
chapter 
V1 Non-Sinusoidal Waves

Complex Waves. The circuit theory that has been presented in the
foregoing chapters has been based upon sine-wave variations of voltage
and current, and only sine waves have been considered in the calcula-
tions. In many branches of electrical engneering non-sinusoidal waves
are as common as sinusoidal waves, anti in all branches non-sinusoidal

OSCILI.0ORAM 1. v-wave foru of voltage geticrated by a particular alternator. 	 wave

form of current whch flows through a capacitive circuit clement. Note the relatively
larger harmonics in the current wave. 	 wave form of itistantaneou power. E = 120

volts (ce.). I = 3.9 ampc:es (off.). PV = 20 watt, f = GO cycle.

waves must occasionally be given attention. Examples of non-sinusoi-
dal waves are shown in Oscillograms 1, 2, and 3. Even though the
voltage wave in Oscillogram 1 is nearly sinusoidal, the current through
the capacitive circuit is greatly distorted. Also in Oscillogram 2 the
current is non-sinusoidal even though the impressed voltage is practically
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Osc1uooaAM 2. Distorted current wave, i, resuItR when a sine wave of voltage, v, is im-
pressed on a particular coil with an iron Oom

a
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is tht 17th 

OscILzoGa 3. Wave form produced. by an open-slot type of generator.
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a sinusoid. Osciilogram 3 shows the effect on the voltage wave form
of an alternator due to open slots. The predominant harmonic in this
case can easily be determined by the methods discussed in this chapter.
The method of making circuit calculations when non-sinusoidal wave
forms are encountered will also be given.

Most non-sinusoidal waves found in electrical engineering can be
expressed in terms of sine-wave components of different frequencies.
Under these conditions each sine component may be handled according
to the laws governing the calculations of sine waves. The results of all
component analyses are combined according to certain laws to form the
composite or final analysis. There are, however, certain limitations
to representing non-sinusoidal waves in terms of sine components.

Any periodic wave which is single-valued and continuous except for
a finite number of finite discontinuities, and which does not have an
infinite number of maxima or minima in the neighborhood of any point,
may be represented by the sum of a number of sine waves of different
frequencies. As an equation, the above theorem takes the following
form and is known as a Fourier series:

y = f(x) = A 0 + A 1 sin x + B 1 coax + A 2 sin 2x + B2 cos 2

+ A 3 sin 3z + 133 cos 3x + . . + A, sin nx + B,, cos nx	 (1)

Except in special cases an infinite number of components are theo-
retically required. Practically, however, only a few terms are neces-
sary in most instances because of tire relatively small effect of the
terms of higher frequency. Since the wave which is represented by
equation (1) is made up of a number of sine waves of different fre-
quencies, it is called a complex wave. It is apparent that each com-
ponent of this wave is sinusoidal and that each component in itself may
be handled by the methods previously outlined for calculating sine
waves. The facility with which sinusoidal components of a complex
wave may be manipulated is sufficient justification for expressing a
non-sinusoidal wave in such terms as equation (1) even though the
equation of the wave may be known in terms of some other function
of X.

Wave Analysis. Usually, a photographic record of the wave will be
obtained through oscillographic analysis or other means. The deter-
mination of the Fourier equation which specifies a particular wave is
called wave analysis. Wave analysis consists simply of determining

the coefficients A 0 , AL, B, etc., of equation (I). These coefficients
are determined by some operation on equation (1) that will eliminate
all terms except the desired quantity. Then the desired coefficient
may be evaluated. Thus, to determine A 0, it is necessary simply to
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multiply the equation by dx and to integrate between 0 and 27, as
shown below.

f'y dx
W= 	 dx + f2 A i sin x dx +	 B, cos x dx +

f
A 2 sin 2xdx+fB2 cos 2xdx +fA3 sin 3xdz+

f

2v	 2

o
Bscos 3xdx+ . +f A%8innxdx+f2 BcOanxdx (2)

or	
fO

ydxAofdx.=2irAo
 0

1
and	 Ao== 

—f2^y 
dx	 (3)2r

To find A,, equation (1) may be multiplied by sin x dx and integrated
from 0 to 2w. Thus
	

7f

2w	

= f A 0	+	 A, sin2 xcix +

fB, cosx sinx dx + fo A2 sin 2x sin xdx+f2B2 cos 2x sin xdx+

f2^ Assin3xsinxdx+foBscos3xsinxdx+...+

/2T

J
An sin nx sin xdx+f

o
 B,1 cos nx gin xdx	 (4)

o 

It is obvious that 
fo 

A 0 sin x dx is zero since it representsthe area

under a sine wave for a complete cycle. There are four other types of
terms. They are

f
2	 r2'	 2w-

(a) 
	 sln2xdx=J	 cos

	o	 0

(b) fo 
sin 2x sin x dx, whichis of the general type:

J sin mx sin nx dx = 0, when m and n are different integers,'
I)

(c) fo 
cos mx sin nx dx = 0, when m and n are different integers, 2 and

(d) J'2 cosx sin xdx=O.

1 This may be readily proved by substituting for sin mx sin nx its equivalent
[cos (mx - nx) - cos (mx + nx)l.

This may be readily proved by substituting for cos mx sin nx its equivalent
(sin (mx + nx) - sin (mx - n.x)].
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The student should prove statements a, b, c, and d by carrying out the

operations indicated. If the above facts are used, equation (4) reduces

to
fysinxdxAir

or At= — j y sin xdx	 (5)
7 "0

To evaluate the coefficient of the cosine term Bj, equation (1) is multi-

plied by cos x dx and integrated from 0 to 27r. Thus

f

2,	

= f Ao Cosxdx + f A sin : cos xdx

± f B 1 cos 2 x dx +	 A2 sin 2z cos x dx + f B2 cos 21 cos X dx

 sin 3x cosxdx+f2wB3  cos 3x cosxdx+
f

2' A3
f02^ f2w

+	 A,. sin nx cos x dx +	 B,. cos nx cos x dx	 (6)

If the relations stated above in a, b, c, and d are used, equation (6)

becomes

f
y  cos x dx B1 J cos2 r dx Bji
 0

or	 B1—f
2^y 

cosxdx	 (7)
ir

Similarly,
A2 

• f y sin 2x dx

	

B2	
f2,y 

cos 2x dz

A3=_f
2ry 

sin3xdx

B8 
=:1Y53xdx

0
Air =_f ysinnxdx

Ir

B = !
fo

cos nx dx

(8)

(9)

(10)

(11)

(12)

(13)
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Various analytical and graphical methods may be employed to eval-
uate the coefficients of equations (3), (12), and (13). Two general
methods are outlined below.

Analytical Method. If the equation of y in terms of x is known in some
mathematical form, the wave may be analyzed analytically. This
method is the least laborious but it cannot be employed if the function of
x is not known analytically. The function of z employed need not
throughout its entire range represent the particular wave to be analyzed.
It is necessary to have the function of x only over the interval of perio-
dicity, namely, 2i,-. Not even a single function of xis necessary. Several
different ones may be used and the complete integral from 0 to 2w
may be obtained from a sum of the integrals of the several functions,
each taken over the interval in which it follows the curve t4 be
analyzed.

The details connected with writing a Fourier series to represent a
specified wave form are illustrated by the following examples.

Example 1. Let it be required to write the Fourier series which will represent
the sawtooth wave form shown in Fig. 1. It will be observed that this wave form is

Pilo. 1. A typo of wave which is easily analysed by analytical methods.

simply a straight-line variation, ranging from y —w to v +r over one complete
cycle. This straight-line variation may be expressed analytically (between x - 0
and x 2w) as:

Y - f(z) - z -

It should be noted that the above analytical expression for y in terms of x gives no
indication of the various harmonies which are present in the wave, whereas a Fourier-
series reprentation of the wave will yield this information.

From e'uation (3):

iIj-'	 1[42-r1
Ao-J 	

i2w3i°

The fact that A 0 is zero could have been determined by inspection of Fig. 1 since it
g1 obvious from the figure that the negative half of the wave is equal in area to the
positive half.
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From equation (12):

A	 - ir)'in nxdx -
	 f2v ir ]

f

X Sin liZ dx - I -	 + - sin lix
Jo	 L	 "	 ' -

as may be proved by differentiation of the right member andf 1 sin n dx —0 for

all integral values of n. Therefore:

A.	
xcoenx1	 }2r	 2

+ — sin mx
IL	 1'	

j	
JO	 11

whence
A	 —I; A, - — 4; A 3 —I; A 4 - —4; etc.

From equation (13):

B -. 
J' (x - I) coo ax dx - 

! [f2T 
x cos nx dx 

f2r 
I006 lix dx]

2r	
—

Izeinnx cos nxl2t
f xcosnxdxl	 +—

Jo	 L 1	 fl
p2v

as may be proved by differentiation of the right member and 
O 

iooenxdx 0
J

for all integral values of n. Therefore:

(for all integral values of a)

Hence all the coefficients B 1, B,, B,, etc., in equation (1) are 0 and the Fourier equa.
t.ion of the wave shown in Fig. 1 becomes:

—2 (sin z + 1 sin 2z + 
I 

gin 3x + 1 gin 4z + - - - + 
I 

sin nz)
v-

Is siniasdsI here

f\ b=O here , r/

1-	 2
or 	 T

Yin. 2. Hall-wave rectification of a sine wave. See example 2.

Example t Let it be required to write the first four terms of the Fourier series
which will represent the wave form shown in Fig. 2. From Fig. 2, it is plain that
i may be expressed analytically between the limits of 0 and 2i as two separate func-
tions. That is:

i - I. sin a	 [between a (or wi) - 0 and a (or ca) - TJ

and
i - 0	 between a (or 1) - v and a (or 4) - 2z1



230	 ALTERNATING—CURRENT CIkCUITS 	 Ch. VI

From equation (3):

f 2r J j[J2w 

— 03181,,,

From equation (5):
r fr

A i . [J (Isina)sinad.a+f
2r
 (0) sin ada
X.

1^[f 
(i — I coe 2 a) da

- - - - in 2a	 - -	 0.5001.
'L 2	 4	 Jo	 r[2J

From equation (12) it follows that A2, A3, A 4, etc., are all zero because:
i 1r

A,,--I I	 (Ina)sinaI
1

0 (for n p 0 and n1)rLJo	 J
Tube above evaluation of A,, is evident if (sin a sin no) is replaced by its equivalent

tcoa (it - 1)cr - cos (n + Oa). Thus A 2 , A 3, A 4, etc., are zero because:

A,, 
=	

[cos (n - 1)a - cos (n + 1)ada

1 [sin (n - 1)a	 sin (n + 1)al' = 0
	 Ifor n	 0

2L (n	 1)	 (n+i) Jü	 and n1

From equation (7):

B i =[f(I si n a) cos ada+f(0) cos ada]

- 1_ [f -] I.[
 

cos 2a

From equation (13):

B = ![f(! s sin a) cos nadcr]

fu

z(sin (a+na)	 (a_ na 
d-]

cos (I + n)cx - cos (1 - n)alT	 ffor ,	 0

L	 2(1 + n)	 2(1 - it) Jo	 tand n Pd 1

For it	 2:
j,,,r cos3a	 cos (—a)I	 j,,,1	 1	 1	 1	 1

=—[+-+-----6	 —2	 T	 6 6 2 2

= -	 — —0.2121,,,
3r
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Similarly for n	 3.
B3 0

and for is — 4,
—0.04241...

The Fourier series which represents the wa.'e form shown in Fig 2 is therefore.

0.3181.,. + 0.5001,., SLE) a - 0.2121m cos 2x - 0.04241.,. cos 4,1 -

Fin. 3. Components of ba11wava reet.thcatiofl. nee eipw

If the above four terms are combined graphically as shown in Fig. 3, the resultant
wave approaches the original wave form shown in Fig. 2 to a fair degree of accuracy.
The inclusion of more terms in the Fourier series will, of course, improve the cor-
respondence between the resultant wave of Fig. 3 and he original wave form.

Problem L (a) Write the Fourier

	

series which represents the wave form 	 100

shown in Fig. 4 out to and including

the .4 3 term of the series. Note: e 100

	between a 0 and a - w, and e = 0	 ir	 2r

between a = wand or = 2w.

	

Ans.: e = 50+63.7 sin a	 FIG. 4. See Problem 1.
+ 21.2 sin 3a volts.

(b) Show by uiar.z of a sketch the mariner in which the above three components
combine to approximate the flat-topped wave shown in Fig. 4.

Fourier Analysis of SymmefriCJ Triangular and Rectangular Waves.
Symmetrical waves of triangular and rectangular shape are shown in

Figs. 5 (solid lines) and 6 respectivel y . Since these wave forms are

often used in the analyses of certain basic problems it is convenient to
have the Fcirier equations cf these waves readily availabic.



Pio. 5- Symmetrical triangular wave with
a maximum value of 1.

Y

Fm. 6. Symmetrical rectangu]*r
w&ve.
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Triangular Wave. To facilitate analyzing, the triangular wave may
be considered to be composed of several pieces, namely, the straight lines
oa, ac, and ed. If the point slope form of equation for a straight line is
applied, the equations of these lines will be found to be:

Zr	 2x	 Zr
v =— ; yac—+2; Ycd=4irI.

Applying equations (3), (12), and (13) gives:
I f2r	 r3,2/.,2 \ j2r/	

\A0 - -	 dx--
If — dz+ I	 (---+2)dx+ I (--4jdxV	 T/vJ2 \ T	 /	 .J3,/2\ 	 /

y sin nzdx
TO

v/2 2X	 r/2 	 \	 3.

	

T	
(+2) sin nx+J,2(;_4) min nxcLx}

B,,--f yooenxdx
V.10

r2	 T12	 2i 2x

	

= ;	
- coe.nx dx +f3 	 + 2)ooe nxdx f (;+''

Evaluation of the above for various values of n by ordinary calculus
methods gives the equation of the wave in terms of a Fourier series as
follows:

	

Y 	 (sin z_n3x± sin _ Sin x+.etc.

It will be shown later how it is possible to determine from inspection,
that, in certain classes of waves as typified by the above example, the
terms represented by B, must be zero.



of 1st. 3rd. & 5th
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The results of the above analysis may be generalized and the equation
of a symmetrical triangular wave written as

(14a)

where x of equation (14) has been replaced by wt and A 1 equals 8/72

times the maximum ordinate of the triangular wave. Theoretically,
there is an infinite number of terms and the progression continues as the
first four terms indicate.

Rectangular Wave. The rectangular wave is much used in the analysis
of a-c machinery and has for its Fourier equation:

(15)

where A 1 = times the height of the rectangle. Again there is an

infinite number of terms which may be written as indictted by the first
four terms shown. Figure 7 shows a gre.phical representation of the first
three terms and illustrates
that a fair approximation
to the resuitant wave is io
obtained by the addition of
very few terms.

Problem 2. Analyze the rec-
tangular wave shown in Fig. 6
by the analytical method to prove
the validity of equation (15).

Graphical Method. A see- 	 \J	 V
ond method of evaluating
equations (3), (12), and (13)
involves the evaluation of the Fia. 7. The addition of only three harmonics gives

integrals by a step-by-step 
a fair approximation of the rectangular wave.

method. The equation of y in terms of x is usually unknown, and for the
majority of waves encountered it would be very cumbersome and labori-
ous to establish equations which would yield pieces of the wave. It is
under these conditions that the step-by-step method (sometimes called
the graphical method) or its equivalent is employed. The details of this
method follow.

Suppose the wave of Fig. 8 is to be analyzed. Equation (3) is simply
the average height of the curve over 2w radians. it is found by dividing
the area under the curve by the base. Any method of determining the
.area, such as counting squares or by use of a plrtimeter, may be em-
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ployed. If the areas of the positive and negative loops are the same, A0
is zero. Hence for waves having adjacent loops of the same shape and
area with respect to some horizontal axis, the constant A 0 when present
simply indicates how much the whole wave has been raised or lowered
from syrnnietrv about the axis of abscissas. For graphical analysis,
'quation (5) may be written

1 2.
A 1 = —ysInxix

'to

FIG. 8. Preparation of a wave for analysis by the graphical method.

Let. 2ir radians in Fig. 8 be divided into rn equal parts. Then &

21r.	 (27)and x, the distance to the midpoint of the kth interval, is /c - -	 -

or (k - )	 Equation (16) now becomes

A 1 = LrYkSlfl (k -
iroL	 m]m

21
	 -1(k —)—1,E yk sin

in	
2,rJ

2..
= LlIk sin [(k -	 (17)

771 o
Similarly,

(18)in 0 	m

and	 A2 = 2 Yk Sifl 2 (k -	 (19)
M

(16)

The first form of equation (17) shows that A 1 is 1/it times the area under
a new curve, which would Ee obtained by plotting corresponding ordinates
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of the original curve multiplied by the sine of the angle to the ordinate in
question. For A,, the ordinates of the new curve would be obtained by
multiplying selected ordinates of the original curve by the sine of n times
the fundamental angular distance to the respective ordinates. An
analogous procedure is employed for cosine terms. Looked at in another
way, equation (17) indicates that A 1 is twice the average ordinate of the
new curve, which would be obtained by plotting corresponding ordinates
of the original àurve multiplied by the sine of the angle to the ordinate in
question. Multiplying and dividing equation (16) or (17) by 2 makes
this statement evident. Thus

A1	
2127r

1 
2v

= — Z YsinxLiz]o

Similar interpretations may be drawn regarding the other coefficients of
the Fourier series. The summations are best carried out in tabul[
form, and for this purpose a more or less standardized system is used.
The tables which are used are called analyzing tables. One form of
analyzing tables for odd harmonics up to and including the seventh are
shown in heavy type on the following pages. (The light type refers to
specific values for an illustrative example.)

It will be shown in a subsequent article that waves having symmetrical
positive and negative loops cannot contain even harmonics. Under
these conditions it is unnecessary to evaluate A 2, B2, A 4 , B4, etc. Also,
when the wave being analyzed consists of odd harmonies only, it is
necessary only to take the summation over the first 130 1. Since the
summation over the second 180° would be the same as that over the first
180°, the total summation over 360° can be obtained by multiplying
the summation over 1800 by 2. If in is taken as the number of'ntervals
in 360°, the summation over 180° may be multiplied by 4'rn insteadOf multiplying the summation over 360° by 2rn as shown in equa-
tion (17). Whereas equations (17), (18). and (19) indicate that the
rnidordjnate of the interval selected should be used, it is customary to use
the ordinate and the angle corresponding to those given in the tables.
When the intervals are as small as 50, the difference between the twoschemes is negligible.

Example 3. Given the experimentally determined W3vc form shown in (),-il]
gram 4. Find the Fourier equation, employing analyzing laLdes similar to those
given on pages 237-2.10.

,SoL,on. ordinates at every 5° are COnst:iicted as shown in Oscillogra,n 4. The
magnitude of each is scaled and set in the column for ordinates opposite the corre-
sponding angle in the column for angles. The product of the ordinates and the
corresponding sines and cosines of n times the angles are obtained and tabulated asshown in the analyzing tables on pages 237-240.

-16
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OscL1.00a	 4. See example 3.

For the particular wave which is being analyzed:
A 1	 82.45 units	 A5 = —5.38 units

B 1	 —22.11 units 	 B5	 —3.65 units

A 3	 —0.92 unit	 Ai	 2.01 units

B3 = 26.2 units	 B7 = —1.29 Units

The Fourier equation of the wave is, therefore,
i	 82.45 sin ( - 22.11 cos wi - 0.92 sin 3wt

+ 26.2 cos 3w1 - 5.38 sin 5wi - 3.65 cos 5wi

± 2.01 sin 7wL - 1.29 cos

The fundamental frequency in this particular case is 60 cycles per second. Therefore
is equal to 377 radians per second.
The actual number of terms in the Fourier equation in any particular case can

usually be reduced because it is always possible.to combine sine and cosine waves
of the same frequencies. For example, consider the general wave

Y = A i sin wi + SI we ca + A 2 sin 2wi+ B2 COO 2wi

+ A 3 sin 3wi + B 3 COB



1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
83
34
35
36

6'
10'
15°
20°
25°
30°
35°
40°
45°
50°
65°
60°
65°
70°
75°
80°
86°
90°
95°

100°
106°
110°
116°
120°
125°
130°
136°
140°
145°
160°
165°
160°
165°
170°
175°
180°
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FrTNDAMTA 1.

	

1	 2	 3	 4	 5	 6	 7
	

8	 9

IProducts	
Angle Meas.	 Products

sin	
(y sin x	 Ordi-	 (y cos x)

x	 nate x to ordi- 
ordi- nate	

- INO. nate	 (y)

	.0872	 0.5

	

.1736	 1.7

	

.2588	 3.5

	

.3420	 56

	

.4226	 8.2

	

.5000	 10.9

	

.5736	 :13.5

	

.6428	 16.6

	

.7071	 19.9

	

.7660	 23.5

	

.8192	 27.8

	

.8860	 32.4

	

.9063	 38.1

	

.9397	 43.9

	

.9659	 51.0

	

.9848	 59.1

	

.9962	 67.5

	

1.0000	 76.4

	

.9962	 86.2

	

.9848	 94.1

	

.9659	 101.6

	

.9397	 106.0

	

.9063	 106.4

	

.8660	 102.7

	

.8192	 03.5

	

.7660	 80.4

	

.7071	 64.6

	

.6428	 50.4

	

.5736	 37.2

	

.5000	 256

	

.4226	 16.9

.3420 110.1

	

.2588	 5.5

	

.1736	 2.4

	

.0872	 0.6

	

.0000	 0.0

Sum of	1484.2	 0

Products	 1484.2

±

	

5.9	 .9962	 5,9

	

10.0	 .9848	 9.8

	

13.4	 .9659	 13,0

	

16.4	 .9397	 15.4

	

19 4	 .9063	 176

	

21 8	 .8660	 18.9

	

23.6	 .8192	 19.3

	

25.9	 .7660	 19.9

	

28.1	 .7071	 19.9

	

30.7	 .6428	 19.7

	

33.9	 .5736	 19.4

	

37.4	 .6000	 18.7

	

42.0	 .4226	 17.7

	

46.7	 .3420	 16.0

	

52.8	 .2588	 13.7

	

60.0	 .1736	 10.4

	

67.7	 .0872	 6.9

	

78.4	 .0000	 0.0

	

86.5 -.0872	 7.5

	

95.5 -.1736	 16.6

	

105.1	 -.2688	 27.2

	

112 8 -.3420	 38.6

	

117.4	 -.4226	 49.6

	

118.5	 -.5000	 59.3

	

114.2 -.5736	 65.5

	

104.9 -.6428	 67.4

	

91.4	 -.7071	 64.6

	

78.3 -.7660	 60.0

	

65.0 -.8192	 53.2

	

51.1	 -.6660	 44.3

	

40.0 -.9063	 36.3

	

29.4 -.9397	 27.6

	

21.3	 -.9659	 20.6

	

14.0 -.9848	 13.8

	

7.1	 -.9962	 71

	

0.0 -1.0000	 0.0

261 2	 659.2

-398.0

1484
41 -	 X 2 - v.45

-398.0
- -36--- X 2 - -22.11
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8	 9

Products
(y Cos Sx)

+

5°	 5.0	 .9659	 5.7
00	10.0	 .8660	 8.750	 13.4	 .7071	 9.5
01	16.4	 .5000	 8.2
50	 19.4	 .2588	 5.0
0°	 21.8	 .0000	 0.0
5 0	23.6 -.2588	 6.1
.0°	 25.9 - .5000	 12.9
5°	 28.1 -.7071	 19.9
0 0	30.7 -.8660	 26.6
50 339 -.9669	 32.8
0° 37.4 -1.0000	 37.4
5° 42.0 -.9659	 40.6
'0°	 46.7 -.8660	 40.5
'5°	 52.8 -.7071	 37.4
100 60.0 -.5000	 30.0
150	 67.7 -.2588	 17.5
10 0	76.4 -.0000	 0.0
5°	 86.5	 .2588	 22.4

)0 1	95.5	 .5000	 47.8
)50 105.1	 .7071	 744
L0° 112.8	 .8660	 977
150 117.4	 .9659	 113.6
100 118.5	 1.0000 118.5
15° 114.2	 .9659 110.4
10° 104.9	 .8660	 90.9
15°	 91.4	 .7071	 64.d
100	78.3	 .5000	 39.2
150	65.0	 .2588	 16.8
500	51.1	 .0000	 0.0550	 40.4)	 -.2588	 10.4
50°	 29.4 -.6000	 14.7550	 21.3	 -.7071	 15.1
TO°	 14.0	 -.8660	 12.1
750	7.1	 -.9659	 6.9
30°	 0.6 -1.0000	 0.0

-	 833.4 360.9

+472.5

Al -
2( -18.6) - -0.92

38

8,-	 28
472.5) - .2
as

Prod
(y sin

sin 3x

-1-	 -

	

.2588	 1.5	 1

	

.5000	 5.0	 2

	

.7071	 95	 3

	

.8660	 14.2	 4
	.9659	 18.8	 5

	

1.0000	 21.8	 6

	

.9659	 22.8	 7

	

.8660	 22.4	 8

	

.7071	 19.9	 . 9

	

.5000	 15.4	 10

	

.2588	 8.8	 11

	

.0000	 0.0	 12

	

-.2588	 10.9	 13

	

-.5000	 23.4	 14

	

-.7071	 37.4	 15

	

-.8660	 52.0	 16

	

-.9659	 6.55	 17

	

-1.0000	 76.4	 18

	

-.9659	 8.3.7	 19

	

-.8660	 82.8	 20

	

-.7071	 74.4	 21

	

-.5000	 56.4	 22

	

-.2588	 304	 23

	

.0000	 0.0	 24

	

.2588	 29.6	 25

	

.5000	 52.5	 26

	

.7071	 64.6	 27

	

.8660	 67.9	 28

	

.9659	 62 8	 29

	

1.0000	 51.1	 30

	

.9659	 39 7	 31.

	

.8660	 25.5	 32

	

.7071	 15.1	 33

	

.5000	 70	 34
	.2588	 1.8	 35

	

.0000	 0.')	 36

Sum of
576.7 593.3

products	 -16. (1

AL TERfIATING-CURRENT CIRCUITS

THIRD HARMONIC

3	 4	 5	 6	 7

uCts	 I
i 3x)	 Ordi-
 Angle Meas.

Ixto ordi-
________ nate I ccz 3xordi- nate

No. i nate	 (y)
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Fxrrff H.jufoN1c

	1	 2
	

3	 4	 5	 6
	

7	 8	 9

Angle Meas.
x to ordi-
ori- nate

	

nate	 (y)

	

50	 59

	

10°	 10.0

	

15°	 13.4

	

20°	 16.4

	

250 	19.4

	

30°	 21.8350 236
400 259

	

450	 28.1

	

50°	 30.7550 339
60° 37.4

	

66°	 42.0
70° 467
75° 528
80° 60.0

	

85°	 67.7

	

90°	 76.4

	

96°	 86.5

	

100°	 95.5
105° 105.1
110° 112.8
1160 117.4
120° 118.5
1250 114.2
130° 104.9

	

1350	 91.4

	

1400	 78.3

	

1450	 65.0

	

150°	 51.1

	

155°	 40.0

	

160°	 29.4

	

1650	 21.3

	

1700	 14.0

	

175°	 7.1

	

180°	 0.0

Products
(y sin Sx)	 Ordi-

_________________ nate
No.

+

	

2.5	 1

	

7.7	 2

	

13,0	 3

	

16.2	 4

	

15.9	 5

	

10.9	 6

	

2.1	 7
8.9

19.9
28.8
33.8
32.4
241
.8.1

13.7
38.6
61.4
76.4
78.5
61.4
27.2

19.6
67.4

102,7
114.0
98.5
64.6
26.8

5.7
25.6
32.7
29.0
20.6
10.7
3.0
0.0

	

552.8
	

649.6

-0 3.8

Products
(y cog ax)

cos Sx

+

	.9063	 5,4

	

.6428	 6.4

	

.2688	 3.5

	

-.1736	 2.8

	

-.5736	 11.1

	

-.8660	 18.9

	

-.9962	 23.5

	

-.9397	 24.4

	

-.7071	 19.9

	

-.3420	 10.5

	

.0872	 3.0

	

.5000	 18.7

	

.8192	 34.4

	

.9848	 46.0

	

.9659	 51.0

	

.7660	 46.0

	

.4226	 28.6

	

.0000	 0.0

	

-.4226	 36.8

	

-.7860	 73.2

	

-.9659	 101.6

	

-.9848	 111.1

	

-.8192	 96.2

	

-.5000	 59.2

	

- .0872	 10.0

	

.3420	 35.8

	

.7071	 64.6

	

.9397	 73.6

	

.9982	 64.8

	

.8660	 44.3

	

.5736	 23.0

	

.1736	 5.1

	

-.2588	 5.5

	

-.6,428	 9.0

	

-.9063	 6.4

	

-1.0000	 0.0

	

554.2	 610.9

-65.7

sin Sx

• 4226
.7660
.9669
• 9848
• 8192
.5000
• 0872

-.3420
-.7071
-.9397
-.9962
-.8660
-.5736
-.1738

.2588
6428

.9063
1.0000

.9063
• 6428
2668

-.1738
-.5736
-.8660
-.9962
-.9397
-.7071
-.3420

.0872
5000

.8192
• 9848
.9659
.7660
.4226
.0000

Sum of
products

-98.8
As - 

36
	 2 - -5.38

-6.5.7
B, - -i--- X 2 - -3.85
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I

sin 7x
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2	 8	 4	 5	 6	 7

I	 IProducts iAngle Meas.(y sin 7x)	 Ordi- j x to ordi-
___________ nate I	 cos 7xordi- nate

No. nate	 (u)

Ch. VI

8	 9

Products
(y cos 7x)

+

	.5736	 3.4

	

.9397	 9.4

	

.9669	 13.0

	

.64.28	 10.5

	

.0872	 1.7

	

-.5m	 10.9

	

-.9063	 21.4

	

-.9848	 24.4

	

-.7071	 19.9

	

-.1736	 5.3

	

.4226	 14.3

	

.8660	 32.4

	

.9962	 41.9

	

.7660	 35.8

	

.2588	 13.7

	

-.3420	 20.5

	

-.8192	 55.5

	

-1.0000	 78.4

	

- .8192	 70.9

	

-.3420	 32.8

	

.2688	 27.2

	

.7660	 86.5

	

.9062	 117.0

	

.8680	 102.7

	

.4226	 48.3

	

-.1736	 18.2

	

-.7071	 64.6

	

-.984.8	 77.1

	

-.9063	 59.0

	

-.6000	 25.8

	

.0872	 3.5

	

.6428	 18.9

	

.9659	 20.6

	

.9397	 13.6

	

.5736	 4.1

	

.0000	 0.0

	

618.5	 582.3
Sum of 

	

products	 1	 36.2

+

	

50	 59	 .8192	 ' S

	

10°	 10.0	 .3420	 .4

	

150	 13.4 -.2588	 8.5

	

200	 16.4 -.7660
	

12.8

	

250	 19.4 -.9962
	

19.3

	

300	 21.8 -.8660
	

18.9

	

350	 23.6 -.4226
	

10.0

	

400	 25.9	 .1736	 4.5

	

460	 28.1	 .7071	 19.9

	

50°	 30.7	 .98.48	 30.2

	

66° 33.9	 .9063	 30.8

	

60°	 37.4	 .5000	 18.7

	

65° 42.0 -.0872
	

3.7

	

70° 46.7 -.6428
	

30.0

	

760	 52.8 -.9659
	

51.0

	

800 60.0 -.9397
	

56.5

	

85° 67.7 -.5736	 38.8

	

900 78.4	 .0000	 0.0

	

96°	 88.5	 .5738	 49.8

	

1000 95.5	 .9397	 89.8

	

1060 105.1	 .9859 101.6

	

1100 112.8	 .6428	 72.5

	

1150 117.4	 .0872	 10.2

	

120° 118.5 -.6000
	

89.2

	

1250 114.2 -.9063
	

103.5

	

1300 104.9 -.9848
	

103.2

	

1350	91.4 -.7071
	

64.6

	

1400	 78.3 -.1736
	

13.6

	

146° 65.0	 .4226	 27.5

	

150°	 51.1	 .8660	 44.3

	

166°	 40.0	 .9962	 39.9

	

160° 29.4	 .7680	 22.6

	

165°	 21.3	 .2688	 5.5

	

1700	 14.0 - .3420	 4.8

	

1750	 7.1 -.8192	 5.8

	

180°	 0.0 -1.0000	 0.0

	

575.8	 599.0

-23.2

At 
- !12 

X 2 - 2.01

- -232 
x 2 -



—sin 0)

+ Cos Wt
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In Fig. 9 the vector OA oi magnitude A I may be taken to represent the sin ta.

Remembering that the cosine wave leads the sine wave by 90°, the vector 08 may
be used to represent the cosine term. The vector sum OC of the two vectors Oil

and OH, therefore, represents the sum of A 1 sin if and B 1 cos we in both magni-

tude and phase. It leads the sin we position by tan	 and it also lags the cos we

by tan—'	 . The magnitude OC is V"A 1 1 	 The equation of the combi-

nation is V2 + B 1 2 sin i + tan'	 or	 + B 1 2 cos( - tan1
 B)A)

CO3 cot
Ai	 Asin (.t

FTG. 9. Vector representation
of sin we and cos weand their
gum OC for particular mag-
nitudes A 1 and Ri. Fm. 10.

The vector representation of the positive and negative sines and cosines forms a con-
venient way to find trigonometric relations and to make combinations of these waves.

For instance, the waves are "hown in Fig. 10. The corresponding vector representa-
tion of the same waves is shown in Fig. 11. In Fig. 11 it can be seen that the

eosO.t.

'UI 868

LA
—slji0)t 6	 0

FIG. 11. Vector representation of wa ved 	no. 12. Combination of
shown in Fig. 10.	 —5 sin we + 8.66 008 wt.

sin (c4 + 90°) gives the +cos i4, that —cos (wi - 90°) gives the —sin wt, etc. By vis-

ualizing Fig. 11, all similar relations become apparent. In like manner, if [-5 sin we
+ 8.66 006 cit] is to be reduced to a single trigonometric term, the values would be
laid off on Fig. 11 as shown in Fig. 12. The vector addition would then be performed
to obtain the resultant OC. OC may be seen to lead the coa we by 30' or to lag the

—sin c4 by 60°. It also leads the +sin we by 120°. Thus the equation of OC is any

one of the following: 10 cos (c4 + 30'), —10 sin (we - 60°) or 10 sin (w + 120').

There are also other equivalent expressions for the resultant wave.
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Example 4. Express the equation obtained from the analysis of the wave of
Oscillogram 4 in terms of positive sine components only. The results of the analysis
show that:

	

A 1 	 82.45	 B1	 -22.11	 C1	 V'82.45 + (_22.11)2

	

A 3 = -0.92	 B3 = 26.2	 C3	 V'(_0.92)2 + 26 . 22 = 26.2 units

	

A 5 = - 5.38	 B5 	 -3.65	 C5 V"(_5,38)2 + (-3.65) = 6.50 units

	

A 7 = 2.01	 B = -1.29	 C7 V2.01 + (_1 . 29) 2 = 2.39 units
With respect to the +sin wt position of Fig. 11 as a reference:

-22.11
a j 	 tan	

82.45	 tan -0.268	 -15°

26.2
= tan-1

 -0.92 = tan
- ' -28.5 = 92°

-3.65

	

-538	
ii 0.678 = 214.2°

a 7 tan' 2
	

= tan-' -0.642	 -32.70

It will be noted that the individual signs of the coefficients B and A must be con-
sidered in the evaluation of the phase angles.

The equation for the wave form shown in Oscillogram 4 is:

	

i	 85.50 sin (4 - 15°) + 26.2 sin (3 + 92°)
± 6.50 sin (&L + 214.2°) + 2.39 sin (7 - 32.7°)

It is desirable to draw figures, similar to that shown in Fig. 12, for each of the har-
monica. This exercise is left to the student. The final test of the correctness of
any wave analysis is whether the component parts found by the analysis can lx
combined to yield the original wave.

Problem 3. Evaluate i in the above equation at 30° intervals of wt throughou
one-half cycle, and plot the resultant curve. Compare the general wave shap
thus found with that of the original wave form shown in Oscillogram 4.

Problem 4. Express the equation for the wave shape shown in Oscillogram
in terms of positive cosine components.

Wave Analysis (Second Graphical Method). Although the funda
mental basis of the previous method of analysis is simple, there are
number of methods which require less time for numerical computation
One of these shorter methods follows.

Equation (1) may be written in ihe following form:

y =f (x) = A 0 + A 1 sin + A 2 sin 2x + A 3 sin 3x +

+ A sin nz + B1 cosx + £2 cos 2x + B3 cos 3x

	

+.'. +B cos mx	 (20)

If q is a number equal to the order of the harmonic which is under
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investigation and f(w/2q), f(3T/2q), etc., are the values of y = f(x) at

X = /2q, x = 3w/2q, etc., it can be shown that the following relations

are true.3

2q(A q —A 3q +A 5q.4 7q+) =() _f(3
,r\+f(

	\2q	 2q1

f[(4q 

—_1),rl

	

-.	 -	 I	 (21)

	

2q	 j

2q (B,+ B3 q + Bs q +) f(0) - f( +f(
2,r

) - 
(1r)

	

q)	 q 	 q

•••	 .[(2-)]	 (22)

When equations (21) and (22) are used, it must be remembered that the
subscripts 3q, 5q, etc., represent the order of the harmonic obtained by
multiplication of 3 times q, 5 times q, etc. Thus, if q is 3, B3q would be
B9 , B q would be B 15 , etc.

Before proceeding to employ equations (21) and (22), it is necessary
to estimate the maximum number of harmonics required in the analysis.
The procedure is theh to start with the highest harmonic and substitut'
the ordinates at the various angles indicated by the right members of
equations (21) and (22). Since it is unlikely that all ordinates required
will be given, it is usually necessary to plot the resultant wave in order
that the required ordinates may be read from the curve. The necessity
of having a graph of the curve will usuay entul no extra work in
practice because the method will usually be applied only when the
resultant wave is obtained from an oscillograrn similar to that illus-
trated in Oscillograrn 4, page 236. After the harmonic coefficients are
determined, A 0 is evaluated by substituting z = 0 in equation (20).
Thus

f(0)	 + B + B2 + B3 +	 + B	 (23)

fO is react from tlic curve and, since everything except A,) has been
determined, .1 0 can be calculated. As an example of the procedure,
the wave employed in example 3 will be analyzed.

Example 5. Find the harmonic coefficients through the seventh harmonic for
the wave given in Oscillogram 4, page 236, by employing equations (21), (22), and
(23).

See "Advanced Mathematics for Engineers," by Reddick and Miller, John
Wiley & Sons, Inc., 2nd edition, 1947, p. 202.
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For the seventh harmonic, q - 7 and equation (21) is used as follows:

(2 X 7)A 7 = i() —i() + j() _.r() +fc) 
-'( )14	 1414	 14	 14

\	 715,r\	 \
+f 13y(--) —f--j--) +f(17r--) -(

19x

--) +(--

/23T\	 /'25w\	 /27x\

— f-j -) 1(-i -) ' i)
Note that, since the seventh harmo'nic is the highest required, A 3q	 A 21 , Aç, etc.,
are all zero.

14.1 7	f(12.86°) - f(38.57°) + f(64.29') - 1(90°) + 1(115.7°)
-f(141.4') +1( 167 .2 °) -f(193') +f(218.7') -f(244.3')

+1(270 °) — 1(296 °) +1(321.5 °) —f(347°)

= 12.4 - 24.5 + 40.5— 76.4 + 117.6 - 74.6 + 17.5 - (-12,4)
-f (-24.5) - (-40.5) + (-76.4) - (-117.6) + (-74.6)
- (-17.5)
= 25

25
A 7	=119

14B 7 =jCt	 f(25.7°) +f(51.4-) - 1(77.1°) +f(103') -f(128.7')

+	 54.3°) -f(180*) + 1(205.5°) - f(231.3') +f(257')
-f(283') +f(308.7') - 1(334.5°)

=0-20+32-56+101-107+41-0+ —20+32-56
+ 101 - 107 + 41

=-18

B . = -	 = —1.286
14

Because the wave is symmetrical about the 180° point, even harmonics cannot
exist. If, however, equations (21) and (22) are used to find the sixth harmonic,
zero will be obtained.

Equations (21) and (22) are now used to calculate As and B 5 as follows.

(2 X 5).4 =i()-) +i() f
	
-()

(13r\	 f15r\	 /17T\	 /19T

+f,--) —J ( , -j -) +f --) — JI , - j-

10.1 = f(18°) - f(54°) + 1(90') - 1(126°) + f(162°) - f(1980)

+1(234 °) — 1(270 ')+1(306') —f(342')
15 —33 + 76.4 - 113 + 26 - (-15) + (-33) - (-76.4)

+ (-113) - (-26)
= 2(15 - 33 + 76.4 - 113 + 26) = 2(-28.6) = —57.2

As = —5.72
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/4i '\ 	 15T'\	 (6z'\
(2 x 5)B5 = f(0) - I () +f () - I (

1,r) 
+ I	 - /	 + f

I 8
f ( 

7r) 
+f — -f 

gr

	5	 5) M
jOB 5 f(0) — 1(36°) + /(72°) —J(IOS°) +1( 144 °) - /(180°)

+1(216°) — 1(252 °) +/(288°) —/(324)
0 —24 + 49 - 110 + 68 —0 + (-24) - (-49) + (-110)

- (-68)
= —34

	

B5	 —3.4

Determination of A 3 and B3:

(2 X3)A 3 =() _i( ') +() .-() 
+j() _jQ.!)

6A 3 = 1(30 °) —f(90°) +/(150°) —/(210°) +/(270°) —f(330°)
= 21.8 - 76.4 + 51.1 - (-21.8) + (-76.4) - (-51.1)
= —7

As = —1.167

6B 3 = 1(0 ) _ i() +() _f() +() —i()

= 1(0) - 1(60°) + /(120°) - f(180°) + f(240°) - f(300°)
0 - 37.4 + 118.5 - 0 + (-37,4) - (-118.5) = 162.2

B 3 = +27,03

For the fundamental equations (21) and (22) become

(2 X 1)(A 1 - A 3 +As —A 7) i() _()

2(A 1 - A 3 + As - A7) 1(90) —f(270) = 76.4 - (-76.4) = 152.8

Substituting the values of Ai, A 5, and A 7 found previously and solving for A 1 gives
A 1	 82.74.	 -

In a similar way B 1 may be found as follows.

(2X1)(B1+B+B6+B7)=f(0)—f(1')0
2(Bj + 27.03 - 3.4 - 1.286) 0

B 1	 —22.34

The foregoing method is easy to apply and entails less labor than the
method employing analyzing tables. The accuracy, however, will vary
with different wave shapes and will also be dependent upon the estimate
of the number of harmonics required. It will be noted that the deter-
mination of the fundamental depends upon the values of the harmonics
previously determined. It is therefore desirable to start with a high
enough order of harmonic so that any higher-order components will be
negligible so far as engineering accuracy is concerned. If only a single
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harmonic of some desired order is required, the method employing the
analyzing tables may save time and be more accurate. The error in
the method employing analyzing tables depends only upon the size of the
intervals chosen and, obviously, approaches zero as the size of the
interval is decreased and the number of them is increased. The deter-
mination of any one harmonic is independent of the determination of
any other harmonics when analyzing tables are employed.

Fxo. 13. Wave with unsymmetrical positive and negative loops.

FIG. 14. Wave with unsymmetrical positive and negative loops.

Degrees of Symmetry of Non-Sinusoidal Waves. Non-sinusoidal
waves may have symmetrical positive and negative loops, as shown in
Fig. 8, or the loops may be unlike, as shown in Figs. 13 and 14. As indi-
cated in the article on wave analysis (page 235), certain types of
symmetry in a wave form will automatically eliminate the need for
evaluating certain coefficients in the Fourier series which represents the
wave.

When the variation from zero to 1800 is repeated (except for sign)
between 1800 and 360°, the wave is said to possess half-wave symmetry.
Mathematically a wave of this kind is described as having

[f (x + i) = —f(z)] symmetry. Expressed in another way, a wave
has half-wave symmetry when any ordinate, such as b, Fig. 13, ,r radians
distant from another ordina, such as a, is equal in magnitude to that
at point a but opposite in sign. Thus, the ordinate at any point a for



Ch. Vi	 NON—SINUSOIDAL WAVES	 247

a general wave is:

A 0 + C1 sin (wt + al ) + C2 sin (2t + a2)

+ C3 sin (3ci + a3 ) + C4 sin (4wt + cr4)

+ C5 sin (5c4+ a) +	 (24)

The ordinate i radians distant from a is found by adding r radians to
wt. If this angle (wt + w) is substituted and if it is remembered that
(c.'l + w) for the fundamental corresponds to n(t + R-) for the nth
harmonic, the following results:

y= Ao+Ci sin (wt +ai +w)+C2 sin (2c+a2+2ir)

+ C3 sin (3w + cr3 + 3w) + C4 sin (4wt + cr4 + 4w)

+ C5 sin (wt + a + 5w) +	 (25)

Since the sine of any angle plus an even multiple of w radians is the
same as the sine of the angle, and the sine of an angle plus any odd
multiple of w radians is the same as the negative sine of the angle,
equation (25) simplifies to:

Yb = A 0 - C1 sin (t+ a1) + C2 sin (2wt + cz2)

- C3 sin (3wt + cr3) + C4 sin (4 + cr4)
- C5 Sin (5w1+ cr5 ) + • - .	 (26)

The ordinate Yb [equation (26)] would be exactly opposite to that of
equation (24) if A 0 and all even harmonics in the wave were absent.
Hence a wave is symmetrical with respect to the positive and negative
loops if it contains no even harmonics and if A 0 is equal to zero. The
converse of the foregoing statement is also true, that is, a wave which has

If (cat) = —f (wt + w)] symmetry can contain neither even harmonics
nor A 0. The effect of a second harmonic in destroying half-wave sym-
metry is shown graphically in Fig. 15. In analyzing waves possessing
half-wave symmetry, the analysis need be carried through only 3/2cycle
or 1800.

A wave possessing half-wave symmetry as defined above may also be
symmetrical about the midordinates of its positive and negative loops,
namely, its 900 and 2700 points. A wave of this kind is said to possess
midordinate or quarter-wave symmetry, and the analysis need be carried
through only Y4 cycle or 900. The case where only the positive or

negative loop is symmetrical about its midordinate is of relatively little
importance. Thus the positivle loop of the wave shown in Fig. 13 is not
symmetrical about its midordinate, whereas that of Fig. 16 is symmetrical
with respect to its midordinate. The wave will have the halves of its
positive and negative loops symmetrical if its fundamental and all bar-
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monies pas through zero values at the same time, and, further, if all even
harmonics are absent. This fact is illustrated graphicativ in Fig. 17. The
second lirmonie, shown (lotted, adds to the fundamental to the left of the
rn donlinate of the positive loop and subtracts from it on the right-

Resultant

undamental

2nd Harmonic

/

15. Effect of second harmonic iii destro y ing half-wave symmetry.

liawl side All the odd harmonics are s yxninetrical about tie mid-
ordinate a when they pass through zero at the same time as the funda-
mental. If the zero-ordinate point of the complex wave is chosen as a

FIG. 16. Wave with positive and negative loops symmetrial about the midordinate
(Quarter-wave symmetry).

ference, it is plain that only odd sine terms can he prest in the
equation of a complex wave having quarter-wave symmetry.

Waves of Same Wave Shape. Waves are of the same wave shape
if they contain the same harmonics, if the ratio of corresponding har-
monies to their respective fundamentals is the same, and if the harmonics
are spaced the same with respect to their fundamentals. Expressed
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in another way, for two waves of the same form the ratio of the magni-

tudes of corresponding harmonics must be constant, and, when the
fundamentals are in phase, all the corresponding harmonics of the two
waves must be in phase. The-test is to note whether the ratio of cor-
responding harmonics is constant and then to shift one wave so that the
fundamentals coincide. If the phase angles of corresçionding harmpnics,
in the two waves are then the same and if the first condition is also
fulfilled, the waves are of the same wave shape or wave form.

Fia 17. Symmetry about the midordinate, a, is maintained if all odd harmonics are
w -o when the fu.ndamer.tal is zero. The second harmonic shown dotted will destroy
this symmetry as will other even harmonics.

Example 6. Determine whether the following two waves are of the same shape:

e = 100 sin (.t + 30°) - 50 sin (3wt - 60°) + 25 sin (5t + 40°)

i = 10 sin (L4 - 60°) + 5 sin (34 - 150°) + 2.5 cos (5ot - 140°)

Since all harmonics of the current wave are one-tenth of the corresponding har-
monies in the voltage wave, the first requisite is fulfilled. Next, the fundamentals
should be brought into phase by shifting the current wave for-ward 00° or the voltage
wave backward 90°. The current wave will be shifted by adding 90° to the phase
angle of its fundamental. Shifting the fundamental of a wave by a° corresponds
to shifting the nth harmonic by na°. This ma y be verified by referring to Fig. 17.
Suppose the reference axis is changed to the position marked a, thus shifting the
wave ahead. This is a shift of 90°, or one quarter cycle for the fundamental. It is
a shift of three quarter cycles for the third harmonic, or 270° and five quarter cycles
for the fifth harmonic or 450°. Hence, to maintain the same relation between the
fundamental and all harmonics in the current waves 3 X 90° or 270° will he added
to the third, and 5 X 90° or 450° will be added to the fifth harmonic. Then:

10 sin (.4 - 60° + 90°) + 5 sin (3.4 - 150° + 270°)
+ 2.5 cos (5.4 140° + 450°)

10 sin (.4 + 30°) + 5 sin (3.4 + 120°) + 2.5 cos (5.4 + 310°)
10 sin (.4 + 30°) - S sin (3.4 - 60°) + 2.5 sin (5.4 + 40°)

The corresponding harmonics of the current and voltage waves are hence in phase.
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and the two waves are of the same shape. Had either the third or fifth harmonic
been Out of phase with the corresponding harmonic in the voltage wave, the wave
shapes would have been different.

The effect on wave shape of shifting a harmonic with respect to the
fundamental can be understood through a study of Figs. 18, 19, and 20.
In each figure the magnitudes of the fundamental and third harmonic
are the same. As the third harmonic is shifted along the axis with
respect to the fundamental, the wave form of the resultant is seen to
change. This shifting of a harmonic with respect to the fundamental
is sometimes spoken of as changing the phase of the harmonic with
respect to the fundamental. This should not be construed to mean
that there is a definite phase difference between a vector representing
the fundamental and one representing the third harmonic. Vectors
representing a fundamental and a higher harmonic cannot correctly be
related on the same vector diagram without special interpretation.

Problem 5. Given the following equations for two wave forms of current:
= 10 sin	 + 30°) + 2 sin 7w

.If
I — 35 8ifl (c4 - 10 - ) + 7 sin (7wt + 80o

Show that the -wave form of the i' variation is like (or unlike) the wave form of
the i" variation.	 Ans.: Same form.

Effective Value of a Non-Sinusoidal Wave. In Chapter III the
/i

effective value of any wave was shown to be ' f\/	 [f(t)] dt. Applying

this expression to the general complex wave

1 = 1 + 1.1 sin Wt + 1.2 Sfl (2wt + a2) + j,na sin (3wt + a3)

+	 + lint, sin (nc1,t + at,)

gives

f [10 + mi Slfl wt + 1.2 Sfl (2wt + a2) + It,.3 sin (3,L + a3)

+ ... + I t, sin (nt + an)12 dL}

= .s,j102+'mI +1tn22+Ln32+1ni42+
(27)

2

Problem 6. Show by integration, including all steps, that the effective value of

i



FIG. 18.

PEG. 10.
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Pro. 20.

tS. 10, and 20 show the effect on 'rave shape of shifting a harmonic.

-17
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Since
'ml
	

1.2	 etc.

I =	 I2 + 122 + 132 + j2 + .. . + I	 (28)

Equation (27) is used when the maximum values of the harmonics are
given, whereas equation (28) gives the equivalent expression if effective
values of the harmonics are available. It is obvious that similar expres-
sions hold for voltages.

Example 7. Find the effective value of - the voltage wave used in example 6.

1001 +
E =	

54)2 + 252 = 81 volts 	 -

It should be noted that the effective value is the square root of the sum of the squares
of the maximum values divided by 2, irrespective of the phase angles or signs of the
harmonics. A similar statement is true when effective values of the harmonics
are used in equation (28).

For one method of analysis in a-c machinery, known as the Blondell two-reaction
method, it is necessary to have the effective value of the rectangular wave given
by equation (15), page 233. For this wave, effective value equD.ls A1w/4.

Power Due to Non-Sinusoidal Voltages and Currents. The expres-
sion for average power in general was given as

P 
lfT

When

= E,, 1 sin (wt + A + E.2 sin (2t + a2) + E,, sin (3wt + a3 ) +"

and

= Imi sin (Wt + al ' ) + 1m2 sin (2w1 + a2) + 1m3 sin (3wt + aa') +

P = ; fT 
IEm i Sin (wt + oi) + E,,,2 Sin (2w1 + 2)

+-Em3 Sin (3w1 + 0(3) +] [Imi sin (wI + aj')

+ 1,2 Sjfl (2wt + a2 ' ) + 1.3 sin (3w1 + a3) + -] di (29)

Upon expansion, this yields products of terms of unlike frequencies and
products of terms of like frequencies. As shown on page 226 the integral
of the products of terms of unlike frequencies taken over a complete
cycle of the lower frequency is zero. This leaves only the product of
terms of like frequency, such as:

1
f-T
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which gives
AB
— — cos(a — a)	 (30)

Thus equation (29) becomes

EniImi	 ,	 E,p.Im
P.	 cog (a - cr1 +	 2 

cos (cr2 - a2)

+ 
Em31m3 cos 

(cr - a3 ' ) +"	 (31)

Or, since
Emilmi Emi 'ml=-—=E1I1
2 

P = E 1 11 cos (at - a t ' ) + E212 cos (a2 - cr2')

+ E3 13 cos (as - cr3 ) +	 (32)

Average power when waves are non-sinusoidal is the algebraic sum of the
powers represented by corresponding harmonics of voltage and current.
No average power results from components of voltage and current of
unlike frequency, provided that the time interval chosen is equal to an
integral number of cycles of the lower-frequency variation. The
foregoing statement can be proved either mathematically or graphically.

Example 8. Find the tower represented by the following:

e=100 sin (+30°)_50 sin (3(+)+25 sin 5volts

i 20 sin	 - 34)0) + 15 sin (3t + 300) + 10 cos (5,L - 60°) amperes

P —	 Ø 1300 - (.....34)o)j + ((15) cos 160° - 30°]

25 X 10
+	 2	

cos 1-90° - (-60°)J

—500-324.75+it25
— 283.5 watts

An alternative method of obtaining the power for the third-harmonic componeuts
follows.

C3 — 50 sin(&4+60) — +50 sin (-12O°)volts

is - IS sin (34 + 300)

- 50 )( 15
coa (-120°	 -	 150* —324.75 watts
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Problem 7. Find the power delivered by the following:
e - 100 sin 4 +50 sin (5wt - 80°) —40 cos (7 + 30°) volts
i30 sin (w + 60-) + 20 sin(Swt-50°)+ l0 sin (7c4 +6O°)amperes

An..: 1083 watts.

Volt-Amperes. Volt-amperes are determined by the product of the
effective voltage and effective current.

Example 9. Find the volt-amperes for the waves in example 8.

Va El 
, 11002 + 502 + 2 .j202 + 15 + 102 

— 81 X 19.03

1541 volt-amperes

In general,

Volt-amperes =
^E_12 + Em22

 ± E.82 + etc.	 2\1m12 + 1m22 ± 1.32 + etc. (33)

Power Factor. Power factor for non-sinusoidal waves is defined as
the ratio of the power to the volt-amperes. Hence
Power factor =
E1 11 cos (a j - x 1 ' ) + E212 cos (02 - cr2) + E3 13 cos (a3 - cr3 ) + etc.

V'E 1 2 + E22 + E 2 + etc.	 j12 + 122 + 132 + etc.
(34)

Example 10. Find the power factor for the waves given in example 8.
Power from example 8	 - 283.5 watts

Volt-amperes from example 9 1541
283.5

Power factor	 - - - 0.1837
1541

The conditions under which the power factor is unity when waves are non-sinus-
oidal are found from equation (34). To make the power factor 1, the numerator
(power) should be as large as possible. Hence

cos (a j - a l') - cos (a2 - 
I) - cos (cr - cr3) + etc. 1

Then
P. f.
	

E1I1+E212+E313+-
 V'(E1 +	 +,E3 + etc.)(1 12 + 122 + J2 + etc.)

This expression can equal unity only iI.E1/11 - 82/12 E3/4
To simplify the algebra, consider only the fundamental and one harmonic.

+ E212	
1

v'E1 +Es2)(1 1' + 122 )	 -
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E11 1 + E212 - v'E121 1' + E12121 + E22I + E251,,

E12 1 12 + 2E1 1 1E2 12 + E22 1 22 - E 1 5 1 12 + E12122 + E22 1 1' + E32112

2E1 1 1E212 - E12112 + E22111

If E1 /1 1 E2/1 2, E1 12 E2 1 1 and the above expression becomes 2E22 1 15 = 2E22112,
under which conditions the premise is true. Hence, to have unity power factor,
the voltage and current waves must be of the saran wave shape and in phase. Even
though the voltage and current waves pass through zero at the same instant, the
power factor cannot be unity if any harmonic in one wave is absent in the other, or
when its magnitude makes the save shapes different.

Equivalent Sine Waves. Occasionally equivalent sine waves are
used for certain calculations and comparisons. They must be used with
discretion because calculations based upon them are usually in error
by varying amounts. An equivalent sine wave of current or voltage is
a sine wave the effective value of which is the same as the effective
value of the non-sinusoidal wave which is being represented. When
equivalent sine waves oi corresponding non-sinusoidal voltages and
currents are found, the phase angle between the equivalent sine waves
is made such that the power and power factor are the same as those for
the actual waves. Whether the equivalent angle of phase difference
is one of lead or lag is determined by the angle between the fundamentals
of the two waves. If the fundamental of current lags the fundamental
of voltage, the equivalent sine wave of current must lag the equiva-
lent sine wave of voltage. If the fundamentals are in phase and the
power factor is not unity, the sign of the angle of equivalent phase
difference is indeterminate.

Example 11. Find the equivalent sine waves for the current and voltage given
in example 8.

Effective voltage	
/1002+502+252

2	
- 81 volts

Effctive current 
= J202 + 152 + 102 

19.03 amperes

Power factor from example 10 0,1837

The angle of equivalent phase difference is eoa 1 0.1837 = 79.4°, Since the funda-
mental of currant lags the fundamental of voltage, the angle 79.4° is an angle of
lag of current with respect to voltage for the equivalent sine waves. The equivalent
sine waves of voltage and current, respectively, are:

e = V81 sin volts

- V2 19.03 sin ( - 79.4°) amperes

As jndkated before, the use of equivalent sine waves in nn-sinusoidal circuit analysis
will generally lead to large errors, particularly in operations involving the addition
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or subtraction of the waves. Equivalent sine waves are sometimes used in specify -
ing the deviation from a sine wave.

Problem B. Find the equivalent sine waves for the waves given in Problem 7.
Aria.: 118.8 81n wt volts; 37.4 sin (4 + 60.8°) amperes.

Deviation Factor. Deviation factor is the ratio of the maximum
difference between corresponding ordinates of an actual wave and an

Fro. 21. Deviation of a distorted wave from an equivalent mine wave.

equivalent sine wave of the same length to the maximum ordinate of
the equivalent sine wave when the two waves are superposed and
shifted along the axis so as to make the maximum difference a minimum.
For example, Fig. 21 shows a non-sinusoidal wave and an equivalent sine
wave of the same period and length. These waves are shifted in such a
way that the maximum difference between corresponding ordinates is as
small as possible. In this particular case the maximum difference is ab.

The ratio of ab to the ma,cimum value Em of the equivalent sine wave is
the deviation factor. Deviation factor is sometimes used for specifi-
cation purposes. A deviation factor of about 0.1 for commercial
machines is usually allowable.

Series Circuit Analysis when Waves Are Non-Sinusoidal. The
procedure is most readily understood from an example.

R-6 0 	c ..98.8	 Example 12. Given the circuit with
the parameters shown in Fig. 22.

L — O.O5 heny	 When w is 377 radians per second and

I

	

	 the voltage i = 141.4 sin c4+ 70.7 sin
(3t+30°) —28.28 sin (5,L-20°)

Fie. 22. See example 12.

	

	
volts is impressed, find the current,
I, that an ammeter would read- Also

find the total power dissipated and the effective value of the voltage drop across
the inductance. Also find the equation of the current wave.

Since the inductive and condensive reactances are different for different frequen-
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cies, each harmonic must be handled aeparazeLy. Subscripts 1, 3, and 5 will designate
the fundamental, third, and fifth harmonics, respectively. Either maximum or
effective values may be used. If maximum values are used, maximum currents
will result; when effective voltages are used, effective currents result. Whichever
are used, the result can always be easily changed to give the other if desired. Since
the effective values of the harmonic components of voltage in this particular case
are more convenient numbers to handle, the solution will be negotiated through
the use of effective values immediately.

Fundamental

V1 - 
41.4 -

0 100 volts

R 1 = 6 ohms

XLI 377 X 0.05 18.85 ohms
106

26.85 ohms
377 X 98.8

Z 1 6 +j18.85 —j26.85 8 —58 or 1001)1113

I	 Y.1==1Oamperes'	 Z1	 10

Ii leads Vi bYtan'	 53.12

P1 102 >( 6 = 600 watts

VL1	 1 1X Li - 10 X 18.85 ;% 188.5 volts

Third Harmonic

70.7Vs =50 volts

= 8 ohms

3XLI 3 X 18.85 56- 55 ohms

Xc,	 8.95 ohms

= 6 + j56.55 - 58-95 = 6 + j47.6 or

"6 +47.62 - 48.1 ohms

104 amperes

aV,bytan 6 =82.8°

P3 1.042 X 6 - 8.48 watts

V - 1.04 )( 56.55 - 58.9 volts
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Fifth Harmonic

V6 	20 volts
2828

- 8 ohms

XciX — 	—	 5.37 ohms

8 +594.25 -55.37 6+588.88 or.
+ 88.882 89 ohms

20
0.225 ampere

4 lap V5bytan-_5•O

Ch. Vi

P5 Is'R	 0.2252 X 6 0.304 watt
Vj 	 0.225 X 94.25 212 volts

I 2 + J' +I 2 '/i0 + 1.042 + 0.2252 10.05 amperes
Pi + P + P5 = 600 + 6.48 + 0.304 606.8 watts

+ 58.9 + 21.22 =	 io 198.8 volts

Since the fundamental of current leads the fundamental of voltage by 53.12°, the
equation of the fundamental of current must be V2 10 sin (w + 53.12°). Similarly,
for the third harmonic,

= V2 1.04 sin (3 + 30° - 82.8°)
or	 1.04 in (34 - 52.8°) amperes
Also	 j6 — - 1/0.225i.(5wt -20° - 86.1°)

- v40.225 sin (&, - 106.1°) amperes

The complete equation is:

I	 14.14 sin (c.,t + 53.12°) + 1.47 sin (3w - 52.8 0) - 0.318 sin (5 - 106.1°)
= 14,14 sin (wt +53.12*) +l.47 sin (&..t -52.8°)+O.318 sin (5<t +73.9°) amperes

Parallel Circuit Analysis when Waves Are Non-Sinusoidal. This
is not appreciably different from the preceding series-circuit probl.em.

Example 13. Given the circuit shown in Fig. 23, with the 60-cycle constants as
shown. When a voltage v -141.4 sin .4+70.7 sin (3c4+30°)-28.28 sin (5.4-20°)
volts is impressed, find the ammeter value of the total current, 1, the current in
each branch, power dissipated by each branch, total power dissipated, and the
equation of the resultant current.. is 377 radians per second.
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Fundamental

141.4
V1 - — 100 volts magnitudevi
V 1 — 100 +50 volts

100(5 +515)
Iab1 2+16 or 6.33 amperes

(5 -l5)(5 +2i5) 

100—	 9.62 - 51.925 or 9.82 amperes
10 +52
L + Li 11.62 + 54.075 or 12.33 amperes

Ij leads the fundamental of vohage by tau:- 4.075- — 19.4*
11.62

Poz,i = ei + €'i' = 100 X 2 200 watts

Pa1. 100 X 9.62 - 962 watts

Fxa. 23. Circuit with 60-	 Flo. 24. Circuit of Fig. 23
cycle parameters-	 showing parameters at 180

cycles.

Third Harmonic

The circuit with the parameters for the third harmonic is shown in Fig. 24. Only
the reactances need be changed before proceeding as before.

V3 — 50 volts magnitude
vi

Take V3 along the reference axis for the third harmonic. (The most convenient
reference axis should be chosen in any particular case in this type of analysis.)

V3 50 +50 volts

50 = 5 +1 S or 7.07 amperes

Ld3 - 10+563.6852.21 or 4.3 amperes

1f4 8.68 + 32.79 or 9.11 amperes
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Ij.3 leads V3 by tan-1!.-7917.85°

50 X 5 = 250 watts
50 X3.68 = 184 watts

I

Fin. 25. Circuit of Fig. 23 showing parameters at 300 cycles.

Fifth Harmonic

The circuit with parameters for the fifth harmonic is shown in Fig. 25,

_ 28.28
V5	- 20 volts

V'2
Let	 V20+j0volts

5	 = 2.94 +jl.763 or 3.43 amperes

las 
=	

1 - jl or 1.414 amperes

3.94 +jO.763 or 401 amperes

If, leads V5 by tan	 10.950

= 20 X 2.94 58.8 watts
P 6 = 20 X 1 = 20.0 watts

Ammeter value of total current \/i2.332 + 9.112 + 4.012
15.9 amperes

Ammeter value of current in ab V'6.332 + 7.072 + 3432
= 10.1 amperes

Ammeter value of current in ed 	 /9.822 + 4,32 + 1.4142
10.81 amperes
200 + 250 + 58.8 508.8 watts
962 + 184+20 1166 watts

Total power dissipated 1674.8 watts
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Since If.1 leads V 1 by 19.4°, the equation for the fundamental of the current wave
must lead the voltage wave 141.4 sin w.L by 19.4°. Hence

Similarly

and

v'2 12.33 sin (L + 19.4°) amperes

9.11 sin (34 + 30° + 17.85°)

1 '2 9.11 sin (3:+ 47.85°) amperes

—V'2 4.01 sin (51 - 20° + 10.95°)

4.01 sin (5Z + 170.95°) amperes

Therefore
i - il + i3 + i6

= 17.45 sin (wt + 19.4°) + 12.9 sin (3t1 + 47.85°)

+ 5.67 8m (5u1 + 171°) amperes

Addition and Subtraction of Complex Waves. These operations are

similar. Subtraction is performed by reversing the sign of the term
to be subtracted and then adding. To illustrate, consider the bifurcated
circuit shown in Fig. 26. Given

10 sin (t + 30°) - 5 sin (3ut - 40 0 ) amperes

= 15 sin (wt - 10°) + 10 sin (3wt + 60°) amperes

Find i2.
From Kirchhoff's laws, i 1 + i2 = i3 or i2 =	 -

i3

Fia. 26. Bifurcated line.

—'—:

sLncDt

Ftc. 27. Vector diagram for currents of fun-
damerta1 frequency in Fig. 26.

Fundamental

Consider a wave whose equation is of the phase sin wt as the reference.

The solution will follow the vector diagram of Fig. 27. The number of
primes on a symbol vill indicate the order of the harmonic represented.

= 10 (cos 30° + 3 sin 30 0 ) = 8.66 + j5

15 (cos 100 - j sin 10°) = 14.75 - j2.6

_I' = —8.66 - j5
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1m2	 1m1 + I 3' = 6.09 — j7.6 or 9.74 amperes

o = tan"—'-6 = —51.30

= 9.74 am (wt - 51.3°) amperes

IZ

'S

ln 3wtN	 1	 sn 3 Ot

'.1
FIG. 28. Vector diagram for third har1n)nic currents in Fig. 26.

Third Harmonic
A wave of the phase of sin 3wt will be taken as the reference. Then

the vector diagram representing the third-harmonic currents appears as
shown in Fig. 28.

= 5 (cos 140° +jsin 1400) = —3,83 +j3.214

1m3 	10 (cos 60° + j sin 60°) = 5 + j8.66

'm2 = 1n"	 L1 11 '	 5 +j8.66 + 3.83 - j3.214 = 8.83 +j5.446
or 10.37 amperes

_ 5.4460 = tan	 31.60

I,,
= 10.37 sin (3w + 31.6°) amperes

The complete solution is
F.2 =t., +22i,,

9.74 sin (wt - 51.3°) + 10.37 sin (3w! + 3 1.6°) amperes
Introduction of Harmonics Due to Variation in Circuit Parameters.

Harmonics in a current wave may exist even though the voltage causing
it is a pure sinusoid. For example, consider a very thin filament of
wire which has a high temperature coefficient of resistivity. If the
wire is sufficiently thin so that it will heat and cool during a cycle as
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the current varies from zero to a maximum, the resistance will vary
during the cycle. At the maximum point a on the voltage wave, Fig. 29,
the resistance will be higher than at point b. The current at a will,
therefore, fall below the value that would permit it to be proportional
to the voltage. The wave ij shows the current wave for a constant
resistance, whereas the dotted wave i2 shows how it will vary when the
resistance increases for the higher values of current during a cycle.

'io. 29. Shape of 12 wave Is flatter than a sane wave owing to resistance increasing
with current.

A very common example of harmonics in a current wave occurs when
a siiusoidal voltage wave is impressed on an inductance coil with an iron
core. As the current increases, the resulting operation on a higher
part of the magnetization or saturation curve causes the inductance to
become smaller. When the inductance becomes less, the inductive
reactance is reduced and the current, therefore, rises more rapidly
than it otherwise would. Thus the current wave becomes more peaked
than a sinusoid. This is shown by Oscillogram 2, page 224 wh.ih was
taken for an iron-core coil.

When the voltage on some device is to be reduced and it is desired
to maintain the same wave form, a series resistance cannot be used if the
current wave is not sinusoidal. The drop across the resistance will be
non-sinusoidal, and this drop subtracted from an original sine wave
of voltage will result in a non-sinusoidal wave across the device. In
general, but not invariably, the subtraction of a non-sinusoidal voltage
drop from a non-sinusoidal voltage will result in a non-sinusoidal wave
of different shape from the original.

Modulated Waves. Modulated waves consist of a combination of
waves of different frequencies and are, therefore, classified as complex
or non-sinusoidal waves. The transmission of radio intelligence is
usually accomplished by means of some combination of carrier and audio
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frequencies. Graphical representatics of a carrier wave of relatively
high frequency and of a modulating wave of relatively low frequency are
shown in Fig. 30a and Fig. 30b, respectively. The carrier frequencies
employed in the program broadcast band range from 540 to 1600 kc,
and the modulating audio frequencies usefully employed at the trans-
mitter range from about 30 to 10,000 cycles.

I	 fill

/

(1,) Modulating Wave (One and on.-hilf cytlas)AJ	 Amag

Unmodu
laled '	 ^ ^ I

(c) Modulated Ways; Illustrating one and one-half
cycles of modulation

Ito. 30.

The carrier and modulating waves may be conthined in a network at
the transmitter in such a manner that useful variations in the resultant
amplitude or frequency are obtained. Some of the basic principles
involved may be understood by considering the case where the carrier
frequency is generated by an ordinary type of alternator rather than by
a vacuum tube oscillator. The carrier voltage will be represented by

A 0' sin wt	 (35)

where A0' is the maximum magnitude of the carrier voltage and w is the
carrier angular velocity. Either A 0' or w may be varied in accordance
with the intelligence to be transmitted, thus producing amplitude or
frequency modulation. In the case of the ordinary alternator, A0'
could be made to vary by changing the field current sinusoidally and the
resultant wave would correspond generally to that shown in Fig. 30c or
in Oseillogram 5.

Amplitude modulation may be investigated conveniently by letting
A 0' of equation (35) take the form (A0 ± E1 ' sin col t), where E.' is the
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maximum amplitude of -the modulating wave that is effectively superim-
posed on the carrier and w t is the modulating angular velocity. E,,' is
a measure of the degree of modulation (for a fixed value of A 0 ) and usu-
ally has values ranging from 50 to 100 per cent of A 0 . Percentage

modulation is defined as

X ioo 
Arnsx A0 x ioo

A 0	 A0

where the A's refer to the amplitudes shown in Fig. 30c.

OscILLooaAu 5. Photograph of a sinusoidally modulated wave.

In general, the equation of a sinusoidally modulated wave is:

e = (A 0 + Em' sin w i t) sin wt

= A 0 sin wt + Em' Sjfl wit Sifl wt (36)

The product of two sine waves of different frequencies may be expressed
in terms of the following two well-known trigonometric relations.

coo (4 - w()	 cos wt cos wit + sin 4 sin w i t 	 (37)

coo (wt + wit) = coo 4 Cos w it - sin 4 sin wt	 (38)

Subtracting equation (38) from (37) gives

coo (4 - w i t) - coo (4 + w i t) = 2 sin 4 sin w it (39)

Substituting the value of sin wt sin w i t from equation (39) in equation
(38) gives

e An sin 4 +	 coo (4 - wit) - - coo (4 + wit)

A0 sin 4 +-f- coo 2r (f— fl ) 
t - 

j- Cos 2w (f-f-f1)t (40)
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Equation (40) consists of three terms. The first term, A 0 sin oie, is of
the same frequency as the ori,inal wave before modulation. This
wave is called the carrier wave, and its frequency the carrier frequency.
The second term, (E,,'/2) cos 2r (f - ii )t, has a frequency equal to
(f - 11 ) the difference between the carrier frequency and the modulat-
ing frequency. This frequency (f - f1) is called the lower side-band
frequency. The third term, (E,'/2) cos 2r (f + f)t, represents a
frequency equal to I + f1, the sum of the carrier and modulating fre-
quencies. It is called the upper side-band frequency. Each of these
three frequencies can be separated from the others in the resultant wave
by the use of appropriate filters. If a carrier wave is modulated by a
complex wave, each harmonic of the modulating wave gives rise to an
upper and lower side-band frequency. Hence, in general, there are
several different frequencies in each side band. The type of modulated
wave presented above is primarily given as an example of non-sinusoidal
waves. There are, other types of modulated waves, but further dis-
cussion of them is beyond the scope of this text.

10

—10 amperes	 I
•.l I between X-0	 I

I	 5fldX1aI

	

•oI	 lI-I	 2'

5--

-51 ------------
i--5 amperes
between X—w
and X-Zr

Fin. 31. See Problems 9 and 25.

PROBLEMS

9. (a) Employ the analytical method to determine the coefficients of the har-
monies through the third harmonic for the wave shown in Fig. 31.

(b) Write the Fourier series in terms of sine components for the wave.
(c) Sketch the components, indicating the manner in which the comj*)ne,nth

combine to approximate the original wave shape shown in Fig. 31.
10. (a) Employ the analytical method to determine the coefficients of the har-

monies through the fifth harmonic for the wave shown in Fig. 32.
(b) Write the equation of the wave through the fifth harmonic.
(c) Sketch the components, indicating the manner in which the components com-

bine to approximate the original wave shown in Fig. 32.
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Ii. A certain current wave has a height of 1 from 0° to 300, then increases linearly
in a positive direction to a value of 3 at 600, after which it remains at a height of
3 until 120 0 15 reached. It then decreases linearly to a value of zero at 1500 and
then remains at zero value until 3600. The cycle is then repeated. Find A 0, A1,

and B 1 of the Fourier series terms which represent this wave.

Fia. 32. Sec Problem 10.

12. A current wave is defined over one complete cycle by the following data:

x (in degrees) j	 s (in amperes)	 11 x (in degrees) I	 i (in amperes)

	

0	 —2.000
	

195	 —3.613

	

15
	

+0.149
	

210	 —5.000

	

30
	

+3.000
	

225
	 —6.364

	

45	 +6.364
	

240	 —7 660

	

60
	

+9.660
	

255	 —8.634

	

75
	

+ 12.098
	

270	 —9.000

	

90	 +13-000
	

235	 —8.634

	

105
	

+12 098
	

300	 —7.660

	

120
	

+9.660
	

315	 —6.364

	

135
	

+6.364
	

330	 —5.000

	

150
	

+3.000
	

345	 —3.613

	

165
	

+0-149
	

360	 —2.000

	

180	 —2.000
	

375
	

+0-149

(a) Employ the analyzing tables on pages 237 to 240, evaluate the Fourier series
coefficients A 0, A 1, B 1, A 2, B 2, and A 3 of the above wave form, and write the Fourier
series in equational form. (Note: Evaluations based on 15° intervals will be suf-
ficiently accurate in this case since the actual Fourier series contains no terms beyond
the A 3 term. Cali any coefficient zero which is no greater in magnitude than the
probable arithmetical error involved.)

-18
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(b) Graph each of the components and combine these components to form the re-
sultant wave. Check various values on the resultant graph against the original data.

13. Employ the method of equations (21) and (22) and evaluate the Fourier
"s coefficients through the third harmonic for the wave given in Problem 12,

Write the following equation in terms of three sine components only:

v = 4.0 sin (4 - 3.0 cos wI 7.66 sin 2(4 + 6.43 cos 24

- 2 sin 3(4 - 1.5 cos 34

15. Given an a-c wave form as defined by the following table of measured ordinates:

Degrees

95
100
105
110
115
120
125
130
135
140
145
150
155
160
165
170
175
180

Ordinate
No.	 Degrees

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

Measured	 Ordinate
Ordinate 11	 No.

	

0.0
	

19

	

0.8
	

20

	

1.7
	

21

	

2.7
	

22

	

3.6
	

23

	

4.5
	

24

	

5.6
	

25

	

6.9
	

26

	

8.2
	

27

	

9.7
	

28

	

10.7
	

29

	

11.0
	

30

	

11.0
	

31

	

10.4
	

32

	

9.8
	

33

	

9.2
	

34

	

8.5
	

35

	

7.8
	

36
7.0

Negative loop similar to positive loop.

Measured
Ordinate

7.1
7.4
8.0
9.0

10.5
12.0
13.2
14.0
14 0
13.0
11.6
10.0
8.0
5.8
4.0
2.5
1.0
0.0

(a) Graph the wave and analyze it by the Fourier series method for fundamental
the third, the fifth, and the seventh harmonics by the use of analyzing tables.

(b) Write the equation of the wave in terms of its sine and cosine components.
(c) Write the equation of the wave in terms of sine components only.
(d) Synthesize the components graphically, and compare the resultant with the

original wave.
18. Employ equations (21) and (22) instead of analyzing tables, and find the

sine and cosine coefficients of the Fourier series to include the seventh harmonic
for the wave in Problem 15. Express the resultant wave in terms of four sine
components only.

17. Given an ac wave form as defined by the measured ordinates shown on
page 269.

Analyze the wave by using equations (21) and (22) for the first seven harmonics,
and write the Fourier series equation for the wave.
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I	 MeasuredDegrees	 Ordinate	 Degrees	 Measured
Ordinate

	

0	 -0.6064	 100
	

0.7848

	

10
	

0.1738	 110
	

0.6767

	

20
	

0.9484	 120
	

0.4966

	

30
	

1.4139
	

130
	

0.4200

	

40
	

1.4428
	

140
	

0.5869

	

50
	

1.149	 150
	

0.8832

	

60
	

0.79
	

160
	

1.1420

	

70
	

0.5937
	

170
	

1.0880

	

80
	

0.6154
	

180
	

0.6064

	

90
	

0.737

Negative loop uimilsi to positive loop.

18. Show whether the following waves have symmetry with respect to the positive
and negative ioops

100 sin 	 +30°) -50 cos 2w +25 sin (5c + 150°) volts
i 20 sin (c.,t +40°).+ 10 sin (2o, + 30°) - 5am (5w - 50°) amperes

19. Does either of the waves in Problem 18 possess symmetry about the mid-
ordinate of the positive and negative loops? Why?

20. Are the following waves of the same wave form or shape? Give reason.
v 100 sin (i4 + 70°) - 60 sin (2w( - 30°) + 30 sin (3o, - 60°)

50 cos (c.,	 60°) + 30 sin (2.L + 70°) - 15 cos (3wt - 90°)

21. Are the following two waves of the same wave form? Give reason.
100 sin (c4 - 20°) + 50 sin (3ot + 60°) - 25 coo (&,t - 30') volts

i =20 cos (4 - 60°) - 10 sin (3wt + 15°) + 5 sin (5 - 70°) amperes

22. Find the effective v.1ues of the voltage and current waves of Problem 18.
23. Find the effective value of:

v= l00 sin (wt +30°)-40 sin (2w-3o°)+4o sin (+3oo)
+ 20 cos (5 - 30°)

24. A complex wave has harmonics of the following effective values: fundamental
100 volts, third harmonic 70 volts, and fifth harmonic 50 volts. Find the voltmeter
value of the complex wave.

26. The Fourier representation of the current variation shown in Fig. 31 is:
30.	 30.	 30	 30i = 2.5+-smz+-sin3x +-sin5x+-sin 7x1	 3w	 Sr	 7T

+ sin 9x +...
gr

Compare the effective value of the current as calculated by equation (27), page 250
(employing only the first six terms of the series given above), with the true affective
value.
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26. The current flowing through a particular filter choke is: i — 5 + 2 sin x
amperes, where z (— 754) represents angular measure. Sketch the wave shape
of this current variation.

(a) What are the maximum, minimum, and average values of current?
(b) Does the maximum value of the a-c component satisfy the relation:

fm(ac) — 0.5 (Jmx - Imtn)?
(c) What is the effective value of the current: i — 5 + 2 sin x amperes?
27. Assuming that a pulsating direct current is composed of a d-c component

(Id,) and a single-frequency a-c component, the general expression for the current
variation is: i — Id., + I.i(.c) 5fl .

(a) If only the average and effective values of the pulsating current were known,
would it be possible to find the maximum value of the a-c component,

(b) The average value of i 1, +	 sin x is 4 amperes, and the effective
value is 5 amperes. Find I.,.

28. Considering only second harmonic distortion, the plate current of one class
of amplifiers (with sinusoidally varying grid-cathode excitation) is given by the
equation:

i — 10 + 1.1 sin x -	 cos 2z

where 10 lo + 1.121 'b being the steady plate current with no a-c grid excitation.
(a) Sketch the wave form of the current variation for Jo — 0.2, 1.1 = 0.1, and

1.12 — 0.01 ampere. Indicate the value of lb on the sketch.
(b) What are the maximum (I), minimum and average values of the

wave form sketched in (a)? Does the average value of current (Jo) satisfy the
relation: 0.5(f,	 +

29. Refer to the plate current variation given in Problem 28, namely,

i — JO + I 1 sin z - Iuu,2 Cos 2z

(a) If it is known that the average value of plate current changes from the steady
value 'b — 10 - 1.2 (with no a-c grid excitation) to the average value 10 with a-c
grid hcitation, show either graphically or analytically that:

1, (with a-c grid excitation — lb + 1.1 + 21.,2

1 ,ür, (with a-c grid excitation) — 4 - 1.11 + 21.12

0.5 (I	 - Im)
+ J) - 24

	

hIfls	
4

(b) Show that the ratio of !.j to l., expressed in per cent is:

100 0.5(Iu,.x + Ixnin) -	
x ioo

11.11	 (Jm&z -

Note: The above ratio is called the per cent second harmonic distortion, and,
since the values of I. I,,,,, and lb may be readily measured under the conditions
of steady grid bias, the above relation is sometimes used to determine the per cent
aecond-armothc distortion where unsymmetrical positive and negative peaks of
plate current are encountered.

(c) Determine the per cent harmonic distortion from (I/l.,) X 100 and
from the equation given in (b) if I - 02, I,p4 — 0.1, and I,.,2 -0.01 ampere.

— 02 - 0.01 ampere.)
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30. Because of irregularities in the "strai;ht." portion of the plate current-grid
voltage characteristic of a vacuum tube, the equation for the plate current some-
times takes the general form

i	 !b+1m l sin X+1s3 sin 3X

where 4 is the plate current corresponding to fixed values of grid-cathode and plate-
cathode voltages. Find the maximum, the minimum, and the average values of i
if lb	 0.2, !	 0.07, and 1,,3	 0.005 ampere.

31. Calculate the power represented by the voltage and current in Problem 18.
32. Calculate the power represented by the current and voltage of Problem 21.
33. Calculate the power factor for the waves in Problem 18.
34. Determine the power factor for the waves in Problem 21.

	

36. Given: v	 100 sin (wt + 60°) - 50 sin (3t - 30°) volts

	

i	 10 sin (eat + 60°) + 5 cos (3 + 60°) amperes
(a) Calculate the power and power factor for the above waves.
(b) If only the magnitude of the third harmonic in the current wave is varied,

what would be its value to bring the power factor for the composite waves to 0.8?
36. Determine the equivalent sine waves for the voltage and current in Problem 18.
37. Find the deviation factor for the voltage

e = 100 sin (e,g - 25.36°) + 50 sin (3w + 58.92°)

38. A voltage v = 100 sin ( + 30°) - 50 sin (3 + 60°) + 30 cos &$ volts is
impressed on a resistance of 6 ohms in series with a capacitance of 88.4 Mf and an
inductance of 0.01061 henry. Find the ammeter value of the current, the power
dissipated by the circuit, the power factor of the whole circuit, and the voltage drop
across the capacitance if w — 377 radians per second.

39. A current of i 10 sin (4 - 60°) + 5 sin (24 + 20°) amperes flows in a
series circuit consisting of 8 ohms resistance, 10 ohms 60-cycle capacitive reactance,
and 4 ohms 60-cycle inductive reactance. Find the equation of the impressed volt-
age wave. w = 377 radians per second.

40. A branch containing 5 ohms resistance in series with an inductance of 0.00796
henry is in parallel with another branch consisting of a resistance of 6 ohms in series
with a 60-cycle capacitive reactance of 15 ohms. For a voltage of e 100 sin +
30°) —50 cos (3 - 30°) volts impressed on the combination, find the equation of
the current wave required by the combination. c. = 377 radians per second.

41. Find the ammeter readings in each branch and the supply line to the circuit
of Problem 40.

42. Determine the power dissipated in each branch of the circuit of Problem 40
and the total power taken by the whole circuit.

43. Calculate the power factor of the whole circuit in Problem 40 and the power
factor of each branch.

44. The following two currents flow toward a certain junction:

i l = 20 sin (ca + 30°) - 10 sin (2w - 30°) + 5 sin (34 - 40°) amperes

2	 15 cos c + 10 cos (2C - 60°) + 10 cos (3e + 50°) amperes

Find the equation of the current leaving the junction. What is the ammeter or
effective value of each of the three currents?

46. Subtract i2 from ij in Problem 44, and find the equation of the resultant.
46. At 60 cycles a certain impedance, Z 1, consists of 4 ohms resistance, 6 ohms

capacitive reactance, and 3 ohms inductive reactance in series. Another identical
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impedance, .Z5, is connected in parallel with Zi. A third 60-cycle impedance (con-
meting of 1:5 ohms resistance and 2 ohms inductive reactance in series) is connected
in series with the parallel combination of Z 1 and Z2. If a voltage v — 100 sin 3771
- 50 sin 3(377 + 30°) volta is impressed on the entire series-parallel circuit, calcu-
late: (a) the total rma current taken, (b) the rms current in each branch, (c) the
equation of the current in branch ZL, (d) the total power consumed, (e) the power
factor of whole oircuit.

47. The wave form given in Fig. 33 consists of a fundamental term A 1 sin z and
one and only one other Fourier series term.

(a) What are the numerical values of the coefficients of the two terms?
(b) Write the equation of the wave. Nose: It is suggested that the problem be

solved by inspection and checked by the second graphical method of analysis, given
on pages 242-246.

48. A capacitor having 20 puf capacitance is connected in part ei ih a coil
having 20 microhenrys inductance and a series resistance as specified in (a) and (b)
below. This parallel combination is energized with a pulse of current which is zero
for 140° 40° during each cycle. The pulse reaches a maximum value of
100 milliamperes at wl — 90° and

1(45°) — 1(135°) = 18 milliamperes

i(55°) — i(125°) 49 milliamperes

1(65°) - 1(115°) — 73.5 milliamperes

1(75 0 )	 1(105 0 )	 90.5 milliamperes

1(85°) - 1(95°)	 99 milliamperes

where i(45°) means the value of i at cd 45°.
Find the effective rnagrLitude of the fundamental component of voltage developed

across the parallel branches if w = 4 x 10 radians per second. Compare this
value of voltage with the third harmonic voltage developed across the parallel
branches, recognizing the fact that the branches are tuned to the third harmonic.
(a) Assume that R = 100 is the same for the fundamental and third harmonic.
(b) Assume that Q = wL,'R is constant, 1? being 100 for the fundamental.



chapter VII Coupled Circuits
Terminology. In electrical-engineering literature, the term "cir-

cult "is used in a variety of ways. At times it is employed to designate
a single branch of an electrical network; at other times it is used syn-
onymously with the term "network" to-mean a combination of two
or more branches which are interrelated either electrically or magneti-
cally, or both. In the present chapter the term "circuit" is employed
to mean "any complete electrical loop around which Kirchboff's emf
law can be written."

_Two -circuits - are said to be "coupled " when_they are SQ elateñ.iha
energy interchanges can take place between them More specificall.
this means that a potential difference appears in either of the two
circuits which are coupled, if and when the other is energized. The
circuits involved may be coupled conductively, electromagnetically, or
electrostatically. Various combinations of these principal modes of
coupling may exist between circuits. However, the great majority
of the circuits in actual practice are coupled either conductively or
electromagnetically.

Coupled circuits interact upon one another, and in general the
movement of electricity in any particular circuit is governed, not only
by the circuit parameters of that circuit, but to some extent by
the parameters of all circuits to which the circuit in question is
coupled.

Conductively Coupled Circuits. Two circuits which are conductively
coupled are shown in Fig. 1. In a circuit arrangement of this kind,

circuit 1 may be viewed as the driving
or primary circuit and circuit 2 as the
receiving or secondary circuit. Z12 , the
impedance of the branch which is com-
mon to both circuits, is called the mutua
impedance between circuit 1 and circuit
2. The mutual impedance may consist,
theoretically, of a pure resistance, a pure

inductance, a pure capacitance, or some combination of these circuit
elements.

91 ci—)" 
Z D+J,fff7 —1

Fxo. 1. Conductively coupled
circuit.

273
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If the exciting voltage and circuit parametès of Fig. 1 are given, the
currents, component voltages, and component powers can be evaluated
by simple circuit analysis.

In general the "loop current" method of solution' is particularly
well suited to coupled circuit solu.ions. If this method of attack is
employed, 1 1 and 12 are considered as the currents which flow around
the complete loops of circuit 1 and circuit 2, respectively. The posi-
tive circuit directions assigned to 1 and 12 are, of course, arbitrary.
If positive circuit directions are assigned to I and 12, as shown in Fig. 1,
the actual current in the Z12 branch in the +11 direction is I - 12.
The details of the "mesh current" method of solution as applied to
Fig. 1 are given below. By definition:

211 Z 1 + Z12 (Impedance of circuit 1 to I)

Z2 + 221 (Impedance of circuit 2 to 12)

If the circuit parameters are constant,

= Z21 (Mutual impedance between circuits 1 and 2)

The application of Kirchhoff's emf law to circuits 1 and 2 of Fig. I
results in:

Z1111 - Z 1212 = El	 (1)

—z21 11 + z22 12 = 0	 (2)

Employing elementary determinants, the expressions for I, and 12
become:

	

E1	 —z12f

	

0	 Z22	 EZ122
11 = 	 (3)I	 211	 Z12 I	 Z 11z22 -

	

I 
—z21	 z22

I Z 1 El
I12	

—Z	 0 I	 E1Z21
1	 (4)=

	

Z11	 —z 12	 z 11z22 -
	—Z2l	 Z22 1

The above method is generally applicable and may be extended to
include any number of coupled circuits.

1 In general circuit analysis many of the disagreeable details can be avoided by
making use of this method. It Is sometimes referred to as Maxwell's "cyclic cur-
rent" method. See "A Treatise on Electricity and Magnetism," by Maxwell,
Vol. 1, 3rd edition. See also Chapter I of this text.
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Exain1ejJ Let it be assumed that, in Fig. 1 E - 100 volts, Z 1 3 + j4
ohms, Z 1 - 10 +) ohms, and Z 2 —4—jS ohms. The impedance of the gener-
ator is considered to be negligibly small, or else its impedance is included in Z1.

- (3 + j4) + (10 + jO) 13 + j4 - 116/17.1° ohms

= (4 —j8) + (10 +jO) 14 - IS 16.1/-29.7° ohms

ZilZst	 219/-12.6° = 214 - j47.8

 Z 122- 	 = 114 —j47.8	 123.7/-22.7°

(100/0°)(16.1/-29.7°) - 13.0
	 7° amperesIi -	 123.7/-22.7°

(100/0°)(10/0°) - 8.08/22.7° amperes
123.7/-22.7°

The current in the Z 12 branch in the direction of 11 i ' 12 = ( I —.12).

'12	 13.0 (0.992 — jO.122) — 8.08 (0.922+j0.386
= (12.9 - jl.59) - (7.45 + j3.12)
- 5.45 - j4.71 - 7.21 / —4O.8 amperes

The total power generated by the generator E 1 is:
El

P1	 E11 cos8	 100 X 13.0 cos (-7°)
JI'

- 1290 watts (approximately)

The total power absorbed by the network is

1 1 2R 2 + 1 22R 2 + 1 121R12 = 13.02 X 3 + 8 .082 X 4 + 7.212 x 10
= 1288 watts (approximately)

Problem 1. Solve for I, 12, and Ii in the above illustrative example by first
reducing the coupled circuits to an equivalent series impedance. Draw the vector
diagram of E, Ii, 15, Ij, V 12 , illustrating vectorially that V 12 = E 1 - 11Z1.

Ana.: Given in the above illustrative example.

Mutual Impedance. Before proceeding with particular types of
coupled circuits, we shall state some general definitions which will be
useful later in this chapter and also in radio courses where the coef-
ficient of coupling plays a far more prominent role than it does in a
first course.

The mutual impedance between say, circuits I and 2 of a general
network is defined as the ratio of the voltage developed in circuit 2
per unit current in circuit 1 when all circuits except circuit 1 are open-
circuited. This mutual impedance has already been employed in the
foregoing section as Z21 . If linear bilateral circuit elements are em-
ployed in the coupling of the two circuits, it should be plain that Z12,
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the ratio of the voltage developed in circuit 1 per unit current in circuit
2 with. all circuits except circuit 2 open-circuited, is equal to Z21.

The definition given above for mutual impedance between two
circuits can be generalized to apply to two pairs of terminals, 11' and
22', as shown in Fig. 2 where the network in the box may be any con-

1i	 R • E
[2' 

II	 I

	

____

1	 2.	 A	
1	 itCircuit I 	 Circuit

1J	 22
1'

Ii

FIG. 2. Circuit I coupled to	 Fro. 3. Circuit 1 coupled to circuit 2 through a
circuit 2 through an arbitrary 	 ir set of resistances.
network not shown.

figuration of impedances. If, for example, the terminals 11' and 22' of
Fig. 3 are selected, we would find upon measurement that

Va
R5

z2t	 =
V2 Vb	 R5 + R	 RaNt= 
I i	 I i V. (R.+ Rb ±.R) R. + Rb + R

Ra(Rt+Re)

where V, is the voltage developed across Rb (terminals 22') and Va is
the voltage drop across R 0 . The same result would have been obtained
had the set of resistors (N 0 Rb - R) been transformed to an
equivalent Y set of resistors.

In many networks, particularly in the field of radio, the direct currents
must be confined to specified paths and a-c energy is transferred from

II	 Cc

	 . )t+E t +a R4Efr
'I

5-

.C,
Circuit	

'2

I	 JC	 c'f.' Circuit

FIG. 4. Circuits coupled through
R0-C-& network.

FIG. 5. Circuits coupled through
C,-C,-.C, network.

one circuit to another through the agency of an electric or magnetic
field. In Fig. 4, for example, a-c energy may be transferred from
circuit 1 to circuit 2 by way of the electric field existing between the
plates of the coupling condenser, C.

A particular form of capacitive coupling is shown in Fig. 5. If the
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coupling reactance between circuit 1 and circuit 2 is defined as the
voltage developed in circuit 2, namely, the voltage across C2 , per unit,
current in circuit 1, this coupling reactance is:

V1
X2

- A2 + X3 	 X1X2
coupling - V(X + X 2 +X) = X 1 + X2 + X3

fl (X2 + X3)

where V 1 is the voltage across C 1 and the X's are the capacitive re-
actances of the respective condensers. The coupling capacitance
between circuit 1 and circuit 2 (or vice versa) is:

1	 •1
Ccoupiing	 ,.	 =

'coupling	 (1 /wCi)(l;cC2)

' (1
 

1C 1 ) + ( 1 /C2 ) ± 0 C3)

= C 1 + C2 +

Problem 2. Show that the voltage developed across condenser C per unit
current [lowing in circuit 2 of Fig. 5 is:

x1x2

	

-	 -	 =
At r A9 + A3

where X i = 1/cC 1, X2	 11C2, and X3 = 11wC3.

Problem 3. Consider R, Rb, and X of Fig. 4 to be a coupling device between
circuit 1 and circuit 2. Show that the coupling impedance between the two circuits
is:

(Ra2Rb + RaR62 ) + jR0R&Xe

	

Zcoupiing	
(R + Rb)2 + Xc2

Note:
Vb

Zcoupitng = -
Ii

where V& is the voltage developed across Rb by I, or

V0
=

where V. is the voltage developed across R. by 12.

Coefficient of Coupling. Civen two pairs of terminals, 11' and 22,
as shown in Fig. 2. The coefficient of coupling between circuit 11' and
circuit 22' will be defined as:

Z12	 z21

/z11,z22 - 
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where Z12 is the mutual impedance between circuits 2 and 1. Z21 . Z12.

Z 11 ' is the impedance seen looking into terminals II' with ter.
minals 22' open-circuited.

Z22 r is the impedance seen looking into terminals '22' with
terminals 11' open-circuited.

Example 2. Consider terminals 11' and 22' of Fig. 3. Let it be required to find
the coefficient of couping between circuits 1 and 2.

It has been shown that

Z21 .=z12	
R,Rb

R,(R6 + R,)
R + Rb + R,

Rb(R4. + R,)
R. + Rb + R,

R0Rb
k - V'R0(Rb + Rc)Rb(Ra + R,)

If, for example, R = 0, the coefficient of coupling is unity. It should be noted
that, with the general definition of coupling coefficient which has been given, k may
be complex and greater than unity. In most cases, however, the coefficient of cou-
pling is real and less than unity as in this example.

:T:I12:ne,
Circuit 1	 I ' -i-- I	 CIrcuit 2

Fin. 6. Illustrating the four component flutes 0 11 , 012, 022 and 02, into which the
resi.zltant magnetic field is separated for the purpose of analysis.

Magnetic Coupling. If a portion of the magnetic flux established
by one circuit interlinks with a second circuit, the two circuits are
coupled magnetically and energy may be transferred from one circuit
to the other by way of the magnetic field which is common to the two
circuits. The practical operation of many devices depends upon this
type of coupling.

Separation of Magnetic Flux into Hypothetical Components. Mag-
netic coupling between two ndiyidual circuits is shown in Fig. 6. For
the purpose of analysis, the total flux which is established by i1 , namely,
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0 1 , is divided into two components. One component of	 is that
part which links with circuit 1 but not with circuit 2, namely,
The second component of 4 1 is 12, that part which links with both
circuit 2 and circuit 1. In a similar manner, the flux established by
2 is separated into two components for the sake of detailed analysis.

By definition:

	

01 = 4i1 + 412	 (5)

and

	

222+21	 (6)

The four component fluxes are shown in Fig. 6, and a recapitulation
of their definitions is given below:

4 1 the fractional part of 0 1 which links only with the turns of
circuit 1. This is the leakage flux of ciruit 1 with respect
to circuit 2.

412 the fractional part of 01 which links with the turns of circuit 2.
This is the mutual flux produced by circuit 1.

32 the fractional part of 02 which links only with the turns of circuit
2. This is the leakage flux of circuit 2 with respect to circuit 1.

021 the fractional part of 2 which links with the turns of circuit 1.
This is the mutual flux produced by circuit 2.

It should be recognized that the actual flux established by i1 or
does not conform to the simple configurations shown in Fig. 6. For
example, part of	 links with only a fraction of the total turns of
circuit 1, and likewise a part of 012 links with only a fractional part
of the turns of circuit 2. oil is a hypothetical flux which, when linking
with all the turns, N1 , produces the same total flux linkages as the true
flux linkages in question. Similar concepts are held for the other
component fluxes, and, when used quantitatively in this manner, they
represent accurately the true condition of affairs' as regards induced
voltages.

Mutual Inductance. In order to describe the magnetic interaction
between circuits or between portions of the same circuit, the circuit
parameter M is introduced. It is called the coefficient of mutual
inductance, or simply mutual inductance, and is dimensionally equiva-
lent to the coefficient' of self-inductance, L. The similarity between
the concept of mutual inductance of (or between) two circuits and the
concept of sell-inductance may be shown in the following manner.
Refer to Fig. 6. For the purpose at hand we shall define the self-
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inductance of circuit 1 as:

±' [flux linkages of circuit 1 per unit current in circuit i] (7)

On the same basis of reckoning, the mutual inductance of circuit 1
with respect to circuit 2 is:

M21 = 
N121 

[flux linkages of circuit 1 per unit current in circuit 2] (8)

Also the mutual inductance of circuit 2 with respect to circuit 1 is:

= N212 
[flux linkages of circuit 2 per unit current in circuit i] (9)
Z1 

If the 4/i characteristics in equations (7), (8), and (9) are not straight
lines, then L 1 , M21 , and M12 are variable circuit parameters and for
certain types of analyses can best be written in the forms:

	

= N1 !	 (7a)
dil

	

M21=N1 
d4,21— 	 (Sc)
dt2

	

M12 =N2 
d12
---	 (9a)
drj

If, however, the flux is proportional to the current (i.e., permeability
constant), both self-inductance and mutual inductance in equations
(7), (8), and (9) are constant and as such are very useful circuit pa-
rameters in classical circuit theory.

Under the condition of constant permeability, the reluctance of the
mutual flux path (CRaj or (R12 ) is a fixed quantity and CR21 = 612.

N1021 KN1N2

	

M21= i2
	

(10)
6121

M12=
N 12 KN2N1=	 (11)

	

it	 6112

where K is a constant which depends for its value upon the units em-
ployed in evaluating 4' KNI161. Therefore, if the permeability of
the mutual flux path is constant, M2L and M13 are constant and
M21 M12 M. This fact may also be proved in terms of the
energies stored in the magnetic field when both circuits are en-
ergized.
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If the permeability of the mutual flux path is not constant, neither
M21 nor M12 will be constant and the following method of representing
mutually induced voltages in terms of M loses much of its effectiveness.
Unless otherwise stated, absence of ferromagnetic material will be
assumed, in which case M21 = Af 12 = M.

The units in which mutual inductance is expressed are identical with
the units in which self-inductance is expressed, usually the henry or
millihenry. If the flux linkages in equations (8) or (9) are expressed
in weber-turns (108 maxwell-turns) and the current is expressed in
amperes, M is given in henrys.

Problem 4. Refer to Fig. 6, page 278, and assume that the L 1 coil consists of
50 turns and that the L2 coil consists of 500 turns.

(a) What is the mutual inductance between the two circuits (in inillihenrys) if
5 amperes in circuit I establishes a total equivalent flux () of 30,000 maxwells
27,500 maxwells of whichlink with the turns of the L2 coil?

(b)What is the-self-inductance of the L 1 coil?
Ans.: (a) M1 2 = 27.5 millihenrys; (b) L 1 = 3 rnillihenrys.

Mutual Reactance, X. . It is evident that any change in i2 of Fig. 5
will cause a corresponding change in 21 In accordance with Lenz's
law, any time rate of change of 0 2 , will manifest itself in circuit 1 in
the form of a generated or induced voltage the value of which is:

d1

	

e12 = — N1 --- or v12 = N1 ---	 (12)
di	 dt

where e12 is considered as a voltage rise or generated voltage and v12

is considered as a voltage drop.
Similarly any change in i1 will manifest itself in circuit 2 as:

dq13
=	 -- or v21 = N2 

d412	
(13)

dt	 di

It is through the agency of these mutually induced voltages that the
phenomenon known as mutual inductance can be taken into account
in Circuit analysis.

The basic equations of voltage for the two circuits shown in Fig. 6 are:

R 1i1 + N1 d
1	 d21

-- + N1 -- =	 ( 14)

and

RRA+ N2 d+ N2 d012 - e2	 (15)
dt	 di

If the permeability of the flux paths is assumed constant, the above
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equations can be written in more convenient forms, since:

	

N101 = L 1 i1 :. N 1	 = L, L11	 (16)

N11 = M21i2	
d21

. N1	 M 
di2

21 -	 ( 17)
dt	 dg

	

21'2 = LA .•. N2	
=	 d12

dt	
L2--	 (18)

	

N212 = M 12i1 :. N2	
=	 d11

cit	
(19)

Equations (14) and (15) may, therefore, be written in the following
manner:

di1	 di2
R 1i1 + L1 -- + M21 -- = e 1	 (14a)

dt

di2 	di,
R2i2 + L2 -- + M12 -- =	 ( iSa )

dt

It will be observed that the effects of mutual inductance are entered
into the basic voltage equations as voltage drops (+M di/dt). If, for

example, i1 = I,, sin wt, the voltage drop in circuit 2 due to mutual
inductance is:

dij
M 12

	

	 = Of 12Tm1 COS W	 XMaLft1 COS Wt	 (20)
dt

In general, wM = X M. It is called the mutual reactance and is an
impedance function which expresses the ratio of the voltage of mutual
inductance to the exciting current. It will be noted that the voltage
of rnutal inductance leads the exciting current by 90°. Hence the
vector expression for the mutual reactance is:

X. = jwM = (21)

Circuit configurations in which M may possess either a positive or
negative sign will be considered presently.

Problem 5. An inductance Loil has a resistance of 10 ohms, a self-inductance
of 1/377 henry, and a mutual inductance of 0.02 henry with respect to a neighbor-
ing coil. (M 12 = M 21 .) A voltage of 50 sin 3771 volts is impressed across the
terminals of the primary coil. Find the ohmic value of the mutual reactance and
the effective value of the voltage across the open-circuited terminals of the neigh-
boring coil.

Ans.: X.	 7.54 ohms, V 2	 18.85 volta.
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Problem 6. Let the effective values of the primary voltage and current of Prob-
lem 5 be known as V L and 1, and draw a vector diagram illustrating V 1 , I, R111,
jXL jI, jX.I i , and E21 . (Note: Considered as a generated voltage, E 21 is 1800 out
of phase with jX.vI i , since the latter is a component voltage drop in circuit 2 in the
caine sense that RI, and JXLIII are component voltage drops in circuit 1.)

Ana.: V 1 =	 /0° volts, I	 2.5/-45° amperes, E 21	 l8.S5/35° volts.

Coefficient of Magnetic Coupling. The fractional part of 0 1 which
links with N2 , 012/01, and the fractional part of 02 which links with
N 1 , (021/02), are indices of the degree of coupling that exists between
two windings. Where the windings are widely separated or are so
situated in space that these fractions are small, the coupling is said to
be loose. With closer proximity and proper orientation of the windings,
012 /01 and 02t/2 approach unity as a theoretical upper limit.

The coefficient of coupling between two windings which individually
possess L1 and L2 units of self-inductance is defined as:

[7\ (\	 /(M12i1 /A 2 ) (M2 i2 IN,)	 [7 M12 \ (3121k,%[=
	 =	 (L 1 i IN 1 ) (L2i2 /N2)	 \1 L') 7J

(22)
Under the condition of constant permeability, M12 M21	 M.
Therefore, if the permeability is constant,

km =	 =vTL7L	 (23)

Thus kM is the geometric mean of the fractions (12 /01 and (ti It)
or between the fractions (M/L 1 ) and (M/L 2 ). Numerically the co-
efficient of coupling in practical installations may range from approxi-
mately 0.01 between certain types of radio, circuits to as high as 0.98
or 0.99 between iron-core transformer windings.

Example 3. Let the number of turns of the two windings shown in Fig. 6 be
50 and N 2 = 500. It will be assumed that , 6000 mxwe1ls link with the

urns N 1 , of circuit 1, per ampere of exciting cin'ret°t 1 , of *hich 5500 also link
vith N 2 . Under the assumption of similar concentrated 'windings and of constant
ermeability of the flux paths, 60,000 maxwells will link with the turns N 2 , of circuit
, per ampere of exciting current i 2 , and 55,000 of these flux lines will also link

with N 1 . The purpose of this numerical example is to specify the coefficient of
coupling LII terns of the fractions (i2/1 ) and (2i/2) and also in terms of the
fractions (M 12 /L0 and (M21 1L5 ). For 1 ampere of primary exciting current and
for 1 ampere of secondary current:

6000 maxwells
On - 5500 maxwells

- 60,000 maxwells

-19	 021 55,000 maxwells
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_

1)kM)	

(55
oo) 0.917

L1	
= 50 >( 6000 X 10—s 0.003 henry

1

5W X=	
5500 X 10
	 0.0275 henry

1

N2 _ 2< 60,000
L 3	 x io- -!-8 0.30 henry- _

12

N1#n _ WO
 -i----	 X 10	 0.0215 henry

1

	

kM = f7i2 (Mn\ = M	 0.0275	
- 0.917

v\L i J\L2 J '/L1LS V0.003X0.30

Problem 7. The individual self-inductances of two windings are 0.094 henry
and 0.0108 henry. The coeffient of coupling between the windings is 0.805. Find

	

the mutual inductance of the two windings.	 An.,.: 0.0256 henry.

Problem 8.Awinding of 1000turns has a ( 1/i 1 ) characteristic of 9400 max-
wells per ampere and is coupled magnetically to a second winding of 338 turns.
Assuming constant permeability of the flux paths and similar concentrated windings,
find L 1 , L2 , and Al in henrys if the coefficient of coupling is 0.805.

Ans. L, = 0.094 henry, L2 - 0.0108 henry, M - 0.0256 henry.

Circuit Directions and the Sign of M. If only one circuit of an a-c
network includes a generating device, the positive directions of the
currents may be arbitrarily assigned if it is understood that the positive
circuit direction given to the current through the generator arbitrarily
defines the positive circuit direction of the generated voltage. When
more than one generating device is present in an electrical network,
the relative polarities and time phases of the generating devices with
respect to the common branches must be taken into account in assigning
the positive circuit directions of the currents in the coupled circuits.

In a given circuit or portion thereof the voltage of mutual inductance,
M di /dt, may aid or oppose the voltage of self-inductance, L di /dt,

V more than one circuit is involved, the currents are first given their
positive circuit directions. When the positive circuit directions of
the currents have been determined from the relative polarities of the
several generating devices (if more than one generator exists), or when
the positive circuit directions of the currents for a single generator have
been arbitrarily assigned, the sign of M is considered positive if in
a given winding the induced voltage of mutual inductance acts in the
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same direction as the induced voltage of self-inductance, lithe in-
duced voltage of mutual inductance opposes the induced voltage
of self-inductance in a given winding, M is considered ass, negative
quantity.

In determining the sign of M, each particular case must be alyzed
as to the relative positive circuit directions of the currents, the relative
modes of winding of the coils involved, and the actual ph ysical place-
ment of one winding with respect to the other. It will be shown later
that the sign of M between circuits which are not electrically connected
and which are energized with a single generator in one circuit is wholly
dependent upon the arbitrary positive circuit directions which are
assigned to the currents in the separate circuits.

Fig. 7. Illustrating a particular case wherein the voltage of mutual inductance acts in
circuit opposition to the voltage of self-inductance in a given coil.

Example 4. Consider the hypothetical arrangement of the two circuits shown in
Fig. 7. If the clockwise direction around circuit 1 is taken as the positive circuitdirection of il, the generator en)f Possesses a positive circuit direction from b to a
through the generator. The latter direction fixes the positive circuit direction of i2 ascounter-clockwise around circuit 2.

By Lenz's law, the voltage of self-inductance in the L coil considered ai an inducedeolLoge acts in a counter-clockwise direction around circuit 1 when di l ldt is positive.If the positive circuit direction of *2 and the modes of winding of the coil., al'e con-
sidered, it is plain that voltage which is induced in the L 1 coil by the variation of

is a clockwise direction around circuit I when di/di or d0 21 /di is positiveSince M d12/dI acts oppositely to L 1 di/di in circuit 1, M must be considerednegative if L 1 is considered positive. The general equation for voltage equilibriumin circuit liar

Ru1 + L 1	 + ( — M)
di	 df

A simple way to determine the sign of M is to call M positive if the mini's caused
by the two currents combine to increase the total flux. If the rnmf's oppose, thesign of M is negative.

Problem 9. Show, by means of detailed and Independent analysis, that the
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general equation for voltage. equilibrium in circuit 2 of Fig. 7 is:

dt2 dil
R 3i2 +L2	 ---	 -

dt

Instead of showing the actual modes of winding, a conventional
method employing a dot-marked terminal, as shown in Fig. 8, is often

used to yield the same information. This
practice has been used for many years in
the marking of iron-core instrument trans-

1 2 
farmers, where the dots are known as po-
larity marks. The dots are placed so that
a current entering the dot-marked terminal
of any coil will produce a magnetomotive

FIG. 8. Dot marks used to force and corresponding flux in the earns
define relative polarities of direction around the magnetic circuit.
two coils.

Thus in Fig. 8 a current entering the
dot-marked terminal of coil 1 causes a counter-clockwise flax in the
magnetic circuit and a current entering the dot-marked terminal of coil
2 also causes a counter-clockwise flux in the same magnetic circuit.
Hence the dots alone are sufficient to determine the relative modes

Fin. 9. Dot marks
indicate - 3f.

Fin. 10. Mode of wind-
ing and physical place-
ment indicate - M.

1=2

Fin. 11. Dot marks
indicate +M

of winding. The use of this convention is illustrated in Fig. 9. If
a current entering the dot-marked terminal of coil 1 is assumed to
produce a flux through the coils from left to right, this same current,
since it is leaving the dot-marked terminal of coil 2, would cause a flux
from right to left through the coils. Therefore, for the purpose of
setting tip an equation of voltage drops, M must be considered negative.
Hence the relative modes of winding must be as shown in Fig. 10. If
the coils of Fig. 9 were marked as shown in Fig. 11, a current entering
the dot-marked terminal of coil 1 would also enter the dot-marked
terminal of coil 2, the mmf's of the two coils would be additive, and
the sign of M would be positive.

Mutual Inductance between Portions of the Same Circuit. Mutual
inductance may be a significant factor in governing the flow of electricity
in a single-series circuit where two or more portions of the circuit are
coupled magnetically. A particular example is shown in Fig. 12. The
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arrangement consists of two magnetically coupled inductance coils
connected in electrical series. Individually the coils possess L and
Lb units of self-inductance together with R and Rb units of resistance,
respectively.

If the coils are wound in the manner shown in Fig. 12, it is apparent
that, in coil a, the voltage

did4'ba
= Nadt

acts in the same circuit direction as the voltage —Ldidt. Likewise
the voltage

dir dQab
Ia5	 Ib

di	 dt

acts in the same circuit direction as —Lb di/th. Hence M is positive.

Rd 0A R 

-MbA 	 col
ICOU4'ba

FIG. 12. Two inductance coils connected seriea-aiding.

Considered as voltage drops, the component voltages referred to
above have circuit directions which agree with that of the applied
voltage, v. Considered as voltage rises, the induced voltages are, of
course, in circuit opposition to the applied voltage, v.	 -

The facts involved can be stated in equation form as follows:

di	 di	 di	 diRaj + L	 + Mb. ± R 5 i + Lb + M0b = V	 (24)
di

If the mutual flux path is of constant permeability, the above equation
reduces to:

(R0 + Rb) i + (LQ + Lb + 2M) = V 	 (25)
dt

If v varies sinusoidally with time and if all circuit parameters are con-
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stant, equation (25) may be written in terms of effective values as
follows:

(J? + R5)1 + jc"(L + Lb + 2M)I = V	 (26)

It will be noted that M enters into the voltage equation in exactly the
samefl1aflner M L. flence wM is a mutual reactance. The equivalent
impedance of the series circuit shown in Fig. 12 follows directly from
equation (26).

Z. =	 jERa + R 12 + [ (La + Lb + 2M)]2

w(L + L b +.2M)	 (Zi)

(R. + Rb)

Equation (27) may also be written:

Z. (R 2 +R)+jw(L4+Lb+ 2M) Z+Zb+2ZM (27a)

where
Za = R +jwL, Zb R±joiLb and ZM = 0 +jc'.'M

If the two coils were connected together in the opposite sense, that
is, with a polarity opposite to that shown in Fig. 12, the signs of the
M terms in the above equations would be reversed.

Example 5. An inspection of equations (25), (26), and (27) will show that the
equivalent inductance of the two coils connected in additive series is:

L + Lb + 2M

If the two coils are connected in subtractive series:
= L + Lb - 2M

The value of M may, therefore, be found experimentally by measuring Lj,j) and

L. (, 1b) since, from the above relations:

	

U -
	 - L.(b)

4

Example 6. Let it be required to find the coefficient of coupling, the equivalent
series-circuit impedance, and the magnitude of the current in a circuit arrangement
similar to that shown in Fig. 12 if:

1.0 ohm	 M +3millihenrys

L. - 4.0 millihenrys	 1000 radians per second

Rb 6.0 ohms	 V 40.5 volts, the applied

Lb - 9.0 millihery	 voltage

(a) The coefficient of coupling is:

	

M	 +3

k --	
- +0.
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(b) The equivalent series-circuit impedance is:

Z. (R0+Rb)+i.'(LO+Lb+2M)
= (I + 6) + j(1000)(0.004 + 0.009 + 0.006)

= 7 +'cl = 20.25/69.8ohm3

(c) The series current is:

I = ---	 2.0 amperes
20.25

A vector diagram of V, I, V0 , and Vô
is shown in Fig. 13 together with the
comcnent voltages of V. ad 1b

Rj Xj 

Rb '\"' ^Xbil

	Problem 10. Find the magnitude	 Fin. 13. Vector diagram of example 8.

of the current in the above example
if the two coils are connected in subtractive series, that is, M = --3 naiUihenrys.

Draw a vect2r diagram illustrating the vector positions of V, I, V0, V&, and the

	

various RI and XI component voltages, 	 Ans . : I = 4.00 amperes.

Mutual Inductance between Parallel Branches. Reference to Fig. 14

will show that, in coil 1, i%f21 di2 /dt acts in circuit opposition to L 1 di 1 /dt.

—L191 'r21

M2!dl—M
-	 t

Fro. 14. Parallel arrangement of two inductance coils which are coupled magnetically.
For the mode of winding shown and the assumed positive directions of currents
as indicated, .%f is negative.

Similarly, in coil 2, .M' 12 d1 1 j'dt acts in circuit opposition to L 2 di2 /dt.

In equation form:

	

di1	 d12

	

R 1 i 1 + L1 
di	 dt

- M2 1 - = v	 (28)

cit2 	 di1
R2i2 + L2 -- - M 12 -a-- = v	 (2)

It will be noted that the individual branch currents have been employed
in the above equations.

If the circuit parameters are constant and a sinusoidal variation of
v is assumed, the above equations may be written in terms of effective
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values as follows:
(R I + jL 1 )I1 - jwMI2 = V	 (30)

(R2 + jL2 )I2 - jMI j = V	 (31)
Let	

(R1 +jwL 1 ) = Z,	 (32)

	

(R2 +jc&L2 ) = Z2 	(33)

	

O+jcilf=ZM 	 (34)

With the above abbreviations, equations (30) and (31) reduce to:

	

Z 1 1 1 - ZMI2 = V	 (35)

	

—ZM I 1 + Z 2 12 = V	 (36)

The individual branch currents, Ii and 12, may be found from the
simultaneous solutions of equations (35) and (36).

	

V	 —ZM

	

- V	 Z2	 V(Z2+ZM)
11—	 '7	 7'7	 'i 2	 (37)

	

i	 M	 i2
—ZM

V

	

— Z M	 V	 V(Zl+ZM)
12	 '7	 -	 2	 (38)

	

i	 M	 £12
—ZM

V(Z1 + 22 + 2ZM)
111+12=	 "'7	 2	 (39)

The equivalent impedance of the two parallel branches shown in Fig. 14
for the case of negative M is:

	

Z' 
= V = Z 1 Z 2 - ZMr2	

(40)I Zl+Z2+2ZM

Example 7. In the circuit arrangement shown in Fig. 14 it will be assumed that:
= 3.3 ohms	 L2 = 0.0108 henry

L 1 = 0.094 henry	 M = —0.0256henry
= 0.775 ohm	 w = 377 radians per second

V 5O/volts

Let it be required to find I, Ii, 12, and the total power spent in the two parallel
branches.

Z1 (individually) — 3.3 +J35.4 - 35.5/84.7 ohms
Z2 (individually)	 0.775 + j4.07 4.17/79.25 ohms

0 + jM 0 + .j9.85 - 9.65 1 ohms
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iVoe: ZM is herein considered as inherently positive since the appropriate negative
sis have been introduced into equations (30) and (31).

	

Z 1Z - Z2	 63.6	 -

= Z 1 + Z 2 + 2v = 59-0/860- l.07S/
	 ohms

V	 50/0°
I -	 - 46.4/_54° amperes

1.078/5 

V(Z 2 + Z.)	 (507)(13,73/86.8°)
Ii = Z 1Z 2 —Zse2	 63.6/1400

= 10.87-53.2° amperes

V(Z 1 +Z.v)	 (50/)(45,1/85.8°)

	

12 =ZIZ2- Z,,2 -	 63.6L1

12 = 35.47-54.2° amperes
lv

P VI 008 Ojz = 50 X 46.4 X cos 540 1365 watts

Check:

I	 I + 15 - 10.8/-53.2° + 35.4/-54.2°

I = (6.46 - J8.65) + (20.8 - j28.8) = 27.26 - j37.45

I - 46.4/-54° amperes

P 112R1 + 1 22R3 - 385 + 973 - 1358 watts

Problem 11. Assume that the inductance coils in the above illustrative example
are connected in parallel as shown in Fig. 14, except that the terminals of one coil
are reversed from that shown in the figure. Show that, under these conditions:

Z. = 3.095/61.40° ohms

1	 16.16/-61.40° amperes (V as reference)

I,	 4.437-222.1° amperes

12 = 20.47-57.30° amperes
-lv

P = VI Cos O	 = 386 watts

Draw the vector diagram of V. 1, I, and 12, and illustrate the manner in which the
three component voltages in each branch combine vectorially to equal the applied
voltage, V.

The Air-Core Trcnsformer. In the conventional transformer ar-
rangement shown schematically in Fig. 15, the individual circuits are
not connected electrically. Circuit 1, energized by means of an alternat-
irig potential difference, is called the primary. Circuit 2 is called the
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secondary. As a result of the magnetic coupling between the circuits,
circuit. 2 has induced in it a voltage which is equal to:

	

d 12	 di1

	

—N2 ----= —M 12 --	 (41)

The magnitude of the voltage induced in circuit 2 is proportional to
the number of secondary turns, N2 , and is dependent upon the degree
of coupling beween the two windings.

	

R	 R2,4i	 -

r-L

I

	

Clicuit 1 'ii, 

1	

Circuit 2	 R

di

	

1!	 )jJ Jc
4'21

Oil

Fm. 15. Conventional air-core transformer arrangement.

The sign of M in the conventional transformer arrangement is de-
pendent upon the arbitrary choice of the positive circuit direction of i2.

The majority of writers prefer to use the positive circuit direction of
i2 which allows them to employ the positive sign of M. For the relative
modes of winding shown in Fig. 15, the positive clockwise direction of
i2 requires the use of +M, since under these conditions M21 di2/di

acts in the same circuit direction as L1 di1 Idt in the primary winding.
If the counter-clockwise direction around circuit 2 is taken as the positive
circuit direction of i2, then, of course, M must be considered negative.
The resulting solutions will be identical in either case, except that all
secondary currents and voltages will be reversed in sign. Experience

ith detailed solutions will convince the reader that the two different
methods of attack yield identical physical results.

If the positive circuit directions are employed as indicated in Fig. 15,
the mathematical analysis of the ordinary aircore transformer may
be 'arried out as fo,lows:

	

Rjij + L1 
d11+ 

M21 
dz2 =

V1	 (42)

(R2 +R)i2 +(L2 +L)
fi2dt

+	 + M12	 = o	 (43)

If v is assumed to have sinusoidal wave form and all circuit parameters
ar, constant, the above equations may be written in terms of effective
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values as follows:
(R 1 + jwL1 )I1 + jwMI2 V1	 (44)

(R3 + jwL2 ) 12 + [R + i (wi# -
	

I + jwf1 1 0 (45)

For the sake of simplicity in writing, the following abbreviations are
adopted:

(R 1 + jwLi) (Individual primary winding impedance) 	 (46)

(R2 + jL) (Individual secondary winding impedance) (47)

Zm (0 + jwM)	 (Mutual impedance assuming no core 1088) (48)

= [R + j (,L - 1)] 
(General expression for load 	 (49)

impedance)

Equations (44) and (45) be&ime:

Z 1 11 + ZM I2 = V 1	 (44)—(50)

ZMII + (Z2 + Z)12 = 0	 (45)—(51)

The simultaneous solutions of the above equations for I i and 12 yield:

V1
- 0	 (Z2 + Z)	 V1(Z2 + Z)

2	
52

zM	 Z1(Z2+Z)—ZM

ZM	 (Z2+Z)

z i	 V1

ZM	 0	 -	 —V1ZM	 53
Z1(Z2+Z)—ZM2

zM	 (Z24-Z)

If Ii has been evaluated, it may, in certain cases, be more convenient
to solve for 12 directly from equation (51).

2 = iZ2 + Z)

The secondary terminal voltage, or the voltage which appears across
the load impedance, is:

V2 = Z12 = —ZMI1 - Z2 12	 (55)

Also:
V2	

—V1ZMZ -	 (56)
Z 1 (Z2 + Z) - Z2

The above relations follow directly from equations (51) and (53).
Equation (55) shows that the secondary circuit may be thought of
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as experiencing an induced voltage equal to ZM I1, from which the
internal secondary impedance drop, Z2 12, must be subtractd in order
to obtain the secondary terminal voltage, V2.

Equivalent Impedance. The equivalent impedance of the transformer
arrangement shown in Fig. 15 referred to the primary side is defined
as the ratio of the applied voltage to the primary current. Thus:

V	 Z 1 (Z2 +Z) -
Z6t -=-	 (57)(Z2+Z)

A more convenient form of the above equation is:

zel
22

=	
-	

1 +	 (58)(Z2 ± Z) 

Equations (57) and (58) show that the air-core transforrner, with
respect to its primary terminals, is reducible to an equivalent series
circuit.

Example 8 (for Z	 0). It will be assumed that, in Fig. 16b:
Ri = 3.3 ohms	 M - 0.0256 henry

= 0.094 henry	 Z —0
= 0.775 ohm	 377 radians per second

0.0108 henry	 V1 - 50	 volts
3.3 + j35.4 = 35.5/84.7° ohms

= 0.775 + j4.07 = 4.14 /79.25° ohms

= 0 + j9.65 = 9.65ohms
93.1/00

=	 - Z2 = (3.3 +j35.4) + 4.14/79.25°

= (3.3 ± j35.4) + (4.20 —j22.l)	 7.50 +j13.3 = 15.27/60.55° ohms
V 1	 50 J0=	 =15.27/O.55 = 3.28L-60.55° amperes

—i 1 z . 	 (3.2S/.45°)(9.65/)

	

12	
4.14479.25°

7.66 /130.2° amperes

The total power dissipated in the two circuits is:
1VL

P	 Vifj Cos el = 50 X328 X cos (-60.55°) 80.8 watts
JI'

or	 p 1 2R + I 22R2 - 3.282 x 3.3 + 7.66' X 0.775 - 81.0 watts
The vector diagram of V 1 . 11, Is, and — ZMI I is shown in Fig. 16b. In the par-
ticular (a.oe shown in Fig. IIh, the voltage inditre,t in rinitit 2 .-Z 1 I 1 . is halaned
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entirely by the internal secondary impedance drop, namely, Z 2 1 2 . If the counter-
clockwise direction around circuit 2 had been taken as the positive circuit direction,
12 and Z.Ii would appear on the vector diagram 180 from the positions shown in
Fig. 16b.

II

DILM

	
xlii'

(a)

ZI 11

	

R2 12	 11 11 

11

'I 
(b)

Zg I

FIG. 16. Voltage and current relations in an air-core transformer the secondary of which
Ia short-circuited. Note the manner in which XLIJI. R 1l 1 , and Z.u[i combine vecto-
rially to balance the applied voltage V1.

OsciUogram 1 illustrates the instantaneous variations of v i , i, and i2 for the
a,ove numerical case. The salient features of the numerical solution are clearly
shown. The primary current lags the applied voltage by approximately 60', and
the secondary current lags the primary current by approximately 170'. Within
the limits of oscillographic accuracy, the maximum magnitudes of i and 12 agree
with the results of the above numerical example.

Example 9 (for Z	 14.5 +f21.2 ohms). It nil he assumed that in Fig. 17a:

= 3.3 ohms	 .11 = 0.0256 henry

L 1 = 0.094 henr(	 Z = 14.5 + j21.2 ohms

R2 = 0.775 ohm	 w = 377 radians per second

0.0108 henry	 V1 = 50	 volts

Z i = 3.3 +j:15.4 = 35.5/84.7°ohms

22	 0.775 +j4.07	 4.14/79.25° ohms

ZM — 0 +j9.65 9.65 19V
20-
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OBcILLooasI 1. illustrating the time phase relations of primary and secondary currents
of an air-core transformer with respect to the applied voltage wave. (For a short-
circuited secondary. See Fig. 16a.) v	 70.7 sin 3771 volts.

ZM 2	 93.1L
=	

-. z 2 + z 35.5/84.7°+. 1528 +i25.3

Z41 = (3.3 + j35.4) + (1.83 - j2.7) 	 4.93 + j32.7

33.0 /81.4 ohms

V I 	50/9'
-

Z 1 
33/81.4° = 1.515Z-81.4 amperes

—i 1z.	 (1.515/98.60)(9.65/)
12 = (Z 2 + Z)	 •29.6/58.9°

12 = 0.494/129.7° amperes

V2 (terminal voltage)	 liZ

V 2	 (0.404/129.7°) (25.7/55.6°) = 12.7/185.3° volts

The input power to the primary terminals ta:

PkDMn = V1 I 
I coseI — 50 X 1.515 X coo 8l.4°

50 X 1.515 X 0.1495 - 11,3watts
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The power delivered to the load is:

	Pload — V2 1 2 eoe 8	 12.7 X 0.494 cos 55.6°
JI'

= 12.7 X 0.494 X 0.565	 3.55 watts

The efficiency of this particular air-core transformer working under the conditions
stated above is 3.55/11.3 or 31.4 per cent.

0.494 j.amperes

±1L.	
z1lIJ

T	 R,	 R)	 R-l4Solircs

1	 L,M	 2	 X- Z.1.2 ohms

	

it 60'	 4I- 1.515 ::!jS amperes

(a)	 (5)

Fia. 17. Voltage and current relations in an air-core transformer the secondary of which
is loaded as shown in (a).

Figure 17b is a vector diagram of V 1 , Ii, -Zjsl i , 12, and V 2 . Oscillogram 2 illus-

trates the variations of u 1 , i 1 , and i2 for the particular case under discussion. The
phase positions of the primary and secondary currents with respect to the applied
voltage are shown in rectangular-coordinate form and agree with the calculated

1

OaciLLoGR-M 2. Illustrating the time-phase relations of primary and secondary currents
of an air-core transformer with respect to the applied voltage wave. (For an inductive-
type load placed across the secondary terminals of the transformer. See Fig. 17a.)

represents the applied voltage wave (effective value 	 50 volts)
t1 represents the primary current wave (effective value m 1.5 amperes)
Is represents the secondary currant wave (effective value	 0.5 ampere)
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-

OSCILL0GRAM 3. Illustrating the time-phase relations of primary and secondary currents
of an air-core transformer with respect to the applied voltage wave. (For a resistive-
type load placed across the secondary terminals of the transformer. See Problem 12.)

values of these quantities. Likewise the wave shape and maximum values of the
voltage and current waves are discernible.

Problem 12. Let the load impedance in the above numerical example be replaced
with an impedance the value of which is 28.15/0° ohms.

(a) Show that, under this condition of operation,

Z41	 35.5/79.5°ohins

I l = 1.409/-79.5° amperes (7, asreference)

12 0.465L182.4° amperes

(b) Find the power input, the power output, and the efficiency of operation.
Ans.: F1 ,	 12.8 watts, P0 = 6.08 watts, efficiency = 47.5%.

(c) Draw a vector diagram of V 1 . I, —I 1Z . , I, I 2R, 1 2 (jwL 2 ), and V2.
(d) Compare the results obtained with those shown in Oscillograrn 3. Oscillo-

gram 3 is a photographic record of the varirtions of v 1 , i 1 , and i2 in the air-core
transformer arrangement considered in this particular problem.

Transferred Impedance. One of the primary considerations in
communication circuits is that of transferring maximum power from
a low-power generating device to a receiver. It has been shown in
Chapter V that maximum power is transferred (for a fixed generator
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voltage) when the impedance of the receiver (in complex form) is the
conjugate of the impedance of the generator and associated transmission
lines. That is, if Zgen = R + jX, then Zrec should equal 1? - jX for

maximum power transfer. For impedance matches which will prevent
reflection losses, Zeen = Z. (See Chapters X and XI.)

At audio frequencies, iron-core transformers may be used successfully
for transforming voltage magnitudes and for matching impedances,
but at radio frequencies air-core transformers are generally used. In
iron-core transformers where the coefficient of coupling is relatively
high and where (L2 ) 2 > R2 '2 , a resistance, R, placed across an N2-turn
secondary, may appear at the terminals of an N 1 -turn primary as
(N 1 /N2 ) 2R, approximately. The term may appear" is used because
several conditions must be fulfilled simultaneously before the (N 1 /N2)2
factor can be used successfully, as will be shown presently.

Classical methods will be employed to show how an impedance
placed across the secondary terminals of an air-core transformer appears
at the primary terminals in modified form.'

Reference to equation (58) will show that the equivalent impedance
of an air-core transformer referred to the primary side is:

ZM 2	 XM2
Z. = Z I - ---- = ('+	 + 

(R2 ' + jX2')

where Z2 ' = (Z2 + Z), the total secondary impedance.
2	 22Since ZM = - M, and Z2 = 112 + jwL2 (for a predominantly

inductive secondary , 'rcuit), it follows that:

w2M2 \
Ze i = (R1 +jwL i ) + (R

2 ' +jwL2')	
(60)

Rationalizing equation (60) yields:

Zei[
w2M2R2' •1	 2M2 L2' 1= R + R

2 '2 + w2L2'2j +.)''	 1	
R2 12 + w2L2'2j (61)

It will be observed that 112 appears at the primary terminals in modified
form, namely, as:

IR212 

2M21 /XM2
 + w2L2/2J R2 = 	 R2

2 It should be recognized that classical methods are applicable only where .f21 =

M 1 2 a constant. Where iron-core transformers are involved the (.V1/N2)2

factor is often used as an approximation, but since detailed analyses of iron-core
transformers are usually considered in ac machinery courses they will not be given
here.

-20
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I.

If R2 is very small compared with 2 L2 '
 
, if L2 = N102 H2, that is,

all of L 2 ' is concentrated in the secondary winding, and if 31 =
n I?2 appears at the primary terminals as:

(Ni)? 
1?2 approximately

Thus, if a high value of R2 ' is to appear at the primary terminals at
an apparently reduced value, N1 ' V2 must be made less than unity by
the appropriate amount. The above transfer factor, ( V 1 'N2 ) 2 , can
be theoretically approached only in the case of an ideal transformer
the coefficient of coupling of which is unity. Even with unit y coupling,
R2 ' is not actually transferred by the exact square of the turn ratio,
N1 /\2, as is sometimes supposed. In the iron-core transformer the
conditions required to make ( N 1 /N2 ) 2 the correct transfer factor are
fulfilled to a degree which makes calculations fall well within engineering
accuracy when this factor is applied. As a result, it is customary to
use this factor in iron-core transformer practice.

Equation (61) reveals another interesting fact, namely, that the
effective inductance at the primary terminals of a loaded transformer
approaches zçro only when R2 ' 2 is negligibly small compared with
4W2 L 2 12 and when L2 ' is entirely concentrated in the secondary winding.
Under these conditions and if the coefficient of coupling is equal to
unity,

I
L,

w2M2L2l rw2L1L212

 - 2 L2 12 ] = [Li - 
w2L2'2 = 

0

Example 10. Given an air-core (or constant-permeability) transformer, in which
N 1 = 500 and N2 5000. For the particular arrangement considered:

R1 1.0 ohm	 Ri 10 ohms

Li 0.03 henry	 L2 3.0 henrys

M 0.275 henry

Z 90/0° ohms

At 265.5 cycles per secon4, w 	 1667 radians per second and

X,	 wM = 1667 X 0.275 - 458.4 ohms

X 2 - 458. 42 - 210,000

- (10 + 15000) + (90 +j0) -100 +j5000 ohms
210,000

Z41 - 0 +SO) + 
100 +15000

- (1 + j50) + (0.84 - j42) - 1,84 + j8.0 - 8.2L77,, ohms
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It will be noted that Z 2 ' - (100 + j5000) ohms appears at the primary terminals
as (0.84 - j42) ohms. This result emphasizes the wide discrepancy that may
exist between ideal transformer operation and that actually obtained in an air-core
transformer the coefficient of coupling of which is 0.917.

Under ideal conditions, the load impedance, Z = 90/ ohms, would appear at
the primary terminals as

X90=jX000.9Oohm

The ideal conditions referred to are: (1) perfect coupling, and (2) zero resistance in
the transformer windings.

The reactive terra in Z 1 may, of course, be neutralized with a series condenser
in the primary circuit if a low resistive impedance at the primary circuit terminals
is desired.

Problem 13. A generator which develops 10 volts (effective) at 285.5 cycles
and which has an internal impedance of 2 	 ohms is to be used to energize the
90-ohm load resistance of the above example in the two following ways:

(a) Directly. That is, with the generator terminals directly across the terminals
of the 90-ohm load

(b)Through the transformer of the above example and a primary series conduser
the capacitive reactance of which is 8 ohms.

Find the power delivered to the 90-ohm load in (a) and in (b).
Ans.: (a) 1.063 watts; (1) 5.13 watts.

Primary Unity-Power-Factor Resonance. The inductive reactance
of Z 1 caused by the introduction of a transformer may be neutralized
in any one of several different ways. 11, upon evaluation in a par-
ticular case, Z,j possesses an inductive reactive component, suitable
neutralizing capacitors may be placed in either the primary or the
secondary circuits and these capacitors may be arranged either in
series or in parallel with the transformer windings. For the sake of
analysis, let Z11 be written in the form given in equation (81).

r	 w2M2R2' 1	 r	 c,2M2L2'Z 1 = [ R i + R
2 ' 2 + w2 L3'2] +)ci[Li -
	 wL21J	

(61)

R2 ' is the total secondary circuit resistance. L2 ' is the total secondary
circuit self-inductance.

Z, 1 R 1 +jXei	 (62)
where

X .1r	 cM2L2' 1 F	 Xjg'2X3' 1[WIll - R2 12 + w2L3'2J [Xi - 
R2 '2 + X2112i (63)

Series Primary Capacitor. Primary unity power factor can be
obtained by introducing a capacitor in series with the primary, which
has a capacitive reactance equal in magnitude to tI inductive reactance
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represented in equation (63).

XM2X2! 1
Xc(eerje.) = [x1 - 

R2 2 + x'2]	
(64)

Parallel Primary Capacitor. A capacitor, placed in parallel with
the primary terminals, can be used to produce primary unity power
factor. It is simply necessary to make the susceptance (be) of the
parallel capacitor equal in magnitude to the susceptance (bL) of Y1,
where:

1	 Rei	 Xei
=	 D 2	 2	 D 2 i v 2	 (65)

Ll'el T ) 1% eL	 £bej T 1'eL	 L,e1 T

The inductive susceptance of the uncompensated transformer looking
into the primary terminals is given by the j component of the above
equation. The capacitive susceptance of the parallel primary capacitor
must, therefore, be equal to:

Xei
bCl(psratlel) = R, 12 + Xei2	

(66)

Secondary Capacitors. Under the assumptions that have been madE
concerning equations (61), (62), and (63), X 2 ' is an inductive reactance
The introduction of a capacitor in series with the secondary circuit
or the introduction of a capacitor in parallel with the secondary 1oa
terminals will tend to neutralize the original inductive reactance anc
cause the net inductive X2' to be smaller in magnitude. If R2 '2 i

not too great, the lower value of X2' increases the magnitude of thi
subtractive term of equation (63), namely,

I v• 2 v.
2AM A

R2 f2 + X'2

Provided R2 12 is sufficiently small in comparison with X2 '2 to permit
the required increase in the above expression, X, 1 may be made equal
to zero with the proper adjustment of the secondary capacitance. The
correct value of secondary capacitance to employ in a particular case
is not difficult to determine. However, the general algebraic expres-
sions for the proper sizes of capacitors are of rather awkward algebraic
form. In the circuits where this type of tuning is employed the desired
effect is very often accomplished by means of a variable condenser
which can be adjusted experimentally to the proper capacitance.

Adjustment of M. Assume that Xj or X2' of equation (63) possesses
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a capacitive reactive component which is at least large enough to make

x,,1 -[x	
XM2X3'	 0]- 

1 22 + x212j =  (
67)

when the two windings are in their position of closest coupling. If now
XM is made smaller by decreasing the coefficient of coupling, X. 1 will
take on positive values, thus indicating a resulting inductive reactance.
In general, the capacitive element employed would be adjusted to
make X11 slightly capacitive for the condition of maximum Xç. The
primary current could thus be made to lead or lag the primary voltage
by adjusting the degree of coupling between the two transformer
windings.

Example 11. Let it be required to find the condebser of proper size to place in
parallel with the primary terminals of Fig. 17a to produce primary unity power
factor. The circuit parameters, and so forth, are given on page 295. For the case
considered: Z1 3.3 +JS.4,ZM 0 +j9.65, and Z 1' = (Z + Z) 15.28 +j25.27
ohms at 60 cycles. Without the condenser:

- 4.93 + j32.7 ohms

	

4.93	 j32.7-	 (0.0045 - jO.0299) mho
1094 1094

Neglecting the resistance of the capacitor which is to be used:

1
bawmanet)- - — 2fC

xc1

0M299
C — -- 79.3 x 10—'farad - 793f

Problem 14. Find the primary series capacitance to employ in the above example

	

to produce primary unity power factor.	 Ans.: 81.1 Af,

Problem 16. Solve equation (83) for the value of X 2 ' which will make X.,1 	 0.

	

XV,	XM	 ,2.Ans.: X2

	

2XI	 4X,

Problem 16. Can a secondary series capacitance be employed in example 11 to
produce primary unity power factor?

Ans.: No; R 2' is too large for the specified values of X 1 and X..

Partial Resonance. In the coupled circuits of the type shown in
Fig. 18, the two chief concerns are usually: (a) maximum value of
12 (and of Vc2) for a given value of V1 ; (b) sharply defined peak of
12 for variable X2, XM, or w.

In considering the salient features of these tuned coupled circuits,
a slight modification in notation is desirable. Thus far we have dis-
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tinguished between the impedance of the primary winding (Z 1 ), the
impedance of the secondary winding (Z 2 ), and the impedance of the
load (Z). It is plain from the development preceding equations (52)
and (53), page 293, that no restrictions have been imposed on the nattirc
of Z i . Z 1 is simply the equivalent series-circuit impedance of the
primary circuit. Similarly Z2 + Z is the equivalent series-circuit
impedance of the secondary circuit. The equations in the remainder
of this chapter will be simpler to write and easier to grasp if Z 1 is under-

I I 	 12

1E-i
R2R,

VI

XLI

- - -

1
SI\	 II'

xc2—I— v2

1+

FIG. 18. A double-tuned circuit arrangement.

stood to be the total series impedance of the primary circuit and if
Z 2 is understood- to be the total serieaimpedance of the secondary circuit.
Thus:

Z1 R 1 + j(XLI - Xci) = R1 +X 1	(68)

Z2 1? 2 + j(XL2 - Xc2) R2 + jX2	(69)

ZM - jXv = jI (as before)	 (70)

The equation for the secondary current 12 (as given in equation (53),
page 293] becomes:

— V 1 ZM	 —V1(jXi)
12	 - z.,,2
	 (R 1 +JX 1 )(R2 +jX 2 ) + AM2	

(1)

or
—V1X.4(4Y1R2 + X 2 R 1 ) +j(R 2 R - X 1 K2 ± X.2)J

12 (X1R2 + X 2 R 1 ) 2 + (R 1 R2 - X 1 X2 + XM2)2	
(72)

For simplicity in writing, let

a = X 1 R2 + X 2R1 and b = R 1 R2 - X 1 X2 + XM2

Then:

12	
a 2 + b 2

	 (73)
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The magnitude of 12	

______= V1XIf--2 + b2)2

or

'2 =
VjX.f

v(R ' +Xf+ R 1 2R2 2 + 2R 1 R 2 X. 1 2 +X 1 X2 2 — 2X 1 .V 2 X 1 2 + X14

In solving for 1 2 , where numerical values are involved, it is often
more convenient to use equation (71) than equation (73). This is
particularly true where X 1 or X2 is equal to zero. Equation (73),
however, is useful in determining maximum values of 1 2 that can be
obtained by varying any one of the parameters.

Partial resonance in coupled circuits is obtained when any one param-
eter is so varied as to cause maximum effective seCOfl(IarV current, 12,

under the condition of constant applied voltage, V.
From equation (75) it is evident that partial resonance can be obtained

by adjusting any one of the five parameters: R 1 , R 2 , X 1 , K2 , or X.%f.
(For fixed values of R L' L 1 , Cl-M, 1? 2 , L 2 , and C2 , partial resonance
ma y be obtained by adjustment of the frequency.) Partial reonance
will obviously be produced by adjusting any parameter which appears
only in the positive terms of the denominator of equation (75) to zero.
Hence partial resonance obtains, theoretically, when either R 1 or R2
is equal to zero. Practically, neither R 1 nor R2 can he zero and, as
will be shown presently, the value of R 1 R 2 determines the optimum
value of 12 that can be obtained.

The values of K 1 , K2 , or .Y.ir which will produce partial resonance
may, in general, be found b y differentiating the expression for 12 [as
given ill equation (5)] with. respect t t h" proper K and equating
d12 .!JX equal to zero. For example, the value of K 1 which vill produce
partial resonance may he determined b y equating d! 2 (L\ i equal to
zero and sol ing for X 1 in terms of the other parameters. Thus:

dI
= 0 = - 1 X . 2X 1 ( R 2 2 + -'2) - 2X 2 X i, 2 1 	(76)

dXi

The only useful relationship which can be derived from the above is:

	

X 1 (R 2 2 + X 2 ) = X2	 (77)(77)

The value of X 1 which will produce partial resonance is, therefore:
2

2- Sf	 2-' if
2

X1() = 	 =	 2	 (iS
41. 2

 
+X12
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Reference to equation (63), page 301, will show that the above value
of X 1 is also the unity-power-factor-resonance value of X 1 . In making
this comparison it should be recognized that 1?2 and X2 of equation (78)
mean the same as R 2 ' and X 2 ' of equation (63) because of the shift in
notation which was made at the beginning of this section. In a similar
manner, it may be shown that the value of X 2 for partial resonance is:

X1XM 2	 X1XM2
X2(rei) 

= R 1 2 + X 1 2 = z12	
(79)

The interpretation of the above equation is that X 2 must have the
value stated to produce maximum 12. If X 1 = 0, then X 2 should be
tuned to zero to produce maximum 12 for a fixed value of X.V . If the
primary circuit is not tuned to XLI - Xci = 0, then the secondary
must be detuned to the value X 1X? /Z 1 2. Where sharpness of sec-
ondary tuning is of more importance than an optimum value of 12, the
primary is often purposely detuned to effect a pronounced peak in the
12 versus Xc2 graph. (See Problem 17, page 309.)

If X 1 and X 2 are both equal to zero (by virtue of XL1 - Xci = 0
and XL2 - Xc2 0), equation (75) reduces to

12(mAx)	
VIXM	 (80)

R 1 R2 + XM2

If, now, XM is varied by changing the coefficient of coupling between
the coils, the optimum value of 12 is obtained when

dl 2 (rnax)	 V 1 (R 1 R2 + XM 2 )
 - 2 VJXM2

.JT	 D V I V 22	 (8 )
UM	 "1'2 1- M )

or when
1-—

XM = wM = ± ' R 1 R2 (called critical coupling)	 (82)

Under these conditions:
V1 (83)

V, VRIR2
12(opt) R

1 R2 + R 1 R2 V rR_j

The relationships stated in equations (78), (79), (82). and (83) are
of considerable importance in voltage amplification in radio circuits.
Some of the essential features involved are illustrated numerically in
the following examples and in graphical form in Figs. 19 and 20. For
fixed values of the other parameters, there is a value of Xø or a coef-
ficient of coupling which will produce maximum 1 2 as shown in the
graphs of Fig. 19. Frequency responses of coupled circuits for fixed
values of R 1 , L 1 , C 1 , M, R2 , L2 , and C2 are shown in Fig. 20. Graphs

Of 12 and Vc2 versus Xc3 are reserved for student exercises.
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Fin. 19. Variation of sccondary current with coefficient of coupling for different values
of primary impedance. See example 12.
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FIG. 20. Frequency responses of double-tuned circuits.
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Exauiple 12. (a) Consider the coupled circuits shown in Fig. 19 under the follow-
ing conditions:

21 1 +jlOohms Z 2 4 +j(40 - 40) ohms XMvarjable
In this case the primary is not tuned and the secondar y is tuned, that i, Xc2 =
XL2 = 40 ohms at the frequency of the impressed voltage, V1.

Solutions of equation (71) for V 1 = 10 volts and for various values of X .v will
show the manner in which 12 varies with the degree of coupling between the coil.
The results of a series of such calculations are shown in the lower curve of Fig. 19.
It will be observed that, for Z 1 = 1 + jiG ohms, 12 attains a maximum value at
Xj equal to 6.5 ohms or at a coefficient of coupling of 0.323. Closer or looser
coupling than 0.325 results in lesser values of 12 and hence of Vc2 = 17'C2.

Calculations will show that in this case

VClmax) = 1.063 X 40 = 42.52 volts
(b) The response of 12 to variable X .1 when the primary is partially tuned is

shown in the middle graph of Fig. 10. In this case, 6 ohms of capacitive reactance
is employed in the primary circuit and

= I +j4ohms Z 2 = 4 +jOohms X31 variable

12 attains a maximum value at X. = 4.3 ohms of 1.565 amperes. The maximum
value of the secondary condenser voltage is:

= 1.565 X 40 = 62.6 volts

Cc) The upper graph of Fig. 19 shows the response of 1 2 to a variable X M when
both primary and secondary are tuned.

Z i = 1 +j0ohms Z 2 4+joohms, Xvariable

In accordance with equations (82) and (83), 'a attains its optimum value of
V 1/2v'Tj at XM =•

	Vi	 10
2T1 = —j 2.5 amperes

VC2(opt)	 I2(op) X'2 = 2.5 X 40	 100 volts
The Q (or wLfR) of the coils in this ease is equal to 10, and it will be observed that

C2opt) is equal to the driving voltage (10 volts) times the Q of the coils. That is,
1 C2(oDt) = V 1Q = 10 X 10	 100 volts. This fact is generally true where

= 4-.XLI, provided that both primary and secondary circuits are tuned to
resonance and provided that the coupling reactance is adjusted to its critical value,
namely,	 Under these conditions,

	

XL L XL2	 XLIXL2and R1R2=

	

R i 	 R2	 Q2

VI	 V 	 V1Q

2vR 1 R 2 V'4XLIXL2 XL2

	

1'C2(op)	 1 (o p %) X2	 12(opl) XL2	 V1Q

Thus it will be seen that the voltage developed across the secondary condenser of
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the coupled cir'uits shown in Fig. 18 may be equal to Q times the applied voltage.
If, for example, the Q of the coils is 50, a voltage amplification of 50 can be obtained
simply with the aid of the tuned coupled circuits. As indicated in Fig. 18, the
voltage developed across the secondary condenser may be applied between the
control grid uid c.ithodc of a vacuulll tubc in order to obtain further voltage ampli-

fication.

Example 13. The response of a cuuplcd circuit to a constant driving voltage of
variable frequency is shown in Fig. 20 for three different values of XM. Since

the critical coupling at unit angular velocity is 2 ohms, the graphs shown in Fig. 20
represent eouplings which are less than, equal to, and greater than critical coupling

In these graphs, unit angular velocity is called the angular velocity at which

	

-	 = 0 and at which XL2 - X2 = 0. At unit angular velocity,

Z 1 	I +j(l0 —10), Z 2 = 4 +j(40 - 40) X.f	 l,2,or3ohms

At other values of w, the XL'S and X.t vary directly 55 w, and the Xc's vary in-

versely as W.
For coupling less than critical coupling the maximum value of the secondary

current is less than for critical coupling, and for couplings greater than critical
coupling the current response is generally similar to the double-peaked curve shown
in Fig. 20.

If a single pronounced peak of 12 versus w is desired, the coupling should not be
greater than critical coupling, and the Q of the coils should be as high as practicable.
If the Q of the coils is made higher than that used in Fig. 20, the peaks of the curves
will he sharper and more clearly defined. Sharpness of tuning is particularly im-
portant in radio receiver circuit-s.

Problem 17. In the coupled circuits shown in Fig- 18, page 304;

	

R 1 — 1.0 ohm	 R2 = 4.0 ohms

	

X L L = 10 ohms	 XL2 40 ohms

Xci	 10 ohms	 Xc2 is variable

	

AM = 2 ohms	 Vj = 10 volts

Graph 12 and V 2 versus X2 between the limits of Xc2 = 20 ohms and Xc =

60 ohms.
.4rs.:	 = 2.5 amperes at .Vc = 40 ohms.

1C2,zn&z) = 102 volts at .V	 = 41.7 ohms, approximately-

Note: The fact that circuits of this kind tune more sharply but to lesser peak
values when one member is partially detuned may be shown by repeating the above
problem using Z 1 = I + j4 ohms rather than Z 	 I -F jO

Double-Tuned Circuit Analysis and Design in Terms cf 1.. Jo - f!f.

The double-tuned circuit shown in Fig. 21a is widely used in radio

engineering practice, and it is the purpose of this section to derive

design equations which will specify the Qs of the circuits and the co-

efficient of coupling in terms of the band width and the degree of irregu-

larity which can be tolerated in the response characteristic. The current
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nerator (gmEg) in parallel with R is the plate circuit representation

a vacuum tube. (=
	

*3jb	

., = gineg +dtb - de,; + - deb or i	 - . See
aeb	 R9 )

age 203.

	

ED—.R11

 Cn
gmEg 	 4 Q 

.PI:	 iT 
(a)	 (b)

Fig . 21. The actual double-tuned circuit shown in (a) transforms
readily to that shown in (Ii).

Wherever inductive and capacitive reactances are combind as shown
in Fig. 22 the analysis is simplified considerably by letting

(84)COWO 	 fo	 f

where wd = 1 /V'L 11 C 11 = 1 //L2 C22 under the assumption that the
primary and secondary circuits will be tuned to the same frequency.

It will be noted that F as
defined above is the difference
between two dimensionless quan-
tities (f1fo and fo/f) which in-

[

dividually characterize the van-

ii	 Frequsn
-	 I	 I

f2

	

grnE0	
+Cut	 L11	 fG	 fI

BandwIdth

Fin. 22.	 Fio. 23. Response curve of double-tuned
circuit. Jo	 "/Jz is the center fre-
quency.

ations of inductive and c:tpacitive reactances relative to variations in
frequency.

As shown in Fig. 23, fi - 12 will be called the band width and it
will he assumed that fi - f2 is small compared with f . For narrow-
band responses of this kind, E2 has a value of E.j. within the pass
band at

10=v77
where J and 12 are the frequencies (other than f0 ) at which the response,
E2, has value's of Emjn. See Fig. 23. In this connection it will be
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noted that, if Fmi, symbolizes the value of F where E2 = Eml., say at

f fl , then

	

F	 (85)mm

	

Jo 1'	 Jo Jo

since Jo = /jj, If the band width is specified	 is known.

If welet. a = l !Q, b = 1 /Q2, and k

Z 11 (in Fig. 21b) = R 11 +j(L i i 
-

w0j L i j(a +2F 11 ) (86)
WC1 1)

Z22	 02L22 (b + jF22)	 (87)

Z12 - Z21 =jM =jckV'LiL22	 (SS)

We assume that C11 and C22 will be so adjusted that.

1 •	1 =WoWOj =	 = W02	
v'L22C22

where
1

WO = \/LL2211C22

The problem is essentially that of expressing a, h, and k in terms of

Fmr, and	 - Ernjn).

Employing the loop current method of analysis in Fig. 21b and treating
as a known value of current, say [, circulating in the left-hand

loop, we have

	

zuhl +z 12 12 j	 = -7 wc 1 1	 (89)
jm E	 •Ir}

Z21 1 1 + Z22 12 = 0

The output voltage is

(	 ' )(Jk'2

E 2 = _jI2 = o
2LuL221(ab - F 2 ) +j(a + b) + w 2k2L11L22

(90)

jf,kTL
()Cj 1C22

	

02L11L22 K ab +	 k - F 	 j(a + b)F]	

(91)

COO
-.
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Since we are interested particularly in the region shown in Fig. 23
where any w is close to co if the per unit band width is small, we may
set w2 /o2 	1 in equation (91) and obtain

E2 =	 ______	 (92)
,YC11C22[(k2	

jIk

+ ab - F2 ) +j(a + b)F]

At w = wo, the center angular frequency F = 0 and

—jJk

	

E20 = Eo =
0VC1

______	 (93)
1 C22 (k2 + ab)

Consider now the ratio of the magnitudes of E2 and E0 and let the
ratio w /w0 again be reckoned as unity. Under these conditions

(E2)2 1

=	 F4 + (a2 + b2	 2)F2	
(94)

EO	- 2k
1+

(k2+ab)2

or

1	
(95)

E0 -
	

F4 + (a2 + b2 - 2k2)F2
1+	

(k2+ab)2

From equation (95) it is plain that the shape of the E2 curve (reckoned
in per unit values relative to E0) will be determined by the relative
magnitudes of a2 + b2 and 2k2. If a2 + b2 5 2k2, then a single-
peaked curve is obtained since, as F takes on values greater than 0
(f different from f0), the E2 1E0 curve will decrease continuously from
its maximum value of unity, the value of E2 1E0 when F = 0 or when
f = f.

If, however, a2 + b2 < 2k2, the denominator of equation (95) takes
on a minimum value or E2 /E0 takes on a maximum value where f(F2 ) =
F4 + (cr2 + b2 - 2k2 )F2 is a minimum. This minimum may be found
from

df(F2) --
2(F2)—(20 —a2—b2)'=0

d(ø) 

or where

20 - a2 - b2
(96)

2
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When plotted versus actual frequency, the response takes the form
shown in Fig. 23 or, when plotted versus F, the form shown in Fig. 24.

We may write an expression for(E2 /E0 ) max	 Emax from equations
(95) and (96), and, since Ern i e is taken as unity, we may write

	

E 2	 1max

	

E 2 	(2k2—a2--b2)2
(97)

ml zi
I	

4(k2+ab)2

Let

	

2	 (2k 2 - a2 - b 2 ) 2	 F ml n

	

a2 = 1 - 
mi C

2	 4(k2 + ab) 2 	= 4(k 2 + ab)2	
(98)

max

where pmm. 2 = (2k2 - a2 - b2). [See Fig. 24 and equation (95.)]
It follows that

mi C

a = 2(k 2 + ab)	
(99)

and

O0)
mm )E0 -

	

	

1	
(1

4a2F2 (F2 - F

mm n

Fme = V2k2 a2 -- P  (fi - f2)/fo is the value of F at the edge
of the pass band where E21E0 = 1 = E

E2
o

I	 1	 -1 min

/

.minV2k2a2—b

—F	 0

'Fmu /2k'—a'—

	

V	 2
Fio. 24. A response curve. E 2 /E0 versus the variable F for

a + bt < 20. (F — 11fo - 1,/f.)

Equation (100) is a convenient working equation since it includes
a, a measure of the response irregularity which can be tolerated within
the pass band (f1 - fz), and Fmjn, a measure of the pass band width
(f - 12). From a design point of view, or and Fm,,, would normally be
specified (at least indirectly), and k, a, and b would then be so chosen

'These results are due to Dr. T. C. C. Wagner of the University of Maryland who
Jim developed design formulas for double-, triple .-, and quadruple-tuned circuits.
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that the specified values of a and f1 - f2 would be obtained in the
final design. See Problem 45, page 324, and example 14 for applications.

Example 14. Let it be required to design a double-tuned circuit which will have
per unit band width ((JL - 12)1101 of 0.05 and a ratio of Ea,. to Emn equal to 1.25.
If we make a b (Q = Q), we may readily show that:

a1=b2=
P 1 'l - a) and	 F,,2(1 + a)

4a	 4a

ince a Fm in2/2(k2 + ab) and	 2k2 - a2 - 0. In the partieui3r case
inder discussion

=N_f
-2)Ø•Ø52 = 0.0025 [see equation (85)]

nd
EMIn	 16

or a0.6E,,aX2	 25
lus

0,0025(0.4
a2 b2 	 0.000417 and Qj Qi 49

2.4
0.0025(1.6)	

0.00167 and Ic 0.041
2.4

Component Fluxes and Voltages in the Air-Core Transformer. Fig-
ire 25a shows diagrammatically the flux components in an air-core
ransformer. The current 12 in the secondary produces an mmf which

may be considered to cause two component fluxes: one the leakage flux
22, which links the turns of winding 2 only, and 021, which links both

windings 2 and 1. The same conditions regarding the flux linkages as
explained on page 279 for Fig. 6 apply to the present discussion, namely,
that 022 is a hypothetical component which, when linking all the turns of
winding 2, produces the same total flux linkages as obtained from the
true flux linkages in question. The current Ij causes two component
fluxes, 12, which links both windings, and q, which links winding 1
only. Reference to example 9 on page 295 and application of Lenz's law
will reveal in a general way the reason for the phase angle shown between
I and 12 in the vector diagram (Fig. 25b). The component fluxes pro-
duced by 1 1 and 12 are also shown. It is plain from Fig. 25a that the
resultant mutual flux is OM = .z + 021. The total flux through
winding 2 is 02R 4'u + 022 = 't' + 012- Also the total flux through
winding 1 is 01jt = I'M + oil  I' + 021 . All these combinations are
shown on the vector diagram. Equal numbers of turns on windings 1
and 2 are assumed.

Since e = — N(d4,/dO, the induced voltage due to a flux lags the flux
by 90 degrees. Thus, on the vector diagram, E2R is caused by	 , EM2
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by 0m, and E22 by 022. The resultant induced emf in winding 2 is
therefore E. Because of the resistance R2 of winding 2 the terminal
voltage must be less than E2R by the 121?2 drop as shown, Hence V 2 is
the secondary terminal voltage. It is seen to be ahead of 1 2 by the
secondary load power-factor angle.

II

.1

—ER
	 (a)

Fic. 25. Vector diagram of the air-core transformer.

The voltage drop impressed on winding I must be equal to the um
of all the drops through. winding 1. Thus one component of the total
drop must he the drop — E IR , which is equal and opposite to the induced
voltage E (not shown) in winding 1 caused by all the flux linking that
winding. The remaining component drop is the 1 1 R 1 . hence V1
1 1 R 1 + (— E I R). The components of —E JR are the voltage drops
—E 11 and —E, 1 . which overcome the induced voltages due to the
primary leakage and mutual fluxes, respectively.

The leakage flux is (even for all practical purposes in iron-core
transformers' proportional to the current 12. E22 is an induced voltage
rise and is dire'tiv proportional to 12. The voltage —E 22 is opposite to
E22 and therefore leads the current by 90 degrees. It is thus in the
direction ci a reactance drop, and, since it is proportional to the current,
a constant reactance may be multiplied by the current 1 2 to represent
correctly the drop —E 22 . Such a reactance which may be used to
replace the effect of the leakage flwc is called a leakage reactance, and the

-21
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corresponding dron a leakage reactance drop. The vector diagram
which is commonly used is shown in Fig. 26. Only the flux 0,%f in Fig. 2
is shown, and the drops -E22 and -E 11 are replaced by their correspond-
rig leakage reactance drops 1 2 X 2 and 1 1 X 1 , respectively.

I

Fz. 26. Commonly used vector dia gram for the ah core transformer shown in Fig. 25.

Leakage Reactance. Leakage reactance may be defined as 27rf
times the leakage inductance. Th is may be shown as follows. By
referring to Fig. 25a, leakage inductance

I	 =	 or N 2 - 2 	 (101)

e2N2 —j	
(102)

Dividing equation (102) by equation (101) gives

e22 = - Ls 2
 (1i2

For sine waves
j2 = Im 2 S in Wt	 (103)

and
e22 = L S2 Im2W COS wt	 (104)

Hence
E.22 1m2"S2



X2 = +jwLs 2 	 (106)
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_ 1-2AlSO	
E22 - -	 =

The magnitude of the leakage reactance drop has been defined equal
to £22	 I 2 wL	 12X2. Threfore

X2 = wLs	 (105)

Since e 22 in equation (104) is a voltage rise, the drop is — e22 = Ls2w!,,
cowt. Because this voltage drop is 90 degrees ahead of the current
(equation 103), the complex ex- 	 a
pression for leakage reactance °	 1must be	 1,!

	

The Aix-Core Autotransformer. 	 "C
Two inductance coils arranged as
shown in Fig. 27 are called an
autotransforroer. If the driving
voltage is applied to the terminals
ab and the load connected across
the terminals ac, the autotrans-
former functions as a step-up volt-

	

age device; whereas, if the driving	 Fin. 27. Air-core autotransformer con-
n

	voltage is applied to the terminals 	
ected as a step-up voltage device.

ac and the load connected to terminals ab or bc, it functions as a step-
down voltage device. The mathematical analysis of the air-core auto-
transformer is reserved for student. exercises. (See Problems 37, 38,
and 39 at the end of this chapter.)

R51l	 R-=10f1

	

I	 i	 12
l's

R2OO

I _ _
X-20n	 XL- 40 fl

Fio. 28. See Problem 18.

PROBLEMS

18. In Fig. 28, E1 100L2 volts and E 2 = 1007+120 volts. The phyiti
meaning of the foregoing statement is that the E 2 'gnerator develops a maximum
generated em! (V's X 100 volts) in its arrow direction I of a cycle or 120 before
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the E1 generator develops jus maximum generated emf in its arrow direction. As-
suming that the resistances and reactances given in Fig. 28 include the generator
impedances, find I j , 12, and 112.

19. In Fig. 2, page 276, it is found experimentally that I — I 19W ampere and
/O° volts (with terminals 22' open-circuited) when E 1 (the voltage ap-

plied to terminals 11') is 6L volts. When a voltage of 6LQ volts is applied to

terminals 22' (with terminals 11' open-circuited), 12	 1.5/	 amperes and

= ()I/w volts.
(a) Find Z 21 and Z 12 from the above data.
(b) Find the coefficient of coupling between the two circuits.
(c) Draw a circuit configuration that might actually exist within the 11'2'2 box

and that is consistent with the specified data.

Circuit 1

20 12

 2.5	

cu

 12	
Circuit 2

1	 T

FIG. 29. See Problem 20.

20. Find the coefficient of coupling between circuits 1 and 2 in Fig. 29. Hint:

Transform the abc delta to an equivaleut wye, and then determine Z 12 or Z 21 of the

equivalent circuit.

FIG. 30. See Problem 21.

21. Show that the coupling coefficient between circuits 1 and 2 in Fig. 30 is eqoiil

to zero if , = 1/VR 2CC2, R. = Rb. R2 = 21?, and C1 = 2G2.

22. Figures 31a, 31b, and 31c are the appoxiInae equivalent circuit 's that are
sn1etiines used in making voltage amplification calculations in resistance-coupled
LiIdo anujlifiers. Show that the expressions given for E2 in terms of are correct
fir cub of the three configurations.

23. Two air-core inductance coils possess, individually, 60 and 30 milhihenrYs
lf . ir,(lucLnce, respectively. Measurements show that, if the two coils are con-

nected in additive series as shown in Fig. 12, page 287, the equivalent self -inductance
of the combination is 120 millihenrys.
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+

1

	

Rb	
4RpR+RbR#RpR_i	 c.

(a)	 -

+

	

pEu$R b	 Rc$	

E2IRR1
R

(b) —

E5

	

0	 RR,

Rb	

$

 RC	 F

(c) -

Fin. 31. Approximate equivalent circuits of resistance-capscitanco coupled amplifieri,
See Problem 22. (a) is for low-frequency range. (b) is for intermediate-frequency
range, and (c) is for high-frequency range where the impedance of the blocking con-
denser C6 may be neglected.

(a) if the coils are connected in subtractive series, find the equivalent self-in-
ductance of the combination.

(h) Find the coefficient of coupling between the coila.
24. Two inductance coils are connected in additive series. For 100 volts im-

pressed on the combination, the current is 5 amperes and the power consumed is
200 watts. When the coil.s are recouneL ted in subtractive series and 100 volts a:e
impressed, S amperes flow. Calculate the mutual inductance if the frequency fur
the above measurements is 69.5 cycles.

25. If the two coils in Problem 24 have equal resistances and the voltage drop
across coil 1 is 36.05 volts for the additive series connection in Problem 24, (a)
cal'ulae 1.. and L and the drop across coil 2 for this condition; (b) also ca1cu!ac
the coefficient of coupling.

26. The individual self-inductances of the two windings shown in Fig. 6, page
216, are 0.100 and 0.050 henry, respectively. The coefficient of coupling between
the windings is 0.56. If the current in the 0.100-henry winding is a 60-cycle sinus-
oidal variation, the maximum magnitude of which is 10 amperes, find the effective
value of voltage induced in the 0.050-henry winding as a result of the current varia-
tion in the 0.100-henry winding. Also find the magnitude of the rms induced
voltage in the 0.1-henry winding.

27. In Fig. 32, e = 141.4 sin 11311 volts and ed = 70.7 sin (11311 - 90°) volL'.
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rtl

Ft(;. 34	 See Problem 30.
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(o) ?'ind I, and 'ed, assuming that Fig. 32 correctly represents the modes of
winding as well as the physical placement of the two inductance coils. The internal
impedances of the generators may be assumed to be negligibl y small.

(h) Find the power generated by each generator.
(c) Draw a vector diagram of	 Ed, I,	 IXL2,

and
28. Branch 1 of two parallel branches consists of a resistance of 2 ohms in series

with an inductive reactance of 3 ohms. Branci 2 consjts of a resistanee of 5 ohms
in series with an inductive reactance of 12 ohms. The coefficient of coupling be-
tween the two inductances is OS, and the inductances are wound so that the mini's

RSOfl

e
henry'-1henry

b	
kM—O.4O

Fo. 32. See Problem 27.

due to 1 1 1 taken in the same direction from the junction are additive. If
100 volts lire impressed on the too parallel branches, find I, I,, the power supplied
conductivel y to branch 2, the power supplied branch 2 electromagneticall y , and the
voltage drop across only the inductance of branch 2. What is the phase angle
bciotw'n the latter drop and the current in branch 2

29. The coefficient of coupling for the coils in Fig. 3:3 is 0.5. Find the current
in the resistance.

30. Calculate the phase and magnitude of the voltage drop Vb, with respect to
the total drop from a to c in Fig. 31. .VL I =59 ; ' X L2 = 50; X ,11 = 40.

T-10)

100 QOIl5 1812I
Fin 33. See Pr ' blem 29.

31. In the coupled circuits 'biown in Fig 18, page 304,

R 1 = 4 0 ohms

..XL1	 40 ohms

Xc l = 40 ohms

X,, = 50 ohms

Find 12 and V.2.

R = 10 ohms

XL2 = 100 ohms

= 120 ohms

V 1 = 100 volts
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32. In the coupled circuits shown in Fig. 18, page 304,

= 4ohms	 10 ohms

XLL = 40 ohms	 XL. = 100 ohms

XCI = 40 ohms	 X-2 - 120 ohms

Xm = 50 ohms	 V = IIX) volts

Find the equivalent primary impedance, Z, 1 . of the coupled circuits and th ohmic
value of the secondary-circuit impedance referred to the primary terminals. Flow
many ohms reactance does the second.irv rctli Ct into the primary , and is it In-
ductive or capacitive

33. Assume that an 83-f capacitance is placed in series with the primary of
Fig. 17a. Except for the insertion of the 83-f capacitance into the primary circuit,
the parameters are as given on page 295. Find the value of 31 which will produce
unity-power-factor resonance.

34. Show that the partial resonance lAhich can be obtained by adjustment of
the secondary reactance, X 2 (in coupled circuits of the kind shown in Fig. 18, page
304), occurs when X 2 = X1Xu 2 /Z1 2. (Set equation 79, page 306.)

R1

C 61^	 7L l, M L 2
Cl., __

C12 (2

Ti
Fici, 35. See Problems 35, 41, 42, 43. 44. and 45.

35. In Fig. 35 R 11 = 10, L 11 = 0.01 henry , L22 = 0.05 henry, M = 0.02 henry,
= 40 12, C = 20.0 A and w = 1000 radjafts per second. (a) Find the value

of C 11 that will make the whole circuit, looking into the lines connecting to the source,
a pure resistance. (h) Find the value of the pure resistance.

36. Circuits I and 2 are inductively coupled. Circuit 1 consists of 2 ohms resist-
ance in series with a coil of 16 ohms reactance and negligible resistance. Circuit
2 consists of 10 ohms resistance in series with an inductance coil of 100 ohms re-
actance and a capacitor of 100 ohms.

(a If the coefficielit of coupling is 0.05 what is the drop across the capacitor
• hen 10 voks are applied to circuit. 1?
(h) If a capacitor is placed in series with circuit i so as to tune circuit. I to reso-

nartce (.L 1 = 1/C 1 ), what will he the drop across the capacitor in circuit 2 for the
same coefficient of coupling as before?

(C) If the coupling can be adjusted in part (ti) what will be the greatest voltage
drop across the secondary capacitor?

37. Write the general differential equations for voltage equilibrium in the two
circuits shown in Fig. 27, page 317, in terms of R,,a, L i,, R5 , 31, R, and L, and
the branch currents ij and 43. Note that this is essentially two parallel branches
which are coupled.



322	 ALTERNATING—CURRENT CIRCUITS 	 Ch. Vii

38. Assuming that v varies elnusoidaily, write the general voltage equations
for Fig. 27, page 317, in terms of the effective valus of the branch currents, I and
1 2. Solve the equations thus found for I l and 1 3 . What circuit considered earlier
in this chapter has similar equations for 1 1 and 12?

39. Assume that, in Fig. 27, page 317,

= 4.0 ohms	 Al 0.02 henry

Lab = 0.07 henry	 R = 10 ohms

Rbe = 0.5 ohm	 L 0.00 henry

= 0.01 henry	 ci = 377 radians per second

If V = 100 volts, find I, 12, and I + 12. Also calculate the total power
supplied and that dissipated in each of circuits I and 2. Draw the complete vector
diagram of the voltages and currents.

R

[ mEo	 $p 

f 
C11

(a)

1	 2

	

ll1	 I

	

EQm11 D1, 	 Ll,

1'	 2'
(b)

Fio. 36. See Problem 40.

40. Given the circuit arrangement shown in Fig. 36a, where the gmE5 current
generator in parallel with R, i the equivalent a-c circuit of a pentode which has
a voltage of E volts applied to it-4 control grid.

(a) If R = 750,000 ohms, J? L = 12 ohms, L11 3S2 microhenrys, and C ll is
adjusted to resonate the L 31 C 11 parallel branches at 500 ke, find R 11 of the equivalent
circuit shoan in Fig. 365.

(5) W hat is the (J of the coil itself, namely, ,,,L t/RL, at 500 kc?
(c) What is the Q of the C 11 -	 parallel combination of Fig. 36b at 500 ke?

(4) Can 1 1 in Fig. 305 be evaluated from the relation Z 1 L 1	 - (Jo) ( j
/	 I \	 '

where Z 11 = R 11 +j ( L 11 -	
) 

?

41. In Problem 40, it has lieCO shown that the current generators of Fig. 366 and
Fig. 35 can he replaced b y equivalent voltage generators which have voltages of

'how that th. equivolent 'llnarv impedance (including the reflected impedance
from the secondary j which the equivab it voltage generator in Fig. 3.5 sees is:

It:
.1

=	 = zIl + --
I i	 Z22

here

' L 1 C11

=	 1 L 1 [(a +JF 11) +	
2k2	

]''m1',,,2(5 +2F22)

tUn.2
YL22C
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Z 11 — R11	
- _-CJ

	

R22	
-

1 1	 R2

a = — = -	 b - --
Qt	 6),,, 1 L 11	 Q2	 (..J,,L22

Fii

.1W!

k
\

42. The results of Problem 41 are to be employed in the following exercises.

(a) Show that a voltmeter across L 11 of Fig. 35 will read a maximum value when

C 11 is adjusted to I .Ltw.'2 if loop 2 is open-circuited and that this voltage will be

VL L rII =

where K = [- (1 0 /Cj 1 )] ((.L11).
(b) With C 11 left at the value found above (l/L i1cj2 ), show that the voltmeter

(which is across the L 11 coil) will read a minimum value of

K

	

VLII	 k2
cm i Lii (a +

when C22 is adjusted to 1/L22w,,,12.

(c) Show that, if the experimental procedure outlined in (a) and () is followed,
the coupling coefficient between the two coils is

k=\-1)

43. In Fig. 35: L 11 = L 22 = 500 microhenrys; Cu	 C22 = 20	 f; M = 8.66

microhenrys: a = R 11/, 1 L 11	 b	 R 2 m2L22	 0.01.
(a) Find the magnitude of the voltage across the C22 capacitor per milliampere of

1 0 at w = .. = 1v'L 11 C11 rad_ns p . r second.
() Will the voltage found in part (u) be the rntximurn value of E2 if the frequency

is varied slightl y about the value Wm specified above?

44. (a) Make a sketch of	 versus P for the circuit shown in Fig. 35

employing the circuit parameters specified in Problem 43. Calculate points for this
sketch at

	

= 1,0I0	 or F	 2 X 10

	

= 1.00707	 or P	 \ 2 X 10-2

	

= i 005w,,	 or P = IO2

or F0

ung equation (95, namely:
EC22	 1

Ecsm...-..., -	 I	 1 + (a + b 2 - 2k2)F2
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(b) Make a sketch of E 21 per milliampere of 1 0 versus w/, employing the results

of part (a). It may be assumed that the response curve is symmetrical about the
center frequency w,,.

45. Design a current-fed double-tuned circuit like that shown in Fig. 35 which
has a per unit band width of 0.02 centered at a, = 106 radians per second: Use

=	 50 1tcrohLnr.	 The permissible variation in the response curve over
the pass band is 1.2516 decibels reckoned from Emn as reference. (a = 0.5)Note. Where Q = Q, a design of this kind amounts simply to specifying some
appropriate value for the Qs of the coils and then calculating the coefficient of cou-
pling to employ between these coils to meet the conditions imposed. In this case,

= 0. 000-1, 0.5 = 2(k 2 + ab) 2(k 2 + a 2 ). In a more general case, one of
the Qs may he chosen almost arbitrarily. Then Fmin 2/a = 2(k 2 + ab) and min' =(20 - a 2 b 2 ) may be solved simultaneously for k and the other Q to meet the
specified values of Fmjn and a.



chapter VIII Balanced Polyphase Circuits

Generation of Polyphase Voltages. Polyphase voltages are generated
in the same way as single-phase voltages. A polyphase system is
simply several single-phase systems which are displaced in time phase
from one another. The single-phase systems which form the polyphase
systems are generally interconnected in some way.

In Fig. 1 is shown a single coil ad on the armature of a two-pole
machine. When the poles are in the position shown, the end of con-
ductor a of coil ad is a maximum, and its direction is away from the
reader. If a conductor is placed 120 0 from a at position b, it would

ar

Pta. 1. Elementary three-phase generator. 	 Pia. 2.

experience maximum emf in a direction away from the reader when the
north pole axis was at b, or 1200 later than when the pole axis was at a.
In like manner, the maximum ernf in the direction away from the reader
for a conductor at c would occur 120° later than that at b, and 240°
later than that at a. The placement of such conductors and the coils
of which they are a part are shown in Fig. 2. Thus the coils ad, bb',

and c-wonld have emf's that are 120° out of time phase, as pictured in
Fig. 3. This system is called three-phase because there are three waves
of different tin phase. In practice the space on the armature is
completely covéIéd wit oils (except in single phase). For instance,
the conductor of another coil could be placed in the slot to the right of
conductor a in Fig. 2, and another to the left. The one to the right
would have an emf which would lag that in a by the same angle that the
one to the left would lead. The sum of the three emS's would give a
resultant emS of the same phase as that in a. Conductors for phase a

325
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would cover the periphery from d to e and from d' to e'. The distance
from d to e is called a phase belt. The emf of all the coils in series for
the whole phase would have the same phase relation as the emf of the
center conductor of the phase belt. For this reason only the center
conductors of the phase belts will be considered. It is apparent that
any number of phases could be developed through properly spacing the
coils on the stator.

FIG. 3. Waves of einf generated by e three-phase generator.

Tn general, the electrical displacement between phases for a balanced
n-phase system is 360/n electrical degrees. Three-phase systems are
the most common, although for certain special applications a greater
number of phases is used. For instance, practically all mercury-arc
rectifiers for power purposes are either six- or twelve-phase Most
rotary converters are six-phase. Practically all modern generators
are three-phase.. Three-phase is also invariably used for transmitting
large amounts of power. In general, three-phase apparatus is more
efficient, uses less material for a given capacity, and costs less than
single-phase apparatus. It will be shown later that, for a fixed amount
of power to be transmitted a fixed distance at a fixed line loss with a
fixed voltage between conductors, three-phase is more economical in the
use of copper than any other number of phases.

In the development of the three-phase voltages in Fig. 3, clockwise
rotation of the field structure of the alternator in Fig. 2 was assumed.
This assumption made the emf of phase b lag that of a by 1200. Also,
the emf of phase c lagged that of phase b by 120°. In other words, the
order in which the emf's of phases a, b, and c came to their corresponding
maximum values was abc. This is called the phase order or sequence
abc. If the rotation of the field structure in Fig. 2 is reversed, the order
in which the phases would attain their corresponding maximum voltages
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would be reversed. The phase sequence would be acb. This means
that the emf of phase c would then lag that of phase a by 120° instead
of by 240° as in the first case. In general, the phase sequence of the
voltages applied to a load is fixed by the order in which the three-phase
lines are connected. Interchanging any pair of lines reverses the phase
sequence. For three-phase induction motors the effect of reversing the
sequence is to reverse the direction of rotation. For three-phase
unbalanced loads the effect is, in general, to cause a completely different
set of values for line currents; hence when calculating such systems it is
essential that phase sequence be specified or confusion may arise.

E1b ELg

/
a	 b	

so'
\

E	 /	 \
c o—t ö'---od	 L	 E

(a)	 (b)

Fia. 4. Coils baying induced emf's shown in part (b).

Vector Diagrams and Double-Subscript Notation. When thawing
vector diagrams of . polyphase circuits it is imperative that directions
in which the circuit is being traced be noted and recorded. For example,
let us assume that the two coils shown in Fig. 4a possess induced voltages
or emf's that are 60° out of phase and that the coils are to be connected
in additive series, that is, in such a manner that the emi's add at a 600

a i__I	 55'—o b	 cos 30
1.732 E

30

(a)	 (b)

Fia. 5. Resultant emf shown in (b) for connection of coils shown in (a).

angle. From the information given it would be impossible to know
whether terminal a should be connected to terminal c or terminal d.

But if it were stated that the emf from a to b is 60° out of phase with that
from c to d as shown in Fig. 4b, the way to connect the coils would be

definitely fixed. Under such conditions, double-subscript notation is
very convenient.

The order in which the subscripts are written denotes the direction
in which the circuit is being traced. Thus the emf from a to b in Fig. 4a
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may be designated as E3b and that from c to d as ECd. (See Fig. 4b.)
If d is connected to a as shown in Fig. 5a, the emf from c to b is determined
by adding all the emf's in the directions encountered as the circuit is
traced from c to b. Hence E b = EC d + Ea b as shown in Fig. 5b. This
procedure will be further illustrated in succeeding articles.

Problem 1. In Fig. 4a, connect terminal S to terminal c and compare the resultant
voltage Ei with voltage Eth of Fig. 545.

An.,.: Ed = Eb.Problem 2. (a) Connect terminal d to terminal b in Fig. 4a and find the voltage
E. if B	 120 Volts. Eab and E 4,.1 have the same vector relation as shown in Fig. 45.

An.,.: E	 120,/-60' volt.,.
(5) With terminal d connected to terminal S as above, find

An.,.: E, = 120	 volts

A vector diagram is simply a means of representing certain electrical
quantities that are related by a circuit. A vector diagram therefore
must always be drawn in conjunction with a circuit. Sometimes
circuits may be visualized instead of actually drawn, but without a
definite picture of the circuit represented a vector diagram means
nothing and cannot be intelligently drawn. It should be clearly recog-
nized, however, that a circuit vector diagram of voltages and currents
represents time-phase relations and not space relations of the circuit.
This means that the space configuration of a circuit diagram is in no
way indicative of the time-phase relations of the voltages or currents.

5	 C

100 13eElb

________	 100

b	 d
(a)

	

	 (b)

FIG . C. See Problem 3.

Problem 3. Find the magnitude and vector position of voltage E in Fig. Ca
if Eb and Em are displaced from each other by 30 in time phase as shown in Fig. 645.

An.,.: E = 51.76 / 1051 volts,

Two-. and Four-Phase Systems. A two-phase system is an electrical
system in which the voltages of the phases are 900 out of time phase. A
two-phase system is pictured by the drum and Gramme ring windings
in Figs. 7 and 8. From the position of the coils on the armature in
Fig. 8 it can be seen that the emf's of the four coils are related in time
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phase e s shown in Fig. 9. If the zero terminals of coils aO and cO are con-
nected, the ernf from a to c is E00 + E0 . This operation is shown in
Fig. 10. Likewise, when the zeros of coils bO and dO are connected

Fin. 7. Elementary dram-type two-phase Fin. S. Elementary Gcamine ring-type
generator.	 two-phase generator.

Ebd = Ebo + E0a. This is also shown in Fig. 10. The emf's E0 and Ebd
are 90° apart in time phase, and the system shown in Fig. 8 constitutes
a two-phase system. A two-phase system is the equivalent of two
separate single-phase systems that are separated 90° in time phase.

Fin. 9. Emfa of coils on generator in Fo. 10. Resultant emf's of two coils in
Fig. 8.	 aeries connected as shown in Fig. 8.

A four-phase and a two-phase system differ only in internal connec-
tions. Thus if connection is made between the two windings at n and n',
the system would be called a four-phase system. The vector diagram
of phase or coil voltages is showri in Fig. 9. Since there now is an elec-
trical connectjun between the two groups of coils that constituted the
two-phase system, there will be emf's between terminals d and a and
also between b and c, as may be seen by studying the diagrammatic
representation of the coils shown in Fig. 11. This connection is called
a four-phase star. The voltages Eda, E b, Eb,, and Ed are called the
Line voltages, while voltages E, Eob, E0 , and Eod are called the phase
voltages, or voltages to neutral. From the circuit it is evident that
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= E + P.O.. This combination and similar ones for all the line
voltages are shown in Fig. 12. Another method of showing the same
thing is illustrated in Fig. 13. Thus, in the four-phase star, line voltage
is the A/2- times phase voltage and it is either 45° or 135° out of phase
with the phase voltage, depending upon which voltages are considered.

Ebt	 Ej	 Lcd

Fm. 11. Diagrammatic representation of no. 12.
Fig. 8 when is and is' are connected t
form point o.

E 5b 	E-Ed5	 Ed1

Voltages of the four-phase star
shown in Fig. 11.

Eoc

Since E + Eob + Eo + E = 0, it would be possible to connect
the four coils shown in Figs. 8 and 11 so that their voltages add in this
way and no current would flow in the series circuit of the coils. This
connection, shown in Fig. 14, is called a mesh connection, and in this
case it would be known as a four-phase mesh. The line connections

,' 1 •
\e.

/	 I/

EN
I	 r

S
,

So'	 Ie\	 I	 '
\ I -

Fza. 13. Alternative representation of
Fig. 12.

o	 a'

I______
0

Fxo, 14. Four-phase mesh.

are made at points a, b, c, and d. The vector diagram of the emf's
for this system is shown in Fig. 15. For balanced loads the currents in
adjacent phases are 90° out of phase as shown in Fig. 16. The ac' Line
current 25 Ian'	 'do + 'b., as shown in Fig. 16. Thus line current of a

balanced four-phase mesh is theV' times phase current and is either
45° or 135° out of phase with the phase currents, according to which are
being considered. Note that what was true about line and phase
voltages in the star is true about line and phase currents in the mesh.
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Inspection of the star system shows that line and phase currents must be
identical, and the same thing is true regarding line and phase voltages in
the mesh.

Ftcj. 15. Vector diagram of emf'e of the FIG. 16. Vector diagram of currents of the
four-phase mesh shown in Fig. 14.	 four-phase mesh shown in Fig. 14 under

conditions of balanced load.

Sometimes a two system is used with only three wires. When
this is done, one wire is common to both phases. The circuit diagram
of Fig. 8 when connected for such use is shown in Fig. 17, and the
vector diagram is shown in Fig. 18. It will be noted that this is essen-
tially half of the four-phase system shown in Fig. 11 when line wires
are connected to points 0, d, and c.

7=c
Fia. 17. Two-phase three-wire system

Es4-- E5d

Ek
--4JEcb

FIG. 18. Vector diagram of voltages for
Fig. 17.

.:Y&?three-Phase, Four-Wire Systems of Generated Em.f's. The genera-
tion of three-phase was explained at the beginning of-this chapter. If
six wires were connected to terminals a, a', b, b', c, and c' of Fig. 2, the
system might be called a six-wire, three-phase system.,,. Such a generator
could be loaded with three independent single-phase loads. Though
such a system is not used, one that is widely used may be derived from
it by making a common connection between terminals a', b', and c'.
Four wires are all that would then be necessary, three for terminals a,
b, and c, and one for the common connection Such a system,
called a four-wire, three-phase system, is shown diagrammatically in
Fig. 19. This system is now extensively used for a-c networks and is
rapidly displacing the formerly much used d-c networks in the down-
-22
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town areas of large cities. The common wire connecting to n is called
the neutral. Lighting loads are placed from line to neutral; motor and
ther three-phase power loads are connected between the three lines

b, and c. The generated voltage waves of this systeth are shown in
ig. 3, and the vector diagram that portrays the same thing is shown

n Fig. 20. The three voltages shown are called phase voltages or line-•

Fin. 19. Three-phase four-	 Pia. 20. Line-to-neutral F10.21. Line voltage equals
wire system.	 voltages of Fig. 19.	 phase voltage times V

in the wye connection.

to-neutral voltages. They are sometimes called the wye voltages of the
system, and the connection of Fig. 19 is called a wye connection. The
voltages between terminals a, b, and c are called the line or terminal
voltages. Under balanced conditions they are definitely related to the

phase voltages, as the following shows:

Pta. 22. Line and phese voltages of the
wye connection (Fig. 19).

Fin. 23. Alternative representation of
Fig. 22..

voltage is considered as E. Hence line voltage in the balanced three-

phase star or wye connection is the N11-3 times the phase voltage and
makes an angle with the component phase voltages of either 30 0 or 1500
depending upon which are considered. The complete vector diagram
showing all line voltages is given in Fig. 22. Figure 23 shows the same
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system in terms of a polar vector diagram of phase voltages and a funicu-
lar diagram of line voltages. Osdilogram 1 shows these relationships
as obtained from an actual load.

C	 b
OscILt.OGRAM 1. Illustrating the 30 angular displacement between the phase voltageo

and the systematically labeled line-to-line voltages in & balanced, three-phase, wye-
connected load. Effective value of each line-to-line voltage is 100 volts.

When the system is balanced, the currents in the three phases arc
all equal in magnitude and differ by 1200 in time phase, as shown in
Fig. 24. The phase of currents with respect to the wye voltages is
defined by the circuit parameters in any par-
ticular case. An inspection of Fig. 19 shows	

2^that line and phase currents are identical. The
current in the neutral wire is obtained through
the application . of Kircbhoff's current law. 1 IaI
Thus

If the system is balanced, I,, Ls, and Inc are
equal in magnitude and displaced from one an- Fm. 24. Cuirenta In a

other in time phase by 120° as shown in Fig. 	 bueed-w. system -

24. Under these conditions it is apparent that the current in the neutral
In saw since Io+Ie1i+ IN. —0.
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Problem 4. (a) Draw a polar (orsingle-origin) vector diagram which will
represent the same phase voltages and the same line voltages as shown in Oscillogram
1 using Vb. as reference. Specify the effective magnitude of the phase voltages, the
sequence of the phase voltages, and the sequence of the line voltages.

AM.: V/phase 57.7 volts.
Phase voltage sequence: an-bn-cn.
Line voltage sequence: ab-bc-a.

(b) Draw a polar (or single-origin) vector diagram which will represent the same
phase voltages as shown in Oscillogram 1, namely V, V, and V, together with the
line voltages V,, Vj,, and V,,, using V as reference. Specify the sequence of these
line voltages.

AM.: Line voltage sequence: ba-cb.ac.

Three-Phase, Three-Wire Systems. The usual three-phase system
consists of only three wires. In this event loads are not placed between
the lines and neutral, and the neutral wire is therefore not brought out.
The balanced relations discussed in the previous article are obviously
unaffected by omitting the neutral wire and therefore apply to the
three-phase, three-wire system.

The Delta Connection. If only three wires are used, the three-phase
system may be connected in mesh similar to the four-phase system
previously considered. Since

+ Eb + E .c = 0

for the three-phase system, the three coils shown in Fig. 19 can be
connected as shown in Fig. 25, and no current of fundamental frequency

Fio. 25. Delta connection of the coils Fia. 26. Phase currents for the balanced
shown in Fig. 19.	 delta of Fig. 25.

will flow around the series circuit of the three coils. This three-phase
mesh connection is called a delta connection. It will be noted that star
and mesh are general terms applicable to any number of phases, but
wye and delta are special cases of the star and mesh when three-phase is
considered. Inspection of Fig. 25 shows that phase voltages and line
voltages are identical but that line and phase currents are different.
The vector diagram of phase currents for a balanced load is shown in
Fig. 26. Line currents are found through the application of Kirchhoff'e
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current law. 11U5

Ioa+1

This operation is carried out in Fig. 27. For a balanced system, line
current is the V3 times phase current in magnitude and is out of phase
with the component-phase currents by either 30° or 150°, depending

Tcll

e	 '	

'N I cb
12Oo__"

Fin. 27. Combination of phase currents Fin. 28. Vector diagram of currents for
gives line current for Fig. 25.	 a balanced delta is shown in Fig. 25.

upon which are considered. The complete vector diagram of currents
for the three-phase balanced delta connection is shown in Fig. 28.
Oscillogram 2 shows the relations discussed above as obtained from an
actual load labeled as in the accompanying circuit diagram.

08CILLOGRAx 2. Oecillogrephic study of a balanced, delta-connected, unity-power-factor
load. The line-to-line voltages (or phase voltages) together with the phaee currents and
line currents are illustrated.
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It should be understood that all the vectors on a vector diagram like
that shown in Fig. 28 may be reversed, that is, changed individually
through 180°, and, if a reversal in the order of subscripts aeconipanies
this change, the-resulting vector diagram will represent the same thing
as does Fig. 28. As applied to the circuit shown on Oscillogram 2, for
example, it is immaterial whether I,, is considered to flow in the drec-
tion of Vab or whether Ib. is considered to flow in the direction of V.
Those who prefer to consider line voltages ao, Ca, and bc rather than line
voltages ha, ac, and cb will label a circuit diagram like that shown on
Oscillogram 2, whereas those who prefer to consider line voltages ha,
ac, and cb will employ I, 'at, and I as the delta-phase currents.

Problem 5. Refer to Oscillogram 2. Draw a complete vector diagram of V,
Vic, Vc,, L,, 'he, I, 1,'5. Ib'b, and I' employing Vb as reference. From the scaled
ordinates given on Osciliogram 2, determine the effective values of line (or phase)
voltage, phase current, and line current.

Ans.: V	 100 volts; l — 3.5 amperes; It — 6 amperes.

The n-Phase Star and Mesh. The circuit and vector diagrams of
two adjacent phases of an n-phase star system are shown in Figs. 29

no. 29. Two adjacent phases of an	 no. 30. Line-to-neutral voltages of ad-
n-phase star.	 jacent phases of an n-phase star (Fig. 29).

and 30, respectively. The line voltage Eab is E55 + Eb. Remembering
that the angle of phase difference between voltages of adjacent phases
is 360°/n, and calling the magnitude of phase voltage E, the general

calculation of the line volt-
Es+----------Jj.L_Ena	 age can be understood from

-—E 180' the vector relations shown

/	
2	 P Ii in Fig. 31. Hence the line

' f- 9 1	
voltage is

E.r E. fl+ E,.,'E L E 5b 	 1800
no. 31. Combination of line-to-neutral voltages	 EL	 2E9 sin	 (1)

to give line-to-line voltages in an n-phase star.

From the circuit of Fig. 29 it is evident that line current and phase
current are identical. Hence

IL I,
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From the circuit and vector diagrams shown for part of an n-phase mesh
system in Fig. 32, the use of previously outlined principles will ShOW that

EL = E,

and

L j	 /It	 •
Eab 

1\

-C
E bc	

19

(2)

1 bb' I ib +lth

lab

	

R	 —IL-1p sin

I	 =1

7! 2
1 $1fl

1800,
I L = 2I sin -

1cb

a
'be

no. 32. Circuit diagram of adjacent phases and correspondin g vector diagrams for an
n-phase mesh.

Example 1. The Line currents issuing from a balanced four-phase, mesh-con-
nected generator (like that shown in Fig. 14, page 2137) are known to be 70.7 amperes
in magnitude. Let it be required to find the magnitude of the phase currents employ-
ing the general relationship stated in equation (2).

70.7	 70.7	 70.7
180° 2am 45 — 1.414 — 5Oamperee

2ain

Pioblem S. Find the magnitude of the line currents issuing from a balanced six-
phase, meeh-oonnectd generator if the phase currents are known to be 100 amperes
in magnitude- Illustrate solution by means of a vector diagram.

Ana.: IL_I,l00amperes.

Problem 7. Find the voltage between adjacent lines of a balanced twelve-phase,
star-connected system if the phase voltages are 50 volts in magnitude. Illustrate
solution by means of a vector diagram.

Ana.: 25.88 volts.

Problem 8. Find the voltage between alferno.i$ lines of a balanced six-phase,
star-connected system if the phase voltages are 132.8 volts in magnitude.

Ana.: 230 volts.

BalancedWye Loads. When three identical imped&ices are con-
nected to a common point, n, Fig. 33, they constitute a balanced wye
load. If balanced three-phase voltages are impressed on such a load,
it would seem that all impedances should have equal voltage drops
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across them and that the ratio and phase of line and phase voltages
should be the same as those discussed for the wye-connected generators.
Application of Kircbhoff's laws as discussed in the next chapter shows
that this is true. Hence the voltage drop V, across each impedance
in terms of the line voltage is

P — v

The current, power, etc., may then be found in accordance with single..
phase circuit analysis. As a general rule, all balanced three-phase cir-

r. are calculated on a per pha.e
basis in exactly the same manner
as the corresponding calculations
are made for any single-phase cir-
cuit. If this procedure is followed
it is important that per phase
values of V and I are not con-
fused with line voltages and line
currents even though line currents
in a wye connection ara the same
as the phase currents, and the line
voltages in a delta connection are

PlO. 83. Balanced wYe load, 	 the same as the phase voltages.
As a general rule, all balanced

three-phase circuits are calculated per phase just as the calculations
were made for single-phase circuits.

Example 2. Given the line voltages Vt in Fig. 33 as 220 volts balanced three-phase, and R and X of each phase 6 ohms resistance and S ohms inductive reactance.Find the line current, power per phase, and total power.

VL 220
P	 127 volts

-	
\/62+ 8 2 =	 12.7 amperes

Power per phase I 2R,, 12.7 2 X 6 968 watts
Total power - 3 )< 968 - 2904 watts

The example given could have been worked by means of complex
numbers. Since there was no need for the vector expressions of voltages
and currents, it was simpler to use magnitudes only. When it is necea.
sary to combine the line current due to some particular load with that
from another load, the vector expressions or their equivalents are required.
To illustrate the vector method of handling the above example, assume



V
bi

	

Ch. VIII	 BALANCED POLYPHASE CIRCUITS	 339

the phase sequence V43. This means that V b lags Vb. by
120°. It would be possible to use any line voltage or any phase voltage
as a reference. The vector diagram of a similar set of voltages to those
required here is shown in Fig. 22 where E is used instead of V. The
phase voltage of phase na will be taken as the reference (sometimes
called the standard phase). Thus:

127 +jO volts

	

V,	 1277-120° — 127 (cos 120°	 sin 120')	 —63.5—j11Ovolts
127 112V — —63.5 + 1110 volts

If the vector expreions for line voltages are desired, they may be obtained by the
following procedure.

V +V,a — 63.5 +3110 + 127 +10 190.5 +jlIO volts, etc.
V,. 127 +10—	 —6 + B — 7.62 —310.16 = 12.7 7-53.13 amperes
Z.
V,.	 —63.5 — J"l 10 127/-120

6+3S	 l0/5=l2.7L-173.13amperes

V.	/120*

— Znc 
10 /53.13° 12.7 L96.87 amperes

	

P	 vi + v'i' 127 X 7.62 968 watts
or

P = 127 X 12.7 coe (120° - 173.13°) = 963 watts

The vector diagram of the voltages and currents for this load as drawn from the
vector solution is shown in Fig. 34.

cb

no. 34. Vector thag.n of load in example 2.

Balanced Delta Loads. Three identical impedances connected as
shown in Fig. 35 constitute a balanced delta load. The voltage drop
across each impedance is known when the line voltage is given. Hence



'b'b

FIG. 36. Vector diagram for load of example 3.

Mc

C

Fia. 35. Balanced delta load.

a
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the phase currents may be determined directly as V,/Z,,. The magni-
tudes of the line currents are simply phase currents multiplied by v'i

Example 3. Reconnect the impedances given in example 2 in delta, and calcu-
late phase current, line current, phase power, and total power. (R — 6 ohms and
X 8 ohms per phase.)

Vi. — V,, 220 volts
220— _____ 22 amperes

V 6 2 + 82
IL =V-3 X 22 — 38.1 amperes

Power per phase 222 X 6 2904 watts.
Total power — 2904 X 3 8712 watts.
Alternative vector solution using sequence V, V, V.

voltage.
V, — 220 /0 0 volts
Vth 220 /-120° volts
V,, = 220 /120° volts

2207
10/53.13° — 227-53.13° = 13.2 —j17.6 amperes

lob
220 /20°

—	
— 22/73.13° —21.85 —j2.63 amperes

10/53.13° 
220/

1.	 = 221	 8.65 +j20.2amperes
10/53.13° 

Pb. — 220 X 22 cos 53.13° — 2904 watts

Use Vb. as the reference

Total power 3 X 2904 8712wat.te.
= La + L —30.5 - j22.8 = 38.1 /-143.13° amperes

Ib'b JOG + Ito +35.05 - j15 = 38.1 / —23.13° amperes
— La + I. — —4.55 ±j37.8 38.1 /96.87° amperes

The vector diagram of this delta load as drawn from the vector solution is shown in
Mg. 36.
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Three-Origin Vector Diagram of a Balanced Three-Phase System.
Figure 37 shows a polar vector diagram of a t1ree-phase balanced
unity-power-factor wye load. Figure 38 shows a vector diagram of a

Vac

Fin. 37. Polar vector diagram of unity-power-factor, lalancod wye-connected load.

balanced unity-power-factor delta load A comparison of these two
diagrams will show that the phase relation between line currents and line
voltages is identical for both loads. Therefore a single vector diagram
can be used to represent the relations between line currents and line

v,c
FIG. 38. Polar vector diagram of unity -power-factor, balanced delta-connected load.

voltages for a balanced three-phase load whether the load is wye- or
delta-connected. In other words, it is not necessary to know which
connection is used in order to represent properly the phase relations of
line voltages and currents This fact makes it convenient in many cases
to use a three-origin vector diagram which is explained as follows.

If it is remembered that a vector can be translated without changing
its value, the line voltages for the above loads may be arranged to form
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a closed triangle, as shown in Fig. 39. Also the line currents may be
drawn from the corners of the triangle so formed as indicated. The
three corners comprise the three origins; hence the name of the diagram.

It will be observed that, at unity
jut power factor, line current 'a biz ct.s

the angle at origin a made by the line
voltages at that point. A similar sit-
uation obtains for the other line cur-
rents. The bisectors of these angles
may therefore be called the unity-
power-factor positions of the line
currents for a balanced three-phase
load regardless of delta or wye con-
nection. If a load having a power-

I cc'	 The factor angle of 0 is to be represented,
it is necessary only to let the three

Fio. 39. Three-origin vector diagram
of line voltages (cb-c-ba) and line line currents swing from their unity-
currents ( l bb'. J', I..').	 power-factor positions by the angle 0.

That this is true is evident from a
study of the changes in Figs. 37 and 38 when a load having a power-
factor angle 0 is represented.

It should be recognized that the three-origin diagram is essentially
the equivalent wye diagram where the line voltages are drawn between
extremities of the wye voltages to neutral, and these latter voltages, if
shown, would be drawn from the corners of the triangle to the geo-
metrical neutral. Inspection of the diagrams, Fig, 40b and c, shows
the power-factor angle is actually the angle between the line current
and the equivalent wye voltage or voltage to neutral. To show how the

Unity- power- factor position of
line Current I'

Ibbo
Joao

b	 c

Cs

(a)	
53.1

)

	

	 1<

IC.

Flo. 40. Three-origin vector diagrams for both sequences of line volt.agee.
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three-origin diagram might be used to represent a three-phase load,
study the following example.

Example 4. A balanced three-phase, 0.6 p.f. lagging load takes 10 kva at 200
volts. Show the vector diagram of the line voltages and currents.

The load is represented by the circle, and the lines are labeled a, b, and r, as shown
in Fig. 40. Assume V 6 as a reference, and complete the line voltage triangle as
shown in (b) or (c) according to the sequence desired. The bisectors of the angles
are shown dotted and are the unity-power-factor positions of the respective currents
leaving points a, b, and c. The actual power-factor angle for the load is cos' 0.6 -
53.1 0, and the currents are therefore drawn lagging their unity-power-factor posi-
tions by this angle, as shown. Had the load operated at a leading power factor, the
currents would have swung ahead of their unity-power-factor positions by 53.1.

The above type of diagram lends itself to a simple visualization of line voltages
and currents for a balanced three-phase load and contributes to an easy understand-
ing of operating conditions in individual transformers for certain types of connec-
tions when supplying balanced loads. They may also be used to eflect the proper
combination of line currents from several balanced three-phase loads independent
of whether the loads themselves are delta- or wye-connected. It should be recog-
nized from this discussion that, as far as phase relations between line currents and
line voltages are concerned, one is at liberty to assume a delta- or wye-connected

'load even though the actual type of connection is known or unknown. Also, if
convenient, the directions of the currents shown in Fig. 40 may be reversed and
so labeled.

Power Calculations in Balanced Systems. The determination of
power in balanced polyphase systems is based upon calculations per
phase. If the voltage per phase is V9 , the phase current Ii,, and the
angle between them 0,, the power per phase is

Pp = Vp Ip COS 0p	 (3)

The power for all phases of an n-phase system is

Pj = nPp = nV9 19 cos Op (4)

The universality of three-phase warrants the development of equation
(4) to give power in terms of line current I,. and the line voltage VL.
Consider the wye connection. Then

Pt = 3 V9 !9 cos O	 Vt= 3 -= cos

= V' VLIL cos Op (5)

For the delta connection

ILP = 3 V9!9 cos 9, 3Vt cos

v'3VLIL COS O9	 (6)
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The equations for power in terms of line voltages and line currents for
balanced three-phase loads whether delta- or wye-connected are identical

and equal to V"VLIL cos O,. In this expression, V'VLIL cos Os,, for
balanced three-phase power, it must be remembered that O is the angle
between phase voltage and phase current and not between line voltage and
line current.

Problem 9. Three-phase line voltages of 2300 volts magnitude are impressed
on a balanced wye-connected load which consists of 100 ohms resistance per phase
in series with 173.2 ohms inductive reactance per phase. Find the line current
and the total power taken by the three-phase load. Calculate P as as

3VI, cos Os,, and as /3VrJL cos e,.
Ans.: IL - J, 6.64 amperes, P - 13.22 kw.

Problem 10. Repeat Problem 9, assuming th4t the three impedances are con-
nected in delta (rather than in Wye) across the saiae line voltages.

Ans.: IL - 19.2 amperes, P - 39.66 kw.

Volt-Amperes. The volt-amperes of a 'balzced three-phase system
are defined as the sum of the volt-amperes dl' the separate phases or
three times the number of volt-amperes per phase: Hence

vat = 3va	 3V1

In terms of line voltage and line current, volt-amperes are

For delta:	 3VL	 = '/VjJz,	 (7

For wye:	 3 VL IL = %13VLIL	 (8)

For an n-phase .system under balanced conditions the total volt
amperes are n times the volt-amperes per phase.

Reactive Volt-Amperes. The reactiv volt-amperes for a balanced
three-phase system are defined as the sum of the reactive volt-amperes
for each phase, or three times the reactive volt-amperes per phase. In
terms of line voltage and line current the reactive volt-amperes or
reactive power is

For wye:	 Px = 3VI,, sin O = 3	 IL Sfl 8

= V'3VLIL sin 6	 (9)

For delta:	 P1 = 3VI sin 0, = 3VL Sin

/VLIL snO,	 (10)
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Summarizing for either balanced delta or wye, the totals for the systems
are

P = 'v"3LILcos99	 (11)

va	 31L1L	 (12)

Px = V3 LI L sinOp	 (13)

The sine of the angle between phase voltage and phase current (sin 8)
is called the reactive factor of a balanced system.

Problem 11. Three-phase line voltages of 440 volts are impressed on a balanced
delta-connected load which consists of 8 ohms resistance in series with 6 ohms induc-
tive reactance per phase.

(a) Find the volt-amperes per phase, the reactive volt-amperes per phase, and
the reactive factor of each phase.

An.s.: va, - 19,360, rva5 = 11,616, r.f. = 0.6.
(b) Find the total volt-amperes of the system, the total reactive volt-amperes

of the system, and the reactive factor of the system.

	

Ans.: Vftg	 58,OS0, r'va	 34,848, r.f.	 0.6.

Power Factor. The power factor of a balanced three-phase system,
when the wave forms of voltage and current are sinusoidal, is defined
as the cosine of the angle between phase voltage and phase current inde-
pendent of whether the connection is delta or wye. It should be noted
that the volt-amperes of equation (12) are equal to V'P' + P 12. Thus

va = \I (V'3VLIj. cos 0,)2 + ( V'3VLIL sin 9)2

/3VLI L /co82 9 + sin 2 O =	 (14)

From equation (11),
P

	p.1. = COS O p =	 (15)

From equation (13),
Pxri, = sin 6P =-	 --	 ( 16)

v'3VLIL

From equations (15) and (l-),
P

p.f. = ________	 (17)
••v7P 2 + Pm2

From equations (16) and (14),

r.f.

	

PX 	(18)
v'P2 + Pr2
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Example 5. A 5-horsepower, 220-volt, three-phase motor has an efficiency of
85 per cent and operates at 86 per cent power (actor. Find the line current.

Power input V'iVij L p.(.	 = 4390 watts

IL	
4390=	 13.4 amperes

V'3 220 x 0.86

Balanced Three-Phase Loads in Para111. The combination of a
number of balanced loads which are in parallel may be effected through
changing all loads to equivalent delta loads and then combining the
impedances of corresponding phases according to the law governing
parallel circuits. Also all load may be changed to equivalent wye loads
and the impedances of corresponding phases paralleled. In addition
to these methods, the power of the several loads may be added arith-
metically and the reactive volt-amperes may be added algebraically.
The total volt-amperes will then be obtained as 'S/P2 + Px2.

Example S. A 3-phase motor takes 10 kva at 0.6 power (actor lagging from
a source of 220 volts. It is in parallel with a balanced delta load having 16 ohms
resistance and 12 ohms capacitive reactance in series in each phase. Find the total
volt-amperes, power, line current, and power factor of the combination.

Solution a. Assume motor to be Y-connected.

Motor line current — phase current	
10,000

26.25 amperes
r3220

Equivalent impedance per phase of motor — 220
26.25

— 4.84 ohms
R = 4.84 cos 8 = 4.84 X 0.6 = 2.904 ohms

X 4.84 sin 8	 4.84 X 0.8 — 3.872 ohms

Equivalent wye of delta load Z,, 
16	

= 5.33 - j4 ohms

(5.33 —j4) (2.904 +j3.872) — 3.91/17.17 ohms
5.33 - j4 + 2.904 +13.872

220
Jo	 = 32.5 amperes

,%/33.91

va = \3 220 X 32.5 — 12,370 volt-amperes

= cos 17.17°	 0.955

P — 12,370 X 0.955 11,810 watts

Solution b. The motor may be assumed delta-connected and the delta-phase im-
pedances combined after which delta phase currents and line currents can be found.
The remaining procedure is similar to that in solution a.
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Solution c. Line currents for each load are determined and shown on a diagram
of the type shown in Fig. 39 where the equivalent voltage to neutral V is drawn

Wlor deft 1"ddefla

for nwftf

b
Fin. 41.

along the horizontal as shown in Fig. 41. Currents are then combined as indicated
on Fig. 41.

	

Motor line current — 10,000
	

20.25 amperes
73220

Delta-load line current	
no	

19.05 ampees
7162 + 122

26.25/-53.l° = 15.75 —1

'Ga'd.lU.Io.d	 19.05	 15.24 +j11.43

+	 30.99 —j9.57 = 32.5/-17.17° amperes

	

va	 220 X 32.5 = 12,370 volt.-amperes

	

p.f.o	 cos 17.17	 0.955

P 12,370 X 0.995 11,810 watts.

Solution d. For the delta load, phase current is 220/V'162 + 12 ! 	11 amperes.

P — II' )< 16 X 3 5810 watts for all phases

11 2 X 12 X 3	 4350 vars for all phases (capacitive)
For the motor

P 10 x 0.8 — 6 kw
P1 = 10 X 0.8 8 kilovars (inductive)

Summation of power 5.81 + 6 = 11.81 kw
Summation of kilovars 8 - 4.35 — 3.65 kilovar

	

kvao = \/ 11.S12 + 36,5 2	 12.37
12,370

Jo - .-	 - 32.5 amperes
V 3 220
11.81

— 0.955
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Of the four solutions, that which 18 most convenient for the quantities given
should be employed.

Single-Phase and Balanced Three-Phase Power. A comparison of
the variation with respect to time of instantaneous single-phase and
hree-phase power brings out certain fundamental differences. As
'own in Chapter II, single-phase power follows a double-frequency sine
w with respect to time plus a constant. The instantaneous power for

ach of three phases, when currents and voltages are sine waves, of a
balanced three-phase system is given by the following general equations.

Pa = Vnilm Sfl wt Sin (c - 8)

Pb = VJ7 , sin (wt - 1200) sin (t - 120° - 8)

=	 sin (w - 240°) sin ( - 240° - 0)

The total three-phase power is

P3 = Pa + Pb + Pc = VmIm [sin cot sin (w —0)

+ sin (wI - 120°) sin (wt - 120° - 8)

+ sin (wt - 240°) sin (wt - 240° - 8)1

P3 = 1.5VmIm COS O
	

(19)

For single-phase, say phase a,

P, - IT	 sinwtsin(wI — O)

Vmlm	 VIm
= 2 cos 8 - 2 cos (2w1 - 8)	 (20)

Equation (19) shows the instantaneous value of three-phase power to
he independent of time. In other words, balanced three-phase power
under steady-state conditions is constant from instant to instant. In
contrast, equation (20) for single-phase power shows it to follow a
double-frequency variation with respect to time. This comparison is
graphically illustrated in Fig. 42.

Fin. 42. Comparison of variations of single. and balanced three-phase power.
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Power Measurement In Balanced Systems. A wattmeter gives a
reading proportional to the product of the current through its current
coil, the voltage across its potential coil, and the cosine of the angle
between this voltage and current. Since the total power in a three-phase
circuit is the sum of the powers of the separate phases, the total power
could be measured by placing a wattmeter in each phase, as shown in
Fig. 43. It is not generally feasible to break into the phases of a delta-
connected load. Therefore the method shown in part (a) of Fig. 43

FIG. 43. A wattmeter in each phase may be used to measure three-phase power.

is not applicable. For the wye load shown in part (b), it is necessary
to connect to the neutral point. This point is not always accessible.
Hence another method making use of only two wattmeters is generally
employed in making three-phase power measurements. This con-
nection is shown in Fig. 44. To show that two such wattmeters may
be used to measure power, the readings of each will be established and
their sum compared with equation (11), which has been shown to be

Fia. 44. Connection of two wattmeter, to meure tree-phaae power.
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correct for balanced three-phase power. It is important to take the
direction of the voltage through the circuit the same as that taken for
current when establishing wattmeter readings. Thus if the current coil
of W0, Fig. 44, is considered carrying current L, the potential across
the voltage coil should be taken from a through the circuit, which in
this particular case is V0. Figure 45 shows the vector diagram of the
voltages and currents for a balanced system like that of Fig. 44. From
this figure the power represented by the currents and voltages of each
wattmeter is

W. = V,,I0,, COS (0 - 300 )	 (21)

We, = Ve,,je, cos (0 + 300 )	 (22)

In equations (21) and (22) the subscripts serve only to assist in seeing
which voltages and currents were used. Since the load is balanced,
V = Ve,, Ian = lb,, and only magnitudes are involved. Dropping
the subscripts gives

W,, = VI cos (0 - 30°)	 (23)

Wb = Vl coo (0+30°)	 (24)

W. + We, = VI cos (0 - 300) + VI cos (0 + 300)

= VI [cos 0 cos 300 + sin 0 sin 30° + cos 0 cos 300 - sin 0 sin 30°]

V'VI cos 8	 (25)

Hence W0 + We, correctly measures the power in a balanced three-
phase system of any power factor. As will be shown later, the algebraic
sum of the readings of two wattmeters will give the correct value for
power under any conditions of unbalance, wave form, or power factor.

For each value of 0 (i.e., for each power factor) there is a de4lnite
ratio of W0/We,. If the ratio of the smaller to the larger reading is
always taken and plotted against the corresponding 'cos 0 (i.e., power
factor), a curve called the watt ratio curve results. This curve is shown
in Fig. 46. Peference to the vector diagram of Fig. 45 and the curve
of Fig. 46 shows that at 0.5 power factor one wattmeter reads zero.
For the case under discussion 0.5 lagging power factor makes We, read
zero, while 0.5 leading power factor makes W0 read zero. When the
power factor is zero, each wattmeter has the same deflection but the
readings are of opposite signs. The foregoing facts are easily deducible
from the vector diagram shown inFig. 45 and also follow from equations
(23) and (24). it is essential in the two-wattmeter method that the
proper sign be given the wattmeter readings and that the sum be taken
algebraically.

There are several ways to determine whether a wattmeter reading
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lea

1	 1

(b)
Fio. 45. Alternative way, of drawing the vector diagram for a power-factor angle 8 of

the Watern shown in Fio. 44.
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Watt ratio

Fia, 46. Watt ratio curve for two-wattmeter method of measuring power (applicable
only to baianed loads).

should be taken positive or negative. One of the best methods follows.
Refer to Fig. 44. Open line a. Then all power must be transferred to
the load over lines b and c. If wattmeter b is connected so that it reads
it scale," it will then be known to have this deflection when the
power it reads is going to the load. Next reconnect line a and open
line b. Then connect W so that it reads up scale. Now close line b.
If at any time after this either wattmeter needle goes backward against
the down-scale stop, power through this wattmeter channel is being
transferred to the generator and this power must be of opposite sign
to that registered by the other. Either the potential or current coil
will have to be reversed to secure an up-scale reading. The foregoing
test is applicable under any conditions of loading, although it may not
always be feasible because of the necessity for opening the lines.

A second test applicable only when the load is practically balanced
is to disconnect from the common potential point c of Fig. 44 the poten-
tial coil of the wattmeter which has the smaller reading and connect
it to the line containing the current coil of the other wattmeter. If
the needle goes against the down-scale stop, the wattmeter reading
was negative. The foregoing is best explained through a consideration
of the circuit diagram of Fig. 44 and the corresponding vector diagram
of Fig. 45. As previously shown, W0 reads the power represented by
V and 'a,, while Wb reads that due to Vb, and I,,. Since the angle
(0 + 30°) between Vb and 1b, is larger than the angle (0 - 300) between
V,,.. and I,,,, for the load represented by Fig. 45, wattmeter Wb will
have the smaller deflection. If the potential coil of Wb is now removed
from line c in Fig. 44 and connected to line a, the meter will deflect
because of the potential Tyba and current 4,,. The angle between
Vba and I,,. is seen to be (0 - 30°) or the same as that between the volt-
age and current for wattmeter W. W. and Wb will then read alike.
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Furthermore, since Wb was connected to read up scale when the angle
between its voltage and current was less than 900, it will continue to
read up scale when it receives the potential V. If, however, the
power factor was below 0.5, the angle (6 + 30°) on Fig. 45 would be
more than 90°. If the wattmeter lVb were made to read up scale under
such conditions, it would reverse its deflection when given the potential

Vba as outlined above since it would then be subjected to a voltage and
current of (6 - 30°), which is less than 90° out of phase. When the
potential coil connection of lV b is moved from line c to a in Fig. 44,
this wattmeter receives a potential of lT5, while that for W. (taken
similarly from the line containing the current coil) is V. These
potentials are in the same order or direction around the diagram.
Hence the potential coils are said to be connected in the same cyclic
order about th circuit, and under these conditions both watt meters
would be expected to show the same deflection. This was found to be
true in the above analysis.

Example 7. In a circuit like that shown in Fig. 44, W. reads 800 and Wb reals

400 watts. When the potential coil of Wb is disconnected at c and conrn'cted at

a, the needle goes against the down-scale stop.
Solution. The test indicates that W5 is reading —400 watts. hence

P = Hi ,, + Wb = 800 + (-400) = 400 watts

Watt ratio = 
W5	 —400
 =

	= —0.5
Iva	 SM

From a watt ratio curve like that shown on page 352, the power factor may be
determined directly as 0.19.

The power factor, cos 0, could also have been calculated from a simultaneous
solution of equations (23) and (24) since

cos 0 (tan_t	
(W - TI&)

=	
W,, +

This relation is made apparent in the next article.

Reactive Volt-Amperes. The reactive volt-amperes in a balanced
three-phase circuit may be expressed by

P x = •' 3 (W0 - Wb)	 (26)

This may he shown as follows:

\/3 (Wa — WO = V'3 I cos (0 — 30°) — VI cos (0 + 30°)J
= v3VI Jcos U cos 30° + sin 5 sin 30° - cos 8 cos 30°
+ sin  sin 30°1

V3VI sin O
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This is the same as equation (13) for reactive power given on page 345.
Since the ratio of the reactive volt-amperes, /VLlL sin 8, to the power,

cos 0, is the tan 0, it follows from equations (25) and (26) that

	

tan 8 =	 (Wa - Wb)
Wa+Wb	

(27)

where 0 is the power-factor angle.

Example 8. The power factor in the preceding example could have been easily
calculated by means of the relation stated in equation (26). Thus

	

V/3 (Wa - W6) =	 800 - (-400)J — 2078 vars

(P=Wa+Wb 800-400=400watts)

va	 + P1 ' = V'4002 + 2078 — 2114 volt-amperes

P
p.f.=-- 

400
----= 0.19

Va 2114

Three-Phase, Four-Wire Systems. If a three-phase, four-wire
system is balanced, the fourth wire or neutral will carry no current.
The system is the same as when the neutral is omitted, in which case it
is the same as a balanced three-phase, three-wire system. It can there-
fore be metered as previously shown for the three-wire system An-
other method is given later. Under any other conditions three meters
or their equivalent are necessary. Unbalanced systems are considered
in the next chapter

Delta Systems. The measurement of power in a three-phase system
was discussed with reference to a wye-circuit diagram and the corre-
sponding vector diagram. When it is remembered that a delta system
can always be replaced by an equivalent wye system, the preceding
discussion will be seen to apply to the delta system. Furthermore only
line voltages and line currents were involved in the discussion of the
two-wattmeter method of measuring power, and there is no difference
between these quantities for the delta and wye systems.

Oscillograms 3 and 4, which were obtained from a delta system as
shown and labeled in Fig. 47, may be profitably studied.

Problem 12. Refer to Osciliograrn 3. (a) If the line-to-line voltages have
instantaneous maximum values of 155.5 volts and the delta-line currents have
instantaneous maximum values of 14.14 amperes, find the average power readings
of the wattmeters Woa and

(B) Draw a vector diagram indicating all currents and voltages shown on Oecil-
logram 3. Use V b as reference, and include th. delta-phase currents I,g., I, and
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O5cm.z.oGaA 3. Oaciflophic represer. 'Jon of all voltages and currents involved in t}ie
two-wattmeter method of measuiing balanced three-phase power at unity power fac-
tor. In (a) the sequence of line-to-line voltages is shown. r is the voltage not used-In (b)	 is a graph of the instantaneous driving torque of the wattmeter element
which is operated by r. & and	 In (c) w	 is a graph of the insta.ntaneou. drivinztorque of the wattmeter element which is operated by tô and
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OscILL.00aM 4. Oscillogrphic representation of all voltages and currents involved in
the two-wattmeter method of measuring balanced three-phase power at 0,5 p.1. lag.
te condition under which (,ne wattmeter reads zero. In the upper oscillogram the
sequence of line-to-line voltages is shown. The voltage v is the voltage not used in
the two-wattmeter method in tiiis case. (In the center oscillogram, is a graph
of the instantaneous driving torque of the wattmeter element which is operated by
o and i. In the lower oscillog?am, 	 is a graph of the instantaneous driving
torque of the wattmeter element which is operated b y %b and
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ho, 47. Circuit arrangement for which Oscillograms 3 and 4 were taken.

I which are not shown on the oscilograxn but which combine to form the delta-
line currents I'a and 1c•

Ans.: (a)	 =	 — 952.6 watts.
(5) ab-bc-ca sequence of line-to-line voltages; 1,,a in time phase with Vg;

Ia'a lags V b by 300;	 leads V by 30.

General n-Wire Balanced System. The total power taken by a
balanced n-phase system is n times the power per phase. A single
wattmeter connected to measure the product of the current, potential,
and the cosine of the angle between the current and potential may be
used to obtain the power of a balanced n-phase system. The wattmeter
reading obtained is multiplied by n. If it is not possible to break into
a phase of a mesh-connected load or to obtain the neutral of a star-
connected one, power may still be measured with a single wattmeter.
For the n-phase system, n equal resistances may be connected in star
and then to the lines. A neutral is thus established, and power is
measured as though the neutral wire of a star system were available.
The method is shown in Fig. 48. If the number of phases is even, as, for
example, in Fig. 48, only a single resistance is necessary provided that
the potential coil of the wattmeter can be connected at the midpoint of
this resistance. The resistance must be connected between two lines
having the largest potential difference. The wattmeter reading must

Fxo. 48. A method for measuring power to an n-phase balanced load (load not shown).
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be multiplied by n, the number of phases, to obtain the total power. If
the Amber of phases is even, the potential coil may be connected from
the line containing the current coil to the line which yields the highest
potential difference. The total power is then the wattmeter indication
multiplied by n/2. These connections may be used only for balanced
systems.

Copper Required to Transmit Power under Fixed Conditions. All
systems will be compared on the basis of a fixed amount of power trans-
mitted a fixed distance with the same amount of loss and at the same
maximum voltage between conductors. 1n all cases the total weight of
copper will be directly proportional to the number of wires, since the
distance is fixed, and inversely proportional to the resistance of each
wire. First, three-phase will be compared with single-phase. Since
the same voltage and power factor are to be assumed, the same respec-
tive symbols for these quantities for single- and three-phase will suffice.

P i = VI 1 Cos O

P3 = 3VI3 COS 8
Since

P1=P3

VI 1 Cos 0= F3VI3 COS O

1 1 = "I3I3

Also	 112R1 X 2 = 13 2R3 X 3

R, = 313 2	 3J2
or	

R321123132X22

Copper three-phase - No. of wires three-phase 	 R,-! < -Copper single-phase No. of wires single-phase R3 - 2 2 - 4

The above shows that the same amount of power may be transmitted a
fixed distance 'with a fixed line loss with only three-fourths of the amount
of copper that would be required for single-phase, or one-third more
copper is required for single-phase than would be necessary for three-
phase.

Comparison of Three-Phase with Four-Phase.

= V'3VI3 cos O

V
P4 = 4 -j 14 cos 0
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(Note: V is highest voltage between any pair of wires.) Therefore

s/ V!3 cos 0 = 4 - 14 cos 0

3I3 = 14

13 	 2

1 4 -

313 2R 3 = 4142R4

R4 	 3132 3	 4

	Copper three-phase 3	 1=

	Copper four-phase - 4	 1	 4

This is the same relation as shown for single-phase. If other systems
are compared with three-phase in this manner, it will be found that
three-phase is more economical in the use of copper than any other
iiumber of phases.

When a fixed amount of power is transmitted a fixed distance with a
fixed loss for the same voltage to neutral, there is no difference between
any of the systems. Consider three-pha.se and single-phase. The
voltage to neutral single-phase is half the voltage between lines. This
point is called the neutral, since'the potential from either line to it is
he same.

P3 = P1

3V'13 co68 = 2r110

13	 2

11 - 3

31 3 2 R 3 = 2112R1

R	 312 3 4 2

Copper three-phase	 3	 2
= x	

1 (for same voltage to neutral)
Copper single-phase 
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Corn pan son of Three-Phase with n-Phase for the Same Voltage to
Neulral.

P3—P'

3VI3 COS O = nVj,1 Cos g

13 n

IC - 3

31 2ft 	 nI,12R,

RC	
3J2	 3,2

Copper three-phase = 3 n
= 1 (for same voltage to neutral)

Copper n-phase	 n 3

There is no difference in the amcunt of copper required between any of
the systems if the voltage to neutral is fixed and if the same amount of
power is transmitted a fixed distance at a fixed line loss.

Two-phase transmission was not considered in the above comparisons.
When it is recognized that two-phase is the same as two independent
single-phase systems, it is evident that two-phase, four-wire trans-
mission requires the same amount of copper as single-phase. There
are twice as many wires, but each is only one-half of the cross section of
those necessary for single-phase.

K 2	 ?	 .-	 K3	 ?

L	 YI'"	 1	 v
V1	

UF'P

)P

Two-pSass System	 (b) Thr..-PII3. Syitsa

Fio. 49. See Problem 13

Problem 13. Refer to Fig. 49. Find the ratio of the copper required for two-
phase, three-wire transmission to that required for three-phase, three-wire trans-
mission under the following conditions, all imposed simultaneously.

(a) A fixed amount of power transmitted.
(b) The same distance.
(c) With the same total line lose.
(d) With the same highest line voltage between any pair of lines in the two systems.
(e) With the same current density in the three two-phase conductors.
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Hint:
From condition (a): Pit 	 2V 21 2 coo 8 - P, 1 3 V,113 coo 0

From condition (d): 12 - I,
v,

From condition (c): 21 2 2R2 + (V'2I 2 ) 2Rr	 3J32R,

From condition (e): Area of R2 . wire = V' 2 x area of R2 wire

From condition (b): R-	 —r	 Ans.: 1.94.
V2

Harmonics in the Wye System. An eraf- generated in a conductor
will be sinusoidal only when the flux cutting the conductor varies
according to a sine law. In a-c generators it is rather difficult, if not
entirely impossible, to obtain an exact sine wave of distribution of the
field flux. The slots and teeth change the reluctance of the path for
the flux and cause ripples in the flux wave. Even if the distribution of
the field flux were sinusoidal at no load, the distribution would be altered
as the load came on, owing to the effect of the armature reaction of the
current in the armature. The result is to induce in each phase an emf
wave that is somewhat distorted from a true sine wave. In modern
machines this distortion is relatively small. Through certain arrange-
ments of the inductors on the armature and
through certain ways of connecting them,
some of the harmonics in the wave are re-
duced or are made to cancel entirely. When
iron-core transformers are connected in wye,
or any other way for that matter, the exciting
current cannot be sinusoidal even though the
impressed voltage is a perfect sine wave. This
is due to the varying reluctance of the mag-
netic circuit with the consequent requirement
of more ampere-turns to produce a given
change in flux when the core operates at
the higher flux densities. It therefore be-	 FIO. 50.	 Diagrammatic

sketch of a wye-con-comes of some importance to consider the	 nected jenerat.or.
effects of certain harmonics of currents and
voltages in the phases of a three-phase system in affecting the line
voltage of the system.

Assume that the emf induced in phase a of the wye-connected genera-
tor diagrammatically shown in Fig. 50 is

+E i gin (7i,t+a7)	 (28)



362	 ALTERNATING-CURRENT CIRCUITS	 Ch. Viii

The sequence ena, eb, e,c will be used. Hence the fundamental of emf
in phase nb will lag that in no by 120°, while that in phase nc will lag
phase no by 240°. As usual, a shift of one degree for the fundamental
will be a shift of n degrees for the nth harmonic. Then

e b = Emj sin (i - 120°) + E,,,3 sin (3,t + a3 - 360°)

+ E..5 sin (5cat +	 - 600°) + Emi sin (7w1 + a7 - 840°)
= Em i Sin (t	 120°) + E,,3 S jfl (3,t +

+ E.5 sin (54 + a - 240°) + Emi sin (7w1 + a - 120°) (29)

= Em i sin (wt - 240°) + E,.3 sin (34 + a3)
+ E.5 sin (54 + a - 120°) + E  sin (lwt + a7 - 240°) (30)

The equations of the phase voltages show that all third harmonics are
in phase. Also the phase sequence for the fifth harmonic is reversed
from that of the fundamental. The sequence of the seventh is the same

TABLE I

D13PraczsiEwr BEIWN Vtniotre ELAILMOMCS IN TUX PRAaF.S OF Fio. 50

Displacement in electrical degrees

Harmonic	 1	 3	 5 1 7 1 9	 11	 13

Phase  0 0 0 0 0 0 0

Phase B	 120 0 240 120 0 240 120

Phase C	 240 0 120 240 0	 120 240

as that for the fundamental. In general it will be found that the funda-
mental and all harmonics obtained by adding a multiple of 6 to the

fundamental will have the same se-
ticI quence. These are first, seventh,

thirteenth, nineteenth, twenty-filth,
and so on. In like manner, the fifths,

e elevenths, seventeenths, twenty-
thirds, etc., have like sequences but
opposite to that of the fundamentals.
Also the third, ninth, and all multi-
ples of the third will be found to be

*&3 thll sell	 in phase. These results are tabulated
Fto 51. Fundamental and third in Table I	 The relation between

harmonic voltages.
the fundamentals and third har-

monies in each phase for a3 = 0 in equations (28), (29), and (30) is
shown in Fig. 51.
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The line voltage of the wye may be found by summing up the poten-
tials encountered in passing through the circuit between the line ter-
minals in question. With reference to Fig. 50,

eba = e +

Each harmonic must be handled separately. The combination of
eb, and e 0 is shown by vector diagrams in Fig. 52. For the funda-

Ic	 -----

eb1.0	 ens.1*1e	 -	 I
ml	 '	 Em3	 enb

Third harmonics

'e,,	 e -------- eba
Fifth harmonics

F'ia. 52. Line voltages in Fig. 50 are (ornsl for each harmonic separately.

mental, eb is 30° ahead of e,. Since e, 01 = E,,11 sin wt, eba =
sin (f + 30°). For the third harmonic, e	 = 0. For the fifth eb1

lags e by 30°. Hence e 5 = \/Em 5 sin (54 + a.5 - 300). The
seventh-harmonic vector diagram is similar to that for the fundamentai.
The complete equation for the line voltage e 3 is

e = Y3Em 1 Sin (wi + 30°) + \1 Em5 5jfl (5 + a5 - 30°)

	+ V'3Emi Sin (7wt + a + 300	(31)

Similarly,

eac = V13Emi Sifl (wt + 1500) + v13E, 5 sin (Swt + a - 150°)

+	 E7 5111 (wI + (_t + 130°)	 (32)

'./3E,,, 1 sin (wE - 90°) + V'3Em 5 sin (Swt + a + 0

+ /3J 7 sin (7w1 + C7 - 900)	 (33)

--'4
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The vector diagram of the third-harmonic voltages shows that the third
harmonics in the two phases between any pair of terminals are in oppo-
sition and cancel. The third harmonica cannot contribute any-thing

line voltage, although they do contribute toward the total voltage
tween one terminal and neutral. The rms magnitude of the voltage
neutral in the example-just considered is

	

I	 2	 ' 2 i	 2 i	 '	 2
!'mI T &,,,3 -r L5 -1- £7

	

na.J	 2

The rms magnitude of the voltage between terminals is

E5a V' 
1Em 1 2 + E.,2 + E.7

2

The ratio of line and phase voltage of a wye connection can be the V
only when there is no third harmonic or its multiples in the wave of
phase voltage.

Consider next the harmonics in the current waves for the wye.
Circhhoff's current law applied to the wye connection without a neutral
wire connected states that

+ hth + i, = 0

Under balanced conditions this equation can be fulfilled only when the
three currents are equal in magnitude and 1200 apart in time phase, or
when the magnitudes of each current are equal to zero. Since the third
harmonica and their multiples are the only ones that are not 120° apart,
each of them must be zero to fulfil the conditions imposed by Kirchhoff's
cu.-rent law. The vector diagrams for the harmonics of current appear
exactly as those for phase voltages in Fig. 52. If, in each phase, e is
replaced by i, the diagrams will represent currents. If the third har-
monics of current do exist, there must be a neutral connection. This
neutral or fourth wire furnishes the return path for the third harmonics
of each phase. Since all third harmonics, in accordance with the
diagram in Fig. 52, would have to be in phase, their arithmetic sum
would flow in the neutral. A third-harmonic pressure or voltage may
exist in each phase, but, unless a path through the neutral is provided,
the three voltages do not have a closed circuit upon which they can
act and, therefore, no third-harmonic current can flow. In a balanced
wye.-connected circuit without neutral connection, therefore, all har-
monics except the third and its multiples can exist. In a four-wire,
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three-phase circuit (neutral wire connected) all harmonica in the cur-
rent wave can exist.

Harmonics in the Delta System. If three coils having induced
voltages as given by eea, e,,, and e, in the previous article are con-
nected in delta, those voltages that do not add to zero around the loop
will cause a circulating current to flow. Under any circumstances, in
the delta of Fig. 53, the sum of the three

	

terminal voltages taken in the same di- 	 .'
rection around the delta must be zero.
Expressed algebraically,

Vca+Vab+Vk0	 (34)

Because the sum of the generated emf's,
e 0 + e& + e,,, is equal to zero for all
except triple-frequency voltages and its

	

multiples, no circulatory current of other 	 . coae of Fig. 50
	than triple frequency and its multiples can 	 nected in delta.

exist. Hence there will be no impedance
drops at no load, and the generated voltages for all except the third
harmonic and its multiples will appear across the terminals. For the
third harmonic and its multiples the situation is different. Since the
third-harmonic generated voltages of all phases of a three-phase system
were shown to be equal and in phase,

	

ena, + e,,,, + e 1	3E,, sin	 (3c4 + )

will cause a current to circulate in the delta. This current multiplied
by the impedance of the loop will be equal to the resultant third-
harmonic voltage 3E, 3 sin (3w1 + a3). Since the terminal voltage is
equal to the generated voltage minus the internal drop, there will be no
third-harmonic voltage between terminals in the delta if the phase emf's
and impedances are balanced. In this way equation (34) is fulfilled for
the third-harmonic voltages.

There is no third harmonic in the terminal voltage of the wye; neither
is the wye connection subject to a third-harmonic circulating current.
In the wye the third-harmonic voltages between terminals do not appear,
as the result of their being in opposition between two terminals and
neutralizing. In the delta, the third-harmonic voltage does not appear
in the terminal voltage because it is short-circuited by the mesh connec-
tion and is consumed in the form of internal impedance drop. The
equations of the terminal voltages of the delta generator or transformer
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at no load are the same as the generated voltages of each phase with the
third-harmonic voltage and its multiples omitted. Thus

(35)

= Em i sin (wZ - 1200) + E 5 sin (5t + as - 240°)

+ E 7 sn (7it+cx7 - 120°)	 (36)

En,j 5jfl (,t - 2400) + E. 5 Sifl (5ct + as - 1200)

+ E,7 8 (7w + a - 2400 )	 (37)

Compare equations (35), (36), and (37) with equations (28), (29),
and (30).

All harmonics of current are possible in the phases of the delta, since
it is simply a closed series loop. Thus for phase ca, Fig. 53, we may have

ca = Intl 8fl wt + 1m3 sin (3w1 + cr3) + 1m5 Sfl (5wt + a5)

+ 1,,7 sin (7ct + cr7)	 (38)

If the sequence is such that phase aS lags ca by 120°, the currents in the
other phases are found by displacing the fundamentals by the usual 1200
and the nth harmonic by n times this angle. Thus

= 1,. 1 sin (wt - 1200) + 1.3 Siri (3wt + a - 360°)

+	 sin (5ct + as - 600°) + 1.7 sin (7ct + cr - 8400)

Imi sin (wt - 1200) + 1,. 3 sin (3(a + a3)

+ 1,n5 sin (5w1 + as - 240°) + 1m7 sin (7c,t + cr7 - 120°) (39)

= I., sin (t - 240°) + 1,,,3 Sjfl (3c't + a3)

+ 1,3 sin (5 + a - 120°) + 1,7 S jfl (7c + cr7 - 240°) (40)

The line currents are obtained in terms of phase current as indicated
below.

to'O = tac + ib

tb'b = iM + t5

ic l e = ica + tcb

These operations are performed similarly to those illustrated in the
vector diagrams of Fig. 52 for voltages. The results are

Io'a	 \'1nl am ()t - 1500) + V31m 5 Sin (5<t + as + 150°)

+ "f31m7 sin (7w1 + cr7 - 150°)	 (41)

1b'b	 v'31,,, 1 Bin (wt + 900) + "3I sin (5 + as - 90°)

+ V'3I 17 n (7w1 + cr7 + 900 )	 (42)

'T3I,, 1 sin (wt - 30°) + "/fm Sin (5t + as + 30°)

+ V'3I 7 Sin (7c&' + a ' - 300)	 (43)
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Equations (41), (42), and (43) show that no third-harmonic currents
can exist in the lines of a delta. The third-harmonic current in one
phase coming to a line connection exactly equals the third-harmonic
current in the other phase leaving the junction. This leaves no third-
harmonic current to flow in the line connection.

The magnitude of the phase current is

	

IP 
=	 + Ip32	 J.'2 + 10,72

The magnitude of the line current is

I (vJ 1 ) + (Im)2 + ( \ J,72

IL	 2

= //Irn1 + j,,2 + 1.7

The ratio of line to phase current can be '/3 only when no third-
harmonic currents exist.

Example 9. Only fundamentals and third harmonics are aumed to exist in
the voltages of a wye connection like that shown in Fig. 50. Voltmeter readings
as follows are obtained: V,,a = 150, V = 220. Calculate the magnitude of the
third-harmonic voltage.

Solujion. Since Vb. contains only fundamental voltage, the fundamental to
neutral is 220//3 = 127.

	

= %/I',' 	 V 3 2 or 1,3 = / 15O	 = 799

The possibility of a third-harmonic circulating current in a delta
makes this connection for a-c generators somewhat less desirable than
the wye, although there are several other more important factors that
make wye connection for generators predominate. Although the third-
harmonic current is undesirable in the delta generator it is desirable in
tran.orrners, since there it acts as a component of the magnetizing
current tor the core which is essential if a sine wave of flux and induced
voltage is to be obtained. Some high-voltage transformers which are
connected wye on both primary and secondary have a third winding
which is delta-connected to allow a third-harmonic circulating cur-
rent to flow, thus supplying the transformers with the necessary triple-
frequency component of magnetizing current. A delta-connected
winding of this kind is called a tertiary winding.
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PROBLEMS

14. What is the phase voltage and also the voltage between adjacent lines of
a six-phase star connection if the greatest voltage between any pair of lines is 156
volts?

15. The voltage between adjacent lines of a twelve-phase star is 100 volts. Find
the voltage to neutral, the voltage between alternate lines, and the grc'stest voltage
between any pair of lines.

16. Find the phase current in a six-phase mesh if the line current is 10 amperes;
also for a twelve-phase mesh for the same line current.

17. Given six coils each having an induced voltage of 63.5 volts. Adjacent coil
voltages are 60° apart. In how many ways may you connect tF°e coils to form a
balanced three-phase wye system of voltages if all coils must be u--,d for each system
and if the magnitude of the line voltages of each system must be different? What
are the line voltages for each wye system?

18. A generator has six coils, adjacent coils being displaced 30 electrical degrees.
If each coil voltage is 114 volts, show how to connect them and calculate the line
or terminal voltage for three-phase star. Repeat for three-phase mesh. Repeat
for two-phase, where line voltage is taken as the phase voltage.

19. A generator has six coils, adjacent coils being displaced 30 electrical degrees.
If all coils are used to form a three-phase mesh, what must be the emf of each coil
to yield balanced three-phase voltages of 230 volts each? If all coils are connected
for three-phase star, what must be the emf of each coil to give an emf between lines
of 230 volts?

20. Draw vector diagrams which represent the currents and voltages shown in
Oscilograms 3 and 4, pages 355 and 356, and label them in accordance with the
labeling on the oscillogram.

21. Three-phase line voltages of 230 volts are impressed on a balanced wye load
having 16 ohms resistance and 12 ohms reactance in series in each phase. Find
the line current and total power. If the three impedances are reconnected in delta
and placed across the same line voltages, what are the line and phase currents and
the total power?

22. A current of 10 amperes flows in the lines to a twelve-phase mesh-connected
load having 5 ohms resistance and ohms capacitive reactance in series in each
phase. What is the voltage between alternate lines on the load? Draw the vector
diagram of the voltages and phase currents of two adjacent phases, and also show
the line current from the junction of these two phases.

23. A balanced wyc load consists of 3 ohms resistance and 4 ohms capacitive
reactance in series per phase. Balanced three-phase voltages of 100 volts each
are impressed across the lines at the load. If the load is connected to a generator
through three lines of equal impedance, each line containing a resistance of I ohm
and an inductive reactance of 4 ohms, find the voltage at the generator terminals.

24. A balanced wye load having 8 ohms resistance and 6 ohms inductive reactance
in series in each phase is supplied through lines each having 1 ohm resistance and 2
ohms inductive reactance. If the sending-end voltage between lines is 25Q volts,
what will be the voltage between lines at the load?

25. A balanced delta load contains a resistance of 12 ohms and a capacitive re-
actance of 16 ohms in series in each phase. If the balanced impressed line voltages
on the load are 115 volts each, calculate the line and phase currents.



Ch. VU,	 BALANCED POLYPHASE CIRCUITS	 369

U. A balanced delta load having 18 ohms resistance and 24 ohms capacitive
reactance in series in each phase is supplied through lines each having 1 ohm resistance
and 2 ohms inductive reactance. If the line-to-line voltage at the sending end i
250 volts, find the line-to-line voltage at the load terminals. Also find the total
power consumed by the load.

27. A balanced wye inductive load takes 5.4 kw at 0.6 power factor at a line
voltage of 200 volts. It is in parallel with a pure resistive, balanced wye load taking
5 kw. Find the resultant line current supplied the combination.

28. The total power supplied two balanced three-phase loads in parallel is 12 kw
at 0.8 power factor lagging. One of the loads takes 10 kva at 0.8 power-factor lead.
The second load is a delta-connected balanced load. Find the res stance and re-
actance per phase of the delta load if the line voltage is 230 volts. If the un-
known load were wye-connected, what would be the resistance and reactance per
phase?

29. Each phase of a delta load has 6 ohms resistance and 9 ohms capacitive re- -
actance in series. Each phase of a wye load has 8 ohms resistance and 6 ohms in-
ductive reactance in series. The two loads are connected in parallel across three-
phase line voltages of 100 volts. Calculate the resultant line current, the total
power consumed, and the power factor of the combination.

30. A three-phase, 5-hp, 220-volt induction motor (balanced load) has an ef-
ficiency of 86 per cent and operates at 86.6 per cent lagging power factor. It is
paralleled with a three-phase resistance furnace consisting of three 36-ohm resistances
connected in delta. Find the kilovolt-amperes demanded by the combination, the
power factor, and the line current.

31. A three-phase generator supplies balanced voltages of 230 volts each at it
terminals when it carries a load which requires 10 amperes. If the power facto
at the generator terminals is 0.8 leading, calculate the voltage at the load if the loa4
is connected through lines each having 1 ohm resistance and 5 ohms inductive re
actance.

32. A balanced three-phase load requires 10 kva at 0,5 lagging power facto
Find the kva size of a condenser bank which may be paralleled with the load
bring the power factor of the combination to 0.866 lag, and also to 0.866 lead.

33. If the line voltage for Problem 32 is 230 volts and the frequency 60 cyclei
find the capacitance in microfarada of capacitors required in each phase of th
capacitor bank if they are delta-connected. What capacitance is required if the:
are wye-connected?

U. Three 159-ohm load impedances are connected in delta and supplied b3
lines, each line containing 1 ohm resistance and 1 ohm inductive reactance. If th
line voltages on the supply side of the line impedances are balanced three-phase ol
115 volts each, find the voltage across the load impedances. Also calculate the
power loss in the supply lines and the power dissipated by the load itself.

35. if the current through each of the load impedances in Problem 34 is 20 amperes,
find the required voltage on the supply side of the line impedances.

36. A three-phase line has three capacitors, each having a reactance of 300 ohms
connected in delta across the lines at the source. Three similar capacitors are so
connected between the lines at the load. Between these two sets of capacitors each
line has a series inductive reactance of 10 ohms. If a balanced three-phase load of
100 kva at 0.6 power-factor lag requires 2300 volts between' lines, what voltage be-
tween lines will be required at the source? What will be the power input to the lines
and the power factor at the source'
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37. The motor M in Fig. 54 has 2300 volts balanced three-phase voltages im-
pressed at its terminals and takes 120 kva at 0.6 leading power factor. Calculate
the line volts, power input, and the power factor at a, b, c.

38. If the motor in Fig. 54 is removed from the circuit and balanced three-phase

0.5+1 2(1	 0,5+1 2A

In1000 11

	

100011

i000f)

	

	 250fl 11L 
1^7

0.5+j2fI 
NI Ii000ti	 I 

^04+j2n

 I
0.5+j241	 I	 I	 0.5+

Fio. 54. See Problems 37 and 38.

line voltages of 2300 volts each are impressed at a, b, and c, how many volts will
appear between lines at the motor end of the line?

39. A three-phase resonant shunt is connected to three-phase, 2300-volt lines to
furnish a low impeda.'nce for a certain frequency so as to reduce the inductive inter-
ference with a telephone line. The shunt consists of three 10-kva, 60-cycle, 2300-
volt capacitors connected in delta. In series with each line terminal from the delta
is an inductance of 2.5 mihihenr ys. At what frequency does this three-phase com-
bination resonate, that is, offer minimum impedance? Assume that resistances of
capacitors and inductances are negligible.

40. (a) Three coils each having :36 ohms resistance and 100 millihenrys inductance
are connected in delta. Find the microfarad capacitance of each capacitor which
may be placed in each of the three lines from the delta to produce resonance (unity p.f.)
of the system as a whole for a frequency of 800 cycles. This is a type of resonant
shunt sometimes connected to power lines to reduce inductive interference with
telephone circuits,

(b) Assume tit - the capacitors calculated for each line in (a) are removed and
connected in delta. Find how many henrys. of inductance would be required in
each line from this delta to bring the power factor of the combination to unity at
800 cycles.

41. Find the readings of 11 r, and 11"5 in Fig. 55 for the sequence V,,.,, V,,,, Vi,.

Find the power dissipated in each phase.
42. A balanced three-phase load takes 5 kw and 20 reactive kva. Find the rdings

of two wattmeters propefly connected to measure the total power.
43. n Fig. 55 find the reading of WR. Also calculate the total reactive volt-

amperes taken by the load. What is the ratio of the total reactive volt-amperes
taken to the reading of WR?

44. Prove that the ratio of the reading of 4R of Fig. 55 to the total reactive volt-
amperes obtained in Problem 43 will obtain for all balanced loads when the impressed
voltages are sinusoidal balanced three-phase.

45. (a) Calculate analytically the power-factor angle for a balanced three-phase
circuit in which two wattmeters properly connected to measure three-phase power
read +1000 and +800 watts, respectively.

(b) Also calculate the angle if the meters read +1000 and —800 watts, respec-
tively.
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Fxu. 55. See Problems 41, 43, and 44.

46. Two wattmeters measuring power to a balanced three-phase load read 1200
and —400 watts, respectively. How many volt-amperes does the load take? At
what power (actor?

47. The power to a balanced three-phas leading-power-factor load is measured
by two wattmeters. The wattmeter having its current coil in line A and its po-
tential coil from line A to line C indicates +1000 watts. The other wattmeter with
its current coil in line B and its potential coil from line B to line C indicates +400
watts. What is the voltage sequence? What is the power factor of the load?

48. Each phase of a balanced twelve-phase star-connected load consists of 3 ohms
resistance and 4 ohms inductive reactance in series. Balanced twelve-phase line
voltages of 51.76 volts between adjacent lines are applied to the load. Calculate
the line current, power factor, and total power consumed by the load.

49. The voltage induced in phase aa of a three-phase wye-connected generator is

e,, = 127 sin c,4 + 50 sin (3 - 300) + 30 sin (54 + 400)

If the sequence is en,,, e,,,, e0, find the equation with respect to time of the line
voltage e. Note: Phase voltages of polyphase generators differ only in phase
angle.

50. If the phases of the generator in Problem 49 are reconnected in delta, what
will be the equation with respect to time of the line volt,-
age across phase no?

51. A wye-connected generator has a generated voltage
per phase which contains only the fundamental, third,
fifth, and seventh harmonics. The line voltage as mesa-
ured by a voltmeter is 230 volts; the voltage to neutril is
160 volts. Calculate the magnitude of the third har-

bmonic in the generated volt-age.	 A
52. The induced emf of a delta generator with one

corner of the delta open as shown in Fig. 56 contains 	 FIG. 56. See Problems
only odd harmonics up to the seventh. A voltmeter 	 52 and 53.
across ac reads 2500 volts, and, across bb' when negligible
current flow; 1800 volts. Find the reading of a voltmeter connected from a to V.
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53. The induced phase voltage of a delta generator with one corner open as shown
in Fig. 56 contains odd harmonics up to the seventh. A voltmeter connected from
a to b' reads 2500 volts, and from a to c it reads 2200 volts when negligible cur-
rent flows. What should it read from b to b'?

64. Figure 57 shows P. generator connected to a balanced pure resistance load.
An ammeter in the neutral reads 15 amperes, and the wattmeter shown reads 600

Fio. 57. See Problem 54.

watts. A voltmeter shows a balanced line voltage of 230 volts. Find the line
currents to the load and the voltage from line to neutral at the load, assuming that the
generated voltage contains only fundamental and third-harmonic components.



apfer IX Unbalanced Polyphase Circuits
Unbalanced Loads. The previous chapter developed the method of

alculating the currents in the various branches of balanced polyphase
oads when the impedances and impressed voltages are known. In the
Dresent chapter, methods of calculating the various branch currents will
e developed when known voltages are impressed upon unbalanced
oads. Any polyphase load in which the impedance in one or more
hases differs from those of other phases is said to be unbalanced. Even

though the load impedances of the various phases are identical, one of
he methods of calculating unbalanced loads must be employed if the

voltages impressed on the load are unequal and differ in phase by angles
which are not equal. Some of the simpler types of unbalanced loads
which are solvable by rather simple direct methods will be considered
first.

Unbalanced Delta Loads. If the three-phase line volges across the
terminals of an unbalanced delta load are fixed, the voltage drop across
each phase Impedance is known. The currents in each phase can there-
fore be determined directly. The line
currents can be found by adding vectori- C	 C

ally the two component currents coming 4!)

toward or flowing away from the line 

Eja
2.0 Ifal

terminal in question as was done in series- jOO

parallel circuit analysis. The following
example will illustrate the procedure.

Lfl 8	

bIV11,

Example 1. Given the unbalanced delta load b'
shown in Fig. 1, Calculate all currents for the Fin. 1. Unbalanced delta load.
three-phase balanced voltages shown on the 	 See example I.
figure, if the voltage sequence is at-ca—bc.

Since the voltages shown are assumed to be maintained at the terminals a, b, and c,

the complex expressions for the phase voltages may be established: Take some phase
voltage as a reference, say V z, for this example. Therefore,

V.b- 100 +10

vo-1ooL!	 —50+,880

Ved - 100 /-120° —50 —j80.6 volts

373
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V6 100 +jO
Ioa	 - =	 8 —jS = 10 /-53.1°amperes

Then

£.35	 u-rJo

=	 =	 +jSO.6
4 —j3

—50—j86.6
Z	 20+jO

The line currents are:

—18.39 +/7.8.56 20 /158.9'

—2.5 - j4.33 —	 amperes

= 1 + L = 6 —jB + 2.5 +14.33 — 8,5 —j3.87
= 9.26 /-23.4° amperes

IS'b = ISa + Ic = 6 +j8 18.39 +/7856
= —24.39 + J15.858 29 /146 . O a amperes

= L + I = —2.5 —j4.33 + 18.30 —/7.856
= 15.89 —j12.186 20 /-37.3 amperes

Unbalanced Wye Loads. If the load voltages at the terminals a, b,
and c of an unbalanced wye load like that shown in Fig. 2 can be assumed
to remain constant at their specified values, then the phasp currents of
an equivalent delta which replaces the wye can be found directly as
shown in example 1. The line currents to this equivalent delta are
obviously the currents in the phases of the wye load.

1aap I'

n
b'o

 \

b	 bc

FIG. 2. Conversion from a wye-connected load to an equivalent
delta-connected load.

Example 2. A balanced set of three-phase voltages is connected to an unbalanced
set of wye-connected impedances as shown in Fig. 2. The following values are
assumed to be known:

Vab = 212	 volts	 Zm — 10 +fl) ohms

V = 212 /1500 volts	 11) +/10 ohms

V=212/-30°volth	 Z=0—j20obms

The line currents Ta'a, lo'b, and are to be determined by the wye to delta con-
version method. (See Chapter V, page 210 for the general theory involved in
making wye to delta conversions.)
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In Fig. 2 the equivalent delta impedances may be expressed in terms of the wyc
impedances as follows:

(Z0.,Z5 +	 + Z,,Z Q )	 S
Z,,b=—	 Z,,,

S
and Z= 

S
—

Zan

Numerically, the equivalent delta impedances are:

300 - j300

=	
= (15 +jl5) = 21.2 /45° ohms

300 - j300
.Zb, - 10—jO = (30 —i30) = 42.4 /-45° ohms

Z ,
	 = (0 —j30) 30.0	 90' ohms

The load currents in the equivalent delta are:

V0b 212/90° -
i, = - =	 lO/amperes

Zb	 21.2/45°

V	 212/-150'
IN: - 	= 5.0 /—iOo° amperesZ	 42.4 L.±

Vc	 212 ,"-30°
-	 7.07	 amperes

Z	 30/-90°

The actual line and load currents are:

Ia'a	 10J, -

= 10 /4.5° - 7.07 /60° 366 Ziz amperes

Ib'b =

5 /-105° - l0/	 14.56 /-125.1° amperes

Ic'c =	 - 'ÔC

7.07/60° —5 /-105 0	11.98 /66.2° amperes

As a single check on the above arithmetic let the calculated value of lIa'Za,. -
Io'bZb,,l be compared with the originally specified value of V,, which was 212 /90°
volts.

- I6'6.Z,,] = (35.4 + j9.48) - (35.35 - j202.6)
(0.05 +j2l2.1) volts	 (Check)

The conversion of a wyc to its equivalent delta along with the solution
of the delta as illustrated in the above example will usuay require
an equal or greater amount of work than th'e direct solution of the wye
employing two simultaneous equations obtained by the application of
Kirchhoff's laws.
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Vector diagrams of the voltages and currents involved in the fore-
going example are given in Fig. 3.

Fm. 3. Vector diagrams for example 2.

Problem 1. Determine the values of V, V, and V in example 2.
Ans.: V — 36.6; V — 205.6 /-80.1 ; V — 239.62380volth.

Problem 2. Determine the power dissipated in each of the th-,e phases (an, bn,

and cn) of example 2.
Ana.: P,1 -134; Po,.-2120; P,, 0 watts.

Problem 8. Find the magnitudes of L.	 and I,', in Fig. 2 if Va — 212
— 212/-30°, and V — 2l2/-150volts. Min example 2,Z,. — (10+.)),
— (10 + jlO), and Zc. — (0 - 520) ohms.

Ana.: L' — 13.6; 41 b — 8.20; 1,,, — 7.54 amperes.

Combined Delta and Wye Loads. Delta-connected loads are some-
times operated in conjunction with wye-connected loads as shown in
Fig. 4. If the three-phase, line-to-line voltages Vth, Vb,, and V. remain
sensibly constant irrespective of load conditions, a relatively simple
solution may be effected by first converting the wye load to an equivalent
delta load. The two parallel deltas may then be combined to form a
single equivalent delta-connected load and the equivalent delta currents
alcu1ated directly as.

Vab	 ___
Idb(.q) =	 1bc(eq)	 'CG(iq)

'bc(.q)



0

FIG. 4. Delta and wye Loads on
the same system of voltages.

C,
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The above currents may be combined in
the usual manner to find the line currents

and	 The details are reserved
for student analysis. 	 (See Problem 15,
page 404.)

Network Solutions. The solutions of
unbalanced polyphase circuits are simply
applications of Kirchhoff's laws. Some of
the details are illustrated in the following
example which refers to Fig 5.

Fzo. 5.

Example 3. The generated voltages and impedances for Fig. 5 are given as
follows:

- 1000 +jfl

—500 —5866 1000L— 120"

= —500 +5866 = 1000/-240°

2 +58, Z	 = I +52,	 19 +518 26.2/43.45", Z.b = 2 +58,
1 +52, 4,,	 40 —52 49.04/-2.34°, Z —2 +18, Z	 I +52

and Z . ,,	 29 + jSO = 57.8/59.9°.

In unbalanced polvphas* circuits specification of the sequence employed is important
because diff.'rent solutions result from the two possible voltage sequences. For this
example the sequence abc is assumed. This means that voltage of phase b lags that
of phase a by 120°. All impedances in series are additive, Therefore the impedance
of na'n' is Z. - 2 +58 + I +2 + 19 +518 - 22 +528 - 35.6/51.8° ohms.
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Likewise 4 — 52 +j8 — 52.6 /8.8 0 and Z 32 +j60 68.0/61.9°. The mesh-

current solution will be illustrated first and for this solution the labeling of mesh
currents is shown in Fig. 5. The equations are

(Z + 4)I - 412 — E,. + E	 -	 (1)

	

(4 + 4)12 - 4I = E5+ E, E 5 -	 (2)

Inserting-the numerical values in the above two eqUattOfl8 gives

(74 +j36)Ii - (52 +38)12 = 1500 +j866 	 (3)

	

-(52 + .i8)I i + (84 +j6.8)12 = -j1732	 (4)

(1500 +j66) -(52 +18)

-j1732	 (84 +jGS)

= (74 +j36)	
-(52 ±jS) = 16.0/-34.9 amperes =

-(52 +jS)	 (94 +j68)

(74 ±j36) (1500 +1866)

(52 +jS)	 -j1732
12	 = 20.77-109.2 amperes =

(74 +j36)	 -(52 +J3) 

(52 +j8)	 (84 +j68)

IM' 	 -I I + I = -16/-34.9° + 20,7/-109.2°	 22.57-152.5° amperes

The voltage drops at the load may now be determined as

Va', ' =	 16/-34.9° 26.2/43.45° = 419/0 volts

VbW=	 = 22.5/-152.5° 49.04/-2.34° = 1105/-154.84° volts

= 1Z . ,,. = 20.7/-109.2° 57.8/59.9° = 11977-49.3° volts

The tine-to-line voltages at the load are obtained by adding the voltages en-
countered in tracing through the load circuit from one line to the other as follows:

V0 . = V	 4- V,. = V. -	 = 419/8.55°	 1105/7154.84°

= 1512/200 0 volt-i

= V. + V,. 0 . = 1835/166.2° volts

=	 + V. = 1039/-60.3° volts

The above line voltages could be calculated from the generated voltage and line drop
Thus the application of }irchhofi's voltage law gives

E, + E, =	 + Z) + V'b' + 16& ( z . + Z)

or

+ E, 0 ) - I(Z0 + 4a') - Ibb(Zbb' + 46)

= 1500 +J.S66 - 16.07-34.9° (3 + JIG) + 22.5/- 0 (3+110)
— 1413.2 +1531.6 — 1512/20.6° volts 	 (Check'
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This calculation indicate, that line and generator drops can be subtracted from the
generated voltage, to obtain the load voltage. but the computation must be made
with due regard to the proper phase of all quantities. Power in any branch is
obtained in the usual way from the voltage and current in the particular branch.

The phasor diagrams of all voltages and currents may be obtained
by plotting the complex quantities calculated for this example.

I.

no. 6.

An alternative method of solving this problem is to label the circuit
as shown in Fig. 6 and set up equations as follows:

(5)
Zbib + Z(I.. + Io) =	 + E b =	 - E,,	 (6)

or	 Z,1, + (4 + Z)J. = Lb	 ('ia)

Equations (5) and (6a) may be solved for the currents. This method
is equivalent to the loop-current method, previously demonstrated.
As a matter of fact if the current L in Fig, 6 were labeled 1 1 the cur-
rent I., labeled 12, and 16 , b labeled (I - 2), equations identical with (1)
and (2) would result if the same loops are employed.

Positive Circuit Directions. A great deal of needless confusion exirts
in the minds of many students relative to the correct positive circuit
directions of the quantities involved in polyphase circuit analysis. The
basic principles concerning circuit direction have been presented in the
earlier chapters. (See pages 95-96, 284-285, and 327.) These princi-

-25
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plea are, of course, entirely applicable to polyphase circuits as well as to

single-phase circuits.
In general, all generated emf's in polyphase systems have specified

lulive polarities and angular positions with respect to one another.
his information must be known either directly or indirectly if the circuit

investigation is to proceed. For example, if a three-phase alternator
is connected in we it may be assumed that the individual phases are
connected subtractively at a common junction as shown in Fig. 7.

I-

Generator	 E n' ell	 Tracing	 U nbaied

ator

"I DliollIr?c

Fti. 7. A three-wire tcree-phase network. (See pages 380-382.)

It is only by means of subtractive polarities that a three-phase, wye-
connected machine can give balanced line-to-line voltages. Unless
otherwise specified, the individual phase generated emf's of a three-
phase machine may be assumed to be 120 0 apart in time phase. The
foregoing facts are sufficien for a specification of the positive circuit
directions in the network shown in Fig. 7.

A positive circuit direction may be arbitrarily assigned to any one
generated enif. For example, if the a phase generated emf in Fig. 7

is considered, either E,,. 0 . or may be taken as positive. One of
these having heen selected as positive, the positive circuit directions
of the other systematically labeled emf's are fixed because of the rela-
tively fixed polarities that the generated emf's bear toward one another.
If Efl'Q' is taken as positive, then E . b' and are also taken as the
positive circuit directions because only when all phase voltages are con-
sidered awa y from the neutral or when all are considered toward the
neutral does the usual 120° phase angle between adjacent phase voltages
in a three-phase system exist. Thus either of the two following systems
of generated voltages may be employed in analyzing the network shown
in Fig. 7.
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(1)

or

(2) Eb.',

With the generated voltage relations established the solution is effected
by employing the same methods used to solve any network, two ofwhich were illustrated in example 3.

The Wye-Wye System with Neutral Connection. Four-wire, three-
phase systems similar to the one shown in Fig. 8 are sometimes employed
in the traifsmission and distribution of electrical energy. The connec-
tion of the point n' of the wye-connected generator (or transformer
bank) to the point n of the \vye-connected load distinguishes Fig. 8
from the three-wire, three-phase system shown in Fig. 7.

a'	 j' 

Generator	 Eny
Lan Load

Zen

Efl'b'	 Ib'b

I zIc 

Z 

FIG 8. A four-wire t ree'.phae system.

In general, the details involved in solving for I, 'b'b, 
1c'c, and I,,.,,

of Fig. 8 are similar to those which have been presented for the wye-
' ye system without neutral connection . If the wyewve system of

8 is solved straightforvary by the determinant method, threem-
roi^. three-colunin matrices are encountered , and a considerable amountof lab, r is involved in effec ting a complete solution in a perfectly general
case. 2ecause of the inherent symmetry of the basic voltage equations,
however, several simplifications may he made. If, for example Kirch-
hff cmi law is applied to loops n'a'ann' n'b'bnn', and fl 'c 'cnn', it isplain that	

4
En',,' - I,,,,Z	 En's' -I,,,,,	

'b'b 
=

-
'C'

(Z9 + Z1 + Zr,,)
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Since
I,i',i + 16b + It'- =	 (7)

it follows that

-	 Epb' - Inn'Zn	 E,'' - In,'Zn -
+	 +	 - I	 (8)

where, for simplicity in writing,

Zg+Zt+Zana	 (9)

ZQ + Z + Zb = Z6	 (10)

ze + ZI + Z. = Z,,	 (11)

The remaining details are reserved for student analysis. (See Problem 4
below and Problem 16 at the close of the chapter.)

Problem 4. Solve equation (8) explicitly for I,,' and state in words how to find

Ia'a, h'j,, and 1, ,e. after	 has been evaluated.
+ E,,'ô'ZeZ + E,'c'ZaZô

Ans.	
- ZaZbZc + z(z,Z + ZZ + ZaZi)

Nose: If the numerator and denominator of the above answer are divided by
both sides of the equation multiplied by Z,,, and all of the impedances of the

right member written in terms of admittances there results a simple formula for
the voltage between neutral points. If this voltage is solved for initially, substitu-
tion of the result in the three unnumbered equations on page 381 will yield the line
currents directly.

The Wye-Delta System. A three-phase, wye-connected generator is
shown connected to a delta load in Fig. 9. The solution of this system

Ii's	 a

ls•s•	 I1bS	
'—,s

G Unb.Imncd
load

lec

Fir.. 9. A wye-delta circuit .rrangexnerit.

for currents in all branches may be effected by application of conven-
tional Kirchhoff's laws which would require establishment of three emf
equations and three current equations. Another method would con-
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sist of first converting the delta to an equivalent wye-connected load
and then solving by employing two equations. However the least
amount of work will usually be encountered if the loop-current method
or the Kirchhoff's law equivalent employing three unknown currents is
applied directly to the original circuit. This solution requires only
three equations which are readily solved by determinants.

Phase-Sequence Effects. The direction of rotation of polyphase
induction motors is dependent upon the phase sequence of the applied
voltages. Also, the two wattmeters in the two-wattmeter method of
measuring three-phase power interchange their readings when subjected
to a reversal of phase sequence even though the system is balanced.
But the magnitudes of the various currents and component voltages in
balanced systems are not affected by a reversal of phase sequence.

In an unbalanced polyphase system, a reversal of voltage phase
sequence will, in general, cause certain branch currents to change in
magnitude as well as in time-phase position, although the total watts
and vars generated remain the same. (See example following.)

Unless otherwise stated, the term "phase sequence" refers to voltage
phase sequence. It should be recognized that, in unbalanced systems,
the line currents and phase currents have their own phase sequence
whLh may or may not be the same as the voltage sequence.

Example 4. The effects of reversal of voltage sequence upon the magnitudes of
the currents in the wye-conneetej load of Fig. 2 are illustrated by the results of
example 2 and of Problem 3.

For the ab-ca--bc voltage sequence of example 2, page 374,
- 3.66, 16'b	 14.56 and	 = 11.98 amperes

For the a&-bc-ca voltage sequence of Problem 3, page 376,
= 13.65, 16'6	 6.20, and Ii', = 7.54 amperes

Methods of Checking Voltage Phase Sequence. Sometimes in prac-
tice it becomes desirable and even necessary to know the phase sequenci'
of a particular Polyphase system. There are two general methods
for checking voltage phase sequence: one based on. direction of rota-
tion of induction motors; the other, on unbalanced polyphase circuitphenomena.

Method One. Small polyphase induction motors which have pre-
viously been checked against a known phase sequence can be employed
to test the phase sequence of a given system. In two- and three-phase
systems, only two different phase sequences are possible, and conse-
quently the direction in which the motor rotates can be used as an
indicator of phase sequence. The principle of operation involveR
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rotating magnetic field theory which rightfully belongs in the domain

of a-c machinery.
Method Two. In general, any unbalanced set of load impedances

can be employed as a voltage phase sequence checker. The different
effects produced by changes in phase sequence can be determined
theoretically, and when an effect peculiir to one sequence is noted in
the actual installation, that effect can be used to designate the phase

sequence of the system.
One of the most common devices for checking phase sequence in

three-phase systems is the unbalanced circuit arrangement shown in
Fig. 10. The three line wires, the

a'	 a	 voltage phase sequence of which is
to be tested, are arbai	 a5eled.A] .8' iem p The free end of one lamp is connected

 to the line marked a. The other lamp
is connected to line c, and the induct-

C' temp ance coil is connected to line b as

shown in Fig. 10. If tamp 'a' isco  

brighter than lamp 'c,' the phase se-
Fio. to. A two-lamp method for

checking phase sequence in three- quence of the line-to-line voltages is

phase systems. Lamp	is brighter a&-be-ca. If lamp' c 'is brighter than
for a&-bc--cii sequence, lamp c is
brighter for ab-ca-bc sequence.	 l(i?np a, the phase sequence is ab-

ca-bc.
The foregoing statements are based upon the results of theoretical

analyses, the details of which are outlined below. Assuming that the
lamps are similar, their brightnesses will depend upon the voltages

Z,,,, 1 01, and Z,jc,,. 
These voltages may be determined by the Kirchhoff

equation method as shown below:

I,,,, +I,,+I = 0	 (12)

Zanlan-	 = V0	(13)

ZbnI ,n -	 = Vb0	 (14)

Upon the elimination of I,,, from equation (14), there results

Zc,,Ia,, + (Z b ,, + Z,,)I&,, = (15)

Equations (13) and (15) can now he solved by inspection for 1o,, and
the result multiplied by Z,,,,. The voltage across the a lamp is

Zanlan - Zan 
1V (Zb* + Z) + V642
 Lz0zb, + Z 1 ) + Z,,Z6,,	

(16)
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The voltage across the c lamp i8

Zc,,Icn = V + ZanIa	 (17)

Example 5. For the sake of illustrating the efct of reversal of phase sequence
upon the magnitudes of Z,,I,,, and ZIr,,, a numerical case will he considered. The
lamps Z, and Z . ,, of Fig. 10 will be assumed to be pure rcsisances each of 100
ohms magnitude. Z,, will be assumed equal to 100/90' ohms, that is, a hvpo-
thetica]ly pure inductance. The magnitude of the line-to-line voltages will be
taken as 100 volts each and will first be assigned the following vector positions:

V,,	 100/ volts

V = 1 00 LL12W volts

100/-240° volts

Under these conditions

Z	
100/0° [(100L) (

141.4L) + ( 1007-120°) (1007)
-	 22,38O7°

= 86.47-48.45° volts	 (18)
(100/-240°) + (86.3/-48.45°)

= 23.2zaiF volts	 (19)

The a lamp is therefore brighter than the c lamp for phase sequence ab-bc--ca.
Now let the line-to-line voltages be assigned vector positions which represent

a reversal of phase sequence, namely,

= 100/0, volts

V6,, = 100/° volts

= 100/-120' volts

For ab-ca-be phase sequence

l00/ [—	 45°

(141.1/° + (100 L o°) (100L)]
22,380/63. 

= 23.2711.55' volts	 (20)

= 1001-120° + 23.2/11.55°
= 86.41- 108.45° volts	 (21)

The c lamp is therefore brighter than the a lamp for phase sequence ab-ca--bc. The
above numerical results would be somewhat different if the resistance of the induct-
ance coil had been cqrtsidered. However, if the ratio (XL/R) of. the coil is rela-
tively high, the difference between the lamp voltages is easily discernible.
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Example 6. Another convenient form of voltage sequence checker is shown in
Fig. ha. It consists of a condenser (Xc), a resistor (R), and a voltmeter (Vm).

I	 Val

	

Voltags ssQusflC$

—115R
	 ab - be -ca

LLE
VM-

Cf
	

=(VbC

(a)	 VbO	 (b)

A voltmeter method of checking phase sequence in three-phase systems. See
example 6 and Problems 5 and 8.

The voltmeter (whose current consumption is negligibly small compared with the
current through XC and R) is connected between the line labeled S and the junc-
tion between Xc and R. Xc and R are connected in series across the voltage V
(or V) with the condenser connected to the a line and the resistor to the c line. If

Xc 100 ohms, R = 100 ohms, and V	 V = V, = 141.4 volts,

141.4/60°	 Ifor sequence a&-6c—ca as shown
I =
	

- 1/ -15. amperes  in Fig. 115.

= Vm +I,,R or Vo Vb 10R

Vat = (141.4J0°) - (1/-15°) (100/0)
= —167.3 —j96.6 = 193/_150 0 volts

The above resuit shows that the voltmeter (Fm) reads above the line voltage (in
the ratio of 193 to 141 in this case) for voltage sequence ab—b.--ca. The same gen-
eral result is obtained with any combination of Xc and R provided Xc is roughly

equal in ohmic value to 1? or greater in ohmic value than R.

Problem 6. Show by means of a qualitative vector diagram that the voltmeter
(Vm) of Fig. liii reads below line voltage for voltage sequence aS—ca—bc.

Problem 6. What is the magnitude of the voltmeter reading in Fig. ha if X 

100 ohms, R — 100 ohms, and V - Vk V. — 141.4 volts if the voltage se-
quence is a&-ca-&?

Ans.: 51.8 volts.
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-

Fto. 12. The three-wattmeter method of mea.,uring four-wire, three-phase power.

The Three-Wattmeter Method of Measuring Three-Phase Power.
Thetotal power delivered to a three-phase, N,,- ye-connected load with
neutral connection can obviously he measured with three wattmeters
connected as shown in Fig. 12. lV measures the an phase power, IV

measures the bn phase power,
and W. measures the en phase
power. The sum of the three
wattmeter readings therefore	 .	 .
equals the total power consumed	 Wb

WCA
by the load. It is plain that if
each individual phase of the
wye.-connected bad is dissipa-
tive in character all the watt- 	 b 	 b	 ± Wb, Z

bC	 C

meters shown in Fig. 12 will
indicate positive power.

The total power absorbed by
an unbalaAlced delta-connected
load can be measured with the FIG. 13. The three-attmeter method of

aid of three wattmeters as shown 	 measuring individual phase poerS in a
de1ta-connecte1 load.

in Fig. 13. Individual phase
powers are measured by the wattmeters. This method of measuring
power would not, in general, be used unless the individual phase powers
were desired.

The Two-Wattmeter Method of Measuring Three-Wire, Three-Phase
Power. Except for inherent meter losses and errors, the three watt-
meters conne"ted as shown in Fig. 14 svill measure accurately the
power consumed by the three-phase load abc. A general proof of the
foregoing statement will be given, and then certain important deduc-
tions will be made therefrom.
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FIG. 14. A three-wattmeter method of measuring three-phase power which is independent
of the potential and hence of the physical position of the point 0.

The total average powei delivered to the three-phase load shown in
Fig. 14 over a time interval T is

jT

j,

	

P0b = j; J0 (v0 j O + V fli +	 dl	 (22)

The total average power measured by the three wattmeters shown in
Fig. 14 is

1
f TPmerB = 	 ( aoaa + VbOb + voi) dl	 (23)

Under any condition it is plain that

V00 = Van -	 (24)

Vbo = Vbn -	 (25)

VCO = Vcn -	 (26)

Equation (23) may therefore be written as

1	 r
Pmeter8 = J

r	
+ Vb4b +	 dl

1
f  v0 ( 00 + b'b + i')	 (27)

Since (a'a + ib,b + i) = 0, it follows that

Pmeters =	 + Vbnlb'b + v0 i . ) dl	 (28)
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It is thus shown that the three wattmeters in Fig. 14 measure the load
power irrespective of voltage or current balance, of wave form, and of

the potential of the point 0. The last fact is highly significant. It

indicates that the wattmeter potential coils need not have equal resist-

ances when employed as shown in Fig. 14. It also indicates that the

point 0 can be placed on any one of the three lines, thereby reducing

one wattrnetJ reading to zero. Although the proof was based on a

wye-connected load, the entire proof holds equally well for delta-con-

nected loads. A simple way of extending the proof to cover delta

loads is to recognize the fact that any delta load can be reduced to an

equivalent wye-connected load. (See Chapter V, pages 206-209.)

The practical significance of placing point 0 on one of the three lines

is that only two wattmeters are required to msure the total three-

phase power. This expedient is widely utilized In measuring three-wire,

three-phase power because it possesses no inherent limitations as regards

balance or wave form.
The two wattmeters used to measure three-phase power may be

placed in the circuit as shown in Fig. 15a, b, or c. The three combina-

a' a

b' Wbt ±I	 b	
Wb reads VbJob C08 8 I

JIb

C'
W. reads V.I.,. 00.8 Ii1?.

(a)

a'	 +	 a	 v.
W. TSadI Va.,. Co.

'	

1

b V,,6b
	 W. reads Ve. 0080 I

'

cI	 C	 J1i,

(b)
a' a

b'---Iii^
-	 I
	 W. rereads V 	. co.J.' i8 I.'.

b
1V6..Wb reads VM co' 9

(c)

Fio. 15. Different circuit posi tions that the two wattmeters employed to meaauro
three-phase power can take.

tions are obtained by placing the point 0 of Fig. 14 on lines a, b, and c,

respectively.
For the relative polarities of the wattmeter coils shown in Figs. 14
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and 13 the instruments will read up-scale if positive power is being
metered. Under the condition of sinusoidal wave form of current
and voltage, positive power is indicated if the current through the cur-
rent coil in the ± direction is less than 900 out of phase with the voltage
which is across the potential circuit in the ± direction. If one of the
meters reads down-scale when connected as shown in Fig. 15 the rela-
tive polarity of the coils is changed to obtain up-scale reading and this

reading is reckoned as negaiive power
W ab—i'*	 a	 in finding the algebraic sum of the watt-a

4kw meter readings.'-i 
junity-D.f.

toad 	
6kw	 Example 7. In Fig. 16, abc represents ab'	 O.8-øi. .balanced three-phase s ystem of voltages. The05(1

magnitude of each voltage is 200 volts, and the
phase sequence is at-ca-be.

	___________________	 A balanced, 0.8-power-factor, induction
C C	

mo-
w b—	

c	 tor load of 6 kw is connected across abc and aC	

4-kw, Unity-power-factor load is connected

	

Fla . 16. A particular on halanced 	 across ab as shown in the diagram.three-phase load.	
Let it be required to find the individual

readings of the wattineter	 ll'	 and
ahich are connected to nleasure the total load power. The subscripts

designate the voltage and current which are operative in a given meter in producing
Positive up-scale deflection. Obviously, the meter will read down-scale, thus in-
dicating negative power if the operative voltage and current are separated by more
than 900 in time phase.

Let. V he selected as reference. Then

= 200/, V = 200'-240', and V = 200/-1210' volts

The urretit in each phase of the induction motor is

2000
= ----- = 12.5 anipbres200 X 0.8

and these phase currents lag the applied phase voltages by cos t 0. 1; or 36.9°. The
unity-power-factor load current is, of course, in phase with Va. Therefore

40M
Ib = --LQ + 12.5/36.9°

= (21) +jO) + (10 —j7.5)
= (30 -J7.5) amperes

- 36.9	 12.5
(1.5 +j12.4) amperes

12.5o°_—	 12.5/-156.9°
- (-11.5 — 54.90 ) ampere!
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The line currents are

14'e — (30 - j7.5) - (-11.5 - j4.90)

— 41.5 —12.60 - 41.6/-3.58 amperes

— (1.5 +12.4) - (30 - 7.5)

	

—28.5 +jlQ.9 —	 amperes

= (-11,5 - j4.90) - (1.5 + j12.4)
—13.0 - j17.3 211/-127' amperes

A vector diagram of the voltages and currents is shown in Fig. 17. Since the mag-
nitudes and. relative time-phase positions of the line-to-line voltages and the line
currents are known, the wattmeter readings can be determined

14k

	

.%	 b15bmoLOr	 li

Itc	 \

cb

Fia. 17. Vector or phasor diagram of voltages and currents in & particular unbalanced
three-phase circuit. (See Fig. 16.)

1V.s
— V,,bJ . ,, COS 0]

200 X 41.6 cog 3.58	 8300 watts

Val'c cos 9

200 X 21.7 cos f7 = 1700 watts

The other wattmeter combinations which will correctly measure the three-phase
power are

(1) together with	 bc—bb,

(2) 11 b together with

In the present example

200 X 41.6 X Cos 63.58 - 3705 watts

- VIb'b COS 0
Jlo'

- 200 X 34.7 X cos 25 — 6295 watts
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Problem 7. Calculate the readings of and in the above example
and compare the sum of the wattmeter readings thus found with the total connected
load.

	

Ans.:	 565, 13..	 4315 watts.

The Use of n - 1 Wattmeters to Measure n-Wire Power. In general,
n - 1 wattmeter elements can be employed to measure n-wire power,
The wattmeter elements may take the form of individual wattrimeters,
in which case the total power is equal to the algebraic sum of the watt-
meter readings; or all movable members may be connected to a common
shaft in which case the total power is indicated directly on one scale.
The latter type of instrument is called a polyphase wattmeter.

Reactive Volt-Amperes in Unbalanced Four-Wire, Three-Phase
Systems. The reactive volt-amperes of each individual phase of the
load shown in Fig. is can be measured with three reactive volt-ampere

Fio. 18. Measurement of total reactive volt-amperes in a four-wire, three-phase system
with three reactive volt-ampere meters.

meters. Sinusoidal wave forms of currents and voltages are assumed
since the term " reactive volt-amperes " as well as any measurements of
that quantity are ambiguous when other than sinusoidal wave forms
are encountered.

In Fig. 18

Meter a reads	 sin 0	 varsJ
Meter b reads Vojb sin 0 I vars

Jze.

Meter c reads VIc sin£vars

The algebraic sum of the above readings is of practical importance.
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Assume the phase angle to be positive if the current lags the voltage and
negative if the current leads the voltage. These conventions are merely
matters of definition. (Sec page 97.) A meter properly connected to
give up-scale readings for lagging-current reactive volt-amperes will
read down-scale when subjected to leading-current reactive volt-
amperes. If then in a particular case a meter reads clown-scale, the
relative polarities of the current. and p.teiitiaJ circuits of the meter are
reversed. The resulting upscale reading is considered as negative reac-
tive volt-amperes in finding the total reactive volt-amperes of the sys-
tem. With negative reactive vQlt-amperes defined as it is, the total
vars of a system may, of course, be negative.

Example 8. In Fig. IS let

100 "0° volts	 Zn,, = 25/45° ohms

100 /20° volts	 Z6,, = 50/0° ohms

Vt,, = 100/-240° volts	 Z.,, = 20/-60° ohms

The individual readings of the three reactive volt-ampere meters and the algebraic
sum of the readings are to be determined.

IOO/°

=	
= 4.07-45 amperes.

1oo/-12o
Is., = ---- = 2.0 7- 120 ° amperes

100 LL240°
= 207-60° = 5.0/180° amperes

The relative vector positions of the
phase voltages and phase currents
which actuate the meters are shos n
in Fig. 19.

Reactive volt-ampere meter a reads
(100 x 4 x 0.707) = 283 vars

Reactive volt-ampere meter b reads
(100 X 2 X 0.0) = 0 var

Reactive volt-ampere meter c reads
(100 X 5 x —0.86) = —433 vars

4eury

entL)

ion	 I
 - - -van

Van
I an

Lie (ligglog cnmen

Fiu. 19. Phasor diagram of the phase voltages
The algebraic sum of the meter read- 	 and phasecurrents of the four-wire, three-
ings or the total " number of vars	 phase load shown in Fig. 18 for a particular
is	 150.	 set of load impedances.
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If wattmeters were to replace the reactive volt-ampere meters 8h0W0 in Fit. 18,
their readings would be as shown below:

W. — 100 X 4 X 0.707 — 283 watts

Wb — 100 x 2 x 1.000 200 watts

100 )< S X 0.500 — 250 watts

The total number of watte is 733.

Power Factor in Unbalanced Three-Phase Systems. Power factor
in a single-phase system or in a balanced polyphase system has a definite
physical significance. It is the ratio of the phase watts to the phase volt-
amperes. Under conditions of sinusoidal wave form, power factor is
equivalent to the cosine of the time-phase angular displacement between
phase voltage and phase current.

In an unbalanced polyphase system each phase has its own particular
power factor. The result is that the term " power factor " as applied
to the combined unbalanced polyphase system can have Only such
meaning as is given to it by definition. The average of the individual
phase power factors is a good general indication of the ratio of total
watts to total volt-amperes in certain cases where the phase loads are
all inductive or all capacitive. Where both capacitive and inductive
phase loads are encountered, the compensating effect of capacitive
reactive volt-amperes and inductive reactive volt-amperes is not taken
into account. Another serious limitation to " average " power factor
concept is that the individual phase power factors are not easily deter-
mined in many practical installations. " Average" power factor is
generally not considered when specifying the power factor of an unbal-
anced polyphase system.

One recognized definition called vector power factor of an unbalanced
polyphase system is

Vector p.f.	
1'I Cos 0	

(29)= _____________
/(l'I Sill 	 + (

1:1,j cos

EV1 cos 8 = V. I. CO5 0,, + Vt,Ib 008 0b + VcI COS Oe + . (30)

EVI sin 	 V.I.	 ,, + 1 b lb Sfl Oô + VcIc sin 0 + • . (31)p

The subscripts employed in he above equations refer to individual
phase values. For example 0,, is the angular displacement between
phase voltage and phase curr tin the a phase of the system. VI cos 8
is the total power consumed by the polyphase load, the power factor of
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which is under investigation. VI sin 9 is the algebraic sum of the
individual phase reactive volt-amperes. In evaluating 7VI sin 0 in
any particular case due regard must be given to the sign of each c "m-
ponent.

It is evident that the denominator of equation (29) can be evaluated
as if it were the magnitude of a resultant vector, the right-angle com-
ponents of which are (V1 cos 8) and (LVI sin 8). This fact is
illustrated graphically in Fig. 20 for the particular three-phase system

Pbsiau	 Phase 	 Phase a
283

	

VIII	 0O	 250 watts
283 waltz	 200 watts

—433
Ills

_--ZVICoe 0--
283	 200	 250

1-150
sine

Resultant diagram
Fiü. 20. fl1uetrting the concep' of vector volt-amperes in a particular case.

discussed on pages 392-394. Considering watts and vars as the right-
angle components which go to form "vector volt-amperes" it is plain
that

ZVI 
= V' (L VI Sin e)2 + (Vlcos9?/	 (32)

or
EVI = VaIa/ ! + VbIb/ + (33)

Power factor, as defined by equation (29), can now be written in any
one of several different ways.

Vector p.f. = cos tan-1 ( F- VI 
sin 0)

= cos	 (34)(Z VI COS 6)
or

	

-	 VIcos8

	

Vector p.1. -
	

(35)
 magnitude of ZVI

Example 9. The "average" power factor of the unbalanced load described on
pages 39-394 is to be compered with the power factor as defined by equations (29),

-26
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or (35). The circuit arrangement i8 shown in Fig. 18, and the previously
detc,iined values are indic ated below.

V	 1ooL9. volts	 = 4.0/-45° amperes

V,,	 100/— 120° volts	 Is,, = 2.0/jjj9° amperes

V,-,,	 100/ —249° volL	 It,, = 5.0	 amperes

a-phase vars	 2S3	 a-pba'w watts = 283

b-phase vars 000	 b-phase watts = 200

c-phase vaTs = —433 	 c-phase watts = 250

TI sine	 —150 vars	 VJ cosO	 733 watts

The individual phase power factors are
= 0.707 (result of lagging current)

1.000 (result of in-phase currentY

= 0.500 (result, of leading current)

The arithmetical average of the above phase power 1etors is

0.736

The power factor of the unbalanced load as defined by equation (29) is
733	 733

Vector p.!. = -- =	 008
743

Inasmuch as the latter determination of power factor recognizes the compensat,
log effect of "leading" and ' lagging reactive volt-amperes it is somewhat more
significant than the ' average " power factor.

Measurement of LVI sin U in a Three-Wire, Three-Phase Circuit.
Power factors in three-wire, three-

Rva meter a phase systems are very often meas-
ured in terms of LVI cos C and

VI sinU. LVI cos 0 can be
measured with the aid of either
two or three wattmeters as shown

c in previous articles. It may be
shown that LVI sin 0 can also be
ni .sured in a three-wire, three-
p e system with either two or

Rye meter c I e reactive vuIt-amnpere meters.
Fia. 21. The twoeactjre volt-ampro th y the two-meter method of

meter method of measuring ZVJ sin C in

a three-wire, three-phase System.	 rnttsunng EV! sin 8 will he on-
sidcrd.

The two meters shown in Fig. 21 are assumed to be reactive volt-
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ampere meters which are capable of reading VI sin aT. These meters

are connected into the circuit in a manner which is exactly like two
wattmeters in the two.-vattmetei method of measuring three-phase
power. It will be shown presently that, when they are connected in
this fashion, the algebraic sum of the two reactive volt-ampere meter
readings is equal to VI sin 8 of the three-phase circuit. VI si ll O
for a polyphase system has been defined in equation (31) of the present
chapter.

Connected as shown in Fig. 21

Reactive volt-ampere meter a reads f Vab To'0 Sifl 01"
JI

Reactive volt-ampere meter c reads I Vcbl,', sin

For the sake of analysis, the above readings ivill be expressed temporarily
in terms of the complex components of the voltages and currents. In
Chapter IV it was shown that under the conditions of sinusoidal wave
form

Vi sin	 = 	 (36)

where

V = v +jv' and

	

Reference to Fig. 21 will show that I 	 = Ia,, and that 
Also V = V0 - Vs,, and V, 6 = Vt,, - Vb,1.

	sin 0 I	 Fabian sin 0 I
1v

	

J1	 JL.
= ( fQjQfl .__ 

t.'abja,,)

	

.	 .
(V

/
anZa n - 

I 
b,, 2 a 1 	 V02 an +	

•
1on)

= (V'ania n - 2'0 ,,t' 0 ,) + (vb,,i ' 	- VbZon)	 (37)

1Vb

	

V bI'. sin 8	 = Vcb Ic n 5jfl
JL

-

=	
- 0 bntcn -	 +

(v'en jc, - vi') + (vbn i'c - V'b, Z )	 (38)
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It will be noticed that (Vb,i1' fi - V'b,) of equation (37) and

(vi'. - v'b,1i) of equation (38) can be added so as to yield

	

-	 .	 .	 F
	v,,, (

,
z 	 1+ t	 - 

vI ô(t -f- t)	 (v , tbii - yb,,4 bn)	 (39)

Therefore the sum of equations (37) and (38) reduces to

(V'a,iae -
	

+ (V'b ib,,	 Vb,,2b) +	 -

which in turn is easily recognized as the total reactive volt-amperes
of the three-phase load or EVI sin 0.

No restrictions as to the balance of either voltage or current have been
imposed upon the foregoing derivation. Two reactive volt-ampere
meters connected into a three-wire, three-phase circuit as shown in
Fig. 21 will, therefore, measure VI sin 0 regardless of the condition of
balance. Although the generality is rather difficult to incorporate
into the derivation, the algebraic sum of the readings will be equal to

VI sin 0 whenever the reactive volt-amperes are restricted to those
cases where both voltages and current wave forms are sinusoidal, pro-
vided the reactive volt-ampere meters are connected into the three-
wire, three-phase line in a manner similar to the wattmeters shown in
Fig. l&z, b, or c.

Rvamatsri	 S

i	 I
I	 I Ii	

IL
I	 -

I 141.4 Ib Rn m.tsr b

14L4ltaI

no. 22. A particular unbalanced three-phase load.

Example 10. In Fig. 22, abc represents an unbalanced three-phase system of volt-
ages, the phase sequence of which is ab-bc-a. In magnitude

V.,, — 200, V,,, — 141.4 and V — 141.4 volts

If Vs,, Is assumed to occupy the reference axis position, then

200, V	 141.41-1360, V,,,, — 141	 volts

It will be assumed that the load impedances have the values shown on the circuit
diagram, namely,

10/-60° china

4, — 14.14	 chins

4, — 14.14Z451 ohms
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AMuming that the line-to-line voltages remain fixed at the values given above, the
delta-phase currents are

200L
lob 10/-W 20L_ amperes

141.4/_135°

14-14/450
-	 amperes

141.4/-225°
14.14/45*10
	 amperes

From which
- 1 = 10 + 17.32	 amperes

= Ik -	 —2(1 —j17.32 - 26.45/-139.1° amperes

- L,,, - Ik 10 +jlO 14.14	 amperes

The voltages and currents are represented graphically in Fig. 23.

Fxo. 23. Phaaor voltages and currents in the three-phase circuit shown in Fig. 22.

The meters shown in Fig. 22 are assumed to be reactive volt-ampere meters, and
the present example concerns itself with the predetermination of their readings.

Reactive volt-ampere meter a reads

VJ sin = 141.4 X 12.4 X sin —81.2° —1732 vars
JIG,.

Reactive volt-ampere meter S reads

V4 5 sin 8j	 - 141.4 X 26.45 sin 41 0 - 268 vars

The algebraic sum at the meter readings is

— 1732+268 - —1464 vars



400 . ALTERNATING—CURRENT CIRCUITS Ch. IX

The actual value of EVI sin  as determined from the individual phase voltages and
currents is

VJ sin 8 = - (200 X 20 X 0.866) + (141.4 X 10 )< 0.707)

+ (141.4 X 10 X 0.707)	 —1464 wars

Problem 8. If the reactive volt-ampere meters shown in Fig. 22 are placed so that
the current coils carry '&a and I ( what will be the individual tooter readings in wars?
It is assumed that the potential circuits of the meters are connected in such a manner
that thp algebraic sum of the readings will be equal to	 VI sin e.

Arts.: Meter a reads —1464 wars; meter c reads zero.

Problem 9. What is the power factor of the unbalanced load shown in Fig. 22
as determined from E VI sin 8 and	 VI cos 8?

An.: 0.939.

Phasor Relations as Found from Experimentally Determined Magni-
tudes of Current and Voltage. Phasor diagrams of the voltages of
polyphase loads may be formed from measurements of the voltages by
forming in it closed polygon those line voltages which according to
Kirchhoffs laws add to zero when tracing from one line in a continuous
direction to each adjacent line in sequence until the starting point is
reached. Line-to-neutral voltages in a star connection may then be
inscribed in the polygon so that they combine according to Kirchhoff's
laws to form the line voltages. The principle of duality indicates a
similar procedure ma y be followed to establish phasor diagrams of line
and phase currents in a mesh connection. The phase relations may
then be found by solving the diagrams either graphically or analytically
and the solutions adapted to any desired sequence. See Problems 31
and 32.

a

Loop I	
Zan100LL

Generator
	 Load

100

E ''
_-	 bn100J°

Loop 2

Fir; 24. I.00-:urrent method of Ial*ling. See example 11.

	

Example 11. Let it be required to find the branch currents 	 I and I of
Fig. 24 by the loop-current method if

- 57.7/-30°,	 57.7/-150, and	 volts
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Since only two loop currents are required to *averse all the branches,

Z 11 1 1 - Z 12 1 2 = E 1 = E6.. +	 = 100/0° volts

—Z 21 1 1 + Z 221 2	 =	 + E,,.,5 . = l00/	 vc1t.

where the minus signs account for the opposite di, ti rof I and I through
If the generator impedances of Fig. 24 are

2 1 1 = 100	 -f- 100/90° = 141s

Z = 100° + 100/0 0	41.4,ohms

Without regard for sign, a iiich has Iweri tskenri' nf in hc Wove voltge equations

Z 12 = Z 21 = I00/	 ohms

The voltage equations ma y he solved directl y for Ii and 12 as thown below:

IOO/	 — ioo/°j
100 / -120°	 141	 19,320 /15°

	

= I =	 - -,- = ---.-- = 0.S64/-3S.45°
141.4/45°	 -100/901	 22,30 €13.45°
—100/90°	 141.4/45° 	

ampere

100/0°
—100/900	looL_12t?l	51s./-45°

	

12 = Imc =
	 o '63	 22,3SO :1 45 

= 0.232/2.8.45°
-. --	 ampere

—I,, = 0.232/71.55°, and L = t2 -It

Example 12. In Fig. 25 are shown three load inpedances Z 0 ,,, Z, and 4, wiich
are energized by V,.1,, V (and, of course, V 0 )., , The an coil is assumed to bd cotplt'd
magnetically to the cia coil and, as shown in Fig25ifthe coefficient of coupling betiveen

a

VA 
o' Loop i '\

boI
	

LOOP 2

	
I), 

Z=3L2I

C

Fio. 25. See earnple 12.

the coils is assumed to be / ;o. If the network is to he anal y zed by the loop-current
method employing It and 12 in the directions shown,

3 la	 V3
=	 =x d.,,, =	 \"1X3 = 0.5 ohm

The positive sign of M is used here because the coils magnetize along a common axis
in the same direction if wound a shown and if positive values of I and 12 are present.
(See page 284.) Assume V1,	 100/0° volts and V6	 100/1200 volts.
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For the network shown in Fig. 25, the basic voltage equations become

ZT 1 + ZI2 - V	 100/0*volts

Z211 1 + Z 2212 V - 100/-120° volts

Zn - (2 +11), Z11 (2 +)3), and Z	 Z1 (-2 +y).5) ohms

Note: The minus 8I fin Z L2 accounts for the fact that 1i Bowe through Zb. opposite
to 1 1 and +59.5 in Z 12 accounts for the fact that the (jwMI* ) voltage drop acts in the
same direction in loop 1 as the (fwLIj) voltage drop.

(100 +59)	 (-2 +59.5)
(-50 —586.6)	 (2 +53)	 56.7 +1152
(2 +51)	 (-2 +59.5)	

—2.75 +10 12.68 —59.15

( -2 + 59 .5 )	 (2 +53)
15.6 L!° amperes

(2+j 1 )	 (100+59)

	

(-2 +59.5) (-50 —586.6)	 186.6 —5273
12	

(-2.75 +510 )	 —2.75 +510
	 —510.36

31.81-161° amperes

The branch currents follow directly from Ii and Ii as shown in example 11.
Example 13. The network shown in Fig. 26 represents two generators operating

C2.14+1 1)

GM A
	 G..e
+ 	•11

I

C,' 

M14 +11)

Acddefftal
ground -

(2.14+J011a

Fin. 26. See example 13.

in parallel. An accidental ground on the line leading out from terminal c is assumed
to exist as shown and the problem is that of determining the short-circuit current

or loop current I; in Fig. 26.
A study of Fig. 36 will h 	 that the self-impedances of loops 1, 2, and 3 are,

respectively,
- (7 .28 +,18) - 19.4,	 ohms

Z22 — (7.28 +518) —l9.4johma

Zs* - (4.04 +52.0) - 8.08/OW ohmi
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Next, the mutual impedances will be obtained from an inspection of Fig. 26 and
minus signs will be affixed to those mutual impedances that carry loop currents of
opposite directions.

— Z 21 = —(3.64 +j9.0) = - 9.7/6S' ohms

	

= Z 32 = - (0.50 + j3.0) = —3.04	 ohms

— Zj 0 (Since loops 1 and 3 have no common path.)

Assume the generated phase voltages are

E,. =	 = 4000/01 volts

= 4000/-120° volts

= 4000/-240° volts

The resultant voltages which exist in the three loops of Fig. 26 are

Ej =	 - E 0 + E - E,. = 0

= E .b' - E,. + E, -	 = 0

= —4000/-2400 4000,1 -60° volts

The equations for voltage equilibrium in the three meshes of Fig. 26 are

- (9.7/)I2 +0	 = 0

- (9.7L)I + (19.4/)12 - (3.04/80.5°)Iz	 0

	

0 - (3.04/80.5°)I + 8.08/)I 	 = 4000/-6o°

The above equations will be solved simultaneously for I, I, and Is with the aid
of elementary determinant theory. The common denominator of each current
solution is

0
D = - (9.7/) (19.4/) -(3.04/80.5)

0	 - (3.04/80.5°)	 8.08/)
D [-2920 —j8371 - [(-117.8 - j135.4) + (-733 - J210)1

= (-2068 —j492) = 2122/193.4° ohms'

The desired current in the present instance is	 or 13.

(19.4/)	 - ( • L)	 0
—(9.7/)	 (l9.4L)	 0

0	 - (3.04/80.5°)	 (4.000/ —oO°)
Is 

=	 2122/l°

1,13l,000L
— 2122/193.4°	

533/_117.4 amperes

Problem 10. Find the magnitudes of L 0, Ib ,b, and I' in Fig. 26 utilizing the
calculations of example 13 in so far as they are helpful.

Ans.: J	 55.6, 1b'b	 55.6: and Le'e	 111.2 amperes.
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PROBLEMS

11. An unbalanced delta system labeled bc at the corners consists of Z,
iO/—GO, Z = 5/0°, and Z = 10/60° ohms. If V = 100' and the voltage
sequence is cb-)a-ac, find the vector expressions for the currents entering the terminals
a, 5, and c. The three-phase supply voltages are balanced. Also solve for the
opposite sequence.

12. An unbalanced load labeled abc at the corners -conit of Z r,,, = 5/40°,
= 10/—. 30°, and Za ohms. Three-phase balanced line voltages of

115 volts each are applied. If the sequence is cb-m-ba, calculate the complex ex-
pressions for the line currents leaving terminals a, b, and c for V = 115/00 volts.

13. Rifer to Fig. 27. VAB and V,-a repre-sent a balanced two-phase system of
voltage drops, the magnitude of each being 115 volts. The voltage phase sequence

F'
Ac

1A	
:

Fi.. 27.	 See F°rohle,n 1:3.

Y.
is AB-CB. t',Lj is to be ud as reference. Find lAB, IcH, Ijj' and draw a vector
diagram of the voltages and currents.

14. A wye-connected set of impedances consists of Zr,.,, = 5/0°, Zb 5/600,
and Zr,. = 5 /-60° ohms. Find the equivalent delta-connected impedances Z.
4-, and Z which can he used to replace the wye-connected set of impedances.

15. Refer to Fig. 2S The terminals a'b'c' represent a balanced three-chase
system of voltages the sequence of which is bY-a'b'-c'a'. The magnitude of each

Fm. 28. See Problem 15.
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line-to-Line voltage is 230 volts. Find the readings of ammeters placed in the
a'a, b'&, and c'c lines.

16. In Fig. 7, page 380, it. will be assumed that the generated voltages are

100, E,.,'	 100/-120°,	 100° volts and that

= (2 - jl) ohms

(1 - j3) ohms

= (3 +j4 ) ohms

Find the line currents	 I, and I. Draw a vector diagram of the line-to--line
voltages and tire line currents.

17. Refer to Fig. 8, page 381. Let it be assumed that the following quantities
are known:

= 1000 + jO = 1000/0 0 volts

= —500 - j866 = 1000 —120 volts

= —500 +1866 1000/10 volts

20 —2O = 2S.29,'— 45' ohms

4,, = 50 +jO = 50.0/0° ohms

4, = 30 +j52 = 60.0 16W ohms

za = 2 + jS = 8.25/ ohms

ZI = I +11 = 1.41/45° ohms

Z. = 2.5 + jI 270° ohms

Write the expressions for La,,', Iw, and I., employing determinants and the
numerical values of the E's and Z's specified above. Use loop currents I I =	 12

'h'b, and I = I,, all returning through line an'. (Results may be left in the form of
the ratio of two matrices.)

18. A delta-connected set of impedances consists of Z = 5/0°, Z j, =

and Zca =	 ohms. Find the equivalent wye-connected impedances Zn,,,

4,,, and 4,, which can be employed to replace the above delta-connected impedances.
19. Refer to Fig. 9, page 382. Assume that the generator is capable of main-

taining a balanced three-phase system of voltages Ea'', E,. the sequence of
which is b'a'-a'c'-c'b'. The magnitude of each line voltage i8 100 volts. Z,'

Zb'b Z'	 0.5 +j0.5 ohm. Zc,., 10, Z = 10 /60% and 4, — 101-60°

ohms. Find I,	 I,, 1, and I,,.. with respect to V0 as a reference.
20. Explain, by means of qualitative vector, diagrams, the operation of a three-

phase-sequence indicator that employs an inductance coil in place of the condenser
shown in Fig. lie, page 386. Does the voltmeter read above or below line voltage
for sequence ab-ca-bc?

21. Devise some scheme for checking the phase sequence of two-phase voltages.
22. Find the reading of a wattmeter which has its current coil in the A'A line

and its potential coil across the voltage VA c in Problem 13 and Fig. 27.
23. Refer to Fig. 13, page 387. V,,, — 00 V i,, — 141.4, and V, — 141.4 volts.

Sequence ab-ôc-ca. Z, - 4, — Z,,, - (8 - j6) ohms. Find the reading of each
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of the wattmeters. Find reading of a wattmeter with its current 4 coil in line a and
potential coil from a to b; also one with current coil in line c and potential coil from
c to b.

24. (a) If a wattmeter W has its current coil in line a and its potential coil from
line a to c of Fig. I, page 373, what will it read for a sequence V-V-Vb? If an-
other wattmeter Wb has its current coil in line b and its potential coil connected
from line b to c, what will it read?

(b) If W0 and W5 were varmeters what would they read?
25. (a) Find readings of wattmeters W and Wô with their current coils in lines

a and b, respectively, supplying the load of Problem Ii if the potential coils are
properly connected so that the sum of the readings will give the total power con-
sumed by the load.

(b) Find readings if W and W5 are varmeters.
26. Refer to Fig. 29. Va'b', '4',', and 	 represent a balanced three-phase

system of voltage drops, the magnitude of each being 200 volts. The voltage

We'a-ab

4.0 kvs
0.8 p.r.
leading

U

Fin. 29. See Problem 2.

sequence is a'b'-b'c'-c'a'. Two balanced three-phase loads indicated by the circles
are connected to the terminals abc as shown in Fig. 29. In addition to the two
balanced loads, a single-phase, 4-kw, unity-power-factor load is placed across the
ho terminals as indicated.

(a) Find the reading of W'aa and l+'.d4.
(b) If reactive volt-ampere meters replaced 	 and W,.,..,,, find their re-

spective readings.
(c) Find the combined vector power fadtor of the composite load.
27. In Fig. 21, page 396, it will be assumed that V, V 6' , ' , and V, 2' represent

a balanced three-phase system of voltages the sequence of which is a'b'-c'a'-b'c'.
= ia, Z,,,	 and Z,,. = 1019W ohms. Assume line-to-line

voltage of 100 volts.
(a) Find the readings of the two reactive volt-ampere meters shown in Fig. 21.
(b) Find the readings of wattmeters placed at similar positions in the circuit,

namely, at the a'a-ab and the c'c-cb positions.
(c) Find the vector power factor of the unbalanced load as recognized by t e

A.I.E.E.
28. In Fig. 30, Vth, Vb,, V, 1, are balanced three-phase voltages each having a

magnitude of 200 volts and a phase sequence of ab-&-ca. Determine the readings
of the two wattmeters sho ' . t in the figure.

29. In Fig. 31, E.4 EE,,'' are balanced three-phase voltages with magnitudes

3.0 kw
0.5 p.?

b
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a	 T-T load
2011

1732 watts

b	
p.f. 0.5

I	 lagging

C

Fiu. 30. See Problem 28.

of 115.4 volts and a phase sequence of n'a'-a'b'-a'c'. Find the following quantities
and express all complex quantities with reference to Vb.

(a) V., Vb,, V,,,
(b) I., 1&, I,.
(c. ) I&o, 'o'b, I'c.
(d) The sum of the readings of the wattmeters W, Wb, W when they are con-

nected as shown.
(e) The individual readings of wattmeters TV,,, Wa, W,, if the common point 0

is tonnected to line Vb.

w-

we

Fia. 31, See Problem 29.

30. The line-to-line voltages of a three-phase system ar, V,,. = 200, Va 150,

and V,, = 120 volts. Write the polar expressions for V,,, V, and V t,, with respect

to V.6 as reference for both phase sequences.
31. Refer to Fig. 2. In a particular case measurements yield Vth	 140, Vb,.

120, V.,, = 150, V,,, 200, Va,, = 80, and V i. ,, = 104.2 volts. Dra'thefliarrr
tative phasor diagram of the voltages for sequence abc, and determine analytically,
the complex expressions for each of the voltages with respect to V,,, as a reference,

32. Refer to Fig. 1. In a particular case measurements yield I,,, 	 20, !,'& = 14,
15, I,,, 12, Ia, 2, and 1,,, = 15 amperes. For the line-current sequence

of a'a—c'c--b'b solve the qualitative phn.sor diagram analytically, and determine the
complex expressions for each of the currents with respect to I,o as a reference.

33. Calculate the line currents in Problem 16 by the loop-current method.
34. Refer to example 13, pages 402-4123, incltiding Fig. 26. Solve for I i, Is, and

1 1 by the loop-current method, neglecting the resistive components of all branch im-
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pedancrs for a voltage sequence	 (Results may be left in the form of
the ratio of two matrices.)

35. In Fig. 32, .L,,t = L,b = 0.01 henry and the coefficient of coupling is 0.5.
Assume no resistances or inductances except

a	 as indicated on the figure. The sequence of

*c=1

	

	

the balanced driving voltages is na'-rb'--nc',
arid E,,a' = 57.7/90 volts. For .' = 1000

ab radians per second calculate the line and

c phase currents for the load. Use Maxwell's
b	 cyclic-current method.

36. Set up the determinant form of the so-
lution for J, ' in Problem 35 if 3 ohms pure

Fic. 32. See Problems 35 and 36.	 resistance is inserted in each line to the load
and the same sequence and reference as

pcified in Probhn 35 are employed. For uniformity in checking results, use loop
curririts as follows:

Loop current Ij =
Loop current 1 2 =

•	 Loop current I =

37. Solve for	 , F, and	 in Fig. 33 if	 = 1350 +jO volts,. E,,5 . =
—67 - j1170 vlts, and	 = —675 +j1170 volts. 	 *

a'	 11a1

(0.1+ji )n (0.1+il.5) n	 oad

-'I
(0.9+i0.5) ft

Fan. 33. See Problem 37.
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Transmission Line Calculations

Line Constituents. A transmission line consi sts of the equivalent of
two or more electrical conductors for the purpose of tran.mitting
electric energy. For single-phase transmission the line may consist
of a single conductor with a ground return or of two ordinar y wires.
For three-phase transmission, three wire-s are generally used although
in some installations a neutral wire or its equivalent is employed. The
wires of a transmission line are separated by some dielectric as air for
overhead transmission, or by other insulating materials as in cables.
Since the two conductors are separated by a dielectric, they form a
condenser, the capacitance of which is uniformly distributed along the
wires. When a difference of potential is applied Letween the wires,
charging current flows. This effect could be simulated by a large
number of condensers connected between the two wires as shown in
Fig. 1. Va denotes the sending-end voltage, and V 7 represents receiver-
end voltage. A representation of this kind is approximate because it
shows the shunted capacitance lumped at certain points instead of being

b	 C	
uniformly distributed. With-

j__L i	 I	
in reasonable limits of accu-

--r -r -r -r- -r -r	 - 'yr racy it is permissible to make
I	 l	 I	 I	 I	 I	 *
 

line calculationsonthebasisof
a	 b	 C	 -

Fm. 1. Distributed shunted capacitance or a lumped capacitance. Under
trsnniiesiun Ifte simulated by a large Dumber of the conditions of relatively
ehurted condensers. low voltage and relatively

short distances tie shunted capacitance can even be neglected without
seriously affecting the accuracy.

In addition to shunted capacitance the line has series resistan-e and
inductance or inductive reactance. Thus the sections between con-

T
Fru. 2. Modiñeation of Fig. I to aceour. for scriej resistance and inductance of a

transmission line.

densers, like a.5 and a'b', be and bY, etc., form loops through which flux
will he et up by the mmf of the current flowing in the wires. These sec-
tions also have resistance. Hence, to account for these parameters,
Fig. 1 should be modified to appear as shown in Fig. 2. Strictly speak.

4C?
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lug, each condenser should be shunted by a non-inluctive resistance to
account for any leakage of current from conductor to conductor because
of imperfect insulation, moisture content of the air, and other factor.
On a clear dry day the leakage is so small that it may usually be ne-
glected. The greater the number of sections, liLe those shown in Fig. 2,
into which the line is divided, the more nearly it will simulate the actual
line which has uniformly distributed parameters. If more than two or
three shunted condensers are used, it is just about as simple to calculate
the line by assuming uniformly distributed parameters instead of con-
centrated quantities. Three of the usual arrangements of concentrated
parameters will be considered.

The T Line. The T representation of a line is shown in Fig. 3. When
all the shunted capacitance, C, of the line is concentrated . in one con-
denser and half of the total series impedance, Z, is placed in each arm
as indicated in Fig. 3, the circuit is known as the nominal T line. It is
called nominal because the representation is only approximately correct.
When the circuit parametersi
ndicated in3 are multi—
plied by certain hyperbolic
correction factors,' the T
thus formed represents the 	 b
line exactly between termi- Fio. 3. T rcpreientation of a transmission line.

naLs (V1 and V) and it then
becomes the exact equivalent T. Calling Y the admittance due to the

shunted capacitance C and using the quantities as labeled in Fig. 3, the
determination of V1 in terms of the receiver voltage and current is made

as follows.
z

VGb = Vr + I.

'3b = V,Y

	

lip = Jr + Lb = I? + 'i (vi. + i)	 (1)

V. = V +

= (vr+ )+[ir + 
(V, 

+ir)]

f	 YZ2\
= v) +• r	

+	
(2)

ee Hyperbolic Functions Apid to Electrical Engineering," by A. E. Kennelly

or" Electric Circuits Theory and Appatlona," by 0. C. C. Dahl.



Fm. 4. Vector diagram of T representation in
Fio. 3.
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From equation (1),
YZ\

I.=I 
/
1+--j+YVr	 (3)

Equations (2) and (3) give the sending-end voltage and current in
complex form As indicated, all quantities in the equations must be ex-

pressed in vector form. The
receiver current must be prop-
erly related in complex form
to the receiver voltage. The
power factor of the load deter-
mines the angle between V.
and L. V and I, being in
complex form, power input
may be determined in the usual
way. The vector diagram of

the T circuit of Fig. 3 is shown in Fig. 4. This diagram follows the
above equations for calculating V, and I.

Problem 1. A 64-cycle, 3-phase line 200 miles long has a shunted capacitance to
neutral per mile of 146 X 10 jf, an inductive reactance of 0.78 ohio per wire per
mite, and a resistance of 0.42 ohm per wire per mile. The receiver voltage is 100,000
volts between lines. Use the nominal T line, and 6rid the sending voltage and
current for an 0.8 power-factor lagging load requiring 75 amperes per line at the
receiver.	 An.!. 84,000 /7.4' volts, 62.3 /24' amperes.

The r Line. If one-half of the total line capacitance is concentrated
at each end of the line and all the series resistance and reactance are
concentrated at the center as
shown in Fig. 5, the resultant	 z

configuration portrays the nomi- f7I['1[TT
nal ir representation of a trans- 	 T4mission line. Like the T line it 	 d	 b

is possible to alter the param- Fio. 5. Y representation of a transmission lint.
eters by applying hyperbolic
correction factors to obtain a w circuit which yields the correct relations
between terminals. A ir circuit thus corrected is called an exact equiva-
lent ir.

The ir circuit is easily solved through a procedure similar to that
employed for the T circuit.

Vr 
Y

Ia = 

L* I. + lao I, + Vr

-27



412	 ALTERNATING—CURRENT CIRCUITS 	 Ch. X

V 1 = V ± iz= Vp + (Ir +
2—)

=v(i±-_)+iz

If = ia .. + 1d

[V,
	 \=	 = 	

ZY
l + )± IrZj_

= i. + v,. + I V (i +	 + IZ]
2 )

I"	
ZY	

Y (
I + Z4Y( I + L2) + V' (5

Equations (4) and (5) are the solution of the ir representation of a trans-
mission line. The vector diagram of the T circuit is shown in Fig. 6,
and the above calculations follow this diagram.

Fxo. 6 Vector diagram of w line in Fig. 5.

Problem 2. Use the njmnal . lire representation and solve Problem 1.
Ans.:  6300	 volts, 59.75/22.2* ampere!.

The Steinmetz Representation of the Transmission Line. Another
representation of the transmission line suggeted by C. P. Steinmetz
which yields approximately correct results is shown in Fig. 7. In the

IZ	 i	 I3lZitftT
Fm. 7. Steinmetz representation of a transmission line.

figure, Z represents the total series impedance and C the total shunted
capacitance. The student can work out the details of the solution by
following the methods employed for the T and r lines. This circuit and
the solution are slightly more cumbersome, but the results are generally
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somewhat closer to the theoretically correct values than those obtained
from the use of the nominal T or r sections. The calculations must
follow the vector diagram shown in Fig. 8.

FIG. 8. Vector diagram of Fig. 7.

Problem S. Derive the equations for the sending-end voltage and current in
terms of the receiver quantities for the Steinmetz representation of a transmission
tine.

?1 zy
Ani.:

	

2 M )	 6)

	

i• (
5ZY z2y2	 /	 zy z2Y\1 +^)Yv +1 ++pr

Problem 4. Solve Problem I according to the Steinmetz representation of the line.
An.s.: 64900 /O volts, 60.9	 amperes.

Exact Solution of a Long Line with Uniformly Distributed Parameters.
In the line shown in Fig. 9 let the series impedance per mite he Z, the
shunted admittance per mile Y, and the length of the line con.idered 1.

dV I .

Load

Zdi[ dl

:YdV

FIG, 9. Circuit used fnr deriving the exact solution of a
Irtnamjajo 0 line.

The elementary voltage drop in the element dl is the current I in the ele-ment times the impedance Z dl of the element. Considering only thespace variation of V and I,

dV-1Zd1	 (6)
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The current leaving the line over the length dl is the voltage V times the
shunted admittance Y dl for the element. Thus

	

dI=VYdI	 (7)

Equations (6) and (7) are solved for V and I as follows:

dv
=Iz	 (8)

dl

dI

	

=VY	 (9)

Differentiating equation (8) with respect to 1 gives

d 2	 dI
^j2	 Ca

(10)

Substituting equation (9) in equation (10),

d 2

dl 
2	 zYv	 (11)

This is a linear differential equation of the second order, the solution of
which can be shown' to be of the form

V	 + C2f.fh2'

where C 1 and C2 are constants of integration and m1 and in2 are roots of
the auxiliary equation, namely,

m2 = ZY

m = +V	 or —V	 (12)

The two roots m 1 and m2 are respectively + V' and - v'. There-
fore

V = C 1 ' 1 -f

= Cle	 + C2e"	 (13)

From equation (8)
ldV

(14)Z di

'See any book on differentiAl equations, such as "Differential Equation.' by
D. A. Murray. p. 83.
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Differentiating equation (13) and substituting the result in (14) gives

= c	 &Viii - C2v'	 /j

i z	 z

= C1 v'7	 - C2 VY7	 (15)

The constants of integration C 1 and C2 in equations (13) and (15) can
be evaluated from known boundary conditions. In this case the bound-
ary conditions at the receiver are assumed to be known. Thus in Fig. 9
when

1=0	 (16)

11r	 (17)

and	 V=V	 (18)

Substituting equations (16), (17), and (18) in equations (13) and (15),

VrCi +C2	(19)

Ir=CiVV7C2/V7 (20)

Equations (19) and (20) are now solved simultaneously for C1 and C3.

Multiplying equation (19) by N/'Y-TZ gives

V, VYTZ = C1 v27 + C3 vW7	 (21)

Adding equations (20) and (21),

Ir + i/YTZ V, = 2C1 i/7

p	 Vr+IrV'7
C1 =	 (22)

2

Subtracting equation (20) from equation (21),

V, v'7 - I, = 2C2 v'7
- Ir '7 (23)

2

It is apparent that C1 and C2 in the above equations are complex
coefficients and might have been written in bold-face type. The ex-
pressions for voltage and current at any distance I from the receiver are
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obtained by substituting equations (22) and (23) in equations (13) and
(15). Then

(Vr + Jr(V, - Ir&'' +
=	 2	 1	 2) rvTh (24)

(J
+VrY	 /I,Vrr	

2	 /	
+	

2	 )	
'	 (25)

Equations (24) and (25) may be used as the working equations for the
exact solution of long lines. Under certain condition it is convenient
to have equations (24) and (25) expres.ecl in terms of hyperbolic
functions. This is done as follows.

From equation (24),

V =	 + Jr	 + 

-
= Vr 

('-%/i-Y 1 - T1) + 'r '' 
/

Since the analytic definition of

-—
sinh 0 -

2

and	 cosh 0 
= 8 ± r

2

V = Vr cosh	 + J r V'TVsinh	 (26)

Similarly

I = Ir cosh ZY1 + V Y7z sinh v"Yj (27)

Equations (26) and (27) are particularly convenient to use if tables of
complex hyperbolic functions are available; otherwise, equations (21
and (25) may be moro convenient.'

Physical Interpretation of Equations for Exact Solution. Equations
(24) and (25) may be modified somewhat to make their physical
significance more apparent. since VZY is a complex expression,
we may substitute an expression such as (a + j$) for it. Also, letting

See "Tables" or "Charts of Complex Hyperbolic Functions," by A. E. Ieo-
nelly, Harvard t"niversity Press.
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z0 = v'7Y and Y0 = V'Y/Z, equations (24) and (25) may be written:

V (Vr ± 11Z 	 + ( 	 — a+j	 (28)

i 
= (I + VrY0) 1-:! 

+ 
(1, _vxo) 

—Q-j5;l	 (29)

Recognizing that t(a +)Th I = aY'31 and that	 ,2 • 'i)

we may write equations (28) and (29) as follows:

= Cr 
'2) 

toSI 
+	 (30)

= (Ir	

) 
ai)I + 

(

I,_VrY0) 
—a--j8l	 (31)

The quantity \/ = (a + j) is called the propagation constant.
It determines how the wave is propagated with reference to change in
magnitude and phase along the line. Equation (30) consists of two

parts. The first, (V
r ±1rZ0)a	

, represents a quantity that in-

creases in magnitude (' increases) as we go from the receiver to the
sending end or it becomes smaller as we proceed from the sending to the
receiver end. This term must therefore represent a voltage wave which
is being propagated from the sending to the receiver end. Hence it is
called the direct wave or direct component. The direct component is
analogous to a wave started in a body of water. As the wave leaves
the source it becomes smaller and smaller. The second part of equation

(30) is Cr 
2)

	
f—jol . As we proceed from the toad to the

generator this component becomes smaller, since I increases and
decreases. Hence this wave must be originating at the receiver, and it
is therefore called the reflected wave. It is analogous to the phenomena
in a body of water as a wave strikes a bank. A reflection occurs, and a
wave is then seen traveling away from the bank with gradually diminish-
ing magnitude. Since, for a given distance of travel, a determines the
magnitude of the wave, it is a measure of how much the wave is in-
creased or decreased in magnitude, or, in other words, attenuated. For
this reason it is called the attenuation constant or factor. The at-
tenuation factor is the real part of the propagation constant. The
factors ejol and e—j61 will be recognized as operators which produce
opposite rotations. The operator	 causes the direct component to
advance in phase from its position at the load as we proceed from the
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receiving to the sending end, while causes the reflected wave to fall
behind its phase position at the receiver. Since fi determines the
change in phase for a given distance I along the line, it is called the
phase constant. It is sometimes called the wave length constant be-
cause it determines the distance along the line over wuch a complete
wave is subtended. This will he explained in more detail later. The
loci of the variation of the direct and reflected waves can be represented
as spirals, as shown in Fig. 10. The sum od of the direct and reflected
waves of voltage at any point along the line such as at fit gives the re-
sultant voltage at that point. When fit is 90°, the direct component
of voltage oci is opposite to the
reflected component ob. The

	

resultant oc, which is the volt-	 a 
Way

age of the line at this 900 or
quarter-wave-length point, may

	

be very small because of the 	 ,<	 \\"	cancellation effect of the two	 +° 
waves. A generator producing
a low voltage, if connected at
this point, could subtend a corn-

	

paratively high voltage at the	 b
	receiver. This is essentially a	 Rot 

ec%fb

resonance phenomenon and is
called quarter-wave resonance.
As fit increases from this 90° no. 10. Variation of direct and reflected waves

	point the voltage of the Line in-	 voltage with respect to the tine angle ,61 for
Particular

creases until fit becomes 180°. 
Here the direct and reflected waves add. This phenomenon is called
half-wave resonance. As fit increases to 270° the direct and reflected
waves are again opposite (as at quarter-wave) md we then have three-
quarter-wave resonance.

Surge Impedance. Inspection of equation (28) makes it apparent
that dimensionally I,ZO must be a voltage. Hence Zo must be an
impedance. Further evidence of this fact is obtained when it is re-
membered that Z3 = 'vZ/Y. The reciprocal of Y is dimensionally
an impedance, and the VZ—IY then becomes V'impedance 2 which is an
impedance. Hence the quantity Zo = /27Y i5 called the surge im-
pedance of the line. The reciprocal, "/Y/Z, is called surge admittance.
The surge impedance is the impedance offered to the propagation of a
wave along a line. In effect it is the impedance an advancing wave of
voltrge or current encounters as it travels along the line.
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Terminal Reflections. The receiver voltage Yr is IrZr where Z i
the impedance of the load. If Zr is made equal to Z0 the receiver volt-
age Vr would equal ITZD . Then the reflected wave in equation (30)
is zero and the equation of the voltage along the line becomes

+ VAV 
= (Yr V 2 ) ealtiol =	 (32)

This variation is exponential in character, and no terminal reflections
exist. The voltage, V, increases exponentially in magnitude as we
proceed from the receiving end to the sending end. Simultaneously
with the increase in magnitude there is a uniform advance in phase of
V with respect to the load voltage Vr. The wave encounters the same
impedance (surge impedance) at the load as it did while advancing
along the line. This termination makes the line behave as if it were
infinitely long. Hence a line terminated in its surge impedance is
sometimes called an infinite line. In communication work, terminating
a line in an impedance equal to the surge impedance is sometimes called
matching.

If a long line is short-circuited at the receiver Vr 0 and equation
(30) becomes

V	 -	 (33)

Where 1 is 0,
I?zo I,2o

= dirt wave - reflected wave

Thus it may be said that the voltage is reflected with a change in sign.
The current wave under the same conditions becomes

r	 1,-.'z_o

= direct wave + reflected wave

It follows, then, that the current wave is reflected with the same sign
or the direct and reflected waves of current add arithmetically at the
receiver.

If the line is open-circuited at the receiver, Jr 0. Imposing this
condition on equations (30) and (31) shows the voltage wave to be
reflected with the same sign and the current with a change in sign.

Velocity of Propagation. In the foregoing equations, distance alone
the line, namely 1, has been considered the independent variable. The
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other independent variable, time, has been tacitly taken into account
by the use of vector quantities. In the evaluation of the velocity of
propagation the interrelation of time-phase and space-phase effects
must be recognized.

It is evident from the use of $ in the foregoing equations that this
quantity determines the phase shift of V or I per unit length of line, and
as such it represents a number of radians per unit length of line. The
length of line required to effect a complete cycle or 2- radians of phase
shift is

2r unitsX = -- units	 (34)

where X and fl are expressed in any consistent set of units. To simplify
visualizing the phenomenon, consider only the voltage wave.

Since A is the distance for a phase shift of 27r' radians, it is the distance
along the line (see Fig. 11) from one zero value say at a on the voltage
wave to a corresponding zero value at b, 2w radians or 360 from the first
zero point. The distance A thus represent-s the length of line over which
a complete space wave or cycle of voltage is subtended, and in conse-
quence X is called the wave length of the propagated wave. As time

Distance

Zero value of
voltage wave

Units of lentir -
ular measurement
of 21 radians

Fao. 11. A space wave or cycle from a to b.

elapses, the alternating voltage at point a will rise to a positive maxi-
mum, decrease to zero, then increase to a negative maximum, thence to
zero. In this length of time, point b on the wave will have arrived at a
in Fig. 11 in other word, during this leng t h of time, the time for one
cycle, 11f, all points on the wave will have traveled a distance of A. The

velocity of travel or propagation must then be 
j-, or Af units of length

per second. Hence the velocity of propagation is

v=Af=f	 (35)
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Equation (34) shows that the wave length for any line is determined by
the quantity j6. Hence fi is often termed the wave-length constant,
and it may be evaluated in terms of the circuit parameters from the
original substitution, namely, V'i	 a ± 3$, Since Z = R + ix
and Y = g - jb, it follows that

a +j$ V(R +jX) (g — j&
	

(36)
a 2 + j2a$ - = Rg - jRb + jgX + bi

cr2 $2 = Rg + bX
	

(37)
2a$ = gX - Rb
	

(38)

Solving equations (37) and (3d) simultaneously for ft gives

V--i--ZY - (Rg + bX)
2	 (39)

The preceding derivation shows that all terms in equation (39) are
expressed algebraically and not in complex form. All the quantities
are per unit values, that is, per centimeter, per mile, etc.

It is interesting to find the velocity of propagation under the condi-
tions of zero srics resistance and a negligibly small value of g. Im -
posing these conditions gives

i±bX - bX

2	
=J—bX

The two signs before ZY in equation (39) and before bX above resulted
from the solution of a quadratic equation. As often occurs, one of such
solutions has no physical reality. If the plus sign were used in the al-
gebraic manipulation above, $ would be zero, which would in turn
give an infinite velocity of propagation. Obviously, this is impossible.
When making arithmetic computations the proper sign to employ is
that which will give a physically possible and plausible result. Had the
equations been based on g + jb, it would have been necessary to use the
plus sign before the ZY and bX above. Since 5 is the shunted suscept-
ance due to the line capacitance, it must carry a negative sign upon
substitution of a numerical value for it in accordance with the con-
ventions employed in this book. Substituting the value of fl above in
equation (35) gives

2irf 2-	 irf	
--- (forr 0 and '=O) (40)
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In equation (40) v is in miles per second if L is expressed in henrys per
mile and C in farads per mile. If one further assumption is made in
equation (40), namely, that the inductance due to the flux within the
cond'ictor is negligible, the velocity will be the same as that of light.
This is illustrated by example 2, pages 429-433.

Example 1. An open-wire telephone line has a resistance of 10.26 ohms, an in-
ductance of 0.00366 henry, and a capacitance of 0.00822 pf per loop mile (one mile
of outgoing plus one mile of return conductor). Calculate the velocity of propa-
gation for a 200-cycle and also for a 2000-cycle frequency, assuming that the values of
R, L, and C are the same at both frequencies. Assume g - 0 in both cases.

At 200 cycles

X 2w 200 X 0.00366 = 4.6 ohms per loop mile
Z = V10.262 + 4 . 62 = 11.22 ohms per loop mile
b -2xfC = -2w 200 X 0.00822 X 10- 1  -10.32 X 101 mho per loop mile
Y - 10.32 X 10 mho per loop mile

l±11.22X10.32 X 10- (-10.32 X 10 6 X 4.6)

1163.5 X 10-11 9.05 X 10
NJ	

22r 200
v	 = --- 139 X 10	 139,000 miles per second

9.05 X i0

At 2000 cycles
X = 2w 2000 X 0.00366 = 46 ohms per loop mile
Z = ViöOVè = 47.1 ohms per loop mile

-2,rfC -2u-2000 X 0.00822 X 10
= -103.2 X 10 mho per loop mile

Y 103.2 >( 10 mho per loop mile

- I
1±47.1X 103.2 X I r)- 11- (-103.2 X i - 6 X 46)

49610X106 - 69.3 X 10

2rf	 2w 2000
v - = - —i - 181,400 miles per second

$	 69.3 X 10
If parameters per mile to ground or neutral were used, Z would be halved, Y and

b doubled and would be the same.

Confusion sometimes arises as to what the velocity of propagation
refers to physically. The velocity of propagation of a voltage or current
wave is the velocity at which the impulse or pressure travels. It is
not the velocity of current flow. The velocity of current flow for normal
current densities in copper is very low, although the velocity of the
pressure wave is high. The phenomenon is somewhat analogous to the
application of pressure at one end of a long pipe filled with water. The
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pressure appears at the far end of the pipe very soon after it is applied at
the near end. However, the actual rate of flow of water in the pipe
may be very low, especially if only a comparatively small stream is per-
mitted to emerge at the far end.

Determination of Transmission Line Parameters. 1. Inductance.
The iridwtance per wire is used in transmission line calculations. It may
be derived as follows. Consider two parallel conductors as shown in

Fir . 12. Fart of a two-wire line.

Fig. 12, each having a radius r and separated a distance D between
centers. The fundamental equation of inductance when permeability
is constant is

L	 101 henry

where I is in abamperes and 0 is in maxwells. The field intensity
based on the law of Biot-Savart, at a distance of z centimeters from a
long straight conductor carrying a current is 2hz gilberts per centimeter,
which in air is numerically equal to the flux density. Referring now to
the open-wire line shown in Fig. 12,

d4, 
(21 

(1 dx)
X )

The total flux that exists outside of conductor A which causes an in-
ductive effect on conductor A is

-	 ,
fD 

1 dx = 221 log,

•L1=10=21log1Cr

= 2 X 2.30261 Iog 10 R 10-9 henry	 (41)

where i is expressed in centimeters.
as—
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The flux included from x = (D - r) to x = (D + r) has some effect
in inducing a net emf in the two conductors connected in series to form
a coil. The effect is due to this flux linking all of conductor A and
only part of conductor B. Integrating between the limits x = r and
x = D includes the full effectiveness of the
flux from x = (D - r) to z = P in caus-
ing the inductance. This balances the par-
tial effectiveness of the flux from x = D
to x = (D + r) which is neglected in
taking the limits from r to D. The flux
from x= (D+r)tox =co links both con-
ductors and therefore produces equal and
opposing ernfs around the loop. Hence
it has no net inductive effect. Equation	

x

(41) gives the inductance of conductor A	
F10 13due to all the flux on the outside of con- 

ductor A which is effective. The flux within the conductor causes
some inductance which may be calculated as follows.

Assume that the current in conductor A is uniformly distributed
across the cross-section. Let I' be the current per unit area. Refer
to the cross-section of conductor A shown in Fig. 13. The total current
responsible for the mmf causing flux through the element dx is i-x21'.

mmI = 4irNI = 4w (irx2l')

If the permeability of the conductor material is unity, the reluctance of
the flux path formed by the element dx and a length of conductor 1 is

2irx
= - cgs units when x is in centimeters

1 dx
4,r22I'=

2-x = 
2irxl'j dx maxwells

(ldx)

The flux 4 links only the fibers of the conductor from the center to a
distance x or K,rx2 fibers. To obtain the flux which links the whole
conductor that produces the same effect as the actual flux which links
KTX2 fibers, it is only necessary to find the flux linking Krr2 fibers
(the entire conductor), which is equivalent to the flux d4, linking Ks-x2
fibers. Calling the flux in questibn d, we have for equivalent linkages

• d4Krr2 = 4Kz2
x2

or
fA
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Hence

d4.	 (2zl'l dx)

f
2irx3J'j dx2irJ" /r4=
 (-T-) (,)

2

But ,-r21' is the total current I. Therefore

The inductance due to this flux is

1xI110-9 110-
21	 = 2	 (42)

The total inductance of conductorA is the sum of equations (41) and (42).

D1L = L1 + L2 
=	

+ 4.60521 log 10 —I 10 henry	 (43)rJ

The inductance per mile is

L ie 0.5 X 5280 X 30.48 10

+ 4.6052 X 5280 X 30.48 X 10 log10

= 0.805 10 + 0.741 X 107-3 log1ohenry	 (44)

Equation (44) is the working equation. Usually the reactance is de-
sired. It is found by multiplying the values obtained from equation
(44) by the angf1ar velocity 2rf.

2. Capacitance between Wires and to Ground. The defining equation
for capacitance is C Q/V. The defining equation for difference of
potential V is

W work
Q charge

The difference of electrostatic potential between two conductors is the
work done in carrying a unit charge from the.surface of one conductor
to the other. Work is the product of force and the distance through
which the force acts. By definition, if all quantities are expressed in the
cgs electrostatic system of units, the force on a unit charge is numerically
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equal to the electrostatic field intensity. The electrostatic field in-
tensity at point p, Fig. 14, at a perpendicular distance of r centimeters
from a long straight wire is found as follows.

Let all quantities be expressed in the cgs electrostatic system of units,
and let o. be the charge per unit length of wire. From Coulomb's law

f = QQ'/d2 dynes. Hence the force on a unit charge at point p due
to a length of conductor di is

d/ ' lXodZ2
p

where p is the distance in centimeters from p to dl. As 0 varies between
minus and plus 900 (on the basis of an infinite length of wire), it is

FIG. 14.	 Fio. 15.

apparent that all the components of df' parallel to the wire add to zero.
Therefore only the components perpendicular to the conductor need be
added to obtain the resultant force on the unit charge.

df=df' cos 8

crdi	 up do o' d8

	

= —çcos 0 =	 = -
p	p	 p
cid0	 cr

= -Cos 0d0
r/cos 0 i

1= f
"/2
 cos0d0	 dynes	 (45)

7 12r	 r

The force on the unit charge in Fig. 15 is due to the effect of conductor
A (say + charge) and that of conductor B (negative charge if A is

positive).
2o

/41 -
X

A 
2a

D - x
2

	

ffA+fD+ 2a,
	 (40)

x D—z
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dW =fthv Q	 Z) dx

W=
= v =

D --- r 2a 
+ 

2,L—) dx
f, (X 	=	 log.

D—

The charge on the line for a length 1 is al. Therefore

C _________ -cgsesu
V	 D — r	 D 

4cr log.	 -	 4 log,

where r now represents the radius of the conductor and is not the same
as in the derivation of equation (45). All quantitks in equation (48)
are in the cgs or absolute electrostatic system of un i ts, giving C in esu
or statfarads.

Equation (48) gives the capacitance between two parallel wires,
The capacitance to ground or neutral is usually desired in the calcula-
tion of transmission lines. Since the plane of neutral potential is
symmetrically located between positive and negative charges (asswning
a uniform dielectric such as air), the potential between one wire and
neutral," or what is also ground potential, is one-half of the potential

The preceding and following equations of capacitance are only approximately
correct because they are based on several assumptions which are only partially ful-
filled. First, the charge on the conductor is assumed uniform. This assumption
requires in part that the conductors be removed an infinite distance from all charged
bodies and that the conductors are circular in shape. Under such conditions the

I	
distribution of the electrostatic field is pictured in Fig. 16.
Equipotential surfaces are those in which all electrostatic
lines of force enter and leave perpendicularly. One
equipotential surface XX' is shown in Fig. 16. This
surface is at a distance halfway between the two eon-

X X' ductors and is therefore at a potential midway between
the positively and negatively charged conductors. Such
a surface is said to be at zero potential, and it is some-
times called the neutral plane between conductors, or
simply the neutral. If the earth is considered a conduc-

Ha. 16. F.quipotentialline tor and to be at zero potential, it may be assumed to be
XX' iø at a potential mid- the same as the equipotential plane XX . Hence the
way between the poai- potential and capacitance to earth or ground may be
tively charged top and taken the same as that to the equipotential surface XX'
negatively charged lower in Fig. 16 provided D/2 is relatively small compared

with the physical height of the conductor above actual
ground. Even though all the above assumptions are not completely fulfilled, the
equations given yield results which are sufficiently accurate for most work concerning
transmission lines. For more accurate derivations of capacita.ace the reader is
referred to works on electrostatics and electrodynamics.

427

(47)

(48)

-28
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[given in equation (47)] between wires. Hence

(4
a 	

rD—r\
1og,
	2iog(D_rvg )

J

C1	 1
and	 Cg = ___________ =	 esu	 (49)

b—v	 —
2 log,	 2 log, 

D	 r

	

7-	 r

Expressed in farads per mile, equations (48) and (49) for the capacitance
between conductors and between one conductor and ground become:

Cfarada	

1640 X 10"

	

per mile =	 (50)
—

log10 
D	 r

r

Cg
38S0 )< 10_Il

	

tarads per mile =	 (51)
—

log10 
D	 r

1•

Equations (50) and (51) are the working equations As long as D and
r are expressed in the same units, the actual units are immaterial.

Equations (44), (50), and (51) form the basis of tables wherein values
of L or C may be immediately determined when the size of wire and
spacings ire known. Samples of tables where the quantities are ex-
pressed in units per thousand feet are shown in Tables I and II.

When equations (44), (50), and (51) are applied to three-phase
transmission the distance D is that for equilateral spacing, as shown in
Fig. 17. These equations are often applied to plane spacings, as shown

Flo. 17. Equilateral spacing of a trane-
miuion tine.

Fin. 18.
tw^R___ q.

 Plane spacing of a transmission
line.

in Fig. 18, in which cases D is taken as the geometric mean distance,
that is, D = YD 1 D2D3. The results thus obtained are sufficiently
accurate for most computations.

'Reprinted by permission from Electrical Engineers' Handbook: Electri'
Power," fourth edition, edited by Pender and Del Mar, pp. 14-39 and 14-34, Johr
Wiley & Sons, Inc., 1949.
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TABLE I

SELF-INDUC'TANCZ OF Souo NON-MAGNETIC Wiass
Miflibenrys per 1000 FEET of each wire of a aingle-pbaze or or a symmetrical tbree.phszei lb.

	

Size of	 Diato, of	 Inches between Wires, center to center
Wire. Wire,  •ire,

	

inches	 I	 3	 6	 9	 Il	 IS	 24	 30

	

1,000,000	 1.0000	 0.05750 0.1245	 0.1667	 0.1915	 0.2090	 0.2331	 0.2512	 0.2648

	

750,000 0.8660	 0.06627 0.1332	 0. 1755	 0.2002	 0.2178	 0,2425	 0.2600	 0.2136

	

500,000 0.7071	 0.07863 0.1456 0.1879 0.2126 0.2301	 0.2348	 0.2724	 0.2860

	

350,OQO 0.5916	 0.08950 0.1565	 0.1987	 0.2235	 0.2410	 0.2657	 0.2832	 0.2968

	

250,000 0.5000	 0.09976 0.1667	 0.2090	 0.2337	 0.2512	 0.2760	 0.2935	 0.3071

	

0000	 0.4600	 0.1048 0.1718	 0.2141	 0.2388	 0.2563	 0.2810	 0.2986	 0.3122

	

000 0.4096	 0.1119	 0.1789	 0.2211	 0.2459	 0.2634	 0.2881	 0.3057	 0.3193

	

00 0.3648	 0.1190 0.1860	 0.2282 0.2529	 0.2705	 0.2952	 0.3121	 0.3263

	

0 0.3249	 0.1260	 0.1930	 0.2353	 0.2600	 0.2775	 0.3022	 0.3196	 0.3334

	

I 0.2893	 0.1331	 0.2001	 0.2423	 0.2671	 0.2846	 0.3093	 0.3269	 0.3405

	

2 0.2576	 0.1402	 0.2072	 0.2494	 0.2741	 0.2917	 0.3164	 0.3339	 0.3475

	

4 0.2043	 0.1543	 0.2213	 0.2635	 0.2883	 0.3058	 0.3305	 0.3481	 0.3617

	

6 0.1620	 0.1685 0.2354	 0.2777 0.3024	 0.3199	 0.3447 0.3622	 0.3758

	

8 0.1285	 0.1826 0.2496 0.2918 0.3165 	 0.3341	 0.3588 0.3763	 0.3899

	

10 0.1019	 0.1967 0.2637 0.3060 0.3307 0.3482	 0.3729 0.3905	 0.4041

	

12	 0.08081	 0.2109	 0.2778	 0.3201	 0.3448	 0.3623	 0.3871	 0.4046	 0.4182

	

4	 0.06408	 0,2250	 0.2920	 0.3342	 0.3590	 0.3765	 0.4012	 0.4187	 0.4323

	

16	 0.05082	 0.2391	 0.3061	 03484	 0.3731	 0,3906	 0.4153 i 0.4329	 0.4465

	

Size of	 Feet between Wires, center to center

	

cir mile or	
6	 8	 IS	 20	 25

	

1.000,000	 0.2760	 0.2935	 0.3071	 0.3182	 0.3358	 0.3494	 0.3741	 0.3916	 0.4052

	

750,000	 0,2847	 0,3023	 0.3159	 0.3270	 0.3445	 0.3551	 0.3028	 0,4004	 0.4140

	

500,000	 0.2971	 0.3146 0.3282 0.3393 0.3569 	 0.3705	 0.3952	 0.4127	 0,4263

	

350,000	 0.3050	 0.3255 0.3391	 0.3502	 0.3678	 0.3814	 0.4061	 0,4236	 0.4372

	

250,000	 0.3182	 0.3358 0.3494 0.3605	 0,3780	 0.3916	 0.4163	 0.4339	 0.4475

	

0000	 0.3233	 0.3408 0,3544 0.3656 0,3831	 0.3967	 0.4214	 0.4390	 0.4526

	

000	 0.3304	 0.3479	 0.3615	 0.3726	 0.3902	 0.4338	 0.4285	 0.4460	 0.4596

	

00	 0.3374	 0.3550	 0.3686	 0.3797	 0.3972	 0 4103	 0,4356	 0.4531	 0.4667

	

0	 0.3445	 0.3620	 0.3756 0.3867	 0.4043	 0.4179	 0.4426	 0.4601	 0.4737

	

I	 0.3516	 0.3691	 0.3827	 0.3938	 0.4114	 0.4250	 0.4497	 0.4672	 0.4808

	

2	 0.3586	 0.3762	 0.3898	 0.4009	 0,4134	 0,4320	 0.4568	 0 4745	 0.4879

	

4	 0.3728	 0.3903	 0.4039	 0.4150	 0.4326	 0.4462	 0.4709	 0.4884	 0.5020

	

6	 0.3869	 0.4045	 0.4181	 0.4292	 0.4467	 0.4603	 0.4850	 0,5026	 0,5162

	

8	 0.4011	 0.4186	 0,4322	 0.4433	 0.4608	 0.4744	 0.4992	 0.5167	 0,5303

	

ID	 0.4152	 0.4327	 0.4463	 0.4574	 0.4750	 0.4886	 0.5133	 0.5308	 0.5444

	

ii	 0.4293	 0.4469	 0.4605	 0.4716	 0.4891	 0.5027	 0. 
52 

74	 0.5450	 0.5586

	

14	 0.4435	 0.4610	 0.4746	 0.4857	 0.5033	 0.5169	 0 5416	 0.5591	 0 5727
-	 16	 0.4576	 0.4731 1 0,4887	 04998	 0.5174	 0 5310 I 0 5557	 05732	 0. 596

The inductances given in this table 5130 appiy, with a practically negligible error (about 1 pecent), to ordinary ztandecl wires of the Sam. clou-section.

Example 2. Exact Solution of a Transmission Line. A 60-cycle transmission
line 200 miles long consists of three No. 0000 solid conductors with 10-ft equilateral
spacing. Calculate the sending voltage when the receiver voltage is 110 kv between
lines and when the line is supplying a balanced load of 18,000 kw at 0.8 power-factor
lag. Also calculate the sending-end current and the efficiency of the line at 25 z C.
Assume that the conductance to ground is negligible.
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rirn.ETI

CA1',crrANcE ro NaL'rakt.' or SM00'rn RouND Winza

1f1crofrade per 1000 FEET or each wire d a single. phaae or of i.ytnineb'ical tbree.phiae lIne

•	 Wiie.
Itcbca

18

0000 0.4600
000 0.4096
00 0.3648
0 0.3249
I 0.2893
2 0.2376
4 0.2043
6 0.1620
8 0.1285

10 0.1019
12 0.05081
14 0.06408

lochee between Win. center to center

I	 I	 I	 6	 I	 I	 I	 IS	 24	 30

0.01199 0,006608 0.005192 0.004618 0.004282 0.003884 0.003643 0.003477
0.01099 0.006317 0.005013 0.004477 0.004161 0.003783 0.003555 0.003396
0.01016 0.006055 0.004847 0,004344 0.004045 0.003688 0.003470 0.003319
0.009458 0.005812 0.004692 0.004218 0.003936 0.003597 0.003390 0.003245
0,006855 0.005587 0.004546 0.004100 0.003833 0.003511 0.003313 0,003174
0.008332 8.00538.1 0.004408 0. 0039U 0.003735 0.003428 0.003239 0.003107
0.007455 0.005010 0.004157 0.003781 0.003553 0.003274 0.003102 0.002380
0.006753 0.004688 0.003933 0.003595 0.003388 0.003134 0.002975 0.002943
0.004177 0.004406 0.003732 0.003426 0.003238 0.003005 0.002859 0.002755
0.005693 0.004155 0.003551 0.003273 0.003100 0.002886 0.002751 0.002655
0.005277 0.003931 0.003386 0.003132 0.002974 0.002776 0.002651 0.002562
0.004921 0.003730 0.003235 0.003003 0.002858 0.002675 0.002558 1 0.002475

to	 rt betwean wi,

	

6	 a	 10	 . 15	 20	 25

0000 0.003351 0.003171 0.003043 0.002947 0.002806 0.002706 0.002542 0.002436 0.002361
000 0.003276 0.003103 0.002981 0.002039 0,002753 0.002657 0.002498 0.002396 0.802323
00 0.003204 0.003039 0,002922 0.002833 0.002702 0,002610 0.002456 0.002.358 0.002287
0 0.003135 0.002977 0.002884 0.002779 0.002653 0.002564 0,002416 0,002320 0.002251
I 0.003069 0.002917 0.002609 0,002727 0.002606 0.002520 0.002376 0,002284 0.002217
2 0.003006 0,002860 0.002756 0.002677 0.002360 0.002477 0.002338 0.002.249 0.002184
4 0.007887 0.002752 0.002656 0.002582 0.002474 0,002396 0.002266 0.002182 0.002121
6 0.002777 0,002652 0.002563 0.002494 0.002392 0.002319 0.002197 0.002118 0.002061
8 0.002676 0. 0025 59 0.002476 0.002412 0.002317 0.002248 0.002133 0.002059 0.002004

10 0.002381 0.002473 0.002395 0.002335 0.002245 0,002181 0,002073 0.002002 0.001951
12 0.002493 0.002392 0.002319 0.002262 0.002178 0.902118 0.002016 0.001949 0.001900
141 0.002411 1 0.002316 0.002247 1 0.002194 0.002115 0,002058 0,001961 0.001896 0.0018.52

• The capacitance be1aeen wires equals one-b,M the values given in We table.

All calculations will be made per pheae to neutral or ground

V,, -110,000 63,500 volts

18,000,000
Jr	 iio,0003i - 118 amperes

From wire	 the 60-cycle resistance per mile of No. 0000 at 25° C is 0.271 ohm.
The diameter of No. 0000 wire is 460 mils.

- 0.805 X 10 + 0.741 )< 10 logw

- 0.805 X 10 + 0.741 X 1074 X 2.718
- 0.805 X 10 + 2.01 X 10

	

- 20.9 >(	 henry per mile
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Reactanoe per mile - 2r 60 X 20.9 X 10-' - 0.788 ohm

b	 -211C

3880 )< 10-11

	

=	
120 - 0.23 1430 X 107-"farad

logio 0.23

Suceptance per mile -2s- 60 X 1430 X 10 - -0.538 X 10 mho

Y g -jb = -l-ft).538 X 10- S  0.538 X 105mho
Z = r+ jX = 0.271 +jO.788 =0834/71.05°ohms

- vö	 /71.050.538 X 10-6 /	 = 2.12 x 100.

I	 /71.05'
-	

0.834	
3.94 X 10/-9.48'ohrns

0.254 X ICT /9.480 mhos

For 1	 200 miles,
- 0.07450.41 - 0.07 flIJ

Vr 63,500 + JO volts
- 118 /-36.9°amperes

(V,.-+4 Z y	 /63,500

2 -n

	 + 118/-36.9' x 3.94 x 102/._9.480)

2

- 47,800 - 516,800 volts

(yr_I- 1 V'7V)v'iz = (47,800 - 1 6,800)001/9

_ (51,300 -
= 54,400 / -19.4'

54,400 /4. 5*

(V. -	 (15,700 +j16,800°i''

- (14,610 + J15,630)4'9
- 21,400 j'/-23.9'

21,400	 volta

	

(yr + lq	 _____
V.	

+

 (Y---

- 54,400,L4.5*  + 21,400J
- 54,2(0 +14270 + 19,680 +18355
- 73,880 + 512,625 - 74,970	 volts
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The current at the sending end could be calculated in a similar way. However,
for illustrative purposes It will be calculated from equation (27).

I, cosh/ +VV j sinh '/1

The following relations are convenient to use when dealing with hyperbolic functions
of complex angles:

sinh (x y) - slob z cash y ± cosh z sinh y
cosh (z± v) - cosh z cosh ±sinhzsinhy
sinhjz - jsinx
coshjz - cosz

= 2.12 X 10X 200 0.424/8(15° O.i

cosh (0.07 + jO.418) = cash 0.07 coshjo.418 + sinh 0.07 sinh j0.418
cosh 0.07 cos 0.418 + j sinh 0.07 sin 0.418
cosh 0.07 cos 23.9° + 5 sinh 0.07 sin 23,9°
1.00245 x 0.9143 + 50.07 x 0.4051
0.915 + 50.02835

sinh (0.07 +jO.418)= sinh 0.07 cosh 50.418 + cosh 0.O7sinhjo.418
- sinh 0.07 coo 23.9° +; cosh 0.07 sin 23.9°
= 0.07 X 0.9143 +51.00245 X 04051

0.0639 + 50.406

V,	 = 63,500 )< 0.254 X 10'/° 161.30	 amperes

V. -/YFZ sinh 'v'ZYI = 161.3 /° (0.0639 + 50.406)
-0.66 + .y66.3 amperes

Icosh V'L	 (118/-36.9°)(0.915 +50.0284)	 88.4 -562.1 amperes

= 88.4 -562.1 -0.66 +j66.3
- 87.8 +j4.2 - 87.9 /2 8 * amperes

As a check on the sending voltage, V, will be calculated by the hyperbolic equation

V, cosh /?1 + I,. 'J7' siah

V - 63,500 x 0.915/1.75° + (118 / _36,90 x 3.94 x 102/ 9.480) (0.0639 +50.406)

= 58,100 + 51770 + 15,700 +510,880
73,800 +j12,652 74, 850 L7 volts

P. vi + v'z' - 73,800 X 87.8 + 12,652 )< 4.2
6,490,000 + 53,100
6,543,000 watts per phase

Efficiency -	 0.917

If tables of complex hyperbolic functions are available, the hyperbolic solution is
greatly aimpliiied.
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Calculation of Velocity of Propagation. From equations (35) and (39).
2rf

t7

j

^LZY - (Rg + bX)

ZY = 2.12 X 101 = 4.5 x 10
Rg = 0
bX = —0538 x 10-5 x o.ss	 —0.424 x 105

5= 2

V =

	

	 = 180 300 miles per second
2 L)9 >( i0

If the resistaiie and the inductance due to the flux within the conductor are neg-
lected, the vclocitv from equation (40) is

I 	_ii_______________

'ILC -- V2.01 x 10- x 111() X l0 -

= 186,4(X) miles per second, or the velocity of light

PROBLEMS

5. Solve Problem 1, page 411, by the exact imethod of calculating transmission
hoes.

6. Points .4 and B are 150 miles apart and are connected by a parallel-wire line
having parameters as follows:

Effective resistance per loop mile at 1000 c ycles, 60 ohms
Effective inductance per loop mile at 1000 cycles, 0.0042 henry
Effectie capacitance per loop mile at 1000 cycles, 0.00755 JA
Shunted conductance is negligible.

The line is assumed to be terminated at point B with an impedance equal to its
surge impedance. Find the voltage, current, and power received at point H when
50 volts at. 1000 c y cles are impressed at .1. (A mop mile consists of one mile cA
outgoing plus one mile of return conductor.) Use VA as reference.

7. Calculate by means of the formula the inductance in henrys per mile of
No. 0000 wire with an equilateral spacing of 6 feet.

B. Calculate the capacitance per mile between wires and between one wire and
neutral or ground for the line in Problem 7.

9. A 3- phase 60-cycle transmission line is 150 miles long and consists of three
No. 0000 a ires spaced at corners of an equilateral triangle which are 15 feet apart.
The line is to deliver 138,000 line-to-line volts and 45,000 kw total poeer at 0.8 p.f.
lagging at the receiver. Calculate the required sending-end voltage, current,
power factor, and e fficiency of transmission if the nominal T line is used. See
bottom of page 430 for resistance of No. 0000 wire. Use	 as reference.

10. Work Problem 9 if the nominal i line is employed.
11. Work Problem 9 if the Steinmetz three-condenser method of representing

the line is used.
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12. Work Problem 0 if the exact method of calculating long lines is employed.
13. Calculate the velocity of propagation of the wave in Problem 12.
14. (a) If 13,000 line-to-line volts were maintained at the sending end of the

line in Problem 0, what would be the receiver-end voltage with the receiver end
open? Lmi y the e\act method olsolution. (b) What is the magnitude of the
direct wave at the receiver? (c) of the reflected wave?

16. "hat is the velocity of propagation of the wave in Problem 6?
16. What is the attenuation in decibels per mile of the transmission line described

in Problem 6?

1'. '	 .. ...	 A.

IQ


