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OhiFCTiVIFS 
Become familiar with the components of the

Fourier series expansion for any sinusoidal or

nonsinusoidal function.

Understand how the appeaiance and time axis

plot of a wavefdrm can identify which"terms Ra

Fourier series will be present.

Be able to determine the response of a n6twork to

any input defined by a Fourier series expansion.

Learn how to add two or more waveforms; defined

by Fourier series expansions,

25.1 INTRODUCTION

Any waveform that differs from the basic description of the sinusoidal waveform is referred to

as nonsinusoidgi. The most obvious and familiar are ,thc dc, square-wave, triangular. saw-

tooth. and rectified waveforms in Mg. 25. 1.
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FIG. 25.1

Cdinmon nonvinusoidal waveorins: (a) dc; (b) square.wqye; (c) triangular,-

(d) sawrooth: (e) rectified.

The outpift of many electrical add electronic devices are nonsinusoidal, even though the

applied signal may be purely sinusoidal. For example, the network in Fig. 25.2 uses a diode to

clip off the negative portion of the applied signal in a process called ha^f-vvave rectification.

which is used in the development of dc levels from a sinusoidal input. You will find in your elec-

tronics courses that the diode is similar to a mechanical switch, but it is different because it can

cond ct current in only one direction. Tb^ output waveform is definitely nonsinusoidal, but note

uthat it has the same period as the applied signal and matches the input for half the period. 	 ^NON

This chapter demonstrates how a nonsinusoidal waveform like'the output in Fig. 25.2 can

be represented by a series of terms. it also expiams now to determine the response Or a net-

work to such an input.
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FIG. 25.3

Bat-on Jean Fourier

Courtesy of the Smithsonian Institution

Photo No. 56,822

French (Auxerre, Grenoble, Paris)

(1768-1830)
Mathematician, Egyptologist, and Adrainistratar

Professor ofMathematics, Ecole Polytechnique

Best known for an infinite mathematical series of

sine and cosine terms called the Fourier series,

which lie used to show how the conduction ofheat in

solids can be analyzed =it defined. Although he was
primarily a mathematician, a great deal of Fourier's

work revolved around real-world physical occur-

rences such as heat transfer, sunspots, and the

weather. He joined the 1^cole Polytochnique in Paris

as a faculty member when the institute first opened.

Napoleori requested his aid in the research of Egypt-

ian antiquities, resulting in a three-yew stay in Egypt

t", r

	

	
as Secretary of the Institut Agypte. Napoleon made

him 
a 
baron in 1809. and lie was elected to the

2^_	 Acad6rme des Sciences in 1817.

7^-

^W

f(t) =	 A0, + A I sin &)t + A2 sin 2&jt'+ A3 sin 3&)t + -	 + A. sin not

dc or	 sine tems

nige vA..

+ B, cos (ot + B2 
Co., 2wi + B3

 cos 3ait + - - - + B, cos nait

a

(25.1)
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FIG. 252

Half-wave rectifier producing a rmnsinusoidal waveforin.

25.2 FOURIER SERIES

Fouirier series refers to a series of terms, developed -in 1822 by Baron

Jean Fourier (Fig. 25.3), that can be used to represent a nonsinusoidal pe-

riodic waveform. 
In 

the analysis of these waveforms, we solve for each

term in the Fourier series:

Depending on the waveform, a large number of these terms may be re-

quired to approximate the waveform closely for the purpose of circuit

analysis.

As shown in Eq. (25. 1), the Fourier series has three basit parts. The

first is the dc term A0, which is the average value of the waveform over

one full cycle. The second is a series of sine terms. There are no restric-

tions on the values or relative values ofthe amplitudes of these sme

terms, but each will have a frequency that is an integer multiple of the

frequency of the first sine term of 'the series. The third part is a series of 	
0,

cosine terms. There are again no restrictions,
 on the values or relative val-

ues of the amplitudes o f these cosine terms, but each will have a fre-

quency that is an integer multiple of the frequency of the first cosine

term of the series. For a particular waveform, it is quite possible that all

of the sine or cosine terms are zero. Characteristics of this type can be,

determined by simply examining the nonsinusoidal waveform and its

position on the horizontal axis.

The first term of the sine and cosine series is called the fundamental

component. It represents the minimum frequency term required to rep-

resent a particular wa% eform, and it also has the same frequency as the

waveform being. ,represented. A fundamental term, therefore, must be

present in any Fourier series representation. The other teras with 	 i

higher-order frequencies (integer multiples of the fundamental) are

called the harmonic terms. A term that has a frequency equal to twice

the fundamental is the second harmonic; three times, the third har-

monic; and so on.

Average Value: A0

The dc term of the Fourier series is the average value of the waveform,

over one full cycle. If the net area above the horizontal axis equals that

Introductorv, C.- 70B
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below in one full period, Ao = 0, -and the dc term does not appear in the

expansion. If the area above the axis is greater than that below over one

full cycle, Ao is positive and will appear in the Fourier series representa-

tion. If the area below the axis is greater, A0 is'negative and will appear

with the negative sign in the expansion.

Odd Function (Point Symmetry)

Ifa waveform is such that its valuefor +t is the negative,ofthatfor

—t, it is called an oddjunction or is said to have point symmetry.

Fig. 25.4(a) is an example of a waveform with point symmetry. Note

that the wueformi has a peak value at t j that matches the magnitude

(with the opposite sign) of the peak value at — t i . For waveforms of this

type, all the parameters B, —_ of Eq. (25. 1) will be zero. In fact,

waveforms with point symmetry can befully described byjust the dc

and sine terms ofthe Fourier series.

Nonsinusoidal
waveform,

function

Aven ge Val

U, !0(A0 = 1))

Point
symmetry
(a^out thi,
point)

(a)

FIG. 25.4

Point symmetry.

Note in Fig. 25.4(b) that a sine wave is an od^ function with point

symmetry.

For both waveforms in Fig. 25.4, the following mathematical

'ielationship is true:

If(t) = —f(,— t)]
	

(odd function)	 (25.2)

In wo ' rds, it states that the magnitude of the function at +t is equal to the

negative of the magnitude at — t [t, in Fig. 25.4(a)].

Even Function (Axis Symmetry)

If a waveform is symmetric about the vertical axis, it is called an, even

function or is said to have axis symmetry.

Fig. 25.5(a) is an example of such a waveforin. Note that the value of the

function at it is equal to the value at — tl. For waveforms of this type, all

the parameters A^,_will be zero. In fact,
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Even luncli n

j
Average	 Cosine wave

	

i	 value

Average 0 (Ao 0)

I

A- I ---- 

0.......	 . . . .

0

	Nonsinusoidal waveforna	 Synnnetry about vertical axis
0 \j

_1\11yrrunctry about vertical axis

(b)

FIG. 25.5

Axis symmetry.

waveforms with axis Symmetry can befully described byjust the dc

and cosine terms of1he Fourier series.

Note in Fig. 25.5(b) that a cosine wave is an even function with axis

symmetry.

For both waveforms in Fig. 25.5, the following mathematical rela-

tionshipjs true:

Ff(l)	 t)]	 (even function)	 (25.3)

Or

	

	 In words, itstates thatthe magnitude ofthe function is ttw same at +tj as

at — t [tl'in Fig. 25.5(a)].

Mirror or Half-Wave Symmetry

Ifa waveform has half-wa pe or mirror symmetry as demonstrated by

the wavq/orm ofFig. 25.6, the even harmonics oftheseries ofsl. fie

and cosine terms will be zero.

T+

-T,	 0 1 1 T\J^JT	
3T

2	 i

FIG^ 25.6

Mirror symmetry.

In functional form, the waveform must satisfy th e following

relatijanship:

At)	
2	

(25.4)+ T
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A Eq. (25.4) states that the waveferin encompassed in one time interval

T/2 wil) repeat itself in the next T/2 time interval, but in the fiegative sense

(it in Fig. 25.6). For example, the wavefonn in Fig. 25.6 from zero 
to 

T/2

will repeat itself in the time interval T/2 to Tbut below the horizontal axis.

Repetitive on the Half-Cycle

The repetitive nature of a waveform can determine whether sp^cific bar-

monics,will be present in die Fourier series expansion. In particular,

ifa waveform is repetitive on the half-cycle as demonstrated b^ the

waveform in Fig. 25.7, the odd harmonics of ihe serids ofsine and

cosine terms are zero.

10
t,+ T T

	2 	 2

FIG, 25.7

A waveform tepetifive on the hatf-cycle.

In firrictionalform, the waveform must satisfy the following relationship.

(25.5)

T)

Eq. (25.5) states that the function repeats itself after each T/2 time in-,

terval (t, in Fig. 25.7). The waveform, however, will also repeat itself

after each period T In general, therefore, foe a function of this type, if

'the period T of the waveform is chosen to be twice that ofthe minimum j
period (T12), the odd harmonics 'will all be zero.

Mathematical Approach

	The constants A0, A I —n, and B I	 can be determined by using the fol-

Owing -integral formulas:

(25.6)
f f(t)T

An 
2f 

f(t) sin nwt dt	 (25.7)
T 

C

B.

	

	 t) Cos	 (25.8)
T 
A

These equations have been presented for recognition purposes only;

they are not used in the following analysis.
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Instrumentation

Three types of instrumentation are available that reveal the dc, funda-

mental, and harmonic content of a waveform: the spectrum analyzer,

wave analyzer, and Fourier analyzer. Ile purpose of such instrumenta-

tion is not solely to determine the composition of a particular waveform,

but also to reveal the level of distortion that may have been introduced

by a system. For instance, an amplifier may be increasing the applied

signal by a factor of 50, but in the process it may have distorted the

waveform in a way that is quite unnoticeable from the oscilloscope

display. The amount of distortion appears in the form of harmonics at

frequencies that are multiples of the applied frequency. Each of the

above instruments reveals which frequencies are having the most impact

on the distortion, permitting their removal with properly designed filters.

The spwrum analyzer is shown in Fig. 25.8. It has the appearance of

an oscilloscope, but rather than display a waveform that is ' voltage (ver-

tical axis) versus time (horizontal axis), it generates a display scaled off

in dB (vertical axis) versus frequency (horizoatal axis). Such a display is

said to be in thefrequency domain, in contrast to the time domain of the

standard oscilloscone. The hei ght of the vertical line in the disnla^ of

Fig. 25.8 reveals the impact of that frequency on the shape of the wave-

forni. Spectrum analyzers are unable to provide the phase angle associ-

ated with each component.

U

G", lz-.)

FIG. 25.8

Spectrum analyzer
(Couticsy of Teletronix. Inc.)

EM
EXAMPLE 25.1 Determine which components of the Fourier series

are present in the waveforms in Fig. 25.9.

Solutions:

a. The waveform has a net area above the horizontal axis and therefore

will have a positive dc term Ao.

The waveform has axis symmetry, resulting in only cosine terms

in the expansion.

The waveform has half-cycle symmetry, resulting in only even

terms in the cosine series,

b. The waveform has the same area above and below the horizontal

axis within each period, resulting in A0 = 0.

The waveform has point symmetry, resulting in only sine terms

in the expansion.

7",
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FIG. 25.10

Example 25.2.
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FIG. 25.9

Example 25. 1.

EXAMPLE 25.2 Write the Fourier series expansion for the waveforms

in Fig. 25. IQ.

5 niA	 Sinusoidal
wavefom

20V

(b)

v20 V
0

V^	 8 V

Solutions,
-

a. Ao = 20	 A j —, = 0	 B,_, = 0

v = 20

b. A0 = 0	 A, = 5 X 10 - '	 A2, = 0	 BI, 0
i = 5 X 10-3 sin oil

c. A0 = 8	 A,_ = 0	 B, = 12	 B2—n = 0
v = 8 + 12 cos wt

EXAMPLE 25.3 Sketch the following Fourier seri^s expansion:

v = 2 + I cos a + 2 sin a
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Splution: Note Fig; 25.1 1.

I V	 'V = 2 + I cos a + 2 sin a

4
26.57'

3	
2.236 V1

2	 2

0

2 sin.

FIG. 25.11

Example 25.3.

The solution could be obtained graphically by first plotting all of the

functions and then considering a sufficient number of points on the, hor-

izontal axis, or phasor algebra could be used as follows:

I cos ce + 1 sid ot = I V Z-90o +,2 V LO*	 I V + 2 V

= 2 V + j I V = 2.236 V Z 26.5 7'

= 2.236sin(a + 26.57')

and	 V 2 + 2.236 sin(a + 26.57)

which is simply the sine wave portion riding on 4 dc level of 2 V. That is,

its positive maximum is 2 V + 2.236 V 4.236 V, and its minimum is

2 V — 2.236 V = — 0.236 V

EXAMPLE 25.4 Sketch the following Fonder series expansion:

i = I sinwr + I sin 2&)t

Solution: See Fig. 25.12. Note that in this case the sum of the two si-

nusoidal wav6forms of different frequencies is not a sine wave. Recall

dmt complex algebra can be applied only towaveforms having the same

frequency. In this case, the solution is obtained graphically point by

point, as shown for t tj,

i	 I sin wt + I sin 2.t

Wt

% I	 A I

I - 

, ^4 VI sin Wt	 ro)" %	 sil. 2wi

FIG. 25.12

Example 2S.4.
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As an additional example, in the use of the Fourier series approach,

consider the square wave shown
 in Fig, 25.13, The average value is

zero, so A0 = 0. It is an odd function, so all the constants B 
I—, equal

zero; only sine terms are present in the series expansion. Since the

waveforin s^tisfies ' the criteria forf(t) —f(t + T12), 
the even harmon-

ics itre also zero.

V	 Odd function with
symmory

V.

0
2

V

PIG. 25.13

Square wave.

The expression obtained after evaluating the various coefficients

using Eq. (25.8.) is

sin —1)

	

F 4	 i	 i	 . I I
I	

I sin 5N, +	 +V	 Vn Sin tut + sin 3.t + 13 sin 5Nt + sin 7o)t + -	 sin nwr	 (25.9)

3	 5	 7	 n

Note that the fundamental does indeed have the same frequency as that

of the square 'wave. If 
we add the fundamental and third harmonics, we

obtain the results shown'in Fig. 25.14.
teristics of the square

	

Even with only the first two terms, a few charac 	
.15),

wave are beginning toappear. If we add the next two term (Fig.,25

the width of the pulse increases, and the number of peaks increases.

V	 Fundamental	 Number of peal* number of terms added

	

'Fundamental + th
I 
ird harmon

I 
ic	 Fvndamental -^ 3rd, 5th, 7th harmonics

	

V.	

V. Square wa ve

4
V.

4 VM 
I3

Square

w"a

",U

0	
(7) 21r w,	

0	 a	 2w wr

2

	

2	 2

Third harmonic	 %

%

FIG. 25.14	
FIG. 25.15

Fundamenta7plus third harmonic.	
Fundamental plus third. fifth, and seventh harmonics.
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As we continue to add terms, the ,,ies better approximate the

square wave. Note, however, that the amplitude of each succeeding

'term diminishes to the point at which it is negligible compared with

those of the first few terms. A good approximation is to assume ' that the

waveformi is composed of the harmonics up to-and including the ninth.

Any higher harmonics would be less than one-tenth the fundamental. If

the waveform just described were shifted above or below the horizontal

axis, the Fourier series would be altered only by a change in the dc

term. Fig. 25.16(c), for example, is the sum of fig. 25.16(a) and (b).

The Fourier series for the complete waveformi is, therefore,

V ^ V 1 + V2 ^ V. + Eq- (25-9)

	

I	 I	 I
V. + _^ V. sin wt + — sin 3tat + — sin 5cut + — sin 7wt +17	 3	 5	 7

4
and V	 I + —(sin wt + I sin 3&jt	 I sin 5&jt + I sin 7wt +7r	 3	 5	 7

2fi 

F^

	

V1h	 +

	

0	 .1	 2^ 37—.t

(b)

FIG. 25.16

Shifting a waveform vertically with the addition ofa dc term.

The equation for the half-NWave rectified pulsating waveform in
Fig, 25,17(b) is

	

50OV, sin a — 0.212V;, cos — O.G424V,,, cos 4a — 	 (25.10)

The wavef6hn in Fig.15.17(c) is the Sum of the two in Fig.. 25.17(a) and

(b). The Fourier series for the waveform in Fig, 25.17(c) is, therefore,

V
VT V I + V2 =	

2 
+ Eq. (25. 10)

= —0.500V,^ + 0.31814^ + 0.500V sin a — 0.212V,, cos ^a — 0.0424V cos 4a +

and VT 1-0.182V,^ + 0.5V,, sin ce — 0.212V, cos 2a — 0.0424V, cos 46 +

V,

v'	

"T

V,	
UT

V.

0	 + 0 ^^2 r 3x a	

2 

0	

2 ^r3

V",	
VT	 2

(a)	 (b)	 W

FIG. 25.17

Lowering a waveforni with the addition ofa negative dc component.

If e 'ither waveform were shifted to the right or left, the phase shift
would be subtracted from or added to, respectively, the sine and cosine

terms. The dc term would not change with a shift to the right or left.
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If the halfwave rectified
 signal is shifted 90' to tfie left, as in Fig.

25.18, the Fourier series becomes

'901)	 90') -
V 0.31 9V^ + 0.50OV. sin(ot 

+ 901) — 0.212V. Cos 2(ot +	 0.0424V. Cos 4(ot

0.318V, I + 0.500V_Cos a — 0.212V, cos(2a 
+ 1801) — 0.0424V, cos(4a + 360') + - - -

and v 0.318V. + 0.50OV. Cos a + 0.212V, Cos 2(x — 0.0424V, Cos 4ot+ - - -

vv

V.

3	 2v	 3z	 a
0	 S

2

FIG. 25.18

Changing the phase angle ofa waveform.

25.3 CIRCUIT RESPONSE TO
A NONSINUSOIDAL INPUT

The Fourier series representation of a nonsinusoidal input can be ap-

plied to a linear network using the principle of superposition. Recall

that this theorem allowed us to consider the effects of each source of a

circuit independently. if we replace the nonsinusoidal input with the

the Fourier series deemed necessaiy for practical considera-terms of
tions, we can use superposition to find the response of the network to

each term (Fig. 25.19).

Ao

An + A, sin a + - - + A^ sin na + - - -
+ 8 1 Cos a	 + B^ Cos na	 A, sin a

Linear networkLine.	 A. sin m
network

B, Cos a

B, Cos na

FJG. 25.19

Setting up the application ofa Fourier series ofterms to a linear network.
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The total response of the system is then the algebraic slim of the val-
ucs obtained for each term. The major change between using this theo-

rem for nonsinusoidal' circuits and using it for the circuits previously

described is that the frequency will be different for each term in the non-

sinusoidal application. Therefore, the reactances

XL 2irfL	 and	 XC
21rfC

will change for each term of the input voltage or current.

In Chapter 13, we found that the rms value of any wavel'ohn was
given by

T?(,) dtfT
T

If we apply this equation to the Fourier series

v(a)

	

	 Vo + V., sin a + - - - + V., sin na	 cos a + - - - + V., cos na

then

V2 -7+ + V2

VA +	

+	 + V^.	 +	
M.

V̂ '	 +	 +	

+	
(25.11)

V^	

+ V^ + V*-' +
0	

2

However, since

(VI )(V^_) ^2
2 1 (L2

then

V^V %^V ^+VT_ + ̂  +

Similarly, for

'(a) 10 + 4n, Sin a +	 +	 sin na + I^, cos a + - - - +	 cos nci
we have,

+ + + +M	 +
(25.13)

.2

and

2 + p2[In.	 IF+ 12 + - ' ^ In	 (2S.14)

The total power delivered is the sum of that delivered by the corre-

sponding terms of the voltage and current. In the following equations, all

voltages and currents are rms values:

	

Pr V010 + Vill Cos 61 + - - - + y' Cos 9T+	 (15.15)

PT	 2R t+ 1JR +	
+ 1	

(25.16)
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or-	 (25.17)

with 1, 4 is defined by- Eq., (25 -13), and, similarly,Ms

(25.18)

w4h V. as defined by Eq, (25.11).

EXAMPLE 25.5	

+	 +

a. Sketch the inp' ut resulting from the combination of sources in	
6 sin w

Fig. 25.20.

b. Determine the rrns va lue of the input in Fig. 25-20.	 4 V

Solutions:

a. Note Fig. 25JI.	
FIG. 25.20'b. Eq'. (25.12):	

Example 25.5.

V = V̂26 + "M

	

.s	 + 2
v 4V+6sin.t

L6 VL(6V)2 
^16 +	 V,34 V2	

V
^(4 ̂V)f + 

2-^

5.83 V

V4 V^

It is particularly interesting to note from Example 25.5 that the rms

value of a waveforrn having both dc and ac tomponents is not s,imply the

sum of the effective values of each. In other words, there is a temptation in

the absence of Eq. (25,12) to state that Yrn, = 4 V + 0.707 (6 V) = 8.24 V,

which is incorrect and, in fact, exceeds the correct level by, some 4 1	 FIG. 25.21
Wavh pattern, generated by the source in Fig. 25..20.

Instrumentation

'it is important to realize that not every DMKwiU reAd the rms value of

nonsinusoidal waveforms such as the one appearing 
in 

Fig. 25.2 1. Many

are designed to read the rms value of sinusoidai waveforms only. It is

important to read the manual provide&wi' th the meter to see if it is a true

rms meter that can read the nns value ofany waveform.

We learned in Chapter 13 that the rms value of a square wave is the

peak value of the waveform. Let us test this result using the Fourier ex-

pansion and Eq. (25.11).
?

EXAMPLE 25.6 Determine the rms value of the square wave of Fig.

25.13 with V., = 20 V using the first six terms of the Fourier expansion,

and compare the result.to the actual rms value of 20 V.

Solution:

4	 4
v = (20 V) sin wt +	 )(20 V) sin 3wt ' +	 (20 V) sin 5wt + — — (20 V) gin 7tot

IT	 7r 7ir	 11(3	 i5)

4- 
4(1 

(20 V) sin 9wt + 
4( 1 

(20 V) sin I I &)t

	

7r 9)	 7T 11)

v 25.465 sin wt + 8.488 sin 3tot + 5.093 sin 5tot + 3.638 s in 71ot + 2.829 sin 9(ot + 2.315 sin I I Wt
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'Eq. (25.11):

V.2 + V.2 + V,2., + V,2 + V.1 , + F2

Vos ^Va + ,

	

2

(0 V),	
(25.465 

V)2 + (8.488 V)2 + (5. 093 
V)2 

+ (3.638 
V)2 + (2.829 V)' + (2.315 

V) 2

V	 2

19.66 V

The solution differs less than 0.4 V from the correct answer of 20 V.

However, each additional term in the Fourier series brings the resu^lt

closer to the 20 V level. An infinite number results in an exact solution

of 20 V.

VR

EXAMPLE 25.7 The input to the circuit in Fig. 25.22 is

e = 12 + 10 sin 2t

e rC F 71-: vc
a. Find the current i and the voltages VR and vc.

b. Find the rms values of i, VR, and vc.

c. -Find the power delivered to the circuit.

FIG. 25.22	
Solutions:

Example 25. Z	 a. Redraw the original circuit as shown in Fig. 25.23. Then apply

superposition:

VR

R 3n
12V

+	

Xc	 4 fl

	

10 sin 21

	

C	 (2 rad/s)( F)

FIG. 25.23

Circuit in Fig. 25.22 with the coinponents ofthe Fourier series input.

1.For the 12 V de supp4 portion of the input, 1 0 since the ca-

pacitor is an open circuit to dc when u (,- has reached its finil

(steady-state) value. Therefore,

VR = IR OV	 and	 VC 12 V

2. For the ac supply,

Z 3 fl — j 4 fl 5 0 z —53.131

10
V z 01

E	 XF2	 2

	

and	 I 
Z 5 0 L — 53.13o	N/2 A 

Z +53.13'

VR (I LO)(R LO')	 A L+53.131 (3 fl LO')
V2

6
V L+53.13*2
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and

2
V	 (I z 0) (XC z —go. )	 A Z +53.13:o (4 fl z —90')

( 
2

8	
d

V Z_ — 36.87'2

In the time domain,

i = 0 + 2 sin (2t + 53.13')

Note that even though the dc term was present in the expression for

the input voltage, the dc term for the current in this circuit is zero:

vR = 0 + 6 sin (2t + 53.13')

and	 vc 12 + 8 sin(21 — 36.87o)

2 A(0; +	 )2

b. Eq. (25 .14): Ims	 (0), +	 N/2 A	 1.414 A
2

V)2(0^ (6+ L
(0) , +	 Nr8V 4.243 VEq. (25.12): VR_,

2

(8 V)2	 UR

Eq. (25.12): Vc	
12 V)2 + - N/11_76 V 13.267 V

2	 E-IR

- !V
2	

2	

+C. P	 1,2n,,R	 2 A	 e	 L 0 1 H VL(3 fl) 6 W

EXAMPLE 25.8 Find the response of the circuit in Fig. 25.24 to the

input shown.

e 0.318E^ -^ 0.500E. sin (ot - 0.212E. cos 2cot	 e

0.0424E. cos 4tot +	
377 rad/s

Solution: For discussion purposes, only the first three terms are used

to represent e. Converting the cosine terms to sine terms and substituting

for E. gives us 0	 2^	 3^

e = 63.60 + 100.0 sin wt 42.40 sin(2cot '+ 90')

Using phasor notation, we see that the original circuit becomes like the 	
(b)

one shown in Fig. 25.25.	 FIG. 25.24

Example 25.8.

+ V,

+ T_' 6Q 1,	 1,

E0 63.6 V

E,	 70.71 V Zo. I\j	 377 rad/s
0.1 11	 VL

217-

F2 29.98 V Z90- '^^V 2w 754 rad/s	 -

FIG. 25.25

Circuit in Fig. f5.24 with the components ofthe Fourier series input.
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Applying Superposition Forthedctenn(EO=63.6V):

XL = 0'	 (short for dc)

Zr = R /-0* = 6 fl Z 0'

EO 63.6 V
10 = 

R	
10.60 A

VR, = IOR EO 63.60 V

V4 = 0

The average power is

Po = POR = (!O.W A)'(6 0) 6,74.2 W

For the^undamental term (El = 70.71 V Z-O*, w 377):

XL, = wL = (377 rad/s)(0. I H) = 37.7 0

ZT, = 6 fl + j 37.7 0 = 38.17 fl L80.96-

	

I, = 
E,	 70.71 V Z 0* 

= 1.85 
1 
A'Z--80.96'

38.17 il L80.96*

VR^ = (11 LO)(R LO') (1.85 A Z -80,96')(6 fl LO-)

= 11.10VL-80.961

VL^ = VI LO)(XL, L90-) (1.85 A L - 80.96')(37.7 fl L90'-).,

= 69.75 VZ 9.04'

The average power is

t	 P1 = PR (L85 A)'(6 11) 20.54 W

For the second harmanic (E2 = 29.98 V L -90', 754): The

phase angle of E2 was changed to - 90' to give it the same polarity as

the input voltages EO and El. We have

XL2 = wL = (754 rad/s) (0. 1 H) = 75.^ fl

Z,, = 6 0 + j 75.4 fl =- 75.64 ft L85.45-

	

E2	 29.98 V 
Z- ^ 90' = 0.396 A Z - 174.45o

12 = ZT2 = ^5.64 0 L85.45o

VR2 = (12 LO)(R LOo ) = (0.396 A L - 174.45 - )(6 fl LO-)

= 2.38 V L - 174.45'

VL^ = (12 1-0)(XL, L90') (0.396 A L - 174.45')(75.4 fl L 90-)

= 29.9 V L z- 84.45'

The average power is

J2	 )2
P2	 2R (0.396 A (6 fl) 0.941 W

The Fourier series expansion for i is

i =' 10.6 + N/2(l.85) sih(377t - 80.96' ) + V2(0.306) sin(754t - 174.45')

and

I^, V(10.6 A^ + 1.85 A^ + (0.396 A^ 10.77 A

The Fourier series e^pansiqn for vR is

VR 63.6 + V2(11.10) sin (3,77t - 80.96') + V2(2.38) sin (7541 - 174.45*)

and

IVR- V(63.6 V^ + (11. 10 V^ + (2.38 V^ 64.61 V
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The Fourier series expansion for VL 
is

vi, = %F2(69.75) sin (377t + 9.04o ) + V2-(29.93) sin (7541 - 8,4.45o)

and	 Yl_^ = NA(6^75 V^ -+(29.93 V^ = 75.90 V

The total average power is

P'r = &,R = (10.17 A)
2(6 fl) 695.%,W = Po + P1 P2

25.4 ADDITION AND SUBTRACTION
OF NONSINUSOIDAL WAVEFORMS

The Fourier series expression for the waveform resulting from the addition

or subtraction of two nonsinusoidal waveforms can be found , using phasor

algetink if the terms having the same frequency are considered separately.

, For example, the sum of the following two nonsinusoidal waveforms

is found using this method:

v	 30 + 20 sin 20t + - - - + 5 sin (66t + 301)

v2 60 + 30 sin 20t + 20 sin 40t + 10 cos 601

dc terms:

VT, 30V +_60V --90V

2. w = 20:

VT,(...,) = 30 V + 20 V 50 V

and	 VT1 
= 50 sin 20t

3. w 40:

vT, 20 sin 40t

4. 60:

5 sin(60t + 30* ) = (0.707)(5) V L30' 3.54 V L30o

10 cos 60t = Hysin(60t + 901 ) =^, (0.707)(10) V L90'

= i.07 V L90'

VT, = 3.54 V L30' + 7.07 V L90'	 ^ I

- 3,017 V ; j 137 V + j 7.07 V - 3.07 V 
+ j 8.84 V

VT, -_ 9.36 V L70.85'

and	 vT, _^ 13.24 sin(60t + 70,85o)

with

VT V I + V2 = 90 + 50 sin 20t + 20 sin 40t + 
13.24 sin (60t + 70.85')

25.5 COMPUTER ANALYSIS

PSpice

Fourier Seriesr The computer analysis begins with a verification of

the waveform in Fig. 25.15, demonstrating that only four terms of a

Fourier series can generate a waveforrn that has a number of characteris-

tics of a square wave. The square wave has a peak value of 10 V at a fre-

quency of I kHz, resulting in the following Fourier series using Eq.

(25.9) (and recognizing that to = 2irf = 62.83. 
1
9 rad/s):

V = 
4 
(10 V) sin cot + 1 sin 3cot + 1 sin 5cut + sin 7wt

_7T	 3	 5	 7

= 12.732 sin wt + 4.244 sin 3oit + 2,546 sin 5wt + 1.819 sin 7cot

Introductory, C.. 71A

I



a

V1

V3

V4

V

L^j lik

W fX

a

R J -> 1k

VAMPL - 12.732V
FREO w 

I 
kHz

PHASE = 0

VAMPL = 4.244V
FREQ = 3kHZ
PHASE = 0

VAMPL = 2.546V
FREQ = 5kHZ
PHASE = 0

VAMPL = 1,819V
FREQ = 7kHz
PHASE = 0

lil NONSINUSOIDAL CIRCUITS

Each term of - the Fourier series is treated as an independent ac souice,

as shown in Fig. 25.26 with its peak value and applicable frequency, -Phe

sum of the source voltages appears across the resistor R and generates

3
	

the waveform in Fig. 25.27.

W. , EW. Mu. Pbkv ac,fi. Q0— !Y,,d- J1.1p

ci d e n c e

7

0

0 ^eleded
	

SC,1200% X=1X0 Y=(

FIG. 25.26

UsingPSpice to applyfour terins ofthe I -ourier expansion ofa 10 Vsquare
wave to a load resistor of I kil.

- Each source used VSIN, and since we want to display the result

against time, choose Time Dotnain(T)ransient) in the Simulation Set-

tings. For each source, select the Property Editor dialog box. Set AC,

FREQ, PHASE, VAMPL, and, VOFF (at 0 V). (Due to limited space,

only VAMPL, FREQ, and PHASE are displayed 
in 

Fig. 25.26.) Under

Display, set all of the remaining quantities on Do Not Display.

Set the Run to time at 2 ms ' so that two cycles of the fundamental fr^-

quency of I k.Hz appear. The Start saving data after remains at the de-

fault value of 0 s, and the Maximum step size at I gs, even though

2 rus/1000 = 2 tts, because we want to have additional plot points for the

complex waveform. Once the SCHEMATICI window appears, Trace-

Add Trace-V(R:1)-0K results in the waveform in Fig. 25.27. To make

the horizontal line at 0 V heavier, right-click on the line, select Properties^

and then choose the green color and wider line. Click OK, and the wider

line in Fig. 25.27 results, maVing it a great deal clearer where the 0 V line

is located. Through the same process, make the curve yellow and wider as

shown in the same figure. Using the cursors, you find that the fim licak



NON

COMPUTER ANALYSIS 111 1111

reaches 11.84 V at 0,063 ms and then dr6ps to 8.920 V at 0. 124 ms. The

average value of the Waveform is clearly +10 V in the positive region, as

shown, by the dashed line entered using+ Plot-Label-Line. In every respect,

the wavcform is beginning to have the characteristics of a periodic square

wave with a peak value of 10 V and a frequency of I kHz.

FIG. 25.27

The resulting waveform of the voltage across the ' resistor R in Fig. 23.76.

Fourier	 gm-Components A frequency spectrum plot revealing the ma

rude and frequency of each component of a Fourier series can be obtained by

returning to Plot and selecting AAs Settings followed by X Axis and then

Fourier under Processing Options. Click OK, and a number of sp*esap-

pear on the far leftof thescreen, with a frequency.spectram that extends from

0 Hz to 600 kHz. Select Plot-A7ds Settings again, go to Data Range, and se-

lect User Defined to change the rarI , toOHzto lOkHz since this is the range

of interest for this waveform. Click OIC, and. the graph in Fig. 25.28 results,

caden(e

V1,

r. . .
...

Y^`S

FIG. 25.28

The Fourier components ofthe waveform in Fig. 25.27.
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giving the magnitude and frequency of the components of the waveform.

Using the left cursor, you find that the highest peak is 12.74 V at I kHz,

comparing very well with the source V1 having a peak value of 12.732 V

at I kHz. Using the right-click cursor, you can move over to 3 kHz and

find a magnitude of 4.248 V, again comparing very well with source V2

with a peak value of 4.244 V

PROBLEMS
SECTION 25.2 Fourier Series

1. For the waveforms in Fig. 25.29, determine whether the fol-

lowing will be present in the Fourier series representation:

a. dc term

b. cosine terms

c. sine terms

d. even-ordered harmonics

e. odd-ordered harmonics

(IV)

FIG. 25.29

Problenj 1.

2. lf^be Fourier series for the waveform in Fig, 25.30(a) is

j	 1 + ^ cos 2wt — 2 - cos 4(qt +	 0 6wi +
IT (	 3	 15	 35

find the Fo urier series representation . for wivef6rms (b)

through (d).

I



(d)
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(a)
	 (b)

FIG. 25.30

Problem 2.
a

3. Sketch the following nonsinusoidal wavefornli with a wt

as the abscissa:

a. v = —4 + 2 sin a

b.
V = (Sin a)2

c. i = 2 — 2 cos a

4. Sketch the following nonsinusoidal waveforms with a as

the abscissa:
,
a. i=3sina-6sin2ct

b, v=2cos7a+sina

5. Sketch the following nonsinusoidal waveforms with wt as

the abscissa:

9. i = 50 sin an + 25 sin 3a)l

b. i=50sina-25sin3a

c? i. = 4 + 3 sin an + 2 sin 2wt — I sin 3wt

SECTION 25.3 Circuit Response

to a Nonsinusoidal Input

6. Find the average and effective values of the following non-

sinusoidal waves:

a. v 100 + 50 sin wt + 25 sin 2wt

b. i 3 + 2 si^(.t — 53*) + 0.8 sin(2.1 — 70*)

7. Find the rms value of the following nonsinusoidal waves:

i. v 20 sin wt + 15 sin 2wt — 10 sin 3wt

b. i 6 sin(wt + 20') + 2 sin(2w[ + 30') — 1 sin 00

60.)

8. Find the total average power to a circuit whosevoltage and

current are as indicated in Problem 6.

9. Find the total average power to a circuit whose voltage and

current are as indicated in Problem 7.

10. The Fourier series representation for the input voltage to the

circuit in Fig. 25.31 is

e 18 + 30 sin 4001

VI?

= *R	 1212*12

e	 VL	 L 0.02 H

FIG. 25.31

Problems ^ 0. H, and 12.

a. ^ind the nonsinusoidal expression for the current i.

b. Calculate the rms vVue of the current.

c; Find the expression for the voltage across the resistor.

d. Calculate the rms value of the voltage across the resistor.

e.

Find the expression for the voltage across the reactive

element.

f. Calculate the rms value of the voltage across the reac-

tive element.

g, Find the average power delivered to the resistor,

Repeat Problem ' 10 for

e = 24 + 30 sin 4001 + 10 sin 800t

12. Repeat Problem 10 for the following input voltage:

e = —60 + 20 sin 300 , — 10 sin 60or
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13. Repeat 
p
roblem 10 for the circuit in Fig. 25.32.

UR

R 15 D
e	

C 125 1&

*15. Find the Fourier series expression for the voltage v. in Fig.

25,34.

10MA 

i	
377

2r	 3,

(a)

FIG^ 25.32

Prvblcm 13.

* 14. The input voltage in Fig. 25.^3(a) to the circuit in Fig.

25.33(b) is:a full-wave rectified signal having the following
Fourier series expansion:

(2) (100 V)	
2-	 + 2 co

e ___( I + ^ cos 2wt	 cos 4wi __ ii 6wt +ir	 3	 15	 53

where	 377.

a. Find the Fourier series expression for the voltage v,

using only the first three terms of the expression.
h. Find the rms value ofv,,

c. Find the average power delivered to the I k(`2
resistor.

- 4

IGOV

(,o V:,E,0,e rE
2	 2

(a)

I kf1 v,

(b)

FIG. 25,34

Problem 15.

SECTION 25.4 Addition and Subtraction

of Nonsinusoidal Waveforms

16. Perforto the indicated operations on the following nonsinu-
soidal waveforms:

a. [60 + 70 sin wt -k 20 sin(2&)t + 901) + 10 sm(3wt +
60')] 4- [20 + 30 sin wt - 20 cos 2wi + 5 cos 3(ot)

b. [20 + 60 sin ce + 10 sin(2 'a - 180 *) + 5 cos(3a +
90')] - [5 -- 10 sin a + 4 sin(3a - 30')]

17. Find the nonsinusoidal expression. for the current i, of the
diagram in Fig. 25.35.

i2 = 10 + 30 sin 201 - 0.5 sin(40i + 90o)
i t = 20 + 4 sin(20t + 90') + 0.5 sin(401 + 30')

'2

FIG. 25.35

Problem 17.
^	 I

e

V

4
(b)

FIG. 25M

Problem 14,

18. Find the norisinusoidal expressiow for the voltage e of the

diagram in Fig. 25.36.

v, = 20 - 200 sin 600t + 100 cos 1200t + 75 sin 1800t

V2 = - 10 + 150 sin(606t + 30*) + ^O sin(I 800t, + W)
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GLOSSARY

Axis symmetry A sinusoidal or nonsinusoidal function that has

+	
+ V1	 +	 symmetry about the vertital axis.-

e	
V2	 Even harmonies The terms of the Fourier series expansion that

have frequencies that are even multiples of the fundamental

E	

component.

Fourier series A series of terms, developed in 1826 by Baron

Jean Fourier, that can be used to represent a nonsinusoidal

functio
FIG. 25.36	 Fundamental component The minimum frequency term re-

Problem 18.	 quired to represent a particular waveform in the Foufier ;efies

expansion.

Half-Wave (mirror) symmetry A sinusoidal or nonsinusoidal

function that safisfie^ the relationship

SECTI ON 25.5 Computer Analygis
r	

2)PSpice

19. Plot the waveforrin in Fig. 25.11 for two or three -cycles. 	 Harmonic terms The terms of the Fourier series expansion that

Then obtain the Fourier components, and compare them to have frequencies that are integer multiples of the fundamen tal

the applied signal. 	 component.

20. Plot a half-rectified waveform with a peak value of 20 V 	 Nonsinusoidal waveform Any waveform that differs from the,

	

using'Eq. (25.10). Use the de term, the fundamental term, 	 fundamental simisoidal function.

	

and four harmonics. Compare the resulting waveform to the 	 Odd harmonies The terms of the Fourier series expansion that

ideal half-rectified waveform. 	 have frequencies that are odd multiples of the fundamental

21. DemonstrAte the effect of adding two more terms to 	 component.

	

the waveform in Fig. 25.27, and generate the Fourier	
Point symmetry A sinusoidal or nonsinusoidal function that sat

isfies the relationshipf(a)
spectrum.





M

1 ANSyiTEm ANAYSit.
INTRodUCTiON

0hiFCTiVES	
Develop an understanding and an appreciation of
the system analysis of packaged systems.

Learn how to determine the impedance,
admittance, and hybrid parameters for any
electricallelectronic system.

Understand how to use the parameters of a system
to determine the input and output impedance, the
voltage gains, and the current gains.

1^
	 Understand the effect of one stage on another in

a cascaded system.

26.1 INTRODUCTION

The growing number of packaged systems in the electrical, electronic, and computer fields

now requires that some -form of system analysis appear in the syllabus of the introductory

course. Although the content of this chapter will be a surface treatment at best, the material

will introduce a number of important terms and techniques employed in the system analysis

approach. The increasing use of packaged systems is quite dndcrstandable when we consider

the advantages associated with such structures: reduced size, sophisticated and tested design,

reduced construction time, reduced cost compared to discrete designs, and so forth. The use of'

any packaged system is limited solely to the proper u^lization of the provided ternlinals of the

system. Entry into the internal structure is not permitted, which also eliminates the p9ssibility

of repair to such systems.

The LM386N unit,appearing in Fig. 26.1 is a popular low-voltage audio amplifier man-

ufactured by the National Semiconductor Corporation. The actual size appears in Fig.

26.1 (a), an enlarged image in Fig. 26. 1 (b), and the internal construction in Fig. 26. 1 (c).

Note that it contains quite a few electronic devices and a host of resistors with a very

limited number of terminal connections. The result is that access to the internal elements is

impossible, and control is only offered by the eight external pins, as shown in the package

outline of Fig. 26.2. Terminals I and 8 are used to control the gain. If left open, the gain of

the amplifier is 20, but by adding a capacitor or a series R-C combination between these

two terminals, the gain , can be varied up to A maximum of about 200. The supply voltage

connected to pin V, is typically between 6 V and 12 V, and the package dissipation is about

1.25 W. For the range of supply voltages y, the dc drain current from the dc source varies

between 4 mA and 8 mA. The input impedance is about 50 kD, so that an applied signal of

12.5 mV will result in an input base current of about 0.25 ILA. A rather simple audio design

with a gain of 200 appears in Fig. 26.3, with the inpuk applied to terminal 3 and the other

input terminal grounded. The 10 M potentiometer at the input controls the level of applied

signal, and the output is connected to an 8 0 speaker via a 250 kLF capacitor. The 250 11F

capacitor provides isolation from the load for the dc biasing conditions of the amplifier but

is essentially a short-circuit for audio frequencies so that the desired ac signal can reach the

speaker. The R—C combination of the 0.05 AF capacitor and the 10,Q,resistance is a protec-

tive path for undesired high-frequency spikes resulting from any switching action around the

amplifier and undesireable high-frequency signals picked up by the amplifier. At frequencies

!jo

4

k6l

5',

^^ ^ ^4 1̂  !012^
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V,

	Bypass 
7	

15 kn

	

7	
11

Bypass

ION	 15 kn	 Gain	 Gain

15 M
i5
ov..'

150 n 1.35 kfI
2

Anput
5y

50 M

4
o GND

(b)	 (c)

FIG. 26.1

LM386 low-voltage audio power amplifier (a) Actual size; (b) enlargeolphoto;

(c) internal construction.

0,.F

V

a

Dual-In-Line and ftall Outline

Pa&age

Gain	
P

Gain

—Inpu 
t 2	

Bypass

+Input 
3	 6 

v,

GND	 5

Top view

FIG. 26.2

LM386 terminal identification.

	

2 _	

I	 '
88

LM386	

5

5

7

Vi	 73
10	

+
Bypass

FIG. 26.3

LM386 low-voltage amplifier

250

:0.05 4F

10 D

higher than the normal audio range, the 0.05 AF capacitor can be ap-

proximated by a short providing a discharge path for the undesired sig-

nal. The 10 fl resistor will ensure that the load is not shorted out at

these high frequencies.

The basic op^ration of the amplifier will be left for the electronics

courses. For the moment, however, take note of the fact that access to

the internal components is quite limited and the use of the device must

be designed using only the access terminals provided. ,Data sheets will

provide a great deal of information on the internal structure and the

voltage, current, resistance, and power levels associated with ' the

typical use of the amplifier. This chapter will provide an introduction

to how to work the systems where access to the internal structure is

limited.
I System analysis includes -the development of two-, three-, or multi-

port models of devices, systems, or structures. The emphasis in this



FIG. 26.4

Two-purt system.

10—	 Device.	 --o2

system.

structure,

etc.

(a)

1 c
	 Single-

I 

POA

1, ::::W

c	 configuration

2	 2'

Whiport	 3
1	 -' *Configuratioli ]:::: 3'

(b)
4	 4

n

FIG. 26.5

(a) Two-port system; W single-port system

and multipart system.

THE IMPEDANCE PARAMETERS Z,AND Z, 111 1119

chapter will be on the configuration most frequently subject to modeling

techniques: the two-port system of Fig. 26.4.	 to—

Note that in Fig. 26.4 there are two ports of entry or interest, each 	 system,

having a pair of terminals. For some devices, the two-port network of 	
structure,

ete.
Fig. 26.4 may appear as shown in Fig. 26.5(a). The block diagram of 	 2'
V;	 1A ^	 ;	 I ; A;	 I	 I	 Ig. . k a, s mp y n cates t at term nals I and 4 are in common,

which is a particular case of the general two-port network. A single-port

network and a multiport network appear in Fig. 26.5(b). The former

has been analyzed throughout the text, while the characteristics of the

latter will be touched on in this chapter, with a more extensive coverage

left for a more advanced course.

The latter part of this chapter introduces a set of equations (and,

subsequentlyj networks) that will allow us to . model the device or sys-
tern appearing .within the enclosed structure of Fig. 26.4. That is, we

will be able to establish a network that will display the same terminal

characteristics as those of the original system, device, and so on. In

Fig. 26.6, for example, a transistor appears between, the four external

terminals. Through the analysis to follow, we will find a combination

of network elements that will allow us to replace the transistor with a

network that will behave very much like the original device for a spe-

cific set of operating conditions. Methods such as mesh and nodal

analysis can then be applied to determine any unknown quantities, The

models, when reduced to their simplest forms as determined by the op-

erating conditions, can also provide very quick estimates of network

behavior without a lengthy mathematical derivation. In other words,

someone well -versed imthe use of models can analyze the operation of

large, complex systems in,short order. The results may be only a pprox-

imate in most cases, but this quick return for a minimum of effort is

often worthwhile.

The analysis of this chapter is limited to linear (fixed-value) systems

with bilateial elements. Three sets of parameters are developed for the

two-port configuration, referred to as the impedance (z), admittance

(y), and hybrid (h) parameters. Table 26.1 at the end of the ch^apter re-

lates the three sets of parameters.

C

26.2 THE IMPEDANCE PARAMETERS
Zi AND Z,,

For the two-port system of Fig. 26.7, Zi is the input impedance between

terminals I and 1', and ZO is the output impedance between terminals 2

and 2'. For multiport networks, an impedance level can be defined be-

tween any two (adjacent or not) terminals of the network.

77 7 ',"I^	 "! , . __ "-"	 02+	

+

E

0
Z'

FIG. 26.7

Defining Z, and Z,.

21

FIG. 26.6

Two-port transistor conAguration.

a
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The input impedance is defined by Ohm's law in the following form:

Zi	 (ohms, fl)	 (26.1)

with It the cur-rent resulting from the application of a voltage Ei,

The output impedance Z, is definedby

Zo

	

	 (ohms, fl)	 (26.2)

E, OV

with 1. the current resulting from the application of a voltage E. to the

output terminals, with Ej set to zero.

Note thai both 1i and 1, are defined as entering the package. This is

common practice for a number of system analysis methods to avoid con-

cern about the actual direction for each current and also to define Z i and

ZI , as positive quantities in Eqs. (26. 1) and (26.2), respectively. If 1,

were chosen to be leaving the system, Z, as defined in Eq. (26.2) would

have to have a negative sign.

V"

	

	
An experimental setup for determining Z i for any two input terminals

is provided in Fig. 26.8. The sensing resistor R, is chosen small enough

	

+	 not to disturb the basic operation of the system or to require too large a
R,	

voltage Eg to establish the desired level of Ei. Under operating condi-

	

E, "IV	

ZZI, 

Two-port	
tions, the voltage across R, is E^ — Ej, and the current through the sens-

SYMM
ing resistor is

Eg — Ej

	

V	 IR,	
R,	 R^

FIG. 26.8	
Ej	 Ej

	

Determining Z^	 But	 It IR,	 and	
Zi = — = —

	

Ii	 IR,

The sole purpose of the sensing resistor, therefore, was to determine Ii

using purely voltage measurements,

As we progress through this chapter, keep in mind that we cannot use

an ohmmeter to measure Z i or Z. since we are dealing with ac systems

whose impedance may be sensitive to-the applied frequency. Ohnimeters

can be used to measure resistance in a dc or an ac network, but recall that

ohnimeters are employed only on a de-energized network, and their in-

temal source is a dc battery.

The output impedance Z, can be determined experimentally using the

setup of Fig. 26.9. Note that a sensing resistor is introduced again, with

E9 
being an applied voltage to establish typical operating conditions. In

addition, note that the input signal must be set to zero, as defined by

V" +

Ej OV	
Two-pon	 E	 Es
System

V

FIG. 26.9

Determining Z,.
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Eq. (26.2). The voltage across the sensing. resistor is 'E, — E., and the

current through the sensing resistor is

vR, Es — E,
IR, = - 

= -

R,	 R^

E^ E^

but,	 IRs	 and	 Z, = T = —0	
IR^

For the majority of situations, Z i and Z, will be purely resistive, result-

ing in an angle of zero degrees for each impedance.. The result is that either

a DM[M or a scope can be used to find the required magnitude of the de-

sired quantity. For instance, for both Z i and Z, VR ' can be measured di-

rectly with the DMM, as can the required levels of Eg, Ei, or E.. The

current for each case can then be determined using Ohm's law, and the irn^

pedance level can be determined using either Eq. (26. 1) or Eq. (26.2).

If we use an oscilloscope, we^ must be more sensitive to the common

ground requirement. For instance, in Fig. 26.7, E, and Ei can bemeas-

ured with the oscilloscope since they 'litive a common ground. Trying to

measure VR, directly with the ground of the oscilloscope at the top input

terminal of Ei would result in a shorting effect across the input terminals

of the system due to the common ground between the supply and oscil-

loscope. If the input impedance of the system is "shorted out," the cur-

rent I i can,rise to dangerous levels because the only resistance in the

input circuit is the relatively small sensing resistor R, if we use the

DMM to avoid concern about the grounding situation, we musthe sure

that the meter is designed to operate properly at the frequency of inter-

est. Many commercial units are limited to a few kilohertz.

If the input impedance has an angle other than zero degrees (purely re-

sistive), a DMM,cannot be used to find the reactive componenttat the

input terminals. The magnitude of the total impedance will be correct if

measured as described above, but the angle from which the resistive and

reactive components can be determined will not be provided. If an oscil-

loscope is used, the network must be hooked up as shown in Fig. 26.10.

Both the voltage E, and VR, can be displayed on the oscilloscope at the
-dried.same time, and the phase angle between Eg and VjZ, can be detern

Since VR and 11 are in phase, the angle determined will also be the angle

between h9 and 
Ii. The angle we are looking for is between Ei and 1j , not

between E9 and 
l i, but since R, is *usually chosen small enough, we can

assume that the voltage drop across R, is so small compared to E. that

Ej E81 
Substituting the peak, peak-to-peak, or rms values from the

+	 +
6Red

%	 E, 
Two-port
system

+

Black
Red
Red

Black L-

Channel 2: V R,J Share ^Ommon

Channel 1: E, J ground

FIG. 26.10

Dejertnining Zi using an os^illosvope.
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W

R.,

—7

'00 - 96+ V

100 il	
+

E, 	 100mV E, = 96 V Two-Por'
system

'Z^

FIG. 26.11

Example 26. 1.

i

oscilloscope measurements, along with the angle just determined, will

permit a determination of the magnitude and angle for Zj, from which the

resistive and reactive components can be determined using a few basic

geometric relationships. The reactive nature (inductive or capacitive) of

the input impedance can be determined when the angle between Ej and 1i
is computed. For a dual-trace oscilloscope, if 

E. leads VR, (Ei leads 1i),
the network is inductive; if the reverse is true, the network is capacitive.

To determine the angle associated with Z., the sensing resistor must

again be moved to the bottom to form a cortinion ground with the supply

E.. Then, using the approximation E, as E, we can determine the mag-
nitude and angle of Z,

EXAMPLE 26.1 Given the DMM measurements appearing in Fig. 26.11,
detennine the input impedance Z i for the system if the input impedance is
known to be purely resistive.

Solution:

VR, = Fg — Ei = 400 mV — 96 mV 4 mv

= IR, VJ?' = 4 mV = 40,uA
R,	 100 n

4 = R; E' = 96 rnV = 2.4 k11
li 40 gA

;W

EXAMPLE 26.2 Using the provided DMM measurements of
Fig. 26.12, determine the output impedance 7, for the system if the out-
put impedance is known to be purely resistive.

R^

+	

2 kh

E, = OV	 Two-p.rt	
E	 192 V

I	

Sys em	

]	

E,	 2 V

Z"

FIG. 26.12

Example 26 2.

Solution:

VR, = E, — E, 2 V — 1.92 V = 0.08 V = 80 mV
I

VR^ 80 MV
1^ = IR, =	 — = 40 AA

R,	 2 kfl

Z. =	
= 1.92 V = 

48 kil
1^	 40,uA

EXAMPLE 26.3 The input characteristics for [lie system of
Fig . 26.13(a) are unknown. Using the oscilloscope picasurements of
Fig. 26.13(b), determine the input impedance for the system. If a

.	 I	 . I



0,

+	 Z'

E,	
50 mv ZO'	

E, Two-port

'I MV

(P-P)	 system

Channel I	 in

Channel 2

(a)

THE VOLTAGE GAINS 
AvNL' 

A,, AND A, 
T 

111 1123

0

E,: Vertical sensitivity . l0mV/div,

t^': Vertical sensitivity n I mV/div.

(b)

FIG. 26.13

Example 26.3.

reactive component exists, determine its magnitude and whether it , is in-

ductive or capacitive.

Solution: The magnitude of Zj:

2 m`V
li(p-p)	 IR,,^	 200 14A

R,	 10 f2

Eg 50 m`V
Zi 

li SE __ = .— = 250 0
1i	 200 juA

The angle of Z j: The phase angle between Eg and VR, (or IR, 1) is

180' — 150* 30'

with E. leading 1 j, so the system is inductive. Therefore,

Zi = 250 fl Z 30'

= 216.51 fl +j. 125 fl = R + jX,

M

26.3 THE VOLTAGE GAINS A,IVL I A, AND A, 
T

The voltage gain for the two-port system of Fig. 26.14 is defined by

Av, = 
E,	

(26.3)
Ej

The capital letter A in the notation was chosen from the term

amplification factor, with the subscript v selected to specify that voltage

levels are involved. The subscript jVL reveals that the ratio was deter-

mined under no-load conditions; that is, a load was not applied to the

output terminals when the gain was determined. The no-load yoltage

gain is the gain typically pro ' vided with packaged systems since the , ap-
plied load is a function of the application.

The magnitude of the ratio can be determined using a DMM or an os-

cilloscope. The oscilloscope, however, must be used to determine the

phase shift between the two voltages. '

0-

Ej	 A^,	 E.

0—	 ------ 0

FIG. 26.14

Defining the no-16ad gain Av,
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In Fig. 26.15 . a load has been introduced to establish a loaded gain

that will be denoted simply as A. and defined by

(26.4)

I

FIG. 26.15

Defining the loaded volta8e gain A, (and A.d.

For all two-port systems the loaded gain A. will always be less than

the no-load gain.

In other words, the application of a load will always reduce the gain

below the no-load level.

A third voltage gain can be defined using Fig. 26.15 since it has an

applied voltage source with an associated internal resistance—a situa-

flon often encountered in electronic systems. The"total voltage gain of

the system is represented by A IT 
and is defined by

AVT = E^
	

(26.5)

E8

It is the voltage gain from the source Eg to the output terminals E, Due

to loss of signal voltage across the source resistance,

the voltage gain A., is always less titan tile loaded voltage gain A v or

Unloaded gain A,Ive

If 
we 

expand Eq. (26.5) as

E	 E	 E (Ej^ E0 Ej

9	
E, Ej	 Ej E:10(l)	 ^LoA 

IT	
E9	 9

then	 AI, = A, E,
	

(if loaded)

E9

Ej
or	 A,, = A,,,, i-	 (ifunl6aded)

g

The relationship between E, and E. can be determined from Fig.

26.15 if we recognize that Ej is across the input impedance Z i and thus

apply the voltage divider rule as, follows:

Z(F
Ej =

Zi 
+ fl9

Ej 
Z"

or	
E9 

Z, + R9

a

0
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Substituting into these relationships results in

A^T 
A^	 Z'	 (if loaded)	 (26.6)

Zj + R9

Zi

	

AIT 
= A"L Zi + R,	

(if unloaded)	 (26.7)

A two-port equivalent model for an unloaded system based on the

definitions of Z i, Z, and A INL 
is 

provided in Fig. 26.16. Both Zi and Z,

appear as resistive values since this is typically the case for most elec-

tronic amplifiers. However, both Z, and Z, can have reactive compo-

nents and not invalidate the equivalency of the model.

zo

	

R,	
+

RiE,	
Zi	

A^-"E'	 E,

FIG. 26.16

Equivalent inodelfor tivo-port aniplifier.

The input impedance is defined by Zi = Ej/1 j and the volt,age E,

A^'Jj in the absence of a load, resulting in 
A,xL = E^/Ej as defined.

The output impedance is defined with Ej set to zero volts, resulting in

AtWA = 0 
V, which pen-nits the use of a shon-circuit equivalent for the

controlled source. The result is Z. = E,/I,, as defined, and the parame-

ters and structure of the equivalent model are validated.

	

If a load is applied as in Fig. 26.17, an application of the voltage di- 	 R^

vider rule will result in

	

E^ 
RL(A.,Jj)	 +

	

R, + R,	 (^V A,ji	E,,

RL
and	 A^	 A	 (26.8)

Ej	 RL + &	

FIG. 26.17

	For any value of RL or R., the ratio RLI(RL + R,) must be less.than 1, 	 Applying a load to the output of Fig. 26.16.

mandating thqA, is always less than A,,L as stated earlier. Further,

for afixed output impedance (R O), the larger the load resistance (RI),

the closer is the loaded gain to the no-load level.

An experimental procedure for determining R o can be developed if

we solve Eq. (26.8) for the output impedance R.:

	

A^	
RL

R, + Ro

Introductory, C.-72A
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3

or	 A^(Rt + R,) = RLA.,,

A^ RL + A. & = RLA.,L

and	 A.R^ = RLAVIVL - A^RL

with

	

	 R^ = 
RL(A

^IVL - 
A,)

A^

or	 R^ = RL
(KIL -	

(26.9')

A^

Equation (26.9) reveals that the output impedance R, of an amplifier

can 
be 

determined by first measuring the voltage gain E^/Ej without a

load in place to find A,,, , and then measuring the gain with a load RL to
find A.. Substitution of A VNL' A, and RL into Eq. (26.9) will then pro-
vide the value for R,

EXAMPLE 26.4 For the system of Fig. 26.18(a) employed in the

loaded amplifier of Fig. 26.18(b):

E, = 4mV	 A,_	 F, = -20 V

0-

(a)

I kf)	
+

F, ^V 

4Z,

Zj	 I kil

(b)

'k11RL 	 2.2	 VL

Z^ = 50 kQ

FIG. 26.18

E,,Wmple 26.4.

a. Determine the no-load voltage gain A^NL*
b. Find the loaded voltage gain A,

c. Calculate the loaded voltage gain A...

d. Determine R. from Eq. (26.9), and compare it to the specified value

of Fig. 26.18.

Solutions:

a. A.	
-20 V 

= -5000
Ej 4mV

b. A,, = A	
RL	

(-5000)	
2.2 kQ

RL + R,	 2.2 kn + 50 kn

= (-5000)(0.0421) = -210.73

z	 I W
C. A, A^	 (-210.73)

zi + R,	 I W + I kfl)

(-210.73)	 -105.36
(12)

A	 5000
d. R, R, ( 

A^ - 1
	 2.2 kP 

(-210.73	
1

= 2.2 kii^23.727 - 1) = 2.2 kO(22.727)

= 50 kfl	 as specified

Introductory, C, 72B
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26.4 THE CURRENT GAINS Ai AND Air,
AND THE POWER GAIN AG

The current gain of two-port systems is typically calculated from voltage

levels. A no-load gain is not defined for current gain since the absence of

RL requires that 1. = EIRL = 0 A and A, = 1^/l j = 0.
For the system of Fig. 26.19, however, a load has been applied, and

_E.

RL

with	
E.

zj

R

+E,	 Ej A, )E. R,

zj	 Z^

FIG. 26.19

Defining Ai and Aj,

Note the need for a minus sign when 1, is defined, because the de-

fined polarity of E. would establish the opposite ' direction for I.

througb RL.

The loaded current gain is

E^
'Ai

i j 	Ei/zj	 Ej RZLI

and	 Ai —A^	 (26.10)
RL

In general, therefore, the loaded current gain can be obt]ained

directly from the loaded voltage gain and the ratio of impedance levels
Z i over RL.,

If the ratio Ai,. 1,11g were required, we would proceed as follows:

1.	
E^

RL

E
with	 Jj=	 9

Rg + zj

I.	
EIRL	 (E^)(Rg + Z,)

and	 A 
iT 

Ig Egl(Rg + Zj )	 — 
^19	 RL

or	 Aj,	 (26.11)
19
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The result obtained with Eq. (26. 10) or (26.1 1) will be the same since

1 8 = I j, but we now have the option of which gain is available or which

one to use.

Returning to Fig. 26.16 (repeated in Fig. 26.20), we can determine an

equation for the current gain in terms of the no-load voltage gain.

J—	
R,,

0

E,	 R^	 /NV A'ILP"	
E,	 RL

FIG. 26.20

Developing an equation foi- A, in terms of AL.

'Through Ohm's law,

RL + Ro

but	 Ei = liRi

A, 1jRj)

and	

J^ = _

R, + Ro

R
(26.12)

L
so that	 Ai	 A 

^NL ERR].1j

The result'is an equation for the loaded current gain of an amplifier in

terms of the nameplate no-load voltage gain and the resistive elements of

the network.

Recall an earlier conclusion that the larger the value ofRL, the larger is

the loaded voltage gain. For current levels, Equation (26.12) reveals that

the larger the level ofRL, the less is the current gain ofa loaded

amplifier.

In the design of an amplifier, therefore, one must balance the desired

voltage gain with the current gain and the resulting ac output power level.

For the system of Fig. 26.20, the power delivered to the load is deter-
2

mined by E,IRL, whereas the power delivered at the input terminals is

e,lRi . The power gain.is therefore defined by

P, E.'IR, E 2̂ Ri	 F_ 2 
Ri

AC = — = — = __ — =

Pi	 Ej21Rj	 E,2 RL	 Ei RL

and	 A, = A' 
Ri	

(26.13)
RL

Expanding the conclusion gives

AG	 (A v) A,, R'	 (Av)(—Ai)
RL

A7,
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14 ^A

;,"4r,	 so	 FA^ —&Aj	 (26.14)

Don't be concerned about the minus sign. A v or Ai will be negative to

ensure that the power gain is positive, as obtained from Eq. (26.13).

If we substitute A. = -AiRLIRi [from Eq. (26. 10)] into Eq. (26.14),

we find

-AiRL
AG = -&Aj	 Ai

Ri

or	 A G ^- A,; 
RL	

(26.15)
Ri

which has a format similar to that of Eq. (26.13), but now AG is given in

turns of the current gain of the system.

The last power gain to be defined is

PL E^IRL	 E2,IRL
AG, = .=g	

'I(Rg + Rj)	 Eg	 RP	 EgIg	 Ei	 L

or	 AGT = 
A2 

(Rg + R, ) ^

^T	
RL	

(26.16)

Expanding gives

AG, = AIT (&T 

R 

g 

RL 

Ri

(26.17)	and	 FAGT —A.,AT

EXAMPLE 26.5 Given the system of Fig. 26.21 with its nameplate data:

+	

I k1n1 +

-960

	

E.	 E,	 Zj 2 7 kfl	 E,

Z, 40 kn

FIG. 26.21

Example 265.

a. Determine A..

b. Calculate Aj.

c. Increase RL to double its current value, and note the effect on A,

and Aj.

d. Find AjT'
e. Calculate AG-
f. Determine Ajrom Eq. (26. 1), and compare it to the value obtained

in part (b).

RL = 4.7 k(I
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FO-1-01

Solutions.

a. A. = A	
RL 

= (-960)	
4.7 kf1	

100.94
ON'RL + R,	 4.7 kfl + 40 W

R1	 2.7 kf1
b. A j = —A	 _(-960)	 57.99

v`RL + R^	 4.7 kf1 + 40 kf1

c. RL = 2(4.7 W) = 9.4 kn

AI = A	
IL	 (_960)(	 9.4 kil

ONL RL + R,	 9A kfl + 40 ka

182.67	 versus — 100.94, which is a significant increase

Ai = —A	
Ri	

(-960)	
2.7 k1l

—(RL + RI ) = —	 (40kfl + 9.4kfl)

= 52.47	 versus 57.99,

which is a drop in level but not as significant as the change in A..

d. Air = Ai 57.99	 as ^btained in part (b)

However, Ail. —A IT	 R

+ 
Ri

	

v(R, + Rd	 RL
( 2.7 J1

—Avl' = —(-100.94)I(:^.-7ka)
RL

57.99	 as well

e. AG =A 2_^i_ = (100.94 )2( 
2.7 k1l	

5853.19
vRL	 4.7 kfl

f AG = —A,Ai

or Ai = 
A,	 (5853.19)

Av	 (-100.94)

= 57.99	 as found in part (b)

26.5 CASCADED SYSTEMS

When considering cascaded systems, as in Fig. 26.22, the most impor-

tant fact to remember is that

the equations for cascaded systems employ the loaded voltage and

current gains for each stage and not the nameplate unloaded levels.

A^,Ajl'	 Av,,Ai2
	 AV3,A3	

E-L I ^ J-^i

Z'2	
I zj,

FIG. 26.22

Cascaded system.

Too often the labeled no-load gains are employed, resulting in enor-
	 I

mous overall gains and unreasonably high expectations for the system.

In addition, bear in mind that the input impedance of stage 3 may affect

the input impedance of stage 2 and, therefore, the loid on stage 1.

^q

0

Ej^



In general, therefore, the equations for cascaded systems initially ap-

pear to offer a high level ofsimplicity to the analysis. Be aware, how-

ever, that each term of the overall equations must 
be 

carefully evaluated

before using the equation.

The total voltage gain for the system of Fig. 26.22 is

	

A, = A, - A,	 (26.18)

where, as noted previously, the amplification factor of each stage is de-

termined under loaded conditions.

The total current gain for the system of Fig. 26.22 Is

Aj, = Aj , - Aj, - 
X7111	

(26.19)

where, again, the gain of each stage is determined under loaded (con-

nected) conditions.

The current gain between any two stages can also be determined

using an equation developed earlier in the chapter. For cascaded sys-

tems, the equation has the following,gencral format:

	

Ai = A, 
Zi	

(26.20)
RL I

where A. is the loaded voltage gain corresponding to the desired loaded

current gain. That is, if the gain is from the first to the third stages, then

the voltage gain substituted is also from the first to third stales. The

input impedance Zi is for the first stage of interest, and RL is the loading

on the last stage of interest.

For example, for the three-stage amplifier of Fig. 26.22,

A =^A z "
iT	

vTRL

whereas for the first two stages,

Z.
A" = Av '

zi,

where	 A'I	 and	 Av 

E,

1j ,	 Ej,

The total power gain is determined by

FA,; A^vTA,	 (26.21)

whereas the gain between specific stages is simply the product of the

voltage and current gains for each section. For example, for the first two

stages of Fig, 26.22,

AG = A., - A'-2

where	 A,	 A,	 and	 Ni, = Aj, . Aj,

EXAMPLE 26.6 For the cascaded system of Fig. 26.23, with its name-

plate no-load parameters:

a. Determine the load voltage and current gain for each stage, and re-

draw the system of Fig. 26.23 with the loaded parameters.

CASCADED SYSTEMS 111 1131

2

T
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W

A -1200 D
.,R, 3.3 kaE. , Zi = 1.8 M	 Z, = 12 kfl

Z^ = 40 W	 Z^ = 50 M

FIG. 26.23

Example 26.6.

b. Calculate the total voltage and current gain.

c. Find the total power gain of the system using Eq. (26.21).

d. Calculate the voltage and current gain for the first two stages using

Eqs. (26.18) and (26.19).

e. Determine the current gain for the first two stages using Eq. (26.20),

and compare your answer with the result of part (d).

f. Calculate the power gain for the first two stages using Eq. (26.21).

g. Determine the power gain for the first two stages using Eq. (26.13).

Compare this answer with the result of part (f).

h. Calculate the incorrect voltage gain for the entire system using Eq.

(26,18) and the no-load nameplate level for each stage. Compare

this answer to the result of part (b).

Solutions:

	

RL	 zi,	 1.8 kfl
a. A., A,,,, 

RL + Ro 
A 

-NL, 
zi, + R, 

(1) 
1.8 kfl + 25 fl

= 0.986

A, = A^	
ZI,	

= (-600)^ 
1.2 kn	

-17.476

NL^43 
+ R02	

.2 kl, + 40 kf,

A13 = A 
^NL, 

RL	
= (- 1200)	

3.3 kfl	
- -74.296

RL + R03	 3.3 kfl + 50 kfl

A j^ = -A^	
Rj	 zj,	

= -(1	
50 W

NLRL + Ro	 42 + Ro ,	 1.8 kfl + 25 0

= -27.397

A i, = -A	
42	

(-600)	
1.8 kn	

26.214
v'^^Z,R,	 1. 2 kn + 40 kfl

-A	
Z13	

-(-1200)— 
k 

1.2 W

"IRL + Ro,	 3.3 n + 50 kQ

Note Fig. 26.24.

E,,
A - -74 296A,	 0.986	 A, -17.476	

E,, 
E'3	 A% 27.0'17	

E,,
Aj,	 -27.397	

E,^	 E,^	
Aj2_	 26,214

0—	 -------- 0-_	 ------ 0-

FIG. 26.24

Solution to Example 26.6.

= 3.3 kfl
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b. AVT = E
	

AV, -A,, - AV	(0.986)(-17.476)(-74.296)
Ej,	 2

= 1280.22

1
A =	 At, - A 12 - A13 	 (-27.397)(26.214)(27.017)

iT

= —19,403.20

c. AGr = 
—Avr , A iT ^ —(1280.22)(-19,403.20) = 

24.84 X 10'

d. A 
'V2 

= AV, - AV,	 (0.986)(-17.476) = —17.231

	

A '1 
2 
= A,, -A 12	

(-27.397)(26,214) = —718.185

	

Z.	 Zj'	 50 kn
e, Xj, = A	 = NV —	 17.23

	

VRL	
2Z,,	 .2 k

= —717.958	 versus —718.185

with the difference due to the level of accuracy carried through the

calculations.

f.' A'G, = A'V, - A'j, 	17.231)(-718.185) = 12,375.05

g. A'G, = All = 
(A'v,)2!'—' (-17.231^ 50 ka = 12,371-14

	

'RL	 zi,	 1.2 kn

h. A 
VT 

= A 
ul - 

A 
V2 - 

AV3 
= (1)(-600)(-1200) = 7.2 X 

105

720,000: 1280.22 = 562.40: 1

which is certainly a significant difference in results.
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"2

0	

+

4-	
+

E	 (Z)	 E2

FIG. 26.25

Two-port impedance parameter configuration.

26.6 IMPEDANCE (z) PARAMETERS

For the two-port configuration of Fig. 26.25, four variables are specified.

For most situations, if any two are specified, the remaining two variables

can be determined. The four variables can be related by the following

equations:

	

F EF^ ̂ z^ilt +	 (26.22a)

	

+	
(26.22b)

The impedance parameters Z i I, Z12, and Z22 iire measured in ohms.

To mode) the system, each impedance parameter must be determined

by setting a particular variable to zero.

Z11

For z i 1 , if 12 is set 
to zero, as shown in Fig. M.26, Eq. (26.22a) becomes

El = z1111 + zi2(0)

and	
!^^JL	 (Ohms, n)	 (26.23)

Equation (26.23) reveals that with 12 se t to zero, the impedance pa

rameter is determined by the resulting ratio of E l to I,. Since E, arid I

are both input quantities, with 12 set to zero, the parameter z 
I I is for-

mally referred to in the following manner:

zjj = open-circuit, input-impedance parameter

1, = 0

E,	 syswm

FIG. 26.26

Determining zi I.
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nm

Z12

For z12, 11 is set to zero, and Eq. (26.22a) results in

2 12 ^ E,
	

(ohms, 0)	 (26.24)
12 

12 - 0

For most systems where input and output quantities are to be com-

pared, the ratio of interest is usually that of the output quantity divided

by the input quantity. In this case, the reverse is true, resulting in the
following:

z12 = open-circuir, reverse-transfer impedance parameter

The term transfer is included to indicate that Z 12 will relate an input
and output quantity (for the condition 1 1 = 0). The network configura-
tion for determining Z 12 is shown in Fig. 26.27.

For an applied source E2, the ratio E 1/12 will determine z 12 with 1 1 set
to zero.

Z21

To determine Z21, Set 12 to zero and find the ratio E211 1 as determined by
Eq. (26.22b). That is,

1, = 00

E,	 System	 E2

0-

FIG. 26.27

Determining Z12,

12 = 0

E,	 System	 E2

0

FIG. 26.28

Determining Z21-

11 = 0	 12

System	 E2

0- . ::^_

FIG. 26.29

Determining Z22,

(ohms, 11)	 (26.25)

12 = 0

In this case, input and ouiput quantities are again the determining

variables, requiring the term transfer in the nomenclature. However, the

ratio is that of an output to an input quantity, so the descriptive term
forward is applied, and

Z21 = oPeli -cit-cuitforward-traitsfer impedance parameter

The determining network is shown in Fig. 26.28. For an applied volt-
age E j , it is determined by the ratio E2/1 1 with 12 set to zero.

Z22

The remaining parameter, Z22, is determined by

22 
^ !^2	

(ohms, 0)	 (26.26)
12 1	 0

as derived from Eq. (26.22b) with 1 1 set to zero. Since it is the ratio of
the output voltage to the output current with 1 1 set to zero, we have the
terminology

Z22 = open-circuit, output-irnpedanceparameter

The required network is shown in Fig. 26.29. For an applied voltage
E2, it is determined by the resulting ratio F,2/12 with 1 1 = 0.

FIG. 26.30	 EXAMPLE 26.7 Determine the impedance (Z) parameters for' Che T
T configuration.	 network of Fig. 26.30.



E,

FIG. 26.31

Determining Z I 1.

FIG. 26.32

Determining Z12.

1 1 = 0

10—

12 __ 0

Z,	 Z2 —2

E2 — TZ3 E2

2'

FIG. 26.33

Determining z2I.

Z2	
2 12

3	 ^V E2

FIG. 26.34

Determining Z22.

1^

E

E2

W1.

Ot--to	
IMPEDANCE (z) PARAMETERS HI 1135

Solution: For z, 1, the network will appear as shown in Fig. 26.3 1, with

Z, 3 fl /-0* , Z2 = 5 fl ,
L901, and Z3 = 4 fl L-90':

El

ZI + Z3

EI
Thus	 Zil	

1-1 112-0

and	 Z; I ̂ =Z i + ^Z3	 (26.27)

For z 1 2, the network will appear as shown in Fig. 26.32, and

EI 12Z3

El	 12Z3
Thus	 Z12 j-	

- —
2 

1 1 =0	 12

and	 FiT-^= Z73	 (26.28)

For Z21, the required network appears in Fig. 26.33, and

E2 = IIZ3

Thus,	
E21	 - 11Z3

11 1 12- 0	 11

and	 5277Z3	 (26.29)

For Z22, the determining configuration is shown in Fig. 26.34, and

E2

Z2 + Z3

Thus	 Z22 = 
E21	 12(Z2 + Z3)

12 11-0	 12

and	 Z22 = Z2 + Z3	 (26.30)

Note that for the T configuration, Z 12 = Z21. For Z I 3 0 LO*, Z2

5 fl L90', and Z3 = 4 fl L ^ 90', we have

zi I = ZI + Z3 = 3 fl - j 4 11

Z 12 = Z21 = Z3 = 4 n L -901 -j 4 0

Z22 = Z2 + Z3 = 5 fl L90* + 4,Q L -90' = I fl L90'	 I fl

For a set of impedance parameters, the terminal (external) behavior of

the device or network within the configuration of Fig. 26.25 is deter-

mined. An equivalent circuit for the system can be developed using the

impedance parameters and Eqs. (26.22a) and (26.22b). Two possibilities

for the impedance parameters appear in Fig. 26.35.

Applying Kirchhoff's voltage law to the input and output loops of the

network of Fig. 26.35(a) results in

E I - Z I I I I - Z 1212 ^ 0

and	 E2 - Z2212 - Z21 1 1 ^ 0



Z11 - Z12 	 Z22 - Z12

!	 E,	 1 Z12

0
11

. 

F,

-0
2'
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FIM-1

(a)	 (b)

FIG. 26.35

Two possible two-port, z-parameter equivalent nenvorks.

which, when rearranged, become

Ej ^ zj III + Z1212	 E2 = Z21 1 1 + Z2212

matching Eqs. (26.22a) and (26.22b).

For the network of Fig. 26.35(b),

	

El	 11(zl, — Z 12)	 Z12(I] + 12) = 0

and	 E2 — WZ21	 Z12) — 12(Z22	 Z12) — Z 12( 1 1 + 1')	 0

which, when rearranged, are

E l = 1 1(Z ] I — Z 12 + Z 12) + 12Z12

	

E2 = 1 1( Z21 — Z 12 + ZO + 11 (Z22	 Z12 + Z12)

and	 El = Z 11 1 1 + Z1112

E2 = Z21 I I + Z2212

Note in each network the necessity for a current-controlled voltage

source, that is, a voltage source the magnitude of which is determined by

a particular current of the network.

T7he usefulness of the impedance parameters and the resulting equivalent

networks can best be described by considering the system of Fig. 26.36(a),

which contains a device (or system) for which the impedance parameters

have been determined. As shown in Fig. 26.36(b), the equivalent network

k

2

Device,
network,
system

W f
2'

(a)	 (b)

FIG. 26.36

Substitution ofthe z-paranierer equivalentnetwork into a complex system.



rV,

for the device (or system) can then be substituted, and methods such as mesh

analysis, nodal analysis, and so on, can be employed to determine required

unknown quantities.'The device itself can then be replaced with an equivalent

circuit and the desired solutions obtained more directly and with less effort

than is required using only the characteristics of the device.

EXAMPLE 26.8 Draw the equivalent circuit in the form shown in Fig.

26.35(b^ using the impedance parameters determined in Example 26.7.

Solution: The circuit appears in Fig. 26.37.

R	 C	 XL
2

40	
1 H

E,	 Q^, Z-90' f"V	 I \j 41, Z-90-	 E2

'02

FIG. 26.37

Example 26.8.

26.7 ADMITTANCE (y) PARAMETERS

The equations relating the four terminal variables of Fig. 26.25 can also

be written in the following form:

I
I I ^YIIEI +Y12	 (26.31a)

12 ^ Y21E , + Y22	 (26.31b)

Note that in this case each term of each equation has the units of cur-

rent, compared to voltage for each term of Eqs. (26.22a) and (26.22b). In

addition, the unit of each coefficient is siemens, compared with ohms for

the impedance parameters.

The impedance parameters were determined by setting a particular

current to zero through an open-circuit condition. For the admittance (y)

parameters of Eqs. (26.3 1 a) and (26.3 1 b), a voltage is set to zero

through a short-circuit condition.

The tem-dnology applied to each of the admittance parameters follows

directly from the descriptive terms applied to each of the impedance

parameters. The equations for each are determined directly from Eqs.

(26.3 1 a) and (26.3 1 b) by setting a particular voltage to zero.

Y11

(siemens, S)	 (26.32)

E, = 0

y ll = short-circuit, input-adinittanceparanzeter

ADMITTANCE (y) PARAMETERS 11! 1137
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R

0

2

,2	 0

1

1 

1 

1
1

E,	 System. 'nF2

FIG. 26.38

y I I determination.

The determining network appears in Fig. 26.38.

Y12

Y12 
R	

(siemens, S)	 (26.33)
E2

E l = 0

Y12 = short-circuit, reverse-transfer admittance parameter

The network for determining y12 appears in Fig. 26.39.

'2

0	2 	

+

El = 0	 System	 F2

2'

FIG. 26.39

Y12 determination.

Y21

	

(siemens, S)	 (26.34)

E2 = 0

Y21 = short-circuit, jorward-transfer admittance parameter

The network for determining Y21 appears in Fig. 26.40.

1_2

E,	 System :::]E2 0

2,

FIG. 26.40

Y21 determination.

Y22

(siemens, S)	 (26.35)

E[ = 0

y22 = short-circuit, jor)^rdlransfer admittance parameter

The required network appears in Fig. 26.41.
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—0	
System	 E2

2'

FIG. 26,41

Y22 determination.

EXAMPLE 26.9 Determine the admittance parameters for the ir net- _2

work of Fig. 26.42.	 o2
+	 0.02 ms	 +

Solution: The network for y j I will appear as shown in Fig. 26.43, with	

'mSY, = 0.2 mS LO* Y2 = 0.02 mS z —90' Y3 0.25 mS L90'	
El 7GO.2mS Bc;--= ::ZO.25mS E2

We use	 11 EIYT = E j (Y I + Y2)

with	 Y11	
2'

EI IE2=0

FIG, 26.42
and	 FYTi -= y —,+ Y21	 (26.36)	 v network.

11	
Short circuited

	

Y2	 2

+E,	 Y,	 E2 0

2'

FIG. 26.43

Determining y j 1.

The determining network for y I 2 appears in Fig. 26.44. Y j is short

circuited; so 1y2 = 11, and

Iy2 = 1 1 = —E2Y2

The minus sign results because the defined direction of I I in Fig. 26.44

is opposite to the actual flow direction due to the applied source E2;
that is,

Y12
E2 F,=O

Short circuited	 ly	 I

	

'--" ? -I,— 
_L2. 

Y,	
_!2

E,	 ^^) E2

	

=0 1 N	 N _
2'

	

FIG. 26.44
	

El

Determining Y12-
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Short

I

and	 Fy 71 -- 7Y,	
(26.37)

The network employed for Y21 appears in Fig. 26.45. In this case, Y3

is short circuited, resulting in

	

1Y2 = 12	 and	 IY2 = 12 = —ElY2

with	 Y21 = 
12

E l I E2-0

and	 521 —yl^	 (26.38)

Short circuited

Y2	 2

El	 Y,	 Y3	
E, = 0

11	
2'

FIG. 26.45

Determining Y21-

Note that for the ?T configuration, Y12 = Y21, which was expected

since the impedance parameters for the T network were such that zj, =

Z2 1 . A T network can be converted directly to a 7T network using the Y-A

transformation.

The determining network 
for 

Y22 appears in Fig. 26.46, and

YI = Y2 + Y3	 and	 12 = E, (y 2 + Y3)

Thus	 Y22 = 
12

E2 I E, =0

and	 ^3	 (26.39)

2'

FIG. 26.46

Deter)nining Y22.
4

Substituting values, we have

Y j = 0.2 mS z 01

Y2 = 0.02 mS L — 90'

Y3 = 0.25 rnS L90'

Y11 = Y I -^ Y2

= 0.2 rnS — j 0.02 rnS (L)



7-
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Y12 Y21 —Y2	 (—j 0.02 mS)

j 0.02 MS (C)

Y22 Y2 + Y3 —j 0.02 mS + j 0.25 mS

j 0.23 rnS (C)

Note thesimilarities between the results foryll andY22 forthe ir net-

work compared - with z 1 1 and Z22 for the T network.

Two networks satisfying the terminal relationships of Eqs. (26.3 1 a)

and (26.3 1 b) are shown in Fig. 26.47. Note the use of parallel branches

since each term of Eqs. (26.31a) and (26.31b) has' the units of current,

and the most direct route to the equivalent c' ircuit is an application of*

Kirchhoff's current law in reverse. That is, find the network that satisfies

Kirchhoff's current law relationship. For the impedance parameters,

each term hdd the units of volts, go Kirchhoff's voltage law was applied

in reverse to determine the series combination of elements in the equiva-

lent circuit of Fig. 26.47(a).

a
-Y12	 0

2	 2
+	 +	 +	 Q22 Y12)11	 +

Y12E2	 E,El	 Y I	 E,	 E,	 Y11 + Y12	 Y22' Y12

2'	
11	 2'

0 0—

(a) (b)

FIG^ 26.47

Two possible two-port, y-parapneter equivalent networks.

Applyin& Kirchhoff's current law to the network of Fig. 26.47(a), we

have

Entering	 LeaAng

Node a: I I 
= 

yj jE j + yj2E2

Node b: 1 2 = Y-22E2 + Y21E I

which, when rearranged, ate Eqs. (26.3 1 a) and (26.3 1 b).

For the results of Example 26.9, the network of fig. 26.48 will result

if the equivalent network of Fig. 26.47(a) is employed.

0 02 mS Z90P Ei
0

E,	 L 0.02 mS	 BC 7 z-, 0.23 mS	
E2

0.02 mS Z90* E2

FIG. 26.48

Equivalent retworkJor the results ofExample 269.

In	 TIA
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26.8 HYBRID (h) PARAMETERS

The hybrid.(h) parameters are employed extensivel y in the analysis of

transistor networks. The term hybrid is derived from the fact that the pa-

rimeters have a mixture of units (a hybrid set) rather than a single unit of

measurement such as ohms or siemcns used for the z and y parameters,

respectively. The defining hybrid equations have a mixture of current

ajAd voltage variables on one side, as follows:

(26.40a)

12 7 'h 21 1 2 + 11 22 i ̂ 2	 (26.40b)

To determine the hybrid parameters. it will be 'necc^ssary LO establish

both the short-circuit and the open-circuk conditions, depending 
on 

the

parameter desired.

hil

hit

	

	
(ohms, Q)	 (26.41)

1, 
L" 0

h 1l	 short-circuit, inpul-Unpedance Parameter

The determining network is shown in Fig. 26.49.

2

E,	 System	 E ,

	

0

2

FIG. 26.49

III, determination.

h12

E,
h 12

	

	 di mension less)	 (26.42)

E2 11 0

h12 open-circuit. reverse-transfer voltage -atio parameter

The network employed 
in 

determining h12 is shown in Fig. 26.50.

F"	System	 E,

L2

FIG. 26.50

h i determinafion.

fofrr"I',^ton,	 7 P
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h2l

h2^1	
12	

(dimension less)	 ^(26.43)

b,j short-circuit, forward-trans,ter ct(rrent ratio parineter

The determining network appears in Fig. 26.5 1.

System	 E, 0E,

2'

FIG. 26.51

h2 l determination,

h22

12	

siemens, S)	 (26.44)
F2 j , 0

h,2 open-circttit, output admittance parameter

The network employed to determine h22 is shown 
in 

Fig. 26.52.

10-
+	

2

E l	 System	 E2

FIG. 26.52

h, determination,

The subscript notation for the hybrid pprameters; is reduced to the fol-

lowing for most applications. The letter chosen is that letter appeari ng in

boldface in the preceding description of each parameter:

h II ^ hi	 h 12 = b,	 h2l = 11f	 h12 = ho

TA'e hybrid equivalent circuit appears in Fi& 26.53. Since the unit of

measurement for each term of Eq. ( 1 6.40a) is the volt. Kirchhoff's volt-

age law was applied in reverse to obtain the series input circuit indicated.

The unit of measurement of each term of Eq' . (26.40b) has the units of

current, resulting in -the parallel elements of the Output circuit as ob-

tained by applying Kirchhoff's current law in ^everse.

Note that the input circuit has a volt a
g
e -controlled voltage source

whose controlling voltage is the output terminal voltage, while tile out-

put circuit has a current-controlled current source whose controlling cur-

rent is the current of the input circuit.
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_L --- J^

_L2
o2h1l	
+

E,	 h 112E2	 h,2 E,

V^	 02

FIG. 26.53
Two-port, hybrid-parameter equi vulent network.

EXAMPLE26.10 For the hybrid equivalent circuit of Fig. 26.54:

a.- Determine the current ratio (gain) Aj 	 12/Il

b. Determine the voltage ratio (gain) A, &/El.

+	
b,	

+

Z,R 

0++	 E,	 h,E, E2 ZL

E,

4
FIG. 26.54

Example 26. 10.

Solutions:

a. Using the current divider rule, we have

(1/h,)hfil	 hf1l

	( 1 /11.) + ZL	 I + ht,k

	

!2 
7h	

(26.45)and	 Aj
it	 hoZL

b. Applying Kirchhoff 's voltage law to the input circuit gives

E, — hill — hrE2 0	 and	 1,	
El	 hrE2

hi

Apply Kirchhoff ' s current law to the output circuit gives

17 hfi, + h E2

F^
Ho^vever,	 12	

ZL

11fil + h, E,
^ZL



k

INPUT NND OUTPUT imPEDANCE^ 111 1145

Substituting for I I gives

h,E2)=,hf(F 

hi	
+ h. E2

ZL

-or	 hiE2 = -hfZLEI + lh,hf Z^& hih^ZLE2

and	 E2(hi hrhfZL + hibok) hfZLE,

with the result that

A^ 
E2	

-bfZL	
(26.46)

( I + k&) - hhfZL

EXAMPLE 26.11 For a particular transistor, h i = I kfl, h, 4 x 
10-4,

hf = 50, and h, = 25 As. Deterilline the cligent and the voltage gain if -

ZL is a 2-kfl resistive load.

Solution:

hf	 50
Ai -

I + h,ZL I + (25 IiS)(2 kfl)

50	 50
= i— 

= 
47.62'

I + (50 x 10-1)	
.050

-hfz,
A,

hi (I + h,ZL) - h,hfZj

-(50)(2 kn^

(I kO)(1.050) - (4 X 10
-4

)(50)(2 kQ)

-100 x 101	100
— -- = -99

(1.050 X 10') - (0-04 x I O^)	 1.01

The minus sign simply indicates a phase shift of 180' between E, and E

for the defined polarities in Fig. 26.54.

26.9 INPUT AND OUTPUT IMPEDANCES

The input and output impedance. s will now be determined for the hybrid

equivalent circuit and a z-parameter equivalent circuit. The input im-

Oedance can always,be determined by the ratio of the input voltage to

the input current with or without a load applied. The output impedance

is always determined with the source' voltage or current set to zero. We

found in the previous section that for the hybrid equivalent circuit df

Fig. 26.54,

El = hill + hrE2

E2 = -1'Z'

12	 hf

and	
11	 1 + h^ZL

By substituting for 12 in the second equation using the rell
ation^ship of

the last equation), we have

E,

	

	 )ZL
I + h^ZL
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so the first equation becomes

E,	 h,1 1 + h,	
Ilit'11ZL

I + h,ZL)

h h Z
and	 Ej	 1 1 hi —	 r 

f L

I + h,ZL

Thus,	
hhfZL	

(26.47)

For the output impedance, we will set the sourte voltage to zero but

preserve its internal resistance R, as shown in Fig. 26.55.

_2

h,	 +2

+	 k
b,E2 "V	 1) f it il,

I 

DF2 ZL

E,

2'

FIG. 26.55

Determining Z,for the hYbrid equivalent.network.

Since E, 0

then	
h, E2

hi + Rs

From the output circuit,

1 2	 11fl i + h,E2

h,E
or	 12	 hi	

2	
+ IiOE2

(	 hr hf
and	 12	

hi + R, 
+ h,)K2

I 7hh^f

Z^ E122 

7h
Thus,	 12	 (26.48)

+ R,

EXAMPLE 26.12 Determine ZI and Z. for the transistor having the
parameters of Example 26.11 if R,	 I U1.

Solution:

I kfl — 
0.04 W

Zi = hi — -^-	

— --	
1. 1 1

I + h,, Zj^	 550

= I X 10' — 0.0381 X 103 961.9 fl'



CONVERSION BETWEEN PARAMETERS

Z'	
(4 X 10-4)(50)

h,	 25 u.S -	 .	 I	

, ,

	h i + Rs	 I kfl + I kf1

	

25 X 
10 -1	 10 X 10-6	

15 X 10^'
66.67 kn

For the z-parameter equivalent circuit of Fig. 26,56,

z

zi,

III	 Z22

R,

Z2111+	 E,	 Z'J'	 E	 Z'

E,

2'

^IG. 26.56

Determining Zi for the z-paranzeter equA alent network.

Z21II

	

12 =	 11	 .	 .	
,	 ,	

. 1,
	

1	 1	
1	

..	
.	

1
Z22 4' ZL

E, - Z1212
and	 It

Z11

Z21II
or	 EI	 7 11 1 1 + Z 1212	 Z 11 1 1 + Z12	

Z22 + ZL)

	

El	
zi 

2Z21
and	 Zi	 11	 (26.49)

	

1 1	 Z22 + ZL

For the output impedance, E, 0, and

E2 - Z2111
and	 12 =

	

R, + zi,	 Z22

or	 E2	 Z221 2' + Z' I I I	 Z22 I2 + Z21	
Z1212

- R, + zjj

'Z12Z21I2
and	 E,	 Z2212

R, + zjj

Z^	 !^2	
z 
12Z21

Thus,	
IL	 221, R, + Z I 1	

(26.50)

26.10 CONVERSION OETWEEN PARAMETERS

The equations relating the z and y parameters can he determined directly

from Eqs. (26,22) and (26.3 1). For Eqs; (26.3 1 a) and (26.3 lb),

1 1 = YI1E 1 + Y12E2

12 = y2jEj + Y22E2
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M

The use of determinants results in

E, 	 1
I

t	
Y 2

12	 Y2' 21	 Y22II — Y1212

J

YII	 Y 121	 YIIY22 -7 YI2Y21

y__

Subitituting the notation

Ay	 Y I I Y22 7 Y I 2Y21

we have	 E, Y22 
11 — 

Y12 
12

Ay

which, when related to Eq. (26.22a),

El = Z II I I + Z12I2

a

M

0

indicates that

and, similarly,
A	 0

	

Zil = 
122	

and	 Z12	
Y12

	

Ay	 Ay

221	
Y21	

and	
. 
Z22 ^ 

YI]

	

Ay	 Ay

For the conversion of z parameters to ,the admittance domain, deter-

minants are applied to Eqs. (26.22a) , and (26.22b). The impedance pa-

rameters can be found in terms of the hybrid parameters by first forming

the determinant for 1 1 from the hybrid equations:

F, = hI I I I + h12E2

12 = h 21 1 1 +

That is,

	

h22	 hI2

	

I

hll	 h 121	 Ah	 Ah

	h21 	

h'2

h22	 I,
and	 TEi	 T12	h 	 h

or	 E,	
11hI1 

+
, hj^ 

I
h22	 h22 2

which, when related to the impcdance-parameter equation,

	

El	 Z 1 I I I + Z1212

indicates that

Z11	
Ah	

and	 Z12	
h12,

	

1122	 1122

The remaining conversions are left as in exercise. A complete table
of qonversions appears in Table 26. 1.
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TABLE 26.1

Conversions between z, y, and It parameters.

From

T

T

a

Y22	 -Y12 Ah	 h, 2
Z ii	 Z12 A,	 Ay	 h22	 1122

	

z	
—Y21	 YjI	 _h21	 I

Z21	 Z22 As	 As 1 1122	 h22

Z22	 -ZI2	
I	 —hj2

Y12Y11	
hit	 hII

	

y	 _Z
21	 Z11	

Y21	 Y22	

h2l	 Ah

A,	 Z12	 1	 —Y12	
h it	 h12

Z22	 Z22	 YI I	 yll

	

It	
—Z21	 Y21	 As

h2l	 h22
Z22	 Z22	 Yll	 Y11

	

PROBLEMS	 Ej, 1.8 V + I
j 0.4 mA

Z,;
SECTION 26.2 The Impedance Parameters

Z, and Z.

+
1. Given the indicated voltage levels of Fig. 2667, determine

the magnitude of the input impedance Zj^ 	
E	

Multi-port	
RLsystem

47, In	
+

Zj 2 kfl+	
z	 4.6 kn

E E	 . :  1	 13	 11, 1.5 mA

I V 

I 'E, V E1,05 V Ej - I V 	 -System	
+ Ej,

FIG. 26.58

W,	 zi	 Problem 3,
FIG. 26.57	 4. Given the indicated voltage levels of Fig. 26.59, determine

Problem I.	 zo.

2. For a system with

2 W
Ej - 120 V L01	 and	 It 6.2 A	 10.8*	 +V(P P)

determine the input impedance in rectangular form. At a	
System	 E^ 3.8 V (p-p)	 ^V Es 4 V (P-P)

frequency of 60 Hz, determine the nameplate values of the

parameters.

Z"

3. For the multiport system of Fig. 26.58:

a. Determine the magnitude of It, if Ej, = 20 mV.	
FIG. 26.59

b. Find Zj2 using the information provided,

c. Calculate the magnitude of' E,3'	
Problems 4 through 6.
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5. For the ConfigUration of Fig. 26-59^, determine Z. if eg
,2 sin 3771 and UR = 40x 10 -' sin-3771. "ithi?, = 0.91 kf2.

6. Determine Z. for the system of Fig. 26.59 il'L^, = 1.8 V
(p-1)) and E,, ^ 0. 6 V rms.

7. Determine the output impedance for the ' system of
Pig. 26.60, given the indicated scope measurements.

I

+
System [E.,	 E,

R,T_^
I kQ

+ VR

e,: Vertical sensitnity — 0.2 V/div.

Channet 2	 U,.: Vertical sensanity — 10MV/div.

FIG. 26.6u

Problem 7.

SECT!OPJ 26.3 The Voltage Gains A,,,, A,	 1, lOpALO'

and A,,

8. Gnen the system of Fig, 26.61. determine the no-load volt-
age gain A

-,vL*	 Ej	 System	 E,	 4k5 V -1,) L 180'

izi	 1.8 kf) LO'

FIG. 26.61

Problem 8.

9. For the system of Fig. 26,62:
a. Determine Av = Eo/Ej.
b. Find 

AIT Eo/Es.

lo

Y'y

	

0.5 W	 +
A	 -3200

I\v	 E, Z, = 12 k1l	 E,	 RL - 5.6 k1l
Z, = 40 kil

FIG. 26.62

Problems 9, 12, and 13.

PL
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10. For the systerri of Fig. 26.63(a), the no-load output voltage is

1440 mV, with 1.2 mV applied at the input terminals. 
In 

Fig.

26.63(b), a 4.7-kil load is applied to the same system, and the

output voltage drops to — 192 niV. with the ^amc applied input

sigbal. What is the output impedance of the system?

0—	 - --------- 0_	 0—

+

E,	 1.2 mV	 System	 E, -1440^V E,	 1.2 mV	 System	 4.7 kQ V,	 -192 mV

C-------- —0

(b)

FIG. 26.6^,

Problem 10.

*11. For the system of Fi g. 26.64, if

At,	 160	 1, ^ 4 mA LO'	 E, 76 mV Z 0'

a. Vetermine the no-load voltage gain,

b. Find the magnitude of Ej.

C. Determine Zi.

Rg

ZA^

	

+	 0.4 kQ

Eg	Ej	
A, —160	

2 kfl
Zi = 0.75 W

FIG. 26.64

Problems I I and 14.

SECTION26.4 The Current Gains Aj and AlT,	 14. For the systcril of Fig. 26,64:

and the Power Gain AG	
a. Determine the magnitude of Aj 1,,/1,

12. For the system of Fig. 26.62:	
b. Find the power gain A GT = PLIP9'

a. Determine A, = I,/Ij.
SECTION 26.5 Cascaded Systems

b. Find A 
'T

c. Compare the results of parts (a) and (b). and explain 	 15. For the two-stage system of F: g. 26.65:
I	 VL/Ei.why the results compare as they do. 	 a. Determine the total voltage gain A "T

13. For the system of Fig. 26.62;	 b. Find the total current gain, Air = 1,,/1,

a. DetermineAc using Eq. (26.13), and

I 

Sompare the val uc	 c. Find the current gain of each stage Ail and Aj,.

with the result obtained using Eq. (26.14).	 d. Determine the total current gain using the results of part

b,
. 
Find AG, using Eq. (26.16), and compare the value to	 (c), and compare it to the result obtained in part (b^.

the result obtained using Eq. (26,17).

E,	 A,,, —30	 A, —50	 RL	 8 kil VL

4Z., 
I kf)	 Z" 2 kfl

FIG. 26.65

Problim 15.
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*16. For the system of Fig. 26.66:

' a. Determine A Vz if A.,	 6912.

b.' Determine Z,, using the information provided.

c. Find A, and A, usi ng the information provided in Fig.

26.68.

0	 0

A, = - , 2	 A, = ?	 A^, = -32

Ej ,	 Aj, = 4	 A.2 = 26	 Aj3 = ?

zj, = I fl	 zi^ 
= ?	

zj, = 2 kfl

0—_	 c

FIG. 26.66

Pmblent 16.

SECTION 26^6 Impedance W Parameters	 SECTION 26.7 Admittance (y) Parameters

17. a. Determine the impedance (z) parammers for the 7r net- 	 19. a. Detennine the admittance (y) parameters for the T net-

work of Fig, 26^67.	 work of Fig. 26.69.

	

b. Sketch the z-parameter equivalent circuit (using either	 b. Sketch the y-parameter equivalent circuit (using,either

form of Fig. 26.33).	 forin of Fig. 26.47).

Z2	
Y,	

Y2
+	 +	 +

Z,	
E,	 7E, 	 Y3 7E2,

______0
FIG. 26.67	 FIG. 26.69

Problems 17 
a
nd 2 1.	 Problems 19 and 23.

18. a. Determine the impedance (z) parameters for the net- 	 20. a. Determine the admittance (y) parameters for the net-

work of Fig. 26,68.	 work of Fig. 26.70.

	

b. Sketch the z-parameter equivalent circuit (Using either 	 b. Sketch the y-parameter equivalent cir .cuit (using either

form of Fig. 26.35).	 form of Fig. 26.47).

R,

Y,
+	 +

DXE+	 E,	 Y,	 Y3	 E2

ffE,	 E,
R4

Y4
0—	 -------------- 0

FIG. 26.68	 FIG. 26.70

Problenis 18 and 22.	 Problems 20 and 24.
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SECTION 26.8 Hybrid (h) Parameters

termine the h parameters for the network of Fi

	

21. a. De	 9.

26,67.

b. Sketch the hybrid equivalent circuit.

22. a. Determine the h parameters for the network of Fig.

26.68.

b. Sketch the hybrid equivalent circuit.

23. a, Determine the h parameters for the neiwork of Fig.

26.69.

b. Sketch the hybrid equivalent.circuit.

24. a. Determine theh parameters for the network of Fig.

26.70.

b. Sketch the hybrid equivalent circuit.

25. Forthe hybrid equivident circuit ofFig. 26.71:

a. Determine the current gain A j	1z,/Ij.

b. Determine the voltage gain A. E2/Ej.

hi	 —L20

+

	

	 +
I W

n
Z"

'h,F,	 hfil	
4' k(I	 E,	 2 kilx , 

^4,
E,	 4 x 10-4E,	 501,

	

A	
FIGIA26.71

Problems 25 and 26.

SECTION 26.9 Input and Output Impedances

26. For the hybrid equivalent circdit of Fig. 26.7 1:

a. Determine the input inipedance.

b. Determine the output impedance.

27, Determine the input and output impedances for the z-

parameter equivalent circuit of Fig. 26.72.

28. Determine the expression for the input and output imped^'
ance of the y-parameter equivalent circuit.

It	 (Z11)	 ---!L

+	 +
I kil	 2 kfl	 4

R^ 1kn	 +	 +

5 x to, Z90,1, /\\j	10 x 1011,
E,	 E2 RL	 I kfl

+	

(Z2110

E8	
Z^

FIG. 26.72

'Problems 2 7. 32, and 34.
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SECTION 26.10 Conversionb,^tween Parameters	
33. Determine Z i for the network of Fig. 26-37 with a 2-kn

24. Determine the h parameters for [lie following z parameters: 	 resistive' load from 2 to 2'.

Z 11 = 4 kQ	 34. Determine Z, for the network of Fi& 26.71

Z 12 = 2 kn

z2l = 3 kn	 GLOSSARY
Z22 = 4 kn

30. a. Detenrunc tile z parameters for the following In parameters:

	

	
Admittance (y) parameters A set of parameters, having the

units of siernens, that can be used to establish a two-port
hit = I kfl	 equivalent network for a system.

h J2 = 2 x 16-4
	 Ilybrid (h) parameters A set of mixed parameters (ohms,

h2l = 100	
sicmuls, some unitless) t,,at can be used to establish a'two-

h22 = 20X 10_^S	
port equivalent network for a system.

Impedance (z) parameters A set of parameters, hzkving the

h. Determine the y parameters for the hybrid parameters	 units of ohms, that -an be used to establish a two-port equiva-

indicated in part (a).	 lent network for a system.

Input impedance Tile impedance appearing at the input termi-

SECTION 26.11 Computer Analysis	
nals of a system.

Output impedance The impedance appearing at the output

PSpice or Electronics Workbench 	 terminals of a system with the energizing source set to zero.

Single-port network A network having a single set of access31. For E, ^ 4 V Z 30', determine L^, across a 2-kfl-resistive

load between 2 and 2' for the network of Fig. 26.37,	
terminals.

32. For E,	 2 V Z 0', determine E2 for the network of Fig,	
Two-port network A network having two pairs of access

26,72.	
terminals.


