Chapter 7

Noise

Noise limits the minimum signal level that a circuit can process with acceptable quality.
Today’s analog designers constantly deal with the problem of noise because it trades with
power dissipation, speed, and linearity.

In this chapter, we describe the phenomenon of noise and its effect on analog circuits. The
objective is to provide sufficient understanding of the problem so that further developments
of analog circuits in the following chapters take noise into account as readily as other circuit
parameters such as gain, input and output impedance, etc. Seemingly a complex subject,
noise is introduced at this early stage so as to accompany the reader for the remainder of
the book and become more intuitive through various examples.

Following a general description of noise characteristics in the frequency and time do-
mains, we introduce thermal, shot, and flicker noise. Next, we consider methods of represent-
ing noise in circuits. Finally, we describe the effect of noise in single-stage and differential
amplifiers along with trade-offs with other performance parameters.

7.1 Statistical Characteristics of Noise

Noise is a random process. For our purposes in this book, this statement means the value of
noise cannot be predicted at any time even if the past values are known. Compare the output
of a sinewave generator with that of a microphone picking up the sound of water flow in
a river (Fig. 7.1). While the value of x,(f) at t = #; can be predicted from the observed
waveform, the value of x,(¢) at + = #, cannot. This is the principal difference between
deterministic and random phenomena.

If the instantaneous value of noise in the time domain cannot be predicted, how can we
incorporate noise in circuit analysis? This is accomplished by observing the noise for a
long time and using the measured results to construct a “statistical model” for the noise.
While the instantaneous amplitude of noise cannot be predicted, a statistical model provides
knowledge about some other important properties of the noise that prove useful and adequate
in circuit analysis.

Which properties of noise can be predicted? In many cases, the average power of noise
is predictable. For example, if a microphone picking up the sound of a river is brought
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Figure 7.1 Output of a generator and the sound of a river.

closer to the river, the resulting electrical signal displays, on the average, larger excursions
and hence higher power (Fig. 7.2). The reader may wonder if a random process can be so
random that even its average bower is unpredictable. Such processes do exist, but we are
fortunate that most sources of noise in circuits exhibit a constant average power.

The concept of average power proves essential in our analysis and must be defined
carefully. Recall from basic circuit theory that the average power delivered by a periodic
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Figure 7.2 Tllustration of the average-power of a random
signal.
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voltage v(z) to a load resistance R is given by

+T/2 2(1.)

FPay = = z, (71)
-T/2

where T denotes the period.' This quantity can be visualized as the average heat produced
in Ry by v{#).

How do we define P,, for a random signal? In the example of Fig. 7.2, we expect that
xp(t) generates more heat than x4(¢) if the microphone drives a resistive load. However,
since the signals are not periodic, the measurement must be carried out over a long time:

1 +T/2 x2(t)
Pav —_ llm -_ B 3
T T J_rpp Ry

(7.2)

where x(r) is a voltage quantity. Figure 7.3 illustrates the operation on x4 (¢) and xg(t); each
signal is squared, the area under the resulting waveform is calculated for a long time 7', and
the average power is obtained by normalizing the area to T?
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Figure 7.3 Average noise power.

To simplify calculations, we write the definition of P,, as

+T/2
P, = lim — [ x*()dr, (7.3)
T—oco -T2

~
where P,, is expressed in V? rather than W. The idea is that if we know Py, from (7.3), then
the actual power delivered to a load Ry can be readily calculated as P,,/R;. In analogy
with deterministic signals, we can also define a root-mean-square (rms) voltage for noise

" as «/ v where Py, is given by (7.3).

AR _Nois'e_ Spectrum

* The concept of average power becomes more versatile if defined with regard to the frequency
content of noise. The noise made by a group of men contains weaker high-frequency com-
o pdne_nts than that made by a group of women, a difference observable from the “spectrum”

< ITo be more rigorous, v2(1) should be replaced by v(¢) - v*(¢), where v*(r) is the complex conjugate waveform.
2Strictly speaking, this definition holds only for “stationary™ processes [1].
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of each type of noise. Also called the “power spectral density” (PSD), the spectrum shows
how much power the signal carries at each frequency. More specifically, the PSD, S,(f),
of a noise waveform x(¢) is defined as the average power carried by x(¢) in a one-hertz
bandwidth around f. That is, as illustrated in Fig. 7.4(a), we apply x(¢) to a bandpass filter
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Figure 7.4 Calculation of noise spectrum.

with center frequency f; and 1-Hz bandwidth, square the output, and calculate the average
over a long time to obtain Sx(f)). Repeating the procedure with bandpass filters having
different center frequencies, we arrive at the overall shape of Sx( f) [Fig. 7.4(b)].> While it
is possible that the PSD of a random process is random itself, most of the noise sources of
interest to us exhibit a predictable spectrum.

As with the definition of P,, in (7.3), it is customary to eliminate R; from Sx{(f). Thus,
since each value on the plot in Fig. 7.4(b) is measured for a 1-Hz bandwidth, Sx(f) is
expressed in V2/Hz rather than W/Hz. It is also common to take the square root of Sx(f),
expressing the result in V/+/Hz. For example, we say the input noise voltage of an amplifier
at 100 MHz is equal to 3 nV/+/Hz, simply to mean that the average power in a 1-Hz
bandwidth at 100 MHz is equal to (3 x 107%)2 V2.

An example of a common type of noise PSD is the “white spectrum,” also called white
noise. Shown in Fig. 7.5, such a PSD displays the same value at all frequencies (similar

3In signal processing theory, the PSD is defined as the Fourier transform of the autocorrelation function of the

noise. The two definitions are equivalent in most cases of interest to us.
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5,(0

Figure 7.5 White spectrum.

to white light). Strictly speaking, we note that white noise does not exist because the total
area under the power spectral density, i.e., the total power carried by the noise, is infinite.
In practice, however, any noise spectrum that is flat in the band of interest is usually called
white. -

The PSD is a powerful tool in analyzing the effect of noise in circuits, especially in
conjunction with the following theorem.

Theorem If a signal with spectrum Sy ( /) is applied to a linear time-invariant system with
transfer function H(s), then the output spectrum is given by

Sy(f) = Sx(FILH(F), (7.4)

where H(f) = H(s = 2xjf). The proof can be found in textbooks on signal processing
or communications, e.g., [1].

This theorem agrees with our intuition that the spectrum of the signal should be “shaped”
by the transfer function of the system (Fig. 7.6). -For example, as illustrated in Fig. 7.7,

5, (1) GIGIR s,(f)

Figure 7.6 Noise shaping by a transfer function.

Xin(2) Telephone Xout (1)
t |1 (1) ‘ t
O -
Sxin(f) A o | Sxoulf
——j " axHz  f
20kHz f ! 4kHz  f

Figure 7.7 Spectral shaping by telephone bandwidth.
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since regular telephones have a bandwidth of approximately 4 kHz, they suppress the high-
frequency components of the caller’s voice. Note that, owing to its limited bandwidth, x,,,(r)
exhibits slower changes than does x;,,(z).

S,(n
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Figure 7.8 (a) Two-sided and (b} one-sided noise spectra.

Since Sy{f) is an even function of f for real x(r) {1], as depicted in Fig. 7.8, the total
power carried by x(¢) in the frequency range [ f; f2] is equal to

-h +f
Prrps = f Sx(f)df + f Sx(f)df (7.5)
~fa +£
+fa
= / 28x(f)df. (7.6)
+ 11

In fact, the integral in (7.6) is the quantity measured by a power meter sensing the output
of a bandpass filter between f; and f>. That is, the negative-frequency part of the spectrum
is folded around the vertical axis and added to the positive-frequency part. We call the
representation of Fig. 7.8(a) the “two-sided” spectrum and that of Fig. 7.8(b) the “one-
sided” spectrum. For example, the two-sided white spectrum of Fig. 7.5 has the one-sided
counterpart shown in Fig. 7.9,
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Figure 7.9 Folded whits spectrum.

In summary, the spectrum shows the power carried in a small bandwidth at each fre-
quency, revealing how fast the waveform is expected to vary in the time domain.

7.1.2 Amplitude Distribution

As mentioned earlier, the instantaneous amplitude of noise is usually unpredictable. How-
ever, by observing the noise waveform for a long time, we can construct a “distribution” of
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the amplitude, indicating how often each value occurs. Also called the “probability density
function” (PDF), the distribution of x(#) is defined as

px(x)dx = probability of x < X < x + dx, (1.7)

where X is the measured value of x(f) at some point in time.

As illustrated in Fig. 7.10, to estimate the distribution, we sample x(¢) at many points,
construct bins of small width, choose the bin height equal to the number of samples whose
value falls between the two edges of the bin, and normalize the bin heights to the total
number of samples. Note that the PDF provides no information as to how fast x(t) varies
in the time domain. For example, the sound generated by a violin may have the same
amplitude distribution as that produced by a drum even though their frequency contents are
vastly different.

Number :
x (1) of Samples
} t
) 4

Figure 7,10 Amplitude distribution of noise.

An important example of PDFs is the Gaussian (or normal) distribution. The central limit
theorem states that if many independent random processes with arbitrary PDFs are added,
the PDF of the sum approaches a Gaussian distribution [1]. It is therefore not surprising
that many natural phenomena exhibit Gaussian statistics. For example, since the noise of
a resistor results from random “walk” of a very large number of electrons, each having
relatively independent statistics, the overall amplitude follows a Gaussian PDF.

In this book, we employ the spectrum and average power of noise to a much greater extent
than the amplitude distribution. For completeness, however, we note that the Gaussian PDF
is defined as

1 —(x — m)?
px(x) = e P T g (7.8)

where o and m are the standard deviation and mean of the distribution, respectively.

7.1.3 Correlated and Uncorrelated Sources

In analyzing circuits, we often need to add the effect of several sources of noise to obtain the
total noise. While for deterministic voltages and currents, we simply use the superposition
principle, the procedure is somewhat different for random signals. Since in noise analysis,
ultimately the average noise power is of interest, we add two noise waveforms and take the
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average of the resulting power:

772
P,, = lim —f [xl(t)+x2(t)]2dt (7.9)
Tooo T -T2
TR I
= lim ——-f xy(t)dt + lim — x5(t)dt
T—o0 [ 112 ! Tsoo T -T2 2
)
+ hm —f 2x1 () (t)dt (7.10)
T—o0 -T/2
+T/2
=P + Pyp+ lim — 2x1()x2(t)dr, (7.11)
=0T J 12

where P,y and P,,; denote the average power of x;(z) and x,(2), respectively. Called the
“correlation” between x,(t) and x;(¢),* the third term in (7.11) indicates how “similar”
these two waveforms are. If generated by independent devices, the noise waveforms are
usually “uncorrelated” and the integral in (7.11) vanishes. For example, the noise pro-
duced by a resistor has no correlation with that generated by a transistor. In such a case,
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Figure 7.11 (a) Uncorrelated noise and (b) correlated
noise generated in a stadium.

“This terminology applies only to stationary signals.
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P,y = Pau1 + Puyz- From this observation, we say superposition holds for the power of
uncorrelated noise sources. ]

A familiar analogy is that of the spectators in a sports stadium. Before the game
begins, many conversations are in progress, generating uncorrelated noise components
[Fig. 7.11(a)]. During the game, the spectators applaud (or scream) simultaneously, pro-
ducing correlated noise at much higher power level [Fig. 7.11(b}].

In most cases studied in this book, the noise sources are uncorrelated. One exception is
studied in Sectton 7.3.

7.2 Types of Noise

Analog signals processed by integrated circuits are corrupted by two different types of noise:
device electronic noise and “environmental” noise. The latter refers to (seemingly) random
disturbances that a circuit experiences through the supply or ground lines or through the
substrate, We focus on device electronic noise here and defer the study of environmental
noise to Chapter 18.

7.2.1 Thermal Noise-

Resistor Thermal Noise The random motion of electrons in a conductor introduces
fluctuations in the voltage measured across the conductor even if the average current is zero.
Thus, the spectrum of thermal noise is proportional to the absoluie temperature.

_ s, (f14
v2
R 4 4kTR ————
Noiseless N
—_
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Figure 7.12 Thermal noisc of a resistor.

As shown in Fig. 7.12, the thermal noise of a resistor R can be modeled by a series
voltage source, with the one-sided spectral density

S.(f)=4kTR, f =0, (7:12)

where £k = 1.38 x lO‘iJ/K is the Boltzmann constant. Note that S,{f) is expressed in
V2/Hz. Thus, we write V2 = 4kT R, where the overline indicates averaging.” We may even
say the noise “voltage” is given by 4kT R even though this quantity is in fact the noise
voltage squared. For example, a 50-€2 resistor held at T = 300°K exhibits 8.28 x 10"
V2/Hz of thermal noise. To convert this number to a more familiar voltage quantity, we take
the square root, obtaining 0.91 nV/+/Hz. While the square root of hertz may appear strange,

3Some books write \_/,-? = 4kT RA[ toemphasize that 4kT R is the noise power per unit bandwidth. To simplify
the notation, we assume Af = | Hz, unless otherwise stated.
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it is helpful to remember that 0.91 nV/+/Hz has little significance per se and simply means
that the power in a 1-Hz bandwidth is equal to (0.91 x 1077)% V2,

The equation S,(f) = 4kT R suggests that thermal noise is white. In reality, S,(f) is
flat for up to roughly 100 THz, dropping at higher frequencies. For our purposes, the white
spectrum is quite accurate.

Since noise is a random quantity, the polarity used for the voltage source in Fig. 7.12
is unimportant. Nevertheless, once a polarity is chosen, it must be retained throughout the
analysis of the circuit so as to obtain consistent resuits.

Example 7.1

Consider the RC circuit shown in Fig. 7.13. Calculate the noise spectrum and the total noise power
in Vgut-

S
-
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Figure 7.13 Noise generated in a low-pass filter.
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Solution

Modeling the noise of R by a series voltage source Vg, we compute the transfer function from V; to
Vour:

Vour 1
) — A 7.13
ve = Res 41 (7.13)

From the theorem in Section 6.1.1, we have
Vour . |
Sour(f) = Sr(S) V—R(Jw) (7.14)
1

=4kTR————7— (7.15)

4nlRC2f2 4 1

Thus, the white noise spectrum of the resistor is shaped by a low-pass characteristic (Fig. 7.14). To
calculate the total noise power at the output, we write

R /00 4kTR i (7.16)
n,out — 0 47{2R2C2f2 +1 1 .

which, since

dx 1
/x2+1 =tan " x, 7.07
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Figure 7.14 Noise spectrum shaping by a low-pass filter.
reduces to
2T u=
Py ow = —=tan " u (7.18)
aC U=
kT ,

Note that the unit of 7"/ C is V2. We may also consider /A T/ C as the total rms noise voltage measured
at the output. For example, with a 1-pF capacitor, the total noise voltage is equal to 64.3 £V ips.

Equation (7.19) implies that the total noise at the output of the circuit shown in Fig. 7.13 is
independent of the value of R. Intuitively, this is because for larger values of R, the associated noise
per unit bandwidth increases white the overall bandwidth of the circuit decreases. The fact that kT /C
noise can be decreased by only increasing C (if T is fixed) introduces many difficulties in the design
of analog circuits (Chapter 12).

The thermal noise of a resistor can be represented by a parallel current source as well
(Fig. 7.15), For the representations of Figs. 7.12 and 7.15 to be equivalent, we have
V2/R? = I2, that is, [2 = 4kT/R. Note that 7> is expressed in A?/Hz. Depending on
the circuit topology, one model may lead to simpler calculations than the other.

Noisefess

Resistor Figure 7.15 Representation of resis-

tor thermal noise by a current source.

Example 7.2

Calculate the equivalent noise voltage of two parallel resistors Ry and Ry [Fig. 7.16(a)].

o T + )
+ +
p. < T2 G2 o
= = 2 = = 2
=R =R Vatot =Ah, Ini =Ry In2 Vi.tot
O _ » 0

(a} (b)
Figure 7.16
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Solution

As shown in Fig. 7.16(b), each resistor exhibits an equivalent noise current with the spectral density
4kT/R. Since the two noise sources are uncorrelated, we add the powers:

1200 = T4 + 12 (7.20)
1

=T | —+—). 7.21

(m " Rz) 20

Thus, the equivalent noise voltage is given by

V2o = I2(Ril|R2)? (7.22)
= 4T (R1| Ry, (7.23)

as intuitively expected. Note that our notation assumes a 1-Hz bandwidth.

The dependence of thermal noise (and some other types of noise) upon 7 suggests that
low-temperature operation can decrease the noise in analog circuits. This approach becomes
more attractive with the observation that the mobility of charge carriers in MOS devices
increases at low temperatures [2].° Nonetheless, the required cooling equipment limits the
practicality of low-temperature circuits.

MOSFETs MOS transistors also exhibit thermal noise. The most significantssource is
the noise generated in the channel. It can be proved [3] that for long-channel MOS devices
operating in saturation, the channel noise can be modeled by a current source connected
between the drain and source terminals (Fig. 7.17) with a spectral density:’

12 = 4kTyg,. (7.24)

3 O KT g

. Figure 7.17 Thermal noise of a
MOSFET.

The coefficient y (not to be confused with the body effect coefficient!) is derived to be
equal to 2/3 for long-channel transistors and may need to be replaced by a larger value for
submicron MOSFETs [4]. For example, y is about 2.5 in some 0.25-um MOS devices. It

S At extremely low temperatures, the mobility drops due to “carrier freezeout” [2].

"The actual equation reads E = 4kT y g4s, where g4 is the drain-source conductance with Vps =0, i.e., the
same as Ro‘,,‘. For long-channel devices, gz, with Vps = 0 is equal to g, in saturation.
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also varies to some extent with the drain-source voltage. The theoretical determination of
y is still under active research.

Example 7.3

Find the maximum noise voltage that a singie MOSFET can generate.

Solution

As shown in Fig. 7.18, the maximum output noise occurs if the fransistor sees only its own output

Figure7.18

impedance as the load, i.e., if the external load is an ideal current source. The output noise voltage is
then given by

Vi =123 (7.25)
2
= 4T (ggm) ry. (7.26)

Equation (7.26) suggests that the noise current of a MOS transistor decreases if the transconduc-
tance drops. For example, if the transistor operates as a constant current source, it is desirable to
minimize its transconductance.

Another important conclusion is that the noise measured at the output of the circuit does not
depend on where the input terminal is because for output noise calculation, the input is set to zero.?
For example, the circuit of Fig. 7.18 may be a common-source or a common-gate stage, exhibiting
the same output noise.

The ohmic sections of a MOSFET also contribute thermal noise. As conceptually illus-
trated in the top view of Fig. 7.19(a), the gate, source, and drain materials exhibit finite
resistivity, thereby introducing noise. For a relatively wide transistor, the source and drain
resistance is typically negligible whereas the gate distributed resistance may become no-
ticeable. .

In the noise model of Fig. 7.19(b), a lumped resistor R, represents the distributed gate
resistance. Viewing the overall transistor as the distributed structure shown in Fig. 7.19(¢),

80f course, if the input voltage or current source has an output impedance that generates noise, this statement
must be interpreted carefully.
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Figure 7.19 L ayout of a MOSFET indicating the terminal resistances, (b) circuit model, (c)
distributed gate resistance.

we observe that the unit transistors near the left end see the noise of only a fraction of
R whereas those near the right end see the noise of most of Rgs. We therefore expect
the lumped resistor in the noise model to be Jess than Rg. In fact, it can be proved that
R; = R¢/3 (Problem 7.3),

While the thermal noise generated in the channel is controlled by only the transconduc-
tance of the device, the effect of R can be reduced by proper layout. Shown in Fig. 7.20
are two examples. In Fig. 7.20(a), the gate is contacted on both ends and in Fig. 7.20(b), the

- " = » m]
’ﬁ’ " =a '.‘Tﬂ
@ (b)

Figure 7.20 Reduction of gate resistance by (a) adding contacts to
both sides or (b) folding.

device is folded (Chapter 2), each technique reducing R by a factor of 4. We will hereafter
neglect the thermal noise due to the ohmic sections of MOS devices.
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Example 7.4

Find the maximum thermal noise voltage that the gate resistance of a single MOSFET can generate.
Solution

If the total distributed gate resistance is R, then from Fig. 7.18; the output noise voltage due to Rg
is given by

Rg
Viou =T T(ger)z- o a2n

7.2.2 Flicker Noise

The interface between the gate oxide and the silicon substrate in a MOSFET entails an
interesting phenomenon. Since the silicon crystal reaches an end at this interface, many
“dangling” bonds appear, giving rise to extra energy states (Fig.7.21). As charge carri-
ers move at the interface, some are randomly trapped and later released by such energy
states, introducing “flicker” noise in the drain current. In addition to trapping, several other
mechanisms are believed to generate flicker noise [3].

> Polysilicon

i1 S0,
Pangling = ;
Bonds —™
Silicon
Crystal

Figure 7.21 Dangling bonds at the
oxide-silicon interface.

Unlike thermal noise, the average power of flicker noise cannot be predicted easily.
Depending on the “cleanness” of the oxide-silicon interface, flicker noise may assume
considerably different values and as such varies from one CMOS technology to another.
The flicker noise is more easily modeled as a voltage source in series with the gate and
roughly given by

K 1
CoxWL f’

_E:
n

(7.28)

where K is a process-dependent constant on the order of 10~ V2F. Note that our notation
assumes a bandwidth of 1 Hz. Interestingly, as shown in Fig. 7.22, the noise spectral density
is inversely proportional to the frequency. For example, the trap-and-release phenomenon
associated with the dangling bonds occurs at low frequencies more often. For this reason,
flicker noise is also called 1/f noise. Note that (7.28) does not depend on the bias current
or the temperature. This is only an approximation and in reality, the flicker noise equation
is somewhat more complex [3].

The inverse dependence of (7.28) on W L suggests that to decrease 1/ f noise, the device
area must be increased. It is therefore not surprising to see devices having areas of several
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o

|097 Figure 7.22 Flicker noise spectrum.

thousand square microns in low-noise applications. It is also believed that PMOS devices
exhibit less 1/ f noise than NMOS transistors because the former carry the holes in a “buried
channel,” i.e., at some distance from the oxide-silicon interface. Nonetheless, this difference
between PMOS and NMOS transistors is not consistently observed [3].

Example 7.5

For an NMOS current source, calculate the total thermal and 1/f noise in the drain current for a band
from 1 kHz to 1 MHz. :

Solution

The thermal noise current per unit bandwidth is given by 1"2‘”1 = 4kT(2/3)gm. Thus, the total thermal
noise integrated across the band of interest is

e 2
I? = 4T (gg,,,) (16% = 10%) (7.29)

n,th,tot
o e (2 6 a2
~ 4kT { S8m ) x 10° A% (7.30)

For 1/f noise, the drain noise current per unit bandwidth is obtained by multiplying the noise
voltage at the gate by the device transconductance:

[P S (7.31)
m1/f CoxsWL  f B '
The total 1/f noise is then equal to
2 I MH
72 _ &/ fdf (1.32)
mlfaot ™ Co WL Sy f
X 2
= —8m_ 0 (7.33)
Cox WL
_ 6.91Kg? .34
Cox WL~ ’

The above example raises an interesting qliestion. What happens to Inz‘ /7100 1f the lower
end of the band, f;, is zero rather than 1 kHz? Equation (7.33) then contains the natural
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logarithm of zero, yielding an infinite value for the total noise. To overcome the fear of
infinite noise, we make two observations. First, extending f; to zero means that we are
interested in arbitrarily slow noise components. A noise component at 0.01 Hz varies
significantly in roughly 10 s and one at 107% in roughly one week. Second, the infinite
flicker noise power simply means that if we observe the circuit for a very long time, the
very slow noise components can randomly assume a very large power level. At such slow
rates, noise becomes indistinguishable from thermal drift or aging of devices.

The foregoing observations lead to the following conclusions. First, since the signals
encountered in most applications do not contain significant low-frequency components, our
observation window need not be very long. For example, voice signals display negligible
energy below 20 Hz and if a noise component varies at a lower rate, it does not corrupt
the voice significantly. Second, the logarithmic dependence of the flicker noise power upon
f allows some margin for error in selecting f;. For example, if the band of interest is
so wide that the total integrated thermal noise power is comparable with the flicker noise
contribution, then the choice of f;, is quite relaxed.

In order to quantify the significance of 1/f noise with respect to thermal noise for a
given device, we plot both spectral densities on the same axes (Fig. 7.23). Called the 1/f
noise “corner frequency,” the intersection point serves as a measure of what part of the band

Al
\7 Corner

Thermal

Sy - Figure 7.23 Concept of flicker noise
fe f (log scale)  comer frequency.

is mostly corrupted by flicker n@se In the above example, the 1/f noise corner, fc, of the
output current is determined as

2 K 1
4T (Zgm ) = =—— - — - g2, 7.35
(3g) LWL T &m (7.35)
that is,
K 3
L 7.36
fe= Wi w7 ‘ (7.36)

Thlg result implies that fo generally depends on device dimensions and bias current,
Nonéthe]ess since for a given L, the dependence is relatively weak, the 1/ noise cor-
ner is relatively constant, falling in the vicinity of 500 kHz to 1 MHz for submicron
transistors.

Example 7.6

For a 100-pm/0.5-ptm MOS device with g,, = 1/(100Q), the 1/f noise corner frequency is measured
to be 500 kHz. If tox =90 A what is the flicker noise coefficient, K, in this technology?
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Solution
For 7, = 90 /i, we have C, = 3.84 fF/umz. Using Eq. (7.36), we write

K 1 3

500 kHz = D _
“T 384x100x05x 1075 100 8 x 138 x 102 x 300

(1.37)

That is, K = 1.06 x 10~2% V2F,

7.3 Representation of Neise in Circuits

Consider a general circuit with one input port and one output port (Fig. 7.24). How do we
quantify the effect of noise here? The natural approach would be to set the input to zero and
calculate the total noise at the output due to various sources of noise in the circuit. This is
indeed how the noise is measured in the laboratory or in simulations.

v 2
v
o— m _—
— 1+ _
Vin Ve * -3 Vout
o— - I'n2 —)

Figure 7.24 Noise sources in a circuit.

Example 7.7

What is the total output noise voltage of the common-source stage shown in Fig. 7.25(a)?

Voo
Rp

Vout

vino—"l My

(a)

Figure 7.25 (a) CS stage, (b) circuit including noise sources.
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Solution

‘We model the thermal and flicker noise of M by two current sources: Inz,rh = 4kT(2/3)gm and

13 = Kg,z,,/(Cox W Lf). We also represent the thermal noise of Rp by a current source If‘RD =

4KT/Rp. The output noise voltage per unit bandwidth is therefore equal to

—_ 2 K 1 4kT
y2 =(akTZ o= g2+ —— | R%. 7.38
n,ouf ( ng + CoxWL f Em + RD ) D ( )

Note that the noise mechanisms are added as “power” quantities because they are uncorrelated. The
value given by (7.38) represents the noise powerin 1 Hz ata frequency f. The total output noise can
be obtained by integration over the bandwidth of interest.

While intuitively appealing, the output-referred noise does not allow a fair comparison
of the performance of different circuits because it depends on the gain. For example, as
depicted in Fig. 7.26, if a common-source stage is followed by a noiseless amplifier having

Voo
Ry L A,
Vo] Vout
I Y Figure 7.26 Addition of gain stage to
- a CS stage.

a voltage gain A1, then the output noise is equal to the expression in (7.38) multiplied by
A2, Considering only the output noise, we may conclude that as A; increases, the circuit
becomes noisier, an incorrect result because a larger A, also provides a proportionally
higher signal level at the output. That is, the output signal-to-noise ratio (SNR) does not
depend on Aj.

To overcome the above quandary, we usually specify the “input-referred noise” of cir-
cuits. Ilustrated conceptually in Fig. 7.27, the idea is to tepresent the effect of all noise

sources in the circuit by a single source, V,f,n, at the input such that the output noise

Noisy Circuit —5 Noiseless Circuit
J— ) Vi,in
VI’I1 ——oO ~ " p—=0
- -+ 2 n,out n,out
v 2 ¥ ! n2
n3\_/_
(a) (b)

Figure 7.27 Determination of input-referred noise voltage.
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in Fig. 7.27(b) equals that in Fig. 7.27(a). If the voltage gain is A,, then we must have
V2, = A2VZ2,  that is, the input-referred noise voltage in this simple case is given by the

v'ionin®

output noise voltage divided by the gain.

Example 7.8
For the circuit of Fig. 7.25, calculate the input-referred noise voltage.
Solution
We have
VZ
2 _ Ynout
Vn in = 7'2;_ (7.39)
2 K 1 4T 1
= [4kT= — . 1. g2 Ry —— 7.40
( 3gm+CMWL 7 gm+ RD) ng2 (7.40)
2 K 1 4kT
= 4kT — . 7.41
38m + CoxWL f * g2Rp (7.41)

Note that the first term in (7.41) can be viewed as the thermal noise of a resistor equal to 2/(3g,)
placed in series with the gate. Similarly, the third term corresponds to the noise of a resistor equal
to (g/2 Rp)~'. We sometimes say the “equivalent thermal noise resistance” of a circuit is equal to
Ry, meaning that the total input-referred thermal noise of the circuit in unit bandwidth is equal to
4kT Ry.

At this point of our study, we make two observations. First, the input-referred noise and
the input signal are both multiplied by the gain as they are processed by the circuit. Thus,
the input-referred noise indicates how much the input signal is corrupted by the circuit’s
noise, i.e., how small an input the circuit can detect with acceptable SNR. For this reason,
input-referred noise allows a fair comparison of different circuits. Second, the input-referred
noise is a fictitious quantity in that it cannot be measured at the input of the circuit. The
two circuits of Figs. 7.27(a) and (b) are mathematically equivalent but the physical circuit
is still that in Fig. 7.27(a).

In the foregoing discussion, we have assumed that the input-referred noise can be mod-
eled by a single voltage source in series with the input. This is generally an incomplete
representation if the circuit has a finite input impedance and is driven by a finite source
impedance. To understand why, consider the common-source stage of Fig. 7.28(a), where
the input capacitance is denoted by C;, and 1/f noise is neglected for simplicity. From Eq.
(7.41), the input-referred noise voltage of the circuit is given by 84T /(3g,,) +4kT/ (82 Rp).
Now suppose the preceding stage is modeled by a Thevenin equivalent having an inductive
output impedance [Fig. 7.28(b)]. Simplifying the circuit for noise calculations as shown in
Fig. 7.28(c), we seek to find the output noise as L, increases. Owing to the voltage division
berween Ls and 1/(C;,s), the effect of Vnzm at the gate of M, and hence at the output
vanishes as L approaches infinity. This result, however, is incorrect because the output
noise of the circuit is equal to (8k7/3)g, R + 4kT Rp and independent of L, and C;,.
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Voo
ARp
2
Vain Vout
M,
—~t
I Cin
(a)
Vop Voo
Rp Rp
Vout Vout
M 1 M‘I

(b

'Figure 7.28 CS stage including input capacitance, (b) CS stage stimulated by a finite source

impedance, (c) Effect of single noise source.

Let us summarize the problem. If the circuit has a finite input impedance, modeling
the input-referred noise by merely a voltage source implies that the output noise van-
ishes as the source impedance becomes large, an incorrect conclusion. To resolve this
issue, we model the input-referred noise by both a series voltage source and a parallel
current source (Fig. 7.29) so that if the output impedance of the preceding stage assumes

large values——thereby reducing the effect of me —the noise current source still flows

through a finite impedance, producing noise at the input. It can be proved that Vnz' in and

2 . . . v .
I, are necessary find sufficient to represent the noise of any linear two-port circuit [3].

Noiseless
Circuit Figure 7.29 Representation of noise
by voltage and current sources.

How do we calculate Vnzm and 12, ? Since the model is valid for any source impedance,

we consider two extreme cases: zero and inﬁnite source impedances. As shown in
Fig. 7.30(a), if the source impedance is zero, 17, flows through V, 2., and has no effect on
the output. Thus, the output noise measured in this case arises solely from Vnzl Similarly,
if the 1nput is open [Fig. 7.30(b)], then V
only 12, Let us apply this method to the circuit of Fig. 7.28.

has no effect and the output noise is due to

nin
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—o ] l—o
Noisy — — — | Noiseless
2 2 2 2
Circuit | Yoout T Van Inin | cCircuit | Vnou
——=© l—o>0
(a)

o— i 0o
Noisy Noiseless 3
Circuit Circuit Viout

Ot p—=0

Figure 7.30 Calculation of input-referred noise (a) voltage, and (b) current,

Example 7.9

Calculate the input-referred noise volitage and current of Fig. 7.28.

Solution
From (7.41), the input-referred noise voltage (excluding 1/f noise) is simply
— 2 4T
V2 e AkT - 7.42
e in T T Ra (7.42)
As depicted in Fig. 7.31(a), this voltage generates the same output noise as the actual circuit if the

input is shorted.
To obtain the input-referred noise current, we open the input and find the output noise in terms of

In2 in [Fig. 7.31(b}]. The noise current flows through C;,., generating at the output

- 1 2
v2 . =12 (————) gL RE,. (7.43)

n,ouf nin Cinw
n

This value must be equal to the output of the noisy circuit when its input is open:

o 2 4T _,
Vn,aul = 4kT§gm + Rp RD' (7.44)
Vop
Rp
2
Vn,out

Figure 7.31
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From (7.43) and (7.44), it follows that

4kT (2 1
27
n in = (Cinw)*—5- m (ggm + —I-?;) . (7.45)

The reader may wonder if the use of both a voltage source and a current source to represent
the input-referred noise “counts the noise twice.” We utilize the circuit of Fig. 7.28 as an ex-
ample to demonstrate that this is not so. Considering the environment depicted in Fig. 7.32,
we prove that the output noise is correct for any source impedance Zs. Assuming Zs is noise-

H Figure 7.32 CS stage stimulated by a
source impedance.

less for simplicity, we first calculate the total noise voltage at the gate of M, due to Vnzm nd

I 2. . How is this voltage obtained: by superposition of voltages or powers? The two sources

n in and I,,2 ;» are in general correlated simply because they may represent the same noise
mechanisms in the circuit. In fact, Eqgs. (7.42) and (7.45) can be respectively rewritten as

Vn,in = Vn M1 + Vn,RD (7-46)
Emiip
Ci s
Inin = Cins Voo + = V,.kD> (7.47)
maD

where V, | denotes the gate-referred noise voltage of M, and V, zp the noise voltage of
Rp. We recognize that V,,  and V, gp appear in both V,, i, and I n, creating a strong
correlation between the two. Thus, the calculations must use superposition of voltages—as
if V,, in and I, ;, were deterministic quantities.

Adding the contributions of Va.in and I i at node X in Fig. 7.32, we have

1 Zs
Vax = Viin 1C""s o+ Lyin 1C""S (7.48)
+Z +2
Cins 5 Cins s
Vn,in + In inZS

= in L RIS 7.49
ZsCins + 1 ( )
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Substituting for V, ;, and 1, ;, from (7.46) and (7.47), respectively, we obtain

1

Vox = —— 1V,
nX ZsCos T 1 I: ‘n,Ml +

1 1
Vo.rp + Cins Zs(Vp a1 + Vn,RD)](7-50)
gmRp gnRp

m

= Vo +

1
V. RD- (7.51)
D

m

Note that V,, x is independent of Zg and C;,,. It follows that

Vidow = 8nRHVEx (7.52)
> = 4kT 2 + - R (7.53)
) = 3gm RD D> .

the same as (7.44).

7.4 Noise in Single-Stage Amplifiers

Having developed basic mathematical tools and models for noise analysis, we now study
the noise performance of single-stage amplifiers at low frequencies. Before considering
specific topologies, we describe a lemma that simplifies noise calculations.

Lemma The circuits shown in Fig. 7.33(a) and (b) are equivalent at low frequencies if
V2 = I2/g2 and the circuits are driven by a finite impedance.

Proof. Since the circuits have equal output impedances, we simply examine the output
short-circuit currents [Figs. 7.33(c) and (d)]. It can be proved (Problem 7.4) that the output
noise current of the circuit in Fig. 7.33(c) is given by

I,
In.ourl = (754)
Zs(gm +1/ro)+1
and that of Fig. 7.33(d) is
8m Vn

I = . 7.55

T Zs(gm + 1/ro) + 1 (7:33)
Equating (7.5_4) and (7.55), wehave V,, = I, /g, a

This lemma suggests that the noise source can be transformed from a drain-source current
to a gate series voltage for arbitrary Zs.
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Voo Voo
zZ, Zy
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Vnz,out Vy Vnz,oui
0__I I,f —O+ I
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Zg Zg

(a) (b}

Voo Voo
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n
o—l I_E o—(_ H+
M, M,
Zg Zg
(©

Figure 7.33 Equivalent CS stages.

7.4.1 Common-Source Stage

From Example 7.8, the input-referred noise voltage per unit bandwidth of a simple CS stage
is equal to '

W=4kT(_2-+ : )+ kK 1 (7.56)
e 3gm granD CaxWL f
From the above lemma, we recognize that the term 4kT[2/(3g,)] is in fact the thermal
noise current of M| expressed as a voltage in series with the gate.

How can we reduce the input-referred noise voltage? Equation (7.56) implies that the
transconductance of M; must be maximized. Thus, the transconductance must be maximized
if the transistor is to amplify a voltage signal applied to its gate [Fig. 7.34(a)] whereas it
must be minimized if the transistor operates as a current source [Fig. 7.34(b)].

Voui IO

- Figure 7.34 Voltage amplification
(a) (b) versus current gcncration,
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Example 7.10

Calculate the input-referred thermal noise voltage of the amplifier shown in Fig. 7.35(a), assuming
both transistors are in saturation. Also, determine the total output thermal noise if the circuit drives a
load capacitance Cy. What is the output signal-to-noise ratio if a low-frequency sinusoid of amplitude
Vm is applied to the input?

Voo
Vb .——-—-I M 2‘
Vout

- Vino—| M,

(@ (b)
Figure 7.35 -

Solution
Representing the thermal noise of M and M; by current sources [Fig. 7.35(b)] and noting that they

are uncorrelated, we write

y2 —4kT(

n,out —

2 2 - s
78m! + 38m2 (ro1llre2)”. (7.57)

Since the voltage gain is equal to gi1(ro1llro2). the total noise voltage referred to the gate of M is

— 2 2 1
Vn2 = 4kT (Egml + ggm2) 5 (7.58)
&mi
—mr (2 33212 A (1.59)
3gmi 3g 1

Equation (7.59) reveals the dependence of Vn2, in UPON g1 and g2, confirming that g2 must be
minimized because My serves as a current source.

The reader may wonder why M| and M> in Fig. 7.35 exhibit different noise effects. After all, if
the noise currents of both transistors flow through ro1 |irp2, why should g1 be maximized and gp,2
minimized? This is simply because, as gn,| increases, the output noise voltage rises in proportion to
/&m1 whereas the voltage gain of the stage increases in proportion to g,;1. As a result, the input-
referred noise voltage decreases.

To compute the total output noise, we integrate (7.57) across the band:

af

- (71.60)
1+ (roi1llro2?C?2nf )

2 o 2 2 2
Vn,uur,mt = o 4kT Egml + ‘3‘ng (roillroz2)

Using the results of Example 7.1, we have

- 2 kT
Vnz.out.to! = g(gml + gm2)(ron ”’"OZ)E- (7.61)
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An input sinusoid of amplitude V}, yields an output amplitude equal to gp1(r01[1r02) Vin - The output
SNR is equal to the ratio of the signal power and the noise power:

[ emi(ro1llro2)Vm ]2 1
SNRow = 4 7.62
‘ [ 73 @/ em T+ aorironkIiCy %
_3CL gmlroilirod) o 763

4T &m1 + &m2

We note that to maximize the output SNR, Cy, must be maximized, i.e., the bandwidth must be mini-
mized. Of course, the bandwidth is also dictated by the input signal spectrum. This example indicates
that it becomes exceedingly difficult to design broadband circuits while maintaining a low noise.

t

It is also important to observe from (7.56) that the noise contributed by R in Fig. 7.25(a)
decreases as R increases. This is again because the noise voltage due to R at the output
is proportional to +/Rp while the voltage gain of the circuit is proportional to Rp.

Example 7.11

Calculate the input-referred 1/f and thermal noise voltage of the circuit depicted in Fig. 7.36(a)
assuming M| and M are in saturation.

—— Vpp
VWwe—EM, =R,
*—0 Vout
Vin °_| M,
(@) (b)
Figure 7.36
Solution

We model the 1/f and thermal noise of the transistors as voltage sources in series with their gates
[Fig. 7.36(b)]. The noise voltage at the gate of M experiences a gain of gm2(Rpliroilirez) as it
appears at the output. The result must then be divided by gm1(Rpllro1llro2) to be referred to the
main input. The noise current of R p is multiplied by Rpllro1(Ir o2 and divided by g,,1(Rpliro1llro2)-
Thus, the overall input-referred noise voltage is given by '

—— 2 1 1 Kpgt K 1 AT
V2 =4kT—(5"’—2+ )+ [ PEm2 N ]—+ (7.64)

3\g2,  8m)  Cor |(WLngZ, WLN|[f = g2Rp’

where K p and Ky denote the flicker noise coefficients of PMOS and NMOS devices, respectively.
As expected, the input-referred noise voltage increases if g2 increases.




228

Chap. 7 Noise

How do we design a common-source stage for low-noise operation? For thermal noise
in the simple topology of Fig. 7.34, we must maximize g.,; by increasing the drain current
or the device width. A higher I translates to greater power dissipation and limited output
voltage swings while a wider device leads to larger input and output capacitance. We can
also increase Rp, but at the cost of limiting the voltage headroom and lowering the speed.

For 1/f noise, the primary approach is to increase the area of the transistor. If WL is
increased while W/L remains constant, then the cevice transconductance and hence its
thermal noise do not change but the device capacitai. -es increase. These observations point
to the trade-offs between noise, power dissipation, voltage headroom, and speed.

7.4.2 Common-Gate Stage

Consider the common-gate configuration shown in Fig. 7.37(a). Neglecting channel-

Voo ~ Vop
Ap =Ap
2
Vout """ Vh,out
M, M,
Vln

(@ ®)

Figure 7.37 (a) CG stage, (b) circuit including noise sources.

length modulation, we represent the thermal noise of M, and Rp by two current sources
[Fig. 7.37(b)]. Note that, owing to the low input impedance of the circuit, the input-referred
noise current is not negligible even at low frequencies. To calculate the input-referred
noise voltage, we short the input to ground and equate the output noise of the circuits in
Figs. 7.38(a) and (b): ‘

4T
(4kT S8+ 7€;) R = V,fm(gm + gms)*R3,. (7.65)

That is,

7 4kT(2gm/3 + 1/Rp)
men (8m + 8ms)?

(7.66)

Similarly, equating the output noise of the circuits in Figs. 7.38(c) and (d) yields the input-
referred noise current. What is the effect of 1 21 at the output in Fig. 7.38(c)? Since the sum
of the currents at the source of M| is zero, I,; + Ip; = 0. Consequently, I, creates an equal
and opposite current in My, producing no noise at the output. The output noise voltage of
Fig. 7.37(a) is therefore equal to 4k TRp and hence 12, R?, = 4k TRp. That is,

n,

2, =— (1.67)
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Figure 7.38 Calculation of input-referred noise of 'a CG stage.

An important drawback of common-gate topologies is that they directly refer the noise
current produced by the load to the input. Exemplified by (7.67), this effect arises because
such circuits provide no current gain, a point of contrast to common-source amplifiers.

We have thus far neglected the noise contributed by the bias current source of a common-
gate stage. Shown in Fig. 7.39 is a simple mirror arrangement establishing the bias current
of M, as a multiple of [,. Capacitor Cy shunts the noise generated by My to ground. We

Voo
ey I
t+— Vout
%
Vin M
;;52 ™ e AL

..Mch =

Figure 7.39 Noise contributed by bias
current source.
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note that if the input of the circuit is shorted to ground, then the drain noise current of M;
does not flow through R, contributing no input-referred noise voltage. On the other hand,
if the input is open, all of 12, flows from M, and Rp (at low frequencies), producing an
output noise equal to 1% R}, and hence an input-referred noise current of 72,. As a resul,
the noise current of M, directly adds to the input-referred noise current, making it desirable
to minimize the transconductance of M,. For a given bias current, however, this translates
to a higher drain-source voltage for M, because g,,2 = 2Ipy/(Vgsa — Vi), requiring a
high value for V;, and limiting the voltage swing at the output node.

Example 7.12

Calculate the input-referred thermal noise voltage and current of the circuit shown in Fig. 7.40
assuming all of the transistors are in saturation.

Figure7.40

Solution

To compute the input-referred noise voltage, we short the input to ground, obtaining

e 2
Vi our = 4T = (gm1 + gm3)ron llro3)%. (7.68)
Thus, the input-referred noise voltage, V, ;,, must satisfy this relationship:
2 2 2 2 2
Vo in(8m1 + gmp1) (ro1liro3)” = 4kT§(gm1 + gm3)rorllros), (7.69)
and hence
5 2
V2o = 4kT_M+g_m3)2. (7.70)
' 3 (8m1 + &mb1)

As expected, the noise is proportional to gp,3.

To calculate the input-referred noise current, we open the input and note that the output noise
voltage is simply given by (1"22 + 133)Rgu,, where Ryur &~ rg3|{gmiro1ro2) denotes the output
impedance when the input is open. It follows that

12

n,in

2
= 4kT 2 (gm2 + 8m3)- (7.71)

Again, the noise is proportional to the transconductance of the two current sources,
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The effect of 1/f noise in a common-gate topology is also of interest. As a typical
case, we compute the input-referred 1/f noise voltage and current of the circuit shown in
Fig. 7.40. Illustrated in Fig. 7.41, each 1/f noise generator is modeled by a voltage source
in series with the gate of the corresponding transistor. Note that the 1/f noise of My and
M, is neglected. A more realistic case is studied in Problem 7.10.

-3 Voo

1
<
Ry

Figure 7.41 Flicker noise in a CG
stage.

With the input shorted to ground, we have

Vo — 1 3,2n1KN + giaKP
n,out
' Corf L(WL),  (WL)s

] (roillros), (7.72)

where Ky and Kp denote the flicker noise coefficient of NMOS and PMOS deviceé, re-
spectively. Thus,

1 2K 2K 1
Voin = [g”” AR ”] 3 (7.73)
‘ Cox f LWLy (WL)3 ] (8m1 + Ems1)
With the input open, the output noise voltage is given by
1 [8l.Kn | 82:3Kp
Vi = m2 m_" \RZ,,. 7.74
e g 9
yielding
1 2K 2,K
2, = [g"”' Ny 8m P]. (7.75)
" Corf LWL, " (WL

Equations (7.73) and (7.75) describe thie 1/f noise behavior of the circuit and must be
added to (7.70) and (7.71), respectively, to obtain the overall noise per unit bandwidth.

7.4.3 Source Followers

Consider the source follower depicted in Fig. 7.42(a), where M, serves as the bias current
source. Since the input impedance of the circuit is quite high, even at relatively high fre-
quencies, the input-referred noise current can usually be neglected for moderate driving
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Figure 7.42 (a) Source follower, (b) circuit including noise sources.

Noise

source impedances. To compute the input-referred thermal noise voltage, we employ the

representation in Fig. 7.42(b), expressing the output noise due to M5 as

1 2
Qi ||r02) .

2 _ 72
V'n,outIMZ = In2 (_
8Em1

8mbl

From Chapter 3,

Av — Embl

1
roillroa + —
ml

roiliroz

mbl

Thus, the total input-referred noise voltage is

- . y? |
> _ ] n,oul | \M2
Vn,in - an + Ag
2 1 Em?2
= 4T3 (— + T) .
Em1 8iml

Note the similarity between (7.59) and (7.79).

(7.76)

(7.77)

(7.78)

(7.79)

Since source followers add noise to the input signal while providing a voltage gain less
than unity, they are usually avoided in low-noise amplification. The 1/f noise performance

of source followers is studied in Problem 7.11.

7.4.4 Cascode Stage

Consider the cascode stage of Fig. 7.43(a). Since at low frequencies the noise currents of
M; and R flow through Rp, the noise contributed by these two devices is quantified as in

4 common-source stage:

V2 mrp = 4KT (—2— + 2—1—) )
' 3gm g5 Rp

(7.80)
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Figure 7.43 (a) Cascode stage, (b) noise of M> modeled by a current source, (c) noise
of M3 modeled by a voltage source.

where 1/f noise of M is ignored. What is the effect of noise of M;? Modeled as in
Fig. 7.43(b), this noise contributes negligibly to the output, especially at low frequencies.
This is because, if channel length modulation in M, is neglected, then [y + Ip2 = 0, and
hence M- does not affect V,, ,,,. From another point of view, using the lemma of Fig. 7.33
to construct the equivalent in Fig. 7.43(c), we note that the voltage gain from V,, to the
output is quite small if the impedance at node X is large. At high frequencies, on the other
hand, the total capacitance at node X, Cy, gives rise to a gain:

Vn,out ~ '—RD
Va2 1/gm2 + 1/(Cxs)’

(7.81)

increasing the output noise. This capacitance also decreases the gain from the main input
to the output by shunting the signal current produced by M to ground. As a result, the
input-referred noise of a cascode stage may rise considerably at high frequencies.

7.5 Noise in Differential Pairs

With our understanding of noise in basic amplifiers, we can now study the noise behavior
of differential pairs. Shown in Fig. 7.44(a), a differential pair can be viewed as a two-port
circuit. It/1§ therefore possible to model the ove overall noise as depicted in Fig. 7.44(b). For
low-frequency operation, the magnitude of I? " in 18 typically negligible.

To calculate the thermal component of V?;,, we first obtain the total output noise with
the inputs shorted together [Fig. 7.45(a)], noting that superposition of power quantities is
possible because the noise sources in the circuit are uncorrelated. Since 7, and I,» are
uncorrelated, node P cannot be considered a virtual ground, making it difficult to use the
half-circuit concept. Thus, we simply derive the effect of each source individually. De-
picted in Fig. 7.45(b), the contribution of I,,; is obtained by first reducing the circuit to that
in Fig. 7.45(c). With the aid of this figure and neglecting channel-length modulation, the
reader can prove that half of 1,; flows through Rp; and the other half through M; and Rp;.
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Figure 7.44 (a) Differential pair, (b) circuit including input-referred noise sources.

Noise

2
I|/n.out

As shown in Fig. 7.45(d), this can also be proved by decomposing /,; into two (correlated)

current sources and calculating their effect at the output. Thus,

Inl Inl
Voul = 2L Rp1 + - Rps.
n0ut | M1 2 p1 + > Rp2

(7.82)

Note that the two noise voltages are directly added because they both arise from I,; and

are therefore correlated. It follows that, if Rp; = Rp; = Rp,
Vnz,out|M1 = Inzl R2D
Similarly,
Vnz,outh;J_ = InZZR%)’
yielding

Vn%ou:lMl,Mg = (73 + ISZ)R%'

Taking into account the noise of Rp; and Rp,, we have for the total output noise:

Vigw = (T +15 ) RS +2(4k TRy)

2 .
= 8kT (gngi, + RD) .

Dividing the result by the square of the differential gain, g2 R%, we have

V2 =8kT —-2—+ : .
nin 3gm g,%,RD

This is simply twice the input noise voltage squared of a common-source stage.

(7.83)

(7.84)

(7.85)

(7.86)

(7.87)

(7.88)
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Figure 7.45 Calculation of input-referred noise of a differential pair.

The input-referred noise voltage can also be calculated by exploiting the lemma illustrated
in Fig. 7.33. As shown in Fig. 7.46, the noise of M; and M, is modeled as a voltage source in
series with their gates, and the noise of Rp; and Rp, is divided by g2 R%, thereby resulting
in (7.88). .

It is instructive to compare the noise performance of a differential pair and a common-
source stage, as expressed by (7.56) and (7.88). We conclude that, if each transistor has a
transconductance g,,, then the input-referred noise voltage of a differential pair is /2 times
that of a common-source stage. This is simply because the former includes twice as many
devices in the signal path, as exemplified by the two series voltage sources in Fig. 7.46.
(Since the noise sources are uncorrelated, their powers add.) It is also important to recognize
that, with the assumption of equal device transconductances, a differential pair consumes
twice as much power as a common-source stage if the transistors have the same dimensions.

The noise modeling of Fig. 7.46 can readily account for 1/f noise of the transistors as
well. Placing the voltage sources given by X /(C,, W L) in series with each gate, we can
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Figure 7.46 Alternative method of
calculating the input-referred noise.

rewrite (7.88) as

V2

n,in,tot

8kT 2 + : + 2K 1 (7.89)
- 3gm anRD CaxWLf. '

Does the tail current source in Fig. 7.44 contribute noise? If the differential input signal
is zero and the circuit is symmetric, then the noise in I5s divides equally between M; and
M, producing only a common-mode noise voltage at the output. On the other hand, for a
small differential input, AV;,, we have

Alpy — Alp; = gnAVi, (7.90)

W Iss+ 1,
\/mncox 7 “2 YAV, (1.91)

where 1, denotes the noise in Iss and I, <« Igs. In essence, the noise modulates the
transconductance of each device. Equation (7.91) can be written as

W I I,
Alpy — Alps =~ /2u,Co,— - =2 [ 1 AV, 7.92
Dt D2 Mnlox L 2 ( + ZISS) ( )
. I, \ :
= 8mo 1+ AV, (793)
21gs

where g0 is the transconductance of the noiseless circuit. Equation (7.93) suggests that

+ as the circuit departs from equilibrium, 1, is more unevenly divided between M; and

M;, thereby generating differential noise at the output. This effect is nonetheless usually
negligible.

Example 7.13

Assuming the devices in Fig. 7.47(a) operate in saturation and the circuit is symmetric, calculate the
input-referred noise voltage. g
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(b) (©)
Figure 7.47

Solution

Since the thermal and 1/f noise of M; and M can be modeled as voltage sources in series with the
input, we only need to refer the noise of M3 and M4 to the input. Let us calculate the output noise
contributed by M3. The drain noise current of M3 is divided between rp3 and the resistance seen
looking into the drain of M [Fig. 7.47(c)]. From Chapter 5, this resistance equals Rx = rgs +2rp1.
Denoting the resulting noise currents flowing through rp3 and Ry by 1,4 and Iz, respectively, we
have

ro4 + 2rog ‘
Ina = gmaVs—2 "2 01 94
nA = 8m3Vn3 Tros t 2ro1 (7.94)
and
Ip = ¢‘§r’13"/n3‘————r03 . (7.95)
i 2ros + 2ro1

The former produces a noise voltage gm3 Vasros(roa +2ro1)/(2rpa + 2ro1) at node X with respect
to ground whereas the latter flows through M}, M2, and ro4, generating g,,3Vaarosros/(2roas +
2rp1) at node Y with respect to ground._Thus, the total differential output noise due to M3 is
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equal to
Vaxy = Vox — Voy ‘ (7.96)
r r
= gm3Vm— 2 0L 1.97
ro3+roi

(The reader can verify that V,;y must be subtracted from V,x.)

Equation (7.97) implies that the noise current of M3 is simply multiplied by the parallel com-
bination of rp and ro3 to produce the differential output voltage. This is of course not surprising
because, as depicted in Fig. 7.48, the effect of Vj;3 at the output can also be derived by decomposing

-||-—_-O+—| —n

My M,

4 h

(@)
v, 7 v, v,
+ 3 20 - ?3 + %3 Voo
-ll—(_ )—{+ |——(+ )——l_ n -||—(_ )—|+
M3 M4I M3
X
[ i e
(b) ©

Figure 7.48 Calculation of input-referred noise in a differential pair with current-source
loads.

Va3 into two differential components applied to the gates of M3 and M, and subsequently using the

half-circuit concept. Since this calculation relates to a single noise source, we can temporarily ignore

the random nature of noise and treat V,,3 and the circuit as familiar deterministic, linear components.
Applying (7.97) to M4 as well and adding the resulting powers, we have

V2 ouelma ata = 823(ro1liros)’ vV + g24(ro2liros)* v, (7.98)
= 2g2:(ro1lros’* V3. (7.99)

To refer the noise to the input, we divide (7.99) by g?n (roillro 3)2, obtaining the fotal input-referred
noise voltage per unit bandwidth as

2

2 _ o2 Em3y,2

V2, =2V + 2g—';— vz, (7.100)
ml
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which, upon substitution for VHZ] and V%, +& uces to:

n3:
2
VI = gkT [ 2 4 283 Ky 2Kp 8w (7.101)
in 3gm 3g,2n1 Cox(WL) f CO.XV(WL):Sf 8’3,1

The effect of noise must be studied for many other analog circuits as well. For example,
feedback systems, op amps, and bandgap references exhibit interesting and important noise
characteristics. We return to these topics in other chapters.

7.6 Noise Bandwidth

The total noise corrupting a signal in a circuit results from all of the frequency components
that fall in the bandwidth of the circuit. Consider a multipole circuit having the output noise
spectrum shown in Fig. 7.49(a). Since the noise components above w, are not negligible,

(a) (b)

Figure 7.49 (a) Output noise spectrum of a circuit, (b} concept of noise bandwidth.

the total output noise must be evaluated by calculating the total area under the spegtral
density:

Vnz.out.mt = j(; VZoudf. (7.102)

However, as depicted in Fig. 7.49(b), it is sometimes helpful to represent the total noise
simply as VO2 - B,, where the bandwidth B, is chosen such that

o0
Vi B, = f V2,.df. (7.103)
0

Called the “noise bandwidth,” B, allows a fair comparison of circuits that exhibit the same
low-frequency noise, VOZ, but different high-frequency transfer functions. As an exercise,
the reader can prove that the noise bandwidth of a one-pole system is equal to /2 times
the pole frequency. ‘
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Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
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Vbp = 3 V where necessary. Also, assume all transistors are in saturation.

7.1.

7.2.

7.3.

74.
7.5.

7.6.

1.7.

7.8.

7.9.

7.16.

7.11,
7.12.

-7.13.

A common-source stage incorporates a 50-.m/0.,5-um NMOS device biased at Ip = 1 mA
along with a load resistor of 2 k2. What is the total input-referred thermal noise voltage in a
100-MHz bandwidth?

Consider the common-source stage of Fig. 7.35. Assume (W/L); = 50/0.5, Ip; = Ip; =
0.1 mA, and Vpp = 3 V. If the contribution of M; to the input-referred noise voltage (not
voltage squared) must be one-fifth of that of AM;, what is the maximum output voltage §wing
of the amplifier? '

Using the distributed model of Fig. 7.19(c) and ignoring the channel thermal noise, prove that,
for gate noise calculations, a distributed gate resistance of Rg can be replaced by a lumped
resistance equal to R /3. (Hint: model the noise of Rg j by a series voltage source and calculate
the total drain noise current. Watch for correlated sources of noise.)

Prove that the output noise current of Fig. 7.33(c) is given by Eq. (7.54).

Calculate the input-referred noise voltage of the circuit shown in Fig. 7.50 and compare the
result with Eq. (7.59).

Figure7.50

Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.51. Assume A =
y=0.

Calculate the input-referred thermal noise voltage of each circuit in Fig. 7.52. Assume A
y =0

Calculate the input-referred thermal noise voltage and current of each circuit in Fig, 7.53.
Assume A =y = 0.

Calculate the input-referred thermal noise voltage and current of each circuit in Fig. 7.54.
Assume A =y = 0.

Calculate the input-referred 1/ noise voltage and current of Fig, 7.40 if the two capacitors are
removed.

Calculate the input-referred 1/ noise voltage of the source follower shown in Fig. 7.42.

Assuming & = y = 0, calculate the input-referred thermal noise voltage of each circuit in
Fig. 7.55. For part (a), assume gp3 4 = 0.5g,15.6.

Consider the degenerated common-source stage shown in Fig. 7.56.

(a) Calculate the input-referred thermal noise voltage if A = y = 0.

(b) Suppose linearity requirements necessitate that the dc voltage drop across Rs be equal to
the overdrive voltage of M. How does the thermal noise contributed by Rg compare with
that contributed by M| ?
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7.14.
7.15.
7.16.
7.17.

7.18.

7.19,

7.20.

Figure 7.55

Figure 7.56

Explain why Miller’s theorem cannot be applied to calculate the effect of the thermal noise of
a floating resistor.

The circuit of Fig. 7.18 is designed with (W/L)1 = 50/0.5 and Ip; = 0.05 mA. Calculate the
total rms thermal noise voltage at the output in a 50-MHz bandwidth.

For the circuit shown in Fig. 7.58, calculate the total output thermal and 1/ f noise in a bandwidth
[fr, frl. Assume X 5 0 but neglect other capacitances.

Suppose in the circuit of Fig. 7.35, (W/L)1 2 = 50/0.5 and Ip; = |Ipa| = 0.5 mA. What is
the input-referred thermal noise voltage?

The circuit of Fig. 7.35 is modified as depicted in Fig. 7.59.

 (a) Calculate the input-referred thermal noise voltage.

(b) For a given bias current and output voltage swing, what value of Rg minimizes the input-
referred thermal noise?

A common-gate stage incorporates an NMOS device with W/L = 50/0.5 biased at Ip =
1 mA and a load resistor of 1 k2. Calculate the input-referred thermal noise voltage and
current.

The circuit of Fig. 7.39 is designed with (W /L), = 50/0.5 and Ip, = ip2 = 0.05 mA and

Rp = 1 kL.

{a) Determine (W/L); such that the contribution of M» to the input-referred thermal noise
current (not current squared) 15 one-fifth of that due to Rp.

(b) Now calculate the minimum value of V}, to place M, at the edge of the triode region. What
is the maximum allowable output voltage swing?
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7.21. Design the circuit of Fig. 7.39 for an input-referred thermal noise voltage of 3 nV/+/Hz and
maximum output swing. Assume /p; = Ip; = 0.5 mA.

7.22. Consider the circuit of Fig. 7.40. If (W/L);_3 = 50/0.5 and Ip;_3 = 0.5 mA, determine the
input-referred thermal noise voltage and current.

7.23. The circuit of Fig. 7.40 is designed with (W/L); = 50/0.5 and Ipj_3 = 0.5 mA. Ifan output
swing of 2 V is required, estimate by iteration the dimensions of M and M3 such that the
input-referred thermal noise current is minimum.

7.24. The source follower of Fig. 7:42 is to provide an output resistance of 100 Q with a bias current

of 0.1 mA.
(a) Calculate (W/L);.

VDD
Rs
Voord[= M,
Vout
Vinel[L M 1

= Figure 7.59
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(b) Determine (W /L), such that the input-referred thermal noise voltage (not voltage squared)
contributed by M, is one-fifth of that due to M. What is the maximum output swing?

7.25. The cascode stage of Fig. 7.43(a) exhibits a capacitance Cx from node X to ground. Neglecting
other capacitances, determine the input-referred thermal noise voltage.

7.26. Determine the input-referred therma! and 1/f noise voltages of the circuits shown in Fig. 7.57
and compare the results. Assume the circuits draw equal supply currents.
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Chapter 8

Feedback

On a mild August morning in 1921, Harold Black was riding the ferry from New York to
New Jersey, where he worked at Bell Laboratories. Black and niany other researchers had
been investigating the problem of nonlinearity in amplifiers used in long-distance telephone
networks, seeking a practical solution. While reading the newspaper on the ferry, Black was
suddenly struck by an idea and began to draw a diagram on the newspaper, which would
later be used as the evidence in his patent application. The idea is known to us as the negative
feedback amplifier.

Feedback is a powerful technique that finds wide application in analog circuits. For
example, negative feedback allows high-precision signal processing and positive feedback
makes it possible to build oscillators. In this chapter, we consider only negative feedback
and use the term feedback to mean that.

We begin with a general view of feedback circuits, describing important benefits that
result from feedback. Next, we study four feedback topologies and their properties. Finally,
we examine the effects of loading in feedback amplifiers.

8.1 General Considerations

246

Fig. 8.1 shows a negative feedback system, where H (s) and G(s) are called the feedforward
and the feedback networks, respectively. Since the output of G(s) is equal to G(s)Y (s), the
input to H(s), called the feedback error, is given by X(s) — G(s)Y(s). That is,

Y(s) = H(s)[X(s) — G(s)¥(s)]. @.n

<+
X(s) H{s) Y (s)
G(s)
Figure 8.1 General feedback system.
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Thus,

Y(s) _ H(s)
X(s) 1+ G()H(@s)

(8.2)

We call H(s) the “open-loop” transfer function and ¥ (s)/ X (s) the “closed-loop” transfer
function. In most cases of interest in this book, H (s) represents an amplifier and G(s) is a
frequency-independent quantity. In other words, a fraction of the output signal is sensed and
compared with the input, generating an error term. In a well-designed negative feedback
system, the error term is minimized, thereby making the output of G(s) an accurate “copy”
of the input and hence the output of the system a faithful replica of the input (Fig. 8.2). We
also say the input of H(s) is a “virtual ground” because the signal amplitude at this point
is very small. In subsequent developments, we replace G(s) by a frequency-independent
quantity 8 and call it the “feedback factor.”

’V\, 5 H(s) -—Y(s)

% G(s) . Figure 8.2 Similarity between output
of feedback network and input signal.

It is instructive to identify four elements in the feedback system of Fig, 8.1: (1) the
feedforward amplifier, (2) a means of sensing the output, (3) the feedback network, (4) a
means of generating the feedback error. These elements exist in every feedback system,
even though they may not be obvious in cases such as a simple common-source stage with
resistive degeneration.

8.1.1 Properties of Feedback Circuits

Before proceeding to the analysis of feedback circuits, we study some simple examples to
describe the benefits of negative feedback as well as identify the above four elements in
each case.

Gain Desensitization Consider the common-source stage shown in Fig. 8.3(a), where
the voltage gain is equal to g,,17p;. A critical drawback of this circuit is the poor definition
of the gain: both. g,,; and ro, vary with process and temperature. Now suppose the circuit
is configured as in Fig. 8.3(b), where the gate bias of M, is set by means not shown
here (Chapter 12). Let us calcuiut2 the overall voltage gain of the circuit at relatively low
frequencies such that C, does not load the output node, i.e., Vour/ Vx = —gmirp1. Since
(Vour — Vx)Cas = (Vx — Vin)Cis, we have

Vour _ 1 | 63

Vi ‘ 1 C 1
" (1 + ) =+
gmiro1/ Ci gmiror
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Voo Voo
I I
1 CZ 1
Vou! C1 Vout
Vine—| M, Vino— |_£X L M,
(b

(a)

Figure 8.3 (a) Simple common-source stage, (b) circuit of (a)
with feedback.

If gnmiro1 is sufficiently large, the 1/(g.1701) terms in the denominator can be neglected,
yielding

=21 (8.4)

Compared to g,n1701, this gain can be controlled with much higher accuracy because it is
given by the ratio of two capacitors. If C; and C, are made of the same material, then
process and temperature variations do not change C,/C,.

The above example reveals that negative feedback provides gain “desensitization,” i.e.,
the closed-loop gain is much less sensitive to device parameters than the open-loop gain is,
Illustrated for a more general case in Fig. 8.4, this property can be quantified by writing

Y A

X 1+pA .5
1 1

-] - — . 8.6

ﬂ( ﬂA) : ®.6)

where we have assumed SA > 1. We note that the closed-loop gain is determined, to the
first order, by the feedback factor, . More importantly, even if the open-loop gain, A, varies
by a factor of, say, 2, Y/ X varies by a small percentage because 1/(8A) < 1.

+
X A - Y

Figure 8.4 Simple feedback system.

Called the “loop gain,” the quantity SA plays an important role in feedback systems.!
We see from (8.6) that the higher SA is, the less sensitive ¥/ X will be to variations in A. -

"Loop gain and open-loop gain must not be confused with each other.
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From another perspective, the accuracy of the closed-loop gain improves by maximizing
A or 8. Note that as 8 increases, the closed-loop gain, Y/ X & 1/8, decreases, suggesting
a trade-off between precision and the closed-loop gain. In other words, we begin with a
high-gain amplifier and apply feedback to obtain a low, but less sensitive closed-loop gain.
Another conclusion here is that the output of the feedback network is equal to X - A/(1 +
BA), approaching A as S A becomes much greater than unity. This result agrees with the
illustration in Fig. 8.2.

The calculation of the loop gain usvally proceeds as follows. As illustrated-in Fig. 8.5,
we set the main input to zero, break the loop at some point, inject a test signal in the *right
direction,” follow the signal around the loop, and obtain the value that returns to the break
point. The negative of the transfer function thus derived is the loop gain. Note that the loop
gain is a dimensionless quantity. In Fig. 8.5, we have V;8(—1)A = Vr and hence Vg/V, =
—BA. Similarly, as depicted in Fig. 8.6, for the simple feedback circuit, we can write

v C,
V, ————(— = Vg, 8.7
G +C2( gmiTo1) F 8.7
that is,
Ve C2 )
AL T 8.8
v, c +ng 17o1 (8.8)

Note that the loading of C; on the output is neglected here. This issue will be addressed in
Section 8.3.

It is also interesting to identify the four elements of feedback in the circuit of Fig. 8.3(b).
Transistor M; and current source I; constitute the feedforward amplifier. Capacitor C,

X(s)=0 —

abk a4

Figure 8.5 Computation of loop gain.

Figure 8.6 Computation of loop gain
in a simple feedback circuit.
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senses the output voltage and converts it to a current feedback signal, which is then added
to the current produced by V;, through C;. Note that the feedback is negative even though
the currents through C; and C, are added because the feedforward amplifier itself provides
a negative gain.

We should emphasize that the desensitization of gain by feedback leads to many other
properties of feedback systems. Our examination of Eq. 8.6 indicates that large variations
in A affect Y/ X negligibly if BA is large. Such variations can arise from different sources:
process, temperature, frequency, and loading. For example, if A drops at high frequencies,
Y/ X varies to a lesser extent, and the flat bandwidth is increased. Similarly, if A decreases
because the amplifier drives a heavy load, ¥/ X is not affected much. These concepts become
clearer below.

Terminal Impedance Modification As a second example, let us study the circuit
shown in Fig. 8.7(a), where a capacitive voltage divider senses the output voltage of a
common-gate stage, applying the result to the gate of current source M; and hence return-
ing a current feedback signal to the input.? Our objective is to compute the input resistance
at relatively low frequencies with and without feedback. Neglecting channel-length modu-
lation and breaking the feedback loop [Fig. 8.7(b)], we have

1

_ 8.9
Em1 T+ Embi 89

Rin,open =

For the closed-loop circuit, as depicted in Fig. 8.7(c), we write: V,,, = (gm1 + gms1)Vx KD
and

G
Vp=V,y——— 8.10
P ou:C1 +C2 ( )
Voo
Rp
'"l Vout
R/
C1 b.__l M1

(b

Figure 8.7 (a) Common-gate circuit with feedback, (b) open-loop circuit, (c) calculation of input resistance.

2The bias network for M is not shown,
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= (gm1 + gmp1)Vx Rp 8.11D

1
Ci+Cy
Thus, the small-signal drain current of M, equals gn2(g8m1 + 8ms1)Vx RpC1/(C1 + C3).
Adding this current to the drain current of M, with proper polarity yields Jx: '

c .
_RpVx 8.12)

Ix = + 1%
x = (8m1 gn':bl) % 4 Em2(8m + gmbl)cl G
= (gmi + )(1+ Rp— v (8.13)
= (8m1 T &mi 8m2 DC1 G, X- .
1t follows that
Rin.clased = VX/IX ‘ (8.14)
1 1
= T (8.15)
8m1 + Embl i
1 Rp——
+ 8m2 DC1 + G

We therefore conclude that this type of feedback reduces the input resistance by a factor of
1+ gm2RpC1/(Cy + C2). The reader can prove that the quantity gmaRpCi1/(C1 + C) is
the loop gain.

We also identify the four elements of feedback in the circuit of Fig. 8.7(a). The feed-
forward amplifier consists of My and Rp, the output is sensed by C; and C, the feedback
network comprises Cy, Cz, and M, and the subtraction occurs in the current domain at the
input terminal. '

1]
|
-||—|
Al
11
"
a—
AY

(a) (b)

Figure 8.8 (a) CS stage with feedback, (b) calculation of output resistance.

Let us now consider the circuit of Fig. 8.8(a) as an example of output impedance modi-
fication by feedback. Here M, R, and Rp constitute a common-source stage and Cy, Ca,
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and M, sense the output voltage,® returning a current equal to [C)/(C) + C2)]1Vyutgm2 10
the source of M;. The reader can prove that the feedback is indeed negative. To compute
the output resistance at relatively low frequencies, we set the input to zero [Fig. 8.8(b}] and
write

C R
Ipy = Vy———gm 5 (8.16)
Ci1+C, 1
Ry+ ——
8m1 + Emb1
Since Iy = Vx/Rp + Ip;, we have
Yx Rp (8.17)

8m2Rs(8m1 + gms1)Rp €
Em1+ gmp)Rs+1 C14+C;

IX_1_+_

Equation (8.17) implies that this type of feedback decreases the output resistance. The
denominator of (8.17) is indeed equal to one plus the loop gain.

Bandwidth Modification. The next example illustrates the effect of negative feedback
on the bandwidth. Suppose the feedforward amplifier has a one-pole transfer function:

Ag
1+
wo

A(s) = (8.18)

where Ao denotes the low-frequency gain and wy is the 3-dB bandwidth. What is the transfer
function of the closed-loop system? From (8.5), we have

Ay
14+ =
—(s) = “_CZOT (8.19)
1+ p—2
1+ —
wy
A
=—2 (8.20)
1+ BAo+—
(2]

Ag

_ 1+ ,3;40 _ (8.21)
1 —2
T AT BAvwen

The numerator of (8.21) is simply the closed-loop gain at low frequencies—as predicted by
(8.5)—and the denominator reveals a pole at (1 + 8 Ag)wo. Thus, the 3-dB bandwidth has in-
creased by afactor 148 A, albeit at the cost of a proportional reduction in the gain (Fig. 8.9).

3Biasing of M; is not shown.
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Figure 8.9 Bandwidth modification as a result of feedback.

The increase in the bandwidth fundamentally originates from the gain desensitization
property of feedback. Recall from (8.6) that, if A is large enough, the closed-loop gain
remains approximately equal to 1/8 even if A experiences substantial variations. In the
example of Fig. 8.9, A varies with frequency rather than process or temperature, but negative
feedback still suppresses the effect of this variation. Of course, at high frequencies A drops
to such low levels that SA becomes comparable with unity and the closed-loop gain falls
below 1/8. '

Equation (8.21) suggests that the gain-bandwidth product of a one-pole system does not
change with feedback, making the reader wonder how feedback improves the speed if a
high gain is required. Suppose we need to amplify a 20-MHz square wave by a factor of 100
and maximum bandwidth but we have only a single-pole amplifier with an open-loop gain
of 100 and 3-dB bandwidth of 10 MHz. If the input is applied to the open-loop amplifier,
the response appears as shown in Fig. 8.10(a), exhibiting long risetime and falltime because
the time constant is equal to 1/(27 f3_4p) = 16 ns.

fsgs =10 MHz fygp =100MHz fa_yg =100 MHz
A, =100 A, =10 Ay, =10

Vll'l I Vll'l

Tai6éns

Vout / Vout

t t

(a) (b)

Figure 8.10 Amplification of a 20-MHz squarewave by {a) 20-MHz amplifier and
(b).cascade of two 100-MHz feedback amplifiers.
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Now suppose we apply feedback to the amplifier such that the gain and bandwidth are
modified to 10 and 100 MHz, respectively. Placing two of these amplifiers in a cascade
[Fig. 8.10(b)], we obtain a much faster response with an overall gain of 100. Of course,
the cascade consumes twice as much power, but it would be quite difficult to achieve this
performance by the original amplifier even if its power dissipation were doubled.

Nonlinearity Reduction A very important property of negative feedback is the sup-
pression of nonlinearity in analog circuits. We defer the study of this effect to Chapter 13.

Most of the circuits studied thus far can be considered “voltage amplifiers” because they
sense a voltage at the input and produce a voltage at the output. However, three other
types of amplifiers can also be constructed such that they sense or produce currents. Shown
in Fig. 8.11, the four configurations have quite different properties: (1) circuits sensing

Voltage Amp. Transimpedance Amp. Transconductance Amp. Current Amp.

’In Iout ’In 'out
+ + + +

Vln Voul Voui Vln
/ in ! out ! in / out
—— —_— —
+ *+ +
|"out Vin
JE—— = = JE—

(b) () @

Figure 8.11 Types of amplifiers along with their idealized models.

a voltage must exhibit a high input impedance (as a voltmeter) whereas those sensing a
current must provide a low input impedance (as a current meter); (2) circuits generating a
voltage must exhibit a low output impedance (as a voltage source) while those generating
a current must provide a high output impedance (as a current source). Note that the gains
of transimpedance and transconductance* amplifiers have a dimension of resistance and

- conductance, respectively. For example, a transimpedance amplifier may have a gain of

2 k€2, which means it produces a 2-V output in response to a 1-mA input. Also, we use the
sign conventions depicted in Fig. 8.11, for example, the transimpedance Ry = V,,, /i, if
I;n flows into the amplifier.

“This terminology is standard but not consistent. One should use either transimpedance and transadmittance
or transresistance and transconductance. -
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Voo Voo
R A,
D V o V ’Ol.lt 1 out
out out
M '—0 Vb
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ino—[ M4 My Vs ino—1{,, M4 :
- - In
Iin
(a) (b) ) )

Figure 8.12 Simple implementations of four types of amplifiers.

Figure 8.12 illustrates simple implementations of each amplifier. In Fig. 8.12(a), a
common-source stage senses and produces voltages and in Fig. 8.12(b), a common-gate
circuit serves as a transimpedance amplifier, converting the source current to a voltage
at the drain. In Fig. 8.12(c), a common-source transistor operates as a transconductance
amplifier, generating an output current in response to an input voltage, and in Fig. 8.12(d),
a common-gate device senses and produces currents. _

The circuits of Fig. 8.12 may not provide adequate performance in many applications. For
example, the circuits of Figs. 8.12(a) and (b) suffer from a relatively high output impedance.
Fig. 8.13 depicts modifications that alter the output impedance or increase the gain.

=Ry
|————| M 2
VY,
Vln°‘“‘| M 1 out
(a) (b)
Voo Voo
Rp Rp lout
X ’out M2
M, M, J—V L
Vin O_—I M 1 —
L - ! in
) (d)

Figure 8.13 Four types of amplifiers with improved performance.
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Example 8.1

Calculate the gain of the transconductance amplifier shown in Fig. 8.13(c).

Solution
The gain in this case is defined as G, = Ious/ Vin. That is,

Vy  lout !
Gm == 8.22
i Vin Vx ( )
= —gmi1(r01RD) - gma2- (8.23)

While most familiar amplifiers are of voltage-voltage type, the other three configura-
tions do find usage. For example, transimpedance amplifiers are an integral part of optical
fiber receivers because they must sense the current produced by a photodiode, eventually
generating a voltage that can be processed by subsequent circuits.

8.1.3 Sense and Return Mechanisms

Placing a circuit in a feedback loop requires sensing the output signal and returning (a
fraction) of the result to the summing node at the input. With voltage or current quantities
as input and output signals, we can identify four types of feedback: voltage-voltage, voltage-
current, current-current, and current-voltage, where the first entry in each case denotes the
quantity sensed at the outpur and the second the type of signal returned to the input.’

It is instructive to review methods of sensing and summing voltages or currents. To sense
avoltage, we place a voltmeter in parallel with the corresponding port {Fig. 8.14(a)], ideally
introducing no loading. When used in a feedback system, this type of sensing is also called
“shunt feedback.”

"out IOl.lt
" -
Voltmeter R =R
Vout L Rg L
- FYYY
wy
— _— Vs +
Current Meter
(a)_ (b) (c)

Figure 8.14 Sensing (a) a voltage by a voltmeter, (b) a current by a current meter, (c) a current by
a small resistor.

To sense a current, a current meter is inserted in series with the signal [Fig. 8.14(b)],

ideally exhibiting zero series resistance. Thus, this typé of sensing is also called “series
feedback.” In practice, a small resistor replaces the current meter [Fig. 8.14(c)], with the
voltage drop across the resistor serving as a measure of the output-current.

The addition of the feedback signal and the input signal can be performed in the voltage
domain or current domain. To add two quantities, we place them in series if they are

SDifferent authors use different orders or terminologies for the four types of feedback.

it
\
4
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Figure 8.15 Addition of (a) voltages
and (b) currents.

(2) (b)
voltages and in parallel if they are currents (Fig. 8.15). While ideally having no influence on
the operation of the open-loop amplifier itself, the feedback network in reality introduces
loading effects that must be taken into account. This issue is discussed in Section 8.3.

To visualize the methods of Figs. 8.14 and 8.15, we consider a number of practical im-
plementations. A voltage can be sensed by a resistive (or capacitive) divider in parallel with
the port [Fig. 8.16(a)] and a current by placing a resistor in series with the wire and sensing

= HZ ’oul loui
VE Ve Ve
=R, R, R,
(a) (b) (c)
© Vout ° Vout ° Vout
=R, v =R, =R,
M
Vin°_| 'T In°_| 1 | M1 I—V—--q
F V, ) F .
=R, F =R, Vin =R,
(D (e) t9]
! [
’Ing' F
. -
3 HF
& (h)

Figure 8.16 Practical means of sensing and adding voltages and currents.
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the voltage across it {Figs. 8.16(b) and (c)]. To subtract two voltages, a differential pair can
be used [Fig. 8.16(d)]. Alternatively, a single transistor can perform voltage subtraction as
shown in Figs. 8.16(e) and (f) because Ip, is a function of V;, — V. Subtraction of currents
can be accomplished as depicted in Figs. 8.16(g) or (h). Note that for voitage subtraction,
the input and feedback signals are applied to rwo distinct nodes whereas for current sub-
straction they are applied to a single node. This observation proves helpful in identifying
the type of feedback. '

8.2 Feedback Topologies

"~ 8.2.1 Voltage-Voltage Feedback

This topology samples the output voltage and returns the feedback signal as a voltage.®
Following the conceptual illustrations of Figs. 8.14 and 8.15, we note that the feedback
network is connected in parallel with the output and in series with the input port (Fig. 8.17).
An ideal feedback network in this case exhibits infinite input impedance and zero output

Ag
v V+ Feedforward VJ"
In Amplifier out
Feedback
Network ]
Low Ay B High R;, Figure B8.17 Voltage-voltage feed-

back.

impedance because it senses a voltage and generates a voltage. We can therefore write:
Vi = BVour, Ve = Vin — V¢, Vour = Ao(Via — BVous), and hence

' Vour _ AO

Vie  1+BAg 829

We recognize that 8 A is the loop gain and the overall gain has dropped by 1 + 8Ag. Note
that here both Ag and § are dimensionless quantities.

As a simple example of voltage-voltage feedback, suppose we employ a differential volt-
age amplifier with single-ended output as the feedforward amplifier and a resistive divider
as the feedback network [Fig. 8.18(a)). The divider senses the output voltage, producing
a fraction thereof as the feedback signal V. Following the block diagram of Fig. 8.17,
we place Vr in series with the input of the amplifier to perform subtraction of voltages
[Fig. 8.18(b)].

SThis configuration is also called “series-shunt” feedback, where the first term refers to the input connection
and the second to the gutput connection.
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!

, Ao
Vin —o Vout
:: R1
=R,
(b}

Figure 8.18 (a) Amplifier with output sensed by a resistive divider,
(b) voltage-voltage feedback amplifier. '

How does voltage-voltage feedback modify the input and output impedances? Let us first
consider the output impedance. Recall that a negative feedback system attempts to make
the output an accurate replica of the input. Now suppose, as shown in Fig. 8.19, we load the
output by a resistor, gradually decreasing its value. While in the open-loop configuration the

—T1 iy - o
. + t P
- Vin V. A V9C> ou =R, You
O = o

+
Vel B

Figure 8.19 Effect of voltage-voltage feedback on out-
put resistance.

output would simply drop in proportion to Ry /(R + R,u), in the feedback system, V,,, is
maintained as a reasonable replica of Vj, even though R; decreases. That is, so long as the
loop gain remains much greater than unity, V,,,/ Vi, &~ 1/8, regardless of the value of R;.
From another point of view, since the circuit stabilizes the output voltage amplitude despite
load variations, it behaves as a voltage source, thus exhibiting a low output impedance. This
property fundamentally originates from the gain desensitization provided by feedback.

In order to forrﬁ'ally prove that voltage feedback lowers the output impedance, we con-
sider the simple nlodel in Fig. 8.20, where R,,; represents the output impedance of the
feedforward amplifier. Setting the input to zero and applying a voltage at the output, we
write Ve = BVy, V, = —BVy, Viy = —BAyVx, and hence Iy = [Vx — (—~BAoVx)]1/Rou:
(if the current drawn by the feedback-network is neglected). It follows that

VX I Rour

—_— = —_— 8.25
Iy 1+ BAp (8.2 ‘
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Ag
L v, Vu I'x
_ R t +
ou Vx
L Figure 8.20 Calculation of output re-
Ve | B - sistance of a voltage-voltage feedback
circuit,

Thus, the output impedance and the gain are lowered by the same factor. In the circuit of
Fig. 8.18(b), for example, the output impedance is lowered by 1 + AgR2/(R; + R»).

Example 8.2

The circuit shown in Fig. 8.21(a) is an implementation of the feedback configuration depicted in
Fig. 8.18(b), but with the resistors replaced by capacitors. {The bias network of M, is not shown.)
Calculate the closed-loop gain and output resistanceof the amplifier at relativety low frequencies.

Figure 8.21
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Solution

At low frequencies, Cy and C; load the amplifier negligibly. To find the open-loop voltage gain, we
break the feedback loop as shown in Fig. 8.21(b), grounding the top plate of C to ensure zero voltage
feedback. The open-loop gain is thus equal to g,1(roz|lro4).

We must also compute the loop gain. With the aid of Fig. 8.21(c), we'have

VF=-V ai—lc—zgml(fozﬂroa,). (8.26)
That is,
B0 = = gmiCrozlros) (8.27)
Ci+C
and hence
Actosed = g":"ll rozlros) (8.28)
1+ it C28m1(702||r04)

As expected, if BAg > 1, then Agroseq = 14+ C2/C.
The open-loop output resistance of the circuit is equal to 7oz [|r 04 (Chapter 5). It follows that

roz2llroa
Rout.closed = Ci . (8.29)
1 - =
+ C +C28m1(r02|iro4)
It is interesting to note that, if SAg > 1, then
(o)) 1
Rout,clased g (l + C_) - (8.30)
1/ 8mil

In other words, even if the open-loop amplifier suffers from a high output resistance, the closed-ldop
output resistance is independent of 71|/ 704, simply because the open-loop gain scales with rozllro4
as well.

Voltage-voltage feedback also modifies the input impedance. Comparing the configura-
tions in Fig. 8.22, we note that the input impedance of the feedforward amplifier sustains
the entire input voltage in Fig. 8.22(a), but only a fraction of V;,, in Fig. 8.22(b). As aresult,
the current drawn by R;, in the feedback topology is less than that in the open-loop system,
suggesting that returning a voltage quantity to the input increases the input impedance.

The foregoing observation can be confirmed analytically with the aid of Fig. 8.23. Since
V. = IxR;, and Vg = ﬁAg[xRi,,, we have V. = Vy — Ve = Vx — ﬂAQIXR,‘,,. Thus,
IxRin = Vx — BAolx Rin, and

ﬁ = Rin(1 + BAo). (8.31)
Ix
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Iin
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Figure 8.22 Effect of voltage-voltage feedback on input resistance.

Figure 8.23 Calculation of input
impedance of a voltage-voltage feedback
circuit.

The input impedance therefore increases by the ubiquitous factor 1 + ,BAO, bringing the
circuit closer to an ideal voltage amplifier.

Example 8.3

Fig. 8.24(a) shows a common-gate topology placed in a voltage-voltage feedback configuration. Note
that the summation of the feedback voltage and the input voltage is accomplished by applying the
former to the gate and the latter to the source.” Calculate the input resistance at low frequencies if
channel-length modulation is negligible,

Solution

Breaking the loop as depicted in Fig. 8.24(b), we recognize that the open-loop input resistance is
equal to (gm1 + gms1 y~1. To find the loop gain, we set the input to zero and inject a test signal in the
loop [Fig. 8.24(c)], obtaining Vr/V; = —g,, RpC1/(C1 + C32). The closed-loop input impedance is
then equal to

Rin,clased =

C )
1+ R . (8.32)
8m1 + Embl ( C, +C2gml b

The increase in the input impedance can be explained as follows. Suppose the input voltage decreases
by AV, causing the output voltage to (momentarily) fall. As a result, the gate voltage of M| decreases,

"This circuit is similar to the right half of the topology shown in Fig, 8.21(a).
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) ’ ©
rigure 8.24

thereby lowering the gate-source voltage of M; and yielding a change in V) that is less than AV.
By contrast, if the gate of M| were connected to a constant potential, the gate-source voltage would
change by AV, resulting in a larger current change.

In summary, voltage-voltage feedback decreases the output impedance and increases the
input impedance, thereby proving useful as a “buffer” stage that can be interposed between
a high-impedance source and a low-impedance load.

8.2.2 Current-Voltage Feedback

In some circuits, it is desirable or simpler to sense the output current to perform feedback.
The current is actually sensed by placing a small resistor in series with the output and using
the voltage drop across the resistor as the feedback information. This voltage may even
serve as the return signal that is directly subtracted from the input.

Gm lout
[- S——
v V+ Feedforward z
In o| Amplifier L
I out §
V+ Feedback
F Network
‘ Figure 8.25 Current-voltage feed-
Low AR Re Low Ay, back.

Let us consider the general current-voltage feedback system illustrated in Fig. 8.25.%
Since the feedback network senses the output current and returns a voltage, its feedback

8This topology is also called “series-series™ feedback.
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factor (B) has the dimension of resistance and is denoted by Ry. (Note that a finite load,
Zy, is connected to the output so that I,,, # 0.) We can thus write Vy = Rpl,,,, Ve =
Virn — Rplou, and hence Iy, = Gp(Vip — Ry ly). It follows that

Tous Gn

= — 8.33
Vin 1 + Gm RF ( )

An ideal feedback network in this case exhibits zero input and output impedances.
It is instructive to confirm that G,, R is indeed the loop gain. As shown in Fig. 8.26,
we set the input voltage to zero and break the loop by disconnecting the feedback network

ot

+
Gm i |ZL
,: - ‘ Short
+
VF RF It .
- ‘ Figure 8.26 Calculation of loop gain

for current-voltage feedback. °

from the output and replacing it with a short at the output (if the feedback network is ideal).
We then inject the test signal /;, producing Vr = Ry, and hence I,,, = —G Rl Thus,
the loop gain is equal to G, Rr and the transconductance of the amplifier is reduced by
1 + G\, Rr when feedback is applied.

Sensing the current at the output of a feedback system increases the output impedance.
This is because the system attempts to make the output current a faithful replica of the input
signal (with a proportionality factor if the input is a voltage quantity). Consequently, the
system delivers the same current waveform as the load varies, in essence approaching an
ideal current source and hence exhibiting a high output impedance.

To prove the above result, we consider the current-voltage feedback topology shown
in Fig. 8.27, where R,,, represents the finite output impedance of the feedforward ampli-

+
o
3
A
wy
o]
o
s
Lo
=

sistance of a current-voltage feedback
amplifier.

+
+
Ve 4) Rely ¥ Figure 8.27 Calculation of output re-
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fier.? The feedback network produces a voltage Vi proportional to Iy : VF = Rrly, and
the current generated by G, equals —RplxG,,. As aresult, —RpIxG, = Ix — Vx/Rout»
yielding

V
1—" = Rou(l + GnRp). (8.34)
X

The output impedance therefore increases by a factor of 1 + G, RF.

Example 8.4

Suppose we need to increase the output impedance of a common-source stage by current feedback.
As shown in Fig. 8.28(a), we insert a small resistor 7 in the output current path, apply the voltage

Y lom

AAA
[YTEPN
vy

b |

>
43

T

(8) )
Figure 8.28

across r to an amplifier Ay, and subtract the output of A from the input voltage. Calculate the output
impedance of this circuit.

Solution
Using the circuit of Fig. 8.28(b) to determine the loop gain, we have

V
o = —gnrAL. (835)
Vi
Thus, the overall output impedance is given by
Rour,closed = (1 + gmr A1)roy. (8.36)

As with voltage-voltage feedback, current-voltage feedback increases the input
impedance by a factor equal to one plus the loop gain. As illustrated in Fig. 8.29, we
have fx R;, G = Iy Thus, V, = Vy ~ G, RrIx R;,, and

v
X = Rin(l + GnRE). (8.37)
Iy

9INote that Ry is placed in paratlel with the output because the ideal transimpedance amplifier is modeled
by a voltage-dependent current source,
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Ve _¢ Relow Figure 8.29 Calculation of input re-

sistance of a current-voltage feedback
amplifier.

The reader can show that the loop gain is indeed equal to G, Rf.

In summary, current-voltage feedback increases both the input and the output impedances
while decreasing the feedforward transconductance. As explained in Chapter 9, the high
output impedance proves useful in high-gain op amps.

8.2.3 Voltage-Current Feedback

In this type of feedback, the output voltage is sensed and a proportional current is returned
to the summing point -at the input.!® Note that the feedforward path incorporates a tran-
simpedance amplifier with gain R, and the feedback factor has a dimensicn of conductance.

ce Ro
f o Feedforward v
in Amplifier out
Ie
™ Feedback
[_’ Network |
I | .
High Ry gor High R, Figure 8.30 Voltage-current feed-

back.

A voltage-current feedback topology is shown in Fig. 8.30. Sensing a voltage and pro-
ducing a current, the feedback network is characterized by a transconductance g, r, ideally
exhibiting infinite input and output impedances. Since Ir = gnrVour and I, = Iy,

— IF,
we have V,,; = Rol. = Ro(Lin — gmF Vour)- It follows that
v, R
i A — (8.38)
Iy 1+ gmr Ko

0This topology is also called “shunt-shunt” feedback.
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The reader can prove that g, r Ry is indeed the loop gain, concludinig that this type of
feedback lowers the transimpedance by a factor equal to one plus the loop gain.

Example 8.5

Calculate the transimpedance, Vo, / I;n, of the circuit shown in Fig. 8.31(a) at relatively low frequen-
cies.

Voo
Ry
Ve
. Voo M,
v, é” ¢
T P
M,
Cz I - B
b

Figure 8.31

Solution

In this circuit, the capacitive divider C|-C; senses the output voltage, applying the result to the gate
of M| and producing a current that is subtracted from I;,,. The open-loop transimpedance equals that
of the core common-gate stage, Rp. The loop gain is obtained by setting I;,, to zero and breaking the
loop at the output [Fig. 8.31(b)]:

-V, p = VF. (8.39)

Ci R
Ci+C gm
Thus, the overall transimpedance is equal to

Rp
i

14+ ——r R
C1+C2gml D

(8.40)

Rior =

Following our reasoning for the other two types of feedback studied above, we sur-
mise that voltage-current feedback decreases both the input and the output impedances.
As shown in Fig. 8.32(a), the input resistance of Ry is placed in series because an ideal
transimpedance amplifier exhibits a zero input impedance. We write Ir = Ix — Vx/R;,
and (Vy/Rin)Rogmr = Ir. Thus,

Yo R ' (8.41)
Ix 1+ gurRo

'



268 Chap. 8 Feedback

+ Rin Fo Rowt Ix
Iin=0 v

— ’e M + Vx
I =

+ +

Imr Yout _ ImrVx
n n
I 1 L T

. (a) ‘ ®

Figure 8.32 Calculation of (a) input and (b) output impedance of a voltage-current feedback amplifier.

Similarly, from Fig. 8.32(b), we have Ir = Vxgmr, I, = —Ip, and Vy = —RogmrVx.
Neglecting the input current of the feedback network, we write Iy = (Vy — Vy)/Royy =
(Vx + gmrRoVx)/ Rous. That is,

V. R
L — (8.42)
Iy 14 gmrRo
Example 8.6
Calculate the input and output impedances of the circuit shown in Fig. 8.33(a). For simplicity, assume
Rr > Rp.
£ v
Voo _4 s}
"
R R,
Rf D RF o
Vout Ve
[ M, L m,
) in - -
< b
(@) ®
Figure 8.33
Solution

In this circuit, RF senses the output voltage and returns a current to the input. Breaking the loop as
depicted in Fig. 8.33(b), we calculate the loop gain as g,, Rp. Thus, the open-loop input impedance,
Rp,is divided by 1 + g, Rp:

RF

—_—. 843
14+ gmRp ( )

Rin,cla.ved =



Sec. 8.2 Feedback Topologies 269
™~

Similarly,

Rp

. 8.44
1+gmRp ( )

Raur,dosed =

Note Rour,closed 18 in fact the parallel combination of a diode-connected transistor and Rp.

An important application of amplifiers with low input impedance is in fiber optic re-
ceivers, where light received through a fiber is converted to a current by a reverse-biased
photodiode. This current is typically converted to a voltage for further amplification and
processing. Shown in Fig. 8.34(a), such conversion can be accomplished by a simple resis-

Optical Fiber v Optical Fiber i_& i
out ! out
— — N
D1 CD‘I R" D1 I Cm """""""""

(a) (b)

Figure 8.34 Detection of current produced by a photodiode by (a) resistor Ry and (b) a transimpedance
amplifier.

tor but at the cost of bandwidth because the diode suffers from a relatively large junction
capacitance. For this reason, the feedback topology of Fig. 8.34(b) is usually employed,
where R; is placed around the voltage amplifier A to form a transimpedance circuit. The
input impedance is R;/(1 + A) and the output voltage is approximately R;Ip;.

8.2.4 Current-Current Feedback

Fig. 8.35 illustrates this type of feedback.!" Here, the feedforward amplifier is characterized
by a current gain, A;, and the feedback network by a current ratio, 8. In a fashion similar
to the previous derivations, the reader can easily prove that the closed-loop current gain is
equalto A;/(1+ BAy), the input impedance is divided by 1+ 8 A, and the output impedance
is multiplied by 1 + BA;.

Fig. 8.36 illustrates an example o current-current feedback. Here, since the source and
drain currents of M, are equal (at low frequencies), resistor Ry is inserted in the source
network to monitor the output current. Resistor Ry plays the same role as in Fig. 8.33.

UThis topology is also called “shunt-series” feedback, where the first term refers to the input connection and
the second to the output connection.
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8.3 Effect of Loading

In our analysis of feedback systems thus far, we have tacitly assumed that the feedback
network does not “load” the feedforward amplifier at the input or output. For example, in
the voltage-voltage feedback topology of Fig. 8.21, we assumed C; and C; do not load
the amplifier so that the open-loop gain could still be written as g,,1(r02704). In reality,
however, the loading due to the feedback network may not be negligible, complicating the
analysis. ‘

The problem of loading manifests itself when we need to break the feedback loop so as
to identify the open-loop system, e.g., calculate the open-loop gain and the input and output
impedances. To arrive at the proper procedure for including the feedback network terminal
impedances, we first review models of two-port networks.

8.'3.1 Two-Port Network Models

The feedback network placed around the feedforward amplifier can be considered a two-
port circuit sensing and producing voltages or currents. Recall from basic circuit theory that
a two-port linear (and time-invariant) network can be represented by any of the four models
shown in Fig. 8.37. The “Z model” in Fig. 8.37(a) consists of input and output impedances
in series with current-dependent voltage sources whereas the “Y model” in Fig. 8.37(b)
comprises input and output admittances in parallel with voltage-dependent current sources.
The *hybrid models” of Figs. 8.37(c) and (d) incorporate’a combination of impedances
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Figure 8.37 Linear two-port network models.

and admittances and voltage sources and current sources. Each model is described by two
equations. For the Z model, we have '

Vi=Zuh+Zinh (8.45)
Vo = Znly + Zpb. (8.46)

Each Z parameter has a dimension of impedance and is obtained by leaving one port open,
e.g., Zy; = Vi/I; when I; = 0. Similarly, for the Y model,

L =YuVi+ YW (8.47)
L=YuVi+ Wy, (8.48)

where each Y parameter is calculated by shorting one port, e.g., Y1, = I;/V; when V3 = 0.
For the H model,

Vi=Hul + HpV, (8.49)

I = Hyly + HnV,, (8.50)
and for the G model,

I =G Vi+Gnh (8.51)

Vo =GV + Gals. (8.52)

Note that, for example, Y1; may not be equal to the inverse of Z;; because the two are
obtained under different conditions: the output is shorted for the former but left open for
the latter.
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In order to simplify the analysis of the loading due to the feedback network, we must
select a suitable model from the above. We assume the input port of the feedback network is
connected to the output port of the feedforward amplifier. Let us begin with voltage-voltage
feedback. Which model should be used? We note that the ideal feedback network in this
case must exhibit infinite input impedance and zero output impedance. The Z model is not
suitable because as Z;; — oo, for a finite V;, I; = 0, and Z,;I; — 0. That is, if the input
impedance approaches infinity, the output voltage drops to zero. How about the ¥ model?
In this case, if ¥;; — 0, then the output voltage remains finite, but if ¥, approaches oo,
the current source ¥3; V; generates a zero output voltage. That is, if the output imepdance
of the feedback network approaches zero (so that it becomes more ideal), then the output
voltage of the feedback network drops to zero as well. With these observations, we surmise
that the G model is the most suitable one for voltage-voltage feedback; in the ideal case
G11 = 0, ng = O, and G21 V] # 0.

Using similar arguments, the reader can show that the other three types of feedback
require the following network models: voltage-current: Y model; current-voltage: Z model;
current-current: H model.

8.3.2 Loading in Voltage-Voltage Feedback

Replacing the feedback network by a G model, we arrive at the representation in Fig. 8.38(a).
Unlike the simple models used in previous sections, this circuit incorporates two dependent
sources in the feedback path: G2 F> and G V,,,;. What is the effect of G121,7 This current
flows through the parallel combination of Z,,, and G}, contributing to the output voltage.
However, if Aq is large, the signal amplified by Ag is much greater than the contribution
of Gi25. In other words, the forward gain of the main amplifier overwhelms the reverse
gain of the feedback network. Since this condition holds in most circuits of interest, we
can neglect G, obtaining the circuit in Fig. 8.38(b). A rigorous analysis of Fig. 8.38(a)
(Problem 8.8) reveals that if G2 « A¢Z;,/Z,,:, then the “reverse transmission” through
the feedback circuit is negligible. It is indeed expected that Z;, and Z,,, play a role here.
If Z;, is small, the voltage division between Z;, and G2, reduces the signal through the
feedforward path. Similarly, if Z,,, is large, then the voltage division between Z,,; and G,
lowers the contribution of AV, to the output.

Let us now compute the closed-loop gain of the circuit shown in Fig. 8.38(b). We have

Z;
Ve =(Vin — Gn%;:ﬂm, (8.53)
and hence
Z; Gy}
Vin — GV, A e /A 8.54
(Vin 21 Vour) G OGl_ll + Zowr out ( )

Zin +

'

A
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Figure 8.38 Voltage-voltage feedback circuit with (a) feedback net-
work represented by a G model and (b) simplified G model.  ~

It follows that
Zin Gy
Ao -
Vour _ Zint G Gy + Zou 855)
Vin Zin Gy}l ' '
G21Ap

1+

Zin+ G2 G + Zow

Note that if the feedback network is ideal, i.e., if Gl_ll = oo and Gy, = 0, then V., /V;, =
Ag/(1 4+ G21 Ap), as expected.

Equation 8.55 assumes the standard form of a feedback transfer function if we define
the open-loop gain in the presence of loading as

Zin Gy
Zt'n + G?2 Gl_ll + Zlmt

| Av,open = Ag. (856)
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The loaded open-loop gain can be obtained from the circuit depicted in F1g 8.39, where
G21 Vs is set to zero. Thar is, the finite input and output impedances of the feedback
network reduce the output voltage and the voltage seen by the input of the main amplifier,

respectively.
Vout
+ * + Z ut
wng Ve [ Aot A ) Gn

Figure 8.39 Proper methed of including loading in a
voltage-voltage feedback circuit.

It is important to note that Gy, and Gy, in Fig. 8.37 are computed as follows:

LI
G =— (8.57)
’ Vi 12=0
V-
Gy = 1—2 (8.58)
2 lvi=0

Figure 8.40 Conceptual view of
opening a voltage-voltage feedback loop
Gqy with proper loading.

_*
"p—
!

network open whereas G is calculated by shorting the input of the feedback network.

Another important result of the foregoing analysis is that the loop gain, i.e., the second
term in the denominator of (8.55) is simply equal to the loaded open-loop gain multiplied
by G21. Thus, a separate calculation of the loop gain is not necessary. Also, the open-loop
input and output impedances obtained from Fig. 8.39 are scaled by 1 + Gy; Ay, open to yield
the closed-loop values,



Sec. 8.3 Effect of Loading 275

Example 8.7

For the circuit shown in Fig. 8.41(a), calculate the open-loop and closed-loop gains.
v Voo
= Apy
X LNLE
Vin°_| Vmo—l M,
Y
R F R F
(b)
Figure 8.41

Solution

The circuit consists of two common-source stages, with R and Rg sensing the output voltage and
returning a fraction thereof to the source of Mj. The reader can prove that the feedback is indeed
negative. Following the procedure illustrated in Fig. 8.40, we identify Ry and Ry as the feedback
network and construct the open-loop circuit as shown in Fig. 8.41(b). Note that the loading effect in
the input network is obtained by shorting the right terminal of RF to ground and that in the output
by leaving the left terminal of Rr open. Neglecting channel-length modulation and body effect for
simplicity, we have

Vy —Rpi

—_— e {—gm2[R R RN 8.59
Vi RFIIRs+l/gm1{ gm2[Rp2l(Rp + Rs)]1} (8.59)

Av,open =

To compute the closed-loop gain, we first find the loop gain as G21 Ay open- Recall from (8.52) that

G321 = V»/ Vi with I = 0. For the voltage divider consisting of R and Rp, G21 = Rs/(Rr + Rs).
The closed-loop gain is simply equal to Ay closed = Ay open/(1 + G21 Ay open)-

8.3.3 Loading in Current-Voltage Feedback

Replacing the feedback network by a Z model, we obtain the circuit shown in Fig. 8.42(a).
Using an argument similar to that for voltage-voltage feedback, we neglect the source Ziabp,
thereby arriving at the circuit in Fig. 8.42(b). We thus have

Z; Z
(Vin = Za Lour) 7~ ;"ZD G f:’z“ = lowr- (8.60)
That is,
Zin Zout "
I‘r;ut _ Zin an_zz Zomzzuzu . (8.61)
in 1+ GmZn

Zin + 222 Zou! + le
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Z 3l ot

(b)
Figure 8.42 Current-voltage feedback circuit with () feedback net-
work represented by a Z model and (b) simplified Z model.
Equation (8.61) suggests that the loaded open-loop gain is equal to

Zin Zou.r
Gum.open = Gp, 8.62
TN Zin + Z32 Zow + Z11 (8.62)

revealing voltage division at the input and current division at the output (Fig. 8.43). Since
Zy, and Z,; are obtained by opening the input and output ports of the feedback network,
respectively, the open-loop circuit can be visualized as m Fig. 8.44. Note that the loop gain

is equal to Z3, G open-
’out

Figure 8.43 Current-voltage feed-
back circuit with proper loading of
feedback network.
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o+ Gm out
Vln +
Figure 8.44 Conceptual view of
™~ Z4 opening the loop in current-voltage feed-
2y H back.
Example 8.8

Calculate the open-loop and closed-loop gain of the circuit shown in Fig. 8.45(a).

Vop
M2 l out
M3
Ap;
R
Rs1 Rs3
(b)

Figure 8.45

Solution
This circuit consists of two voltage gain stages, M1 and M, and a voltage-to-current converter, M3.
Since the drain and source currents of M> are equal, the output current is monitored by Rg3. Thus,
Rs3, Rp.and Rg) sense the output current and return a proportional voltage to the input.

If » = y = 0, the open-loop gain is equal to ‘

—Rp) ) —gm2Rp2
RsiI(RF + Rs3) + 1/gm1  Rs3ll(RF + Rs1) + 1/8m3

Gum,open = (8.63) ‘

The loop gain is given by Z21Gm,open, Where, from (8.46), Z31 = Va/I; with I2 = 0. For the
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feedback network consisting of Rgy, Rr and Ry, the circuit of Fig. 8.45(c) gives

Rg3

= —— _ Rg¢. 8.64
Rs3 + Rs1 + Rp 5 @64

Zy

The closed-loop gain equals Gm open /(1 + Z21Gm,open)-

* Itis important to distinguish between the feedback networks in the circuits of Fig. 8.41(a) and
8.45(a). In the former, Rpy is part of the feedforward amplifier, rather than part of the feedback
network, because it must generate a voltage output. In the latter, Ry is part of the feedback network
because it is used to sense the output current. If the output of interest in Fig. 8.45(a) is the voltage at
the source of Ms, then R is part of the feedforward amplifier rather than the feedback network,

8.3.4 Loading in Voltage-Current Feedback

In this type of system, we represent the feedback network by a Y model [Fig. 8.46(a)]. As
with previous cases, we neglect the reverse transmission term, Y1, V5, obtaining the circuit

lo
- - o
+ Z t
In(d ) Zin Role o Vout
-0
. . .
Vo [Y22 Y21¥ou Y12V2 Y14
()
1o
- o
+ Z t
Tin . Zi, Rgly o Vout
. o
Va |Ya2 Y21V out Y4

()]

Figure 8.46 Voltage-current feedback circuit with (a) feedback net-
work represented by a Y model and (b) simplified Y model.
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in Fig. 8.46(b). Writing

Yz—il R Yl—ll

Iin — Y01V, = , 8.65
( in 21 out)Yz_;'l T Z;‘n oYﬁl + Zau: ‘ out ( )
we have
- -1
Y221 Yl]
—1 Ro—=
Vout _ Y22 + Zin Y11 + Zout 8.66
L Y Y ) (8.66)
14+ —2 Ry—*H Yy
Y22 +Zin Y11 + Zou
It is therefore possible to define the loaded open-loop gain as
Y—l Y—l
Roopen = 2 U_R,. (8.67)

Yo'+ Zin Y' + Zow

The loading manifests itself as current division between Y2‘21 and Z;, and voltage division

Figure 8.47 Voltage-current feedback circuit with proper
loading of feedback network.

between Z,,; and Y, ! (Fig. 8.47). Since Y»; and Y are obtained by shorting the input and
output ports of the feedback network, respectively, the procedure for including the loading
can be illustrated as in Fig. 8.48. The loop gain is given by Y2, Ry, open-

Ao
+
+ — Vout
Iin(2 -
in ImF ImF
B B Figure 8.48 Conceptnal view of
I’: ]_. .l: il - opening the loop in voltage-current feed-
Yz = Y11 back.
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Example 8.9

Calculate the voltage gain of the circuit shown in Fig. 8.49(a).

Voo Voo
Re Rp Re Rp
Rs Vout Vout
Xﬁ__l M 1 M 1
+
Vln ) - I N R [ -
(a) (b)
’ Figure 8.49
Solution

What type of feedback is used in this circuit? Resistor Ry senses the output voltage and returns a
proportional current to node X. Thus, the feedback can be considered as the voltage-current type.
However, in the general representation of Fig. 8.46(a), the input signal is a current quantity, whereas
in this example, it is a voltage quantity. For this reason, we replace Vi, and Rg by a Norton equivalent
[Fig. 8.49(b)] and view Ry as the input resistance of the main amplifier. Opening the loop according
to Fig. 8.48 and neglecting channel-length modulation, we write the open-loop gain from Fig. 8.49(c)
as

V.
RO,open = Iaut (868)
N open
= —(RsllRr)gm(RF||RD), (8.69)

where Iy = V;,/Rg. We also calculate the loop gain as Yy Ro,0pen- From (8.48), Y21 = I/ V| with
V2 = 0, and since the feedback network consists of only Rp, we have Y3, = —1/Rp. Thus, the
circuit of Fig. 8.49(a) exhibits a voltage gain of

Vour _ 1 —(Rsi|Rr)gm(RFIRp)

= —. . 8.70)
Vin.  Rs 14 gm(RFIRp)Rs/(Rs + RF) ¢

Interestingly, if R is replaced by a capacitor, this analysis does not yield a zero in the transfer function
because we have neglected the reverse transmission of the feedback network (from the output of the
feedback network to its input.) The input and output impedzinces of the circuit are also interesting to
calculate. This is left as an exercise for the reader. The reader is also encouraged to apply this solution
to the circuit of Fig. 8.3(b).
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8.3.5 Loading in Current-Current Feedback

Fig. 8.50(a) depicts a current-current feedback system with the feedback network repre-
sented by an H model. Neglecting the effect of Hy, V, compared to the forward gain of the
amplifier and drawing the circuit as in Fig. 8.50(b), we write

Hy! A, Zou

L, — Hyl =1, 8.71
( in 21 oul)H{zl T Zin IfIll i Zm“ out ( )
1t follows that
Hy,' \Lou
Tous — Hz_il —:Z,»,, Hy 4+ Z,, . (872)
Iin H22 Zout
1+ — I Hy
H22 + Z,‘n Hll + Zout
Iq out
'In? ¢Z|n Al’e¢ qzoul
Hyq
+
v, {Ha Halout Hi2Va
(a)
) lo lout
'm@? ¢2|n AI’eé) ¢zout
Hy4 J
T

+ P
Va H22¢ CIT>H21’out

(b)

Figure 8,50 Current-current feedback circuit with (a) feedback net-
work represented by an H model and (b) simplified H model.
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We can thus define the loaded open-loop gain as

~1
sz Zout

Aq, (8.73)
szl + Zi,, Hll + Zout !

AI,open =

'concluding that the feedback network introduces current division at both the input and the

output of the system (Fig. 8.51). Note that H,, and H; are measured with the input and the

Figure 8.51 Cument-current feed-
back circuit with proper loading of
feedback network.

output ports of the feedback network open and shorted, respectively (Fig. 8.52). The loop
gain is obtained as Haj A open-

+ + I out
I (4 -
n B B
) —° - Figure 8.52 Conceptual view of
-1 ‘[ lH" including loading in current-current
Hz = H feedback.
Example 8,10

Calculate the open-loop and closed-loop gains of the circuit shown in Fig. 8.53(a).

VDD

Rp ! out

— M,
ST |

(a) b
Figure 8.53
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Solution _

In this circuit, Rg and R sense the output current and return a fraction thereof to the input. Breaking
the loop according to Fig. 8.52, we arrive at the circuit in Fig. 8.53(b), where we have

1

Rsl|RF +1/gm2

The loop gain is given by Haj At gpen, Where, from (8.50), Hy1 = I/ with ¥ = 0. For the feedback
network consisting of Rs and Rr, we have Hy; = —Rs/(Rs + Rr). The closed-loop gain equals
Al‘apen/(l + HZlAI,npen)~

Alopen = —(RF + Rs)gm Rp (8.74)

8.3.6 Summary of Loading Effects

The results of our study of loading are summarized in Fig. 8.54. The analysis is carried
out in three steps: (1) open the loop with proper loading and calculate the open-loop gain,
Aoy, and the open-loop input and output impedances; (2) determine the feedback ratio, 8,
and hence the loop gain, BA¢L; (3) calculate the closed-loop gain and input and output
impedances by scaling the open-loop values by a factor of 1 + BAy;. Note that in the -
equations defining S, the subscripts 1 and 2 refer to the input and output ports of the
feedback network, respectively.

In this chapter, we have described two methods of obtaining the loop gain: (1) by breaking
the loop at an arbitrary point as shown in Fig. 8.5 and (2) by calculating Ap; and 8 as
illustrated in Fig. 8.54. The two methods may yield slightly different results because the

Gm
+ out

- v,

12=0 ’1

'2:0

(c) (d)

Figure 8,54 Summary of loading effects.
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latter neglects the reverse transmission through the feedback network. However, the first
method may be difficult to apply if loading effects must be taken into account because, if
the loop can be broken at an arbitrary point, then the actual input and output ports of the
overall system are unknown and the type of feedback unimportant. For example, the loop
gain of the circuit of Fig. 8.53(a) does not depend on whether the output of interest is J .,
or Vy. In other words, since the first method does not distinguish between different types
of feedback, it generally cannot utilize the loading calculations depicted in Fig. 8.54. For
this reason, the second method is preferable.

We should also mention that some feedback circuits do not fall under any of the four
types studied in this chapter because we have restricted our attention to cases where the
output of interest is directly sensed by the feedback network. For example, if I, in Fig.
8.53(a) flows through a resistor tied from the drain of M> to Vpp, then the resulting voltage
is not inside the feedback loop. These cases are usually analyzed individually.

8.4 Effect of Feedback on Noise

Feedback does not improve the noise performance of circuits. Let us first consider the simple
case illustrated in Fig. 8.55(a), where the open-loop voltage amplifier A, is characterized

= Vout

(@) (b

Figure 8.55 Feedback around a noisy circuit.

by only an input-referred noise voltage and the feedback network is noiseless. We have
(Vin — BVour + V3)A; = Vg and hence

Ay

Vour = Vin + V)
Thus, the circuit can be simplified as shown in Fig. 8.55(b), revealing that the input-referred
noise of the overall circuit is still equal to V,. This analysis can be extended to all four
feedback topologies to prove that the input-referred noise voltage and current remain the
same if the feedback network introduces no noise. In practice, the feedback network itself
may contain resistors or transistors, degrading the overall noise performance.

It is important to note that in Fig. 8.55(a) the output of interest is the same as the quantity
sensed by the feedback network, This need not always be the case. For example, in the
circuit of Fig. 8.56, the output is provided at the drain of M, whereas the feedback network
senses the voltage at the source of M;. In such cases, the input-referred noise of the closed-
loop circuit may not be equal to that of the open-loop circuit even if the feedback network
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Figure 8.56 Noisy circuit with feed-
back sensing the source voltage.

is noiseless. As an example, let us consider the topology of Fig. 8.56 and, for simplicity,
take only the noise of Rp, V;, grp, into account. The reader can prove that the closed-loop
voltage gain is equal to —A;gm Rp/[1 + (1 + A1)gm Rs] and hence the input-referred noise
voltage due to Rp is ‘

[Va, DI [

an,in,closed| = A Rp

gl +(1+ AI)RS] . (8.76)

m

For the open-loop circuit, on the other hand, the input-referred noise is

|V 1
|Vn.in.open| = A': II:,I;I [g—m + Rs] . (877)

Interestingly, as A —> 00, |Va.in.closed| = |V, gp|Rs/Rp whereas |V, in open| — 0.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

8.1. Consider the circuit of Fig. 8.3(b), assuming I is ideal and g,;1701 cannot exceed 50. If a gain

. error of less than 5% is required, what is the maximum closed-loop voltage gain that can be

* achieved by this topology? What is the low-frequency closed-loop output impedance under this
condition?

8.2. In the circuit of Fig. 8.7(a), assume (W/L); = 50/0.5, (W/L); = 100/0.5, Rp = 2kQ, and

Cj == C]. Neglecting channel-length modulation and body effect, determine the bias current
of M and M5 such that the input resistance at low frequencies is equal to 50 £2.

8.3. Calculate the output impedance of the circuit shown in Fig. 8.8(a} at relatively low frequencies
if Rp is replaced by an ideal current source.

8.4. Consider the example illustrated in Fig. 8.10. Suppose an overall voltage gain of 500 is required
with maximum bandwidth. How many stages with what gain per stage must be placed in a
cascade? (Hint: first find the 3-dB bandwidth of a cascade of n identical stages in terms of that
of each stage.)

8.5. Ifin Fig. 8.18(b), amplifier A¢ exhibits an output impedance of Ry, calculate the closed-loop
voltage gain and output impedance, taking into account loading effects.
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8.9.

8.10.
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Consider the circuit of Fig. 8.21(a), assuming (W/L)1,2 = 50/0.5 and (W/L)3 4 = 100/0.5.
If Iss = 1 mA, what is the maximum closed-loop voltage gain that can be achieved if the gain
error is to remain below 5%7

The circuit of Fig. 8.36 can operate as a transimpedance amplifier if /,,, flows through a
resistor, Rpg, connected to Vpp, producing an output voltage. Replacing Rg with an ideal
current source and assuming A = y = 0, calculate the transimpedance of the resulting circuit.
Also, calculate the input-referred neise current per unit bandwidth,

For the circuit of Fig. 8.38(a), calculate the closed-loop gain without neglecting G, /5. Prove
that this term can be neglected if Gy & AgZ;, !/ Zous.

Calculate the loop gain of the circuit in Fig. 8.41 by breaking the loop at node X. Why is this
result somewhat different from G, Av,open?

Using feedback techniques, calculate the input and output impedance and voltage gain of each
circuit in Fig. 8.57. :

Figure 8.57

8.11. Using feedback techniques, calculate the input and output impédances of each circuit in

8.12.

Fig. 8.58.

Consider the circuit of Fig. 8.41(a), assuming (W/L)| = (W/L); = 50/0.5, % = y = 0, and
each resistor is equal to 2 k. If Ipy = 1 mA, what is the bias curtent of M 17 What value of
Vin gives such a current? Calculate the overall voltage gain.



Problems - 287

Voo Voo
I —iC M,
¢ G G| G
Vino— I+ Vout Vin—ll4 Vout
— M, —L My
A=0 A£Q
@ ®) ©
Figure 8.58

8.13. Suppose the amplifier of the circuit shown in Fig. 8.18 has an open-loop transfer function
Ap/(1 + 5/wp) and an output resistance Ry. Calculate the output impedance of the closed-loop
circuit and plot the magnitude as a function of frequency. Explain the behavior.

8.14. Calculate the input-referred noise voltage of the circuit shown in Fig. 8.21(a) at relatively low
frequencies.

8.15. A differential pair with current-source loads can be represented as in Fig. 8.59(z), where
Ro =rownlirop and ron and rp p denote the output resistance of NMOS and PMOS devices,
respectively. Consider the circuit shown in Fig. 8.59(b), where G,,; and G2 are placed in a
negative feedback loop.

(@

Figure 8.59
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8.16.

8.17.

8.18.

8.19.
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(a} Neglecting all other capacitances, derive an expression for Z;,. Sketch |Z;,| versus fre-
quency. '

(b) Explain intuitively the behavior observed in part (a).

(¢) Calculate the input-referred thermal noise voltage and current in terms of the input-referred
noise voltage each G, stage.

In the circuit of Fig. 8.60, (W/L);_3 = 50/0.5, Ip1 = |Ipa] = |Ip3l = 0.5 mA, and
Rs1 = Rr = Rpy = 3kQ.

(a) Determine the input bias voltage required to establish the above currents.

(b) Calculate the closed-loop voltage gain and output resistance.

The circuit of Fig. 8.60 can be modified as shown in Fig. 8.61, where a source follower, My, is
inserted in the feedback loop. Note that M and M4 can also be viewed as a differential pair.
Assume (W/L)1—4 = 50/0.5, Ip = 0.5 mA, for all transistors Rg; = R = Rpy = 3 kQ,
and V2 = 1.5 V. Calculate the closed-loop voltage gain and output resistance and compare the
results with those obtained in Problem 8.16(b).

Figure 8.60

Figure 8.61

Consider the circuit of Fig. 8.62, where (W/L)1_4 = 50/0.5, [Ip1—4| = 0.5 mA and R; =

3kQ.

(a) For what range of R, are the above currents established while M> remains in saturation?
What is the corresponding range of V;,?

(b) Calculate the closed-loop gain and output impedance for R; in the middle of the range
obtained in part ().

In the circuit of Fig. 8.63, suppose all resistors are equal to 2k and g1 = gma = 1/(200 ).

‘Assuming A = ¥ = 0, calculate the closed-loop gain and output impedance.
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Figure 8.62
,
Vop
=R
R = RFZ b2
b1y W ° Vout
!I:_LM2
Vin°_| M1 = ,
Rgy
Ag
= Figure 8.63

8.20. A CMOS inverter can be used as an amplifier with or without feedback (Fig. 8.64). Assume
(W/Ly,2 = 50/0.5, Ry = 1kQ, Ry = 10k€2, and the dc levels of V;, and V,,, are equal.
(a) Calculate the voltage gain and the output impedance of each circuit.
(b) Calculate the sensitivity of each circnit’s output with respect to the supply voltage. That is,
calculate the small-signal “gain” from Vpp to Vo,;. Which circuit exhibits less sensitivity?

Yoo Voo
M, —E M,
Ry R,
Vin Yout Vino—i— Vout
M, — M,
(@) )]
Figure 8.64

8.21. Calculate the input-referred thermal noise voltage of the circuits shown in Fig. 8.64.



290

Chap. 8 Feedback

- 8.22. The circuit shown in Fig. 8.65 employs positive feedback to produce a negative input capaci-

‘tance. Using feedback analysis techniques, determine Z;, and identify the negative capacitance
component. Assume A =y = 0.

M,
M2 JHE,

—e+——|I M ¢,
h?h H 1¥

z in
= Figure 8.65

8.23. In the circuit of Fig. 8.66, assume A = 0, gm12 = 1/(200 Q), R1—3 = 2k, and C; = 100
pF. Neglecting other capacitances, estimate the closed-loop voltage gain at very low and very
high frequencies.

Figure 8.66



Chapter 9

Operational Amplifiers

Operational amplifiers: (op amps) are an integral part of many analog and mixed-signal
systems. Op amps with vastly different levels of complexity are used to realize functions
ranging from dc bias generation to high-speed amplification or filtering. The design of op
amps continues to pose a challenge as the supply voltage and transistor channel lengths
scale down with each generation of CMOS technologies.

This chapter deals with the analysis and design of CMOS op amps. Following a review of
performance parameters, we describe simple op amps such as telescopic and folded cascode
topologies. Next, we study two-stage and gain-boosting configurations and the problem of
common-mode feedback. Finally, we introduce the concept of slew rate and analyze the
effect of supply rejection and noise in op amps.

9.1 General Considerations

We loosely define an op amp as a “high-gain differential amplifier.” By “high,” we mean a
value that is adequate for the application, typically in the range of 10! to 10°. Since op
amps are usually employed to implement a feedback system, their open-loop gain is chosen
according to the precision required of the closed-loop circuit.

Up to two decades ago, most op amps were designed to serve as “general-purpose”
building blocks, satisfying the requirements of many different applications. Such efforts
sought to create an “ideal” op amp, e.g., with very high voltage gain (several hundred
thousand), high input impedance, and low output impedance, but at the cost of many other
aspects of the performance, e.g., speed, output voltage swings, and power dissipation.

By contrast, today’s op amp design proceeds with the recognition that the trade-offs
between the parameters eventually require a multi-dimensional compromise in the overall
implementation, making it necessary to know the adequate value that must be achieved for
each parameter. For example, if the speed is critical while the gain error is not, a topology
is chosen that favors the former, possibly sacrificing the latter.

9.1.1 Performance Parameters

In this section, we describe 2 number of op amp design parameters, providing an
understanding of why and where each may become important. For this discussion, we
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|

Figure 9.1 Cascode op amp.

consider the differential cascode circuit shown in Fig. 9.1 as a representative op amp
design.! The voltages Vi,1-V;3 are generated by the current mirror techniques described
in Chapter 5.

Gain The open-loop gain of an op amp determines the precision of the feedback system
employing the op amp. As mentioned before, the required gain may vary by four orders
of magnitude according to the application. Trading with such parameters as speed and
output voltage swings, the minimum required gain must therefore be known. As explained
in Chapter 13, a high open-loop gain may also be necessary to suppress nonlinearity.

Example 9.1

The circuit of Fig. 9.2 is designed for a nominal gain of 10, i.e., 1 + Rl/kz = 10. Determine the
minimum value of A; for a gain error of 1%.

Ay

+—o Vout

= Figure 9.2

ISince op amps of this type have a high output resistance, they are sometimes called “operational transcon-
ductance amplifiers” (OTAs). In the limit, the circuit can be represented by a single voltage-dependent current
source and called a “G, stage.” ' :
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Solution
The closed-loop gain is obtained from Chapter 8 as:

V. A
) Your A1 ©.1)
Vin 14+ R Ay
Ri1+ Rz
R+ R Al
= . 9.2)
R
Ry 1+ Ry +4,
Ra
Predicting that A; > 10, we approximate (9.2) as:
V., R R Ry 1
LU (1 + —1) (1 - J—i-—z—) : 9.3)
Vin Ry R Aq

The term (Ry 4+ R2)/(R2A1) = (1 + R1/R2)/A| represents the relative gain error. To achieve a gain
error less than 1%, we must have A; > 1000.

It is instructive to compare the circuit of Fig. 9.2 with an open-loop implementation
such as that in Fig. 9.3. While it is possible to obtain a nominal gain of g, Rp = 10 by
a common-source stage, it is extremely difficult to guarantee an error less than 1%. The
variations in the mobility and gate oxide thickness of the transistor and the value of the
resistor typically yield an error greater than 20%. ’

Voo
Rp
Vout
Vino— M,
Figure 9.3 Simple common-source
= stage.

Small-Signal Bandwidth The high-frequency behavior of op amps plays a critical role
in many applications. For example, as the frequency of operation increases, the open-loop
gain begins to drop (Fig. 9.4), creating larger errors in the feedback system. The small-signal
bandwidth is usually defined as the “unity-gain” frequency, f,, which exceeds 1 GHz in

A
20log|A, |

Figure 9.4 Gain roll-off with fre-

a8 fu  f(log axis) quercy.
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today’s CMOS op amps. The 3-dB frequency, fs—q45, may also be specified to allow easier
prediction of the closed-loop frequency response.

Example 9.2

In the circuit of Fig. 9.5, assume the op amp is a single-pole voltage amplifier. If V;, is a small step,

A(s)

—o Vout

]
(=)

Figure 9.5

calculate the time required for the output voltage to reach within 1% of its final value. What unity-gain
bandwidth must the op amp provide if 1 + R;/R; = 10 and the settling time is to be less than 5 ns?
For simplicity, assume the low-frequency gain is much greater than unity.

Solution
Since
Ry
Vin — Vour———— ) A(s) = Voue, .
( in ourRl +R2) (s) out 9.4)
we have
Vv, A
u‘/?;‘i(s) = +. ©.5)
in 1 714
+ R+ R ()

For a one-pole system, A(s) = Ag/(1 + s/wp), where wy is the 3-dB bandwidth and Agwg the
unity-gain bandwidth. Thus,

V, A
o) = 7 - 9.6)
in 14+ ———Ag+ —
Ri+Ry wp
Ag
R
1+ R +2R Agp
1 2
- E , ©9.7)
1+

(-mrmn)
— @
R+ R e)eo
indicating that the closed-loop amplifier is also a one-pole system with a time constant equal to

= ! . ©.3)

(1+ Re A)
w
Ri+ Ry 0)®0
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Recognizing that the quantity RyAg/(R) + R2) is the low-frequency loop gain and usually much
greater than unity, we have

R, 1
=14+ —= | —. 99
: ( * Rz) Aowp ©9

The output step response for Vi, = au(?) can now be expressed as

. R
Vourt) ~ a (1 + —) (1 ~exp
Ry

with the final value V¢ = a(l + R /R3). For 1% settling, V,,; = 0.99V¢ and hence

’) u(), (9.10)

T
—t%
1 —exp—2 —0.99, (9.11)
T

yielding t19, = 71n100 = 4.67. For a 1% settling of 5 ns, t & 1.09 ns, and from (9.9), Agwp =
(1 4+ Ri/R2)/t = 9.21 Grad/s (1.47 GHz).

The key point in the above example is that the required bandwidth depends on both the
settling accuracy and the closed-loop gain that must be provided.

Large-Signal Bandwidth In many of today’s applications, op amps must operate with
large transient signals. Under these conditions, nonlinear phenomena make it difficult to
characterize the speed by merely small-signal properties such as the open-loop response
shown in Fig. 9.4. As an example, suppose the feedback circuit of Fig. 9.5 incorporates a
realistic op amp (i.e., with finite output impedance) while driving a large load capacitance.
How does the circuit behave if we apply a 1-V step at the input? Since the output voltage
cannet change instantanecusly, the voltage difference sensed by the op amp itself att = Ois
equal to 1 V. Such a large difference momentarily drives the op amp into a nonlinear region
of operation. (Otherwise, with an open-loop gain of, say, 1000, the op amp would produce
1000 V at the output.)

Asexplained in Section 9.8, the large-signal behavior is usually quite complex, mandating
careful simulations.

Output Swing Most systems employing op amps require large voltage swings to ac-
commodate a wide range of signal amplitudes. For example, a high-quality microphone that
senses the music produced by an orchestra may generate instantaneous voltages that vary
by more than four orders of magnitude, demanding that subsequent amplifiers and filters
handle large swings (and/or achieve a low noise).

The need for large output swings has made fully differential op amps quite popular.
Similar to the circuits described in Chapter 4, such op amps generate “complementary”
outputs, roughly doubling the available swing. Nonetheless, as mentioned in Chapters 3
and 4 and explained later in this chapter, the maximum voltage swing trades with device
size and bias currents and hence speed. Achieving large swings is the principal challenge
in today’s op amp design.



296

Chap. 9 Operational Amplifiers

Linearity Open-loop op amps suffer from substantial nonlinearity. In the circuit of
Fig. 9.1, for example, the input pair M;-M; exhibits a nonlinear relationship between
its differential drain current and input voltage. As explained in Chapter 13, the issue of
nonlinearity is tackled by two approaches: using fully differential implementations to sup-
press even-order harmonics and allowing sufficient open-loop gain such that the closed-loop
feedback system achieves adequate linearity. It is interesting to note that in many feedback
circuits, the linearity requirement, rather than the gain error requirement, governs the choice
of the open-loop gain. :

Noise and Offset The input noise and offset of op amps determine the minimum signal
level that can be processed with reasonable quality. In a typical op amp topology, several
devices contribute noise and offset, necessitating large dimensions or bias currents. For
example, in the circuit of Fig. 9.1, M-M; and M;-Mjz contribute the most.

We should also recognize a trade-off between noise and output swing. For a given bias
current, as the overdrive voltage of M7 and My in Fig. 9.1 is lowered to allow larger swings
at the output, their transconductance increases and so does their drain noise current.

Supply Rejection Op amps are often employed in mixed-signal systems and sometimes
connected to noisy digital supply lines. Thus, the performance of op amps in the presence
of supply noise, especially as the noise frequency increases, is quite important. For this
reason, fully differential topologies are preferred.

9.2 One-Stage Op Amps

All of the differential amplifiers studied in Chapters 4 and 5 can be considered as op
amps. Fig. 9.6 shows two such topologies with single-ended and differential outputs. The
small-signal, low-frequency gain of both circuits is equal to gmn(ronllrop), where the
subscripts N and P denote NMOS and PMOS, respectively. This value hardly exceeds 20
in submicron devices with typical current levels. The bandwidth is usually determined by the
load capacitance, C; . Note that the circuit of Fig. 9.6(a) exhibits a mirror pole (Chapter 5)

° Vout Voutt ©
CL

Figure 9.6 Simple op amp topologies.
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whereas that of Fig. 9.6(b) does not, a critical difference in terms of the stability of feedback
systems using these topologies (Chapter 10).

The circuits of Fig. 9.6 suffer from noise contributions of M{-M4, as calculated in
Chapter 7. Interestingly, in all op amp topologies, at least four devices contribute to the
input noise: two 1nput transistors and two “load” transistors.

Example 9.3

Calculate the input common-mode voltage range and the closed-loop output impedance of the unity-
gain buffer depicted in Fig. 9.7.

—° Vour

o Vout

Figure 9.7

Solution

The minimum allowable input voltage is equal to Vess + Vgsi, where Vegs is the voltage re-
quired across the current source. The maximum voltage is given by the level that places M) at
the edge of the triode region: Vip max = Vbp — |Vgs3| + Vrai. For example, if each device
(including the current source) has a threshold voltage of 0.7 V and an overdrive of 0.3 V, then
Vinmin = 03403+ 0.7 = 1.3 Vand Vi spaxr = 3 — (0.3 + 0.7) + 0.7 = 2.7 V. Thus, the input
CM range equals 1.4 V with a 3-V supply.

Since the circuit employs voltage feedback at the output, the output impedance is equal to the open-
loop value, ropllron, divided by one plus the loop gain, 1 + guN(ropllron). In other words, for
large open-loop gain, the closed-loop output impedance is approximately equal to (ropllron)/[gmn
(ropllron)l = 1/gmn.

It is interesting to note that the closed-loop output impedance is relatively independent of the
open-loop output impedance. This is an impoertant observation, allowing us to design high-gain op
amps by increasing the open-loop output impedance while still achieving a relatively low closed-loop

. output impedance. '

In order to achieve a high gain, the differential cascode topologies of Chapters 4 and 5
can be used. Shown in Figs. 9.8(a) and (b) for single-ended and differential output gener-
ation, respectively, such circuits display a gain on the order of gmn[(gnnr3 N (gmer3 p)),
but at the cost of output swing and additional poles. These configurations are also called
“telescopic” cascode op amps to distinguish them from another cascode op amp described
below. The circuit providing a single-ended output suffers from a mirror pole at nede X,
creating stability issues (Chapter 10).
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l/DD

Figure 9.8 Cascode op amps.

As calculated in Chapter 4, the output swings of telescopic op amps are relatively limited.
In the fully differential version of Fig. 9.8(b), for example, the output swing is given by
2[Vpp — (Vop1 + Vops + Vess + [Vops| + | Voprl)l, where Vi p; denotes the overdrive
voltage of M;.

Another drawback of telescopic cascodes is the difficulty in shorting their inputs and
outputs, e.g., to implement a unity-gain buffer similar to the circuit of Fig. 9.7. To under-
stand the issue, let us consider the unity-gain feedback topology shown in Fig. 9.9. Under
what conditions are both M, and M, in saturation? We must have V,,, < Vy + Vrp2 and

A

Vass— Vriz

Vv,
out
Vrna

P
P e u

3 Fabo

Vo~ Vrua

Figure 9.9 Cascode op amp with input and cutput shorted.
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Vour = Vo — Vrpa. Since Vy = Vp — Vgga, Vo — Vrgy < Vour € Vo — Vgsa + Vrmn.
Depicted in Fig. 9.9, this voltage range is simply equal t0 Viyqx — Vinin = Vrma — (Voss —
V1), maximized by minimizing the overdrive of M, but always less than Vy 5.

Example 9.4

For the circuit of Fig. 9.9, explain in which region each transistor operates as V;,, varies from below
Vy, — Vrya to above Vp — Vgsa + Vrpgo.

Solution

Since the op amp attempts to force V,,,; tobe equal to Vy,,, for Vi, < Vp — Vr g, we have Vi = Vi
and M, is in the triode region while other transistors are saturated. Under this condition, the open-loop
gain of the op amp is reduced.

As Vi, and hence V,, exceed Vi — Vrpa, My enters saturation and the open-loop gain reaches
a maximum. For Vp, — Vrgq < Vi, < Vp — (Vgs4 — Vraa), both M; and M, are saturated and for
Vin > Vo — (Vgsa — Vry2), M> and M enter the triode region, degrading the gain.

While a cascode op amp is rarely used as a unity-gain buffer, some other topologies such
as the switched-capacitor circuits of Chapter 12 require that the input and output of the op
amp be shorted for part of the operation period.

At this point, the reader may wonder how exactly we design an op amp. With so many
devices and performance parameters, it may not be clear where the starting point is and how
the numbers are chosen. Indeed, the actual design methodology of an op amp somewhat
depends on the specifications that the circuit must meet. For example, a high-gain op amp
may be designed quite differently from a low-noise op amp. Nevertheless, in most cases,
some aspects of the performance, e.g., output voltage swings and open-loop gain, are of
primary concern, pointing to a specific design procedure. The following example illustrates
these ideas.

Example 9.5

Designa fully differential telescopic op amp with the following specifications: Vpp = 3 V, differential
output swing = 3 V, power dissipation = 10 mW, voltage gain = 2000. Assume 11, Cox = 60 A/VZ,
tpCox = 30 HAVE A = 0.1 v Ap =02 V! (for an effective channel length of 0.5 pm),
y=0,Vruny =Vrup| =07V.

Solution

Fig. 9.10 shows the op amp topology along with two current mirrors defining the drain currents of
M7-My. We begin with the power budget, allocating 3 mA to Mg and the remaining 330 pA to My
and Mp;. Thus, each cascode branch of the op amp carries a current of 1.5 mA. Next, we consider
the required output swings. Each of nodes X and ¥ must be able to swing by 1.5 V without driving
M3-Mp into the triode region, With a 3-V supply, therefore, the total voltage available for My and
each cascode branch is equal to 1.5V, i.e.. [Vop7l+|Vons| + Vops + Vopi + Vopy = 1.5 V. Since
My carries the largest current, we choose Vopo = 0.5 V, leaving 1 V for the four transistors in the
cascode. Moreover, since Ms- Mg suffer from low mobility, we allocate an overdrive of approximately
300 mV to each, obtaining 400 mV for Vo pi + Vo p3. As an initial guess, Vop; = Vops = 200 mV.
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Voo

Figure 9.10

With the -bias current and overdrive voltage of each transistor known, we can easily determine
the éspect ratios from I = (1/2)uCox(W/LYVgs — Vr #)*. To minimize the device capacitances,
we choose the minimum length for each transistor, obtaining a corresponding width. We then have
(W/L)1~4 = 1250, (W/L)s—g = 1111, (W/L)9 = 400.

The design has thus far satisfied the swing, power dissipation, and supply voltage specifications.
But, how about the gain? Using Ay ~ gm1l(gm3ro3ro1)ll(gmsrosror)] and assuming minimum
channel length for all of the transistors, we have A, ='1416, quite lower than the required value.

In order to increase the gain, we recognize that gmro = +/ZuCox(W/L)Ip/(AIp). Now, recall
that A o< 1/L, and hence gmro o /WL/Ip. We can therefore increase the width or length or
decrease the bias current of the transistors. In practice, speed or noise requirements may dictate the
bias current, leaving only the dimensions as the variables. Of course, the width of each transistor must
at least scale with its length so as to maintain a constant overdrive voltage.

Which transistors in the circuit of Fig. 9.10 should be made longer? Since M;-M, appear in the
signal path, it is desirable to keep their capacitances to a minimum. The PMOS devices, Ms-M3, on
the other hand, affect the signal to a much lesser extent and can therefore have larger dimensions.?
Doubling the (effective) length and width of each of these transistors in fact doubles their g, r o because
2m Temains constant while r o increases by a factor of 2. Choosing (W/L)s-g = 1111 pm/1.0 zmand
hence A, = 0.1 V!, we obtain A, = 4000. Thus, the PMOS dimensions can be somewhat smaller..
Note that with such large dimensions for PMOS transistors, we may revisit our earlier distribution of
the overdrive voltages, possibly reducing that of My by 100 to 200 mV and allocating more to the
PMOS devices.

In the op amp of Fig. 9.10, the input CM level and the bias voltages Vj1 and Vj, must be chosen 50
as to allow maximum output swings. The minimum allowable input CM level equals Vgs1+ Vope =
Vra1+ Vop1 + Vopo = 1.4 V. The minimum value of Vp) is given by Vgs3+ Vop1 + Vope = 1.6
V, placing M-M; at the edge of the triode region. Similarly, Vi3 max = Vpp —(IVass| +1Vobil) =
1.7 V. In practice, some margin must be included in the value of Vp; and Vj2 to allow for process
variations. Also, the increase in the threshold voltages due to body effect must be taken into account.

2This point is studied in Chapter 10.
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In order to alleviate the drawbacks of telescopic cascode op amps, namely, limited
output swings and difficulty in shorting the input and output, a “folded cascode” op amp
can be used. As described in Chapter 3 and illustrated in Fig. 9.11, in an NMOS or PMOS
cascode amplifier, the input device is replaced by the opposite type while still converting the

Voo
14
Vout Vine—[®
Voo d[o M, >
Vino—[,. M,
(a)
= Vop
Vino— [ M,
LS | DY =y
Volﬂ
Iy

)

Figure 9.11 Folded cascode circuits.

input voltage to a current. In the four circuits shown in Fig. 9.11, the small-signal current
generated by M, flows through M; and subsequently the load, producing an output voltage
approximately equal to gy Ry Vixn. The primary advantage of the folded structure lies in
the choice of the voltage levels because it does not “stack” the cascode transistor on top of
the input device. We will return to this point later.

The folding idea depicted in Fig. 9.11 can easily be applied to differential pairs and
hence operational amplifiers as well. Shown in Fig. 9.12, the resulting circuit replaces
the input NMOS pair with a PMOS counterpart. Note two important differences between
the two circuits. (1) In Fig. 9.12(a), one bias current, Isg, provides the drain current of
bothi the input transistors and the cascode devices, whereas in Fig. 9.12(b) the input pair
requires an additional bias current. In other words, Iss; = Iss/2 + Ip3. Thus, the folded-
cascode configuration generally consumes higher power. (2) In Fig. 9.12(a), the input CM
level cannot exceed V,; — Vgs3 + Vrgi, whereas in Fig. 9.12(b), it cannot be less than
Vo1 — Vis3 + | Vrupl. It is therefore possible to design the latter to allow shorting its input
and output terminals with negligible swing limitation. This is in contrast to the behavior
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Figure 9.12 Folded cascode op amp topology.

depicted in Fig. 9.9. In Fig. 9.12(b), it is possible to tie the n-well of M; and M, to their
common source point. We return to-this idea in Chapters 13 and 18.

Let us now calculate the maximum output voltage swing of the folded-cascode op amp
shown in Fig. 9.13, where Ms-M)y replace the ideal current sources of Fig. .12(b). With
proper choice of V,,; and V,;, the lower end of the swing is given by Vg ps + Vops and the
upperend by Vpp — (|Vop7| + | Vonel). Thus, the peak-to-peak swing on each side is equal
to Vop — (Vops + Vops + |Vop7l + | Vopsl). In the telescopic cascode of Fig. 9.12(a),
on the other hand, the swing is less by the overdrive of the tail current source. We should
nonetheless note that, carrying a large current, Ms and Mg in Fig. 9.13 may require a high
overdrive voltage if their capacitance contribution to nodes X and Y is to be minimized.

— Vop
|: 9 10 I;|
Yoz i

My Mg
Vo2 [
ISS o Vout°_—'
M, M2 Vero s 7 m %,
" o—] 3 a
N ]
X Y

Vipge 1= “.—1
T"j_.Ms Mg

Figure 9.13 Folded cascode op amp with cascode PMOS
loads.
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We now determine the small-signal voltage gain of the folded-cascode op amp of
Fig. 9.13. Using the half circuit depicted in Fig. 9.14(a) and writing |A,| = G, Rous,
we must calculate G,, and R,,,. As shown in Fig. 9.14(b), the output short-circuit current
is approximately equal to the drain current of M, because the impedance seen looking into
the source of M3, that is, (g3 + gmps) |7 03, is typicaliy much lower than r g, ||ros. Thus,
Gm A gmy. To calculate R,,,, we use Fig. 9.14(c), with Rpp =~ (8m7 + Emb1)ro7T 00, tO
write Rous & Rop||[(8m3 + gms3)ros(ronllros)]. It foliows that

|Av| ~ gmi{[(8m3 + gmb3)roa(ror70s)II[(8m7 + Emsr)rorr00l). (9.12)
How does this value compare with the gain of a telescopic op amp? For comparable

device dimensions and bias currents, the PMOS input differential pair exhibits a lower
transconductance than does an NMOS pair. Furthermore, ro, and rgs appear in parallel,

Voo

Vise—[C M,
Voao—[Z M,

VOU'

1l Vb1‘—| M3

ros||ro1

(a)

Figure 9.14 (a) Half circuit of folded cascode op amp, (b) equivalent circuit with output
shorted to ground, (¢) equivalent circuit with output open.
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reducing the output impedance, especially because M5 carries the currents of both the input
device and the cascode branch. As a consequence, the gain in (9.12} is usually two to three
times lower than-that of a comparable telescopic cascode.

It is also worth noting that the pole at the “folding point,” i.e., the sources of M3 and
M,, is quite closer to the origin than that associated with the source of -cascode devices
in a telescopic topology. In Fig. 9.15(a), C,,, arises from Cgg3, Csps, Cpgi, and Cepy.

Figure 9.15 Effect of device capacitance on the nondominant pole in telescopic and folded-
cascode op amps. '

By contrast, in Fig. 9.15(b), C,,, contains additional contributions due to Cgps and Cpps,
typically significant components because M5 must be wide enough to carry a large current
with a small overdrive.

A folded-cascode op amp may incorporate NMOS input devices and PMOS cascode
transistors. Illustrated in Fig. 9.16, such a circuit potentially provides a higher gain than the
op amp of Fig. 9.13 because of the greater mobility of NMOS devices, but at the cost of
lowering the pole at the folding point. To understand why, note that the pole at node X is
given by the product of 1/(g.3 + gmp3) and the total capacitance at this node. The magnitude
of both of these components is relatively high: M5 suffers from a low transconductance and

Y
M, M,
Vo —if= i #’REFz
Irery o—] Vout
M M
° M; Mg
Mo Il “—'jJ_M” | [ Mua
= H Mg wa

Figure 9.16 Realization of a-folded-cascode op amp.
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Ms contributes substantial capacitance because it must be wide enough to carry the drain
currents of both M 1 and M3, In fact, for comparable bias currents, Ms5-M; in Fig. 9.16 may
be several times wider than Ms-Ms in Fig. 9.13. )

Our study thus far suggests that the overall voltage swing of a folded-cascode op amp
is only slightly higher than that of a telescopic configuration. This advantage comes at
the cost of higher power dissipation, lower voltage gain, lower pole frequencies, and, as
explained in Section 9.10, higher noise. Nonetheless, folded-cascode op amps are used quite
widely, even more than telescopic topelogies, because the inputs and outputs can be shorted
together and the choice of the input common-mode level is easier. In a telescopic op amp,
three voltages must be defined carefully: the input CM level and the gate bias voltages of
the PMOS and NMOS cascode transistors, whereas in folded-cascode configurations only
the latter two are critical.

We now carry out the design of a folded-cascode op amp to reinforce the foregoing
concepts.

Example 9.6

Design a folded-cascode op amp with an NMOS input pair (Fig. 9.16) to satisfy the following
specifications: Vpp = 3V, differential output swing = 3 V, power d1ssxpat1on = 10 mW, voltage gain
= 2000. Use the same device parameters as in Example 9.5.

Solution

As with the telescopic cascode of the previous example, we begin with the power and swihg specifi-
cations. Allocating 1.5 mA to the input pair, 1.5 mA to the two cascode branches, and the remaining
330 pA to the three current mirrors, we first consider the devices in each cascode branch. Since Ms
and Mg must each carry 1.5 mA, we allow an overdrive of 500 mV for these transistors so as to keep
their width to a reasonable value. To M3-M,, we allocate 400 mV and to M7-Mig, 300 mV. Thus,
(W/L)sg = 400, (W/L)3 4 = 313,(W/L);_190 = 278. Since the minimum and maximum output
levels are equal to 0.6 V and 2.1 V, respectively, the optimum output common-mode level is 1.35 V.

The minimum dimensions of M;-M, are dictated by the minimum input common-mode level,
Vesi + Vopi- For example, if the input and the output are shorted for part of the operation period
(Fig. 9.17), then Vis2 + Vop11 = 1.35 V. With Vop11 = 0.4 V as an initial guess, we have Vgg) =

Figure 9.17 Folded-cascode op amp
with input and output shorted.
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0.95 V, obtaining Vop1,2 = 0.95 — 0.7 = 0.25 V and hence (W/L)1,2 = 400. The maximum

" dimensions of M) and M, are determined by the tolerable input capacitance and the capacitance at

nodes X and Y in Fig. 9.16.

We now calculate the small-signal gain. Using gn = 2/p/(Vgs — Vru), we have gmi2 =
0.006 A/V, gn3,a = 0.0038 A/V, and gy s = 0.05 A/V. For L = 0.5 um, rp12 = ro7-10 =
13.3kQ, and rpa.4 = 2ros,6 = 6.67 k2. It follows that the impedance seen looking into the drain of
M7 (or Mg) is equal to 8.8 MS2 whereas, owing to the limited intrinsic gain of M3 (or My), that seen
looking into the drain of M3 is equal to 66.5 k2. The overall gain is therefore limited to about 400.

In order to increase the gain, we first observe that o5 ¢ is quite lower than r g1 2. Thus, the length
of Ms-Mg must be increased. Also, the transconductance of M}-M; is relatively low and can be
increased by widening these transistors. Finally, we may decide to double the intrinsic gain of M3
and M4 by doubling both their length and width, but at the cost of increasing the capacitance at nodes
X and Y. We leave'the exact choice of the device dimensions as an exercise for the reader.

An important property of folded-cascode op amps is the capability of handling input
common-mode levels close to one of the supply rails. In Fig. 9.16, for example, the CM
voltage at the gates of M; and M, can be equal to Vpp because ¥y = Vy = Vpp —500mV.
By the same token, a similar topology using a PMOS input pair can accommodate input
CM levels as low as zero.

Telescopic and folded-cascode op amps can also be designed to provide a single-ended
output. Shown in Fig. 9.18(a) is an example, where a PMOS cascode current mirror converts
the differential currents of M3 and M, to a single-ended output voltage. In this implemen-

" tation, however, Vx = Vpp — |Vassl — |Vos7], limiting the maximum value of V,,, to

Voo — |Vassl — | Vost]) + | Vrwel and “wasting” one PMOS threshold voltage in the swing
(Chapter 5). To resolve this issue, the PMOS load can be modified as shown in Fig. 9.18(b)

(b)

Figure 9.18 Cascode op amps with single-ended output.
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so that M7 -and M; are biased at the edge of the triode region. Similar ideas apply to
folded-cascode op amps as well.

The circuit of Fig. 9.18(a) suffers from two disadvantages with respect to its differ-
ential counterpart in Fig. 9.8(b). First, it provides only half the output voltage swing.
Second, it contains a mirror pole at node X (Chapter 5), thus limiting the speed of feed-
back systems employing such an amplifier. It is therefore preferable to use the differential
topology, although it requires a feedback loop to define the output common-mode level
(Section 9.6).

As a final note, we recognize that to achieve a higher gain, additional cascode devices
can be inserted in each branch. Shown in Fig. 9.19 is a “triple cascode,” providing a gain on

Voo

Figure 9.19 Triple-cascode op amp.

the order of (g,,ro)°/2 but further limiting the output swings. With six overdrive voltages
.subtracted from Vpp in this circuit, it is difficult to operate the amplifier from a supply
voltage of 3 V or lower while obtaining reasonable output swings.

9.3 Two-Stage Op Amps

The op amps studied thus far exhibit a “one-stage” nature in that they allow the small-signal
current produced by the input pair to flow directly through the output impedance. The gain
of these topologies is therefore limited to the product of the input pair transconductance
and the output impedance. We have also observed that cascoding in such circuits increases
the gain while limiting the output swings.

In some applications, the gain and/or the output swings provided by cascode op amps
are not adequate. For example, an op amp used in a hearing aid must operate with supply
voltages as low as 0.9 V while delivering single-ended output swings as large as 0.5 V.
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In such cases, we resort to “two-stage” op amps, with the first stage providing a high
gain and the second, large swings (Fig. 9.20). In contrast to cascode op amps, a two-stage
configuration isolates the gain and swing requirements.

High Gain High Swing

o— - —o
Vin, | Stage1 | .| Stage2 Vout

Figure 9.20 Two-stage op amp.

Each stage in Fig. 9.20 can incorporate various amplifier topologies studied in previous
sections, but the second stage is typically configured as a simple common-source stage
so as to allow maximum output swings. Fig. 9.21 shows an example, where the first and
second stages exhibit gains equal to gn1.2(ro1.2ros.4) and gms.6(ros.6llro7,3), respectively,
The overall gain is therefore comparable with that of a cascode op amp, but the swing at
Vour1 and V0 is equal to Vpp — |Vops sl — Vopr,s.

Figure 9.21 Simple implementation of a two-stage op amp.

To obtain a higher gain, the first stage can incorporate cascode devices, as depicted in
Fig. 9.22. With a gain of, say, 10 in the output stage, the voltage swings at X and ¥ are
quite small, allowing optimization of M,~Mjy for higher gain. The overall voltage gain can

" be expressed as

Ay % {gm1,2[(8m3.4 + Bmb3.4)703.47 01 2]} [(8ms,6 + Embs.6)ro0s.6707.8]}

X [gmo.10(ro9,10llro11,12)]- ' (9.13)

A two-stage op amp may provide a single-ended output. One method is to convert
the differential currents of the two output stages to a single-ended voltage. Illustrated in
Fig. 9.23, this approach maintains the differential nature of the first stage, using only the
current mirror M-Mg to generate a single-ended output. Note, however, that if the gate of
M, is shorted to V,,» to form a unity-gain buffer, then the minimum allowable output level
is equal to V51 + Viss, severely limiting the output swing.
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w2

Voun ° *

+— Vourz

VMQ—IL_]-M" Vin l—l M, I—OVM

Figure 9.22 Two-stage op amp employing cascoding.

0—D T : .
My | :
Figure 9.23 Two-stage op amp with

single-ended output.

Can we cascade more than two stages to achieve a higher gain? As explained in Chapter
10, each gain stage introduces at least one pole in the open-loop transfer function, making it
difficult to guarantee stability in a feedback system using such an op amp. For this reason,
op amps having more than two stages are rarely used. Exceptions are described in [1, 2, 3].

9.4 Gain Boosting

The limited gain of one-stage op amps studied in Section 9.2 and the difficulties in using
two-stage op amps at high speeds have motivated extensive work on new topologies. Recall
that in one-stage op amps such as telescopic and folded-cascode topologies the objective is
to maximize the output impedance so as to attain a high voltage gain. The idea behind gain
boosting is to further increase the output impedance without adding more cascode devices.
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| R
{Rout ‘-Hout A, ;— out

Voo M, Vo5 m, ";2
Vinerd L M 1 ) roq . o
(a) (b) ©

Figure 9.24 Increasing the output impedance by feedback.

Consider the simple cascode in Fig. 9.24(a), whose output impedance is given by
Rour = gmaroaron. As far as R,,, is concerned, M, operates as a degeneration resistor
[Fig. 9.24(b)], sensing the output current and converting it to a voltage. The observation that
the small-signal voltage produced across rg) is propertional to the output current suggests
that this voltage can be subtracted from V), so as to place M, in current-voltage feedback,
thereby increasing the output impedance. Illustrated in Fig. 9.24(c), the idea is to drive the
gate of M, by an amplifier that forces Vy to be equal to V,. Thus, voltage variations at the
drain of M5 now affect Vy to a lesser extent because A, “regulates” this voltage. With smaller
variations at X, the current through rp; and hence the output current remain more constant
than those in Fig. 9.24(b), yielding a higher output impedance. The reader can prove that

Rour = Atgmaroarol, (9.14)

concluding that R,,, can be “boosted” substantially without stacking more cascode devices
on top of M;.

Since for small-signal operation, V, is set to zero, the circuit can be simplified as shown in
Fig. 9.25(a), with the amplifier possibly implemented as in Fig. 9.25(b). Called a “regulated
cascode,” the overall stage is illustrated in Fig. 9.25(c), exhibiting a gain equal to |4,| &
8m1(8m2r 027 01)(8m3r03), similar to the gain of a triple cascode. This topology was first
invented in 1976 [4] and applied to boost the gain of op amps in 1989 [5, 6].

@ ) S ©

Figure 9.26 Gain boosting in cascode stage.
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Before incorporating the technique of Fig. 9.25(c) in an op amp, let us examine the output
voltage swings, in particular, the minimum allowable level. Since Vx = Vgs3, the minimum
value of V,,, is Vops + Vi3, whereas, in a simple cascode with proper choice of Vg2, it
would be Vop2 + Vopi. Thus, the auxiliary amplifier in this case limits the output swing.

We now apply gain boosting to a differential cascode stage, as shown in Fig. 9.26(a).
Since the signals at nodes X and Y are differential, we surmise that the two single-ended gain
boosting amplifiers A, and A; can be replaced by one differential amplifier {Fig. 9:26(b)].
Following the topology of Fig. 9.25(c), we implement the differential auxiliary amplifier
as shown in Fig. 9.26(c), but noting that the minimum level at the drain of M3 is equal to
Voos + Vess + Vissz, where Vigs, denotes the voltage required across Iss. In a simple
differential cascode, on the other hand, the minimum would be approximately one threshold
voltage lower.

The voltage swing limitation in Fig. 9.26(c) results from the fact that the gain-boosting
amplifier incorporates an NMOS differential pair. If nodes X and Y are sensed by a PMOS
pair, the minimum value of Vy and Vy is not dictated by the gain-boosting amplifier. Now

Figure 9.26 Boosting the output impedance of a differential cascode stage.
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M,
L Iss2

LM, M, -

I

Figure 9.27 Folded-cascode circuit used as auxiliary
amplifier.

recall from Section 9.2 that the minimum input CM level of a folded-cascode stage using

a PMOS input pair can be zero. Thus, we employ such a topology for the gain-boosting

amplifier, arriving at the circuit shown in Fig. 9.27. Here, the minimum allowable level of
~ Vx and Vy is given by Vop12 + Vigsi.

Example 9.7

Calculate the output impedance of the circuit shown in Fig. 9.27.

Solution

Using the hatf-circuit concept and replacing the ideal current sources with transistors, we obtain
the equivalent depicted in Fig. 9.28. The voltage gain from X to P is approximately equal to

VM.—I My,
Rout
vb3._| M11 M3 {
; [
H L
v [T
b2*—] My | X
My :
Vb1.__l Mg .s

= Figure9.28



Sec. 9.5 Comparison 313

8m5Rour1, Where Rourt % [gm7ro7(roollros)](gm1170117013)- Thus, Rour & gmaro3ro18ms Rour1.
In essence, since the output impedance of a cascode is boosted by a folded-cascode stage, the overall
output impedance is similar to that of a “quadruple” cascode.

Regulated cascodes can also be utilized in the load current sources of a cascode op amp.
Shown in Fig. 9.29(a), such a topology boosts the output impedance of the PMOS current
sources as well, thereby achieving a very high voltage gain. To allow maximum swings at
the output, amplifier A; must employ an NMOS input differential pair. Similar ideas apply
to folded-cascode op amps [Fig. 9.29(b)].

Voo ' Voo
My Ml M; M,
i r|| *Vy Vb1

L":Ms Ms |J . L| Ms : |J
i gy '1 r' h

Vbae

..._TL

|
1
My My

(@) (®
Figure 9.29 Gain boosting applied to both signal path and load devices.

Now recall that the premise behind gain boosting is to increase the gain without adding
a second stage or more cascode devices. Does this mean that the op amps of Fig. 9.29
have a one-stage nature? After all, the gain-boosting amplifier introduces its own poles. In
contrast to two-stage op amps, where the entire signal experiences the poles associated with
each stage, in a gain-boosted op amp, most of the signal directly flows through the cascode
devices to the output. Only a small “error” component is processed by the gain-boosting
amplifier and “slowed down.”

9.5 Comparison

Our study of op amps in this chapter has introduced four principal topologies: telescopic
* cascode, folded cascode, two-stage op amp, and gain boosting. It is instructive to compare
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Table 9.1 Comparison of performance of various op amp

topologies.
Output 7 Power
Gain Swing Speed Dissipation  Noise
e T Telescopic Medium Medium Highest Low Low
C Folded-Cascode Medium Medium  High Medium Medium
Two-Stage High Highest Low = Medium Low
Gain-Boosted High Medium  Medium  High Medium

-various performance aspects of these circuits to gain a better view of their applicability.
Table 9.1 comparatively presents important attributes of each op amp topology. We study
the speed differences in Chapter 10.

9.6 Common Mode Feedback

In this and previous chapters, we have described many advantages of fully differential cir-
cuits over their single-ended counterparts. In addition to greater output swings, differential
op amps avoid mirror poles, thus achieving a higher closed-loop speed. However, high-gain
differential circuits require “common-mode feedback” (CMFB).

To understand the need for CMFB, let us begin with a simple realization of a differential
amplifier [Fig. 9.30(a)]. In some applications, we short the inputs and outputs for part of
the operation [Fig. 9.30(b)], providing differential negative feedback. The input and output
common-mode levels in this case are quite well-defined, equal to Vpp — IssRp/2.

P
+ —>
-+
Voo

Ap Rp Ap = =Rp

Vout Ll —4—° Vour® l_J
Vin
o u—

? Iss lss
(a) ®)

Figure 9.30 (a) Simple differential pair, (b) circuit with inputs shorted to
outputs.
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Now suppose the load resistors are replaced by PMOS current sources so as to increase
the differential voltage gain [Fig. 9.31(a)]. What is the common-mode level at nodes X

Voo

AL

()

Figure 9.31 (a) High-gain differential pair with inputs shorted to outputs, (b) efféct of
current mismatches,

and Y? Since each of the input transistors carries a current of Is5/2, the CM level depends
on how close Ip3 and Ip4 are to this value. In practice, as exemplified by Fig. 9.31(b),
mismatches in the PMOS and NMOS current mirrors defining Iss and Ip3 4 create a finite
error between Ip3 4 and Igs,/2. Suppose, for example, that the drain currents of M; and
M, in the saturation region are slightly greater than Igs/2. As a result, to satisfy Kirchoff
current law at nodes X and Y, both M3 and M4 must enter the triode region so that their .
drain currents fall to /s5/2. Conversely, if Ip3 4 < Iss/2, then both Vy and Vy must drop
so that M enters the triode region, thereby producing only 27p3 4.

The above difficulties fundamentally arise because in high-gain amplifiers, we wish a
p-type current source to balance an n-type current source. As illustrated in Fig, 9.32, the
difference between [p and Iy must flow through the intrinsic output impedance of the

~ Voo

Figure 9.32 Simplified model of
high-gain amplifier.

amplifier, creating an output voltage change of (/p — Iy)(Rp|jRx). Since the current error
depends on mismatches and Rp || Ry is quite high, the voltage error'may be large, thus driv-
ing the p-type or n-type current source into the triode region. As a general rule, if the output
CM level cannot be determined by “visual inspection” and requires calculations based an
device properties, then it is poorly defined. This is the case in Fig. 9.31 but not in Fig. 9.30.
We emphasize that differential feedback cannot define the CM level.
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Example 9.8

Consider the telescopic op amp designed in Example 9.5 and repeated in Fig. 9.33 with bias current
mirrors. Suppose My suffers from a 1% current mismatch with respect to Mg, producing Iss =

300pAY

.

R,z

wy

i

.G -
Mo I_‘—-I%-"ss= 2.97 mA
My <

Figure9.33

2.97 mA rather than 3 mA. Assuming perfect matching for other transistors, explain what happens in
the circuit.

Solution

From Example 9.5, the single-ended output impedance of the circuit equals 266 kS2. Since the differ-
ence between the drain currents of M3 and Ms (and M4 and M) is 30 nA/2 = 15 uA, the output
voltage error would be 266 k2 x 15 uA= 3.99 V. Since this large error cannot be produced, Vx and
Vy must rise so much that Ms-Mg and M7-Mjy enter the triode region, yielding Ip7 g = 1.485 mA.
We should also mention that another important source of CM error in the simple biasing scheme of

“Fig. 9.33 is the deterministic error between Ip7 g and Ij; (and also between Ipg and Ipjg) due to

their different drain-source voltages. This error can nonetheless be reduced by means of the current
mirror techniques of Chapter 5.

The foregoing study implies that in high-gain amplifiers, the output CM level is quite
sensitive to device properties and mismatches and it cannot be stabilized by means of
differential feedb‘qck, Thus, a common-mode feedback network must be added to sense the
CM level of the two outputs and accordingly adjust one of the bias currents in the amplifier.
Following our view of feedback systems in Chapter 8, we divide the task of CMFB into
three operations: sensing the output CM level, comparison with a reference, and returning
the error to the amplifier’s bias network. Fig. 9.34 conceptually illustrates the idea.

In order to sense the output CM level, we recall that Vo, car = (Vour1 + Vourz)/2, where
Voir1 and Vg5 are the single-ended outputs. It therefore séems plausible to employ aresistive
divider as shown in Fig. 9.35, generating Vur e = (R Vourz 4+ Ra Wour1)/(R) + R3), which
reduces t0 (Vou1 + Vour2)/2 if R = R,. The difficulty, however, is that R; and R, must be

* much greater than the output impedance of the op amp so as to avoid lowering the open-

loop gain. For example, in the design of Fig. 9.33, the output impedance equals 266 k2,
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Voo
v
. Voute CM Level
1 Sense
out1 . .
Circuit
HEme mJF
5 *
—— VRer  Figure 9.34 Conceptual topology for
T ‘ common-mode feedback.
R R
Voun 4 — Voutz ~
0 Vout,cM
Figure 9.35 Common-mode feed-
H = back with resistive sensing.

necessitating a value of several megaohms for R, and R,. As explained in Chapter 17,
such large resistors occupy a very large area and, more importantly, suffer from substantial
parasitic capacitance to the substrate.

To eliminate the resistive loading, we can interpose source followers between each output
and its corresponding resistor. Illustrated in Fig. 9.36, this technique produces a CM level
that is in fact lower than the output CM level by Vis7 3, but this shift can be taken into
account in the comparison operation. Note that R, and R, or I; and [, must be large enough
to ensure that M; or M; is not “starved” when a large differential swing appears at the
output. As conceptually depicted in Fig. 9.37, if, say, Vo2 is quite higher than V1, then
I; must sink both Iy & (V0 — Vour1)/(R1 + R2) and Ipy. Consequently, if Ry + Ry or I
is not sufficiently large, Ip7 drops to zero and Vi, ca no longer represents the true output
CM level.

The sensing method of Fig. 9.36 nevertheless suffers from an important drawback: it
limits the differential output swings (even if R; ; and [, ; are large enough.) To understand

- why, let us determine the minimum allowable level of Vi (and V), noting that without

CMFB it would be equal to Vops + Vops. With the source followers in place, Vouri.min =
Vgst + Vi1, where V;, denotes the minimum voltage required across /;. This is roughly
equal to two overdrive voltages plus one threshold voltage. Thus, the swing at each output
is reduced by approximately Vry, a significant value in low-voltage design.
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A

Ry R
M M
7 Voutt o — Vourz Sy Wy |

Figure 9.37 Current starvation of
source followers for large swings.

Looking at Fig. 9.35, the reader may wonder if the output CM level can be sensed
by means of capacitors, rather than resistors, so as to avoid degrading the low-frequency
open-loop gain of the op amp. This is indeed possible in some cases and will be studied in
Chapter 12.

Another type of CM sensing is depicted in Fig.9.38. Here, identical transistors M; and My
operate in deep triode region, introducing a total resistance between P and ground equal to

Rior = Ron7ll Rons. 9.15)

_ 1 ! (9.16)

w w
#nCox —E(Voml - VTH) Mncox I(Voud - VTH)

= ! (9.17)

W k4
ﬂncoxf(vouﬂ + Vau!] - 2VTH’)

where W /L denotes the aspect ratio of M3 and Mg. Equation (9.17) indicates that R, isa
function of V.2 + V,uy but independent of V,,,,, — Vourt. From Fig. 9.38, we observe that
if the outputs rise togethér, then R,,, drops, whereas if they change differentially, one R,,
increases and the other decreases.
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Vout2

Vout1 ) P
’_%‘, M, j|-_._. -|-E= Mg  Figure 9.38 Common-mode sensing

using MOSFETSs operating in deep triode
region.

""In the circuit of Fig. 9.38, the use of M, and M limits the output voltage swings. Here,

it may seem that Vo min = V7 H7.8, Which is relatively close to two overdrive voitages, but
the difficulty arises from the assumption above that both M7 and Mg operate in deep triode
region. In fact, if, say, V,,,. drops from the equilibrium CM level to one threshold voltage
above ground and V,,,; rises by the same amount, then M3 enters the saturation region, thus
exhibiting a variation in its on-resistance that is not counterbalanced by that of Ms.

We now study techniques of comparing the measured CM level with a reference and
returning the error to the op amp’s bias network. In the circuit of Fig. 9.39, we employ a
simple amplifier to detect the difference between Vour.cnm and a reference voltage, Veer,

- applying the result to the NMOS current sources with negative feedback. If both Vo, and

V2 rise, so does Vg, thereby increasing the drain currents of M3-M, and lowering the
output CM level. In other words, if the loop gain is large, the feedback network forces the
CM level of V,,y and V,,2 to approach Vigpr. Note that the feedback can be applied to
the PMOS current sources as well. Also, the feedback may control only a fraction of the
current to allow optimization of the settling behavior. For example, each of M3 and M,

Voo

R4 R2
AAA PR YT Y

o—1 M, M, I_\Voun"’ Wy I VY ° Voutz

V.
in = 1
1 1
@ ’ss L ’ lVE -+
-
= Mj

L, S Veer

Vout,CM

Figure 9.39 Sensing and controlling output CM level.
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can be decomposed into two parallel devices, one biased at a constant current and the other
driven by the error amplifier.

In a folded-cascode op amp, the CM feedback may control the tail current of the input
differential pair. Hlustrated in Fig. 9.40, this method increases the tail current if V,,,,; and
Vour2 rise, lowering the drain currents of Ms -M¢ and restoring the output CM level.

Voo

_iH—lMs

Ms Ri R
o—i] My M, I’" Vout,.cM Vout1o— Voutz

Vin

O

VRer

Figure 9.40 Alternative method of controlling output CM level.

How do we perform comparison and feedback with the sensing scheme of Fig. 9.387
Here, the output CM voltage is directly converted to a resistance or a current, prohibiting
comparison with a reference voltage. A simple feedback topology utilizing this technique
is depicted in Fig. 9.41, where R,7|| Rons adjusts the bias current of Ms and M. The output
CM level sets Ro,7 || Rons such that Ips and Ipg exactly balance /ps and /9, respectively.
Assuming Ipy = Ipjg = Ip, we must have V, — Vess = 2Ip(R,u7)l Rong) and hence

Voui  Vour

Figure 9.41 CMFB using triode
devices.
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Ron1l|Rong = (Vo — Vis5)/(2Ip). From (9.17),

1 Vi, — V,
- _ % - GSS, 9.18)
tnCox (—) (Vourz + Vourt — 2Vra) b
L)qs
that 1s,
21 1
Vourt + Vour = 2 + 2¥Vrq. (9.19)
(W) Vo — Vass
u'ncax -
L/;g

The CM level can thus be obtained by noting that V55 = +/2Ip/[unCox(W/L)s] + Vrys.

The CMFB network of Fig. 9.41 suffers from several drawbacks. First, the value of
the output CM level is a function of device parameters. Second, the voltage drop across
Ron7]| Rong limits the output voltage swings. Third, to minimize this drop, M7 and Mjg are
usually quite wide devices, introducing substantial capacitance at the output. The second
issue can be alleviated by applying the feedback to the tail current of the input differential

pair (Fig. 9.42), but the other two remain.
|

by

!—| - =
M; = T My i

Figure 9.42 Alternative method of controlling output CM
level.

How is V, generated in Fig. 9.427 We note that V,,; ¢ 18 somewhat sensitive to the
value of V: if V, is higher than expected, the tail current of M, and M, increases and
the output CM level falls. Since the feedback through M; and Mg attempts to correct this
error, the overall change in V,,,, ca depends on the loop gain in the CMFB network. This
is studied in the following example.
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Example 9.9
For the circuit of Fig. 9.42, determine the sensitivity of V,,, ca to Vp, i.e., dVour,cm /d V5.

Solution

Setting V;, to zero and following the procedure depicted in Fig. 4.25, we simplify the circuit as
shown in Fig. 9.43. Note that g,,7 and g,,8 must be calculated in the triode region: gm7 = gmg =
tnCox(W/L)7 8Vps7 3, where Vg g denotes the bias value of the drain-source voltage of M7 and
Mg. Since M7 and Mg operate in deep triode region, Vpg7 g typically does not exceed a few hundred
millivolts.

’03”’04

Vout,CM
9mi12 fosz-Toro

Ie=(Gm7 + Ims ) Vourom

Feedback Network

Figure 9.43

In a well-designed circuit, the loop gain must be relatively high. We therefore surmise that the
closed-loop gain is approximately equal to 1/8, where B represents the feedback factor. We write

from Chapter 8:
' 12
=2~ (9.20)
Vi l12-0 | _
= ~(8m7 + &m8)(Ron7| Rong) 9.21)
w 1
= 2u.C (#) Vosrs - ©.22)
"TNL g 2pnCox(W/L)78(Vis7,8 — VT H7,8)
V .
- DS1.8 . (9.23)
Ves18 — Vrus
where V578 — Vra7,s denotes the overdrive voltage of M7 and Mjg. Thus,
dV, V -V
‘ out, CM ~ Yos18 = Vrans ©24)
dVp closed Vpsi,8

This is an important result. Since V57,8 (i.e., the output CM level) is typically in the vicinity of
Vpp/2, the above equation suggests that Vps7, g must be maximized.
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We now introduce a modification to the circuit of 9.42 that both makes the output
level relatively independent of device parameters and lowers the sensitivity to the value
of V,. Tlustrated in Fig. 9.44(a), the idea is to define V,, by a current mirror arrangement
such that Ipg “tracks” I; and Vggp. For simplicity, suppose (W/L) ;s = (W/L)e and

(b

Figure 9.44 Modification of CMFB for more accurate definition of output
MC level.

(W/Lhe = (W/L)7+(W/L)s. Thus, Ipg = I, only if Vou;,cm = Vrer. In other words, as
with Fig. 9.40, the circuit produces an output CM level equal to a reference but it requires no
resistors in sensing V. ca. The overall design can be simplified as shown in Fig. 9.44(b).

In practice, since Vpsis # Vpso, channel-length modulation results in a finite error.
Figure 9.45 depicts a modification that suppresses this error. Here, transistors M7 and M3
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Figure 9.45 Mocdification to suppress error due to channel-length medulation.

reproduce at the drain of Ms a voltage equal to the source voltage of M| and M, ensuring
that Vpgsi1s = Vpso.

To arrive at another CM feedback topology, let us consider the simple differential pair
shown in Fig. 9.46(a). Here, the output CM level, Vpp — Vigsa 4, is relatively well-defined,
but the voltage gain is quite low. To increase the differential gain, the PMOS devices must
operate as current sources for differential signals. We therefore modify the circuitas depicted
in Fig. 9.46(b), where for differential changes at V,,;| and V,,;», node P is a virtual ground
and the gain can be expressed as gu1.2(ro1,2lro3,4l| Rr). For common-mode levels, on the
other hand, M2 and M, operate as diode-connected devices. The circuit proves useful in
low-gain applications.

It is important to note that fulty-differential two-stage op amps such as that in Fig..9.22
require two CMFB networks, one for the output of each stage. An example is described in
[10].

i

M:,Ej ‘—I_EM‘,VDD Mf_l E M,

N

AH
Y "'V

2 Vour® | out> %

V‘"O:I T I_| °_":'—7—F"1

-

Figure 9.46 (a) Differential pair using diode-connected loads, (b) resistive
CMFB.
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9.7 Input Range Limitations

The op amp circuits studied thus far have evolved to achieve large differential output swings.
While the differential input swings are usually much smaller (by-a factor equal to the open-
loop gain), the input common-mode level may need to vary over a wide range in some
applications. For example, consider the simple unity-gain buffer shown in Fig. 9.47, where
the input swing is nearly equal to the output swing. Interestingly, in this case the voltage
swings are limited by the input differential pair rather than the output cascode branch.
Specifically, Vipmin = Vourmin = Vasi2 + Viss, approximately one threshold voltage
higher than the allowable minimum provided by Ms-Mg. '

o

——

out Vine—1 M, M,

© Vout

Figure 9.47 Unity-gain buffer.

What happens if V;,, falls below the minimum given above? The MOS transistor operating
as [g; enters the triode region, decreasing the bias current of the differential pair and hence
lowering the transconductance. We then postulate that the limitation is overcome if the
transconductance can somehow be restored.

A simple approach to extending the input CM range is to incorporate both NMOS and
PMOS differential pairs such that when one is “dead,” the other is “alive.” Iflustrated in
Fig. 9.48, the idea is to combine two folded-cascode op amps with NMOS and PMOS
input differential pairs. Here, as the input CM level approaches the ground potential, the
NMOS pair’s transconductance drops, eventually falling to zero. Nonetheless, the PMOS
pair remains active, allowing normal operation. Conversely, if the input CM level approaches
Vo, M p and M;p begin to turn off but M| and M, function properly.

An important concern in the circuit of Fig. 9.48 is the variation of the overall transcon-
ductance of the two pairs as the input CM level changes. Considering the operation of each
pair, we anticipate the behavior depicted in Fig. 9.49. Thus, many properties of the circuit,
including gain, speed, and noise, vary. More sophisticated techniques of minimizing this
variation are described in [7].
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Figure 9.48 Extension of input CM range.
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: Figure 8.49 Variation of equivalent
transconductance with the input CM
level.

0 Voo Vin,cm

9.8 Slew Rate

Op amps used in feedback circuits exhibit a large-signal behavior called “slewing.” We first
describe an interesting property of linear systems that vanishes during slewing. Consider
the simple RC network shown in Fig. 9.50, where the input is an ideal voltage step of height
Vo. Since V,,, = W[l — exp(—1/1)], where T = RC, we have

= —exp - (9.25)

D—‘MT—O Vin IVin
Vin T C1 VOUt S ." ,“’
o— -0 Voul _//__ Vout

t ' t

Figure 9.50 Response of a linear circuit to input step.
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Linear Op Amp

Figure 9.51 Response of linear op
amp to step response,

That is, the slope of the step response is proportionai to the final value of the output; if
we apply a larger input step, the output rises more rapidly. This is a fundamental property
of linear systems: if the input amplitude is, say, doubled while other parameters remain
constant, the output signal level must double at every point, leading to a twofold increase
in the slope.

The foregoing observation applies to linear feedback systems as well. Shown in Fig. 9.51
is an example, where the op amp is assumed linear. Here, we can write -

R2 1 Vou!
Vi, —Vo,,——— VA -V | — = Vour CLS. 9.26
I:( in omR1 T Rz) 0 t:| Rous R, + R + VourCis ( )
Assuming R + R, 3> R,,,, we have

Oul A
s 9.27
v, &~ (1 LR ) [1 L Fuli S] ©.27)

R1+R2 1+AR2/(R1+R2)

As expected, both the low-frequency gain and the time constant are divided by 1+ ARy/
(R, + R3). The step response is therefore given by

A —t
Vour = Vo————R— 1 —exp .k u(t), 9.28)
1 A ou
+ R+ R, 1+AR2/(R1+R2)

indicating that the slope is proportional to the final value. This type of response is called
“linear settling.”

With a realistic op amp, on the other hand, the step response of the circuit begins to
deviate from (9.28) as the input amplitude increases. Illustrated in Fig. 9.52, the response
to sufficiently small inputs follows the exponential of Eq. (9.28), but with large input steps,
the output displays a linear ramp having a constant slope. Under this COI]dlt]On, we say the
op amp experiences slewing and call the slope of the ramp the “slew rate.”

To understand the origin of slewing, let us replace the op amp of Fig. 9.52 by a simple
CMOS implementation (Fig. 9.53), assuming for simplicity that R; + R, is quite large.
We first examine the circuit with a small input step. If V;, experiences a change of AV,
Ip1 increases by gnAV/2 and Ip; decreases by g, AV/2. Since the mirror action of M3
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Actual Op Amp . —
ﬁ‘out;: Vin .................
YWy -‘L ° Vout
Rl ——1 TC
:E R2

Figure 9.53 Small-signal operation of a simple op amp.

and M, raises [Ip4| by g, AV/2, the total small-signal, current provided by the op amp
equals g,, AV . This current begins to charge Cy, but as V,,, rises, so does Vy, reducing the
difference between V|, and Vs, and hence the output current of the op amp. As a result,
Vour varies according to (9.28).

Now suppose AV is so large that M, absorbs all of [sg, turning off M,. The circuit then
reduces to that shown in Fig. 9.54, generating a ramp output with a slope equal to Ig5/C;
(if the channel-length modulation of M, and the current drawn by Ry + R; are neglected).
Note that so long as M, remains off, the feedback loop is broken and the current charging
C'. is constant and independent of the input level. As V,,, rises, Vx eventually approaches
Vin, M3 turns on, and the circuit returns to linear operation. )

In Fig. 9.53, slewing occurs for falling edges at the input as well. If the input drops so
much that M; turns off, then the circuit is simplified as in Fig. 9.55, discharging C by a

~ current approximately equal to [ss. After V,,,, decreases sufficiently, the difference between

Vy and V;, is small enough to allow M, to turn on, leading to linear behavior thereafter,



Sec. 9.8

Slew Rate - 3%

Figure 9.55 Slewing during high-to-low transition.

The foregoing observations explain why slewing is a nonlinear phenomenon. If the input
amplitude, say, doubles, the output level does not double at all points because the ramp
exhibits a slope independent of the input. ‘

Slewing is an undesirable effect in high-speed circuits that process large signals. While
the small-signal bandwidth of 4 circuit may suggest a fast time-domain response, the large-
signal speed may be limited by the slew rate simply because the current available to charge
and discharge the dominant capacitor in the circuit is small. Moreover, since the input-
output relationship during slewing is nonlinear, the output of a slewing amplifier exhibits
substantial distortion. For example, if a circuit is to amplify a sinusoid Vjsinewgt (in the
steady state), then its slew rate must exceed Vowo.

Exaniple 9.10

Consider the feedback amplifier depicted in Fig. 9.56(a), where Cy and C7 set the closed-loop gain.
(The bias network for the gate of M3 is not shown.) (a) Determine the small-signal step response of
the circuit. (b) Calculate the positive and negative slew rates.
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VOIH
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ss{—_-[_“’ Vout
=c
o— it

Figure 9.56

Solution

(a) Modeling the op amp as in Fig. 9.56(b), where A, = 8m1,2(ro2llrps) and Ryyy = roa||lroa, we
have Vx = C) Vo, /(C + C3) and hence

C
Ve={V, ~———V Ay, 9.29
P ( i I +C, oul) v ( )

obtaining -

Cy 1 -C1C,
Vin— ——Vou | A, - V. — = Vo ——s. 9.30
l:( in CltC [ r) v our:l Rowr uurCl n sz ( )

It follows that

Your ¢y = Av (9.31)
Vin - 14+ A ¢ + ¢iC2 Rouss ‘
~ UCI +C2 Cl +C2 ouly
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Cy
A/ 14+ A
/( UC1+C2)

CiC
1=2 Rgu,s/(1+Av

(9.32)

1+

Cy )
Ci+Cy Ci+Co

revealing that both the low-frequency gain and the time constant of the circuit have decreased by a
factor of 1 + Ay C1/(Cy + C2). The response to a unity step is thus given by

A —t
Vour(t) = —~——"61—V0 (1 — exp T) u(t), (9.33)
I+ A4, -
where Ci +C2
CCr Cy
= R 1+ Ay—m— . 9.34
4 Ci+Co Om/( + t}C]-i-Cz) ( )

{b) Suppose a large positive step is applied to the gate of M, in Fig. 9.56(a) while the initial
voltage across C is zero. Then, M» turns off and, as shown in Fig. 9.56(c), Vo rises according to
Vot (1) = I55/[C1C2/(Cy + C)t. Similarly, for a large negative step at the input, Fig. 9.56(d) yields
Vour = —Iss/[C1C2/(C1 + C2)]r.

As another example, let us find the slew rate of the telescopic op amp shown in Fig. 9.57(a).
When a large differential input is applied, M, or M, turns off, reducing the circuit to
that shown in Fig. 9.57(b). Thus, V,,, and V,..; appear as ramps with slopes equal to
+155/(2Cy), and consequently Vou.i — V,u2 exhibits a slew rate equal to Iss/Cp. (Of
course, the circuit is usually used in closed-loop form.)

It is also instructive to study the slewing behavior of a folded-cascode op amp with
single-ended output [Fig. 9.58(a)]. Figs. 9.58(a) and (b) depict the equivalent circuit for

Voo
M, Mg

My Mg
oV, .0
CL_L out _L CL
I M3 My I

()

Figure 9.57 Slewing in telescopic op amp.
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Figure 9.58 Slewing in folded-cascode op amp.

positive and negative input steps, respectively. Here, the PMOS current sources provide a
current of /p, and the current that charges or discharges C;, is equal to I, yielding a slew
rate of /ss/Cy. Note that the slew rate is independent of /p if Ip > Igs. In practice, we
choose Ip = Ig5.

In Fig. 9.58(a), if Iss > Ip, then during slewing M3 turns off and Vy falls to a low
level such that M, and the tail current source enter the triode region. Thus, for the circuit to
return to equilibrium after M, turns on, Vy must experience a large swing, slowing down
the settling. This phenomenon is illustrated in Fig. 9.59.

To alleviate this issue, two “clamp” transistors can be added as shown in Fig. 9.60(a) [8].
The idea is that the difference between /5g and {p now flows through M1y or M3, requiring
only enough drop in Vy or Vy to turn on one of these transistors. Fig. 9.60(b) illustrates a
more aggressive approach, where M|, and M, clamp the two nodes directly to V5. Since
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.J—"—IM1 )

Iss

Figure 9.59 Long settling due to overdrive recovery after
slewing.
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Figure 9.60 Clamp circuit to limit swings at X and Y.

the equilibrium value of Vy and Vy is usually higher than Vpp — Vrgy, My and M,; are
off during small-signal operation.

What trade-offs are encountered in increasing the slew rate? In the examples of
Figs. 9.57 and 9.58, for a given load capacitance, Igs must be increased and to main-
tain the same maximum output swing, all of the transistors must be made proportionally
wider. As a result, the power dissipation and the input capacitance are increased. Note that
if the device currents and widths scale together, g,ro of each transistor and hence the
open-loop gain of the op amp remain constant.

How does an op amp leave the slewing regime and enter the linear-settling regime?
Since the point at which one of the input transistors “turns on” is ambiguous, the distinction
between slewing and linear settling is somewhat arbitrary. The following example illustrates
the point. :

Example 9.11

Consider the circuit of Fig. 9.56(a) in the slewing regime [Fig. 9.56(c)]. As V,,; rises, so does Vyx,
eventually turning M, on. As Ip; increases from zero, the differential pair becomes more linear.
Considering M1 and M3 to operate linearly if the difference between their drain currents is less than
alss (e.g., « = 0.1), determine how long the circuit takes to enter linear settiing. Assume the input'
step has an amplitude of Vp.
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Solution

The circuit displays a slew rate of I'ss/[C1C2/(C| + C2)] until |V;n1 — Vina| is sufficiently small.
From Chapter 4, we can write

1 w 4lss
algs = EI‘-nCc)x —E(Vinl — Vin2) W (Vin1 — Vin2)%, . (9.35)
ﬂvncoxf
obtaining
2
47 2l
AVE —AVE TS | =0 (9.36)
.uncoxf Mncoxf
where AVg = V;,;1 — V2. Thus,
1
AV ~a —SSW | (9.37)
Mncoxr

(Recall that «/Tss /i Cox(W/L)] is the equilibrium overdrive voltage of each transistor in the differ-
ential pair.) Alternatively, we recognize that for a small difference, a I'ss, between I py and I py, asmall-
signal approximationis valid: alss = gm A V. Thus, AVg = alss/gm ~ alss//TnCor(W/L)Is3.
Note that this calculation is quite rough because as Mj turns on, the current charging the load capac-
itance is no longer constant.

Since Vy must rise to Vo — AV for M to carry the required current, V,,, increases by (Vy —
AVg)(1 4+ C2/Cy), requiring a time given by

(9.38)

In the above example, the value of « that determines the onset of linear settling depends,
among other things, on the actual required linearity. In other words, for a nonlinearity of
1%,  can be quite larger than for a nonlinearity of 0.1%.

The slewing behavior of two-stage op amps is somewhat different from that of the circuits
studied above. This case is studied in Chapter 10.

9.9 Power Supply Rejection

As other analog circuits, op amps are often supplied from noisy lines and must therefore
“reject” the noise adequately. For this reason, it is important to understand how noise on
the supply manifests itself at the output of an op amp.

Let us consider the simple op amp shown in Fig. 9.61, assuming the supply voltage varies
slowly. If the circuit is perfectly symmetric, V,,, = Vy. Since the diode-connected device
“clamps” node X to Vpp, Vyx and hence V,,, experience approximately the same change
as does Vppp. In other words, the gain from Vpp to V.., is close to unity. The power supply
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Figure 9.61 Supply rejection of dif-
ferential pair with active current mirror,

rejection ratio (PSRR) is defined as the gain from the input to the output divided by the gain
from the supply to the output. At low frequencies:

PSRR =~ gmn(rorlron). ~° (9.39)

Example 9.12

Calculate the low-frequency PSRR of the feedback circuit shown in Fig. 9.62(a).

v

+ 1 N ;
Voo —_— Vs GmaVs =
—9ma T + . - 04

) c,
— =
(? ImV1 Im2Va

Figure 9.62

Solution

From the foregoing analysis, we may surmise that a change AV in Vpp appears unattenuated at the
output. But, we should note that if V,,, changes, so do Vp and [p;, thereby opposing the change.
Using Fig. 9.62(b) and neglecting channel-length modulation in M, -M3 for simplicity, we can write:

Cy
Vout ———— — Vo = =V, 9.40
M+ Co 2 ! (9.40)
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and gm1 V1 + gm2 V2 = 0. Thus, if the circuit is symmetric,

_ Vout Cl

Vo = . 941
T O+ G 40
We also have
% Vop — V,
— &nl lgm4 - DD Toul | gm Va2 =0. (9.42)
8m3 ros
It followrs that
Vour _ : (9.43)
Voo gm2ro4 ¢
m2F O Cl + C2
Thus,
G
14+ C_ .
r +1
Em2ro4 Cl+C,

9.10 Noise in Op Amps

In low-noise applications, the input-referred noise of op amps becomes critical. We now
extend the noise analysis of differential amplifiers in Chapter 7 to more sophisticated topolo-
gies. With many transistors in an op amp, it may seem difficult to intuitively identify the.
dominant sources of noise. A simple rule for inspection is to (mentally) change the gate
voltage of each transistor by a small amount and predict the effect at the output.

Let us first consider the telescopic op amp shown in Fig. 9.63. At relatively low fre-
quencies, the cascode devices contribute negligible noise, leaving M;-M, and M;-M; as

" Figure 9.63 Noise in a telescopic op
amp,
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the primary noise sources. The input-referred noise voltage per unit bandwidth is therefore
similar to that in Fig. 7.47(a) and given by:

2 2 K K 2
gm?,S) + N P gm7,8 . (945) .

VI=4kT [2—=— +2 2
" ( 3gm1.2 Sgi}‘z (WL)I,ZCoxf (WL)7,8Coxf 8,2,,1'2
where Ky and K p denote the 1/f noise coefficients of NMOS and PMOS devices, respec-
tively. :
Next, we study the noise behavior of the folded-cascode op amp of Fig. 9.64(a), consid-
ering only thermal noise at this point. Again, the noise of the cascode devices is negligible
at low frequencies, leaving M,-M,, M;-Mg, and Mqo-M) as potentially significant sources.
Do both pairs M7-Mg and Mg-M;o contribute noise? Using our simple rule, we change
the gate voltage of M; by a small amount {Fig. 9.64(b)], noting that the output indeed

pr py Voo
7 8
I l_ﬁ * Vb3
Mg Mg
Vo —if- !
. —2 Vout
Va—I My M, I—I = 1
In Clan =y T
3 4
VbS'_' M11 : -E'|= ‘Vb4
= = My My
(@)

(®)

Figure 9.64 Noise in a folded-cascode op amp.



338

Chap.9  Operational Amplifiers

changes considerably. The same observation applies to Mg-Myp as well. To determine the
input-referred thermal noise, we first refer the noise of M7-Mg and My-Mio t0 the output:

— 2
Vnz,aul M7,8 =2 (4kT?g;78R§ut) ’ (946)

m7,8

. - where the factor 2 accounts for_ (uncorrelated) noise of M, and Mz and R,,, denotes the

open-loop output resistance of the op amp. Similarly,

— 2
Vnz,ouf|M9,1o =2 (4kT 32,10 g?nQ,lORgut) . (9.47)

- Dividing these quantities by g2, ,R2,, and adding the contribution of M;-M2, we obtain

the overall noise:

(9.48)

2 2 2 g
V2 i = 8kT — + _g'2"7-8 _8‘29,10 '
. 3gmi2  3gmi2 3 &hr2

The effect of flicker noise can be included in a similar manner (Problem 9.15). Note that the
folded-cascode topology potentially suffers from greater noise than the telescopic counter-
part. ~ ' .

As observed for the differential amplifiers in Chapter 7, the noise contribution of the
PMOS and NMOS current sources increases in proportion to their transconductance. This
trend results in a trade-off between output voltage swings and input-referred noise: for a
given current, as implied by g = 21p/(Ves — Vra), if the overdrive voltage of the current

sources is minifized to allow large swings, then their transconductance is maximized.

As another case, we calculate the input-referred thermal noise of the two-stage op amp
shown in Fig. 9.65. Beginning with the second stage, we note that the noise current of Ms

Vour1 ¢

Vb‘

:I—
» M7'j_-

Figure 9.65 Noise ina two-stage op amp.
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and M; flows through ros|lro;. Dividing the resulting output noise voltage by the total
gain, g,1(roillres} X gms(rosiiro7), and doubling the power, we obtain the input-referred .
contribution of Ms-My:

1

— 2
v: =2 % 4T =(gus + gu7)roslror)* — (9.49)
53 3 g2\ (ro1llros)gis(rosliror)?
16kT s + g
_ . 825 Em7 . (9.50)
3 818ms(roillros)
The noise due to M;-My is simply equal to
— 2
VHZ‘M1_4:2X4kT"gm1 -l_gm:; (9.51)
3 gml
It follows that
vz L6kT 1 8ms + 8m7
Vi = ———— [gml + gm3y + (9.52)
" 3 g, grs(roiliros)?

Note the noise resulting from the second stage is usually negligible because it is divided by
the gain of the first stage when referred to the main input.

Example 9.13

A simple amplifier is constructed as”shown in Fig. 9.66. Note that the first stage incorporates
diode-connected—rather than current-source—loads. Assuming all of the transistors are in satu-
ration and (W /L) 2 = 50/0.6.(W/L)34 = 10/0.6, (W/L)s ¢ = 20/0.6, and (W/L)7 g = 56/0.6,
calculate the input-referred noise voktage if (1, Coy = 75 uA/V2 and HpCox =30 WAVE,

Lo e ]
qu

Voun © 1 0.5 mA @ ’SS @ Vout2

5

ap 3| L
c:::g ——
apy L

Figure 9.66
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Solution
We first calculate the small-signal gain of the first stage.:

A, ~ &L (9.53)
8&m3
{50 x 75
= = 54
10 x 30 ©.54)
=z 3.54. (9.55)

The noise of Ms and M7 referred to the gate of Ms is equal to 4kT(2/3)(gms + gﬂ)/g,z,d =
2.87 x 10717 V2/Hz, which is divided by A%l when referred to the main input: V,,2|M5'7 =

2.29 x 10~!8 V2/Hz. Transistors M; and M3 produce an input-referred noise of V_"2|M|,3 = (BkT/3)
(8m3 + 8m1)/8%, = 1.10 x 1077 V2/Hz. Thus, the total input-referred noise equals

V2 =20229x 107 +1.10 x 10717) (9.56)

n,in

=2.66 x 10717 VZ/Hz, 9.57)

where the factor 2 accounts for the noise produced by both odd-numbered and even-numbered tran-
sistors in the circuit. This value corresponds to an input noise voltage of 5.16 nV/+/Hz.

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

9.1. (a) Derive expressions for the transconductance and output resistance of a MOSFET in the
triode region. Plot these quantities and g, ro as a function of Vps, covering both triode
and saturation regions.

(b) Consider the amplifier of Fig. 9.6(b), with (W/L} _4 = 50/0.5, Iss = 1 mA, and input
CM level of 1.3 V. Calculate the small-signal gain and the maximum output swing if all
transistors remain in saturation. '

{(¢) For the circuit of part (b), suppose we allow each PMOS device to enter the triode region
by 50 mV so as to increase the allowable differential swing by 100 mV. What is the small-
signal gain at the peaks of the output swing?

9.2. In the circuit of Fig. 9.9, assume (W/L)1-4 = 100/0.3, Iss = | mA, V, = 1.4 V,and y = 0.
(a) If Ms-Mjy are identical and have a length of 0.5 pm, calculate their minimum width such

that M3 operates in satugation.

(b) Calculate the maximum output voltage swing.

(¢) What is the open-loop voltage gain?

(d) Calculate the input-referred thermal noise voltage.

9.3. Design the folded-cascode op amp of Fig. 9.13 for the following requirements: maximum
differential swing = 2.4 V, total power dissipation = 6 mW. If all of the transistors have a
channel length of 0.5 um, what is the overall voltage gain? Can the input common-mode level
be as low as zero?
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3

In the op amp of Fig. 9.18(b), (W/L)i—_g = 100/0.5, Iss = 1 mA, and V) = 1.7 V. Assume
y =0.

(a). What is the maximum allowable input CM level?

(b) What is Vx?

(¢) What is the maximum allowable output swing if the gate of M; is connected to the output?
(d) What is the acceptable range of Vy3? '

() What is the input-referred thermal noise voltage?

Design the op amp of Fig. 9.18(b) for the following requirements: maximum differential swing

= 2.4V, total power dissipation = 6 mW. (Assume the gate of M3 is never shorted to the

output.)

Ifin Fig. 9.21, (W/L);_g = 100/0.5 and Jgs = 1 mA,

(a) What CM level must be established at the drains of M3 and M4 sothat Ips = Ipg = 1 mA?
How does this constrain the maximum input CM level?

(b) With the choice made in part (2), calculate the overall voltage gain and the maximum output
swing.

Design the op amp of Fig. 9.21 for the following requirements: maximum differential swing

=4 V, total power dissipation = 6 mW, Igg = 0.5 mA.

Suppose the circuit of Fig. 9.22 is designed with /5 equal to 1 mA, Ipg-Ip12 equal to 0.5 mA,

and (W /L)9_j2 = 100/0.5.

(a) What CM level is required at X and ¥'?

{(b) If I5s requires a minimum voltage of 400 mV, choose the minimum dimensions of M-Mg
to allow a peak-to-peak swing of 200 mV at X and at Y.

(¢) Calculate the overall voltage gain.

In Fig. 9.25(c), calculate the input-referred thermal noise if 1) and I are implemented by
PMOS devices.

Suppose in Fig. 9.25(c), I = 100 A, [, = 0.5mA, and (W/L)3 = 100/0.5. Assuming [}
and I, are implemented with PMOS devices having (W/L)p = 50/0.5,

(a) Calculate the gate bias voltages of M7 and M3.

(b) Determine the maximum allowable output voltage swing.

(¢} Calculate the overall voltage gain and the input-referred thermal noise voltage.

In the circuit of Fig. 9.41, each branch is biased at a current of 0.5 mA. Choose the dimensions
of M7 and Mg such that the output CM level is equal to 1.5V and Vp = 100 mV.

Consider the CMFB network in Fig. 9.39. The amplifier sensing Vour car 1510 be implemented
as a different pair with active current mirror load.

(a) Should the input pair of the amplifier use PMOS devices or NMOS devices?

(b) Calculate the loop gain for the CMFB network.

Repeat Problem 9.12(b) for the circuit of Fig. 9.40.

In the circuit of Fig. 9.56(a), assume (W/L)i_s = 100/0.5,C, = C2 = 0.5 pE and Iss =
1 mA.

(a) Calculate the small-signal time constant of the circuit.

(b) With a 1-V step at the input [Fig. 9.56(c)], how long does it take for Ip; toreach 0.1/55?
It is possible to argue that the auxiliary amplifier in the circuit of Fig. 9.24(c) reduces the
output impedance. Consider the circuit as drawn in Fig. 9.67, where the drain voltage of M is
changed by AV to measure the output impedance. It seems that, since the feedback provided
by A atternpts to hold Vx constant, the change in the current through r o2 is much greater than
in the circuit of Fig. 9.24(b), suggesting that Ro,y = ro2. Explain the flaw in this argument.
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Figure 9.67

Calculate the CMRR of the circuit shown in Fig. 9.56(a).
Calculate the input-referred flicker noise of the op amp shown in Fig. 9.64(a).

In this problem, we design a two-stage op amp based on the topology shown in Fig. 9.68.
Assume a power budget of 6 mW, a required output swing of 2.5 V, and Lesr = 0.5 um for
all devices.

Voo
M,
Yo My
v,
Vin:—l M, M, l"l out
X 4
4 n_*l M5
aplt i,
5 T Figure 9.68

(a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to
Ms and Mg, determine (W/L)s and (W/L)s. Note that the gate-source capacitance of Ms
is in the signal path whereas that of Mg is not. Thus, Mé can be quite larger than Ms,

(b) Calculate the small-signal gain of the output stage.

{¢) With the remaining 1 mA flowing through M7, determine the aspect ratio of M3 (and My)
such that Vgs3 = Vgss. This is to guarantee that if Vin = 0 and hence Vy == Vy, then M5
carries the expected current. :

(d} Calculate the aspect ratios of M| and M5 such that the overall voltage gain of the op amp
is equal to 500.

Consider the op amp of Fig. 9.68, assuming that the second stage is to provide a voltage gain
of 20 with a bias current of 1 mA.

(a) Determine (W/L)s and {(W/L)g such that Ms and Mg have equal overdrive voltages.

(b) What is the small-signal gain of this stage if M¢ is driven into the triode region by 50 mVv?

The op amp designed in Problem 9.18(d) is placed in unity-gain feedback. Assume |Vgs7 —
Vrnil =04 V.

(a) What is the allowable input voltage range?

(b) At what input voltage are the input and output voltages exactly equal?
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9.21. Calculate the input-referred noise of the op amp designed in Problem 9.18(d).

9.22. Itis possible to use the bulk terminal of PMOS devices as an input [9]. Consider the' amplifier
shown in Fig. 9.69 as an example.

Figure 9.69

(a) Calculate the voltage gain.
. {b) What is the acceptable input common-mode range?
' (¢) How does the small-signal gain vary with the input common-mode level?
(d) Calculate the input-referred thermal noise voltage and compare the result with that of a
regular PMOS differential pair having NMOS current-source loads.

9.23. The idea of the active current mirror can be applied to the output stage of a two-stage op amp
as well. That is, the load current source can become a function of the signal. Figure 9.70 shows
an examplé [10]. Here, the first stage consists of Mj-Mj and the output is produced by Ms-Mg.
Transistors M7 and Mg operate as active current sources because their current varies with the
'signal voltage at nodes Y and X, respectively.

(a) Calculate the differential voltage gain of the op amp.
(b) Estimate the magnitude of the three major poles of the circuit.

Voo
\J
M-’ M'” M1 M2 M12 H MB
Vourt Vm:_l |_| +— Vourz
My ><’—I Mo
[ X y -

Figure 9.70
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9.24. Thecircuitof Fig. 9.71 employs a fast path (M and M}) in parallel with the slow path. Calculate
the differential voltage gain of the circuit. Which transistors typically limit the output swing?

Voo
\J
[7 | SRR , Vb°_"JM5
!Mz
Yout1 >—* Vin M, M:L’:I 7 +— Yourz
' ‘ ' < : )
Ms <l !I.‘:LM,5
L Vo =
B Myl M, L "
Figure 9.71

9.25. Calculate the input-referred thermal noise of the op amp in Fig. 9.71.
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Chapter 10

Stability and Frequency
Compensation

Negative feedback finds wide application in the processing of analog signals. The properties
of feedback described in Chapter 8 allow precise operations by suppressing variations of
the open-loop characteristics. Feedback systems, however, sufter from potential instability,
that is, they may oscillate. '

In this chapter, we deal with the stability and frequency compensation of linear feedback
systems to the extent necessary to understand design issues of analog feedback circuits.
Beginning with a review of stability criteria and the concept of phase margin, we study
frequency compensation, introducing various techniques suited to different op amp topolo-
gies. We also analyze the impact of frequency compensation on the slew rate of two-stage
op amps.

10.1 General Considerations

Let us consider the negative feedback system shown in Fig. 10.1, where £ is assumed
constant. Writing the closed-loop transfer function as

Y H
—{5) = _AS) , (10.1)
X 1+ BH(s)
we note that if BH(s = jw,) = —1, the “gain” goes to infinity, and the circuit can amplify
its own noise until it eventually begins to oscillate. In other words, if 8 H( jwy) = —1, then
+
X(s) H(s) > Y(s)
<I] , Figure 10.1 Basic negative-feedback
system.
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the circuit may oscillate at frequency ;. This condition can be expressed as

IBH(jon)l = 1 (10.2)
LBH(jon) = —180°, - (103)

which are called “Barkhausen’s Criteria.” Note that the total phase shift around the loop at
@y 18 360° because negative feedback itself introduces 180° of phase shift. The 360° phase
shift is necessary for oscillation since the feedback signal must add in phase to the original
noise to allow oscillation buildup. By the same token, a loop gain of unity (or greater) is
also required to enable growth of the oscillation amplitude.

In summary, a negative feedback system may oscillate at @, if (1) the phase shift around
the loop at this frequency is so much that the feedback becomes positive and (2) the loop
gain is still enough to allow signal buildup. Hlustrated in Fig. 10.2, the situation can be
viewed as excessive loop gain at the frequency for which the phase shift reaches —180° or,
equivalently, excessive phase at the frequency for which the loop gain drops to unity. Thus,
to avoid instability, we must minimize the total phase shift so that for |BH| = 1, /8H is
still more positive than —180°. In this chapter, we assume § is less than or equal to unity
and does not depend on the frequency.

Unstable Stable

20log|p H ()| : Excessive 20log|p H ()]

} Gain

- 0 >
Y (log scale) froerrereeenenees N o (log scale)
- 0 ! : -
o {log scale) w (log scale)
UL T T) LA

‘Excessive
Phase

(a) (b)

Figure 10.2 Bode plots of loop gain for unstable and stable systems.

The frequencies at which the magnitude and phase of the loop gain are equal to unity and
—180°, respectively, play a critical role in the stability and are called the “gain crossover
point” and the “phase crossover point,” respectively. In a stable system, the gain crossover
must occur well before the phase crossover. For the sake of brevity, we denote the gain
crossover by GX and the phase crossover by PX. Note that if 8 is reduced (i.c., less feedback
is applied), then the magnitude plots of Fig. 10.2 are shifted down, thereby moving the gain
crossover closer to the origin and making the feedback system more stable. Thus, the
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jol
+po

worst-case stability corresponds to 8 = 1, i.e, unity-gain feedback. For this reason, we
often analyze the magnitude and phase plots for BH = H. :

Before studying more specific cases, let us review a few basic rules of constructing Bode
plots. A Bode plot illustrates the asymptotic behavior of the magnitude and phase of a
complex function according to the magnitude of the poles and zeros. The following two
rules are used. (1) The slope of the magnitude plot changes by +20 dB/dec at every zero
frequency and by —20 dB/dec at every pole frequency. (2) For a pole (zero) frequency of
wn, the phase begins to fall (rise) at approximately 0.1w,,, experiences a change of —45°
(+45°) at wy,, and approaches a change of —90° (4-90°) at approximately 10w,. The key
point here is that the phase may be much more significantly affected by high-frequency
poles and zeros than the magnitude is.

It is also instructive to plot the location of the poles of a closed-loop system on a
complex plane. Expressing each pole frequency as s, = jw, + ¢, and noting that the
impulse response of the system includes a term exp(jw, + o,)t, we observe that if s, falls
in the right half plane, i.e., if o, > 0, then the system is likely to oscillate because its
time-domain response exhibits a growing exponential [Fig. 10.3(a)]. Even if 0, = 0, the
systern may sustain oscillations [Fig. 10.3(b)]. Conversely, if the poles lie in the left half
plane, all time-domain exponential terms decay to zero [Fig. 10.3(c)].! In practice, we plot

Figure 10.3 Time-domain response of a system versus the position of poles, (a) unstable with growing amplitude,
(b) unstable with constant-amplitude oscillation, (¢) stable.

IWe ignore the effect of zeros for now.
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the location of the poles as the loop gain varies, thereby revealing how close to oscillation
the system may come. Such a plot is called a “root locus.”

We now study a feedback system incorporating a one-pole feedforward amplifier. As-
suming H{s) = Ag/(1 + s/wy), we have from (10.1),

Ag

Y 1+ BA
)= ﬁs 0 (10.4)

, wo(l + BAg)
In order to analyze the stability behavior, we plot [BH(s = jo)| and {BH(s = jw)
(Fig. 10.4), observing that a single pole cannot contribute a phase shift greater than 90°

and the system is unconditionally stable for all non-negative values of 8. Note that /8 H is
independent of B.

20ilog|p H ()] 4
20logBA,

0 -
®(log scale)
0 Wo -~
=' I I
T © (log scale)
O
Ty R OO

[BH(@) Y

Figure 10.4 Bode piots of loop gain for a one-pole
system.

Exampie 10.1

Construct the root locus for a one-pole system.

Solution .
Equation (10.4) implies that the closed-loop system has a pole s, = —wq(1 + 8Ap), i.e., areal-valued
pole in the left half plane that moves away from the origin as the loop gain increases (Fig. 10.5).

jo 4

L S P

A

—(00

ay

Figure 10.5
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10.2 Multipole Systems

Our study of op amps in Chapter 9 indicates that such circuits generally contain multiple
poles. In two-stage op amps, for example, each gain stage introduces a “dominant” pole. It
is therefore important to study a feedback system whose core amplifier exhibits more than
one pole.

Let us consider a two-pole system first. For stability considerations, we plot |§H| and
/BH as a function of the frequency. Shown in Fig. 10.6, the magnitude begins to drop at
20 dB/dec at @ = w, and at 40 dB/dec at w = wp2. Also, the phase begins to change
at o = 0.lwp, reaches —45° at w = wp and —90° at @ = 10wy, begins to change
again at @ = 0.lw,; (if 0.1w,; > 10w, ), reaches —135° at w = wp2, and asymptotically
approaches —180°. The system is therefore stable because |8 H| drops to below unity at a
frequency for which Z/8H < —180°,

20log | H{w)| ‘

0—— Ly
Wpr  Wp2 \ © (log scale)
0 P
° (log scale)
Y, ) OO,
_1 800 ..........................

[BH(®) Y

Figure 10.6 Bode plots of loop gain for a two-pole system.

What happens if the feedback is made “weaker?” To reduce the amount of feedback,
we decrease f, obtaining the gray magnitude plot in Fig. 10.6. For a logarithmic vertical
axis, a change in g translates the magnitude plot vertically. Note that the phase plot does
not change. The key point is that as the feedback becomes weaker, the gain crossover point
moves toward the origin while the phase crossover point remains constant, resulting in a
more stable system. The stability is obtained at the cost of weaker feedback.

Example 10.2

Construct the root locus for a two-pole system.

Solution

Writing the open-loop transfer function as:

Ay

(1 4 L) (1 . L)
Wp1 Wp2

H(s) = (10.5)
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we have
Y A .
£ = - ¢ (10.6)
(1+_) (1+2) a0
@pl @p2
Ajw
. 0%p1%p2 (10.7)
T2+ (wp1 + wp2)s + (1 + ﬁAo)wplwpz
Thus, the closed-loop poles are given by
—(@p1 +wp2) & fwp1 + wp2)? — 41 + BAOwp10p2
51,2 = . (10.8)
2
As expected, for 8 =0, 512 = —wp1, —wp2. As ,8 increases, the term under the square root drops,
taking on a value of zero for
1 (wp1 — @p2)?
Bl=——B P (10.9)

Ao dwpop

. ‘As shown in Fig. 10.7, the poles begin at —wp] and —wp2, move toward each other, coincide for
/4% B = Bi, and become complex for 8 > f.

jo s

Figure 10.7

The foregoing calculations point to the complexity of the algebra required to construct a
root locus for higher-order systems. For this reason, many root locus techniques have been
devised so as to minimize such computations [1).

We now study a three-pole system. Shown in Fig. 10.8 are the Bode plots of the magnitude
and phase of the loop gain. The third pole gives rise to additional phase shift, possibly moving
the phase crossover to frequencies lower than the gain crossover and leading to oscillation.

Since the third pole also decreases the magnitude of the loop gain at a greater rate, the
reader may wonder why the gain crossover does not move as much as the phase crossover
does. As mentioned before, the phase begins to change at approximately one-tenth of the
pole frequency whereas the magnitude begins to drop only near the pole frequency. For this
reason, additional poles (and zeros) 1mpact the phase to a much greater extent than they do
the magnitude.
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Figure 10.8 Bode plots of loop gain for a three-pole
system.

As with a two-pole system, if the feedback factor in Fig. 10.8 decreases, the circuit
becomes more stable because the gain crossover moves toward the origin while the phase
Crossover remains constant.

10.3 Phase Margin

Our foregoing study indicates that to ensure stability, |8 H | must drop to unity before .8 H
crosses —180°. We may naturally ask: how far should PX be from GX? Let us first consider
a “marginal” case where, as depicted in Fig. 10.9(a), GX is only slightly below PX; sharp
peak for example, at GX the phase equals —175°. How does the closed-loop system respond
in this case? Noting that at GX, BH(jw,) = 1 x exp(—j175°), we have

Y H(jwn)
— = — 10.10
X(le) T3 BH o) ( )
1
—exp(—j175°%)
= —é——— (10.11)
1 +exp(—j175°)
1 —0.9962 — j0.0872
- . , 10.12
B 0.0038 — j0.0872 ( )
and hence
Y 1 1
—( = ——— 10.13
‘X(J ©0| = g 50872 (10.13)
~ M3 (10.14)

5
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Figure 10.9 ' Closed-loop frequency and time response for (a) small and (b) large margin
between gain and phase crossover points.

~y

t

Since at low frequencies, |Y/ X | 2 1/, the closed-loop frequency response exhibits a sharp
peak in the vicinity of w = ;. In other words, the closed-loop system is near oscillation
and its step response exhibits a very underdamped behavior. This point also reveals that a
second-order system may suffer from ringing although it is stable.

Now suppose, as shown in Fig. 10.9(b), GX precedes PX by a greater margin. Then, we
expect a relatively “well-behaved” closed-loop response in both the frequency domain and
the time domain. It is therefore plau51b1e to conclude that the greater the spacing between GX
and PX (while GX remains below PX), the more stable the feedback system. Alternatively,
the phase of BH at the gain crossover frequency can serve as a measure of stability: the
smaller {8 H| at this point, the more stable the system.

This observation leads us to the concept of “phase margin” (PM), defined as PM =
180° + /B H(w = @), where w is the gain crossover frequency.

Example 10.3

A two-pole feedback system is designed such that |BH{wp2)l = 1 and |w,| € przl (Fig. 10.10).
What is the phase margin?
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20l0g |3 H{(w))| 4
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"Figure 10.10

Solution

Since /B H reaches —135° at @ = wpy, the phase margin is equal to 45°,

How much phase margin is adequate? It is instructive to examine the closed-loop fre-
quency response for different phase margins [1]. For PM = 45°, at the gain crossover
frequency /8 H(w,) = —135° and |8 H(w;)| = 1 (Fig. 10.11), yielding

Y _ H{jw)
X 141 xexp(—j135°)

(10.15)

IpH (w)

ey

ey

Figure 10.11 Closed-loop frequency
response for 45° phase margin.

ey
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- H{jw)
T 0.29-0.715° (10.16)
It follows that
=3 : 10.17
x| B 1029—0.71/] 10.17)
~ 2 (10.18)
B’ .

Consequently, the frequency response of the feedback system suffers from a 30% peak at
w = wi.

It can be shown that for PM = 60°, Y(jw:)/ X(jw;) = 1/B, suggesting a negligible
frequency peaking. This typically means that the step response of the feedback system
exhibits little ringing, providing a fast settling. For greater phase margins, the system is
more stable but the time response slows down (Fig. 10.12). Thus, PM = 60° is typically
considered the optimum value..

The concept of phase margin is well-suited to the design of circuits that process small
signals. In practice, the large-signal step response of feedback amplifiers does not follow the
illustration of Fig. 10.12. This is not only due to slewing but also because of the nonlinear
behavior resulting from large excursions in the bias voltages and currents of the amplifier.
Such excursions in fact cause the pole and zero frequencies to vary during the transient,
leading to a complicated time response. Thus, for large-signal applications, time-domain
simulations of the closed-loop system prove more relevant and useful than small-signal ac
computations of the open-loop amplifier.

PM = 45° PM = 60° y (1) PM =90°

y(t) y(t)

(@) (b) ©

Figure 10.12 Closed-loop time response for 45°, 60°, and 90° phase margins.

As an example of a feedback circuit exhibiting a reasonable phase margin but poor
settling behavior, consider the unity-gain amplifier of Fig. 10.13, where the aspect ratio of
all transistors is equal to S0 pwm / 0.6 um. With the choice of the device dimensions, bias
currents, and capacitor values shown here, SPICE yields a phase margin of approximately
65° and a unity-gain frequency of 150 MHz. The large-signal step response, however, suffers
from significant ringing.
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Figure 10.13 Unity-gain buffer.

10.4 Frequency Compensation

Typical op amp circuits contain many poles. In a folded-cascode topology, for example,

both the folding node and the output node contribute poles. For this reason, op amps must

usually be “compensated,” that is, their open-loop transfer function must be modified such

5 that the closed-loop circuit is stable and the time response is well-behaved.

. The need for compensation arises because |8 H | does not drop to unity well before /8 H
reaches —180°. We then postulate that stability can be achieved by (1) minimizing the
overall phase shift, thus pushing the phase crossover our [Fig. 10.14(a)]; or (2) dropping
the gain, thereby pushing the gain crossover in [Fig. 10.14(b)]. The first approach requires
that we attempt to minimize the number of poles in the signal path by proper design. Since
each additional stage contributes at least one pole, this means the number of stages must be

PR,

-

1

20l0g|BH (0} ] 20log | H (w)] :

Modified

Design
0 -
N\ log®
0l [o?; 0

Y7 D,
A}
/BH(®) Modified
Design

@ (b)

Figure 10.14 Frequency compensation by (a) moving PX out,':(‘b) pushing GX in.
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minimized, a remedy that yields low voltage gain and/or limited output swings (Chapter 9).
The second approach, on the other hand, retains the low-frequency gain and the output
swings but it reduces the bandwidth by forcing the gain to fall at lower frequencies.

In practice, we first try to design an op amp so as to minimize the number of poles while
meeting other requirements. Since the resulting circuit may still suffer from insufficient
phase margin, we then compensate the op amp, i.e., modify the design so as to move the
gain crossover toward the origin.

Let us apply the above procedures to various op amp topologies. We begin with the
telescopic cascode op amp shown in Fig. 10.15, where a PMOS current mirror performs
differential to single-ended conversion. We identify a number of poles in the signal paths:
path 1 contains a high-frequency pole at the source of M3, a mirror pole at node A4, and
another high-frequency pole at the source of M;, whereas path 2 contains a high-frequency
pole at the source of My. The two paths share a pole at the output.

Figure 10.15 Telescopic op amp with
- single-ended cutput.

It is instructive to estimate the relative position of these poles. Since the output resistance
of the op amp is much higher than the small-signal resistances seen at the other nodes in
the circuit, we expect that, even with a moderate load capacitance, the output pole, @p our,
is the closest to the origin. Called the “dominant pole,” wp .., usually sets the open-loop
3-dB bandwidth.

We also surmise that the first “nondominant pole,” i.e., the closest pole to the origin
after the dominant pole, arises at node A. This is because the total capacitance at this node,
roughly equal to Cgss + Cgse + Cpas + 2C6pe + Cprs + Cops, is typically quite larger
than that at nodes X, ¥, and N and the small-signal resistance of Ms, approximately 1/gns.
is relatively large. -

Which node yields the next nondominant pole: N or X (and ¥)? Recall from Chapter 9
that, to obtain a low overdrive and consume a reasonable voltage headroom, the PMOS
devices in the op amp are typically quite wider than the NMOS transistors. Comparing
M, and M, and neglecting body effect, we note that since g = 2Ip/1Vgs — Vral, if
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the two transistors are designed to have the same overdrive, they also exhibit the same
transconductance. However, from square-law characteristics, we have Wa/ W7 = 1,/ pn,
which is about 1/3 in today’s technologies. Thus, nodes N and X (or Y) see roughly
equal small-signal resistances to ground but node N suffers from much more capacitance.
It is therefore plausible to assume that node N contributes the next nondominant pole.
Figure 10.16 illustrates the results, denoting the capacitance at nodes A, N, and X by
Cy4, Cn, and Cy, respectively. The poles at nodes X and Y are nearly equal and their

jod
—%—¥ 3 43 -
_ gm3 _ ng - gm5 - 1 o
Cx cN CA RoutcL

Figure 10.16 Polelocations for the opamp of Fig. 10.15.

corresponding terms in the transfer functions of path 1 and path 2 can be factored out. Thus,
they count as one pole rather than two.

With the position of the poles roughly determined, we can construct the magnitude and
phase plots for 8 H, using 8 = 1 for the worst case. Shown in Fig. 10.17, such characteristics
indicate that the mirror pole typically limits the phase margin because its phase contribution
occurs at lower frequencies than that of other nondominant poles.

Recall from Chapter 6 that differential pairs using active current mirrors exhibit a zero
located at twice the mirror pole frequency. The circuit of Fig. 10.15 contains such a zero as
well. Located at 2w, 4, the zero has some effect on the magnitude and phase characteristics.
The analysis is left to the reader.

20log|p H (m)| #

x
Q.
0- 8 -
\  (log scale)
0 -
O (log scale)
JCT:V1 3 O
=360 Fooceneemneeeas .

/BH (@) y

Figure 10.17 Bode plots of loop gain for opamp of Fig. 10.15.

il



358

Chap. 10 Stability and Frequency Compensation

How should we compensate the op amp? Let us assume that the number and location of
the nondominant poles and hence the phase plot at frequencies higher than roughly 10w, 4.,
remain constant. Thus, we must force the loop gain to drop such that the gain crossover
point moves toward the origin. To accomplish this, we simply lower the frequency of the
dominant pole by increasing the load capacitance. The key pointis that the phase contribution
of the dominant pole in the vicinity of the gain or phase crossover points is close to 90°
and relatively independent of the location of the pole. That is, as illustrated in Fig. 10.18,
translating the dominant pole toward the origin affects the magnitude plot but not the critical
part of the phase plot.

20l0gB H ()] 4

Io;u)
_1ao°

Figure 10.18 Translating the domi-
M (@) * : nant pole toward origin.

In order to understand how much the dominant pole must be shifted down as well as
arrive at an important conclusion, let us assume (1) the second nondominant pole {w, )
in Fig. 10.15 is quite higher than the mirror pole so that the phase shift at w = w, 4 is
equal to —135° and (2) a phase margin of 45° (which is usually inadequate) is necessary.
To compensate the circuit, we first identify the frequency at which the phase plot yields
the required phase margin, in this case, @p, 4. Since the dominant pole must drop the gain
to unity at w, 4 with a slope of 20 dB/dec, we draw a straight line from w, 4 toward the
origin with such a slope (Fig. 10.19), thus obtaining the new magnitude of the dominant
pole, ), ,,,. Therefore, the load capacitance must be increased by a factor of w poout [ D pur-

From the new magnitude plot, we note that the unity-gain bandwidth of the compensated
op amp is equal to the frequency of the first nondominant pole (of course with a phase margin
of 45°). This is a fundamental result, indicating that to achieve a wideband in a feedback
system employing an op amp, the first nondominant pole must be as far as possible. For
this reason, the mirror pole proves undesirable.

We should also mention that although w, o = (R Cr) ™", increasing R,,; does not
compensate the op amp. As shown in Fig. 10.20, a higher R,,, results in a greater gain,
only affecting the low-frequency portion of the characteristics. Also, moving one of the
nondominant poles toward the origin does not improve the phase margin, (Why?)

Now consider the fully differential telescopic cascode depicted in Fig. 10.21. In addition
to achieving various useful properties of differential operation, this topology avoids the mir-
ror pole, thereby exhibiting stable behavior for a greater bandwidth. In fact, we can identify
one dominant pole at each output node and only one nondominant pole arising from node
X (or Y). This suggests that fully differential telescopic cascode circuits are quite stable.
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Figure 10.19 Translating the dominant pole toward the origin
for 45° phase margin.

20iog|p H ()] &

‘ nout*

®p,0ut \ w (log scale)

w(log scalé)

/BH(w)

Figure 10.20 Bode plots of loop gain for higher output re-
sistance.

But how about the pole at node N (or K) in Fig. 10.21? Considering one of the PMOS
cascodes as shown in Fig. 10.22(a), we may think that the capacitance at node N, Cy =
Cgss + Csas + Cgpr + Cpar, shunts the output resistance of M~ at high frequencies,
thereby dropping the output impedance of the cascode. To quantify this effect, we first
determine Z,,, in Fig. 10.22(a):

Zow = (1 + ngrOS)ZN +ros, (1019)

where body effect is neglected and Zy = ro7|l(Cys)™'. Assuming the first term is much
greater than the second, we have

ro7

—_— 10.20
ro7Cns + 1 ( )

Zow = (1 + gmsros)
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Voo

Figure 10.21 Fully differential tele-
scopic op amp.
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Figure 10.22 Effect of device capacitance at internal node of a
cascode current source.

Now, as illustrated in Fig. 10.22(b), we take the output load capacitance into account:

ro7 1
1 - o 7
7z ” 1 _ ( + gmerS)r(nCNS +r CLS (10 21)
out c - r 1 :
LS 07

14 grsros)——2 4
I+g SrOS)rmCNs—{—I + Cos

1+ gnm
(1 + gmsros)ro7 . (1022)
[(1 + gmsros)rorCL +ro7;Cnls + 1

Thus, the parallel combination of Z,,, and the load capacitance still contains a single pole
corresponding toatime constant (1+ gmstosrorCy, _-i-ro';CN . Note that (14 gmsrosro1Cy,
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is simply due to the low-frequency output resistance of the cascode. In other words, the
overall time constant equals the “output” time constant plus rp7Cy. The key point in this
calculation is that the pole in the PMOS cascode is merged with the output pole, thus creating
no additional pole. It merely lowers the dominant pole by a slight amount. For this reason,
we loosely say that the signal does not “see” the pole in the cascode current sources.?

Comparison of the circuits shown in Figs. 10.15 and 10.21 now reveals that the fully
differential configuration avoids both the mirror pole and the pole at node N. With the
approximation made in (10.22), the circuit of Fig. 10.21 contains only one nondominant
pole located at relatively high frequencies owing to the high transconductance of the NMOS
transistors. This is a remarkable advantage of fully differential cascode op amps.

We have thus far observed that nondominant poles give rise to instability, requiring
frequency compensation. It is possible to cancel one or more of these poles by introducing
zeros in the transfer function? For example, following the analysis of Fig. 6.31, we surmise
that if a low-gain but fast path is placed in parallel with the maih amplifier, a zero is created
that can be positioned atop the first nondominant pole. However, cancellation of a pole by
a zero in the presence of mismatches leads to long settling components in the step response
of the closed-loop circuit. This effect is studied in Problem 10.19.

10.5 Compensation of Two-Stage Op Amps

Our study of op amps in Chapter 9 indicates that two-stage topologies may prove inevitable
if the output voltage swing must be maximized. Thus, the stability and compensation of
such op amps is of interest.

Consider the circuit shown in Fig. 10.23. We identify three poles: a pole at X (or ¥),
another at E (or F), and a third at A (or B). From our foregoing discussions, we know that
the pole at X lies at relatively high frequencies. But how about the other two? Since the
small-signal resistance seen at E is quite high, even the capacitances of M3, Ms, and My
can create a pole relatively close to the origin. At node A, the small-signal resistance is
lower but the value of C; may be quite high. Consequently, we say the circuit exhibits two
dominant poles.

From these observations, we can construct the magnitude and phase -plots shown in
Fig. 10.24. Here, w, ¢ is assumed more dominant but the relative position of w, g and , 4
depends on the design and the load capacitance. Note that, since the poles at E and A are
relatively close to the origin, the phase approaches —180° well below the third pole. In other
words, the phase margin may be quite close to zero even before the third pole contributes
significant phase shift.

Let us now investigate the frequency compensation of two-stage op amps. In Fig. 10.24,
one of the dominant poles must be moved toward the origin so as to place the gain crossover
well below the phase crossover. However, recall from Section 10.4 that the unity-gain
bandwidth after compensation cannot exceed the frequency of the second pole of the open-
loop system. Thus, if in Fig. 10.24 the magnitude of w,, £ is to be reduced, the available

21f the second term in Eq. (10.19) is included in subsequent derivations, a pole and a zero that are nearly equal
appear in the overali output impedance. Nonetheless, for gnro 3> 1 and Cr > Cy, their effect is negligible.
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Figure 10.23 Two-stage op amp.
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Figure 10.24 Bode plots of loop gain of two-stage op amp.

bandwidth is limited to approximately w, 4, a low value. Furthermore, the very small
magnitude of the required dominant pole translates to a very large compensation capacitor.

Fortunately, a more efficient method of compensation can be applied to the circuit of
Fig. 10.23. To arrive at this method, we note that, as illustrated in Fig. 10.25(a), the first
stage exhibits a high output impedance and the second stage provides a moderate gain,
thereby providing a suitable environment for Miller multiplication of capacitors. Shown in
Fig. 10.25(b), the idea is to create a large capacitance at node £, equalto (1+A4,,)Cc, moving
the cortesponding pole to RD_L"”[CE + (1 + Ap)Ce]™!, where Cr denotes the capacitance
at node E before Cc is added. As a result, a low-frequency pole can be established with a
moderate capacitor value, saving considerable chip area. This technique is called “Miller
compensation.”
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(a) (b

Figure 10.25 Miller compensation of a two-stage op amp.

In addition to lowering the required capacitor value, Miller compensation entails a very
important property: it moves the output pole away from the origin. Illustrated in Fig. 10.26,
this effect is called “pole splitting.” To understand the underlying principle, we simplify
the output stage of Fig. 10.23 as in Fig. 10.27, where Rs denotes the output resistance of
the first stage and Ry = rogl{ro11. From our analysis in Chapter 6, we note that this circuit
contains two poles:

Wp R : ! (10.23)
P17 Rsl(1 + gmoRLXCc + Capo) + Cel + R(Ce + Cops + C1)
. Rsl(1 + 8m9RLXCc + Cgpe) + Cel+ RL(Cc + Cgps + Cp)
Wpy (10.24)

RsR;[(Cc + Copo)CE + (Cc + Cgpo)Cr + CeCr)]

These expressions are based on the assumption |wp1| < |wpz2|. Before compensation,
however, w,| and w; are of the same order of magnitude. For C¢ = 0 and relatively large
Cr, we may approximate the magnitude of the output pole as w,» ~ 1/(R,CL).

jo jo

Before f
Compensation After
Compensation
—H—% % —- E" > —¥-
! a (¢}

Figure 10.26 Pole splitting as a result of Miller compensation.

Figure 10.27 Simplified circuit of a
- two-stage op amp.
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To compare the magnitudes of w,, before and after compensation, we consider a typical
case: Cc + Cgpy » C, reducing (10.24) to wpy & gmo/(Cg + Cp). Noting that typically
Cg < (i, we conclude that Miller compensation increases the magnitude of the output
pole by roughly a factor of g.oR,, a relatively large value. Intuitively, this is because at
high frequencies, C¢ provides a low impedance between the gate and drain of My, reducing
the resistance seen by C;, from Ry to roughly Rs|lg,sl|RL & grq.

In summary, Miller compensation moves the interstage pole toward the origin and
the output pole away from the origin, allowing a much greater bandwidth than that ob-
tained by merely connecting the compensation capacitor from one node to ground. In
practice, the choice of the compensation capacitor for proper phase margin requires some
iteration.

Our study of stability and compensation has thus far neglected the effect of zeros of the
transfer function. While in cascode topologies, the zeros are quite far from the origin, in
two-stage op amps incorporating Miller compensation, a nearby zero appears in the circuit.
Recall from Chapter 6 that the circuit of Fig. 10.27 contains a right-half-plane zero at
®; = gm9/(Cc + Cqpo)- This is because C¢ + Cgpo forms a “parasitic” signal path from
the input to the output. What is the effect of such a zero? The numerator of the transfer
function reads (1 — s/w,), yielding a phase of —tan~!(w/w;), a negative value because
w, is positive. In other words, as with poles in the left half plane, a zero in the right half
plane contributes more phase shift, thus moving the phase crossover toward the origin.
Furthermore, from Bode approximations, the zero slows down the drop of the magnitude,
thereby pushing the gain crossover away from the origin. As a result, the stability degrades
considerably.

To better understand the foregoing discussion, let us construct the Bode plots for a third-
order system containing a dominant pole w1, two nondominant poles wp; and p3, and a
zero in the right half plane w,. For two-stage op amps, typically |wpi| < |w,] < |wp|. As
shown in Fig. 10.28, the zero introduces significant phase shift while preventing the gain
from falling sufficiently.
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Figure 10.28 Effect of right half plane zero.
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The right half plane zero in two-stage CMOS op amps, given by g,/(Cc + Cep), is.a
serious issue because g, is relatively small and C¢ is chosen large enough to position the
dominant pole properly. Various techniques of eliminating or moving the zero have been
invented. Hlustrated in Fig. 10.29, one approach places a resistor in series with the com-

Figure 10.29 Addition of R; to move
the right half plane zero.

pensation capacitor, thereby modifying the zero frequency. The output stage now exhibits
three poles, but for moderate values of R, the third pole is located at high frequencies and
the first two poles are close to the values calculated with R, = 0. Moreover, it can be shown
(Problem 10.8) that the zero frequency is given by

1
o (10.25)
T Celgns — R :

Thus, if R, > g;;, then w; < 0. While R, = g,;gl seems a natural choice, in practice we
may even move the zero well into the left half plane so as to cancel the first nondominant
pole. This occurs if

1 ~8&m9
= , (10.26
Cclgm—R) CotCe )

that is,
R, = EQ.M (10.27)
gm9CC
C
~ Gt le (10.28)
ngCC

because Cg is typically much les< than Cp + Cc.

The possibility of canceling the nondominant pole makes this technique quite attractive,
but in reality two important drawbacks must be considered. First, it is difficult to guarantee
the relationship given by (10.28), especially if C; is unknown or variable. For example, as
explained in Chapter 12, the load capacitance seen by an op amp may vary from one part of
the period to another in switched-capacitor circuits, necessitating a corresponding change in
R, and complicating the design. The second drawback relates to the actual implementation
of R,. Typically realized by a MOS transistor in the triode region (Fig. 10.30), R, changes



366

Chap. 10 Stability and Frequency Compensation

_:_Z)I(bcc [\]

v Figure 10.30 Effect of large output
b

swings on R;.

substantially as output voltage excursions are coupled through Cc to node X, thereby
degrading the large-signal settling response.

Generatmg V, in Fig. 10.30 is not straightforward because Rz must remain equal to (1 +
Cr/ Cc)gm9 despite process and temperature variations. A common approach is iltustrated
in Fig. 10.31 [2], where diode-connected devices M;; and M4 are placed in series. If
I, is chosen with respect to Ipg such that Vos1z = Veso, then Vesis = Vosia. Since

8mia = HUp ox(W/L)14(VGS14 — Vruis) and Ronys = [ Cox(W/L)i5(Vgs1s — Vrais)] ™,
we have R,,15 = g, 14(W/ L)1a/(W/L)5. For pole-zero cancellation to occur,

-1 (W/L)y, ( CL)
= 8o

gml4(W/L) I+ =

10.29
Co (10.29)

and hence

I C
(W/L)is = /(W/L)s(W/L)g | 22 ——C (10.30)

IpisCc+CL

If C¢ is constant, (10.30) can be established with reasonable accuracy because it contains
only the ratio of quantities.

Another method of guaranteeing Eq. (10.28) is to use a simple resistor for Rz and de-
fine gno with respect to a resistor that closely matches Rz [3]. Depicted in Fig. 10.32,
this technique incorporates Mpy;-Mp, along with Ry to generate [, R 2 . (This circuit
is studied in detail in Chapter 11.) Thus, g9 o /Tps x /Tp11 R Proper ratio-
ing of Rz and Rj therefore ensures (10.28) is valid even with temperature and process
variations.

Figure 10.31 Generation of V, for
proper temperature and process tracking.
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Figure 10.32 Method of defining gm9 with respect to
Rs.

The principal drawback of the two methods described above is that they assume square-
law characteristics for all of the transistors. As described in Chapter 16, short-channel
MOSFETSs may substantially deviate from the square-law regime, creating errors in the
foregoing calculations. In particular, transistor My is typically a short-channel device be-
cause it appears in the signal path and its raw speed is critical.

An attribute of two-stage op amps that makes them inferior to “one-stage” op amps is the
susceptibility to the load capacitance. Since Miller compensation establishes the dominant
pole at the output of the first stage, a higher load capacitance presented to the second
stage moves the second pole toward the origin, degrading the phase margin. By contrast,
in one-stage op amps, a higher load capacitance brings the dominant pole closer to the
origin, improving the phase margin (albeit making the feedback system more cverdamped).
Tllustrated in Fig. 10.33 is the step response of a unity-gain feedback amplifier employing
a one-stage or a two-stage op amp, suggesting that the response approaches an oscillatory
behavior if the load capacitance seen by the two-stage op amp increases.

Cc
[ |

V . +
in . o Vout in B >——° Vout

Larger C

t

Figure 10.33 Effect of increased load capacitance on step response of one- and
two-stage op amps.
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10.5.1 Slewing in Two-Stage Op Amps

It is instructive to study the slewing characteristics of two-stage op amps. Suppose in
Fig. 10.34(a) V;, experiences a large positive step at r = 0, turning off M», My, and M;.
The circuit can then be simplified to that in Fig. 10.34(b), revealing that C¢ is charged by
a constant current I if parasitic capacitances at node X are negligible. Recognizing that
the gain of the output stage makes node X a virtual ground, we write: V,,, & Isst/Ce.
Thus, the positive slew rate® equals I5s/Cc. Note that during slewing, Ms must provide
two currents: Igg and ;. If Ms is not wide enough to sustain Igg + /; in saturation, then Vy
drops significantly, possibly driving M, into the triode region.

Cc

Voo
X
Ms
Cc
Vout
Iy

(b) : (c)

/
Figure 10.34 (a) Simple two-stage op amp, (b) simplified circuit during positive slewing,
(c) simplified circuit-during negative slewing.

3The term positive refers to the slope of the waveform at the output of the op amp.
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For the negative slew rate, we simplify the circuit as shown in Fig. 10.34(c). Here I
must support both Iss and Ips. For example, if I| = Igg, then Vy rises so as to turn off Ms.
If I < Igs, then M3 enters the triode region and the slew rate is given by Ip3/Ce.

10.6 Other Compensation Techniques

The difficulty in compensating two-stage CMOS op amps arises from the feedforward path
formed by the compensation capacitor [Fig. 10.35(a)]. If C¢ could conduct current from
the output node to node X but not vice versa, then the zero would move to a very high

- (a) ()

Figure 10.35 (a) Two-stage op amp with right half plane zero due to Cc,
{b) addition of a source follower to remove the zero.

frequency. As shown in Fig. 10.35(b), this can be accomplished by inserting a source fol-
lower in series with the capacitor. Since the gate-source capacitance of M; is typically much
less than Cc, we expect the right half plane zero to occur at high frequencies. Assuming
y = A = 0 for the source follower, neglecting some of the device capacitances, and sim-
plifying the circuit as shown in Fig. 10.36, we can write —g,,1 V1 = 'Vou,(Rzl + C;ps) and
hence

._Vu
v, = ;’ (1 + R.CLs). (10.31)

Emi1 L

+ 1l M,
lin Rg " t‘_l_ . o ,
Figure 10.36 Simplified equivalent

- . = " circuit of Fig. 10.35(b).
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We also have

7 7 7 - V
Vour — Wi + I, = _1 (10.32)
1 + 1 Rs

CC‘S

_ Substituting for V; from (10.31) yields:

_‘éﬂ ' - ' —&m1 Ry Rs(gma + Ccs)
Li  RLCLCc(l+ gmRe)s +[(1 + gm18m2RLRs)Cc + gmaRLCLYS + gma
(10.33)

L Thus, the circuit contains a zero in the left half plane, which can be chosen to cancel one
. of the poles. The zero can also be derived as illustrated in Fig. 6.15.

We can also compute the magnitudes of the two poles assuming that they are widely

‘ ~s‘eparatc'ed. Since typically 14 g2 Rs > 1 and (14 gm1gm2 R Rs)Ce 3> gmaR1CL, we have

Em2

Wy K —m — — 10.34
Pl 8m18maRLRsCc ( )
1
R ———————— 10.35)
gmiRLRsCc ¢
and '
gmi8m R RsCc
Wpy e ————— 10.36
7 R CiCrgmaRs ' ¢ )
8m1
A ——, 10.37
C, ( )

* Thus, the new values of w,; and @ p2 are similar to those obtained by‘simple Miller approx-

imation. For example, the output pole has moved from (R C.)™! to g1/ Cy.

The primary issue in the circuit of Fig. 10.35(b) is that the source follower limits the
lower end of the output voltage to Vgs» + Vi2, where Vi is the voltage required across
I>. For this reason, it is desirable to utilize the compensation capacitor to isolate the dc
levels in the active feedback stage from that at the output. Such a topology is depicted in
Fig. 10.37, where C¢ and the common-gate stage M, convert the output voltage swing
1o a current, returning the result to the gate of M, [4]. If V) changes by AV and V,,, by
A, AV, then the current through the capacitor is nearly equal to A,AV C¢s because 1/g,
can be relatively small. Thus, a change AV at the gate of M creates a current change of
A,AV Ccs, providing a capacitor multiplication factor equal to A,

Assuming A = y = 0 for the common- gate stage, we redraw the circuit of Fig. 10. 37 in
Fig. 10.38, where we have:

Vour + . =~V ' (10.38)



Sec. 10.6

Other Compensation Techniques an

Figure 10.37 Compensation tech-
nique using a common-gate stage.

v,
Hp—
) R .
'"? % s Figure 10.38 Simplified equivalent
T H circuit of Fig. 10.37.
and hence
Ccs
Vo= —Vyy——. 10.39
2 out Ccs T em2 ( )
Also,
1
gmlvl + Vour R_ +Crs | = gm2V2 (1040)
L
and [;, = V\/Rs + gn2 V2. Solving these equations, we obtain
—gmiRsRr(gm2 + C
Vour gm RsRr(gm2 + Ccs) (10.41)

In ~ RLCLCes? + (1 + gmRs)gm2RLCc + Cc + gmaRLCLS + 82

As with the circuit of Fig. 10.35(b), this topology contains a zero in the left half plane.
Using similar approximations, we compute the poles as .

1
Wy N ——————— (10.42)
PL emRLRsCe
miR
wpa A g_z-ﬁ (10.43)
. CL

Interestingly, the second pole has considerably risen in magnitude — by a factor of g2 Rs
with respect to that of the circuit of Fig. 10.35. This is because at very high frequencies,
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the feedback loop consisting of M, and Ry in Fig. 10.37 lowers the output resistance by
the same factor. Of course, if the capacitance at the gate of M; is taken into account, pole
splitting is less pronounced. Nevertheless, this technique can potentially provide a high
bandwidth in two-stage op amps.

The op amp of Fig. 10.37 entails important slewing issues. For positive slewing at the
output, the simplified circuit of Fig. 10.39(a) suggests that M, and hence I; must support

Voo
Iy

out

Figure 10.39 Circuit of Fig. 10.37 during (a) positive and (b) negative slewing.

Iss, requiring that Iy > Igg + Ip;. If 1) is less, then Vp drops, turning M, off, and if
I1 < Iss, My and its tail current source must enter the triode region, yielding a slew rate
equal to I/ C¢.

For negative slewing, [; must support both Igs and Ip; [Fig. 10.39(b)]. As Igs flows
into node P, Vp tends to rise, increasing /p;. Thus, M, absorbs the current produced by /5
through C¢, turning off M, and opposing the increase in Vp. We can therefore consider P
a virtual ground node. This means that, for equal positive and negative slew rates, I3 {and
hence I,) must be as large as I, raising the power dissipation.

Op amps using a cascode topology as their first stage can incorporate a variant of the
technique illustrated in Fig. 10.37. Shown in Fig. 10.40(a), this approach places the com-
pensation capacitor between the source of the cascode devices and the output nodes. Using
the simplified model of Fig. 10.40(b} and the method of Fig. 6.15, the reader can prove that
the zero appears at (gmaReq)(8mo/ Cc), a much greater magnitude than g,,9/Cc. If other
capacitances are neglected, it can also be proved that the dominant pole is located at approx-
imately (R gmoR1 Cc)7L, as if C were connected to the gate of My rather than the source
of M. Also, the first nondominant pole is given by g,48mo Req/ Cr, an effect similar to that
described by Eq. (10.43). In reality, the capacitance at X may not be negligible because the
resistance seen at this node is quite large. The analysis of the slew rate is left as an exercise
for the reader.
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(b)

Figure 10.40 (a) Alternative method of compensating two-stage op amps, (b) simplified equivalent circuit of (a).

Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

10.1.

10.2.

10.3.

10.4.

10.5.

An amplifier with a forward gain of Ag and two poles at 10 MHz and 500 MHz is placed in
a unity-gain feedback loop. Calculate Ag for a phase margin of 60°.

An amplifier with a forward gain of Ag has two coincident poles at . Calculate the maximum
value of Ag for a 60° phase margin with a closed-loop gain of (a) unity, (b) 4.

An amplifier has a torward gain of Ag = 1000 and two poles at wp) and wp2. For wp1 =
1 MHz, calculate the phase margin of a unity-gain feedback loop if (a) wpz = 2wp1, (b)
wpy = dwp.

A unity-gain closed-loop amplifier exhibits a frequency peaking of 50% in the vicinity of the
gain crossover. What is the phase margin?

Consider the transimpedance amplifier shown in Fig. 10.41, where Rp = 1 k&2, Rf =
10 kX2, gm1 = gmz = 1/(100 ), and C4 = Cx = Cy = 100 fF. Neglecting all other

IYYHl |

5‘-
b

Figure 10.41
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capacitances and assuming A = y = 0, compute the phase margin of the circuit. (Hint: break
the loop at node X.)

10.6. In Problem 10.5, what is the phase margin if Rp is increased to 2 k2?

10.7.  If the phase margin required of the amplifier of Problem 10.5 is 45°, what is the maximum
value of (a) Cy, (b) C4, (c) Cx while the other two capacitances remain constant?

10.8.  Prove that the zero of the circuit shown in Fig. 10.29 is given by Eq. (10.25). Apply the
technique illustrated in Fig. 6.15.

10.9.  Consider the amplifier of Fig. 10.42, where (W/L)1—4 = 50/0.5 and Iss = /1 = 0.5 mA.

Figure 10.42

(a) Estimate the poles at nodes X and ¥ by multiplying the small-signal resistance and
capacitance to ground. Assume Cx = Cy = 0.5 pF. What is the phase margin for
unity-gain feedback?

(b) If Cx = 0.5 pF, what is the maximum tolerable value of Cy that yields a phase margin
of 60° for unity-gain feedback?

10.10. Estimate the slew rate of the op amp of Problem 10.9(b) for both parts (a) and (b).

10.11. In the two-stage op amp of Fig. 10.43, W/L = 50/0.5 for all transistors except for Ms g, for
which W/L = 60/0.5. Also, Igs = 0.25 mA and each output branch is biased at 1 mA.

P

Vout1 ©—9

V.

n
Y v
My-le—‘Vm ?’ss Vor o[, M,

Figure 10.43

(a) Determine the CM level at nodes X and Y.

(b) Calculate the maximum output voltage swing,

{¢) If each output is loaded by a 1-pF capacitor, compensate the op amp by Miller multi-
plication for a phase margin of 60° in unity-gain feedback. Calculate the pole and zero
positions after compensation.
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10.12.

10.13.
10.14.

10.15.
10.16.

10.17.

10.18.

10.19.
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(d) Calculate the resistance that must be placed in series with the compensation capacitors to
position the zero atop the nondominant pole.
(e) Determine the slew rate.

In Problem 10.11(e), the pole-zero cancellation resistor is implemented with a PMOS device
as in Fig. 10.31. Calculate the dimensions of M)3-Ms if /] = 100 pA.

Calculate the input-referred thermal noise voltage of the op amp shown in Fig. 10.43.

Figure 10.44 depicts a transimpedance amplifier employing voltage-current feedback. Note
that the feedback factor may exceed unity because of M3. Assume Nh-Iyareideal, Iy = I =
1 mA, I3 = 10 pA, (W/L); 2 = 50/0.5, and (W/L)3 = 5/0.5.

M,

F————Vou

12(}?

= Figure 10.44

(a) Breaking the loop at the gate of M3, estimate the poles of the open-loop transfer function.

(b) If the circuit is compensated by adding a capacitor Cc between the gate and the drain
of Mj, what value of C¢ achieves a phase margin of 60°? Determine the poles after
compensation.

{¢) What resistance must be placed in series with C¢ to position the zero of the output stage
atop the first nondominant pole?

Repeat Problem 10.14(c) if the output node is loaded by a 0.5-pF capacitor.

Suppose in the circuit of Fig. 10.44 a large negative input current is applied such that M
turns off momentarily. What is the slew rate at the output?

Explain why in the circuit of Fig. 10.44, the compensation capacitor should not be placed
between the gate and the drain of M or M3.

Determine the input-referred noise current of the circuit shown in Fig. 10.44 and described
in Problem 10.14(c).

The cancellation of a pole by a zero, e.g., in a two-stage op amp, entails an issue called
the “doublet” problem {5, 6]. If the pole and the zero do not exactly coincide, we say they
constitute a doublet. The step response of feedback circuits in the presence of doublets is of
great interest. Suppose the open-loop transfer function of a two-stage op amp is expressed as

Ag (1 + wi)
Hopen(s) = 5 S . .
(1 + —) (1 + ——)
@p1 Wp2

Tdeally, w, = wp and the feedback circuit exhibits a first-order behavior, i.e., its step response
contains a single time constant and no overshoot.

(10.44)
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(a) Prove that the transfer function of the amplifier in a unity-gain feedback loop is given by

Ao (1 + i)
w.
Hejosed(s) = 3 Z . (10.45)
K 1 1 Agp
+(-—+—‘—+—-)S+A0+l
Wplwp2 Wpl @p2 Wy

(b) Determine the two poles of Hjogeq(s), assuming they are widely spaced.
(¢) Assuming w, ~ wp2 and wpy K (1 + Ao)wpl', write Hyjgseq(s) in the form

A (1 + i)
w.
Hejosed(s) = 5 £ B »
(1 + —) (1 T _)
G)PA wpg

and determine the small-signal step response of the closed-loop amplifier.

(d) Prove that the step response contains an exponential term of the form (1 — wy/wp2)
exp(—wpat). This is an important result, indicating that if the-zero does not exactly cancel
the pole, the step response exhibits an exponential with an amplitude proportional to
1 — w;/wp2 (which depends on the mismatch between @z and wp7) and a time constant
of 1/w,.

(10.46)

10.20. Using the resuits of Problem 10.19(d), determine the step response of the amplifier described

in Problem 10.11(e) with (a) perfect pole-zero cancellation, (b) 10% mismatch between the
pole and the zero magnitudes.
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Chapter 11

Bandgap References

Analog circuits incorpofate voltage and current references extensively. Such references are
dc quantities that exhibit little dependence on supply and process parameters and a well-
defined dependence on the temperature. For example, the bias current of a differential pair
must be generated according to a reference, for it affects the voltage gain and noise of the
circuit. Also, in systems such as A/D and D/A converters, a reference is required to define
the input or output full-scale range.

In this chapter, we deal with the design of reference generators in CMOS technology,
focusing on well-established “bandgap” techniques. First, we study supply-independent
biasing and the problem of start-up. Next, we describe temperature-independent references
and examine issues such as the effect of offset voltages. Finally, we present constant-G,,
biasing and study an example of state-of-the-art bandgap references.

11.1 General Considerations

As mentioned above, the objective of reference generation is to establish a dc voltage or
current that is independent of the supply and process and has a well-defined behavior with
temperature. In most applications, the required temperature dependence assumes one of
three forms: (a) proportional to absolute temperature (PTAT); (2) constant-G,, behavior,
i.e., such that the transconductance of certain transistors remains constant; (3) temperature
independent. We can therefore divide the task into two design problems: supply-independent
biasing and definition of the temperature variation.

In addition to supply, process, and temperature variability, several other parameters of
reference generators may be critical as well. These include output impedance, output noise,
and power dissipation. We return to these issues later in this chapter.

11.2 Supply-Independent Biasing

Our use of bias currents and current mirrors in previous chapters has implicitly assumed
that a “golden” reference current is available. As shown in Fig. 11.1(a), if Iggr does not

377
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Voo Voo
I'ner I'rer + Ay
] lD2 ID3 Ioul
M, JH v, JH— M,
- Mz = M3 4 - -
(a) ®

Figure 11.1 Current-mirror biasing using (a) an ideal current source,
(b) a resistor.

vary with Vpp and channel-length modulation of M; and M3 is neglected, then Ip; and Ip3
remain independent of the supply voltage. The question then is: how do we generate Jrpr?

As an approximation of a current source, we tie a resistor from Vpp to the gate of M;
[Fig. 11.1(b)]. However, the output current of this circuit is quite sensitive to Vpp:

AVop  (W/L)

. (11.1)
Ri+1/gm1 (W/L)

AIom‘ =

In order to arrive at a less sensitive solution, we postulate that the circuit must bias irself,
i.e., Igpr must be somehow derived from I,,,. The idea is that if 7,,, is to be ultimately
independent of Vpp, then IggF can be areplica of I,,,. Fig. 11.2 illustrates an implementa-
tion where M3 and My copy Iy, thereby defining Irgr. In essence, Irer is “bootstrapped”
to I,,,. With the sizes chosen here, we have I,,, = K IggF if channel-length modulation is
neglected. Note that, since each diode-connected device feeds from a current source, I,
and Ippr are relatively independent of Vpp.

" Voo
w 4 3 w
( T )P —E «( T )P
1
REF Lot

(), dH—k «(),

M M Figure 11.2 Simple circuit to estab-
= ) 23 lish supply-independent currents.

Since 1,,; and Iz in Fig. 11.2 display little dependence on Vpp, their magnitude is set
by other parameters. How do we calculate these currents? Interestingly, if M|-M4 operate
in saturation and A = 0, then the circuit is governed by only one equation, I,,; = KIggr,
and hence can support any current level! For example, if we initially force Ipgr to be 10
WA, the resulting I,,,, of K x 10 pA “circulates” around the loop, sustaining these current
levels in the left and right branches indefinitely.

To uniquely define the currents, we add another constraint to the circuit, e.g., as shown
in Fig. 11.3(a). Here, resistor Rg decreases the current of M, while the PMOS devices
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' rer Tout IP
w
(F), dH— (D), Frer
= M M w
R (), JH—
> M,
(a) )

Figure 11.3 (a) Addition of Ry to define the carrents, (b) alternative implementation
eliminating body effect.

require that I, = Izgr because they have identical dimensions. We can write Vg1 =
Vesa + Ip2Rs, or

21 21
T 4 Vrm = ‘/ u ol + Vruz + Lou Rs. (11.2)

ﬂncox(W/L)N nCox K(W/L)y

Neglecting body effect, we have

2154 i
\/%_“;; (1 - ‘ﬁ) = lour Rs, (11.3)

(11.4)

and hence

2 1 1\?
Iy = ——— = (1= —= ]
],L,,CM(W/L)N RS \/E

As expected, the current is independent of the supply voltage (but still a function of process
and temperature).

The assumption Vry; = Va2 introduces some error in the foregoing calculations be-
cause the sources of M, and M, are at different voltages. Shown in Fig. 11.3(b}, a simple
remedy is to place the resistor in the source of M3 while eliminating body effect by tying the
source and bulk of each PMOS transistor. Another solution is described in Problem 11.1.

The circuits of Figs. 11.3(a) and (b) exhibit little supply dependence if channel-length
modulation is negligible. For this reason, relatively long channels are used for all of the
transistors in the circuit.

Example 11.1

Assuming A # 0 in Fig. 11.3(a), estimate the change in Loy, for a small change AVpp in the supply

voltage. _
!
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Figure11.4

Solution

Simplifying the circuit as depicted in Fig. 11.4, where Ry = ro1[[(1/gm1) and R3 = g3 H(1/gm3), we
calculate the “gain” from Vpp to I,,;. The small-signal gate-source voltage of M4 equals —J,,; R3
and the current throughro4 is (Vbp — Vx)/ros. Thus,

Vbp — Vx Vy
+ louwr Rigma = —. (11.5)
ro4 Ry

If we denote the equivalent transconductance of M3 and Rg by Gz = Ipu:/ Vyx, then

Tour L [ ! R ]_1 (11.6)
=— | —gmaR3 . .

Vob 704 L GmatroallR) o™ »

Note from Chapter 3 that

_ 8m2r 2
Rs +ro2 + (gm2 + gme2)Rsroz”

Gm2 (11.7)

Interestingly, the sensitivity vanishes if o4 = 0.

In some applications, the sensitivity given by (11.6) is prohibitively large. Also, ow-
ing to various capacitive paths, the supply sensitivity of the circuit typically rises at high
frequencies. For these reasons, the supply voltage of the core is often derived from a locally-
generated, less sensitive voltage. We return to this point in Section 11.7.

An important issue in supply-independent biasing is the existence of “degenerate” bias
points. In the circuit of Fig. 11.3(a), for example, if all of the transistors carry zero current
when the supply is turned on, they may remain off indefinitely because the loop can sup-
port a zero current in both branches. This condition is not predicted by (11.4) because in
manipulating (11.3) we divided both sides by +/T,,;, tacitly assuming I,,, # 0. In other
words, the circuit can settle in one of wo different operating conditions.

Called the “start-up” problem, the above issue is resolved by adding a mechanism that
drives the circuit out of the degenerate bias point when the supply is turned on. Shown in
Fig. 11.5 is a simple example, where the diode-connected device Ms provides a current path
from Vpp through M3 and M, to ground upen start-up. Thus, M3 and M, and hence M,
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Voo
r—~—-u%

Figure 11.5 Addition of start-up
= device to the circuit of Fig. 11.3(a).

and M,, cannot remain off. Of course, this technique is practical only if Vrgy + Vras +
|Vras| < Vpp and Vgg + Vras +1Vesal > Vpp, the latter to ensure M5 remains off after
start-up. Another start-up circuit is analyzed in Problem 11.2.

The problem of start-up generally requires careful analysis and simulation. The supply
voltage must be ramped from zero in a dc sweep simulation (such that parasitic capacitances
do not cause false start-up) as well as in a transient simulation and the behavior of the circuit
examined for each supply voltage. In complex implementations, more than one degenerate
point may exist. '

11.3 Temperature-Independent References

Reference voltages or currents that exhibit little dependence on temperature prove essential
in many analog circuits. It is interesting to note that, since most process parameters vary
with temperature, if a reference is temperature-independent, then it is usually process-
independent as well.

How do we generate a quantity that remains constant with temperature? We postulate
that if two quantities having opposite temperature coefficients (TCs) are added with proper
weighting, the result displays a zero TC. For example, for two voltages V; and V; that
vary in opposite directions with temperature, we choose &) and o such that o, 8V, /3T +
0,dV,/38T = 0, obtaining a reference voltage, Veer = o1 V1 + aaVa, with zero TC.

We must now identify two voltages that have positive and negative TCs. Among various
device parameters in semiconductor technologies, the characteristics of bipolar transistors
have proven the most reproducible and well-defined quantities that can provide positive and
negative TCs. Even though many parameters of MOS devices have been considered for the
task of reference generation {1, 2], bipolar operation still forms the core of such circuits.

11.3.1 Negative-TC Voltage

The base-emitter voltage of bipolar transistors or, more generally, the forward voltage of a
pn-junction diode exhibits a negative TC. We first obtain the expression for the TC in terms
of readily-available quantities.

For a bipolar device we can write Ic = Isexp(Vpe/Vr), where Vr = kT/q. The
saturation current [s is proportional to kT n?, where u denotes the mobility of minority
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carriers and r; is the intrinsic minority carrier concentration of silicon. The temp:erlature
dependence of these quantities is represented as p « peT™, where m =~ —3/2, and
n? o T® exp[—E,/(kT)], where E, & 1.12 eV is the bandgap energy of silicon. Thus,

—-E
Is = bT* ™ exp Yfg (11.8)

where b is a proportionality factor. Writing Vzr = Vr In({c/Is), we can now compute
the TC of the base-emitter voltage. In taking the derivative of Vg with respect to T, we
must know the behavior of I as a function of the temperature. To simplify the analysis, we
assume for now that I is held constant. Thus,

v, vy I Vpal
BE £ IToS (11.9)
aT 8T Iy Is oT

From (11.8), we have

819 —E, E
= b(4 T3 ex g Y ks —£ 1.10
3T 4+ m) p + exp—— |\ 72 (11.10)
Therefore,
Yedls _ 44 ) L+ Ly (11.11
15 aT sz r A1)
With the aid of (11.9) and (11.11), we can write
Ve Vo Ip E,
=—In——(4 m——v 11.12
aT 77 4+m) w77 ( )
Vee — (4 Vr — E

Equation (11.13) gives the temperature coefficient of the base-emitter voltage at a given
temperature T, revealing dependence on the magnitude of Vi itself. With Vzg &= 750 mV
and T = 300°K, 0Vgg /9T = —1.5 mV/°K.

From (11.13), we ncte that the temperature coefficient of Vg itself depends on the
temperature, creating error in constant reference generation if the positive-TC quantity
exhibits a constant temperature coefficient. '

11.3.2 Positive-TC Voltage

It was recognized in 1964 [3] that if two bipolar transistors operate at unequal current
densities, then the difference between their base-emitter voltages is directly proportional to
the absolute temperature. For example, as shown in Fig. 11.6, if two identical transistors
(Is; = Isy) are biased at collector currents of n/y and I and their base currents are neg-
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Voo
nlgy Iy
AVggo—
Q, Q,
Figure 11.6 Generation of PTAT
= - voltage. :
ligible, then
AVge = Vgg1 — VBe2 (11.14)
I I
=V vy (11.15)
Is Isy
= Vrinn. (11.16)

Thus, the Vg difference exhibits a positive temperature coefficient:

dAVpg
aT

k
= —Inn. (11.17)
q

Interestingly, this TC is independent of the temperature or behavior of the collector currents.’

Example 11.2

Calculate AVgg in the circuit of Fig. 11.7.

Voo
nlo * ’0
o AVggoo .
01 02 se e
Is
= T mls < Figure 11.7

INonidealities in the characteristics of bipolar transistors introduce a small temperature dependence in
this TC.
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Solution
Neglecting base currents, we can write

; I
=Vrin 20 _ oy S0 (11.18)
Ig mls

= V7 In(nm). (11.19)

The temperature coefficient is therefore equal to (k/q) In(nm).

11.3.3 Bandgap Reference

With the negative- and positive-TC voltages obtained above, we can now develop areference
having a nominally zero temperature coefficient. We write Veer = 1 Vag + a3(Vy Inn),
where Vr Inn is the difference between the base-emitter voltages of the two bipolar tran-
sistors operating at different current densities. How do we choose o and an? Since at
room temperature 8 Vpp /0T ~ —1.5 mV/°K whereas dVr /3T ~ +0.087 mV/°K, we may
set ; = 1 and choose a; Inn such that (a; In7)(0.087 mV/°K) = 1.5 mV/°K. That is,
azInn ~ 17.2, indicating that for zero TC:;

Veer = Vg + 17.2V7 ' (11.20)
~1.25V. (11.21)

Let us now devise a circuit that adds Vg to 17.2Vy. First, consider the circuit shown
in Fig. 11.8, where base currents are assumed negligible, transistor Q> consists of # unit
transistors in parallel, and (, is a unit transistor. Suppose we somehow force Vo, and Vg,
to be equal. Then, Vge; = RI + Vagz and RI = Vgg| — Vg = Vrlnn. Thus, Vg, =
Vg2 + VrInn, suggesting that Vp, can serve as a temperature-independent reference if
Inn & 17.2 (while Vp, and Vp, remain equal).

Voo
I ]
Vo1 Vo2
R
A nA
Q, Q, Figure 11.8 Conceptual generation of
K] = temperature-independent voltage.

The circuit of Fig. 11.8 requires two modifications to become practical. First, a mech-
anism must be added to guarantee V| = Vy,. Second, since Inn = 17.2 translates to a
prohibitively large n, the term R/ = VrInrn must be scaled up by a reasonable factor,
Shown in Fig. 11.9 is an implementation accomplishing both tasks {4]. Here, amplifier
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@4 Q; Figure 11.9 Actual implementation
= = of the concept shown in Fig. 11.8.

A, senses Vy and Vy, driving the top terminals of Ry and Ry (R = R») such that X and
Y settle to approximately equal voltages. The reference voltage is obtained at the out-
put of the amplifier (rather than at node ¥). Following the analysis of Fig. 11.8, we have
Vee1r — Vpez = VrInn, arriving at a current equal to V7 Inn/R3 through the right branch
and hence an output voltage of

Vrln
Vour = Vg2 + TR " (Ry + Ry) (11.22)
3
R
= Vggz + (Vrinn) (1 + R—) .- (11.23)
3

For a zero TC, we must have (1 + R,/ R3) Inn = 17.2. For example, we may choose n = 31
and R,/ R3; = 4. Note these results do not depend on the TC of the resistors.
The circuit of Fig. 11.9 entails a number of design issues. We consider each one below.

Collector Current Variation The circuit of Fig. 11.9 violates one of our earlier as-
sumptions: the collector currents of @ and @y, given by (Vr Inn)/R;, are proportional to
T, whereas 9Vgg /0T = —1.5 mV/°K was derived for a constant current. What happens
to the temperature coefficient of Vg if the collector currents are PTAT? As a first-order
iterative solution, let us assume Io|, = Iy = (VrInn)/R;. Returning to Eq. (11.9) and
including 91-/8T, we have

aVes OVr . Ic 18l 1 3ls
="TLm=E vy :
aT — aT  Is

— .24
Ic 0T  IgoT (11.24)

Since 3¢ /0T = (VrInn)/(R3T) = I/ T, we can write

v avr  Ie Vo Vydl
WVer _3Ve le Vo Vrdls (11.25)
aT 8T Is | T I 8T

Equation (11.13) is therefore modified as

Ve  Vep—QG+mVr — Eg/q
oT T '

(11.26)
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indicating that the TC is slightly less negative than —1.5 mV/°K. In practice, accurate
simulations are necessary to predict the temperature coefficient.

Compatibility with CMOS Technology Our derivation of a temperature-independent
voltage relies on the exponential characteristics of bipolar devices for both negative- and
positive-TC quantities. We must therefore seek structures in a standard CMOS technology
that exhibit such characteristics.

p—Ssubstrate

Figure 11.10 Realization of a pnp bipolar transistor in
CMOS technology.

In n-well processes, a pnp transistor can be formed as depicted in Fig. 11.10. A p* region
(the same as the S/D region of PFETs) inside an n-well serves as the emitter and the n-well
itself as the base. The p-type substrate acts as the collector and it is inevitably connected to
the most negative supply (usually ground). The circuit of Fig. 11.9 can therefore be redrawn
as shown in Fig. 11.11.

RE R, =
1A
p—O
X "y +
Vout
R _%‘
01 02 -
A nA
Figure 11.11 Circuit of Fig. 119
T = = = implemented with pnp transistors.

Op Amp Offset and Cutput Impedance As explained in Chapter 13, owing to asym-
metries, op amps suffer from input “offsets,” i.e., the output voltage of the op amp is not
zero if the input is set to zero. The input offset voltage of the op amp in Fig. 11.9 in-
troduces error in the output voltage. Included in Fig. 11.12, the effect is quantified as
Veer — Vos & Vaps + Ralca (if Ay is large) and Vo, '= Vgga + (R3 + Ra)les. Thus,

Vapl — Vg — V.
Vour = Vaia + (R3 + Ry)—2 ;‘“ o3 (11.27)
3

R
= Vg + (1 + 73_2) (Vrlnn — Vog), (11.28)

3
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RE RE
Y‘ ]
X TF S
.= Vos Vout
3 i
A nA
Q4 Q> Figure 11.12 Effect of op amp offset

on the reference voliage.

where we have assumed Iy =~ I despite the offset voltage. The key point here is that
Vos is amplified by 1 4+ R,/ R3, introducing error in V,,,. More importantly, as explained
in Chapter 13, Vg itseif varies with temperature, raising the temperature coefficient of the
output voltage.

Several methods are employed to lower the effect of V5. First, the op amp incorporates
large devices in a carefully chosen topology so as to minimize the offset (Chapter 18).
Second, as illustrated in Fig. 11.7, the collector currents of @, and Q5 can be raticed by a
factor of m such that AVgg = V7 In(mn). Third, each branch may use two pn junctions in
series to double AVgg. Fig. 11.13 depicts a realization using the last two techniques. Here,

R,=RE =R,=mR
Y
X R >
Rafi Vos Vgut
14y § 12 'Z'

| |
Q: l_E A 04|f nA
e M A Q; nA
Figure 11.13 Reduction of the effect

= = = = of op amp offset.

R, and R, are ratioed by a factor of m, producing I; =~ ml,. Neglecting base currents and
assuming A, is large, we can now write Vgg) + Vprs — Vos = Ve + VgEes + Rzl and
Vour = Vegs + Vaea + (R3 + Ro) . It follows that

2Vrin(mn) — V,
Vour = Vs + Vaea + (Ry + Rp)— R )~ Vos (11.29)
3

R
= 2Vep + (1 + R_Z) [2Vr In(mn) — Vos]. (11.30)
) .



388

Chap. 11 Bandgap References

Thus, the effect of the offset voltage is reduced by increasing the first term in the square
brackets. The issue, however, is that V,,,, /2 2 x 1.25 V = 2.5V, a value difficult to generate
by the op amp at low supply voltages.

The implementation of Fig. 11.13 is not feasible in a standard CMOS technology because
the collectors of 7 and Q4 are not grounded. In order to utilize the bipolar structure shown
in Fig. 11.10, we modify the series combination of the diodes as illustrated in Fig. 11.14(a),
converting one of the diodes to an emitter follower. However, we must ensure that the bias
currents of both transistors have the same behavior with temperature. Thus, we bias each
transistor by a PMOS current source rather than a resistor [Fig. 11.14(b)]. The overall circuit
then assumes the topology shown in Fig. 11.15, where the op amp adjusts the gate voltage
of the PMOS devices so as to equalize Vx and Vy. Interestingly, in this circuit the op amp
experiences no resistive loading, but the mismatch and channel-length modulation of the
PMOS devices introduce error at the output [Problem 11.3(d)).

An important concern in the circuit of Fig. 11.15 is the relatively low current gain of
the “native” pnp transistors. Since the base currents of @, and (4 generate an error in

VDD
2Vge Ve

02 2 VBE 2 VBE

o> Q2 Q;

-[ﬁm @4 Q,

(@) | )

Figure 11.14 (a) Conversion of series diodes to a topology with grounded collec-
tors, (b) circuit of part (a) biased by PMOS current sources.

Figure 11.15 Reference generator
incorporating two series base-emitter
voltages.
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the emitter currents of Q; and Q3, a means of base current cancellation may be necessary

{(Problem 11.5).

Feedback Polarity In the circuit of Fig. 11.9, the feedback signal produced by the op
amp returns to both of its inputs. The negative feedback factor is given by

1/8m2 + &3

= 11.31
Py 1/gm2+ R3+ Ry ( )
and the positive feedback factor by
1/gml
= 11.32
ﬂp 1/gml + Rl ( )

To ensure an overall negative feedback, 8p must be less than By, preferably by roughly
a factor of two so that the circuit’s transient response remains well-behaved with large
capacitive loads.

Bandgap Reference The voltage generated according to (11.20) is called a “bandgap
reference.” To understand the origin of this terminology, let us write the output voltage as

Veer = Vge + Vrlnn (11.33)

and hence:

OVepr 0Vee Vr
= —Inn. .
AT aT + T nn (11.34)

Setting this to zero and substituting for 8 Vg£/8T from (11.13), we have

Vag — (4+m)Vr — E y
LAl T - Lian. o a13s)

If Vr Inn is found from this equation and inserted in (1 1.33), we obtain:
Eg
Vrer = s + 4+ m)Vr. (11.36)

Thus, the reference voltage exhibiting a nominally-zero TC is given by a few fundamental
~ numbers: the bandgap voltage of silicon, E, /g, the temperature exponent of mobility, 7, and
the thermal voltage, V7. The term “bandgap” is used here becauseas T — 0, Veer — E;/q.

Supply Dependence and Start-Up In the circuit of Fig. 11.9, the output voltage is
relatively independent of the supply voltage so long as the open-loop gain of the op amp is
sufficiently high. The circuit may require a start-up mechanism because if Vx and Vy are
equal to zero, the input differential pair of the op amp may turn off. Start-up techniques
similar to those of Fig. 11.5 can be added to ensure the op amp turns on when the supply is
applied.
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The supply rejection of the circuit typically degrades at high frequencies owing to the op
amp’s rejection properties, often mandating “supply regulation.” An example is described
in Section 11.7.

Curvature Correction If plotted as a function of temperature, bandgap voltages exhibit
afinite “curvature,” i.e., their TC is typically zero at one temperature and positive or negative
at other temperatures (Fig. 11.16). The curvature arises from temperature variation of base-
emitter voltages, collector currents, and offset voltages.

VREF

I T ? Figure 11,16 Curvature in tempera-
I}
ture dependence of a bandgap voltage.

Many curvature correction techniques have been devised to suppress the variation of
Vrer [3, 6] in bipolar bandgap circuits but they are seldom used in CMOS counterparts.
This is because, due to large offsets and process variations, samples of a bandgap reference
display substantially different zero-TC temperatures (Fig. 11.17), making it difficult to
correct the curvature reliably.

VRer

{ »  Figure 11.17 Variation of the -zero-
TC temperature for difference samples.

11.4 PTAT Current Generation

In the analysis of bandgap circuits, we noted that the bias currents of the bipolar transistors
are in fact proportional to absolute temperature. Useful in many applications, PTAT cur- -
rents can be generated by a topology such as that shown in Fig. 11.18. Alternatively, we can
combine the supply-independent biasing scheme of Fig. 11.2 with a bipolar core, arriving
at Fig. 11.19.2 Assuming for simplicity that M,-M, and M;-M, are identical pairs, we note
that for Ip, = Ips, the circuit must ensure that Vy = Vy. Thus, Ip, = Ipy = (VrIna)/Ry,
yielding the same behavior for Ips. In practice, due to mismatches between the transistors
and, more importantly, the temperature coefficient of R; the variation of Ip5 deviates from
the ideal equation.

The circuit of Fig. 11.19 can be readily modified to provide a bandgap reference voltage
as well. Illustrated in Fig. 11.20, the idea is to add a PTAT voltage Ips R, to a base-emitter

2The the two circuits in Figs. 11.18 and 11.19 exhibit difference supply rejections. With a carefully designed
op amp, the former achieves a higher rejection.
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Figure 11.19 Generation of a PTAT
current using a simple amplifier.

Figure 11.20 Generation of a temp-
erature-independent voltage.
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voltage. The output therefore equals

R
Vker = Vags + R—ZVT Inn, (11.37)
1

where all PMOS transistors are assumed identical. Note that the value of Vg53 and hence
the size of Q3 are somewhat arbitrary so long as the sum of the two terms in (11.37) gives
a zero TC. In reality, mismatches of the PMOS devices introduce error in V,,,.

11.5 Constant-G, Biasing

The transconductance of MOSFETs plays a critical role in analog circuits, determining
such performance parameters as noise, small-signal gain, and speed. For this reason, it is
often desirable to bias the transistors such that their transconductance does not depend on
the temperature, process, or supply voltage.

A simple circuit used to define the transconductance is the supply-independent bias
topology of Fig. 11.3. Recall that the bias current is given by

Lo = 2 ! (1 ! )2 (11.38)
7 14nCox(W/L)y R JE/) '
Thus, the transconductance of M, equals
W
8m1 = J2ﬂncax (_L‘) IDI (1139)
N
2 1 .
=—|1l-—=), (11.40)
Rs ( \/K)

-a value independent of the supply voltage and MOS device parameters.

In reality, the value of Ry in (11.40) does vary with temperature and process. If the
temperature coefficient of the resistor is known, bandgap and PTAT reference gencration
techniques can be utilized to cancel the temperature dependence. Process variations, how-
ever, limit the accuracy with which g,,; is defined.

In systems where a precise clock frequency is available, the resistor Ry in Fig. 11.3 can
be replaced by a switched-capacitor equivalent (Chapter 12) to achieve a somewhat higher
accuracy. Deplcted in Fig. 11.21, the idea is to establish an average resistance equal to
(Cs fck)~! between the source of M, and ground, where fcx denotes the clock frequency.
Capacitor Cp is added to shunt the high-frequency components resulting from switching
to ground. Since the absolute value of capacitors is typically more tightly controlled and
since the TC of capacitors is much smaller than that of resistors, this technique provides a
higher reproducibility in the bias current and transconductance.

The switched- capacitor approach of Fig. 11.21 can be applied to other circuits as well.
For example, as shown in Fig. 11.22, a voltage-to-current converter with a relanvely high
gccuracy can be constructed. ™
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Figure 11.21 Constant-G,, biasing
by means of a switched-capacitor “resis-

»

tor.

Figure 11.22 Voltage-to-current con-
version by means of a switched-
capacitor resistor.

11.6 Speed and Noise Issues

Even though reference generators are low-frequency circuits, they may tmpact the speed of
the circuits that they feed. Furthermore, various building blocks may experience “crosstalk”
through reference lines. These difficulties arise because of the finite cutput impedance of
reference voltage generators, especially if they incorporate op amps. As an example, let us
consider the configuration shown in Fig. 11.23, assuming the voltage at node N is heavily
disturbed by the circuit fed by Ms. For fast changes in Vy, the op amp cannot maintain
Vp constant and the bias currents of Ms and M, experience large transient changes. Also,
the duration of the transient at node P may be quite long if the op amp suffers from a
slow response. For this reason, many applications may require a high-speed op amp in the
reference generator.

In systems where the power consumed by the reference circuit must be small, the use
of a high-speed op amp may not be feasible. Alternatively, the. critical node, e.g., node
P in Fig. 11.23, can be bypassed to ground by means of a large capacitor (Cpg) so as to
suppress the effect of external disturbances. This approach involves two issues. First, the
stability of the op amp must not degrade with the addition of the capacitor, requiring the
op amp to be of one-stage nature (Chapter 10). Second, since Cg generally slows down
the transient response of the op amp, its value must be much greater than the capacitance
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Figure 11.23 Effect of circuit tran-
sients on reference voltages and currents.

that couples the disturbance to node P. As illustrated in Fig. 11.24, if Cp is not sufficiently
large, then Vp experiences a change and takes a long time to return to its original value,
possibly degrading the settling speed of the circuits biased by-the reference generator. In
other words, depending on the environment, it may be preferable to leave node P agile so
that it can quickly recover from transients. In general, as depicted in Fig. 11.25, the response
of the circuit must be analyzed by applying a disturbance at the output and observing the
settling behavior.

Very Large Cg

Figure 11.24 Effect of increasing by-
™ pass capacitor on the response of refer-
ence generator.

Reference J\/_
Generator +
Vout
J_L N 1 Figure 11.25 Setup for testing the
- = transient response of a reference gene-
= rator.

Example 11.3

Determine the small-signal output impedance of the bandgap reference shown in Fig. 11.23 and
examine its behavior with frequency.
Solution

Fig. 11.26 depicts the equivalent circuit, modeling the open-loop op amp by a one-pole transfer
function A(s) = Ag/(1 + s/wp) and an output resistance Koy, and each bipolar transistor by a
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Figure 11.26 Circuit for calculation
of the output impedance of a reference
generator.

resistance 1/gmy. If My and M> are identical, each having a transconductance of g, p, then their
drain currents are equal to g, p Vy, producing a differential voltage at the input of the op amp equal to

1 1
VaB = —gmpVx—— + gmpVx (— + Rl) (11.41)
EmN . E&mN
= gmpVxR1. (11.42)
The current flowing through Ry, is therefore given by

_ Vx +8npVxRIAGs)

Ix , (11.43)

RO“!

yielding
Ve Row (11.44)
Ix 1+ gmpRIA(s5)

_ Rout - (11.45)

1 Ri———

+g&mpRy 145/

R 14—

= ot =2 (11.46)

l+gmpRiAO 4 %
(1 + gmpRiAg)wo

Thus, the output impedance exhibits a zero at g and a pole at (I + g, p R1 Ag)wg, with the magni-
tude behavior plotted in Fig. 11.27. Note that | Z,,,| is quite low for @ < wp, but it rises to a high
value as the frequency approaches the pole. In fact, setting @ = (1 + g p R| Ag)wo and assuming
gmp R1Ag > 1, we have

R 1 i(1 R1A
| Z ot | = out + J( +gm‘P 140) (11.47)
1+ gmpRiAg 1+
Rout
= —, 11.48)
N (

which is only 30% lower than the open-loop value.
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1
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‘Roul
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1+ 9mP R-‘ Ao

®g (1+ Gmp RyAp)wg ©

Figure 11.27 Variation of the reference generator output impedance
with frequency.

The output.noise of reference generators may impact the performance of low-noise
circuits considerably. For example, if a high-precision A/D converter employs a bandgap
voltage as the reference with which the analog input signal is compared (Fig. 11.28), then
the noise in the reference is directly added to the input.

Vi, o0— A/D Digital
Converter :> OQutput

Reference
Generator ' Figure 11.28 A/D converter using a
reference generator.

As a simple example, let us calculate the output noise voltage of the circuit shown in
Fig. 11.29, taking into account only the input-referred noise voltage of the op amp, V), op.
Since the small-signal drain currents of M; and M, are equal to V,, ou: /(R) + 8,;}¢ ), we have
Vb = —g b Viour /(R + g, 3), Obtaining the differential voltage at the input of the op amp
as ~g,"n'},A5’ Vo our [(R1 + g;}v). Beginning from node A, we can then write

Vn oul: 1 Vﬂ (4173
i - o = Vn,op + Vn,out (1149)

Ri+g. &mn  gnpAo(Ri+gny)

and hence

1 1 1
Vn,uu: —”—'__]“ (—_ - ) e 1 = Vn,op- (1150)
Ry +g,y \&nn  &urAo
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Since typically gmpAo 3> gun > Rl_l,

Figure 11.29 Circuit for calculation
of noise in a reference generator.

[Va,outl & Vi op, (11.51)

suggesting that the ncise of the op amp directly appears at the output. Note that even the
addition of a large capacitor from the output to ground may not suppress low-frequency
1/f noise components, a serious difficulty in low-noise applications. The noise contributed
by other devices in the circuit is studied in Problem 11.6.

11.7 Case Study

In this section, we study a bandgap reference circuit designed for high-precision anaiog
systems [7]. The reference generator incorporates the topology of Fig. 11.19 but with
two series base-emitter voltages in each branch so as to reduce the effect of MOSFET
mismatches. A simplified version of the core is depicted in Fig. 11.30, where the PMOS
current mirror arrangement ensures equal collector currents for Q1-Qs.

Q, 3

nA A '
)3 . 04 .
Figure 11.30 Simplified core of the

= 5 bandgap circuit reported in [7].
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Channel-length modulation of the MOS devices in Fig. 11.30 still results in significant
supply dependence. To resolve this issue, each branch can employ both NMOS and PMOS
cascode topologies. Fig. 11.31(a) shows an example where the low-voltage cascode current
mirror described in Chapter 5 is utilized. To obviate the need for Vj; and Vj,, this design
actually introduces a “self-biased” cascode, shown in Fig, 11.31(b), where R, and R; sustain
proper voltages to allow all MOSFETs to remain in saturation. This cascode topology is
analyzed in Problem 11.7.

(@) ' (b)

Figure 11.31 (a) Addition of cascode devices to improve supply rejec-
tion, (b) use of self-biased cascode to eliminate Vi, and V.

The bandgap circuit reported in [7] is designed to generate a floating reference. This is
accomplished by the modification shown in Fig. 11.32, where the drain currents of My and
Mo flow through R4 and Rs, respectively. Note that M;, sets the gate voltage of M, at
Veea + Vésii, establishing a voltage equal to Vg4 across Rg if Mo and M, are identical.
Thus, Ipg = VBE4/R(,, yleldmg Vea = Vepa(R4/ Rg). Also, if Myq is identical to M-, then
[Ip10l = 2(Vr Inn)/R; and hence Vgs = 2(V¢ Inn)(Rs/R1). Since the op amp ensures that
Vg &~ Vr, we have

R, Rs
Vour = —Vpea+2—VrInn, (11.52)
R Ry

Proper choice of the resistor ratios and » therefore provides a zero temperature coefficient.

In order to further enhance the supply rejection, this design regulates the supply volt-
age of the core and the op amp. Illustrated in Fig. 11.33, the idea is to generate a local
supply, Vppy, that is defined by a reference Vg, and the ratio of R,, and R,, and hence
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Figure 11.33 Regulation of the supply voltage of the core
and op amp to improve supply rejection.

remains relatively independent of the global supply voltage. But how is Vg, itself gen-
erated? To minimize the dependence of Vg, upon the supply, this voltage is established
inside the core, as depicted in Fig. 11.34. In fact, Ry is chosen such that Vg, is a bandgap
reference.

Fig. 11.35 shows the overall implementation, omitting a few details for simplicity. A
start-up circuit is also used. Operating from a 5-V supply, the reference generator produces
a2.00-V output while consuming 2.2 mW. The supply rejection is 94 dB atlow frequencies,
dropping to 58 dB at 100 kHz [7].
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Figure 11.34 Generation of Vg, used in Fig. 11.33.
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Figure 11.35 Overall circuit of the bandgap generator reported in [7].
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Problems

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary.

11.1.

11.2.

11.3.

114.

11.5.

11.6.

Derive an expression for Iy, in Fig. 11.36.

ot

X
/]

m
YWY

F

= M,

Figure 11.36

Explain how the start-up circuit shown in Fig. 11.37 operates. Derive a relationship that
guarantees Vy < Vrpy after the circuit turns on.

Voo
My M t[ ]
F—— R,z

YYY

Figure 11.37

Consider the circuit of Fig. 11.15.

(a) If My and M7 suffer from channel-length modulation, what is the error in the output
voltage?

(b) Repeat part (a) for M3 and M.

(c) If M; and M> have a threshold mismatch of AV, ie.,, Vrgy = Vryg and Vygygy =
Vru + AV, what is the error in the output voltage?

(d) Repeat part (c) for M3 and M. y

In Fig. 11.15, if the open-loop gain of the op amp A is not sufficiently large, then |Vx — Vy|

exceeds V,, where V, is the maximum tolerable error. Calculate the minimum value of A in

terms of V, such that the condition |Vy — Vy| < V, is satisfied.

In the circuit of Fig. 11.15, assume (2 and (24 have a finite current gain 8. Calculate the error -
in the output voltage.

Calcuiate the output noise voltage of the circuit shown in Fig. 11.29 due to the thermal and
flicker noise of M| and M».
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11.7.

11.8.

11.9.

11.10.

11.11.
11.12.

11.13.

11.14.

11.15.

11.16.

11.17.

11.18.
11.19.
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vDD

b )
—Mi—e
W

’REF?

Consider the self-biased cascode shown in Fig. 11.38. Determine the mirimum and maximum
values of RIrgr such that both M7 and M7 remain in saturation.

Figure 11.38

The circuit of Fig. 11.3(a) sometimes turns on even with no explicit start-up mechanism.
Identify the capacitive path(s) that couple the transition on Vpp to the internal nodes and
hence provide the start-up current.

Sketch the temperature coefficient of Vzg {Eq. (11.13)] versus temperature. Some iteration
may be necessary.

Determine the derivative of Eq. (11.13) with respect to temperature and sketch the result
versus 7. This quantity reveals the curvature of the voltage.

Suppose in Fig. 11.9 the amplifier has an output resistance Ry,,. Calculate the error in Vo,

The circuit of Fig. 11.9 is designed with R3 = 1 k2 and a current of 50 uA through it.
Calculate B = Rz and n for a zero TC.

In the circuit of Fig. 11.15, Q1 and Q- are biased at 100 A and Q3 and Q4 at 50 pA. If
R; = 1k, calculate R; and (W/L)1_4 such that the circuit operates with Vpp = 3 V.
Which op amp topology can be used here?

Since the bandgap of silicon exhibits a small temperature coefficient, Eq. (11.36) suggests
that 3Vrer/8T o (4 + m)k/q, arelatively large value, whereas we derived Vg # such that
it has a zero TC. Explain the flaw in this argument.

A differential pair with resistive loads is designed such that its voltage gain, g,, Rp, has a zero
TC at room temperature. If only the temperature dependence of the mobility is considered,
determine the required temperature behavior of the tail current. Design a circuit that roughly
approximates this behavior.

In Problem 11.15, assume the tail current is constant but the load resistors exhibit a fi-
nite TC. What resistor temperature coefficient cancels the variation of the mobility at room
temperature?

Equation (11.36) suggests that a zero-TC voltage cannot be generated if the supply voltage is
as low as, say, 1 V. Figure 11.39 shows a bandgap reference that can operate with low sepply
voltages [8]. If Ry = Rj3, derive an expression for Voy,.

Repeat Problem 11.17, if the op amp has an offset voltage Vpgs.

Figure 11.40 illustrates a “single-junction” bandgap design [9]. Here, switches $) and $; are
driven by complementary clocks.
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— Vout

Figure 11.40

(a) What is V,,; when S is on and $, is off?
(b) What is the change in V,,, when §; turns off and S turns on?
(¢) How are I\, Iz, C}, and C; chosen to produce a zero-TC output when S is off?

11.20. Suppose in Fig. 11.40, I;/I, deviates from its nominal value by a small error €. Calculate
Vour When §1 is off.

11.21. The circuit of Fig. 11.20 is designed with (W/L)1—a = 50/05,Ipy = Ip2 = 50 uA,
Ry = 1k, and Ry = 2 k2. Assume A = y = 0 and Q3 is identical to Q.
(a) Determine # and (W/L)s such that Vg, has a zero TC at room temperature.
(b) Neglecting the noise contribution of Q-Q3, calculate the output thermal noise.

11.22. Consider the circuit of Fig. 11.21. Assume X = 4, fcx = 50 MHz, and a power budget of 1
mW. Determine the aspect ratio of 3(-M, and the value of Cg such that gm; = 1/(500 €2).
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Chapter 12

Introduction to Switched-Capacitor
Circuits |

Our study of amplifiers in previous chapters has dealt only with cases where the input signal
is continuously available and applied to the circuit and the output signal is continuously
observed. Called ““continuous-time” circuits, such amplifiers find wide application in audio,
video, and high-speed analog systems. In many situations, however, we may sense the input
only at periodic instants of time, ignoring its value at other times. The circuit then processes
each “sample,” producing a valid output at the end of each period. Such circuits are called
“discrete-time” or “sampled-data” systems.

In this chapter, we study a common class of discrete-time systems called “switched-
capacitor (SC) circuits.” Our objective is to provide the foundation for more advanced
topics such as filters, comparators, ADCs, and DACs. Most of our study deals with switched-
capacitor amplifiers but the concepts can be applied to other discrete-time circuits as well.
Beginning with a general view of SC circuits, we describe sampling switches and their
speed and precision issues. Next, we analyze switched-capacitor amplifiers, considering
unity-gain, noninverting, and multiply-by-two topologies. Finally, we examine a switched-
capacitor integrator.

12.1 General Considerations

In order to understand the motivation for sampled-data circuits, let us first consider the
simple continuous-time amplifier shown in Fig. 12.1(a). Used extensively with bipolar op
amps, this circuit presents a difficult issue if implemented in CMOS technology. Recall
that, to achieve a high voltage gain, the open-loop output resistance of CMOS op amps
is maximized, typically approacning hundreds of kilo-ohms. We therefore suspect that R,
heavily drops the open-loop gain, degrading the precision of the circuit. In fact, with the
aid of the simple equivalent circuit shown in Fig. 12.1(b), we can write

Vou: - Vin Voul - Vz
Ay | R+ Vi) = Rowr———— = Viour, 12.1
(R1+R2 1+ ) out R1+R2 4 ( )

405
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Figure 12.1 (a) Continuous-time feedback amplifier, (b) equivalent circuit of (a).

and hence
_ Rous
Vou! RZ v R2
- . (12.2)
Vi Rl Rom R2
mn 1 Av Pl
Rt A R

Equation (12.2) implies that, compared to the case where R,,, = 0, the closed-loop gain suf-
fers from inaccuracies in both the numerator and the denominator. Also, the input resistance
of the amplifier, approximately equal to R;, loads the preceding stage while introducing
thermal noise.

Example 12.1

Using the feedback techniques described in Chapter 8, calculate the closed-loop gain of the circuit
of Fig. 12.1(a) and compare the result with Eq. (12.2).

Solﬁtion

With the aid of the approach described in Example 8.9, the reader can prove that

Vuul _ _R%Av (12 3)
Vi R2+ RiRout + RoRous + (1 + AR R
Ry Ay
-——=. } (12.4)
R R R
Rl _2 out + out +1+Av

Ry Ry Ry

The two results are approximately equal if Rou/R2 & A,. a condition required to ensure the
transmission through R; is negligible.

In the circuit of Fig. 12.1(a), the closed- -loop gain is set by the ratio of R; and R;. In order
to avoid reducing the open-loop gain of the op amp, we postulate that the resistors can be
replaced by capacitors [Fig. 12.2(a)]. But, how is the bias voltage at node X set? We may add
a large feedback resistor as in Fig. 12.2(b), providing dc feedback while negligibly affecting
the ac behavior of the amplifier in the frequency band of interest. Such an arrangement is
indeed practical if the circuit senses only high-frequency signals. But suppose, for example,
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R
l'l'l'
c2 c2
— i ——
C1 X c1 X
Vino—— I o Vout Vipo—{—— o Vot
(a) ®)

Figure 12.2 (a) Continuous-time feedback amplifier using capacitors, (b} use of
resistor to define bias point.

Vln

vzl/" ‘

—»  Figure 12.3 Step response of the am-
plifier of Fig. 12.2(b).

the circuit is to amplify a voltage step. Illustrated in Fig. 12.3, the response contains a step
change due to the initial amplification by the circuit consisting of Cy, C, and the op amp,
followed by a “tail” resulting from the loss of charge on C; through Rr. From another point
of view, the circuit may not be suited to amplify wideband signals because it exhibits a
high-pass transfer function. In fact, the transfer function is given by

1
Rp— -
Vo 1
‘j'(s)z——-g%+c— (12.5)
in 4+ — 18
F C2S
R
___ReCs (12.6)
RrCas +1

indicating that Viue/ Vin & —C/Cz only if @ 3> (ReC2) ™.

The above difficulty can be remedied by increasing RrCs, but in many applications the

required values of the two components become prohibitively large. We must therefore seek
- other methods of establis’icg the bias while utilizing capacitive feedback networks.

Let us now consider the switched-capacitor circuit depicted in Fig. 12.4, where three
switches control the operation: S; and S3 connect the left plate of C, to V;, and ground,
respectively, and S, provides unity-gain feedback. We first assume the open-loop gain of
the op amp is very large and study the circuit in two phases. First, 5; and $; are on and S is
off, yielding the equivalent circuit of Fig. 12.5(a). For a high-gain op amp, Vg = Vou = 0,
and hence the voltage across C is approximately equal to Vi,. Next, at t = 1o, and S
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S2
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C,
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Vi —
n — Vout
S3
_T_ ) Figure 12.4 Switched-capacitor am-
= plifier.
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v c i
c, in0 1
v; o—-—"——J I—J
"a "B —o Vour | l a5 oV,
() ()
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Vout /_' noe,
to t

(©)

Figure 12.5 Circuit of Fig. 12.4 in (a) sampling mode, (b) amplification mode.

turn off and S; turns on, pulling node A to ground. Since V, changes from Vj, to 0, the
output voltage must change from zero to V;,,,C,/C;.

The output voltage change can also be calculated by examining the transfer of charge.
Note that the charge stored on Cy just before # is equal to V;,oC). After t = to, the negative
feedback through C, drives the op amp input differential voltage and hence the voltage
across C to zero (Fig. 12.6). The charge stored on C; at t = t, must then be transferred to
C2, producing an output voltage equal to V;,oC;/C,. Thus, the circuit amplifies V;,o by a
factor of C{/C;.

Several attributes of the circuit of Fig. 12.4 distinguish it from continuous-time imple-
mentations. First, the circuit devotes some time to “sample” the input, setting the output to
zero and providing no amplification during this period. Second, after sampling, for ¢ > #p,-
the circuit ignores the input voltage V;,, amplifying the sampied voltage. Third, the circuit
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, ¢,
| +0|,; b—0 Vout E> *o~ 0 Vout

Figure 12.6 Transfer of charge from C; to C3.

configuration changes considerably from one phase to another, as seen in Fig. 12.5(a) and
(b), raising concern about its stability.

What is the advantage of the ainplifier of Fig. 12.4 over that in Fig. 12.17 In addition
to sampling capability, we note from the waveforms depicted in Fig. 12.5 that after V,,,
settles, the current through C; approaches zero. That is, the feedback capacitor does not
reduce the open-loop gain of the amplifier if the output voltage is given enough time to
settle. In Fig. 12,1, on the other hand, R, continuously loads the amplifier.

The switched-capacitor amplifier of Fig. 12.4 lends itself to implementation in CMOS
technology much more easily than in other technologies. This is because discrete-time
operations require switches to perform sampling as well as a high input impedance to
sense the stored quantities with no corruption. For example, if the op amp of Fig. 12.4
incorporates bipolar transistors at its input, the base current drawn from the inverting input
in the amplification phase [Fig. 12.5(b)] creates an error in the output voltage. The existence
of simple switches and a high input impedance have made CMOS technology the dominant
choice for sampled-data applications.

—

Vi o— —< Vout

|
o]

CK o

Sample

Amplify

) t

Figure 12.7 General view of switched-capacitor
amplifier.

The foregoing discussion leads to the conceptual view illustrated in Fig. 12.7 for switched-
capacitor amplifiers. In the simplest case, the operation takes place in two phases: sampling
and amplification. Thus, in addition to the analog input, V;,, the circuit requires a clock to
define each phase.

Qur study of SC amplifiers proceeds according to these two phases. First, we analyze
various sampling techniques. Second, we consider SC amplifier topologies.
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12.2 Sampling Switches
12.2.1 MOSFETS as Switches

A simple sampling circuit consists of a switch and a capacitor [Fig. 12.8(a)]. A MOS
transistor can serve as a switch [Fig. 12.8(b)] because (a) it can be on while carrying zero

CK

1

Vin °_“°/°_l_ - Vour Vin ‘*—.I_‘_I_" Vout
I

T
(a) (b)

Figure 12.8 (a) Simple sampling circuit, (b) implementation
of the. switch by a MOS device.

current, and (b) its source and drain voltages are not “pinned” to the gate voltage, i.e., if the
gate voltage varies, the source or drain voltage need not follow that variation. By contrast,
bipolar transistors lack both of these properties, typically necessitating complex circuits to
perform sampling.

To understand how the circuit of Fig. 12.8(b) samples the input, first consider the simple
cases depicted inFig. 12.9, where the gate command, C K, goeshighats = #. InFig. 12.9(a),
we assume that V;, = 0 for ¢t > #, and the capacitor has an initial voltage equal to Vpp.

Voo
M 1 0 —:
V|n= 0 Vout VDD 5
’D1 V + E
= ’ DQ—I Cn Vout E
= i >
@
CK
L

+1V

1 0 —
Vip=+1V A_TT_l_o Vout
Ipt ¢ o™
% 0 TC
_I H Vou' /_-

t
®) 0

Figure 12,9 Response of a sampling circuit to different input levels and initial
conditions.

t
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Thus, at t = fo, M; senses a gate-source voltage equal to Vpp while its drain voltage is
also equal to Vpp. The transistor therefore operates in saturation, drawing a current of
Ipi = (WnCox/2YW/L)Vpp — Vrx)? from the capacitor. As V,,, falls, at some point
Vou = Vop — Vru, driving M, into the triode region. The device nevertheless continues
to discharge Cy until V,,, approaches zero. We note that for V,,; <« 2(Vpp — Vrn), the
transistor can be viewed as a resistor equal to Ryp = [inCox(W/LXVpp — Vra)l~L

Now consider the case in Fig. 12.9(b), where V;, = +1 V, Vo, (t = ) = 0V, and
Vpp = 3 V. Here, the terminal of M connected to Cy acts as the source, and the transistor
turns on with Vgs = +3 V, but Vpg = +1 V. Thus, M, operates in the triode region,
charging Cy until V,,, approaches +1 V. For V,u; & +1 V, M, exhibits an on-resistance
of Ron = [UnCox(W/L)(Vpp — Vin — VTH)]_l-

The above observations reveal two important. points. First, a MOS switch can conduct
current in either direction simply by exchanging the role of its source and drain terminals.
Second, as shown in Fig. 12.10, when the switch is on, Vo, follows V;, and when the switch

High
1
VIHJ_I—:VM => I\.[\/ w—%—l—c" I\[\I
@)
Low

Sain b Uy m

Figure 12.10 Track and hold capabilities of a sampling circuit.

is off, V,,, remains constant. Thus, the circuit “tracks” the signal when CK is high and
“freezes” the instantaneous value of V;, across Cy when CK goes low.

Example 12.2

In the circuit of Fig. 12.9(a), calculate V. as a function of time. Assume A = 0.
Solution

Before V,,, drops below Vpp — Vry, My is saturated and we have:

Ipit
Vour(t) = Vbp —'—g; 2.7

1 W t
= Vpp— = —(Vpp — Vru) P —. 12.8
DD 2MnC'ox L( pp — VTH) Cn (12.8)
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After

5= 2VruCy (12.9)

w 5’
nCox ‘Z(VDD —Vry)

M, enters the triode region, yielding a time-dependent current. We therefore write:

dVou .
AL LAY ¢ 12.10
I D1 { )
1 wr. -
= ‘Eﬂncoxf[z(VDD = Vru)Vour — Vour bigl >0 (12.11)
Rearranging (12.11), we have
1 % '
4 Vour = —-u,,-cﬂ—dz, (12.12)
[2(VDD - Vrg) - Voul]Vom 2 Cy L
which, upon separation into partial fractions, is written as
1 1 ' v, Cox W
[— + : ] = 2 gy (12.13)
Vou  2(Vpp = Vru) — Vou | Vop — Vry Cy L
Thus,
Cox W
InVour —In[2(Vpp — Vrg) — Vourl = —(Vpp — VTH)H—nE.‘;Z(t —11), (12.14)
that is,
Vout ox W
In = —(Vbp — Vry) —({ - ). (12.15)
2Vpp — Vra) — Vou b Hn Cy L 1

Taking the exponential of both sides and solving for V,,,;, we obtain

C, w
2(Vop — Vruyexp | —(Vpp ~ Vraun =2 - 2t — 1y)
Cy L

(12.16)

Vour =

C, w
l+exp| ~(Vpp — Vrgdptn —= - —(t — 1)
Cy L

In the circuit of Fig. 12.9(b), we assumed Vi = +1 V (Fig. 12.11). Now suppose
Vin = Vpp. How does V,,, vary with time? Since the gate and drain of M, are at the sarme

4 potential, the transistor is saturated and we have:
dVou:
C =1 12.17
o D1 ( )
1 w
= 5 HnCox 7 (VDD = Vour = Vrz)’, (12.18)
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CK A —

M,

0 —
Vin= VoD Vout
+ Vob—VH
. 0 _I Cu Vout /_

t
Figure 12.11 Maximum output level in an NMOS sampler.

where channel-length modulation is neglected. It follows that

dv, 1 Cu W
out S = = —d, (12.19)
Vop = Vour — Vra)* 2 "Cux L
and hence
1 Vout 1 C.. W t
= iy —1} , (12.20)
Vop — Vour — Vru 0 2 Cy L 0
where body effect is neglected and V,,,,(r = 0) is assumed zero. Thus,
1
Vour = Voo — Vra — 1 Cox W 1 (12.21)

EM"E—L—t + Voo — Vra
Equation (12.21) implies that as t — o0, Vo — Vpp — V. This is because as Vo,
approaches Vpp — Vr g, the overdrive voltage of M, vanishes, reducing the current available
for charging Cy to negligible values. Of course, even for V,,, = Vpp — Vg, the transistor
conducts some subthreshold current and, given enough time, eventually brings V,,, to Vpp.
Nonetheless, as mentioned in Chapter 3, for typical operation speeds, it is reasonable to
assume that V,,, does not exceed Vpp — Vry.

The foregoing analysis demonstrates a serious limitation of MOS switches: if the input
signal level is close to Vpp, then the output provided by an NMOS switch cannot track the
input. From another point of view, the on-resistance of the switch increases considerably
as the input and output voltages approach Vpp — Vry. We may then ask: what is the
maximum input level that the switch can pass to the output faithfully? In Fig. 12.11, for
Vour % V;p, the transistor must operate in deep triode region and hence the upper bound of
Vin equals Vpp — Vrp. As explained below, in practice V;, must be quite lower than this
value.

In the circuit of Fig: 12.12, calculate the minimum and maximum on-resistance of M. Assume
wnCox = 50 ,(LANZ, W/L=10/1,Vrg =07V, Vpp=3V,andy = 0.
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Figure 12.12

Solution

We note that in the steady state, M| remains in the triode region because the gate voltage is higher
than both V;,, and V,,, by a value greater than Vry. If f;; = 10 MHz, we predict that V,,, tracks
Vin with a negligible phase shift due to the on-resistance of M and Cy. Assuming V,,, = Vi, we
need not distinguish between the source and drain terminals, obtaining

1

BnCox —L—(VDD —Vin — Vry)

Rony = (12.22)

Thus, Ront,max ~ 1.11 k2 and Ron1,min *~ 870 Q. By contrast, if the maximum input level is raised
to 1.5 V, then Ron1 max = 2.5 kQ.

MOS devices operating in deep triode region are sometimes called “zero-offset” switches
to emphasize that they exhibit no dc shift between the input and output voltages of the simple
sampling circuit of Fig. 12.8(b).! This is evident from examples of Fig. 12.9, where the
output eventually becomes equal to the input. Nonexistent in bipolar technology, the zero
offset property proves crucial in precise sampling of analog signals. _

We have thus far considered only NMOS switches. The reader can verify that the fore-
going principles apply to PMOS switches as well. In particular, as shown in Fig. 12.13, a
PMOS transistor fails to operate as a zero-offset switch if its gate is grounded and its drain
terminal senses an input voltage of | Vy g p| or less. In other words, the on-resistance of the
device rises rapidly as the input and output levels drop to | Vr 4 p| above ground.

12.2.2 Speed Considerations

What determines the speed of the sampling circuits of Fig. 12.87 We must first define the
speed here. Illustrated in Fig. 12.14, a simple, but versatile measure of speed is the time
required for the output voltage to go from zero to the maximum input level after the switch
turns on. Since V,,,, would take infinite time to become equal to V;,,0, we consider the output
settled when it is within a certain “error band,” AV, around the final value. For example,
we say the output settles to 0.1% accuracy after t5 seconds, meaning that in Fig. 12.14,
AV/Vino = 0.1%. Thus, the speed specification must be accompanied by an accuracy

1'We assume the circuit following the sampler draws no input dc current.



Sec. 12.2

Sampling Switches 415
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Figure 12.13 Sampling circuit using PMOS switch.

CcK VDD‘

Vin= VYino Vout
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O_I Cy Vout /r
- - 1 -

Figure 12.14 Definition of speed in a sampling circuit.

specification as weil. Note that after ¢ = 5, we can consider the source and drain voltages
to be approximately equal.

From the circuit of Fig. 12.14, we surmise that the sampling speed is given by two
factors: the on-resistance of the switch and the value of the sampling capacitor. Thus, to
achieve a higher speed, a large aspect ratio and a small capacitor must be used. However, as
illustrated in Fig. 12.12, the on-resistance also depends on the input level, vielding a greater
time constant for more positive inputs (in the case of NMOS switches). From Eq. (12.22),
we plot the on-resistance of the switch as a function of the input level [Fig. 12.15(a)], noting
the sharp rise as V,, approaches Vpp — Vr . For example, if we restrict the variation of
R,, to a range of 4 to 1, then the maximum input level is given by

1 _ 4

= (12.23)
w w
“ncoxI(VDD - Vin,max - VTH) PLnCox T(VDD - VTH)

That is,
3
Vin,max = Z(VDD — Vru). (12.24)

This value falls around Vpp /2, translating to severe swing limitations. Note that the device
threshold voltage directly limits the voltage swings.?

2By contrast, the output swing of cascode stages is typically limited by overdrive voltages rather than the
threshold voltage. :
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i A
Ron,n ; Ronp
/
0 YooV v, 0 |Vrne| ~ Vin
(@ (b)
Figure 12.15 On-resistance of (a) NMOS and (b) PMOS devices as a function of input
voltage. :

In order to accommodate greater voltage swings in a sampling circuit, we first observe
that a PMOS switch exhibits an on-resistance that decreases as the input voltage becomes
more positive [Fig. 12.15(b)]. it is then plausible to employ “complementary” switches
so as to allow rail-to-tail swings. Shown in Fig. 12.16(a), such a combination requires
complementary clocks, producing an equivalent resistance:

Ron,eq = Ron,N"Ran,P . (12.25)
1 1
= W W . (12.26)
nCox (f) (Vop — Vip — Vrgw) /vaCox(f) (Vin — |Vruel)
N P
_ 1
B W w W w '
Mncax(f) (Vop — Vran) — l:ﬂ'ncox (Z) - F"pCax (z‘) ] Vin — HpCox (f) |Vrael
N N P P
(12.27)

Interestingly, if (£, Cox(W/L)y = n pCox(W/L)p, then Ron,eq is independent of the input
level.? Figure 12.16(b) plots the behavior of Ron,eq in the general case, revealing much less
variation than that corresponding to each switch alone.

For high-speed input signals, it is critical that the NMOS and PMOS switches in
Fig. 12.16(a) turn off simultaneously so as to avoid ambiguity in the sampled value. If,
for example, the NMOS device tumns off At seconds earlier than the PMOS device, then
the output voltage tends to track the input for the remaining At seconds, but with a large,
input-dependent time constant (Fig. 12.17). This effect gives rise to distortion in the sampled
value. For moderate precision, the simple circuit shown in Fig. 12.18 provides complemen-
tary clocks by duplicating the delay of inverter 7, through the gate G,.

3In reality, Vryy and Vigp lvary with V;,, through body effect but we ignore this variation here.
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Figure 12.16 (a) Complementary switch, (b) on-resistance of the complementary

switch.

Vout /v Value . ' ’
Figure 12.17 Distortion generated if

complementary switches do not turn off
simultaneously.

CKi, ' I

CK ‘
f Figure 12.18 Simple circuit generat-
1 ing complementary clocks.

- 12.2.3 Precision Considerations

QOur foregoing study of MOS switches indicates that a larger W/L or a smaller sampling
capacitor results in a higher speed. In this section, we show that these methods of increasing

the speed degrade the precision with which the signat is sampled.
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Three mechanisms in MOS transistor operation introduce error at the instant the switch
turns off. We study each effect individually.

Channel Charge Injection Consider the sampling circuit of Fig. 12.19 and recall that

. for a MOSFET to be on, a channel must exist at the oxide-silicon interface. Assuming

Vin & Vyur, we use our derivations in Chapter 2 to express the total charge in the inversion
layer as :

Qo = WLC,:(Vpp — Vip — Vru), (1228)

where L denotes the effective channel length. When the switch turns off, Q. exits through

the source and drain terminals, a phefiomenon called “channel charge injection.”

Figure 12.19 Charge injection when
a switch turns off. .

The charge injected to the left side of Fig. 12.19 is absorbed by the input source, creating
no error. On the other hand, the charge injected to the right side is deposited on Cy,
introducing an error in the voltage stored on the capacitor. For example, if half of Q. is
injected onto Cy, the resulting error equals

_ WLCox(VDD ~ Vip — VTH)

AV
2Cy

(12.29)

TNustrated in.Fig. 12.20, the error for an NMOS switch appears as a negative “pedestal” at
the output. Note that the error is directly proportional to W LC,, and inversely proportional
to Cy.

Figure 12.20 Effect of charge injection.

An important question that arises now is: why did we assume in arriving at (12.29) that
exactly half of the channel charge is injected onto Cy? In reality, the fraction of charge
that exits through the source and drain terminals is a relatively complex function of various
parameters such as the impedance seen at each terminal to ground and the transition time
of the clock [1, 2]. Investigations of this effect have not yielded any rule of thumb that
can predict the charge splitting in terms of such parameters. Furthermore, in many cases,
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these parameters, e.g., the clock transition time, are poorly controlled. Also, most circuit
simulation programs model charge injection quite inaccurately. As a worst-case estimate,
we can assume that the entire channel charge is injected onto the sampling capacitor.

How does charge injection affect the precision? Assuming all of the charge is deposited
on the capacitor, we express the sampled output voltage as

WLC, (Vo — Vin — V.
Vs = Vi — ¢ "DC n = Vru) (12.30)
H

where the phase shift between the input and output is neglected. Thus,

WLC WLCys
Vour = Vin (1 + "x) - (Vpp — Vra), (12.31)
Cu Cx

suggesting that the output deviates from the ideal value through two effects: a non-unity
gain equal to 1 + WLC,,/Cy,* and a constant offset voltage —WLCox(Vpp — Vru)/Cx
(Fig. 12.21). In other words, since we have assumed channel charge is a linear function of
the input voltage, the circuit exhibits only gain error and dc offset.

With
Charge
Sampled 4 Injection
Vout
Aleal
/ V' Figure 12.21 Inputioutput character-
? istic of sampling circuit in the presence

of charge injection.

In the foregoirig discussion, we tacitly assumed that Vrgy is constant. However, for
NMOS switches (in an r-well technology), body effect must be taken into account.” Since
Ven = Vrao + y(~208 + Vs — ~/2¢p), and Vps & —Vj,, we have '

WLCox
Vaur = Vin = g2 (Voo = Vin = Vo = y+/200 + Von + vV/288) . (1232)

WLC,, WLC
=V.-,,(1+ 2 )+y 2 208 + Vin

Cr Cn
WLC,,
- : (VDD — Vrao+ ¥V 2¢B) . (12.33)
Cy

4The voltage gain is greater than unity because the pedestal becomes smaller as the input level rises.

SEven for PMOS switches, the n-well is connected to the most positive supply voltage because the source and
drain terminals of the switch may interchange during sampling.
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It follows that the nonlinear dependence of Vg upon V;, introduces nonlinearity in the
input/output characteristic.

In suminary, charge injection contributes three types of errors in MOS sampling circuits:
gain error, dc offsets, and nonlinearity. In many applications, the first two can be tolerated
or corrected whereas the last cannot.

It is instructive to consider the speed-precision trade-off resulting from charge injection.
Representing the speed by a simple time constant 7 and the precision by the error AV due
to charge injection, we define a figure of merit as F = (tAV)~L. Writing

P = R ' (12.34)
1 ‘
= nCox(W/L)(Vpp — Vir — VTH)C”’ (12.35)
and |
AV = WLCox(VDD — Vin — Vrg), (12.36)
we have
F= % (12.37)

Thus, to the first order, the trade-off is independent of the switch width and the sampling
capacitor. )

Clock Feedthrough In addition to channel charge injection, a MOS switch couples the
clock transitions to the sampling capacitor through its gate-drain or gate-source overlap
capacitance. Depicted in Fig. 12.22, the effect introduces an error in the sampled. output
voltage. Assuming the overlap capacitance is constant, we express the error as

w Cav

AV = Veg —22
““Wc,, + Cx

(12.38)

where C,, is the overlap capacitance per unit width. The error AV is independent of the
input level, manifesting itself as a constant offset in the input/output characteristic. As with
charge injection, clock feedthrough leads to a trade-off between speed and precision as well,

Figure 12,22 Clock feedthrough in a
sampling circuit.
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kT/C Noise Recall from Example 7.1 that a resistor charging a capacitor gives rise
to a total rms noise voltage of ,/kTYC. As shown in Fig. 12.23, a similar effect occurs in
sampling circuits. The on-resistance of the switch introduces thermal noise at the output and,
when the switch turns off, this noise is stored on the capacitor along with the instantaneous
value of the input voltage. It can be proved that the rms voltage of the sampled noise in this
case is still approximately equal to AT /C [3, 4].

Ran
Vin °_JMT° Vout - Vipo— T° Vint+ Vi
- Cy T Cu

Figure 12.23 Thermal noise in a sampling circuit.

The problem of kT'/ C noise limits the performance in many high-precision applications.
‘Inorder to achieve a low noise, the sampling capacitor must be sufficiently large, thus loading
other circuits and degrading the speed.

12.2.4 Charge Injection Cancellation

The dependence of charge injection upon the input level and the trade-off expressed by
(12.37) make it necessary to seek methods of cancelling the effect of charge m]ectmn SO as
to achieve a higher F. We consider a few such techniques here.

To arrive at the first technique, we postulate that the charge injected by the main transistor
can be removed by means of a second transistor. As shown in Fig. 12.24, a “dummy” switch,
M,, driven by CK is added to the circuit such that after M, turns off and M, turns on, the
channel charge deposited by the former on Cy is absorbed by the latter to create a channel.
Note that both the source and drain of M, are connected to the output node.

How do we ensure that the charge injected by M|, Aq, is equal to that absorbed by >,
Ag»? Suppose half of the channel charge of M, is injected onto Cy, i.e.,

WiL Cox

Ag, = ——2—(ch = Vin — Va1 (12.39)

Since Agy = WaLyCor(Vek — Vin — Vrua), if we choose Wy = 0.5W) and L, = Ly, then
Agy = Agq,. Unfortunately, the assumption of equal splitting of charge between source and
drain is generally invalid, making this approach less attractive.

c Figure 12.24 Addition of dummy de-
I H vice to reduce charge injection and clock
- feedthrough.
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Interestingly, with the choice Wy = 0.5W; and L, = L, the effect of clock feedthrough
is suppressed. As depicted in Fig. 12.25, the total charge'in V,,, is zero because

. Wl Cov 2W2C0v
-V, + V, = Q. 12.40
KWiCoo +C + 2WaCoy K WiCop + Ct + 2W5Cry (1240)

G, LT
o\ é’réovm Wy ov’Y\ 2W,Cyy

I .
e I

Figure 12.25 Clock feedthrough suppression by ;lummy switch.

Vino-

;:,Tg

Another approach to lowering the effect of charge injection incorporates both PMOS
and NMOS devices such that the opposite charge packets injected by the two cancel each
other (Fig. 12.26). For Ag, to cancel Ag,, we must have W L1Coy(Veg — Vip — Vegn) =
WaLoCox(Vin — |Vryp)). Thus, the cancellation occurs for only one input level. Even for
clock feedthrough, the circuit does not provide complete cancellation because the gate-drain
overlap capacitance of NFETSs is not equal to that of PFETs.

CK
_L Electrons
M1 Aq

H» 1
Ve b——q‘b——l—a Vou
M

2 T AQ2 Cy
Holes H Figure 12.26 Use of complementary
switches to reduce charge injection.

Our knowledge of the advantages of differential circuits suggests that the problem of
charge injection may be relieved through differential operation. As shown in Fig. 12.27,
we surmise that the charge injection appears as a common-mode disturbance. But, writing
Agqy = WLC;:(Vexk — Vimt — Vi), and Agy = WLCo(Vex — Vipa — Vi), we .
recognize that Ag; = Agp only if Vi, = Vi, In other words, the overall error is not
suppressed for differential signals. Nevertheless, this technique both removes the constant
offset and lowers the nonlinear component. This can be understood by writing

Aqy — Aqy = WLC o [(Vina — Viat) + (Vruz — Vrm)) (12.41)
= WLCor [Vinz = Virt + v (V285 + Virz = 267 + Vim )| (12.42)
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I
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A,Q1
M,
Vinzo- T3 2 Vout2
Aq,
C
I H Figure 12.27 Differential sampling

circuit.

Since for Vigg = Vimz, Aqi — Agz = 0, the characteristic exhibits no offset. Also, the
nonlinearity of body effect now appears in both square-root terms of (12.42), leading to
only odd-order distortion (Chapter 13). _

The problem of charge injection continues to limit the speed-precision envelope in
sampled-data systems. Many cancellation techniques have been introduced but each leading
to other trade-offs. One such technique, called “bottom-plate sampling,” is widely used in-
switched-capacitor circuits and is described later in this chapter.

12.3 Switched-Capacitor Amplifiers

As mentioned in Section 12.1 and exemplified by the circuit of Fig. 12.4, CMOS feedback
amplifiers are more easily implemented with a capacitive feedback network than a resis-.
tive one. Having examined sampling techniques, we are now ready to study a number of
switched-capacitor amplifiers. Our objective is to understand the underlying principles as
well as the speed-precision trade-offs encountered in the design of each circuit.

Before studying SC amplifiers, it is helpful to briefly look at the physical implementation
of capacitors in CMOS technology. A simple capacitor structure is shown in Fig. 12.28(a),
where the “top plate” is realized by a polysilicon layer and the “bottom plate” by a heavily

B
. e Poly
A R | Si02 Cap
) j_ P o—-bl_—| e
: T Ce
p-substrate T =
(a) ‘ _ (b)

Figure 12.28 (a) Monolithic capacitor structure, (b) circuit model of (a) including
parasitic capacitance to the substrate.
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doped n* region. The dielectric is the thin oxide layer used in MOS devices as well.% An
important concern in using this structure is the parasitic capacitance between each plate and
the substrate. In particular, the bottom plate suffers from substantial junction capacitance to
the underlying p region—typically about 10 to 20% of the oxide capacitance. For this reason,
we usually model the capacitor as in Fig. 12.28(b). Monolithic capacitors are described in
more detail in Chapters 17 and 18.

12.3.1 Unity-Gain Sampler/Buffer

While a unity-gain amplifier can be realized with no resistors or capacitors in the feedback
network [Fig. 12.29(a)], for discrete-time applications, it still requires a sampling circuit.
We may therefore conceive the circuit shown in Fig. 12.29(b) as a sampler/buffer. However,
the input-dependent charge injected by §, onto Cj limits the accuracy here.

—o V,

out out

(a) (b)

Figure 12.29 (a) Unity-gain buffer, (b) sampling circuit followed by unity—gélin buffer.

Now consider the topology depicted in Fig. 12.30(a), where three switches control the
sampling and amplification modes. In the sampling mode, $; and S, are on and S is off,
yielding the topology shown in Fig. 12.30(b). Thus, V,,, = Vy &~ 0, and the voltage
across Cy tracks Vi,. Att = 15, when V;, = V,, S, and S, turn off and S3 turns on,
placing the capacitor around the op amp and entering the circuit into the amplification
mode [Fig. 12.30(c)]. Since the op amp’s high gain requires that node X still be a virtual
ground and since the charge on the capacitor must be conserved, V,,, rises to a value
approximately equal to Vj. This voltage is therefore “frozen” and it can be processed by
subsequent stages. )

With proper timing, the circuit of Fig. 12.30(a) can substantially alleviate the problem
of channel charge injection. As Fig. 12.31 illustrates in “slow motion,” in the transition
from the sampling mode to the amplification mode, S, turns off slightly before S| does.
We carefully examine the effect of the charge injected by S, and ;. When S, turns off,
it injects a charge packet Ag, onto Cj, producing an error equal to Agz/Cy. However,
this charge is quite independent of the input level because node X is a virtual ground.
For example, if S is realized by an NMOS device whose gate voltage equals Vck, then
Agy = WLC,(Vek — Vru — V). Although body effect makes Vry a function of Vy,
Agqy is relatively constant because Vy is quite independent of V;,.

The constant magnitude of Ag, means that channel charge of S introduces only an
offset (rather than gain error or nonlinearity) in the input/output characteristic. As described

5The oxide in this type of capacitor is typically thicker than the MOS gate oxide because silicon dioxide grows
faster on a heavily-doped material.
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Figure 12.30 (a) Unity-gain sampler, (b) circuit of (a) in sampling mode,
(c) circuit of (a) in amplification mode.
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Figure 12.31 Operation of the unity-gain sampler in slow motion.

below, this offset can easily be removed by differential operation. But, how about the charge
injected by S; onto Cg? Let us set V;, to zero and suppose ) injects a charge packet Ag,
onto node P [Fig. 12.32(a)]. If the capacitance connected from X to ground (including
the input capacitance of the op amp) is zero, Vp and Vy jump to infinity. To simplify the
analysis, we assume a total capacitance equal to Cx from X to ground {Fig. 12.32(b)], and
we will see shortly that its value does not affect the results. In Fig. 12.32(b), each of Cy
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Figure 12.32 Effect of charge injected by $; with (a) zero and (b) finite op amp input
capacitance, (c) transition of circuit to amplification mode.

and Cy carries a charge equal to Ag;. Now, as shown in Fig. 12.32(c), we place Cy around
the op amp, seeking to obtain the resulting output voltage.

To calculate the output voltage, we must make an important observation: the total charge
at node X cannot change after S, turns off because no path exists for electrons to flow into
or out of this node. Thus, if before S, turns off, the total charge on the right plate of Cy
and the top plate of Cx is zero, it must still add up to zero after 5) injects charge because
no resistive path is connected to X. The same holds true after Cy is placed around the op

amp.
Now consider the circuit of Fig. 12.32(c), assuming the total charge at node X is zero. We
canwrite Cx Vx — (Vo — Vx)Cq = 0,and Vy = —V,,; /A,1. Thus, —(Cx +Cy) Vo /Ay —

VourCx = 0, i.e., V,,; = 0. Note that this result is independent of Ag;, capacitor values,
or the gain of the op amp, thereby revealing that the charge injection by S introduces no
error if S turns off first. ‘

In summary, in Fig. 12.30(a), after S; turns off, node X “floats,” maintaining a constant
total charge regardless of the transitions at other nodes of the circuit. As a result, after
the feedback configuration is formed, the output voltage is not influenced by the charge
injection due to S;. From another point of view, node X is a virtual ground at the moment
S, turns off, freezing the instantaneous input level across Cy and yielding a charge equal
to VoCy on the left plate of Cy. After settling with feedback, node X is again a virtual
ground, forcing Cy to still carry VoCy and hence the output voltage to be approximately
equal to V.

The effect of the charge injected by S; can be studied from yet another perspective.
Suppose in Fig. 12.32(c), the output voltage is finite and positive. Then, since Vx =
Vour /(—Aw1), Vx must be finite and negative, requiring negative charge on the top plate
of Cyx. For the total charge at X to be zero, the charge on the left plate of Cy must be
positive and that on its right plate negative, giving Vo, < 0. Thus, the only valid solution
is Vour = 0.
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The third switch in Fig. 12.30(a), S3, also merits attention. In order to turn on, §3 must
establish an inversion layer at its oxide interface. Does the required channel charge come
from Cy or from the op amp? We note from the foregoing analysis that after the feedback
circuit has settled, the charge on Cy equals VoCy, unaffected by S3. The channel charge of
this switch is therefore entirely supplied by the op amp, introducing no error. )

Our study of Fig. 12.30(a) thus far suggests that, with proper timing, the charge injected
by S| and §; is unimportant and the channel charge of § results in a constant offset voltage.
Fig. 12.33 depicts a simple realization of the clock edges to ensure S) turns off after S;
does.

Vipo— T Loy

CH o Vot

Figure 12.33 Generation of proper clock edges for unity-gain sampler.

The input-independent nature of the charge injected by the reset switch allows complete
cancellation by differential operation. Illustrated in Fig. 12.34, such an approach employs
a differential op amp along with two sampling capacitors so that the charge injected by 52
and S} appears as a common-mode disturbance at nodes X and Y. This is in contrast to the
behavior of the differential circuit shown in Fig. 12.27, where the input-dependent charge
injection still leads to nonlinearity. In reality, S» and §; exhibit a finite charge injection
mismatch, an issue resolved by adding another switch, S.,, that turns off slightly after S,
and $} (and before §; and §7), thereby equalizing the charge at nodes X and Y.

Figure 12.34 Differential realization’
of unity-gain sampler.
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Precision Considerations The circuit of Fig. 12.30(a) operates as a unity-gain buffer
in the amplification mode, producing an output voltage approximately equal to the voltage
stored across the capacitor. How close to unity is the gain here? As a general case, we
assume the op amp exhibits a finite input capacitance C;, and calculate the output voltage
when the circuit goes from the sampling mode to the amplification mode (Fig. 12.35).
Owing to the finite gain of the op amp, Vx % 0 in the amplification mode, giving a charge

1
C

Vo
Vi, ot —Xi X
" o L —oVou 5> A -
H C v,
T Ay ClnI' out
T = Av1

Figure 12.35 Equivalent circuit for accuracy calculations.

Lt
| o
H

equal to C;, Vx on C;,. The conservation of charge at X requires that C;, Vx come from
Cpy, raising the charge on Cy to CyVp + C;, Vy.” It follows that the voltage across Cy
equals (Cy Vp + Cy, Vx)/ Cy. We therefore write V,,, — (CyVp + CinVx)/Cy = Vy and
Vx = _Vout/Avl- Thus,

Vo
Vou = - (12.43)
14 - (9-— + 1)
Avl CH
1 Cip
~ V|l ~— —+1]}]. 12.44
Oli An (CH * )] ( )

As expected, if Cin/Chr < 1, then V,,, = Vy/(1 + A;ll). In general, however, the circuit
suffers from a gain error of approximately —(C;,/Cy + 1)/A,1, suggesting that the input
cagacitance must be minimized even if speed is not critical. Recall from Chapter 9 that to
increase A, we may choose a large width for the input transistors of the op amp, but at the
cost of higher input capacitance. An optimum device size must therefore yield minimum
gain error rather than maximum A,;,.

Example 12.4

In the circuit of Fig. 12.35, Ciy = 0.5 pF and Cy = 2 pF. What is the minimum op amp gain that
guarantees a gain error of 0.1%?

Solution
Since Cip/Cq = 0.25, we have Ayj min = 1000 x 1.25 = 1250.

TThe charge on C increases because positive charge transfer from the left plate of Cy to the top piate of C;p
leads to a more positive voltage across Cy.
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Figure 12.36 (a) Unity-gain sampler in sampling mode, (b) equivalent circuit of (a).

Speed Considerations Let us first examine the circuit in the sampling mode
[Fig. 12.36(a)]. What is the time constant in this phase? The total resistance in series
with Cy is given by R, and the resistance between X and ground, Rx. Using the simple
op amp model shown in Fig. 12.36(b), where Ry denotes the open-loop output impedance
of the op amp, we have

(Ix — GuVx)Ro + IxRonz = Vi, (12.45)
that is,
Ro+ R
Ry = o + Konz . (12.46)
1+ GuRo

Since typically Rz < Ro and G, Ry > 1, we have Rx ~ 1/G,. For example, in
a telescopic op amp employing differential to single-ended conversion, G, equals the
transconductance of each input transistor.

The time constant in the sampling mode is thus equal to

Tsam = (Ranl + L) Chu. (1247)
. Gm
The magnitude of 754, must be sufficiently small to allow settling in the test case of Fig. 12.14
to the required precision.

Now let us consider the circuit as it enters the amplification mode. Shown in Fig. 12.37
along with both the op amp input capacitance and the load capacitance, the circuit must
begin with V,,, ~ 0 and eventually produce Vo, =~ Vp. If C;, is relatively smali, we can
assume that the voltages across C; and Cy do not change instantaneously, concluding that
if V,,; = 0and Vey = V, then Vy = —V, at the beginning of the amplification mode.
In other words, the input difference sensed by the op amp initially jumps to a large value,
possibly causing the op amp to slew. But, let us first assume the op amp can be modeled by
a linear model and determine the output response.

To simplify the analysis, we represent the charge on Cy by an explicit series voltage
source, Vs, that goes from zero to Vy at ¢t = 1y while Cy carries no charge itself (Fig. 12.38).
The objective is to obtain the transfer function V,..(s)/ Vs(s) and hence the step response.



430

Chap. 12 Introduction to Switched-Capacitor Circuits

0
C
- R l:.' ’ VX
ml
x r - VO
F—° Vout Y%
cirlT I- CL Vout :
T S 2 —
Figure 12.37 Time response of unity-gain sampler in amplification
mode.
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:.:_.[ I = = = Figure 12.38 Equivalent circuit of
= ' unity-gain circuit in amplification mode.
We have
1
Vour R_ +Crs )+ GmVX =(Vs + Vx — Vou;)CHS. (1248)
0

Also, since the current through C;, equals VyC;,s,

C,-ns

%
X CHS

+ Vx + Vs = Vour. (12.49)

Calcuiating Vx from (12.49) and substituting in (12.48), we arrive at the transfer function:

Vour (S) - R (Gm + CinS)CH
Vs *Ro(CLCin + CinC + CrCL)s + GnRoCr + Cn +Con

(12.50)

Note thatfor s = 0,(12.50) reduces to a form similar to (12.43). Since typically G,, RoCg >
Ch, Cin, we can simplify (12.50) as '

Vout (Gm + Cins)CH

5) = . 12.51
Vs ) (CLCin + CinCx + CxCr)s + G, Cy ( )
Thus, the response is characterized by‘a time constant equal to
C in
CL int+C CH+CHCL. . (1252)

Tamp = G CH
B m
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which is independent of the op amp output resistance. This is because a higher Ry leads
to a greater loop gain, eventually yieldipg a constant closed-loop speed. If C;, <« Cr, Cy,
then (12.52) reduces to C1/ G, an expected result because with negligible C,,, the output
resistance of the unity-gain buffer is equal to 1/G,,.

We now study the slewing behavior of the circuit, considering a telescopic op amp as an
example. Upon entering the amplification mede, the circuit may experience a large step at
the inverting input (Fig. 12.37). As shown in Fig. 12.39, the tail current of the op amp’s input
differential pair is then steered to one side and its mirror current charges the capacitance
seen at the output. Since M, is off during slewing, C;, is negligible and the slew rate is
approximately equal to Iss/C; . The slewing continues until Vy is sufficiently close to the
gate voltage of M, after which point the settling progresses with the time constant given
in (12.52).

Figure 12.39 Unity-gain sampler
during slewing.

Our foregoing studies reveal that the input capacitance of the op amp degrades both the
speed and the precision of the unity-gain sampler/buffer. For this reason, the bottom plate
of Cy in Fig. 12.30 is usually driven by the input signal or the output of the op amp and
the top plate is connected to node X (Fig. 12.40), minimizing the parasitic capacitance
seen from node X to ground. This technique is called “bottom-plate sampling.” Driving the
bottom plate by the input or the output also avoids the injection of substrate noise to node
X (Chapter 18). ) ,

It is instructive to compare the performance of the sampling circuits shown in
Figs. 12.29(b) and 12.30(a). In Fig. 12.29(b), the sampling time constant is smaller because
it depends on only the on-resistance of the switch. More importantly, in Fig. 12.29(b), the
amplification after the switch turns off is almost instantaneous, whereas in Fig. 12.30 it
requires a finite settling time. However, the critical advantage of the unity-gain sampler is
the input-independent charge injection.

'/,

7
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VOUl

Figure 12.40 Connection of capacitor to the unity-gain
sampler.

12.3.2 Noninverting Amplifier

In this section, we revisit the amplifier of Fig. 12.4, studying its speed and precision proper-
ties. Repeated in Fig. 12.41(a), the amplifier operates as follows. In the sampling mode, §;
and $; are on and 83 is off, creating a virtual ground at X and allowing the voltage across
C; to track the input voltage [Fig. 12.41(b)]. At the end of the sampling mode, S, turns
off first, injecting a constant charge, Ag,, onto node X. Subsequently, S; turns off and S;
turns on [Fig. 12.41(c)]. Since Vp goes from Vo to 0, the output voltage changes from 0 to
approximately Vi;o(C1/C,), providing a voltage gain equal to C;/C,. We call the circuit a
“noninverting amplifier” because the final output has the same polarity as V;,o and the gain
can be greater than unity.

V. c-—cfoj—”——- Vino———+
i X < Vout " P X — Vout
Sa ’

=0

Vino- C1 ’ a Vino
| P X *4— Vout

(c)

Figure 12.41 (a) Noninverting amplifier, (b) circuit of {a) in sampling mode, (c) transition
of circuit to amplification mode.
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As with the unity-gain circuit of Fig. 12.30(a), the noninverting amplifier avoids input-
dependent charge injection by proper timing, namely, turning S, off before S, (Fig. 12.42).
After S; is off, the total charge at node X remains constant, making the circuit insensitive to
charge injection of S; or charge “absorption” of S3. Let us first study the effect of §; carefully.
Asillustrated in Fig. 12.43, the charge injected by Sy, Agq, changes the voltage at node P by
approximately AVp = Agy/Cy, and hence the output voltage by — Ag,; / C,. However, after
S3 turns on, Vp drops to zero. Thus, the overall change in Vp is equal to 0 — Vi, = — Vipp,
producing an overall change in the output equal to —V,,0(—C1/C2) = VingCi/Ca.

S,
Aq, F_fo_
C,
S Vo i
Vln o—0 P Cl |1 ) ¢ —0 Vout
Figure 12.42 Transition of noninvert-
= ing amplifier to amplification mode.
. 8, turns off.
AV,
Vino\.‘ * F
C, — \
Ik % f
v Sy P S5 turns on.
" T’ c, X '_°‘Vout 0 -
q1 33 t
- C
= = Vino

C.
Vout 2

--“'

Figure 12.43 Effect of charge injected by S;.

The key point here is that Vp goes from a fixed voltage, Vi, to another, 0, with an
intermediate perturbation due to S;. Since the output voltage of interest is measured after
node P is connected to ground, the charge injected by S does not affect the final output.
From another perspective, as shown in Fig. 12.44, the charge on the right plate.of C; at the
instant S, turns off is approximately equal to — V;,0Cy. Also, the total charge at node X must
remain constant after S, turns off. Thus, when node P is connected to ground and the circuit
settles, the voltage across C) and hence its charge are nearly zero, and the charge —V;,0C}
must reside on the left plate of Cs. In other words, the output voltage is approximately equal |
to VinoC1/C; regardless of the intermediate excursions at node P,
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Figure 12.44 Charge redistribution in noninverting amplifier.

The foregoing discussion indicates that two other phenomena have no effect on the final
output. First, from the time S, turns off until the time §; turns off, the input voltage may
change significantly (Fig. 12.45) without introducing any error. In other words, the sampling
instant is defined by the turn-off of §,. Second, when S; turns on, it requires some channel
charge but since the final value of Vp is zero, this charge is unimportant. Neither of these
effects introduces error because the total charge at node X is conserved and Vp is eventually
set by a fixed (zero) potential. To emphasize that Vp is initially and finally determined by
fixed voltages, we say node P is “driven” or node P switches from a low-impedance node to
another low-impedance node. Here the term low-impedance distinguishes node P, at which
charge is not conserved, from “floating™ nodes such as X, where charge is conserved.

. | X —o Vout
S3 -

Figure 12.45 Effect of input change after S; tumns off.

In summary, proper timing in Fig. 12.41(a) ensures that node X is perturbed by only the
charge injection of S, making the final value of V,,; free from errors due to Sy and S3. The
constant offset due to S; can be suppressed by differential operation (Fig. 12.46).

Example 12.5

In the differential circuit of Fig. 12.46, suppose the equalizing switch is not used and S and 8} exhibit
a threshold voltage mismatch of 10mV. If Cy = 1 pF, C2 = 0.5 pF, Vr 5 = 0.6 V, and for all switches
WLC,y = 50 fF, calculate the dc offset measured at the output assuming all of the channel charge of
$7 and 8} is injected onto X and ¥, respectively.
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Figure 12.47

Solution

Simpiifying the circuit as in Fig. 12.47, we have V,,,, =~ Aq/Ca, where Ag = WLC,x AVrg. Note
that C; does not appear in the result because X is a virtual ground, i.e., the voltage across C; changes
only negligibly. Thus, the injected charge resides primarily on the left plate of C3, giving an output
error voltage equal to AV,,; = WLC, AVr #/C2 =1 mV.

Precision Considerations As mentioned above, the circuit of Fig. 12.41(a) provides
a nominal voltage gain of Cy/C,. We now calculate the actual gain if the op amp exhibits a
finite open-loop gain equal to A,;. Depicted in Fig. 12.48 along with the input capacitance
of the op amp, the circuit amplifies the input voltage change such that:

(Vout - VX)CZS = VxCins + (VX - Vin)cls- (1253)



436

Chap. 12 Introduction to Switched-Capacitor Circuits

C2
I
AR A
Vipo 1 \
Cin= + A ou Figure 12.48 Equivalent circuit of
" = v noninverting amplifier during ampli-
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Since \V,,,,, = —A,, Vy, we have
Vout Cl
= . 12.54
Vin C2+ Ci 4+ Ciy ( )
G+ —
Aul
For large Ay,
Vout

(12.55)

~ & (1 _G+ GG L) ,
Vin G2 C2 A/’
implying that the ampliﬁér suffers from a gain error of (Cz + C; + C;,)}/(C2A,1). Note that
the gain error increases with the nominal gain C/C3.

Comparing (12.44) with (12.55), we note that with Cy = C, and for a nominal gain
of unity, the noninverting amplifier exhibits greater gain error than does the unity-gain
sampler. This is because the feedback factor equals C,/(C; + Cin + C3) in the former and
Cr/(Cy + C;,) in the latter. For example, if C;, is negligible, the unity-gain sampler’s gain
error is half that of the noninverting amplifier.

Speed Considerations The smaller feedback factor in Fig. 12.48 suggests that the
time response of the amplifier may be slower than that of the unity-gain sampler. This is
indeed true. Consider the equivalent circuit shown in Fig. 12.49(a). Since the only difference
between this circuit and that in Fig. 12.38 is the capacitor Cy, which is connected from node
X to an ideal voltage source, we expect that (12.52) gives the time constant of this amplifier
as well if C;, is replaced by C;, + C;. But for a more rigorous analysis, we substitute
Vin, C1, and Cj, in Fig. 12.49(a) by a Thevenin equivalent as in Fig. 12.49(b), where
a = C/(Cy + Cy), and C,y = Cy + Cip, and note that

Ce

Vx =@V, =V, — V. 12.56
X (a n aur)ceq i Cz + Vour ( )
Thus,
Cug 1 . CeyCs
Vir = Vour) 2 + Vour | G + Ve [ = + C15 ) = @Vin = Vour) o2,
|:(a in ou:)Ceq e + V, t] + Vour (RO + LS) (o out)ceq n C2s

(12.57)
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Figure 12.49 (a) Equivalent circuit of noninverting ampli-
fier in amplification mode, (b) circuit of (a) with Vi, C1, and
C;p replaced by a Thevenin equivalent.

and hence
C;
—C,,—————(Gm — C25)R
Vour (s) = o C+ C,',,( 25)Ro (12.58)
Vin C2G Ry + Ceg + C2 4 Ro[CL(Cey + C2) + Cq Cals '

Note that for s = 0, (12.58) reduces to (12.54). For a large G, Rg, we can simplify (12.58)
to

Gy
—Cpg——— (G — Ca5)R
Vout (s) ~ g Cl + Cin( m 25)Rp (12 59)
Vin Ro(CrCey + CLCa 4 CegCr)s + G RoCy’
obtaining a time constant of
C1Cep+C
ramp = Cen T CLC2H CagC2 (12.60)

Gmcz

which is the same as the time constant of Fig. 12.37 if C;, is replaced by Ci, -+ C,. Note
the direct dependence of Tm, upon the nominal gain, C;/Ca.

It is instructive to examine the amplifier’s time constant for the special case C; = 0.
Equation (12.60) yields Tamp = (C1 + Cin)/Gm, 2 value independent of the feedback
capacitor. This is because, while a larger C; introduces heavier loading at the output, it also
provides a greater feedback factor.

The reader may wonder why Eq. (12.58) yields a negative gain for the circuit that we
have called a “noninverting” amplifier. This equation simply means if the left plate of Cyis
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stepped down, then the output goes up. This does not contradict the operation of the ori ginal
circuit (Fig. 12.41), where the change in Vp is equal to —V,,.

12.3.3 Precision Multiply-by-Two Circuit

The circuit of Fig. 12.41(a) can operate with a relatively high closed-loop gain, but it
suffers from speed and precision degradation due to the low feedback factor. In this section,
we study a topology that provides a nominal gain of two while achieving a higher speed
and lower gain error [5]. Shown in Fig. 12.50(a), the amplifier incorporates two equal
capacitors, C = C; = C.Inthe sampling mode, the circuit is configured as in Fig. 12.50(b),

—o Vout

V,
inﬂ:}; o Vout X b—o let

= C,

(b) (©

Figure 12.50 (a) Multiply-by-two circuit, (b) circuit of (a) in sampling mode, (c) circuit
of (a) in amplification mode.

establishing a virtual ground at X and allowing the voltage across C; and C; to track Vin.In
the transition to the amplification mode, S; turns off first, C; is placed around the op amp,
and the left plate of C» is switched to ground [Fig. 12.50(c)]. Since at the moment $3 turns
off, the total charge on C; and C; equals 2V;,oC (if the charge injected by S; is neglected),
and since the voltage across C, approaches zero in the amplification mode, the final voltage
across C; and hence the output voltage are approximately equal to 2V;,;. This can also be
seen from the slow motion illustration of Fig. 12.51.

The reader can show that the charge injected by S| and S, and absorbed by S4 and
Ss is unimportant and that injected by S introduces a constant offset. The offset can be
suppressed by differential operation.

The speed and precision of the multiply-by-two circuit are expressed by (12.60) and
(12.55), respectively, but the advantage of the circuit is the higher feedback factor for a
given closed-loop gain. Note, however, that the input capacitance of the multiply-by-two
circuit in the sampling mode is higher.
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Figure 12.51 Transition of multiply-by-two circuit to amplification mode in slow motion.

12.4 Switched-Capacitor Integrator

Integrators are used in many analog systems. Examples include filters and oversampled
analog-to-digital converters. Fig. 12.52 depicts a continuous-time integrator, whose output
can be expressed as

Vour = _"'1_ Vindt, (1261)
RCr

if the op amp gain is very large. For sampled-data systems, we must devise a discrete-time
counterpart of this circuit.

Cr
—iF
Vino—W—4 Lo v,

Figure 12.52 Continuous-time inte-
grator.

Before studying SC integrators, let us first point out an interesting property. Consider
a resistor connected between two nodes [Fig. 12.53(a)], carrying a current equal to (V4 —
V)/R. The role of the resistor is to take a certain amount of charge from node A every
second and move it to node B. Can we perform the same function by a capacitor? Suppose
in the circuit of Fig. 12.53(b), capacitor C is alternately connected to nodes A and B ata
clock rate fcx. The average current flowing from A to B is then equal to the charge moved

R
—
I

(@)

Figure 12.53 (a) Continuous-time and (b) discrete-time resistors.
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in one clock period:

Tag = M (12.62)
fex
= Csfcx(Va — Vp). (12.63)

We can therefore view the circuit as a “resistor” equal to (Cs fex)~!. Recognized by James
Clark Maxwell, this property formed the foundation for many modern switched-capacitor
circuits,

Let us now replace resistor R in Fig. 12.52 by its discrete-time equivalent, arriving at
the integrator of Fig. 12.54(a). We note that in every clock cycle, C; absorbs a charge equal

c ) LGy
Vi
_”2_ Vout * c2 "
S1 p S2
Vin o—d
X —o Vout
= i Kl
@ (b)

Figure 12.54 (a) Discrete-time integrator, (b) response of circuit to a constant input

voltage.

to C;V;, when §) is on and deposits the charge on C, when S, is on (node X is a virtual
ground). For example, if V;, is constant, the output changes by V;,C,/C; every clock cycle
[Fig. 12.54(b)]. Approximating the staircase waveform by a ramp, we note that the circuit
behaves as an integrator.

The final value of V,,, in Fig. 12.54(a) after every clock cycle can be written as

C
VourkTek) = Vour[(k — DTcx] ~ Vial(k — DTck] - E;— (12.64)

where the gain of the op amp is assumed large. Note that the small-signal settling time
constant as charge is transferred from C, to C; is given by (12.52).

The integrator of Fig. 12.54(a) suffers from two important drawbacks. First, the input-
dependent charge injection of §; introduces nonlinearity in the charge stored on C; and
hence the output voltage. Second, the nonlinear capacitance at node P resulting from
the source/drain junctions of S; and S, leads to a nonlinear charge-to-voltage conversion
when C; is switched to X. This can be understood with the aid of Fig. 12,55, where
the charge stored on the total junction capacitance, C j» 18 not equal to V;,C;, but rather
equal to

Vin0
g =/ C;dV. (12.65)
o .
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C,
i
p Sz
v +l | X —o Vout
inn=¢ C
T I I = Figure 12.55 Effect of junction ca-
= = pacitance nonlinearity in SC integrator.

Since C; is a function of voltage, ¢ ; exhibits a nonlinear dependence on V;,o, thereby
creating a nonlinear component at the output after the charge is transferred to the integration
capacitor.

Anintegrator topology that resolves both of the foregoing issues is shown in Fig. 12.56(a).
We study the circuit’s operation in the sampling and integration modes. As shown in
Fig. 12.56(b), in the sampling mode §; and S; are on and S and S4 are off, allowing
the voltage across C; to track V;, while the op amp and C; hold the previous value. In the
transition to the integration mode, $3 turns off first, injecting a constant charge onto C1, §
turns off next, and subsequently S, and S, turn on [Fig. 12.56(c)]. The charge stored on Ci
is therefore transferred to C; through the virtual ground node” ’

Since Sy turns off first, it introduces only a constant offset, which can be suppressed by
differential operation. Moreover, because the left plate of C, is “driven” (Section 12.3.2),
the charge injection or absorption of S; and S, contributes no error. Also, since node X
is a virtual ground, the charge injected or absorbed by S4 is constant and independent
of V;,.

How about the nonlinear junction capacitance of S3 and S57 We observe that the voltage
across this capacitance goes from near zero in the sampling mode to virtual ground in the

C;
1l
S1 c1 P 34
Vin | X —o Vour
S, S3 =
(@)
1273 f"lz
c1 I c1 11
Yine l—_l_ 2 Vout -[_ = — Vout
(b) - (c)

Figure 12.56 (a) Parasitic-insensitive integrator, (b) circuit of (a) in sampling mode,
(c) circuit of {a) in intefgration mode.
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integration mode. Since the voltage across the nonlinear capacitance changes by a very
small amount, the resulting nonlinearity is negligible.

12.5 Switched-Capacitor Common-Mode Feedback

Our study of common-mode feedback in Chapter 9 suggested that sensing the output CM
level by means of resistors lowers the differential voltage gain of the circuit considerably.
We also observed that sensing techniques using MOSFETs that operate as source followers
or variable resistors suffer from a limited linear range. Switched-capacitor CMFB networks
provide an alternative that avoids both of these difficulties (but the circuit must be refreshed
periodically.)

In switched-capacitor common-mode feedback, the outputs are sensed by capacitors
rather than resistors. Figure 12.57 depicts a simple example, where equal capacitors C and
C, reproduce at node X the average of the changes in each output voltage. Thus, if V,,,1 and
V.12 €Xperience, say, a positive CM change, then Vy and hence Ips increase, pulling Vi1
and V,,;» down. The output CM level is then equal to V52 plus the voltage across Cy and C;.

Figure 12.57 Simple SC common-
mode feedback.

How is the voltage across C; and C, defined? This is typically carried out when the
amplifier is in the sampling (or reset) mode and can be accomplished as shown in Fig. 12.58.
Here, during CM level definition, the amplifier differential input is zero and switch §, is
on. Transistors Mg and M, operate as a linear sense circuit because their gate voltages
are nominally equal. Thus, the circuit settles such that the ouput CM level is equal to
Viss.7+ Viss. Atthe end of this mode, S; turns off, leaving a voltage equal to Vigs6.7 across
C1 and C;. In the amplification mode, Mg and M, may experience a large nonlinearity but
they do not impact the performance of the main circuit because §) is off.

In applications where the output CM level must be defined more accurately than in the
above example, the topology shown in Fig. 12.59 may be used. Here, in the reset mode,
one plate of C; and C; is switched to V¢ while the other is connected to the gate of
M. Each capacitor therefore sustains a voltage equal to Vey — Vgss. In the amplification
mode, 5, and S; are on and the other switches are off, yielding an output CM level equal to
Vem — Vioss + Viass. Proper definition of I3 and Ips with respect to Irgr can guarantee
that V55 = Vigse and hence the output CM level is equal to V.
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~ Figure 12.58 Definition of the volt-
- age across Cj and C3.

'/
ARG
Y%

S3

s;——‘ Vem

M. F' ) I rer
ama Sl

Figure 12.59 Alternative topology for definition of output CM
level.

With large output swings, the speed of the CMFB loop may in fact influence the settling
of the differential output [6]. For this reason, part of the tail current of the differential pairs
in Figs. 12.58 and 12.59 can be provided by a constant current source so that Ms makes
only small adjustments to the circuit.

'Probles -

Unless otherwise stated, in the following problems, use the device data shown in Table 2.1 and assume
Vpp = 3 V where necessary. Also, assume all transistors are in saturation.

12.1. The circuit of Fig. 12.2(b) is designed with C; = 2 pF and C; = 0.5 pF.
(a) Assuming Rr = co but the op amp has an output resistance R,y derive the transfer
© function Vo (s)/ Vin(s).
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(b) If the op.amp is ideal, determine the minimum value of Ry that guarantees a gain error
of 1% for an input frequency of 1 MHz.

Suppose in Fig, 12.5(a), the op amp is characterized by a transconductance G, and an output

resistance R,;.

(a) Determine the transfer function Vout / Vin in this mode.

(b) Plot the waveform at node B if V;, is a 100-MHz sinusoid with a peak amplitude of 1V,
Ci = 1pF, Gy = 1/(100 ), and R,,; = 20 kS2.

In Fig. 12.5(b), node A is in fact connected to ground through a switch (Fig. 12.4). If the

switch introduces a series resistance R,, and the op amp is ideal, calculate the time constant

of the circuit in this mode. What is the total energy dissipated in the switch as the circuit

enters the amplification mode and V,,,, settles to its final value?

The circuit of Fig. 12.9(a) is designed with (W/L); = 20/0.5 and Cy = 1 pF.

(a) Using Egs. (12.9) and (12.16), calculate the time required for V,,; to drop to +1 mV.

(b) Approximating M by alinear resistorequal to [ty Cox (W/ L) (Vpp— Vel ™!, calculate
the time required for V,,,, to drop to +1 mV and compare the result with that obtained in
part (a).

The circuit of Fig. 12.11 cannot be characterized by a single time constant because the

resistance charging Cy (equal to 1/g,, if ¥ = 0) varies with the output level. Assume

(W/L); =20/0.5and Cy = 1 pF.

(a) Using Eq. (12.21), calculate the time required for V,,, to reach 2.1 V.

(b) Sketch the transconductance of M) versus time.

In the circuit of Fig. 12.8(b), (W/L); = 20/0:5 and Cy = 1 pF. Assume 1 = y = 0 and

Vin = Vo sinwint + Vi, where w;, = 21 x (100 MHz).

(a) Calculate R,,; and the phase shift from the input to the output if Vg = V,,, = 10 mV.

(b) Repeat part (a) if Vo = 10 mV but V,,, = 1 V. The variation of the phase shift translates
to distortion.

Describe an efficient SPICE simulation that yields the plot of Roneq for the circuit of

Fig. 12.16.

The sampling network of Fig. 12.16 is designed with (W/L), = 20/0.5, (W/L); = 60/0.5,

and Cy = 1 pE If Vi, = 0 and the initial value of V,,, is +3 V, estimate the time required

for Vo, to drop to +1 mV.

In the circuit of Fig. 12.19, (W/L); = 20/0.5 and Cy = 1 pF. Calculate the maximum

error at the output due to charge injection. Compare this error with that resulting from clock

feedthrough.

The circuit of Fig. 12.60 samples the input on Cy when CK is high and connects C; and C;

when CK is low. Assume (W/L); = (W/L); and C| = Cs.

(a) If the initial voltages across C; and C3 are zero and V,, = 2 V, plot V,,; versus time for
many clock cycles. Neglect charge injection and clock feedthrough.

= " Figure12.60
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(b) What is the maximum error in V,,,, due to charge injection and clock feedthrough of M 1
and M3? Assume the channel charge of M» splits equally between Cy and Cy.
(¢) Determine the sampled kT'/ C noise at the output after M> turns off.

For Vi, = Vysinwpt + Vo,-where Vo =0.5Vand wp = 27 % (10 MHz), plot the output
waveforms of the circuits shown in Fig. 12.29(b) and 12.30(a). Assume a clock frequency of
50 MHz.

In Fig. 12.45, S; turns off At seconds after S and S3 turns on At seconds after S| tums off.
Plot the output waveform, taking into account the charge injection and clock feedthough of
S51-53. Assume all of the switches are NMOS devices.

The circuit of Fig. 12.48 is designed with C1 = 2 pF, C;, = 0.2 pF and A4, = 1000. What is
the maximum nominal gain, C1/C2, that the circuit can provide with a gain error of 1%?

In Problem 12.13, what is the maximum nominal gain if G,, = 1/(100 Q) and the circuit
must achieve a time constant of 2 ns in the amplification mode? Assume C;, = 0.2 pF and
calculate € and C».

The integrator of Fig. 12.54 is designed with C; = C; = 1 pF and a clock frequency of
100 MHz. Neglecting charge injection and clock feedthrough, sketch the output if the input
is a 10-MHz sinusoid with a peak amplitude of 0.5 V. Approximating Cy, 51, and 5 by a
resistor, estimate the output amplitude.

Consider the switched-capacitor amplifier depicted in Fig. 12.61, where the common-mode’
feedback is not shown. Assume (W/L)_y = 50/0.5,Iss = 1 mA, C; = C2 = 2 pF,
C3 = C4 = 0.5 pF, and the output CM level is 1.5 V. Neglect the transistor capacitances.

Vem Figure 12.61

(a) What is the maximum allowable output voltage swing in the amplification mode?
(b) Determine the gain error of the amplifier.
(¢) What is the small-signal time constant in the amplification mode?

Repeat Problem 12.16(c) if the gate-source capacitance of M) and M is not neglected.

A differential circuit incorporating a well-designed common-mode feedback network exhibits
the open-loop input-output characteristic shown in Fig. 12.62(a). In some circuits, however,
the characteristic appears as in Fig. 12.62(b). Explain how this effect occurs.
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Figure 12.62

In the common-mode feedback network of Fig. 12.58, assume W/L = 50/0.5 for all tran-
sistors, Ips = 1 mA, and Ipg7 = 50 pA. Determine the allowable range of the input
common-mode level.

Repeat Problem 12.19 if (W/L) 7 = 10/0.5.

Suppose in the common-mode feedback network of Fig. 12.58, Sy injects a charge of Agq onto
the gate of Ms. How much do the gate voltage of Ms and the output common-mode level
change due to this error?

Inthe circuitof Fig. 12.63, each op amp is represented by a Norton equivalent and characterized
by G and R,y,,. The output currents of two op amps are summed at node ¥ [7]. (The circuit
is shown in the amplification mode.) Note that the main amplifier and the auxiliary amplifier
are identical and the error amplifier senses the voltage variation at node X and injects a

Main Amplifier
C, '
H IL
i Cy b
V|n°—‘“—§‘| I 'é Y

m < Vout
I gy

_[— p” i Error

: Amplifier

'I-\ilxﬂiary Ampllfler o Flgure1263
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proportional current into node Y. The output impedance of the error amplifier is much greater

than Ryu:. Assume Gp Rour > 1.

{a) Calculate the gain error of the circuit. -

(b) Repeat part (a) if the auxiliary and error amplifiers are eliminated and compare the
results. :
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