardioide r = a (1 - cos 0 ) about the initial line.

Here, since the curve is symmetrical about the initial Iir,e, the solid of
revolution might as well be considered to be formed by revo ving the upper
half of the curve about the initial line. The extreme points of the curve arc
given by 0 = 0 and 0 = n.

The required volume

v=,tfYzaxiJr1sin2ea(rcoso)

=ira 3 f(1_ cos9)'sin 2 O.d((1 - cos$)cos0)

753JO (1- cosO) 1 sin 2 B(- sinO + 2sin0co8)d9

I x increases as 0 diminishes from n to 01

= 3f (1- z)(l - z 2 )(1 - 2z)dz [putting z= cose)

= . ,r43

The required surface-area

S =2nJYds = 21rJr sin e.Idr 2 +

=2nf a(j_ cos 0) sin Q.(a sin 9dO) 2 +a 2 (1_ cos U)2d02
Jo

=2,w2 f" ( I - cos 0) sin 0'i2(i -cosO)dO
0



A
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2

	

= 242 ITa2 
	
z31 dx	 I Putting x = I - cos 01

= 2I2,a2 . .(2) 5/ 2 _32,ta2

12.3. Solids of revolution, axis of revolution being any line
in the plane.

lfthegivencu	 LM be revolved aboutany line AB its plane,
Y	 p	 and the portion considered

I	
of the solid of revolution
formed be bounded by the
planes perpendicular oAB

through the points A and 
respectively, then RN
being the perpendicular on

X	 AB fom anoint P on
Fig.4	 the curve, P'N' the con-

tiguous perpendicular, the volume of the portion considered
given by

AB
V =Lt En.PN2.NN' =

	
PN2 (AN).

0

Also, the surface-area of the portion consiciez.d is given by

S = LtE2n.PN.( elementary arc PP' )= 2n  PN.ds.

AR, PN,From toe given equation of the curve and of the line,

	

as also AN and ds are expressed 	 B
in terms of a single variabc.
and the correspo'-ding values
of the variable for the points A
and B are taken as the limits
of integratior

Ex. A quadrant of a circle, of
a, revolves round 115 chord.

	

volume and the surface-area 	 o
id spindle thus generated.
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P being any point on the quadrant APB, where m LAOP = 0 dear-ly AP= 2a sin J. Oand mLPAN =. LPOB = ( . ii 0).
PN = 2a sin ! O sin ( ! it - - 9)	 a (Cos

(0 -) - Cos.!ltJ;

	

AN 2a sin !O Cos (!it - O)	 a 1sinit + sin(e -
.4Elementary arc PP = a '

Also, for the solid formed limits of 8 are 0 and it respectively.
Hence, V it fPN 1 .d(AN)

pfR
=irasJ	 {co5(o	 Cos !,t)1 Cos (9l)de

0

=ita3j [Cos i (O_! it)_12 Cos 2(0I)+l(Ol

Cos (39 - f it) +cos(O -iit)

- T2 (Cos (20 -fir) + U1 d
= ita [sin(39	 -	 sin (20 -fit)12	 4

5	 1	 i

T2 0
=	 (0-3it)	 + 

.
Also, S =2itJ	 PNadO

2fJo

2ita 2 f 2 ( Cos (o - f it) _ Cos !it)de

	

r2ira1 [sin (8 -fir) -	 0j

'2ita 
1 (-)
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12.4. Theorem of Pappus or Guldin.
If a plane area bounded by a closed curve revolves through any angi#

about a straight line in its own plane, which does not intersect the curve,
then

(I) The volume of the solid generated is equa to the product of the
revolving area and the length of the arc described by the centroid of the

area.

(If) The surface-area of the solid generated is equal to the product of
the perimeter of the rez'olvirg area into the length of the arc described by
the cent roid of that perimeter.

Proof.

(I) Let 8A be any element of the area whose distance frorr the
axis of rotation is z Then, 0 being the angle through which the

area is rotated, the length
and hence the elementary
M is zO . &A.

Fig.6

of the arc described by M is zO
volume described by the elk rnent

The whole volume described by the given ar therefore

= r.z' 5A = OLz 5A = OZA t rorn Elementary Statics)
(where A is the total area of the curve and z is the distance of its
centrold from the axis of revolution I

= AZO = area of the closed curve x length of the arc
described by its centroid.
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(Ii) Let &s be the length of any element P1" of the perimeter
of the given curve, and z' its distance from the axis of revolution.
The elementary surface traced out by the element 8s is ultimately
Z ' 0 . 6s.

The total surface-area of the solid generated is therefore

Ez'0.6s = 9z . s	 Oz's (from Eler.cn'.ry Statics)

where s is the whole pernetcr of the curve, and z' the distance
of the centroid of this perimeter from the axis )

= sz'O = perimeter x length of the arc described by its

cent ro i d.

Note. The at,ve results hold even if the axis of rotat ii touch -s the
closed curve.

Es. 1. Find the volume and surface-area of e solid tyre, a being the
radius of its section, and b that of the core.

The tyre is clearly generated by revolving a circle of radius a about an
a,us whose distance from the centre of the circle is b

ihe centre of the circle is the centroid of both tt'r area of the circle as
also of the perimeter of the circle, and the length of the path described by it
is evidently 21tb

Hence, the required volume =na 2 x 2b z 2 2 a 2 b
and the required surface-area = 21ca . 21tb = 47t 2ab

Es. 2. Show that the volume of the solid formed by the rolason about the line
0=0 of the area bounded by the curve r =f(0) and the lines 0 = 0, .0 = 92 is

• 0
r' sin OdO.

0,

Hence, find the volume of She solid generated by revolving the car-
dioide r = a (1 - cos 0 ) about the initial line.

Dividing the area in question into an infinite number of elementary
areas (as in the figure, § 10.5) by radial lines through the origin, let us con.
.,dr one such elementary area bounded by the radii vectors inclined at
angles 0 and 9 + dO to the initial line, their lengths being rand r 4 dr,
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say. This elementary area is ultimately in the form of a triangle, whose area

is 4 r ( r + dr) sin dO , i.e , 4 r 
2 dO upto the first order. Its C.G. is, neglect-

ing infinitesimals, at a distance 4 r from the origin and its perpendicular
distance from the initial line is ultimately 4r sin 8. The elementary volume
obtained by revolving the elementary area about the initial line as therefore,
J,y Pappus' theorem, ultimately equal to

21c. 4r sin O 4r dO =4tr 3 sin OdA.

Hence, integrating between the extreme limits 0 = 0 and 0 =9,, the
total volume of the solid of revolution in question is

l-sin 0dO.
0

In case of the cardioide x = a (1 - cos 8), the extreme limits for 0 are

easily seen to be 0 and it , and so the volume of the solid of revolution

generated by It is

4n fa I (1 - cos 0) 1 sin 0 do, which on putting I - cos 8 = z

easily reduces to

2 2_ 6
41t4 3 	 z3dz' .

3
ita 3
	 4

EXAMPLES XII

1. Find the volumes of the solids generated by revolving, about
the x-axis, the areas bounded by the following curves and lines

(i) y = sinx;x = O;x =it.

(ii) y = 5x— x 2 ;x = O;x = 5.

(iii) Y2 = 9x.y =3x.

(iv)'lx +'Iy ='Ja;x= O;y = 0.

2. Show that the volume of a right circular cone of height It

and base of radius a is4ira2h.
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3. The circle x 2 + y 2 = a 1 revolves round the x-axis ; show
that I he surface-area and the volume of the whole sphere generated
are respectively 4ita 1 and na3

4. Prove that the surface area and the volume of the ellipsoid
formed by the r2volution of the ellipse x 2 fa 2 + y 2 lb 2 = 1

Ci) round its major axis are respectively

21tab( .J1 -e l +e -1 sin le)and7tab2,

and	 (ii) round its minor axis are respectively

I 1i+ei	 42,t t a, + -- log' j-- j and	 ia2b.

S. Show that the curved surface and vourne of the catenoid
formed by the revolution, about the x-axis, of the area bounded by

the catenary y = _2( a	 + e ' ), the y-axis, the x-axis, and an

ordinate are respectively

t (sy +az) and -7ta(sy +ax),
s being the length of the arc between (0, a ) and ( x , y)

6. The arc of the astroid i = a cos 3 0 ,y = a sin 1 0 , from
0 = 0 to 0 = -in, revolves about the x-axis ; show that the volume
and the surface-area of the solid generated are respectively 7ta'
and .na2

7. A cycloid revolves round the tangent at the vertex ; show
that the volume and the surface-area of the solid generated
are n 3 a l and ! L ita I respectively, a being the radius of the
generating circle.

8. The portion between the two consecutive cusps of the cy-
cloid x = a ( 0 + sin 0), y = a (1 + cos 0 ) is revolved about the
x-axis ; show that the area of the surface so formed is to the area of
the cycloid as 64 : 9 . 	 I Nagpur, 1934
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9. Show that the surface-area of the spherical zone contained
between two parallel planes = 2na x the distance between the two
planes, where a is the radius of the sphere.

10. Show that the volume of the solid generated by the revolu-
tion of the upper-half of the loop of the curve y' = x' ( 2 - x

O	
)

about X is 4x.
11. Show that the volume of the solid produced by the revolu-

tion of the loop of the curve y 	 + x) = x 	 - x) about the
x-axis is 2ira' (log 2 - .) .	 I  P.19351

12. Show that the surface-area and the volume of the solid
generated by the revolution about the x-axis of the loop of the curve
x = t' , y = I - 1 I are respectively 3n and 1 is

13. The smaller ijf the two arcs i,to.vhich the parabola
Y 1 = Sax 'ivjdes the circle x 2 + y 2 = 9a' is rotated about the
x-axis. Shot-, that the volume of the solid generated is 11 Ica 3

14. If the curve r = a + b cos 0 ( a > I') revolves about the
initial line, show that the volume generated is . ise (a' + I"

15. The following curves revolve round their asymptotes; find
the volume generated in each case

(i) y' (2a - x) =

(ii) y (a' + x' ) = a' ;	 I P. P. 1933

(a - x)y' = a'x.

16. An arc of a parabola is bounded at both ends by the latus
rectum of length 4a . Find the volume generated when the arc is
rotatz'd about the latus rectum. 	 I Nagpur, 1935 1

17. Show that the volume of the solid formed by revolving the
ellipse x = a cos 0 , y = b sin 0 about the lifle x = 2a is 4,t 'a 'b

18. Show that, if the area lying within the cardioide
r =2a(1+ cos 0) and outside the parabola r(1+ cos 0)=2a
revolves about the initial line, the volume generated is 18ia'
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19. Show that the volume of the solid generated by revolution
about OY of the area bounded by OY, the curve y 1 = x' and the
line y = 8 isic.

20. The arc of a par,, boIa from the vertex to one extremity of
the latus rectum is revolved about the corresponding chord. Prove
that the volume of the spindle so formed is (245 / 75 ) ia3

ANSWERS

•(j) i n 1	
(ii)	 fl	 (iii) • It.	 (iv) ir

15. (i) 2n 2 a 3 	 +tl	 16._Ica3.



CHAPTER XIII

CENTROIDS AND MOMENTS OF INERTIA

13.1. Centroid.
It has been proved in elementary statics that if a system of par-

tides having masses m , m3 ..... . have their distances paral-
lel to any co-ordinate axis given by x 1 , X2 , X3 . . . , then the
corresponding co-ordinate of their centre of mass will be given by

m l X1 + m2X2 +...	 Emx

m1+m2+...

Similarly,
y Em

=	 , etc.	 -

Now, if, instead of a system of stray particles, we get a con-
tinuous body, we may consider it to be formed of an Infinite num-
ber of infinitely small elements of masses, and in this case it may
be shown, as in the other cases, viz., determination of lengths, areas,
etc., the summation, 1, will be replaced by the integral sign.

Thus, if 3m be an element of mass of the body at a point whose
co-ordinates are (x , y) (or, in three dimensions, x, y, z) the posi-
tion of the centre of mass of the body will be given by

	

-jxdm	 -J v din

Jam'
the limits of integration being such as to include the whole body.

In practice, the elementary mass 8m is proportional to the ele-
ment of length 5s, or element of area, or element of volume of the
corresponding element, according as we proceed to find the centr-
old of an arc, or area, or volume, and the limits of integration then
will be the limits of the corresponding element.

13.2. Centroid of a thin rod.

( j ) When the rod is uniform.

Let	 be a rod of length a and let us take	 as x-axis.

-

Inlegral Calculus (main) -21
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-	 Let P. Q be two neighbour-
0	 p Q	 A x ing points on the rod at distances

x and x + Sx from 0, so thatFig.l PQ = 5x. Let p be the density
and a be the uniform cross-section - " , he  rod. Then the element of
mass 5m at P = a . 5x p. where t .- . rid p are constants.

Let x be the distance of Its C. C. from 0. Then taking moment
about 0, we have

xEu&xp = £a6xp.x,
i.e., x 16x = Lx&x (on dividing both sides by the constants a, p).

_____ [4 
x2J	

... (1)

5 dx	 [x]

The limits of integration are taken as such, since for the whole
rod xvaries from C) to a.

Thus, She C. G. of a uniform thin rod is at its mid-point

(ii) When the rod is of variable density.

Suppose the density p at the point P be a known function of
Its distance from one end, say, 0 . Then p = f ( x ) .

Here, proceeding as above, the element of mass 5 m at P
---6xp= a5xf(x).

a&xf (x) -a6xf(x).x,

i.e., x Ef( x) 8x = £ xf( x) 8x, dividing by the constant a.

- 5 
xf(x)dx

	

-	 ... (2).5
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Substituting the known value off( x), In any case, and Integrat-
ing, the final value of x Is obtained.

For example, lithe density at any point of the rod varies as the
distance from the extremity 0, then f(x) - kx, where k Is 
constant, and therefore

x 2 dx /fadx	 a.	 ... (3)

Note. If a be the cross-section 01* rod it & point P on It and p be the
density there, then a p (i.e., mass per unit length ) is called the line-den-
sity of the rod at P. By the single word 'density' isuauaIy mearI volume-
density, i.e. , mass per unit volume.

If in the case (II) It Is given that the line-density X at any point P varies
as its di:tance from 0, then 8m (the element of rnasa) at P would be
).. 8x . Now we can proceed as In (3).

13.3. Centroid of at arc.

Let (x, y ) be the co-ordinates of any point P on the arc AB,
and p be th' density at P. Let s be
the length of the arc CP measured	 p
from a fixed point C on the arc.
Then 6s = elementary arc PQ at P,
and hence	 I

ç' Ss = element of mass
at P ( = m)

hg.
Let (x , y) be the co-ordinates of

the C.G. of the arc AB . Then, as in (4) of Art . 10.1, we have

- ixdm	 Jpxds -	 Iydm	 fpyds
Jpas	 Yf-	 fpds

the limits of integration extending from A to B.
When p is constant, the formula (1) becomes

- Jxds -	 1 da

	

141	 .	
... (2)
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The 1orrnuh (1) and (2) are fundamental formula' for the th
minatiori of the C.G. of an arc: and this c a ll h' eisilv tran5formd
when the equation of the curve is given in Car&esiart coordinates
(general or parametri), or in polar co-ordinates.

Note 1. In the application of the abovc * ntegral9 the following results
should be no'ed. When the equation of the curve is

(I)	 y = [(x), ds =
's 2r Y dx

(ii) x = f ( y). d	 -J+( 4 . ) dy.

(iii) x =t).	 y = 14,(f), as = %J('

(iv) r.Oj	 Ods

,-

and x =rcos9V = rs,rt.

Note 2. The C. C. in such cast is generally not on the ac .4B

13.4. Centrwd of a plane area.

—use 1. Car',ir:.

Suppose the area k bounded 5y ftc curve y	 f( x) the axis
cix and the ordinates x =	 x

Let (.ry).(r + 5x.y +
be the co-ordinates of P ad a
neighbouring point Q on the
curve. Divide the whole area Into
elementary strips like PMNQ , by
drawing lines parallel to the y-axis.
The area of the strip = y dx ul-
timately, since Sx is vary small.
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Let the area be homogeneous and let p be the surface-density
of the strip PMNQ . Then 5m , the element of mass of the strip

PMNQ - yöx p and the C.G. of the strip PMNQ is ultimately at

the point ( x , - y ) ( with sufficient accuracy for our purpose). Let

(x4y ) be the C. C. 01 the area AI.LB .Then, taking moments about
öI and t3 respectively, we have

xpy.&pyöX.X; y.py.x=Lpy&x -y.

Cancelling out the censtant p from both sides, we get in the

limit

J
2x  dx	 5yldx

!-

J
ydx	 J 

ydx

where y has to be expressed in t'rms of x from the equation of

the curve.	 -

Note. The surface -density p at any point of an area is a, whore a is

the volurne density and A is the thickness at the point.

Lase 11. Pear

	

Let the ar&a j1Q5 be hounded by the curve	 J(0) and the
radii vectors OA, OB ( 0 =	 and 9 =	 so that mZ XOA = a,

,nZXOB
4—

Let C) he the origin, O- the initial line and O'i' the y-axis.

Let the whoie ard be divided into elementary triangular strips

like OI-Q by raW vectors drawn	 y
from C) Let the cu-ordinates of

area	 k-,f the	 strip+

OPQ = r 2 50 ultimately, since	 0	 -	 X
80 is very small Then the C.G.of
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the strip OPQ is a point C in OPQ, ivhose co-ordinates are ul-
timately (3 r cos e, 3 r sin 0) (with sufficient degree of accuracy
for our purpose). Let p be the surface-density of the strip. Then
elementary mass 3m of the strip OPQ Is -1 r 60 . p. situatedat 01 . Let ( x, y) be the co-ordinates of the C.C. of the area 

AOB.

Therefore, taking moments about the y-axis and the x-axis, we
have

Z+r1P602rap3r cog e5e;

y.Z.}r2p&0 - Z-rp.4rsin 0.50.
Cancelling out from both sides .. p,sInce p is constant, we have

fina!ly in the limit

f r 3 cos ed	 fa	 a	 -.
5 rd0
	

faa
where r -f( 0 ) from the equation to the bounding curve.

13.5. Centrojd of the volume and surface of revolution of a
uniform solid.

Suppose s solid is formed by the revolution of the curve
y - f ( x)about the x-axis t3 and suppose It is bounded by two
ordinates AL, BM corresponding to x - x1 and x

(I) The volume generated by the element of area PNN'P' ,where
M	 (x , y) are the co-ordinates of

L	 P, Is the area of the circle
described by	 ) x (the

•	 thickness between the two
X	 circles described by

and	 ')and	 y26x ul-
timately I since PN y, and
Sits very small I . If p be the

Pits	 density of the slice bounded
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by the two circles, then 6m the element, of mass of the strip
= p.ny 2 8x. The C. C. of the element from symmetry, lies on
and is ultimately at a distance x from 0. Hence, If ( x, y) be the
co-ordinates of the C. C. of the volume generated by the area
ALMB, then, taking moment about the y-axis, we have

x.Epny z 8x =Eply t 3x.x.
As the solid is of uniform density, cancelling out pn from both

sides, we get

ylxdx
= Eyx8x	 J=

a2

J
and from symmetry, y = 0.

(ii) The area of the surface generated by the revolution of the
arc PP' ( = 8s ) about 153e is (the circumference of the circle
described by TN_) x (length of the arc PP) and . 8s ultimate-
ly, since PN = y and Ss is small. If p be the surface—density,
then 8,n the element of mass of the belt 	 p 2xy . bs.

The C. C. of the belt from symmetry lies on 153 and Is ul-
timately at a distance x from 0 . Hence, if ( x, y) be the co-or-
dinates of the C. C. of the surface generated by LM, then, taking
moment about the y-axis, we have

x.1 p.2xy Bs	 £piisy&s.x.
As the surface is of uniform density, cancelling out 2xp from

both sides, we get

- Eys.x_ Jyxd.
- Ey&s - Jyda

In the integration, the limits for a correspond to x xt and x2.

Cor. When the equation of the curve Is given in polar co-ordinates, say,
f ( 9), the above formulae can easily be transformed into the following

forms by the relations between Cartesian and polar co-ordinates, viz.,

x = r cos 0, y = r sin O.
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,Sf12 OcosOJ(rcoo).de.1 
Solid: Jx	

d	 ,y=o
1	 frI sin' OcosO—(rcos9).de

taken between proper limits

C	 dsr 2 sin 8 cos o—.dO
Surface: f x = -----	 ds	 '" = 0I	 Jrsin9a.dO

taken between proper limits.

13.6. Illustrative Examples.
E. 1. Find the cent raid of an wire in the form of a circular arc,
Let AB be a wire In the form of a circular zirc	 ,dius 'a ' , which

Y1	 B	 subtends an angle 2a at its

-	
centre 0.

Take 0 as origin, and OX
which bisects the arc AB , as

X	 x-axis

Then, by symmetry, the
centroid G lies somewhere on

Fig.6 
A	

Now, 0 denoting the vec-
torial angle of the point P ozi the

arc, the element PP' there has a length a do, and the abscissa qJ/ is a cos
8 Also, to cover the whole arc, 0 extends between the limits - a to a
Hence, the abscissa CC of the centroid C is given by

I	 acosO.a1L)
- Lxdm	 a

J a
(p denoting the linear d-iist. . h- .



CENTROIDS AND MOMENTS OF iNERTIA 	 297

Cos Od

	

2 sin a	 sina= a-2a	 a
do

a

Cor. The distance of the centroid of a semi-circular arc from the centre
is 2a /it -

Ex. 2. Find the centre of gravity of i uniform lamina bcunded by parabola and
a double ordinate of it.

Let the lamina be bounded by a parabola y' = 4ax and a double or-
dinate RMR' given by x = x1.

i pp' R

	

By symmetry, the centroid lies on	

a
the x-axis and hence y = 0 

Divide the lamina into elementary

	

strips by lines paralel to the y-axis. 	 QQ'R'
Consider the strip PQQP' , where the
co-ordinates of P are ( x , y ) The
length PQ is 2y and the breadth NN'
is &x Hence the area of the strip is ultimately 2y 5x The limits of x , to
cover the area considered, are clearly 0 to r

1-knee, for the required centre of gravity,

= J 
xdm	

5 
z 2ydxo

J.m	
5 

2ydx.a

where ci is the surface-density of the lamina

pX1

J
z.2	 dx.	 x3'2 dx	 x

o	 JO	 3
=	 =	 =eli
J 

2'ixdx a
J 

x 11 dx
ao 

Thus, this centre of gravity d.vides the length OM in the raiio of 3 5
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• Ex. 3. Find the centre of grarity of a uniform lamina in The form of a quadrantof the ellipse x 2 Ia 2 sy' lb 2 = I	 (P.P. 7935)
Let AOB be the quadrant considered. Divide It into elementary strips

B'

	

	 by lines parallel to they-axis. The areap
of the elementary strip corresponding
to the point P, whose co-ordinates
are (r,y), is ultimately y8x,and

ED	 the centrojd of this element Is at the
middle point of the strip (which Is
supposed infinitely thin ) and thus
has its co-ordinates (x, .y / 2) . TheFig.8	
limits of x for the quadrant con-

sIdered are evidently 0 and a.

Hence, the C. C. of the area considered will be given by, (x ', y'
denoting the co-ordinates of the centrold of the element dm which Is takenhere as the strip,

fx'am 
j 

x.ydx.a
-	 a	 t a being the surface-

f dm	
j
1. ydx.a
	

density of the lamina

0

.5	 _______

j x!ia — xdx.cjao	
I

 
since -+

g 2	 b l 	 J

J
Ia2_Idr.o

a
0

J 0 
x Ia - xdx	 sinOcos1

0= a
= f 5 a2 —x2dx	 2

o	 5	 ode

I	 Iputting x = asin 0)
3	 4a= a - = -In	 3n

22
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fy'am f5.Yydx.a	 f ...T (a 2 -x')dx

Jdm	 f )4x.a	 J	 -xdx

f

3
COS 3 0 d	 2

1'1	 o	 1	 3	 4b
=	 -

	2 	 3n'If	
lx

cos" OJO	 - -
o

Cor. The cenlroid of half the ellipse bounded by the minor axis is on the major
axis at a distance 4a/3n from the centre.

Also, the centroid of a semi-circular area of radius 'a' Is on the radius
bisecting It, at a distance 4a / 3s; from the centre.

Ex. 4. Find the centre of gravity of a solid hemisphere.

the hemisphere may be supposed io be generated by evolving
a circular quadrant APB about one bounding radius OA, which we may
choose as x-axis. By symmetry, the 	 B

I'
centre of grav,IT of the hemisphere
will be on t5x" . Now divide the 	 a!
hemisphere Into ix1tItely thin cir-
cular slices by planes perpendicular	 C	 i4 A X
to the axis of revolution t5 An ele-
ment of such slice, corresponding to
the point P, has its volume ultimate-
ly equal to it y I 8x (x. y being the	

F 9Cartesian co-ordinates of P), and the	
ig.

x co-ordinate of its centre is x.

Hence, If p be the density of the solid hemisphere and a its radius, the
position (,'the C. C. Is given by

p5

J x.xy2dx.p J	 x(a'
0x	 0 	

- ( sincex 2 +y1

50 iry1dx.p	 $ ( a'
0
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1 a 2	a4
3

= — a.
a 3	 8

13.7. Moment of Inertia.

If a system of particles have masses m 1 , m 2 , m . . and if r,
• - be their distances from a given line, then L mr 2 is defined a

the moment of inertia of the system of particles about the given line

If M be the total mass of the system m 3 , m 1 , etc., it is usual
to express the moment of inertia of the system about any line in the
form Mk 2 , where k represents a length and is called the radius of
gyration of the system about the given line.

If, instead of a system of particles, it is a body in the form of a
thin wire or a lamina or a solid of which we want to find the mo-
ment of ine,tia about a given line, we may consider the body to be
made up of an infinite number of ifinitely small elements of mas-
ses, and then the summation Zmr reduces to the integral I r 2 din,
where the limits are such as to cover the whole body.

13.8. Two important theorems of moments of inertia.

(a ) If a thin lamina (thickness negligible) has its momcnk of in
ertia about two perpendicular axes in its plane respectively equal to 1
and 12 , then the moment of inertia about a normal to the plane through
their point of intersection is 1 + 12

Take the given perpendicular av as x-axis and y-ax. I and
1 being the respective moments of inertia. Consider u clement of
'nass riM	 adxdy at the point P ( cs = surface-dewity). Its mo-
ment of inertia about	 = d1 2	 y1 odxdy Simnilarl , i1 2 ( that
about O1 ) = x I cdxdy . Also, dl = moment of inertia of the ole-

c nt about a normal to the plane at the oiigiri ( point of intersec-
tion of the given axes) = ( x 	 y' ) odxdy for toe distance of
P ( x , y ) from the origin C or the normal to the plane
= J(x 2 + y 2 ) Thus, dl = dl, + d11 is true for every point P
Thei fore, integrating between proper limits over the whole area,
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J=fl(2 t-y 1 )adxdg = lIx' c4xdy + fly 2.adxdy =12 +1

N. B. This theorem is true even if a is a junction of ( x, y)

(I') The theorem of parallel axes in the case of a lamina is The mo-
nent of inertia of a thin lamina (thickness negligible ) about any given
line in its plane is equal to that about a parallel line through its C. G.,
together with the moment of inertia of the whole mass concentrated at the
C. G. about the given lute

4--s	 . -
C is the centre of gravity. Take Cx	 lparallel to the re Bit)

as x-axis. Ley (y-axis ) cut BA at B . Let GB = h = distance of
the given line from G . Consider an element of mass adxdy at
P ( x, y ), a = surface-density. PN = perpendi:ul4r on BA = h - y.

= (h — y) 2 .Then,

1( moment of inertia about BA) = Jia(h — y)'dxdy
= hi 11 cydxdy - 2h II yadxdy + ii oy dxdy
= Mh 2 —0 + 1,, .	 (i),where M =.adxdy.
= mass of the lamina,

= JJay I dxdy = moment of intertta about4?',
also, y (distance of C. C. from' Ux = 0, here)

= Si aydxdy / M.

.Iiaydxdy = 0.

Thus, from (I) we get the theorem.

13.9. Illustrative Examples.

Lx. 1. Find the moment of inertia of a thin nift'r'vi straight rod of mass M
and length 2a about its perpendicular
bisect

An inf!nitesl ial element of length 	 B	 I P A
a t P. whose distance from the mid-

de point of the rod i9 x, ha! Its mass
V 6x I 2a) Hence the moment of inertia
; the od about the perpendicular bisector OY is given by

I = f	 2a	 2a 3.	
- = M
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Er. 2. Find the moment of inertia of a thin uniform lamina in the form of a
rectangle about an axis of symmetry through its centre.

Let 2a and 2b be the lengths of the adjacent sides i5 and AB of the
rectangular lamina ABCD, and

	

the axes of symmetry	
Dthrough its centre 0, which are

parallel to them.

	

M being the mass of the	 U	 X
lamina, the surface-density is

	

clearly M 1(4ab) Now, divide	 C	 B
the lamina into thin strips pa.-al-
lei	 and considei any strip
PQ at a distance y from 09
whose breadth is &y. The mass of the strip Is then evident-
ly (M/( 4ab )) 2a Sy Every portion of it being ultimately at the same dis-
tance y from 0- , the moment of inertia of the whole lamina about the
x- axis Is given by

2

i-b "
	 M ' 2ady

Smiiaxly, the moment of inertia of the lamia about 15V is given by

I, =M---

Er. 3. Find the moment of inertia of a thin uniform elliptic lemma about it
axes.

Let x 2 /a 2 + y 7 / 0 = I be the equation to the ellipse. Its area Is known
to be itab, if M be its mass, the surface-density Is M /( irab) Dividing the
lamina into thin strips by lines parallel to the x-axis, an elementary strip at
a distance y from the x-axis has its length 2x = (2a / b )'I( b 2 - y 

1) from
the equation of the elliptic boundary. Thus. 6y being the breadth of the
strip, its mass is

.Jb2 -- y' 6y

Hence, the moment of inertia of the lamina about the x-axis is
given by
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= I	 2-- 2 ! irj dy
iab	 b

J- sin 2 0 cos 1 0 dO  I putting y = b sin 0
7	 -

- 2Mb 2 ' - M 1'
-	 it	 8	 4

Similarl y, the moment of inertia of the lamina about the y-axis is gien

by
ly = 

M

Cor. The moment of inertia of a thin uniform circular disc of mass M
and radius a about any diameter is M (a 2 / 4

E. 4. Find the moment of inertia of a thin uniform circular plate about an
axis through its centre perpendicular to its plane.

Let M be the mass and a the radius of the circular lamina, so that its
surface-density is M IC ,t22)

Divide the lamina into infinitely thin concentric rings by circles con-
COfltr j c with the boundary. Any
elementary ring between circles of
radii r and r + & has its area ul-
timately equal to 2ttr Br and so its
mass is IM /(lta2 )J 2trr.As every
part of the ring LS ultimately at the
same distance r from the axis in
question which is perpendicular to its 	 Figl2
plane through the centre, the moment
of Inertia of th ring about the axis is ultimately (M /( ira 2 )] 2itr &r. r 2 -

Hence, the requited moment of inertia of the disc about the axis
is given by

I = I - 21trdr.r2

2M r1 rM ar5dr= a
2 4
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Lx. 5. Find the moment of inertia of a sphere about a diameter.

If Al be the mass and a the radius of the sphere, the volume of the
sphere is known to be 1 ita and hence its density is M /( na 3)

Take the diameter about which the moment of inertia Is required to be
the x-axis. Divide the sphere into infinitely thin circular slices by planes per-
pendicular to this axis. An elementary slice between the planes x and
r + öx has its volume ultimately equal to it (a 2 - x 2 ) 8x,since its radius
is 4( a 2 - x 2) 1 Sce Fig Lx. 4 , Art 13.6. 1 Hence the moment of inertia of
this slice about the r ..xis, which is perpendicular to its plane through its
centre, is ultimately

M	 a2-xt• (g 2	 2 ) X	 2	 •	 (see Er. 4 above. I

Hence, the required moment of inertia of the whole sphere about the
diameter is given by

S	
M	 a1 -x2

=	 J5(a' -z' )dx	 2
-a

*1
-

	

	 (a4 '-2a 7 r 2 + x 4 )dx8 a3 .

	

3	 5\3M
-'- -T(a4.2a--2a2.+-2a --) = 2 Ma2

EXAMPLES XIII
1. Show that the C.G. of a thin hemispherical shell is at the mid-

dle point of the radius perpendicular to its bounding plane.

2. Show that the C.G. of (I) a solid right circular cone is on the
axis at a distance from the base equal to -! of the height of
the cone ; (ii) a thin hollow cone without base is on the axis at a
ditane from the base equal to L of the height of the cone.

3. Find the centroid of the whole arc of the cardioide
r = a(1 + cosO).

4. Find he centroid of th.3 area bounded by the cycloid
x =a(O + sin G), y = a (1 .- cos O) and its base.
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S. Find the centroid of the sector of a circle.

6. Find the centroid of the arc of the parabola y 2 = 4ax in-
cluded between the vertex and one extremity of the latus rectum.

7. Find the position of the centroids of the following areas:

(I) A loop of the curve y 1 (a + x) = x 2 (a - x ) .

(ii) Area bounded by the curve y 2 (2a - x) =
and its asymptote.

(iii) Area bounded by y 2 = 4ax and y 2x.

(iv) One loop of r = a cos 2.

8. Find the C. C. of the arc which Is in the first quadrant of
thecycloid x = a(0 +sinO),y	 a(1 —cosO).

9. Find the centroid of the area of the astroid x 21' + y 2(3 =

2/3 lying in the first quadrant.

10. Find the centroid of the area between the sine curve
y = sin  and  = O, where 0 ^S x

11. Find the C. C. of the area of the parabola

IxV	
b i

'2 IV \1/2
- i + t	 p	 1 between the curve and the axes.
D v

12. Find the centroid of the area of half the cardioide
r =a(1 + cos 8) bounded by 0 = 0.

13. Find the centroid of the area of the right loop of the lem-
niscate r' = a 2 cos 20.

14. Find the C. C. of the solid formed by the revolution of the
quadrant of the ellipse ( x I /a 2 + y 2 /b ) I about its (I) major
axis, (ii) minor axis.

15. Find the centroid of the (I) surface and (ii) solid generated
by revolving half of the card iolde r a (1 + cos 0) bounded
by 0	 0 about the Initial line.

Inlearal Calculus (main) -22
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16. Find the C. C. of the surface formed by the revolution of
the parabola y 2 = 2x cut off by the line x = 4 about the axis of
the parabola.

17. An equilateral triangle of si	 'a revolves round its base
which 15 fixed. Find the volume of th '.olid generated.

18. Find the moment of inertia of a solid right circular cylinder
of radius a about its axis.

19. Obtain the moment of inertia of a solid right circular cone
of height h and semi-vertical angle a about its axis.

20. Prove that the moment of inertia about an axis through the
centre perpendicular to the plane of a thin circular ring whose outer
and inner radii are a and b is M (a 1 + Li ), where M denotes
the mass of the ring.

21. Find the moment of inertia of a rectangular parallelopiped,
the lengths of whose edges are respectively 2a, 2b, 2c about an
axis through its centre parallel to the edge 2a.

22. -Show that the moment of inertia of a thin hollow
spherical shell of radius a and mass M about a diameter
is M(2a2 /3)

23. Show that the moment of inertia of a parabolic area of latus
rectum 4a, cut off by an ordinate at a distance h from the vertex,
is .Mh2 about the tangent at the vertex, and -!Mah about the axis,
M being the mass of the area.

24. Show that if a thin lamina has its moments of inertia about
two perpendicular axes in its plane respectively equal to 1 and 12,
then the moment of inertia about a noimal to the plane through
their point of intersection is I + 1

25. Prove the Theorem of parallel axes in the case of a lamina,
namely, that the moment of inertia of a thin lamina about any given
line in its plane is equal to that about a parallel line through its C.
C. together with the moment of inertia of the whole mass con-
centrated at the C.G. about the given line.
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26. Find the moment of Inertia of the circumference of the irde
of radius 'a' about a diameter.

27. Find the radius of gyration of a circle of radius 'a' about a
diameter.

28. Find the moment of inertia of the surface of a sphere of

radius 'a ' about a diameter.

29. Find the moment of inertia of a truncated cone about its
axis, the radius of its ends being 'a' and b'

30. Find the moment of inertia of an isosceles triangle, each of
whose equal sides is 'a' about the perpendicular from the vertex
upon the opposite side.

31. Find the moment of inertia of the area bounded by
= a'cos 20 about its axis.

32. Find the moment of inertia of a circular area of radius 'a'
about the line whose perpendicular distance from its centre is d.

33. Find the moment of inertia of a rectangular parallelopiped
whose sides are 2a, 21; , 2c about its edge Za.

34. Show that the moment of inertia of a thin uniform rod of
length 2a and mass M about a line through one end perpendicular
to the rod is M.a2

35. SLw that the moment of inertia of a thin uniform lamina
in the form of a rectangle whose sides are 2a and 2b about an axis
perpendicular to the plane of the lamina at the point of intersection
of the diagonals of the lamina is - (a' + b' ) M

36. Show that the moment of inertia of a thin uniform elliptic
lamina whose semi-axes are a and b about the line through the
centre of the ellipse and perpendicular to its plane is -1 (a' + b') M.

(See Ex. 39. 1

37. Show that the moment of intertia of the area of a lemnis-
cate of Bernoulli r' = c' cos 20 about the line in its plane through
the origin and perpendicular to its axis is Mc2 ( 3 + 8 )/48



308	 INTEGRAL CALCULUS 	 Ex XIII

38. ABC is a uniform triangular lamina and I is the length of
the perpendicular drawn from A on BC If M be the total mass of
the lamina, then show that the moment of inertia of the lamina
about BC ls.M1t

39. (i) Show that the moment of inertia of a uniform el-
liptic lamina of mass M, the equation of the ellipse being
x 2 /a 2 + y 1 lb 2 1 , about a diameter making an angle 0 with
the major axis is M (a 2 sin 2 O + b 2 cos20)/4

(ii) If r be the length of the semi-diameter of the ellipse
in the above case, then show that the moment of inertia
Is M a 2 b 2 /(4r' ).

(iii) if, in th above case , p be the length of the perpendicular
from the centre of the ellipse on the tangent parallel to the semi-
diameter, then show that the moment of inertia about the tangent
is .  MP.

ANSWERS

3. x =a, y = 0.	 4. x = 0, y

S. On the radius, bisecting the sector, at a distance Ia	 -" from thein

centre, 2a being the angle of the sector at the centre, and a the radius.

- a 342 - log (12 + 1) -	 49	 242- 1
6. X = 4• '1 + log C '12 + 1) ' 	 3 '12 + log ( '12 + 1)

-	 -	 -
7.(1)x=1 413s-8 ,y0.	 (1i)x=3S-m ,y=0.

'2842
1

	a
=a,y=m.,

-	 4	 - 2	 - - 256a
8. x=(x-1)a,ya.	 9.

10. ;,y - is .

--Sm- 16m	 xa42-
12. X 

T
I y	 .	 L. x —i-- , y 0.
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14.0)=a, yO;(il)=O,=b.

— 50—	 4a—15. (I) For surface x 	 ,a , y 0; (U) For volume z -	 Y- 0-

- 149 -l6.x= .g . ,y=O.

18.Mf.	 19.jjMk2tan2u.	 21.M	
+ C2

26.	 .	 27.	 28.	 . 29..	 ( as - S

	10 	 - b3

Ma	
31.!1-(*).

32. M(d +_a2).	 33.!(b2 +c2).

'1.B. M is the mass in each case.



CHAPTER xiV

ON SOME WELL-KNOWN CURVES

14.1. We give below diagrams, equations, and a few charac-
teristics of some well-known curves which have been used in the
preceding pages in obtaining their properties. The student is sup-
posed to be familiar with conic sections and graphs of circular func-
tions, so they are not given here.

14.2. Cycloid.

The cycloid is the curve traced out by a point on the circum-
ference of a circle which rolls ( without sliding ) on a straight line.

A

P ;I , ̂3 1 /

Fig. I
x = a(O - sin 0)	 y=a(1 - cosO)

Let P be the point on the circle MP, called the generating
circle, which traces Out the cycloid. Let the line OMX on which the
circle rolls be taken as x-axis and the point 0 on öY', with which
P was in contact when the circle began rolling, be taken as origin.

I.ct a be the radius of the generating circle and C its centre,
P the point (x.y)on it, and let mzPCM =9.Then Ois the angle
through which the circle turns as the point P traces out the locus.

OM=arcPM — aO.

Let PL be drawn perpendicular to

x=OL=OM—L.M=aO—PN=aO—a sin O
= a ( 6 - sin 9)
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y = PL = NM = CM- CN = a - acosO
a(l - cosfl).

Thus, the parametric equations of the cycloid with the starting
point as origin and the line on which the circle rolls, called base,

as x-axis , are

x = a(e - sin O),y	 a(1- Cos 0) 	 ... (1)

The point A at the greatest distance from the base 09, is

called vertex. Thus, for the vertex, y, i.e., a(1-  cos 0) is maxi-

mum. Hence, cos 0 =- I , i.e., 0	 it.

AD = a ( I - cos it 	 2a. ..	 vertex l,( an, 2a).

ForOandO',yO - :. cos 0I. :.0=O and 2it.

As the circle rolls on, arches like OAO' are generated over and

over again, and any single arch is called a cycloid.

x=a(Os sin O)	 y=a(1— Cos O)

Since the vertex is the point (an, 2a ), the equation of the cycloid

with the vertex as the origin and the tangent at the vertex as the
x-axis can be obtained from the previous equations by transfer-
ring the origin to (air, 2a ) and turning the axes through it, i.e., by

writing

an + x' cos It -y' sin it and 2a + it' sinit + y' cos it for it

and y respectively.

Hence, a ( 0 - sin 0) = an - x',



312	 INTBGRAL CALCULUS

or,	 x'=a(n-O)+asinO=a(('+sjnO')
where 0' i— 0,

and	 a (1 - cos 0) • 2a - y',

or,	 y'2a-a+a cos 0a+a cos O
a - a Cos (i - 0) . a(1 - Cos O').

Hence, (dropping dashes) the equation of the cycloid with the ver-
tex as origin and the tangent at the vertex as x-axis is

x =a(0 + sine), y= a(1- cQsO). 	 ... (2)
In this equation, 0.0 for vertex, 0 = scfor 0 and e = - n for 0'.

The characteristic properties are:

(1) For the cycloid x = a ( 0 - sin 0 ) , y	 a (1 - cos 0),
radius of curvature	 twice the length of the normal.

(ii) The evolute of the cycloid is an equal cycloid.

(iii) For the cycloid x	 a (0 + sin 0), y = a (1 - cos 0),
w . 0 and s 2 = gay , s being measured from the vertex.

(lv) The length of the above cycloid included between the two
cusps is 8a.

(v) Intrinsic equation Is $ = 4 a sin iy.
Not.. The above equation (2) can also be obtained from the

Fig. (1) geometrically as follows:

U (x ' , y') be the co-ordinates of P referred to the vertex as origin
and the tangent at the vertex as x-axis,

LV OD- OL	 - x	 - $)+ m sin e,
y AD - PL • 2s - y • 2a - a(l - cos 0) a(l + cos 0).
Hence, writing e' (or0) for - 0, etc.

14.3. Catenary.

The catenary Is the curve In which a uniform heavy flexible
string will hang under the action of gravity when suspended from
two points. It Is also called the chainette.
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Its equation, as shown In books on Statics, Is

x C l
y	 c cosh - -	 lc + * -sat

C is called the vertex; DC - c .r is called the directrix.

The characteristic properties are:

(I) The perpendicular from the foot of the ordinate upon the
tangent at any point Is of con-
stant length.

(ii) Radius of curvature
at any point	 length of the	 Ap
normal at the point (the centre 	 \	 4'
of curvature and the x-axis	 c
being on the opposite sides of	 o	 N x
the curve).	 Fig.3

(iii) y 2 = c 1 + s 2, s being measured from the vertex C.

(iv) s = c tan v,y=c sec w. (v) x=c log ( sec w+ tan W).

14.4. Tractrix.

Its equation is

a - 1a- y1
X = '/ a - y 3 +	 log a + I(a - y2)

or,	 x = a(cost + logtant),y	 a sint.

Here, OA	 a . The characteristic properties are:

(i) The portion of the tan-	 Y
gent intercepted between the	 Al

curve and the x-axis is con-
stant.	 ___________

j(ii) The radius of curva- o T 

ture varies inversely as the
Fig.4



or,	 x = a
y = b sin',

Here, OA = OX =a;
OB = OB' =b.

IY
B

A'	 0 AX

B'
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normal (the centre of curvature and the x-axis being on the opposite
sides of the curve).

(iii) The evolute of the tractrix is the catenary

y = a cosh(x/a).

14.5. Four-cusped Hypo cycloid.

Its equation is (x) lJ + (.)2/3

Fig.5

The perimeter of the hypo-cycloid ABA'B' is 4 a 1 +ab+b2
a + b

The astroid is a special case of this, when a = b

14.6. Astroid.

Its equation is	 x 2 / 3 + y 113 = a213

or,	 x = acos 3 O, y = asin3O.

Here, OA = 08 = OA' = 08 = a.

The whole figure lies completely within a circle of radius a and
centre 0 . The points A, A' ,B, B' are called cusps. It is a special

'1'	 type of a four-cusped hypo-
B	 cycloid.	 [Sees 14.5J

The characteristic property of
A'	 0	 A X	 this curve is that the tangent at any

B'	 point to the curve intercepted be-
tween the axes is of Constant

Fig.6	 length.



C

Fig.?

X
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The perimeter of the astroid x 113 + y	 = a 213 is 6a

14.7. Evolutes of Parabola and Ellipse.
(i) The equation of the evolute of the parabola y 2 = 4ax is

27ay 2 = 4(x - 2a)3

The curve is called a semi-cubical parabola.

Transferring the origin to ( 2ii , 0 ) , its equation assumes the

form y 2 =kx 3 where k=4/(27a),
which is the standard equation of 	 -
the semi-cubical parabola with its
vertex at the origin. 	 ________

Hence, the vertex C of the

evolute is ( 2i, 0 )

(ii) The equation of the
evolute of the ellipse

x t / a 2 + y 1 / b 2 = I is

( ax )	 + (by) 1/3 = ( a 2 - b 2 ) 1/3

which can be written in the form

	

(x)2.'3	
=

	where a =(a 2 - b 2 )/a,	 = (a 2 - b 2 )/b.

(a 3 - b2 )1
The area of the evolute is i ab

V

Fig.s
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The length of the evolute is 4 ( a2

r -

b l
 )

Hence, it is a four-cusped hypo-cycloid.

14.8. Folium of Descartes.
Its equation is x 3 + y 3 = 3axy.

It is symmetrical about the line y = x.

The axes of co-ordinates are tangents at the origin, and there is
a loop in the first quadrant.

It has an asymptote x + y + a = 0 and its radii of curvatures at
YJ	 the origin are each • a.

The area included between the
curve and its asymptote

= the area of the loop of the
curve

=a
Fig.9

14.9. Logarithmic and Exponential Curves.

:( x

Fig. 10
(1) y = log 	 (ii) y =

(i) xis always positive; y = 0 when x = 1, and as x
becomes smaller and smaller, y. being negative, becomes numeri-
cally larger and larger. For x > 0, the curve is continuous.



The equation of the curve
Is

y2=x2 a+x
a — x

011 = OB = a.
BOHX

ON SOME WELL -KNOWN CURVES	 317

(ii) x may be positive or negative, but y is always positive
and y becomes smaller and smaller, as x, being negative, becomes
numerically larger and larger. The curve is continuous for all
values of x.

14.10. Probability Curve.
The equation of the ?rob

ability curve is y	 e -,

The	 x-axis	 is	 an
asymptote.

The area between the curve
and the asymptote is

Fig. 11

= 2f	 e 1 dx = 2. -1 	 ='In.

14.11. Clssoid of Diodes.
Its Cartesian equation is

Y' (2a - x) =	 -

OA = 2a ; x = 2a is an
asymptote.

Its polar equation is

2a sin 2O

Cos 0

14.12. Strophold.

XO}A

Fig. 12

Fig. 13
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OCBPO is a loop.

x = a is an asymptote.

The curve y t = x2 
a - X is similar, just the reverse of
a + x

strophoid, the loop being on the right side of the origin and the
asymptote on the left side.

14.13. Witch of Agnesi.

The equation of the curve is

xy2 = 4a (2a - x)

Here, OA = Ia.

This curve was first dis-
cussed by the Italian lady
mathematician Maria Gactaua
Agnesi, Professor of Mathe-
matics at Bologna.

O>A

Fig. 14

14.14. Logarithmic (or Equiangulax) spiral.

Its equation is r ae e 101  ( or, r = ae
where cot u or m is constant.

(i) The tangent at any point makes a constant angle with the
p	 radius vector ( = u)

/ ) T	 (ii)	 Its pedal, inverse,
polar reciprocal and evolute are

X	 all equiangular spirals.

(iii) The radius of curva-

Fig.15	 ture subtends a right angle at
the pole.

Note. Because of the property (U, the spiral is called equiangular.
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14.15. Spiral of Archimedes.

Its equation is r = aO .	 Y

/01
Its characteristic prcperty

is that its polar subnormal is
constant.	 ------

Fig. 16

14.16. Cardioide.

Its equation is (i) r = a (1 + cos 6), or (ii) r = a (1 - cos 6 ).

In (i), 0 =0 for A , and 6 =n for 0.

In (ii), 0 = it for A ,and 0 = U for 0.

Fig, 17

(i) r =a(1 + cosO). 	 (ii) r =a(1 - cos 8).

In both cases, the curve is symmetrical about the initial line
which divides the whole curve into two equal halves and for the
upper half 0 varies from 0 to it, and OA = 2a.

The curve (ii) is really the same as (i) turned through 180.

The curve passes through the origin, its tangent there being the
initial line, and the tangent at A is perpcndicuhr to the initial line.

The evolute of the cardioide is a cardioide.
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The perimeter of the card ioide is 8a

Note. Because of its shape like a human heart, it is called a cardiojde.
The cardloide r a (I + cos 9) is the pedal of the circle r = 2a cos 0 with
respect to a point on the circumference of the circle and inverse of the
parabola r = a / (1 + cos 9)

14.17. Limacon.
The equation of the curve is

r = a + b cos 0.

When a > b, we have the outer cuve, and when a b, we
have the inner curve with the
loop.

Fig. IS

14.18. Lemniscate.

When a = b the curve
reduces to a cardioide. I See
fig. in § 14.16..J

Limacon is the pedal of a
circle with respect to a point
outside the circumference of
the circle.

Its equation is r 2 = a I cos 28,

or, (x 2 + y2 )2	 a 2 ( X l - Y  )

Fig. 19
= 2 cos29.

It consists of two equal
loops, each symmetrical about
the initial line which divides
each loop into two equal halves.

X	
OA=OA'—a.
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The tang2nts at the origin are y	 ± x.

For the upper half of the right-hand Loop 0 varies from
0 to

A characteristic property of it Is that the product of the distan
ces of any point on it from (± a I 42, 0 ) is constant.

The area of the lemniscate is

The lémniscate is the pedal of the rectangular hyperbola
r 2 cos 20 = a 2 . The curve rep- rYrA
resented by r 	 a2 sin 20 is

also sometimes called lemnis-
xCate or rose temniscate,to distirt-

guish It from the first
lemniscate, which is sometimes	

'0
called Lemniscate of Bernoulli
after the name of the mathe-
matician J . Bernoulli who first	

Fig.20

studied its properties. 	 r2	 a 2 sin 20

The curve consists of two equal loops, situated in the first and
third quadrants, and symmetrical about the line y x . It is the
first curve turned through 450.

The tangents at the origin are the axes of x and y.

The area of the curve is a2

14.19. Rose-Petals (r = a sin nO, r = a cos no).

The curve represented by r = a sin 38, or r = a cos 30 is
called a three-leaved rose, each consisting of three equal loops. The
order in which the loops are described is indicated in the figures
by numbers. In each case, OA = OB OC = r. , and mZ AOB
= mLBOC = m,COA 120°.

The curve represented by r = a sin 20, or r = a cos 29 Is called
a four-leaved rose, each consisting of four equal loops. In each case,
OA =OB OC OD a and mLAOB = mLBOC mZCOD
= mZDOA =90°.
Inlearal Calculus (main) -3
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Fig,2

r	 . sin 34	 r	 a cos 3$.

I

E,fl

r	 r	 a cos 20.

The class of curves reprLwnted by r = a sin no, or r = a cos no,
I ,,- here n is a positive integer, is called rose-petal, there being n
or 2n equal loops according as n is odd or even, all being arranged
ymrnetrically about the origin and lying entirely within a circle

whose centre is the pole and radius a.

12O. Sine Sipral (r'. a z sin nO, or, r' a a cos nO).
The class of curves represerited by (i) Y = a sin no,

or (:1) 1' a I cos no is celled sine spiral and embraces scveral
important and well-known curves as particular cases.
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Thus, for the values a	 1 , I , - 2, 4 2,— .i and - the se
sp	 is respectively a straight line, a circle, a rectangular hyper-
hut, a lemniscate , a parabola and a caduidc.

For (1)	 nO; for (ii)	 = in 4 no

The pedal equation in both the cases is

P = r • I /"



DIFFERENTIAL EQUATIONS
CHAPTER XV

INTRODUCTION AND DEFINITIONS

15.1. Definition and classification.
A differential equation Is an equation Involving differentials (or

differential coefficients) with or without the variables from which
these differentials (or differential coefficients) are derived.

The following are examples of differential equations:

dx 
Cx
	

(1)

(.1)2=axx +bx + c	 ... (2)

yo
dx

Y	 (4)Vdx'/	 dx

ty	 2
+ 5 (L) +	 = 0	 ... (5)dx'	 dx

az	 az- 0	 ... (6)x +	 = 

a'u d'u 0	 ... (7).

Differential equations are divided Into two classes, viz., Ordi-
nary and Partial.

An ordinary differential equation is one in which all the differen-
tials (or derivatives) involved have reference to a single indepen-
dent variable.

A partial differential equation is one which contains partial dif-
ferentials (or derivatives) and a; Involves two or more inde-
pendent variables.
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Thus, in the above set, equations (1), (2), (3), (4) and (5) are or-
dinary diferential equations and equations (6) and (7) are partial
differential equations.

In order to facilitate discussions, differential equations are clas-
sified according to order and degree.

The order of a differential equation is the order of the highest
derivative (or differential) in the equation. Thus, equations (1) and
(2) are of the first order, (3) and (5) are of the second order, and (4)
is of the third order.

The degree of an algebraic differential equation is the degre;
of the derivative (or differential) of the highest order in the equa-
tion, after the equation is freed from radicals and Iractiofls in its
derivatives. Thus, equations (2) and (4) are of the second degree.

Note. Strictly speaking, the term 'degree' Is used with reference to
those differential equations only which can be written as polynomials in the
derivatives.

We shall consider in this treatise only ordinary differential
equations of different orders and degrees.

15.2. Formation of ordinary Differential Equations.

Let	 f(x,y,c1 ) = 0	 . . . (I)
bean equation containing x, y and one arbitrary constant c1

Differentiating (1), we get

(2)x	 ydx

Equation (2) will, in general, contain c 1 . If c1 be eliminated dy
tween (1) and (2), we shall get a relation involving x, y and
which will evidently be a differential equation of the first order.

Similarly, if we have an equation

f(x,y,c1 ,c) = 0	 ... (3)
containing two arbitrary constants c, and c3 ,then bydifferentlat-
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Ing this twice we shall get two equations. Now, between these two
equations and the given equation, in all three equations, if the two
arbitrary constants c1 and c2 be eliminated, we shall evidently
get a differential equation of the second order.

In general, if we have an equation

f(x,y,ci , 2 ...... c,, )	 0	 ... (4)
containing n arbitrary constants c1 , , . . . , c,,, then by differen-
tiating this n times we shall get n equations. Now, between these
n equaions and the given equation, in all ( n t- I )equations, if
the n arbitrary constants c 1 , c1 , . , c be eliminated, we shall
evidently get a differential equation of the nth order , for there
being n differentiations the resulting equation must contain a
derivative of the nth order.

Note. From the process of forming a differential equation from a given
primitive, It Is clear that since the equation obtained by varying the arbitrary
constants In the primitive represents a certain system or family of curves,
the differential equation (in which the constants do not appear) expresses
some properties common to all those curves. We may thus say that a dif-
ferential equation represents a family of curves all satisfying some common proper-

ties. This can be considered as the geometrical interpretation of the
differential equation.

15.3. Solution of a Differential Equation.

Any relation connecting the variables of an equation and not
involving their derivatives, which satisfies the given differential
equation, i.e., from which the given differential equation can be
derived, is called a solution of the differential equation. Thus,

y = e + C, where C is any arbitrary constant,

and y = Ax + B, where A and B are arbitrary constants,
are respectively the solutions of the differential equations (1) and
(3) of Art. 15.1.

From the above, it is clear that a differential equation may have
an unlimited number of solutions, for each of the different relations

A relation containing n arbitrary constants may, in certain cases, give rise
to a differential equation of order less than it.

4
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obtained by giving particular values to the arbitrary constant or
constants in the solution of the equation satisfies the equation and
hence, is a solution of the equation ; thus y x - '111, y 2x - 3,
y = - x, etc. are all solutions of the differential equation (3) of
Art. 15.1.

The arbitrary co n stants A, B, C appearing in the solution are
called arbitrary constants of integration.

The solution of a differential equation in which the number of
independent arbitrary constants is equal to the order of the equation
is called the general or complete solution (or complete primitive ) of
the equation.

The solution obtained by giving particular values to the ar-
bitrary constants of the general solution is called a particular solu-
tion of the equation.

Thus, y = Ax + B is the general solution, and 	 x
y = 2x - 3, y = - - x are all particular solutions of the equation
(3) of Art. 15.1.

There is another kind of solution called the singular solution,
which will be discussed in a subsequent chapter. I See Art. 17.5 1

By a proper manipulation of the arbitrary constants in the
general solution of a differential equation, the general solution is
very often written in different forms ; it should be noted, however,
that each of these forms determines the same relation between the
variables. This will be subsequently illustrated in the worked out
examples.

When an equation is to be solved, it is generally implied that
the complete solution is required.

It sometimes happens that the process of solving a differential
equation leads to integrals which cannot be evaluated in terms of
known elementary functions. In such a case, the equation is con-
sidered as having been solved when it has been reduced to an ex-
pression involving integrals and it is then said that the solution of
the equation has been reduced to quadrature.
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Note. 1. The arbitrary constants In the solution of a differential equa-.
tion are said to be independent, when it Is Impossible to deduce from the
solution an equivalent relation containing fewer arbitrary constants. Thus,
the two arbitrary constants A. B In the equation y = At' I B are not Inde-
,endent since the equation can be written as y = At  . e' = Cc 

Note. 2. In this elementary treatise, we shall not concern ourselves with
the question whether a differential equation has a solution or what are the
conditions under which it will have a solution of a particular character; in
fact, we shall assume without proof the following fundamental theorem of
differential equation, viz.,

An ordinary differential equation of order ri has a solution involving n in-
dependent arbitrary constants, and this solution is unique.

15.4. Illustrative Examples.
Er. 1. Find the differential equation of all straight lines passing through the

origin.

Let y=mx	 ... (1)
be the equation of any straight line passing through the origin.

Diflerentiatif%g (1), 	 m.	 ... (2)dx
Eliminating m between (1) and (2), we get

y r	 , the required differential equation.dx
Er. 2. Find the differential equation from the relation

x = a cos t + b sin I,
a and b being arbitrary constants.

Differentiating the given relation twice with respecj to t, we get

- a sin t +bcost -and

x2	- acost -bslni	 -(acost + bslnt)=-x.

+ x = 0, i.e.,	 + x = 0 Is the required differential equation.

Ex. 3.Eliminate a and b from y	 a tan x+ b.

Differentiating the given relation with respect to r,

" =.	
.. (I +x2)y1
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DifferentiatIng. (1 +Z2 ) ya + 21yj = 0.

This Is the required eliminaflt.

EXAMPLES XV
1. Show that the differential equation of a system of concentric

circles having the centres at the origin is x dx + y dy = 0 . Inter-

pret the result geometrically.

2. Prove that the differential equation of all circles touching
the x-axis at the origin is (x 2 - y 2 )dy - 2xy dx = 0.

3. (i) Show that the differential equation of all parabolas

(a) having their axes parallel to the y-axis is Y3 = 0;

(b) with foci at the origin and axes along the x-axis is
yy + 2xy 1 - y = 0;

(ii) Show that the differential equation of the family of circles
x 2 +y 1 +2gx + 2fy + c= 0 is(l + y12)y3_3y1 Yi 2 = 0;

(iii) Show that the differntial equation of the family of car-
dioidesr	 a(1 + cosO)is(l + cosO)dr+ rsin9dO = 0.

4. Show that the differential equation of the system of rectan-
gular hyperbolas xy = c 2 is x dy + y dx = 0 ,and interpret the
result geometrically ; deduce that the tangent intercepted between
the axes is bisected at the point of contact.

5. Vertify that y + x + I	 0 is a solution of the differential
equation (y— x)dy - (y 2 —x 2 ) dx = 0.

6. Show that V = (A / r) + B is a solution of the differen-
tial equation

d2V 2 dV
- + - - = 0.
dr 2	j' dr

7. Find the differential equation from the relation

(i) y = A sin x + B cos x +x sin x;	 (J.E.E.'89)

(ii) y = Ac + Be -' ;	 I). E. E. '84)
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(iii) y	 A cos x + B sin x + C cosh x + D sinh r,where A .. B, C, D are arbitrary constants.

S. Eliminate a and b from each of the relations

(i) y = alogx + b;	 (ii)xy = ae + be
(iii) ax 2 i by2 = 1;	 EC.P.1945J
(iv) r = a + b cos e.

9. (I) Show that the differential equation, whose genera
solution is y	 C1 x + c 2 x , is y = xy1 _I x2y2

(ii) Show that

Y = cosx,y = Sinx,y =c 1 cosx,y =c 2 Sinxareall
solutions of the differential equation y2 + y = 0.

In (i) and (ii), c1 , c 2 are arbitrary constants. I
10. Show that the differential equations, whose general solu-

tions are

(i) y = A sin x + B cos x,	 C. P. '88

(ii) y = .4 sinh x + B cosh x,
where A and B are arbitrary constants, are respectively

= 0 and —'— y = 0.dxl

ANSWERS

I. The radius vector and the tangent at any point are mutually perpen-
dicular.

4. The radius vector and the tangent at any point are equally inclined
to the X-axis.

7. (i) y + y 2 = 2 cos x.	 (ii) Y2 - y = 0	 (iii) y - y = 0.
8. (I) 13'2 + y' = 0.	 (U) xy2 + 2Yi = y.

(iii) x ( yy, t y ' ) = yy1	 (iv) r2 = r1 cot 9


