CHAPTER XVI
EQUATIONS OF THE FIRST ORDER AND THE FIRST DECREE

16.1. A differential equation of the first order and the first de-
gree can be put in the form

) Mdx + Ndy =0,
where both M and N are functions of xand y, or constants not
involving the derivatives. The general solution of an equation of
this type contains only one arbitrary constant. In this chapter we
shall consider only certain special types of equations of the first
order and the first degree.
16.2. Separation of Variables.

If the equation Mdx + Ndy = 0 canbe putin the form

f, (x)dx + f (y)dy =0,

then it can be immediately solved by integrating each term sepa-
rately. Thus, the solution of the above equation is

Jf (x)dx + [ (y)dy = C.

The process of reducing the equacion Mdx + Ndy = 0 tothe
form f, (x)dx +f (y)dy = 0 is called the Separation of the Vari-
ables.

Note. Somelimes transformation to the polar co-ordimates facilitates
separ-ation of variables. [n this connection it is convenient to remember the
following differentials.

If x =rcos®, y= rsinB,

@) xdx + ydy = rdr, (i) dx?+ dy? =dr? + r1do?,

(iii) xdy - ydx = r1 4d0.

( For illustrations, see Ex. 8(ii) and (iii) of Examples XVI(A).]

16.3. Illustrative Examples.
Ex.1. Soloe (1 + y?)dx + (1 + x?)dy = 0.
Dividing by (1 +x?)(1 +y?), weget
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dx dy
T#at "7+ L4 s
. integrating , tan-'x + tan-ly = C. oo (D)

Note. Writing the arbitrary constant C in the form tan-'a, the above
solution can be written as tan-'x + tan-'y = tan-'a,

or, tan-*! -ix%xry- =tan-'a, or, x+y=a(l-xy). ... (2)

Both forms of solutions (1) and (2) are perfectly general ; and any
one of these can be considered as the complete solution of the given equa-
tivn. [ See Art. 15.3.)

Ex.2. Solve x(y?+1)dx + y(x? +1)dy =
Dividing both sidesby (x? + 1)(y? + 1), we have

x’ - l 5 dy
integrating, we have
jlog(x? +1) + jlog(y? +1) = C.

Writing 1log A in the place ot C, the above solution can be written in
the form

(x? + 1)My? +1)= A

Note. Inorder to express the solution in a neat form, we have taken
3 log A (A being a constant ) in the place of the arbitrary constant C.

d!
2 =gt
Ex. 3. Solve (x + y) 7 =a*.,

— o i e
Putx + y =2, ie, y=0 ¥, B Rk 3

. the equation reduces to

do do a? al + p?
2 — =g? —_— —_— L e————
( 7 l) at, or, ] 1+ 3 T

v? a?
% dx=mdb =(1 —m)dv.

integrating, Idx njdu =a¥ n_r‘."f_;_ ,
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or, x+C=u—¢’.%tan-‘ -:—: -—.:+y—ntan"1‘l-l

. y =atan"’ 5—:—, + C i3 the required solution.

Ex. 4. Find the foci of the curve which satisfies the differential equa-
tion (1 + y?)dx — xydy = Oand passes through the point (1, 0).

Separating the variables of the equation, we have

- "
x 1 +y

. Integrating, log x - 3log (1 + y*) = log C,

or, logq“—+-—,—, logC. » x=CY1 ¢yt

This is the equation of any curve satisfying the given differential equa-
tion. If the curve passes through (1,0), we have 1 = c.

.. the equation of the required curveis x* - y* = 1.
It is a rectangular hyperbola, and its foci are evidently (+V2,0).

Ex. 5. Show that all curves for which the length of the normal is equal to the
radius vector are either circles or rectangular hyperbolas.

Since the length of the normal = y ¥(1 + ¥ * ) and the radius vector
=V(x? + y?),

Lyt (1 +p?)=x7 ¢y, or, y'y?=x%, 01 yn = 2x.
Ly

x

dr Ty ;

.. integrating, x* + y? = a*, a? being the arbitrary constant of in-
tegration.

xdx i.yd'y =0.

Thus, the curves are either circles or rectangular hyperbolas.

iy Ex.6. Show that by substituting ax + by + ¢ = z in the equation
Zz = flex + by + c) the variables can be separated.

ey 2
‘¢+bdx il

Since ax + by + ¢ =z,
. _‘(E_,)_
dx ~ b \d
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Hence, the given equation transforms into
1 dz
i E - ) = r{ -4 ),
dz

ie., dx .

a+ bf(z) =
Thus, the variables are separated.

EXAMPLES XVI(A)
Solve the following differential equations (Ex.1 - 10 ):

oAy x4+ x o+ 1 sk o BN N
1 (l)dx____—y’-i-y-i-l' (1:)1’d1+y_1.

o dy o y(y-1)
(iii) 2% + x“_”-o.

2. () ydx +(1 + x?)tan-! xdy = 0.
(ii) e*-y dx +ey-*rdy = 0.

3. (i}'x‘al—y’dx+y\il-.t3dy=0.
(i) x*(y - 1)dx + y2 (x - 1)dy = 0.
4 E."_'.,.-L,_.:..J_l_]:u_

" odx ¥ + x + 1

o 1- y? ol x(1 + y?)
5.(1)?£+ T:“Illxu (ll)‘&i‘z-j—(—-‘—_l--!x-:—).

V(x2 - 1)y? -1) B
xy -

(iii) g{ + 0.

6. (i) sec? xtanydx + sec? ytanxdy = 0.

(ii) xcos? ydx-—-ycoslxdy=ﬁ. [H.5. 85

(i) log (secx + ta“"‘,d, _ log(secy + tany)dy'
cos x cos y

7.(x? —yx?)dy + (y? + ay? )dx = 0. [C.P."88)
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B. (i) ydx - xdy = 2ydx.
(i) x* (xdx + ydy) + 2y(xdy - ydx) =
= H
i Ztm (T2t

xt +yl
9-(i);f<1=c=-r_ (ii)ﬁ=m‘
10,40 "’i")(%)=""3’- (ii) iog(-g-z):ax-&by.

11. Find the particular sclution of
cosydx + (1+ 2e-*)sinydy =
whenx = 0,y =4nm.

12. Find the equation of the curve for which ,
(i} the cartesian Bubtangent is constant.
(ii) the cartesian subnormal is constant.
(iii) the polar subtangent is constant,
(iv) the polar subnormal is constant.

13. Show that the curve for which the normal at every point
passes through a fixed point is a circle.

14. Show that the curve for which the radius of curvature at
every point is constant is a circle.

15. Show that the curve for which the tangent at every point
makes a constant angle with the radius vector is an equiangular
spiral.

16. Show that the curve in which the angle between the tangent
and the radius vector at every point is one-half of the vectorial
angle is a cardioide.

17. Show that the curve in which the angle between the tangent
and the radius vector at every point is one-third of the inclination
of the tangent to the initial line is a cardioide.
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18. Show that the curve in which the portion of the tangent in-
cluded between the co-ordinate axes is bisected by the point of con-
tact is a rectangular hyperbola.

ANSWERS
1L M3(x2-y®) +3(x2-y?)ex-y=C. (Dy=1+Celr.
(i) xzy =c(x - 1 )y - 1). 2. (i) ytan-'x = C.

(i) e* + e = C. 3. () Vi-xt +¥1 -y? = C.
(i) (x +1)2 + (y + 1)? + 2log(x - 1Ny ~1) =C.
4. 2xy+x+y+Clx+y+1) =1. 5. (i) sin“'x + sin-'y = C.
([{1+y?=C(14+x2?). (i) V(x*-1)-sec”'x+ Yy?-1)=C.
6. (i) tanxtany = C.
(ii) xtanx - logsecx = ytany — logsecy + C.

(iii) [log(secx + tanx)]? - [log(secy+ tany)]? = C.

7. log i;--ixlr-’f =C. 8 ()ye* =Cx. (i) (x? +y? Nx+2)? =Cx?

(i) x* + y? =sinla, where o =tan-'(y/x) + C.

9. () e¥+iervCex. () Vy-x +log(Vy-x-1)=}x+C.
10.(i) tan(x + y)-sec(x + y) = C +x. (ii)ae~b% + be* = C.
11. (e* + 2)secy = 3 V2. 12. (i) y =Ce*in;
(i)y? = 2ax + C. (ii)r(C - 8) =a. (ivi r =aB+ C.
16.4. Homogeneous Equations.

If M and N of the equation Mdx + Ndy = 0 areboth of the
same degreein x and y and are homogeneous, the equation is said
to be homogeneous. Such an equation can be put in the form

.0 ().

Every homogeneous equation of the above type can be
easily solved by pdulting y =ox where o isa function of x,
and consequently arg— = v + x(gz7), whereby it reduces to the
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and conseque tly E‘ =0 + x(' ) , whereby it reduces to the

form v + x(z7) = f(v),ie, = er—p In which the variables
are separable as shown below.
Ex. Sofve{x? +y?)dr - 2xydy = 0.
The equation can be written as
oy
& "y
Puttin = vx, 50 that & - Ptx E we have
B =t dx i’

do x! 4+ pix? 14+ o!

P XA T T 2ot T
dv _1+0? 1- v?
LT p2]
dx 20
T il 5
. integrating, logx + log(1 ~v?) = logC.
. x(1 =-p2) =C.
Re-substituting y / x for v and simplifying, we get the solution
.yt =Cx

16.5. A Special Form,
The equation of the form

dy _ax+by+¢ fa b
dx ~ ax + biy + o c,'“b-,) oo D)

can be easily solved by putting x = x’ +h and ¥ = ¥y + k, where
h and k are constants, so that dx = dx’ anddy = dy’ and choos-
ing h , k ip such a way that

ah + bk + ¢ -=0}
and a;h + bk + ¢, =0 J°
For, now the equation reduces to the form

_d_x‘ & & X'+ bggf

dx' ﬂ;f + b
which is homogeneous in ¥ and y’ and hence solvable by the
method of the previous article,

Inlegral Calculus (main) -24

(2)
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Note 1. The above method obviously fails, ifs;, /a; =b, /b, : forin
this case h and k cannot be determined from equa‘ion (2).

Let the equation be
dy -,t+hz+¢|(_‘_g ';"l)
ax =.I‘ 7 b:,’ + €y oy !.: e t:”

vhere m is a non-zero constant.

Assuming this to be the case, let the common va'ue of these ratios be
lenoted by 1/m, so that a; =a;m and b, =b,m.

The equation (3) becomes
dy __ax 4+ by + ¢
dc ~ m(ax + by) + ¢

Now, putting a,x + byy =, the variables can b~ 2asily separat - and
hence the equation can be solved. [ See Ex. 2, below. )

Note 2. 1i in the equation (1), a3 = - &, , then the equation can be
solved more easily by grouping the terms suitably. | See Ex. 1(iv) of Ex-
amples XVI(C) )

16.6. Illustrative Examples.
e B BE =29 LT
Ex. 1. Solz el '3)‘ —
Putting x =x"+h,y =y +k sothat dx =dx', dy =dv', we have
dy 6 - 2y + 6h - 2k -7
dx 2’ + 3y’ + 2h + 3k -6

Putting 6k - 2k - 7 = 0 and 2k + 3k - 6 = 0, ard solving these
two equations, we have h =3, k = 1.

; (4.t
. the equation becomes F=al e v

Since the equation is now homogenzous, putting y' = ox’ an i henc.

= v +r ;E‘, ard simplifying, the eqaation reduces to
dx’' 1 6o + 4

S i s & dv, which on integration gives

- log Ar =1log(30? +4v - 6).
. (Ax')-" = (3o? +4v - 6)'12,
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Now, restoring the values of ¥ and v, where X = x-3 and

p=y'fx' =2y-1)/({=x~ 3), we get the solution in the form
3yl +4dxy - 627 - 12y +14x = C.

Ex. 2. Solve Ay _ &x-2y-7
dx i

-)'i“
Since here o, /a3 = by /by, - putting 3x- y = v, we get
3 -§f= %; , and hence the given equation gives
1‘5_3_2r-'7‘v+19
ax v+4 v+d
v+ 4 15
ir:mgib =(1 -v—-:-.l—g) do .

x4+ C=p-15log(o + 19).
On restoring the value of v, we get the solution in the form
2r-y - 15iog(3x -y + 19) =C.
Ex. 3. Show that irn an equatior of the form
yf, (xy)dx & xf; (xy)dy =0,
the pariables can be separaled by the substitution xy =v.

Since xy = v,y = % and d(xy) = dv,ic, ydx + xdy = dv

and dy = 5._5__';,:'1_4_‘ , ie, xdy = do- ;ﬁ dr.

s Th(v)ds + f (o) (do- = dx) = 0.

f; (v)do dx _
v{fi(o)- f(0)} i =0

Thus, the variables are separated.

[ See Ex.14,15,16 of Exampies XVI(B) .}
We can as well form an equation in v and y, by takingzy =0, x =0/y

mdu..l’.?l‘?,’_’!l

[ For {llustration see Alternative proof of Ex. 4 of Art. 16.7.)
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EXAMPLES XVI(B)

Solve(Ex.1 - 15):-

1. (i)

d | :
x+ya-3=2y. (n)d—3+£=-¥7.

26 H.Yx=-2) o, Ay xty

dxax(x—:!y) ¢ dx  x3 + y? °

3. (x? +y?)dy = xydx,

g x| i) Y o XLy + )
dx x +y dx  x(y - x) °

5. (i) 3z sinh (y/x )+ 5y cosh (y/x )} dx - 5x cosh (y/x)dy =0
(1)) (1 + 3erly Ydx + 3ewry (1 - x/y)dy = Q.

6.
7.

(x? -2xy)dy + (x? -3zy + 2y?)dx = 0.
vidx + (x12 +xy)dy = 0.

8. (i) ;‘ff’ =;‘L+tan%.[u.s.'31, 63,89 (i) . . 3x+2y

9.

10.
11.
12,
i
14.
15.
16.

dx — 2x-3y
(6x — 5y + 4)dy + (y - 2x - 1)dx = 0.
(x =3y + 4)dy + (7y - 5x)dx = 0.
(2r ~ 2y + S)dy - (x -y + 3)dx = 0.[H.5.'83]
(x+y+ 1)dx - (2x+ 2y + 1)dy = 0.[].E E."89)
¥(2xy +1)dx + x(1 + 2xy + xtyt)dy = 0.
Xy 4y + 3x2ydy + 2ydx = 0.
(1 +xycosxy)dr + x2cosxydy = 0.
Show that (4x + 3y + 1)dx+(3x + 2y + 1)dy = 0

represents hyperbolas having as asymptotes

xr+y=0,2x+y+1=20.
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ANSWERS
1. () y=x 4+ Cexity-2), (i) 2r - y = Cxly.
2. (i) yde*/y = Cx2. () y* = Ce=*/y*, _
3. y =Ce*?/3% 4 ()y? + 2xy -~ 27 = C.(ii}xy = Ce¥?* .
5. (i) x* = Csinh® (y/x). (ihx + 3ye*ly = C,
[ y=xlog(Cx-'). 7 xy? = C(x +2y).

B. (i) x = Csin%. (ii) 3log (x? +y?) = 4tan-? -21 (o
9.(53(—21-—3)“:C(iy-4x-3).]0.(3y—5x+10)’=ny—x¢'l]

1. Zy~x+C=log(x-y+2). 12 by-3xr =log(3x+3y+2)+C.
13. 2x?y? logy—dxy -1 = Cx'y? . 14 x(xy=-2) =C(xy-1)7.
15, xedady = (C,

16.7. Exact Equation.

The differential equation Mdx + Ndy = 0, where both M and
N are functions of x and y, is said to be exact when there is a func-
tion u of x,y, such that Mdx + Ndy = du, i.e., when Max + N dy
becomes a perfect differential.

Now, we know from Differential Calculus that Mdx + N dy

should be a perfect differential if -g;—d= %E’- . Hence, the condition
that Mdx + Ndy = 0 should be an exact differential equation is
M N
dy dx -’

The method of solving an exact equation of the type
Mdx + Ndy = 0 is as follows :

“First integrate the terms in M'dx as if y'were constant, then in-
legrate the terms in N dy considering x as constant, and, rejecting the
terms already obtained, equate the sum of these integrals to a constant’.
This will be the solution of the required equation.
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Ex.1 Solve (2x% + dy)dx +(dx + y - 1)dy.
Here, M =2x? +4y N=dx+y-1.

M . aN |
? = l--& : hence it Is an exact equation.

IM;:.uzx'uy)a.zi:up-ixiuq,... m
[Ndy = [ (4= + y - 1)dy = 4ey +3y* -y. ... @
Rejecting the term 4xy in (2) which already occurs in (1) and then ad-
ding (1) and (2) and equating the sum to a constant, we get the general solu-
tion to be

$x' vyt rdry-y=C.

An exact differential equation can often be solved by inspec-
tion, by picking out the terms of Mdx + N dy that obviously form
a perfect differential and then integrating this. This is illustrated in
the following worked out examples. While grouping the terms
suitably to form a perfect differential it will be convenient to
remember the following differentials.

varerdymd (o), LEZH g (F) ZAAE L4 (Y).

16.8. Integrating Factors.

If a differential equation when multiplied by a factor ( a func-
tion of x,y) becomes exact, this factor is called an Integrating Fac-
tor of the equation. An integrating factor is sometimes shortly
writenas L. F. .

Integrating factors can often be obtained by inspection. This is
iliustrated in Ex. 2 below. An equation can have more that one in-
tegrating factor, this is also illustrated in Ex. 3 below.

16.9. Rules for determining Integrating Factors.
Let the differential equation be

Mdx +Ndy = 0. ' sy €1
The condition that it should be exact , is

%%{-%g e (2)
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M _ N
Rize (1). K 33-?@5- is a function of x only, say f( x), ther
¢!tz 145 will be an integrating factor of (1).
1§ Mdx + Hdy = 0,bean cxact equation, when it is multi-
plied by e!/(x1e we must have

-g; (Meif(res) = -}x ( Nelfts a)

2. . 3—:’- eiftzlds = %H; elftards 4 Nelftn)ax f(x)

N _aM
Rule (II). If _B_I__M__Q! =f(y),(afunctionof y alone)
¢ !f(y3éy ‘is an integrating factor.
Proof is similar to that given above.

Rule (IIN. 1f M and N are both homogeneous functions
in x, y of degree n (say), then

1
Mz + Ny ,(Mx + Ny# 0)

is an integrating factor of the equation (1).

Wt car casily -how that

5 (oty) - 2(ww)

if we remember that M and N are homogeneous functions of degree

uandhmce:%’f‘-y%;—‘-nhl.

and x%‘?+y%’nnh{.
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M ) |
If Mx + Ny =0,then NS Ty and the equation reduces to
ydx - xdy = 0 which can be easily solved.

Rule (1V). If the equation (1) is of the form
yflxy)dx + xg(xy)dy = 0,

1
m (Mx -~ Ny= 0)

is an integrating factor of (1).

then

We can easily show that
5 (7 ) = 2( )

9 yf(xy) ) xg(xy)
i""&y [q{f(xy)-g(xyﬁ] -5;[ xy(flxy) - g(x)) I

provided we remember y %F(xy) =x % F(xy).

If, however, Mx — Ny = 0, then -;-? =-f and the equation
reduces to xdy + ydx = 0 which can be easily solved.

16.10. Illustrative Examples.

Ex. 1. Soloe: (2x? + y? 4 x)dx + xydy = 0,

Here %\._f = 2y; -ag =y. . the equatlon is not exact,
;
dy =y _ L

Now, N T oxy R

o by Rule (), L F. mell1/72)ds - plogs = ¢
Multiplying both sides of the given equation by x, we have
(2x + xy? +x?)dxr + xlydy = 0,
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or, Zz’lx+x'b+ry(ydx+zdy)=0,
or, 2 dx + x¥dx + ayd(xy) = 0,
or, 2%dx + x'dx + zdz =0, where z = xy.

x? 1

x4 z
lnleplﬁng,—z-—+—3- tg =a.

~ the required solution is 3x* + 2x? + 3rly?= ¢,

Ex.2. Solve: (x* +y*)dx - xy?dy = 0.

Here, %:—A = 33,«‘;%~|I = - y?. . the equation is not exact.
1 1

Now, = -;!-. ;

Mzx + Ny=.|:‘ + xy? - xy?
The equation {s homogeneous.
s byRule(lID, 1/ x% {san integrating factor.

Multiplying both sides of the given equation by 1 / x* , we have
1 E] 2
L)Ly

This is exact.

Mo 1 J_i) LE
.T\w.Jde :J‘(x+ T dxslog:-si-;

3

1
INdy=--3!’-

o by Art. 16.7 , the solution is
1 y? y
log x -a-i—,- =c,ie, ¥y = Ixdlogx +ex?,

Ex.3. Soloe (y + x)dx + xdy =0,

The equation can be written as

(ydx + xdy) +xdx =0,0r, d(xy) + xdx = 0.
~ Integrating, xy + ;x? =C is the required solution.
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0.

]

Ex. 4. Sofoe v (1 + x3)dx - xdy
The cquation <an be written as

ydr - xdy + y'xdx = 0.

Dividing by y?, 3—‘-5-:1-1?‘1 + rda = 0 or t'{-:)~ rdx = 0Q,

Ve
1
Hence irtegrating, the selution is i " xt = €

Note. Here 1/ y? {5 2n integrating facter.

Ex. 5. Sofce ydx - xdy = 0.

Multiplying the given equation by ;‘5 , this can be written as

Jﬁ;_:ﬂ‘.’f =0, ie, d(f):ﬂ, ie., l"; =C,ie,x=Cy.. (1)

Again, multiplying the equation by 1 / x!, this can be written as

2y o ie,d(L) 0 ie, LaC e y=Cr.. @
x x x

Again, multiplying the equation by 1 / xy, this can be written as

M = 0, i.t.,-?— -‘f =0. .. logx ~logy = logC,

:'.e.,log% = log C.
‘.-;"=c. ie,x = Cy. e (3
Further the equation can be written as
8.1y
ey 0. B )

This belongs to the linear form (See Art. 16.11).
Note. Thus, we see from (1), (2) and (3) that the number of Integrating

factors of an equation is more than one and from (4) we find that a differen-
tial equation can be solved by different methods.
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Ex. 6. Solve
(x'y? +xly? + xy+ 1) ydre(x?y’ - xly?-xy + 1)xdy =0.

Now, (x%y® + x?y? + xy + 1)=xty?(xy + 1) +(xy + 1)
=(xy + 1 )x'y?+ 1)

and xy?-xly?-zy+l=xty? (zy~-1)-(xy-1)
= (xy-1)xly2 -1)=(xy~-1)*(xy+1)
. the given equation becomes
(xy +1)(xty? ¢ 1)ydxe + (xy- 1)%(xy + 1)xdy =0,
or, (xly? + 1)ydr + (xy - 1) xdy = 0, can A1)

[ eancelling the common factor (¥ + 1]
or, (x7y? + 1)ydx + (x'y?=2ry + 1)xdy=0,

or, x'y? (ydx + xdy) + (ydr + xdy) -2xlydy =0,
or, xlyld(xy) +d(xy) -2x'ydy = 0,

or, d(xy) +:t’ )—-sdy-—- 0 [ondividingbyxiy?],
or, dw+:—?l——-§-dy=0 [ putting xy = v!

or, n-%-!logyzc,

1
or, xy-— - 21 G
xy xy ogy =
Alternative Methed :

Pullmgxy=o,aulhalx=-;—.lx= dpy‘” in (1),

ve get, on simplification,
i _2dy
(1 ¥y )in = 0.

.. integrating, ©» —%- 2logy = C,

Le, iy-'--g—-;-:!hs,-'c.
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EXAMPLES XVI(C)
Solve ;-

L) (2x-y +1)dx +(2y-x-1)dy = 0.

o dy in:|:+kz+g=r
(Il)dx+hx+by+f 0.

(iii}(‘l~x')a?—2x_y=x~z‘.
(i‘,)_".l':i_?;_sy_'.‘“.i
dx  Sr- 6y + 2
2(i]x£y+ = y? log x
. i, T Y=Y gx.

(ii)x£=y+cos£.
3. (i) xdx + ydy + (x? + y2)dy = 0.
(D xly, +xy +2 v{1 - x2y7) =0.
4. () xdy - ydx + a(x? + y?)dx = 0.
(i) xdy— ydx - 2V(x? - y?)dxr = 0.
5. (i) xdx + ydy + x_;i?'_f_‘;?d_x =0.
(ii)'(x +x% +2x%y? + xyt )dx + ydy = 0.
6. () (x +y)dy + (y - x)dx = 0.
(i) (x + y)dx - dy) = dx + dy,
(iii) (2 - xy)ydx - (2 +xy)xdy =0,
(iv) 2xydx— (x? - y? )dy = 0.
(V) (xy? + 3e*? )dx - x?ydy = 0.
7. (1) (x* + 3xy? )dx +(y? + 3x2y)dy = 0.
(i) (x°y? - y)dx - (x2y*+ x)dy = 0.

(ii)) (x? + y? +2x)dx + xydv= 0.
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8. (i}fsinx—ycosxd-y' =0.
(i) (xycosxy + sinxy)dx + x?cosxydy = 0.
(iii) xcos (y / x ) ydx+xdy) =ysin (y/x Xxdy -y dx) .
(iv) (cosy + ycosx)dx + (sinx - xsiny)dy = 0.
9. () y(1 + zy)dx + x(1 - xyddy = 0.
(ii)(x+2y’}g{=y.
(i) (x?y? + xy)ydx +(x2y? - 1)xdy = 0.
10. (x* + y? + 4)xdx +(x? - y? + 9)ydy = 0.
1L (1 + 3x? + 6xy? )dx + (1 + 3y? + 6xiy)dy = 0.

12. Solve (1 + x? )y, + 2xy = 4x?, and obtain the cubic
curve satisfying the equation and passing through the origin.

ANSWERS
Lx*+y?-xy+x-y=C.{uax? +by? + Juxy + x+2fy=C.
() y(1-x2)=3x2—t1x4 4 C.(iv)5ry-3y? +2y—2x2 -3r=C,

261+ Cxy=y(1 + logx).(ii)f+ aini-:(:,
3. (Mx? +y? =Ce-¥ . (ii) sin-" (xy) + 2logx = C.

4. (i) tan-? £+ux =C. (iily = xsinlog(Cx?).

5. (i)%{x‘ +y?) +tan-? £=C. (ii)) (C+ x? {x? +y?) =1,
6 (Dx? - y? - 2oy = C, (i) x ~y + C=log(x +y).
(iii) 2log(x/y)-2y=C. (iv) x? + y? =Cy.

V) yE/x2 = 22V12% 4 C.
7. @xt 4yt +6x?y? = C. (i)xi-y? +2/2y = C.
(i) 3x4 + 8x? 4 6x2y? .

8. (1) sinx =y(x + C). (il) xsinxy = C.
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(i) xycos(y/x) = C. (iv) xcosy + y sinx = C.
9. @) logix/y)=1/xy : C.(i)x = y* +Cy. (i) xy-logy =C.
10. x4 - y* + Bx? +i8y? + 1y’ =C,
M. x+y+ x> +yd +5xty? =C.
12. y(1 ¢ x1) =322 + C; y(1 4+ 2?) =47
16.11. Linear Equations.
An equation of the form

d
F+ry=0

in which P and Q are furctions of x alorc or constants is called a
linear equation of the first order.

The general solution of the abuve equation can be found as fol-
lows. Muitiply both sides of the equation by e /74r

ay ira [Pes = Qplrd
cdx € + Pye (o4 .

iz d_di ( yelPdx )

. integrating, ye!P4 =] QelP4dx +C,

Qe’?ls .

or, v = e-IFdx|[Ce 'Tdr dx + C] is the required solution.

Cor. 1. If in the above equation Q is zero, the general solution is
y =Ce-17ar

Cor. 2. If P be a constant and equal to - m, then the sclution s
y=e™ [Je-m= Qdx +C).
Note. Here the factor e I P4* , which renders the lefthand member of
the equation a perfect differential, is called an Integrating Factor. It is some-
times shortly writtenas I.F.

d 5 %
Ex. Solove casrﬁ + ysin x=1.

Dividing by cos r.;}+ylanx- secx. i k1)
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Here] Pdx =ftanxdxr =logsecx.
s thelntegrating factor is e'8*<* = sec 1 .

Mult.plying both sides of (1) by secx , we have

d
:eczgzx + ysecxtanx = sec?x, or, % (ysecx) =sec’x.

s iniegraiing, wsecx =tapr « C is the reauired solution

16.12, Bernoulli’s Equation.

An equaticn of the form

d
4Py =0y,
where F and Q are functions of x alore, is known as Bernoulli's

equation. It is easily reduced to the lincar form of Art. 16.11 as is
shown below,

Dividirg both sides by y = , we get

nd i
y E{ri‘y t=0,

’ ) d
Putting y-"*! = v, ,and hence (= n + 1 )y"'ﬂ-"- . 2
" ; . dx dx
the equation reduces to
dv
= +(1-n)Pv=(1-n)0Q.
This being linear in v cun be solved by the method of tic pre-
vious article.

Note. Here a 1sa rationa! number
16.13. Vliustrative Examples.

. d
Ex. L. .‘iovtﬁ‘r-lfx;-:y = XNy

Diviling both sides of the equation by vy wzhave

d "
o My o sox @)
Put yt = 9. ly-mﬂ{ L
T dx drx
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dv x x
= (1) reduces to - - -2--(]—_—;’—)I? =-2‘ o {2
which is of the linear form.
Here IPdI EIE(:-—‘T"J) = —%103(' — I’) = IDS (1 -x1 )-1

- I.F. = elog (1 -x2)-1/4 _ (1 = x2) =1/,

s multiplying (2) by (1 ~x?)-"* and integrating, we have

L X
(1 -I‘)”‘=J-2(1—xl}m dr = ~3(1 - x2) 4 C.

.. substituting the value of o, the required solution is

Vy = =3(1 =x?) « C(1 = x2 )14,

Ex.2. Solve % + xsinly = x3 cosly.

Dividing by cos?y, we have

seciy?dxy«n 2xtany = x3. waw (1)
Putting tan y = z, so that sec?y % = ;-i , we have
%+hz = x3, iy (2)

Thds is of the lincar form. Here L F. = ¢l 27dx =gx?
- muitiplying (2) by ¢*? and integrating,
ze*' =[x%e*? dx + C=1e*? (x? - 1) + C (integraling by parts)

. e*tany =1e*? (x? - 1) + C Is the required solution.

EXAMPLES XVI(D)
Soive ( Ex.1-14) :-

. d Lody 1
L@ Fry=x P

2. %+ycot:=2msx.
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3. cos’x ff + y = tanx.

4, (i){“l—x’}%{-—xy:l. (if) -;{ + Xy = X.

(iif) g + Lo sing,

5. (x? —x)yi - (3x*-1)y =x* - 2% + x.
6. (xcosx)y, + y(xsinx + cosx) =

7. (1 +y?)dx - (tan'y - x)dy = 0.

: 1 d i d
8.(l)y'+(x'—;_)j‘¥=0. (u)(:¢+y+1)‘—’£=1'
(iii) (x?y? + 2xy ) dy = dx. .
[ Wrile as a linear equation in x)

ﬂ -1— = 2 - 74 4 =0
%. I L e 10. y, — 2ytan x + y? tan'x :

dy y_ ¥ gy, 1_ e
11. md e 4 = (ii) dx+ = ri
12. :Td!+%31“2y x? cosly, [Puttam y = z.]
13. i:!vf;logy-i“"sr"-
14. .E."_’ E.D_x.:(l-'-x]e*secy,
dx 1 + x

15. Solve —:—i + ¥, giveny = 1 when x = 1.

16. Show that Ihe equation of the curve whose slope at any
point is equal to y + 2x and which passes through the origin .
isy=2(er —x-1).

17. Find the curve for which the sum of the reciprocals of the
radius vector and the polar subtangent is constant.

18. Show that the curves for which the radius of curvature
varies as the square of the perpendicular upon the normal belong

Inlegral Calculus (main) -25
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to the class whose pedal equation is

rI_P'l:f-.}-_.i.-,*AfT"

k 2k
k being a given constant and A an z. ‘trary constant.
ANSWERS
L()y=x-19+Ce-*, (i) y = x3(1 & Cet/x),

2"y =sinx + C(sinx)"'. 3.y = (lanx - 1) + Ce-tanx

4. WY1 —xf =C +sin-'z. (i) y=14+Cexlin,

(i) xy +}cosx? =C.

5.y = {x*- x)logCx, 6. yrsecx = tanx+ C.
7.x+1=Ce-'y stan''y. B () x-T=y '+ Ce'ly,
(i) x + y + 2 = CeY . . (ii)2x ' =1-y? +Ce-¥?.
9. y' =Cx-xlogx. 10. Ssec’x = y(tan’x + C).
1. () x=1y + Cxly. (i) 2r = e¥ (1 + Cx?),
12. 6x? tany = x% + C, 13.x=i03y(Cx‘+‘;].

4. siny = (1 + x)(e* +C) 15. 4xy = x* + 3.

17. r ' = a"" 4+ Ce® |



CHAFTER XVII
EQUATIONS OF THE FIRST ORDER BUT NOT OF THE FIRST
DEGREE

17.1. The typical equdtion of the first order 2nd the nth degree
can be written as

P* + Pypn-1 +P1p"'3 +.oot Pocap 4Py =8, .0 (1)
where p stands for ;,r! and P, ;P ,.....,F, are functions of
x and y.

The complete solution of such an equation would inveive only
one arbitrary constant.

Two cases may arise :-

Case I. When the left side of the equation can be resolved into
rational factors linear in the derivative.

Case I1. When the left side cannot be thus factorised.

17.2. Left side resolvable into factors.
In this case, the equation (1) takes the form
lp-filx,y)ip-fa(xy).. (p-filx,y)=0. ... (2

It is evident from above that a solution of any one of the equa-
tions

p-h(x,y)=0,p _fl(-!fy)=n!elc' : R €)
is also a solution of (1) .

Let the solutions of the equations (3) be

$(x,9y,C)=0,0,(x,y,.C)=0,..,¢(x.y9,.Cu)=0,
where C,,C; ..., C. arearbitrary constants of integration.

These solutions are evidently just as general, if C,=C; =. .= Gy,
since the individual solutions are all independent of one another
and all theC's can have any one of an infinite number of values. All
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the solutions can thus, without loss of generality, be com
bined into

¢ (z2,y5,C).(2,y.C)..... ¢ulx,¥,Cy=0,
17.3. Left side not resolvable into factors.
Here, we shali consider only the following cases :
(A) Equatiens solvable for y.
Suppose the equation is put in the form
y=f{x,p).

Differentiating this with respect to x , we shall get an equation in
two variables x and p; suppose the solution of the latter equatior
is¢(x,p C)=0.

The p-eliminant between this relation and the original equa
ticn gives a relation between x,y and C, which is the requirec
solution.

(B) Equations solvable for x.
x = f(y,p).

Differentiating this with respect to y , and noting that i"' =1/p,
we shall get an equation in two variables y and p. Y1 p be
eliminated between the solution of the latter equation ( which cor-
tains an arbitrary constant ) and the original equation, we shall get
the required solution.

(C) Equations in which either x or y is absent.

In such cases, the variables are easily separable, or they may be
sclvable fory or for x.

Note. In case the elimination of p cannot be effected, or it leads to com-
plicated expressions, it is customary .o express x and y separately in
terins of p, and these values of x - i y, as if parametric equations, con-
stitute the solution of the equation. -

* Clairaut's Equation y = px + f(p) [ Art. 17.5] as also its extended form
y = x¢(p) + f(p)[Ex.2, Art. 17.5] be’ong to this type,
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17.4 . Illustrative Examples.
Ex.1, Solve p?! + 2px + py + 2xy= 0. [C.P.88]
The equation can be written as
(pr 2xXp +y) = 0.

. either p + 2x = 0, ie, —2 + 2 =0,ie,dy + xdx = 0,

whence, integrating, y + x? = C;

otherwise, p + y = 0, or, ;f +y=0,ie, $+ dx’= 0,
whence, integrating, log y + x = C.
~ therequired solutisnts (y + x? ~-CXx + log y-C) = 0.

Ex. 2. Solve 4xp? - Byp — x = 0,
1 1
From the equation, - (-i - - )
q y= 8 P »

differentiating with respect to r, we have

» =—;{(4p—%)+ x‘—?('l +;I—,)}

which on simplification reduces to p dr = x dp the integral of which is

p=Cx. (1)
Now, eliminating p between (1) and the given equation, the required
solutionis 4C?x* - BCy -1 = 0.

_Ex. 3. Solve x =y -pl.
Differentiating with respect to y, we have

1 &
-=1=2 .
F Py
e gt)
.dy!p_tdp 2p+lvp_tdp,
" integrating , y = p? + 2p + 2log(p - 1) + C o (D)
and hence, x =2p + 2log(p -1) + C. svw (@3

(1) and (2) taken together, or the p-eliminant of them constitutes the
general solution of the given equation.
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Ex. 4. Solve 4yp? - 2px + y = 0.
We can write the equation as

= X
r=2yp + 2 wee (1)
Differentiating this with respect to y, we have
Ly 5 1 Ay
pTW W G N " Ty

or,!ﬂ-li;-'—‘[l;-s—:-}] =0,

pdy + ydp = 0, ie. py = C. R )]

Substituting the value of p oblained from (2) in (1), we get the solution

y? = 2Cr - 4C?

MNote. It will be noted in this connection that, in solving examples of
this type, the factors containing derivatives which are omitted often give
rise to other salutions of the differential equations which are not included

in the general solution. Such solutions are termed singular solutions. [ See
Art, 17,51

17.5. Clairaut’s Equation.

An equation of the form

y = px + £(p), where p = 2L,

is called Clairaut’'s equation

Differentiating both sides of the equation with respect to x, we

have
p.—.p+1§§ +,"'{p}gr;-- ,nr,é{-{x + [ (p)l = 0.
. either %nﬂ. ST 5 1)
or, x+ f'(p)=20 ..o {2)

From (1), p =C. vae H3)
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Now, if p be eliminated between (3) and the original equation,
weget y = Cx + f(C) as the genmeral or complete solution of the
equation.

Again, if p be eliminated between (2) and the original equa-
tion, we shall obtain a relation between x and y which also satis-
fies the differential equation and as such, can be called a solution
of the given equation. Since this solution does not contain any ar-
bitrary constant nor can it be derived from the complete solution
by giving any particular value to the arbitrary constant, it is called
the singular solution of the differential equation.

Thus, we see that the equation of Clairaut’s form has two kinds
of solutions,

(i) the complete solution ( linear in x and y) containing one
arbitrary constant ;
and (ii) the simgular solution containing no arbitrary constant.

Now, to eliminate p betwken

y=px+f(p)and 0 = x + f'(p)
is the same as to eliminate C between

y=Cx+f(C)land 0 = x + f"(C).

i.e., the same as the process of finding the envelope of the line
¥ = Cx + f(C) for different values of C.

Thus, the singular solution represents the enpelope of the family of
straight lines represented by the complete solution.

Note. It is beyond the scope of the present treatise to enter into the
details of the theory of singular solutions.

Ex.1. Soloe y = px + p - p?.

Diffemntlating both sides with respect to r,

g L
e o

d
Fcr1-2)=0.
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:. either 5’- 0, ie, p= C, p SO 1 § |
or, x +1-2p =0, ie, p-}txi»l)- - T
Eliminating p between (1) and the given equation, we get

¥y = Cx + C - C? as the complete solution
and eliminating p between (2) and the given equation, we get

y=ix+ Dxedx+1)=F(x+ 1) =5(x+1),
ie., 4y = (x + 1)? as the singular solution.

* Note. It can easily be verified that the family of straighklines repre-
sented by the complete solution touches the parabola represented by the sin-
gular solution.

Ex.2. Solve y = (1 + p)x + ap?.
Differentiating with respect to x, we have

p=1(14+p)+ (x +_2¢p)-—5£ c

dx
7 +x = - 2ap.
This is a linear equation in x and p.[See Art. 16.11.]

multiplying both sides by e/ 47, ie. e7 , we get
e? i‘-l-;-‘oc! .x= - 2ap.e? ,

d
or, F{xt') == 2ap.eF .
.. integrating, xe? =- 2a[pefdp + C =- 2ae? (p-1) + C,
or, x=2a(1=-p) + Ce V.
y=2a-ap®+(1+ p)Ce-P from the given equation.

The p-eliminant of these two constitutes the solution.

EXAMPLES XVI
Solve the following and find the singular solutions of Ex. 5 to
only :-
. () p* +p-6=0. (i) pt + 2xp - 3x? = 0.
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2. () p* -pler +e-*) +1 =0.
(i) ply - plxy + 1) + x = 0.
(i) p(p? + xy) =p*(x +y).
3. () pr ~(a +b)p + ab 0. G) plp+x)=y(x +y)
4. (0 aypt = (2t - y¥)p ~xy=0.
. (i) p? - p(x? + xy +y?) +x?y+ 2y? = 0.

(iii)p’-(z‘+1y+y')p‘+{z’y-rk'y’-r:y‘)p-—x’y’=0.
5. () y =px+ al/p. (i) y = px +N(ap2+ b?).
(iii) y = px +p".

6.() y = px+ap (1-p). (i) py=p'(x-b) +a.

7. (x —a)p? + (x —w)p-y=0.

8. (y+1)p-—xp*+ 2 =0.

9. (i) p’x -p?ly-1=0. (i) y=yp? +2px.

10. sinycospx— cosysinpx-p = 0.

11.(i) x = 4p + 4p° . (ii) p2 - 2xp + 1 = 0,

12.(§)r!—p’ ~-p=0. {ii) y = pcosp - sinp.

13.() y =plx+ p. (iDy=(p+prlx+p.

14.()) x + yp= ap? . (i) y = 2px +p?.

15. p* = ply+ 3) + x = 0. 16. y =Ap? +Bp.
ANSWERS

1. () (y +3r - ey-2x-¢)=0
(i) (2y + 3x? - ¢ N 2y - x? -¢) = 0.

2 () (y-€e* -cHyre*=-¢) =0,
(i) (2y - x? = cN2x~-y?t-¢)=0.
(i) (y-cH2y -x? ~c)y-ce™)=0
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3. () (y-ax -c)ly -bx -c) = 0.
() (y~ce "Ny +x-ce-" -1)=0.
4 () (xy -cWx? =y? =) =0.
W) (2y- x?- c)y -ce* My + x-1 -ce-7) = 0.
Gil) (x* =3y + cNe?®™ 3 4 cy)(xy + oy +.1) =0.

5. () y=ex+ 2 y? =dax,

(ii) y=rx+ml;§+%:.l.

(i) y =cx + c™ ;m"y"" ! + x"(n-1)"1 =0,
6. (i) y=cx +ac(l -¢);(x +a)? = day .

(i) ey =c? (x - b) +a;y? =da(x-1b),
7. (x-a)c? + (x-yle-y=0;(x+y)? = day.
8. (y+ 1)c-clr+2=0;(y +1)? + 8x =0.
9. M e?x-cly-1=0.(i) y? =2cxr + ¢c? .,

10. y =c¢x + sin-t¢c.

11.(i) x= 4p + 4p? (i) x =3(p+p')

y =2pt + 3p% +c. y =3P -tlogp + ¢
12.(1) x= 2tan~' p - p°' + ¢ (ii)z:r:n:n;p

y = log(p® +p). ¥ =pcosp - sinp.
13.() y= p'x + p )y =(p+ pl)x+ p-?

x_lo -p+c I_l-rce”’

S o(p-1)T Tp

14.() x+ yp = ap?
(1 +pP)V =plc +alog{p +(1 + p2 )2y
() (3xy+ 2x? +c)? —4(x? +y)? = 0:
15, y(1-p?)¥ 4+ (1 -p?)3 = ¢, with the given relation
16. y = Ap? +Bp?
x =3Ap? +2Bp + c.
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LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

18.1 Equations of the Second Order.

Ve shall first consider linear differential cquations with con-
stant coefficients of the second order, since they occur very fre-
quently in many branches of applied mathematics. The typical form
of such equations is

1 -
¥+P‘g¥+[’,y=x, dia 8

r, symbolically (D* + P,D + P )y = X,
hhnr( P, , P, are constants and X is a function of x only or a con-
stant. Two forms of this equation usually present themselves, nam-
cly, when the right-hand member is zero, and when the right-hand
member is a function of ¥ We shall first consider the first form and
then the second.

18.2 Equations with right-hand member zero.

Let the equation be

d? d
_d,:;*P'ilEq_l'lyzﬂ. cow=f2)

Asa trial solution” of (2), let ustakey = e™ . Then, if we put
y =em in the left side of (2), it must satis{y the equation, i.e., we
must have

(m* + Pom + Prlem =10,

or, sincce™ # 0,m* + Pom + P, = 0. . (3)
The equation (3) is called the Auxiliary equation of {2)

Let m, ,m; be the two roots of the equation (3) .

Then, y =e™* and y = =71* are obviously solutions of (2).
Also, it can be easily veiified by direct substitution that

* This trial solution is suggested by the solution of the first order linear
equation y, + Py =0, which is of tiic same form.
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y=Cemzs y=Cemrand y = Gie™* + Cre™= satisfy the
equation (2), and, as such are solutions of (2). 3

Wi 'ow consider the nature of the general solution of the
equatio.: \2) according as the roots of the auxiliary equation (3) are
(i) real and distinct, (ii) real and equal and (iii) imaginary.

(i) Auxiliary equation having real and distinct roots.

If m, and m, are real and distinct, then y =C,e™= 4+ Cyem=
is the general solution, siace it satisfies the equation, and contains
two independent arbitrary constants equal in number to the order
‘of the equation.

(ii) Auxiliary equation having two equal roots.

If the auxiliary equation has two equal roots, the method of the
preceeding paragraph does not lead to the general solution. For, if
m, = m; = say, then the solution of the preceding paragraph as-
sumes the form

y=(C + C)e**= Ce** ,when C;, + C; = C,
which is not the general solution, since it involves only one inde-
pendent constant and the equation is of the seccnd order.

A method will now be devised for finding the general solution
in the case under discussion. Since the auxiliary solution (3) has
two equal roots each being equal to a, it follows that the differen-
tial equation (2) assumes the form

%—2u%+a=y=0.

Let y = e2* v, where v is a function of x, be a trial solution
of this equation. Substituting this value of y in the left side of the
above equation, we have

do > dwvp -
E-,:o, |.e,.-a-;-,-=0,sincec # 0.

Now, integrating this twice, weget o = C, + C,x.

cux

Hence, the solution of (2) in this case is
¥y=(C + Cix)e=* .
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This is the general solution of (2), since it satisfies (2), and con-
tains two independent arbitrary constants.
(iii) Auxiliary equation having a pair of complex roots.

If m =a+if and my, = a - iB, then the gencral solution
of (2) is

¥ = CielaiBbh 4 Ciela-iBh

The above solution, by adjusting the arbitrary constants, can
be put in a more convenient form not involving imaginary expres-
sions; thus we have

y=e¢ [Ceibr 4+ Cle-ibr ]

e [C, (cosPx + isinPx) + C; (cos Px - isin Bx)]
=e® [(C, + Ci)ceosPx + i(C, -C;)sinBx]

=e™ [Acosfx + BsinPx],
where A = C, + G andB = i(C, - C;) arethe arbitrary con-
stants which may be given any real values we like.

Again, by adjusting the arbitrary constants A and B suitab-
ly. ie., by putting Ccose for A and - Csine for B, the general
solution can also be written in the form

y=Ce>=cos(Px + ¢),
where C and e are the two arbitrary constants,

2
Ex. 1. Soive %+3%!2y=0.

Let y = ¢™* be a solution of the above equation ;
then e™ (m? +3m+2) =0. . m?+3m+2 =0,since e™ = 0.
Sm+1Xm+2)=0, O m==1,0r -2,

the general solutionis y =C,e-* + Ce 2%,

1
Ex.2. Solve %;{-2.-1:{+ aty = 0.

Let y = ¢™ be a solution of the above equation ;
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thene™ (m?-2am+a?)=0, or, m*-Zam+a? =0, since ™ 20

sdm - .I)"I =0.
Since the auxiliary equation has repeated roots here,

~. the general solutionis y = (C, + Cix)e®™ .

Ex. 3. Solve (D? 4+ 2D + 5)y = 0. [C.P.61]

The equation is %‘; + 2 —::{ + Syp.=0.

Let y = ¢™ be asolution of the equation ;

then e™(m? +42m+5) =0. - m?+2m+5 = 0, since e™ 20,
m=-122;

~ the general solution’is y = C,e (-1+H)x | Coe(-1-2)x

which, as shown in Art. 18.2(iii), can be put in the form

y=¢* (Acos2x + Bsin2rx).

EXAMPLES XVIII(A)

-

Solve : -

.‘1 %+5d—?+dy=0

2 2Y. 720

3 %—3-:-%+2y=0

4 :—:¥+(a+bl%+aby:0.

L d d
s W25d-3FZry=0. anFr2Fry=0,

dx1 dx
6. y,-4y,+4y=ﬂ.

7. () (D + D)y =0. (i) (D? +6D+25)y = 0.

B. (D* =2mD + m* + n*)y =10,
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9. (N (D? -4D + 13)y = 0.(ii) (D*-n2)y = 0.

., dls ds -
10. (i) IR +4-ﬁ-+135 =0. (i) (D~+3)y=0.

11. Solve in the particular cases :-

{i)%";' +g-2y=0;whenx=0,y= Eand‘—‘l=

i) 22X 4y =0;whenx=0,y =4;when z =1

(i) 93 +y =0;wheax=0,y =4;when x =3,y =
R L | dx ] . _ dx _
‘l")'ﬁ?_3dl+ 2x -.U,whcnl =10,x A(]aru:i'jr =
.o dix A B, dx _ ~
(iv) P TE] +nx-O,whon!—U,d'-Oandx-a.

12. Find the curve for which the curvature is zero at every
soint.

13. Show that if | -::%B +g8 = 0,and if 0 = uandd—a- T

dt
when t = O,then @ =acos{tvg /1)).

14" Show that the solution of

dix dx
B-r—l+kd—!+ur=ﬂ

is x = e M {(Acosnt + Bsinnt), ifk?<4u and n? = g -1k2,

ANSWERS
1. ¥ =08 ¢ et"., 2. y=ae3f o+ et
I y=ge* + gelr, 4. y=6e ¥ 4 cre-br
S. () y=oce” + cye”™? (i) y = (A +» Bx)e *.

6. y = (A +Bx). 7. (Vy=A+ Be 7.
(i) y = ¢ " (Acosdxr + RAsinéx)

B. y =e¢e™ (Acosnx+ Bsinnx).
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9. (i) y =e?* (Acos3x + Bsin3x). (ii) y = Ae™ + Be-nr
10. (i) s = ¢ ' (Acos3t + Bsind). (i)y =e 2 (A+Bx)
1. (1) y=2e*+e ' () y=4cosx. (i) x=0
(iv) r = acoant 12, A straight line.
18.3. Right-hand member a function of x.

We shall now consider the solution of the general form

d: d

3;‘:'+T‘|§f+1’:y=x. . siew (1)
If y = 6 (x)bcthe general solution of

dr d

_dTg+PIE§+P,y=U wear G2)

and y =y (x)beany particular solution of (1), then
y = 0 (x) + y(x)isthe general solution of (1) .
This result can be established by direct substitution.

Thus, substituting v =¢ (x) +wy (x) in the left side of (1),
we have s

Lo, do Ay, dy
o TRt P;Q} +{ it 0 +P'v}'

The first group of terms is zero, since y = ¢ (x)is asolu-
tion of (2), and the second group of terms is equal to X,
since y = y(x) isa solution of (1) .

Hence,y =¢ (x) + w ( x) is a solution of (1), and it is the
general solution, since the number of independent arbitrary con-
stants in it is two, ¢ ( x ) being the general solution of (2).

Thus, we see that the process of solving equation (1) is natural-
ly divided into two parts : the firstis to find the general solution of
(2),say ¢ (C, ,C; , x), and the next is to find any particular solu-
tion of (1), say ¥ ( x ) not containing any arbitrary constant. Then

y=0(G G ,x)+vw(x) L
will be the general solution of (1) .
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The expression ¢(C, ,C;, x) is called the Complementary func-
tion and y(x),ie, any particular solution of (1) is called the Par-
ticular Integral of the equation (1).

18.4. Symbuolical Oprators.

We have already shown in Art. 18.2 how to obtain the Comple-
méntary function : now we shall consider how to obtain the Par-
ticular Integral. In order to discuss methods of finding a particular
integral, it would be convenient to introduce certain symbolicz'
operators and their properties.

With the usual notations of Differential Calculus :;l'; , etc. will
be denoted by the symbols D, D?,etc. Also 1/D (or, D-!),
1/ D?(or,D-?),etc. will be used to denote the inverse operators,
i.e., the operators which integrate a function, with respect to x,
once, twice, etc, Let us write the equation

1
_%;.g+p,%+p,,.x sy (D
in its symbolic form
(D* + D + P)y = X. TR
or, morebrieflyasf(D)y =X. sim (@)

The expression ”—lm X will be used to denote a function of x
not involving arbitrary constants, such that the result of operating
upon it with f(D) is X, and as such ”‘—m and f( D) denote
two inverse operators.

1

Thus, the function 775y X is clearly a Particular Integral of the

equation f(D)y = X.

As a particular case, when f( D) = D, il_ X will denote a
function of x, obtained by integrating X once with respect to z,
which does not contain any arbitrary constant of integration ;
similarly 1;-. X will denote a function of x, obtained by integrat-
ing X twice with respect to x , and not containing any arbitrary
constant of ‘ntegration. For example,

Inlegral Calculus (main) -26
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Important Results on Symbolicel Operators.

If F(D) beeany rationa! integrel function of D,

fe, fF(D) m D* + &,D"-' 4 .... 4 44y D + &, then
() F(D)e™ = F(e)e®,
() F(D)e**V = ¢**F(D + a, .,V being a function of =

sin{(ax + b) gin(ax + b)
cos(&x + b) cos(ax+ b).

By actual differentiation, we can ewstly verify the above results.

18.5. Methods of finding Particular Integrals.

We shall discuss here the methods of obtaining particular in-
tegrals, iz, the methods of evaluating (757 X.when X has spe-
cial forms.

mnnm){ s E(=at) [

(@) X = x=, m being a positive inleger.

Expand 1/f(D), ie., {f(D)}" in ascending powersof D
and operate on x™ with the result. It is clear that in the expansion
no terms beyond the one containing D™ need be retained , since
Dm+1 xm = .

Note. The justification of the above method lies in the fact that the func-
tion of x which we shall get by operating on x™ by the series of powers of
D obtained by expanding (f(D)-' ], when operated upon by f( D), will
give x™ . For example,

S IES] z'=(1+D) ' x'=(1-D?+ D%, . )2 =34 = 12x2 s+ 4.
Now, (D? + 1) x* - 1222 +24) = 1227 =24 4+ x* — 12x? + 24 = x*¢
(b) X =e™V, where V isa function of x, or a constant .
If V, isa function of x, we have, from Art. 18 4(ii),

f(D)euV, = e=f(D + a)V, =¢=V, say,

¢ For proof see Authors’ Diffevential Caloulus
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; 1
80 that f(D +e)Vi=V, ie, .V| s}‘w_mv
1
Thus, -——“me--v eV, = c"f-—-—-—-—-—-‘Di‘ .,V.

Again, noticing that f(D + a)k’ where k” is a constant is
evidently a constant = k say, and proceeding exactly as above we
can show that

] ax _—1-—.-.—
Finie k=sw rmu:"""' o +a)?

(c) X =e® ,where aisany constant.

i fonde 9, [ 0) {fu)] ra)f“"" Sl
[ Froin Art. 18.4 (i) ]

R g 5 ke
(D) )

if f(a) = 0,then(D - a)isafactorof f(D).
~ either f[(D)=(D-a)¢(D), where $(2)=0, ... (1)
orelse, = (D-a)?. R 5 ]

TR PP R ) (M VEEIEES. (0N collPL SEUR ik
fiDY ~ D-a &(D) T(D-a) 6@ éa) D-a

, provided f(a)= 0.

= Hby(b)l ““-

—_1._ [ - u—l.-.ll (b)]--gliax-.—}-
fm) FEBmeT T vy =%

(d) X =sin(ax + b)orcos(ax + b).

(ii)

If f( D)contains only even powers of D, let us denote it by
$(D)* . Then,if ¢(-a?)= 0, we get, by Art. 18.4.(iii),

sinfax+b) o¢(-a?)sin(ax+b)

= i )
VTS T o -ai) = sin(ax+b)

(D)

’___T‘“; j sin{ex + b) "‘;'tTl;'T)'i‘““ +b),ife(-a2)=0



mn INTEGRAL CALCULUS

Similarly, ;(—;rj cos ( ax +b)--‘—?3-1.~57 cos{ax+b),ifo{-a?)=20.

If 9(-2?) = 0,0r if f( D) contains both the first and the
second powers of D, the method of procedure that is to be adopted
in such cases is illustrated in Ex.5 and Ex. 6 of § 18.7 below.

(e) X = xmsin{ax + b) or xmcos{ax + b).

In evaluating particular intagrals of this type, it is convenient
o replace sin (ax + b) and cos (ax + b) by their exponential
alues and then proceed as in case (b) .

(f) X = xV, where V is any function of x .

1 1 g 1
o= { v (D)} 5 ¥
Proof :

Wehave D (xV) = xDV + V,
D*(axV) = D(xDV)+ DV = xD'V + 2DV,

and similarly, D" (xV) = xD*V + nD*-1 ¥

=0+ (F0")V. ... @
Hence, f(D)xV = xf(D)V + f'(D)V. v {2)
Now,putf(D)V = V‘;henceb’:f—c—lﬁ—)v

. (2) becomes

f(D}x Vi=xVi+ (D) ==

f{D)
. 1 1

i, 37 D = 7ihs Y *;(D)f ‘D’fco";"
Transposing, we get

1 S
o ==/ @} oy
Dropping the suffix, we get

;‘(D)
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Note. It should be noted that, when X is the sum or difference of
two or more functions of x,say X = X; & X; £ X, , then the particular in-
tegral
e AT DL Ty

PERERIEADYT D) T )

D)
18.6. Alternative method of finding 7= X.

When the auxiliary equation has real and distinct roots, cor-
responding to each such root m, there will bea partial fraction
of the form A/(D-m), where A is a known constant and hence

f_(_ID_) X can be written in the form
A, A,z
X + 5= W , A

D -m,
each term of which can be evaluated by the method shown below.

‘ ] - Mmx - "l'.ll
an’Dvmx'—D—mﬂ ¢ X=ae De X

: J-t""xdi.

5o X m pm2 (1)
This method is illustrated in Ex. 8 of Art.18.7.
18.7. Illustrative Examples.

Ex.1. Solve (D? + 4)y = x? .
Here, the auxiliary equation m? + 4 = 0 hasroots m =% 2i.

the complementary function = Acos2x + Bsin2r.

i e L 2
Particular Integral = Y3t = W x

=3(1 +{ D?) ' x?

=1(1+3D2 4 LD~ )22 =q(x? -])
. the required general solution is
y = Acos2x + Bsin2x + J(x'-3).
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Ex.2. Solve (D -3)y = 2e'*
Here, the auxiliary aquation (m - 3)? = Ohasroots 3, 3
. C.F= (A + Bx)eds

Pl.= —--l—--Zz*’ :————-52“‘ = 2pix
i (D - 3)? (4 -3) '

. the general solution1s y = (A + Br)ed® 4+ 2et%
Ex.2. Solve (D - 2)' y =6e2% .,

Here, the auxiliary equation (m - 2)? = 0 has roots 2, 2.
HCFE=(A + Bx)el®,

1
i et
[I‘(D~2}’

. the general solutionis y = (A4 + Bx)el¥ 4 3x? ety

felx = &"511- 1 = belx %,: =3xletr

Ex. 4. Solve :—:1, +y = coslx.
The equation can be written as (D? + 1)y = cas2r.
The auxiliary equationm?® + 1 =0 hasroots 1.

. CF=Acosx + Bsinx.

1 cos 2x 1
Pl —b-r:—TCGHZX:Wa—ECO!zx

. the general solutionis y = Acosx + Bsinx —%coslt.
Ex. 5. Solve (D* + 1)y = cosx.
AsinEx 4, C.F. =Acosx + Bsinx.

But the method of obtaining the particular integral employed in Ex. 4
fails here. We may, however, substitute the exponential value of cos r and
proceed. Alternatively, we may proceed as follows :

1 1
Let Y=-5-,--;—]cosx '“dZ=BTT|’l“"

1 i 1 ;
bT:'i{COO'I’ + isinx) = Er_;_i‘“

1 : 1
LS e T ] L

oY +iZ
= gi¥

=1

1 D 1
e il e
£ 2:0.!“21 : AD’
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= :“51:- = -2:’- {(cosx + isinx).
. equating the real part, Y = jrsinx.

. the general solutionis y =Acosx + Bsinx + xsinx.

d dy - .
Ex. 6. Salw‘—’}—z |‘x+53¢' 10sin x.
The equation can be writtenas (D? - 2D + 5)y = 10sinx.
The suxiliary equationm- -2m + 5 = 0 hasroots 1% 2i.
. C.F.=¢*(Acos2x + Bsinlx);

—-—-—-—1 10si :r——---v-------—-----—-—-—l‘DI +S)s 20D
Di-2D+ 5 ""R* (DT 4+ 5) —4D?

_ _D* +2D + 5
Fi{-17+5) + 4

=1(-sinx + 2cosx 4 S5sinx) = 2sinx + cosx.

P. L = 10 sin x

10sinx = }2- (D*+ 2D + 5)sinx

.. the general solution is y=e*(Acos2x +Bsin2x) +2sinx + cos x.
Ex.7. Solve (D! — 4D + 4)y = x?e?* .

The auxiliary equation m? - 4m + 4 = Ohas roots 2, 2.

4 CE=(A + B)el™y

o L et 3.1
P.l.=D,_4D"x’t Dot xlgi®
5
=al® -[!)_'rl =gt % :

. the general solutionis y = (Ax + B)el® + et x¥.

1 .
Ex. 8. Evaluate DT+ 3D + 32 ( LS
1 '
Given expression = D+ TND+ D) i s KD

1 1 .
=[D+l_D+E]"
- —— gt o 1

D+1 D+ 2

et [ere -c"!ljl" REIPRR
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Let !.:Ic' ¢e*"dx and I *-Jr" et dx .
Put ¢®* =xz. . e dx = dx.

I =I¢= dr=ef = et

Iy =J'!¢' dz = ze! -Jll"l- ze -el =gV (z-1)=m 2** (& -1)
s from (23. the given expression

=e~F gef _ g-1m ¥ (px _ 1)

= g8 get,

18.8. Two special types of the Second Order equations.

(A) %:-g- - £00,

Integrating both sides with respect to x . we have
% =f(x)dx +A = ¢(x) + A, say.

Integrating again,
y=/ ¢(x)dx + Ax + B = w(x) + Ax + B, say.
Note. As a generalization of the above method, we can solve the equ-

aton -:—l:! = f{x)and in particular 5-5-! = 0, by successive integraion.
d:
(B) -d-;; =f(y).

Multiplying both sides by 2 7%, we get

dy d'y _ 4y
2 dx dx1? 2f(y) dx '

A I8y, &
oF @ {dx] =Yg
Now, integrating both sides with respect to x, we have

dy \ d
(ﬁ) - 2];(;) Efdz +C = ij(y)dy # €y
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Let 2[f(y)dy =o(y).
%—% =+Yo(y) + C, .

d
sodx = % | ICIETN
=+wy(y,C ) + Cy(say).

18.9. Illustrative Examples.

, whence, integrating,

]
Ex. 1. Solve %.! = ¢OS MY .

Integrating both sides with respect to x, we have
L. . sinnx + A.
dx n 1
Integrating again, y = - s cosnx + Ax + B,
which is the general solution.

Ex. 2. Solve -d_.x-; - ;‘-5 5
Multiplying both sides by 2 % , we get

iy Ly &y 4 (% )' ddy
2‘:‘.\" 2y’dr o \dx s ylidx
Now, integrating both sides with respect to x, we have

(4) u] o

2a 1 _ a C]!t-!
i B i

L4y _ NGyl - & _ d
- I i-—l-‘!y—'-"-‘, or, dx = % q(—cll’;‘!__"}

s=:tclic.y‘-n+cl.
O Sii\lclyi—l.

C1'(I - C:)' =c!y'_‘-
This is the general solution.

mn
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Note. An alternative method of procedure for solution of the equation of
the above type, ie., of the type -—1 =f(y) isindicated below

v By W !r. L4
el A e iy-d{ 4

dy '
d a
% p?'5=;; ,or, pdp = ay 3 dy.
- i i _1_ O El
R mlegnhns.zp = 5 ¥t
; d )' '
1 L |
pl., e, (4x
Now the rest is the same as before.
: dly Ay ¥
Ex. 3. Soloe x s dx+ny-0.
Put x = e* ,sothatz = logx;
lhen‘—‘?=¢' =X,
Ldy _dydx _dy L’.v_.!;( dy 1’:’.:(“ :‘..Y.)
4z T dx dz ’ix‘”“’d;*”dz &) a=- (& 2)

. . y dl

I ¢ x =L “ # i

. the given equallcm reduces to
dz' +nly =0.

Multiplying by 2 Ti'f and integrating with respectto z,

( y! = constant = nlal (say).

?-E..inwf —-y?

d
or, :tq(?y_?’:udz.

. integrating, ¥ cos”! -E = nz + €,

whence y = acos(nz + £),0r, y =acos(nlogx +¢) is the required
solution, a and € being arbitrary constants of integration.
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18.10. Equations of the types

M E(EL A x) =0,
(B E(FEL - L .y)=o.

(A) These equations do not contain y directly. The substitu-
tion is 5% ( derivative of the lowest order ) =

( B) These equations do not contain.x directly. The substituion
is ;x!= 3.
Then A1 o 82 4 L (d2)) o

axr " Pay Pe 3y
18.11. Illusirative Examples.
Ex. 1. Solve' 2x ﬂd—z" (d..-.’

dx? dx?

Put—¥=q ——-f 2—

the given equation becomes
2x L. g-4q* +1=0.

?— ,or,log(gq?-1) = log(gx).

&
L}

q‘ -1=6x.

. g, ie, z-? =¥(1 + e,x).

%:—3%‘-(] +c,:)’-" + £ .
y-%‘-s-lc‘-(l + X)) +ax + o,

-T;c_r“ +ax)? v aqx 0.
1

156y = 4(1 + ax)¥ ¢ ar + 6.
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d_:x- _!1 2 [(ﬂ I- d? l} lﬂ‘
ex 2. sooe y - () {@)-(F)'} -0
Bop, 5y %
Put =P 7;{ p‘y.
. the equation transforms into
ool (§)
& p +{p? - p? dy
~p=4qy + (1 =-q%)"2 ,wheregq =
This is Clairaut’s form.

np=Ay +(1- A1) = Ay + k(say), where k =(1- A1)/

- .
Ay + k

n
=0,

.

dy

dx =
= r-oB:-J‘Tl—lug{ﬂy+l:)=-}‘-logllly+(l—-1|')”']‘

EXAMPLES XVIII(B)

Solve the following equations :-

L d? d:?
1. W sy =243 @Hry=x.

o i d — d
2. Gtz (i) T + 3L - 6y = x.
3. () (D +3)t y =251, (ii) (D? 4+ 9)y = 9e?x .
o 2 ., dtb
4. (:)H-r—a!y=e". (u)-d;!,—yue“.

dx
5. () (D? —4)y =sin2x. (i) (D* + 4)y = sin2x.

(iii)-g—;-!-‘lﬂ-r Jy = 222+,

o B3 ; o AR AL
6. (:}—1+ y = sinx. (i) 2=7 + 4y = xcosx.

2
(iii) -::—;% + y = cos’x (iv) g—;% + 4y = xsinx.
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7. () (Dt-1)y =xe’r. (ii)) (D*- 9)y = e>* cos x .
8. (i (D? + 2D + 2)y = xe~*.

(i) (D? - 1)y = e*sinjx.

(iii) (D! + 1)y = sinxsin2x.

(iv) (D*-D-2)y = sin 2x.

(v) (D-2)1y =x%e’* . [C.P."86
Ldy .d .
9. g2 ey=erver.
" i d -L d
(11)—3;‘!—2#’-2%1-k’y:e‘.(m)#—zd—f+y=e'.
1
(iv)%:-,'/-y=coshx. v) %-y:u' sinx.

d? d ,
10, r Y - x ey =logx. (Pux=er)  (C.P.785)
11. (x2D* + xD + 1)y = sin(log x?). [Putx =¢*]

12. (i) Show that the general solution of the equation for
S.H.M,, niz.,

d1x

7 nix,is x =Acos(nt + €).

(ii) Evaluate 1% e** cos bx and hence show that

jesx cos bxdx = (acosbx + bsinbx).

P s
13. Solve in the pafticular cases :-
1
(i) id;?"':" = sin2x;whenx =0,y =0 and%} = 0.
(ii) y» - 5y, +6y = 2¢* ;whenx = 0,y =land y;, =1.
(iii) (D? -4D +4)y=x*;when x=0,y=3and Dy=1.

(iv) (D* -1)y=2;given Dy=3,when y=1;and x=2,
when y = - 1.
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Solve : -

dl n,’ a?
14. (i)x-;;%:i. (u)?f-,-n-.
15. (i) yacos?x = 1. (ii) y'ys = @

16. y" = tan ysecly,giveny, = 0, wheny = 0.

. dly’ 1 I S
17. (i) a1 W 5 (ii) a-;*;y-f Y = 0.
d’y - v, @31X
18. (i) ax =x?sinx. (ii) ;TN =gt
5 x4 o dy e 42 _ 4y
19. () x et » 2 T - (ii) @ g
aty dy _,
20. FIE +dx-e b

21. (1 + x¥)y, + 2xy, = 2,

d? d
22. y-&-;li— (-&5)’ +ytlogy = 0.
dly  (dy Yy, 4y _
3. g4+ () + =0
24. y: - (y| ): = 0.
25. yy: + (3 )7 =
dty _dy _
26. % T 0
ANSWERS

1. () y =Acos2x + Bsin2x +3(2x + 3).

(i) y = Acocx + Bsinx + (x? - 6x).

¥y 1
X v gx.

2 ()y=Ae?* + B+ }‘:’

(ii) y = Ae?* + Be-2r -%(1‘ -&%}.
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3 (l)ya(C, +C;2)¢"' + ¢17
(i) y =Acos3x + Bsinlx +%t“ .

4 (ly=0Ce®™ 4 Ge ™ +-2,%¢“‘

) y = Ae* + Be-® ¢ jetr,

(i) y =Cye* + Cue?* » xe3* |

S. () y = Ae?™ 4B % —1sin2x.

(i) y =Acos2x + Bsin2x - jxcos2x.
6. (i) y=Acosx +Bsinx -xcosx.

) y = C coa2x + Cy8in2r +3xcosr +2sinx.
(iif) y = A cosx + Bsinx +%--'ic0!21.

(iv) y = Acos2x + Bsin2x +}x —-J‘Txcoslt —#r‘ sin 2x .

7. M y=Coer + Ce* +3e?7 (3x - 4).

() ¥y = Ce3* + Cred +4¢°* (6sinx -~ cosx).

8 (i) y+e *(Acosx + Bsinx + x).
(ii) y = Ae* » Be-* ——%—e'{sin%x+ 4cosix).
(i) y = Acosx + Bsinx + ;xsinx +;;cos3x.
(v) y = Ae-* + Be* + 2{cos2x - 3sin2x).
(V) y =e?™ (A + Bx +|—'r-z‘)_

9. () y =e-*(C +Caretxt)ster,
() y = (A 4 Bx)eP 47 (1 -k)-?,
(i) y = (A + Bx *%x"')r’,
(v) y =Ae” +Be-* +lxsinhx

x
(v) y = Ae?+ Be '-';'-3' {{10x + 2)cosx + (5 -14)sinx)

.

10, y = (A + Blogx)x + logx + 2.

11. y = Acoslogx + Bsinlogs —%sinlogx‘.
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13. () y =3sinx -Jsin2c. (i) y =e*.
(i) y =3xe?™ ¢2x? +3x 43 (V) y+ 2 =gx-2,
14. (i) y = xlogx + Ax + B. (i.i)y=(!-2)¢"+zl.x+-8.
15. (i) y = logsecx + Ax +B. (i) C,%?=a + (C; 2 C, 1x)? .
16. (siny + Ce* )(siny+C¢“’)-D.
17. () 3x =2¢Vy - 2C, N(Vy + G, )V 4+ G, .
(ii)m~—‘,::—llogi\rc_,}+m?}=ccl 2.1+ G
18. () y =C, + Cox +(6 - x?)sinx -4xcosx.
(i) x =ge¥ + Gt + G 19. () y =1Ax> +B.
(ii) alog(y + B) =x+C. 20.y =Ce 7 4+ G, sler,
21. y =log(1+ x?) + Atan"'x + B,22. y = ¢AsinzsBcosx
23. 7 (C, -e¥)=GCs. 4. e (Cix + Cy) = 1.
5. yl=22 + Cix + G . 2.y =Cie* + Cre-* + Gax + C, .

18.12. Equation of the nth order.

The linear differential equation of the nth order with constant
cocfficients is

dnr dn-1 d

:!-;:‘Y+ 1'3—‘711’4- ven + Pay zf-l- Pey=X., ... (1)
or, symbolically (D" +P,D*-! + P,Dr 2 4, 4 Puly=X, (D)
or, more briefly f(D)y =X, R )]
where P, , Py ,...., P, are constants, and X is a function of x
only, or a constant.

The method adopted in the case of the solution of the second
order equation admits of easy extension to the above case. Thus,
the general solution of (1) consists of two parts (i) the Compl. ien
tary Function and (ii) the Particular Integral , the complementar)
function being the general solution of

f(D)y:O vee (4D

and the particular integral being the value of (D) X.
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Assuming, asbefore, y = ¢™* as a trial solution of (4), we shall
find that y = e™ will be a solution of (4),
if flm)=0,ie, ifm"+Pym*-1+. . +P,=0_ ... (5)
Equation (5) is then the auxiliary equation of (4).

If the auxiliary equation (5) has n real and distinct roots,
TIZ., ML My L. ,m. , then the complete solution of (4) is

y=Cie™i* o Ge™1r 4 ..., +Cqe™mnt

If the auxiliary equation has a multiple real root of order r, and
if this root be o, then f( D) contains (D - a)’ asa factor, and
the corresponding part of the complementary function will be the
solutionof (D - a)ry = 0.

Assuming, as before, y =e™v,
(D-a)’y=(D-a)esy =e=D"y

* and the solutionof D'y = 0 is, by successive integration,

v={Cs + Cix + C3x¥ 4 ... # Cpq a7V ),

whence y = (Co + Cix + Cax?+ ... +# Gy x'") ) e
is the corresponding part of the complementary function.

If the auxiliary equation has complex roots a * i} , the cor-
responding part of the solution is, as before,
y =e* (A cosPx + Bsinfx),
and if a + if are double roots of the auxiliary equation, the cor-
responding part of the solution will be
e [(A, + A;x)cosPx + (B, +B,x)sin Bx].

The method of obtaining the particular integral of (1), when X
has those special forms [ See Art. 18.5 ], is essentially the same as
shown in the case of the second order equations.

18.13. Illustrative Examples.
Ex.1. Solve (D? + 3D? + 3D + 1)y =¢- %,

Here, the auxiliary equation s m? + 3m? + 3m + 1 = 0of which
therootsare = 1,-1.,- 1. - CF=z=e"(G + Cx + C3x?),

Inlegral Calculus (main) -27
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1 Ty
P.. T s ——
I‘(D’+3D-¢39+l]' (D« Il‘f
= ‘ = W!,_ - II
=t'(D_1+l“|—-!'D'|--l -al",
.. the generalsolutionis y = ¢ o + Cix » Gux? + 1x?).

Ex.2. Soloe (D* + 2D% + 3D + 4D + 1)y = ze* .
The equation can be writtenas (D? + D)+ 1)y = xe?*

Here, the auxiliary equation is (m? + m + 1)? = 0;1t has double
complexroots -3 ¢ i3V3, -1 +13V3
o C.Fis e ¥ [(Ay+ A;x)cos(V3x) + (B, + Byx)sin (3v3x)].

——--1—-—12'—!' ! T
(D*+D+1)2 " [(2+«1)2 «(D+1)+1])3

:e‘———-«l——-—.wur=r’«![ ! ]x
e (D 4+ 3D 4+ 3)1 9 L(1 + D1 ,;m}r

=e*. 3 (1 +D(1+3D)) *x = e H1-2D+ ..+ . )x

P.lL =

_-%c' (x =2).
. the general solution is
y= e [(A + Aix)cos(y ¥3xr)
+(B + B,x)sin(%wﬂx]] +3ef(x-2)

dat

L ]
Ex. 3. Solve 7‘:-;-{-2-&1‘ 4y =sin(2x +3).

The equation can be written as
(D% - 1)2y =sin(2r + 3).

The auxiliary equationis (m* - 1)? = U itsrootsare 1,1, -1, -1
i,i,=-i,-1. Hence, .
CFise* (A + Az + e (B, + By1)

+(C) +Cyx)cosx +(D.¢D;x]s'mz'. (1
P.I.::{—D;I_—”.IS"II“I(ZX!3]=Tmﬁ%_:ﬁlﬁin‘2l1j)
:-i%sin(Zxo?.) R )

:Adding (1) and (2), we gel the general solution.
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EXAMPLES XVIHIC)

Solve :-
2%y
1. () =5-y=0. [C P.1946) (ul
Dy 44y o ‘
2. (D) o= 3“ +2y=0
Ay 'y iy .
Wz -m-i5=9
gig 2, ¢ B¥ o L8, 4,
(i) il b s A 8= i d
(iv) (D + 1)2(D* + 1)y =0.
— L d?
3. l)ﬁ%—yar’--x'. {1.)?&

4, (V(D> -Dly=er + -7,
{35y {3 .. 1)y = sin{3x + 1},

3 7
5.%;-‘1:--4%1-_—;455;%*2‘?:0.

6. (D? + D -D- 1)y = sintx,

3 ¥ p
7'5__3_';‘{;}"_.,45,:3:;.

dx’ T odx?
a'y . d e
8. P "'FE + 4y =e% siny

9. (D* -3D? +4D - 2)y

2¥ % COS X,

10. (Dt - 4D + 3D + 4D - 4)y = 17

M. (DY + 1)y = 2cos? 3 x -1 +¢7,

12. (D + 2D + 1)y = cosx

13.(D -1 1(D? + 1)y = 2%+ sin? 1x.

= ¥ % ¥,
wx? dx?

Rt SEY %‘-"
15."" 5——1 ay

&
= 360 sin :E X €os

X
2

-k=0

387
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10.

12.

13.
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(i) y

' INTEGRAL CALCULUS

ANSWERS
= Ae* + ¢ */2 (Bsin}V3x + Ccos ;V3r).

=Ae* ¢+ Be-* + Ccosx + Dsinrx .

(i) y =e* (A + Bx) + Ce-?* . (i) y = A + Bel* +Ce-~
(iii) y = e * [(A + Bx)cosx + (C + Dx)sinx].

(iv) y

=¢*(A + Bx + Cx?) ¢+ Dcosx + Esinx.

(i) y = Ae* +e *R (BsinjV3x +Ccos 1 V3x)-x? +x1- 6.

1

(i) y =A + Bx +Ce~ % 4 5x" —-%x" +x? .

() y=A+Ber + Ce~* +-;—.'t'(¢"+t "y,

(i) y = e"""(z\ms1§ x + Bsin = :r) +Ce®

2 2

+icos(3x + 1) —;sin(3x + 1),

(A, + Asx)e® + Aye¥

Ce* +(C +Cyx)e~% + osin2x ¢ gcoslx -1 .

= ¥ (C) + Cax)+ Gze-® +1edx,

= Cye™ ¢+ e*(Cycosx +C; sinx)

Hor (Lepsd fd
-2 (zwsters.nJr)_

¢* (Cy +Cycosx+Cysinx) +xe® + i%{co:-ix'«asirl.x)
.':ff.-,+L‘)I}!“"‘f__1!’*th"i--:-r?fu.
= ¢ |, cosax + Cysinax] + e* [C; cosar

- I
+Cysinar] +#i(cosx + e %), where a =1/V2.

= (G + Gr)sinx+ (G +Cyx)cosx-gxtcosx,

(C +Cix)er +(Cy + Cyx)cosx + (Cs + Cex)sing

Yoyl ¢ 1 _ 1 2l g
+ gerz? ¢ g xlsinx.
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14. v
15. v

(C, + Cax)e* + Cs +3e™ 4 2x7 +2x.

C, cosx + Cy sinx + C; cos 2x.
+ Cysin2x +sindxr + 3sin3x

[}

18.14. Homogeneous Linear Equation.

An equation of the form

dr d
x"-a—x-_x+ Pyx==1 axnoT p

J :
+P._,IE§+P.y=X, . (D
or symbolically, (x* D* + Pyx"-' D*-' + ...

+ Py yx D+ PYy=X, ... (D
where P, , Py , ..., P, are constants and X is a function of x
alone, is called a homogenzous linear equation.

The substitution .
x =e*,ie, 2 = logx

will transform the above equation into an equation with constant
coefficients , which has already been discussed in Art. 18.12. Here
the independent variable will be z.

; dy _ dydz 1dy.
N dx dz dx = x dz ' s sy A

ﬂ_i(lﬂ)__.lﬂ,,lf_’ll
dx? dx \xdz/) ~ x?dz x dz' x
o1 fa'y  dy
= x‘(dzi_dz)' e s ()
- dy 1 (dy  ,dly . dy ’
Similarly, Epm e W e 3 7 + zdz ) I -

Let us write & Ior-;‘; ; with this notation (3) , (4), (3) can be
written as

LY

dy
-l ﬁy, ¢ . b))

1
:rj—x-';-'=a(a—ny. )

X
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3
v S 25 (5o 15 - D1y @)
x":—;_‘r=6(5—1)15-21..(5-—n+Il)- i 49)

Note. This is sometimes called Cauchy zqulliun,
18.15. Equation reducible to the Homogeneous Linear form.

An cquation of the form

{ax + b)" L P, (ax + b))~ 413,

dx" dx™ 1
...+P..1{u+b)%§+]’.y=x, R & i)
where P, ,P,, ..., P, arc constants and Xisa function of x alone

can be reduced to a lincar equation with constant coefficients by
the substitution ax + b= z.

Note. This is sometimes called Legendre equation .

18.16. Illustrative Examples.

d? d? d

s 2 ¥ i & Y a9y = r?

Ex. 1. Solve x 3 + 3x ;o 21:‘{; + 2y = x1

Put x=et, ie, z = logx.

Then by Art. 18.14, the equation transforms into
I8(8-1X8-2)+38(83-1)-26+2]y =%, ... (1)

where 6:;—:. or, (6-1)2(8+2)y=c¢e™.

. the roots of the auxiliary equationare 1,1, -2
The CF is ¥y = (G + CGzle* +Cye ¥,
1
tEg L
7P LY R

. the general solution of (1) is
y =(C + Cazde® + Cye-u 1--:.;1! )

And P. I is el

Hence, the general solution of the given equation is

y=(C + Cylogx)x + Cyx-1? 1.%,,:_
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Ex.2. Solve (x? D? ¢ 2xD)y =xe* .
Put x =e®, ie, z = logx.

.1 by Art. 18.14 , the equation transforms into
[8(5-1)+26}y=¢'¢", n
‘here & =£ , or, (82 + &)y = ¢! et
" ). roots of the auxiliary equation are 0. - 1.

. the CFRisy=C +« Ge ',

- l z ]
PL=gm>n ¢ ¢

1 1 x
=(3-n)
=‘l&*‘!¢"_ﬁl+ et e’
=I¢l g"d;-g-lje“ ert dz. [ By Art. 18.6 |

= ett-g-? {(e'—l)c" J=e-%ett
[See Ex. 8 of Art. 18.7. ]

. the general solution of (1) is
y=C + Ge* ¢ g% ettt

Hence, the general solution of the given equation is
y=GC + Cix-V # x-YVeb,

EXAMPLES XVIIKD)

Solve the following equations :-

H
1. x’—%-{x%+6y:x.

2. (x'D? + xD - 1)y = sin(logx) + xcos(logx).

d?
3. x‘#+51%+4y=1‘,
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4. (1‘0'—2]y=x‘+-}.

4y i S G
5. w0 A2 X & oo,

6. (x2D3 + xD -1)y = x1.

3
7. x’%¥+x%}-y=x.

d? d .
8. (x+2) J-dtx+2) v gy s,
9. (x'D* + 6x°D3+ 9x'D?*+ 32D + 1)y = 0.
d? d? d
10, x4 E{+3132;¥-—2x‘7‘-£+2xy=logx.
ANSWERS

1. ¥y = Gx?4+ Gx? +%x.

2.y = Cix . Cyx? —%sin(logx)

+ ’—; [2sin(logx) —-cos (logx)}

o U

y =(C + Glogx)x-?+gx*.
y=GCx' + Cx? +ixllogx - Jx ' logx.
y=Gxls Gx' + G .
y =[G + Glogx + Cy(logx)? Jx + x*.
7. y=1C + Clogx + Cy(logx)?}x +ix(logx)?.
8. y=Ci(x+2)? +G(x+2) +1(3x + 4).
y=(C + C; logx)cos(logx)

+ (Cy +Cy lngxlsin“ag:}
10. y = (G + Glogx)x + Cox~? + {x ' logx.



CHAPTER XIX
APPLICATIONS

19.1. We have already considered in the preceding chapters
some applications of differential equations to geometrical probl-
ems. Here we shall have some other applications of differential
equations.

19.2. Orthogonal Trajectories.

If every member of a family of curves cuts the members of a
given family at right angles, each family is said to be a set of or-
thogonal trajectories of the other.

( A) Rectangular Co-ordinates.
Supose we have one-parameter family of curves
f(x,y,¢)=0, sase ALY

¢ being the variable parameter.

Let us first form the differential equation of the family by dif-
ferentiation of (1) with respect to x and by elimination of ¢ [ See
Art. 15.2 ], and let the differential equation be

o(xy.H)-o0. sqiss 109

If the two curves cut at right angles, and if y, v’ be the gngles
which the tangents to the given curve and the trajectory at the com-
mon point of intersection, (say x,y), ‘Tmake with the x- axls we
have w ~ ¥y’ = +x ,and, therefore, tany = - .cot y:" . Since
tany = 7%, it follows that the differential equation of the system of
trajectories is obtained by substituting

A, o dxdy
1 / 1 ¢+ e dy for - mI(Z).
Thus, the differential equation of the system of orthogonal trajec-
“ries is

o ( x,y,—:—:)=0. ™



394 INTEGRAL CALCULUS

Integrating (3) we shall get the equation in the ordinary form.
( B) Polar Co-ordinates. .

Suppose the equation of a given one-parameter family of cur-
ves be

f(r,0,¢) = ve (1)
and the corresponding dlfl'erent:al equa.hon obtained by ellmmat-
ing the arbitrary parameter ¢, be

r(re,“ =0, e

If §,6 " denotethe angles which the tangents to the given curve
and the trajectory at the common point of intersection, ( say r, 8),
make with the radius vector to the common point, we have, as
before, tan¢ = - cot g’

Sincetan ¢ = r (d8/dr ), it follows that the differential equation
of the system of orthogonal trajectories is obtained by substituting

Tl o g L b
ol for r 2, . -t p for T in(2).

Hence, the differential equation of the required system of orthogonal
trajectories is
do
Fr.0.-r 3)=0. S
Integrating (3) we shall get the equation in the ordinary form.

19.3. Illustrative Examples.
Ex. 1. Find the orthogonal trajeclories of the rectangalar hyperbolas
xy =al,
Differentiating xy = a? with respect to x, we have the differential
equation of the family of curves
3

and hence, for the orthogonal trajectories, the differential equation is

+y=0 N )]

~xd—+y =0, or, xdx - ydy = 0.
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Integrating this, we have x? - y? =c?  therequired equation of the
orthogonal trajectories. It represents a system of rectangular hyperbolas.
Ex. 2. Find the orthogonal trajectories of the cardioides
r=a(l -cosB).

Since r =a(l - cos8), log r = loga + log (1 - cos@).

Differentiating with respect to 8, we get the differential equation of
the family of curves >

1 dr__sin gy ™
rdo 1 -cos®
the differential equation of the system of orthogonal trajectories is
1 ( , de sin 8
af 2Ry e T
r dr 1-cos®’

dr 1 - cos@

de =
o Tt Tsne %
sin 8
or, e et T O =0
r | + cos®
integrating, log i{»_:m-é = logec;

ie, r=c¢c(l1 + cosB)
represents the required orthogonal trajectories.

Ex. 3. Find the orthogonal trajeciories of the system of curves
r" = 2" cosnb.

Since r™ = a* cosnB, nlog r = nloga + logcousnt

Differentialing with respect to 8, (and thereby eliminating @), we got
the differential equation of the family of curves

1 dr  sinn@
r de " cos n@
the differential equation of the system of orthogonal trajectories is
1 ( , d8 sin nb
- —-rl = S = —
r dr cos nB

dr  cosn®

T sin n8

Integrating , log r - -:—' log sin nd = logrc,
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s r
ie, log Tonne) /s = lege.
r® = c" sinnd.
19.4. Velocity and Acceleration of a moving particle.

If a particle be moving along a straight line, and if at any in-
stant t the position P of the particle be given by the distance s
measured along the path from a suitable fixed point A on it, then,
v denoting the velocity and f the acceleration of the particle at that
instant, we have

v = rate of displacement
rate of change of s with respect to time

ds
de ’
rate of change of velocity with respect to time

_dv_dis
dt — de2

If, instead of moving in a straight line, the particle be moving

in any manner in a plane, the position of the particle at any instant

t being given by the cartesian co-ordinates x, y, referred to a fixed

set of axes, the components of velocity and acceleration parallel to

those axes will similarly be given by

and f

]

. . dx
Uy rate of displacement parallel to x-axis = G

vy rate of displacement parallel to y-axis = gf ,

dix
fa =rateof changeof v, = Ft(?t) -

H
fy =rate of change of vy = %l( dl) = :p

The applications of these results are illustrated in the follow
ing illustrative examples.
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19.5. Illustrative Examples.

Ex. 1. A particle starting with velocity u moves in a straight line with a
uniform acceleration f . Find the velocily and distance travelled in any time .

s denoting the distance travelled by the particle in time t, the accelera-
tion of the particle is given by the expression dis / dit?, and 80, in this case,

dis/di? = f;

integrating , LI ft + A, where A is the integration constant.

dt
Now, ds / dt is the expression for the velocity » of the particle at time ¢,
and when t =0, ie, atstart o =w. .. u =04+ A.
ds
Hence, v—a—lzﬂ*u. MR | |

Integrating (13, s :%ﬂl + ut + B,
where the integration constant B is found in this particular case from the
factthats = 0 whent =0, -~ B =0.

1 1
Hence, s =+ft? + ul = ut +ft?.

Ex.2. A particle is projected with a velocity w atan angle @ lo the horizon.
Find the path.

Taking the starting point as origin, and taking the axes of co-ordinates
hori-ontal and vertical respectively, if x,y denote the co-ordinates of the
particle at any time t, since there is no foice and therefore no acceleration
in the norizontal direction, and since the vertical acceleration in the horizon-
tal dircction is always the same = g downwards, we have in this case

dix ay
TR TE Sl
; A dx d!
Ilence, integrating, 3 =A, = -gt + B. soe A1)

But, dx / dt, dy / di rcpresent the horizontal and the verticel com-
porents of velocity respectively, and these, al starl whent = 0, are given
by ucos @ and usin .

wuecosa = A,usina =0+ B,
whereby the integration constants are obtained.

Thus, (1) gives

2 - ucosa, g-ti = usina- gf.
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Integrating again, x = utcosw + C
and y = u!sinu—%sl’ + D.

Now, since x=y =0 whent =0, we get from abore C=D=0.

ut cos o
utsina -3 gr?.

Hence, x
and y

Eliminating t, the path of the particle is given by

y1

¥ REUDD L oy

which is evidently a parabola.

19.6. Miscellaneous Applications.

The examples below will illustrate some other applications of

different.al equations.

Ex. 1. The population of a country increases at the rate proportional to the

rumber of inkabitants. If the population doubles in 30 year, in how many year will
it treble ?

Let x be the population in ! j.rear.

dx _ . . _ i

ar S - solving, x = Ce¥ |
Let x=x,whent =0. » C =1xp; LoX o= xgeM |
When x = 2xp, t =30; oo 2xp = xgeXk; 2 = eWb
When r = 31’!_1 ,lett = o 319 = Ig!”’.‘ R Ll

0k =log? . T _log3 48 .
and kT = log 3 } BT leg 2 - 30 WRrodimately.

T =30 x ‘F' = 48 year approximately

Ex. 2. After how many years wiil Rs. 100 , placed at the rate of 5% con

tinuowsly compounded, amount to Rs 1000 ?

Let x be the amountin 1 years.

dx 5 1
i —,”:—nx = kxsay, where k = 5

(=)

solving ,x = Ce¥ .
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When ¢ = 0,x = 100 5= 100 Sox = 100e
When x = 1000, let 1 = T. =~ 1000 =160k . - T = j0.
kT = loge 10 = 2.30 approximatcly.
T=(1/k)x230 =20 x 230 = 46 nearly
the required time is 46 ycars nearly.
EXAMPLES XIX

Find the orthogonal trajectorics of the following families of cur-
ves -

1. () y=mx. Gi} y = ax» .

i

(i) x* + y? = 2ay. (iv) y? =dax.

(v) ay? = x? (vi) x* + 2y?-= a3,

(Vi) x¥3 » yi? = @23 . (viii) x? +y? +a? =1+ 2a4p.
{ix) r- =a cos 0. (x) r? =a?cos 20 .

(xi) {1 + cos®) = 2a. (xiii) r" sinn® =an ,

2. (i) Show that the orthogonal trajectories of a system of con-
current straight lines form a system of concentric circles, and con-

versely.
[ Take the point of concurrence as origin. |

(ii) Show that the orthogonal trajectories of the system of co-

axial circles
£t 4+ y? + Dx +c=0
form another system of co-axial cireles
xt xylw Uy —c= 0,
where Aand p are parameters and ¢ is a given constant.

(iii) Show that the orthogonal trajectories of the system of
circles touching a given straight linc at a given point form another
system of circles which pass through the given point and whose
centres lic on the given line.

3. (a) Show that every member of the first sct of curves cuts
orthogonally every member of the second

P rrrd  gpd yiryel

_y‘+y+1 x o+ x + 1
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(b) Show that % '
(i) the family of parabolas y* = 4a(x + a) is self-or-

thogonal. i

(ii) the family of confocal conics

i y? :
e, el - v (i 1 ( A being the parameter )

is self-orthogoral.

4.(i) Find the curve in which the radius of curvature is propor-
tional to the arc measured from a fixed point, and identify it.

(ii) Find the curve for which the tangent at any point cuts off
from the co-ordinate axes intercepts whose sum is constant, and
identify it.

5. Find the cartesian equation of a curve for which the tangent
is of constant length.

6. A particle is said to execute a Simple Harmonic Motion when
it moves on a straight line with its acceleration always directed
towards a fixed point un the line and proportional to the distance
from it in any position. If it starts from rest at a distance a from
the fixed point, find its velocity in any position, and the time for
that position. Deduce that the motion is oscillatory, and find the
periodic time.

7. A particle falls towards the earth, starting from rest at a
height h above the surface. If the attraction of the earth varies in-
versely as the square of the distance from its centre, find the velo-
city of the particle on reaching the earth’s surface, given a the
radius of theearthand g the value of the aceleration dueto gravity
at the surface of the earth.

8. A particle falls in a vertical line under gravity ( supposed
constant ), and the force of air resistance to its motion is propor-
tional to its velocity. Show that its velocity cannot exceed a par-
ticular limit.
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9. A particle moves in an ellipse with an acceleration directed
rowards its centre. Show that the acceleration is proportional to its
distance from the centre.

10. In a certain culture, the number of bacteria is increasing at
a rate proportional to the number present. If the number doubles
in 3 hour, how many may be expected at the end of 12 hour ?

11. After how many year will a sum of money, placed at the
rate of 5% continuous'y compounded, double itself ?

12. Radium disappears at a rate proportional to the amount
present. 1f 5% of the original amount disappears in 50 year, how
much will remain at the end of 100 year ?

13. A tank consists of 50 litre of fresh watex. Two litre of brine
cach containing 5 gram of dissolved sait are run into the tank per
minute ; the mixture is kept uniform by stirring, and runs out at the
rate of one litre per minute. If m gram of salt are present in the tank
after t minute, express m in terms of ¢ and find the amount of
salt present after 10 minute.

14. The electric current I through a coil of resistance R and in-
ductance L satisfies the equation RI + L (dI /dt) =V, where v
is the potential difference between the two ends of the coil. A poten-
tial difference V =a sin o isapplied to the coil from time t = Y
tothetime ¢t = n/ @, wherea, @ are positive constants. The cur-
rent is zeroat t = 0 and V iszero after t =/ ®; find the cur-
rent at any time both before and after ¢ =% /o.

15. A horizontal beam of length 21 m , carrying a uniform load
of w kg per m of length, is freely supported at both ends, satis-
fying the differential equation

EI%--}W:‘ -w/x,

y being the deflection at a distance x fromoneend.If y = O at
x=0,and y, =0 at x =1, find the deflection at any point ; also
find the maximum deflection.

inlegral Calculus [main) -28
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16. A horizontal beam of length | simply supported at its end
subject only to its own weight satisfies the equation
o
El o g
where E, I, w are constarts. Given - | = ¥y=0atx =0 and at
x = 1, express the defletion y intei's of x .

17. A harmonic oscillator consists of an inductance L, a con-
denser of capacitance C and an eomf. E. Find the charge ¢ and
the current i when E = E, cos @ and initial conditions are
! =qoandi = jatt =0; i.q satisfying the equations

1
u+i=£1cosm,i=ﬂ.

C: LOR 7 | dt
What hapens if m=_‘;c—'_¥-c—) ?
ANSWERS

T ) x% ¢+ y? = a7 (ii) x2 4 my! = ¢ (i) x? + y? = 2cx.
Giv) 2x! 4 y? = ¢ (y) 27 *lyt=c? i)y = x?,
(vii) x¥2 ~ gy - cun
(viil) yV(1-y2 )2 z\"(l-x')i-sin“‘yisin"x =ec.
(ix) r =csinB. (x)r? = c25in20.

(xi) r(1 -cos®8) = ¢.(xii) r" cosnb = c.

4. (1) Equiangular spiral. (ii) Parabola.
5. x =vVal_yi, 7allog(a-Ya? “yi)-log(a+Va? -y},

if y =a,when x = 0
R R R T EF e o =\-rrl”—‘cos" E . when u isthe aceeleration at

. in
a unit distance. eriod ‘.'r-l-l

7. :‘: : 10. 16 times the original number,
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11. 14 year nearly. 12. 3 of the original amouni ;

13. 5t ( 1 4+ gﬁL(-:'l-l) gram; 91 '}gram.

% o _Hr
14. For 1<-n-,, I =m[25inm: -m!.(coswr it & )]

Re
n awl =
i g et (‘”;’)' T

15. vy = 2:;. (x* - 4jx3 4 81%x); Ymax =§a%‘

w
16. y=2—4-ﬂ(x‘ -2, f"!‘).

EqC . 1
17. q =(qg -rj;";—l-z_)cos-rn-(_—i +VLC 4, sin (LCJ,

E,C
* T wic osot.

P&k ‘”»'uc i ?u U’ -m!r.c)”“ ?(LJ
E,Céo
T ieie i

WT.TZ') -1 frequency of e.m.f. = natural frequency, oscillatior

Le., resonance will take Place and the circuit will be destroyed. Before
destroying

&

§ = § coswt + %;inm+ Isin ot ;

hal

L

I

o
s-mcmu-qgmsinu+ (:;sinw+tcooM)

Lot

L



CHAPTER XX
THE METHOD OF ISOCLINES

20.1. It is only in a limited number of cases that a differential
equation may be solved analytically by the preceding methods. In
many practical cases where the solution of a differential equation
is needed under given initial conditions, and the above me-thods
fail, a graphical method, the method of isoclines, is sometimes
adopted. We proceed to explain below this method in the case of
simple differential equations of the first order.

Let us consider an equation of the type
d
A =fx.p. W

As already explained before, the general solution of this equa-
tion involves one arbitrary ccnstant of integration, and hence rep-
resents a family of curves, and, in general, one member of the
family passes through a given point (x,y )

Now, if in (1) we replace ;x! by m, we get an equation f(x, y)=m,
which for any particular numerical valye of mrepresents a curve,
at every point of which the value of 7%, i.e., the slope of the tan-
gent line to the family of curves represented by the general solu-
tion of (1) is the same as that numerical value of m. This curve f
{(x,y)=mis called an iscclinal or isocline. For different numeri-
cal values of m we get different isoclinals, which may be graphi-
cally constructed on a graph paper. Through different points on
any one isocline, short parallel lines are drawn having their com-
mon siope equal to the particular value of m for that isocline.
Similar short parallel lines are drawn through points on other
isoclinals. If the rumber of isociines drawn be large, so that they
are sufficiently close to one another, the short lines will ultimately
join up and appear to form a series of curves which represent the
family of curves giving the general solution of (1), and a particular
number of the family passing through a given point represents the
particular solution wanted. Ail necessary information regarding
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the particular solution may now be obtained from the graph.

Fig.1

g, As an example, let vs consider the differential equation
& =% - y?. The isoclials are given by m = x - y?,
or y? = x - m, a series of equal parabolas shifted left or right from
y? = x,( which correspondsto m = 0), as shown in the figure.
The dotted curves represent graphically the solutions of the dif-

ferential equation.



CHAPTER XXI

DOUBLE AND TRIPLE iNTEGRALS

21.1. In Chapter VI we have discussed what is mecant by the
definite integral of a function of a single variable with respect to
that variable taken between two prescribed bounds. We shall now
discuss briefly about the double intergation of a function of two in-
dependent variables taken over a two dimensional region and that
of a function of three variables taken over a three-dimensional
region.

21.2. Double integral over a rectangle.

First of all we confine our discussion of double integral of a
function of two variables over a finite rectangular region and then
we shall extend our idea to any finite region other than rectangles.

Y| .D 0
Y1)

Y
Vi -1

4]

¥
Ax, x; Xigox Xn-1 B

0 X
Fig.1
Let f(x,y)bea bounded function of two independent vari-
ables x and y defined over the rectangle ABCD , bounded by the
linesx =a,x =b,y = c,y = d.This rectangle will be denoted
by Rla,b;c,d],or,simplyby R.

let @ =% <X €S X <€ i SXyey < X = b

and ¢ = Yo €< W €Y1 < ... <Yy < Yn=4d.
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Wedraw thelines x =x, ,x=5,...,x =%, .., x =x,_,
which are parallel to OY and the lines y =y, , y = y,,
¥ =¥, :,¥ = ¥Ym-1 which are parallel to to divide the

rectangle R into mn sub-rectangles.

Let us denote the sub-rectangle R [x-, , % ;y;-, , ¥ 1 by Ry
and itsareaby A; .Wehave Ay = (x -x., Xy - yy-, ).

Let m; and M;; be the lower and upper bounds of Jix,y)
in R; . We next form the sums

E T

i=1 jmi

n -
S = E 2 My Ay .
iml j=1

Itis evident that for every mode of sub-division of R into sub-
rectangles R; ,m(b-a)(d-c)<s < S< M(b-a)d-c), where
M , m are the upper and lower bounds of f( x, y ) in R. Thus, we
can say that the two sets of upper and lower sums S and s are
bounded for all modes of division of R into a finite number of sub-
rectangles R;; as defined above.

The lower bound of the set of upper sums is defined as the
upper integral of f(x,y)over R and is denoted by I and the
upper bound of the set of lower sums is defined as the lower in-
tegral of f( x, y) over R and is denoted by J. We write :

I -=H'f(x,y)dxdy, ] -Hlf{:,y)dxdy.

If I and | be equal, then the function“f( x,y) is said to be in-
tegrable over the rectangle and the common value denoted by

H f(x.y)dxdy or H fCx,y)dA is defined as the doble
K R

integral of f(x,y) over the rectangle R .
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Note. Norm of a division of a rectangle.

The norm of the sub-division D of a rectangle R is denoted by || DI|
or A and may be defined to be the greatest diagonal of sub-rectangles,
ie, |l DIl = max. V{(x; ~ m-4)? + {yj - yj-1)?), the maximum is
to be taken of all the disgonals of the sub-rectangles of R.

21.3. Condition of integrability.

We state here, without proof, the necessary and sufficient con-
dition for the integrability of a bounded function f (x ,y ) over a
rectangle R.The condition is that to evéry positive number ¢, there
corresponds a positive number 8, such that for every division of
R whole norm is < 8, the oscillation § —s is less than €.

21.4. Simple properties.

If f(x,y)and g(x,y)areintegrable functions over a rec-
tangle R, then the functions f(x,y) +g(x,y) andcf(x,y),
where ¢ is a constant, are also integrable over the same rectangle
R and

(i) II {f(x,y):t g{x,y)}dxdy
R
-H;(x,y)dxdy tchx.y)duy.
R R
m)” of (x,y)dxdy -c” f(x,y)dxdy.
R R

(iii) Iff(x,y)s g(x,y)in
then” flx.y)dzdy sH g(x,y)dedy.
R R

(iv) IfR = R, U R, when R, n R; =9,

ahmﬂ f(x,y)dxdy
R
II f(x,y)d:dy+-[ f(x,v)dxdy
' R:
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Mote 1. If R, and R; have a common region, as shown by the shaded
area in the adjoining figure, when we calculate

I flx,y)dxdy +II f(x,y)dxdy
R; R!
A E C G

we are really integrating f(x,y)
fwice over the common region
EFDC so that the result {(iv) is not
valid. We, therefore, introduce the R, R,
condition Ry » R: = ¢, so that
R;and R; have no common region.

e rl:nle 2. It Ls eafjly seen th.al B F D H
sults (i), (ii), (iii) and (iv) in Fig2

§ 21.4 above remain valid for

double integrals over any finite region E , provided the functions are in-

tegrable over the region E.

21.5. Calculation of a double integral. Equivalence of a
double integral with repeated integrals.

Theorem. lf the double ‘” f(x,y)dxdyexists, R being the
R

b
rectangle [a,b;c,d]andifthe in:egralJl f(x,y)dx also
= a
exists for all values of vy in (¢, d), then the repeated integral

d b
I dy j f(x,y)dxexists and is equal to the double integral.
a

Proof. Let us divide the rectangle R [a,b;c,d]into mn sub-
rectangles by the linesx = x,, X =Xy, ..., X =Xy andy =W,
Y=Y21.,---.¥ = ¥m- ,where a= 1y <X, <X < ...< Tn =b
and € =¥ <Wi <Y1 < ..i0en < ym = d.1f m; and M be
the lower and upper bounds of f(x,y)in the sub-rectangle
Rj [xi-1. % ¥-1, ¥ |, wehave

m; Sf(x,y)< M,. S 9
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If y remains fixed, then f( x, ¥ ) can be regarded as a function
of one variable x only and then by using the mean-value theorem
of Integral Calculus we have

X

m.-,—(x.—x.--.)sj fQx,y)dzsMy (xi-x.,), ... (@

Xji-y
which holds for all values of y in(y; -, ,y ).

x;
LelusnowdeuoteI fCx,y)ldxbyg(y).
X

Since g (y)isbounded in (y, ,,y, ), we have
m; (x ~ xr~1)(y; -V¥iy) <k

Jo < Mijxi-xi., X Yi— ¥i-2 )
ie., m;; A.'Iﬁ I.,,],S M.‘j A., wus R3)

where Io, Jo are respectively the lower and upper integrals of g (y)

L T Y
in(y..,y),ie, I =I g(y)dy and J, '=I g(y)dy.
= A ¥i-1

Now, taking summation with respect toi and j, we get

m d
i A SJ glyldy,
Tx s

im] jm]

- d n m
[stways 3 5 M4,
c

i=1 jm1
7 ssj

where s and S denote respectively the lower and upper sums for
the double integral of f(x,y)over R.

d - d
g(y]dy.J g(y)dys s, @
[4

4
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(4) can be expressed as
d b = d b
ssj dyI flx,y)dx, j dy". f(x,y)dx <§,
_E a [4 a
4 =1
ISJ. dyI flx,yldx <]
< L]

‘. _d b }
and JgJ' dyI flx,y)dx < |
[ a

Since the double integral exists, I = | and thercfore

(5)

d b
I dy.[ f(x,y)dx also exists and is equal to the double integral.
c a

d b
Hence, f dyI flx,y)dx =” fQx,y)dxdy
c a R

' d
Cor. 1. If J.f fix,y)dxdy exists and-[ f(x,y)dy exists, then also
R i -

b d
I dfj. f(x,y)dy exists and =I.Jl flx,y)dydx.
[ € JIR

Cor. 2. If the double integral exists, the two repeated integrals cannot
exist without being equal.

Thus, if the double integral exists, then the repeated integrals

b d d ]
I JXI !{r,y}dy.‘[ dyj f(x,y)dx both exist and they are equal.
a € € a
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21.6. Double integration as a limit.

Let f(x,y) be a continuous function in the rectangle
Rla,b;c,d].Letusdivide R into sub-rectangles in the process
as described in § 21. 2. Let ( z, , y, ) be any point of the sub-rec-
tangle R,, whose area is A,. Now, form the sum £ FCX ) B

We can show that, as the norm of sub-division || D || — 0,
the limit of the above sum will be the double integralof f(x,y)
over R,

) R WAL 2 ='”Rf“'y)dxdy'

21.7. Geometrical interpretation of double integral.
Let us consider the double integral Ij f(x,y)dxdy, where
R

R isthe rectangle [a,b;c,d].Let z= f(x,y) bethe given func-
tion, which graphically represents a surface.

We divide R into mn sub-rectangles by the lines x = i, ,

I=Ia,...,Iﬂ.r,._|,andy:yl’y=y:',__’y—,y"_l
where a = x, <X <X <..<Xy=b, ey <y <. . . <y, =4d.
Let R; betherectangle [x,.,,x;y 1 .v | whoseareais Aij .

Now, lines paraliel to the z-axis are drawn from points of R, upto
the surface z = f(x,y)toforma prism. Let V,, be the volume of
this prism and m;, , M,; the lower and upper bounds of f(x,y)
in Rj;. Itisevident that

mi}' AI_I' = V'j SM;; A“ .

L L n m n m
Z Z m, Ay S Z E V; < E ZM‘, Aips

i=1 i=1 =) =1 1=] j=1

As the double integral J‘J. flx,y)dxdy exists, it is equal to
R

Lt EZ Wiy Ay =L ZZ M, Ay
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= Lt Ez Vi - '
II flx,y)dxdy = Li ZZ Vij = V, V being the volume
R

of the cylinder whose base is R, the generators of which are paral-
lel to the z-axis drawn from points of the sides of R upto the sur-
facez = f(x,y).

21.8. Double integral over any finite region.

We have already defined the double integral of a function over
a rectangle R . Now, we are going to define the double integral of
a function over a given finite region E. AsE is finite, we can con-
struct a rectangle which can enclose the given region E . Let us
define a function g(x, y)over R as follows :
g(x,y) =f(x,y)forall pointsof E,
= 0 outside E.

The function f (x, y) is said to be integrable over E if g (x, y) be
integrable over R . We have then

IJ. f(x,y)dxdy =Ij glx,y)dxdy.
E R ’

Note. Let us take the z-axis perpendicular to the plane of E . If lines
parallel to the z-axis be drawn from points on the boundary of E upto the

surface £ = f(x,y), we geta cylinder. Genmelrlcﬂlyjj f(x,y)dxdy
E

represents the volume of the above cylinder.

21.9. Evaluation of double integral.

Let E be the region bounded by the curves y = u (x), y = 7 (x)
and the ordinates x=a2,x=b.1f u(x),v(x)be continuous
functions and u (x)<o(x)in (e b )and f(x,y )be a con-
tinuous function in E, then

vir)

i
‘U fix,y)dydx :J .d.t'[ f(x,y)dy.
E : g

wix)
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Let R [2,b;c,d]be
the rectangie which
encloses the glven region
E and let us define the
function g(x,y)in R as
follows :

g(x,y) =f(x,y)
at all points of E,
Fig.3 = 0 outside E.

Now,” flx,y)dydx -_-J glx,y)dydx
-~ & R

b d ;
=I de g(x,y)dy
2 ¢

Mix) vix)

I dx[J glx,y)dy +I gl(x,y)dy

wiz)

d
+I stx.y)dy]

vix)

vix)
= J dx I g (x, ¥) dy , (the other two integrals being zero)

wix)

vi{r)
I de f(x,y)dy.
uix)

Note. If E be the region bounded by the continuous curves
x =U(y),x =V (y),thestraightlines y = c,y=d and f(x,y)bea
continuous function in E, then

Viy)

d
I f{x,y)drdy=f dyj flx,y)dx.
E c

Uly)



DOUBLE AND TRIPLE INTEGRALS 415

21.10. Area of a region,

In the definition of double integral, if we put f(x ¥) =1, we
have the area A of the region bounded by the curves y = u(x),
¥y = v(x),thestraightlinesx = a,x = b given by

b _v(x)
A:j J' dy dx .
a

(x)
21.11. Jacobian,

If s .8 ,...,u, ben functions of n independent variables
X ,X,...,% and have partial derivatives of the first order at
every point of the common domain in which the functions are
defined, then the Jacobian of u, ,u, ,. ... 4. with respect to x,,
*1,...., % is denoted by

Dy 50,0 MW e u.)
a(xlaxzu---.xu"Dr'f(h.xx.------h
and defined to be the determinant
dx, dn, ox,
u; duy Ou
dx, dx, drx,
a.r| ar; S ax-
Cor. If x= » cos @,y = rsin @, then
I (H = g-;%’é = ¢os@ - rsin@] =
%% sin® rcos@

21.12. Change of variable in a double integral.

Sometimes double integrals can easily be cvaluatcd. by chang-
ing the independent variables by suitable transformations.
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Let x= 6(E M),y =vw(§, M) ves (1)

be two functions of & ,  defined in a region E’ of the § -1 plane
bounded by a curve C’. Moreover we asgume that

(i) the above two functions ¢ and ¥ have continuous first
order partial derivatives at all points of E‘and C’;

(i) the equations (1) transform the region E’ bounded by C’
into a region E of the xy plane bounded by a curve C insucha
way that there exists a one-onc correspondence between E,E’ and
L G

d(x,y)

; ¥ . .
(iii) the Jacobian TED does not change sign at any point

of E, but it may vanish at some points of C’, then

J‘Lf(x.y)dxdy =II£I¢(E.111,W(§.11)]I %{TE'E%)}| dg dn.

{ Proof of the theorem is beyond the scope of this elementary treaties. i
21.13. Application of double integrai.

(a) Mass of a plate.

Leta plate be bounded by the curve C and let the mass per unit
arca (i.e., the density ) at the point (x,y)be givenby p =f(z,¥).
Divide the plate into elementary areas by lines parallel to the axes
of co-ordinates. Let 3A be one of these elementary areas with (x, )
its centre of mass. The mass M of the plane area is given by

M =Lt IpdA =“ pdx dy .
E

(b) Centre of mass of a thin plate.

Let us divide the plate E into elementary areas by lines paral-
lel to the axes of co-ordinates. Let 5A be onewof these elementary
areas with ( x,y) its centre of mass, then the co-ordinates of the
centre of mass of the plate are given by
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x=_ [g E3p0A_ Hszu :”,;px“ dy
3450  IpBA J'IEP.M II rpd: 25
¥ Iy psA _ ,[prdA J’L:PH dx dy

y = Lt = =
BA—0  ZpdA IIP"A Ij pdx dy

l\ -
where p = f(x,y)is the density of l’f-'ue plate at {'x, y).

(c) Centre of pressure of a plane lamina.

If a planc lamina be immersed in a liquid, the point at which
the resultant pressure acts is called the Centre of Pressure of the
lamina.

Let a lamina be immersed vertically in a liquid. Let us take the
axes of co-ordinatcs in the plane of the lamina, the x-axis horizon-
tal and the y-axis vertical. Let us divide the lamina E into clomen-
tary arcas by lines drawn parallel to the axes. Let 84 be onc of
these clementary arcas and ( x, y) beits centroid. Letp = f(x, y)
be the pressurcat (x, y).

Total pressyre on the lamina

C= LtZp.3A -J'JEP.M =jj£pdrdy.

If (X,y) be the centre of pressure of the lamina, by taking mo-
ments about the axes of co-ordinates, we get

‘U pxdA 'U prxdxdy
- Zpx 5A E E
X = Lf = ==
540 IpdA J‘J‘ pdA J‘J‘ pixdy
) E E

Ty IJ’EPHA=”-£P?J:JY
o ZTpiA HPM _U e
E E

Inlegral Calculus (main) -29
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(d) Moments and product of inertia of a lamina.

If r, , 72, ... ,rs bethedistances, from a fixed line, of par-
ticles of masses m, , my , ..., my respectively, then Zmr? is defined
as the Moment of Inertia of the systerr ~* particles about the line.

Let E be the planc lamina. Take the axes in the planc of the
lamina. Divide E into clementary areas by lines drawn parallel to
the axes. Let 8A be such an arca whose centroid is (x,y). Let
p=j(x.y)bclhcdcnsityal(x,y). ‘

~ I, = Moment of incrtia about the x-axis
= MI:EO IpdA . y? =JJ .py= dA = 'U py? dxdy;
E E
I, = Moment of incrtia about the y-axis
= u"_'su IpdA . x? =Jj px?dA qu px? dxdy.
; L E
F = Product of incrtia with respect to x -and y-axes

Lt ZpdA.x.y = '”. pxydA = jj pxy dx dy .
5A =0
L E
21.14. Illustrative Examples.

K/ p%
Ex. 1. Ewluale'[ j cos(x + y)drdy.
0o <0

We have |

. R /2 ®
dyj cos{x + y)dx
] 0

% /2

x
B o dy [sin{z + y)]o

D*f"
= [sin(:+y)-—sin (0+y)]dy
0 :
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L x/2
J (- siny - siny)dy [Zcosy]
0

u

=2c01-;—2c030 e,

1 pt-y?
Ex. 2. Ewlulc[ I [(x— 1)t +y']dxdy.
070
1 1-y?
Hcro,i:j dyJ' [(x-‘l)?-n-y’]dr
0 0
1 "Y'
. (=1,
_Jndy[ 3 +y x]o

1 = Y 3
=I‘?[£—§!—)a+y‘(l-y‘3-£—n—]
0

[ a

n

Ex. 3. Show that

We have

1._..._‘&_‘.___.
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2x 1
'I "thq-y)'*:-ry]u
i it
!f])l T+ 1 x " x
1
-L

il e e Ve s ind
(z+y)* L =+1 o“ 2 = 2

Again,r dyrji ﬁ dx
o 0
! 53
IRIREC D
=J-‘ d,I‘ [ ij)!{r+!‘ ]dr
0 0

1
: ! 2y ‘
"Ind’,[nx"’z(:*y}’]i‘

_F [__1_,.,_..1__+_1__x'| i
" y+1 (y+1)F ¥y ¥ a7

1 y i
i I STy (S B, e 2 ——
"j;(yfij‘dy'-[y\vl]u2_1_-2'

Thus, the two given integrals are unequal ;

i.e., the result is proved.
Note. This resul! i3 not unexpected as the function {(x-y)/(x+y)?)
is discontinuous at {0, 0) . [ Prove]

Ex. 4. Evaluate [[N(4x? — y?)dxdy over the triangle formed by the
straight linesy = 0, x = 1,y = x. [C.H. 197
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The given double integral can be expressed as

e 1 T .
de 44:‘-;";
0 (4
s 1 i 1 x
. h[ﬂﬁ%ﬁh%qw.%
0 0

I‘
= ' (—"—"T-»ﬁ+2x'sin"!2 )1:

pl
3.0 (12-3_!: + 2x1 .'—;)dx

Eﬁ.sﬁf_ﬁg_
33 33 ; '

==*3
Ex. 5. Foaluate[] {22’ ~2a(x + y)~ (x?+ y')dx dy , the region of
integration being the circle x? + y* + 28 (x +y) =2a?. [C.H. 1962]

Here R, the region of integration, is x? +y? +2(x + y) =227,
ie., (x +a)? + (y+a)? =4a?.
Now, use the transformation x + &= X, y+a=Y,

e, x=X-a,y=Y -a.

x, ¥y _ dx o | _ |10} _

'f(x,v)‘ ax ay | Lt
By 01
|3'X8'r'

j I:JI [4a? =(x + a)? - (y+a)?]drdy
R
= -[j ($a? =X? -Y?).1dXdY,wherethe new region R’
R

i~ the circle X3 + Y 7! = da?

Finally use the polar transformation

N = reasf, Y =rsin@ _'_I(x';):r
rJ
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F 2 g 7 |
e § HJI I (4a! -r)rdrdd
#=0 r=0
1]
b3 s
-I dﬂJl (4a? - r2)rdr
ﬂ 0
e 4%

= 2n(2a? .42 -4a*) =8mat.

Note. If the region of integration R be the complete circle x*+ y!=al
and we use the polar transformation x = rcos@,y =7sin@, Ihe limits of
r willbe 0 toa and those of @ willbe 0 to2x.

If R be the positive quadrant of the above circle, r will vary from 0 to
a and 8 from0 to =/2.

If R be the upper half of this circle, r will vary from 0 to & and 8 from
Otox.

Ex. 6. wanujj ('.l - -E—: - l'b-'i ) dx dy , where R consisis of points

in the positive quadrant of the zlhpu -L =1. [C.H.'63,'72]
Use the transformation x = cx P ¥ = bY ;
& O
~1(%%)- ox o =|‘ °|=¢a,
X, Y % Sy 0 b
X Y :

R transforms to R’ which is the positive quadrant of the circle

Xt + Y =1.

A | =J.J (1-X’—Y’)nbdXdY=¢bII (1-X?-Yy¥)dXdy.
. R’

Finally use the transformation X = rcos 8,Y =rsin 8.

1(¥5) -



DOUBLE AND TRIPLE INTEGRALS 423

®/2 1
]-lbj I (1 -r2)rdrdd
8-0

_ x/2 1
=¢bJ' 4HJ (1 -rt)rdr
0 0

o[l [5-5] 2GR

Ex.7. Ewluauj j g-(x2 + Lycosasy?) dydy. (0 Sa Sx)

Here the region of integration is the posll)\re quadunt Use the trans-
formation x =rcos®,y= rsin8.

(33

x /2 -
I = j I g-(r? +2rlcosacos®ain®) , Jr dg
8«0 r=0

!:.r)

J e (1 scosasin2b)r? rdr
0

"

l!! -
1 &0 ocmanin!t)"]
T 2(1 + cosasin28)

0

1
2(1 +» cosasin8)

de

ST

i do
g cos?@ + sin '8 +2cosasin @ cos®

ra| =

w42 sec?B 4@
tan?8 + 2cosatan @ + 1
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o dz
=if T eZcosa v IWherez =tano|

1 = dz
2 : (z + cosa)? + sin? a

= -1—' [ln LR -- ( t lctu)
T 2 sina i sin @ aﬁ 2smu e

= >——— cot" "ot = —m— |
2sina 2sin a
Ex. B. The density at the point (x, y) of a lamina bounded by the
circle x? + y? -2ax = 0 isp = x.Find ils mass.

M = mass of the lamina ’.“. p dx dy,
R
R being the circle x? + y? - 2ax = 0

:J]- rdxdy.
R

Use the polar transformation x = rcos®,y =rsin®. Then ] ~—-v- =r,and
the equation of the circle becomes r = 2acos . e

x/2 22 cos &
[=j I rcos @.r dr d0
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Ex. 9. A plane lamina of uniform surface density is bounded by lhe upper half
of the cardioide r = a (1 + cos 8) and the initial line. Find the co-ordinates of

the centre of mass.

Let (x,y) be the centre of mass.

px dx dy
i A ., R being the upper half of the cardioide
IJ' ol dy* r=a(1 + cos@)
R

Jlj. rcos® . rdrd8
R )
Jl‘[ rdrdo

R

gil+co0@)

x
J (usedﬂj rldr
g 8=0 r=0
g x a(l+conl}
J JSJ‘ rdr
8=0 r=0
" a(1ecosB)
I Cmﬂ'dﬂ[ r:’]
0
x
J- E!B[-%r"]
Q

0
J 38’ cosB(1 + cos8)3do
]

Ll =

a(1+conB)

o

x
I %a"t] +cosB8)? do

x/2
J cos20 (1 + cos26)? . 246
0

&
=

x /2
J (1 + cos2¢)? 2de
Q

P
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x/2
I (2cos?¢ — 1)8cost¢pde
2a 0

”Ruma_rme

f,

N
NG

x
I (1 +cos®)? sin 040
2a Y0

3 x
J (1 +cosB)? de
0

[—-:—(1 +cosﬂ)‘]

3
0
‘Licoa 210

0

2
3
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'33! :.rz‘ [.g=,]

+. co-ordinates of the centre of mass are ( %, -

Ex. 10. A semi-circular lamina of radius a is immersed vertically in a liquid,
the pressure of which varies as the depth with the bounding diameter in the sur-
face. Find the centre of pressure of the lamina.

Let us take the centre of the lamina as the origin, the bnundmg diameter
as x-axis and the vertical radius as y-axis.

p = pressure at the point (x,y) = ky. Let(x,y) be the centre of pres-

'U y:i:rdy
,R:x? +y*sa?, y20
” pdxdy
R

sure

J xy dx dy
- (put x = rcos®,y = rsin@]
ILylzdy
rr r* sin @ cos 0 dr de '; ’""“]
=.Jl: J:r‘ﬂnodrdﬂ_ [ cout]
fren [ res

y = =
” pixdy ” yixdy
K R
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4 a
J r?sin? © dr d6
0

a
j r? sin B drdo
] ]

H-A=TT 4]
[T [5]

I

P

g

3

S

25

|

. the centre of pressure is ( 0, ?%f

EXAMPLES XXI(A)

1. Evaluate:

P
(iJJ. J (x +y)?dydrx,

1 Y0

& )
(ii)j I xy(x - y)dydx.

0o o

=/2 x
(iii}I j sin(x + y)dxdy.
a 0

loge 2 1
(iv) J J ye® dxdy.
0 -1
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(V)J- I e* cos(y - x)dydx.

x/2

1 x? LI d
(vi) J. I evi=dydx. (vii) I I . L
0 0 1

] 1
ux + ¥

1
{viii)f J (x? + y? )dydx.
0 x

e -y
(ix]I I Vel — x71 - y? dxdy.

2x- x?

2 . 2 4 s
(x}J. J' xdydx. (xi)j dyj - -
0 1] 1 J(X - y)l

arcos® a(1+conb)
(xii) j j rsin @ dr d8 . (xiii) j J. rdr de .
0 Yo

(xiv) {| xydxdy over the positive quadrant of the circle
it + y* = at,

(xv) [[(x* +y?)dxdy over the region in the positive quad-
rant for which x +y < 1.

(xvi) Jj xdxdy over thcellipse b?x? + aly? = 1.

(xvii) Jfxy (x + y)dxdy overthe area bounded by y = x?
and y = x.

2. Prove, by evaluating the repcated integrals, that

1
o] et o f o] i

429
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3. Evaluate, by using suitable transformations :

() Jl (x* + y?)dxdy over the region enclosed by the tri-

angle having its vertices at (0,0),(1,0),(1,1).
[C.H.1965 ]

g Nal-y?
(ii)‘[ J Vx? + ytdydx.
0

(i) Jl x?y? dx dy cxtended over the regionx 2 0,y 2 0,
xt +ytg 1, [C.H.1969 ]

(iv) ]l x?y2dx dy over thecirclex? +yi< 1.
: [C.H.1964 )

(v) [IN(4a? - x* - y?)dxdy taken over the upper half
of thecircle x? + y? - 2ax = 0. [C.H. 1966 )

widJl [2 - 2(x + y)-(x?+y?)] dxdy, the rcgion of
integration being the circle x? +y? +2(x+yv) = 2,

(vii) ]| xy (x? + y? )»/2 dxdy over the positive quadrant
of thecirclex? +y? =a? ,(n + 3 > 0;.

L] a
(i) I j a1 SRS
idy (x* 4 y?)
(ix) I sin h:—;-l:—)dx dy over the region to the first

quadrant boundedbyy = 0,y = rand x? +y? =x?.

(x) I] r? sin 8 dr d8 over the upper half of the circle
r = 2acosB.

(xi) If (x+y)?dx dy over the ellipse {(x?/a?)+(y?/b?)) = 1.
[C.H. 1977 ]

(xii) I] x2y dx dy over the positive quadrant of the ellipse
(x2 /at +y2/b?) = 1. [C.H.1971]
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s A 1/1
(xii) ”(::::+ i) dxdy, the field of

integration being the positive quadrant of the ellipse
x¥ ¥

_:’ + b1 = 1.
(xiv) dx dy over the triangle with vertices
(1 + x? + y?)? g
(0,00,12:0%:41 4. [C.H.1970)
' dx dy
(xv) H“ rerT T T taken over one loop of the
lemniscate { x? + y?)? = x? - y?. [C.H.1974 )

(xvi) [[ xdxdy overtheregionr = Ja(1 + cos®).

[}

(xvii)J J e-(22+y2) dydy.’
o 0

oy il x? dxdy
(xviii) J:- ‘[-“ Tzt 4y

(1] [}

< (xx) [f xy dx dy over the region bounded by the parabolas
y! = 4x,y? = Bx,x? = 4y, x? = By.

[ Put 13 =M, 52 =]
x y
4. Find, by double integration, the area of the region bounded
by the curves :

(i) y? = 4x,y} =16x,x = 1,x = 16 i@ the positive
quadrant ;

(i) y? = dax,x? =4ay;
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(i) x? + y* = 100,x? + y* = 64,y =¥3x,V3y =x
in the positive quadrant ;

: xt oyt
(iv) theellipse =5 + §5 = 1 and its auxiliary circle ;
(v) r=a (1 + cos 0), the initial line and the line 6 =x/3;
(vi) y? = Bx,y? =16x,xy = 25, xy = 16 in the posi-
tive quadrant.

5. For the thin plates bounded by the following curves find
the mass, the centre of mass and the moments of inertia about the
axes, p being the density at(x,y):

(i)xz20,y20,x* +y?<1,p = kxy;
(ii) the parabola y? =4ax and its latus rectum , where
p = constant;
(iii) y 2 0,x? + y* S 2%, p = x! + y?;
" " - xt y?
(iv) positive quadrant of the ellipse —5 + 35 = 1. where

p = kx;
(v) triangle whose verticesare (0,0),(1,V3),(2,0),

where p = constant;
(vi) upper half of the circle x? + y? =2ax, where

p=VET T y1.

6. (i) A quadrantof an ellipse of semi-axes @ and b(a > b)
is just immersed vertically with the semi-major axis in the surface
of a liquid in which the pressure varies as the depth. Find the centre
of pressure. {C.H.1962 |

(ii) Find the position of the centre of pressure of a quadrant
of a circle of radius @ which is just immersed vertically, with one
edge in the suface-of a liquid, the pressure of which varics as the
squarc of the depth. [C.H.1964 ]
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ANSWERS
LM E (i) 8. i) 2, ) § .
v 1. i) L. (i) §log2.  (vif) 2 .
na ? al
(i) =5 . () ix. (xd) log & o =5 .
(xiii) -}lu’ . (xiv) et (xv) <. (xvi) O
(xvii) - 3.0 5. (i) gm as. (i) tx .
(iv) .:,’% A a2 (38 - 4). (B, (viD g
1 3
(viii) — Iog(fl +1). (ix) Ei ; (x) 3_‘_ .
1
) B ingersr i) 22 (- 2
. | . ) "
(xiv) -2~l.m 3 (xv)(m = 2). (xvi) 10ma? .
(xvii) T’: (xviii) § - (xix) 1 (xx) 192
4. (i) 84. Gi)ie?. (i) 3r. (vma(a-b):
52 iy fo a8 &N K X
(\116(4!!1-9\3), {vﬂSlogZ.S.(l)s, 55 ) 335
(i) $pat, (2a,0), Lpas, 2pat ; ity 2 (0,5" -";_ "‘—;
2 kal b 33& 3b kalb? 2katlk
(iv) —— = : ) 5

) ; 1 ¥ip 7 39_
“’”3"-("?5)47- 5

Iﬁn ( 6a n 256a5 512a°®

\wi) s

6. (i) On the minor axis and at a depth 31—-? 5

5
(i) On the vertical radius, at a depth ‘13-‘—‘

Inlegral Calculus (main) -30
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21.15. Triple integral over a rectangular parallelopiped.

Let f(x,y,z) beabounded function of three iﬁdependent
variables z,y,z over the rectangular parallclopiped bounded by
the planes x = a,x = b,y =c,y =d,z = ¢,2 ={.This region
will be denoted by R la,b;¢,d;« 7lorsimplyby R.

let @ =2 € X € X € ... €Xny S¥am b,
C=WYo <Y SV <...<Ya-y <Ya=d,
E=2 €2 €2 < ... Sy €G],

We now'draw the planes 7 =x,,x = x3,...,x = xy., which
are parallel to YZ plane, planes y =y, , ¥y =¥2,....¥ = ¥u-
which are parallel to ZX plane and planes z =2,,z=2,,...,
z = zp., which are parallel to XY plane to divide R into mnp
sub-regions, each of which being a rectangular parallelopiped.

Let us denote the sub-region

R Ixiy, X ; ¥-1,% i 2Z-r, 2 ] by Rip and its volume
(xi= x5, }(j’j-' Yi- Hzp = zp-q) byV.,-. .

Let m ;i and Mz be the lower and upper bounds of f(x, ¥, 2)
in R . We now form the sums

r n m
s =z zmu‘nﬂi,}.
ke fay  ja

Dof 3 Fave:
k=1 j=1 i=1

Itis tleér that for every mode of sub-division of R into a finite
number of sub-regions

m(b -ald- c)(f-e) €s<S S M(b-a)d-o)f -¢),

where m , M are the lower and upper boundsof f(x,y.2z)inR,
hus, the two sets of upper and lower sums §, s are bounded.



DOUBLE AND TRIPLE INTEGRALS <35

The lower bound of the set of upper sums is defined as the
upper integral of f(x,y,z)over R and is denoted by I and the
upper bound of the set of lower sums is defined as the lower In-
tegralof f(x,y,z) over R and is denoted by | and we write

I *H_[ f(x,y.z)dxdydz, | -H flx,y,2)dxdydz,
R R

1f I and ] be equal, then the function f( x, ¥ .z)is said to be in-
tegrable over R and the common value denoted by

‘UJ. flx,.y,z)dxdydz orJII f(x,y,z)dVisdefined
: R R

as the triple integral of f(x,y,z)overR.
21.16. Condition of integrability.

The necessary and sufficient condition of integrability of a
bounded function f(x,y,z)over R is that to every positive num-
ber &, there corresponds a positive number 8, such that for every
division of R whose normis < 8, the oscillation $ - s is less

than e.
| Proaf is omitted. )

21.17. Calculation of triple integral. Equivalence of a
double integral with repeated integrals.

Theorer. If the triple integral IJJ f(x,y.z)dxdyd:
existsover R[a,b;c,d;e, f]and if‘lhe double integral

J.J. f(x,y,z)dxdyalso exists for all values of z in Ceu ),
s

f
then the repeated integral J dz [ .U f(x,y,z)dxdy } exists
and is equal to the triple inle'gral. g

Proof. Similar to that of § 21.5 and left as an exercise to
the student,

Cor. If f(x . ¥.2) be continuous over R, we have
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f 4 b
II fCx.,y,z)dxdydz= I dzj dy‘[ f{x.y.z)dx, where
R ] ' € "
we can change the order of integration to suit our convenience.

21.18. Triple integral over any finite region.

Let E be a finite region bounded by any surface. We can con-
struct a rectangular parallelopiped R enclosing E completely. Let
us define a function g (x, ¥,z ) over R as follows :

glx,y,z) = f(x,y,z)atall pointsof E,
= 0 outside E .

The function f(x,y,z)is said to be integrable over E if
g (x,y,z)beintegrable over R.Then we have

‘”. fCx,y,z)dxdydz = jj glx,y,z)dxdydz
E R

20.19. Evaluation of triple integral.

Let E be the region bounded by the sufaces z-u(x,y),
z=0(x,y);y =0 (x), y=y (x);x=a,x =b.If f(x,y,2)
be a continuous function in E , then

b -y ix) vix.y)

H flx,y,2)dxdydz =J dx dy flx.y. 2 dz
= E . ] oix) ulx,y)

[ Proof. Similar to thatof § 21.9.]
21.20. Change of variable in a triple integral.

Let x=x(&,m.§),y=2(E.,n,0),z=w (§.,7.0)... (1
be three functions of &, 7, {, defined in a region E * of the §n{
space bounded by a surface S°. Moreover, we assume that

(i) u,v,w possess continuous partial derivatives of the first
order at each pointof E’and 5,
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(ii) the equations (1) transform the region E’ bounded by §°
into aregion E of the xyz space bounded by the surface $ in such
a way that there exists a one-one correspondence between E, E ’
and §,S5"°,

i Bl X N E) ;
(iii) Jacobian W’ﬁ) does not change sign atany point of

E’, but it may vanish at some points of 57, then

.U f(x,y,z)dxdydz
E

G H i f uE&m Do EnLD,wEn .Oll g%%.%) I d dn d¢ .

21.21. Applications of triple integral.
(a) Mass of a solid.

Let a body E be bounded by the surface $,andp=f(x,y,z)
be the mass per unit volume (i ¢, the density at the point (x,y, 2).
We can show as in § 21.13 () that the mass of the body is given by

M = JIJ p dxdydz.
£

(b) Centre of mass of a body.

Let p = f(x,y,z)bethedensityat(x,y,z)of a solid body
E.If (x,y,z)bethe centre of mass of the body, then

-“. p xdxdydz J‘j p ydxdydz
- E - E

X = i y =
-U p dxdyd:z Ij p dxdydz
E E

- ”Lp zdxdydz
J'”Ep dx dy dz
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(c) Moment of inertia of a body.

Lot p = f(x,y,z)bethedensityat (x,y,z)of asolid body
E.Then I., I,, I, its moments of inertia about ox, oy, oz are given

by
= III ply? + z?)dxdydz,
E
=II p(z? + x?)dxdydz,
E

= IJ-I pix? + yt)dxdydz.
E

21.22. Illustrative Examples.

vat - 1
Ex. 1. EmluanI I I (y? +2?)dzdydx.

IC.H.76 ]

We have | = j dxj yI (y? +zt)dz

z? .
J..d'xj- dy y‘z+—]
3
0
a val gt b
:I ﬂIJ (by! '0'—3"')"
"] 0

a i Vat -zt
=.L dx[—b%—fj—;x]u

= - Y 3.t H
=I bia 31')f‘_b’(isx}'f]‘x
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x/2 3 3 3
=J' ("" g aob‘;mo)dmﬂdﬂ {5 midind
(1]

®/2 . 1 p)
J. (%Pcos‘ﬂﬁﬁsb cus‘ﬂ)dﬂ '
0

malb(3a? +4b?)
48

abd 1
3 2

+

a'h 31
3 a2

A
wal A

Ex. 2. Evaluate []] (x + y + z +1)* dxdydzover the region defined by
2 0,920,280, x ¥y ¥ ST,

The region of integration is the tetrahedron as shown in the figure.

V2
C

Fig.4
In this region z varies from0 to 1 -x-y,y varies from0 to1 -x
and x varies from 0 to 1.

1 1-x 1-2-y
.-.I:J dzJ- dy‘[ (x +y+z+1)4d:
o 0 0

1 1-x 1 1
o il reeor]
0 0 0

1 1 1-x
& EIJIJ. (32 -(x +y+ 1)%)dy
(1] o

-x-y

1
= %I Jx[S?y—:(ri-yrlj‘]
0 0
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:%J'[szn-x)-%+“_*6£)_‘],,
0
[2(s-3=)-Fx+ 20 xl’]n

df[nf B2 1] -8 2
5 i 42 4 S0 0 7

Ex. 3. Find the mass of a solid in the form of the positive octan! of the

]
=

] 1 2
ellipsoid -:—; + f‘i + :—1 = 1, the densityat (x ,y,z) being xyz .

M = Mass of the solid = IJ.J- xyz dx dy dz, where E is the positive
octant of the ellipsoid.

Put x =aX,y =bY,z =¢Z.
d{x.y.z) _ a0
a(X,Y,Z) 0boO

00c¢

s M o= J'J-I abe XYZ abc dX dY. d7 , where E ' is the positive octant
E

of the sphere X +Y? + Z1 = 1

= albic? III XYZ dX dY dZ .
I

Put X =rsin@cos¢, ¥ =rsinBsind, Z =rcos@.

a(JC.Y,Z)I= sin@cos¢d rcos@cosé® - rsinBsing
a(r.,8,¢) sin 8 sin ¢ r cos B sin ¢ rsin B cos ¢
cos 8 - rsin@ 0
= rlsin®.

K/ aKj2
M =n’b'c'[j J risin’@cos Bsindcosé r? sin Bdrdhdo

¢ ! X/
=atbhlc? [FT] I sin? Gcosﬂdﬂj sing cos ¢ d¢
0’0 0
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. | 'b"[ sin‘O]'"rz [sm't e
3
0
o dl o 1 Sigien
:6.|b: ‘2=‘8lbt

Note. Generally in the case of a spherical region x? + y? + z? = g2
we use the transformation x=rsin@cos¢,y=rsin@sin¢,z

(i)

= rcos @,
limits forr,9,¢ are 0,a;0,x;0, 2x for the whole sphere

(ii) thesearc 0,a;0,n/2;0,2r for the upper hemisphere ;
(iii) theyare0,a;0,n/2; 0, n/2 for the positive octant

EXAMPLES XXI(B)
1. Evaluate:

2 2 _a
(i)J J I (x + y + z)dxdydz.
0”0 Yo
1 1 1-x
(ii)J J J xdzdxdy.
o Yy Yo
a_.x li!’
(iii)II I e**y+*2 dzx dydx.
llViI f I ——— dydrdz.

v) fadyas extended over the tetrahedron
(1 + x +y + 2)?
bounded by the planesx = 0,y = 0,z

=0, x+y+z=1

|C.11.'70]

(vi) Il x? dx dy dz extended over the volume of the ball
x4+ y'+ 22 € a2, i C. H. 69
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2. Evaluate by using suitable'transformations :

() Il (x* + y? + z?) xyz dx dy dz taken through the

the sphere x* + yt+ z2< 1, [C. 1164}
. dx dy dz
(u)J'”.x, Ty ¢z - 2)'0vcrthesphcm

xle yt ¢ 2?2 201, [C.H."73 )

1 - %t — y — 22 -
(i) IJ]\]1 T sy o z,dxdyd: over the positive
octant of the sphere x* +y? +z2< 1.

l
{iv) + L. & & dx dy dz taken over the cllipsoid
* b 2 P

c
x + L‘. z? < l
al bt T2 T

(v) I (ax* +by? + cz? ) dx dy dz over the sphere
x* + y?! + z2? SR,

3. For the solid bodies bounded by the following surfaces find
the mass, centre of mass and the moments of intertia about the axes,
p being the density at(x,y,z):

(i) x20,y20,z20,x*+ y*+ z2?5a?;p = kxyz.
(i) x 20,y20,z20,x+y+2z<1;p = constant.
(iii) z 2 0,x* + y? + z2 <a? ;p = constant.

x1 1
(ivix20,y20,z20, {—,—+z—slp=mnstant,
4. A mass M of gas is dnﬂuscd through all space. If the den-
sity of thc gas at (x,y, z) be e (7 - y? - 21 ) show that M? =n> .
ANSWERS

1. (i) 1Ba*. (i) 3 (iii) F (=% - 6e?* 4 8e* -3).

vy 2% L s ix s
(iv) 3 - tv) log (256/¢%) . (vi) 5



2. (i) 0.

(iv) mabc .

DOUBLE AND TRIPLE INTEGRALS

1 3 . b ] | 5
(i)m(2 —;1053) UL [B(: ’ % ) - B('..

4n(a +b +c)R®
v 5 '

16a 16a 16ay ka' ka' ka?

kat
% '\35 33535 /°96° 9% 9% -

4 na® 4na® 4 ma’

B 3
g #pe, (0.0, ga); 5 P75 #0715 P

(iv) 3

30

luabcp (3'ﬂ 3 3C) mxabrptb’ + ey,

xabep (c? + -’),-—- mabep( c? wb? ),
30 P

443
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Miscellaneous Examples 11
Integrate the following ( Ex. 1 to Ex. 21 ) :-

cos x + sinx

) [ I cos 2x log et e The

e I:logl:r +V¥(x? + a?))dx.

3 xdx

& N(x+a) + N(x + b) "~
cot x

& I(I - sinx)(secx + ‘ljd'r'

5. mj tan x B m}j 2+ cosx

1 + sinx cosx(1 + cosx) %"
6. (i}JJ(secx—l}dx. {ii)Iv’(cotrde.

2x? + 3x + 7 dx
(xr+ 3¥xt +2x +5)

tan x dx % §

8. —— ., 4
v(a+ btanix

dx
% jx{x" +1)°

10..[:‘ sin ¥ cos x cos 2x cos 4x da .

“." cosh x + smhxsinxdx.
1 + cosx

, Xre dx & 7
12.-[: e I dx

* dx
13'_[ x log x log (log x)
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x3 dx
(x —a)x-b)x-¢)’
xtdx

(x? + a2 )(x?t + b2 )(x? + ¢2)

x? dx
16. I;T;-:-i :

14.

15.

‘.I
17. mjx‘—x’+1“' (ll)Ix‘~x' +ldx

; x x?dx
L “’Im- ‘“’.[ FIETOES!

! 2x' + 3x + 3

19'_[0 (x+ 1)(x*+ 2x +2]

3 ;
20 3" cos 0 dO
E 1 + 2sinB® +2sin?® + 2sin?B + sin@
o
=

Zl.j e
" 1 + costx

22. Show that

x <-log(1-x) < ]frfﬂ < ¥ < 1). [ €:H. 1963

1
23. If 1, then 0.5 % iR o o LB
. n > . en e H T"'E I _ xan J R ; &

o [ C. H. 1963, '66 |

24. Show thatlog(m /n) = logm - logn from the defini-
tion of log x as a definite integral, fe., from

* dt
log x= T

1
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25. Find the area of the region included between two car-
dioides r =a(1+cos0),r=a(l-cosB),a>0. [C.H.1967]

26. Find the area of the loop of the curve

a sin 30 a sin 30
ST ¥ e -2 L

27. Find the area of the loop of the curve rcos 8 = acos26.

28, (i) The arca between the curves y? = 4ax and x? = 4ay
(a> 0) revolves about the axis of x. If V be the volume of the
solid thus formed, then show that 5V =96ma? .

(ii) If the curve r = 2a cos O revolves about the initial line,
then show that the area of the surface of revoiution is 4na? .

29. Ifthe area lying within the cardioide r =2a (1 + cos 8) and
without the parabola r (1 + cos 8) = 2a revolves about the initial
line, then show that the volume generated is 18 na?.

30. Find the arca common to thecircle ¥ = a and the cardioide
r=al(l +cos0).

31. Show that the area included between one of the branches
of the curve x?y? = a? (x? +y?)and its asymptotes is equal to
one-fourth of the square formed by the asymptotes (a > ().

32. The distances of the vertices A, B, C of a scalene tnanglc
of arca S, from a fixed line MN, arex, ,x; , x; . The line MN does
not cut thetriangle ABC . Find the volume gencrated by the revolu-
tion of the triangle ABC .

ANSWERS

COsS X + Sinx
cosx — sinx

s L [sinzx log + Iogcosh].

2

1 — 1
2. Lzlag{x + Vxt 4 a’} -454(::' +a’}+nT sinh-! E.

it L &t 4 22 s
3'n-—b[5t1 E)’”—S{.I’ﬂ)

g{xﬁ-b]‘“ + 2—;(x+b)’”_

]
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3 1 L 11 L
4. slogtan3x + ;sec? ;x + tanjrx.

1 1 + sinx 1 1
- 0 gl T mx* 2 Ty e

(ii) 2 log (secx + tanx) - tan — .

2
6. (i) =2cosh ' (V2cosir).

Gi) {i +V2tanx + tanx . i} iaa ‘\E-l:n_:)
! 2—3_ 8l V{ltanx) + tanx - 2 1 -tanx

7. 2log(x + 3) -Jtan"" (x +1)/2).

- -r——] sinh-! (‘}“I wll cosx)
b) b ;

9. logx - —'; log(x™ + 1).

e R _ = '
10. 5 65 sin (8x - tan-!' 8). 11. cosh x tan ;x .
x + 2
12, & ey R 13. log (log (log x )} .

al
14. x +ZW~) logfx- d),

a o
8 - [Z (&% < B et —eT) a_]'

16. i—%—loslx‘—ll —Tl‘log(x' +xt + 1)

W T— (2:4 . 1)
3 3 i
2! =V¥3.x 4+ 1

|
Mme et

¥t =1 - —-\’3x+1
_\lr- 33’1-?3 X +

:nr"41+ » :’-€32+1
443 gx'-t\i o

19. 3% + 2log2 - tan-' 2. 20. { (log2+1). 11.—;7:5 ‘
25. ui(3%-2). 26. (3¥3)a? . 27. 227 (1 -1=).
30. ($x - 2)a2. 32.1x(x; +x; 4+ 13)5.

17. (i) tan-" X

18. (i) %ran -1

(i) %—Ian 8



