
CHAPTER XVI

EQUATIONS OF THE FIRST ORDER AND THE FIRST DEGREE

16.1. A differential equation of the first order and the firt de-
gree can be put in the form

M dx + N dy = 0,
where both M and N are functions of x and y. or constants not
involving the derivatives. The general solution of an equation of
this type contains only one arbitrary constant. In this chapter we
shall consider only certain special types of equations of the first
order and the first degree.

16.2. Separation of Variables.

If the equation M dx + N dy = 0 can be put in the form

f 1 (x)dx + f (y)dy = 0,
then it can be immediately solved by integrating each term sepa-
rately. Thus, the solution of the above equation is

if, (x)dx + if, (y)dy	 C.

The process of reducing the equation Mdx + N dy = 0 to the

form fi ( x ) dx + f2 ( y ) dy = 0 is called the Separation of the Vari-

ables.

Note. Sometimes transformation to the polar co-ordinates facilitates

separ-ation of variables. In this connection it is convenient to remember the
following differentials

if  =r cos O, y= r sin O.

(I) x dx + y dy = r dr,	 (ii) dx 2 + dy 2 = dr 2 + r 2 dO 2

(iii) x dy - y dx = r I do

For illustrations, see Ex. 8(u) and (iii) of Examples XVI(A). I

16.3. Illustrative Examples.

Ex. I. Solve (l + y )dx i. (1 + x 2 )dy = 0.

Dividing by C I * x )( 1 + y 2 ) we get
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dxdy =0.
I+ x2 

+ +

y
Integrating, tan -' x + tan - 	 = C.	 ... (1)

Note. Writing the arbitrary constant C In the form tan - I a, the above
solution can be written as tan'x + tan 1 y = tan-'a,

or,	 lair' 1!..t1. = tan-'a, or,	 +y=a(1-xy) ....(2)

Both forms of solutions (1) and (2) are perfectly general and any
one of these can be considered as the complete solution of the given equa-
tk,n. [See Art. 253.

Ex.2. Solve x(y' +1)dx + y(x 2 +1)dy = 0.

Dividing both sides by (x' + I )(y' + 1), we have

X	 ___dx+	 dy=0.x'+l	 y' +I
integrating, we have

jlog(x 2 +1) + log(y1 +1) = C.

Writing 1 log A In the place or C, the above solution can be written in
the form

(x' + I ')( y 2 + I)= A.

Note. In order to express the solution In a neat form, we have taken
log A (A being a constant) in the place of the arbitrary constant C.

Ex. 3. Solve (x + y)' A =a'dx

Putx+y=v, i.e.. y=v-x.	 .
dx 7x1

the equation reduces to

"(--2 ) =a',or,--I+_-1=	 2
dv 	 iv	 a2	 a'.,'
dx	 dx	 D

(
dx = a' + 	 a

dvIntegrating, fax =fav - a2 5 a' +
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or, x + c = v - a .- tan' - = x + y - a tan '	 +
a	 a	 a

y = a tan -	 + C Is the required solution.
a

Ex. 4. Find the foci of the curve which satisfies the differential equa-
tion (I + y t )dx - xydy = Oand passes through the point (1,0).

Separating the variables of the equation, we have

dx - ydy .,
x	 l+y2

Integrating, logr —flog( I + y 2 ) = log C,

or, log	
+ 1 ) = 

log C. .. x = C 4iy1

This is the equation of any curve satisfying the given differential equa-
tion. If the curve passes through (1,0), we have I = C.

the equation of the required curve Is x 2 - y 2 =

It is a rectangular hyperbola. and Its foci are evidently (± 42 .0)

Ex. 5. Show that all curves for which the length of the normal is equal to the
radius vector are either circles or rectangular hyperbolas.

Since the length of the normal = y 4(1 + yt 2 ) and the radius vector
=4(x 2 +y2).

... y 2 (I+y1 2 )=x 2 +y l , or, y 2 yj 2 x 2 , or, yy=±X

± .	 :. xdx ±* y dy = 0.

Integrating, x 1 ± y 2 = a , a 2 being the arbitrary constant of in-
tegration.

Thus, the curves are either circles or rectangular hyperbolas.

dy Lx. 6. Show that by substituting ax + by + c = z in the equation
= f ( ax + by + c) the variables can be separated.

die	 dz
Since ax+by+cz. ..a+b dx dx

dx b\dx
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Hence, the given equation transforms into

i(dz	
\

=f(z),dx
dz dx.a + bf(z)

Thus, the variables are separated.

EXAMPLES XV! (A)

Solve the following differential equations ( Ex. I - 10

1. (i) .I: y = x 2 + x + I
dx y 2 + y + I

+ y ( y - I =
dx	 x(x-1)

(ii)x2t + v = 1.x-

2. (i) ydx +(I + x 2 )tan I xdy = 0.

(ii) eYdt +eY - 'dy = 0.

3. (i) xJi -- y ' dx + y Ti_ . x 2 dy = 0.

	

(ii) x 2 (y - I )dx + y 7 (x - I)dy	 0.

4. -	 +	 + 1	
0.dx xt+x+I

5.(j) ..Y+\/y 2 -0.	 (ii)	 x(I +LJdx	 v l_x2	 dx	 y(1 +x2)

d	 'I(	 _IXy 2 -I)—^	 =0,dx	 xy

6. (i) sec  x tan y dx + sec  y tan x dy = 0.

	

(ii) x cos 2 y d x - y cos 2 xdy = 0.	 I H.S.'85J

log ( sec x + tan x)	 -dx	 +_ tan y)
cosx	 -	 cosy

7. (x 7 - yx' )dy + (y 2 + zy' )dx = 0.	 IC.P.'88)
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S. (I) y dx - x dy	 xy dx.

(u) x'(xdx 4 ydy) + 2y(xdy - ydx)	 0.

(••)	
(1 - X

xy, -y	 x2 +y

c. (i)41 = e'V.	 (ii)	 ='Iy-x.

10. i sin' ()	
x 

+ Y.(ii)log (f) =a x - by

11. Find the particular sciution of
cos ydx + (1+ 2e )sin ydy = 0.

;shenx = 0.y =-n.

12. Find the equation of the curve for which

(I) the cartesian gubtangent is constant.

(ii) the cartesian subnormal is constant.

(iii) the polar subtangent is Constant.

(iv) the polar subnormal is constant.

13. Show that the curve for which the normal at every point
passes through a fixed point is a circle.

14. Show that the curve for which the radius of curvature at
every point is constant is a circle.

15. Show that the curve for which the tangent at every point
makes a constant angle with the radius vector is an equiangular
spiral.

16. Show that the curve in which the angle between the tangent
and the radius vector at every point is one-half of the vectorial
angle is a cardloide.

17. Show that the curve in which the angle between the tangent
and the radius vector at every point is one-third of the inclination
of the tangent to the initial line is a card bide.
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18. Show that the curve in which the portion of the tangent in-
cluded between the co-ordinate axes is bisected by the point of con-
tact is a rectangular hyperbola.

ANSWERS
1. (j)(x -y 3 ) +j. (r l --y2 )+x - y	 C. (Ii) y	 I +Ce".

xy = c (x - 1 )( y - 1) .	 2. (i) y tan -' x = C.

(ii) e 2x + e 2V = C	 3. (0 ./T? + 11	 =

(ii) (x +1)2 + (y + 1) 2 + 2 log (x - 1 X -1) = C.

4.2xy+X+y+C(X+Y+I) = I . 5.(l) sin- I x +sin'yaC.

(ii) I + y2 =C( I +x 2 ) . (iii) 4(x2 -1 )-sec-'x+ 'J(y' —1) = C.

6. (I) tan x tan y = C.

(ii) x tan r - log sec x = y tan y - log sec y + C.

(iii) [ log ( sec x + tan x)P - l log ( sec y+ tan y)P C.

1. log	 =C. 8.(i)ye , =Cx. (Ii) ( x 2 +y 2 )(x+2) 2 =Cx1

(iii) X + y 2 =sln 2 a, where at =tan' (y/x) + C.

9. (I) eY+e'^Ce	 . (it)	 ^log('l-1)jX+C.

10.(i)tan(x+ y)sec(x + y) = C +x. (ii)aeY+ be"= C.

11. (e' + 2) sec y = 3 42 .	 12. (i) y = Cc'

(ii)y 2 =2aX+C. (iIi)r(C_O)=a.(iV)aO+C.

16.4. Homogeneous Equations.

If M and N of the equation Mdx + N dy 0 are both of the
same degree in x and y and are homogeneous, the equation is said
to be homogeneous. Such an equation can be put in the form

dx
Every homogeneous equation of the above type can be

easily solved by pjltting y = vx where v is a function of
dv

and consequently = v ^ x () , whereby it reduces to theax-
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dyand consequejtly jy = 0 + x) ,4whereby It reduces to the
form v + x ( -) = f(o), i.e., - in which the variables
are separable as shown below.

Ex. Solve (x' +y' )dx - 2rdy 	 0.

The equation can be written as

.x =1
dx	 2xy

	Putting y = ox,sothat A = v + x	 ,wehave
dv	 x + vx 2 -. I + 01

-dx	 2vx2	 2r
dv	 1+01	 1v2

-v=dx	 2v	 2v
dx	 2v dv =0.
x	 Iv2

	integrating, log  + log (l -v 2 )	 log C.

r(I-v3)=C.
Re-substituting y / x for v and simplifying, we get the solution

- y 1 = Cx.

16.5. A Special Form.

The equation of the form

yalx+biy+cl(abi	 (1)dxa1 x+b2 y+c1 a2	 b1
can be easily solved by putting x x' + h and y	 + k,where
It and k are constants, so that dx	 dx' and dy = dy' and choos-
ing It , k in such a way that

a1 h+b1 k+c1 =0	 2and a 2 h+b2 k+c2 =0
For, now the equation reduces to the form

'= a, x' -s- b, y'
dx' a2 x' + b,y'

which is homogeneous in x' and y' and hence solvable 1w the
method of the previous article.

Inlegral Calculus (main) -24
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Note 1. The above method obviously fails, ifs; / 5 = l' / b ; for In
this case h and It cannot be determined from equa v ion (2).

Let the equation be

ajz+b1 y+c1 (	 '1'

dz At  + b3 y + c2 a
a	 ILet - b1- -	 ..	 atm, b, =
2m

'here in Is a non-zero constant.

Assuming this to be the case, let he common v!ue of these ratios be
Ienoted by 1/re • so that l = a t M and b2 = b, in.

The equation (3) becomes

a1x+b.y +c1
dx	 m(a 1 r t bay) + c2

Now, putting a x s. b1 y = o, the variables can b- 7as s ly seporat . J ;J
hence the equation can be solved. [See Ex. 2, i'eiou'.]

Note 2. If In the equation (1), &2 , then the ution can be
solved more easily by grouping th, terms suitably. j See Et. 1(i) of Ex-
amples XVI(C .)

16.6. Illustrative Examples.

Ex	
6x - 2y -7

dx	 2x+3y--6
Putting x =x+h,y =y' +k, so that ix=d,4y=dy',wehave

dk' = 6x' - 2y' + 6h - 2k - 7
dx' 2x' +	 + 2.J, + 3k - 6

Putting 6k- 2k - 7	 0 and 2h + 3k - 6 = 0, and solving these
two equations, we have h	 , k	 I

'
the equation becomes	

'	 6x' - 2y
dx' =	 +

Since the equation is now homogeneous, putting y' = ox' an.! henc.

x'	 ., and simplifying, the eq.istion reduces to
dx'	 1	 6o+4

= -	 + 4V -
	

do, which on integration giv

- log AY =.log(3v2 +4v -6).

	

(Ax')-'	 (302 +40 - 6)112.
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Now, restoring the values of x' and v', where x' x- and

v y'/Y' 2( y - 1) / (2x - 3) • we get the solution in the form

3y +4xy- fix 2 -12y+14xC.

Lx. 2. Solve	 -.

	Since here a, /a	 b/b, , .. putting 3x- y	 v,weget

dv,
	3 - 

y 
	 , and hence the given equation gives

= - 2r-7 p + 19

	

Z	 v'i'4 p+4

____

	

di p44 dvr	 = 1-
+ 19	 (	 ) 

dv.
+ 19 

x+c=v-l5 log (v+19).

On restoring the value of v, we get the solution In the form

2x- y - l5 log (3x - y + 19) =C.

Lx. 3. Show that i, an equation of the form

yf 1 (xy)dx i xf2 (xy)dy -0,
the variables can be separated by the substitut ion xy 0.

Since xy	 v,y	 and d(xy)r dv,i.e.. ydx + idy = dv

arid dy ..	
p dx i.e., x dy = dv - I dx.

(v)dx + f1 (o)(dv 1 dX)	 0.

•	 b(_
+	 -v(f(v)fz(V))	 x 

Thus, the variables are separated.
(See Ex. 14,25,16 of Examples XVI(B) .)

We car as well form an equation In v and y, by taking xy v, x Illy

and	
yd -iv

(For Illustration see Alternative proof Lx. 4 of Art. 16.7. J



340	 INTEGRAL CALCULUS

EXAMPLES XVI(R)

So!ve(Ex.1 - 15):-

x + y	 = 2y.	 (ii) - +	 = i.
dx	 x	 x2

2. (1)	 y- 2y)	
(ii) ydx x ( x - 3y)	 dx x' + y3

3. (x 1 +y 2 )dy	 xydx.

4 (1)	 =	 (ii)	 y ( y + x)
dx X+ y	 dx	 x(y - x)

5. (1) (3xsi'h (y/r )+5ycosh (y/x)dx-5xcosh (y/x)dy = 0

(Ii) (1 + 3e -/Y ) dx + 3e4 ( 1 - xfy)dy = 0.

6. (x2 -2xy)dy + (x 2 -3xy + 2y 2 )dx = 0.

7. v2dx + (x 1 +xy)dy = 0.

8. W -41 = Y + tan I. HS.'81, '83, '39 1 (ii)dx x	 x	 dx	 2x.-3y

9. (6x_5y+4)dy+(y_2x_1)dx0

10. (x .-	 + 4)dy + (7y - 5x)dx = 0.

11.

12.

23.	 y(2xy +1)dx + x(1 + 2xy + x 1 y 7 )dy = 0.

14. x 2 y 3 d + 3xydy + 2ydx = 0.

15. (1 +xycosxy)dx + x 2 cosxydy = 0.

16. Show that ( 4x + 3y + 1 ix + (3x + 2y + 1) dy = 0
represents hyperbolas having as asymptotes

x + y = 0,2x .- y + 1 = 0.
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ANSWERS

1. ( j) y = x + CcI t Y''. (ti) 2x - y = Cx1y.

2. (i) y 3 ',	 = Cx 2	(II) y'	 CC"/Y'

3. y =Ce'/Y 2 . 4. (i)y 2 + 2xy -	 = C.(u)xy = Cc Y1

5. (I) x 3 = Csinh 3 (y/x). (it) r + 3ye' / Y = C.

6. y = xlog(Cx	 ). 7.	 xy2	 C ( x +2y).

8. i> x = c sin	 (ri) 3 log (x 2 + y 2 ) = 4 tan -' I + C.

9. (Sy-?%-3 ) 1 =C(4y-4x-3).10. (3y-5x+ 10) =C(y-x+1 )

11. 2y-x+C=Iog(x-y+2). 12. 6y-3x =log(3x+3y+2)*c.

13. 2x 2 y 1 log y .-4xy — I = Cxw'	 14. x(xy-.. 2)' =C(xy-1 >3

15. xe'''Y = C.

16.7. Exact Eqdation.

The differential equation Mdx+ Ndy = 0, where both Al and
N are functions of x and y, is said to be exact when there is a func-
tion uof x, y, such that Mdx+Ndy =du, j2., when Max+ Ndy
becomes a perfect differential.

Now, we know from Differential Calculus that M dx + N dy

should be a perfect differential if -- = - . Hence, the conditionay ax
that M dx + N dy = 0 should be an exact differential equation is
àAI aN
ày	 ax

The method of solving an exact equation of the type
Mdx + N dy = 0 is as follows:

"First integrate the terms in M dx as if y were constant, then in-
tegrate the terms in N dy considering x as constant, and, rejecting the
terms already obtained, equate the sum of these integrals to a constant".
This will be the solution of the required equation.
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Ex.1 Solve (20 + 4y)ix •(4x +Y- 1)dy.

Here M2x' +4y, N • 4x +y- 1.

4	 hence it Is an exact equation.

JMdx J (2x 3 +4y)d •2!. +4yx . j x +4ry,

JNdy..J(4x+y-i)iy•4y+Y2Y
Rejecting the term 4xy in (2) which already occurs In (I) and then ad-

ding (1) and (2) and equating the .un to a constant, we get the general solu-
tion to be

ijX4 + y 2 + try - y • C.

An exact differential equation can often be solved by inspec-

tion, by picking out the terms of M dx + N dy that obviously form
a perfect differential and then integrating this. This Is Illustrated in
the following worked Out examples. While grouping the terms
suitably to form a perfect differential it will be convenient to
remember the following differentials.

ydx - xdy	 Q) xdy .- ydx 	 Iy
vdx+xdy-d(xy).	 2

16.8. Integrating Vac tors.
If a differential equation when multiplied by a factor ( a func-

tion of x, y) becomes exact, this factor Is called an Integrating Fact

tor of the equation. An integrating factor Is sometimes shortly
writen as I. F.

Integrating factors can often be obtained by inspection. This is
illustrated in Ex. 2 below. An equation can have more that one in-
tegrating factor, this is also illustrated in Ex. 3 below.

16.9. Rules for determining Integrating Factors.

Let the differential equation be

Mdx +Ndy- 0.	 ... (1)
The condition that It should be exact • is

aMaN
YX-

(2)



FRZr ORDER - FIRST D&W.EE	 343

.. (I). II	 N	
is a finctInn of x only, say f( x), tile?"

ef'' will be an integrating factor of (1).

If M dx + 14 dy	 0 , be an uct equation, when it is multi-

plied by e" we must have

-- (Me') = axly

+ Ne l l()' f(x)

	

ay	 ax

i.e.,

aN am

Rule (II). If	 M	
f(y)(a function OI y alone)

ef," is an integrating factor.

Pzoof is similar to that given above.

Rule (III). If M and N are both homogeneous functions

in x, y of degree n (say ) , then

(Mx + ?Jy* 0)

is an integrating factor of the equation M.

W. care easily .how that

dj M	 Jj N

	

y\Mx+NyI	 UMx+Ny
if we remember that M and N are homogeneous functions of degree

6M
a and hence x .- + y -- am.

	

a	 aN
and x	 + y	 aN.
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If Mx + Ny -0, then	 - and the equation reduces to

y dx - x dy 0 which can be easily solved.

Rule (IV). If the equation (I) is of the form

	

yf(xy)dx + xg(xy)dy	 0,

then	 Mx Ny ,(Mx - Ny-* 0)

is an integrating factor of (I).

We can easily show that

a

	

	 M \ a	 N
Mx-Ny).1..Mx-wy

a r	 yf(xy)	 xg(xy)	 1
[xy(f(xy)_g(xy)J	 -	 xyi.f(xy)- g(xv))J

	provided we remember y T F(xy) x	 F(xy).

If, however, Mx - Ny = 0, then	 = - and the equation

reduces to xdy + ydx 0 which can be easily solved.

16.10. Illustrative Examples.

ELI. Solve :(2x2 + y 2 + x)dx + zydy	 0.

M
Here2y; - - y.	 the equation is not exact.

am aN

Now,	 ay	 =	 -
N	 xy	 x

	

by Rule (I), IF. =glI)	 =e 1 5 = x.

Multiplying both sides of the given equation by x, we hdve

	

(2x + xy 2 +x')dx + x'ydy	 0,
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or,	 2x3dx + x 2 d.x + xy(ydx + xdy)	 0,
or,	 2x3dx + xdx + xyd(xy) z 0,

or,	 2x' dx + x 3 dx + z dx 0, where z = xy.

ry	 Z2

	

Integrating, -!^	 mci.

the required solution is 3x 4 t 2x 3 + 3x 2 y = C.

Ex.2. Solve: (x 5 +y' )dx - xy 2 dy = 0.

Here,	 -. = 3y	 - y 2 . .. the equation is not exact.

1	 1	 1Now,	 =Mx + Ny x 4 + zy I - xy 3 x'

The equation Is homogeneous.

by Rule (III), I / x 4 Is an integrating factor.

Multiplying both sides of the given equation by I I x 4 , we have

(.	 -

This Is exact.

Mdx f 
+--) 

dx = log 
3 x3

3 X3

by Art. 16.7, the solution Is

log 	
3 x = c,i.e., y 3 = 3. 3 logx +cx3-i

Ex. 3. Solve (y + r) dx + x dy = 0.

The equation can be written as

(ydx + xdy) + xdx = 0, or, d(xy) + xdx = 0.

Integrating, xy + 1 x = C is the required solution.
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E. 4. SOIDC v (1 s x dx - x dy	 0.

The (qua!ica zan bi c'1tten as

ydx-. zdy + yzdx = 0.

Div; d' ng b,	 j_d	 rd.i	 0 'jr, d	 xdz	 0.

Hcnc iregrang, tie aolution is 1 +	 x	 c

Note. l-iere I / y'	 'n integ rating facter.

Ex. 5. Soe y dx - x dy = 0.

Multiplying the given equation by	 this can be written as

Ydx4ijr =0, i.e. i(-!)=o. i.e.,	 = C, i.e.,x=Cy...	 f)

Again, multiplying the equation by I / a 1 , this can be written as

xdy-ydx 
= o, i.e..d(1 ) .0, i.e., 1	 c, i.e.,y=cx....(2)

Again, multiplying the equation by I I xy, this can be written as

y d — x dy	 i.e.,=! - A o 	 .. log a - logy = log C,xy	 a	 y
i.e., log - = logC.

- = C, i.e.. a = Cy.	 ... (3)

Further the equation can be written as

(4)

This belongs to the linear (cnn (See Art. 16.11).

Note. Thus, we see from (1), (2) and (3) that the number of integrating
factors of an equation is w,o,e then one and from (4) we find that a differen-
tial equation can be solved by different methods.
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Ex. 6. Solve

(x 3y' •x 1 y 2 + xy+1)ydx+(x'y ) - x 2 y 2 - zy + l)xdy O.

Now, (x-* Y' + x 2 y 7 + xy + 1)x'y 2 (Zy + l)+(xy + 1)
(xy + l)(xy 2 + I)

and zS y s _xlyl_xy+1x2y1(XY1)_(xY_l)

= (xy-! )(xy' -1)=(xy-1)2(xy+l)

the given equation become,

(xy + 1)(x 2 y 2 + I )ydx + (ry- I ) 2 (xy + I )xdy	 0,

or. ( z 2 y 2 + I)ydx+(xy- I) I xdy	 O,	 (I)

cancelling the common factor (xy +

or, ( x 2 y' + I)ydx + ( x 2 y 2 - Zxy + I)xdy 0,

or, xy (ydx + xdy) + (ydx + xdy) -2xydy 0,

or, x 2 y 1 i(xy) +d(xy) _2x'ydy = 0,

or, d(xy) s' >_ dy = 0 [on dividing byXYL

or, dv + 1-dy =0	 Iputtiigzy =

or, v - - - l log y = C,

or, xy- 1 - 2 log y = C.	zy	 C

Alternative MethL4

Putting xy = v, so that x	 dx = ' dv ty

ye get, on simplification,

	

(i+	 dv_31 0.VI Y

	

integrating, . - . - 2 log y	 C,

i.e., zy--2logyC.
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EXAMPLES XVI(C)

Solve

1. (i) (2x-y +1)dx +(2y- x -1)dy = 0.

- + ax + hy + g = 0.
dx	 hx+by+f

(iii) (1 -x 2 )

	

	 Zxy = x- x3dx

,(iv) y =
dx	 --6y-s-2

2.(i)x+
dx	

y=y2 
log x.

(ii) x -	 =y + cosdx	 x

3. (i) xdx + ydy + (x 2 + y 2 )dy = 0.

(ii)x'y 1 + xy + 2 '(1 - x 2 y 2 ) = 0.

4.(i)xdy_ydx+a(x2+y2)dx.0

(ii) xdy - ydx - 24(x 2 - y 2 )dx = 0.

S. (I) xdx + ydy+ xdy - ydx 0.

(ii)(x +x 5 +2x 3 y 2 + xy 4 )dx + ydy = 0.

6. (i)(x+y)dy+(y_)dxQ.

(ii) (x + y)(dx - dy) = dx + dy.

(iii) (2 - xy)ydx - (2 +ry)xdy = 0.

(iv) 2xydx- (x2 - y 2 )dy = 0.

(v) (xy 2 + 3e' )dx - x 2 ydy	 0.

7. (i) (x 3 + 3xy2)dx +(y 3 + 3x 2 y)dy = 0.

(ii) (x 3 y 2 -y)dx - (x 2 y+ x)dy = 0.

(iii)(x' + y 1 +2z)dx + xydv= 0.
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8. (i)	 sin  - y cos x + y' = 0.dx
(ii) ( xy cos xy + sin xy ) dx + x 2 cos xy dy = 0

(iii) xcos(y /x)(ydx+xdy)y sin (y/x)(xdy_ydx).

(iv) (cosy + ycosx)dx + ( sinx - xsiny)dy = 0.

9. (I) y(l + xy)dx + x(1 - xy)dy = 0.

(ii) (x + 2y')	 = y.

(iii) ( x 2 y 2 + xy)ydx +(xy- 1)xdy = 0.

10. (x 2 + y 2 + 4)xdx +(x 2 - y 2 + 9)ydy = 0.

11. (1 + 3x 2 + 6xy 2 )dx +. (1 + 3y 2 + 6x 2 y)dy = 0.

12. Solve (I + x 2 ) y1 + 2xy = 4x' ,and obtain the cubic
curve satisfying the equation and passing through the origin.

ANSWERS

1. G) X ' +y 1 xy+xy=C.(ii)ax 2 +by 1 +Thxy+2gx+2fy=C.

(iia)y(1 - x 2 ) = I - x 4 i-C.üv)5xy-3y 1 s-2y--2x 2 -3x=C.

2. MI + Cxy = y (I + log X). ii .Y + sin = C.

x x3. 0)x 2 +y' =CeY .	 (ii) sin-, (ry) + 	 log x = C.

4. (i tan - ' Y .- ax = C. 60y	 r sin log (Cr2

5. (i)	 (x2 +y2 ) + tan-' I = C. (ii) (C+ x 1 )(x2 +y 2 ) =

6.(i) x 1 -y' -2xyC.	 (iA)x -y +C= log (x +y).

(iii) 	 log (x/y)- xy= C. (iv) x 2 's- y =Cy.

(v) y' /r 1 = 2e'/ 3 + C.
7. (i)r 4 1-y 4 +6x 1 y 2 = C. (ii)r 2 -- y 2 + 2 x = C.

(iii)3r' +$x +6r1y

S. (1) sin x = y (x 1. C).	 (ii) x sin zy = C.
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(Iii) xy cos (y / x )	 C. (iv) x c's y + y Mn z = C.

9. i) log (2 ,'y)-1 fry	 C.( ii) X	 y + Cy.(lIi)xy- log y	 C.

10. x4 - y 4 i 8r 2 + iy + 7x 2 y 2 = C.

11. + y + x' +	 + x 2 y 2 = C.

fl. y(l + x2) 
IX, + C; 3y(l + x 2 )	 4x3.

16.11. Linear Equations.
An equation of the form

I + Fy = Qdx
in which P and Q are functions of x alone or constants is called a
linear equation of the first ordcr.

The general solution of the above equation can be found as fol-
lows. Multiply both sides of the equation bye IP

+ Pye1" =
ax

( YO JPd ) = QeJP l.
dx 

integrating, ye 1	 = I Qe 1 P d dx + C,

or, y = e-1' d, I I Qe	 dx + CI is the required solution.

Cor. 1. If in the above equation Q is zero, the general solution Is

y =C'1"

Car. 2. ii p be a constant and equal to - m, then the solution Is

Y= e' tJ" Qdx +C).

Note. Here the factor e - , which renders the lefthand member of
the equation a perfect differential, is called an Integrating Factor. It Is some-

ti-les shortly written as 1. F.

Es. Solve COSX	 + yam x= I
dx

Dividing by C°S I

	

	 . y tan x sec x.	 ... ()
dx
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Here  Pdx =J tan xdz log sec x.

	

the integrating factor Is e °5 ''	 sec x

Mult.plying both side, of (3) by sec z we have

	

seer iy + y sec r tan s = sec x, or, 	 (yseex) =sec 2x.

1. negrairg. y seer = tan r • C 4q the rouarcd

16.12. Bernoulli's Equation.

An cquit'n of the form

dx
+ Py = Oy,

where F and Q are functions of x alone, is kflown as Bernoul(s
e.juatidn. It is easiy reduced to the Iinc.r form of Art. 16.11
shown below.

Div : 3 b'th ids by y'• , w get

-.-Py' 1 = Q.dx
dvdv

Putting y-,	 v, and hence ( -	 ) y	 -'
the Pquation reduces o

dv
- n)Pt, = (1 - n)Q.

This being linear in v cn be solved by the method of the
vious article.

Note. I-lre ,i s a ratIona nurvcr

16.13. !liust.raive Examples.

- .	 di,	 x
Ex. 1. d+ --v -

d.,1-x2

Divi,;jng both sides of the eqeation by y w

-	 d	 x
Y	 — ______

dx	 I - x2	
=	 ( 1)

Put	 ylfl =	 .!.-/2	 =
dx T.
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(1) reduces to	 + 2(1- r 2 
V	 .. (2)

which is of the linear form.
drHere JPdx 5 2(1-x 2 ) = - log(1 - x) = log (I -x2 )-114

I. F. = CI0(l	 1/4 
= ( 1 - x )

multiplying (2) by( 1 	 2 ) - 1/4 and integrating, we have

(1 - x P'4 =52(1 - r2 )l/i 
dx = -( I - x 2	 +

substituting the value of v, the required solution Is
= - .1 ( I - x 

I ) + C(1 - x 2 )I/4

Ex. 2. Solve	 + xsin2y = x' cosy.

Dividing by cos 2 y, we have

sec 2y'+ 2x tan y	 (1)dx

Putting tan y = z, so that sec 2 y .	
dz=	 , we havedx

dz-+2xz=x.	 ...	 (2)

This is of the Irnoar form. Here I. F. = e t 2 z Ax =

in 	 (2) by e x and integrating,

ze'- 1 = fxe I 2 dx + C =	 (x' -1) + C (integrating by parts)
e	 tan y = - e	 (x2 - I ) + C Is the required solution.

EXAMPLES XVI(D)
Soive ( Ex. I - 14)

1. (I)	 += -.	
1- Zr

dx	 dx	 x2

2. •- +y cot x = 2 cos x.
dx
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3. cos 2x_+y= tan x.
dx

4. () (1	 xZ)	 xy = 1, (ii) -	 + xy	 x.dx	 dx

(ii)	 +
dx	 x

5. ( x 3 - x)y 1 - ( 3x- l)y =x I -	 + x.

6. (xcosx)y 1 + y(xsinx + cosx) = 1.
7. ( i + y 2 )dx - ( tan-'y - x)dy	 0.

8.(i)y2+(x-!)=0(li)(x+y+1)X=l.y dx	 dx
(iii)(x 2 y 3 + 2xy)dy = dx.

Write as a linear equation in x

9	 Y+iy=yt. 10.y 1 -2y tan x-sy' tan x=O.dx

1 +	 1L1
dx x x 1	dx x	 x

12.	 sin 2y =x 3 cos 'y .	 I Put tan y	 z

dx	 logy =	 1(logy)2

14. --	 = (1 + x)e' sec y.dx I + x

15. Solve .! + Y = x 2 , given y	 1 when x = I
16.Show that the equation of the curve whose slope at any

point is equal to y + 2x and which passes through the origin
is y = 2(e' - x	 1).

17.Find the curve for which the sum of the reciprocals of the
radius vector and the polar subtangent is constant.

18.Show that the curves for which the radius of curvature
varies as the square of the perpendicular upon the normal belong

Inlegral Calculus (main) -25
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to the class whose pedal equation is

P3 =	 +	 +

k being a giv,en constant and A an z,. trary constant.

ANSWERS

I. (i)y = x- 1 + Ce'.	 (6)y=x1(1 + Ce11).

2.'y	 sin 	 + C (sin x)!	 3.y = ( tanx -1) + Ce'

.	 = C + sin -':

(itO zy +- . cosx' =C.

5. y	 (x 3 - x log Cy.

7. x ,. 1 = Ce -	 1 y + tan	 y

(ii) r + y + 2 = Ce)'

9. y ' = Cx — x log x.

11. i) x=y + Cx2y.

12.6i tan y=r' +c.
14. sin 	 = (1 + x)(e' +C)

17. r	 r	 + Ct°

iii) yr I + Ce l,2

6. yr sec x = tan x+ C.

(I) x-1= y I + Ce11Y

(ill) 2r I =l_y I .Ce'

10. 5scc 2 x = y(tansx .. C)

(ii) 2r	 e? (1 * Cx ).

13. x '. log y(Cx 2 +

15. 4xy = x4 + 3



CHAIflR XVII

EQUATION OF THF MST (WDEf BUT NOT ( THE FIRST

DEGREE

17.1. The typical equStion of the first order and the nth degree
an he written as

F +Pi p" 1 -P1 p'	 +P,. r 01 , ... (1)

where p str.is for	 and P	 P2 .....,F,, are fuctons o
X ,., nC y.

The complete solution of such an equation would involve only
one arbitrary constant.

Two cases may arise

Case 1. When the left side of the equation can be resolved into
rational factors linear in the derivative.

Case II. When the left side cannot he thus factorised.

17.2. Left side zesolvable into factors.

In this case, the equation (1) takes the form

(p_f,(x,y),p—fz(x,y))..(p—f(x,y))=O. ... (2)

It is evident from above that a solution of any one of the equa-
tions

P -ui (x.y)	 O,p -1 (x,y) = U,etc.
is also a solution of (1)

Let the solutions of the equations (3) be

(x,y.C1 )=O,, (x,y,C2 )=O,...,+,. (x.y.C.. )=O,
where C, , C2 . . , C. are arbitrary constants of integration.

These solutions are 6ident1y just as general, if C, C2 . .= C,.,

since the individual solutions are all independent of one another
and all the C's can have any one of an Infinite number of values. All
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the solutions can thus, without los of generality, be corn
bined Into

, (x,y,C)*I(x,y,C) ..... .,1(x,yC) = 0.

17.3. Left side not resolvable into factors.
Here, we shall consider only the following cases:

(A) Equations solvable for y.

Suppose the equation Is put in the form

Y = f (x,p).

Differentiating this with respect to x, we shall get an equation in
two variables x and p; suppose the solution of the latter equatior
is(r,p C)=0.

The p-e!iminaut between this relation and the original equa
tion gives a relation between x, y and C, which is the requirec
solution.

(B) Equations solvable for x.

X	 f(y,p).

drDifferentiating this with respect to y, and noting that = lip,
we shall get an equation in two variables y and p . If p be
eliminated between the solution of the latter equation ( which cor-
tains an arbitrary constant) and the ociginal equation, we shall get
the required solution.

(C) Equations In which either x or y is absent.

In such cases, the variables are easily separable, or they nay be
solvable for y or for x.

Note. In case the elimination of p annoI be effected, or It leads to com-
plicated expression., It Is customary o express x and y separately in
terms of p. and these values of x .1 y. as If parametric equations, con-
stitute The solution of the equation.

C1.1raut'sEquation y = px +f(p)[Art. I7.5Jas also its extendedf
y =x$(p) + f(p)[ Ex. 2, Art. 77.5j be' ,ngto this type.
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17.4. Illustrative Examples.

Er. 1. Solve p 2 + 2px + py + 2xy - 0.	 C. P. 'SS

The equation can be written as
(p+ 2xXp + y) 0.

..either p+2z=O,ix, -+2x.0,i.e.,iy,2xix'0,dx
whence, integrating, y + r 3	 C;

otherwise, p + y = 0. or, A + y • 0, i.e.,	 + dx . 0,
SIX

whence, Integrating, log y + x .= C.

the required soIutiirls (y .' x t -CXx + lo y- C) - 0.

Ex.2. Solve 4xp7 -	 -x	 0.

From the equation, y 3 x (4-

differentiating with respect to x, we have

I	 i	 I

which on simplification reduce, to p dx	 x dp the Integral of which is

P =Cx.	 (1)
Now, eliminating p between (I) and the given equation, the required

solution is 4Cix2 - 8Cy - I = 0.

Ex.3. Solve x = y -p2

Differentiating with respect to y, we have

! =1 - 2p
P	 dy

dy =2 P P	 dp	 2{p + i

integrating. y = p 7 + 2p + 2 log (p - I) + C	 ... (1)

and hence, x = 2p + 2 log ( p - I) + C.	 ... (2)

(1) and (2) taken together, or the p-eliminant of them constitutes the
general Solution of the given equation.
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Ex. 4. Sote 4yp - ?pr	 y	 0

We can write the equation a

r=2yp+-	 ... (1)

Differentiating this with :vspect to	 we have

Eif 2 dy2p	 dy

,	 - 1 1 	 + .1_f. j = o.
2p

	

dy + yip = 0,	 ic.. py	 C.	 ... (2)

Sb..tttuting the value of p obtained from (2) in (1), we get the solution

y I = 2Cr - 4C1

Note. It will be noted in this connection that. In solving examples of
this type, the factors containing derivatives which are omitted often give
rise to other solutions of the differential equations which are not included
in the general soiuion. Such SOtUUUflS are termed 'ingu1ar solutions. I See
Art. 17.5 1

17.5. Clairaut's Equation.

An equation of the form

dvy p + f ( p	 where p = dX
is called C1airaut equation.

Differentiating both side s, of the equation with respect to x, we
have

pp+xd+,p)d,or.dtx+ttpfl=O.

either	 - 0dx

or,	 x + f'• (p) = 0.	 .. (2)

From (1), p	 C .	 . - . (3)
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Now, if p be eliminated between (3) and the original equation,
we get y = Cx + 1(C) as the general or complete solution of the
equation.

Again, if p be eliminated between (2) and the original equa-
tion, we shall obtain a relation between x and y which also satis-
fies the differential equation and as such, can be called a solution
of the given equation. Since this solution does not contain any ar-
bitrary constant nor can it be derived from the complete solution
by giving any particular value to the arbitrary constant, it is called
the singular solution of the differential equation.

Thus, we see that the equation of Clairaut's form has two kinds
of solutions,

(i) the complete solution (linear in x and y) containing one
arbitrary constant;
and (ii) the singular solution containing no arbitrary constant.

Now, to eliminate p betwen

y = pr + f(p) and 0 = x + f'(p)
is the same as to eliminate C between

y = Cx +f(C) and 0 = x +f'(C).
i.e., the same as the process of finding the envelope of the line

Y = Cx + f(C) for dilferent values of C.

Thus, the singular solution represents the envelope of the family of
straight lines represented by the complete solution.

Note, It I. beyond the scope of the present treatise to enter Into the
details of the theory of singular solution..

Ex. 1. Solve y = px + p - p'
Differentiating both sides with respect to r,

+-2 F
dr dx	 dx'

(+1-2p)O.dx
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either	 0, i.e., p. C,	 ... (I)
SIX

or,x+l-2p.O,i.e.,p.4(x+l).

Eliminating p between (I) and the given equation, we get

y Cx + C -	 as the complete solution
and eliminating p between (2) and the given equation, we get

Y = 13 (x + I) x ++(x + 1)-.+(r + 1) 2 -!(x +

i.e..	 4y = (x + 1) 2 as the singular solution.

Note. It can easily be verified that the family of straigh.lines repre-
sented by the complete solution touches the parabola represented by the sin-
gular solution.

Ex.2.Solee y=(1 +p)x+ap2.

Differentiating with respect to x, we have

p = (I . p)+ (x +2.ap) dr
dx•	 'ex-2ap.

This is a linear equation in x and p. (See Art. 16.11. 1

multiplying both sides bye I d0l , i.e., t  , we get

	

eP	 +t' .x= - 2ap.eP
TP

or,	 /(xeP)=_2ap.eP.

integrating.. reP =- 2alpe rdp + C =- 2ae' (p-I) + C,

or.	 x	 2a(I -p) '. CeP

y = 2a - ap 2 + (1 + p) Ce P from the given equation.

The p-eliminant of these two constitutes the solution.

EXAMPLES XVI

Solve The following and find the singular solutions of Ex. 5 to
only

1;(i)P2+p_6=O. (ii)pB+2xp_3x1=O.
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2. (1) p - p(e +e	 ) +1 = 0.

(ii) p l y - p(xy + 1) + x = 0.

(iii) p4p 2 + xy) =p 2 (r + y).

3.0)p -(a +b)p + ab = 0. (ii) p(p+x)= y(x +y).

4. (I) xyp 2 - ( x 1 - y 2 )p - xy= 0.

(ii)p 3 - P( X , + xy i-y 2 ) -s-x t y+ xy 2 = 0.

p3_(x2+xy+y2)p+(X3Y+X2Y2+XY3)P_t3Y30.

5. (I) y = p1+ alp.	 (ii) y = px

y = px +p.

6.0)y=px+ap(1-p).	 (ii)py=p'(X_b)+Q.

7. (x . - a)p 1 + ( r - y )p- y = 0.

8. (y i- l)p - xp 3	 2 = 0.

9. (i) p'x - p l y - 1 = 0.	 (ii) y ryp l + 2px.

10. sin y cos px - cos y sin px - p = 0

11. (1) x = 4p + 4p'	 (ii) p 1 - 2xp + I = 0

12. (i) e  - 3	 p = 0	 (ii) y = p cos p - sin p

13. (I) y =px + p.	 (ii) y = (p + r 2 ) x +

14. (i) i	 yp = ap 2 .	 ( ii) y = 2px +

lS.p' -p(y+ 3) + x = 0.	 16. y =Ap 3 +Bp2.

ANSWERS

1. (I) (y +3x- c)(y-2z- c) = 0.

(ii) (2ys-3x-c)(2y-x3-c)0.

2. (i) (y -	 - c)(y+ e	 -	 = 0.

(ii) (2y - x - c)(2x- y 2 - C) = 0.

(iii) (y- c)(2y -r 3 - c)(y - cc	 . 0.
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3. (i) (y — x — c)(y — br-c)	 0.
(ii) (y- ce')(y +x — ce	 -1) = 0.

4. (t) (ry -c)(x2 - y' — c)	 0.

(U) (2y_x7_c)(y_ce')(yfx_J_cea)=O

(fit) (x 3 -3y + c)(e' 2fl + cy)(xy + Cy +1) =0.

5. (0 y=cx+.!;y2 =4ax.

(ii) y = cr + I(aIcl + b1 );.	 + j...

y =cx + c ;pyI + x (n — 1)'' =0.

6. (I) y = cx + ac(1 — c);(x +a) 2 = 4ay.

(It) Cy =c (x — b) + g ;y = 4a(x — b).

7. (x-a)c' + (z -y)c - y =0;(x + y) 2 = 4ay.

8. (y+ I)c -c 2 r+2 = O ;(y + 1) + 8x =0.

9. (I) c'x - c'y - I = 0. (ii) y' =2cx + c1

10. y = cr + sln'c.

11.() x= 4p + 4p 1	 (ii) x =.(p + p')

y	 2p 2 i- 3p 4 + c.	 y	 . p2 -Iogp + c

12. (') x	 2 tan' p - p	 . c	 (ii) x = c + cos p
y = Iog(p 3 +p).	 y = p cog p - sin p.

I3.0)y=p 2 r+p 	 (iI)y=(p+p2)r+p-'

_Iogpp+c	 _1+ce"P
-	 (p-I)2	 —	 p2

14.(i) x+ yp = ap2

x(I + p 2 )"2 = plc + ilog(p +(I + p 2 ) 1")J.

(ii) (3xy+ 2x' +c)' _4(x2 + y) 3 = 0;

15. y (1 - p2 ) 1/1 + (
1 - p 1 )	 = c, with the given relation

16. y	 Ap' +Bp2

X = . Ap' +28p + c.



CHAPTER XVIU

LINEAR EQUATIONS WITH CONSTANT COEFFICIENTS

18.1 Equations of the Second Order.

Ye shall first consider linear differential equations with con-
Stan coefficients of the second order, Since they occur very fre-
quently in many branches of applied mathematics The typical form
of such equations is

LZ + P	 Py = X,	 ... (1)
dx2

or, symbolically D I + I', D	 P 1 1 y =

where P , P are constants and X is a function of x only or a con-
stant. Two forms of this equation usually present themselves, nam-
ely, when the right-hand member is zero, and when the right-hand
member is a function of x We shall first consider the first form and

then the second.

18.2 Equations with right-hand member zero.

Let the equation be

+ p 1	 + Py = 0.	 .. . (2)

As a trial solution of (2) , let us take y	 e	 . Then, if we put

e	 in the left side of (2), it must satisf y the equation, i.e., we
must have

(,,1 + Pm + P2 )e	 = 0,

or, since e" * 0, ni 2 + P 1 m + P2 = 0	 ... (3)

The equation (3) is called the Auxil iary equation of (2)

Let m, ,	 be the two roots of the equation (3)

Then. y = e ' and y = '' are obviously solutions of (2).

Also, it can be easily veiied by direct substitution that

This trial solution is suggested by te solution of the first order linear
equation v	 Py = 0, which is of	 same form.
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y = Ce	 , y	 C2 e-2 and y = Cei' + C 2 e	 satisfy the
equation (2), and, as such are solutions of (2).

':0w consider the nature of the general solution of the
equatio 2) according as the roots of the auxiliary equation (3) are
(i) real and distinct, (ii) real and equal and (iii) imaginary.

(1) Auxiliary equation having real and distinct roots.

If m1 and m1 are real and distinct, then y = C,eIZ + C2e2
is the general solution, since it satisfies the equation, and contains
two independent arbitrary constants equal in number to the order
of the equation.

(ii) Auxiliary equation having two equal root..

If the auxiliary equation has two equal roots, the method of the
preceedlng paragraph does not lead to the general solution. For, if
in, = mz = a say, then the solution of the preceding paragraph as-
sumes the form

y = (C, + C 1 )e I I = Cc ,when C, + C, = C,
which is not the general solution, since it involves only one inde-
pendent constant and the equation is of the second order.

A method will now be devised for finding the general solution
in the case under discussion. Since the auxiliary solution (3) has
two equal roots each being equal to cx, it follows that the differen-
tial equation (2) assumes the form

Li 2a	 + a'y = 0.dx 2	 dx
Let y = v, where v is a function of x, be a trial solution

of this equation. Substituting this value of y in the left side of the
above equation, we have

d 1v.	 d'v- = 0, i.e., -
1 

= 0, since	 ^ 0.dx2	 dx

Now, integrating this twice, we get o = C, + C, x.

Hence, the solution of (2) in this case is
y = (C, + C,x)e
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This is the general solution of (2), since it satisfies (2), and con-
tains two independent arbitrary constants.

(iii) Auxiliary equation having a pair of complex roots.

If m = cx + ip and m2 = a - i, then the general solution
of (2) is

y = C1e *	 + C2 

The above solution, by aájusting the arbitrary constants, can
be put in a more convenient form not involving imaginary expres-
sions; thus we have

y = c	 iC 1 e' + C 2 e- 1 ' I

= e	 [C1 (cos Px + i sin Ox) + C2 (cos Px - i sin Px )J

= e	 [( C1 + C1 ) cos Ox + i ( C1 - C2 ) sin 13x I

= e' (A cos x + B sin xJ,
where A = C1 + C2 and 	 i(C1 - C1 ) are the arbitrary con-
stants which may be given any real values we like.

Again, by adjusting the arbitrary constants A and B suitab-
ly, Le., by putting C cos c for A and - C sin E for B, the general
solution can also be written in the form

y = Cecos(x +
where C and r are the two arbitrary constants.

Ex. 1. Solve dxl	 dx

Let y = e ' be a solution of the above equation;

then e(m 2 t3m+2) =0. .. m 2 +3pn+2 =0,since e* 0.

m=-1, or, -2.

the general solution Is y =C1 e	 + C2 

Ex.2. Solve ±!Y	 - + a2y = o.dx 2	dx
Let y = e ' be a solution of the above equation;
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)=O, or, ,,t-2a,,-a1 =O,ser''O

-.	 0.

Since the auxiliary equation has repeated roots herr,

the general solution is y	 (C + Cx ) es-'

I.3. Solve (D 2 4 2D + 5)	 0.

The equation
	
+2-41 + Sy = 0.

Let y	 ell be a solution of the equation

then e " ( m 1 42m+5) 0	 in +2m+5 	 0, since e s 0,

:.	 m=-1±2i;

the general solution - is y = Ce	 •

which, as shown in Art. I82(iii), can be put in the form

Y = r' (Acos2x + i3sin2x).

EXAMPLES XVJII(A)

Solve

1.
dx2	 dx

2. 12	 0.
dx 2	 dx

dx	 dx

4	 --'+(a + b	 + aby = 0.

5. (i)2---3+y=0. (i) -'+2+y=0.dx 2 	dx

6. y - 4Y' +4y	 0.

7. (i) (D + D)y = 0.	 (ii) (D'+6D+25)y = 0.

8. (02 - 2mD + m 3 + n 2 ) y = 0
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9. (i) (D — 411) + 13)y = 0. (ii) (D — n 2 )y = 0.

10. ()
d25

+dti	 4+13s0.(ii)(D+3)2y=0.- 

11. Solve in the particular cases :-

	

.-4' 
+ Y_ 2y = 0; when x = O,y =	 andy = 0.dx 

(ii) 
d2x + y
	 0; whefl x= O,y = 4; when x 	 . it.y	 0dxI

d'x dx
(iii) - —d	

3+ 2x =0; when t = 0,= 0 and -= 0.

x	 dx
(iv) d	 nx = 0,when	 = 0,1 = O and x =

di I

12. Find the curve for which the curvature is zero at every
;)Oint.

d20dO
13. Show that -if I	 . gO = 0 ,and if 	 a and	 = 0,

when t = 0. then 0 = a cos I 'Ig/i))

I4 Show that the solution of

dx	 dx
+ k	 + ux = 0

is x = efl(Acosnf + Bsinn1),ifk<4i and n t = jx _k2.

ANSWERS

1. y = c,e	 + c1e	 '	 2. y = c,e 3	-

3. y	 c1e' + c 2 e"	 4. y = ce ' +

5. (0 y	 c,e' + ce ll 2	 (ii) y	 (A + Bx)e'

6. y=e 2 '(A.Bx	 7.(0y=A+Re'.

(ii) y = e I  ( A cos 4% 4 R sin 4x

8. y	 C ' ( A cos ,ix s H sin nx
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9• () y	 ell ( A cos 31 + B sin 3x )	 (ii) y =	 + Be -

10.(i) s=e'(A cos 3t+R sin 3t). 	 (II)yu''(A+t,x)

11. Ci) y = 2e • e 22	 (I) v = 4 cos x . (iii) i = 0

(l Y) x = a co&, n:	 12. A straight line.

18.3. Right-hand member a function of x.

We shall now consider the solution of the general form

+ r, -41 + P2 y = x.	 .. w

If y =	 ( x) he the general solution of

d
	+ P 2 y = (1 	...	 2)

and y	 w ( x ) he any particular solution of (1), then

y =	 (x) + i (x)is the general solution oI(1).

This result can be established by direct substitution.

Thus, substituting y	 C ( x ) + i ( x) in the left side of (1),

we have

(+ , .?- +	 } +	
+ ,	 +	

}dxl
The first group of terms is zero, since y = 0(x) is a solu-

tion of (2), and the second group of terms is equal to X

since y =	 ( x) is a solution of (1)

Hcnce,y =4i(x) +i,(x)isa solution of(1), and itisthe
general solution, since the number of independent arbitrary con-
stants in it is two, 0 ( x) being the general solution of (2).

Thus, we see that the process of solving equation (1) is natural-
ly divided into two parts : the firstis to find the general solution of

(2), say 0 ( C ,C1 , x ) , and the next is to find any particular solu-
tion of (1), say V C x) not containing any arbitrary constant. Then

y = $(C1 ,C,x)+W(x)
will be the general solution of (1).
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The expression 0 (C, , C2 , x ) is called the Complementary func-
tion and i.e., any particular solution of (1) is called the Par-
ticular integral of the equation (1).

18.4. Symbolical Oprators.

We have already shown in Art. 18.2 how to obtain the Comple.
m?ntary function now we shall consider how to obtain the Par-
ticular Integral. In order to discuss methods of finding a particular
integral,it would be convenient to introduce certain symbolic?'
operators and their properties.

With the usual notations of Differential Calculus jn , etc. will
be denoted by the symbols D, D', etc. Also lID (or, D ),
I / D I (or, D 2 ) ,etc. will be used to denote the inverse operators
i.e., the operators which integrate a function, with respect to x,
once, twice. etc. Let us write the equation

._!1p	 +P2y=X	 ... (I)dx2	 ' dx

in its symbolic form

(D 2 +P1 D-+-P2 )y=X.	 ... (2)

or, more briefly as f ( V )y = X.	 . . . (3)

The expression	 X will be used to denote a function of x
not involving arbitrary constants, such that the result of operating
upon it with f(D) is X, and as such	 and f(D) denote
two inverse operators.

Thus, the function p!., X is clearly a Particular Integral of the
equation f ( D ) y =X.

As a particular case, when f ( D) = D, -- X will denote a
function of x, obtained by integrating X once with respect to x,
which does not contain any arbitrary constant of integration
similarly X will denote a function of x, obtained by integrat-
ing X twice with respect to x, and not containing any arbitrary
constant of i ntegration. For example,
Inlegral Calculus (main) -26
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1	 1	 1	 1	 1	 1	 1X 4 =x'; 5-2 x S =x; 1j1=x;	 .1 =x2

	

..D I	 2
Important Result. on Symbolical Operator..

If F ( D) be any rational integral fwct*on

La., UF(D) - D + a,D 1 + .... + c	 I) + a,tben
Ci) F(D)e'

(II) F(D)e'V = eF(I) 4• ; .•,v bcThgafuncuonof

(Ill) F(D2)fshC* i	 ( arn(ax + I,)

	

[ Cos (AX • b)	 cos(ax+ b).
By actual differentiation, we can easily verify the above result,.

18.5. Methods of finding Particular Integrals.
We shall discuss here the methods of obtaining particular in-

tegrals, i.e.4 the methods of evaluating X, when X has spe-
cial forms.

(a) X = x , m bring a positive iakger.

Expand I / f ( D ) , i.e.. (I( D)) 'in ascending powers of 0
and operate on x - with the result. It is dear that in the expansion
no terms beyond the one containing D need be retained • since
D' x = 0.

Note. The justification of the above method lies In the fact that the func-
tion of x which we shall get by operating on x - by the series of powers of
D obtained by expanding (f(D)' ),when operated upon by/( D), will
give r"' . For example,

= 0 + D2) -' x 4 = (j -	 + D- . . . )x 4 =	 - 12x1 +24.+ I

Now, (LJ 2 +fl(x 4 -lZx' +24) 12x 2 -24+x' _12x? +24x'.

b ) X = e'V ,where V isa function of x,or a constant.

If V is a function of x • we have from Art. 18.4(u),

f(D)eV,=ef(D+a)Ve u V, say ,

For proof see Authors' Differential C.elcsdus.
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o that f ( D 4 a) V, = V, i.e., V1 
= /( 0+ a)

Thus,	 ell	 1
	 V.f(D+ 1) 

Again, noticing that I ( P + a) k where k' is a constant is
evidently a constant = k say, and proceeding exactly above we
can show that

	

-- e' Ic - ek	 --	 I
F(D)	 f(D 41)	 UP + a)

c ) X = e" , where a is any constant.

if f 	 0, f 	
) lila))	 f(a)'1'

I From A1L 184 (I)
ellI 	 I=	 ,provided f(a	 0.

iff(a) = 0, then (D - a)isa factor off(0).

either f(0)=(D—a)i(D),where •(a);t0,... (I)
Or else,	 = ( 0—a) 2 .	 . . (2)

I	 ,	 I	 I	 I	 e'	 .1	 e'(l)/)e	 (D—a)(a)(aD—a

1	 Xe"
t(a)D	 [by(b)l =

(ii)rJ5)e	 -	 =e"	 1 by(b)i =e"-I ell

(d) X =sin(ax + b)orcos(ax + b).

If f(D) contains only even powers of 0, let us denote it by
(	 )	 Then, 11 0 ( —a'	 0,we get, by Art. 18.4.0ii),

Ø(D 2 ) 
srn(ax +b)	 O(—a 7 ) sin (azi-b)	 sin (ax +b)

sin( Ax + b) -	 Sin(aX 4 b), if(—a 2 	 0
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Similarly, 	M coo (ax + b	 cos ( ax + b), ifo (-a s 	O

If •( — a 1 ) 0, or if f( 0) contains both the first and the
second powers of 0, the method of procedure that is to be adopted
in such cases is illustrated in Ex. S and Ex. 6 of § 18.7 below.

(e) X = x' sin( ax + b) or xm cos (ax + b).

In evaluating particular intgrals of this type, it is convenient
o replace sin (ax + b ) and cos ( a: i- b ) by their exponential
,alues and then proceed as in case ( b)

(f) X = XV, where V is any function of x

I	 I	 I	 1	 1
I(D)XV	 t	 f(D) 

1(D)j 
f(D)''

Proof:

We have 0 (xV) = xDV + V,
D 2 (xV) = D(xDV)+ DV xD'V + 2DV,

and similarly, 0 (xV)	 xD V + nD -' V

= xDV+ (D)v ....(I)

Hence, f(D)xV xf(0)V + f'(D)V. ... (2)

Now, putf(D)V = V 1 ;hence V

(2) becomes

f(D)xf_Vl=xVl+f'(D)f(,)VI

Ii.e.,	 ' If(D) V1 - f 	 ) xV * f(D)HD)	 )VI

Transposing, we get

715)XVi ={ X_71j ) f (D)} 7.15)Vl.
Dropping the suffix, we get

f(0)XV 
=( 7(0)' (0))
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Note. It should be noted that, when X Is the sum or difference of
two or more functions of x, say X = X, ± X 3 X then the particular in-
tegral

= 7Tö (X 1 ± X2 ± X3 ) = p45_>x tfJ) X ±

18.6. Alternative method of finding	 X.

When the auxiliary equation has real and distinct roots, cor-
responding to each such root m, there will he a partial fraction
of the form A/(D - m ), where A is a known constant and hence

I	 X
: :a:

i n the form

A 2 X

each term of which can be evaluated by the method shown below.

Now,	 x =	 e -x = e -- e	 X.D 	 D 	 D

D
-1-- x - e	 -	 X dx.	 ... (1)-m

This method is illustrated in Er. 8 of An. 18.7.

18.7. Illustrative Examples.
Ex.1. Solve([)' + 	 =x2
Here, the auxiliary equation m + 4 = 0 has roots in =± 2i

the complementary function = A cos 2x + B sin 2x

Particular Integral =	
=	 ) I'

!(1	 ! D')
4	 4

	=(1 +D 2 + - D 1 -... ) X 	 _!)

the required general solution is
Y = A cos 2r a. B sin 2x + 24 (z' _2).
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Es. 2. Solve (0 -3)'y  = 2e1'

Here, the auxiliary oquatlon (m - 3 ) = I) has roots 3,
C.F.= (A + Bx)e3

	I 	 2e4P I -	 2c' --	 -2e4'	(D - 3)2	 - (4 3)1 -

the general solution is y = (A + Br)e' + 2ell
E'i.3. Solve (1)- 2)' y =6e"

Here, the auxiliary equation( m - 2) 2 = C) has roots 2, 2.
C.F.= (As Bx)e'

P l	
(0 -2)' (Se'
	 (e2!j. 1 = 6e'	 =3x' e1'

	the general solution is y = (A	 Bx)e'	 + 3x' e'

Es. 4. Solve	 + y = cos 2x.

The equation can be written as C , s I ) y 	 cos 2x
The auxiliary equation m 2	 = 0 has roots ± I.

C. F. = A cos x + B sin x.

	

I	 Cos 2x 1cos 2xP.1.	 _D2+l__22+l3
 cos 2x

the general solution is y = A cos r + B sin r - cos 2x.

Es, S. Solve (D + I )y	 cos x

As in Ex. 4, C. F. = A cos x + B sin

But the method of obtaining the particular integral employed in Ex. 4
fails here. We may, however, substitute the exponential value of cos r and
proceed. Alternatively, we may proceed as follows:

Let	 Y = D I	 I cos x and Z = 0' + sin r.

Y +iZ = 5 ...L.1 ( Cos s + iSin r) = Dl

	

— C"	 Ie"

	

(D + i)' + 1	 2i  + 0'

=t-i_(1+-2Y 1_1..t!1
2W..\	 2i /	 i 0'
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x	 x
=	 =T (coax + t sin x).

equating the real part. Y = x sin X.

the general solution is y = A cos x + B sin x +	 in x.

Ex. 6. Solve il - 2 -!Y + Sy = 10 sin x.
dx	 dx

The equation can be written as ( D' - 20 + 5) y = 10 sin X.

The auxiliary equation m -2m + 5 = 0 has roots I ± 2i.
C . F. =e a (A Cos 2X + B sin 2x);

(0 2 + 5)+ 20
= 0 2 _ 2D + 5 lOsInx =

	 10 sin

- 02+20+5
+ 20 + 5)sinx1' + 5)2 + 4 IOsinx =	 (0 

!(... sinx + 2cosx + 5sinx) = 2 sin x + coax.

the general solution ts y =e'(ACos 2x+Bsin 2x)+2 s inr+ coax.

Ex.7. Solve (0 2 - 41) + 4)y =

The auxiliary equation m I - 4m + 4 = 0 his roots 2, 2.

C.F.= (Ax +

P 1 -	 x3e2

	

- 0 2 _ 40 + 4	 (D- 2)

-e2a .1. 0 2	-	 20
the general solution is y = ( Ax + P1) e 2 ' +

Ex. a. Evaluate D +30 + 2
IGiven expression =

(0 + i)(D+ 2) 5"	 . . . (I)

r i ___
= [1) + I -	 ] "0 + 2 

I
= 0.1

.j	 ix _s 2 ! Ju s t .	 dx. .. .(2)
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Let 1 = f el e dx and]: = f et e dx

Put e =z.	 .. eZdxiz.

it =fe' iz= e l =

12 =fzc s dx = u 3 - f 0 2 dz= ze - C' sc' (z- 1)= a '(es -1)

from (2), the given expression

g 2	 e' 

= e-2-e''

18.8. Two special types of the Second Order equations.

(A) 2d2w = f(x).
dx2

Integrating both sides with respect to x. we have

dy
dx =f(x)dx +A	 •(x) + A, say.

Integrating again,

y4 $(x)dx+Ax+ B =W(x)+Ax+B, say.

Note. A. a generalization of the above method, we can solve the equ-

ation 44 . f (1 ) and in particular	 - 0, by successive integralon.

(B)

Multiplying both sides by 2 , we get

21=
dx	 2	 2f(y dx

or,
d-dx ,.dx

Now, integrating both sides with respect to x, we have

2Jf() Ad. + C	 25f(y)dy + c,.
k ax)
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Let 21f(y)dy =(y).

dx
dy

dx = ± 'Ij$ (y) + , 
,whence, integrating,

x =	 y, C, ) + C,( say ).

18.9. Illustrative Examples.

Ex. 1. Solve fy = cos nx.
dx

Integrating both sides with respect to x, we have

dv I= —sin,tx + A.

	

dx	 ,i

Integrating again, y -	 cos nx + Ax + B,

which Is the general solution.

Ex. 2. Solve	 =dx l 	 y

Multiplying both sides by 2	 , we get
dx

o ( =a- --

	

dxdx 1	y'dx'	 'dxVdx/	 y-d.

Now, integrating both sides with respect to x, we have

(4)2 2.15 - dy + C,

- 2a1 C-C
SI'

.X =±lSaJ
	

J	 ydy
or,	 ="dx	 y

x = ±	 '?- .1 + C2

x - C,

C, ' (r - C )' = C,y' - A.

This Is the general solution.
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Net.. An alternative method of procedure for solution of the equation of

the above type, i.e.. of the type d Y = f( y) is indicated below.

Put 
dx =	 dx2 = dx dy dx ' dy

AE

,or, pdp=ay- 3 dy.' dy -

integrating.-} p 2 = - - y-2

P , i.e., 
( Y )

=c
dx	 I	 1Y

Now the rest is the same as before.

Ex.3. Solve x2 a 1	
x

a
 + 'i 2 y = 0.

dx t 	dx
Put r = C 1 .so that z= log x;

then-!Lx = e 1 =x.dz

dz dx dx	 dx	 dz2 dx \ dxl dx	 '.. dx t dxl

i.e., x 2 Li + x.1 = LX
dx t	dx	 dzt

the given equation reduces to

,t ly=0dz2

Multiplying by 2 
dz 

and Integrating with respect to z,

Adz
	 n t y 2 = constant = na (say).

.	 =±n4a--ydx

or.	 t=ndz.4(92-y'

integrating T. cos' - = nz + E,

whence y = a cos ( ,iz + £ ) , or, y = a cos ( n log x. +t) is the required
solution, a and £ being arbitrary constants of Integration.
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18.10. Equations of the types

(A) -Z 	a,
dxl ..... . dx

(3)	 ,y) = 0.

	

dx m	 136

(A) These equations do not contain y directly. The substitu-

lion Is Ll (derivative of the lowest order) = q.

(B) These equations do not contaln.x directly. The substituion

d
is

y

'Then --=	 Li. =	 + p () ,etc.
dx'	 P dy ' dx'	 dy'dy

18.11. illustrative Examples.

Ex. 1. Solve- 2x .-!1	 -dx'	
(44)' +	 o.

W

d l 	d'Viq. ..	 dx
the given equation become,

2x	 -	 + I = 0.

	

dx	 q2

dq	 ,or, log(q' - I) = log (c1x)

q -1=c 1 x.

q. i.e., = '1(1 + c1x).

4 .-- (I + c1 x)" +
AIX	 3C,

22y..__(1+CiX)5"tC2X+C3
3c, Sel

(1 + C1 x) 11' + dx + C,

:.	 15c, 'y	 4(1 + ci x)" + CZ + C3.
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Lx. 2. Solve y	 - (-! 
)2 

+ (( )2 - (vi)'
 ) i/2 

0.

Put AY = p. ..	 = pdxdy
the equation transforms into

1/2yp_p2 +{p	 p

	

-'	 0dy

p = qy + ( I-q' )1/2 where  = dy
This Is C1airut's form.

= Ay +(1- A' )" = Ay + k(say).where k =(1- A')11'

dy
Ay + k

x + B =!. log (Ay + k)	 log (Ay + (1 -A')").

EXAMPLES XVflI(B)

Solve the following equations

d'

	

dx' + 4y	 2x + 3.	 00 dxl +	 X

2. (ii)f-+--6y=x.

3. (i) (0+3)2 y = 25e 21 .	 (ii) (02 + 9)y = 9e'

4. (i)-'-a'y=e'.	 00.1,ye1.

(iii)	 .-4 AY + 3y = 2e"

S. (i) (0' - 4) y = sin 2i	 (ii) (0' + 4) y = sin 2x

6. (I)	 2 + Y = sin X.	 (ii)	 +	 = x cos x.

(Iii)	 +y	 cos' 7	 (lv)	 +	 = x sin 'x
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7. (1) (DZ_1)y =xe' .	 (ii) (D' - 9)y = e3z cos x.

8. (I) (D 1 + 2D + 2)y = xe

(ii) ( D 2 - I ) y = e' sin 1 x

(iii) ( D + 1) y = sin x sin 2x.

(iv) ( D 2_ D_2)y sin 2X.

(v) (D-2) 2 y = x'e' .	 (C.P.'861

9. (') dx
d' +2 

d
dx +	

= e + e

(ii)	 + k' y	 .(iii)	 -2 A +i =

(jy)	 = cosh x.	 (v) -	 - y =xe sin x.

10. X2 dx2 - x	 y =logx. tPutx =c'J	 (C.P.'85J
dx

11. (x 2 D 1 + xD + I )y = sin (log x 1 ). (Puix =e')

12. (i) Show that the general solution of the equation for
S. H. M., viz.

d Ix	 x,is x =Acos(ni +

(ii) Evaluate	 e" cos bx and hence show that

5 e 11 
COS 

bxdx = -1---	 (a COS bx + b sin bx).

13.	 Solve in the patticular cases

Ci) 12Y +y = sin 2x, when x = 0 y = 0 and	 = 0.

(ii) y - 5y1 +6y = 2e ; when x	 0, y =land  y, I

(iii) (0' -4D +4)y=x' ;when x=O,y=and Dy=1

(iv) (0' -I)y=2;given Dy=3,when y=I;and x=2,
when y - I
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Solve : -

14. (i) X	 = I .	 (ii)
di 2

15. (i) y, Cos 'x = I .	 (ii) yiy,	 4

16. y = tan y scc'y ,given i = 0, when y = 0.

17. (1)_Y= I
dx

18. (I)

	

	 x  sin 
dx'

19. (i) X 4..! = 2
dx 	 dx

20. +	 = e.
dx 1	dx

(jj)	 +	 0.x2	 y'

d2x
()i)

d'1 Iv
dx' dx

21. (1 + x' )y + 2xy, = 2.

22	 (.4v
dx'	 dx) + y 2 logy = 0.

23. .4_i + ( fi )1 +	
= odx'	 dx	 dx

24. y2 — (y, )1 = 0.

25. yy2 + (y1 )2 = 2.

26.
dx 4	 dx1

ANSWERS

1. (i) y = A cos 2x + B sin lx +(2x + 3).

(ii) y = A co x + B sin x * ( x — 6x)

2. (I) y	 i4e' + B +x _..r2 +x.

(ii) y = Ae'-	 + Be 3 ' - ( x
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3. (I) y	 (C1 + C2 z)e 3 ' +

(ii) y -A coo 3x + B sin 3.x

4. (I) y CI," + C,U" 
+

(ii) y	 .4e' + Be'

(iii) y =C,t' + C2 e'' +

S. (I) y	 Ae' +Bu" -sln2x.

(Ii) y - Acoi2x + Bsinx -'jxco2x.

6. (1) y = A cos x +B sin x •- -xcosx.

(H) y = C1 cca 2% + C2 sin 2x + Lx co, x + !sin X.

(iii) y	 A cos x + B sin x + .. - 1. cos 2x.

(iv) y = A cos 2x + B sin 2x +x _ j -x Cos 2x ---x 1 sin 2x.

7. (I) y = C1 e' + C2 e' .t- . e' (3x - 4 ) .

(ii) y = C, e ll + C,e'-' +-e'' (6 sin x - cos x).

8. (I) y + u' (A cos x + B sin z + x).

(ii) y = /e' + Be' --e' (sin 1. x + 4cosx).

(iii) y = A cos x + B sin x + . x sin z + -cos 3x.
(lv) y = At -' + Be 2 + -.( cos 2. - 3 sin 2x).

(v) y	 e'' (A + Bx	 ).
9. (I) y = e' (C1 +C2x+x)+,'

(ii) y = ( A + Bx)eb +e' (1 -k)2.

(iii) y = (A + Bx +x2 )e'

(iv) y =Ae +Be 	 +xsinhx.

(v) y = Ae'+Be'-4--{(1Ox + 2) cos x + (5x-14) sin x),

10. y = (A + B log r)x + log  42.

11. y = A cos log x + B sin log  - sin log x'
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13. (I) y = sin x -j sin 2x. (Ii) y =e'
(lu) y =..xe 2	 + x 1 +fx +is 	 (iv) y + 2	 -2

14. (i)y=x log x+Ax+B. (ii)y=(x_2),z++

IS. (ii y = log sec  + Ax sB. (ii) C1 2y 2 =A + ( C2 ± C1 I X )2

16. (siny + Cc I )(siny + Cc') = 0.

17. (I) 3x 2 ( 'ly - 2C2 )( 'y + c1 ) " + C2

TCT
(ii) 'IC 1 y 1 + y -	 log ('l Y + 'Il + C, y) = aC, 42 x + C2

18. (I) y = C1 + C2 x t (6 - x 2 ) sin r - 4x cos x.

(1) x = .e2I + C,t + C3 .	 19. (1) y =	 +B.

(ii)a log (y+B)=r+C. 20.y=C,e-+c3+e.
21. y = log (l+ x 2 ) + A tan 'r + B.22. y =

23. e' (C1 - eY ) = C2 .	 24. c  (C,x + C2 ) = 1

25. y 2 =2x +C1 x+C2 , 26.y=Cie'+C2e-+C3x+C4

18.12. Equation of the nth order.

The linear differential equation of the nth order with constant
coefficients is

d-'	 d•4+PI d"-'	 + P,,.. 1	 + P.=X,	 ... (1)
or, symbolically (D" + P,D"	 + P2 D 2	 + P,) y X, (2)
or, more briefly f ( D ) y = X,	 .. (3)
where P1 , P2 ......P,, are constants, and X is a function of x
only, or a constant.

The method adopted in the case of the solution of the second
order equation admits of easy extension to the above case. Thus,
the general solution of (1) consists of two parts (I) the CompL ien•
iary Function and (ii) the Particular Integral, the complementar3
function being the general solution of

f(D)y = 0	 ... (4)

	

and the particular integral being the value of 	 . X.
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Assuming, asbefore, y = e as a trial solution of (4), we shall
find that y = e" will be a solution of (4),

	if f(m)=O,iz.,ifm'4-Pi m	 +..+P,, = 0 ....(5)

Equation (5) is then the auxiliary equation of (4).

If the auxiliary equation (5) has n real and distinct roots
viz., ,n 1 , m 2 ,..., m, then the complete solution of (4) is

y	 Ci e- 1	 + Ce"2	 + ....

If the auxiliary equation has a multiple real root of order r, and
if this root be a, then f( D) contains ( 0 - a)' as  factor, and
the corresponding part of thç complementary function will be the
solution of( D - a)' y = 0.

Assuming, as before, y = e

(0- cx)'y = (0- a)'e'v =

and the solution of D' v = 0 is, by successive integration,

(CO + C 1 x+ C,xi+ . .. + C,., x'' ),
whence y = (C0 + C 1 x s- C1 x2 + ... + C,., x'' )e —
is the corresponding part of the complement4ry function.

If the auxiliary equation has complex roots a ± i , the cor-
responding part of the solution is, as before,

y =e' (A cosx + B sin x),
and if a ± ip are double roots of the auxiliary equation, the cor-
responding part of the solution will be

e	 ((A, + A 2 x) cos x + (B, +B,x)sin OxJ.

The method of obtaining the particular integral of (1),.when X
has those special forms I See Art. 18.5 1, is essentially the same as
shown in the case of the second order equations.

18.13. Illustrative Examples.
E.1. Solve (D 3 + 313' + 3D+ 1)y = e'

Here, the auxiliary equation Is m 3 + 3m' + 3m + I = 0 of which
therootsare - 1,-i.- I.	 C. 	 = e(C.., + C,x + Cir').
Integral Calculus (main) -27
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1	 1
= (D' + 3Tr4 3D 

+ fl	
= (V •

-e s—	 ' ----1-c '--1--c	 z 1
0'

the general solution is y = cC0 • C, r + C, x • x' ).

Ex. 2. Solve (0 4 + 2D 3 + 30' 4 40 + 1 ) = xc'

The equation can be written as (0' • I.'	 I )'y 	 xc'

Here, the auxiliary equation is ( in 	 • m • I 1' = 0; it has double
complex roots - - t I j- '13, - ±	 '13

C.F.is e 	 l(A,+A,x) cos (-13x)+(8, +B,x) sin (.'.'3x)J

1	 ____ 1
= (	 +0+1)'	

= e	 j(1)1) 2 +(VI)i)'

e I	 IF	 1	 1=	 X = C'3)1 	 IIiT D(i	 5Pi
=e'( 1 + L)( I + 21))}	 = ,'	 I -20 - . • . Ix

,e'	 r - 2).

the general solution is

Y	 e'" UA, + A,r) cos (- 43x)

• R,x) sin (f'13x)J +e'(x	 2)

a'
Ex. 3. Solve	 - 2._4 t y	 sin (2x • 3)

The equation can be written as
(D 4 - 1)' y = sin (2x • 3).

Theauxillaryequationis(n' - 1) 2 = (J; its roots are Li,- 1.-i
i,i-i,-i. Hence.

C.F.is c' (A, + A i x) + e' (l3 + B,x)

+ (0, +D,x)stnx ...	 (1)

P.1. =	 sin (2x • 3)= -, ^ 
	

—j-j-,sin(2z + 3)

sin (2r+3)	 . .	 (2)

Adding (1) and (2), we get the general solution.
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EXAMPLES XVflUC)

Solve

1. .-y=O.	 IC.P.19461

2. (i)--'-3	 + 2y =O.

dx J dx 2 	 dx
d'y	 d3y	

, =dx'	 dx	 dx'	 dx
(iv) (V + 1) 3 (0: + fly = 0.

3 dx	 dx3	 ax
4, U) (0' - O)y =	 - c

	

(ii)	 D I - 1) y = sin 3x +1).

.4	 5	 2y	 0.

	

dx'	 dx'	 dx

6. (D' + D2 -. V	 I )y = sin'x.

7. - 3 -----. + 4y	 e''

	

dx'	 d2
dv

8. '-;i•- -L -
	 + 4y = e- bin

9. (12' -. 302 + 40 - 2)y	 r' + cos

10. (0' - 40' + 302 + 40_ 4)y =

11. (0' * I ) y = 2 cos 2. x - I + e'

12. (0' + 202 + fly	 cosi

13. ( V - 1 '( D 2	 )'y = '' + srt

14. - 2 LI +dxI	 dx

15. 5 dy + 4y = 360in	 1 cos -
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ANSWERS

1. (I) y = Ac + - " (B sin + 431 + C cos 43x)
2.

60y = Ac S + Be - + C cos x + V sin x

2. (i)y=e(.4+Bx)+Ce'5. (ii)y=A+ Be" -s-Ce'

(iii) y = e	 ((A + Bx) cos x + (C • Dx) sin x!.

(iv) y = e	 (A 1- Bx + Cr 2) +D cos x + Esinx.

3. (i)y = Ac' +e/2 (B sin 43x i-Ccos-43x)-x +x'-6.

(ii) y = A + Br +Ce 	 + j x - 35 x' +x.

4. (i)y=A+Be I +Ce' -4-.r(e'+e	 ).

(ii) y = c - /
2 ( 

A cos	 x 1- B sin	 x ) + Ce

s 	 COS (3x + I) -,sin(3x + 1).73-0

5. 	 y = (A 1 + Ax)e x + A3e-'

6. y=Ci' *(C 2 +C3 x)e' +-s(n2r+-cos2x---.

7. y	 e 11 (C, • C 1 x)+ C3 e' +-e'

8. y = C, e '' + e' ( Cl cos x + C 3 sin x )

-
Ill e' ( '

COS x-.-3sin-x).

9. ye'(C1+C2 COS x+Cs 
s in X)+xe' + -( cosx+3 sin x)

10. v	 (C, - C2 x ) e' * C3e x + Ci e - - + !r2e2

fl.	 y r C ' j C, COS ax + C2 ,in ax I • c' (C3 cos ax

* C4 Sm ax I + ( cos x + e	 ), where a = I / '2 -

12.	 y(C,. C2 r) sin i+(C3+C4X) COS X-X 3 COS X.

1).

4	 f I x 2 +	 -	 1 sin x
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ii.	 v = (C + C2 x)e' + C3 +e + 4 x 3 +2x.

15.	 y = C, cos x + C3 sin x + C3 cos 2x.
+ C4 sin 2x t sin 4x + sin 3x

18.14. Homogeneous Linear Equation.

An equation of the form

dv

	

x'— + P, X" 	 +
dx"

	

* P. -, x	 + Py =X,	 ... (1)
dx 

or symbolically, ( x" D" + P, X" -' D - +

+ P. -, x D+P,,)y=X, 	 (2)

where P, , P2 ,..., P. are constants and X is a function of x
alone, is called a homogenecus hnar equation.

The substitution
x = e ,i.e., z	 log x

will transform the above equation into an equation with constant
coefficients , which has already been discussed in Art. 18.12. Here

the independent variable will be z

Now,	 =_
4y dz	 _I= 	 dy ...	 (3)

dx	 dzdx	 xdz

	

dx? - dx \ x dz /	 x2 dx	 x dz 2 x

(4)
- x 2	 dz	 dzl

4y	
1(dy!)	

(5)Similarly,	
=V dz 3	dz2

Let us write ö for 	
with this notation (3) (4) , (5) can be

written as

x
	dy

TZ =&y,	 (i,)

x 2

	

	= 8 (b - 1) y.	 (7)
dx
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x 1 d' Y 8 (8- 1 )(8 - 2)y	 (8)
dx

x" 
dx 

=8 (5- 1)(8- 2)..(6- n + fly	 (9)

Note. This is sometimes called Cauchy equation.

18.15. Equation reducible to the Homogeneous Linear form.
An equation of the (arm

ax + b)	 P (ax + b)' -
dx	 dx'

...(1O)
dx

where P 1 , P2 P are constants and Xis a function of x alone
can be reduced to a linear equation with constant coefficients by
the substitution ax + b = z

Note. This is sometimes called Legendre eqvatwn

18.16. Illustrative Examples.

Ex. 1. Solve x'	 __.+3x1	 -_ 2x	 + 2y = x2.
dx I	 dx2 dX

Put	 r =e, i . e., z = log x.

Then by Art. 18.14 the equation transforms into

18(6- I )( 6-2) + 36(6-1)- 26+21 y = e.	 (I)

where 8 =	 or, (6- 1) 2 (6 + fly =

the roots of the auxiliary equation are I , I ; -

The C. 	 is y = ( C1 + Cj z)e I + Ci e la

And P. I. Is (8 - 1)2(8 
+ 2) 

e 2. =

the general solution of (1) is
y =(C 1 + C2 z)e + C3e'	 1 , 2.

I-lance, the general solution of the given equation Is

y = (C + C2 logz)x + C3 x- 1 +-x
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Es. 2. Solve (x 2 D	 2xD ) y = ze'

Put x = e	 i.e., z = log x.

by Art. 18.14 , the equation transforms into

(8(8-1) + 26}y = e e' ,

here 8=—
d , or,(8+8)y=ee"

dz

the roots of the auxiliary equation are 0. -

	

the C. F. is y =	 + C1ez

I
= 8(8 + 1)

ez eel

- ( 1-	 (8+1)

- 1 	 8+1

e e	 dz - e	 fe ll e	 dz.	 lBy Art. 18.6

	= e'-e	 t( e -. 1)	 ) =
I Sec Lx. 8 of Art. 187.

the general solution of (1) is
y=C, +C2 e' +e' eel .

Hence, the general solution of the given equation is

y =C1 + C2 x 1 +

EXAMPLES XVIII(D)

Solve the following equations

1• x2 - dx -4x
	 + 6y	 x.

dx

2. (x2D 1 + xD - fly = sin (logx) + xcos( log x).

3. x Li +	 +	 = x4
dx2	 dx
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4. (x'D - 2) y = x 2 +

5. x' Li + 2x --- -2x	 = 0.dx'	 dx'	 dx

6. (x' D' + xD - I )y = x'

7. x' L1+x1_yx.
dx'	 dx

8. (x + 2)'	 - 4(x + 2) -4y +	 = x.

	

dx'	 dx

9. (xD + 6x'D 3 + 9x'D 2 + 3x0 + I)y = 0.

10. x 1	 i- 3x3 LL - 2x 2 . + 2xy = log x.

ANSWERS

1. y = C,x' + C,x' +

2. y = C,x + C,x' --}sin(logx)

+ x (2 sin (log x) - cos, (log x))
3. y	 (C, + C, log x)x-' f%4

4. y = C,x 1 + C,x' + . x' Iogx - x' log X.

S. y=C,x'+C,x 1 + C,..
6. y= (C, +C,logx+C,(logx)')r+x'.
7. y = (C, + C,Iogx + C,(logx)' Jx +x(logr)3.

8. y	 C, (x+ 2)2 +C,(x + 2)' + . -(3x + 4).

9. y = (C, + C, Iogx)cos(logx)
+ (C, sC4 logx)sin(logx)

10.y = (C, + C,logx)x + C,x' +x - ' Iogx.



CHAPTER XIX

APPLICATIONS

19.1. We have already considered in the preceding chapters
some applications of differential equations to geometrical probl-
ems. Here we shall have some other applications of differential
equations.

19.2. Orthogonal Trajectories.
If every member of a family of curves cuts the members of a

given family at right angles, each family is said to be a set of or-
thogonal trajectories of the other.

( A ) Rectangular Co-ordinate..

Supose we have one-parameter family of curves

f(x,y,c) = 0,	 ... (1)
c being the variable parameter.

Let us first form the differential equation of the family by dif-
ferentiation of (1) with respect to x and by elimination of c I See
Art. 15.2 1, and let the differential equation be

x.y,) = o.	 ... (2)dx
If the two curves cut at right angles, and if i, y ' be the 1gles

which the tangents to the given curve and the trajectory at the com-
mon point of intersection,( say x, y ), make with the x-axis, we
have w -	 ' = - i , and, therefore, tan y = - cot w' . Since
tan i =	 it follows that the differential equation of the smystern of
trajectories is obtained by substituting

idv	 .	 dx	 dv.-	 j -s-	 i.e., - - for -- in (2)
/ dx	 dy	 dx

Thus, the differential equation of the system of orthogonal trajec-
res is

,,,_ 	 0.	 .	 (3)
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Integrating (3) we shall get the equation in the ordinary form.

B) Polar Co-ordinates.	 -

Suppose the equation of a given one-parameter family of cur-
ves be

f(r,O, c) = 0	 . . . (1)
and the corresponding differential equation, obtained by eliminat-
ing the arbitrary parameter c, be

F(r.8. J) = 0.	 ... (2)

If 0, 0 'denote the angles which the tangents to the given curve
and the trajectory at the common point of intersection, ( say r, 8),
make with the radius vector to the common point, we have, as
befrre, tan Q = - cot 0 '

Since tan i' = r (dO/dr), it follows that the differential equation
of the system of orthogonal trajectories is obtained by substituting

	

ldr	 dO	 .	 dO	 dr.-	 - for r - 	 i.e ., - r 2 - for - in (2)--

	

rdO	 dr	 dr	 dO
Hence, the differential equation of the required system of orthogonal

trajectories is

a'

	

F	 r,O, -r' dO-	= 0.	 .. (3)
dr

Integrating (3) we shall get the equation in the ordinary form.

19.3. Illustrative Examples.

F. 1. rind the orthogonal trajectories of the rectang4lar hyperbolas
zy =a I -

F)ifferentiating y = a with respect to x , we have the differential
equation of the Family of curves

x+y=Q	 (1)
dX

and hence, for the oithogonal trajectories, the differential equation Is

	

-	 = 0. or, xdx - ydy = 0
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Integrating this, we have xt - 	 =c • the required equation of the
orthogonal trajectories. it represents a sys tem of rectangular hyperbolas.

Es. 2. Find the orthogonal trajectories of the cardioides
r	 a (1 - cos 8 ) -

Since r = a (I - co' 9). .. log r = log a + log(] - cos 9).

Differentiating with respect to 0 • we get the differential equation of
the family of curve,

1 dr sin _
r 40 I	 cosO

the differential equation of the system of orthogonal trajectories is

i(	 ±0)	 sin 
r i.,' dr1 - cosO

4,	 1 - cosO 49=0,
sin 

4'	 sill O	
49=0or, - + - _______

r	 I + cosO

integrati.ig, log	 +
IF

 

Coss = log C;

ic., r = c(I + coSO)
represents the required orthogonal trajectories.

Es. 3. Find the orthogonal trajectories of the system of curves
7	 = 3' CO5 PI9

Since r' = a' cos nO,	 .-. n log r = n log a + log cos 'iO

Differentiating with respect to 9, ( and thereby eliminating a I we get
the differential equation of the family of curves

I dr	 sin nG
N

-F
	= - P1

r 46	 cosprO
the differential equation of the system of orthogonal trajectorIes is

I I	 dO\	 sinnO
- • .1 

- j = -
r \	 dri	 cos no

r	 sin no

integrating, log r - - log sin no = log c,
'I
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p.
i.e., log (ainnOP' - log C.

p. " = C" ,lnnO.

19.4. Velocity and Acceleration of a moving particle.

If a particle be moving along a straight line, and if at any in-
stant t the position P of the particle be given by the distance s
measured along the path from a suitable fixed point A on it, then,
P denoting the velocity and f the acceleration of the particle at that
instant, we have

v = rate of displacement
= rate of change of s with respect to time

do
—..e,

and f = rate of change of velocity with respect to time

_dv ds

If, instead of moving in a straight line, the particle be moving
in any manner in a plane, the position of the particle at any instant
being given by the cartesian co-ordinates x, y, referred to a fixed

set of axes, the components of velocity and acceleration parallel to
those axes will similarly be given by

- dx= rate of displacement parallel to x-axis -

= rate of displacement parallel to y-axis =

f	= rate of change of vi =	 =

=
f, = rate oI change of 	 = dt at)	 dt

The applications of these results are illustrated in the follow
ing illustrati ve examples.
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19.5. Illustrative Examples.
Ex. I. A particle starling with velocity u moves in a straight line with a

uniform acceleration f . Find the velocity and distance travelled in any time

S denoting the distance travelled by the particle in time t, the accelera-
tion of the particle is given by the expression d 2 s I dt , and so, in this case.
d 1 s/di 2 =

integrating, Ls = ft s A, where A is the integration constant.
dt

Now, ds / at is the expression for the velocity v of the particle at time :,

	

and when t = 0,i.e., at start v = u -	 .. U	 0 + A.

Hence,	 v =	 = ft + u -	 - - -	 (1)
di

Integrating (1), s = ft 2 + Ut + B,
where the integration constant B is found in this particular case from the
fact that s = 0 when t = 0, .. B = 0.

Hence.	 s =..ft 2 + ut = ut

Ex. 2. A particle is projected with a velocity u at an angle cx to the horizon.

Find the path.

Taking the starting point as origin, and taking the axes of co-ordinates
hori'ontal and vertical respectively, if x , y denote the co-ordinates of th'e
particle at any time I , since there is no mice and therefore no acceleration
in the iorizontal direction, and since the eertical acceleration in the horizon-
tal direction is always the same = g downwards, we have in this case

---. -
dt 2	'dt2

dx
I l ence, Integrating, -	= A	

dt	
- gt + B	 ...	 (1)

But, dx / dl , dy / dt represent the horizontal and the vertic corn-
porerits of velocity respectively, and these, at start when I = 0, are given
by u cos a and u sin a

.. 0 cos afl,u sin a=O+B,
whereby the integration constants are obtained.

Thus, (U gives

dx
-	

= ucosa, 
7- = 

usina - gt.
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Integrating again, x = ut cos ct + C
and	 y = ui sina..-..gt' + V.

Now, since xy=O when  =0.we get from aboe C=D-L3.

Hence,	 x = ut cos a
and y = ia 5th U - - gZ

Eliminating t, the path of the particle is gi ven by

1y=xtana - - g	 -2 U2 cos2a
which is evidently a parabola.

19.6. Miscellaneous Applications.
The examples below will illustrate some other applications of

different 

'

al equations.

Ex. 1. The population of a country increases at the rate proportional to the
number of inhabitants. If the population doubles in 30 year, in how many year will
it treble ?

Let r be the population in I year.

dx
solving, x = Ce

Let	 x=x, when I = 0 . :. C = x0 ;	 :. x	 x0 e

When x = 2x0 , 1 30;	 :. 2, = x0 e	 .. 2

When x3x, let S=T;	 ;. 3i0=xe;	 3

30k = log, 2	 T
and kT = Iog,3	 To	 log. 2 - O approirnateL,.

T	 30 x	 48 year approximately.

Ex. 2. After how many years will Rs. 100 placed at the rate of 5% con
Sinuously compounded, amount to Rs1000

Let x be the amount in t years.

dx	 5=	 x = kx say , where A1	 100

sols'ing.x = Ce5'
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When t	 O.,x ,	 C	 00.	 :.	 = 100e

	

When x = 1000, let I = I ... 1000 = I00e Irl...	 kT = 10.
kT = log. 10	 2.30 approximately.

T = (I / k) x 230 = 20 x 230 = 46 nearly.

the required time is 46 years nearly.

EXAMPLES XIX

Find the orthogonal trajectories of the following ía milies of cur-
ves

	

1. (I) y = mx	 (ii) y = ax'
(iii) x' + y' = 2ay .	 (iv) y' = 4ax
(v) ay	 = x 3 	(vi) x 1 -s-	 = a1

(vii) x 15 + y 213 = a'''. (viii) x 2 +y I +a 2 1 +2a4.
(ix) r• = a cos 0.	 (x) r 7 = a 2 cos 20
(xi) r (1 + cos 0 )	 2a . (xiii) r	 sin nO = a

2. (i) Show that the orthogonal trajectories of a system of con-
current straight lines form a system of concentric circles, and con-
versely.

I Take th point of concurrence as origin.
(ii) Sho.' that the orthogonal trajectories of the system of co-

axial circles
+ y 1 4 2Xx + c= 0

form another system of co-axial circles

where )and i are parameters and c is a given constant.

(iii) Show that the orthogonal trajectories of the system of
circles touching a given straight line at a given point form another
system of circles which pass through the given point and whose
centres lie on the given line.

3. (a ) Show that every member of the first set of curves cuts
orthogonally every member of the second

(i)	 = x? +	
(ii) die'	 y' + y * I	 odx	 y 7 + y + 1	 dx x' + x + I
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(b) Show that
(i) the family of parabolas y 2 = 4a ( x + a ) is sell-or-

thogonal.

(ii) the family of confocal conics

	

x1	 yt

	a7 +	 + b 2 +	
= 1 ( being the parameter

is self-orthogonal.

4.(i) Find the curve in which the radius of curvature is propor-
tional to the arc measured from a fixed point, and identify it.

(ii) Find the curve for which the tangent at any point cuts off
from the co-ordinate axes intercepts whose sum is constant, and
..1entify it.

5. Find the Cartesian equation of a curve for which the tangent
is of constant length.

6. A particle is said to execute a Simple Harmonic Motion when
it moves on a straight line with its acceleration always directed
towards a fixed point in the line and proportional to the distance
from it in any position. If it starts from rest at a distance a from
the fixed point, find its velocity in any position, and the time for
that position. Deduce that the motion is oscillatory, and find the
periodic time.

7. A particle falls towards the earth, starting from rest at a
height h above the surface. If the attraction of the earth varies in-
versely as the squae of the distance from its centre, find the velo-
city of the particle on reaching the earth's surface, given a the
radius of the earth and g the value of the aceleration due to gravity
at the surface of the earth.

8. A particle falls in a vertical line under gravity ( supposed
constant ), and the force of air resistance to its motion is propor-
tional to its velocity. Show that its velocity cannot exceed a par-
ticular limit.
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9. A particle moves in an ellipse with an acceleration directed
towards its centre. Show that the acceleration is proportional to its
distance from the centre.

10. In a certain culture, the number of bacteria is increasing at
a rate proportional to the number present. If the number doubles
in 3 hour, how many may be expected at the end of 12 hour?

11. Alter how many year will a sum of money, placed at the
rate of 5% continuOUSY compounded, double itself?

12. Radium disappears at a rate proportional to the amoint
present. If 5% of the original amount disappears in 50 year, how
much will remain at the end of 100 year?

13. A tank consists of 50 litre of fresh water. Two litre of brine
each containing 5 gram of dissolved salt are run into the tank per
minute; the mixture is kept uniform by stirring, and runs out at the
rate of one litre per minute If m gram of salt are present in the tank
after t minute, express tn in terms of t and f ; -.Ad the amount of

salt present after 10 minute.

14. The electric current 1 through a coil of resistance R and in-

ductance L satisfies the equation RI + L ( dl I dt) = V. where V
is the potential difference between the two ends of the coil. A poten-
tial difference V = a sin ot is applied to the coil from time t 0
to the time t = / , where a, 0 are positive constants. The cur-

rent is zero at L = 0 and V is zero after t =n/; find the Cfr

rent at any time both before and after t = n / al.

15. A horizontal beam of length 21 m, carrying  a uniform load

of w kg per m of length, is freely supported at both ends, satis-
fying the differential equation

EI d__Y = wx2 .-w/x,
dx	 2

y being the deflection at a distance x from one end. If y = 0 at
x • 0, and y1 = 0 at x =I , find the deflection at any point; also

find the maximum deflection.

Inlegral Calculus maifl -28



402	 lNTEC;LL CALCULUS	 Ex . XIX

16. A horizontal beam of length 1 simply supported at its end
subject only to its own weight satisfies the equation

El d -'Y-
dx

where E, 1, to are constants. Civon	 = y = 0 at x = 0 and at
x = I, express the deflction y in t:: s of x.

17. A harmonic oscillator consists of an inductance L • a con-
denser of capacitance C and an e.m.f. E. Find the charge q and
the current £ when E = Eo cos W and initial conditions are

q0 and i	 io at I = 0; i. q satisfying the equations

dqEo
dt2 + LC	 L COS(ot,, 

= dt

What hapens if o	 ?

ANSWERS
1. (1) r 1 +	 =	 . (ii) x 2 + ny 2 = c	 (iii) x2 • y1 = 2cx

(iv) 2x 't • y 2 = c2 () 22 1 + 3y' = c2 . NO y = cx
(vii) x 4/3 - y'3 =

(viii) y'I( I -y 2 )± x( ) - x 1 ) + sn  y ± sin	 x = C

(ix) , = c sin 0. (x) r 2 = c 2 sin 20.
(xi) r (1 - cos 0 ) = c . (xii) r cos no = C.

4. (i) Equiangular spiral. (ii) Parabola.

5. x =/a 2 _y 2 +fa( log (a_a2_y2)_ log (a+QiTj)}

if y =awhen x = 0

x6. p '1 ( a -2 -  x 2	 t I	
- - . when p is the acceleration ata

2na unit distance. Period

10. 16 times the original number.a + h
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11. 14 year nearly.	 12. L61 of the original anIour.t

13. St (i +
	 _._.

50	
gram 91 grant.)

14. For t <!
IA) i = L?6)24R2 R sin wt - WL (COS wt - r ) }

Rw	 RI	awland for	 (i+tt)--r--(a

5w!'
= TTi	 - 4x 3 + 81x)y	

=

16. y	 -ix+

17 q (qo
	 LC._.)CosI +'o sin R.__!__ t

	

-	 1-&

E0 C+ 
f-- W I LC COS WI.

to	 qo	 'C.----

	

Cos	 C)t_

Eo CW

- I-&LC sin ox

Jf CO

=	 i.e.. frequency of e. m. 	 natural frequency. Osdilaijo,
i.e., resonance will take place and the circuit will be destroyed. Beforedestroying

isq = qo cos WI +	 Slfl WI 
+ 

E0 I sin W;

= cos ,e - q o O3 gin cot +
Eo(I	 WI	

)
3lfl	 + tCoSO)I



THE METHOD OF ISOCUNES

20.1. It is only In a limited number of cases that a differential
equation may be solved analytically by the preceding methods. In
many practical cases where the solution of a differential equation
is needed under given initial conditions, and the above me-thods
fail, a graphical method, the method of isoclines, is sometimes
adopted. We proceed to explain below this method in the case of
simple differential equations of the first order.

Let us consider an equation of the type

=f(x,y)	 ... (1)
dx

As already explained before, the general solution of this equa-
tion involves one arbitrary ccnstant of integration, and henL. rep-
resents a family of curves, and, in general, one member of the
family passes through a given point ( x, y).

Now, if in (1) we repace by m, we get an equation f (x, y)=rnt
which for any particular numerical vale of m represents a curve,
at every point of which the value of j, i.e., the slope of the tan-
gent line to the family of curves represented by the general solu-
tion of (1) is the same as that numerical value of m. This curve f

x , y ) = m is called an isoclinal or isocline. For different numeri-
cal values of n we get different isodinals, which may be graphi-
cally constructed on a graph paper. Through different points on
any one isocline, short parallel lines are drawn having their com-
mon slope equal to the particular value of m for that isocline.
Similar short parallel lines are drawn through points on other
isocllnals. If the tiumber of isoclines drawn be large, so that they
are sufficiently close to one another, the short lines will ultimately
join up and appear to form a series of curves which represent the
family of curves giving the general solution if (1), and a particular
number of the family passing through a given point represents the
particular solution wanted. All necessary information regarding
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the particular solution may now be obtained from the graph.

As an example, let .s

rig. i
 :'nsider the differential equation

=x_y 2 .The iso.ik are given by m=x — y2,
Jx—
or Y' = x - tn, a series of equal parabolas shifted left or right from

= x ( which corresponds to m = 0 ), as shown in the figure.
The dotted curves represent graphically the solutions of the dif-
ferential equation.



CUAPrER xxi

DOUBLE AND TRIPLE INTEGRALS

21.1. In Chapter VI we have discussed what is meant by the
definite integral of a function of a single variable with respect to
that variable taken between two prescribed bounds. We shall now
discuss briefly about the double intergation of a function of two in-
dependent variables taken over a two dimensional region and that
of a function of three variables taken over a three-dimensional
region.

21.2. Double integral over a rectangle.

First of all we confine our discussion of double integral of a
function of two variables over a finite rectangular region and then
we shall extend our idea to any finite region other than rectangles.

YI.n	 I-)

yl

Fig.l
Let f ( x, y) be a bounded function of two independent vari-

ables x and y defined over the rectangle ABCD, bounded by the
lines x = a, x = b , y = c, y = d. This rectangle will be denoted
by R[a,b;c.dl,or,simplyby R.

Let a=x0 <x1 <x2 < ... <x,1<xfr

and c=yo <yi <y <...<y 1 <y..=d.
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We draw the lines x,x - x,...,x xj, ..,x X.
 are parallel to Y" and the lines yy1, y

y • y, ., y	 y., -' which are parallel to OX to divide the
rectangle R into mn sub-rectangles.

Let us denote the sub-rectangle R I xj - , x1 ; y - , y, I by R,
and Its area by A,1 We have A4 - (xi x - )( y - Yi -'

Let mij and M 1 be the lower and upper bounds of f(x, y)
in R0, We next form the sums

=E ZIN4A4

MqAq.

It Is evident that for every mode of sub-division of R into sub-
rectangles R ,m(b-a)(d-c)Ss S SS M(b-a)(d-c), where
M, mare the upper and lower bounds off( x, y) in R. Thus, we
can say that the two sets of upper and lower sums S and a are
bounded for all modes of division of R into a finite number of sub-
rectangles R,, as defined above.

The lower bound of the set of upper sums Is defined as the
upper integral of f ( x , y ) over R and Is denoted by I and the
upper bound of the set of lower sums Is defined as the lower In-
tegralof f(x,y)over R and is denoted by J.Wewrite:

f(x,y)dxdy, J .Jff(x,v)dxdy.

If I and I be equal, then the functlof ( x, y) I. said to be in-
tegrable over the rectangle and the common value denoted by

fJ / ( x, y ) dx dy or 55 f( x , y ) dA I. defined as the double

integral of /( x, y ) over the rectangle R.
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Note. Norm of a division of a rectangle-
The norm of the sub-division D of a rectangle R is denoted byll D I I

or t and may be defined to be the greatest diagonal of sub-rectangle,,
i.e., II DII - max.4((xj - ;_) 1 + - yj- )2),thenadnumis
to be taken of all the diagonals of the sub-rectangles of R.

21.3. Condition of Integrability.
We state here, without proof, the necessary and sufficient con-

dition for the Integrability of a bounded function f ( x , y) over a
rectangle R. The condition is that to every positive number c, there
corrsponds a positive number 8, such that for every division of
R whole norm is c 8, the oscillation S - s is less than c.

21.4. Simple properties.
If f ( x, y ) and g ( x, y) are integrable functions over a rec-

tangle R, then the functions f ( x, y) ± g ( x , y) and cf ( x y),
where c is a constant, are also integrable over the same rectangle
R and

	

(I) 55 (f ( x,y )±	 XY)) dxdY

-55 f(x,y)dxdy ±55 g(x,y)dxdy.

	

R	 R

(ii)554(xY)dxdY C55 f(x,y)dxdy.

(iii) Iff(x,y)!5 g(x,y)in

then jjf(x.y)dxdY 55Jg(xY)dx4Y.

(iv) If R = R1 u Ra when R n R2 =

then JJ f(x,y)dxdya	
55R
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Note 1. If R, and R, have a common region, as shown by the shaded
area In the adjoining figure, when we calculate

f(x,y)dxdy +JJ f(x,y)dxdy	

G
we are really integrating f ( x, y)
twice over the common region
EFDC so that the result (iv) is not
valid. We, therefore, introduce the R2
condition R, r R, = $, so that
R,and R 2 have no common region.

Note 2. It is easily seen that	 B	 F
the results (i) (ii), (iii) and (iv) in 	 MS .2
§ 21.4 above remain valid for
double integrals over any finite region F provided the functions are in-
tegrable over the region F.

21.5. Calculation of a double integral. Equivalence of a
double integral with repeated integrals.

Theorem. If the double ff R f ( x , y ) dx dy exists, R being the

rectangle [ a , b;c,dland if the integral5 f(x,y)dx also

exists for all values of y in ( c, d ) , then the repeated integral

dy	 x, y ) dx exists and is equal to the double integral.

Proof. Let us divide the rectangle R [a, b ; c , d I into rnn sub-

rectangles by the lines x = x, , x = x2 ,..., x	 x - and y = y

Y = y ..... y = y... - , where a = x0 .z x, < x2 < ... < X. = I,

and C = y0 <y <Y2 < ......< y... = d . If rn,1 and M,, be

the lower and upper bounds of f ( x, y ) in the sub-rectangle

R 1, I z - . x, ; y, - 1 y, I , we have

m,i !^f(x,y)c M,, .	 . . . (1)
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If y remains fixed, then f( x, y ) can be regarded as a function
of one variable x only and then by using the mean-value theorem
of Integral Calculus we have

P
m 1 (x, -x,	 )5 J 	f(x,y)dxsM 1, ( x - x11 ),	 ... (2)

which holds for all Values of y in () - I , Yj ).

p
Let us now denote 

J	 f( x, y )dx by g (y).xi -
Since g(y)ls bounded ln(y11 .y, ),wehave
rn11 ( X. -	 )( y, - y,	 ) :5 Jo

Jo < M 1 xi -	 )( y • - y
i.e. , rn,1 A, < 1 , J, 5 M,, A 1,	 . (3)

where 10, 10 are respectively the lower and upper integrals of g (31)

VIYi
in W, 	 ,y, ),i.e.,!0 	 g(y)dy and Jo	 g(y)dy.

- Y-i

Now, taking summation with respect to I and j, we get

±	
rn 1 A, 5fg(y)dy

d	

n 7) dy s	 M, A,1,

I_I f-I

i.e., s5 5g(Y)dYJg(y)dy ig S,	 ... (4)

where s and S denote respectively the lower and upper sums for
the double integral of f ( x, y) over R.
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(4) can be expressed as

$ 5 J dyf f(x,y)dx, f dyJf(xy)dx 15S.

r'
I :5

J
 dy J f(x,y)dx 15 I

_c	
(5)

and I!;f dyf f(x,y)dx 5 I	 1
Since the double integral exists, I = I and therefore

5 dy fi x ,y ) dx also exists and is equal to the double integral.

Hence, fdyff(xy)dx =55 f OF, y)dxdy

('or. 1. irJf f(x,y) dxdy exists and j f(x, y)dy exists, then also
R

f
arf f(x.y)dy exists and =fff(x.y)dydz.

Cor. 2. If the double integral exists, the two repeated integrals cannot
exist without being equal.

Thus, if the double integral exists, then the repeated integrals

5 drf f(x, Y)dY.f dYff(xY)dx both exist and they are equal.
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21.6. Double integration as a limit.

Let f ( x , y) be a continuous function in the rectangle
R I a, b ; c • d I . Let us divide R into sub-rectangles in the process
as described in § 21. 2. Let ( x, , y ) be any point of the sub-rec-
tangle R,, whose area is A,. Now, form the sum Z f( i,, y, ) . A,.

We can show that, as the norm of sub-division I D II - 0,
the limit of the above sum will be the double integral of f ( x , y)
over R,

i.e., Li -.	 f ( x, . y, ) A, = Jf f ( x , y ) dx dy.

21.7. Geometrical interpretation of double integral.

Let us consider the double integral Jj' f( x, y) dx dy, where

R istherectangle Ia.b;c,dJ.Let z= f(x,y) be the given func-
tion, which graphically represents a surface.

We divide R into rnn sub-rectangles by the lines x =
x x =x,,.., ,and y =y, y = Y1 .....y = y, - ,
where a=xo<x,<x<..<x=b,c=y0<y<y1<<yd
Let R,, be the rectangle I x, - , x, ; y, i . y. I whose area is A,,
Now, lines paraliel to the z-axis are drawn from points of R, 1 upto
the surface z = f( x , y ) to form a prism. Let V,, be the volume of
this prism and m, , M 1 the lower and upper bounds of f ( x , y)
in R,,. It is evident that

m, A,1 :5 V,, 15M,, A,,.

rn,,A,,	 V,, <	 EM,, 1•

-1	 ,1	 i1	 ji

As the double integral if f (x, y) dx dy exists, it is equal to

Li	 E rn,1 A,,	 Li	 M,, A,,
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= U	 V,

	

...5$f(xy)dxaY= LL	 being the volume

of the cylinder whose base is R, the generators of which are paral-
lel to the z-axis drawn from points of the sides of R upto the sur-
facez =f(x.y).

21.8. Double integral over any finite region.

We have already defined the double integral of a function over
a rectangle R. Now, we are going to define the double Integral of
a function over a given finite region E . As E is finite, we can con-
struct a rectangle which can enclose the given region £ . Let us
define a function g ( x, y) over R as follows

g(x,y) =f(x,y)forallpoirttsof F,
= 0 outside E.

The function f (x, y) is said to be integrable over £ if g (x, y) be
integrable over R . We have then

x ..y )dxdy =55 It 

g(x,y )dxdy.

Note. Let us take the z-axis perpendicular to the plane of E If lines
pac.aItel to the z-axis be drawn from points on the boundary of E upto the

	

surface a = f ( x, y), we get a cylinder. Geometrically 	 f ( x, y) dx dy

	represents the volume of the above cylinder. 	 -

21.9. Evaluation of double integral.

Let E be the region bounded by the curves y = u (x), y v (x)
and the ordinates x=a,x=b.lf u(x),v(x)be continuous
functions and u ( x ) !; v ( x ) in (a, b ) and f ( x, y ) be a con-
tinuous function In E , then

,o(x)

55 f(x,y)dydx =J dxJ
£	 a	 u(z)
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Y _y.fq_ Let R Ia,b;c,djbe
the rectangle whichjxb encloses the given region
E and let us thuine the
function g(x,y)In It as
followsY=C I

= f(x,y)
at all points of E,

Fiji	 = () outside E.

Now, ff E 
f(x,y)dydx =f5g(r.i)dydx

= J:dx 5 C g ( X, y  ) dy

5	 u(x)	 v(x)

=5 dx [5	 g(x.y)dy +5

+5 g(x,y)dy]
V (z)

,.b	 v(x

J	

)

=	
dx 

J	 g (x, y) dy. (the other two integrals being Zero)
a	 v(z)

S	 viz)

	

= f dx	 f(x,y)dy.
a	 fu (Z)

Note. If £ be the region bounded by the continuous curves
x =U(y),x = V(y) the straight lines y = c,y= 4 and f(x,y)bea
continuous function in E, then

,.V(p)
jJ f(x,y)dxdy = J dyJ	 f(x,y)dx.

	E	 c	 thy)
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21.10. Area of a region.
In the definition of double integral, If we put f( x. y) = 1 'we

hwe the area A of the region bounded by the curves y u (x),Y = v ( x) • the straight lines x = a, x = b given by

b	 v(z)

	

A= 	 f	 dydx.
a

21.11. Jaobian.
If i ,	 ,..., u,, be n functions of n independent variables

- , x,. and have partial derivatives of the first order at
every point of the common domain in which the functions are
defined, then the Jacobian of u 1 , .. ...... ee,, with respect to x,,

,....,x,. is denoted by

u,..)	 (uu	 U,,
	d( x1 , x ,...., x,, )	

rer,	
,	 ,•,•, X.and defined to be the determinant

au,

	

ax, 5x2	 ax,.

	

a, au,	 au,
a2

	

ax, Tx,	 ar,,
Cor. If x - r cos 0, y	 r sin 0, then

L. ax

	

ps.. r,o) = ar aq = 	 coso - r sin 8	 = r

sin 	 r cos 0

21.12. Change of variable in a double integral.

Sometimes double integrals can easily be evaluated by chang-
ing the independent variables by suitable transformations.
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Let x= •(&,t).y =v(E,)	 .. (1)

be two functions of k, il defined in a region £' of the - q plane
bounded by a curve C'. Moreover we assum e that

(i) the above two functions 0 and w have continuous first
order partial derivatives at all points of E' and C'

(ii) the equations (1) transform the region E' bounded by C,
into a region £ of the ry plane bounded by a curve C in such a
way that there exists a one-one correspondence between £, E' and

C. C';

(iii) the Jacobian	 does not change sign at any point

of E, but it may vanish at some points of C', then

f(xY)dxdY =JJf1$(.1)Wh1)hl	 jL ddi.JJ 

I Proof of the theorem is beyond the scope of this elementary treaties I

21.13. Application of double integral.

(a) Mass of a plate.
Let a plate be bounded by the curve C and let the mass per unit

area (i.e., the density) at the point (x , y ) be given by p = fx , y).
Divide the plate into elementary areas by lines parallel to the axes
of co-ordinates. Let 8A be one of these elementary areas with (x, y)
its centre of mass. The mass M of the plane area is given by

M =Lt Xp8A 
JJE

(b) Centre of mass of a thin plate.

Let us divide the plate E into elementary areas by lines paral-
lel to the axes of co-ordinates. Let 8A be onef these elementary
areas with ( x , y) its centre of mass, then the co-ordinates of the
centre of mass of the plate are given by
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55 pxdfl 55

	

-	 Ixp&it  

	

= SAL2O £p5A	
JfpdxdY

55 
pydA 55

y=	 Lf	 i
A 0	 pM 

55 pdA 
55 

p dx dy
where p = f (x, y)is the density of thc plate at (tx,y)

(c) Centre of pressure of a plane lamina.

IF a plane lamina be Immersed in a liquid, the point at which
the resultant pressure acts is called the Centre of Pressure of the
lamina.

Let a lamina be immersed vertically in a liquid. Let us take the
axes of co-ordinates in the plane of the lamina, the x-axis horizon-
tal and the y-axis vertical. Let 'is divide the lamina E into cicmen
tary areas by lines drawn parallel to the axes. Let 8A be one of
these elementary areas and (x, y) be its cntroid. Let p = f( x, y)
be the pressure at ( x, y).

Total pressure on the lamina

= LtLp.6A =5JPdA =5L

If (, ) be the centre of pressure of the lamina, by taking mo-
ments about the axes of co-ordinates, we get

ZpxM 55 pxdA 55_____ •________

	

x=	 Lt 

	

8 A -, 0	 Ep SA - 
55 pdA ,jf p dx dy

	

E	 £

JJPYdA 55 pydxdy

	

y=	 Lt	 E	 E
8A-,o Ep8A 

55 pdA 51 pdxdy
£Inlegral Calculus (main) -29
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(d) Moments and product of inertia of a lamina.

If r ........r, be the distances, from  fixed line, of par-

ticles of masses m 1 , m 2 .....m,. respectively, then mr 2 is defined

as the Moment of Inertia of the systerr " particlesabout the line.

Let E be the plane lamina. Take the axes in the plane of the

lamina. Divide E into elementary areas by lines drawn parallel to
the axes. Let 54 be such an area whose centroid is (x, y). Let

p = f(x,y)bcthcdeflSitYat(1,Y).

I,	 Moment of inertia about the x-axis

AA 
Lt 
0 

Lp&fl.y ... JJ py2dA =55 py 2 dxdy;

I, = Moment of inertia about the y-axis

= 6A 
L 0 

EpSA.x2 =55 px' dA =55 px'

F = Product of inertia with respect to x - and y-axes

= &Ao 
Zp8A .x .y =55 pxydA =55 pxydxdy.

21.14. Illustrative Examples.
.R /2 .fl

Ex. 1. Evaluate	 cos (x + y) dx dy.

	

Jo	 o

We have I 
= j	

dy 5 Cos (x + y)dx

	

0	 0

= J: /2 dy
[ sin( X +

x /2

J
+ y) -sin (0+ y)]dy
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*/2	 */2
(- siny - sin y)dy	 [2 cos y]

	

= 2 cos - 2 cos O	 = -2.

1-y2
Ex. 2. EeaIuateJ 5 	 1)' +y2 ] dxdy.

Here, 1 = s: dy J'	 [(x_ I P y2 ] dx

.1	 I-y7
=	 dy [(X1)3+y2x]

Jo

p1
dy-	 y1)	 < _) 1

-

	

	 +y2(1-	 3-	 jJo

f+ -4

r_ + .	 ls+X 
I -

[ 21	 3	 5 3]	 iri1
0

	

.1	 p	 1	 1
£x.3. Show that	 dx I	 -	 dy 5 a	 -

j0	 J0

I 

(x +	 Yj (x + y)3d1•

l
We have	 d. x -y dyJf 0

I 
(x+y)3

	

.1	 I

	

=J0dxj0	
(' +

1

J

.	 .1

	

=1 axJ	 [	 2x
(x+y)3(x+y)hJ'
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Zr[ _
 2x + y)	 x

= f ',. 

=j
•1 , 

______
dx_, '	 +	

-!

0

dx	 r	 1 1'	 1	 1

J0	
=	 + 

= 2

Again, f dy I __...__Y_.. dx
D	

(x +

=J0aJ3
d5	 +

rTdk

.L..	 L	 1
jx + y	 i(x +y>'j

f'	 ^_._L-+.__	 11
L y+I	 (y+l) 1 	y	 y11

C t 	I	 r	 I 1'	 —J_j._j.._^_.jpdY	 I1JQ I 1	 2
Thus, the two given integrals air unequal;

i.e., the result Is proved.

Note. This resul 	 not unexpected as th function ((x - y)l( x + y) 3)

is discontinuous at (0,0). 1 Proud

Lx. 4. Evaluate IJ 'I( 4.r 2 — y 2 ) dx dy over the triangle formed by the

straight lines y	 O X	 1 , y	 X.	 (C. H. 1967 1
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The given double integral can be expressed as

•1 .X ______
_y'dyI dxl IF

	

Jo	 Jo	 'a

_____________	 I[yiL=

	

	 dx L	 2	 + 4
Jo

	

=5

1	
+2x' stn' I )a

0

11

5 (-r1 + 7x1

-

	

13r'	 nx'l	 "
TI = '

0

Es. S. Evaluate II 2g ' — 2a (x + y) - (x 2 + y' )1 dl dy , She region of

integration being the circle x' + Y' + 2a ( x + y ) = 20' . I C H 1962

i-lore R ,the region of integration, is x 7 + y' + 2a ( x + y ) = 2a'

ie..(x +a)' + (y+a)' =4a7.

Now, use the transformation x + a= X y + a = Y,

i.e. z= X -a,y= Y - a.

	

JWcy)	
lax ax	 _ I 0! =

ax ay=Il-I
lo

ax a) 	 I

=55 14a 7 -(r • a)' - (y

	

-z

	

-	 - Y' )	 ax ay. where the new region '

the circh X	 = -Ia'

Ft nI v use the polar 1 ran 1nrmation
X.Y \

	

= rco=9.Y =r ,n9	 :. I	 =
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2a

I = I	 I	 (4m _,)rdrdO
e.o ,-o

a
,21,	 ,23

=	 do	 (442 - ,)rdr
Jo Jo

r29 f 1.=Fo1 1 4a 2 -Y .Ti0I

=2,(2a2.4a2_40)=8IW4.

Note. If the region of Integration R be the complete circle x 2 + y 2 = a2
and we use the polar transformation x = r co. 0, y = r sin 0, the limits of

, will be 0 to a and those of 0 will be 0 to 2i.

If R be the positive quadrant of the above circle,, will vary from 0 to

a and 8 from 0 to x/2

U R be the upper half of this circle, rwill vary from 0 to a and 0 from

0 toe.

EX. 6. EudluateJf (i - !. - Ygj ) dxdy, where R consists of points

in the positive quadrant of the ellipse+	 I .	 (C . 1-1. '63, '72 1

Use the transformation x = aX, y = bY.

ax ax
ax ay a 0

J X,Y)	 y _i	 0 b =ab.
ax a

R transforms to R' which is the positive quadrant of the circle

X 2 + Y , =

I 
J5R .	 51	 -Y2 )dXd.

Finally use the transformation X = r cos 0, Y r sin 8.

I X.Y\
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,12

	

I ab	 (1 - r ),i,dOe-o rO
,f2	 .1

	

=abl	 ae	 (1 -r2)rdr
Jo	 Jo

	

ab[8]	 r'	 i 1 1	 irab

=	
IT	

=.b-!(I 
_) =--

Ex. 7. Evaluatef	 J e'	 2yco+y2 ) dxdy. (0 SixSc)

Here the region of integration is the posttfrye quadrant. Use the trans-

	

formation x = r cos 0 y = r sin A.	 .	 .

,I2 .-

	

=	 e -	 • 2,2 ,Co.5O) r drd9
Jo .o	 ro

/ 2i.1

f do	 sI
i•

	

=	
(I ,o2I),2 rdr

'o	 Jo

	

(f2	 -

J	 dH [	 •c0aa.2e)'2 ]
L - 2(1 + cos a sin 2A)

• IC / 2

I • cos a sin 20) 
dO-

I 

Sx/?
do

	= 2	 cos'O + sin 1 8 s-2 cos asin0 cos O
0

I Jsec2ede	=	
tan 1 0 + 2 cos a tan 0 + I

0
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- U-
dz- 	 7F_+ 2zcosa +	 (where z =tanel

0

-	 dz
- 2J	 (z+ cos a)2+ sin 2a

- 1	 1	
[tan- , 

Z +cosal	 1	 1*
- 2stna	 ina ,J = 2sinaI,_tcot(1)

0

I	 a=	 COt'cotcj=- -2 sin a	 2 sin a
Ex. B. The density at the point (I y) of a lamina bounded by the

circle x 2 + y 2 - 2ax = 0 is p = x - rind its mass -

M = mass of the 
lamina = ffR p dx dy,

Rbcing the circle x I + y 2 - 2ax = 0

= ff R x dx dy.

Use the polar transformation x = r cos a,y = 'sine. Then  Xy = r, and
the equation of the circle becomes r = 2a cos S

*/2	 .2acoa
I
 =J J	

r cos erdrde
8-*/2 ,=0

*/2

=1 cos$.dO.[!_] 
21 CO5 0

-* /2	 0

*/2 8a'
3

16a3J * /2
cos 'O d9=!._3

0
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Lx. 9. A plane laming of uniform surface density is bounded by the upper w!
of the cardioide r = a (1 + cos 8) and the initial line. Find the co-ordinates of
the centre of mass.

Let (x . y) be the centre of mass.

pxdrdy
-

	

X =	 R being the upper half of the carJioide

I	 r = a(I + cos O)

ff

I R pdxdy
J 

r cos 8rdrd9
R

Pr
rdrd8

R

J
cos odoJ	 r dr

f	 doa(l.co.0)

-

	 f a
 ,0

g(.	 •rc0)f cos ede
x	

[1
- xf 0[-r2 L

I	 •a' cos 0(I+ cog 0)dO
Jo

J	
a' (I + cos 9)' do

o

(	 cos 20 (1 + cos 2 )3 2d0
- 2a J o	- 	 O =20

fI	 (1 + cog 20 	 2dê
Jo
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fI (2 cos Q - 1)8cos'$d$
2a o

- 3 .X/2

J
8 cos 'd

0

F 7531* 531*1
2a j 2 864 226422J2a3	 a

- T	 531*	 342
6422

-ffR p ydxdy

= 55R 
pdxdy

ff it
=

ff it ,drd8

a(I .co.0)

50 [-i]	 sin OdO

-	 *	 (l+co.0)l[n]

lg
I	 (1 + cos O) 3 sin OdO

2a 'o
-

(1
f

+ Cos B)1d8
oJ

+cosO)4
29 

f
4cos 4	 dO

o
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2a	 4	 re	
]a -

3	 */2
41	 cos4.2d

Jo

2a1	 1	 16i
a --

3231*	 9*
422

co-ordinates of the centre of mass are 	 ).

Ex. 10. A semi-circular lamina of radius a is immersed vertically in a liquid,
the pressure of which varies as the depth with the bounding diameter in the sur-
face. Find the centre of pressure of the lemma.

Let us take the centre of the lamina as the origin, the bounding diameter
as x-axls and the vertical radius say-axis.

p	 pressure at the point (x.y) =ky.Let(x,y)betbeceiitreofpres-
sure.

= 55R ,R:x2 +y2^a2

JJ p dx dy

IL xy dx
a

IL	
Iputrarcoo

y;t 0

9, Y = r sin 0 1

I I	 r.in9co,0drd0
o

=
.1	 .a
JJ 

,2.inedrde

fjjtpydx°jY

JJPdXdY

a'	 sl
L
rn2el*

TT10
=	 =0.a

[—co.e1
3	 Jo

flit
a

flit
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c & r 3 sin' 9 drdO
Jo

r 2 sin 9drdO

	

0	 0

0

-	 [ 
_Cos ej

	

I	 a4

	

2 4	 3ita
-	 a3	 - 16

2.3

the centre of pressure is ( 0, 3na
 )

EXAMPLES XXI(A)

1. Evaluate

(I)	 +y)2dydx.

	

i•4	 a.1

(ii)J J	 xy(x - y)dydx.

	

0	 0

(iii)J	 J	 sin(x + y)dxdy.

	

Cl	 0

tog. 2	 1

(iv)5	 5 
ye 'Y dxdy.
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w/2

(v) J	 J	
e2 cos(y - x)dydx.

0

(vi) ff o 	 Y/' dydx	 dy dx5 J , +o 

1	 -Jr

(viii)5 j'	 (x2 + y 2 )dydx.

- Y  _________________

(ix) J j	
- x 2 - y 2 dxdy.

0	 0

2 'J2x- r 2 	2 	 4	
dx(x) I 5	 x dy dx.	 (xi) 5 dy 5 3Jo

f 	 Cos O	 x a(i •co.0)
(xii)	 r sin 9 dr d8. (xiii) 

J J	
rdr A

JoJo	 0 0

(xiv) II xy dx dy over the positive quadrant of the circle
x + Y2=

(xv) IJ( x2 + y 2 )dx d y over the region in the positive quad-
rant for which x +y 15

(xvi) ffxdxdy over the ellipse b B x l + ay' = I

(xvii) 11 xy ( x + y ) dx dy over the area bounded by y = x
and y = x.

2. Prove, by evaluating the repeated integrals, that
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3. Evaluate, by using suitable transformations:

(I) If x 1 + y 2 )dx dy over the region enclosed by the tri -

angle having its vertices at(O,O),( 1 ,O),( 1,1).
I C. II. 1965

(ii) 
5 5	

+ y2dydx.
0	 0

(iii)11x2y2 dxdyextended over the region x ^! O..y ^! 0,
x 1 +y 2 !5 1.	 IC. It. 1969j

(iv)Ifx2y1dxdy over the circle x' +y'!5 1.
I C. H. 1964 1

(v) 11 4( 44 2 - x2 - y I ) dx dy taken over the upper half
of the circle x' + y' - 2ax = 0 .	 I C. 11. 1966

(vi)fI 12- 2(x + y)-(x'+y')l dxdy,the region of
integration being the circle x' + y' + 2 ( x +v)	 2.

(vii) If xy (I' + y 2 ) /2 dx dy over the positive quadrant
of the circle x' +y' =a',(n +3> 0.

" a x 1 dxdyf ((viii) i	 i
j j v(x' + y' )0	 y

(ix) If sin	
X	 Y >dx dy over the region to the first

it

quadrant bounded by  = O,y = xand 12 +y' =iO

(x) If r' sin 8 dr dO over the upper half of the circle
= 2acosO.

(xi) If (x+y)'dxdy over the ellipse {(x'/a') + (y 2 /b 2 )1 = L
I C. H. 1977J

(xii) fJx'y dx dy over the positive quadrant of the ellipse
(x2/a2+y h /b 2 )=1.	 IC.I-l.1971J
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4 2 b 2 - bx'- a2y2
(xiil) JJ(a2 b 7 + b 7 x 2 + a2y2)	

dxdy, the field of

integration being the positive quadrant of the ellipse

a 1	 b2

	(xiv)J5	
dxdy

+	 +	 over the triangle with vertices
(O,O),(2,O),(I,'5).	 IC.H.19701

	

(xv)Jf	
dxdy

(I +	 + 2 ) 
taken over one loop of the

lcmvtiscate(x 2 + y2 )
2 = x 1	 y t	 IC. H. 29741

(xvi)Jlxdxdy over the region r ?a ( 1 + Cos O).

(xvii)s: s: 
e - ( - 2 - 0 ) dxdy. /

(xviii)J -	
x1 dx dy

-	 (•1 +'(x +

(xix)5 Je_(.	 .2.+2,l) dydx.

	

0	 0

(xx) II zy dx dy over the region bounded by the parabolas
Y2 = 4x, y2 = 8x. x 1 = 4y, x1 = 8y.

(Put 1.. , - = jx	 y
4. Find, by double intcration, the area of the revlon bounded

by the curves:
(i) y 2	 4x,y =16x,x = 1.x = 16 IS the positive

quadrant;
(ii) y 7	 4ax;x' =4ay;
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(iii) x 1 + y 2	 100,x 1 +y 2 = 64 .,y =13x, -/3y	 x
In the positive quadrant;

(iv) the ellipse
12 + 1!	 1 and Its auxiliary circle;

(v) r = a (1 + cos 0), the initial line and the line 0 tc/3;

(vi) y 2 = 8X, y 2	 16x, zy = 25, xy	 16 in the posi-
tive quadrant.

L For the thin plates bounded by the following curves find
the mass, the centre of mass and the moments of inertia about the
axes, p being the density at (x , y)

(i) x ^! O,y	 0, 1 2 + y'!5 1,p = kry;

(ii) the parabola y 2 = 4ax and its latus rectum, where

p = constant;
(iii) y	 0,x 2 + y 1 15 a 1 .p = 12 + y2

12	 2
(iv) positive quadrant of the ellipse - +	 = 1 . where

p = kx;
(v) trlanglewhoseverticesare(0,0),(1,13).(2,0),

where p = constant;
(vi) upper half of the circle x 2 + y' = 2ax, where

P ='[x + y2

6. (I) A quadrant of an ellipse of semi-axes a and b (a > b)
is just immersed vertically with the semi -major axis in the surface
of a liquid in which the pressure varies as the depth. Find the centre

Of pressure.	 (C. H. 1962 1

(ii) Find the position of the centre of pressure of a quadrant
of a circle of radius a which Is just immersed vertically, with one

edge in the sufaceof a liquid, the pressure of which varies as the
square of the depth.	 i C. ii. 1964 1
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ANSWERS
1. (1)	 .-.	 (ii) a.	 (iii) 2

(v) I	 (vi) I.	 (vii)	 log 2
3

(ix)- .	 (x) ji..	 (xi) log -.6
(xiii) i n a l .	 (xiv) 1.44.	 (xv) I.

(xvii)

	

3 (i) .j.	 (jj)isIs.

is(iv)	 .	 (v) 93 OR - 4).	 (vi) Sis

	

24

(viii) .- log( 42 + 1).	 (Lx)!...

nab (a' +b 2 )(xi)	 b.4

(iv) }

Ii(xii)
(xvi) 0
(iii) -x.

a4
(vii) 2 (n + 4)'

2a(x)	 3

•..( abg(xlii) -- (is - 2

I I(xiv) "3 Ian	 .	 (xv) 3-( g - 2) 	 (xvi) 10 isa3

... is	 is(xvii) -is .
	 ( XVIII)	 (xix)	 .	 (xx) 192

4.	 (a) 84.	 (ii) _a 	 (iii) 3is.	 (iv) isa (a - b

(v)(4g+9'.'3); 

(Vi

)31og2.

3	 37	 •	 . . isa I /	 Sa \ isa' Isa

	

(l1) 1 pa i ,( . a,O),..pa I .pa	 (iii)

ka 2 b/3gct 3b	 ka'b' 2ka41,(iv) -i- k-,- .-),---- 15

43P (i -) 43P
2'6

(vi) 16a3 ( 6a	 9a \ 256.	 512a---	 —-,

6. (I) On the minor axis and at a depth 3b

(ii) On the vertical radius, at a depth 32a
.3,5

Inlegral Calculus (main) -30
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21.15. Triple integral over a rectangular parallelopiped.

Let I ( x • y. z) be a bounded functionof three independent
variables z , y • z over the rectangular parallelopiped bounded by
the planes x a,x = b.y =c,y d.z = e.z =f. This region
will be denoted by R I a, I'; c, d; I 1 or simply by R.

Let a=x0 <z 1 <x2< ... <X.,i<xm=b,
c=y0 <y 1 <y, .c...<y7<y.=d,

e=z0 <z <z< ... <z,<z,=f.

We nowdraw the planes x x 1 , x ........ x =x., which
are parallel to YZ plane, planes y = y1 , y = y2 .... . y = y.. -'
which are parallel to ZX plane and planes z = ;, z
z =	 ., which are parallel to XY plane to divide R into mnp

sub-regions, each of which being a rectangular parallelopiped.

Let us denote the sub-region

R I x	 , xe ; y, -	 y, ; Zk. , zk I by R,,& and its volume
( x -	 - 1 )( y, - y , )( Z - Z - I) by

Let in qk and M 1z be the lower and upper bounds off (x y, z)
in R, . We now form the sums

=	
Mijk U-jk

P	 ii	 m

S	 Mijk Vi,è

k-i j-i	 i-I

It is clear that for every mode of sub-division of R into a finite
'umber of sub-regions

in ( b - a )(d- c)(f -e) Ss SS M(b - a)(d-c)(f -e),
where in, M arc the lower and upper bounds o(f( r, y, z) In R.

rhus, the two sets of upper and lower sums S. s are bounded.
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The lower bound of the set of upper sums is defined as the
upper Integral of f( x, y, z ) over R and is denoted by I and the
upper bound of the set of lower sums Is defined as the lower in-
tegral off 0, y, z) over R and is denoted by land we write

If I and J be equal, then the function 	 x, y, z) is said to be in-
tegrable over R and the common value denoted by

MR 

f(x .y. z)dxdydz orJfJ f(x,y, z)dVisdefined

as the triple integral of f ( x , y, z)over R

21.16. Condition of integrability.
The necessary and sufficient condition of integrability of a

bounded function f ( x , y, z ) over R is that to every positive num-
ber £, there corresponds a positive number 8, such that for every
division of R whose norm is < & • the oscillation S - $ Is less
than t.

I Proof is omitted.

21.17. Calculation of triple integral. Equivalence of a
double integral with repeated integrals.

Theorc,'. If the triple integral ff5 f( x , y z ) dx dy dz

exists over R 1 a, Li; c , d ; e ,f I and ifhe double integral

55 s 
f(x,y,z)dxdyalsoexjstsforallvalues of  in

then the repeated integral 5 1dz [55 S 

f( x , y, z ) dx dy] exists
and is equal to the triple inLgral.

Proof. Similar to that of § 21.5 and left as an exercise to
the student.

Cor. I( f(z,y,z)be continuous over R, we have
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555 
f(X.y,Z)dXJYJZ J14Z5dYJgf(X'Y

we can change the order of integration to suit our convenience.

21.18. Triple Integral over any finite region.

Let E be a finite region bounded by any surface. We can con-

struct a rectangular parallelopiped R enclosing E completely. Let

us define a function g ( x , y, a ) over R as follows:
g(x.y,x) = f(x,y,z)atallpointsof E.

0 outside £.

The function f ( x, y , a) is said to be integrable over E if
g (x , y, a ) be integrable over R . Then we have

55$ E 

f(x,y,z)dxdydz = 55$
20.19. Evaluation of triple integral.

Let E be the region bounded by the sufac.es z - u C x y),

z v(x ,y ) ; y = q, ( x), y = , (x) ; r =a ,x = Li. If f( x , a)

be a continuous function in E • then

b	 • i. ( t) 	 v(r.y)

J5f f(x.yz)dxdydz.5dxj	 dyf	 f(xy,z)dz.

F	 •(x)	 w(x,y)
Proof. Similar to that of j 21-9. I

21.20. Change of variable in a triple integral.

Let x(,1 , ç),y	 (,,ç),z= w	 ,) .. (1)

be three functions of k,ij, , defined in a region £ ' of the E,
space bounded by a surface 5'. Moreover, we assume that

(i) u v, w possess continuous partial derivatives of the i irst
order at each point of E 'and S',
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(ii) the equations (1) transform the region E' bounded by 5'
into a region E of the xyz space bounded by the surface S In such
a way that there exists a one-one correspondence between E, E'
and 55',

xa(.)
(iii) Jacobian	 x ,y	

does not change sign atany point ofa (.
E', but it may vanish at some points of S', then

111JE; f(x,y,z)dxdydz
J 

= f If j (u(,i .v ( i.Q,w(,.ti ,C)) a(x,y	
J d d'q dç.

4

21.21. Applications of triple Integral.
(a) Mass of a solid.

Let a body Ebe bounded by the surface S, and p=f(x,y,z)
be the mass per unit volume ( i.e., the density at the point (x, y, z).
We can show as in § 21.13 (a) that the mass of the body is given by

M = 1511: p
(b) Centre of mass of a body.

Let p =f(x,y, z ) bethedensityat (x y, z ) ofa solid body
E. If ( x , y , z ) be the centre of mass of the body, then

55J p xdxdydz	 '51E p ydxdydz

= 555 p dxdydz	 = fJj p dxdydz

zdxdydz

fff=r 
dxdydz
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(c) Moment of inertia of a body.

L.t p = f(x,y.z)be the density at (x,y,z)ofa solid body
E, Then 1,, 1,, 12 its moments of inertia about ox, oy, oz are given

by

= 55J p(y + z° )dxdydz,

=555 p(z° + x2)dxdydz,

= 555 E p(x° + y 2 )dxdydz.

21.22. Illustrative Examples.

pa	 - x
E:. 1. Evaluate	 I	 (y + : 2 ) dz dy dx

JOJ0 I C. 11. '76 I

a	 'g	 -x 2 	 b
We have I =	 dx j
	

dy f (y 2 +z )dz
Jo	 0

.2	 b

=
 J

dx	 dy [y l
z + _. ]

0	 O	 0

f 11

=

	

	 dxj	 (by' +)dy
o

[2

=

	

Jo 
dx [
	

+	
a

-Jo [ti(a 2 	 2 )	 &	
3

I	
' (a° -x° ) 2/2 ] a-	 I.
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J

(ba3cos39b3acOs9)	
Ix = sin OJ

C

=5 2 (ç_'cos o , 
2 b'- --- cos2e)ae

0

- a 4 b 31 it	 a 2 b 3 1,t	 -	 ita 2 b(3a 2 +0)
	3 22	 -	 48

Ex. 2. Evaluate III (x + y + z + 1)' dx dy dz over the region defined by
X? O,y^ O za 0, x +y + z!^ I

The region of integration is the tetrahedron as shown in the ligre.

Fig.4
In this region z varies from 0 to 1-x-y,y varies from O tol - x

and x varies from 0 to 1.

	

I = f dx
I.	 tI-x-y

..J dj	 (x+y+z+I)4dz

	

0	 0

=$
I

	

	 I-x

	

axj	 dy 1 
[x + y +z 

+ 
1)5]

	

i , l	 rtxI dx	 132 - (x + y + 1)5Jdy
I	 J0

=

0
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J[32	
64 (1.x)''

-	 6	 Jdx
0

..1

32( x	 _.32 x 
+ 1 (1 '+ r)' J

0

1 r 32.1' 32	 128	 1 1	 = 351	 117.--=--.

Er. 3. Find the mass of a solid in She form of the positive octant of the

x	 z2ellipsoid	
*	 +	 = I ,the density at (x,y. z)being xyz

M = Mass of the solid:ffJ ryz dr dy dz. where E is the positive

octant of the ellipsoid.
Put r =sX,y = bY,z = cZ.

_ -	 a 00 =abc.
0 b 0
0 0 

M =: 	EI
abc XYZ abc dX d't dZ where E' is the positive octant

of the sphere X2 +Y 5 + V =

= alb 20	 XYZdXdYdZ.

Put X =rin6cos. Y =rsInOsin, Z =rcosO.

a(X.YZ)_ sinOcos	 rcos9 cos Q -. rsin8sin
- sin8sin	 r cos 9sin	 rsinO cos $

cosO	 - r sin 9	 0

= ,2 sin 9.

f2 ,/2
M =a2b2c2 J	 J	 r'sin'Ocos9sin4cos	 2 sinOd,d3d,

0	 0

=	
[

a2b7c5 ['6' 
1

1	 /2
=	 -	 I	 Ocos9dO	 sin$ cos d

oJo	 Jo
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11n4-0 
X/2 

[2]
0	 0

= 1a 2 b2c 2 j 

Note. Generally in the case of a spherical region X 1 
+ 

y 2 + z 2 = a 2
we use the transformation x=rsinOcos$.y=rsinOsin,z = ,cose.

(I) limltsforr,O, are 0,a;0,ir;0,2x for the whole sphere;
(ii) these are O,a;O,x/2;0,2x for the upper hemisphere;
(iii) they are 0,1; 0, it/2 ; O, x/2 for the positive octant

EXAMPLES XXHB)
1. Evaluate:

2.
(i)J J J (x + y + z)dxdydz.

	

00	 0

	

II	 ,1x

	

(ii)J J	 I	 xdzdxdy.
0	 y	 O

Iz 1z.

(iii)JJ J	 e"Ydzdydx.
000

2	 z	 x'13

(iv)f I Io

	

Jo o	 2 + 2 
dydxdz.

- ab'c1 [

(v)	 dxdydz	 extended over the tetrahedronfff(l + x + y + z)2

bounded by the planes  = O,y = 0,z = 0,x +	 x = 1.
F C. ii. '70 I

NO JJJ x 2 dx dy dz extended over the volume of the ball
x 2 + y 7 + 2 1 5 a 2	C. 1-1. '69)
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2. Evaluate by using suitable transformations
(j) JJJ ( x + y I + z' ) xyz dx dy dz taken through the

the sphere x 2 + y 2 + zS 1.	 IC.II.'641

(•i)JJJ

	

	
dxdydz _ 

over the sphere
2 + y' + (z -

r 1 + y' + z t	 C.!i.731

fri. I; —X1 - y1 -z2
(iii)	 '\	 + 2 +	 +	

dxdy dz over the positive

octant oI the sphere 1 2 +y 2 +z5 1.

(iv)fff\/- +a 2	 b 2 +	
dxdydz taken over the ellipsoid

+—^1.a 2	 b2	 C2

(v) hi (ax 2 + by  + cz 2 )dxdydz over the sphere
1 2 +	 Z 5R'.

3. For the solid bodies bounded by the following surfaces find
the mass, Centre of mass and the moments of intertia about the axes,
p being the density at ( x, y, z

(I) x ? O.y ^ O,z ^! 0 .2 2+ y 2 + z 2 sa 2 ;p = kxyz.

(ii) x ? O,y 2t 0.z 2! 0,x + y	 z!5 1 ;p = constant.

(iii) z ? 0 • x 2 + y 2 + z 2 a 2 p = constant
,,2	 22

(iv) x e 0.y ^ 0,z 2: x0,-1 +- + —2 1;p = constant.

4. A mass M of gas is diffused through all space. If the den-
sity of the gas at (x, y, z) be e 	. 7 I , show that M 2 =

ANSWERS

L (i) 18i	 (ii)	 (iii) ( •" - 6e 2l • ge l	 3)
35	 8

2(iv) —	 (v)j log (2%./e 5 )	 (vi)3
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2. (1)0. 00(2 -	 log 3)	 (iii) 1(R(	 !	 - g!

	

2	 I	 4	 2

4,(a + b + c)R(iv) rcabc (v) - 15
ka' (16a 16a 16a)ka	 ka' ka'3. (I) -48	 35 35	 35	 '96' 96 '96

(ii) I p,(1, !,1);  I	 I	 I

4lIa S	 4 na 	 4Ra2
npa' , (0,0,+a); -- jgPjP.jP

	'3a 3b3c	 I(iv)	 iabcp;	 ;.wabcp(b? + c').

	

,abcp(c' + a ! ),	 ,abcp( c 2 .s.b 2 )30	 30



Miscellaneous Examples II

lnt.egrate the following ( Ex. Ito Ex. 21

cos z + Sin X	

):-

1. i cos2xlog 	 dx.
.1	 COSX - sin X

2. Jx log ix + .l(x 2 + a 2 )Jdx.

•	
xdx

j J(x+ a) + \( x + 1')

4. I
cotx

(1 - sin x)( sec
x + ])dx.

5 (i)f	
tan 	 dxI + sin x

6. (I) 5 '( sec x - I) dx

P	 2+ cos x
(ii)	 dxJ cosx(1 + cosx)

(ii) 5 '( cot x ) dx

f	 2x1 + 3x + 7
7. I	 dx.

j (x + 3)(x 2 + 2x + 5)

tan xdx
8. ,a>b.f (a+ btan2x)

9.
dx

f X( X" + I)

1O.$e:irx cos x cos 2x cos 4xd.

J cosh x + sinh x sin x di
I+ Cos x

'.	 x2+Sx+7
12	 e'	 dx.

(x+3)2

13.	
dx

J xlogxlog(logx)
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14.xdxf (x - a)(x	 b)(x - c)

15 J	 xdx
•	 (12 + a 2 )( x 2 + b 1 )( x + c 1 )

16 
f 

x'dx
•	 X2 — I

________	 xl - I.17	
(i)	

ax

j	

X + I	 (ii)J	 -	 dx.
•	 x4x2+I

18. () f	 dx	

f	
x2 dx

J x 4 -x 2 + 1

19 
J	

2x1+3x + 3
1+ 1)(x+ 

2x + 2)dX.
0

20 	 cos 8d0
I s- 2sinO +2sin 2 O + 2sin 3 8+ sin40

0

21f
dx.+ cos . x

0

22. Show that

x <-. log (I -x) < I —f---
x 

(0 < x < U. IC .H. 196.31-- 

23. If n > I, then 0.5 < J	
-dx	 < 0.524.

I C. II. 1963, '66 I

24. Show that log ( m / n ) = log n - log n from the defini-
tion of log x as a definite integral, i.e. . from

I
log x= 

f -

dt
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25. Find the area of the region included between two car-
dioldes r =a(1+ cos O),r=a(I-cosO),a>O. (C.H.1967J

26. Find the area of the loop of the curve
a sin 3O	 a sin 3Ox=---- ,y=sin 	 cosO	 a>O.

27. Find the area of the loop of the curve r cos 0 	 a cos 28.
25. (I) The area between the curves y 2 4ax and x 2 = 4ay

(a> 0) revolves about the axis of x. If V be the volume of the
solid thus formed, then show that 5V = 96ita

(ii) lithe curve r = 2a cos 0 revolves about the initial line,
then show that the area of the surface of revolution is 4ita2

29.If the area lying within the cardioide r = 2a ( I + cos 0) and
without the parabola r (I + cos 0) = 2a revolves about the initial
line, then show that the volume generated is 18 Ira'.

30.Find the area common to the circle r = a and the cardioide
r = a( I + cos 0 ).

31. Show that the area included between one of the branches
of the curve x 2 y 2 = a 2 ( x 2 + y 2 ) and its asymptotes is equal to
one-fourth of the square formed b y the asymptotes (a > 0)

32. The distances of the vertices A B, C of a scalene triangle
of area 5, from a fixed fine MN, are x ,x 2 , The line MN does
not cut the triangle ABC Find the volume generated by the revolu-
tion of the triangle ABC

ANSWERS
i r

1.- I sin 2z log c05 - 	 log cos 2x

	

2 L	 C0SX - SiflX

2. -logfr + Ix 1 + a 2 ) _! '/( x 2 +a)+— sinh

	

L	
[

( x + a)' 2 -3.(x + a)3'1

(r + b) 12 + -	 ( x + b)312
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4.	 log tan r 4 1 sec' r + tan 1z
I1+inx	 I	 IS. (I) - log	 - sin x	 2 1 + sin x

(ii) 2 log (sec x + tan x) - tan - x
6. (i) - 2 cosh ' ( 12 cos f xi.

I	 I +'12 -tan x + tan 	 I t3fl	 '12 tan z+(ii)	 lOgs - '1(2 tan xi + tan x	 '-2	 -, (- tan x)
7. 2 log (x + 3) -jtan 	 ((x + 1)12).

h	
('1(a - b)

S	
- '1( a - b) sir, -	 4 b	 x )

19. log  - - log (x + 1).n

10. .
8	 (65) in (8x - tan ' 8)	 II. cosh x tan

r12.	 +2 e	 13. log (log ( log x))x+3
14. +

(a - b)(a -c) Iog(x - a).

a	 tan1-	 (a2	 b 2 )( 0 2 - ç2 )	 J
16. log( X 4 	 I) --log(x' + x 4 + 1)12	 24

+	 tan-' (2r 4 ; 1)

17. (I) tan1	 - '13.x + 1-	 (ii)	 logx	 2 + 73 . x

! tan-'	 - I	 I	 x1 -'13.x +118. (I) 	 ______ -	 log Ty- + 43. -x+
___	

x' 'l3.x + I.,	 -	 log 
x - 73.x + 1

(ii)	 tan	 + _x
19. . i + 2 log 2 - tan ' 2.	 20. - (log 2 + I) .	 21.
25.	 (}!_ 2).	 26. (3 43 	 27. 2a 1 (1 ..j).
30. (x - 2)s2 .	32.41t(r, + x 2 + r ).


