Chapter 1

Introduction to Analog Design

1.1 Why Analog?

It was in the early 1980s that many experts predicted the demise of analog circuits. Digital
signal processing algorithms were becoming increasingly more powerful while advances
in integrated-circuit (IC) technology provided compact, efficient implementation of these
algorithms in silicon. Many functions that had traditionally been realized in analog form
were now easily performed in the digital domain, suggesting that, with enough capability in
IC fabrication, all processing of signals would eventually occur digitally. The future looked
quite bleak to analog designers and they were seeking other jobs.

But, why are analog designers in such great demand today? After all, digital signal
processing and IC technologies have advanced tremendously since the early 1980s, making
it possible to realize processors containing millions of transistors and performing billions
of operations per second. Why did this progress not confirm the earlier predictions?

While many types of signal processing have indeed moved to the digital domain,
analog circuits have proved fundamentally necessary in many of today’s complex, high-
performance systems. Let us consider a few applications where it is very difficult or even
impossible to replace analog functions with their digital counterparts regardless of advances
in technology. '

Processing of Natural Signals Naturally occurring signals are analog—at least at a
macroscopic level. A high-quality microphone picking up the sound of an orchestra gener-
ates a voltage whose amplitude may vary from a few microvolts to hundreds of millivolts.
The photocells in a video camera produce a current that is as low as a few electrons per
microsecond. A seismographic sensor has an output voltage ranging from a few microvolts
for very small vibrations of the earth to hundreds of millivolts for heavy earthquakes. Since
all of these signals must eventuaily undergo extensive processing in the digital domain, we
observe that each of these systems consists of an analog-to-digital converter (ADC) and
a digital signal processor (DSP) [Fig. 1.1(a)]. The design of ADCs for high speed, high
precision, and low power dissipation is one of many difficult challenges in analog design.
In practice, the electrical version of natural signals may be prohibitively small for direct
digitization by the ADC. The signals are also often accompanied by unwanted, out-of-band
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Figure 1.1 (a) Digitization of a natural signal, (b) addition of amplifica-
tion and filtering for higher sensitivity.
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interferers. The front end of Fig. 1.1(a) may therefore be modified as shown in Fig. 1.1(b),
where an amplifier boosts the signal level and an analog filter suppresses the out-of-band
components. The design of high-performance amplifiers and filters is also a topic of active

research today.

Digital Communications Binary data generated by various systems must often be
transmitted over long distances. For example, computer networks in large office buildings
may transmit the data over cables that are hundreds of meters long.

What happens if a high-speed stream of binary data travels through a long cable? As
illustrated in Fig. 1.2, the signal experiences both attenuation and “distortion,” no longer re-
sembling a digital waveform. Thus, a receiver similar to that of Fig. 1.1(b) may be necessary

here.

Lossy Cable
Vipeo—————Vou

&  Figure 1.2 Attentuation and distor-
tion of data through a lossy cable.

In order to improve the quality of communication, the above system may incorporate
“multi-level”—rather than binary—signals. For example, if, as shown in Fig. 1.3, every
two consecutive bits in the sequence are grouped and converted to one of four levels, then
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Figure 1.3 Use of multi-level signalling to reduce the re-
quired bandwidth.

each level is twice as long as a bit period, demanding only half the bandwidth required for
transmission of the binary stream. Utilized extensively in today’s communication systems,
multi-level signals necessitate a digital-to-analog converter (DAC) in the transmitter to pro-
duce multiple levels from the grouped binary data and an ADC in the receiver to determine
which level has been transmitted. The key point here is that increasing the number of levels
relaxes the bandwidth requirements while demanding a higher precision in the DAC and
the ADC.

Disk Drive Electronics The data stored magnetically on a computer hard disk is in
binary form. However, when the data is read by a magnetic head and converted to an
electrical signal, the result appears as shown in Fig. 1.4. The amplitude is only a few
millivolts, the noise content is quite high, and the bits experience substantial distortion.
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Figure 1.4 Data stored in and retrieved from a hard disk.

Thus, as illustrated in Fig. 1.1, the signal is amplified, filtered, and digitized for further
processing. Depending on the overall system architecture, the analog filter in this case may
in fact serve to remove a significant portion of the noise and the distortion of the signal. The
design of each of these building blocks poses great challenges as the speed of computers
and their storage media continues to increase every year. For example, today’s disk drives
require a speed of 500 Mby/s.

Wireless Receivers The signal picked up by the antenna of a radio-frequency (RF)
receiver, e.g., a pager or a cellular telephone, exhibits an amplitude of only a few microvolts
and a center frequency of 1 GHz or higher. Furthermore, the signal is accompanied by large
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interferers (Fig. 1.5). The receiver must therefore amplify the low-level signal with minimal
noise, operate at a high frequency, and withstand large unwanted components. Note that
these requirements are necessary even if the desired signal is not in “analog” form. The
trade-offs between noise, frequency of operation, tolerance of interferers, power dissipation,
and cost constitute the principal challenge in today’s wireless industry.

Optical Receivers For transmission of high-speed data over very long distances, cables
generally proveinadequate because of their limited bandwidth and considerable attenuation.
Thus, as illustrated in Fig. 1.6, the data is converted to light by means of a laser diode and
transmitted over an optical fiber, which exhibits an extremely wide band and a very low
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Figure 1.6 Optical fiber system.

loss. At the receive end, the light is converted to a small electrical current by a photodiode.
The receiver must then process a low-level signal at a very high speed, requiring low-noise,
broadband circuit design. For example, state-of-the-art optical receivers operate in the range
of 10 to 40 Gb/s.

Sensors Mechanical, electrical, and optical sensors play a critical role in our lives. For
example, video cameras incorperate an array of photodiodes to convert an image to current
and ultrasound systems use an acoustic sensor to generate a voltage proportional to the
amplitude of the ultrasound waveform. Amplification, filtering, and A/D conversion are

‘essential functions in these applications.

An interesting example of sensors is the accelerometers employed in automobiles to
activate air bags. When the vehicle hits an obstacle, the drop in the speed is measured as
acceleration and, if exceeding a certain threshold, it triggers the air bag release mechanism.
Modern accelerometers are based on a variable capacitor consisting of a fixed plate and
a deflectable plate [Fig. 1.7(a)]. The deflection and hence the value of the capacitor are
proportional to the acceleration, requiring a circuit that accurately measures the change
in capacitance. The design of such interface circuits is quite difficult because for typical
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Figure 1.7 (a) Simple accelerometer, (b) differential accelerometer.

accelerations, the interplate capacitance may change by less than 1%, demanding a high
precision in the measurement. In practice, the structure of Fig. 1.7(b) is used to provide two
capacitors that change in opposite directions, reducing the task to the measurement of the
difference between two capacitances rather than the absolute value of one.

Microprocessors and Memories Today’s microprocessors and memories draw upon
a great deal of analog design expertise. Many issues related to the distribution and timing
of data and clocks across a large chip or among chips mandate that high-speed signals be
viewed as analog waveforms. Furthermore, nonidealities in signal and power interconnects
on the chip as well as package parasitics require a solid understanding of analog design.
In addition, semiconductor memories employ high-speed “sense amplifiers” extensively,
necessitating many analog techniques. For these reasons, it is often said “high-speed digital
design is in fact analog design.” :

The foregoing applications demonstrate the wide and inevitable spread of analog circuits
inmodern industry. But, why is analog design difficult? We make the following observations.
(1) Whereas digital circuits entail primarily one trade-off between speed and power dissipa-
tion, analog design must deal with a multi-dimensional trade-off consisting of speed, power
dissipation, gain, precision, supply voltage, etc. (2) With the speed and precision required

. in processing analog signals, analog circuits are much more sensitive to noise, crosstalk,
and other interferers than are digital circuits. (3) Second-order effects in devices influence
the performance of analog circuits much more heavily than that of digital circuits. (4) The
design of high-performance analog circuits can rarely be automated, usually requiring that
every device be “hand-crafted.” By contrast, many digital circuits are automatically syn-
thesized and laid out. (5) Despite tremendous progress, modeling and simulation of many
effects in analog circuits continue to pose difficulties, forcing the designers to draw upon
experience and intuition when analyzing the results of a simulation. (6) An important thrust
in today’s semiconductor industry is to design analog circuits in mainstream IC technolo-
gies used to fabricate digital products. Developed and characterized for digital applications,
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such technologies do not easily lend themselves to analog design, requiring novel circuits
and architectures to achieve a high performance.

1.2 Why Integrated?

The idea of placing multiple electronic devices on the same substrate was conceived in the
late 1950s. In 40 years, the technology has evolved from producing simpie chips containing
a handful of components to fabricating memories accommodating more than one billion
transistors as well as microprocessors comprising more than 10 million devices. As Gordon
Moore (one of the founders of Intel) predicted in the early 1970s, the number of transistors
per chip has continued to double approximately every one and a half years. At the same
time, the minimum dimension of transistors has dropped from about 25 tem in 1960 to about
0.18 wm in the year 2000, resulting in a tremendous improvement in the speed of integrated
circuits.

Driven by primarily the memory and microprocessor market, integrated-circuit tech-
nologies have also embraced analog design extensively, affording a complexity, speed, and
precision that would be impossible to achieve using discrete implementations. Analog and
mixed analog/digital integrated circuits containing tens of thousands of devices now rou-
tinely appear in consumer products. We can no longer build a discrete prototype to predict
the behavior and performance of modern analog circuits.

1.3 Why CMOS?

‘The idea of metal-oxide-silicon field-effect transistors (MOSFETSs) was patented by J. E.
Lilienfeld in the early 1930s—well before the invention of the bipolar transistor. Owing
to fabrication limitations, however, MOS technologies became practical much later, in the
early 1960s, with the first several generations producing only n-type transistors. It was in
the mid-1960s that complementary MOS (CMOS) devices (i.e., both n-type and p-type
transistors) were introduced, initiating a revolution in the semiconductor industry.

CMOS technologies rapidly captured the digital market: CMOS gates dissipated power
only during switching and required very few devices, two attributes in sharp contrast to
their bipolar or GaAs counterparts. It was also soon discovered that the dimensions of
MOS devices could be scaled down more easily than those of other types of transistors.
Furthermore, CMOS circuits proved to have a lower fabrication cost.

The next obvious step was to apply CMOS technology to analog design. The low cost of
fabrication and the possibility of placing both analog and digital circuits on the same chip
s0 as to improve the overall performance and/or reduce the cost of packaging made CMOS
technology attractive. However, MOSFETs were quite slower and noisier than bipolar tran-
sistors, finding limited application.

How did CMOS technology come to dominate the analog market as well? The principal
force was device scaling because it continued to improve the speed of MOSFETs. The
intrinsic speed of MOS transistors has increased by more than three orders of magnitude in
the past 30 years, becoming comparable with that of bipolar devices even though the latter
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have also been scaled (but not as fast). Multi-gigahertz analog CMOS circuits are now in
production.

1.4 Why This Book?

The design of analog circuits itself has evolved together with the technology and the per-
formance requirements. As the device dimensions shrink, the supply voltage of integrated
circuits drops, and analog and digital circuits are fabricdted on one chip, many designissues
arise that were unimportant only a decade ago. Such trends demand that the analysis and
design of circuits be accompanied by an in-depth understanding of their advantages and
disadvantages with respect to new. technology-imposed limitations.

Good analog design requires intuition, rigor, and creativity. As analog designers, we
must wear our engineer’s hat for a quick and intuitive understanding of a large circuit, our
mathematician’s hat for quantifying subtle, yet important effects in a circuit, and our artist’s
hat for inventing new circuit topologies.

This book describes modern analog design from both intuitive and rigorous angles. It
also fosters the reader’s creativity by carefully guiding him/her through the evolution of
each circuit and presenting the thought process that occurs dunng the development of new -
circuit techniques. )

|

1.5 General Concepts

1.5.1 Levels of Abstraction

!

Analysis and design of integrated circuits often require thinking af vatious levels of ab-
straction. Depending on the effect or quantity of interest, we may study a complex circuit
at device physics level, transistor level, architecture level, or system level. In other words,
we may consider the behavior of individual devices in terms of their internal electric fields
and charge transport [Fig. 1.8(a)], the interaction of a group of devices according to their
electrical characteristics [Fig. 1.8(b)), the function of several building blocks operating as
a unit [Fig. 1.8(c)], or the performance of the system in terms of that of its constituent
subsystems [Fig. 1.8(d)]. Switching between levels of abstraction becomes necessary in
both understanding the details of the operation and optimizing the overall performance. In
fact, in today’s IC industry, the interaction between all groups, from device physicists to
system designers, is essential to achieving a high performance and a low cost. In this book,
we begin with device physics and develop increasingly more complex circuit topologies.

1.5.2 Robust Analog Design

Many device and circuit parameters vary with the fabrication process, supply voltage, and
ambient temperature. We denote these effects by PVT and design circuits such that their
performance remains in an acceptable range for a specified range of PVT variations. For
example, the supply voltage may vary from 2.7 V to 3.3 V and the temperature from 0°
to 70°. Robust analog design in CMOS technology is a challengmg task because device
parameters vary significantly from wafer to wafer.
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Figure 1.8 Abstraction levels in circuit design: (a) device level, (b) circuit level, (¢) architecture level,
(d) system level. '

1.5.3 Notations

The voltages and currents in integrated circuits typically contain a bias component and a
signal component. While it is desirable to employ a notation that distinguishes between
these quantities, in practice other difficulties arise. For example, if the drain bias current of
a transistor is denoted by /p and the drain signal current by i, then the Laplace transform
of ip, Ip(s), may be confused with I, unless it is always accompanied by s. Furthermore,
it is confusing to write the low-frequency gain of a circuit as You /Vin = —gm Rp and the
high-frequency gain as V,,,/ Vi, = —gmRp/(1 + RpCyrs).

In this book, we denote most voltages and currents by uppercase letters, making it clear
from the context which component they represent. For example, I, Vg5, and Vy denote
bias, signal, or bias+signal quantities. For input and output voltages, we use V;, and V,,,,
respectively.



Chapter 2

Basic MOS Device Physics

In studying the design of integrated circuits, one of two extreme approaches can be taken:
(1) begin with quantum mechanics and understand solid-state physics, semiconductor device
physics, device modeling, and finally the design of circuits; (2) treat each semiconductor
device as a black box whose behavior is described in terms of its terminal voltages and
currents and design circuits with little attention to the internal operation of the device.
Experience shows that neither approach is optimum. In the first case, the reader cannot
see the relevance of all of the physics to designing ¢ircuits, and in the second, hefshe is
constantly mystified by the contents of the black box.

In today’s IC industry, a solid understanding of semiconductor devices is essential,
more so in analog design than in digital design because in the former, transistors are
not considered as simple switches and many of their second-order effects directly im-
pact the performance. Furthermore, as each new generation of IC technologies scales
the devices, these effects become more significant. Since the designer must often decide
which effects can be neglected in a given circuit, insight into device operation proves
invaluable.

In this chapter, we study the physics of MOSFETs at an elementary level, covering
the bare minimum that is necessary for basic analog design. The ultimate goal is still
to develop a circuit model for each device by formulating its operation, but this is ac-
complished with a good understanding of the underlying principles. After studying many
analog circuits in Chapters 3 through 13 and gaining motivation for a deeper understanding

* of devices, we return to the subject in Chapter 16 and deal with other aspects of MOS

operation,

We begin our study with the structure of MOS transistors and derive their I/V char-
acteristics. Next; we describe second-order effects such as body effect, channel-length
modulation, and subthreshold conduction. We then identify the parasitic capacitances
of MOSFETSs, derive a small-signal model, and present a simple SPICE model. We as-
sume that the reader is familiar with such basic concepts as doping, mobility, and
pr junctions.
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2.1 General Considerations
2.1.1 MOSFET as a Switch

Before delving into the actual operation of the MOSFET, we consider a simplistic model of
the device so as to gain a feeling for what the transistor is expected to be and which aspects
of its behavior are important.

Shown in Fig. 2.1 is the symbol for an n-type MOSFET, revealing three terminals:
gate (G), source (S), and drain (D). The latter two are interchangeable because the device is

Gate

_T_ Figure 2.1 Simple view of a MOS

Source o—}-[——o Drain device.

symmetric. When operating as a switch, the transistor “connects” the source and the drain
together if the gate voltage, Vg, is “high” and isolates the source and the drain if Vi is
“low.” L

Even with this simplified view, we must answer several questions. For what value of
V; does the device turn on? In other words, what is the “threshold” voltage? What is the
resistance between S and D when the device is on (or off)? How does this resistance depend
on the terminal voltages? Can we always model the path between S and D by a simple linear
resistor? What limits the speed of the device?

‘While all of these questions arise at the circuit level, they can be answered only by -
analyzing the structure and physics of the transistor.

2.1.2 MOSFET Structure

Fig. 2.2 shows a simplified structure of an rn-type MOS (NMOS) device. Fabricated on a
p-type substrate (also called the “butk” or the “body”), the device consists of two heavily-
doped 7 regions forming the source and drain terminals, a heavily-doped (conductive) piece

Ldrawn :
a—Lp

p-substrate

Figure 2.2 Structure of a MOS device.
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of polysilicon' (often simply called “poly”) operating as the gate, and a thin layer of silicon
dioxide (Si07) insulating the gate from the substrate. The useful action of the device occurs
in the substrate region under the gate oxide. Note that the structure is symmetric with respect
to S and D. ‘

~ The dimension of the gate along the source-drain path is called the length, L, and that
perpendicular to the length is called the width, W. Since during fabrication the S/D junc-
tions “side-diffuse,” the actual distance between the source and the drain is slightly less
than L. To avoid confusion, we write, L.sr = Lyrawn — 2L p, Where L¢; is the “effective”
length, Lgraw. is the total length,? and L is the amount of side diffusion. As we will see
later, L.sr and the gate oxide thickness, f,., play an important role in the performance of
MOS circuits. Consequently, the principal thrust in MOS technology development is to
reduce both of these dimensions from one generation to the next without degrading other
parameters of the device. Typical values at the time of this writing are L.sr ~ 0.15 um and
1,y = 50 A. In the remainder of this book, we denote the effective length by L.

If the MOS structure is symmetric, why do we call one a region the source and the
other the drain? This becomes clear if the source is defined as the terminal that provides the
charge carriers (electrons in the case of NMOS devices) and the drain as the terminal that
collects them. Thus, as the voltages at the three terminals of the device vary, the source and
the drain may exchange roles. These concepts are practiced in the problems at the end of
the chapter.

We have thus far ignored the substrate on which the device is fabricated. In reality,
the substrate potential greatly influences the device characteristics. That is, the MOSFET
is a four-terminal device. Since in typical MOS operation the S/D junction diodes must
be reverse-biased, we assume the substrate of NMOS transistors is connected to the most
negative supply in the system. For example, if a circuit operates between zero.and 3 volts,
Viub.nmos = 0. The actual connection is usually provided through an ohmic p* region, as
depicted in the side view of the device in Fig. 2.3.

B ]

1 I
Loopri ] L e

p—substrate

Figure 2.3 Substrate connection.

In complementary MOS (CMOS) technologies, both NMOS and PMOS transistors are
available. From a simplistic view point, the PMOS device is obtained by negating all of

)

I Polysilicon is silicon in amorphous (non-crystal) form. As explained in Chapter 17, when the gate silicon is
grown on top of the oxide, it cannot form a crystal.
2The subscript “drawn” is used because this is the dimension that we draw in the layout of the transistor
{Section 2.4.1). .
7
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Figure 2.4 (a) Simple PMOS device, (b) PMOS inside an n-well.

the doping types (including the substrate) [Fig. 2.4(a)], but in practice, NMOS and PMOS
devices must be fabricated cn the same wafer, i.e., the same substrate. For this reason, one
device type can be placed in a “local substrate,” usually called a *“well.” In most of today’s
CMOS processes, the PMOS device is fabricated in an n-well [Fig. 2.4(b)]. Note that the
n-well must be connected to a potential such that the S/D junction diodes of the PMOS
transistor remain reverse-biased under all conditions. In most circuits, the n-well is tied to
the most positive supply voltage. For the sake of brevity, we sometimes call NMOS and
PMOS devices “NFETs” and “PFETSs,” respectively.

Fig. 2.4(b) indicates an interesting difference between NMOS and PMOS transistors:
while all NFETs share the same substrate, each PFET can have an independent n-well. This
flexibility of PFETs is exploited in some analog circuits.

2.1.3 MOS Symbols

The circuit symbols used to represent NMOS and PMOS transistors are shown in Fig. 2.5.
The symbols in Fig. 2.5(a) contain all four terminals, with the substrate denoted by “B”
(bulk) rather than “S” to avoid confusion with the source. The source of the PMOS device
is positioned on top as a visual aid because it has a higher potential than its gate. Since in
most circuits the bulk terminats of NMOS and PMOS devices are tied to ground and Vi p,
respectively, we usually omit these connections in drawing [Fig. 2.5(b)]. In digital circuits,
it is customary to use the “switch” symbols depicted in Fig. 2.5(c) for the two types, but we
prefer those in Fig. 2.5(b) because the visual distinction between § and D proves helpful in
understanding the operation of circuits.



Sec.2.2 - MOS IV Characteristics 13

NMOS PMOS " NMOS PMOS NMOS PMOS
D S D S D b
Go—f-- B  Go—{[%--- B Go—] Go—| Go—| Go—
s D s D s s
(a) (b) (c)

Figure 2.5 MOS symbois.

2.2 MOS I/V Characteristics

In this section, we analyze the generation and transport of charge in MOSFETs as a function
of the terminal voltages. Our objective is to derive equations for the I/V characteristics such
that we can elevate our abstraction from device physics level to circuit level.

2.2.1 Threshold Voltage

Consider an NFET corinected to external voltages as shown in Fig. 2.6(a). What happens as
the gate voltage, Vi, increases from zero? Since the gate and the substrate form a capacitor,

+0.1V

p—substrate ' - =

(a) ' ' 0

p—substrate ‘ B p—substrate Electrons

© (O

Figure 2.6 (2) A MOSFET driven by a gate voltage, (b) formation of dei)letion region, (c) onset of inversion, (d) formation
of inversion layer. ’
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as V; becomes more pbsitive, the holes in the p-substrate are repelled from the gaté area,
leaving negative ions behind so as to mirror the charge on the gate. In other words, a
depletion region is created [Fig. 2.6(b)]. Under this condition, no current flows because no
charge carriers are available. '

As Vg increases, so do the width of the depletion region and the potential at the oxide-
silicon interface. In a sense, the structure resembles two capacitors in series: the gate oxide
capacitor and the depletion region capacitor [Fig. 2.6(c)]. When the interface potential
reaches a sufficiently positive value, electrons flow from the source to the interface and
eventually to the drain. Thus, a “channel” of charge carriers is formed under the gate oxide
between S and D, and the transistor is “turned on.” We also say the interface is “inverted.”
The value of Vg for which this occurs is called the “threshold voltage,” Vyg. If Vi rises
further, the charge in the depletion region remains relatively constant while the channel
charge density continues to increase, providing a greater current from S to D.

In reality, the turn-on phenomenon is a gradual function of the gate voltage, making it
difficult to define V75 unambiguously. In semiconductor physics, the Vrg of an NFET is
usually defined as the gate voltage for which the interface is “as much n-type as the substrate
is p-type.” It can be proved [1] that®

Qdep

<. 2.1

Vi = ®ys + 20f + =

~ where @y is the difference between the work functions of the polysilicon gate and the

silicon substrate, &y = (kT/q)In(Ny,»/n;:), q is electron charge, Ny, is the doping con-
centration of the substrate, Qg is the charge in the depletion region, and C,; is the gate
oxide capacitance per unit area. From pn junction theory, Qgep = v/4q€;i |®F[Ngup, where
€,; denotes the dielectric constant of silicon. Since C,, appears very frequently in device
and circuit calcplations, it is helpful to remember that for ,, ~ 50 A Cox ~ 6.9 fF/um?.
The value of Cc,x can then be scaled proportionally for other oxide thicknesses.

In practice, the “native” threshold value obtained from the above equation may not be
suited to circuit design, e.g., Vry = 0 and the device does not turn off for Vg > 0. For
this reason, the threshold voltage is typically adjusted by implantation of dopants into the
channel area during device fabrication, in essence altering the doping level of the substrate
near the oxide interface. For example, as shown in Fig. 2.7, if a thin sheet of p?t is created,
the gate voltage required to deplete this region increases.

p*
Figure 2.7 Implantation of p*

p-substrate
dopants to alter the threshold.

The above definition is not directly apphcable to the measurement of Vrg. InFig. 2.6(a),
only the drain current can indicate whether the device is “on” or “off,” thus failing to reveal
at what Vg5 the interface is as much n-type as the bulk is p-type. As a result, the calculation

3Charge trapping in the oxide is neglected here.
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of Vyy from I/V measurements is sormewhat ambiguous. We return to this point later but
assume in our preliminary analysis that the device turns on abruptly for Vgs > Vra.

The turn-on phenomenon in a PMOS device is similar to that of NFETs but with all of
the polarities reversed. As shown in Fig. 2.8, if the gate-source voltage becomes sufficiently

-01V
Figure 2.8 Formation of inversion layer in a PFET.

negative, an inversion layer consisting of holes is formed at the oxide-silicon interface,
providing a conduction path between the source and the drain.

2.2.2 Derivation of I/V Characteristics

In order to obtain the relationship between the drain current of a MOSFET and its terminal
voltages, we make two observations.

First, consider a semiconductor bar carrying a current / [Fig. 2.9(a)]. If the charge density
along the direction of current is Q4 coulombs per meter and the velocity of the charge is
v meters per second, then

[=04-v. 2.2)

To understand why, we measure the total charge that passes through a cross section of the
bar in unit time. With a velocity v, all of the charge enclosed in v meters of the bar must flow
through the cross section in one second [Fig. 2.9(b)]. Since the charge density is @y, the
total charge in v meters equals Q- v. This lemma proves useful in analyzing semiconductor
devices. ‘

vV meters
-~~~

=

(a) (b)

One second later

Figure 2.9 (a) A semiconductor bar carrying a current /, (b) snapshots of the carriers one second
apart.
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Figure 2.10 Channel charge with (a) equal source and drain voltages, (b) unequal source and drain voltages.

Second, consider an NFET whose source and drain are connected to ground [Fig. 2.10(a)].
What is the charge density in the inversion layer? Since we assume the onset of inversion
occurs at Vgg = Vrg, the inversion charge density produced by the gate oxide capacitance
is proportional to Vgs — Vry. For Vgs > Vry, any charge placed on the gate must be
mirrored by the charge in the channel, yielding a uniform channel charge density (charge
per unit length) equal to

Q4 = WCox(Vgs — Vru), (2.3)

where C,, is multiplied by W to represent the total capacitance per unit length.

Now suppose, as depicted in Fig. 2.10(b), the drain voltage is greater than zero. Since
the channel potential varies from zero at the source to Vp at the drain, the local voltage
difference between the gate and the channel varies from Vg to V5 — Vp. Thus, the charge
density at a point x along the channel can be written as

Qu(x) = WCoi[Vis — V(x) = Vrpl, (2.4)

where V(x) is the channel potential at x.
From (2.2), the current is given by

Ip = —WCoVgs — V(x) = Vulv, 2.5)
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where the negative sign is inserted because the charge carriers are negative and v denotes
the velocity of the electrons in the channel. For semiconductors, v = uE, where  is the
mobility of charge carriers and E is the electric field. Noting that E(x) = —dV/dx and
representing the mobility of electrons by w,,, we have

dvix)
dx '
subject to boundary conditions V(0) = 0and V(L) = Vps. While V(x) can be easily found ~

from this equation, the quantity of interest is in fact I,,. Multiplying both sides by dV and
performing integration, we obtain

Ip = WCo[Ves — V(x) — Vrulitn (2.6)

L Vps -
f I,Da'x = WCOX‘L”[VGS - V(x) - VTH]dV (27)
x=0 V=0
Since I is constant along the channel:
Wi . 1, "
1 = pinCox— | (Vas = Vru)Vops — 2Vbs |- (2.8)

Note that L is the effective channel length.

_Figure 2.11 Drain current versus
drain-source voltage in the triode region.

Fig. 2.11 plots the parabolas given by (2.8) for different values of Vs, indicating that
the “current capability” of the device increases with Vis. Calculating 815, /8 Vi, the reader
can show that the peak of each parabola occurs at Vpg = Vs — Vry and the peak current is

1 w
IDmax = 5#nCoi (Vs — Vra). (2.9)

We call Vs — Vry the “overdrive voltage™ and W/L the “aspect ratio.” If Vps < Vs —

Vry, we say the device operates in the “triode region.”’

“Sometimes called the “effective voltage.”
>This is also called the “linear region.”
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Equations (2.8) and (2.9) serve as the foundation for analog CMOS desi'gn, describing
the dependence of Ip upon the constant of the technology, &, Cox, the device dimensions, w
and L, and the gate and drain potentials with respect to the source. Note that the integration
in (2.7) assumes j, and Vrgy are independent of x and the gate and drain voltages, an
approximation that we will revisit in Chapter 16. '

Ifin (2.8), Vps < 2(Vgs — Vry), we have

%4
Ip = ﬂnCoxT(VGS — Vru)Vbs, (2.10)

that is, the drain current is a linear function of Vps. This is also evident from the character-
istics of Fig. 2.11 for small Vps: as shown in Fig. 2.12, each parabola can be approximated
by a straight line. The linear relationship implies that the path from the source to the drain
can be represented by a linear resistor equal to

1

= ) (2.11)
1nCox I’(VGS — Vru)

Ron =

A MOSFET can therefore operate as a resistor whose value is controlled by the overdrive
voltage [so long as Vps < 2(Vgs — Vra)). This is conceptually illustrated in Fig. 2.13.
Note that in contrast to bipolar transistors, a MOS device may be on even if it carries no

Ip A

Figure 2.12 Linear operation in deep triode region.

G Vas

se—3L D > S»——&k—< D Figure2.13 MOSFET asacontrolled

linear resistor.

current. With the condition Vps < 2(Ves — Vra), we say the device operates in deep triode
region.

Example 2.1

For the arrangement in Fig. 2.14(a), plot the on-resistance of M as a function of Vg. Assume
wnCox =50 pLA/VZ, W/L =10, and Vg =0.7V. Note that the drain terminal is open.
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'y
j{f Ron !
+ My
1V i
: 1.7V g
(@) ' (b)
Figure 2.14

Solution

Since the drain terminal is open, Ip = 0 and Vpg = 0. Thus, if the device is on, it operates in the
deep triode region. For Vg < 1V + Vg, M is off and R, = co. For Vo > 1V + Vg, we have

1
S0 uA/VEX 10(VG ~ 1V — 0T V)

(2.12)

The result is plotted in Fig. 2.14(b).

The utility of MOSFETs as controllable resistors and hence switches plays a crucial role
in many analog circuits. This is studied in Chapter 12.

What happens if in Fig. 2.11 the drain-source voltage exceeds Vgs — Vr w7 In reality,
the drain current does not follow the parabolic behavior for Vpg > Vos — Vry. In fact,
as shown in Fig. 2.15, Ip becomes relatively constant and we say the device operates in
the “saturation” region.® To understand this phenomenon, recall from (2.4) that the local

Ipk

Ves1— Vi
Vasz— Vi
Vass —Vru

Figure 2.15 Saturation of drain current.

®Note the difference between saturation in bipolar and MOS devices.
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Figure 2.16 Pinch-off behavior.

density of inversion layer charge is proportional to Vgs — V{x) — Vrn. Thus, if V(x)
approaches Vgs — Vr g, then Qy4(x) drops to zero. In other words, as depicted in Fig. 2.16,
if Vpg is slightly greater than Vgs — Vrp, then the inversion layer stops at x < L, and we
say the channel is “pinched off”” As Vps increases further, the point at which @, equals
zero gradually moves toward the source. Thus, at some point along the channel, the local
potential difference between the gate and the oxide-silicon interface is not sufficient to
support an inversion layer. ) : '
With the above observations, we re-examine (2.7) for a saturated device. Since Qg is
the density of mobile charge, the integral on the left-hand side of (2.7) must be taken from
x =0tox = L', where L’ is the point at which @ drops to zero, and that on the right from
V{x)=0to V(x) = Vgs — Vru. As aresult: ‘

1 w
[D-"—'—,LLC -

> #nCox 7 Vos — Vrr), (2.13)

indicating that I is relatively independent of Vpg if L' remains close to L.
For PMOS devices, Eqs. (2.8) and (2.13) are respectively writien as

w 1,
Ip = —ppCort | (Vos ™ Vra)Vos = 5 Vis (2.14)
and
1 w
Ip = =5 1pCox 7;(Vos = Vry). (2.15)

The negative sign appears here because we assume /p flows from the drain to the source,
whereas holes flow in the reverse direction. Since the mobility of holes is about one-half
to one-fourth of the mobility of electrons, PMOS devices suffer from lower *“current drive”
capability. -
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Voo Voo

Voo ':Jx> I2
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Figure 2.17 Saturated MOSFETSs operating as current sources.

With the approximation L =~ L', a saturated MOSFET can be used as a current source
connected between the drain and the source (Fig. 2.17), an important component in analog
design. Note that the current sources inject current into ground or draw current from Vpp.
In other words, only one terminal of each current source is “floating.” .

Since a MOSFET operating in saturation produces a current in response to its gate-
source overdrive voltage, we may define a figure of merit that indicates how well a device
converts a voltage to a current. More specifically, since.in processing signals we deal with
the changes in voltages and currents, we define the figure of merit as the change in the drain
current-divided by the change in the gate-source voltage. Called the “transconductance”
and denoted by g,,, this quantity is expressed as:

ol
bn = 2 (2.16)
aVGS V DS, const.
w
= MnCoxf(VGs — Vru). .17

In a sense, g, represents the sensitivity of the device: for a high g,,, a small change in
Vg s results in a large change in /. Interestingly, g,, in the saturation region is equal to the
inverse of R,, in deep triode region.

The reader can prove that g, can also be expressed as

W
8m = 211'nCux'Z'1D (2.13)

2Ip
L _ (2.19)
Ves = Vru

Plotted in Fig. 2.18, each of the above expressions proves useful in studying the behavior
of g, as afuniction of one parameter while other parameters remain constant. For example,
(2.17) suggests that g,, increases with the overdrive if W/L is constant whereas (2.19) im-
plies that g,, decreases with the overdrive if /p is constant. The concept of transconductance
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9m 9m

o

Vas—Vm Ip Vas—VH
W/L Constant W/L Constant /p Constant
Figure 2.18 MOS transconductance as a function of overdrive and drain current.

can also be applied to a device operating in the triode region, as illustrated in the following
example.

Example 2.2

For the arrangement shown in Fig. 2.19, plot the transconductance as a function of Vps.

o
|

Vo—-Vin Vos

Figure 2.19

Solution

It is simpler to study g,, as Vps decreases from infinity. So long as Vps = Vp — Vry, M) isin
saturation, [p is relatively constant, and, from (2.18), s0 is g. For Vps < Vi — V7, My isin the
triode region and:

a (1 W )
gm = Vs {Eun Coxr [2(VGS - Vry)Vps — VDS]} _ (2.20)
%% .
== iy Cox I Vps. . 2.2

Thus, as plotted in Fig. 2.19, the transconductance drops if the device enters the triode region. For
_amplification, therefore, we usually employ MOSFETS in saturation.

The distinction between saturation and triode regions can be confusing, especially for
PMOS devices. Intuitively, we note that the channel is pinched off if the difference between
the gate and drain voltages is not sufficient to create an inversion layer. As depicted concep-
tually in Fig. 2.20, as Vg ~ Vp of an NFET drops below Vr g, pinch-off occurs. Similarly,
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Saturation Edge of Triode Region Saturation - Edge of Triode Region
+ -+ I_‘:THN .
—E > I—lt} —F = rﬂ:{ o> l{
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- - | Vrne|

(a) (b)

Figure 2.20 Conceptual visualization of saturation and triode regions.

if Vp — V¢ of a PFET is not large enough (< |Vryp|), the device is saturated. Note that
this view does not require knowledge of the source voltage. This means we must know a
priori which terminal operates as the drain.

2.3 Second-Order Effects

Our analysis of the MOS structure has thus far entailed various simplifying assumptions,
some of which are not valid in many analog circuits. In this section, we describe three

" second-order effects that are essential in our subsequent circuit analyses. Other phenomena
that appear in submicron devices are studied in Chapter 16.

Body Effect In the analysis of Fig. 2.10, we tacitly assumed that the bulk and the source
of the transistor were tied to ground. What happens if the bulk voltage of an NFET drops
below the source voltage (Fig. 2.21)? Since the S and D junctions remain reverse-biased,
we surmise that the device continues to operate properly but certain characteristics may

p—-substrate - T Vp<0

Figure 2.21 NMOS device with negative bulk voltage.

change. To understand the effect, suppose Vs = Vp = 0, and Vg is somewhat less than
Vru so that a depletion region is formed under the gate but no inversion layer exists. As
Va becomes more negative, more holes are attracted to the substrate connection, leaving a
larger negative charge behind, i.e., as depicted in Fig. 2.22, the depletion region becomes
wider. Now recall from Eq. (2.1) that the threshold voltage is a function of the total charge
in the depletion region because the gate charge must mirror- Q4 before an inversion layer is
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VB< 0
[} ]

Q,
p-substrate Q, p-substrate M

Figure 2.22 Variation of depletion region charge with bulk voltage.

formed. Thus, as Vg drops and @, increases, Vyy aiso increases. Thxs is called the “body
effect” or the “backgate effect.”
It can be proved that with body effect:

Vin =Vrno+v (VZOF + Vel - VBOH), - @22

where Vrpo is given by (2.1), ¥y = /2q€5; Nsyp/ C,,,; denotes the body effect coefficient,
and Vg is the source-bulk potential difference [1]. The value of y typically lies in the range
of 0.3 to 0.4 VI/2,

. Example 2.3

In Fig. 2.23(a), plot the draih current if Vx varies from —o0 to 0. Assume Vygo = 0.6 V,y = 0.4
V12 and2dr =0.7 V.

(@)  ®
Figure 2.23

Solution
If Vy is sufficiently negative, the threshold voltage of M) exceeds 1.2 V and the device is off. That is,

1.2V =0.6 +0.4 (,/0.7 — V1 — J0.7) , (2.23)
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and hence Vy; = —4.76 V. For Vx| < Vy < 0, Ip increases according to

Ip= %unCoxK [VGS —Vroo—vy (\/24?1? -Vx - \/2¢p)]2- (2.24)°

L
Fig. 2.23(b) shows the resulting behavior,

For body effect to manifest itself, the bulk potential, V;,5, need not change: if the source
voltage varies with respect to V,,s, the same phenomenon occurs. For example, consider
the circuit in Fig. 2.24(a), first ignoring body effect. We note that as Vin varies, V,,, closely
follows the input because the drain current remains equal to I;. In fact, we can write

1

- .
I = E“ncoxf(vi — Vour — Vru)?, (2.25)

concluding that V;, — V,,, is constant if 1 is constant [Fig. 2.24(b)].

Yin Vin

Vou Vout | Vdut

-
-y

)] (©

Figure 2.24 (a) A circuit in which the source-bulk voltage varies with input level, (b) i.nput
and output voltages with no body effect, (c) input and output voltages with body effect.

Now suppose the substrate is tied to ground and body effect is significant. Then, as V;,
and hence V,,,; become more positive, the potential difference between the source and the
bulk increases, raising the value of Vrg. Eq. (2.25) therefore implies that Vi, — V,,, must
increase 5o as to maintain Ip constant [Fig. 2.24(c)).

Body effect is usually undesirable. The change in the threshold voltage, e.g., as in
Fig. 2.24(a), often complicates the design of analog (and even digital) circuits. Device
technologists balance Ny,;, and C,, to obtain a reasonable value for y.

Channel-Length Modulation In the analysis of channe! pinch-off in Section 2.2, we
noted that the actual length of the inverted channel gradually decreases as the potential
difference between the gate and the drain increases. In other words, in (2.13), L' isin fact a
function of Vps. This effect is called “channel-length modulation.” Writing L' = L — AL,
ie, I/L' ~ (1 + AL/L)/L, and assuming a first-order relationship between AL/L and
Vpssuchas AL/L = AVpg, we have, in saturation,

1 w
Ip % 5nCox 1~ (Vas — Vru)*(1 + AVps), (2.26)
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Figure 2.25 Finite saturation region
slope resulting from channel-length
Vos  modulation. )

where A is the channel-length modulation coefficient. Illustrated in Fig. 2.25, this phe-
nomenon results in a nonzero slope in the Ip/Vps characteristic and hence a nonideal
current source between D and S in saturation. The parameter A represents the relative
variation in length for a given increment in Vpg. Thus, for longer channels, A is smaller.

With channel-length modulation, some of the expressions derived for g, must be mod-
ified. Equations (2.17) and (2.18) are respectively rewritten as

w
8m = wnCox T(VGS - Ve)(1 + AVps)- . (227)
[20,CorW/L)ID
= IR LA 2.28)
= T4 "Vos , ( 28)

while Eq. (2.19) remains unchanged.

Example 2.4

Keeping all other parameters constant, plot / p/ Vs characteristic of a MOSFET for L = L1 and
L=2Ly.
Solution
Writing

1 w
Ip = 5nCos 7 (Vos = Vra)*(1 +AVps) 229

and A ox 1/L, we note that if the length is doubled, the slope of Ip vs. Vpg is divided by four because
3Ip/dVps x AfL o 1 /L% (Fig. 2.26). For a given gate-source overdrive, a larger L gives a more

Ip A ; L=1L,
___________________ L=2L,
—»  Flgure 2.26 Effect of doubling chan-

Vbs  nellength.

ideal current source while degrading the current capability of the device. Thus, W may need to be
increased proportionally. :
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, The linear approximation AL/L o Vpg becomes less accurate in short-channel transis-

' tors, resulting in a variable slope in the saturated I'p/ Vpg characteristics. We return to this
issue in Chapter 16. .

The dependence of Ip upon Vps in saturation may suggest that the bias current of

a MOSFET can be defined by the proper choice of the drain-source voltage, allowing

freedom in the choice of Vgg — Vry. However, since the dependence on Vpg is much

weaker, the drain-source voltage is not used to set the current. The effect of Vpson Ip is

usually considered an error and it is studied in Chapter 5. :

Subthreshold Conduction In our analysis of the MOSFET, we have assumed that the
device turns off abruptly as Vs drops below Vrg. In reality, for Vg5 &~ Vrg, a “weak”
inversion layer still exists and some current flows from D to S. Even for Vos < Vry,
Ip is finite, but it exhibits an exponential dependence on Vg [2, 3]. Called “subthreshold
‘conduction,” this effect can be formulated for Vpg greater than roughly 200 mV as

Ve
Ip = Lyexp C%’ : : (2.30)

where { > 1 is a nonideality factor and Vr = kT/q. We also say the device operates in
“week inversion.” Except for ¢, (2.30) is similar to the exponential I/ Vag relationship in
a bipolar transistor. The key point here is that as Vg falls below Vg, the drain current
drops at a finite rate. With typical values of ¢, at room temperature Vs must decrease
by approximately 80 mV for Ip to decrease by one decade (Fig. 2.27). For example, if a

: : Square
Law
log/
S'o Exponential /

v

]

3

T + ________

— —— : - Figure 2.27 MOS subthreshold char-
80 mv Vi Vas. acteristics.

threshold of 0.3 V is chosen in a process to allow low-voltage operation, then when Vg is
reduced to zero, the drain current decreases by only a factor of 10*7. Especially problematic
in large circuits such as memories, subthreshold conduction can result in significant power
dissipation (or loss of analog information).

It is appropriate at this point to return to the definition of the threshold voltage. One
definition is to plot the inverse on-resistance of the device R = pCor(W/LY(Vgs — Vrr)
as a function of V5 and extrapolate the result to zero, for which Vgs = Vry. In rough
calculations, we often view V7 as the gate-source voltage yielding Ip/ W = 1pA/um in
saturation. For example, if 4 device with W = 100 um operates with Ip = 100 A, it is in
the vicinity of the subthreshold region. This view is nonetheless vague, especially as device
length scales down in every technology generation.
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We now re-examine Eq. (2.18) for the transconductance of a MOS device operating in
the subthreshold region. Is it possible to achieve an arbitrarily high transconductance by
increasing W while maintaining I constant? Is it possible to obtain a higher transconduc-
tance than that of a bipolar transistor (Ic/ Vr) biased at the same current? Equation (2.18)
was derived from the square-law characteristics Ip = (1/2)pnCox(W/L)(Vgs — Vg,
However, if W increases while I remains constant, then Vgs — Vrp and the device enters
the subthreshold region. As a result, the transconductance is calculated from (2.30) to be
gm = Ip /(£ V1), revealing that MOSFETSs are inferior to bipolar transistors in this respect.

The exponential dependence of Ip upon Vgs in subthreshold operation may suggest
the use of MOS devices in this regime so as to achieve a higher gain. However, since
such conditions are met by only a large device width or low drain current, the speed of
subthreshold circuits is severely limited.

Voltage Limitations MOSFETs experience various breakdown effects if their terminal
voltage differences exceed certain limits. At high gate-source voltages, the gate oxide breaks
down irreversibly, damaging the transistor. In short-channel devices, an excessively large
drain-source voltage widens the depletion region around the drain so much that it touches that
around the source, creating a very large drain current. (This effect is called “punchthrough.”)
Other limitations relate to “hot electron effects” and are described in Chapter 16.

2.4 MOS Device Models

' 2.4.1 MOS Device Layout

For the developments in subsequent sections, it is beneficial to have some understanding of
the layout of a MOSFET. We describe only a simple view here, deferring the fabrication
details and structural subtleties to Chapters 17 and 18.

The layout of a MOSFET is determined by both the electrical properties required of the
device in the circuit and the “design rules” imposed by the technology. For example, W/L
is chosen to set the transconductance or other circuit parameters, while the minimum L is
dictated by the process. In addition to the gate, the source and drain areas must be defined
properly as well.

Shown in Fig. 2.28 are the “bird eye’s view” and the top view of a MOSFET. The gate
polysilicon and the source and drain terminals are typically tied to metal (aluminum) wires
that serve as interconnects with low resistance and capacitance. To accomplish this, one or
more “contact windows” must be opened in each region, filled with metal, and connected
to the upper metal wires. Note that the gate poly extends beyond the channet area by some
amount to ensure reliable definition of the “edge” of the transistor.

The source and drain junctions play an important role in the performance. To minimize
the capacitance of S and D, the total area of each junction must be minimized. We sce from
Fig. 2.28 that one dimension of the junctions is equal to W. The other dimension must
be large enough to accommodate the contact windows and is specified by the technology
design rules.’

TThis dimension is typically three to four times the minimum allowable channel length.
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Figure 2.28 Bird's eye and vertical views of a MOS device.

Example 2.5

Draw the layout of the circuit shown in Fig. 2.29(a).

E F Aluminum
[ Wires
A
A o—] M,
c HMs 8 o
Bo—ifpm, N —
nj;
N F
(a) (b) ©)
Figure 2.29
Soiution

Noting that M} and M, share the same S/D junctions at node C and M, and M3 also do so at node
N, we surmise that the three transistors can be laid out as shown in Fig. 2.29(b). Connecting the
remaining terminals, we obtain the layout in Fig. 2.29(c). Note that the gate polysilicon of M3 cannot
be directly tied to the source material of M}, thus requiring a metal interconnect. :

2.4.2 MOS Device Capacitances

The basic quadratic I/V relationships derived in the previous section along with corrections
for body effect and channel-length modulation provide a reasonable model for understand-
ing the “dc” behavior of CMOS circuits. In many analog circuits, however, the capacitances
associated with the devices must also be taken into account so as to predict the “ac” behavior
as well.
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s Figure 2.30 MOS capacitances.

We expect that a capacitance exists between every two of the four terminals of a MOSFET
(Fig. 2.30).® Moreover, the value of each of these capacitances may depend on the bias con-
ditions of the transistor. Considering the physical structure in Fig. 2.31(a), we identify the
following. (1) Oxide capacitance between the gate and the channel, C; = WLC,,; (2) De-
pletion capacitance between the channel and the substrate, C; = WL./gé;; Nyup/ (3D ),
(3) Capacitance due to the overlap of the gate poly with the source and drain areas, C5 and
C4. Owing to fringing electric field lines, C3 and C, cannot be simply written as WL ,C,,,
and are usually obtained by more elaborate calculations. The overlap capacitance per unit
width is denoted by C,,; (4) Junction capacitance between the source/drain areas and the
substrate. As shown in Fig. 2.31(b), this capacitance is usually decomposed into two compo-
nents: bottom-plate capacitance associated with the bottom of the junction, C 7» and sidewall
capacitance due to the perimeter of the junction, C .. The distinction is necessary because

_ different transistor geometries yield different area and perimeter values for the S/D junctions.
We typically specify C; and Cq,, as capacitance per unit area and unit length, respectively.
Note that each junction capacitance can be expressed as C i = Cio/[1 + Vg/Pg]™, where
Vk is the reverse voltage across the junction, & is the junction built-in potential, and m is
a power typically in the range of 0.3 and 0.4.

8The capacitance between S and D is negligible.

z/g
‘ RS LA ek

Inversion - Depletion

p-substrate Layer Layer

(a) . _ : _ (b

Figure 2.31 (a) MOS device capacitances, (b) decomposition of S/D junction capacitance into bottom-plate and
sidewall components. :
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_Example 2.6

Calculate the source and drain junction capacitances of the two structures shown in Fig. 2.32.

Drain
Terminal
w
2
Source
Terminal
@) (b)
Figure 2.32
Solution
For the transistor in Fig. 2.32(a), we have
Cpp=Csp=WEC; +2(W + E)Cjsu, 2.31)
whereas for that in Fig. 2.32(b),
w W ' .
CDB=7ECj+2(7+E)Cj5% . ’ (2.32)
w w
Csg =2|:?EC]'+2(E‘+E) stw] 2.33)
= WEC; +2(W + 2E)Cjsu. (2.34)

Called a “folded” structure, the geometry in Fig. 2.32(b) exhibits substantially less drain junction
capacitance than that in Fig. 2.32(a) while providing the same W/L.

" In the above calaculations, we have assumed that the total source or drain perimeter, 2(W + E),
is multiplied by C sy, In reality, the capacitance of the sidewall facing the channel may be less than
that of the other three sidewalls because of the channel-stop implant (Chapter 17). Nonetheless, we
typically assume all four sides have the same unit capacitance. The error resulting from this assumption
is negligible because each node in a circuit is connected to a number of other device capacitances as
well, ' o
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Figure 2.33 Variation of gate-source and gate-drain capacitances versus Vgs.

We now derive the capacitances between terminals of a MOSFET in different regions of
operation. If the device is off, Cgp = Cgs = C,, W, and the gate-bulk capacitance consists
of the series combination of the gate oxide capacitance and the depletion region capac-
itance, ie., Cgp = (WLC,)Cyq/(WLC,, + C;), where L is the effective length and
C; = WLW The value of Csg and Cpp is a function of the source and
drain voltages with respect to the substrate.

If the device is in deep triode region, i.e., if S and D have approximately equal volt-
ages, then the gate-channel capacitance, WLC,,, is divided equally between the gate
and source terminals and the gate and drain terminals. This is because a change AV in
the gate voltage draws equal amounts of charge from S and D. Thus, Cgp = Cgs =
WLCo /2 + WC,,.

If in saturation, a MOSFET exhibits a gate-drain capacitance of roughly WC,,. The
potential difference between the gate and the channel varies from Vg at the source to
Vs ~ Vry at the pinch-off point, resulting in a nonuniform vertical electric field in
the gate oxide along the channel. It can be proved that the equivalent capacitance of
this structure excluding the gate-source overlap capacitance equals 2W L Cox/3 [1]. Thus,
Cgs = 2W L,57Cox/3+ WC,y. The behavior of Cgp and Cg ¢ in different regions of opera-
tion is plotted in Fig. 2.33. Note that the above equations do not provide a smooth transition
from one region of operation to another, creating convergence difficulties in simulation
programs. This issue is revisited in Chapter 16.

The gate-bulk capacitance is usually neglected in the triode and saturation regions be-
cause the inversion layer acts as a “shield” between the gate and the bulk. In other words,
if the gate voltage varies, the charge is supplied by the source and the drain rather than the
bulk.

Example 2.7

Sketch the capacitances of M in Fig. 2.34 as Vy varies from zero to 3 V. Assume Vry = 0.6 V and
A=y =0,
To avoid canfusion, we label the three terminals as shown in Fig. 2.34. For Vx = 0, M; is in the

triode region, CEN A CEF = (1/2)WLCM + WCyy, and Crp is maximum. The value of Cy g is
independent of Vy. As V"~ excpeds 1V, the role of the source and drain is exchanged [Fig. 2.35(a)],
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5 Figure 2.34

% WLCox+WCov
W_______L2CO)( + WCov!
WCov
®) (c)
Figure 2.35

eventually bringing M) out of the triode region for Vx > 2V — 0.6 V. The variation of the capacitances
is plotted in Figs. 2.35(b) and (c).

2.4.3 MOS Small-Signal Model

The quadratic characteristics described by (2.8) and (2.9) along with the voltage-dependent
capacitances derived above form the large-signal model of MOSFETs. Such a model proves
essential in analyzing circuits in which the signal significantly disturbs the bias points,
particularly if nonlinear effects are of concern. By contrast, if the perturbation in bias
conditions is small, a small-signal model, i.e., an approximation of the large-signal model
around the operating point, can be employed to simplify the calculations. Since in many
analog circuits, MOSFETs are biased in the saturation region, we derive the corresponding
small-signal model here. For transistors operating as switches, a linear resistor given by
(2.11) together with device capacitances serves as a-rough small-signal equivalent.

We derive the small-signal model by preducing a small increment in a bias point and
calculating the resulting increment in other bias parameters. Since the drain current is a

- function of the gate-source voltage, we incorporate a voltage-dependent current source

equal to g,, Vs [Fig. 2.36(a)]. Note that the low-frequency impedance between G and S is
very high. This is the small-signal model of an ideal MOSFET.

Owing to channel-length modulation, the drain current also varies with the drain-source
voltage. This effect can also be modeled by a voltage-dependent current source [Fig.2.36(b)],
but a current source whose value linearly depends on the voltage across it is equivalent to
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'Figure 2.36 (a) Basic MOS small-signal model, (b) channel-length modulation represented by a
dependent current source, (¢) channel-length modulation represented by a resistor, (d) body effect
represented by a dependent cutrent source. ‘

& linear resistor (Fig. 2.36(c)]. Tied betwsen D and S, the resistor is given by

3Vps
rp = BID (235)
, i ‘
=— 2.36
01p/dVps : 236)
1
=3 W (2.37)
- — — 2 .
2ﬂncox 2 (Vgs — Vru) -4
1 ‘
N o—, (2.38)

As seen throughout this book, the output resistance, ro, impacts the performance of many
analog circuits. For example, ro limits the maximum voltage gain of most amplifiers.

Now recall that the bulk potential influences the threshold voltage and hence the gate-
source overdrive. As demonstrated in Example 2.3, with all other terminals held at a constant
voltage, the drain current is a function of the bulk voltage. That is, the bulk behaves as a
second gate.-Modeling this dependence by a current source connected between D and S
[Fig. 2.36(d)], we write the value as gms Vis, Where gmp = 31p/3Vps. In the saturation
_ region, g,,» can be expressed as: _

dalp
Vas

Emb = (2.39)



Sec. 2.4 MOS Device Models ' 35

w aVry\
= ppCor — (Vs — V. — i }
HnCox (Vas TH)( 3VBs) (2.40)
We also have
V. v
- (2.41)
= mg(zcbp + Veg) 172, (2.42)
Thus,
b = Gm e (2.43)
" "2 /20, F Vs ’
= N8m)» (2.44)

where = g5/ 8m. As expected, g,,; is proportional to ¥. Equation (2.43) also suggests
that incremental body effect becomes less pronounced as Vg increases. Note that £ Vs
and g Vgs have the same polarity, i.e., raising the gate voltage has the same effect as
raising the bulk potential.

The model in Fig. 2.36(d) is adequate for most low-frequency small-gignal analyses. In
reality, each terminal of a MOSFET exhibits a finite ohmic resistahce resulting from the resis-
tivity of the miaterial (and the contacts), but proper layout can minimize such registances. Fot
example, consider the two structures of Fig. 2.32, repeated in Fig. 2.37 along with the gate
distributed resistance. We note that folding reduces the gate resistance by a factor of four.

-Figure 2.37 Reduction of gate resis-
(a) : (b) tance by folding. ~

Shown in Fig. 2.38, the complete small-signal model includes the device capacitances
as well. The value of each capacitance is calculated according to the equations derived
in Section 2.4.2. The reader may wonder how a complex circuit is analyzed intuitively if
each transistor must be replaced by the model of Fig. 2.38. The first step is to determine
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Figure 2.38 Complete MOS small-signal model.

"1

the simplest device model that can represent the role of each transistor with reasonable
accuracy. We provide some guidelines for this task at the end of Chapter 3.

Example 2.8

Sketch g,y and g,,p of M) in Fig. 2.39 as a function of the bias current I;.

(b)

Figure 2.39

Solution

Since gm = +/212nCox(W/L)Ip, we have g,, o +/T|. The dependence of gmp upon I is less.
straightforward. As I increases, Vy decreases and so does Vgp.

Unless otherwise stated, in this book we assume the bulk of all NFETS is tied to the most
negative supply (usually the ground) and that of PFETS to the most positive supply (usually
Voop).

2.4.4 MOS SPICE models

In order to represent the behavior of transistors in circuit simulations, SPICE requires
an accurate model for each device. Over the last two decades, MOS modeling has made
tremendous progress, reaching quite sophisticated levels so as to represent high-order effects

" in 'short-channel devices.



Sec. 2.4 MOS Device Models _ 37

Table 2.1 Level 1 SPICE Models for NMOS and PMOS Devices.

. NMOS Model
LEVEL =1 VTO =0.7 GAMMA = 0.45 PHi = 0.9
NSUB =9e+14 LD =0.08e-6 UO =350 LAMBDA = 0.1
TCX = 9e—-9 PB =0.9 CJ =0.56e-3 CJSW = 0.35e—11
MJ = 0.45 MJSW =0.2 CGDO =0.40-9 JS=1.0e-8

PMOS Model '

LEVEL = 1 VIO =-08 GAMMA = 0.4 PHI = 0.8
NSUB = 5e+14 LD =0.0%e-6. UQO =100 LAMBDA = 0.2
TOX = 9e—9 PB =029 CJ =0.94e-3 CJSW = 0.32e—11

MJ =05 MJSW =0.3 CGDO =0.3e-9 JS=05e-8

In this section, we describe the simplest MOS SPICE model, known as “Level 1,” and
provide typical values for each parameter in the model corresponding to a 0.5-um tech-
nology. Chapter 16 describes more accurate SPICE models. Table 2.1 shows the model
parameters for NMOS and PMOS devices. The parameters are defined as below:

VTO: threshold voltage with zero Vg (unit: V)

GAMMA: body effect coefficient (unit: V'/2)

PHE: 2@ £ (unit: V) _

TOX: gate oxide thickness (unit: m)

NSUB: substrate doping (unit: cm—3)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm?/V/s)

LAMBDA: channel-length modulation coefficient (unit: v

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m?)
CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)
PB: source/drain junction built-in potential (unit: V)

MI: exponent in CJ equation (unitless)

MISW: exponent in CISW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m?)

2.4.5 NMOS versus PMOS Devices

In most CMOS technologies, PMOS devices are quite inferior to NMOS transistors. For
example, due to the lower mobility of holes, u,Cox A~ 0.2514,Cox in modern processes,
yielding low current drive and transconductance. Moreover, for given dimensions and bias
currents, NMOS transistors exhibit a higher output resistance, providing more ideal current
sources and higher gain in amplifiers. For these reasons, it is preferred to incorporate NFET's
rather than PFETs wherever possible. : :



Chap.2  Basic MOS Device Physics

2.4.6 Lon§~Channe! versus Short-Channel Devices

In this chapter, we have employed a very simple view of MOSFETs so as to understand
the basic principles’ of their operation. Most of our treatment is valid for “long-channel”
devices, e.g., transistors having a minimum length of about 4 .um. Many of the relationships
derived here must be reexamined and revised for short-channel MOSFETs. Furthermore,
the SPICE models necessary for simulation of today’s devices need to be much more sophis-
ticated than the Level 1 model. For example, the intrinsic gain, g,.r ¢, calculated from the
device parameters in Table 2.1 is quite higher than actual values. These issues are studied
in Chapter 16.

The reader may wonder why we begin with a simplistic view of devices if such a view
does not lead to a high accuracy in predicting the performance of circuits. The key point is
that the simple model provides a great deal of intuition that is necessary in analog design. As
we will see throughout this book, we often encounter a trade-off between intuition and rigor,
and our approach is to establish the intuition first and gradually complete our understanding
so as to achieve rigor as well.

Appendix A: Behavior of MOS Device as a Capai:itor

In this chapter, we have limited our treatment of MOS devices to a basic level. However, the
behavior of a MOSFET as a capacitor merits some attention. Recall that if the source, drain,
and bulk of an NFET are grounded and the gate voltage rises, an inversion layer begins to
form for Vg5 & Vyy. We also noted that for 0 < Vgs < Vry, the device operates in the

subthreshold region.
Now consider the NFET of Fig. 2.40. The transistor can be considered a two-terminal

fot‘—' Vg<0

- VG

.

Figure 2.40 NMOS operating in ac-

p-substrate Holes .
cumulation mode.

device and hence its capacitance can be examined for different gate voltages. Let us be-
gin with a very negative gate-source voltage. The negative potential on the gate attracts
the holes in the substrate to the oxide interface. We say the MOSFET operates in the
“accumulation” region. The two-terminal device can be viewed as a capacitor having a
unit-area capacitance of C,, because the two “plates” of the capacitor are separated by
Lox-

As Vs rises, the density of holes at the interface falls, a depletion region begins to form
under the oxide, and the device enters weak inversion. In this mode, the capacitance consists
of the series combination of C,, and Caep- Finally, as Vs exceeds Vyg, the oxide-silicon
interface sustains a channel and the unit-area capacitance returns to C,,,. Figure 2.41 plots
the behavior. .
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Accumulation Strong Inversion

(') Viy 'Zs Figure  2.41 ‘ Capacitance':-voltage
characteristic of an NMOS device.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3V where necessary.

2.1, For W/L = 50/0.5, plot the drain current of an NFET and a PFET as a function of {Vgs| as
|Vgs| varies from 0 to 3 V. Assume |Vpg| =3 V.

2.2. For W/L = 50/0.5,and |Ip| = 0.5 mA, calculate the transconductance and output impedance
of both NMOS and PMOS devices. Also, find the “intrinsic gain,” defined as gimro.

2.3. Derive expressions for g,r¢ in terms of Ip and W/L. Plot gmro as a function of Ip with L
as a parameter. Note that A o< 1/L.

2.4. Plot Ip versus Vggs for an MOS transistor (a) witﬁVDs as a parameter, (b) with Vps as a
parameter. Identify the break points in the characteristics.

2.5. Sketch Ix and the transconductance of the transistor as a function of Vy for each circuit in
Fig. 2.42 as Vx varies from 0 to Vpp. For part (a), assume Vy varies from0to 1.5V,

Figure 2.42
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Figure 2.43

2.6. Sketch Ix and the transconductance of the transistor as a function of Vy for each circuit in
Fig. 2.43 as Vy varies from O to Vpp.

2.7. Sketch V,y, as a function of V;, for each circuit in Fig. 2.44 as V;, varies from O to Vpp.
2.8. Sketch V,y, as a function of V;, for each circuit in Fig. 2.45 as V;,, varies from 0 to Vop.

2.9. Sketch Vy and Iy as a function of time for each circuit in Fig. 2.46. The initial voltage of C;
isequalto 3 V.

2.10. Sketch Vx and Ix as a function of time for each circuit in Fig. 2.47. The initial voltages of C
and C; are equal to 1 V and 3 V, respectively.

2.11. Sketch Vy as a function of time for each circuitin Fig. 2.48. The ipitial voltage of each capacitor
is shown.

2.12, Sketch Vy as a function of time for each circuit in Fig. 2.49. The initial voltage of each capacitor
is shown. -

2.13. The transit frequency, fr, of a MOSFET is defined as the frequency at which the small-signal
current gain of the device drops to unity while the source and drain terminals are held at ac
ground.

(a) Prove that

8m

—_— (2.45)
2a(Cgp + Cgs)

fr=

Note that fr does not include the effect of the S/D junction capacitance.

t
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Figure 2.44

Vout

(a) (b) (©
Figure 2.45

(b) Suppose the gate resistance, Rg, is significant and the device is modeled as a distributed
set of n transistors each with a gate resistance equal to Rg/n. Prove that the f7 of the
device is independent of R¢ and still equal to the value given above.

(c) For a given bias current, the minimum allowable drain-source voltage for operation in
saturation can be reduced only by increasing the width and hence the capacitances of the
transistor. Using square-law characteristics, prove that

P«n Vs — Vru

=— . 2.46
fr="—"12 (2.46)
This relation indicates how the speed is limited as a device is designed to operate with
lower supply voltages. ‘
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Figure 2.47

2.14. Calculate the fr of a MOS device in the subthreshold region and compare the result with those
obtained in Problem 2.13.

2.15. For a saturated NMOS device having W = 50 yum and L = 0.5 pm, calculate all of the
capacitances. Assume the minimum (lateral) dimension of the S/D areas is 1.5 pm and the
device is folded as shown in Fig. 2.32(b). What is the fr if the drain current is 1 mA?

2.16. Consider the structure shown in Fig. 2.50. Determine /p as a function of Vgs and Vpg and
prove that the structure can be viewed as a single transistor having an aspect ratio W/(2L).
Assume A =y =0.

2.17. Foran NMOS device operating in saturation, plot W/L versus Vgs — VT w if () I p is constant,
(b) g, is constant.
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Vas
- - Figure 2.50

2.18. Explain why the structures shown in Fig. 2.51 cannot operate as current sources even though
the transistors are in saturation.

@) () Figure 2.51

2,19, Considering the body effect as “‘backgate effect,” explain intuitively why y is directly propor-
tional to /N;up and inversely proportional to-C,,.

2.20. A “ring” MOS structure is shown in Fig. 2.52. Explain how the device operates and estimate
its equivalent aspect ratio. Compare the drain junction capacitance of this structure with that
of the devices shown in Fig. 2.32.

Gate

s

Figure 2.52

2.21. Suppose we have received an NMOS transistor in a package with four unmarked pins. Describe
the minimum number of dc measurement steps using an chmuneter necessary to determine the
gate, source/drain, and bulk terminals of the device.

2.22. Repeat Problem 2.21 if the type of the device (NFET or PFET) is not known.
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2.23. For an NMOS transistor, the threshold voltage is known but u,,C,,» and W/L are not. Assume  °
A = y = 0. If we cannot measure C,y independently, is it possible to devise a sequence of
dc measurement tests to determine ., C,, and W/L? What if we have two transistors and we -—
know one has twice the aspect ratio of the other?

2.24. Sketch Iy versus Vy for each of the composite structures shown in Fig, 2.53 with V; as a
parameter. Also, sketch the equivalent transconductance. Assume A = y=0.

] SIS

®)

Figure 2.53

225, An NMOS current source with I'p = 0.5 mA must operate with drain-source voltages as low as
,0.4 V. If the minimum required output impedance is 20 kS2, determine the width and length of

the device. Calculate the gate-source, gate-drain, and drain-substrate capacitance if the device
is folded as in Fig. 2.32 and E = 3 um.

2.26. Consider the circuit shown in Fig. 2.54, where the initial voltage at node X is equal to Vpp.

Assuming A = y = 0 and neglecting other capacitances, plot Vx and Vy versus time if (a)

Vin is a positive step with amplitude Vp > Vrg, (b) Vi, is a negative step with amplitude
Vo = Vrg.

Figure2.54

2.27. An NMOS device operating in the subthreshold region has a ¢ of 1.5. What variation in Vgs
results.in a ten-fold change..jq Ip?M Ip = 10 A, what is g, ? '

2.28. Consider an NMOS device with Vg = 1.5 Vand V5 = 0. Explain what happens if we
contimually decrease Vp, below zero or increase Vsup above zero.
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Chapter 3

Single-Stage Amplifiers

Amplification is an essential function in most analog (and many digital) circuits. We amplify
an analog or digital signal because it may be too small to drive a load, overcome the noise
of a subsequent stage, or provide logical levels to a digital circuit. Amplification also plays
a critical role in feedback systems (Chapter 8).

In this chapter, we study the low-frequency behavior of single-stage CMOS amplifiers.
Analyzing both the large-signal and the small-signal characteristics of each circuit, we
develop intuitive techniques and models that prove useful in understanding more complex
systems. An important part of a designer’s job is to use proper approximations sc as to
create a simple mental picture of a complicated circuit. The intuition thus gained makes
it possible to formulate the behavior of most circuits by inspection rather than by lengthy
calculations. : ‘,v‘

Following a brief review of basic concepts, we describe in this chapter four types of :
amplifiers: common-source and common-gate topologies, source followers, and cascode
configurations. In each case, we begin with a simple model and gradually add second-order
phenomena such as channel-length modulation and body effect.

3.1 Basic Concepts

/
The igput-output characteristic of an amplifier. is generally a nonlinear function (Fig./f3.1)
that can-be approximated by a polynomial over some signal range: /

YO~ g+ onx(t) +apx () + - + 2, x"(1) xS x < xa 3.1

The input and output may be current or voltage quantities. For a sufficieatly narrow range
of x,

() = o + o1x(?), - (3.2)

where o can be considered the operating (bias) point and o, the small-signal gain. So
long as ) x(1), « o, the bias point is disturbed negligibly, (3.2) provides a reasonable

47
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» Figure3.1 Input-outputcharacteristic
X4 Xy X of a nonlinear system.

approximation, and higher order terms are insignificant. In other words, Ay = a;Ax,
indicating a linear relationship between the increments at the input and output. As x(z)
increases in magnitude, higher order terms manifest themselves, leading to nonlinearity
and necessitating large-signal analysis. From another point of view, if the slope of the
characteristic (the incremental gain) varies with the signal level, then the system is nonlinear.
These concepts are described in detail in Chapter 13.

What aspects of the performance of an amplifier are important? In addition to gain and
speed, such parameters as power dissipation, supply voltage, linearity, noise, or maximum
voltage swings may be important. Furthermore, the input and output impedances determine
how the circuit interacts with preceding and subsequent stages. In practice, most of these
parameters trade with each other, making the design a multi-dimensional optimization
problem. Illustrated in the “analog design octagon” of Fig. 3.2, such trade-offs present many
challenges in the design of high-performance amplifiers, requiring intuition and experience
to arrive at an acceptable compromise.

Noise -+———Linearity

) e
N .
" . . .
. - i
0 . SN
. - r
e , A
e 5
N , "
- " , .
4
. J
+
*, »
. 5

Power .
Dissipation Gain
Input/Output ,_--':':::.,.‘-"‘ ‘ % Supply
Impedance Voltage

Speed Voltage
Swings Figure 3.2 Analog design octagon.

3.2 Common-Source Stage

3.2.1 Common-Source Stage with Resistive Load

By virtue of its transconductance, a MOSFET converts variations in its gate-source voltage
to a small-signal drain current, which can pass through a resistor to generate an output
voltage. Shown in Fig. 3.3(a), the common-source (CS) stage performs such an operation.
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Figure 3.3 (a) Common-scurce stage, (b) input-output characteristic, (c) equivalent
circuit in deep triode region, (d) small-signal model for the saturation region.
A

We study both the large-signal and the small-signal behavior of the circuit. Note that the
input impedance of the circuit is very high at low frequencies,

If the input voltage increases from zero, M, is off and Vour = Vpp [Fig. 3.3(b)]. As V,,
approaches Vry, M, begins to turn on, drawing current from Rp and lowering V,,,,. If Vpp
is not excessively low, M, turns on in saturation, and we have

1 W
Vour = Vpp — Rp E;uncox "E(Vm - VTH)Z’ (3.3)

where channel-length modulation is neglected. With further increase in V;,,, V,,,, drops more
and the transistor continues to operate in saturation until V;, exceeds Vour by Vry [point A
in Fig. 3.3(b)]. At this point, :

' 1 114
Vil = Vra = Vpp = Ro5 pnCox - (Vim = VraY, | (3.4)

from which V;,,, = V¢ and hence V,,, can be calculated,

For Vip > Vi1, M) is in the triode region:

1 w '
Vour = Vpp — Rp3#nCor - [2(Vin = Vra)Vour — V2,]. (3.5
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If Vi, is high enough to drive M) into deep triode region, Vur < 2(Vin — Vra), and, from
the equivalent circuit of Fig. 3.3(c),

\ Ron
Vour = Vop———— 3.6
out DD Ron + RD ( )

= Vb 3.7

W .

Since the transconductance drops in the triode region, we usually ensure that Vo, >
Vi, — Vry, operating to the left of point A in Fig. 3.3(b). Using (3.3) as the input-output
characteristic and viewing its slope as the small-signal gain, we have:

A _ avout (3 8)
P Vi '
w
= —RDPLMCUXI'(VM - VTH) (39)
= —gmRp. (3.10)

This result can be directly derived from the observation that M, converts an input volt-
age change AVj, to a drain current change gp A Vin, and hence an output voltage change
— g Rp AVip. The small-signal model of Fig. 3.3(d) yields the same result.

Even though derived for small-signal operation, the equation A, = —g=Rp predicts
certain effects if the circuit senses a large signal swing. Since gy, itself varies with the
input signal according to gm = Mn C,.(W/L)XVgs — Vru), the gain of the circuit changes
substantially if the signal is large. In other words, if the gain of the circuit varies significantly
with the signal swing, then the circuit operates in the large-signal mode. The dependence
of the gain upon the signal level leads to nonlinearity (Chapter 13), usually an undesirable
effect.

A key result here is that to minimize the nonlinearity, the gain equation must be a weak
function of signal-dependent parameters such as g,,. We present several examples of this
concept in this chapter and in Chapter 13.

Example 3.1

_ Sketch the drain current and transconductance of M) in Fig. 3.3(a) as a function of the input voltage.

Solution

The drain current becomes significant for Vi, > Vrg, eventually approaching Vpp/Rp if Ron1 €
Rp [Fig. 3.4(a)]. Since in saturation, gm = tn Cox(W/LXVin — Vry), the transconductance begins
to rise for Vin > Vrg. In the triode region, gm = 1nCox(W/L)Vpg, falling as Vi, exceeds Vin
[Fig. 3.4(b)]. )

How do we maximize the voltage gain of a common-source stage? Writing (3.10) as

WV,
Ay = = 20nCor—Ip—2, (3.11)
| L Ip



Sec. 3.2

Common-Source Stage 51

VTH VZ‘ ' VTH V|n1 vin,
(a) b
Figure 3.4

where Vgzp denotes the voltage drop across Rp, we have

W VRD

Thus, the magnitude of A, can be increased by increasing W/L or Vgp or decreasing I if
other parameters are constant. It is important to understand the trade-offs resulting from this
equation. A larger device size leads to greater device capacitances, and a higher Vi, limits
the maximum voltage swings. For example; if Vpp — Vgp = Vi, —~ Vry, then M, is at the
edge of the triode region, allowing only very small swings at the output (and input). If Vzp
remains constant and /p is reduced, then Rp must increase, thereby leading to a greater
time constant at the output node. In other words, as noted in the analog design octagon,
the circuit exhibits trade-offs between gain, bandwidth, and voltage swings. Lower supply
voltages further tighten these trade-offs.

For large values of R p, the effect of channel length modulation in M| becomes significant.
Modifying (3.4) to include this effect,

A, 2u,,c,,x (3.12)

1 ;
Vour = VoD = Rp i Cor: (vm — Ver)2 (L + AVour), (3.13)

we have

av, w W
- our —RDMnCox_(vf” — Vel + AV,y)
Vin .
1

' BVu
=R i Cox (V.,.-vm)2x e

WVin

(3.14)

Usiﬁg the approximation Ip = (1/2)punCor (W/L)Vin — Vry)?, we obtain:

Ay = —Rpgm — RpiprA, (3.15)
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and hence
ngD
Ay = ———M——. 3.1
\ ? 1+ Rpilp (3.16)
Since Alp = 1/rp,
roRp
Ay = —gp——. A(3.17
8m ro + Rp ( )

The small-signal model of Fig. 3.5 gives the same result with much less effort. That is, since

T 1 +— Vour
. + .
Vv vy ImV1 R
In é_ J m o D Figure 3.5 Small-signal model of CS
H - L stage including the transistor output re-

sistance,

gmVirollRp) = —Vour and Vi = Vi, we have Vour/Vin = ~gm(rollRp). Note that, as
mentioned in Chapter 1, V;,, V1, and V,,, in this figure denote small-signal quantities.

Example 3.2

Assuming M in Fig. 3.6 is biased in saturation, calculate the small-signal voltage gain of the circuit. -

5 ' Figure 3.6

Solution
Since 1; introduces an infinite impedance, the gain is limited by the output resistance of M:

Ay = —gmro- . (3.18)

Called the “intrinsic gain” of a transistor, this quantity represents the maximum voltage gain that can
be achieved using a single device. In today’s CMOS technology, gmro of short-channel devices is
between roughly 10 and 30. Thus, we usually assume 1/gn < ro.

In Fig. 3.6, Kirchhoff’s current law (KCL) requires that Ipy = 1. Then, how can V;, change the
current of M, if I is constant? Writing the total drain current of M; as

o _
4 Ip1 = 5pnCox(Vin = Vru)*(l + AVou) ©(3.19)

= I, (3.20)
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we note that V;, appears in the square term and V), in the linear term. As V;, increases, V,,; must
decrease such that the product remains constant. We may nevertheless say “/p| increases as Vi,
increases.” This statement simply refers to the quadratic part of the equation.

3.2.2 CS Stage with Diode-Connected Load

In many CMOS technologies, it is difficult to fabricate resistors with tightly-controlled
values or a reasonable physical size (Chapter 17). Consequently, it is desirable to replace
Rp in Fig. 3.3(a) with a MOS transistor.

A MOSFET can operate as a small-signal resistor if its gate and drain are shorted
[Fig. 3.7(a)]. Called a “diode-connected” device in analogy with its bipolar counterpart,

. | ‘IX
+ i .
V1 ?gm‘ﬁ EE"O Vx

(a) b

Figure 3.7 (a) Diode-connected NMOS and PMOS devices, (b) small-
signal equivalent circuit.

this configuration exhibits a small-signal behavior similar to a two-terminal resistor. Note
that the transistor is always in saturation because the drain and the gate have the same
potential. Using the small-signal equivalent shown in Fig. 3.7(b) to obtain the impedance
of the device, we write V; = Vy and Ix = Vx/ro + g Vx. That is, the impedance of the
diode is simply equal to (1/gm)llro = 1/g.. If body effect exists, we can use the circuit in
Fig. 3.8 to write V| = —Vy, V,,, = —Vyx and

Voo — 1
......... i V_1 A égm‘ﬁ EEro égmbvbs

th

(a) {b)

Figure 3.8 (a) Arrangement for measuring the equivalent resistance of a diode-
connected MOSFET, (b) small-signal equivalent circuit.

Vv
(8m + gmp)Vx + r—" = Iy. (3.21)
[4]
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It follows that

LS (3.22)
Ix  gm+8ms+rg
1
= |r 3.23)
8m + Emb o
1

N (3.24)
8m + Emb

Interestingly, the impedance seen at the source of M, is lower when body effect is included.
Intuitive explanation of this effect is left as an exercise for the reader.

We now study a common-source stage with a diode-connected load (Fig. 3.9). For negli-
gible channel-length modulation, (3.24) can be substituted in (3.10) for the load impedance,

Voo
M,
VOU‘
Vino—| M,
Figure 3.9 CS stage with diode-
= connected load.
yielding
: | .
Ay = —gp|———— (3.25
gm2 rt Emb2
1
—Em 1 (3.26)
gm2 1 + n

where 7 = g,p2/8m>. Expressing g,,; and g, in terms of device dimensions and bias
currents, we have

_ N2 Cox(W/LyIp; 1
T 2 Co(W/L I 141

T VWL l+g '

This equation reveals an interesting property: if the variation of n with the output voltage
is neglected, the gain is independent of the bias currents and voltages (so long as M| stays
in saturation). In other words, as the input and output signal levels vary, the gain remains
relatively constant, indicating that the input-output characteristic is relatively linear.

(3.27)

and, since Ip; = Ip,,
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The linear behavior of the circuit can also be confirmed by large-signal analysis. Ne-
glecting channel-length modulation for simplicity, we have in Fig. 3.9

1 w 1 w
"'bu'ncax (f) (Vm - VTHI)2 = 'iu'nca ('"l":) (VDD - Vout - VTHQ)Zr (329)
1 2

2
w w
(z‘) Vir — Vryy) = (f) (Vop — Vour — VrH2). (3.30)
Y ! Y 2

Thus, if the variation of Vyg; with V,,, is small, the circuit exhibits a linear input-output
characteristic. The small-signal gain can also be computed by differentiating both sides

with respect to Vi,:
w w aV,. aV;
/ —) = /(=) [~ ”""*), (3.31)
VAT, “Y\T/, T~ o

which, upon application of the chain rule 8 Vru2/dVin = (3Vry2/0Vou X0 Vour /0Vin) =

n(8 Vour /0 Vi), reduces to
oV,, W/L 1
ow _ _ [(W/L) ‘ 3.32)
Vi {(W/Lp1+n

It is instructive to study the overall large-signal characteristic of the circuit as well. But
let us first consider the circuit shown in Fig. 3.10(a). What is the final value of V,,,,; if I; drops
to zero? As I, decreases, so does the overdrive of M>. Thus, for small I}, Vgs: = Vrpa
and V,,, = Vpp — Vrpyo. In reality, the subthreshold conduction in M, eventually brings
Vour to Vpp if Ip approaches zero, but at very low current levels, the finite capacitance at
the output node slows down the change from Vpp — Vryz to Vpp. This is ilustrated in
the time-domain waveforms of Fig. 3.10(b). For this reason, in circuits that have frequent
switching activity, we assume V,,; remains around Vpp — Vryy when [ falls to small
values.

Now we return to the circuit of Fig. 3.9. Plotted in Fig. 3.11 versus Vj,, the output voltage
equals Vpp — Vryy if Vi < Vryy. For Vi, > Vrgy, Eq. (3.30) holds and V,,, follows an
approximately straight line. As V;, exceeds V,,; + Vr g (beyond point A), M) enters the
triode region, and the characteristic becomes nonlinear.

The diode-connected load of Fig. 3.9 can be implemented with a PMOS device as well.
Shown in Fig. 3.12, the circuit is free from body effect, providing a small-signal voltage

gain equal to
A, =— Hn(W/L) 3 ‘33)
’ ILP(W/L)Z ' ’ '

where channel-length modulation is neglected.

and hence
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1k

, j T
(@ (b)

Figure 3.10 (a) Diode-connected device with stepped bias current,
(b) variation of source voltage versus time.

VOI.I!

Voo - V2

Figure 3.11 Input-output characteris-

V. tic of a CS stage with diode-connected
in load.
Voo
lg”’ ’
1+ Vout

Figure 3.12 CS stage with diode-
connected PMOS device,

Equations (3.28) and (3.33) indicate that the gain of a common-source stage with diode-
connected load is a relatively weak function of the device dimensions. For example, to
achieve a gain of 10, u,(W/L)/[p(W/L);] = 100, implying that, with u, ~ 2 p, We
must have (W/L}), = 50(W/L),.In a sense, a high gain requires a “strong” input device and
a “weak” load device. In addition to disproportionately wide or long transistors (and hence
a large input or load capacitance), a high gain translates to another important limitation:
reduction in allowable voltage swings. Specifically, since in Fig. 3.12, I'n; = /2|,

w %
Hn (f) (Vos1 — Vrm)* &~ p, (f) (Vasz — Vraa), (3.34)
! . 2 )
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revealing that

I\Ves2 ~ Vrual

Ay, (3.35)
Vst — Vran '

In the above example, the overdrive voltage of M, must be 10 times that of M. For
example, with VGSI - VTHI = 200 Il’lV, and |VTH2| = 0.7 V, we have |V652| =27 V,
severely limiting the output swing. This is another example of the trade-offs suggested by
the analog design octagon. Note that, with diode-connected loads, the swing is constrained
by both the required overdrive voltage and the threshold voltage. That is, even with a small
overdrive, the output level cannot exceed Vpp — [Vrgl.

An interesting paradox arises here if we write g, = pCo(W/L)|Vgs ~ Vry|. The
voltage gain of the circuit is then given by

A, =& (3.36)
&m2

_ nCox(W/ L) (V51 — Vra1)
UpCox(W/LN|VGsz2 — Vrmal

(3.37)

Equation (3.37) implies that A, is inversely proportional to {Vgsz — Vra|. It is left for the
reader to resolve the seemingly opposite trends suggested by (3.35) and (3.37).

Example 3.3

In the circuit of Fig. 3.13, M) is biased in saturation with a drain current equal to ;. The current
source [g = 0.751 is added to the circuit. How is (3.35) modified for this case?

Solution
Since |Ipy| = I, /4, we have

_gnt

A, & (3.38)
8m?2
AW/ L)y
== [— 3.39
V W/ -39
Vop
B
= Vout

= Figure3.13
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Moreover,

W ) . w
Mn (f) (Vas1 — Vrm ) = dpp (f) (Vos2 — Vraal, (3.40)
1 2

yielding

IVes2 — Vrual _ Av

. (341
Vaos1 — Vruy 4

Thus, for a gain of 10, the overdrive of M2 need be only 2.5 times that of M. Alternatively, for a given
overdrive voltage, this circuit achieves a gain four times that of the stage in Fig. 3.12. Intuitively, this
is because for a given |Vgso — Vrgal, if the current decreases by a factor of 4, then (W /L), must
decrease proportionally, and gma = /21 pCox(W/L)2{p2 is lowered by the same factor.

We should also mention that in today’s CMOS technology, channel-length modulation
is quite significant and, more importantly, the behavior of transistors notably departs from
the square law (Chapter 16). Thus, the gain of the stage in Fig. 3.9 must be expressed as

m2

1 ‘ .
Ay = —gm (g—ilrt)ll["oz) - ‘ (3.42)
where g, and g,» must be obtained as described in Chapter 16.

3.2.3 CS Stage with Current-Source Load

In applications requiring a large voltage gain in a single stage, therelationship A, = —g Rp
suggests that we increase the load impedance of the CS stage. With a resistor or diode-
connected load, however, increasing the load resistance limits the output voltage swing.

A more practical approach is to replace the load with a current source. Described briefly
in Example 3.2, the resulting circuit is shown in Fig. 3.14, where both transistors operate in
saturation. Since the total impedance seen at the output node is equal to rg: |7 o2, the gain is

Voo
Vb O—I lh’2
Vout
Vin O—l M1
Figure 3.14 CS stage with current-
= source load.
Ay = —gm(rorllroz). (3.43)

The key point here is that the output impedance and the minimum required |[Vps| of
M, are less strongly coupled than the value and voltage drop of a resistor. The voltage
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|VDs2.minl = {Vgs2 — Vraal can be reduced to even a few hundred millivolts by simply
increasing the width of M,. If ro3 is not sufficiently high, the length and width of M, can be
increased to achieve a smaller A while maintaining the same overdrive voltage. The penalty
is the large capacttance introduced by M, at the output node.

We should remark that the output bias voltage of the circuit in Fig. 3.14 is not well-
defined. Thus, the stage is reliably biased only if a feedback loop forces V,,, to a known
value (Chapter 8). The large-signal analysis of the circuit is left as an exercise for the reader.

As explained in Chapter 2, the output impedance of MOSFETs at a given drain current
can be scaled by changing the channel length, i.e., to the first order, A o< 1/L and hence
ro o L/Ip. Since the gain of the stage shown in Fig. 3.14 is proportional to ro; [lrg2, we
may surmise that longer transistors yield a higher voltage gain.

Let us consider M, and ‘M, separately. If L, is scaled by a factor o (> 1), then W; may
need to be scaled proportionally as well. This is because, for a given drain current, Vgg) —
Vi o 1//(W/L), i.e., if W) is not scaled, the overdrive voltage increases, limiting the
output voltage swing, Also, since g1 & +/{W/L)1, scaling up only L; lowers gu;.

In applications where these issues are unimportant, W, can remain constant while L
increases. Thus, the intrinsic gain of the transistor can be written as

w 1
m = (2| — Coclp—, 3.44
Em17 o1 J (L)lﬂn ox D)»ID ( )

indicating that the gain increases with L because A depends more strongly on L than g,
does. Also, note that g,,ro decreases as I'p increases.

Increasing L, while keeping W; constant increases rp; and hence the voltage gain, but
at the cost of higher | Vps2| required to maintain M, in saturation.

3.2.4 CS Stage with Triode Load

A MOS device operating in deep triode region behaves as a resistor and can therefore serve
as the load in a CS stage: Tllustrated in Fig. 3.15, such a circuit biases the gate of M; at
a sufficiently low level, ensuring the load is in deep triode region for all output voltage
swings.

Voo Voo

5 = Figure3.15 CSstage with triode load.
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Since
1
1pCox(W/L)2(Vpp — Vi — |Vrapl)’

Ropz = (3.45)

the voltage gain can be readily calculated.

The principal drawback of this circuit stems from the dependence of R,z upon p »Coxs Vb,
and Vyg4p. Since y »Cox and Vryp vary with process and temperature and since generating
a precise value for Vj requires additional complexity, this circuit is difficult to use. Friode
loads, however, consume less voltage headroom then do diode-connected devices because
in Fig. 3.15 Vo4, max = Vpp whereas in Fig. 3.12, Vp max = Vpp ~ |[Vrypl.

3.2.5 CS Stage with Source Degeneration

In some applications, the square-law dependence of the drain current upon the overdrive
voltage introduces excessive nonlinearity, making it desirable to “soften” the device charac-
teristic. In Section 3.2.2, we noted the linear behavior of a CS stage using a diode-connected
load. Alternatively, as depicted in Fig. 3.16, this can be accomplished by placing a “degen-
eration” resistor in series with the source terminal. Here, as V;, increases, so do Ip and the

'/
DD Io
Rp + "
+
M, Vout Vin ) V_1 ImV1
Vln O-—-I * i D H
R
Rg s
(a) ()

Figure 3.16 CS stage with source degeneration.

voltage drop across Ry. That s, a fraction of V;, appears across the resistor rather than as the
gate-source overdrive, thus leading to a smoother vartation of /pp. From another perspective,
we intend to make the gain equation a weaker function of g,,. Since V,,, = —IpRp, the
nenlinearity of the circuit arises from the nonlinear dependence of Ip upon V;,. We note that
8Vou /8Vin = ~(3Ip/3V;;)Rp, and define the equivalent transconductance of the circuit
as Gy, = 01p/0V;,. Now, assuming Ip = f(Vgs), we write :

_alp

T AV,
_Of 0Vgs
 0Vgs Vi,

(3.46)

Gn

(3.47)
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Since Vgs = Vi, — IpRs, we have aVgs/oVy, =1 — Rsolp/aVy,, obtaining

alp\ af
Gun=|[1-R . 3.4
( . S3Vrn)3VGs (3.48)
But, 3f/3 Vs is the transconductance of M, and '
8m
Gy = ———, 3.49
14+ gnRs ( )
The smali-signal voltage gain is thus equal to
Ay =—-GuRp 3.50)
—gmRp .
=— 3.51
[+ gnRs G0

The same result can be derived using the small-signal model of Fig. 3.16(b). Equation
(3.49) implies that as Ry increases, G,, becomes a weaker function of &m and hence the
drain current. In fact, for Rs > 1/g,, we have G,, ~ 1/Rg, ie., Alp = AVi,/Rs,
indicating that most of the change in V;, appears across Rs. We say the drain current is a
“linearized” function of the input voltage. The lmeanzatlon is obtained at the cost of lower
gain [and higher noise (Chapter 7)].

Iout
+ "
+
Vin Vi (5 91 2, é Imb Vs
- X J
R
s Figure 3.17 Small-signal equivalent
H circuit of a degenerated CS stage.

“For our subsequent calculations, it is useful to determine G, in the presence of body effect
and channel-length modulation. With the aid of the equivalent circuit shown in Fig. 3.17,
we recognize that the current through Rs equals I, and, therefore, Vi, = V, + fout Rs.
Summing the currents at node X, we have

Iaut RS

fowi = 8mV1 ~ gmpVy — —— : (3.52)
ro
outRS
= gn(Vin = o Rs) + gmb(—lou Rs) — P (3.53)
It follows that
Iou!

Gm= .54
m Vo, (3.54)

Emt 0o

#

. 3.55
Rs + 11+ (gm + 8na)Rslro (3.53).
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Let us now examine the large-signal behavior of the CS stage with Rs = 0 and Ry #
0. For Rs = 0, our derivations in Chapter 2 indicate that Ip and g,, vary as shown in
Fig. 3.18(a). For Rs # 0, the turn-on behavior is similar to that in Fig. 3.18(a) because,

I Im G,
LIS FEUOU
Rs
- T 7! 7 -
Vi Vin VH Vin Viu Vin
(@ (b)

Figure 3.18 Drain current and transconductance of a CS device (a) without and (b) with source
degeneration.

at low current levels, 1/g,, >» Ry and hence G,, =~ g, [Fig. 3.18(b)]. As the overdrive
and therefore g,, increase, the effec;' of degeneration, 1 + g, Rs in (3.49), becomes more
significant. For large values of Vi, (if M is still saturated), Ip is approximately linear and
G,, approaches 1/Rs.

‘Example 3.4
Plot the small-signal voltage gain of the circuit in Fig. 3.16 as a function of the input bias voltage.

Solution

Using the results derived above for the equivalent transconductance of M; and Rg, we arrive at
the plot shown in Fig. 3.19. For V;, slightly greater than Vrg, 1/g, 3> Rgand Ay, = —gnRp.

a4
Ap
R_s .........................
Im RD
Vin Vin Figure3.19
As V;, increases, degeneration becomes more significant and A, = —gmRp/(1 + gmRy). For

large values of Vi, Gy = 1/Rs and A, = —Rp/Rs. However, if Vi, > Vour + Vrg, that is, if
Rpip > Vry + Vpp ~ Vip, M) enters the triode region and A, drops.

Equation (3.51) can be rewritten as

o (3.56)
— + R

8m
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This result allows formulating the gain by inspection. First, let us examine the denominator
of (3.56). The expression is equal to the series combination of the inverse transconduc-
tance of the device and the explicit resistance seen from the source to ground. We call the
denominator “the resistance seen in the source path” because if, as shown in Fig. 3.20,
we disconnect the- bottom terminal of Rs from ground and calculate the resistance seen
“looking up™ (while setting the input to zero), we obtain Rg + 1/g,,.

Vin °""I

a1
Im
Rg

Rs+g1——T Figure 3.20 Resistance seen in the
. m source path.

Noting that the numerator of (3.56) is the resistance seen at the drain, we view the
magnitude of the gain as the resistance seen at the drain node divided by the total resistance
“in the source path. This method greatly simplifies the analysis of more complex circuits.

Example 3.5

Assuming A = y = 0, calculate the small-signal gain of the circuit shown in Fig. 3.21(a).

Figure 3.21

Solution

Noting that M; is a diode-connected device and simplifying the circuit to that shown in Fig. 3.21(b),

we use the above rule to write
’

Ap=—— D : (3.57)
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Another important consequence of source degeneration is the increase in the output
resistance of the stage. We calculate the output resistance first with the aid of the equivalent
circuit shown in Fig. 3.22. Note that body effect is also included to arrive at a general result.

Ix
uf * -t
+ ) N
v ¢9m"1 Zrg Gbgmbvm %Vx

Figure3.22 Equivalentcircuitfor cal-

R
s culating the output resistance of a degen-
= erated CS stage.
Since the current through R is equal to Iy, Vi = —Ix Ry and the current flowing through

ro is givenby Iy —(gm + &ms) V1 = Ix + (8m + &ms)Rs1x . Adding the voltage drops across
ro and Rg, we obtain i

rollx + (gm + gmb)RSIX] + Ix Rg = Vx. (358) .
It follows that
Rowr =1 +(gm + gmb)Rslro + Rs (3.59)

= {14 (gn + gmp)rolRs +ro. (3.60)
Since typically (gm + gms)ro > 1, we have

Rour = (gm + gmp)roRs + 1o (3.61)
= [1 4 (gn + &mp)Rslro, (3.62)

indicating that the output resistance has increased by a factor 1 + (g, + gmp)Rs. This is an
important and useful result.

To gain more insight, let us consider the circuit of Fig. 3.22 with Rg = O and Rs > 0.1f
Rs =0,then g Vi = gmp Vs = 0and Iy = Vx/rp. On the other hand, if Rg > 0, we have

~ IxRs > Oand V; < 0, obtaining negative g, V1 and gmp Vis. Thus, the current supplied by

Vx is less than Vy /ro.
The relationships in (3.60) and (3.62) can also be derived by inspection. As shown in

~ Fig. 3.23(a), we apply a voltage to the output node, change its value by AV, and measure

the resulting change, A1, in the output current. Since the current through R must change
by Al, we first compute the voltage change across Rs. To this end, we draw the circuit
as shown in Fig. 3.23(b) and note that the resistance seen looking into the source of M, is
equal to 1/(gm + gms) [Eq. (3.24)], thus arriving at the equivalent circuit in Fig. 3.23(c).
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(a) ‘ (b) ©

Figure 3.23 (a) Change in drain current in response to change in applied voltage to drain,
(b) equivalent of (a), (c) small-signal model.

The voltage change across R is therefore equal to

1
—+—I| Rs
, AVgs = AV g’i‘ Emb . (3.63)
—||Rs +r
Em + Bmb s °
The change in the current is
AV '
Al = =K8 (3.64)
Rg
= AV ! ‘ (3.65)
(1 + (8m + gmp)Rslro + Rs’ '
that is,
AT = [L+(gm + gmo)Rslro + Rs. (3.66)

With the foregomg developments, we can now compute the gainofa degenerated CS stage
in the general case, taking into account both body effect and channel-length modulation. In
the equ1valent circuit depicted in Fig. 3.24, the current through Rg must equal that through
Rp,ie., —Vou/Rp. Thus, the source voltage with respect to ground (and the bulk) is equal
[ VOM,RS/RD and hence V, = V;, + V,,, Rs/Rp. The current through ro can therefore
be written as

\%
Iro = — L (gm vl + 8mb Vb.\') (367)
Rp
v, Rg Rs :
= _"R_:' - [ (Vm + Vour RD) + 8mb Vouf RD] (368)
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Py Y O

+ out
i) (&mw eI é} ImoVes ZRp

Figure 3.24 Small-signal model of degenerated CS stage with
finite output resistance. ’

Since the voltage drop across ro and Rs must add up to V,,, we have

|7
Vout = IrarO — = RS (369)
D
= — I;I“; ro — [gm (Vm + Vnut}—;') +gmeautEZ'] ro — VgugR—z‘. (370)
Tt follows that
. Vaut _ _gmroRD (3.71)

; Vie Rp+Rs+ro+(gm+ 8mp)Rsro

To gain more insight into this result, we recognize that the last three terms in the denom-
inator, namely, Rs +ro +(gm + gms) Rs7 0, represent the output resistance of a MOS device
degenerated by a resistor Ry, as originally derived in (3.60). Let us now rewrite (3.71) as

A = —8m’oRplRs +ro + (gm + gmp)Rs7o0] 1 (3.72)
v Rp+ Rs+ro + (gn + 8mp)Rsro Rs+ro +(gn + gmp)Rsro ' ‘
_ gmlo Rp[Rs +ro + (gm + gmb)Rsro] 3.73)

" Rs 70+ (&m + 8mp)Rsto Rp+ Rs+70 + (8m + 2ms)Rsr0

The two fractions in (3.73) represent two important parameters of the circuit: the first is
identical to that in (3.55), i.e., the equivalent transconductance of a degenerated MOSFET;
and the second denotes the parallel combination of Rp and Rs + ro + (8m + &ms)Rsro,
i.e., the overall output resistance of the circuit. ‘

The above discussion suggests that in some circuits it may be easier to calculate the
voltage gain by exploiting the following lemma.

Lemma. In a linear circuit, the voltage gain is equal to —G, Ry, where G, denotes the
transconductance' of the circuit when the output is shorted to ground and R,,, represents
the output resistance of the circuit when the input voltage is set to zero [Fig. 3.25(a)].

The lemma can be proved with the aid of Fig. 3.25 by noting that the output port of a
linear circuit can be modeled by a Norton equivalent. That is, the output voltage is equal
to —Ious Rour», and I, can be obtained by measuring the short-circuit current at the output.
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AdA

Vin Tout TR,y [ W . = Rout Aoyt

Figure 3.25 Modeling output port of an amplifier by a Norton equivalent. -

Defining G, = L/ Vin, we have V,,, = —G,, Vi, Ry This lemma proves useful if G,
and R, can be determined by inspection.

Example 3.6

Calculate the voltage gain of the circuit shown in Fig. 3.26. Assume Iy is ideal.

o= Figure 3.26

Solution

The transconductance and output resistance of the stage are given by Egs. (3.55) and (3.60), respec-
tively. Thus,

. Emro
Rs +[1 + (gm + gmp)Rs)ro
—gmro- (3.75)

Ay = {1 + (gm + gme)rolRs + ro} (3.74)

Interestingly, the voltage gain is equal to the intrinsic gain of the transistor and independent of Rs.
This is because, if Iy is ideal, the current through R cannot change and hence the small-signal voltage
drop across Rgs is zero—as if R were zero itself.

3.3 Source Follower

Our analysis of the common-source stage indicates that, to achieve a high voltage gain with
limited supply voltage, the load impedance must be as large as possible. If such a stage is
to drive a low-impedance load, then a “buffer” must be placed after the amplifier so as to
drive the load with negligible loss of the signal level. The source follower (also called the
“common-drain” stage) can operate as a voltage buffer.

IHustrated in Fig. 3.27(a), the source follower senses the signal at the gate and drives
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Vout

Vn Vin

(a) (b)

Figure 3.27 (a) Source follower, and {(b) its input-output charac-
teristic.

the load at the source, allowing the source potential to “follow” the gate voltage. Beginning
with the large-signal behavior, we note that for V;, < Vry, M) isoff and V,,, = 0. As Vi,
exceeds Vry, M) turns on in saturation (for typical values of Vpp) and Ip,; flows through
Rgs [Fig. 3.27(b)]. As V;, increases further, V,,, follows the input with 2 difference (level
shift) equal to Vi;5. We can express the input-output characteristic as:

1 W -

Eﬂncnx Z(Vm - Vry — Vau!)2RS = Vour. (3.76)
Let us calculate the small-signal gain of the circuit by differentiating both sides of (3.76)
with respect to V;,:

1 W aVT.'{ avnut aVaut
—~ iy Cox —2(Vip — Vryg =V, 1-— — —— | Rs = ——. 3.77
- Zun ox L ( TH our)( an an an ( )
Since 3VTH/8V,-,. = TIaVout/aVim
w
avnuz ILnCox i‘(vm - VTH - Vom‘)RS
= . (3.78)
14+ 1y Cox—(Vin — Vo — Vou)Rs(1 + 1)
L
Also, note that
w
&m = tnCox— (Vm = Vra — Vour). (3.79)
Consequently,
R o
A, = gm s : (3.80)

1+ (gm + gmb)RS

The same result is more easily obtained with the aid of a small-signal equivalent circuit.
From Fig. 3.28, we have V;, — Vi = V1, Vioy = —Vour, and g Vi — gmb Vour = Vour/Rs.
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I
+
Vi (Y Vi <£;QMV1 ;i;gnjbvbs

) +—o Vout
=R
I S Figure 3.28 Small-signal equivalent
- circuit of source follower.
A,
LI ] 1
141
Vin Vm Figure 3.28 Voltage gain of source

fotlower versus input voltage.

Thus, Vout/Vin = gmRs/[1 + (gm + gmp)Rs].

Sketched in Fig. 3.29 vs. Vj,, the voltage gain begins from zero for V;, &~ Vry (that is,
&m =~ 0) and monotonically increases. As the drain current and g,, increase, A, approaches
&m/(&m + &mp) = 1/(1 +n). Since n itself slowly decreases with V,,,,, A, would eventually
become equal to unity, but for typical allowable source-bulk voltages, # remains greater
than roughly 0.2.

Animportant result of (3.80) is that even if Rs = oo, the voltage gain of a source follower
is not equal to one. We return to this point later. Note that M, in Fig. 3.27 does not enter
the triode region if V;, remains below Vpp.

In the source follower of Fig. 3.27, the drain current of M| heavily depends on the input.
dc level. For example, if V;, changes from 1.5 V to 2 V, Ip may increase by a factor of 2 and
hence Vg — Vpy by V2, 2, thereby introducing substantial nonlmeanty in the input-output
characteristic. To alleviate this issue, the resistor can be replaced by a current source as
shown in Fig. 3.30(a). The current source itself is implemented as an NMOS transistor
operating in the saturation region [Fig. 3.30(b)].

(a) (b)

Figure 3.30 Source follower usmg an NMOS transistor
as current source.
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Example 3.7

Suppose in the source follower of Fig. 3.30(a), (W/L); = 20/0.5, 1 = 200 uA, Vrpo = 0.6 V,
208 =07V, pnCox = 50 uA/VZ, and y = 0.4 V2.

(a) Calculate V,,,, for Vi, = 1.2 V.

(b) If I; is implemented as M- in Fig. 3.30(b), find the minimum value of (W /L), for which M
remains saturated.

Solution

(a) Since the threshold voltage of M| depends oh Vour, we perform a simple iteration. Noting
that ’

2]
(Vin = Vrn = Vout = ——7re (3.81)
Coo | —
MnCox ( 2 )1
we first assume Vryg = 0.6V, obtaining V,,; = 0.153 V. Now we calculate a new Vry as
Vru = Vrao + y(2®F + Vsg — V20F) (3.82)

= 0635 V. ) (3.83)

This indicates that V,,, is approximately 35 mV less than that calculated above, i.e., Vo ~0.119 V.

(b) Since the drain-source voltage of My is equal to 0.119 V, the device is saturated only if
(Vs — Vra)2 < 0.119 V. With Ip = 200 A, this gives (W/L), > 283/0.5. Note the substantial
drain junction and overlap capacitance contributed by M> to the output node.

" To gain a better understanding of source followers, let us calculate the small-signal
output resistance of the circuit in Fig. 3.31(a). Using the equivalent circuit of Fig. 3.31(b)
and noting that V; = —Vx, we write

Iy — gmVx — gmpVx = 0. (3.84)
V,
VDD lll i Y 4=" ac M1 pp
ac v V. v .
w5 m, | i X égm 1§ Gmb Vs i—
Ix
| Ix
‘ +
Aout Vx ¥ . Vx )
(a) (b) ()

Figure 3.31 Calculation of the output impedance of a source follower.
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It follows that

1

Rowr = ————.
o 8&m + Emb

(3.85)

Interestingly, body effect decreases the output resistance of source followers. To understand
why, suppose in Fig. 3.31(c), Vx decreases by AV so that the drain current increases. With
no body effect, only the gate-source voltage of M| would increase by AV. With body
effect, on the other hand, the threshold voltage of the device decreases as well. Thus, in
(Vgs — Vrp)? the first term increases and the second decreases, resulting in a greater change
in the drain current and hence a lower output impedance.

The above phenomenon can also be studied with the aid of the small-signal model shown
in Fig. 3.32(a). It is important to note that the magnitude of the current source gmp Vs 1s

l||—--—+ 1]
Vi ImVq
Iy 3
+ 9mb
Vx

(a)

Figure 3.32 Source follower including body effect.

.linearly proportional to the voltage across it. Such behavior is that of a simple resistor equal
'to 1/gms, yielding the small-signal model shown in Fig. 3.32(b). The equivalent resistor

simply appears in parallel with the output, thereby lowering the overall output resistance.
The reader can show that, without 1/g,, the output resistance equals 1/g,,, concluding
that '

1 1
Rowr = —|l— (3.86)
. 8m 8mb /j
1
- (3.87)
8m + Bmb

Modeling the effect of g, by a resistor—which is only valid for source followers—also
helps explain therless—than-unity voltage gain implied by (3.80) for Rg = c0. As shown in



72 Chap. 3 Single-Stage Amplifiers

L
In =

Figure 3.33 Representation of intrinsic source followe\rk\ihevenin equivalent.

the Thevenin equivalent of Fig. 3.33,

1
A, = 1_gmb_1” (3.88)
&n  Emb
=8 (3.89)
8m + 8mb

For completeness, we also study the source follower of Fig. 3.34(a) with finite channel-
length modulation in M, and M. From the equivalent circuit in Fig. 3.34(b), we have

1
—lroillrszllRL
Ay = —Emb . (3.90)

1 1
—|lroillre2llRL + —
8mb m

' Voo : L . ¢ i
v v, vy
Vino—{ M, A R ’ * $—o

9m
= t out
Vout ]
—_— T r R
Ve | My R, O 01 02 L
(a) - (b)

Figure 3.34 (a) Source follower driving load resistance, (b) small-signal equivalent
circuit. ‘
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Example 3.8

Calculate the voltage gain of the circuit shown in Fig. 3.35.

Figure 3.35

Solution
The impedance seen looking into the source of M> is equal to [1/(gm2 + gmp2)]liro2. Thus,

1
n lro2liroill—
AQ - 8m?2 T Emb2 Embl ) (3.91)

1
—————Trozllro1ll— + —
8m2 + 8mb2 8mbl  8mi

Source followers exhibit a high input impedance and a moderate output impedance, but
at the cost of two drawbacks: nonlinearity and voltage headroom limitation. We consider
these issues in detail.

As mentioned in relation to Fig. 3.27(a), even if a source follower is biased by an
ideal current source, its input-output characteristic displays some nonlinearity due to the
nonlinear dependence of Vry upon the source potential. In submicron technologies, rg of
the transistor also changes substantially with Vpg, thus introducing additional variation in
the small-signal gain of the circuit (Chapter 16). For this reason, typical source followers
suffer from several percent of nonlinearity.

The nonlinearity due to body effect can be eliminated if the bulk is tied to the source. This
is usually possible only for PFETs because all NFETs share the same substrate. Fig. 3.36
shows a PMOS source follower employing two separate n-wells so as to eliminate the body
effect of M,. The lower mobility of PFETs, however, yields a higher output impedance in
this case than that available in an NMOS counterpart.

Source followers also shift the dc level of the signal by Vi, thereby consuming voltage
headroom and limiting the voltage swings. To understand this point, consider the example
illustrated in Fig. 3.37, a cascade of a common-source stage and a source follower. Without
the source follower, the minimum allowable value of Vy would be equal to Vg5 — Vr a1 (for
M, to remain in saturation). With the source follower, on the other hand, Vy must be greater
than Vgsa + (Vg3 — Vras) so that Mj is saturated. For comparable overdrive vbltages in
M, and M3, this means the allowable swing at X is reduced by Vgs2, a substantial amount.

It is also instructive to compare the gain of source followers and common-source stages
when the load impedance is relatively low. A practical example is the need to drive an
external 50-§2 termination in a high-frequency setup. As shown in Fig. 3.38(a), the load can
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n-well
Contacts

Figure 3.37 Cascade of source fol-
lower and CS stage.

be driven by a source follower with an overall voltage gain of

Vour ~ RL
Vin RL + 1/8ml ’

(3.92)

On the other hand, as depicted in Fig. 3.38(b), the load can be included ag part of a common- -

)]

Figure 3.38 (a) Source follower and (b) CS stage driving a
~ load resistance.
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source stage, providing a gain of

VDMf
Vin

les & —gmRe. (3.93)

The key difference between these two topologies is the achievable voltage gain for a given
bias current. For example, if 1/g»1 = Ry, then the source follower exhibits a gain of at
most 0.5 whereas the common-source stage provides a gain close to unity. Thus, source
followers are not necessarily efficient drivers.

The drawbacks of source followers, namely, nonlinearity due to body effect, voltage
headroom consumption due to level shift, and poor driving capability, limit the use of this
topology. Perhaps the most common application of source followers is in performing voltage
level shift.

Example 3.9

(a) In the circuit of Fig. 3.39(a}, calculate the voltage gain if Cy acts as an ac short at the frequency
of interest. What is the maximum dc level of the input signal for which M remains saturated?

Voo Voo
!‘;I.Mz M,
0 Vout Vino—[, M 3 +— Your
Vln o'_l M 1 X M 1
I I

I°

(a) ®
Figure 3.39
{b) To accommeodate an input dc level close to Vp p, the circuit is modified as shown in Fig. 3.39(b).

What relationship among the gate-source voltages of M|-M3 guarantees that M) is saturated?

Solution
(a) The gain is given by

Ay = —gmilroillrozli(1/gm2)). (3.94)
Since Vyuy = Vpp— |VGS-2 |, the maximum allowable dc level of V;, is equalto Vpp —|Vgs2 |+ VTHI-

(b) If Vi, = Vpp. then Vx = Vpp — Vis3. For My to be saturated, Vpp — Vgs3 — Vrm <
Vpp — |Vgs2l and hence Vgss + Vra = [Vesal '
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As explained in Chapter 7, source followers also introduce substantial noise. For this
reason, the circuit of Fig. 3.39(b) is ill-suited to low-noise applications.

3.4 Common-Gate Stage

In common-source amplifiers and source followers, the input signal is applied to the gateofa
MOSFET. It is also possible to apply the signal to the source terminal. Shown in Fig. 3.40(a),
a common-gate (CG) stage senses the input at the source and produces the output at the
drain. The gate is connected to a dc voltage to establish proper operating conditions. Note
that the bias current of M, flows through the input signal source. Alternatively, as depicted

. in Fig. 3.40(b), M\ can be biased by a constant current source, with the signal capacitively
coupled to the circuit.

(a) M)

Figure 3.40 (a) Common-gate stage with direct coupling at
input, (b) CG stage with capacitive coupling at input.

We first 'study the large-signal behavior of the circuit in'Fig. 3.40(a). For simplicity, let
us assume that V;, decreases from a large positive value. For V;, > V, — Vppy, M, is off
and Vour = Vbp. For lower values of V;,,, we can write

. ,

Ip = 3HnCor (Vb — Vin — Vru)?, (3.95)
if M\ is in saturation. As V;, decreases, so does V,,,, eventually driving M; into the triode
region if

1 w '
Voo = 5hnCox (Vo = Vi = Vru)*Rp = Vp — Vra. (3.96)
The input-output characteristic is shown in Fig. 3.41. If M, is saturated, we can express the
output voltage as

1 W
Vour = Voo = 3#nCox 7 (Vs = Vin - Vru)Rp, (3.97)
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Vo—Vry V: Figljré s Commori—éate mput-

output characteristic.
obtaining a small-signal gain of
Vo - W Vry
= —ppCor~—(Vy — V;, — V. —-1-— Rp. 3.98
v, HnCox L( b TH)( a‘_/in ) D ( )

Since 3Vry /0Viy, = 8Vry/0Vsp = n, we have

av, w ) :
2 = pnCox—RpWy — Vig = Veg)(1+ 1) (3.99)
aV; L
=gm(l+n)Rp. S , (3.100)

Note that the gain is positive. Interestingly, body effect increases the equivalent transcon-
ductance of the stage.

The input impedance of the circuit is also important. We note that, for A = 0, the
impedance seen at the source of M in Fig. 3.40(a) is the same as that at the source of
M, in Fig. 3.31, namely, 1/(gm + gms) = 1/[gm(1 + n)]. Thus, the body effect decreases
the input impedance of the common-gate stage. The relatively low input impedance of the
common-gate stage proves useful in some applications.

Example 3.10

InFig. 3.42, transistor M| senses AV and delivers a proportional current to a 50-€2 transmission line.
The other end of the line is terminated by a 50-£2 resistor in Fig. 3.42(a) and a common-gate stage in
Fig. 3.42(b). Assume A = y = 0, .

(2) Calculate Vout / Vi at low frequencies for both arrangerents.

(b) What condition is necessary to minimize wave reflection at node X?

Solution

(a) Fof small signals applied to the gate of M), the drain current experiences a change equal to
&m1AVy. This current is drawn from Rp in Fig. 3.42(a) and M> in'Fig'. 3.42(b), producing an output
voltage swing equal to —g,,; AVy Rp. Thus, A, = —gm Rp for both cases.

(b) To minimize reflection at nodé X, the resistance seen at the source of M> must equal 50 Q
and the reactance must be small. Thus, 1/(gm + gmp) = 50 2, which can be ensured by proper
sizing and biasing of M>. To minimize the capacitances of the transistor, it is desirable to use a small
device biased at a large current. (Recall that g, = V2, Cor (W/L)Ip.) In addition to higher power
dissipation, this remedy also requires a large Vi for M.
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A v:ﬂ_ﬂ <»—I|IJ

(b)

Figure 3.42

The key point in this example is that, while the overall voltage gain in both arrangements equals
—gm1 Rp, the value of Rp in Fig. 3.42(b) can be much greater than 50 £ without introducing
reflections at point X. Thus, the common-gate cnrcust can provide a much hlgher voltage gain than
that in Fig. 3.42(a). . .

Now let us study the common-gate topoldgy in a more general case, taking into ac-
count both the output impedance of the transistor and the impedance of the signal source.
Depicted in Fig. 3.43(a), the circuit can be analyzed with the aid of its equivalent shown

Yy

W * t+— Vour
Vi GJPQnM Zre G:ngbvbs Ry

()

Figure 3.43 (a) CG stage with finite output resistance, (b) srﬁall-sighal equivalent circuit.

. in Fig. 3. 43(b) Noting that the current flowing through Rs is equal to —V,,/Rp, we
have:

Vnul

Vi - R5+V,,,—0 ' " (3.101)
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Moreover, since the current through r is equal to — Vyur /Rp — g1 V1 — gmp V1. We can write

-V Vv,
ro ( gy~ gmbvl) — 2 Rs + Vin = Vou. (3.102)
Rp Rp

Upon substitution for V) from (3.102), (3.101) reduces to

-V R Vour R
ro 122 o 4 g (Vm_s _ V) _ LB v (3.103)
RD RD RD
It follows that
Vour - {8m + gmp)ro + 1

= : : (3.104)
Vie ro+@n+gm)roRs+Rs+Rp °

Note the similarity between (3.104) and (3.71). The gain of the common-gate stage is
slightly higher due to body effect.

Example 3.11

Calculate the voltage gain of the circuit shown in Fig. 3.44(a) if L £ 0and ¥ # 0.

Voo
Rp
Vout
v, o—l M Req
b
2 o1 ‘:;’> v +
+
M, Vin M, Ll ineq )
-+ - - - -
Yin J — = "
T @ (b)
Figure 3.44
Solution

We first find the Thevenin equivalent of M|. As shown in Fig. 3.44(b), M| operates as a source
follower and the equivalent Thevenin voltage is given by

Vin, (3.105)
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and the equivalent Thevenin resistance is '

1 1
Ryg=roif—|—. (3.106)
8mbi | Em1
Redrawing the circuit as in Fig. 3.44(c), we use (3.104) to write
. 1
v, (8m2 + gmb2)ro2 + 1 TN ool
¥ $ic]
‘;ut - 8m2 T mb2) 02 1 Rp l (3.107)
in o
ro2 + [l + (gm2 + gmv2dro2l{ ro1||——|— | +Rp roif|— + —
8mbl || 8mi Embl 8m2

The input and output impedances of the common-gate topology are also of interest. To
obtain the impedance seen at the source [Fig. 3.45(a)], we use the equivalent circuit in

Voo .

Ao — -
' vy é)gmh ZEro égmbvbs Rp
M, — o 1
Voo o Iy =
Ve (Y

_L"Rln =
(2) (b)

Figure 3.45 -(\a) Input resistance of a CG stage, (b) small-signal equivalent circuit.

Fig. 3.45(b). Since V|, = — Vy and the current through ro isequal to Ix + g, V1 + gup V1 =
Ix — (gm + gm»)Vx, we can add up the voltages across rg and Rp as

Rplyx +rollx — (gm + gms)Vx] = Vx. (3.108)
Thus,
Yo o __Rotro (3.109)
Iy 14 (gm + gmslro
Rp 1

o~ + , (3.110)
(&m + 8ms)ro 8m + Emb

if (gm +8mp)ro > 1. This result reveals that the drain impedance is divided by (gm + gms)ro
when seen at the source. This is particularly important in short-channel devices because
of their low intrinsic gain. Two special cases of (3.109) are worth studying. First, suppose
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RD =90. Then,
Vx ro
A (3.111
Ix 1+ (gm+8gmp)ro . )
1
i E— 3.112)
— + 8m -+ Emb ’
ro

which is simply the impedance seen at the source of a source follower, a predictable result
because if Rp = 0, the circuit configuration is the same as in Fig. 3.31(a).

Second, let us replace Rp with an ideal current source. Equation (3.110) predicts that
the input impedance approaches infinity. While somewhat surprising, this result can be
explained with the aid of Fig. 3.46. Since the total current through the transistor is fixed and
equal to /;, a change in the source potential cannot change the device current, and hence
Ix = 0. In other words, the input impedance of a common-gate stage is relatively low only
if the load impedance connected to the drain is smail.

Voo
14
M‘l
Vb._-l fo
Iy
V(Y

- Figure 3.46 Input resistance of a CG
stage with ideal current source load.

Example 3.12

Calculate the voltage gain of a common-gate stage with a current-source load [Fig. 3.47(a)].

Solution
Letting Rp approach infinity in (3.104), we have

Ay = (8m + gmp)ro + 1. (3.113)

Interestingly, the gain does not depend on Rs. From our foregoing discussion, we recognize that if
Rp — o0, so does the impedance seen at the source of M;, and the small-signal voltage at node X
becomes egual to V;,,. We can therefore simplify the circuit as shown in Fig. 3.47(b), readily arriving
at (3.113).

In order to calculate the output impedance of the common-gate stage, we use the circuit
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Figure 3.47

r

in Fig. 3.48. We note that the result is similar to that in Fig. 3.22 and hence

Rour = {[1 + (8n + gms)rolRs + ro}liRp. (3.114)

Figure 3.48 Calculation of output re-
sistance of a CG stage.

Example 3.13

As seen in Example 3.10 the input signal of a common-gate stage may be a current rather than a
voltage. Shown in Fig. 3.49 is such an arrangement. Calculate Voy:/ I;; and the output impedance of
the circuit if the input current source exhibits an output impedance equal to Rp.

Solution

To find Vi, / fin, we replace [;, and Rp with a Thevenin equivalent and use (3.104) to write

' 1
Vour _ (8m + gmb)ro + _RpRp. (3.115)
fin.  ro~+@m+8m)roRp+Rp+Rp
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Figure 3.49

The output impedance is simply equal to

Rour = {[1 + (gm + gmb)rolRp + ro}iiRp. (3116

3.5 Cascode Stage

As mentioned in Example 3.10 the input signal of a common-gate stage may be a current.
We also know that a transistor in a common-source arrangement converts a voltage signal to
a current signal. The cascade of a CS stage and a CG stage is called a “cascode™ topology,
providing many useful properties. Fig. 3.50 shows the basic configuration: M, generates
a small-signal drain current proportional to V;, and M, simply routes the current to Rp.

Figure 3.50 Cascode stage.

We call M, the input device and M, the cascede device. Note that in this example, M, and
M3 carry equal currents. As we describe the attributes of the circuit in this section, many
advantages of the cascode topology over a simple common-source stage become evident.
First, let us study the bias conditions of the cascode. For M, to operate in saturation, -
Vx > Vi, — Vry1. If My and M, are both in saturation, then Vy is determined primarily by

"'The term cascade is believed to be the acronym for “‘cascaded triodes,” possibly invented in vacuum tube
days.
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Vi Vx = V, — Vosz. Thus, Vi — Vgsz = Vin — Vra and hence Vi > Vi + Vos2 — Vi
"(Fig. 3.51). For M; to be saturated, Vour = Vp — Vrya, thatis, Vour > Vig — Vryy + Vesa —

Figure 3.51 Allowable voltages in
cascode stage.

Vria if V, is chosen to place M at the edge of saturation. Consequently, the minimum
output level for which both transistors operate in saturation is equal to the overdrive voltage
of M, plus that of M,. In other words, addition of M, to the circuit reduces the output
voltage swing by at least the overdrive voltage of M,. We also say M, is “stacked” on top '

.of M.

We now analyze the large-signal behavior of the cascode stage shown in Fig. 3.50 as

Vin goes from zero to Vpp. For Vi, < Vrgy, My and M; are off, V,.x = Vpp, and

Vy = V, — Vryo (if subthreshold conduction is neglected) (Fig. 3.52). As Vj, exceeds
Vra1, M) begins to draw current, and V,,, drops. Since I, increases, Vg, must increase

~
AN
.
.

| ‘}TH 1 V> Figure 3.52 Input-output characteris-
" tic of a cascode stage.

as well, causing Vx to fall. As V;, assumes sufficiently large values, two effects occur: (1)
Vy drops below V;, by Vrg1, forcing M, into the triode region; (2) Vp,, drops below V;
by Vrga, driving M, into the triode region. Depending on the device dimensions and the
values of Rp and V}, one effect may occur before the other. For example, if Vj is relatively
low, M; may enter the triode region first. Note that if M, goes into deep triode region, Vx
and V,,, become nearly equal.

" Let us now consider the small-signal characteristics of a cascode stage, assuming both
transistors operate in saturation. If A = 0, the voltage gain is equal to that of a common-
source stage because the drain current produced by the input device must flow through the
cascode device. Illustrated in the equivalent circuit of Fig, 3.53, this result is independent
of the transconductance and body effect of M. vt
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Im1Vs

, *
Vin Vi ImV

Figure 3.53 Small-signal equivalent circuit of cascode
stage.
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Example 3.14

Calculate the voltage gain of the circuit shown in Fig. 3.54 if A = 0.

Figure 3.54

Solution

e

The small-signal drain current of M|, g1 Vin, is divided between R p and the impedance seen looking

into the source of M3, 1/(gm2 + gmsz)- Thus, the current flowing through M, is

(gm2 + gmb2)RpP
14+ (gmo + gmp2)Rp

1p2 = gm1 Vin
The voltage gain is therefore given by

_ &m1{gm2 + gms2)RPRD

A, =
Y 1+ (gm2 + gmb2)Rp

(3.117)

(3.118)

Animportant property of the cascode structure is its high outputimpedance. As illustrated
in Fig. 3.55, for calculation of R,,;, the circuit can be viewed as a common-source stage

with a degeneration resistor equal to ro;. Thus, from (3.60),

Rouwr = {1 + (gm2 + gmp2)ro2lron + roa.

(3.119)
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Figure 3.55 Calculation of output re-
sistance of cascode stage.

-~ | Rout

: Vbz.—l Ms,
Vor [, 1,
Vin o[, 4,

= Figure 3.56 Triple cascode.

Assuming g,.ro 3> 1, we have R,,; = (gm2 + gmp2)ro2ro1. That is, M, boosts the output
impedance of M) by a factor of (gm2 + gmp2)roz. As shown in Fig. 3.56, cascoding can
be extended to three or more stacked devices to achieve a higher output impedance, but
the required additional voltage headroom makes such configurations less attractive. For
example, the minimum output voltage of a triple cascode is equal to the sum of three
overdrive voltages.

To appreciate the usefulness of 2 high output impedance, recall from the lemma in Section
3.2.3 that the voltage gain can be written as G, R;,;. Since G, is typically determined
by the transconductance of a transistor, e.g., M; in Fig. 3.50, and hence bears trade-offs
with the bias current and device capacitances, it is desirable to increase the voltage gain by
maximizing R,,,. Shown in Fig. 3,57 is an example. If both M, and M operate in saturation,

Vop
/4
VOU!
Vin°—| 'M1
Figure 3.57 Cascode stage with
< - current-source load.

then G, = gm1 and Rour = (gm2 + &mp2)Fo2r 01, yielding Ay = (gm2 + gmp2)r028mi 701
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Thus, the maximum voltage gain is roughly equal to the square of the intrinsic gain of the
transistots.

Example 3.15

Calculate the exact voltage gain of the circuit shown in Fig. 3.57.
Solution

The actual G, of the stage is slightly less than g,,; because a fraction of the small-signal current
produced by M is shunted to ground by roj. As depicted in Fig. 3.58:

Voo
I -
[ {] ’ VOIﬂ
M,
Voo foz
fo1
- Im1ro1Vin
()
Figure 3.58
r
Tour = gm1Vin ol (3.120)
ror+ ————|ro2
! 8&m2 + &mb2 °
It follows that the overal] transconductance is equal to

gm1r01[ro2(8mz + gmp2) + 11 G.121)

m = 3 -

ro1702(8m2 + gmp2) +ro1 +roz
and hence the voltage gain is given by

|Aul = GmRou l (3.122)
= gm1ro1l(gm2 + gmp2)roz + 11. (3.123)

If we had assumed G, = g, then |Ay| = gmi{[1 + (gm2 + gmp2)rozlro1 + roz}).
Another approach to calculating the voltage gain is to replace V;, and M| by a Thevenin equivalent,

reducing the circuit to a common-gate stage. Ilustrated in Fig. 3.58(b), this method in conjunction
with (3.104) gives the same result as (3.123).
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Ip
Iy In Vpoo—| VIV

7 w 7 w
o=l 7 o=l 41 Vino s ¥

(@) (b) (©)

Figure 3.59 Increasing output impedance by increasing the device
length or cascoding.

It is also interesting to compare the increase in gain due to cascoding with that due to
increasing the length of the input transistor for a given bias current (Fig. 3.59). Suppose,
for example, that the length of the input transistor of a CS stage is quadrupled while the
width remains constant. Then, since Ip = (1/2)unCox (W/L)Vgs — Vru)?, the overdrive
voltage is doubled, and the transistor consumes the same amount of voltage headroom as
does a cascode stage. That is, the circuits of Figs. 3.59(b) and (c) impose equal voltage
swing constraints. ‘ '

Now consider the output impedance achieved in each case. Since

/ w 1
Emro = zuncozIIDm‘; (3.124)

and A o 1/L, quadrupling L only doubles the value of g,,ro while cascoding results in an
output impedance of roughly (g,,ro)?. Note that the transconductance of M; in Fig. 3.59(b)

.is half that in Fig. 3.59(c), leading to higher noise (Chapter 7).

A cascode structure need not operate as an amplifier. Another popular application of
this topology is in building constant current sources. The high output impedance yields a
current source closer to the ideal, but at the cost of voltage headroom. For example, current
source Iy in Fig. 3.57 can be implemented with a PMOS cascode (Fig. 3.60), exhibiting an
impedance equal to [1 + (g3 + gms3)ro3lros + ros. If the gate bias voltages are chosen

Voo

Veae-H[T M, | Cascode

i i Current

Vo2eH[Z M, Source
Vout

Figure 3.60 NMOS cascode ampli-
< : fier with PMOS cascode load.
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properly, the maximum output swing is equal to Vpp — (Vgs1 — Vra1) — (Vosa — Vraz) —
Vgss — Vrasl — |Vesa — Vrgal.

We calculate the voltage gain with the aid of the lemma illustrated in Fig. 3.25. Writing
Gm = gm and

Rowr = {[1 + (8m2 + gmpdrozlron + ro2dHI1 + (gm3 + gmp3dro3lros +roa},  (3.125)

we have |A,| & gmi R, For typical values, we approximate the voltage gain as

[Aul 2 gml{gmaroar o)l(gmar 037 04)). (3.126)

Shielding Property Recall from Fig. 3.23 that the high output impedance arises from
the fact that if the output node voltage is changed by AV, the resulting change at the source
of the cascode device is much less. In a sense, the cascode transistor “shields” the input
device from voltage variations at the output. The shielding property of cascodes proves
useful in many circuits.

Example 3.16

Two identical NMOS transistors are used as constant current sources in a system [Fig. 3.61(a)].
However, due to interal circuitry of the system, Vx is higher than Vy by AV.

Analog
System

Figure 3.61

(a) Calculate the resulting difference between Ip; and Ip; if A # 0.
(b) Add cascode devices to M and M and repeat part (a).

Solution
(a) We have
1

w .
S#nCor (Vo = Vi) (AVpsi — AVps2) (3.127)

Ipy—Ip2

1 w 2 "
= hnCox Vo = Vrr) (LAV). (3.12%)
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(b) As shown in Fig. 3.61(b), cascoding reduces the effect of Vx and Vy upon Ip; and Ibz,
respectively. As depicted in Fig. 3.23 and implied by Eq. (3.63), a difference AV between Vx and
Vy translates to a difference AVpg between P and @ equal to

o1

AVpp = AV (3.129)
e {1+ (gm3 + gmp3)roslror +ros
AV
R . (3.130)
(8m3 + gmb3)ros
Thus,

1 w ) AAV
Ip1 —Ipy = =12y Cox —{(Vp — V; _— 3.131
D1 D2 zun ox L( b TH) (@m3 + Bmp3)703 ( )

In other words, cascoding reduces the mismatch between Ip1 and Ips by (gm3 + gms3)ros.

The shielding property of cascodes diminishes if the cascode device enters the triode
region. To understand why, let us consider the circuit in Fig. 3.62, assuming Vx decreases
from a large positive value. As Vy falls below Vi — Vr 52, M3 requires a greater gate-source

Figure 3.62 Output swing of cascode
stage.

overdrive so as to sustain the current drawn by M;. We can write

1 w
Ip; = E,U-nCox (f) [2(Vez — Vo — Vrm)(Vx — Vp) — (Vx — Vp)?),  (3.132)
2

concluding that as Vy decreases, Vp also drops so that /p; remains constant. In other words,
variation of Vy is less attenuated as it appears at P. If Vy falls sufficiently, Vp goes below
Vi1 — Vru, driving M, into the triode region.

3.5.1 Folded Cascode

The idea behind the cascode structure is to convert the input voltage to a current and
apply the result to a common-gate stage. However, the input device and the cascode device
need not be of the same type. For example, as depicted in Fig. 3.63(a), a PMOS-NMOS
combination performs the same function. In order to bias M, and M», a current source must
be added as in Fig. 3.63(b). The small-signal operation is as follows. If V;, becomes more
positive, |Ip;| decreases, forcing Ip, to increase and hence V,,, to drop. The voltage gain
and output impedance of the circuit can be obtained as calculated for the NMOS-NMOS
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Voo Voo
=R, =R,

Vinb—lt M1 —oV out V|n O—It M,‘ i—oV out

(@ ®» ©

Figure 3.63 (a) Slrane folded cascode, (b) folded cascode w1th proper biasing, {c) folded cascode
with NMOS input.

cascode of Fig. 3.50. Shown in Fig. 3.63(c) is an NMOS-PMOS cascode. The advantages
and disadvantages of these types will be explained iater.

The structures of Figs. 3.63(b) and (c) are called “folded cascode” stages because the
small-signal current is “folded” up [in Fig. 3.63(b)] or down [in Fig. 3.63(c)]. Note that the
total bias.current in this case must be higher thag that in Fig. 3.50 to achieve comparable
performance.

It is instructive to examine the large-s1gnal behavior of a folded-cascode stage. Suppose
in Fig. 3.63(b), Vi, decreases from Vpp to zero. For Vi, > Vpp ~ |Vryl, M) is off and
M2 carries all of 11,2 yleldmg Vour = VDD - IIRD. For V;,, < VDD - IV;”.“], M, turns on .
in saturation, giving :

1 w
Ipp=1 - Eupcax (—) (Vop ~ Vin — [Vra )% (3.133)

As V;, drops, Ip; decreases further, falling to zero if Ip; = ;. For this to occur:

1 W _
~1,Cor [ =) (Vob = Vit — Ve )? = 1. (3.134)
Thus,
2L
Vimi=Vpp — | ———————— — |V . 3.135
in1 = Vbp o Cor(W/ L, [ Vo ( )

If Vi, falls below this level, Ip; tends to be greater than I and M, enters the trlode regmn
so as to aliow Ip| = I;. The result is plotted in Fig. 3.64. *~ - :

What happens to Vy in the above test? As Ip; drops, Vi rises, reachmg Vb Vrwo for
I D2 = 0. As M, enters the triode reglon, Vx approaches’ VD D-

21f 1y is excessively large, M may enter deep triode region, possibly dri\fing I1 into the triode region as well.
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. i - T
Vit Voo—|Vru| ¥, Vins Voo—|Vrid| V,,

sfsasssssnnasase

Figure 3.64 Larpe-signal characteristics of folded cascode.
)

Example 3.17
Calculate the output impedance of the folded cascode shown in Fig. 3.65 where M3 operates as a
current source.
: v,
DD r Rout
Vlﬂ °_| M 1
‘ M, %
Vos L M,
= Figure 3.65
Solution
- Using (3.60), we have
Rour = [1 + (8m2 + 8mb2)r02)r01lr03) + roa. (3.136)

Thus, the circuit exhibits an output impedance lower than that of a nonfolded cascode.

In order to achieve a high voltage gain, the load of a folded cascode can be implemented
as a cascode itself (Fig. 3.66). This structure is studied more extensively in Chapter 9.

Throughout this chapter, we have attempted to increase the output resistance of voltage
amplifiers so as to obtain a high gain. This may seem to make the speed of the circuit
quite susceptible to the load capacitance. However, as explained in Chapter 8, a high output
impedance per se does not pose a serious issue if the amplifier is placed in a proper feedback
loop. . ‘

3.6 Choice of Device Models

In this chapter, we have developed various expressions for the properties of single-stage
amplifiers. For example, the voltage gain of a degenerated common-source stage can be as
simple as —Rp/(Rs +g,.") or as complex as Eq. (3.71). How does one choose a sufficiently
accurate device model or expression?
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Figure 3.66 Folded cascode with cas-
code load.

The proper choice is not always straightforward and it is a skill gained by practice, ex-
perience, and intuition. However, some general principles in choosing the model for each
transistor can be followed. First, break the circuit down into a number of familiar topolo-
gies. Next, concentrate on each subcircuit and use the simplest transistor model (a single
voltage-dependent current source for FETs operating in saturation) for all transistors. If the
drain of a device is connected to a high impedance (e.g., the drain of another), then add
ro to its model. At this point, the basic properties of most circuits can be determined by
inspection. In a second, more accurate iteration, the body effect of devices whose source or
bulk is not at ac ground can be included as well.

For bias calculations, it is usually adequate to neglect channel-length modulation and
body effect in the first pass. These effects do introduce some error but they can be included
in the next iteration step—after the basic properties are understood.

In today’s analog design, simulation of circuits is essential because the behavior of short-
channel MOSFETs cannot be predicted accurately by hand calculations. Nonetheless, if the
designer avoids a simple and intuitive analysis of the circuit and hence skips the task of
gaining insight, then he/she cannot interpret the simulation results intelligently. For this
reason, we say, “Don’t let the computer think for you.” '

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. All device dimensions are effective values and in microns.

3.1. For the circuit of Fig. 3.9, calculate the small-signal voltage gain if (W/L); = 50/0.5,
(W/L); = 10/0.5, and Ip; = Ipz = 0.5 mA. What is the gain if M is implemented as
a diode-connected PMOS device (Fig. 3.12)?

3.2. In the circuit of Fig. 3.14, assume (W/L); = 50/0.5,(W/L); = 50/2, and Ip; = Ip; =
0.5 mA when both devices are in saturation. Recall that X oc 1 /L.
(a) Calculate the small-signal voltage gain.
(b) Calculate the maximum output voltage swing while both devices are saturated.
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In the circuit of Fig. 3.3(z), assume (W/L); = 50/0.5, Rp =2kf2,and A = 0.

(a) What is the small-signal gain if M is in saturation and Ip = 1 mA?

(b) What input voltage places M7 at the edge of the triode region? What is the small-signal
gain under this condition?

(¢) What input voltage drives M| into the triode region by 50 mV? What is the small-signal
gain under this condition?

Suppose the common-source stage of Fig. 3.3(a) is to provide an output swing from 1 V to

2.5 V. Assume (W/L); = 50/0.5, Rp =2kS2,and A = 0.

(a) Calculate the input voltages that yield Vp,r = 1 V and Vo = 2.3 V.

(b) Calculate the drain current and the transconductance of M, for both cases.

(¢) How much does the small-signal gain, g Rp, vary as the output goes from 1 V t0 2.5 V?
(Variation of small-signal gain can be viewed as nonlinea.rity.z

Calculate the intrinsic gain of an NMOS device and a PMOS device operating in saturation
with W/L = 50/0.5 and |Ip| = 0.5 mA. Repeat these calculations if W/L = 100/1.

Plot the intrinsic gain of a satuated device versus the gate-source voltage if (a) the drain current
is constant, (b) W and L are constant.

Plot the intrinsic gain of a saturated device versus W/ L if (@) the gate-source voltage is constant,
(b) the drain current is constant.

An NMOS transistor with W/L = 50/0.5 is biased with Vg = +1.2 V and Vs = 0. The drain
voltage is varied fromOto 3 V.

() Assuming the bulk voltage is zero, plot the intrinsic gain versus Vps.

(b) Repeat part (a) for a bulk voltage of —1 V.

For an NMOS device operating in saturation, plot gm, 7o, and gmro as the bulk voltage goes
from 0 to —oo while other terminal voltages remain constant.

_Consider the circuit of Fig. 3.9 with (W/L); = 50/0.5 and (W/L); = 10/0.5. Assume

A=y =0

(a) At what input voltage is M) at the edge of the triode region? What is the small-signal gain
under this condition?

(b) What input voltage drives M) into the triode region by 50 mV? What is the small-signal
gain under this condition?

Repeat Problem 3.10 if body effect is not neglected.

In the circuit of Fig. 3.13, (W/L); = 20/0.5,/; = 1 mA, and Is = 0.75 mA. Assuming

A = 0, calculate (W/L)2 such that M is at the edge of the triode region. What is the small-

signal voltage gain under this condition?

Plot the small-signal gain of the circuit shown in Fig. 3.13 as I5 goes from 0 to 0.757;. Assume

M| is always saturated and neglect channel-length modulation and body effect.

The circuit of Fig. 3.14 is designed to provide an output voltage swing of 2.2 V with a bias

_current of 1 mA angd a small-signal voltage gain of 100. Calculate the dimensions of M, and

Ms. .
Sketch V,,; versus V;, for the circuits of Fig. 3.67 as V;, varies from 0 to Vpp. Identify
important transition points.

Sketch V,,; versus V;, for the circuits of Fig. 3.68 as V;, varies from 0 to Vpp. Identify
important transition points.
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3.17. Sketch V,,, versus Vi, for the circuits of Fig. 3.69 as V;, varies from 0 to Vpp. Identify
impeortant transition points.

y Voo
op Vo —{[F M,
Vi M
ln°—‘l 1 . ..—I Vout
M
Vout b1 2
Vb ._l M 2 Vln°—| M 1
(a) (b)
Voo Voo
Vine—[E M, Vi[5 M5
Voul Vv,
Vo[ M, ook 1,
Vout
va'—I M, Vbz._'l M,
() @ Figure 3.69

3.18. Sketch Iy versus Vy for the circuits of Fig. 3.70 as Vx varies from 0 to Vp p. Identify important

transition points.
7 Voo Voo
H1 :E R

.,____.I M, D
W, Ve[S M, ,
2, l'/x = x

+
= X Ag | Vy

(@) (b) (9

Figure 3.70

3.19. Sketch [y versus Vy for the circuits of Fig. 3.71 as Vy varies from 0 to Vpp p. Identify important
transition points.

3.20. Assuming all MOSFETSs are in saturation, calculate the small-signal voltage gain of each circuit
inFig. 3.72(A £ 0,y = 0).
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3:21. Assuming all MOSFETs are in saturation, calculate the small-signal voltage gain of each circuit
in Fig. 3.73 (A £ 0,y = 0).

Voo Voo Voo » Voo
‘ Ma I_.Vb3 , M3 M3 vb1._' Ma
My V2 Vour - Vout
. Vlno—' M 2 Vlno_l M 2 Vino'—'l M 2
Vout
- Vout

. M 1 I_. Vb1 M1 M 1 Vbz‘_-l M 1
Vln — —
(b) ©

{a) @)
- Vop Voo Voo Voo
Vb1.—l M 3 M 3 M 3 M 3 '_
Vout
Vin—{[o M, o Ve oM, Verom, M lloy
Vout ' Vout ‘ out
Vorr—[, M, Vino—[ M, Vine[;. M, Vino—[o M, Iy
(@ ® ® (b
Figure 3.73

3.22, Sketch Vy and Vy ds a funcfion of time for each circuit in Fig. 3.74. The initial voltage across
Ci isequal to Vpp. :

+
M, Voo Voo ¢, |¥
+| -
Vorr—lZ Voo ey Vm.—T—-—| M,
X ' X
Vo2 —[o M, Voao—{[L M,
(@) ©

Figure 3.74

3.23. Inthe cascode stage of Fig. 3.50, assume (W/L), = 50/0.5,(W/L); = 10/0.5, Ip; = Ipy =
0.5mA, and Rp = 1 k2. '
(a) Choose V} such that M) is 50 mV away from the triode region.
(b) Calculate the small-signal voltage gain. ‘
(¢) Using the value of ¥}, found in part-(a), calculate the maximum output voltage swing.
Which device enters the triode region first as V,,, falls?
(d) Calculate the swing at node X for the maximum output swing obtained above.
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Consider the circuit of Fig. 3.16 with (W/L); = 50/0.5, Rp = 2k, and Ry = 200 2.

(a) Calculate the small-signat voltage gain if Ip = 0.5 mA.

(b) Assuming A = y = 0, calculate the input voltage that places M, at the edge of the triode
region. What is the gain under this condition?

Suppose the circuit of Fig. 3.15 is designed for a voltage gain of 5. If (W/L); = 20/0.5, Ip; =

0.5mA,and V, =0V,

(a) Calculate the aspect ratio of M>.

(b) What input level places M at the edge of the triode region. What is the small-signal gain
under this condition? '

(¢) What input level places M, at the edge of the saturation region? What is the small-signal
gain under this condition?

Sketch the small-signal voltage gain of the circuit shown in Fig. 3.15 as V), varies from 0 to _
Vpp. Consider two cases: (a) M enters the triode region before M3 is saturated; (b) M, enters
the triode region after M is saturated.

A source follower can operate as a level shifter. Suppose the circuit of Fig. 3.30(b) is designed

to shift the voltage level by 1 V,ie.,, Vip — Vour =1 V. )

(a) Calculate the dimensions of M and M if Ip) = Ipy = 0.5 mA, Vgs; — Vgs1 = 0.5V,
andA=y =0.

(b) Repeat part (a) if ¥ = 0.45 V™! and V;, = 2.5 V. What is the minimum input voltage for
which M> remains saturated?

Sketch the small-signal gain, V. / Viy, of the cascode stage shown in Fig. 3.50 as V}, goes
from Oto Vpp. Assume A = y = 0. _

The cascode of Fig. 3.60 is designed to provide an output swing of 1.9 V with a bias current of
05 mA. If y = 0and (W/L)1_4 = W/L, calculate V1, Vi, and W/L. What is the voltage
gainif L = 0.5 um?



Chapter 4

Differential Amplifiers

The differential amplifier is among the most important circuit inventions, dating back to the
vacuum tube era. Offering many useful properties, differential operation has become the
dominant choice in today’s high-performance analog and mixed-signal circuits.

This chapter deals with the analysis and design of CMOS differential amplifiers. Follow-
ing a review of single-ended and differential operation, we describe the basic differential
pair, and analyze both the large-signal and the small-signal behavior. Next, we introduce
the concept of common-mode rejection and formulate it for differential amplifiers. We then
study differential pairs with diode-connected and current-source loads as well as differential
cascode stages. Finally, we describe the Gibert cell.

4.1 Single-Ended and Differential Operation

100

A single-ended signal is defined as one that is measured with respect to a fixed potential,
usually the ground. A differential signal is defined as one that is measured between two nodes
that have equal and opposite signal excursions around a fixed potential. In the strict sense,
the two nodes must also exhibit equal impedances to that potential. Fig. 4.1 illustrates the
two types of signals conceptually. The “center” potential in differential signaling is called
the “common-mode” (CM) level.

ZS ‘ . ZS
r\j + Vour -
+ \ +

—
ut t Vim f Vln2
=~ CM [\ . N e
*  Level -
—- — i
t t

(a) . ®

Figure 4.1 (a) Single-énded and (b) differential signals. '
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An important advantage of differential operation over single-ended signaling is higher’
immunity to “environmental” noise. Consider the example depicted in Fig. 4.2, where two -
adjacent lines in a circuit carry a small, sensitive signal and a large clock waveform. Due to
capacitive coupling between the lines, transitions on line L, corrupt the signal on line L.
Now suppose, as shown in Fig. 4.2(b), the sensitive signal is distributed as two equal and
opposite phases. If the clock line is placed midway between the two, the transitions disturb

" the differential phases by equal amounts, leaving the difference intact. Since the common-
mode level of the two phases is disturbed but the differential output is not corrupted, we
say this arrangement “rejects” common-mode noise.

CK
Clock Line \
Ly ‘
4 L L
vy T T T )\4
L M, k1
Signal Line
= Line—to-Line
Capacitance
(@) ‘
Vj - )-\4
i
]
= L T I
1 } {
_\cxo—D: l !||||
oL
_":‘]LMZ Ls
(b)

Figure 4.2 (a) Corruption of a signal due to coupling,
(b) reduction of coupling by differential operation.

Another example of common-mode rejection occurs with noisy supply voltages. In
Fig. 4.3(a), if Vpp varies by AV, then V,,, changes by approximately the same amount,
i.e., the output is quite susceptible to noise on Vp 5. Now consider the circuit in Fig. 4.3(b).
Here, if the circuit is symmetric, noise on Vpp affects Vx and Vy but not Vy — Vy = V,,,.
Thus, the circuit of Fig. 4.3(b) is much more robust to supply noise.
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—————————— VDD M VDD
=R, =R S
—Ewm, — M1 .1.:"—

= F ea =
(a) (b)

Figure 4.3 Effect of supply noise on (a) a single-ended circuit, (b} a differential circuit.

Thus far, we have seen the importance of employing differential paths for sensitive -
signals. It is also beneficial to employ differential distribution for noisy lines. For example,
suppose the clock signal of Fig. 4.2 is distributed in differential form on two lines (Fig. 4.4).
Then, with perfect symmetry, the components coupled from CK and CK to the signal line
cancel each other.

=1 %

!
T

Figure 4.4 Reduction of coupled noise by differential
operation.

Another useful property of differential signaling is the increase in maximum achievable
voltage swings. In the circuit of Fig. 4.3, for example, the maximum output swing at X or
Y isequalto Vpp — (Vgs — Vry), whereas for Vy — Vy, the peak-to-peak swing is equal
to 2[Vpp — (Vs = Vru)l-

-Other advantages of differential circuits over single-ended counterparts include simpler
biasing and higher linearity (Chapter 13).

While it may seem that differential circuits occupy twice as much area as single-ended
alternatives, in practice this is a minor drawback. Also, the suppression of nonideal effects
by differential operation often results in a smaller area than that of a brute-force single-ended
design. Furthermore, the numerous advantages of differential operation by far outwelgh the
poss1hle increase in the area. .
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4.2 Basic Differential Pair

How do we amplify a differential signal? As suggested by the observations in the previous
section, we may incorporate two identical single-ended signal paths to process the two
phases [Fig. 4.5(a)]. Such a circuit indeed offers some of the advantages of differential

— Vop
£HD Rp =
X¢—o V outt Vout2°'—
Vimo—i[, M, -I-:"“'° Vin2
(a)

~Y
-~y

~Y

t
®)

Figure 4.5 (a) Simple differential circuit, (b} illustration of sensi-
tivity to the input common-mode level.

signaling: high rejection of supply noise, higher output swings, etc. But what happens if
Vin1 and V;,2 experience a large common-mode disturbance or'simply do not have a well-
defined common-mode dc level? As the input CM level, Vi, cp, changes, so do the bias
currents of M and M,, thus varying both the transconductance of the devices and the output
CM level. The variation of the transconductance in turn leads to a change in the small-signal
gain while the departure of the output CM level from its ideal value lowers the maximum
allowable output swings. For example, as shown in Fig. 4.5(b), if the input CM-level is
excessively low, the minimum values of V;,; and V;,» may in fact turn off M} and M5,
leading to severe clipping at the output. Thus, it is important that the bias currents of the
devices have minimal dependence on the input CM level.

A simple modification can resolve the above issue. Shown in Fig. 4.6, the “dlfferennal
pair”! employs a current source Igs to make Ip; + Ip; independent of Vi, cpr. Thus, if
Vin1 = Vin2, the bias current of each transistor equals Igs/2 and the output common-mode

lAls’ac\) called a sourcc-cduplcd pair or (ih the British literature) a long-tailed pair.

2.
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Voo

Yy

-
-

= Rpy  Apa3
Vourro—4 X Y t+—o Vour

Vln1°—| M, M, '_°an2

Rni=Rpo=R
Iss Dt D2 D

Figure 4.6 Basic differential pair.

levelis Vpp — Rplss/2. It is instructive to study the large-signal behavior of the circuit for
both differential and common-mode input variations.

4.2.1 Qualitative Analysis

Let us assume that in Fig. 4.6, Vi, — Vj,2 varies from —co to 400, If V;,; is much
more negative than V;,,, M; is off, M, is on, and Ip; = Igs. Thus, V,ui = Vpp and
Vaurz = Vpp — Rplss. As Vi, is brought closer to V2, M, gradually turns on, drawing
a fraction of Igg from Rp; and hence lowering V,,;,. Since Ip, + Ips = Igs, the drain
current of M, decreases and V> rises. As shown in Fig. 4.7(a), for Vi,,; = Vj,2, we have
Vourt = Vourz = Vpp — Rplss/2. As Vi, becomes more positive than V;,,, M, carries a
greater current than does M, and V,,,,;| drops below V2. For sufficiently large Vi, — V2,
M, “hogs” all of Iss, turning M, off. As aresult, V.1 = Vpp — Rplss and V,.n = Vpp.
Fig. 4.7 also plots V,,;; — V,ui2 versus Vigp — Vigo.

Vout1 = Voutz

+RD "SS

Vv,
Vpp —=outt

Vop- Rplss Vint=Vin2

Voutz

! Vin1=Vin2
" (a) (b)

—-Rplgg

Figure 4.7 Input-output characteristics of a differential pair.

The foregoing analysis reveals two important attributes of the differential pair. First,
the maximum and minimum levels at the output are well-defined (Vpp and Vpp — Rplss,
respectively) and independent of the input CM level. Second, the small-signal gain
(the slope of Vi, — Vour versus Vi, — Vin2) is maximum for V,; = Vj,», gradu-
ally falling to zero as [V;,; — V;,3| increases. In other words, the circuit becomes more
nonlinear as the input voltage swing increases. For V;,; = V;,2, we say the circuit is in
equilibrium.
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Now let us consider the common-mode behavior of the circuit. As mentioned earlier, -
the role of the tail current source is to suppress the effect of input CM level variations on
the operation of M; and M, and the output level. Does this mean that V;, cp can assume
arbitrarily low or high values? To answer this question, we set Viy1 = Vipp = Vi car and
vary Vin cm from O to Vpp. Fig. 4.8(a) shows the circuit with I5s implemented by an NFET.
Note that the symmetry of the pair requires that V,,;; = V2.

Vinom o—(—-l

=
= Hgna

Ipys .
p1-7D2 Ve Vout1: Voutz

Voo

o po
-

]
|/TH VIn,CM VTH VII‘I,CM

©

Figure 4.8 (a) D1fferent:al pair sensing an input common-mode change, (b) equivalent circuit if M3 operates in deep
triode region, (c) common-mode input-output characteristics.

What happens if V;, ¢y = 07 Since the gate potential of M; and M, is not more
positive than their source potential, both devices are off, yielding /p3 = 0. This indicates
that M; is in deep triode region because V}, is high enough to create an inversion layer in
the transistor. With Ip, = Ip, = 0, the circuit is incapable of signal amplification, and
Vnutl = Vour2 = Vpp.

Now suppose V;, cu becomes more positive. Modeling M by a resistor as in Fig. 4.8(b),
we note that M| and M turnonif V,,, ey = Vrg. Beyond this point, Ip) and Ip; continue to
increase and Vp also rises [Fig. 4.8(c)]. In a sense, M, and M, constitute a source follower,
forcing Vp to track Vi, cum. For a sufficiently high V;, ¢, the drain-source voltage of
M3y exceeds Vg3 — Vrys, allowing the device to operate in saturation. The total current
through M; and M, then remains constant. We conclude that for proper operation, V;, cps >
Vesi + (Vgss — Vras).

What happens if V;, ¢y rises further? Since V,,;1 and V,,,» are relatively constant, we
expect that M, and M, enter the triode region if Vi, cpm > Vount +Vry = Vpp—Rplss/2+
Vra. This sets an upper limit on the input CM level. In summary, the allowable value of
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Vin,cm 1is bounded as follows: ’ "

, ) _ ) :
Ves1 + (Vgss — Vruz) < Vipcw < min [VDD - RD% + Vru, VDD] . “4.1)

Example 4.1

Sketch the small-signal differential gain 6f a differential pair as a function of the input CM level.

Solution
As shown in Fig. 4.9, the gain begins to increase as V;,,cp exceeds Vrg. After the tail current source

H P

L£) Vin.cm

Figure 4.9

enters saturation (Viy oy = V), the gain remigins relatively constant. Finally, if Vin c is so high
that the input transistors enter the triode region (Vin,cpm = V2), the gain begins to fall.

~ With our understanding of differential and common-mode behavior of the differential
pair, we can now answer another important question: How large can the output voltage
swings of a differential pair be? As illustrated in Fig. 4.10, for M, and M; to be saturated,
each output can go as high as Vpp but as low as approximately Vi, cy — Vry. In other

Rp
Vin.cm A=

Figure4.10 Maximum ailowable out-
= put swings in a differential pair.

words, the higher the input CM level, the smaller the allowable output swings. For this
reason, it is desirable to choose a relatively low Vin.cm, but the preceding stage may not

* provide such a level easily.

_An interesting trade-off exists in the cnrcun of Fig..4.10 between the maximum value
of V;,.cu and the differential gain. Similar to a simple common-source stage (Chapter 3),



Sec. 4.2 Basic Differential Pair ' : . 107

the gain of a differential pair is a function of the dc drop across the load resistors. Thus, if
Rplss/2 is large, Vi, ¢ i must remain close to ground potential.

4.2.2 Quantitative Analysis

We now quantify the behavior of a MOS differential pair as a function of the input differential
voltage. We begin with large-signal analysis to arrive at an expression for the plots shown
in Fig. 4.7.

Ab
Yy
=1 ]
(=]
=
]
Q
~N
A
Y

Fl'gufe 4.11 Differential pair.

For the differential pair in Fig. 4.11, we have V,,,; = Vpp — Rp1Ip; and V,u2 = Vop —
Rpalps, ie., Vourt — Vourz = RpaIp2 — RpiIpy = Rp(Ipy — Ip1) if Rpy = Rpz = Rp.
Thus, we simply calculate Ipy and Ips in terms of Vi, and V., assuming the circuit is

symmetric, M, and M, are saturated, and A = 0. Since the voltage at node Pis equal to
Vinl — VGSl and sz - VGsz, : o

Vit = Vipp = Vo1 — Vesa. - 4.2)

For a square-law device, we have:

—_— 2 [ S —
(Vs ~ Vru) = I - W (4.3)
o 2,u'n ox I3
and, therefore,
21 )
Vos = | ——57 + Vru- @4
nCnx_'
o
It follows from (4.2) and (4.4) that
21 21 o
Vint = Vinz = 7~ | /% .5)
ncox_' nCox_ .
© 7 i T
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Our objective is to calculate the differential output current, Ip; — Ip2. Squaring the two
sides of (4.5) and recognizing that Ip; + Ip; = Igg, we obtain

(Vint = Vin2)* = LW(ISS — 2/ Ip1ips). (4.6)
/‘Ln.Cax"I:'
That is,
1 W )
Enu'ncox ~L—(Vin1 = Vin2)” — Iss = =2+/Ip1Ipa. 4.7

Squarmg the two sides again and noting that 411)111)2 =(Ip; + Ip2)? — (Ip1 — Ip2)? =
ss — (Ip; — Ipy)?, we arrive at

w 2 4 w 2
T (Vin1 — Vin2)" + ISSILnCon(VinI — Vin2)". (4.8)

o 1
Upy — Ip2)* = -2 (u,.cm

Thus,

4]
Ipy = Iy = zun ox <vm1 Vi) | —5 = Vim = Vi, (49)

M Cax f

As expected, I'py — Ip; is an odd function of V;,; — V;,», falling to zero for V;,,; = V5. As
|Vigy — Vina| increases from zero, | I — Ipa| also increases because the factor preceding
the square root rises more rapidly than the argument in the square root drops.>

Before examining (4.9) further, itis instructive to calculate the slope of the characteristic,
i.e, the equivalent G, of M, and M;. Denoting Ip, — Ip; and Vi, — Vj,2 by Alp and
AV,,, respectively, the reader can show that

415
—_—— ~2AV?
dAT 1 w e
= = —upCor— IL"COXW/L . (4.10)
aAV, 2 2 s,
» s av
TnCor WL

For AV, = 0,G,, = JunCor(W/L)Iss. Moreover, since V) — Voo = RpAl =
RpG,, AV;,, we can write the small-signal differential voltage gain of the circuit in the

equilibrium condition as
/ w
[Ay] = Mncox'ZISSRD- @.11)

2h is interesting to note that, even though Ip; and Ip; are even functions of their respective gate-source
voitages, Ip1 — Ipz is an odd function of Vi,1 — Vja2. This effect is studied in Chapter 13.
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Equation (4.10) also suggests that G, falls to zero for AV;, = 25 [(itnCox W/L).
As we will see below, this value of AV, plays an important role in the operation of the
circuit.

Let us now examine Eq. (4.9) more closely. It appears that the argument in the square
root drops 1o zero for AV, = 4lss/(UnCoxW/L), implying that Alp crosses zero at
two different values of A V,,. This was not predicted in our qualitative analysis in Fig. 4.7.
This conclusion, however, is incorrect. To understand why, recall that (4.9) was derived
with the assumption that both M, and M are on. In reality, as AV;, exceeds a limit,
one transistor carries the entire Iss, turning off the other.’ Denoting this value by AV,

we have Ip, = Igs and AV,,, = Vgs1 — Vry because M, is nearly off. It follows
that
217
AV = —“‘w— (4.12)
Ju'ncoxz

For AV, > AVin1, M, is off and (4.9) does not hold. As mentioned above, G, falls to zero
for AV;, = AV;,,. Figure 4.12 plots the behavior.

| . Ll T -
- AVim + AVim Avin - AV|n1 + AVm«‘ Avin
(a) ®)

Figure 4.12 Variation of drain currents and overall transconductance of a differen-
tial pair versus input voltage.

Example 4.2

Plot the input-output characteristic of a differential pair as the device width and the tail current vary.
Solution

Consider the characteristic shown in Fig. 4.13(a). As W/L increases, A Vi, decreases, narrowing the
input range across which both devices are on [Fig. 4.13(b)]. As Igs increases, both the input range
and the output current swing increase [Fig. 4.13(c)]. Intuitively, we expect the circuit to become more
linear as Igg increases or W/L decreases. .

The value of AVj,; given by (4.12) in essence represents the maximum differential
input that the circuit can “handle.” It is possible to relate AV, to the overdrive voltage

We neglect subthreshold conduction here.
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Ipi-1p2 } Ipi-Tp2 &
e +lsg N[ ss
+ AV +AVip
= AViny , AV, =AVing AV,
= lggpom —lggl
(a) )]
Ipr-Ip2 §
"""""" +’552
: + AV
=AVip AV,
—lggof--rrr
(<)
Figure 4.13
of M, and M; in equilibrium. For a zero differential input, I, = Ip, = Iss/2, and
q
hence '
I
(Vs — Vrah2 = —w (4.13)
. »u'ncox"i

Thus, the equilibrium overdrive is equal to AV;,;/ 2. The point is that increasing AV, to
make the circuit more linear inevitably increases the overdrive voltage of M, and M-. For
a given I, this is accomplished only by reducing W/ L and hence the transconductance of
the transistors.

We now study the small-signal behavior of differential pairs. As depicted in Fig. 4.14,
we apply small signals V;,,; and V;,» and assume M; and M, are saturated. What is the dif-
ferential voltage gain, Vou /(Vin1 — Vin2)7 Recall from Eq. (4.11) that this quantity equals
V1nCor IssW/LRp. Since in the vicinity of equilibrium, each transistor carries approxi-
mately Igs/2, this expression reduces to g,, Rp, where g, denotes the transconductance of
M; and M. To arrive at the same result by small-signal analysis, we employ two different
methods, each providing insight into the circuit’s operation, We assume Rp, = Rp; = Rp.
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Voo
ZApy Ap*F
Vout1o—2 X Y ¢ Vourz
My M,
+ +
Vim () OVin2
= Iss . .
Figure 4.14 Differential pair with
= smali-signal inputs.
Voo
=Rp Ap=
Vout1 =1 X Y o Voutz
M, M, |
+
Vi) H
- ’ss
(a)
Voo Voo
=Ry, Ao = Rp,
Vour1 —¢ X X Vy
Y ——oV,
M outz VIM D_I M1
1 M,
o L4
Vin1 — Rg
s Rs I =
(b) ©

Figure 4.15 (a) Differential pair sensing one input signal, (b) circuit of
(a) viewed as a CS stage degenerated by M, (¢) equivalent circuit of (b).

Method § The circuit of Fig. 4.14 is driven by two independent signals. Thus, the output
can be computed by superposition.

Let us set V;,2 to zero and find the effect of V;,,; at X and ¥ [Fig. 4.15(a)]. To obtain Vy,
we note that M| forms a common-source stage with a degeneration resistance equal to the
impedance seen looking into the source of M, [Fig. 4.15(b)]. Neglecting channel-length
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............................. v
: oD
ZRpy | RpF
Vout1>—¢ X Y +— Vourz

(@) (b)

Figure 4.16 Replacing M; by a Thevenin equivalent.

modulation and body effect, we have Rs = 1/g,» [Fig. 4.15(c)] and

Vy —Rp
i (4.14)

Em1 8m2

To calculate Vy, we note that M, drives M, as a source foilower and replace V;,; and M,
by a Thevenin equivalent (Fig. 4.16): the Thevenin voltage V; = V;,; and the resistance
Ry = 1/gm1. Here, M, operates as a common-gate stage, exhibiting a gain equal to

v R
V_Y - 1—DT‘ (4.15)
inl . + -
Em2 8mi
It follows from (4.14) and (4.15) that the overall voltage gain for V;, is
—2R
(Vx = V¥)lbue 0 vimt = ———7— Vi, (4.16)
gm | 8m2
which, for g,,; = gm» = g, reduces to
(Vx — V¥)Ibue 1o vin1 = —~8m RDVE_nI- (4.17)

By virtee of symmetry, the effect of V;,; at X and ¥ is identical to that of V;,, except
for a change in the polarities:

(Vx — ¥¥)lbwe 1o vin2 = gm Rp Vina. (4.18)
Adding the two sides of (4.17) and (4.18) to perform superposition, we have

(VX - VY)I’(})'

= —g. Rp. 4.19)
vl'nl - VJNZ 8 P . (
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Comparison of (4.17), (4.18), and (4.19) indicates that the magnitude of the differential
gain is equal to g, Rp regardless of how the inputs are applied: in Figs. 4.15 and 4.16, the
"input is applied to only one side whereas in Fig. 4.14 the input is the difference between
two sources. It is also important to recognize that if the output is single-ended, i.e., it is
sensed between X or ¥ and ground, the gain is halved.

Example 4.3

Ini the circuit of Fig. 4.17, M5 is twice as wide as M. Calculate the small-signal gain if the bias values
of Vipy and Vi, are equal, .

Figure4.17

Solution

If the gates of My and M are at the same dc potential, then Vg1 = Vggzand Ipy = 2Ip| = 21s5/3.
Thus, gm1 = V2unCox(W/L)I55/3 and gpy = V210 Cox CW/LY2155/3 = 2gm1. Following the
same procedure as above, the reader can show that

2R
Al = 2 (420
gj 2gm1
4 .
pusd —-gmlRD, (421)

3

Note that, for a given [gg, thi value is lower than the gain of a symmetric differential pair (with
2W/L for each device) [Eq. (4.19)] because g, is smaller,

How does the gain of a differential pair compare with that of a common-source stage?
For a given rotal bias current, the value of g, in (4.19) is l/ﬁ times that of a single
transistor biased at /55 with the same dimensions. Thus, the total gain is proportionally less.
Equivalently, for given device dimensions and load impedance, a differential pair achieves
the same gain as a CS stage at the cost of twice the bias current.

Method Il If a fully-symmetric differential pair senses differential inputs (i.e., the two
inputs change by equal and opposite amounts from the equilibrium condition), then the
concept of *half circuit”™ can be applied. We first prove a lemma.
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Lemma. Consider the symmetric circuit shown in Fig. 4.18(a), where [ and D; represent

b

D, D,

(a) ® ©
Figure 4.18 lllustration of why node P is a virtual ground.

any three-terminal active device. Suppose Vj, changes from Vy to Vo + AV, and V;,,» from
Vo to ¥y — AV, [Fig. 4.18(b)]. Then, if the circuit remains linear, Vp does not change.
Assume A = (.

Proof. Let us assume that V| and V; have an equilibrium value of V, and change by AV,
and AV,, respectively [Fig. 4.18(c)]. The output currents therefore change by g, AV; and
gmAVy. Since I) + I, = Iy, we have g, AV) + gn AV, = 0,16, AV, = —AV; Wealso
know Vi1 — Vi = Via— Va,and hence Vo+ A Vi, —(V,+AV) = Vi — AV, —(V, +4V2).
Consequently, 2AV;, = AV, — AV, = 2AV;. In other words, if Vi, and V;,» change by
+AV,, and —AV;,, respectively, then V; and V, change by the same values, i.¢., adifferential
change in the inputs is simply “absorbed” by V; and V;. In fact, since Vp = Vi, — V1, and
since V; exhibits the same change as V;,;, Vi does not change. a

The proof of the foregoing lemma can also be invoked from symmetry. As long as the
operation remains linear so that the difference between the bias currents of Dy and D; is
negligible, the circuit is symmetric. Thus, Vp cannot “favor” the change at one input and
“ignore” the other.

From yet another point of view, the effect of Dy and D); at node P can be represented
by Thevenin equivalents (Fig. 4.19). If Vr, and V7, change by equal and opposite amounts
and Ry, and Ry, are equal, then Vp remains constant. We emphasize that this is valid if
the changes are small such that we can assume Ry = Ry

The above lemma greatly simplifies the small-signal analysis of differential amplifiers.
As shown in Fig. 4.20, since Vp experiences no change, node P can be considered “ac
ground” and the circuit can be decomposed into two separate halves, hence the term

“half-circuit concept” [1]. We can write Vy/ V1 = —gmRp and Vy /(=Vin1) = —gmRbp,
where V,,,; and —V;,,; denote the voltage change on each side. Thus, (Vy — Vy)/2Vin1) =
_ngD-

Tt is also possible to derive an expression for the large-signal behavior of Vp and prove that for small
Vil — Vin2. Vp remains constant. We defer this calculation 1o Chapter 14.
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Figure 4.19 Replacing each half of
a differential pair by a Thevenin

P equivalent.
Voo Voo
<ERD1 RDQEE ‘=HD1 R02=’
|I/out1 —et X Y ¢—o Voutz
M, M,
: +
*im() L L ~Vin1
(b)

Figure 4.20 Application of the half-circuit concept,

Example 4.4

Calculate the differential gain of the circuit of Fig. 4.20(a) if A £ 0.

Solution

Applying the half-circuit concept as illustrated in Fig. 4.21, we have Vx/ Vi1 = —gm(Rpliro1)
and Vy/(—Vin1) = —gm(Rpliro2), thus arriving at (Vx — Vy)/(2Vin1) = —gm(Rpllro), where
ro = ro1 = ro2. Note that Method T would require lengthy caleulations here.

Voo
=Ry AR =
Voutl e X Y ° Vout2
o1 Toz
+ M1 M2 + _

Figure 4.21

The half-circuit concept provides a powerful technique for analyzing symmetric differ-
ential pairs with fully differential inputs. But what happens if the two inpuits are not fully
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M, M, M,
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Figure 4.22 Conversion of arbitrary inputs to differential and common-mode components.

differential {Fig. 4.22(a)]? As depicted in Figs. 4.22(b) and (c), the two inputs V;,; and V,;»
can be viewed as

Vint = Vinz | Vinl + Vin2

Vinl = 4.22

nl ) + 2 ( )
Vin - Vin Vz Vin

Ving = —2 . Ly Zind Z 2, (4.23)

Since the second term is common to both inputs, we obtain the_equivalent circuit in
Fig. 4.22(d), recognizing that the circuit senses a combination of a differential input and
a common-mode variation. Therefore, as illustrated in Fig. 4.23, the effect of each type
of input can be computed by superposition, with the half-circuit concept applied to the
differential-mode operation.

Example 4.5

In the circuit of Fig. 4.20(a), calculate Vy and Vy if V;u; # —Vigz and A #£ 0.
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Vin1= Vin2 L& + 4 Vino= Vin1 Iss
2 - - 2
Vin1+ Vinz Y
2 —
(a) (b)

Figure 4.23 Superposition for differential and common-mode signals.

Solution

For differential-mode operation, we have from Fig. 4.24(a)

Vin2
Vx = —gm(Rp uron)—‘”iﬁ (4.24)
2= Vim
Vy = —g,n(RDnroz)%. (4.25)
That is, .
» ! Vx — Vy = —gn(Rplro)}Vis1 — Vina), {4.26)
which is to be expected.
Yoo
=R, Ay =
Voo v
) Vounn® X Y — Vout2
fo o ¥ H Ero1 roxE lj
Voutt X Y ~—0 Vouta M, N M,
Ero1 re2E !
Yin1 = Vinz A& M, . aﬂz +4 Vin2 = Vin1 é S8
2 a - 2 z
= / =
S8 : Vin1* Vina
3 Vinem= ————
. Ll 2 —
() ) (b)
Figure 4.24

For common-mode operation, the circuit reduces to that in Fig. 4.24(b). How much do Vy and
Vy change as V,n ¢ s changes? If the circuit is fully symmetric and /g5 an ideal current source, the
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current drawn by M and M, from Rp; and R p; is exactly equal to I55/2 and independent of V;, cu.
Thus, Vx and Vy experience no change as Vi, ¢ varies. Interestingly, the circuit simply amplifies
the difference between V;,1 and V;,2 while eliminating the effect of Vi, cp.

4.3 Common-Mode Response

An important attribute of differential amplifiers is their ability to suppress the effect of
common-mode perturbations. Example 4.5 portrays an idealized case of common-mode
response. In reality, neither is the circuit fully symmetric nor does the current source exhibit
an infinite output impedance. As a result, a fraction of the input CM variation appears at
the output.

We first assume the circuit is symmetric but the current source has a finite output
impedance, Rgs [Fig. 4.25(a)]. As Vj, cum changes, so does Vp, thereby increasing the
drain currents of M, and M, and lowering both Vyx and Vy. Owing to symmetry, Vy re-
mains equal to Vy and, as depicted in Fig. 4.25(b), the two nodes can be shorted together.
Since M, and M, are now “in parallel,” i.e., they share all of their respective terminals, the

VDD
=R, Rp =
Vout1>— X Yt—o Vourz
Vincm °—T—||:‘|M1 M, :Il—-‘
P
= Rgg
H
(a)
Voo Voo
2R, ARpE Ap
2
X Y Vout
Vin,emo—f I M, Vinemo—{[, M+ M,
M [ Rgg

)
]
®»

1l

(b) ©

Figure 4.25 (a) Differential pair sensing CM input, (b) simplified
version of (a), (c) equivalent circuit of (b).
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circuit can be reduced to that in Fig. 4.25(c). Note that the compound device, M| + M;,
has twice the width and the bias current of each of M and M, and, therefore, twice their
transconductance. The CM gain of the circuit is thus equal to

v .
Apoy = —2. 4.27)
' Vin.CM ’

 Rp2
1/(2gm) + Rss’

where g, denotes the transconductance of each of M, and My and A, = y = 0.

What is the significance of this calculation? In a symmetric circuit, input CM variations
disturb the bias points, altering the small-signal gain and possibly limiting the output voltage
swings. This can be iltustrated by an example.

(4.28)

Example 4.6

The circuit of Fig. 4.26 uses a resistor rather than a current source to define a tail current of 1 mA. .

Figure 4.26

Assume (W/L)1 2 = 25/0.5, 4nCox = 50 uAN?, Vi =06 V,A =y =0,and Vpp =3 V.
(a) What is the required input CM for which Rgg sustains 0.5 V?
(b) Calculate Rp for a differential gain of 5.
(c) What happens at the output if the input CM level is 50 mV higher than the value calculated in
(a)? :

Solution
(a) Since Ip; = Ip; = 0.5 mA, we have

21 :
Vosi =Vasz = | =2 + Vra (4.29)
Nncuxf
=123V. - (4.30)

Thus, Vi, cm = Vgsi + 0.5 V= 1.73 V. Note that Rgs = 500 Q.

{b) The transconductance of each device is g = 2y COX(W/L)ID = 1/(632 ), requiring
Rp = 3.16 k2 for a gain of 5.

Note that the output bias level is equal to VDD ~Ip\Rp =142 V. Since Vi, cy =173V and
Vry = 0.6V, the transistors are 290 mV away from the triode region.
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() If Vip, cu increases by 50 mV, the equivalent circuit of Fig. 4.25(c) suggests that Vx and Vy
drop by

[AVy y| = AV __Rp/2 (4.31)
XY= R M R s+ 1/(8m) :

=50mV x 1.94 (4.32)

=968 mV. (4.33)

L

Now, M| and M, are only 143 mV away from the triode re%jon because the input CM level has
increased by 50 mV and the output CM level has decreased by:96.8 mV.

The foregoing discussion indicates that the finite output impedance of the tail current
source results in some common-mode gain in a symmetric differential pair. Nonetheless,
this is usually a minor concern. More troublesome is the variation of the differential output
as a result of a change in Vj, ¢4, an effect that occurs because in reality the circuit is not
fully’symmetric, i.e., the two sides suffer from slight mismatches during manufacturing.
For example, in Fig. 4.25(a), Rp; may not be exactly equal to Rp,.

We now study the effect of input common-mode variation if the circuit is asymmetric
and the tail current source suffers from a finite output impedance. Suppose, as shown in
Fig. 4.27, Rpy = Rp and Rp; = Rp + ARp, where ARy denotes a small mismatch and

VDD
Vout1 o1 X Y— Vouro
Vin.cm O——T—II:M, M2:||—|
= Rgg _
| Figure 4.27 Common-mode response
< in the presence of resistor mismatch.

the circuit is otherwise symmetric. What happens to Vy and Vy as V}, ¢y increases? Since
M, and M, are identical, Ip; and /p; increase by [g. /(1 + 28m Rss)]AVin.cu, but Vx and
Vy change by different amounts:

8m
AVy = —AV;, — R 4.34)
X M7 + 22, Rss D ¢

AVy = —AVincu (Rp + ARDp). (4.35)

8m
1 +2gm Rss
Thus, a common-mode change at the input introduces a differential component at the output.
We say the circuit exhibits common-mode to differential conversion. This is a critical
problem because if the input of a differential pair includes both a differential signal and
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common-mode noise, the circuit corrupts the amplified differential signal by the input CM
change. The effect is illustrated in Fig. 4.28.

Voo
RD EE EEHD'I' ARD
[

) FAgg
e L

é_-:

[2]

=
HO-

A

Figure 4.28 Effect of CM noise in the presence of resistor mismatch.

Voo
Rp= ZRp
Voun™=—1 X Yt—o Voue

Vincm O—P—-II%M, o :||—|

¢
I = Figure 4.29 CM response with finite
= : tail capacitance. ’

In summary, the common-mode response of differential pairs depends on the output
impedance of the tail current source and asymmetries in the circuit, manifesting itself
through two effects: variation of the output CM level (in the absence of mismatches) and
conversion of input common-mode variations to differential components at the output. In
analog circuits, the latter effect is much more severe than the former. For this reason, the
common-mode response should usually be studied with mismatches taken into account.

How significant is common-mode to differential conversion? We make two observations.
First, as the frequency of the CM disturbance increases, the total capacitance shunting the tail
current source introduces larger tail current variations. Thus, even if the output resistance of
the current source is high, common-mode to differential conversion becomes significant at
high frequencies. Shown in Fig. 4.29, this capacitance arises from the paraasitics of the current
source itself as well as the source-bulk junctions of M| and M,. Second, the asymmetry in
the circuit stems from both the load resistors and the input transistors, the latter contributing
a typically much greater mismatch.

Let us now study the asymmetry resulting from mismatches between M 1 and M, in
Fig. 4.30(a). Owing to dimension and threshold voltage mismatches, the two transistors
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(a) (b)

Figure 4.30 (a) Differential pair sensing CM input, (b) equivalent circuit of {a).
carry slightly different currents and exhibit unequal transconductances. To calculate the

gain from V;, cum to X and ¥, we use the equivalent circuit in Fig, 4,30(b), writing [p; =
8m1(Vin,cm — Vp) and Ipy = gma(Vincm — Vp). That is,

(gm1 + gm2)(Vin,cm — VP)Rss = Vp, (4.36)

and

_ (8m1 t 8gm2)Rss
=
(gml + ng)RSS +1

Vincum- (4.37)

‘We now obtain the output voltages as

Vx = —gm1(Vin,c — Vp)Rp (4.38)
—~8ml
= RpVi,, 4.39
(&ni + gna)Rss 11 0 imCH (4.39)
and
Vv = —gm2(Vin.cu — Vp)Rp (4.40)
—8m2

= RpVincoum. 441
(gri1 + gm2)Rss +1 0 "M (441)

The differential component at the output is therefore given by

Em1 — Em2
(m1 + 8m2)Rss + 1

Vy —Vy =~ RpVincm. (4.42)

~ In other words, the circuit converts input CM variations to a differential error by a factor
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equal to

AgmRp
Acy— = e R 4.43
cM-DM (8m1 + gm2)Rss + 1 “-43)

where Acy_pu denotes common-mode to differential-mode conversion and Agm =
8m1 — &m2.

Example 4.7

Two differential pairs are cascaded as shown in Fig. 4.31. Transistors M3 and My suffer from a g,

VDD
ZR, PRp= ZR, ApE
A B X Yty
out

Figure 4.31

mismatch of Ag,,, the total parasitic capacitance at node P is represented by Cp, and the circuit is
otherwise symmetric. What fraction of the supply noise appears as a differential component at the
output? Assume L =y = 0.

Solution
Neglecting the capacitance at nodes A and B, we note that the supply noise appears at these nodes
with no attenuation. Substituting 1/(Cps) for Rss in (4.43) and taking the magnitude, we have

AgmRp
|AcM-pm| = = : (4.44)

2
\/1 + (gm3 + gma)? Com

The key point is that the effect becomes more noticeable as the supply noise frequency, w, increases.

For meaningful comparison of differential circuits, the undesirable differential com-
ponent produced by CM variations must be normalized to the wanted differential output
resulting from amplification. We define the “common-mode rejection ratio” (CMRR) as

| Apm

CMRR = (4.45)

AcMm-pm
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If only g,, mismatch is considered, the reader can show from the analysis of Fig. 4.15 that

Rp gmi + 8m2 + 48m18m2 Rss
|Apu] = —

) (4.46)
2 14+ (gm + gm2)Rss
where it is assumed V;,; = — V.2, and hence

m mR
CMRR = & 1+ &m2 + 48m18m2Rss
2A8,

4.47)

=z

Sn (14 28, Rss), (4.48)
Agn
where g,, denotes the mean value, i.e., g = (gm1 + gm2)/2. In practice, all mismatches
must be taken into account.

4.4 Differential Pair with MOS Loads

The load of a differential pair need not be implemented by linear resistors. As with the
common-source stages studied in Chapter 3, differential pairs can employ diode-connected
or current-source loads (Fig. 4.32). The small-signal differential gain can be derived using

Vv,
M, M, bo
Vi
Vout
VO—I My M, "l
in
-

(b)
Figure 4.32 Differential pair with (a) diode-cornected and (b) current-
source loads.

the half-circuit concept. For Fig, 4.32(a),

Ay = —gmn (gmp |ron]|rop) (4.49)
gny
Emp ’

(4.50)

where subscripts N and P denote NMOS and PMOS, respectively. Expressing g,,n and
gmp in terms of device dimensions, we have

[n(W /LN
Ay — [—a - 4.51
Hp(W/L)p @0
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For Fig. 4.32(b), we have

Ay = —gmn(rowvlrop). (4.52)

. Inthe circuit of Fig. 4.32(a), the diode-connected loads consurhe voltage headroom, thus
creating a trade-off between the output voltage swings, the voltage gain, and the input CM .
range. Recall from Eq. (3.35) that, for given bias current and input device dimensions, the
circuit’s gain and the PMOS overdrive voltage scale together. To achieve a higher gain,
(W/L)p must decrease, thereby increasing |Vgsp — Vryp| and lowering the CM level at
nodes X and Y. '

In order to alleviate the above difficulty, part of the bias currents of the input transistors
can be provided by PMOS current sources. Illustrated in Fig. 4.33, the idea is to lower the
gm of the load devices by reducing their current rather than their aspect ratio. For example,

Figure 4.33 Addition of current
sources to increase the voltage gain.

if Ms and Mg carry 80% of the drain current of M, and M>, the current through M5 and My
is reduced by a factor of five. For a given |Vgsp — Vrypl, this translates to a factor of five
reduction in the transconductance of #f; and M, because the aspect ratio of the devices can
be lowered by the same factor. Thus, the differential gain is now approximately five times
that of the case with no PMOS current sources.

The small-signal gain of the differential pair with current-source loads is relatively low—
in the range of 10 to 20 in submicron technologies. How do we increase the voltage gain?
Borrowing ideas from the amplifiers in Chapter 3, we increase the output impedance of both

'PMOS and NMOS devices by cascoding, in essence creating a differential version of the )
cascode stage introduced in Chapter 3. The result is depicted in Fig. 4.34(a). To calculate”
the gain, we construct the half circuit of Fig. 4.34(b), which is similar to the cascode stage
of Fig. 3.60. Thus, ' -

|Aul % gmi[(gmsrosro )| (gmsrosro)]. v (4.53)

Caseoding therefore increases the differential gain substantially but at the cost of consuming
more voltage headroom.

As a final note, we should mention that high-gain fully differential amplifiers require a -
means of defining the output common-mode level. For example, in Fig. 4.32(b), the output



126 N Chap.4 Differential Amplifiers

Voo
Voss—[© M7
Vb2 .—I M 5
Vour
Vor [ My
Vin —| M 1

‘ (b)
Figuré 4.34 (a) Cascode differential pair, (b) half circuit of {a).

common-mode level is not well-defined whereas in Fig. 4.32(a), diode-connected transistors
define the output CM level as Vo — Vgsp. We return to this issue in Chapter 9.

- 4.5 Gilbert Cell

Our study of differential pairs reveals two important aspects of their operation: (1) the
small-signal gain of the circuit is a function of the tail current and (2) the two transistors in a
differential pair provide a simple means of steering the tail current to one of two destinations.
By combining these two properties, we can develop a versatile building block.

Suppose we wish to construct a differential pair whose gain is varied by a control voltage.
This can be accomplished as depicted in Fig. 4.35(a), where the control voltage defines the

VDD VDD VDD
RpE =R, A= =Ry Rp= =R,
o o + + o
y ° Vout -— o Vguﬁ Vogtz ° ¢

ol ol vy s ol v tm¥s_ Madh

O ¢ =

Veont °—":-LM3 Veontt °_><-? !y Veont2 H@ F

(a) (b)

Figure 4.35 (a) Simple VGA, (b} two stages providing variable gain,
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tail current and hence the gain. In this topology, A, = V,,,/ V;, varies from zero (if Ip3 = 0)
to a maximum value given by voltage headroom limitations and device dimensions. This
circuit is a simple example of a “variable-gain amplifier” (VGA). VGAs find application
in systems where the signal amplitude may experience large variations and hence requires
inverse changes in the gain.

Now suppose we seek an amplifier whose gain can be continuously varied from a negative
value to a positive value. Consider two differential pairs that amplify the input by opposite
gains [Fig. 4.35(b)]. We now have V,u1/ Vi, = —gmRp and V,,;2/ Vi, = +g,. Rp, where
&m denotes the transconductance of each transistor in equilibrium. If 7; and L, vary in
opposite directions, 50 do |V, 1/ Vix| and |V,ya/ Vial.

But how should V,,,;; and V., be combined into a single output? As illustrated in Fig.
4.36(a), the two voltages can be summed, producing Vo, = Vour1 + Vours = A1 Vi + AV,

cont1
Voo
Rp = =R,
o +
— o Vout
o0—4
Vin | ¢
° v Il My MZ.II—‘ voibm, M, I—‘
in in
o— o
Veont1 “’_"? 1y Veont2 b’? 13
(b
-, - V
RD :: :E RD £ DD
0 = F VOUl b

Vin ' p B

(c) (d)

Figure 4.36 (a) Summation of the output voltages of two amplifiers, (b) summation in the current
domain, (c) use of Ms-Mg to control the gain, (d) Gilbert cell.
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where A and A; are controlled by V,,,,,1 and V,.,,,2, respectively. The actual implementation
is in fact quite simple: since V,,,; = Rplp; — Rplp; and V,us = Rplps — Rplps, we
have Voui + Vowrz = Rp(Ip1 + Ips) — Rp(Ip2 + I p3). Thus, rather than add V,,,,; and V2,
we simply short the corresponding drain terminals to'sum the currents and subsequently
generate the output voltage [Fig. 4.36(b)]. Note that if /; = 0, then V,,; = +g,Rp Vi, and
if Iy = 0, then V,,,, = —g,, RpV,,,. For I} = I, the gain drops to zero.

In the circuit of Fig. 4.36(b), V.on1 and V,,,,» must vary I; and I» in opposite directions
such that the gain of the amplifier changes monotonically. What circuit can vary two currents
in opposite directions? A differential pair provides such a characteristic, leading to the
topology of Fig. 4.36(c). Note that for a large |V.onr1 — Vionral, all of the tail current is
steered to one of the top differential pairs and the gain from V;, to V,,, is at its most positive
or most negative value. For V,o,,) = V,on2, the gain is zero. For simplicity, we redraw the
circuit as shown in Fig. 4.36(d). Called the “Gilbert cell” [2], this circuit is widely used in
many analog and communication systems. In a typical design, M, -M, are identical and so
are Ms and M.

Example 4.8

Explain why the Gilbert cell can operate as an analog voltage muitiplier.

Solutien

Since the gain of the circuit is a function of Veony = Vipnri — Veonsz, We have Vo, = Vig - F(Veni).

Expanding f(Vesp,) in a Taylor series and retaining only the first-order term, & V., we have V,,; =
& Vi Veone - Thus, the circuit can multiply voltages. This property accompanies any voltage-controlled
variable-gain amplifier.

As with a cascode structure, the Gilbert cell consumes a greater voltage headroom than
a simple differential pair does. This is because the two differential pairs M;-M, and Ms-M,
are “stacked” on top of the control differential pair. To understand this point, suppose the
differential input, V;,, in Fig. 4.36(d) has a common-mode level V¢ i,. Then, V4 = Vg =
Vem.in— Vos1, where M -M, are assumed identical. For Ms and M to operate in saturation,
the CM level of Veon, Viour con:, must be such that Vear cone < Veamrin — Vost + Vryses.
Since V51 — Virys.e is roughly equal to one overdrive voltage, we conclude that the control
CM level must be lower than the input CM level by at least this value.

In arriving at the Gilbert cell topology, we opted to vary the gain of cach differential
pair through its tail current, thereby applying the control voltage to the bottom pair and the
input signal to the top pairs. Interestingly, the order can be exchanged while still obtaining
a VGA. Illustrated in Fig. 4.37(a), the idea is to convert the input voltage to current by
means of Ms and Mg and route the current through M-M, to the output nodes. If, as
shown in Fig. 4.37(b), V... is very positive, then only M, and M; are on and V,,, =
gms.6Rp Vin. Similarly, if V., is very negative [Fig. 4.37(c)], then only M5 and M, are on
and V,,; = —gmseRpVin. If the differential control voltage is zero, then V,,, = 0. The
input differential pair may incorporate degeneration to provide a linear voltage-to-current
conversion.
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Figure 4.37 (a) Gilbert cell sensing the input voltage by the bottom differential pair, (b) signal path for very
positive Vepn,, (c) signal path for very negative Vo, .

Problems - , .

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vop = 3 V'where necessary. All device dimensions are effective values and in microns.

4.1.

4.2,
4.3.
44.

4.5.

4.6.

4.7,
4.8.

5

Suppose the total capacitance between adjacent lines in Fig. 4.2 is 10 {F and the capac1tance

from the drains of M| and M> to ground is 100 fF.

(a) What is the amplitude of the glitches in the analog output in Fig. 4. 2(a) for a clock swmg
of 3V? _ -

(b) If in Fig. 4.2(b), the capacitance between L, and L, is 10% less than that between‘ L1 and
L3, what is the amplitude of the glitches in the drfferentlal analog output for a clock swmg
of 3V?

Sketch the small-signal differential voltage gain of the circuit shown in Fig. 4.8(a) if Vpp varies
from 0 to 3 V. Assume (W/L)1_3 = 50/0.5, Vip.csr = 1.3V, and V, = 1 V,

Construct the plots of Fig. 4.8(c) for a differential pair using PMOS transistors. -

In the circuit of Fig. 4.10, (W/L)1 2 = 50/0.5 and /55 = 0.5 mA.

(a) What is the maximum allowable output voltage swing if Vi, cpr = 1.2 V?

(b) What is the voltage gain under this condition? :

A differential pair uses input NMOS devices with W/L = 50/0.5 and a tail current of 1 mA.
(a) What is the equilibrium overdrive voltage of each transmtor"’

(b) How is the tail current shared between the two sides if V,nl — Vinz = 50 mA?

(¢) What is the equivalent G,, under this condition?

(d) For what value of Vi) ~ V;,2 does the G, drop by 10%? By 90%?

Repeat Problem 4.5 with W/L = 25/0.5 and compare the results.

Repeat Problem 4.5 with a tail current of 2 mA and compare the results.

Sketch Ipy and I pj in Fig. 4.17 versus V;,,; — Vi,o. For what vatue of Vint——Vin2 are the two
currents equal?
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4.9,

4.10.

4.11.

412,

4.13.
4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.
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Consider the circuit of Fig. 4.28, assuming (W/L); 2 = 50/0.5 and Rp = 2 k§2. Suppose

Rss represents the output impedance of an NMOS current source with (W/L)ss = 50/0.5

and a drain current of 1 mA. The input signal consists of Vi, py = 10 mVyp and Viycm =

1.5 V +V,(r), where V() denotes noise with a peak-to-peak amplitude of 100 mV. Assume

AR/R =0.5%.

(a) Calculate the output differential signal-to-noise ratio, defined as the signal amplitude di-
vided by the noise amplitude.

{b) Calculate the CMRR.

Repeat Problem 4.9 if AR = 0 but M 1 and M suffer from a threshold voltage mismatch of 1

mV.

Suppose the differential pair of Fig. 4.32(a) is designed with (W/L), 2 = 50/0.5, (W/L)3 4 =

10/0.5,and Igs = 0.5mA. Also, Iss is implemented with an NMOS device having (W/L)sg =

50/0.5.

(a) What are the minimum and maximum allowable input CM levels if the differential swings
at the input and output are smali?

(b) For Vi, cm = 1.2V, sketch the small-signal differential voltage gain as Vpp goes from 0
to3 V.

In Problem 4.11, suppose M; and M> have a threshold voltage mismatch of 1 mV. What is the
CMRR?

In Problem 4.11, suppose W3 = 10 um but Wy = 11 zm. Calculate the CMRR.

For the differential pairs of Fig. 4.32(a) and (b), calculate the differential voltage gain if
Iss = 1 mA, (W/L); 2> = 50/0.5, and (W/L)3 4 = 50/1. What is the minimum allowable
input CM level if Isg requires at least 0.4 V across it? Using this value for Vin.cm, calculate
the maximum output voltage swing in each case.

In the circuit of Fig. 4.33, assume Iss = 1 mA and W/L = 50/0.5 for all of the transistors.
(a) Determine the voltage gain.

{b) Calculate Vj, such that Ips = Ipg = 0.8(Is5/2).

(¢) If Isg requires aminimum voltage of 0.4 V, what is the maximum differential output swing?

Assuming all of the circuits shown in Fig. 4.38 are symmetric, sketch V, as (a) Viy and Vi
vary differentially from zero to Vpp, and (b) Vi and V; 2 are equal and they vary from zero
to Vpp.

Assuming all of the circuits shown in Fig. 4.39 are symmetric, sketch V,,; as (a) Vi,; and Vina
vary differentially from zero to Vpp, and (b) V;,1 and V;,; are equal and they vary from zero
to Vpp. '

Assuming all of the transistors in the circuits of Figs. 4.38 and 4.39 are saturated and A # 0,
calculate the small-signal differential voltage gain of each circuit.

Consider the circuit shown in Fig. 4.40.

(a) Sketch Vg as Vi) and Vg vary differentially from zero to Vpp. -

{b) If A = 0, obtain an expression for the voltage gain. What is the voltage gain if W3 4 =
0.8Ws¢?

For the circuit shown in Fig. 441,
{(a) Sketch Vyyr, Vx, and Vy as Vi1 and V;py vary differentially from zero to Vpp.
(b) Calculate the small-signal differential voltage gain.

Assuming no symmetry in the circuit of Fig. 4,42 and L{sing no equivalent circuits, calculate
the small-signal voltage gain (V,u}/(Vin1 — Vig2) if A = 0and y # 0.
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Figure 4.38

Due to a manufacturing defect, a large parasitic resistance has appeared between the drain and
source terminals of M) in Fig. 4.43. Assuming A = y = 0, calculate the small-signal gain,
common-mode gain, and CMRR.

Due to a manufacturing defect, a large parasitic resistance has appeared between the drains of
M, and My in the circuit of Fig. 4.44. Assuming A = y = 0, calculate the small-signal gain,
common-mode gain, and CMRR. ) .
In the circuit of Fig. 4.45, all of the transistors have a W/L of 50/0.5 and M3 and M, are
to operate in deep triode region with an on-resistance of 2 k2. Assuming Ips = 20 uA and
A = y = 0, calculate the input common-mode level that yields such resistance. Sketch V3
and Vo as Vi and Vo vary differentially from 0 to Vpp.

In the circuit of Fig. 4.32(b), (W/L)1—4 = 50/0.5 and Iss = 1 mA.

(a) What is the small-signal differential gain?

(b) For Vi, cpy = 1.5V, what is the maximum allowable output voltage swing?

In the circuit of Fig. 4.33, assume M5 and Mg have a small threshold voltage mismatch of AV
and Isg has an output impedance Rgs. Calculate the CMRR.

13t
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Figure 4.44

< Figure 4.45
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Chapter 5

Passive and Active Current Mirrors

Our study of single-stage and differential amplifiers in Chapters 3 and 4 points to the wide
usage of current sources. In these circuits current sources act as a large resistor without
consuming excessive voltage headroom. We also noted that MOS devices operating in
saturation can act as a current seurce.

Current sources find other applications in analog design as well. For example, some
digital-to-analog (D/A) converters employ an array of current sources to produce an analog
output proportional to the digital input. Also, current sources, in conjunction with “current
mirrors,” can perform useful functions on-analog signals.

This chapter deals with the design of current mirrors as both bias elements and signal
processing components. Following a review of basic current mirrors, we study cascode
mirror operation. Next, we analyze active current mirrors and describe the properties of
differential pairs using such circuits as loads.

5.1 Basic Current Mirrors

Fig. 5.1 illustrates two examples where a current source proves useful. From our study in
Chapter 2, recall that the output resistance and capacitance and the voltage headroom of a
current source trade with the magnitude of the output current. In addition to these issues,
several other aspects of current sources are important: supply, process, and temperature
dependence, output noise current, and matching with other current sources. We postpone
noise and matching considerations to Chapters 7 and 13, respectively.

How should a MOSFET be biased so as to operate as a stable current source? To gain
a better view of the issues, let us consider the simple resistive biasing shown in Fig. 5.2.
Assuming M is in saturation, we can write

2

I W R,
[ou o nCnr_ —V -V . 5.1
¢ % i Cor 7 (Rl R, PP TH) (5.1)

This expression reveals various dependencies of /,,, upon the supply, process, and tem-
perature. The overdrive voltage is a function of Vp, and Vi the threshold voliage may
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(a) (b

Figure 5.1 Applications of current sources.

Voo

= Figure5.2 Definition of current by re-
= sistive divider.

vary by 100 mV from wafer to wafer. Furthermore, both w,, and Vg exhibit temperature
dependence. Thus, I, is poorly defined. The issue becomes more severe as the device is
biased with a smaller overdrive voltage, e.g., to consume less headroom, With a nominal
overdrive of, say, 200 mV, a 50-mV error in Vg results in a 44% error in the output current.

It is important to note that the above process and temperature dependencies exist even
if the gate voltage is not a function of the supply voltage. In other words, if the gate-source
voltage of a MOSFET is precisely defined, then its drain current is not! For this reason, we
must seek other methods of biasing MOS current sources.

The design of current sources in analog circuits is based on “copying” currents from a
reference, with the assumption that one precisely-defined current source is already available.
While this method may appear to entail an endless cycle, it is carried out as illustrated in
Fig. 5.3. A relatively complex circuit-—sometimes requiring external adjustments—is used

Voo

Reference

Generator
! REF@---

Figure 5.3 Use of a reference to gen-
= _ erate various currents.
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to generate a stable reference current, [z, which is then copied to many current sources
in the system. We study the copying operation here and the reference generator circuit in
Chapter 11.

How do we generate copies of a reference current? For example, in Fig. 5.4, how do
we guarantee I, = Igrgpr? For a MOSFET, if Ip = f(Vgs), where f(-) denotes the

VDD

I perF

! out
Copy
Circuit

T = Figure 5.4 Concepiual means of

- copying currents.

functionality of 7p versus Vgg, then Vs = £~ 1(Ip). That is, if a transistor is biased at
Iger, then it produces Vgs = f~'(Irsr) [Fig. 5.5(a)]. Thus, if this voltage is applied
to the gate and source terminals of a second MOSFET, the resulting current is f,,, =
ff WUggr) = Irer [Fig. 5.5(b)]. From another pomt of view, two identical MOS devices
that have equal gate-source voltages and operate in saturation carry equal currents (if A = 0).

(a) . ®

Figure 5.5 (a) Diode-connected device providing inverse
function, (b) basic current mirror.

The structure consisting of M, and M, in Fig. 5.5(b) is called a “current mirror” In the
general case, the devices need not be identical. Neglecting channel- length modulatlon, we
can write

1
Trer = ZtnCox ( ) Vs — Vru)? (5.2)

1

IEEIES

1
To = EIJ-nCox (

) (Vos — Vrw)?, (5.3)
, .
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obtaining

_W/Llh,

our = (—W/—L)‘l' REF- (54)

The key property of this topology is that it allows precise copying of the current with no
dependence on process and temperature. The ratio of J,,; and IrgF is given by the ratio of
device dimensions, a quantity that can be controlled with reasonable accuracy.

Example 5.1

In Fig. 5.6, find the drain current of M4 if all of the transistors are in saturation.

Voo
lee Mo F—Em,
fowt
M, |——<L——-| M,
H = Figure 5.6

Solution

We have Ipy = Irgr[(W/L)2/(W/L)11. Also, |Ip3] = |Ip2| and Ips = Ip3[(W/L)a/(W/L)].
Thus, {Ips| = @B Irer, where o = (W/L)/(W/L) and § = (W/L)4/(W/L)3. Proper choice of «
and B can establish large or small ratios between Ipg and Iz g 7. Forexample, & = B = Syields amag-
nification factor of 25. Similarly, @ = 8 = 0.2 can be utilized to generate asmall, well-defined current.

Current mirrors find wide application in analog circuits. Fig. 5.7 illustrates a typical case,
where a differential pair is biased by means of an NMOS mirror for the tail current source
and a PMOS mirror for the load current sources. The device dimensions shown establish a

"“| Ms::"—l I_“:Ms f"(ﬂ)P

0.4ly 0.411

-
M

Figure 5.7 Current mirrors used to bias a ditferential amplifier.
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drain current of 0.4/ in M5 and M, reducing the drain current of M3 and M, and hence
increasing the gain.

Current mirrors usually employ the same length for all of the transistors so as to minimize
errors due to the side-diffusion of the source and drain areas (L p). For example, in Fig. 5.7,
the NMOS current sources must have the same channel length ‘as Mj. This is because if,
Larawn 13, say,doubled, then L,¢r = L4y 40,—2L pisnot. Furthermore, the threshold voltage -
of short-channel devices exhibits some dependence on the channel length (Chapter 16).
Thus, current ratioing is achieved by only scaling the width of transistors.! )

We should also mention that current mirrors can process signals as well. In Fig. 5.5(b),
for example, if g F increases by A1, then I,,, increases by AI(W/L),/(W/L),. That is,
the circuit amplifies the small-signal current if (W/L);/(W/L); > "1 (but at the cost of
proportional multiplication of the bias current). : '

Example 5.2

Calculate the small-signal voltage gain of the circuit shown in Fig. 5.8.

M,

Figure5.8

Solution

The small-signal drain current of M, is‘ equal t0 gm1 Vi, Since Ipy = Ipj and Ip3 = Ipa(W/L)3/
(W/LY,, the small-signal drain current of M3 is equal to gy Vin(W/L)3/(W/ L), yielding a voltage
gain of g, RL(W/L)3 /(W/L),.

5.2 Cascode Current Mirrors

In our discussion of current mirrors thus far, we have neglected channel length modulation.
In practice, this effect results in significant error in copying currents, especially if minimum-
length transistors are used so as to minimize the width and hence the output capacitance of
the current source. For the simple mirror of Fig. 5.5(b), we can write

1 w
Ip) = EMnCox (z) (Vos — Vra)*(1 + AVpsi) (5.5
I

TAs explained in Chapter 18, the widths are actually scaled by placing multiple unit transistors in paraliei
rather than making a device wider. .
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1 i
Ipy = iﬂvncox (—f) (Vas — Vra)*(1 + AVbs2), (5.6)
2

and hence

I, _ (W/Ly, 1+4+4Vps 7
Ipi  (W/Ly 1+AVpsi : )

While Vps; = Vgs1 = Ves2, Vps2 may not equal Visa because of the circuitry fed by M>.
For example, in Fig. 5.7, the potential at node P is determined by the input common-mode
level and the gate-source voltage of M) and M, and it may not equal Vy.

_ In order to suppress the effect of channel-length modulation, a cascode current source
can be used. As shown in Fig. 5.9(a), if V}, is chosen such that Vy = Vy, then I, closely
tracks I r. This is because, as described in conjunction with Fig. 3.61, the cascode device
“shields” the bottom transistor from variations in Vp. With the aid of Fig. 3.23, the reader
can prove that AVy ~ AVp/[(gm3 + gmp3)ro3]. Thus, we say that Vy remains close to
Vy and hence Ip; & Ip; with high accuracy. Such accuracy is obtained at the cost of the
voltage headroom consumed by M. Note that, while L, must be equal to L, the length of
M need not be equal to L; and L.

Voo Voo
v P IRer I'rer P
oo v ! out N ! oul
Irer Vo e M5 MoedH— Mo N—l M3
X Y X VGSO"' VX X Y
M, I'_‘L_'I M, M, F l . M, l"‘“-_l M,
(@) (b) ©

Figure5.9 (a)Cascode currentsource, (b) modification of mirror circuit to generate the cascode
bias voltage, (¢) cascode current mirror.

How do we generate Vj, in Fig. 5.9(a)? Since the objective is to ensure Vy = Vy, we must
guarantee Vj, — Vgs3 = Vy or V, = Vgsa + Vy. This result suggests that if a gate-source
voltage is added to Vi, the required value of Vj, can be obtained. Depicted in Fig. 5.9(b), the
idea is to place another diode-connected device, My, in series with M, thereby generating
a voltage Vy = Vgso + Vx. Proper choice of the dimensions of My with respect to those

. of M3 yields Vigso = Vass- Connectingnode N to the gate of M, as shown in Fig. 5.9(c),
we have Vgso + Vx = Vgss + Vy. Thus, if (W/L)3/(W/L) = (W/L)2/(W/L), then

Vis3 = Vgso and Vy = Vy. Note that this result holds even if M, and M3 suffer from body
effect.
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e

Example 5.3

In Fig. 5.10, sketch Vy and Vy as a function of IreF. If Iz F requites 0.5 V to operate as a current
source, what is its maximum value?

‘ Voo ‘ ‘

I'ner VysVy :

Jout ,
Mo FLT"l M3 .
X Y VrHy
M, FL—l M, - ':
REF
(a)

®)

Figure 5.10

Solution”

Since M, and M3 are properly ratioed with respect to M1 and My, we have Vir = Vy ~
V2IREF/UnCox (W/L)11 + Vr 1. The behavior is plotted in Fig. 5.10(b).
To find the maximum value of IggF, we note that ‘

Vv = Vgso + Vesi (5.8)

f21 L L
= ,u,,RCE,,: [\/(W)o + \/(W)1 :| + Vrao + Vrai- (5.9)
21 Ly - [/L 3
Vop — \/“"Ré: [‘/(W)o + (;';V-)l] —Vrao— Vra1 =05 V. (510

unCox (Vpp — 0.5V — Vrpgo — VTHl)Z_ 3
2 (VLW + LW

Thus,

and hence

IREF max = (5.11)

While operating as a current source with high output impedance and accurate value, the
topology of Fig. 5.9(c) nonetheless consumes substantial voltage headroom. For simplicity,
let us neglect the body effect and assume all of the transistors are identical. Then, the .
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minimum allowable voltage at node P is equal to

Vv — Vryg = Voso + Vas1 — Vru (5.12)
= (Vgso = Vru) + (Vgs1 — Vra) + Vra, (5.13)

i.e., two overdrive voltages plus one threshold voltage. How does this value compare with
that in Fig. 5.9(a) if V, could be chosen more arbitrarily? As shown in Fig. 3.51, V,, could
be so low that the minimum allowable voltage at P is merely two overdrive voltages. Thus,
the cascode mirror of Fig. 5.9(c) “wastes” one threshold voltage in the headroom. This is
because Vpsa = Viso, whereas Vg, could be as low as Vggy — Vry while maintaining
M5 in saturation. ‘

Fig. 5.11 summarizes our discussion. In Fig. 5.11(a), V, is chosen to allow the lowest
possible value of Vp but the output current does not accurately track Tz r because M, and
M, sustain unequal drain-source voltages. In Fig. 5.11(b), higher accuracy is achieved but
the minimum level at P is higher by one threshold voltage.

P
Voo My out# IRerF
. +
! Rer Vo Vas—VrH
X ‘ M, Yy -~
+
My - Vas- vy
Vos -
(a)

Figure 5.11 (a) Cascode cuirent source with minimum headroom voltage, (b) head-
room consumed by a cascode mirror.

Before resolving this issue, it is instructive to examine the large-signal behavior of a
cascode current source.

Example 54

In Fig. 5.12(a), assuming all of the transistors are identical, sketch Iy and Vg as Vy drops from a
large positive value.

Solution

For Vx = Vy — Vrpy, both M5 and M3 are in saturation, Iy = Ipgp and Vg = V4. As Vy drops,
which transistor enters the triode region first, M3 or M2? Suppose M enters the triode region before
M3 does. For this to occur, Vpg, must drop and, since Vg3, is constant, so must /py. This means
VG 53 increases while 7p3 decreases, which is not possible if M3 is still in saturation. Thus, M3 enters
the triode region first.

As Vy falls below Vv — Vr g, M3 enters the triode region, requiring a greater gate-source overdrive
to carry the same current. Thus, as shown in Fig. 5.12(b), V begins to drop, causing /p; and hence
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f
W-Vrus vy

Va-VrH2 +Vps3
(b) ()]
‘ Figure 5.12

Ix to decrease slightly. As Vx and Vp decrease further, eventually we have Vg < V4 — Vg, and M;
enters the triode region. At this point, Ips begins to drop sharply. For Vx = 0, Iy = 0, and M and
M3 operate in deep triode region. Note that as Vy drops below Viy — Vr g3, the output impedance of
the cascode falls rapidly because g,,3 degrades in the triode region.

In order to eliminate the accuracy-headroom trade-off described above, we first study the
modification depicted in Fig. 5.13(a). Note that this circuit is in fact a cascode topology with
its output shorted to its input. How can we choose V), so that both M and M are in saturation?
We must have V, — Vrgs < Vy(= Vgg1) for M; to be saturated and Vigsy — Vg <

Va( =V, — Vgso) for M to be saturated. Thus,
Vesz + (Vas1 — Vra) < Vi < Vgs1 + Vrm. (5.14)

A solution exists if Vgs2 + (Vgs1 ~ Vral) < Vos1 + Vrwo. ie, if Vaso — Ve < Ve,
We must therefore size M, such that its overdrive voltage remains less than one threshold
voltage.

Now consider the circuit shown in Fig. 5.13(b), where all of the transistors are in
saturation and proper ratioing ensures that Vgso = Vgsa. If Vi = Voo + (Vgs1 —-
Vru) = Vgsa + (Vgss — Vrga), then the cascode current source M3-My consumes min-
imum headroom (the overdrive of M5 plus that of M,;) while M, and M; sustain equal

o
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Voo
IRer
X I out
A B
—A M, My
(a) (b)
Figure 5.13 Modification of cascode rmrror for low-voltage

operation,

drain-source voltages, allowing accurate copying of Igpr. We call this a “low-voltage
cascode.”

We must still generate V,,. For minimal voltage headroom consumption, Vs = Vgg —
Vry: and hence V, must be equal to (or slightly greater than) Vgsz + (Vgsi1 — Vrri).
Fig. 5.14(a) depicts an example, where Ms generates Vgss = Vgs2 and Me together with
Ry produces Vpss = Vgsg — Rply &= Vg1 — V1. Some inaccuracy nevertheless arises
because M5 does not suffer from body effect whereas M, does. Also, the magnitude of R/,
is not well-controlled.

Voo
ég Iy

=R, X
mg Vo : rz
Mg o,
) (a) (b)

Figure 5.14 Generation of gate voltage Vj, for cascode mirrors.

An alternative circuit is shown in Fig. 5.14(b), where the diode-connected transistor
M5 has a large W/L so that Vgg7 =~ Vrys. That is, Vpgs =~ Vese — Vrary and hence
Vo = Viss + Vose — Vrur. While requiring no resistors, this circuit nonetheless suffers
from similar errors due to body effect. Some margin is therefore necessary to ensure M;
and M, remain in saturation.
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'Figure 5.15 Low-voltage cascode us-
- = ing a source follower ievel shifter.

We should mention that low-voltage cascodes can also be biased using source followers.
Shown in Fig. 5.15, the idea is to shift the gate voltage of M3 down with respect to Vy by
interposing a source follower. If My is biased at a very low current density, Ip /(W /L), then
its gate-source voltage is approximately equal to Vrgs, ie., Vi & Vy — Vg, and

Ve = Vgs1 + Vgoso — Vrus — Vess (5.15)
= Vis1 — Vras, (5.16)

implying that M, is at the edge of the triode region. In this topology, however, Vpsa # Vpsi,
introducing substantial mismatch. Also, if the body effect is considered for My, Mg, and
M, it is difficult to guarantee that M, operates in saturation. We should mention that, in
addition to reducing the systematic mismatch due to channel-length modulation, the cascode
structure also provides a high output impedance,

5.3 Active Current Mirrors

As mentioned earlier and exemplified by the circuit of Fig. 5.8, current mirrors can‘also
process signals, i.c., operate as “active” elements. Particularly useful is a type of mirror
topology used in conjunction with differential pairs. In this section, we study this circuit
and its properties.

First, let us examine the circuit shown in Fig. 5.16, where M; and M, are identical.
Neglecting channel-length modulation, we have I, = I;,, i.e., with the direction shown
for I;, and I, the circuit performs no inversion. From the small-signal point of view, if
1;, increases by A, so does I,,,.

Now consider the differential amplifier of Fig. 5.17(a), where a current source in a mirror
arrangement serves as the load and the output is single-ended. What is the small-signal gain,
Ay = Vour [ Vin, of this circuit? We calculate A, using two different approaches,2 assuming
y = 0 for simplicity.

2Note that, owing to the lack of symmetry, the half-circuit concept cannot be applied here.
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Figure 5.16 Current mirror process-
ing a signal.

(b) ©

Figure 5.17 (a) Differential pair with current-source load, (b} circuit for cal-
culation of G, (c) circuit for calculation of Rgy;:.

Writing |A,| = GnRo. and recognizing from Fig. 5.17(b) that G, = Loy / Vin =
(8m1Vin/2)/ Vin = gm1/2, we simply need to compute Roy;. As illustrated in Fig. 5.17(c¢), for
this calculation, M- is degenerated by the source output impedance, 1/g1, of M, thereby
exhibiting an output impedance equal to (1 + gm2ro2)(1/8m1,2) + 702 = 2ro2 +1 /8m =
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2ro2. Thus, Ry ~ (2rp2)lros, and
8m1
[Ay| ~ —2-[(2r02)llr04]- (5.17)

Interestingly, if ros — oo, then A, — gn1roz. This can be explained by the second
- approach.

.
-
-

=roq -

+— Vour

Figure 5.18 Circuit for calculation of
- Ve / Vin.

In our second approach, we calculate Vp/V;, and V,,,/ Ve and multiply the results to
obtain Vo, / V;,. With the aid of Fig. 5.18,

Ve
_—=— 5.1
v , (5.18)

where R,, denotes the resistance seen looking into the source of M,. Since the drain of M,
is terminated by a relatively large resistance, g4, the value of R.; must be obtained from

Eq. (3.110):
1
R~ — + % (5.19)
Bm2 8m2ro2
1 ros
=— |14 —]. (5.20)
_gmz ro2 .
It follows that
v 1t
P 02
Vo= T Vos (5.21)
in 2 —
roz

Note thatif ros — 0, Vp/V;, — 1/2 and if rp4 — 00, then Vp/ Vi — 1.
We now calculate V,,;/ Vp while taking r o5 into account. From Fig. 5.19,

Vour _ 1+ gmaror
Ve 14702
‘ Toa

(5.22)
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Figure 5.19 Circuit for calculation of
Vour/ Vp. )

~ gm2r 02
~ To1"
14—
ro4

(5.23)

From (5.21) and (5.23), we have

ro4

1+ 2
Vour _ roz  &mro:
T Toq ro2
Vie 242 142
ron ro4

(5.24)

8maro2ros
= — 5.25
~ 2roatros ©-29)

= g—’;Z[(Zfoz)llf‘oa]- (5.26)

In the circuit of Fig. 5.17, the small-signal drain current of M, is “wasted.” As concep-
tually shown in Fig. 5.20(a), it is desirable to utilize this current with proper polarity at
the output. This can be accomplished as depicted in Fig. 5.20(b), where M; and M, are
identical. To see how M3 enhances the gain, suppose the gate voltage of M, increases by
a small amount, increasing Ip; by Al and decreasing Ip; by Al. Since [Ip3] and hence
|Ip4| also increase by Al, we observe that the output voltage tends to increase through two
mechanisms: the drain current of M, drops and the drain current of M, rises.® In contrast
to the circuit of Fig. 5.17, here M, assists M, with the voltage change at the output. This
configuration is called a differential pair with active current mirror.* An important property
of this circuit is that it converts a differential input to a single-ended output.

3The reader may wonder how this is possible if KCL requires that Ipz = |Ipa). The explanation in Example
3.2 clarifies this issue.

1t is also called a differential pair with active load.
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&

Figure 5.20 (a) Concept of combining the drain currents of M) and M3, (b) realization
of (a).

5.3.1 Large-Signal Analysis

Let us study the large-signal behavior of the circuit. To this end, we replace the ideal tail
current source by a MOSFET as shown in Fig. 5.21(a). If V;,; is much more negative than
Vina, My is off and so are M3 and M,. Since no current can flow from Vpp, both M; and M5
operate in deep triode region, carrying zero current. Thus, Vo, = 0.3 As Vi, approaches
Vins, M| turns on, drawing part of Ips from M; and turning M4 on. The output voltage then
depends on the difference between Ip4 and Ip;. For a small difference between Vin and
Vin2, both M, and M, are saturated, providing a high gain [Fig. 5.21(b)]. As V;n1 becomes
more positive than Vi,a, Ip1, |Ips|, and |Ip4| increase and Ip; decreases, eventually driving
M, into the triode region. If Vi,; — Vinz is sufficiently large, M, turns off, M, operates in
deep triode region with zero current, and V,,; = Vpp. Note that if Vig1 > VF + Vrg, then
M, enters the triode region.

The choice of the input common-mode voltage of the circuit is also important. For M to
be saturated, the output voltage cannot be less than Vi, cu — Vrg. Thus, to allow maximum
output swings, the input CM level must be as low as possible, with the minimum given by
Vesi.2 4 Vpss.min. The direct relationship between the input CM level and the output swing
in this circuit is a critical drawback.

What is the output voltage of the circuit when V;,; = V;,2? With perfect symmetry,
Vour = Vi = Vpp — 1Vgssl. This can be proved by contradiction as well. Suppose, for
example, that V,,,, < Vr. Then, due to channel-length modulation, M| must carry a greater
current than M, (and M, a greater current than M3). In other words, the total current throu gh
M| is greater than half of I5s. But this means that the total current through M3 also exceeds
Iss/2, violating the assumption that M, carries more current than M. In reality, however,
asymmetries in the circuit may result in a large deviation in V,,,, possibly driving M> or
My into the triode region. For example, if the threshold voltage of M is slightly smaller

SIf Vi s greater than one threshold voltage with respect to ground, Ms may draw a small current from M,
raising Vy, slightly.

-
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High Gain
Region

Vini=VYin2

(®)

Figure5.21 (a)Differential pair with active current mirror and réalistic current source,
(b) large-signal input-output characteristic.

than that of M, the former carries a greater current than the latter even with Vi,; = Vi,
causing V3, to drop significantly. For this reason, the circuit is rarely used in an open-loop
configuration to amplify small signals.

Example 5.5

Assuming perfect symmetry, sketch the output voltage of the circuit in Fig. 5..22(a) as Vpp varies
from 3 V to zero. Assume that for Vpp = 3 V all of the devices are saturated.

Voo
F Vour &
oV,
out +3 V—lVGsal
+1.5Vo—| - +15v
v, M - :
ool M5 Ve | +3V Vpp
(a) (b)

) Figure 5.22

Solution ‘

For Vpp = 3 V, symmetry requires that Vouy = VF. As Vpp drops, so do Vr and Vg, with a
slope close to unity {Fig. 5.22(b)]. As Vi and V,y, fall below +1.5V —Vrgy, M) and M enter the
triode region, but their drain currents are constant if Ms is saturated. Further decrease in Vpp and
hence Vp and V,,, causes Vgs; and Vo to increase, eventually driving Ms into the triode region.
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Thereafter, the bias current of all of the transistors drops, lowering the rate at which V,,; decreases.
For Vpp < |Vrupl, we have V,,, = 0.

5.3.2 Small-Signal Analysis

We now analyze the small-signal properties of the circuit shown in Fig. 5:21(a), assuming
y = 0 for simplicity. Can we apply the half-circuit concept to catculate the differential gain
here? As,illustrated in Fig. 5.23, with small differential inputs, the voltage swings at nodes

Voo

__HErMA

jnf‘/\

Figure 5.23 Asymmetric swings in
a differential pair with active current
- Iirror.

X and Y are vastly different. This is because the diode-connected device M; yields a much
lower voltage gain from the input to node X than that from the input to node Y. As a result,
the effects of Vx and Vi at node P (through r ) and rg,, respectively) do not cancel each
other and this node cannot necessarily be considered a virtual ground ‘We compute the gain
using two different approaches.
In the first approach, we write |A,| = G, R, and obtain G, and R,,, separately.
"F\or the calculation of G, consider Fig. 5.24(a). The circuit is not quite symmetric but

(b

Figure 5.24 (a) Circuit for calculation of G, (b) circuit of (a) with node P grounded.

“ \



152

Chap. 5 Passive and Active Current Mirrors

because the impedance seen at node X is relatively low and the swing at this node small,
the current returning from X to P through ro; is negligible and node P can be viewed
as a virtual gI'OUIld [Flg 524(b)] Thus, I = |ID3|‘ = |11)4| = g,,,l,ZVi,,/Z and
Ipy = —gm12Vin/2, yielding I, = —gm12Vin and hence |G| = g2 Note that, by
virtue of active current mirror operation, this value is twice the transconductance of the

circuit of Fig. 5.17(b).

Calculation of R,,, is less straightforward. We may surmise that the output resistance of
this circuit is equal to that of the circuit in Fig. 5.17(c), namely, (2r p2)llr p4. In reality, how-
ever, the active mirror operation yields a different value because when a voltage is applied to

~ the output to measure R,,,, the gate voltage of M, does not remain constant'Rather than draw

the entire equivalent circuit, we observe that, for small signals, I5s is open {Fig. 5.25(a)],
any current flowing into M; must flow cut of M>, and the role of the two transistors can be

dalet ]
gma 03 = IJ
+— My
Ix
Ryy
m +
2rg;,2 A Vx
@ (b

Figure 5.25 (a) Circuit for calculating R,,;, (b) substitution of M) and M, by a resistor.

represented by a resistor Rxy = 2ro,2 [Fig. 5.25(b)]. As a consequence, the current drawn
from Vy by Ryy is mirrored by M3 into M4 with unity gain. We can therefore write:
1% V
Ix =2 X + X (5.27)

1 ros
2ro12 + —||ro3
: 8m3

where the factor 2 accounts for current copying action of M; and M,. For 2rp;2 >
(1/8gm3)llr o3, we have

Rout =~ r02"r04- (528)

The overall voltage gain is thus equal to |A,| = GuRoy = g,,,l 2(roallros), somewhat
higher than that of the circuit in Fig. 5.17(a). :

The second approach to calculating the voltage gain of the circuit is illustrated in Fig. 5.26,
providing more insight into the operation. We substitute the input source and M; and M,
by a Thevenin equivalent. As illustrated in Fig. 5.27(2), for the Thevenin voltage calcula-
tion, node P is a virtual ground because of symmetry, and a half-circuit equivalent yields
Veq = 8&m1,2701,2Vin. Moreover, the output resistance is R, = 2r¢;2. From Fig. 5.27(b),
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@) ()

Figure 5.27 (a) Calculation of the Thevenin equivalent voltage, (b) simplified circuit.

we note that the current through R, is

Vour — Em1,2701,2Vin

Iyy =

(5.29)

1
2ro12 + —
m3

ros

The fraction of this current that flows through 1/g,,3 is mirrored into M, with unity gain.

That is,
2Vaut - gml,zlrm,zVin ' _:013/ _ Vour . (5.30)
r r ,
2rora + —llros % &m3 04
8m3
- Assuming 2rg1 2 3 (1/8m3,4)!I7 03,4, We obtain
Vour _ gm12r'03.4701.2 (5.31)

Vin ro1,z +ro34 _
= gm1,2(ro1,2llro3.4)- l (5.32)
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Example 5.6

Calculate the small-signal voltage gain of the circuit shown in Fig. 5.28. How does the performance
of this circuit compare with that of a differential pair with active mirror?

Voo
Vo o~ M,
Vout
Vin O—' M‘
H Figure 5.28

Solution

We have A, = gni(ro1llron), similar to the value derived above. For given device dimensions,
this circuit requires half of the bias current to achieve the same gain as’a differential pair. However,
advantages of differential operation often outweigh the power penalty.

The above calculations of the gain have assumed an idea) tail current source. In re-
ality, the output impedance of this source affects the gain, but the error with respect to
8mi1,2(ro1,2llrp3,4) is relatively small.

5.3.3 Common-Mode Properties

Let us now study the common-mode properties of the differential pair with active current
mirror. We assume y = 0 for simplicity and leave a more general analysis including body
effect for the reader. Our objective is to predict the consequences of a finite output impedance
in the tail current source. As depicted in Fig. 5.29, a change in the input CM level leads to

Vin,CM o—4

Figure 5.29 Differential pair with ac-
tive current mirror sensing a common-
= mode change.

a change in the bias current of all of the transistors. How do we define the common-mode
gain here? Recall from Chapter 4 that the CM gain represents the corruption of the output
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signal of interest due to variations of the input CM level. In the circuits of Chapter 3, the
output signal was sensed differentially and hence the CM gain was defined in terms of the
output differential component generated by the input CM change. In the circuit of Fig. 5.29,
on the other hand, the output signal of interest is sensed with respect to ground. Thus, we
define the CM gain in terms of the single-ended output component produced by the input
CM change:

AVOM:

_ 5.33
AVincm 33)

Acy =

To determine Ay, we observe that if the circuit is symmetric, V,,, = Vr for any input
CM level. For example, as V;, ¢ increases, Vg drops and so does V.. In other words,
nodes ¥ and X can be shorted [Fig. 5.30(a)], resulting in the equivalent circuit shown

Voo
My M,
F ° Vour
Vin,.cm M,
M,
Rss
(a) (b)

Figure 5.30 (a) Simplified circuit of Fig. 5.29, (b) equivalent circuit of (a).

in Fig. 5.30(b). Here, M, and M, appear in parallel and so do M3 and M;. It follows
that -

1 lross

Acy ~ %”A‘Q_ (5.34)
Demn 58

—1 gmi (5.35)

T 1+ 2gmi2Rss gmaa’
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where we havé assumed 1/(2g3 4} < ros 4 and neglected the effect of rg; 2/2. The CMRR
is then given by

A
CMRR = |2 (5.36)
cM
4(1 4 2gm1,2Rs5)
= 45'»:1.2(ro:.2l|703,4)gm3 4 Em1.2755 (5.37)
8m1,2
= (1 + 2gm1,2Rs5)gm3.4(ro1.2llr03.4). (5.38)

Equation (5.35) indicates that, even with perfect symmetry, the output signal is corrupted
by input CM variations, a drawback that does not exist in the fully differential circuits
of Chapter 3. High-frequency common-mode noise therefore degrades the performance
considerably as the capacitance shunting the tail current source exhibits a lower impedance.

Example 5.7

The CM gain of the circuit of Fig. 5.29 can be shown to be zero by a (flawed) argument. As shown in
Fig. 5.31(a), if Vis,cn introduces a change of A in the drain current of each input transistor, then

Voo
My J—IL m, ]
X roz=
F
Vout
Al Al F
AVinon 1l M, M, Q- Al
P H
:Enss
(a) (b)
_ Figure 5.31

Ip3 also experiences the same change and so does p4. Thus, M4 seemingly provides the additional
current required by M», and the output voltage need not change, i.e., Acp = 0. Explain the flaw in
this proof.

Solution

The assumption that AIp4 completely cancels the effect of Al is incorrect. Consider the equivalent
circuit shown in Fig. 5.31(b). Since

1
AVe = AL | —
&

m3

ro3) ) (5.39)
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we have

|Alps| = gmaAVF
ro3
= gmaAI————.
Em 1+ gm3iros

This current and Al (= A} = A[) give a net voltage change equal to
703

AVou = (Al gma———— — AlL)ros

1+ gm3ro3

1
= = Al ————r 04,
gm3ros +1

which is equal to the voltage change at node F.
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(5.40)

(541)

(5.42)

(5.43)

It is also instructive to calculate the common-mode gain in the presence of mismatches.
As an example, we consider the case where the input transistors exhibit slightly different
transconductances [Fig. 5.32(a)]. How does V,,, depend on V;, ca? Since the change at

Vin,cmo—

Abk T

Figure 5.32 Differential pair with g,, mismatch.

nodes F and X isrelatively small, we can compute the change in Ip; and Ip, while neglecting
the effect of rp; and rp;. As shown in Fig. 5.32(b), the voltage change at P can be obtained
by considering M, and M, as a single transistor (in a source follower configuration) with a

transconductance equal to g, + gma2, i.€.,

R
AVp = AVipcn >

(5.44)
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where body effect is neglected. The changes in the drain currents of M, and M are therefore
given by

Alp) = g1 (AVip.cm — AVp) (5.45)
AV;
- in,CM Eml (5.46)
Rgs + gm1 + 8m2
gmi + 8mo
Alpy = gma(AVin oy — AVp) (5.47)
AV, m
= < g (548
8ml + 8m?2 .
Rss +
gmi + 8m2

The change AIp; multiptied by (1/g.:3)llro3 yields [Alpy| = gm4[(1/gm3)||r03]AID1'. The
difference between this current and A I, flows through the output impedance of the circuit,
which is equal to rp4 because we have neglected the effect of rp; and rg):

\
. AV; w2 A Vi, )
AV, = Em1 in,CM ro3 _ Bm2 CM roi (349)
I+ (gm1 + 8m2)Rss ros + b 14 (gm +gm2)Rss ‘
- 8m3
AV, ml — ro3 — 8m .
_ in,CM (8m1 — Em2)T03 — 8m2/8m3 Fos. (5.50)
1+ (gm1 + gm2)Rss , R
03+ v
Em3
If ro3 > 1/gm3, we have
AVou (8m1 — 8m2)ro3 — 8m2/8m3 (5.51)

AVincm 1+ (gm1 +gm2)Rss

Compared to Eq. (5.35), this result contains the additional term (g, — 8m2)}ro3 in the.
numerator, revealing the effect of transconductance mismatch on the common-mode gain.

Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. All device dimensions are effective values and in microns.

5.1. InFig. 5.2, assume (W/L); = 50/0.5, A = 0, I, = 0.5 mA, and M) is saturated.
(a) Determine Ry/R;.
(b) Calculate the sensitivity of I,,, to Vpp, defined as 875, /0Vpp and normalized to Joy;. -
(¢) How much does l,,; change if Vry changes by 50 mV? .
(d) If the temperature dependence of i, is.expressed as w, o T~%/2 but Vry is independent
of temperature, how much does I, vary if T changes from 300°K to 370°K?
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5.2

5.3.

5.4.
5.5.

5.6.

5.7

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.
5.14.
5.15.

5.16.
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(e} What is the worst-case change in I,,,; if Vpp changes by 10%, Vrg by 50mV, and T from
300°K to 370°K?

Consider the circuit of Fig. 5.6. Assuming Iz r is ideal, sketch I,,; versus Vpp as Vpp varies
from0to3 V.

In the circuit of Fig. 5.7, (W/L)y = 10/0.5,(W/L)p = 10/0.5, and Irer = 100 uA. The

input CM level applied to the gates of M and M is equal to 1.3 V.

{a) Assuming A = 0, calculate Vp and the drain voltage of the PMOS diode-connected tran-
sistors.

(b) Now take channel-length modulation into account t¢ determine 7 r and the drain current of
the PMOS diode-connected transistors more accurately.

Consider the circuit of Fig. 5.8; sketch V,,,, versus Vpp as Vpp varies from 0 to 3 V.,

Consider the circuit of Fig. 5.9(a), assuming (W/L).3 = 40/0.5, IggF = 0.3 mA,andy = Q.

(a) Determine V}, such that Vy = Vy.

(b) If V deviates from the value calculated in part (a) by 100 mV, what is the mismatch
between I, and Igpp?

(¢) If the circuit fed by the cascode current source changes Vp by 1V, how much does Vy
change?

The circuit of Fig. 5.13 is designed with (W/L),2 = 20/0.5,(W/L)3,4 = 60/0.5,and IrgF =

100 AL

(a) Determine Vy and the acceptable range of V.

(b} Estimate the deviation of I, from 300 wA if the drain voltage of M, is higher than Vy
by 1 V.

The circuit of Fig. 5.17(a) is designed with (W/L);_4 = 50/0.5 and Iss = 21} = 0.5 mA.

(a) Calculate the small-signal voltage gain.

(b) Determine the maximum output voltage swing if the input CM level is 1.3 V.

Consider the circuit of Fig. 5.22(a) with (W/L)|_5 = 50/0.5 and Ips = 0. SmA.

(a) Calculate the deviation of Vo, from Vg if |Vrg3| is 1 mV less than |VTH4|
(b) Determine the CMRR of the amplifier.

Sketch Vy and Vy as a function of Vp p for each circuit in Fig. 5.33. Assume the transistors in
each circuit are identical.

Sketch Vy and Vy as a function of Vp p for each circuit in Fig. 5.34. Assume the transistors in
each circuit are identical.

For each circuit in Fig. 5.35, sketch Vy and Vy as a function of V| for 0 < Vi < Vpp. Assume
the transistors in each circuit are identical.

For each circuit in Fig. 5.36, sketch Vy and Vy as a function of V; for0 < V| < Vpp. Assume
the transistors in each circuit are identical.

For each circuit in Fig. 5.37, sketch Vy and Vy as a function of Irgr.
For the circuit of Fig. 5.38, sketch I, Vi, V4, and Vp as a function of (2) Iggr, (b) Vp.

In the circuit shown in Fig. 5.39, a source follower using a wide transistor and a small bias
current is inserted in series with the gate of M3 so as to bias M» at the edge of saturation.
Assuming Mp-M3 are identical and A s 0, estimate the mismatch between Iy and IgpfF if
@y=0Mmy#0.

Sketch Vx and Vy as a function of time for each circuit in Fig. 5.40. Assume the transistors in
each circuit are identical.
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Voo Voo - Voo
Ry A, RME R R R = R,
FYYY .
X Y X oty X Y
Mz I"_{ M1 Mz-E.""__IEflﬁ Mz I"—l M-|
= 5 H ] T ¥R, <
(a) (b) (©)
R1 :: ~ R1 R1
X Y X
M, J— M, Mz_L:|I-<
Ry H 5
()
Figure 5.33
Voo Voo
RE M, M, A= =R,
X ' X Myt [y
M,flk M, M, - I:.|.M1
(@) (b)
Figure 5.34
Voo ~- Voo - Voo
+ —
I'rer R, =R, OY I'rer R, ¥R, ’nzré R, =R,
FYYY - FYYY ki
x Yy - xr wy Y x wy Y
M, P*_‘IENH M, I"h—“-a-ﬂ'ﬁ M, Fb—‘ M,
= T gy = = Vg
V1 V1
{(a) o (c)

Figure 5.35
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+
I'per =R, v Iper
xI I Mael—1y, 72 X
Mz I'_‘ M1 M2
(a) (b)
Figure 5.36
- Voo - Voo Voo
I'rer R, ¥R, I'rer =R, I ek M, M,
ARA b
X "y xMael—1y x Y
Mz I'"_IEM-| ! Mz |"' EM1 M2 I"‘ M1
@ (b) | ©
Figure 5.37
Figure 5.38

Figure 5.39
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Voo Voo
I rer R, Ry
X Y . X v
M, I"'_I M, VO_I C M, F— M,
0. = — =
= + e = = =
¢,
(®) (©
VDD - VDD
H1 _V0+ H1 EE R.'
X CI } X Y
My JH—— M, My J—HE M,
H H _V0+ H
—
2
@ Q)
Figure 5.40

5.17. Sketch Vx and Vy as a function of time for each circuit in Fig. 5.41. Assume the transistors in
each circuit are identical.

Voo Voo Voo
R«] ) H1
Y Y
I'rer Vos—i[, M, Irer(®) Vis—[L M, I ner
: X Voo,
M, JH——L M, i X M, -

oiI ¢, MZ-L:IM—C—W m, S

1CY) (b) ()
Figure 5.41

5.18. Sketch Vx and Vy as a function of time for each circuit in Fig. 5.42. Assume the transistors in
each circuit are identical.

5.19. The circuit shown in Fig. 5.43 exhibits a negative input capacitance. Calculate the input
impedance of the circuit and identify the capacitive component.
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< Figure 5.43

5.20. Due to a manufacturing defect, a large parasitic resistance, R;, has appeared in the circuits of
Fig. 5.44. Calculate the gain of each circuit.

Figure 5.44

5.21. In digital circuits such as memories, a differential pair with active current mirror is used to
convert a small differential signal to a large single-ended swing (Fig. 5.45). In such applications,
itis desirable that the output levels be as close to the supply rails as possible. Assuming moderate
differential input swings (e.g., AV = 0.1 V) around a common-mode level Vin,cm and a high
gain in the circuit, explain why V,,;,, depends on VincM-
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Vinax
=2 Vout
av
v

min

Figure 5.45

5,22. Sketch Vy and Vy for each circuit in Fig. 5.46 as a function of time. The initial voltage across
C) is shown.

+1.5 Ve +1.5V*

+1.5 V*—

Figure 5.46

5.23. Ifin Fig. 5.47, AV is small enough that all of the transistors remain in saturation, determine
the time constant and the initial and final values of Vo,,.
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Figure 5.47



Chapter 6

Frequency ReSponse of Amplifiers

Qur analysis of simple amplifiers has thus far focussed on low-frequency characteristics,
neglecting the effect of device and load capacitances. In most analog circuits, however, the
speed trades with many other parameters such as gain, power dissipation, and noise. It is

therefore necessary to understand the frequency response limitations of each circuit.

In this chapter, we study the response of single-stage and differential amplifiers in the
frequency domain, Following a review of basic concepts, we analyze the high-frequency
behavior of common-source and common-gate stages and source followers. Next, we deal
with cascode and differential amplifiers. Finally, we consider the effect of active current
mirrors on the frequency response of differential pairs.

6.1 General Considerations

6.1.1 Miller Effect

166

An important phenomenon that occurs in many analog (and digital) circuits is related to |
“Miller Effect,” as described by Miller in a theorem.

Miller’s Theorem. If the circuit of Fig. 6.1(a) can be converted to that of Fig, 6,1(b), then
Zy=Z/(1—-A)and Z, = Z/(1 — A;"), where A, = Vy/Vx.
Zy Z,

(a) (b)

Figure 6.1 Application of Miller effect to a floating impedance.
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Proof. The current flowing through Z from X to Y is equal to (Vx — Vy)/Z. For the two
circuits to be equivalent, the same current must flow through Z,. Thus, °

Vx —Vr  Vx
L T =2 6.1
Z Z, 6.1)
that is,
Z
Z| = Vo 6.2)
1
Vx
Similarly,
VA
Zy = Ve (6.3)
VY a
Example 6.1

Consider the circuit shown in Fig. 6.2(a), where the voltage amplifier has a negative gain equal to —A
and is otherwise ideal. Calculate the input capacitance of the circuit.

=
-

— |-AAV

(a) (&) (©

Figure 6.2

Sclution

Using Miller’s theorem to convert the circuit to that shown in Fig. 6.2(b), we have Z.= 1/(Crs) and
Z1 = [1/(CFrs)}/(1 + A). That is, the input capacitance is equal to Cr(1 + A).

Why is Cr multiplied by 1 + A? Suppose, as depicted in Fig. 6.2(c), we measure the input
capacitance by applying a voltage step at the input and calculating the charge supplied by the voltage
source. A stepequal to AV at X resultsin achangeof —AAV atY, yielding atotal change of (14+A)AV
in the voltage across Cr. Thus, the charge drawn by Cr from V;,, is equal to (1 + A)CrAV and the
equivalent input capacitance equal to (1 + A)CF.
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It is important to understand that (6.2) and (6.3) hold if we know a priori that the circuit
of Fig. 6.1(a) can be converted to that of Fig. 6.1(b). That is, Miller’s theorem does not
stipulate the conditions under which this conversion is valid. If the impedance Z forms the
only signal path between X and Y, then the conversion is often invalid. Itustrated in Fig. 6.3
for a simple resistive divider, the theorem gives a correct input impedance but an incorrect

R, .
X Ay Y X : Y
@ ®)

Figure 6.3 Improper application of Miller’s theorem.

gain. Nevertheless, Miller’s theorem proves useful in cases where the impedance Z appears
in parallel with the main signal (Fig. 6.4).

Figure 6.4 Typical case for valid ap-

Main Signal Path plication of Miller’s theorem.

Example 6.2

Calculate the input resistance of the circuit shown in Fig. 6.5(a).

Voo
I4
Y
M, y
Vy o ro ‘ Vp o] |

Figure 6.5
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Solution

The reader can prove that the voltage gain from X to ¥ is equal to 1 + (g, + g;5)ro. As shown in
Fig. 6.5(b), the input resistance is given by the paralle} combination of 7o /(1 — A,) and 1 /(8m+ gmb)-
Since Ay is usually greater than unity, 7o /(1 — A,) is a negative resistance. We therefore have

ro 1
Ri, = 6.4)
T+ @m + gmo)rol [ 8m + gmb ¢
-1 1
= (6.5
8m + 8mb || 8m + Zmb
= 00. (6.6)

This is the same result as obtained in Chapter 3 (Fig. 3.46) by direct calculation.

We should also mention that, strictly speaking, the value of A, == Vy/Vx in (6.2) and
(6.3) must be calculated at the frequency of interest, complicating the algebra significantly.
However, in many cases we use the low-frequency value of A, to gain insight into the
behavior of the circuit.

If applied to obtain the input-output transfer function, Miller’s theorem cannot be used
simultaneously to calculate the output impedance. To derive the transfer function, we apply
a voltage source to the input of the circuit, obtaining a value for Vy / Vy in Fig. 6.1¢a). On
the other hand, to determine the output impedance, we apply a voltage source to the output
of the circuit, obtaining a value for Vy/ Vy that may not be equal to the inverse of the Vy/Vx
measured in the first test. For example, the circuit of Fig. 6.5(b) may suggest that the output
impedance is equal to

ro

Ry = ITI-/T., 6.7)
ro‘

_ 6.8

[— (11 (g + gra)rol | ©8)

+ro, (6.9)

- &m + Emb

whereas the actual value is equal to rb (if X is grounded). Other subtleties of Miller’s
theorem are decribed in the appendix.

6.1.2 Assoéiation of Poles with Nodes

Consider the simple cascade of amplifiers depicted in Fig. 6.6. Here, A; and A, are ideal
voltage amplifiers, R and R, model the output resistance of each stage, C;, and Cy repre-
sent the input capacitance of each stage, and Cp denotes the load capacitance. The overall
transfer function can be written as

Vout Al A2 l
= : : . 6.10
Vo O = TERsCos T+ RiCrs 13 RaCos (6.10)
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. The circuit exhibits three poles, each of which is determined by the total capacitance seen
from each node to ground multiplied by the total resistance seen at the node to.ground.
.We can therefore associate each pole with one node of the circuit, i.e., w; = rj‘l, where
1; is the product of the capacitance and resistance seen at node j to ground. From this
perspective, we may say “‘each node in the circuit contributes one pole to the transfer
function,”

Figure 6.6 Cascade of amplifiers. '

The above statement is not valid in general. For example, in the circuit of Fig. 6.7, the
" Iocation of the poles is difficult to calculate because R3 and C create interaction between

R; €,
——
R, x| Ry vy
—° Vout
+
v
" TG TC
- I I Figure 6.7 Example of interaction be-
= < tween nodes.

X and Y. Nevertheless, in many circuits association of one pole with each node provides an
intuitive approach to estimating the transfer function: we simply multiply the total equivalent
capacitance by the total incremental resistance (both from the node of interest to ground),
thus obtaining an equivalent time constant and hence a pole frequency.

Example 6.3

In Fig. 6.8, calculate the pole associated with node X.

Ag
» —o Vout
+ X L ,
Vln

| Figure 6.8
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Solution

From Fig. 6.2(b), the total equivalent capacitance seen from X to ground equals (1 + A)CF. Since
this capacitance is driven by Rg, the pole frequency is equal to 1/[Rs(1 + AYCF] (in rad/s). We call
this the “input pole.” '

The above approach does suffer from some limitations. In particular, the simplification
of the circuit through the use of Miller effect often discards the zeros of the transfer func-
tion. However, the utility of the method becomes apparent in more complex topologies, as
described in the following example.

Example 6.4
Neglecting channel-length modulation, compute the transfer function of the common-gate stage shown
in Fig. 6.9. -
Figure 6.9 Common-gate stage with
= parasitic capacitances.
Solution

In this circuit, the capacitances contributed by M) are connected from the input and cutput nodes to
ground. Atnode X, Cs = Cgs1 + Cs31, giving a pole frequency

~1
1
Win = [(Cc.n + Csg1) (Rs —-——)] . (6.11)
&Em1 + gmb1

Similarly, at node ¥, Cp = Cpg + Cpp, yielding a pole frequency -

wour = [((Cpg + Cpp)Rp]™". (6.12)
The overall transfer function is thus given by
R s LA (6.13)
in (8m + gmb)Rs (1+_) (1 + )
Win Woyt

where the first fraction represents the low-frequency gain of the circuit. Note that if we do not neglect
ro1, the input and output nodes interact, making it difficult to calculate the poles.
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6.2 Common-Source Stage

The common-source topology exhibits a relatively high input impedance while providing
voltage gain and requiring a minimal voltage headroom. As such, it finds wide application
in analog circuits and its frequency response is of interest.

Shown in Fig. 6.10 is a common-source stage driven by a finite source resistance, Ry.
We identify all of the capacitances in the circuit, noting that Cgs and Cpp are “grounded”
capacitances while Cgp appears between the input and the output. Assuming that A = 0
and M, operates in saturation, let us first estimate the transfer function by associating one
pole with each node. The total capacitance seen from X to ground is equal to Cg plus the
Miller multiplication of Cgp: Cgs + (1 ~ Ay)Cgp, Where A, = —g»Rp. The magnitude
of the input pole is therefore given by

1 ]
~ Rs[Cgs + (1 + gmRp)Cop]

®in (6.14)

At the output node, the total capacitance seen to ground is equal to Cpp plus the Miller
effect of Cgp: Cpg + (1 — A;l)CGb =~ Cpp + Cgp- Thus, ’

1

Qoyt = ———————. (6.15
™ Rp(Cps + Cgp) )

Another approximation of the output pole can be obtained if Rg is relatively large.
Simplifying the circuit as shown in Fig. 6.11; where the effect of Ry is neglected, the reader
can prove that '

1

Zy =
X CeqS

(can+cas__1_) ‘ 6.16)
Cop gm /)’

where C,.; = C6pCaqs/(Cep + Cas)- Thus, the output pole is roughly equal to

1
(CGD +Cgs 1
CGD 8m1

(6.17)

)] (Ceq + CDB)

Wout =
[

Figure6.10 High-frequency model of
4 COMMON-Source stage.
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Voo
R
Can °
My, Zx 1— Cos
I Cas = = Figure 6.11 Model for calculation of .
= output impedance.
Cap
JL
11

Figure 6.12 Equivalent circuit of Fig. 6.10.

We then surmise that the transfer function is

Vout (s) = —&mRp

() ()
Wip Woyy

Note that rp; and any load capacitance can easily be included here.
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(6.18)

The primary error in this estimation is that we have not considered the existence of
zeros in the circuit. Another concern stems from approximating the gain of the amplifier
by —gnRp whereas in reality the gain varies with frequency (for example, due to the

capacitance at the output node).

We now obtain the exact transfer function, investigating the validity of the above ap-
proach. Using the equivalent circuit depicted in Fig. 6,12, we can sum the currents at each

node:

Ve =V,
-X—R—u—pl + VxCgss + (Vy — Vou)Cops =0
5

1
(Vour - VX)CGDS + 8m VX + Vour (R_ + CDBS) =0
D

(6.19)

(6.20)



174

Chap. 6 Frequency Response of Amplifiers
From (6.20), Vx is obtained as

1
Vour (CGDS + —+ CDBS)
Rp

Vy = —
X gm — Cops

) (6.21)

which, upon substitution in (6.19), yields

R:! + (Cas + C [R5+ (Cep+C Vi
_ om[ s +(Cas cp)SHRp” + (Cep ps)s] . Ceps = . (6.22)
gn — Cops Rs
That is,
) Vour (s) = (CGDSI_ gm)Rp )
Vin RsRpEs? + [Rs(1 + gnRp)Cop + RsCas + Rp(Cop + Cpp)ls + 17

(6.23)

where § = CgsCsp + C6sCps + CapCps. Note that the transfer function is of second
order even though the circuit contains three capacitors. This is because the capacitors form
a “loop,” allowing only two independent initial conditions in the circuit and hence yielding
a second-order differential equation for the time response.

If manipulated judiciously, Eq. (6.23) reveals several interesting points about the circuit.
While the denominator appears rather complicated, it can yield intuitive expressions for the
two poles, wp1 and wyy, if we assume |wp1| K |wpz| [1]. Writing the denominator as

D= (i + 1) (—S— + 1) | (6.24)
Wp1 Wp2

2 .
__S +(_l_+_1_)s+1, (6.25)

Wp Wp2 Wp1 Wp2

we recognize that the coefficient of s is approx_imatéiy equal to1 Jwp1 if wpy is much farther
from the origin. It follows from (6.23) that

1
w = ' .
PL = Rs(1 + gnRp)Cop + RsCqs + Rp(Cop + Cpa)

(6.26)

How does this compare with the “input” pole given by (6.14)? The only difference results
from the term Rp(Cgp + Cpg), which may be negligible in some cases. The key point
here is that the intuitive approach of associating a pole with the input node provides a rough
estimate with much less effort. We also note that the Miller multiplication of Csp by the
low-frequency gain of the amplifier is relatively accurate in this case.

Example 6.5

For the circuit shown in Fig. 6.13, calculate the transfer function (with A = 0) and explain why Miller
effect vanishes as Cp g increases.
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Figure6.13

Solution
Using (6.23) and letting Rp approach infinity, we have

Vout 5 Cops — gm
Vin ' Rsés?+[gmRsCcp + (Cep + CpB)ls

6.27)

_ CGps — &m 6.28)
s[Rs(CgsCop + CgsCps + CepCpg)s + (gmRs + 1)Cap + Cps)

As expected, the circuit exhibits two poles—one at the origin because the de gain is infinity. The
magnitude of the other pole is given by

(1+ gmRs)Cep + Cps

wy & . 6.29)
Rs(CepCoss + CgsCps +CsnCps) (
For large Cp g, this expression reduces to .
P (630)
Rs(Cgs + Cép)’ )

indicating that Cgp experiences no Miller multiplication. This can be explained by noting that, for
large Cpg, the voltage gain from node X to the output begins to drop even at low frequencies.
As a result, for frequencies close to [Rs(Cgs + Cg )™}, the effective gain is quite small and
Cop(l — Ay) = Cgp. Such a case is an example where the application of Miller eﬂ'ect using
low-frequency gain does not provide a reasonable estimate.

From (6. 23) we can also estimate the second pole of the CS stage of Fig. 6.10. Smce
the coefficient of s2 is equal to (wpla),,z)‘ , We have

'l o | R ‘(631)
w = — .
r wp1 RsRp(CesCep + CesCpp +CopCpB) - s

_ Rs(1 + gnRp)Cop + RsCgs + Rp(Cgp + Cpi)

: (6.32)
RsRp(CssCaop + CosCops + CopChp)
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If Cgs 3> (1 + gnRp)Cop + Rp(Cop + Cpp)/Rs, then

RsCqgs

~y (6.33)
RsRp(CsCsp + CesCppg)

@p2

1

Rp(Cop + Cpa)’ ©39
the same as (6.15). Thus, the “output” pole approach is valid only if Css dominates the
response.

The transfer function of (6.23) exhibits a zero given by w, = +gx,/Cgp, an effect not
predicted by the simple approach leading to (6.18). Located in the right half plane, the
zero arises from direct coupling of the input to the output through Csp. As illustrated in
Fig. 6.14, Cgp provides a feedforward path that conducts the input signal to the output at
very high frequencies, resulting in a slope in the frequency response that is less negative
than —40 dB/dec. As explained in Chapter 10, a zero in the right half plane introduces
stability issues in feedback amplifiers.

Feedforwara
Path

ey

Main wpi wp2 ®z
Path ~

Figure 6.14 Feedforward path through Cgp (log-log scale).

Figure 6.15 Calculation of the zero in
a CS stage.

The zero, s, can also be computed by noting that the transfer function Vout (8)/ Vin(s)
‘must drop to zero for s = s,. For a finite V;,, this means that V,,(s,) = 0 and hence
the output can be shorted to ground at this (possibly complex) frequency with-no current

- flowing through the short (Fig. 6.15). Therefore, the currents through Cgp and M, are equal
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and opposite:
ViCops; = gn V). (6.35)

That is, s, = +gn/Cgp..
In high-speed applications, the input impedance of the common-source stage is also
important. As a first-order approximation, we have from Fig. 6.16(a)

1
T [Ces+(1+ gmRp)Copls’

(6.36)

Zin

But at high frequencies, the effect of the output node must be taken into account. Ignoring
Ces for the moment and using the circuit of Fig. 6.16(b), we write

Rp Iy
Iy — g,V = Vg, .
(Ix—g x)l T RoCins + Cons X 6.37)
and hence
v 14+ Rp(C C
X _ + Rp(Cop + Cpa)s 6.38)

Ix ~ Cops(l+gnRp + RpCpps)’

The actual input impedance consists of the parallel combination of (6.38) and 1 /(Cagss).

Voo
Rp

Cap
Vout T Vout
Iy '
r» M, ICDB I——"»_" —L M, ICDB
+
ICGS = = W /. = =
zln = = zln ’
(b)

(a) ©

Figure 6.16 Calculation of input impedance of a CS stage.

At frequencies where |Rp(Cgp + Cpg)s| < 1 and IRpCpps| € 1 + guRp, (6.38)
reduces to [(1 + g, Rp)Cqps]™! (as expected), indicating that the input impedance is pri-
marily capacitive. At higher frequencies, however, (6.38) contains both real and imaginary
parts. In fact, if Ccp is large, it provides a low-impedance path between the gate and drain
of M), yielding the equivalent circuit of Fig. 6.16(c) and suggesting that 1/g,,; and Rp
appear in parallel with the input. '

IThig approach is similar to expressing the transfer function as G, Zy, and finding the zeros of G,, and Z,,,.
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6.3 Source Followers

Source followers are occasionally employed as level shifters or buffers, impacting the over-
all frequency response. Consider the circuit depicted in Fig. 6.17(a), where Cj, represents
the total capacitance seen at the output node to ground, including Csp. The strong inter-

Figure 6.17 (a) Source follower, (b) high-frequency equivalent circuit.

action between nodes X and Y through Cgs in Fig. 6.17(a) makes it difficult to associate
a pole with each node in a source follower. Neglecting body effect for simplicity and us-
ing the equivalent circuit shown in Fig. 6.17(b), we can sum the currents at the output

node:
ViCgss + gnV1 = Vou CLs, (6.39)
obtaining
CLS
Vi=———Vur. 6.40
' gm+Coss ™ (6:40)

Also, beginning from V;,, we can add up all of the voltages:
Vin = Rs[ViCgss + (Vi + Vour)Cops] + Vi + Vour. (6.41)

Substituting for V; from (6.40), we have

Z‘i‘.‘.i(s) _ gm + Cass
Vin Rs(CssCr + CosCop + CopCr)s? + (8nRsCap + CL + Cos)s + 8m

(6.42)

[nterestingly, the transfer function contains a zero in the left half plane. This is because
the signal conducted by Cgy at high frequencies adds with the same polarity to the signal
produced by the intrinsic transistor.
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If the two poles of (6.42) are assumed far apart, then the more significant one has a

magnitude of
8m
Wy R 6.43
PL™ gmRsCop + C1 + Cas 643)
1
- . (6.44)
C C
RsCop + CL+Cos

m

Also, if Rs = 0, then wp; = gn/(Cr + Cgs)-
Let us now calculate the input impedance of the circuit, noting that C p simply shunts the
input and can be ignored initially. From the equivalent shown in Fig. 6.18, the small-signal

Vop
Ix
M,
vy () Ces
= . Vout
1 .
1 c
9mb I L Figure 6.18 Calculation of source fol-
L lower input impedance.

gate-source voltage of M, is equal to I x/(Cgss), giving a source current of g, Ix /(Cgss).
Starting from the input and adding the voltages, we have

Iy gml x) ( 1 1 )
Vy = Ix + — =, 6.45
X7 Coss * ( X Ces5) \gms | Crs 645
that is,

1 ' &m ) 1
Zip=——+|1+ . 6.46
"7 Cgss ( Css) 8mo +CLs ©46)

At relatively low frequencies, gmp > |Crs| and
1 1

Zi, (1 + g—'") +— (6.47)

Cgss 8mb 8mb

indicating that the equivalent input capacitance is equal to Cgsgmb/(gm + §ms). This result
can also be obtained by Miller approximation. Since the low-frequency gain from the
input to the output equals g, /(g + gms), the effect of Cgs at the input can be expressed as
Cosll—gm/(8m~+8mb)] = CGs8mb(&m + &mp). In other words, the overall input capacitance
is equal to Cgp plus a fraction of Cgs. i

At high frequencies, gmp < |Crs| and

1 1 &m

Zip SRR L. -
" CGgs + CLS + C(;sCLS?

(6.48)
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For a given s = jo, the input impedance consists of the series combination of capacitors
Css and C; and a negative resistance equal to —g,,, /(CgsCrLw?). The negative resistance
property can be utilized in oscillators [2].

Example 6.6

Calculate the transfer function of the circuit shown in Fig. 6.19(a).

Figure 6.19

Solution

Let us first identify all of the capacitances in the circuit. At node X, Cgp; and Cp g3 are connected to
ground and Cgs1 and Copa to Y. Atnode Y, Cspy, Cgse, and Cy, are connected to ground. Similar
to the source follower of Fig. 6.17(b), this circuit has three capacitances in a loop and hence a second-
order transfer function. Using the equivalent circuit shown in Fig. 6.19(b), where Cy = Cgp1+Cpaa,
Cxy = Cgs1 + Cgp2, and Cy = Csp1 + Cgsz2 + Cr, we have ViCxys + gm V] = Vour Cys and
hence Vi = V,u Cys/(Cxys + gmi1). Also, since Vo = V,,,, the summation of currents at node X
gives

Vin — V1 — Vout

V1 + Vour)Cxs + gmaVour + ViCxys = Rs (6.49)
Substituting for V1 and simplifying the result, we obtain
Y, C
out ) = . 8mi + Cxys i (6.50)
Vin Rgks® +[Cy + gm1RsCx + (1 + gmaRs)CxyIs + gm1(1 + gm2Rs)

where & = CxCy + CxCxy + CyCyxy. As expected, (6.50) reduces to a form similar to (6.42) for
gm2 =0.

The output impedance of source followers is also of interest. In Fig. 6.17(a), the body ef-
fect and Csp simply yield an impedance in parallel with the output. Ignoring this impedance
and neglecting Cgp, we note from the equivalent circuit of Fig. 6.20(a) that V;Cgss +
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gmV1 = —Ix. Also, V1CgssRs + Vi = ~Vx. Dividing bothrsides of these equations gives

V.
Zow = = 6.51) -
Iy
= M (6.52)
gm + Cgss

It is instructive to examine the magnitude of this impedance as a function of frequency. At
low frequencies, Z,,, =~ 1/gm, as expected. At very high frequencies, Z,,; ~ Rs (because
Cgs shorts the gate and the source). We therefore surmise that |Z,,,| varies as shown in
Figs. 6.20(b) or (¢). Which one of these variations is more realistic? Operating as buffers,
source followers must lower the output impedance, i.e., 1/g, < Rs. For this reason, the
characteristic shown in Fig. 6.20(c) occurs more commonly than that in Fig. 6.20(b).

The behavior iltustrated in Fig. 6.20(c) reveals an important attribute of source followers.
Since the output impedance increases with frequency, we postulate that it contains an
inductive component. To confirm this guess, we represent Z,,, by a first-order passive
network, noting that Z,,, equals 1/g, at ® = 0 and Rs at @ = oo. The network can
therefore be assumed as shown in Fig. 6.21 because Z; equals R; at w = 0 and Ry + R»
at @ = oo. In other words, Z, = Z,,, if R, = /g, R = Rs — 1/g,, and L is chosen
properly. o

To calculate L, we can simply obtain an expression for Z; in terms of the three com-
ponents in Fig. 6.21 and equate the result to Z,,; found above. Alternatively, since R; is a
series component of Z;, we can subtract its value from Z,,,, thereby obtaining an expression

ey
ey

() (©)

Figure 6.20 Calculation of source follower output impedance.
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‘ L
R I
R, Zy
2 J Figure 6.21 Equivalent output impe-
) dance of a source follower.

for the parallel combination of R; and L:

1 .
. | Cgss (RS - —)
Zout — — LV (6.53)

Em &m + Cgss

Inverting the result to obtain the admittance of the parallel circuit, we have

1 1 1
= +

1 - 1 Coss TN\
PN Y oy
Em 8m Em 8m

(6.54)

We can thus identify the first term on the right hand side as the inverse of R, and the second
term as the inverse of an impedance equal to (Cs5/2m )} (Rs — 1/gm), i.e., an inductor with
the value

C 1
L=255 (RS — —) ) (6.55)
8m &m

The dependence of L upon Rs implies that if a source follower is driven by a large
resistance, then it exhibits substantial inductive behavior. As depicted in Fig. 6.22, this

effect manifests itself as “ringing” in the step response if the circuit drives a large load
capacitance.

Voo

M,
I . Vout ‘(\A—LN;
I*

Figure 6.22 Ringing in step response of a source follower
with heavy capacitive load.
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6.4 Common-Gate Stage

As explained in Example 6.4, in a common-gate stage the input and output nodes are
“isolated” if channel-length modulation is neglected. For a common-gate stage such as that
in Fig. 6.23, the calculation of Example 6.4 suggested a transfer function

Figure 6.23 Common-gate stage at
high frequencies.

Vaut (gm + gmb)RD 1
(s) =

7 T 1 + (gm + gmp)Rs Cs
1+ S E— (14 RpCps)
8m+ 8ms+ RS

(6.56)

An important property of this circuit is that it exhibits no Miller multiplication of capac-
itances, potentially achieving a wide band. Note, however, that the low input impedance
may load the preceding stage. Furthermore, since the voltage drop across Rp is typically
maximized to obtain a reasonable gain, the dc level of the input signal must be quite low.

If channel-length modulation is not negligible, the calculations become quite complex.
Recall from Chapter 3 that the input impedance of a common-gate topology does depend
on the drain load if A # 0. From Eq. (3.110), we can express the impedance seen looking
into the source of M, in Fig. 6.23 as

_ Zr N 1
(gm + 8nb)TO  8m + &mb

(6.57)

Zin

where Z;, = Rp||[1/(Cps)]. Since Z;, now depends on Z, it is difficult to associate a pole
with the input node. :

Example 6.7

For the common-gate stage shown in Fig. 6.24(a), calculate the transfer function and the input
impedance, Z;,. Explain why Z;, becomes independent of C, as this capacitance increases.

Solution

Using the equivalent circuit shown in Fig. 6.24(b), we can write the current'through Rg as — Vi, Cr.s +
V1Cins. Noting that the voltage across Rg plus Vi, must equal —V1, we have

(—Vour Crs + V1iCin$)Rs + Vin = — Vi, 6.58) -
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"t + 8) l out
vi @WamYs =4, I cL
Rg <
+
VIII /- f C|n
b
o) (b
Figure 6.24
that is,
—VourCLSRs + Vip
Vi==-= .
! 1+ CRss ©.59)
We also observe that the voltage across ro minus V; equals V,,,:
ro(=Vou: Crs — gmV1) — V1 = V. (6.60)
Substituting for V) from (6.59), we obtain the transfer function:
Vour 1+ gmro
§) = . 6.61
Vin ) = 7oCLCRssT + [roCL + CnRs + (1 ¥ gmro )ikl 717 6D

The reader can prove that body effect can be included by simply replacing gn with gy + gmp. As
expected, the gain at very low frequencies is equal to 1 + gprp. For Z;,, we can use (6.57) by
replacing Zj, with 1/(Cs), obtaining

1 1 1

— — 6.62
8m+gmb CLS (gm+gmb)ro ¢ )

in =

We note that as Cy. or s increases, Z;, approaches 1/(gm + gmp) and hence the input pole can be

defined as
Wp.in = )
Rsl| ——— | C;
( gm + gmb) "

Why does Z;, become independent of Cy, at high frequencies? This is because Cj, lowers the voltage
gain of the circuit, thereby suppressing the effect of the negative resistance introduced by Miller
effect through ro (Fig. 6.5). In the limit, C;, shorts the output node to ground, and r¢ affects the input
impedance negligibly.

1

(6.63)
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If a common-gate stage is driven by a relatively large source impedance, then the output
impedance of the circuit drops at high frequenmes This effect is better described in the
context of cascode circuits.

6.5 Cascode Stage

As explained in Chapter 3, cascoding proves beneficial in increasing the voltage gain of
amplifiers and the output impedance of current sources while providing shielding as well.
The invention of the cascode (in the vacuum tube era), however, was motivated' by the
need for high-frequency amplifiers with relatively high input impedance. Viewed as a cas-
cade of a common-source stage and a common-gate stage, a cascode circuit offers the
speed of the latter—by suppressing the Miller effect—and the input impedance of the
former.

Let us consider the cascode shown in Fig. 6.25, first identifying all of the device ca-
pacitances. At node A, Cgs) is connected to ground and Cgp; to node X. At node X,
Cpa1, Csp2, and Cgs, are tied to ground, and at node ¥, Cpgz, Cgpz, and C;. are con-
nected to ground. The Miller effect of Csp; is determined by the gain from A to X. As an
approximation, we use the low-frequency value of this gain, which for low values of Rp
(or negligible channel-length modulation) is equal to —g.1/(gm2 + gms2). Thus, if M; and
M have roughly equal dimensions, Cgp; is multiplied by approximately 2 rather than the
large voltage gain in a simple common-source stage. We therefore say Miller effect s less
significant in cascode amplifiers than in common-source stages. The pole associated with
node A is estimated as

1

wpp = : (6.64)
8m1
Rs [Ccs1 + (1 + ——-) CGDI]
8m2 + Emb2
Yoo
L,
Capz |y
F——‘_—r" Vout
o v, T Cpe2+CL
H—x =
) Cas2
- Cap1
M, T Cpp1 *+ Csp2
v, . = .
in I Cas1 = Figure 6.25 High-frequency model of

= a cascode stage.



186

Chap. 6 Frequency Response of Amplifiers

We can also attribute a pole to node X. The total capacitance at this node is roughly

equal to 2Cgp1 + Cps1 + Csp2 + Cgsa2, giving a pole

&m2 + Emp2
w = - . 6.65
2% 2Cep1 + Coai + Cspz + Cos2 (665
Finally, the output node yields a third pole:
1
wpy = . (6.66)

Rp(Cpgz +CL + Cgp2)

The relative magnitudes of the three poles in a cascode circuit depend on the actual
design parameters, but w, x is typically chosen to be farther from the origin than the other
two. As explained in Chapter 10, this choice plays an impoettant role in the stability of op
amps.

But what if Rp in Fig. 6.25 is replaced by a current source so as to achieve a higher dc
gain? We know from Chapter 3 that the impedance seen at node X reaches high values if the
load impedance at the drain of M, is large. For example, Eq. (3.110) predicts that the pole
at node X may be quite lower than (g2 + gms2)/ Cx if Rp itself is the output impedance
of a PMOS cascode current source. Interestingly, however, the overall transfer function is
negligibly affected by this phenomenon. This can be better seen by an example.

Example 6.8

Consider the cascode stage shown in Fig. 6.26(a), where the load resistor is replaced by an ideal

AAA
kil
g
N

H

(a) (b
Figure 6.26 Simplified model of a cascode stage.

current source. Neglecting the capacitances associated with M), representing V;, and M) by a Norton
equivalent as in Fig. 6.26(b), and assuming y = 0, compute the transfer function.
Solution

Since the current through Cy is equal to — Vi Cys — I, we have Vy = —(Vou Cys + I;n)/(Cx s),
and the small-signal drain current of M3 is —gpm2(—Vou: Cys — lin)/(Cxs). The current through ros
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is then equal to —Vour Cys — gm2{ Vous Cy s + lin}/(Cx 5). Noting that Vy plus the voltage drop across
roz is equal to V., we write

—ro2 [(VourCYs + Im) + VourCYS:I — (VoustCrs + Im) = Vour. (6.67)
That is,
Vout gmaro2 + 1 1
_—= = . , 6.68
I,'n 3 CXS ( . )

Cy
1+(1+ gmzroz)'é; + Cyrozs

which, for gmaroz > 1 and gmaro2Cy/Cx > 1 (e, Cy > Cy), reduces to

V, 1
o B (6.69)
" X Cx ——8m2 +CYS
and hence
v, 1
out _gmlgml (670)

Vin = CyCxs gma/Cx +5

The magnitude of the pole at node X is still given by gm2/Cx. This is because at high frequencies
(as we approach this pole) Cy shunts the output node, dropping the gain and suppressing the Miller
effect of rpo.

If a cascode structure is used as a current source, then the variation of its output impedance
with frequency is of interest. Neglecting Caqp; and Cy in Fig. 6.26(a), we have

Zous = (1 + gmaro2)Zx + roa. 6.7D)

where Zy = ro1||(Cxs)~". Thus, Z,,, contains a pole at (o1 Cx)~" and falls at frequencies
higher than this valuve.

6.6 Differentia! Pair

The versatility of differential pairs and their extensive use in analog systems motivate us to
characterize their frequency response for both differential and common-mode signals.

Consider the simple differential pair shown in Fig. 6.27(a), with the differential half cir-
cuit and the common-mode equivalent circuit depicted in Figs. 6.27(b) and (c), respectively.
For differential signals, the response is identical to that of a common-source stage, exhibit-
ing Miller multiplication of C¢p. Note that since +Vin2/2 and —V;,2/2 are multiplied by
the same transfer function, the number of poles in V,,,/ Vi, is equal to that of each path
(rather than the sum of the number of the poles in the two paths).

For common-mode signals, the total capacitance at node P inFig. 6.27(c) determines the
high-frequency gain. Arising from Cgp3, Cpg3, Csp1, and Csga, this capacitance can be
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Voo
Rp Ro
Vinie—| o Vinz

Figure 6.27: (a) Differential pair, (b) half-circuit equivalent, (c) equivalent circuit for
common-mode inputs.

quite substantial if M- M3 are wide transistors. For example, limited voltage headroom often
necessitates that W3 be so large that M3 does not require a large drain-source voltage for
operating in the saturation region. If only the mismatch between M; and M; is considered,
the high-frequency common-mode gain can be calculated with the aid of Eq. (4.43). We
replace rosz with ros||[1/(Cps)] and Rp by Rp|/[1/(Crs)], where Cp denotes the total
capacitance seen at each output node. Thus,
1
()]

()]

Agm [RD

Avcy = — (6.72)

(8m1 + gm2) [rOS

where other capacitances in the circuit are neglected.
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This result suggests that, if the output pole is much farther from the origin than is
the pole at node P, the common-mode rejection of the circuit degrades considerably at -
high frequencies. For example, as illustrated in Fig. 6.28, if the supply voltage contains
high-frequency noise and the circuit exhibits mismatches, the resulting common-mode
disturbance at node P leads to a differential noise component at the output.

VDD

Ny

-
-
-

y

P
=
3

 —

: M MA Ny

s p gl i

AhA
Yy
a—Ahk

Nhy
i g Zro, 'I'cp

Figure 6.28 Effect of high-frequency supply noise in differential
pairs.

We should emphasize that the circuit of Fig. 6.27(a) suffers from a trade-off between
voltage headroom and C M RR. To minimize the headroom consumed by Mj, its width is
maximized, introducing substantial capacitance at the sources of M, and M, and degrading
the high-frequency C M R R. The issue becomes more serious at low supply voltages.

We now study the frequency response of differential pairs with high-impedance loads.
Shown in Fig. 6.29(a) is a fully differential implementation. As with the topology of
Fig. 6.27, this circuit can be analyzed for differential and common-mode signals sepa-
rately. Note that here C;, includes the drain junction capacitance and the gate-drain overlap
capacitance of each PMOS transistor as well. Also, as depicted in Fig. 6.29(b) for differen-
tial output signals, Cgp3 and C ps conduct equal and opposite currents to node G, making
this node an ac ground. (In practice, node G is nonetheless bypassed to ground by means-
of a capacitor.) N

The differential half circuit is depicted in Fig. 6.29(c), with the output resistance of "
M, and M3 shown explicitly. This topology implies that Eq. (6.23) can be applied to this
circuit if Ry is replaced by ro1||rp3. In practice, the relatively high value of this resistance
makes the output pole, given by [(roi|lro3)Cr]17}, the “dominant” pole. We return to this
observation in Chapter 10. The common-mode behavior of the circuit is similar to that of
Fig. 6.27(c).

Let us now consider a differential pair with active current mirror (Fig. 6.30). How many
poles does this circuit have? In contrast to the fully differential configuration of Fig. 6.29(a),
this topology contains two signal paths with different transfer functions. The path consisting
of M3 and M, includes a pole at node E, approximately given by gn3/Cg, where Cg denotes
the total capacitance at E to ground. This capacitance arises from Cgs3, Cgsa, Cpgi, Cpai,
and the Miller effect of Cgp) and Cgps. Even if only Cgs3 and Cgsy are considered, the
severe trade-off between g,, and C s of PMOS devices results in a pole that greatly impacts
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Figure 6.29 (a) Differential palr with current-source loads, (b) effect of differential swings
at node G, (c) half-circuit equivalent.

Figure6.30 High-frequency behavior
of differential pair with aclive current
mirror.

_ the performance of the circuit. The pole associated with node E is called a “mirror pole.”
Note that, as with the circuit of Fig. 6.29(a), both signal paths shown in Fig. 6.30 contain a
pole at the output node.

In order to estimate the frequency response of the differential pair with active current
mirror, we construct the simplified model depicted in Fig. 6.31(a), where all other capac-
itances are neglected. Replacing V;,, M, and M> by a Thevenin equivalent, we arrive at
the circuit of Fig. 6.31(b), where, from the analysis of Fig. 5.26, Vx = gnnronVin and
Rx = 2rpy. Here, the subscripts P and N refer to PMOS and NMOS devices, respectively,
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Figure 6.31 (a) Simplified high-frequency model of differential pair with active current mirror,
(b) circuit of (a) with a Thevenin equivalent. ’

and we have assumed 1/g,p < rop. The small-signal voltage at E is equal to

1

Ve = (Vour — Vx) Cﬁs *8mp (6.73)
+ Ry

Ces + gmp

and the small-signal drain current of My is g4 Vg. Noting that — g4 Ve — Iy = Vo (Crs +
rgp), we have

VOMI
Vin

_ gmNToN(28mp + CES)
2ropronCeCrs? + [2ron -+ rop)Ce +rop(l + 28mpron)CLls + 2gmp(ron + rop)
(6.74)

Since the mirror pole is typically quite higher in magnitude than the output pole, we can
utilize the results of Eq. (6.25) to write

2gmp(ron +rop)

Wy . (6.75)
(2ron +rop)CE +rop(k+28mpron)Cr
‘Neglecting the first term in the denominator and assuming 2gmpron 3> 1, we have
! (6.76)
Wp N —————, .
P (ronliror)Ce
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an expected result. The second pole is then given by

~ 2T 6.77
Wp2 CE ( )

which is also expected.

An interesting point revealed by Eq. (6.74) is a zero with a magnitude of 2g,,»/ CF in the
left half plane. The appearance of such a zero can be understood by noting that the circuit
consists of a “slow path” (M,, M3, and M,) in parallel with a “fast path” (M; and M,).
Representing the two by Ag/[(1 + s/wp1)(1 + s/wp)] and Ag/(1 + s/wp1), Tespectively,
we have

Vour AO ( 1 )
= +1 6.78
Vin L+s/wp \1+s5/wp ( )

_ Ao+ s/wp)
(1 +s/wp X1 +s/wpa)

(6.79)

That is, the system exibits a zero at 2w,,. The zero can also be obtained by the method of
Fig. 6.15 (Problem 6.15).

Comparing the circuits of Figs. 6.29(a) and 6.30, we conclude that the former entails no
mirror pole, another advantage of fully differential circuits over single-ended topologies.

Example 6.9

Not all fully differential circuits are free from mirror poles. Fig. 6.32(a) illustrates an example, where
current mirrors M3-Ms and My-Mg “fold” the signal current. Estimate the low-frequency gain and
the transfer function of this circuit.

Solution

Neglecting channel-length modulation and using the differential half-circuit shown in Fig. 6.32(b),
we observe that Ms multiplies the drain current of M3 by K, yielding an overall low-frequency voltage
gain A, = gm1 K Rp. o ¢ .

To obtain the transfer function, we utilize the equivalent circuit depicted in Fig. 6.32(c), including a
source resistance Ry for completeness. To simplify calculations, we assume Rp Cy, is relatively small
so that the Miller multiplication of C ps can be approximated as C ps(1 + gms Rp). The circuit thus
reduces to that in Fig. 6.32(d), where Cx =~ Cgs3 + Cgss + Cpgs + Cops(1 + gmsRp) + Cpai.
The overall transfer function is then equal to Vy/ Vi, multiplied by Ve,s1/ Vx. The former is readily
obtained from (6.23) by replacing Rp with 1/g,,3 and Cpg with Cy, while the latter is

Loull 1
_ = — Rp————. 6.80
Vx ) Ems KD 14+ RpCrs ¢ )

Note that we have neglected the zero due to Cgps.
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Figure 6.32

Appendix A: Dual of Miller’'s Theorem

In the Miller’s theorem (Fig. 6.1), we readily observe that Z; + Z, = Z. This is no
coincidence and it has interesting implications.

Redrawing Fig. 6.1 as shown in Fig. 6.33(a), we surmise that since the point between Z
and Z, can be grounded, then if we “walk” from X towards Y along the impedance Z, the
local potential drops to zero at some intermediate point [Fig. 6.33(b)]. Indeed, Tor Vp = 0,
we have

Z,
Za + Zb

(Vy =Vx)+Vy =0, (6.81)

and, since Z, + Z, = Z,

Z, = ———— 6.82
T—V,/Vy (6:82)
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(b)

(@

Figure 6.33 Illustration of Miller's theorem ideﬁtifyiﬁg alocal zero potential along z

Similarly,

V4

Ly = — .
T T Ve Wy

(6.83)

In other words, Z(= Z,) and Z,(= Z;) are such decompositions of Z thait provide an
intermediate node having a zero potential. For example, since in the common-source stage
of Fig. 6.10 Vx and Vy have opposite polarities, the potential falls to zero at some point
“inside” Cgp.

The above observation explains the difficulty with the transformation depicted in Fig.
6.3. Drawing Fig. 6.33(b) for this case as in Fig. 6.34(a), we recognize that the circuit is

R1+H2 . —Rz H1+R2 —Rz
X Ay AWy Y X Wy V¥ Y
(a) (b)

Figure 6.34 Resistive divider with decomposition of R;.

still valid before node P is grounded because the current through R + R, must equal that
through — R,. However, if, as shown in Fig. 6.34(b), node P is tied to ground, then the only
current path between X and Y vanishes.

The concept of a zero local potential along the floating impedance Z also allows us to
develop the “dual” of Miller’s theorem, i.e., decomposition in terms of admittances and
current ratios. Suppose two loops carrying currents /; and I, share an admittance Y [Fig.
6.35(a)]. Then, if Y is properly decomposed into two paralle! admittances ¥; and Y2, the
current flowing between the two is zero [Fig. 6.35(b)] and the connection can be broken
[Fig. 6.35(c)]. In Fig. 6.35(a), the voltage across Y is equal to (I; — I2)/ Y and in Fig. 6.35(c),



Problems . 195

@ (b) ©

Figure 6.35 (a) Two loops sharing admittance ¥, (b) decomposition of ¥ into ¥; and Y3 such that
I = 0, (c) equivalent circuit.

the voltage across Yy is I/ ¥,. For the two circuits to be equivalent,

I -5 It
= L .84
Y « ¥1 (6.84)
and
Y
Vi ————. (6.85)
1-5L/h
Note the duality between this expression and Z; = (1 — Vy/ Vx)Z. We also have
Y
Yy = ————. 6.86
2= 1T ik (6.86)

Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation. All device dimensions
are effective values and in microns.
6.1. In the circuit of Fig. 6.2(c), suppose the amplifier has a finite output resistance Ry;.
(a) Explain why the output jumps up by AV before it begins to go down. This indicates the
existence of a zero in the transfer function.
(b) Determine the transfer function and the step response without using Miller’s theorem.

6.2. Repeat Problem 6.1 if the amplifier has an output resistance R,y and the circuit drives a load
capacitance Cp,.

6.3. The CS stage of Fig. 6.10 is designed with (W/L); = 50/0.5, Ry = 1kQ and Rp = 2kQ. If
Ipy = 1 mA, determine the poles and the zero of the circuit.

6.4, Consider the CS stage of Fig. 6.13, where /) is realized by a PMOS device operating in
saturation. Assume (W/L); = 50/0.5, Ip; = 1 mA, and Rg = 1 kQ.
(a) Determine the aspect ratio of the PMOS transistor such that the maximum allowable output
level is 2.6 V. What is the maximum peak-to-peak swing?
(b) Determine the poles and the zero.

.~ 6.5. A source follower employing an NFET with W/L = 50/0.5 and a bias current of 1 mA is
driven by a source impedance of 10 k. Calculate the equivalent inductance seen at the output.
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Neglecting other capacitances, calculate the input impedance of each circuit shown in Fig. 6.36.

Voo Voo Voo
’1 ' M 2 I1
c, G G| C
o4 ot ¢,
I I M

LM, —L M, ! I_I
Zy, Zin I C,

A=0 A£O A=0

4 in
(a) ) ()
Figure 6.36

6.7. Estimate the poles of each circuit in Fig. 6.37.

6.8. Calculate the input impedance and the transfer function of each circuit in Fig. 6.38.

6.9. Calculate the gain of each circuit in Fig. 6.39 at very low and very high frequencies. Neglect all
other capacitances and assume A = ( for circuits (a) and (b) and ¥ = 0 for all of the circuits.

6.10. Calculate the gain of each circuit in Fig. 6.40 at véry low and very high frequencies. Neglect
all other capacitances and assume A = y = 0.

6.11. Consider the cascode stage shown in Fig. 6.41. In our analysis of the frequency response of
a cascode stage, we assumed that the gate-drain overlap capacitance of M is multiplied by
8m1/(gm2 + gmpa). Recall from Chapter 3, however, that with a high resistance loading the
drain of M, the resistance seen looking into the source of M, can be quite high, suggesting a
much higher Miller multiplication factor for Cg p1. Explain why Cgp, is still multiplied by
1+ g2m1/(8m2 + gmp2) if Cy, is relatively large.

6.12. Neglecting other capacitances, calculate Zy in the circuits of Fig. 6.42. Sketch |Zx| versus
frequency.

6.13. The common-gate stage of Fig. 6.23 is designed with (W/L); = 50/0.5,Ip; = 1 mA,
Rp = 2k, and Rs = 1 k2. Assuming A = 0, determine the poles and the low-frequency
gain. How do these results compare with those obtained in Problem 6,97

6.14. Suppose in the cascode stage of Fig. 6.25, a resistor R appears in series with the gate of Mo,
Including only Cgsz, neglecting other capacitances, and assuming A = y = 0, determine the
transfer function.

6.15. Apply the method of Fig. 6.15 to the circuit of Fig. 6.31(b) to determine the zero of the transfer
function.

6.16. The circuit of Fig. 6.32(a) is designed with (W/L); » = 50/0.5 and (W/L)3 4 = 10/0.5. If

Iss = 100 uA, K = 2, Cp =0, and Rp is implemented by an NFET having W/L = 50/0.5,
estimate the poles and zeros of the circuit. Assume the amplifier is driven by an ideal voltage
source.
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Figure 6.37

L
Mz:l Vout
Rs M1 I'_.Vb
Vino—W—9
| 1,(¥
zin ?l_ =0
(d)

My |l Vi

FYYY

"0y

, ’2?
Zin

T A=y=0
Q)] 4y

Vi
Vl n [

Figure 6.38



198

Chap. 6 Frequency Response of Amplifiers
o
VDD DD
if M
—Am, b2*—| 3
Cy C, Vout
V|n°—‘”_"—'| Vout v c
1
] M, b2 *—| M,
B Vln°_| M,
(2)

Figure 6.39

(a)

Figure 6.40



Problems 199
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6.17. A differential pair driven by an ideal voltage source is required to have a total phase shift of
135° at the frequency where its gain drops to unity.
(a) Explain why a topology in which the load is realized by diode-connected devices or current
sources does not satisfy this condition.
(b) Consider the circuit shown in Fig. 6.43. Neglecting other capacitances, determine the trans-
fer function. Explain under what conditions the load exhibits an inductive behavior, Can
this circuit provide a total phase shift of 135° at the frequency where its gain drops to unity?
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