chapter

VI Non-Sinusoidal Waves

Complex Waves. The circuit theory that has been presented in the
foregoing chapters has been based upon sine-wave variations of voltage
and current, and only sine waves have been considered in the caleula-
tions. Inmany branches of electrical engineering non-sinusoidal waves
are as common as sinusoidal waves, and in all branches non-sinusoidal

OsciLroorax 1. >-wave form of voltage gencrated by a particular alternator. t-wave
form of current which flows through a capacitive circuit element. Note the relatively
larger harmonics in the current wave, p-wave furm of instantanegus power, E = 120
volts (eff.), ] = 3.9 ampe.es (efl.), Pay = 20 watts, f = B0 cyclea.

waves must occasionally be given attention. Examples of non-sinusoi-

dal waves are shown in Oscillograms 1, 2, and 3. ILven though the

voltage wave in Oscillogram 1 is nearly sinusoidal, the current through

the capacitive circuit is greatly distorted. Also in Oscillogram 2 the

current is non-sinusoidal even though the impressed voltage is practically
223
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b == ==

Iron Core

OsciLLograM 2. Distorted current wave, €, results when a sine wave of voltage, ¢, is im-
preased on & particular coil with an iron core.

i (L e-to-neutral
(] im' E. voltage of a
. 3 prase alternator)

Predominale harmonic
is the 17th

OsciLrocrax 3. Wave form produced- by an open-slot type of generator.
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a sinusoid. Oscillogram 3 shows the effect on the voltage wave form
of an alternator due to open slots. The predominant harmonic in this
case can easily be determined by the methods discussed in this chapter.
The method of making circuit calculations when non-sinusoidal wave
forms are encountered will also be given,

Most non-sinusoidal waves found in electrical engineering can be
expressed in terms of sine-wave components of different frequencies.
Under these conditions each sine component may be handled according
to the laws governing the calculations of sine waves. The results of &ll
component analyses are combined according to certain laws to form the
composite or final analysis. There are, however, certain limitations
to representing non-sinusoidal waves in terms of sine components,

Any periodic wave which is single-valued and continuous except for
a finite number of finite discontinuities, and which does not have an
infinite number of maxima ar minima in the neighborhood of any point,
may be represented by the sum of & number of sine waves of different
frequencies. As an equation, the above theorem takes the following
form and is known as a Fourier series:

y =/ (z) = Ag+ A;sinz + Bycosz + Agsin 2z + Bjcos 2z
+ Assin3z + B3cos3z+ - - - + Ansinnz + B, cosnz (1)

Except in special cases an infinite number of components are theo-
retically required. Practically, however, only a few terms are neces-
gary in most instances because of the relatively small effect of the
terms of higher frequency. Since the wave which is represented by
equation (1) is made up of a number of sine waves of different fre-
quencies, it is called a complex wave. It is apparent that each com-
ponent of this wave is sinusoidal and that each component in itself may
be handled by the methods previously outlined for calculatiog sine
waves. The facility with which sinusoidal components of a complex
wave may be manipulated is sufficient justification for expressing a
non-sinusoidal wave in such terms as equation (1) even though the
equation of the wave may be known in terms of some other function
of z.

Wave Analysis. Usually, a photographic record of the wave will be
obtained through oscillographic analysis or other means. The deter-
mination of the Fourier equation which specifies & particular wave is
called wave analysis. Wave analysis consists simply of determining
the coefficients Ao, A;, Bi, etc., of equation (1). These coefficients
are determined by some operaticn on equation (1) that will eliminate
all terms except the desired quantity. Then the desired coefficient
may be evaluated. Thus, to determine A, it is necessary gimply to
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multiply the equation by dz and to integrate between 0 and 2r, as
shown below.

fﬂdZ=[Aoir+fA1ainzdz+fﬂnwﬂzdz+
' 0 0

2x r 2x
_]; Agsin2zdz+fBgcos2zdz+f 4y sin 3z dz +
G
v 2x

Bgcos3zdx + -+ + A.smm:dz-i—faB cos nzdzr (2)

or yd:: Au f dz = 21!’443
0

2r
d =y
an Ao 27_]; yadz @)

To find A,, equation (1) may be multiplied by sin z dz and integrated
from O to 2r. Thus

2w 2x r
f ysin zdz = Agsinzdzr 4+ A, sin?zdz +
0 0 1]

2r 2= T
f Blcuszsinzdz+f Agsin 2rsinzdz + Bj cos 2z sin zdz +
0 0 0

2r r
Aj sin 3z sin z dz + Bycos3zsinzdz+ -+
(i

2x 2r
f A,‘sinm:ainzdx+f B, cos nz sin z dz “4)
0 0

It is obvious that f Ap sin z dz is zero since it represents the area
0

under a sine wave for a complete cycle. There are four other types of
terms. They are

2%
dr = 2z d_-;;._--—_ ,
(a)l:sm: f(} % cos 21) T
(b) fsi.nﬂ.’;rsixizd:c, which is of the general type:
(1

f sin mz sin nz dr = 0, when m and n are different integers,’

© f cos mz sin nz dz = 0, when m and n are different integers,? and
[1]

(d) ﬁcoszsinxd.z=0.
0

! This may be readily proved by substituting for gin mz sin nx its equivalent
}[cos (mz — nz) — cos (mz + nz)].
2 This may be readily proved by substituting for cos mz sin nx its equivaleut

%lgin (mz + nz) — sin (mz — nz)].
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The student should prove statements g, b, ¢, and d by carrying out the
operations indicated. If the above facts are used, equation (4) reduces

to
f'ysin:danlr
[1]

1 T
o A,=—fysinzdz ®)
0

T

To evaluate the coefficient of the cosine term By, equation (1) is multi-
plied by cos z dz and integrated from 0 to 2x. Thus

2w 4 2r
f y cos zdr = Agcoszd:c—{-f Ay sin x cos z dz
0 0 0

ir

2 ]
+f Blcos’zdr+fﬁgsin2zcoszdx+ B; cos 2z cos ¢ dx
] 0 0
2w ir
+f Aasin3zcosxdr+f By cos 3z coszdz + - -+
0 0 }

2r 2r
+f A,.sinnzcoszdr—}—f B, cos nx cos z dzx (6)
o 0

If the relations stated above in a, b, ¢, and d are used, equation (6)
becomes

1r 2r
fycos:dz=31f cosazd3=31‘l
0 0

1 2r
or Bl=;f ‘chSIdI (7)
+]
Similarly, \
dy=2[ ysin2edz - ®)
7o
1 Vi
Bg=;f ycoa2.‘|:d.‘: (9)
1]
1 2r
Asz;j; y sin 3z dz (10)
Bg=§j:yc053::d.r a1
A.=3fysinmdx (12)
. T a9

I
B,.=-1-f y cos nz dz (13)
Tvo
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Various analytical and graphical methods may be employed to eval-
udte the coefficients of equations (3), (12), and (13). Two genersl
methods are outlined below.

Analytical Method. If the equation of y in terms of z is known in some
mathematical form, the wave may be analyzed analytically. This
method is the least laborious but it cannot be employed if the function of
z is not known analytically. The function of z employed need not
throughout its entire range represent the particular wave to be analyzed.
It is necessary to have the function of z only over the interval of perio-
dicity, namely, 2r. Not even a single function of z is necessary. Several
different ones may be used and the complete integral from 0 to 2«
may be obtained from a sum of the integrals of the several functions,
each taken over the interval in which it follows the curve to be
analyzed.

The details connected with writing a Fourier series to represent a
specified wave form are illustrated by the following examples.

Example 1. Let it be required to write the Fourier series which will represent
the sawtooth wave form shown in Fig. 1. It will be observed that this wave form is

1T AN S
v

Fig. 1. A type of wave which is easily analysed by analytical methods.

o

simply & straight-line variation, ranging from y = —x to y = +x over one complete
cycle. This straight-line variation may be expressed analytically (between z = 0
and z = 2r) as:

YV=f(2z) =z —x

It should be noted that the above analytical expression for y in terms of z gives no
indieation of the various harmonics which are present in the wave, whereas a Fourier-
series representation of the wave will yield this information.

From eruation (3):

122 1]4x?
- — —_ -_— = —— - —— ’ -
=3 ), E-nd z»r[ﬂ "]: 2'[2 "] .
The fact that A is zero could have been determined by inspection of Fig. 1 since it

is obvious from the figure that the negative half of the wave is equal in area to the
positive half.
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From equation (12):

2r r 2r
A.-l {z—r)dnnzd:-l[f’zsinmdz—f rainnzd’.:]
rJo x|Jo 0
f:ainnxd.z-l:—zmu+—1;sinmﬁ
0 n nt e

2r
as may be proved by differentiation of the right member a.nd‘]; x gin nZ dz = 0 for
all integral values of n. Therefore:

1 zecosnz 1 | o 2
Ap =—| — + —Ssionz| = ——
x n n 1

whence
Ay =—§; Aa==}; A;=-3; A= -1, eto

From equation (13):

1 ar 1 2r b1
B.-—-f (z — r)cosnzds = — f zweﬂ.:dx—f roo-una:d.z]
rJ0 - 0 0

I rginnz  cosnz |*F
zeoanzrdz =|——— + 3
0 n n

. 2r
a8 may be proved by differentiation of the right member and f xcosnzrdr =0
0
for all integral values of n. Therefore:

: 27
B._i[;n:nz+a%_;'x]u =0 (for all integral values of n)

Hence all the coefficients By, By, By, ete., in equation (1) are 0 and the Fourier equa-
tion of the wave shown in Fig. 1 becomes:

1
,--z(ﬁn:+§mh+5m3:+imu+.”+'l‘,,nu)

1 | Is sinusoldal here
m

=0 here A
: R |
ur; T t—

Fig. 2. Half-wave rectification of a sine wave. Bee example 2.

Example 2. Let it be required to write the first four terms of the Fourier series
which will represent the wave form shown in Fig. 2. From Fig. 2, it is plain that
i may be expressed analytically between the limits of 0 and 2r as two separate func-
tions. That is:

i=Jatina [between a (or wt) = 0 and a (or w!) = =]

and
i=0 [belween a (or w!) = r and & (or wf) = 2x]



230 ALTERNATING-CURRENT CIRCUITS Ch. VI

From equation (3):
1 r ir 1
Ag = — f I.‘Sinada-}-f Oda]--:'[_m¢:t
2r 0 r 2r

I
= = = 0.318],
k3

From equation (5):

Ay -,—‘:[j;' (I 8in &) sin a da +“£2'(Ujaincd¢]
=’f[j;’u-;mama]

Im o 1 > i I‘ -
= :—[2 —481]3 2&]0 L = [E] = D.MI--

From equation (12) it follows that 44, Aj, Ay, etc., are all zero because:
r

2 -l[f- (J_sina)ainnada] =0 (forn=0andn = 1)
=LJo

The above evaluation of A, is evident if (sin « sin na) is replaced by its equivalent
4{cos (n — 1)a — cos (n + 1)a). Thus 44, 43, 4y, etc., are zero because:

Ao lfr%lcos (n = 1)a — cos (n + 1)a] da
TJO

1 [sin (n —1)a gin(n+ 1)«]' {forn #~ 0
= 2r

m—1)  (m+1) Jo and n » 1

From equation (7): i

1 r 2r B
B,_-—Iif {I,.sina}cosad::-{-f {(0) co8 a da
r 0 x
T T sin 2a I'm cos 2a
=:[.f0. 2 d"] r[ 4 I g

From equation (13):

Bnul[f'(fmnina)cosmda:'

T 0

r-*f—"[f'(sjn (=+n.a)+sin (a—naj)da]
! 2 2

kg

In[ cos(l +n)a cos(l —n)aI {formeo
T LT T2a 4w 2(1 — n) snd 571

Forn = 2:
In cos3x coa(—a)[f Im 1 _l.__l 1
B"’T[” 8 -3 1] r[+ﬁ+ﬁ 2 2]

= — -2—1-: = —0.212],
3

: 3
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Similarly forn = 3,
By =0
and forn = 4,
Bq = —00424!-
The Fourier series which represents the wa-e form shown in Fig 2 is therefore:

i = 0.318]p + 0.500/m sin &« — 0.212],, cos 2a — 0.04241,, cog 4a — * - -

Ip10F g e

|=0.318 T+ 0.50 Iy $in @=0.212 Ip cos 2a
-00428Ipcosda

8l

x
H
| Y

-8
Fro. 3. Components of half-wave rectification. See example 2.

If the above four terms are combined graphically as shown in Fig. 3. the resultant
wave approaches the original wave form shown in Fig. 2 to a fair degree of accuracy.
The inclusion of more terms in the Fourier series will, of course, improve the cor-
respondence between the resultant wave of Fig. 3 and the original wave form.

Problem 1. (a) Write the Fourier
series which represents the wave form 100
shown in Fig. 4 out to and including
the A term of the series. Note: e =100 o
between « = 0 and a =, and ¢=0 ™ 2
between a = = and a = 2. aort —=

Ans: e =50+ 63.7sina F1G. 4. See Problem 1.
+ 21.2 sin 3a volts,

(3) Show by weans of a cketch the manner in which the sbove three components

combine to approximate the flat-topped wave shown in Fig. 4.

Volts

Fourier Analysis of Symmetrical Triangular and Rectangular Waves.
Symmetrical waves of triangular and rectangular shape are shown in
Figs. 5 (solid lines) and 6 respectively. Since these wave forms are
often used in the analyses of certain basie problems, it is convenient to
have the Fourier equations of these waves readily available. ’

o
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Triangular Wave. To facilitate ana]yxing, the triangular wave may
be considered to be composed of several pieces, namely, the straight lines
0a, ac, and cd. If the point slope form of equation for a straight line is
applied, the equations of these lines will be found to be:

2z 2z
Voo = —; Yac= ——+2; y=¢-=——4
w L L g
B3
247
\\."
14 - -
0 qu X :!t 2r
£ b\/ﬂ
‘.1_. ,,
—2 ,”’
’f’ , _I
/ . T t—
34 - or or2®  ora—>
-
-,;..f"’
Fia. 6. Bymmetrical triangular wave with Fio. 6. Bymmetrical rectangular
a maximum value of 1. wave.

Applyingequa.tions (3), (12), and (13) gives:

& [P [ S ) [ 20
A.-;f"ylinn:da: |
TN T g CI0 R L JC oo

1 Ir
B, =~ y coe nz dz
o

T /3 f
ai{f mz—zomnxdz+ (—2:+2)mnzd=+ (E—i)mud:
L 4 0 r/2 L dar/3\T
Evaluation of the above for various values of n by ordinary calculus
methods gives the equation of the wave in terms of a Fourier series as
follows:
8/. | - 1 1 .. o

Y= ?(nnx - ?mh+g,dn&—ﬁm7z+ ---et.c.}‘(lé)
It will be shown hmhow:t:sposmbletodetermmeﬁommpechon,
that, in certain classes of waves as typu.ﬁedbytheabovaenmph,tha
terms represented by B, must be sero.
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The results of the above analysis may be generalized and the equation
of a symmetrical triangular wave written as '

v =A.sinwt—%§lsin3wt+%i—fsmfx»t— %sin?w£+ ---ete. (l4a)
where z of equation (14) has been replaced by wt and 4, equals 8/x*
times the maximum ordinate of the triangular wave. Theoretically,
there is an infinite number of terms and the progression continues as the
first four terms indicate.

Rectangular Wave. The rectangular wave is much used in the analysis
of a-c machinery and has for its Fourier equation:

A A, . Ay .
y=.A,sinuz+—3331n3m+~5-‘sm5u:+—7-‘mn7wz+---et,c. (15)

4
where A; = - times the height of the rectangle. Again there is &an
1r

infinite number of terms which may be written as indicated by tbe first
four terms shown. Figure 7 shows a grephical representation of the first
three terms and illustrates
that a fair approximation
L0 the resu'tant wave is
obtained by the addition of
very few terms.

Problem 2. Analyze the rec-
tangular wave shown in Fig. 6
by the analytical method to prove
the validity of equation (15).

Graphical Method. A sec-
ond method of evaluating
equations (3), (12), and (13)
involves the evaluation of the Fra.7. The addition of only three harmonics gives
integrals by & step-by-step & fair spproximation of the rectangular wave.
method. The equation of y in terms of z is usually unknown, and for the
majority of waves encountered it would be very cumbersome and labori-
ous to establish equations which would yield pieces of the wave. It is
under these conditions that the step-by-step method (sometimes called
the graphical method) or its equivalent is employed. The details of this
method follow.

Suppose the wave of Fig. 8 is to be analyzed. Equation (3) is simply
the average height of the curve over 2x radians. Itis found by dividing
the area under the curve by the base. Any method of determining the
area, such as counting rquares or by use of a planimeter, may be em-
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ployed. If the areas of the positive and negative loops are the same, 4,
is zero. Hence for waves having adjacent loops of the same shape and
area with respect to some horizontal axis, the constant 44 when present
simply indicates how much the whole wave has been raised or lowered
from symmetry about the axis of abscissas. For graphical analysis,
cquation (5) may be written

ar

4, = -Xysinz Az (16)
™0

th
K™ Interval

E

Fio. 8. Preparation of a wave for analysis by the graphical method.

Let 2 radians in Fig. 8 be divided into m equal parts. Then Az = 1=
m
: . s : . 2r L f2r
and z, the distance to the midpoint of the kth interval, is k — — 3{ —
m m
2
or (k — %) ;ﬂ' Equation (16) now becomes
Ln . 2r | 27
4, = ~E[yx sin (k — %J“]—
T 0 m] m
xlz . 2 .
= = - g sin [(k - %)-—‘-r]
m o m 4
) __2. ':: S- k %) 211-]
= m% ye sin | (. = (17)
Similarly,
By = 2 g com T 18
= - S —_— —
: m g W G m ( )
2= ; 2% ;
and A,-;;)o:yksmz(k—-w});‘- (19)

The first form of equation (17) shows that 4, is 1/x times the area under
a new curve, which would be obtained by plotting corresponding ordinates
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of the original curve multiplied by the sine of the angle to the ordinate in
question. For 4, the ordinates of the new curve would be obtained by
multiplying selected ordinates of the original curve by the sine of n times
the fundamental angular distance to the respective ordinates. An
analogous procedure is employed for cosine terms.  Laoked at in another
way, equation (17) indicates that A4, is twice the average ordinate of the
new curve, which would be obtained by plotting corresponding ordinates
of the original ¢urve multiplied by the sine of the angle to the ordinate in
question. Multiplying and dividing equation (16) or (17) by 2 makes
this statement evident. Thus
2
A; = 2[—1-Zys'm rm:]
27 %
Similar interpretations may be drawn regarding the other coefficients of
the Fourier series. The summations are best carried out in tabul;
form, and for this purpose a more or less standardized system is used.
The tables which are used are called analyzing tables. One form of
analyzing tables for odd harmonics up to and including the seventh are
shown in heavy type on the following pages. (The light type refers to
specific values for an illustrative example.)

It will be shown in a subsequent article that waves having symmetrical
positive and negative loops cannot contain even harmonies. - Under
these conditions it is unnecessary to evaluate 4,, B,, A4, B, ete. Also,
when the wave being analyzed consists of odd harmonics only, it is
necessary only to take the summation over the first 180°, Since the
summation over the second 180° would be the same as that over the first
180° the total sunmation over 360° can be obtained by multiplying
the summation over 180° by 2. If mis taken as the number of tntervals
in 360° the summation over 180° may be multiplied by 4,'m instead
of multiplying the summation over 360° by 2/m as shown in equa-
tion (17). Whereas equations (17), (18), and (19) indicate that the
midordinate of the interval selected should be used, it is customary to use
the ordinate and the angle corresponding to those given in the tables.
When the intervals are as small as 5° the difference between the two
schemes is negligible.

Example 3. Given the experimentally deteriined wave form shown in Oseillo-
gram 4. Find the Fourier equation, employing snalyzing tables similar to those
given on pages 237-240,

Solution.  Ordinates at every 5° are constructed as shown in Oscillogram 4.  The
magnitude of each is sealed and set in the column for ordinates opposite the corre-
spondiog angle in the column for angles. The product of the ordinates and the
corresponding sines and cosines of n times the angles are obtained and tabulated as
ahown in the analyzing tables on pages 237-240.

-16
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OsciLLooraM 4. See example 3.

For the particular wave which is being analyzed:

A, = B2.45 units Ag = —5.38 units
B, = —22.11 units Bs = —3.65 units
Az = —0.92 unil A7 = 2.01 unita

B3 = 26.2 units By = —1.29 units

The Fourier equation of the wave is, therefore,
{ = 8245 gin wl — 22.11 cos wt — 0.92 sin 3wt
+ 26.2 cos 3wt — 5.38 sin Swl — 3.65 cos Swt
+ 2.01 gin 7wt — 1.29 cos Tl
The fundamental frequency in this particular case is 80 cycles per second. Therefore
w i8 equal to 377 radians per second.
The actual number of terms in the Fourier equation in any particular case can

usually be reduced because it is slways possible to combine sine and coeine waves
of the same frequencies. For example, consider the general wave

y = Alsind+B|mad+A:ain2d+B,coeu
+A381D3u¢+3300&3&d
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FonpDaMENTAL
1 2 3 4 6 8 7 8 ]
Products Products
_ (y sin 1) Ordi- {008 Maas, (y cos x)
sin X’ alXe s cos x
nl': ordi-| nate _—_—
0.
nate
& B (¥) + _
.0872 0.5 1 6° 59 .9962 59
1738 1.7 2 10° 10.0 .9848 9.8
.2688 3.5 3 16°| 13.4 . 9869 13.0
.8420 5.6 4 | 16.4 .9397 | 15.4
.4238 B.2 b 26°| 10 4 .8063 | 17.6
.5000 10.9 6 30°| 21.8 8660 | 18 9
.B738 13.5 7 35°| 23.8 8192 | 19.3
.8428 16.8 8 40°| 259 7660 | 19.9
.T071 19.9 9 45° | 28.1 7071 | 19.9
.T660 & 10 B60° | 30.7 6428 | 19.7
8192 27 8 11 B6°| 33.9 .6736 19.4
.86860 32.4 12 60°| 37.4 18.7
P 38.1 13 656°| 42 0 .4228 17.7
.8397 43 .9 14 70°| 46.7 .3420 16.0
.9669 51.0 15 76| 52.8 .2688 | 13.7
.0848 59.1 16 80°| 60.0 .1738 10.4
.9962 67.5 17 86| 67.7 0872 5.9
1.0000 76.4 18 80°| 76.4 - 0000 0.0
.99632 86.2 19 96°| 86.5 | —.0872 75
94.1 20 (100°| 95.5| —.1736 16 6
. 9669 101.5 21 [106°| 105.1 | —.2688 27.2
8387 106.0 22 (110°| 112.8 | —,8420 38.6
8063 106 .4 23 [(116°( 117.4 | —.4226 43.6
8660 102.7 24 |120°| 118 5 | —.5000 59.3
8192 83.5 26 |125°| 114 2 | —_6736 65.5
. 7660 80.4 26 (130°| 104.9 | —.6428 67.4
L7071 64.6 27 |136°| 91.4| —.70T1 64.6
.6428 50.4 28 [140°| 783 | —.7660 60.0
.6738 37.2 29 (1456°| 650 | —.8193 53.2
. 6000 256 30 |160°| 51.1 | —.8660 4.3
.4228 16 9 31 (165°| 40.0 | —, 9063 36.3
.3420 10,1 33 |160°| 29.4 | —.9397 27.6
.2588 5.5 33 {165°| 21.3 | —.9659 20.8
.1738 2.4 34 [170°| 14 0 | —,9848 13.8
.0872 0.6 36 |176° 7.1 | —.9962 7.1
. 0000 0.0 38 |180° 0.0 | —1.0000 0.0
1484.2 0 261.2 | 659.2
Sum of
products 1484 .2 —388.0
——




238 ALTERNATING—CURRENT CIRCUITS Ch. VI

Tuairp HaArRMONIC

1 2 3 4 5 6 7 8 9
Products ] Prod
(y sin 8x) Ordi- Angle| Meas. ( :o:;ts}
sin 8x A x to | ordi- 4 o
n;oe ordi<| nate ces 3x
* |nate| (y)
+ ~ . + =
,2688 1.5 1 |-s°| 59| .9669| 5.7
O 3 10 B Smil o
8660 14.2 4 | 20°| 16.4 :sggé gg
,9669 18.8 5 | 25°| 19.4| .2688| 5.0
1.0000 21.8 6 | 80°| 21.8 0000 | 0.0
.9659 2 8 7 | 85°| 236 | —.2688 ' 6.1
.8660 22.4 g8 | 40°| 25.9| —.5000 12.9
,7071 3{95;.2 o9 | 46| 28.1| —.7071 18.9
268 | 8.8 19 | 8| 336 Z:96e8 e
-0000 0.0 12 | 60°| 37.4 |-1.0000 33.3
— 2688 ég.g is‘ gg 42.0 | —.9659 406
— . 5000 ’ ol &6.7] —.
—.7071 37.4 | 16 | 76° 52.; __9;31&2 ;2'2
— 8660 =2'0 | 18 | 80°| 60.0 | —.5000 30.0
—1.9559 %3.2 ig gg“ 67.7 | —.2688 17.5
—1.0000 : °| 76.4 | —.0000
—.9669 837 | 19 | 96°| 86.5| .2688 | 22.4 =
—.8660 g2.8 | 20 [100°| 95.5| .6000 | 47.8
—.7071 gé‘i g; ﬂg: 1051 | .7071| 74.4
— . 5000 _ 112.8| .8680 | 97.7
e R AR AR eI b
3688 | 2. “ gg gg 1{%2 .9659 1104
.5000 , °| 104.0 | .8860 j
7071 | 64.6 27 |136°| 91.4 | .7071 3_3
8660 | 67.9 28 |140°| 783 | .5000 | 39.2
‘9669 | 62.8 29 |146°| 65.0 | .2688 | 16.8
1.0000 | 51.1 30 [160°| 51.1| .0000| 0.0
9869 | 387 31 |166°| 40.0 | —.2688 10.4
8660 | 25.5 32 |160°| 29.4 | —.5000 14.7
L7071 | 1 ; . (1] 32 }gg 21.3 | =.70T1 15.1
* 5000 14.0 | —.8660
.2588 1.8 36 [176°] 7.1 —.gam %fl;
.0000 0.0 36 [180°| 0.0 |—1.0000 0.0
s o | ST 593.3 833.4 | 360.9
products —16.6 +472.5
- 2 —18.6) - =052

= ‘2“::.51 -282
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Frrra Hamrmonic
1 2 3 4 B 6 7 8 ]
Products Products
(y sin Bx) Ordi- A:n:;e l:::is' (y cos Bx)
sin B8x | nr;;e ordi-| nate | €08 6%
" | nate
. ) " _
.4226 2.5 1 6° 5.9 .9083 54
.T6EOD 7.7 2 10° 10.0 .6428 6.4
. 9669 13.0 3 16° 13.4 .2588 3.5
.9848 16.2 4 20° 16.4 | —.1736 2.8
.8192 15.9 ] 26°| 19.4 | —.8736 11.1
. 6000 10.9 6 30°| 21.8 | —.B66O 18.9
.0872 2.1 7 35°| 23.6 | —.9962 23.5
—. 5420 8.9 8 40°| 25.9 | —.9397 24.4
—-.T071 19.9 ] 45°( 28.1 ]| —.7071 19.9
—.9397 28.8 10 60" | 30.7 | —.3420 10.5
—.99632 33.8 11 66°| 33.9 .0872 3.0 -
—.B660 32.4 12 60° | 37.4 .5000 | 18.7
—.6738 24.1 13 66°| 42.0 L8192 | 34.4
—.1738 8.1 14 T0°| 46.7 .98438 46.0
.2588 13.7 15 76°| 52.8 L9669 | 51.0
.8428 38.8 18 B0°| 60.0 .T660 | 46.0
. 5063 61.4 17 86°| 67.7 4226 | 28.6
1.0000 76.4 18 00° 76.4 .0000 0.0
. 9083 78.5 19 86°| 86.56 | —.4226 36.6
.6428 61.4 20 |100°| 95.5 | —.7660 73.2
.2688 27.2 21 [106°| 105.1 | —.9659 101.6
—.1738 19.6 23 110° | 112.8 | —,9B48 111.1
—.b6736 67.4 23 |116°| 117.4 | —.8193 96.2
— .B660 102.7 94 |120°| 118.5 | —.B00O ' 50,2
—.9082 114.0 26 |125°) 114.2 | —.0872 10.0
—.9397 98.5 | 26 |130°| 104.9 .3420 | 35.8
—. 7071 64.6 27 |185° 91.4 L7071 64.6
—.3420 26.8 28 |140°| 78.3 9397 | 73.6
.0872 5.7 29 |145°| 65.0 .9962 | 64.8
. 5000 25.6 30 (180°| 51.1 .8660 | 44.3
.8192 32.7 31 |166°| 40.0 .B7386 23.0
.9B848 29.0 32 (1680°| 20.4 .1736 5.1
.96569 20.6 83 |166°| 21.3 | — .2688 5.5
.T660 10.7 34 |170° 14.0 | — .6428 8.0
.4226 3.0 36 |176° 7.1 —.9063 6.4
. 0000 0.0 38 |180° 0.0 [—1.0000 0.0
552.8 649.6 554.2 619.9
Sum of
products —-06.8 —65.7
—-08.8
Ay = X 5.38
By = =1 X3 = -385

as
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Szventn HaruoNIC

1 2 8 4 ] (] T 8 9
Products Products
(y sin Tx) Ordi- P !toe fr:;i’. (y cos Tx)
wa 34 n;:e ordi-| nate cos Tx
* |nate| (y)
+ | - u + | -
.5736 3.4 1 6° 5.9 .8192 £ 8
L9397 9.4 2 10° 10.0 . 3420 .4
.9659 13.0 3 16°| 13.4 | —.2688 3.5
.6428 10.5 4 20°| 16.4 [ —.T660 12.8
.0872 1.7 B 96°| 19.4 | —.9962 10.3
— . 6000 10.9 [ 80°| 21.8( —.8660" 18.9
—.b083 21 .4 T 85°| 23.6 | —.4228 10.0
—.p848 24.4 8 40°| 25.9 .1738 4.5
—.TOT1 19.9 9 46°| 28.1 LT0TL | 19.9
—.,1738 5.3 10 60°| 30.7 L9848 | 30.2
.42268 14.3 11 66°| 33.9 L9063 | 30.8
.8660 32.4 12 60°| 37.4 .6000 | 18.7
. 9962 41.9 13 85°| 42.0 | —.0872 3.7
.7680 35.8 14 70°| 46.7 | —.6428 30.0
.2588 13.7 16 76°| 52.8 | —.9669 51.0
—.5420 20.5 i8 80°| 60.0 | —.9397 58.5
—.58192 55.5 17 86°| 67.7 | —.6786 38.8
—1,0000 76.4 18 90°| 76.4 .0000 0.0
—.5192 70.8 19 96°| 88.5 6738 | 49.8
—.3420 32.6 20 |[100°| 95.5 .9397 | 89.8
.2588 27.2 21 |106°| 105.1 .96869 | 101.6
. 7880 86.5 22 |110°] 112.8 6428 | 72.5
L9962 117.0 23 |116°| 117.4 .0872 10.2
8660 | 102.7 24 |120°| 118.5 | —.6000 59.2
.4226 48.3 25 |126°| 114.2 | —.90863 103.5
—.1738 18.2 26 |130°| 104.9 | —.9848 103.2
-, 1071 64.8 27 |136°| 91.4 | —.TOTL 684.6
—.D848 77.1 28 |(140°| 78.3 | —.1738 13.6
—.D083 59.0 29 |146°| 65.0 4226 | 27.5
— . 56000 25.6 80 |180°| 51.1 .86860 | 44.3
.0872 3.5 81 |166°| 40.0 .0982 | 390.9
.5428 18.9 33 |160°| 29.4 .7680 | 22.6
.9669 20.8 33 |166°| 21.3 .2588 5.5
.9397 13.6 84 |170°| 14,0 | —.3420 4.8
.6738 4.1 86 |176° 7.1 | —.8192 5.8
. 0.0 38 |180° 0.0 |—1.0000 0.0
618.5 | 582.3 575.8 | 599.0
Sum of
products 38.2 —23.2

ln-%x’ = 2.01

-23.2
- — 3= -
Br 8 x 120
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In Fig. 9 the vector 0A oi magnitude 4, may be taken to represent the sin e
Remembering that the cosine wave leads the sine wave by 90°, the vector OB may
be used to represent the cosine term. The vector sum OC of the two vectors OA
and OB, therefore, represents the sum of 4;sinwt and By cos wl in both magni-

B
tude and phase. It leads the sin wi position by tan™! f and it also lags the cos w!
1

by m—l%*. The magpitude OC is V 4,7 -+ B\%. The equation of the combi-
1

B A
pation is V' 4, + Hy?sin (u.! + tan™! f).or VA12+811COG(M—M"IEE)-
1 1

+coswt

0 sin wt

Fra. 8. Vector representation
of sin wt and cos wt and their
sum OC for particular mag-
nitudes A, and B. Fio. 10.

The vector representation of the positive and negative sines and cosines forms a con-
venient wsy to find trigonometric relations and to make combinations of these waves.
For instance, the waves are shown in Fig. 10. The corresponding vector representa-
tion of the same waves is shown in Fig. 11. In Fig. 11 it can be seen that the

o cOs W1 “malt.
A
—sindt sinot it
o 6
"”\:"_,a
—cosawt 0
Fic. 11. Vector representation of waves Fla. 12. Combination of
shown in Fig. 10. —5 gin wt + 5.68 cos wi.

sin (wt +90°) gives the +cos w!, that —cos (wf — 90°) gives the —sin wf, etc. By vis
ualizing Fig. 11, all similar relations become apparent. In like manner, if [—5sin at
+ 8.66 cos ui] is to be reduced to a single tngonometric term, the values would be
laid off on Fig. 11 as shown in Fig. 12. The vector addition would then be performed
to obtain the resultant OC. OC may be seen to lead the coe wt by 30° or to lag the
—gin wt by 60°. It also leads the +sin wt by 120°. Thus the equation of OC is sny
one of the following: 10 cos (wi + 30°), —10sin (wt — 60°), or 10 sin (wt + 120°).
There are also other equivalent expressions for the resultant wave.
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Example 4. Express the equation obtained from the analysis of the wave of
Oscillogram 4 in terms of positive sine components only. The results of the analysis
show that:

Ay = 8245 By = —2211 C, = V8245 + (—22.11)" = 85.50 units

A; = —-0.92 B; = 282 Cy = V(—092)* 4 26.2? = 26.2 units

As = —538 Bs = =365 Cs = V/(—5.38)? + (—3.65)! = 6.50 units

A; = 201 B; = —-129 C; = V2017 + (—1.29)? = 2,39 units

With respect to the +sin w position of Fig. 11 s a reference:

" —-22.11
82.45
26.2

a3 = tan™’ :_DFC.E = tan~! —28.5 = 92°

—3.65
—5.38

= tan~! —0.268 = —-15°

ay = tan™

as = tan™! = tan~10.678 = 214.2°

—1.29
1 _1 r L-]
501 = tan™' —0.642 = —32.7

a; = tan™

It will be noted that the individual signs of the coefficients B and A must be con-
sidered in the evaluation of the phase angles.
The equation for the wave form shown in Oscillogram 4 is:
1 = 85.50 sin (w! — I5°) 4 26.2 sin (3wt + 92°)
=+ 6.50 sin (5wt + 214.2°) 4 2.39 sin (7wl — 32.7°)

It is desirable to draw figures, similar to that shown in Fig. 12, for each of the har-
monics. This exercise is left to the student. The final test of the correctness of
any wave analysis is whether the comporent pdrts found by the analysis can be
combined to yield the original wave.

Problem 3. Evaluate i in the above equation at 30° intervals of wt throughou
one-half eycle, and plot the resultant curve. Compare the general wave shap
thus found with that of the original wave form shown in Oscillogram 4.

Problem 4. Express the equation for the wave shape shown in Oscillogram
in terms of positive cosine components,

Wave Analysis (Second Graphical Method). Although the funda
mental basis of the previous method of analysis is simple, there are ¢
number of methods which require less time for numerical computation
One of these shorter methods follows.

Equation (1) may be written in ihe following form:

y=f(z)=Ao+ A,sinx + A;sin2z + Azsin3z + -
+ Ansin nz + By cos z + B, cos 2z + Bj cos 3z
+ «+- 4+ Bpcosnr (20)

If ¢ is a number equal to the order of the harmonic which is under
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investigation and f(»/2q), f(3x/2¢), etc., are the values of y = f(z) at
£ = n/2q, = = 3r/2q, etc., it can be shown that the following relations

are true.’

(49 — )=
B

29(Bq + Bag + Bsq + - ++) = f(0) - f@“(?) _j.(.?;_n')

+.‘._Lf[i2_g_;;l)_f:| (22) .

When equations (21) and (22) are used, it must be remembered that the
subseripts 3g, 5q, etc., represent the order of the harmonic obtained by
multiplication of 3 times g, 5 times ¢, ete. Thus, if g is 3, B3, would be
Bg, B:,q would be Bls, ete.

Before proceeding to employ equations (21) and (22), it is necessary
to estimate the maximum number of harmionics required in the analysis.
The procedure is theh to start with the highest harmonic and substitute
the ordinates at the various angles indicated by the right members of
equations (21) and (22). Since it is unlikely that all ordinates required
will be given, it is usually necessary to plot the resultant wave in order
that the required ordinates may be read from the curve. The necessity
of having a graph of the curve will usuaﬂy entail no extra work in
practice because the method will usually be applied only when the
resultant wave is obtained from an oscillogram similar to that illus-
trated in Oscillogram 4, page 236. After the harmonic coefficients are
determined, A, is evaluated by substituting r"= 0 in equation (20).
Thus -

fO)=As+B1+B;+Bg+ -+ Ba (23)

f(0} is read from the curve and, since everything except 4, has been
determined, .1y can be calculated. As an example of the procedure,
the wave employed in example 3 will be analyzed.

Example 6. Find the harmonic coefficients through the seventh harmonic for
the wave given in Oscillogram 4, page 236, by employing equations (21), (22), and
(23).

3 8ce " Advanced Mathematics for Engineers,” by Reddick and Miller, John
Wiley & Sons, Inc., 2nd edition, 1947, p. 202.
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For the seventh harmonic, ¢ = 7 and equation (21) is used as follows:

11
@xnar=1(5) =1 (5) +(5) - () +0Gh) -G
+I(——4 (15;) !(l?r) (19:) (21;)
23x 257 2?:-
-5+ (58 -5
Note that, since the seventh harmohic is the highest required, A3q = Aay, 4s,, ete,,
are all zero,
14.4; = f(12.86°) — f(38.57°) + f{ﬁ&.%’} — f(90°%) 4+ f(115.7°)
— f(141.4°) 4 f(167.27) — f(193°) + f(218.7%) — f(244.3°)
+ f(270°) — f(206°) + f(321.5°) — f(347°)
=124 — 245 + 405 - 764 41176 — 746 4 175 — (—12.4)
+ (—24.5) — (—40.5) + (—76.4) — (—117.6) 4 (—74.6)
= {—17.5)
=25
25
A; = 'ﬁ =1, 79
148, ’ljﬁi} f(25.7°) + f(51.4°%) — f(77.1°) +.f{103 ) — £(128.7°)
+ f154.3%) — J(180°) 4 f(205.5°) — f(231.3°) + f(257°)
— f(283°) + f(308.7°) — f(334.5°) '
=0 — 20+ 32 — 56.4+ 101 —107 4+ 41 — 0+ —20 + 32 — 58
+ 101 — 107 4 41
= —18

18
By = — 7 = —1.280

Because the wave is symmetrical about the 180° point, even harmonics cannot
exist. If, however, equations (21) and (22) are used to find ‘the sixth harmonic,
zero will be obtained.

Equations (21) and (22) are now used to uslculale As and B a.s follows.

{2><5).4;=f(1—'6)_; _") ) ()H ) (ur)
)11 1)

1045 = f(18%) ~ f(54°) + f(90%) — f(126°) + f(162°) — f(198°)
+ J(234°) — f(2707) 4 [(306°) — f(342°)
=15 —33 +76.4 — 113 +26 — (—15) + (—33) — (—76.4)
+ (—113) — (—286)
= 2(15 — 33 + 764 — 113 +26) = 2(—28.6) = —57.2
Ay = —572




\
Ch. VI NON-SINUSQIDAL WAVES - 245

om0 1) +13) 1 (5) 18) 1(5) 3
() (%) ()

10By = f(0) — J(36°) + f(72°) — J(108°) + f(144°) — f(180%)

+ /(216°) — f(252°) + f(288°) — f(324°)
=0 —24 449 — 110 + 68 — 0 + (—24) — (—49) + (-110)

— (—88)
- —34
Biw =34

Determination of 4; and Bj:

oxou 1) -1 +1(5) -1 +1(5) 1)

643 = f(30°) — f(90°) + f(150°) — f(210°) + f(270°) — /(330%)
= 21.8 — 76.4 + 51.1 — (—21.8) + (—76.4) — (—51.1)
= -7

Ay = —1.167

6B = J(0) - f( )+! (2') (3') i (h) : (51)

= f(0) — J(80°) -+ f(120°) — f(180°) + f(240%) — f(300%)
=0 —37.4+ 1185 — 0 + (—37.4) — (—118.5) = 1622
By = 427.03 ‘

For the fundamental, equations (21) and (22) become
3
@ X 1)(A1 — A1 + A5 — 42) -!G) ( 7)

2(4, — Ay + As — A7) = f(80) — f(270) = 76.4 — (—76.4) = 152.8

Substituting the values of A, A, and A; found previously a.nd solving for 4, gives
A; = 8274
Ip a similar way B; may be found as follows.
(2 X 1)(Bx + Bs+ B+ By) =f(0) — f(x) =0
2(By +27.03 — 3.4 —1286) =0
By = —2234

The foregoing method is easy to apply and entails less labor than the
method employing analyzing tables. The accuracy, however, will vary
with different wave shapes and will also be dependent upon the estimate
of the number of harmonics required. It will be noted that the deter-
mination of the fundamental depends upon the values of the harmonics
previously determined. It is therefore desirable to start with a high_
enough order of harmonic so that any higher-order components will be
negligible so far as engineering accuracy is concerned. If only a single
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harmonic of some desired order is required, the method employing the
analyzing tables may save time and be more accurate. The error in
the method employing analyzing tables depends only upon the size of the
intervals chosen and, obviously, approaches zero as the size of the
interval is decreased and the number of them is increased. The deter-
mination of any one harmonic is independent of the determination of
any other harmonies when analyzing tables are employed.

Fie. 13. Wave with unsymmetrical positive and negative loops.

F1a. 14. Wave with unsymmetrical positive and negative loops.

Degrees of Symmetry of Non-Sinusoidal Waves. Non-sinusoidal
waves may have symmetrical positive and negative loops, as shown in
Fig. 8, or the loops may be unlike, as shown in Figs. 13 and 14. Asindi-
cated in the article on wave analysis (page 235), certain types of
symmetry in a wave form will automatically eliminate the need for
evaluating certain coefficients in the Fourier seriés which represents the
wave.

When the variation from zero to 180° is repeated (except for sign)
between 180° and 360°, the wave is said to possess half-wave symmetry.
Mathematically a wave of this kind is described as having
[f(z + x) = —f(z)] symmetry. Expressed in another way, a wave
has half-wave symmetry when any ordinate, such as b, Fig. 13, » radians
distant from another ordma.te, “such as a, is equal in magnitude to that
at point a but opposite in sign. Thus, the ordinate at any point a for
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a general wave is:

Yo = A + Cysin (0t + ) + Cz sin (20! + a)
+ Ca Siﬂ (3&1 + G'a) + C4 Siﬂ (4:0)! + r:q)
+ Cssin (5wl + as) + +++ (24)

The ordinate = radians distant from a is found by adding » radians to
wl. If this angle (wt + =) is substituted and if it is remembered that
(w! + 7) for the fundamental corresponds to n(wt + =) for the nth
harmonic, the following results:

m,=A0+Clsin(m£+u|+r)+Cgsin (2wf+&2+2‘l)
+ C3sin (8wt + az + 3x) + Cs sin (4ot + a4 + 47)
+ Cs sin (Gwl + as + 5¢) + +« - ' (25)

Since the sine of any angle plus an even multiple of » radians is the
same as the sine of the angle, and the sine of an angle plus any odd
multiple of x radians is the same as the negative sine of the angle,
equation (25) simplifies to:

Yy = Ao = C: sin (mt + &1) + Cz sin (2&)1! + ag)
— Cysin (3wt + a3) + Cysin (4wl + ay)
— Cssin (5wl + ag) + + -+ (26)

The ordinate y» [equation (26)] would be exactly opposite to that of
equation (24) if Ao and all even harmonics in the wave were absent.
Hence a wave is symmetrical with respect to the positive and negative
loops if it contains no even harmonics and if Ao is equal to zero. The
converse of the foregoing statement is also true, that is, a wave which has
[fwt) = —f(wt 4+ x)] symmetry can contain neither even harmonics
nor Ag. The effect of a second harmonic in destroying half-wave sym-
metry is shown graphically in Fig. 15. In analyzing waves possessing
half-wave symmetry, the analysis need be carried through only 14.cycle
or 180°, -

A wave possessing half-wave symmetry as defined above may also be
symmetrical about the midordinates of its positive and negative loops,
namely, its 90° and 270° points. A wave of this kind is said to possess
midordinate or quarter-wave symmetry, and the analysis need be carried
through only 14 cycle or 90°. The case where only the positive or
negative loop is symmetrical about its midordinate is of relatively little
importance. Thus the positive loop of the wave shown in Fig. 13 is not
symmetrical about its midordinate, whereas that of Fig. 16 is symmetrical
with respect to its midordinate. The wave will have the halves of its
positivé and negative loops symmetrical if its fundamental and all har-
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monics pass through zero values at the same time, and, further, if all even
harmonies are absent. This fact is illustrated graphically in Fig. 17. The
second harmonic, shown dotted, adds to the fundamental to the left of the
midordinate of the positive loop and subtracts from it on the right-

/ T Resultant

Fi. 15. Effect of second harmonic in destroving half-wave symmetry,

hand side. All the odd harmonics are symmetrical about the mid-
ordinate a when they pass through zero at the same time as the funda-
mental. If the zero-ordinate point of the complex wave is chiosen as o

A 270°
80° |

Fro. 16, Wave with positive and negative loops symmetrical about the midordinate
(quarter-wave symmetry).

:eference, it is plain that only odd sine terms can be present in the
equation of a complex wave having quarter-wave symmetry.

Waves of Same Wave Shape. Waves are of the same wave shape
if they contain the same harmonics, if the ratio of corresponding har-
monics to their respective fundamentals is the same, and if the harmonics
are spaced the same with respect to their fundamentals. Expressed
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in another way, for two waves of the same form the ratio of the magni-
tudes of corresponding harmonics must be constant, and, when the
fundamentals are in phase, all the corresponding harmonics of the two
waves must be in phase. The.test i3 to note whether the ratio of cor-
responding harmonics is constant and then to shift one wave so that the
fundamentals coincide. If the phase angles of correspond]ng harmpmca
in the two waves are then the same and if the first condition 1s also
fulfilled, the waves are of the same wave shape or wave form.

Fi1a. 17. Symmetry about the midordinate, a, is maintained if all odd barmonics are
# -0 when the fundamertal is sero. The second harmonic shown dotted will destroy
this symmetry as will other even harmonics.

Exemple 6. Determine whether the following two waves are of the same shape:
= 100 sin (w! 4 30°) — 50 sin (3wt — 60°) 4 25 sin (5wt + 40°)
i = 10 sin (wt — 60°) + 5 sin (3wt — 150°) + 2.5 cos (5wt — 140°)

Since all harmonics of the current wave are one-tenth of the corresponding har-
monics in the voltage wave, the first requisite is fulfilled. Next, the fundamentals
should be brought into phase by shifting the current wave forward 90° or the voltage
wave backward 90°, The current wave will be shifted by adding 90° to the phase
angle of its fundamental. Shifting the fundamental of & wave by «° corresponds
to shifting the nth harmonic by na® This may be verified by referring to Fig. 17.
Suppose the reference axis is changed to the position marked o, thus shifting the
wave ahead. This is a shift of 90°, or one quarter cycle for the fundamental. It is
a shift of three quarter cycles for the third harmonic, or 270° and five quarter cycles
for the fifth harmonic, or 450°. Hence, to maintain the same relation between the
fundamental and all harmonics in the current waves, 3 X 90° or 270° will be added
to the third, and 5 X 90° or 450° will be added to the fifth harmonic. Then:

i’ = 10sin (wt — 60° 4+ 90°) + 5sin (3wt — 150° + 270°)
+ 2.5 cos (5wt — 140° 4 450°)
= 10 sin (wt + 30°) + 5sin (3wl 4 120°) + 2.5 cos (5wt + 310°)
= 10 sin (w! + 30°) — 5sin (3wt — 60°) + 2.5 sin (5wt + 40°)

The corresponding harmonics of the current and voltage waves are hence in pbase,
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and the two waves are of the same shape. Had either the third or fifth harmonic
been out of phase with the corresponding harmonic in the voltage wave, the wave
shapes would have been different.

The effect on wave shape of shifting a harmonic with respect to the
fundamental can be understood through a study of Figs. 18, 19, and 20.
In each figure the magnitudes of the fundamental and third harmonic
are the same. As the third harmonic is shifted along the axis with
respect to the fundamental, the wave form of the resultant is seen to
change. This shifting of a harmonic with respect to the fundamental
is sometimes spoken of as changing the phase of the harmonic with
respect to the fundamental. This should not be construed to mean
that there is a definite phase difference between a vector representing
the fundamental and one representing the third harmonic. Vectors
representing a fundamental and a higher harmonic cannot correcily be
related on the same vector diagram without special interpretation.

Problem 6. Given the following equations for two wave forms of current:
i’ = 10sin (w + 30°) + 2 sin Tt
i'' = 358in (wt — 10°) 4 7 sin (7wl 4 80°)

Show that the wave form of the i’ variation is like (or unlike) the wave form of
the ¢’/ variation. Ans.: Bame form.

Effective Value of a Non-Sinusoidal Wave. In Chapter III the

1 /T
effective value of any wave was shown to be \[? I [f(t))?dt. Applying

this expression to the general complex wave
it = Iy + Iy sin wl + Imzsin (20l + a3) + Img sin (Bwt + a3)
+ ... +Imn3in (M“"' ﬂn)
gives ?
L-r* " .
I = [_T-"[J‘ [To + I sin wl 4 Iy sin (2wl + az) + Imssin (3wl + ag)

M
+ o+ + I, sin (not +a.)]“dt]

Imz I’I’ Ims+fmg+"'+rmn=
=Jfo’+ L s e 27)

Problem 8. Bhow by integration, including all steps, that the effective value of

’V,..’
= Vmisin (o + a1) + Vessin (3t +30°) is +V-n’,
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Fia. 20.
Figs. 18, 19, and 20 show the effect on wave shape of shifting & harmonic.

-17
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Since
I"‘l Ina
— = I — =1, ete.
vz ! V2 ”
I='\/To§+112+f22+f32+1‘2+...+In2 (28)

Equation (27) is used when the maximum values of the harmonics are
given, whereas equation (28) gives the equivalent expression if effective
values of the harmonics are available. It is obvious that similar expres-
sions hold for voltages.

Ex;mple 7. Find the effective value of the voltage wave used in example 6.

' 2 .R
E = l_w,_!:t_.%o_.ﬁ.,glvolu

It should be noted that the effective value is the square root of the sum of the squares
of the maximum values divided by 2, irrespective of the phase angles or signs of the
harmonics. A similar statement is true when effective values of the harmonics

are used in equation (28).

For one method of analysis in a-c machinery, known as the Blondell two-reaction
method, it is necessary to have the effective value of the rectangular wave given
by equation (15), page'233. For this wave, effective value equals A« /4.

Power Due to Non-Sinusoidal Voltages and Currents. The expres-
sion for average power in general was given as

P 1 T
_?fo' et dl.
When g

¢ = Ep sin (ol + o) + Emg sin (20! + az) + Emgsin (3wt + a3) + - -
and
i = Iy sin (@ + ay') + Inmgsin (2ot + @3’) + Imasin (3wt + as’) +---

T
pP= %\[ [Emy sin (ot + a1) + Emz sin (20! 4 a3)

+Em3 sin (30’! + C‘la) -+ e '] [In“ sin (wl o i a;')
+ Ing sin (20t + a2’) + Imasin (3t + a3’) + ---]dt  (29)

Upon expansiof, this yields products of terms of unlike frequencies and
produets of terms of like frequencies. As shown on page 226 the integral
_of the products of terms of unlike frequencies taken over a complete

cycle of the lower frequency is zero. This leaves only the product of
terms of like frequency, such as:

1£r 5 P ’
r Am:}-(m+a)8mngﬂkd+a)dt.
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which gives
AB

S eos a - a') 30)

Thus equation (29) becomes

P = ———bmlfml cos (ﬂ], = a1’) + E'RI”& cos (a2 = a;)
: 2 2
Em Im
+——3§-—scoa(aa"'“a’)+"‘ 8L
Or, since
’ EMI.IMI Evnl Iﬂll
2 vavz
P = E\I co8 (g — a') + E2l; cos (ag — ag’)
- Ez!a cos (05 — aa’} + e (32)

Average power when waves are non-sinusoidal is the algebraic sum of the
powers represented by corresponding harmonics of voltage and current.
No average power results from components of voltage and current of
unlike frequency, provided that the time interval chosen is equal to an
integral number of cycles of the lower-frequency variation. The
foregoing statement can be proved either mathematically or graphically.

Example 8. Find the power represented by the following:
e = 100 sin (wé + 30°) — 50 sin (3wt + 60°) + 25 sin 5wl volts
4 = 20 sin (wi — 30°) + 15 sin (3wl + 30°) + 10 cos (5wé — 60°) amperes

—50)(1

- 20 o 0% = 1-30%1 4 S20EE, 502” 5) cos [60° — 30°]
25 X 10

=% cos [—90° — (—60%)]

= 500 — 32475 + 108125

= 283.5 watlts

An alternative method of obtaiping the power for the third-harmonic componeants
follows. # :
ea = —50sin (3uf + 60%) = 450 sin (3wt — 120°) volts
t3 = 15 sin (3wf + 30°) amperes
50 X 15

L

cos (—120° — 30°) = 3¥5 cos 160° = —324.75 watis
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Problem 7. Find the power delivered by the following: *
¢ = 100 sin wt + 50 sin (5wé — 80°) — 40 cos (7wt + 30°) volts
i = 30sin (w + 60°) + 20 sin (5wé — 50°) + 10 sin (7wt + 60°) amperes
;lm.: 1083 watta,

Volt-Amperes. Vol.t.—a.mperes are determined by the product of the
effective voltage and effective current. .

Example 9. Find the volt-amperes for the waves in example 8.

_ /100" + 50° +25° [20* 4 15° + 10*
V""EI'\/ 2 v 2

= 81 X 19.03

= 1541 volt-amperes
In general,
Volt-amperes =
\/E,.ﬁ + Enz® + Epg® + ete. JI.,,* + Tng® + Ing® + ete.
2 ‘ 2
Power Factor. Power factor for non-sinusoidal waves is defined as
the ratio of the power to the volt-amperes. Hence -
Power factor =
E\I, cos (ay — a;’) + EaI; o8 (a3 — as’) + Eyls cos (az — as’) + ete.
VE® + Ei* + E? +ete. VI,? + I.? + 1,2 + ete.

(33)

(34)

Exampls 10. Find the power factor for the waves given in example 8.
Power from example 8 = 283.5 watta
Volt-amperes from example 9 = 1541

=—— = 0.
1541 1837

Power factor

The conditions under which the power [actor is unity when waves are non-sinus-
oidal are found from equation (34). To make the power factor 1, the numerator
(power) should be as large as possible. Hence

_ co8 (a1 — a1’) = cos (a3 — a1') = co8 (a3 — ay’) + ote. = 1
Then
e EyIly 4+ Esls + EIly+ - -+
VI(E® + E? + B +ete) (I + I* + I)* + etc.)
This expression can equal unity only it B,/ = E3/I3 = Ey/I,.
To simplify the algebra, consider only the fundamental and one harmonie.
EyI, + Bzl

-1
VE? + EHUT + 1)

p.f.
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Euly 4 Esly = VE*I* + Bl + E'I* + Byl
E1)' 4 2B\ 1Esly + E'Is? = Bl + B'lg? + E2 I 4 Eflgd
2E\1E3Is = Ei’ly* + Ed*ly?

IfE,/1, = E2/Is, B1I3 = E2I, and the above expression becomes 2B, = 2E,1] 2,
under which conditions the premise is true. Hence, to have unity power factor,
the voltage and current waves must be of the sama wave shape and in phase. Even
though the voltage and current waves pass through zero at the same instant, the
power factor cannot be unity if any harmonic in one wave is absent in the other, or
when its magnitude makes the wave shapes different.

Equivalent Sine Waves. Occasionally equivalent sine waves are
used for certain calculations and comparisons. They must be used with
discretion because calculations based upon them are usually in error
by varying amounts. An equivalent sine wave of current or voltage is
a sine wave the effective value of which is the same as the effgctive
value of the non-sinusoidal wave which is being represented. When
equivalent sine waves ol corresponding non-sinusoidal voltages and
currents are found, the phase angle between the equivalent sine waves
is made such that the power and power factor are the same as those for
the actual waves. Whether the equivalent angle of phase difference
is one of lead or lag is determined by the angle between the fundamentals
of the two waves. If the fundamental of current lags the fundamental
of voltage, the equivalent sine wave of current must lag the equiva-
lent sine wave of voltage. If the fundamentals are in phase and the
power factar is not unity, the sign of the angle of equivalent phase
difference is indeterminate. ;

Example 11. Find the equivalent sine waves for the current and voltage given

in example 8.
- 1 1
Effective voltage = A\ IE+—520:-—+—2§- = B1 volis
; + 15* + 10?
Eﬂ';ct;ve currenat = e e i 19.03 amperes

Power factor from example 10 = 0.1837

The angle of equivalent phase difference is cos™! 0.1837 = 79.4°. Since the funda-
mental of current lags the fundamental of voltage, the angle 79.4° is an angle of
lag of current with respect to voltage for the equivalent sine waves. The equivalent
sine waves of voltage and current, respectively, are:

e = V/2 81 sin wt volis
§ = /2 19.03 sin (wt — 79.4°) amperes

As indicated before, the use of equivalent sine waves in ngn-ginusoidal circuit analysis
will generally lead to large errors, particularly in operations involving the addition
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or subtraction of the waves. Equivalent sine waves are sometimes used in specify-
ing the deviation from a sine wave.

Problem 8. Find the equivalent sine waves for the waves given in Problem 7.
Ans.: 1188 sin w! volts; 37.4 sin (wt + 60.8°) amperes.

Deviation Factor. Deviation factor is the ratio of the maximum
difference between corresponding ordinates of an actual wave and an

Fio. 21. Davinf.ion of a distorted wave from an equivalent sine wave.

equivalent sine wave of the same length to the maximum ordinate of
the equivalent sine wave when the two waves are superposed and
shifted along the axis so as to make the maximum difference a minimum.
For example, Fig. 21 shows a non-sinusoidal wave and an equivalent sine
wave of the same period and length. These waves are shifted in such a
way that the maximum difference between corresponding ordinates is as
small as possible. In this particular case the maximum difference is ab.
The ratio of ab to the maximum value E,, of the equivalent sine wave is
the deviation factor. Deviation factor is sometimes used for specifi-
cation purposes. A deviation factor of about 0.1 for commercial
machines is usually allowable.

Series Circuit Analysis when Waves Are Non-Sinuscidal. The
procedure is most readily understood from an example.

R=60 C=988,  Example 12. Given the cireuit with
—T-—®—AMM-’““F‘—|(— ‘the parameters shown in Fig. 22
L=0.05 henty When w is 377 radians per second and

i the voltage v = 141.4 sin wt -+ 70.7sin

' (3wt + 30°) —28.28 sin (Swl — 20°)

volts is impressed, find the current,
I, that an ammeter would read. Also
find the total power dissipated and the effective value of the voltage drop across
the inductance. Also find the equation of the current wave.

Since the inductive and condensive reactances are different for different frequen-

Fic. 22. See example 12.
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cies, each harmonic must be handled separately. Subscripts 1, 3, and 5 will designate
the fundamental, third, and fifth harmonics, respectively. Either maximum or
effective values may be used. If maximum values are used, maximum currents
will result; when effective voltages are used, effective currents result. Whichever
are used, the result can always be easily changed to give the other if desired. Since
the effective values of the harmonic components of voltage in this particular case
are mora convenient numbers to handle, the solution will be negotiated through
the use of effective values immediately.

Fundamental %

141.4
V1= \/E =100 volts
R, = 6 ohms
Xy =377 X006 = 18.85 ohms
108
= 377 X 98.8
Z, = 6 + j18.85 — j26.85 =6 —j8 or 10 ohms

vy 100
=) w2 = 10 amperes
I & 10

X = 26.85 ohms

- _.8
I; leads V; by 1.:11::1“(—5 = 53.12°

Py = 10 X 6 = 600 walls
Vi = [1Xz1 = 10 X 18.85 = 1885 volts

Third Harmonic

70.7
V3 = —= = 50 volts

V2
R; = B ochms
Xps=3X11 =3 X 1885 = 56.55 ohms

X 26.
Xes = -—39 -—38-5 = 8.95 ohms

Zs =6 + j56.55 — j8.95 = 6 + j476 or

+/6* 4+ 47.6% = 48.1 ohms

I ﬂ 1.04 am
T T peres

Islags V3 by tan™ %-E = 82.8°

Py = 1.04* X 6 = 6.48 watta
Vis = 1.04 X 56.55 = 58.9 volts
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Fifth Harmonie
L 28928
Vs =—— = 20 volta
V2
._R; = § ohms
Xps=5Xp =5 X 1885 = 9425 ohms
Xe1  26.85

Xc;-'—g— -T = 5.37 chmas

Zy = 6 + j94.25 — j5.37 = 6 4 j88.88 or
V6% + 88.88? = 89 ohms

20
Iy -ﬁ_ﬁ = (.225 ampere

Izlags Vi by tan—!
Py = IRy = 0.225° X 6 = 0.304 watt
Vis =0.225 X 9425 = 21.2 volts
Nows = VI + I* + Ig* = V107 + 1.047 + 0.225¢ = 10.05 amperes
Pias = Py + P, + Pg = 600 + 6.48 + 0.304 = 606.8 watts
Vi = V188.5" + 58.9° + 21.2" = 1/30510 = 108.8 volis

Sinee the fundamental of current leads the fundamental of voltage by 53.12°, the
equation of the fundamental of current must be v/2 10 sin (wt + 53.12°). Similarly,
for the third harmonic,

i3 = V/2 1.04 6in (3wt + 30° + 82.8°)
or %3 = /2 1.04 sin (3l — 52.8°) amperes
Also i5 = — V/20.225 sin (5t — 20° — 86.1°)
= — 4/20.225sin (5uf — 106.1°) amperes

The complete equation is: .
i = 14.14sin (of + 53.12°) + 1.47 sin (3wt — 52.8°) — 0.318 sin (5wl — 106.1°)
= 14.148in (ot +53.12°) + 1.47 sin (3ut — 52.8°) +0.318 sin (5wt +73.9°) amperes

Parallel Circuit Analysis when Waves Are Non-Sinusoidal This
is not appreciably different from the preceding series-circuit problem.

Example 13. Given the circuit shown in Fig. 23, with the 60-cycle constants as
shown. When a voltage v =141.4 8in w! +70.7 gin (3wl + 30°) —28.28 sin (5! —20°
volts is impressed, find the ammeter value of the total current, I, the current in
each branch, power dissipated by each branch, total power dissipated, and the
equation of the resultant current. w = 377 radians per second.
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Fundamental
1414
¥y = —— = 100 volts magnitude
YUNE

VY, = 100 + 70 volts
100(5 + j15) ;
Ly = G —718)5 +15) 2 4+ j6 or 6.33 amperes

L e ﬁlﬁ% =962 —j1.925 or 9.82amperes

Ira1 = Loy + Lar = 11.82 + 74075 or 12.33 amperes

17,1 leads the fundamental of voltage by tan™! ::—% = 19.4°

Pay = & + &'’ =100 X 2 = 200 watts
Py = 100 X 0.62 = 962 watts

Fic. 24. Cireuit of Fig. 23
showing parameters at 180

cycles,

Fia. 23. Circuit with 60-
cycle parameters.

Third Harmonic
The circuit with the parameters for the third harmonic is shown in Fig. 24. Only
the reactances need be changed before proceeding as before.
70.7
¥a = —= = 50 volts magnitude

V2

Take V3 along the reference axis for the third harmonic. (The most convenient
reference axis should be chosen in any particular case in this type of analysis. )

V3 = 50 + 70 volta

50 i
L = 5-__—:5- =5+4+35 or 7.07amperes

¥
Las = 15 T30 3.68 — 221 or 4.3 amperes

I/ = 8.68 +72.79 or ©.11 amperes
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2.79
Tyasleads Vyby tan~! o0 = 17.85°
Pass = 50 X § = 250 watts

Pegz = 50 % 3.68 = 184 watls
L 4

100 -

Fie. 25. Circuit of Fig. 23 showing parameters at 300 cyclea.

Fifth Harmonic
The circuit with parameters for the fifth harmonic is shown in Fig. 25,

Ve = ﬂ = 20 volta
V2

Let Vi wdl - ivdlia

20
= 2.04 il. :
57 2.94 +71.763 or 3.43 Amperes

“0 .
-—=1 1 41
Las 10 4710 j1 or 1 4am¥:rera

Ius =

Iss = 3.94 4+ 70.763 or 4.0l amperes *

0.763
<& leads V —1 —— = 10.95°
Ired s Vg by tan 301 10

Pays = 20 X 2.94 = 55.8 watts
Poas = 20 X 1 = 20.0 watts
Ammeter value of total current = v/12.332 + 9.11% + 4,012
= 15.9 amperes
Ammeter value of current in ab = v/6.33% + 7.07% + 3.43?
= 10.1 amperes
Ammeter value of current in ed = V/0.82 4 4.3 + 1.4142
= 10.81 amperes
Pgy = 200 + 250 + 58.8 = 508.8 watts
Pa = 962 + 184 + 20 = 1166 watts
Total power dissipated = 1674.8 watts

Ch. VI
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L

Since Iyq leads Vi by 10.4°, the equation for the fundamental of the current wave
must lead the voltage wave 141.4 sin of by 19.4°. Hence

0= +/212.33 sin (wt + 19.4°) amperes
Similarly
iy = V/20.11 sin (3wt + 30° + 17.85%)
= v/29.11 sin (3wt + 47.85°) amperes
o iy = —+/2 401 sin (5wt — 20° + 10.95°)

= /2 401 sin (5wt + 170.95°) amperes .
Therefore
i=1 +1+
= 17.45 sin (w! + 19.4%) + 12.9 sin (3wt + 4_7.8-5“}
4 5.67 sin (5wt + 171°) amperes

Addition and Subtraction of Complex Waves. These operations are
similar. Subtraction is performed by reversing the sign of the term
to be subtracted and then adding. Toillustrate, consider the bifurcated
cireuit shown in Fig. 26. Given

1, = 10 sin (ot + 30°) — 5sin (3wt — 40°) amperes

i3 = 15sin (wt — 10°) + 10 sin (3wt + 60°) amperes

Find ..
From Kirchhofi’s laws, 1, + ip = 13, OT T3 = 93 — 1.

L]
! %
> b '
I - \\ b ad P
L _1{-’..___-_ s
al T e e g
et ==y
m?

Fic. 28. Biturcated line. ' Fia. 27. Vector diagram for currents of fun-
; damental frequeney in Fig. 26.
Fundamental

Consider a wave whose equation is of the phase sin wt as the reference.
The solution will follow the vector diagram of Fig. 27. The number of
primes on & symbol will indicate the order of the harmonic represented.

L.’ = 10 (cos 30° + jsin 30°) = 8.66 + j5
L.s’ = 15 (cos 10° — jsin 10°) = 14.75 — j2.6
~1., = —866 —j5
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L' = =L,/ + L, =609 —Jj7.6 or 9.74 amperes

6.09
i) = 9.74 sin (wt — 51.3°) amperes

8 = tan™! = —51.3°

—sin Jwt*

S

Fra. 28. Vector diagram for third harmonic currents in Fig. 26.

Third Harmonic

A wave of the phase of sin 3wt will be taken as the reference. Then
the vector diagram representing the third-harmonic currents appears as
shown in Fig. 28.

L' = 5 (cos 140° + j sin 140°) = —3.83 + j3.214

Ins’"’ = 10 (cos 60° + j sin 60°) = 5 + 78.66

In"" = Lng'"" — Lu'"" = 5+ j8.66 + 3.83 — /3214 — 8.83 + j5.446
or 10.37 amperes ' '

8" = tan™1 i = 31.6°

8.83
10.37 sin (3wt + 31.6°) amperes

I

« Fry
12

The complete solution is -
1:3 = 1_,’ + 1:3!” 3
= 9.74 sin (wt — 51.3°) + 10.37 sin (3wt 4 31.6°) amperes -

Introduction of Harmonics Due to Variation in Circuit Parameters.
Harmonics in a current wave may exist even though the voltage causing
it is a pure sinusoid. For example, consider a very thin filament of
wire which has a high temperature coefficient of resistivity, If the
wire is sufficiently thin so that it will heat and eool during a cycle as
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Y
the current varies from zero to a maximum, the resistance will vary

during the cycle. At the maximum point a on the voltage wave, Fig. 29,
the resistance will be higher than at point b. The current at a will,
therefore, fall below the value that would permit it to be proportional
to the voltage. The wave 1; shows the current wave for & constant
resistance, whereas the dotted wave i3 shows how it will vary when the
resistance increases for the higher values of current during a cycle.

$ra. 29. Shape of i3 wave is flatter than & sine wave owing to resistance increasing
with current.

A very common example of harmonics in a current wave occurs'when
a sihusoidal voltage wave is impressed on an inductance coil with an iron
core. As the current increases, the resulting operation on a higher
part of the magnetization or saturation curve causes the inductance to
become smaller. When the inductance becomes less, the inductive
reactance is reduced and the current, therefore, rises more rapidly
than it otherwise would. Thus the current wave becomes more peaked
than = sinusoid. This is shown by Oscillogram 2, page 224 which was
taken for an iron-core coil.

When the voltage on some device is to be reduced and it is desired
to maintain the same wave form, a series resistance cannot be used if the
current wave is not sinusoidal. The drop across the resistance will be
non-sinusoidal, and this drop subtracted from an original sine wave
of voltage will result in & non-sinusoidal wave across the device. In
general, but not invariably, the subtraction of & non-sinusoidal voltage
drop from a non-sinusoidal voltage will result in & non-sinusoidal wave
of different shape from the original.

Modulated Waves. Modulated waves consist of a combination of
waves of different frequencies and are, therefore, classified as complex
or non-ginusoidal waves. The transmission of radio intelligence is
usually acecomplished by means of some combination of carrier and audio
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frequencies. Graphical representaticas of a carrier wave of relatively
high frequency and of a modulating wave of relatively low frequency are
shown in Fig. 30a and Fig. 30b, respectively. The carrier frequencies
employed in the program broadcast band range from 540 to 1600 ke,
and the modulating audio frequencies usefully employed at the trans-
mitter range from about 30 to 10,000 cycles.

A —

(a) Carrier Wave Unmodulated

ATy g TN
Rk

(b) Modulsting Wave (One and one-half cycles)

ﬂﬂﬂl\ﬂnﬁ,ﬂuﬂﬂﬂﬂ g 4=
P -

Ilated
(¢) Modulated Wave; fllustrating one and one-half
cycles of modulation

Fia. 30.

The carrier and modulating waves may be conibined in a network at
the transmitter in such a manner that useful variations in the resultant
amplitude or frequency are obtained. Some of the basic principles
involved may be understood by considering the case where the carrier
frequency is generated by an ordinary type of alternator rather than by
a vacuum tube oscillator. The carrier voltage will be represented by

e = Ao sin wl (35)

where 4o’ is the maximum ma.gmt.ude of the carrier volta,ge and w is the
carrier angular velocity. Either 4, or w may be varied in accordance
with the intelligence to be transmitted, thus producing amplitude or
frequency modulation. In the case of the ordinary alternator, A,
could be made to vary by changing the field current sinusoidally and the
resultant wave would correspond generally to that shown in Fig. 30c or

-in Oscillogram 5.

Amphtude modulatien may be mvast:gnted conveniently by lettmg
Ay o;l'equat.wn (35) take the form (4g + E., &in w,t), where E,,’ is the
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maximum amplitude of the modulating wave that is effectively superim-
posed on the carrier and w, is the modulating angular velocity. E. is
a measure of the degree of modulation (for a fixed value of 4¢) and usu-
ally has values ranging from 50 to 100 per cent of Ap. Percentage
modulation is defined as

Ex Amax — Ao

poma sl 1 = o Ol
AOXOO T X 100

OsciLLoGRAM 5. Photograph of a sinusoidally modulated wave.

In general, the equation of a sinusoidally modulated wave is:
e = (Ag + En’ sin w;t) sin wt
= Ao sinwl + E,’ sin wt sin wt (36)
The product of two sine waves of different frequencies may be expressed
in terms of the following two well-known trigonometric relations.
“eos (wl — wyt) = cos wl cos wif + sin wl sin w;! (37)
cos (wt + wit) = cos wl cos wyl — sin wi sin wit (38)
Subtracting equation (38) from (37) gives
cos (wi — wt) — cos (wi + wil) = 2 sin wi sin wyt (39)
Substituting the value of sin w! sin w;t from equation (39) in equation
(36) gives : ’
3 E. Em ;
_G-Ausmcd-{-?cm(ui—w;!) - ?cos(wt—l-wlt)

r r

- Auainaﬂ+%coa2r(j~f1)t—%—cm21(f+f1)f. (40)
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Equation (40) consists of three terms. The first term, Ag sin wt, is of
the same frequency as the original wave before modulation. This
wave is called the carrier wave, and its frequency the carrier frequency.
The second term, (En'/2) cos 2x (f — f;)1, has a frequency equal to
(f = f1), the difference between the carrier frequency and the modulat-
ing frequency. This frequency (f — f;) is called the lower side-band
frequency. The third term, (E,’/2) cos 2r (f + f1)t, represents a
frequency equal to f + f;, the sum of the carrier and modulating fre-
quencies. It is called the upper side-band frequency. Each of these
three frequencies can be separated from the others in the resultant wave
by the use of appropriate filters. If a carrier wave is modulated by a
complex wave, each harmonic of the modulating wave gives rise to an
upper and lower side-band frequency. Hence, in general, there are
several different frequencies in each side band. The type of modulated
wave presented above is primarily given as an example of non-sinusoidal
waves. There are, other types of modulated waves, but further dis-
cussion of them is beyond the scope of this text.

10
j=10 amperes
i between X =0
; and X =1
5 0 T Zr 3r

—

j=—35 amperss
between X =
and Xm2x

Fic. 31. BSee Problems 9 and 25,

= PROBLEMS

-
9. (a) Employ the analytical method to determine the coefficients of the har-

monics through the third harmonic for the wave shown in Fig. 31.

(b) Write the Fourier series in terms of sine components for the wave.

(¢) Sketch the components, indicating the manner in which the components
combine to approximate the original wave shape shown in Fig. 31.

10. (a) Employ the analytical method to determine the coefficients of the har-
monics through the fifth harmonic for the wave shown in Fig, 32.

(b) Write the equation of the wave through the fifth harmonic,

{c) Sketch the components, indicating the manner in which the components com-
bine to approximate the original wave shown in Fig, 32.
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11. A certain current wave has a height of 1 from 0° to 30°, then increases linearly
in a positive direction to a value of 3 at 60°, after which it remains at a height of
3 until 120° is reached. It then decreases linearly to a value of zero at 150° and
then remains at zero value until 360°. The cycle is then repeated. Find A, A4,
and B; of the Fourier series terms which represent this wave.

10
2
2 3 =
L . | . | S ..
. g a—
mflecaas

F1a. 32. Bee Problem 10,

12. A current wave is defined over one complete cycle by the following data:

z (in degrees) + (in amperes) z (in degrees) 1 (in amperes)
0 —2.000 195 —3.613
15 +0.149 210 —5.000
30 +3.000 225 —6.364
45 +6.364 240 —7.860
60 +9.660 I 255 —8.634
75 412.008 270 —9.000
%0 +13.000 285 —8.634

105 +12 098 300 —7.660
120 +9.660 315 —6.364
135 46.364 330 —5.000
150 +3.000 345 <% 613
165 40.149 360 : —2.000
180 —2.000 375 ; +0.149

(o) Employ the analyzing tables on pages 237 to 240, evaluate the Fourier series
coefficients A, Ay, By, As, Be, and A; of the above wave form, and write the Fourier
scries in equational form. (Note: Evaluations based on 15° intervals will be suf-
ficiently accurate in this case since the actual Fourier series contains no terms beyond
the 4, term. Cali any coefficient zero which is no greater in magnitude than the
probable arithmetical error involved.)

-18
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(b) Graph each of the components and combine these components to form the re-
sultant wave. Check various values on the resultant graph against the original data.
13. Employ the method of equations (21) and (22) and evaluate the Fourier
ries coefficients through the third harmonic for the wave given in Problem 12,
Write the following equation in terms of three sine components only;

v = 4.0 sin wl — 3.0 cos w! — 7.66 sin 2wt + 6.43 cos 2wt
— 2 8in 3wt — 1.5 cos 3wl

16. Given an a-¢ wave form as defined by the following table of measured ordinates:

Ordinate De Measured Ordinate De Measured
No. grees Ordinate No. B Ordinate
0 0 00 19 95 Td
1 ] 0.8 20 100 7.4
2 10 1.7 21 105 8.0
3 15 2.7 22 110 9.0
4 20 3.6 23 115 10.5
5 25 45 24 120 12.0
6 30 5.6 25 125 13.2
T 35 6.9 26 130 14.0
8 40 8.2 27 135 14.0
9 45 9.7 28 140 13.0
10 50 10.7 29 145 11.6
11 55 11.0 30 150 10.0
12 60 11.0 31 155 8.0
13 65 10 .4 32 160 5.8
14 70 9.8 33 165 4.0
15 75 9.2 34 170 2.5
16 80 8.5 35 176 1.0
17 85 7.8 36 180 0.0

18 90 7.0 l

Negative loop similar to positive loop.

(a) Graph the wave and analyze it by the Fourier series method for fundamental
the third, the fifth, and the seventh harmonics by the use of analyzing tables.

(b) Write the equation of the wave in terms of its sine and cosine components.

(¢) Write the equation of the wave in terms of sine components only.

(d) Synthesize the components graphically, and eompare the resultant with the
original wave,

18. Employ equations (21) and (22) instead of analyzing tables, and find the
sine and cosine coefficients of the Fourier series to include the seventh harmonic
for the wave in Problem 15. Express the resultant wave in terms of four sine
components only.

17. Given an a-c wave form as defined by the measured ordinates shown on
page 269.

Analyze the wave by using equations (21) and (22) for the first seven harmonics,
and write the Fourier series equation for the wave.
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Measured Measured

Degrees Ordinate Degrees Ordinate
0 —0.6064 100 0.7848
10 0.1738 110 0.6767
20 0.9484 120 0.4966
30 1.4139 | " 130 0.4200
40 1.4428 140 ] 0.5669
50 1.149 150 0.8832
80 0.79 | 160 1.1420
70 0.5037 170 1.0880
80 0.6154 180 0.68064

20 0.737

Negative loop similar to positive loop.
18. Bhow whether the following waves have symmetry with respect to the positive
and negative loops:
e = 100 8in (w! + 30°) — 50 cos Zut + 25 sin (5wl + 150°) volta
i = 20sin (wf + 40°) + 10 sin (2w + 30°) — 5 sin (5w — 50°) amperes
18. Does either of the waves in Problem 18 possess symmetry about the mid-

ordinate of the positive and negative loops? Why?
20. Are the following waves of the same wave form or shape? Give reason.

v = lllllsin {(wf +70°) — 60 sin (2wt — 30°) + 30 sin (3t — 60°)
i = 50 cos (wl — 60°) 4+ 30sin (2wl + 70°) — 15 cos (3wl — 90°)
21. Are the following two waves of the same wave form? Give reason.
¢ = 100 sin (wt — 20°) + 50 sin (3wt + 60°) — 25 cos (5wl — 30°) volts
i =20 cos (w — 60°) — 10 sin (3wt + 15°) + 5sin (5wt — 70°) amperes
22. Find the effective values of the voltage and current waves of Problem 18.
23. Find the effective value of:
© = 100 sin (w! + 30°) — 40 sin (2t — 30°) 4 40 sin (2ud + 30°)
+ 20 cos (5wt — 30°)
24. A complex wave has harmonics of the following effective values: fundamental
100 volts, third harmonic 70 volts, and fifth harmonic 50 volts. Find the voltmeter

value of the complex wave.
26. The Fourier representation of the current variation shown in Fig. 31 is:

it =25 +@dnz+3—osin3=+3—°uin5:+iosin7:
r 3r 5r 7r
+-3£'sin93+- v
Or
Compare the effective value of the current as ealculated by equation (27), page 250

(employing only the first six terms of the series given above), with the true effective
value.
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26. The current flowing through a particular filter choke is: ¢ = 5 + 2ginz
amperes, where z (= 754f) represents angular measure. Sketch the wave shape
of this current variation.

(a) What are the maximum, minimum, and average values of current?

(b) Does the maximum value of the a< component satisfy the relation:
!-{u) = 0.5 '(Iuls - Imln)r

(¢) What is the effective value of the current: i = 5 4 2 sin z amperes?

27. Assuming that a puleating direct current is composed of a d-c component
(I4.) and a single-frequency a-¢ component, the general expression for the current
variation i8: £ = Jao 4+ Im(as 8in 2.

(a) If only the average and effective values of the pulsating current were known,
would it be possible to find the maximum value of the a-c component, Ju(a:)?

(b) The average value of ¢ = Iz + !.,(m gin z is 4 amperes, and the effective
value i8 § amperes. Find Jm(ae).

28. Considering only second harmonic distortion, the plate current of one class
of amplifiers (with sinusoidally varying grid-cathode excitation) is given by the
equation: ’

= Jy+ Iy sinz — Iy cos 2z
where fo = Iy + Ims, Ip being the steady plate current with no a~c grid excitation,

(a) Sketch the wave form of the current variation for Jo = 0.2, I,y = 0.1, and
JTme = 0.01 ampere. Indicate the value of Iy on the sketch.

(b) What are the maximum (/maz), minimum (J/min), and average values of the
wave form sketched in (a)? Does the average value of current (o) satisfy the
relation: 0.5(/mex + Jemin)?

29. Refer to the plate current variation given in Problem 28, namely,

= I°+I-1dn=—rm‘m2z

(a) If it is known that the average value of plate current changes from the steady
value Iy = Iy — Ims (with no a-c grid excitation) to the average value Iy with a<c
grid Excitation, show either graphically or analytically that:

.rm (with a-c Fid emihﬁon} - Ia -+ I_] +21’.,
Imin (with a~c grid excitation) = Iy = I.1 4 27 ms
I = 0.5 (Jmax — Jrain)

(Tmax + Tmw) — 203
4

{b) Show that the ratio of Ims to I expressed in per cent is:

!-! D.S(Iw + Im) - fb
B O e — )

Note: The above ratio is called the per cent second harmonic distortion, and,
since the values of Imax, /min, 80d I3 may be readily measured under the conditions
of steady grid bias, the above relation is sometimes used to determine the per cent
seeondé:u‘monic distortion where unsymmetrical positive and negative peaks of
plate current are encountered.

(¢) Determine the per cent harmonic distortion from (Jms/Imi1) X 100 and
Trom the equation given im (b) if Jo = 0.2, Iy = 0.1, and [a: = 0.01L ampere.

1, = 0.2 — 0.01 ampere.)

Img =

x 100




Ch. ¥I NON-SINUSOIDAL WAVES 271

80. Because of irregularities in the * straight " portion of the plate current-grid
voltage characteristic of a vacuum tube, the equation for the plate current some-
times takes the general form )

i=1Jy+ Ini8inz 4 Imasin 3z

where [ is the plate current corresponding to fixed values of grid-cathode and plate-
cathode voltages. Find the maximum, the minimum, and the average values of i
if 7y = 0.2, Imy = 0.07, and I3 = 0.005 ampere.

31. Caleulate the power represented by the voltage and current in Problem 18.

33. Caleulate the power represented by the current and voltage of Problem 21.

83. Caleulate the power factor for the waves in Problem 18.

84. Determine the power factor for the waves in Problem 21.

86. Given: v = 100 gin (wf + 60°) — 50 gin (3wt — 30°) volts

i = 10 sin (wé 4 60°) + 5 cos (3wt + 60°) amperes

(a) Caleulate the power and power factor for the above waves.

() If only the magnitude of the third harmonic in the current wave is varied,
what would be ita value to bring the power factor for the composite waves to 0.87

36. Determine the equivalent eine waves for the voltage and eurrent in Problem 18.

37. Find the deviation factor for the voltage

e = 100 gin (w¢ — 25.36°) + 50 sin (3«f 4 58.92°)

38. A voltage v = 100 sin (wf 4 30°) — 50 sin (3w + 60°) + 30 cos 5wt volts is
impressed on a resistance of 6 ohms in series with a capacitance of 88.4 xf and an
inductance of 0.01061 henry. Find the ammeter value of the current, the power
dissipated by the eireuit, the power factor of the whole cireuit, and the voltage drop
acrose the capacitance if w = 377 radians per second,

39. A current of ¢ = 10 sin (w! — 60°) + 5ain (2w + 20°) a.mpereﬂ flows in a
series circuit consisting of 8 ohms resistance, 10 ohms 60-cycle capacitive reactance,
gnd 4 ohms 60-cycle inductive reactance. Find the equation of the impressed volt-
age wave. w = 377 radians per second.

40. A branch containing 5 ohms resistance in series with an inductance of Q. 00796
henry is in parallel with another branch consisting of & resistance of 6 ohms in series
with & 80-cycle capacitive reactance of 15 ohms. For a voltage of ¢ = 100 gin (i +
30°)—50 cos (3w¢ — 30°) volts impressed on the combination, find the equation of
the current wave required by the combination. w = 377 radians per second.

41. Find the ammeter readings in each branch and the supply line to the circuit
of Problem 40.

42. Determine the power dissipated in each branch of t.he circuit of Problem 40
and the total power taken by the whole cireuit.

43. Calculate the power factor of the whole circuit in Probiem 40 and the power
factor of each branch.

44. The following two eurrents flow toward & certain junction:

i1 = 20 sin (wf + 30°) — 10 sin (2 — 30°) + 5 sin (3wl — 40°) amperes
, 92 = 15 coswl + 10 cos (2wi — 60°) + 10 cos (3wl + 50°) amperes
Find the equation of the current leaving the junction. What is the ammeter or
effective value of each of the three currents?
45. Subtract i3 from i) in Problem 44, and find the equation of the resultant.

ll!.-%t 60 cycles a certain impedance, Z;, consists of 4 chms resistance, 6 ochma
capacitive reactance, and 3 ohms inductive reactance in series. Another identical
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impedance, -Z3, is connected in parallel with Zy. A third 60-cycle impedance (con-
gisting of 1'5 ohms resistance and 2 ohms induetive reactance in series) is connected
in series with the parallel combination of Z; and Z;. If a voltage » = 100 &in 377¢
— 50 sin 3(377¢ + 30°) volts is impressed on the entire series-parallel circuit, calcu-
late: (a) the total rms current taken, (b) the rms current in each branch, (c) the
equation of the current in branch Z), (d) the total power consumed, (e) the power
factor of whole aircuit.

47. The wave form given in Fig. 33 consists of a fundamental term A; sin = and
one and only one other Fourier series term. . _

(@) What are the numerical values of the coefficients of the two terms?

(b) Write the equation of the wave. Note: It is suggested that the problem be
solved by inspection and checked by the second graphical method of analysis, given
on pages 242-2486,

48. A capacitor having 20 upi capacitance is connected in par: el wich 2 coil
having 20 microhenrys induetance and a series resistance as specified in (a) and (b)
below. This parallel combination is energized with & pulse of current which is zero
for 140° < wf < 40° during each cycle. 'The pulse reaches a maximum value of
100 milliamperes at wf = 90° and z

© 1(45°) = 1(135°) = 18 milliamperes
1(55°) = 1(125°) = 49 milliamperes
1(65°) = i(115°) = 73.5 milliamperes
t(75°) = i(105°) = 90.5 milliamperes
1(85°) = 1(95°) = 00 milliamperes
where £(45°) means the value of { at wf = 45°.

Find the effective magnitude of the fundamental component of voltage developed
across the parallel branches if « = § X 107 radians per second. Compare this
value of voltage with the third harmonic voltage developed across the parallel
branches, recognizing the fact that the branches are tuned to the third harmonic.

(a) Assume that R = 10Q is the same for the fundamental and third harmonic.
(b) Assume that Q = wL /R is constant, R being 100 for the fundamental.
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VII Coupled Circuits

Terminology. In electrical-engineering literature, the term * cir-
cuit ” is used in & variety of ways. At times it is employed to designate
a single branch of an electrical network; at other times it is used syn-
onymously with the term “ network " to.mean a combination of two
or more branches which are interrelated either electrically or magneti-
cally, or both. In the present chapter the term ‘ circuit "’ is employed
to mean “ any complete electrical loop around which Kirchhoff’'s emf
law can be written.” :

Two circuits are said to be “ coupled " when they are so related tha
energy interchanges can take place between them. More specificall;
this means that a potential difference appears in either of the two
circuits which are coupled, if and when the other is energized. The
circuits involved may be coupled conductively, electromagnetically, or
electrostatically. Various combinations of these principal modes of
coupling may exist between circuits. However, the great majority
of the circuits in actual practice are coupled either conductively or
electromagnetically. '

Coupled circuits interact upon one another, and in general the
movement of electricity in any particular circuit is governed, not only
by the circuit parameters of that circuit, but to some extent by
the parameters of all circuits to which the ecircuit in question is
coupled.

Conductively Coupled Circuits. Two circuits which are conductively
coupled are shown in Fig. 1. In a circuit arrangement of this kind,

circuit 1 may be viewed as the driving
| or primary circuit and circuit 2 as the
receiving or secondary circuit. Z;g, the
impedance of the branch which is com-
mon to both circuits, is called the mutua
! impedance between ecircuit 1 and circuit

Fio. 1. Conductively coupled 2. The mutual impedance may consist,

S theoretically, of & pure resistance, a pure
inductance, a pure capacitance, or some combination of these circuit
elements.

273
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If the exciting voltage and circuit parameters of Fig. 1 are given, the
currents, component voltages, and component powers can be evaluated
by simple circuit analysis.

In general the “loop current” method of solution' is particularly
well suited to coupled circuit solulions. If this method of attack is
employed, I, and I are considered as the currents which flow around
the complete loops of circuit 1 and circuit 2, respectively.. The posi-
tive circuit directions assigned to I, and I, are, of course, arbitrary.
If positive eircuit directions are assigned to I, and I3, as shown in Fig. 1,
the actual current in the Z3 branch in the 41, direction is I; — I,.
The details of the ‘“ mesh current ”” method of solution as applied to
Fig, 1 are given below. By definition:

Zyy =Z, + Z;; (Impedance of circuit 1 to I;)
Z33 = Z; + Z;; (Impedance of circuit 2 to I,)
If the circuit parameters are constant,
Zi3 = Z3 (Mutual impedance between circuits 1 and 2)

The application of Kirchhofi’s emf law to circuits 1 and 2 of Fig. 1
results in:
Znl, — Zyly = E; (1)

—Zy 1) + Zg31, = 0 (2)

Employing elementary determinants, the expressions for I, and I,
become:

E, -Z)3
0 Z.s E.Z.;
I, = = 3
¥ Zy =y 21,253 — Z,5° ®
—Zy 2,
Z,, E,
—~Zy 0 E\Zy
, A . 4
? Zy —Zy Zy\Zg3 — Z,5° )
—-Zy Zy;

The above method is generally applicable and may be extended to
include any number of coupled circuits.

!In geperal circuit analysis many of the disagreeable details can be avoided by
making use of this method. It is sometimes referred to as Maxwell’s “ eyclic cur-
rent” method. See ““A Treatise on Electricity and Magnetism, " by Maxwell,
Vol. 1, 3rd edition.- See also Chapter I of this text.
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¢
Eumpl(o\ﬁ.'ﬂ“{&t it be assumed thst, in Fig. 1: Ef = 100 /0° volts, Z; = 3 + j4
ohms, Z;3 = 10 + 70 ohms, and Zy = 4 — j8 chms. The impedance of the gener-
ator is considered to be pegligibly small, or else its impedance is included in Z,.

Zy = (3 +74) + (10 +70) = 13 + j4 = 13.6/17.1° ohms
Zy = (4 — j8) + (10 4 j0) = 14 — jB = 16.1 /—29.7° ohms
Zy1Zsa = 219 {—12.6" = 214 — j47.8
ZiZaa — Zygt = 114 — j478 = 123.7 / —22.7°

(100 /0°)(16.1 / —29.7°)

I = 1237/ —22.1° = 13.0 /—7° amperes
(100 /0°) (10 /0°)

I = = 8.08 /22.7° amperes

T123.7/-227°
The current in the Z3 branch in the direction of I, is Iz = (I3 —.Iz).
Iz < 130 (0.992 — 0.122) — 8.08 (0.922 + j0.386))
= (12.9 —j1.59) — (7.45 +73.12)
= 545 — j4.71 = 7.21 Z —40.8" amperes

The total power generated by the generator E, is:
B,
P = Elhcoe.a] = 100 X 13.0cos (—=7°}
= ‘:

= 1290 watts (approximately)

The total power absorbed by the network is:
IRy + IR + I1a*Ria = 13.0° X 3 4+ 8.08% X 4 + 7.21% X 10
= 1288 watts (approximately)
Problem 1. Solve for I;, Is, and I;2 in the above illustrative example by first
reducing the coupled circuits to an equivalent series impedance. Draw the vector

diagram of E,, 14, Is, L1z, V), illustrating vectorially that Viz = E; — IZ).
. Ans.: Given in the above illustrative example.

Mutual Impedance. Before proceeding with particular types of
coupled circuits, we shall state some general definitions which will be
useful later in this chapter and also in radio courses where the coef-
ficient of coupling plays a far more prominent role than it does in a
first course. -

The mutual impedance between, say, circuits 1 and 2 of a general
network is defined as the ratio of the voltage developed in circuit 2
per unit current in circuit 1 when all circuits except circuit 1 are open-
circuited. This mutual impedance has already been employed in the
foregoing section as Z;;. If linear bilateral circuit elements are em-
ployed in the coupling of the two circuits, it should be plain that Z,,,
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the ratio of the voltage developed in circuit 1 per unit current in circuit
2 with all circuits except circuit 2 open-circuited, is equal to Z,,.

The definition given above for mutual impcdance betw: een two
circuits can be generalized to apply to two pairs of terminals, 11” and
22’, as shown in Fig. 2 where the network in the box may be any con-

I R Re £

| 1 —AAAA s
-DL——-l 2.-—--1- ¥
£ o I i

Clll:lult v, cir;urt Circuit 1 Ra Ry o> Circuit 2
R A K 4 1! 2 il

I, - II+

Fia, 2. Circuit 1 coupled to Fre. 3. Circuit 1 coupled to circuit 2 through a

circuit 2 through an arhitrary n set ol resistances.

network not shown.

figuration of impedances. If, for example, the terminals 11’ and 22" of
Fig. 3 are selected, we would find upon measurement that

Vi R
g Ve Vi BB Mool pop,
2L L, V(R.H+RitRe) RatRotE;
& Ru(Rb_}'Rc)

where V is the voltage developed across R, (terminals 22’) and V, is
the voltage drop across B,. The same result would have been obtained
had the = set of resistors (R, — Ry — R.) been transformed to an
equivalent Y set of resistors. ) ) .

In many networks, particularly in the field of radio, the direct currents
must be confined to specified paths and a-c energy is transferred from

I, C, Xe I,
c"ﬁ"“ R, @é #“) Cm:ult CIr:uil Z
|c1 I
Fic. 4. Circuits coupled through Fi1c. 5. Circuits coupled through
R.-C-Ra. network. C-Cs5-C'y network, [

1
one circuit to another through_the agency of an electric or maa‘netlc
field. In Fig. 4, for example, a-c energy may be transferred from
circuit 1 to circuit 2 by way of the electric field ‘existing between the
plates of the coupling condenser, C.

A particular form of capacitive coupling is shown in Fig. 5. If the
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coupling reactance between circuit 1 and circuit 2 is defined as the
voltage developed in circuit 2, namely, the voltage across Cz, per unit
current in circuit 1, this coupling reactance is:
' vV
xS S 59
. X + X3 _ X1X2 ;
courling = (X, + Xa + X3) Xy + X2+ Xs
X (X, + X3)
where V, is the voltage across Cy and the X's are the capacitive re-

actances of the respective condensers. The coupling capacitance
between circuit 1 and circuit 2 (or vice versa) is:

£

: -
Ceoupling = WX soupling N i@ (1 /wCq) (1 /wC>)
: (1/6C1) + (1/wC2) + (1/uCs)
i gy
Gy

Problem 2. Show that the voltage developed across condenser ('} per unit

current flowing in circuit 2 of Fig. 5 is: =
Nnia

X1+ X1+ X;

where X3 = 1/wC;, X3 = 1/uCs, and X3 = 1/uCs.

Problem 8. Consider R,, Rb, 8nd X, of Fig, 4 to be a coupling device between
" circuit 1 sod circuit 2. Show that the coupling impedance between the two circuits

oy Xooupllnz

183
z 3 (Ra*Ry + RoRp?) + jR.RuX.
- (R + Ro)* + X2
Note:
Vi
Zeoupling = fl

where Vj is the voltage developed across Ry by I, or
)
Zooupling = T“

where V. is the voltage developed across B, by Io.

Coefficient of Coupling. Civen two pairs of terminals, 11 and 227,
as shown in Fig. 2. The coefficient of coupling between circuit 11’ a.nd
circuit 22" will be defined as:

k ; zlz il Z,y

Vil VZInia
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where Z;; is the mutual impedance between circuits 2and 1. Z,, = Z, ,.
Z,,+ is the impedance seen looking into terminals 11’ with ter-
minals 22" open-circuited.
Zyyris the impedance seen looking into terminals 22" with
terminals 11" open-cireuited.

Example 2. Consider terminals 11’ and 22’ of Fig. 3. Lot it be required to find
the coefficient of coupl'ng between circuits 1 and 2.
It has been shown that :
" R.Ry

Loy = Z1g = ——
T R B

Rn(Rb + RCJ
Rﬂ + Rb + Re
Rs(Rs + R.)
R+ R+ R
R:Ry
k=
VRo(Ry + Re)Ro(Rq + Re)

If, for example, R. = 0, the coefficient of coupling is unity. It should be noted
that, with the general definition of coupling coefficient which has been given, k may
be camplex and greater than unity. In most cases, however, the coefficient of cou-
pling is real and less than unity as in this example.

zll’ =

Zagr =

Fia. 6. Ilustrating the four component Auxes &), @1, @121, and 2 into which the
resultant magnetic field is separated for the purpose of analysis.

Magnetic Coupling. If a portion of the magnetic flux established
by one circuit interlinks with a second circuit, the two circuits are
coupled magnetically and energy may be transferred from one circuit
to the other by way of the magnetic field which is common to the two
circuits. The practical operation of many devices depends upon this
type of coupling.

Separatiow of Magnetic Fluz inlo Hypothetical Components. Mag-
netic coupling between two individual | circuits is shown in Fig. 6. For
the purpose of analysis, the total flux which is established by i,, namely,
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¢, is divided into two components. One component of ¢ is that
part which links with circuit 1 but not with circuit 2, namely, ¢;.
The second component of ¢; is ¢;2, that part which links with both
circuit 2 and circuit 1. In a similar manner, the flux established by
f; is separated into two components for the sake of detailed analysis.
By definition:
¢1 = ¢ + ¢1a (5)

and
¢3 = ¢33 + du (6)

The four component fluxes are shown in Fig. 6, and a recapitulation
of their definitions is given below:

¢ @11 the fractional part of ¢; which links only mth the turns of
circuit 1. This is the leakage flux of circuit 1 with respect
to circuit 2.

@12 the fractional part of ¢; which links with the turns of circuit 2.
This is the mutual Alux produced by circuit 1. '

¢42 the fractional part of ¢; which links only with the turns of circuit
2. Thisis the leakage flux of circuit 2 with respect to circuit 1.

¢21 the fractional part of ¢ which links with the turns of circuit 1.
This is the mutual flux produced by circuit 2. .

It should be recognized that the actual flux established by 1, or 1,
does not conform to the simple configurations shown in Fig. 6. For
example, part of ¢;; links with only a fraction of the total turns of
circuit 1, and likewise a part of ¢;, links with only a fractional part
of the turns of circuit 2. ¢, is a hypothetical flux which, when linking
with all the turns, N;, produces the same total flux linkages as the true
flux linkages in question. Similar concepts are held for the other
component fluxes, and, when used quantitatively in this manner, they
represent accurately the true condition of affairs as regards induced
voltages.

Mutual Inductance. In order to deseribe the magnetic interaction
between circuits or between portions of the same circuit, the circuit
parameter M is introduced. It is called the coefficient of mutual
inductance, or simply mutual inductance, and is dimensionally equiva-
lent to the coefficien¥ of self-inductance, L. The similarity between
the concept of mutual inductance of (or between) two circuits and the
concept of self-inductance may be shown in the following manner.
Refer to Fig. 6. For the purpose at hand we shall define the seli-
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inductance of circuit 1 as:
N ; i . : |
L = -—i"—‘ [ﬂux linkages of circuit 1 per unit current in circuitl] )

On the same basis of reckoning, the mutual inductance of circuit 1
with respect to circuit 2 is:
_ Nida

12

Mo [ﬂux linkages of circuit 1 per unit current in circuit 2] (8)

Also the mutual inductance of circuit 2 with respect to circuit 1 is:

M= {*’:‘in; [ﬂux linkages of circuit 2 per unit current in circuit 1] 9)
1
If the ¢ /i characteristics in equations (7), (8), and (9) are not straight
lines, then L,, M3, and M,; are variable circuit parameters and for
certain types of analyses can best be written in the forms:

dén

L, = N, zl‘ (7a)
_ y Bm | |
My =N, Fa (8a)
dé1a
Mia = N3 3 (9a)

If, however, the flux is proportional to the current (i.e., permeability
constant), both self-inductance and mutual inductance in equations
(7), (8), and (9) are constant and as such are very useful circuit pa-
rameters in classical circuit theory.

Under the condition of constant permeability, the reluctance of the
mulual flux path (Ra; or M;2) is a fixed quantity and Rg; = Rya.

Ni¢ar KENN;
Mg = - = 10
21 o @t (10)
N KN.N
By w22, 2O (11)
1 Rz

where K is a constant which depends for its value upon the units em-
ployed in evaluating ¢ = KNi/®R. Therefore, if the permeability of
the mutual flux path is constant, M,;, and M,; are constant and
Mgy = M3 = M. This fact may also be proved in terms of the
energies stored in the magnetic field when both circuits are en-

- ergised.
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If the permeability of the mutual flux path is not constant, neither
M3, nor My3 will be constant and the following method of representing
mutually induced voltages in terms of M loses much of its effectiveness.
Unless otherwise stated, absence of ferromagnetic material will be
assumed, in which case M, = M, = M.

The units in which mutual inductance is expressed are identical with
the units in which self-inductance is expressed, usually the henry or
millihenry. If the flux linkages in equations (8) or (9) are expressed
in weber-turns (10° maxwell-turns) and the current is expressed in
amperes, M is given in henrys.

Problem 4. Refer to Fig. 6, page 278, and assume that the L; coil consists of
50 turns and that the Ly coil consists of 500 turns. :
(a) What is the mutual inductance between the two circuits (in millihenrys) if
5 amperes in circuit 1 establishes a total equivalent flux (#;) of 30,000 maxwells
27,500 maxwells of whichlink with the turns of the L3 coil?
(b) What is the self-inductance of the L, coil?
Ans.: (a) My = 27.5 millihenrys; (b) Ly = 3 millihenrys.

Mutual Reactance, Xy. It is evident that any change in 1; of Fig. §
will cause a corresponding change in ¢;. In accordance with Lenz’s
law, any time rate of change of ¢;; will manifest itself in gircuit 1 in
the form of a generated or induced voltage the value of which is:

d.
o —N;-%! o b= Ny djf‘ (12)

where ey is considered as a voltage rise or generated voltage and vy

iz considered as a voltage drop.
Similarly any change in %, will manifest itself in circuit 2 as:

d¢ do
d;j or v Ng d‘l?

It is through the agency of these mutually induced voltages that the
phenomenon known as mutual inductance can be taken into account
in circuit analysis.

The basic equations of voltage for the two circuits shown in Fig. 6 are:

(13)

€1 = —Ny

R111+N1%+N1d:: = 8] (14)
and
Rzi'a.-i- Nn% + Nzg‘%‘!" = &3 (15)

If the permeability of the flux paths is assumed constant, the above



282 ALTERNATING-CURRENT CIRCUITS Ch. Vi

equations can be written in more convenient forms, since:

Ni¢y = Liiy, . N, % = L, % (16)
Niga, = Myt . N:%,l = ;3'121 % (17)
Napg = Ltz . N;% = Lz% (18)
Nadia = Myiy = Na 9%3 - jflz % (19)

Equations (14) and (15) may, therefore, be written in the following
manner:

g di di
R -&7‘ + My E” = (14a)
Rois + L @_{, M di o~ 15a)
2t2 20 12 7 €3 (15a

It will be observed that the effects of mutual inductance are entered
into the basic voltage equations as voltage drops (4 M di/di). If, for
example, i; = I, sin wt, the voltage drop in circuit 2 due to mutual
inductance is:
fﬂ
dt
In general, wM = Xy It is called the mutual reactance and is an
impedance function which expresses the ratio of the voltage of mutual
inductance to the exciting current. It will be noted that the voltage
of mutllal inductance leads the exciting current by 90°. Hence the
vector expression for the mutual reactance is:

Xy = joM = uM [90° (21)

My = wMg]m, cos wt = X [m cos wl (20)

Circuit configurations in which M may possess either a positive or
negative sign will be considered presently.

Problem 5. An inductance coil has a resistance of 10 ohms, a self-inductance
of 1/37.7 henry, and a mutusl inductance of 0.02 henry with respect to a neighbor-
ing coil. (M2 = M2.) A voltage of 50 sin 377t volts is impressed across the
terminals of the primary coil. Find the ohmic value of the mutual reactance and
the effective value of the voltage across the open—ircuited terminals of the neigh-
boring coil. ' *

Ansr Xy = 7.54 ohms, V5 = 18.85 volta.
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Problem 6. Let the effective values of the primary voltage and current of Prob-
lem 5 be known as Vy and /), and draw a vector diagram illustrating v, I,, Ry,
JX iy, jX w1y, and Eqr.  (Nofe: Considered as a generated voltage, Ez; is 180° out
of phase with jX yIy, since the latter is & component voltage drop in circuit 2 in the
same sense that RII and jX 111, are component voltage drops in eireuit 1.)

Ans.: Vy = 7 /0 volts, I, = 25{ n.mperes. Ey = 1335"’ —135° volts.

Coefficient of Magnetic Coupling. The fractional part of ¢; which
links with Ng, ¢12/¢;, and the fractional part of ¢ which links with
Ny, (#21/¢2), dre indices of the degree of coupling that exists between
two windings. Where the windings are widely separated or are so
situated in space that these fractions are small, the coupling is said to
be loose. With closer proximity and proper orientation of the w indings,
¢12/¢1 and ¢y /¢2 approach unity as a theoretical upper limit.

The coefficient of coupling between two windings which individually
possess Ly and L, units of self—mducLauce is defined as:

- J(gl_z)(gﬂ)= (Magi1 [N2) (Maria/Ny) _ J(Mn) (Mm
y A (Lyiy /N1)  (Laia [N3)
(22)

Under the condition of constant permeability, M, = My = M.
Therefore, if the permeability is constant,

OO =

Thus ky is the geometric mean of the fractions (¢ /¢;) and (b1 /é2)
or between the fractions (M /L) and (M/L;). Numerically the co-
efficient of coupling in practical installations may range from approxi-
mately 0.01 between certain types of radio circuits to as h.lgh as 0.98
or 0.99 between iron-core transformer windings.

Example 3. Let the number of turns of the two windings ahomn in Fig. 6 be
Y1 =250 and Ny = 500. It will be assumed that 6000 m‘émﬂh link with the
urns Ny, of circuit 1, per ampere of exciting currefil .1, of which 5500 also link
vith Na. Under the assumptionu of similar concentrated windings and of constant
rermeability of the flux paths, 60,000 maxwells will link with the turns N2, of circuit
4y per ampere of exciting current ¢;, and 55,000 of these Aux lines will also link
with N1 The purpose of this numerical example is to specify the coefficient of
coupling in terms of the fractions (¢12/¢1) and (@21/¢2) and also in terms of the
fractions (M,s/Ly) and (M3,/Ls). For 1 ampere of primary exciting current and
for 1 ampere of secondary current:

¢1 = 6000 maxwalls.

$12 = 5500 maxwells

¢2 = 60,000 maxwells
o l 9 Py - 5.5.(.0] maxwells
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- EE) -

_Nl!h 50 X 6000

L = X 10-% = 0.003 henry
Y e ik
- * N — x - . * -
Mg = :"“ 300 15500 X 1078 = 0.0275 henry
1

¥ 107% = 0.30 henry

Nag. 500 X 60,000

iz

I N 3 80 ¢ 55,000
1y 1

A {(w 1:) (un) M 0.0275 T
M = — N5 = = 0.
Ly /\L; Viila V/0.003 X 0.30

Problem 7. The individual self-inductances of two windings are 0.004 henry
and 0.0108 henry. The coeffigient of coupling between the windings is 0.805. Find
the mutual inductance of the two windings. © Ans.: 0.0256 henry.

"M % 10~% = 0.0275 henry

Problem 8. A winding of 1000,turns has a (#1/41) characteristic of 9400 max-
wells per ampere and is coupled magnetically to a second winding of 338 turns.
Assuming constant permeability of the flux paths and similar concentrated windings,
find Ly, La, and M in henrys if the coefficient of coupling is 0.805.

Ans. L; = 0.094 henry, Ly = 0.0108 henry, M = 0.0256 henry.

Circuit Directions and the Sign of M. If only one circuit of an a-c
network includes a generating device, the positive directions of the
currents may be arbitrarily assigned if it is understood that the positive
circuit direction given to the current through the generator arbitrarily
defines the positive circuit direction of the generated voltage. When
more than one generating device is present in an electrical network,
the relative polarities and time phases of the generating devices with
respect to the common branches must be taken into account in assigning
the positive circuit directions of the currents in the coupled circuits.

In a given circuit or portion thereof the voltage of mutual inductance,
M di/dt, may aid or oppose the voltage of self-inductance, L di/dL.
If more than one circuit is involved, the currents are first given their
positive circuit directions. When the positive circuit directions of
the eurrents have been determined from the relative polarities of the
several generating devices (if more than one generator exists), or when
the positive circuit directions of the currents for a single generator have
been arbitrarily assigned, “the sign of M is considered positive if in
a given winding the induced voltage of mutual inductance acts in the
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same direction as the induced voltage of self-inductance. If the in-
duced voltage of mutual inductance opposes the induced voltage
of self-inductance in a given winding, M is considered asa negative
quantity. )

In determining the sign of M, each particular cgse must be agalyzed
as to the relative positive circuit directions of the currents, the relative
modes of winding of the coils involved, and the actual physical place-
ment of one winding with respect to the other. It will be shown later
that the sign of M between circuits which are not electrically connected
and which are energized with a single generator in one circuit is wholly
dependent upon the arbitrary positive circuit directions which are
assigned to the currents in the separate circuits.

_H: dlr
b Circuit 1 Ia{i

Clcuit 2

Fia. 7. Tlustrating a particular case wherein the voltage of mutual inductance scts in
circuit opposition to the voltage of self-mductance in a given coil.

Example 4. Consider the hypothetical arrangement of the two circuits shown in
Fig. 7. If the clockwise direction around circuit 1 is taken as the positive circuit
direction of 1, the generator emf possesses a positive circuit direction from b to a
through the generator. The latter direction fixes the positive circuit direction of 1; as
counter-clockwise around circuit 2.

By Lenz's law, the voltage of self-inductance in the L, coil considered as an induced
vollage acts in a counter-clockwise direction around eircuit 1 when di,/d¢ is positive.
If the positive circuit direction of 13 and the modes of winding of the coils are con-
sidered, 1t is plain that voltage which is induced in the L, coil by the variation of
@21 8 & clockwise direction around circuit 1 when di/dt or dgg,/dt is positive.

Since M diy/dt acts oppositely to L di,/d! in eircuit 1, M must be considered
negative if L, is considered positive. The general equation for voltage equilibrium
in circuit 1 is;

ﬂ
dt

A simple way to determine the sign of M is to call M positive if the mm(’s caused
by the two currents combine.to increase the total flux. If the mmf's oppose, the
sign of M is negative. ’

Problem 9. Show, by means of detailed and independent analysis, that the

a . d'
Rity 4 Ly = 4 t—m‘—;-' - e
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general equation for voltage equilibrium in circuit 2 of Fig, 7 is:

) di &
En.,-i-bza-‘*M?: —

Instead of showing the actual modes of winding, a conventional
method employing & dot-marked terminal, as shown in Fig. 8, is often
used to yield the same information. This
practice has been used for many years in
the marking of iron-core instrument trans-
formers, where the dots are known as po-
[“ 1 larity marks. The dots are placed so that
| =—a current entering the dot-marked terminal
of any coil will produce a magnetomotive
Fig. 8. Dot marks used to force and corresponding flux in the same

f;ﬂ“:o“’:l‘“,"“ polarities of  gdirection around the magnetic circuit.

Thus in Fig. 8 a current enfering the
dot-marked terminal of coil 1 causes a counter-clockwise flux in the
magnetic circuit and a current entering the dot-marked terminal of coil
2 also causes a counter-clockwise flux in the same magnetic circuit.
Hence the dots alone are sufficient to determine the relative modes

LT

.-‘4.
o l_:-’i-ﬁ

0 . [ -
1
1 2 Lo o _ 1 2
W PV
Fro. 9. Dot marks F1a. 10, Mode of wind- Fi13. 11. Dot marks
indicate — M. ing and physical place- indicate + .M.

ment indicate — A.

of winding. The use of this convention is illustrated in Fig. 9. If
a current entering the dot-marked terminal of coil 1 is assumed to
produce a flux through the coils from left to right, this same current,
sinee it is leaving the dot-marked terminal of coil 2, would cause a flux
from right to left through the coils. Therefore, for the purpose of
setting up an equation of voltage drops, M must be considered negative.
Hence the relative modes of winding must be as shown in Fig, 10. 1If
the coils of Fig. 9 were marked as shown in Fig. 11, a current entering
the dot-marked terminal of coil 1 would also enter the dot-marked
terminal of coil 2, the mmf’s of the two coils would be additive, and
the sign of M would be positive.

Mutual Inductance between Portions of the Same Circuit. Mutual
inductance may be a significant factor in governing the flow of electricity
in a single-series circuit where two or more portions of the circuit are
coupled magnetically. A particular example is shown in Fig. 12. The
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arrangement consists of two magnetically coupled inductance coils
connected in electrical serics. Individually the coils possess L, and
Ly units of seli-inductance together with R, and R, units of resistance,
respectively.

If the coils are wound in the manner shown in Fig. 12, it is apparent
that, in coil a, the voltage

Mg = —Na g

acts in the same circuit direction as the voltage —L,di/dl. Likewise
the voltage

di - d¢'ub
Moo 3= —Ne dt

acts in the same circuit direction as —Lydi/dt. Hence M is positive.

i
|
:
]
i
)
|
&

Fio. 12. Two inductance coils connected series-aiding.

Considered as voltage drops, the component voltages referred to
.above have circuit directions which agree with that of the applied
voltage, v. Considered as voltage rises, the induced voltages are, of
course, in circuit opposition to the applied voltage, v.

The facts involved can be stated in equation form as follows:

< di dz di di
R, Li—+ My~ +Ri+Ly—+My—=v 24
;+ndz+ ba 5 st + bdf'l' ab g =V (24)
If the mutual flux path is of constant permeability, the above equation
reduces to:

(Re + Ry) i + (Lo + Ly + 2M) % =y (25)

If v varies sinusoidally with time and if all circuit parameters are con-
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stant, equation (25) may be written in terms of effective values as
follows:
(Ra + Ry)T + jo(La + Ly + 2M)L =V (26)

It will be noted that M enters into the voltage equation in exactly the
same manner 48 L. - Mence M is a mutual reactance. The equivalent
impedance of the series circuit shown in Fig. 12 follows directly from
equation (26).

" .
zZ, = e J!Rq + Ro)® + [w(La + Ly + 2M))?

gt @(Le + Lo +2M) (27)
/ (Ra + Rb)

Equation (27) may also be written:

Z, = (Ra 4+ Rs) + jo(Ls + Ly + 2M) = Z, + Zy + 2Zy  (27a)
where

Zo = Ra + jwLa, Zy = Ry + joly and Zy = 0+ joM

If the two coils were connected together in the opposite sense, that
is, with & polarity opposite to that shown in Fig. 12, the signs of the
M terms in the above equations would be reversed.

Example 5. An inspection of equations (25), (26), and (27) will show that the
equivalent inductance of the two coils connected in additive seriea is:

Ly@adty = Lo + Ly + 2M
If the two coils are connected in subtractive series:
L’c(.mh) "Lu"l'-{d - 2M

The value of M may, therefore, be found experimentally by measuring Leaa and
L,up) since, from the above relations:

of L.(saa ; L (zam

Example 8. Let it be required to find the coefficient of coupling, the equivalent
seriescircuit impedance, and the magnitude of the current in & circuit arrangement
gimilar to that shown in Fig. 12 if:

Ra = 1.0 ohm M = +3 millihenrys
L, = 4.0 millihenrys w = 1000 radians per second
" Ry = 6.0 ohms V = 40.5 volts, the applied
Ly = 9.0 millihenrys voltage
(a) The coefficient of coupling is:
M +3

k= = = 5
, ViEiJy V4X9 i
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(b) The equivalent series-circuit impedance is:
Z, = (Ra + Ry) + jw(Ls + Ls + 2M)
= (1 + 6) + j(1000)(0.004 + 0.009 + 0.006)
=7+ j19 = 20.25 :f'69,8° ohms

(c) The series current is: V"/f"\_-_" Vp v
I« .
10.5 Rl ~
1 20.25 2.0 amperes 0 Ryl 1
Xl

A vector diagram of V, I, Vs, and V,
is shown in Fig. 13 together with the
component voltages of V, and V. j ¢

Problem 10. Find the magnitude Fic. 13. Vector diagram of example 8.
of the current in the above example
if the two coils are connected in subtractive series, that is, M = -3 millihenrys.
Draw a vector diagram illustrating the vector positions of V, I, V4, Vs, and the
various RI and XT component voltages. Ans.: I = 4.09 amperes,

Mutual Inductance between Parallel Branches. Reference to Fig. 14
will show that, in coil 1, M3, diz [dt acts in cireuit opposition to L, di, /dt.

o

Fio. 14. Parallel arrangement of two inductance coils which are coupled magnetically.
For the mode of winding shown and the assumed positive directions of currents
as indicated, M is negative.

Similarly, in coil 2, M,; di; /dl acts in circuit opposition to Lo dis /dl.
In equation form:

diy diy

] Lt S T A P 2
Rty + Ly T 21, v (28)
) di di
Rtz + Ly " = My -d—: — (29)

It will be noted that the individual branch currents have been employed
in the above equations.

If the circuit parameters are constant and a sinusoidal variation of
v is assumed, the above equations may be written in terms of effective
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values ag follows:

(By + jwL)]y — juMI; =V (30)
(R2 + juwLa2)Iz — juM1, =V (31)
= (By + july) = Z, (32)
(B2 + juls) = Z, (33)
0+ juM = Zy (34)
With the above abbreviations, equations (30) and (31) reduce to:
Z,I, —Zyl, =V (35)
—Zyl} +Z1, =V (36)

The individual branch currents, I, and I, may be found from the
simultaneous solutions of equations (35) and (36).

v Ea
" e Zy | _V(Z+ Zw)
i Z, —Zx| 2,2, - Z,° .
-'ij ZQ
—Zy V | V@& +2Zy)
L. Zi —Zxl ZZ— 2 (38)
~Zar % 1.
. _V(Z + Zy + 2Zy)
I=hth=—F0 7.3 (39)

The equivalent impedance of the two parallel branches shown in Fig. 14
for the case of negative M is:
V ZIZ2 T ZHE

LA e e e (40)

Example 7. In the circuit arrangement shown in Fig. 14 it will be assumed that:

Ry = 3.3 ohms Ly = 0.0108 henry

Ly = 0.094 henry M = —0.0256 henry

Rz = 0.775 ohm w = 377 radians per second
V = 50/0° volts

Let it be required to find I, I, Iz, and the total power spent in the two parallel

branches,
Z, (individually) = 3.3 + ;j35.4 = 355 /84.7° ohms

Z3 (individually) = 0.775 + j4.07 = 4.17 ,:'79.25’ ohms
Zy =0+ jwM =0 + j9.65 = 9.65/90° ohms
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Nole: Zy is herein considered as inherently positive since the appropriate negative
signs have been introduced into equations (30) and (31).

"= Zi ¥ 22 + 2Zw | 50.0/36°
v  50/0°
Z,  1.0718/54°
V(Zs + Zy) (50/0°)(13.73/86.8°)
Z.2s — 2% 63.6/140°
I, = 10.8/—53.2° amperes

V(Zy +Zu) _ (50/0°)(45.1/85.8%)
= Z.2. - Iy 63.6 /140°

I, = 35.4/—54.2° amperes

v
= VI cos F:L = 50 X 46.4 X cos 54° = 1365 watts

4 P 63.6 /140°

= 1.078 {'54 > ohms

= 46.4/ —54° amperes

I-

l;’

la

Check:
1=1I + I = 108/—532° + 354/ —-54.2°
1 = (8.46 — j8.85) + (20.8 — j28.8) = 27.26 — j37.45
1 = 46.4/ —54° amperes
P = IR, + I:®R; = 385 + 973 = 1358 watts

Problem 11. Assume that the inductance coils in the above illustrative example
are connected in parallel as shown in Fig. 14, except that the terminals of one coil
are reversed from that shown in the figure, Show that, under these conditions:

Z, = 3.095{5‘..-10"0]1[1‘13
I = 16.16 /—61.40° amperes (V as reference)
1, = 443/ —222.1° amperes

1: = 20.4/—57.30° amperes

v

P = VIcos &] = 386 watts
1

Draw the vector diagram of V, I, Ij, and I3, and illustrate the manner in which the
three component voltages in each branch combine vectorially to equal the applied
voltage, V.

The Air-Core Treznsformer. In the conventional transformer ar-
rangement shown schematically in Fig. 15, the individual ecircuits are
not connected electrically. Circuit 1, energized by means of an alternat-
ing potential difference, is called the primary. Circuit 2 is called the
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secondary. As a result of the magnetic ecuplmg between the circuits,
circuit. 2 has induced in it a voltage which is equal to:

d di ¢
¢12 iy 2 ary (1)

N2y dt

The magnitude of the voltage induced in circuit 2 is propdrtional to
the number of secondary turns, N,, and is dependent upon the degree
of coupling between the two windings.

Fra. 15. Conventional air-core transformer arrangement.

The sign of M in the conventional transformer arrangement is de-
pendent upon the arbitrary choice of the positive circuit direction of ;.
The majority of writers prefer to use the positive circuit direction of
1 which allows them to employ the positive sign of M. For the relative
modes of winding shown in Fig. 15, the positive clockwise direction of
i3 requires the use of 42, since under these conditions Mg, dis /di
acts in the same circuit direction as L, di; /Jt in the primary winding.
If the counter-clockwise direction around circuit 2 is taken as the positive
circuit direction of 5, then, of course, M must be considered negative.
The resulting solutions will be identical in either case, except that all
secondary currents and voltages will be reversed in sign. Experience
with detailed solutions will convince the reader that the two different
methods of attack yield identical physical results.

If the positive circuit directions are employed as indicated in Fig. 15,
the mathematical analysis of the ordmary air-core transformer may
be -arried out as fulows:

; du di -
Ryty + Ly ﬁ + My, ;: v (42)
dia f ip dt diy

(Rs+R)‘53+(L2+L)*—+ +M12—=0 (43)

If v, is assumed to have sinusoidal wave form and all circuit parameters
ar. constant, the above equations may be written in terms of effective
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values as follows:
: (Ry + jwL)T; + juMIz = Vi (44)

: s
(R3 + juLa)Iz + [R - _f(wL — m_C)] I, + juMI, =0 (43)

For the sake of simplicity in writing, the following abbreviations are
adopted:

Z, = (R, +jwly) (Individual primary winding impedance) (46)
Z, = (R; + jwl;) (Individual secondary winding impedance) (47)
Zy = (0 + joM)  (Mutual impedance assuming no core loss) (48)

; 1 ner. jion for load
Z = [R 43 (wL s Eﬂ (c";;;eﬁ;"c‘:;’ss (49)
Equations (44) and (45) become:
ZI, + Zyly = V) (44)-(50)
Zuli + (Z;+2)I; =0 (45)-(51)
The simultaneous solutions of the above equations for I, and I yield:
Vl z_u
0 Z,+ Z Vi(Z, + Z
i ;; e zl(z:{-i-zz) —)zy’ A
Zy (Z; + 2)
Z Vi .
y A 0 —ViZ;
L=z Za s e
Zy (Zo + Z)

If I, has been evaluated, it may, in certain cases, be more convenient
to solve for I, directly from equation (51).

—Zuy
L=5—1g (54)
The secondary terminal voltage, or the voltage which appears across
the load impedance, is:
' V, = Z1; = —Zxd, — Zo1a (55)
s - N
2,(Z, + 2) — Zu’

The above relations follow directly from equations (51) and (53).
Equation (55) shows that the secondary circuit may be thought of

(56)
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as experiencing an induced voltage equal to —Zul;, from which the
internal secondary impedance drop, Z,1,, must be subtracted in order
to obtain the secondary terminal voltage, V..

Equivalent Impedance. The equivalent impedance of the transformer
arrangement shown in Fig. 15 referred to the primary side is defined
as the ratio of the applied voltage to the primary current. Thus:

Vi _ Zi(Z: +7) - 2y

Zy = 57
‘LT @+ 67
A more convenient form of the above equation is:
Zy? w?A?
Zy=Z - —2 _ .z 42 (58)
o1 T T+ D) l+Zg+Z (58)

Equations (57) and (58) show that the air-core transformer, with
respect to its primary terminals, is reducible to an equivalent series
circuit.

Example 8 (for Z* =0). It will be assumed that, in Fig. 16a:

R; = 3.3 ohms M = 0.0256 henry

Ly = 0.094 henry Z=0

R2 = 0.775 chm w = 377 radians per second
L, = 0.0108 henry V) = m@:mlta

Z, =334+j354= 35.5/84.7° ohms
Zy =0.775 + j4.07 = 4,1-1,:79.25’ vhms
Zy =0 4+ j9.65 = 9.65/90° ohms

Zy! ; 93.1 /o°
Zo =2, - Z_ = (3.3 +735.4) + 3.14/79.25°
Zoy = (3.3 + j35.4) + (4.20 — J22.1) = 7.50 + j13.3 = 15.27 /60.55° ohms
v 50,0°

= SR ——— 32 '_m755=
s Z., 15.27/60.55° 8/ —60.55° amperes

—1,Zy  (3.28/119.45°)(9.65/90°)

L TRk 4.11/79.25°

I = 7,66 /130.2° amperes

The total power dissipated in the two circuits is:
Vi
P =V, cos 8] =50 X 3,28 X cos (—60.55°) = 80.8 watts
L]
o P = IRy + I3'Ry = 328" X 3.3 + 7.66' X 0.775 = 81.0 waits
The vector diagram of V,, I, Is, and —Zy1, is shown in Fig. 16b. In the par-
tienlar race shown in Fig. 1688, the voltage indueed in eirenit 2, =Zyl,. iz balanced
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entiredy by the internal secondary impedance drop, namely, Z.I;. If the counter-
clockwise direction around circuit 2 had been taken as the positive circuit direction,
I» and ZyI; would appear on the vector diagram 180° from the positions shown in
Fig. 16b.

Fic. 18. Voltage and current relations in an air-core transformer the secondary of which
ia short-circuited. Note the manner it which X4/, B1l1, and Zy/; combine vecto-
rially to balance the applied voltage V,.

Oscillogram 1 illustrates the instantanecus variations of vy, 1;, and iz for the
aove numerical case. The salient features of the numerical solution are clearly
shown. The primary current lags the applied voltage by approximately 60° and
the secondary current lags the primary current Ly approximately 170%  Within
the limits of oscillographic accuracy, the maximum magnitudes of i, and i agree
with the results of the above numerical example.

Example 9 (for Z = 14.5 4 j21.2 ohms). It will be assumed that in Fig, 17a:

R, = 33 ochms M = 0.0256 henry

L, = 0.094 henry Z =145+ 21.20hms

R: = 0.7750hm « = 377 radians per second
Ly = 0.0108 henry Vi = 50 /0 volts

Z, =33+ ji54 = 35.5/84.7° chms
Zy = 0.775 + j4.07 = 4.14/79.25° ohms

Zy =0+ j9.65 = 9.65,/90° chms
20—
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OsciLLogram 1. Ilustrating the time phase relations of primary and secondary currents

of an air-core transformer with respect to the applied voltage wave.
circuited secondary. See Fig. 18a.) vy = 70.7 sin 377! volts.

Za? . 93.1 /0°
el -2 35.5/84.7° + 15.28 + j25.3

Z,a = (3.3 +735.4) + (1.63 — j2.7) = 4.93 4 j32.7
Z, = 33.0/81.4° ochms

Vi 50 /0°
e O B
I, Z.. " B3/RLe 1.515 / —81.4° amperes

~1,Zy  (1.515/98.8°)(9.65/90°)

D " 20.6/58.9°
I» = 0.494 /129.7° amperes

V2 (terminul voitage) = I.Z
Va = (0.494/120.7°)(25.7/55.6°) = 12.7 /185.3° volts

The input power to the primary terminals is:

1
Piopus = V11 cos !:l: = 50 % 1.515 X cos 81.4°
i

= 50 X 1.515 X 0.1495 = 11.3 watta

(For a short-
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The power delivered to the load is:
1

Piaa = Val2cos a] = 12.7 X 0.494 cos 55.6°
Iy
= 12.7 X 0.494 X 0.565 = 3.55 walts
The efficicncy of this particular aircore transformer v;'nrking under the conditions
stated above is 3.55/11.3 or 31.4 per cent.

1,= 0.494 [129.7° smperes

&]1— 1.515 [-81.4° amperes
(b)

Fia. 17. Voltage and current relations in an air-core transformer the secondary of which
is loaded as shown in {a).

Figure 17b is a vector diagram of Vi, Ty, —ZyIy, Iz, and Va2, Oscillogram 2 illus-
trates the variations of vy, i1, and 4a for the particular case under discussion. The
phase positions of the primary and secondary currents with respect to the applied
voltage are shown in rectangular—coordinate form and agree with the calculated

Ei

OdcitLocrax 2. Illustrating the time-phase relations of primary and secondary currents
of an air-core transformer with respect to the applied voltage wave. (For an inductive-
type load placed across the secondary terminals of the transformer. See Fig. 17a.)

v, represents the applied voltage wave (effective value = 50 volts) '

i, represents the primary current waye (effective value = 1.5 amperes)

iy represents the secondary current wave (effective value = 0.5 ampere)
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Amperes

_10..

OsciLrocram 3. Illustrating the time-phase relations of primary and secondary currents
of an air-core transformer with respect to the applied voltage wave. (For a resistive-
type load placed across the secondary terminals of the transformer. See Problem 12.)

values of these quantities. Likewise the wave shape and maximum values of the
voltage and current waves are discernible. v

Problem 12. Let the load impedance in the above numerical example be replaced
with an impedance the value of which is 28.15/0° ohms.

(a) Show that, under this condition of operation,
Z,, = 35.5/79.5° ohms

I, = 1.409/—79.5° amperes (V, as reference)
I = 0.465/182.4° amperes

(b) Find the power input, the power output, and the efficiency of operation.
Ans.: Pip = 12.8 watts, Py = 6.08 watts, efficiency = 47.5%,
(c) Draw a vector diagram of Vi, Ij, =I;,Zy, I, IsRs, 1.(jwls), and V..
(d) Compare the results obtained with those shown in Oscillogram 3. Oscillo-
gram 3 is a photographie record of the varictions of vy, i), and i; in the air<ore
transformer arrangement considered in this particular problem.

Transferred Impedance. One of the primary considerations in
communication circuits is that of transferring maximum power from
a low-power generating device to a receiver. It has been shown in
Chapter V that maximum power is transferred (for a fixed generator
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voltage) when the impedance of the receiver (in complex form) is the
conjugate of the impedance of the generator and associated transmission
lines. That is, if Zgen = R + jX, then Z. should equal R — jX for
maximum power transfer. For impedance matches which will prevent
reflection losses, Zgen = Zree. (See Chapters X and XI.)

At audio frequencies, iron-core transformers may be used successfully
for transforming voltage magnitudes and for matching impedances,
but at radio frequencies air-core transformers are generally used. In
iron-core transformers where the coefficient of coupling is relatively
high and where (wLy)? > R,'?, a resistance, R, placed across an N-turn
secondary, may appear at the terminals of an N1-t11rn primary as
(N1 /N2)?R, approximately. The term ‘ may appear ” is used because
several conditions must be fulfilled simultaneously before the (N /N2)?
factor can be used successfully, as will be shown presently.

Classical methods will be employed to show how an impedance
placed across the secondary terminals of a.n air-core transformer appears
at the primary terminals in modified form.?

Reference to equation (58) will show that the equivalent impedance
of an air-core transformer referred to the primary side is:

Xn?

@&+

Zar? ;
ze1’=zx_-z'%'= (Ry + jXy) +

where Z,' = (Z; + Z), the total secondery impedance.
Since Zu? = —w?M?, and Z;' = Ry + jwL;' (for a predominantly
inductive secondary «‘reuit), it follows that:

: w?M?
Z,= (Rl +J”Ll) + (sz +ij3’) (60)

Rationalizing equation (60) yields:
MR, . AL,
B o [R, +R————~—f.‘;‘ : ]+Jw [L; . ] (61)
2

+ w?Lp"? T R0
It will be observ ed that Ry’ appears at the primary terminals in modified
form, namely, as: .
w i".!z ’ JYH 7
[R2}2 3 ngzrg] Rz = Zz:g R?

2 It should be recognized that classical methods are applicable only where M, =
M2 = 8 constant. Where iron-core transformers are involved, the (.V;/N2)?
factor is often used as an approximation, but since detailed analyses of iron-core
transformers are usually considered in a-¢ machinery courses they will not be given
here. [

-20
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Il' Ry is very small compared with wyLy’, if Ly’ = Naga/iz, that is,
i"all of Lg is concentrated in the secondary winding, and if 3/ -=\fL1L2 ;
°n Ry’ appears at the primary terminals as:

.\-‘l)'-’ ’ A
— ) R," approximately
N2

Thus, if a high value of R, is to appear at the primary terminals at

an apparently reduced value, N, /N, must be made less than unity by

the appropriate amount. The above transfer factor, (N, /N3)? can
be theoretically approached only in the case of an ideal transformer
the coefficient of coupling of which is unity. Even with unity coupling,

R;’ is not actually transferred by the exact square of the turn ratio,

N, /N,, as is sometimes supposed. In the iron-core transformer the

conditions required to make (N, /N2)? the correct transfer factor are

fulfilled to a degree which makes calculations fall well within engineering
accuracy when this factor is applied. As a result, it is customary to
use this factor in iron-core transformer practice.

Equation (61) reveals another interesting fact, namely, that the
effective inductance at the prlmarg, terminals of a loaded transformer
approaches zero only when R, is negligibly small compared with
w?L,"? and when L.’ is entirely concentrated in the secondary winding.
Under these conditions and if the coefficient of coupling is equal to

unity,
WML, WL L,
[LJ. - ___ng?"z ] = [I’l — w_szm =

Example 10. Given an air-core (or constant-permeability) transformer, in which
N, = 500 and N; = 5000. For the particular arrangement considered:

Ry = 1.0 ohm R1 = 10 ochms
Ly = 0.03 henry Le = 3.0 henrys
M = 0.275 henry
Z = 90/0° chms

At 265.5 cycles per second, w = 1667 radians per second and

Xy = wM = 1667 X 0.275 = 458.4 ohms
Xu® = 458.4% = 210,000
Z, = (10 4 j5000) + (90 + 70) = 100 + j5000 ohms
210,000
100 + ;5000
Z, = (1 + j50) + (0.84 — j42) = 1.84 + j8.0 = 8.2 /77° ochms

Za = (1 +50) +
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It will be noted that Z;’ = (100 + j5000) ohms appears at the primary terminals
as (0.84 — j42) ohms. This result emphasizes the wide discrepancy that may
exist between ideal transformer operation and that actually obtaived in an air-core
transformer the coefficient of coupling of which is 0.917.
Under ideal conditions, the load impedance, Z = 90,/0°

the primary terminals as

Ny 5007
[N‘TXQU = 5000° X 90 = 0.90 ohm
The ideal conditions referred to are: (1) perfect coupling, and (2) zero resistance in
the transformer windings.

The reactive term in Z,; may, of course, be neutralized with a series condenser
in the primary circuit if & low rmmlwe impedance at the primary circuit terminals
is desired. ’

Proolem 13. A generator which develops 10 volts (effective) at 265.5 cycles
and which has an internal impedance of 2 /0° ohms is to be used to energize the
980-ohm load resistance of the above example in the two following ways:

(a) Directly. That is, with the generator terminals directly across the terminals
of the 90-ochm load.

(b) Through the transformer of the above example and a primary series condunser
the capacitive reactance of which is 8 ohms.

Find the power delivered to the 90-ohm load in (a) and in ().

Ans.: (a) 1.063 watts; (b) 5.13 watts.

ohms, would appear at

Primary Unity-Power-Factor Resonance. The inductive reactance
of Z,, caused by the introduction of a transformer may be neutralized
in any one of several different ways. If, upon evaluation in a par-
ticular case, Z,; possesses an inductive reactive component, suitable
neutralizing capacitors may be placed in either the primary or the
secondary circuits, and these capacitors may be arranged either in
series or in parallel with the transformer windings. For the sake of
analysis, let Z,; be written in the form given in equation (61).

W MRy’ ; w? MLy’
= B g el ] @

R’ is the total secondary circuit resistance. L.’ is the total secondary

circuit self-inductance. -
Zy =Ra+3iXa (62)
where
’M’Ia XX,
Y= (o - i) =[x - giam] @

Series Primary Capac:!or. Primary unity power factor can be
obtained by introducing a capacitor in series with the primary, which
has a capacitive reactance equal in magnitude to t! inductive reactance
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represented in equation (63).

2 r
Xu’X, ] (64)

X c1(serion) = [Xl "R+ X
Parallel Primary Capacitor. A capacitor, placed in parallel with
the primary terminals, can be used to produce primary unity power
factor. It is simply necessary to make the susceptance (bc) of the
parallel capacitor equal in magnitude to the susceptance (br) of Yy,
where: :
1 R ! Xa

Y,, = x = —_— — y
: Ra + JXcl RII.2 -+ 1\012 2 Rsl’ + X‘lz

(65)

The inductive susceptance of the uncompensated transformer looking
into the primary terminals is given by the j component of the above
equation. The capacitive susceptance of the parallel primary capacitor
must, therefore, be equal to:

b W B
C1(parallel) R'13+X.Iz ( )

Secondary Capacitors. Under the assumptions that have been made
concerning equations (61), (62), and (63), X. » is an inductive reactance
The introduction of a capacitor in series with the secondary ecircuit
or the introduction of a capacitor in parallel with the secondary loac
terminals will tend to neutralize the origindl inductive reactance anc
cause the net inductive X,' to be smaller in magnitude. If RS2 &
not too great, the lower value of X, incresses the magnitude of the
subtractive term of equation (63), namely,

XXy ]
Rzm + x’fﬂ

Provided R,?'s sufficiently small in comparison with X, to permit
the required increase in the above expression, X, may be made equal
to zero with the proper adjustment of the secondary capacitance. The
correct value of secondary capacitance to employ in a particular case
is not difficult to determine. However, the general algebraic expres-
sions for the proper sizes of capacitors are of rather awkward algebraic
form. In the circuits where this type of tuning is employed the desired
effect is very often accomplished by means of a variable condenser
which can be adjusted experimentally to the proper capacitance.
Adjustment of M. Assume that X, or X,' of equation (63) possesses
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a capacitive reactive component which is at least large enough to make
XXy ] 0

R,? + X,

when the two windings are in their position of closest coupling. If now
X is made smaller by decreasing the coefficient of coupling, X,; will
take on positive values, thus indicating a resulting inductive reactance.
In general, the capacitive element employed would be adjusted to
mike X, slightly capacitive for the condition of maximum Xy. The
primary current could thus be made to lead or lag the primary voltage
by adjusting the degree of coupling between the two transformer
windings.

Xa= [Xl = (67)

Example 11. Let it be required to find the condenser of proper size to place in
parallel with the primary terminals of Fig. 17a to produce primary unity power
factor. The circuit parameters, and so forth, are given on page 205. For the case
considered: Z, = 3.3 + j35.4, Zy = 0 + 79.65, and Z2' = (Z: + Z) = 15.28 + j25.27
ohms at 60 cycles. Without the condenser:

Z,a = 493 + 732.7 obms

493 j32.7

1008~ 1004 (0.0045 — 70.0299) mho

Ya =
Neglecting the resistance of the capacitor which is to be used:
B ity < 2
Xeo

0.0299

C = = 79.3 X 10~®farad = 79.3 pf

Problem 14. Find the primary series capacitance to employ in the above example
to produce primary unity power factor. Ans.: B1.1 uf.

Problem 16. Solve equation (63) for the value of X2' which will mske X,; = 0. '

X Xt
i Lt 4 ’__. - R."2
Ans.: X4 Y, = X, Ra™.

Problem 16. Can a secondary series capacitance be employed in example 11 to

produce primary unity power fagtor?
Ans.: No; Ry is too large for the specified values of X; and X .

Partial Resonance. In the coupled circuits of the type shown in
Fig. 18, the two chief concerns are usually: (a) maximum value of
I3 (and of V¢3) for a given value of V,; (b) sharply defined peak of
I, for variable X;, Xy, or w. .

In considering the salient features of these tuned coupled circuits,
a slight modification in notation is desirable. Thus far we have dis-
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tinguished between the impedance of the primary winding (Z;), the
impedance of the secondary winding (Z;), and the impedanoe of the
load (Z). It is plain from the development preceding equations (52)
and (53), page 293, that no restrictions have been imposed on the nature
of Z,. Z; is simply the equivalent series-circuit impedance of the
primary ecircuit. Similarly Z, + Z is the equivalent series-circuit
impedance of the secondary circuit. The equations in the remainder
of this chapter will be simpler to write and easier to grasp if Z, is under-

(,’
Jf____||l|,...

+

F1o. 18. A double-tuned circuit arrangement.

stood to be the total series impedance of the primary circuit and if
Z, is understood to be the total series impedance of the secondary circuit.
Thus:

Zl = R] +J-(~YLI - Xa) = R, +J.Xl (GS)
Zy =Ry +§(X12 — Xe2) = B2 4+ X (69)
Zy = jXx = jwM (as before) (70)

The equation for the secondary current I, [as given in equation (53),
page 293] becomes:

L = —ViZy & —V, (i X ) 1

2T %Z; — Zu®  (Ry+JX1)(Rz +5Xa) + Xod®
or

—ViXu[(X R2 + XoR) +j(RiR: — X X5 + X )] (72)

. (X1R2 + X3R))? + (RiR2 — X1 X2 + Xu®)?
For simplicity in writing, let

g = X;Rz + XzR; and b= RIR:a o XIX, + sz
Then: '
I, = -~V Xy (a + jb) (72)

az+bﬂ
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The magnitude of I is: s

I,=WVX -_ s = 7
2 <L ‘v (ag 4 b;)_ m (a‘:l)
or
12 ==
V[.Y_'-f :
V'._\'lsz"'—'r—.\_'_3'-'[;'124—I612R32+2R1R2.\‘_;;2+X;TX?_—2.‘(1.\'3.\"\;34-.\'_u*
(73)

In solving for 75, where numerical values are involved, it is often
more convenient to use equation (71) than equation (73). This is
particularly true where X, or X, is equal to zero. Equation (73),
however, is useful in determining maximum values of I, that can be
obtained by varying any one of the parameters.

Partial resonance irt coupled circuits is obtained when any one param-
eter is so varied as to cause maximum effective secondary current, [,
under the condition of constant applied voltage, 1.

From equation (75) it is evident that partial resonance can be obtained
by adjusting any one of the five parameters: Ry, Ry, Xy, X, or Xy
(For fixed values of Ry, L, C1, M, Rg, Ls, and Cs, partial resonance
may be obtained by adjustment of the frequency.) Partial resonance
will obviously be produced by adjusting any parameter which appears
only in the positive terms of the denominator of equation (73) to zero.
Hence partial resonance obtains, theoretically, when either R, or R
is equal to zero. Practically, neither R, nor R, can be zero and, as
will be shown presently, the value of R,R, determines the optimum
value of [, that can be obtained.

The values of X, X3, or Xy which will produce partial resonance
may, in general, be found by differentiating the expression for I, [as
given in equation (75)] with respect to the proper X and equating
dls 1dX equal to zero. For example, the value of X'y which will produce
partial resonance may be determined by equating df, dX; equal to
zero and solving for X in terms of the other parameters. Thus:

d‘rﬂ - - o -9 - 0 -
E =0= =1 XaA2Y (R + XJ%) — 2X2X ") (76)
The only useful relationship which can be derived from the above is:

Xi(R2 + X7?) = X,Xy? (77)
The value of X; which will produce partial resonance is, therefore:
_-_Ya-‘f.wz XoXy?
R? + X, z?

Xl (res) = (78)
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Reference to equation (63), page 301, will show that the above value
of X, is also the unity-power-factor-resonance value of X;. In making
this comparison it should be recognized that R; and X of equation (78)
mean the same as R.’ and X,  of equation (63) because of the shift in
notation which was made at the beginning of this section. In a similar
manner, it may be shown that the value of X5 for partial resonance is:

XX X, Xu?
Xatres) = B2+ X,? s Z,2

(79)

The interpretation of the above equation is that X, must have the
value stated to produce maximum I,. If X; = 0, then X, should be
tuned to zero to produce maximum [ for & fixed value of X. If the
primary circuit is not tuned to X1y — X¢1 = 0, then the secondary
must be detuned to the value X,Xa?/Z:%. Where sharpness of sec-
ondary tuning is of more importance than an optimum value of I,, the
primary is often purposely detuned to effect & prorounced peak in the
15 versus X ¢ graph.  (See Problem 17, page 309.)

If X, and X, are both equal to zero (by virtue of Xz — X¢1 =0
and X2 — X¢z2 = 0), equation (75) reduces to

I A ViXnm
20 T RiRy + Xa®
If, now, X is varied by changing the coefficient of coupling between
the coils, the optimum value of I; is obtained when
Alaman  Vi(RiR: + Xa®) — 2Vi Xa® )
dXu (BiRz + Xu®)?

(80)

0 (81)

or when
Xy = oM = = VR R; (called critical coupling) (82)

Under these conditions:
I - }’1 ¥ RIRI = V1
2opY T R\Ry + RiRa  2VR,R,

The relationships stated in equations (78), (79), (82), and (83) are
of considerable importance in voltage amplification in radio circuits.
Some of the essential features involved are illustrated numerically in
the following examples and in graphical form in Figs. 19 and 20. For
fixed values of the other parameters, there is a value of X or a coef-
ficient of coupling which will produce maximum I, as shown in the
graphs of Fig. 19. Frequency responses of coupled circuits for fixed
values of Ry, L1, C1, M, R, Ly, and C, are shown in Fig. 20. Graphs
of I and Vg versus X ¢ are reserved for student exercises.

(83)
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25

I, =1+j4ohms

s
2
E1s ns

10 V4 — —-—-"") ...

/ 21-1+jln/or:ﬂl’,
05 4
0
0 1 2 3 4 -} 6 7 8 9

Mutual reactance in ohms
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45
Coefficient of coupling
Fic. 19. Variation of sccondary current with coefficient of coupling for different values
of primary impedance. See cxample 12,

. .
3 [/
I/ /1\
R /i)
' TR
A4 e

LI ] 0.8 0.9 1.0 L1 12 L.
Per unit angular velocity (w)

Ohmic values are given at unit&

Curve 1 is for Xu=1 ohm at unit @
Curve 2 is for Xy=2 ohms at unit @
Curve 3 is for Xy=3 ohms at unit @

Fio. 20. Frequency responses of double-tuned circuits.
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Example 12.- (a) Consider the coupled circuits shown in Fig. 19 under the follow-
ing conditions:
Zy =1+ j100hms Z; =4+ j(40 — 40) ohms X variable

In this case the primary is not tuned and the secondary is tuned, that is, X¢: =
X2 = 40 chms at the frequency of the impressed voltage, V.

Solutions of equation (71) for 1"} = 10 volts and for various values of Xy will
show the manner in which Iy varies with the degree of coupling between the coils.
The results of a series of such caleulations are shown in the lower curve of Fig. 19.
It will be observed that, for Z; = 1 + j10 ohms, I; attains & maximum value at
X equal to 6.5 ohms or at a coefficient of coupling of 0.325. Closer or looser
coupling than 0.325 results in lesser values of /s and hence of Ver = I.X¢a.

Calculations will show that in this ease

Verman = 1.063 X 40 = 42.52 volts
(&) The response of Iy to variable Xy when the primary is partially tuned is

shown in the middle graph of Fig. 19. In this case, 8 ohms of capacitive reactance
is employed in the primary ecircuit and

Zy=1+jiohms Z; =4 + j0ohms Xy variable
I; attains & maximum value at Xy = 4.3 ohms of 1.565 amperes, The maximum
value of the secondary condenser voltage is:
Veruman = 1.565 X 40 = 62.6 volts
{c) The upper graph of Fig. 19 shows the response of I3 to a variable X ar when
both primary and secondary are tuped,
Z; =1+ j0ohms Z; =4 + jOohms, Xy variable

In accordance with equations (82) and (83), I attains its optimum wvalue of
Vi/2V RiR2 at X3¢ ="V R\Ra.
\Z 10
I =— = —— =925
2lopt) 2 \/ER‘ 2% 2 amperes
Veotopy = Laop) Xe2 = 2.5 X 40 = 100 volts

The @ (or wL/R) of the coils in this ¢ase is equal to 10, and it will be observed that
Veaope is equal to the driving voltage (10 volts) times the Q of the coils. That is,
Vezopy = Vi@ = 10 X 10 = 100 volts. This fact is generally true where
X2 = 4X,f, provided that both primary and secondary circuits are tuned to
resonance and provided that the coupling reactance is adjusted to its critical value,

namely, vV f1#;. Under these conditions,

X X XnXpa
=—= d R = ——
SR E A BN
e 2 ViR ViQ
Intopy = a7 a7

2 V}ER_z VILYL;‘YLg X2
Verory = Topy X2 = Taopyy X2 = V1Q

Thus it will be seen that the voltage developed across the secondary condenser of
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the coupled circuits shown in Fig. 18 may be equal to Q times the applied voltage.
If, for example, the @ of the coils is 50, a voltage amplification of 50 can be obtained
simply with the aid of the tuned coupled circuits. As indicated in Fig. 18, the
voltage devcloped across the secondary condenser may be applied between the
control grid and cathode of & vacuum tube in order to obr;sin further voltage ampli-
fication.

Example 13. The response of a eoupled cireuit to & constant driving voltage of
variable frequency is shown in Fig. 20 for three different values of Xy. Since
the eritical coupling at unit angular velocity is 2 ohms, the graphs shown in Fig. 20
represent touplings which are less than, equal to, and greater than eritical coupling,

In these graphs, unit angular velocity is called the angular velocity at which
X — Xey = 0 and at which X2 — Xcz = 0. At unit angular veloeity,

Z, =1+ 3(10 = 10), Zo = 4 + j(40 — 40) Xy = 1,2, 0r3ohms

At other values of w, the X r's and Xy vary directly as w, and the Xc's vary in=
versely as w.

Tor coupling less than eritical coupling the maximum value of the secondary
current is less than for critical coupling, and for couplings greater than critical
coupling the current response is generally similar to the double-peaked curve shown
in Fig. 20.

If a single pronounced peak of I, versus w is desired, the coupling should not be
greater than critical coupling, and the Q of the coils should be as high as practicable.
If the Q of the coils is made higher than that used in Fig. 20, the peaks of the curves
will be sharper and more clearly defined. Sharpness of tuning is particularly im-
portant in radio receiver circuits.

Problem 17. In the coupled cireuits shown in Fig. 18, page 304:

R, = 1.0 chm R, = 4.0 ohms
X, = 10 ohms X 12 = 40 ohms
Xei = 10 ohms X ¢z is variable
Xy = 2 ohms ¥, = 10 volts

Graph I: and Vs versus Xc: between the limits of Xc» = 20 ohms and Xez =
60 ohms.

Ans.: I3msx) = 2.5 amperes at X2 = 40 ohms.
¥ ctumany = 102 volts at Xcs = 41.7 ohms, approximately.

Note: The fact that circuits of this kind tune more sharply but to lesser peak
values when one member is partially detuned may be shown by repeating the above
problem using Z; = 1 + j4 ohms rather than Z; = L + JO.

Double-Tuned Circuit Analysis and Design in Terms cf f'fo — fo/I.
The double-tuned circuit shown in Fig. 2la is widely used in radio
engineering practice, and it is the purpose of this cection to derive
design equations which will specify the Q's of the circuits and the co-
efficient of coupling in terms of the band width and the degree of irregu-
larity which can be tolerated in the response characteristic. The current
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‘enerator (gmE;) in parallel with R, is the plate circuit representation
dty ]
de,

f a vacuum tube. (dia. =

Jage 203.

dtp i €
de,+a—“dea or 3,.-;.',..8,-!-}2—1') See

®)

Fi6. 21. The actual double-tuned circuit shown in (a) transforms
readily to that shown in (b):

Wherever inductive and capacitive reactances are combinéd as shown
in Fig. 22 the analysis is simplified considerably by letting
LIPS _ T . 1 _
wo w fo f 4 el
where wg = 1/%/L1;C; = 1/V L23C32 under the assumption that the
primary and secondary circuits will be tuned to the same frequency.
It will be noted that F as
defined above is the difference E; :
between two dimensionless quan- g F oo
tities (f/fo and fy/f) which in-
dividually characterize the vari-

i
i
1
1
N 1
) I . } y . > Frequency
Em Eu Rp RC .-]-\C" an l” ' f; fll '5
- fe— Band width —|

Fiao. 22. Fio. 23. Response curve of double-tuned

eircuit. fo = V/\fs is the center fre-
quency.

ations of inductive and eapacitive reactances relative to variations in
frequency.

As shown in Fig. 23, f; — f, will be called the band width and it
will be assumed that f; — f; is small compared with f,. For narrow-
band responses of this kind, E2 has a value of E.;, within the pass
band at

fo= V f1fa

where f, and f; are the frequencies (other than f,) at which the response,
E;, has values of Emia. See Fig. 23. In this connection it will be
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noted that, if Fyis symbolizes the value of F where E; = Egin, say a8t
f = fi, then
L. . f2 85)

since fo = V/ifs. If the band width is specified, i, is known,
If.weleta = 1/Qi, b = 1/Qs, and k = M [V Ly Las:

. 1 )
Z,,(in Fig. 21b) = Rn +3(¢-’Lu = an_) = woiLii (@ + jFu) (86)

11

Zy3 = wozlaa(b + jF22) (87)
Zig = Zoy = joM = jwk V' L1l (88)
We assume that €y, and Css will be so adjusted that

| 1

Wy

Wi = —= W ="
V L1:Cn o L2:Caa

where
1

B s et e
wy =
V L11L22011C 32
The problem is essentially that of expressing a, b, and k in terms of
Frnin aUd (Erna: = Emin)-

Employing the loop current method of analysis in Fig. 21b and treating
gmE, 8s a known value of current, say I,, circulating in the left-hand
loop, we have
. g'mEg- a II‘

Zuly + Zyolz = = —
nlh + Zip2le = . chu (39}
Zul + Zy1, =0

The output voltage is

(=5 22) (=i o) Gk VEnTan

E o o l I = CJng w1
2= —J 2 T Gl Lal(@b — F?) + j(a + b)F] + «’k*Li1 Loz
(90)
—jIk VIaiLaz _
CiC
E2 - w122 (91)

2
wo?Ly1 L2z [(ﬂ-b + % k? — Fz) + j(a + b)F:I
21—
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Since we are interested particularly in the region shown in Fig, 23
mhem any w is close to wo if the per unit band width is small, we may
set w? Jwy? = 1 in equation (91) and obtain

"JI;’C

E; = —— ; 92
; w V€1 Oy (k* + ab — F?) + j(a + b)F] e

At w = wqg, the center angular frequency F = 0 and
“-jfgk

93
wo V' C11Caz (K* + ab) e

E20 = EU =¥

Consider now the ratio of the magnitudes of Fs and E, and let the
ratio w /wp again be reckoned as unity. Under these conditions

E, 1
(E_o) T Py @ 2R (04)
S (k* + ab)?
or
=5 - (95)
Eo Jl LR @+ - %P
(k* + ab)?

From equation (95) it is plain that the shape of the E; curve (reckoned
in per unit values relative to E;) will be determined by the relative
magnitudes of a? 4+ b® and 2k*. If o+ b? S 2k% then a single-
peaked curve is obtained since, as F takes on values greater than 0
(f different from fy), the E5/E, curve will decrease continuously from
_its maximum value of unity, the value of E;/Eg; when F = 0 or when

f = fo-

If, however, a® 4+ b? < 2k?, the denominator of equation (95) takes
on a minimum value or E;/E} takes on a maximum value where f(F?) =
F* 4+ (a® 4 b* — 2k*)F? is 2 minimum. This minimum may be found
from

df (F?*)

- - —-2-—$=
) 2(F*) — (2> —a? = b*) =0

or where
2% — ot — P

: (96)

F? = Fpud =
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When plotted versus actual frequency, the response takes the form
shown in Fig. 23 or, when plotted versus F, the form shown in Fig. 24.

We may write an expression for* (E2/Eg)maz = Emax from equations
(95) and (96), and, since E..i, is taken as unity, we may write

Eml=2 I
Emi? | (2K —d — b)? (37)
T A+ ab)?
Let " ,
2 L ALY S b? Flni

T Eoa? | 4+ ab)®  2(k® + ab)?

where Foin? = (2k* — a® — b?). [See Fig. 24 and equation (95.)]
It follows that

g o F“‘—i"z (99)
2(k* + ab)
and
E, 1 .
= = 100)
Eq 4a’F2(F? =~ Foial) (
14+ = 73
min

Foin = V2% — a? — b = (fi — f2)/fo is the value of F at the edge
of the pass band where E2/Eg = 1 = Epin,

2k .'2..- bt

Fi1G. 24. A response curve, E1/Eq versus the variable F for
al + W <2k (F = f/fo — fo/f.)

Equation (100) is a convenient working equation since it includes
@, a measure of the response irregularity which can be tolerated within
the pass band (f, = f2), and F;,, a2 measure of the pass band width
(fi = f2). From a design point of view, a and Fp;, would normally be
specified (at least indirectly), and k, a, and b would then be so chosen

* These results are due to Dr. T. C. G. Wagner of the University of Maryland who
has developed design formules for double-, triple-, and quadruple-tuned circuita.
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that the specified values of a and f; — f; would be obtained in the
final design. See Problem 45, page 324, and example 14 for applications.
Example 14. Let it be required to design a double-tuned circuit which will have

per unit band width [(fi — f2)/fo] of 0.05 and a ratio of Epgy t0 Emin equal to 1.25.
If we make a = b (Q; = Q2), we may readily show that:

dopp o Fanll—a) s Fael(l +a)
da da

ince a = Forl/2(k* + ab) and Faow® =2k — a® =% In the particulsr case
inder discussion
2 f _.f! : 2 .
Fop' = -—-——-——f = 0.05° = 0.0025 [see equation (85)]
o
nd
Emln‘ 16

a’-l-Em‘=l—§5- or a=08

o 0.0025(0.4)
2.4
0.0025(1.8)
24

at =B = 0.000417 and Q; = Qi =49

) = 0.00167 and k = 0.041

Component Fluxes and Voltages in the Air-Core Transformer. Fig-
ire 25a shows diagrammatically the flux components in an air-core
.ransformer. The current I in the secondary produces an mmf which
may be considered to cause two component fluxes: one the leakage flux
é22, which links the turns of winding 2 only, and ¢;;, which links both
windings 2 and 1. The same conditions regarding the flux linkages as
explained on page 279 for Fig. 6 apply to the present discussion, namely,
that ¢z, is a hypothetical component which, when linking all the turns of
winding 2, produces the same total flux linkages as obtained from the
true flux linkages in question. The current I, tauses two component
fluxes, ¢;2, which links both windings, and #,,, which links winding 1
only. Reference to example 9 on page 295 and application of Lenz's law
will reveal in a general way the reason for the phase angle shown between
I, and I in the vector diagram (Fig. 25b). The component fluxes pro-
duced by I; and I, are also shown. It is plain from Fig. 25a that the
resultant mutual flux is ¢ax = ¢é12 + ¢21. The total flux through
winding 2is ¢or = du + 22 = ¢a+ ¢13. Also the total flux through
winding 18 ¢1& = ¢ar + ¢11 = @1 + ¢21.  All these combinations are
shown on the vector diagram. Equal numbers of turns on windings 1
and 2 are assumed. _

Since ¢ = —N(d¢ /dl), the induced voltage due to a flux lags the flux
by 90 degrees. Thus, on the vector diagram, E;z is caused by é2r, Ears
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by éu, and Ey; by ¢35 The resultant induced emf in winding 2 is
therefore E;x. Because of the resistance R; of winding 2 the terminal
voltage must be less than E;g by the I:R, drop as shown. Hence V; is
the secondary terminal voltage. It is seen to be ahead of I; by the
secondary load power-factor angle.

~Em

Fic. 25. Vector diagram of the air-core transformer.

The voitage drop impressed an winding 1 must be equal to the sum
of all the drops through winding 1. Thus one component of the total
drop must be the drop —E; g, which is equal and opposite to the induced
voltage E;z (not shown) in winding 1 caused by all the flux linking that
winding. The remaining component drop is the I;®,. Hence V, =
LR, + (—E;z). The components of —E,; are the voltage drops
—E;; and —Ey,, which overcome the induced voltages due to the
primary leakage and mutual fluxes, respectively.

The leakage flux ¢.s is (even for all practical purposes in iron-core
transfurmers) proportional to the current I;.  E; is an induced voltage
nse and is dirertly proportional to I;.  The voltage —E,, is opposite to
E;; and therefore leads the current by 90 degrees. It is thus in the
direction of a reactance drop, and, since it is proportional to the current,
a constant reactance may be multiplied by the current I; to represent
correctly the drop —Ej;. Such a reactance which may be used to
replace the effect of the leakage flux is called a leakage reactance, and the

21
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corresponding dron a leakage reactance drop. The vector diagram
which is commonly used is shown in Fig. 26. Only the flux ¢y in Fig. 25
isshown, and the drops —Eg; and —E;; are replaced by their correspond-
ng leakage reactance drops I.X; and I,X,, respectively.

LR

Fic. 26. Commonly used vector diagram for the ait-core transformer shown in Fig. 25.

Leakage Reactance. Leakage reactance may be defined as 2xf
times the leakage inductance. This may be shown as follows. By
referring to Fig. 23a, leakage inductance

\ a9 d iy
By o D s (101)
a dig
debss
€32 = "‘.‘\"3 _E?_: (102)
dt
Dividing equation (102) by equation (101) gives
dig
= —Lgs—
(53] 52 dt
For sine waves
ig = Inn sin wl (103)
and
€3 = — Lgglmaw cos wl (104)
Hence

Enzz = ImgwLss
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Al I
s Ezz =22 "’LSS *» fzstz

V2

The magnitude of the leakage reactance drop has been defined equal

to Egg.‘; Izstg = r24Y3. Therefore ‘
Xz e stg (105)

Since €37 in equation (104) is a voltage rise, the drop is —¢39 = Lgowl s
cos wl. Because this voltage drop is 90 degrees ahecad of the current
(equation 103), the complex ex-
pression for 'leakage reactance
must be

Xz o +fWLsz (105)
The Air-Core Autotransformer.

Iith—s 2 I —»

Q

E L
-

Two inductance coils arranged as M

shown in Fig. 27 are called an 4
autotransformer. If the driving Ly L
voltage is applied to the terminals

ab and the load connected across Ry

the terminals ac, the autotrans-
former functions as a step-up volt-
age device;whereaﬁ, if the dri\'ing Fra. 27. Air-core autctransformer con-
voltage is applied to the terminals BV SN WL o Gl eyt

ac and the load connected to terminals ab or be, it functions as a step-
down voltage device. The mathematical analysis of the air-core auto-
transformer is reserved for student exercises, (See Problems 37, 38,
and 39 at the end of this chapter.)

c*

R=5/1 R=101
AN _‘VMI
I
Lz

E,r R=20Q @lE,

UG e TOO0

Xy =200 K =401

I

4

Fig. 28. See Problem 18.

PROBLEMS
18. In Fig. 28, E, = 100/0° volts and E; = 100/+4120° volts. The physical
mesaning of the foregoing statement is that the E, 'génerator develops & maximum
generated emf {V/i X 100 volts) in its arrow direction i of a cycle or 120° before
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the E; generator develops its maximum generated em/ in its arrow direction. As-
suming that the resistances and reactances given in Fig. 28 include the generator
impedances. find 11, I:, and Iu.

19. In Fig. 2, page 276, it is found experimentally that Iy =1 /90° ampere and
V.p = 4/0° volts (with terminals 22’ open-circuited) when E; (the voltage ap-
plied to terminals 11°) is 6 /0° volts. When a voltage of 6/0° volts is applied to
terminals 22" (with terminals 11" open-circuited), Iz = 1.5‘@9_: amperes and
Vi = 6/0° volts.

(a) Find Za; and Z,3 from the above data.

(b) Find the coefficient of coupling between the two circuits.

{¢) Draw a circuit configuration that might actually exist within the 11’2’2 box
and that is consistent with the specified data.

ANV

1 200N b 2
O—— : = —0
) jlon e 1100
Circult L 250 Cireult 2
Y —j2sn 2’
o . 12 o

Fic. 20. See Problem 20.

20. Find the coefficient of coupling between ecircuits 1 and 2 in Fig. 29. Hinl:
Transform the abe delta to an equivalent wye, and then determine Z1z or Zg; of the

equivalent circuit.

- 2
Circuit 1 Circuit 2
Y 2

Fio. 30. See Problem 21.

91. Show that the coupling coefficient between eircuits 1 and 2 in Fig 30 is equal

to zoro if w = 1V R R2C1Ca, Ra = Ry, Ra = 2R,, and C; = 2C3.

22. Tigures 31a, 31b, and 3lc are the approximate equivalent circuits that are
samotimes used in making voltage amplification caleulations in resistance-coupled
nudiv nmplifiers.  Show that the expressions given for E7 in terms of uE; are correct
for carh of the three configurations.

.23. Two air-core inductance coils possess, individually, 60 and 30 millihenrys
o lf-inductance, respectively. Measurements show that, if the two coils are con-
nected in additive series as shown in Fig. 12, page 287, the equivalent self-inductance

of tha combination is 120 millihenrys.
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. C
3 Rp ] Hh _iT_
#EnCD Rh Re E;= =kl
¥ R,R,+R,R4R,R - RitRa
wCy
(a) -
Rp
VAAA *
z it
"E“C)-i- Ry Re £27 R il:i
l P R,R, +1
(b) e
Ra &
pEg 3 Ry Re =0y E= =b%1
b J’n,_n_l“ +R“ +lwC;Ry1
e
(c) =

Fic. 31. Approximate equivalent circuits of resistance-capacitance coupled smplifiers.
Sec Problem 22. (a) is for low-frequency range. (b) is for intermediate-frequency
range, and (¢) is for high-frequency range where the impedance of the blocking con-
denser Cy may be neglected.

(a) 1f the coils are connected in subtractive series, find the equivalent self-in-
ductance of the combination.

(b) Find the coefficient of coupling between the coils.

24 Two inductance coils are connected in additive series. For 100 volts im-
pressed on the combination, the current is 5 amperes and the power consumed is
200 watts. When the coils are reconnected in subtractive series and 100 volts ace
impressed, 8 amperes flow. Calculate the mutual inductance if the frequency for
tlie above measurements is 69.5 cycles.

25. If the two coils in Problem 24 have equal resistances and the voltage drop
across coil 1 is 36.05 volts for the additive series connection in Problem 24, (a)
ealeulate Ly and Ls and the drop aeross coil 2 for this condition; (¥) also calculate
the coefficient of coupling.

26, The individual self-inductances of the two windings shown in Fig. 6, page
216, are 0.100 and 0.050 henry, respectively. The coefficient of coupling between
the windings is 0.56. If the current in the 0.100-henry winding is a 60-cycle sinus-
oidal variation, the maximum magnitude of which is 10 amperes, find the effective
value of voltage induced in the 0.050-henry winding as & result of the current varia-
tion in the 0.100-henry winding. Also find the magnitude of the rms induced
vultage in the 0.1-henry winding.

27. In Fig. 32, eso = 141.4 sin 1131¢ volts and e.q = 70.7 sin (1131t — 90°) volts.
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(a) ¥ind Iy, and I.4, assuming that Fig. 32 correctly represents the modes of
winding as well as the physieal placement of the two inductance coils, The internal
impedances of the generators may be assumed to be negligibly small.

(k) Find the power generated by each generator.

(c) Draw a vector dingram of Epa,dba, IaRy, LaX 2y, Ecq, L, EaRe TaX g, TaXor,
and IuX .

28. Branch 1 of two parallel branches consists of a resistance of 2 ohms in scries
with an inductive reactance of 3 ohms. Branch 2 consiets of a resistanee of 5 ochms
in series with an inductive reactance of 12 ohms. The coefficient of ecoupling be-
tween the two inductances is 0.8, and the inductances are wound so that the mmi's

Ry=500 Ry=120 4

Fic. 32. See Problem 27,

due to Iy and T, taken in the same direction from the junction are additive. If
100 volts are impressed on the two parullel branches, find Jy, Is, the power supplied
conductively to branch 2, the power supplied branch 2 electromagnetically, and the
voltage drop across only the inductance of branch 2. What is the phase angle
between the latter drop and the current in branch 27

29. The coefficient of coupling for the coils in Fig. 33 is 0.5. Find the current
in the resistance.

30. Caleculate the phase and magnitude of the voltage drop V3, with respect to
the total drop from a tocin Fig. 31. X1 =350, X2 = 5i‘:; Xy=40

4
i o 100 volts
612 M6,
100 volts > 120
l M

BN

Fic. 33. See Problem 29, Fic. 34. See Problem 30.

31. In the coupled circuits shown in Fig. 18, page 304,

R, = 40 ohms Rs = 10 ohms
Xy = 40 chms X2 = 100 ohms
Xey = 40 ohms Xea = 120 ohms
Xy = 50 chms ¥1 = 100 volws

Find /3 and Ves.
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82. In the coupled circuits shown in Fig. 18, page 304,

R, = 4 ohms R = 10 ohma
X1 = 40 ohms Xra = 100 ohms
X = 40 ghma Xrg = 120 ohma
Xy = 50 ohms 1y = 100 volts

Find the equivalent primary impedance, Z,\. of the coupled circuits and the ohmic
value of the sccondary-circuit impedance referred to the primary terminals. How
many ohms reactance does the secondary reflict into the primary, and is it in-
ductive or ecapacitive?

33. Assume that an 83-af capacitance is placed in series with the primary of
Fig. 17a. Except for the insertion of the 83-4f capacitance into the primary circuit,
the parameters are as given on page 293. Find the value of M which will produce
unity-power-factor resonance.

34. Show that the partial resonance which can be obtained by adjustment of
the secondary reactance, X (in coupled circuits of the kind shown in Fig. 18, page
304), oceurs when X3 = X;X,%/Z,2  (See equation 79, page 326.)

Ru

Q @ c,;:mu. M

Fio. 35. See Problems 35, 41, 42, 43, 44, and 45.

35. In Fig. 35 Ry = 10, Ly, = 0.01 henry, L2 = 0.05 henry, M = 0.02 henry,
Rz = 400, Cqz = 200 uf, and « = 1000 rudinms per second. (a) Find the value
of 1y that will make the whole circuit, looking into the lines connecting to the source,
a pure resistance.  (b) Find the value of the pure resistance.

36. Circuits 1 and 2 are inductively coupled. Circuit 1 consists of 2 ohmas resist-
ance in series with a coil of 16 ochms reactance and negligible resistance. Clircuit
2 consists of 10 ohms resistance in series with an inductanee eoil of 100 ohms re-
actance and a capacitor of 100 ochms,

(@) It the coefficient of coupling is 0.03, what is the drop across the capacitor
when 10 volts are applied to circuit 1?

{(b) If a capaeitor is placed in series with circuic 1 g0 as to tune circuit 1 to reso-
nance (wl; = /&), what will be the drop across the capacitor in cireuit 2 for the
same coefficient of coupling as before?

(c) If the coupling can be adjusted in part (b), what will be the greatest voltage
drop across the secondary capacitor?

37. Write the general differential equations for voltage equilibrium in the two
circuits shown in Fig. 27, page 317, in terms of Ru, Las, R, Lee, M, R, and L, and
the branch currents i; and i;. Note that this is essentially two parallel branches
which are coupled.
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38. Assuming that vy varies sinusoidally, write the general voltage equations
for Fig. 27, page 317, in terms of the effective valués of the branch currents, J; and
l3. Solve the equations thus found for Iy and I;. What circuit considered earlier
in this chapter has similar equations for I} and I.?

39. Assume that, in Fig. 27, page 317,

R = 4.0 ohms ‘M = 002 henry

Loy = 0.07 henry R = 10 ohms

Ry. = 0.5 ohm L = 0.00 beory

Ly, = 0.01 henry w = 377 radians per second

If Vi =100/0° volts, find 1,, I, and I; + Is. Also calculate the total power

supplied and that dissipated in each of circuits 1 and 2.  Draw the complete vector
diagram of the voltages and currents.

g R, g
E R. =C
EOE\F‘%“ n ”. [STR # ks
(a)

a

Fig. 30. See Problem 40.

40. Given the circuit arrangement chown in Fig. 36a, where the gnF, current
generator in parallel with K, is the equivalent a-¢ circuit of a pentode which has
a voltage of E, volts applied to its control grid.

(a) If B, = 750,000 ohms, B; = 12 ohms, L;; = 382 microhenrys, and €y, is
adjusted to resonate the Ly Cyy parallel branches at 500 ke, find Ryy of the equivalent
circuit shown in Fig, 365,

(b} What is the @ of the coil itself, namely, wnl /Ry, at 500 ke?

(¢) What is the @ of the Cy, — Ity1Lyy pursallel combination of Fig. 36b at 500 ke?

1 -
(d) Can Iyin Fig. 36b be evaluated from the relation Zy I, = — (Io) [ —J w_C—) d
1 11
where Zyy = Ry + 7 (mL” - —--') ?

41. In Problem 40, it has been shown that the current generators of Fig. 36 and
I'ig. 35 can be replaced by equivalent voltage generators which have voltages of

o 1
<@ A

Show that the equivalent primary impedanee (neluding the reflected impedunce
fromn the secondary j which the equivalent voltage generator in Fig. 33 sees is:

Ig
wl wtif® . [ wik? ]
Fireg = Sy S, il iF —
116g 1+ T wmilyy | (@ + 7F11) +u..;u..gtb T i
ahere
1 1
Vv LnCn V' L2:Cn
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A 1
2, = Ru +j(u£.“ _;C_u) Zig = Ras -I-j(ul." _ :a)

a__l__ Ru bnl- Raq
O wmiln Q2 wm2loe
Fu_,(_w__a-_' F“,.(-“’__.""J}
Wil w wmz W
R4
A Lylx

42. The results of Problem 41 are to be employed in the following exercises.
(a) Show that a voltmeter across Ly, of Fig. 35 will read a maximum value when
(11 is adjusted to 1,0 ? if loop 2 is open-circuited and that this voltage will be

K

VLumn: =
wmlle

where K = [— (Tp/wC11)] (wln).
(») With Cy, left at the value found above (1/Ly1wm1?), show that the voltmeter

(which is across the Ly, coil) will read a minimum value of
K
VI,umjn = -_—_E‘_
wmil11 (ﬂ + N
when (22 is adjusted to I/Luu...la. '
{¢) Show that, if the experimental procedure outlined in (a) and (b) is followed,
the coupling eoefficient between the two coils is :

p = oo (Fm 1)
Vlumin

43. In Fig. 35 Lyy = L2 = 300 microhenrvs; Ciy = C12 = 2000 puf; M = 8.66
m.icrohenr}'s; a= R\L-f'um1L;1 =h = qu,’mmzf.ﬂ = 0.01.

(a) Find the magnitudu of the voltage across the €32 capacitor per millismpere of
Joat w = wy = 1:\"L;Cyy rad’sns per second.

(5) Will the voltage found in part (a) be the maximum value of E, if the frequency
is varied slightly about the value wy, specified sbove?

44, (a) Make a sketeh of —— £ ersus F for the circuit shown in Fig. 35
€22t}

employing the circuit parameters specified in Problem 43. Caleulate points for this
sketeh at

w = 1,0100m or F=2x107¢
w = 100707 of # =1'2 1072
w = 1.008uwmn or F =107
W= e or F=20

using equation (85), namely:
Ecnn 1

Eg1tomen) F' 4 (a® 4 b! — 2k1)F3
T e ey




324 ALTERNATING-CURRENT CIRCUITS Ch. vil

(b) Make a sketch of Ecay per milliampere of Iy versus w fwy, employing the results
of part {a). It may be assumed that the response curve is symmetrical about the
center frequency wpy.

45. Design a current-fed double-tuned circuit like that shown in Fig. 35 which
has & per unit band width of 0.02 centered at wa = 10° radians per second: Use
Ly = Ly = 500 microhenrys.  The permissible variation in the response curve over
the pass band is 1.2518 decibels reckoned from Ep;, as reference. (a = 0.5)

Note: Where @y = Q», a design of this kind amounts simply to specifying some
appropriate value for the Q's of the coils and then caleulating the coefficient of cou-
pling to employ between these coils to meet the conditions imposed. In this case,
Frmin®/a = 0.0004,0.5 = 2(k* + ab) = 2(k? + a?). In a more general case, one of
the 2's may be chosen almost arbitrarily. Then Frin?/a = 2(k* + ab) and Fon? =
(2k* — @® — b?) may be solved simultaneously for & and the other Q to meet the
specified values of £, and a.



chapter VIII Ba’cnced Po,yphase Circuits

Generation of Polyphase Voltages. Polyphase voltages are generated
in the same way as single-phase voltages. A polyphase system is
simply several single-phase systems which are displaced in time phase
from one another. The single-phase systems which form the polyphase
systems are generally interconnected in some way.

In Fig. 1 is shown a single coil aa’ on the armature of a two-pole
machine. When the poles are in the position shown, the emf of con-
ductor a of coil aa’ is & maximum, and its direction is away from the
reader. If a conductor is placed 120° from a at position b, it would

Fio.1. Elementary three-phase generator. Fia. 2.

experience maximum emf in a direction away from the reader when the
north pole axis was at b, or 120° later than when the pole axis was at a.
In like manner, the maximum emf in the direction away from the reader
for a conductor at ¢ would occur 120° later than that at b, and 240°
later than that at . The placement of such conductors and the coils
of which they are a part are shown in Fig. 2. Thus the coils aa’, bb',
and ccwould have emf’s that are 120° out of time phase, as pictured in
Fig. 3. This system is called three-phase because there are three waves
of different timg phase. In practice the space on the armature is
completely coveréd withiacoils (except in single phase). For instance,
the conductor of another coil could be placed in the slot to the right of
conductor a in Fig. 2, and another to the left. The one to the right
would have an emf which would lag that in a by the same angle that the
one to the left would lead. The sum of the three emf’s would give a
resukant emf of the same phase as that in a. Conductors for phase a
325
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would cover the periphery from d to e and from d’ to ¢. The distance
from d to e is called a phase belt. The emf of all the coils in series for
the whole phase would have the same phase relation as the emf of the
center conductor of the phase belt. For this reason only the center
conductors of the phase belts will be considered. It is apparent that
any number of phases could be developed through properly spacing the
coils on the stator.

tor wt

Fic. 3. "Waves of emf generated by a three-phase generator.

In general, the electrical displacement between phases for a balanced
n-phase system is 360,/n electrical degrees. Three-phase systems are
the most common, although for certain special applications a greater
number of phases is used. For instance, practically all mercury-arc
rectifiers for power purposes are either six- or twelve-phase. Most
rotary converters are six-phase. Practically all modern generators
are three-phase. . Three-phase is also invariably used for transmitting
large amounts of power. In general, three-phase apparatus is more
efficient, uses less material for a given capacity, and costs less than
single-pliase apparatus. It will be shown later that, for a fixed amount
of power to be transmitted a fixed distance at a fixed line loss with a
fixed voltage between conductors, three-phase is more economical in the
use of copper than any other number of phases,

In the development of the three-phase voltages in Fig. 3, clockwise
rotation of the field structure of the alternator in Fig. 2 was assumed.
This assumption made the emf of phase b lag that of a by 120°. Also,
the emf of phase ¢ lagged that of phase b by 120°, In other words, the
order in which the em{’s of phases @, b, and ¢ came to their corresponding
maximum values was abe. This is called the phase order or sequence
abe. If the rotation of the field structure in Fig. 2 is reversed, the order
in which the phases would attain their corresponding maximum voltages
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would be reversed. The phase sequence would be acb. This means
that the emf of phase ¢ would then lag that of phase a by 120° instead
of by 240° as in the first case. In genersl, the phase sequence -of the
voltages applied to a load is fixed by the order in which the three-phase
lines are connected. Interchanging any pair of lines reverses the phase
sequence. For three-phase induction motors the effect of reversing the
sequence is to reverse the direction of rotation, For three-phase
unbalanced loads the effect is, in general, to cause a completely different
set of values for line currents; hence when calculating such systems it is
essential that phase sequence be specified or confusion may arise.

Ep=E /60
E
2 TOTOTTT\—ob ,
60
E
co—~O00000 —ed Eed =E/0°
(a) ()

Fia. 4. Coils having induced emi's shown in part ().

Vector Disgrams and Double-Subscript Notation. When drawing
vector diagrams of polyphase circuits it is imperative that directions
in which the circuit is being traced be noted and recorded. For example,
let us assume that the two coils shown in Fig. 4a possess induced voltages
or emf’s that are 60° out of phase and that the coils are to be connected
in additive series, that is, in such a manner that the emf’s add at a 60°

Eu Ew
E
2 b =2 Eco130
1732 E
E
c d
(a)

Fra. 6. Resultant emf shown in (b) for connection of coils shown in (a).

angle. From the information given it would be impossible to know
whether terminal a should be connected to termunal ¢ or terminal d.
But if it were stated that the emf from a to b is 60° out of phase with that
from ¢ to d as shown in Fig. 4b, the way to connect the coils would be
definitely fixed. Under such conditions, double-subseript notation is
very convenient.

The order in which the subscripts are written denotes the direction
in which the circuit is being traced. Thus the emf from a to b in Fig. 4a
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may be designated as E.; and that from ¢ to d as E;.  (See Fig. 4b.)
If d is connected to a as shown in Fig. 5a, the emf from ¢ to b is determined
by adding all the emf's in the directions encountered as the circuit is
traced from ¢ to b. Hence E., = E.; + E,; as shown in Fig. 5b. 'This
procedure will be further illustrated in succeeding articles.

Problem 1. In Fig. 4a, connect terminal b to terminal ¢ and compare the resultant
voltage E.g with voltage E of Fig. 5b.
Ans.: E.a = E..
Problem 2. (a) Connect terminal d to terminal b in Fig. 4a and find the voltage
E.oif E = 120 Volts. Eup and E have the same vector relation as shown in Fig. 4b.
Ans.: E. =120 :/-GD“ volts,
(b) With terminal d connected to terminal b as above, find E,..
Ans.; Ea = 120 /120° volts.

A vector diagram is simply a means of representing certain electrical
quantities that are related by a circuit. A vector diagram therefore
must always be drawn in conjunction with a ecircuit. Sometimes
circuits may be visualized instead of actually drawn, but without a
definite picture of the circuit represented a vector diagram means
nothing and cannot be intelligently drawn. It should be clearly recog-
nized, however, that a circuit vector diagram of voltages and currents
represents time-phase relations and not space relations of the circuit.
This means that the space configuration of a circuit diagram is in no
way indicative of the time-phase relations of the voltages or currents.

] ¢
: ] /Ecd:]wwwm
JE »E =100 /0’ volts
b 4
(a)

®)
Fic. 6. Bee Problem 3.

Frobiem 3. Find the magnitude and vector position of voltage E in Fig. 6a
if Eq and E g are displaced from each other by 30° in time phase as shown in Fig. 65.
Ans.: Eea = 51.76 /105° volta.

Two- and Four-Phase Systems. A two-phase system is an electrical
system in which the voltages of the phases are 90° out of time phase. A
two-phase system is pictured by the drum and Gramme ring windings
in Figs. 7 and 8. From the position of the coils on the armature in
Fig. 8 it can be seen that the emf’s of the four coils are related in time
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phase es shown in Fig. 9. If the zero terminals of coils a0 and c0 are con-

nected, the emf from a to ¢ is Eso + Eo.. This operation is shown in
Fig. 10. Likewise, when the zeros of coils b0 and dO are connected

Fio. 7. Elementary drum-type two-phase TFie. B. Elementary Ginmme ring-type
generator. two-phase generator.

Ews = Ew + Egs. This is also shown in Fig. 10. The emf’s E,. and Ep4
are 90° apart in time phase, and the system shown in Fig. 8 constitutes
a two-phase system. A two-phase system is the equivalent of two
separate single-phase systems that are separated 90° in time phase.

AE,
]LEd
s 0 =z EpepEes
B Eoe
Eyo
VE“ E:E Ea&

Fra. 9. Emf's of coils on geoerator in Fra. 10. Resultant emf's of two coils in
Fig. 8. series connected as shown in Fig. 8.

A four-phase and a two-phase system differ only in internal connec-
tions, Thus if connection is made between the two windings at n and n’,
the system would be called a four-phase system. The vector diagram
of phase or coil voltages is shown in Fig. 9. Since there now is an elec-
trical connectiun between the two groups of coils that constituted the
two-phase system, there will be emf’s between terminals d and a and
also between b and ¢, as may be seen by studying the diagrammatic
representation of the coils shown in Fig. 11. This connection is called
a four-phase star. The voltages Eg,;, Eg, Ey, and E.4 are called the
line voltages, while voltages Egq, Eqs, Eoc, and Egq are called the phase
voltages, or voltages to neutral. From the circuit it is evident that
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Ess = Eg + Egs. This combination and similar ones for all the line
voltages are shown in Fig. 12. Another method of showing the same
thing is illustrated in Fig. 13. Thus, in the four-phase star, line voltage
is the V2 times phase voltage and it is cither 45° or 135° out of phase
with the phase voltage, depending upon which voltages are considered.

d
Q0
c a8
b i Es Eob=Edo Ed
Fro. 11. Diagrammatic representation of Fia. 12. Voltages of the four-phase star
Fig. 8 when n and n’' are connected fq shown in Fig. 11.

form point o.

Since Egs + Egs + Egc + Egg = 0, it would be possible to connect
the four coils shown in Figs. 8 and 11 so that their voltages add in this
way and no current would flow in the series circuit of the coils. This
connection, shown in Fig. 14, is called a mesh connection, and in this
case it would be known as a four-phase mesh. The line connections

Eod
A
s
7 .
¥ e
P s
L Ny &
Eoct P Ea
, ’
N /1
€ .
h t@'@
\\ ,’ V
o ’
Eob ¢
Fro. 13. Alternative representation of Fie. 14. Four-phase mesh.
Fig. 12.

are made at points a, b, ¢, and d. The vector diagram of the emf’s
for this system is shown in Fig. 15. For balanced loads the currents in
adjacent phases are 90° out of phase as shown i Fig. 16. The aa’ line
current is I,» = 144 4 I, 88 shown in Fig. 16. Thus line current of &
balanced four-phase mesh is the V2 times phase current and is either
45° or 135° out of phase with the phase currents, according to which are
being considered. Note ‘that what was true about line and phase
voltages in the star is true about line and phase currents in the mesh.
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Inspection of the star system shows that line and phase currents must be
identical, and the same thing is true regarding line and phase voltages in

the mesh.
£ I-E:d
y lu!'hf ------ yLar
i
1 S‘é :
1
i
-+ Eolay - =)
Y l
Eob™Ess Te
Fro. 15. Vector diagram of emi's of the Fia. 16. Veector diagram of currents of the
four-phase mesh shown in Fig. 14. four-phase mesh shown in Fig., 14 under

conditions of balanced load.

Sometimes a two-phase system is used with only three wires. When
this is done, one wire is common to both phases. The circuit diagram
of Fig. 8 when connected for such use is shown in Fig. 17, and the
vector diagram is shown in Fig. 18. It will be noted that this is essen-
tially half of the four-phase system shown in Fig. 11 when line wires
are connected to points 0, d, and .

d

bﬂ

F1a. 17. Two-phase three-wire system. Fro. 18. Vector diagram of voltages for
Fig. 17.

}{?ﬁl.ree-lbhase, Four-Wire Systems of Generated Emf’s. The genera-
ion of three-phase was explained at the beginning of -this chapter. If
six wires were connected to terminals a, a’, b, b', ¢, and ¢/ of Fig. 2, the
system might be called a six-wire, three-phase syst,em.;'/’Such a generator
could be loaded with three independent single-phase loads. Though
such a system is not used, one that is widely used may be derived from
it by making & common connection between terminals a’, b, and ¢’
Four wires are all that would then be necessary, three for terminals a,
b, and ¢, and one for the common connection a’b’c’. Such a system,
called a four-wire, three-phase system, is shown diagrammatically in
Fig. 19. This system is now extensively used for a-¢ networks and is
rapidly displacing the formerly much used d-¢ networks in the down-

-22
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town areas of large cities. The common wire connecting to n is called
the neutral. Lighting loads are placed from line to neutral; motor and
sther three-phase power loads are connected between the three lines
b, and ¢. The generated voltage waves of this systet are shown in
ig. 3, and the vector diagram that portrays the same thing is shown
n Fig. 20. The three voltages shown are called phase voltages or line- -

ne Epn Ebs

c Boe E,
nf
a
n Ena
b Ea .

Fia. 19. Three-phase four- Fig. 20, Line-to-neutral  Fra.Zl. -I.lnevoluneﬁuda
! wire system. voltages of Fig. 19. phase voltage times V'3
A in the wye connection.

to-neutral voltages. They are sometimes called the wye voltages of the
system, and the connection of Fig. 19 is called a wye connection. The
voltages between terminals a, b, and ¢ are called the line or terminal
voltages. Under balanced conditions they are definitely related to the
phase voltages, as the following shows:

Eh"‘Eh""Eu

Es Eta This combination is shown in Fig. 21
where the magnitude of the phase

f
E Eo
Fra. 22. Line and phase voltages of the Fra. 23. Alternative representation of
wye connection (Fig. 19). Fig. 22..

voltage is considered as E. Hence line voltage in the balanced three-
phase star or wye connection is the V/3 times the phase voltage and
makes an angle with the component phase voltages of either 30° or 150°%

depending upon which are considered. The complete vector diagram
showing all line voltages is given in Fig. 22. Figure 23 shows the same
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system in terms of a polar vector diagram of phase voltages and a funicu-
lar diagram of line voltages. Oscillogram 1 shows these relationships
as obtained from an actual load.

—
]

141
Vab,® Yan"Vobn Vbcy/~ VonVen Vea ®

NG

1004

K AN

OscicLooraxm 1. IlUustrating the 30° angular displacement between the phase voltages
and the systematically labeled line-to-line voltages in & balapced, three-pbase, wye-
connected load. Effective value of each line-to-line voltage is 100 volts.

When the system is balanced, the currents in the three phases are
all equal in magnitude and differ by 120° in time phase, as shown in
Fig. 2. The phase of currents with respect to the wye voltages is
defined by the circuit parameters in any par-
ticular case. An inspection of Fig. 19 shows
that line and phase currents are identical. The
current in the neutral wire is obtained through
the application , of Kirchhoff's current law.
Thus ' -

Ia’n — IM + Inb + IM

If the system is balanced, I, 1., and I,,. are
equal in magnitude and displaced from one an- Fia. 24. Currents in a
other in time phase by 120° as shown in Fig. =~ belsnced-wye system.
24. Under these conditions it is apparent that the current in the neutral
is sero since I + I + L., = 0.

11"!
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Problem 4. (a) Draw a polar (or single-origin) vectar diagram which will
represent the same phase voltages and the same line voltages as shown in Oscillogram
1 using V. as reference. Specifly the effective magnitude of the phase voltages, the
sequence of the phase voltages, and the sequence of the line voltages.

Ans.; V/phase = 57.7 volts.
Phase voltage sequence: an-bn-cn.
Line voltage sequence: ab-be-ca.

(b) Draw a polar (or single-origin) vector diagram which will represent the same
phase voltages as shown in Oscillogram 1, namely Voa, Vim, and Ve, together with the
line voltages Vi, Vo, and Ve, using V.. as reference. Specify the sequence of these

line voltages.
Ans.: Line voltage sequence: ba-ch-ac.

Three-Phase, Three-Wire Systems. The usual three-phase system
consists of only three wires. In this event loads are not placed between
the lines and neutral, and the neutral wire is therefore not brought out.
The balanced relations discussed in the previous article are obviously
unaffected by omitting the neutral wire and therefore apply to the
three-phase, three-wire system.

The Delta Connection. If only three wires are used, the three-phase
system may be connected in mesh similar to the four-phase system
previously considered. Since '

Ena+ Ens + Ere =0

for the three-phase system, the three coils shown in Fig. 19 can be
connected as shown in Fig. 25, and no current of fundamental frequency

-4
nAC
b n
n a
hf
Fra. 25. Delta connection of the coils Fra. 26. Phase currents for the balanced
shown in Fig. 19. delta of Fig. 25.

will flow around tbe series circuit of the three coils. This three-phase
mesh connection is called a delta connection. It will be noted that star
and mesh are general terms applicable to any number of phases, but
wye and delta are special cases of the star and mesh when three-phase is
considered. Inspection of Fig. 25 shows that phase voltages and line
voltages are identical but that line and phase currents are different.
The vector diagram of phase currents for a balanced load is shown in
Fig. 26. Line currents are found through the applieation of Kirchhoff’s
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current law. Thus
Lo = Iis+ Lo

This operation is carried out in Fig. 27. For a balanced system, line
current is the V'3 times phase current in magnitude and is out of phase
with the component-phase currents by either 30° or 150°, depending

Tewr
'y

1w

Iy
120°
Fra. 27. Combination of phase currents Fra. 28. Vector diagram of currents for
gives lina current for Fig. 25. a balanced delta is shown in Fig. 25.

upon which are considered. The complete vector diagram of currents
for the three-phase balanced delta connection is shown in Fig. 28.
Oscillogram 2 shows the relations discussed above as obtained from an
actual load labeled as in the accompanying circuit diagram.

;

g R
RS
% %7 N7 -
KX

OscrLLooraM 2. Oscillographic study of a balanced, delta-connected, unity-power-factor
load. The line-to-line voltages (or phase voltages) together with the phase currents and
line currents are illustrated.

{
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It should be understood that all the vectors on a vector diagram like
that shown in Fig. 28 may be reversed, that is, changed individually
through 180°, and, if a reversal in the order of subscripts accompanies
this change, thesresulting vector diagram will represent the same thing
as does Fig. 28. As applied to the circuit shown on Oscillogram 2, for
example, it is immaterial whether I, is considered to flow in the direc-
tion of V., or whether I, is considered to flow in the direction of V..
Those who prefer to consider line voltages ao, ca, and be rather than line
voltages ba, ac, and ¢b will label a circuit diagram like that shown on
Oscillogram 2, whereas those who prefer to consider line voltages ba,
ac, and cb will employ Ise, L, and I, as the delta-phase currents.

Problem b. Refer to Oscillogram 2. Draw a complete vector diagram of Vas,
Vie, Veay Loty Ibcs Ieas Iova. Livs, a0d I, employing Vi, as reference. From the scaled
ordinates given on Oscillogram 2, determine the effective values of line (or phase)
voltage, phase current, and line current.

Ans.: V = 100 volts; [, = 3.5 amperes; I; = 6 amperes.

The n-Phase Star and Mesh. The circuit and vector diagrams of
two adjacent phases of an n-phase star system are shown in Figs. 29

Fio. 20. Two adjacent phases of an F1o. 30. Line-to-neutral voltages of ad-
n-phase star. jacent phases of an n-phase star (Fig. 20).

and 30, respectively. The line voltage E.3is Ean + Ens. Remembering
that the angle of phase difference between voltages of adjacent phases
is 360°/n, and calling the magnitude of phase voltage E,, the general
calculation of the line volt-

L S e Eos age can be understood from
& _p 180 the vector relations shown
<& z """ in Fig. 31. Hence the line
<) "‘-:""‘En'i";%. voltage is
EEtEEl Em . 180°
Fia. 31. Combination of line-to-neutral voltages EL = 2E, sin % (1)

to give line-to-line voltages in an n-phase star.

From the circuit of Fig. 29 it is evident that line current and phase
current are identical. Hence

IL =f,
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From the circuit and vector diagrams shown for part of an n-phase mesh
system in Fig. 32, the use of previously outlined principles will show that

EL=EP

-4

2)

lﬂd IL=2IPEID.

Fig. 32. Cirouit diagram of adjacent phased and corresponding vector diagrams for an
n-phase mesh.

Example 1. The line currents issuing from a balanced four-phase, mesh-con-
nected generator (like that shown in Fig. 14, page 267) are known to be 70.7 amperes
in magnitude. Let it be required to find the magnitude of the phase currents employ-
ing the general relationship stated in equation (2).

I 70.7 07 _ 707 _ o
r T 180° 2sin45° 1.414 o
A

Problem 8. Find the magnitude of the line currents issuing from a balanced six-
phase, mesh-connected generator if the phase currents are known to be 100 amperes
in magnitude. Illustrate solution by means of a vector diagram.

Ana.: Ip = I, = 100 amperes.

Problem 7. Find the voltage between adjocent lines of a balanced twelve-phase,
star-connected system if the phase voltages are 50 volta in magnitude. Illustrate
solution by means of a vector diagram.

Ans.: 2588 volts,

Problem 8. Find the voltage between alternale lines of a balanced smx-phase,
star-connected system if the phase voltages are 132.8 volts in magnitude.

Ans.: 230 volta.

Balanced Wye Loads. When three identical impedances are con-
nected to a common point, n, Fig. 33, they constitute a balanced wye
load. If balanced three-phase voltages are impressed on such a load,
it would seem that all impedances should have equal voltage drops
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across them and that the ratio and phase of line and phase voltages
should be the same as those discussed for the wye-connected generators.
Application of Kirchhoff’s laws as discussed in the next chapter shows
that this is-true. Hence the voltage drop V, across each impedance

in terms of the line voltage is .

Ve
Vs Vs
The current, power, etc., may then be found in accordance with single-
phase circuit analysis. As a general rule, all balanced three-phase cir-
cuits are calculated on a per phass
basis in exactly the same manner
88 the corresponding calculations
are made for any single-phase cir-
cuit. If this procedure is followed
2 it is important that per phase
values of V and I are not con-
fused with line voltages and line
currents even though line currents
in & wye connection are the same
a8 the phase currents, and the line
voltages in & delta connection are
Fra. 33. Balanced wye load. the same as the phase voltages.
As a general rule, all balanced
three-phase circuits are caleulated per phase just as the calculations
were made for single-phase circuits.

Example 2. Given the line voltages V' in Fig. 33 as 220 volta balanced three-
phase, and R and X of each phase 8 ohms resistance and 8 ochms inductive reactance,
Find the line current, power per phase, and total power.

Vi 220
Vo= —= = —= = 127 volta
P -\/S ‘\/& YO
127 127
In=1, -Tﬁﬂ'ﬁ = 12.7 amperes
Power per phase = I,’R, = 127! X 6 = 068 watts
Total power = 3 X 968 = 2004 watta

The example given could have been worked by means of complex
numbers. Sinee there was no need for the vector expressions of voltages
and currents, it was simpler to use magnitudes only. When it is neces-
sary to combine the line current due to some particular load with that
from another load, the vector expressions or their equivalents are required.
To illustrate the vector method of bandling the above example, assume
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the phase sequence Via, Vb, Voo This means that V., lags Vg by
120°. It would be possible to use any line voltage or any phase voltage
as a reference. The vector diagram of a similar set of voltages to those
required bere is shown in Fig. 22 where F is used instead of V. The
phase voltage of phase na will be taken as the reference (sometimes
called the standard phase). Thus:

Vaa = 127 4 jO volts

VY = 127 / —120° = 127 (cos 120° — jsin 120°) = —63.5 — j110 volts

Vae = 127 /120° = —63.5 4 5110 volts
I the vector expressions for line voltages are desired, they may be obtained by the
following procedure.

Voo = Vim + Vaa = 63.5 + 5110 + 127 + 70 = 190.5 + 7110 volts, etc.

Vo 127470
-— = 7.62 — j10.16 = 12.7 /—53.13°
Tie e 7 / amperes

Vas —635—jl10 127 /—-120°
—_— ———— oy ————————— = 2.7 /—173.13°
Zo 6 + 8 10 /53.13° [=173.13° amperes

V.. 127 /120°, .
L= zZ.. = 10 /53.13° 12.7 /66.87° amperes

Poa = vl + 0'i’ = 127 X 7.62 = 088 watts

Ilb-

or
Puy = 127 X 12.7 cos (120° — 178.13°) = 068 watta

The vector diagram of the voltages and currents for this load as drawn from the
vector solution is shown in Fig. 34.

vu vl'l c

Fra. 34. Vector diagramn of load in example 2.

Balanced Delta Loads. Three identical impedances connected as
shown in Fig. 35 constitute a balanced delta load. The voltage drop
across each impedance is known when the line voltage is given. Hence
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the phase currents may be determined directly as Vp/Zs. The magni-
tudes of the line currents are simply phase currents multiplied by V3.
Example 3. Reconnect the impedances given in example 2 in delta, and calcu-
late phase current, line current, phase power, and total power. (B = 6 ohms and
X = 8 ohms per phase.) t
Vi =V, = 220 volts
2
Ip = ‘\/—B;TB_’ = 22 amperes
I, = V3 X 22 = 38.1 amperes
Power per phase = 227 X 6 = 2004 watls. ' .
Total power = 2804 X 3 = 8712 watls. )
Alternative vector solution using sequence Viq, Vet Ve Use Viq a5 the reference

voltage.

Vae = 220 / 0° volts

Vo = 220 / —120° volts-

Vac = QE’DM?OIM .

20 /0°_ . |

Iic = 10 753.13° /53.15° =22 /—53.13° = 13.2 — j17.6 amperes
220 /—120°

I =10 /53.13°
0 [x 66.87° = 8.65 4 j20.2

Lo = 10 /53.13° =23 /00877 = B.85 4 JBL amperss

Pia = 220 X 22 cos 53.13° = 2004 watts

- 22 /—173.13° = —21.85 — j2.63 amperes

¢ x
al
Fia. 35. Balanced delta load. F1G. 36. Vector diagram for load of example 3.

Total power = 3 X 2004 = 8712°watts. _

Le = Ls + I = —30.5 — j22.8 = 38.1 / —143.13° amperes

Ly = be + Ina = +35.05 — j15 = 38.1 /—23.13° amperes

Ls = Ls + Lc = —4.55 4 737.8 = 38.1 /96.87° amperes
Ee;ctordimmotthhddtshndn-&nwnimmtbemﬁorwluﬁmhuhmin
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Three-Origin Vector Diagram of a Balanced Three-Phase System.
Figure 37 shows a polar vector diagram of a three-phase balanced
unity-power-factor wye load. Figure 38 shows a vector diagram of a

Ve

Tna=Tes'

- ]
-
o

Fio. 37. Polar vector diagram of unity-power-factor, halanced wye-connected load.

balanced unity-power-factor delta load. A comparison of these two
diagrams will show that the phase relation between line currents and line
voltages is identical for both loads. Therefore a single vector diagram
can be used to represent the relations between line currents and line

F1c. 38. Polar vector disgram of unity-power-factor, balanced delta-connected load.

voltages for a balanced three-phase load whether the load is wye- or
delta-connected. In other words, it is not necessary to know which
connection is used in order to represent properly the phase relations of
line voltages and currents. This fact makes it convenient in many cases
to use a three-origin vector diagram which is explained as follows.

If it is remembered that a vector can be translated without changing

its value, the line voltages for the above loads may be arranged to form
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a closed triangle, as shown in Fig. 30. Also the line currents may be
drawn from the corners of the triangle so formed as indicated. The
three corners comprise the three origins; hence the name of the diagram.
It will be observed that, at unity

& I’ power factor, line current 7,,. bi: ~cts

: the angle at origin @ made by the line

voltages at that point. A similar sit-

i uation obtains for the other line cur-

rents. The bisectors of these angles

may therefore be called the unity-

power-factor positions of the line

currents for a balanced three-phase

A load regardless of delta or wye con-
/° b\ nection. If a load having a power-
e Iy lactor angle of 8is to be represented,

o ol W i it is necessary only to let the three
1. 30. ree-origin vector diagram . . . .
of line voltages (ch-ac-ba) and line line currents swing from their unity-

currents (Isy, e, Taa’). power-factor positions by the angle 6.

That this is true is evident from a

study of the changes in Figs. 37 and 38 when a- load having a power-
factor angle 8 is represented. .

It should be recognized that the three-origin diagram is essentially
the equivalent wye diagram where the line voltages are drawn between
extremities of the wye voltages to neutral, and these latter voltages, if
shown, would be drawn from the corners of the triangle to the geo-
metrical neutral. Inspection of the diagrams, Fig. 40b and ¢, shows
the power-factor angle is actually the angle between the line current
and the equivalent wye voltage or voltage to neutral. To show how the

Unity-power-{aclor positlon of
line current 14’

Fio. 40. Thm«iﬁnvmtmmrubothmumdunomm
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three-origin diagram might be used to represent a three-phase Ioad
study the following example.

Example 4. A balanced three-phase, 0.6 p.f. lagging load takes 10 kva at 200
volts. Show the vector diagram of the line voltages and currents.

The load is tepresented by the circle, and the lines are labeled a, b, and ¢, as shown
in Fig. 40. Assume Vs as a reference, and complete the line voltage triangle as
shown in (b} or (c) according to the sequence desired, The bisectors of the angles
are shown dotted and are the unity-power-factor positions of the respective currents
leaving points a, b, and . The actual power-factor angle for the load is coa™1 0.6 =
53.1° and the currents are therefore drawn lagging their unity-power-factor posi-
tions by this angle, as shown. Had the load operated at a leading power factor, the
currents would have swung ahead of their unity-power-factor positions by 53.1°,

The above type of diagram lends itsell to a simple visualization of line voltages
and currents for a balanced three-phase load and contributes to an easy understand- '
ing of operating conditions in individual transformers for certain types of connec-
tions when supplying balanced loads. They may also be used to eflect the proper
combination of line currents from several balanced three-phase loads independent
of whether the loads themselves are delta- or wye<onnected. It should be recog-
nized from this discussion that, as far as phase relations between line currents and
line voltages are concerned, one is at liberty to assume a delta- or wye-connected
'load even though the actual type of connection is known or unknown. Also, if
convenient, the directions of the currents shown in Fig. 40 may be reversed and
8o labeled.

Power Calculations in Balanced Systems. The determination of
power in balanced polyphase systems is based upon caleulations per
phase. If the voltage per phase is V}, the phase current [, and the
angle between them 6,, the power per phase is

Py = V,l,cos0, ‘ 3)
The power for all phases of an n-phase system is
Py=nP, = nV,I,cos6, 4)

The universality of three-phase warrants the development of equation
(4) to give power in terms of line current /, and the line voltage V.
Consider the wye connection. Then

Ve
Py =3V,l,cos6, = 375!;,0039?

= V3V LI, cost, ' o (®
For the delta connection

I
Py =3V,I,cos6, = 3V, v—% cos 6,

= V3V .1, cosb, (6)
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The equations for power in terms of line voltages and line currents for
balanced three-phase loads whether delta- or wye-connected are identical
and equal to \/EV;,I;, cos ;. In this expression, \@VLIL cos @, for
balanced three-phase power, it must be remembered that 6, is the angle
between phase voltage and phase current and not between line voltage and
line current.

Problem 9. Three-phase line voltages of 2300 volts magnitude are impressed
on a balanced wye-connected load which consists of 100 ohms resistance per phase
in series with 173.2 ohms inductive reactance per phase. Find the line current
and the total power taken by the three-phase load. Calculate P, as 3I,'R,, as

3V 1, cos 0,, and as V'3V 11 cos by
Ans.: Iy = I, 3 6.64 amperes, Py = 13.22 kw.

Problem 10. Repeat Problem 9, assuming gt the three impedances are con-
nected in delta (rather than in wye) across the same line voltages.

Ans.; Iy = 19.92 amperes, P; = 39.68 kw.

Volt-Amperes. The volt-amperes of a &ﬂguzd three-phase system
are defined as the sum of the volt-amperes of the separate phases or
three times the number of volt-amperes per phase.' Hence

va; = 3vap, = 3V,Jp !

In terms of line voltage and line current, volt-amperes are

I ;
For delta: | 3Vy 7; = ‘\/EVLJE. (7)
Vi %
For wye: L1, = VIV (8)
. V3

For an n-phase system under balanced conditions the total volt
amperes are n times the volt-amperes per phase.

Reactive Volt-Amperes. The reactive volt-amperes for a balanced
three-phase system are defined as the sum of the reactive volt-amperes
for each phase, or three times the reactive volt-amperes per phase. In
terms of line voltage and line current the reactive volt-amperes or
reactive power is

: Vi ’
For wye: Py =3V, I,siné, =3-\7§IL gin 6,
= V3V, Isind, 9
; Ir .
For delta: Px = 3V,I,sind, = 3V, \_/_E gin 6,

= VﬁVLILdnE’ (10)
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Summarizing for either balanced delta or wye, the totals for the systems
are

P = V3V, I cosb, (11)
va = V3V.I,L (12)
Px = V3V, I, siné, (13)

The sine of the angle between phase voltage and phase current (sin 8,)
is called the reactive factor of a balanced system.

Problem 11. Three-phase line voltagea of 440 volts are impressed on a balanced
delta-connected load which consists of 8 ohms resistance in series with 6 ohms indue-
tive reactance per phase. '

(a) Find the volt-amperes per phase, the reactive volt-amperes per phase, and
the reactive factor of each phase.

Ans.: va, = 10,360, rva, = 11,616, r.f. = 0.6.

(&) Find the total volt-amperes of the system, the total reactive volt-amperes
of the system, and the reactive factor of the system.

Ans.: va, = 58,080, rva; = 34,848, rf. = 0.6.

Power Factor. The power factor of a balanced three-phase system,
when the wave forms of voltage and current are sinusoidal, is defined
as the cosine of the angle between phase vallage and phase current inde-
pendent of whether the connection is delta or wye. It should be noted

that the volt-amperes of equation (12) are equal to V'P? + Px2. Thus

va = \J(\/EVLIL cos 9,)2 + ('\/EVLIL 1-::in 5,,)2

= V3V I V<cos 8, + sin26, = V3V.I, (14)
From equation (11),
P
f = cosf, = — (15)
P P VBV
From equation (13), *
r.f. =sing, = _P—X— (16)
V3V,
From equations (15) and (14),
pf. = N - (17)
T VP Py
From equations (16) and (14),
S . ;. . (18)

VP + P2
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Example 5. A 5-horsepower, 220-volt, three-phase motor has an efficiency of
85 per cent and operates at 86 per cent power factor. Find the line current.

X 746

; 5
Power input = V/EVLI;_ pf. = = 4390 watts

43%0

) PRSP
/3 220 x 0.86

= 13.4 amperes

Balanced Three-Phase Loads in Parallél. The combination of a
number of balanced loads which are in parallel may be effected through
changing all loads to equivalent delta loads and then combining the
impedances of correspondiug phases according to' the law governing
parallel circuits. Also all loads may be changed to equivalent wye loads
and the impedances of corresponding phases paralleled. In addition
to these methods, the power of the several loads may be added arith-
metically and the reactive volt-amperes may be added algebraically.

The total volt-amperes will then be obtained as VP + P 3.

Exzample 8. A 3-phase motor takes 10 kva at 0.6 power factor lagging from
a source of 220 volta, It is in parallel with a balanced delta load having 16 ohms
resistance and 12 ohms ecapacitive reactanee in series in each phase. Find the total

volt-amperes, power, line current, and power factor of the combination.
Solution a. Assume motor to be Y-connected.

10,000
Motor line current = phase current = m = 26.25 amperea

220
Equivalent impedance per phase of motor = ———
V32625

= 4 84 ohms
R = 484cosf = 4.84 X 0.6 = 2.904 ohms
X = 484sin8 = 4.84 X 0.8 = 3.872 ohms
16 — j12
3

Equivalent wye of delta load Z, = = 5.33 — j4 ohms

(5.33 — j4) (2.904 + j3.872)
By = 3.91 /17.17° oh
"= 533 —j4 1 2904 + 87z ~ F9V/LT1T obms

220
\v/33.91
va = \"3220 X 32.5 = 12,370 volt-amperes
p.f.o = cos 17.17° = 0.955
P = 12,370 X 0.955 = 11,810 watts

Solution b. The motor may be assumed delta-connected and the delta-phase im-
pedances combined after which delta phase currents and line currents can be found.
The remaining procedure is aimilar to that in sclution a.

Io = = 32.5 amperes
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Solution ¢. Line currents for each load are determined and shown on a diagram
of the type shown in Fig. 39 where the equivalent voltage to neutral V., is drawn

Fio. 41.

along the horizontal as shown in Fig. 41. Currents are then combined as indicated
on Fig. 41.
10,000

V3220
e
V167 4127

T oo’ moter = 2625{ —53.1° = 15.75 — ;21
To'daiiatona = 19.05/36.9° = 15.24 + j11.43

Taat = Taa'potor + laa’geitatoaa = 30.99 —‘j9.57 = 32.5/ —17.17° amperes
va = V/3220 X 32.5 = 12,370 volt-amperes
pf.o = cos 17.17° = 0.9556
P = 12,370 X 0.995 = 11,810 watta.
Solution d. For the delta load, phase current is 220/%/16% 4 12? = 11 amperes.
P = 11! X 16 X 3 = 5810 watts for all phases
Px = 11* X 12 X 3 = 4350 vars for all phases (capacitive)
For the motor
P =10%0.6 = 6 kw
Px =10 X 08 = 8 kilovars (inductive)
Summation of power = 581 + 6 = 11.81 kw
Summation of kilovars = 8 — 4,35 = 3.85 kilovars
kvap = V' 11.81% + 3.65% = 12.37

12,370
Ip = ——— = 32.5 amperes
V322

Motor line current = = 26.25 amperes

Delta-load line current = V3 = 19.05 amperes

11,81
pd.p = 1237 = (0,955
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Of the four solutions, that which is most convenient for the quantities given
should be employed.

Single-Phase and Balanced Three-Phase Power. A comparison of
the variation with respect to time of instantaneous single-phase and
‘hree-phase power brings out certain fundamental differences. As

hown in Chapter I1, single-phase power follows a double-frequency sine

w with respect to time plus a constant. The instantaneous power for
cach of three phases, when currents and voltages are sine waves, of a
balanced three-phase system is given by the following general equations.

Pa = Viulpm sin ol sin (wf — 6)
Py = Vulm sin (ot — 120°) sin (wt — 120° — 8)
Pe = Vinlm sin (wf — 240°) sin (wt — 240° — 6)

The total three-phase power is
p3 = Po + Py + P, = VI, [sin wisin (ol — 6)
<+ sin (wf — 120°) sin (wt — 120° — 6)
-+ sin (wt — 240°) sin (wl — 240° — 6)]

ps = 1.5V, 1, cos B (19)

For single-phase, say phase a,
P1 = Vaulmsin ol sin (wf — 0)

= Vil cosf — M cos (2wt — 8) (20)
2 2

Equation (19) shows the instantaneous value of three-phase power to
be independent of time. In other words, balanced three-phase power
under steady-state conditions is constant from instant to instant. In
- contrast, equation (20) for single-phase power shows it to follow a
double-frequency variation with respect to time. This comparison is
graphically illustrated in Fig. 42.

/-_'I"‘hru piuu power

s

/Sil'lﬂl phasa power

[
T

foao\ _-af - N
NS \\lnrln value of
T » singls phase power
{1 cycie)

Instantaneous Power
-

Fi16. 42, Comparison of variations of single- and balanced three-phase power.
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Power Measurement in Balanced Systems. A wattmeter gives a
reading proportional to the product of the current through its current
coil, the voltage across its potential coil, and the cosine of the angle
between this voltage and current. Since the total power in a three-phase
cireuit is the sum of the powers of the separate phases, the total power
could be measured by placing a wattmeter in each phase, as shown in
Fig. 43. It is not generally feasible to break into the phases of a delta-
connected load. Therefore the method shown in part (a) of Fig. 43

na,on,o &

(a) (b)

Fie. 43. A wattmeter in each phase may be used to measure three-phase power.

is not applicable. For the wye load shown in part (b), it is necessary
to connect to the neutral point. This point is not always accessible.
Hence another method making use of only two wattmeters is generally
employed in making three-phase power measurements. This con-
nection is shown in Fig. 44. To show that two such wattmeters may
be used to measure power, the readings of each will be established and
their sum compared with equation (11), which has been shown to be

& y

Fro. 44. Connection of two wattmetars to measurs three-phase power.

-
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correct for balanced three-phase power. It is important to take the
direction of the voltage through the circuit the same as that taken for
current when establishing wattmeter readings. Thus if the current coil
of W,, Fig. 44, is considered carrying current /.., the potential across
the voltage coil should be taken from a through the circuit, which in
this particular case is V,,. Figure 45 shows the vector diagram of the
voltages and currents for a balanced system like that of Fig. 44. From
this figure the power represented by the currents and voltages of each
wattmeter is

Wa = Vaclan cos (o — 30°) (21)
Wy = Vielsn cos (8 + 30°) (22)

In equations (21) and (22) the subscripts serve only to assist in seeing
which voltages and currents were used. Since the load is balanced,
Vee = Ve, Ian = Isn and only magnitudes are involved. Dropping
the subscripts gives
W, = VIcos (8§ — 30°) (23)
W, = VIcos (8 +30°) (24)

Wa+ Wy = VI cos (8 — 30°) + VI cos (6 + 30°)
= VI [cos @ cos 30° + sin @ sin 30° + cos # cos 30° — sin 6§ sin 30°]
= V3VI coso (25)

Hence W. + W, correctly measures the power in a balanced three-
phase system of any power factor. As will be shown later, the algebraic
sum of the readings of two wattmeters will give the correct value for
power under any conditions of unbalance, wave form, or power factor.

For each value of @ (i.e., for each power factor) there is a definite
ratio of Wo/W;. If the ratio of the smaller to the larger reading is
always taken and plotted against the corresponding-cos@ (i.e., power
factor), a curve called the watt ratio curve results. This curve is shown
in Fig. 46. Reference to the vector diagram of Fig. 45 and the curve
of Fig. 46 shows that at 0.5 power factor one wattmeter reads zero.
For the case under discussion 0.5 lagging power factor makes W), read
zero, while 0.5 leading power factor makes W, read zero. When the
power factor is zero, each wattmeter has the same deflection but the
readings are of opposite signs. The foregoing facts are easily deducible
from the vector diagram shown in Fig. 45 and also follow from equations
(23) and (24). It is essential in the two-wattmeter method that the
proper sign be given the wattmeter readings and that the sum be taken
algebraically.

There are several ways to determine whether a wattmeter reading
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Y I

I
. \!xp v o= Vot Voo
\. Ia \/{-\f 1,, cos (6-00)
w‘-v,,l..\-(ﬁse')
]
Vo=Vt Voo
®)

Fio. 45. Alternative ways of drawing the vector diagrams for a power-{factor angle @ of
the system shown in Fio. 44.
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Fra. 46. Watt zatio curve for two-wattmeter method of measuring power (applicable
only to balanced loads).

should be taken positive or negative. One of the best methods follows.
Refer to Fig. 44. Open line a. Then all power must be transferred to
the load over lines b and c¢. If wattmeter b is connected so that it reads
“up scale,” it will then be known to have this' deflection when the
power it reads is going to the load. Next reconnect line @ and open
line b. Then connect W, so that it reads up scale. Now close line 8.
If at any time after this either wattmeter needle goes backward against
the down-scale stop, power through this wattmeter channel is being
transferred to the generator and this power must be of opposite sign
to that registered by the other, Either the potential or current coil
will have to be reversed to secure an up-scale reading. The foregoing
test is applicable under any conditions of loading, although it may not
always be feasible because of the necessity for opening the lines.

A second test applicable only when the load is practically balanced
is to disconnect from the common potential point ¢ of Fig. 44 the poten-
tial coil of the wattmeter which has the smaller reading and connect
it to the line containing the current coil of the other wattmeter. If
the needle goes against the down-scale stop, the wattmeter reading
was negative. The foregoing is best explained through a consideration
of the circuit diagram of Fig. 44 and the corresponding vector diagram
of Fig. 45. As previously shown, W, reads the power represented by

Vac and I, while W, reads that due to V3. and [5,. Since the angle
(6 + 30°) between V. and Iy, is larger than the angle (6 — 30°) between
Vae and I,, for the load represented by Fig. 45, wattmeter W, will
have the smaller deflection. If the potential coil of W} is now removed
from line ¢ in Fig. 44 and connected to line a, the meter will deflect
because of the potential V,, and current I,,. The angle between
Ve and Iy, is seen to be (8§ — 30°) or the same as that between the volt-
age and current for wattmeter W,. W, and W, will then read alike.
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Furthermore, since W, was connected to read up scale when the angle
between its voltage and current was less than 90°, it will continue to
read up scale when it receives the potential Via If, however, the
power factor was below 0.5, the angle (8 + 30°) on Fig. 45 would be
more than 90°.  If the wattmeter W, were made to read up scale under
such conditions, it would reverse its deflection when given the potential
Va as outlined above since it would then be subjected to a voltage and
current of (8 — 30°), which is less than 90° out of phase. When the
potential coil connection of Wy is moved from line ¢ to a in Fig. 44,
this wattmeter receives a potential of Vs, while that for W, (taken
similarly from the line containing the current coil) is Va.. These
potentials are in the same order or direction around the diagram.
Hence the potential coils are said to be connected in the same cyche
order about the circuit, and under these conditions both wattmeters
would be expected to show the same deflection. This was found to be
true in the above analysis. -

Example 7. In a circuit like that shown in Fig 44, W, reads 800 and Wy reads
400 watts. When the potential coil of W is disconnected at ¢ and connected at
a, the needle goes against the down-scale stop.

Solution. The test indicates that W'y is reading —400 watts. Hence

P=W,+ Wy =800 + (—400) = 400 watts

“!b — ‘“m
Watt ratio = —— =
9% W, T s00

= —0.5

From a watt ratio curve like that shown on page 352, the power factor may be
determined directly as 0.19.
The power factor, cosd, could also have been calculated from a simultaneous

solution of equations (23) and (24) since
/3 (Wo — Ws)
cos i = cos (t.lm_' }i(n——“‘—b‘)
W, + Wy

This relation ia made apparent in the next article.
Reactive Volt-Amperes. The reactive volt-amperes in a balanced
three-phuse circuit may be expressed by
Py =V3(Ws—Wp) (26)

This may be shown as follows:

V3 (Wo — W) = V3[VI cos (8 — 30°) — VI cos (6 + 30°)]
= V3VI [cos 8 cos 30° + sin 8 sin 30° — cos @ cos 30°
+ sin 6 sin 30°]
= V3VIsin 8
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This is the same as equation (13) for reactive power given on page 345,
Since the ratio of the reactive volt-amperes, v/3V .1, sin 6, to the power,
V’.‘;VIJ L c08 d, is the tan §, it follows from equations (25) and (26) that

V3 (W, — W)

fanf =
F Wa+Wb

@0

where @ is the power-factor angle,

Example 8, The power factor in the preceding example could have been easily
calculated by means of the relation stated in equation (26). Thus

Px =3 (W, — W;) = V/3[800 — (—400)] = 2078 vars
(P = Wo+ Wy = 800 — 400 = 400 watts)
va = V' P? 4 Px? = v/4007 + 2078¢ = 2114 volt-amperes

P 400
pd. -\f_a Fm = 0.19

Three-Phase, Four-Wire Systems. If a three-phase, four-wire
system is balanced, the fourth wire or neutral will CAITY no current.
The system is the same as when the neutral is omitted, in which case it
is the same as a balanced three-phase, three-wire system. It can there-
fore be metered as previously shown for the three-wire system. An-
other method is given later. Under any other conditions three meters
or their equivalent are necessary. Unbalanced systems are considered
in the next chapter.

Delta Systems. The measurement of power in a three-phase system
was discussed with reference to a wye-circuit diagram and the corre-
sponding vector diagram. When it is remembered that a delta system
can always be replaced by an equivalent wye system, the preceding
discussion will be seen to apply to the delta system. Furthermore only
line voltages and line currents were involved in the discussion of the
two-wattmeter method of measuring power, and there is no difference
between these quantities for the delta and wye systems.

Oscillograms 3 and 4, which were obtained from a delta system as
shown and labeled in Fig. 47, may be profitably studied.

Problem 12. Refer to Oscillogram 3. (a) If the line-to-line voltages have
instantaneous maximum values of 155.5 volts and the delta-line currents have
instantaneous maximum values of 14.14 amperes, find the average power readings
of the wattmeters Wasars and Wop .

(b) Draw a vector diagram indicating all eurrents and voltages shown on Oscil-
logram 3. Use Vg as reference, and include th: delta-phase currents L, Ise, and
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Oscrirogzam 3. Oscillographic represer” ‘ion of all voltages and currents involved in the
two-wattmeter method of measuring balanced three-phase power at unity power fac-
tor. In (a) the sequence of line-to-line voltages is shown. 7. is the voltage not used.
In (b) was—sre is a graph of the instantaneous driving torque of the wattmeter element
which is operated by ra and fasa. In () .. is & graph of the instantaneous driving
torque of ths wattmeter element which is operated by oy and i+,
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OsciLrocrax 4. Oscillogre phIc representation of all voltages and currents involved in
the two-wattmeter method of measuring balanced three- phase power st 0.5 p.f. lag.
tte condition under which cne wattmeter reads zero. In the upper oscillogram, the
sequence of line-to-line voIL.n.gea is shown. The voltage v, is the voltage not used in
the two-wattmeter method in this case. (In the center osciliogram, Yaba’s is & graph
of the instantaneous driving torque of the wattmeter element which is operated by
% and fasa. In the lower oscillogram, wa—re i8 8 graph of the instantaneous driving
torque of the wattmeter element which is operated by re and iv,.
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Weno's
Fic. 47. Circuit arrangement for which Oscillograms 3 and 4 were taken.

I.a which are not shown on the oscillogram but which combine to formn the delta-
line currents Ly/q and I,-.. :

Ans.: (a) Wopa'a = Waero = 052.8 watta,

(b) ab-bec-ca sequence of line-to-line voltages; L in time phase with Vg;
Lo+ lags Yap by 30°; L.+ leads V5 by 30°,

General n-Wire Balanced System. The total power taken by a
balanced n-phase system is n times the power per phase. A single
wattmeter connected to measure the product of the current, potential,
and the cosine of the angle between the current and potential may be
used to obtain the power of a balanced n-phase system. The wattmeter
reading obtained is multiplied by n. If it is not possible to break into
a phase of a mesh-connected load or to obtain the neutral of a star-
connected one, power may still be measured with a single wattmeter.
For the n-phase system, n equal resistances may be connected in star
and then to the lines. A neutral is thus established, and power is
measured as though the neutral wire of a star system were available.
The method is shown in Fig. 48. If the number of phases is even, as, for
example, in Fig. 48, only a single resistance is necessary provided that
the potential coil of the wattmeter can be connected at the midpoint of
this resistance. The resistance must be connected between two lines
having the largest potential difference. The wattmeter reading must

To load

Fro. 48, A method for measuring power to an n-pbase balanced load (load not shown).
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be multiplied by n, the number of phases, to obtain the total power. If
the number of phases is even, the potential coil may be connected from
the line containing the current coil to the line which yields the highest
potential difference. The total power is then the wattmeter indication
multiplied by n/2. These connections may be used only for balanced
systems.

Copper Required to Transmit Power under Fixed Conditions. All
systems will be compared on the basis of a fixed amount of power trans-
mitted a fixed distance with the same amount of loss and at the same
maximum voltage between conductors. In all cases the total weight of
copper will be directly proportional to the number of wires, since the
distance is fixed, and inversely proportional to the resistance of each
wire. First, three-phase will be compared with single-phase. Since
the same voltage and power factor are to be assumed, the same respec-
tive symbols for these quantities for single- and three-phase will suffice.

Py, = VI cost
Py = V3VI,cos6

Since
Pl = P;;
VI, cos8 = V3VI, cosh
1, = V3,
A]BO I12RI)<2=1'3333}(3 !
R, 313 315° 1
or = o
Ra 21, 33" X 2 2
Copper three-phase  No. of wires three-phase x R, 3 X 1 §

Copper single-phase No. of wires single-phase © R; 2 21

The above shows that the same amount of power may be transmitted a
fixed distance with a fixed line loss with only three-fourths of the amount
of copper that would be required for single-phase, or one-third more
copper is required for single-phase than would be necessary for three-
phase.

Comparison of Three-Phase with Four-Phase.

P = V3VIscos8

|4
P4 “4'5[4!.‘083
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(Note: V is highest voltage between any pair of wires.) Therefore

vV
‘\/ﬁVI; cosf = 4-2-I‘ cos 8

1
'\/:;[3=—[4
2
. .2
Iy \/§
3!32R3 = 4142R4
B G0 8.4
B, 412 ot

n
Copper three-phase 3
Copper four-phase 4

This is the same relation as shown for single-phase. If other systems
are compared with three-phase in this manner, it will be found that
three-phase is more economical in the use of copper than any other
pumber of phases.

When a fixed amount of power is transmitted a fixed distance with a
fixed loss for the same voltage to neutral, there is no difference between
any of the systems. Consider three-phase and single-phase. The
voltage to neutral single-phase is half the voltage between lines. This
point is called the neutral, since*the potential from either line to it is
"he same.

Py =P,
3V, lgcosf = 21,1, cos8
o2
I, 3
313°R3 = 21,*R,
Ry, 3I)*. 3

12
R;, 22 279 3

Copper three-phase
Copper single-phase

3 2
=3 X 3= 1 (for same voltage to neutral)
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Comparison of Three-Phase with n-Phase for the Same Voliage to
Neutral.

Py = P,
3V,I3c080 = nV,I,cost

I _»
I” 3
313°R; = nI R,
B, 31 382 =
Ry nl?2 n3 3
Copper three-phase 3
Copper n-phase n

= 1 (for same voltage to neutral)

There is no difference in the amount of copper required between any of
the systems if the voltage to neutral is fixed and if the same amount of
power is transmitted a fixed distance at a fixed line loss.

Two-phase transmission was not considered in the above comparisons.
When it is recognized that two-phase is the same as two independent
single-phase systems, it is evident that two-phase, four-wire trans-
mission requires the same amount of copper as single-phase. There
are twice as many wires, but each is only one-half of the cross section of
those necessary for single-phase.

1

I Iy
LT LT
y - P
R v b
vy YA I, ;
Ry | y° R iR
| % |;L_|P W I
I; Ra 1“1-\ " I, Ry | é Fra
e e e R ==

(@) Two-phase System ®) Threo-phase Systems
Fic. 49. See Protlem 13.

Problem 13. Refer to Fig. 49. Find the ratio of the copper required for two-
phase, three-wire transmission to that required for three-phase, three-wire trans-
mission under the following conditions, all imposed simultaneously.

(a) A fixed amount of power transmitted.

(b) The same distance.

(¢) With the same total line loss.

(d) With the same highest line voltage between any pair of lines in the two systems.
{¢) With the same current density in the three two-phase conductors,



Ch. VN BALANCED POLYPHASE CIRCUITS 361

Hint:
From condition (a): Py = 2Vpalacosf = Py = 3V T cond

V3

From condition (d): [, = —\/? I3

From conditien (¢): 2/2%R; + (V213)?Ry = 31,%R;
From condition (e): Area of Ry wire = V'“Z- X area of Ra wire

R
From condition (b): R. = _!E Ans.: 194

Harmonics in the Wye System. An emf generated in a conductor
will be sinusoidal only when the flux cutting the conductor varies
according to a sine law. In a-c generators it is rather difficult, if not
entirely impossible, to obtain an exact sine wave of distribution of the
field flux. The slots and teeth change the reluctance of the path for
the flux and cause ripples in the flux wave. Even if the distribution of
the field flux were sinusoidal at no load, the distribution would be altered
as the load came on, owing to the effect of the armature reaction of the
current in the armature. The result is to induce in each phase an emf
wave that is somewhat distorted from a true sine wave. In modern
machines this distortion is relatively small. Through certain arrange-
ments of the inductors on the armature and
through certain ways of connecting them,
some of the harmonics in the wave are re-
duced or are made to cancel entirely. When
iron-core transformers are connected in wye,
or any other way for that matter, the exciting
current cannot be sinusoidal even though the
impressed voltage is a perfect sine wave. This
is due to the varying reluctance of the mag-
netic circuit with the consequent requirement
of more ampere-turns to produce a given
change in flux when the core operates at
the higher flux densities. It therefore be- Fi6. 30.  Disgrammatic

. . sketch of a wyecon-
comes of some importance to consider the nected denerator.
effects of certain harmonics of currents and
voltages in the phases of a three-phase system in affecting the line
voltage of the system. _

Assume that the emf induced in phase a of the wye-connected genera-
tor diagrammatically shown in Fig. 50 is

éna = Epy sinwl + Epg sin (3wt + a3) + Eps sin (5w + as)
+ Enz sin (Twt + a7) (28)
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The sequence €nq, €as, €nc Will be used. Hence the fundamental of emf
in phase nb will lag that in na by 120°, while that in phase nc will lag
phase na by 240°. As usual, a shift of one degree for the fundamental
will be a shift of n degrees for the nth harmonic. Then
ent = Em sin (wf — 120°) + E.3sin (3ot + a3 — 360°)

+ Epns sin (5wt + a5 — 600°) + En7 sin (Twt + a7 — 840°)

= Epn sin (wt — 120°) + En3 sin (3wt + a3)

4 Ens sin (5wt + a5 — 240°) + E,7 sin (7wt + ay — 120°) (29)

ene = Em sin (wi — 240°) 4 Enasin (3wl + a3)
+ Eng sin (5wt + ag — 120°) + Epg sin (7wt + a7 — 240°)  (30)
The equations of the phase voltages show that all third harmonies are

in phase, Also the phase sequence for the fifth harmonic is reversed
from that of the fundamental. The sequence of the seventh is the same

TABLE 1
DISPLACEMENT BETWEEN VarioUs HagmoNics IN THE Paases oF Fia. 50

Displacement in elsctrical degroes

Harmonic 1 3 5 7 9 1] 13
0 0

Phase A 0 0 0 0

0
Phase B 120 | 0 |240(120] O L 240 120
0

Phass C 240 | 0 |[120 ] 240 120 | 240

as that for the fundamental. In general it will be found that the funda-

mental and all harmonics obtained by adding a multiple of 6 to the

fundamental will have the same se-

8nal Enb1 €l quence. These are first, seventh,

thirteenth, nineteenth, twenty-fifth,

and so on. In like manner, the fifths,

elevenths, seventeenths, twenty-

thirds, etc., have like sequences but

opposite to that of the fundamentals.

Also the third, ninth, and all multi-

ples of the third will be found to be

: in phase. These resultsare tabulated

¥ 51i: Fundamental and third 3§, Tahle 1. The relation between

armonic voliages. ]

the fundamentals and third har-

monies in each phase for a3 = 0 in equations (28), (29), and (30) is
shown in Fig. 51.

+8ob3r Bpey
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The line voltage of the wye may be found by summing up the poten-
tials encountered in passing through the circuit between the line ter-

minals in question. With reference to Fig. 50,

€ba = €sn + €na

Each harmonic must bé handled separately. The combination of
evn and e,q is shown by vector diagrams in Fig. 52. For the funda-

Eifth harmonics

Fic. 52. Line voltages in Fig. 50 are found for ench harmonic separately.

mental, ey, is 30° ahead of e,.. Since eno, = Eny sin o, €55, = \V3E,.,
sin (wt + 30°). For the third harmonic, ey, = 0. For the fifth, ey,
lags enq, by 30°% Hence ey, = VBEnssin (5ol + as — 80°). The
seventh-harmonic vector diagram is similar to that for the fundamental.
The complete equation for the line voltage e, is

eta = V3Enm sin (wt + 30°) + V/3E, . sin (50t + a5 — 30°)
+ V/3Ey; sin (Tt + a7 + 30°) (31)
Similarly,
€sc = V'3Ep sin (wl + 150°) + V3Ens sin (5wt + a5 — 150°)
+ VB3, sin (Tt + a7 + 150°) (32)
ey = V3E, sin (wl — 90°) + V3E,s sin (50t + a5 + ©°)
+ V3E, - sin (Tol + a7 — 90°) (33)

14
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The vector diagram of the third-harmonic voltages shows that the third
harmonics in the two phases between any pair of terminals are in oppo-
sition and cancel. The third harmonics cannot contribute anything
3 line voltage, although they do contribute toward the total voltage
tween one terminal and neutral. The rms magnitude of the voltage

, neutral in the example-just considered is

\/Em’ + Bps® + Ens® + Ept?
Ena o 9

The rms magnitude of the voltage between terminals is

Eni’ + Ens’ + En?’
Ebo':‘\/i\/ 1 25 7

T'he ratio of line and phase voltage of a wye connection can be the V3
only when there is no third harmonic or its multiples in the wave of

phase voltage.
Consider next the harmonics in the current waves for the wye.
Kirchhoff’s current law applied to the wye connection without & neutral

wire connected states that
‘n¢+‘.nb+£n¢=0

Under balanced conditions this equation can be fulfilled only when the
three currents are equal in magnitude and 120° apart in time phase, or
when the magnitudes of each current are equal to zero. Since the third
harmonicg and their multiples are the only ones that are not 120° apart,
each of them must be zero to fulfil the conditions imposed by Kirchhoff’s
cu.-rent law. The vector diagrams for the harmonies of current appear
exactly as those for phase voltages in Fig. 52. If, in each phase, ¢ is
replaced by 1, the diagrams will represent currents. If the third har-
monics of current do exist, there must be a neutral connection. This
neutral or fourth wire furnishes the return path for the third harmonics
of each phase. Since all third harmonies, in accordance with the
diagram in Fig. 52, would have to be in phase, their arithmetic sum
would flow in the neutral. A third-harmonie pressure or voltage may
exist in each phase, but, unless a path through the neutral is provided,
the three voltages do not have a closed circuit upon which they can
act and, therefore, no third-harmonic current can flow. In a balanced
wye-connected ecircuit without neutral connection, therefore, all har-
monics except the third and its multiples can exist. In a four-wire,
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three-phase circuit (neutral wire connected) all harmonics in the cur-
rent wave can exist.

Harmonics in the Delta System. If three coils having induced
voltages as given by e.s, €n.s, and e, in the previous article are con-
nected in delta, those voltages that do not add to zero around the loop
will cause a circulating current to flow. Under any circumstances, in
the delta of Fig. 53, the sum of the three
terminal voltages taken in the same di- g
rection around the delta must be zero.
Expressed algebraically,

Vea + Vap + vy = 0 (34)

Because the sum of the generated emf’s,
€na + €np + €4, 13 equal to zero for all
except triple-frequency voltages and its
multiples, no circulatory current of othcr  pg 53 coils of Fig. 50 recon-
than triple frequency and its multiples can nected in delta,

exist. Hence there will be no impedance

drops at no load, and the generated voltages for all except the third
harmonic and its multiples will appear across the terminals. For the
third harmonic and its multiples the situation is different. Since the
third-harmonic generated voltages of all phases of a three-phase system
were shown to be equal and in phase,

€nay - enp, + Cney = 3E,.3 8in (3@! + a3)

will cause a current to circulate in the delta. This current multiplied
by the impedance of the loop will be equal to the resultant third-
harmonic voltage 3E.; sin (3wl + a3). Since the terminal voltage is
equal to the generated voltage minus the internal drop, there will be no
third-harmonie voltage between terminals in the delta if the phase emf’s
and impedances are balanced. In this way equation (34) is fulfilled for
the third-harmonie voltages.

There is no third harmonic in the terminal voltage of the wye; neither
is the wye connection subject to a third-harmonic circulating current.
In the wye the third-harmonic voltages between terminals do not, appear,
a8 the result of their being in opposition between two terminals and
neutralizing. In the delta, the third-harmonic voltage does not appear
in the terminal voltage because it is short-circuited by the mesh connec-
tion and is consumed in the form of internal impedance drop. The
equations of the terminal voltages of the delta generator or transformer
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at no load are the same as the generated voltages of each phase with the
third-harmonic voltage and its multiples omitted. Thus

Ve = Emy 5i0 ol + Ens sin (50t + a5) 4 Eng 6in (Tut + a7) (35
Vap = Eomy 8in (wf — 120°) 4 Epng sin (5wt + a5 — 240°)

+ Eny8in (7wt + a7 — 120°) (36)
the = Emy gin (0t — 240°) 4 Epg sin (5wt + a5 — 120°)
+ E,.7 sin (Twl + a7 — 240°) (37)
Compare equations (35), (36), and (37) with equations (28), (29),
and (30).

All harmonics of current are possible in the phases of the delta, since
it is simply a closed series loop. Thus for phase ca, Fig. 53, we may have
iea = Iy 8in @t + T3 sin (3wt + az) + Inms sin (5wt + as)

+ Iz sin (Tot + a7) (38)
If the sequence is such that phase ab lags ca by 120°, the currents in the
other phases are found by displacing the fundamentals by the usual 120°
and the nth harmonic by n times this angle. Thus
':o-b = I,.,lsin (r.dt — 1200) + Ilm'i gin (3&15 + ag — 3600)
4 I.ssin (5wt + as — 600°) + Ing sin (Tut + a; — 840°)
= I.,,l sin (u!‘ = 120") + IMB sin (3(0‘ + ag)
+ I.ssin (5wt + a5 — 240°) + Iz sin (7ot + a7 — 120°) (39)
1‘5‘: = Iml sin (t‘.l.!f. = 2400) + Im:l SiI]. (3@: + a;)
+ I.ssin (5wt 4+ as — 120°) + Iy sin (7ot + a7 — 240°) (40)
The line currents are obtained in terms of phase current as indicated
below.
fara = Tag + Tap
Top = tba + the
fere = tea + teb
These operations are performed similarly to those illustrated in the
vector diagrams of Fig. 52 for voltages. The results are
iara = V3Iny 8in (wt — 150°) + V3Ins sin (5wt + as + 150°)

+ V3l sin (Tut + a7 — 150°) (41)
ivs = V3l sin (0t + 90°) + V3l s sin (5wt + a5 — 90°)
+ V31, sin (Tot + a7 + 90°) (42)

Sere = V3l gin (@ — 30°) + V3l s sin (5wt + as + 30°)
+ V3l 7 sin (Twt + a7 — 30°) (43)
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Equations (41), (42), and (43) show that no third-harmonic currents
can exist in the lines of a delta. The third-harmonic current in one
phase coming to a line connection exactly equals the third-harmonic
current in the other phase leaving the junction. This leaves no third-
harmonic current to flow in the line connection.

The magnitude of the phase current is

I s .melz + Im32 + [murp2 + I:nTz
= 2

The magnitude of the line current is

: J(v’ﬁrm)* 4 (V31,8 + (V31,.)?
L -

2
= lmln + fm52 -+ Imfz
- \/3\} 2

The ratio of line to phase current can be V3 only when no third-
harmonic currents exist.

Example 9. Only fundamentals and third barmonics are assumed to exist in
the voltagzes of a wye connection like that shown in Fig. 50. Voltmeter readings
as follows are obtained: V,, = 150, Vi = 220. Calculate the magnitude of the
third-harmonie voltage.

Solution. Since Via contains only fundamental voltage, the fundamental to

neutral is 220/V/3 = 127.
Vaa =VVi2E V32 or V3 =315% - 127 =799

The possibility of a third-harmonie eireulating current in a delta
makes this connection for a-¢ generators somewhat less desirable than
the wye, although there are several other more important factors that
make wye connection for generators predominate. Although the third-
harmonic current is undesirable in the delta generator it 7s desirable in
transformers, since there it acts as a component of the magnetizing
current tor the core which is essential if a sine wave of flux and induced
voltage is to be obtained. Some high-voltage transformers which are
connected wye on both primary and secondary have a third winding
which is delta-connected to allow a third-harmonic circulating cur-
rent to flow, thus supplying the transformers with the necessary triple-
frequency component of magnetizing current. A delta-connected
winding of this kind is called a tertiary winding.
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PROBLEMS

14. What is the phase voltage and also the voltage between adjacent lines of
a six-phase star connection if the greatest voltage between any pair of lines is 156
volte?

16. The voltage between adjacent lines of a twelve-phase star is 100 volts, Find
the voltage to neutral, the voltage between alternate lines, and the greatest voltage
between any pair of lines.

16. Find the phase current in & six-phase mesh if the line current is 10 amperes;
also for a twelve-phase mesh for the same line current.

17. Given six coils each having an induced voltage of 63.5 volts. Adjacent coil
voltages are 60° apart. In how many ways may you connect th=<e coils to form a
balanced three-phase wye system of voltages if all coils must be u._.d for each system
and if the magnitude of the line voltages of each system must be different? What
are the line voltages for each wye system?

18. A generator has six coils, adjacent coils being displaced 30 electrical degrees.
If each cail voltage is 114 volts, show how to connect them and ealculate the line
or terminal voltage for three-phase star. Repeat for three-phase mesh. Repeat
for two-phase, where line voltage is taken as the phase voltage.

19. A generator has six coils, adjacent coils being displaced 30 electrical degrees.
If all coils are used to form & three-phase mesh, what must be the emf of each coil
to yield balanced three-phase voltages of 230 volts each? If all coils are connected
for three-phase star, what must be the emf of each coil to give an emf between lines
of 230 volts? ~

20. Draw vector diagrams which represent the currents and voltages shown in
Oscillograms 3 and 4, pages 355 and 356, and label them in accordance with the
labeling on the oscillogram. i

21. Three-phase line voltages of 230 volts are impressed on a balanced wye load
having 16 ohms resistance and 12 ohms reactance in series in each phase. Find
the line current and total power. If the three impedances are reconnected in delta
and placed across the same line voltages, what are the line and phase currents and
the total power? .

22. A ourrent of 10 amperes flows in the lines to a twelve-phase mesh-connected
load having 5 ohms resistance and § chms capacitive reactance in series in each
phase, What is the voltage between alternate lines on the load? Draw the veetor
diagram of the voltages and phase currents of two adjacent phases, and also show
the line current from the junction of these two phases.

23. A balanced wye load consists of 3 ohms resistance and 4 ohms capacitive
reactance in series per phase. Balanced three-phase voltages of 100 volts each
are impressed across the lines at the load. If the load is connected to a generator
through three lines of equal impedance, each line containing a resistance of 1 ohm
and an inductive reactance of 4 ohms, find the voltage at the generator terminals.

24, A balanced wye load having 8 ohma resistance and 8 ohms inductive reactance
in series in each phase is supplied through lines each having 1 ohm resistance and 2
ohms inductive reactance. If the sending-end voltage between lines is 25 volts,
what will be the voltage between lines at the load?

25. A balanced delta load contains a resistance of 12 chms and & capacitive re-
actance of 16 ohms in series in each phase. If the balanced impressed line voltages
on the load are 115 volts each, calculate the line and phase currentas.
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96. A balanced delta load having 18 ohms resistance and 24 ohms capacitive
reactance in series in each phase is supplied through lines each having 1 ohm resistance
and 2 ohms inductive reactance. If the line-to-line voltage at the sending end is
250 volts, find the line-to-line voltage at the load terminals. Also find the total
power ccnsumed by the load.

27. A balanced wye inductive load takes 5.4 kw at 0.6 power factor at a line
voltage of 200 volts. It is in parallel with a pure resistive balanced wye load taking
5 kw. Find the resultant line current supplied the combination.

28. The total power supplied two balanced three-phase loads in parallel is 12 kw
at 0.8 power factor lagging. One of the loads takes 10 kva at 0.8 power-factor lead.
The second load is a delta-connected balanced load. Find the res stance and re-
actance per phase of the delta load if the line voltage is 230 volts. If the un-
known load were wye-connected, what would be the resistance and reactance per
phase?

29. Each phase of a delta load has 6 ohms resistance and 9 ohms capacitive re-
actance in series, E&ch phase of & wye load has 8 chms resistance and 6 ohms in-
ductive reactance in series. The two loads are connected in parallel across three-
phase line voltages of 100 volts. Caleulate the resultant line current, the total
power consumed, and the power factor of the combination.

30. A three-phase, 5-hp, 220-volt induction motor (balanced load) has an ef-
ficiency of 86 per cent and operates at 86.6 per cent lagging power factor. It is
paralleled with a three-phase redistance furnace consisting of three 36-ohm resistances
connected in delta. Find the kilovolt-amperes demanded by the combination, the
power factor, and the line current.

31. A three-phase generator supplies balanced voltages of 230 volts each at it
terminals when it carries a load which requires 10 amperes. If the power facto
at the generator terminals is 0.8 leading, calculate the voltage at the load if the loa
is connected through lines each having 1 ohm resistance and 5 ohms inductive re
actance.

32. A balanced three-phase load requires 10 kva at 0.5 lagging power facto
Find the kva size of a condenser bank which may be parslleled with the load t
bring the power factor of the combination to 0.566 lag, and also to 0.866 lead.

33. If the line voltage for Problem 32 is 230 volts and the frequency 60 cycle:
find the capacitance in microfarads of capacitors required in each phase of th
capacitor bank if they are delta-connected. What capacitance is required if the;
are uye—connected"

84. Three 15 /60°ohm load impedances are connected in delta and supplied by
lines, each line containing 1 ohm resistance and 1 ohm induective reactance. If the
line voltages on the supply side of the line impedances are balanced three-phase ol
115 volts each, find the voltage across the load impedances. Also calculate the
power loss in the supply lines and the power dissipated by the load itself.

36. If the current through each of the load impedances in Problem 34 is 20 amperes,
find the required voltage on the supply side of the line impedances.

86. A three-phase line has three capacitors, each having a reactance of 300 ohms
connected in delta across the lines at the source. Three similar capacitors are so
connected between the lines at the load. Between these two sets of capacitors each
line has a series inductive reactance of 10 ohms. If a balanced three-phase load of
100 kva at 0.6 power-factor lag requires 2300 volts betweerr lines, what voltage be-
tween lines will be required at the source? What will be the power input to the lines
and the power factor st the source?
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87. The motor M in Fig. 54 has 2300 volts balanced three-phase voltages im-
pressed at its terminals and takes 120 kva at 0.6 leading power factor. Caleulats
the line volts, power input, and the power [actor at g, b, c.

88. If the motor in Fig. 54 is removed from the circuit and balanced three-phase

05+]2.0 05+j2n

8 o—y A

100002 /0N 1000 N

00| == .

100041, 05+j20 = T os+jzn
bo—""" > AN, r

100012 _Jzs0n

| 05+]20 T os+jz0
¢ 0—d AAAATO L

Fi1o. 54. See Problems 37 and 38.

line voltages of 2300 volts each arc impressed at a, b, and ¢, how many volta will
appear between lines at the motor end of the line?

39. A three-phase resonant shunt is connected to three-phase, 2300-volt lines to
furnish & low impedance for a certain frequency so as to reduce the inductive inter-
ference with a telephone line. The shunt consists of three 10-kva, 60-cycle, 2300-
volt capacitors connected in delta. In series with each line terminal from the delta
is an inductance of 2.5 millihenrys. At what frequency does this three-phase com-
bination resonate, that is, offer minimum impedance? Assume that resistances of
capacitors and inductances are negligible,

40. (a) Three coils each having 36 chms resistance and 100 millihenrys inductance
are connected in delta. Find the microfarad capacitance of each eapacitor which
may be placed in each of the three lines from the delta to produce resonance (unity p.f.)
of the system as a whole for a frequency of 800 cycles. This is & type of resonant
shunt sometimes connected to power lines to reduce inductive interference with
telephone circuits,

(b) Assume th - the capacitors calculated for each line in (@) are removed and
connected in delta. " Find how many henrys of inductance would be required in
each line from this delta to bring the power factor of the combination to unity at
800 cyeles.

41. Find the readings of W, and W, in Fig. 55 for the sequence Vpa, Vae, Vs
Find the power dissipated in each phase,

42. A balanced three-phase load takes 5 kw and 20 reactive kva. Find the re®dings
of two wattmeters propefly connected to measure the total power.

43. 'n Fig. 55 find the reading of Wg. Also ealculate the total reactive volt-
amperes taken by the load. What is the ratio of the total reactive volt-amperes
tuken to the reading of Wg?

44. Prove that the ratio of the reading of Wg of Fig. 55 to the total reactive volt-
amperes obtained in Problem 43 will obtain for all balanced loads when the impressed
voltages are sinusoidal balanced three-phase.

46. (a) Calculate ansalytically the power-factor angle for a balaneced three-phase
circuit in which two wattmeters properly connected to measure three-phase power
read 41000 and 4800 watts, respectively.

(b) Also caleulate the angle if the meters read 41000 and —800 watts, respec-
tively.
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Fic. 55. See Problems 41, 43, and 44,

46. Two wattmeters measuring power to a balanced three-phase load read 1200
and —400 watts, respectively. How many volt-amperes does the load take? At
what power factor?

47. The power to a balanced three-phase leading-power-factor load is measured
by two wattmeters, The wattmeter having its current coil in line 4 and its po-
tential coil from line A to line C indicates +1000 watts, The other wattmeter with
its current coil in line B and its potential coil from line B to line € indicates +400
watts. What is the voltage sequence? What is the power factor of the load?

48. Each phase of a balanced twelve-phase star-connected load consists of 3 ohms
resistance and 4 ohms inductive resctance in series. Balanced twelve-phase line
voltages of 51.76 volts between adjacent lines are applied to the load. Calculate
the line current, power factor, and total power consumed by the load.

49. The voltage induced in phase na of a three-phase wye—connected generator is

ena = 127 sin wi 4 50 sin (3wé — 30°) + 30 sin (5wt + 40°)

If the sequence i8 €na, €nb, €nc, find the equation with respect to time of the line
voltage eu. Note: Phase voltages of polypbase generators differ only in phase
angle.

B0. If the phases of the generator in Problem 49 are reconnected in delta, what
will be the equation with respect to time of the line volt-
age across phase na?

61. A wye-connected generator has a generated voltage
per phase which contains only the fundamental, third,
fifth, and seventh harmonics. The line voltage as meas-
ured by a voltmeter is 230 volts; the voltage to neutrl is
160 volts. Calculate the magnitude of the third har-
monic in the generated voltage. OO000

62. The induced emf of a delta generator with one . b’
corner of the delta open as shown in Fig. 56 contains g - 5 Qa0 Problems
only odd harmonics up to the seventh. A voltmeter 52 and 53.
across ac reads 2500 volts, and, across bb” when negligible
current flows, 1800 volts. Find the reading of a voltmeter connected from a to b

b
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63. The induced phase voltage of a delta generator with one corner open as shown
in Fig. 56 contains odd harmonics up to the seventh. A voltmeter connected from
a to b’ reads 2500 volts, and from a to ¢ it reads 2200 volta when negligible cur-
rent flows. What should it read from b to b’?

64. Figure 57 shows & generator connected to a balanced pure resistance load.
An ammeter in the neutral reads 15 amperes, and the wattmeter shown reada 600

. Fre. 57. Bee Problem 54.

watts. A voltmeter shows a balanced line voltage of 230 volts. Find the line
currents to the load and the voltage from line to neutral at the load, assuming that the
generated voltage contains only fundamental and third-harmonic components.
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IX Unbalanced Polyphase Circuits

Unbalanced Loads. The previous chapter developed the method of
:aleulating the currents in the various branches of balanced polyphase
oads when the impedances and impressed voltages are known. In the
aresent chapter, methods of calculating the various branch currents will
se developed when known voltages are impressed upon unbalanced
oads. Any polyphase load in which the impedance in one or more -
shases differs from those of other phases is said to be unbalanced. Even
;hough the load impedances of the various phases are identical, one of
:he methods of calculating unbalanced loads must be employed if the
voltages impressed on the load are unequal and differ in phase by angles
which are not equal. Some of the simpler types of unbalanced loads
which are solvable by rather simple direct methods will be considered
first.

Unbalanced Delta Loads. If the three-phase line vol‘:iges across the
terminals of an unbalanced delta load are fixed, the voltage drop across
each phase impedance is known. The currents in each phase can there-
fore be determined directly. The line
currents can be found by adding vectori- ]
ally the two component currents coming
toward or flowing away from the line
terminal in question as was done in series- 109 vo
parallel circuit analysis. The following
example will illustrate the procedure. =

; 130 volts

Example 1. Given the unbalanced delta load b
shown in Fig. 1. Caleculate all currents for the g, 1. Unbalanced delta load.
three-phase balancea voltages shown on the See example L.
figure, if the voltage sequence is ab—ca—bc.

Since the voltages shown are assumed to be meintained at the terminals g, b, and ¢,
the complex expressions for the phase voltages may be established. Take some phase
voltage as a reference, say Vo for this example. Therefore, i

Vo = 100 + 50O

Voo = 100 /120° = —350 4 ;86.6

Ve = 100 /—120° = —50 — j86.8 volta
373

6n 8n
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Then
Vap 100 + 50
Ip=> —=——"=08—78=10/-531°
o= 8+ 8 J / amperes
- 186,
L = Yoe _ =50+ 7888 _ 530 4 j7.856 = 20 /156.9° amperes
T 4 —j3 S
Ve —50 — ;86.6 ;
-t DD o 26 ~ 433 = 5 /—120°
I.a zZ. 20 + 70 2.5 — 74 5 /—120° amperes

The line currents are:
Lia = Ls + Ioe = 8 — j8 + 2.5 +.j4.33 = 8.5 — j3.67
= 0.26 / —23.4° amperes
Iy = Ioa + Ioe = —6 + j8 — 18.30 + j7.856
= —24.30 4 j15.856 = 20 /146.9° amperes
I = Lo+ Ls = =25 — 74.33 + 18.39 — j7.856
= 15.89 — j12.186 = 20 g-37.3° amperes

Unbalanced Wye Loads. If the load voltages at the terminals a, b,
and ¢ of an unbaianced wye load like that shown in Fig. 2 can be assumed
to remain constant at their specified values, then the phase currents of
an equivalent delta which replaces the wye can be found directly as
shown in example 1. The line currents to this equivalent delta are
obviously the currents in the phases of the wye load.

’
Bo-

Fia. 2. Conversion [rom a wye-connected load to an equivalent
delta—connected load.

Example 2. A balanced set of three-phase voltages is connected to an unbalanced
set of wye-connected impedances ss shown in Fig. 2. The following values are
assumed to be known:

Va = 212 /90° volts Z.s = 10 + jO ohms
Vie = 212 /—150° volts Zyn = 19 + 710 ochms
V. = 212 /—30° volts Z.n = 0 — j20 ohms

The line currents I./o, Iivs, and 1. are to be determined by the wye to delta con-
version method. (See Chapter V, page 210, for the general theory involved in
making wye to delta conversions.} >
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o
In Fig. 2 the equivalent delta impedances may be expressed in terms of the wye

impedances as follows:

z {zﬂﬂzbﬂ + zbnzﬂl + Z:nznu) - S
ks Zue Z
S S
- — Zia = —
Zg, 2,.. and a zbn

Numerically, the equivalent delta impedances are:

Za = 30;;__}—%09 = (15 + j15) = 21.2 /45° ohms
300 — 7300 '
= ——— = (30 — j30) = 424 /—45°ch
.zbt 10 —jo ( | ) / ohms
;800 — 5300 o a0y = 30.0 /—90°
Z, = 10 +}10 ( 730) . Z 90° ohms
The load currents in the equivalent delta are:
Vo _ 212/9%0°
= = ——— =10 /45"
T = 7o ~ 212 /45° FERpCie
Lo = 2% - = = 50 /—105°
Zo: 424 { /—105° amperes
fes -]
Y -.‘:‘_E = ?:E_/—:% = 7.07 /60° amperes
Z.a 30 /—90°

The actual line and load currents are:
Iata = Iy — Iq
=10 /45° — 7.07 /60° = 3.66 /15° amperes
L = Ipc — Ta
=5/-=105° —
= Ioa - Ihc
= 7.07 /80° — 5 /—105° = 11.98 /66.2° amperes

10 /45° = 14.56 / —125.1° amperes

As a single check on the above arithmetic let the calculated value of [Ia7oZsn —
Iys2s.] be compared with the originally specified value of Vs, which was 212 /80°
volts.

[LataZan — LyaZia) = (35.4 4+ j9.48) — (35.35 — j202.6)

= (0.05 + j212.1) volts (Check)

The conversion of a wye to its equivalent delta along with the solution
of the delta as illustrated in the above example will usually require
an equal or greater amount of work than the direct solution of the wye

employing two simultaneous equations obtained by the application of
Ilirchhoff's laws,

-
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Vector diagrams of the voltages and currents involved in the fore-
going example are given in Fig. 3.

Vi

Fie. 3. Vector diagrams for example 2.

Problem 1. Determine the valuea of Van, Vi, and V., in example 2.
Ans.: Vo = 386 [15°% Vin = 205.6 /—80.1°; Ve = 230.6 /—23.8° volta,
Problem 2. Determine the power dissipated in each of the th=se phases (an, bn,

and cn) of example 2. =
Ans.: Poy = 134; Pin = 2120; P, = 0 watts.

Problem 3. Find the magnitudes of Lq, L's, and L, in Fig. 2 if Vas = 212 /80°,
Vie = 212 /—30° and Ve = 212 /—150° volts. As in example 2, Zgs = (10 + 0),

Zgn = (10 + j10), and Zen = (0 — j20) ohms.
Ans.: Iora = 13.65; yy = 6.20; Ioso = 7.54 amperes.

Combined Delta and Wye Loads. Delta-connected loads are some-
times operated in conjunction with wye-connected loads as shown in
Fig. 4. If the three-phase, line-to-line voltages Va3, Ve, and Ve remain
sensibly constant irrespective of load conditions, a relatively simple
solution may be effected by first converting the wye load to an equivalent
delta load. The two parallel deltas may then be combined to form a
single equivalent delta-connected load and the equivalent delta currents
-alculated directly as

Vas Vac Vv

L) = 5 Doeny = 57— Loy = 5———
zobl-q) zhtﬂ] zm(.q)
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The above ecurrents may be combined in -
the usual manner to find the line currents
Lata, Ins, and I.... The details are reserved

for student analysis. (See Problem 13, Zeaa
page 404.)
Network Solutions. The solutions of b )

unbalanced polyphase circuits are simply
applications of Kirchhoff’s laws. Some of
the details are illustrated in the following
example which refers to Fig. 5.

co

Fig. 4. Delta and wye loads on
the same s)'stFm of voltages.

FiG. 5.

Example 8. The generated voltages and impedances for Fig. 5 are given as

follows:

Ena = 1000 + jO = 1000 /0°

E., = —500 — ;866 = 1000/ —-120°

E,c = =500 + 7866 = 1000/ —240°
Zao =2+ 8, Zog =1 +472, Zou =18 +jl18 = 26.2/43.45°, Z.a = 2 + j8,
Zw =1 +72, Zyn =49 =52 = 4004/ -231°, Z,. =R +,8 Z. =1+,2
and Z..,r = 29 + ;50 = 57.8/59.9°,
In unbalaneed polyphase circuits specification of the sequence emploved is important
because diffzrent solutions result from the two possible voltage sequences. For this
example the sequence abc is assumed. This means that voltage of phase b lags that

of pha.s:ui b;y 120°.  All impedances in series are additive. Therefore the impedance
of naa'n’ is Zo = 2+/8 +1 +;72+10 + 18 = 22 + ;28 = 35.6/51.8° ohme.



378 ALTERNATING-CURRENT CIRCUITS Ch. I1X

Likewise Zy = 52 + j8 = 52.6/8.8° and Z, = 32 + j60 = 68.0/61.9°. The mesh-
current solution will be illustrated first and for this solution the labeling of mesh
currents is shown in Fig. 5. The equations are

(Zs + Zo)s — Zyl2 = Epa + Epn = Ena — Ewp (1)
(Zy + Z)s — ZoIy = Epy + Ecn = Enp — Enc @)
Inserting-the numerical values in the above two equations gives
(74 + 736)1; — (52 + j8)Iz = 1500 + j366 (3)
— (52 4 j8)1; + (84 + j68)I2 = —j1732 (4)
(1500 + j266) — (52 + j8)
I = (711?3‘36) -—(8(;2"-:?2; = 16.0 / —34.9° amperes = Lo
— (52 + j8) (84 4 j68)
(74 +36) (1500 +ﬂ;ﬁﬁ)‘
X ]~ T e
(52 + j8) (84 + 768)

Ly = —I; 4+ 1y = —16/—349° + 20.7/—109.2° = 22.5/ —152.5° amperes
The voltage drops at the load may now be determined as
Vorn = lnarZgrar = 16/ —-34.9° 26.2/43.45° = 419 /8.55° volts
Vin = TopZyrgr = 22,5/ —1525° 49.04 /234" = 1105/ —154.84° volts
Viw = LoZon =20.7/-100.2° 57.8/59.9° = 1197/ —19.3° volts

The line-to-line voltages at the load are obtained by adding the voltages en-
countered in tracing through the load circuit from one line to the other as follows:

Vop = Vs + Vg = Vargr — Vienr = 410 /B.55° — 1105 / =154.84°
= 1512 /20.6° volts

Ve = Vi + Vare = 1835/166.2° volts

Vear = Ve + Vrar = 1039/ —69.3° volte

The above line voltages could be calculated from the generated voltage and line drops
Thus the application of Kirchhofi's voltage law gives

Etn + Ena = Laa(Zna + Zaa') + Varr + L (Zoor + Znp)
or
Vorsr = (Etn + Ena) = laa*(Zna + Zoar) — Dy (Zoyr + Zns)

= 1500 + ji66 — 16.0/—34.9° (3 + j10) + 22.5 ( —152.5° (3 + j10)
= 1413.2 + j531.6 = 1512/20.6° volts (Check)
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This calculation indicates that line and generator drops can be subtracted from the
generated voltages Lo obtain the loed voltages but the computation must be made

with due regard to the proper phase of all quantities. Power in any branch is
obtained in the usual way from the voltage and current in the particular branch.

The phasor diagrams of all voltages and currents may be obtained
by plotting the complex quantities calculated for this example.

An alternative method of solving this problem iz to label the circuit
as shown in Fig. 6 and set up equations as follows:

ZOIG = zb-lb o Ebu + Enn — Eua - Enb (5)
ZI, + z;ﬂ« + L}) i Ecu + En = Enb — B (ﬁ)
or Z1,+ (Zy, + zc)Ib - Bnb - Enc (Gﬂ)

Equations (5) and (6a) may be solved for the currents. This method
18 equivalen! to the loop-current method, previously demonstrated.
As a matter of fact if the current L. in Fig, 6 were labeled I, the cur-
rent L., labeled I, and I, labeled (I, — I2), equations identical with (1)
and (2) would result if the same loops are employed.

Positive Circuit Directions. A great deal of needless confusion exists
in the minds of many students relative to the correct positive circuit
directions of the quantities involved in polyphase circuit analysis. The
basic principles concerning circuit direction have been prescnted in the
earher chapters. (See pages 95-96, 284-285, and 327.) These princi-

25



380 ALTERNATING-CURRENT CIRCUITS Ch. IX

ples are, of course, entirely applicable to polyphase circuits as well as to
single-phase circuits.
In general, all generated emf’s in polyphase systems have specified
lative polarities and angular positions with respect to one another.
his information must be known either directly or indirectly if the circuit
investigation is to proceed. For example, if a three-phase alternator
is connected in wye it may be assumed that the individual phases are
connected subtractively at a common junction as shown in Fig. 7.

Onbalancsd
load

g,

F1a. 7. A three-wire toree-phase network. (See pages 380-382.)

It is only by means of subtractive polarities that a three-phase, wye-
connected machine can give balanced line-to-line voltages. Unless
otherwise specified, the individual phase generated emf’s of a three-
phase machine may be assumed to be 120° apart in time phase. The
foregoing facts are sufficien} for a specification of the positive circuit
directions in the network shown in Fig. 7.

A positive circuit direction may be arbitrarily assigned to any one
generated emf. For example, if the a phase generated emf in Fig. 7
is considered, either E,-o- or E,nr may be taken as positive. One of
these having been selected as positive, the positive circuit directions
of the other systematically lubeled emf's are fixed because of the rela-
tively fixed polarities that the generated emf’s bear toward one another.
If Eng is tuken as positive, then Eq-p and E,... are also taken as the
positive circuit directions because only when all phase voltages are con-
sidered away from: the neutral or when all are considered toward the
neutral does the usual 120° phase angle between adjacent phase voltages
in a three-phase system exist. Thus either of the two f ollowing systems
of generated voltages may be employed in analyzing the network shown
in Fig. 7.
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(l) EIIGJ' E"iao, E"r‘-
ar
(2) En“n'- Eb'n'; E(’n'

With the generated voltage relations established the solution is effected
by employing the same methods used to solve any network, two of
which were illustrated in example 3.

The Wye-Wye System with Neutral Connection. Four-wire, three-
phase systems similar to the one shown in Fig. 8 are sometimes employed
in the transmission and distribution of electrical energy. The connec-
tion of the point n’ of the wye-connected generator (or transformer
bank) to the point n of the Wye-connected load distinguishes Fig. 8
from the three-wire, three-phase system shown in Fig. 7.

a' I)e — a

Fic. 8. A four-wire three-phase system.

In general, the details involved in solving for I.,, Iy, L., and I,,.
of Fig. 8 are similar to those which have been presented for the wye-
Wre system without neutral conneection. If the wye-wye system of
Fi, 8 is solved straightforwardly by the determinant method, three-
row, three-column matrices are encountered, and a considerable amount
of lab.r is involved in effecting a complete solution in a perfectly general
case. Because of the inherent Symmetry of the basic voltage equations,
however, several simplifications may be made. If, for example, Kirch-
hof's emt law is applied to loops n’a’ann’, n'b’bnn’, and n'c'enn’ it is

plain that w o
En’n' g Irm'zn En'b' = Lm'zn.‘
i o S — RWMTH

Iﬂ’q = T e g = -
@G+2+z.0 TG

I‘ ; En’c' I I,...'Z.
: (zﬂ + z! + z:u)
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Since .
Iﬁ'a + Ib'i + Ie’c = luu' (7)
it follows that

En'a' = Ian'zn £ Eu'b’ S Iun'zn En':' = Illu'-zu

7 _ Z, + Z =L (8)
where, for simplicity in writing, :
Z,4+ Zi 4+ Zan = Za 9
Z,+Zi+ Zon = (10)
Z,+ Zi+ Zen = Z. ' oo (11)

The remaining details are reserved for student analysis. (See Problem 4
below and Problem 16 at the close of the chapter.)

Problem 4. Solve equation (8) explicitly for 1.+ and state in words how to find
Late, Iss, and L:c after Iy, has been evaluated.

A-M =) I o Eq!ulziZG + E.ryz.za + E‘r‘:z“z& 2
0 Inw Z.ZoZe + Za(ZWZ. + Z.Z, + Z.Zs)

Note: If the numerator and denominator of the sbove answer are divided by
Z,ZyZ, both sides of the equation multiplied by Za, and all of the impedances of the
right member written in terms of admittances, there results & simple formula for
the voltage between neutral points. If this voltage is solved for initially, substitu-
tion of the result in the three unnumbered equations on page 381 will yield the line
currents directly.

The Wye-Delta System. A three-phase, wye-connected generator is
shown connected to a delta load in Fig. 9. The solution of this system

.' I s W"r' a

Fic. 9. A wye-delta circuit arrangement.

for currents in all branches may be effected by application of conven-
tional Kirchhoff’s laws which would require establishment of three emf
equations and three current equations. Another method would con-
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sist of first converting the delta to an equivalent wye-connected load
and then solving by employing two equations. However the least
amount of work will usually be encountered if the loop-current method
or the Kirchhoff’s law equivalent employing three unknown currents is
applied directly to the original circuit. This solution requires only
three equations which are readily solved by determinants.

Phase-Sequence Effects. The direction of rotation of polyphase
induction motors is dependent, upon the phase sequence of the applied
voltages. Also, the two wattmeters in the two-wattmeter method of
measuring three-phase power interchange their readings when subjected
to a reversal of phase sequence even though the system is balanced.
But the magnitudes of the various currents and component voltages in
balanced systems are not affected by a reversal of phase sequence.

In an unbalanced polyphase system, a reversal of voltage phase
sequence will, in general, cause certain branch currents to change in
magnitude as well as in time-phase position, although the total watts
and vars generated remain the same. (See example following. )

Unless otherwise stated, the term “ phase sequence " refers to voltage
phase sequence. It should ‘be recognized that, in unbalanced systems,
the line currents and phase currents have their own phase sequence
whi h may or may not be the same as the voltage sequence.

-

Example 4. The effects of reversal of voltage sequence upon the magnitudes of
the currents in the wyeconnected load of Fig. 2 are illustrated by the results of
example 2 and of Problem 3.

For the ab-ca-bc voltage sequence of example 2, page 374,

Lo =366, Iy = 14.56, and J... = 11,08 amperes

For the ab-be—ca voltage sequence of Problem 3, page 378,
larg = 13,65, Iy = 6.20, and /.., = 7.54 amperes

Methods of Checking Voltage Phase Sequence. Sometimes in prac-
tice it becomes desirable and even necessary to know the phase sequenecr
of a particular polyphase system. There are two general methods
for checking voltage phase sequence: one based on direction of rota-
tion of induction motors; the other, on unbalanced polyphase circuit
phenomena.

Method One. Small polyphase induction motors which have pre-
viously been checked against a known phase sequence can be employed
to test the phase sequence of a given system. In two- and three-phase
systems, only two different phase sequences are possible, and conse-
quently the direction in which the motor rotates can be used as an
indicator of phase sequence. The principle of operation involves
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rotating magnetic field theory which rightfully belongs in the domain
of a-¢ machinery. ;

Method Two. In general, any unbalanced set of load impedances
can be employed as a voltage phase sequence checker. The different
effects produced by ‘changes in phase sequence can be determined
theoretically, and when an effect peculiar to one sequence is noted in
the actual installation, that effect ean be used to designate the phase
sequence of the system.

One of the most common devices for checking phase sequence in
three-phase systems is the unbalanced circuit arrangement shown in

Fig. 10. The three line wires, the

a voltage phase sequence of which is

to be tested, are arbi: -aiily inbeled.

'a'tems  The free end of one lamp is connected

to the line marked a. The other lamp

is connected to line ¢, and the induct-

'e'Lamp  ,nce coil is connected to line b as

gy ¢ shown in Fig. 10. If lamp ‘a’ 1s

Fic. 10, A twolamp method for brighter than h’fl‘p 'C',, the phase “_‘-

Chcking phe somnce' s e« fuenes of B8 e N than

: - ; mp ‘ ¢’ is brighter than

for ab-locs seduance, e © © lomp ‘o, the phase sequence i3 ab-
ca—be.

The foregoing statements are based upon the results of theoretical
analyses, the details of which are outlined below. Assuming that the
lamps are similar, their brightnesses will depend upon the voltages-
Zanlanand Z.J.n. These voltages may be determined by the Kirchhoff
equation method as shown below:

R

Idll + Ihn + Iul et 0 . (12]
Zanlan — ZyLn = Vas - (13)
zbnlbn = zcnlcn - vb: (14}

Upon the elimination of I, from equation (14), there results
z:ﬂIﬂﬂ + (zbn + zcn}Ibn = vhc (15)

Equations (13) and (15) can now be solved by inspection for L., and
the result multiplied by Zs.. - The voltage across the a lamp is

z B z vﬂb(zh + zfll) + vbezbn]
3 TS o zau(zbll + zau) o z:nzbn

(16)
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The voltage across the ¢ lamp is
Z:nI:u = v:a + ZanIau (17)

Example 6. For the sake of illustrating the efffct of reversal of phase scquence
upon the magnitudes of Zsulan 8nd Zcalen, 8 numerical case will be considered. The
lamps Z,, and Z., of Fig. 10 will be assumed to be pure resistances each of 100
ohms magnitude. Z,, will be assumed equal to 100 /90° ohms, that is, a hypo-

thetically pure inductance. The magnitude of the line-to-line voltages will be
taken as 100 volts each and will first be assigned the following vector positions:

Vo = 100 /0° volts

Vi = 100/ —120° volta
Vea = 100/ —240° volts

Under these conditions

(100 /0°) (141.4 /45°) + (100/—120°) (100 90°)
za,.lﬂ.uzooio_"[ [0°) (141.4/15° [—120° L:l

22,380 /63.45°
= 86.4/ —48.45° volts (18)
Zalen = (100/=240°) + (86.3/—48.45°)
= 23.2 /71.55° volts (19)

The a lamp is therefore brighter than the ¢ lamp for phase sequence ab—be—ca.
Now let the line-to-line voltages be assigned vector positions which represent
a reversal of phase sequence, namely,

Vo = IWE volts
Vbe = 100/ —240° volts
Vea = 100/ —120° volts
For ab—ca-be phase sequence
(100 /0°) (141.1 /45°) + (100 / —240°) (100 {90’;]

Z3alan = 100 D°[

2,380 /6345°
= 23.2/11.55° volts (20)
Zelon = 100/ —120° + 23.2/11.55°
= B6.4/ —108.45° volts (21)

The ¢ lamp is therefore brighter than the a lamp for phase sequence ab—ca-be. The
above numerical results would be somewhat different if the resistance of the induct-
ance coil had been cansidered. However, if the ratio (Xt/R) of . the coil is rela-
tively high, the difference between the lamp voltages is easily discernible.
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Example 8. Another convenient !émn of voltage sequence checker is shown in
Fig. 11a. It consists of & condenser (X¢), 8 resistor (R), and a voltmeter (Vm).

.l
o—

Vae

®)

Fia. 11. A voltmeter method of checking phase sequence in three-phase systems. See
example 6 and Problems 5 and 6.

The voltmeter (whose current consumption 18 negligibly small compared with the
current through X¢ and R) is counected between the line labeled b and the junc-
tion between X¢c and R. X¢ and R are connected in series across the voltage V.
(or V.s) with the condenser connected to the a line and the resistor to the ¢ line. If
X = 100 ohms, R = 100 ohms, and Va = Ve = Vea = 141.4 volts,

141.4/—60° fiia
- N i quence ab—be—ca as shown
L = siia/ —age ~ 14100 smperes .y, Fig. 110

Vie = Vm + L,R or Vm = Vie — LR

Vm = (141.4/-120°) — (1/-15°) (100/0°)
= —167.3 — j96.6 = 193/ —150° volts

The above result shows that the voltmeter (Vm) reads above the line voltage (in
the ratio of 193 to 141 in this case) for voltage sequence ab-be-ea. The same gen-
eral result is obtained with any combination of X¢ and R provided X is roughly
equal in ohmic value to R or greater in ohmic value than R.

Problem 5. Show by means of a qualitative vector diagram that the voltmeter
{(Vm) of Fig. 11a reads below line voltage for voltage sequence ab—ca—be.

Problem 6. What is the magnitude of the voltmeter reading in Fig. 11aif X¢ =
100 ohms, R = 100 ohms, and Va = Ve = Ve = 141.4 volts if the voltage se-
quence is ab—ca-bel

Ans.: 51.8 volta.
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Fig. 12. The three-wattmeter method of measuring four-wire, three-phase power.

The Three-Wattmeter Method of Measuring Three-Phase Power.
The total power delivered to a three-phase, wye-connected load with
neutral connection can obviously be measured with three wattmeters
connected as shown in Fig. 12. W, measures the an phase power, 17,
measures the bn phase power,
and T, measures the ecn phase 2
power. The sum of the three
wattmeter readings therefore
equals the total power consumed
by the load. It is plain that if
each individual phase of the
wye-connected load is dissipa-
tive in character all the watt-
meters shown in Fig. 12 will
indicate positive power.

The total power absorbed hy
an unbalunced delta-connected 6"
load can be measured with the Fic. 13. The three-wattmeter method of
aid of three wattmeters as shown measuring individual phase powers in 8
4 : o delta~connected load.
in Fig. 13. Individual phase
powers are measured by the wattmeters. This method of measuring
power would not, in general, be used unless the individual phase powers
were desired.

The Two-Wattmeter Method of Measuring Three-Wire, Three-Phase
Power. Except for inherent meter losses and errors, the three watt-
meters conne~ted as shown in Fiz. 14 will measure accurately the
power consumed by the three-phase load abe. A general proof of the
foregoing statement will be given, and then certain important deduc-
tions will be made therefrom.

b
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Frc. 14. A three-wattmeter method of measuring three-phase power which is independent
of the potential and hence of the physical position of the point O,

The total average power delivered to the three-phase load shown in
Fig. 14 over a time interval T is

P T
Pope = Ql".ll‘ (Yantara + Vpntpn + Ventere) di (22)

The total average power measured by the three wattmeters shown in
Fig. 14 s

1 T - . .
Preters = F -/l; (Vaptara 4+ Upote's + Veolere) dt (23)

Under any condition it is plain that

Vag = Ugn — Ugn (24)
Vs = Usn — Uon (25)
Uep = Uep — Upp ‘ (%}

Equation (23) may therefore be written as

1 T
Preters = = f (Pantera + Upntys + ”cnf:c':) dt
T Jo

1 T .
g Yon(tara + Ty + 1:’:) dt (27.)

_T
Since (fara + 50y + fo0.) = 0, it follows that

1 r . .
Pmelero - _T_ (vantara + Vpntpry + 9::1;":':) dt (28)
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It is thus shown that the three wattmeters in Fig. 14 measure the load
power irrespective of voltage or current balance, of wave form, and of
the potential of the point 0. The last facf is highly significant. It
indicates that the wattmeter potential coils need not have equal resist-
ances when employed as shown in Fig. 14. It also indicates that the
point O can be placed on any one of the three lines, thereby reducing
one wattmeter reading to zero. Although the proof was based on a
wye-connected load, the entire proof holds equally well for delta-con-
nected loads. A simple way of extending the proof to cover delta
loads is to recognize the fact that any delta load can be reduced to an
equivalent wye-connected load. (See Chapter V, pages 206-209.)

The practical significance of placing point O on one of the three lines
is that only two wattmeters are required to muasure the total three-
phase power. This expedient is widely utilized in measuring three-wire,
three-phase power because it possesses no inherent limitations as regards
balance or wave form.

The two wattmeters used to measure three-phase power may be
placed in the circuit as shown in Fig. 15a, b, or c. The three combina-

a a -
. W reads Vialus cos ’]m
b Wptemt b
V.
c w"'“-.:-“E t W, reads Vel .c08 3]’::
e .
(a)
I’ * a N -
W W reads Valas cos sl_
B " b e
Va
¢ W‘Q’_“l 5 ¢ Wereads Vale, cos @ ]‘Lr.
o
(@)
a' a
¥ Hj = Wa reads Vaelaa coB ﬂ]v-:
b + b Ls
* v
g Wyle” ¢ W) reads Vuinems]h:
(c)

Fig. 15. Different circuit positicns that the two wattmeters employed to measure
three-phase power can take.

tions are obtained by placing the point O of Fig. 14 on lines a, b, and ¢,
respectively.
For the relative polarities of the wattmeter coils shown in Figs. 14



syu ALTERNATING-CURRENT CIRCUITS Ch. IX

and 15 the instruments will read up-scale if positive power is being
metered. Under the condition of sinusoidal wave form of current
and voltage, positive power is indicated if the current through the cur-
rent coil in the + direction is less than 90° out of phase with the voltage
which is across the potential circuit in the + direction. If one of the
meters reads down-seale when connected as shown in Fig. 15, the rela-
tive polarity of the coils is changed to obtain up-scale reading and this

. reading is reckoned as negaiive power
v Wib—yy in finding the algebraic sum of the watt-

8 O ! .
s meter readings.
W
unity-p.f,
, load ri Example 7. In Fig. 16, abc represents s
b..
b

Oig-a:st - balanced three-phase system of voltages. The

magnitude of each valtage is 200 volts, and the
phase sequence is at-ca-be.
A balanced, 0.8-power-factor, induction mo-
c ~ tor load of 6 kw is connected ncross abe and a
4-kw, unity-power-factor load is connected .
Fra. 16. A particular unbalanced  across ab as shown in the diagram.
three-phase load. Let it be required to find the individual
readings of the wattmeters, W ... and
We e, which are connected to measure the total load power, The subscripts
designate the voltage and current which are operative in a given meter in producing
positive up-scale deflection, Obviously, the meter will read down-seale, thus in-
dicating negative power if the operative voltage and current are separated by more
than 90° in time phase.
Let Vas be selected as reference. Then

Vs = 200/0°, Vse = 200/—240°, and V.. = 200/ —120° volts

c'
Wep—c'e

® ; . : ;
The current in each phase of the induetion motar is

lo =——— =125 ampéres

and these phase currents [ag the applied phase voltuges by cos™! 0.8 or 36.9°. The
unity-power-factor load current is, of course, in phase with Vg. Therefore

I

1000
I — /0° 5/—36.9°
- = [0° +125/—36

I

(20 + ;0) + (10 — 7.5)
(30 — 77.5) amperes

12.5/—240° — 36.9° = 12.5/83.1°
(L5 + j12.4) amperes

L.

L. =125/-120° — 36.9° = 12.5/—156.9°
= (—11.5 — 74.90) amperes
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The line currents are
Lo = (30 — j7.5) = (=11.5 — j4.80)
= 41.5 — j2.60 = 41.6/—3.58 amperes
L = (1.5 + j12.4) — (30 — ;j7.5)
= —285 + ;1990 = 34.7{“5" amperes
Lo, = (=11.5 — j4.90) — (1.5 + j12.4)
_ = —13.0 — j17.3 = 21.7/—127° amperes
A vector diagram of the voltages and currents is shown in Fig. 17. Since the mag-

nitudes and. relative time-phase positions of the line-to-line voltages and the line
currents are known, the wattmeter readings can be determined.

Fia. 17. Vector or phasor diagram of voltages and currents in a particular unbalanced
three-phase circuit. (See Fig. 16.)

Wapaia = V...Ja-umﬂ:r“

= 200 X 41.6cos 3.58° = 8300 watts
Weaoe = Vaalero cos 9]:
= 200 X 21.7 cos ;57" = 1700 watts

The other wattmeter combinations which will correctly measure the three-phase
power are

]

(1) Wae—ara together with B s,
(2) Wiays together with Wea —ere.

In the present example
H-u—-o'u - Vaelo'a coa GT

= 200 % 41.6 X cos 63.58° = 3705 watts

Wicas = Valyy cos ’T

Ls

= 200 X 34.7 X cos 25° = 6295 walts

L

"}
a

b
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Problem 7. Caleulate the readings of Wia—ss and W in the above example
and compare the sum of the wattmeter readings thus found with the total connected
load.

Ans.: Wiayy = 5685, Woarere = 4315 watts.

The Use of n — 1 Wattmeters to Measure n-Wire Power. In general,
n — 1 wattmeter elements can be employed to measure n-wire power.
The wattmeter elements may take the form of individual wattmeters,
in which case the total power is equal to the algebraic sum of the watt-
meter readings; or all movable members may be connected to a common
shaft in which case the total power is indicated directly on one scale.
The latter type of instrument is called a polyphase wattmeter.

Reactive Volt-Amperes in Unbalanced Four-Wire, Three-Phase
Systems. The reactive volt-amperes of each individual phase of the
load shown in Fig. 18 can be measured with three reactive volt-ampere

Hnmlu'_
a
|
L

Rva meter

v b

Rva mmrg
c

Fia, 18. Measurement of total reactive volt-amperes in a four-wire, three-phase system
with three reactive volt-ampere meters.

meters. Sinusoidal wave forms of currents and voltages are assumed
since the term “ reactive volt-amperes ” as well as any measurements of
that quantity are ambiguous when other than sinusoidal wave forms
are encountered.

In Fig. 18

Meter a reads Vgaleon sin Q:LVH VArS

Meter b reads VoI, sin 8]:: vars

Meter ¢ reads V., I., sin ﬂ:[“ VArs

The algebraic sum of the above readings is of practical importance,
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Assume the phase angle to be positive if the current lags the voitage and
negative if the current leads the voltage. These conventions are merely
matters of definition.  (See page 97.) A meter properly connected to
give up-scale readings for lagging-current reactive volt-amperes will
read down-scale when subjected to leading-current reactive volt-
amperes. If then in a particular cuse a meter reads down-scale, the
relative polarities of the current and potential circuits of the meter are
reversed. The resulting up-scale reading is considered as negative reac-
tive volt-amperes in finding the total reactive volt-amperes of the sys-
tem. With negative reactive volt-amperes defined as it is, the total
vars of a system may, of course, be negative.

Example 8. In Fig. 18 let

Van = 100 /0° volts Z,, = 25/45° ohms
Vi = 100/ =120° volts Zyn = 50/0° ohms
Vea = 100/ -240° volts Z., =20/-60° ochms

The individual readings of the three reactive volt-ampere meters and the algebraic
sum of the readings are to be determined.
100 /0°
"= —4L5° = 4.0/ —45° amperes .

100 / —120°
bin = ————— = 2.0,/—120° amperes
50/0°

100,/ —240°

1. = = 50/180°
20/ —60° (=2 ampercs
The relative vector positions of the Ven

phase voltages and phrase currents
which actuate the meters are shown

in Fig. 19. -
€
Reactive volt-ampere meter a reads Len / Len
(100 % 4 % 0.707) = 283 vurs d;iinz currenty g"!'m *Yin
Reactive volt-ampere meter b reads Lo
(100 X 2 X 0.0} = 0 var current) Lo (lagglog eurrenn

Reactive voll-ampere meter ¢ reads

(100 % 6 X —0.866) = —433 vars
. . Fiu. 19. Phasor diagram of the phase voltages
The algebraic sum of the meter read- and phase currents of the four-wire, three-

ings or the ““ total ” number of vars phase load shown in Fig. 18 for a particular

is =150, set of load impedances.
-
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If wattmeters were to replace the reactive volt-ampere meters shown in Fig. 18,
their readings would be as shown below:

Wa =100 X 4 X 0.707 = 283 watts

W, = 100 X 2 X 1.000 = 200 watts

W, =100 X 5 X 0.500 = 250 watts
The total number of watts is 733.

Power Factor in Unbalanced Three-Phase Systems. Power factor
in a single-phase system or in a balanced polyphase system has a definite
physical significance. It is the ratio of the phase watts to the phase volt-
amperes. Under conditions of sinusoidal wave form, power factor is
equivalent to the cosine of the time-phase angular displacement between
phase voltage and phase current.

In an unbalanced polyphase system each phase has its own particular
power factor. The result is that the term * power factor ” as applied
to the combined unbalanced polyphase system can have only such
meaning as is given to it by definition. The average of the individual
phase power factors is a good general indication of the ratio of total
watts to total volt-amperes in certain cases where the phase loads are
all inductive or all capacitive. Where both capacitive and inductive
phase loads are encountered, the compensating effect of capacitive
reactive volt-amperes and inductive reactive volt-amperes is not taken
into account. Another serious limitation to “ average " power factor
concept is that the individual phase power factors are not easily deter-
mined in many practical installations. *“ Average’ power factor is
generally not considered when specifying the power factor of an unbal-
anced polyphase system. .

One recognized definition called veetor power factor of an unbalanced

.polyphase system is

Y VIcosd
V(ZVTsin6)? + (VI cos 8)?

T VIcosf = Valacosl, + Valycos8y + Vel cosb, +--- (30)
T VIsing = Voyi,sinb, + Vylysiny + Vi sinb. + -+ (31)

Vector p.f. = (29)

The subscripts employed in the above equations refer to individual
phase values. For example 4, is the angular displacement between
phase voltage and phase curre .t in the a phase of the system. T 7 cos§
is the total power consumed by the polyphase load, the power factor of
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which is under investigation. VT gin @ is the algebraic sum of the
individual phase reactive volt-amperes. In evaluating X VI sin# in
any particular case due regard must be given to the sign of each ¢ m-
ponent.

It is evident that the denominator of equation (29) can be evaluated
as if it were the magnitude of a resultant vector, the right-angle com-
ponents of which are (L VIcos@) and (X VIsinf). This fact is
illustrated graphically in Fig. 20 for the particular three-phase system

Phase 2 Phase b Phasa c
283
e §e=0, 250 watts
283 walls 200 wailts i
—433
vars

e VI cos -
23 ; 200 250
=150
Pl con SVIsind
Resultsnt diagram

Fig. 20, Dlustrating the concep’: of vector volt-amperes in a particular case.

discussed on pages 392-394. Considering watts and vars as the right-
angle components which go to form * vector volt-amperes ” it is plain
that

TVI =V (TVIsiné)® + (LVIcosb)*/B (32)
or
E“ = VIIB& + VbIb& -+ cheﬁc } (33)

Power factor, as defined by equation (29), can now be written in any
one of several different ways.

| (X VI sin 8)
£, = i
Vector p cos tan SV c0s ) os B (34)
or
V
Vector p.f. = L ¥ caed (35)

magnitude of VI

Example 9. The “ average "’ power factor of the unbalanced load described on
pages 302-394 is to be compared with the power factor as defined by equations (29),

-26
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(84), or (36). The circuit arrangement is shown in Fig. 18, snd the previously
dewn’xined values sre indicated below.

" Via = 100/0° volts L. = 4.0/ =45° amperes
Vin = 100/ =120° volts L, = 20/-120° a.nlzpero.s
Ven = 100/ —240% volts I, = 5.0/180° amperes
a-phase vars = 233 a-phase watts = 283
b-phase vars = 000 b-phase watts = 200
¢-phase vars = —433 c-phase watts = 250
Y VIsing = —150 vars 2_VIcos# = 733 walls

The individual phase power factors are
P.f.. = 0.707 (result of lagging current)
Py = 1.000 (result of in-phase eurrentY
P4f.. = 0.500 (result of leading current)

The arithmetical average of the above phase power factors is

‘ 2.20
Pluw = —3—.{ = 0.736

The power factor of the unbalanced load as defined by equation (29) is
733 733
Vector pf, = —m—————— =0 = 0.98
V/(=150)® + (738)F 748

Inasmuch as the latter determination of power factor recognizes the compensat-

ing effect of “leading "’ and * lagging ' reactive volt-amperes it is somewhat more
significant than the * average '’ power factor.

Measurement of Y. VI sin 6 in a Three-Wire, Three-Phase Circuit.

' Power factors in three-wire, three-

Rva meter a phase systems are very often meas-

r

e ured in terms of L VI cos# and
T VIsing. XVIcosd can be
measured with the aid of either
two or three wattmeters as shown

b in previous articles. Tt may be

ghown that VT sin 6 can also be
m- sured in a three-wire, three-
p’ se system with either two or
t! e reactive volt-ampere meters.

Flo. 21. The two Yenctive volt-ampero Ly ;
g i A Only the two-meter rflethad- of
a three-wire, three-phase system. measuring LVJ sin 6 will be con-

] sidered. :
The two meters shown in Fig. 21 are assumed to be reactive volt-

Rva meter ¢
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ampere meters which are capable of reading VI sin 8]:. These meters

are connected into the circuit in a manner which is exactly like two
wattmeters in the two-wattmeter, method of measuring three-phase
power. It will be shown presently that, when they are connected in
this fashion, the algebraic sum of the two reactive volt-ampere meter
readings is equal to L1/ sin@ of the three-phase circuit. ¥ Vising
for a polyphase system has been defined in equation (31) of the present
chapter. '
Connected as shown in Fig. 21

X _ ab
Reactive volt-ampere meter a reads [V“F,', sin a]v }
Lava

Reactive volt-ampere meter ¢ reads 'V,;,L-: sin 8:':“}

‘e

For the sake of analysis, the above readings will be expressed temporarily
in terms of the complex components of the voltages and currents. In
Chapter 1V it was shown that under the conditions of sinusoidal wave
form

V1 sin e]: = v'igy vi’ (36)
where ' -
V=v+j’ and I'=#f 7

: B
Reference to Fig. 21 will show that Is'a = I;s and that I, =T1.,.
Also V.,;, = V,_.,, — Va.., and vcb = V;,, = Vb,..

Veslara sin e]"" = Vaulan sin s]""‘
I.'; l-n

s - -/
(1' ablan — Ugh? on)
§ s $ = . T
(1' enlan = Y bnlasi — Ygn? an + tynt an)

= {U’anf:na il llair“ia‘ll} =+ (E"bni’dn = u’bniuu) (3?}

2/ h - . b
Vel .. sin 8]:" = Vel sin 8:[:“

” )
(v eptcn — Vest’en)
’ - ’ 4 + of =]
(¥ cnten = U'bnten — Vent en + Ubnt en)
i o : r
e (” enten — Uent o) + (Ubn‘r:n — Vbnten) (38)

Il

I
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It will be noticed that (Upsi’es — 9'snian) of equation (37) and
(0snt’en — ¥'baten) of equation (38) can be added so as to yield

"'h(f’un + 'dcu) ed 9’5:;(‘.&: —+ 1) = (U’h.l:b. - vbu‘-'h) (39)
Therefore the sum of equations (37) and (38) reduces to
('-”an'.nn o= vnni,nn)"*' (”'bn':bn =¥ ”bni.’bn) <+ (U’naien o "eni'cn)

which in turn is easily recognized as the total reactive volt-amperes
of the three-phase load or L VI sin 6.

No restrictions as to the balance of either voltage or current have been
imposed upon the foregoing derivation. Two reactive volt-ampere
meters connected into a three-wire, three-phase circuit as shown in
Fig. 21 will, therefore, measure 2. VI sin ¢ regardless of the condition of
balance. Although the . generality is rather difficult to incorporate
into ‘the derivation, the algebraic sum of the readings will be equal to
¥ VI sin 6 whenever the reactive volt-amperes are restricted to those
. cases where both voltages and current wave forms are ginusoidal, pro-
vided the reactive volt-ampere meters are connected into the three-
wire, three-phase line in a manner similar to the wattmeters shown in
Fig. 15a, b, orc.

7 Rva meter & M
? I
z'm-!du{ W/ n
llll:lwb Rwa meter b
. c
b’ t :
1414 dpits |
vl
P
¢

Fro. 22. A particular unbs_!mmd three-phase load.

Example 10. mFign,abcnmuhnunbalmoedtfmphauaymdvolb
ages, the phase sequence of which js ab-bc—ca. In magnitude

Ve = 200, Vi = 141.4 and Vea = 141.4 volts
1f Vo I8 assumed to occupy the reference axis position, then
Va = 200/0°, Vae = 141.4/—135° Vo = 141 4/ —225° volta
. will be assumed that the load impedances have the values shown on the circuit
‘diagram, namely,
Zy = 10/ —60° ohms
SR Ty, = ll.ll{dﬁ' ohms -
Zo = 14.14/45° ohms
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Assuming that the line-to-line voltages remain fixed st the values given sbove, the
delta-phase currents are
200/0°

s = fo/—gp = 0/ smperes
1414/ —135°

- o
Tatejas — I0/120° smperes

1414/ —225° .
=—— — =1
Le = 314 /25° 0 /80" aaniitane

From which
Ia’a - ldh =g lﬁl = 10 +J732 - 12-4f36-2° amperes

Ly = Iy — Ly = —20 — j17.32 = 26.45/—139.1° amperes
Loe = Ly — L = 10 + j10 = 14.14/45° amperes

The voltages and currents are represented graphically in Fig. 23.

T

Fia. 23. Phasor voltages and currents in the three-phase circuit shown in Fig. 22.
The meters shown in Fig. 22 are assumed to be reactive volt-ampere meters, and
the present example concerna itself with the predetermination of their readings.
Reactive volt-ampere meter ¢ reads
Voelara 8in FT = 141.4 X 124 X-!i.n —81.2° = —1732 vars
La'a

Reactive volt-ampere meter b reads

be
Vielsrs gin EI = 141.4 X 26.45 6in 4.1° = 268 vars
" :

The algebraic sum of the meter readings is
—1732 + 268 = —1464 vars
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The actual value of X V7 sin @ as determined from the individual phase voltages and
currents is
T VIsing = — (200 X 20 X 0.866) + (141.4 X 10 X 0.707)
+ (141.4 X 10 X 0.707) = —1464 vars

Problem 8. If the reactive volt-ampere meters shown in Fig. 22 are placed so that
the current coils carry f,+, and J.+, what will be the individual meter readings in vars?
It is assumed that the potential cireuits of the meters are conneeted in such a manner
that the algebraic sum of the readings will be equal to X VT sin 8.

Ana.: Meter a reads — 1464 vars; meter ¢ reads zero.

Problem 9. What is the power facter of the unbalanced load shown in Fig. 22
as determined from X V7 sin @ and 2_ V1 cos 6?7
Ans.: 0.939.

Phasor Relations as Found from Experimentally Determined Magni-
tudes of Current and Voltage. Phasor diagrams of the voltages of
polyphase loads may be formed from measurements of the voltages by
forming in a closed polygon those line voltages which according to
Kirchhoff’s laws add to zero when tracing from one line in a continuous
direction to each adjacent line in sequence until the starting point is
reached. Line-to-neutral voltages in a star connection may then be
inscribed in the polygon so that they combine according to Kirchhoff's
- laws to form the line voltages. The principle of duality indicates a
similar procedure may be followed to establish phasor diagrams of line
and phase currents in a mesh connection. The phase relations may
then be found by solving the diagrams either graphically or analytically
and the solutions adapted to any desired sequence. See Problems 31
and 32.

Exy

Generator

Fis. 24. Loop—~urrent method of labeling. See example 11.

Example 11. Let it be required to find the branch currents L., Iia, and L of
Fig. 24 by the loop-current method if 3

Envar = 57.7/—=30°, Enw = 57.7/ —150°, and E,. = 517& volts
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Since only two loop currents are required to .;verae all the branches,
Iyl - Zyols = Ey = Eprpr + h.'aa = 100_/@_“ volts
—Znly + Zgaly = Eq = Eprpe + E,.-.g- =100/ —120° volta

“where the minus signs account for the opposite dir, tonk p!' I; and I through Z,4pm-
If the generator impedances of Fig. 24 ure negleet)

Zy = 100/0° 4 100 /00° = 11, iL_a'%Hms
Z:x = 100/90° 4+ 100/0° = 141.4 /¢5° ohms
Without regard for sign, which has been mkvn‘qa.n- of in e above voltage equations
217 = Zg; = 100/99° ohms

The voltage equations may be solved directly for Iy and I as shown below:

100 /0° —100 /%0° [
100/ —120° 141.4/45° | 103“nr15°
N =T =1 e et = 0864,/ — 48 45°
141. 4/45 100 /90°
—100/90° 141.4/45° | ke R
141.4 /45° 100 /0%
~100 /90° l 5185 / —45°
(O 1 ——— =0.232 / —108.45°
b "2'330-"bd 15° LT 22,350 /63.45° LA
e ampere
1. = =L, = 0232/71.55°, and Ln = t, -1 ;
Ei .

Example 12. In Fig. 25 are shown three losd mpedances Zon, Zpn, 80d Zen W hich
are energized by Vo, Vi (and, of course, V). - The an coil is nssumed to be codpled
magnelically to the en coil and, as shown in l"iy,ﬁ?;’:ﬂihc coefficient of coupling between

Fic. 25. See exaniple 12,

the coils is assumed to be \f/'_.i(ﬁ. If the network is to be analyzed by the loop-current
method employing I; and I in the directions shown,

Vv ———— NG pem—
aMy =M, = _53 \‘/mf.,,. X wliy = '-(‘:‘ V1 X3 =0.50hm
i

The positive sign of M is used here because the coils magnetize along a common axis
in the same direction if wound as shown and if positive values of 1) and Iz are present.
(See page 284.) Amsume Vo = 100 /0° volts and Vs, = 100 /—120° volta.
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For the network shown in Fig. 25, the basic voltage equations become
Zuly + Zyaly = Vs = 100 /0° volts
Zuly + Zaaly = Vi = 100/ —120° volta
Zu = (2+41), Zsa = (2 +33), and Zy3 = Zn = (-2 + j0.5) ohms

Note: The minus s in Z;3 accounts for the fact that Iy Gows through Zs, opposite
to Iy and +70.5 in Z,3 accounts for the fact that the (juMTs) voltage drop acts in the
same direction in loop 1 as the (jwLI;) voltage drop.

(100 + 70) (-2 + 70.5)
(—50 — j86.6) 2 +3) 56.7 + j152 _
B =re+m (2 rpsn| Antm oAb
(—2 + 70.5) @ + j3)
= 15.6&_3@:’ amperes
2 +j1) (100 + j0)
(—2 +05) (-50—j86.6)| 186.6 — ;273
I (—275 +710) ~ A N —~30.15 — 710.36

= 31.8/—161° amperes
The branch currenta follow directly from Iy and Iy as shown. in example 11,
Erample 13. The network shown in Fig. 26 represents two generators operating

" Z.14+jDa i

@u+jnn
~AN-TTT

Fi16. 26. See example 13.

in parallel. An accidental ground on the line leading out from terminal ¢ is assumed
to exist as shown and the problem is that of determining the short-circuit current
I.sc or loop current I; in Fig. 26.
A study of Fig. 26 will sh¢ ' that the self-impedances of loops 1, 2, and 3 are,
respectively,
Z)y = (7.28 +j18) = 19.4/63° ohms

Zsy = (7.28 + j18) = 19.4/63° ohms
Zy = (4.04 + j7.0) = 8.08/60° chms
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Next, the mutual impedances will be obtained from an inspection of Fig. 26 and
minus signs will be affixed to those mutual impedances that carry loop currents of
opposite directions.

Zyg = Zyy = —(3.64 4 50.0) = —9.7/63° ohms
Zey = Z33 = —(0.50 +73.0) = —3.04&% ohms
Zi3 = Z31 = 0 (Since loops 1 and 3 have no common path.)
Assume the generated phase voltages are
Eqrer = Ena = 4000/0° volts
E. = Enp = 4000/ —120° volts
Earer = Ene = 4000/ —240° volts
The resultant voltages which exist in the three loops of Fig. 26 are
Ey = Eyor — Epa + Enp — Eprpr = 0
E; =Eup —Emp + Enc — Enee =0
E; = —E,. )
= —4000/ —240° = 4000 / —60° volts

The equations for voltage equilibrium in the three meshes of Fig. 26 are
(19.1@)[1 = {9.7&8:')11 +0 =0
—~(9.7/68°)11 + (19.4/68°)1, — (3.04/80.5°)I; =0
Q - (3.04{80.5“')11 - ':8.03@)[3 = 4000/ —60°
The above equations will be solved simultaneously for Iy, I», and I, with the aid
of elementary determinant theory. The common denominator of each current
solution is
(19.4/68°) —(9.7/68°) 0
D =|-(07/68) (19.4/68°) —(3.04/80.5°)
0 —(3.04/80.5°) (8.08/60°%)
D = [—2020 — j837] — [(—117.8 — j135.4) + (733 — ;j210)]
= (—2068 — 7492) = 2122 /193.4° ohms’
The desired current in the present instance is Iy or Is.
(19.4/68%)  —(9.7/68°) 0
- (9.7 /68%) (19.4/68°) 0
0 —(3.04 5‘50.5“) {-1-(!002 —60°)

2122 /195.4°
1,131,000 /76°
!a = -2—1@ = 533/ —117.4° amperes
Problem 10. Find the magnitudes of Lo, Ios, and Lo in Fig. 26 utilizing the

ealculations of example 13 in so far as they are helpful.
Ans.: Igo = 55.6, Iy = 55.6; and Jov. = 111.2 amperes.

Iy =4
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PROBLEMS

11i. An unbalanced delta system labeled abe at the corners consists of Z, =
10/ —60°, Zy. = 5"_’9‘:, and Z.. = IUZ_BE ohms. If Vu = IOOE and the voltage
sequence is eb-ba-ae, find the vector expressions for the currents entering the terminals
a, b, and ¢. The three-phase supply voltages are balanced. Also solve for the
opposite sequence.

12. An unbalanced load labeled abe at the corners cousists of Z, = 5/40°

Zpe = 10/-30°, and Z., = 8/45° ohms. Three-phase balanced line voltages of
115 volts each are applied. If the sequence is cb-ac-ba, caleulute the complex ex-
pressions for the line currents leaving terminals a, b, and ¢ for Vs = 115,/0° volis.

13. Refer to Fig. 27. V,p and Vep represent a bulanced two-phase system of
voltage drops, the magnitude of each being 115 volts. The voltage phase sequence

‘
' ’ 23 Z,3=23 /= 80" ohms
L E

“ E.E Z.;-n@'m-
A Commmdb(

Fru. 27, Nee Prohlem 13.
)" :
is AB-CB. Vg is to be used as reference. Find Lyg, Icp, Iaps and draw a vector
diagram of the voltages and currents,
14. A wye-connected set of impedances consiets of Z., = 5&’, Zon = .5;“60°.
and Z., = 5/—60° ohms. “Find the equivalent delta~connected impedances Zas,

Zs., and Z,, which can be used ‘to replace the wye-connected set of impedanees,
16. Refer to Fig. 280 The terminals ¢'b’c” represent a balanced three-phase

$orr

gystem of voltages the sequence of which.is b'c’-a’b’-c’a’. The magnitude of each

l!

‘J
Fi6. 28. See Problem 15.
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line-to-line voltage is 230 volts. Find the readings of ammeters placed in the
a’a, b'b, and ¢c lines.
16, In Fig. 7, page 380, it will be assumed that the generated voltages are
Enar = 1m&:, Eup = lm! —!mﬂ Eye = 100;",—‘2'40“ volts and that
zn‘n'nn - (2 e jl:l ohms
Zoabn = (1 — j3) ohms
Zyreren = (3 + j4) ohms

Find the line currents Ly+q, Iy, and I... Draw a vector diagram of the line-to-line
voltages and the line currents.
17. Refer to Fig. 8, page 381. Let it be assumed that the following quantities
are known:
Enrar = 1000 4 jO = 1000/0° volts

B, = —500 — 7866 = 1000/ —120° volts
Eno = —500 + j866 = 1000 /120° volta

Zon = 20 — 720 = 28.28/ —45° ohins

Zyn = 50 + j0 = 50.0,/0° chma

Z.n = 30 + j52 = 60.0 /60° ohms

Z, = 2 + j8 = 8.25/76° ohma

Zi =1+ 71 = 1.41/45° ohms

Zn = 2.5 + j1 = 2.70/21.8° ohms

Write the expressions for L.s, Lwr, and I.., employing determinsnts and the
numerical values of the E's and Z’s specified above. Use loop currents I} = I, Iz =
Iys, and I; = I &l returning through line nn’. (Results may be left in the form of
the ratio of two matrices.)

18. A deltaconnected set of impedances consists of Za = 5/0° Zs. = 5/60°
and Z, =5/-60° ohms. Find the equivalent wye-connected impedances Zan,
Zim, and Z., which can be employed to replace the above delta-connetted impedances.

19. Refer to Fig. 9, page 382. Assume that the generator is capable of main-
taining a balanced three-phase system of voltages Eyq, Earcr, E«#; the sequence of
which is b'a’<a’c’<'b’. The magnitude of each line voltage is 100 volts. Za's =
Zos = Zoe = 0.5 +j0.5 ohm. Zas = 10/0°, Zp = 10/60°, and Zc; = 10/ —60°
ohms. Find L., Is, Las, Lie, and I with respect to Vo-pr 8s & reference.

20. Explair, by means of qualitative vector. diagrams, the operation of a three-
phase-sequence indicator that employs an induetance coil in place of the condenser
shown in Fig. 11a, page 386. Does the voltmeter read above or below line voltage
for sequence ab-ca-bc? -

21. Devise some scheme for checking the phase sequence of two-phase voltages.

23. Find the reading of a wattmeter which has its current coil in the 4’4 line
and its potential coil across the voltage V¢ in Problem 13 and Fig. 27.

28. Refer to Fig. 13, page 387. V. = 200, Vi = 141.4, and Vo = 141.4 volts.
Bequence ab-bcca, Zop = Zpe = Zea = (8 — j6) ohmse, Find the reading of each
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of the wattmeters. Find reading of a wattmeter with ita current'coil in line a and
potential coil from a to b; also one with current coil in line ¢ and potential coil from
¢ tob.

24. (a) If & wattmeter W, has its eurrent eoil in line a and its potential coil from
line a to ¢ of Fig. 1, page 373, what will it read for a sequence Voy-Vea-Vie? If an-
other wattmeter W, has its current coil in line b and its potential coil connected
from line b to ¢, what will it read?

(b) If Waand Wy were varmeters what would they read?

26. (a) Find readings of wattmeters W, and W with their current coils in lines
a and b, respectively, supplying the load of Problem 11 if the potential coils are
properly connected so that the sum of the readings will give the total power con-
sumed by the load. -

(b) Find readings if W, and W) are varmeters.

26, Refer to Fig. 20. Vau, Vi, and Voo represent s balanced three-phase
gystem of voltage drops, the magnitude of each being 200 volts. The voltage

Wa's-2b

Were-ch
Fic. 20. Bee Problem 26.

sequence i3 a’b’-b’¢’-c’a’. Two balanced three-phase loads indicated by the circles
are connected to the terminals abe as shown in Fig. 20. In addition to the two
balanced loads, a single-phase, 4-kw, unity-power-factor load is placed across the
be terminals as indicated. s

(@) Find the reading of Wara.ap and Were b

() If reactive volt-ampere meters replaced Wora.ap 8nd Were s, find their re-
epective readings.

(¢) Find the combined vector power fadtor of the composite load.

27. In Fig. 21, page 396, it will be assumed that Van, Vi, and Ve represent
a balanced three-phase system of voltages the sequence of which is a’b'c'a’-b’c".
Z., = 10@, Zyn = 10/—=60°, and Z.. = 10/90° ohms. Assume line-to-line
vuitage of 100 volts. '

(a) Find the readings of the two reactive volt-ampere meters shown in Fig. 21,

(b) Find the readings of wattmeters placed at similar positions in the circuit,
namely, at the a’a-ab and the ¢’e-cb positions.

(¢) Find the vector power factor of the unbalanced load as recognized by te
A1LEE.,

28. In Fig. 30, Vas, Vs, V.o are balanced three-phase voltages each having a
magnitude of 200 volts and a phase sequence of ab-be-ca. Determine the readings
of the two wattmeters show .1 in the figure.

28. In Fig. 81, EnoEnpEner are balanced three®phase voltages with magnitudes
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“l'rﬁ
' a Balanced
. e load
200
1732 walts
b’ b
p.f.=0.5
lagging
— 0000 -
& We'ed e

5 Fic. 30. See Problem 28.

of 115.4 volts and a phase sequence of n'a’-n'b’-n’c’. Find the following quan tities
and express all complex guantities with reference to Vap.

(a) Vas, vb:f Ve

(b) Las, Ioe, Lea.

{C) Icl'ﬂ; Ib'h Iore. .

(d) The sum of the readings of the wattmeters Wa, Ws, W. when they are con-
nected as shown.

(¢) The individual readings of wattmeiers Wi, W, W, if the common point O
is bonnected to line b'b.

Fic. 31. See Problem 29.

30. The line-to-line voltages of a three-phase system ar~ Va = 200, Ve = 150,
and V.o = 120 volts. Write the polar expressions for Vo, Ve, and V. with respect
to V.3 as reference for both phese sequences. i

31. Refer to Fig. 2. In a particular case measurcments yield Vap = 140, Ve =
120, Vea = 150, Van = 200, Vip = 80, and V. = 1042 volts. Draw*the qualy
tative phasor disgram of the voltages for sequence abe, and determine analytically
the complex expressions for each of the voltages with respeot to Vas as a reflerence,’

32. Refer to Fig. 1. In a particular case measurements yield lors = 20, Joes = 14,
Tore = 15, Iy = 12, Iy, = 2, and I.s = 15 amperes. For the linecurrent sequence
of a'a—c'e-b'b solve the qualitative phasor diagram anslytically, and determine the
complex expressiona for each of the currents with respect to J.s as a reference.

33. Calculate the line currents in Problem 16 by the loop-current method.

34. Refer to example 13, pages 402403, incltding Fig. 26. Sclve for I, Iz, and
1; by the loop-current method, neglecting the resistive components of all branch im--
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pedaners for a voltage sequence Eno-En~Eas. (Results may be left in the form of

the ratio of two matrices.)

36. In Fig. 32,.Las = Lu = 0.01 henry and the eaeﬁ‘imnt of coup]mg is 0.5.

Xe=100

Assume no resistances or inductances except
as indicated on the figure. The sequence of
the balaneced driving voltages isn’a’-n't'—n'c’,
and Enor = 57.7/90° volts. For w = 1000
radians per second calculate the line and
phase currents for the load. Use Maxwell's
cyclie-current method.

36. Set up the determinant form of the so-

Fh."- 32,

Zee Problems 35 and 36.

lution for /.. in Problem 35 if 3 ohms pure
resistance is inserted in each line to the load
and the same sequence and reference as

:nqﬂmﬁul in Problem 35 are employed.  For uniformity in checking results, use loop

currents as follows:

Loop current Jy = Tgrgeer

Loop current Jg = Iccepse

Loop current J3 = Jantbiba
37. Solve for [_, va, Ten, and Too in Fig. 33 if Epeor = 1350 + j0 volts Epp =

—675 — 71170 vBlts, and Eyrer

= —675 4 j1170 valts.

a' l|'| a
: — AN~
\ . (0.3+4]05) N
L (50—j20) N
(0.14]1.5).12 (04531 1 i
- (0.1+]1.5 N (0.14+j1.5 N Soad
En'e! En'v' Iv'
c ’
b (0.9 +j0.5) 1 b (1004j0)n
i I
(0.9+4i0,5) N
Fis. 33. BSee Problem 37.



chapter X
Transmission Line Calculations

Line Constituents. A transmission line consists of the equivalent of
two or more electrical conductors for the purpose of transmitting
electric energy. For single-phase transmission the line may consist
of a single conductor with a ground return or of two ordinary wires.
For three-phase transmission, three wires are generally used although
in some installations a neutral wire or its equivalent is employed. The
wires of a transmission line are separated by some dielectric as air for
overhead transmission, or by other insulating materials as in cables.
Since the two conductors are separated by a dielectric, they form a
condenser, the capacitance of which is uniformly distributed along the
wires. When a difference of potential is applied Letween the wires,
charging current flows. This effect could be simulated by a large
number of condensers connected between the two wires as shown in
Fig. 1. V, denotes the sending-end voltage, and V', represents receiver-
end voltage. A representation of this kind is approximate because it
shows the shunted capacitance lumped at certain points instead of being

uniformly distributed. With-

j_ i _(_ _L _L J_ T in reasonable limits of accu-
i il
g

a
T asouable: int
I, T T T Ir racy it is permissible to make

. : line calculationson thebasisof
Fio. 1. Distributed shunted capacitance of a lumped {'afmcitance. Under
transmission line simulated by a large oumber of the conditions of relatively
thunted condensers. low voltage and relati\'ely
short distances the shunted capacitance can even be neglected without.
seriously affecting the accuracy., 5
In addition to shunted capacitance the line has series resistance and
inductance or inductive reactance. Thus the sections between con-

Y -L v
o A o S I I

Fic. 2. Modification of Fig. 1 to account for series resistance and inductance of &
transmizsion line.

densers, like «b and a’b’, be and b't’, ete., form loops through which flux
will be set up by the mmf of the current flowing in the wires. These sec-
tions also have resistance. Hence, to account for these parameters,
Fig. 1 should be modified to appear as shown in Fig. 2. Strictly speak-
9 :
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ing, each condenser should be shunted by a non-in-uctive resistance to
account for any leakage of current from conductor to conductor because
of imperfect insulation, moisture content of the sir, and other factors.
On a clear dry day the leakage is so small that it may usually be ne-
glected. The greater the number of sections, like those shown in Fig. 2,
into which the line is divided, the more nearly it will simulate the actual
line which has uniformly distributed parameters. If more than two or
three shunted condensers are used, it is just about as simple to calculate
the line by assuming uniformly distributed parameters instead of con-
centrated quantities. Three of the usual arrangements of concentrated
parameters will be considered.

The T Line. The T representation of a line is shown in Fig. 3. When
all the shunted capacitance, C, of the line is concentrated in one con- .
denser and half of the total series impedance, Z, is placed in each arm
as indicated in Fig. 3, the circuit is known as the nominal T line. It is
called nominal because the representation is only approximately correct.

When the circuit parameters . z I I
indicated in Fig. 3 are multi- _——+ & a z Lt
plied by certain hyperbolic VI ! . 1
correction factors,! the T ' ;i o
thus formed represents the b

line exactly between termi- Fio.3. T representation of & transmission line.
nals (V, and V,) and it then

becomes the exact equivalent T.. Calling Y the admittance due to the
shunted capacitance C and using the quantities as labeled in Fig. 3, the
determination of V, in terms of the receiver voltage and current is made

as follows.
z
* Vo = V. + IrE
Iab = VabY
Ia=Ir+Inb=Ir+Y(vr+Ir'§) (1)

V.= Va4 L2
5= ¢b+ 12
/ Z A
il : YZ
vl +u(z+ %) @

‘Lfjee::, Hyperbolic Functions Appijgd to Electrical Engineering,” by A. E. Kennelly
or ** Electric Circuits Theory and Appseations,” by 0. G. C. Dahl.
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From equation (1),
L=1(1+32)+v, ®

Equations (2) and (3) give the sending-end voltage and current in
complex form. As indicated, all quantitiesin the equations must be ex-
pressed in vector form. The

receiver current must be prop-
erly related in complex form
to the receiver voltage. The
power factor of the load deter-
mines the angle between V. -
and I,. V, and I, being in
complex form, power input
Fio. 4. Vector d.'lam;m usl T representation in may be determined in the usual

T way. The vector diagram of
the T circuit of Fig. 3 is shown in Fig. 4. This diagram follows the
ahove equations for caleulating V, and L.

Problem 1. A 60-cycle, 3-phase line 200 miles long has & shunted capacitance to
neutral per mile of 146 X 10~ uf, an inductive reactance of 0.78 ohm per wire per
mite, and a resistance of 0.42 ohm per wire per mile. The receiver voltage is 100,000
volts between lines. Use the nominal T line, and find the sending voltage and

current for an 0.8 power-factor lagging load requiring 75 amperes per line at the
receiver. Ans. 64,600 /7.4° volts, 62.3 /24 amperes.

The r Line. If one-balf of the total line capacitance is concentrated
at each end of the line and all the series resistance and reactance are

concentrated at the center as I
shown in Fig. 5, the resultant —> ¢ z
configuration portrays the nomi- l y | e 1= vl
nal = representation of a trans- I' Z Ti y
mission line. Like the T line it d b
is possible to alter the param- p,; 5 » represeatation of a transmission lige.
eters by applying hyperbolic
correction factors to obtain & = circuit which yields the correct relations
between terminals. A = circuit thus corrected is called an exact equiva-
lent .

The = circuit is easily solved through a procedure similar to that
employed for the T circuit.

Y
chﬂer

-27
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v.=v,+1mzmv,+(1,+v,§)z

= V. (1 +—22—Y) +1,Z (1)
Il - Icn + ch‘

I, +V, - +|: (I+ZY)+IZ]
I (1 + %) + V.Y (1 + T) (3)

Equations (4) and (35) are the solution of the x representation of a trans-
mission line. The vector diagram of the r circuit is shown in Fig. 6,
and the above calculations follow this diagram.

o
i
I

—
-
i

I

Fic. 6. Vector diagram of r lize i Fig. 6.

Problem 3. Use the nominal »-line representation and solve Problem 1.
Ans.: 63,300 /7.4° volts, 59.75 /22.2° amperes.

The Steinmetz Representation of the Transmission Line. Another
representation of the transmission line suggested by C. P. Steinmetz
which yields approximately correct results is shown in Fig. 7. In the

i, i : i,
— —
*lg: _." *le: — "ltl

¢ T¢ e ThE

Fia. 7. Steinmets representation of a tranamission line.

figure, Z represents the total series impedance and C the total shunted
capacitance. The student can work out the details of the solution by
following the methods employed for the T and = lines. This circuit and
the solution are slightly more cumbersome, but the results are generally
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somewhat closer to the theoretically correct values than those obtained
from the use of the nominal T or = sections. * The calculations must,
follow the vector diagram shown in Fig. 8.

I,

Fic. 8. Veetor diagram of Fig. 7.

Problem 8. Derive the equations for the sending-end voltage and current in
terms of the receiver

quantities for the Steinmelz representation of & transmission
line.

ZY | 77y zY
- ¥, - 1 1
Ans.: V, (1+2+3&)v +z(1+6)

5ZY Zv? ZY z*?
I, =(1+‘§’6—+-‘2—i-ﬁ—)wr+(l + 2 +—36—)I-

Problem 4. Solve Problem 1 according to the Steinmetz representation of the line
Ans.: 64,900 /7.3° volts, 60.9 /22.9° amperes.

Exact Solution of a Long Line with Uniformly Distributed Parameters.
In the line shown in Fig. 9 et the scries impedance per mile be Z, the
shunted admittance per mile Y, and the length of the line considered 1.

2417 [~di =
-3_2; v,
Ydi’:i';" S

Fio. 9. Circuit used for deriving the exact sclution of a
transmission line.

The elementary voltage drop in the element dl is the current I in the ele-
ment times the impedance Z dl of the element. Considering only the
space variation of V and I,

av = 1Z dl (6)
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The current leaving the line over the length dl is the voltage V times the
shunted admittance Y dl for the element.. Thus

gﬂ =VYd (7)
Eguations (6) and (7) are solved for V and I as follows:
av :
a- 1Z (8)
dl
= VY 9)

Differentiating equation (8) with respect to 1 gives

d*v dI

'-EP- = Z El‘ (10)
Substituting equation (9) in equatien (10),

a*v
~& = IV (11)

This is a linear differential equation of the second order, the solution of
which can be shown? to be of the form

V= ™ 4
where Cy and C are constants of integration and m, and m3 are roots of
the auxiliary equation, namely,
m’ = ZY
m=+VZY or -VZY (12)

The two roots m; and mj are respectively +VZY and —V'ZY. There-
fare

V = C1™  Ca™!

- /I GV (13)
From equation (8),
1dv
I= Z E (14)

1 Bes any book on differential equations, such as * Differential Equations,” by
D. A. Murmay, p. 63. ="
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Differentiating equation (13) and substituting the result in (14) gives

{ Lo VEY o GYEY v
ai Bk sy

- OWVATZ T - CVITZ Y (15)

The constants of integration Cy and C; in equations (13) and (15) can
be evaluated from known boundary conditions. In this case the bound-
ary conditions at the receiver are assumed to be known. Thusin Fig. 9

when

I=0 (16)
I=1 (17)
and Y=V, (18)

Substituting equations (16), (17), and (18) in equations (13) and (15),
V.=C +C3 (19)
I.- b C] VY; -C; \"Y;z (20)

Equations (19) and (20) are now solved simultaneously for Cy and Ca.
Multiplying equation (19) by VY/Z gives

V,VY]Z = C, VY/Z + C, VY/Z (21)
Adding equations (20) and (21),
1, + VY/ZV, = 2C, VY/Z
4 Cy = "'_"’1;_____ VZ/Y (22)

Subtracting equation (20) from equation (21),
V. VY/Z -1, = 20, vY/Z

V, - LVZ/Y
2

Cay= (23)

It is apparent that C; and Cj3 in the above equations are complex
coefficients and might have been written in bold-face type. The ex-
pressions for voltage and current at any distance I from the receiver are
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obtained by substituting equations (22) and (23) in equations (13) and
(15). Then

Y- (%_.___ hz‘/Y) VIVL (..—___V’ = I; Z/ Y) CVIEL (24)

g (Tt VIR VY ?'Z) b (&:1;1?2) VAL (25)

Equations (24) and (25) may be used as the working equations for the
exact solution of long lines. Under certain condition- it is convenient
to have equations (24) and (25) expressed in terms of hyperbalic
functions. This is done as follows,

From equation (24),

Vs _‘%.'Ey’ﬁ:_g_ !'_z'_'gév’ﬁl +Y§f¢“‘\/ﬁl sl .!'_zz_ﬂt—x/z_n

VIYI —/ZY¥I MR BV A T
k5 vr (L—-%E_-) + Ir z”.Y (E—_‘ﬂ__)
A

Sinee the analytic definition of

e __ —#
sinh § = - .
] —F
and cosh 8 = £ kg
V =V, cosh VZYl + I, VZ/Y sinh VZY] (26)
Similarly
I =1, cosh VZ¥L + V, \'Y/Z sinh VZYI (27)

Equations (26) and (27) are particularly convenient Lo use if tables of
conplex hyperbolie functions are available; otherwise, equations (24)
and (23) may be more convenient.?

Physical Interpretation of Equations for Exact Solution. Equations
(24) and (25) may be modified somewhat to make their physical
significance more apparent. Since VZY is a complex expression,
we may substitute an expressjon such as (& + j3) for it. Also, letting

¥ See “ Tables " or ** Charts of Complex Hyperbalic Functions,” by A. E. Ken-
nelly, Harvard University Press.
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Zo = VZ/Y and Yo, = VY/Z, equations (24) and (25) may be written:

V= (V, +2I,Zo) latidl (V' "2 I'zﬂ) (et (28)
(o (N0 o 4 (VTN i
Recognizing that @+ = (@!0%! and that e a3t = algisl
we may write equations (28) and (29) as follows:
, V = (EELEE) PLERL 4 (V' “2 LZU) galeidt (30)
fis (‘_w}?‘?_'fg) att 4 (1, —2v,Yo) ol -

The quantity VZY = (a + j8) is called the propagation constant.
It determines how the wave is propagated with reference to change in
magnitude and phase along the line. Equation (30) consists of two
parts. The first, (V___, -{_2['20
creases in magnitude (¢! increases) as we go from the receiver to the
sending end or it becomes smaller as we proceed from the sending to the
receiver end.  This term must therefore represent a voltage wave which
is being propagated from the sending to the receiver end. Hence it is
called the direct wave or direct component. The direct component is
analogous to a wave started in a body of water. As the wave leaves
the source it becomes smaller and smaller. The second part of equation

v, - 1Z _
(30) is ('—i-—g) ' 8 As we procced from the load to the

)e“’ 3 represents a quantity that in-

generator this component becomes smaller, since I increases and <
decreases.  Hence this wave must be originating at the receiver, and it
1s therefore called the reflected wave. It is analogous to the phenomena
in a body of water as a wave strikes a bank. A reflection occurs, and a
wave is then seen traveling away from the bank with gradually diminish-
ing magnitude. Since, for a given distance of travel, a determines the
magnitude of the wave, it is a measure of how much the wave is in-
creased or decreased in magnitude, or, in other words, attenuated. For
this reason it is called the attenuation constant or factor. The at-
tenuation faetor is the real part of the propagation constant. The
factors ¢! and ¢ will be recognized as operators which produce
opposite rotations. The operator ¢*' causes the direct component to
advance in phase from its position at the load as we proceed from the
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receiving to the sending end, while ¢ 7# causes the reflected wave to fall
behind its phase position at the receiver. Since § determines the
change in phase for a given distance I along the line, it is called the
phase constant. It is sometimes called the wave length constant be-
cause it determines the distance along the line over which a complete
wave is subtended. This will be explained in more detail later. The
loci of the variation of the direct and reflected waves can be represented
as spirals, as shown in Fig. 10. The sum od of the direct and reflected
waves of voltage at any point along the line such as at I gives the re-
sultant voltage at that point. When 8l is 90°, the direct component
of voltage oa is opposite to the

reflected component ob. The |
resultant oc, which is the volt-
age of the line at this 90° or
quarter-wave-length point, may
be very small because of the
cancellation effect of the two
waves. A generator producing
a low voltage, if connected at
this point, could subtend a com-
paratively high voltage at the
receiver. This is essentially a
resonance phenomenon and is
called quarter-wave resonance.

As Bl increases from this 90° hﬂi‘ mi Variation of direct and reflected waves
. . in.  of voltage with respect to the line angle gl for
point the voltage of the line in- ¢ e kot

creases until Bl becomes 180°.

Here the direct and reflected waves add. This phenomenon is called
half-wave resonance. As Bl increases to 270° the direct and reflected
waves are again opposite (as at quarter-wave)and we then have three-
quarter-wave resonance.

Surge I'mpedance. Inspection of equation (28) makes it apparent
that dimensionally I,Z, must be a voltage. Hence Z; must be an
impedance. Further evidence of this fact is obtained when it i3 re-
membered that Z, = V/Z/Y. The reciprocal of ¥ is dimensionally
an impedance, and the V'Z/Y then becomes V impedance? which is an
impedance. Hence the quantity Z, = VZ/Y is called the surge im-
pedance of the line. The reciprocal, V'Y/Z, is called surge admittance.
The surge impedance is the impedance offered to the propagation of a
wave along a line. In effect it is the impedance an advancing wave of
voltege or current encounters as it travels along the line,
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Terminal Reflections. The receiver voltage V, is I,Z, where Z, is
the impedance of the load. If Z, is made equal to Z, the receiver volt-
age V, would equal I,Z,. Then the reflected wave in equation (30)
is zero and the equation of the voltage along the line becomes

V= (V.- -; V) @lgBl = y el bl (32)

This variation i8 exponential in character, and no terminal reflections
exist. The voltage, V, increases exponentially in magnitude as we
proceed from the receiving end to the sending end. Simultaneously
with the increase in magnitude there is a uniform advance in phase of
V with respect to the load voltage V,. The wave encounters the same
impedance (surge impedance) at the load as it did while advancing
along the line. This termination makes the line behave as if it were
infinitely long. Hence a line terminated in its surge impedance is
sometimes called an infinite line. In communication work, terminating
a line in an impedance equal to the surge impedance is sometimes called
matching,

If a long line is short-circuited at the receiver ¥, = 0 and equation
(30) becomes

V= I zo ¢ul B __ I :D '—ﬁlt—fﬁl (33)
Where lis O,
Vi = 2o _IZo
2 2

= direct wave — reflected wave

Thus it may be said that the voltage is reflected with a change in sign.
The current wave under the same conditions becomes
I, I,
Lo=—+—
o =5+5
= direct wave + reflected wave

It follows, then, that the current wave is reflected with the same sign
or the direct and reflected waves of current add arithmetically at the
receiver.

If the line is open-circuited at the receiver, I, = 0. Imposing this
condition on equations (30) and (31) shows the voltage wave to be
reflected with the same sign and the current with a change in sign.

Velocity of Propagation. In the foregoing equations, distance along
the line, namely J, has been considered the independent variable. The
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other independent variable, time, has been tacitly taken into account
by the use of vector quantities. In the evaluation of the velocity of
propagation the interrelation of time-phase and space-phase effects
must be recognized.

It is evident from the use of 8 in the foregoing equations that this
quantity determines the phase shift of V or I per unit length of line, and
as such it represents a number of radians per unit length of line. The
length' of line required to effect a complete cycle or 2x radians of phase
shift is

2x . 4
A= Fumts (34)

where X and B8 are expressed in any consistent set of units. To simplify
visualizing the phenomenon, consider only the wl!age wave.

Since X is the distance for a phase shift of 27 radians, it is the distance
along the line (see Tlig. 11) froin one zero value say at a on the voltage
wave to a corresponding zero value at b, 2= radians or 360° from the first
zero point. The distance X thus represents the length of line over which
a complete space wave or cycle of voltage is subtended, and in conse-
quence )\ is called the wave length of the propagated wave. As time

Distance |

b * a

Zero a!ul of
voltage wave /
A Units of length

Angular measurement |
af 2= radians

. Fia. 11. A space wave or cycle from a to b.

elapses, the alternating voltage at point a will rise to a positive maxi-
mum, decrease to zero, then increase to a negative maximum, thence to
zero. In this length of time, point b on the wave will have arrived at a
in Fig. 11. In other words, during this length of time, the time for one
cycle, 1/f, all points on the wave will have traveled a distance of \. The

velocity of travel or propagation must then be or M units of length

A
1/f

persecond. Hence the velocity of propagation is

=\ = *2*;! (35)
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Equation (34) shows that the wave length for any line is determined by
the quantity 8. Hence 8 is often termed the wave-length constant,
and it may be evaluated in terms of the circuit parameters from the
original substitution, namely, VZY = a 4+ j8. Since Z = R +iX
endY = g — jb, it follows that

a+j8 = V(R +jX) (g — jb) (36)
a® + j2a8 — 8* = Rg — jRb + jgX + bX |

a® — B = Rg + X (37)

2a8 = gX — Kb (38)

" Solving equations (37) and (33) simultaneously for B gives

\/:tZY“ (Rg + bX)
8= 2

(39)

+ The preceding derivation shows that all terms in equation (39) are
expressed algebraically and not in complex form. All the quantities
are per unit values, that is, per centimeter, per mile, ete.

It is interesting to find the velocity of propagation under the condi-
tions of zero serics resistance and a negligibly small value of g. Im-
posing these conditions gives

8= :I:b.‘(z—- bX e

The two signs before ZY in equation (39) and before bX above resulted
from the solution of a quadratic equation. As often occurs, one of such
golutions has no physical reality. If the plus sign were used in the al-
gebraic manipulation above, 8 would be zero, which would in tumn
give an infinite velocity of propagation. Obviously, this is impossible.
When making arithmetic computations the proper sign to employ is
that which will give a physically possible and plausible result. Had the
equations been based on g + jb, it would have been necessary to use the
plus sign before the ZY and bX above. Since b is the shunted suscept-
ence due to the line capacitance, it must carry a negative sign upon
substitution of a numerical value for it in accordance with the con-
ventions employed in this book. Substituting the value of 8 above in
equation (35) gives

2xf 2xf 1
- = f = =
vVbX 2xfC X 2xfL w/ff(o” W ad g1 6

P =
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In equation (40) v is in miles per second if L is expressed in henrys per
mile and C in farads per mile. If one further assumption is made in
equation (40), namely, that the inductance due to the flux within the
condnctor is negligible, the velocity will be the same as that of light.
This is illustrated by example 2, pages 429-433. :

Example 1. An open-wire telephone line has a resistance of 10.26 ohms, an in-
ductance of 0.00366 henry, and a capacitance of 0.00822 uf per loop mile (one mile
of outgoing plus one mile of return conductor). Caleulate the velocity of propa-
gation for a 200-cycle and also for a 2000-cycle frequency, assuming that the values of
R, L, and C are the same at both frequencies. Assume g = 0 in both ceses.

At 200 cycles

X = 2r 200 X 0.00366 = 4.6 ohms per loop mile

Z = V10267 + 4.6° = 11.22 ohms per loop mile

b = —2x/C = —25200 X 0.00822 X 10~ = —10.32 X 107* mho per loop mile

Y = 10.32 X 107° mho per loop mile

" \(in,m % 10.32 % 10~¢— (—10.32 X 107*X 4.6)

2

]

_ fress : L s
2xf 2¢ 200

A 9.05 X 103

At 2000 cycles
X = 2+ 2000 X 0.00366 = 46 ohms per loop mile
Z = +/10.267 + 462 = 47.1 ohms per loop mile .
b = —2xfC = —2x2000 X 0.00822 X 107°
= —103.2 X 108 mho per loop mile
Y = 103.2 X 10~ mho per loop mile
\/ﬂm % 103.2 X 10~ — (—103.2 X 1078 X 48)
. 2

= 139 % 10° = 139,000 miles per second

—6
g i : 10 693 x10°
2¢f _ 2r 2000
8 693 x107°
1f parameters per mile to ground or neutral were used, Z would be halved, ¥ and
t doubled and 8 would be the same,

Confusion sometimes arises as to what the velocity of propagation
refers to physically. The velocity of propagation of & voltage or current
wave is the velocity at which the impulse or pressure travels. It i
not the velocity of current flow. The velocity of current flow for normal

_current densities in copper is very low, although the velocity of the
pressure wave is high. The phenomenon is somewhat analogous to the
application of pressure at one end of a long pipe filled with water. The

= 181,400 miles per second



Ch. X TRANSMISSION LINE CALCULATIONS 423

pressure appears at the far end of the pipe very soon after it is applied at
the near end. 'However, the actual rate of flow of water in the pipe
may be very low, especially if only & comparatively small stream is per-
mitted to emerge at the far end.

Determination of Transmission Line Parameters. 1. Inductance. .
The inductance per wire is used in transmission line caleulations. It may
be derived as follows. Consider two parallel conductors as shown in

/
G

\

|

Fi1c. 12. Part of a two-wire line.

Fig. 12, each having a radius r and separated a distance D between
centers. The fundamental equation of inductance when permeability
is constant is

L= {V}e 10~° henry
where I is in abamperes and ¢ is in maxwells. The field intensity
based on the law of Biot-Savart, at a distance of z centimeters from a
long straight conductor carrying a current is 2/ /z gilberts per centimeter,

which in air is numerically equal to the Aux density. Referring now to
the open-wire line shown in Fig. 12,

dé = (-21) (I dz)
z

The total flux that exists outside of conductor A which causes an in-
ductive effect on conductor 4 is

D D
& =f LT
r L - o

K -’%m-' - 2110;.?10-4

. = 2 X 2.3026l logm-? 10~° henry (41)

where I is expressed in centimeters.
28—
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The flux included from z = (D — r) to z = (D + r) has some effect
in inducing a net emf in the two conductors connected in series to form
& coil. The effect is due to this flux linking all of conductor A and
only part of conductor B, Integrating between the limits z = r and
z = D includes the full effectiveness of the
flux from z = (D — r) to z = D in caus-
ing the inductance. This balances the par-
tial effectiveness of the flux from z = D
to z = (D -+ r) which is neglected in
taking the limits from r to D. The flux
from z = (D + r) to z = = links both con-
ductors and therefore produces equal and
opposing emf's around the loop. Hence
it has no net inductive effect. Equation '
(41) gives the inductance of conductor A
due to all the flux on the outside of con-
ductor A which is effective. The flux within the conductor causes
some inductance which may be calculated as follows.

Assume that the current in conductor 4 is uniformly distributed
across the cross-section. Let I’ be the current per unit area. Refer
to the cross-section of conductor A shown in Fig. 13. The total current
responsible for the mmf causing flux through the element dz is »z?I’.

mmf = 4xNI = 4x (x2%]')

If the permeability of the conductor material is unity, the reluctance of
the flux path formed by the element dz and a length of conductor 1 is

Fia. 13,

2nz

] = T & units when z is in centimeters
2.27s
d¢ = 2 LA, 2xzI'l dz maxwells
(ldz)

The flux d¢ links only the fibers of the conductor from the center to a
distance z or Kx2z? fibers. To obtain the flux which links the whole
conduetor that produces the same effect as the actual flux which links
Kxz? fibers, it is only necessary to find the flux linking Kxr? fibers
(the entire conductor), which is equivalent to the flux d¢ linking Kxz?
fibers. Calling the flux in question d¢., we have for equivalent linkages

" dKwr® = dpKxsd
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Heuce

dé, = :—:(2.»:11 dz)

[ena_ (s ()
® o r? r? 4

il

=

But #r?I" is the total current I. Therefore

n
¢¢‘2

The inductance due to this flux is

No, 1XxXI1w*® [10* ;
7 107° = i 3 henry (42)

The total inductance of conductor 4 is the sum of equations (41) and (42).

Lg-

l D
L=1L,+ Ly = [§+ 4.6052( IOSIU-;] 107° henry (43}

The inductance per mile is
Lei, = 0.5 X 5280 X 30.48 107°

+ 4.6052 X 5280 x 30.48 X 10~° long

r

= 0.805 10~* + 0.741 x 107 logm%hc;nry (44)

Equation (44) is the working equation. Usually the reactance is de-
sired. It is found by multiplying the values obtained from equation
(44) by the angular velocity 2xf.

2. Capacitance between Wires and lo Ground. The defining equation
for capacitance is C = Q/V. The defining equation for difference of
potential V' is

- W work

Q charge

The difference of electrostatic potential between two conductors is the
work done in carrying a unit charge from the, surface of one conductor
“to the other. Work is the product of force and the distance through
which the force acts. By definition, if all quantities are expressed in the
cgs electrostatic system of units, the force on & unit, charge is numerically
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equal to the electrostatic field intensity. The electrostatic field in-
tensity at point p, Fig. 14, at a perpendicular distance of r centimeters
from a long straight wire is found as follows.

Let all quantities be expressed in the cgs electrostatic system of units,
and let o be the charge per unit length of wire. From Coulomb’s law
f = QQ'/d® dynes. Hence the force on & unit charge at point p due
to a length of conductor dl is

df’ = 1 )::tﬂ

where p is the distance in centimeters from p to dl. As 8 varies between
minus and plus 90° (on the basis of an infinite length of wire), it is

Unit charge

A D-x) 3

-dx
D 4

Fic. 14. F1ra. 15.

apparent that all the components of df’ parallel to the wire add to zero.
Therefore only the components perpendicular to the conductor need be
added to obtain the resultant force on the utnit. charge.

df = df’ cos @
od opdd odf

= -—-cos f = =—
P [ P

o df o
= = - co8
rfcosd 1 o

=2
I = Ecosad's-zjdynes (45)
—-x 3 r T
The force on the unit charge in Fig. 15 is due to the effect of conductor
A (say + charge) and that of conductor B (negative charge if A is

positive).

20

ar-

20
D—z

J=fa+TIs -?;:'+

s =
' 2
D-1z

(48)
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dW=fd:-(2£+ s )d:z

D—zx

D= (24 20 ) D-r

= ‘ir = f _ d_z = 4 I e
* # (z ¥ D — £ B (47)

The charge on the line for a length I isol. Therefore
_Q __ ol _ 1
C“f;" e T, c&s esu (48)
4q log, 4 log,

where r now represents the radius of the conductor and is not the same
as in the derivation of equation (45). All quantitics in equation (48)
are in the cgs or absolute electrostatic system of units, giving € in esu

or statfarads.

Equation (48) gives the capacitance between two parallel wires
The capacitance to ground or neutral is usually desired in the calcula-
tion of transinission lines. Since the plane of neutral potential is
symmetrically located between positive and negative charges (assuming
2 uniform dielectric such as air), the potential between one wire and
neutral * or what is also ground potential, is one-half of the potential

4 The preceding and following equations of capacitance are only approximately
correct because they are based on several assumptions which are only partially ful-
filed. First, the charge on the conductor is assumed uniform. This assumption
requires in part that the conductors be removed an infinite distance from all charged
bodies and that the conductors are circular in shape. Under such conditions the

distribution of the electrostatic field is pictured in Fig. 16.

Equipotential surfaces are those in which all electrostatic

lines of force enter and leave perpendicularly. One

equipotential surface X.X' is shown in Fig. 16. This

surface is at a distance halfway between the two con-

x x’ ductors and is therefore at a potential midway between
the positively and negatively charged conductors. Such

a surface is said to be at zero potential, and it is some-

times called the neutral plane between conductors, or

gimply the neutral. If the earth is considered a conduc-

. . . . tor and to be at zero potential, it may be assumed to be
hi—' .}?'iu ,Eiu;ﬁ:etﬁ?il;ﬂ;?i the same as the equipotential plane XX’ Hence the
way between the posi- potential and capacitance to earth or ground may be

tively charged top and taken the same as that to the equipotential surface XX’

Degatively charged lower in Fig. 16 provided D/2 is relatively small compared

; with the physical height of the conductor above actual
ground. Even though all the above assumptions are not completely fulfilled, the
equations given yield results which are sufficiently aceurate for most work concerning
transmission lines. For more accurate derivations of capacitance the reader is
referred to works on electrostatics and electrodynamics.

-28
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[given in equation (47)] between wires. Hence

Vo= %(40 log,D — 1') = 2¢ log, (D : r)

l l
and C, = 4 = esu (49)

B .— =
27 log, 2 log, Rt

Expressed in farads per mile, equations (48) and (49) for the capacitance
between conductors and between one conductor and ground become:
1940 % 1071
Clarads per mile = S = (50)
logio

3880 x 1071
C'o tarnds per mile = —“—5—_],— (51)

ng]Q

Equations (50) and (51) are the working equations. As long as D and
r are expressed in the same units, the actual units are immaterial,
Equations (44), (50), and (51) form the basis of tables wherein values
of L or C may be immediately determined when the size of wire and
spacings are known. Samples of tables where the quantities are ex-
pressed in units per thousand feet are shown in Tables T and I1.5
When equations (44), (50), and (51)' are applied to three-phase
transmission the distance D is that for equilateral spacing, as shown in
Fig. 17. These equations are often applied to plane spacings, as shown

£y e

Fia. 17. Equilateral spacing of a trans- Fic. 18. Plane spm‘:mg of a transmission
mission line. line,

in Fig. 18, in which cases D is taken as the geometric mean distance,
that is, D = ‘\/D1D203 The results thus obtained are sufficiently
accurate for most computations.

® Reprinted by permission from “ Electrical Engineers’ Handbook: Eleetric

Power,” fourth edition, edited by Pender and Del Mar, pp. 14-39 and 14-34, Johr
Wiley & Sons, Inc., 1949,
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Tasre 1
SELF-INDUCTANCE oF Sorip Non-MacNeric Wires®
Millibeorys per 1000 FEET of each wire of a single-phase or of & symmetrical thres-phase line

Sise of - Tnchea between Wires, center to conter
Wire, D".'.n' of
eir mils or Wire,
AW.C. inches I 3 ] 9 12 18 24 30
1,000,000 | 1.0000 0.05750 0.1245 | 0.1667 | 0.1915 | 0.2090 | 0.2337 0.2512 | 0,2648
750,000 | 0.8660 0.06627) 0.1332 | 0.1755 | 0.2002 | 0,2178 | 0,2425 | 0, 2600 0.2736
500,000 | 0,.7071 0.07863) 0.1456 | 0.1879 | 0.2126 | 0.2301 | 0.2548 | 0.2724 | 0.2860
350,000 | 0.5916 | 0.08550{ 0.1565 | 0.1987 | 0.2235 | 0.2410 | 0.2657 | 0.2832 | 0,2968
250,000 | 0.5000 0.09976/ 0.1667 | 0.2090 [ 0,2337 | 0.2512 | 0.2760 | 0,2935 0.3071
0000 | 0,4600 0.1048 | O, 1718 | 0.2140 | 0.2388 | 0,256 | 0,2810 | 0.2986 0.3122
000 | 0, 4096 0.1119 [ 0.1789 | 0.2211 | 0.2459 | 0,2634 | 0.2881 | 0.3057 | 0.3193
00 | 0.3648 0.11%0 [ 0.1860 | 0.2282 | 0.2529 | 0.2705 | 0.2952 | 0.3127 | 0.3263
0| 0.3249 0.1260 | 0,1930 [ 0,2353 | 0,2600 | 0,2775 | 0,3022 | 0.3198 | 0.3334
1| 0.2893 0.1331 | 0.2001 | 0.2423 | 0.2671 | 0.2846 | 0.3093 | 0.3269 | 0.3405
2] 0.2576 |- 0.1402 | 0.2072 | 0.2494 | 0.2741 | 0.2917 | 0.3164 | 0.3339 | 0,3475
4| 0,2043 0,1543 | 0.2213 | 0.2635 | 0.2883 | 0,3058 | 0.3305 | 0,3481 | 0.3617
6| 0.1620 0.1685 | 0,2354 | 0.2777 | 0.3024 | 0.3199 | 0.3447 | 0.3622 | 0.3758
8] 0.1285 0.1826 | 0.2496 | 0.2918 | 0.3165 | 0.334] | 0.3588& | 0.3763 | 0.3899
10| 0.1019 0.1967 | 0.2637 | 0.3060 | 0.3307 | 0.3482 | 0,3729 | 0,3905 | 0.4041
12 ) O.0BOB| | 0,2109 | 0.2778 | 0.3201 | 0.3448 | 0.%23 ﬂ,’ﬂ?r 0.4046 | 0,.4182
|4 | 0.06408 | 0,2250 | 0.2920 | 0.3342 | 0.3590 | 0.3765 | 0.4012 | 0.4187 | 0.4323
161 0.05082 | 0.2391 | 0.306) | 0.3484 | 0.3731 | 0.3906 | D_ 4153 | 0.4329 | 0. 4465
Size of Feet between Wirea, center to eenter
“'i‘n,.
sl 3 4 s 6 8 10 15 20 25
1,000,000 | 0.2760 | 0.2935 | 0.3071 | 0.3102 | 0.3358 | 0.3494 | 0.3741 | 0.3916 0.4052
750,000 0.2847 | 0.3023 | 0,3159 | 0.3270 | 0,3445 | 0,358] 0.3528 | D.4004 | 0. 4140
500,000 | 0.2971 | 0.3146 | 0.3282 | 0,3393 | 0.3569 | 0.3705 | 0.3952 | 0.4127 | 0, 4263
350,000 | 0.3080 | 0,3255 | 0.3391 | 0.3502 | 0.3678 | 0.3814 | 0.4061 | 0.4236 | 0.4372
250,000 | 0.3182 | 0.3358 | 0.3494 | 0,3605 | 0.3700 | 0.3916 | 0.4163 | 0.4339 0, 4475
0000 | 0.3233 | 0.3408 | 0,3544 | 0.3656 | 0.3831 | 0.3967 | 0.4214 | 0.4390 | 0.4526
000 | 0.3304 | 0.347% | 0.3615 | 0.3726 | 0.3902 | 0.4038 | 0.4285 | 04460 | 0. 4596
00 | 0.3374 | 0.3550 | 0.3686 | 0.3797 | 0.3972 | 0.4108 | 0.4356 | 0.4531 | 0.4667
0| 0.3445 | 0.3620 | 0.3756 | 0.3867 | 0.4043 | 0.4179 | 04426 | 04401 | 0.4727
T] 0.3516 | 0,3691 | 0.3827 | 0.3938 | 0. 4114 | 0.4250 | 0.4497 | 0, 4672 | 0.4808
2 0.3586 0.3762 | 0.2898 | 0.4009 | 0. 4194 | 0 4320 | 0.4568 | 0. 4743 | 0,.4079
4| 0.3728 | 0.3903 | 0.4039 | 0.4150 | 0.4326 | 0.4462 | 0.4709 | 0_4884 | 0.5020
6] 0.3869 | 0.4045 | 0.4181 | 0,4292 | 0, 4447 | 0, 4603 | 0, 4850 | 0.5026 | 0,5162
8 0, 4011 0.4186 | 0.4322 | 0.4433 | 0. 4608 | 0. 4744 | 0.4992 | 0.5167 | 0.5303
10| 0.4152 | 0.4327 | 0.4463 | 0,4574 | 0. 4750 | 0.4886 | 0.5133 | 05306 | 0.5444
121 0.4293 | 0.4469 | 0.4605 | 0. 4716 | 0,4891 | 0,5027 | 0,5274 | 0,5450 | 0.5586
141 0.4435 | 0,4610 | 0,.4746 | 0.4857 | 0.5033 | 0.5169 { 0. 5416 | 0.5591 | 0.5727
161 0.4576 | 0.4751 | 0.4387 | 0.4998 | 0.5174 | 0 s5310 D 5557 | 0 '.'?IH 0.586°

* The inductances given in this table also apply, with & practically negligible error (about 1 pe
cent), %o inary swranded wirea of the same cross-section,

Example 2. Exact Solution of a Transmission Line. A 80-cycle transmission
line 200 miles long conaists of three No. 0000 solid conductors with 10-ft equilateral
spacing. Calculate the sending voltage when the receiver voltage is 110 kv between
lines and when the line is supplying a balanced load of 18,000 kw at 0.8 power-factor
lag. Also calculate the sending-end current and the efficiency of the line at 25° C.
Assume that the conductance to ground is negligible.
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Taere 1T
CAPACITANCE To NEUTRAL® oF 8mootn Rounp WiRES

‘Mlc:u!undlpnlmmdmhmdlwmudlwmmdtwmﬂm

Tnches betwesn Wires, center to center

Wire,
G

-w‘}:‘h-‘ AHO moaa w—0 Sgg’ﬁ‘?& .
£

Diam. of
Wire,
inches I 3 6 9 12 18 24 30

0.4600 |0.01199 |0.006608|0,005192|0.004618 | 0.004282 | 0.003854 0.003643 | 0.003477
0.4096 | 0.01099 | 0.006317 [ 0.005013 [ 0.004477 | 0.004161 ) 0003783 0.003555 | 0.0033%6
0.01016 | 0.006055 | 0.004847 | 0004344 | 0.004045 | 0.003688 | 0.003470 | 0.003319

0.3249 | 0.009458 | 0.005812 | 0.004692 | 0.004218 | 0003936 | 0.003597 0.003390 | 0.003245
0.2893 | 0.008655|0.005587 | 0.004546 | 0,004100| 0.003833 | 0.003511 0.003313 | 0.003174
0.2576 | 0.008332|0.005381 | 0.004408 | 0.003988 | 0.003735 | 0.003428 0.003239 | 0.003107

0.2043 | 0.007455| 0.005010 | 0.004157 | 0.003781 0.003553 | 0.003274 | 0.003102 | 0.002980
0.1620 | 0006753 | 0.004688 | 0.003933 | 0.003595| 0.003388 | 0.003134 0.002975 | 0.0026£3
0.1285 | 0.006177 | 0.004406 | 0.003732 | 0.003426 | 0003238 | 0.003005 0.002859 | 0.002755
0.1019 | 0.005693 | 0.004155 | 0.003551 | 0.003273 0.003100 | 0.002886 | 0.002751 | 0.002655
0.08081 |0.005277|0.0039310.003386 | 0.003132| 0.002974 0.002776 | 0.002651 | 0.001562
0.06408 | 0.004921 | 0.003730 | 0,003235 | 0.003003 0.002858 | 0.002675 | 0.002558 | 0.002475

Feet between Wircs, center Lo center

of
A
-

4 5 6 L] 10 o IEE 20 25

0.003351 | 0003171 | 0.003043 | 0002947 | 0. 002806 | 0.002706 | 0.002542| 0.002436 | 0.002361
0.003276 | 0.003103 | 0.002981 | 0.002839 | 0.002753 | 0.002657 | 0.002498 0.002396 | 0.802323
0.003204 | 0.003039 | 0.002922 | 0,002833 | 0.002702{ 0.002610 | 0.002456 0.002358 | 0.002287

0.003135 | 0,002977 | 0.002864 0.002779 | 0.002653 | 0.002564 | 0.002416| 0.002320 | 0.002251
0.003069 | 0.002917 | 0.002809 | 0.002727 | 0. 002606 | 0.002520 0.002376| 0.002284 | 0.002217
0.003006 | 0.002860 | 0.002756 | 0.002677 | 0.002560 | 0.002477 0.002338 | 0.002249 | 0.002184

0.002887 | 0.002752 | 0.002656 | 0.002582 | 0.002474 | 0.002396 | 0.002266 0.002182 1 0.002121
0.002777 | 0.002652 | 0002563 | 0.002494 | 0.002392 | 0.002319 | 0.002197  0.002118 | 0.002061
0.002676 | 0.002559 | 0002476 | 0.002412 | 0.002317 | 0.002248 | 0.002133 0.002059 | 0.002004

10 0.002581 | 0002473 | 0.002395 | 0.002335 | 0.002245 | 0.002181 | 0.002073 0.002002 | 0. 001951
121 0.002493 | 0.002392 [ 0.002319 | 0.002262 [ 0.002178| 0.902118 | 0.002016 | 0.001949 0,001900
14| 0.002411 | 0.002316 | 0.002247 | 0.002194 | 0.002115 | 0.002058 0.001961 | 0.001898 [ 0.001852

ek i alt [Si'

® Tha mp-dmnuawwnviruuqubom-bdlth-vﬂuudﬂnhwhhhh:
A]Icalculatiomwﬂlbemndawphmlanmtnlmmund.

110,000

Va= -—:}3—— = 83,500 volts
1 18,000,000

- r = /3 110,000 X 08
From wire tables the 60-cycle resistance per mile of No.
The diameter of No. 0000 wire is 480 mils.

120
Lpns = 0.805 X 1074 +0.741 X 107 imb—ﬁ
= 0.805 X 10~ + 0.741 X 107* X 2.718

= 0.805 X 10~* 4 2.01 x 107*
= 20.9 % 10~ henry per mile

= 118 amperes
0000 at 25° C is 0.271 ohm.
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[eactance per mile = 2» 60 X 20.9 X 10~ = 0.788 obm

b -—-}E = —2rfC

3880 x 107"
- ——— ] 10" farad
G 120 — 0.23 IR

1
e AT
Susceptance per mile = —2r 80 X 1430 X 107} = —0.538 X 107* mho
Y =g —jb= 470538 X 107" = 0.538 X 107* /90° mho
Z =r+ ;X = 0271 + j0.788 = 0.834 /71.05° ohms
VZY = V0834 /71.05°0.538 X 107° /90° = 2.12 x 107 /80.5°

0.834 /71.05°
VZ[Y = 105 = 3.94 X 10? /—9.48° ohms

0.538 X 107% /90°

VY/Z = 0254 X 107? /9.48° mhos

For I = 200 miles,
VI DA% OS50  00THOAIS 007 /st

V, = 63,500 +4 j0 volta

I = 1!8{—3&.9" Amperes
‘ (v, +LVER (83,500 +118 /—36.0° X 3.94 X 10° g_n.w’)
2 ) = 2

= 47,800 — 716,800 volts

(M NIYL (47,800 — 716,800)¢*072
2 ¥ £ )
= (51,300 — 718,050)=°"

= 54,400 /—19.4° /23.9°
= 54,400 /4.5° volts
(V———-———’ =L VZ/Y\VI _ (15,700 + 716,800) 003"

2
= (14,610 + j15,630) =%

= 21,400 /46.9° / —23.9°
= 21,400 /23° volts

= 54,400 /4.5° 4 21,400 /23°

= 54,200 + j4270 + 19,680 + 78355

= 73,880 + 12,625 = 74,970 /9.7° volts
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The current at the sending end could be calculated in & similar way. However,
for illustrative purposes it will be calculated from equation (27).

I, = I, cosh VZY! 4 V, VY/Z sinh VZY!

The following relations are convenient to use when dealing with hyperbolic functions
of complex angles: <
sinh (z & y) = sinh z cosh y & cosh zsinh y
cosh (z & y) = cosh z cosh y & sinh zsinh y
sinh jz = jein z
cosh jz = cos z _
VZYI = 2.12 X 10~ /80.5° X 200 = 0.424 /80.5° = 0.C* + ;0.418
cosh (0.07 4 70.418) = cosh 0.07 cosh j0.418 + sinh 0.07 sinh 70.418
= cosh 0.07 cos 0.418 + j sinh 0.07 sin 0.418
= cosh 0.07 cos 23.9° + j sinh 0.07 sin 23.9°
= 1.00243 X 0.9143 + j0.07 x 0.4051
= 0.915 + j0.02835

sinh (0.07 + j0.418) = sinh 0.07 cosh 70.418 + cosh 0.07 sinh Jj0.418
= ginh 0.07 coa 23.9° + j cosh 0.07 sin 23.9°
= 0.07 X 0.9143 + 71.00245 X 0.4051
= 0.0639 + j0.406

Ve VY/Z = 63,500 X 0.254 X 10~? /9487 = 161.30 /9.48° amperes
V. VY/Z sinh VZYL = 161.3 /9.43° (0.0639 + j0.406)
= —0.66 + j66.3 amperes
I, cosh VZY| = (118 / —36.9°) (0.915 + j0.0284) = 88.4 — j62.1 amperes
I, = 88.4 — j62.1 — 0.66 + j66.3
= 87.8 + j4.2 = 87.9 /2.8 amperes
As a check on the sending voltage, V, will be calculated by the hyperbolic equation

V. cosh VZY! + L, VZ/Y sinh VZYI
V. =63,500 X0.915/1.75° 4 (118 / —36.9° X 3.94 X 10%/ —9.48") (0.0639 -+ j0.406)
= 58,100 + 1770 + 15,700 + ;10,880
= 73,800 + j12,652 = 74,850 /9.7° volts
P, = vi 4 0'i’ = 73,800 x 87.8 + 12,652 X 4.2
= 6,490,000 + 53,100
= §,543,000 watts per phase

Efficiency = —— = 0.917

If tables of complex hyperbolic functions are available, the hyperbolic soluticn i3
greatly simplified.
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Calculation of Velocity of Propagation. From equations (35) and (39),
2xf

g mm—

/ﬁzr — (Rg 4+ bX)

\ 2

ZY = [212 X 1073 = 4.5 X 107¢

Rg =0

X = —0.538 X 1075 x 0.788 = —0.424 X 1075

B =

/;I: 55X 1075+ 424 X 1078
\ 2
a7y
"o x10?

= 2,09 x 1077

=

= 180,300 mtles per second

If the resistance and the inductance due to the flux within the conductor are neg-
lected, the velocity from equation (40) is

1 1
vIC ~ V2.0l X 107 X 1430 X 1011
= 186,400 miles per secand, or the velocity of light

PROBLEMS

6. Solve Problemn 1, page 411, by the exact gnethod of calculating transmission
lines.

6. Points A and B are 150 miles apart and are connected by a parallel-wire line
having parameters as follows:

Effective resistunce per loop mile at 1000 ¢xcles, 60 chms

Effective inductance per loop mile at 1000 cycles, 0.0042 henry

Effective capacitance per loop mile at 1000 cycles, 0.00755 uf

Shunted conductance is negligible.
The line is assumed to be terminated at point B with an impedance equal to its
surge impedance. Find the voltage, current, and power received at point B when
50 volts at 1000 eveles are impressed at 4. (A loop mile consists of one mile of
outgoing plus one mile of return conductor.) Use V4 as reference. A

7. Caleplate by means of the formula the inductance in henrys per mile of
No. 0000 wire with an equilateral spacing of 6 feet.

8. Caleulate the capacitance per mile between wires and between one wire and
neutral or ground for the line in Problem 7.

9. A 3. phase 60-cycle transmission line is 150 miles long and consists of three
No. 0000 wires spaced at corners of an equilateral triangle which are 15 feet apart.
The line is to deliver 138,000 line-to-line volts and 45,000 kw total power ut 0.8 p.f.
lagging at the receiver. Calculate the required sending-end voltage, current,
power factor, and efficiency of transmission if the nominal T line is used. See
bottom of page 430 for resistance of No. 0000 wire. LUse Vige.ro-neurra 88 reference.

10. Work Problem 9 if the nominal  line is employed.
11, Work Problem 9 if the Steinmetz threecondenser method of representing
the line is used.
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12. Work Problem 9 if the exact method of calculating long lines is employed.

13. Caleulate the veloeity of propagation of the wave in Problem 12.

14. (a) If 138,000 line-to-line volts were maintained at the sending end of the
line in Problem 9, what would be the.receiver-end voltage with the receiver end
open? Employ the exact method of ‘solution.  (b) What is the magnitude of the
direct wave at the receiver? (¢) of the reflected wave?

156. What is the velocity of propagation of the wave in Problem 67

16. What is the attenuation in decibels per mile of the transmission line described
in Problem 67



