
Design of Analog CMOS Integrated Circuits

Behzad Razavi

TATA McGRAW-HILL EDITION

Design of Analog CMOS Integrated Circuits

McGraw-Hill Series in Electrical and Computer Engineering

Senior Consulting Editor

Stephen W. Director, University of Michigan, Ann Arbor

Circuits and Systems

Communications and Signal Processing Computer Engineering Control Theory and Robotics Electromagnetics Electronics and VLSI Circuits Introductory Power Antennas, Microwaves, and Radar

Previous Consulting Editors

Ronald N. Bracewell, Colin Cherry, James F. Gibbons, Willis W. Harman, Hubert Heffner, Edward W. Herold, John G. Linvill, Simon Ramo, Ronald A. Rohrer, Anthony E. Siegman, Charles Susskind, Frederick E. Terman, John G. Truxal, Ernst Weber, and John R. Whinnery

Design of Analog CMOS Integrated Circuits

Behzad Razavi Professor of Electrical Engineering University of California, Los Angeles

Tata McGraw Hill Education Private Limited

NEW DELHI McGraw-Hill Offices

New Delhi New York St Louis San Francisco Auckland Bogotá Caracas Kuala Lumpur Lisbon London Madrid Mexico City Milan Montreal San Juan Santiago Singapore Sydney Tokyo Toronto

DESIGN OF ANALOG CMOS INTEGRATED CIRCUITS

Copyright © 2001 by The McGraw-Hill Companies, Inc. All rights reserved. No part of this publication may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written consent of The McGraw-Hill Companies, Inc.. including but not limited to, in any network or other electronic storage or transmission, or broadcast for distance learning

Some ancillaries. including electronic and print components, may not be available to customers outside the United States

Tata McGraw-Hill Edition 2002

21st reprint 2011 RAZLCRCGRQYBB

Reprinted in India by arrangement with The McGraw-Hill Companies, Inc., New York

Sales territories: India, Pakistan, Nepal, Bangladesh, Sri Lanka and Bhutan

Library of Congress Cataloging-in-Publication Data

Razavi, Behzad Design of analog CMOS integrated circuits/Behzad Razavi. p. cm. ISBN 0-07-238032-2 1. Linear integrated circuit—Design and construction. 2. Metal oxide semiconductors. Complimentary. 1. Title TK 7874.654 R39 2001 621.39°732---dc21

ISBN-13: 978-0-07-052903-8 ISBN-10: 0-07-052903-5

Published by Tata McGraw Hill Education Private Limited, 7 West Patel Nagar, New Delhi 110 008, and printed at S P Printers, Noida 201 301

The McGraw Hill Companies

To the memory of my parents

•

•

About the Author

Behzad Razavi received the B.Sc. degree in electrical engineering from Sharif University of Technology in 1985 and the M.Sc. and Ph.D. degrees in electrical engineering from Stanford University in 1988 and 1992, respectively. He was with AT&T Bell Laboratories and subsequently Hewlett-Packard Laboratories until 1996. Since September 1996, he has been an Associate Professor and subsequently a Professor of electrical engineering at University of California, Los Angeles. His current research includes wireless transceivers, frequency synthesizers, phase-locking and clock recovery for high-speed data communications, and data converters.

Professor Razavi served as an Adjunct Professor at Princeton University, Princeton, NJ, from 1992 to 1994, and at Stanford University in 1995. He is a member of the Technical Program Committees of the Symposium on VLSI Circuits and the International Solid-State Circuits Conference (ISSCC), in which he is the chair of the Analog Subcommittee. He has also served as Guest Editor and Associate Editor of the IEEE Journal of Solid-State Circuits, IEEE Transactions on Circuits and Systems, and International Journal of High Speed Electronics.

Professor Razavi received the Beatrice Winner Award for Editorial Excellence at the 1994 ISSCC, the best paper award at the 1994 European Solid-State Circuits Conference, the best panel award at the 1995 and 1997 ISSCC, the TRW Innovative Teaching Award in 1997, and the best paper award at the IEEE Custom Integrated Circuits Conference in 1998. He is the author of *Principles of Data Conversion System Design* (IEEE Press, 1995), and *RF Microelectronics* (Prentice Hall, 1998), and the editor of *Monolithic Phase-Locked Loops and Clock Recovery Circuits* (IEEE Press, 1996).

Preface

In the past two decades, CMOS technology has rapidly embraced the field of analog integrated circuits, providing low-cost, high-performance solutions and rising to dominate the market. While silicon bipolar and III-V devices still find niche applications, only CMOS processes have emerged as a viable choice for the integration of today's complex mixedsignal systems. With channel lengths projected to scale down to 0.03 μ m, CMOS technology will continue to serve circuit design for probably another two decades.

Analog circuit design itself has evolved with the technology as well. High-voltage, highpower analog circuits containing a few tens of transistors and processing small, continuoustime signals have gradually been replaced by low-voltage, low-power systems comprising thousands of devices and processing large, mostly discrete-time signals. For example, many analog techniques used only ten years ago have been abandoned because they do not lend themselves to low-voltage operation.

This book deals with the analysis and design of analog CMOS integrated circuits, emphasizing fundamentals as well as new paradigms that students and practicing engineers need to master in today's industry. Since analog design requires both intuition and rigor, each concept is first introduced from an intuitive perspective and subsequently treated by careful analysis. The objective is to develop both a solid foundation and methods of analyzing circuits by inspection so that the reader learns what approximations can be made in which circuits and how much error to expect in each approximation. This approach also enables the reader to apply the concepts to bipolar circuits with little additional effort.

I have taught most of the material in this book both at UCLA and in industry, polishing the order, the format, and the content with every offering. As the reader will see throughout the book, I follow four "golden rules" in writing (and teaching): (1) I explain *why* the reader needs to know the concept that is to be studied; (2) I put myself in the reader's position and predict the questions that he/she may have while reading the material for the first time; (3) With Rule 2 in mind, I pretend to know only as much as the (first-time) reader and try to "grow" with him/her, thereby experiencing the same through process; (4) I begin with the "core" concept in a simple (even imprecise) language and gradually add necessary modifications to arrive at the final (precise) idea. The last rule is particularly important in teaching circuits because it allows the reader to observe the evolution of a topology and hence learn both analysis and synthesis.

The text comprises 18 chapters whose contents and order are carefully chosen to provide a natural flow for both self-study and classroom adoption in quarter or semester systems. Unlike some other books on analog design, we cover only a *bare minimum* of MOS device physics at the beginning, leaving more advanced properties and fabrication details for later chapters. To an expert, the elementary device physics treatment may appear oversimplified, but my experience suggests that (a) first-time readers simply do not absorb the high-order device effects and fabrication technology before they study circuits because they do not see the relevance; (b) if properly presented, even the simple treatment proves adequate for a substantial coverage of basic circuits; (c) readers learn advanced device phenomena and processing steps much more readily *after* they have been exposed to a significant amount of circuit analysis and design.

Chapter 1 provides the reader with motivation for learning the material in this book.

Chapter 2 describes basic physics and operation of MOS devices.

Chapters 3 through 5 deal with single-stage and differential amplifiers and current mirrors, respectively, developing efficient analytical tools for quantifying the behavior of basic circuits by inspection.

Chapters 6 and 7 introduce two imperfections of circuits, namely, frequency response and noise. Noise is treated at an early stage so that it "sinks in" as the reader accounts for its effects in subsequent circuit developments.

Chapters 8 through 10 describe feedback, operational amplifiers, and stability in feedback systems, respectively. With the useful properties of feedback analyzed, the reader is motivated to design high-performance, stable op amps and understand the trade-offs between speed, precision, and power dissipation.

Chapters 11 through 13 deal with more advanced topics: bandgap references, elementary switched-capacitor circuits, and the effect of nonlinearity and mismatch. These three subjects are included here because they prove essential in most analog and mixed-signal systems today.

Chapters 14 and 15 concentrate on the design of oscillators and phase-locked loops, respectively. In view of the wide usage of these circuits, a detailed study of their behavior and many examples of their operation are provided.

Chapter 16 is concerned with high-order MOS device effects and models, emphasizing the circuit design implications. If preferred, this chapter can directly follow Chapter 2 as well. Chapter 17 describes CMOS fabrication technology with a brief overview of layout design rules.

Chapter 18 presents the layout and packaging of analog and mixed-signal circuits. Many practical issues that directly impact the performance of the circuit are described and various techniques are introduced.

The reader is assumed to have a basic knowledge of electronic circuits and devices, e.g., *pn* junctions, the concept of small-signal operation, equivalent circuits, and simple biasing. For a senior-level elective course, Chapters 1 through 8 can be covered in a quarter and Chapters 1 through 10 in a semester. For a first-year graduate course, Chapters 1 through 11 plus one of Chapters 12 through 15 can be taught in one quarter, and the first 16 chapters in one semester.

The problem sets at the end of each chapter are designed to extend the reader's understanding of the material and complement it with additional practical considerations. A solutions manual is available for instructors.

> Behzad Razavi July 2000

Acknowledgments

Writing a book begins with a great deal of excitement. However, after two years of relentless writing, drawing, and revising, when the book exceeds 600 pages and it is almost impossible to make the equations and subscripts and superscripts in the last chapter consistent with those in the first, the author begins to feel the streaks of insanity, realizing that the book will never finish without the support of many other people.

This book has benefited from the contributions of many individuals. A number of UCLA students read the first draft and the preview edition sentence by sentence. In particular, Alireza Zolfaghari, Ellie Cijvat, and Hamid Rafati meticulously read the book and found several hundred errors (some quite subtle). Also, Emad Hegazi, Dawei Guo, Alireza Razzaghi, Jafar Savoj, and Jing Tian made helpful suggestions regarding many chapters. I thank all.

Many experts in academia and industry read various parts of the book and provided useful feedback. Among them are Brian Brandt (National Semiconductor), Matt Corey (National Semiconductor), Terri Fiez (Oregon State University), Ian Galton (UC San Diego), Ali Hajimiri (Caltech), Stacy Ho (Analog Devices), Yin Hu (Texas Instruments), Shen-Iuan Liu (National Taiwan University), Joe Lutsky (National Semiconductor), Amit Mehrotra (University of Illinois, Urbana-Champaign), David Robertson (Analog Devices), David Su (T-Span), Tao Sun (National Semiconductor), Robert Taft (National Semiconductor), and Masoud Zargari (T-Span). Jason Woo (UCLA) patiently endured and answered my questions about device physics. I thank all.

Ramesh Harjani (University of Minnesota), John Nyenhius (Purdue University), Norman Tien (Cornell University), and Mahmoud Wagdy (California State University, Long Beach) reviewed the book proposal and made valuable suggestions. I thank all.

My wife, Angelina, has made many contributions to this book, from typing chapters to finding numerous errors and raising questions that made me reexamine my own understanding. I am very grateful to her.

The timely production of the book was made possible by the hard work of the staff at McGraw-Hill, particularly, Catherine Fields, Michelle Flomenhoft, Heather Burbridge, Denise Santor-Mitzit, and Jim Labeots. I thank all. I learned analog design from two masters: Mehrdad Sharif-Bakhtiar (Sharif University of Technology) and Bruce Wooley (Stanford University) and it is only appropriate that I express my gratitude to them here. What I inherited from them will be inherited by many generations of students.

Behzad Razavi July 2000

Brief Contents

1	Introduction to Analog Design	1
2	Basic MOS Device Physics	9
3	Single-Stage Amplifiers	47
4	Differential Amplifiers	
5	Passive and Active Current Mirrors	135
6	Frequency Response of Amplifiers	166
7		201
8	Feedback	201
9		291
10	Stability and Frequency Compensation	271
11	Bandgap References	343
12		405
13		405
14	Oscillators	
15	Phase-Locked Loops	404
16		334
17	CMOS Processing Technology	579
10		631
	Index	677

xiii

Contents

٩b	out th	ne Author	vii
			ix
4c	know	ledgments	xi
1	Int	roduction to Analog Design	1
	1.1	Why Analog?	1
	1.2	Why Integrated?	6
	1.3	Why CMOS?	6
		Why This Book?	7
	1.5	General Concepts	7
		1.5.1 Levels of Abstraction	7
		1.5.2 Robust Analog Design	7
2	Bas	sic MOS Device Physics	9
		General Considerations	10
		2.1.1 MOSFET as a Switch	10
		2.1.2 MOSFET Structure	10
		2.1.3 MOS Symbols	12
	2.2	MOS I/V Characteristics	13
		2.2.1 Threshold Voltage	13
		2.2.2 Derivation of I/V Characteristics	15
	2.3	Second-Order Effects	23
	2.4	MOS Device Models	28
		2.4.1 MOS Device Layout	28
		2.4.2 MOS Device Capacitances	29
		2.4.3 MOS Small-Signal Model	33
		2.4.4 MOS SPICE models	36
		2.4.5 NMOS versus PMOS Devices	37
		2.4.6 Long-Channel versus Short-Channel Devices	38

Contents

3	Single-Stage Amplifiers	47
	3.1 Basic Concepts	47
	3.2 Common-Source Stage	
	3.2.1 Common-Source Stage with Resistive Load	48
	3.2.2 CS Stage with Diode-Connected Load	53
	3.2.3 CS Stage with Current-Source Load	58
	3.2.4 CS Stage with Triode Load	59
	3.2.5 CS Stage with Source Degeneration	60
	3.3 Source Follower	67
	3.4 Common-Gate Stage	76
	3.5 Cascode Stage	83
	3.5.1 Folded Cascode	90
	3.6 Choice of Device Models	92
4	Differential Amplifiers	100
	4.1 Single-Ended and Differential Operation	
	4.2 Basic Differential Pair	
	4.2.1 Qualitative Analysis	104
	4.2.2 Quantitative Analysis	
	4.3 Common-Mode Response	
	4.4 Differential Pair with MOS Loads	124
	4.5 Gilbert Cell	126
5	Passive and Active Current Mirrors	135
	5.1 Basic Current Mirrors	135
	5.2 Cascode Current Mirrors	
	5.3 Active Current Mirrors	145
	5.3.1 Large-Signal Analysis	149
	5.3.2 Small-Signal Analysis	151
	5.3.3 Common-Mode Properties	154
6	Frequency Response of Amplifiers	166
	6.1 General Considerations	166
	6.1.1 Miller Effect	
	6.1.2 Association of Poles with Nodes	169
	6.2 Common-Source Stage	172
	6.3 Source Followers	
	6.4 Common-Gate Stage	
	6.5 Cascode Stage	
	6.6 Differential Pair	
	Appendix A: Dual of Miller's Theorem	193
	•	

Contents

201 203 206 207 209 215 218 224 225 228 231 232 233 239
206 207 209 215 218 224 225 228 231 232 233 239
207 209 215 218 224 225 228 231 232 233 239
209 209 215 218 224 225 228 231 232 233 239
 209 215 218 224 225 228 231 232 233 239
 215 218 224 225 228 231 232 233 239
 218 224 225 228 231 232 233 239
224 225 228 231 232 233 239
 225 228 231 232 233 239
228 231 232 233 239
231 232 233 239
232 233 239
233 239
239
• • •
246
246
247
254
258
258
263
266
269
270
270
272
275
278
281
283
284
291
291
291
296
307
309
313
258 266 266 276 277 277 277 28 28 28 28 28 28 28 29 29 29 29 29 29 30

xvii

 9.7 Input Range Limitations		325 326 334 336
 10 Stability and Frequency Compensation 10.1 General Considerations 10.2 Multipole Systems 10.3 Phase Margin 10.4 Frequency Compensation 10.5 Compensation of Two-Stage Op Amps 10.5.1 Slewing in Two-Stage Op Amps 10.6 Other Compensation Techniques 		349 351 355 361 368
11 Bandgap References		377
11.1 General Considerations		377
11.2 Supply-Independent Biasing		377
11.3 Temperature-Independent References		381
11.3.1 Negative-TC Voltage		381
11.3.2 Positive-TC Voltage		
11.3.3 Bandgap Reference		384
11.4 PTAT Current Generation		390
11.5 Constant-G _m Biasing		392
11.6 Speed and Noise Issues		393
11.7 Case Study	• • • • • • • • • • • • • • • •	397
12 Introduction to Switched-Capacitor Circuits		405
12.1 General Considerations		405
12.2 Sampling Switches		410
12.2.1 MOSFETS as Switches		410
12.2.2 Speed Considerations		414
12.2.3 Precision Considerations		417
12.2.4 Charge Injection Cancellation		421
12.3 Switched-Capacitor Amplifiers		423
12.3.1 Unity-Gain Sampler/Buffer		424
12.3.2 Noninverting Amplifier		432
12.3.3 Precision Multiply-by-Two Circuit		
12.4 Switched-Capacitor Integrator		439
12.5 Switched-Capacitor Common-Mode Feedback		442
13 Nonlinearity and Mismatch		448
13.1 Nonlinearity		448
13.1.1 General Considerations		448

.

		13.1.2 Nonlinearity of Differential Circuits	452
		13.1.3 Effect of Negative Feedback on Nonlinearity	454
		13.1.4 Capacitor Nonlinearity	457
		13.1.5 Linearization Techniques	458
	13.2		463
		13.2.1 Offset Cancellation Techniques	471
		13.2.2 Reduction of Noise by Offset Cancellation	476
		13.2.3 Alternative Definition of CMRR	478
14	Osci	llators	48 2
			482
		LC Oscillators	495
			499
		14.3.2 Colpitts Oscillator	502
		14.3.3 One-Port Oscillators	505
	14.4	Voltage-Controlled Oscillators	510
		14.4.1 Tuning in Ring Oscillators	512
		14.4.2 Tuning in LC Oscillators	
	.14.5	Mathematical Model of VCOs	525
15	Pha	se-Locked Loops	532
	15.1	Simple PLL	532
		15.1.1 Phase Detector	532
		15.1.2 Basic PLL Topology	533
		15.1.3 Dynamics of Simple PLL	542
	15.2	Charge-Pump PLLs	549
		15.2.1 Problem of Lock Acquisition	
		15.2.2 Phase/Frequency Detector and Charge Pump	
		15.2.3 Basic Charge-Pump PLL.	
	15.3	Nonideal Effects in PLLs	
		15.3.1 PFD/CP Nonidealities	
		15.3.2 Jitter in PLLs	
	15.4	Delay-Locked Loops	
	15.5	Applications	
		15.5.1 Frequency Multiplication and Synthesis	572
		15.5.2 Skew Reduction	574
		15.5.3 Jitter Reduction	576
16		ort-Channel Effects and Device Models	579
	16.1	Scaling Theory	579
,	16.2	Short-Channel Effects	583

	16.2.1 Thread and Walterna Variation	
	16.2.1 Threshold Voltage Variation	
	16.2.2 Mobility Degradation with Vertical Field	
	•	587
		89
	0	89
		91
		92 92
		93 95
		95 95
		96
		97
	• •	98
		99
		99
	16.5 Analog Design in a Digital World	00
17	CMOS Processing Technology 60	04
		04
		05
		06
		08
		08
		11
		11
		11
		16
•		24
	17.8 Latch-Up	
	•	
18	Layout and Packaging	31
	18.1 General Layout Considerations 63	31
	18.1.1 Design Rules 62	32
	18.1.2 Antenna Effect	34
	18.2 Analog Layout Techniques	35
	18.2.1 Multifinger Transistors	35
		37
	18.2.3 Reference Distribution	42
	18.2.4 Passive Devices	44
	18.2.5 Interconnects	53
	8.3 Substrate Coupling	50
	ndex	17

.

.