chapter

XI Electric Wave Filters

The frequency characteristies of certain types of networks can be
employed to separate waves of different frequencies. The separation
may be effected primarily for the purpose of selecting & desired band
of frequencies or for the purpose of rejecting an undesired band. Se-
lected bands are called pass or transmission bands, and rejected bands
are called stop or attenuation bands. Any network which possesses
definite properties of frequency discrimination and which is capable
of separating electric waves of different frequencies is called an eleciric
wave filter or, simply, a filter.

Selective Properties of Circuit Elements and Elementary Circuits.
Single reactive circuit elements are sometimes employed to pass or
reject frequency bands when only broad diserimination is to be made.
Thus blocking condensers in many vacuum tube circuits discriminate
very satisfactorily between waves of zero frequency (direct current)
and high-frequency waves, Inductance coils can be employed to pass
direct current and practically eliminate frequencies which are of the
order of 1000 kilocyecles.

High-Frequency Line Drain. A high-frequency disturbance can be
drained from a low-frequency, two-wire line with a condenser arrange-
ment similar to that shown in Fig. la. The condensers constitute a
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Fla. 1. Devices for draining induced disturbances from two-wire lines.

relatively high impedance to the low-frequency line voltage, both line-

to-line and line-to-ground. At the same time a relatively low line-to-

ground impedance is presented to the high-frequency variation which in

the present case is assumed to be the result of an induced disturbance.
433
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Low-Frequency Line Drain. A method sometimes used to drain a
low-frequency induced disturbance from a two-wire line is shown dia-
grammatically in Fig. 1b. The drain coil is ironclad and offers a rela-
tively high impedance to current which tends to flow from line-to-line.
If, however, both lines are raised simultaneously above (or below)
ground potential by induction, the currents which flow from the lines
to ground magnetize the core in opposite directions. With respect to
the induced currents, the two halves of the coil are in series opposition
with the result that the impedances offered to these currents to ground
are relatively very low. The device can be used to drain charges from
telephone lines which are electrostatically induced from neighboring
power lines.

Typical Smoothing Network. A very common form of filter is the
elementary w-section shown in Fig. 2. This particular type of filter
section is widely used to give d-¢c output from rectified a-c wave forms.

Thermicnic rectifier
Smoothing network

Load
rasistance

)
S
g/

. s
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e

Fic. 2. A commonly used filter section.

The output voltage of the rectifying device, namely, that which appears
across the input terminals of the filter section, will take the following
general form:

v = Vg + Vo sin (it + ) + higher harmonics

where 17;. is the average value of the rectified wave and w, is the angular
velocity of the lowest-frequency component present in the voltage vari-
ation. A typical voltage input variation is shown in Oscillogram la.

If, for example, both halves of 60-cycle wave are rectified sym-
metrically, the lowest frequency component in the rectified voltage
wave will be that of 120 cycles, in which case w; = 754 radians per
second, In unsymmetrical zectification w; is generally equal to the
fundamental angular velocity of the alternating variation which is being
rectified.

Under ideal conditions the filter section shown in Fig. 2 should pass
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waves of zero frequency with no attenuation and absolutely stop
waves which are of other than zero frequency. Obviously, these ideal
conditions of operation can only be approached in practice, but the

(a)

(b)

(c)

(d)

OsciLioaran 1.

(a) Rectified a-¢ wave, no fltering.

(5) Rectified a~¢ wave, choke fltering only.

(¢) Rectified a-c wave, choke and input condenser filtering. .
(d) Rectified a-c wave, complete r-section filtering. (See Fig. 2.)

difference between ideal operation and actual operation can be made
exceedingly small by proper design. See Oscillogram 1d.

For full-wave, 60-cycle rectification’ satisfactory filtering can usually
be obtained if Cy and Cy of Fig. 2 are about 4 or 5 uf each and L is
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about 30 or 40 henrys. The permissible voltage regulation will, to a
large extent, determine the amount of resistance that can be present
in the inductance coil in any particular instance. In any case R is
very small as compared with w;L. The result is that, when the -
section is energized with a rectified voltage, it presents a relatively low
impedance to zero-frequency current. The impedances offered to other
than zero-frequency currents are relatively very high.

If, for example, L = 30 henrys and w, is 754 radians per second, the
series impedance of the filter section to the w; component of current is
approximately 22,600 ohms. The series impedances to the higher-
frequency components are proportionately greater. The series im-
pedance of the filter section to the d-c component of current may, in a
particular case, be only 20 or 30 ohms. Therefore, the inductance coil
acting by itself will tend to smooth out the rectified wave as shown in
Oscillogram 1b.

The input condenser, €, is an important member of the filter section,
although it is entirely possible to design a smoothing network which
does not employ a condenser at the C; position shown in Fig. 2. It
will be noted that C, is placed directly across the output terminals of
the rectifying device. It provides a relatively low-impedance path for
all a-¢ components. The anode-cathode impedance of the tube may be
10 or 20 times greater than 1/w;C;, in which case the voltage drop across
C, is only a small fraction of the total drop due to the a-c components
of the rectified voltage. This aids materially in the smoothing process
but at the same time increases the actual plate current of the rectifying
elements. Filter sections which employ a condenser directly across the
terminals of the rectifying device are called condenser input sections.

A complete analysis of the composite circuit shown in Fig. 2 is compli-
cated by the presence of the transformer, tube, 2nd load impedances and
will not be undertaken at this time. Actually -the smoothing network or
ripple filter shown in Fig. 2 is a particular form of low-pass filter, the
general theory of which is considered on pages 464—468 of the present
chapter.

Image Impedances of Four-Terminal Networks. Most filter sections
take the form of a four-terminal network, and as such they possess one
pair of input terminals and one pair of output terminals. With this
arrangement of terminals, a filter section can be inserted directly into
a two-wire line.

General four-terminal network theory is rather elaborate and is not

! For details see  Electrical Engineers’ Ha.ndbook: Electric Communication and
Electronics,” fourth edition, edited by Pender and McIlwain, pp. 7-108, 7-108,
John Wiley & Sons, Inc., 1850
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considered to be suitable first-course material. There are certain as-
pects of the subject, however, that are essential to a proper understand-
ing of elementary filter theory. One of these is the concept of image

impedances.
lnp_ul = Output
' A
m ! t Four-terminal T T
i v, ontlwnrk <Lir> Va
JAON! |
o
Terminals > Terminals

Fic. 3. Four-terminal network terminated on the image impedance basis,

The rectangle shown in Fig. 3 is assumed to be any form of four-
terminal network, the internal circuit elements of wnich may or may
not be accessible. It is also assumed that the individual circuit ele-
ments are linear. Circuit elements are linear if effects are proportional
to causes, for example, if currents are proportional to applied voltages.

The image impedances of a four-terminal network are called Zz; and
Z;, and are defined in the following manner. (Refer to Fig. 3.) If the
impedance across the input terminals (locking into the network) is Zpy
when the output terminals are closed through Z;, and if the impedance
across the output terminals (looking into the network) is Zy, when the
input terminals are closed through Z;,, then Z;, and Z;, are called the
image impedances of the network. If a four-terminal network is termi-
nated in its image impedances, Zy, and Zj,, the impedance locking either
way from the input terminals is Z;; and the impedance looking either di-
rection from the output terminals is Z;;. The network is correctly
matched when the input impedance is Z;; and the output impedance is
Z;; and under these conditions the network is said to be terminated
on the image basis.

A special case of image impedance termination is employed in ele-
mentary filter theory. The assumption is made that Z;; = Z,, and
this particular value of impedance is called the characteristic impedance
of the filter section. -

The image impedance at either end of a given network can be de-
termined from the open-circuit and short-circuit impedances. By
open-circuit impedance, Z,., is meant the impedance looking into one
set of terminals when the other set of terminals is open-circuited. By
short-circuit impedance, Z,.., is meant the impedance locking into one
get of terminals when the other set of terminals is short-circuited. It
can be shown that image impedance at either end of a four-terminal
network is the geometric mean of the open-circuit and short-circuit

impedances,
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Thus in Fig. 3:

Zn=VEZ iZ.a (¢))]
and
Zrz s zo-caz-.cn (2)

Generalized proofs of the above equations will not be given but it
will be shown presently that the relations stated are correct when
Zy = Zps, the condition which is of special importance in clementary
filter theory.

Characteristic Impedances of T- and #-Sections. The basic units
of elementary filter theory are the symmetrical T- and r-sections shown
in Fig. 4. Although both of these sections are essentially threc-terminal
networks, they are usually inserted into a two-wire line in the same
manner as a four-terminal network. Viewed as three-terminal net-
works, the T-cection is a wye-connected set of impedances and the
w-section is a delta-connected set of impedances. It should not be sup-
posed that the Z; and Z, values given in Fig. 4a and Fig. 4b are, in
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Fio. 4. Symmetrical T- and w-sections.

general, equivalent wye and delta values. The circuit clements are’
usually labeled as indicated in Fig. 4 in order to make the algebraic ex-
pressions for several of the filtering characteristics the same for both
the T- and r-sections,

The series impedance of a symmetrical T-section is composed of two
similar units, each of which is labeled Z,/2 in Fig. 4a. The impedance
labeled Z; in Fig. 4a is called the shunt impedance of the T-section, The
shunt impedance of a symmetrical x-section is composed of two equal
branches, each labeled 2Z; in Fig, 43, and these shunt branches are lo-
cated on either side of the series impedance Z,, If the series and shunt
impedances are designated in accordance with Fig. 4, ladder structures
formed by the cascade arrangement of successive sections are generally
similar. (See Fig. 10 and Fig. 11.)

If the output terminals of the T-section shown in Fig. 4a are closed
through an impedance Z,r, the impedance across the input terminals
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Z
Z; (El‘ + Zor)

(looking into the network) is:

z
B, g e (3)
Z,+ %5 + Zor
In order for Z;, to equa! Z,,, i* follows that:
YAV
z 12 2 + zzzor
1
Zyp = ’5‘ + A (4)
3‘ + Z3 + Zop

The above equation may be solved for Z,r and the result stated in terms
of Z, and Z;. Thus it can be shown that the characteristic impedance of
the T-section is:

Z? Z
Zor = \/21,22 ‘i'Tl = \/zizn (1 +Ezl;) (5)

If the output terminals of the =-section shown in Fig. 4b are closed
through an impedance Z,,, the impedance across the input terminals
(looking into the network) is:

2Z, (Zl +

2Z.Z,, )
22, + Z,,

2Z,.Z..
223 + zn'
In order to determine the conditions under which Z;, is equal to Z.,
it is simply necessary to set Z;, = Z,» in the above equation and solve
the resulting equation for Z,,. After Z;, has been set equal to Z,,
and all fractions cleared, it will be found that:

Zoy? (Z) + 4Z;) = 4Z,Z,°

(6)

Zin =
22,4+ Z, +

From which the characteristic impedance of the r-section is

42]2-)2 ZIZQ
= —_— = —_— v
Zox \/21—1-422 (1 . zl) @
12,

Equations (5) and (7) are important relations in filter theory because
they define the characteristic impedances 2,1 and Z,, 1n terms of the
series and shunt elements out of which the T- and r-sections are com-
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posed. If a filter section is terminated in its characteristic impedance,
the impedance across the input terminals (looking into the network)
is the same as the receiving-end impedance. (The importance of
designing filter sections to have partrcular characteristic impedances
will become more evident after composite filter sections are studied.)
It should be noted that a given filter section terminated at both ends
in its characteristic impedance is terminated on the image basis and that
in this particular case Z;, and Zp; are equal. (See Fig. 3.) Reference
to equations (5) and (7) will show that:

zorzor - zl.zf-‘ (8)
2z

and ' Zow = o— (9)
on‘

Equations (8) and (9) define a rather important relationship that exists
between the characteristic impedances of T- and m-sections, the Z;’s
and Z,'s of which are equal.

Filter theory is based upon Z;, Zs, Z,r, and Z,, to such an extent that
the physical significance of each of these four impedances should be
clearly understood. The reader who is unfamiliar with filter theory
nomenclature should at this stage review the definitions which have been
given for Zy, Z3, Zor, and Z,,. [See Fig. 4 and equations (5) and (7) ]

Erample 1. In Fig. 4q, let each Z,/2 take the form of an inductance coil, the
indictance of which is 0.047 henry and the resistance of which is 1 ohm. The shunt
arm, namely, Z», is to take the form of a 300-uf condenser. (Note: This is an uncon-
ventional set of parameters for this type of filter section but since some of the experi-
mental results which follow are based upon these particular values they will be
used bere to illustrate the caleulation of Z.7.)

The method of caleulating Zor &t 50 cycles is as followsa:

Z,
2
Z; = 20.6 '86.1° ohms (Full series arm impedance.)

= "—;—' +;‘...£2‘ =1+ j1477 = 14.8 /86.1° ohms

1
Zy =0 —JT =0 — j10.61 = 10.615-90' ohms
wlz

Z,?
Zr = ‘zxz|+7l'

- ’(29.6 /86.1°)(10.61 /—90°) +
= 0.83 /2.5° = 9.81 + j0.43 obms

(20.6 /86.1°)7
4

The physical significance of the above value of Z.r is that, if an impedance of
9.83 /2.5° ohms is placed across the output terminals of this symmetrical T-section,
the impedance looking into the inpul terminals is also 9.83 /2.5° ohms.
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Problem 1. Neglect the resistances of the two inductance coils that form the
geries impedance of the filter section in the illustrative example given above and
find Z.r at 50 cycles and at 100 cycles. (It may be of interest to know that this
symmetrical T-section forms a low-pass filter that passes all frequencies up to 60
cycles and attenuates those above 60 cycles.)

Ans.: At 50cycles, Z,r = 9.78&011:28.

At 100 cyriles. Z,r = 23.65 /00° ohms,

Problem 2, The series impedance, Z |, of a symmetrical r-section (like that shown
in Fig. 4b) consists of a 0.02-henry inductance coil, the resistance of which is assumed
to be negligibly small. Each of the shunt arms, namely, 2Z, is composed of a 2.0-uf
condenser. (This symmetrical w-seclion forms a low-pass filter which passes all
" frequencies below 900 cycles without attenuation as will be shown later.)

Find the characteristic impedance of this section at 200 cycles and at 2000 cycles.
Use equation (7) and recognize that

10*
Z, =002 /90° and Zs = {—w-/—gﬁ" ohms

Ans.: At 200cycles, Z,» = 718 ,/i“ohms.
At 2000 eycles, Z,r = 48 / —00° ohms.

Characteristic Impedance as a Function of Open-Circuit and Short-
Circuit Impedances. Reference to Fig. 5a will show that the open-
circuit impedance of a T-section (locking into the section) is:

2y

2

Z#-: -

+ Z, (10}

Fic. 5. Z, and Z,, of a symmetrical T-section.

When the output terminals are short-circuited as shown in Fig. 5b the
impedance of the T-section (looking into the section) is;

z Z.®
z, Elzz —zl--}-Z{Zg
zl': =E+Z - Z (11}
1
s+ T+

The geometric mean of Z, ., and Z,_. is:

2
VEZ,, = \[2iZa + 2 (12)

3
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It has already been shown that

2
Zr =, lezz + ZT;' [See equation (5).]

Zr =VZ,.Z,., (13)

The fact that Z,7 is equivalent to the geometric mean of Z,_. and Z,..
provides the basis for a simple experimental method of determining the
characteristic impedance of a given section.

Therefore,

(a)

Fra. 6. Z, and Z, of a symmetrical m-section.

(»)

Reference to Fig. 6a will show that the open-circuit impedance of a
symmetrical w-section (looking into the section) is:

! _ 22,(2, + 2Z,)

& Zy + 42, (14)

If the output terminals of the m-section are short-circuited as shown in
Fig. 6b, the input impedance is:

_ 22,Z,
S Zy 4+ 2Z,

T = 225" (16)
o-clg-c = Z] + 422

Comparison of the above relation with equation (7) will show that:
Zo: il 4 Zn-czl-c “7)

Equations (13) and (17) indicate that the characteristic impedance of
either the T- or »-section is equal to the geometric mean of their respec-
tive open- and short-circuit impedances. It should be evident that the
symbols Z,.. and Z,_, in equations (13) and (17) refer to open-and short-
circuit impedances of the particular section that is under investigation.
In general Z,r # Z,.,.

Problem 8. Referring to Fig. 7 find (a) Z..., (b) Z,.., and (¢) Z,y at 200 cycles.
Ans.: (a) 186.2 /—90°, (b) 26.0 /80°, and (c) 69.5 /0° ohms.

Z,. (15)
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Problem 4. Referring to Fig. 8, find (a) Z,., (b) Z,.,, and (c) Z,+ at 200 eycles.
Ans: (@) 1925 /—90°, (b) 26.8 /80°, and (c) 71.8 /_o- ohms.

-lé! .l‘u—om heary i 4 Ly = 0.02 henry
._rw '_Lc S TR <
Co=anf 5 =20ut Spm= 2.0uf
e | i

F1c. 7. A particular symmetrical T-section ] Fic. 8. A_fjarlinuhrln'mrr_:elrieal w-section
for use with Problem 3 for use in connection with Problem 4.

Physical Operation of Symmetrical T- and w-Sections, The T- and
r-sections shown in Fig. 4 possess some remarkabl. properties when their
output terminals are connected to the characteristic impedances Z,p»
and Z,, respectively. Before considering the filtering properties of these
sections, some of the basie relationships that follow directly from ele-
mentary cireuit theory will be established.

The conditions imposed on equations (4) and (6), page 441, make
Z,, = Z,, foreither type of section. Hence I; = V;/Z,and I, = V,/Z,,
where Z, symbolizes the characteristic impedance of the particular type
of section considered. It follows directly that

Il_ﬂ TVl_Vgh L‘OS&_I12
I - V, g Wy o VoI, cos 8 - Ign (13)

where the subscripts 1 refer to input quantities and the subscripts 2
refer to output quantities. Since the impedance looking into the input
terminals is the same as the terminating impedance, the angle between
Vi and I, is equal to the angle between V, and I,. This angle is sym-
bolized as ¢ in equation (18) and is equal to tan™ (X,/R,), where X,
and R, are the reactive and resistive components of the characteristic
impedance Z,. The basic relationships ¢-ntained in equation (18) are
illustrated photographically for a particular ‘T-section in Oscillogram 2,
page 446, These relationships will be used later in defi ning the attenua-
tion of filter sections. j

The next basic relationship to be established is that the ratio of input
current to output current, namely, I,/I,, is completely defined by the
series arm impedance (Z,) and the shunt arm impedance (Z;) out of
which the symmetrical T- or x-section is composed. For the T-sectian
shown in Fig. 4a it is plain from Kirchhoff’s emf law that

z Z
Et I + —; I+ Zagl, =V, = Z,5L (19)
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‘Whence
Zz
I zur + _21'
L= ——Z=  (for T-sections) (20)
Iz zl
ZoT = _2—

Referring to Fig. 4b for the r-section and rer}lembeﬁng that V; = LZ,,
and that Vo = T,Z,,, the current I, in the series arm is:

gines < s 190 o LZ.
Inriu = Il 223 I2 + 222 (21}
from which
' (0% — Zs) . 2T+ Zy)
I T W I oz, (22)
and
Il 222 + zor
I, 2Z,-—1Z. )

Reference to equations (20) and (23) above and to equations (5) and
(7), page 441, will show that the ratio I, /I3 is defined wholly in terms of
Z, and Z, for either T- or =-sections. It will be shown later that the

: S

i N

=t s = o e, - ]
OscrirooraM 2. Illustrating sttenuation and phase ghift in a symmetrical T-section.

# and 1, are input voltage and current respectively. ® and 33 are output voltage and
eurrant respectively.




Ch. XI ELECTRIC WAVE FILTERS 447

right members of equations (20) and (23) are identically equal when
written wholly in terms of Z, and Z;. For the present, equation (20)
will be used to define the ratio I,/I; in T-sections and equation (23) will
be used to define this ratio in =-sections.

Example 3. Refer to the symmetrical T-section shown in Fig. 9a. Let it be
required to evaluate the ratio I;, I at f = 50 cycles. Since this is the same T-section
as described in example 1, I.agc 442, the results of example 1 mey be used here to
define Z;, Z,, and Z, 7.

=} o (1 4j1477), Zs = (0 — j10.61), snd Z,r = (9.81 + ;j0.43) obms

z
2 (0.81 +;043) + (1 + j14.77

I Z: . (081 + 7043) — (I + j14.77)
Zor — E

zn]“ +

(10.81 + j15.20) 187 /54.6°
(8.81 — j14.34) 168 /—58.4°

=111 /113°

I, 1a 0.047 hgnry 103 0.047 I

Lo

=il
(a)

Fic. 8. A symmetrical T-section terminated in its characteristic impedance, together
with 8 vector diagram of the currents and voltages in a particular case.

The physical significance of the above complex number is that the magnitude of
I, is 1.11 times as great as the magnitude of 13 and that I, leads I, by 113° (See
Fig. 9b.) It will be shown presently that the ratio I, T3 defines the altenuation of
the filter section and that the associated angle of I,/I; defines the phase shift of
the section.

A worthwhile exercise for the student at this stage is that of correlating the results
given above with those determined by elementary circuit analysis. Let Vy of Fig. 8a

= 100 /0° volts and solve for I, and I, by ordinary methods. The results are
lllus!nted in Fig. 9b and in Oscillogram 2 which is a photographic record of vy, i,
vy, and 1y for the particular T-section shown in Fig. 9a
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Example 3. Let it be required to find the ratio I;/I; in Fig. Oa if the resistances
of the inductance coils are neglected, assuming that the frequency of the supply
voltage is 50 cycles.

z c .' 4k ; o
3 = O +JITD), Z3 = (0~ jlos6D), ';L = (14.77)

Zor = VZ1Z2 + (Z1,/2)! = v/ (j20.54)(—710.61) + (j14.77)?
= 4/313.4 — 2182 = 4/95.2 = 0.76/0° ohms
Employing equation (20): '

76 4 14, 17.7 /56.5°
Ry TG P 5 f—;-lgur
I, 078 — j14.77  17.7/—56.5

Thus the output current I is shown to be 8s great in magnitude as the input current
1,. This condition exists generally in symmetrical T- and =-sections when the
resistances are negligibly small provided the characteristic_impedance for the fre-
quency considered is a pure ohmic resistance.

Example 4. Let it be required to find the characteristic impedance and the
current ratio I;/I. in Fig. 9a if the frequency of the supply is 100 cycles and if the
resistances of the induetance coils are neglected.  Under these conditions:

Z : i R s 1 4
q (0 -+ j29.54), Za = (0 — j5.305}, P o (J29.54)°

Zor = Vv (159,08)( —j5.805) + (j29.54)°
= 4/(313 /0°) + (873/+180°)
= /560, +180° = 23.66 /90° ohms .

The characteristic impedance of the filter section has changed from a pure resistance
(of 9.76 ohms) to a pure inductive reactance of 23.66 ohms as a result of changing
the frequency from 50 cycles to 100 cycles. Nole: The values of Ly and Cq used in
Fig. 9a make this section a low-pass filter section which starts to attenuate at 60
cycles, as will be shown later.  Sce equation (55), page 465, AL 100 eyeles:

Zy
L BTt (2868/00°) + (2054/907)
I Z,  (23.66,90°) — (29.51/90°)

znr'_'E

54.2 /00° SR
= e——— = 1807
5-83 !__m: li._._.
It will be observed that, at 100 eycles, Iy is 9.04 times as great as I+ which indicates
that marked attenuation is taking place. It will also be observed that the phase
shift is 180°, a condition that always obtains in a resistanceless filter section which
is operating in the attenuation band and which is terminated in its characteristic

impedance.
The importance of the ratio Iy /I; has been emphasized in the foregoing
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examples because the physical operation of a filter section is concisely
defined by this ratio.

Problem 6. Find the ratio I;/Iy of the symmetrical »-section shown in Fig. 8
page 445, at 200 cycles and at 2000 cycles. Neglect the mesistance of the inductance

coil and recognize that Z, = (0 4 j0.02«) is the full series arm and that Z. =
(0 -] %:T‘) is the combined shunt arm since the total series inductance (L) is
0.02 henry and the combined shunt capacitance (Cz) is 4 uf. (See Fig. 4b and
Fig. 8.) Note also that 2Z, m_(o -] 15%‘) ohms.
Ans.: At 200 cycles I/ = 1/4205"
At 2000 cycles I,/ Iy = 10.6,/— 180",

Problem 6. Find the current ratio I;/1s of the symmetrical T-section shown in
Fig. 7, page 445, at 200 cycles and at 2000 cycles. Neglect the resistances of the
inductunce coils. . Ang.: At 200 cycles I1/Iz = 1,20.5%

At 2000 cycles 1;/1, = 10,6 /+180°.

Transmission Constant of a Filter Section. A transmission constant
which applies to a generator feeding a resistance load has been defined
in equation (80), page 136. It will be remembered that the reference
used in that case was selected with a view toward including the effects
of a possible mismatch between the resis: mee of the generator and the
resistance of the load. Another transmission constant which applies
to long lines was used in Chapter X.  In this case it was called the
propagation constant, the term usually employed {or the transmission
constant of long lines.

Where a filter section or other four-terminal network is terminated
on an image impedance basis as shown in Fig. 3, the impedance match
between the generator and load is already effected and the definition of
the transmission constant is somewhat different from that given in
equation (80), page 136. Assuming that the filter section is terminated
on an image impedance basis and that we wish to specify a measure of
the attenuation and phase shift of the filter itself, we employ the follow-
ing definition of the transmission constant:

Zr' oo Vil Ty

; T
y = o+ j8 = log, Zn = log, Y A log, I, (24)
where Zp' is the transfer impedance from the input terminals of the filter
section to the output terminals, namely, V, /I,
Zpy is the image impedance seen looking to the right of the input
terminals, namely, V, /I,
a is called the attenuation of the filter section
g is called the phase-shift constant of the filter section.
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Actually the « and B defined in equation (24) apply to any four-
terminal network which is terminated on an image impedance basis as
shown in Fig. 3. As such they apply directly to a filter section which
is terminated in its characteristic impedance, since characteristic im-
pedance termination is but a special case of image impedance termina-
tion where Z;; = Zj,.

The attenuation, a, is a measure of the ratio of the power input to the
power output of a filter section which is terminated in its characteristic
impedance, since under these conditions the real part of equation (24)
may be written as:

VIR, 1. LR 1 W,

a = log, = - log, = =log, — 25
g m 2 g IiaRO D) Ze Wﬂ ( }
where Ry is the resistive component of Zg
W, is the power entering the input terminals
"5 is the power leaving the output terminals.
From equation (24) it is plain that

I : e )

fi =t = & = K Ip (26)
2

where K = ¢ = I, /I,
# = angle of lead of I; with respect to I,.

As applied to a series or cascade arrangement’ of filter sections like those
shown in Fig. 10, page 452:
‘ L I, I

L L L
and the transmission constant (together with the attenuation and phase-
shift) may be reckoned on a per section (or I; /I,) basis or on a combined
basis of I, /Iy, since both arrangements are presumably terminated on
a characteristic impedance basis.

Units of Attenuation or Transmission Loss. Filter section attenu-
ation is usually expressed in either nepers or decibels. (See pages 136-137.)
These units of transmission loss are both defined on a logarithniic basis,
since their greatest field of application is in the transmission of sound,
the loudness of which is a logarithmic function of the sound energy.

The Neper. The general definition of attenuation expressed in nepers
is:

(27)

4
(Attenuation in nepers) = % log, ——£oneral), (28)
W(rdmm)
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o anmrln
(Attenuation in nepers) = 1.151 logip 7-———— (29)

1l (reference)

“here TV (genceaty is any particular power level which might be under dis-
cussion
W (reference; i the power level employed as reference from which
W (geeran 1s to be measured.

Reference to equation (18) or to equation (23) will show that, for a
filter section which is terminated in its characteristic impedance, the
output power 11; is employed as the reference power level and

(Attenuation in nepers) = 1 log. = } log, =log,e* =a (30)

If the filter section is not terminated in its characteristic impedance,
equation (28) is employed and W, is used for Wgenerany and Wy is used
for “':(rcferen_cer
The Decibel. The decibel is an arbitrarily defined unit of trans-
mission loss (or gain) which has come into general use since about
1925.2 The customary abbreviation is db. The general definition of
attenuation expressed in decibels is
» g z .FV('QMH1}
(Attenuation in decibels) = 10 logyo ———— (31)
}V(n:!enm::}
where T (general) 80d W reterence) have the same meanings as employed
in connection with equatlon (28). -

If the filter section is terminated on a characteristic impedance basis,
reference to equation (18) or to equation (25) will show that

I

1,72
(Attenuation in decibels) = 10 log;o [}Tl:' = 10 logyp €°
‘Lie

= 20[1’ lﬂglu ¢ = 8B.686a (32)

Comparison of equations (30) and (32) will show that the decibel is a
transmission unit which is 1 /8.686 times as large as the neper (or napier).
In practice the decibel is used almost exclusively in the,United States.
Because of its rationality, the neper is widely used in theoretical deriva-
tions.

It should be noted.that transmission lom (or attenuation) units define
power ratios and under special conditions define current and voltage

? Originally the decibel was called the * transmission unit " {abbreviated TU).

See “ The Transmission Unit and Telephone Transmission Reference Systems,”
by W. H. Martin, Bell System Technical Journal, Vol. 3, p. 400.
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ratios. These units do not specify the actual loss (or gain) in either
watts, amperes, or volts. If, for example, it is known that the ratio of
power input to power output in a particular case is 3, the transmission
loss or attenuation is:

3 log. 3 = 0.55 neper or 10 logo 3 = 4.77 decibels
If the current ratio is 3 and the input and output impedances are equal,
the transmission loss is:

4 log. 3% = 1.1 nepers or 10 logio 3% = 9.54 decibels

The actual values of power or current are not specified in the statements
given above, only logarithmic functions of the ratios.

£
PR
(IJ“'I{ } 1‘
1 z? 201’
" zll ;
b 'z d y f b

Fic. 10. Three symmetrical T-sections terminated on a characteristic impadance basis.

Example 6. If the vector current ratio per section of each of the three T-sections
shown in Fig. 10 is 3 /30° or 3 /= /6 radian:
Ii I,

Ia ¥ '
-—- = 1-"‘-"3'-:33“
= o 153 50

from which
el =3 or a; = log, 3 = 1.1 neper per scction

8 = 30° or =/6 radian, phase shift of I behind.;

On a three-section basis:

% =N = (0= 27 /90°
‘
Fr m which the attenuation and phase shift of the three sections may be calcu-

lated as
e =27 or a3 =log, 27 = 3.3 nepers

= 28.6 decibels

B3 = 90° or =/2 radians, phase shift of I behind I,.

Prablem 7. The current ratio in a particular filter section is known to be
L.11 /113° &5 in example 2, page 448. If the section is terminated in its charac-
teristic 1mpcdanee, find the attenuation in nepers and in decibels.

Ans.: 0.1043 neper, 0.905 decibel.

Problem B. Calculate the attenuation in deeibels and in nepers for the various
power and current ratios indicated below. In the case of the current ratios, it is
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assumed that the filter sections to which they apply are terminated on a character-
istic impedance basis. The few calculated values that appear in the table may be

used as guide.

W/ W db nepers H f’_.'fg db nepers
1 0 0 l] 1 0 0
10 10 1.15 I 10 20 23
100 'g 100
1,000 | 1,000
5,000 | 10,000

With respect to a specified reference power level, any particular circuit
power may be measured in plus or minus decibels, depending on whether
the circuit power is greater or less than the reference power level.
Several reference power levels have been used in sound engineering,
namely, 6 milliwatts in telephone circuits, 12.5 milliwatts in public
_ address systems, and a relatively new reference level which is designed

to be generally applicable and which is specified as *‘ 1 milliwatt in
600 ohms.” Thus, 6 milliwatts might be reckoned as 10 logyo (6/1) =
4-7.78 db with respect to a 1-milliwatt reference or as 10log;o (6/12.5)
—3.19 db with respect to a 12.5-milliwatt reference.

General Considerations. FElementary filter theory concerns itself
with uniform ladder structures which are composed of either conven-
tional T- or m-sections. With the definitions which have been given to
Z, and Z, in T- and =-sections, the ladder structures formed by cascade
arrangements of these sections are equivalent excepi for their termina-
tions.

Figure 10 illustrates a ladder structure composed of symmetrical
T-sections which is midseries terminated. A ladder structure is said to
be midseries terminated when it is terminated at the midpoint of a
series arm such as wz. It will be noted that g is the midpoint of such a
geries arm. Under ideal conditions the structure is terminated at both
sending and receiving ends in impedances which are equal to the charac-
teristic impedance of a T-section, namely, Zor. (AMethods will be con-
sidered later whereby generating devices of one impedance can be
properly matched to a load device of a ditierent impedance.)

Figure 11 illustrates a ladder structure composed of symmetrical
s-sections. Comparison of Fig. 10 and Fig. 11 will show the general
cireuit equivalence of T- and =-sections except for the terminations.
The arrangement shown in Fig. 11 may be thought of as symmetrical
T-sections which are terminated at planes such that the shunt arm Z;
is bisected longitudinally, leaving 2Z; directly across the input and
output terminals. This form of termination is called midshunt ter-
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thination. It has a certain practical significance which will bediscussed
in a later article.

A low-pass filter is a network designed to pass currents of all frequen-
cies below a critical or cut-off frequency and materially to reduce the
amplitude of currents of all frequencies above this critical frequency.
Under certain ideal conditions which will be considered, a low-pass filter
will pass all frequencies from zero up to a predetermined number of eycles
with theoretical zero attenuation. The frequency at which the theoreti-
cal attenuation takes on a finite value is called the cut-off frequency.

11 z1 I: 11 I.'l Z, I¢
e 'm iy

z_nr 223 ZZ; ZZ; 223 223 ZZ; zu

&5 e

Fic. 11. Three symmetrical r-sections terminated on a characteristic impedance basis.

The general arrangements of circuit elements for elementary low-pass
filter sections are illustrated in Fig. 14, page 465.

A high-pass filter is a network designed to pass currents of all frequen-
cies above a critical or cut-off frequency and materially to reduce the
amplitude of currents of all frequencies below this critical frequency.
Under ideal conditions, a high-pass filter atténuates all frequencies from
zero up to a predetermined number of cycles and transmits higher
frequencies with theoretical zero attenuation. In a high-pass filter the
lowest frequency at which theoretical zerq attenuation obtains is called
cut-off frequency. ~Elementary high-pass filter sections are shown in
Fig. 16, page 468. i

A Fundamental Filter Equation. An equation which defines the
propagation constant of a filter section wholly in terms of an arbitrarily
selected series arm (Z;) and an arbitrarily selected shunt arm (Z,) is
necessary in the design of filter sections.

Reference to equations (20) and (23), page 446, and to equation (24),
page 449, shows that

I ,on + %l i
2= " = ———— (for T-sections) (33)
z T 5 i
oT 2
Koo U082, .
o A, o T e il
I € 37, — 7. (for #-sections) (34)
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After the value of Z,r as given in equation (3), page 441, is substituted
in equation (33), the following form may be obtained:

zZ, Z,
N T 422 TNz,
A _ |5
42, iz,

After substituting the value of Z,, as given in equation (7) into equa-
tion (34), the following form may be obtained:

\/1+ + /Z‘
T \ iz,

(for T-sections) (33)

— = T = (fUr w-sections) (36)
L 1 4+ ......L _ ﬂ
4Z, 1Z,
Hence, for like values of Z; and Z;
%‘- (for T-sections) = % (for w-sections) (37)
2 2

Since 7 = ¢ it follows that

B (2 )

glatid)

(38)

Although equation (38) defines both « and g in terms of Z, and Z,, a
different form is usually employed in the actual evaluation process.®
An algebraic rearrangement of the quantmes involved in equation (38)
will show that:

. J Z, ‘zl)
a + J8 2log.( l+4Zg+ ng (39)

The above relation is one form of fundamental filter equation, since the

¥ A fundamental filter equation which is sometimes called Campbell's equation
(after G. A. Campbell who discovered the filtering properties of various lumped
impedance networks) is:

Z ;
coshy =1 +§-§ = (coth a cos 3 + j sinh a sin 3)
2

I'he ahove form need not be used here but, for the reader who is familiar with the
manipulation of complex hyperbolic functions, Campbell's equation is much more
elegant than is equation (39). See * Physical Theory of the Wave-Filter,”" by
G. A. Campbell, Bell System Technical Journal, Vol. I, November, 1922.
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attenuation constant and the phase-shift constant are defined wholly
in terms of the full series arm impedance (Z,) and the full shunt arm
impedance (Zz). The analysis of any symmetrical T- or x-section com-
posed of series and shunt arms of Z, and Z,, respectively, may be carried
through with the aid of equation (39).

Since the right-hand member of equation (39) is, in general, a complex
number, it is capable of defining both a and 8 of either T- or r-sections
which are terminated on a characteristic impedance basis. In the
manipulation of the factor Z,/4Z; in equation (39), care should be
exercised in determining the correct sign of the associated angle if the
correct sign of 3 is desired.

Example 6. Let it he required to determine the attenuation and phase shift of
a filter section whose full series arm is 565.6[10_‘ ohms (at a particular frequency)
and whose full shunt arm is 200/ —90° ochms. Note: Characteristic impedance
termination is implied in a case of this kind unless otherwise stated.

Z, = 565.6/60° and Z; = 200/ —90° ohms

: 7 565,5L. " s
"E: - \aso7—ags = VOTOT[I80° = 0.841/75% = (02175 + 0.812)

1+ = V/T/0° + 0.707/150° = 1/0.525 /42.4°

= 0.725 /21.2° = (0.676 + 70.262)

a + 78 = 2log, [(0.676 + 70.262) + (0.2175 +;n312)1
= 2log, (0.893 + j1.074) _

= 2 log, (1.396/50.25°)

= (2log, 1.396) + j JES (0.668 +11 76)
57.3

The attenuation of the filter section is 0.668 neper or 5.80 decibels. The vector
input current i 1.76 radians or 100.5° ahead of the vector output current since
a = 0.668 neper and g = 1.76 radians.

In +»i- xample the resistance of the series arm is relatively high (565.6/2 ohms)
and vet the attenuation is relatively low because the filter section is operating in
its pass band.

Example 7. Let it be required to find the attenuation and phase shift of the
r-section shown in Fig. 8, page 445, by means of equation (39). The resistances
of the circuit elements are<to be neglected and the frequency is assumed to be 200
eycles. At 200 cycles, w = 1257 radians per second and

Zy = 0 + jwL; = 25.14 /90° chms
-
%y =0 — j:‘l:- = 397.5/=90° chms
3
2
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4Z; = 795 /—90° ohms
z, _ 25.14/90°

-— =0.0316 180°
iz, " T O /+180°

a+j8 = 2log, [v/1/0° + 0.0316 /4 180° + 4/0.0316/ 4180
= 2log, (1.0/10.25°) = (2 log, 1.0) +(zJ !;_235)
= 0 + j0.358

Therefore a = 0 and 8 = 0.358 radian or 20.5°,, It will be noted that, as a result
of neglecting the resistances of the circuit elements, the theoretical attenuatién is
ZETO.

Problem 9. A high-pass filter section is composed of two 7.96-xf condensers and *
a coil having an inductance of 0.0159 henry in the form of a T. The resistance of
the inductsnce coil is assumed to be 4 ohms. (A condenser occupies each of the
Z,/2 positions in Fig. 43, page 440, and the inductance coil occupies the Z; position
in this T-section.) Find the attenuation and phase shift of this filter section at
200 cycles employing equation (39). At 200 cycles:

2
w = 1257 radians per second -25 =100/—-90° Z; = 20.4/78.7° ohms
Ans.: a=178db; g = —165°

Problem 10. Evaluate « &nd B in equation (39) if Z; = 200/90° ohms and
Z3 = 50 /—90° ohms. Ans.: a =0; 8 = = radians.

Filter Section Analysis Assuming Zero Resistance. It is quite
customary to neglect the resistive components of Z, and Z, in filter
section analysis because the attenuation produced by these resistive
components is incidental to the predominant filtering action that takes
place. The discrepancy between theoretical results based on zero re-
sistance and actual results will not be great if the resistances are rela-
tively small compared with the reactances. Also the algebraic manipu-
lations involved in filter design are greatly simplified by neglecting the
resistive components of Z; and Z,.

If the above resistances are neglected and if the filter sections are
properly terminated, the pass bands are transmitted with zero attenua-
tion while the stop bands experience certain varying degrees of attenua-
tion. It will also be shown that the phase shift is 180° throughout the
stop band under the conditions stated above. Before elaborating upon
these customary generalizations, two examples based entirely upon
equation (39) will be presented.

Example 8. Consider a symmetrical T-section jn which Z; = jwl; and in whith
| 2 ; . .
Zy = —JE + Let it be required 1o predict the behavior of the filter section wholly
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in terms of the relationship stated in equation (39).
. L,C: WLy Cy
4Z, 4 4

+180°

Since Z;/4Z; possesses the general form given above, it will be convenient to reckon
w in 1/+/L\Cz units, thereby giving Z1/4Z2 deﬁuit_e numerical values for various
different frequency units. The evaluation of the right-hand member of equation
(39) for various frequencies is shown in tabular form in Table 1.

B
Ay el
ey
e 7] D el

0 ] L B
@ In JT,C, units

Fia. 12. Varintions of phase shift and attenuation in a prototype low-pass filter section.
(See Table I, page 459.)

w
™~

5&"\

~

o
Je
~

Phase shift in radians
R,
Cut-olf frequency
Atlenuation In nepers

-
o9

!

The variations of attenuation and phase shift ean readily be determined from
an examination of columns (8) and (9) of the table. It will be observed that the
filter section which is under discussion has theoretical zero attenuation between the
limits of @ = 0 and w = 2/+/L.C; radians per second. The section obviously
operates a8 a low-pass filter. The arrangement of the series and shunt arms of this
low-pass filter together with the general trends in the variations of attenuation
and phase shift are shown in Fig. 12. The fact that the cut-off point occurs at
w = 2/4/L:Cs radians per second will be given more attention in a later article.
The present example concerns itself primarily with the development of equation
(39) in a particular case.

|
Example 9. Consider a symmetrical T-section in which Zy = —J 5 and
£
Zs = juLs. Let it be required to predict the behavior of the filter section wholly
in terms of equation (39). In the present case:

A 1 1

2 e = ———/-180°

4Zy 4o’LaCy  4w’LaC 1L——

The same units of angular velocity as employed in example 8 are convenient units
to employ in the present analysis. Also the evaluation of the right-hand member

of equation (39) can be conveniently presented in tabular form. The calculations
are indicated in Table IT, and results are shown graphically in Fig. 13. T-sections
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consisting of series-arm condensers and shunt-arm inductances are thus shown to

operate effectively as high-pass filters. )

The phase shift constant, 8, in Table I represents a lag of section output voltage
and current with respect to section input voltage and current. In Table II, 8 repre-
sente a lead of section output voltage and current with respect to section input voltage.

5

5

nVmi 4
\

2C, 2€,

: ! ] e
SN . s
™ 5 g o)
3 8\ |= \ L.
FTHE 18
b= “\|3 \ e
\ N
i \ N 1

0.2 04 05 08 L0 11.2 14 16 L8 20 22
@ In T [, units

Fic. 13. Variations of phase shift and attenuation in s prototype high-pass filter section.
(See Table II, page 460.)

Problem 11. Refer to Table I, page 459. Check all the values listed at
w = 15/4/L,Cy and at w = 3/4/L,Cs. Compare the results obtained for a and 38
with those plotted in Fig. 12, page 458.

Problem 12. Tefer to Table II, page 460. Check all the values listed at
w = 0,25,’\;% and at w = 20/4/CL.. Compare the results obtained for
a and 3 with those plotted in Fig. 13, page 461.

The chief facts to be gained from the foregoing analyses are:

(1) «is equal to zero within the pass-band region.
(2) 3 is equal to £ within the stop-band region.

A study of Tables I and II will show that the pass bands are limited to
those regions where Z, /4Z, possesses values between 0 and —1. These
results might have been anticipated mathematically by investigating
the possible values of « and 8 when Z; and Z; are reactances of opposite
types. Let

Z,

o
4z,
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It is plain that A = 4 /+r since

XL / 90° Xc fir 00°
Xc/[-0° * 1X.[%°
are complex numbers which have associated angles of +r or — » radians,
respectively.
If

—1SA=0

a+jB = 2log, (V1 — A +V 1)
= 2log, (V1 — A + jV4)

ety il el
=2(l V1—A+ A+ jtan™ )
og J AT S
Hence a = 0 and 8 = 2 tan™! (VA /V1 — A) when A = Z, /4Z; lies
between 0 and —1.
When Z, [4Z, lies between —1 and — « a similar analysis will show
that for Z, /4Z; = A'g:br, A’ being greater in magnitude than unity.

a+jB=2log, (V1 —-A4A"4+vV-4"
= 2log, VA — 1+ ;VA)
= 2log (VA" =1+ V') + j(x)

Hence a = 2log, (VA — 1+ VA') and a = +r when A’ = Z, /4Z,
lies between —1 and — .

The above analysis shows that the pass bands are limited to those
regions where Z; /4Zy takes on values between and including 0 and —1.
Hence:

Z;
-153—350 40
| s A s | (40)
defines the pass-band regions in terms of Z, and Z;. The boundaries

of a pass band in a particular case may be obtained by setting:

zZ Z,
— 1
iz =0 lmd iz, 1 (41)
or by setting _
Zy =0 and ?z-: = —4 (42)

Reference to equation (39) will show that « = 0 when Z, /4Z; = 0 and
wl;en Z| {42: = —1]1.
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Example 10. Refer to the symmetrical r-section shown in Fig. B, page #45.
Let it be required to predict the pass-band boundaries in terms of the relationships
stated in (42). The full series arm of Fig. 8is L, = 0.02 henry and Z; = 0.02w/90°

ohms. The full shunt arm is C3 = 4.0 uf and Z3 = (10%/4w) / —80° ohms.
Setting Z,/Z2 = 0 yields
-]
9&_[‘2 =0 or w=0 (one boundary)
/ —90°

fw
Setting Z,/Z4 = —4 yields
0.02. /90° —0.0841

v, . W
-;:E =00

from which

of = 4/50 X 10°

@ = 7070 radians per sefond (one boundary)

The value of w given above represents the cut-off angular velocity of this particular
low-pass filter section and corresponds to a frequency of 7070/2x or 1125 cycles.

Cut-Off Frequencies of Elementary Low- and High-Pass Sections.
The frequency limits of the pass band for an elementary low-pass filter
without resistance may be obtained from equation (38). For a low-pass

filter Z, = jwL, and Z3 = —jé- If these values are substituted in
2

gquation (38), the result, after a little algebraic simplification, is:

20?11 Cy 42 \[w‘blgczz _ w’LyCy
-4 16 4

SHB = S P =1 —

(43)

For no attenuation a = 0, and

. 2.2 4y 2 2 2
c’ﬁ:-c,oeﬂ+jsinﬂ=l————ilc2+2JuLllﬁcs —-“’I;‘C’ (44)

Since the last term of equation (44) is the only one that may become
imaginary, it follows that the real part must be cos 8. Therefore
24%L,C
cosf =1— -—4‘—3 - (45)
Since cos B can vary from 1 to —1, the limits for w may be obtained.
Hence
2L, C;y

=] -
+1 2

(46)
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and
=0 or < (47)
VI,
or
1
e = T = f | 48
J ViC (for low-pass) (48)

Equation (48) gives the upper or cut-off frequency for an elementary
low-pass filter. In other words, any wave of frequency between zero
and f, is passed without attenuation provided that the filter section is
terminated in the characteristic impedance for that frequency.

. i :
For a high-pass filter, Z; = —j-— and Zs = joLs If thesr values
Wl

are substituted in equation (38), a simuilar method of analysis as used in
obtaining equation (435) gives ;
2

402Cy Ly a9

cosfg=1-—
Substituting the limits of =1 for cos 8, the upper limit of frequency is
found to be « while the lower limit or cut-off frequency is:

1

s ¥ m for high-pa.ss (50)

Equation (50) gives the cut-off frequency for an elementary high-pass
filter. This means that any frequency above the cut-off frequency f.
is passed with no attenuation if the filter section is terminated in the
characteristic impedance for the particular frequency,

Constant-k Low-Pass Filter. Filter sections in which the series
and shunt arms are inverse impedance functions possess a peculiar
property. The product of Z; and Z; is independent of frequency.
Reference to either the T- or #-section of Fig. 14 will show that

. . | L -
ZykZax = (jwlix) (—' ;‘c:;) = Er:'f = R (51)

V'L /Czk is an important characteristic of the filter section, and inus-

much as )
HL
ot S Ri = a constant
Cax

filter sections of this type are called constant-k sections. There are
many other types of filter sections, several of which are derived in one
way or another from constant-k sections, For this reason the parame-
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ters of constant-k sections usually carry the subseript k in order to
designate properly the type of filter section that is under discussion.
The parameters of some of the more elaborate filter sections are specified

directly in terms of Ly and Cg.

Lix L
T _‘{L Lik
MW——@EEF—O (5% "T'EI‘EW -Q
I
_.i'_'. _ZL i
2“' == G - zzn == Ezu _C;;} =iy
o o o
@ ® %

Fia. 14. Prototvpe or constant-k low-pase filter sections.

The general theory of the constant-k low-pass filter has already been
presented. It remains only to develop the design equations for this
type of filter.

Zic ° jol
L o[ SRECNE (52)

The boundaries of the pass band are determined by setting Zyx Zox
equal to —4 and equal to zero. [See equation (12), page 462.]

— @y Cor = 0 yields o =0 (53)
2

e 54
VL1:Cok g

— w0 Cos = —4 yields w. =

wc is the angular velocity at which cut-off takes place :&nd as sitch forms
the upper boundary of the pass band.  The exl-off frequeney of a low-pass,
constant-k-type filter is:

W, |
= 55
4 2r  xVLCox o

It will be observed that f. is governed wholly by the magnitude of the
LxCzx product. The lower the cut-off frequency, the higher is the
L1xCax product, and vice versa.

Another important consideration in either the theory or design of a
filter section is the matter of correct terminating impedances. A
single section can be properly matched to its sending and receiving
ends if terminated on an image basis, as explained on page 439. If
more than one filter section is to be employed between sending and
receiving ends, it is desirable to design each section to have the same
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characteristic impedance. Under these conditions minimum reflection
loss results when the various sections are arranged as shown in Fig.
10 or Fig. 11. A detailed analysis of these losses will not be given here
since they are similar in nature to reflection losses on long lines. (See

ChapterX.)
For a constant-k, low-pass T-section:
_ L td’LuC'n)
zo?t == \/Cg* (1 4 ‘ (56)

LyiCoy = % [See equation (54).]

c

Therefore, for a constant-k, low-pass T-section:

2
i Zork = \/E,LTﬁﬂl _?Ei
' = Ryqf1 —;—Z (6T

For a constant-k, low-pass =-section:

VEI/Cox By
.
! I
The variations of Z,rx and Z,. from f = 0 to f = f, are illustrated in
Fig. 15. The fact that the correct terminating impedance of & con-
stant-k section varies over such wide limits is a very serious limitation in
certain communication eircuits. For a fixed receiving impedance it is
plain that either the T- or »-section is correctly terminated at only one
frequency. The opposite trends in Z,r and Z,,, are combined in one
form of filter section to obtain a characteristic impedance which is
reasonably constant over the frequency range of the pass band. (See
m-derived filter sections, pages 480-484.)
The zero-frequency wvalue of either Z,rx or Z,.; is:

zni - (58)

e

B = "éik [See equations (57) and (58).] (59)
2k

L1 and Cax can be related to one another through the value of R,2.
[See equation (51).]

Ly = R3Cas (80)
L
Cn==% (61)

R
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The design values of Lix and Cy; are usually specified in terms of
cut-off frequency, /o, and the zero-frequency value of the characteristic

B e o remi. i -
. | 1 1 ] ’ ] Il |
22— 1
. . s s oy g “g‘“
e /
& L. \
5 M /zl"i znrk\
E - /l.uur- is Hih "
g KT — Ry
s 0.8 Loty Zo1ih e D
g =
s 0 — b
M a1
i o A{ L
| 1

1
0 02 0.4 0.6 0.8 1.'0 1.2 1.4 1.6 1.8 2,0 22 2.4 26 28 3.0

[
Frequency in L ynits
{1

f

Fic. 15. Variations of the characteristic impedances of low-pass and high-pass constant-k
filter sections.

impedance, R:. It has been shown that:
W
*V LiCox

Eliminating C2r as given in equation (61) from the above equation
yields:

fe=

[See equation (53).]

1
e *V L [Ry

Ly = %ﬁ (for low-pass filter) (62)
e

From equations (61) and (62) it is plain that:
.
R?  rR.f.

Equations (62) and (63) specify the values of L and C to employ in a
constant-k, low-pass filter section in terms of f. and R.

Cay (for low-pass filter) (63)
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Problem 18. Design both T- and »-section, low-pass filters of the constant-k
type which will have a :cro-frequcncy characleristic impedance of 600 chms and
8 cut-off frequency of 940 cycles. Draw the circuit arrangement in each case,
indicating the particular values (in henrys or microfarads) of each circuit element.
Ans.: The full series arm Lyy = 0.203 henry; and the full shunt arm Cyy = 0.565 uf.

2":Il zci\ cn
I( I/ . I
z|'\ fz\ lz\
T LT 27,820, 2,8,
) ®

Fia. 18. Prototype or constant-k high-pass filter sectiona.

Constant-k High-Pass Filter. Prototype or constant-k, high-pass
tilter sections ure illustrated in Fig. 16. In the present case:

. . L
ZZy = ('—J '_) (julgk) = =2 = Ry (64)
wCyg Cr
and i
il l
Zy wCie 1
Zow  jwlm  w*Cila (62)

The boundarics of the pass band are again determined by setting
Zyx /Zyx equal to —4 and equal to zero. [See equation (42), page 462
1
——— =0 deld =
2ol yields o ] (68)
1 1

- = —4 yields w.=——F
W' Crxlok ‘T aw CriLog
The cut-off frequency of a high-pass, conslani-k filter is

we 1
ey~ 63
s 27 4x CrxLok W

Z,r and Z,, may be expressed in terms of f,, f, and V' Ly/Cyy  For
a constant-k, high-pass T-section:

L!l fc
Zore = '\/C”‘ X 4f1 = 72 (69)

For a constant-k, high-pass =-section:

2
zc,w\/%’ﬁ,/l—% (70)

67)
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General trends in Z,rx and Z..x in constant-k, high-pass filter sections
are illustrated in Fig. 15. Both Z,r« and Z,,x approach the common
value V' Ly/Cy1x 8t f = =. Because it is a useful common base from
which to work, VLs:/Cix is given special designation, namely R,
Ry is known as the infinite-frequency characteristic impedance.  Since

L
\/;—t = Ry (71)

Loy = ercu and Cup = 55 (72)

If the above values are substituted separately in equation (68), the
following relationships are obtained:

1 :
Ciy = R, (for high-pass filter) (73)
Ry :
Loy = — (for high-pass filter) (74)
4‘]"‘{3

Equations (73) and (74) may be employed in the design of constant-k,
high-pass filter sections which are to have a particular cut-off frequency
and which are to have infinite-frequency characteristic impedances
equal to R

Problem 14. What are the cut-off frequency and infinite-frequency characteristic
impedance of the high-pass filter section that can be constructed from two 1-uf
condensers and one 15-millihenry inductance coil?

Ans.: f. = 919 cycles; R: = 173 ohms.

Tabulation and Review of Constant-k Filter Theory. The important
features contained in equations (51) to (74) inclusive are summarized
concisely in Table I1I, pages 471-472. The attenuation and phase
shift in Table Ill are expressed in forms which derive directly from
“ Campbell’s  equation. (See footncte 3 on page 455.) It has been
shown in examples 8 and 9, pages 457-458, how the attenuation and
phase shift may be calculated from equation (39), page 455, without the
aid of hyperbolic functions. For the reader who is familiar with com-
plex hyperbolic functions the following derivation and application of
“ Campbell’s "’ equation may be of interest.

Derivation and Application of Campbell's Equation. The application
of Kirchhofi's emf law to the wryz loop of the filter sections shown in
Fig. 10, page 452, yields

Zyda + Zy(Iy = I3) — Zp(I; — 1) =0 (75)
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or :
ZyIg + 2213 — Zgly — Zo1) = 0 (76)
Dividing the above equation through by Z;I; and transposing results in
' L I Z,
Ig+I,“2+Zg (77)
Sincg 3
h_ b
Iz Iz
it follows that
L_ _,
L’ "
z 3
S HeT=2+ ii (73.)
g

Z, ; . -
2 =coshy=1+ E, (Campbell's equation)  (79)

A more useful form for the purposes at haad may be derived as follows:

lotiB) 4 —(ati)
2

_ A

B 2

cosh y = cosh (a + jB) =

(80)

Converting the ¢? terms into their rectangular forms results in:

cosh (o 5y = ¢* (cos f + jsin @) Ze‘“ (cos B — j sin f)

(" + €7) N =~ ")
T 2

sin 8

From the analytical definitions of hyperbolic cosine and hyperbolic sine,
it follows that

cosh (a + j8) = cosh a cos B + j sinh a sin 8
Therefore g
Z,

coshacosf +jsinhasing =1+ — (81)
2Z,

The above form may be used directly to derive the attenuation and
phase-shift expressions given in Table 111, page 472.
In the stop band, § = x. Since cos § then becomes —1 in equation
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(81) and sin 8 = 0:

h N .EL
— cosh a 2z,
- Z, "
a = cosh™' (— — — ]) (in stop band) (82)
2Z,

In the pass band, « = 0. Since cosh 0 = 1 and sinh 0 = 0, equation
(81) becomes:

(1+3)
cos B 27,

- zl . .
B = cos 1+ 57, (in pass band) (83)
As applied to a constant-k low-puss filter section:
1 . z
Zy = 0L /90° Zp = —/=90° = = =L (s
= wCok Zy

Equation (82) then takes the form:

a = cosh™ (ﬁ%fgg-’f - 1)

as shown in Table III. Equation (83) takes the form:

g = cos™! (l - u_____zLuCu)
2

as shown in Table III. Corresponding expressions for « and B8 may be
derived [ur the constant-k high-pass filter section. The results are shown
in Table IIT.

Band-Pass and Band-Elimination Filters. DBand-pass filters are
networks which are designed to attenuate all frequencies except those
in a specified band. A band-pass filter may be forined by placing a low-
pass filter section (having a cut-off frequency of f,;) in series with a high-
pass filter section (having a cut-off frequency of f.4). Then f.; i made
higher than f.4 by the specified band width, which is fo; — for. A study
of the aitenuation graphs shown in Table 11T will show how f.; and f.a
should be adjusted to give a zero-attenuation band.

A band-pass filter may take the form of a single section as shown in
Fig. 17.  The section shown in Fig. 17 is called a constant-k band-pass
filter when L,Cy = L,C; because under these conditions:

L, L,

z . e— e —— =
Z,Z, G ~e a constant
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An analysis of the band-pass filter will not be given here, although such
an analysis may be carried through in a manner simildr to those given for
the low-pass and high-pass sections.

Band-elimination filters are networks which are designed to pass all
frequencies except those in a specified band. A band-elimination filter
may be formed by placing a low-pass section (having a cut-off frequency
of f;) in parallel with a high-pass section (having a cut-off frequency of
fea). Then fe; is made lower than fes by the specified band width, which
isfor — for.  All frequencies have a pass band (through one of the parallel
sections) except where the two attenuation graphs overlap. (See at-
tenuation graphs in Table III.)

L -Lc, _ 20y L, &
T
(= —0 o -

- <

Fia. 17. Band-pass filter contained Fie. 18. Band-elimination filter con-
in a single section. tained in a single section.

A band-elimination filter may take the form of a single section as shown
in Fig. 18. The section shown in Fig. 18 is called a constant-k band-
elimination filter when L;C; = L,C, because under these conditions
Z,Z, is a constant. It will be observed that the arms of Fig. 18 are
the reverse of those in Fig. 17.

Two Limitations of Constant-k Sections. The constant-k type of
filter section has two rather serious shortcomings. First, its charac-
teristic impedance is not sufficiently constant over the transmissionband
for certain classes of work. (See Fig. 15.) Second, the attenuation does
not rise very abruptly at the boundary of the transmission band. (See
Figs. 12 and 13.)

In order to overcome the inherent limitations of the constant-k
type, Zobel* devised a filter section which he called the m-derived type.
The m-derived half section may be employed to give practically uniform
characteristic impedance over a large part of the pass band and at the
same time increase the abruptoess with which cut-off occurs. Full
m-derived sections may be employed to give further increased attenua-
tion near the cut-off point, and by proper adjustment of the parameter

44 Theory and Design of Uniform and Composite Electric Wave Filters,” by
0. J. Zobe), Bell System Technical Journal, January, 1923, i
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m they can be made to meet any practical attenuation requirement in
this region. When worked in conjunction with constant-k sections,
the m-derived sections overcome both the aforementioned shortcomings
of the constant-k sections. However, m-derived sections by them-

o——42,/'2 Zl/z}———c

“ ()

Fra. 19. Mlustrating the circuit corfiguration of halfl sections formed by longitudinal
bisection of shunt arm of a prototype T-section.

selves have certain limitations which will become apparent after the
attenuation characteristics of these sections have been studied.

m-Derived Half Sections. If the full shunt arm of Fig. 19a is sepa-
rated into two parallel paths of 2Z, ohms each, the original T-section may

% r_l'lll $ O T‘ . T 0 -
Qe -0 o 0 O -0
(@) ()

Fre. 20. TMlustrating the circuit configuration of half sections formed by longitudinal
bisection of the series arm of a prototype r-section.

be separated into two similar parts as shown in Fig. 19b. Each of
these parts is known as a half section or as an L-type section. If the
full series arm of the r-section shown in Fig. 20a is separated into two
series elements of Z,/2 ohms each, the
original x-section can be separated into
two half sections as shown in Fig. 206.
A comparison of Fig. 20b with Fig. 19
will show the equivalence of half sec-
; o tions formed by * halving'' w-sections
"' and those formed by “ halving’ T-sec-
Fia. 21. C:‘c:;}:unt-:k terminating tions.
section.

The image impedances of the half sec-
tion shown in Fig. 21 may be found from open-circuiv and short-cir-
cuit conditions. Let the open-circuit and short-circuit impedances be
known 28 Z,. and Z,., respectively.

-31
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The impedance looking into terminals 1 and 2 is:

2
ZI? =¥ zn—czl-c o M

from which

= Zork (84)

The impedance looking into terminals 3 and 4 is:

R Z Z
334— Zo—c lc_J“lE+2Z2k) it

2

or

Zss = \/zuzu (1 + Zﬂ) = Zors (85)

The half section shown in Fig. 21 has the impedance characteristics
of a w-section between terminals 1 and 2 and the impedance charac-
teristics of a T-section between terminals 3 and 4. It may, therefore,
be used to match a w-section to a T-section. Also it may be used to
match a filter section to a terminating impedance which differs from the
characteristic impedance of the filter section or to change the impedance
level at any point in a two-wire line. The proper values of Z,x/2 and
2Z,, to be employed in effecting any desired impedance transforma-
tion may be determined by solving equations (84) and (85) simulta-
neously for Z;x and Zgy in terms of Z;; and Za,.

Some little difficulty is usually encountered in presenting m-derived
filter theory to beginning students because certain anticipations have to
be made at the outset of the investigation.
Inasmuch as anticipations must be in- 1
dulged in in any event, the actual circuit
configuration of the m-derived half section
will be accepted and its operating charac-
teristics studied.

It will now be assumed that the half
section shown in Fig. 21 takes the pa:tic-
ular form shown in Fig. 22. A new param-
eter, m, has been arbitrarily introduced. It is simply a numeric
which may, for the purposes at hand, range in value from zero to
unity. The change in circuit configuration from Fig. 21 to Fig. 22

2e

Fia. 22. m-derived terminating
half section.
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may be interpreted as follows:

(a) % of the constant-k half section is changed to some Tractional
part of g—z!-'f‘in Fig. 22.
. ; 2Zp . ..
(b) 2Zsi of Fig. 21 is changed to - n Fig. 22,

2
B e

2Z ; I
(¢) In series with —;:—’f in Fig. 22 is placed an impedance

It may be shown that, if the change in (a) is made, the changes in (b)
and (c). must be made if the two half sections shown in Figs. 21 and
29 are to have the same characteristic impedance looking into the 3-4
terminals. '

The half section shown in Fig. 22 has some very desirable charac-
teristics. Its characteristic impedance looking into terminals 3 and 4 is:

2 2z Z
= Za —-—"‘) o
m 2

—_— A
zum z Zl—: J( H‘-

szzlﬁ % mzuz m“zu,z + 2mZy Lok
4 4m + 2m

Z
\/zuzn'i- L’ = Zork (86)

Fl

The equation above shows that terminals 3 and 4 of the m-derived
half section can be used to match the impedance of a constant-k T-sec-
tion or any other equivalent impedance including the 34 terminal
characteristic impedance of Fig. 21.

The characteristic impedance of the m-derived terminating half
section looking into terminals 1 and 2 is:

zl?m = zu-rZJ.c

where

Z,.=|— Z,k+2——]
) L m m

[(1 — m?) Zok zu:l
S Zi:+2 [m 2

o) g 42l m ]
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e | 2 2z
(o +22) (°25)

B 2:m_ m =+
(a2 D) ED

2m 2 2
1 = 2 2
( 4m Zy' + zlizu)
= Z..2 27 2 27 2
% - m___4u: + ZuZa + = 4u;
z 2
Zulu + = (1 = m?)
\/Zlkzn + =
4
Zuzu[ Zyx s ]
= 1 1 — 7
Z,r " 4Zop ( w) 34
or remembering (9): .
zll
= Zo fat Lol .
Ziom k [l + Za 1—m )] (88)

In addition to being a function of Zi; and Za, Z;2. is a function of m.
With the proper choice of m, Zism can be made reasonably constant
over about 90 per cent of the transmission band. The changes of

. _
Zorr and the modifying factor [1 e ZZ:_,: - m’)] with respect to
N é

frequency combine in such a manner as to make Z,;,, approximately
constant over wide ranges of frequency.

Example 11. Consider the general trend of Z,. for the constant-k, low-pass
section shown in Fig. 15. Instead of this rapidly rising curve, the change in the
output characteristic impedance of a low-pass, m-derived half section at the 1-2

terminals is:
Zyam = Zoxk |:1 o o —+ 8 g m’)]

or

W*LC
Zitm = Zosk [1 - ———;“ Ba- m’)]

Physically, m may be equal to any value between zero and unity. Mathematical
experimentation shows that good results are obtained when m = 0.60. The calcu-
lated values of Z,.x and the modifying factor are shown in Table IV, and a graph
of Ziam for m = 0.8 is contained in Fig. 23. It will be remembered that f, for a
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0.z 04 06 08 L0
Frequency In 'Iﬁg units

Fio. 23. Variation of 2y, for m = 0.8,

TABLE IV

Zizm = Zoxi [l - -:f-: 1- m‘}} form = 0.8

By = vLu/Ca

¥ [1- ﬁto.u}] Zot " e
0 1.000 Rs Ry
0.10 0.994 1.005 Ry 0.999 Ri
0.20 0.974 1.02 Bs 0.993 Ra
0.40 0.898 1.00 Ra 0.979 Ra o
0.60 0.770 1.25 Ra 0.963 R
0.80 0.500 1.67 Ry 0.963 Ry
0.90 0.482 2 30 Ry 1.108 Ra
0.95 0.424 3.16 Ry 1.3 R, o
1.00 0.380 L] @ B
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low-pass filter section is 1/r vIixCo and that Zox = Re//1 — (770, The
expression for Zjam in this particular case is, therefore, reducible to -

l—fi(l - m?)

Ry
zl&ll - __..'?'
‘ {l i
1é
I it is necessary to work closer to the cut-off frequency than a valie of m = 0.6
will permit, m may be made somewhat less than 0.60. However, these slightly
lower values of m cause the Z;., variation to be more irregular throughout the first

90 per cent of the transmission band. Numerical experimentation will show the
effects caused by different values of m.

Problem 18. Plot, with respect to frequency, the variation oi .he characteristic
output impedance of a low-pass, m-derived terminating half section (Z12n) for
m = 0.55. Reckon frequency in f/f; units. (See Table IV and Fig. 23.)

Full m-Derived Sections. Full m-derived T-sections are shown in
Fig. 24. As in the m-derived half section, the series and shunt arms
are specified in terms of the constant-k impedances Z,, and Z,;. Any
constant-k-type section may be altered to yield what is known as
en m-derived section. Only the low-pass and high-pass, m-derived
T-sections will be considered in detail. These are shown in Fig. 24b
and 24c.

The variations of the characteristic impedance of full m-derived low-
pass w-sections are generally similar to the curve shown in Fig. 23.
A comparison of the characteristic impedance curves of different
m-derived filter sections is shown in Fig. 25. .

In establishing an m-derived T-section the parameters are so re-
adjusted from the constant-k values that the m-derived section charae-
teristic impedance is identical with the constant-k section characteristic
impedance. This requires that

1 —m? Z. .
Zyy = [ i Zy; + f:l il- Zin = mZux

as may be seen from the following algebraic steps:
Zorm = Zorx  (imposed condition) (89)

teference to equation (5) will show that, if Z,,, = mZ,:

Z)? Z,;?
\/(mzlk]zzm T 1:'?114—”:)‘ = \/Zuzzk + "If— (90)
Squaring both sides of the above equation and solving for Zym:
1 —m? Z
Zom = Zy + 'f (91)

4m
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One of the most important characteristics of & full m-derived section
is its theoretical infinite attenuation near the point of cut-off.

Frequencies of Infinile Attenuation. Since Zyx and Zg are different
types of reactances, the shunt arm of Fig. 24a will, at some frequency,
become resonant. If the shunt arm is in
resonance, its impedance is thearetically
equal to zero and the attenuation becormes
infinitely large. The frequency at which
hese phenomena oceur is know as f=,

3

Characteristic Impedance

0 f
Fraguency s
Fio. 24, m-Derived flter sec- Fro. 25. Choracteristic impedance curves
tions, with parameters speci- for various low-pass m-derived Blter sec-
fied in terma of constant-k tions.

‘flter-section parameters.

and it may be calculated in any particular case by first setting the
left-hand member of equation (91) equal to zero and then solving
for f. In a low-pass, m-derived filter section:

1

fwm T — #7)
21’1’\ n Lk Cax

1
T \/L:kCn V1 - m?

The cut-off frequency of the m-derived section is equal to the cut-off
frequency of the constant-k section from which it is derived. (See

(92)
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Table V, page 485.) In the constant-k, low-pass section:

1 ;
fo= 7__-__ [See equation (55).]

LyxCoy
Therefore
Je
- = 03
Vi e a
fromy which
f 2
m=,f1- f" (for low-pass section) (94)
L]
In a similar manner it may be shown that for a high-pass, m-derived
filter section:
Jo =feV1 — m? (95)

and

2
m = -\fl - J;;L, (for high-pass section) (96)

Equations (94) and (96) illustrate the manner in which f; and f_
determine the value of m that should be employed if theoretical infinite
attenuation is to obtain at a specified f_. If, for example, a 1000-cycle
cut-off frequency, low-pass filter is to have infinite attenuation at 1050
cycles, m is evaluated in accordance with equation (94). Thus:

2
m = 1}1 = %:5).% = 0.307 approximately

The nearer f, is to f., the lower will be the value of m. The reverse
order of reasoning indicates that the lower the value of m, the sharper
will be the cut-off. These facts are illustrated graphically in Fig. 26,

General Method of Analyzing m-Derived Filter Section Operation,
Certain aspects of m-derived filter section operation may not be appar-
ent from the cursory treatment that has been presented. The exact
manner in which the phase shift and attenuation vary with respect to
frequency can be obtained by subjecting the filter section to the * gen-
eral ” method of analysis. This method is summed up in equation (39),
which, for convenience, is restated below.

z
a+js=2log.[,}5‘3+1/§2+1] (39)

For the sake of illustration a low-pass, m-derived, T-section will be
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analyzed. From Fig. 24b it is evident that
z]m = j&lei = zl

and "
: (1 —m? 1 ] a
Zom =17 [W 4 Ly wmCas Z,
Therefore, in the present case,
Z _ wmLyy
4Z, [ 1 —-m? 1 ]
o b 4m le {.limc:k
w’m’LuCn

TP - m*)L1xCax — 4 o
The above expression is actually 8 complex number, the associated
angle of which is 180° or 0°, depending upon whether [w? (1 — m?*)LxCsx]
is less than or greater than 4. The foregoing statement follows directly

%3 s
) T
{
\
.8 ]
1
5 : Cons
- l =
%z.o - =g
’f = -
2 /1
-
10 FaEEE o
n -
088 1.0 L5 20

Frequency In -L— units

Fia. 26. Attenustion characteristics of two m-derived low-pass filter sections compared
with those of s constant-k low-pass flter section.
from au inspection of Z;/4Z; wherein all the factors are expressed in
polar form. Let w be arbitrarily reckoned in-1/v L;iCs: units. It
should be observed that in this method of analysis the cut-off angular
velocity or frequency is not necessarily anticipated by the choice of this
convenient unit. Thus, for w = 1/% L;3C3 radians per second, equa-
tion (39) reduces to =

: m? m?
“+"ﬁ'21°5‘[\{(1 - —4+\/(1 e l]
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For a particular value of m it becomes a simple matter to evaluate «
and g at any desired frequency. The calculations for m = 0.6 at
various frequencies are shown in Table V. The variations of attenua-
tion are represented graphically in Fig. 26 together with certain other
attenuation curves. An inspection of column (9), Table V, will reveal
the irregular manner in which the phase shift varies with frequency.

Problem 16. Graph the variation of attemuation with respeet to frequency of
a low-pass, m-derived T-section in which m = 0.40. The frequency may be indicated

in terms of 1/4/L1,C2 units of angular velocity. (See Table V, page 485.)

Comparison of Attenuation Characteristics. Constant-k and -
derived filter sections are sometimes worked in cascade because of the
complementary nature of their respective attenuation characteristics.
It has been shown that the attenuation of a constant-k, low-pass section
is zero at cut-off frequency and that it increases gradually with increases
of frequency above cut-off frequency. (Sce Fig. 12.) A similar situa-
tion holds for the constant-k, high-pass section except, of course, for the
fact that the attenuation increases as the frequency decreases from the
cut-off frequency. The attenuation characteristics of m-derived sec-
tions are radically different in character from those of constant-k sec-
tions. The differences are shown graphically in Fig. 26 {or low-pass
scctions. Similar curves can be determined for high-pass sections.

It is plain from an inspection of Fig. 26 that a constant-k section can
he combined with one or more m-derived sections to give high attenua-
tion near cut-off as well as high attenuation in other regions of the stop
band. In general, an m-derived section by itselfl will not give high
attenuation in regions which are too widely removed from the peint of
theoretical infinite attenuation. (See Fig. 26.)

General Design Procedure. Filter sections are usually designed*for
a particular characteristic impedance ‘and a particular cut-off frequency
(or frequencies). Theoretically, at least, these conditions can be met
aceurately and straightforwardly. Usually certain attenuation require-
ments must also be met. These attenuation requirements are gener-
ally met by a method of successive approximations.

The first step in elementary filter design is the determination of the
inductances and capacitances to be employed in a constant-k section.
These values are found from the basic design equations.

The second step is the evaluation of the m-derived, terminating half-
section inductances and capacitances. These values follow directly
from the parameters of the constant-k*section and the selected value of
m. It is assumed here that the terminating half sections are required
primarily for impedance-matching purposes, in which case the value of m
will generally be 0.6.
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If a sharp cut-off section is required, a full m-derived section, wherein
m is about 0.2 or 0.3, can be employed. The evaluation of the induct-
ances and capacitances to use in the full m-derived section constitutes
the third siep in the general design procedure.

ENE N # "
'!EL“"Lﬁ
==Cxu
m(:,.l mQPT
Constant.X S_hlrp cut-off Terminating
saction m-dedved saction hall-saction
m-derived

@
!ﬁ;rm) -,fnm-m L Hentem
2
j%‘a,"l Ln 1—"1-L1. L
i ? m'cﬁ C:l:

(2]
Fic. Z7. A composite low-pass filter togethm'-\rith its equivalent circuit.

\'[

The fourth step is the predetermination of the attenuation characteris-
tic of the composite filter and checking this against the actual attenua-
tion requirements. Adjustments may then be made in the number or
in the type of sections in order to meet the attenuation requirements in
the most economical manner.

The method of combining a constant-k section, a full m-derived
section, and m-derived terminating.half sections to form a low-pass
filter is illustrated in Fig. 27a. It will be noted that the assembly
shown in Fig. 27a is reducible to that shown in Fig. 270,

PROBLEMS

17. Consider a =-type filter section in which the full series arm, Z,, consists of
a 100-millihenry inductance coil the resistance of which is 50 ohms. Each of the
two shunt arms: consiats of a 0. 3-u1 condenser the resistance of which is pegiigibly
small,

(a) Find the open-circuit impedance, Z,, and the short-tircuit impedance, Z,-, of
the section at 300 cycles.
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)

(b) Find the characteristic impedance at 520 cxcles, at 1300 cyecles, and at 2000
cycles.

18, Each of the series arms (Z; 2) of & svmmetrical T-section consists of a con-
denser the capacitance of which iz 0.6 uf and the resistance of which is negligibly
small. The shunt arm (Z.) is a 200-millihenry inductance coil the resistance of
which is 69 ohms,

(a) Find the characteristic impedance and the propagation constant of the section
at 200 cyvcles. .

(b) Find the characteristic impedance and the propagation constant of the section
at 600 cveles,

19. The characteristic impedance of a filter section is to be measured. The

nieasuring device is a 1-B Western Electric impedance hridge which indicates the
R component of the impedance directly and the X component in terms of +L or — L.
Pluz L readings indicate that X = X = 2xfL, and negative L readings indicate
that X' = X¢ = 25f(—L). With the output terminals of the section open-circuited
the bridge readings are: R = 10 ohms and L = —190 millihenrys at 400 cycles.
With the output termipals of the section short-circuited the bridge readings are:
R = 20 ohms and L = +250 millihenrys at 400 cyvcles. Find the characteristic
impedance of the filter section at 400 eycles.
. 20. The series arms of a T-section are each of 100 ohms capacitance. The shunt
arm is 8 100-ohm inductive reactance. (2) Determine the characteristic impedance
of this section for the constants given. (b) Alzo caleulate Z,r for half the frequency
at which the constants are given. (¢) Is the frequeney for the reactances given
within the pass or stop band? (d) Answer for one-half the frequency at which the
reactances are given. (e) Calculate the attenuation in nepers for the two fre-
quencies. (f) What can you say about the characteristic impedance in the pass
band as compared with the attenuation band for an ideal prototype section? (g) Is
thie also true of ideal prototype r-sections?

21. A resistanceless, constant-k, low-pass T-zection has a cut-off frequency of
10,000 cycles and a zero-frequency characteristic impedance of 800 ohms. Ewvaluate
the phase shift at 1000, 000, 7000, and 10,000 cycles. Evalpate the attenuation
at 11,000, 15,000, 20,000, and 25,000 cyeles. Plot phase shift in degrees and at-
tenuation in decibels against cveles per second,

22. Consider a symmetrical x-type section in which the inductance of the full
series arm is 0.10 henry and the capacitance of each of the two condensers which
go to form the r-section is 0.3 uf.

(a) Neglecting the resistive components of the circuit elements, find the propaga-
tion constant at 500 cyeles, at 1300 eveles, and at 2000 cycles.

(b) What is the attenuation in decibels at each of the three frequencies referred
to ahove?

23. (a) What is the decibel level of 0.00001 watt with respect to a l-milliwatt
reference power level?

(b) What is the decibel level of 6 watts with respect to a l-milliwatt reference
power level? :

24. What is the cut-off frequency of a low-pass, constant-k, »-type filter section
in which the inductance of the full series arm is 20 benrys and the capacitance of
each condenser is B.0 wf? What is the characteristic impedance of the section
at 200 cycles? p

25. A T-section filter has series arms Z; ‘2 = j100 ohms and its shunt arm Z; =
=—51000 ohme,

(a) Calculate the characteristic impedance.
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* (b) Calculate the attenuation in decibels and the phase shift in degrees.

(¢) Are the reactances of the section for a frequency within the pass or stop band?

(d) Caleulate the characteristic impedance of the section for 5 times the frequency
for which the constants are given.

(¢) Caleulate the attenuation in decibels and phase shift for part (d).

26. A r-section flter has its series arm Z; = —j;100 ohms and its shunt arms
2Z4 = j500 ohms.

(a) Calculate the characteristic impedance,

() Calculate the attenuation in decibels and the phase shift in degrees.

(c) Are the reactances given for a frequency within the pass band or stop band?

(d) Repeat parts (a), (b), and (c) for a frequency of one-fifth of that for which
the impedances are given.

27. Nine T-sections each having series arms of Zy/2 = j500 ohms and shunt
arms Z; = —j200 ohms are connected in series or cascade. If the input voltage is
100, find the output voltage of the ninth section and the output current, assuming
characteristic termination.

28. Find the circuit element values of a high-pass, constant-k, T-type filter section
which is to have a cut-off frequency of 5000 cycles and an infinite-frequency char- |
acteristic impedance of 600 ohms. Repeat for & w»-type section. Draw circuit
diagrams showing the configurations of the circuit elements and the values of each
in millihenrys and microfarads.

29. A generator having an impedance of 800 /0° ohms is lo be eonneeted to a load
impedance of 100 &‘: through a half-section of the kind shown in Fig. 21, page 475.
Find the value of Z;:/2 (the series arm impedance) and of 2Zy; (the shunt arm
impedance) which will properly match the generator to the load. Z1x/2 is arbitrarily
taken as inductive, _

30. Design a high-pass, m-derived, T-type filter section which will have a cut-off
frequency of 5000 cycles, an infinite-frequency characteristic impedance of 600 ohins,
and an infinite-attenuation frequency of 4500 cycles.

31. Design m-derived half sections which will properly match, at 800 cycles, a
low-pass, constant-k, T-type section the full series arm of which is 0.30 henry and
the full shunt arm of which is 0.03 uf. The value of m is to be taken as 0.60.

32. Consider an m-derived, low-pass, T-section in which Z, is mLy; and Z3, con-
sists of (1 — m?/4m)Lyx in series with m(3.. Let mLix be known 8s Lim,
(1 — m24m)Ly; be known as Li,, and mCy be known as Cam. Show that the
cut-off frequency, namely, 1/1\/141&Cu, can be written 83 1/(xV/ (Lim + 4L2m) (Can)l.

33. Refer to the composite low-pass filter shown in Fig. 27. The requirements
to be met are: (1) zero-frequency characteristic impedance of 600 ohms, (2) cut-off
frequency of 5000 cycles, (3) variation in eharacteristic impedance of not more than
30 ohms over the lower 80 per cent of the pass band, (4) attenuation of 40 decibels
between the limits of 5242 and 10,000 cycles.

(@) Calculate the values of Li; and Ca.

() Design terminating half sections on the basis of m = 0.60.

(¢) Design the full m-derived aectwn to have theoretieal infinite attenuation at
5242 cycles.

(d) Make a graph of the attenuation of the composite filter between the limita of
5242 and 10,000 eycles and compare the results with the attenuation requirementa.
Use the three attenuation graphs shown in Fig. 26, page 493, at j/f. = 1.05, 1.10,
1.15, 1.20, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50, 1.75, and Bwnbfa.ln the composite
attenuation graph. =




chopter

XII Symmetrical Components

Symmetrical components furnish a tool of great power for analyti-
cally determining the performance of certain types of unbalanced elec-
trical circuits involving rotating electrical machines. It is particularly
useful in analyzing the performance of polyphase electrical machinery
when operated from systems of unbalanced voltages. Although it can
be used to solve unbalanced static networks like those in Chapter IX,
such application will in general be more cumbersome and laborious than
the methods already considered. For unbalanced networks containing
rotating machines, however, the method of symmetrical components
provides the only practicable method of accounting for the unbalanced
effects of these machines and is widely used in practice. It is also con-
venient for analyzing some types of polyphase transformer problems.

The method of “ symmetrical components,” in its most useful form,
is founded upon Fortescue's' theorem regarding the resolution of un-
balanced systems into symmetrical components. Although the present
discussion will confine itself to three-phase systems, any unbalanced
polyphase system of vectors can be resolved into balanced systems of
vectors called “ symmetrical components.”

Fortescue's theorem, applied to a general three-phase system of
vectors, is that any unbalanced three-phase system of vectors can be
resolved into three balanced systems of vectors, namely:

1. A balanced system of three-phase vectors having the same phase
sequence as the original unbalanced system of vectors. This balanced
system is called the * positive-sequence system.”

2. A balanced system of three-phase vectors having a phase sequence
which is opposite to that of the original unbalanced system of vectors.
This'balanced system is called the “ negative-sequence system.”

3. A system of three singlesphase vectors which are equal in mag-
nitude and which have exactly the same time-phase position with
respect to any given reference axis. This system of single-phase vectors
is known as the zero-sequence or uniphase system.

A general prool of the resolution theorem will not be given because
a little experience with the method will soon convince the reader that

! Fortescue, *“ Method of Symmetrical Co-ordinates Applitd to the Solution of
Polyphase Networks,” Transactions, A.I.LE.E., Vol. 37, 1918.

489 %
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the theorem as stated is correct. In this respect Fortescue’s theorem
is similar to Fourier's theorem regarding complex waves. In Chapter
VI it is shown that any complex wave may be resolved into definite
harmonic components by the Fourier method. The ultimate proof of
the theorem rests upon the fact that the components thus determined
can be synthesized to form the original complex wave. In a similar
manner it will be shown that any given unbalanced three-phase system
of vectors may be resolved into the three balanced systems outlined
above and that the composition of these balanced systems yields the
original unbalanced system of vectors,

Ve

Yy

(a) Original vectors.

(¢) Negative-sequence vectors. (d) Zero-sequencs vectors.
F1o. 1. Original set of three-phase vectors together with their symmetrical compon-ais,

The Original Unbalanced System of Vectors. Any number of vec:
tors up to and including three may be considered as an unbalanced sys-
tem of three-phase vectors. The vectors that form the unbalanced
system may have any specified magnitude (including zero) and may
possess any specified phase positions with respect to one another.
In Fig. la is shown a set of three unbalanced vectors that will later
be resolved into their symmetrical components. If the vectors that
form the original unbalanced set come to us merely as three specified
vectors, they can arbitrarily be assigned subscripts a, b, and ¢ in the
order shown in Fig. 1la. Thus the original vectors V,, V,, and V, are
arbitrarily assigned the abe phase sequence. (See Chapter IX, pages
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383-384.) Although the vectors shown in Fig. la are labeled as volt-
ages, the proposed resolution applies equally well to a system of
current vectors.

Owing to the fact that the symmetrical components will have to carry
an additional subseript to designate the system to which they belong,
single-subscript notation will be employed in connection with the original
vectors wherever this can be done without loss of clarity. For complete
gpecification, the positive circuit directions of the original three-phase
voltages or currents must be indicated on a separate circuit diagram.
The importance of complete specification will become apparent when
numerical problems are considered.

The Positive-Phase Sequence System. As previously stated, the
original unbalanced system of vectors is to be resolved into two balanced
three-phase systems and one uniphase system. It will be shown pres-
ently that the balanced three-phase systems must be of opposite phase
sequence. Therefore one balanced system has the same phase sequence
as the original three-phase system and the other has a phase sequence
opposite to that of the original system. .

The balanced system of three-phase vectors that has the same phase
sequence as the original system is called the positive-sequence system.
If the original vectors are assigned the phase sequence of abe, then the
phase sequence of the positive-sequence vectors is abc as shown in Fig. 1b.
The positive-sequence vectors are completely determined when the
magnitude and phase position of any one of them is known. A method
of evaluating any one of the positive-sequence vectors in terms of the
original vector vales will be given presently. The positive-sequence
vectors are designated as

Vo, Vo, and V,

The subscript 1 indicates that the vector thus labeled belongs to the
positive-sequence system. The letters refer to the original vector of
which the positive-sequence vector is a component part.

The vectors of any balanced three-phase system may be conveniently
related to one another with the aid of the operator a. The general
properties of this operator are considered in Chapter 1V, page 121-122.

al is a unit vector 120° ahead of the reference axis. a2l is a unit
vector 240° shead of the reference axis. Thus:

al = 1% = —0.5 4 j0.866

a’l = %% = —0.5 — j0.866
The operator a applied to any vector rotates that vector through 120°
in the positive or eounterclockwise direction. The operator a? applied
-32

1
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to any vector rotates that vector through 240° in the positive direction,
which is, of course, equivalent to a rotation of 120° in the negative
Airection.
If, for example, Vo1 has been determined, the positive-sequence system
ay be written simply as
va] o V,l
Vi = a2Vay = Var /—120°
Va =aVa = cl/{_%on

the positive-sequence

system of vectors 2)

The Negative-Phase Sequence System. The balanced system of
three-phase vectors which is opposite in phase sequence to that of the
original vectors is called the negative-sequence system. If the original
vectors have a phase sequence of abc the negative-sequence vectors
have a phase sequence of ach as shown in Fig. lc. Since the negative-
sequence system is balanced, it is completely determined when one of
the voltages is known. The negative-sequence vectors are designated as

V,g, V;,,, a.nd V,g

Subscript 2 indicates that the vectors belong to the negative-sequence
system. The a, b, and ¢ subscripts indicate components of Y, Vi,
and V. respectively. If V,2 is known, the negative-sequence system
can be written in the following form:

Vaz = vnB 5
vu = BV;z = V,.-,- /_240
Vs = 8°Vas = Vog /—120°

the negative-sequence @)
system of vectors

V.2, Vs2, and V., are shown graphically in Fig. lc.

The Zero-Phase Sequence System. The remaining system consists
of three veetors, identical in magnitude and in time phase, as shown in
Fig. 1d. These vectors form what is known as the uniphase or the
zero-sequence system, and have special significance in certain physical
problems. For the present it will be sufficient to think of the zero-
sequence vectors as components of the original vectors Vg, V, and V..
The zero-sequence vectors are designated as

vo(‘! Vw, and vd.‘r

Since the above voltages are equal:
V,o - V,u
Veo = Voo
Vo = Vao

the zero-sequence @)
system of vectors
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Graphical Composition of Sequence Vectors. It is evident that
(vnl + vn! + Vco)
(Va1 + Vaa + Vo)
and
(vci + v:? + V:O)

form & three-phase system of voltages which, in general, is unbalanced.
The above-indicated compositions are carried out graphically in Fig. 2,
employing the individual voltages contained in Figs. 1b, le, and 1d.

Ve

v: (i ]
Vo=Vt Vﬂ'an

Ve Y= Vot Vait Ve '

Fro. 2. Illustrating the manner in which the sequence components combine to form
Ve, Vs, 8od V..

The resultant system shown in Fig. 2 is identical with the unbalanced
system shown in Fig. 1a. For the particular case considered it is plain
that

Vo = Var + Va2 + Voo (5)
Vo = Viu + Vaa + Vi (8)
Ve =Va+ Va+ Ve (7
In terms of the operator a, the above relations may be stated as
Vo = Vo + Vaa + Vao (8)
Vs = a?Vay + Vs + Vao &)

V. =aV. + a?V.a + Voo (10;
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An inspection of equations (8), (9), and (10) will show that the original
gystem of vectors ean be completely specified in terms of Vai, Vaz, Vao,
and the operator a. The next step in the study of symmetrical com-
ponents is the evaluation of Vg, Vg3, and Vg in terms of the original
vectors Vg, Vi, and V,. *

Evaluation of V,;. The resolution of an unbalanced system of vectors
into its symmetrical components is essentially a geometric process, and
different geometric methods have been devised whereby the resolution
can be effected. However, none of the geometric methods thus far
devised possesses the neat simplicity of the complex algebra method
given below.

Before proceeding with the algebraic method it is well to understand
that certain operations are performed solely for the purpose of obtaining
the combination (1 + a + a?) which is equal to zero. Various simpli-
fications may thus be made when quantities can be so collected as to
possess the coefficient (1 + a + a®).

If equation (9) is multiplied by a the result is:

EV;. = n’\l’nl + a’V,g b aV,o
or, since a® = 1,
aV, = V. + !sv‘m + a2V (11)
If equation (10) is multiplied by a?, the result is:
a2VQ = uSV§], + B‘Vg; + lzv,o
or, since a* = a,
.2va - vﬂ]. + .-vaz + I’V-o (12)
Adding equations (8), (11), and (12) yields
Vo +aV, + 2%V, = 3Va + (1 + & + a*)(Vaz + Vo)
whence:
Var = }(Va + aVs + a’V.) = ¥(Va + V, /120° + V. /240°) (13)

Geometrically speaking, the above equation means that Vj, is a vector
one-third as large as the vector which results from the addition of the
three vectors Va, Vs /120°, and V, /240°
Example L If the vectors shown in Fig. la are: 3 !
V. = 10 /30°, Vp=30/—60° and V, =15 /145" uni
Vai = $(10 /30° + 230 [ —60° + a’15 /145°)
= (10 /30° + 30 /80° + 15 /25°)

= 12.42 4 712.45 = 17.6 /45°.0 units
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Since Vi1 = Va1 /—120° and V,; = V.3 /+4120°, the positive-sequence system of
vectors becomes:
Vo =178 /_W‘, V1 = 17.6 /—75°, and Ve = 17.6 /165° units

The above results are indicated graphically in Fig. 1b.

Evaluation of V,o. The negative-sequence component of V.5 can be
evaluated in a manner almost identical with that given above for the
evaluation of V. It is simply necessary to study equations (8), (9),
and (10) with a view toward eliminating the V,, and V., terms and at
the same time retain the V., terms. The desired results can be ob-
tained by multiplying equation (9) through by a? and equation (10)
through by a. Equation (9) multiplied by a? reduces to

a’Vy = aVy + Vao + a%Vy (14)

Equation (10) multiplied by a reduces to
aV, = agval + Va2 + aVyo - (15)

Adding equations (8), (14), and (15) yields
Vo+a®Vy +aV. = 3Vao + (14 a + a?%) (Vo; + Vyo)
Since (1 4 a 4+ a%) = 0,

Vaz = 3(Va + &%V, + aVe) = §(Va + V5 /240° + V. /120°)  (16)
Vaz is therefore a vector one-third the magnitude of [V, + (V; rotated
through +240°) + (V, rotated through +120°)).

Example 2. IL{V, = 10‘@°. Vs = 30 /—60°, and V, = 15 [}p5° nmits:

Vaz = }{10 /30° + a%30 / —60° + a15 /145°)

= (10 /30° + 30 /180° + 15 /265°)
= —7.55 — j3.32 = 8.25 /—156 2° units

Vas for this particular case is shown in Fig. le together with Vi; and V.s. Vi =
Vaz /120° and Vg = Vo3 /—120°

Evaluation of V,. The direct addition of equations (8), (9), and
(10) will show that:
Vo+ Vo + Ve = Vai(1 + 2’ + a) + Vaa(1 + a + a®) + 3V,

or

Vao = 3(Va + Vs + Vo) (17)

The zero-sequence component is simply & vector one-third as large as
the vector obtained by adding V,, V,, and V..



496 ALTERNATING-CURRENT CIRCUITS Ch Xl

Example 8. If V, = 10 /30°, V, = 30 /—60° and V, = 15 /145° units:

Vao = $(10 /30° + 30 /—80° + 15 /145°)
= 3.79,— j4.13 = 5.60 / —47.4° units

The above value of Vao together with corresponding values of Vo and V.o are shown
in Fig. 1d.

Example 4. (a) The results obtained in the foregoing examples can be checked by
comparing the complex expression for (Va1 + Vaz + Vao) with the complex expres-
sion of the original vector Va. The results of the foregoing examples are tabulated

below.
Var = 12.42 + j12.45 = 17.6 /45° units

Va2 = —7.55 — §3.32 = 8.25 / —156.2° units
Vao = 3.79 — j4.13 = 560 / —47.4° units

(Va1 + Vaz + Vao) = 8.66 + j5.00 = 10 /30° = V,

() Vi1 = a?l7.6 /45° = 17.8 /—75° = 4.56 — j17.0 units
Vis = 88.25 / —156.2° = 8.25 / —36.2° = 6.66 — j4.87 units
Vio = 5.60 /—47.4° = 3.79 — j4.13 units

(Var + Voz + Voo) = 15.0 — j26.0 = 30.0 /—60° = Vs

(c) Vo = a17.6 /45° = 17.6 /165° = —17.0 + j4.56 units
V. = a’8.25 /—156.2° = 8.25 /83.8° = 0.89 + j8.20 units
V.o = 5.60 /—47.4° = 3.79 — j4.13 units

(Ver + Vez + Veo) = —12.32 +j8.63 = 15 /145° = V,

Problem 1 Given the following three vector voltages: Vo = 150 &’,
V, = 86.6 /—90° and V. = 866 [E volts.
(a) Find the symmetrical componenta of Vo and check the results by adding

Val- Vu:; ud qu-
(b) Evaluate V, and V. in terms of the symmetrical components of V. found

in part (a).
(c) Draw & vector diagram illustrating all symmetrical components.
Ans.: (a) Vg = 100 E, Vaz =0, Vgo =50 & volts.

Absence of Zero-Sequence Components. The zero-sequence com-
poxients are non-existent in any system of voltages (or currents) if the
veotor sum of the original vectors is equal to zero. [See equation (17).]
This fact may often be used advantageously in making numerical calcu-
lations because the original system of vectors is then directly reducible
to two balanced three-phase systems of opposite phase sequence. An
absence of zero-sequence components may have important physical
significance in the analysis of practical problems. Some of the prac-
tical problems in which symmetrical-component analyses are used
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successfully will be referred to briefly in the following paragraphs and
one of these problems will be treated in detail in the next chapter.

Three-Phase, Line-to-Line Voltages. The line-to-line voltages shown
in Fig. 3 for either the wye or delta are:

vab =.(van i vbn) (18)
vbc e (vbn = vcn) (19)
vcu - (vcn = vnn) (20)

For the delta the voltages to neutral are those of an equivalent wye.
Regardless of the degree of unbalance in the line-to-line voltages

Ya + vbc + Voa - (van e vbn) + (Vbn = ch)
+ (vcn o .vun) =0 (21)

The zero-sequenice components of the line-to-line voltages are non-
existent because

vaw = VM = V;w - i(vub -+ vba + vca) =0 (?"2)

Therefore three-phase, line-to-line voltages may be represented by a
positive-sequence system and a negative-sequence system of voltages
as represented by the voltage vector diagrams of Fig. 3. It should be
realized that Fig. 3 shows a specific case. As has been previously stated,
the relative magnitude of the positive: and negative-sequence voltages
and the angle between Van 8nd Vanz may take on an infinite number of
different values in the most general case. The fact that unbalanced
line-to-line voltages may be resolved into two balanced systems of
opposite sequence is of considerable importance in the analyses of three-
phase rotating machinery. When unbalanced voltages are applied to &
three-phase induction motor, for example, the operation of the motor
may be analyzed on the basis of balanced systems of voltages of opposite
phase sequence.

The positive-sequence voltages and negative-sequence voltages shown
in Fig. 3 are obtained in any particular case in terms of the vector values
of Vab, Ve, and Ve as outlined in equations (13) and (16). In terms
of the present notation

Vot = $(Vas + Ve /120° + Voo /—120°) (23)
Varz = (Ve + Vi /—120° + V., /120°) (24)

It will be observed from equation (23) that the positive-sequence
component of the base vector (V. in this case) is obtained by advancing
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(through 120°) the vector which lags the base vector and retarding
(through 120°) the vector which leads the base vector. Reversed opera-
tions are employed to secure the negative-sequence components as

I,

L,
vbd g Vibz
Tab2
Ncu't;\'rlt.-:a;mnu N.g:ml::'qmne-
Venz
I

Veus

Fia. 3. Positive and negative systems of voltages and currents for a specific
three-phase system.

shown in equation (24). If the general scheme is understood, neither
changes in notation nor reversals of phase sequence (of the original
vectore) can cause confusion.
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The statement following equations (23) and (24) and the equations
themselves are based upon & line-voltage sequence of ab—bc—ca where
V.. actually lags the base vector Vap.  Occasions arise where the formulas
as given by equations (13), (16) and (17) should be applied as labeled
even though the vector of phase b does not lag but actually leads the
base vector. An illustration involving currents follows. Assume the
impedances for the wye load shown in Fig. 3 are Z,, = 5.77/0° Zpy =

10/90°, and Z,. = 10/—90° If the applied line voltages are Ve =
100/30°, Ve = 100/ —90°, and Vg = 100/150° solution will yield
voltages and currents as follows:

Vpa = 57.7/0°  Vpp = 57.7/—120°  V,. = 57.7/120°
Ine = 10/0° Iy = 5.77/150° I,. = 5.77/—150°

Inspection of these results shows the voltage sequence to be a-b—, and
this might be the starting point and called the positive sequence system.
The actual current sequence is a—c-b. If the currents in this case are
resolved into their symmetrical components, that in phase b should be
advanced 120° as equation (13) would indicate even though I actually
leads I,, which might be taken as the base vector. Otherwise the system
of positive sequence currents would not correspond to the positive
sequence system of voltages. In general it is customary at the start to
assume a positive sequence of a-b—c and initially label the vector which
lags the reference vector so the sequence is a-b—c. Then the positive
sequence voltage or current in any subsequent calculations will be
obtained by advancing, that is, rotating counterclockwise 120°, the b
phasé voltage or current regardless of whether it actually lags or leads
the base vector. This is necessary to make all positive sequence systems
of voltages and currents correspond. Otherwise a negative sequence
system of currents may be the one to correspond to a positive sequence
system of voltages, and this would lead to confusion.

Problem 2. A three-phase system of line voltages, Vau, Vi, and V.4, are unbal-
anced to the extent that Vg, = 4000/ —60° and Vaz = 2000/180° volts.  (Vaso is,
of course, equal to zero.)

(@) Draw a common-origin vector diagram illustrating the positive-sequence
voltages and the negative-sequence voltages of Vi, Vi, and Ve,

(b) Find the magnitudes of the three voltages Va, Vi, and Ve,

Ans.: (b) Va = 3464, V. = 3464, V., = 6000 volts.

Phase Voltages of Wye-Connected Loads. Reference to equation (21)
will show that the phase voltages, Van, Via, and V.,, may possess any
vector values whatsoever and yet the vector sum of the line-to-line
voltages is zero. In general, however,

vun"‘ v!m + vl:n #0
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The individual phase voltages will, therefore, generally possess zero-
sequence components even though these components are absent in the
line-to-line voltages. Under balunced conditions the phase voltages
will, of course, possess no zero-sequence components,

Example 6. In Fig. 3, let
Van = 10/0° Vi, =20/ -90° V,, = 10/135° volts
Under these conditions
Vap = (10 + j0) — (0 — j20) = 10 + ;20
= (0 = j20) — (=7.07 + j7.07) = 7.07 — j27.07
V.. = (—7.07 +j7.07) — (10 + j0) = —17.07 + 7707
Vaso = 3[(10 4 j20) + (7.07 — j27.07) + (—17.07 +j7.07)] = 0

Vo = 3010 + j0) + (0 — j20) + (=7.07 + j7.07)]
=3} (2.93 — j12.93) = 0.08 — j4.31 volts

It will be noted that triple subscripts have been used in the above
example in connection with the component voltages Vapo and Vgge.
Where both line-to-line and phase voltages are involved in the same
discussion, triple subscripts of this kind may be used advantageously.
These subscripts tell whether line-to-line voltages or phase voltages are
being considered, they specify the positive civcuit direction of the
voltages, and they designate the order of the system to which the
component voltage belongs.

Delta-Wye Voltage Transformations. In symmetrical-component
analyses it is very often particularly advantageous to consider delta-
connected systems on an equivalent wye basis. If the delta-connected
load shown in Fig. 3 is to be analyzed on an equivalent wye basis, the
load impedances are first converted to their equivalent wye values in
the conventional manner and then the line-to-line voltages are resolved
into their symmetrical components ws shown in equations (23) and (24).
The remaining problem is that of finding the equivalent wye voltages in
terms of the line-to-line voltages,

- For a-b-¢ sequence

Viur = Vd!tl/ 120° and Veur — Vour = Van
It follows that

mrl vumlz —120 vcbl
unl[]- == (_D'ﬁ _JU'SGON = vﬂbl

Hence
vubl

V3/30°

vmll -

ﬂbl i (-25)
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The complete positive-sequence system of voltages is shown in Fig. 3.
In a corresponding manner it may be shown that

_Vobz _ v.“_bf{.':}—(:ﬁ (26)

V/3/-30° /3

The complete negative-sequence system of voltages is shown in Fig. 3.
Equations (23) and (26) are useful in the analysis of either wye- or

delta-connected loads where the line-to-line voltages are specified. They

are also important in the analysis of delta-wye transformer banks like

that shown in Fig. 4.

Vanz =

; 2
Load

[ r

b

¢ . 2

Primary Secondary

’

c c
o Q

Fic. 4. Wye-delta transformer bank. The windings of transformer a are a’'y’ and on,
transformer b, b’¢’ and bn, and transformer ¢, ¢'a’ and cn.

It should be noted in passing that V,.o may possess a finite value
even though the zero-sequence components of the line-to-line voltages
are of zero value. The fact that V.o cannot be evaluated in terms of
the line-to-line voltages presents no serious handicap as will be shown
later, but it does preclude the possibility of immediately evaluating the
Vuhage to neutral (Vﬂn = vdnl -+ vunz +‘vaﬂ0}-

Problem 3. In the wye-delta transformer bank shown in Fig. 4, the operation of
the three transformers, and the polarities of the windings are such that

Vay = nVan {transformer a)
Vi = nViy (transformer b)
Veat = AV (transformer ¢)

where n is the voltage transformation ratio of the transformers. ‘The primary line-to-
line voltages are unbalanced in magnitude to the extent that Vg, = 4000/ = 60°

and Vase = 1000/ —90° volts. (Vas: and Ve are, of course, written with respect
to & common reference axis.) The sequence of the primary line-to-line voltages is
assumed to be ab-ba—ca, and V,n0 is to be taken as zero.

(a) Find the magnitude and vector position of Ve and of Vi
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(6) If the transformation ratio of the transformers is 10, find the magnitude
and vector position of V,-5- and of Vy.-. :
Ans.: Vo = 4890/ —65.85 V), = 3173 /170.94° volte.

Varp = 28,230 / —84.14°, Vi = 23,800 /135.95” volts.

Problem 4. Find the relative vector positions of V. and Vaw of the wye<delta
transformer hank of Fig. 4 if Vay2 = 0 and Vano = 0. Find the relative veector
positions of Vi and Vior under the same conditions. (The sequence of the supply
valtages Vo, Vi, and V,, is assumed to be ab-bc-ca.)

Anas.: Ve lags Va, by 30% Ve lags Vi by 30°
The supply voltages are balanced and the positive-sequence voltage vector diagram
of Fig. 3 applies directly since Vas: = nVyn, and Vyror = nV,.

Three-Phase, Three-Wire Line Currents and Associated Delta-Phase
Currents. The line currents of a three-phase, three-wire system can
contain no zero-sequence components regardless of whether the syvstem
is wye- or delta-connected. Reference to the wye-connected load given
in Fig. 3 will show that at the junction n

L+L,+1,=0
Therefore, _
Lo=30a+L+1) =0 (27)

Reference to the delta-connected load given in Fig. 3 will show that

In = Iab == Ica (28}
L=I —1s (29)
I =1, — Iy, (30)

Hence
L+h+L=(Ts—Tu)+ Qe —ILp) + Ta—1,) =0 (31)

T"egardless of the degree of unhalance of the individual phase currents,
Ly, Lie, and I.,, the vector sum of the line currents, I,, I,, and I, is
equal to zero and therefore no zero-sequence components are present
in the line currents.

1he individual delta-phase currents will, in general, possess zero-
sequence components since (Ius + Ie + I,) is, in general, not equal
to zero. The zero-sequence components of the phase currents in a
delta-connected system cannot be evaluated in terms of the line currents.

For a-b-c¢ sequence of line currents,

In!ll = I:al‘. - Ial and Ical T Inblg: 120°
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Employing the same type of derivation as that employed in the deri-
vation of equation (25), it is easy to show that

Lu(l = (=0.5 + j0.866)] = Ia

Iul
Lo = —/30° 32
B / (32)

A complete positive-sequence system of currents is chown in Fig. 3.
The vector diagram of the positive-sequence eurrents shows that I,
is 1/V'3 as large as I and 30° in advance of 1.

In a corresponding manner it may be shown that

] e >
L = /5/ 30 (33)

In a wye-delta transformer bank like that shown in Fig. 4 where no
zorotsequence components of current ean exist in the wyve primary
windings, no zero-sequence currents will be present in the delta secondary
windings zince N I, = N,/,. In this connection, N, represents the
primary turns and N, the secondary turns of one transformer. (The
inagnetizing current is neglected in the statement N/, = N/, or else
I, represents simply the load component of the primary current.) The
fact that a transformer bank like that shown in Fig. 4 eliminates zero-
sequence currents iz of importance in power network short-circuit
studies.

Problem 5. Tind the line current, I,, in the delta-connected system shown in
Fig. 3if
L = IDJE._“r Lisz = 5:’&0‘, and  Iga = 7/19.5° amperes

Ans: I, = 15 07 amperes.

Three-Phase Line Currents Associated with a Neutral Return. [If a
wye-wye syslem operates with. grounded neutrals or with @ conneeting
wire between neutrals, the veetor sum of the line currents will not, in
general, be equal to zero.  In this case:

Lo=Tw=To=3I,+ 5+ 1) (3:4)

It will be noted- that the ground or neutral return current, namely,
(Ia + I, + 1), is three times as large as the individual zero-sequence
components of the line currents, Each line wire carries a component
of current which is equal in magnitude and in time phase with similar
components in the other two lines. These zero-sequence components
are sometimes called uniphase components and have important physical
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significance in connection with the inductive interference between
three-phase power lines and paralleling telephone lines.

Where the line currents possess uniphase componients, no manner of
transposition of the power system line wires will prevent these com-
ponents from establishing inductive interference in puralleling teiephicize
lines. the reason being that the uniphase componaits in the three line
wires establi=h similarly directed magnetic interference. In a case of
this kind, transpo=ition of the telephone wires themselves is required to
balance out the undesirable emf's that are induced by the power sy=tem
currents.  Inductive interference studies usually refer to the uniphase
or zero-sequence currents as residuals sinee they represent the com-
ponent currents that remain after the positive- and negative-sequence
components have been taken from the original unbalanced system of
currents. The fact that the residuals can be separated from the two
balanced systems of currents is an important feature in interference
problems.

The zero-sequence components of the line currents of grounded or
four-wire wye systems are also of importance in the evaluation of the
short-circuit currents in power systems.

Example 6. A line-to-ground short circuit on a grounded wye-connected alter-
nator is shown in Fig. 5. Let it be required 1o find the three-phasc symmetrical

I;-D

Fic. 5. A particular -ase of unbalanced three-phase line currents.

components of the line currents I, Iy, and I, where I, = 1[3‘ Jy =0,and I. = 0.
I is the magnitude of the short-circuit current, Ly, and a is the angular displace-
ment of this current from uny arhitrary reference axis. The three line currents
may be considered as an unhalanced three-phase system of currents even though
two of the eurrents are equal to zero.

The originul system of currents is represented by

I =Il/a L =0 L =0

The positive-sequence components of the ahove currents are

LL-‘&I& Ial=§ffa—12(}° I -%.Qa-!-l?ﬂ"
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The negative-sequence components are
La=3//a T =14l/a +120° Ls = 1//a —120°
The zero-sequence components are
Lo=ILo=1Io =4I /a

Graphical representations of the above results are shown in Fig. 6. It will be
observed that

IuI+IHE+IqU=Iﬂ=!£"

Li+he+lo=I5L=0
lrl+lr!+rr0=[r=0

Symmetrical eomponents of the kind given above are used in single line-to-ground

Qriginal
System

Tteference

Positive-Sequence " Treference
System

Ihi Iﬂ

Negative-Sequence
- System

Zero-Sequence
System

Fic. 6. The resulution of a single current ! /a into its three-phase symmetrical
components.

short-cireuit current analyses, and although this type of problem is not considered
in the present chapter a study of Fig. 6 at this stage will prove to be instructive.
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Problem 6. The three line currcnta ina four-nu-e wye eystem like that shown
in Fig. 7, are:

Lita = Ia = 20/-00°, Iyp =1, =12/=100°, and I, = I, = 10/75° amperes

Toa' =Lyt Lyt e

oA~
Dl’
F16. 7. Three-phase four-wire system for Problem 6.

Find the positive-, negative-, and zero-sequence components of the above line cur-
rents and check the results either graphically or by the vector addition of the sym-
metrical components,

Ans.: Ip =045 — j6.76 = 11.62/ " —35.6" amperes
It
I.; = 1.136 4+ j11.58 = 11.62 /84 4° amperes
I,s = —2.95 — j4.07 = 503/ —125.9° amperes
L = 50 — j0.517 = 503/ —5.9° amperes
Is = =205 + j4.59 = 503 /114.1° amperes

i

—10.58 — j4.80 = 11.62/ —155.6° amperes

Too = 3.503 — j6.49 = 7.375 / — (i1 .65° amperes

Power from Symmetrical Components. For any unbalanced three-
phase system the totul power consumed is the sum of the powers absorbed
in each phase. Thus

P=P,+ Py+ P.= Vil cos &, +'Vyly cos 6, + Vel cos

If the voltage of a gi\'én phase, say V,, is resolved into several compo-
nents, the power for that phase may be obtained by adding the products
of each comiponent of voltage by the current times the cosine of the angle
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between the particular voltage component and the curnont, Reference
to Fig. 8 will make this evident. Ilere

I‘ﬂ = !n(l'd COs 6) = !a{]-l [ Gl + I.-: s ".r + I'u {48 ﬂu’

- . Vi a i
117 cos 8‘{: F+ IV cost 4+ 1,V g cos E}"J

Similarly, if the current is divided nto components, the power is the
sum of the products of voltage by the current timmes the cosine of the
phase angle between the respective components of current and the volt-
age. From these fuets it should be apparent that if both voliage and
current are resolved into
components, the power will
be the sum of the products
of each component of volt-
age by each component of

v,

i
|
L

Fia. 8 In-phase component of V, Fie. 9. Byvimmetrical components of voltages
with respect to I is the sum of the and currents of a general three=phuse sy stem.
in-phase components of each of the
component valtages of ¥,.

current times the cosine of the angle between the particular component
of voltage and current appearing in each of the products.

Figure 9 shows the symmetrical compuonents of currents and voltages
for any threc-phase system.  The subseripts a. b, and e denote the phise
while 0, 1, and 2 are the usual symhols denoting the sequence -
ponents. In terms of the components shown for phase a, the power 13

Py, = Vaolaycosh, + Viglaavcos s + Viglageosfy + Violocos 8,

+ I'q:!ul cos 95 + I'“glm, cos Gﬁ 4+ I"afj!ao ({50 9: + I-.“.!"] cus fy
+ I‘a(}fug cos fi (3o
For phase b
Pb = I"b].!bl. cos 91 + I'M.lrp_.g Cos “209 + 92) + 1'51!_-,” s Il. 1'300 ‘+ 63"
+ Vaalyy cos by + Vialyy cos (120° + 85) 4+ Vialso cos (120° — 8¢
+ Violso cos 87 + Violyy cos (120° + 63)

4+ Viyolsz cos (120° — fg) (36}
-33
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For phase ¢
P.= Valqcos8, + Vel cos (240° + 63) + Veylog cos (240° + 63)
+ Vealen c0s 05 + Vealep cos (240° + 65) + Vool cos (240° — 65)
+ I'rl)rr:ﬂ cos 37 + IF:O}’:I cos (2‘100 + BE)
+ Vol g cos (240° — 8g) (37)
It should be remembered that only muagnitudes of voltages and cur-
rents appear in equations (33), (36), and (37), and that V75 = V7 =
Ve, Vaa=Vie="Veo, Vao=1Vio=Veo, laa =1y =T, laz =
Tvag = Ip, and 6 = Ing = I.0. Under these conditions if equations
(353), (36), and (37) are added, the terms containing 8; add to zero
because they represent three equal quantities at 120-degree angles.
Similarly, the terms containing 83, 8s, fs. 6s. and 8g add to zero. Drop-
ping reference to particular phases, this leaves

P = Pa + Pb + pc = 31’1-{1 POS&] + 31"2.{2 (‘0564 + 31'()]9 {.'056}' (38}
It will be noted that cos 8; = cos ﬂ{r", cos 8y = cos By, and cosf; =
cos 6%,. Hence
.- P = 3V,I, cos 6%, + 3Val; cos 6y, + 3Vl cos 6y, (39)
Equation (39) shows that the total power consumed by an unbalanced
three-phase system is the sum of the powers represented by each of the
symmetrical component systems. Hence, to obtain total power the
algebraic sum of the total positive-, total negative-, and total zero-
sequence powers may be calculated.

Copper Losses in Terms of Symmetrical Components. The copper
loss for any unbalanced three-phase system is

P = Iu?“?n + llrbsz + L:ch (40)
where phase currents and the corresponding phase resistances are used.
By referring to Fig. 10 and by remembering that
I, = Ia! + In! + qu
it follows that
1.2 = (Iyy + I,acos B+ Igcosa)? + (laasin B + Iagsina)?  (41)
Similarly,
12 = {11, cos 240° + Tpp cos (120° — B) + Iy cos a)?
+ [/31 sin 240° + Ipz sin (120° — B) + Iypsin af? (42)
122 = [l cos 120° 4 I 5 cos (240° — B) + I cos a)?
+ (7., sin 120° + .5 sin (240° — §) + .o sin a)? (43)
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When R,, R», and R, are different the sequence components of current
should be combined to obtain I, I3, and I, and equation (40) used to
calculate the copper loss. If, however, R, = Ry = R. = R, substi-
tution of equations (41), (42), and (43) in equation (40), dropping
reference to phese, and expanding and
combining terms algebraically give I,

P = 31,°R + 3I.’R + 3I,*R
=312+ 1.2+ IR (11)

Equation (44) shows that the total
copper loss due to the resultant currents
is the same as the sum of the copper
losses due to the sequence components
calculated separately.

1f the resistances to the positive-,
negative-, and zero-sequence currents

are different, the copper loss may be de- Fic. 10.  Symmetrical compo-
termined from nents of currents in a general

three-phase system.
= 3I)°Ry + 31,°Ry + 31k  (43)

where Ry, Ry, and R, are respectively the resistance o the positive-,
negative-, and zero-sequence components of current. In using equation
(45) it must be remembered that each of the sequence resistances must
be the same for all three phases, since equality of phase resistances was
assumed in obtaining equation (44), of which (45) is a modification.

Positive-, Negative-, and Zero-Sequence Impedance Components.
For purposes of some analyses, three self-impedances may be separated
or resolved into their symmetrical components exactly like three voltages
or currents. If the voltages or currents which are to be associated with
these component impedances are resolved in the order a-b—¢, then the
impedances should be resolved in the same order. [See equations (13),
(16), and -(17).] The term self-impedance implies that no mutual
coupling exists between the individual impedances. In order to dis-
tinguish the components of self-impedance from the components of
mutual impedance which are considered later, double subsecripts of the
kind given below will be used.

The symmetrical components of three self-impedances, Z.s, Zps, and
Z..are

e 1)
120 I,
co

Ibl

Zact = }(Zoo + Zpp /120° + 2./ —120°) (46)

ZME = '&'{Zaq + wa _l + zccz ) i (47}

ztl&lo = i(zm: + ZNb + zﬂr) (48}
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As above defined Z,a1, Zss2, and Zaag are called positive-sequence im-
pedance, negative-sequence impedance, and zero-sequence impedance
respectively. These component impedances have little physieal sig-
nificance but they are useful in a general mathematical formulation of
syimmmetrical-component theory. It should be pointed out at this stage
that the resistance (or in-phase) parts of the component impedances
may possess negative signs even though the real parLa of Z,a, Zn, and
Z.. are all positive.

The above symmetrical components of an unb: 11.111(‘ed sel of impedances
should not be confused with impedance to positive-, negative-, and zero-
sequence currents which are defined as follows:

.- \4
Impedance to positive-sequence, Z; = Ial
al
= vnS
Impedance to negative-sequence, Zay = L.
: a2
vaﬂ
Impedance to zero-sequence, Zy = i
al

These impedances to sequence component currents are usually applied
to systems where the impedances of all phases are the same or balanced.
In order to avoid confusion a double-letter subscript will be used on
positive-, negutive-, and zero-sequence components of impedance. For
impedance to positive-, negative-, and zero-sequence currents a single-
letter subscript will be used. In both cases the figure subseripts 1, 2,
and 0 will denote positive, negative, and zero sequence, respectively,

Fig. 11. See example 7.

Example 7. Let the wye-connected impedances of Fig. 11 be o
sa= (6470 Zw=(52-33) Z. = (0+;j12) ohms
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Employing equations (46), (47), and (48), the component impedances are
Zoar = (6 + J0) + (5.2 = j3) (-0.5 + j0.866) + (0 + j12) (—-0.5 — j0.866)]
= }{(6 + 70) + © + j6) + (10.4 — 56)]
= }(16.4 + j0) = 547 + ;0 ohms

Zooz = (6 + 70) + (5.2 — j3) (—0.5 — 70.866) + (0 + j12) (—0.5 + 70.866)]
=36 4 0) + (=52 —j3) + (—~10.4 — j0))
=4(—9.6 —j9) = —3.2 — ;3 ohms

Zoas = 316 +40) + (5.2 — j3) + (0 +712))
= §(11.2 4+ ;9) = 3.73 + ;3 ohms

In accordance with previous considerations, it follows that

Zp = Z“;g —120° Zer = Z.ml.z 120°
Zyys = Zaaz/120° Zeco = Zaaz/ —120°
z»u = zuo zer - Zaﬂn

The sum of the impedance components of one phase equals the actual impedance of
that phase. For example,

Zos = (547 4 j0) + (=3.2 = j3) + (3.73 4+ j3) = 6 + j0 ohms

Problem 7. Find Zg1, Zisa, and Zyso in the above example, employing the values
of Zoa1, Zaaz, B0d Zuao which have been evaluated. Repeat for Z..1, Zccs, and Zeeo
Ans.: Zp = Zp1 + Zewr + Zpso
= (=273 — j4.73) + (4.20 — j1.27) + (3.73 + ;3.0)
= (5.2 — j3.0) ohms.

Problem B. Given three wye-connected impedances:
Zon = (15 +70) Zya = (6 — j3.464) Z., = (6 + 73.464) ohms

(a) Find the symmetrical components of Za, in accordance with the resolutions
given in equations (46), (47), and (48).
(5) Find Zyni, Zynz, 80d Zgno in terms of the symmetrical components of Z,, and
check (Zpnt + Zinz + Zino) with the given value of (6 — ;3.464) ohms.
Ans: (@) Zonr = 5/0°% Zan2 = 1/0% Zano = 9/0° ohms.

Sequence Rule as Applied to Component Voltagesi If the voltage
drop across one phase, say phase a, is written in terms of the symmetrical
components of both current and impedance, nine component voltages
appear. That is,

Vo= LZ, = (Ia + L2 + Iﬁﬂ)(zul + Zaaa + Zaao)
= LiZsa1 + Ialzuﬂ + L Zoao + lczzcal + lozzaci + Li2Zaso
+ LioZoar + LaoZoaz + LuoZoso - ' (49)
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These nine component voltages may be grouped in such a manner as to
form the positive-, negative-, and zero-sequence components of V., and
this grouping may be made in wcecordance with an easily remembered
rule.

The Sequence Rule

The order of the voltage system to which an 1Z drop belongs is
equal to the sum of the orders of the systems to which I and Z belong
individually.

In the application of the sequence rule, positive-sequence terms are
of first order, negative-sequence terms are of second order, and zero-
sequence terms are of zero or third order, In summing - ¢ ~rders both
(1 4+ 0)and (2 + 2) are considered ux belonging to the first order, since
order 4 is considered as order 1, there being only three orders.  In this
connection, the zero in (1 4+ 0) may be reckoned either as zero or three,
Also (1 + 2) is of order 3, or a zero-sequence term.  As applied to the
component voltuges of equation (49), the scquence rule =tates

Val . Ialzmo + Lzzmz -+ lanzanl (50)
Vaﬂ = Iﬂ'lz:ml + quznﬂl’) + Iauzua."! (131)
vn{] - In‘i zau2 =¥ quznul "I"' [al.izr.m[) (52J

Obviously the real basis upon which the above equations are written
Is that, as written, th(‘_y :-';sti.‘-f_\' the definitions which were originally
attzched to Vi, Vg, and Vo To satisfy these definitions, Vi must be
the positive-sequence ecomponent of the buse veetor V,,, V5 must be tHe
negative-sequence component of the hase veetor V,, and V.5 must be
the zero-sequence component.  The proof that V., as written in equa-
tion (50), satisfies the definition of a positive-scquence voltage is out-
lined below.
Applying equation (30) to the b phase and making appropriate sub-

stitutions, 2
Vor = IniZso + T2Zssz + InoZsa

= (L / —120°)Zaao + (Ii2/120°)Za02/120° + IsoZami/—120°

= 11 Zoa0/ —120° 4 Li2Z0us /= 120° + LioZony / — 120° (50a)
Comparison of equations (50a) and (50) will show that V3, is equal in

magnitude to V,, and 120° behind Vg, as, of course, it should be if
Vat, Vi1, and V4 are to form a positive-sequence system.
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Applying equation (30) to the ¢ phase and making appropriate sub-

stitutions,

vcl = Iclzccﬂ : Iczz:d + Icﬂzrrl

(Iat‘:‘ 1200)2-:60 o (Iﬂ'—‘g_' = l?ﬂ_“}zua,ﬁ,‘/" 120° 4+ Iaﬂzﬂﬂlf 120°

Ti1Zua0 /120° + LinZaua /120° 4 LoZyay /120° (300)

It

Comparison of equations (306) and (50) will show that V., is equal in
magnitude to V,, and 120° ahead of V,;, which is the necessary require-
ment that Vay, Vs, and V., form a positive-sequence system of voltages.

In a manner similar to that outlined above, V.z of equation (51) may
he chown to be a member of a balanced negative-sequence system of
voltages Vs, Vi, and V.o

In the following problem the reader is asked to analyze equation (52)
with a view toward showing that the IZ components of that equation
are correctly chosen to form a zero-sequence system of voltages.

Problem 9. DProve that Vao (equal to Ig1Zau2 + L2201 + LioZogy) i=equal in mag-
nitude and in time phase, with

Vio = IniZwo + LiaZusy + LooZaso

and with

VcD =I11Z:2 + LeaZeer + LeoZecn

Application of the Sequence Rule to Unbalanced Three-Wire Loads.
The foregoing theory may be applied to any three-wire load which
consists of individual or non-coupled phase impedances. Since the
individual phases of three-phase rotating equipment are closely coupled
magnetically, the presgpt method of analysis does not apply directly
to rotating equipment. (A method of accounting for the mutual im-
pedances of rotating equipment is given in Chapter X111, and a general
method of accounting for mutual impedance effects is given later in the
present chapter.)

In applying equations (30), (51), and (532) to the a phase of a wye-
connected load like that shown in Fig. 11, it is noted that, since I,; = 0,

vnul = Ial znuﬂ + Inzzanz (53)
Vun2 = Inlzanl + Iazzunn (54)

vno e Iul.zawz 0 quzanl (55)



-
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If the line-to-line voltages, namely, Vg, Vi, and V.4, are known, V..,
and Van,p may be evaluated directly from equations (23) and (26).
(See page 500.) If V,,y and V5 are known, I, and 1, may be de-
termined dircetly from © tions (33) and (34), provided that Zsn1,
Z..2. and Z,,0 are known.

Since Ig = 0,

qu =1, = I + 1> (56)
La=1 = L,/—120° 4+ L, /120° (57)
I”I = Ir = Iull_/lg'[)" + quf."_ 120° (58)

Even though I, = 0, V,,q will, in general, possess a finite value since
I.I_V ("(_{U:J.iil}n (:J:.:l) Vn,‘[] = .IMZMg + Ia2zﬂni‘

Example 8. Let the line-to-line voltages and the phase impedances of the wye-
connected load shown in Fig. 11 be as follows:

Vas =200 ¥y = 141.4 V,, = 141.4 volts
Zip = (64+J0) Zpw = (52 —j3) Zeon = (0 + j12) ochms
If the valtage sequence is al-be-ca und if Vg is taken as reference,
Var = 20(J£U_° Vie = 141.4/—135° V, = 141.4 /135° voits
Resolution of the above line-to-line voltages into symmetrieal components yields
Vapr = §1200,/0° + 141.4 [=15° + 141.4/15°] = 157.8 /0° valts
11200 /0° 4 141.4/105" + 141.4/—105°] = 42.3/0° volts
1200 /0" + 1414/ -135° 4 141.4/135°] = 0

Vo

]

Vase

From cquations (25} and (26)

157.8 /0°
Van1 = ———=— /=30° = 91 / —30° volts
%3
42.3 '0°
Vinz = ——— /30° = 24.4/30° volta
N G =

The symmetrical components of the phuase imjmi:l:mceu are
Zogy = 547 (0%, Zinn = (=3.2 —;3) = 438 '—136.8°

and

Zuno = (3.73 4 ;3) = 4.78 /38.8" ohms  (See example 7, page 510.)



Ch. X1 SYMMETRICAL COMPONENTS 515

From equations (53) and (54)

Van1 zca'l gli:i': 4,38/ —138,8°

Vanr Zano ‘2-;.4 30°  4.73.38.8° 491 /20.15°
Lot = Zoe Zowa|  [478/38%° 435/-1368°|  1.8/50.95°

‘ Zint Zano l 5.47/0° 4.78 /38.8°

la = 10.9;':&39.8‘ = 8.42 — 37.02 amperes

Zino Vem| | 4.75,358° 01/-30°

Zint Van2 547 /0° 24.4/30° 528 /137.5°
oSt Bt 418 /50.95° " 418/50.95°

Zant  Zano

L2 = 11.8/77.45° = 2.56 4 j11.5 amperes
Ln = L = Ly + Lig = (8.42 = j7.02) + (2.56 + jI1.5)
= 10.98 4 74.48 amperes

In polar form
Ia‘ = 11.83 /22.2° amperes

After Iy and I;2 have been evaluated, I, l:.p,z, 1.1, and 1.2 follow direetly, and
hence Iy, and I, may be determined from the values of 1., and I,
If the value of Vy, is to be determined by the method of symmetrical components,

Von = vnul + van! + Vano

where, from equation (85), Vano = La1Zanz + laaZan1.  In this case

Vano = (10.95/—39.8%) (4.38/—136,8°) + (11.8/77.45°) (5.-1?(_9:)

= —34 + j60.2 volts

Van = (78.85 — j45.5) + (21.15 + j12.2) + (—34 + j60.2)
= 66 + j26.9 volts

Problem 10. Study through the details of the above example and evaluate L, I,
Vsa, and Ven by the methed of symmetrical components. Check Van — Via against
o gien value of Vg - 200,/0° voltz recognizing that stide-rule calculations were
employed in the evaluations of Iy, Igz, and V.

Ans: lp = —2153 — 7731 = 22.7/—161.2° amperes.

Magnetic Coupling between Phases. If the three phases (including
the line wires) possess mutual coupling of the kind shown in Fig. 12,
the voltage drop in phase an due to its mutual coupling with phases bn
and cn is:

Vam = LZo + 1.2, (59)
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where subsecript m designates the fact that this voltage drop excludes
the self-impedance voltage drop,
namely, I.Z,,. If simple magnetic
coupling is involved,
Zy = jxdb = :l'-'jw«‘-rcb (60}
Zye = jXae = x jwM,e (61)
(See Chapter VII.)

The signs of the mutual reactances
are defined by the assigned di-
rections of current flow and the
Fig. 12, Timpedence in wye with mutual modes of .“.mdmg the mutually
coupling between phases. - coupled coils.

The impedance drop in phase an
due to the self-impedance of that phase will be called Vg, and the
total voltage drop in phaze an then becomes:

van = Vﬂn "|" vrxm = Inzoc + Ibzab + Iczac {62)

The problem of expressing the impedance drops of equation (62) in
terms of symmetrical components will now be undertaken. Obviously
1,, Iy, and I, may be expressed in terms of the symmetrical components
of any one of these currents and Z,, may be resolved into symmetrical
components if the other self-impedances Zy, and Z.. are known. In
this connection:

zﬂﬂ'l = %(zua :‘- sz ]2{‘“l + erf_’ _]mﬁ)’ -E'tC.

if the other resolutions are effected in the a-b-c order.
The self-impedance voltage drop in phase an may be written in terms
of symmetrical components in accordance with the sequence rule.

—-C

Via = Vaar + Vaaz + Viao (,53)
where

Vaar = La1Zaao + TaaZaa2 + LagZaar (64)

Vaazr = L1 Zoar + La2Zoao + LagZeaz (65)

Vaao = L1 Zuaz + le2Zaat + LaoZaso (66)

There remains the problem of resolving the mutual impedances Z,, =
Zoa, Zoe = Zoy, und Z_o = Z,. into symmetrical components that can
be advantageously associated with Iy, Io2, and I to account for the
presence of I,Z,, and I.Z,. in equation (62). At this stage of the de-
velopment it is rather difficult to say which of the three mutual im-
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pedances should be considered as the base mutual impedance. It turns
out that the symmetrical components of Z,, can hest be associated with
I.1, Lo, and Lo, See equation (72).

Resolving the mutual impedances into symmetrical components with
Z,. as baze yields

Zocr = $(Zie+ 200 /120° + 2./ —120°) (67)
Zicr = §(Zue + Zoaf = 120° + 2,4 /120°) (68)
Zoco = 3 Zoc + Zea + Zat) = Zewo = Zuo (69)
Zonn = 2y [120° Zooy = Zy [/ —120° (70)
Zavy = Zpeo/ —120° Zoog = Zyep/120° (1)

In terms of symmetrical components,
Vam = LiZay + L.Z,.
= (I /—120° + 1,2 /120° + T40) (Zpey /120° + Zpea / —120°
+ Zio) + (a1 /120° 4 Lo / —120° + Lyo) (Zpey / —120°
+ Zp2 /120° + Zyeo) (72)

Eighteen component voltages appear if the multiplications indicated in
equation (72) are carried out. These components may be grouped into
positive-, negative-, and zero-sequence terms in accordance with the
sequence rule. For example, the component voltages of the first order
are

Ly Zyeo/ —120° + LizZuea + TaoZser /120° + 1uyZieo /120° + La2Zico

+ TooZoer / —120° = Voo (73)
If the like terms in the above equations are further grouped, the following
form results:

Yom1 = —LayZico + 2LiaZyca — LioZsn (74)
The negative-sequence or second-order terms of equation (72) may be

comubined to form
Vimz = 2laZier = LiaZico = TaoZye2 (v3

The zero-sequence terms of equation (72) may be combined to form
Vamo = —LaiZyes — LiaZsey + 2La9Zeco (i6)

Equations (74), (v3), and (76) contain all eighteen component voltages
represented in equation (72), and these equations may be combined
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systematically with equations (64), (65), and (G6) to yield the positive-,
negative-, and zero-sequence components of the complete phase voltage,
namel}'. an = Vaa + vmn

Adding equations (64) and (74), equatmns (65) and (75), and equa-
tions (66) and (76) results in

vﬂnl = Idl(zann - zbcﬂ) + Iu?(zo-ﬂ O 226:2) + Ian(z-ml. — Zrey) (77)
Vane = Loy (Zuai + 2Zs..) + Laa(Zaao = Zben) + Lig(Zang — Zses) (78)
Vﬂﬂo = Iﬂl{zaﬂﬁ i zbrﬂ) i 3 Iu!(zaul - zbtl) < o Iun(zaqo + 2Z: ) (79)

The above set of equations represents a powerful tool in the field of
circuit analysis because with the aid of this set of equations any degree
of unbalance and any degree of magnetic or capacitive coupling may be
handled on a symmetrical-component basis. Equations (77), (78),
and (79) are particularly useful in accounting for transmission line
reactance voltage drops because these voltage drops result from mutual
coupling between the line wires. These equations are also useful in
accounting for the mutual impedance of the fourth wire of a four-wire,
three-phase system.

—0 8

—ob

—af

Fuoo 14, See cxample 1,

Example 9. Let it be required to find the current L, in Fig. 13 by the method of
symmetrical components, if Vg = Vi, = Vi = 100 volts and the sequence of these
w:ll:ngn{- is ab-be-ca.  From previnus considerations, it is plain thut

% v
- vlﬂnl = ;.'b'l' —30° and vﬂgt =0
V'3

If Vs is chosen as the reference vector,

100
VYant = —=/—30° = (50 — j28.9) volts
M3

The self-impedances [Z,a = (0 4 j1), Zs = (2 + jO), and Z.. =-(0 + j3)] may be
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resolved into symmetrieal eomponents in the usual manner.
Zon = }(Zaa + Zs /120° + Z../—120°) = (0.533 + jO.411) ohms
Zonr = 3 (Zaa + Zo [/ —120° + Z../120°) = (—1.199 — jO.744) ohms

Zia0 = 3(Zas + Zas + Z.o) = (0.667 + j1.33) chms

As indicated on the cireuit diagram (Fig. 13), the coctficient of coupling between the
two inductance coils is V/3/6. This coefficient is interpreted to mean that

, ;
A3 e \ Em——.
oMo = wlMy = —ﬁ_ \/mL" ¥owle = _EE \fl » 3 = 0.5 ohm

If the modes of winding and the space positions of the coils are as represented iu
Fig. 13,

2 = (0 — juM,) = (0 — j0.5) chm
Z.s and Zy. are both zero because no coupling exists between phases a and b or between

phuses b and ¢ under the specified conditions.
Iu wevordance with equations (67), (68), and (69),

Zser = 3(0.5/—90° + 120°) = 0.144 + j0.083 ohm
Ziea = 3(0.5/ =90 — 120°) = —0.144 + j0.083 ohm
Zyo = §0.5/-90°) = 0 — j0.167 chm

Since Lipis equal to zero, it follows from equations (77) and (73) that
Vanr = 50 — j28.9 = 1,1(0.667 + j1.50) + Lia(—1.487 — j0.578)

Vana = 0 = 1,1(0.821 + 70.578) + L;2(0.667 + j1.50)
The abisve equations may be solved simultaneously for Iy and I

| (90 — j28.9) (—1.437 — jO.578)
g . 9 (0.667 +j1.50) |  76.6 + 7557
) (0667 + 1500 (=1457 — j0.578) | —0.918 + ;3.33

(0821 4 70.573) (0,667 + j1.50) f

= (1.63 — ;725.6) amperes
(0.667 + j1.50) (30 — j25.9)|

L. o LOS21 +j0578) 0 1 —57.7 = j5.1
= (=091 + j3.33) T —0.918 + j3.23

(3.01 + j16.45) amperes

Lo =L 4+ Lo = (63 — j25.6) + (301 + j16.46)
(12,64 = jO.14) = 15.6 ' —35.£5” amperes

nl

PROBLEMS

11. The line-to-neutral voltages of a four-wire, three-phase system are represented
by the following vector expressions: Vg = 200 /0°, V, = 100 '—75° V. = 150 / —150°.
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Find the positive-, negative-, and zero-sequence components of the above voltages,
and check the results obtained by graphical additions of the symmetrical components.
12. The three line currents of a four-wire wye load (like that shown in Fig. 7,
page 506) directed to the common junction are I, = 15 — j20,I,, = —8 + ;15, and
Ien = 8 — j25 amperes. Find L,.1, loaz, and I.,0 assuming these currents were
calculated from a voltage system where the actual voltage SEQUENCe Was ga-b—c.

13. Voltages to neutral on a four-wire Y-load are maintained at Vaa = 100 (E,
Vo = 100/—120°, and "V, = 100/120° volts. Impedances are Z,, = 10&,
Znyy = 10/90° and Z,. = 10/—-90°

(a) Find the positive-, negative-, and zero-sequence line currents, if the positive-
sequence voltage system is a=b=c, .

(b) Find the power due to each of the sequences, positive, negative, and zero.

(¢) Should the phasor which lags the base phasor be rotated forward 120° to obtain
the positive-sequence current? Why?

14. (a) Three-phase voltages are supplied by lines a, b, and ¢. If a short circuit
is placed from line a to line b, find positive-, negative-, and zero-sequence components
of the line voltages at the short circuit in terms of a line voltage of V.

(b) If the short-circuit current is 7 find the symmetrical components of the current
at the short eircuit,

16. The three wye-connected impedances through which the currents of Problem
12 flow are, respectively,

Z,n = 20 — j20 ohms

Zy, = 30 + 710 ohms

- Z.,, = 10 — j20 ohms
Find znnl; zﬂnh and Znnﬂ"
18. Employing the symmetrical components Lin1, Lan2, Tano, Zen1, Zanz, 2nd Zano
determined in Problems 12 and 13, evaluate V,, = I,,Z., in terms of symmetrical
components and check the result against the known value of IsaZap.

‘i

- T
B
Voo

; i e

b i

<! ;:(Iu E

Fi6. 14. See Problem 17.

17. Assume that the three-phase line voltages shown in Fig. 14 are
Vi = 200/0°, Voo = 100/120°, Vo = 173.2/210°

(a) Find Viyey, Viea, and Vieo.
(b) Find V., V.2, and Vuo. Employ phase sequence b, ab, ca.
18. The three line-to-line voltages shown in Fig. 14 are

Vap = 100, Vi =150, V. = 175 volts

Sequence ab-be-ca.
(G) Find Iv.«.n, Vﬂbzl and V.u}.
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() Find Vgny and Va1, the equivalent wye voltages of the delta load shown in
Fig. 14, :

(¢) Explain how the line currents may be determined from Vani, Veas, and the
delta lond impedances.

19. The line-to-line voltages of a three-wire, three-phase system are 17, = 200
volts, Ve = 141.4 volts, and Ve = 141.4 volts. The sequence of the valtages is
ab-ca-be. A wye-connected sct of static impedances (Z,, = 20{_’32 ohms, Zy, =

30/60° ohms, and Z., = 20/0° ohms) is connected to the three lines a, b, and ¢ in

the order indicated by the subscripts.  Find the line eurrents L,,, I, and I., by
the method of symmetrienl componets.

20. Solve for I in Fig. 13 by the method of symmetrical componentsif 17, = 200,
Vie = 173.2, and V. = 100 volts. The sequence of the line-to-line voltages is
ab—be—ea.



chapter XIII Power Sysfem

Short-Circuit Calculations

Power systems are subject to three kinds of short circuits. First, all
three lines of a three-phase system may become electrically connected.
This is known as a three-phase short circuit. Second, only two lines
may be electrically connected, which constitutes a line-to-line short
circuit. Third, a single wire may be electrically connected to ground.
This is called a line-to-ground short circuit. Although the electrical
connections referred to may be of varying impedance, short-circuit
calculations are based upon zero impedance at the point of short circuit.
In other words, a perfect short circuit is assumed. Short circuits on
systems are usually called faults.

A distribution system should be protected in such a way that a faulty
or short-circuited section will be isolated from the rest of the system.
This is accomplished through the use of relays which operate cireuit
breakers. To protect a system, relays are set to trip in a certain length
of time after the fault occurs. By varying the amount of time required
for a relay to operate, certain selective operation of circuit breakers may
be obtained. After proper adjustments are made, this selective opera-
tion causes only the faulty section of the line to be jsolated. In order to
determine the proper time settings of these relays and , ™ ider to deter-
mine the sizes of cireuit breakers necessary, the magnitudes of the short-
circuit currents that these devices are to handle must be known. In
general, different, values of short-circuit current occur for the three-phase
symmetrical, line-to-line, and line-to-ground short circuits. Usually the
three-phase symmetrical short circuit vields the lowest value of short-
circuit current (except when the system has practically no grounds).
Hence relay settings are usually based upon three-phase symmetrical
faults because it is desirable to protect a system for the minimum fault
current. If the relay trips a circuit breaker for minimum fault current,
it will obviously open the breaker for the highest fault current, but the
converse is not true. Since a breaker must interrupt the largest short-
circuit current that can possibly exist, the size of a circuic breaker is
determined by the largest possible fault current. The greatest current
usually occurs for either the line-to-line or line-to-ground fault. Obvi-
ously, the determination of ghort-circuit currents in power systems is
required if the proper settings of relays and proper selection of circuit-

breaker sizes are to be made.
: 522
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Bases for Short-Circuit Calculations. A distribution network consists
of many lines which may be connected by transformers and which, in
general, operate at different nominal voltages. To establish a simple
network for purposes of calculation, the impedances of all lines and
transformers are expressed in ohms referred to a common voltage base
or in percentage referred to a common kilovolt-ampere base. The
former generally appears simpler to the beginner, but the latter method
is actually the better and is to be preferred. The two methods yield
identical results.

Method Using Ohms on a Kilovolt Base. In general, various branches
of an electrical distribution system operate at different potentials.
In representing such a system by a system of impedances, it is desirable
to employ a scheme which permits the combination of the different im-
pedances so that the network can be represented by a single impedance
between the source and the fault. This requires the determination of
an impedance, Z;, which may be used with an arbitrarily selected volt-
age, V3, such that the same kva will be taken as when the actual im-
pedance, Z}, is used with the actual voltage V;. Stated algebraically,

(Vz) A ﬁ Vl

or Zy = Z :;2) 1)
, 1

Equation (1) shows that the original impedance must be multiplied by
the square of the ratio of voltage to be used to the nominal operating
voltage for the impedance. To illustrate, suppose that 1000 volts are
impressed on an impedance of 100 ohms and that it is desired to find the
current and kva taken,

000
I D —
1= 700 10 amperes

= 1000 X 10 = 10,000

Now assume that it is desired to work the same problem when all values
are referred to a 2000-volt base. Then
i

2000\ 2
Zy = (1000) x 100 = 400 ohms

Ip=——=5§
2= 200 amperes

va = 2000 X 5 = 10,000
-34



524 ALTERNATING—CURRENT CIRCUITS Ch. Xt

The foregoing example shows that there is nodifference between calculat-
ing the volt-amperes for the actual voltage and impedance and for some
other selected voltage and an equivalent impedance found by multiplying
the original impedance by the square of the ratio of the selected voltage
o the original. The current on the actual voltage base is then found
y multiplying the result calculated on the selected voltage base by the
ratio of the voltages. Thus the actual current at 1000 volts is:

2000
I, = 5><E-—00— 10 amperes

This procedure is evident from the following relationship.

V111 i ‘;-21—3
¥
or I1 = “V—ffz

Example 1, Calculate the short-circuit current for the system shown in Fig. 1.
A 1C to 1 ratio wye-wye connected transformer bank is represented at A. A trans-
former has resistance and leakage reactance which may be referred to either side as

2N AN ) 0.0151 0.035n
.. Ratio 10:1

0.035 1
Pio. 1. Elemecntary three-phase system. See example 1.

was shown in Chapter VII. The transformer impedance in this case is 1 4 ;2 ohms
per phase when referred to the high-voltage side. The line impedance 2 + j4 is
assumed to include the phase impedance of the generator. Since Fig. 1 represents a

2n 4 0.0151 0,035

g g
i

Fia. 2. Equivalent circuit per phase of Fig. 1.

balanced circuit, all calculations will be mnde“per phase. The equivalent circuit for
one phase to peutral is shown in Fig. 2, u.né,-’.he corresponding one-line diagram is
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shown in Fig. 3. A short line at the generator neutral is used to represent the neutral
bus, and a cross at the end of the line denotes the point of short circuit. The per
phase voltage is impressed between the neutral bus and the point X. The trans-

% 0.015010.0350L

2. 40N

Gen. neutral
Fig. 3. One-line dingram of Fig. 2 and Fig. 1.

former impedance causes a drop in voltage from its primary to its secondary side and
therefore acts like a series impedance. Transferring the impedance of the secondary
line to its equivalent value on a 2000-volt base (the primary line-to-line voltage), or

Zn 4an in zn 151 35n

Fic. 4. Reduction of Fig. 3 to a series of impedances.

to & 2000/%/5 volts to neutral base which is the same, and inserting the transformer
equivalent impedance, reduces the cne-line diagram to the equivalent circuit shown
in Fig. 4. Then
g 2000/V'3
T@HM+ A+ + (15 +535)
=47 — /99.2 or 109.8 amperes

The actual current at the fault is found by referring the current to the voltage of
the faulty line.

Fault current = 109.8 X 10 = 1093 amperes

Problem 1. A wye-connected generator rated at 2200 terminal volts has 0.2 ohm
resistance and 2 ohms reactance per phase. The generator is connected by lines each
having an impedance of 2.00 /20.05° ohms to a wye-wye transformer bank. Each
transformer has a total equivalent impedance referred to the high side of 100/_@_0_“
ohms, and the transformer bank is connected to a load through lines each of which
has a resistance of 50 ohms and an inductive reactance of 100 ohms. 1If the ratio of
transformation is 6 and the low-voltage side is connected to the generator lines, cal-
culate the actual fault current for a three-phase symmetrical short cireuit at the load.

- Ans.: 22.3 amperes.

Percentage Method. In general, short-circuit caleulations are made
through the use of percentage resistances and reactances. Percentage
reactance is defined as the percentage of the rated voltage which is con-
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sumed in the reactance drop when rated current flows. Expressed
algehraically,
Irated X ohms

Voo X 100 (2)

9, reactance =

Percentage resistance is similarly defined. Percentage values are
manipulated like obmic values. When percentage values are em-
ployed, a common kva base is used instead of a common voltage base as
employed in the ohmic method. The derivation of the method for
determining the percentage reactance on different kva bases follows.
Three-phase will be assumed since it is the most common.

Let p be the percentage reactance based on a particular 3-phase kva,

kv = the voltage between the three-phase lines in kilovolts.
X = the reactance in ohms.

Then . IX = Xkva 1070, 0 volts
V3 kv
100X kva 107
100/X _ V3kv X kva

_ L & 3
P /3 kv/V3 kv 10 ™

Equation (3) shows that percentage reactance varies directly with the
kva when the rest of the factors remain constant. A similar relation
holds true for percentage resistance. Although equation (3) was derived
on the assumption of three-phase it is equally applicable to single-phase.

Example 8. By way of illustrating the use of percentage resistance and reactance,
example 1, which was worked on the ohmic basis, will be reworked employing the
percentage method. Ordinarily, much of the data on a system is expressed in per-
centage and no transformation from ohmic to percentage impedance is necessary.
Since the parameters in the previous example are given in ohms, the transformation
to percentage will be shown. Also, to illustrate changing to a common base, the per-
centage impedance of the lines on the generator side of the tranaformer and the trans-
former will be found on a 10,000-kva base, while that on the secondary side will be
found on a 100-kva base.

For the lines on generator side of transformer:

885 X 4
2000 /v3
2885 X 2
2000/v3

9% IX drop due to base current = 100 X = 1000, or 1000% reactance

% IR drop due to base current = 100 X = 500, or 5007, resistance
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Transformer impedance on 10,000-kva base:
100 X 2885 X 1
% IR drop = ——————— = 250
? 2000/v3
100 X 2885 x 2

IX drop = ————= = 500
% i 2000 /v3

The line impedance on the secondary side of the transformer based on 100 kva is
determined as follows:
; 2000
Nominal rated voltage on secondary 50 " 200 volts

100,000

V3 200

= 100 x 288.5 X 0.035
200/V3

= 100 X 288.5 X 0.015

200/v/3

The cireuit of Fig. 1 with parameters expressed in percentage is ehown in Fig. 5.,
It is common to receive data on distribution networks expressed like those in Fig. 5"

500+ 1000.% Hmﬂns H 3t mss H
vo 10,000 kxs bais on 10,000 kvs bans on 100 ke basa

Base current I =

= 288.5 amperes

= 8.75

% I1X drop

% IR drop = 3.75

Fig. 5. One-line diagram of Fig. 1 with parameters expressed on a
percentage basia.

Before simplifying, & common kva base is chosen to which all constants are referred.
This base may be any arbitrarily selected. A 1000-kva base is choeen for this ex-
ample because it ylelds convenient numerical quantitiea.

F DWJ—[ m4p0x H m;mij—x

Fia. 8. Impedances of Fig. 5 expressed in per cent on a 1000-kva base.

It was shown that percentage reactance and resistance, and hence impedance, vary
directly with the kva base. Employing this principle yields the circuit shown in
Fig. 8. The combined impedance to the fault is

50 + j100 + 25 + 550 + 37.5 + j87.5 = 112.5 + j237.59%
or V112,57 + 237.5¢ = 263%

This result indicates that 263 per cent of the rated voltage is necessary to cause 1000
kva to be delivered by the generator Since only rated voltage, or 100 per cent

voltnga.hnaﬂabh,!hetotalahort—circujtkvnmuatbe%x 1000 = 380.5kva, If
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the fault current is desired at the actual voltage of the faulty line, namely, 200 volts,
it is found as follows:

380. 1
['“n = M = 1008 amperes

V3 x 200
Problem 2. Rework Problem 1, page 525, employing percentage values.

Per Unit Method. A study of the percentage method will show
that problems could be worked by using percentage values expressed in
hundredths, which would be equivalent to moving the decimal point
two places to the left in the calculations shown in example 2. In other
words, quantities could be expressed on a per unit basis stca? o on a
per hundred basis as in the percentage method. Thus instead of a
reactance of 15 per cent a value of 0.15 would be used. A little experi-
ence with both schemes shows relatively little difference in the methods.
Both methods are used according to personal preferences.

Accuracy of Short-Circuit Calculations. In general, extreme accuracy
in the determination of short-circuit currents in distribution systems is
not required. Because the resistance of most synchronous apparatus is
low compared to the reactance, the final impedance to the fault in many
cases is about the same as the reactance. For this reason, and because
of the resulting simplification of the ecalculations, only reactances are
generally used. An exception to these statements occurs when stability
studies of systems are made. It then becomes necessary to consider phase
angles, and then both resistance and reactance must be considered.

When several sources of current are in parallel, it is customary to
assume that all the generated voltages are in phase and equal in magni-
tude at the time of short circuit. Load currents on the system are
neglected.  All synchronous apparatus like generators, synchronous
motors, and rotary converters are considered as sources of short-circuit
current. The kinetic energy of these rotating machines causes them to
act like generators during the first few eycles of short circuit. In spite
of all these approximations, tests have shown that calculations based
upon these assumptions are usually within about 3 per cent of the correct
values. From 5 to 10 per cent error in the values of short-circuit cur-
rents is usually tolerable in the determination of circuit-breaker sizes
and relay settings.

Three-Phase Short Circuits. Three-phase short-circuit currents are
determined by means of the same principles employed in the analysis of
balanced three-phase systems. The method is best shown by an
example.

Example 8. It is desired to find the short-circyit current for the system shown in
Fig. 7. The data for the system arc shown in Table I. A symmetrical three-phase



Ch. Xt

I, 30%

6S an

POWER SYSTEM SHORT-CIRCUIT CALCULATIONS

I3 5% on 5,000 Kva.

529

5% on
5,000 Kva

T,
20% on
0,000 Kva.

Lt

I; 20% on 10,000 Kva.

2,000 Kva,
an | E
Kva. /

r-—h—l
1

Iy 15% on 10,000 Kya.
-~

20,000 T;
iXon
] 1.000 Kva,
b b
c
T sx
on 5,000 Kva. f:' )
E Fig. 7. Three-phase loop syetem. See example 3.
af
G,
5000 Kua, TABLE 1
Rating %% Reactance
Apparatus kva % Reactance h::.sed Al
Generator 1 5,000 25 5,000
Generator 2 10,000 30 10,000
Transformer 1 4,000 3 5,000
Transformer 2 2,000 4 2,000
Transformer 3 5,000 20 50,000
Transformer 4 5,000 5 5,000
Transformer 5 1,000 3 1,000
Line 1 30 20,000
Line 2 20 10,000
Line 3 5° 5,000
Line 4 15 10,000
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short circuit is assumed at the point denoted by the cross in the upper right-hand
corner of the circuit diagram.

The following represents a satisfactory procedure.

1. A one-line diagram of the system as shown in Fig. 8 is drawn.

Iy "'1"1;

F1c. 8. One-line diagram of Fig. 7. F1a. 9. One-line diagram of Fig. 8 where
. Gy and G; are connected to a common
neutral bus and all reactances are shown

on a 10,000-kva base.

2. A common kva base upon which all reactances are based is chosen. Any con-
venient base may be used; here a 10,000-kva base is selected,

3. A one-line diagram is-drawn in which all sources of current are snnected to
a so-called neutral bus.  Circles represent reactances, and the value of the VArious re-

Fic. 10, Frc. 11.

actances referred to the selected common kva base is placed in
the circle as shown in Fig. 9. @

4. Reactances are combined according to laws of series
or parallel circuits, and substitution of wyes for deltas or
the reverse are made so as to obfain a single reactance
between the meutral bus and the point of short circuit. Fic. 14. Resultant
These steps are illustrated in the successive Figs. 10, 11, 12, Wmnf-lﬂed“‘g&t
13, and 14. The dotted lines and circles indicate the eircuit ;::.eb::e:)flg:il 7
arrangement to be employed in replacing an existing circuit " )0 point of
arrangement. The resultant reactance to the fault based on  short circuit.



Ch.XIllL POWER SYSTEM SHORT-CIRCUIT CALCULATIONS 531

10,000 kva is 41.95 per cent.

1
Short-circuit kva = ——-m X 10,000 = 23,800
41.95
If the nominal voltage of the line at the short circuit is 12,000 volts, the current at

the fault is
23,800 X 1000

/3 12,000

The distribution of currents throughout the network may be determined by retraciog
the steps and using the percentage values just exactly as though they were ohmic
quantities. For example, the currents in the divided circuit of Fig. 12 may be de-
termined as follows. To indicate the branch under consideration, a subecnpt which
is the same as the branch impedance is used,

V]'j’_“ = 17.55 X 1144 volts!

= 1144 ampercs

17.55 X 1144

Isis = 51 811 = 248 amperes
17.55 x 1144

g = —T = 898 amperes

1f the nominal voltage of sny line differs from the 12,000-volt base used above, the
actual current is determined by multiplying the current calculated on the 12,000-volt
base by the ratio of 12,000 to the nominal voltage for the line in question.

Problem 3. Find the actual currents delivered by generators Gq and Ga.
ns.: g1 = 344 amperes, [g: = 800 amperes.

Line-to-Line Short Circuits. Line-to-line short-circuit currents may
be determined in accordance with the principles set forthin Chapter IX,
or they may be calculated by t'.> method of symmetrical components.
The method of symmetrical components possesses the advantage of
accounting in a measure for the change in the impedance of synchronous
machines when the loading is changed from balanced three-phase to
single-phase line-to-line loading. Furthermore the method of sym-
metrical components reduces the calculations to the solution of balanced
three-phase systems. Certain modifications of the network parameters
are necessary in employing the method of symmetrical components, and
in addition the combination of the balanced systems solutions must be
properly made to obtain the final result.

The method of symmetrical components for effecting a solution of the
line-to-line short-circuit problem will be developed with reference to
Fig. 15. The fundamental objective is to determine the positive- and
negative-sequence components of current in terms of (the known quanti-

! This number of volts is only proportional to the actual voltage and is usex
merely a8 a convenient means to determine the distribution of currents.
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ties) the induced voltage and impedance. The following symbols are
used:

E, generated voltage per phase

n’, electrical neutral at the point of short circuit

V1, positive-scquence voltage to neutral at the short circuit
V2, negative-sequence voltage to neutral at the short circuit
Vo, zero-sequence voltage to neutral at the short circuit

Z,, impedance to positive sequence

Z,, impedance to negative sequence

According to Kirchhoff’s voltage law, the positive-sequence voltage to
neutral at the short circuit must be the positive-sequence generated
voltage minus the positive-sequence drop. A similar relation obtains

Fra. 15. Line-to-line short circuit on a three-phase syster.

for the negative sequence. Since all generated voltages at the generator
are assumed to be balanced, the positive-sequence generated voltage is
E. The negative-sequence generated voltage is zero. Hence for any
particular phase " :
Vi=E-12 (4)

v; = D - I2Z2 (5)

Since there is no ground return or fourth wire in Fig. 15, there can be no
zero-sequence current in this system. At the short circuit & _
V(;ref = Vﬁfn! + vu:(_d = D (5) I

or

vn'b‘ = vnfcf (7)

The three voltages to neutral at the short circuit in terms of their sym-
metrical components are (assuming ab-be-ca sequence) _
V,.aa- = Vl + vz + VQ - {8)
Var = Vi /—120° 4 V,/120° + V, 9)

V.F‘P = V;/l!ﬂ" + v;/-" 1200 + VQ (10)
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Substituting equations (9) and (10) in equation {7);
V,/—120° + V5/120° + Vo = V,/120° 4+ V2 /—120° + V

Vi(/—120° — /120°) = V5(/—120° —/120°)

or
Vl = Vz {11'}
Equation (11) shows that eguations (4) and (3) are equal. Therefore
E-1LZ, = -2 (12)

1f I, can be expressed in terms of I, the sequence components of cur-
rents can be found. $ince no zero-sequence current can exist in the
cireuit of Fig. 15, I, adjl I, are found as shown below.

I.a=% 4+ I, =0 (Line na is open.) (13)
Ly =1,/—120° + I,/120° ' (14)
L =1,/120° + I,/ —120° . (15)

Because of the short circuit,
Iip = Ln = —Ine (16)
Substituting equations (14) and (15) in equation (16),
1,/ —120° + I, /120° = —1,/120° — I/ —120°
I,(/—120° + /120°) + L;(/—120° 4+ /120°) = 0

I = -1, (17)
Substituting equation (17) in equation (12) yields
I=-1; E-LZ —11Z, =0

Positive E
sequence I, = 18
o Y e (18)

E

CD Neg!lllve Equations 17 and 18 show that the arrange-
etwork ment illustrated in Fig. 16 may be used to
__:b— calculate the positive- and negative-sequence

Fio. 16. Arrangement of CUITENts at the fault for a line-to-line short
sequence networks for de-  circuit.
terminati 1 itiv it i
iy~ Impetsntes: 10 Poabve and Negative Se-
currents for a line-to-line  quence. Before equation (18) can be applied,
Short, cieosit, the values of the impedances to positive and
negative sequence must be known. The infpedance to positive sequence is
the impedance offered to a system whose voltages a, b, and ¢, respectively,
lag the one preceding it by 120°. The impedar.ce to negative sequence
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is the impedance offered to a system whose voltages a, b, and ¢, respec-
tively, lead the one preceding it by 120°. It should be apparent, and it
rcan be demonstrated by test, that the impedances of lines and trans-
formers are no different for a polyphase system of voltages when two
lines are interchanged (opposite sequence). Hence impedances to
positive and negative sequence for all lines and static machinery like
transformers are the same. For a synchronous generator it would seem
that these impedances are different since one system causes a reaction
from the armature that rotates in the same direction as the rotating field
structure, whereas the other causes an armature reaction that rotates in
a direction opposite to the field structure. The values of Zy and Z,
may be obtained from a three-phase and a line-to-line short-circuit test.
The relation between the line-to-line short-cireuit current designated
by I’ and the three-phase short-circuit eurrent represented by I’ is
established for an alternator of voltage E, to neutral as follows:
i ETI

I' = Z: - (19)
For a line-to-line short circuit between terminals b-and ¢ at the generator,
Fig. 15, a combination of equations (15), (17), and (18) gives the
current:

F_ — En o En &
I —-I,,c—zl_i_zg/l?() 7+ Z 120

=E%(cpsl20°+jsin 120° — cos 120° 4 j sin 120°)
1 2

. i NG T (20)
S L

Since Z, + Z, is practically Z, 4+ Z, owing to the resistances in both
cases being small compared to the reactance,? the magnitude of 1’ is:

? e EE_" (21)
Zy+ 2,
Letk = I'j1'". Then
' E. V3E,
2y 7+ Zs

?In general the resistances of generators and transfurmers are sufficiently low in
comparison with the corresponding reactances that it is customary to neglect re-
sistances in making short-circuit calculations. For this reason reactances only are
used in many of the subsequent computations even though the formulas sre written
in terms of impedances. If these facts are not kept in mind the rather looze use of
the terms reactance and impedance may become confusing.
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or Z, = ‘/_—:;’-:-—z‘ -Z (22)

Equation (22) shows that Z, depends upon the ratio, k, of the line-to-
line and three-phase short-circuit currents. When this ratio is known
and the impedance to positive sequence is determined by the ordinary
methods, Z; can be determined. One salient-pole machine with an
amortisseur winding tested by one of the authors gave a value of 1.44 for
k, while another non-salient pole machine without an amortisseur wind-
ing yielded a value of 1.46.

TABLE II

IMPEDANCES AND REACTANCES TO INFFERENT BEQUENCES
or SaueNT-PoLE SryceroNoUs GENERATORS Wit Damper WiNDINGS

N ¢ Senikibnnti Positive- Negative- Zero-
R;cm;.:.:: yn X Sequence Sequence Sequence
i ! X, X X
Approximate | Approximate
Per g‘t 100 100 Range Range
Neanerm | | 25-50 2-20
Positive- Negative- Zero-
I N;t:: ot Schl;nnous Sequence Sequence Sequence
Tpcanm . Z, Zq Zy
Approximate Approximate | Approximate
Per Cent 100 100 Range Range
Impedances 25-50 320

Table II shows approximate ranges of impedances to positive-, nega-
tive-, and zero-sequence currents of one class of generators with reference
to the synchronous impedance taken as 100.

Example 4. Each of the line reactances in Fig. 15 is 10 per cent based on 1000 kva,
and the positive-sequence impedance of the alternator is 25 per cent based on 1000
kva. A value of 1.45 is assumed for k.  The short-circuit currents in the three lines
for a short circuit between lines b and ¢ are to be determined. The nominal rated

¥ The values of reactances to negative sequence depend upon the size and the de-
sign of the machines and vary over rather wide limits for special cases. The reader is
referred to Wagner and Evans, ' Symmetrical Components,” p. 99, McGraw-Hill
Book Company, for extensive data on synchronous generator reactances to the dif-
ferent sequences. '

R —
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line voltage of the system is 2200 volts. For the generator

Zygm= :’—;Zl Z) =122, - Zy =022,

=02 X25 =5%
~ The positive- and negative-sequence circuits are shown in Figs. 17 and 18, respee-
tively. The resultant impedances to positive and negative sequence are 35 per cent
and 15 per cent, respectively. From equation (18) and Fig. 16,
1,000,000 100
Ip = — x = 525 amperes
V3 x 2200 (35 + 15)

Iy = =1, = —525/0° amperes

La = I + 1z = 525/0° — 525/0° =0

La = 1;/=120° 4 1 /120° = 525/—120° — 525 /120° = —j910 amperes

In. = 1,/120° 4+ 1, / —120° = 525 /120° — 525/ —120° = + j910 amperes

e Example 5. The short-circuit current o
for the system shown in Fig. 7 for a line-
to-line short circuit is to be determined.

@ The ratio k will be used as 1.45. Nomi- @

nal line voltage at short ecircuit is 12,000
Fio. 17. Positivee volts. The lines shorted are designated Fig. 18. Negative-
sequence system gs b and c, and the fault is again assumed  sequence system

of Fig. 15. See CP { of Fig. 15. ~ See
ksl €. :;. the upper right :\and corner of the yeioles B

Solulion. A 10,000-kva baae will be used. The positive-sequence network is the
same as that shown m‘Fig 9. The negative-sequence network shown in Fig. 19 is
similar to the positive-sequence system except for the values of the generator react-
ances. For the generators

\/‘EZL

1.45

The resultant Z, (Fig. 14) is 41.95 per cent.
The resultant Z, (Fig. 23) is 26.17 per cent as obtained from the reductions indi-
cated by Figs. 20, 21, 22, and 23.

10000000 100

\/_ 12,000 41.95 + 26.17

At the short circuit where currents in all three lines are considered in the same di-
rection, that is, either to or from the short circuit,

L=1I+1I =708/0° - 706 /0° =0
L =706/ —120° — 706 /120° = —j1223 amperes
L = 706/120° — 706 / —120° = 4-j1223 amperes

Z: - - 21 . 022{

I} = =1z = + 706 amperes

To obtain the currents in the other lines, the positive- and negative-sequence currents
should first be found by retracing the steps in each system as outlined for the three-
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phase short circuit. The current in the lines from the secondaries of transformer
T, will be found in order to illusirate the procedure. The distribution of positive-

go
o0
N
@
oF .

Fia. 19. Negative-sequence network of Fic. 20. Fro. 21.
FiG. 7 for & line-to-liné short circuit
at the point indicated by the eross.

and negative-sequence componenis of current as shown in Figs. 24 and 25 are first
found by retracing previous steps. 1f, when retracing the network from the short
circuit, only transformers with both primary
and secondary windings similarly connected
1.97 are encountered, the actual current may be
found by combining the sequence components
& as determined for Figs. 24 and 25. When a
transformer like T, which is connected differ-
@ ently on primary and secondary is encountered,
the symmetrical components in the lmes on the Fic. 23. Resultant
primary side are no longer the same as those in percentage of re-
; : : 3 actance 1o nega-
the secondsry lines. Failure to recognize this 4 e sequence for a
fuct will introduce large errors in the short-circuit  line-to-line  short
caleulations. The shortwcircuit currents in the secondary lines  cireuit at point in-
fromr transforiner T are found from the sequence components dicated on Fig. 7
shown in Figs. 24 and 25, as follows:

L =1 4+ I. = 212 '0° — 1447 /0° = 67.3 amperes
L = 212/-120° — 1447 /120° = —33.65 — ;308.8 amperes

Fia. 22.

L =212/120° — 1447/ =120° = —33.65 + j308.8 amperes

The currents in the lines on the primary of T, Fig. 7, are determined from the
phase currents in the delia and are obviously eqyal to them if the ratio of each trans-
former is 1 to 1 and the magnetizing currents are neglected.  If the impedances of
all phases of a delta-connected bank of transformers like that shown in Fig. 26 are
equal, and if the sum of the generated voltages of the three phases is zero, application
of Kirchhoff’s laws will yield the following equations:

Lo + I + Lo =0 (23)
LuZba + LoZoc + o2y = Esa + Eac + Ea =0 . (24)
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Since Zy, = Z,c = Z, equation (24) becomes

Lo+ Le + 1 =0 (25)
Further application of Kirchhoff's current law gives
Li =L, — .]"‘ . (26)
Ly = Ls — L. (27)
Lo = o — Lo 25)

BRTTY

F1c. 24. Distribution of positive-sequence F1c.25. Distributionof negative-sequence
component currents for example 5. component eurrents for example 5.

Substituting L. from equation (25) in equation (26), then eliniinating L between
this result and equation (27), and finally substituting the value of Ls from equation
(23), the following expression for I, results:

L. = $Lo + 4L (29)
C [
b N 2
&b
Fis. 26.

Similarly L and Ly are found to be, ;'espeﬂi\.'ely,

' Le = §Lc + 4l (30)
Is = §s + Lo (31)

The currents L. L. and I in the secondary lines of T, of Fig. 7 correspond o Lo,
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Ly, and L., respectively, in equations (29), (30), and (31). Hence
Lo = $(67.3) + §(— 33.65 + j308.8)
= 33.7 + j102.9 = 108.2 /71L.8° amperes
L. = §(— 33.65 + j308.8) 4 4(—33.65 — j308.8)
= —33.7 + j102.9 = 108.2 /108.2° amperes
Ly = §(—33.65 — ;308.8) + }(67.3)
= —j205.8 = 205.8 /—90° amperes

On a 11to 1 ratio, Iba, Lea, and Ls above are the line currents from generator G,, Fig. 7,

or, in other words, the above currents are on a /3 12,000-volt base. If the nominal
voltage of the generator is 6600 volts, the currents in the three lines from the gen-

erator are

/3 12,000
6600

/3 12,000
6600

/3 12,000 !
W = 648 amperes

Line-to-Ground Short Circuits. If a system
has a number of wye-connected generators and
transformers with grounded neutrals, there is
a possibility of having a large short-circuit cur-
rent for a line-to-ground fault. Such fault cur-
rents are most conveniently calculated with the
aid of symmetrical components. An elemen-
tary circuit illustrating a line-to-ground fault is
Fic. 27. Line-to-ground shownin Fig. 27. Application of equations (13),

fault. Neutral { th Lo e
!;:'u'phli: ;:m::wri: (16), and (17) of Chapter XII gives the sym

108.2 X = 341 amperes

108.2 X = 341 amperes

205.8 X

sasuined grounded. metrical components of the currents as
I.
In=§(fu+lb+lc)=§ (32)
(-] -] — Iﬂ
L = '!’{Ia + 5/120 +_Lé—‘120 )= E (33)
g Ia ]
IL =4(L + I,/ —120° + 1./120°) = = (34)
Therefore .
Iu=11=12*=1‘§°' (35)

4 Equations other than (29), (30), and (31) for the currents in the transformer
windings can be derived “-om the basic equations given.

-35
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Let E be the induced voltage in phase a of the generator. According to
Kirchhoff's emf law, the sum of all the drops must be equal to the sum
of the emf’s around a closed loop. Then

E = IiZ, + LZ, + I:Z2

ibstituting equation (33) gives

) E =1L (Zo+ Z, + Z3) (36)
Combining equations (35) and (36),
I. E
I = (37)

3 Zi¥Zi+ 2

Equation (37) is the working equation for the line-to-ground fault.
Equations 35 and 37 show that the arrangement illustrated in Fig. 28
may be used to calculate the positive-, nega-

tive-, and zero-sequence currents at the fault for _ I il ¥ T
a line-to-ground short circuit. ”ﬁ%’.m—
The impedances to positive and negative - “hetwork
sequence Z; and Zy are exactly the same as &
those used for the line-to-line fault. The imped- Hegative
ance to zero sequence, however, is different. @) 4 ne i‘:rt
Whereas the positive- and negative-sequence [
networks were alike in the number and arrange- = 0
ment of circuit elements, the zero-sequence net- s
work is radically different and usually much L7
simpler. Fic. 28. Arrangement of

sequence networks for
Impedance to Zero Sequence for Generators. | iating positive-, neg-

The determination of the impedance to zero se-  ative-, and zero-sequence
quence for generators is analogous to the deter- ;‘:{‘Lﬂ‘;’d‘;‘:‘; ei:c‘:;a"'*
mination of the impedance to negative sequence.

Let I, represent the line-to-ground short-circuit current for a gener-
ator.

Let 1" represent the short-circuit current for a three-phase sym-
metrical short circuit.

Also let

Iy

77" kn (38)

From equation (37), if the ratio of X /R for all impedances is the same or
if R is negligible compared to X, as is usual,
3E

el 2oy Ay 2

(39)
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- E
I)f’ = zﬁ and an".f e In - k“ Z_
1 1
Therefore
W (40)

Zy I\ + Zy, + Z
Solving equation (40) for Z, gives
Zo= £ (::E - 1) o 2 (41)

n
The value of Z, thus depends upon the values of the impedances to
positive and negative sequence and also upon the ratio of the line-to-
ground and three-phase short-circuit currents. For example, &, for the
nonsalient-pole machine used in the previous example was shown by
test to be about 2.4. For this machine

Zo = Z.I (2_3£ = .l) - 0.221 = 00521

The approximate range of impedance to zero sequence for one class of
generators is shown in Table II on page 535. The values are given
relative to the synchronous impedance taken as 100.

Impedance to Zero Sequence for Transformers. The impedance 1o
zero sequence for transformers is either infinite or the ordinary leakage
impedance,® depending upon the connection. Where the connection
permits zero-sequence currents to flow, the impedance to zero sequence is
the ordinary impedance of the transformer; otherwise it is infinite.
Since the zero-sequence currents in the three lines of a three-phase
system are all in phase, a fourth wire or ground connection on the neutral
of transformers connected in wye is required to furnish a complete cir-
cuit for the return of the zero-sequence line currents. In addition,
there must be another winding on the transformer to permit current to
flow so that the resultant magnetomotive force acting upon the trans-
former core due to the mro—squ.i!nce current is zero (exciting current
neglected). If these compensating currents are not permitted to exist,
the inductive reactance of a single winding to the zero-sequence current
is so high that the amount of this current which can flow is entirely
negligible. The corresponding impedance may then be considered

*If the transfurmer< have more than two windings which carry zero-sequence cur-
rent, reactance duc to certain mutual-inductance effecta of the several windings should
be included. For a discussion of the reactance of multiwinding transformers, sce
0. G. C. Dahl, “ Eleetric Circuits,” McGraw-Hill Book Company.
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infinite. A few examples as shown in Fig. 29 will illustrate these
principles.
Transformer Bank A. No zero-sequence currents can flow since there
is no return path. Therefore the impedance to zero sequence is infinite.
Transformer Bank B. Zero-sequence currents can flow. Winding
p furnishes a path for the compensating currents of those in winding S.
Hence the impedance to zero sequence is the ordinary leakage impedance.

AL l;if

g

L

G

Fra. 29. Zero-sequence currents can fiow in B but not in any of the other transformers.

Transformer Banks C and D. No zero-sequence currents can flow.
The impedances to zero sequence are infinite. If the neutral of the wye-
connected generator supplying transformer bank C were grounded, zero-
sequence currents could flow in both primary and secondary of C.
Under these conditions the impedance to zero sequence of transformer
bank € would be the ordinary leakage impedance.

L, .
-f.g e 4

Fia. 30. Zero-sequence impedance of & transmjssion line is the impedance of the three
conductors in parallel in series with a ground return.

Impedance to Zero Sequence of Transmission Lines. The impzdance
to zero sequence of & transmission line, Fig. 30, is the impedance of the
three conductors in parallel with a greund return. The reactance
depends upon the depth at which the return current appears to flow. A
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discussion sufficiently adequate to yield a working knowledge of the
determination of reactance to zero sequence of transmission lines is some-
what involved and beyond the scope of this book. Those interested are
referred to other works on the subject." For purposes of illustration
of the method of calculating line-to-ground fault currents in this book,
certain values of reactance to zero sequence of a line are assumad.

$I=T,

-+

F1c. 31. Flow of zero-seqience currents through an impedance in the neutral.

If an impedance Z, as shown in the neutral of the generator of Fig. 31
is encountered, it should be entered into the zero-sequence networks as
3Z,. This may be shown as follows. The ordinary impedance Z, is
defined as the drop V. across the impedance divided by the current
through it. Hence

Zi= f (42)
Since
I, = 3],
L4 vn,
| e 310 (43)

Since there are no positive- or negative-sequence currents in the neutral,
V. for this case is considered the zero-sequence voltage which is due to
the zero-sequence current Iy. Hence

Vo V.

Zy = L= (44)
Substitution éf V, /I from equation (43) in equation (44) gives

Thus the impedance to zero sequence as defined in equation (43) is three
times as large as the actual impedance in the conductor. Since the only
zero-sequence current flowing in the zero-sequence network is I, the

€ See ““ Symmetrical Components * by Wagner and Evans and “ Applications of
the Method of Symmetrical Components "' Ly Lyon, McGraw-Hill Book Company



544 ALTERNATING-CURRENT CIRCUITS Ch. XnL

value Z, = 3Z, should be entered into the zero-sequence network to
yield the correct voltage drop.

Calculation of Line-to-Ground Fault Current. The system shown in Fig. 7, which
was previously employed for three-phase and line-to-line short circuits, will be cal-
culated for a line-to-ground fault on one of the secondary lines of transformer T
A determination of the reactance to zero-sequence of line I, is as-
sumed to yield 20 per cent reactance ou a 5000-kva base. The
problem will be worked on a 10,000-kva base as before.

Soluwtion. The positive- and negative-sequence networks are
the same as those previously employed. They are shown in
Figs. 24 and 25. The impedances to positive and negative se-
quence are the same for the line-to-ground fault solution and th-
general distribution of the positive- and negative-sequence cur-
rents is the same, but the actual magnitudes of the positive- and
negative-sequence currents will be different because of the effect
.of the impedance to zero sequence in reducing the magnitude
of the resultant positive- and negative-sequence currents. The - 35 Tarne
resultant impedances to positive and negative sequence of 41.95 _u;qum‘m aets
and 26.17 per cent, respectively, are still valid. An inspection  work for a line-
of Fig. 7 shows that no zero-sequence current can exist in trans-  to-ground fault

formers Ty, T2, Ti, or generator Gy. Therefore the zero-sequence °"].§ ;‘m Zh‘";::;
network consists of Gz, T3, and Ty along with line l3. The gyothe cr:n.

zero-sequence network is shown in Fig. 32, If k. = 2.4 and
k1 = 1.45, substitution in equation (41) gives Zy = 0.08Z,. For generator Gz

Z, =0.05 X 30 - 15 per cent

Resultant Zg for the zero-sequence network = 1.5 + 4 + 40 + 10 = 55.5 per cent.

Yo il B R e s <o

il Gt B T TS
In terms of percentage impedances,

I. 10,000,000 100

Lh=ii=Ii=—=

3 /312000 55.5+ 41.95 +26.17

= 389_;'(]_" ampercs

For a positive-sequence current of 389 amperes the distribution is shown in Fig. 33.
These values are determined by multiplying the currents in Fig. 24 by 389 /706.
Similarly the negative-sequence current distribution is determined and shown in
Fig. 34.

The currents on a 12,000-volt base are now found by combining the symmetrical

components,
Fault current:

Io = I3 + I + L = 3 X 389 /0° = 1167 /0° amperes
I, = 389/—120° + 389/120° + 389 = 0
I, = 380 /120° + 380/—120° 4+ 389 = 0
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Transformer T3 and line I3:
I, = 305.2 + 316.8 + 380 = 1011 Iz = 1011 amperes
L = 305.2/— 120° + 316.8 /120° + 389 = 78 + 10.5 I, = 75.7 amperes

I. = 305.2/120° + 316.8/—120° + 359 = 78 — j10.5 I, = 78.7 amperes

Fiao. 33. Positive-sequence current distri- Fio. 34. Negative-sequence current dis-
bution for line-to-ground fault on Fig. 7. tribution for line-to-ground fault on Fig. 7.

Line l2, transformer T'g, and I4:

I, =838 + 72,16 = 155.9 I, = 155.9 amperes
I, = 83.8/—120° + 72.16 /120° = —77.95 — j10 ]y = 78.6 amperes
L = 83.8/120° + 72.16/—120° = —77.95 + j10 .+ I. = 78.6 amperes
Line [} and transformer T'a:
L = 33.0 + 7.54 = 40.54 I, = 40.5 amperes
I = 33.0¢—120° + 7.54/120° = —20.3 — j22.0 Iy = 30.0 amperes
I, = 33.0/120° 4 7.54 '—120° = —20.3 + ;220 I. = 30.0 amperes
Secondary side of transformer T';:
I. = 1168 + 79.7 = 196.5 I, = 196.5 amperes
I, = 116.8/—120° 4 79.7/120° = —98.2 — j32 Iy = 103.3 amperes
L = 1168/120° 4+ 79.7/—120° = —98.2 + j32 I. = 103.3 amperes
Current in windings of transformer T, (see Fig. 7):
Lo = §(196.5) + 3(—98.25 4 j32) = 08.2"+ j10.7 " Isa = 98.9 amperes
L. = §(—98.25 + j32) 4+ §(—98.25 — j32) _

= —083 + j10.7 Iqe = 98.9 amperes

Ls = §(—98.25 — j32) + }(196.5) = —;21.4 T4 = 21.4 amperes
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Since these are the delta transformer currents, ona 1 to 1 ratio they are also the cur-
rents in the phases of the wye primary, and therefore the currents in the lines from

generator G on & +/3 12,000 line voltage base.
Current in Gz:
L = 2722 + 309.3 + 389 = 970.5 . = 970.5 amperes
I, = 2722 /—120° + 309.3 /120° + 339 = 98.25 + ;32 Iy = 103.3 amperes

I, = 272.2,120° + 309.3/—120° + 389 = 98.25 — j32 I. = 103.3 amperes

4. Refer to Fig. 35. All circuit elements are assumed to have zero r

nee:
The reactances to positive sequence are the numbers preceded by j on thei‘m.
Generator A is a 3000-kva machine having a rated terminal voltage of 6600-Folts.

Generator B is a 6600-volt, 5000-kva machine.

PROBLEMS

Generator A Generator B
E i
-y, - =[] ]

° p 1 1N i 0 1

(for loop current -
solution) 9= 4000/-240°v

(load currents assumed
equal to zero)

Fic. 35. See Problem 4.

(a) Solve for the currents in all branches by one of the methods considered in
Chapter 1X, assuming that the impedances shown on the diagram hold for any kind

of unbalance.
(b) Solve for the currents in all branches by the method of symmetrical com-

ponents, taking into account the difference in impedance to the positive, negative, and
zero sequences. Impedances to positive sequenee for the generators are those shown

on the diagrara,
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4

it

v

Fault

Fic. 36. See Problems 5, 6, and 7.

Gy




548 ALTERNATING—CURRENT CIRCUITS Ch. xm

6. The following data refer to Fig. 36.

Apparatus Kva Rating % Reactance Kva Base for
¢ Meactance
G 20,000 30 10,000
Ga 10,000 50 10,000
G 20,000 20 10,000
T 40,000 2 2,500
T 10,060 20 30,000
Ty 10,000 6 10,000
Ty 10,000 7 10,000
4L 30 20,000
3 20 10,000
I 10 4,000
l 40 30,000
Generator k kn
G, 1.4 2.1
g G» 15 2.3
Ga 13

All resistances are assumed negligible.

Calculate currents in all lines, transformers, and generators for a 3-phase sym-
metrical short circuit at the point marked fault. Express currents on a 33-kv base.

6. Calculate currents in all lines, transformers, and generators for a line-to-line
fault at the point marked fault. Express currents on a 33-kv base.

7. Calculate currents in all lines, transformers, and generatars for a line-to-ground
fault at the point marked fault. Use 25 per cent based on 10,000 kva as bhe zero-
sequence reactance of l» including lines and ground return. The zero-sequence
reactance of {3 including lines and ground return is 12 per cent based on 4,000 kva.
Assume pegligible resistance, and express currents on a 33-kv base.



chapter XIV Transient Condl'ﬁons

The expressions which have thus far been derived for currents and
voltages have carried with them certain tacit assumptions. All the
alternating currents and voltages in any particular circuit have been as-
sumed to be recurring, periodic functions of time; in other words, the
circuit in question has been assumed to be in a steady-state condition.

Before a circuit (or machine) can arrive at a steady-state condition
of operation which is different from some previous state, the circuit (or
machine) passes through a transition period in which the currents and
voltages are not recurring periodic functions of time. For example,
immediately after the establishment of a circuit the currents and volt-
ages have not, in general, séttled into their steady-state conditions. The
period required for the currents and voltages to adjust themselves to
their steady-state modes of variation is called the transient period.
During transient periods the mathematical expressions for the currents
and voltages contain certain terms other than the steady-state terms.
These additional terms are called transient terms, and they are usually
of short duration, being damped out by certain damping factors which
depend for their values upon the circuit parameters.

In general, any switching operation within the circuit itself or any
voltage which is suddenly induced from an outside source will cause
transient conditions to exist in the circuit. Although transient periods
are generally of short duration, it is during these periods that some of the
most serious and involved operating problems are encountered.

It should not be inferred that transient variations are always violent
or that they always represent undesirable circuit conditions. Various
devices actually operate by virtue of recurring transient phenomena.
Notable among these devices are: (1) certain classes of sweep circuits, .
and (2) certain types of tube inverters. Sweep circuits are employed
extensively to produce linear time axes in cathode-ray oscillographs-and
cathode-ray television tubes. Inverters are employed to convert direct
to alternating current.

Examples of Elementary Transient Conditions. Example 1. In
Fig. 1 it is assumed that the RL branch is suddenly energized with a
constant potential difference by closing the switch S at £ = 0. The

: 549
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general equation for voltage equilibrium in the resulting series circuit is:
&

LE': +Ri=E (1)

If L, R, and E are constant the above equation nay be solved explicitly

for ¢ in any one of several different ways. One of the most direct

methods of solution in & simple case of this kind is to separate variables
and integrate. Thus:

S
di

b 2T B R 1 e

=t or

" L Lf.._._df._ fdg (@)

T (E — Ri)

Whence:

Flg. lhd.hiueriea Rl';d b;anch m ¥ )

potential differetioe & ALt = 0. — R lo& (o B = epell
or A

log. (B — Ri) = — = +a 3

where e is the base of the natural logarithms, namely, 2.71828 - - -, and
¢; is a constant of integration. From the definition of a logarithm it

follows that:
E — Ri = {~RiLya

Therefore:
E—Ri=ci®t | @)
Solving the above equation for ¢ yields:
E ) »
= - cae Rt 5)

The constant of integration ¢3 must be evaluated in terms of the bound-
ary conditions that surround the switching operation. Boundary con-
ditions are usually specified in terms of the circuit currents and the
condenser voltages that exist at the instant a given switching operation
is performed. In general, the specification and incorporation of
boundary conditions require an understanding of the natural charac-
teristics of the circuit parameters involved. For example, if a circuit
possesses inductance the current cannot change abruptly, that is, can-
not become discontinuous with respect to time. Therefore the current
in an inductive branch at the instant a given switching operation is
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performed is equal to the current that exists in the branch just prior to
switching operation. In the present case: t =10 at i =0, and this
physical fact can be employed to determine the value of ¢3 in equation
(5). Imposing the boundary condition on equation (5) results in:

E
O=F—c or =% (6)
The general expression for current becomes:
; E E _ru
! R R @
steady-state term traosient torm

It will be noted that the complete expression for ¢ consists of two terms:
a steady-state term and a transient term. In general this distinct
division of terms is present in complete current solutions. Under cer-

R A S 1Y = N
\= %(l-{ ""lll
2 .1 ¢
p= =(l-¢ L)
i
R
L
i Time
teo » ——— e
Fie -
/'\ /_\50 Cyele iming f'-'\ . 3
wave
e éu: --...-.---J )

OsciLrocraM 1. Growth of current in an RL circuit which is suddenly energized with
a constant potential difference, E. ‘The instantaneous power delivered 4o the circuitis
also shown.

tain conditions one or the other of the terms may be zero. The fact
that the complete expression for current can be divided distinctly into
a steady-state term and a transient term is of considerable importance.
Under ordinary conditions the steady-state term can be evaluated in
terms of elementary circuit concepts rather than by involved processer
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of integration. The transient term can usually be found in terms of
simple exponential components if the circuit parameters are constant.

The time variations of the two terms of the current solution given in
equation (7) can easily be visualized. The steady-state term, E/R,
is independent of time; the transient term has a value of (—E/R) at
¢t = 0 and approaches zero exponentially as time increases. The two
terms combine to form the current that actually flows in the RL cireuit
during the transient period. Oscillogram 1 illustrates the actual
growth of current in an RL circuit when it is suddenly energized with a
constant potential difference. It will be noted that the transition in
current in this case is from zero to a steady d-c value equal to E/R.

In certain elementary types of circuits the length of time required
for the current to make 63.2 per cent of its total transition is called
the time constant of the circuit. The time constant of the RL circuit
is L/R, as may be shown by direct substitution in equation (7). Thus
if ¢ is set equal to L/R in equation (7) it is simply a matter of algebra
to show that:

E ®
(latimzm = D~532R
Exumple 2. The circuit shown in Fig. 2 is assumed to be carrying a

is steady current equal to E/R at { = 0. At

qv t = 0, either the switeh S is assumed to
J___ b ;Egﬂi' R change from point @ to point b in an in-
—E finitely short period of time or it is assumed
T L that a dead short circuit occurs between the

— points a and b. In either event the RL
o B sl e g branch is de-energized at ¢ = 0 and left to
subside through the short-circuit path. The

basic voltage equation for the RL branch at and after ¢ = 0 is:

di .
Ly +Ri=0 (8)
From which:
i= Q' + g P (9)
steady-state term transiect term

As previously mentioned, a current flowing through a circuit which has
an appreciable amount of inductance cannot change its value instan-
taneously. Since i = E/R just prior to £ = 0, 7 is also equal to E/R
at £ = 0. Therefore:

E
=G (10)
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and
E
- - 0 =~ —Ri/L 1
7 + RE (11)
steady-state term transient term

It will be observed that the transition in current is from (E/R) at
t =.0 to zéro current at ¢ = o and that the rate of subsidence is gov-
erned by the ratio of R to L. The current actually comes to zero in a
relatively short period of time because the driving voltage, L di, 't or
N dg¢/dt, becomes so small that it can no longer maintain a net move-
ment of electrons in one direction. Thus when the energy of the col-

lapsing magnetic field becomes so small :

that it cannot overcome the internal atom- _,__[_ °7\’;

ic forces that tend to prevent net drifts —  '=° %R
of electrons, the current actually becomes — =
zero. The failure of theoretical equations =] =5

to account for exceedingly minute effects s 3. A series RC circuit sud-
of this kind is of no practieal importance. denly enreied with o constant

Example 3. If the condenser shown jn  PO'foHe @ricrence of £ volts:
Fig. 3 has a charge of @, units of electrical charge at ¢ = 0, the basic
voltage enuation at and after { = 0 is:

: . M
Rz+C (12)
where q =flz'dt + Qo (13

Differentiating equation (12) with respecf to t and substituting ¢ for
dq/dt yields:

di
R - 5=0 (14)

" From which:
= ¢, 'RC (15)

The resultant voltage cauung current to flow in the circuit at the
instant of closing the svh}ch is (B — Qg /C). Therefore the current in-
stantly acquires a value -~ an at ¢ = 0 since the self-inductance
is assumed to be negligibly small. In this conpection it should be noted
that the initial Qo/C voltage of the condenser may possess either polarity
with respect to the applied voltage E. For the case shown in Fig. 3
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the polarity of Qo/C is opposite to that of the applied voltage E. Since

el i _RQ"/C} at t=0

it follows that =

Y XY -

and

{ BTN _§°/C)¢ o (17)

Equation (17) is the mathematical expression for the direct charging
current taken by a condenser when the self-inductance of the circuit is
negligibly small.
The variation of charge can be found by solving equation (12) for ¢
and then substituting for 7 its value from equation (17). Thus
g =CE — CRi
= CE — (CE.— Qo)™*/%¢ (18)

If the initial charge Qo = 0, the variations of current and charge as given
by equations (17) and (18) are shown in Fig. 4.

0.1
0.08
§ 0.06
o). CE=Glcoulemb ____ 0.04f
0.02 ¢
g 0
2 0.5CE 0.2t
8 3 £o.4
g 4 Eo_s F
5 oL = 0.8
1 i L i i
0 051 0z o3 04 03 1.0
Seconds
Fra. 4. Charging a condenser C = Fic. 5. Discharge of a condenser
100uf through a resistance R = C = 100uf through =& resistance
1000 ohms from a d-¢ source of 1000 R = 1000 ohms. [aitial charge at
volts. : a potential of 1000 volts.

If a condenser of C units capacitance replaces the inductance L of
Fig. 2, it is a simple matter to show that:
E
i e E E—h‘ﬂc \ (19)
and
g= CE'!""-"RC' s (m)
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Equation (19) is the expression for the discharge current in an RC cir-
cuit which contains a condenser initially charged to a potential difference
of E volts. Equation (20) is the expression for the decay of tharge
under the same conditions. The variations of current and charge as
given by equations (19) and (20) are shown in Fig. 5. Condenser
charge and discharge currents are similar except for sign and are simple
exponential variations. The steady-stute current in either of the two
cases is obviously equal to zero.

The time constants of the above RC circuits are both equal to RC
since it is at this value of time that the current has made 63.2 per cent
of its total change.

Sawtooth Wave Form Produced by Simple Transient Effects. Vari-
ous forms of circuits have been devised to produce sawtooth wave
forms or approximetions thereto. One of the most elementary is

.=

lstt?-\: _I\

—

c— Nean ; Io'an?h

— pair of cathode-

T T b Gay tube plates
! =

Fia. 8. An elementary form of sweep circuit the operation of which depends upon
recurring transient phenomensa.

—|I]1|i—

shown in Fig. 6." The operation of the device depends upon the natural
~ behavior of the circuit elements, the details of which are listed below.

1. A transient voltage appears across the condenser due to the tran-
sient inrush of current to the main RC series circuit. Until a certain
critical voltage is established across the condenser, the neon discharge
tube remains un-ionized and acts practically as an open circuit.

2. When the condenser voltage has built up to a certain eritical
value, say E), the neon tube ionizes and suddenly places a low-resistance
path across the condenser. The ionized tube thus provides a means of
discharging the condenser because the time constant of the discharge
path js relatively very small as compared with the time constant of the
main RC series circuit. The voltage across the condenser drops from
the value E; to some loweryalue, say E,, in a very small fraction of the
time required for the establishment of E,. ;

! In practice the neon tube of Fig. 6 would probably be replaced by a gas triode
which has an extremely low de-ionization time, for example, & type 885 tube. In this
case the anode-cathode path of the triode replaces the neon tube of Fig. 6 and the grid
of the triede can be used to control the starting of the discharge current.

-36
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3. After the condenser has been discharged to the voltage E,, the
neon tube ceases to be a conducting path (becomes de-ionized) and
pertuits the applied potential difference to recharge the condenser.
The eycle of transient phenomena thus repeats itself, and the voltage e,
takes on an approximate sawtooth wave form,

During the charging period the condenser voltage is:

[}
L dt
€1 = Eq = £_Ic_j:—9-9 (21)
or
i
L dl
P ﬁ'T” +E (22)

E, is the voltage left on the condenser from the previous cycle due to
the discharge tube de-ionizing before zero condenser voltage is reached.
From equation (17) it is evident that

= E__REE—IIRE . (23)
Therefore,
E—-E
e = s "fr””c dt + E, (24)
or
ey = E — (E — E)t/RC (25)

The rising condenser voltage is in this case exponential in character
rather than linear. However, when the actual change in voltage,
(E, — E,), is small as compared with (E — E3) fairly satisfactory
results can be obtained.

The condenser voltage continues to build up in accordance with
~quation (23) until the voltage E; is attained, at which time the neon
tube discharges the condenser in the manner previously deseribed.
Obviously E must be greater than E}.

A mathematical analysis of the conditions during the discharge
period is complicated by the variability of the resistance of the discharge
path. The exact behavior of the circuit during the discharge period
is usually unimportant because the discharge period is of relatively
short duration and does not represent the *“ working " part of the cycle.
It should be recognized that the series resistance, R, is generally of the
order of 10,000 times the value of the tube resistance when the tube
is ionized. Therefore during the discharge period the tube cannot
receive any appreciable percentage of the applied voltage. It is plain
that the device would cease to function as a sawtooth-wave-form genera-
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tor, if, during an ionized period, the tube received a voltage sufficient to
sustain ionization.

The general nature of the approximate sawtooth wave form produced
is shown in Fig. 7. An obvious place for improvement is in the rising
or building-up portion of the curve. The rising part of the curve can
be made prsct.ically-'linear by replacing the constant resistance, R,

E, 100 - ; -
o 80 T 7 /L"—
Egan e V : ;

51 :

£%20 !

7, Llonhatciel e fond-ojciet 4 !
o0 i G B RS T 008
when pa D,

BeC. &

Fio. 7. Approximate sawtooth wave form as determined equation (25) for the par-
ticular case of E = 220 volts, E, = 100 volts, E; = 20 {wlts, R = 100,000 ohms, and-
€ = 0.1 pf. The overall time of one cycle under these conditions is approximately
0.0052 second. :

with a resistance that varies inversely as the amount of current passing
through it. Many of the modern vacuum tubes, particularly the
pentodes; possess this resistance characteristic from plate to cathode,
provided they are worked between certain limits as regards plate-to-
cathode voltage.

If the transient current inrush is maintained constant at I amperes
by means of a variable resistance, then

4
€1 =Kf Idi+ E,
0

= KIt + E;

Under the conditions stated above, the rising part of the voltage curve
shown in Fig. 7 would become linear with respect to time.

In addition to the usc of a pentode type tube for maintaining constant
charging or discharging current, some sweep eircaits employ a grid-con-
trolled mereury-vapor discharge tube as a starting and stopping valve.
Various other combinations of electron tubes are also employed to
produce sawtooth wave forms.

Oscillogram 2 is a photographic record of the wave form produced
by a modern sweep circuit which employs a series of transient con-
ditions to effect the desired result. In obtaining the photographic
record one pair of plates of a cathode-ray tube are energized with
one sweep-circuit potential difference and another pair of plates are
energized with the potential difference developed by. un identical

LA
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sweep circuit. The linearity of the sweep-circuit voltage is clearly
shown.

X W“i'ﬁ"f"_““#‘;“_"ﬂ-"ﬂf TR IR IR ey e e ) ".a“

OsciLrograse 2. Illustrating the linearity of the potential difference developed by &
modern sweep circuit. In this particular case the return time, that is, the time required
{for the voltage to return from Emax t0 &oun, i5 80 short that the trace is not discernible
on the photographic record.

The RL Circuit Energized with an Alternating Potential Difference.
If an alternating potential difference replaces the battery shown in
Fig. 1, the expression for dynamic equilibrium is:

L% + Ri = En sin (0t + ) (26)
or

di: -R, En:

&—t-{-ztn 7 sin (wt + X) (27)

The symbol A represents the phase of the voltage wave at which the
switch of Fig. 1 is closed. Reference to Fig. 8 will show more clearly
the exact meaning of A. It is the angular displacement expressed in
degrees or radians between the point e = 0 and the point { = 0 measured
positively from the point where e = 0 and de/dt is positive.

The factor A provides a convenient means of examinéng a-c transient
conditions. In general, the magnitude of an a-c transient depends
upon the time of the cycle at which the switching operation is performed.
Most switching operations are performed with no regard for, or rather
no knowledge of, the point on the voltage wave at which the transient
period begins. Under these circumstances the investigator analyzes
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the effect of starting the transient disturbance at different points along
the voltage wave. This is done by assigning different values to A.
In the case of surges or inrushes most attention is paid to those values of
A that produce the greatest currents or voltages.

Fio. 8. [Illustrating the physical significance of the symbol X.

Equation (27) is representative of a general class of differential
eqguations. The derivative of the dependent variable, (z), with respect
to the independent variable, (¢), added to the dependent variable,
times some coefficient, equals some function of time. This form of
equation defines the basic relationships involved in many physical
problems, being particularly prevalent among the problems of electric
circuit theory. The equation admits of relatively simple solution if
all coefficients are constant and the right member is an exponential or
sinusoidal function of time. -

Let equation (27) be written as

%+a:‘=hain(mt+}.) i (28)
wherea = R/L and h = Ey,/L.
The solution of equation (28) takes the following form:

;= ket f & sin (wf 4 A) di+ eyt (29)

The proof of the solution stated above rests in its ability to satisfy the
original equation, namely, equation (28). In termms of the ahove

solution:
d‘ » 5 .
d—: = he *' sin (wl + A) — ahe®* fe"‘ sin (wf + ) dt — acie® (30)

and
it o ahe_‘“fc“' gin (ol + ) dt + acyé ™ 31)
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Adding equations (30) and (31) will show that equation (29) is a
general solution of equation (28). The solution stated in equation (29)
is limited to those cases where a and & are constant. For the particular
problem at hand this means that R, L, and E,, must be constant beflore
equation (29) can be employed as a solution of (28). .

The solution for current in an RL circuit with sinusoidal voltage

applied is:

Em
- = gl ’-f UL sin (wf + \) dt + g BIE (32
steady-state term I.ruuicﬁt term

The relative complexities of the two terms in the above solution should
be noted. Mathematically, the steady-state term is known as the
“ particular integral,” and the transient term as the ‘‘ complementary
function.” The integration involved in the evaluation of the steady-
state term can be carried out by the method of successive parts, but the
algebraic simplification of the results is a tedious process.

With sinusoidal applied voltages, familiar algebraie methods may be
employed to find the steady-state terms of general current solutions.
Many of the disagreeable details connected with the evaluation of
complete current solutions are thus avoided. For example, several
lengthy mathematical relations are involved in the integration method
of finding the steady-state term of equation (32) which is simply:

o E—Z’,"sin Gt —0) (33)

where

Z = VR +'L* and 6 = tan ' wL/R

Actually equation (33) can be thought of as following from two physical
facts. The maximum value of the steady-state current is £,./Z where
Z = VR® 4+ ’L?, and the steady-state current wave lags the applied
\oltage wave by the angle whose tangcnt is wL/R. The complete
expression for current becomes:

i = %sin. (wl + X\ — 8) + ¢, BHE (34)

The constant of integration ¢; must be found from the initial conditions
— those existing at the time of elosing the switch., If the circuit current
is zero just prior to closing the switch, then,

i=0 at {=0 (Seepage 550.)
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Imposing the above condition on equation (34) yields

En .
0=75m()\—8)+51

From which:
""Em %
6 = =5 A (A —86) (35)
and
] E’E i — 8 — Eﬁ = __ p\ —RUL
i=— sin (wt + A — 6) Z sin (A — 0)¢ (36)
steady-state term transient term

Tt will be noted from the above equation that the transient term is
equal to zero when (A — 8) = 0, =, 2r, ete. If the RL branch is highly
inductive the ratio of wL to R is large, thereby causing @ to approach
x/2 as an upper limit. In cases of this kind the transient term is zero
when A is apprcsximatel‘y equal to /2, 37/2, 5n/2, ete. Physically this
means that zero transient effects take place in highly inductive circuits
when the circuit is energized at points of approximately maximum
voltage on the voltage wave.

The transient term of equation (36) is maximum (for given values
of R, L, w, and E,) when (\ —8) = =/2, 3x/2, 5x/2, etc. When ¢
is approximately equal to =/2 it is plain that the transient term is a
maximum when \ is approximately equal to 0, =, 2r, ete. Therefore
in a highly inductive circuit the transient term is maximum when the
switch is closed at points of approximately zero voltage on the voltage
wave. A detailed study of equation (36) will show that conditions
which make for the maximum possible transient terms do not necessarily
make for the maximum possible values of 7. In highly inductive cireuits
the difference between the two sets of conditions is not large and maxi-
mum transient disturbance is usually assumed to be the result of thuse
conditions that make sin A\ — @) = lorsin (A —§8) = —1.

The steady-state term and the transient term, together with the
resultant cuffent, are illustrated in Fig. 9 for the case of # = 85° and
for (\ — 8) = 3r/2. Under these conditions:

A = 270° 4 85° = 355° = —5°

It will be noted that the switch is closed when the steady-state term
is at a maximum (negative) value and that the transient term is at its
maximum (positive) value. The transient term and the steady-state
term combine at ¢ = 0 to make the resultant current equal to zero,
which of course must be the case in an inductive circuit which is at rest
just prior to the application of a potential difference.
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Under the condition of constant R and L, the maximum value of the
resultant current ¢ is less than 27,, where I, = E,/Z, the maximum
value of the steady-state term. This fact may be easily substantiated

/]

Resultant
,._-'! as current
-rlm."t ~
% R
= g \
Peu
d ey
e ! ) o
V’\ ; \ ~—.
I \ '
r 1 R
¥ L}
! \ "
\_/ / k !
A=355— s [ \ !
/ Steady-stats | 7
re— lerm Sl ]
! \ 7
_Im],’ \
t=0

F1a. 9. Tlustrating the manner in which the steady-state term and the transient term
of equation (36) combine to form the resultaunt current. For the case shown, § = 85°
and sin (A — @) = —1,

from the graphs shown in Fig. 9. The effective value of the current
during the early transient period is somewhat less than

VIgE 17 = V212 + I* = V3] [See equation (28), page 252

where T4, = I,, = \/2I and I is the effective value of the steady-state
term.

The transient term in an RL circuit is often referred to as the d-c
component since it is unidirectional. This subsiding unidirectional
component of current is of theoretical interest because it is partly
responsible for the radical changes that take place in synchronous
generator impedances during transient periods.

Oscillogram 3 illustrates the resultant current in a highly inductive
circuit when A = 0 and A = »/2. The two current records are placed
on the same oscillogram by means of superimposed exposures. In tak-
ing oscillograms of this kind it is necessary to employ some device for
closing the circuit at the desired point on the voltage wave.

Problem 1. Plot the steady-state term and the transient term of equation (36) for
two cycles of the steady-state variation under the following conditions:

(a) The applied voltage is a 60-cycle sinusoidal variation, the maximum value of
which is 311 volts.

(b) R = wlL = 4 ohms.
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e shen JiFZuil s
closed at e - o0

Oscrrocray 3. Illustrating the current variations in an RL circuit which is suddenly
energized with a p.d. of sinusoidal wave form. R and L. in this particular case, are
sensibly constant. Two cases, namely, A = 0 and XA = 907, are shown.

¢

(¢) The switch is closed at such a time as to make the transient term acquire
a negative maximum value.
Graph the resultant current ¢ on the same plot.
Ans.: i = 55sin (377t + 90°) — 55, %™ amperes.

Problem 2. Analyze equation (36) for the case in which L is negligibly small.
- Ang.: i = %sih {wt + A
The RC Circuit Energized with an Alternating Potential Difference.

If an alternating potential difference replaces the batterv shown in
Fig. 3, the expression for dynamic equilibrium is:

Ri +% = E,, sin (ol + A) (37)
] . dg
8 ..
nce 1 dt
d
R—ff+%=5,,,sin (it + X) (38)
or
dg g E, .
T+ - Thin (w4 N) (39)

Since equation (39) is a linear differential equation of the first order
ard first degree, the integrating factor? which makes the left-hand side

2 Consult any standard bonk on differential equations,
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~n exact derivative is:

f.‘f( = § (40)
Multiplying equation (39) by ¢ %€ gives
d En .
¢ rcd + e"fcc,i-ﬁ = e“”cﬁ- sin (wf + \) (H1)
or
¢/RC dg 4 ¢ 7€ L gt = ¢ BC Ex in (wf + A) dt (42)
CR R

Integrating gives
07 = oS g w2 dt + K
or
¢!/RC [é sin (ol + 1) — weos (ot + )\}:I

1 RC

ge" =% + K (43)

R( + o

Dividing equation (43) through by /€, expressing the difference of
the sine and cosine terms as a single cosine function, and making a few
algebraic transformations give

cos (wt 4+ A+ 8) + KetBC  (44)
JR T Cg

\heca—tan‘———_tau 122, .
A CR" R

Imposing the initial condition, namely, ¢ = Qp when { = 0, and

solving for K give
\/ R* + 3 02

1
Substituting (45) in (44) and replacing < by X,
(5]

cos(A+6) (45)

Em

g:—‘ﬁ—zv/——:_x—_‘;'acos(ml+l+e)+

B
[Qo —t —3 cos (A + a)] —HRC (46)
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Equation (46) is the general equation for the charge on the condemser.
If the initial charge is zero,

E.. E‘—IIRC )
= —-———-—-—cos t+A+6) + ——=————cos (A48
CTavERERS T e T Y
(47)

The first term of the right-hand member of equation (47) is the steady-
state term whereas the last term is the transient. It should be noted
that at the time t = 0, the transient is always exactly equal and opposite

8.66 Steady Component of Current
5 /
to
(%)
-~2.58
F Lok -l .
s Y
/ \ Resultant Charge
a.256
\
lq“r- ‘\
v ent .
’ cgmﬂbn!a{ur
0 -, -l+ LY Cha;-n
= Seconds X
Steady Component
of Charge
=0.256
(a)

Fie. 10. Circuit containing R = 100 ohms, C = 100 ul when ¢ =
1000 sin (377t — 14.95°) volts is impressed. Initial charge on condenser = 0.

to the steady-state component. These results are shown in Fig. 10a.
This is the same relation that exists between the steady-state term
and transient of current in the RL ecircuit.

The current in the RC circuit is obtained by differentiation of equation
(47). Thus
dq E E-ml-—tfRC

{f =— = sm wt 4+ AN+8) — .
( ) RCoVRZ + X

- cos (A + 6)
: (48)

A study of equation (48) and the corresponding graph, Fig. 10,
reveals that there is no fixed relation between the transient and the

dt~ VR + X,
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steady-state component of current at the time £ = 0. The relativc

magnitudes gre dependent upon the ratio of g = R—é— and the time
= w

angle A at which the switch is closed.

The RLC Series Circuit with a Constant Direct Voltage Suddenly
Applied. Since the emf applied to the circuit must equal the sum of all
the drops at every instant, the conditior for dynamic equilibrium is:

1
gi-!—Ri-l-Efidt:-E : (49)
Differentiating equation (49)

Employing the usual method of solving a second-order, first-degree
linear differential equation,® the auxiliary equation is:

La2+Ra+El,-0

Hence, ' ;
4L
e i Y N
= 2L 2L - I¢
Let
AL
a = 2_L and b 4—1—2 L—-C
The complementary function is then
i = ;‘clefﬂﬂ)l 'f' kz((—ﬂ—ﬁ}l r

The complete solution is the sum of the complementary function and
the particular integral, the latter being the steady-state current. Since
this case involves a constant direct voltage on a condenser, the steady-
state current is 0.

Hence the complete solution is:

i = ki b ke 4 0 (51)

The constants k; and k. must be evaluated by imposing certain known
conditions. In this case when { =0, © =0, and g = Q,, the latter
being the initial charge on the condenser before closing the switch.

3 See any standard book on differential equations.



Ch. XIV TRANSIENT CONDITIONS 567

Fori=0and¢=0in equation (51)

0=k +ky or k3 = =k (52)
From equation (49) '
1 P, q di ]
cJiu=-3-E-1g3-R
and
' -CE'—CLg-—CR'
= dt b (53}

Substituting (51) in (53) gives

g = CE — CLIky(—a + b)e™* 4+ xa(—a — b))
—CR k™™™ — CR k™' (51)

Imposing® the condition that ¢ = Qo when ¢ = 0 on equation (54),
substituting equation (52), and solving for k, give

g A )
ko= —o6mh (55
* From equation (52)
CE — Qo
y b=l = 2CLb (56)

The final equation for current is now obtained by substituting equa-
tions (55) and (56) in equation (51) and replac. g bby its equal. Hence,

2
Since b = J&—g — EIE [in equations (57) and (5c ! may be real, im-

aginary or zero, there are three cases to be considerec

41t is important that initial conditions be imposed on the inal equation
rather than on one of the differentiated forms. Note that equation comes from
equation (49) without anv differentiaticn of the original voltage equ 1 (49),
& __:g‘_E_'__QE’_ dmatht _ J(—a—b)y (57)"
VRC* = 4LC
If the values of ky, ks, @ and b are substituted in equation the

expression for charge becomes
PRI — 41O
q=CE—(CE—Qu}[RC+ R-C 4LC(‘_HM,
2VR*C? — 4LC
RC — VRC*" — 4LC E*O_W]
2V RA(E — A0
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R? 1
Case I. Whenm')E:

(58) are real. When ¢ = 0, the current is zero, and the quantity of
electricity on the condenser is the initial charge' before the switch was

A R s [
closed. Sincea = Y while b = (2L) LC —a + b will be nega-

; R\? 1 e
tive as long as (2—[:) > I Hence as ¢ becomes infinite, the exponen-

the exponents of ¢ in equations (57) and

tial terms become zero. The current therefore becomes zero and the
charge on the condenser becomes CE. A graphical representation of the
variation of current and charge is shown in Fig. 11. Both the current
and charge are unidirectional and the phenomena are non-oscillatory.

q=YC( =.01 coulomb

Y 08t wﬂ.
0.5t
Carr,,
E t\
-1
E 1 i R
L1001  .005 .01 o, R

Seconds

Fia. 11. Circuit containing R = 100 chms, C = 100 pgf, L = 0.1 heory when a
d-c voltage ¥V = 100 volts is impressed. Initial charge = 0.

B - ™Y
Case II. When —; iz <1o

expression for b it may be written as

V(_l)(iﬁ 4L’ ' \/LC 74_2“‘3"3
where 1!{%

Equation (57) then becomea o

b becomes imaginary. To evaluate the

- __CL_QE_ (ot (—a=iBly

vV R:C? — 4LC .

= ————CE = Qo_ (%Pt — P B |
VR*C® — 4LC

X (CE — Qo)™
VRECZ — 4LC
(CE — Q™
VRIC? — 4LC

[cos Bt + j sin St — cos St + jsin S|

2/ sin ] (59)
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2
For 4R—[F < E,_IC' RC? < 4LC and the denominator of equation (595

may be written as j V4LC — R*C®. Substituting j V4LC — R?*C? for
v/ R?C? — 4LC in equation (59) gives the final expression for current in
terms of all real quantities, as

_2CE — Qo)™ . = -
60\
“VaIC - R0 o dt (o)
Through a similar series of substitutions ;n‘a"nd algebraic transforma-
tions of equation (58), the charge is found to be

2(CE = Qo)VLCé™* g

= CE — + 0 61
. V4LC — R?C*" MR L
where -
» ViLC = RC?
6 = tan BC 2

If the initial charge on the condenser isﬂaém, the expressions for current
and charge respectively are:
: 20F

‘" Vie-mo 3
—al 5
q-CE—}-)—C—E—‘-——\/L_Cr—‘———sin (BL+0) (63)

41LC — R*C*

A graphical representation of equations (62) and (63) is shown in
Fig. 12. Oscillogram 4 also shows the variation of current with time in
another RLC circuit. It should be noted that the current is propor-
tional to the slope dg¢/dt of the curve of
charge variation at every instant. Anex-
amination of equation (62) shows that

Quantity

0.1=
;‘3 after an infinite time the current becomes
3 ose 2ero which s the steady stat . Also equa-
P ; tion (63) reveals that the charge becomes
3 ;2 Seconds CE aftet an infinite time has eclapzed.
-

For all practical purposes, however, theze
F‘f}e‘ e Dhrg:“”‘é. %00 "of final or steady states are sensibly reached
L = 0.1 henry, when a dc volt- after a few seconds; in some ecases in a
age ¥V = 1000 volus is impressed. N— . ra == o
7ot My eyl m{crosecor‘zda. (See page 533 .for ex
planation.) From the time of closing the

switch to the time of reaching the final state the currnt and quantity

oscillate about their final values. Case II is therefore called the oscilla-
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tory case. It is sometimes called the trigonometric case. Physically
the current starts to flow and charges the condenser. Because of the
low resistance compared with the inductance, the current continues to
flow into the condenser when ths magnetic field of the inductance
collapses. The condenser charge thus overruns its final value and the
potential drep across the condenser becomes higher than the impressed

‘\‘_‘__
a7

OsciLLooray 4. Photographic record of the currect variation in & particular RLC
series circuit which is suddecly energized with a constant potential difference.

voltage. The condenser then begins to discharge. These oscillations
continue until the excess energy is dissipated in the resistance. The
phenomenon is analogous to the case of a weight suspended from a spring
with a low value of mechanical damping.

The frequency of the oscillation f, is obtained from equation (62) or
(63). For a complete cycle ffmust be 2r radians and since the time fora
complete cycle is defined as théperiod T, we may write

BT = 2x
or
1 2 2x
Pe=rml e e—— 64
Jo B L. e b
VLc 413
Hence
1 2
fo b il (65)

T 2rVIC ik
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A comparison of the above equation with equation (10) on page 145
shows that the oscillatory frequency of the series RLC circuit when
the resistance is zero is the same as the resonant frequency. Practically,
they become the same when R*/4L? is negligibly small compared with
1/LC.

/Case III. When R%/4L* = 1/LC, b = 0 and the exponents of ¢
in equations (57) and (58) are real and negative as in case I. Hence
the variations of current and charge are similar to those in case L.
Case 1II is called the critical or limiting case and like case I is non-
oscillatory.

Decay of Current and Charge in an RLC Circuit. The basic equation
for this condition is:

L +R:+szdt=0 , (69)

Equation (66) is obviously a special case of equation (49) where E = 0.
Since equation (49) was solved in detail, the results of equation (66)
will be found as special cases of equations (57), (58), (60), and (61) by
making E = 0. It is plain that there will be three cases for the con-
dition of zero voltage on (or short circuit of) the RLC circuit. These, as
before, are the non-oscillatory case [ where R?/4L* > 1/LC, the oscilla-
tory case 2 where R?/4L? < 1/LC, and the critical case III, also non-
oscillatory, where R?/4L? = 1/LC.

Non-Oscillatory Case. The equations for current and charge for the
non-oscillatory_case are obtained from equations (57) and (38) respec-
tively by setting E = 0. Thus

—Q [E(—nﬂ}:

SN ... ST = ((—a—b}t 67
’ VRIC? — 4LC ] (67)

and

RC 4+ VR?C? - 4LC sy
2V RC* — 4LC
— VRIC?® — 4LC
2VRC? — 4LC

q=ou[

t(-—a—-&} l} (68)

A graphijcal representation of equations (67) and (68) is shown in
Fig. 13. If desired, Qo can be replaced in the above equations by CV
where V is the voltage drop across the condenser for the charge Qo.

Oscillatory Case. If E is made equal to zero in equations (60) and (61),
the equations for the decay of current and charge respectively are

-37
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obtained as follows:

R 8 (69)

_ 2Q,VLCe ™
ViLC — R3*C?

The variation of 7 and g as given by these equations is shown in Fig. 14.
A comparison of equations (69) and (70) with equations (62) and (63)
will show that the frequencies of oscillation for all of them are identical
and are therefore given by equation (65).

sin (Bt + 6) (70)

.01
£
5-005+ Quap,,
3 2atip, 0.1
\ Quantity
.005 .01 02 g
Seconds E
=
04 Seconds
205 ggﬁ‘“ g \><.
% sl [27.3 Cumm
4
s
Fic. 13. Decay of current and charge or Fic. 14. Decay of current and charge or
quantity in a circuit containing R = 100 quantity in a circuit containing R = §
ohms, € = 100 uf, and L = 0.1 henry ohms, C = 100 uf, and L = 0.1 henry
when the initial charge on the condenser when the initial charge on the coadenser
18 0.01 coulomb at a potential of 100 volts. i3 0.1 coulomb at a potential of 1000 volts.

Critical Case. Qualitatively this case is no different from the non-
oscillatory case previously discussed. If b in equations (67) and (68) is
made zero, the equations for the critical case result. Obviously Fig. 13
represents the general type of variation of current and charge for this
condition.

Natural Circuit Behavior in Terms of Poles and Zeros. The concept
of complex frequency was introduced in Chapter V in order to illus-
trate how steady-state circuit behavior could be obtained from the
s-plane poles and zeros which characterized the network function which
was under discussion. In actual practice, complex frequency probably
finds a greater field of usefulness in transient analysis than it does in the
analysis of the steady state. If, for example, the LRC series circuit is
energized at { = 0 with the voltage having an angular frequency of wy
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radians/second
e = E, sin (wgt + 90°) = E,, cos wg!

the analysis may be ecarried forward with the aid of a complex expo-
nential voltage excitation of the form

= Ee* = B¢ (71)
For this case we recognize that E = E,, /0° and ay = 0. Since
& = 08 wgt + J sin wyt (72)

it is apparent that the real part of e corresponds to the desired excitation.
We may carry through the solution for i and at the end retain only the
real part of i as the real #(#). In other words, ¢ = cos wat + j sin wyt
corresponds to two voltage excitations, only one of which is actually
used to energize the circuit. As long as the circuit is linear, each
exciting voltage develops its own current, and in the present instance
we are interested in the current associated with the real part of e. If
e = E, sin wgt had been the specified driving voltage, it might have
been more convenient to employ the imaginary part of e. The fact
that the E of e = E¢* is a complex number actually allows us to use
either the real or the i.maginary part of the final solution depending
largely upon the manner in which the actual driving w]tage e(t) is

specified.
In solving for #(t) by way of the complex exponential i, we let
' i=i4+i ' (73)
in
di . T
L— +R1+C idt = e = Ee (74)
where i, is the steady-state component of the current

iy is the transient component of the current

The fact that,
i, = I (75)

may be verified by direct suquutmn in equation (74). This substi-
tution will also show that

I‘= E =§ de l (".:'ﬁ)
L5d+R+_ 842+ES¢+—

Csq LC
It follows that

By e 3 Thsr
Ld£+Rh+Cfmﬂ 0 an)
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This homogeneous equation is evidently satisfied by

i = A™ (78)
provided that ;
1
(L‘s+R+E,;)=0 (79)
Solving this equation for s yields
R ; 1o B ;
3=51=_2—L+ EE—IL'—, an + jun (80)
R e Rr?

= = e — — e — = — 81
s 52 2L J L C 4Lﬂ Cp le‘l ( )
w, is the natural angular frequency of the circuit, and e, = —R/2L is
the natural damping factor. Since two values of s satisfy equation
(79), we have

ig = A + Ay (82)

In complex exponential form, the complete circuit current is found by
substituting equation (82) in equation (73). Thus’

i =L 4+ A 4+ Ae™ (83)

and the corresponding capacitor charge is -

q=fid£=-—¢”+Al “‘+A

(84)

The A’s depend for their values upon the initial circuit conditions, for
example, the values of i andqat ¢t =0. Ifi=0andq=0ati=0,
substitution in equation (83) gives

E Sa "
Ay + Ay = -1, = — E o= [See equation (76)] (85)

Similarly, substitution in equation (84) yields

A, A, I, E _ 1
— —_—E= = = = - - 86
S - s2 84 L (sqa — 81)(&1 82) el
Solving equations (85) and (86) for A, and A; yields
E 5
A = 87
' (s¢ — s1) (52 — 81) &)

|

_E S2
A L (84 — 82)(82 — 85;) (@8)

If these values of A; and A, along with I, from equation”™(76) are sub-
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stituted in equation (83), the expression for i is obtained. The actual
circuit current is the real part of i. It may be expressed as

gt 5t
i) =R [%( e + =

(s¢ — 81)(8a — 82)  (Sa — 5.) (52 — §y)

- ™ ):' 89
(s4 — s2)(s2 —s,) (85)

The price paid for using complex exponential forms of current and
voltage is the transformation back to real current or voltage at the close
of the solution. If, for example, we want the actual steady-siale com-
ponent of current in equation (89), we evaluate the real part of the
steady-state component of this current. This is

I B
g{[L(sd-si)(sa—Sz) 5QI:L R J

2
s — ——
+ Sd+LC

Fors; = jwgand E = EMZ0_° the expression within the brdcket becomes

Em lj-‘l E (COS wal + _‘." sin wdi)
L 1
(L/gua) (LC wd)+3*'wd R+J(uab-ﬁ)

The real part of the above expression is

2 E. et }
(L/jewq) [ 1 A
T T

E. [R cos wyt + (mdL — -*'I‘E) sin wdf}

R2+(W3L Lo —)
= [E cos (wat — 6)]/Z (90)
- 1
wherazh\/fz?.}_ L_._i..z da_m—l(wbﬂw_c)
= wg = and § = z

Transformations from the s plane to the ¢ plane are often accomplished
by means of Laplace transforms, a technique which the reader will
encounter repeatedly in later courses.
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The RLC Series Circuit with Alternating Voltage Suddenly Applied.
The basic voltage equation of the RLC circuit shown in Fig. 15 is

di
L£+Rr+g=.€msin(@c+x) 1)
The above equation can be put in terms of one dependent variable by
differentiating the entire equation with respect to the independent
variable, {. Differentiating as indicated above,
d*i di 1dg
Ld52+Rdt+Cdt = Epwcos (wl + \) (92)

r—-——-—o

t=p m

@); o Bitn Fult 1)

_ %"Tt—'rc

Fic. 15. An RLC se.ies circuit energized with an alternating voltage at { = 0.
A

Dividing through by L and substituting ¢ for dg/d¢ results in

d% Rdi i Ene '

S ot e s 009 (el A )

BT LA VEE L L M N (93)

Equation (93) is a linear differential equation of the second order,

first degree, the solution of which consists of the sum of a complementary
function or transient term and the particular integral or steady-state
term. The former is obtained as indicated previously. The auxiliary
equation is

a2+§a+z%=0 (94)
and
R /3 4
“LENT T I R /39 1 .
T 2 S TaFENETIC (93)
Let
- r 4
a=§’ and b=\/1%—$ (96)

By definition
ay = —a+b and ey = —a-—-> (97)
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The transient term of the complete solution is
i = clt(-—a+b}l 4 Cgtt_d—b“ (98)

The steady-state term of the complete solution is

§ = ‘%" sin (wt+ A — 8) (99)
where
L\ ("’L = 515)
Z=JR2+(“’L_E) and G#tﬂn-l-—-‘-é———

The complete expression for current becomes
En .
s i = _Z"iSln (wt + A — 3) + clef—eﬂ—b]f + ',:2(( -a byt (100)

The two physical facts from which ¢, and ¢; can be evaluated are the
state of current and the state of charge that exist in the circuit at the
instant of closing the switch. Let it be assumed that

*1=0
7= Qo
If the original voltage equation has been differentiated it is important
that the initial conditions be imposed upon the original voltage equation
rather than upon one of the differentiated forms. In the present case

the initial conditions can be imposed upon equations (91) and (100).
Imposing the initial conditions upon equation (91) yields

di Qo _ .
L [(ﬁ]a_o + c = Ensin A

or \

E. ;
L[f-’cos (N —8) + cray + c;ag:l - %' = E, sin A

} s L5510 (101)

From which
En . Q En
Cya; + Coap = T sinA — LOC — 7“ cos (A — 8) (102)

Imposing the initial conditions on equation (100) results in

0= sin (A — 8) + ¢y + ¢

N |

* e+ 63 = — %sin (A —8) (103)
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Equations (102) and (103) may be solved simultaneously for ¢; and ¢,.
From equation (103)

€ = — gz'_-“sin A —8) — = (104)

Substituting the above value of ¢; into equation (102) yields

En . ]
clcn—I:--—sm(?\—ﬂ)]ag—s;ar2=&Ein}\ 90—'—'&—0080;—6)

z L Lc VA
Whence .
1 2 EnoL
c,(al—ag)=EIiE,,.51 A—%E— zm cos (1~a)]

+ a2 sin O~ 0) (105)

It will be remembered that :
e = (—a+bd) and a; = (—a—0b)
Therefore :
a; —ag = 2b
and
o a b R 1
a — ay 26 2 4Ly 2

Dividing equation (103) through by (a; — az) and making substitutions
for (¢; — a3) and a3,

iy Q EnoL ] R E,
& =gz [E sin A C Z cos (A —8) |- WL Z sin (A — 6)
' By .
- = -6
Y sin (A )
Collecting the b terms in the ubove equation,
1 = s Qn f‘;mmf‘ E,,R » :|
Sx it BN = B i R -
cy 2bL [E sin A C 7 cos ( ) 27 sin (A — 8)

Eu...
— gz Sin (A —8) (106)

From equation (103) it is evident that

€2 = —C — b?“sin A—8) (107)



Ch. XI¥ TRANSIENT CONDITIONS 579

Therefore,

1 . Q EmwL E.,.uL oy _ EnR
a==g57 [E.. sin A R os (A — 9) 27 sin (A — 9)]

E,.

- Esm (A —6) (108)
For the sake of simplicity in writing, the following abbreviation will

be adopted:
Qo Eme EnR _
[z sink — 90— 2% cos (A — 0) — rsin (= ) | = Ea (10)
It will be observed that E, is a voltage which is governed in magnitude
by Em, A, Qo, and the circuit parameters. The complete expression for
current can now be written in terms of the applied voltage the initial

condenser charge, and the circuit parameters.

X Em " Eg!_“ [eti =i (—be]
z—fsln(w!+k-—9)+ oL, 2

b —5
- %sin ( — 8) ['—-—4"2—‘—] (110)

The transient component of the current consists of two terms, each of
which is damped out with the damping factor €% or ¢ *“2L, The

transient term® may be given different mathematical forms depending
2

R 32T LC
evident that b may be either real or imaginary. A singular condition
exists when b is equal to zero.

Case 1. If R%/4L? is greater than 1/LZ, b is a real number and
the complete expression for current in the RLC series circuit may be
written as

upon the nature of the symbol b. Since b is equal to

t= % sin (wf + A — B,). - f—f ¢ % ginh bt — %sin (A — 8)¢ * cosh bt

steady-state term t=ansient Lerms

(111)

The above expression follows directly from equation (110) since, if b
is real,
b —bt L] —bt
‘-—2.— = sinh b and f—_;—" = cosh bt

Joth transient terms are damped out by ¢ ®*/2L, The damping factor

itis |
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Rt/2L is relatively large “hen YK > LC because of the relatively large

value of R/2L. In general, the transient terms in this case are not
predominantly lurge as compared with the steady-state ter.n.

Case II. If R?*/4L%isless than i/LC, b takes the form of an imag-
inary number and a change in notation becomes desirable. Let

. 1 R?
b=3 8 where g = e it
R? 1 { 5 ;
If i < I B is a real number and b in equation (110) ean be replaced

L3
by its equivalent, j8. In this connection j has its customary signifi-
cance, namely, v/ —1.

v By .. E . Eny .
i="sin (wt+1—0)+ ﬁc‘“‘amﬁt ~ sin (\—0) *cost  (112)
stendy -state term ) transient terms

The above equation comes directly from equation (110) if it is recognizer
that the analytical expressions for sin 8¢ and cos 8t are

A _ st e:‘ﬂt =Jft

‘—_——=sin§£ and +€—=cosﬁ£

2j 2

The two transient terms of equation (112) are exponentially damped
sine and cosine terms of like frequency. Since the damping factors are
identical, the sine and cosine terms can be comhined by the method
outlined on page 241. If the two transient terms are combined, equa-
tion (112) takes the following form:

= —z—sm (wt+ X —8) + I, sin (Bt — o) (113)
steady-state term transient term :
where
E, [f:u ; :r .
= == A=
I \/[ﬁL] B 7 sin ( 6)
and
p— E,BL sin (x — 8)

EiZ

In the present case the complete expression for current consists of two
sinusoidal terms. The frequency of the steady-state term, w /2w, is
determined solely by the frequency of the applied voltage; that of the
transient term, B/2x, is governed entirely by the circuit parameters,
R, L, and C. The frequency of the transient term may be less than,
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_equal to, or greater than that of the applied voltage. In any event the
transient oscillation disappears as soon as the damping factor, € %*/2%
causes the transient term to become sensibly equal to zero.

Oscillograms 5 and 6 illustrate the current variations in a particular

RLC series circuit during transient periods. For the conditions shown,

2

% < El-és.ndﬁ > w. The exponentially damped transient compo-
nent can easily be discerned as the higher frequency variation which
is superimposed on the 60-cycle steady-state variation. Also the effect
of closing the circuit at different points on the voltage wave can be ob-
served by comparing Oscillograms 5 and 6. The transient term is shown
to be several times as large in Oscillogram 5 as it is in Oscillogram 6.

The Iron-Clad RL Circuit Energized by an Alternating Potential Dif--
ference. The mathematical analysis given in the article on page 558
for the case of constant R and L cannot, in general, be applied to an
iron-clad circuit because of the wide variations of L that occur. For
the iron-clad circuit, L in equation (26) is a function of ¢ which in turn
is an intricate function of time. The fact that L is variable makes
both the coefficients of equation (27) or (28) variable. In general, the
solution of differential equations with variable coefficients is a difficult
task. It is plain that no general solution can be obtained because the
variation of L in any particular case must necessarily be defined in
terms of particular constants rather than in termrs of arbitrary constants.
Althcugh the variation of L can sometimes be approximated with the
aid of simple functions, the actual variation in many cases of importance
cannot be expressed in terms of practical mathematical functions.

It is well known that L, being equal to N d¢/di, depends upon the
¢~ characteristic of the magnetic material that surrounds the L coil.
The inductance that is operative in establishing an L di/d!t voltage drop
depends for its value upen the exact degree of magnetic saturation of the
surrounding magnetic material. Under any a-c condition the degree
of saturation varies considerably with time and under transient con-
ditions these variations are very often exaggerated. Reference to any
typical B-H or ¢— curve will show that

_y%

Hpi=s di

is much greater over the straight portion of the curve than it is after
the upper bend is reached. This fact plays an important role in deter-
mining the current inrush to iron-clad circuits, because, in general,
circuits of this character are highly inductive and the variable L be-
comes an extremely influential parameter.
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aLr e
. =377 rad. per sec. *
B = 1200 rad. per sec. (approx.) *

OsciLLocray 5. Photographic record of the current variation in a particular RLC
series circuit which is suddenly energized with an alternating potential difference.
R, L, and C are sensibly constant.

="

OsciLrocraM 8, Circuit arrangement and circuit parameters similar in every respect
to those shown in connection with Cscillogram 5 exeept for the goint on the voltage
wave at which the circuit is energized. In the present case A = Q.

Circuit problems involving variable parsmeters can be solved by
step-by-step methods provided the exact variation of the parameters is
known. In the present case the variation of L is known if the N¢/1
characteristic of the surrounding magnetic material is known. The
data usually take the form of either the ¢~ characteristic and the
number of turns or the B-H characteristic, the dimensions of the
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magnetic circuit, and the number of turns. Inany event it is somewhat

more direct to substitute for L di 'dt [in equation (26)] its equivalent
¥ d¢, dt value. The basic equation then becomes

ST

dt

where & is expressed in webers if the other quantitics are expressed in
practical units,

In many iron-clad circuits the maximum magnitude of the Ri term
is of the order of 1 per cent of the maximum magnitude of the applied
voltage.. Under these conditions the N d¢/dt component of equation
(114) is very nearly equal to the applied voltage and jn approximate
standy-state solutions *he Ri drop can be neglected. The Ri drop cannot
b: entirely neglected in the transient solution of the problem because
it is instrumental in helping to govern the maximum value of the initial
current inrush. The resistance is also an important factor in governing
the length of time required for the iron-clad circuit to adjust itself to
stendy-state operating conditions.

If the Ri drop is neglected and if it is assumed that A = 0, equation
(114) reduces to

N—=+4 Ri = Ensin (wl + \) (114)

Nj—f = E, sinw (115)
from which
¢=£’_"fsinmtdt= = E—":EOSHC'l‘Cl (116)
' X N wV

The constant of integration ¢; may be evaluated in terms of the residual
magnetism. ¢ may be at either positive or negative residual values at
t = 0, and in general the exact state of residual magnetism is unknown.
A compromise mey be made by assuming that ¢ = 0 at ¢ = 0 unless
the maximum possible current inrush is to be determined. In this case
a maximum value of positive residual magnetism is assumed if the
applied voltage is taken as E,, sin «t. The manner in which residual
magnetism helps to determine the initial current inrush will soon be
apparent. '
Assuming that ¢ = 0 at t = 0, ¢; of equation (116) becomes

En ”
cl — ‘:\'E (11[}
Under these conditions
o 29 0y el (118)
olN
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or
¢ = ¢ (1 — co8 wl) (119)

where ¢, = E,/wN, the approximate maximum value of the magnetic
flux under steady-state operating conditions. Since (cos wt) varies
between +1 and —1, it is plain that the flux variation as defined by

10 20 Mgt
- 30 40 50 60 70 BO S0 100 110
1100 =
1000 ,-”/
/‘
800 ]
L] g
auo/,r/
!?00 [——f—
s __f]
= 600 /r
s . .
© 500 >
/ t=p R=0.25nN
300 {
(U555 sin 770 volts )
ZOO[ : N'SﬂturT:—
q
mo’
9610 20 10 w0 50 60 7.0 80 %0 10

Amperes

Fra. 16. Magnetization curve of a particular iron-clad RL circuit.

equation (119) varies from zero at t = 0 to 2¢,, at t = T/2. In order
to produce a flux equal to 2¢,, the iron-clad inductance coil must draw
a particular value of magnetizing current as defined by the ¢~ charac-
teristic of the magnetic circuit. For example, in the circuit shown in
Fig. 16
135.5 .
Pm = 377 % 80 0.00516 weber

or
¢m = 0.00516 X 10° = 516 kilolines
Reference to the magnetization curve will show that the current re-

quired to establish ¢, is approximately 1.2 amperes, whereas current
required to establish 2¢, is approximately 84 amperes. This great
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change in current is due primarily to the flattening out of the magneti-
zation curve.

If the magnetic core referred to above had possessed a residual
magnetism of, say, +0.5¢m, it iz evident that a much larger current
than the 84 amperes would finally be required to produce the 24,
change in flux during the first half cycle. Actually the initial current
inrush to an iron-clad circuit is somewhat less than that required to
produce a 2¢,, flux change.

It will be remembered that equation (119) carries with it the as-
sumption that the Ri drop is negligibly small. This assumption may be
perfectly justified if the flux is worked between its normal steady-state
values of +¢, and —¢,,. But in attempting to produce a 2¢j change
in flux starting with zero flux, the circuit draws such a large current that
the R: drop becomes significantly large and must be taken into con-
sideration. Under the above conditions the Ri drop consumes an
appreciable portion of the applied voltage during the second quarter
cycle after the switeh is closed, thereby reducing the magnitude of the
N dg¢,/dl component in this region. As a result, ¢ reaches a maximum
value of something less than 2¢, shortly before ¢ = T/2, and it is at
this point that the maximum instantaneous current occurs.

The ordinary iron-core transformer with open secondary operates as
a simple iron-core RL circuit. Oscillogram 7 illustrates the nature of
the starting current taken by the primary winding of an iron-core
transformer when the secondary is open-circuited. In this particular
case the initial peak current is considerably more than 100 times the
steady-state maximum value of primary current when the secondary is
open-circuited. However, the initial current inrush reaches a peak value
which is only about 4.5 times the wvalue of the maximum full-load
current of the transformer. For the ease shown in Oscillogram 7 the
actual transient period is of approximately 0.5-second duration. Only
the early puart of the transient period is shown in the oscillogram.

The Method of Finite Differences. Although it involves step-by-
step caleulations, the “ method of finite differences’ is very often
employed in circuit analysis when variable parameters are encountered.
The step-by-step ealculations are based upon the assumption that the
parameters remain sensibly constant over small finite intervals of time.
Usually the basie voltage equation i3 rewritten so that all differentials
take the form of finite increments. The circuit voltage and current are
then assumed to remain constant over an arbitrarily assigned increment
of time, At. As a first approximation the applied voltage and current
are assumed to be constant at their * start-of-period " values. If, then,
after assigning a particular value to Af, only a single unknown inere-
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OsciLrocrast 7. Iron-core transformer current and power inrushes when the
primary is energized at the ¢ = 0 point on the voltage wave.

e = 60-cycle applied emf E (eff.) = 117 volts
i = instantaneous current Peak ¢ = 174 amperes
P = instantaneous power Peak p = 10.5 kw

Steady-state conditions: Puy = 30 watts, T,r = 0.825 ampere.
Transformer rating: 115 volts, 3 kva, 26.1 amperes, 60 cycles.

mental quantity remains in the equation, it cap’be solved for by methods
of elementary algebra. The process can-béz be illustrated by means
of an example.

The predetermination of the initial current inrush to an iron-clad
circuit will serve to illustrate the details of the method of finite differ-
ences. If finite differences of ¢ and ¢ are employed, equation (114)
takes the following form: .

N-j:%’ § B = Bl 6 (E Ao 2N (120)

where 3° Ap = T w Atl, the angular displacement along the voltage wave
of the point under investigation from the point of ¢{ = 0.

Judgment must be exercised in the choice of At in any particular case.
The selection of the size of At in a-c circuits is governed largely by the
magnitude of w. If points every 10° along the voltage wave are desired,
then each At is taken as % of r/wsecond. The choice of smaller incre-
ments will, of course, make for more accurate solutions. At should never
be chosen so large that significant changes in the parameters take place
within the time interval represented by Al.

At the beginning of a period ¢ and E,, sin (I Ap + \) have particular
values. Letting E,, sin (X Ap + \) be written as ¢ and solving equa-



Ch, XIV TRANSIENT CONDITIONS 587

tion (120) for A¢ results in
_ (e— Ri) A

12
= (121)

A¢

If practical units of e, R, #, and ¢ are employed in the above equation,
A¢ is given in webers.

Various refinements can be employed to improve the accuracy of the
method of finite differences as outlined above. Very often, however,
the improved accuracy is not warranted because of the uncertainties
that surround the initial conditions and other experimental data.

Numerical Example. (1) The emf applied to the iron-elad RL eircuit shown in
Fig. 16 is
¢ = V2 X 110 sin 377t volts

This signifies that a 60-cycle voltage, the effective value of which is 110 volts, is
applied to the circuit at the point of zero voltage where de, df is positive. A simpler
way of expressing the same thing is to say that a 110-volt 60-cyele voltage is applied
at A = 0.
(2} N = 80 turnsand R = 0.25 ohm as indicated in the circuit diagram of Fig, 1t
(3) The residual magnetism is zero, and the Aux varics in accordance with the
i curve given in Fig. 16 for the first half cvele of the applied emf
m!ﬂ,
erefore the hysteresis effects which occur after the first half eycle and which com-
plicate the determination of succeeding maxima can be neglected. Let the numerical
coefficients enumerated above be inserted into equation (120),

80 "—; +0.25i = 155.5 sin . 4p

or
_ (1555 sin 3 Ap — 0.258) -
50

webers

a4

It will be sumewhut more eonvenient in the present example if Ag is reckoned in

kilolines,
(e —0.25i) At s
- 50 » 103 kilolines
where e = 155.5 sin E Ap.

Each time inerement will be taken as 0.0005 second, a value which correspornds to
an angular displacement along a 60-cycle wave of 10.3%,

The initial conditions are such as to make both ¢ and ¢ zero at { = 0. Assuming
that both e and { maintain zero value throughout the first time interval, the change in
flux during this period, A¢,, is equal to zero.

At the beginning of the second period, 2 Af = 0.0005second and e = 155.5 sin 10.8”
volts.  For each interval { is axsumed to have its '* start-of-period " value, which io
this case is zero.

(2u.1 — 0} 0.0005

&0
= 8.2 kilolines

x 10%

-38
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At the close of the second or the beginning of the third penod the current is assumed
to have acquired the value required for the establishment of A¢s. Reference to the
magnetization eurve will show that the establishment of 18.2 kilolines requires
approximutely 0.03 ampere.
At the beginning of the third pericd, 3, af = 0.001 second and ¢ = 155.5 sin 21.6°
Ats,
_ (57.2 — 0.25 X 0.03) 0.0005
80
= 35.7 kilolines

% 10%

The current required to establish 3 4¢ [(18.2 + 35.7) kilolines] is approximately
000 ampere, Other Ag’s can be added by the step-by-step methad outlined above.
The results of a series of such caleulations are shown in Table I.

TABLE I
Period| = &¢ Z Ap |En&in T Ap) Ri A¢ I A i

seconds | degrees| volts volts kilolines | kilolines |amperes
1 0 0 0 0 0 0 0
2 0.0005 10.8 20.1 0 18.2 18.2 0.03
3 |0.0010| 21.6 55.7 Negligible 35.7 53.9 0.09
4 0.0015 32.4 83.3 Negligible 52.1 106.0 0.18
5 | 0.0020 43.2 106.0 Negligible 66.0 172.0 0.29
6 | 0.0025 54.0 126.0 Negligible 79.0 251.0 0.43
7 0.0030 64.8 141.0 Negligible 88.0 339.0 0.58
8 | 0.0035 75.6 151.0 Negligible 94.0 433.0 0.75
9 0.0040 86.4 155.0 Negligible 97.0 530.0 1.4
10 | 0.0045 | 97.2 154.0 Negligible - 96.0 626.0 3.1
11 0.0050 | 108.0 148.0 0D.78 92.0 718.0 9.0
12 0.0055 | 118.8 136.0 2.5 84.0 802.0 25.0
13 0.0060 | 120.6 120.0 6.25 71.0 §73.0 44.5
14 0.0065 | 140.4 09.2 1.1 55.0 928.0 58.0
15 0.0070 | 151.2 74.9 14.5 38.0 966.0 66.5
16 0 0075 | 162.0 48.1 16.6 20.0 986.0 72.0
7 0.0080 | 172.8 19.5 18.0 1.0 987.0 72.0
18 0.0085 | 183.6 —-0.8 18.0 -17.0 970.0 67.0
19 0.0090 | 194.4 —-38.7 16.7 —35.0 0935.0 99.0
20 0.0005 | 205.2 —66 2 14.7 -31.0 834.0 47.0

It will be noted that the current reaches & maximum value of approximately 72
amperes at { = 0.008 second. This corresponds to & point approximately 173° out
along the voltage wave from the point at which the switeh is eloged, namely, the
e = 0 point.

The general trend of the current variation is similar to that shown in Oseillogram 7.
It will be observed that the current values are relatively very small during the first
quarter cycle after the switeh is closed. It is during this period that the Ri drop is
negligibly small.

The change of flux that occurs during the period of negligible Ri drop can be
calculated straightforwardly, and it may be of interest to compare the step-by-step
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results with a result which is very nearly accurate from a theoretical point of view,

From equation (118) |
155.5

P = m (1 - gOs 377‘) webers

If ¢ is taken aa 0.0045 second, (377¢, is equal to approximately 1.7 radians or 97.2°,
At (= 0.00435 second,

155.5

= - 1 — cox 97.2°) X 10% kilolines
T 2 "

or
¢ = 570 kilolines at { = 0.0045 second

The value ¢ at t = D.0045 second as determined by the step-by-step method is 626
kilolines. (See Table 1.)

PROBLEMS

3. (a) Find the current in a coil containing L = 1 henry and B = 0.4 ohm one
seeond after applying a d-¢ voltage of 10 volts.

(5) What will the current be after 2.5 seconds?

(c) What is the value of the voltage accelerating t
2.5 seconds?

4. A coil has 0.1 henry and 1 ohm resistance and ecarries 10 amperes. If its
terminals are suddenly short-circuited, what will be the value of current 0.1 second
later? How long will it take the current to fall to 0.1 ampere?

5. Find the number of ohms resistance which may be placed in series with an
inductance of 0.1 henry so as to permit the current in the circuit to reach 63.2 per
cent of its final value in 2 seconds after the voltage is applied.

6. Ten volts direct current are applied to & 0.1-ohm resistance in series with a
1-henry induetance.

(2} Caleulate the energy stored in the inductance 10 seconds alter the voltage is
applied. Srtate units,

(h) Derive the expression for the energy dissipated in the resistance in the time {
after the voltage is applied.

7. A 50-4f condenser with no initial charge is in series with a 1-megohm resistor.
How long will it take to attain 63.2 per cent of its final charge?

8. A B0-uf condenser has stored 0.1 coulomb.

(a) If it is discharged through a 1000-chm resistor, how long will it take until it
haz 0.001 coulomh remaining”

() What will be the initial value of current?

(¢) What will be the value of current when 0.001 coulomb remains on the con-
denser?

9. A 100-uf condenser has a charge of 0.1 coulomb. If it is discharged through
& 10,000-ohm resistance, what will be the amount of energy in joules remaining in
the condenser 1 second after the discharge is started?

10. A d-e voltage wis applied to a resistance of 10,000 ochms in serics with a 10C-uf
condenser. After 1 second there were 10.9S joules stored in the condensor which
bad oo initial charge. How many volts were applied to the circuit?
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11. A 1-megohm resistance is in series with a 1-uf condenser. A d-c voltage of
100 volts is suddenly applied to the circuit.

(a) Caleulate the energy stored in the condenser 1 second after the voltage is
applied.

(h) Derive the expression for the energy dissipated in the resistance during the
first sccond after the voltage is applied.

(c) How much cnergy will be diszipated in the resistance in charging the condenser
to full charge?

12. What fraction of total charge will the condenser in Problem 11 have after 2
seconds?

13. A voltage ¢ = 100 sin [377¢ + (x/4)] is impressed on & l-henry inductance
coil containing 1 ohm resistance. What are the values of the steady and the tran-
sient components of current at ¢ = 07

14. A voltage ¢ = 100 sin (377¢ + 30°) is impressed on a 100-uf condenser having
no initial charge and containing 1 ohm resistance.

(2) What are the values of the steady and transient components of charze at
t =107

(k) What are the corresponding values of current?

15. A circuit contains R = 100 chms, € = 200 uf, and L = 0.1 henry in series.
I a d-c voltage of 50 volts is impressed, calculate the current and charge after 0,01
second, assuming no initial charge on the condenser.

16. A circuit contains K = 5 ohins, L = 0.1 henry, and C = 200 uf in series.

() Calculate the current and charge 0.01 second after 1000 volts are impressed
if there was no initial charge on the condenser.

(b) Is the circuit oseillutory?

() If so, what is its frequency?

17. The condenser in the circuit of Problem 16 is charged to a potential of 1000
volts. If the circuit is connected upon itself, what will be the value of current and
charge after 0.0125 second has elapsed?

18. Given an RLC series circuit which is suddenly energized with an alternating
potential difference which is equal to

e = 141 sin (377t — 457) volts
R =10chm L =004l henry C =187 puf o =0

(a) Write equation (113) for this particular case, employing numerical eoefficients.
The result is to be in the form:
i = kysin (kat + k3) + ke * sin (ket — k7) amperes
where all k's are expressed numerically.
() Make sketches of the stendy-state ter n, the transient term, and the resultant
curront for the first three or four cycles of steady-state phenomena on the same plot.
Show also the ¢ variation.



