
chapter 
XI Electric Wave Filters

The frequency characteristics of certain types of networks can be
employed to separate waves of different frequencies. The separation
may be effected primarily for the purpose of selecting a desired band
of frequencies or for the purpose of rejecting an undesired band. Se-
lected bands are called pass or transmission bands, and rejected bands
are called stop or attenuation bands. Any network which possesses
definite properties of frequency discrimination and which is capable
of separating electric waves of different frequencies is called an electric

wave filter or, simply, aflUer.
Selective Properties of Circuit Elements and Elementary Circuits.

Single reactive circuit elements are sometimes employed to pass or
reject frequency bands when only broad discrimination is to be made.
Thus blocking condensers in many vacuum tube circuits discriminate
very satisfactorily between waves of zero frequency (direct current)
and high-frequency waves. Inductance coils can be employed to pass
direct current and practically eliminate frequencies which are of the
order of 1000 kilocycles.

High-Frequency Line Drain. A high-frequency disturbance can be
drained from a low-frequency, two-wire line with a condenser arrange-
ment similar to that shown in Fig. la. The condensers constitute a

I
(a)

no. 1. Devices for draining induced disturbances from two-wire Un.

relatively high impedance to the low-frequency line voltage, both line-
to-line and line-to-ground. At the same time a relatively low line-to-
ground impedance is presented to the high-frequency variation which in
the present case is assumed to be the result of an induced disturbance.

435



436	 ALTERNATING—CURRENT CIRCUITS	 Ch. XI

Low-Frequency Line Drain. A method sometimes used to drain a
low-frequency induced disturbance from a two-wire line is shown dia-
grammatically in Fig. lb. The drain coil is ironclad and offers a rela-
tively high impedance to current which tends to flow from line-to-line.
If, however, both lines are raised simultaneously above (or below)
ground potential by induction, the currents which flow from the lines
to ground magnetize the core in opposite directions. With respect to
the induced currents, the two halves of the coil are in series opposition
with the result that the impedances offered to these currents to ground
are relatively very low. The device can be used to drain charges from
telephone lines which are electrostatically induced from neighboring
power lines.

Typical Smoothing Network. A very common form of filter is the
elementary v-section shown in Fig. 2. This particular type of filter
section is widely used to give d-c output from rectified a-c wave forms.

Thermionic rectifier
Smoothing network

Loadfl	 I --r"cIV(i C i resistance

F. 2. A commonly used filter section.

The output voltage of the rectifying device, namely, that which appears
across the input terminals of the filter section, will take the following
general form:

V = Vd + V,, I sin (t + a 1 ) + higher harmonics

where Vdc is the average value of the rectified wave and w, is the angular
velocity of the lowest-frequency component present in the voltage vari-
ation. A typical voltage input variation is shown in Oscillogram la.

If, for example, both halves of 60-cycle wave are rectified sym-
metrically, the lowest frequency component in the rectified voltage
wave will be that of 120 cycles, in which case w l = 754 radians per
second. In unsymmetrical rectification w, is generally equal to the
fundamental angular velocity of the alternating variation which is being
rectified.

Under ideal conditions the filter section shown in Fig. 2 should pass



Ch, XI	 ELECTRIC WAVE FILTERS	 437

waves of zero frequency with no attenuation and absolutely stop
waves which are of other than zero frequency. Obviously, these ideal
conditions of operation can only be approached in practice, but the

OsczLLooa.tM 1.
(c) Rectified a-c wave, no filtering.
(b) Rectified a-c wave, choke Sharing only.
(c) Rectified a-c wave. choke and input condecer filtering.
(d) Rectified a-c wave, complete T-section filtering. (See Fig. 2.)

difference between ideal operation and actual operation can be made
exceedingly small by proper design. See Oscillogram Id.

For full-wave, 60-cycle rectification satisfactory filtering can usually
be obtained if Cl and 03 of Fig. 2 are about 4 or 5 pf each and L is
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about 30 or 40 henrys. The permissible voltage regulation will, to a
large extent, determine the amount of resistance that can be present
in te inductance coil in any particular instance. In any case R is
very small as compared with wjL. The result is that, when the --
section is energized with a rectified voltage, it presents a relatively low
impedance to zero-frequency current. The impedances offered to other
than zero-frequency currents are relatively very high.

If, for example, L = 30 henrys and wi is 754 radians per second, the
series impedance of the filter section to the WL component of current is
approximately 22,600 ohms. The series impedances to the higher-
frequency components are proportionately greater. The series im-
pedance of the filter section to the d-c component of current may, in a
particular case, be only 20 or 30 ohms. Therefore, the inductance coil
acting by itself will tend to smooth out the rectified wave as shown in
Oscillogram lb.

The input condenser, C1, is an important member of the filter section,
although it is entirely possible to design a smoothing network which
does not employ a condenser at the C 1 position shown in Fig. 2. It
will be noted that C1 is placed directly across the output terminals of
the rectifying device. It provides a relatively low-impedance path for
all a-c components. The anode-cathode impedance of the tube may be
10 or 20 times greater than 1 11w i C t , in which case the voltage drop across
Cj is only a small fraction of the total drop due to the a-c components
of the rectified voltage. This aids materiafly in the smoothing process
but at the same time increases the actual plate current of the rectifying
elements. Filter sections which employ a condenser directly across the
terminals of the rectifying device are called condenser input sections.1

A complete analysis of the composite circuit shown in Fig. 2 is compli-
cated by the presence of the transformer, tube, and load impedances and
will not be undertaken at this time. Actually , the smoothing network or
ripple filter shown in Fig. 2 is a particular form of low-pass filter, the
general theory of which is considered on pages 464-468 of the present
chapter.

Image Impedances of Four-Terminal Networks. Most filter sections
take the form of a four-terminal network, and as such they possess one
pair of input terminals and one pair of output terminals. With this
arrangement of terminals, a filter section can be inserted directly into
a two-wire line.

General four-terminal network theory is rather elaborate and is not

For details we "Electrical Engineers' Handbook: Electric Communication and
Electronics," fourth edition, edited by Pender and Mcflwain, pp. 7-106, 7-108,
John Wiley & Sons, Inc., 1950.
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considered to be suitable first-course material. There are certain as-
pects of the subject, however, that are essential to a proper understand-
ing of elementary filter theory. One .of these is the concept of image
impedances.

Input	
0—	

Output

TerminalsenTinaIS

FIG. 3. Four-terminal network terminated on the image impedance basis.

The rectangle shown in Fig. 3 is assumed to be any form of four-
terminal network, the internal circuit elements of waich may or may
not be accessible. It is also assumed that the individual circuit ele-
ments are linear. Circuit elements are linear if effects are proportional
to causes, for example, if currents are proportional to applied voltages.

The image impedances of a four-terminal network are called Z11 and
Z12 and are defined in the f'ollowing manner. (Refer to Fig. 3.) If the
impedance across the input terminals (looking into the network) is Z11

when the output terminals are closed through Z 12 , and if the impedance
across the output terminals (looking into the network) is Z 12 when the
input terminals are closed through Z 11 , then Z11 and Z12 are called the
image impedances of the network. If a four-terminal network is termi-
nated in its image impedances, Z 11 and Z12 , the impedance looking either
way from the input terminals is Z 11 and the impedance looking either di-
rection from the output terminals is Z12 . The network is correctly
matched when the input impedance is Z11 and the output impedance is
Z12 and under these conditions the network is said to be terminated
on the image basis.

A special case of image impedance termination is employed in ele-
mentary filter theory. The assumption is made that Z 1 = Z12 , and
this particular value of impedance is called the characteristic impedance
of the filter section.

The image impedance at either end of a given network can be de-
termined from the open-circuit and short-circuit impedances. By
open-circuit impedance, Z,.,, is meant the impedance looking into one
set of terminals when the other set of terminals is open-circuited. By
short-circuit impedance, Z, is meant the impedance looking into one
set of terminals when the other set of terminals is short-circuited. It
can be shown that image impedance at either end of a four-terminal
network is the geometric mean of the open-circuit and short-circuit
impedances.
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Thus in Fig. 3:

	= 'z01j	 (1)
and

Z12	 v' Z0_2Z12
	

(2)

Generalized proofs of the above equations will not be given but it
will be shown presently that the relations stated are correct when
Z11 = Z, the condition whi " h is of special importance in elementary
filter theory.

Characteristic Impedances of T- and -r-Sections. The basic units
of cicroentary filter theory are the symmetrical T- and ir-sections shown
in Fig. 4. Although both of these sections are essentially three-terminal
networks, they are usually inserted into a two-wire line in the same
manner as a four-terminal network. Viewed as three-terminal net-
works, the T-ection is a wye-connected set of impedances and the
i-section is a delta-connected set of impedances. It should not be sup-
posed that the Z 1 and Z 2 values given in Fig. 4a and Fig. 4b are, in

Z '	 V,v2:ze_.or

(a)

IL1'	 I!
- EJ	 -

L	 2 Z^,2V	 2
I	 I
I	 ''

(b)

Flo. 4, Symmetrical T- and i--ection.

general, equivalent wyc and delta values. The circuit elements are
usually labeled as indicated in Fig. 4 in order to make the algebraic ex-
pressions for several of the filtering characteristics the same for both
the T- and ir-sections.

The series impedance of a symmetrical T-section is composed of two
similar units, each of which is labeled Z 1 /2 in Fig. ,4a. The impedance
labeled Z2 in Fig. 4a is called the shunt impedance or the T-section. The
shunt impedance of a symmetrical ?r-section is composed of two equal
branches, each labeled 2Z2 in Fig. 4b, and these shunt branches are lo-
cated on either side of the series impedance Z 1. If the series and shunt
impedances are designated in accordance with Fig. 4, ladder structures
formed by the cascade arrangement of successive sections are generally
similar. (See Fig. 10 and Fig. 11.)

If the output terminals of the T-section shown in Fig. 4a are closed
through an impedance Z0, the impedance across the input terminals
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(looking into the network) is:

+ 
z2 (^- + zQT)

-	
(3)

In order for Z,, to equa! Z, it follows that:

Z ' z,

- +

	 + z2z0T
ZoT -

	

(4)

The above equation may be solved for Z0 T and the result stated in terms
of Z 1 and Z 2 . Thus it can be shown that the characteristic impedance of
the T-section is:

LZIT = Z l Z2 +	 jZIZ 2 (i + 
Z;)	

(5)

If the output terminals of the ir-scction shown in Fig. 4b are closed
through an impedance Z, the impedance across the input terminals
(looking into the network) is:

2Z2Z0r \2Z 2 (z 1 
+ 2Z 2 + z01)

Zin=

	

	 -	 (6)
2Z2 + Z i + 

2Z 2 Z ,.
2Z2 + Zor

In order to determine the conditions under which Z,, is equal to Z
it is simply 1iecesary to set Z,,, 	 Z in the above equation and solve
the resulting equation for Z. After Z,, has been set equa l to Z0
and all fractions cleared, it will be found that:

Z0 2 (Z 1 + 4Z 2 ) = 4Z1Z22

From which the characteristic impedance of the 7r-sect ion is

Z", = Vj4 :Z ^Z2,	

Z'	

(7)

Equations (5) and (7) are important relations in filter theory because
they define the characteristic impedances Z0 r and Z, in terms of the
series and shunt elements out of which the T- and 7r-sections are com
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posed. If a filter section is terminated in its characteristic impedance,
the impedance across the input terminals (looking into the network)
is the same as the receiving-end impedance. (The importance of
designing filter sections to have particular characteristic impedances
will become more evident after composite filter sections are studied.)
It should he noted that a given filter section terminated at both ends
in it characteristic impedance is terminated on the image basis and that
in this particular case Z11 and Zr2 are equal. (See Fig, 3.) Reference
to equations (5) and (7) will show that:

Z0 . Z01	 Z 1 Z2	(8)

and	 Zor	 (9)

Equations (8) and (9) define a rather important relationship that exists
between the characteristic impedances of T- and s-sections, the Z1's
and Z 2 's of which are equal.

Filter theory is based upon Z j , Z 2, Zr, and Z0, to such an extent that
the physical significance of each of these four impedances should be
clearly understood. The reader who is unfamiliar with filter theory
nomenclature should at this stage review the definitions which have been
given for Z 1 , Z2 , Zo, and Z07 . (See Fig. 4 and equations (5) and (7).J

Eamp1e 1. In Fig. 4a, let each Z 1 /2 take the form of an inductance coil, the
inductance of which is 0.047 henry and the resistance of which is 1 ohm. The shunt
arm, namely, Z2 , is to take the form of a 300-f condenser. (Note: This is an uncon-
ventional set of parameters for this type of filter section but since some of the experi-
mental results which follow are based upon these particular values they will be
used here to illustrate the calculation of ZIT-)

The method of calculating ZoT at 50 cycles is as follows:

ZI

-= -
	 - 1 +j14.77	 14.8 /86.10 ohms

Z1 - 29.6 '86 . 1 0 ohms (Fufloeriesarm impedance.)

Z5 - 0— f--1-- = 0 —jlO.61	 10.61 /-90° ohms
wC2

Z,
VZ'Z' ^^4

I	 (296/8610)!
—	 (29 . 6/86 . 1 0 )(10 . 61/_900) L

- 9.83 /2.50 9.81 + jO.43 ohms

The physical significance of the above value of Z.r is that, if an impedance of
9.83 /2.5° ohms is placed across the output terminals of this symmetrical T-section,

the	 nce looking into the input 	 is also 9.83 /2.5° ohms.
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Problem 1. Neglect the resistances of the two inductance coils that form the
series impedance of the filter section in the illustrative example given above and
find ZT at 50 cycles and at 100 cycles. (It may be of interest to know that this
symmetrical T-section forms a low-pass filter that passes all frequencies up to 60
cycles and attenuates those above 60 cycles.)

Ans.: At SO cycles, Z 0 r	 9.76 /o° ohms.
Atl00 cycles, Z 0 r = 23.6550* ohms.

Problem 2. The series impedance, Z 1 , of a symmetrical T-section (like that shown
in Fig. 41) consists of a 0.02-henry inductance coil, the resistance of which is assumed
to be negligibly small. Each of the shunt arms, namely, 2Z 2 , is composed of a 2.0-hl'
condenser. (This symmetrical ir-section forms a low-pass filter which passes all
frequencies below 900 cycles without attenuation as will be shown later.)

Find the characteristic impedance of this section at 200 cycles and at 2000 cycles.
Use equation (7) and recognize that

0.02,/90° and Z2 = 
10'
—/-90 ohms

-	 _____

An.,.: At 200 cycles, Z0 = 71.8 /0° ohms.
At 2000 cycles, Z = 48/-90°ohms,

Characteristic Impedance as a Function of Open-Circuit and Short-
Circuit Impedances. Reference to Fig. 5a will show that the open-
circuit impedance of a T-section (looking into the section) is:

	

zoc=+z2	 (10)

Z°

(a)
FIG. 5. Z. and Z. of a symmetrical T-section.

When the output terminals are short-circuited as shown in Fig. 5b the
impedance of the T-section (looking into the section) is:

zI	 zI2

Z'
zJ_c=+	 (11)zl	

-

The geometric mean of Z and Z is:

	

4.Jziza +	 ( 12)

-29
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It has already been shown that

=	 + - [See equation (5).]

Therefore,
Z =	 (13)

The fact that Zr is equivalent to the geometric mean of Z 0 and Z.
provides the basis for a simple experimental method of determining the
characteristic impedance of a given section.

zo -ø.E.I	 EL1II	 z3.-o.I	

Z,

0-	 0(a)	 (b)
Fin. 6. Z and Z., of a symmetrical -iccton.

Reference to Fig. 6a will show that the open-circuit impedance of a
symmetrical it-section (looking into the section) is:

2Z 2 (Z 1 + 2Z2 )= 	
(14)

Z i + 4Z2

If the output terminals of the it-section are short-circuited as shown in
Fig. 6b, the input impedance is:

2Z2Z1
=

	

	 (15)
Z + 2Z2

/

	

V'ZZ	
1Z22

= \z + 4Z2	
(16)

Comparison of the above relation with equation (7) will show that:

Z0, =	 (17)

Equations (13) and (17) indicate that the characteristic impedance of
either the T- or it-section is equal to the geometric mean of their respec-
tive open- and short-circuit impedances. It should be evident that the
symbols Z 0 and in equations (13) and (17) refer to open- and short-
circuit impedances of the particular section that is under irivestigation
In general Z0 ' 0 Z0..

Problem S. Referring to Fig. 7 find (o) Z, (b) Z,, and (c) Z r at 200 cycles.
An.3.: (a) 186.2/-90*, (b) 26.0 /90°, and (c) 69.5 L9 ohms.
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Problem 4. Referring to Fig. 8, find (a) Z, ( , (b) Z 1 , and (c) Zer at 200 cycles.
Ana.: (a) 192.5/-90°, (B) 26.8/90°, and (c) 71.8/0° ohws.

_i	 4=0.01 henry	
L1 = 0.02 henry

0-' p0 -'--	 —3

zL=2.0j,f	 z:cL=I2.0Mf

p
	 C l	 L0

Fin. 7. A particular symmetrical T-section	 Flo. 8. A articular symmeriral T-section
for use with Problem 3	 for use in connection with Problem 4.

Physical Operation of Symmetrical T- and zr-Sections. The T- and
ir-sections shown in Fig. 4 possess some remarkahl properties when their
output terminals are connected to the characteristic impedances Z07'
and Zei respectively. Before considering the filtering properties of these
sections, some of the basic relationships that follow directly from ele-
mentary circuit theory will be established.

The conditions imposed on equations (4) and (6), page 441, make
Z1 Z0, for either type of section. hence 1 = V, /Z,, and 12 V2/Z,
where Z0 symbolizes the characteristic impedance of the particular type
of section considered. It follows directly that

11	 Yi	 W1	 V111 cos ê- and -	
2	 (18)12 - V2	 W2 V212 COS 8 12

where the subscripts I refer to input quantities and the subscripts 2
refer to output quantities. Since the impedance looking into the input
terminals is the same as the terminating impedance, the angle between
V 1 and I is equal to the angle between V 2 and 1 2 . This angle is sym-
bolized as 0 in equation (18) and is equal to tan -1 (X0/R0 ), where L
and R0 are the reactive and resistive components of the characteristic
impedance Z0. The basic relationships ntained in equation (18) are
illustrated photographically for a particular 'f-section in Oscillogram 2,
page 446. These relationships will be used later in defining the attenua-
tion of filter sect-ions.

The next basic relationship to be estahlihed is that the ratio of input
current to output current, namely, 1 1 /12 , is completely defined by the
series arm impedance (Z 1 ) and the sLunt arm impedance (Z2 ) out of
which the symmetrical '1'- or 7-section is composed. For the T-section
shown in Fig. 4a it is plain from Kirchhoff's emi law that

zi
II + 13 + Z 7. 12 = V1 = 7 iIi	 (19)
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Whence

zol, +

	2 (for Tsections)	 (20)
12

LoT -

Referring to Fig. 4b for the ,i--section and remembering that V =
and that V2 = 12Z0 , the current I.,ri..in the series arm is:

I 1 Z0	 12Z
= Ij -	 = I +	 (21)

2Z2	 2Z,
from which

(2Z2 - ZOT )	 (2Z2 + Z0)
= 12	(22)

2Z2 	2Z2

and
- 2Z 2 + Z0y

(23)
12 - 2Z 2 -

Reference to equations (20) and (23) above and to equations (5) and
(7), page 441, will show that the ratio 11/12 is defined wholly in terms of
Z 1 and Z2 for either 'I'- or ir-sections. It will be shown later that the

Ocu.woa.&w 2. Illustrating attenuation and phase shift in a symmetrical T-section.
and i1 are input voltage and current repective]y, e and is are output voltage and

current respectively.



10 0.047 h;nry 1. f2 0.047

•	
h,I2 2	 II	 -

z	 Z 2	 Y2
C2 =30011f

	

I
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right members of equations (20) and (23) are identically equal when
written wholly in terms of Z 1 and Z2. For the present, equation (20)
will be used to define the ratio 11/12 in T-sections and equation (23) will
be used to define this ratio in ,r-sections.

Example 2. Refer to the symmetrical T-section shown in Fig, 9a. Let it be
required to evaluate the ratio J, 1 2 at,! = 50 cycles. Since this is the same T-section
as dcxi rihed in example 1, rage 442, the results of example 1 may be used here to
define Z 1 , Z 2 , and Z'.

= (1 +114.77), Z 5	 (0 —jIO.61), and Z01'	 (9.81 +10.43) ohms

z1
- z + 2	 (9.81 4: jO.43) + (1 + j14.77)

12 - -
Zo - 

Z 1	 (9.81 +10.43) - (1 +114.77)

(10.81 +115.20)18.7-111 1130
(8.81 - 14.34)	 16.8 / 58 . 4 0 -

I'—r2

(a)	 (b)

Fto. 9. A symmetrical T-section terminated in its character,tic impedance, together
with a vector diagram of the currents and voltages in a particular case.

The physical significance of the above complex number is that the magnitude of
1 1 is 1.11 times as great as the magnitude of Il and that I t leads 12 by 113°. (See
Fig. 9b.) It will be shown presently that the ratio j].? defines the attenuation of
the filter section and that the associated angle of 1 1 1 5 defines the phase shill of
the section.

A worthwhile exercise for the student at this stage is that of correlating the results
given above with those determined by elementary circuit analysis. Let V 1 of Fig. 9a
- 100 /0° volts and solve for I j and It by ordinary methods. The results are
illustrated in Fig. 9b and in Osciflograin 2 which is a photographic record of vi, is.
v2, and it for the particular T-section shown in Fig. 9a.



448	 ALTERNATING—CURRENT CIRCUITS	 Ch. XI

Example 3. Let it be required to find the ratio 11/12 in Fig. 9a if the resistance
of the inductance coils are neglected, assuming that the frequency of the supply
voltage is 50 cycles.

= (0 + j14.77), Z2	 (0 - j10.61),	 = (j14.77)1

Zar = ./z 1z 2 -i- (Z2)2 - / (j29.54)(—jLO,61) + (J14.77)2

/313.4 - 218.2 V/9-5-2 9.76/0 ohms

Employing equation (20):

I	 9.76 +jl4.77	 17.7/56.5'

1 3	0.76 - fit 77	 17.7/-56.5

Thus the output current 1 3 is shown to be as great in magnitude as the input current
I. This condition exists generally in symmetrical T- and w-sections when the
resistances are negligibly small provided the charac teris ticimpedance for the fre-
quency considered is a pore ohmic resistance.

Example 4. Let it be required to find the characteristic impedance and the
current ratio I I /I: in Fig. On if the frequency of the supply is 100 cycles and if the
resistances of the inductance coils are neglected. Under these conditions:

	

= (0 +j29.54), 22 = (0 - j5.305),	 - = 2(J.54)

= /(J.08)(—j5 305) + U29.54

= '/(3I310°) + (873/+lS0')

_ 23.66 	 ohms .

The characteristic impedance of the filter section has changed from a pure resistance
(of 9.745 ohms) to a pure inductive reactance of 23.66 ohms as a result of changing
the frequency from 511 cycles to 100 cycles. Note: The values of L and C 2 used in
Fig. Oa make this section a low-pass filter section which starts to attenuate at 60
cycles, as will be shown later. See equation (55), page 443.5. At 100 cycles:

ZI
- Z, + _ - (23.66/) + (20.54/00')

1 3 -	 21 - (23.66.00') - (29.54/90')- -

53.2 /90'
=	 -=-- 9.01/4-180'

DO

It will be observed that, at 100 cycles, 1 1 is 9.04 times as great as 12 which indicates
that marked attenuation is taking place. It will also be observed that the phase
shift is 180', a condition that always-obtains in a resistanceless filter section which
is operating in the attenuation band and which is terminated in its characteristic
impedance.

The importance of the ratio I /12 has been emphasized in the foregoing
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examples because the physical operation of a filter section is concisely
defined by this ratio.

Problem S. Find the ratio T I /Il of the symmetrical -section shown in Fig. S
page 445. at 200 cycles and at 2000 cycles. Neglect the cis1ance ,f the inductarn e
oi1 and recognize that Z 1 	(0 + jO.02w) is the full series arm and that Z2

- j	 is the combined shunt arm since the total series inductance (L 1 ) is
\
0.02 henry and the combined shunt capacitance (C 2 ) is 4 5f. (See Fig. 4b and

Fig. 8.) Note also that 2Z 2 = (o - j	 ohms.2w)
Ans.: At 200 cycles 1 1 /12 = 1 /+20 5°.

At 2000 cycles I i , 12 =

Problem 6. Find the current ratio 11/12 of the symmetrical 'I'-section shown in
Fig. 7, page 4 .15, at 200 cycles and at 2000 c ycles. Neg1e1 the resistances of the
inductance, coils.	 An.i.: At 200 cycles Il/Il	 1 20.5°.

At 2000 cycles 11/12 = 10.6/+lS0.

Transmission Constant of a Filter Section. A transmission constant
which applies to a generator feeding a resistance load has been defined
in equation (80), page 130. It will be remembered that the reference
used in that case was selected with a view toward including the effects
of a possible mismatch between the resis .nce of the generator and the
resistance of the load. Another transmission constant which applies
to long lines was used in Chapter X. in this case it was called the
propagation constant, the term usually employed for the transmission
constant of long lines.

Whcre a filter section or other four-terminal net'vork is terminated
on an image impedance basis as shown in Fig. 3, the impedance match
between the generator and load is already effected and the definition of
the transmission constant is somewhat different from that given in
equation (80), page 136. Assuming that the filter section is terminated
on an image impedance basis and that we wish to specify a measure of
the attenuation and phase shift of the filter itself, we employ the follow-
ing definition of the trans'-ission constant:

7F
1	

Ii
Y= a+j3 = log, 	 =log.---- = !og, j-	 (24)

V1 /11

where Z" is the transfer impedance from the input terminals of the filter
section to the output terminals, namely, V1 /12

Z11 is the image impedance seen looking to the right of the input
terminals, namely, V 1 /Ij

a is called the attenuation of the filter section
is called the phase-shift constant of the filter section.
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Actually the a and fi defined in equation (24) apply to any four-
terminal network which is terminated on an image impedance basis as
shown in Fig. 3, As such they apply directly to a filter section which
is terminated in its characteristic impedance, since characteristic im-
pedance termination is but a special case of image impedance termina-
tion where Z11 = Z12.

The attenuation, c, is a measure of the ratio of the power input to the
power output of a filter section which is terminated in its characteristic
impedance, since under these conditions the real part of equation (24)
may be written as:

-	 112R0 1	 W1

	

a= log._ 2 lo J2 = log.-	 (25)

where R0 is the resistive component of Z0
W 1 is the power entering the input terminals

2 is the power leaving the output terminals.

From equation (24) it is plain that

= (a+j) =	 K/	 (26)
12

where K =	 I 112

= angle of lead of 11 with respect to 12.

As applied to a series or cascade arrangement'of filter sections like those
shown in Fig. 10, page 452:

(27)
12 - 13 - 14

and the transmission constant (together with the attenuation and phase-
shift) may be reckoned on a per section (or I /12 ) basis or on a combined
basis of I /14 , since both arrangements are presumably terminated on
a characteristic impedance basis.

Units of Attenuation or Transmission Loss. Filter section attenu-
ation s uuaJl y expressed in either nepers or decibels. (Seepages 136-137.)
These units of transmission loss are both defined on a logarithmic basis,
since their greatest field of application is in the transmission of sound,
the loudness of which is a logarithmic function of the sound energy.

The prp	 The general definition of attenuation expressed in nepers
is:

(Attenuation in nepers) = j iog, (28)
'cv-
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or
(Attenuation in nepers)	 1.151 logo '' (generftl)

(29).
(reererce)

where 11"(,r1) is any particular power level which might be under dis-
cussion

ll(relcrence) is the power level employed as reference from which
1T (geberai) is to be measured.

Reference to equation (18) or to equation (23) will show that, for a
filter section which is terminated in its characteristic impedance, the
output power 11'2 is employed as the reference power level and

I2R0
(Attenuation in nepers)	 loge - = log, 2	 = log, ea = a (30)

W2	 12 R0

If the filter section is not terminated in its characteristic impedance,
equation (28) is employed and W 1 is used for 1V (general) and W2 is used
for TV(relerence).

The Decibel. The decibel is an arbitrarily defined unit of trans-
mission loss (or gain) which has come into general use since about
1925 . 2 The customary abbreviation is db. The general definition of
attenuation expressed in decibels is

(Attenuation in decibels) = 10 log10	
enerai	 (31)

W(refer.per)

where T V (general) and W(reference) have the same meanings as employed
in connection with equation (28).

If the filter section is terminated on a characteristic impedance basis,
reference to equation (18) or to equation (25) will show that

(Attenuation in decibels) = 10 log10 [I]2 = 10 log i c e 2e

= 20a log 10 e = 8.686a	 (32)

Comparison of equations (30) and (32) will show that the decibel is a
transmission unit which is 1/8.686 times as large as the neper (or napier).
In practice the decibel is used almost exclusively in the United States.
Because of its rationality, the neper is widely used in theoretical deriva-
tions.

It should be noted.that transmission loss (or attenuation) units define
power ratios and under special conditions define current and voltage

1 Originally the decibel was called the "transmission unit" (abbreviated TU).
The Transmission Unit and Telephone Transmission Reference Systeme,"

by W. H. Martin, Bell S,aem Technical Jaurniü, Vol. 3, p. 400.
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ratios. These units do not specify the actual loss (or gain) in either
watts, amperes, or volts. Jf, for example, it is known that the ratio of
power input to power output in a particular case is 3, the transmission
loss or attenuation is:

log e 3 = 0.53 noper or 10 log 10 3 = 4.77 decibels

If the current ratio is 3 and the input and output impedances are equal,
the transmission loss is:

log, 32 = 1.1 nepers or 10 logia 32 = 954 decibels

The actual values of power or current are not specified in the statements
given above, only logarithmic functions of the ratios.

FIG. 10. Three sy mmetrical T-sections terminated on a chara"teristic imp-dance basis.

Example 5. If the vector current ratio per section of each of the throe T-sections
shown in Fig. 10 is 3	 or 3 /w'G radian:

= =	 Ei =	 = 3/30°
12	 1 3	 14

from which
3 or a1 = log, 3 = 1.1 neper per section

= 30' or 7/6 radian, phase shift of 12 behindj1

On a three-section basis:

= 4 11z =	 27/ç

Fr n which the attenuat ion and phase shift of the three sections may be calcu-
latei .,.s	 -

27 or a	 log, 27 = 3.3 nepers
= 28.6 decibels

00° or ,r/2 radians, phase shift of 1 4 behind I.
Prb1em 7. The current ratio in a particular filter section is known to be

1.11 /113° as in example 2, page 448. if the section is terminated in its charac-
teristic impedance, find the attenuation in nepers and in decibels.

Ans.: 0.1043 neper, 0.905 decibel.
Problem 8. Calculate the attenuation in decibels and in nepers for the various

power and cr'irrent ratios indicated below. In the case of the current ratios, it is
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assumed that the filter sections to which they apply are terminated on a character-
istic impedance basis. The few calculated values that appear in the table may be
used as guide.

db	 nepers
	 db	 nepers

0
	

0	 1
	

0
	

0

	

10
	 10
	

1.15	 10
	

20
	

2.3

	

100
	 100

	

1,000
	 1,000

	

5,000
	 10,000

\\uh respect to a specified reference power level, any particular circuit
power ma y be measured in plus or minus decibels, depending on whether
the circuit power is greater or less than the reference power level.
Several reference power levels have been used in sound engineering,
namely, 6 milliwatts in telephone circuits 12.5 milliwatts in public
address systems, and a relatively new reference level which is designed
to be generally applicable and which is specified as 1 milliwatt in
600 ohms." Thus, 6 rnillivatts might be reckoned as 10 log 10 (6/1) =
+7.78db with respect to a 1-milliwatt reference or as 10 logia (6/12.5)
—3.19 db with respect to a 12.5-milliwatt reference.

General Considerations. Elementary filter theory concerns itself
with uniform ladder structures which are composed of either conven-
tional T- or r-scctions. With the definitions which have been given to
Z 1 and Z2 in T- and ir-sections, the ladder structures formed by cascade
arrangements of these sections are equivalent except for their termina-
tions.

Figure 10 illustrates a ladder structure composed of symmetrical
'f-sections which is midseries terminated. A ladder structure is said to
be midseries terminated when it is terminated at the midpoint of a
series arm such as u'x. It will be noted that g is the midpoint of such a
series arm. Under ideal conditions the structure is terminated at both
sending and receiving ends in impedances which are equal to the charac-
teristic impedance of a T-section, namely, Z 0 . (Meth(As will be con-
sidered later whereby generating devices of one impedance can i.e
properly matched to a load device of a different impedance.)

Figure 11 illustrates a ladder structure composed of symmetrical
c-sections. Comparison of Fig. 10 and Fig. 11 will show the general
circuit equivalence of T- and s-sections except for the terminations.
The arrangement shown in Fig. 11 may be thought of as symmetrical
'f-sections which are terminated at planes such that the shunt arm Z2

is bisected longitudinally, leaving 2Z2 directly across the input and
output terminals. This form of termination is called midshunt ter-
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iiination. It has a certain practical significance which will be discussed
in a later article.

A low-pass filter is a network designed to pass currents of all frequen-
cies below a critical or cut-off frequency and materially to reduce the
amplitude of currents of all frequencies above this critical frequency.
Under certain ideal conditions which will be considered, a low-pass filter
will pass all frequencies from zero up to a predetermined number of cycles
with theoretical zero attenuation. The frequency at which the theoreti-
cal attenuation takes on a finite value is called the cut-off frequency.

I	 Z	 14
/\.M	 Ad	 0')	 A/

Z0rKj2Z2	
2Z 2Z

Fin. ii. Three symmetrical T-sections terminated on a characteristic impedance basis.

The general arrangements of circuit elements for elementary row-pass
filter sections are illustrated in Fig. 14, page 46.5.

A high-pass filter is a network designed to pass currents of all frequen-
cies above a critical or cut-off frequency and materially to reduce the
amplitude of currents of all frequencies below this critical frequency.
Under ideal conditions, a high-pass filter attenuates all frequencies from
zero up to a predetermined number of cycles and transmits higher
frequencies with theoretical zero attenuation. In a high-pass filter the
lowest frequency at which theoretical zerq attenuation obtains is called
cut-off frequency. Elementary high-pass filter sections are shown in
Fig. 16, page 468.

A Fundamental Filter Equation. An equation which defines the
propagation constant of a filter section wholly in terms of an arbitrarily
selected series arm (Z 1 ) and an arbitrarily selected shunt arm (Z 2 ) is
necessary in the design of filter sections.

Reference to equations (20) and (23), page 446, and to equation (24),
page 449, shows that

- zor

(for T-sections)	 (33)
12	 - 

Z.	
zi

r -

11=	 = 2Z 2 + Z0,,. 
(for -sections)	 (34)

12	 2Z2 -
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After the value of Z,, T as given in equation (5), page 441, is substituted
in equation (33), the following form may be obtained:

	

i t	 4Z2 cu-12 (for T-sections)	 (35)

: — C'2

C Z2 iZ2

After substituting the value of Z0 as given in equation (7) into equa -

tion (34), the following form may be obtained:

= = 

/l +
4Z2	 N 4Z (for ir-sections)	 (36)

	

'2	 \/[+	 /7

4Z2 \4Z2

Hence, for like values of Z L and Z2;
I I	 II
- (for T-sections) = - (for 3r-sections)	 (37)
12	 12

Since J = e t '3 , it follows that

(\Il+-i+^
iZ)

2

4Z2 
=	 (38)

-1

Although equation (38) defines both a and $ in terms of Z 1 and Z2 , a
different form is usually employed in the actual evaluation process.3
An algebraic rearrangement of the quantities involved in equation (38)

	

will show that:	 ___

4Z2
a + j$ 2 log, (\I	 Z1	 Z1	

(3)l+ — + -*-

The above relation is one form of fundamental filter equation, since the

A fundamental filter equation which is sometimes called Campbell's equation
(after G. A. Campbell who discovered the filtering properties of various lumped
impedance networks) is:

cash '	 + -- = (cosh a cos ± j sinh a sin $)

the above form need not be used here but, for the reader who is familiar with the
manipulation of complex hyperbolic functions, Campbell's equation is much more
elegant than is equation (30). See ' Physical Theory of the Wave-Filter," by
C. A. Campbell, 3eii System Technical Journal, Vol. r, November, 1922.
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attenuation constant and the phase-shift constant are defined wholly
in terms of the fufl series arm impedance (Z 1 ) and the full shunt arm
impedance (Z2). The analysis of any symmetrical T- or i--section com-
posed of series and shunt arms of Z1 and Z2 , respectively, may be carried
through with the aid of equation (39).

Since the right-hand member of equation (39) is, in general, a complex
number, it is capable of defining both a and fi of either T- or i--sections
which are terminated on a characteristic impedance basis. In the
manipulation of the factor Z 1 /4Z2 in equation (39), care should be
exercised in determining the correct sign of the associated angle if the
correct sign of 3 is desired.

Example 6. Let it he required to determine the attenuation and phase shift of
a filter section whose full series arm is 565.6/W' ohms (at a particular frequency)
and whose full shunt arm is 200/-90° ohms. Note: Characteristic impedance
termination is implied in a case of this kind unless otherwise stated.

= 565.6/60 and Z2 — 200/-90° ohms

T

	

	
— 'v'0 07Li. 	 0.84l. — (0.2175 +iO.812)

= 8o0/-90°

J1 +	 =	 + 0.7071150° — i/0.525/

= 0.725 /21.2° — (0.676 + jO.262)

a + jt3	 2 log e [(0.676 + jO.262) + (0.2175 ±iO.l2)]
= 2 log e (0.893 + j1.074)
= 2 log e (1.396/50.25°)

(2 log e 1.396) + j 100.5 = (0.668 + j1,76)

The attenuation of the filter section is 0.668 neper or 5.80 decibels. The vector
input current is 1.76 radians or 100.5° ahead of the vector output current since
a	 0.668 neper and	 1.78 radians.

To •1:.. xample the resistance of the series arm is relatively high (565.6/2 ohms)
and yet the attenuation is relatively low because the filter section is operating in
its pass band.

Example 7. Let it be required to find the attenuation and phase shift of the
v-section shown in Fig. 8, page 445, by means of equation (39). The resistances
of the circuit elements are-to be neglected and the frequency is assumed to be 200
cycles. At 200 cycles,	 1257 radians per second and

Z1 — 0+ jcgLi — 25.14 190. ohms

2Z1 — 0 _j- — 397.5/-90° ohms
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423 — 79590° ohms

Z1	 25.14/
0.0316 + 180/- 795/-90°

a +i$ 2 log, (v'i7ö + 0.03l6/$1S00 + Y0.0316/j-180')

=2log. (1.0/10.25°)	 (2 log, I.0)	 10.25

= 0 + jO.358

Therefore a 0 and 6 = 0.358 radian or 20.5°. • It will be noted that, as a result
of neglecting the resistances of the circuit elements, the theoretical attenuatiOn is
zero.

Problem 9. A high-pass filter section is composed of two 7.96- i f condensers and
a coil having an inductance of 0.0159 henry in the form of a T. The resistance of
the inductance coil is assumed to be 4 ohms. (A condenser occupies each of the
Z 1 12 positions in Fig. 4o page 440, and the inductance coil occupies the Z2 position
in this T-section.) Find the attenuation and phase shift of this filter section at
200 cycles employing equation (39). At 200 cycles:

= 1257 radians per second	 = 100/-90° Z 2 20.4/L° ohms

a - 17.8db; ft = —165°.

Problem 10. Evaluate a and 8 in equation (39) if Z 1 = 200/	 ohms and
Z2 =50/-90°ohms.	 Am.: a =0; $ =radians.

Filter Section Analysis Assuming Zero Resistance. It is quite
customary to neglect the resistive components of Z1 and Z2 in filter
section analysis because the attenuation produced by these resistive
components is incidental to the predominant filtering action that takes
place. The discrepancy between theoretical results based on zero re-
sistance and actual results will not be great if the resistances are rela-
tively small compared with the reactances. Also the algebraic manipu-
lations involved in filter design are greatly simplified by neglecting the
resistive components of Z 1 and Z2.

If the above resistances are neglected and if the filter sections are
properly terminated, the pass bands are transmitted with zero attenua-
tion while the stop bands experience certain varying degrees of attènua-
tion. It will also he shown that the phase shift is 180° throughout the
stop band under the conditions stated above. Before elaborating upon
these customary generalizations, two examples based entirely upon
equation (39) will be presented.

Example 8. Consider a symmetrical T-section in which Z 1 — j€L 1 and in which

—	 Let it be required to predict the behavior of the filter section wholly
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in terms of the relationship stated in equation (39).
Z I	 — 2L 1C2 w2LiC210

4Z 2	4	 4

Since Z 1 !4.Z2 possesses the general form given above, it will be convenient to reckon
in i/'/ units, thereby giving Z 1 /4Z 2 definite numerical values for various

different frequency units. The evaluation of the iight-hand member of equation
(39) for various frequencies is shown in tabular form in Table I.

	- 	 wn7untb

Fin. 12. Variations of phase shift and attenuation in a prototype low-pass filter section.
(See Table I, page 450.)

The variations of attenuation and phase shift can readily be determined from
an examination of columns (8) and (9) of the table. It will be observed that the
filter section which is under discussion has theoretical zero attenuation between the
limits of w = 0 and a = 2/ ,VL_jC2 radians per second. The section obviously
operates as a low-pass filter. The arrangement of the series and shunt arms of this
low-pass filter together with the general trends in the variations of attenuation
and phase shift are shown in Fig. 12. The fact that the cut-off point occurs at

— 2/'/-Li radians per second will be given more attention in a later article.
The present example concerns itself primarily with the development of equation
(39) in a particular case.

Example 9. Consider a symmetrical T-section in which Z1 —j	 - andWC,
jL2 . Let it be required to predict the behavior of the filter section wholly

in terms of equation (39). In the present case:

	

zI	 1	 1

— 4JL2C1 4JLsC/

The same units of angular velocity as employed in example 8 are convenient units
to employ in the present analysis. Also the evaluation of the right-hand member
of equation (39) can be conveniently presented in tabular form. The calculations
ax2 indicated in Table II, and results are shown graphically in Fig. 13. T-sections
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consisting of series-arm condensers and shunt-arm inductances are thus shown to
operate effectively as high-pass filters.

The phrtse shift constant, P, in Table I represents a lag of section output voltage
and current with respect to section input voltage and current. In Table II, $ repre-
aents a lead of section output voltage and current with respect to section input voltage.

0.2 0.4 0.6 0.8 1.0 11.2 1.4 1.6 L8 2.0 2.2

n	 unit

Fo. 13. Variations or phase 8hift and attenuation in a prototype high-pass filter section.
(See Table IL page 460.)

Problem 11. Refer to Table I, page 459. Check all the values listed at
= 1.5/ .'1iJ 	and at w =	 Compare the results obtained for a and $

with those plotted in Fig. 12, page 458.
Problem 12. Refer to Table II, page 460. ('heck all the values listed at
= 0.25,'VT and at	 = 2.0//ë1. 2 . Compare the results obtained for

a and ,5 with those plotted in Fig. 13, page 461.

The chief facts to be gained from the foregoing analyses are:

(1) a is equal to zero within the pass-band region
(2) )3 is equal to	 s' within the stop-hand region.

A stud y of Tables I and If will show that the pass hands are limited to
those regions where Z 1 /4Z2 possesses values between 0 and - 1. These
results might have been anticipated mathematically by investigating
the possible values of a and fi when Z 1 and Z2 are reactances of opposite
types. Let

Z,
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It is plain that A - A/	 since

XL/	 Xc/-90°

4Xc/-90° 
or 

4XL/

are complex numbers which have associated angles of + r or - t radians,
respectively.

If
—1AO

2 log, (VI -- A  +Vt)
= 2 log, (V'l -- A  +jV)

\/ \
= 2(logV1 - —A+  A +itan' - A)

Hence a = 0 and $ = 2 tan' (V/v'1 -- A)  when A = Z 1 /4Z2 lies
between 0 and —1.

When Z, /4Z2 lies between —1 and - a similar analysis will show
that for Z 1 /4Z2 = A'/!, A' being greater in magnitude than unity.

a + j,6 = 2log, (N/-1---A-7 + V':t')
= 2 log. (,VA' - 1 +iv'T)
= 2 log (VA' - 1 + VT) +i(±)

Hence a - 2 log. (VA' - 1 + VT) and	 ±T when A' = Z 1 /4Z2
lies between — land -.

The above analysis shows that the pass bands are limited to those
regions where 71 /4Z2 takes on values between and including 0 and —1.
Hence:

_10 (40)

defines the pass-band regions in terms of Z 1 and Z2 . The boundaries
of a pass band in a particular case may be obtained by setting:

zI ZI
—=0 and —=—1
4Z3 	 4Z2

or by setting

and
Z2	 Z2

(41)

(42)

Reference to equation (39) will show that a 0 when Z 1 /4Z2 - 0 and
when Z/4Z2 - —1.



Ch. XI	 ELECTRIC WAVE FILTERS	 463

Example 10. Refer to the symmetrical i-section shown in Fig. 8, page 445

Let it be required to predict the pass-band boundaries in terms of the relationahipe
stated in (42). The full series arm of Fig. 8 is L 1 — 0.02 henry and Z1

ohms. The full shunt arm is Cs 4.0 Of and Z 2 (10/4w)/-90° ohms.

Setting Z 1 /Z 2	0 yields

0.02w IN - 0 or w = 0 (one boundary)
ID'

Setting Z,/Z2 - —4 yields
0.02w1 	 =	 08' _
10'

from which
w'..V'50X10'

w - 7070 radians per second (one boundary)

The value of w given above represents the cut-off angular velocity of this particular
low-pass filter section and corresponds to a frequency of 7070/2r or 1125 cycles.

Cut-Off Frequencies of Elementary Low- and High-Pass Sections.
The frequency limits of the pass band for an elementary low-pass filter
without resistance may be obtained from equation (38). For a low-pass

filter Z1 = jwLi and Z2 = -j -- If these values are substituted in

çquation (38), the result, after a little algebraic simplification, is:

= saei$ = 1 - 
2w2L1C2 + 

2	
- w2I1C2

4	 16

For no attenuation a 0, and

ejP = coo fi + j sin = 
1 - 2wjC2 + 2 fc ,4L i 2C22 -	

(44)

Since the last term of equation (44) is the only one that may become
imaginary, it follows that the real part must be cos fl. Therefore

2o. 2L C2
cos=1—	 .	 (45)

4

Since cos P can vary from I to —1, the limits for w may be obtained.
Hence

2w2L1C3	 (46)
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and
2

0=0 Or	 (47)

or

IC = (for low-pass)	 (48)
T VIE 1 C2

Equation (48) gives the upper or cut-off frequency for an elementary
lox-pass filter. In other words, any wave of frequency between zero
and f is passed without attenuation provided that the filter section is
terminated in the characteristic impedance for that frequency.

For a high-pass filter, Z1 -j and Z2 jwL2 If th values

are substituted in equation (38), a sinilar method of analysis as used in
obtaining equation (45) gives

2
cos$=1— 2	 (40)

40, C1T.,

Substituting the limits of * 1 for cos jO, the upper limit of frequency is
found to be	 while the lower limit or cut-off frequency is:

f. 
= 4irVL	

for high-pass	 (50)

Equation (50) gives the cut-oil frequency for an elementary high-pass
filter. This means that any frequenc y above the cut-off frequency fr
is passed with no attenuation if the fiber section is terminated in the
characteristic impedance for the particular frequency.

Constant-k Low-Pass Filter. Filter sections in which the series
and shunt arms are inverse impedance functions possess a peculiar
property. The product of Z 1 and Z 2 is independent of frequency.
Reference to either the T- or w-section of Fig. 14 will show that

Z 1 Z2 = (iwLIk)(_I—---) - =	 (51)- C2k

v'L lk /('2k is an important characteristic of the filter section, and inas-
much as

Lik 
=	 = a constant

filter sections of this type are called constant-k sections. There are
many other types of filter sections, several of which are derived in one
way or another from constant-k sections. For this reason the parame-
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t.ers of constant-k sections usually carry the subscript k in order to
designate properly the type of filter section that is under discussion.
The parameters of some of the more elaborate filter sections are specified
directly in terms of Lk and Ck.

1i
-r	 -r

Z2,2, T C 2Z	 T0
(a)	 (h)

F,o. 14. Prototype or cor.stant-k low-pass til'cr sections.

The general theory of the constant-k low-pass filter has already been
presented. It remains only to develop the design equations for this
type of filter.

Zlk	 7WL,k	 2=	 = —w	 (52)
2k	 1

— J --

The boundaries of the pass hand are determined by setting Z 1 ,k 22k
equal to —4 and equal to zero. [See equation (42), page 462.1

WLlkC2k = 0 yields co = 0	 (53)

(A) 2 LjkC2k = — 4 yields w	 --_	 (54)

co is the angular velocity at which cut-off takes place and as such forms
the upper boundary of the pass hand. The cut -offfrcqucncy of a low-pa.,

constant-k-type filter is:

2v	 7r_11I11kC2k
(55)

It will be observed that f, is governed wholly by the magnitude of the
LIkC2k product. The lower the cut-off frequency, the higher is the
L1kC2k product, and vice versa.

Another important consideration in either the theory or design of a
filter section is the matter of correct terminating impedances. A
single section can he properly matched to its sending and receiving
ends if terminated on an image basis, as explained on page 439. If
more than one filter section is to be employed between sending and
receiving ends, it is desirable to design each section to have the same
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characteristic impedance. Under these conditions minimum reflection
lose results when the various sections are arranged as shown in Fig.
10 or Fig. 11. A detailed analysis of these losses will not be given here
since they are similar in nature to reflection losses on long lines. (See
Chapter X.)

For a constant-k, low-pass T-section:

	

Z.Tk = JC2"(l - w2LikC2k)	
(56)

L1C2	
4

=	 [See equation (54).]
We

Therefore, for a constant-k, low-pass T-section:

E.1!Jf2

(57)

For a constant-k, low-pass i--section:

Zo,rk =	
Rh

	_____	 (58)Ii	 /f2
-V 	 f2	

S	
f2

The variations of ZOTh and Z01k from I = 0 to f = are illustrated in
Fig. 15. The fact that the correct terminating impedance of a con-
stant-k section varies over such wide limits is a very serious limitation in
certain communication circuits. For a fixed receiving impedance it is
plain that either the T- or i-section is correctly terminated at only one
frequency. The opposite trends in Z07-k and ZQTk are combined in one
form of filter section to obtain a characteristic impedance which is
reasonably constant over the frequency range of the pass band. (See
rn-derived filter sections, pages 480-484.)

The zero-frequency value of either ZOTh or Z0 k is:

Rh 
=	

[See equations (57) and (58).]	 (59)

LIk and C2k can be related to one another through the value of R.
[See equation (51).]

y	 n2r,
LIlk = ILk '-'2k	 (60)

LIk
(61)
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The design values of L I k and C2k are usually specified in terms of
cut-off frequency, f, and the zero-frequency value of the characteristic

f
Frequency In f- units

Ic

FIG. 15. Variations of the characteristic impedances of low-pass and high-pass constant-A;
filter sections.

impedance, R. It has been shown that:

/	
1	

[See equation (55).]
VLIC2.

Eliminating C2k as given in equation (61) from the above equation
yields:

or

Lik =	 (for low-pass filter)	 (62)
'IC

From equations (61) and (62) it is plain that:

=	 = 1	
(for low-pass filter)	 ()

Rk	rRkfc

Equations (62) and (63) specify the values of L and C to employ in a
constant-k, low-pass filter section in terms of f and Rk.
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Problem 13. Design both T- and T-section, low-pass filters of the constant-k
type which will have a zero-fretquency characteristic impedance of 600 ohms and
a cut-off frequency of 940 cycles. Draw the circuit arrangement in each case,
indicating the particular values (in henrys or microfarads) of each circuit element.
Ana.: The full serie.s arm Ljk 0.203 henry; and thefut! shunt arm Cu = 0.565 f.

2C	 2C1	 C1

H(Z it

	

	 Z

	

q2L,2Z1 2	 2Z22L,

()	 (b)
Fia. 16. Prototype or constant-k high-pass filter sections.

Constant-k High-Pass Filter. Prototype or constant-k, high-pass
filler sections are illustrated in Fig. 16. In the present case:

ZlkZ2k = (—J -s--- j (jL) = -2k 
= 124	 (64)

°"-1k/
and

•1

Z 2 k - 30L,2k -	
(65)

The boundaries of the pass band are again determined by setting
Zlk /Z2k equal to —4 and equal to zero. [See equation (42), page 462.J

	

= 0	 yields co =

	

—4 yields w =
	 _____

2 V'CIkL2k

The cut-off frequency of a high-pass, constant-k fil:r is

c_	 1
fc	

2 'r - 4C]kL2k

Z0 r and Z,, may he expressed in terms of f, f, and VL2/Ci
a constant-k, high-pass T-section:

iT21-1k
Z0rk =X

For a constant-k, high-pass i-section:

ZOVk = L
1I C

w2CIkL2k

(66)

(67)

(68)

For

(69)

(70)
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General trends in Z0Tk and Z0,-k in constant-k, high-pass filter sections
are illustrated in Fig. 15. Both ZUTk and Z01k approach the common

value VL/Cl k at f = - Because it is a useful common base from
which to work, V'L25 /C l k is given special designatton. namely Rk.

R A, is known as the infinite-frequency characteristic impedance. Since

r^

L2A = 
Rk	 (71)

= Rk2 Clk and Cjk (12)

If the above values are substituted separately in equation (68), the
following relationships are obtained:

C 
= 4Rf	

(for high-pass filter)	 (73)

L2k = -	 (for high-pass filter) 	 (74)
4,,f,

Equations (73) and (74) may be employed in the design of constant-k,
high-pass filter sections whicli are to have a particular cut-off frequency
and which are to have infinite-frequency characteristic impedances
equal to Rk.

Problem 14. What are the cut-off frequency and infinite-frequency characteristic
impedance of the high-pass filter section that can be constructed from two 1-f
condensers and one 15-miltibenry inductance coil?

Ans.: f,,	 919 cycles; Rk = 173 ohms.

Tabulation and Review of Constant-k Filter Theory. The important
features contained in equations (51) to (74) inclusive are summarized
concisely in Table III, pages 471-472. The attenuation and phase
shift in Table III are expressed in forms which derive directly from
"Campbell's" equation. (See footnote 3 on page 455.) It has been
shown in examples 8 and 9, pages 457-458, how the attenuation and
phase shift may be calculated from equation (39), page 455, without the
aid of hyperbolic functions. For the reader who is familiar with com-
plex hyperbolic functions the following derivation and application of

Campbell's " equation may be of interest.
Derii'alion and Application of Campbell's Equation. The application

of Kirchhoff's cml law to the wxyz loop of the filter sections shown in
Fig. 10, page 452, yields

Z 1 12 + Z2 (12 - 10 — Z2 (1 1 - 12) = 0	 (75)
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or
Z112 + 222 12 - Z2 13 - Z2 1 1 .0	 (76)

Dividing the above equation through by Z2 12 and transposing results in

(77)
12	 12	 Z2

SincQ
11	 12= =
12	 13

it follows that

= 1_i
12

zi
(78)

cosh y	
zi

= 1 +	 (Campbell's equation) 	 (79)2	 -

A more useful form for the purposes at hand may be derived as follows:
(a+j$) +cosh y = cosh (a +j13) 2

- +
(80)2

Converting the e jfl terms into their rectangular forms results in:
a

cosh (a +i$)	
(cos +j sin ) + 

—a (cos - j sin $)
= 2
- (a + a)	 (a -

Cos i3±j	 2sin 16
-	 2

From the analytical definitions of hyperbolic cosine and hyperbolic sine,
it follows that

cash (a ±j$) = cosh a cos ft +j sinh a sin
Therefore

cosh a cos $+jsinha sin = 1+- (81)

The above form may be used directly to derive the attenuation and
phase-shift expressions given in Table III, page 472.

In the stop band, j9 = r. Since cos 0 then becomes —1 in equation
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(81) and sin	 0:

- cosh a = 1 + 
z1

a	 cosh—' ( 
2Z2	

(in stop band)	 (82)

In the pass band, a	 0. Since cosh 0 = 1 and sinit 0 = 0, equation
(81) becomes:

Cos 13 =	 +	 )

$ = cos' (i +	 -) (in pas l)atRI)	 (83)

As applied to a constant-k low-pass filtersection:

	

= L/9 0° 2 =
	

=

Equation (82) then takes the form:

7w2 L 1 kC2k
a=cosh'	

2	
_i)

as shown in Table III. Equation (83) takes the form:

	

—1 /	 w2LlkC2k
	fl=cos	

2

as shown in Table III. Corresponding expressions for a and $ may be
derived for the constant-k high-pass filter section. The results arc shon
in Table 111.

Band-Pass and Band-Elimination Filters. Band-pass filters are
networks which are designed to attenuate all frequencies except those
in a specified hand. A band-pass filter may be formed by placing a low-
pass filter section (having a cut-off frequenc y off i ) in series with a high-
pass filter section (having a cut-off frequenc y of f,h). Then f, is made
higher than f,.,, b y the specified band width, which is f - f. A study
of the attcntmtj(,n graphs shown in Table III vill show how f and f
should he adjusted to give a zero-attenuation band.

A band-pass filter may take the form of a single section as shown in
Fig. 17. The section shown in Fig. 17 is called a constant-k hand-pass
filter when L2C2 = L 1 C1 because under these conditions:

L2 1"
2 - - = a constant

Cl C2
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An analysis of the band-pass filter will not be given here, although such
an analysis may be carried through in a manner similar to those given for
the low-pass and high-pass sections.

Band-elimination filters are networks which are designed to pass all
frequencies except those in a specified band. A band-elimination filter
may be formed by placing a low-pass section (having a cut-off frequency
of fe:) in parallel with a high-pass section (having a cut-off freijuency of
f) . Then f, is made lower than f ' by the specified bandwidth, which
isf - All frequencies have a pass band (through one of the parallel
sections) except where the two attenuation graphs overlap. (See at-
tenuation graphs in Table III.)

Fin, 17. Band-peas filter contained
in a single section.

Fin. 18.

2C I 	2C,

 Band-elimination filter con-
tained in a single section.

A band-elimination filter may take the form of a single section as shown
in Fig. 18. The section shown in Fig. 18 is called a constant-k band-
elimination filter when L2C2 = L 1 C1 because under these conditions
Z 1 Z2 is a constant. It will be observed that the arms of Fig. 18 are
the reverse of those in Fig. 17.

Two Limitations of Constant-k Sections. The constant-k type of
filter section has two rather serious shortcomings. First, its charac-
teristic impedance is not sufficiently constant over the transmission-band
for certain classes of work (See Fig. 15.) Second, the attenuation does
not rise very abruptly at the boundary of the transmission band. (See
Figs. 12 and 13.)

In order to overcome the inherent limitations of the constant-k
type, Zobel4 devised a filter section which he called the rn-derived type.
The rn-derived half section may be employed to give practically uniform
characteristic impedance over a large part of the pass band and at the
same time increase the abruptness with which cut-off occurs. Full
rn-derived sections may be employed to give further increased attenua-
tion near the cut-off point, and by proper adjustment of the parameter

'"Theory and Design of Uniform and Composite Electric Wave Filthza," by
0. J. Zobel. Bell SvsMm TeCPUIiCQZ Journal, January, 1923.
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m they can be made to meet any practical attenuation requirement in
this region. When worked in conjunction with constant-k sections,
the rn-derived sections overcome both the aforementioned shortcomings
of the constant-k sections. However, rn-derived sections by them-

Z'

a—	 p
(a)

Fjo. 19. Illustrating the circuit codfiguration of hail sections formed by longitudinal
bisection of shunt arm of a prototype T-sectioa.

selves have certain limitations which will become apparent after the
attenuation characteristics of these sections have been studied.

rn-Derived Half Sections. If the full shunt arm of Fig. 19a is sepa-
rated into two parallel paths of 2Z 2 ohms each, the original T-section may

Cd
(b)

fl j-iK0- 

ZL

rzz'4i
0—	 00

(b)

Fia. 20. fllutrating the circuit configuration of half sections formed by longitudinal
bisection of the series arm of a prototype pr-section..

be separated into two similar parts as shown in Fig. 19b. Each of
these parts is known as a half section or as an L-type section. If the
full series arm of the T-section shown in Fig. 20a is separated into two

series elements of Z 1 /2 ohms each, the
10	

[]3 
original i-section can be separated into
two half sections as shown in Fig. 20b.

2Z	 A comparison of Fig. 20b with Fig. 19b
7	

will show the equivalence of haff sec-

2	 tions formed by ' halving" 'i--sections0---	 --o and those formed by halving f-sec-
Fio. 21. Constant-k terminating

half section.	 0 5.
The image impedances of the half sec-

tion shown in Fig. 21 may be found from open-circuit and hort-cir-
cuit conditions. Let the open-circuit and short-circuit iapedances be
known as Z and Z, respectively.

-31
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The impedance looking into terminals 1 and 2 is:

2Z1Z22
Z 12 = 	 = I

+ 2Z2k

from which

=Z0	(Si)
j_Z1Z2,

'+i;

The impedance looking into terminals 3 and 4 is:

17Z1,,
Z34	 4 (\7 • + 2Z2k)

or

Z34 = 'Z1Z2 (I4Z2) = Z 0	 (85)

The half section shown in Fig. 21 has the impedance characteristics
of a ,r-section between terminals I and 2 and the impedance charac-
teristics of a 'P-section between terminals 3 and 4. It may, therefore,
be used to match a v-section to a T-section. Also it may be used to
match a filter section to a terminating impedance which differs from the
characteristic impedance of the filter section or to change the impedance
level at any point in a two-wire line. The proper values of Zlk/2 and
2Z 2), to be employed in effecting any desired impedance transforma-
tion may be determined by solving equations (84) and (85) simulta-
neously for Z I k and Z 2 k in terms of Z 12 and Z34.

Some little difficulty is usually encountered in presenting rn-derived
filter theory to beginning students because certain anticipations have to
be made at the outset of the investigation.
Inasmuch as anticipations must be in- ic—	 —o3
dulged in in any event, the actual circuit I!2z,
configuration of the rn-derived half section
will be accepted and its operating charac-
teristics studied.	 ______________________

It will now be assumed that the half
section shown in Fig. 21 takes the pa, tic- Fio. 22.

balf section,
ular form shown in Fig. 22. A new param-
eter, m, has been arbitrarily introduced. It is simply a numeric
which may, for the purposes at hand, range in value from zero to
unity. The change in circuit configuration from Fig. 21 to Fig. 22
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may be interpreted as follows:

(a) of the constant-k half section is changed to some Tractional

part of 
Zlk in Fig. 22.

(b) 2Z 2 k of Fig. 21 is changed to 
2Z2k 

in Fig. 22.
M

I -
(c) In series with 

2Z2k
- in Fig. 22 is placed an impedance 	 2Zlk.

m	 4m

It may be shown that, if the change in (a) is made, the changes in (b)

and (c) must be made if the two half sections shown in Figs. 21 and
22 are to have the same characteristic impedance looking into the 3-4
terminals.

The half section shown in Fig. 22 has some very desirable charac-
teristics. Its characteristic impedance looking into terminals 3 and 4 is

ZIk	 1 - 77Z2	 2Z21 	 Zlk
Z34-	 VrZZ7Zx-c in 	+	 - Z i k +	 77T

2	 2rn	 rn, 2

IMm2Z Ik2 	 mZ lk2	 m2Z 1k2 	 2?nZIkZ2k
4*J 

4 +4m	 4 + 2m

Z lkZ=	 2k+—ZoTk	 (86)

The equation above shows that terminals 3 and 4 of the rn-derived
half section can be used to match the impedance of a constant-k, T-sec
tion or any other equivalent impedance including the 3-4 terminal
characteristic impedance of Fig. 21.

The characteristic impedance of the rn-derived terminating half
section looking into terminals 1 and 2 is:

Zl2,fl

where
1(1 - m2)	

2-1

[P - m2)	
Z2kir Zlkl

Z lk + 2

,.	
2rn	 mm_---j

(1 - rn2)	
2	 + 

Ziki--
2m	 m
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2m	 —4)
Z22m 

	 m2 
Zik + 

2z2k\2(m2Zk2\

=	 1—rn2
(	 Z15+2—
\ 2m	 in

F?n2 2
Z 1 2 + ZIkZ2k)

m2Zjk2
+ZuZ2+ 

m2Zlk2

- 

Z lkZ2k 
+ Z1k2 

(1 - m2)

Z1k2
ZIkZ2S + -i:-

_
- ZlkZ2k r1 -i--	 ( - m2 ]	 (87)
- ZOT?. L 422k

or remembering (9):

Z12m = Z,r* I +	
k 

(1 - m2)]	 (88)

In addition to being a function of Zik and Z25 , Z 1 2m is a function of in.
With the proper choice of m, Z12m can be made reasonably constant
over about 90 per cent of the transmission band. The changes of

Z0, and the modifying factor II + -- (1 - m2)] with respect to

frequency combine in such a manner as to make Z 12m approximately
constant over wide ranges of frequency.

Example 11. Consider the general trend of Zor for the constant-k, low-pass
section shown in Fig. 15. Instead of this rapidly rising curve, the change in the
output characteristic impedance of a low-pass, rn-derived half section at the 1-2
terminals is:

Z12.	 + jcLs (1 - rn2)

—j4

or

Z12. Zçri [i - 
CQzL Ctb (1 - rn2)]

Physically, m may be equal to any value between zero and unity. Mathematical
cxperimenttion shows that good results are obtained when rn — 0.60. The calcu-
lated values of Z,j and the modifying factor are shown in Table IV, and a graph
of Z1 form — 06 is contained in Fig. ?.3. It will be remembered that f. for a
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Fia. 23. Varistion of Zu. for in 0.6.

TABLE IV

	

- Zi, [i	 - 	 (1'_ mt)] for in - 0.8

Ri -

	

- [1 _J (0.64)]	 -
	1.000	 Ri,

	

0.994	 1.005Th,

	

0.974	 1.02 Ri,

	

0.898	 1,09RA;	 -

	

0.770	 1.25 Ri,	 -

	

0.590	 1.67 Ri,

	

0.482	 2.30 RA;

	

0.424	 3.16 Ri,

0.860

Ri,

0.999 Ri,

0.993

0.979 Rh

0.963 Ri,

0.963 Ri,

1.108 Ri,

1.34 Ri,

go
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low-pass filter section is I/v \/L2k and that Z0 .k — Rk/V't - (/f). The
expiession for Zn,., in this particular case is, therefore, reducible to

If it is necessary to work closer to the cut-off frequency than a value of in = 0.6
will permit in may be made somewhat less than 0.60. However, these slightly
lower values of in cause the Zm,, variation to be more irregular throughout the first
90 per cent of the transmission band. Numerical experimentation will show the
effects caused by different values of in.

Problem 15. Plot, with respect to frequency, the variation o he characteristic
output impedance of a low-pass, rn-derived terminating half section (Z2m) for
in	 0.55. Reckon frequency in f/fe units. (See Table IV and Fig. 23.)

Full rn-Derived Sections. Full rn-derived T-sections are shown in
Fig. 24. As in the rn-derived half section, the series and shunt arms
are specified in terms of the constant-k impedances Z Ik and Z2k. Any
constant-k-type section may be altered to yield what is known as
an ni-derived section. Only the low-pass and high-pass, rn-derived
'I'-sections will be considered in detail. These are shown in Fig. 24b
and 2-Ic,

The variations of the characteristic impedance of full rn-derived low-
pass r-sections are generally similar to the curve shown in Fig. 23.
A comparison of the characteristic impedance curves of different
in-derived filter sections is shown in Fig. 25.

In establishing an rn-derived T-section the parameters are so re-
adjusted from the constant-k values that the rn-derived section charac-
teristic impedance is identical with the constant-k section characteristic
impedance. This requires that

=

II

	
Zik+	 if Z 1 ,4 = mZlk

4m

as may be seen from the following algebraic steps:

	

Z.T. = ZO TJC (imposed condition)	 (89)

Reference to equation (5) will show that, if Z 1 ,,, = mZlk:

	

V( MZk ) Z2- + 
(mZlk)2 

= VZIkZ2 +	 (90)

Squaring both sides of the above equation and solving for Z2m:

1—rn2 	 Z	
(91)z2in=	 z

4m	 rn
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resonance its i mpedance is theoretically

equal to zero and the attenuation becomes

in fi nitel y large. The frequency at which

these phenomena occur is know as f,
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One of the most 
important characteristics of a full rn-derived section

z its theoretical infinite attenuation near the point of cut-off.

Frcquene8 of Infinite Aten.ua1iOl. Since Zik and Z2 k are different

tYpos of reactances, the shunt arm of Fig. 2-1a will, Lit some frequency,
become resonant. If the shunt arm is in

ta)

mL

Ljk

2 C 	 2C

­4r—j^ ^^_
IM

LA

(c)

	

Fin. 21 rn-Derived Liter see-	
Fm. 25. Characterist i c impedance curves

	

tions, with parameters aped- 	 for various low-pass rn-derived Liter see-

	

Led in terms of constant-k	 tiona.

'filter-section parameters.

and it may be calculated in any particular case by first setting the

left-hand member of equation (91) equal to zero and then solving

for f. In a low-pass, m-derived filter section:
.1

1
2i 2•J111j1111 LlkC2k

(92)

= Ir VLkC2k

The cut-off frequency of the rn-derived section is equal to the cut-off

frequency of the constant-k section from which it is derived. (See
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Table V, page 485.) In the constant-k, low-pass section:

f. 
=	

1 - [See equation (55).]

Therefore

fc
(93)

frorg which

M = .ji -	 (for low-pass section)	 (94)

In a similar manner it may be shown that for a high-pass, rn-derived
filter section:

and
	 /00 = f0Vi::-;	 *	 (95)

in = Cl (for high-pass section) (96)

Equations (94) and (96) illustrate the manner in which f and frdetermine the value of m that should be employed if theoretical infinite
attenuation is to obtain at a specified 

/00. If, for example, a 1000-cycle
cut-off frequency, low-pass filter is to have infinite attenuation at 1050
cycles, m is evaluated in accordance with equation (94). Thus:

M	 ji - (
1000)2

= 0.307 approximately(1050

The nearer f0,. is to f, the lower will be the value of m. The reverse
order of reasoning indicates that the lower the value of rn, the sharper
will be the cut-off. These facts are illustrated graphically in Fig. 26.

General Method of Analyzing tn-Derived Filter Section Operation.
Certain aspects of rn-derived filter section operation may not be appar-
ent from the cursory treatment that has been presented. The exact
manner in which the phase shift and attenuation vary with respect to
frequency can be obtained by subjecting the filter section to the "gen-
eral " method of analysis. This method is summed up in equation (39),
which, for convenience, is restated below.

ZI
4 +j$ = 2logf [ tj i + 

12 + 11	 (39)

For the sake of illustration a low-pass, rn-derived, T-section will be
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analyzed. From Fig. 24b it 18 evident that

Z 1 rn = jwmLlk

and
r 1—m2	1

Z2rn=jIW' I=Z2
CIL	 4m	 flflC2kJ

Therefore, in the present case,
- 

4Z2	
4 1 [ w (1—m

2 )	 1
L	 4m	 wmC

2 2r cW m j2k

- )L1kC24 - 4

The above expression is actually a complex number, the associated
angle of which is 1800 or 00, depending upon whether [w2 (1 - m2)LjkC2k]
is less than or greater than 4. The foregoing statement follows directly

m	 m

4.011 1111 	 l	 I	 I

Frsqu.ncyIn - u&t
fc

Fia. 28. Attenuation cha.racterietice of two rn-derived low-pass Sitar sections compared
with those of a constant-k low-pass Sitar section,

from an inspection of Z 1 /4Z2 wherein all the factors are expressed in
polar form. Let w be arbitrarily reckoned in 1/V'L lkC2k units. It
sbou]d be observed that in this method of analysis the cut-off angular
velocity or frequency is not necessarily anticipated by the choice of this
convenient unit. Thus, for w = 1/i/L1kC24 radians per second, equa-
tion (39) reduces to

a+ j$ — 2l.[( -	 4 +( -	 +
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For a particular value of m it becomes a simple matter to evaluate a
and 6 at any desired frequency. The calculations for m = 0.6 at
various frequencies are shown in Table V. The variations of attenua-
tion are represented graphically in Fig. 26 together with certain other
attenuation curves. An inspection of column (9), Table V, will reveal
the irregular manner in which the phase shift varies with frequency.

Problem 16. Graph the variation of attcjation with respect to frequency of
a low-pass, rn-derived T-section in which m = 0.40. The frequency may be indicated
in terms of 11 1L1kC2k units of angular velocity. (See Table V, page 485.)

Comparison of Attenuation Characteristics. Constant-k and in-
derived filter sections are sometimes worked in cascade because of the
complementary nature of their respective attenuation characteristics
It has been shown that the attenuation of a constant-k, low-pass section
is zero at cut-off frequency and that it increases gradually with increases
of frequency above cut-off frequency. (See Fig. 12.) A similar situa-
tion holds for the constant-k, high-pass section except, of course, for the
fact that the attenuation increases as the frequency decreases from the
cut-off frequency. The attenuation characteristics of in-derived sec-
tions are radically different in character from those of corttant-k sec-
tions. The differences are shown graphically in Fig. 26 fur low-pass
sections. Similar curves can be determined for high-pass sections.

It is plain from an inspection of Fig. 26 that a constant-k sec ion can
he combined with one or more in-derived sections to give high attenua-
tion near cut-off as well as high attenuation in other regions of the stop
band. In general, an in-derived section by itself will not give high
attenuation in regions which are too widely removed from the point of
theoretical infinite attenuation. (See Fig. 26.)

General Design Procedure. Filter sections are usually designe&for
a particular characteristic impedance and a particular cut-off frequency
(or frequencies). Theoretically, at least, these conditions can he met
accurately and straightforwardly. Usually certain attenuation require-
ments must, also be met. These attenuation requirements are gener-
ally met by a method of successive approximations.

The first step in elementary filter design is the determination of the
inductances and capacitances to be employed in a constant-k section.
These values are found from the basic design equations.

The second step is the evaluation of the ni-derived, terminating half-
section inductances and capacitances. These values follow directly
from the parameters of the constant-k'section and the selected value of
in. It is assumed here that the terminating half sections are required
primarily for impedance-matching purposes, in which case the value of in
will generally be 0.6.
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If a sharp cut-off section is required, a full rn-derived section, wherein
in is about 0.2 or 0.3, can be employed. The evaluation of the induct-
ances and capacitances to use in the full rn-derived section constitutes
the third seep in the general design procedure.

_m	

Ii—rn2I'e lk I
Ilk	 Imr-L 	jjLi

CA m+T
Terminating	 I	 constant-1	 Sharp cut-off	 TerminatIng

mdadved sctlofl 	 hausection
m-d.rIvsd

½k(1+m)	 (i+rn')	 (rn'+m)

Ltk 

T	 m'C5k
Csk Cs',

Fin. 27. A composite low-pass filter together with its equivalent circuit.

The fourth step is the predetermination of the attenuation characteris-
tic of the composite filter and checking this against the actual attenua-
tion requirements. Adjustments may then be made in the number or
in the type of sections in order to meet tie attenuation requirements in
the most economical manner.

The method of combining a constant-k section, a full rn-derived
section, and in-derived terminating. half sections to form a low-pass
filter is illustrated in Fig. 27a. It will be noted that the assembly
shown in Fig. 27a is reducible to that shown in Fig. 27b.

PROBLEMS

17. Consider a a--type filter section in which the full series arm, Z1, consists of
a 100-millihenry inductance coil th resistance of which is 50 ohms. Each of the
two shunt arru.s consists of a 03-AI condenser the resistance of which is negligibly
small.

(a) Find the open-circuit impedance, Z, and the short-circuit impedance, Z, of
the section at 500 cycles.
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(kn Find the characteristic impedance at 500 cycles, at 1.300 cycles, and at 2000
cycle.

19. Each of the series arms (Z 1 2) of a symmetrical T-sect ion consists of a eon-
denser the capacitance of which is 0.6 pf and the resistance of which is negligibly
small. The shunt arm (Z5) is a 200-mi]lihenry inductance coil the resistance of
which is 60 ohms,

(a) Find the characteristic impedance and the propagation constant of the section
at 200 cycles.

() Find the characteristic impedance and the propagation constant of the section
at 600 cycles.

19. The characteristic impedance of a filter section is to he measured. The
n.eauring device is a 1-B Western Electric impedance bridge which indicates the
R component of the impedance directly and the X component in terms of +L or —L.
Plus L readings indicate thM -V XL 2fL, and negative L readings indicate
that X X - 2rf(—L). With the output terminals of the section open-circuited
the bridge readings are: R = 10 ohms and L = —190 millihenrys at 400 cycles.
With the output terminals of the section short-circuited the bridge readings are:
R 20 ohms and L - +250 millihenrys at 400 cycles. Find the characteristic
impedance of the filter section at 400 cycles.

20. The series arms of a T-section are each of 100 ohms capacitance. The shunt
arm is a 100-ohm inductive reactance. (a) Determine the characteristic impedance
of this section for the constants given. (bi Also calculate Z'y' for half the frequency
at which the constants are given. (c) Is the frequency for the reactances given
within the pass or stop band? (d) Answer for one-half the frequency at which the
reactances are given. (e) Calculate the attenuation in nepers for the two fre-
quencies. (f) What can you say about the characteristic impedance in the pass
band as compared with the attenuation band for an ideal prototype section? (g) Is
this also true of ideal prototype i-sections?

21. A resistanceless, constant-k, low-pass T-section has a cut-off frequency of
10,000 cycles and a zero-frequency characteristic impedance of 800 ohms. Evaluate
the phase shift at 1000, 4000, 7000, and 10,000 cycles. Evaluate the attenuation
at 11,000, 15,000, 20,000, and 25,000 cycles. Plot phase shift in degrees and at-
tenuation in decibels against cycles per second.

22. Consider a symmetrical i--type section in which the inductance of the full
series arm is 0.10 henry and the capacitance of each of the two condensers which
go to form the 7-section is 0.3 ;if.

(a) Neglecting the resistive components of the circuit elements, find the propaga-
tion constant at 500 cycles, at 1300 cycles, and at 2000 cycles.

(b) 'What is the attenuation in decibels at each of the three frequencies referred
to above?

23. (a) What is the decibel level of 0.00001 watt with respect to a I-milliwatt,
reference power level?

(b) What is the decibel level of 6 watts with respect to a 1-milliwatt reference
power level?

24. What is the cut-off frequency of a low-pass, constant-k, 7-type filter section
in which the inductance of the full series arm is 20 henrys and the capacitance of
each condenser is 8.0 f? What is the characteristic impedance of the section
at 200 cycles?

26. A T-seetjon Liter has series arms Z 1 .'2 - j100 ohms and its shunt arm
—51000 ohmp.

(a) Calculate the characteristic impedance.
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• (b) Calculate the attenuation in decibels and the phase shift in degrees.
(c) Are the reactances of the section for a frequency within the pass or stop band?
(d) Calculate the characteristic impedance of the section for 5 times the frequency

for which the constants are given.
(e) Calculate the attenuation in decibels and phase shift for part (d).
26. A T-section filter has its series armZ I = —jlOO ohms and its shunt arms

2Z	 j500 ohms.
(a) Calculate the characteristic impedance.
(b) Calculate the attenuation in decibels and the phase shift in degrees.
(c) Are the reactances given for a frequency within the pass band or stop band?
(d) Repeat parts (a), (h), and (c) for a frequency of one-fifth of that for which

the impedances are given.
27. Nine T-sections each having series arms of Z 1/2 j500 ohms and shunt

arms Z2 = — j200 ohms are connected in series or cascade. If the input voltage is
100, find the output voltage of the ninth section and the output current, assuming
characteristic termination.

28. Find the circuit element values of a high-pass, constant-k, T-type filter section
which is to have a cut-off frequency of 5000 cycles and an infinite-frequency char-
acteristic impedance of 600 ohms. Repeat for a T-type section. Draw circuit
diagrams showing the configurations of the circuit elements and the values of each
in millihenrys and microfarads.

29. A generator having an impedance of 8001 ohms is to be connected to a load
impedance of iOO/ through a half-section of the kind shown in Fig, 21, page 475,
Find the value of Zjk/2 (the series arm impedance) and of 2Z 25 (the shunt arm
impedance) which will properly match the generator to the load. Zi*/2 is arbitrarily
taken as inductive.

30. Design a high-pass, rn-derived, T-type filter section which will have a cut-off
frequency of 5000 cycles, an infinite-frequency characteristic impedance of 600 ohms,
and an infinite-attenuation frequency of 4,500 cycles.

31. Design rn-derived half sections which will properly match, at 800 cycles, a
low-pass, constant-k, T-type section the full series arm of which is 0.30 henry and
the full shunt arm of which is 0,03 lAf. The value of m is to be taken as 0.60.

32. Consider an ,n-derived, low-pass, T-section in which Z i. is mL lk and Z 2,,, con-
sists of (1 - n1 2/4m)Ljk in series with mC2k. Let rnL k be known as
(1 - m 2 47nL lk be known as L2., and mCk be known as C. Show that the
cut-off frequency, namely, l/1-V'L1kC2k, can be written as 1/tiV(Ljm + —4Z12.) (C2.)].

33. Refer to the composite low-pass filter shown in Fig. 27. The requirements
to be met are: (1) zero-frequency characteristic impedance of 600 ohms, (2) cut-off
frequency of 5000 cycles, (3) variation in characteristic impedance of not more than
30 ohms over the lower 80 per cent of the pass band, (4) attenuation of 40 decibels
between the limits of 5242 and 10,000 cycles.

(a) Calculate the values of Llk and Ca.
(b) Design terminating hall sections on the basis of m — 0.60.
(c) Design the full rn-derived section to have theoretical infinite attenuation at

5242 cycles.
(d) Make a graph of the attenuation of the composite filter between the limits of

5242 and 10,000 cycles and compare the results with the attenuation requirements.
Use the three attenuation graphs shown in Fig. 26, page 433, at f/fe — 1.05, 1. 10,
1.15, 120, 1.25, 1.30, 1.35, 1.40, 1.45, 1.50 1.75, and 2 to obtain the composite
attenuation graph.	 -



chapter X11 Symmetrical Components

Symmetrical components furnish a tool of great power for analyti-
cally determining the performance of certain types of unbalanced elec-
trical circuits involving rotating electrical machines. It is particularly
useful in analyzing the performance of polyphase electrical machinery
when operated from systems of unbalanced voltages. Although it can
be used to solve unbalanced static networks like those in Chapter IX,
such application will in general be more cumbersome and laborious than
the methods already considered. For unbalanced networks containing
rotating machines, however, the method of symmetrical components
provides the only practicable method of accounting for the unbalanced
effects of these machines and is widely used in practice. It is also con-
venient for analyzing some types of polyphase transformer problems.

The method of "symmetrical components," in its most useful form,
is founded upon Fortescue's' theorem regarding the resolution of un-
balanced systems into symmetrical components. Although the present
discussion will confine itself to three-phase systems, any unbalanced
polyphase system of vectors can be resolved into balanced systems of
vectors called "symmetrical components."

Fortescue's theorem, applied to a general three-phase system of
vectors, is that any unbalanced three-phase system of vectors can be
resolved into three balanced systems of vectors, namely:

1. A balanced system of three-phase vectors having the same phase
sequence as the original unbalanced system of vectors. This balanced
system is called the positive-sequence system.'

2. A balanced system of three-phase vectors having a phase sequence
which is opposite to that of the original unbalanced system of vectors.
Thisbalanced system is called the "negative-sequence system."

3. A system of three single-;phase vectors which are equal in mag-
nitude and which have exactly the same time-phase position with
respect to any given reference axis. This system of single-phase vectors
is known as the zero-sequence or uniphase system.

A general proof of the resolution theorem will not be given because
a little experience with the method will soon convince the reader that

Fortescue, "Method of Symmetrical (Jo-ordinatee Applied to the Solution of
Polyphae Networks," Transathons, A.LE.E., Vol. 37, 1918.

489
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the theorem as stated is correct. In this respect Fortescue's theorem
is similar to Fourier's theorem regarding complex waves. In Chapter
VI it is shown that any complex wave may be resolved into definite
harmonic components by the Fourier method. The ultimate proof of
the theorem rests upon the fact that the components thus determined
can be synthesized to form the original complex, wave. In a similar
manner it will be shown that any given unbalanced three-phase system
of vectors may be resolved into the three balanced systems outlined
above and that the composition of these balanced systems yields the
original unbalanced system of vectors.

Ye2

Reference	 Vao

V12	 A2	 Vt, 
ba

(c) Negative-sequence vectors.	 (d) Zero-sequence vectors.

no. 1. Original set of three-phase vectors together with their symnetrical compon a.s.

The Original Unbalanced System of Vectors. Any number of vec
tore up to and including three may be considered as an unbalanced sys-
tem of three-phase vectors. The vectors that form the unbalanced
system may have any specified magnitude (including zero) and may
possess any specified phase positions with respect to one another.
In Fig. la is shown a set of three unbalanced vectors that will later
be resolved into their symmetrical components. If the vectors that
form the original unbalanced set come to us merely as three specified
vectors, they can arbitrarily be assigned subscripts a, b, and c in the
order shown in Fig. la. Thus the original vectors V, V, and Vç are
arbitrarily assigned the abc phase sequence. (See Chapter IX, pages
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383-384.) Although the vectors shown in Fig. la are labeled as volt,.
ages, the proposed resolution applies equally well to a system of
current vectors.

Owing to the fact that the symmetrical components will have to carry
an additional subscript to designate the system to which they belong,
single-subscript notation will be employed in connection with the original
vectors wherever this can be done without loss of clarity. For complete
specification, the positive circuit directions of the original three-phase
voltages or currents must be indicated on a separate circuit diagram.
The importance of complete specification will become apparent when
numerical problems are considered.

The Positive-Phase Sequence System. As previously stated, the
original unbalanced system of vectors is to be resolved into two balanced
three-phase systems and one uniphase system. It will be shown pres-
ently that the balanced three-phase systems must be of opposite phase
sequence. Therefore one balanced system has the same phase sequence
as the original three-phase system and the other has a phase sequence
opposite to that of the original system. 	 -

The balanced system of three-phase vectors that has the same phase
sequence as the original system is called the positive-sequence system.
If the original vectors are assigned the phase sequence of abc, then the
phase sequence of the positive-sequence vectors is abc as shown in Fig. lb.
The positive-sequence vectors are completely determined when the
magnitude and phase position of any one of them is known. A method
of evaluating any one of the positive-sequence vectors in terms of the
original vector val-es will be given presently. The positive-sequence
vectors are designated as

Vai, Vbl, and Vj

The subscript 1 indicates that the vector thus labeled belongs to the
positive-sequence system. The letters refer to the original vector of
which the positive-sequence vector is a component part.

The vectors of any balanced three-phase system may be conveniently
related to one another with the aid of the operator a. The general
properties of this operator are considered in Chapter IV, page 121-122.

al is a unit vector 120° ahead of the reference axis. a 2 1 is a unit
vector 240° ahead of the reference axis. Thus:

al t"20 = — 0.5 +iO.866	
(1)a2 1	 j24O = — 0.5 - jO.866 I

The operator a applied to any vector rotates that vector through 1200
in the positive or eunterclockwise direction. The operator a 2 applied
-32
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to any vector rotates that vector through 2400 in the positive direction,
which is, of course, equivalent to a rotation of 120° in the negative
lirection.

If, for example, V01 has been determined, the positive-sequence system
ay be written simply as

V01	 V01	 1 the positive-sequence
= Val/ - 1200

V, 1 aV01 = ,	 f system of vectors 	
(2)

The Negative-Phase Sequence System. The balanced system of
three-phase vectors which is opposite in phase sequence to that of the
original vectors is called the negative-sequence system. If the original
vectors have a phase sequence of abc the negative-sequence vectors
have a phase sequence of acb as shown in Fig. ic. Since the negative-
sequence system is balanced, it is completely determined when one of
the voltages is known. The negative-sequence vectors are designated as

Va2 , V, and V2

Subscript 2 indicates that the vectors belong to the negative-sequence
system. The a, b, and c subscripts indicate components of V8, V1,

and V respectively. If V02 is known, the negative-sequence system
can be written in the following form:

V02 V02	 1 the negative-sequence
Vb2 aV02 - V02 /240°

V 2 a2 V02 =	 /- 120° I system of vectors

V02 , Vb2, and V02 are shown graphically in Fig. Ic.
The Zero-Phase Sequence System. The remaining system consists

of three vectors, identical in magnitude and in time phase, as shown in
Fig. id. These vectors form what is known as the uniphase or the
zero-sequence system, and have special significance in certain physical
problems. For the present it will be sufficient to think of the zero-
sequence vectors as components of the original vectors V0, Vb, and V.
The zero-sequence vectors are designated as

V,,o, V, and V

Since the above voltages are equal:

V.0 V00 the zero-sequence
VbQ V.0

= v f system of vectors	
(4)
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Graphical Composition of Sequence Vectors. It is evident that

(Va 1 + Va2 + V00)

(Vb j + Vb2 + V)
and

(V1 + V,:2 + V10)

form a three-phase system of voltages which, in general, is unbalanced.
The above-indicated compositions are carried out graphically in Fig. 2,
employing  the individual voltages contained in Figs. ib, ic, and id.

Fro. 2. Illustrating the manner in which the sequence components combine to form
V. V5. and V.

The resultant system shown in Fig. 2 is identical with the unbalanced
system shown in Fig. icr. For the particular case considered it is plain
that

V. = Va i + Va2 + Va0 	(5)

V1 = V1 + V62 + V	 (6)

V,: Vc + V,:2 + Vc	 (7)

In terms of the operator a, the above relations may be stated as

V. = V 1 + Va2 + V 0	 (8)

V1 = a2V41 + &\702 + V, 0 	(9)

V - &V. + a2V + V	 (10



494	 ALTERNATING-CURRENT CIRCUITS	 Ch. XI!

An inspection of equations (8), (9), and (10) will show that the original
system of vectors can be completely specified in terms of V 01 , V 21 V001
and the operator a. The next step in the study of symmetrical com-
ponents is the evaluation of V 1 , V02 , and V00 in terms of the original
vectors V0 , Vb, and V.

Evaluation of V. I. The resolution of an unbalanced system of vectors
into its symmetrical components is essentially a geometric process, and
different geometric methods have been devised whereby the resolution
can be effected. However, none of the geometric methods thus far
devised possesses the neat simplicity of the complex algebra method
given below.

Before proceeding with the algebraic method it is well to understand
that certain operations are performed solely for the purpose of obtaining
the combination (1 + a + a 2) which is equal to zero. Various simpli-
fications may thus be made when quantities can be so collected as to
possess the coefficient (1 + it + a2),

If equation (9) is multiplied by a the result is:

aVb a3 V01 + 42V + aV,0

or, since a3	1,

	

aVb - V01 + a2V02 + aV	 (11)

If equation (10) is multiplied by a2, the result is:

a2V4 a3Vj + a4V 2 + a2V0

or, since a4	a,

	

a2V - V01 + aV02 + a2V	 (12)

Adding equations (8), (11), and (12) yields

V + aVb + a2V - 3V01 + (1 + & + a2 )(V02 + V)

whence:

V01 = (V0 + aVb + a2V) *(V4 + Vb/120° + V/240°) (13)

Geometrically speaking, the above equation means that V01 is a vector
one-third as large as the vector which results from the addition of the
three vectors V, Vb /120°, and V 1240°.

Example L If the vector* shown in Fig. la are:

V, - 10 L32o, '4 - 30/ —60', and V - 15/145° units

- 1(10 ,'30° + *30 /-60° + a215 L)

- 11o/30°+30/60°+15/251

- 12.42 +512,45-17.	 ounzti
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Since Vôi - V /-120° and V, 1 - V, /+120°, the positive-sequence system of
vectors becomes:

V41	 17.6/450, Vbl - 17.6 1- 75°, and V41	 17.6 11650 units

The above results are indicated graphically in Fig. lb.

Evaluation of V42 . The negative-sequence component of V02 can be
evaluated in a manner almost identical with that given above for the
evaluation of V. I . It is simply necessary to study equations (8), (9),
and (10) with a view toward eliminating the V31 and V00 terms and at
the same time retain the V.2 terms. The desired results can be ob-
tained by multiplying equation (9) through by a 2 and equation (10)
through by a. Equation (9) multiplied by a 2 reduces to

a2V	 aV3, + V32 + a2 V30	 (14)

Equation (10) multiplied by a reduces to

	

aV0 = a2 V31 + V32 + aV00	 (15)

Adding equations (8), (14), and (15) yields

V. + a2V5 + aV3 = 3V32 + ( 1 + a + a2 ) (V31 + V30)

Since (1 + a + a2) 0,

V32 = (V3 + a2Vb + aVe) = (VO + V5 /400 + v. /1200) ( 16)

V32 is therefore a vector one-third the magnitude of [ V0 + ( V5 rotated
through +240°) + ( V4 rotated through +120°)1.

Example 2. If 	 - i0 /',V = 30/-6O°, and V4 = 15/o° units:

V42

(10	 + 30 11W + 15)
= —7.55 - j3.32 8.25,/ —156 20 units

V.2 for this particular case is shown in Fig. ic together with V 62 and V42. V62
V.2 /120* and V42 V2 /-120°.

Evaluation of V. The direct addition of equations (8), (9), and
(10) will show that:

V,,(1+ a2 + a) + V32(1+a+ a2) + 3V
or

VQ0 =*(VU+Vb+V4)	 (17)
The zero-sequence component is simply a vector one-third as large as
the vector obtained by adding V4, V, and V.
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Example S. If V. - 10V 30/6O°, and V, - 15 LIE units:

V40	 (10 13W +30/-60' + 15/1450)

3.79, 5413 - 5.60 /-47.4' units

The above value of V,0 together with corresponding values of VbO and V00 are shown
in Fig. id.

Example 4. (a) The results obtained in the foregoing examples can be checked by
comparing the complex expression for (11,1 + V, + V,0) with the complex expres-
sion of the original vector V0. The results of the foregoing examples are tabulated
below.

V,1	 12.42 + 512.45 - 17.6 /45' units

V,2 = -7.55-53.32 =8.25/-156.2'units

V,0 3.79 -54.13 = 560/-474'units

(V,1 + V02 + V, 0) = 8.66 +55.00 = 10 LE = V,

(b) V = a217.6L	 = 17.6 / - 75 0 = 4.56 -517.0 units

a8-25 /-156.2 	 8.25 ./-36.2o. =6.66 -j4.87 units

Vbo = 5,60 /-47.4' = 3.79 - 54.13 units

(V 1 + V2 + Vôo) - 15.0 -528.0 = 30.0 /_-60' =

(c) V1 = a17.6 /45' = 17.6 /165' = -17.0 + 54.56 units

V,2 = a28.25 /-156.2° 8.25 /83 . 80 = 0.89 +18.20 units

= 5.60/-47.4' 3.79 -j4.13 units

(V, 1 -I- V,2+ V,o) - -12.32 +j8.63 = 15L! 	 -

Problem 1.. Given the following three vector voltages: V, = 150
V = 86.6 /-o', and V, = 866 /° volts.

(a) Find the symmetrical components of V. and check the results by adding
Val, V.2 . and V,0.

(b) Evaluate Vb and V 0 in terms of the symmetrical components of V, found
in part (a).

(c) Draw a vector diagram illustrating all symmetrical components.
An.s. (a)V,j100/0',V,so0,V,o50LQvolts.

Absence of Zero-Sequence Components. The zero-sequence com-
ponents are non-existent in any system bf voltages (or currents) if the
vector sum of the original vectors is equal to zero. [See equation (17)]
This fact may often be used advantageously in making numerical calcu-
lations because the original system of vectors is then directly reducible
to two balanced three-phase systems of opposite phase sequence. An
absence of zero-sequence components may have important physical
significance in the analysis of practical problems. Some of the prac-
tical problems in which symmetrical-component analyses are used
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successfully will be referred to briefly in the following paragraphs and
one of these problems will be treated in detail in the next chapter.

Three-Phase, Line-to-Line Voltages. The line-to--line voltages shown
in Fig. 3 for either the wye or delta are:

Vcth =	 - V)	 (18)

Vb	 (Vbn - V)	 (19)

Vco = (V - V 17 )	 (20)

For the delta the voltages to neutral are those of an equivalent wye.
Regardless of the degree of unbalance in the line-to-line voltages

Vab + VbC + Vc4 (V0 - Vb) + (Vb - V)

+ (V ,,n 	 V,) = 0 (21)

The zero-sequence components of the line-to--line voltages are non-
existent because

Va j = V ,:0 = Vca =(Vab + Vc + Vca) 0	 (22)

Therefore three-phase, line-to-line voltages may be represented by a
positive-sequence system and a negative-sequence system of voltages
as represented by the voltage vector diagrams of Fig. 3. It should be
realized that Fig. 3 shows a specifi c case. As has been previously stated,
the relative magnitude of the positive: and negative-sequence voltages
and the angle between V 1 and V 2 may take on an infinite number of
different values in the most general case. The fact that unbalanced
line-to-line voltages may be resolved into two balanced systems of
opposite sequence is of considerable importance in the analyses of three-
phase rotating machinery. When unbalanced voltages are applied to a
three-phase induction motor, for example, the operation of the motor
may be analyzed on the basis of balanced systems of voltages of opposite
phase sequence.

The positive-sequence voltages and negative-sequence voltages shown
in Fig. 3 are obtained in any particular case in terms of the vector values
Of V, V, and V as outlined in equations (13) and (16). In terms
of the present notation

Va.,j	 (Vcth+Vbc/l20°+Vca/l20)	 (23)

	

*(Vab + VbC /120 + Vca /1200 )	 (24)

It will be observed from equation (23) that the positive-sequence
component of the base vector (V.b in this case) is obtained by advancing
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(through 120°) the vector which lags the base vector and retarding
(through 120°) the vector which leads the base vector. Reversed opera-
tions are employed to secure the negative-sequence components as

b

C

Ivan

V

Vbc,
Posiflve.sequen

voltages

L	 'b	
Lb

Vbi	

Ical

 

'bt	 .	 'bcl	 144
PosItJs-sequsnce

currents

4V152

^b2	

'42

Ibcz	 *b2
P4rgative.seqoence

Vvoltages
I tIvs•se4UeflCs

currants

yr52	

Ic!ClL8

Fla- 3. Positive and negative nysterna of voltages and currents for a specifio
three-phase system.

shown in equation (24). If the general scheme is understood, neither
changes in notation nor reversals of phase sequence (of the original
vectors) can cause confusion.
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The statement following equations (23) and (24) and the equations
themselves are based upon a line-voltage sequence of ab-'bc--ca where
Vb, actually lags the base vector V. Occasions arise where the formulas
as given by equations (13), (16) and (17) should be applied as labeled
even though the vector of phase b does not lag but actually leads the
base vector. An illustration involving currents follows. Assume the
impedances for the wye load shown in Fig. 3 are Z, 	 5.77/, Z,,, =

and	 10/190°. If the applied line voltages are V b. =

100, V, 1,	 100/-0°, and Vac = 100/1500 solution will yield

voltages and currents as follows:

= 57.7/	 V, = 577/-120 0 	V,,, = 57.7/1200

Ina = 10/	 = 5,77/1500	 I,c = 5.77/-150°

Inspection of these results shows the voltage sequence to be a-b-c, and
this might be the starting point and called the positive sequence system.
The actual current sequence is a-c-b. If the currents in this case are
resolved into their symmetrical components, that in phase b should be
advanced 120° as equation (13) would indicate even though Tnb actually
leads ma which might be taken as the base vector. Otherwise the system
of positive sequence currents would not correspond to the positive
sequence system of voltages. In general it is customary at the start to
assume a positive sequence of a-b--c and initially label the vector which
lags the reference vector so the sequence is a-b-c. Then the positive
sequence voltage or current in any subsequent calculations will be
obtained by advancing, that is, rotating counterclockwise 120°, the b
phase voltage or current regardless of whether it actually lags or leads
the base vector. This is necessary to make all positive sequence systems
of voltages and currents correspond. Otherwise a negative sequence
system of currents may be the one to correspond to a positive sequence
system of voltages, and this would lead to confusion.

Problem 2. A three-phase system of line voltages, V,, V, and V, are anbal-
anced to the extent that V.thL = 4000 /	 and V,th2 = 2000/180 volts.	 is

of course, equal to zero.)
(a) Draw a common-origin vector diagram illustrating the positive-sequence

voltages and the negative-sequence voltages of V, Vb.,, and V,,.
(b) Find the magnitudes of the three voltages V,,, Vbi , and V.

Ans.: (b) 17.6 = 3464, V	 3464, V, = 6000 volts.

Phase Voltages of Wye-Connected Loads. Reference to equation (21)
will show that the phase voltages, V,,, V, and Vcn, may possess any
vector values whatsoever and yet the vector sum of the line-to-line
voltages is zero. In general, however,

Va,, + Vb,, + Va,, 96 0
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The individual phase voltages will, therefore, generally possess zero-
sequence components even though these components are absent in the
line-to-line voltages. Under balanced conditions the phase voltages
will, of course, possess no zero-sequence components.

Example 5. In Fig. 3, let.

v = 10	 V = 20/-90' V	 10/	 volts

Under these conditions

V0b = (10 +jO) - (0 -f20) 10 +j20

V C 	(0 f20) - (-7.07 + j7.07) = 7.07 - j27.07

V = (-7.07 +j7.07) - (10 +jO) = -17.07 +j7.07

= [(10 +j20) + (7.07 -j27.07) ± (-17.07 +17.07)1	 0

V '. " 0 = I I (10 +10 ) ± (0 -j20) + (-7.07 +fl.O7)f
= (2.93 - j12.93) = 0.98 - j4.31 volts

It will be noted that triple subscripts have been used in the above
example in connection with the component voltages V,, 0 and V,,0.
Where both line-to-line and phase voltages are involved in the same
discussion, triple subscripts of this kind may he used advantageously.
These subscripts tell whether line-to-line voltages or phase voltages are
being considered, they specify the positive circuit direction f the
voltages, and they designate the order of the system to which the
component voltage belongs.

Delta-Wye Voltage Transformations. In symmetrical-component
analyses it is very often particularly tcIvaitageous to consider delta-
connected systems on an equivalent Wye hasil. If the delta-connected
load shown in Fig. 3 is to he analyzed on an equivalent wye basis, the
load impedances are ist converted to their eqiiivalcut wye vi1ues in
the conventional manner arid then the line-tn-hue voltages are resolved
into their symmetrical components as shown in equations (23) and (24).
The remaining problem is that of finding the equivalent v ye voltages in
terms of the line-to-line voltages.

For a-b-c sequence

Vb ,, 1 = Va ,, 1 
/- 1200 and Va,, - Yb ,, I = V0b1

It follows that
Van 1 - V,, 1 /__1200 = V0b1

V 1 [I - (-0.5 - jO.866)] = V01

Hence
Vai, i	 V061

V0,,1=	
.	

= _/_ 3O° 	 (25)
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The complete positive-sequence system of voltages is shown in Fig. 3.
In a corresponding manner it may be shown that

	

V0,21
3O	 (26)von2 = =

The complete negative-Sequence system of voltages is shown in Fig. 3.
Equations (25) and (26) are useful in the analysis of either wye- or

delta-connected loads where the line-to-line voltages are specified. They
are also important in the analysis of delta-wyc transformer banks like

that shown in Fig. 4.

a	 a	 a'	 a'

Fic. 4. Wye-delta transformer bank. The windings of transformer a are a'b' and an,

transformer &, b'c' and bn, and transformer c, c'a' and cn.

It should be noted in passing that V,, 0 may possess a finite value
even though the zero-sequence components of the line-to-line voltages
are of zero value. The fact that V 0 cannot be evaluated in terms of
the line-to-line voltages presents no serious handicap as will be shown
later, but it does preclude the possibility of immediately evaluating the
voltage to neutral (V0 ,. = V0 + Vn2 + .Vano).

Problem 3. In the wyc-delta transformer bank shown in Fig. 4, the operation of
the three transformers, and the polarities of the windings are such that

= nV,,	 (transformer a)

= nV	 (transformer b)

V'' = nV,,	 (transformer c)

where n is the voltage transformation ratio of the transformers. The primary line-to-
line voltages are unbalanced in magnitude to the extent that V 1 = 4000°
and V .,	 10001-90° volts. (V 	 and V,,a2 are, of course, written with respect
W a common reference axis.) The sequence of the primary line-to-line voltages is
assumed to be ab-ba--ca, and V,,,, 5 is to be taken as zero.

(a) Find the magnitude and vector position of V and of V.
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(5) If the trantorrnation ratio of the transformers is 10, find the magnitude

and vector position of 	 and of V..
An,.: V	 490/-65.!5°, V	 3173/170.94' volts.

V,.	 28,230/-4.l4°, V. = 2 .3,S00/j35.95 volt,.

Problem 4. Find the relative vector positions of Vb and Va of the vve-.delta
transformer hank of Fig. 4 if V	 0 and V,, 0 = 0. Find the relative vector
positions of V and	 under the same conditions. (The sequence of the supply
voltages V,,,, V, and V, is assumed to be a6-be-ca.)

An,.: V,,'b' lags V,e, by 30°; Vb' lag! Vb, by 30°
The supply voltages are balanced and the positive-sequence voltage vector oLaramof Fig. 3 applies directly since 	 = nY,,,,, and Vb , c, = nV,,,.

Three-Phase, Three-Wire Line Currents and Associated Delta-Phase
Currents. The line currents of a three-phase, three-wire system can
contain no zero-sequence components regardless of whether the system
is vye- or delta-connected. Reference to the wye-connected load given
in Fig. 3 will show that at the junction n

I. + I + I 0
Therefore,

TaO = (I + I + I) = 0	 (27)

Reference to the delta-connected load given in Fig. 3 will show that

Ia = Ia, - lea	 (28)

Ib 	 The	 Iab 1	 (29)

I., = I - 'bc	 (30)

Hence

'a + 'b + I = (Li' lea) + (I6 - Jab) + (lea - I) = 0 (31)

regardless of the degree of unbalance of the individual phase currents,
Jab, 'be, and 'Ca the ector sum of the line currents, I. I, and I, is
equal to zero and therefore no zero-sequence components are present
in the line currents.

'1 he individual delta-phase currents will, in general, possess zero-
sequence components since (Jab + 'be + I) is, in general, not equal
to zero. The zero-sequence components of the phase currents in a
delta-connected .svstem cannot he evaluated in terms of the line currents.

For a-b-c sequence of line currents,

'abi - 'cal = 'at and 'cot	 10b1L1200
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Employing the same type of derivation as that employed in the deri-

vation of equation (25), it is easy to show that

IaMI 1 - (-0.5 +f0.866)I =

I-It /300'ubi =	 (32)
.\ 3

A complete positive-sequence system of current is shown iii Fig. 3.
The vector diagram of the positive-sequence currents shows that I

15 1 / \- 3 as huge as L0 and 300 in adaiice of I.
In a corresponding maimer it may he shown that

'0b2 = 	 (33)

In a vve-delta transformer hank like that shown in Fig. 4 where no
zero-sequence components of current can exist in the wve primary
windings no zr'fo-sequence currents will he present in the delta secondary
windings --.:nee N P I ,, = VI 3. In this connection, N represents the
priir,ry turns and .V 3 the se(-ondarv turns of one transformer. (The
riagnetizing current is neglected in the statement V! = Nl or else
I, represents simpl y the io:ici component of the primary current.) The
fact that a transformer hank like that shown in Fig. 4 eliminates  zero-
sequence, currents is of importance in power network short-circuit
studies.

Problern 5.	 1-md the j ima' currant, I.,, iii ha dli :t-cunnrctL'd sYsteni shown in
Fig. 3

= 10/0°, I.b 2 = 5/°, anti	 = 7/19.5 amperes

-ins.:	 I,, = 15 tY• :iniperu'.

Three-Phase Line Currents Associated with a Neutral Return. If a
O''e-\\e system operates with. grounded neat rals or with a connect ilig
wire between neutrals, the vector suni of the line currents will not, in
general, be equal to zero. In this case:

laO = 40 = 1 ,0 = 1 (lu + I ± I)	 (34)

It will be noted that the ground or neutral return current, namely,
(Ia + I ± I c ). is three limes as large is time inuhividtctl zero-sequence
contponeit of the line currents. Each tine wire carries a component
of current which is equal in magnitude and in time phase with similar
components in the other two lines. These zero-sequence components
are sometimes called uniphase components and have important physical
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significance in connection with the inductive interference between
three-p1ia-e power lines and paralleling telephone lines.

Where the line currents possess uniphase components, no manner of
tranpoition of the power system line wires will prevent these com-
ponent from est&iblihing inductive interference in paralleling teiai
lines, the rezion henig that the uiiiphase components in the three line
wires etaLuIc'-li similarly directed magnetic interference. In a caae of
this kind, trinipoition of the telephone wires themselves is required to
balance out the undei rWle emf's that are induced b y the power svtem
currents. Inductive interference studies usually refer to the unipha
or zero-sequence currents as residuals since they represent the com-
ponent currents that remain after the positive- and negative-sequence
components have been taken from the original unbalanced system of
currents. The fact that the residuals can be separated from the two
balanced systems of currents is an important feature in interference
problems.

The zero-sequence components of the line currents of grounded or
four-wire wye systems are also of importance in the evaluation of the
short-circuit currents in power systems.

Example 6. A line-to-ground short circuit on a grounded wve-connected alter-
nator is shown in Fig. 5. Let it he required to find the three-phase symmetrical

Fiu. 5	 Aiarti ular . ae of utihalaneed three-phase line currents.

	

cornpoiitnt s of the line currcrit I,,, I. and I, where I	 I/a, I = 0, and I = 0.

I is the magnitude of theshort-circuit current, L. and a is the aiiuhir displ.ce-
mont of this current from any arhitriry reference axis. The thri'o luw currents
may he considered as an unbalanced three-phase system of currents even though
two of the curr. n ts are equal to zero.

The original system of currents is represented by

I. = 1	 I=0 1, = 0

The positive-sequence components of the above currents are

I/_ 1,, = !/a - 1200 Ii	 !/a + 120
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The negative-sequence components are

J/a I	 1/a + 120 0 I =	 — 120'

The zero-SeqUeliCe components are

I s = Iso = 1.-o =

Graphical represcntatio;s of the above results are sho n in Fig. C. It will be
observed that

I,,I + I + TOo = I., =

155 + 1152 + I = 15	 0

L-t + I,2 + La = I,, = 0

Symmetrical components of the kind given above are used in siigii.' line-to-ground

Original
System

La
--

reference
'II

cc

--Positivence
System

Ibf

'b2	 112

Cx

NeestveSce	 - rence —
System

110
I _SO

- __ce__i0

Te7ec -

Zero-Sequence
System

Fir- G. The resolution of a single current I /m into its thee-phase symmetrical
components.

short-circuit current anal yses and although this type of problem is not considered
in the present chapter a study of Fig. 6 at this stage will prove to be instructive.
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Problem 6. The three line currents in a four-wire wyc system like that shown
in Fig. 7, are:

= a = 20/-60°, I-Sb =	 = 12/-100°, and I '	= 10/75*amperes

11'1_

il

FIG. 7. Three-phase four-wire system for Problem 6.

Find the positive- negative-, and Tero-sequerice components of the above line cur-
rents and cheek the results either graphically or by the vector addition of the sym-
metrical components.

Arts.: I = 9.45 - j6.76 = 11.62/ —35.6 amperes

IbI = — 10.58 - j4.90 = 11.62/ - 155 . 6 0 amperes

= 1.136 +jll.58 = 11.62 /4•4° amperes

—2.95 - j4.07 = 5.03,'—_125.9 0 amperes

= 5.0 - jO.517	 5.03 L° amperes

—2.05 + 14.59	 5.03/Il . 1° amperes

= 3.503 -- jG. 19 = 1.375 /-. 61.65° amperes

Power from Symmetrical Components. For any unbalanced three-
phase system the total power consumed is the sum of the powers absorbed
in each phase. Thus

P =	 Z)	 17J. COS &+VbIb COS O+ vcJc COS o0

If the volt.ige of a given phase, say V, is resolved into several compo-
nents. the power forThat phase may be obtained by adding the products
of each component of voltage by the current times the cosine of the angle
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between the particular voltage corn p lIorit irid thi , currint.	 1ferl'flet•

to Fig. S will make this evident. I re

Pa	 I V (V. COS 0) =	 O + 1 2 COS	 + l c'.e

= IaT Ci)S O + 1a 1, 2 	 L + Li ('Us

Sinlil,lr]v, if tile current is Ii; ihi 	 1110 uompir;i'iils, the po'. 'c
sum of the products of voltage b y t ho Current t itlU' t he ctvmno Of

phase angle between the respeet y e c4)ml))rII'it	 ' I ckiltelit nild ille

age.	 From these facts it houli I)i' 	 11e11 it lrh	 ktgc and
current are resolved into
components, the power will
be the surn of the products
of each component	

/7 \
age by each component of 

V,

V.

kr	 \ L1,
Fin. S. In-phae component of V.	 Fin. 9.	 vrrtr;-;ti cIl; . ccet .	1 vtag€,

With rsleot to I.	 il	 not if the	 and e,1rrenn of a ge-al it r-ItiLe St -ten.
in-phase cotlIlotIerits of each of the
component volt a ge of V

current times the cosine of the angle between the part ictllar component
of voltage and current appearing ill 	 of the priduels.

Figure 9 shu s the svmmct rail ( 0111 1 eo;ent of current- and voltages
for an	 sy three-phase s ystem. 'File sul iseript (1. L' , aId e den	 edenote ti	 h;
while 0, 1, and 2 are the usual s .vilihiok di , no tmig the si111I'rIte 1' ti;-

ponents.	 In terms of the cotnpnients shiutii for phn5c U. the 1)(J\%(:! - iS

Pa	 V 111 1a1 COS 0 1 ± l; i 1i; I0 02 + F I T,, C, (05 03 + l,;J,; ('05 04

+	 iS le I (05 05 + 1 2 1 a;) ('05 01; + aU',iO tO 0; + 1 ' -,Li (US 0

+ 1e()1G ('OS 6

For phase b

Pb = 1 bl 161 COS 01 + VbI'bS cos (1200 + 02) + V,, 1 ,( , c's; j ?O ° ± Oj

• Vb2 Ib2 cos 04 + 1 bS'tl COS (120° ± 6) +	 24J Co-: (1200 - Or,'

• T bOTbo COS 07 + oOI tO cos (1200 + 0)

• Vb0Ib2 cos (1200 0)	 (3
-33
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For phase c

Pc = T 11 1 c1 CO5 0 + i112 ('OS (2400 + 82) +	 cos (240° + 03)

+ 1c21e2 COS 0 + 1c21c1 COS (240° + 85 ) + 1' c2 1 c0 COS (240° - 06)

+ 1'c 0 I-O C
OS O + VcoIc1 (OS (240° + 08)

	

+ T7 oI 2 cos (2400 - 09 )	 (37)

It should be remembered that only magnitudes of voltages and cur-
rents appear in equations (35), (36), and (37), and that l' = l 	 =

cI,	 1a2 = 1 b2	 1c2,	 1 7.0	 bO = 1 c0, 1ai	 'bt = cl,	 1u2 =
162 = 1 ,2, and iç, = l = I. Under these conditions if equations,
(35), (36), and (37) are added, the terms containing 02 add to zero
because the y represent three equal quantities at 120-degree angles.
Similarly, the terms containing 03 , 95 , 66, Os, and 09 add to zero. Drop.-
ping reference to particular phases, this leaves

P = Pa + Pb + P = 3 V I I I cos O 1 + 3V2 !2 C OS 04 + 31 -0 1 0 COS 07 (38)

It will he noted that cos 0 = cos 0),, cos 04 = cos O 	 cos 07 =

cos 0. Hence

P 3V 1 1 1 cos 0 + 3 V2 12 cos 0, + 3170 10 cos 8v", 	 (39)

Equation (39) shows that the total power consumed by an unbalanced
three-phase system is the sum of the powers represented by each of the
symmetrical component s ystems. Hence, to obtain total power the
algebraic sum of the total positive-, total negative-, and total zero-
sequence powers may be calculated.

Copper Losses in Terms of Symmetrical Components. The copper
loss for any unbalanced three-phase system is

P = la1?a + Ib2Ri, + 
J '2 R,	 (40)

where phase currents and the corresponding phase resistances are used.
By referring to Fig. 10 and by remembering that

'a = 'al + 1.2 + 1a0

it follows that
1.2 = (J + f ('Os 0 + 1.0 cos	 + (1a 2 sin .6 + joo sin o)2 (41)

Similarly,

=	 ('05 210 > ± 1&2 cos (1200 - ) + lbo cos

+ [fb i in 240° + 1b2 sin (120° - i3 ) + ho sin a12	 (42)

12 = 11c 1 cos 1200 +1,2 COS (240° - ) + 'CO cos cxl2

+ 1 1 5111 120'+ 1c2 Sin (2400 - ) + ' CO sin a)2	(43)
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When Ra, R, and R are different the sequence components of current
should be combined to obtain 1, 'b, and !, and equation (40) used to
calculate the copper loss. If, however, R = Rb = R = R, substi-
tution of equations (41), (42), and (43) in equation (40), dropping
reference to phrse, and expanding and
combining terms algebraically give

P = 3T21? + 312 2 R + 3121?

= 3(1 2 + 122 + 10 2)R (44)

Equation (44) shows that the total
copper loss due to the resultant currents
is the same as the sum of the copper
losses due to the sequence components
calculated separately.

TI the resistances to the positive-,
negative-, and zero-sequence currents
are different, the copper loss may be de-
termined from

P = 31 1 2R 1 + 312 2R2 + 31o 2/?o (45)

where R 1 , R2 , and R0 are respectively the resistance to the positive-,
negative-, and zero-sequence components of current. In using equation
(45) it must be remembered that each of the sequence resistances must
be the same for all three phases, since equality of phase resistances was
assumed in obtaining equation (44), of which (45) is a modification.

Positive-, Negative-, and Zero-Sequence Impedance Components.
For purposes of some analyses, three self-impedances may be separated
or resolved into their symmetrical components exactly like three voltages
or currents. If the voltages or currents which are to be associated with
these component impedances are resolved in the order a-b--c, then the
impedances should he resolved in the same order. (See equations (13),
(16), and (17).J The term self-impedance implies that no mutual
coupling exists between the individual impedances. In order to dis-
tinguish the components of self-impedance from the components of
mutual impedance which are considered later, double subscripts of the
kind given below will be used.

The symmetrical components of three self-impedances, Zaa, Z, and
ZCC are

(Zaa + ZM,/1200 + Zcc 	 (46)

= (Z 4 + Zt.bt_12O0 + Z/12o°) .	(47)

= (Z + Zbb + Z)	 (48)
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As above defined Z, 1 , Z002 , and Z000 are called positive-sequence im-
pedance, negative-sequence impedance, and zero-sequence impedance
respectively. These component impedances have little physical sig-
nificance but they are useful in a general mathematical formulation of
sy inrnetncal-compo,ient theory. It should be pointed out at this stage
that the resistance (or in-phase) parts of the component impedances
may possess negative signs even though the real parts of Z, Zbb, and
ZCC are all positive.

The above svninietrical components of an unbaIai'ed set of impedances

should not be confused with impedance to positive-, negative- and zero-
sequence currents which are defined as follows:

Impedance to positive-sequence, Z0 =

Impedance to n	
Va2

negative-sequence, Z02 = -
102

-Impedance to zero-sequence, 	 Z,,0
- 

y-9
 Iuo

These impedances to sequence component currents are usually applied
to systems where the impedances of all phases are the same or balanced.
In order to avoid confusion a double-letter subscript will be used on
positive-, negative-, and zero-sequence co'nponents of impedance. For
impedance to positive-, negative-, and zero-secluence currents a single-
letter stbscript will be used. In both cases the figure subscripts 1, 2,
and 0 will denote positive, negative, and zero sequence, respectively.

-o 5

Zan

ZCliZC,:	 fl	 ZbflZbb

Fit;. 11. See example

Example 7. Let the wye-connected impedances of Fig. it be

Z. = (6 +jO) Z,	 (5.2 —j3) Z = (0 +j12)ohrn
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Employing equations (46), (47), and (48), the component impedances are

11(6 + 50) + (5.2 - 53) (-0.5 + j).866) + (0 + 512) (-0.5 - 50.866)1

- 1[ 6 +50) + (0 +56 ) + (10.4 -56)1

= 1(16. 4 +50) = 5.47 +50 ohms

= 11(6 +jO) + (5.2 -53) (-0.5 -50.866) + (0 +512) (-0.5+50.866)1

= 11(6 +50) + (-5.2 -53) + (-10.4 -j6)1

1(-9.6 -j))	 -3.2 -j3ohms

	

Z,o	 -1-jO) .4- (5.2 - 53) + (0 +j12)1
= 1(11.2 +j9) = 3.73 +53 ohms

In accordance with previous considerations, it follows that

Zbbj Z-11 -12W	 Z1 =

=	 z2 = z,,,2/-120°

ZbbO = Z,,,o	 zeco =

The sum of the impedance components of one phase equals the actual impedance of
that phase. For example,

(5.47 +50) + ( -3.2 -53) + (3.73 +53) = 6 +50 ohms

Problem 7. Find Z, Z, 2 , and ZbbO in the above example, employing the values
of Zai, Z,,,,, and Z,,,o which have been evaluated. Repeat for Z 1 , Z 2, and Z.,0,.

Ans .: Z1 = Zt,i + ZM2 +
= (-2.73 -54.73) + (4.20 - jl.27) + (3.73 +53.0)
= (5.2 - 53.0) ohms.

Problem 8. Given three ye-connected impedances:

Z., = ( 15 +50) Z&, - (6- 53.464) Z r,, = (6 +13.464 ) ohms

(a) Find the symmetrical components of Z,,,, in accordance with the resolutions
given in equations (46), (47), and (413).

(b) Find Zb,,1, Z,,, 2 , and Zj , 0 in terms &if the symmetrical components of Z,,,, and
check (Zj + Z,,, 2 + Zbo) with the given value of (6 - 53.464) ohms.

An.,.: (a) Z01 = 5/; Z,,, 2 = l/; ZaN O = 9/ ohms.

Sequence Rule as Applied to Component Voltages. If the voltage
drop across one phase, say phase a, is written in terms of the symmetrical
components of both current and impedance, nine component voltages
appear. That is,

Va = U. = (I + 1is2 + 1)(Z 1 + Z 2 + Z00)

LIZ-al + 'al Za42 + 1.1 Z.0 + I 2 Z001 + Ia2Zoa2 + 142Z040

	

+ IZza + laOZ za2 + IaoZao .	 (49)
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These nine component voltages may he grouped in such a iminner as to
form the positive-, negative-, and zero-sequence components of V,.,, and
this grouping may be made in accordance with an easily remembered
rule.

The Sequence Rule

The order of the voltage system to which an IZ drop belongs is
equal to the sum of the orders of the systems to which I and Z belong
individually.

In the application of the sequence rule, positive-sequence terms are
of first order, negative-sequence terms are of second order, and zero-
sequence terms are of zero or third order. III 	 e	 both
(1 + 0) and (2 + 2) are considered as belonging to the first order, since
order 4 is considered as order I, there being only three orders. III

connection, the zero in (1 + 0) ma y hc reckoned either as zero or three.
Also (1 + 2) is of order 3, or a zero-sequence term As applied to the
component voltages of equation (49), the sequence rule states

Vai = IaiZuoo + IO2 Z,,,, 2 + 1,1Z0 ,, 1	 (50)

Va = I01 Zoo 1 + Ia2Z,,,l0 + IaOZuo2	 (51)

V,, 0 = Iai Z c ,j -f I,,2Z,,, 1 + LUZattO	 (52)

Obviously the real basis upon which the above eqmiatioiis are written
is t hut as written, they sat i . fy the definitions which were originally
attached to V,, 1 , V 2 , and V,,. To satisfy these (lefillitions, V,, 1 must be
the positive-sequence component. of the base vector V,,, V,12 must be tife
negative-sequence component of the base vector V 0 arid V., must be
the zero-sequence component. The proof that V01 1 as xvii (ten in equa-
tion (50), satisfies the definition of a positive-scquemicc voltage is out-
lined below.

Applying equation (50) to the b phase and making appropriate sub-
stitutions,

VbI = 1b1 Z 0 + Ib2Z&b2 + IbOZt,bl

= (I/—_120°)Z000 + (L,2/ 120°) Z002/ 120° + r00 z001 /- 1200

= I,,1Z00/ - 1200 + I,, 2 Z/.— 1200 + I,,0Z0,,1/— 1200	 (50a)

Comparison of equations (50a) and (50) will show that Vbi is equal in
magnitude to V01 and 1200 behind V01 , as, of course, it should be if
V01 , V 1 , and V, 1 are to form a positive-sequence system.
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Applying equation (50) to the c phase and making appropriate sub-
stitutions,

Ic Zccij + I 2 Z 2 + JZ1
= (Li/ 1200 ) Za,0 + (L/ —l200 ) Z 1 2 / — 120° + IaüZiot/Q°

= I, Z/I200 + I2Za 2 1120 0 + I00 Z 1 / 120 0	(50))

Comparison of equations (50b) and (50) will show that V i equal in
magnitude to V and 120° ahead of Va i , which is the necessary require-
meiit that Va t , V 1 , and Vc , form a positive-sequence system of voltages.

In a manner similar to that outlined above, V,, 2 of equation (31) may
he shown to be a member of a balanced negati\e-.cqueiicc syzstejn of
voltages Va2, V 2 , and V,

In the following problem the reader is asked to amial ze equation (52)
with a view toward showing that the IZ component, of that equation
are correctly chosen to form a zero-sequence system of voltages.

Problem 9. Prove that V00 (equal to r01 z0 +	 +	 i. equal in rnag-
nitud and in time phase, with

Vo = IZ	 + Ib2ZI + IboZboO

and with

VcO LIZ-2 + I12Z1 + IoZo

Application of the Sequence Rule to Unbalanced Three-Wire Loads.
The foregoing theory may be applied to any three-wire load which
consists of individual or noncoup1ed phase impedances. Since the
individual phases of three-phase rotating equipmncait are closel y coupled
magnet ieallv, the,rt method of anal ysis does not. apply directly
to rotating equipment. (A method of accounting for the mutual im-
pedances of rotating equipment is given in Chapter XIII, and a general
method of accounting for mutual impedance effects is given later in the
present chapter.)

In appl y ing equations (50, (51), and (32) to the a phase of a wye-
connected load like that shown in Fig. 11, it is noted that, since 10	 0,

Vani = I 1 Z0 0 + I0 9Z,, 2	 (53)

V,,, 2 = la i Zan t + IO 2Z O	 (54)

VanO = Ia i Zan 2 + Ia 2 Zan i	 (55)
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If the line-to-line voltages, narndv, V0b, V, and V 0 , are known,
and V,,2 ma y be evaluated directl y from equations (25) and (2(3).
(S.e page 500.) If V	 and V,,2 are known, 1,, and I 2 may be de-
it rriun&'d	 irtiv from	 itiC tt t33) and (54), provided that Z,,,, I,
Z,,,, and	 are known.

Sitee T ao	 0,

Ir	 1, 1 = 1,, + A,,	 (56)

	

= 1 5 	 L / 120 + I2 / 120 0 	(57)

1,,,./ 120° -4- I,,/ - 120°	 (58)

Evc'n though 1 = 0, Va,,n will, in general, possess a finite value since
liv equation (55) V0 ,, 0	 'at Z 0 ,, 2 + 102Z01.

Example 8. Let the hoe-to-line voltages and the phase impedances of the wye-
connected load shown in Fig. 11 he as follows:

= 200 V = 141.4 V	 141.4 volts

Zan = (6 ± jO) Z,, = (5.2 - j3) Zr ,, = (0 +j12) ohms

If the voltage qCi,nce is air-be ca and if Vab is taken its reference,

V,, = 200/00 V = 14141-135° V,.. = 141.4/° Vo.t9

Resolution of the above line-to-line voltages into symmetrical components yields

V0 = 200/0° + 141.4 L-15° + 141.4/15°l = 157.8/0° volts

= 200 10° 4- 111.4 1 105° + 141 .4/-105°j = 42.3/ volts

V 0 = '200 /0° + 141.4/-135° + 141.4L.°l = 0

From equations (25i and (26)

157.8/0°
Van 1= ----= - 30° = o1/—.3o° volts

42.3'O'
= —T 130° = 244 1/30° volts-

1-he v in r. t riea c-	 o' t ts of the phase I mpedtnces are

	

Z 1 = 5.4o', Zan , 	 ( - 3.2 - j3. = 4.3.S —136.8°

and

(3.73 +j3) — 4.78L38.8 ohms (See example 7, page 510.)
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From equations (53) and (54)
V,,	 Z,, 2	91/-30°	 4.33/-1313,R°
V,,,	 Z0 ,, 0	 2.l.4/	 4.7839.8°	 491/20.15*

	

= Z 0 Z,,, 2 I	 4.78 /38S° 43'-136B° t = 44.8/59.95°
Z.,,, 1 Z,, 0	5.47/00	 4.78/38.8°

	

= 10.95/-. -39.8°	 8.42 - j7.02 amperes

	

z,o V 0 ,, 1	 ;35.s°	 i /—o°

	

Z0 , 1 V 4 ,, 2	 5.47/00	 24.4/30°	 528/137.5°
142 

= Z 0 Z4,, 2 =	 41.8/59.950	 -- = 44 8
Z0 ,, 1 z0,,0

= 11.8/77.45° = 2.56 + jll.5 amperes

Ia,,	 1.4 = 141 + 102 = (8.42	 37.02) + (2.56 +jIL5)
= 10.98 + j4.48 amperes

In polar form

1. = 11.83/22.2° amperes

After I,, and lol have been evaluated, I., I5 , I, and 1,2 follow directly, and
hence 1k,, and Ir,, may be determined from the values of I, and I.

If the value of V4,, is to be determined by the meihod of symmetrical components,

Va. = V4 , 1 + V4 ,, 2 + V0,,0

where from equation (55), V,, 0 = 101 Z4 ,, 2 + I42 Z 4 ,, 1 . In this ca-se

V4,, = (10.95/-39.S°) (4.387-136.8°) + (11.8/77.45')
= —34 +j60.2 volts

V4 ,, = (78.85 —j45.5) + (2115 +j12.2) + (-34 +j60.2)
= 66 +j26.9 volts

Problem 10. Study through the details of the above example and evaluate I, 10,
Vs,,, and Vt ,, by the method of symmetrical components. Check V 0,, - Vs,, against

f	 20O	 v!', r	 g-ing that shde-rule calculations were
employed in the evaluations of I, 1.2, and V,,,.

Ans.: 1 = —21.53 —j7.31	 2-2.7/-161.2° amperes.

Magnetic Coupling between Phases. If the three phases (including
the line wires) possess mutual coupling of the kind shown in Fig. 12,
the voltige drop in pha.se an due to its mutual coupling with phases bn
and cn is:

Vam = IôZaô + ICZLC	(59)
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where subscript m designates the fact that this voltage drop excludes
the self-impedance voltage drop,

I namely, I0 Z. If simple magnetic
coupling is involved,

Z ia

	

	 Z.6 = 1X0& = ±JCJ.Iab (60)

Zac = jX0 = ± Ji.Va (61)
(See Chapter VII.)

Zbbcc j
	 lb

bc

	

	
The signs of the mutual reactances
are defined by the assigned di-

I c 	 rections of current flow and the
C

modes of winding the mutually
Fi. 12. Impedance ii, wve with mutual

coupling between )l(L0e. - 	 coupled coils.
The impedance drop in phase an

due to the self-impedance of that phase will be called V, and the
total voltage drop in phase an then becomes:

Vo,,	 Voa + Vom 13 Z03 + I5 Z3 , + IZ	 (62)

The problem of expressing the impedance drops of equation (62) in
terms of symmetrical components will now be undertaken. Obviously
I, 1b, and I may he expressed in terms of the symmetrical components
of an y one of these currents and Z, may he resolved into symmetrical
components if the other self-impedances Zbb and Z. are known. In
this coimect ion:

Znal= (Z,,1 + Z h /120° + Zec. /_1 200 ), etc.

if the other resolutions are effected in the a-b--c order.
The self-impedance voltage drop in phase an may be written in terms

of symmetrical components in accordance with the sequence rule.

V00 = V331 + V302 + Vaaø	 63)

where

V001 = 101 Z000 + 132 Z302 + Ia Z aai	 (64)

V002 = I,21 Z001 + I32 Z030 + I00 Z 32	 (65)

= I Z,,, 2 + IZ001 + I00 Z 00	 (66)

There rrmains the problem of resolving the mutual impedances Z 01, =
Z, Z = Z, and Z = Za , into symmetrical components that an
be advantageously associated with I, Ia2, and to account for the
presence of I2 36 and IZ 3 in equation (62). At this stage of the de-
velopment it is rather difficult to say which of the three mutual im-
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pedances should be considered as the hose mutual impedance. It turns
out that the symmetrical components of Zb can best he as.sociated with
I, I, and Lzo. See equation (72).

Resolving the mut unl impedances into symmetrical components with
Z b, as base yields

=	 + Za/120° + z/- 1200)	 (67)

=	 + Z/—l20° + Z, 6 .,/ 1200 )	 ( 68)

= (Zb + Z + Z) = Zrao = Z 0 	 (69)

= Z 1 112o° z	 = z1/— 1200	 (0)

	

Z 2 = Z 2 / - 1200 Z 02 = Z2 / 1200	 (71)

In terms of symmetrical components,

Va,n = IbZO + IcZ

= (I/1200 + 1a 2 /120° + I00 )(Zbl /120° + Z2/-120°

• Z 0 ) + (I /_1200 .+ L2 - 1200 + I) (Z.5, 1 / — 1200

• Z 2 /j0° + Zbo)	 (e2)

Eighteen component voltages appear if the multiplications indicated in
equation (72) are carried out. These components may be grouped into
positive-, negative-, and zero-sequence terms in accordance with the
sequence rule. For example. the component voltages of the first order
are

I0i Zso/jj2O + Ia 2 Zb e 2 + IcüZ5c1 /1200 + I l Z bc o / 120° + Ia2ZLc2

+ IaoZb1 /-120° =	 (73)

If the like terms in the above equations are further grouped, the following
form results:

	

= — I Z 0 + 21 2 Z52 — IZ 5	(74)

The negative-sequence or second-order terms of equation (72) may be
combined to form

	

V 7 ,,,2 = 21a i Z& i — I, , ZbrO — IZ52 	(73

The zero-sequence terms of eqtlnti uiII (72) m;iY be combined to form

V0 ,, 0 =	 1uj Z 2 - IZbl + 2IuUZbcO

Equations (73), (75), and (76) contain all eighteen component voltages
represented in equation (72), and these equations may be combined
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systematically with equations (64), (65), and (66) to yield the positive-,
negative-, and zero-sequence components of the complete phase voltage,
namely, Van = Vaa + Van,.

Adding equations (64) and (74), equations (6.5) and (75), and equa-
tions (66) and (76) results in

Va,, i = Jo, (Z,,, 0	 Z b o) + 102 (Z0a 2 + 2412) + I 0 (Z,, 01	 Z 611 ) (77)

V02 = 1.1( Z ..1 + 2Zb j + IO2 ( Z00 - Z 0 ) + 1a0( Z an2 	 Z) (78)

V 0 	In 1 ( Z0 ,, 2 - Zf) + 1, 2 (Z	 + 100 (Z, 0 + 2Z 0 (79)

The above set of equations represents a powerful tool in the field of
circuit anal ysis because with the aid of this set of equations any degree
of unbalance and any degree of magnetic or capacitive coupling may he
handled on a symmetrical-component basis. Equations (77), (78),
and (79) are particularl y useful in accounting for transmission line
reactance voltage drops because these voltage drops result from mutual
coupling between the line wires. These equations are also useful in
accounting for the mutual impedance of the fourth wire of a four-wire,
three-phase system.

411
a

z11=i L ohm

C:.__1 Zbg-21Crohms

Z=3L!2Dhms
IC

Ji,,	 14.	 See Pxw! ' Ide 1I.

Example 9. LO it he required to find the current I., in Fig. 13 h y hr aid hod of
ytnh1wtrIczLI cni ip rients, if V., = Vb V,., = 100 volts and the seql1I'Iic of these

voltage is ab bc -co. From previous considerations, it is plain tl1LL

Vaôi
V0 ,, 1	 --=L- Jo and V0 ,, 2 = 0

\/ 3

If V, is chosen as the reference vector,

100
= (50 - 12S.9; vo)t.s

,V 3

The self-impedances IZ,,,, 	 (0 +j1), Z,	 (2 +jO), and Z = (o + :3)J may be
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resolved into symmetrical components in the usual manner.

(Za + Z /!9 + Z c /1200 ) = (0.i33 +JO.411 ) ohms

Z,	 (Z + Zô/ 120 + Z_/ 120') = (-1.199 - jO.744) ohms

Zado = I (Z + Z56 + Z) = (0.667 +1 1.33 ) ohms

As indicated on the circuit diagram (Fig. 13), the eoeffic j cnt of coupling between the
two inductance coils is V ' , '6. This coefficient is interpreted to mean that

= cf, = --- % wL., X	 = - \ I X 3 = 0.5 chin

If the modes of winding and the space positions of the coils are as represented in
Fig. 13,

= (0 - jcM 0 ) = (0 - jO.5) ohm

Z, 'j, and Z b, are both zero because no coupling exists between phases a and b or between
phases b and c under the specified conditions.

In acoriance with equations 67), (68), and (69),

= (0.5/-90' ± 120) = 0.144 +j0.083 ohm

= (0,5/ —X)'	 120') = —0.144 + j0.083 ohm

Z, 0 = 13 0.5/-90°) = 0 - jO.167 ohm

Since 1.( i3ual to zero, it follows from equations (77) and (78) that

= 50 - j29.9 = I.,(0.667 + jI.50) + I 2 (-1.187 - jO.57S)

= 0	 = I,(0.821 +jO.578) + I 2 (0.667 + 11.50)

The av equations may be solved simultaneousl y for 1. 1 and 112

—j28,9)	 (-1.47 —jO.578)
0	 (0.667_+j1.50)	 76.6 +3557

- v.667 -' jl.sw	 - i.	 -	 - —0.918 ± f333
(0.821 + j0.57	 (0.667 + ft .50)

= (9.63 - j25.6) amperes

(0.667 +jl.50)	 (50 —j2S.9)

-	 TL	 9.J -	 - P
+j:3.3:3)	 - —0.(iS + j:1.... 1

= (3,01 + j16.46) amperes

L	 +I	 = (t:3 —j25.6) + (3.1 +j16.tr
(12.64 - ji.0 = 15.6 —35,5m;

PROBLEMS

11. The linr'-to-neutral vo.ages of a four-wire, three-phnse s y stem are represented
by the following vector expressions: V = 200'O' V = 100 '- 75', V, 	 150/ —150'.
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Find the positive-, negative-, and zero-sequence components of the above voltages,
and check the results obtained by graphical additions of the symmetrical components.

12. The three line currents of a four-wire wye load (like that shown in Fig. 7,
page 506) directed to the common junction are I,,, 	 15 - j20, I	 —8 + j15, and

	

8 - j25 amperes. Find	 and 'onO assuming these currents were
calculated from a voltage system where the actual voltage sequence was a-b--c.

13. Voltages to neutral on a four-wire Y-load are maintained at V.,	 100/9,
V,,5

	

	100/-120°, and V,, = 100	 volts. Impedances are Z,, = 10L,
10 /90°, and Z,, = 10I—O0°.

(a) Find the positive-, negative-, and zero-sequence line currents, if the positive-
sequence voltage system is a-b--c.

(b) Find the power due to each of the sequences, positive, negative, and zero.
(c) Should the phasor which lags the base phasor be rotated forward 120° to obtain

the positive-sequence current? Why?
14. (a) Three-phase voltages are supplied by lines a, b, and c. If a short circuit

is placed from line a to line b, find positive-, negative-, and zero-sequence components
of the line voltages at the short circuit in terms of a line voltage of V.

(b) If the short-circuit current is I find the symmetrical components of the current
at the short circuit.

15. The three wye-connected impedances through which the currents of Problem
12 flow are, respectively,

20 - 120 ohms

Z5,, =30+jlOohms

Z,,, =10—j2Oohms
Find Zani, Ze. 2, and Z0,0.

16. Employing the symmetrical components Ia,,, L.2, '.,.o, Z,, 1, Z,, 2 , and Z.,,,0
determined in Problems 12 and 15, evaluate V,,,, IZ in terms of symmetrical
components and check the result against the known value of IZa.

a

	

Vab	 ZA	 Zee

.
I

Zb	be	 Zb

Fia. 14. See Problem 17.

17. Assume that the three-phase line voltages shown in Fig. 14 are

V = 200/0°, V — 100/1200, V,,	 173.21q

(a) Find Vb I , Vb( 2, and V50.
(b) Find V,, 1 , V,, and V,, 0 . Employ phase sequence be, ab, ca.
18. The three line-to-line voltages shown in Fig. 14 are

	

100, VJ,	 150, 1'	 175 volts
Sequence ab-bc-ca.

(a) Find V.bl, V052 , and Va50.
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(b) Find V,, 1 and V,, 2 , the equivalent wve voltages of the delta load shown in
Fig. 14.

(c) Explain how the line currents may be determined from V,, 1 ,	 and the
delt.a load impedances.

19. The line-to-line voltages of a three-wire, three-phase system are 	 = 200
volts, Vbe	 141.4 volts, and	 = 141.4 volts. The sequence of 1hu voliag's is
ab-ca-bc. A ',VVC-00nne0tCd set of static impedances (Z,, = 20/0 ohms, 4,, =
301	 ohms, and Zr,, = 20/00 ohms) is connected to the three lines a h, and c in
the order indicated by the subscripts. Find the line currents I,,,,, Ia,,, and 1,, by
the method of symmetrical compoiii'iits.

20. Solve for IQ in Fig. 13 by the method of symmetrical COIt)pOflentS if 	 = 200,
V = 173.2, and V	 100 volts. The sequence of the line-to-line voltages is
ab-bc--ca.



chapter X111 Power System
Short-Circuit Calculations

Power systems are subject to three kinds of short circuits. First, all
three lines of a three-phase system may become electrically connected.
This is known as a three-phase short circuit. Second, only two lines
may be electrically connected, which constitutes a line-to-line short
circuit. Third, a single wire may be electrically connected to ground.
This is called a line-to-ground short circuit. Although the electrical
connections referred to may be of varying impedance, short-circuit
calculations are based upon zero impedance at the point of short circuit.
In other words, a perfect short circuit is assumed. Short circuits on
systems are usually called faults.

A distribution system should be protected in such a way that a faulty
or short-circuited section will be isolated from the rest of the system.
This is accomplished through the use of relays which operate circuit
breakers. To protect a system, relays are set to trip in a certain length
of time after the fault occurs. By varying the amount of time required
for a relay to operate, certain selective operation of circuit breakers may
be obtained. After proper adjustments are made, this selective opera-
tion causes only the faulty section of the line to be islif1. In order to
determine the proper time settings of these relays and 4 .Jer to deter-
mine the sizes of circuit breakers necessary, the magnitudes of the short-
circuit currents that these devices are to handle must be known. In
general, different values of short-circuit current occur for the three-phase
symmetrical, line-to-line, and line-to-ground short circuits. Usually the
three-phase symmetrical short circuit yields the lowest value of short-
circuit current (except when the system has practically no grounds).
Hence relay settings are usually based upon three-phase symmetrical
faults because it is desirable to protect a system for the minimum fault
current. If the relay trips a circuit breaker for minimum fault current,
it will obviously open the breaker for the highest fault current, but the
converse is not true. Since a breaker must interrupt the largest short-
circuit current that can possibly exist, the size of a circuit breaker is
determined by the largest possible fault current. The greatest current
usually occurs for either the line-to-line or line-to-ground fault. Obvi-
ously, the determination of short-circuit currents in power systems is
required if the proper settings of relays and proper selection of circuit-
breaker sizes are to be made.

522
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Bases for Short-Circuit Calculations. A distribution network consists
of many lines which may be connected by transformers and which, in
general, operate at different nominal voltages. To establish a simple
network for purposes of calculation, the impedances of all lines and
transformers are expressed in ohms referred to a common voltage base
or in percentage referred to a common kilovolt-ampere base. The
former generally appears simpler to the beginner, but the latter method
is actually the better and is to be preferred. The two methods yield
identical results.

Method Using Ohms on a Kilovolt Base. In general, various branches
of an electrical distribution system operate at different potentials.
In representing such a system by a system of impedances, it is desirable
to employ a scheme which permits the combination of the different im-
pedances so that the network can be represented by a single impedance
between the source and the fault. This requires the determination of
an impedance, Z2, which may be used with an arbitrarily selected volt-
age, V2, such that the same kva will be taken as when the actual im-
pedance, Z 1 , is used with the actual voltage V1 . Stated algebraically,

('V2) V	
V1

= V

or
(y2)2

 (1)

Equation (1) shows that the original impedance must be multiplied by
the square of the ratio of voltage to be used to the nominal operating
voltage for the impedance. To illustrate, suppose that 1000 volts are
impressed on an impedance of 100 ohms and that it is desired to find the
current and kva taken.

1000
Ii == 10 amperes

1000 X 10 = 10,000

Now assume that it is desired to work the sama problem when all values
are referred to a 2000-volt base. Then

(2000)2 x 100 = 400 ohms

2000
12 = -jo- 5 amperes

va=r 2000X5 10,000
-34
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The foregoing example shows that there is no difference between calculat-
ing the volt-amperes for the actual voltage and impedance and for some
other selected voltage and an equivalent impedance found by multiplying
the original impedance by the square of the ratio of the selected voltage
o the original. The current on the actual voltage base is then found
y multiplying the result calculated on the selected voltage base by the

ratio of the voltages. Thus the actual current at 1000 volts is:

2000
1 1 = 5 X 1000 = 10 amperes

This procedure is evident from the following relationship.

V1 11 = T212

or	 I1=vV2I2

Example 1. Calculate the short-circuit current for the system shown In Fig. 1.
A 10 to I ratio wye-wye connected transformer bank is represented at A. A trans-
former has resistance and leakage reactance which may be referred to either side as

2(1 411	 -	 0.015/1 0.03511
io 10:1	 V' YVU 

1

0.035 Y1I	 001511	 I
0.035 n

LJ

Fio, 1. Elementary three-phase system. See example I.

was shown in Chapter VII. The transformer impedance in this case is 1 + /2 ohms
per phase when referred to the high-voltage side. The line impedance 2 +j 4 is
assumed to include the phase impedance of the generator. Since Fig. I represents a

21). 4f1.	 0,015JL0.035.fl

EUT
Fio. 2. Equivalent circuit per phase of Fig. I.

balanced circuit, all calculations will be made per phase. The equivalent circuit for
one phase to neutral is shown in Fig. 2, and..$he corresponding one-line diagram Is
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shown in Fig. 3. A short line at the generator neutral is used to represent the neutral
bus, and a cross at the end of the line denotes the point of short circuit. The per
phase voltage is impressed between the neutral bus and the point X. The trans-

Ge7neutral.
Fin. 3. One-line diagram of Fig. 2 and Fig. 1.

former impedance causes a drop in voltage from its primary to its secondary Bide and
therefore acts like a series impedance. Transferring the impedance of the secondary
line to its equivalent value on a 2000-volt base (the primary line-to-line voltage), or

2fl 411	 111 211.	 1.511 3.511

Fm. 4. Reduction of Fig. 3 to a series of impedances.

to a 2000/V'ã volts to neutral base which is the same, and inserting the transformer
equivalent impedance, reduces the one-line diagram to the equivalent circuit shown
in Fig. 4. Then

2000
= (2 +j4) + (1 +j2) + (1.5 +j3.5)

47 —j90.2 or 109.8 amperes

The actual current at the fault is found by referring the current to the voltage of
the faulty line.

Fault current = 109.8 x 10 = 1008 amperes

Problem 1. A wye-connected generator rated at 2200 terminal volts has 0.2 ohm
resistance and 2 ohms reactance per phase. The generator is connected by lines each
having an impedance of 2.00 /29.05 ohms to a wye-wye transfor,ier bank. Each
transformer has a total equivalent impedance refcrred to the high side of 1OO/
ohms, and the transformer bank is connected to a load through lines each of which
has a resistance of 50 ohms and an inductive reactance of 100 ohms. If the ratio of
transformation is 6 and the low-voltage side is connected to the generator lines, cal-
culate the actual fault current for a three-phase symmetrical short circuit at the load.

An.s.: 22.3 amperes.

Percentage Method. In general, short-circuit calculations are made
through the use of percentage resistances and reactances. Percentage
reactance is defined as the percentage of the rated voltage which is con-
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umed in the reactance drop when rated current flows. Expressed
algebraically,

	

% reactance '..d 
X ohms

X 100	 (2)
V,1154

Percentage resistance is similarly defined. Percentage values are
manipulated like ohmic values. When percentage values are em-
ployed, a common kva base is used instead of a common voltage base as
employed in the ohmic method. The derivation of the method for
determining the percentage reactance on different kva bases follows.
Three-phase will be assumed since it is the most common.

Let p be the percentage reactance based on a particular 3-phase kva.

kv = the voltage between the three-phase lines in kilovolts.
X = the reactance in ohms.

Then	 IX = X kva 10kilovoith
-/3- k v

1001 kva 10

100IX	 V'kv	 Xkva
(3)

iv/ V/_3 = k v / V_3	 kv 10

Equation (3) shows that percentage reactance varies directly with the
kva when the rest of the factors remain constant. A similar relation
holds true for percentage resistance. Although equation (3) was derived
on the assumption of three-phase it is equally applicable to single-phase.

Example 2 By way of illustrating the use of percentage resistance and reactance,
example 1, which was worked on the ohmic basis, will be reworked employing the
percentage method. Ordinarily, much of the data on a system is expressed in per-
centage and no transformation from ohmic to percentage impedance is necessary.
Since the parameters in the previous example are given in ohms, the transformation
to percentage will be shown. Also, to Illustrate changing to a common base, the per-
centage impedance of the lines on the generator side of the transformer and the trans-
former will be found on a 10,000-kvi. base, while that on the secondary side wilt be
found on a 100-ky& base.

For the lines on generator side of transformer:
10000,000

Base current I -	 - 2885 ampelss
V2000

4
• IX drop due to base current - 100 X 2886 X - 1000, or 10000/0 reactance

2000/V3

• JR drop due to base current - 100 X5 X 
2_ 500, or 500% resistance

20001r3
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Transformer Impedance on 10,000-kva base:

100 X 2885 x 1
%IRdrvp -

	

	 250
2000 /V'

100 X 2885 X 2%!X drop ' .
2000/1/3

--500

The line impedance on the secondary Bide of the transformer based on 100 kva is
determined as follows:

Nominal rated voltage on secondary	 - 200 volts

100,000Base current I -200 288.5 amperes

100 x 288.5 X 0.035
%IX drop -	 -8.75

200/
100 X 288.5 >< 0.015

%IR drop-	 -3.75
200/

The circuit of Fig. 1 with parmet.ers expressed in percentage is shown in Fig. 5.
It is common to receive data on distribution networks expressed like those in Fig. S.

H
es4rtss%	 setlse%	 L+JLT5i to.ss k, 1w	 • io.es b. ,.	 ., 15 1,, bi..

Pio. 5. One-line diagram of Fig. 1 with parameters expressed on a
percentage basis.

Before simplifying, a common kva base is chosen to which all constants are referred.
This base may be any arbitrarily selected. A 1000-kva base is chosen for this ex-
ample because it yields convenient numerical quantities.

-f-T% H	 ^'' H 375I$L3%

no. 6. Impedances of Fig. 5 expressed in per cent on a 1000-kva base.

It was shown that percentage reactance and resistance, and hence impedance, vary
directly with the kva base. Employing this principle yields the circuit shown in
Fig. 8. The combined impedance to the fault is

50 +jIOO +25 +j50 + 37.5 +j87.5 -112.5 +j237.5%
or	 V11_25_1_+_23_7_. _53 263%
This result indicates that 263 per cent of the rated voltage is necessary to cause 1000
kva to be delivered by the generator Since only rated voltage, or 100 per cent
voltage, is available, the total short-circuit kva must be 	 X 1000 - 380.5 kva. If
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the fault current is desired at the actual voltage of the faulty line, namely, 200 volts,
it is found as follows:

380.5 X 1000=
'/3- x 200 

= 1098 amperes

Problem 2. Rework Problem 1, page 525, employing percentage values.

Per Unit Method. A study of the percentage method will show
that problems could he worked by using percentage values expressed in
hundredths, which would be equivalent to moving the decimal point
two places to the left in the calculations shown in example 2. In other
words, quantities could be expressed on a per unit basis tsta3 11 on a
per hundred basis as in the percentage method. Thus instead of a
reactance of 15 per cent a value of 0.15 would be used. A little experi-
ence with both schemes shows relatively little difference in the methods.
Both methods are used according to personal preferences.

Accuracy of Short-Circuit Calculations. In general, extreme accuracy
in the determination of short-circuit currents in distribution systems is
not required. Because the resistance of most synchronous apparatus is
low compared to the reactance, the final impedance to the fault in many
cases is about the same as the reactance. For this reason, and because
of the resulting simplification of the calculations, only reactances are
generally used. An exception to these statements occurs when stability
studies of systems are made. It then becomes necessary to consider phase
angles, and then both resistance and reactance must be considered.

When several sources of current are in parallel, it is customary to
assume that all the generated voltages are in phase and equal in magni-
tude at the time of short circuit. Load currents on the system are
neglected. All synchronous apparatus like generators, synchronous
motors, and rotary converters are considered as sources of short-circuit
current. The kinetic energy of these rotating machines causes them to
act like generators during the first few cycles of short circuit. In spite
of all these approximations, tests have shown that calculations based
upon these assumptions are usually within about 5 per cent. of the correct
values. From 5 to 10 per cent error in the values of short-circuit cur-
rents is usually tolerable in the determination of circuit-breaker sizes
and relay settings.

Three-Phase Short Circuits. Three-phase short-circuit currents are
determined by means of the same principles employed in the analysis of
balanced three-phase systems. The method is best shown by an
example.

Example 3. It is desired to find the short-circiit current for the system shown in
Fig. 7. The data for the system are shown in Table I. A symmetrical three-phase
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Apparatus

Generator I
Generator 2
Transformer I

Transformer 2
Transformer 3
Transformer 4

Transformer 5
Line 1
Line 2

Line 3
Line 4

TABLE I

Rating
kva

5,000
11)000

4,(XX)

2,000
.n),000
5,000

1,000

FIG. 7. Throe-phase liop system. See example 3.
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short circuit is assumed at the point denoted by the cross in the upper right-hand
corner of the circuit diagram.

The following represents a satisfactory procedure.
1. A one-line diagram of the system as shown in Fig. 8 is drawn.

T1	 T2042!

12

....
t5

'4

F'io. S. One-line diagram of Fig. 7. FIG. 9. One-line diagram of Fig. 8 where
G1 and C1 are connected to a common
neutral bus and all reactances are shown
on a 10,000-kva base.

2. A common kva base upon which all reactances are based is chosen. An y con-
venient base ma y be used; here a 10,000-kva base is selected.

3. A one-line diagram is di'awn in which all sources of current are .unected to
a so-called neutral bus. Circles represent reactances, and the value of the various re-

actances referred to the selected common kva base is placed in
the circle as shown in Fig. 9.

4. Reaciances are combined according to laws of series
or parallel Circuits, and substitution of wycs for deltas or
the rev.rse are made so as to ohain a single reactance
between the neutral bus and the point of short circuit.
These steps are illustrated in the successive Figs. 10, 11, 12,
13, and I .I. The dotted lines and circles indicate the circuit
arrangement to be employed in replacing an existing circuit
arrangement. The resultant reactance to the fault based on

FIG. 14.

f41.95

 Resultant
percentage of react-
ance on a 10,000-
kva base of Fig. 7
to the point, of
short circuit.
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10,000 kva is 41.95 percent
100

Short-circuit kva Ti-
- 	 X 10,000 = 23,800. 95

11 the nominal voltage of the line at the short circuit is 12,000 volts, the current at
the fault is

23,800 x 1000 = 1144 amperes
12,000

The distribution of currents throughout the network may be determined by retracing
the steps and using the percentage values just exactly as though they were ohmic
quantities. For example, the currents in the divided circuit of Fig. 12 may be de-
termined as follows. To indicate the branch under consideration, a subscript which
is the same as the branch impedance is used.

	

V,746	 17.55 )< 1144 volts'

17.55 X _,
L1 44 246 amperes

81.8

17.55 )< 1144

	

-	 = 898 amperes
22.4

If the nominal voltage of any line differs from the 12,000-volt base used above, the
actual current is determined by multiplying the current calculated on the 12,000-volt
base by the ratio of 12,000 to the nominal voltage for the line in question.

Problem 3. Find the actual currents delivered by generators G1 and G,.
Ans.: l t 344 amperes, 'G2 = 800 amperes.

Tine-to-Line Short Circuits. Line-to-line short-circuit currents may
be determined in accordance with the principles set forth in Chapter IX,
or they may be calculated by t method of symmetrical components.
The method of symmetrical components possesses the advantage of
accounting in a measure for the change in the impedance of synchronous
machines when the loading is changed from balanced three-phase to
single-phase line-to-line loading. Furthermore the method of sym-
metrical components reduces the calculations to the solution of balanced
three-phase systems. Certain modifications of the network parameters
are necessary in employing the method of s ymmetrical components, and
in addition the combination of the balanced s ystems solutions must be
properly made to obtain the final result.

The method of symmetrical components for effecting a solution of the
line-to-line short.-circuit problem will be developed with reference to
Fig. 15. The fundamental objective is to determine the positive- and
negative-sequence components of current in terms of (the known quanti-

1 This number of volts is only proportional to the actual voltage and is use
merely as a convenient means to determine the distribution of currents.
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ties) the induced voltage and impedance. The following symbols are
used:

E, generated voltage per phase
n', electrical neutral at the point of short circuit
V1,positive-sequence voltae to neutral at the short circuit
V2, negative-sequence voltage to neutral at the short Circuit
V0, zero-sequence voltage to neutral at the short circuit
Z1, impedance to positive sequence
Z2, impedance to negative sequence

According to Kirchhoff's voltage law, the positive-sequence voltage to
neutral at the short circuit must be the positive-sequence generated
voltage minus the positive-sequence drop. A similar relation obtains

FIG. 15. Line-to-line short circuit on a three-phase 8ystern.

for the negative sequence. Since all generated voltages at the generator
are assumed to be balanced, the positive-sequence generated voltage is
E. The negative-sequence generated voltage is zero. Hence for any
particular phase

V'=E-11z1	 (4)
V2 =0-12z2	(5)

Since there is no ground return or fourth wire in Fig. 15, there can be no
zero-sequence current in this system. At the short circuit

+ V, e , O = 0	 (6)
or

=	 (7)

The three voltages to neutral at the short circuit in terms of their sym-
metrical components are (assuming ab-bc-ca sequence) -

V1 01 = v1 +72 + V0	(8)
V,	 =V 1 /12oo +v2 /12o0 +v0	(9)

V	 V1/2010+V2/-120°+V0	 (10)
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Substituting equations (9) and (10) in equation (7),

v1/— 1200 + v2 /1200 + V0 = V 1 /120 0 + V2 /-120° + V0

V1(L-1200 _4120°) = V2 (/-120° —/120°)

or
VI = V2
	 (11)

Equation (11) shows that equations (4) and (5) are equal Therefore

E - 1 1 Z 1 = (12)

If 12 can be expressed in terms of Ij, the sequence components of cur-
rents ran be found. since no zero-sequence current can exist in the
circuit of Fig. 15, I t a1 12 are found as shown below.

Ina = Ii + 12 = 0 (Line na is open.)	 (13)

'nb I/— 1200 + I2/

= I i /120° +

Because of the short circuit,

'nb	 'en

Substituting equations (14) and (15) in equation (16),

I/-1200 + 12 /120	 —I/120° -

I, — 120 +/120°) + I2(/ —_1200 +/°) = 0

I i =

Suhtituting equation (17) in equation (12) yields

E - 1 1 Z 1 - 11 Z 2 = 0

E

= 11 + Z2

	

[Negative	 Equations 17 and 18 show that the arrange-
s:equenc a'

	

network	 ment illustrated in Fig. 16 may be used to
calculate the positive- and negative-sequence

FIG. 16. Arrangement of 
currents at the fault for a line-to-line short

seQience networks for de-	 circuit.
termination of positive-
and negatI.e-seqIence	

Impedances to Positive and Negative Se-
eurrents for a line-to-line quence. Before equation (18) can be applied,
short circuit,	 the values of the impedances to positive and

negative sequence must be known. The imipedance to positive sequence is
the impedance offered to a system whose voltages a, b, and e, respectively,

lag the one preceding it by 120°. The impedaLáe to negative sequence

ence
o rk

(14)

(15)

(16)

(17)

(18)
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is the impedance offered to a system whose voltages a, b, and c, respec-
tively, lead the one preceding it by 120°. It should be apparent, and it
.can be demonstrated by test, that the impedances of lines and trans-
formers are no different for a polyphase system of voltages when two
lines are interchanged (opposite sequence). Hence impedances to
positive and negative sequence for all lines and static machinery like
transformers are the same. For a synchronous generator it would seem
that these impedances are different since one system causes a reaction
from the armature that rotates in the same direction as the rotating field
structure, whereas the other causes an armature reaction that rotates in
a direction opposite to the field structure. The values of Z1 and Z2
may be obtained from a three-phase and a line-to-line short-circuit test.
The relation between the line-to-line short-circuit current designated
by I' and the three-phase short-circuit current represented by I" is
established for an alternator of voltage E,1 to neutral as follows:

	

I" = -	 (19)Z,

For a line-to-line short circuit between terminals b-and c at the generator,
Fig, 15, a combination of equations (15), (17), and (18) gives the
current:

= = E
z 1 + z2 /'° - Z i -I- z2,/'_120°

- (cos 1200 +jsin 1200 - cos 120° +jsin 1200)- z l + z2

z i + z2
	 (20)

Since Z 1 ± Z 2 is practically Z j + Z2 owing t9 the resistances in both
cases being small compared to the reactance, 2 the magnitude of I' is:

=
zI + z2	 (21)

Let k = I 'll". Then

k	
V'E

z1 - z 1 + z2
2 

In general the resistances of generators and trarn,formers are sufficiently low in
comparison with the corresponding reactances that it is customary to neglect re-
sistances in making short-circuit calculations. For this reason reactances only are
used in many of the subsequent computations even though the formulas are written
in terms of impedances If these facts are not kept in mind the rather loose use of
the terms reactance and impedance may become confusing.
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or
k
	 (22)

Equation (22) shows that Z2 depends upon the ratio, k, of the line-to-
line and three-phase short-circuit currents. When this ratio is known
and the impedance to positive sequence is determined by the ordinary
methods, Z2 can be determined. One salient-pole machine vith an
amortisseur winding tested by one of the authors gave a value of 1.44 for
k, while another non-salient pole machine without an amortisseur wind-
ing yielded a value of 1.40

TABLE II

IMPEDANCES AND REWrANCES ro DIFFERENT SEQUENCES

OF S.kLrEN­i-PoLE SYxcuaoNous GENERATORS WITu DAMPER WEsD1NOS

I

Name of	 I Synchronous	 Positive-
sequenceReactance	 X. X1

Per Cent 100	 100Reactances

Name of	 Synchronous	 Positive-
IImpedancIe	 Z1	

Sequence

Approximate
Per Cent	 100	 100

Impedances

Negative-	 Zero-
Sequence	 Sequence

X2

Approximate Approximate
Range	 Range
23-SO	 2-20

Negative-	 Zero-
Sequence	 Sequence

Z 2	 z1

Approximate Approximate
Range	 Range
25-50	 3-20

Table II shows approximate ranges of impedances to positive-, nega-
tive-, and zero-sequence currents of one class of generators with reference
to the synchronous impedance taken as 100.

Example 4. Each of the line reactances in Fig. 15 is 10 per cent ha.'e'd on 1000 kva,
and the positive-sequence impedance of the alternator is 25 per cent based on 1000
kva A value of 1.45 is assumed fork. The short-circuit currents in the ilirce ljii.s
for a short circuit between lines b and c are to be determined. The nominal rated

The values of reactances to negative sequence depend upon the size and thede-
sign of the machines and vary over rather wide limits for special cases. The reader is
referred to Wagner and Evans, "Symmetrical Components," p. 00, McGraw-Hill
Book Company, for extensive data on synchronous generator reactances to the dif-
ferent sequences.
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line voltage of the system is 2200 volts. For the generator

Z -	 Z1 -	 - 1.2Z 1 - Zj - 0.2Z1

- 0.2 X 25 - 5%

The positive- and negative-sequence circuits are shown in Figs. 17 and 18, respec-
Lively. The resultant impedances to positive and negative sequence are 35 per 'Sent
and 15 per cent, respectively. From equation (18) and Fig. 16,

1,000,000	 tOO
Ii	 X	 = 525 amperes

X 2200 (35 + 15)

Ii - — Ii —525/0* amperes

- 11 + '2 - 525/0° - 525/ - 0

	

- I/-. 120° + I2	 5251-120° - 525/120° = —jOlO amperes

L,c 11/120 * + 12/-120° - 525	 - 525/-120° = +j910 amperes

1

10

Example 5. The short-circuit current
25	 for the system shown in Fig. 7 for a line-

to-line short circuit is to be determined.
 The ratio k will be used as 1.45. Nomi-	 10

nal line voltage at short circuit is 12,000
Fm. 17. Positive- volts The lines shorted are designated Fin. 18. Negative-

sequence system as b and c, and the fault is again assumed	 sequence system
of Fig. 15. See at the upper right-hand corner of the	 of Fig. 15.	 See
example 4.	

diagram.
example 4.

Solution. A 10,000-kva base will be used. The positive-sequence network is the
game as that shown in Fig. 9. The negative-sequence network shown in Fig 19 is
similar to the positive-sequence system except for the values of the generator react-
ances. For the generators

Z2 
- v 3Z.- 

= 0.2Z

The resultant Z 1 (Fig. 14) is 41.95 per cent.
The resultant Z 2 (Fig. 23) is 26.17 per cent as obtained from the reductions indi-

cated by Figs. 20, 21, 22, and 23.

10,000,000	 100
Ii = —12	 X	 + 706 amperes

12,000	 41.95 + 26.17

At the short circuit where currents in all three lines are considered in the same di-
rection, that is, either o or from the short circuit,

I1 +I2'706j-706/00

706/-120° - 706/120° 	 —jl223 amperes

	

L - 706	 - 706/-120 - +j1223 amperes

To obtain the currents in the other lines, the positive- and negative-sequence currents
should first be found by retracing the steps in each system as outlined for the three-



q

20 4

30	 10

FIG. 20.

9
Fin. 21.Fin. 19. Negativesequence network of

Fin. 7 for a line-to-hriè short circuit
at the point indicated by the cross-
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phase short circuit. The current in the lines from the secondaries of transformer

T 1 will be found in order to illustrate the procedure. The distribution of positive-

and negative-sequence components of current as shown in Figs. 24 and 25 are first
found by retracing previous steps. If, when retracing the network from the short

circuit, only transformers with both primary
and secondary windings similarly connected

1.97

	

	 are encountered, the actual current may be
found by combining the sequence compoIents

14.2 as determined for Figs 24 and 25. When a
transformer like T 1 which is connected differ-
ently on primary and secondary is encountered,
the sy mmetrical components in the Imes on the Fin. 23. Resultant

	

primary side are no longer the same as tho se in	 perceritage of re-
actance to nega

Fm. 22.	
the secondary lines. Failure to recognize this 	 tive sequence for a

	

fact will introduce large errors in the short-circuit 	 line-to-line short

	

calculations. The shortcircuit cijrrents i- the secondary lines 	 circuit at point in

	

fropr transformer T 1 are found from the sequence components 	 dicated on Fig. 7

shown in Figs. 24 and 25, as follows:

10 + I	 21200 - 144.7L0 — 67.3 amperes

212/-121Y - 144.7 p 120 0 = — 33.65 - j3OS.8 amperes

	

10	 212/1200 - 144.7/12O0	 —33.65 +j3OS.8	 amperes

The currents in the lines on the primary of T i , Fig. 7, are determined from the
phase currents in the delta and are obviously eqIal to them if the ratio of each tran-
firmer is 1 to 1 and the magnetizing currents are neglected. If the impedances of
all phases of a de l ta-connected hank of transformers like that shown in Fi g . 26 are
equal, and if the sum of the generated voltages of the three phases is zero, application
of Kirchhoff'a laws will yield the following equations:

100' + Iw + L' = 0	 (23)

(24)
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Since Zba Zac m Z, equation (24) becomes

Ib+Lr+IcbO	 (25)

Further application of l'irchhoff's current bw gives

J1eQ L7c 	(26)

Ibb'	 (27)

L' =L — I	 (2-)

G%

G21
12

I ( go) 2 60	 T](,4)j	 4

(
j1i	 I3(J,	

(,

Fin. 24. Distribution of positive-sequence	 Fic.25. Distrihutionofnegative.sequence
component currents for example 5. 	 component currents for example 5.

Substituting I from equation (25) in equation (26), then elindnating Ls between
this result and equation (27), and finally substituting the value of I' from equation
(23), the folloting expression for Js results:

=	 +	 (29)

FIG. 26.

Similarly L and Ls are found to be, respectively,

=	 + I'	 (30)

+	 (31)

The currents L, I. and L in the seconda lines of Ti of Fig. 7 correspond to I',
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and L', respectively, in equations (29), (30), and (31).' Hence

1(67.3) +j( — 33.65 +1308.8)
= 33.7 + 3102.9 — 108.2/71.8 amperes

L = (— 33.65 +j308.8) +1(-33 . S5 —j308.8)
= —33.7 + j102.9 = 108.2/108.2° amperes

Lb	 1-33.6s —j308.8) +(67.3)
—j205.8 = 205.8/—W amperes

On a I to I ratio, lb,, I, and Lb above are the line currents from generator 0 1 , Fig. 7,
or, in other words, the above currents are on a /3 12,000-volt base. If the nominal
voltage of the generator is 6600 volts, the currents in the three lines from the gen-
erator are

000
108.2 X	

12,	
= 341 amperes6600

/i 12, 000
108.2 )<	 341 amperes

6600

*/ i,000205.8 X -	 648 amperes6600

FIG. 27. Line-to-ground
fault. Neutral n of the
three-phase generator is
assumed grounded.

Line-to-Ground Short Circuits. If a system
has a number of wye-connected generators and
transformers with grounded neutrals, there is
a possibility of having a large short-circuit cur-
rent for a line-to-ground fault. Such fault cur-
rents are most conveniently calculated with the
aid of symmetrical components. An elemen-
tary Circuit illustrating a line-to-ground fault is
shown in Fig. 27. Application of equations (13),
(16), and (17) of Chapter XII gives the sym-
metrical components of the currents as

Therefore

10 = J. + Jo + I) =
3	 -

1 1 Ia
= *(I	

-+ I/p° + L—I2o°) -

12	 (I + I12o° + I/ 12O0) - Ia

10 = Ii = 12 =

(32)

(33)

(34)

(35)

4 Equations other than (29), (30), and (31) for the currents in the transformer
windings can be derived rm the basic equations given.

-35
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Let E be the induced voltage in phase a of the generator. According to
Kirchhuff a cml law, the sum of all the drops must be equal to the sum
of the cmf's around a closed loop. Then

E = I0ZO + 1 1 Z 1 + 12Z2

bstituting equation (35) gives

E lo (LO + Z 1 + Z2 )	 (36)

Combining equations (35) and (36),

-=

	

E	
(37)

zo + z i + z2

Equation (37) is the working equation for the line-to-ground fault.
Equations 35 and 37 show that the arrangement illustrated in Fig. 28

may be used to calculate the positive-, nega-
tive-, and zero-sequence currents at the fault for
a line-to-ground short circuit. 	 POSItillesequenCe

The impedances to positive and negative - 	 network

sequence Z 1 and Z2 are exactly the same as
those used for the line-to-line fault. The imped-	 Negative

sequence
ance to zero sequence, however, is different. 1
Whereas the positive- and negative-sequence 
networks were alike in the number and arrange- 	 Zero

seouene

ment of circuit elements, the zero-sequence net- 	
ne wor

work is radically different and usually much
simpler.	 FIG. 28. Arrangement of

Impedance to Zero Sequence for Generators. sequence networks for
calculating positive-, neg-

The determination of the impedance to zero se- ative-. and zero-sequence

quenee for generators is analogous to the deter- 	
currents for a line-to-
ground short circuit.

mination of the impedance to negative sequence.
Let f represent the line-to-ground short-circuit current for a gener-

ator.
Let 1" represent the short-circuit current for a three-phase sym-

metrical short circuit.
Also let

in	 (38)
IM

From equation (37), if the ratio of X /R for all impedances is the same or

if R is negligible compared to X, as is usual,

= 310 =

	

	 3E	 (39)
2 1 + Z2 + Zo
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Also

- and kj" = I	 E
ti = -

z1	z1

Therefore
E	 3E

k1 
= Z, + 2 —+z,,

Solving equation (40) for Zo gives

Zo = z, (- -	 -

The value of Z0 thus depends upon the values of the impedances to
positive and negative sequence and also upon the ratio of the line-to-
ground and three-phase short-circuit currents. For example, k,, for the
nonsalient-pole machine used in the previous example was shown by
test to be about 2.4. For this machine

,(2-4- -
	 = 0.05Z,

The approximate range of impedance to zero sequence for one class of
generators is shown in Table II on page 535. The values are given
relative to the synchronous impedance taken as 100.

Impedance to Zero Sequence for Transformers. The impedance to
zero sequence for transformers is either infinite or the ordinary leakage
impedance,' depending upon the connection. Where the connection
permits zero-sequence currents to flow, the impedance to zero sequence is
the ordinary impedance of the transformer; otherwise it is infinite.
Since the zero-sequence currents in the three lines of a three-phase
system are all in phase, a fourth wire or ground connection on the neutral
of transformers connected in wye is required to furnish a complete cir-
cuit for the return of the zero-sequence line currents. In addition,
there must be another winding on the transformer to permit current to
flow so that the resultant magnetomotive force acting upon the trans-
former core due to the zero-sequPnce current is zero (exciting current
neglected). If these compensating currents are not permitted to exist,
the inductive reactance of a single winding to the zero-sequence current
is so high that the amount of this current which can flow is entirely
negligible. The corresponding impedance ma y then be considered

If the transfo'-merc have more than two windings which carry zero-sequence cur-rent, reactance due to certain mutual-inductance effects of the several windings should
be included. For a discuasion of the reactance of multiwinding transformers, see
0.0. C. Dahl, "Electric Circuits, ,, McGraw-Hill Book Company.

54'

(40)

(41)
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infinite. A few examples as shown in Fig. 29 will illustrate these

principles.
Transformer Bank A. No zero-sequence currents can flow since there

is no return path. Therefore the impedance to zero sequence is infinite.

Transformer Bank B. Zero-sequence currents can flow. Winding
p furnishes a path for the compensating currents of those in winding S.
Hence the impedance to zero sequence is the ordinary leakage impedance.

JMMO^
___M^M^01

ruii i1

FIG. 29. Zero-sequence currents can flow in B but not in any of the other transformers.

Transformer Banks C and D. No zero-sequence currents can flow.
The impedances to zero sequence are infinite. If the neutral of the wye-
connected generator supplying transformer bank C were grounded, zero-

sequence currents could flow in both primary and secondary of C.

Under these conditions the impedance to zero sequence of transformer

bank C would be the ordinary leakage impedance.

Fo. 30. Zero-sequence impedance of a transneiOfl line is the impedance of the three

conductors in parallel in series with a ground return.

Impedance to Zero Sequence of TranmissiOfl Lines. The impedance
to zero sequence of a transmission line, Fig. 30, is the impedance of the

three conductors in parallel with a grsund return. The reactance

depends upon the depth at which the return current appears to flow. A
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discussion sufficiently adequate to yield a working knowledge of the
determination of reactance to zero sequence of transmission lines is some-
what involved and beyond the scope of this 1)00k. Those interested are
referred to other works on the subject. For purposes of illustration
of the method of calculating line-to-ground fault currents in this book,
certain values of reactance to zero sequence of a line are assuxnd.

Z.

FIG. 31. Flow of zero-aeqüence currents through an impedance in the neutral.

If an impedance Z as shown in the neutral of the generator of Fig. 31
is encountered, it should be entered into the zero-sequence networks as
3Z 8 . This may be shown as follows. The ordinary impedance Z is
defined . as the drop V 8 across the impedance divided by the current
through it. Hence

V,1
Zn	

In	
(42)

Since
In =

I.	 ,	 V8
(43)

3I

Since there are no positive- or negative-sequence currents in the neutral,
V. for this case is considered the zero-sequence voltage which is due to
the zero-sequence current I. Hence

V0 V8
(44)

ZO	 10

Si1istitution df V./10 from equation (43) in equation (44) gives

Zo = 3Z,	 (43)

Thus the impedance to zero sequence as defined in equation (45) is three
times as large as the actual impedance in the conductor. Since the only
zero-sequence current flowing in the zero-sequence network is 10, the

G See ' Symmetrical Components ' by Wagner and Evans and "Applications of
the Method of Symmetrical Components" by Lyon. McGraw-Hill Book Company
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value Zo — 3Z, should be entered into the zero-sequence network to
yield the correct voltage drop.

Calculation of Line-to-Ground Fault Current. The system shown in Fig. 7, which
was previously employed for three-phase and line-to-line short circuits, will be cal-
culated for a line-to-ground fault on one of the secondary lines of transformer T1

	

A determination of the reactance to zero-sequenqe of line 14, is as-

	
JG'2sumed to yield 20 per cent reactance on a 5000 .-kva base. The

problem will be worked on a lO,000-kva base as before.
Solwi,n. The positive- and negative-sequence networks are

the same as those previously employed. They. are shown in
Figs. 24 and 25. The impedances to positive and negative se-
quence are the same for the line-to-ground fault solution and ti-
general distribution of the positive- and negative-sequence cur-
rents is the same, but the actual magnitudes of the positive- and
negative-sequence currents will be different because of the effect
of the impedance to zero sequence in reducing the magnitude

	

of the resultant positive- and negative-sequence currents. The F 	 3	 Zero-

	

resultant impedances to positive and negative sequence of 41.95	 net-
and

sequence

	

 26.17 per cent, respectively, are still valid. An inspection 	 work for a line-

	

of Fig. 7 shows that no zero-sequence current can exist in trans..	 to-ground fault

	

formers T5, Ti, T1 , or generator G3 . Therefore the zero-sequence

	

	 on Fig. 7 at the
point indicated

network consists of G2, Ti, and Ti along with line Z 3. The by the cross.
zero-sequence network is shown in Fig. 32. If k,, - 2.4 and

= 1.45, substitution in eqilatun (41) gives Z0 = 0.05Z 1 . For generator G2

Zo = 0.05 X30 1.5 percent

Resultant Zo for the zero-sequence network	 1.5 + 4 + 40 + 10 = 55.5 per cent.

£

	

10 = It =10	
+1 +2

In terms of percentage impedances,

I	 12 = =
I.	 10,000,000

v'	

100
-	

12,000 X
	 + 41.95 + 26.17

389/00 amperes

For a positive-sequence current of 389 amperes the distribution is shown in Fig. 33.
These values are determined by multiplying the currents in Fig. 24 b y 389'706.
Similarly the negative-sequence current distribution is determined and shown in
Fig. 34.

The currents on a 12,000-volt base are now found by combining the symmetrical
components.

Fault current:

1 I+I,+10 -3X389	 1I67amperes

Iô =389/-120°+389/+389 —o

- 389/	 + 389/ - 120 0 + 389 —0
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Transformer T3 and line l:

1. - 305.2 + 316,8 + 389 1011 	 l - 1011 amperes

305.2/- 120° + 316.8 L! 	 + 3S9 = 78 + Jl0.5 	 lb = 78.7 amperes

Ic =	 + 316.87-120° + 3S9 = 78 - j10.5 	 l = 78.7 amperes

30 G21
10 1

is	 20	 6 G2

15	 20

Fra. 33. Positive-sequence current distri- 	 Fin. 34. Negative-sequence current di g-
bution for line-to-ground fault on Fig. 7.	 tribution for line-to-ground fault on Fig. 7.

Line 12, transformer T, and 14:

83.8 + 72.16 - 155.9 	 IQ	 155.9 amperes
lb = 83.8/-120° + 72.16/120° = -77.95 - flU	 = 78.6 amperes

Ic 83.8L9 + 72161-120° = _77.95 +i lO 	 Ic 78.6 amperes

Line 1 1 and transformer 7'::

I. = 33.0 + 7.54 = 40.54	 1 = 40.5 amperes
33.0-120° + 7.54	 20.3 -j22.O	 lb = 30.0 amperes

33.0/120° + 7.54 '-120°	 -20.3 +j22.0	 I = 30.0 amperes

Secondary side of transformer T1:

= 116.8 + 79.7 - 196.5	 1 - 196.5 amperes
Ib = 116.S/-120° + 79.7 l20° = -98.2 - j32 	 lb = 103.3 amperes

Ic = 116.8/120° + 79.7/-120°	 -98.2 + j32	 I	 103.3 amperes

Current in windings of transformer T 1 (see Fig. 7):
-4(196.5) +(-98.25 +j32)	 98.3'+ j10.7	 I - 98.9 amperes

I. - 4(-98.25 +132 ) +(-98.25 -j32)
- -98.3 + j1O.7	 = 98.9 amperes

'eb 4(98.25 j2) +(196.5)	 -j214	 = 21.4 amperes
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Since these are the delta transformer currents, on a 1 to 1 ratio they are also thi' cur-
rents in the phases of the ive primary, and therefore the currents in the lines from

generator G 1 on a v'i 12,000 line voltage base.
Current in G2:

272.2 + 3093 + 389 970.5	 970.5 amperes

	

= 272.2 /- 120° + 309.3 /120° + 389 = 98.25 + j32 	 'b = 103.3 amperes

Ic 272.2	 + 309.3/-120° + 389 98.25 - 32 	 i	 103.3 amperes

PROBLEMS

4. Refer to Fig. 35. All circuit elements are assumed to have zero re 	 flee.
The reactances to positive sequence are the numbers preceded by j on the di rn

Generator A is a 3000-kva machine having a rated terminal voltage of 6600- o ts.
Generator B is a 6650-volt, 5000-kva machine.

Generator A	 Generator B
X 2 - O.4X,	 X20.33X1

X 0 U.20X 1 	 X5-0.10X
at	 ALA- 8

loop

jn,
20	

olution
rort

(torrrent

Js_	 ji J)Xj
NS

b'	
-2	

Kbloop
solution)	 .1

jill

L11,uorioop I
current
solution)

14	 '4
  	 1III.L

To toad
(load currents assumed

equal to zero)

Fin. 35. See Problem 4.

(a) Solve for the currents in all branches by one of the methods considered in
Chapter IX, assuming that the impedances shown on the diagram hold for any kind
of unbalance.

(b) Solve for the currents in all branches by the method of symmetrical com-
ponents, taking into account tltc difference in impedance to the positive, negative, and
zero sequences. Impedances to positive sequence for the generators are those shown
on the diagram.
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5. The following data refer to Fig. 36.
Apparatus

0
02
03
T1
T2
T3

1
12
13

Kva Rating

20,000
10,000
20,000
10,000
10,000
10,000
]0,000

% Reactance

30
50
20

2
20

6
7

30
20
10
40

Kva Ba.se for
Reactance
10,000
10,000
10,000
2,500

30,000
10,000
10,000
20,000
10,000
4,000

30,000

Generator	 k	 k,,
1.4	 2.1

02	 1.5	 2.3
1.3

All resistances are assumed negligible.
Calculate currents in all lines, transformers, and generators for a 3-phase sym-

metrical short circuit at the point marked fault. Express currents on a 33-k y bas'.
6. Calculate currents in all lines, transformers, and generators for a line-to-line

fault at the point marked fault. Express currents on a 33-k y base.
7. Calculate currents in all lines, transformers, and generators for a line-to-ground

fault at the point marked fault. Use 25 per cent based on 10,000 kva as bie zero-
sequence reactance of 12 including lines and ground return. The zero-sequence
reactance of 1 3 including line..; and ground return is 12 per cent based on 4,)0 kva.
Assume negligible resistance, and express currents on a 3.3-k y base.



chapter XIV Transient Conditions
The expressions which have thus far been derived for currents and

voltages have carried with them certain tacit assumptions. All the
alternating currents and voltages in any particular circuit have been as-
sumed to be recurring, periodic functions of time; in other words, the
circuit in question has been assumed to be in a steady-state condition.

Before a circuit (or machine) can arrive at a steady-state condition
of operation which is different from some previous state, the circuit (or
machine) passes through a transition period in which the currents and
voltages are not recurring periodic functions of time. For example,
immediately after the establishment of a circuit the currents and volt-
ages have not, in general, settled into their steady-state conditions. The
period required for the currents and voltages to adjust themselves to
their steady-state modes of variation is called the transient period.
During transient periods the mathematical expressions for the currents
and voltages contain certain terms other than the steady-state terms.
These additional terms are called transient terms, and they are usually
of short duration, being damped out by certain damping factors which
depend for their values upon the circuit parameters.

In general, any switching operation within the circuit itself or any
voltage which is suddenly induced from an outside source will cause
transient conditions to exist in the circuit. Although transient periods
are gcnerally of short duration, it is during these periods that some of the
most serious and involved operating problems are encountered.

It should not be inferred that transient variations are always violent
or that they always represent undesirable circuit conditions. Various
devices actually operate by virtue of recurring transient phenomena.
Notable among these devices are: (1) certain classes of sweep circuits,.
and (2) certain types of tube inverters. Sweep circuits are employed
extensively to produce linear time axes in cathode-ray oscillographsand
cathode-ray television tubes- Inverters are employed to convert direct
to alternating current.

Examples of Elementary Transient Conditions. Example 1. In
Fig. 1 it is assumed that the RL branch is suddenly energized with a
constant potential difference by closing the switch S at t 0. The

549



L	 = di
(E —Ri) 

(4)

(5)
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general equation for voltage equilibrium in the resu1tg series circuit is:

(1)

If L, R, and E are constant the above equation 'ay be solved explicitly
for i in any one of several different ways. One of the most direct
methods of solution in a simple case of this kind is to separate variables

and integrate. Thus:

i di
t=o

or

L f(E —Ri) 
= fdt
	

(2)

Fia. 1. A series RL branch which
is suddenly energized by a constant
potential difference E at t = 0.

or

Whence:

- log. (E - Ri) = I + C

log. (E - RI) -	 + C,	 (3)

where e is the base of the natural logarithms, namely, 2.71828 , and
c1 is a constant of integration. From the definition of a logarithm it
follows that:

E - Ri =
Therefore:

E — Ri — —Rt/L-

Solving the above equation for i yields:

= -

The constant of integration c3 must be evaluated in terms of the bound-
ary conditions that surround the switching operation. Boundary con-
ditions are usually specified in terms of the circuit currents and the
condenser voltages that exist at the instant a given switching operation
is performed. In general, the specification and incorporation of
boundary conditions require aft understanding of the natural charac-
teristics of the circuit parameters involved. For example, if a circuit
possesses inductance the current cannot change abruptly, that is, can-
not become discontinuous with respect to time. Therefore the current
in an inductive branch at the instant a given switching operation is
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performed is equal to the current that exists in the branch just prior to
switching operation. In the present case: i = 0 at t = 0, and this
physical fact can be employed to determine the value of c 3 in equation
(5). Imposing the boundary condition on equation (5) results in:

E	 E
0=—c3 or	 (6)

The general expression for current becomes:

E	 E —R/L- -
R	

(7)

steady-state term	 trso.ient t rm

It will be noted that the complete expression for i onsists of two terms:
a steady-state term and a transient term. In general this distinct
division of terms is present in complete current solutions. Under cer-

- -

- ts
L----.
	 p .	ii-€ L)

,t .0 0O92.c	 I
t,0	

Tim.

05CH.WGRAM 1. Growth of current in an RL circuit which is suddenly energized with
a constant potential difference, E. The instantaneous power delivered to the circuit is
also shown.

thin condiions one or the other of the terms may be zero. The fact
that the complete expression for current can be divided distinctly into
a steady-state term and a transient term is of considerable importance.
Under ordinary conditions the steady-state term can be evaluated in
terms of elementary circuit concepts rather than by involved processes
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of integration. The transient term can usually be found in terms of
simple exponential components if the circuit parameters are constant.

The time variations of the two terms of the current solution given in
equation (7) can easily be visualized. The steady-state term, E/R,
is independent of time; the transient term has a value of (—E/R) at
t = 0 and approaches zero exponentially as time increases. The two
terms combine to form the current that actually flows in the RL circuit
during the transient period. Oscillogram 1 illustrates the actual
growth of current in an RL circuit when it is suddenly energized with a
constant potential difference. It will be noted that the transition in
current in this case is from zero to a steady d-c value equal to E/R.

In certain elementary types of circuits the length of time required
for the current to make 63.2 per cent of its total transition is called
the time constant of the circuit. The time constant of the RL circuit
is L/R, as may be shown by direct substitution in equation (7). Thus
if t is set equal to L/R in equation (7) it is simply a matter of algebra
to show that:

Eil,tt_L/R = 0.632

Example 2. The circuit shown in Fig. 2 is assumed to be carrying a
steady current equal to E/R at I = 0. At

= 0, either the switch S is assumed to
t T

	

	 R change from point a to point b in an in-
finitely short period of time or it is assumed

[

	

	
L that a dead short circuit occurs between the

points a and b. In either event the RL
suddenly de-energized at f =
ORLbraDchwhjChj8 branch is de-energized at t = 0 and left to

subside through the short-circuit path. The
basic voltage equation for the RL branch at and after I = 0 is:

dt	 (8)

From which:

I =	 o	 + c 1	(9)
.tesdy-state term	 trsriaie,it term

As 'Prev
iously mentioned, a current flowing through a circuit which has

an appreciable amount of inductance cannot change its value instan-
taneously. Since i = E/R just prior to 1 0, 1 is also equal to E/R
at 1 0. Therefore:

E
(10)
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and

0	 +
E —Rr/L (11)

	

steady-state term	 transient term

It will be observed that the transition in current is from (E/R) at
= -O to zero current at t = cc and that the rate of subsidence is gov-

erned by the ratio of R to L. The current actuall y comes to zero in a
relatively short period of time because the driving voltnge, L di.!!! or
N d/dt, becomes so small that it can no longer maintain a net move-
ment of electrons in one direction. Thus when the energ y of the eel-
lapsing magnetic field becomes so small
that it cannot overcome the internal atom-
ic forces that tend to prevent net drifts
of electrons, the current actually becomes
zero. The failure of theoretical equations -r 	

Q0	 C1
to account for exceedingly minute effects Fxo. 3. A series RC cjrL'uit cud-

of this kind is of no practical importance. 	 denly energized with a constant

	

Example 3. If the condenser shown in	 potintia1 difference of E volts.

Fig. 3 has a charge of Qo units of electrical charge at t 	 0, the basic
voltage equation at and after I = 0 is:

	

Ri+=E	 (12)

where	 g=fidt+Qc	 (13

Differentiating equation (12) with respec'to I and substituting i for
dq/dt yields:

R-=0	 (14)
di C

From which:
-	 -tfRC

	

c	 (15)

The resultant yoltae caug current to flow in the circuit at the
instant of closing the sitis (B - Qo.'C) . Theref'ore the current in-

stantly acquires a value 	 Q9/C) at I = 0 since the self-inductance

is assumed to be negligibly small. In this conpection it should be noted
that the initial Q0/C voltage of the condenser may possess either polarity
with respect to the applied voltage E. For the case shown in Fig. 3
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the polarity of Q0/C is opposite to that of the applied voltage E. Since

(E - Q0/C)
at t=O

it follows that
E—Q0/C)

Cj=	
R

and
(E - Q0/C) —11RC

R

Equation (17) is the mathematical expression for the direct charging
current taken by a condenser when the self-inductance of the circuit is
negligibly small.

The variation of charge can be found by solving equation (12) for q
and then substituting for i its value from equation (17). Thus

q — CE — CRi
= CE - (CE - Q0)'/RC	 (18)

If the initial charge Qo 0, the variations of current and charge as given
by equations (17) and (18) are shown in Fig. 4.

CE.!cournb	 004

i0.5i1 1III
0	 C	 0.1	 0.2 03 0.4 03	 1.0

Seconds
Fia. 4. Charging a condenser C -

	
FIG. 5. Discharge of a condenser

lOOuf through a resistance R -
	

C = 100if through a resistance
1000 ohms from a d-c source of 1000

	
R = 1000 ohms. Initial charge at

volts.	 a potential of 1000 volts.

If a condenser of C units capacitance replaces the inductance L of

Fig. 2, it is a simple matter to show that:

and	 -	

(19)

(16)

(17)

q = CE_t1	 (20)
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Equation (19) is the expression for the discharge current in an RC cir-
cuit which contains a condenser initially charged to a potential difference
of E volts. Equation (20) is the expression for the decay of charge
under the same conditions. The variations of current and charge as
given by equations (19) and (20) are shown in Fig. 5. Condenser
charge and discharge currents are similar except for sign and are simple
exponential variations. The steady-state current in either of the two
cases is obviousl y equal to zero.

The time constants of the above RC circuits are both equal to RC
since it is at this value of time that the current has made 63.2 per cent
of its total change.

Sawtooth Wave Form Produced by Simple Transient Effects. Vari-
ous forms of circuits have been devised to produce sawtooth wave
forms or approx i n'ations thereto. One of the most elementary is

E—T

Neon	 To one
pair of cathode.tube	 ray tube plates

FIG. 6. An elementary form of sweep circuit the operation of which depends upon
recurring trawuect pheoomena

sh own in Fig. 6.1 The operation of the device depends upon the natural
behavior of the circuit elements, the details of which are listed below.

1. A transient voltage appears across the condenser due to the tran-
sient inrush of current to the main RC series circuit. Until a certain
critical voltage is established across the condenser, the neon discharge
tube remains un-ionized and acts practicall y as an open circuit.

2. When the condenser voltage has built up to a certain critical
value, say E,, the neon tube ionizes and suddenly places a low-resistance
path across the condenser. The ionized tube thus provides a means of
discharging the condenser because the time constant of the discharge
path is relatively very small as compared with the time constant of the
main RC series circuit. The voltage across the condenser drops from
the value E1 to some lowevalue, say E2 , in a very small fraction of the
time required for the establishment of E1.

'In practice the neon tube of Fig. 6 would probably be replaced by a gas triode
which has an extremely low de-ionization time, for example, a type S85 tube. In this
case the anode-cathode path of the triode replaces the neon tube of Fig. 6 and the grid
of the triode can be used to control the starting of the discharge current.

-36
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3. After the condenser has been discharged to the voltage E 2, the
neon tube ceases to be a conducting path (becomes de-ionized) and
perniits the applied potential difference to recharge the condenser.
The cycle of transient phenomena thus repeats itself, and the voltage e
takes on an approximate sawtooth wave form.

During the charging period the condenser voltage is:

e1 
_q - jidt+Qo

(21)
C

or
i de

e1 
=	 + E2 	 (22)

E2 is the voltage left on the condenser from the previous cycle due to
the discharge tube de-ionizing before zero condenser voltage is reached.

From equation (17) it is evident that

• E—E2

=	 R	
—tfRC	 .	 (23)

Therefore,
- E - E2f _C/RCd + E2 	 (24)e1 - RC

or
e 1 = E - (E - E2)e'	 (25)

The rising condenser voltage is in this case exponential in character
rather than linear. However, when the actual change in voltage,
(E 1 - L 2 ), is small as compared with (E - E2 ) fairly satisfactory
results can be obtained.

The condenser voltage continues to build up in accordance with
"quation (25) until the voltage E1 is attained, at which time the neon
tube discharges the condenser in the manner previously described.
Obviously E must be greater than E1.

A mathematical analysis of the conditions during the discharge
period is complicated by the variability of the resistance of the discharge
path. The exact behavior of the circuit during the discharge period
is usually unimportant because the discharge period is of relatively
short duration and does not represent the " working" part of the cycle.
It should be recognized that the series resistance, R, is generally of the
order of 10,000 times the value of the tube resistance when the tube
is ionized. Therefore during the discharge period the tube cannot
receive any appreciable percentage of the applied voltage. It is plain
that the device would cease to function as a sawtooth-wave-form genera-
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tor, if, during an ionized period, the tube received a voltage sufficient to
sustain ionization.

The general nature of the approximate sawtooth wave form produced
is shown in Fig. 7. An obvious place for improvement is in the rising
or building-up portion of the curve. The rising part of the curve can
be made practically linear by replacing the constant resistance, R,

E, joo

!Ltfl,t
0.050'flme	 0.005 TO	 0.005

,o.

	

Sec. I	 s
hLscbare Perlodi I
I	 uO.0002 I

Fio. 7. Approximate eawtooth wave form as determined (torn equation (25) for the par-
ticular case of B 220 volts, B1 - 100 volts, E2 20 Volts, R	 100,000 ohms, and
C = 0.1 pf. The overall time of one cycle under these conditions is approximately
0.0052 second.

with a resistance that varies inversely as the amount of current passing
through it. Many of the modern vacuum tubes, particularly the
pentodes, possess this resistance characteristic from plate to cathode,
provided they are worked between certain limits as regards plate-to-
cathode voltage.

If the transient current inrush is maintained constant at I amperes
by means of a variable resistance, then

e 1 =KfIdt+E2

=Kft+E2
Under the conditions stated above, the rising part of the voltage curve
shown in Fig. 7 would become linear with repcct to time.

In addition to the use of a pentode type tube for maintaining constant
charging or discharging current, some swerp circuits employ a grid-con-
trolled mercury-vapor discharge tube as a starting and stopping valve.
Various other combinations of electron tubes are also employed to
produce sawtooth wave forms.

Oscillogram 2 is a photographic record of the wave form produced
by a modern sweep circuit which emplo ys a series of transient con-
ditions to effect the desired result. In obtaining the photographic
record one pair of plates of a cathode-my tube are energized with
one sweep-circuit potential difference and another pair of plates are
energized with the potential 'difference developed by, an identical

C I

- -V
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sweep circuit. The linearity of the sweep-circuit voltage is clearly
shown.

OSCIL.LOGRAM 2. Illustrating the linearity of the potential difference developed by a
modern sweep circuit In this particular case the return time, that is, the time required
for the voltage to return from En,aa to Enjn, is so short that the trace is not discernible
on the photographic record.

The RL Circuit Energized with an Alternating Potential Difference.
If an alternating potential difference replaces the battery shown in
Fig. 1, the expression for dynamic equilibrium is:

L+RjEm sin (wt +X)	 (26)
dt

or
di R. Em= —sin (wt +X)	 (27)
dl L	 L

The symbol X represents the phase of the voltage wave at which the
switch of Fig. 1 is closed. Reference to Fig. 8 will show more clearly
the exact meaning of A. It is the angular displacement expressed in
degrees or radians between the point e = 0 and the point £ 0 measured

positively from the point where e = 0 and de/dt is positive.
The factor A provides a convenient means of examining a-c transient

conditions. In general, the magnitude of an a-c transient depends
upon the One of the cycle at which the switching operation is performed.
Most switching operations are performed with no regard for, or rather
no knowledge of, the point on the voltage wave at which the transient
period begins. Under these circumstances the investigator analyzes
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the effect of starting the transient disturbance at different points along
the voltage wave. This is done by assigning different values to X.
In the case of surges or inrushes most attention is paid to those values of
A that produce the greatest currents or voltages.

Tar	 e—o	 t—o
Fia. 8. Illustrating the physical significance of the symbol X.

Equation (27) is representative of a general class of differential
equations. The derivative of the dependent variable, (i), with respect
to the independent variable, (I), added to the dependent variable,
times some coefficient, equals some function of time. This form of
equation defines the basic relationships involved in many physical
problems, being particularly prevalent among the problems of electric
circuit theory. The equation admits of relatively simple solution if
all coefficients are constant and the right member is an exponential or
sinusoidal function of time.

Let equation (27) be written as

di
+ ai = h sin (t + A)	 (28)

dt

where a = R/L and ii = E/L.
The solution of equation (28) takes the following form:

i (j + A) dl + Ce_° (29)

The proof of the solution stated above rests in its a6ilit3- to satisfy the
original equation, namely, equation (28). In t.enns of the above
solution:

di = he—aleal sin (cot + )) - ahrat feat	 (t + A) dl - ac i i_0 	 (30)
di

and

ai =	 sin (wI + A) dl + aci	 (31)
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Adding equations (30) and (31) will show that equation (29) is a
general solution of equation (28). The solution stated in equation (29)
is limited to those cases where a and h are constant. For the particular
problem at hand this means that R, L, and Em must be constant before
equation (29) can be employed as a solution of (28).

The 'solution for current in an RL circuit with sinusoidal voltage
applied is:

• = E. _Rt.LJ'(Rt/L sin (,t + X) d + c1€R1	 (32

steedy-state term	 transient term

The relative complexities of the two terms in the above solution should
be noted. Mathematically, the steady-state term is known as the
i. particular integral," and the transient term as the "complementary
function." The integration involved in the evaluation of the steady-
state term can be carried out by the method of successive parts, but the
algebraic simplification of the results is a tedious process.

With sinusoidal applied voltages, familiar algebraic methods may be
employed to find the steady-state terms of general current solutions.
Many of the disagreeable details connected with the evaluation of
complete current solutions are thus avoided. For example, several
lengthy mathematical relations are involved in the integration method
of finding the steady-state term of equation (32) which is simply:

is Em

= -i 
sin (wI + X -0)	 (3,3)

where
Z = V'R 2 + w 2 L2 and 0 = tan' wL/R

Actually equation (33) can be thought of as following from two physical
facts. The maximum value of the steady-state current is Em/Z where
Z = V')7?T+ w2 L2 , and the stead y-state current wave lags the applied
voltage wave by the angle whose tangent is wL/R. The complete
expression for current becomes: 	 -

• Em=-1 sin (wt+X-9)+c —Th/L	 (34)

The constant of integration c1 must be found from the initial conditions
- those existing at the time of closing the switch. If the circuit current
is zero just prior to closing the switch, then,

i = 0 at 1 0 (See page 550.)
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Imposing the above condition on equation (34) yields

L'-.0 -_sin (X - 0) + Cl

From which:
—Em

C1 = —:-- 
sin (X - 0)	 (35)

and
• Em.	 Em
i =	 sin (wt + >s - 0) -	 sin (X	 0) 1 '	 (36)

8tedy-øtate term	 transient term

It will be noted from the above equation that the transient term is
equal to zero when (X - 8) = 0, T, 2r, etc. If the RL branch is highly
inductive the ratio of c.iL to R is large, thereby causing 0 to approach
7r/2 as an upper limit. In cases of this kind the transient term is zero
when X is approximatefy equal to 7r/2, 37r/2, 57r/2, etc. Ph ysicall y this
means that zero transient effects take place in highly inductive circuits
when the circuit is energized at points of approximately maximum
voltage on the voltage wave.

The transient term of equation (36) is maximum (for given values
of R, L, w, and Em) when (X - 0) = /2, 37r/2, 57r/2, etc. When U
is approximately equal to 7r/2 it is plain that the transient term is a
maximum when X is approximately equal to 0, ir, 2ir, etc. Therefore
in a highly inductive circuit the transient term is maximum when the
switch is closed at points of approximately zero voltage on the voltage
wave. A detailed study of equation (36) will show that conditions
which make for the maximum possible transient terms do not necessarily
make for the maximum possible values of i. In highly inductive circuits
the difference between the two sets of conditions is not large and maxi-
mum transient disturbance is usually assumed to be the result of those
conditions that make sin (X - 0) = 1 or sin (X - 0) = - 1.

The steady-state term and the transient term, together with the
resultant cufrent 1 are illustrated in Fig. 9 for the case of 8 = 85° and
for (X - 0) = 37r/2. Under these conditions:

X = 2700 + 85 0 = 355 0 = — 50

It will be noted that the switch is closed when the stead y-state term
is at a maximum (negative) value and that the transient term is at its
maximum (positive) value. The transient term and the steady-state
term combine at t = 0 to make the resultant current equal to zero,
which of course must be the case in an inductive circuit which is at rest
just prior to the application of a potential difference.
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Under the condition of constant R and L, the maximum value of the
resultant current i is less than 21m, where 'm = Em/Z, the maximum
value of the steady-state term. This fact may be easily substantiated

•\-\

Li!
j	 Resultant

current

it

/

'Steady-state  \term

—r...

t—o
FIG. 9. Illustrating the manner i, which the steady-state term and the transient term

of equation (36) combine to form the resultant current. For the case shown, 0 	 85°
and sin (X-8)	 —1.

from the graphs shown in Fig. 9. The effective value of the current
during the early transient period is somewhat less than

,'Idc2 +	 ..JJ2 + j2 = v"I [See equation (28), page 252.1

where 'dc = Im = v"21 and I is the effective value of the steady-state
term.

The transient term in an RL circuit is often referred to as the d-c
component since it is unidirectional. This subsiding unidirectional
component of current is of theoretical interest because it is partly
rc-.punsible for the radical changes that take place in synchronous
generator impedances during transient periods.

Oscillogram 3 illustrates the resultant current in a highly inductive
circuit when X = 0 and X r/2. The two current records are placed
on the same oscillogram by means of superimposed exposures. In tak-
ing oscillograrns of this kind it is necessary to employ some device for
closing the circuit at the desired point on the voltage wave.

Problem 1. Plot the steady-state term and the transient term of equation (36) for
two cycles of the steady-state variation under the fol1o1ng conditions:

(a) The applied voltage is a 60-cycle sinusoidal variation, the maximum value of
winch 18 311 volts.

(b) lc.,L4ohms.



Ch. XIV	 TRANSIENT CONDITIONS	 563

OSCIL.LOCRAM 3. Illustrating the current variations in an RL circuit which is suddenly
energized with a p.d. of sinusoidal wave form. R and L. in this particular case, are
sensibly constant. Two cases, namely, X = 0 and X = 90', are shown.

(c) The switch is closed at such a time as to snake the transient term acquire
a negative naximum value.

Graph the resultant current i on the same plot.
Ans.: i = 55 sin (377t + 90) - 55 E '57 " amperes.

Problem 2. Analyze equation (36) for the case in which L is negligibly small.

Ans.: i=-sin((t+X).

The RC Circuit Energized with an Alternating Potential Difference.
If an alternating potential difference replaces the batter y shown in
Fig. 3, the expression for dynamic equilibrium is:

Ri +	 Em Sin (t + x)	 (37)

Since i. = dq-

	

R + = E, sin (t + X)	 (38)

or
dq	 q	 Em.

--Etfl (wt+X)	 (39)

Since equation (39) is a linear differential equation of the first order
and first degree, the integrating factor' which makes the left-hand side

2 Consult any standard honk on differential equations.
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ii exact derivative is:
lec= :RC	 (40)

Multiplying equation (39) by 	 gives

ftC

dl 
+	

£ Re Em
=	 -- sin (t + A)	 (41)

I
or

tfRC dq +	 dl = 	 sin (wt + A) dl	 (42)

Integrating gives

1, RC _ftHc E!	 s + x) dl + K

or

E 
IfRC IRC.sin (wE + X) - w cos (WI + x)]

Cie = —f

	

	 + K (43)
+ w

Dividing equation (43) through by expressing the difference of
the sine and cosine terms as a single cosine function, and making a few
algebraic transformations give

q = -
	 Em	

cos (wt + A + 0) + Kr t	(44)
+ -

1
where 0 = tan—1	 tan' Xc

Imposing the initial condition, namely, q = Qo when I = 0, and
solving for K give

K Qo	
Lm	

cos (A + 0)	 (45)

Substituting 45) in (44) and replacing 	 by Xc
WC

q	
Em	

cos (wE + A + 0) +
'/R 2 + x2

E.
[Q0 +	 cos (A +	 (46)
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Equation (46) is the general equation for the charge on the condexier.
If the initial charge is zero,

	

Em	 EmCt
Cos (X+6)

R2 + X 2 	 \/'R + X,2

(47)

The first term of the right-hand member of equation (47) is the steady-
state term whereas the last term is the transient. It should be noted
that at the time t = 0, the transient is always exactly equal and opposite

9.66}	 ,-... Steady Component of Current

,'	 \ Resultant Current

I \
Transient Current

0 V",
0/ Seconds

—2.58 

(b)

,/'	 \Re;ultaot Charge

Ps e

0 mPefl ofcharMa;
/ Seconds	

\

I Steady Com ponent \'
/	 of Charge

—0.256
(a)

Fm. 10. Circuit containing R = 100 ohms. C	 100 f when e
1000 sin (37e - 14.95°) volts is impressed. Initial charge on condenser - 0.

to the steady-state component. These results are shown in Fig. lOa.
This is the same relation that exists between the steady-state term
and transient of current in the RL circuit.

The current in the RC circuit is obtained by differentiation of equation
(47). Thus

d	 E	 E —nRC
= I = -. m	 sin (t + X + 8) -

	
________ cos (X + 8)

de VR2 + X 2	 RCs/R2 + X2
(48)

A study of equation (48) and the corresponding graph, Fig. lob,
reveals that there is no fixed relation between the transient and the
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steady-state component of current at the time t 0. The relative

magnitudes qre dependent upon the ratio of	 --- and the time

angle X at which the switch is closed.
The RLC Series Circuit with a Constant Direct Voltage Suddenly

Applied. Since the cmf applied to the circuit must equal the sum of all
the drops at every instant, the conditior for dynamic equilibrium is:

L+Ri+fid E	 (49)di	 C
Differentiating equation (49),

d21L+R di +0	 (50)
Employing the usual method of solving a recond-order, first-degree

linear differential equation, 3 the auxiliary equation is:

2 +Ra+ -o

Henee	

VR;_	 R	 R2 1
2L=

Let	 ___________
•	 R	 JR2

and

The complementary function is then

= k (—+b) ± k

The complete solution is the sum of the complementary function and
the particular integral, the latter being the steady-state current. Since
this case involves a constant direct voltage on a condenser, the steady-
state current is 0.

Hence the complete solution is:

I = k vE	 + k2a)9 + 0	 (51)
The constants Ic 1 and k2 must be evaluated by imposing certain known
conditions. In this case when I = 0, 1 0, and q = Qo, the latter
being the initial charge on the condenser before closing the switch.

8 See any standard book on differential equations.
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For i = 0 and i = 0 in equation (51)

0 = k 1 + k2 or k3 —k1	 (52)

Fiom equation (49)

fi dt = =E — L — Ri

and

q=CE — CL— CRi	 (53)
dt

Substituting (51) in (53) gives

q - CE - CL[k 1 (—a + b)e°	 + (—a - b)t]

—CR j(—a+b)t - CR k2 	 (54)

Imposing  the condition that q	 Qo when i = 0 on equation (54),
substituting equation (52), and solving fork 1 give

ki = CE—Q0 (30)

From equation (52)
CE - Qo

•	 —k1	
- 2CLb	

(56)

The final equation for current is now obtained by substituting equa-
tions (55) and (56) in equation (51) and replac g bby its equal. Hence,

Since b 2 -	 [ in equations (7) and (5 'may be real, im-
LC

aginary or zero, there are three cases to be corisiderec

It is important that initial conditions be imposed on the 	 ;nal equation

rather than on one of the differentiated forms- Note that equation 	 comes from

equation (49) without ' nv differentiaticn of the original voltage eq 	 (49).

CE -	 1(—a+b)c - (—G—b)]	 (5)
- 4LC

If the values of k 1 . k2 , a and b are substituted in equation 	 the
expression for charge becomes

rr'1W + v'R-C - 4z....,
q CE - (CE Qo) [2Rc - 4LC

RC - V?-'C- ::±!: C	(5S
- 2\/R I
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2
Case I. When 

R 
> 

1
the exponents of e in equations (57) and

4L 2 LC
(58) are real. When t = 0, the current is zero, and the quantity of
electricity on the condenser is the initial charge' before the switch was

R f7\2	 1
closed. Since a	 while b 

=	 -	
—a + b will be nega-

tive as long as 
()2 

>	 . Hence as i becomes infinite, the exponen-

tial terms become zero. The current therefore becomes zero and the
charge on the condenser becomes CE. A graphical representation of the
variation of current and charge is shown in Fig. 11. Both the current
and charge are unidirectional and the phenomena are non-oscillatory.

q = VC =.oi coulomb

	

0.5	
CU re

JE

001	 .005.01
Seconds

Fxo. 11. Circuit containing R = 100 ohms, C = 100 sf, L 0.1 henry when a

	

d-c voltage V	 100 volts is impressed. Initial charge = 0.

	

R2	1
Case 11. When op <, b becomes imaginary. To evaluate the

expression for b it may be written as

(_1)(
—1C 

R2i	 R2

LC 4I)

where	
-

LC 4L2
quation (57) then becornes:

	

CE - Q	 (—a+$)e -
1. =	 _________________

R 2 C2 - 4LC1

CE — Qo

- R2C2 -

(CE -

= V'R2C2 - 4LC	
+jsin fit - cos $1 +jsin fill

- (CE - Q')'-al

- V R2C2 - 4LC 
[2j sin Oil(59)
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For jL2 R2C2 <4LC and the denominator of equation (59

may be written as j '/4LC R 2 C 2. Substituting j V'4LC - RC' for
V1R 2 C 2 - 4LC in equation (59) gives the final expression for current in
terms of all real quantities, as

• 2(CE - Qo)e	 siI

	

	 'in Of	 (60)
v'4LC—R2C2

Through a similar series of substitutions in and algebraic transforma-
tions of equation (58), the charge is found to be

CE
2(CE -. Q0)V'Lë'"

q =
- V4LC - R2C2 

-in (,6t + 8)	 (61)

where

tan—'Otan	
PC

If the initial charge on the condenser iszèro, the expressions for current
and charge respectively are:

2CE
sin Oft 

V4LC_R2C2	 (62)

	

_	 2CEVThc
q CE -____ 	 sin (fit + 0)	 (63)
V'4LC R2C2

A graphical representation of equations (62) and (63) is shown in
Fig. 12. Oscillogram 4 also shows the variation of current with time in
another RLC circuit. It should he noted that the current is propor-

Quantity
tional to the slope dq/dt of the curve of

Current

	

charge variation at every instant. An ex-

--

amination of equation (62) sho that
after an infinite time the current becomes

.03	
zero which is the steady stat 	 Also equa-

2	 .04	 tion (63) reveals that the charge becomes
0	 ' Seconds	 CE aftef an infinite time ha ckpcd.

E
For all practical purposes, however. the-e

Fro. 12.	 Ctrcuit containing final or steady states are 5Cfl1l)lV reached
R E ohms, C = 100 pt
L = 0.1 heur,' when a d-c volt- after a few seconds; in some eases in a
age V = 1000 volts in impressed. few microseconds. (See page 553 for ex-

	

Initial condenser charge 	 0.
planation.) From the time of closing the

switch to the time of reaching the final state the currnt and quantity
oscillate about their final values. Case II is therefore called the oscilla-
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tory case. It is sometimes called the trigonometric case. Physically
the current starts to flow and charges the condenser. Because of the
low resistance compared with the inductance, the current continues to
flow into the condenser when the magnetic field of the inductance
collapses. The condenser charge thus overruns its final value and the
potential drop across the condenser becomes higher than the impressed

OcILLoo,w.i 4. Photographic record of the current variation in a particular RLC
series circuit which is suddenly energized with a constant potential difference.

voltage. The condenser then begins to discharge. These oscillations
continue until the excess energy is dissipated in the resistance. The
phenomenon is analogous to the case of a weight suspended from a spring
with a low value of mechanical damping.

The frequency of the oscillation Jo is obtained from equation (62) or
(63). For a complete cyclejOklmust be 2w radians and since the time for a
complete cycle is defined as thperiod T, we may write

2s

or	
1	 2x- 2w

T=1=	 L__
4L2

Hence	
1 Ii	 R2

ía

(64)

(65)
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A comparison of the above equation with equation (10) on page 145
shows that the oscillatory frequency of the series RLC circuit when
the resistance is zero is the same as the resonant frequency. Practically,
they become the same when R2/4L 2 is negligibly small compared with

1/LC.
Case 111. When R2 /4L2 1,'LC, b = 0 and the exponents of e

in equations (57) and (58) are real and negative as in case I. Hence
the variations, of current and charge are similar to those in case I.
Case III is called the critical or limiting case and like case I is non-
oscillatory.

Decay of Current and Charge in an RLC Circuit. The basic equation
for this condition is:

L+Ri+fidt=0	 (&)

Equation (66) is obviously a special case of equation (49) where E = 0.
Since equation (49) was solved in detail, the results of equation (68)
will be found as special cases of equations (57), (58), (60), and (61) by
making E 0. It is plain that there will be three cases for the con-
dition of zero voltage on (or short circuit of) the RLC circuit. These, as
before, are the non-oscillatory case I where R2/4L2 > 1/LC, the oscilla-
tory case 2 where R2/4L2 < 1/LC, and the critical case III, also non-
oscillatory, where R2/4L2 = 11W.

Non-Oscilla1ory Case. The equations for current and charge for the
non-oscillatory case are obtained from equations (57) and (58) respec-
tively by setting E 0. Thus

_ - Qo
______________

4	

-	 (67)
- LC

and
[RC + '/R2 C2 -

Qo	
2RC - 4LC

RC - V'RC - 4LC

- 2v'	 - 4LC	
(68)

A graphical representation of equations (67) and (68) is shown in
Fig. 13. If desired, Qo can be replaced in the above equations by CV
where V is the voltage drop across the condenser for the charge Qo.

OsciWUorijCa&. If E is made equal to zero in equations (60) and (61),
the cqtiations for the decay of current and charge respectively are
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obtained as follows:
- 2Qj_Ct

= V'4LC - R2C2 
sin Of

($t + 8)
q = /4LC - R2C2

The variation of i and q as given by these equations is shown in Fig. 14.
A comparison of equations (69) and (70) with equations (62) and (63)
will show that the frequencies of oscillation for all of them are identical
and are therefore given by equation (65).

(69)

(70)

Fzo. 13. Decay of current and charge or
Quantity in a circuit containing R = 100
ohms, C = 100 p1, and L = 0.1 henry
when the initial chargo on the condenser
is 0.01 coulomb at a potential of 100 volts.

FrG. 14. Decay of current and charge or
quantity in a circuit containing R 5
ohms. C = 100 pf, and L = 01 henry
when the initial charge on the co.idenser
is 0.1 coulomb at a potential of 1000 volts.

Critical Case. Qualitatively this case is no different from the non-
oscillatory case previously discussed. If b in equations (67) and (68) is
made zero, the equations for the critical case result. Obviously Fig. 13
represents the genera] type of variation of current and charge for this
condition.

Natural Circuit Behavior in Terms of Poles and Zeros. The concept
of complex frequency was introduced in Chapter V in order to illus-
trate how stead y-state circuit behavior could be obtained from the
s-plane poles and zeros which characterized the network function which
,was under discussion. In actual practice, complex frequency probably
finds a greater field of usefulness in transient analysis than it does in the
analysis of the steady state. If, for example, the LRC series circuit is
energized at I = 0 with the voltage having an angular frequency of Wd
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radians/second
e = E. sin ('dt + 90°) = E,,1 cos Wdt

the analysis may be carried forward with the aid of a complex expo-
nential volt-age excitation of the form

e =	 =	 (71)

For this case we recognize that E = E.100 and a	 0. Since

COS c dt + j Sin Wdt
	

(72)

it is apparent that the real part of e corresponds to the desired excitation.
We may carry through the solution for i and at the end retain only the
real part of i as the real i(t). In other words, = cos " dt + j Sfl wd

corresponds to two voltage excitations, only one of which is actually
used to energize the circuit. As long as the circuit is linear, each
exciting voltage develops its own current, and in the present instance
we are interested in the current associated with the real part of e. If
e = Em Sifl wt had been the specified driving voltage, it might have
been more convenient to employ the imaginary part of e. The fact
that the E of e = E" is a complex number actually allows us to use
either the real or the imaginary part of the final solution depending
largely upon the manner in which the actual driving voltage e(t) is
specified.

In solving for i(t) by way of the complex exponential i, we let

i = ib+ig	 (73)
in

L 
di 

+ Ri + fi d = e = E
di	 C

where	 i, is the steady-state component of the current
it is the transient component of the current

(74)

The fact that
• -
I s -

may he verified by direct substitution in equation (74)
tution will also show that

(75)

This subst1-

13=
E	 •E	 Sd

(Lsd +R+ —  L Sd2 +L_
R 

Sd+Lc)CS
It follows that

LJJ + / ii+ fit d = 0

(76)

(77)
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This homogeneous equation is evidently satisfied by

i t = A'4	(78)
provided that

(Ls+R+)=O	 (79)

Solving this equation for s yields

1	 R3
S = S 1 = - + j	 -	 = a +jw	 (80)

Rii	 R2
(81)

w,, is the natural angular frequency of the circuit, and a, —R12L is
the natural damping factor. Since two values of a satisfy equation
(79), we have

A1" + A2 "	 (82)

In complex exponential form, the complete circuit current is found by
substituting equation (82) in equation (73). Thus

I = I" + A 1e' + A2E	 (83)

and the corresponding capacitor charge is

	

q= f
i dl =	 +	 u,e +	 (84)
 Sd	 St	 S2

The A's depend for their values upon the initial circuit conditions, for
example, the values ofi and qatl=O. Ifi0 and q =Oatl=0,
substitution in equation (83) gives

A 1 + A2 = — I,	 -	 Sd	 [See equation (76)] (85)
L (Sd - Sj)(Sd - S2)

Similarly, substitution in equation (84) yields

-	 1	
(86)

S 1	S2	 Sd	 L (Sa - Sj)(Sa - 52)

Solving equations (85) and (86) for A 1 and A2 yields

-

	

	
S1	

(87)
 L (se— s 1 )(s2 - s)

A2	
- L (Sá - S2)(52 - 81)

If these values of A 1 and A2 along with I, from equation'(76) are sub-
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stituted in equation (83), the expression for I is obtained. The actual
circuit current is the real part of i. It may be expressed as

[E(
—	 +
L (Sd - Sj)(Sd - s2)

S1(

(Sd — s 1 )(s2 - s1)

S.,

(Sd — s2)(s2	
(89)

The price paid for using complex exponential forms of current and
voltage is the transformation back to real current or voltage at the close
of the solution. If, for example, we want the actual steady-state com-

ponent of current in equation (89), we evaluate the real part of the
steady-state component of this current. This is

Sdl
9Z [E	 sde	 -ì

(Sd 	 sa)(sa — 62)	
L	

Id:

Sd 2 +
I L 	 i

For Sd jwd and E EmL the expression within the brcket becomes

Em	 4	 E,n(cos Wd t + j SHI Wdt)

(L/jwd) G
C

2_Wd)+i Wd R+i(dL)

The real part of the above expression is

a [ Em	 eywe

R 
1

GC
- Wd) + Wdj

E, [R	 + (.dL -
	

( Jd]
(_ddC)

R2 + ( dL - 
1)2

Wdc

= rE, cos (wdI - 8)J/Z
	

(90)

where Z = jR2 + (WdL — 
1)2 WdL

and 8=fl_1(	 -

R 

Wdc)

Transformations from the 8 plane to the £ plane are often accomplished
by means of Laplace transforms, a technique which the reader will
encounter repeatedly in later courses.
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The RLC Series Circuit with Alternating Voltage Suddenly Applied.
The basic voltage equation oIthe RLC circuit shown in Fig. 15 is

di
L+R1+ = Em sin (wt +X)	 (91)

di	 C

The above equation can be put in terms of one dependent variable by
differentiating the entire equation with respect to the independent
variable, I. Differentiating as indicated above,

d21	 di	 ld
(92)

ZIR
e . Emsl (wt +A)

Fr(;. 15. An RLC se. ies circuit energized with an alternating voltage at £ = 0.

Dividing through by L and substituting i for dq/dt results in

d2i Rdi	 j	 E,
(93)

Equation (93) is a linear differential equation of the second order,
first degree, the solution of which consists of the sum of a complementary
function or transient term and the particular integral or steady-state
term. The former is obtained as indicated previously. The auxiliary
equation is

and
R /R2	 4 

R	
(95)-	 2	 LC

Let
R!R 2 	 j

and b=- —	 (96)
2L	 4L	 LC

By definition
= —a + b and a2 = — a - b	 (97)
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The transient term of the complete solution is

ij = c 1 	 + c2

The steady-state term of the complete solution is

Em
is = sin (wt + X - 0)

where

577

(98)

(99)

z = JR + (WL - )2
WC R i\

and 0=tan'	
WC)

The complete expression for current becomes

Em	=	 sin (wt + X - 0) + cI_+ +	 ( 100)(—o-•&)t

The two physical facts from which c 1 and c 2 can be evaluated are the
state of current and the state of charge that exist in the circuit at the
instant of closing the switch. Let it be assumed that

Q01
at t=0	 (101)

'7 = Q()
If the original voltage equation has been differentiated it is important
that the initial conditions he imposed upon the original voltage equation
rather than upon one of the differentiated forms. In the present case
the initial conditions can be imposed upon equations (91) and (100).

Imposing the initial conditions upon equation (91) yields

L 
[L0 + = Em Sin X

or

L 
I

Em 
cos (X - 0) + c 1 a 1 -- 22] +	 E,, sin X

From which
Em.

	

C1a	
Q0

1 + C22 =
	

Sifl X -	 - -- cos (X - 0)

Imposing the initial conditions on equation (100) results in

	

0 =	 sin (X —0) + c 1 +c2

or	 Em
C 1 + c2 = - -1sin (X —0)

(102)

(103)
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Equations (102) and (103) may be solved simultaneously for c 1 and e2.
From equation (103)

C2 = -
	

in (A - 6) -	 (104)

Substituting the above value of c2 into equation (102) yields

m	 1	 .

	

20 	 E,n
Ciai -
	

sin (A - 9)] a2 €102	 Sm A -	 -	 cos (A - 9)1
Whence

ir	 Eci(a 1 - 02) = L L Em S1nX - 
Q0	 L

- z 
COS (A 8)

+ a3 - 8111	 - 0) (105)

It will be remembered that

al = ( — a + b) and a2 (—a - b)

Therefore

a1 - 02 = 2b
and

	

02	 a	 b	 R	 1

	

a1a2	 2b 2b	 4Lb 2

Dividing equation (105) through by (al 	 02) and making substitutions
for (a - 02) and 02,

=	 [E. sin X -	
- EflwL	

( -	 sin (A —8)

E.
—sin (A-6)

Collecting the b terms in the above jnation,

1 [E..	 L',,L	 BmR
  Sill A -	 -	 (A. 9) -	 5111 (A - 0)

	

2bL

E.-	 sin (A - 0) (106)

From equation (103) it is evident that

= —c1 -	 sin (A —8)	 (107)
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Therefore,

1 E sin ) -	
- E,nwL	

- 9) -	 I= -
	

cos (X	
2Z 

sin (X - 0)

Em

	

-	 sin (X —9) (108)

For the sake of simplicity in writing, the following abbreviation will

be adopted:

r	 Qo EmwL	 EmR	 1
- - -
	

cos (X —0) - ---sin (X - 0)] = Ed (100)1
It will be observed that Ea is a voltage which is governed in magnitude

by E.,, X, Q0, and the circuit parameters. The complete expression for
current can now be written in terms of the applied voltage, the initial
condenser charge, and the circuit parameters.

Em	 E_4t e 
bt - —bfl

2

En, r + Ebfl
- - 

sin (X - 0) e—"[
	 2	

_] (110)

The transient component of the current consists of two terms, each of
which is dampef out with the damping factor e7" or t_R2L The
transient terrrá may be given different mathematical forms depending

1
upon the nature of the symbol b. Since b is equal to- -

LC 
it is

evident that b may be either real or imaginary. A singular condition
exists when b is equal to zero.

Case I. If R 2/4L2 is greater than 11LC, b is a real number and
the complete expression for current in the RLC series circuit may be
written as

Em
	
Ed

i-11	
En,

= - sin (w + X - 0) +	 sinh bI - -- sin (X - 0)C" cosh bt

steady-*tate term	 transient terms
(111)

The above expression follows directly from equation (110) since, if b

is real,
bi - cbf	 + e—b

= sizth bt and	 cosh U
2	 2

oth transient terms are damped out by CRt12. . The damping factor
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2
Ri/	

R	 1
2L is relatively large when > because of the relatively large

value of R'2L. In general, the transient terms in this case are not
predominantly large as compared with the steady-state tern.

Case Ii. If R 2/4L2 is less than i/LC, b takes the form of an imag-
inary number and a change in notation becomes desirable. Let

ii R2
=j where

LC 4L

R 2	 1
If —i < -, is a real number and b in equation (110) can be replaced

4L LC
by its equivalent, j$. In this connection j has its customary signifi-
cance, namely,

i =	 sin (wt + X —0) +	 isint -	 sin (X - 0)€ t cos $t (112)
Z	 Z

3tead)-statc, term	 transient tern,

The above equation comes directly from equation (110) if it is recognized
that the analytical expressions for sin At and cos At are

 e—itle 	 jogjt -
	+__ = sirr and	 - = cos 1312j	 2

The two transient terms of equation (112) are exponentially damped
sine and cosine terms of like frequency. Since the damping factors are
identical, the sine and cosine terms can be combined by the method
outlined on page 241. If the two transient terms are combined, equa-
tion (112) takes the following form:

i =	 sin (we + X —8) + Ie	 sin ($e —	 (113)

	

steady-state term	 tran.iCnI term

where

= \/[J• 2	 1	

6
si n (X — 0)1

and

= tan' 
E,$L sin (X — 0)

EdZ
S

In the present case the complete ex pression for current consists of two
sinusoidal terms. The frequency of the steady-state term, wj2x, is
determined solely by the frequency of the applied voltage; that of the
transient term, 13/2r, is governed entirely by the circuit parameters,
R, L, and C. The frequency of the transient term may be less than,
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equal to, or greater than that of the applied voltage. In any event the
transient oscillation disappears as soon as the damping factor, et/2L,
causes the transient term to become sensibly equal to zero.

Oscillograrns 5 and 6 illustrate the current variations in a particular
RLC series circuit during transient periods. For the conditions shown,
R2	 1

<	 and fi> w. The exponentially damped transient compo-

nent can easily be discerned as the higher frequency variation which
is superimposed on the 60-cycle steady-state variation. Also the effect
of closing the circuit at different points on the voltage wave can be ob-
served by comparing Oscillograrns 5 and 6. The transient term is shown
to be several times as large in Oscillogram 5 as it is in Oscillogram 6.

The Iron-Clad RL Circuit Energized by an Alternating Potential Di.f-
ference. The mathematical analysis given in the article on page 558
for the case of constant R and L cannot, in general, b applied to an
iron-clad circuit because of the wide variations of L that occur. For
the iron-clad circuit, L in equation (26) is a function of i which in turn
is an intricate function of time. The fact that L is variable makes
both the coefficients of equation (27) or (28) variable. In general, the
solution of differential equations with variable coefficients is a difficult
task. It is plain that no general solution can be obtained because the
variation of L in any particular case must necessarily be defined in
terms of particular constants rather than in tern' q of arbitrary constants.
Although the variation of L can sometimes be approximated with the
aid of simple functions, the actual variation in many cases of importance
cannot be expressed in terms of practical mathematical functions.

It is well known that L, being equal to N d/di, depends upon the
—i characteristic of the magnetic material that surrounds the L coil.

The inductance that is operative in establishing an L dt'.'dt voltage drop
depends for its value upon the exact degree of magnetic saturation of the
surrounding magnetic material. Under any a-c condition the degree
of saturation varies considerably with time and under transient con-
ditions these variations are very often exaggerated. Reference to any
typical B-H or —i curve will show that

L = 'v
di

is much greater over the straight portion of the curve than it is after
the upper bend is reached. This fact plays an important role in deter-
mining the current inrush to iron-clad circuits, because, in general,
circuits of this character are highly inductive and the variable L be-
comes an extremely influential parameter.
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e

t .rO

X=900

Il	 I	 .	 IV
ii	 11
I!	 Y.	 __.
H	 41 <2	 ic
V	 . (1) = 377 tad. parsec.

=I2OO rad. per sec- (approx)

OsCILLOGfl.M 5. Photographic record of the current variation in a particular RLC
series circuit which is suldenly er.ergiae.:1 with art alternating potential difference.
R, L, and C are sensibly constant.

03CILLOGRANE B. Circuit arrangement ani circuit parameters similar in every respect
to those shoscn jr. connection with Oscillogram 5 except for the point on the voltage
wave at which the circuit is energized. In the present case X 	 00.

Circuit problems involving variable pars.meters can be solved by
step-by-step methods provided the exact variation of the parameters is
known. In the present case the variation of L is known if the N/i

characteristic of the surrounding magnetic material is known. The
data usually take the form of either the 04 characteristic and the
number of turi's or the B—H characteristic, the dimensions of the
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magnetic circuit, and the number of turns. In any event it is somewhat
more direct to substitute for L di 'dl [in equation (26)] its equivalent

N d, dl value. The basic equation then becomes

.V+Ri= Esin(wl+X)	 (114

where 6 is expressed in webers if the other quantities are expressed in
practical units.

In many iron-clad circuits the maximum magnitude of the Ri term
is of the order of 1 per cent of the maximum magnitude of the applied
voltage.. Under these conditions the N d'd1 component of equation

(1 [-1) is ver y nearl y equal to the applied voltage and in approximate
sta(ly-state solutions he Ri drop can be neglected. The Ri drop cannot
b entirely neglected iii the transient solution of the problem because
it is instrumental in helping to govern the maximum value of the initial
current inrush. The resistance is also an important factbr in governing
the length of time required for the iron-clad circuit to adjust itself to
steady-state operating conditions.

If the Ri drop is neglected and if it is assumed that X = 0, equation
(114) reduces to

do

	

N=E,,1 sin t	 (115)
dt

from which
E,,, r 	Em

c5=_-JsInwtdt= - — coswt+ct	 (116)
IV	 WN

The constant of integration c 1 may be evaluated in terms of the residual
magnetism. o ma y he at either positive or negative residual values at

= 0. and in general the exact state of residual magnetism is unknown.
A compromise mr,v be made by assuming that o = 0 at I = 0 unless
the maximum possible current inrush is to be determined. In this case
a maximum value of positive residual magnetism is assumed if the
applied voltage is taken as E sin cal. The manner in which residual
magnetism helps to determine the initial current inrush will soon he
apparent.

Asunin that = Oat I = 0, c l of f quatio (116) becomes

cl
= c	

(117)

Under these conditions

E,,.
Cos wt)	 (118)
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or

= 0. (1— Cos cot)	 (119)

where = Em/QN, the approximate maximum value of the magnetic
flux under steady-state operating conditions. Since (cos wt) varies
between +1 and —1, it is plain that the flux variation as defined by

AmperesAmp
10 20 30 40 50 60 70 80 90 100

:	 ii
1000 - ----- - - --

800. -

800 -

--
700 - -- - - - - - -

600 - -

/0500

__ -	 R-0.25 fl -
300	

e
/11 	 ()u55.5 sin 3Y7t) voltz	 _cvsriabf

200	 N-80

a 1	 17-T-1 I
0 LI) 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10

Amperes

FIG. 16. Magnetization curve of a particular iron-clad RL circuit.

equation (119) varies from zero at I = 0 to 2,,, at I = T/2. In order
to produce a flux equal to 20m, the iron-clad inductance coil must draw
a particular value of magnetizing current as defined by the -i charac-
teristic of the magnetic circuit. For example, in the circuit shown in
Fig. 16

155.5= --	 = 0.00516 weber
377 X 80

or

0. = 0.00516 X iO = 516 kilolines

Reference to the magnetization curve will show that the current re-
quired to establish 0. is approximately 1.2 amperes, whereas current
required to establish 2,,, is approximately 84 amperes. This great
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change in current is due primarily to the flattening out of the magneti-
zation curve.

If the magnetic core referred to above had possessed a residual
magnetism of, say, +0.5m. it is evident that a much larger current
than the 84 amperes would finally be required to produce the 20.
change iii flux during the first half cycle. Actually the initial current
inrush to an iron-clad circuit is somewhat less than that required to
produce a 20 flux change.

It will be remembered that equation (119) carries with it the as-
sumption that the RI drop is negligibly small. This assumption may be
perfectly justified if the flux is worked between its normal steady-state
values of + and But in attempting to produce a 2 change
in flux starting with zero flux, the circuit draws such a large current that
the Ri drop becomes significantly large and must be taken into con-
sideration. Under the above conditions the RI drop consumes an
appreciable portion of the applied voltage during the second quarter
cycle after the switch is closed, thereby reducing the magnitude of the
N d/di component in this region. As a result, 0 reaches a maximum
value of something less than 2m shortly before I = T/2, and it is at
this point that the maximum instantaneous current occurs.

The ordinary iron-core transformer with open secondary operates as
a simple iron-core RL circuit. Oscillogram 7 illustrates the nature of
the starting current taken by the primary winding of an iron-core
transformer when the secondary is open-circuited. In this particular
case the initial peak current is considerably more than 100 times the
steady-state maximum value of primary current when the secondary is
open-circuited. However, the initial current inrush reaches a peak value
which is only about 4.5 times the value of the maximum full-load
current of the transformer. For the case shown in Oscillogram 7 the
actual transient period is of approximately 0.5-second duration. Only
the early part of the transient period is slown in the oscillogram.

The MethOd of Finite Differences. Although it involves step-by-
step calculations, the " method of finite differences " is very often
employed in circuit anal ysis when variable parameters are encountered.
The step-b% -step calculations are based upon the assumption that the
parameters remain sensibl y constant over small finite intervals of time.
Usually the basic voltage equation il rewritten so that all differentials
take the form of finite increments. The circuit voltage and current are
then assumed to remain constant over an arbitraril y assigned increment
of time, at. As a first approximation the applied voltage and current
are assumed to be Constant at their " start-of-period " values. If, then,
after assigning a particular value to At, only a single unknown inCre-
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USCILLOGRAM 7. Iron-core transformer current -and power inrushes when the
prinary is energized at the e = 0 paint on the voltage wave.

	

= 60-cycle applied emf	 E (eT.)	 117 volts

	

i instantaneous current	 Peak i - 174 amperes

	

p instantaneous power	 Peak p = 10.5 kw

	

Steady-state conditions: P,	 30 watts, lit = 0.825 ampere.
Transformer rating: 115 volts, 3 kva, 26.1 amperes, 60 cycles.

mental quantity remains in the equation, it ca 'be solved for by methods
of elementary algebra. The process can-b'st be illustrated by means
of an example.

The predetermination of the initial current inrush to an iron-clad
circuit will serve to illustrate the details of the method of finite differ-
ences. If finite differences of and I are employed, equation (114)
takes the following form:

N+Rj Em sin (Ep+X)	 (120)
At

where	 p	 w at, the angular displacement along the voltage wave
of the point under investigation from the point of £ = 0.

Judgment must be exercised in the choice of at in any particular case.
The selection of the size of At in a-c circuits is governed largely by the
magnitude of w. If points every 100 along the voltage wave are desired,
then each At is taken as - of w/c., second. The choice of smaller incre-
ments will, of course, make for more accurate solutions. A t shouldnever
be chosen so large that significant changes in the parameters take place
within the time interval represented by At.

At the beginning of a period i and E,,, sin (E ssp + X) have particular
values. Letting Em sin (	 p + X) be written as e and solving equa-
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tion (120) for i 4 results in
(e - Ri)

(121)

If practical units of e, R, i, and I are employed ii the above equ:tt ion,

is given in webers.
Various refinements can be employed to improve the accuracy of the

method of finite differences as outlined above. Very often, however.

the improved accuracy is not warranted because of the uncertaiiities

that surround the initial conditions and other experimental data.

Numerical Example. (1) The emf applied to the iron-clad RL circuit shown in
Fig. 16 is

e	 V2 X 110 sin 377€ volts

This signifies that a 60-cycle voltage, the effective value of which is 110 volts, is
applied to the circuit at the point of zero voltage where de, di is positive. A simpler
way of expressing the same thing is to say that a 110-volt 60-cycle voltage is appiitii
at X = 0.

(2) N = SO turns and R = 0.25 ohm as indicated in the circuit diagram of Fig. H).
(3) The residual magnetism is zero, and the flux Narius in acrordance with th

—i curve given in Fig. 16 for the first half cycle of the applied coil.

Therefore the hysteresis effects which occur after the first half cycle and which coni-
plicate the determination of succeeding maxima can be neglected. Let the numerical
coefficients enumerated above be inserted into equation (120).

SO	 + 0.251	 155.5 sin
At

or
(155.5 sin	 - 0.251)

At webers
So

It will he somewhat more convenient in the prusent example if Ao is reckoned in
kilolines.

(e - 0.251) .11-	 --- X 10 kilolines
so

where e	 155.5 sin
Each time increment will he (alien as 0.0005 second, a vnhir' which corrf-porlds to

an angular displacement along a (50-cycle wave of 10.8°.
The initial conditions are such as to make both e andi zero at i = 0. A"511FiiIiL

that both e and I maintain zero value throughout the first time interval, the change in
flux during this period, 	 is equal to zero.

At the beginning of the second period, .i = 0.000 second and e = 155.5 sin 10.S'
volts. For each interval I is assumed to have its " stirt-of-period " value, which in
this case is zero.

(29.1 —0)0.0005 X 10
5- --- --is-

- 18.2 kilolines

—38



RI
volts	 kilolines I kilolines

; Ip	 sin 1
seconds	 volts

0
10.8
21.6
32.4
43.2
54.0
64.8
75.6
86.4
97.2

108.0
118.8
129.6
140.4
151.2
162.0
172.8
1S3.6
194.4
205.2

0
29.1
55.7
83.3

106.0
126.0
141.0
151.0
155.0
154.0
148.0
136.0
120.0
992
74 9
48.1
19,5

-9.8
-38.7
-66 2

0
18.2
53.9

1.06.0
172.0
2.51.0
339.0
433.0
530.0
626.0
718.0
802.0
873.0
928.0
966.0
986.0
987.0
970.0
935.0
884.0

0.03
0.09
0.18
0.29
0.43
0.58
0.75
1.4
3.1
9.0

25.0
44,5
58.0
66.5
72.0
72.0
67.0
59.0
47.0

588	 ALTERNATING-CURRENT CIRCUITS 	 Ch. Xlv

At the close of the second or the beginning of the third period the current i8 assumed
to have acquired the value required for the establishment of 602. Reference to the
magnetization curve will show that the establishment of 18.2 kilolines requires
ipproxinuLtely 0.03 ampere.

At the beginning of the third period,	 = 0.001 second and e = 155.5 sin 21.6°
Its.

(57.2 - 0.25 X 0.03) 0.0005
x105

80
35.7 kilolines

The current required to establish	 # 1(18.2 + 35.7) kilolines] is approximately
fi flY ampere. Other	 's can be added by the step-by-step method outlined above.
The results of a series of such calculations are shown in Table I.

TABLE I

0
0.0005
0.0010
0.0015
0.0020
0.0025
0.0030
0.0035
0 0040
0.0045
0.0050
0.0055
0.0060
0.0065
0.0070
0.0073
0.0080
0.0085
0.0090
0.. 0095

0
0

Negligible
Negligible
Negligible
Negligible
Negligible
Negligible
Negligible
Negligible

0.78
2.25
6.25

11.1
14.5
16.6
18.0
18.0
16.7
14.7

0
18.2
35.7
52. 1
66.0
79.0
88.0
94.0
97.0
96.0
92.0
84.0
71.0
5,5.0
38.0
20.0

1.0
-17.0
-35.0
-51.0

It will be noted that the current reaches a maximum value of approximately 72
amperes ati = 0.008 second. This corresponds to a point approximately 173° out
along the voltage wave from the point at which the switch is closed, namely, the
e = 0 point.

The general trend of the current variation is similar to that shown in Oscillogram 7.
It will be observed that the current values are relatively very small during the 6rst
quarter cycle after the switch is closed, it is during this period that the Ri drop is
negligibly small.

The change of flux that occurs during the period of negligible RI drop can be
calculated straightforwardly, and it may be of interest to compare the step-by-step
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. ijjts with a result which is very nearly accurate from a theoretical point of view.
From equation (118)

155.5
—(1 - cos 377t) webers

377 x 80

If cia taken as 0.0045 second, (3771) is equal to approximately 1.7 radians or 97.2g.
At J = 0.0045 second,

155.5

	

= -	 (1 - co° 97.20) X iO kilolines
377 X SO

or
579 kjtolines at i = 0.0045 second

The value at L = 0.0045 second as determined by the step-by-step method is 626
kilolines.	 (See Table 1.)

PROBLEMS

3. (a) Find the current in a coil containing L	 I henry and R	 0.4 ohm one
second after applying a d .c voltage of 10 volts.

(b) What will the current be after 2.5 seconds?
(c) What is the value of the voltage accelerating the current aMr 1--g-A " -r-

2.5 seconds?
4. A coil has 0.1 henry and 1 ohm resistand carries 10 amperes. If its

terminals are suddenly short-circuited, what will be the value of current 0.1 second
later? How long will it take the current to fall to 0.1 ampere?

5. Find the number of ohms resistance which may be placed in series with an
inductance of 0.1 henry so as to permit the current in the circuit to reach 63.2 per
cent of its anal value in 2 seconds after the voltage is applied.

6. Ten volts direct current are applied to a 0.1-ohm resistance in series with a
1-henry inductance.

(o. Calculate the energ y stored in the inductance 10 seconds after the voltage is
applied. State units.

( 1 ) Derive the eNpression for the energ y dissipated in the resistance in the time I
a(ter the voltage is applied.

7. A 50-f condenser with no initial charge is in series with a 1-megohm resistor.
lIon long u ill it take to attain 63.2 per cent of its final charge?

8. A 50-f condenser has stored 0.1 coulomb.
(a If it is discharged through a 1000-ohm resistor, how long will it take until it

has 0.001 coulomb remaining"
() \Vhat a ill be the initial value of current?
(c) What will be the value of current a hen 0.001 coulomb remains on the con-

denser?
9. A 100-f coiid,-jiscr has a charge of 0.1 coulomb. If it is discharged through

a 10,000-ohm reistance, ihat nIl be the amount of energy in joules remaining in
the condenser I second after the discharge is started?

10. A d-c voltage ana applied to a resistance of 10,000 ohms in series tb a IOC-Mf
condenser. Alter 1 second there were 19.95 joules stored in the condenser which
had no initial charge. How many volts were applied to the circuit?
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11. A l-negohm resistance is in series with a 1-id condenser. A d .c voltage of
100 volts is suddenly applied to the circuit.

(a) Calculate the energy stored in the condenser 1 second after the voltage is
applied.

(h) Derive the expression for the energy dissipated in the resistance during the
first second after the voltage is applied.

(c) how much energy out be dissipated in the resistance in charging the condenser
to full charge?

12. What fraction of total charge will the condenser in Problem 11 have after 2
seconds?LI S

13 ivoltage e = 100 sin 13771 + (r/4)1 is impressed on a 1-henry inductance
coil containing 1 ohm resistance. What are the values of the steady and the tran-
sient components of current at t = 0?

14...voltage e = 100 sin (3771 + 30°) is impressed on a 100-id condenser having
no initial charge and containing 1 ohm resistance.

(a) What are the values of the steady and transient components of charge at
= 0?
(1,) What are the corresponding values of current?
15. A circuit contains R = 100 ohms, C = 200 5sf, and L = 0.1 henry in series.

If a d-.c voltage of 50 volts is impressed, calculate the current and charge after 0.01
second, assuming no initial charge on the condenser.

16. A circuit contains II	 5 ohms, L = 0.1 henry, and C	 200 juf in series.
(a) Calculate the current and charge 0.01 second after 1000 volts are impressed

if there 'XaS Ito initial charge on the condenser.
(b) Is the circuit oscillatory?
(c) If so, what is its frequency?
17. The condenser in the circuit of Problem 16 is charged to a potential of 1000

volts. If the circuit is connected upon itself, what will he the value of current and
charge after 0.0125 second has elapsed?

18. Given an RLC series circuit which is suddenly energized with an alternating
potential difference which is equal to

e = 141 sin (377 - 45 0 ) volts

R	 1.0 ohm L = 0.041 henry C = 18.7 pf Qo = 0
(a) Write equation (113) for this particular case, employing numerical coefficients.

The result is to be in the form:

i = k sin (k 21 + k 3 ) + k 4	 sin (k 6 1 - k 7 ) amperes

where all k's are expressed numerically.
(h) Make sketches of the steady-state ter n, the transient term, and the resultant

current for the first three or four cycles of steady-state phenomena on the same plot.
Show also the e variation.


