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: . « Become familiar with the coﬁmponehrs of the
Objecrives

Fourier series expansion for any 5musa:dsr or
nonsinusoidal function.

Und‘ersgand how the appearance and time axis
plot of a wavefarm can identify which terms dfa
Fourier series will be present.

+ Be able to determine the response of a nétwork to
any input defined by a Fourier series expansion. ,

+ Learn how to add two or more waveforms Heﬁﬁisd .
by Fourier series expansions.

25.1 INTRODUCTION

Any waveform that differs from the basic description of the sinusoidal waveform is referred to
as nonsinusoidal. The most obvious and familiar are thc dc, square wave, triangular, saw-
tooth, and rectified waveforms in Flg 25, l— i = -

J ¥ I. B -

@ 0 P e @

() (e
" FIG. 25.1
- Common npm:’:msofda( waveforms: (a) de; (b) square-wave, (c) triangular;
(d) sawtooth; {e) rectified.

F
.

The output of mﬂny electrical artd electronic devices are -nonsinusoida!, even though the
applied signal may be purely sinusoidal. For example, the network in Fig. 25.2 uses a diode to

-clip off the negative portion of the applied signal in'a process called half-wave rectification,

which is used in the deveiopmcht of dc levels from a sinusoidal input. You will find in your elec-
tronics courses that the diode is similar to a mechanical switch, but it is different because it can
conduct current in only one direction. The output waveform is definitely nonsinusoidal, but note
that it has the same period as the applied signal and matches the input for half the period.

This chapter demonstrates how a nonsinusoidal waveform like the outpuf in Fig. 25.2 can
be represented by a series of terms. It also explains how to determine the response of a net-
work to such an input.

Introductory, C.- 70A
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FIG. 25.2

Half-wave rectifier producing a ronsinusoidal waveforn.

-

'25.2 FOURIER SERIES -

“Fourier series refers to a series of terms, developed in 1822 by Baron
Jean Fourier (Fig. 25.3), that can be used to represent a nonsinusoidal pe-
riodic waveform. In the analysis of these waveforms, we solve for each
term in the Fourier series:

i T T
d 2
%
fl)= " Ay
et
de or

average value

+ ai, sin @t + A, sin Zw: + .43 sin 3wt +

+ By cos wt +Bzco:,‘2m!+.83c053w!+“-+3 cusnwr

© + A, sin nwt

sl.m: erms

- ' (25.1)

#
cosine terms

FIG. 25.3
Baron Jean Fourier.
* Cuourtesy of the Smithsonian Institution
Photo No. 56,822

French (Auxerre, Grenoble, Paris)

#(1768-1830) ¥
Mathematician, Egyptologist, and Administrator
Professor of Mathematics, Ecole Polytechnique

Best known for an infinite mathematical series of
sine and cosine terms called the Fourier series,
which he used o show how the conduction of heat in
solids can be analyzed and defined. Although he was
primarily a mathematician, a great deal of Fourier’s
work revolved around real-world physical occur-
rences such as heat -transfer, “sunspots, and the -
weather. He joined the Ecole Polytechnique in Paris
as a faculty member when the instiwte first opened.
i Hmhonmqu_ﬁtedlmaid ifn the research ongypt-
. fan antiquities, resulting in a three-year stay in Egypt
i u&mmyoffmfnmd‘ﬁﬂm Napoleon made’
him a h:roﬁ 'n'_' 1809 al;d he was elecmd to the

%

Dependmg on the wwcform a large number of these terms may be re-
quired to approximate the waveform clasely for the purpose of circuit
analysis,

As shown in F.q (25.1), the Fourier series has three basit parts. The
first is the dc term Ag, which is the average valué of the waveform over
one full cycle. The second is a series of sine terms. There are no rcslnc-
tions ‘on the values or relative values of the amplitudes of these-sine
terms, but each will have a frequency that is an integer multiple of the
frequency of the first sine term of the series. The third part is a series of -
cosine terms, There are again no restrictions on the values or relative val-
ues of the amplitudes of these cosine terms, but each will have a fre-

' quency that is an integer multiple of the frequency of the first cosine'

term of the series. For a particular waveform, it is quite possible that all
of the sine or cosine terms are zero. Characteristics of this type can be.
determined by simply examining the nonsinusoidal waveform and its
position on the horizontal axis.

The first term of the sine and cosine serics is callcd the fundamental
component. It represents the minimum frequency term required to rep-

“resent a particular waveform, and it also has the same frequency as the

wavcfonn being represented. A fundamental term, therefore, must be
presenl in any Fourier series representation. The other ternfs with
higher-order frequencies (integer multiples of the fundamental) are

called the harmonic terms. A term that has a frequency equal to twice

the fundamental is the second harmonic; three times, the third har-
monic; and so on.
.
Average Value: Ag
- -

The de term of the Fourier serics is the average value of the waveform
over one full cycle. If the net area above the horizontal axis equals that

Introductory, C.-70B



Even Function (Axis Symmetry)

A

below iri one full period, Ag = 0, and the dc term does not appear in the
expansion. If the area above the axis is greater than that below over one
full cycle, Agis positive and will appear in the Fourier series representa- *
tion. If the area below the axis is greater, A is ncgauvc and will @ appear

& wrfh the neganve sign in the expansion.

0dd Function (Point Symmetry)

Ifa wavqform is such that its value for +1 is the negartive of that for
~t, it is called an odd function or is said to have point symmetry.

Fig. 25.4(a) is an example of a waveform with point symmetry. Note

. ‘that the waveform has a peak value at r; that matches the magnitude

(with the opposite sign) of the peak value at —t;. For waveforms of this
type, all the parameters By_,, of Eq. (25.1) will be zero. In fact,

waveformns with point symmetry can be fuﬂy described by Ju.!f the de
and sine terms of the Fourier series.

Nonsinusoidal O .
waveform

. 4D
Qdd -

funetion ,

| ' Point

3 - Symmetry

FOURIER SERIES 11| 1095

-Point
syminetry
{about this
point)

* FIG. 25.4
-Point symmeiry.

»

‘Note in Fig. 25.4(b) that a sine wave is an odd ﬁ.mct:on with po:m

symmmetry,
For both waveforms in Fig. 25.4, thé following mathemaucal
“relationship is. true:

|ﬂr)=—ﬁ(—r)’ - (odd function) | (25.2)

In words, it states that the magnitude of the function at +1 is equal to the
negative of the magnitude at-—¢ [¢; in Fig. 25.4(a)].

&

If a waveform is symmem: about the vertical axis, it is cah’ed an even
SJunction or is sazd to have axis symmetry.

Fig. 25.5(a) is an example of such a waveform. Note that the value of the
function at 1, is equal to the value at —r,. For waveforms of this type, all
the parameters A ', Will be zero. In fact,

=0

(b)

Average value = 0\
{Ao = 0)
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fin ‘ﬂﬂ

Even function

* Averige Cosine wave

value (Ap) .
Average = 0(4g = 0)

o A

t

(=]

Nonsinusoidal waveform Symmetry about vertical axis

‘\)Symmctry about vertical axis
() : - ® -
FIG. 25.5
Axis symmeltry.

L]

waveforms w:!h axis symmetry can be Sully described by Just the de
and cm'me terms of the Fourier series.

Note in Fig. 25.5(b) that a cosine.wave is an even function with _axis

. I symmetry.
For both waveforms in Fig. 25.5, the following mathematical rela-
tionship is true: P

[y =A=9] (evenfunction’ @53

In words, it states that the magmtude of the funcuon is the same at +:, as
at —t [ty'in Fig. 25. S(a)] :

Mirror or Half-Wave Sy’mm_et_ry.

If a waveform has half-wave or mirror symmetry as demonsirated by
the waveform of Fig. 25.6, the even harmonics af the series 0f sine
. and cosine terms wdl be zero. ‘

»

‘ ' ? ! !- . E A
T | /\/\ | SHTES /\/\
e : : T AR % POWRE U Ir 3.1 t
: = % R ra Ul 3.

FIG. 25.6

i ; . H f(f)

B ! . Mirror symmetry.
- -
In functional form, the waveform must satisfy the following
relationship: £ ' oo | "
PR S i L . -
RN Sl g, AR it R )1 . 254
. ' ¥ % : .




hi-(sN - - _-‘
Eq (254} states that ihc waveform encompassed m one time mtcrval
.T/Q will repeat itself in the next T//2 time interval, but in the hegative sense

(17 in Fig. 25:6): For example, the waveform in Fig. 25.6 from zeroc to 7/2
will: mpca! itself in the time interval 7/2 to T but below the horizontal axis.

Repetltwe on the HaIf—CycIe

The repetitive nature of 4 waveform can determine whether specific har-
monics. will be present in the Fourier series expansion. In particular,

if @ waveform is repetitive on the half-cycle as demonstrated by the
waveform in Fig. 25.7, the odd harmomcs of the serits of sine and
cosine terms are zero. ;

oy = ; _ .

_ - FIG. 25.7 -
N A waveform repetitive-on the half-cycle.

n functional form, the waveform must satisfy the following relationship:

i
&

Eq. (25.5) states that the function repeats 1tsolf aftm' each T/2 time in-,
‘ terval (ty in Fig. 25.7). The waveform, however, will also repeat itself ~

after each pbnod T In general, therefore, for a function of this type, if
' the period T of the waveform is chosen to be: twice that of the minimum
_ penod (T/2), the odd harmﬂmcs ‘will all be 810, : !

- Mathematical Approach

The constants Ag, Aj_,,,, and B, _,, can be determined by using the fol-
lowing integral formulas:

‘ 1 (7 -
JAg = -J oy 1 25.6)
T : ;

2

An ,?J f{f) sin nwrd: (25.7)
2 '

B, = -J f(t) cos newt dt (25.8)
T), . _ _

These equations hnvc been presemed for recogruuon purposes on]y.
they are not used in the following analysis. .

pes =f(r+§) s .5).

e
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Instrumentation

Three types of instrumentation are available that reveal the dc, funda-
mental, and harmonic content of a waveform: the spectrum analyzer,
wave analyzer, and Fourier analyzer. The purpose of such instrumenta-
tion is not'solely to determine the composition of a particular waveform,
but also to reveal the level of distortion that may have been introduced
by, a system. For instance, an amplifier may be increasing the applied
signalt by a factor of 50, but in'the process it may have distorted the
waveform in a way that is quite unnoticeable from the oscilloscope
display. The amount of distortion appears in the form of harmonics at
frequencies that are multiples of the applied frequency. Each of the
above instruments reveals which frequencies are having the most impact
on the distortion, permitting their removal with properly designéd filters.
The spectrum analyzer is shown in Fig. 25.8. It has the appearance of
an oscilloscope, but rather than display a waveform that is voltage (ver-
tical axis) versus time (horizontal axis), it generates a display scaled off
in dB (vertical axis) versus frequency (horizoptal axis). Such a display is *
said to be in the frequency domain, in contrast to the time domain of the
standard oscilloscope. The height of the vertical line in the display of
- Fig, 25.8 reveals the impact of that frequency on the shape of the wave-
form. Spectrum analyzers are unable to provide the phase angle aSSOCL-
ated with each component.

ot 4 810 i P v S 1 |

FIG. 25.8
Spectrum analyzer.
(Courtesy of Teletronix, Inc.)

EXAMPLE 25.1 Determine which.components of the Fourier series

= are present in the waveforms in Fig. 25.9.

" Solutions:

a. The waveform has a net area above the horizontal axis and lhcrcforc
wl“ have a positive de term A,
* The waveform has axis symmetry, resulting in only cosine terms
. in the expansion,
The waveform has half-cycle symmetry, resulting in-only even
“  terms in the cosine series,
b. The waveform has the same area above and below the horizontal
axis within each period, resulting in Ag = 0.
The waveform has po:m symmetry, resulting in only sine terms
in the expans:on '



o A T T £
‘.I . “ 2 ’
"1-5mAlV ' ;

® - £ :
FIG. 25.9 .
Example 25.1.

EXAMPLE 25.2 Write the Roiirier series expansion for the waveforms

FOURIER SERIES 11171099

in Fig. 25.10." .
N Y } ok -
; SmAk - Sinusoidal
/-\ | / waveform
o ; 0. [ 1
20V L . A
0 t
® L e -,z 8V
T i
i ©
" FIG.25.10
Example 25.2.
Solutions: )
a Ag=20 Aj,,=0 Bi,,=0
v=20 :

b Ap=0 A;=5%X10" A, =0 By,,=0
i=5 X 1077 sin w?

c. Ap=38 Al =10 B =12 Bz;—ou =0
v =8+ 12cos wt

EXAMPLE 25.3 Sketch the following Fourier series expansion:
v=2+1lcosa + 2sina '

x
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~ Solution: Note Fig:25.11.

*

=2+ lcosa+2sinn.

v

N2sine

FIG. 25.11 '~
Example 25.3.

The solution could be obtained graphically by first plotting all of the
functions and then considering a sufficient number of points on the'hor-
izontal axis, or phasor algebra could be used as follows:

lcos @ +.2sif @ = IVLQO°+2VLO°_J]V+2V

=2V +j1V=2236V L2657
= 2.236 sin(c + 26.57°)

“ - " and v = 2 + 2.236 sin{e + 26.57°) |

4 | - whichi is slmp]y the sine wave portion riding on a de level of 2 V. That i lS.
2 : its positive maximum is 2V + 2,236 V = 4.236 V, and its minimum is
) ' 2V -2236V =~0236V. :

EXAMPLE 25.4 Sketch the following Foatier sefies expansion:
- i = LIsingt +.1sin 2wt

Solution: See Fig. 25.12. Note that in this case the sum of the two si-

nusoidal wavéforms of different frequencies is nor a sine wave. Recall

that complex algebra can be applied only to waveforms having the same

" ; * frequency. In this case, the solution is obtained graphically point by
: point, as shown for 1 = 1y,

i--lﬁnm+1aiﬁ2w

' - FiG. 25.12
I : Example 25.4.
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As an ac_lgﬁﬁnasL example. in the use of the Fourier series approach, .

“consider the square wave shown in Fig. 25.13, The average value is

2er0, 50 Ag = 0. Tt is an odd function, so all the constants By, equal

zero;-only sine terms are present in the series expansion. Since the
waveform satisfies the criteria for fity = —f(t + T/2), the even harmon-

ics are also zero.

v 0Odd function with
- half-wave symmetry
70 - / s
A )
L S———
0 | 2w wl
v 2 :
t *
o
[
SR T A

FIG. 25.13
Square wave.

The expression obtained after evaluating the various coefficients
using Eq. (25.8) is -

4 - 3 1 - 1 1
==V = +—gi + —§i + .ve 4 —5i ' o
v . m(sm wt 33.111 3wt SSll'l SCI.H : ?Slﬂ Twt / nSiﬂ. mur) (25.}

Note that the fundamental does indeed have the same frequency as that
of the square wave. If we add the fundamental and third harmionics, we
obtain the results shown'in Fig, 25.14. _ '

Even with only the first two terms, a few characteristics of the square

wave are beginning to,appear. If we add the next two terms (Fig. 25.15), : / i
the width of the pulse increases, and the number of peaks increases. iy :
1 u ? i .
: Fundamental 1 “ Number of peaks = number of terms added
g . f = §
. ndamental + ‘h“d harmonic Fundamental + 3rd, 5th, 7th harmonics
Vi ' Vi
Vm
a ~————Square wave
|
. D * L 1
0 il 2 ar  wt
§ Rl
“ :
FIG. 25.14 . FIG. 26.15

Fundamental plus third harmonic. _ + Fundamental plus third, fifth, and seventh harmonics.
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5

As we continuc to add terms, the series better approximate the
» Square wave. Note, however, that the amplitude of each succeeding
‘term diminishes to the point at which it is negligible compared with
thase of the first few terms. A good approximation is to assume, that the
waveform is composed of the harmonics up to-and including the ninth.
Any higher harmonics would be less than one-tenth the fundamental. If |
the waveform just described were shifted above or below the horizontal
axis, the Fourier series would be altered only by a change in the dc
term. Fig. 25.16(c), for example, is the sum of Fig. 25.16(a) and (b).
The Fourier series for the complete waveform is, therefore, fie

v =+ vy = ¥, + Eq, (259)

IL-

4 o % I :
Vi + — Vi sinwt+Ssin3mt+gsin5w:+?sin?m:+<~)
: ' . G £, i3
and v ="V, 1+ —{ sinwt + — sin 3wt +— sin Sor + - sin Tt + - - -
: T 3 5Y 7

w

v i U3 = g v
- V,;| + . Vm . } : p—
0 wt v [0 7| 2w 37 wr 0 T 2r 37wt
“¥m . p
» (a) < (b) ’ () - .
" FIG.25.46 '

w  Shifting a waveform vertically with the addition bf a dc term.

The equation for the half-wave rectified pulsating waveform in
Fig. 25.17(b) is ;

© " [v2= 0318V, + 0500V, sina — 0.212V,, cos ~ 0.0424V,. cos da — | (@2s10)

The wavefoim in Fig.Z5.17(c) is the sum of the two in Fig..25.17(a) and
(b). The Fourier series for the waveform in Fig. 25.17(c) is, therefore,

v
Ur=u + ——2"1 + Eq. (25.10) ‘
~0.500V;, + 0.318V,, + 0.500V,, sin & = 0.212V,, cos 2o — 0.0424V,, cos 4a + - - -

and v = %0.182V), + 0.5V, sina — 0.212V,, cos 2a ~'0.0424V,, cos 4& + +- -

K it ; v L PR R L ¥
V,
—— =2 4
+ [\ = YA, 2/ \ar
0 o _ \ N
v a .:r 2r ir & _ VO o
-t -t ¥
2 2
® ; i 3 (©

_ . FIG.25.17
Lowering a waveform with the addition of a negative dc component,

If either waveform were shifted to the ri ght or left, the phase shift
would be subtracted from or-added to, respectively, the sine and cosine
terms: The dc term would not change with a shift to the right or Jeft.,
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 If the halfswave rectified signal is shifted 90° to the left, as in Fig.
25.18, the Fourier series becomes - e p .
b= 0318V, + 0.500V,, sin(a + 90°) ~ 0212V, cos 2Aax +90°) — 0.0424V,, cos (e + 90°) +++ -
ot g D O

COos 0 ¥

= 0318, + 0,500V, cos a — 0212V,, cos(2a + 180°) — 00424V, cos(ec + 360°) +- - -
and v = 0318V, + 0.500V, cosa + 0.212V, cos 20 — 0.0424V,, cos dat - : -

0

.
7

i FIG.25.18 ;
Changing the phase angle of a waveform. ;

253 CIRCUIT RESPONSETO . _
A NONSINUSOIDAL INPUT SN

The Fourier series representation of a nonsinusoidal input can be ap-

plied to a linear network using the principle of superposition. Recall s
that this theorem allowed us to consider the effects of each source of a -
circuit independently. If we replace the nonsinusoidal input with the

terms of the Fourier series deemed necessary for practical considera-

tions, we can use superposition to find the responsé of the network to

each term (Fig. 25.19). ;

’

+ AU

' - i
€= Ag+A sina+.. . +A,sinna+. .. "?
=

+Bjcosa+... +Bycosnot... & e
; Aysina

=k
3 . . b
% Linear g A, sin na @ Linear network =
network ‘

- g ]

: Bycosa @
: B,,ccun'@

FIG. 25.19
Setting up the application of a Fourier series of terms [0 a linear network.
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The total response of the system is then the algebraic spm of the val-
ues obtained for each term. The, major change between using this theo-
1 rem for nonsinusoidal circuits and using it for the circuits prcvmusly
" described is that the frequency will be different for each term in the non-
- _ sinusoidal apphcauan Therefore, the reactances
o ; . ;
; ' 1
! X, = 21r L  and X =
¢ L= 29 €7 2nfc
will change for each term of the input voltage or current.
In Chapter 13, we found that the rms value of any waveform was
given by : R .

=, LA f oa

If we apply thls cquation to the Fourier series 9

. va) = Vo VaySina + -« + P},,ﬂsm_na + Vi cosa + -+ + V;, cos ne
then e >

' it R T T R e

Vm-\/v%+ ! _ ”"2 m my

(25.11) .

However, since

s

Vm
% )(5) - 010 = A

i

B s 3"5:
-,
et
S
\.__./
F i

- then

Ve = VVE+ V] + o+ VI VT Vi, |(25:12)

Similarly, for

(@) =l + I, sina+ - + Iy sinna + 1, cosa + «++ + I, cosna
. we hae | ' " :
R Y AT
\/15 mo e
'ﬂ.ﬂd )

= VR+1,, +---,+f2 1T +- +.i"2 0519

The total power delivered is the sum of that delwemd by the corre-
sponding terms of the voltage and current. In the following equations, all |
voltages and currents are rms values:

S ¥ : ' : .&"_Vufu*"’:fzmiﬂl+""_j"g’,.f,,cos&,,+--’-|(25,15}_

1 | " o ' e '__PT.I=IE_R+[?R+*--+1’§R-:_"' - 1.(25.16)




s . e (25.17)
" With I, a5 defined by Eq, (25:13), and, similarly,

Pp= (25.18)

With Vo as defined by Eq, (25.11). :

EXAMI’_’LE 255 -

a. Sketch the infmt resulting from the combination of sources in ‘.(’Si" wr |
Fig. 25.20.
b. Determine the rms value of the i mputm Fig. 25.20.

I

Solutions:
a. Note Fig. 25.21. . 1 4y

b. Eq. (25.12): “ -7 FIG.25.20

: :\/(qﬁ)uw—ﬁ-(ﬁ:)_z \/16+—5-V \Fv

Ttis pa.rtmnlar]y interesting to note from Example 25.5 that the rms "

Exampie 25.5.

=4V i
16 v + 6 sin wt

. value of a waveform hiaving both dc and ac eomponents is not simply the
sum of the effective values of each. In other words, there is a temptation in
the absence of Eq. (25. lZ}tostate that Vo =4V + 0.707 (6V)=824V,

which is chn‘ect and, in fact, exceeds the correct level by some 41%. : “FIG. 25.21

lnstmmnntatwn : : : _ .

Iris unportaht ‘to realize that not every DMM, will read the rms \raluc of -
nonsinusoidal waveforms such as the one appearing it Fig. 25.21. Many
are demgned to read the rms value of sinusoidal waveforms cm.ly It is
important to read the manual provided with the meter to see ifitis a true
rms meter ‘that can read the rms value of any waveform.

We learned in Chapter 13 that the rms value of a square wave is the
peak value of the waveform: Let us test this result using the Fouriér ex-
pansion and Eq. (25.11), -

¢ r . :

EXAMPLE 25.6 Determine the rms value of the square wave of Fig.
25.13 with V,, = 20 V using the first six terms of the Fourier expansion,
‘and comipare the result to the actual s value of 20V,

Solution: ' ‘ ”
4 n qf] 41 41
= i R 0,k i o [l ; + 2= Y0 V) s
v —(ﬂ_ Zﬁ‘vi) SI?‘:_J_:U{%' 7(3)(20V} sin ?wr-k w(s)(m V) sin 5wt + 7.-(7)("0 ) sin Teor

4/1 : 4(1 .
- }—(5}(20 V) sin Yot + ;( T ){20 V) sin Llwr

v = 25.465 sin wt + 8.488 sin 3wt + 5.093.sin Swr + 3.63_3 sin Tt + 2.829 sin 9wt + 2.315 sin 11wt

Wavé pattern generated by the source in Fig. 25. 20

L

CIRCUIT RESPONSE TO A NONSINUSOIDAL INPUT 1111105

e



1106 |11 NONSINUSOIDAL CIRCUITS ; “ Y

"Eq. (25.11):
Vi, + Vi + VI + V2 + V& + Vi,
Vit vs T :
' \/(0 V)2 + (25.465 V)’ + (8.488 V)% + (5 093 V)2 + (3638 V)* + (2.829 v)2 + (2315 V)?
4
2

= 19.66 V

The solution differs less than 0.4 V froni the correct answer of 20'_\{
However, each additional term in the Fourier series brings the result
closer to the 20 V level. An infinite number results in an exact solution
af 20 V. ~

EXAMPLE 25.7 lec input to the circuit in Fig, 25.22 is
e=12+ 10sin2"

a. Find the current i and the voltages vg and vc.
b. Find the rms values of i, vg, and ve.
c. Find the power delivered to the circuit.

~Ue

FIG. 25.22 Solutions: '
Example 25.7. a. Redraw the original circuit as shown in Fig. 25.23. Then apply
- 5I3per‘posmon
-
Ug
i k=30
2v=
g AL vers e - L - peTp
t ,MSHZ: e T~Xc T
. L ‘

FIG. 25.23
Circuit in Fig. 25.22 with the components of the Fourier series input.

1. For the 12 Vdc supply portion of the input, I = {} since the ca-
pacitor is an open circuit to dc when ve has reached its final
(steady-state) value. Therefore,

Ve =IR=0V and Ve =12V

2. For the ac .mppa‘y
Z= 39. J4Q—Sﬂf_ 53.15°

10

‘4
. V £0°
and I=E—~—L——}—AL+53I3°
Z 59;’.—5313" V2

.v,, = (1 26)(R £0°) =(% A 4+53.13°-)(3 0 20°) it

. g i =5 v 453030
. = : " L \/_
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S \

yc'_E-(:-ge}(xc'zl—-go“) = ( A £:453. 13°)(4_n £.-90°)

= —V £—3687°
/2
"In the time domain,

i =0+ 2sin(2t + 53.13°)

ote that even though the dc term was present in the expression for
the input voltage, the dc term for the current in.this circuit is zero:

vg = 0+ 6sin(2r + 53.13:) :

and ve = 12 + 8sin(2¢ — 36.87°) ¢
) . ZA 2 a A o f .
' b, Eq. (25.14): Ims = 1/ (0)* + L:E_)" = VZA = 1414 A ; ; ¢

L

(6 V)

| Eq.(25.12): Vg, = (u)2 + = VISV = 4243V
Eq. (25.12): Ve, =/ (12V)? + = = VIT6 V = 13.267 V:
= 2 = R — = \ 3 = o AN
c. P = IgeR ( \5.&) (30)=6W

EXAMPLE 25.8 Find the response of the cu*cuu in Fig 25. 24 to the
mput shown. '

= 0.318E,, + 0.500E,,sin wt — 0.212E,, cos 2:9:
.= 0 0424E,, cos 4wt + - : :

Solul.‘mn For discussion purposes, only the first three terms are used
to represent e. Converting the cosine Lerms Lo sine terms and substituting
for E,, gives us

[

e = 63.60 + 100.0sin wt — 42.40 sin(2wt + 90")

b
Usmg phasor notation, we seg that the original circuit hecumcs like 1hc o
‘one shuwn inFig. 25.25. FIG. 25.24
’ Example 25.8.
+ Yy — i
Af L
+| 3 60 T, 1,
Ep= (36V=— - - 2
il 377 i
E, = 7071V £0° w = 377 radls 5 sl Hg v,
.
Zp =
E, = 29.98 V £90° 2w = 754 rad/s p ' ’ -
" +
=
FIG. 25.25
Cm.m: in Fig. 75.2¢4 wu‘h the components of rke Fourier series input. »-
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T

R

Applying Superposition For the dc term (Eg = 63.6 V):

X, =0 (short for dc)
ZT—R.{0°=GHZ_G“
Ey 636V
5. (EY. L. ( A
b= % 60 10.60 "

Vg, = IpR = Eq = 63.60 V
VL‘J:O

The average power is
Py = f%? =

(10.60 A)X(6 Q) = 6742 W

For fhg!fundamemal term (E) = 7071V £0°% w = 377):

X,
Zr,=6Q0+j317Q
E,
L =—=
Ly,

(I £LB)R £L0°) =

7071 V £0°
T 38170 £80.96°

= wlL = {377 rad/s)(0.1 H) = 37.7.0Q

= 38,17 O £80.96°
= 1.85 A £ —80.96°
= (1.85 A £—80.96°)(6 Q £0°)

11.10 V£ —80.96° i

Vi, = (1 £6)(Xz, £90°) = (1.85 A Z-80.96°)(37.7 Q. £90°),

=69.75 V.9.04°

" The average poweris |

; P, = BR = (1.85 AY%(6 Q)
For the second harmanic (E; =29.98V £-90°, w =

= 20.54 W :
754): The

phase angle of E; was changed to —90° to give it the same polarity as
the input voltages Eg and E;. We have

XL;, wl =

(754 rad/s)(0.1 H) = 75.4 Q)

Zyy =60 + 77540 =7564 () £8545° «

E; 2998V £T90°
=2 = SR TETN 0396 AL —17445°
L Zr, 75640 /8545 - Vg ;
Vi, = (B LO)(R £0°) = (0396 A £~17445°)(6Q £0°)
=238V £ 17445
Vi, = () 20)(Xy, £90°) = (0.396 A £ ~174.45°)(75.4 0 £90°)

=299V £-8445°

The average power is
= IZR

= (0.396 A)3(6 Q) = 0.941 W

The Fourier series expansion for i is

i = 10.6 + V2(1.85) sin(377¢ — 80.96°) + \/5(0.396) sin(754! ~ 174.45°)

and

= V(106A) +(1.85A) + {0396 A = 1077 A

-

. The Fourier series expammn for ugis

vg = 63.6 + VZ(11.10) ain(.'ﬁ?t

s

so.w) + V3 3(2.38) sin (7541 — 174, 45*)

: Vo, = V{638V

+ (1L.10V)2 + (238 V)* = 64.61V
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‘The Fourier series expsm;on for vy is
= \fz'{sa 75) sin (377t + 9,04°) + V/2(29.93) sm(?54! — 84.45°)

and * VLm=V(69?SV Y+ (2903 V)2 = 7590 V .
The total average power is 3
" Pp= IR = (10.77 A)X(6 Q) = 69596 W = Pg + Py + P, .

25.4. ADDITION AND SUBTRACTION
OF NONSINUSOIDAL WAVEFORMS 7

The Fourier series expression for the waveform resulting from lhe addition
or subtraction of two nonsinasoidal waveforms can be found using phasor
“algebra if the terms having the same frequency are considered separately.
Eor exa.mp!e the sum of the following two nonsinusoidal waveforms
is found using this method:

ug = 30 + 20sin 20¢ + - -+ + Ssin(60 + 30°)
vy = 60 + 30sin 207 + 20 sin 407 + 10 cos 60f

* 1. dc terms: : ;
: Vi, =30V +60V =90V
2. w=20: % .
Vrmax) = 30V + 20V = 50V
—and vy, = 50 sin 201 g
3 w=40
vr, = 20 sin 401
4, w=60: '

5 sin(60r + 30°) = (0.707)(5) V £30° = 354V £30°
10 cos 60 = 10vsin(60¢ + 90°) = (0.707)(10) V £90° -
=707V £90°

7, = 354V £30° + 707V £90° &
‘=30?V+J177V+_;707V=307V+;884V
Vr, =936V £70.85°

and vr, = 13.24 5in(60r + 70.85°)
with )
vr = vy + vy = 90 + 50 sin 20¢ + 20 sin 407 + 13.24 sin(60z + 70.85°)

* 25,5 COMPUTER ANALYSIS
PSpice

Fourier Series The computer analysis begins with a verification of

the waveform in Fig. 25.15, demonstrating that only four terms of a

Fourier series can generate a waveform that has a number of characteris-

tics of a square wave, The squarc wave has a peak value of 10V at a fre-

quency of 1 kHz, resulting in the following Fourier series using Eq. *
(25.9) (and recognizing that @ = 2mf = 6283.19 rad/s):

1 1 1 )
v = ~(10 V)(sin at + -isin 3wt -+ 5 sin St + 7 sin ?mf)
= 12.732 sin wr + 4.244 sin 3w + 2.546 sin 5wt + 1,819 sin Tor

Introductory, C.-71A #
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v

Each term of the Fourier series is treated as an independent ac source,

as shown in Fig, 25.26 with its peak value and applicable frequency. Fhe

. sum of the source voltages appears across the resistor R and generates
the w'mrefform in Fig. 25:27.

VAMPL = 12,732V

FREQ = 1kHz

PHASE=0 .,
1

VAMPL = 4,244V
FREQ =3kHz
PHASE =0 -

. TR % 1k
VAMPL = 2 646V . <

FREQ = 5kHz

PHASE =0

VAMPL = 1818V
. FREQ = 7kHz
PHASE =0

-

] Scale=200%  X=100 Yzt
FIG. 25.26

Usmg PSp:ce 1o appfy four terms of the Fourier expansion of a 10 V square
wave to a load resistor of 1 k{}.

“H

Each source used VSIN, and since we wanl to display the result
against time, choose Time Domain(Transient) in the Simulation Set-
tings. For eagh source, select the Property Editor dialog box. Set AC,
FREQ, PHASE, VAMPL, and VOFF (at 0 V). (Due to limited space,
only VAMPL, FREQ, and PHASE dare displayed in Fig. 25.26.) Under
Display, set all of the remaining quantities on Do Not Display.

Set the Run to time at 2 ms, so that two cycles of the fundamental fire-
quency of 1 kHz appear, The Start saving data after remains at the de-

- fault value of 0 s, and the Mnximllm step size at 1 us, even though

2 ms/1000 = 2 jes, bécause we want to have additional plot points for the -
complex waveform. Once the SCHEMATIC1 window appears, Trace-

‘Add Trace-V(R:1)-OK results in the waveform in Fig. 25.27. To make

the honmntal line at'0 V heavier, right-click on the line, select Prnperties,

. and then choose the green color and wider line. Click OK, and the wider

line in Fig. 25.27 results, making it a great deal clearer where the 0V line

‘is located. Ihmugh the same process, make the curve yellow and w1der as

shown in the same ﬁgure Using the cursors, you fi nd Lhat :he f irst peak

A e
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reaches 11.84 V at 0.063 ms and then drops to 8,920 V at 0,124 ms, The
average value of the Waveform is clearly +10 V in the positive region, as
shown by the dashed line entered using Plot-Label-Line. In every respect,
the waveform is beginning to have the characteristics of a periodic square
wave with a peak value of 10V and a frequency of 1 kHz.

P S AATIC L Pgion 131 - Plge AT Seng :?5:".“—; ]
i ” Toen Bt Y S——
M ese i Yo pomdove 1uce g e ?r -
! ® In 0y i ) “ ]

FIG. 25.27 .
The resulting waveform of the voliage across the resistor R in Fig. 25.26.

Fourier Components A frequency spectrum plot revealing the magni-
tude and frequency of each component of a Fourier series can be obtained by
returning to Plot and selécting Axis Settings followed by X Axis and then
Fourier under Processing Options. Click OK, and a number of spikes ap-
pear on the far left of the screen, with a frequency,spectruni that extends from
0'Hzto 600 kHz. Select Plot-Axis Seltings again, go to Data Range, and se-
lect User Defined to change the rangé to© Hz to 10kHz since this is the range
of interest for this waveform. Click OK, and the graph ini Fig, 25.28 results,

[0 ST e 251 Pogace WD Do Pl B mirml]
VB Y Geriation Twu Bt Tooh findsw fin o7
1900 Bg
284 ¢
|
Al

(al

cidénce

@ ln Oy LU | SR o

g mic X ag=nl

i

E
e

‘W |
-':-.\J-_,:u-& coPipn 3 1 ’5?5_.:‘3"\5;’,\'"““""-.'“:""55 ﬁrl;; {2

. _FIG. 25.28
The Fourier components of the waveform in Fig. 25.27.

L
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giving the magnitude and frequency of the components of the waveform.
Using the left cursor, you find that the highest peak is 12.74 V at 1 kHz,
comparing very well with the source VI having a peak value of 12,732V
at 1 kHz. Using the right-click cursor, you can move over to 3 kHz and
find a magnitude of 4.248 V, again comparing very well with source V2

-with a peak value of 4.244 V.
PROBLEMS
SECTION 25.2 Fourier Series _
1. Forthe waveforms in Fig..25.29, determine whether the fol- .
lowing will be present in the Fourier series representation:
. a determ
b. cosine terms
¢ sine terms =
d. even-ordered harmonics
e. odd-ordered harmonics ’
YIC) : : ¥ d : 0]
—_—— - «T— - ¥ rl
4
Am .’ .‘ J/I/I/ 4
£
£
<7 iy o - T T T t o T t
i Z 2 P ;) L2
'l " ¢
£ ELk
] . _ .
o "T_ 3 P
- - . T A‘"’
I L ) f : 1
: b T 0 T 4 T T it
i ¢ : 3 o E1 57 ’
i j i d Am
R .l 2 R 2 1
%? 3 4 A PR ! % j
1 | L It i
am e (V)
. . mG2m2e | ' A
* -Problem I.
. 2. If the Fourier series for the waveform ?11 Fig. 25‘3{1&}'.}& o ; 2
:-—In_(l+3005:2:;»—-I-S-co»s4q:~f35r;056curl+--‘- v 4

find the Fourier series representation for waveforms (b).
through (d). R =) R 5
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A]
\
@ 1
wi wr
a
o «
.
A
\
‘ S
L] B
|{ ot
. G (13
© ' ; (d)
FIG. 25.30
. _ ! Problem 2,
3. Sketch the following nonsinusoidal wave forms with @ = wr 10. The Fourier series representation for the input voliage to the
as the abscissa: . . circuit in Fig. 25.31 is
a v=-4+2sina : _ ;
b 0= (oo ; = 18 + 30sin 4001
c. i=2—-2cose
4. Sketch the following nonsinusoidal waveforms with acas . | vp
the abscissa: " + A
‘a. i=3sina- 6sin2a ; R="120
b v=2cos2a+sina s
5. Sketch the following nwsmusmdal waveforms with wf as U gk WER
the abscissa: .
a. i=50sinwr + 23 %me:
b. i = 50sin @ — 25 sin 3a *
c.:=4+3»:nw+2sm2¢ur-lsm3f ‘
; 4 FIG. 25.31

Problems 10, 11, and 12.

SECTION 25.3 Circuit Response 2 ' . Wy s
10. Nﬁﬂ"ﬂusﬁidﬂl |npl.|t a. III'I & nonsmusonda CXPTESS‘IDD O e current L.

b. Calculate the rms value of the current.

6. Find the average and effective values of the following non- . ¢ Find the expression for the voltage across the resistor.
sinusoidal waves: pe d. Calculate the rms value of the voltage across the resistor.
a. v =100 + 50 sin cwr + 25 sin 2wl . Find the expression for the voltage across the reactive
b, i =3 + 2 sin(wr — 53°) + 0.8 sin(2wt — 70°) element.

7. Find the rms value of the following nonsinusoidal waves: L. Calculate the rms value of the voltage across the reac-
a. v = 20sin wr + 15 sin 2w — 10 sin 3wt K Lye element. ; .
b. i =6 sin(wt + 20°) + 2 sin(2wi + 30°) = 1 sin(3wt + g. Find the average power delivered to the resistor.

60°) 11. Repeat Problem 10 for .
8. Find the total average power to a circuit whose voltage and e = 24 + 30sin 4001 + 10 sin 800r

current are as indicated in Problem 6.

. blem 10 he following input v :
9. Find the total average power o a circuit whose voltage and 12, Repeat Problem 10 for ¢ following inpot voitage

current are as indicated in Problem 7. = —60 + 20 sin 300: — 10 sin 600r
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13. Repeat Problem 10 for the circuit in Fig. 25.32.
El

. “* -
i R =150
s
- B I =" 125 uF
i &
=
FIG. 25.32
Problem 13,

*14. The mpm voltage in Fig, 25. 33{&) to the circuit in Fig.-

25.33(b) is'a full-wave rectified signal having lhc following -

Fourier series cxpansmn

(2)(100 V)(

P
where w = 377.
a. Find the Fourier series expression for the voltage v,
using only the first three terms of the expression,
Find the rms value of u,.

Find the average power delivered to the ‘1 kﬂ.
resistor,

2 2 g
1+ '3-::052(»:- Tgcosdur+ :_55

b,
c.

et

()

(b)

FIG. 25.33
~ " Problem 14.

cos Gt + +»

NON

*15. Find the Fourier series expression for the voltage v, in Fig.

25.34, )
Iy
\
\
A L]
\
! * el
- Ir
(a) .
200 :
[} J‘F - +
i 12mH 20002,
. E
(b)
FIG. 25.34
Probiem 15,

) |

SECTION 25.4 Adt!ltion and Sl.lbtrac‘llcm
of Nonsmuso:dal Waveforms

16. Perform the indig:ated operations on the following nonsinu-
soidal waveforms: :
. [60 + 70 sin wt + 20 sin(2er + 90°) + 10 sin(3ewt +
607)] + [20 + 30 sin ex — 20 cos 2wt + 5 cos 3wt]
b, [20 + 60 sina + 10 sm{’a - 180°%) + 5§ cos(Ja +
90%)] ~ [5—~ 10sina + 4sin(3a — 30°)] ]
17. Find the nonsinusoidal expression for the currcnt i; of the
diagram in Fig. 25.35. v
i = 10 + 30 sin 20r — 0.5 sin(40r + 90°) -
iy =20 + 4 5in(20r + 90°) + 0.5 sin(40¢ + 307)

"

;

FIG. 25.35
Problem 17,

-

lB. F'nd the ncmsmmmdal zxprcssmn for thc voltage e of the
diagram in Fig. 25.36, -

'*20-' 2005!n6001+ 100::05 12001+75 sin 1800r
Uz = =10 + 150 sin(600r + 30-"} + 50 sin(1800r + 60°)
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FIG. 25.36
Problem 18.
'
) i ¢, §
-SECT ION 255 Computer Analysis
PSpice '

19. Plot the wav:fonn in Fig. 25.11 for two or threc cycles.
Then obtain the Founar ccmpu-nems. and ccmpare lhem to
the applied signal.

20. Plot a half-rectified waveform w;th a peak value of 20 V
using’Eq. (25.10). Use the de term, the fundamental term,
and four harmonics. Compare the resulting waveform to the
ideal hnlf rectified waveform.

21. Demonstrate the effect of adding two more terms 10~

* the waw:fnrm in Fig. 25.27, and generate the Fourier
spectrum

GLOSSARY |11 1115

GLOSSARY

Axis symmetry A sinusoidal or nonsinusoidal function that has
- symmetry about the vertital axis. .

Even harmonics The terms of the Fourier series expansion that
have frequencies that are even multiples of the’ fundamental
component. ©

Fourier series A series of terms, developed in 1826 by Baron
Jean Fourier, that can be used to represent a nonsinusoidal
function. . 3

Fundamental component The mmlrnum frequency term re-
quired to represent a pnmcular waveform in the f-ouner series
EKPBHS].OD

Half-wave (mirror) symmetry A smusmda] or nonsinusoidal
function that satisfies the relationship

S = -f(r+ D

l-larmunic terms The terms of the Fourier series expansion that
have frequencws that are integer multiples of the fundamanml :
component.

Nonsinusoidal waveform -Any’ waveform that d:ffr:rs from the |
fundamental sinusoidal function.

Odd harmonics The terms of the Fourier series expansion that
have frequencies !.h.at are odd mu!nples ot thc fundamcntal
compoment. > =

Point symmetry A sinusoidal or nonsinusoidal function that sat-

isfies the relationship f(a) = —ft—a).






- System Analysis: AN
~ InTtroducTion -_

~_ 0Ob -I ECTIVES .« Develop an understanding and an appreciation of
, : the system analysis of packaged systems.
« Learn how to determine the i:ﬁpsdance,

admittance, and hybrid parameters for any
electrical/electronic system.

« Understand how to use the parameters of a system
to determine the input and output impedance, the
voltage gains, and the current gains.

) ' .« Understand the effect of one stage on another in
a cascaded system.

26.1 INTRODUCTION

The growing number of packaged systems in the electrical, electronic, and computer fields
now requires that some-form of system analysis appear in the syllabus of the introductory
course. Although the content of this chapter will be a surface treatment at best, the material "

" will introtluce a number of important terms and techniques employed in the system analysis
appreach. The increasing use of packaged systems is quite (nderstandable when we consider .
the advantages associated with such structures: reduced size, sophisticated and tested design,
reduced construction time, reduced cost compared to discrete designs, and so forth: The use of
any packaged system is limited solely to the proper ufjlization of the provided terntinals of the
system. Entry into the internal structure is not permitted, which also eliminates the pgssibility
of repair to such systems. . ' -

The LM386N unit appearing in Fig. 26.1 is a popular low-voltage audio amplifier man-
ufactured by the National Semiconductor Corporation. The actual size appears in Fig.
26.1(a), an enlarged image in Fig. 26.1(b), and the internal construction in Fig. 26.1(c).
Note that it contains quite a few electronic devices and a host of resistors with a very
limited number of terminal connections. The result is that access to the internal elements is
impossible, and control is only offered by the eight external pins, as shown in the package
outline of Fig. 26.2. Terminals 1 and 8 are used to control the gain. If left open, the gain of
the amplifier is 20, but by adding a capacitor or a series R-C combination between these
two terminals, the gain'can be varied up to a maximum of about 200. The supply voltage
connected to pin V, is typically between 6 V and 12 V, and the package dissipation is about
1.25 W. For the range of supply voltages V,, the dc drain current from:the dc source varies
between 4 mA and & mA. The input impedance is about 50 k{2, so that an applied signal of
12.5 mV will result in an input base currént of about 0.25 uA. A rather simple audio design
with a gain of 200 appears in Fig, 26.3, with the input applied to terminal 3 and the other
input terminal grounded. The 10 k(] potentiometer at the input controls the level of applied
signal, and the output is connected to an 8 () speaker via a 250 uF capacitor. The 250 uF
capacitor provides isolation from the load for the dc biasing conditions of the amplifier but
is essentially a short-circuit for audio frequencies so that the desired ac signal can reach the
speaker. The R—C combination of the 0.05 uF capacitor and the 10 {1 resistance is a protec-
tive path for undesired high-frequency spikes resulting from any switching action around the
amplifier and undesireable high-frequency signals picked up by the amplifier. At frequencies -
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Bypm;—ﬁ
=
. 15k02 <

1500 135Kk

~Input

50 k()

FIG. 26.1 :

LM386 low-voltage audio power amplifier. (a) Actual size; (b) enlarged photo;

Dual-In-Line and Small Outline

(c) internal construction.

L

Gain +
Via

~Input 1

10k0 ;
+Input I:

o RN
Tﬁp view 4:'_ -
: FIG. 26.2 FIG. 26.3 .

LM.?&(S terminal identification. : ~ LM386 low-voliage amplifier

higher than the normal audio range, the 0.05 uF capacitor can be ap- -
proximated by a short providing a discharge path for the undesired sig-
nal. The 10 (2 resistor will ensure that the load is not shorted out at
these high frequencies.

. The basic operation of the amplifier will be left for the electronics
courses. For the moment, however, take note of the fact that access to
the internal components is quite limited and the use of the device must
be designed using only the access terminals provided. Data sheets will
provide a great deal of information on the internal structure and the
voltage, current, resistance, and power levels associated with the
typical use of the amplifier. This chapter will provide an introduction
to how to work the systems where access to the internal structure is
limited, :
. System analysis includes‘the development of two-, three-, or multi--
port models of devices, systems, or structures. The emphasis in this



t

THE IMPEDANCE PARAMETERS Z,AND Z, 111" 1119 .

i c]iabter'wiltiie o the configuration most frequently subject to modeling
- .techniques: the two-port system of Fig. 26.4.

Note that in Fig. 26.4 thefe are two ports of entry or interest, each
havmg a pair of terminals. For some devices, the two-port network of
Fig. 26.4 may appear, as shown in Fig. 26.5(a). The block diagram of
Fig. 26.5(a) simply indicates that terminals 1" and 2’ are in common,
which is a particular case of the general two-port network. A single-port FIG. 26.4
‘network and a multiport network appear in Fig. 26.5(b). The former Two-port system.
has been analyzed throughout the text, while the characteristics of the ;

* latter will be touched on in this chapter, with a more cxtensws coverage
left for a more advanced course.

" The latter part of this chapter introduces a set of equmlons (and
subsequently, networks) that will allow us to model the device or 8ys-
tem appearing within the enclosed structure of Fig. 26.4. That is, we
will be able to establish a network that will display the same terminal
characteristics as those of the original system, device, and so on. In
Fig. 26.6, for example, a transistor appears between the four external £
terminals. Through the analysis to follow, we will find a combination
of network elements that will allow us to replace the transistor with a
network that will behave .very much like the original device for a spe-
cific set of operating conditions, Methods such as mesh and nodal
analysis can then be applied to determine any unknown quantities. The
models, when reduced to their simplest farms as determined by the op-

“behavior without a iengthy mathemaucal derivation. In other words,
someone well'versed in-the use of models can analyze the operation of
large, complex systems in.short order. The results may be only approx-
imate in most cases, but this quick return for a minimum of effort is
oftén worthwhile.

- The analysis of this chapter is limited to linear (fixed- va]uc) systems

with bilateral elements. Three sets of parameters are developed for the £ Higs

two-port configuration, referred to as the impedance (z), admittance , : FIG. 26.5

(y), and hybrid (h) parameters. Table 26.1 at the end of the chapter re- * (a) Two-port system; (b) single-port system

lates the three sets of parameters _ - . and multiport system.

26.2 THE IMPEDANCE PARAMETERS
Z; AND Z,

For the two-port system of Fig, 26.7, Z, is the input impedance between
terminals 1 and 1!, and Z,, is the output impedance between terminals 2

and 2'. For multiport networks, an impedance level can be defined be- 19
tween any two (adjacent or not) terminals of the network.

FIG. 26.6
Two-port transistor configuration. .

FIG. 26,7
Defining Z;and 7.,
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&

FIG. 26.8
Determining Z,.

The input impedance is defined by Ohm's law in the following form:

Zi== (chms, ) (26.1)

with I; the current resulting from the app lication of a voltage E;.
. The output impedance Z, is definedby ;

Z,=— (ohms; (1) (26.2)
E;=0 v

with I, the current resulting from the application of a voltage E, to the
output terminals, with E; set to zero. _
Note that both I; and 1, are defined as entering the package. This is

" common practice for a number of system analysis methods to avoid con-

cern about the actual direction for each current and also to define Z; and
Z, as positive quantities in Egs. (26.1) and (26.2), respectively. If 1,
were chosen to be leaving the system, Z, as defined in Eq. (26.2) would
have to have a negative sign.

An experimental setup for determining Z; for any two input terminals
is provided in Fig. 26.8. The sensing resistor R is chosen small enough
not to disturb the basic operation of the system or to require too large a
voltage E, to establish the desired level of E;. Under operating condi-
tions, the voltage across R, is E, — E;, and the current through the sens-
ing resistor is '

I VRs - Es T Ef
RTR, o B
E E
But I = ]R and Z= —i =4
b . !‘- IR,

“The sole purpose of the sensing resistor, therefore, was to determine I

using purely voltage measurements. :
As we progress through (his chapter, keep in mind that we cannot use -
an ohmmeter to measure Z; or Z,, since we are dealing with ac systems-

_ whose impedance may be sensitive tothe applied frequency. Ohmmeters

can be used to measure resistance in a dc or an ac network, but recall that
ohmmeters are employed only on a de-energized network, and their in-
ternal source is a dc battery. '

The output impedance Z, can be determined experimentally using the

 setup of Fig. 26.9. Note that a sensing résistor is introduced again, with

E, being an applied voltage to establish typical operating conditions. In
addition, note that the input signal must be set to zero, as defined by

E =0v]

FIG. 26.9
Determining Z,.’
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E_q-. (26.2). The vpltggc.'ﬁcros's the sensing. resistor is Eg — E,, and the
current through the sensing resistor is .
i 5 !

] Yo _Ei~F
R; R, r- R: ok . . -
; ' E E ¢
but - I, =Ig and  Z, = —=—
i H Ia IR,

For the majority of situations, Z; and Z, will be purely resistive, result-
ing in an angle of zero degrees for each impedance. The result is that either
a DMM or a scope can be used to find the required magnitude of the de-

- sired quantity. For instance, for both Z; and Z, Vg, can be measured di-
rectly with the DMM, as can the required levels of Eg, E;, or E,. The
current for each case can then be determined using Ohm’s law, and the im-
pedance level can be determined using either Eq. (26.1) or Eq. (26.2). <

If we use an oscilloscope, we.must be more sensitive to the common - ' 5 ey
ground requirement. For instance, in Fig. 26.7, Eg and E; can be meas- -
ured with the oscilloscope since they have a common ground. Trying to
measure Vg, directly with the ground of the oscilloscope at the top input
terminal of E; would result in a shorting effect across the inpul terminals
of the system due to the common ground between the supply and oscil-
loscope. If the input impedance of the system is “shorted out,” the cur-
rent I; can.rise to dangerous levels because the only resistance in the
input circuit is the relatively small sensing resistor R;. If we use the
DMM to avoid concern about the grounding situation, we mustbe sure
that the meter is designed to operate properly at the frequency of inter-
est. Many commercial units are limited to a few kilohertz. ;

If the input impedance has an angle other than zero degrees (purely re-
sistive), a DMM cannot be used to-find the reactive component at the
input terminals. The magnitude of the total impedance will be correct if
measured as described above, but the angle from which the resistive and
reactive components can be determined will not be provided. If an oscil-
loscope is used, the network must be hooked up as shown in Fig. 26.10.
Both the voltage E, and Vg, can be displayed on the oscilloscope at the
same fime, and the phase angle between E; and Vg, can be determined.
Since Vg _and I; are in phase, the angle determined will also be the angle
between E; x:md I,. The angle we are looking for is between E; and I;, not
between E, and I; but since R, is usually chosen small enough, we can
assume that the voltagé drop across R, is so small compared to E, that
E; = E,. Substituting the peak, peak-to-peak, or rms values from the

pr—

.Tum-poﬁ'_
system |

Channel 2: V| Share common
Channel 1: E,” | ground
FIG. 26,10
Determining Z; using an oscilloscope.
i :
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&

oscilloscope measurements, along with the angle just determined, will
permit a determination of the magnitude and angle for Z;, from which the
resistive and reactive components can be determined using a few basic
geometric relationships. The reactive nature (inductive or capacitive) of
the input impedance can be determined when the angle between E; and [;
is computed. For a dual-trace oscilloscope, if E; leads Vi, (E; leads 1),
the network is inductive; if the reverse is true, the network is capacitive.

To determine the angle associated with Z,, the sensing resistor must
again be moved to the bottom to form a common ground with the supply
E,. Then, using the approximation E; = E,, we can determine the mag-
nitude and angle of Z,,. :

R, ;i
‘r‘vlr A
100 N b
* J SOt
Two-
100mv £ = [iﬁ mv wg;’_‘
- TR Sl
Z
" FIG. 28.11
Example 26.1.

EXAMPLE 26.1 Given the DMM measurements appearing in Fig. 26,11,
determine the input impedance Z; for the system if the input impedance is
known to be purely resistive.

Solution: k )
Vo, =E; ~ E = 100 mV - 96 mV =4mV
R 4mVY
T e A
E;, 96mV
=R —_= = 0
Z T 4 7y 24k

EXAMPLE 26.2 Using the provided DMM measure;nent_s of
Fig. 26.12, determine the output impedance Z, for the system if the out-
put impedance is known to be purely resistive. -

i

CE =0V it 1':;‘;1‘.8-?1?1“ :
FIG. 26.12
Example 26.2,
Solution: .
J ’
Vi, = Ep— E, =2V =192V = 008V = 80 mV
Vi, 80mV
L=1, s—= =40
T LR -
£y 82V L
Z, = T 48 k2

EXAMPLE 26.3 The input characteristics for the syls'ter_'n of

- Fig. 26.13(a) are unknown. Using the oscilloscope measurements of

Fig. 26.13(b), determine the input impedanc; for ‘the system., If a
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THE VOLTAGE GAINS A,, Wi

o P~ 5
~ f 7
. //r .(2"&,

L~
-l

Channel 1

Eyi Venicll sensitivity = 10 mV/div,
V, Vertical sensitivity = 1 mV/div,

(b) ;
FIG. 26.13 \
Example 26.3,
reactive component exists, determine its magnitude and whether it is in- -
ductive or capacitive. . \ ”
- Solution; The magnitude of Z;:
* Veon _ 2mv ;
Iipp) = fgv_ﬂ = r, Fﬁ_ = 200 pA
E._E  somv :
Zi=—=—= =25000 '
TE B a00pk T .
: "
The angle of Z;: The phase angle between E, and Vi, (or I, = T)) is
180° —150° = 30° : '
with E, leading I, so the system is inductive. Thérefcre,
Z; =250 Q 430°
=216510 +,125Q =R +_;XL
26.3 THE VOLTAGE GAINS A,,, A,; AND A, _
The voltage gain for the two-port system of Fig. 26.14 is defined by. . = <=
Eo I i .
R (263) Ei. A E,
S i E[‘ ]
: =¥ d o S
The capital letter A in the notation was chosen from the term 2
amplification factor, with the subscript v selected to specify that voltage FIG. 26.14
levels ar¢ involved. The subscript NL reveals that the ratio was deter- Defining the no-load gain A,

mined under no-load conditions; that is, a load was not applied to the
output terminals when the gain was determined. The no-load voltage
gain is the gain typically provided with packaged systems since the: ‘ap- -
plied load is a function of the application,
The magnitude of the ratio can be determined usmg a DMM or an os-
cilloscope. The oscilloscope, however, niust be used to determine the
phase shift between the two veliages.
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of_fe

In Fig. 26.15 a load has been introduced to establish a loaded gain

that will be denoted simply as A, and defined by

E,

o g T
E; lwith r, >

) FIG. 26.156
Défining the loaded voltage gain Ay (and A, ).

(26.4)

For all two-port systems the loaded gain A, will always'be less fk_au

;_"he no-load gain.

In other words, the application of a load will always reduce the gain

below the no-load level.

A third voltage gain can be defined using Fig. 26.15 since it has an
applied voltage source with an associated internal resistance—a situa-
tion often encountered in electronic. systems. The ‘total voltage gain of

the system is represented by A, and is defined by

"

o |

A, =

T

to loss of signal voltage across the source resistance,

(26.5)

" Itis the voltage gain from the source Eg to the output terminals E,. Due

the voltage gain A is always less than the loaded voliage gain A, or

unloaded gain A

Unr'

1f we expand Eq. (26.5) as

E, E E,[ E; E, E;

s-p-Fo=p(E) -5 g

A g . X TALY i By

’ . E .

. then A=A (if loaded)
i E,
or Ay = Ay =L (if unloaded)
i Eg

The relationship between E; and E, can be determined from Fig.
26.15 if we recognize that E; is across the input impedance Z and thus

apply the voltage divider rule as follows:

N Z{(Ey)
Tl Ry

s = B %
d Eg Z + Rg
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Substituting into these relationships results in

A z_ p
Ay, = A, Z +’ R, (if loaded) (26.6)
Z; ;
. Ay =Ay, Z.TR,, (if unloaded) (26.7)

A two-port equivalent model for an unloaded system based on-the
definitions of Zj, Z,, and A,, is provided in Fig. 26.16. Both Z; and Z,
appear as resistive values since this is typically the case for most elec-
tronic amplifiers. However, both Z; and Z, can have reactive compo-
nents and not invalidate the equivalency of the model.

L. ' Z; I
B AAA "—La
. . .v;?n. °
0 F
+ ; o T
w -3 )
E ZJE:RJ @ An Ei ; E,

?!
o]

FIG. 26.16
Equivalent inodel for two-port amplifier.

The input impedance is defined by Z; = E;/I; and the voltage E,
uy Ei in the absence of a load, tesulung in Ay, =E,/E; as° def‘med
The output impedance is defined with E; set to zero-volts, resulting in
Ay, Ei = 0V, which permits the use of & short-circuit equivalent for the
caﬂuﬁhdsoume The resultis Z, = E,/1,,, as defined, and thepm-am
tersand structure of the equivalentmadel are validated.

If a load-is applied as in Fig. 26.17, an application of the voltage di- o R
vider rule will result in : —-~———-J\Mr—-—$—
o RALE) . |
0 R, + R, @A”mEi E, E:RL
Sy R, : 4
and . Ay, = e Ay R +R, (26.8) o
: FIG. 26.17
For any value of R; or R, the ratio R /(R; + R,) must be less.than 1, Applying a load to the ouiput of Fig. 26.16.

mandating that A, is always less than A, as stated earlier. Further,

UNL
for a fixed output impedance (R,), the larger the load resistance (Rp),
the closer is the loaded gain te the no-load level.,

An experimental procedure for determining R, can be developed if
we solve Eq. (26.8) for the output impedance R,
-
oy RL_"’ RnAUML

' Introductory, C.-72A
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(a)

or ARy + R,) = RiA,,,
AR+ AR, = RIA,,

and . ARy = Ry, — AR

RL{ANM_ = Av)
with M s

- € Av
‘ Ay, ; 43

‘or R, = Ri_( l) (26.9)

A,

Equation (26.9) reveals that the outpﬁl impedance R, of an amplifier
can be determined by first measuring the voltage gain E,/E; without a
load in place to find A, and then measuring the gain with @ load Ry to
find A,,. Substitution of A,M. Ay, and Ry into Eq. (26.9) will then pro--
vide the value for K,,.

1
A

EXAMPLE 26.4 For the system of Fig. 26.18(a) employed in the
loaded amplifier of Fig. 26.18(b):

(b)

FIG. 26.18
%mpff 26.4.
a, Determine the no- load vohage gain Ay,
b. Find the loaded voltage gain A,
¢. Calculate the loaded voltage gain A, ..
d. Determine R, from Eq. (26 9), and compare it to the specifi cd value
of Fig. 26.18.
Solutions:
E, -20V
A g, T Ty 0

| R - 220
b. Au - AUHLRL o Rn T (_5000}(22 kO + SOkH)

= (~5000)(0.0421) = =210.73

‘ Z 1k
c. A,,T—-sz TR, 4.( 210.73 (lk__—-—ﬂ+ _lkﬂ)._

: 2 .
= _(—210.73)(5) = —105.36

: Ay - 5000
d. R‘,=R( “_'ﬂl)-»zzm( 1)
A, -210,73 |

=22 kQ(23.727 — 1) = 22k((22.727)
= 50 k) as specified

Introductory, C.- 72B
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26.4. WWNT GAINS A;AND Ajr
AND THE PDWEH GAIN Ag

Th: qurrm: _gain of two-port systems is typu:ally calculated from vnltage
levels. A uo-loadym is not defined for current gain since the absence of
Ry, requires that I, = E,/R, = 0 A and A; = L/I; = 0. ,

- For the system of Fig. 26.19, however, a load has been applied, and

E,

I, =——

0 RL

with L= —E
1 L Z

FIG, 26.19 ] o
Deﬁnmg Ajand A-‘r - y %

Note the need for a minus sign when I, is defined, because the de-
fined polarity of E, would establish the opposite direction for I,

through R;. J . x
The loaded current gain is
3 » =5_’EOJ’RL~_E(_ZJ.)
"L E/Z  E\R
g il z ¥
and Aj=-A, (26.10)
Ry .

In general, therefore, the loaded current gain can be obtained
directly from the loaded voltage ga.m and the rauo of impedance levels:

Z;over Ry.,
If the ratio A, = 1,/I, were required, we would proceed as follows:
| =B
L= R,
E
with > Teigpames S
Ry + 2,
il & _k__;Jﬁk___(&)C%+a)
_ "L E/Rg+Z)  \EJ\ R
or . B (R‘ ’ z,-) (2;511)
i Ig Uy RL -
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The result obtained with Eq. (26.10) or (26.11) will be the same since
I, = I;, but we now have the option of which gain'is available or which
one (o use. .

Returning to Fig. 26.16 (repeated in Fig. 26.20), we can determine an
equation for the current gain in tefms of the no-load voltage gain.

! FIG. 26.20 ¥
Developing an equation for A in terms of Ay,

Through Ohm’s law,

1l _AU,QEi’
R; + R,
but E; = LR,
AUM'_(IIRI‘)
and o I, = ———-—-RL TR,
L. R; A
) ' sothat - A= F =—Au R+ R, (26.12)

The resultis an equation for the loaded current gain of an amplifier in
terms of the nameplate no-load voltage gain and the resistive elements of
the network, . 2

Recall an earlier conclusion that the larger the value of Ry, the larger is
the loaded voltage gain. For current levels, Equation (26.12) reveals that

the Iarjer the level of R;, the less is the current gtun of a loaded
amplifier. .
In the design of an amplifier, therefore, one must balance the desired -
voltage gain with the current gain and the resulting ac. output power level.
For the system of Fig, 26.20, th¢ power delivered to the load is deter-
mined by E%/R;, whereas the power delivered at the input terminals is .
E%/R;. The power gain is therefore defined by
P, _EJR _EJR (Eo_)zm

G_Pf‘E‘g/R;‘_E?RL_ E,/ R
| R, _
and = Ag = A;— (26.13)
; : Ry : '

A

Expanding the conclusion gives

Ag = (A;)(A%) = (A;.)(—A;}.
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Dpn :be conccmgd about the minus sign. A, or 4; w:ll be negative to

eﬂsure that the power gain is positive, as obtained from Eq. (26.13).
1If we substitute A, = —A;R;/R; [from Eq. (26. 10)] into Eq. (26.14),

wefind
—AiRy
Ag = ~AA = —( R )A.—

or ) Ag = A= : (26.15)

which has a-format similar to that of Eq. (26.13), but now Ag is given in
terms of the current gain of the system. [
The last power gain to be defined is

@ =f£=E§/RL= E.QD/R,«_ _=(§£)-2(R3+Rf)
Gr P, El, EM{R +R) E Ry

8

or _ Ag, = AE,,( ) (26.16)

Expanding gives

and ' Ag, = —AyAip (26.17)

EXAMPLE 26.5 Given the system of Fig. 26.21 with its nameplate data:

I
e + 0
Y
u'- = 960
z,:z'n;ﬂ E,
Z.. 3

FIG. 26.21
Example 26.5.

a. Determine Ay,
b. Calculate A,
<. Increase Ry to double its current value, and note the effect on A,
and A;.
d. Find Ay
€. Calculaw Ag.
f. Determine A; from Eq. (26.1), and compare it to the value obtained
in part (b). .
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Solutions:
Ry 4.7kQ
Ty (“960)(4.7 kQ + 40 kO
~ R 27k0
n Af = TAwp iR, ( 96{}](4.7 kQ + 40 kQ
c. Ry =2(47k0) = 9.4k0

__ i Ry ) : ( 9.4 k() )
Ao A""L(R,_ +r,) = %0 5aka T a0k0
= —182.67 = versus —100.94, which is a significant increase

. T 27k0 )
(RL +R¢,) ( 960)(40m+9.4m
= 52.47 versus 57.99

) - -taos

) = 57.99

>
&
z

" which is a drop in level but not as significant as the change in A,
d. A=A, =5799 as cbtained in part (b)

: R, + R;
However,  A; = —A,, T
L

oy '{Av@ fing}][ms . RI)J

R; 2.7k()
- 3 _AF_ == 10094)(4.71;0)
= 57.99 as well
. R; 2.7k}
= 2t - 2 =

e. Ag A"R;_ (100._94) (4._’_ kﬂ) 5853.19

f. AG = "A.UAj B
A (5853.19)
OF A) = === T i
. A, (—100.94)

= §7.99 as found in part (b)

26.5 CASCADED SYSTEMS

When considering cascaded systems, as in Fig. 26.22, the most Jmpor-
tant fact to remember is that

the equations for cascaded systems employ the laaded voltage and
current gains for each stage and not the nameplate unloaded levels.

FIG. 26.22
Cascaded system.

; Too often the labeled no-load gains are employed, resulting in enor-
mous overall gains and unreasonably high expectations for the system.
i In addition, bear in mind that the input impedance of stage 3 may affect

the input impedance of stage 2 and, therefore, the load on stage 1.



lu geqml,;lmeforc, l.hetquaﬂons for cascaded systems initially ap-
pear to offer a high lével of'simplicity to the analysis. Be aware, how-
ever, that each term of the overall equations must be carefully evaluated
__before. uﬁng the cquauon ' :
; The total voliage: gam for the system of Fig. 26.22 is

|TA,,1r = Ay, * Ay, + Ay, _ (26.18)

where, as noted previously, the amplification factor 61' each stage is de-
termined under loaded conditions.
The total current gain for the system of Fig. 26.22 is

"IA,‘T'= All.l . IA,'Q b Af! (2619) :

where, again, the gain of each stage is detcrmmed under Ioadcd (con-
" nected) conditions.
The current gain between any two stages can also be determined

using an equation developed earlier in the chapter. For cascaded sys-

tems, the equation has the folluwmg gcm:ral format:

&y A=l L : (26.20)

. where A, is the loaded voltage gain corresponding to the desired loaded —

_current gain, ‘That is, if the gain is from the first to the third stages, then
the voltage gain substituted is also from the first to third stages. The
input impedance Z; is for the first stage of interest, and Ry, is the loading
on the last stage of interest.

For cxample for the three-stage amplifier of Fig. 26.22,

ar By
A,,r A"’:I-i:
whereas for the first two stages,
- i o A=A’ gi'_
i v Z;i
I . E
where Ai=— o and A, = 2
L I i iy

The :otai power gain is determmed by

AUr = A‘-‘]"A"T

(26.21)
whereas the gaiﬁ between specific stages is simply the prodﬁct of the
voltage and current gains for each section. For example, for the first two
stages of Fig. 26.22,

AG A, - A
where Al Au Ay, and Al

ia =Af, " Al'g

1
&,

EXAMPLE 26.6 For the cascaded system of Fig, 26.23, with its name-
plate no-load parameters:

a. Determine the load voltage and current gain for each stage, and re-
draw the system of Fig. 26.23 with the loaded parameters.

CASCADED SYSTEMS 111 1131
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I
0:_’1""'— :
+ ]
i Ay = L
E;, z,"% 50k0
Z, =250
1,
el
(0 e [
& ‘A, =098
i A = -21.397
Dasiasty

>
23340

FIG. 26.23
Example 26.6,

Calculate the total voltage and current gain.

. Find the total power gain of the system using Eq. (26.21).
. Calculate the voltage and current gain for the first two stages using

Egs. (26.18) and (26.19),

. Determine the current gain for the first two stages using Eq. (26.20),
‘and compare your answer with the result of part (d). _

. Calculate the power gain for the first two stages using Eq. (26.21).

. Determine the power gain for the first two stages using Eq. (26.13).

Compare this answer with the result of part (f).

. Calculate the incorrect valtage gain for the entire system using Eq. -

(26.18) and the no-load nameplate level for each stage. Compare
this answer to the result of part (b).

o]

Solutions:
R, z 1.8 k(2
CAL =A .S - =
a. Ay, ‘tNL'RL + R, AUNLLZ& + Rm ( }1.8 kit +2580
= 0.986 4
&k zi] o (_em)ﬂ_ - —-]7. 476
% U.l\flazi_g + Ry, 1.2kQ + 40 k) 3
Ry 3.3 k()
Aw = Aup Ry - PO sokn T e
R z, 50 k)
Ay =~Auyp 2o = T =~
AR, - Amz v r, - Vizrso
= —27.397
Zn 1.8 k()
A = — e e g i T || A 21
0= TAuz R (~800)T5E0 +.40mh + Tt
3 o ;
_ Z 1.2k0 !
A= Ak, - 55k soka ~ 7
: .
Note Fig. 26.24.
R, = 33k0

FIG. 26.24
Solution to Example 26.6.
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E, # i3
b Ay, = E? = Ay, Ay~ Ay, = (0.986)(~17.476)(~74.296)
i
= 1280

A= ]—"?— = Aq,+ Ay~ Ay, = (—27.397)(26.:214)(27.017)

= —19,403.20
c. Ag, = =A,+ Ay, = —(128022)(—19,403.20) = 24.84 X 10°
d. A"y, = Ay, +Ay, = (0.986)(—17.476) = —17.231

A%y = Ay Ay = (—21397)(26.214) = —~7T18.185
Z; Z 50 k0 ; -

A’zA—-——: o = (=17, g,
e. Ay=Ap A?‘Zs, (-17.81)1 330

= ~717.958  versus —718.185

with the difference due to the level of accuracy carried through the :

calculations, :
£ Mg, = A\ Al = (—17.231)(=718.185) = 12,375.05
R, - R 50k0) -
L, o= gl § = T i S —_— 1
g Ag, = Ay R (Ay,) 7 (-17.231) 5 12,371

h Ay = Ay Ay Ay = (1)(=600)(—1200) = 7.2 X 10°
720,000 : 1280.22 = 562.40: 1

which is certainly a significant difference in results.

266 IMPEDANCE (z) PARAMETERS

For the two-port configuration of Fig. 26.25, four variables are specified.
For most situations, if any two are specified, the remaining two variables
can be detegmined. The four variables can be related by the following :
equations: . e e

By =2k + 2L (26.229) FIG. 26.25 :
: ¥ Two-port impeddnce parameter configuration.

[75:2 =gy + znlil ' (26.22b)

The impedance parameters zy), 3, and 2y are measured in ohms,
To model the system, each impedance parameter must be determined
by setting a particular variable to zero.

Z11
For 2y, if I is set to zero, as shown in Fig. 26.26, Eq. (26.22a) becomes L
Ey =zl + 212(0) +
‘ El

E, s
-and = (ohms, ) (26.23)

I

L=0 .
Equation (26.23) reveals that with I set to zero, the impedance pa FIG. 26.26

rameter is determined by the resulting ratio of E to I,. Since E, and I Determining ).

are both input quantities, with T, set to zero, the parameler Z is for-
mally referred to in the following manner:

Iy = npcn-circuh, input-impedance parameter



1134 |11 SYSTEM ANALYSIS: AN INTRODUCTION 4 ; ; :Dg

=0 I,

S

+ +

E, System N\y)E,

L =
FIG. 26.27

Determining z)5.

lr T lz =0
i B 2] i St
——0
+ 3 SR +
E, - System_ . E,
- -
FIG. 26.28
Determining zy;.
I, =0 I
Sl o -
+
System ) E
FIG. 26.29
Determining zy,,
i X, -.
to———MA—— N ———2
30 asp
Xe7=<411
I’G 321
FIG. 26.30

T configuration.

Zy;

For z3, 1 s set to zero, and Eq. (26.22a) results in

-
73 = — (ohms, £2) (26.24)
I
11 = 0 :

For most systems where input and output quantities- are to be com-
pared, the ratio of interest is usually that of the output quantity divided
by the input quantity. In this case, the reverse is true, resulting in the
following: : ’ '

Z12 = open-circuil, reverse-transfer impedance parameter
The term transfer is included to indicate that z,, will relate an input
and output quantity (for the condition I, = 0). The network configura-
tion for determining z,5 is shown in Fig. 26.27,
For an applied source E,, the ratio E, /I, will determine z); with T set
to zero.

Z21 _
To determine 2, set I to zero and find the ratio Ey/l) as determined by
Eq. (26.22b). That s, .

(ohms, Q) (26.25)
L lz =0

In this case, input and output quantities are again the determining
variables, requiring the term transfer in the nomenclature. However, the
ratio is that of an output to an input quantity, so the descriptive term
Sforward is applied, and

231 = open-circuit, forward-transfer impedance parameter

The determining network is shown in Fig, 26.28. For an applied volt-
age E, it is determined by the ratio E,/1, with I, set to zero,

-
L]

2y _
The remaining parameter, z,,, is determined by

Zy =— (ohms, (1) (26.26)
I| =0

“as derived from Eq. (26.22b) with I, set to zero. Since it is the ratio of

the output voltage to the output current with I; set to zero, we have the
terminology

237 = open-circuit, output-impedance parameter

The required network is shown in Fig. 26.29. For an applied voltage
E,, it is determined by the resulting ratio Eo/I with I, = 0.

EXAMPLE 26.7 Determine the il;npedancc-(z} parameters for the T
network of Fig. 26.30. ; : ’
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Solution: Forz), the network will appear as shown in Fig. 26.31, with RN =0
Z,=3020°%2Z,=50490andZy =41} £~90% PO Sl —|— Z, /o2
: Iy V ;
Z + Zy , EI@ z,
Th Ty = E . & . .
us 11 I | 1=0 "
i T 32‘
and (26.27) FIG. 26.31
= . - Determining 2.
For 2,5, the network will appear as shown in Fig, 26.32, and
E, = I3 . ' L=0 ; o5
. _ ) lo— 2%, - Z o
? E] 122-3 t 2
Thus “r =T A, s +
CLiy=0 I ' +
o i e 7y Z [E, @EZ
and (26.28) .
For z;;, the requin:d network appears in Fig. 26.33, and Seel : 4 z
B b S FIG. 26.32
Ez L,Z, Determining ).
Thus, L= e .
1, =0 II
i L L:__= 0
and s (2629) e TR R
’ +
For z;,, the determining configuration is shown in Fig. 26.34, and + .
=3 El@ E)| 23 | E,
A 7 e :
12 = =
2+ 1 , 2
i iy &I _ L(Zy +Zy) e ; : 2
A ll-ﬂ i - T FIG. 26.33
Derermining zy).
e @30
I =
Note that for the T configuration, 2j; = 25). ForZ) =3 £0°,Z, = l—=— 2z - %
50 £90° and Z3 = 4 {) £—90°, we have
n=Z+Z3=30-j40 2,
23 =23 = Z3 =40 £-90° = —j4 O
2227-‘224'23:5‘1/_90“'!”49{__90“:!nLgﬂozjln
' ' 1o
; . . : FIG. 26.34
For a set of impedance parameters, the terminal (external) behavior of Determining £y

the device or network within the configuration of Fig. 26.25 is deter-
mined. An equivalent circuit for the system can be developed using the
impedance parameters and Eqgs. (26.22a) and (26.22b). Two possibilities
for the impedance parameters appear in Fig. 26.35.

Applying Kirchhoff's voltage law to the input and oulput loops of the
network of Fig. 26.35(a) results in

Ei—zpl -2 =0

and Eg - Zn[g = 221I| =0
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1 1 + I, 5
Lo _._L‘Z-" é’*i—' -l 222 ==3
+ + +

Nzgy =201

i g
llnl Ez E| Zj: -E2
"’ - - -
O = o]
> T ; _ > >

(a) (b)
FIG. 26.35

Two possible two-port, z-parameter equivalent networks,

Device,
network,
system

(z}

which, when rearranged, become
Ei =zl +2ppl,  Ey=zyl; + 2]y
matching Eqs. (26.22a) and (26.22b). .
For the network of Fig. 26.35(b),
Ei — Nz — 212) = 2ol + ) = 0
and . E; = Ii(z2) — 212) — Tplzpp — 213) — 215(I; + L) = 0

which, when rearranged, are
E; =iz = 212 + z12) + bz
E; = Li(z) — 212 + 202) + Dz — 212 + 21p)
and E] = Z]|11 + 21312 .
E; =zl + 20y _

Note in each network the necessity for a current-controlled voltage
source, that is, a voltage source the magnitude of which is determined by
a particular current of the network.

The usefulness of the impedance parameters and the resulting equivalent .
networks can best be described by considering the system of Fig. 26.36(a),

which contains a device (or system) for which the impedance parameters
have been determined. As shown in Fig. 26.36(b), the equivalent network

(b)
FIG. 26.36

Substitution of the z-parameter equivalent network into a complex system.

o



for the device (or system) can then be substituted, and methods such-as mesh
analysis, nodal analysis, and so on, can be employed to determine required
unknown quantities. The device itself can then be replaced with an equivalent
circuit and the'desired solutions obtained more directly and with less effort
than is required using only the characteristics of the device.

EXAMPLE 26.8 Draw the equivalent circuit in the form shown in Fig.
26.35(b3 using the impedance parameters determined in Example 26.7.

Solution: The circuit appears in Fig. 26.37.

°——7M—|@7 ’éﬁ‘ TN
E, 41,z-90° ’\D @41, .c-w'_ ;B

FIG. 26.37
Example 26.8. -

26.7 ADMITTANCE (y) PARAMETERS

The equations relating the four terminal variables of Fig. 26.25 can also
be written in the following form: =

FII =y E; + yi2E2 ‘ (26.31a)

|12 = yuEy + ¥Y2oks | (26.31b)

Note that in this case each term of each equation has the units of cur-
rent, compared to voltage for each term of Egs. (26.22a) and (26.22b). In
addition, the unit of each coefficient is siemens, compared with ohms for
the impedance parameters.

The impedance parameters were determined by setting a particular
current to-zero through an open-circuit condition. For the admittance (y)
parameters of Eqs. (26.31a) and (26.31b), a voltage is sel to zero
through a short-circuit condition.

The terminology applied to eachrof the:admittance parameters follows
directly, from the descriptive terms applied to each of the impedance
parameters. The equations for each are determined directly from Eqgs.
{26.31a) and (26.31b) by sctting a particular voltage 1o zero.

Y11

l .
iy = F—' (siemens,S) - (26.32)

i E;=10

Y11 = shori-circuit, input-admittance parameter

* ADMITTANCE fy) PARAMETERS 111 1137
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&
2
E; =0
y
FIG. 26.38
'¥11 determination.
5 The determining network appears in Fig. 26.38.
Y12
I, ] )
Yiz ““E‘;' . (siemens, S) (26.33)
. EI =0 .
. . : : - Y12 = short-circuit, nvsrse-nﬁu.qfer admittance parameter

The network for determining y,, appears in Fig. 26.39.

I
—

1
E, =0 “ Syst

FIG. 26.39 =~
Y12 determination.

¢

21
1y ;
' YT (siemens, S) (26.34)
: E,
Ez =0 .

Ya1 = short-circuit, forward-transfer admittance parameter

The network for determining y,, appears in Fig. 26.40.

Iy e 1,
e o die] o 5
+ 1 :
Eu(: i’i ; E, =0
2 .
; ; - %
. : FIG. 26.40
Y21 determination.
Y22
I; :
b 40 (siemens, S) (26.35)
EZ E| =0

L] ‘
Y22 = short-circuit, forwardstransfer admittance parameter

The required network appears in Fig, 26.41.



FIG. 26.41
¥a2 determination.

EXAMPLE 26.9 Determine the admittance parameters for the 7 net-
work of Fig. 26,42,

Solution: The network for y,, will appear as shown in Fig. 26.43, with

Y =02mS20° ' ¥Y;=002mS£-90° Y =0.25mS £90°
We use ll I= ElY'f = E[(Y] ¥ Y:}

with Yip ==

- =

X Short circuifed
Yz 1 2 T
Y, E, =0
Py
FIG. 26.43
Determining ¥ -

The determining network for y}5 appears in Fig. 26.44. Y, is short
circuited; so Iy, =TI, and

1 I}r: — I| — —Eng

The minus sign results because the defined direction of I, in Fig. 26.44
is opposite to the actual flow direction due to the applied source Ej;
that is,

I

YRZg

Ey=0

Shortcircuited [ Iy,

_._Ij_
[T
i
Y ¥ E;
e ]
¥

FIG. 26.44
Determining y ,.

. -ADMITTANCE ty) _'PAﬁAMETE_Fis 111 1139

R 8 L
1o . .= 02
% 0.02 mS +
E, 6S02ms Be<025mS E,
- -
1'; ;2.

FIG. 26.42
T network.
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- . ' (2637)

The network employed for y,; appears in Fig. 26.45. In this case, Y3
is short circuited, resulting in

1y: = lg and lyz — Ig . —E|Y2

it : I
wi ==
Y2 E,|E=0
s -
Jvy Lk shortoircuited

Y,

2y E, =0
- 2,
FIG. 26.45

Determining ¥3,.

Note that for the 7 configuration, y;; = ¥2;, which was expected
since the impedance parameters for the T network were such that z); =
231 A T network can be converted directly to a 7 network usmg the Y-A
transformation.

The determining network for y,; appears in Fig, 26.46, and

YT=Y2 +Y3 and 25'—' E-)__(Yz + Yj)
=B
o Y22 E e

| 2539

Short circuited 1, Iv; 1,

Thus

FIG. 26.46
Determining ¥3,.

Substituting values, we have
Y, =02m8 £0°
Y; = 0,02 mS £-90°
Y; =.0.25mS £90°

yip =¥+ Y,
= 02mS —j0.02mS (L)
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Ly =gy = -Y, = —(=j0.02mSs)

L =0.02mS (C) 3 :

“¥22=Ys+ Y3 =—j002mS + j0.25mS .
=j0.23m8 (C) | L e

Note the similarities between the results for ¥;; and y,; for the 7 net-
work compared' with z}; and z,; for the T network.

Two networks satisfying the terminal relationships of Egs. (26:31a) )
and (26.31b) are shown in Fig. 26.47. Note the use of parallel branches
since each term of Eqs. (26.31a) and (26.31b) has the units of current, - 3
and the most direct route to the equivalent circuit is an application of
Kirchhoff's current law in reverse, That is, find the network that satisfies
Kirchhoff's current law relationship. For the impedance parameters,
each term had the units of volts, so Kirchhoff's voltage law was applied “
in reverse to determine the series combination of elements in the equiva-
lent circuit of Fig. 26.47(a).

=8 i g e htoyai) 2 o =¥z
1 R £ Easy . . 2 - 1 o ] l .
* ey fLEes LR [ e * ] 2z =yl
E, '_ ¥n ; !’1353C) (D.h:ni j ¥z | E; E, Yin+tYiz| |¥2+¥2
o: o o
(a) - ; S (b
s ' FIG. 26.47
Twvo possible two-port, y-paramerer equivalent nerworks,
Applying Kirchhoff's current law to the network of Fig. 26.47(a), we
have ' T :

Entering Leaving
Nodea: T, =y E, + y12E2
Node b: Iy = ynEy + y2 Ey
" which, when rearranged, aie Egs. (26.31a) and (26.31b).

For the results of Example 26.9, the network of Fig. 26.48 will result
if the equivalent network of Fig. 26.47(a) is employed.

2 o
R 0.02mS L90°E, I
o 3 - 0
+ +
5 002ms B 023 mS
E, L2 Ea e E,
0.02 mS £90° E,
" -~

FIG.26.48 :
Equivalent network for the resuits of Exaniple 26.9. -

|r'|-h-" Arintame A TOA
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26.8 HYBRID (h) PARAMETERS

The hybrid (h) parameters are employed extensively in the analysis of
transistor networks. The term hybrid is derived from the fact that the pa-
rameters have a mixture of units (a hybrid set) rather than a single unit of
measurement such.as ohms or siemens used for the z and y parameters,
respectively, The defining hybrid equations have a mixture of current
and voltage variables on one side, as follows: g

l E1 = hllll + }l;zEz] (26.40&]

[[2 ‘:r‘h:]lg + hHE2‘ - = (26.40b)

To determine the hybrid parameters, it will be necessary to establish
-both the short-circuit and the open- c:rcun; conditions, depending on the
parameter desired.

h11

hy = — (ohms, Q) v (26.41)
It goso w

hyy = short-cireuit, input-impedance parameter

The determining network is shown in Fig. 26,49,

2
S'ys!em . E,=0
>
FIG. 26.49
hy, determination. k
\
hsz g
E, i A :
hyy == ( dimensionless) (26.42)
= B2l g =0 .

hy; = open-circuit, reverse-transfer voltage ratio parameter

The network employed in determining hy; is shown in Fig. 26.30.

o .

—

+ .

FIG. 26.50

hya determination.

fraterductare ©.0 71

(=}



(dimensionless)

E} e {] i
hy; = shorr-c:rcmf furward-rmnsfer current ratio pammeter

The determining network appears in Fig. 26.51.

System E;=0

FIG. 26.61
hy, determination,

L . : '
- I 4
"h&=§‘2‘
i . V5] II,=D-

" hyy = open-circuit, output admittance parameter

( siemens, S) (26.44)

Thenetwark employed to determine hy; is shown in Fig. 26.52.

’ ILi=0 .' [2
(it pst—
e y 1. +
E, System ) Ea
o : 2" -
o] :
FIG. 26.52

hy; determination.

The subscript notation for the hybrid parameters is reduced to the fol-
lowing for most applications. The letter chosen is that letter appearing in
bo]dface in the preceding deseription of each parameter:

hjy=h;  hy=h, hyy =h;  hy =h,

The hybrid equivalent circuit appears in Fig. 26.53. Since the unit of
measurement for each term of Eq. (26.40a) is the volt, Kirchhpff’s volt-
age law was applied in reverse to obtain the series inpwt circuit indicated.
The unit of measurement of cach term of Eq. (26.40b) has the units of
current, resulting imthe parallel elements of the output circuit as ob-
tained by applying Kirchhoff’s current law in reverse.

Note that the input circuit has a voltage-controlled voltage source

whose controlling voltage is the oulput terminal voltage, while the out-
put circuit has a current-controlled current source whose controlling cur-
rent is the current of the input cifcuit. :

( 26.43) ;

HYBRID th) PARAMETERS |

1142
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* le 02

+ -

- il
E, hynt . B
&
I'o s oo 5
' FIG. 26.53
§ Two-pori, hybrid-parameter equivalent network.

-

EXAMPLE 26.10 For the hybrid equivalent circuit of Fig. 26.54:

a.- Determine the current ratio (gain) A; = I/1;.,

e b. Determine the voltage ratio (gain) A, = E;/E,.
e L
—0—
2 . A : ; b
R 2 ' S
+, S , : &
E, + hE; ’\D C)h}ll . Sh, E;| Z,
E, IR L0 _
=33 g e =
: o
FIG. 26.54
Example 26.10.
’ Solutions:
a. Using the current divider rule, we have ~
o i ' E 1 (lfl‘lo}hjll B hfll
(/) + 2 1 by
SR - = a 3] e b i B 26.45)
- s o s Y o

b. Applying Kirchhoff's voltage law to the input circuit gives
: Ei—hE, ¢+
E —hl ~WE,=0 -and L= rl—r-ﬁ
i
Apply Kirchhoff's current law to the -o.ur:pu-t circuit gives

However, ' i =r
o L ",

s : : E; A
s0 -—Z—L = Iyl _-Flh”E;




& ( ~h, Eg) _
3 bl ——— ] + hE
. ; ZL' +7 hi’ L
or - hEy = ~hyZE + hhyZEy — hih,Z,E, .
a.l'.ld : Ez(h‘;'_ hrhsz -+ h,-hn.ZL) = hszEl

'wilh the result that

E, =hZ;

il E;  h(l+hZ) = hihyZy,

(26.46)

EXAMPLE 26.11 For a particular transistor, h;=1kQ.h, =4x iO"‘

hy = 50, and h, = 25 us. Determine the current and the \ohage gain if .

Z, is a 2-K() resistive Ioad

Solution: ‘ i
"1+ hZy 14 (25u8)(2KD) '
T 50 50 :
= B = 47.62°
+ (50 % 1073), 1.050 i
; ~h/Z
¥ Al’ f =

,{1+h Z,) - hhZ;

—-(50)(2 kQ) ' X .

= (1%Q)(1.050) - (4 X 1074)(50)(2 k)
-100 X 10° 100 _

(1,050 x 10%) - (0.04 X 100) =T

The minus sign simply indicates a phase shift of 180° between E; and E;
for the defined polarities in Fig. 26.54. '

L

L

26.9 INPUT AND OUTPUT IMPEDANCES

The input and output 1mpedancea will now be determined for the hybrid

equivalent circuit and a 2z- parameter equivalent circuit. The input im-

pedance can always be determined by the ratio of the input voltage to
the input current with or without a load applied. The output impedance’

is always determined with the source voltage or current set to zero. We
found in the previous section that for the hybnd equivalent circuit 6f
Fig. 26.54,

E1 = hl, + h,EI

E; = I-IQZL '

I hy
A @ - .
an 3 T 15 Bl

By Isubsl:ituting for I, in the second equation (using the relationship of
the last equation), we have

()
e B ET S

" INPUT AND OUTPUT IMPEDANCES 111 1145
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50 the first equation becomes

. iz, )
= ,
By bl h’( 1+h,7, _
hyhyZ; *
and \E_I=l|(h,-'-l—+'-"— 1 ::L)
E| - hrhfzf_. '
j=—=h - —— 47
Thus, Z, I l‘{, 1 + bz, (26.47)

For the output impedance, we will set the source voltage to zero but
preserve its internal resistance R, as shown in Fig. 26.55.

B il
i)
' ' & SIS
" Wy Sh B |z
& EI'
FIG, 26.55
Determining Z, for the hybrid equivalent nerwortk.
Since E; =0
: h.E, . . -
then ) f= - 5
: S T
From the output circuit,
= : - I = hyI; + h,E,
\ : L hrEz )
= he| — +
or . Iz f( !l,' + Rs haEZ
d | I ( wie h )
=|(- +
an ; ok b+ R, Tl E
» o Z, % g_z_ = _.H.l_._ :
THHS . .0 =, |, I, ¥4 h.h; (26.48)
R Lt AR
gy EXAMPLE 26.12 Determine Z; and Z, for the transistor having the
parameters of Example 26.11 if R, = | kﬂ

Solution:

2=y - Ml g 004k0
1+ h,Z; 1,050
=1 X 10° = 0.0381 X 10° = 961.9 Q'



1 1

L= hh ~ 3 X 10-%)(50
h,,’—'-'"f'" 25#5_('____2(__)_
: h; + R, 1kQ + 1kQ
CRiar W et ol
25.% 1070 =00% 1079 . 15 % 105°
= 66.67 k) : NG

For the z-parameler equivalent circuit of Fig. 2656,

L] Zy |—os—

Y 5
A :’.‘
HG. 26.56 Yy
Determining Z; for the z-paramerer equivalent nenwork. =
z 1)
e
zn+t 2
oo = Ep a0l
and - I, = o
. Zy i
! nly )
or E; =2, + 210k = 2l + 20| ———
1 il ¥ 2tz 7 51'1 u( ot I
EI v ' FARY 53] s F
d 3 2:=—=74y - — {26.49
an A il SRR . )
For the output impedance, E, = 0, and _
2120 L Ep-myl
I =-—22 and L =——
; Ry + 2y 3 "
. Z;zlg
or E; = 23015 + 241y = 2331, + 2 (-——)
B2 = Inh ¥ Ik = 2:12 21 R, 2
: z137211;
and . Ex=zplh - —/——
2 = anply R, + 2y,
' : E, Zj32y) ;
Thus , I,y=—=iIy-—"" - (26.50)
2 , ° Ok B Rt -

'26.10 CONVERSION BETWEEN PARAMETERS

The equations relating the z and y parameters can be determined directly
from Eqgs. (26.22) and (26.31). For Eqs: (26.31a) and (26.3_Ib).

I) = yuE; + y12E3
o= yaEy + yoE;

+ + : z”
2,20 : @hlh E; Z

CONVEHSléN'BETWEEN PARAMETERS |11 1147
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The use of determinants results in

‘11 3’12‘

L yol _ ¥al - ypb
Yu¥az = Yiz¥a

Ej =
Yu ¥z

Y1 ¥»

Substituting the notation

i . Ay = yu¥a2 ~ Y12¥u
Yo Yi2
we have ! E =—=I ——1 a
1 ‘-"v ! 4, 2

which, when related to Eq. (26.22a),
E; =zy1) + zp0;

indicates that

¥ 2
zZ) = f—:: and Z)3 = _FA-;
! v and, similarly,
i Y1 : Yu
By = and B2 = T
) 4y 3,
. For the conversion of z paramelters to 'the admittance domain, deter-
g minants are applied to Eqgs. (26.22a) and (26.22b). The impedance pa-
rameters can be found in terms of the hybrid parameters by first forming
the determinant for I, from the hybrid equations: =
E; = hyl) + hyE,
I = hyly + hpEy
. Thatis,
E, by
I L  hp| by : h”lg
|h11 !‘IZ‘ Ay Ap
hy bl
; hy; hyp o ”
. and =—=E =1 +—1
A L ™ 2
; . Al by
or Ey =k ==
hy  hy
) * . which, when related to the impedance-parameter equation,
‘ E =zl +z50p
indicates that [
: . ﬂ-hh- hy»
; - z)) = — and Z)j; = —
1 , y i hu & hn

' The remaining conversions are left as an exercise. A complete table
- of conversions appears in Table 26,1, ~ . .
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TABLE 26.1 ,
Convenians bam-een z, y, and h parameters.
i M
From ;
i [ z y "
Te i Fill )
* : .. m o T )
l i Pt comd] B B :
1
: 3 Ay Ay | hn by
Z 2]
" o S0 ¥ TR L
- ol 7 SR has has
| o epor | J8T S
A Ay W o hyy hy ’
Y
= R T ERRRS § "EE.
a, a, : % b hy © hyy .
A, . 2 1 —¥iz : .
== 22— —21 b ;
222 55] Y Y | ; 2
h d N A . i
_ Z'z] .L. .!?_'l _F. ” h 'l
n In ¥u Yu i =
PROBLEMS e it T
iy d
SECTION 26.2 ‘The Impadam:o Paramctars 12,-:
2, and Z, i
] o
1. Given the indicated voltage levels of Fig. 2657, deiriine 0 +
the magnitude of the input impedance Z;. s Multi-port &
' system E, q: Ry
. 'Rl 1 -
A ? \
' : i Hi z l-iﬁkn
E(N\,)105V  E=1V] " _sysem i ll = LimA
i R ot i + E = Z o
) 3 1
| o FIG. 26.58
= Z: Problem 3.
FIG. 26.57 4. Given the indicated voltage levels of Fig. 26,39, determine
Problem 1. z. . :
$ + R,
2. Fora system with
E;=120V£0° and I;=62AZ,~108° .
determine the input Impedance in rectangular form. At a

frequency of 60 Hz, determine the nameplate values of the
parameters. 4

. For the multiport system of Fig. 26.58:

a. Determine the magnitude of I;, if E;, = 20 mV.
b. Find Z;, using the information provided.
¢. Calculate the magnitude of E;y,

System

FIG. 26,59
~ Problems 4 through 6.
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5. For the cnhﬁgumliun of Fig. 26.59, determine Z, if g #
2sin 377t and v = 40 % 107 sin 3771, with R, = 0.91 k(2.
6.- Determine Z, for the system of Fig. 2659 if £, = 1.8 V f
(p-p)and £, = 0.6 V rms. e
7. Determine the output impedance for the system of "
Fig. 26.60, given the indicated scope measurements. "

' System

" Channel | e

e,: Vertical sensitivity — 0.2 Vidiv.
Channel 2 U+ Vertical sensitivity — 10 mV/div.
FIG. 26.6u :
Problem 7.
SECTION 263 The Voltage Gains A, . A, 1= 104A L0 )
and A, y 3._-—0-_,, _ s
8. Given the system of Fig, 26.61, determine the no-load valt- : ;
age gain Auyye E; B System E, = 405V (p—p) £180°
: e 4
o m : ';'_—a
7, = L8KO L0° _ :
] FIG. 26.61
N Problem 8.
9. For the syster of Fig. 26.62; . g p
a. Determine A, = E,/E;, - 3

b." Find Ay, 5 E,/E,.

I ik ]
B, T S
05 K0 o+ &>
: S, A,,, = ~3200 :
E, E Z, = 22k Ry =56kn .,
' Z, = 40kQ
< o
' : _ FIG. 26.62'

" y Problems 8, 12, and 13, i .



~ 10. For the system of Fig.'26.63(a), the no-load output voltage is
) ~1440mV, wiith 1.2 mV applied at the inpus terminals. In Fig,
26.63(5), 0. 4.7-k{Y load is applied 10 the same system, and the
‘output voltage drops to — 192 mV, with the same applied i input
signal. What is the outpul lmpedance of the system'?

“PROBLEMS 11/, $15% -

+ . + L +
; : S -
E = L2mV | Sysem E, = -140mV E, = 12mV System E, Z47KQV, = -i92mV
@ : )
‘ FIG.26.63
: Problen: 10.
#11. For the system of Fig. 26.64, if ]
Ay=—160 . 1,=4mA L0° - E,=70mV £0° ’
a. Determine the no-load-voltage gain.
b. Find the magnitude of E,. i “
- ¢, Determine Z;. L.
!a
[ Wi
+
R R T .
E b E, i< 2Kk0
Z = 075K0 e =
FIG. 26.64
Problems 11 and 14. .
. . . 2
SECTION 26.4 The Currant Gains A;and A, ' 14. Forthe systerfof Fig: 26.64:
and the Power Gain AG 8. Determine the magnitude of A; = I,/1;.

12. For the system of Fig. 26.62:
a. Determine A; = 1,/1,.
b, Find Ay = I,/1,.

b

Find the power gain Ag, = Pi/Py. .

SEcﬂON 26.5 Cascaded Systems

c Campare the results of parts (a) and (b] and exp]mn 15. For the two-stage system of Fig. 26.65;

why the results compare as they do. a. Determine the total voltage gain A,
13. For the system of Flg 26.62: b. Find the total current gain A, = I,,;I'
a. Determine Ag using Eq. (26.13), and;:nmparc the value - ¢. Find the current gain of each stage A, and A,
with the result obtained using Eq. (26.14). . d. Determine the total current gain us)ing the rr.'sults of part
b, Find Agy using Eq. (26.16), and compare the value to (c), und compare it to the result obtained in part (b).
the result obtained using Eq. (26.17).
. 1
o iy e jiu
; +.
y i E, R =8k0
E | Ay =30 Ay, = 50 o SR = 8KV,
z,=1x iz,z = 2Kk0
FIG. 26,65
Problem 15.

-
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*16. For the system of Fig. 26.66:
‘a. Determine Ay, if A, = —6912,
b Determine Z;, using the information provided,

c. Find A;, and A, using the information provided in Fig.

= 26.68.
]i| - '[93
—— Ck . A
ﬂ"l = =]2 . Av =7 .Ak!= -32 .
E,, A= - Af; - 26 Ap=1? E, RL,% 22k0
Z;, =1k} Z, =1 z = Ikﬂ.
A i A -
FIG. 26.66

SECTION 26.6 Impedance (z) Parameters

17. a, Determine the :mpcdamce (z) parameters for the 7 net- 19.

work of Fig. 26,67,

Problem 16.

'SECTION 26.7 Admittance (y) Parameters

b. Sketch the z-parameter equivalent circuit (using either

torm of Fig. 26.35).

L, A
(e Z 0
s + % +
. Z z, E,
o _ P

FIG. 26.67

Problems 17 &ind 21. v

18, a. Dcu:rmmc the 1mpedance (z) parameters for lhe net-

work of Fig. 26.68.

b. Sketch the z-parameter equivalent circuit (usmg either

forrh of Fig, 26.35).

]
'l\f*\“v (
L Ry Rs =3
L
- . P
\ E, R, :E E,
- -

- + or
o . o

g . FIG. 26.68

] Problems 18 and 22.

%

20. a.

a. Determine the admittance (y) parameters for the T net-

work of Fig. 26.69.

. Sketch the y-parameter equivalent circuit (using either

form of Fig. 26.47).

I I;
© h Y, -
+ : ] “+
E, Y, E.
> o

FIG. 26.69

Problems 19 and 23.

Determine the admittance (y) pammctcrs for the net-
work of Fig. 26.70. »

Sketch the y-parameter equivalent circuit (using either
form of Fig. 26.47).

I, I
b Y, 5
g Y, Y, E
L1
o Y, -

» FIG. 26.70

. Problems 20 and 24. .
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/ 'msw*“ : ; 5 e : _ e
- 'Sk:lcif the hybnd equivalent gircuit. : . :
Dcunn;n: the b parameters for the network of Flg
26.68. .
b. Sketch the hybrid equivalent circuit,
'23." a, Determine the h parameters for the network of Fig.
126.69. |
b. Sketch the hybrid equivalent circuit.
24. ‘a, Determine the h parameters far the network of Fig. -
26.70.
b, Sketch the hybrid equivalent circuit, 27 R
25, For the hybrid equivalent circuit of Fig. 26.71: ; A
a. Determine the current gaind; = 1,/1,.
b. Determine the voltage gain A, = Eof/E}. s N

FIG,26.71 |
Problems 25 and 26.

[
+

SECTION 26.9 Input and Output Impedances

26. For the hybrid equivalent circdit of Fig. 20.71:
a. Determine the input impedance. - . . 2
Sl Determine the output impedance. i :
27. Determine the input and output impedances for the z-
parameter cquwalentclrcun of Fig. 26.72. _ .

28. Determine the expression for the input and output lmped
ance of the y-parameter equivalent circuit.

-

FIG. 26.72
*Problems 27, 32, and 34.
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SECTION 26.10 Conversionhetween Parameters

29. Detegmine the h parameters for the following z parameters:

z =4 k)
z;p =2k}
Z = 3 k0N
. Z3; = 4 k(]

30. a. Determine the z-pa.rafnctcrs for the following h parameters:
hj; =1k 2
hp=2x10"¢
hy; = 100
hy; = 20x IG 8

b. Dctcrmme the y par.amclcrs l'or the hybrid parameters
md:cagcd in part (a). .

SECTION 26.11 Computer Analysis

PSpice or Electronics Workbench
3. ForE, =
load between 2 and 2’ for the network of Fig. 26.37,

32, For Eg =2V 200, determine E; for the network of Fig:
26. 72

4V £30°, determine E across a 2-k(Y resistive

Lk

33. Determine Z, for the network of Fig. 26.37 wnh a 2-kNl
resistive load from 2 to 2. .

34. Determine Z; for the network of Fig. 26.72.

GLOSSARY

Admittance (y) parameters A set of parameters, having the
units of siemens, that can be used to establish a two-port
equivalent network for a system.

Hybrid (h) parameters A set of mixed parameters (ohms,
sigmens; some unitless) tiat can be used to establish a’two- .
port equivalent network for a system,

Impedance (z) parameters A set of parameters, having the
units of ohms, that ~an be used to eslabllsh a two-port equiva-
lent network for a system.

Input impedance The impedance appearing at the input termi-
nals of a systen. :

Output impedance The impedance appearing at the output
terminals of a system with the energizing source set to zero,

Single-port network A network having a single set of access
terminals.

Two-port network A network having two pairs of access
terminals.



