Index

abstraction levels, circuit design, 7, 8
accelerometers, 4-5
active current mirrors, 145-58; common-mode properties, 154-58; differential pair with, $148,150,151,154$, 190; large-signal analysis of, 149-51; small-signal analysis, 151-54; small-signal behavior in, 145-48
active devices, 611-16; back-end processing, 614-16; basic transistor fabrication, 611-14; fabrication, 611-16
ADC. See analog-to-digital converter
amplification mode: noninverting amplifiers, 432-433, 436. 437; unity-gain sampler, 424-25, 429-30
amplifiers: auxiliary, 312; cascade of, 170; continuous-time feedback, 405-7; current, 254-56; differential, 100-34; frequency response of, 166-200; noise in single-stage, 224-33; noninverting, 432-38; nonlinear, 448-63; one-pole feedforward, 348; operational, 291-344; output port, 66-67; single-stage, 47-99, 224-33; switched-capacitor, 423-39; transconductance, 254-56; transimpedance, 254-56; types of, 254-56; variable gain, 126-28; voltage, 254-56, 461
amplitude: distribution, 206-7; limiting, 487-95; output, 512 analog design, 600 ; introduction to, $1-8$; in microprocessors and memories, 5-6; octagon, 48; robust, 7-8
analog layout techniques, 635-60; multifinger transistors, 635-37; passive devices, 644-53; reference distribution, 642-44; symmetry, 637-42
analog-to-digital converter (ADC), 1-2
antenna effect, 634-35
asymmetry, 120-24, 151-52. See also symmetry
auxiliary amplifiers, 312
average power, 202-3
back-end processing, 614-16
bandgap references, 377-404; case study, 397-400; defined, 389; floating, 398-99; general considerations, 377; speed and noise issues, 393-97; temperature-independent references, 384-90. See also reference distribution
bandwidth: large-signal, 295; modification, 252-54; noise, 239; small-signal, 293-95
Barkhausen's Criteria, 346, 483, 487
biasing: constant- $G_{m}, 392-93$; supply-independent, 377-81
binary data, 2-3

Bode plots, 346-47, 349, 357, 359, 362, 364, 547, 561
body effect, 23-25; source follower, 71
bonding pads, 657-59
bootstrapping, 566-67
bottom-plate sampling, 423
bounce, 663-65, 668
BSIMs, 591-92, 596-97
bulk, 12; NFETs and PFETs, 36
bulk voltage, 23-25
bypass capacitors, 673
cancellation, offset, 471-78
capacitance: fringe, 626; load, 169-70; mutual, 675; parallel, 626-27; parasitic, 171; self-, 675
capacitance modeling, MOS device models, 598
capacitive coupling, reducing, 654
capacitor nonlinearity, 457-58
capacitors: accelerometer, 4-5; behavior of MOS devices as, 38-39; bypass, 673; layout in passive devices, 650-52; metal-poly, 620-21; monolithic, 423-24; MOS, 621-24; in passive MOS devices, 619-24; poly-diffusion, 619-20; poly-poly, 620; voltage-dependent, 521-22. See also capacitor nonlinearity; switched-capacitor circuits
cascode current mirrors, 139-45
cascode current source, 140-45
cascode devices, layout, 638
cascode differential pair, 126
cascode operational amplifiers, 292, 298-99; folded, 301-7; telescopic, 297-99, 303-4, 306
cascode stage, 83-92; frequency response, 185-87; gain boosting in, $310-11$; input-output characteristic, 84 ; model, 186; output impedance, 85-86, 88; shielding property, 89-90; single-stage amplifiers, 232-33; small-signal characteristics, 84-85
cascodes: folded, 90-92; low-voltage, 143-45; self-biased, 398; triple, 307
center frequency in voltage-controlled oscillators (VCOs), 511
CG stage. See common-gate stage
channel, long versus short, 38
channel charge injection, 418-20; cancellation, 421-23
channel-length modulation, 25-27
channel resistance, of MOS capacitors, 622-24
channeling, 609-10
charge injection, channel, 418-20, 421-23
charge modeling, MOS device models, 598
charge-pump phase-locked loops (CPPLLs), 549-62;
basic, 555-62; charge pumps, 550-55;
dynamics, 557-61; linearity, 557;
lock acquisition, 549-62;
phase/frequency detector, 550-55;
stability issues, 561-62; transfer function, 557-61
charge pumps: in charge-pump phase-locked loops (CPPLLs), 550-55; PFD/CP nonidealities, 562-67
charge redistribution in noninverting amplifier, 434
chemical vapor deposition (CVD), 611
circuit design, abstraction levels, 7, 8
circuit symbols, MOS, 12-13
circuits: bandgap reference, 377-404; closed-loop, 250-53; common-gate, 250; differential, 452-54; digital, 12 ; feedback, 247-54; guard rings for, 663; half, 113-18; noise represented in, 218-24; open-loop, 250, 253-54; precision multiply-by-two, 438-39, 622; RLC, 496-99; sampling, 410-14; switched-capacitor, 405-47
clamp transistors, 332-33
clock: amplification and offset modes controlled by, 472; edges, 427; feedthrough, 420-22
closed-loop circuits, 250-53
closed-loop frequency response, 351-55
closed-loop gain, 248-49, 252; in operational amplifiers, 293; and voltage-voltage feedback, 272-73
closed-loop transfer function, 247
CMFB. See common-mode feedback
CMOS (complementary MOS) devices, 6-7; processing technology, 604-30
CMOS inverters, 581 ; driving load capacitance, 668 ; ring oscillators using, 490
CMOS oscillators. See oscillators
CMOS technology: compatibility with bandgap references, 386; diodes realized in, 523
collector current variation, 385-86
Colpitts oscillators, 502-5
common-centroid layout, 640-41
common-drain stage, 67. See also source follower
common-gate circuit, with feedback, 250
common-gate (CG) stage, 76-83; frequency compensation using, 370-71; and frequency response, 183; at high frequencies, 183 ; input impedance, $80-83$; input-output characteristic, 77; input-referred noise, 229-31; output impedance, 80-83; with parasitic capacitance, 171; single-stage amplifiers, 228-31; transfer function, 171
common mode (CM), input-output characteristic, 105
common-mode behavior, differential pair, 105-6
common-mode input, 116-18
common-mode feedback (CMFB): modifying, 323-24; operational amplifiers, 314 ; switched-capacitor, 442-43; topology, 317
common-mode level, sensing and controlling, 319-22
common-mode noise rejection, 101
common-mode properties, active current mirrors, 154-58
common-mode range, extending, 325-26
common-mode rejection: alternative definition, 478-79; in voltage-controlled oscillators (VCOs), 512
common-mode response, differential amplifiers, 118-24
common-mode signals, response of differential pairs to, 187-93
common-source (CS) stage, 48-67; with current-source load, 58-59; with diode-connected load, 53-58; distortion in, 449; with feedback, 248, 251-52; frequency
response, $172-78$; gain stage added to, 219 ;
high-frequency model, 172; input impedance in, 177; and input-referred noise, 219-221; with resistive degeneration, 458-59; single-stage amplifiers, 225-28; with source degeneration, 60-67; and source impedance stimulation, 223-24; transfer function, 172-77; with triode load, 59-60; using n-well resistors, 618; zero calculated in, 176-77
compensation, frequency, 355-61
complementary switches, 422
conduction, subthreshold, 27-28
constant-field scaling, 579
constant- G_{m} biasing, 392-93
contact spiking, 615-16
contact windows, 615
continuous-time: feedback amplifiers, 405-7; integrator, 439; resistors, 439
control voltage, $126-29$
conversion, differential, 120-24
corner frequency, flicker noise, 217-18
correlated sources of noise, 207-9
coupling: capacitive, 654; one-dimensional cross-, 641-42; substrate, 660-65
cross-coupled oscillators, 499-501, 522
CS stage. See common-source stage
current: amplifiers, 254-56; copying, 137; drain, 148-49; generating PTAT (proportional to absolute temperature), 390-92; generation versus voltage amplification, 225; meters, 256-58; mismatch, 469-70, 565-67; notation, 8 ; resistive biasing, 135-36; scaling, 643-44; steering, 515-20; tail, 120-21. See also biasing
current-current feedback, 269-70; loading in, 281
current mirrors: active, 135-65, 145-58; basic, 135-39; cascode, 139-45; passive, 135-65
current-source load: common-source stage with, 58-59; differential pair with, 146
current sources: applications, 135-36; cascode, 140-45; NMOS device used by source follower as, 69; noise represented in, 221-22
current-voltage feedback, 263-66; loading in, 275-78 curvature correction, 390
CVD. See chemical vapor deposition
Czochralski method, 606

DAC (digital-to-analog converter), 3
dangling bonds, 215
data: binary, 2-3; four-level, 2-3; stored on hard disks, 3; transmission of over long distances, 4
dead zone in phase-locked loops (PLLs), 563-64
deep triode region, MOSFETs operating in, 460-61. See also triode region
degeneration, resistive, 458-63
delay-locked loops (DLLs), 570-72
delay variation: by interpolation, 518-20; by positive feedback, 515-18
deposition, 611
design rules, 632-34
designing operational amplifiers, 299-300
device models, choice of, 92-93
devices. See active devices; MOS devices: NMOS devices; passive devices: PMOS devices
DIBL. See drain-induced barrier lowering
differential amplifiers, 100-34; biased by current mirrors, 138-39; common-mode response, 118-24; Gilbert cell, 126-29
differential circuits, 103 ; nonlinearity of, 452-54
differential conversion, 120-24
differential input, 116-18
differential pairs: with active current mirror, 148, 150, 151, 154, 190; basic, 103-18; cascode, 126; common-mode behavior, 105-6; with common-mode feedback, 314-15; with current-source load, 146; degeneration, $460-62$; distortion in, 449; frequency response, 187-93; half circuit, 126; input voltage, 107-10; input-output characteristic, 104; layout, 638-40; lemma, 114; with MOS loads, 124-26; noise in, 233-39; with offset, 465-70; output voltage, 106-7; PMOS, 479; qualitative analysis, 104-7; quantitative analysis, 107-18; small-signal behavior, 110-14; used in tuning ring oscillators, 512-20
differential realization, in noninverting amplifier, 435
differential sampling circuits, 422-23
differential signals: response of differential pairs to, 187-93; versus single-ended, $100-2$
digital communications, 2-3
digital signal processor (DSP), 1-2
digital-to-analog converter (DAC), 3
diode-connected device, 137
diode-connected load, CS stage with, 53-58
diodes: layout in passive devices, 652-53; realized in CMOS technology, 523; varactor, 521-25
DIP. See dual-in-line package
discrete-time: integrators, 440; resistors, 439
disk drive electronics, 3
dispersion, 657
dissipation, power, 512
distortion: in common-source stage, 449; in differential pair, 449; even-order, 470-71
distribution: amplitude, 206-7; reference, 642-44
drain, 10, 11
drain current, 15-17, 148-49; combining, 149; of common-source device, 62; saturation of, 19
drain-induced barrier lowering (DIBL), 585, 586
drain-source voltage, output impedance variation with, 589-91
DSP (digital signal processor), 1-2
dual-in-line package (DIP), 666
dummy switches, 421-22
dummy transistors, 639-40
electromigration, 626
electrostatic discharge (ESD), 659-60
enclosure, 633-34
ESD. See electrostatic discharge
etching, 611
even-order distortion, 470-71
excess phase, in phase-locked loops (PLLs), 542-43
extension. 633-34
fabrication: active devices, 611-16; interconnects, 624-27; of CMOS devices, 611-27; passive devices. 616-24; transistor, 611-14
feedback, 246-90; circuits, 247-54; common-gate circuit with, 250; common-mode. 314-24; common-source stage with, 248. 251-52: current-current, 269-70. 281; current-voltage, 263-66. 275-78; effect of negative on nonlinearity, 454-57; effect on noise. 284-85; error, 246; general considerations, 246-58: increasing output impedance by. 310; networks. 246; oscillatory, 484; polarity, 389; positive, 515-18:
series, 256; shunt, 256; switched-capacitor common-mode, 442-43; system, 246-58; topologies, 258-70; two-pole, 485-86; voltage-current, 266-69, 275-80; voltage-voltage, 258-63, 272-75. See also feedback circuits; negative feedback; positive feedback
feedback circuits: bandwidth modification, 252-54; gain desensitization, 247-50; nonlinearity reduction, 254; sense and return mechanisms, 256-58; terminal impedance modification, 250-52
feedback loop, 535; tuned stages, 499
feedforward: amplifiers, one-pole, 348; networks, 246
field oxide, 608
filter, low-pass, 210-211
fingers, transistor, 635-37
five-stage ring oscillators, 491
flicker noise, 215-18; corner frequency, 217-18
flipflops, 551-53
floating: impedance, 166; references, 398-99
folded cascode operational amplifiers, 301-7; noise in, 337-38; slewing in, 331-32
folded cascodes, $90-92$
folding, 35 ; reduction of gate resistance by, 214; white noise, 206; wide transistors, 635-37
folding/folded structures, 31
four-level data, 2-3
four-stage ring oscillators, 491
frequency: center, 511; comer, 217-18; multiplication, 573-74; synthesis, 574-75. See also frequency compensation; frequency response; phase/frequency detectors (PFDs)
frequency compensation, 345-48, 355-61; common-gate stage used in, 370-71; Miller compensation, 362-64, 367; other techniques, 369-73; two-stage operational amplifiers, 361-69
frequency response: amplifier, 166-200; cascode stage, 185-87; closed-loop, 351-55; common-gate stage, 183-85; common-source stage, 172-78; differential pair, 187-93; general considerations, 166-71; Miller effect, 166-69, 171, 172, 174, 175, 185; and source followers, 182-85
fringe capacitance, 626

G models, 272
gain: boosting, 309-13; closed-loop, 272-73, 293; common-mode, 154-58; crossover point, 346, 352; desensitization, 247-50; open-loop, 270, 273-75, 292; small-signal, 145-51; stage, added to common-source stage, 219; voltage, 151-54
gate: resistance, 214-15; shadowing, 639; voltage, 144
gates, 10, 11; OR, 532-33
Gilbert cell, 126-29
gradient, 640
ground bounce, 663-65
guard rings, 663
half-circuit concept, 151-52, 187-89
half circuits, 113-18; differential pair, 126; folded cascode operational amplifiers, 303
high frequencies, common-gate stage at. 183
high-frequency model: cascode stage. 185; common-source stage, 172
hot carrier effects, 589
hybrid models, 270-72, 281

I/V characteristics, derivation, 15-23
impedance: floating, 166; input, 177, 179, 261-63, 265-66, 266-68; modification, 250-52; output, 173, 259-60, 264-65, 266-68, 310, 386-89, 393-97, 589-91; source, 223-24. See also input impedance; output impedance
inductance: mutual, 673-75; self-, 668-73
inductors, monolithic, 495, 521, 524
injection, channel charge, 418-20, 421-23
input: common-mode, 116-18; differential, 116-18
input characteristics: of nonlinear systems, 448; of phase/frequency detectors (PFDs), 553-55; of sampling circuits, 419. See also inpu/output characteristic; output characteristics
input differential voltage, 107-10
input impedance: in a common-source stage, 177; and current-voltage feedback, 265-66; source follower, 73, 179; and voltage-current feedback, 266-68; and voltage-voltage feedback, 261-63
input nodes: in cascode stage, 185-87; in common-gate stage, 183-85; in common-source stage, 172-77; and differential pairs, $187-93$; and source followers, 178-82. See also nodes; output nodes
input-output characteristic, 47-48, 49, 54; cascode stage, 84 ; common-gate stage, 77; common mode, 105; common-source stage with diode-connected load, 56 ; differential pair, 104; large-signal, 150; source follower, 68. See also input characteristics; output characteristics
input-output transfer function, 169
input poles: in cascode stage, 185-87; in common-gate stage, 183-85; in common-source stage, 172-77; and differential pairs, 187-93; and source followers, 178-82. See also poles; output poles
input range limitations, 325-26
input-referred noise, 219-24; of a differential pair, 233-39
input-referred thermal noise: common-gate stage, 229-31; voitage, 225-28
input voltage: notation, 8 ; versus voltage gain of source follower, 69
integrated circuits, 6; layout and packaging, 631-75; notations, 8
integrators: discrete-time, 440; parasitic-insensitive, 441; switched-capacitor, 439-42
interconnects: fabrication, 624-27; layout in passive devices, 653-57; parallel capacitance, 626-27; series resistance, 624-25
interface, dangling bonds at, 215
interpolation, delay variation by, 518-20
inverters. See CMOS inverters
ion implantation, 608-10
jitter: in phase-locked loops (PLLs), 563-64, 567-70; reducing in phase-locked loops (PLLs), 576-77; in voltage-controlled oscillators (VCOs), 568-70
junction capacitances, scaling, 580-82
$k T / C$ noise, 421
large-signal analysis, of active current mirrors, 149-51
large-signal bandwidth, operational amplifiers, 295
large-signal behavior: cascode current source, 140-45; folded-cascode stage, 91-92
large-signal input-output characteristic, 150
latch-up, 627-28
layout, 631-60; analog, 635-60; antenna effect, 634-35; cascode devices, 638; common-centroid, 640-41;
design rules, 632-34; differential pairs, 638-40; general considerations, 631-32; minimum enclosure, 633-34; minimum extension, 633-34; minimum spacing, 633-34; minimum width, 632-33; multifinger transistors, 635-37; PMOS device, 631-32; symmetry, 637-42
LC oscillators, 495-509; Colpitts, 502-5; cross-coupled, 499-501; one-port, 505-9; tuning in, 521-25
LC tanks, 496-98
lemma: differential pair, 114; noise calculation, 224; voltage gain, 66-68
length, 11
level shifters, source followers as, 178-82
linear settling, 327, 333-34
linearity: in charge-pump phase-locked loops (CPPLLs), 557; operational amplifiers, 296; tuning, 511-12. See also nonlinearity
linearization, 61 ; techniques, 458-63
lithography sequence, 607
load capacitance, 169-70
loading, effect of, 270-84; in current-current feedback, 281; in current-voltage feedback, 275-78; summarizing effects of, 283-84; two-port network models, 270-72; in voltage-current feedback, 278-80; in voltage-voltage feedback, 272-75
loads, MOS, differential pair with, 124-26
lock acquisition, in charge-pump phase-locked loops (CPPLLs), 549-62
locking, 533-42
long-channel devices, versus short-channel devices, 38
loop gain, 248; Bode plots, 346, 349, 357, 359, 362, 547, 561; in charge-pump phase-locked loops (CPPLLs), 559-62; computation, 249; and current-voltage feedback, 264, 275-78; in feedback loop, 500; in two- and three-pole systems, 486-87. See also closed-loop gain; open-loop gain
loops, phase-locked, 532-78
low-pass filter, 210, 211
low-voltage cascode, 143-45
mathematical model, voltage-controlled oscillators, 525-30
memories, 5-6
metal 1, 614-15
metal-oxide-silicon field-effect transistors. See MOSFETs
metal-poly capacitors, 620-21
meters, current and voltage, 256-58
microprocessors, 5-6
Miller compensation, 362-64, 367
Miller effect, $166-69,171,172,174,175,185$
Miller's theorem, 166-69, 193-95
mismatch, 120-24, 463-79; and common-mode gain, 157; current, 469-70, 565-67; DC offsets, 465-79; MOSFET, 463-79; threshold voltage, 471
mobility degradation with vertical field, 585-87
models: cascode stage, 186; choice of, 92-93; G, 272-73; high-frequency, 172; high-frequency, of cascode stage, 185; hybrid, 270-72, 281; mathematical, of voltage-controlled oscillators, $525-30$; MOS device 28-38, 591-99; MOS device BSIM series, 596-97; MOS device Level 1, 592; MOS device Level 2. 593-95; MOS device Level 3, 595-96; MOS small-signal, 33-36; MOS SPICE, 36-37; small-signal, 61, 65-66; small-signal of CS stage, 52; two-port network, 270; Y, 270-72, 278; Z, 270-72, 276
monolithic: capacitors, 423-24; inductors, 495, 521, 524

MOS: circuit symbols, 12-13; I/V characteristics, 13-23
MOS capacitors, 621-24; channel resistance of, 622-24
MOS device models, 591-99; BSIM series, 591-92, 596-97; charge and capacitance modeling, 598; Level 1, 592; Level 2, 593-95; Level 3, 595-96; temperature dependence, 599
MOS devices: active, 611-16; behavior as a capacitor, 38-39; capacitances, 29-33; fabricating, 611-27; layout, 28-29; models, 28-38, 591-99; passive, 616-24; processing technology, 604-30; small-signal model, 33-36; subthreshold characteristics, 27-28; as switches, 413-23; transconductance, 22, 28. See also NMOS devices; PMOS devices
MOS loads, differential pair with, 124-26
MOS SPICE models, 36-37
MOS technology. See MOSFETs
MOSFETs (metal-oxide-silicon field-effect transistors), 6; common-mode sensing using, 319; as controlled linear resistor, 18-19; layout, 28-29; mismatches in, 463-79; ohmic sections, 213-14; operating in deep triode region, $460-61$; parameter variations, 599-600; physics, 9-38; reducing effect of mismatched, 397-400; relationship between drain current and terminal voltage, 15-17; saturated, 19-21; scaling, 579-83; small-signal model, 33-36; structure, $10-12$; as switches, $10,410-14$; thermal noise, 212-15; transconductance, 392
multifinger transistors, 635-37
multiply-by-two circuits, 438-39; with MOS capacitor, 622
multipole systems, 349-51
mutual capacitance, 675
mutual inductance, 673-75
n-type MOS devices. See NMOS devices natural signals, processing of, 1-2
negative feedback: effect of on nonlinearity, 454-57; system, 345-46. See also feedback; feedback circuits; positive feedback
negative resistance, 505-9
negative-TC (temperature coefficient) voltage, 381-82
NFETs: bulk, 36; threshold voltage, 14. See also NMOS devices
NMOS (n-type MOS) devices, 6; bulk voltage, 23-25; in cross-coupled oscillators, 524-25; in gain-boosting amplifiers, 311 ; latch-up in, 627-28; in operational amplifiers, 301-5; parameters of Level 1 SPICE models, 37 ; versus PMOS devices, 37; process corners based on speed of, 600; processing technology. 604-30; structure, 10-12; as switches, 410-14, 416; used by source follower as current source, 69
nodes: association with poles, 169-71; in cascode stage, 185-87; in common-gate stage, 183-85; and differential pairs, 187-93; input, 172-77; interaction between, 170; output, 172-77; and source followers, 178-82. See also input nodes; output nodes
noise, 201-45; amplitude distribution, 206-7; average power, 202-3; bandwidth, 239; calculation lemma, 224; cascode stage, 232-33; common-gate stage, 228-31; common-mode, 101; common-source stage, 225-28; corner frequency, 217-18; correlated and uncorrelated sources, 207-9; in differential pairs, 233-39; effect of feedback on, 184-85; flicker, 215-18; input-referred, 219-24; $k T / C, 421$; in operational amplifiers, 296, 336-40;
output-referred, 219; predicting properties of, 201-2; reduced by offset cancellation, 476-78; reference generator, 393-97; representation in circuits, 218-24; in self-inductance, 668-69; in source followers. 231-32; sources, 218-19; spectrum, 203-6; statistical characteristics, 201-9; thermal, 209-15; types of, 209-18; white, 204-5
noisy lines, 101
noninverting amplifiers, 432-38: precision considerations, 435-36; speed considerations, 436-38
nonlinear systems, input-output characteristic, 47-48
nonlinearity, 448-63; capacitor, 457-58; definition of, 450; of differential circuits, 452-54; effect of negative feedback on, 454-57; general considerations, 448-52; reduction, 254. See also linearity
Norton equivalent, 66-67
notations, 8
offset: DC, 465-70; operational amplifier, 296, 386-89
effset cancellation, 471-76; noise reduced by, 476-78
ohmic sections, MOSFET, 213-14
one-dimensional cross-coupling, 641-42
one-pole feedforward amplifiers, 348
one-pole systems, 252-54
one-port oscillators, 505-9
one-stage operational amplifiers, 296-307
op amps. See operational amplifiers
open-loop circuits, 250, 253-54
open-loop gain, 248-49, 270; in operational amplifiers, 292; and voltage-voltage feedback, 273-75
open-loop transfer function, 247
operational amplifiers, 291-344; cascode, 292, 298-99; closed-loop gain, 293; common-mode feedback, 314; designing, 299-300; folded cascode, 301-7, 331-32, 337-38; gain, 291-92; gain boosting, 309-13; input range limitations, 325-26; large-signal bandwidth, 295; linearity, 296; noise and offset, 296; noise in, 336-40; offset and output impedance, 386-89; one-stage, 296-307; open-loop gain, 292; output swing, 295, 298; performance parameters, 291-96; power supply rejection, 334-36; slew rate, 326-34; small-signal bandwidth, 293; supply rejection, 296; telescopic, 331, 336-37, 356-61; telescopic cascode, 297-99, 303-4, 306; topology comparison, 313-14; triple cascode, 307; two-stage, 307-9, 338-40, 361-69, 368-69
optical receivers, 4
OR gates, 532-33
oscillators, 482-531; Colpitts, 502-5; cross-coupled 499-501, 522; general considerations, 482-84; LC, 495-509, 521-25; one-port, 505-9; ring, 484-95; voltage controlled (VCOs), 482-531, 510-30
output amplitude, in voltage-controlled oscillators (VCOs), 512
output characteristics: nonlinear systems, 448; of phase/frequency detectors (PFDs), 553-55; sampling circuit, 419. See also input characteristics; input/output characteristic
output impedance, 173; boosting, 310-11; cascode stage, 85-86, 88; and current-voltage feedback, 264-65; operational amplifier, 386-89; reference generator, 393-97; source follower, 70, 73, 180-82; variation with drain-source voltage, 589-91; and voitage-current feedback, 266-68; and voltage-voltage feedback, 259-60
output nodes: in cascode stage, 185-87; in common-gate
stage, 183-85; in common-source stage, 172-77; and differential pairs, 187-93; and source followers, 178-82
output phase, in phased-locked loops (PLLs), 533-36
output poles: in cascode stage, 185-87; in common-gate stage, 183-85; in common-source stage, 172-77; and differential pairs, 187-93; and source followers, 178-82. See also input poles; poles
output port, 66-67
output-referred noise, 219
output signal purity, in voltage-controlled oscillators (VCOs), 512
output spectrum theorem, 205-6
output swing, 106-7,295, 298
output voltage, 66-67, 149-50; notation, 8; swing, 106-7, 295, 298
oxidation, 608
oxide spacers, 614
p-type MOS devices. See PMOS devices
packaging, 666-75; dual-in-line package, 666; mutual inductance, 673-75; parasitics, 667-68; self- and mutual capacitance, 675 ; self-inductance, 668-73
pads, bonding, 657-59
parallel capacitance, of interconnects, 626-27
parameter variations, in MOSFETs, 599-600
parasitic: capacitance, 171; -insensitive integrators, 441; packaging, 667-68
passive current mirrors, 135-65
passive devices: analog layout techniques, 644-53; capacitor layout, 650-52; diode layout, 652-53; fabrication, 616-24; interconnect layout, 653-57; MOS, 616-24; pads and electrostatic discharge (ESD) protection, 657-660; resistor layout, 645-50
passive MOS devices, 616-24; capacitors in, 619-24; resistors, 616-18
PDs. See phase detectors
PFDs. See phase/frequency detectors
PFETs, bulk, 36. See also PMOS devices
phase crossover point, 346, 352
phase detectors (PDs), 532-33
phase/frequency detectors (PFDs): in charge-pump phase-locked loops (CPPLLs), 550-55; PFD/CP nonidealities, 562-67
phase-locked loops (PLLs), 532-78; applications, 572-77; dynamics, $542-49$; excess phase, $542-43$; frequency multiplication, 573-74; frequency synthesis, 574-75; jitter, 563-64, 567-70; jitter reduction, 576-77; nonideal effects, 562-70; phase detectors (PD), 532-33; response to small transients in locked condition, 539-42; settling speed, 545-46; simple, 532-49; skew reduction, 575-76; transfer function, 542-49; waveforms in locked condition, 536-39
phase margin, 351-55
photolithography, 606-8
photoresists, 607
pinch-off behavior, 20,25 ; effect of scaling on, 582
plates: bottom, 423-24; top, 423
PLLs. See phase-locked loops
PMOS (p-type MOS) devices, 6; in cross-coupled oscillators, 524-25; differential pairs, 479; diode-connected, 56; in gain-boosting amplifiers, 311-12; latch-up in, 627-28; layout, 631-32; versus NMOS devices, 37; in operational amplifiers, $301-6$; parameters of Level 1 SPICE models, 37; process comers based on speed of, 600 ; processing technology, 604-30; in ring
oscillators, 494-95; source follower, 74; structure, $10-12$; as switches, $414,415,416,419$; threshold phenomenon, 15
poles: association with nodes, 169-71; in cascode stage, 185-87; in common-gate stage, 183-85; and differential pairs, 187-93; dominant, 358-61; input, 172-77; multipole systems, 349-51; nondominant, 361; output, 172-77; plotting location of, 347-48; and source followers, 178 m ; two-pole feedback systems, 485-86. See also input poles; output poles
poly-diffusion capacitors, 619-20
poly-poly capacitors, 620
positive feedback, tuning, 515-18. See also feedback; feedback circuits; negative feedback
positive-TC (temperature coefficient) voltage, 382-84
power dissipation, in voltage-controlled oscillators (VCOs), 512
power spectral density (PSD), 204-5
power supply rejection, operational amplifiers, 334-36 precision: in noninverting amplifiers, 435-36; in sampling circuits, 417-21; in unity-gain sampler/buffers, 428-29
precision multiply-by-two circuits, 438-39, 622
process corners, 599-600
processing: back-end, 614-16; CMOS devices, 604-30; deposition and etching, 611; ion implantation, 608-10; latch-up, 627-28; oxidation, 608; photolithography, 606-8; wafers, 605-6
PTAT (proportional to absolute temperature) current generation, 390-92
qualitative analysis, differential pairs, 104-7
quantitative analysis, differential pairs, 107-18
receivers: optical, 4; wireless, 3-4
reduction, nonlinearity, 254
reference distribution, 642-44. See also bandgap references reference generator, output impedance, 393-97
rejection: common-mode, 512; common-mode noise, 101; power supply, 334-36; supply, 296
resistance, 35 ; calculating, 63-66; gate, 214-15; negative, 505-9; output, 70; series, 624; sheet. 605
resistive biasing, 135-36
resistive degeneration, 458-63
resistive load, common-source stage with, 48-67
resistors: continuous-time, 439 ; discrete-time, 439 ; layout in passive devices, 645-50; mismatched, $120-24$; in passive MOS devices, 616-18; thermal noise, 209-12
ring oscillators, 484-95; amplitude limiting, 487-95; four- and five-stage, 491; three-stage, 486-89; tuning in, 512-21
ringing, 182
ripple, 536 ; in charge-pump phase-locked loops (CPPLLs), 562
RLC circuits, 496-99
samplers: and offset cancellation, 476-78; unity-gain, 424-32
sampling, bottom-plate, 423
sampling circuits: differential, 422-23; precision considerations, 417-21; speed considerations, 414-17
sampling mode: noninverting amplifiers, 432-433; switched-capacitor circuits, 408-9, 410-23; unity-gain sampler, 424-25,429
sampling switches. 410-23
saturation, 49; region, 19-21, 22-23, 49; velocity, 587-89
scaling: constant-field, 579 ; current, $643-44$; theory, 579-83
second-order effects, 23-28
self-capacitance, 675
self-inductance, 668-73
sense and return mechanisms, 256-58
sensors, 4-5
series feedback, 256
series resistance, of interconnects, 624-25
settling speed, in phase-locked loops (PLLs), 545-46
shadowing, 639
sheet resistance, 605
shielding, 655-56; cascode stage, 89-90
short-channel devices, versus long-channel devices, 38 short-channel effects, 583-91; drain-induced barrier lowering (DIBL), 585, 586; hot carrier effects, 589; mobility degradation with vertical field, 585-87; output impedance variation with drain-source voltage, 589 ; threshold voltage variation, 583-85; velocity saturation, 587-89
shunt feedback, 256
signals: differential, 100-2; output, 512 ; single-ended, $100-2$ silicide, 614, 616-17
single-ended signals, versus differential signals, 100-2
single-pole system, 252-54
single-stage amplifiers, 47-99, 224-33; basic concepts, 47-48; cascode stage, 83-92, 232-33; choice of device models, 92-93; common-gate stage, 76-83, 228-31; common-source stage, 48-67, 225-28; source followers, 67-76, 231-32
sinusoid waveform, 525-26
skew, 565-66; eliminating in voltage-controlled oscillators, 533-36; reducing in phase-locked loops. (PLLs), 575-76
slew rate, operational amplifiers, 326-34
slewing: negative, 372 ; positive, 372 ; in two-stage operation amplifiers, 368-69; in unity-gain sampler/buffer, 431-32
small-signal analysis, of active current mirrors, 151-54
small-signal bandwidth, operational amplifiers, 293-95
s'mall-signal behavior: in active current mirrors, 145-48; differential pair, 110-14
small-signal characteristics, cascode stage, 84-85
small-signal gain, 145-51; calculating, 68-69; in nonlinear amplifiers, 450, 452-54
small-signal models, 61 ; of common-source stage, 52
small-signal output resistance, calculating, 70-72
source, 10,11
source degeneration, common stage with, 60-67
source/drain junction capacitance, scaling, 580-82
source followers, 67-76; common-mode feedback using, 318 ; drawbacks of, 73-76; input impedance, 73, 179; input-output characteristic, 68 ; intrinsic, 72; as level shifters, $145,178-82$; output impedance, 70,73 , 180-82; single-stage amplifiers, 231-32; small-signal equivalent circuit, 68-69
source impedance, 223-24
spacers, oxide, 614
spacing, layout, 633-34
spectral shaping, 205-6
speed: in noninverting amplifiers, 436-38; reference generator, 393-97; in sampling circuits, 414-17; settling, 545-46; in unity-gain sampler/buffers, 429-32
SPICE models, 36-37
spiking, contact, 615-16
square wave amplification, 253
stability, 345-76; in charge-pump phase-locked loops (CPPLLs), 561-62; general considerations, 345-48
stages: delay, 518-20; in ring oscillators, 486-92; tuned, 498-99, 502
start-up, 389-90
statistical characteristics of noise, 201-9
step response, 326-27
structure, MOSFET, 10-12
substrate, $10-12$; bounce, 663-65; coupling, 660-65
subthreshold conduction, 27-28
supply: dependence, $389-90$; rejection, 296; in voltage-controlled oscillators (VCOs), 512
supply-independent biasing, 377-81
switched-capacitor amplifiers, 423-39
switched-capacitor circuits, 405-47; in amplification mode, 408-9; general considerations, 405-9; in sampling mode, 408-9, 410-23
switched-capacitor common-mode feedback, 442-43 switched-capacitor integrator, 439-42
switches: complementary, 422; dummy, 421-22; MOSFETs as, 10, 410-14; sampling, 410-23; zero-offset, 414
symbols, MOS, 12-13
symmetry, 113-14, 117-20, 149-50; in layouts, 637-42. See also asymmetry
tail current, 120-21
tanks, LC, 496-98
telephone bandwidth, and spectral shaping, 205-6
telescopic cascode operational amplifiers, 297-99, 303-4, 306. See also telescopic operational amplifiers
telescopic operational amplifiers: frequency compensation, 356-61; noise in, 336-37; slewing in, 331. See also telescopic cascode operational amplifiers
temperature, proportional to absolute (PTAT), 377, 390-92
temperature dependence: forms, 377 ; in MOS device models, 599
temperature-independent references, 381; bandgap references, 384-90; negative-TC (temperature coefficient) voltage, 381-82; positive-TC (temperature coefficient) voltage, 382-84
temperature-independent voltage, 384-85
terminal impedance modification, 250-52
terminals, $10-11$
thermal noise, 209-15; MOSFETs, 212-15; resistors, 209-12; voltage, 225-28
Thevenin equivalent, $72,79,112,153,191,437$
three-pole systems, 350-51
three-stage ring oscillators, 486-89
threshold voltage, $10,13-15,27-28,149-50$; mismatches, 471; variation, 583-85
time-domain response, 347-48
topologies: comparison of operational amplifier, 313-14; common-mode feedback, 317 ; current-folding, 518 ; feedback, 258-70; folded cascode operational amplifiers, 302; operational amplifiers, 296-98; phase-locked loops (PLLs), 533-42
transconductance, 22, 28, 48; amplifiers, 254-56; MOSFET, 392; of common-source devices, 62,66
transfer function: in charge-pump phase-locked loops (CPPLLs), 557-61; closed-loop, 247; common-gate stage, 171; common-source stage, 172-77; input-output, 169; open-loop, 247; in phase-locked loops (PLLs), 542-49; and spectral shaping, 205-6
transients in locked condition, response of phase-locked loops (PLLs) to, 539-42
transimpedance amplifiers, 254-56
transistors: dummy, 639-40; fabrication of, 611-14; multifinger, 635-37. See also CMOS devices; MOSFETs
triode load, CS stage with, 59-60
triode region, 17-18, 22-23, 49, 149; common-mode sensing using MOSFETs in, 319; deep, 460-61
triple cascode operational amplifiers, 307
tuned stages, 498-99, 502
tuning: delay variation by interpolation, 518-20; delay variation by positive feedback, $515-18$; in LC oscillators, 521-25; linearity, in voltage-controlled oscillators, 511-12; range, in voltage-controlled oscillators, 511 ; in ring oscillators, 512-21; wide-range, 520-21
turn-on phenomenon, 14-15
two-pole systems, 349-50
two-port network models, 270-72
two-stage operational amplifiers, 307-9; frequency compensation, 361-69; noise in, 338-40; slewing in, 368-69
uncorrelated sources of noise, 207-9
unity-gain buffer, 325, 355. See alsc unity-gain sampler/buffer unity-gain sampler/buffer, 424-32; precision considerations, 428-29; slewing behavior, 431-32; speed considerations, 429-32. See also unity-gain buffer
varactors, 521-25
variable-gain amplifiers (VGAs), 126-28
velocity saturation, 587-89
vertical field, mobility degradation with, 585-87
VGAs. See variable-gain amplifiers
vias, 615
voltage: amplification, versus current generation, 225; amplifiers, 461; bulk, 23-25; control, 126-29; drain-source, 589-91; floating reference, 398-99; gate, 144; input, 69, 107-10; input-referred thermal noise, 225-28; limitations, 28; meters, 256-58; negative-TC (temperature coefficient), 381-82;
notation, 8; output, 66-67, 106-7, 149-50; positive-TC (temperature coefficient), 382-84; sources, noise represented in, 221-22;
temperature-independent, 384-85; threshold, 13-15, 27-28, 149-50, 583-85
voltage-controlled oscillators (VCOs), 510-30; center frequency, 511 ; common-mode rejection, 512 ; definition, 510; eliminating skew in, 533-36; jitter in, 568-70; mathematical models, 525-30; output amplitude, 512 ; output signal purity, 512; power dissipation, 512 ; supply, 512 ; tuning linearity, 511-12; tuning range, 511. See also oscillators
voltage-current feedback, 266-69; and input impedance, 266-68; loading in, 275-80; and output impedance, 266-68
voltage-dependent capacitors, 521-22
voltage gain, 86-87, 151-54; lemma, 66-68; small-signal, 452-54
voltage-voltage feedback, 258-63; and closed loop gain, 272-73; loading in, 272-75; and open loop gain, 273-75
wafers: in device fabrication, 611-16; introducing dopants into, 608-10* processing, 605-6
waveforms, 525-30 ittery, 568; in locked condition, 536-39; ring oscilli $\because 487,490$; sinusoid, $525-26$; with a skew, 534
white noise, 204-5; folded, 206
wide-range tuning, 520-21
width, layout, 632-33
wireless receivers, 3-4
Y models, 270-72, 278

Z models, 270-72, 276
zero: calculation in common-source stage, 176-77; in right half plane, 364-65, 369
zero-offset switches, 414

