chapter

I Network Concepts

Most of this textbook will be devoted to the analysis of networks
which are energized with sine-wave voltages or currents. Before con-
sidering these time-varying sources, however, it will be advantageous
to review some basic network concepts: concepts which are equally
applicable to time-varying sources or non-time-varying sources.
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Fro. 1. Voltage and current sources.

Sources. The common non-time-varying voltage sources are bat-
teries and direct-current gpnerators. Since the.reader und oubtedly has
an intuitive understanding of how these sources are employed to energize
electric circuits, we start with them. In later chapters, sources which
develop time-varying voltages and currents will be employed almost
exclusively. For the present, only the sources indicated in Fig. 1 will
be used, and the battery symbol will indicate a non-time-varying voltage
source regardless of the exact nature of the voltage source. Unless
specifically noted, this voltage source is assumed to possess zero internal
resistance. Where it is desirable to simulate the internal loss of a
voltage source, a resistance will be placed in series with the ideal voltage
source as indicated in Fig. 1b.

Where a voltage source, e,, is specified, it mll be understood that a
potential difference of e, volts is maintained between (or across) the
terminals of the ideal source regardless of the current that may pass
through this ideal source. The actual terminal voltage of a voltage
source having internal resistance R, which is delivering current to a
network is

| R e Rli (1)
1
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where 7 is the current flowing in the — to + direction. See Fig. 2a
where 1 = 7, )

A voltage source is idle when it is operating open-cireuited: 1 = 0.
Otherwise it is delivering or absorbing power to the extent of

P, = ;4 watts (2)

depending upon the direction of 7 relative to the polarity of ¢,, The
power delivered by a voltage source possessing internal resistance is

Pi=rvi= (e, — Ra)i = e,i — Ra? 3)

R % is the heat power developed internally and as such is not available
for distribution to the rest of the network.

Where a current source, i,. is specified in circuit theory, it will be
understood that the source delivers this specified current regardless of
the resistance which is placed across the terminals of the source. It is,
of course, unrealistic to ask that a ecurrent source look into an open
circuit (or infinite resistance) since this situation results in infinite
power (Ri?) heing delivered to the onen circuit. This example, how-
ever, illustrates an important point: if a current source of 1, amperes is
specified, then by definition this number of amperes is delivered to the
network regardless of the resistance placed across the generator terminals.
{A contradiction of definitions, of course, occurs when current gener-
ators of different specified currents are connected in series.)

A current source is idle when it is short-circuited as indicated in
Fig. le. In this case the power delivered is zero owing to the fact that
the specified current cireulates through zero external resistance. When
a finite resistance, R, appears across the terminals, the ideal current
source delivers

Iy = Ri,? watts (4)

A practical current sonree ean be simulated by incorporating an internal
resistance, I, across the terminals as illustrated in Fig. 1d. Under
these conditions the terminal cirrent is

By gy e (5)

where vy is the terminal voltage developed when the current source is
connected to a load resistance. This generator develops a terminal
voltage of R,i, when i, = 0, that is, when the current source is oper-
ating open-circuited. If Ry is placed across the current source, the
terminal voltage is

R i
vy = Rpi, = R.i, — 'EE'-'I 2 (6)



Ch. I NETWORK CONCEPTS 3

and the power delivered to Ry, is
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The total power generated is (Ririy)i, = v, of which R, U= o
watts are dissipated in the internal resistance, R,. o .
Although sources have been designated as voltage sources and current
sources, it is evident that either one energizes the network with both
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Fio. 2. Equivalent sources.

current and voltage. Indeed the two sources are entirely interchange-
able when a finite internal resistance is present. The voltage source
depicted in Fig. 2a, for example, supplies the network N with 7, amperes
and v volts. The current, 1, may be expressed as

- HT. ~ - i (8)
which may be rearranged as

€y 'y P

w2y 8

R B o Ga)

Thus a specified ¢, in series with a specified resistance R, results in

a specific current source

=l

7 R,
The conditions imposed by equation (8a) are satisfied by the circuit con-
figuration shown in Fig. 2b where a current source 1, delivers 1, amperes
to the network at v, volts. Substitution of i, permits equation (8a)
to be writtén as

fym= 2t 4 4, (8b)
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where v,/R, is the current which is lost to the network as a result of the
internal resistance R, and the terminal voltage v,.

Reference to Fig. 2 and to equations (8), (8a), and (8b) shows that
a voltage source having an internal resistance of R, ohms may be re-
placed with an ideal current source of e,/R, amperes in parallel with a
resistive path of R, ohms or that a current source 1, in parallel with
R, may be replaced with a voltage source (e, = R.,i,) in series with a
resistance of R, ohms. The rest of the network, that is, the portion of
the network to the right of terminals tt" in Fig. 2, cannot tell whether
it is energized with e, in series with R, as in Fig. 2a or with 7, = ¢,/R,
in parallel with R, as in Fig. 2. Where a source having internal
resistance is specified, there exists a choice of using either e, in series
with R, or of using 7, in parallel with R,. Other more elaborate com-
binations of series-parallel resistances could conceivably be employed.

'

—:1'+ +--'—b-- =
Yy L “?\’ i ‘
L—"“"'———(‘-h)————-———l ——————— i >
(a) (®)

Fis. 3. Branch voltages in the presence ol sources.

Where an ideal voltage source, e,, is specified (R, = 0), this source
constrains the potential difference between its terminals to be e, volts
regardless of the current. If e, is placed in series with a resistive
branch, the terminal voltage of the branch including the known e, is
(v — e,) and is considered as a voltage drop as indicated in Fig. 3a. The
inclusion of e, does not increase the number of unknowns since ¢, is
specified. Where an ideal current source is placed across a resistive
branch as illustrated in Fig. 3b, it can either be associated with R to
form a series branch equivalent to that shown.in Fig. 3a or be left as
a fixed or specified current between the two terminals.

An ideal voltage source has zero internal series resistance. An ideal
current source possesses infinite internal series resistance. This con-
clusion may be deduced from the definition of an ideal current source,
namely, a source which delivers 7, regardless of the finite load resistance,
Rp, which is placed across the terminals of the source. To satisfy
this definition, it is evident that the internal voltage, say e,, as well as
the internal series resistance Rj,, must approach infinity. The speci-
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fied current may be considered to be
kye, » ky

kaRint + R kg
as both e, and R;y approach infinity, R, remaining finite.

Superposition. A linear circuit element is one in which the current
through the element is directly proportional to the voltage across the
terminals of the element. Linear networks consist of linear elements
and fixed (or specified) voltage and current sources.

One reason for the rapid strides which have been made in the analysis
of linear networks is that the principle of superposition can be applied
to these networks. With the aid of this principle, the voltage or current
response in any part of a linear network resulting from two or more
sources may be determined by:

()

1y

(1) Finding the component response developed by each individual
source.

(2) Adding (algebraically) the component responses to obtain the
actual response.

The truth of the principle of superposition is almost self-evident since
effects are proportional to causes in linear systems where the principle
applies. In any event, a general proof will be left for the reader after
the subjects of determinants and general network solutions have been
considered.

A simple application of superposition is illustrated in Fig. 4 where
the current in the resistance R = 2 ohms is found as the sum of the
current in R due to e,, namely, I, and the current due to i,, namely,
Igz. In determining Fg; (Fig. 4b), 7, is de-energized either by opening
the 1, branch' (for purposes of analysis) or by letting 7, = 0 and recog-
nizing that a current source possesses infinite internal resistance. The
value of the current in resistance K due to e, = 23 volts is

& 23
Ipy = — = —— = — amperes

In determining Ig,, the current in R due to ¢, (Fig. 4c), e, is replaced
by a short circuit since an ideal voltage source has zero internal resist-
ance. Application of Kirchhofi's voltage law to the two parallel
branches in Fig. 4c shows that

; 2!}23 = 1(4 o IRQ)

! A branch is a conducting path terminated at either c:»d by one of the network
junections or nodes.
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or '
Igs = § amperes

The actual current in resistance R is:

4
Ip = Ipy + Ipy = 23&'1-5.- 9 amperes

5n
is Tl amp Iy
1in
R
+ 2n
L T_ﬂwﬂ:
(a)
5n 5n Y 4 amp.
II"O r I
R=e Tu h L]
) in
R R
20N 2n

3
.iT 23 voits

()

Fie. 4. An example of superposition: fg = Ip + Ip.

The principle of superposition will be employed later in developing
certain general methods of analysis where component responses due to
the independent variables as well as those due to the sources are com-
bined to establish general equilibrium equations for the network.

Network Variables. In a network consisting of b branches, there are
in general 2b unknowns: b unknown branch currents, £, and b unknown
branch voltages, v,. A direct relationship exists, however, between each
branch current and the associated branch voltage. Where the branches
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are resistive in character for example,
n=Ryy or 1=0GCw (10)

where R, is the branch resistance and G is the branch conductance.

After the application of either of the volt-ampere relationships [given
in equation (10)] to each of the branches there remain only b unknowns.
Evaluation of these unknowns requires that b independent relationships
be established. If the network has & total of n, nodes or junctions,
Kirchhoff's current law may be applied independently

(ne—1)=n ‘ an

times. These n relationships together with (b — n) relationships estab-
lished by the application of the voltage law are sufficient in number to
effect solutions for the b unknowns.

Systematized methods of network analysis ordinarily employ either
linear combinations of branch currents or of branch voltages rather
than the branch quantities themselves because we can write the reduced
number of equations directly from the network map. Network vari-
ables which are linearly related to branch currents and branch voltages
are respectively loop currents and node-pair vollages, the subjects of the
following two articles.

Loop Currents. A loop current as the name implies traverses a
closed path. Ordinarily the closed path is so selected that the associ-
ated loop current is a measurable current of the network, that is, a cur-
rent which could be measured physically with the aid of an ammeter.
It is not, however, essential to analysis that loop currents be measurable
currents, nor is the closed path necessarily restricted to a single passage
through any branch. Simple closed paths are usually easier to handle
and are therefore to be preferred. The direction of the fictitious loop
currents is arbitrary provided that the sense is taken care of alge-
braically in the summation.

In Fig. 5 are illustrated three loop currents, 7, iz, and 13, together
with the six branch currents iy, a0, %3, b4, 135, 80d ips. The linear
relationship can riost easily be visualized from

B = Ltioop (12)

Any particular branch current, 1, is the algebraic sum of the loop
currents traversing this branch. Thus in Fig. 5

W = % s = 12 tie = 13
g =1t — 13 Gg=11—1p B =13~ 13
In effect, the six branch currents have been replaced with three loop
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currents for the purpose of analysis. This reduction in the number of
variables is accomplished at the expense of the current-law relationships.
The manner in which loop currents automatically satisfy i = 0 at
the junctions is illustrated below. As applied to Fig. 5, we note that

Atnode@:t'u - 1.52 — I':bg — 1'1 i (1:1 - 1.3) = 1:3 =0 (13)
Atnode @): 153 — fbg — Toa = (i — 13) — (41 — 1) — (i~ 73) = 0 (14)
Atnode ®: 15y — o5 + 12 = (13 — 13) —f2 4+ 13 = 0 (15)

on

Fia. 5. Loop currents employed to replace branch currents.

In a four-junction network, n, = 4, the current law can be applied
independently only three times, and it will be observed from equa-
tions (13) through (15) that the loop currents automatically establish
three independent relationships between the branch currents, :

That loop currents can always be selected as ‘“ measurable " currents
will be evident after network topology has been considered. In Fig. 5,
for example, ammeters placed at the S;, S5, and Ss positions would
measure respectively loop currents 1;, 15, and ;.

Since the current-law relationships are satisfied with loop currents,
the voltage-law relationships (Lv = 0) must be applied (b — n, + 1)
times. Obviously these (b= n,+ 1) = (b — n) voltage equations
must be independent relationships. One method of establishing inde-
pendent voltage equations is to think of opening all loops except one
and then establish the voltage law for this particular loop inveking the
principle of superposition with the loop currents considered as inde-
pendent variables. In other words, the sum of the voltage drops around
any loop will be obtained employing one loop current at & timne and then
all of these voltage drops will be summed to equal zero in accordance
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with Kirchhoff’s voltage law. As applied to the loop traversed by 1; of
Fig. 5, we think of opening switches Ss and S and sum the voltage
drops occasioned by 7 (and e, if a source is specified). Thus

1+2+3)iy—e=0 o 6bh=e (16)

The resistance of loop 1 through which ¢, flows is 6 ohms. This resist-
ance is called the self-resistance of loop 1 to distinguish it from the
mutual resistances or the resistances of loop 1 which are common to
loops 2 and 3.

The voltage equation given in equation (16) does not include the
voltages developed in loop 1 by loop currents iz and 13. To account for
the effect of 4, we think of closing switch Sy and observe that loop
current 1, circulates through a portion of loop 1, that is, through the
3_ohm resistance. The direction of ¢z through the 3-ohm resistance is
such as to establish a voltage rise in loop 1 as seen from the tracing
direction employed for loop 1. Taking into account the voltage rise
established in loop 1 by loop current 1, we expand equation (16) to read

6i, — 3i3 = €, (17)

Next, switch Sq is closed and the effect of loop current 13 on the voltage
equilibrium of loop 1 is observed. The ourrent i3 circulates through the
92 ohm resistor of loop 1 in such a direction as to produce & voltage rise
in the tracing direction of loop 1. The final voltage equation for loop 1
in terms of loop currents %y, 1z, and i3 takes the form

6‘!-'1 — 313 — 23 = €, (18)

An important aspect of equation (18) is that it can be brought into being
with the aid of superposition employing elementary physical concepts.
Exactly the same method may be employed to show that the voltage
equation for loop 2 is

—3iy + 12t — 4i3 =0 (19)
and for loop 3
—21:; - 41:2 =+ 161:3 =0 (20}

In using superposition to establish the voltage equations, we have taken
i1, 12, and f; as independent variables and considered their effects one
at a time. Although the establishment of voltage equations with loop
currents soon becomes a routine procedure, we should realize that this
procedure is in effect based upon the superposition principle.

Equations (18), (19), and (20) may be solved simultaneously for
f,, i3, and 13. Then any particular branch current can be found from
the algebraic sum of the loop currents flowing through the particular
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branch. That is

Thranch = ziloup
Or equations (13), (14), and (15) may be employed to find #y,4nes in
terms of 1),,,, but this procedure is unnecessarily laborious.

Ordinarily, the closed paths employed in establishing the voltage-law
equations coincide in contour and direction with the paths selected for
the loop currents. This is a matter of convenience but not of necessity
since any three independent closed paths may be employed to obtain
three independent voltage equations. Independent closed paths can
always be obtained by including successively a branch not previously
traversed. Assume, for example, that paths 1 and 2 of Fig. 5 follow 1
and 7, respectively. A third voltage equation may be obtained Ly
summing the voltage drops around the path abhefga. Thus

311 + %, — 613 = ¢, (21)

which is the sum of equations (18) and, (19) and hence not independent
of these equations. A third independent voltage equation may be
obtained [in place of equation (20)] by summing around a closed path
which includes the ed path or branch. If the abedefga path is selected,
there is obtained

i) + 5t + 1043 = ¢, (22)

This equation [which is the sum of equations (18), (19), and (20)] may
be used in conjunction witk equations (18) and (19) to find the values
of 1y, 75, and 1;,

The coefficients of the independent variables of equations (18), (19),
and (20) may be arranged in an orderly fashion as shown below:

6 -3 -2
-3 12 -4 (23)
-2 —4 186

Except for the sources, this ordered array of numbers completely char-
acterizes the network to which it is applicable. In this type of character-
ization, the first column represents the coefficients of 7,; the second
column represents the coefficients of 13, and s0 on. An ordered array
(or arrangement) of numbers or symbols is called a matriz. In general
a8 matrix consists of m rows and n columns as, for example,

81y @12 Gy - Q1

a a: a BT - ¢
A-A(_.,,z"" 22 @2 2n

- . - - s

Oml Tmg Qmy *** Gmn
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A rather complete algebra involving matrices has been developed. but
here we are concerned only with the orderly arrangement of n X
symbols or numbers which characterize a network, also with the evalyua-
tion of the determinant of the matrix. Brackets will be emploved to
designate matrices, whereas straight bars will be used to designate the
determinant. (It is expected that the reader understands the ele-
mentary algebra of determinants including the application of Cramer's
rule which is widely used in solving simultaneous equations.)

The matrix representing the coefficients of the i's in equations (18),
(19), and (20) is written as indicated above in matrix (23). The
determinant of this matrix is written as

6 -3 -2
-3 12 —14| = 816 chms® d (23a)
-2 -4 16

In this case the matrix is called the resistance system matrix and the
determinant of this matrix has a numerical value of 816 ohms®. If
equations (18), (19), and (22) were employed, the resistance matrix
would take the form

6 -3 -2 6 -3 -2
=3 12 —4| and | -3 12 —g4 { = 816 ohms®  (24)
B Wy ot 3 3 i f

If measurable currents are selected as the loop currents and the paths
traversed in writing the voltage equations coincide with the current
paths, the determinant of the resistance matrix of a network has the
same numerical value regardless of the paths traversed by the loop
currents.  Only by selecting involved multiple loops will the network
determinant differ from its base value. (For an example of what is
meant here, see Problem 10 and Fig. 26b at the end of the chapter.)

If the numerical value of i per unit e, in Fig. 5 were required, it
could be obtained with the aid of Cramer’s rule and equations (18),
(19), and (20) as

¢ L9
=B B i
Gel=20 18} s _ 7
2 816 816 ~ 102 °mpe
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or, if equations (18), (12), and (22) are employed, as

5 1 —2
i3 i
, 1 1 10)_s6_ 7
q 816 BT RTT P

If a network has ! independent loop currents, the resistance matrix will
have I columns; one column for each loop current. Since I equations
are required to obtain a unigue solution, the matrix must also havelrows.
Thus | X I matrices are involved in network solutions where (as pre-
viously considered) I = b — n. The matrix may be written ‘down from
an inspection of the network if proper physical interpretation is given
to each of the elements in the general matrix

Ry1 Ri Rls co0 Ry
Ry Rzz Rza FEe= Rn: (25)

Ru Ru R:a RII

The use of brackets in matrix (25) implies that only the ordered arrange-
ment of the coefficients of the general voltage equations is being portrayed.
The determinant of the matriz is indicated with straight side bars and
implies that the actual value of this array is being considered.

If reasonably simple paths are selected for the loop currents, the
elements of the matrix may be given such physical meanings that the
numerical values of these elements can be read directly from the diagram
of the network. R is the self-resistance of loop 1 through which loop
current 1 flows, and in general R;; is the self-resistance of loop j through
which loop current j flows, and in general Rj; is that part of the resist~
ance of loop j through which loop current k flows. If the closed paths
selected for the establishment of the voltage relationships coincide with
the paths traversed by the loop currents and if j and k are integers
from 1 to I inclusive,

R = Ryj (for j #= k) (26)

A situation where R;; = Ru; is given in equation (23a), and a situstion
where Rjz # Ry is given in equation (24). Ordinarily the closed paths
employed to establish the voltage equations are the same as the paths
traversed by measurable loop currents. Under these conditions the
system matrix is symmetrical about the main diagonal. The main
d.lﬂgﬂml com‘o_f_Rll, Rnl Rﬂ! R Ru.
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Example. Let it be required to find the form of the resistance matrix of the net-
work given in Fig. 6a when the voltage relationships are established by following
the closed paths mapped out by the designated loop currents.

in 2n 1n

2! 1n 20
(a)

Fio. 6. Example of network analysis employing loop currents.

()

From an inspection of the network resistance and remembering that the sign of a
resistance must be considered negative when the loop currents in the resistance are
in opposite directions, we find directly that

Ry = 6 ohms Ry3 = Ra; = 2 ochms

Riz=35 Rig=R; =1

Ry =6 Ru=Ry =2

Ry=8 Ryy = Rypy = —2
Ru=Rp =0

Ry =Ry = =3
The system determinant is
6 2 1 2
2 5§ -2 1]
A= = 506 ohms*
1 =2 6 -3
2 0 -3 8

The system determinant expressed in matrix form js simply a shorthand way of
expressing the voltage relationships

61y + 202 + 15, +2i{ =0 (loop 1)
2, 4 51y — 243 + 0iy = 0 (loop 2)
].!.'1—'2‘['1 +61.';—31:‘ =0 {]oopaj
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speciﬁeti in Fig. 6a. If two 4-volt sources are employed to energize the network as
indicated in Fig. 6b, > '

1 =4, camd—4=0, e3=4 ¢ =0volts

where the subseript & indicates a source voltage and the numerical subscript
refers to the number of the loop to which the driving voltage is applicable. After
we incorporate these driving voltages into the voltage equations given above, any
or all of the loop currenls may be found. Loop current iy, for example, may be
found with the aid of Cramer’s rule as indicated below:

4 2 1 2
o 5 -2 0
4 -2 6 -3
0 0 -3 8 244
1 =" 506 =508 0.482 ampere

; 1
1f the analysis requires the power delivered to the network by the source eg, the
actusl branch current, s, flowing through e will have to be evaluated as

fa = Xoiloop = 11 +12

4 1 2
0o -2 0
1 + 6 -3
: 2 0 -3 8 40
7 = —5 300 - 57“-; ampere
' a-%+%-%-0.5ﬁlnmwm

The power delivered to the network by the €, source is
P = esis = 4 X 0.561 = 2.244 watts
The voltage equations used to effect a network solution are not restricted to the
equations obtained by traversing the paths mapped out by the loop currents. If

in Fig. Ga, for example, we chould choose to write voltage equations around the four
inside meshes, the voltage equations (in terms of iy, ia, 13, and iy of Fig. 6a) take the

form G
Y, = 1és 4 03 — 3is = 0
2iy + 5is — 23 +0iy = 0
14, — 2is + Bi3 —3iy =0
24; + Oig — 3is + 84 =0
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The resistance matrix under these conditions takes the unsymmetrical form

1 -1 0 -3

2 5 -2 0
R

1 -2 6 -3

2 0 =3 8

The determinant of this matrix, however, has the same numerical value (506 ohms*)
as the system determinant previously employed.

Node-Pair Voltages. The potential difference between any two
nodes or junctions of a network is called a node-pair voltage. If prop-
erly selected, node-pair voltages may be used as the independent vari-
ables in network analysis in place of loop currents. This procedure
is sometimes referred to as nodal analysis. In certain network configu-
rations, the use of node-pair voltages has distinct advantages over the
use of loop currents. The concept of node-pair voltages as network
variables will be first illustrated in a particular case before any attempt
is made at generalizations, To this end, we propose to determine
branch voltage v, in Fig. 7a, employing node-pair voltages as the inde-
pendent network variables.

In nodal analysis, it is convenient to relate branch currents and
branch voltages by way of branch conductance; that is !

‘!:b == th.’b (27)

where G, = 1/R,. Before proceeding with any analysis it is desirable
to combine the simple series and parallel combinations of resistances to
form a single branch conductance between nodes. The two l-ohm
resistances which are in series between nodes @ and @ of Fig. 7a, for
example, are combined to form a 2-ohm resistance and converted to
a 0.3-mho conductance in Fig. 7b. It is also desirable to transform
voltage sources associated with series resistance to equivalent eurrent
sources since the network solution is to be based upon current-law
equations. Thus ¢, = 2 volts in series with 0.5 ohm in Fig. 7a is
replaced with 4-ampere current generator in parallel with a 2-mho
conductance as indicated in Fig. 7b. (Sce puge 3.)

The correct number of node-pair voltages to employ in nodal analysis
is equal to the total number of network nodes less one or

(ﬂ;"l)=ﬂ.

The justification for this statement will become evident when it is
recognized that a nodal analysis involves the establishment of current-
law equations only. It will be remembered that, in a network having
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(a)

Fro. 8. Node-pair voltages e;, &,
and ¢; employed in the analysis
of the petwork given in Fig. 7.
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n; = (n + 1) junctions or nodes, only n independent current equations
can be established. Therefore n independent node-pair voltages must
be employed in the analysis.

The network of Fig. 7 has four nodes. Hence three node-pair voltages
(e1, €2, and e of Fig. 8) are selected as the independent variables upon
which to base the analysis. The node-pair voltages selected must not
of themselves form a closed path because in this case (e, + e; + e3)
would equal zero, thus exhibiting a dependency. In Fig. 8, e;, ¢5, and
ez are so selected that they have only one node in common. This
particular selection yields independent node-pair voltages and results
in certain simplifications as will become evident presently.

It will be chserved from Figs. 7 and 8 that all the branch voltages ean
be expressed as linear combinations of ¢;, €5, and e3. The equations
will be established by setting the voltage drops, represented by the v's,
equal to the sum of the voltage rises, designated by the ¢’s, when tracing
from a node in the direction of the voltage drop, thence through the
voltage rises back to the starting point. Thus

Up1 = € — € Upy = €3
Upp = €1 — €3 Ups = €g (28)

Upg = €3 — €2

Following a closed path, for example, vyy — vyz — pg = (e — e3) —
(ea — e3) — (ey — e3) = 0. The result of using the e’s as independent
network variables is that the voltage-law relationships of the network
have in effect been used and there remains only three current-law rela-
tionships to be established. These latter relationships may be obtained
by applying Kirchhoff’s current law at nodes @, @, and ® of Fig. 7b.
We observe first, however, that the branch currents are related to the
¢'s as follows:

‘I:“ =% 0.5"}&1 - 0.581 - 0.503

fe.z = 0'.5!—'52 = 0,581 T 0.583

‘l.bg = 1953 = leg — leg (29)

iy = lugg = leg

1ys = 2ups = 2Zeg
The current-law relationships are
At node @: l:“ + 1y = le; — 0.5e5 — 0.563 = 1,3 (30)
At node @: —1:,51 - t:ba + 'l-u = -0'561 + 3563 — leg = —i.z (31)

At node (®: —1 + fag + 1py = —0.5¢; — leg + 2.5¢5 = 0 (32)
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Since f,; and 1, are known quantities, the numerical values of the
¢s may be obtained straightforwardly, and, from the ¢'s, the branch
voltages follow directly. In the present example, we set out to deter-
mine the numerical value of v, = vy, in Fig. 7. ads

2 -05 -03 1 -05 2
=4 385 -1 [—|-05 35 —4
0 -1 123 05 -1 0
T 1 —05 -03 '
-03 ., 35 -1
-05 -1 25
8.5 — (—0.5)

Vg = lpg = €] — €3 = = 1.566 volts

GRT

The nicthod outlined above is elegant ‘in it§ simplicity, but, with more
general choices of the e's, the physical phenomena involved may become
obscured. It will prove instructive to solve the problem outlined above
making use of the principle of superposition. This principle has already
been employed in the establishment of the voltage equations of the
loop-current method of analysis. There, all loops but the pertinent one
were open-circuited, and the component voltage drops around each loop
were evaluated using one loop current at a time. A similar method of
attack will be employed here in establishing the required number of
current equatious, but in this case we shall let all of the e's but the
pertinent one equal zero in finding the cwirent directed away from
nodes @, @, and @. In this way we shall be able to interpret the
elements of the conductance matrix of a network in light of measurable
conductances,

When we apply Rirchhofi's current law at each of the three marked
nodes of Fig. T0. it will be convenient to think of placing an ammeter
at the pertinent node as indicated in Fig. 9. In Fig. 9a. rhe current
directed away from node I for a 1-volt rise of ¢; (and for ¢a = =0)
may be determined

111 L 0.51’; = G 0.5(‘1 = l{‘l
Insofar as ¢, and 1, are concerned. the current equation at node 71" reads
Iy =1 = 15 (33)

(away) {taward node 1)
This relnti011=hip of course, does not account for the effect upon the
current at node & caused by ¢s, €3, or {,2. To find the effect of €2 upon
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the current at node (D), we short-circuit e, and ey as indicated in Fig. 9b
and note that
I = —0.5¢, (34)

The minus sign is required since an increase in e; produces 0.5¢; ampere
directed foward node (D and current away from that node has been
taken as positive. (See Fig. 9a and equation 33.) Next, the effect of
€3 upon the current at node @) is observed. In making this observation,
we short-circuit e; and e, as indicated in Fig. 9¢ and find

113 = _0.503 (35)

The component currents of equations (33), (34), and (35) may be
combined in accordance with the principle of superposition to obtain
the current-law relationship which exists at node Q.

le; — 0.5¢; — 0.5e; = iy ' (36)

7,1 is the source current directed foward node @) with €, = €3 = €5 =
tz = 0. With a more general choice of the €’s, the effect of €,, might
make a contribution to the current at node (@). Since 7,7 is connected
directly across the terminal points of e; in this instance and since e; is
replaced by a short circuit for this particular evaluation, 7,, produces a
zero component current at node (@ or at the 7, position. (It will, of
course, be recognized that the ammeter connected to node (@) is merely
an artifice for helping us keep track of the various component currents
established at this node by e, es, ¢3, .1, and 1,2.)

In establishing the current-law relationship which exists at node @
of Fig. 7b, we make use of Figs.'9d, e, and 9f to obtain

—0.5e; -+ 3.5e3 — leg = —1i,9 (37)

In a similar manner, we find that the current law applied to node @
yields
—0.5¢; — leg + 2.5¢5 = 0 (38)
The coefficients of equations (36), (37), and (38) indicate that G,; =
1 mho, Gz3 = 3.5 mhos, and G33 = 2.5 mhos. Reference to Fig. 7b
will show that these conductances are precisely the conductances con-
nected to nodes @, (@, and (@ respectively. Further examination will
show that the mutual conductances like Gz, Gi3, Ga1, Gag, etc., are the
negatives of the connecting conductances. This method of finding the
G’s is widely used in cases where the ¢'s have a common terminal as in
Figs. 7 and 8.
Equations (36), (37), and (38) have resulted from the application of
the principle of superposition and in this particular case are identical in
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2

e £, = 1volt
|

-+

() Lje, =6, =35U (1 R,=6,=-1U

Fig. 0. Component currents st nodes @), (@, and (@ produced by unit steps of the
node pair voltages €, ¢:, and ¢ Numbers on resistances are mhos,

form to equaticns (30), (31), and (32). (For a more general choice of
the ¢'s, the two sets of equations+night differ in numerical form.) One
advantage which accrues from the use of superposition is that the
elements of the conductance matrix have values which can be measured
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(h) I ey m Gpm =10 (i) Ifey=Gy=250

Fia. 9 (Centinued)

with the aid of an ideal ammeter and a 1-volt source. In general, this
matrix takes the form

GII Gl! Gla A Gln

G Gay Gog -+ Gan 39)

Gnl Guz Gua iy Guu

If the scheme outlined in Fig, 9 is followed, the meanings of the G’s are
clear. For j equal to any pumber from 1 to n inclusive, G;; is the
current flowing from node j into the network per unit voltage increase
in e;. (e; is the node-pair voltage, the arrow end of which terminates
at node j.) In Fig. 92 ammeter 1, is employed to measure G,;, in
Fig. 9 ammeter 7, is employed to measure G,,, and so on. Al node-
pair voltages except ¢; are set equal to zero during this measurement
since the scheme employed here makes use of the principle of super-
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position. @ is the current flowing into the network from node j per
unit voltage increase in ey j # k. (ex is the node-pair vcltage, the
arrow end of which terminates at node k.) In Fig. 9b, for example,
ammeter I, is employed to measure Gi,, the current flowing into the
network per unit voltage increase in e; with all other independent node-
pair voltages (e, and e3) set equal to zero.,

After the conductance matrix has been established and the source
currents properly accounted for, the nodal solution is complete except
for routine manipulations. ; i

A deeper insight into the nodal method will be obtained, however, if
the independent node-pair voltages selected do not have a common node.
This subject will be pursued after the meaning of a topological iree has
been established.

G

®)

Fia. 10. (b) is a topological representation of the unknown branches of (a).

Network Topology.? Certain aspects of network behavior are brought
into better perspective if the network is considered as a graph. In
constructing this graph, we replace each branch of the network by a
line, without regard to the circuit elements that go to make up this
branch. Simple parallel elements may also be combined. The graph
of the network given in Fig. 10a, for example, is illustrated in Fig. 10b.
Where a branch consists solely of a current source, this branch may be
omitted from the graph because it represents neither an unknown
voltage nor an unknown current. For purposes of analysis, the b un-
known branch voltages or the b unknown branch currents are of im-

2 Topology, generally, is concerned with the form or structure of a geometrical
entity, not with the precise size or shape of this entity. Netwaork tapology is con-
cerned with the line graph formed by the interconnected network branches and not
with the size, shape, or operating characteristics of the network elements that go
to form the branches. In this sense, network topology is network geometry.
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mediate importance. The known sources may be incorporated into the
equilibrium equations at any appropriate stage of the analysis.

The network graph illustrated in Fig. 10b has four nodes, six branches,
and three inside loops or meshes and is mappable on a plane. The graph
may be considered as separating the entire area of the plane into four
bounded areas, the three inside meshes and the oulside area or outside
mesh. In this connection, any undivided area having a boundary
composed of branch lines is called a mesh. Since the outside area has
such a boundary, it can be classed as a mesh. When the graph is
mapped on a sphere, any one of the inside meshes of a plane graph like
Fig. 10b can become the ouiside mesh. The process whereby this is
accomplished is called topological warping.

A network solution hased on loop currents requires that the correct
number of independent vollage equations be employed. If based on
node-pair voltages, the solution requires that the correct number of
independent current equations be employed. In simple networks, inde-
pendent equations can be obtained readily by inspection or by methods
previously considered, Certain general aspects of this problem can be
brought to light by the use of a topological tree.

A free is a set of branches such that each node (or terminal) has connected to it at
least one branch, the set contains no closed loops, and a single (unique) path can
be found which joins any two nodes of the graph to which the tree is applicable.

Four open-ended graphs based on the circuit configuration of Fig. 10
are presented in Fig. 11. Since each of these open-ended graphs satis-
fies all the requirements of a tree, each graph is a tree corresponding to
the network of Fig. 10.

In forming a tree (corresponding to a particular network) certain
branches are of necessity opened. The branches thus opened are
called links or link branches. The links of Fig. 1la, for example, are
branches ab, be, and ca and of Fig. 11b are ab, dc, and da. Obviously,
the link branches and the tree branches combine to form the graph of
the entire network.

The identification of the link currents with the loop currents leads
directly to measurable loop currents. In cases where interest centers
around particular currents, as, for example, around the input and
output currents of the network, the input and output branches may be
selected as links, the reason being that only one loop current traverses
a link branch. Only one loop current is then required to obtain the
current in this branch. Thus the tree may actually be selected with
ulterior motives of this kind in mind.

Once a topological tree has been formed for a particular network, the
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determination of independent loop currents is a straightforward pro-
cedure. Simply close one link as, for example, link ab of Fig. 11a, and
employ the loop thus formed as the path for loop current number |,
In this case

!lnnp - Ilinl - Iubda - Il
Then open this iink and close another link to obtain the path of a second

loop current and repeat this process until each link-branch current has
been identified with a loop current. Thus we obtain loops for which

b b
!}
d d
- . k
(a) J L] (5 c
b b
d d
a € 3 ﬁ?
(c) (d)

FiG. 11. Four topological trees carresponding to the network of Fig. 10.

independent voltage equations can be written. The loop currents are
independent inasmuch as each cen be measured with an ammeter in
& different link branch. The correct number of independent loop cur-
rents is obtained since all the loop currents thus selected are required
to obtain a network solution, and more than this number of loop currents
will lead to voltage equations which are not independent of those
already esiablished.

The independent node-pair voltages required to effect & nodal solu-
tion can also be found readily from a topological tree. In elementary
nodal analysis we ordinarily select one node of the network to be com-
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mon to each of the node-pair voltages employed. In Fig. 1la, for
example, we might select node d as common and use

€y = lad, €2 = Upd, and €3 = l'eg

as the three independent node-pair voltages required to effect a solu-
tion. Or we might select node ¢ as common and use

€1 = Uge, €2 = U, 8Rd 3 = vy

as the required node-pair voltages. It should be noted that this method
of selecting node-pair voltages automatically leads to (n, — 1) or
n voltages, the correct number required to obtain a network solution.
The independence of the node-pair voltages thus selected follows from:

1. One path only exists between the common nede and any other
node by way of tree branches.

2. The nodes are separated in potential one from the other by at least
the potential difference of one tree branch.

One advantage of the topological approach to circuit analysis is that
it opens up avenues of attack that might otherwise be overlooked. For
example, the tree-branch voltages themselves form an independent set
of node-pair voltages that can be used in a nodal analysis to effect a
network solution. There are n, nodes and, except for the first tree

@ +
A
1 amp. i w 3 amp.
o
‘.1*1 .“l 2U I'u

Fia. 12. For illustrative example.

branch (which will be considered to have two nodes incident upon it),
every other tree branch utilizes one additional node in its specification.
Thus n tree branches exist in a given tree, and hence n independent
node-pair voltages can be obtained directly from the tree-branch volt-
ages. The one requirement in selecting a set of node-pair voltages
with which to earry out a network analysis is that these node-pair
voltages correspond to the node-pair voltages of a topological tree.
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In order to further illustrate the nodal method, the network given in
Fig. 12 will be analyzed in three different ways employing node-pair
voltages. First the e's of the tree shown in Fig. 13a wiil be taken as the
independent node-pair voltages. Where a common node is employed,
the self-conductances and mutual conductances may be obtained directly
from an inspection of the network. Thus in mhos

Gu =3 Gz = —1 Gia=0
Gy = —1 Gag = 4 Gog = —1
G;“ =0 Gza = —1 Ga;; =4 mhos

(7]

Fi6. 13. Two trees corresponding to the network of Fig. 12.

Let it be required to find the voltages of nodes Q) and (@ relative to
ground,

I =1 0
0 4 -1
3 -1 1 18
1 = I'I= = — '1
Potential of node @) = ¢ 3 0 T volt
= | 4 -1
¢ =l 4
3 1 0
-1 0 -1
1
Potential of node @ = &’ = Qe B 85010 i

41 41
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If the tree given in Fig. 13b is used in the analysis, it is found that
vy = & 1 = ley i
Upg = €2 tag = 203
Uya = €3 153 = leg r

l?a,.;-=¢|+€3 t'“=2e|‘+282
s = €2 + €3 155 = 3ez + 3es

At node (@O): o + 1oy = 3¢y + 2e0 + 023 =1
At node @):  ~—1p + tap —ts3 = —lep - 2e0 — leg =0
At node (@): 153 + tos = Oe; + 3¢5 + 4¢3 = 3
Solving for e; and ey ;
1 2 0
0 2 -
e = 3 3 - = i volt
3 2 0 4]
==f o =
0 "3 4
3 1 0
-1 0 -1
e = 0 5 = a8 volt
41 41

The potential of node (@) of Fig. 12 relative to ground is

18
Vpg =€, + g = i volt

27

(40)

(41)
(42)
(43)

If the node-pair voltages e, e;, and e; of Fig. 13b are employed in
conjuuction with the principle of superposition, the self-conductances and
mutual conductances are determined from the physical considerations
outlined in Fig. 14. If it is recognized that Ga, = Gz, G = G3,

G3z = (33, and G33 = 4 mhos, the conductance matrix becomes

G G2 Gy 3 20
Gy G2 Gy |=[2 7 3
Gy Gz Gy 0 3 4

(44)
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8 = ] voit
Ilno

@ 40 O )@ 80 @

2 1
+
e,=0 3 2 é 2 3
< !ahluﬂfl -
L ' L
fa}ll,'e|=ﬁu= <}/ SER (b} 1,/e,=Cp=2U
&= 1 volt
-l 4 @ ‘3“0 @
@ ey ©)
1 S
s .z 3
2 3
g, =0
(c)G,=0 (d)I,/e,=C,=TU

g =0 e;=0

i lrlrl'm 3 amp. 3 amp.
@ e =0

| ) £ | 23 Of

2 e, =0
1
I,
e=0
()T fe,=G,= v’ (f) i@zl.lg-i.'l@- 3 amp.

T1e. 14. Evaluation of self-conductance and mutual conductance of the network of
Fig. 12 employing the node-pair voltages ¢, ¢;, and ¢; of Fig. 135.

Since the law of superposition is being employed in the establishment
of the current equations at nodes (D, (@), and (@), it is necessary to include
the currents directed toward these nodes from all the current sources
with ¢; = e = ¢3 = 0. From Fig. 14/, we find that 1 ampere is di-
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rected toward node (@ from the sources, 4 amperes are directed toward
node (@ from the sources, and 3 amperes toward node ). Since the
component currents resulting from e;, ez, and ¢; have been taken as
positive away from the nodes, the three current equations may -be
written as follows:

3ey + 2e3+ 0e3 = 1 (43)
2ey + Teg + 3e3 = (46)
Oey + 3ea + de3 = 3 (47)
Solving for e, and e,
1 20
+ 7 3
3 3 4 5
=T 0l il volt
2 73
0 3 4
3 1
2 4
€ = 2 431 - =g volt

From the three examples outlined above (and from others that can
be developed) it is evident that node-pair voltages may be used in a
variety of ways to effect network solutions. The same may be said for
the use of loop currents. Ingenious combinations of node-pair voltages
and loop currents as well as ingenious network theorems are often em-
ployed to obtain desired solutions. One of the fascinating aspects of
network analysis is the variety of attack available to the analyst.

Duality. Where circuit elements are in series as in Fig. 15a, the
natural choice for independent variable is current since it is common to
each element. For the case considered

Riiy + Raty + Raty = vy (48)
or
" Ry=(Ri+ Ra+ Ry) = f‘ (48a)
-

Where elements are in parallel as in Fig. 15b, the natural choice for
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independent variable is the voltage which is common to (or across) each
~ of the elements. In Fig. 156

G + Gavp + Gavp = 1 (49)
ot ’
G <G+ ate)= :4} (49a)
b

The similarity in form of equations (48) and (49) is evident. In
one, the voltage law is used to establish the basic relationship between
7y and vs; in the other, the current law is employed. In one, resistances
are used; in the other, conductances.

+

Ot ——— & —mm—m
=
-
VW
o
-~
=
N
g
(]
o

iy Ry
(a) (b)
Fiu. 15. g =uy 403+ vy and s =14 +i: + 12

This dualism extends throughout the two fundamental methods of
network analysis. One method utilizes loop currents, resistances,
voltage equations, and voltage sources. The other utilizes node-pair
voltages, conductances, current equations, and current sources. Meas-
urable independent loop currents may be identified with the current
flowing in the link branches of the network whereas measurable inde-
pendent node-pair voltages may be identified with the tree-branch
voltages. The equilibrium equations in one method of analysis are
based upon

p 3 —— closed loop = 0

The equilibrium equations of the other are based upon
z‘-dimhd towsrd & node 0

Wherever all the elements of one system can be put into a one-to-one
correspondence with the elements of another system, the correspondence
is referred to as duality. Duality can therefore exist between the loop-
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current and node-pair-voltage methods of analysis, one method being
the dual of the other. From an algebraic point of view, two networks
are duals if the nodal equations of the one are of the same form as the
loop equations of the other. The equations of equilibrium for the
network of Fig. 16a which has two independent loop currents are, for
example,

Ryt + Ryaiy = ey

; . (50)
Royty + Ragly = e

Ry =R, #R
ngan;:-_n}
R =Ry — &y

(a);

Fic. 16. Dual networks.

The equations of equilibrium for the network of Fig. 165 which has two
independent node-pair voltages are of the form

Grier + Graer = iy

P (51)
d'ne: + Gaes = 1y o

Except for the interpretations gien to the symbols in equatioms (50)
and (51), these equations are identical. The fact that the forms of the
equations are identical makes them duals. Obviously, duality is a
mutual relationship. Equations (350) are as much the dual of equations
(51) as equations (51) are the dual of equations (30).

From a graphical point of view, two networks are duals when meshes
(around which v = 0) in one network are in a one-to-one corre-
spondence with the nodes (at which Xi = 0) in the other network.
In this connection a mesh is regarded as a region or area bounded by
network branches or voltage drops. With this interpretation of the
term mesh, a network branch divides eractly two meshes (or regior
provided that the network graph can be mapped on a plane or
(without cross-overs). Correspondingly, a network branch -
two nodes. It will be remembered that a network posse~
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nodes at which independent current relationships can be established.
The dual of this network will possess (m; — 1) = | meshes or loops
around which independent voltage relationships can be established.
(m¢ symbolizes the total number of meshes or regions of a particular
graph.) The graph of Fig. 16a, for example, is composced of three
meshes, lwo inside meshes around which f; and & cireulate and one
outside mesh (or region) bounded by the e,; — R, and R, — e,. branches,
The outside region is, of course, as much a mesh as either of the inside
regions since it is bounded by network branches. Furthermore, if
Fig. 16a were mapped on a sphere and topologically warped (by stretch-
ing), either of the present inside meshes could be made to .2 the “out-
side’’ mesh.

Some of the major correspondences which exist between the loop-
current and node-pair-voltage solutions are listed in Table I. Others

TABLE I
Solution

Node-Pair Voltage

Element Involved Loop Current

Equilibrium equations

Number of independent equa-
tions

Basie constituent

Energizing element

Network variable

Independent-network variables

Circuit parameter

Parameters add

Infinite parameter

Zero parameter

Topographical entity

Any topological branch

voltage v = 0

b—n=1

branch voltage

voltage source

loop current

link-branch currents

resistance

in geries

R = = (open ecircuit)

£ = 0 (short circuit)

mesh

divedes exactly two
regions (or meshes)
providing the graph
will map on a plane
(or sphere)

current i =0

b—-I0=n

branch eurrent

current source

node-pair voltage

tree-branch voltages

conductance

in parallel

G = = (short circuit)

G = 0 (open circuit)

node

joins exactly two
nodes

will become evident as we proceed.

It should be noted that, whereas

[ = n in dual networks, [ is not necessarily equal to n in a particular

network.

Graphical Construction of Dual Networks.

In constructing a network

which is to be the dual of a specified network, al! of the voltage drops
ancountered on the contour of a mesh of one network are transformed
~irrent paths emanating from the corresponding node of the other,
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or vice versa. A simple graphical scheme for developing the corre-
spondence between v = 0 in one network with 3.7 = 0 in the other is
depicted in Fig. 17c. The original network in this case is Fig. 17a

Node 3

1
I
i
I
I
Y, 6, Gy 6y
|
I
|
1

Reference node

(b)

Fro. 17. (a) and (b) are duals; (¢) indicates how (b) is obtained from (a).

which consists of a single loop (or one branch) and two meshes, say,
mesh a (inside the current loop) and mesh b (outside the current loop).
Node a of the proposed dual corresponds to mesh a of the original circuit
and similarly for node b and mesh b.
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The details involved in the graphical construction of a dual are illus-
trated in Fig. 17c. From node a in Fig. 17¢, for example, a line is so0
drawn that it connects node a and the reference node as it passes through
one element (or voltage drop) of the original loop. This process is
repeated for each voltage drop involved in v = 0 with due regard for
positive direction. Some orderly convention must be adopted for
correlating positive directions in the dual with those which have been
selected for analysis of the original. The simple scheme illustrated in
Fig. 17¢ consists of turning the arrow direction of the loop current (as
it crosses the line connecting node a and the reference node) in the
direction we select for positive current flow in the branch of the dual
which is being generated. For the case considered, the positive direc-
tion of current flow is selected as being from node a to the reference node.
Thus the loop-current direction in being turned clockwise for each of
the three voltage drops (v, vg, and vz of Fig. 17a) determines the posi-
tive direction of the current flow in the three corresponding paths of
the dual as being from node a to the reference node. In applying this
scheme to the voltage source e,. we note that the loop-current direction
coincides with a voltage rise as it passes through e,. The positive
direction of the current source, i,, in the dual which replaces e, of the
original network is therefore obtained by turning the loop-current
direction in the counterclockwise direction. The positive direction of
7, is thus determined to be from the reference node fo node a as indi-
cated in Fig. 17b or Fig. 17¢. (Any other scheme for determining
positive circuit directions in the dual is as good provided that it is used
consistently.)

The numerical values of the mhos in the dual network are related to
the ohmic values in the original network by the normalizing factor
ga2. Thus

G/ = gn'R; (52)

where g, is arbitrarily selected.

A current source, i,’, of the dual network is made to correspond to
a voltage source of the original network by a& normalizing factor g, if
the power delivered by i,” is to be equal to the power delivered by e,.
Thus for P,, to equal P,

8,.2 i|’2
P“=-E=E’-=P"’ (53}
from which
.1 P
1s G
i (54)



Ch. 1 NETWORK CONCEPTS 35

I, for example, in Fig. 17, Ry = 2, Ry =1, and R; = 3 ohms and
e, = 12 volts, the equation for equilibrium is

2 + 14 + 3i = 12 volts (i = 2 amperes)
1f & normalizing factor, g.%, of 4 is arbitrarily selected,
G/ =8, Gy =4, and G3' = 12mhos

Also 4,' = (2 X 12) amperes and the equation for equilibrium of the
dual network is

8v, + 4vg + 12v, = 24 amperes (v, = 1volt)

In Fig. 17a

o
[

=12 X 2 = 24 watts

In Fig. 17b
Pi' = 1X 24 = 24 watts

The graphical process illustrated in Fig. 17 is extended to a four-mesh
network in Fig. 18. It will be observed that all of the elements common
to loop 1 of Fig. 18a appear as elements which are common to node @
of the dual network; similarly for the other loops and corresponding
nodes. The dual network contains the same number of branches as
the original network if the three parallel paths which connect to node (©
(and which are derived from a single series branch of the original net-
work) are counted as a single branch. It is, of course, evident that for
algebraic duality I (the number of independent loop currents) of one
network must equal n (the number of independent nodes) of the other.
Forl=n

m=l+l=n+1l=mn

where m, is the total number of meshes and n, is the total number
of nodes. g

The manner in which the graphical process described above may be
reversed is illustrated in Fig. 19. Here the dual of a dual is constructed
to obtain the original network. (Sce Fig. 18.) Since duality isa mutual
relationship, the construction of a dual goes from meshes to nodes (if
the original network is viewed as consisting of meshes) or from nodes lo
meshes (if the original network is viewed in light of nodes as the topo-
log+ al entities). An example of the latter situation is given in Fig. 19a.
Each current directed away from node (@ corresponds to a voltage drop
in mesh 1 of Fig. 19b; similarly for the other corresponding nodes and
meshes. '
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Fra. 18. (a) Original network. {(b) Dual network, g, = 1.
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A qualification has previously been made that, if a geometrical dual
of a network is to be constructed, the graph of the original network must
be mappable on a plane or sphere. The reason for this qualification is
that the construction requires the network branches to be so oriented

(b)

Fic. 19. (a) Original network. (b) Dual network, ga = 1.

one to the other that all branches separate meshes exactly, that is,
without ambiguity. Branch 5 of the non-mappable graph of Fig. 20b,
for example, does not separate two areas or meshes exactly. Owing to
this ambiguity, geometrical dualism fails even though a dual set of
equilibrium equations may be established. If, for example, the numbers
on the graphs of Fig. 20 refer to ohms resistance, the three equilibrium
equations for either network are

Tiy — 2y — 3i3 =0
—2i, 4 1lig— 513 =0 (55)
—31:1 L 5‘3 + 141.3 = ()
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~ A dual set of equations may be written as
' Tey — 23— 3eg =0
. —~2¢; + 11y — Seg = 0 (56)
—3e; — Sey + 14e3 =0

1 1 . | p 1
i "
2 3 3 ~X%,.2 3
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i |f'l e,lT U e <su
Reference node

Fic. 21. Dual of Fig. 20a. (Prob. 19.)

A network to which equations (36) are applicable is given in Fig. 21,
where the node-pair voltages ¢,, ,, and e3 are the voltages of nodes (7),
@, and @ relative to the reference node.

PROBLEMS

1. A ihree-branch network is given in Fig. 22 where the branch voltages are
1= (=2 +3%1) The=(—4420) w; =20

(a) Write the required number of current and voltage equations (to effect a pet-
work solution) employing 1y, ts2, and 13 as independent variables, and evaluate
ip2 therefrom.

(b) Write two voltage equations employing loop currents i; and 1, as independent
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variables starting with

3i1 + 203 =2

Evaluate 33 aa (i1 + $2).

Fic. 22. Prob. 1.

Qipy + 2453 = 4

2. In Fig. 20a, page 38, isgiven a gix-branch network where the numbers alongside
the branches indicate ohms of resistance as well as the designations of the branches.

Thus

Rot=2 HRes=2 Ru=3 Ru=4 Rs=35 Ry = 6 ohms

The energizing sources are

not shown in Fig. 20, the assumption being that any one

or all of the branches may have voltage sources in series wi th the branch resistances.
Write three voltage equations employing the loop currents iy, is, and 13 as the

independent variables,

Let the source voltages in loop 1 be Ey = &,1 + €2 + &3

the source voltages in loop 2 be Ey = &,y + &5 — €] and the source voltages in
lﬂ'Dp 3 be E: = g8 — £,;,5 — €;3.

Note: With only & very little practi

ce, voltage equations of this kind can be written

down directly from an inspection of the petwork by mental applications of the

principle of superposition.

ES

s b
e "
'-.1 i
- |

(a)

D)

(%)

Fic. 23. The numerical values placed alongside the branches (or parts of branches)

8. Refer to Fig. 23a.

refer to ohms resistance.

(a) Defermine by inspection the numerical values of b and n,, and specify n and

! numerically.
4.—-
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(b) Write the voltage equilibrium equations employing numerical coefficients and
the loop currents indicated in Fig. 23a.

(¢) Evaluate the current iy per volt of e,.

(d) Determine the currentin the 3-ohm resistance, namely, (iz — 13)if e, = 8 volts.

4. Refer to Fig. 23b.

(a) Write the voltage equilibrium equations employing numerical cocfficients and
the loop currents indicated there.

(b) Determine the power delivered to the network by ¢, = 8 volts,

(¢) Evaluate the current in the 3-ohm resistance, namely, (iz — i3).

B. (a) Determine by inspection the numerical values of & and n, of Fig. 24 and
specifly the numerical values of n and ¢,

(b) What physical restrictions are imposed by the loop currents shown in Fig. 24
which render them insufficient (in number) to effect a network solution?

10

1N
% iy <
e o —
1a ]
li %1” i!
E e

Fro. 24. Prohlems 5, 6, and 18.

(¢) What is the correct numerical value of the resistance determinant of the
network employing measurable currents as loop currents? By resistance deter-
minant is meant the determinant of the resistance matrix which characterizes the
network.

8. (a) Construct a topological tree corresponding to the network shown in Fig. 24
such that

1. Loop current i, is identified with link-branch current tie.

2. Loop current 13 is identified with link-branch current tefar

3. Loop current 4, is identified with link-branch current ia.

4. Loop eurrent i; is identified with link-branch current b

() Repeat part (a) above for

U =T, T3 =gy, 3 =dpg, iy o= ipe

7. (a) Construct four topological trees corresponding to Fig. 23a. Draw the
tree in solid lines (oriented with respect to the nodes a, b, ¢, d) and the remainder of
the circuit, the link branches, in dotted lines. ,

(b) On each of the above diagrams, shaw the three independent loop currents that
are obtained by identifying loop currengs with link-branch currents. '

8. Given the network illustrated in Fi ig. 25.

(a) Caleulate the current through the branch ab which contains the 1-volt battery
using the loop currents shown in Fig. 25a.

(b) Again calculate the current through branch ab cmploying the loop currents
shown in Fig. 255. All resistance values remain at | ohm as indicated in Fig. 25a.
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Frc. 25. Prob. 8. (Resistance values refer to ohms.)

9. (@) Write the voltage equilibrium equations for the network 'i.llust.nted in Fig.
26a for the loop currents indicated.

(&)

Frc. 26. Problems 9 and 10. (Resistance values refer Lo ohms.)

(5) What is the numerical value of the resistance determinant of the network,
that is, the determinant of the resistance matrjx which characterizes the network?

10. (a) Write the voltage equilibrium equations for the network given in Fig. 265
for the loop currents indicated.

(b) What is the numerical value of the determinant of the resistance matrix which
characterizes the network?

11. (@) In Fig. 27, a resistance matrix is formed which corresponds to the loop
currents shown there. What is the numerical value of the determinant of this
matrix?

(b) What is the correct value of the resistance determinant of the network?
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Fra. 27. Prob. 11. (All resistance values are 1 ohm.)

12. Refer to Fig. 28.
(a) Find the potential of node r relative to ground.
{b) Find the potential of point y relative to ground.

@ 20n 05N @ 0N

10 amp.

i'T()' 50 1n §o.an

4
Fia. 28, Prob. 12,

13. (a) Determine by inspection the numerical values of b and n: of the network
illustrated in Fig. 29 and specify the numerical values of n (the number of independent
nodes) and [ (the number of independent loops).

Vo A

1n 1n 10 10

1|+

—l'T.

10 voits 10 volts

L T

Fio. 29. Problems 13 and 14.

(b) Transform the three voltage sources and associated series resistances to
equivalent current sources with due regard for positive directions, and draw the
equivalent network incorporating the three current sources,

14. Find the voltage of node z relative to ground in the network given in Fig. 29.

15. Find the potentials of nodes @ and @ of Fig. 30 relative to ground, employing
v) and v, as independent node-puir voltages,
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| D g2
i g 1% Oz
® g
Fra. 30. Problems 15 and 16. .

‘I‘O

() Gy =i/l =~06U

gy = 1woit

=0

" (d) Gp=1p/1=110

I-;z = 5 amperes

"‘:ﬁ ;=0
- 2 =0 ]
iy : : L
l i =0 iy =0 owg i<
i:' ill
{C} 1"310 II'I!PU'I!.'IHIG (f) I”_ = -5 .mm:ln-samp‘m

Fi1g. 31. Prob. 17. For use in solving a problem by superposition.
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16. Repeat Problem 15 employing vy and vy as independent node-pair voltages,
17. Determine the potentials of nodes @ and @) in Fig. 30 employing the principle
of superposition as it applies to 1

€1 =Uv; € =103 f i

ketches showing Gy, Gya, Gay, G2z and the component currents at nodes @ and @
are given in Fig. 31. This exercise in superposition is designed to show how the
effects of ey, e, t,1, and i,2 may be considered separately in the analvsis of the circuit.
When all effects are combined it will be found that

1.6ey — 0.6e2 = Iy + I1a = 5 amperes
—0.6¢y + 1.1es = I3 + I4y = 5 amperes

18. Construct the dual of the network given in Fig. 24, page 40, without regard to
sources with the construction going from meshes to nodes. Employ a normalizing
factor (g,?) of 4. .

- 19. Construet the dual of the network illustrated in Fig. 21, page 38, with the
construction going from nodes fo meshes. Let g,% the normalizing factor, equal
unity.

Fre. 32. Prob. 22.

20. Construct the dual of the network shown in Fig. 32 with the construction going
from meshes (o nodes. g,.* = 2.

21. Evaluate v, in Fig. 7, page 16, employing one koown loop current and two
unknown loop currenta.



chopter II '
Instantaneous Current,
Voltage, and Power

Large segments of circuit analysis are devoted to the steady-state
responses of circuits which are energized with alternating currents or
voltages having approximate sinusoidal time variations. Several defi-
nitions or conventions involving alternating quantities of this kind
must be learned and several concepts must be mastered before alternat-
ing currents and voltages can be handled with facility.

Early History. The first successful electrical power system in the
United States was probably Edison's direct-current installation in
New York City. This station was performing creditably in 1885.
Alternating-current power systems began commercially with the Great
Barrington (Massachusetts) installation in 1886.

During the decade 1907-1917, which followed the invention of the
three-electrode vacuum tube, sustained oscillatory currents at high
frequencies became a reality. These high-frequency oscillatory or
alternating currents are essential to all modern radio, television, and
radar forms of communication.

The outstanding advantage of a-c systems (as contrasted with d-¢
systems) is the relative easé with which alternating potential differences
can be generated, amplified, and otherwise transformed in magnitude.
The result is that, at the present time, approximately 95 per cent of
the electrical energy consumed in the United States is generated, trans-
mitted, and actually utilized in the form of alternating current. In
the power field the annual energy consumption amounts to about 600
billion kilowatthours. In the communication field several thousand
broadcast stations (of the AM, F)M, and television variety) employ
alternating potential differences to generate their carrier waves.

Generation of Alternating Potential Differences. When magnets
are moved relative to electrical conductors as shown in Fig. 1, there is
induced in the conductors a potential difference or emf. In accordance

d
with Faraday's law, e = —.\'d—f or its equivalent e = N'Blr and the

emf varies with time. For the instant depicted in Fig. 1, the applica-
tion of one of the rules for finding the magnitude and direction of an
45
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induced emf will show that the emf induced in the armature conductors
is zero, since at that instant no flux is being cut by these conductors.
One-eighth revolution later, however, the induced emf is of maximum
magnitude and of such a direction as to establish a voltage rise from
terminal g to terminal . One-quarter of a revolution after the position
shown in Fig. 1 the induced emf will again be zero. Three-eighths of

(a) d-teminal (b) a-terminal

Fro. 1. (a) A four-pole, four-conductor a-¢ generator of the revolving field type. (b) De-
veloped disgram showing method of connecting conductors A4, B, C, and D. Pale
faces are toward the reader. i

a revolution from the reference position the emf will again be of maxi-
mum magnitude but so directed as to establish a voltage rise from ter-
minal d o terminal a.

Thus the terminals a and d of the generator become altema.tely
positive and negative relative to each nther, and a time-varying poten-
tial difference of the general nature shown in Oscillogram 1 (page 51)
is developed.

In communication systems, vacuum tubes or transistors (working in
conjunction with suitable electrical circuits) produce alternating currents
of higher frequencies than those obtainable with rotating equipment.
A common triode oscillator circuit is shown schematically in Fig. 2. The
a-c energy developed across the output terminals is actually derived
from the d-c supply voltage labeled Ey, but it is not expected that the
reader will understand the conversion from direct current to alternating
current which takes place in Fig. 2 until after he has studied the subject
of electrical resonance. The only purpose in mentioning the triode
oscillator at, this stage is to acquaint the reader with the fact that high-
frequency alternating currents can be produced with very simple circuit
configurations. Many simple circuit configurations other than that
shown in Fig. 2 may be used for this purpose.

Definition of Alternating Current. An alternating current, as the
name implies, goes through a series of different values both positive
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i

Qut
é la':mmh':.th

Fic. 2. Circuit arrangement of a simple triode oscillator.

ind negative in a period of time T, after which it continuously repeats
this same series of values in & cyclic manner a3 indicated in Fig. 3c.
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Fic. 3. Wave forms of three a~c variations. T is the period (or duration) of one cycle.

In the current A.I.LE.E. “ Definitions of Electrical Terms,” an aller-
nating current is defined in terms of a periodic current, and the latter in
terms of an oscillating current.
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“ An oscillating current is a current which alternately increases and
decreases in magnitude with respect to time according to some definite
law, ; ;

“ A pertodic current is an oscillating current the values of which recur
at equal intervals of time. Thus

"-=I0+11$iﬂ(ﬁ!+ﬂl)+fzsiﬂ(2w!+a2)+°-- (1)
where i = the instantaneous value of a periodic current at time ¢
Io, I, I3, ey, a3 = constants (positive, negative, or zero)

2r 4
w =5 (T being the period)

‘““ An alternaling current is a periodic current, the average value of
which over a period is zero. The equation for an alternating current
is the same as that for a periodic current except that I, = 0.”

Examples. In Fig. 3a, { = 10sin «f amperes; in Fig. 3b, £ = 10 sin wt +
4 8in (3wl + 90°) amperes; and, in Fig. 3¢, i = 10 sin «f + 4 sin 2u? amperes,

eriod and Cycle. The period of an alternating current or voltage
is the smallest value of time which separates recurring values® of the
alternating quantity. The period of time which separates these recur-
ring values is shown in Fig. 3 as T, the symbol normally employed to
designate the period of one cycle of an alternating quantit.

One complete set of positive and negative values of an alternating
quantity is called a cycle. Thus Figs. 3a and 3b each depict one eycle.
A cycle is sometimes specified in terms of angular measure since, as
will be shown presently, w in equation (1) actually represents angular
velocity. One complete cycle is then said to extend over 360° or 2x
radians of angular measure.

\Fféquency. Frequency is the number of cycles per second. Unless
otherwise stated, the term * cycles " implies * cycles per second.”

In the rotating machine of Fig. 1, it is apparent that a complete
cycle is produced in the armature conductors when these conductors
are cut by the flux from a pair of poles or, in this case, one-half revolu-
tion of the rotating field. Each conductor will be cut by two pairs
of pcles in one-revolution of the field structure, and two. com plete cycles
of emf will be developed in the armature winding per revolution.

- In general, for a p-pole niachine the number of cycles per revolution
is p/2, and, if the speed of rotation in revolutions per second is repre-

! The mathematical meaning of * recurring values " is implied in this definition,

namely, that at least one complete set of values intervenes between two recurring
values.
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sented by rps, the equation for frequency is

f= ﬂ%‘l cycles per second (2)

Since T is the time (or duration) of one eyele, it is plain that

1
i f= T eycles per second : (3)

if T is expressed in seconds.

\lfx/mple. Let it be réquired to find the frequency and the period of the emf
generated in the armature winding of Fig. 1 if the specd of rotation ie 1500 rpm.

4 1800
J= 2 b 50 = 60 cycles per second

oo B
Ifﬁosecond

The common power plant frequencies in use today are 60, 50, and
25 cycles, the first mentioned being by far the most prevalent in this
country. Abroad 50 cycles is very common, and some foreign railways
use frequencies considerably less than 27 eycles. A 25-cycle variation
causes a noticeable flicker in incandescent lamps; hence it is undesirable
for lighting. Formerly 25 cycles was used for power work but, with
the advent of a better understanding of the laws governing a-c power
transmission and the design of machinery, this frequency is rapidly
being superseded. In general, 60-cycle apparatius is lighter and costs
less than, 25-cycle equipment. The difference is similar to that between
high- and _low-speed'd-c machines.

Audio frequencies range from approximately 16 cycles to approxi-
mately 20,000 cycles, voice frequencies occupying the range from about
200 to 2300 cycles. Carefully engineered audio systems, like some
theater installations, are designed to accommodate frequencies from
30 to 12,000 cycles.

Radio frequencies range from about 50,000 cycles to 10'° cycles,
the AM program broadcast band being from 510 to 1600 kilocycles, and
the FM and television broaucast bands being from about 50 to 200
megacycles. Radar systems often operate with a carrier frequency of
3000 or 10,000 megacycles. \

At the 1947 Atlantic City Conference it was agreed to express fre-
quencies as employed by radio engineers in kilocycles per second at and
below 30,000 kilocycles per second and in megacycles per second above
this frequency. The present FCC standard band designations follow.
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VLF (very low frequency) less than 30 kilocycles per second
LF (low frequency) 30-300 kilocycles per second
MF  (medium frequency) 3003000 kilocycles per second
HF  (high frequency) 3000-30,000 kilocycles per second
VHF (very high frequency) 30,000 kilocycles per second-

300 megacycles per second
UHF (ultra high frequency) 300-3000 megacycles per second
SHF  (super high frequency) 3000-30,000 megacycles per second
EHF (extremely high frequency) 30,000-

300,000 megacycles per second

g Wave Form. The shape of the curve resulting from a plot of in-
stantaneous values of voltage or current as ordinate against time as
abscissa is its wave form or wave shape. It has been shown that the
passage of a pair of poles past a given reference point on the stator of
Fig. 1 produced a complete cycle of generated or induced emf. This
corresponded to 2x electi cal radians, or 360 electrical degrees. In
other words, one cycle occurs in or occupies 2x radians, or 360°. The
abscissa, instead of being expressed in terms of time in seconds, can be
and is quite frequently expressed in terms of radians or degrees. Thus
one cycle occurs in 2« radians, or 360°, : :
\/Asgular Velocity or Angular Frequency. In the preceding article a
complete cycle was seen to correspond to 2x radians. The time for a
complete cycle was defined as the period T. Hence the angular velocity
w in radians per second is 2+/T. Therefore

u=2—%=21rf 4)

Equation (4) specifies angular velocity in terms of frequency, and this
velocity is called electrical® angular velocity or angular frequency.
If equations (2) and (4) are combined, -

o =22f = 20 % (1po) = £ (24 (rpo)) (5)

Equation (5) shows that electrical angular velocity equals (pairs of
poles) times (mechanical angular velocity) in generators of the type

s‘lywn in Fig. 1.
Alternating Voltages and Currents Represented by Sine Waves.
Whereas the foregoing has referred to waves of any shape, the usual

? Mechanical angular velocity, 2« (rps) radians per second, is not to be confused
with electrical angular velocity. In Fig. 1 the two are related by the factor p/2,
but in vacuum tube oecillators of the type shown in Fig. 2 the electrical angular
velocity or angular frequency is defined almost solely by the inductance and capaci-
tance employed at the X and X; positions in the cireuit.
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¥
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OsciLLoorau 1. Emf of a sine-wave generator.

attempt is to secure a sine wave. Oscillogram 1 is a photographic
record of the potential difference produced by & so-called sine-wave
generator, _

Many of the alternating waves met with in practice approximate a
sine wave very closely. Alternating-voltage and -current caleulations
are therefore based on sine waves.
(The method whereby non-sinusoidal
waves are expressed so as to be caleu-
lated according to the laws of sine
waves is explained in Chapter VI.) A
true sine wave is shown in Fig. 4. The i
equation for it is “"“”“""’5

t = [, sin wt (6)

i
I
Im
i
i
I
Al

Current
(=]

tora—s-

[}
I
]
I
I
:
where o is expressed in radians and = b————__ ~wot=2Tee -
" - . ]
is called the time angle, 7 is the
instantaneous value of current, and
I, is the maximum value of the
sinusoidal variation. Since wf represents an angle, equation (6) may

be expressed in terms of radians or degrees. Thus

Fio. 4. Sine wave may be expressed
a3 [, sin @ or as [ . sin wi.

i=1I,sina - mv

where a is in degrees or radians. Equation (6) expresses the current
&5 & sinusoidal variation with respect to time, whereas equation (7)
expresses it as a function of angular measure.

A- 230l
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vAlternating Potential Difference. Alternating voltage or potential
difference may take the form of a generated (or induced) emf or the
form of a potential drop, sometimes abbreviated p.d. In the interest
of clear thinking these fwu forms of voltage should be distinguished
from one another. Instantaneous values of generated or induced emf’s
will be designated by e, and instantaneous values of potential drops by
the symbol v. Similarly E, and Vi will be used to distinguish a maxi-
mum value of induced voltage from a maximum value of potential drop.
Corresponding distinctions will be made between other particular values
of induced voltages and voltage drops.

\Phase. Phase (as the term is defined by the A.LEE) is the frac-
tional part of a period through which time or the associated time angle
wt has advanced from an arbitrary reference. In the case of a simple
sinusoidal variation, the origin is usually taken as the last previous
passage through zero from the negative to the positive direction. Thus
one phase of a sine wave is 15 of & peribd (or 30° from the origin) where
the ordinate is one-half the maximum ordinate; another phase is 4
of & period (or 90° from the origin) where the ordinate has its maxi-
mum positive value; and so on for any other fractional part of T (or of
wTl = 2r).

i=1q sin (wt+6)

Fic. 5. Phase angle # of a sine wave.

In accordance with the above definition, the phase angle of a single
wave is the angle from the zero point on the wave to the value at the
point from which time is reckoned. Thusi = I, sin (wi + @) represents
a sine wave of current with a phase angle 8. The phase of the wave
from which time is reckoned (i.e., when t = 0) is i = I sin 8. The
angle 8 is the phase angle of the turrent with respect to the point where
i = 0 as a reference. These principles are illustrated in Fig. 5.

The phase angle when used in connection with a single alternating
quantity merely provides a simple analytical method of starting the
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variation in question at any point along the wave. As such it is of
little importance in gteady-state analysis in contrast with its great
usefulness in the ana.{;sia of transient conditions.
\_Phase Di&e:_'enc? The phase angle is a very important device for
properly locating different alternating quantities with respect to one
another. For example, if the applied voltage is

v = Vasin ol i (8)
and it is known from the nature and magnitude of the circuit parameters
that the current comes to a corresponding point on its wave before the

voltage wave by 8 degrees, the current can he expressed as

t = I sin (of + 6) (D)
Figure 6 illustrates the phase positions of v and £ for # = 45°. The
current in this case is said to lead the voltage by 45° or the voltage is

said to lag the current by 45°. A given alternating quantity lags

et

wt

Fic. 6. Illustrating i case where the 1 wave leads the r wave By & = 45°.

another if it comes to a certain point on its wave later than the other
-one comes to the corresponding point on its wave. Another way of
saying the same thing is that the positive maximum of the leading
quantity occurs before the positive maximum of the lagging quantity.
Thus it is said that there is a phase difference of 43° between the two
waves. The angle of phase difference is the difference of the phase
angles of the two waves, Thus, if e = 100sin (wt + 43°) and 7 =
10 sin (wf — 15°), the angle of phase difference is 13° — (—13°) = 60°.

Oscillogram 2 illustrates the actual phase relation between an applied
sinusoidal voltage and the resulting current that flows in a particular
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Voltage = Current

*angle of lag of i with flnécc’l tov -;’:?:_;'dnw Q?" .

OsciLLocrAM 2. Photographic record of voltage and current for a circuit containing re-
sistance and inductance.

' Applisd._ -

Oscirocram 3. Oscillographie fecords of the no-load current and no-load power_wkeﬁ
by the primary of an iron-core transformer. The spplied voltage variation, 1, 18
shown.
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circuit. Inspection of the oscillogram will show that the current lags
the voltage in this particular case by approximately 60°. Oscillogram
3 illustrates a case where the current and power waves are distinctly
non-sinusoidal.

Examples. If a voltage is described as having sinusoidal wave form, a maximum

value of 200 volts, and an angular frequency of 377 radians per second (60 cycles per
second), and it is desired to reckon time from the point of zero voltage where dv/dt

+200 — — - V= 200 Sin 3778

g0

~ t=0 Time —>

e [y A —

—200 -
Pl T"E“.ﬁ&mﬂd ——y
(b)

Fic. 7. Graphical representations of equations (10) and (11).

-

is positive, as illustrated in Fig, 7a, the mathematical expression for the alternating
voltage as a function of time, {, is

v = 200 sin 377¢ volts (10)

- If it is desired to reckon time from some other point along the voltage wave, it
is simply necessary to add to the angle 377t in the above equation an angle equal
to the angular displacement between v = 0 (dv/d! positive) and the point on the
voltuge wave from which it is desired to reckon time. If it is assumed that time is
to be reckoned from the point of positive maximum voltage, the angular displace-

BE—
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ment referred to above is +490°, and the expression for voltage becomes
p = 200 gin (377t 4 90°) = 200 cos 377¢ volts (11)

This type of variation is shown in Fig. 7b.
Equations (10) and (11) describe exactly the same type of voltage variation except
for the ¢ = 0 reference.

The current that flows in a circuit as a result of applying a sinusoidal
voltage is governed in magnitude and phase by the circuit parameters
(resistance R, self-inductance L, capacitance C, and mutual inductance
M) and the angular velocity or frequency of the applied voltage, In
one sense of the word the angular frequency is an a-c¢ ¢ircuit parameter.
If the circuit parameters are constant, the current that flows will be
of sinusoidal wave form but will, in general, differ in phase from the
sinusoidal applied voltage.

Mathematically a particular type of function is required to relate
voltage and current in an a-c circuit. The one generally employed is
called the impedance function or simply the impedance of the circuit.
The impedance function must tell two important facts: (1) the ratio
of Vi to I and (2) the phase angle between the waves of voltage
and current. A special type of notation is required to signify the two
properties of the impedance function in abbreviated form. One such

type of notation is
Z [angle

The above expression does not signify the multiplication of Z and
/angle. Z is the megnitude of the impedance and in & particular case
is represented by a certain number of ohms. It defines the ratio of
V. to I,. The angle associated with Z, if it is posiive, defines the
lead of the voltage with respect-ta the current: In accordance with
the convention thus adopted a positive angle specifies the number of
degrees or radians by which the current lags the voltage.

‘The determination of the complete impedance function for various
combinations of R, L, and C is the first step in a-c circuit analysis.
The combinations considered in the present chapter are shown in
diagrammatic fashion in Fig. 8.

e RBranch. The consideration of a circuit element which possesses
only ohmie resistance is, of course, a hypothetical venture because some
self-inductance is inevitably associated with any circuit configuration.
However, the case may be approached in practice to a degree comparable
to the accuracy of ordinary measurements. It is well known that

31t will be shown in Chapter ITI that the magnitude of the impedance Z defines
the ratio of Vegective t0 Jemective 88 Well as the ratio Vi to I,
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resislance impedes the motion of electricity and causes an irreversible
transformation of electrical energy into heat energy in accordance with
Joule's law.

A ml ilk}:—l;_? :
L, % Jq._?l“__'xw

Fic. 8. Elementary circuit arrangements of R, L, and .

Impedance. Thé impedance of a simple R branch may be expressed
as

R /0° ohms

The reason follows directly from Kirchhofi's emf law. If a voltage,
v = V,, sinwl, is applied to a

branch of R resistance, Fig. 9, the i

equation for dynamic equilib-

rium is
v:=Ri=V,sinwl (12)‘;_-\"«'*"“3 R Rimey
from which
. V. ,
P 'ﬁ'sm wt=Imsinwt (13) & FiG. 9. The R branch.

From the shove equation if is évident that V,,,/{»n = R and that the
current waie is in time phese with the voitage wave. It is possible to
express these facts in the single statement

Zr = R/0°
In general, R is expressed directly in ohms, in which case Zg is in ohms.
Power. The determination of the rate at which electrical energy is

generated or absorbed is, in general, an important problem. Instan-
taneous power is symbolized by the lower-case letter p.

p = er  (generated power)
p = vi (absorbed powery

The present discussion confines itself to the determination of instan-
taneous absorbed power wherein positive values of p indicate that the
circuit under consideration is receiving énergy from the supplying source.
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Negative values of p indicate that the reactive elements of the circuit,
if such are present, are actually releasing energy st a rate which is
greater than the rate et which energy is being received.

In the present case, that of the simple B branch, all the energy pro-
duced by the instantaneous power absorbed is converted into heat.
Presumably no reactive elements, inductance coils or condensers, are
present. The instantaneous power is given by the product of equations

(12) and (13).

p =vi = Vlnsin® wl (14)
Since sin? ot = § — 4 cos 2!, it follows that
Val A
p= ;M—“TCO-E!?(J! (15)

Vamla cos 2at

P

TN AL D

Vals '
2 & i\ F i Fy| —Va!
SAVAVAVIVA G
\
R\VR\VE\VIEAV /R
o i - . 4 — y—4 L t.
Jl v d [Timel—> 1 { !
!
F V1 4l 4 V7 3
] "r “'{ Vv ! l\f' “
v/ 1 5 [ \

Fic. 10. Graphical representation of equation (13).

Figure 10 illustrates the component parts of equation (15). It will be
ohserved from the above equation that the instantaneous power wave
is a double-frequency variation, with respect to the frequency of the

current or the voltage, which has an average positive value of 2

The cos 2wf term causes the instantaneous power to acquire periodically
zero and Valm values. At no time does the power r:ach instantaneous

negative values.
Photographic records of

v, 1, and p in a branch which approximates
the purely resistive case are shown in Oscillogram 4. The oscillogram
illustrates in a graphical manner the relations which have been derived
for the R branch and substantiates the physical fact that voltage and
current are in time phase in a resistive eircuit.
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]
.

Oscirrocram 4, Voltage, current, and power variations in a resistive circuit element.
R = 25 ohms. If time is reckoned from the point of zero voltage (dv/di positive):
V = 141.4 5in 377 volts, i = 5.65 sin 377t amperes, p = 400 — 400 cos 754! watts,
average power = 400 watts.

The L Branch. If a circuit element of pure inductance, Fig. 11, is
considered, the equation for dynamic equilibrium is

di -
UTLEE'=V...Smwt {16)
di = %sinw! dt (17)

————)

V= “; sin wl

Fic. 11. The L branch.
After both sides of the above equation are integrated it follows that

r

5 .i= —;—Ecos:.,r+cL (18)
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The constant of integration ¢; will be considered to be equal to zero
since only the steady-state current symmetrical about the zero axis is
0 be considered.*

Under the above conditions equation (18) reduces to

r

‘Esin (wt — 90°) = I, sin (wt — 90°) (19)

1=

Impedance. Inductance opg_oggg__t_h_ejp_tg of change of current, and
for this reason it is sometimes called elecirical inertia. Since the in-
ductance, L, limits the rate at which the current can change, it follows
logically that L actually gaverns the maximum value of the current in
an a-c circuit which jg energized by a. voltage of specxﬁe‘d angula.r veloclty
Tt wvill be observed from equation (19) that V,/Im = «L and that
i lags v by one-quarter of a cycle or 90°. The impedance of a pure L

branch is according to the convention previously adopted

Z, =wL/90°
The reason for using the positive angle in connection with impedances
that cause lagging currents will become more evident when the rules
of vector algebra and the conventions pertaining to vector diagrams
are considered.

The magnitude of the above impedance, wL, is called inductive re-
aclance. Inasmuch as the inductive reactance is directly proportional
to the angular velocity of the driving voltage, 2xf, it is obvious thet the
magnitude of the impedance offered to the flow of alternating current
by a coil of fixed self-inductance, L, is directly proportional to frequency.
When w is expressed in radians per second and L is expressed in henrys,
the inductive reactance, X, is in ohms.

Xy = wL = 2xfL (20)

Example. The inductive reactance of # 10-millihenry inductance coil in a 60-
eycle circuit is
= Xt = 2x X 60 X 0010 = 3.77 ochms -
and
Z = 3.77 /90° ohms

The inductive reactance of the nar.ne coil in & 60,000-cycle circuit is
X, = 2x X 60,000 X 0.010 = 3770 ohms
df a 80-cycle sinusoidal voltage of maximum value equal to 100 volts is applied to

4 In a general analysis, ¢; would be evaluated in terms of the boundary conditions
under which the circuit is initially closed. Determined in this manner, ¢; would
define the transient component of the current. ¢, is neglected here because transient
components of the current are not to be considered at this time. In a physieally
realizable circuit the transient component is of short duration.
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the 10-millihenry inductance coil,
¢ = 100 sin 377¢ volts
and

100
i = ——sin (377t — 90°)
' 3‘773111{3 90°) amperes

Power and Energy. The instantaneous power delivered to the pure -
inductance branch as obtained by multiplying equation (16) by equation
(19) is

p = vi = [V sin wl][{n sin (wt — 90°)) (21)
from which

P = Valm(—sin wf cos wt) (22)
or

p=— },;Im sin 2wt (23)

Figure 12 illustrates the v, 7, and p variations in a purely inductive
branch. It will be observed that the power variation is again a double-

= YmIm
Voln P=——Ty"rsin2 wl

2

‘Voltage-Current-Power
o

F1e. 12. Voltage,.current, and power variatirns in a purely inductive branch. -

frequency variation with respect to the frequency of the driving voltage.
The fact that equation (23) indicates negative power during the first
one-quarter of a cycle of the driving voltage, that is, from ¢ = 0 to
t = T/4, is the direct result of the choice of the time reference.’

*The assumption of sinusoidal driving voltage, v = V.. sin o, sutomatically
imposes the condition of ¢ = 0 at the point of » = 0 (dv/df positive). The beginner
should not confuse the t = O reference of a steady-state varistion with the time
at which the circuit is initially energized.
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Since steady-state conditions have been assumed, the ctrcult. has
presumably adjusted itself to the relative phase relations indicated by
equations (16), (19), and (23).

Under the conditions which have been assumed, namely, a steady-
state sinusoidal driving voltage and a purely inductive circuit, the
power variation is symmetrical about the zero power axis. The average
power absorbed! is equal to zero. The implication is that the inductive
element receives energy from the source during one-quarter of a cycle
of the applied voltage and returns exactly the same amount of energy
to the driving source during the next one-quarter of a cycle. The
exact amount of energy delivered to the circuit during a quarter of a
cycle may be obtained by integrating any positive loop of the power
wave, for example, integrating p between the limits of ¢ = T'/4 and

t=T/2.
TR Vil .
Wi = f — ———gin 2w di
T/4 2

= _V..,!,,. [c-osﬁt]rﬂ
T
T

Valm
2w

| ]

Since V,, = wLly, ;
LL)ls EL3
2% 2

If L is expressed in abhenrys and I, in abamperes, the above energy
is in ergs. If L and I, are expressed in henrys and amperes respec-
tively, W is given in joules.

Oscillogram 5 illustrates the relative phase relations in a circuit
which approaches, to a fair degree of accuracy, the purely inductive
arrangement that has been described mathematically.

The C Branch. If it assumed that a sinusoidal voltage, V sinaf,
is applied to an ideal capacitor as indicated in Fig. 13, the expression
for steady-state equilibrium is

v=%=V.sinu¢ (25)

(24)

Wy

When the above equation is differentiated with respect to ﬁme, it follows
thet
2 e Ve con (26)
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OsciLLoGRAM 5. Voltage, current, and power variations in a highly inductive circuit
element. L = 0.056 henry, f = 60 cycles, Xp = 21.2 ohms, R = 1.0 chm, Ve =
141.4 volts, Jmax = 6.66 amperes, P,y ™= 25 watts approximaotely. Note the lag of the
1 wave with respect to the v wave; also the large negative power loops. Poaitive power
peaks of approximately 500 watts are present even though the sverage power dissipated
in the circuit element is only about 25 watta.

or v ,

V!'I . . 3
£=Tam(m£+90°)=- m 8D (wt + 90°) o (27)

— ¢ ' %

wC

Impedance. The ratio of V,, to I, in the pure C branch is 1/wC,

and the current leads the applied vdltage by one-quarter of a cycle or
90°. In accordance with the convention

which has been adopted, the impedance of
the C branch is

1

1 =
e = oC —90 V=Yg snot Co= Ly

The magnitude of the impedance, 1/wC, is
called capacitive reactance, and it is evident
from the nature of the expression that capac-
itive reactance is inversely proportional to
the frequency of the driving voltage and also inversely proportional to
the capacitance of the capacitor, C. A series circuit in which no capac-

F1o. 13. The C branch.
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itor is present has infinite capacitance and, hence, zero capacitive
reactance, _ :

The impedance of a_capacifor causes the current to lead the voltage
by §0°, whereas the impedance of an inductance causes the current to
lag the voltage 90°. "The effects of the two types of reactive elements
‘ay regatdys Lthe phase of the resulting currert are exactly opposite.

If, in the expression for capacitive reactance, w is expressed in radians
per second and C is expressed in farads, the resulting capacitive re-
actance is in ohms. If the capacitance of the capacitor is expressed in
microfarads (abbreviated uf), the expression for capacitive reactance

takes the form
6

10
Xc= ohms

T wCyy
Example, The eapacitive reactance of a 15-uf capacitor in a 25-cycle circuit is
108

= —————— = 425 chms
2x X 25 X 15

Xe

and
Zc = 425 [ —90° ohms

The capacitive reactance of the same capacitor to a 250-cycle driving voltage is
j 10*

-_— = 42, hm
2x X 250 X 15 Bolues

Xc

If & 25-cycle sinuscidul voltage of maximum value equal to 200 volts is apolied
to the 15-uf capacitor
v = 200 sin (157¢) volts
and

200 '
i= Essin_ (157t + 90%) umperes

\Power and Energy. The instantaneous power delivered to the C
branch is '

p = vi = [V, sin ot][I sin (wt + 90°)] (28)
from which _
¥ p = Voln(sin wl cos wt) (29)
or - ;
p= Pf‘;—“ sin 2wt (30)

The phase relations of v, 1, and p in a purely capacitive branch are
shown in Fig. 14. The double-frequency power variation is, as in the
pure L branch, symmetrical about the zero power axis. In the present
case the capacitor receives energy from the source during the first
quarter of a cycle of the voltage variation and returns the same amount
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'l‘ml.

Yolm

Fic. 14. Voltage, current, and power in a purely capacitive branch.
L]

during the secord quarter cycle, etc. The average power absorbed
over an integral number of half cycles is, obviously, equal to zero.

The amount of energy received by the capacitor during a quarter
cycle may be determined by integrating the power wave over any
positive loop; for example, integrating equation (30) between the limits
oft=0andt=T/4.

TH VT,
We = ‘L' ';"‘sin 2wl di

Vil [ o T
()T
\7

Valu Vais

& ™

~ Vn(wCVm) Vall

£ %0 2
If V,, and C are expressed in volts and farads respectively, the abov¢
expression for energy is in joules. We is the maximum amount of

energy stored in the electric field of the capacitor at any one time.
* Comparison of equations (30) and (23) will show that the capacitive

Since I = &CVm,

(31)>
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OscirLocram 8. Voltage, current, and power variations in a highly capacitive circuit
element. C = 144 uf, f = 60 cycles, X = 18.4 ohms, R = 1.0 ohm approx., Vear =
141.4, Jnax = 7.6 amperes, P,, = 25 watts, approx. Note the lead of the 1 wave with
respect to the » wave. ’

element receives energy from the supplying source during the periods
in which the inductive element returns energy to the source, and vice
versa. When capacitive elements and in-
L ductive elements are both present in & given
circuit, there is, in general, a natural tend-
R i ency for the elements to exchange energy. In
certain circuit arrangements relatively large
amounts of energy oscillate between the
electromagnetic fields of the inductances and
the electric fields of the capacitors.
Fic. 15. The RL branch. Oscillogram 6 illustrates the », 4, and p
variations in a branch which approaches, to a
close degree of accuracy, a purely capacitive circuit element.
The RL Branch. If it is assumed that a sinusoidal driving voltage,
Vm sin wt, is applied to a series combination of a resistive element and
an inductive element, Fig. 15, the equation for voltage balance is

,_
sja

n-=Ri+L§%=Vmsinwl (32)

This is one form of Kirchhoff's emf law applied to instantaneous
voltages. It states that the instantaneous voltage drop across the re-
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sistive element plus the instantaneous voltage drop across the inductive
element equals the instantaneous voltage drop across the RL branch.

A straightforward solution of equation (32) for % in terms of the
applied voltage and circuit parameters requires a certain knowledge of
differential equations on the part of the reader which is not essential
to the problem at hand. The problem in which we are particularly

T+
¥ = 140 sin (377 1+ 49%)

“wli=106 cos 377t
JRi=92.5 sin 3771

.

YOLTAGE
(s}

=140 =
volts |

=N
(OSCILLOGRAM 7. Ilustrating the manner in which the voltage drop Ei across the resist-
ance and the voltage drop wli across an inductance coil combine to equal the applied
voltage v. R = 18.5 ochms connected in series with Xy = 21.1 ohms. RlImex ™ 92.5
volts, whlmas = 106 volts, Vinax = 140 volts. .

interested at this point is the evaluation of the ratio V.a/In together
with the time-phase difference between the voltage and current in an
RI branch. Provided that R and L are constant, a current of sinusoidal
wave form will flow in the branch if a sinusoidal voltage is applied.
A critical inspection of equation (32) will help to establish the mathe-
matical reasons for this physical fact.

If it is assumed that a sinusoidal current, i = I, sin e, flows through
a series branch consisting of & resistive element, R, and an inductive
element, L, then

Ri + L%E = voltage applied, v (33)
or
RI,n sin wt + wLly coswl =¥ (34)

Equations (33) and (34) state that the instantaneous component
voltage drops, Ri and Ldi/dt, add together to form the combined
voltage drop across the RL branch. Oscillogram 7 illustrates the
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manner in which the Ri component (RI,, sin wt) and_ the L di/dt com-
ponent (wLls cos wl) combine to equal the applied voltage (v) in a
particular RL branch.

Since sine and cosine waves are 90° out of time phase with respect
to one another, the R/, and the wLI,, components may be related as
shown in Fig. 16a, that is, as the two right-angle sides of a right triangle.

If both sides of the equation are divided by VR? + (wL)? equation
(34) takes the following form:®

R € wlL v
T [sinwt + cos wi ] = (35)
VR + (wL)i VRTF (wL)* VR=+(wL)I
From Fig. 16a,
TS (36)
0 vV R? + (wL)
N and '
Fro. 18a. The addition of . . wL
ng = ———— 37
Rl and wL... . 8in er—zT(—w-E)-j ( )
Then
v
In[sin wé cos 8 + coswisinf] = ——— 38)
e ket st sl R® + (oL) |
from which i
vi= T N RE4 (wL)isin (wt + 6)
or
v = InZsin (ot + 8) = V,, sin (wt + 6) (39)

® The method of combination here employed requires only a knowledge of trigo-
nometry.” Since the combination of

(4&inz + Beosz)

occurs frequently in a-¢ eircuijt analysis, 8 simpler method of combination is often
used. This scheme consists of representing the sines and cosines by revolving veetors

A sinx
Fic. 16b. Vector representation of sine and cosine functions.

or phasors as explained on pages 90 and 91 which most students will remember
was done in physics when sine waves were used to represent simple harmonic motion.
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It is thus shown that (1) Z=vV R? + (uL)! = Vu/Inm (2).0 = tan™!
wL/R, and (3) v leads : in the RL Bbranch by 6°.
Impedance. .

ZpL =V R3 + (wL)s tar? % (40)

The above expression for Zgr implies that the numerical ratio of V.,

to I.. in the RL branch is Vv R? + (wL)? and that the current lags the
applied voltage by the angle whose tangent is wL/R. In general, R
is expressed in ohms, @ :n radians per second, and L in henrys, in which
case VR? + (wL)? is given in ohms. In determining the phase angle
it is, of course, only necessary that wL and R be expressed in similar
units.

The expression for the impedance of a pure R branch is at once
obtainable from Zgp by assuming that L = 0, in which case Zgr
reduces to R /0°. If the assumption is made that B = 0, Z g1 Teduces

immediately to the. expression which has previously been derived for
the impedance of & pure L branch, namely, wL /90°.

An examination of the two factors which combine to form ZgL will
show that R is the factor which directly impedes or opposes the flow
of current, whereas wL is the factor which impedes or opposes any
change in current. For a resulting sinusoidal current these two factors
act in time quadrature with respect to one another. For example,
when the current is zero the R factor has zero effect and the L factor
has its greatest effect because it is when i = 0 that [di/d{) for a sine
wave is at its maximum value. When the current is at its maximum
valut, I'n, the R factor has its greatest effect and the L factor has zero
effect because [di/di] for a sine wave is zero at the point of maximum
current. It is the time quadrature nature (90° time-phase displace-
ment) of the individual impedance effects that makes possible & simple
vector algebra method of analyzing a-c circuits.”

g "-gl-l:nmpie. If R = 20 ohms and L = 0.056 henry, the 60-cycle impedance of the
RL branch which is formed by placing R in series with L is
21.1

Z = V20! + (377 X 0.056)* {‘ tan~! s

= 29.1 /46.5° ohms

Through employing such methods, the sin z component may be represented by &

horizontal vector of magnitude A. Sinee counterclockwise is the standard direction

for positive or forward rotation, the cos z component twhich leads the sin z com-

ponent by 90°) will then be drawn to a magnitude of B vertically upward. Thus

Fig. 16b is obtained and the resultant R is readily seen to be v/ A+ Bsin (z + 67-
7 The vector or phasor method of analysis is considered in Chapter IV.
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I v
v = 200 sin (3771) volts

200
i [ - . o
4 291 sin (377 46.5°)

= 6.87 sin (377t — 46.5°) amperes
It will be observed that the instantaneous current is obtained from the instan-
taneous voltage (200 sin 377¢) and the impedance function (29.1/46.5%) by teo

distinct operations which are performed in a single step. These are:

(@) The maximum magnitude of the voltage (200) is divided by the magnitude
of the impedance (29.1) to obtain the maximum magnitude of the current, 6.87
amperes,

(2) The correct angular displacement of the current wave with respect to the
voltage wave is obtained by subtracting the impedance angle (46.5°) from the time
angle of the voltage wave, namely, 377t

Note: In evaluating the correct angular displacement between the instantaneous
current and voltage waves in terms of the impedance angle, it is better to combine
the angles in such a way as to yield the relation between current and voltage waves
which are known to exist from a knowledge of the physical characteristics of the
cireuit. This process should not be obscured by any elaborate mathematical con-
ventions, N !

! Power. The instantaneous power or, as it is sometimes called, the

instantaneous volt-amperes, delivered to the RL branch may be ob-
tained from

p = vi = [V, sin (w + 8))|I,, sin wl] (41)

After the sin (wt + 6) term is expanded, the above equation can be
written in the following forms:

P = V.l sin ol [sin wl cos 8 + cos wf sin 8]
= Vulm sin? wf cos 8 + VI (sin wt cos wt) sin @

’ﬂ'lIﬂ'l .Vm-rm " I-!I'IIM . .

v = = cos @ — 9 (cos 2ut] cos 6 + 2 [sin 2wt] sin @ (42)

Figure 17 is a graphical representation of the compouent parts of
equation (42) together with the resultant graph of instantaneous power.
It should be plain that the average value with respect to time of either
the [cos 2wt] or the (sin 2u(] term is equal to zero when considered over
a time interval equal to an integral number of cycles. The average
value with respect to time of the power when considered over an integral
number of cycles is, therefore, equal to

Vil

cos @

P, =

The above expression for average power may also be obtained by finding
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pmYnln oy g YEID con 200t cos 1+ Yoln i 20t sing

%[sln 2wt]sind %’ﬂ[couwl]msﬁ

Fi6. 17. Graphical representation of equation (42) for the particular case of 8 = 30°.

the average value of the right-hand member of equation (41) as follows:
1 /T
B = f f V., sin (wt + 8)1,, sin wl dt
{tl

= Volm cos § (43)
> :
- ~
'“Real Power and Reactive Power or Reactive Volt-Amperes. A
detailed analysis of the component parts of equation (42) will aid in
understanding why electrical power is treated in terms of real and
reactive components and why these two components are sometimes
represented as the legs of a right triangle.
Tl Peower. [Instanlaneous real power refers to [—%ﬂ cos @ —

Von T
3 (cos 2ut) cos B], the first two terms on the right-hand side of

equation (42). Reference to Fig. 17 will show that these two terms
combine to form an instantaneous power variation which contains
no negative values; hence this portion of equation (42) is called the
instantaneons real power.

Unless qualified to mean instantancous real power, the expression

o—
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VNI m
2
stantaneous power with respect to time. [See equations (42) and (43) ]

Reactive Power or Reactive Voll-Amperes. The third term on the

Vialm
right-hand side of equation (42), [ :

real power re.fer;s only to cos 6, the average value of the total in-

2 (sin 2w!) sin 9], is variously

called instantaneous reactive power, inslanfanevus quadralure power,
tnslantaneous reactive voll-amperes, etc., for the reason that the area

Valm , . : ;
under the [ 2 (sin 2wi) sin ﬂ:l curve represents the energy which

oscillates between the driving source and the reactive (either inductive
or capacitive) elements of the receiving circuit. It will be observed
from Fig. 17 that the instantaneous reactive power is that portion of
the total instantaneous power variation which has equal positive and
negative loops, and which contains the sine pf the phase angle between
v and 1 as a factor, '

Unless qualifiedto mean instantaneous reactive power or instantaneous
reactive volt-amperes, the expressions reactive power and reactive volt-
Vauls

2
of the third term on the right-Land side.nf equation (42).

Units of reactive volt-amperes in the practical system of units are
called vars. (See pages 98 and 99.)

amperes refer simply to sin 4, the maximum instantaneous value

MI"I

Volt-Amperes. Both the real power,

r
mim

cosf, and the reactive

volt-amperes, sin 6, are important quantities, and they are often

Visdm

measured independently, a wattmeter being used to measure cos §

and a reactive volt-ampere meter, called a varmeter, being used to
Valn .’

measure -T- sin 6.

The real power and the reactive power may be combined to yield
Yol
2

 [Valm P [Vl . B V.l
‘j[ 2 "“91 +[ 2 ‘“”] T

The above relationship is illustrated graphically in Fig. 18 and will be
encountered in later chapters in & more universally used form.

the volt-amperes of the circuit, namely,
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Reactive volt-amperes
Fia. 18. Relation of power, reactive Yala 8
volt-amperes, and olt-amperes. 2

Power !’nz‘_!'. cos B

Example. Consider the RL circuit whose voltage, current, and power variations
are depicted in Oscillogram 8. R = 19.7 ohms, wl = 21.1 ohms, and v =
141.4 sin 377t volts.

Oscthmmu 8. Voltage, current, and power variations in an RL circuit. R = 19.7
ohms connected in series with L = 0.056 henry, X = 21.1 ohms, Vems = 141.4 wolts,
I maz = 4.90 amperes, Pyy = 236 watts.

Let it be required to evaluate the expressions for the instantaneous current and the
instantaneous power from the above data.

S— 211 .
Z = 41071 + 21.1% / tan If'ﬁ = 28.85 /47° ohms

The instantaneous current is .

1414 . . ’
T 28.85’"‘ (37Tt — 47°) = 4.9 sin (37Tt 47°) amperes

.

-
. The expression for the instantaneous power is, by equation (42),
- p = 236 — 236 cos 754 + 253 sin 754 watls
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In this expression,

(236 — 236 cod T54] is called the insiantaneous redl power
253 sin 754¢ is the instanianeous reactive volt-amperes
236 watts is the real power

253 vars is the reactive power or reactive volt-amperes.

*.The RLC Branch. If a current of sinusoidal wave form, i = I, sin wd,
is assumed to flow through the RLC branch shown in Fig. 19, it is plain
that

vp = Ri = RI,, sin w! (44)
di
v = L&; = wlln, coswl (45)
and .
¢ Jidt [lasneta _j
ve == = = = CcO8 wt (46)8
C & ¢ wC
i
R Ri
]
BT -
q
C-;:-__E'
Fic. 19. The RLC branch. Fre. 20. Illustrating the manner in which

the three voltage drops R/m, wLl., and
1

o im combine to form the voltage drop

VE + (wl — 1wl I,

The voltage applied to the branch is, physically, the sum of the three
component voltages. In the form of an equation

RI, sinwt + wl.l,, cos wt — —IE Lacoswt = v 17)
w
1
o R, sin wt + (mL = —C-) Incoswl =0 (48)
W

The combination of the sine and cosine terms of the above equation
may be effected in the same manner as previously outlined for the sine

4 : 1
and cosine components. In the present case R/, and (wL = —5) I
w

are considered as the two legs of the right triangle shown in Fig. 20.

® The reason for neglecting the constant of integration is similar to that given in
the footnote on page 60.
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It will be remembered from the discussion of the purely inductive
and the purely capacitive branches that these two reactive eleraents
cause exactly opposite phase displacements of the current with respect
to the voltage. Since wL has arbitrai.ly been considered to be a positive
quantity, it becomes necessary to consider 1/wC a negative quantity.
1t should be recognized that, of and by itself, there is nothing inherently
negative about the quantity 1/wC. The fact that it acts oppositely to
the quantity wL in governing current flow requires that 1/w( be treated
negatively if wl is treated positively.

Impedance. 1f equation (48) is manipulated as indicated on page
68, the impedance of the RLC branch is found to be

1
st
2 1 \® (‘" )
ZfﬂLC} = JR— + (wL _— --.) tﬂn-l (JJ(‘ {‘}9}

R

If R is in ohms, L in henrys, C in farads, and o in radians per second,
Z is in ohms. Given'R, L, C, and w, the complete impedance function
can be evaluated. The general expression for Z g1 is of considerable
importance in a-c¢ circuit theory because all the impedance functions
which have thus far been treated are directly deducible from this
expression.

In a branch where wL is negligibly small as compared with B and
1/wC, the wL term may be considered to be equal to zero, in which
case the branch reduces to a resistance and capacitance branch.

1
——
Zigey = 4| RE+ (—— i‘) tan™! ———Hﬁ (50)

The negative angle iruplies that the current wave lags the voltage
wave by a negative angle. The correct physical interpretation is that
the current wave leads the voltage wave by the angle whose tangent

)/ ®

With respect to its terminals the RLC branch will, in general, simulate
the behavior of either the KL or the C branch. If wl > 1 '«C, the
RLC branch responds to an impressed voltage at its terminals exactly
as would an equivalent RL branch, the inductive reactance of which
i (wl — 1/wC). Similarly, if 1/wC > oL, the RLC branch will respond
to an impressed voltage at its terminals exaetly as would an equivalent
RC branch, the capacitive reactance of which is (1/wC — wl). In
either of the cases referred to, there will be interchanges of energy
taking place between the two reactive elements.

-6
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The singular case, wherein wL = 1/wC, is of particular interest
because the impedance here reduces to R/0°. With respect to its
terminals the RLC branch, under the condition of «L = 1/wC, responds
s would a purely resistive branch. If R is assumed to be a fixed
uantity, the above condition may be obtained by the proper adjust-
ment of L, C, or w, and when wL = 1/wC the impedance of the branch
will be. a minimum.

. Example. If R = 10 ohms, L = 0.056 henry, and C = 50 uf, the impedance of
_the RLC branch at 60 cycles is

100 \? 211 — 5'3‘01
Z = Jlo’ ( 0' oo ———.—.) o e
+ [ 377 x 0.056 377 X 50 /ts.rl ™

= 334 /tan™! (—3.19)
= 33.4/—72.6° ohms

v = 200 gin 377¢ volts

. 200 5
i = 334 sin (377! 4 72.6°) amperes
Power. Since i = I, sin wl and v = V,, sin (wl-+ 8), the expression
for the instantaneous power delivered to the RLC branch takes the
same form as equation (42), namely,
Vale Vi

1 :
2 cosf — 2 [cos 2wt] cos 8 +

V';[“ [sin 2wi] sin 8 (51)

In the present case # may presumably take any value between +90°
and —90°. The average power delivered to the RLC branch is in any

p=

MIH

case cosf. [See equation (43).} The maximum value of the

- - VﬂI- - . . - -
instantaneous reactive volt-amperes, ~5 sin 2wl sin 8|, is directly

proportional to sin 8. Since the sin 2wt factor causes the instantaneous
reactive volt-amperes to be alternately positive and negative, the
absolute meaning of the sign of the reactive power term is not highly
significant.

According to the convention of signs which has been employed in
the present discussion, positive reactive volt-amperes — that is, a
positive coefficient of [sin 2wl] in equation (51) — indicate inductive
reactive volt-amperes, whereas negative reactive power indicates
capacitive reactive volt-amperes. These signs are merely the result
of choosing wL positive and 1/wC negative. Further consideration of
signs of reactive power will be given in the next chapter.
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OsciLLogram 9. Voltage, current, and power variations in amn RLC circuit. R = 20
ohms, L = 0.042 henry, C = 78 uf, X = 15.8 ohms, X¢ = 34 ohms, Vm.e = 141.4
volts, | mes = 5.23 amperes, P,y = 275 watta,

V.
The term [ ';I" sin 2wt sin ﬂ:| is equal to zero at all times when

6 = U, that is, when wL = 1/wC. In this case the reactive volt-amperes
required by the inductive element are furnished by the capacitive
element, and vice versa. Relatively large amounts of energy may
oscillate between the reactive elements even though the RLC branch
simulates a purely resistive branch at its terminals.

Oscillogram 9 illustrates the variations of v, #, and p in a particular
RLC circuit. In the case shown wl < 1/wC and the lead of the current
with respect to the voltage is clearly indicated.

Impedance Functions. It should be understood from the foregoing
analyses that impedance functions for any combinations of R, L, and
C are independent of the point on the wave from which time is reckoned.
In addition, the functions are entirely independent of whether the
voltage or current wave is made the dependent wave. Thus in the RL
branch a current wave i = I, sin wt was assumed and the voltage wave
v = Vpnsin (wf + &) was found to lead the current by 6 = tan~!(wL/R).
If a voltage v = V,, sin wt is assumed impressed upon the circuit, the
impedance function is the same, and it states that the voltage wave
must lead the current by tan™(wL/R). Hence the current wave may
be written as¢ = [, sin (w¢ — 8). Similar interpretations apply to any
combination of R, L, and C. When the impedance function is found.
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B e —_— ~rE— — — —F

+6 amps.

OsciLrocranm 10. Photographic records of the applied voltage and the three branch cur-
" rents of the circuit arrangement shown in Fig. 22,

the relation between the voltage drop and the current is thercby de-
termined. If one is assumed, the other may be determined from the
impedance function as illustrated by the examples in the preceding
articles.

Instantaneous Currents Combine Algebraically. The concept of
adding instantaneous voltage drops across series elements to obtain the
total voltage applied to a series circuit has been considered. Kirchhoff's
emf law applies to a-c circuits if instantaneous values of voltage or their
equivalents are considered. - Likewise Kirchhoff's current law applies to
a-c circuits provided instantaneous values of current or their equivalents®
are employed. Figure 21 illustrates the principle in a simple case.
Kirchhoff’s current law states that the current flowing toward a junction,
which in the present case is 1, is equal to the current flowing away from
the junction, namely, #; 4 5.

In general

Eiknnﬂl & junction = E':nn,r from the juoction (52)
or, if current away from the junction is considered as negative current
toward the junction,

z{‘lo'aﬂlnjund.ion =0 (53)

? The equivalents referred to are the vector forms that are employed to replace
instantaneous values. See Chapters ILI and IV.
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If the currents are mzasured by devices which do not respond to
instantaneous values, th: combined measurements, in general, will not
satisfy the above currert law, for the simple reason that the devices
employed fail to accoun’, for the relative phase positions of the currents
involved.

v
C
LI. "|'-\ 2
b
F1a. 21. Instantaneous cur- Fra. 22. RyL, branch in parallel with
rent toward a junction is R;C; branch. :

equal to the instantane-
ous current away from
the junction.

Oscillogram 10 shows how the instantaneous currents 4; and 7, of
Fig. 22 add algebraically to yield the resultant current ¢. The analytical
method of finding the expression for ¢ from #; and i will be explained
in Chapter V1. )

PROBLEMS

1. (a) What is the frequency of a 10-pale alternator when running at 360 rpm?

(b) At what speeds should & 6-pole alternator run to yield 25, 30, 50, and 60
eycles per second?

2. How many poles are required on an alternator which runs at 300 rpm to develop
50 eycles per second?

3. What is the mechanical angular velocity of the machine in Problem 27 What
is the electrical angular velocity or the angular frequency?

4..Write the expression for a sine-wave current having a maximum value of
1.732 amperes and a frequency of 1591 kilocycles. The { = 0 reference is to be
selected at a point where di/d( is positive and i = +1.5 amperes.

6. Express as a sine function of time a 50-cycle alternating current which has
a maximum value of 10 amperes. W hat is the angular velocity of this current wave?

6. Express an alternating current of 10 amperes maximum value which has an
angular velocity of 377 radians per second as a cosine function of time. What is
the frequency of this wave?

7. Express the equation of the current wave of Problem 5 if time is reckoned
from the positive maximum value of the wave. Also express it for each possibility
when time is reckoned from the negative 5-ampere value of the wave.

8. The time variation of a voltage wave is given by ¢ = 100 sin 157¢ volts, where
¢ is expressed in seconds,
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(a) What is the maximum value of the voltage?

(b) What is the frequency of the voltage variation?

(e) If e = 100 sin (157t + 30°), what is the maximum value of the voltage?
the frequency?

. 9. What are the maximum and minimum rates of change of the voltage depicted
in Oscillogram 1, page 51, if the maximum voltage is 140 volts? Express results in
volts per second.

10. At what instantaneous value of current is the 60-cycle current wave i =
10 sin (w! — 30°) amperes changing at the rate of 3265 amperes per second? (b) at
2260 smperes per second?

11. Find the maximum value of a 50-cycle current wave that is changing at 2000
amperes per second at an instantaneous value 30° from the maximum value of the

wave,

Eé If v = 100s8in («f — 30°) and ¢ = 10sin (w — 60°), whe' is the angle of
phase difference between the current and voltage waves? Which wave leads?

Find the angle of phase difference between v = 100 cos (wf — 30°) and i =
—10sin (wt — 60°). Which-wave lags?

14. A voltage has for its equation v = 100 cos wt. Write the equation qf a current
wave of 10 amperes maximum which leads the specified voltage wave by } of a cycle.
Let angular measure be expressed in radians in this particular case.

16. (a) Given a sine-wave signal, the analytical expression of which is [k sin (2x/1)).
If this wave is sampled (or tested) at ¢ = 0 and at equal time intervals thereafter of
at = 1/f, = 3/(2f), what is the nature of the sampled signal? (/f, represents the
sampling frequency.) :

(b) Make a rough plot of 6 or B cycles of & sine-wave voltage. Let this signal be
sampled first at 135° after v = 0 (dv/dt positive) and thereafter at equal intervals
of 315° of the signal voltage. If the sampled data is interpreted as representing
points of a sine wave, what is the sampled frequency relative to the frequeney of the
actual signal?

16. (a) Find the instantaneous value of a sinusoidal alternating current having
a maximum value of 90 amperes, 60° after the current passes through its zero value
going positive; 225° after the current passes through its zero value going positive.
+(b) Find the difference in time between the 60° value of current and the 225°
value of current if the frequency is 50 eycles.

17. The current through a particular filter choke may be represented approxi-
mately by the equation

= 1.0 + 0.50 sin 1885¢{ — 0.10 cos 3770¢ amperes

1 = 1.0 + 0.50 sin @ — 0.10 cos 2a amperes

where o = 1885¢ radians if ¢ is expressed in seconds.
(a) What is the frequency of the sine term? of the cosine term?
(b) What aré the maximum and minimum values of current?
¢) Graph the current { with respect to time { or with respect to angular measure a.
A voltage v = 150'cos 314/ volts is applied to a purely resistive branch of
R = 30 ohms,
(a) Write the expression for i as a function of time, employing numerical coef-
ficients.
Ans.:i = 5cos 314: amperes.
(6) What is the frequency of the voltage and current variations?
. Anas.: 50 cycles.
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(¢) Write the expression for p as & function of time, employing numerical eoef-

ficients.
Ans.:p = 750 cos? 314 = 375 + 375 cos 628¢ watts,
(d) What is the frequency of the power variation’
Anas.: 100 cycles.

6;\.‘- A current § = 5sin (110t + 30°) amperes flows in a purely resistive branch
of 20 ohma.

(a) Write the expression for v as a function of time employing numerical coef-
ficients.

() What is the frequency of the voltage variation?

(¢) Write the expression for p as a function of time, employing numerical coef-
ficients.

(d) What is the frequency of the power variation?

20. A voltage v = 100 cos fut + 60°) volts is impressed upon a pure resistance
circuit of 10 ohms.

(a) Write the equation with respect to time of the current wave and employ
numerical coefficients.

(b) Find the equation with respect to time of the power wave.

(¢) What is the maximum instantaneous power? '

(d) What is the minimum instantaneous power?

(2) What is the average value of the power wave?

21. (a) What is the maximum time rate of change of a 60-cycle alternating current
of sine form, the maximum value of which is 10 amperes?

(4) 1f this current flows through a pure inductance of 100 millihenrys, find the
magimum value of the voltage across the terminals of the inductance.

@' A voltage v = —150sin 377¢ volts is applied to a partieular ciruit element,
and it is found, by oscillographic analysis, that i = 10 cos 377t amperes. Make
a sketch of the » and i waves. Find the nature and magnitude of the circuit param-

eter., :
Ans.. L = 0.0398 henry.

+ @ A voltage drop v = 100 sin (377t + 30°) volts is across a pure induetance of

0.02654 henry.

(a) Use numerical coefficientd and express the current through the coil as a function
of time, - :

(b) Find the equation with respect to time of the power wave. Express the result
as a single sine function.

(¢) What is the average power?

(d) What is the first value of time at which maximum energy is stored in the
inductance?

(e) What is the maximum amount of energy stored in the inductance during a
cycle? State units.

24. A current of 5sin 300t amperes flows through a pure inductive branch of
0.2 henry.

(a) Find the impedance function and express numerically.

() How many joules are stored in the magnetic field about the inductance when
t = 0.05 second?

c) Write the expression for v as a function of time employing numerical coefficients.

28) A voltage' v = 200 cos (157¢ 4 30°) volts is applied to a particular circuit
element, and it is found, by oscillographic analysis, that @ = §sin (157t — 150°)
amperes. Sketch the v and i waves. Find the nature and magnitude of the cireuit
parameter.
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26. A voltage v = 100 sin 377¢ volts is impressed on & pure capacitance of 530.5 uf.

(a) Write the expression for . as a funetion of time employing numerical coef-
ficients. 4

(b} Find the expression for the power wave as a function of time, employing
numerical coefficients.

(¢) How many joules are stored in the condenser when the current is zero? when
the current is & maximum?

27. A voltage v = 200 sin 377¢ volts is applied to an inductive branch, and the
maximum current is found, by oscillographic analysis, to be 10 amperes.

{a) Find the value of L in millihenrys.

Ans.: 53.1 millihenrys.

(b) If it is known that this inductance coil actually possesscs 1.0 ohm resistance,
what is the true value of L, assuming that Vi, = 200 volts and [ = 10 amperes?

A Ans.: Lipye = V/20° — 12,377 = 53.04 millihenrys.

28 R = 10 ohms and L = 0.05 henry are connected in series and energized by
a 25-cyele sinusbidal voltage, the maximum value of which is 150 volts.

(a) Find the complete impedance expression for the RL branch.

() Write the expression for the supply voltage as a function of time, making
v = 0 (dv/dl positive) at { = 0.

(c) Write the expression for current as a function of time, assuming that the
voltage in (b) is applied to the branch. Employ numerical coefficients,

(d) Write the expression for the instantaneous power delivered to the branch
as a function of time. Express the result in three terms — a constant terni, & single
cosine term, and a single sine term.  What is the nverage power?

(¢) What are the reactive volt-amperes or vars?

ﬂ} Sketch the v, 1, and p variations in rectangular coordinates.

? R = 10 ohms and L = 0.05 henry are connected in series and energized by
a 25-eycle sinusoidal voltage, the maximum value of which is 150 volts.

(a) Find the complete impedance expression for the RI branch.

Ane.: 12,7 /38.2° ohms.

() Write the expression for the supply voltage as a funeti. i of time, making
v = 75 (dv. d! positive) at ¢ = 0,

Ans.cv = 150 sin (157¢ + 30°) volts.

(e) Write the expression for current.as a function of time, assuming that the
voltage in (b) is applied to the branch. Employ numerical coefficients.

Ans.: ¢ = 11.8 sin (157t — B.2°) amperes.

(d) Write the expression for the instantancous power delivered to the branch as
a funetion of time. Ixpress the result in three terms — a number, one cosine, and
one sine term. What is the average power delivered?

Ans.: p = 695 — £20 cos 314t + 328 sin ‘i!-ltv.atts
P.v = 695 watts.

i 30\ A resistive element of 30 ohms is connected in series with an inductance eoil,
the self-inductance of which 12 50 williheniys and the chmic resistance of which is
4.5 ohms. A voltage v = 100 cos 377¢ volts is connected to the series branch.

(@) Evaluate the expression for t.

(b) Evaluate the expression for p.

(c) Write the expression for the real power as a function of time, employing numer-
ical coefficients. What is the average value of the instantaneous real power?

(d) Write the expression for the reactive volt-amperes as a function of time,
employing numerical coefficients. What is the average value of the instantaneous
reactive power?
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(¢) What is the inductive reactance of the branch in ohma?

41. A current i+ = 10 cos 157t amperes flows in an RL circuit containing R = 15
ohms and L = 0.0637 henry.

(a) Write the equation of v as a function of time, emj loying numerical ccefficients.

(b) Write the expression for the power wave as a function of time.

82. (a) What is the capacitive reactance of an 8-uf capacitor at G0 eycles?

(h) What is the capacitive reactance of an 800-uuf capacitor at 6 megacycles?

33 A resistive element of 151 ohms is connected in series with a capacitor of 4 uf
capacitance. A 500-cycle sinusoidal voltage, the maximum value of which is 15
volts, energizes the RC branch,

{a) Write the expression for the supply voltage, choosing the t = O reference at
the point of maximum positive voltage.

(b) Evaluate Zge completely.

(¢) Evaluate the expression for 1.

(d) Evaluate the expression for p which corresponds to the product of voltage
and current emplored here, and express all trigonometric terms with exponents no
higher than unity.

34. Assume that the current { = /., sin wf flows through a given RC branch.
Show that the voltage across the branch is

v = InZ sin (wf 4+ 8) = Vysin (ot + @)

where
weNr(Z)
Z -‘ T R* + =
and
;‘-) I
wC q idt
o g e Nl = o S—
# = tan R HI.RLC C

A resistance of 10 ohms is in series with a 303-uf capacitor. If the voltage
drop across the capacitor is 150 sin (220t — 60°) volts, find the equation with respect
to time of the voltage drop across the entir series circuit. Find also the expression
for the current at any time L

36. A 2000-cycle alternating voltage of sine form when impressed across the
terminals of a condenser establishes a current of 0.01 ampere (maximum value).
If the maximum value of the voltage is 20 volts find the capacitance of the mndenser
in mierofarads,

Consider a series RLC branch wherein B = 10 ohms, L = 0.10 henry, and

C is 200 uf. Assume that the current i = 10 sin (1537¢) amperes flows through the
RLC branch,

(a) Write the expression for the voltage drop across R, namely, Ri, employing
pumerical coefficients.

(b) Write the expression for the voltage drop across L, namely, L di/dt, employing
numerical coefficients.

(c) Write the expression for the voltage drop across C, namely, ¢/C, employing
numerical coefficients.

(d) Add (a), (b), and (c) to find the voltage drop across the RLC branch. Express
the resuit as a single sine function of time.

(¢) What is the numerical value of the impeda.ce of the series RLC branch?

88, Assume that the current i = /. coswf flows through a given RLC branch.
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Show that the voltige across the branch is

v = [nZ cos (wl +8) = Vy cos (ul + 0)
where

Z--JR’#—(@L—%C)t
and :
(-3
R

39. In the following exercise, it is assumed that a ccil having L henrys of inductance
and K ohms of series resistance is placed in series with & condenser of C farads of
ecapacitance. A rurrent of ¢ = [, sin (l\/ LC) amperes flows in the circuit. Show
that the energy wy + we = constant, and evaluate this constant,

A resistive element of 20 ohms, an inductance coil of L = 300 millihenrys
and R; = 10 ohms, and a condenser of 50 uf capacitance are connected in series to
form an RLC branch. A voltage v = 100 sin 157t volts is applied to the RLC branch,

(@) What is the numerical value of Zgpec?

(b) Write the expression for 1, employing numerical coefficients.

(¢) Write the expression for p, employing numerical coefficients, and express all
trigonometrie functions with exponents no higher than unity.

(d) What is the average value of the power delivered to Lhe branch?

() What is the maximum value of the resctive volt amperes?

(/) Write the exprgession for the voltage drop across the 20-ohm resistive element
as a function of time, employing numerical coefficients.

(g) Write the expression for the instantaneous power delivered to the 20-ochm
resistor as a function of time, employing numerical coefficients.

A voltage v = 2828 sin 500¢ volts is applied to a series circuit, and the result-
ing current is found to be i = 5.656 sin (500t — 36.87°) amperez. One element
of this series combination is known to be a capeacitor which has a capacitance of
100 wf. Determine the magnitudes of the other series elements present.

# = tan™!
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III Effective Current and Yoltage —
Average Power

Except for the maximum values of sinusoidal wave variations atten-
tion has been given only to general instantaneous values of current and
voltage. The only practicable method of measuring instantaneous
values of current, voltage, and power is by means of an oscillograph,
a very useful instrument in many respects but one which is relatively
inaccurate, cumbersome, and costly. It was shown in the previous
chapter that instantaneous values are inconvenient to -manipulate
analytically, and in general they fail ta specify concisely the magnitudes
of the quantities involved. In this chapter the values of currents and
voltages usually dealt with will be considered.

Ampere Value of Alternating Current. Alternating currents are
defined so as to make applicable to them essentially the same laws that
govern heating and transfer of power by direct current. An alter-
nating current which produces heat in a given resistance at the same
average ra.te as I amperes of direct current is said to have a value of I
a.mperea The average rate of heating produced by an alternating

current during one cycle is— f Ri"dt. The average rate of producing

heat by I amperes of direct current in the same resistance is RI2. Hence

by definition
! 1 T
oY) -3
=7 j; Ri* dt

T
and I= le;f 13 dt = Vaverage 17 (1)
0

The current given in equation (1) which defines the alternating current
in terms of its average rate of producing heat in a resistance is called
the root mean square (abbreviated rms) value. It is also called the
effective or virtual value. The graphical evaluation of the rms value
of an alternating current, is illustrated in Fig. 1. Whea the equation
of the wave is not known or when it is inconvenieat to determine it, the
graphical means, suggested by Fig. 1, of evaluating equation (1) be-
comes & useful method to employ.
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Problem 1. Find the effective value of a current that starts at sero, rises instan-
taneously, then remains at a value of 20 amperes for 10 seconds, then decreases
instantaneously, remaining at a value of 10 amperes for 20 seconds, and then repeats
this cycle. : Anas.: 14.14 amperes.

The rms value of an alternating current may be measured with the
ordinary dynamometer type of meter. This meter consists of two
coils in series, one of them being movable. The force tending to turn

§ i "\\l' LN

Tims of lu‘ a1 measurg ——————>

Fro. 1. Graphical evaluation of rms value.

the movable coil from any fixed position is proportional to the product
of the currents in the two coils. Since the coils are in series and the
same current flows in each, the force for any given position of the coils
is proportional to ¢*. Since the ‘oil has a relatively high inertia, it
cannot follow the variation in the force produced, and therefore takes
& positiou corresponding to the average force or average i2. If a suit-
able square root scale is placed under the pointer, the pointer will
indicate the square root of the average square, or the rms value. Other
types of a-c ammeters are also used to indicate effective values of current.
See Chapter X.) ; y

Alternating Volt. 'An alternating volt is the value of & wave of
alternating potential which maintains an alternating current of 1 rns
ampere through a non-inductive resistance of 1 ohm. It therefore
follows that the volt value of a wave is measured by the square root of
the average square of the instantaneous values of the voltage wave.

Average Values. The average value of any a-c wave which is sym-
metrical about the zero axis is zero. However, when average value is
applied to alternating quantities, it usually means the average of either
the positive or negative loop of the wave. This value represents the
d-c equivalent for electrolytic action of the alternating wave abede,
Fig. 2, if the wave were commutated (or rectified) and made the same
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X . RE} & 1
as the wave abcfe. Since the average ordinate multiplied by the base
is equal to the area under the curve, it follows directly that

2 Tia
Average value = ?‘]; tdt (2)

Equation (2) is applicable only when the wave passes through zero
at the time ¢ = 0. For any other condition the time ¢, at which the
instantaneous value of the wave is zero must be determined and the

average value found from
(4+7/2)

Average value = % f 1 di 3)
i

b 1

Y

=

Fia. 2. Rectified a-¢ wave shown dotted.

If the average values of the positive and negative loops are different,
the actual average value taken over a complete cycle represents the
value of a d-¢c component in the wave. For example, the average

13

\3:\\\:\\

Currenl
r7 "'_"' .,
A
b “s

Fia. 3. Displaced a-c wave is equivalent to a symmet-
rical a-¢c wave and a d-c component.
value of the cross-hatched wave in Fig. 3 is 7;.. Inspection will show
that the dotted wave is the sum of the alternating wave I,, and the
direct current Ig4..
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Effective and Average Values of a Sinusoid. Through the use of
equation (1) the effective value of any wave may be found. If the
equation of the wave is not known, the integration must be performed
graphically. When the equation is known, the analytical solution is
generally to be preferred. Consider the sinusoid,

't=I-m m@t

Poo %_[:; dta:—f I,.,mnwtdt-“{r’f (% — 4 cos 2ut) dt

)] -5

Inm

Ty = —= = 0.7071 4
(rme) = 75 m (4)
For a sine wave, therefore, the rms value is 0.707 times the maximum.
In general, /., is written simply as I, and unless otherwise specified
the symbol I refers to the effective or rms value of an alternating

current. _
The average value of a sinusoid over one-half cycle is
2 T/3

I, == T dhiclline ST BR300 (5)
" Ty B

Problem 2. A resultant current wave is made up of two components, a 5-ampers,
d-c component and a 60-cycle, a-c component which is of sinusoidal wave form and
which has a maximum value of 4 amperes.

(a) Draw a sketch of the resultant current wave.

(b) Write the analytical expression for the resultant current wave, choosing the
t = O reference at a point where the a-c component is at zero value and where di/dt is

positive.

Ans.; i =[5+ 4gin (377¢)] amperes.
(c) What is the average value with respect to time of the resultant current over a

complete cycle?
Ans.; I, = 5 amperes.

(d) What ia the effective value of the resultant current?
Ans.: JTar = 5.75 amperes.

Form Factor. Form factor is the ratio of the effective to the average
value of a wave. Hence, for a volt&ge wave, ¢, which has equal positive

and negative loops:
,f [ ea

Form factor = (6)

e
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Equation (8) is subject to the same limitations as those explained for
equation (2). Form factor has very little physical significance. It gives
no certain indication of wave shape or wave form. Although a peaked
wave will usually bave a higher form factor than a flat-topped wave, it
cannot be conclusively stated that one wave is more peaked than another
because it has a bigher form factor. That form factor tells notbing of
the shape of a wave is evident fromn the fact that a sine wave and the
wave ¢ = Eqn sin wl + (5/12)E, sin 5wf, shown in Fig. 4, have the

Fro. 4. Form factor of dotted wave is the same as that of a aine wave.

same form factor, namely, 1.11. However, form factor does give some
indication of the relative hysteresis loss that will exist when a voltage
is impressed on a coil wound on an iron core. Also some use is made of
form factor in determining effective voltages induced in such coils when a
known non-sinusoidal flux wave is
present in the iron core. L

Problem 8. Find the form factor of =
the sawtooth wave form shown in Fig. 5.
Hint: Between the limita of { = 0 end

t = T = 3 seconds, the analytical expres- Fio. 5. Sawtooth wave form of voltage
sion for the voltage ise = 50¢ volts. Ina for Problems 3 and 4.

casc of this kind,
By = -l-frcdr
v rde
Ans.: 1155

Crest or Peak Factor. The crest, peak, or amplitude factor is the
ratio of the maximum value of a voltage wave to the effective value.
For the dotted wave shown in Fig. 4 the crest factor is 1.85. A lhowl-
edge of this factor is necessary when using an ordinary voltmeter

ol Time 3 Seconds L]
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to measure a voltage employed in insulation testing. The dielectric
stress to which insulation is subjected depends upon the maximum value
of the voltage attained. Since waves of the same effective value may
have different maximum values, it is obvious that a knowledge of crest
factor is required when making dielectric tests. The crest factor of &
sine wave i8

L TN~

0.707En

Problem 4. Find the crest factor oi the sawtooth wave form shown in Fig. 5.
Ans.; 1.732

Representation of Sine Waves by Vectors or Phasors. It has previ-
ously been stated that an attempt is made to secure sine waves of alter-
nating currents and potentials. Alternating-current computations are
often based upon the assumption of sine waves of voltage and current.
When non-sinusoidal quantities are encountered, they are expressed in
terms of a number of sine components of different magnitudes and fre-
quencies, and tl.ese components are then handled according to the
methods applicable to sine waves. In gencral, it would be cumbersome
continually to handle instantaneous values in the form of equations of
the waves. A more convenient means is to employ a vector method of
representing these sine waves. The directed lines or vectors that are
employed to represent sinusoidally time-varying quantities ina coplanar
system are called phasors. Actually for the purposes in this book there
is no difference between considering these representations as vectors or
phasors. This distinction is made to avoid confusion in some of the
more advanced work involving vector analysis as defined in mathe-
matics. Since in elementary circuit analysis a vector diagram and
phasor diagram mean the same thing, thaterms will be used inter-
changeably. The phasor or vector representations of sine functions may
be manipulated instead of the sine funetions themselves to secure the
desired result.

The sine wave of current i = I sin wf is shown in Fig. 6a. All the
ordinates of this wave at the various times { may be represented by the
projection of the revolving vector OA on the vertical axis of Fig. 6b.
This projection is I, sin «f if 04 has a magnitude of I,,. This is the
equation of the wave shown in Fig. Ga.

If two sine waves are related as shown in Fig. 7, each may be repre-
gented by the projections of colinterclockwise' revolving veetors on the

1 Counterclockwise is assumed the positive direetion of rotation of vectors. The

counteslockwise direction of rotation has been arbitrarily used by engineers in the
United States and'many foreign countries. Some foreign countries have used clock-
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vertical. A little study will show that the angle of phase difference for
the two waves must also be the angular displacement ketween the tu«.
vectors O4 and OB representing them. If 04 and 04 are added vec-

h‘ _________________ b e i
s e e 1
(WlEZ AR :
6L \ : !m
0 wl, ! I 2T
ta : T
W "! | Time or anguiar meesure —e—
- mt,--ﬂi

) : (@)

F16. 6. Projection of a revolving vector reprezentz a sine wave.

-~ C wave
£y

Fic. 7. Adcition of sine waves by the u=e nf vectare,

torially, a resultant OC is obtained whose prajection on the vertical will
represent the instantaneous values of the algebraic sunr of the sine
waves 4 and B.
e
\Eﬁmple 1. Add the following currents as waves and as veetors:
i[ =5 sin wld
1z = 10 sin (w! + 60°)

wise as positive. To avoid errors the student must al ways consider counterclockwise
as the positive direction of rotation of all vectors in this book. One vector is said
to be ahead or leading another whea it is farther advanced counterclockwise than the
other,

&,
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As waves: Sum = ig = i) 4 i3 = 5 sin «l + 10 sin («¢ 4 60°)
= 55in wl + 10 sin wf cos 60° + 10 cos wi gin 60°
= 10 gin w! + 8.66 cos wt

Refer to the right triangle shown in Fig. 8a. If the previous equation is multiplied
and divided by 13,23, there results
. 10 | 8.66
1y = 13.23 [13‘23 sin wl 4+ 1303 cos ui]
13.23 [cos @ sin w + sin a cos wi]
= 13.23 sin («t + o)
= 13.23 sin (wt + 40.9%)

As veclors: A wave of relative phase represented by sin wf will be represented by a
vector along the reference axis, Positive angles will be assumed to be measured

Re” 8.66

10
(a)

Fio. 8.

counterclockwise. The two,waves are then represented by yectgrs, as shown in
Fig. 85. The sum will be found by adding r and y componenes.

Y r =5+ 10cos60° =10
Ty = 10sin 60° = 8.66

V4T = V10T 566" = 1323

Sum =
8 66
a = tan™! ;E = tan~ ! —— = 40.9°
zz 10

Since the resultant is counterclockwise (positivey fron. the reference, the equation
may be written as
to = 1323 sin («r - 401 ) ;

Problem 5. Subtract is from i1 in exaniple 1 by both methods shown above.
: Ans.: 8,66 sin (ot = 00°).

It is apparent that these coplanar yeetors are merely convenient rep-
resentations of sine waves, the indeper dent variable of which is time.
As such, they are time vectorsand do not have any meaning so far as
space relations are concerped. When the lengths of the two vectors
represent maximum values of the waves respectively, the resultant vee-
tor will represent the maximum value of the resultant of the two waves.

Effective or rms values of voltages and currents are ordinarily used.
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For sine waves these ha.vé been shown to be equal to the maximum value
divided by /2. Thus maximum values of the vectors could be handled

vectorially and the resultant divided by /2 to obtain the effective
value. Instead, all the initial vectors could have their maximum values
multiplied by 0.707 and the resultant of these would then be the result-

ant maximum divided by V2. If the latter procedure is followed,
the vectors can be considered to represent effective values. Vectorial
representation of effective values is customary, in which ease the results
are given directly in terms of effective values, the ones usually desired.

In drawing vector diagrams certain conventions must be observed.
First, a convenient reference axis should be established. The vectors
have their relations to one another fixed but they may be represented
with respect to any axis. In Fig. 7, the vectors 04 and OB were con-
sidered to revolve in order to represent the waves. The resultant OC
was obtained by adding the two vectors when OB was along the axis
of reference. Obviously, the same result would have been obtained had
0OA and OB been added when stopped in any other position with respect
to the reference axis, provided that their magnitudes and the angle 6
between them were not changed. Second, it must be observed that
counlerclockwise is considered the ppsitive direction of rotalion of vectors
and that a vector rotated through an angle of lead or ahead of another
vector must be rotated counterclockwise. It then follows that an angle
of lag from a given.axis must be in the
clockwise direction. A vector thus rotated 1,
is"said to bé behind the axis in question. I %

To illustrate the use of these conven- Y -—\:-—J
tions, the vector diagrams of voltage and
current for a pure resistance, a pureinduct- . g Resistance branch and
ance, and a pure capacitance circuit will vector diagram.
be drawn. The waves shown on Osecillo-
gram 4, page 59, for a pure resistance cireuit, indicate that the applied
voltage is in phase with the current. With current taken as, or along,
the reference axis the vector diagram is shown in Fig. 9.

It was shown in Chapter II and experimentally illustrated in Oscillo-
gram 5, page 63, that the wave of voltage drop across a circuit contain-
ing only inductance leads the current by 90°. This relation is illus-
trated vectorially with the earrent as the reference in Fig. 10 of the
present chapter.

Reference to Oscillogram 6, page 66, will show that Fig. 11 of the pres-
ent chapter represents vectorially the relatiéns previously explained for
the purely capacitive circuit.
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Current was taken as the reference in the three previous diagrams.
This was not necessary. The current could just as well have been
drawn at any angle with respect to the reference axis, but for any partic-

Ll I
et el
E . 4 T
p v-IX,
1 Applied ¥
Fi16. 10. Inductance branch Fic. 11. Capacitance branch and
and vector diagram. vector diagram.

ular case the relation between current and voltage must remain the
same, that is, the resistance drop must always be in phase with the
current, the drop across the inductance must always lead the current
by exactly 90°, and the drop across the capac-
{ itance must always lag the current by exactly
! 90°. The reference axis that appears to be the
! most convenient for the particular problem at
»>i 7 hand should be chosen.
IR Vector Diagrams as Determined by Resistance
Fic. 12. Addition of volt- and Reactance Drops and Impedance Functions.
nge drops across Land B 1¢ o current i = I, sin ot is assumed to flow
in a circuit containing B and L, Kirchhofi’s emf law states that
v = Ri + L di/dl. Therefore v = Rl sin wl + I.Lw cos wl. Since
RI., 8in w! is of the same phase as I, sin w!, the resistance drop is shown
in phase with the current in the vector diagram of Fig. 12. It will also
be noted that I,Lw cos wt is 90° ahead of I, sin wt. Hence it is so
drawn on the vector diagram. The vector sum of these two components
is the resultant applied voltage V. The angle between V and I is
8 = tan"'wL, R. The same relation between V and I is obtained from
the impedance function Zﬁ. As explained in Chapter II, a positive

angle 6 means that the applied voltage leads the current or that the
current lags the applied voltage by the phase angle 8. Thus the rela-
tion of V and I shown in the vector diagram could have been shown
directly from the impedance function where the angle tells the phase
and V/Z gives the magnitude of I. It should be noted that effective
values were used exclusively in Fig. 12. Through the same procedure
the student can show that Fig. 13 represents the vector diagram for un
R and C circuit. The vector diagram of the R, L, and C circuit combines
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the vector diagrams in Figs. 12 and 13 the results of which appear in
Fig. 4. &

“Problem 6. A 60-cycle current of 15 amperes flows in a eircuit of 5 ohms resist-
ance, 10/377 henry inductance, and 1/(377 X 15) farad capacitance. Draw the
vector diagram, and calculate the applied voltage and the phase angle between it and

the current. Ans.: 1006 volts; angle 45°,
Tlegp .
‘h_\““-
“"‘h
A
g
= I %
=, '
- ¥
™ 1
L -
E, S J
Fic. 13. Addition of voltage Fic. 14. Addition of voltage
drops across C and K. drops across L, C, and R.

Significance of Currents Flowing in the Direction of Voltage Rises and
Drops. If the potential becomes greater in the direction of tracing a
circuit, a voltage rise is being encountered. For example, assume the
polarities of a circuit at some instant to be as indicated in Fig. 15.
When tracing from a to & through the generator,
the tracing is in thedirection of increasing potential g
(from minus to plus) or in the direction of a voltage l.‘:li:::::gn
rise. In a similar way, when tracing through the
load from ¢ to d, the tracing is in the direction of a @
fall of potential or a voltage drop. Since the gen-
erator is the ‘ pump,” the current will flow from
minus to plus through the generator, whereas in
the external circuit it flows from plus to minus. It w1 poiarities
is evident, then, that a current flowing in of an s generator
the general direction of a potential rise represents f;;:u:“:‘d e
electrical power generated or delivered. Also,
when the current flows in the direction of a potential fall or drop,
as it does through a load, power is being consumed or taken. If, then,
a voltage rise is assumed positive, the generated power would be posi-
tive. A voltage drop is then negative and, since the same current flows
in the direction of the voltage drop through the load, the power deter-
mined would be negative. These are the usual conventions employed
when power generated and power consumed are simultaneously con-
sidered. If a voltage drop is assumed positive, then positive current
in conjunction with the positive drop would yield positive power and
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under = -1 conditions power absorbed is positive. It is immaterial
which ¢ -+ 'entions are used; that which is the most expedient is the
one to chucse. Physically, the same results are obtained. Although
the abov» . 1ventions are the most common, it is possible to establish
other sysir s,

If a voltage rise is assumed positive, the question sometimes arises:
Will generated power still be positive if the tracing direction is reversed ?
The answer is yes, as may be shown by the following considerations,
Assume the tracing direction in Fig. 15 is badc. Then a voltage drop
is encountered in the tracing direction through the ge-:uatcr. Since a
voltage rise was considered positive, this drop through the generator
will be negative. Since current flows through a generator in the general
direction of increasing potential, the current will be in a direction
opposite to that of the tracing direction. Hence it must be called a
negative current. The product of the voltage drop through the gener-
ator, which was negative, by the negative current (opposite to the
tracing direction) is positive. The sign of power generated is there-
fore unchanged. Similarly, it may be shown that the sign of the power
dissipated by -the load is unchanged. Hence the choice of the tracing
direction does not affect the signs of generated and dissipated power,
These are fixed by the signs assumed for voltage rises and drops in
conjunction with the current.

Power, Real and Reactive. In Chapter II it was shown that the
general expression for average power, when waves of voltage and current

.

. , . Vil : . :
are sinusoidal, is —’; ™ cosf. Since the maximum value of a sine wave

divided by the square root of 2 is the effective value, the equation for
average power may be written

P=l'—”’_—i'3':cosﬂ=1’lms9 (7)

V2 V2

When Vis in volts and I is in amperes, the power is expressed in watts,
As previously shown, the power in a single-phase circuit is not con-
stant. The instantancous power frpm cquation (42), Chapter 1I, is

i Vm m V"‘I H 1
p= |:‘ ';1"‘ cosf — ———2! cos 6 cos 2;..:!] + 5 = sin §sin 20t (8)

The first two terms of the right side of equation (8) represent instan-
taneous real power. When 2wt is an odd multiple of =, the value of the
real power is

Elifl'c,, 8 =2VIcos@
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When 2t is & multiple of 2, real power is 0. Hence real power ina
single-phase, circuit fluctuates between 0 and 2V/ cos@ and has an
average value of VI cos 8 (shown in Chapter I1). The third term of
the right-hand member of equation (8) represents what has been called
instantancous reactive power, or, preferably, instantaneous reactive
volt-amperes. Its equation is

Vondon. o ;
py = 5 — g8in # | sin 2wt (9)

y ; i 4 ;
Thus instantaneous reactive volt-amperes fluctuate between + —-;—-3 sin

Vealm. i .
and — —-2——"’sm g. Whereas the average value of the instantaneous

- - - - mimn . wy
reactive volt-amperes is zero, the maximum valuc is & e 8. Thisis

the value referred to when reactive volt-amperes are considered.?  Hence

Ve Ta ;
Py = —= —:'; sing = Vising (10)
V2 V2
1
A {
[/}
L v
Fra. 16. Angle 8 is positive when voltage Fic. 17. Angle # is positive when current
leads current if current is alang the ref- leads voltage if voltuge is along the rel-
ercnce axis, erence AXis.

Tt is plain that reactive volt-amperes as determined from equation (10)
will be positive when @ is positive. As interpreted from vector dia-
grams when current is taken as a reference, Fig. 16, 8 is positive when the
voltage leads the current or for inductive loads. If voltage is taken
along the reference, Fig. 17, @ is positive when the current leads the
generated voltage. In the former case reactive wolt-amperes are posi-
tive for inductive loads or lagging currents, whereas in the sccond case
positive reactive volt-amperes are obtained when the load is capacitive or
where the current leads the voltage. Another basis for determining the
sign of reactive power was given in Chapter II. It is apparent that
inductive reactive power or volt-amperes can be defined as positive or

2 1{ should be recognized that this discussion refers to components of the resultant
power wave. These components do not exist as separate entities but they are con-
venient components to consider for purposes of analysis. Actually a single wave,
as shown in Chapter I1, is the only power wave which has a physical existence.
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negative depending upon the basis employed. Which of these signs to
adopt has been a subject of discussion for many years, and each sign
has been employed at various times. At the 1934 Paris meeting of the
Committee on Electrical Units. reactive power caused by a current
lagging the voltage was defined as negative reactive power, However
this definition encountered several inconsistencies and after a great
deal of discussion a committee of the American Institute of Electiical
Engineers as reported in the January 1948 issue of Electrical Enginecring
recommended that inductive resctive volt-amperes be defined as posi-
tive reactive power. This convention is consistent with the sign
obtained if the sign of the angle in the impedance function is employved
in the formula for reactive volt-amperes. This convention is also
consistent with the sign obtained by calculating I°X where the sign
of X' for an inductive reactance is positive. This is the stundard sign
employed for inductive reactance. It will be seen in the next chapter
that, when counterelockwise is considered as the direction for measuring
positive angles of rotation, the use of complex numbers requires the
adoption of the positive sign for inductive reactance. As a result of
these and other considerations the present standard in the United
States is 10 call inductive reactive volt-amperes positive. This is the
sign which has heen recommended 1o the International Committee on
Eleetrical and Magnetic Units for adoption although no official action
by that bady has yet been tuken. In any event it is desirable to label
the reactive volt-amperes as inductive or capacitive. In combining
the two in analytical work the important requirement is to consider
one positive and the other negnive regardless of the convention
emploved,

teartive volt-amperes are expressed in vars, a term coined from the
first detters of the words “ vt amperes reactive.”  Reuctive volt-
amperes considered over a period of time represent oscillutions of
energy between the source wid the load.  Their function is to stpply
the energy for magnetie fickls ad charging eapacitors, and to transfer
this enerisy buck 1o the souree wlhen the maguetic held collupses or when
the capucitor discharges, Ahhough reactive volt=umperes, a~ such,
FEQUITE o avergge cnergy input to the generators, they do necessitate
certain arnount of generator volt-ampere cupacity and thereby limit the
available: power output of the generators. Reactive volt-umperes
cannot be transferred without meurring a copper loss. Although this
1°r loss is cau~ed by the transfer of the reactive volt-amperes, it is not
a part of the reactive volt-amperes, Leactive volt-amperes are lue to
quadrature components of volture and current and as such represent
zero average power. These additional losses must be supplied Ly an
average energy input to the alternators,
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From equation (42), Chapter II, instantaneous real power was found
to be Vpn/w cos 6 sin® wt. This may be considered to consist of & voltage
Vmsinwt and & current ([, cos @) sin wl, which is in phase with the
voltage. The current 7, cos 8 is called the in-phase component, power
component, active component, or energy <component of current with
respect to voltage. In terms of root mean square values the power is
due to a voltage V" and a component of current / cos 6 in phase with ¥
as shown in Fig. 18. Sine e product of the voltage V and energy
component of current I ce .- v I'[ cos 6, the same expression as equa-
tion (7) for power, it is ex:: ' that power may be determined in this

Teosd

.'3 » >V
\\ I1sin9

Fro. 18. In-phase and quadrature com- Fic. 10, In-phase and guadrature com-
ponents of current with respset to volt- ponents of voltaze with respect to cur-
age. rent

manner. If cos @ is grouped with ¥, then 7~ cos @ may be viewed as the
in-phase component, active component, energy component, or power
comnonent of voltage with respect to current, as shown in Fig. 19.
Obviously, power may also be obtained by multiplying the in-phase
component of voltage with respect to current by the current. Sim-
ilarly, I'sin ¢ in Fig. 18 is the “ out-of-phase component,” quadrature
component, or reactive component of current with respect to voltage.
This coniponent multiplied by the voltage gives reactive volt-amperes,
as may be seen by comparison with equation (10). Also, V sin 6 is the
quadrature, reactive, or wattless component of voltage with respect to
current.  This component of voltage multiplied by current also yields
the reactive volt-amperes, or vars. )

Volt-Amperes. Tl product of effective voltage by effective current in
an a-v cirewt is called volt-amperes. A larger unit is kilovolt-atnperes,
abbreviated kva.  Obviously, a given number of volt-amperes may rep-
resent any nunther o dulerent values of power, depending upon the
value of cosé in equation (7). Cosine 8 is therefors a factor by which
volt-amperes are multipli <l to give power. Ilence cosine 8 is ealled
power factor.  As an equation

power

(11)

Vo Power factor = cos =
volt-amperes

Reference to equation (16) will show that sin @ is the factor by which
volt-amperes -are multiplied to yicld reactive volt-amperes or vars.
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Hence sin 8 is called the reactive factor:

' g reactive volt-amperes
Reactive factor = sin @ = o w (12)
volt-amperes

Since sin® 8 + cos? 8 = 1, reactive factor = V1 — (p.f.)? and power

factor = V1 — (r.f.)!.

(Teos DV

y Power
(IsinB)V pw:; ) Reactive
Y “, volt-amperes
%".t J
(a) {9}

Fic. 20. Relation of power, reactive volt-amperes, and resultunt volt-amperes.

If the current and each of its two components in Fig. 18 are multi-
plied by ¥, a relationship between power, reactive volt-amperes, and
volt-amperes is obtained, as shown in Figs. 20a and b. Hence

Volt-amperes = V/ (power)? + (reactive va)®

This relation is very useful in problems involving correction of power
factor,

*“Example 2. One hundred and ten volts are applied to a series cireuit consisting
. Of 8 ohms resistance, 0.0531 henry inductance, and 189.7 uf capacitance. When

K=V,

I -
U] v
(] 1

1“ -V.
V=110 volta

DX =Yy

Fiw. 21. R, L, and C in series and the corresponding vector diagram. y
' N J J
- -l -
the frequency is 60 cycles, calculate eurrent, power, power factor, vars, reactive
factor, and volt-amperes. Also caleulai? the volwage drop across each circuit ele-
ment. The circuit and vector diagrams are shown ir. Fig. 21.
X, = 2xfL = 2xr 60 X 0.0531 = 20 ohms
1 1
e et L i
2x/C 2 60 X 130.7 x IN~®
X =X.— Xg=20— 14 =6 ohms

Xc = 14 ochms
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R = 8 ohms

Z=\R+X*=\'8 46" =100hms |1 —

= Ll_(_) -— r& _"-J ( .‘.I
I= T 11 amperes =

Ty (R ELL T R

P="VIcosh =110 % 11 X'08 = 068 watts
Also P =R =11 X 8 = 08 watts

[l

Reactive va = 1'/siné = 110 X 11 X ‘-}1{= 110 X 11 X% = 726 vars
va = VI = 110 X 11 = 1210 = \ 9687 + 726°
Ve =1K =11 X 8 = 88 volts
Ve =1Xy =11 X 20 = 220 volts
Ve = IXe = 11 X 14 = 154 volts

[}

It will be noted that the arithmetic sum of these three voltages is much greater
than the applied voltage. Alternating voltages of the same frequency can be added
but they must be added vectorially with due regard for phase relation. Thus

220 — 154 = 66 volts in quadrature with I
¥r = 88 volts in phase with 1

Therefore ]
¥V = 2/887 + 662 = 110 volts, which checks the applied voltage.

' Example 3. Given the parallel circuit shown i Fig. 22, find I, /4, 1., and totals
power consumed,
Sclution. The impedance funetions of branches 1 and 2 are

Zy =V 4+ gé tan"z = 10 53.17° ohms

Zs = V5" + 5° / tan™! (?) = 7.07 /=45 ohms

Is = 5—-—3 = 14.14 amperes

-

100
L = W 10 umperes

I=I:+1,

The vector diagram is drawn as shown in Fig. 23.

The curicnts may be added by using Yoz and Ly components or by the cosine
law, The former will be used and a tabulation of results made. The r-axis will be
taken along V. This is arbitrary. Any other position may be used.

Current X components y components
le | Jacos 43 = 10 | I;kin 45 = 10
Iy | Iyeos (—=53.17°) =6 | [J;sin (—53.17°) = =8
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%2/
@
100 volts $ A >y
8N
¥
F1c. 22. Parallel branches. Fio. 23. YVector diagram of Fig. 22.
Tr=16 i Ty=2

I=» 16 +2% =1613 amperes
P = VIiy phase = 100 X Lr = 100 X 16 = 1600 watts
An alternative is
P=IR +1,*R; =102 X6+ 14147 X 5
= 600 + 1000 = 1600 watts

Vector Combination of Voltages. Thus far, only currents have been
added and subtracted vectorially. Since vector combinations are based
upon the assumption of sine waves, it is apparent that sinusoidal volt-
age waves can be added and subtracted vectorially. For example,

Lol
3z e
5 X
= -~
B -
3 3
; r
1 Z E
Fic. 24. Coils in which a-c volt- F1c. 25. Voltages induced in coils
ages are induced. of Fig. 24.

the coils shown in Fig. 24 are assumed to have induced voltages which
arc phase-displaced by 43° as shown in Fig. 25. The voltage E;».
is desired when 1” and 2 of Fig. 24 are connected. In general, the dii-
ference of potential between two points of a winding or circuit is found
by adding all the potential drops (rises are negative drops) encountered
in tracing through the winding from one point in question to the other.
This statement follows from the definition of potential difference. The
voltages are denoted by subscripte, and the order in which the subscripts
are written must be the sdme as the order in which they are encountered
as the circuit is being traced. Thus for Fig. 24, when 1” and 2 are con-
nected, E;3» = E|;» + Ej3.. This vector addition is shown in Fig. 26
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If 1’ were connected to 2’ in Fig. 24, the emf E;» would be E;, =
Ey + Eza. This result is obtained by adding the voltage vectors,
Eu' and Ez'g, as shown in Fig 27.

E, Eyv
Byl = e 0 eSS
‘‘‘‘ Ey ol
}{ ,I’
z/ -’f
-’-’1--—-——-—-"'*--— E »
En' Ez'z ¥
Fro. 26. E;" for Fig. 24 when 1 and 2 Fra. 27. E;: for Fig. 24 when 1" and 2’
are conrfected. are connected.

Problem 7. Two coils on the armature of an alternator are displaced 69 electrical
degrees. The emf of each coil is 100 volts. What is the resultant emf of the two
coils when connected series adding and also when geries subtracting”

i Ans.: 173.2 volts, 100 volts.

PROBLEMS F‘

B. An elevator motor takes 20 amperes for 15 seconds. Power is then eut off
. for 45 seconds, after which the cycle is repeated. 1f rated full-load current of the

motor s 12 amperes, will it overheat on a continuation of this cycle? What is the
equivalent continuous current which will yield the same average rate of heating?

9. A motor takes 50 amperes for 10 sceonds, after which power is off for 20 seconds.
It then takes 60 amperes for 5 seconds, after which power is cut off for 1 minute.
W hat will the continuous rated current have to be so that the motor will not overheat”

10. (a) What is the average value of the pulsating current shown in Fig. 28?

(b) What is the effective value?

|
r r |
I
I
|
|
|
1
|
i
|
!
|
|
R ¥ | i
P H ! 1
- | ! 50 amp.  DES——— !
1 15 amp. | i
i
|10 ;mp. I | 1
1 1 '
| ) i Ll .
1 T T e T
P03 re - 05— e )4 -rie - -0.5- -+ 0.3-4  Seconds —=
[}

i
I
|
1
]
I
I
I
1
|
)

o

a2
n

3
I
|
]
1
1
i
I
i

1

Frs. 24, See Problems 10, 11, 12, and 25.
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11. (a) If the current shown in Fig. 28 flows through a d-c ammeter in series with
an effective reading a- ammeter, what will be the reading of each instrument, assum-
ing perfect calibration of the instruments?

(b) If the resistance of the circuit is constant (the pulsating current being produced
by a pulsating voltage), which of the above readings should be employed in finding
the power by the /*R formula?

12. (a) If the current shown in Fig. 28 flows through a 5-ohm resistance, whet
number of joules of heat energy is produced each cycle? what number of gram
calories?

(h) What power is dissipated in the above resistance over any integral number of
cycles?

pe2bdee2 o1 — — ~F- — ~ > Seconds x 107%
je-——-- One cycle ———

F1o. 29. See Problem 13,

13. The plate current of a triode operating as an usc:llstcr takes the general form
shown in Fig. 24,

(@) What is the frequency of oseillation depicted in Fig. 29?7

(b) What is the average value of the pulsating current?

(¢) What is the effective value of the pulsating current?

Note: The current during the first 2 X 107* second shown in Fig. 20 may be
represented by the equation i = 2 X 10% amperes. Utilize symmetry,

14. A current in a circuit starte at zero and increases linearly until a value of 12
amperes is attained. It then drops to zero in negligible time and repeats the cycle.
What will an effective reading a-c ammeter in this circuit read? -

16. A current starts abruptly at 10 amperes and decreases linearly to zero and
then repeats this cycle. Find the rms value without changing the orientation of
the wave from that given, '

16. Find the rms vulue of a current in terms of radius p whose instantaneous
values muake semicireles of radius p above and below the r-uxis. :

17. A current has & positive loop which follows a semicircle of radius 1 ampere
and the diameter of this semicircle lies on the z-axis. It through the addition of a
constant current of 1 ampere the resultant current is represented by the semicircle
with its diameter raised 1 ampere ahove the r-axis, find the rms value of the resultant
current. :

18. Caleulate the form factor of the eurrent wave in Problem 14,

19. Find the rms value of ¢ = 100 sin wl + 60 sin (5! + 30°) volts vy integration.

20. Calculate the form factor of & = 100 sin wi 4 60 cos 3el.

21. Find the rins value of ¢ = 100 sin w! — 40 sin 3uf voits,

22. Calculate the form factor of the voituge wave in Problem 21.

23. Find a wave other than that given in the text which is not & sine wave but
which has the same form fuctor as a sine wave. -

24. Calculate the peak factor of (a) a sine wave, (b) a rectangular wave, (c) a
symmetrical triangular wave whose positive and negative halves are symmetrical



Ch. 1l EFFECTIVE CURRENT VOLTAGE AVERAGE POWIER 105

about their respective midordinates if the angle at the peak is 60°, and (d) a tri-
angular wave whose angle at the peak is 90°. '

25, Calculate the crest factor for the wave shown in Fig. 28.

28. Calculate the erest factor and form factor of a wave whose positive and
negative loops are semicircles.

27. The respective branch currents flowing toward a junction of two parallel
branches of a circuit are i; = 30 sin (w + 60°) amperes and iz = 20 sin (¢ — 20°)
amperes. Find the resultant current leaving the junction in terms of a single sine
wave. Find also the effective value of the current.

28. One branch current of iy = 40 sin (w! — 40°) amperes combines with a
second branch current to yield a resultant of 50 sin (w + 80°) amperes. Find the
equation of the second branch current. Find also the effective value.

W-29. A motor requires 25 amperes and 220 volts at a lagging power factor of 0.88.
Find the power, vars, reactive factor, and the volt-amperes taken.
»30. A motor requires 10 amperes ahd 220 volts at a power factor of 0.8 lag. Find
the power, reactive volt-amperes, reactive factor, and the volt-amperes required.
¢31. The voltage of a circuit is v = 200 sin (wf + 30°), and the current is §{ =
50 sin (w¢ + 60°). What are the average power, volt-amperes, and power factor?

82, A motor takes 15 amperes and 220 volts at a lagging power-factor angle of
72° when running at no load. Find the number of watts, vars, and volt-amperes
it is taking. :

L33, How many resultant volt-amperes will be taken from the line when the two
motors in Problems 29 and 32 are operating simultaneously as stated from the same
line? What is the resultant line current and power supplied?

(84. One motor takes 250 amperes at 0.8 power factor lag while another motor
takes 50 kw at 0.5 leading power factor from a line of 220 volts. What is the re-
sultant line current for these two motors? What is the power factor of the combined
loads? Is it leading or lagging?

L86. The voltage of a circuit is v = 200 sin ot volts, and the current is- i =
50 cos (wf — 30°) amperes. What are the average power, vars, and power factor?

L38. A varmeter in & circuit indicates 600 vars, and a wattmeter in the same circuit
shows 800 watts. Find the volf-amperes, power factor, and reactive factor of the
circuit.

Y7. A series circuit has 8 ohms resistance and 20 millihenrys inductance. If 110
volts at 60 cycles are impressed, caleylate the current and power.

\;}'sa. One branch of a parallel circuit consists of 6 ohms resistance, 43 ohms in-
ductive reactance, and 40 ohms capacitive reactance, while the other branch con-
sists of a resistance of 7 ohms and & eapacitive reactance of 2 chms. Find the
current delivered to the combination when 100 volts are impressed across the entire
circuit. Calculate the total power and that consumed by each branch.

@9. (a) Find the readings of ammeters [}, I, and /, and of wattmeter W of Fig. 30.
Compare the reading of W with I'12R, + IR,

() Draw the vector diagram of V, Iy, I3, I, LRy, IiXzy, 2Rz, and I2Xca.

(c) Assuming that V represents a potential drop fromn a to b through the circuit
branches, find the potential drop from 4 to ¢, or V..

(d) Assuming that V represents a potential drop from b to a through the circuit
branches, find the potential drop from d to ¢, or V..

40. Work Problem 39 if the parameters are changed to R; = 8 ohms, Ly = 0.025
benry, &3 = 10 ohms, and C3 = 120 uf.

'.Gy'ﬁnd the readings of the amumeter I and of the wattmeter W in Fig. 30 if an
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V=100 voits R, 2100 R,S BN
60~
d c

L, 53 0.05 henry c, T&an

Fic. 30. See Problems 39, 40, and 41.

additional branch R;Lj is placed in parallel with the R;L, and RsC3; branches.
R3 = 15 chms and L3 = 0.12 henry.

W-43. Find the readings of the ammeter I and of the wattmeter W in Fig. 31 for the
parameters specified.

W

| Sn 5n 8n

V = 100 voits
B0~

4 0.04 _
T henry | 1601 ’rzzout

Fic. 31. See Problem 42,

43. A type of alternator much used in lahoratories has six coils spaced about the
armature at intervals of 30 electrical degrees. The two leads of each coil are brought
out to a terminal hoard, making available six voltages. Because of the 30 electrical

Fi1e. 32. Bix coils of
an a-¢ generator.
Adjacent coils are
displaced 30 electri=
cal degrees.

=002 =
D220~
@200 —w
A 0302~ =
2222 =
WA~

degrees of space displacement of the coils on the armature, the individual coil voltages
have phase differences of 30°. Let Fig. 32 represent the six coils, and assume that
adjacent coils in the figure are electrically adjacent coils on the alternator armature.
Assume also that the coil voltages are sinusoidal and that leads 1,2,3,4,5 and 6 are
corresponding ends of the coils, and that By, is 30° behind Es+3, Egg is 30° behind
Ej3, and 8o on.

(a) Draw the vector diagrnm of Eyy, E:fh Ey3, Ev'i, Eyy, and Egrg when Eyiy is
laid off elong the +z-axis. Each coil has an effective emf of 50 volts.

(b) Find E,3» when 1’ is connecled to 3.

(c) Find E;; when 1’ is connected to 3’

(d) Find the greatest voltage that can be obtained by connesting all coils in series,

(¢) Draw the vector diagram that represents the three voltages, Eyy, gy, and
Eys, assuming that 1’ is connected to 2, 3’ to 4, and 5’ to 6.
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chc ter
g IV Phasor Algebra (as Apphed
to A-C Circuit Analysis)

The Operator j. Since the complex quantities normally employed in
a-¢ circuit analysis to simplify caleulations are added and subtracted
like coplanar vectors, thev are often referred to as vectors. However
such coplanar vectors which represent sinusoidally time-varying quan-
tities are now more properly called phasors.

It is well known that a plane vector can be specified in magnitude
and direction in terms of its r-axis projection and its y-axis projection.
For example, if the z-axis projection of the phasor or vector A' in Fig. 1
is known as r4 and the y-axis projection is known as y, then the magni-

tude of the phasor A is
A= ViIa® + ya (IJ

From the geometry of Fig. 1 it is plain that the angle, 8, between the
direction of phasor A and the direction of the positive r-axis is

64 = tan—t <! - (2)
1 T4

In order to specify a phasor in terms of its r and y components, some
means must be employed to distinguish between the r-axis projection
and the y-axis projeetion. Inasmuch as the +y-axis projection is
+90° from the +r-axis, a convenient operator for the purpose at hand
is one which will, when applied to a phasor, rotate it 90° countérclockwise
without changing the magnitude of the phasor.

Let j be an operator which produces 90° counterclockwise rotation
of any phasor to which it is applied as a multiplving factor. The
physical significance of the operator j can best be appreciated by first
considering that it operates on a given phasor A, the direction of which
is along the +z-axis. Then, by definition, when the phasor A of Fig. 2
is multiplied by ; a new phasor, jA, 90° counterclockwise from A. will -
be obtained. If the operator j is applied to the phasor jA it will, by
definition, rotate jA 90° in the counterclockwise direction. The result

! Bold-face type is used to_represent a phasor in bath magnitudetand phase,
whereas light-face italics represent the magnitude only.

8 107
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)
; y
''''' 4 JAd
]
. B
y |
e N4
i A=-A
P L
| S
VitA=-JA
F1o. 1. Resolution of phasor A into its Fia. 2. Effects produced by successive
z-axis and y-axis components. applicstions of the operator j upon a

phasor A, the original position of which
is along the 4 z-axis.

is j7A = ;%A as shown in Fig. 2. Also from Fig. 2

A= —A
Hence:
F=-1
and
i=Vv-1 (3)

If the operator j is applied to the phasor j?A the result is j°A = —jA.
The phasor 2A is 270° counterclockwise from the reference axis, di-
rectly opposite the phasor jA in Fig. 2. If the phasor j°A, in turn,
is operated on by j, the result is 7*A = j%%?A = A. It will be observed
that successive applications of the operator j to the phasor A produce
successive 90° steps of rotation of the phasor in the counterclockwise
direction without affecting the magnitude of the phasor.

From Fig. 2 it is apparent that multiplying A by —j yields —jA,
a phasor of identical magnitude rotated clockwise 90° from A. Hence
—J is an operator which produces clockwise rotation of 90°.

The Cartesian Form of Notation. A phasor in any quadrant can be
completely specified in a cartesian or rectangular form of notation, as
shown below.

A= ta=jd (4)

where a is the z-axis projection and &’ is the y-axis projection of the
phasor.” In any case the magnitude of the phasor A is

: A=V Fd? : (5)

The phiise position of a first-quadrant vector is conveniently described
in terms of the positive acute angle measured in a cew direction {rom
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the +z-axis to the position of the phasor. In equation form
1 (+“'J

(+a)

The phase position of a fourth-quadrant phasor is conveniently
described in terms of the negative acute gngle measured in a cw direc-
tion from the +z-axis to the position of the phasor.

(6)

Ot = ‘ﬂn‘

641 = tan™? i:E'—) 7)
4th = fa)

A fourth-quadrant phasor can, of course, be specified in terms of the
positive angle (360° — 844,), where 8,y is the magnitude of the angle
measured in a negative or clockwise direction from the +z-axis to the
position of the phasor.

Phase positions of second- and third-quadrant phasors are easily
located in terms of the ¢ and a’ components by first finding the acute
angle, the tangent of which is a’/a, without regard to sign, and then sub-
tracting this angle from or adding it to 180°, depending upon whether
the ¢’ component is positive or negative.

Axis of i's

2nd. Ql;ld. phasor 1st. Quad. phaser

3rd. Quad. phasor ath. Quad. phasor

FiG. 3. Phasors in any quadrant can be specified in terms of their real (r-axis) and
7 (y-axis) components.

Figure 3 illustrates how phasors in any quadrant can be specified in
magnitude and phase position in terms of real and j components. In
determining the phase angle it is necessary to know the individual signs
of the a and a’ components in order to locate the angle @ correctly.

The Operator (cos 0  j sin 6). Reference to Fig. 3 will show that
the z-axis projection of a phasor in any quadrant is A cos 8. The angle
6 may be measured either positively or negatively from the +z-axis in
determining the z-axis projection, since cos 8 = cos (—8).

The y-axis projection of the phasor in any quadrant is A sin 6 if 6
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is measured in the ccw direction from the +z-axis- The y-axis pro-
jection is — A sin 6 if 8 is measured in the cw direction from the +r-axis
to the position of the phasor. Therefore,

A = A (cosd = jsin ) (8)

is equivalent to the form shown in equation (4). - The plus sign is
used if 6 is measured counterclockwise from the reference axis, the minus
sign if 6 is measured clockwise.

Equation (8) shows that (cos8 + jsin 8) operating on a real magni-
tude A, that is a phasor of 4 units magnitude along the + z-axis, rotates
this phasor through a +6-angle from its initial position. Similarly the
operator (cos 6 — j sin 8) rotates the original phasor through a —f6-angle.

Tt may be shown that the operator (cos@ = jsinf) rotates any
phasor to which it is attached as a multiplying factor through +6 or
—8 degrees, depending whether the plus or minus sign is employed.
Consider a phasor in an initial position auch that a = A eosa and
a’ = Asina

A (initially) = a 4 ja' = 4 (cos a + jsina) 9
Let A’ = A [t;p(‘l‘al(‘d on by (cos @ + jsin 8)).
A’ = 4 (cos a + jsina) (cos @ + jsin §) (10)
A’ = A (cosacosf + jcosasing + jsin acosb + ;2 sin a sin 6)

A [(cos.a cosf — sin asin 8) + j (sin a cos @ + cos a sin 8)]
= A [cos (a + 8) + jsin (a + 8)] (11)

Equation (11) shows that A’ is a phasor equal in magnitude to the
phasor A but advanced ¢ degrees from the A position since it now makes
an angle of (« -+ ) with the reference axis.
In similar manner it may be shown that the operator (cos 8 — j sin 8)
rotates any phasor to which it is attached through —@ degrees
Exponential Form of the Operator (cos 6 =+ J sin ). An important
relationship is contained in the following equation:

(cos 8 % jsin 8) = e° ' (12)

I

Equation (12), known as Euler's equation, follows directly from an
inspection of the Maclaurin series expansions” of cos 6, sin 6, and el

? Certain functions; among which are cos (8), sin (8), and-e*” cin be expanded
into series form by .means of Maclaurin’s theorem. The theorem states that

' fow 10 Y Ot

yntog .t e

where /(6) is the particular function of 8 that is to be expanded, /(0) is the value of

1@). = 10) + + - -ete.



Ch. I¥ PHASOR ALGEBRA 1

Expanded into series form
82

¢t &
0058=1—Z§+E—E+ (13)

83 85 9?
SJnﬂ—G-Z+E—E+"' (14)
: . (jBJ (8 , (58)* (Jﬂ)"‘ (76)° .
=140+ + + + + - (1)
g B T/ i

All quantities iny ol\ing even powers of j reduce to real numbers since
F==17= 1 7% = —1, ete. All quantities inv olvmg odd powers
of 7 reduce to ﬁrsb-degreej terms because ;* = —j, ;° = j, ete. If thej
‘terms are properly evaluated, equation (15) may be arranged as follows:

(16)

Therefore ¢ = cosf + jsinf (17)

and A¢? = 4 (cosB + jsin 6) (18)
In a similar manner it may be shown that

€% = cosf — jsin# (19)

Polar Form of the Operator (cos 6 + j sin ). The exponential form
of the operator (cos @ = jsin @) is very often written in a simplified
form. It has been shown that

7 = (cosf = jsin 0) YT et
Therefore _
Aet’® = A (cos 8 + jsin 6) (21)
By definition 4
P WY ) (22)
and
At = 1 /+0 (23)
Therefore :
& = /8 = (cos @ 4 7sin 6) (24)
e_“" = /=6 = (cos® — jsin6)  (25)

this particular function when 8 is set equal to tero, f* (0) is the value of the first deriva-
tive of the function when @ is set equal to sero, f** is the value o( the second deriva-
tive of the function when 4 is set equal to zero, ete,.. . .
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and
Aé' = A /8= A (cosf + jsin0) (26)
Ac#® = A [—6 = A (cosd — jsin0) (27)
. Equations (26) and (27) state the
2 10i1p=342+] 9.007 equivalence of the three forms of nota-
i tion that are commonly employed to de-
i fine a given phasor in magnitude and
= phase position. Graphical representa-
‘.“_.: ~ f* Y tion.§ oli equla.tionaf fﬁ) fmd (27) ft')r
g 3 é"' 8 10 particular values o anu § are snown

in Fig. 4. The exponential and polar
forms are identical by definition and
find their greatest use in the processes
of multiplication, division, extraction of
10 =39=s.42—fo.307 FOOLS, and raising phasors to given

powers. Both these forms express a
Fio. 4. Phasor representation of phasor in terms of polar coordinates.

tions (26) and (27) for th is si i
:2:.;;-_ 1%} u-:m (37) ec:_r ?0'? A Q is simply a shorthand or symbolic

style of writing A¢’. Common usage
distinguishes between the two forms by calling A€’ the exponential
form and A /6 the polar form.
The rectangular or cartesian form, A (cos 6 = j sin 8), is indispensable
in the processes of addition or subtraction of phasors if the j form of
phasor algebra is employed.

—10 -8 ~§ —4 =2

Problem 1. Write the equivalent polar form of the phasor 3 4 j4 where the
numbers refer to unit lengths. Illustrate the phasor by means of a diagram.
Ana.: 581 = 5 /53.1°,

Problem 2. A phasor is given in the form of 10¢™'1*",  Write the symbolic palar
and cartesian forms of the phasor, and illustrate, by means of & phasor diagram, the

magnitude and phase position of the phasor.
Ans.: 10 / —120° = —5 — ;8.66.

Addition of Phasors. The phasor sum of two phasors A and B is a
third phasor which is defined in magnitude and phase position by the
diagonal of the parallelogram which has for two of its sides the phasors
A and B. The particular diagonal of the parallelogram thus formed,
which represents the phasor sum, A + B, is indicated in Fig. 5.

Each phasor may be considered as having a tail and a head. If the
arrow heads in Fig. 5 indicate the heads of the phasors, then the phasor
sum of two phasors is the line which joins the tail of the first phasor
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and the head of the second phasor after the second phasor has been
placed so that its tail coincides with the head of the first phasor.

The fact that

A+B=B+A (28)
is obvious from the definition that has been =
given for the phasor sum of two phasors, 25

The process of adding two phasors may be B
extended to include any number of phasors A

simply by first adding any two of the phasors
involved and then adding to this phasor sum,
which is in itself a phasor, the third phasor, etc.
The order in which the addition is carried out is
immaterial. For example

Fic. 5. Addition of the phas-

A+B+C=B+C+A=C+A+B m-ls.la.ndB.
(29)

Phasors are written in the rectangular (a 4 ja’) form when addition
is to be performed, since the exponential or polar forms do not lend
themselves to the addition process. If A = a + ja', B =b + jb',
and C = ¢ + jc',

A+B+C=(a+b+e)+j@ +b +¢) (30)
The magnitude of the resultant phasor is
D=VN@+b+c)*+ @+ +)2 (31)

The phase position of the resultant phasor is
o ! '
v, (@ +d +¢)
0p = tan? ————
A s Rl ey g
Any or all of the component parts of the phasors A, B, and C in the above
example may be negative. The process that has been given for the
addition of three phasors can, of course, be extended.
Example. Let it be required to add
A=10£369°-8+;5 and B=G£ ° = -3 4 j5.20
A+B=C=(8-3)+j(6+52)

(32)

C=5+;113
The magnitude of the C phuor ia
3 = V5% 4+ 11.2? = 12.27 units

The position of the phuor € with respect to f.he +z-axis is

bc = 1.a:'1"!—ls—2 - tan"2.24 5596"



114 ALTERNATING-CURRENT CIRCUITS Ch. IV
Figure 6 illustrates the phasor addition of A and B for the particular values that have
been emplo;ed in this example. .

C=12.27/85.95'= 5 +11.2

Fic. 6. Phasor addition in a particular numerical case.

Problem 3. Add the phasors 14 ‘60° and 20 /15°. State :he result in both rec-
tangular and polar forms, and illustrate, by means of a phasor diagram, the opera-
tion that has been performed.

Ans.: 263 + j17.3 = 31.5 '33.35°,

Problem 4. Given the following three phasors:

A= 40¢''** B =20 —40°, C = 2646 + jO
find A + B + C and illustrate the three phasors, together with their phasor sum, by

means of a phasor diagram. :
Ans.: 2178 + j21.78 = 30.8/45°,

Subtraction of Phasors. In ordinary algebra the operation or process
of subtraction is accomplished by changing the sign of the quantity
to be subtracted and proceeding as in addition. In phasor algebra the
phasor which is to be subtracted is rotated through 180° and then
added. To rotate a phasor through 180° the operator j° = —1 may be
applied or 180° may be added or subtracted from the original phase
angle of the phasor. Thus a phasor A = A /6 rotated through 180°
becomes

A =j24/0= —4/6=4/0+ 180°
and a phasor B = b + jb” rotated through 180° becomes
"= b+ ) = =b— b
Figure 7Ta illustrates the subtraction of phasor D from phasor C.
Symbolically, the operation may be indicated as: C — D = E. After
the phasor which is to be subtracted has been rotated through 180°,

the phasor thus resulting is added to the phasor from which the sub-
traction is being made.
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Figure 7b illustrates the subtraction of phasor C from phasor D.
It will be observed that (D — C) is of equal magnitude and 180° re-
moved from (C — D). In general

(C-D)=-D-0C) (33)

r
y 2l )

Fic. 7. Illustrating phasor subtraction.

The difference of two phasors might have been defined in terms of
one of the diagonals of the parallelogram formed by the two phasors.

Fia. 8. The diagonal which defines the difference between two phasors. (The sense or
direction of the diagonal iz dcpendant upon the particular phasor difference in guestion.)

Figure 8 illustrates the particular diagonal which represents the differ-
ence between phasors B and A. The diagoual concept is useful in
certain types of phasor diagrams, but for gemeral calculations the
method which has previously been described is to be preferred.

Examples. Given the phasors
A = 30 /o0
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and i &
B = 21 (cos 160° — j sin 160°)

let it be required to subtract phasor B from phasor A. The first step is to write the
phasors in cartesian form.

A = 30/60° = 30 (cos 60° + j sin 60°) = 15 + ;28

B = 21 (cos 160° — jsin 160°) = —19.75 — j7.18

A —B = (15 + j26) — (—19.76 — j7.18)

= 34.75 + j33.13 = 48/43.6°

For the particular case considered, the difference (A — B) is somewhat greater in
magnitude than either of the original phasors. This condition is in general true if

the o-iginal phasors are separated by more than 90°.
Let it be required to subtract phasor A from phasor B.

B —A) = (=19.75 — j7.1B) — (15 -} j26) = —24.75 — j33.18 = 48 /223.6°

Problem 6. Draw a phasor diagram showing the phasora A nd B of the above
illustrative example, together with the phasors (A = B)and (B — A).
Problem 6. Given the following three phasors:
A = 40g1%00°

B =20/—-40°

C = 2425 + j14
find (A 4+ C) — B analytically and draw the phasor diagram.

Ans.r 32,95 /157.7°,

Multiplication of Phasors and Complex Quantities. In a-c circuit
analysis it is often desirable to operate on a phasor current with an
impedance function so that the resulting voltage may be obtained.
Similarly, it is sometimes desirable to operate on a phasor voltage with
an admittance’ function, i.e., the reciprocal of the impedance function,
tc obtain the resulting current. The process of operating on a current
{(or voltage) phasor with a complex impedance (or admittance) func-
tion is called complex or phasor multiplication. '

The complex product.of two phasors, A and B, in so far as a-c circuit
analysis is concerned, is a third phasor which has a magnitude equal to
AB and & phase position with respect to the reference axis which is
equal to the sum of the individual phase angles of A and B, namely,
(cca + ag). It wi'l be shown presently why this particular definition
of a complex product is especially suited to the phasor manipulations
that are universally employed in a-c circuit theory. A graphical
interpretation of the definition’is given in Fig. 9 for the particular case
of A=2/4°and B = 3 /100°

Analytically, the product of two phasors can be formed most con-
veniently when the phasors are expressed in exponentiel or polar form.
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For example, the product of the A and B phasors shown in Fig. 9 is
simply
AB = 2J40°, 3,/100° — §J(40°+1009) _ @ jid0°

ar
AB = 2 X 3/40° + 100° = 6/140°

C-A a-sbin‘
B=3/100°

A=2/40°

¥ F1o.9. Illustrating phasor multiplication.

From the -lefinition which has been given for the complex product it is
evident that the order in which the multiplication is carried out is
immaterial. That is

AB = BA (34)
Furthermore, the definition which has been given is capahle of exten-
sion to any number of phasors or complex quantities. For example,

ABC = AB(C /ay + ap + ac (25)

and
ABC = BCA = CAB, etc, (36)

The product of two phasors expressed in rectangular style can be
formed by taking the cross-products of the component parts as in
ordinary algebra. The proper interpretation must, of course, be given
to the terms which involve j. If ths phasors are given as A = a + ja’
and B = b + jb’, the product is formed exactly in accordance with
the rules of ordinary algebra.

F=AB= (a+ja) (b +b) = @b —0o'b)+jab+ab) (37)
The magritude of the resulting phasor is
F=+T{ab—at,” + (ab4 ab)?
= Va'b® — 2aha’b" + a’b"”" + a’*6% + 2a"bab” + a%b"
= V(EeT+d?) 0T +b%) = VA?BT = 4B (3%)
The magnitude of F is thus shown tc be equel to th> product ¢f the mag-
. T !
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nitudes of the phasors whose product is being formed. It remains to
be shown that the phase angle of F as defined by the real and j compo-
nents of equation (37) agrees with the definition that has been given
for the produet of two phasors. From equation (37) the phase angle
of F takes the following form:

a’d + ab’
,@b+ad’) . AB

cr =t —ay) M B —av
4AB

It is evident from the definitions that have been given to a, a’, b, and
b’ that

a 1 & 0s . sin and b
— = 8In w; — = (05 ay _ = ag — = COS ag
A w3 ' B ' B
Therefore ,
—1 Sil‘l @4 COS ap + Co8 ay sin ap
ap = tan m 3
COS ayq COS ag — Sin a4 SiN ap
_y sin (aq + ap) - .
ar = tan™! ‘—-—(——7 = tan~! tan {ay + ag) .

cos lay + ag)
ar = ay + ap (39)

Equations {38) and (39) show that the product of two phasors may
be formed by crdinary algebraic multiplication when the factors are
expressed in cartesian form.

Example. Given the phasors:

A = 2 (cos 40° + 7sin 40°) = 1.532 + 71286

B = 3 (cog 100° + jsin 100") = —0.521 4. j2.054
let it be required to find the product of A and B Ly the .lgebraic multipiication of the
cartesian forms,

F = AB = (1532 + j1.286) (—0.3%1 -} j2.954)
= —0.790 + 74525 — j2.670 + j%3.793
= (—0.799 — 3.798) + j7(--0.670 + 4,_525)
= —4.597 -- j3.855

— —— 3.855
e 1 F -1 -
s —4.5672 + 3.855 ,._' tan~t =
= 6.0/180° — 40° = 6 /140°

The graphical represcntatior.: of the pnasors A, B, and F ere given in Fig. 0.

e}
I

“reblem 7. Find the complex produet ot
A=5—-j4 and B=2+3
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by algebraic multiplication of the cartesian forms and draw the phasor diagram.
Change A and B to polar form and perform the multiplication process, BA.
Ans.: 22 + 7 = 23.09 /17.85°

Problem 8. Given the following three phasors:
A =20+4j2,B =30/—120°C = 6 4+ 0
performu the following indicated operations:
@ A+B+C, () (A+B)C, (¢) ABC.
Draw a phasor diagram of A, B, and C, together with the phasors which represent
the results of the above indicated operations.

Ans.: (a) 11.67/—81°, (b) 39.05/—50.2°, (c) 4242/ —75°.

Division of Complex Quantities (or Phasors). For the purposes of a-c
circuit theory the division of one complex quantity by another is carried
out algebraically, as shown below, when the quantities are expressed in
exponential form.

A At A ea e = L tesen (40)

That is, the process of dividing one phasor, A, by a second phasor, B,
results in a third phasor, the magnitude of which is the quotient of
the magnitudes of the phasors A and B, namely A/B. The phase
position of the resulting phasor with respect to the reference axis is the
algebraic difference between the individual phase angles of the phasors
A and B with respect to the reference axis, namely, a4 — ap. It should
be noted that the angle of the phasor in the denominator is always sub-
tracted from the angle of the phasor in the numerator. Due regard
is taken for the inherent signs of the individual phase angles, a4 and
ap, during the process of forming the algebraic difference. In symbolic
polar form division is earried out as shown below:

s === Tfas —ap (40a)

2060"
B 530°
,._.%_14:2;_::?,3'}1!?

The graphical interpretations of the above operations are contained in Fig. 10a
and Fig. 10b.

The process of division can be carried out very conveniently when the phasors
are expressed in exponential or polar form. However, it is entirely possible and in
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some cases desirable to perform the operation with the phasors expressed in rectangu-
lar form. If A =g + ja'and B = b + 55/, then
A _a+tja’ _ (a+ja’) 6 — b)) @)
B b+ +5d) =)
Both numerator and denominator of the above expression are multiplied by (b — jb’),
the conjugate of (b + jb"). The conjugate of a given phasor is a second phasor, the
real component of which is identical with the real component of the given phasor and
the j part of which is equal in magnitude but reversed in sign from the j component
of the given phasor.

A=20/60"
4 Cr126™
B = 5[30° G4 /D=3 2"
F-A/B—a/30°
: D-ag™ ™
@ (b)

.

Fig. 10. Phasor division in twc particular numerical cases,

The purpose of multiplying both numerator and denominator of equation (41)
by the conjugate of the denominator is to clear the denominator of its j component,
This rationalization process reduces the quotient A/B to a more intelligible form.
If the operations indicated in equation (41) are performed, the equation reduces to

A _ (@b +a’t") +j(a'd — ab')
B ®* +0'?)
By a process which is somewhat similar to that employed on pages 117-118 it may
be shown that

(42)

%_ %/m—:[m _%5‘“ e (43)

cos (a4 — ag)d

Example. 1f A = 10 + j17.3 and B = 4.33 4 j2.5, let it be required to find A/B
by the method given in equations (41) and (42).
A _ 10 +4173 _ (10 +417.3) (433 - j2.5)
B 4334725 (433 +j2.5) (433 — j2.5)
A _ (433 +433) + (75 — 25)
B 4337 4 2.5
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Reduced to polar form

A e 2.0
= = V3465! + 20" / tan~! — = 4.0 /30°
gev 0 / “_ 3.465

Problem 9. Given A = 40 /105° and B = 5 + jS66, find A/B, and druw a

phaszor diagram illustrating A, B, and A B.
Ans.: 4 /45°,

Froblem 10. Given the following three phasors:
A=20420, B=30/-120° C=54+0

perform the following indicated operations:
A+B

-
L™

(a)

0 B
}h

Draw a phasor diagram of A, B, and C, together with the phasors which represent the
results of the sbove indicated operations,

Ans: (a) 1.56/-50.2°, (b) 3.3/—165°

Raising a Phasor to a Given Power. A phasor or preferably a com-
plex quantity may be raised to a given power n; where n is an integer,
by multiplying the phasor by itself » times. For example, if A = A [,

A" = 47 /nay (44)

The nth power of A is a phasor whose magnitude is 4" and whose phase
position with respect to the reference is nay. The concept of successive
applications of a given operetor follows directly froni the successive
multiplication of the operator by itself. Obviously the process involved
is accomplished most easily with the phasor or operator in exponential
or noler form.

From the rules which have been given for multiplication it is evident
that

A"B" = A"B" /nay + nag (45)

Example. An operator which is <:t~r'mnonl‘}r used successively is the one which

rofates a given phasor through 4-120°. 'This operator is
& =1 (c0s 120° 4 7 5in 120°) = —0.50 + j0.866

a =1/120¢

a? = 1/240°

a’ = 1/360° = 1/0°
a! = 1/480° = 1/120°

The above operators are widely used in three-phase circuit problems because, under
balanced conditions, the individual phase voltages (and currents) are displaced from

In polar form
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one another by 120°. Figure 11 illustrates a, a®, and a® diagrammatically. Inci-
3

dentally, the three values indicated in Fig. 11, (— % +jV/Tv), (_% _J-Q,

and (L + 0), are the three roots of v'1 because each of these roots cubed equals

unity.

a=1{120°

i
~a
Lo

“a'=1 /380°

o
s

a’-1/240°

Fio. 11. IMustrating the operator & = (—0.50 4 j0.866), together with a® and a®,

Problem 11. Raise the phasor (8.65 + j5.0) to the second power; to the fifth
pOWer. Ans.: 100 /60°%; 100,000 /150°.

Extracting the Roots of a Phasor. The inverse of the process of
raising a phasor to a given power is employed in the extraction of the
roots of a particular phasor. If A = A /ay it follows that one of the

n roots of VA is VA f Z4 because the latter value muitiplied by itself
n

n times will equal A. The remaining (n — 1) roots are found by adding
2rq radians or 360¢ degrees to ay before the division by n is performed.
¢ is any integer and is used as 1,2,3,---, and (n — 1) to obtain the
remaining roots. It should be noted that the addition of any multiple
of 360° to the angle of the phasor does not change the phasor although it
does nrovide a systematic method of evaluating the (n — 1) remaining
roots. In this method only positive magnitudes are employed, as

N = A E_A_in_g_’i? g=01,2---(n—-1] (46)

The cartesian form of the above equation is
n 2
VR = VA [ oo (M) jin (HE2T)| )

. Bxample. Let it bé required to find the square roots of A where A = 3.08 + jB.455.
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For convenience the phasor is first transformed into polar form.

A = V308" + 8.455° /_’ tan™"! % = 9.0/70°
Theﬁntmotia\/ﬂ.ﬂ{'?—g--:i&?. A=9/10"

The second root is V9.0 i @-—i;—@ = 3/215°.

Figure 12 illustrates the phasor A together with
its two roots. It will be noted that either root VA= 3[35°011 Roop
multiplied by itself yields the phasor A.

Problem 12. Find the cube roots of the phasor
(8 + j0), and draw a complete phasor diagram of VA= Sélf (2™ Rooty

the phasor and its three roots. . ;
pe Fia. 12. Phasor 9/70° and its
Ans: 2/0° 2/120° 2 /240°. g

The Logarithm of a Phasor. Certain definitions in long-line and
recurrent network theory utilize logarithms of phasor quantities. The
general concept of the logarithm of a phasor is similar to that of the
logarithm of an ordinary number. The logarithm of a phasor A is
the inverse of the exponential of A. In other words, the logarithm
of the phasor A = 1€’ to the base ¢ is defined as the power to which ¢
must be raised to equal A¢®. By definition

log Ae® = log, A + log, ¢® = log, A + jolog, ¢ = log, A + 78 (48)

It will be noted that tbe logarithm of the phasor A = A /6 is itself a
phasor. In rectangular form, when the logarithm is taken to the base €
the real component is log, 4; that is, the logarithm to the base € of the
magnitude of the phasor A and the j component is 8 (radians) in mag-

nitude. In this connection, 6, the phase angle of the phasor A, must be
considered in radians.

Example. If A = 52 /T0° let it be required to find log, A.
70°

log, 52 /70° = log, 52 + J‘Eﬁ; = 3.95 + j1.22
Problem 13. Perform the following indicated operations:
15 /70°
—— + log, (8 + j5
(3_:.”-& og. (8 +j5)

Draw a phasor diagram including each of the three original phasors together with the
log. (8 + j5) and the phasor which represents the result of the indicated operations,
Ans.: 0.60 + j3.07.

Impedance Expressed in Polar Form. It was shown in Chapter III
that the currents and voltages in an a-c circuit can be conveniently

9
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represented by phasors. With the aid of phasor algebra it is a simple
matter to represent these currents and voltages analytically. However,
‘he great benefit to be derived from the use of phasor or complex algebra
: the simple algebraic relations that can be established between the
coltages and currents by using the impedance function as a complex
quantity. Although the impedance function may take the form of a
phasor or veetor, it is not a phasor in the same sense that alternating
voltages or currents arc phasors. From an algebraic point of view the
impedance function is merely a complex quantity which properly relates
phasor voltages and phasor currents one to the other. As such it is a
most importart operator in circuit analysis.

The physical considerations concerning the impedance funetion have
been explained in Chapters 11 and III. If the polar form of the im-
pedance function which was used throughout Chapter II is manipulated
in accordance with the rules of phasor algebra, the results obtained will
agree with physical facts. For example, it has been shown that the
impedance function of a series RLC branch is

1
g 1\? 4 ("’L B m_C)
Z = 4|R*+ |l - = tan 7 (49)

The abbreviated form is

Z=17/8 - (50)

where +6 represents a lead of the voltage with respect to the current
or a lag of the current with respect to the voltage. If a phasor voltage
V = V /a is applied to the above branch the resulting current is

1=Y=E§=[g]/(a_a) (51)

The phasor quotient V/Z results in a phasor current which is V/Z in
magnitude and 6 degrees behind V regardless of the position that V has
with respect to the reference axis. Thus I is correctly defined in mag-
nitude and phase position. '
In a similar manner it may be shown that 1Z = V. If it be assumed
that a current I = I /8 flows through an RLC branch, the impedance

of which is Z_ = Z/s,
1Z=(1/8)(z/) =1IZ)/B+8) =V (52)

The product of the phasors 1Z yields a phasor voltage V, which is (/Z)
in magnitude and ¢ degrees in advance of the current 1. It will be
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remembered that 6 has been defined as
1
Le-2)
R
If wL < 1/wC, 6 is & negative angle, in which case V actually lags I.

tan

Example. A given RL branch has R = 3.5 ohms and L = 0.092 henry. Find
the complex expression for the current which flows through the branch if a 60-cycle
voltage, V = 110 /30° volts, is applied to the RL branch. (The phase angle which
is associated with V is wholly arbitrary in a simple series circuit. For simplicity it
might have been taken as zero degrees.)

Z-\"‘R’+ EwL)’ m—lﬂ

R

Z = V35 + (377 x 0.092)? f gagr 7T X G008

3.5

A = 34:8 /84.26° chms

v  110/80° :
= 3.16 / —54.25° amperes

Figure 13 is a phasor diagram of V and I for the particular RL branch that has been
considered.

Problem 14. An RLC series branch consists of R = 12.9 ohms, L = 0.056 henry,
and C =784f. (a) What is the complex impedance of the RLC branch at 60
eycles? (b)) If a 60-cycle current, T = 10 /30° amperes, flows through the branch,

find the voltage phasor V across the terminals of the series branch. Draw a phasor
diagram illustrating the phasor positions of I and V and the magnitude of the phase
angle of V with respect to I,

Ans.. (a) 129 +(21.1 — 34) = 129 — j12.9 = 18.24/ —45° ohma.

(b) 1824,;‘ —15° volts.

Impedance Expressed in Cartesian Form. The cartesiun form of the
impedance function of a given branch or circuit is, in general,

Z=R+j(X: — Xc) (33)

where R is the equivalent resistance of the branch or circuit with re-
spect to the terminals considered and (Xt — X¢) is the equivalent
reactance of the branch or circuit with respect to the terminals con-
sidered,

1 -
2x/C
A simple method of showing the validity of equation (53) is to employ
a phasor diagram in which are represented the RI,X_I, and XcI voltage
drops which combine vectorially to equal the applied voltage V.

In accordance with previous definitions, X — 2xfL and X =
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Y= Rl+l{x[_x;)1

-5, 254

L= V/Z= 3.6 [-54.25" Awperss %1

Fig. 13. Phasor disgram of ¥ and I, ina Fic. 14. Phasor addition of drops equals
particular RL series circuit. applied voltage.

In order to agree with physical facts: (1) the RJ drop must be in
phase with I; (2) the X.I drop must be 90° in advance of I; (3) the
X ¢l drop must be 90° behind I.

Reference to Fig. 14 will show that the voltage

V =RI+ (X, — X¢)I 8sphasors (54)
or
V=RI+;jX,—Xc) (65)
from which the complex impedance function is
Vv
Z=T=R+J-(XL"‘XC) ' (56)

Obviously the relations stated in equations (54), (55), and (56) are
independent of the phasor diagram position of I.

The cartesian or rectangular form of the complex expression for Z
can be transformed to the polar form of Z by the method of complex
algebra, and the transformation is, of course, reversible.

R+j(XL — X¢) = VRT+ (XL — Xc)? /tan-‘ gﬁ—;ﬁ

(57)

The rectangular form of the impedance function is, in general, essential

in combining impedances because impedances cannot be added or sub-
tracted in polar form.

Example. The terminals of an s-¢ generator which has an internal resistance of

2 ohms and an equivalent internal inductive reactance of 6 ohms are connected to a

RLC series branch, the R of which is 10 ohms, the wL of which is 20 chms,

and the 1/wC of which is 40 ohms. If the magnitude of the internally generated

emf is 500 volts, find the current that flows in the series circuit and the terminal
voltage of the generator.
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The internal impedance of the generator is
Z, = 2 + j6 = 6.32/71.6° ohms

The total impedance of the series cireuit is
Z, = zn + Zpie
= (2 +j6) + (10 + j(20 — 40)]
=12 — jl4 = 18.44{-—4-9.4" ohms
The generated emf, E,, is arhitrarily chosen to coincide with the reference axis.

Therefore
E; = 500 + 50 = 500{_0_" volta

The current th#t flows in the series circuit is
E, 500 /0°
I~ % " Ba/-ur

I=27.1/49.4"smpe:es

= 27.1 /19.4° amperes

:

I/
A
;; EI_ 500 volls
’I("'IRQ

~

o
~

=
I
~

b
V¢=Gﬂﬁ volts
Fio. 15. Voltage relations for & generator supplying a leading power-factor load.

The terminal voltage of the generator considered as a voltage drop across the exter-
nal circuit is

(1) Vo=E; =1Z; or 2) V, =1Zg1c
V, = (800 /0°) — (27.1/49.4°) (6.32 /71.6%)
- 500/0° — 171,3/121°
= (500 + j0) — (—88.3 + j147)
= 588.3 — j147 = 6068/ —14° volts
V, = (27.1/49.4°) (22.36/—63.4°) = 606/ —14° volts

A phasor diagram Ulustrating E,, I, IR,, IX,, and V, is given in Fig. 15. It will
be observed that the terminal voltage of the generator (V,) is greater in magnitude
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than the internally generated emf (E;) owing to the manner in which the voltage
phasor IX, subtracts from (E;, — IR,) to form phasor V.

Problem 16. (a) Draw a phasor diagram illustrating E,, I, IR, IX, IXe, and V,
of the above numerical example und show how IR, IX;, and IX¢ combine vectorially

tec form V.
(b) Calculate the total power generated and the total power absorbed by the

A/
external RLC branch. Compare V,/ cos 8]['plus IR, with E,T cos 8 l'
Ans.: Total power = 8810 watts; branch power = 7345 watts,

Addition and Subtraction of Voltages and Currents. Correctly
written, the complex expressions for voltages and currents specify both
the magnitudes'and relative phase positions of these quantities. There-
fore, in complex form:

1. Voltage drops in series may be added to obtain the combined
voltage drop of the series elements considered. If the combined voltage
drop and one component are known, the remaining voltage drop may
be determined by subtracting the component in question from the
combined voltage drop.

2. Generated emf's connected in additive or subtractive series may
be added or subtracted, depending upon the relative polarities of the
terminals which are joined together to form the series connection.
Series connections of generated emf's will be considered in more detail
when polyphase systems are studied.

3. Two or more currents flowing away from a junction may be added
to find the current flowing toward the junction, or vice versa.

Circuit Directions of Voltages and Currents. It has been shown that
the average power absorbed by a branch or circuit is
\4
P = VI cos B:I (58)
1
where 17 is the magnitude of the voltage drop across the branch or cireuit,
I is the magnitude of the current flowing through the branch or
circuit in the same cireuit direction as that which has been
taken for the + V direction.

6] is the angle of lag (or lead) of I with respect to V. In a normal
I

dissipative type of branch or circuit, 8 will not be as great
as +90°.

Similarly, the average power generated by a generating device is
B
P = EI cos 8]‘ (59)
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where E is the magnitude of the generated voltage,
I is the magnitude of the current flowing in the same circuit
direction as that which has been taken for the + E direction.

-E
BJ is the angle of lag (or lead) of I with respect to E. In case
I E
the generating device is actually delivering power, B] will be
1

less than 90° in magnitude. This, in general, is the condition
that exists when only one generator is present. Average neg-
ative generated power indicates that the generating device in
question is actually absorbing power from some other
generator.

A single generator connected to a
dissipative branch is shown in Fig. 16.
1f the +FE circuit direction is assumed
to be from b to a through the genera- +ET€3 Generator l+v
tor, the positive circuit direction of
the current is from b to a through the b
generator, and from a to b through the Lo 6. Ifustrating an arbitrarily
dissipative branch. The positive cir-  assigned positive cirguit direction
cuit direction of a wvoltage drop :iu::: uﬁ'ii”ﬁ:’:dm:&:?ﬁ'pfgi s
through a dissipative branch defines the  circuit directions of I and V
positive circuit direction of the current
through the branch, or vice versa. In Fig. 16, therefore, the +V direc-
tion is from a to b through the external branch. ‘With the aid of these
elementary concepts, the correct phase relations of all quantities involved
may be conveniently determined. If Ej is taken as reference,

F 00 "
= LAY (60)

2 +1 —-

)
gen 5 zlond
= E[0° —1Zpa =V /B (61)
Average generated power = E,[ cos « (62)

Average power absorbed by the external branch = VIcos (8 — a) (63)

Thus it will be seen that the current in a series loop may be associated
with the generated voltage to obtain the generated power and with a
particular voltage drop across a given part of the circuit to obtain the
power absorbed by this particular part of the circuit. Unless otherwise
specified, the current in a series loop having only one generator is
assumed to flow in the positive direction of voltage rise through the
generator and in the positive direction of voltage drop through the load
portion of the circuit,
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Example of Two Generators. Figure 17 illustrates two a-¢ generators which
are connected in parallel with respect to the load terminals but are connected in sub-
tractive series with respect to the seriea loop joining the two generators. If no load

Fia. 17. Two genorated emi{'s connected in parallel with respect to the load ter-
minals. E, and E; are in subtractive series with respect to the series loop which joins
the two generators.

is placed across the load terminals, the series loop is the only path in which current
flows, If it is assumed that the generators are driven by separate prime movers
and controlled by sepcrate voltage regulators, it is entirely possible for thegyoltages
to differ in magnitude and phase position.

Let E; = 1350 /0° volts and E3 = 1300 / —10° with respect to the load terminals,
The impedance of each generator is (1 + j3) ohms and each of the series loop con-
necting lines has (2 + ;1) ohms impedance. Find the magnitude and phase position
of the current which circulates in the series loop under the above eonditions.

The resultant generated emf which acts to send current through the series loop in
the +E; direction is

E, = E; — E; = (1350 + ;0) — (1280 — j226) = 70 + ;226 volts
The positive circuit direction of E, is the same as that which has been arbitrarily

assigned to E,, since the phasor difference Ey — Ej has been employed in defining E,.
The current that flows in the dircection of E, is

Br 70 + 7226
Zioep 6 +j8
(70 + 7226) (6 — j8)
T 76 +8) 6 -8
= (22.28 + §7.96) = 23.65/19.65° amperes

I=

The power generated by the E; generator is
P, = 1350 X 23.65 cos 19.65° = 30,110 watts

The power generated by the Eg is

Pga = 130Q X 23.65 cos [180° — (10° + 19.65%))
= —26,750 watts
In calculating the power generated by the E; machine, either the voltage or the cur-

rent is reversed in phase position so that the Es and I circuit directions eoineide.  The
physical interpretation of the negative generated power found for machine 2 is that
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machine 2 is actually receiving power from machine 1. A phasor diagram of B, E,
E,, and I is shown in Fig. 18.

In general, a circulating current between the two generators may exiet as a result
of difference in the magnitude of the two generated voltages, or a difference in phase,
or both,

A further insight into the power relations of the circuit arrangement shown in
Fig. 17 may be obtained by adding to the power absorbed by machine 2 the total
IR loss of the series loop and comparing the result with the total power generated
by machine 1.

(23.65% X 6) + 26,750 = 30,110 watts

The physical interpretation of the above equation is that machine 1 generates
30,110 watts, of which 3360 are dissipated in the form of heat in the resistance of
the series loop and 26,750 watts are absorbed by machine 2 in the form of electro-
magnetic motor power.

—E, E~E Ly
______ 19.65° E

o

E;

Fig. 18. Phasor diagram of two-gererator problem.

Power Calculations Employing Complex Forms. If voltage and
current are expressed in rectangular complex form, the average absorbed
or generated power may be calculated in terms of the components of the
voltage and current which are involved. Reference to Fig. 19 will show
that '

P = VI cos 8]: (64)
or
P = VIcos (8, — 8;) = VI cos (8; — 6.)
= VI |cos 6, cos 8; + sin 6, sin 8]
= (V cos8,) (I cos6;) + (V siné,) (I sin 6;) (65)
In rectangular form
V= "Vcosb,+ jVsing = v+ jv' (66)
I=1cost; + jlsinb; =i+ ji’ (67)

If the above components of V and I in equation (65) are employed, it
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follows that

P = vi + ¢'¢’ (absorbed power) (68)
If the voltage in question’is a generated voltage,

P = ei + ¢'t’ (generated power) (69)

Due regard must be taken for the sign of each component in equations
(68) and (69) when these power equations are employed.

Example. If, at a certain stage in the solution of & problem, it is found that
E = (200 4 j40) volts and that the current flowing in the positive ecircuit dirce-
tion of EisI = (30 — j10) amperes, the power generated is

P = ei + &'t = (200) (30) + (40) (—19)
= G000 — 400 = 5600 watts
The same result could, of course, be obtained by first evaluating the magnitudes of
E
E, I, and .e:L and then making use of the more familiar relation

E
P = EJI cos e]!

Reactive Volt-Ampere Calculations Employing Complex Forms. Re-
active volt-amperes or reactive power, Px, may also be calculated in
terms of the rectangular components of the voltage and current in-
volved. If the voltage phasor and the current phasor shown in Fig. 19
are considered,

) V=v+j .
I=i+4ji
As defined in Chapters II and TII,
Py = VI sin 6]: . (70)

In accordance with a convention which is in common use, § is the
angle of lead of the voltage with respect to the current. If this conven-
tion of signs is employed, reactive power is a positive quantity for
lagging currents and a negative quantity for leading currents. (See
Chapter IIT, page 98.) If the angle 8 in equation (70) is considered as
the angle of lead of the voltage with respect to the current, then

Px = VIsin (6. — ;)
VI (sin 6, cos 6; — cos 8, sin 8;)
(Vsin8,) (I cos8;) — (V cos8,) (I sin #;) (71)

From the definitions which have been attached tc v, v/, i, and 7, equation
(71) reduces directly to

Px=vi—u' (72)
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Example. If V = 200/30° = (173.2 + j100) volts and I = 10/60° = (5 + ;8.66)
amperes, find the real power, the reactive volt-amperes, and the total volt-amperes
involved.

P =i+ v't' ~ 866 + 866 = 1732 walts

Py =v'i — v’ =500 — 1500 = —1000 vars
The minus sign in connection with Py merely indicates that the reactive power in

question is the result of a leading current.
The volt-amperes associated with V and 1 can be cbtained directly from the product

of V and I, or as follows:
Va = VP! + Px? = 4/1732! + (—-1000)?
= 2000 volt-amperes

The Conjugate Method of Calculating Real and Reactive Power.
The question naturally arises as to the significance of the product of
phasor voltage and phasor current. The answer is to be found in the
definition that has been given to the product of two complex numbers.
The magnitude of the product of voltage and current, even in complex
form, represents the volt-amperes which are associated with V and L
The component parts of the cartesian expression for VI are. however,
meaningless. For this reason, phasor voltage times phasor current can-
not be used directly to calculate real power or reactive volt-amperes.

A method of conjugates is sometimes employed in the determination
of real power and reactive volt-amperes. It sffords a convenient
means of calculating these quantities when both the voltage and current
are expressed in cartesian form.

If the conjugate of the current, that is, the cartesian expression of
the current with the sign of the j component reversed, is multiplied by
the voltage in cartesian form, the result is a complex quantity the real
part of which is the real power and the j part of which is the reactive
volt-amperes.

Let V=v+j and I=1i+j'
The conjugate of 1 is (i — ji’) and
(v + )& — ji') = (@i + 07" + 0" = ) 73)
or
(w+ ") G = ji') = P+ jPx (74)
If the conjugate of V is multiplied by I in complex form, the result is
=) GE+5) = @i+7) -0 —n) (75)
or
(v = ') G+ 4') = P — jPx (76)

The real power, as obtained by the method of conjugates, is the same
regardless of whether V or I is conjugated. The sign of the reactiva
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volt-amperes, however, 1s dependent upon the choice of the V or I
conjugate as shown by equations (74) and (76). To be consistent
with convention of signs employed in equation (70), the conjugate of
the current must be employed. Also to be in accord with the discussion
in the previous chapter (page 98) and the recommendation to the
International Committee on Electrical and Magnetic Units the con-
jugate of current must be employed. In any event Px = v'i — vi’ or
vi’ — v’ with the sign being a matter of definition. The present situa-
tion indicates that the current should be conjugated or that Py =
v'i — vi’ should be used and that inductive vars should be called positive.

Example. Given V = 173.2 + 7100 volts and I = 5.0 + j8.66 amperes, find the
real power and the reactive valt-amperes by the method of conjugates. Employing
the conjugate of the current,

Py = (173.2 + 7100) (5.0 — j8.66)
= 866 — j1500 + 7500 + 566
= 1732 — 71000
This above result may be interpreted, in light of equations (73) and (74), to mean
that P = 1732 watts and that Px = —1000 vars. The negative sign indicates
capeceitive vars when the conjugate of the current is used.

Transmission Expressed as a Complex Number. The term * trans-
mission " will be used here as a general designation of the effect (say
the current or power) in a receiver station produced by a generator at
the sending station. (See Fig. 20.*) In low-power ¢ommunication
networks, particular attention centers on the change in magnitude (and
the phase shift) of the receiver current relalive to the receiver current
which ecould be obtained under optimum conditions of operation.
These relative changes are due to two causes, namely:

(1) R, in Fig 20 not being equal to the generator resistance R;, the
latter being fixed by the generator characteristics.

(2) The network intervening between the sending-station generator
E) and the receiver-station resistance Rj.

The intervening network will usually take the form of a transmission
line, transformer, selective filter, attenuator, or amplifier. Various
combinations of these basic four-terminal networks may be employed
between the generator terminals (11”7 in Fig. 20) and the receiver
terminals 22°, but until the detailed operation of these devices has
been studied we shall represent them simply as a box having four
terminals as shown in the figure.

3 If any series or shunt reactance is associated with either the generator or load,

it may be placed within the four-terminal network for the purposes of analysis, thus
making Fig. 20 a more general case than is apparent from the diagram.
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It will be accepted here, subject to later proof, that the most efficient
possible transmission between E, and R, will occur when the impedance
looking to right of terminals 1 1" is equal to Ry, that is, when V', /1, = R,.
(Amplifiers are excluded from the foregoing statement because these

%

M 71 b
lGenerator' 'l‘ Network 'f‘ -
R, g impedance) | Intervening between !
Yi generator v, Ry (load)
£, i‘ and load H
Y
Sending £y ¥ Receiving
slation station

Fic. 20. Four-terminal network intervening between a generator and a resistive load.

devices draw power from sources other than the E, generator.) Under
this condition of operation the generator resistance is said to match
the impedance looking to the right of terminals 11" and

: E,
Ii(matched) = 2R,
1

The ratio of the powers entering and leaving the network under the
condition that V1, = R, is
PU\\‘erﬂ[ering terminals 11°  Vily - (E;,J’2)(E1,r‘2@

= = - 77
Power leaving terminals 22 Vala (Ral3)({2) @

If now we define the transfer impedance from E) to R under any condi-
tion of operation as

Zr =— (78)

we note that the value of Z7 which will make the power ratio of equa-
tion (77) unity is
Zropy = 2V'R\R; 79)

[

In other words, for fixed values of R, and Rj, all the power entering
terminals 11 in Fig. 20 will leave terminals 22" if the intervening net-
work is such that E, /I, = 2V R R,.

In describing the transmission characteristics of an arbitrary four-
terminal network of the kind shown in Fig. 20, it iz desirable that
the receiver current, I, be measured relative to its optimum value,
E,/2VRiR,. Both the magnitude and phase of I, relative to this
base can be measured in terms of the real and j components of the
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transmission constant, vy, if the latter is defined as
._ Zr E1/2\’ R|R3
= + B = |lo —_ =] e =
Y J 512 r—*——Rle
where Zy = E,/I, for any arbitrary intervening network.

a is the attenuation (to be described in more detail later).
B is the phase shift (also to be deseribed in.detail later).

Iog 12 (apt) (80)

L4
Iﬂ:‘nn-ral] IE{.menH

The transmission constant is thus defined as a loga.ithmic measure of
Zy relative to Zirpyy. Since E; /2V/R, R, in Fig. 20 is considered to be a
constant, it is plain that « is a logarithmic measure of Ta(opty/ To(generst)
and that 8 is the phase angle difference between To(genera1) 80d Ipepe).
The phase angle of Iy would normally be zero, since the reference
would normally be E; = E, /0° and Iyqpy is in phase with E,, being

equal to E1f2 A4 R;Rg.
Allenuation, a. It will be noted from equation (80) that the attenu-
ation can be written as

a = log _‘\/_{_(_0)!.}___ = l!og __‘ELQRI_)__RE_
: V' 1 (general) 2 ‘ Iﬂ’{nnern!)Rz

Attenuation in this case is an inverse logarithmic measure of the power
received by R; under general conditions of operation to that which is
received by R; under optimum conditions of operation. The faet that
logarithmic measure is employed in the definition of y makes o = 0 if
I2®(generaty R2 is equal to 192, Ry, and as the former decreases in value
owing to losses in the intervening network « grows larger logarithmically.
If log, is employed as in equation (81), the units of « are called nepers.

Another common definition of attenuation as it applies to general
" transmission characteristics is

nepers (81)

2
aap = 10 logyo ?;:—“-"—‘-‘I—‘Tjﬂ decibels (82)
Eenera

Plainly
(No. of)aqy, _ 10 log;o K _ _20logio K
Qnepera i’ log. K 2.303 lOEm K

where X is any power ratio. The above relationship indicates that
the number of decibels per neper is 8.686. It is a matter of indifference
which unit of attenuation is used, since engineers generally understand
that the decibel is by definition a unit of attenuation which is 8.686
times smaller in magnitude than the neper, there being 8.686 decibels

= 8.686
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of attenuation for each neper of dttenuation in any particular specifica-
tion of attenuation.

Phase Shift, 8. In taking the logarithm indicated in equation (80)
it will be noted that

Iotopn) Iy ;
=« +Jﬂ = I oxt =1 . e +J{e(opt) - 8(;:11::;1)1 (83)
I.!(grnual} I2:genernl)
Thus, if E; is selected as a reference, 8opty = 0 and B = —B(general)-

Regardless of the reference selected, 8 specifies the phase difference
between I, under optimum conditions and I, under general operating
conditions.

1f the evaluation of a + jB is to be carried no further than that shown
in equation (83), it is a matter of choice whether 8 is stated in radians
or degrees. If y is to be expressed in polar form, however, 8 must be
expressed in radians: &

Examples. In Fig. 20, let R, = 100 ohms, R = 250hmis, and assume that
terminal 1 is connected directly to terminal 2 and terminal 1’ directly to 2’. Let
it be required to find the attenuation and phase shift relative to the optimum oper-
ating conditions,

If equation (80) is to be employed, we note that
_ BB
2v/100 x 25 100
E,

I -—
2netusl) 125

E,/100
“Ey/125

Iltopl.) ol

a8 = log = 0.223 + 0
Thus & = 0.223 neper or 1.938 decibels. This attenuation results from Rz not being
equal to Rj.
B8 = 0 since no phase difference exists between the two conditions of operation.
As a check on the arithmetic we might employ equation (82) as
Tzop0_ £,/100
Iziactualy E, /125

adb = 20 logyo

1
adp -mlngmrﬁ—ﬁ-mxoogeg = 1.938 decibels

As a second examptle of the use of equation (80) let it be assumed that Ry = 25
ohms, R; = 100 ohms, and that, for E; = 10 /0° volts, V3 = 3.53 / —45° volts.

Itis reqmred that the transmission constant, Y, be found from the above data.
E, 10 /0°
Iztopu = - = 0.1 ampere
s 2V R\Ry 2V 2500 L

Vs _353/—45°

I ual) = —— = -_ - 45°
fiactual) Ra = = 0,0353 / —45° ampere
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E, 10/0° "
o e i T T e
Zr 263 /45°

Y =a + j8 = log, = log = 1,04 + j45°
Gl oVRRy 100 :

of :
’ Izcopty 0.1 /0° .
= = ' - . = 1- 4 *7
Y=a+j8=Ilog Toacvaas 198 00353 5 04 + 70.785 radians
Thus

Y = 1.304/0.647 (radians) = 1.304/37.05°

If Y is specified in polar form as above, we obtain « and # as the real and j terms
directly by changing the polar form of Y to rectangular form.

A significant point which should not be overlooked in the foregoing
discussion of atfenuation and phase shift is that, as applied to the four-
terminal network shown in Fig. 20, these quantities were obtained from

2
a+ 8 = log, 2L _ 1o rteulls

Z + .ﬂaz-rumml
T'lopt)

‘ Izztge.nerahRB
where Zr1) was an arbifrarily selected base which yielded maximum
power delivered to the load resistance, R,. (It was assumed that R,
was fixed by the characteristics of the E; generator and that R; was
fixed by the characteristics of the receiving device.) The base selected
here is that which is normally employed when we wish to take account
of the possible mismatch between R; and R; as well as the loss and
phase shift introduced by the intervening four-terminal network. It
also permits the possible mismatch between E; and R, to be rectified
by the intervening network if the latter is designed for this purpose.

In general circuit analysis, atlenuation and phase shift are used in
" a wide variety of different ways to describe loss (or gain) and phase
difference relative to other arbitrarily selected bases. Attenuation and
phase shift are meaningful gquantities only when the base is clearly
understood, since attenuation and phase shift are measures of power
loss (or gain) and phase relative to the base which is selected as being
most appropriate for the problem at hand.

PROBLEMS

18. Perform the following indicated operations: (a) (5 +j8) + (-2 — j4);
@) (=12 +j6) — (30 — j20); () (16 — 12V (=K + i8): (d) (-5 4+ ;8.66) +
(6 — j8:66); (e) (2 —j3) + (=1 *
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17. Two impedances, Z; = 2 + j3 obms and Z; = 3 — ;7 ohms, are connected
in a circuit so that they are additive. Find the equivalent impedance of the two
in polar form.

18. Write the cartesian and polar expressiona for a phasor, the magnitude of which
is 100 units and the phase position of which is:

(a) 30° behind the reference axis. (d) 180° behind the reference axis.

() 45° behind the reference axis. (e) 60° ahead of the reference axis.

(¢) 120° behind the reference axis. (f) 120° ahead of the reference axis.

(g) 210° aliead of the reference axis.

19. Find the magnitude and angular position with respect to the reference axis

of the phasors which are represented by:

(a) 8.0 + 76.0. (d) —57.36 + j81.92.
®) —10 + j10.0. () —76.6 — j64.3.
(c) 38.3 — j31.14. (f) —50.0 — j86.6.

20. (a) Rotate the phasor (8.66 + j5.0) through +40° by multiplying it by the
correct operator.
(5) Rotate the phasor (—5.0 — j8.66) through —30°.
(c) Express the results of (a) and (b) in both cartesian and polar forms.,
21. Perform the following indicated operations: ;
(a) (8 + j6)(10/—120°)(cos 36.87° — j sin 36.87°) (0.1H18%%),
®) [34.2 + 794)(10¢3%)[30 (cos 60° + j sin 60°)]
[20 /40°)[50 (cos 30° '+ j sin 30°))
22. Express each of the following as a single complex number in cartesian and
polar forms:
(a) (V4.5 — j7.79 + log, 10 /172°).
(940 + j342)
lﬂeJm. =
(—8.66 +j5.0}[50[—100°){2(”"')
75 '

®)

c
1
(d) BOe~/“tatt = s second if w = 377 radians per second.
30 110 —
IR ex LSy 7|
6 —J3
23. Find all possible roots of

af:oﬁg&-‘w(-wu - 72.94)

1 — j1.732

24, The series impedance of a transmission line is Z; = 10 /68° ohms, and the
shunt impedance of the line is Zy = 25,000 / —90° ohms.

(a) Find the characteristic impedance of the line which is defined as Zo = @,

(b) Find the propagation cunstant of the line which is defined as v = \' Zg, Zo.

26. A voltage of 125 /40° volts is impressed across a series combination of 2.0 chms

resistance and 8.0 ohms inductive reactance. Find the magnitude and phase position
of the current with respect to the reference axis employed in stating the voltage
phasor.

-10
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26. Two impedances, Z; = (1 — ;3) ohms and Z3 = (3 + j6) ohms, are con-
nected in parsllel. The magnitude of the current through Z; is known to be 10

amperes.
(a) Find the complex polar expression for the current through Z; with respeet to -
{1 = 10/0° as a reference.
(t) Find Ig = I + Is in cartesian form.
(¢) Draw a phasor diagram of V, I, I3, and I,, employing I as reference, B
Z.?
27. The characteristic impedance of a T-section filter is Zor = \;ZLZg + ;— '

where Z; is the full series arm impedance and 2. is the shunt impedance of the filter
section, If Z) = 30/86.0° ohms and Z; = 10.0 /—90° ohms, find Zor from the
above definition of Zgr.
125/ —90°
28. Express log, \/—W in rectangular form.
Ans.: 161 F jx /2,
_/28. An equation which is useful in filter cireuit analysis is

; f Z, ’zl
a+_',l,‘3-=2log.( 1+4Z,+ 4_2:)

If Zy = 25,14/ —-90° chms and 42 = 795 / 490°, evaluate « and 8.
30. Find a and 8 in Problem 29 if
Z) = 4 X 10°/-90° ohms
4Zy = IOOOM ohms

31. Given the equation
Vm =V —-1ZI

where V = lﬂ(]/i‘ volts, Z = 15/80° ohms, I = 10/ —3° amperes. Express Va
in polar form,
32. (a) Solve the following equation for @ and for b:

(12 + a) + jb = 20 + j10
() Solve the following equation for a and for 8
(a +10) + 750 = 100(cos 8 4 j sin 8)

(c) Given: (100 + 0) + 5B/ —45° = 200/ —#° find R and 8.
33. (a) Plot Ac*** and A¢ % in polar coordinates for w = 157 radians per second
ati = 0.005 ¢ = 0010, ¢ = 0.015, ¢ = 0.020, and ¢ = 0.04 second.

(Iul + A'-—ful
2

A
() Plot in polar coordinates and also in rectangular coordinates

versus ! for one complete cycle.

(¢) Bhow that a simple harmonic oscillating variation, such as 4 cos wi, can be
represented by two oppositely rotating phasors, each of which has the same angular
velocity as the oscillating phasor and each of which has a magnitude equal to one-
half the magnitude of the oscillating phasor.

34. (a) A voltage V = 100 — j50 volts across a circuit causes a current I =
—2 — j8B amperes to flow. Calculate the power absorbed by ube circuit, employing
equation (68).
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(b) Calculate power if V = —50 4 j100 volts and I = —8 — ;2 amperes.

(¢) Calculate power if ¥V = =50 + ;100 volts and I = —8 + ;3 amperes.

36. Calculate the vars for each of the parts of Problem 34, employing equation (72).

36. Calculate the power and vars by the method of conjugates for each part of
Problem 34,

37. The voltage applied to two parallel branches is 40 /80° volts. The current
through branch 1 is 5 /30° amperes, and the current through branch 2 is (—6 + j8)
amperes.  Find the real power, P, end the reactive volt-amperes, P,, supplied to
the parallel combination by the method of conjugates. Nofe: Check results against
VI =40 X 10.62 = \"P* 4 P2

38. In Fig. 20, page 135, R, =200 ohms, Ry =20,000 chms, and V2= (0.1 /114.6°)E,.

Find the attenuation and phase ¢hift which are produced by the combination of the
mismatch of Ky and K3 and the intervening network.

39. In Fig. 20, Ry = 200 ohms, k2 = 20,000 ohms, and Iz = E;/4000 amperes.
Find the attenuation and phase ghift which are produced by the combination of the
mismatch of Ry and Ra and the intervening network,

1— —j2x

ix

Fic. 21. See Problem 40,

40. For the circuit shown in Fig. 21,
_ (R +;X)(-j2X)
R +jX - j2X
Plot Zand 8 of Z = Z{gversus R, employing R =0, R = X/2, R = X, R = 2X,
R=05X KE=10X,and R = <=,

zZ



chapter

V Sinusoidal Single-Phase
Circuit Analysis

Impedances in Series. A series circuit of three impedances is shown
in Fig. 1. In a cireuit of this kind it is evident that only a single current

Rt X, Re X2 Ry

Vi v Vs

Fia. 1. Impedances in series.

can exist at any instant and that the current throughout all impedances
is the same.! Kirchhoff's emf law states that

V=V +V2+V; (1)
or V=1Z +1Z; + 1Z; (2)
and V=I1Z+Z;+Z;) =12 (3)

Equation (3) shows that series impedances are added in complex form
to obtain the equivalent impedance. Thus -

Z =2y +2Zs + Zy = (Ry + jX1) + (Ra + jX3) + (Rs + 40)
or Z= (R + Ra+ R3) +i(X\ + Xa) = BR+jX (4)

Equation (4) shows that the resultant resistance R of a simple series
circuit is obtained by arithmetically adding the separate resistances.
When it is remembered that inductive reactances are considered posi-
tive and capacitive reactances are negative, equation (4) also shows that
the resultant reactance X of a series circuit is the algebraic sum of the
separate reactances.

If current is taken as the reference, the vector diagram of the circuit
of Fig. 1 appears as shown in Fig. 2. Such a vector diagram is called
a funicular or string diagram. Another type of vector diagram which

! The assumption is made that the current is confined to the series circuit. Max-
wellian space displacement currents are neglected.
142
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represents the same circuit is shown in Fig. 3. This is called a polar
dingram. The distinguishing characteristic of a string vector diagram
is that certain component vectors are combined head-to-tail to form a
resultant vector as, for example, the component voltages IR;, IX;, IR,

IX, (IRA4IX) (IR+IX+IR,)
Pl P ——

“ IR > - —
IR, P .--"‘UR,+]'.XI,;-IR,+153)

F _ ¥i '{
IX X
IR, 1 ) o
‘N\\ g Yy=IZ
L
1“3 - Dﬂ;
Fic. 2. Funicular or string vector Fia. 3. Polar vector diagram of circuit
diagram of circuit in Fig. 1. in Fig. 1.

IX,, and IR; are combined head-to-tail to form the resultant voltage
vector V. In a polar vector diagram, all vectors are started from a
common origin as shown in Fig. 3.

Either type of diagram may be used since they represent the same
thing, The one which appears to be the simpler in any particular case
should be used. In certain cases the funicular diagram shows the
quantities to better advantage, whereas for others the polar diagram is
more suggestive of the relationships and more convenient to use.

In general, for a series circuit of n impedances

V=12 +2Z3+Zs+ -+ Zn) (5)
and Z= (R +R+Be+- - +RBa)+iK1i+ X2+

X3+"‘+Xn) (6)

z=\/(R1+Rz+Rs+"'+Rn)ln+(X1+X2+X,+...+Xn)ﬂ

Xt Xy X b K
1
[ R ittt R O

In Chapter II the impedance angle was shown to be the phase angle
between the current and the voltage. In Chapter III power factor
was shown to be the cosine of this angle. Hence, for a series circuit,

Fig. 2 shows
IR R

Powfu@or-msoff-z-wg

W Rit+Ra+ R+ -+Ra & 5
V(Ri+Ba+Rg+ -+ B+ Xy + Xo+ X+ o +Xa)?

®)
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Example 1. Calculate the current, voltage drops Vy,-Va, and Va, power con-
sumed by each impedance, and the total power taken by the circuit with the con-
stants showit'in Fig. 4. The impressed voltage will be taken along the reference
axis,

in in 6n 81 2p
100 volts Vi Va Vs

Frc. 4. Circuit for example 1.

I = L = sl = 100 (13 + 45) = 7.1 @ “2.96 amperes
Z 4+73+6-—-8+2 (12— j5) (12 + j5) '
Vi =1Z; = (7.1 4+ 72.96) (4 4+ 73) = 19.53 + 733.14 volts
Vi = 1Z; = (7.1 4 j296) (6 — j8) = 66.27 — 730.06 volts
Vi =12y = (7.1 +7296) (2 +j0) = 142 + 75.92 volts

Check: V=10 + 0 volts

Note that the drops are added vectorially to check the impressad voltage.
Py = RI* = 4(V7.1% 4 2.96%)! = 4 X 7.69" = 237 watta

P; =6 x 7.00? = 355 watts
P; =2 X 760! = 118 watis

Total power = 710 watts
The total power is also (vi 4 v'i’) = 100 X 7.1 = 710 watts.

Problem 1. (a) Find the current through the circuit in Fig. 5 and the voltage
drops Vas, Vi, and V.
Ans.: 1 =10 /0° amperes, Vop = 20 — j40 = 44.7 / —83.45° volts.
Vic = 30 + 5110 = 114 /74.75° volts.
Vg = 20 + ;0 = 20 /0° volts.
(b) Draw a string vector dlagmm of Ve, Vi, and Vg, including both V and

I on the diagram.
(¢) Draw a polar vector diagram of Vas, Ve, Veq, V, and I

2n 40 b an 1nn . 2n gy

1

V=98.98 /45° volts

F1a 5. Sea Problems 1 and 2.

Problem 2. Calculate the total power dissipated in Fig. 5 from (I'R), from
(VI cos @), and from (vi 4 v'i’). Ans.: P = 700 watts.

Series Resonance. A series circuit contmmug R, L, and C is in
resonance when the resultant reactance is zero. Since the drop across
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the inductance leads the current by 90° whereas that across the con-
denser lags the current by 90°, the two drops are opposite. If they
are made equel as in Fig. 6, the reactive voltage
IX, drops neutralize “and the impressed voltage is
equal only to the resistance drop. This condi-
v tion is called series resonance, " Inspection of the
IR vector diagram of Fig. 6 shows that the applied
voltage is in phase with the current. The power
IX; factor is unity, and the circuit is in resonance.
Fia. 6. Vectordis-  Thus for series resonance
gram of senes cir- .
cuit in resonmnre. IXp =IXe or Xp = X¢ (9)
Since 2rfL = 1/2xfC at the point of series resonance, the series resonant
frequency is
1

I = e (10)

where fm is in cycles per second when L is expressed in henrys and C in
farads. It is apparent that series resonance can be produced in a series
circuit by varying either L, C, or f. The current is always given by

V Vv Vv

I=—-= = — (11)
Z VR + (X - X¢)? \[ g N
- R? + (2rfL 2ch')

For any value of current the drop across the resistance is
VR

\/R3 -2 (2,4{, - 2,110)2

Similarly, the drops across the inductance and capacitance are respec-
tively

Ve=1IR = (12)

VX,

Vi=1Xy = - (13)
\{R’ + (2;;.5 =5
and
Ve=1Xc = yir s (14)
\/ R + (2:;1, - -2-;}5)

The general characteristics of a circuit in resonance are the same regafd-
less of which parameter is varied to produce resonance. For instance,
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in all cases the power factor at resonance is 1. The power is simply the
impressed voltage times the current. The current is V/R, the maxi-
mum possible value for the resistance which is in the circuit. The
general shape of the current curve before, at, and after resonance is
shown in Fig. 7. Resonance occurs at the point C. Limited as it is
only by the resistance of the circuit, the current at the resonant point C
will be large if the resistance is small. When the resultant reactance is
large as it is at point A there will be only a small current flowing. Hence

c
3 t
< E 3
z 3
1
H :
A - B
Fra. 7. Variation of current with fre- Fig. 8. Effect of resistance on current
queney in the range series resonance. variation in the range of series resonance.

there is a rapid rise in current from point A to point C. Conversely,
when the resistance is large, the amount of the change in current from
point A to C will be small. In the former case the current peak will be
sharper than in the latter, as illustrated in Fig. 8. Hence the small
registance is said to give sharp tuning and the large resistance broad
tuning. More accurately, the ratio of L to R governs the sharpness
of tuning. This is shown later. The preceding statements are true
for all methods of securing resonance. The various ways of securing
resonance will now be considered in somewhat more detail.

Varying Inductance. When L is varied to produce resonance,
a series of curves shown in Fig. 9 is obtained. Equations (11),
(12), (13), and (14) are the equations of the current and poten-
tial drop curves shown. It will be noted that V¢ becomes a
maximum at resonance whereas the mazimum value of Vr occurs after
resonance. This result s expected. Since Vo = IX¢ and X¢ is con-
stant, the maximum drop across the condenser will occur when the -
current is & maximum. In the case of Vi = IX, both I and X
are increasing before resonance and the product must be increasing.
At resonance, [ is not changing but X, is increasing, and hence the
drop is increasing. The drop continues to increase until the reduction
in the current offsets the increase in X ;. This point can be deter-
mined from dV5/dX = 0. Differentiating equation (13) and setting
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the result equal to zero yield
aVy _ (R34 (X p— X)WV —VX 3R+ (X —Xc)|2(X 1 —X¢) =0

Xy R*+ (Xp — X¢)?
RE4+ X
S ¥ ﬂ_j'fc_c
C(R* + Xc?) (15)
s
#4)
|
1.7 |
P {
t/"liﬂflucl =2X t
& R | =
-“ﬁ“%‘ FL 'Z.-'.I?'
for L=0

Fro. 10. Impedance disgram showing
the power factor angle § as L is varied

hy..au-su reasonance by varying L. in an RLC series circuit.

" Bxample 3. As L is varied to produce resonance in & series circuit containing
R = 100 ohms, X¢ = 200 ohms, and f = 60 cycles, find the voltage drop across
L at resonance and also when the drop across L is 8 maximum if 1000 volts are
impressed.

For resonance Xy = X¢ = 200. Z-100+jm0-;m-100+;00hms
§ i i
100 PP,

Vi (at resonance) = IX = 10 X 200 = 2000 volts.
R? + X' 100% 4 200°

For maximum Vg 2xfL = Xo - 200 = 250 ohms.
e
1000
I (for maximum V) = = 8.04 amperes.

V100? + (250 — 200)*
Maximum Vy = 804 X 250 = 2235 volta.

The variation in phase angle between V and I as L is varied is easily obtained
from the imped_anuedmgnmin?[g. 10. The angle can beseen to vwfmhn"?
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(a negative angle) when L is zero to +90° when L becomes «. Heétce the power
R
factor varies f —=——=—==(when Lis0) to 0 {when L infinite).
varies from Py s A'c’(w en Lis0) to 0 {(when L hecomes infinite)
Problem 3. (a) Find the value of inductive reactance and the value of inductance
which will make the power factor of the above series circuit equal to 0.866, current
leading. :
Hint: Problems of this type are most easily solved when it is recognized that
X
% = =+ tan 4. Ans.: Xy = 142.3 ohms, L = 0.377 benry.
(b) Find the value of inductive reactance which will make the p.[. equal ta 0.866,
current lagging.
Ans.: Xp = 257.7 chms.

Varying Capacitance. When € is varied to produce resonance,
curves as shown in Fig. 11 are obtained. As before, the equations
of these curves are equations |
(11), (12), (13), and (14).
Here the drop across the in-
ductance is & maximum when
the current is a maximum,
since X is constant. The
maximum drop across the con-
denser occurs before resonance.
At resonance, X is decreasing
whereas the current is not
changing (slope being zero).
The drop IX ¢ must, therefore,
be decreasing. Consequently,
the drop must have been a 0
maximum before resonance. At
resonance the drops across the
inductance and the eapacitance
are equal and opposite. The
conditions for maximum Vg
may be determined analytically
by setting the first derivative
of equation (14) with respect Fic. 11. Series resonance by varying eapaci-
to C or X¢ equal to zero, tance,
similarly to the procedure illustrated when L was varied. This deri-
vation is left to the student.

The impressed voltage equals the IR drop, the power factor is unity,
and the current is a maximum at resonance. For zero capacitance the
capacity reactance is infinite and the current is therefore zero. For

™ " Resonance
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infinite capacitance the capacity reactance is zero and the current is
vV

‘,‘Rz + XLz :
voltage varies between the limits indicated in Fig. 12. The power fac-

The phase angle between the current and the applied

R s m o s .
tor varies from W, when C is infinite, to zero when C is zero.
L

Resonance is usually obtained by varying capacitance since it is
only necessary to make alternate plates of a condenser movable to
secure variable capacitance. This is easily and simply accomplished,
and the variation of capacitance can be made extremely smooth and
gradual. E

Problem 4. When varying C to produce resonance in a circuit containing 100
ohms resistance and 200 ohms inductive reactance at 60 cycles, find the maximum
drop across the capacitance if the impressed voltage on the circuit is 100 volta.

Ans.: 223.5 volts.

ety

|
}
~ H
1
I
]

"-
I
“NJb/

To o0 as
becomes

" Resonance

-
RE

Fia. 12. Impedance diagram indicating range
of power factor angle 6 as C is varied in an  Fra. 13, Beries resonance by varying
RLC series circuit. frequency.

Varying Frequency. When frequency is varied to produce resonance,
the curves shown in Fig. 13 are obtained. Here neither the inductance
nor the capacitance has the maximum drop across it at resonance.
Inspection of Figs. 9, 11, and 13 will show that this method of securing
resonance partakes of both the methods previously discussed. The
student can explain these curves by considering the principles previously
presented. The current is zero for both zero frequency and infinite fre-
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quency. The phase angle between current and voltage varies between
—90° to 490°, as may be seen by studying the impedance triangles por-
trayed in Fig. 14. It will be observed that, for all methods of producing
resonance, the current is & maximum and dependent only upon the
A impressed voltage and the resis-

ToX=c0 tance of the circuit, that the

power factor is 1, and that the
power is & maximum and equal
X, to the volt-amperes at the point
R of resonance.
X: 1.2 L=0.1 henry C=100xf
? mi volts '
1 From X =co -
Fia. 14. Impedance triangle indicat- Fro. 15. Circuit for example 3.

ing variation of phase angle from
—00°® to +90° as frequency is varied
in an RLC series circuit.

Example 3, For the circuit arrangement and constants shown in Fig. 15 calculate
,tbe frequency, power, power [(actor, and voltage drop across each part of the circuit

g at resonance.
/ = 50.4 cycles
\/0 1 X 0.000100 s

{X;. = 2r 50.4 X 0.1 = 31.8 ohms

koo : = 31.6 ohma

2« 50.4 X 0.0001

r 100
V17 + (31.6 — 31.6)?

P = 100 X 100 = 10,000 watts

watts 10[])0

Pl = "I

Vg = 100 x 1 = 100 volts

V. = 100 X 31.6 = 3160 volts

Ve = 100 X 31.6 = 3160 volts

Xe =

= 100 amperea

Problem 5. (a) What is the resonant frequency of a series circuit consisting of
2 ohms resistance, 150 microhenrys, and 200 wuf capacitance? (b) What is the
resonant frequency if R = 3 ohms, L = 300 microhenrys, and C = 100 uuf?
(c) What is the impedance of each of the combinations at 1000 kilocycles?
Ans.: (a) 920 kiloeycles, () 920 kilocycles, (¢) 147 ohms and 294 chma.
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Tbe Series RLC Circuit as a Selector. Even though the RLC circuit
passes all waves of finite frequency to some extent, it has been shown to
have the lowest impedance for the resonant frequency. As Fig. 7 shows,
the RLC circuit passes frequencies near the resonant frequency more
readily than other frequencies. The circuit thus has selective proper-
ties. The band of frequencies which is passed quite readily is called

-

Y
13

>___._

Current §:
[+ ]
T
a
| St |

-‘-""""---..

-..-.--__-::::
=

We
Wi
Angular velocity

Fia. 16. The RLC series branch, as a band selector, graphed for R = 10 ohma, L = 0.01
henry, and C = 4.0 uf.

E

the pass band. The pass band is sometimes arbitrarily considered to be
the range of frequency over which the current is equal to or greater than
V/V2R, as indicated in Fig. 16. Within this range, the power (I'R)
is equal to or greater than V?/2R. This range will now be deter-
mined. From equation (11)

Vv

I= 16
VR? + (uL — 1/eC)? (19

The maximum current (V/R) and the maximum power V3/R occur
at the resonant frequency or when
1
- — 17
Gy = s (17)
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where w,, is 27 times the resonant frequency fm.
velocities at which

Ch. V¥
Let w. be the angular
¥
V2R
Since at these points the power is exactly one-half the maximum

power which occurs at resonance, they are called the half-power points.
Substituting the above current in equation (16) gives

vV V.

— = . (18)
V2R VR4 (w.L — 1/u0.C)*
From which R = =& (w L — 1/w.C).

Note that at these points the resistance of the circuit equals the

resultant reactance, the phase angle between the applied voltage and
current is 45%, and the power factor 0.707.

When solved for w, the above equation yields

R \/' R 1
T N 19
o= oy tNar T I6 U
In a selective RLC branch, (R/2L)? is usually much smaller than 1/LC.
Hence, neglecting this term, equation (19) becomes
w, = +=R/2L &+ V1/LC (20)
But v1/LC is the angular velocity w, corresponding to the resonant
frequency. Therefore

u,B:I:2—L:i:w.,. (21)

and, if only positive values of w, are considered,

: R
= — 22
Wy uwll'l = ol ( )
Let
R
w1 = wm = o2 (23)
and
R
ws = wm + 'Y (24)

The width of the pass band as shown on Fig. 16 is

Aw = wg — wy = 2 radians per second (25)
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The frequency range for the pass band, as here defined, is Af =
fa = fi = R'2xL. The per unit band width is defined as Al I
we arbitrarily select a band width other than that shown in Fig. 16, as’
we shall have oceasion to do later, we make appropriate changes in our
definition of Af.

Example 4. Let it be required to find the decibel (db) eurrent response at the
half-power points of Fig. 16 (relative to the respouse at wnl if by definition we take

/
db = 20 log 7
K
where T is the current response at any point on the graph shown in the figure.
Since [ = 1", \"2R at the paoints in question,
¥

. .
N2
db = 20 Iog'—V—R = —20Jog 1414 = —3

R

The above arithmetic shows why the half-power points are sometimes referred to
in the literature as the —3 db points.

The Q of a Series Circuit. The degree of selectivity of a circuits
that is, the narrowness of the band width shown in Fig. 16, is usually
expressed in terms of the symbol Q. Although several different forms
of the definition of Q appear in the literature, they are all intended to
convey the same meaning. We shall employ the following definition
since it ties in closely with experimental procedures:

W W e
= — o — — L 26
Q wg — wy Aw Af (9
See Fig. 16 for the meanings of w, wg, and w,.
In the case of the series RLC circuit
T 1 1 .
CJ,:—::—-—:———:— = = — [ (2‘)
o By B w8 1, BV
L vie |

where R, is the total equivalent series resistance of the circuit. Since
the equivaient series circuit resistance of the capacitor is usually negligi-
bly small in comparison with the series circuit resistance of the coil,
it is customary to speak of the Q of the coil alone, the assumption
being that the coil will be resonated at some specified frequency with
& capacitor of suitable size,
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L
From equation (27) Q. = c—%‘— If the numerator and denominator
1

of the right member of this equation‘are each multiplied Ly the current
at resonance, [ .,
Ql=

wmLl _ voltage drop across L
Rl _# applied voltage

(28)

Thus Q, is a multiple of the applied circuit voltage that will exist across
each of the reactive elements at resonance.

Example 5. The per unit band width between the half-power (or —3 db) points
in Fig. 16 is to be 0.02. Find the @ of the coil required.

A
Per unit band width = — ==

If the coil to be employed has an inductance of 10 millihenrys and the resonant
frequency is 20 ke, find the values of R, and C.
wmL 2 X 20,000 X 001

R,=— =

Q 50

1 1
wnll " 32%(20,000) X 0.01

= Bx = 25.1'chms

= 0.00633 X 10 * farad

Cn

The use of Q (or the reciprocal of Q) in circuit analysis will take on
more importance and significance in radio-frequency circuits where @, is
essentially constant than in low-frequency circuits where R, is essentially
constant. (It should be noted that R, has been tacitly assumed constant
in equation (27) as well as in Fig. 16.] In analvzing tuned radio-
frequency circuits near resonant frequency, wm = 1/V/LC, we obtain
greater accuracy by writing

: 1

Z=w,nL[Rs +J i—t:"":)-l

wml W w

ilen)-EGen) o

since Q is considerably more constant over a reasonable frequency range
centered on wy, than is RB,. It is plain th-at F = (w/om — wn/w).

or

Z
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If L, C, and Q in equation (28) are essentially constant, then F =
(w/wm — wm/w) is the only variable involved, and it should be plain
that the current response versus w will take the same shape as that
shown in Fig. 16 since in one case the response is based upon

P’

ey

14

L 1\?
\[c'_“+(“L_ZE)

which is obtained by substitution for R, its value obtained from equation
(27). In the low-frequency case we assume that R, is constant, which
is essentially true, and in the high-frequency case we assume that L/ cQ?
is essentially constant. Cases arise where neither assumption is justi-
fied, but cases of this kind are reserved for more advanced courses.

&

and the other upon _

\f

I
X a
7 SLLLR
T
i 0 a i
Fic. 17. Series cireuit Fic. 1B. Circle dia-ram of Fig. 17 for
with variable R. constant ¥V and X but with variable E.

Circle Diagram of Series Circuit. Circle diagrams are often employed
ag an aid in analyzing the operating characteristics of circuits which
under some conditions are used in representing transmission lines and
some types of a-c machinery. The basis of representing a series circuit
by means of a circle diagram will be derived with reference to Fig. 17.

The resistance R of the circuit in Fig. 17 will be considered a variable,
whereas the applied voltage and reactance will be assumed constant.
The power-factor angle is designated by 6. If R is zero,  is obviously
equal to V/X, and this value of J will lag V by 90° if X is inductive.
(See Fig. 18)) As R is increased from its zero value, the magnitude of
I becomes less than V /X and 6 becomes less than 90° and finally, when
R equals =, I equals zero and 8 equals zero. The fact that the locus
of the vector 1 traces out a semicircle, as indicated in Fig. 15, may be
seen from the following derivation.

-11
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In general,

1= (29)
and sing = ZE (30)
or Z = rﬁ_& (31)
Substituting (31) in (29),

I= §31n8 (32)

For constant ¥ and X, equation (32) is the polar equation of a circle
of diameter }'/X. Figure 18 shows a plot of equation (32) with respect
to V as a reference and for positive angles 8, representing inductive
loads, measured clockwise. These conventions are employed because
they are the ones most commonly used for such circle diagrams in a-c
machinery. Since Ja in Fig. 18 is O cos 8, it is apparent that Ia is
proportional to the power consumed by the circuit. If the diagram is
drawn to a certain current scale as, for example, J amperes per inch, the
watt scale will be "] watts per inch.

A simple transmission line circuit in which the capacitance and
leakance are assumed negligible may be represented by Fig. 19, where

\i s
I,
b
R- X
d
Ry
0
a c L]
Fra. 19. Series circuit, R and X - Fic. 20. Circle diagram of Fig. 19 for constant
assumed constant, Ry variable. ¥, R, and X and variable R,.

R and X are, respectively, the series resistance and reactance of the
line and Ry is the load resistance. If R is constant and R is varied,
the current follows the equation I = (1'/X) sin 6 as in the previous case.
The distance 7a in Fig. 18 again represents the total power consumed
by the circuit, but the total power dissipated is consumed inboth R and
R.. The power dissipated hy each resistance can easily be represented
on the diagram. .
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If the resistance R is assumed to be zero, all power must be dissipated
in the resistance K. For this condition the power is represented by be
in Fig. 20 and Ob represents the corresponding current. For some
finite value of R, other than zero, the current is O/, and the total
power consumed is proportional to ya.  Of this total, da is the amount
consumed in R and [,d is dissipated by B,. To prove that da represents
the power dissipated in R, it is only required to show that da and be
are proportional to the respective squares of the currents OI, and Ob
for the two conditions.

F imilar triangles d_g__O_a
rom similar triangle: b
Since Oa = 0l cos a0,
oI, (0I,)*
_OI‘E_ Oe
_ ~ oy 28 _ OB
and Oc = 0bcoscOb = Ob Tc = Oa
(01,)*

da O _ (ON)?

be  (Ob)®  (Ob)*-
Oe

Therefore, for any current such as OI,, I,d represents the power
consumed in R, da shows the watts lost in R, and the total power
input to the circuit is given by I1a. If I?R; is considered as the out-
put of the circuit (the power transmitted by the line), the efficiency
must be
output I,d

; 1
RiRsicncy = input Ia

The power factor at the input end is cos 8. It is also I,a/0I,.

The maximum power that can be transmitted by a circuit like Fig. 19
under conditions of constant B and X occurs when the extremity of
0!, in Fig. 20 coincides with the point of tangency to the circle of a
line drawn parallel to Ob. It is a matter of simple geometry to show
that V times J,d under these conditions yields the result for maximum
power as given by equation (39) if X, = 0 [which requires that k in
equation (39) be zero]. Since I,d may be employed as a quantitative
measure of the power delivered to the load resistance Ry, it is plain

.from Fig. 20 that this load power varies from zero (when R = 0) to
a maximum and back to zero azain (wue:. Rp = ).
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The details of circle diagram constructions which apply to circuits
of the kind shown in Fig. 19 may be readily comprehended from a
numerical problem like the following.

Problem 8. Refer to Fig. 19. K and X are constant at the values B = 2 ohms
and X = 3.464 ohms. 1" is constant at 346 4 volts,

(a) Lay off OV = V graphically in a vertical position to any convenient voltage
scale as, for example, 100 volts per inch.

(b) Lay off Oe (of Fig. 20) equal to V/X in a horizontal position to a scale of
not more than 20 amperes per inch. (A scale of 10 amperes per inch will give more
accurate results.)

(c¢) Lay off Ob (of Fig. 20) equal to 7 when Rr = 0.

3 Ans.: [ = 346.4/4 = 86.6 amperes, 60° behind V.

(d) Draw a tangent to the semicircle which is parallel to Ob and construct O,
from O to this point of tangency. What is the magnitude of the current and what
is the p.f. at this point of operation? Ans.: I = 50 amperes, p.[. = 0.86.

(e) What is the maximum power that can be delivered to £.?

Ans.: Ppex = V X Idmaxe = 10,000 watts.

| ’ Jl
S O O
1 1

*  Fio. 21. Impedances in parallel.

Parallel Branches. When impedances are connected in parallel, as
in Fig. 21, the same voltage V is impressed across each impedance.
The current in each impedance is therefore

v v v
:"I—;’ Izhz, and Ia—z—a
From Kirchhoff's current law,
I= Il =+ Iz +1I;
\' 1
Z_l ¥ ﬂ e ( T zz Y Z;
=V, 4+ Y+ Y;3) = VY, (33)

11:

where the symbol Y represents the reciprocal of impedance and is called
admittance. Equation (33) shows that the resultant current flowing
through several impedances in parallel is the product of the voltage
and the sum of the reciprocals of the several branch impedances. In
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other words, the voltage is multiplied by the sum of the admittances
of the several branches. Equation (33) shows that admillances are
added for parallel branches. For branches in series it will be remembered
that impedances are added. Since both admittance and impedance are
complex quantities, all additions involving either of them must be made
in complez form. Arithmetic addition should not be attempted. In
only one case is arithmetic addition correct, and in this case the addition
in complex form will give the same result. If equation (33) is solved
for impedance Z, by obtaining the ratio of V to I, we obtain
v 1 1
s I YWw+Y.+Y;: Yo o)
Equation (34) shows that the resultant impedance of several parallel
branches is the reciproeal of the resultant admittance. Since the unit
of impedanze is the ohm and admittance is the reciprocal of impedance,
the unit of admittance is the reciprocal ohm or mho (ohm spelled
backwards).

Y - I yeo_inad i1
12 =Rt y-Y-e-ib R, I%,

Fic. 22. The parallel equivalent of a series impedance, B, + jX.

The Parallel Equivalent of a Series Impedance. Cases arise where it
becomes desirable to change a series branch impedance as shown ir
Fig. 22a to its parallel equivalent (shown in Fig. 22b). For equiva-
lence, Y of Fig. 22a must equal Y of Fig. 22b. Therefore

1 1

Y=——— o
R Al

LY
P
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or, upon rationalizing,

R, . o R |
RF+X3 'RI+X2R, Y, ()
R,/(R.* + X.*) is called the conductance of the series impedance Z, and
is denoted by the symbol g. X,/(R,? + X,?) is called the susceptance
of the series impedance Z, and is denoted by the symbol b. Employing
the symbols g and b, we have

1 1
Y: —-bz——-—-'
g~f=g-ix

(36)

The physical significance of g and b may be il‘ltf‘l”pr!"'ﬁf as follows,
If equation (36) is multiplied by V to obtain the current I, we have:

v v
I=Vg— Vb= R, J X,
It will be seen that Vg shown on the vector diagram, Fig. 22b, is the
component of current in phase with the voltage and is the current
V/R, in the resistive branch of the parallel equivalent of Z,. Also
Vb shown on the vector diagram is the component of current in quad-
rature with the voltage and is the component V/X, in the inductive
branch of the parallel equivalent of Z,. Hence the conductance 1/R,
of the resistive branch of the equivalent parallel circuit is the con-
ductance g of the admittance ¥ = g — jb = 1/Z,, and the susceptance
1/X, of the inductive branch is the susceptance b of the admittance
Y = 1/Z,. Itisimportant to observe that conductance g in the circuits
of Fig. 22 is the reciprocal of R, but not of R,. Similarly susceptance
is the reciprocal of X, but not 6f X,.

Since g and b are components of admittance and either g, b, or Y
multiplied by voltage vields a current, they are all expressed in the
sume units, namely, mhos.

If the admittances in equation (33) are expressed in terms of their
conductances and susceptances, we have

I=Vig — jby + g2 — jb2 + g5 — jb3)
= Vligy + g2+ g3) — jby + ba + b3)] = V(go — jhe)  (37)

Fruation (37) shows that conductances may be added arithmetically
to obtain the resultant conductance while susceptance must be added
algebraically to obtain the resultant susceptance. That algebraic
addition of susceptances is required is evident from the expression
X/(R* 4+ X?) for susceptance when it is remembered that X may be
positive or negative depending upon whether it is inductive or capacitive,
respectively.
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(a)

Fis. 23. (a) Circuit for example 6. (b) Phasor diagram of (a).

Example 8. For the eircuit of Fig. 23a with the parameters shown, the following
are desired: (a) conductance and susceptance of each hranch; (b) the resultant
conduetance and susceptance; (c) the vector or phasor diagram.

1 0

f - ..__.gﬂ:j; =6 — j8 = 10/ —53.2° amperes
100

Iy = L 16 + j12 = 20./36.9° amperes
4 —-33 =

I=1,+1; = 22 4 j4 = 22.35/10.3° amperes
——

1 1 —

B 1 _B-B 506 - 08 mbo

Zi " 6 +8 6—8)
from which
+g1 = 008 mho, b; = 0.08 mho

or, as an alternative method,

6 . X B
=z wo' T2 10
1 1 4+ 53

Y= == — = (.16 + 70.12 mho
1T Zy (4 -J3) (4 +J3) M
from which

g = 0.16 mho, by = =-0.12 mho

or, as an alternative methaod,
Ry 4 X, -3
0= 717 25 b:-z—li=—2‘5‘
The veetor or phasor diagram is shown in Fig. 23b.
Another way to obtain the resultant current is shown below:
s« @g=g1+g:=006 4 0.16 = 0.22 mho
b = by + bs = 0.08 — 0.12 = —0.04 mho
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Y =g —jb =022 - j(-0.04) = 022 + j0.04 mho
I =VY =100 (0.2 + j0.04) = 22 + j4 = 22.35 /10.3° amperea

Or admittances may be added as follows:
Y=Y+ ¥y =006 — ;008 4 0.18 + ;0.12 = 0.22 4 j0.04
and
I = VY = 22 + j4 amperes

The calculation of admittances from the reciprocals of impedances
and their addition in complex form is generally the most direct pro-
cedure. Experience has shown that students make fewer errors in
signs when following this procedure.

Instead of representing admittance in general as g — jb and then
using ¢ = R/Z* and b = X/Z* many prefer to call it g + jb and then
touse ¢ = R/Z* and b as — X/Z% Both give the same result for ad-
mittance. In either case, X is substituted as a positive value for
inductance and negative for capacitance. In a dissipative circuit con-
ductance is always positive. To avoid confusion in signs it is best to
obtain admittance from 1/(R + jX) rather than from caleulations of
conductance and susceptance. Knowing how to caleulate and use
conductances and susceptances expedites the solution of some types of
problems, although they may be solved by other means. The special
case of two parallel impedances Z; and Z, occurs often in electrical
engineering. For this case, Y, = 1/Z; and Y; = 1/Z,. Hence

1 1 1 Z,Z,
Y—-zl+z2 and Z Y,=Z,+Zg
This expression, which is analogous to the much used expression for
the resultant of two parallel resistances in direct currents, is very useful
in alternating currents. When all reactances are zero, the expressiqn
reduces to the d-c case of B R,/ (R, + R,).

Problem 7. Three impedances Z;, Z2, and Z; are connected in parallel across
a B0-cycle voltage the magnitude of which is 40 volts.
Z, =10 4+j0, Z3=20+;20, Z; =30 — j40 ohms
(a) Find gy, by, g2, ba, g3, and by,
(5) Find the resultant ¢ and the resultant b of the three parallel branches.
Ans.: g =0.137, b = 0.009 mho.
(¢) What is the in-phase companent of the resultant current; the guadrature

component of the resultant current?
Ans.: Vg = 5.48 amperes, Vb = 0.36 amperes.

Resonance in Parallel Branches. Parallel bianches containing
inductance and capacitance are in resonance when the reactive current
in the inductive branch is equal to the reactive current in the capacitive
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branch. The resultant reactive current for the circuit as a whole is
" “therefore zero. For resonance

Vb, = Vbe
br = be (38)

Hence the resultant current flowing is in phase with the applied voltage,
and the power factor of the whole circuit is 1. This is sometimes called
unity-power-factor resonance. Figure 24 shows a circuit and the corre-
sponding vector diagram for this condition. From an inspection of the
vector diagram it will be noted that the reactive components of current

1
3t
Y
LY
N
] Ry l[‘ Re lI“ NI
v >
f’
J Xy XCT s
. SR 7
I,

Fis, 24, Circuit and corresponding vector diagram for parallel resonance.

contribute nothing to the total curreni. Only the components of current
in phase with the voltage exist in the resultant current. It might be
inferred from this that the resultant current is & miniraum at resonance.
This is true if the conductances are constant. It is approximately true
if the canductances are negligibly small, as they usually are in selective
circuits as used in radio. An example will be considered later wherein
minimum current does not oceur at resonance.

The parameters possible of variation to make equation (38) true
may be seen when the susceptances are replaced by their equivaleat
values, as shown in equation (39).

1
‘2xfL 2nfC

R+ oL} _, 1 )2
R + (2"—';‘.0 .

The quantities that may be varied are L, C, f, R, or Re.

Resonance by . arying L. In the following disctission L will be
varied by a means which will nol change the resistance of the inductive
circuit. Let OV, Fig. 25, be the voltage impressed on a circuit like

(39)
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the one shown in Fig. 24. A current, /¢, will then flow in the condenser
branch whose parameters are held constant. When L is zero, the
current through the inductive branch is V'/R; and it is in phase with
the applied voltage. The applied voltage is equal to I Ry under these
conditions. Whes L is increased from zero, the current through the

\"'“'--._JF,."I“

Fro. 25. Locus of [ as L is varied in the circuit shown in Fig. 24,

induetive Branch lags ¥ by the tan™! (X /RL), as illustrated in Fig. 25
by Ofy. For any valueof 7, the I R drop and the I X drop must
add at right angles to give the applied voltage. These component
drops are 04 and AV, respectively. Since they are always at right
angles and their sum must be OV, the locus of the I R drop must be
o semicircle 04V, Since I is proportional to.the I R, drop and in
phase with it, the locus of /¢ must also be a semicirele.

When the I R drop coincides with the diameter of its circle, the
current /7 must also coincide with the diameter of its own circle. The
diameter of the latter must, therefore, be V/Ry. Hence the dotted
circle drawn with V/R, as 2 diameter must be the loeus of Ix. Since
the resultant current is I« + I, this addition is performed by drawing
the semicircle Of LB with the left extremity of its diameter starting at
Ic as shown in Fig. 26. For example, a particular sum of ¢ and I is
represented by CC. As L is varied, the locus of the resultant eurrent
is, therefore, the circle 1¢Cb. Henve, as L is increased from 0 to =,
the resultant current varies from Ob to Oe, which is one point of reso-
nance; thence to Od, which is a second resonant peint; and then to O/c.
Neither of the resonant points gives either a maximum or minimum
current. but they do yield unity power factor. The minimum current
is O, the value where the resultant current is normal to the circle
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I¢cCb. For any particular problem the values of I¢, 8¢, and Icb,
which is equal to V/Ry, can be calculated directly from the parameters.
Any other values of current can then be calculated trigonometrically
from the geometry of the figure. A few facts should be observed.
First, if V,2R, (the radius of the circle /¢Cb) is less than /¢ sin 6,
parallel resonance cannot be obtained regardless of the value of L.
This is in contrast to the series circuit, where some value of L will yield
resonance for any value of R or C. Second, if V/2R. = I¢ sin f¢,-

>zl

Fro. 26. Locus of OC, the resultant current to the circuit of Fig. 24 as L is varied.

there will be only one resonant peint. Third, if V/2R. > ¢ sin ¢,
there will be two resonant points. Fourth, if the resistance of the
inductance were zero, minimum current would oeccur at resonance.
Note that for this condition the conductances would be constant for
the two branches.

Resonance by Varying C. Through a similar procedure to that
outlined above, the student can develop the graphical representation
for the case where resonance is produced by varying C while Ry, L, Fe.
and f are held constant. The graphical representation is shown in
Fig. 27 The locus of the resultant current is the circle adce. Again
it will be noted that resonance which occurs-at d and e is not the con-
dition for minimum current. Minimum current occurs at I’ where
the resultant current is normal to the circle adce. If Rc is zero, the
radius of the circle adce becomes infinite, or, what is the same thing, the
current /¢ is in quadrature with the voltage V. Under this condition
there is but one point of resonance and it corresponds to minimum
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current. The conductance of the capacitor circuit is zero, whereas that
of the inductive branch is constant. This constant conductance makes
the current at resonance a minimum, and hence the impedance a maxi-
mum. Since most selective circuits employ constant inductance and
variable capacitance and the resistances of the capacitive branches are
very small, maximum impedance or minimum current at resonance is
practically realized in these circuits. Since at resonance the current is

Fic. 27. Locus of resultant current to the circuit of Fig. 24 is the vircle ades
as C is varied.

simply the conductance times the voltage impressed, it is evident that
the power factoris 1. An inspection of Fig. 27 will reveal the manner in
which the phase angle 6 between the resultant current and the applied
voltage varies as the resultant current follows the circle adce. Between
points d and e, leading power factor obtains.

Resonance by Varying Frequency. From equation (39) the frequency
for parallel resonance 1s found to be

1 [R;;’c - L:l" :
m =y 40
In = v LRAC— L it
20 K
When R ?C > L and Rc*C < L, the quantity [%%—i] is imagi-
LT -

nary and therefore no real frequency will yield resonance. The same
situation results if both inequality signs are reversed. If Ry and R¢
are equal, equation (40) for resonance becomes

f 1
" 2avIe
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which is the same as that for series resonance. This equation is also
correct when Ry = R¢ = 0 and may therefore be used as a close ap-
proximation when Ry and R¢ are very small. It should be apparent
that there are values of Ry, C, Re, and L in a parallel circuit for which
parallel resonarice is impossible, regardless of frequency. This is in
contrast to the series circuit containing R, L, and C where there is

i
\
-
I A W
r R, Re
]
1
> ! v
Q : R=51
il I."—Pﬁ.—honq
§}_ . Re=10
2l ‘ C = 75 farad
Xd
L

Fio. 28. Parallel resonance by varying*frequency.

always some real resonant frequency for any values of the three pa-
rameters. The trends of various quantities as frequency is varied from
a value too small to produce resonance to a value higher than that re-
quired for resonance are shown in Fig. 28 for a condition where resonance
is obtainable.

Resonance by Varying Ry or Re. When equation (40) is solved for
Ry, the following equations result:

2 2 _
RL:\/L&. (Re’C = L) + L (1)
C
-2 2 2 2 L
RL=\/LC:|JR¢;- — Lfw +E (42)
, Xt i g,
RL XcRc X +C (43)

When the parameters are such as to make the expressions under the
above radical positive, £, takes on definite positive values. It is thus
shown that within limits there are dennite values of Ry which will bring
the circuit to resonance at some particular values of frequency, L, C,



168 ALTERNATING-CURRENT CIRCUITS Ch. vV

and Rc.  Also, for resonance,

R.? N o
Re = \/w'LC —2cete ()

Equation (44) shows that, for those values of parameters which make
the quantity under the radical positive, resonance may be produced by
choosing the proper value of Rc.

In contrast to the series circuit, where resistances have no part in
determining the frequency of resonance, the resistances of a parallel
circuit are of signal importance in determining the frequency of reso-
nance, even to the extent of making resonance either possible or im-
possible to attain, Physically this can be understood when it is re-
membered that, with a certain quadrature component of current in
the capacitive branch, some sufficiently large value of Ry will prevent
a resultant current in the inductive branch from flowing, which is as
much as the quadrature current in the capacitive circuit even when the
inductance is zero. Under such conditions it is apparent that inserting
inductance will do nothing but make the current in the inductive branch
still smaller and hence contribute nothing toward making resonance
possible. Such a case ,was discussed with reference to Fig. 26 when
I ¢ sin 8¢ was greater than V/2R;. Figure 26, which is simply a phasor
diagram, shows that I sin 6, can never be made as large as [¢ sin 8¢
if V/2R. is less than I¢ sin 8¢. A similar situation obtains for the
capacitive branch. _

Problem 8. Draw the phasor diagram and show the locus of Iz as Xy is varied,
when Rz = 1 ohm, X¢ = 10 ohms, Rr = 6 ohms, and the impressed voltage 100
volts for a eircuit as shown in Fig. 24, Repeat the problem when Ry is changed
to 4 ohms. What is the largest possible quadrature component of current in the
inductive branch as X is varied in each case? In which case can resonance be
produced? Why?

Ans.: 8.33 amperes, 12.5 amperes, resonance for 4-chm case only.

Duality. 7The principle of duality (pages 29-38) may be extended to
series and parallel resonance as shown below:

Series Resonance Purallel Resonance

a. Reactive components of voltage a. Reactive components of current
combine to equal zero. combine to equal zero.

b. Voltage source constant in maxi- b. Current source constant in maxi-
mum magnitude. mum magnitude.

¢. Current maximum for constant re- e. Voltage maximum for constant
sistance. conductance.

d. Impedance at minimum value. d. Admittance at minimum value.

e. Inductive and capacitive reactances e. Inductive and capacitive suscept-

equal in magnitude. ances equal in magnitude.
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From the above tabulation it will be noted that the dual elements are

Series Parallel
a. Reactive voltage a. Reactive current
b. Voltage b. Current
¢. Current ¢. Voltage
d. Impedance d. Admittance
e. Resistance e. Conductance
J. Reactance f. Susceptance

Recognition of duality will often yield a deeper understanding of circuit
behavior than would otherwise be the case. It may also help to reduce

the time required for an understanding of the
physical operation of circuits. If, for examp]e,
series resonance is thoroughly understood, it is a
simple matter to extend this knowledge to parallel
resonance by way of the duality principle.

A Simple Form of Wave Trap. Resonance
phenomena as presented in the foregoing articles
form the basis upon which many circuits used in
both wire and wireless communication operate.
They are especially adapted to selective circuits
such as those for filters and oscillators. A parallel
combination of capacitance and inductance, along
with its incidental resistance, can be made into an
effective band eliminator, suppressor, or wave
trap. The impedance of such a circuit_ {from a
to b in Fig. 29), where the resistance of the capac-

Fic. 29. Simple form
of wave trap.

itance is negligibly small and R, is very small compared to wL, is most
easily found by taking the reciprocal of the resultant admittance. Since
the branches are tuned for parallel resonance, the resultant admit-

tance is conductance only. Thus

Rp
) A
Z.2
1 Z.?
and B o
! Vm  RL
Since R;? & w’L?,
w?L?
z‘ = _R-L_

(45)

(46)

(47)

In a previous article it was shown that when Rz = R¢ = 0 the resonant

frequency is practically

OF W= Wy = 27fm =

1
—— 48
= (48)
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Substituting (48) in (47) gives the impedance at resonance

L

Zn = CR. (49)

When used as a wave trap, the parallel combination of inductance and
capacitance is placed in series with the antenna lead as shown in Fig. 29.
At the resonant frequency the dynamic resistance of the wave trap is
very nearly equal to L/CRy [equation (49)]. Experience has shown
that within the standard broadcast band the dynamic resistance at the
frequency f. can be made-about 10 times the impedance at frequencies
+20 ke from f,.. Thus the wave trap acts as a band suppressor or
eliminator. :

Problem 9. A typical coil used in the broadcast band for a wave trap like that
in Fig. 29 has L = 250 X 10° henry and a ratio of reactance to resistance at 10%
cycles of 170. Assuming the resistance of the condenser to be zero, caleulate the
following: )

(a) C to produce resonance at 100G ke from equation (39).

(b) C to produce resonance at 1000 ke from equation (48).

(¢) Impedance of the wave trap from a to b when adjusted for parallel resonance
at 1000 ke.

(d) Impedance of the wave trap to 990 ke when in resonance for 1000 ke.
(¢) The ratio of the impedances for (¢) to (d). ~
Ans.: 1013 puuf, 101.3 uuf, 267,000 ochms, 75,100 ohms, 3.56.

A Singular Case of Parallel Resonance. For some values of the
parameters Rz, Rc, L, and C connected as in Fig. 24, the circuit is in
resonance for all frequencies. This may be shown as follows. From
equation (39) the condition for parallel resonance is

')

" A
R:*+ w?l? 1
RCE =t U202
1 w?C? wC

TWC RASCT+ 1 1+ W*C?R?
or
1 - 1

2 =
% + 2L é 4+ *CRc?

(50)

To be independent of frequency, an inspection of equation (50) will
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show that the following two conditions must be imposed simultaneously

& RS2 1 \F,
Condition 1 =G o Ry = 3
Gk 4 L.
Condition 2 CRe* =L or Rec= =

Hence for resonance at all frequencies

Ry = Re = \/g (51)

Since the circuit is in resonance (resultant susceptance = 0), its ad-
mittance must be the resultant conductance. Therefore

_ B R _ \/_ \/- =\ﬁ

1 L

B \% -' (5255*;,‘

Equation (52) shows that the impedance of the circuit is also inde-
pendent of frequency. The preceding demonstration has shown that,

when Ry = = V/L/C, a circuit arrangement like that in Fig. 24 is

in resonance for all frequencies and offers the same impedance vV L/C
to all frequencies.
It has been shown that under certain condltmns the network of Fig. 24

is equivalent to & single series resistance of vilue V'L/C at all fre-
quencies. For general information it may be stated that it is possible
to find networks that are equivalent to a given network at all fre-
quencies although in contrast with the one discussed the impedances of
the different networks, while being the same for any given frequency,
will not remain constant at the various frequencies. A detailed study
of such eircuits is left for courses covering the theory of networks.

The Q of Parallel Circuits. In vacuum tube- circuit analysis one
frequently encounters the circuit arrangement which reduces essentially -
to that shown in Fig. 30a, namely, a coil and capacitor connected in
parallel and energized with a current source. In the practical cases
which will be encountered, the resistance of the coil, R,, is very small
compared to wL; therefore '

B aun _1:
c+mL C+

and

R? K*L?
-12
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Under these conditions the transformation of the series R, and L to
a parallel combination of g and b, as suggested in Fig. 22 transforms
Fig. 30a to that shown in Fig. 30, where

1
bf_#;z and bc=‘wc

It should be noted that bz-and b are magnitudes of the inductive
and capacitive susceptances, respectively. Where purely reactive

| 3w

; -~ 1. R ==b
I I ; 1 I g-i’ 3 by [

(a) (b)

Fia. 30. Circuit shown in (b) is the equivalent of that shown in (a).

branches are placed in parallel, as in Fig. 30b, it is convenient to write
Y = g + j(bc — by) and thereby obtain an expression which is directly
analogous to Z = R + j1Xr — X¢). In Fig 30b we find

I : I

V = = 53

Vg* + (be — br)* 1\? 2
9"‘*‘(:&0—:5

Comparing the above equation with equation (16), we observe a
correspondence which allows us to interpret Fig. 16 as the voltage
response versus w. This response has a maximum value of I/g, and
the analysis following equation (16) can with a few obvious changes in
notation be employed to determine the band width of the selective
circuit shown in Fig. 30.

Since g in equation (53) corresponds to R in equation (16), and
C to L, and L to C, we may write for the parallel circuit

Ao = wg —w = g, (54)

either by analogy with equation (25) or by direct computation.
Employing the same definition of Q as given on page 153 (namely,
Q = wam/Aw) and remembering that wm = 1/ LC when the resistances
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of the parallel branches are amall relative to the reactances, we find that
for the parallel circuit

e el 1 E\/@ '
Q> dw g geml g VL (58)

In elementary analytical calculations, it is quite customary to treat
both R, of equation (27) and g of equation (55) as constants, that is,
independent of frequency. Neither of these approximations, however,
agrees with the physical facts as accurately as treating Q as constant
over a reasonable frequency range centered on the resonant frequency,
fm, since R, increases with increases in w. Over certain ranges of the
radio-frequency band, R, varies almost linearly with respect to w, and _
under these conditions we may set R, = kw with the following results:

Q N—E = % = constant
'R, ke
1 W L?
Q= W_L S Rk constant

Example 7. In Fig. 30a it will be assumed that the coil has a series resistance,
R,, of 25.1 ohms and a self-inductance of 10 millihenrys. This coil is to be resonated
at 20 ke with the capacitor C.

Let it be required to find the equivalent parallel circuit resistance, 1/, the l.u.nms
capacitance, the Q of the parallel circuit, and maximum voltage response per milli-
ampere of current 7.

R, 251

= = z 1]
V= o0 = Ty X 30,0000 X o) — 199 X 10 mho

1
Ry = ; = 62,900 ohms

1 1
Lem®  0.01(2x X 20,000)?
“—C M—’Ll “-L

.001
Maximum voltage response = -0% = 62.0 volts per milliampere

= 0.00633 X 10~* farad

C=

T

A certain class of vacuum tube, namely, the pentode, can under
certain operating conditions be made to function as current source
supplying up to several milliamperes of alternating current simply by
energizing one of its electrodes (the control grid) with a small a-¢ voltage.
Since thm small a-c voltage is often- considerably less than 1 volt in
magnitude, it is'plain that large voltage amplifications may be obtained
frgm the circuit configuration shown in Fig. 30% if the current source
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takes the form of a pentode. Moreover this circuit has a reasonable
degree of selectivity since the band width between the 0.707Vpnex points
on the response curve is

_ & = 1.59 X 1078 = "
Aw = C = 000638 X 109 2510 radians per secon§
On this basis of reckoning, the per unit band width is
T A 2510 :

;  en T 2ex 20000 0%

Series-Parallel Circuits. The series-parallel ecircuit illustrated in
Fig. 31 is a combination of the series and parallel circuits which have
" been discussed previously. The principles

previously considered apply to the analysis of
series-parallel circuits. - These are (1) imped-
ances in series are added in complex ferm and
(2) admittances of those branches which are in
parallel must be added in complex form. To
illustrate, consider Fig. 31. The admittances
of impedances Z, and Z; are added in complex
form, and the reciprocal of the fesultant ad-
mittance is then the equivalent impedance of
section B. An alternative method of find-
ing the impedance of section B, as was pre-
viously shown, isto'use Zg = Z,Z5/(Z4 + Zs).
Through a similar procedure the impedance
of section 4 is determined. The impedances
of section A, section B, and Z; are in series
and are, therefore, added in complex form.
This procedure yields the equivalent or result-
ant impedance Z, of the series-parallel circuit. The current I may then
be found from V, Z,.

Determination of Branch Currenls and Vollages. After the resultant
current is determined, the process is reversed to determine branch
voltages and currents. The general procedure is to subtract the voltage
drop ecalculated for the known current and the impedance through
which it flows from the applied voltage to obtain the voltage drop
across the remainder of the circuit, or to caleulate the drops across
various sections from the resultant current and the equivalent impedance
of the branch through which the current flows. For example, in Fig. 31,
the drop across section .4 is the product of equivalent impedance Z of
that section and the currentT. The current through each of the parallel

Fic. 31. Impedancesin
series-parallel.
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impedances is then determined by dividing this drop by the impedance
of the particular branch or, if the admittances have been determined,
by multiplying the voltage drop across the branch by the particular
branch admittance. A similar procedure can be followed for section B,
and so on.

o+

Fra. 32. Circuit for example 8.

Example 8. Calculate current, power, and power factor for each impedance
shown in Fig. 32, and the total current and power and the power factor of the whole
combination.

Yo =

1
5 —p ~ 008 +008 mho

Yo = = 0.16 — j0.12 mho

443
Yo = Yoo + Yoo = 0.22 — j0.04 mho

} 1 (0.22 + j0.04)
Yo = 4.4 + j0.8 oh
Y, (022 - 0.04) (022 +,0.04) B b .-

Zyg =

An alternative methed is

X ZapZog _(B—ia) (4 +73)
Zp+2Z4 6-—38+4+73

Zy = Zy + Zjy = 1.6 + 7.2 + 44 + jOB = 6 + j3 ohms

100 /0° ‘

= =6 — j8 = 10/ —53.
518 j8 =10/ 2° amperes
P=wi+0i=6X100+0X8 =600 watts

800 R 8
“oxio~ 8 *® g -0t

Z;, =44 4508 ohms

Pi.
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Vor = LyZyy = (6 — j8) (1.6 + 37.2) = 67.2 4 j30.4
= 73.8 /24.4° volts
VY=V —1,;Zy =100 — 67.2 — 530.4 = 32.8 — j30.4
= $1.7/ —42.8° volts
Or, more directly,
Vs =124 = (8 — j8) (4.4 + j0.8) = 328 — j30.4
= 4.7/ —42.8% volts
Ls = Vjo¥a = (32.8 — ;30.4) (0.06 + j0.08)
=44 + ;0.8 = 4£.48/10.3° amperes
Ta = VY2 = (328 = j30.4) (0.16 — 70.12)
= 1.6 — jB.8 = 8.95/—79.7° amperes

or ILg=1—I4=6—-;8—44—;08=1.6—788
= 8.95/ —79.7° amperes

The powers in the various branches rmay now be determined in terms of principles
previously considered.
Pay = vi +¢'i’ = (32.8) (4.4) + (—30.4) (0.8)
= 14132 — 24.32 = 120 watts

P.; = (32.8) (16) + (--30.4) (—8.8)
= 52.48 4 267.52 = 320 watts

P,, = (67.2) (6) + (30.4) (—8) = 403.2 — 243.2 = 160 watts
or P, = I'r = (62 + 8?) (1.8) = 160 watts
P, =100 X 6 = 600 watts, ¥
Check: P =Py + Pg+ Py = 120 4 320 + 160 = 600 watts

.E’)".,;,--E -—i——-ﬂ.ﬁlmd

R.i 4
| o R
4t Vit w

Problem 10. Study throwgh the details of the above example and draw a vector
diagram of V, I, V., L, 1.4, and V;;. Employ a voliage scale of 25 volts per inch
and a current scale of 2 amperes per inch.

Series-Parallel Tuning. It has been shown that for certain conditions
parallel resonance yields maximum impedance and that series resonance
gives minimum impedance. These facts suggest that a combination of
these two phenomena may be used to exaggerate the effect of some
certain frequency and minimize the effect of another. An arrangement
that does this is shown in Fig. 33. This procedure is known as series-
parallel tuning. To illustrate, assume that two waves, one of 10,000

= 0.8 lag
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cycles and the other of 20,000 cycles, are impressed at ab and that it
is desired to detect the 10,000-cycle wave at D. Obviously as much
10,000-cycle current through D as can be obtained is desired, and as
little as possible of the 20,000-cycle wave is to be tolerated. Hence the
parallel branches of capacitance and inductance are adjusted for parallel
resonance at 20,000 cycles. Then the 20,000-cycle wave encounters a
high impedance, and little current due to it will flow through D. For
the 10,000-cycle wave a little thought
will show that the parallel circuit acts
as an inductance. If a capacitance
is placed in series with the parallel
circuit de and its reactance for the
10,000-cycle frequency is made equal
to the equivalent inductive reactance
of the parallel circuit de for this same  Fic. 33. Series-parallel tuning circuit.
frequency, the circuit from a to b will

be in series resonance for the 10,000-cycle wave. The ecurrent
through D for the 10,000-cycle wave, therefore, will be large, whereas
parallel resonance from d to ¢ for the 20,000-cycle frequency will allow
only a small 20,000-cycle current to flow through D.

Example 9. Assume Ly to have 0.005 henry inductance and 50 ohms resistance.
Neglect resistance of the condensers. Parallel resonance for 20,000 cycles obtains
when

by = be
«(.005
507 + «1(0.005)" wCi

where @ = 2r 20,000 = 12.57 X 10* radians per second
_ 0.005
507 + 0.005%*

50 50
Y, = = =
4= 0 = T T 00055 ~ 397,300 ™°

397,300
50

Cy = 1.257 X 10~ % farad

= 7046 ohms

Zae
For 10,000 cycles,
Ycu = 2+ 10,000 X 1.257 10~8 = ;79 X 10~ *mho
N
= 50 + 70.005 X 2= 10,000
Yio = Yo + Yii = 493 X 1078 — ;231 X 10~ mho
10%

2y = m = 88.1 + 7413 ohms

Yo = 49.3 X 107% — j310 X 107* mho
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Since 413 ohms is the equivalent reactance of the divided circuit, & capacitive
reactance of 413 ohms is required to produce series resonance. Then Z, = 88.1
ohmas for 10,000 eycles.

For 20,000 cycles,

}413
Zy = —"T = —3206.5 ohms

Zop = 7946 — j206.5 or 7946 ohms approximately

Z 510,000 - 7946

= 90.2
Zap10,000* 88.1

Hence for equal impressed voltages acrosa ab, the value of the 20,000-cycle current
will be about g'y of the value of the 10,000-cycle current.

The student should devise the explanation to show that if the 10,000~
cycle wave is to be suppressed and the 20,000-cycle wave detected,
an inductance would have to be substituted for the capacitance between
a and d.

Fi1a. 34. See Problem 11.

Problem 11. The ecircuit db of Fig. 34 is to pass a 45000cycle current with
minimum impedanee and is to block a 15,000-cycle current as effectively as possible.
Rg = 20 ohms, R; = 40 ohms, and Cq = 0.05 pf are fixed. R, the resistance of
the C; brauch, is assumed to be negligibly small. L, is capable of being varied
over the required range, it being assumed that the resistance of branch 1 is 40 ohms
when L, is set at the desired value. Either a fixed Cp or a fixed Lo (of negligibly
small resistance presumably) is to be placed in series with Ry to accomplish the
above-stated tuning effect.

{a) Solve for L), which will put the parallel circuit bc into parallel resonance at
15,000 cycles.

(b) Calculate the equivalent impedance from b to ¢ at 45,000 eycles with L, set
at its 15,000-cycle resonant value. Is be predominantly capacitive or predominantly
inductive at 45,000 cycles?

(c) What type of reactance (lnduenve or capacitive) must be placed in series
with Rp to put the branch ab into series resonance? Calculate the value of Ly or
C'o which is required to put the branch ab into series resonance at 45,000 cycles.

(d) Assuming that the branch ab has been put into series resonance at 45,000
cycles, what is the actual impedance from a to b at 45,000 cycles? at 15,000 cyclea?
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Outline the above procedure for the reverse tuning effect, that is, for circuit ab to
pass 15,000 cycles and block 45,000 cycles.
Ans.: (a) Ly = 2.17 or 0.0835 millihenry. Use 2.17 I'or lower conductance.
() Zs = 0.69 — j79.9 ohms, predominantly capacitive.
(¢) L = 0.283 millibenry.
{d) Zasas,000 = 20.69 ohms. Zasis,000 = 1103 ohms.
Complex Frequency. As applied to sinusoidal wave forms of current
or voltage, 1 = I sin (wt + 8) or v = V,, sin (w! + 68), we might define
complex angular frequency as

dl/d! dv/dt  wcos (wt + 8)
Lk i v sin (wl + @)

(56)

all of which has the requisite dimension, namely a number per second.
In this connection, we recognize j as an operator which advances the
real quantity [sin (wt + 6)] through 90° to yield cos (wt + 68). That is

w[j sin (wt + 6)] = w cos (wl + 7)

An extension of the above definition to complex exponential currents
and voltages provides us with the general concept of complex frequency.
A complex exponential may be represented in any one of several different
ways; for example:

i= I = I = 1e* (cos wl + j sin wi) (57)

where I = I¢® and s = & + jw. Depending upon the manner in which
it is used, I may be expressed either as the maximum or rms value of
the sinusoidal component of the complex exponential.

It will be observed that the complex exponential is capable of repre-
senting any of the four wave forms shown in Fig. 35 with either the
réal part, R, or imaginary part, 9, of i. In this connection

R(i) = Ie cos (' 6) - (58)

and
9(@i) = I sin (wt + 6) (59)

In later courses, analyses will often be carried through in terms of
complex exponentials. Then either the real or imaginary portion of the
final result will be used. The interesting aspect of this approach is that
the analysis, in terms of complex exponentials, is usually simpler to
write than is the analysis of either the real or imaginary component
alone. Consider, for example, the LRC series branch shown in Fig. 19,
page 74. If the steady-state branch current, z, is to be represented as
a complex exponential it will be expressed as: i = I¢’’. Since in linear
circuits, current is directly proportional to voltage the voltage drop
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Fro. 35. Wave forms which ¢an be represented by complex exponentials.

across the branch will be Ve* as is evident from a detailed study of the
voltage equation
Sfiadt

- d ()

Substitution of i = I¢*' into the left-hand side of this equation will
show that .

; L ¢ B+ = Ve (60)

(L5+R+—l—)1-—lv C (61)
Cs !

The impedance of the LRC series circuit (V/I) in terms 6f the complex
frequency s is usually written as Z(s), meaning Z expressed as a function
of s. Thus -

26)=7 = (Ls+R+2) (62)

I A
Where the circuit parameters L, R, and C are constants, .it is evident

that complex exponentials satisfy Kirchhoff’s laws in rather elegant
fashion, The associated complex frequency is

_di/di dv/dt
o=
which may be verified as follows. From i = Ie*, di/Jt = sI¢* = si.

di/dt :
Therefore s = lld . A similar procedure using v = Ve will also

=a+jw (83)

yield s. The real part of s, namely a, accounts for an exponential
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increase or decrease of the current or voltage whereas the imaginary
part, w, defines or specifies the angular frequency of the current or

voltage.

= e Juty 1 R?
o ] Wi a2
|
|
|
|
{ ¢
: 3 plane
|
{
| ™8,
| \
Il (5 1 -
2 l./‘i H“ @
2L |
|
I
|
|
|
|
|
!
1], f 1
| L = LM
Y&~ o
' — & — 8
Fic. 36. Illustrating the pole and zeros of Z(s) = L (’—[—’—-')——(’i)J
- ]

Since s is a complex number, it is natural to employ an s plane in
circuit analysis with « measured along the axis of reals and w measured
along the axis of imaginaries. In terms of this convention, real angular
frequency w is plotted along the j axis of the complex s plane as indicated
in Fig. 36.

Poles and Zeros. Network behavior is sometimes characterized by
the poles and zeros of the impedance function Z(s) of the network.?

* More generally, the transfer characteristies of the network, Vaout,/Via, Veur Lin,

Lout/Tin, 8nd Iou/Via, are characterized by the poles and zeros of these transfer
functions, all of which are ratios of polynomials in s.
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A pole of Z(s) is defined as the value of complex frequency at which
Z(s) becomes infinite and a zero of Z(s) is defined as the value of s at
which Z(s) equals zero. For example, the impedance of the LRC series
circuit derived in the previous article may be expressed as:

1 (3+E’+Lc)
Z(s)—Ls+R+a— .

or
L(s — B)(s — 8)
(s — &)

§, = 0 is the single pole of Z(s)

R 1 R? :
B2 = — oL +j Ic " a2 the two zeros of Z(s). .

If the pole and zeros of Z(s) are plotted on the s plane as in Fig. 36,
it is evident just how the magnitude and phase angle of Z(s) could be
evaluated for any value of s with the aid of a scale and a protractor.
Ordm;m‘ly, interest lies only in values of s which are on the real fre-
quency axis, that is, the jw axis of the s plane. At any value of s = Jws,
for example,

Z(s) = (64)

(ij o El)(jwr =p I!)
Jos

Z(s) = Z(juwz) = L

or )
Z(jw,) = L ‘:—b /6a + 8 — 8, (65)

where a = | jw; — § |, b = | jws — 82|, and ¢ = w,, all of which may
be measured with the aid of a suitable scale. 8., 6, and 6. are the
angles of the three phasors (jw. — 8;), (jw: — B2), and jw, respectively
measured from the +a-axis direction.

In order to illustrate the pole-zero method of analysis (as well as
to point out some of its shortcomings), we shall evaluate Z(s) at

l
8§ =Jw =j ,— Vic from the location of the zeros and pole in Fig. 36.

1
Ats=jw0=j—_\/z"—?

&) + [z~ G
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f e
8 =4qrc L’C’ a13%c

- [2 1 R
b'\[ﬁ"'z [3C? ~ iL°C

¢=——, 6, = x/2radians
c
1[I F . T
: - VLC LC L NVLC Lc~
94 = tan y 8 ta
R/2L /2L
\[_1_ Lafzha - 2
b ’c ~ “\I’¢d ~ ar’c/
20 =123 - 17— T
= R/0° ohms (66)
In arriving at Eﬁ 0, we make use of the well-known and easily
derived relat.lonshlp. tan"'z + tan™' y = tan™! : j—:;‘ Obviously,

no advantage accrues from the use of poles and zeros in this simple case.

In complicated filter circuits, the phase characteristics (X6 versus w)
are often evaluated by the graphical method (or with the aid of an
electronic computer) since the analytical expressions for the phase
characteristics can become extremely eumbersome.

Example. Let it be required to find the frequency response of the so-called
stagger-tuned amplifier circuit shown in Fig. 37. By frequency response in this case
we mearr the manner in which Egq/Ejn = E3/E; varies with angular frequency, w.
If we let

Eout _ E
Elu = L

we might plot A versus w to show how the magnitude of E;/E; varies with « and
plot 8 versus w to show how the phase of E; (relative to E,) varies with w. The
latter plot is sometimes referred to as ".e phase characteristic.

In the circuit of Fig. 37 gmiE; and gm2E; are the current-gencrator representations
of the two tubes. The details of how these current generators represent the amplify-
ing properties of the tubes are incidental to the present problem. .

If the impedance of L is represented by Ls and the impedance of C is represented
by 1/Cs as derived on page 180, the application of Kirchhoff's voltage law to the
I; loop shows that

(Lla FR+ —-) s L
Cll
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Fio. 37. Tllustrating the pole-sero method of circuit analysis,
Ey(w) _ (8 — #)(s — Ba)
Ei(s) (s — )8 — 1,%(0 — b)(s — 1"
From which

= (L18 + R1)gmiEy

1
C (L:l + Ry + e

E; = (Lis + R, =
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and
R;)
L (l — =
Er _ =gm sl Ly - SOmi (s — &)
E, Cy ( y o M 1 ) Cy (s —8)(s—8")
Li|s +L1' +L—-:C|
where 8 = —R;/L, is a zero on the negative « axis of the s plane.
" R, . 1 Rn
g, = — oL, + e , & second-quadrant pole. _

R { 1 R?
B = — Ef; - 5t ik —— » the conjugate of ;.

In a similar manner
E —gm? (s — 82)

E, Cs (s — ;) (s — 62*)

where 83 = —Ra/Lq is a zero on the negative a axis of the s plane.

Ry | . } Ry’
&, aLs + L’C’ !, , & second-quadrant pole.
- Ry } _R?
By = - 2, ~I N, ~ i the conjugate of #,.

bt

It follows directly that

Ei  fmifm? (8 —8) (8 — 8)
Y N e Y R R L

Let w; be any value of w. Thens = s, = juw, and the following quantities may be
mauured ‘from the pole and zero plot:

|jos — 81| =a  |jws—32] =b

ljws = 8i| = |jue—61*| =d

[jwe — 82| =& [jue — 8% | =1
8, = angle associated with (jw, — §;) = a
6, = angle associated with (ju, — %) = Db
8. = angle associated with (juw: — 8;) =¢
64 = angle associated with (ju, — §,*) = d
8, = angle associated with (ju, — §;) = e
6; = angle associated with (ju, — #2*) =

Ay = Tadns b

X
CiC: ~ odef
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where a, b, ¢, d, ¢, and f depend upon w for their values:
8(w) = [8a + 0y — 8. — 62 — 8, - 8

If the coils are of the high-Q variety

Ry R
woy > . and wpa D> I
Under these conditions a ‘'d and b f are each approximately equal to 1/2, and ab/df
of the A (w) expression reduces to 1,'t. Then

gmigmz 1
10, Cy R ce

It is also evident from Fig. 37a that (8, + 8 — 84 — 8;) = 0 so that
6{w) = — (8 + 84)

The results are indicated schematically in Fig. 37.

The great advantage of the pole-zero method of circuit analysiss that the general
behavior of the circuit is displayed without detailed and laborious calculations. The
method is gencrally more suitable for advanced courses than it is for a first course in
circuit analysis, On pages 572-575, the use of complex frequency, poles, and zeros
in finding both the steady-state and transient responses of a circuit is given.

Aw) =

+

(c) (d)

Fis. 38. Reactance of four elementary circuits plotted
against w as the independent variable.

Pure Reactance Circuits. Four characteristics of pure reactance
circuits are illustrated in Fig. 38:
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(1) Either a pole or zero exists at w = 0.

(2) Either a pole or zero exists at w = =,

(3) Poles and zeros alternate along the real frequency axis.

(4) The slope of the reactance curves is always positive, that is,
dX/dw > 0 for al! finite w.

It will prove instructive to investigate these properties of reactance
circuits employing the s-plane method of attack.

The poles and zeros of a reactance network are confined to the juw-axis
of the s plane since there are no dissipative elements like R and ¢
present to give the critical frequencies a real component. In Fig. 38,
series resonance occurs at wl, = 1/wC or at a zero of Z(s) = Ls + 1/Cs.
Parallel resonance occurs in Fig. 384 at a pole of

1 s/C

1 ;
B~ 1/Ls + Cs & + 1/LC (&7

The latter expression has a zero at s = 0 (or at jw = 0) and poles at

1
= +j——. The poles and zeros of functions which are plotted
VLC ,
against real  are often indicated by crosses and circles respectively as
in Fig. 38.

An illustration of multiple resonance is given in Fig. 39 where

1 § 1
s 1 WC'2
J (MCI - )
NLI

; 1 1 ) 1
A e e
Dikieg [w (LICI & Ly(, i L., i L,L,C ('2]

1
Z) =g+ 22 =

or

Z(w) = (68)

It will be observed that Z(w) is a pure reactance that has a pole at

1
w=0 (equa] to —j —C-) and a pole at w = = (equal to jwLa)} as well
wlz

g 1
as internal poles at wy = + Ic. Poles and zeros at w = 0 and at
16y

w = « are referred to as external poles and zeros, whereas those between
these limits are called #nternal poles and zeros.. The bracket term in
the numerator of equation (68) contains four zeros: two between |
=0 and w = » (designated in Fig. 39) and their negatives (not
shown) which, of course, lie between w = 0 and w = — =. It will be

-13
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observed that the poles and zeros alternate along the w-axis which is
squivalent to their alternating along the ju-axis of the s plane. It will
rove instructive to investigate this property in more general terms.

T, has apole X at ) = e

Frequency —,

Reactance

(a)

= # S
% W — Also a pole X ot W =

Reactance

)

Fi1o. 39. Poles and zeros of the reactance function for the circuit shown. Multiple
resonance is illustrated when be resonates at a lower frequency than ab.

A theorem due to R. M. Foster® states that the impedance seen looking
into any network of pure reactances is given by

o (@ = 8% = 8 - (@ = Ba)
Z(w) - K‘ (“;2 = ‘;12)(“,2 —_ &22} P (u}a — ‘:-‘mz} (ﬁg)

: H . .
where K is equal to jwH or I.oJ_— . H is a real number which depends
W

upon the values of certain L's and C’s in the network. In effect, this
“heorem states that the shape of-the curve for a given impedance function
is entirely determined by the poles and zeros. In other words, through

3 A Reactance Theorem " by R. M. Foster, B.S.T.J., April 1924, pp. 259-267.
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the same poles and zeros only curves of the same shape can be drawn.
These curves differ only by the scale factor H.

&1, @3, -+, @, are the internal zeros or the values of w at which
Z(w) = 0, not counting the possibility of a zeroat w = 0 or at o = 0,
&y, @2, -+, dn are the internal poles or the values of w at which

Z(w) = =, not counting the possibility of a pole at-w = 0 or « = ©,
It will be observed that m and n represent the numbers of internal poles

and zeros respectively.
In manipulating equation (69), four cases each of which is defined
and illustrated by the sketches shown in Fig. 40 must be allowed for,

namely:

LL circuits which have an external zero at w = 0 and an external pole -
at w = w0,

CC circuits which have an external pole at & = 0 and an external zero
atw = o,

LC circuits which have external zeros at w = 0 and at o = 0,

CL circuits which have external poles at w = 0 and at w = ©,

Case I: K = jwH and n = m. The LL circuit where

(@ = @° - (W - 3,7

S =Ry e e
The reactance versus w graph is given in Fig. 40a.
Case II: K = Jg and n = m. The CC circuit where
w
H (w?—3,3)--. (w? — 3,2)
Z(w) = =
() Jo (@ — &%) - (® — 0,7) L
See Fig. 40b.
Case III:' K = juH and m = n + 1. The LC circuit where
o (W —@?) - (0P = 3,
= 2
Z(w) = jwH FHETY T (72)
See Fig. 40c.
Case IV: K = J% and m = n — 1. The CL circuit where
e S S
z(“) = E (“ @ ) (“’ 8n ) (73)

jo (@' = 0,%) -+ (@? — 0, ,7)
See Fig. 40d.
In order to show that, in general, the poles and zeros alternate along



190 ALTERNATING—-CURRENT CIRCUITS Ch. V

|
- =
/nm
(b)

|

|

|

1

’Lr -
1 /Iﬂ)ll o

|

(c)

|
/ll Pole al =
. s
) |
|
I (d)

Fic. 40. Reactance graphs of LL, CC, LC, and CL networks. (Of the many possible
circuit configurations which might be employed to obtain the reactance graphs, one
simple configuration is indicated for each of the four cases.)

1
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the jw-axis of the s plane, we should first investigate the behavior of the
reactance in the fmmediate vicinity of a zero and in the immediate
vicinity of a pole. Reference to Fig. 41a will show that just below the
zero §; where w_ < &, the reactance is governed essentially by (s — §,)
regardless of the other zeros and poles. For s = jw_ (just short of the
zero §;) the reactance of the network is negative.

k(s — 5§)) = jlo— — Bk = —jX

Tiw +ju
$ plane $ plane
e A
E 1] governed by $;1
+X =) Y +X
+X o A=X
i governed by (8 — §) %
-X
0 a
fa) (b)

Fic. 41. For use in proving that the poles and zeros alternate along the jw axis.

where k is a positive real number for zeros on the positive jw-axis
ft._d] > 0).

Just above 8, where w,; > &, the reactance of the network is positive
since the governing factor is (s — §;). That is

k(s — 8)) = jlw — &)k = +jX
The effects of the other poles and zeros do not affect these results be-
cause the zero tery near s = jw dominates completely the behavior of

Z(jw) in this neighborhood.
Reference to Fig. 4la will also show that just below & pole, say §;,

k k

Zlia) — = X (74)
L " = '
At ju = jd,, Z(jw) = +j=
Tust above §, in Fig. 41a
P T ¥ —ix (75)

6 —8) Jjlay—61)
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In passing through a pole in the direction of inereasing (jw), Z changes
from an infinitely large positive reactance to an infnitely large negative
reactance. Suppose now that two poles, §; and §,, appeared consecu-
tively along the jw-axis asillustrated in Fig. 41b. Since s = jw is allowed
tovary from §; lo §,, the reacta..ce would have to change continuously
from — = to +=. As applied to a physical circuit arrangement, this
change in reactance (from — = to + =) requires that the reactance, X,
be zero =omewhere between §; and §, or that the poles be separated
from one another by zeros. A natural consequence of the alternation
of the poles and zeros along the juw-axis is that dX /dw is always positive
except al the poles where d.X /dw is not defined.

Impedance Matching and Maximum Power Transfer A common
problem in impedance matching is to determine the load impedance
which will allow the maximum power to be transferred to the load from
some generating device having a constant
generated voltage, E,. Let Fig. 42 represent
such an arrangement and consider R; to repre-
sent the sum of the internal resistance of the
generating device and the resistance of the con-
necting lines. Also assume X, to be the
combined reactance of the line and internal
Frg. 42. Generator con- reactance of the generating device. The solu-

{:f":zi;:d:::d throvgh  ion is obtained by expressing the power at

the receiver algebraically and then finding the
maximum value of the expression. Let the receiver impedance be
represented by R, and X,. I the receiver is a two-terminal net-
work, R, and X, are its equivalent series parameters. Thus

— E' ==
V(R + Ry)’ +4X1 + X,)°
ES2R,
(R + R + (X, + X,)?
In order to make the derivation eusily applicable to all conditions, the
ratio of X, /R, will be represented by k. Then
X, = ikt ;

and E,’R, .
Pr = 3 T - 77)
(Ry + R,)* + (X, + kR,)? (

Setting dP,/dR, = 0 and solving for R, give

' Zy %
R, & —— 1‘8)
V1 + k?

I =

1°R, = (76)

P,

]
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where Z; = m Substituting equation (78) in equation

(77), expanding the terms in the denominator, and simplifying give
E;?

27, \/1 + k% + 2(R, + kX,)

P max — (79}

Equation (79) gives the maximum power for any value of k, the ratio
of X,/R.. To find the value of & that yields the greatest maximum
power, it is necessary simply to set dPp.:/dk = 0 and solve for k.

Then

W.{
k= + 7] (80)
Substituting equation (80) in equation (79) yields
E,z

(81)

Pmlx max —

2
4R\ + — (X £ X,?)
R

It is obvious from equation (81) that the greatest maximum power will

occur when the minus sign is used or when k = —X,/R,. For this case

E 2

P, ax = 82

mMAX MAX . 4R1 ( )

Since R, cannot be negative in a dissipative network, X, must be minus

to make k negative. Hence X, is capacitive if X, is inductive, and
vice versa. Also for this condition, from equation (78),

VR + X,* _ RiVR®+ X,

= = — R

V1 + X,%/R,? VR?*+ X2 '
Also for the greatest maximum power X, = kR, = — (X,/R1) R, =
—(Xi/R,) R = —X,. Hence the receiver impedance must equal the

generator plus line impedance, and the reactances must be of opposite
signs. In short, the receiver impedance must be the conjugate of the
combined generator and line impedance. As would be expected, the
circuit 1s tuned for series resonance. Since R, and R, are equal and
the current is the same in both, one-half the power input is dissipated
in the generator and line, and one-half is given to the receiver. The
efficiency of transmission for the greatest maximum power is, therefore,
50 per cent.

Constant potential power systems are not designed to operate on the
basis of maximum power transfer, but most low-current circuits are so
designed. Impedance matching is, therefore, of considerable importance
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in all communication networks, and much attention has been given to
this phase of circuit analysis by communication engineers.

Problem 12. A generating device has an impedance of 0.5 + j! ohms and is
connected to a load by a line of 1.5 + j4 ohms. At what load will maximum power
transfer be realized? If the generated voltage is 20 volts, what is the power received
by the load when adjusted for maximum power transfer’ Find the line loss and
loss in the generating device.

Ans.: Zyoad = 2 — j5 0hms. Ppay max = 50 watts at receiver,
Fline 1oss = 37.5 watts. Py 1oss = 12.5 watts.

Problem 13. If a load impedance having a ratio of X/R = 5 is used at the end
of the line in Problem 12, find the load impedanee for maximum power transfer,
What is the maximum power the load can receive?

Ans.: For positive k, P = 3.675 watts. Z, = 1056 + 75.28 ohma.
For negative k, P = 45.2 watts. Z; = 1.056 — 15.28 ohms.

Networks. Resistors, inductors, eapacitors, vacuum tubes, and
sources of emf may be linked together in all conceivable forms. Most
of the combinations, and almost all of those which contain emf’s in
more than one branch, cannot be solved by simple series-parallel circuit
theory alone, as previously outlined in this chapter Such combinations
may be classed as networks. Networks that contamn sources of emf or
power are sometimes called active, whereas those that do not contain
any internal emf’'s or sources of power are called passive networks.
Networks are said to be linear when the current in all branches is
directly proportional to the driving voltage or emf impressed. Thus
a network containing iron-core inductance coils and resistances that
vary with current strength are non-linear. Networks may be com-
posed of bilateral or unilateral elements. Bilateral elements are those
circuit elements like inductance, resistance, and capacitance which
transmit current equally well in either direction. Unilateral elements
are those circuit elements like rectifiers and vacuum tubes which transmit
effectively in only one direction.

Through the application of a few simple network theorems, certain
combinations of circuit elements which are not solvable by ordinary
series-parallel circuit theory directly may be solved quite readily.

"The Superposition Theorem. The current which flows at any point
or the voltage between any two points in a linear network, as a result
of the simultaneous action of a number of ermf's distributed throughout
the network, is the sum of the currents or voltages at these points
which would exist if each source of emf were considered separately,
each of the cther sources being replaced at that time by their internal
impedances. This theorem states that each emf in a network may be
treated as acting independently and the current in any branch of a
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network due to the simultaneous action of all emf’s is the vector sum
of the currents in the particular branch produced by each emf acting
separately. It is important to keep all circuit elements closed or con-
nected as they are in the network. All the emf's except the one for
which currents are being calculated are assumed to be zero. Any
impedances associated with the source of emf must be left connected
in the network whether the emf is assumed to be zero or whether it is
the one considered as an independent driving voltage.

an
p n . 2n .
£ ot 100 20 p fe,E 50 130
2,71+j3 ohms - Ip14i5
II.// a d t
v Fic. 43. See example 10.

Eun_;;ﬂé 0. Calculate the current in branch bc for the network of Fig. 43
Sobitign”  Assume

Ejpe =0

zﬂ,"zn‘f _(3 = j‘a} (2 = 3 J'i]
Zey+Zg (B3 —373+4+2 +74)
Zyy = Zape + Zey =1 +,3 + 1 — 3 + 3.69 + ;0462

= 5.69 + 70.462 ohms

¢ 100 + jO
#7569 + j0.462

Z, = = 3.69 4+ 70.462 ohms

= 1743 = j1.417 amperes

Now assume
EFy=0

CZasZaa (=3 41453244
Zow+ Zea 2+2+ 1

Z., = = 1.5 + ;0.5 chms

Zeo=Zpoe+ 2Zei=1+35+2—j3+15+j0.5 =45 — j2.5 ohms

50 /30°
Lee = i }12-:5 = 3 + j8.34 amperes

LZo (64330 (L5 + 05)

Lz = - = 166 + 37.50 amperes
& 2

L = L + DLier = Toer = Lanz = 1743 — j1.417 — 1.66 — j7.50
= 15.77 — j8.917 amperes
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\ﬁoblem 14. Caleulate the current in branch ae of Fig. 44,
Ans: L, = 176 — j3.14 amperes.

c b
= Ey=100 /30

Fiu. 44. See Problem 14.

Reciprocity Theorem. If any source of emf, E, located at one point
in a network composed of linear bilateral circuit elements, produces
a current I at a second point in the network, the same source of emf,
E, acting at the second point will produce the same current I at the
first point.

Example 11. The application of the above theorem may be illustrated as follows.
Given the network shown in Fig. 45. The reciprocity theorem states that, if 100
volis are inserted in be and branch ef is left closed, the current flowing in ef will

2n

e 2n a In 20
2n
M =100 /0° mnon .
- o = T 2N
{ d c

Fic. 45. See example 11.

then be exactly the same as the current that flowed in he when this same voltage
was applied at ¢f. To verify this theorem the current in be will be culeulated for
the 100 volts at ef.

Zoselad 3 + 4 (——_,rlm

= = 6.67 + j3.33 ohm:
CRICTY e sl Tt

zn:r 3

Zie =2+ Zyo =2 - j2 + 667 4 j3.33 = 8.67 + j1.33 ohmas

V!, 100 +j0
=== — = 11.27 — j1.732
Ze 867 1133 11 JL.7I2 amperes

Voo = LZoe = (11.27 — j1.732) (6.67 + j3.33) = 81 + ;26 volts

Vae _ 81 426 _
- — —=— = 13.88 — ;9.84
L. Z.ﬂg 341 88 — 70.84 amperes
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Now assume that 100 volts are inserted in branch ¢ and that ¢f remains closed.
The current in ef will be calculated by a procedure similar to that shown above.

_ @2 =2) (=10

zZ 270! o 1352 — j1.892 ch
of = (g — 2 — j10) Y R
Z.os = 3 + j4 + 1.352 — j1.892 = 4.352 + ;2.108 ohms
100 + jO

Loy = = 18,6 — ;9.02 amperes

4.352 + ;2.108
Vor = (18.6 — j9.02) (1.352 — j1.892) = 8.07 — j47 4 volts
8.07 — j47.4

) = 13.88 — ;9.84 amperes

Iy =

which is the same as the current Iy, above.

From the reciprocity theorem it follows that the ratio of the emf in
branch 1 of a linear bilateral network to the current it causes in branch
2 is the same as the ratio of a voltage placed in branch 2 to the current
it would cause in branch 1. This ratio of voltage in one branch to
the current in another branch is called the transfer impedance.

Problem 16. Make use of the first set of calculations for Fig. 45 when the emf
is inserted in fe and with the aid of the reciprocity theorem find the current in fe if
100 volts are inserted in branch ad. Verify your result by actually caleulating the
current in fe when 100 volts are inserted in branch ad.

Ans.: —2.8 + ;8.1 amperes.

£=100 ZE’E

Thévenin's Theorem. If an impedance s Jua, iwn
Z is connected between any two points of

an energized network, the resulting cur-

rent I'through this impedance is the po- ~j0a
tential difference V between these points, T

prior to connection, divided by the sum f d b
?f the connected 1mpeds.mce Z and the o 46,  Bewnaaciin il
impedance Z,, where Zg is the impedance

of the rest of the network looking back into the network from the points
across which impedance Z is connected. In evaluating Z; all sources
of emf must be assumed to be zero and replaced by their internal im-
pedances.

Example 123. For the network shown in Fig. 46 the voltage drop at ab is found

as follows:
100/0°
WJUM Ireeda = E%!ﬂ“ = 10/90° amperes

Vo = Vi = (10/90°)(20 / ~90°) = 200 /0° volts
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Now suppose that the current through a load impedance Z; = 30/0° ohms con-
nected across ab is desired. According to Thévenin’s theorem, the current is V,,
divided by the sum of the load impedance and the impedance looking into the net-
work at ab. Thus the impedance looking into the network at ab (designated by Zo)
when the emf in the branch ef is assumed zero is:

(10)(~

o -0 ohms

Zu -_]10 +

According to Thévenin's theorem

Vas 200 /0°
- 472/ —45°
Zo+ 2. 730 +30/0° {=dmapme

Lioad =

This result may be checked by the usiial series-parallel eircuit theory as follows:

(30 + j10)(—j20)

Zy = = 12 — j16 ochms

30 + j10 — j20
Z, = j10 + 12 — j16 = 12 — 76 ohms
100 + ;0
L. 12“36-6&)?+;33333mpem
Vo = (6.667 + j3.333)(12 — j16) = 133.3 — j66.67 volts
133.3 — j66.67 ,
) 30 + 410 3.333 — j3.333 = 4.72 / —45° amperes

which is the same as that obtained by Thévenin's theorem.

e ISN sn
g A U
T .. Lis
E =100 /0 =<
-j200 r'b -j20n
h ! !
f d

Fi.. 47. =ee Problem 16,

..fProblem 18. In the circuil of Fig. 47, the impedance of the generator is assumed
low enough so that it may be considered to be zero. Find the impedance Zg looking
into the terminals ab az emploved in applying Thévenin's theorem. As may be
easily shown, the drop across ab is 150 /0° volts. Calculate the current in a load

impedance Z, = 10 — ;7.5 ohms connected across ab
Ans.: Zp = j7.5 ohms, Iy = 15/0° amperes.

The Nodal Method. The method ordinarily employed in analyzing
circuits consists in establishing the necessary number of vollage equi-
librium equations and solving for the currents. In many cases, par-
ticularly in vacuum tube circuits, it is desirable to employ current
equilibrium equations and solve for the voltages. The latter method,
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known as the nodal method, consists essentially in writing Kirchhoff's
current law at the nodes or junctions of the network the required
number of times to effect a solution for various voltages in which we
might be interested. See Chap-

ter I. Ay <l

In its simplest sense, & node of a [z.1_¢ 2 b
a network is any accessible ter- —J 2
minal which is at a significant
potential difference with respect E.T Vrl B;I lI' TEH
to the other terminals, In this
sense, the network shown in
Fig. 48 might be considered a
four-node network having nodes Fic. 48-‘_ Voltage sources may be transformed
a, b, c, and d. Only the junc- :t;icr;:éu;sl:em current sources shown in Figs.
tion points (c and d) of the net-
work, however, need be considered nodes, since the number of independ-
ent nodes is the number of junctions minus one. This will become
more evident as we proceed,

Before the nodal method of analysis can be applied to voltage sources
having internal impedance, these voltage sources must be transformed
to equivalent current sources in accordance with the following principles.
(If a specified voltage source is assumed to have zero impedance, it
follows that the potential difference between the terminals of the
generator is specified and hence does not enter the analysis as an un-
known potential difference.)

In order to illustrate the transformation of a voltage source having
internal impedance to an equivalent current source, let us suppose
that Z, of Fig. 48 is actually the internal impedance of the E, voltage
generator, thus eliminating point a as a node. Let V' be the potential
of node ¢ relative to node d. Applying Kirchhofi’s voltage law we have

d

LZ +V.=E, (83)
or
E. V.
PO SO 4
I, Z,  Z, (84)

It will be observed in equation (83) that the inclusion of the potential
of node d (V,) is unnecessary and in general any node may be selected
as a reference node from which to reckon all other nodal potentials.

If E. and Z, are specified quantities, equation (84) states that the
current flowing into node ¢ (/) is equal to a specified current (Es/Z1)
minus a current (V./Z;). The specified current (E,/Z,) may be con-
sidered as a current source across nodes ¢ and d, provided that a Z, path
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is placed in parallel with this source to account for the (V./Z,) current,
in equation (84). Thus the voltage source E, in series with Z, shown
in Fig. 48 may be replaced with the circuit configuration shown in
Fiz. 49. In a similar manner the E, source and the impedance Z,
may be replaced with the configuration shown in Fig. 50.

# I
1 1
> — )
¥, ¥
c
¥
]2 . Ofs
( I vc 7 i:
d de
Fia. 49. Equivalent current source Fic. 50. Equivalent current source
of £, voltage source of Fig. 48. of E, voltage source of Fig. 48.

If now these equivalent current sources are used in Fig. 48 instead
of the voltage sources, Fig. 48 takes the form shown in Fig. 51. Em-
ploying Fig. 51, the current equation for the node ¢ can be written in
terms of voltage drops and admittances as follows:

YiVe+ YoV + Y,V = Y E, + Y3E, (85)
{eurrent leaving node c) (current entering node ¢)
14
£ B . 'E_'-
7, =%k, B-vE

2

] EJW[] @ ®

Fia. 51, Transformation of the circuit shown in Fig. 48.

V. can be obtained from equation (85) directly in terms of known
quantities and all currents thereby calculated.

Example 13. Assume the data for Fig. 48 to be as follows: E; = 100 /0° volts,
E, = 50/90° volts, Z; = 5/0° ohms, Z3 = 10 /36.9 ohms, and 2Z; = 20/53.1° ohms.
Find the voltage V, and currents I, I, and I;.

From equation (35),

VI(YI + Y‘l + Yl] - YIEI + Yﬂn“

Lol meid ')_IWL 50 /90°
5/0° " 10/369° " 20/81°) " /0" T 10/369°
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V.(02 +008 — ;006 + 0.03 — j0O.04) = 20 + 5{53.!“
V. = 71.6 /27.76° volts

I; = V.Y; = (71.6/27.76°) (0.05/ —53.1°) = 3,58/ —25.34° amperes

As seen [rom Fig. 49,
I = E;Y, — V.Y, = (0.2/0°) (100/0° — 716 '27.76°) = 7.35 — j6.66 amperes

and, from Fig. 50,
I = EYs - V.Y, = (0.1/=369) (50 /00° — 716 '27.76°)
= —1.05 + ;5.134 amperes

The nodal method of analysis is usually superior to the mesh-current
method if the number of nodes (after transformation to current sources)
does not exceed the number of meshes or loops. If N represents the
number of nodes in a network, only .\ — 1 independent node equations
are required, and these are obtained by applyving Kirchhofl's current
law to N — | nodes,

To arrive at the method of formulating a general system of nodal
equations, assume that Fig. 52a is the network to be solved. First,
replace the voltuge sources by constant-current sources as shown in
Fig. 52b. Assume one node as the reference node, node 4 in this case.
The output of the constant-current generator a is E,/Z, = I,. Simi-
larly the output of constant-current generator b is Ey/Z, = I;. To
obtain the current in any impedance, the voltage drop across the im-
pedance is multiplied by the admittance. The voltage drop can always
be obtained in terms of the nodal voltages. Remembering that the
voltage drop from node 1 to node 2 is the sum of the drops encountered
in going from node 1 to 2 by any path, we may write V5 = V4 +
Vi =V, — Vo Hence I;; = (V; — V3)Y,5. Application of Kirch-
hoff's current law to node 1 yields

YoV + Y02V + Yo (Vy = Vo) + Yia(Vy — V) =1, (86)

or
Yo+ Y1+ Yo+ Y3)V - Y,V = Y5V =1, (87)
The sum of all the admittances from node 1 to all other nodes is called
the self-admittance and is designated by Y,,. The admittance of the
impedance connecting node 1 20 any other node, say n, is called the

mutual admittance, ¥:,. Thus Y,,, Y3, etc., are mutual admittances.
When these notations are used, equation (87) becomes

Y11v1 — Y]sz - Yl;!v; = I]. (88)
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Similarly, for node 3,

YisVs — YaoVo — Y3 Vi = I, (89)
where Y33 = Y13+ Y3 + Yo3 + Ys.  And, Ifor node 2,
YoV — Y5V, — YouV3 =0 (90)
3
g ) ,va.&

Fia. 52a. A network having two voltage sources.

Fra. 52b. Transzformation of eircuit shown in Fig. 52a.

An extension of equations (88), (89), and (90) will yield the genera
system of nodal equations for an n-node system as follows.

Y“V; 5 Y[sz o Y;a‘ra i S Yl,‘vﬂ Il General system

- of nodal
= YaVid YoV, — YouVg — - = YuVa = I equations where a

common node
= YuVi =Y,V - YuV3— .- + Y,,V, =1, ) is employed
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As previously defined, I;, Iy, - + -, and I, are the output currents of the
constant-current generators direcged toward the various nodes. The
nodal voltages in the general system of equations above may be solved
for by determinants. After some practice with these systematic forms
of solution, the determinant forms can be established from an inspection
of the network after all specified voltage generators have been trans-
formed to equivalent current generatorsf“ The writing of the current
equations as shown above can therefore be dispensed with and the
analysis reduced to a simple routine procedure. '

In order to appreciate fully the usefulness of the nodal method, one
should apply it to vacuum tube circuits where the plate-to-cathode path
of the tube functions as a current sink (or negative current source).
This application, however, presupposes an elementary knowledge of
the functioning of a vacuum tube, and for this reason the following
example may be omitted without loss of continuity by those readers
who have no knowledge of the performance of a vacuum tube.

oul

Fic. 53. The a—c equivalent of (a) is shown in ().

Example 14. The Equivalent Plate Circuit of a Vacuum Tube. For the present,
we may accept the fact that the plate current, i, of a vacuum tube as shown in
Fig. 53a is a function of both the plate voltage, e, and the control grid voltage, é..
Both of these potentials are relative to the cathode labc.ed £, as indicated in Fig. 53a.

If only small changes from the d-c operating values of current and voltage are
involved, we may write

. oy a1y
Ay a6 Aey + Je. Aee (91)

and, if the change in plate current Ais is called i, if the change in plate voltage
ey is called e, and if the change in grid voltage Ae.ts called e, we have

iy = 2 4 gy (©2)

Lt
where r, = dey/d is called the variational or plate resistance of the vacuum tube,
and gm = 2iy/de. is called the mutual conductance or transconductance. For
a particular conditicn of d-c operation both rp and gm are usually known. The
plate current of the vacuum tube so biased that the control grid eurrent'is zero is

-14
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riven by equation (92), and it is this equation which permits the use of the equivalent
uit shown in Fig. 53b for the phbe-to-cathode portion of the vatuum tube shown
1g. 53a.
in Fig. 53 we may replace the instantaneous values of the e's and the i's with
iective values if a sinusoidal time variation of e, is assumed and if ¢, is at no time
50 large as to permit the contro grid to draw current. It will be observed that
the vacuum tube functions as a current sink (gmey) in parallel with a rea:amnce
path, namely, the r, path in Fig. 53.
In order to illustrate further the application of the nodal method in a numerical
case let it be required to find Eoy, in Fig. 53 if:

€in = 0.707 sin 3770¢ volt or Eiy = E, = 0.5/0° volt

gm = 2000 micromhos gm = 200 X 10~* mho

rp = 20,000 ohms gp = 5 X 107% mho

Ry = 50,000 ohms Gy = 2 X 10~* mho

Ry = 200,000 ohms Gp = 0.5 X 107% mho

C = 0.00265 uf Y12 = ¥2; = jul = j100*mho

Applying Kirchhoff's current law to node 1 in Fig. 53b, we obtain
V1 + GV + juC(Vy — Vi) = —g.B, = 1}
or ”
YuVi — YiuVa = —gnE; = —100 X 10~* ampere
where, in this particular case,

Y1 (the self-admittance of node 1) = g, + @ + juC
= (7 + j1)107* mho

Y12 = Y3, (the mutual admittance between nodes 1 and 2)
= jul' :
= j10~* mho
Applying the current law to node 2,
GoV2 + joC(Vy — Vy) =0

=YV, + Yoy =0

where

Y2 (the !elf-!.dlmtt;noe of node 2) = Gp + juC
= (0.5 + j1) X 1075 mho

The detailed applications of the current law can be dispensed with as soon as the
systematized procedure implied by the subscripts attached to the Y's is understood.
The determinant form of the solution for V2 is

Yu I; 7 + j1) =100
. X 10710
—Y" D —jl
Vi=r = =
Yu Y 7+ ) =l ”
x 1071

-Ya Y2 —j1 0.5 + 1)
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—;100 100/ —-90°

= - - 12.08/-155°
Vi= 35+ 75 " B 2/es. BESI vile

The amplification of the circuit arrangement shown in Fig. 53 is

12.08 / — 155°
Eout _ ——’I— = 2416/ —155°
Ein 0.5/0°

which indicates that the magnitude of the output voltage is 24.16 times that of the
input voltage and that the output voltage lags the input voltage by 155° or 155/360
part of a eycle.

Norton's Theorem:. This theorem states that with respect to any
pair of terminals of any active network, the active network may be
replaced with a single current source in parallel with an impedance,
equal to the impedance which is seen looking back into the network

(1) -2
<3
1
Y, £ =
(.D ['"‘:"" z, | z |
] L_l_.l
|
—o b —l
Fio. 54. Equivalent circuit Fic. 55, Equivalent circuit of
of Fig. 46 as used in the Fig. 5¢ employing a constant
application of Thévenin's current generator.

theorem.

from the specified pair of terminals. As such Norton’s theorem is
merely a mild variation of Thévenin's theorem since the Thévenin
equivalent of an active network (Fig. 54) is readily transformed to the
configuration shown in Fig. 55. In this latter figure

I= Iwure-e . ab/zﬂ

where Vg, is the open-circuit voltage which appears across the selected
terminals and Zg is equal to the series impedance of the Thévenin
equivalent circuit, Fig. 54. The transformation from Fig. 54 to Fig. 55

gnminﬁ essentially in equation (84), page 199.

ample 15. Norton's theorem will be applied to example 12. From example 12
|/ ¥the voltage Vay = 200 /0° and the impedance looking back at ab was Zo = 730 ohms.
£ This yields a cireuit shown by Fig. 54 which was employed in Thévenin’s theorem.

Converted to a constant-current generator in accordance with the principles shown
in the previous article, the circuit of Fig. 55 is obtained. If an impedance load
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2, = 30/0° is connected across terminals ab thé following splution results:

200/0°
I= Yo _ '—L‘ = —j6.66 amperes (current source)
Zy 130
Z.Z, G ait
L, = & +5 Pz (~76.66)
= zZ; R

30 :

- —iB.66) =
30 + 730 (—=78.66) 30 + j30
which is the same result as obtained in example 12. Thus in accordance with
Norton’s theorem the circuit of Fig. 55 may be used between terminals ab to replace

Fig. 46. -
Either Thévenin's or Norton's theorem is often applied where complicated net-

works relative to a pair of terminals are being analyzed.

= 4,72 / —45° amperes

A

) (& (2]
= SO () )

Fic. 56. Delta. Fia. 57. Wye.

Equivalence of Special Circuits (Wyes and Deltas). Figures 56 and
57 show two types of circuits which are very commonly encountered in
the reduction of electrical networks. The first is called a delta system;
Fig. 57 is called a wye. It is possible to substitute a wye-connected
system of impedances for a delta system, and vice versa, if proper
values are given to the substituted impedances. Suppose that it is
desired to substitute a wye for a given delta. The two systems will be
exactly equivalent if the impedance between any pair of lines A, B,
and C, Fig. 58, for the delta is the same as that between the corre-
sponding pair for the wye when the third line is broken. If this con-
dition is imposed, the following equations are obtained:

- : _ Z3(Z, + Z,)

Line A open: Zo+ 25 = ——*———zi 17,17, (93)
‘ Z,(Z; + Zy) :

L : Zz Ze= —m——— 94
ine B open 4+ Zc Zt Lt Zs (94)

Line C open: Zy+ 2 = St B (95)

2, +Zy+ 23
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Solution of these three equations simultaneously for Z,. Z5, and Z¢ in
terms of the impedances Z;, Z3, and Z; gives the following:

Z,Z,
Ly ot . 96
A= 252, + 2, (96)
2224
. Zgm s 97
{ 8= 7 %2, + 1 (97)
o 2,2,
o AR i B 08
C= 7 17, +2 (98)
@
c
B
Fic. 58. Circuit for establishment of equivalence between wye and delta systems of
impedances.

From equations (96), (97), and (98), the values of the wye imped-
ances Z4, Zg, and Zc¢ that will replace a system of delta impedances
Z,, Z,, and Z3; may be found. These results are easily remembered
when it is observed that the denominators are all the same and equal

.to the sum of the three delta impedances. The numerator for Z4 is
the product of the two delta impedances which connect to Z;. Simi-
larly the numerator for Zz is the product of Z, and Z3.

It should be noticed that the special case of balanced delta impedances
yields wye impedances, which are also balanced and equal to

Z,;""_ Zd
y=32."73
and
Zy=3Zy

\/éxmple 18. Find I for the circuit and constants shown in Fig. 50. First a
wye is substituted for the delta abe. The wye and its corresponding impedances are
shown dotted.

¥ o (1 +412) (4 - j6) "
a«_,u’ AT W=-78)+ B+ + O +412)

-

8.6 — 1.2 ochms
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100 volts

Fia. 59. Bee example 16.
L (4 — 78) (3)
B+ 56
e (1 +12) @)
8 + 56
After the above impedances are substituted, the circuit appears as shown in Fig.
60. It is apparent that a series-parallel circuit results, the method of solution of

Zz = —0.12 — j2.16 ohms

Zc = 2.4 + j2.7 ohms

A

Fic. 8l. Reduction
from Fig. 60.

Fic. 80. Reduction from Fig. 59.
which has been given in a previous article. Combining the parallel branches results
in the eircuit shown in Fig. 61. Thus
Zned = 3 — j4 ohms
Znpa = 6 + j8 ohms
g BTG -J0 . 008
MEB )+ 648 O +74) O -
450 — 7200
81 + 16

= 4,645 — 72,065 ohms
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100 + 50
13.245 — j3.265

To find the currents in the various branches, the steps are retraced as follows:
Vg = 1Z,g = (7.14 4 j1.76) (4.645 — j2.065)
= 36.73 — j6.57 volts
(36,73 — j6.57) (3 + j4)
(3 —j4) (3 +j74)
- (36.73 — j6.57) (6 — jB)
(6 +73) (6 — j8)

Von = 1Z., = (7.14 4+ j1.76) (8.6 — j1.2) = 63.51 + j6.57 volts

Vae = LncaZne = (545 + j5.09) (2.4 + j2.7)
= —0.64 + j26.9 volts

= —7.403 — j3.25 volts

Voo = Van F Voo = 63.51 + /6.57 — 0.64 + j26.9
= 62.87 + j33.47 volts

Vo = Von + Vap = 63.51 + j6.57 — 7.403 — j3.25
= 56.11 + ;3.32 volts

. (62.87 + 733.47) (! — j12)
(1 +;12) (1 — j12)

(56.11 + j3.32) (4 + j6)
(4 —j8) (4 +58)
Check: 3.19 — j4.96 + 3.93 + j6.73 = 7.12 + j1.77, which is within slide-rule
accuragy of 7.14 + j1.76 amperes.
Vi = Ven + Vay = 0.64 — j26.9 — 7.403 — j3.25
= —6.763 — j30.15 volts

" —6.763 — j30.15
Ls = ——3—’~—— = —2.254 — j10.05 amperes

Ig=Toe — s = 3.19 — j4.96 + 2.254 + 710.05
= 5.444 + j5.09 amperes

1 = 7.14 + j1.76 = 7.355/14° amperes

Inea = = 5.45 + j5.09 amperes

= 1.69 — ;3.33 amperes

e = 3.19 — j4.96 amperes

Iy = = 3.93 + 76.73 amperes

which checks I,.q4.
Iy = I + Ly = —2.254 — j10.05 + 3.93 + j6.73
= 1.68 — j3.32 amperes

There are a few occasions when it is convenient and desirable to
substitute an equivalent delta for a wye. This is simply the problem
of finding the values of Z,, and Z3, and Z3 that will replace the values
of Z4, and Zp, and Z¢ in Fig. 58. The solution is obtained when equa-
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tions (93), (94), and (95) are solved algebraically for the impedances
Z,, Z,, and Z3 in terms of the impedances Z,, Zg, and Z,. It will
usually be found simpler to solve for these quantities from equations
(96), (97), and (98), which were derived from equations (93), (94),
and (95). The solution gives

_ ZiZp + ZpZeo + ZoZy

Z, Zs (99)
Z,Z ZpxZ ZoZ

s 2 8+ ;cc*!‘ cZa (100)
Z,Z ZgZ Z-Z

7, = 24LE i ;Ac + ZcZ,y (101)

Equations (99), (100), and (101) are easy to write when it is observed
that the numerator of each is the same and equal to the sum of all

A
A
10a g 160
an 6N
8n
3n 4 e
g ﬁe c B
148N 64N
Fia. 62. See example 17. Fi16. 63. Equivalent delta of Fig. 62.

possible products of the three impedances when taken two at a time.
The denominator of Z, is the wye impedance that has no connection
to either extremity of Z,. Similar relations obtain for Z; and Z;.

Example 17. Find the delta that will replace the wye system shown in Fig. 62.

o (10) (6 — 78) + (6 — 58) (4 + j3) + (10) (4 + 73)
4+ ;3

Zapa
148 — j64

T+ 3 16 — 723 ohms

148 — j64
10
143 — joi
6 —j8

From these three impedances the equivalent delta is found as showm in Fig. 63.

Two commonly used types of networks are the T and » configurations
shown, respectively, in Fig. 64a and Fig. 64b. Viewed as three-terminal

Zgeca = = 145 — j6.4'ohms

Zoaa = = 14 4 78 chms
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networks, these configurations will be recognized as the wye and delta,
respectively. The same formulas derived for changing a wye to an
equivalent delta are therefore applicable for changing & T to an equiva-
lent . Likewise formulas for changing a delta to an equivalent wye
may be used to change a = to an equivalent T.

a2 —1—{1)—>

c
(a) (%) B

Fic. 64. (a) T network, (b)) = network.

T- and w-sections are used extensively in transmission line and
filter-section calculations. In cases of this kind, the T- and x-sections
shown in Fig. 64 are usually considered as four-terminal networks be-
cause these sections are inserfed into a two-wire circuit and are con-
sidered to have a pair of *“input ” terminals and a pair of * output ”
terminals. The manipulation of T- and =-sections as four-terminal
. networks will be considered in detail in Chapters X and XI.

PROBLEMS

17. Calculate the current through the impedances of Fig. 65. Find voltage
drops across ab, be, and ed. Draw the vector diagram showing the current and the
voltage drop across each resistance or reactance. Calculate the power factor of
the complete circuit.

5n 30N BN 180 in
100 volts

Fi1c. 65. See Problems 17, 18, and 24.

18. Find all possible values of pure reactance which, when placed in series with
the circuit of Fig. 65, will make the overall power factor 0.6, Find the power dis-
sipated in the circuit for this condition, '

19. A particular 110-volt, 60cycle, 3-hp, single-phase induction motor has an
efficiency of 60 per cent and a power factor of 0.6 lagging at full load. This motor
is to be used temporarily on a 220-volt, 60-cycle line, A resistor (non-inductive)
of suitable current capacity and of proper resistance is to be placed in series with
the motor.
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(@) What value of resistance is required if the motor is to have 110 volts acrosa
its terminals at rated full load?

(b) Draw the complete phasor diagram (Vamotor, IRexternal, I, 8nd Viine) With V motor
as reference.

20. A single-phase lagging-power-factor load takes 300 watts and 5 amperes at
120 volts. Find the reactance of a pure capacitor that may be placed in series with
this load so that it will operate normally from a 240-volt source.

21. Two single-phase motors are connected in parallel across a 110-volt, 60-cycle
source of supply. Motor 1 is a split-phase induction type which takes a lagging
current, and motor, 2 is a capacitor type which takes a leading current. Find the
total power, the comhmd line current, and the resultant power factor of the two
motors operating in parallel from the followmg data:

"
Horsepower Per Unit Per Unit
Motor Output Efficiency Power Factor
1 3 0.60 0.70 (lagging)
2 . 3 0.75 0.95 (leading)

22. A series circuit on which 100 volts is impressed consists of a 10-ohm resistance,
a 5-ohm condenser, a resistance R in which is lost 50 watts, and a reactance X taking
100 inductive vars. Calculate all values of B and X to satisfy the conditions stated
and the corresponding currents for each of the combinations.

23. A toaster operates at 115 volts, 60 eyeles, and 10 amperes and absorbs 1150
watts at its terminals. A choke coil is to be wound with a ratio of X1 to R of 5, so
that, if placed in series with the toaster on a 230-volt, 80-cycle line, the toaster will
have 115 volts across its terminals.

(a) What is the impedance of the choke cml required? State Z in polar and in
rectangular complex form.

(b) Draw the complete vector diagram with ¥ yoaster 88 reference.

(¢c) What is the power factor of the combined toaster and choke coil in series?

24. Find the inductance or capacitance which may be inserted in the circuit of
Fig. 65 to put the entire eircuit in resonance. Frequency 60 cycles.

25. (a) If the impressed voltage on a series eircuit containing 5 ohms resistance,
100 ohms inductive reactance at 60 cycles, and a variable capacitance is 100 volts,
find the maximum drop across the capacitance and the value of the capacitance
for this condition. &

(b) Repeat the calculation if, instead of the 5-ohm resistance, a 100- ohm resistance
is used. Compare Lhe results in the two cases.”

26. A" series circuit dissipates 800 watts and also requires 100u volt-amperes
when the impressed voltage is 100 volts. Find the equivalent series resistance and
possible reactances of this cireuit.

27. The frequency range of the pass band as previously deﬁned in this chapter
for an RLC circuit is 100 cycles when a coil having a Q of 50 is used. AH resistance
of the circuit is assumed in the coil.

(a) Find the upper and lower frequency limits of the pass band.

(b) If & coil with & @ of 200 is used at the same resonant frequency as in (a), what
will be the frequency range of the pass band?

28. Given the RLC series circuit shown in Fig. 66.

(a) Find the resonant frequency of the series circuit.

(b) Find the Q of the series circuit at the resonant frequency.
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(¢) At what angular velocities do the half-power points occur?
(d) Assuming that L is varied to obtain resonance, at what value of L would V',
be maximum? Assume the frequency in this case to be constant at 159 ke,

A A 200 1y
1000 N 100 mh 10 put
Y =100 voits

Fig. 66. See Problem 28.

29. Given the circuit shown in Fig. 67.

(a) What are the values of X1, that will produce resonance?

(b) Find the magnitude of the maximum impedance obtainable with this circuit.
Assume that the frequency is held fixed.

31250 3040

V=100 volts
4000

o

Fia. 87. See Problem 29.

(¢) If Ry is changed to 30 ohms (R¢ remaining the same) and L and C are made
9 millihenrys and 10 uf, respectively, what is the impedance looking into the circuit
at 100 cycles per second and 10,000 cycles per second?

(d) At what frequency will the circuit as designated in part (c) be in resonante?

30, In the following exercises, it is assumed that & coil having L henrys of in-
ductance and R, ohms of series resistance is placed in resonance with a series ca-
pacitor C, s0 that wm = 1,V LC. '

(a) Show that @, = wmL/R, is

reactive faetor (of the coil)
power factor (of the coil)

Q. =

(b) Show that
1

Power factor (of the coil) = —————
V. +1
(¢) Show that .

. ol
Q= R

where w is the reactive energy stored in L and C at any time and R,I? is the average
dissipated power of the circuit. Nole: w = (Li?/2) + (Cv.?/2) = constant.
31. Animpedance Z; = 8 — j5is in parallel with an impedance Z; = 3 + j7 ohms,
Find the resultant impedance of the cornbination. What is the overall power factor?
82. If 100 volts are impressed on the parallel impedances of Problem 31, find I,
I3, and the resultant current. Draw the vector diagram of the circuit, showing
each current, and the voltage drop across each parameter.
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83. An impedance load consisting of 12 ohms resistance and 16 ohms inductive
reactance is connected across a 60-cycle, 100-volt source. Find the capacitance of
a capacitor which may be paralleled with this load to bring the power factor to 1,
Assume negligible resistanee for the capacitor.

34. Work Problem 33 if a final power factor of 0.8 instead of 1 is demred Obtain
solutions for leading and lagging power factors.

35. Find the value of pure resistance which would be required in parallel with
the impedance load of Problem 33 to bring the resultant power factor to 0.8.

86. A capacitor branch having a ratio of X to R of 5 is paralleled with an impedance
consisting of 4 ohms resistance and 3 ohms inductive reactance. The power factor
of the resulting circuit is 0.8 lead. Find the size of the capacitor in microfarads if
the frequency is 60 cycles.

37. A single-phase load on 200 volts takes 5 kw at 0.6 lagging power factor. Find
the kva size of capacitor which may be connected in parsllel with this motor to
bring the resultant power factor to 1.

38. Work Problem 37 if it is desired to bring the power factor to 0.9 lag instead
of to 1.

39. The load of Problem 37 15‘ operated in parallel with a synchronous motor
that takes 8 kw at 0.5 leading power factor. What are the resultant current supplied
by the line and the power factor of the combination?

40. (}ver%.h period of a year, an industrial establishment takes an average load
of 2000 kw continuously at a (current) lagging power factor of 0.80.

(2) What is the annual fixed charge on the kva capacity required to serve this
establishment if 1 kva of installed ¢apacity (boiler, generator, transmission line, and
transformers) costs $200? The fixed charge (consisting of interest, taxes, and
depreciation) may be taken as B per cent of the investment.

(b) Repeat part (a) assuming that the power factor of the establishment is unity. .

41. What value of resistance should be placed in parallel with a 50-uf capacitor
to give a combined power factor of 0.6 on a 60-cycle system? (Neglect the resistance
of the capacitor.)

42, Find the series-circuit resonmant frequency of a l(ﬂ-m.mrohenry inductance
and a 400-paf capacitance.

RI.— 10.n R:-.’.ﬂ

200 volts
60 cycles

i X =201 C=?

F1G. 65. See Problems 43, 44, and 457

¢3. Find C to produce resonance in Fig. 68. How much power is dissipated in
R at resonance?

44. Find the value of C in Fig. 88 which will yield maximum impedance for the
whole circuit.

46. What minimum value of R¢ in Fig. 68 would prevent the possibility of at-
taining resonance by varying C?

46. A fixed condenser is placed in parallel with a fixed resistance and variable
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inductance of negligible resistance as shown in Fig. 69. Show that the general
expression for X1, which will produce unity-power-factor resonance is:

Xe Xc? i
Xp = 2 :l:-\’ 3 - R

Hint: For unity pf., by = be.

47. Refer to Fig. 69.

(a) Draw a to-scale vector diagram of V, Ic and Iz for X = 0.

{(b) On the above diagram draw the loci of Iz, and I for X, variable from 0 to =.

(¢) Determine the values of X which will produce unity-power-factor resonance
either graphically or analytically.

(d) Determine the minimum value of I either graphically or analytically, and find
the value of X ; which produces this minimum value of I.

Le j7X =20 ohma
|G [ y
X _ T R Re
e y
R=8ohms . X, (varlable) I L c
V=120 volts ¥ T
Fia. 69. See Problems 46 and 47. Fia. 70. See Problem 48.

48. A 2-uf capacitance is connected in parallel with a 20-ohm resistance. Flot
the magnitudes of the admittance and impedance of the parallel combination against
frequency for frequencies of 0, 10,000, 100,000, and 1,000,000 cycles.

49. (a) If L = 0.050 henry, C = 200 uf, and Ry = R¢ = 1.0 ohm, find the reso-
nant frequency of the parallel branches shown in Fig. 70.

() If Ry, = 20 ohms, L = 0.050 henry, C' = 100 uf, find the value of R¢ which
will yield parallel resonance of the two branches at a frequency of 45 cycles.

(¢) If C = 100 puf, Ry = 20 ohms, and R¢ = 20 ohms, find. the value of L that
will place the branches in parallel resonance irfespective of frequency.

i

1 Cm20ppt
e

-~ 000 —AN——
I—>

‘L=20gh R=100 N

IF
Fic. 71. See Problems 50, 53, 54, and 586.

80. (a) Transform the circuit shown in Fig. 71 to that shown in Fig. 72, employing
numerical values of g, bz, and b¢ and assuming that the operating angular frequency
is 5 X 107 radians per second. (Rerults which are accurate to within 1 per cent will
be considered satisfactory.)

(®) If terminals 11" of Fig. 71 are energized with & current of 2 milliamperes
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P

& Fra. 72. Bee Problem 50.

(at @ = 5 X 107 radians per second), what voltage will be developed across these
terminals?

(¢) What is the Q, of the eircuit? _

(d) Assuming that R is constant, find the resistance component of Z in Fig. 71
in terms of L, R, C, and w.

R
(LCw?® — 1) 4+ R2%C?

61, Given: R = 2 ohms, L = 1 henry, and C = 0.1 farad.

(a) If R, L, and C are connected in series, find the pole and zeros of the series
impedance, Z(s), numerically. Evaluate Z(w) at @ = 2 radians per second (or at
8 = j2 radians per second) graphically from a plot of &y, §3, and §, and compare the
result thus obtained with Z(2) = 2 + j(2 — 5) = 3.61/—56.3° ohms.

(b) If R, L, and C are connected in parallel as in Fig. 72, find the pole and zeros
of Y(s) numerically. Ewvaluate Y(w) at @ = 1 radian per second (or at & = jl
radian per second) graphically from a plot of ), #s, and #; and compare the result
'Ifith - -~

Ans.: Rz =

Y(1) = 0.5 4+ j(0.1 — 1) = 1.03/ —60.9° mhoe.
(c) Repeat part (b) for w = 4 radians per second, and compare with
Y(4) = 0.5 + 7(0.4 — 0.25) = 0.522/16.7° mho.

52. (a) Find the angular frequency at which Rz of Problem 50 has its maximum
value, employing literal values of L, C, and R. ~

(b) What is the numerical value of the angular frequency for (a)?

Ans.: 4987 X 107 radians per second.

(¢) Compare the above result with the approximate value of 1/4/ LC.

63. What is the maximum numerical value of the resistance component of Z in
Fig. 71 a8 w is varied from zero to infinity? (A result which is accurate to within
1 per cent will be considered satisfactory.)

B64. The series resistance of the 20-microhenry coil shown in Fig. 71 is B = 100
ohms. What is the Q of the coil at w = 0.1/ LC and at w = 1/V LC?

B6. A coil havirg L henrys of inductance and R, ohms of series resistance ia placed
in resonance witl a parallel capacitor, C, having no appreciable series resistance
at an angular frec iency of wm which is essentially equal to 1/V LC. R,? <« walL2

Show that Q, = w,C/g is essentially equal to

Q;-%-'i'f
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where V is the effective voltage across the parallel branches, w is the reactive energy
stored in L and C at any time, and Vg is the average dissipated power of the cireuit.
Note: In terms of instantaneous values and letting v, = v, the instantaneous applied
voltage, .
i 2 2

w -—éi +£:— = constant

56. It will be assumed here that the capacitor shown in Fig. 71 has a series resist-
ance of 10 ohms.

(a) What is the equivalent paralle] resistance of the capacitor at wm ~ 1/2/LC?

(b) What is the equivalent parallel resistance of the two branches at wn = 1/4/LC?

67. Given the circuit arrangement shown in Fig. 73a, where the voltage generator
has an internal resistance of 20,000 ohms as indicated:

(a) Transform the circuit to that shown in Fig. 735,

(b) What is the @, of the parallel branches facing the current generator in Fig.
73b at w = 5 X 107 radians per second?

(c) Compare the result obtained in (b) with the Q of the coil itself at w = 5 X 107
radians per second. The coil has a resistance of 50 ochms as indicated.

20,000 N 300 -]_
20upt I Rp by ==b,

¢ E= T

@ | ®)
F1a. 73. See Problems 57 and 58.

B8. (a) If the generator voltage in Fig. 73a is 200 volts at w = 5 X 107 radians per
second, what is the magnitude of the current of the equivalent current generator
employed in Fig. 735" :

(b) What voltage is developed across the parallel branches by the current generator
at w = 5 X 107 radians per second?

w0’
— E: It

i E;
il It

L. Y 100 107t ()1, S50

Al

1

o

Fia. 74. See Problem 59.

89. Find the admittance ¥ (looking to the right of terminals 11') in Fig. 74, and
express the result in terms of a resistance Ry in parallel with a condenser ', where
;i, and C are expressed pumerically in ohms and microfarads, respectively..

1 = 0.1E,.

The I, and I current generators have the polarities indicated, and the operating
angular frequency is 10° radians per second. Nofe: Current generators are always
considered to have infinite internal impedance or zero internal admittance,
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J. The parameters in Fig. 75 are:
/-6\/‘“‘ Z1 =Ry + jXr1 = 10 + 730 chms
L - Zy=Ry+ X2 =5+;10 ohm¢
Zy =Ry — jX¢2 = 4 — j16 ohms

N
¢ V=100 /0°
A

Fre, 730 See Problems 60, 61, and 70,

(a) Find I, In, Iy, Vi, and Viu in complex polar form with respect to applied
voltage (100°, 0° volts) as a referenes, .
(b) Draw a complete phasor dingrim of the ubove voltages and currents.
(c)y Find the watts and vars input to the entire eireit,
i’V‘J\ . Find the power dissipated in cach branch of Fig. 75 for the parameters given
i

n Problem 60.
62. Find the pure reactance or reactunces X in Fig. 76 whieh will make the overall
power factor 0.707. ,
an 4N a
< ‘ D.lq nry
z [N M
10 0n w? 1on nn
Y
l b 0.05 henry
Fig. 76. See Problem 62. Fri. 77, See Problem 84,

83. A circuit similar to that shown in Fig. 34, page 178, except that [y is constant
while C; is variable, is to pass a 45,000-cyele current with minimum impedanee and
to block a 15,000-cyele current as effectively as possibic. Ity = 20 chms, ) = 40
ohms, and L; = 0.0C2 henry are fixed. The resistance, Xs, of the ("2 branch is
assumed to be negligibly small. Either a fived Cp or a fixed Lp (of negligibly small
resistance) is to be placed in series with Rp to accomplish the dexired tuning efcet.

(a) Solve for €2 which will put the parallel circuit be into paraliel rexonance at
15,000 cycles.

(b) Calculate the equivalent impedance from b to ¢ at 45,000 cycles with Ca et
at its 15,000-cycle resonant value. Is be predominantly capacitive or inductive
at 45,000 cycles?
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(¢) Must an inductance L or & eapacitance Cy be used to put the branch ab into
series resonance for 45,000 cycles? Calculate its value,

(d) Assuming that branch ab has been put into series resonance at 45,000 cycles,
what is the actual impedance from a to b at 45,000 cyeles? at 15,000 cycles?

64. Given the circuit shown in Fig. 77, determine the impedance looking into
terminals ab at 1592 eycles per second.

66. A generating device has an impedance of 0.5 4+ j1 ohms and is connected
to a load by a line of 0.25 + j2 ohms. At what load will maximum power transfer
be realized? If the generated voltage is 20 volts, what is the power received by
the load when adjusted for maximum power transfer? Find the line loss and the
loss in the generating device.

66. (a) If the resistance of the load in Problem 65 is fixed at 0.75 ohm and only
inductive reactance is permitted in the load, for what value of load reactance will
maximum load power to the load be realized?

() What is the maximum load power under these conditions?

67. Work Problem 65 if the receiver impedance is restricted to pure resistance.

88. If a load impedance having g ratio of X/R = 5 is used at the end of t'
line in Problem 65, find the load impedance for maximum power transfer. Wha.
is maximum power the load can receive?

\;Zf Caleulate I, in Fig. 78 by the superposition theorem if E, = 100,/0° and

Vi E; = SOZE.I volts.
- 250 50 sQ .
Pure X =101 o i80 a

S Lati ep® Tea TR

Fra. 78. See Problem 69. Fro. 79. See Problem 71.

70. The voltage V = 100@: volts is removed from branch 1 in Fig. 75 and inserted
in branch 3. If the upper terminal of Z, is connected to the lower common terminal
of Z; and Z3, caleulate the current I). How does this compare with I3 as calculated
in Problem 607 By what theorem could this conclusion be reached?

71. Calculate Vg in Fig. 79 if E, = 200‘/1‘ volts. Then use Thévenin's theorem
to caleulate the current in an impedance Zy, = 1.46 + j6.78 ohms if it is connected
to the terminals ab.

\12. Given the eircuit shown in Fig. 80.
: ;,,Lua) Using the superposition theorem, determine the current through the resistor
~marked 4.

(b) Using Thévenin's theorem, determine the current through an impedance

Zas(= 3 + ;3 ohms) that is presumed to be placed across terminals ab.

5 20 jan
Egy=30 /26.59" volts Egy=100 /0" veits
t =-jsn

Z,m=1+j1 ohms Zg1=2+jl ohms

Fio. 80. Bee Problem 72.
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==Ca s ';}:_Cpl
=ik r |
| %

Il'

]
i
Ee Epp

Fio. 82. See Problems 75 and 77.
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73. In Fig. 81b: R, = 10% chms, R = 5 X 10! ohms, r,, (of the tube) = 10* ohms;
Cot = Cpp = 40 ppf, C,p = 5 puf; plof the tube) = 20; gm(of the tube) = p/rp =
2 X 107* mho.

Find the voltage, Vg, relative to ground if E; = 15_(.): volt. The operating angular
frequency is 10® radians per second.

Note: In Fig. 8lb: gy = 1/Ry, gp = 17, g2 = 1 'Ru; juCpr = juCpe = j4 X 107°
mho, and juCyp = 70.5 X 107% mho, which is a hint that the problem should prob-
ably be solved on the nodal basis, employing £, as a known voltage.

74. Find the admittance Y (looking to the right of the E; generator terminals in
Fig. 81b), and express the result in terms of a resistance K, in parallel with a ca-
pacitor C' where R, and C are expressed numerically in ohms and microfarads, re-
spectively.

The parameters and the operating angular frequency are given in Problem 73,
and, if this problem has been worked V3 will be a known voltage of 15.6 /159.32° volts.

. 6. Reduce the impedances shown in Fig. 82 to a single equivalent series impedance.
i“*'Find the current in branch ab.

7p. Derive the expressions shown in equations (99), (100), and (101), page 2i0.

| . Find the equivalent delta system of impedances which will replace the wye
' cn,bn en, in Fig. 82,

€ 1wz0° d 1070 b
Fro. 83. See Prcblem 78.

8. Find the voltages Vg, V,, and V5 in Fig. 83. What is the phase displace-
)nenr, between these voltages?

79. What relationship between the Z's of Fig. 81 will make /3 = 0 regardless of

the magnitude of Ejy? Hini: A simple method of solution is to transform the

{z,}
L2

D [
D 30
o>

Fio. B4. BSee Problem 79.

L
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Z3-Z3-Z4 and Zy-Z1-Z5 deltas to equivalent wyes and make the Z14 and Zss legs of
the latter the negatives of each other to produce a short circuit across the load.

®
W

® ol
L]

(] ]
“© qg B
l :

-

F1c. 85, See Problem 80,

80. What relationship between the ¥’s of Fig. 85 will make the voltage Vs (relative
to ground) equal to zero regardless of the magnitude of Iix?

L



