~ Sinusoidal Alvernating
.. Waveforms

Ohl ECTIVES . Become familiar with the characteristics ofa

sinusoidal waveform, including its general format,
average value, and effective value.

+ Be able to determine the phase relationship
’ between two sinusoidal waveforms of the same

° frequency. .

. Understand how to calculate the average and
effective yalugs of any waveform.

: Become familiar with the use of instruments
designed to measure ac quantities.

Y

13.1 INTRODUCTION .
The analysis thus far has been limited to de networks—networks in which the currents or volt-
ages are fixed in magnitude except for transient effects. Wé now turn our attention to the
analysis of networks in which the magnitude of the source varies in a set manner. Of particu-
lar interest is the li_me-var:}ing voltage that is commercially available in large quantities and is
commonly called the ac voltage. (The lettérs ac are an abbreviation for aliernating current.)
To be absolutely rigorous, the terminology ac voltage or ac current is not sufficient to de-
scribe the type of signal we will'be analyzing. Each waveform in Fig, 13.1 is an alternating
waveform available from commercial supplies. The term alternating indicates only that the
waveform alternates between two prescribed levels in a set time sequence. To be absolutely
correct, the term sinusoidal, square-wave, ot triangular must also be applied. i

The pattern of particular interest is the sinusoidal ac voltage in Fig. 13.1. Since this type
of signal is encountered in the vast majority of instances, the abbreviated phrases ac voltage
and ac current are commonly applied without confusion. For the other patterns in Fig. 13.1,
the descriptive term is always present, but frequently the ac abbreviationis dropped,-result-
ing in the designation square-wave or trigngular waveforms. 4 -

One of.the important reasons for concentrating on the sinusoidal ac voltage is that it is
the voltage generated by utilities throughout the world. Other reasons include its application
throughout electrical, electronic, communication, and industrial systems. In addition, the
chapters to follow will revedl that the waveform itself has a number of characteristics that
result in a unique response when it is applied to basic ¢lectrical elements: The wide range of
. theorems and methods introduced for dc networks will also be applied to sinusoidal ac sys-
tems. Although the application of sinusoidal signals raises the required math level, once the

u:| \/, 0 ' I ! 0\ \/ [
Sinusaidal . Squa'l: wave - Triangular wave
v , FIG. 13.1

Alternating waveforms.
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g notation given in Chapter 14'ts understood, most of the concepts intro-
duced in the dc chapters can be applied to ac networks with a mini-
it mum of added difficulty. *

13.2 SINUSOIDAL ac VOLTAGE
CHARACTERISTICS AND DEFINITIONS

Generation ;

Sinusoidal ac voltages are available from a variety of sources. The most
common source is the typical home outlet, which provides an ac voltage
that originates at a power plant. Most power plants are fueled by water
power, oil, gas, or nuclear fusion. In each case, an ac generator (also
called an alrernator); as shown in Fig. 13.2(a), is the primary component
in the energy-conversion process. The power to the shaft developed by
one of the energy sources listed turns a rotor (constructed of alternating
magnetic poles) inside a set of windings, housed in the stator (the sta-
tionary part of the dynamo) and induces a yoltage across the windings of
" the stator, as defined by Faraday's law:
% : dep .-
: 3 e=N @
~  Through proper design of the.generator, a sinusoidal ac voltage is devel-
oped that can be transformed 1o higher levels for distribution through the
power lines to the consumer. For isolated locations where power lines
have not been installed, portable ac generators [Fig. 13.2 (b)] are avdil- -
able that run on gasoline. As.in the largér power plants, however, an ac
generator is an integral part of the design.’ ;

In an effort to conserve our natural resources and reduce pollution, °
wind power, solar energy, and fuel cells are receiving increasing interest
from various districts of the world that have such energy sources avail-

- f able in level and duration that make the conversion process viable. The
turning propellers of the wind-power station [Fig. 13.2 (c)] are con-
nected directly to the shaft of an ac generator to provide the ac voltage
descritied above. Through light energy absorbed in the form of photons, -

¥

-~ -

 FIG. 1322

b ‘-‘«'zrigy.; gources of ac power: (a) generating plant; (b) par:nbﬁ'a’c genermm;.' (¢) wind-power station; ‘

1 . : - a (d)solar panel; (e) function generator

- £
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sblar éclls [F:g 13.2 {d),] can generate dc voltages. Through an elec- .
i tronic package called an inverter, the dc voltage can be converted to one -
i HER smu.soidal nature, Boats, recreational vehicles (RVs), and so on,

i -make frequent use of the inversion process in isolated areas.

**- ginusoidal ac voltages with characteristics that can be contmlled by
thesuser are available from function generators, such as the one in Fig.
.13.2(e). By setting the various switches and controlling the pus:uon of
the knobs on the face of the instrument, you can make available sinu-
soidal voltages of different peak values and different repetition rates.
The function generator plays an integral role in the. investigation of the : - &
variety of theorems, methpds of analysis, and topics to be introduced in i
the chapters that fol]uw

Definmons -..'

_ The sinusoidal waveform in Fig, 13 3 with its additional notation will now
be used as a model in defining a few basic terms. These terms, however, - ;
can be applied to any altémating waveform, It is important to remember, v
"as you proceed through the various definitions, that the vertical scaling is
in volts or amperes and the horizontal scaling is in units of time. - ~
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FIG.133
Important parameters for a sinusoidal voltage.

Waveform: The path traced by a quantity, such as the voltage in Fig.

13.3, plotted as a function of some variable, such as time (as above),

position, degrees, radians, temperature, and so on,

Instantaneous value: The magnitude of a waveform at any instantof

time; denoted by lowercase letters (ey, e; in Fig. 13.3).

Peak amplitude: 'The maximum value of a waveform as measured ; ; 4
from its average, or mean, value, denoted by uppercase letters [such- :

as E,, (Fig. 13.3) for sources of voltage and V,, for the voltage drop
across a load]. For the waveform in Fig. 13.3, the averafie value is
zero volts, and E,, is-as defined by the figure.

Peak value: The maximum instantaneous value of a funcnon as | : ' .

measured from the zero volt level. Por the waveform in Fig. 13.3, the ;

“ peak amplitude and peak value are the samg since the average value : 4

of the function is zero'volis. -
" Peak-to-peak value: Denoted by Ep.por Vp.p (as shown in Fig. 13.3),.

the full voltage between positive and negative peaks of the waveform,

that is, the sum of the magm;ude of the positive and negatwc peaks.
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Periodic waveform: A waveform that continually repeats itself after
the same time interval. The waveform in Fig. 13.3 is a periodic
waveform, _ €
Period (T'): The time of a periodic wzvcform =
Cycle: The portion of a waveform contained in one pcnud of time.
- The cycles within Ty, T, and T in Fig. 13.3 may appear different in
Fig. 13.4, but they are all bourided by one period of time and there-
fore satisfy the definition of a cycle. '

1 cycle

: FIG. 13.6
Heinrich Rudolph Hertz,
Courtesy of the Smithsonian

Institution, Photo No. 66,606.

Germ.an (Hamburg, Berlm, Kul:ruhe)

(1857-94) -

Physicist

Professor of P‘Ilysics, Kx.rtsruhc Polymcbmc and
University of Bonn

. Spurrad on by the earlier pfodictinhs of the English
physicist James Clerk Maxwell, Heinrich Hertz .
produced electramagnetic waves in his laboratory i

. at the Karlsruhe Palytechnic while in his early 30s.- |

The' md:menwy {mmmmer and rteeivcr‘\vl.'.m in
7 _essence’ the‘ﬁrst |.u bmadcul :md :ecewa mho

" vafa:lry af prdm&tw}:
mlgnimd: arthntofllght n add
4 s:;al.ed that the  reflective

“ FIG. 13.4 ; s
Defining the cycle and period of a sinusoidal waveform.

Frequency (f): The number of cycles that.oceur in 1 s. The frequency
©f the waveform in Fig. 13.5(a) is 1 cycle per second, and for Fig.
13.5(b), 24 cycles per second. If a waveform of similar shape had a pe-
riod of 0.5 s [Fig. 13.5(c)), the frequency would be 2 cycles per second.

T=1s

T=04s :
() Cb) ' ' ©

FIG 135
Demonstrating the effect of a-changing frequency on the pmm’
of a sinusoidal waveform.

The unit of measure for frequency is the hertz (Hz), where:
Iihertz (Hz) = 1 cycle per second (cps)’ (13.1)

The unit hertz is defived from the surname of Heinrich Rudelph Hertz~
(Fig. 13.6), who did original research in the area of alternating currents
and voltages and their effect on the basic R, L, and C elements. The fre-
quency standard for North America is 60 Hz whereas for Europe it is
predominantly 50 Hz. 0

As with all standards, any variation from the norm will cause difficul-
ties. In 1993, Berlin, Germany, received all its power from plants gener-
ating ac voltages whose output: frequency was varying between 50.03 Hz .

‘and 51 Hz, The result was that clocks-were gaining as much as 4 minutes
~ aday. Alarms went off too soon, VCRs clicked .off before the end of the
‘program, and so on, rethnng that ¢locks be continually reset. In 1994
‘however, when power was. linked with the rest of Europe, the precise

standard of 50 Hz was reestabhshad and everyone was on time again.

-
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EXAMPLE 13 1. Fm the smusmdal waveform in F;g 137.

Wh&l. is the. pta& u!ue? ;

‘What is the: instamamcus value at0.3sand 0.6 s'?
What is the peak-to-peak value of the waveform?
What is the period of the waveform?

How many cycles are shown?

. What is the frequency of the waveform?

D Bn P

. FIG.13.7
Example 13.1.

Solutions:

8V. R A
At03s, =8V;at06s,0V.

16 V.

0.4s.

3.5 cycles.

2.5 ¢ps, or 2.5 Hz.

=

—-e o0 T

13.3 FREQUENCY SPECTRUM e

Usmg a log scale (described i in detail in Chapter 20), we can scale a fre-
quency spectfum from 1 Hz to 1000 GHz on the same axis, as shown in
Fig. 13.8. A number of terms i the various portions of the spectrum afe
» probably familiar to you from everyday experiences. Note that the audio
range (human ear) extends from only 15 Hz to 20 kHz, but the transmis-
sion of radio signals.can occur between 3 kHz and 300 GHz. The.uni-
form process of defining the intervals of the radio-frequency spectrum
from VLF to EHF is quuc evident from the length of the bars in the
figure (al:hough keep m mind that it is a log scale, so the frequcncms
encompassed within each segment are quite different). Other frequen-
cies of particular interest (TV, CB, microwave, and so on) are also in-
cluded for reference purposes. Although it is numerically easy to talk
about frequencies in the megahertz and gigahertz range, keep in mind
that a frequency of 100 MHz, for instance, represents a sinusoidal wave-
form that passes through 100,000,000 cycles in only | s—an incredible
number when we compare it to the 60 Hz of our conventional power
sources. The Intel® Core 2 Extreme processor can run at speeds of 3 GHz.
Imagine a product able to handle 3 billion instructions per second—an
incredible achievement. F

FREQUENCY SPECTRUM |11 541
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; Microwave
Microwave :
oven EHF

: TR
SHF 35 GHz - 300 GHz

[T (Extremely High Freq.)

=+ 3 GHz - 30 GHz (Super-High Freq.)

{300 MH2 - 3 GHz (Ultrahigh Freq,) i

—— 30 MHz - — 300 MHz (Very High Freq.)
L 3 MH - 30 MH3 (High Freq.)
bt

L g 300 kHz - 3 MHz (Medium/Freq.)
 VLE [3540e+ 300 kHz (Low Freq.)

Yol a
e ; % 3 Khiz - 90 kHz (Very Law Freq.)
2 2 30 Hz - 3 kHz (Extemely Low Freq.) * ’
RADIO FREQUENCI_ES (SPECTRUM)
*3 kHz - 300 GHz . Infrared

AUDIO FREQUENCIES

ISHz 20'kHz

1 Hz ]GH: IDGHz lkHi l{}k}iz lOUkHz IMHz !OMHz]mMHz IGHz Iosz IDGGH: lBOCIGHz fllog scale)

: AM FM _ .
- 0.53 MHz - 1.71 MHz 88 MHz - |08 MHz
_ g =

TV channels (2 - 6)
1] 54 MHz - 88 MHz

TV channels (7 - 13)
TVY ﬁl?{MHz-llﬁ MHz

~ TV channels (14 - §3)
& , [ 470 Mz - 890 Mz

J GPS 1,57 GHz camier
li#s GHz microwave oven

% _ ' nm.ﬁ 24 st 25608z
. . b Shuﬂmve :

: : : ' (TR 1.5 Mz - 30 Mz
; _

; ﬂ u Cell phone and Blarkb:rry .
~ : 824 - 894 MHz, 1850 - 1990 MHz .

},‘;’JG Iphone 87.9 N[z - 107.9MHz

3 54 : . FIG.138
: . Areas of application for 3p_ermc frequency bands.
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Smce the ﬂ-equcucy is inversely related to the pened—-—{hat is, as one
increascs. the other decreases by an equal amaum—the two can be re-
lllled hy th: faﬂowmg equanon ;

. *

Sl reH
T T = seconds (s) 3 (13.'2)

.

Eey o

el : T (13.3)

- EXAMPLE 13.2 Find the penod of periodic waveform with a fre- . R
quency of

a. 60 Hz. - , g LS ‘ W gt
b. 1000 Hz, ’ 3 }

‘Solutions:

' 1 1

T =- 3
T 7T oo
(a recurri ng vaiue since 60 Hz is so prevalent)

-
bTﬂ»—=—W 1038_11115“ g ) e I i - . .--
" EXAMPLE 13.3 Determine the frequency of the waveform in Fig. 13.9.

Solution: From the figure, T = {25 ms — 5ms) or (35ms — 15 ms) =
20 ms, and

) o 1

f=m = —— so Hz .
=17 20x107%s B
* ' : : FIG. 13.9
. InFig. 13.10, the se1srdogram resulting f'rum a selsmometer near an - " Example 13.3.
earthquake is displayed. Prior to the disturbance, the waveform has a rela- : B
tively steady level, but as the event is about to oceur, the frequency begins i
Relatively high frequency,
high amplitude d A
Relatively low frequency, low amplitude { l Relatively high frequency, low :amp]ilude
i : 3 l l BNY
1 i ‘East-West OCT23(296),2002
i » 10: ?;_ GMT
0 'y
LAl I 5
g +
x _z C w4 L L L I L L 1 L. I A ' L, I e L L | l | L ' L ] L L ' L | L L TR I | i L 1 1 i
50 55 60 65 70 CTs 80 85 w190

Time (minutes) from 10:41:00.000 GMT

FIG. 13.10
Seismogram from station BNY (Binghamton University) in New York due to magnitude 6.7 earthquake in Cenrm! Alaska !hat oceurred
at 63:62°N, 148.04°W, with a deprh of 10 km, on Wednesday, October 23, 2002,
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(2)

3 'FIG. 13.11
(a) Sinusoidal ac voltage sources; (b) sinusoidal
current sources.

p FIG. 13.12
The sine wave is the only alternating waveform whose
shape is not altered by' the response characteristics
of a pure resistor, inductor, or capacitor.

FIG. 13.13
Defining the radian.

to increase along with the amplitude. Finally, the earthquake occurs, and
the frequency and the amplitude increase dramatically. In other words, the
relative frequencies can be determined simply by looking at the tightness
of the waveform and the associated period. The change in amplitude is im-
mediately obvious from the resulting waveform. The fact that the carth-
quake lasts for only a few minutes is clear from the horizontal scale.

Defined Polarities and Direction

You may be wondering how a polarity for a voltage or a direction for a
current can be established if the waveform moves back and forth from
the positive to the negative region. For a period of time, a voltage has
one polarity, while for the next equal period it reverses. To take care of
this problem, a positive sign is applied if the voltage is above the axis, as -
shown in Fig. 13.11(a). For a current source, the direction in the symbol
corresponds with the posu’we reglen of the waveform, as shown m‘F:g
"13.11(b).

For any quantity that will not change with time, an uppercase letter
such as V or I is used. For expressions that are time dependent or that rep-
resent a particular instant of time, a lowercase letter such as e or | is used.

The need for defining polarities and current direction becomes quite
obvious when we consider multisource ac networks, Note in the last sen-
tence the absence of the term sinusoidal before the phrase ac networks.
This phrase will be used to an increasing degree as we progress;
sinusoidal is to be understood unless otherwise indicated.

~

13.4 THE SINUSOIDAL WAVE FORM

The terms defined in the previous section can be applied to any type of
periodic waveform, whether smooth or discontinuous. The sinusoidal
waveform is of particular importance, howgver, since it lends itself read-
ily to'the mathematics and the physical phenomena associated with elec-
tric circuits. Consider the power of the following statement:

The sinusoidal wavefar;m is the only alternating waveform whose’

_shape is unaffected by the response characteristics of R, L, and C
_elements.

In other words, if the voltage across (or current'through) a resistor, in-
ductor, or capacitor is sinusoidal in nature, the resulting current (or volt-

- age, respectively) for,each will also have sinusoidal characteristics, as

shown in Fig. 13.12. If any other alternating waveform stich as a square
wave or a triangular wave were applied, such would riot be the case.

.- The unit of measurement for the horizontal axis can be time (as ap-
pearing in the figures thus far), degrees, or radians, The term radian .
can be defined as follows: If we mark off a portion of the circumference
of a circle by a length equal to the radius of the circle, as shown in
Fig. 13.13, the angle resulting is called [ radian. The result is <

v . [Trad= 57.296° = 57.3°) (13.4)

where 57.3° is the usual approximation applicd
One full mrclc has 27 radians, as shown in Fig. 13.14, That is,

27 rad = 360° (135)



© (314 radians) '\ /| radian N 5

{6.28 radians)

" FIG. 13.14
There are 21 radians in one full circle of 360°.

]

50 that , 2m = 2(3.142) = 6.28°
and 2m(573°) = 6.28(57.3°) = 359.84° = 360°

A number of electrical formulas contain a multiplier of 7. For this
reason, it is sometimes preferable to measure angles in radians rather
than in degrees. ¢ i y

The quantity m is the ratio of the circumference of a circle to its
diameter.

7 has been determined to an extended number of places, primarily in
an attempt to see if a repetitive sequence of numbers appears. [t does not.

A sampling of the effort appears below: :
= 3.14150 26535 89793 23846 26433 . ..

Although the approximation 7 = 3.14 is often applied, all the calcu-
lations in the text use the 7 function as provided on all scientific cal-
culators. gl

For 180° and 360°, the two units of measurement are related ag
shown in Fig. 13.14, The conversions equations between the two are the
following: il

hRad'. =(“.)X(de' ) | 13.6)
ians 180° - (degrees (13.6)

~

-Degrees = (Hi?—) x (radians) (13.7)

Applying these equations, we find . _
i 7 F
90°: Radians = ) = —
Illans -1_81}:(90 ) > rad
T
180°
T 180°f
Erad. Degrees = — (?) = 60°

3w _180°/ 3w\ _ "
3 ‘rad. Degrees = = ( 2 ) = 270°

30°: Radians = (30°) = %rad :

- i - .

THE SINUSOIDAL WAVEFORM |11 545
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i

f « (radians)

B

: : ' 5 FIG. 13.15
Plotting a sine wave versus (a) degrees and (b) radians,

For comparison purposes, two sinusoidal voltagés are plotted in Fig.
13.15 using degrees and radians as the units of measurement for the hor- .
izontal axis.
It is of particular interest that the sinusoidal waveform can be derived
from the length of the vertical projection of a radius vector rotating in a
uniform circular motion about a fixed point. Starting as shown in Fig.
: © 13.16(a)and plotting the amplitude (above and below zero) on the coor- ;
- K ¢ dinates drawn to the right [Figs. 13.16(b) through (i)), we will trace a "
' complete sinusoidal waveform after the radius vector has completed a
360° rotation about the center, O N e
‘ _ The velocity with which the radius vector rotates about the center, called
the angular velocity, can be determined from the following equation:

&

e ae i distance (degrees or radians) 4 8‘ '
ma e s time (seconds) )
L ' Substituting into Eq. (13.8) and assigning the lowercase Greek lofter
& omega (w) to the angular velogity, we have
= (13.9)

- (13.10)

E >
11
~|R|!

and

5 Since w is typically provided in radians per second, the angle a ob-
tained using Eq. (13.10)is usually in radians. If @ is required in degrees,
Eq.’(13.7) must be applied. The importance of remembering the above
will become obvious in the examples to follow, _ 3 -

In Fig. 13.16, the time required to complete one revolution is equal to
the period (T) of the sinusoidal waveform in Fig. 13.16(i). The radians

* * subtended in this time interval are 27, Substituting, we have '

|o== -'(radf_s). L sy

In words, this equation states that the smaller the period of the sinu-

3 - _ - soidal waveform of Fig. 13.16(i), or the smaller the time interval before
Moriny = _ ] one complete cycle is generated, the greater must be the angular velocity
S of the rotating radius vector. Certainly this statement agrees with what
we have learned thus far. We can now £o one step further and apply the
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. \ 2 (a) +—
: -l a= 0. 0 ' \ it 2 u - pd
I " ¥ . . - : - +
i : Note equality

' ‘:/ - ; e - £ i

= b [+
L]
L]
; 1
&£ a -
Sine wave  ©
: a = 360° TR
* g B o— iy R -
i : . L0° 45° 90° 1 @
L—-T(pcriod} \
¥ - ; FIG.13.16
Generating a sinusoidal waveform through the vertical projection .
of a rotating vector.  ° i/
' L]
\ " - '
i
i . /
. £ ’f
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Decreased a, increased 7,
decreased f i

@ = 100 rad/s

. FIG. 13.17
Demanstrating the effect of w on the
Sfrequency and period.

and f=

fact that the frequency of the generated waveform is inversely related to
the period of the waveform; that is, f = 1/T. Thus,

(rad/s) (13.12)

This equation states that the higher the frequency of the generated si-
nusoidal waveform, the higher must be the angular velocity. Egs. (13.11)
and (13.12) are verified somewhat by Fig. 13.17, where for the same ra-

. dius vcctor. w = 100 radfs and 500 rad!s

EXAMPLE 13.4 Determine. Lhe angu‘lanveluclty of a sine wave having
a frequency of 60 Hz. .

Solution: =
w = 2uf = (27)(60 Hz) = 377 rad/s

(a recurring value due to 60 Hz predominance).

EXAM-PLE 13.5 Determine the frequency and period of the sine wave
in Fig. 13.17(b).
Solution: Since w = 27/T, _

_2m _ 2mrad 27 rad

T = = 500radls ~ 500radss ~ 1%-57ms

1 1 !
—= = 7958 Hz
. T 1257%105%s - .

EXAMPLE 13.6 Given w = 200 rad/s; determine how long it gill take
the sinusoidal waveform to pass through an angle of 907,

Solution: Eq. (13.10): a = ot, and

e

=

= i [77]

However, a must be substituted as 7r/2 (= 90°) since w is in radians per
second: -

I:’I-—-z-—_-—-—- —
w T00mds " doo® = 78ms

i EXAMPLE 13.7 Find the angle thmugh which a smusmdal waveform

of 60 Hz will pass in a period of 5 ms.
Solution: Eq. (13.11): a = wt, or
a = 2mft = (2m)(60 Hz)(S X 10~ 35) = 1.885 rad

I not careful, you might be tempted to mterpret the answer as 1.885°,
However,

" THP
YR
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\ " R

13.5 GENERAL FORMAT FOR THE SINUSOIDAL
VOLTAGE OR CURRENT -

The basic mathematical format for the sinusoidal waveform is . ) .

_ (13.13) -

_ wheére A, is the peak value of the waveform and a is the unit of measure
for the horizontal axis, as shown in Fig. 13.18.

The equation & = w states that the angle « through which the rotat-
ing vector in Fig. 13.16 will pass is determined by the angular velocity
of the rotating vector and the length of time the vector rotates. For exam-

ple, for a particular angular velocity (fixed w), the longer the radius vec-

tor is pcnniucd to rotate (that is, the greater the value of r), the greater is
the number of degrees or radians through which the vector will pass. Re-
Jating this statement to the sinusoidal waveform, we have that, for a par-
ticular angular velocity, the longer the time, the greater is the number of
cycles shown. For a fixed time interval, the greater is the angular veloc-
ity, the greater is the number of cycles generated. _ ; : : FIG. 13.18

Due to Eq. (13.10), the general format of a sine wave can also be Basic sinusoidal function.
written . v

!

s

with wt as the horizontal unit of measure. : . ; -
For electrical quantities such as cutrent and voltage, the general for- '
mat is '

\ m, 180° 2x, 360°
I e o (% or rad)

i=1l,sinwt = I,sina
. e=E,sinwt = Epsina

where the capital letters with the subscript m represent the amplitude,
and the lowercase letters i and e represent the instantaneous value of cur-
rent and voltage, respectively, at any time ¢ This format is particularly
important because it presents the sinusoidal i?ltag; or current as.a func-
tion of time, which is the horizontal scale for the oscilloscope. Recall
that the horizontal sensitivity of a scope is in time per division, not de-
grees per centimeter.

®

EXAMPLE 13.8 Given ¢ = 5 sin @, determine ¢ at a = 40° and
a = 0.8m.

Solution: For a = 40°, )
e = 5sin 407 = 5(0.6428) = 321V
For a = 0.8, . j ; ¥

a(“]'=.1—§f)—(0.8 ) = 144°

and e = 5sin 144° = 5(0.5878) = 2.94V .

@ g

The angle at which a particular voltage level is attained can be deter- ¥
mined by rearranging the equation . ~ ) ' .

#

e=Eysina i

=

* Introductory; C.- 36A

I - T S
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v (V)

FIG, 1319
Example 13.9.

in the following manner:
3 €
sing ="——
o By

which can be written -

a = sin = . (13.15)

m

Similarly, for a particular current level,

4 a = gin~l— (13.16)
L

EXAMPLE 13.9

a. Determine the angle at which the magnitude of the sinusoidal func- .
tionv = 10sin 377t is4 V.,
b. Determine the time at which the magnitude is attained.

Solutions:
a. Eq. (13.15):
) 4V .3
a) = sin'lﬁ; = sin'.lm =.sin"10.4 = 23.58°

However, Fig. 13.19 reveals that the magnitude of 4 V (positive)
will be attained at two points between 0° and 180°. The second in-
tersection is determined by

a; = 180° — 23.578° = 156.42°

In general, therefore, keep in mind that Eqgs. (13.15) and (13.16)
will provide an angle with a magnitude between 0° and 90°,
b. Eq. (13.10): @ = wi, and 50 1 = a/w. However, & must be in radi-

ans. Thus,
aftad) = ——(23.578°) = 0.412 rad
1g0P 00 T O
s e oy - 0.412 rad L
- P e 37Tl .

For the second intersection,
a(rad) = E%{rse@zzq = 2.73 rad

2.73 rad

i awa

(e4
12=_=
@

'

Calculator Operations .

Both sin and sin~* are available on all scientific calculators. You can also

“use them to work with the angle in degrees or radians without having to

convert from one form to the other, That s, if the angle is in radians and

. the mode setting is for radians, you can enter the radian measre directly.

%

_ Introductory, C..368



et @aecin Bl GENERAL FORMAT FOR THE SINUSOIDAL VOLTAGE OR CURRENT |1/ 551

' To'set the DEGREE mode, proceed as outlined in Fig. 13.20(a) usihg
the TI-89 calculator. The magnitude of the voltage e at 40° can then be
found umng the anncnce in hg 13.20(b). -

-@mmgw nacmse-s@

(a} 3
m@-sm--m-m ' , .
(b) .

FIG. 13.20
{a) Setting the DEGREE mode, ( b) evaluating 5 sin 40“

~ After establishing the RADIAN mode, the sequence in Fig. 13 21
determines the voltage at 0.8,

EIE!-SIN----'F(B@M

FIG. 13.21
Fmd&_ﬂg e=5sin08w using the calculator in the RADMN mode.”

- Finally, the angle in degrees for a, in part (a) of Example 13.9 can be
determined by the sequence in Fig. 13.22 with the mode set in degrees, °
whereas the angle in radians for part (a) of Example 13,9 can be deter-

. mined by the sequence in Fig. 13.23 with the mode set in radians. = %

DG EIEROIER 560

. FG.13.22
}ng a; = sin ’rmo} using the calculaior in the DEGREE mode.

eAsin

msm-lmmo.a

FIG. 13.23
. Finding ay = sin~(4/10).using the calculator in the RADIAN mode.

The sinusoidal waveform can also be plotted against time on the hor-
izontal axis. The time period for each interval can be determined from
{ = a/w, but the most direct route is simply to find the period 7 from

= 1/fand break it up into the required intervals. This latter technique
is demonsu-a.tcd in Example 13.10. - W

Before reviewing the example, take special note of the relative sim-
plicity of the mathematical equation that can represent a sinusoidal
waveform. Any alternating waveform-whose characteristics differ from
those of the sine wave cannot be represented by a single term, but may
require two, four, six, or perhaps an infinite number of terms to be repre-
sented accurately. '

EXAMPLE 13.10 Sketch e = 10 sin 314r with the abscissa -

a. angle (a) in degrees.
b. angle () in radians.

438

¢ time.(#) in seconds. e e Wt o A
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FIG. 13.24

()

Exdmple 13.10, horizontal axis in degrees.

4

Solutions:

a. See Fig. 13.24. (Note that no calculations are required.)

b. See Fig. 13.25. (Once the relationship between degrees and radians
is understood, no calculations are requucd Y

c. See Flg 13.26.

360% . T=== " =20ms
180° _§=2{}2—m’=10m
-30° f—;- =3gé93 = 1.67 ths

t (ms)
FIG. 13.25 iR 2 FIG. 13.26
Example 13.10, horizontal axis in radians. Example 13.10, horizental axis in milliseconds.
- 3 o P = &

Pl

FIG. 13 27

Deﬁmng the phase shifrfara sinusoidal ﬁmcmm
rbar crosses the-horizontal axis with a positive - .

slape befom 0,

- L t T

i

Lo T

EXAMPLE 13.11 Giveni = 6 %X 1077 sin 1000r, determifé # at 1 =
2 ms.

Solution:
a = wt = 1000r = (1000 rad!s)(z X 10"3 s) = 2rad

o )——{'BU“ 2 rad) = 114.59°

i= (6 X 1073)(sin114.59°) = (6 mA)(0.9093) = 5.46 mA

13.6 PHASE RELATIONS

Thus far, we have considered only sine waves that have maxima at /2
and 37/2, with a zero value at 0, 7, and 27, as shown in Fig. 13.25. 1f
the waveform is shifted to the right or left of 0°, the ekpression becomes

where 8 is the a.nglc in degrees-or mdlans that the wa\reform has been
shifted. "

If the waveform passes thmugh the hnnzomal axis with a positive-
going (mcreaamg with time) slope waort 0° as shown in Fg 13.27, the
express:on is : K ; Ry

ool B)] L . (a3a8)
{ e it L ¥
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At ot = a = 0°, the magnitude is determined by A,, sin 6. If the
waveform passes through the horizontal axis with a positive-going slope
after 0°, as shown in Fig, 13.28, the expression is

[ 4, sin(wt — 8) (13.19)

-
v

Finally, at ot = a = 0°, the magnitude is A,, sin (—6), which, by a

trigonometric identity, is —Ap sinfd. *
If the waveform crosses the horizontal axis with a positive-going slope
90° (#r/2) sooner, as shown in Fig, 13.29, itis called a cosine wave; that is,

§in(wt +'90“‘} == sin(mr + g—) = cosw.'J (13.20)

2

or sin wr = cos(wt — 90°) = cos (wr. = E—) (13.21)

The terms leading and lagging are used to indicate the relationship
between two sinusoidal waveforms of the same frequency plotted on the

. same set of axes. In Fig. 13.29, the cosine curve is said to lead the sine
curve by 90°, and the sine curve is said to lag the cosine curve by 90°.
The 90° is referred to as the phase angle between the two waveforms. In
language commonly applied, the waveforms are out of phase by 90°.
Note that thé phase angle between the two waveforms is measured be-

tween those two points on the horizontal axis through which each passes.

with the same slope. If both waveforms cross the axis at the same point
with the same slope, they are in phase. ’ 3

The geometric relationship between various forms of the sine and co-
sine functions can be derived from Fig. 13.30. For instance, starting at
the -+sin & position, we find that +cos a is an additional 90° in the coun-
terclockwise direction. Therefore, cos @ = sin(e: + '90°). For —sin & we
must travel 180° in the counterclockwise (or clockwise) direction so that
—sin @ = sin (@ = 180°), and so on, 4s listed below:

cose = sin(a + 90°) i
sina = cos(a — 90°)
—sina = sin(a * 180°) (13.22)
—cosa = sin(e +270°) = sin(a — 90°)
In addition, note that

sin(—a) = —sina

cos(~a) =cosa (1325

If a sinusoidal prmsiuﬁ appears as

e = —E,sinwt

the negative sign is associated with the sine portion of the expression, -

not the peak value E,,. In other words, the expression, if not for conven-
ience, would be written ;

e = Ey(—sinwt)

__ PHASE RELATIONS 11 553

FIG. 13.28
Defining the phase shift for a sinusoidal function
that erosses the horizontal axis with a positive
slope after 0%

FIG. 13.29 ;
Phase relationship between a sine wave and a
cosine wave.

. cos(@-90°)
+c0s o \
l \ sin(o+90°)
—gin o +sin o

—cos O

FIG. 13.30
Graphic tool for finding the relat ionship between
spzcific sine and cosine Junctions.
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Since —sinwt = sin(wt = 180°)
the cxpressioﬁ can also be written
e = E, sin{wt + 180°)

revealing that a negative sign can be replaced by a 180° change in phase
angle (+ or —); that is,
| e=~Eysinot = E,,sin(ot F 180°) ="E,, sin(wt — 180°)
A plot of each will clearly show their equivalence. There are, there-
- fore, two correct mathematical representations for the functions,

The phase relationship between two waveforms indicates which one
leads or lags the other and by how many degrees or radians,

EXAMPLE 13.12 What is the phase relationship between the sinu-
soidal waveforms of each of the following sets? A

a. v = 10 sin(wt + 30°)
i =5 sin(wt + 70°)
b."i =15 sin(wt + 60%)
v = 10 sin{wr — 20°)
¢, i =2cos(wt + 10%
v = 3sin(wr — 10°)
d. i = —sin(wt + 30°)
v = Zsin(wr + 10°)
e. i = =2cos(wt — 60°
©v= 3 sin(wr - 150%

Solutions:

a. See Fig. 13.31. .
i leads v by 40°, or v lags i by 40°,

: FIG. 13.31
Example 13.12(a): i leads v by 40°

b. See Fig. 13.32, ;
i leads v by 80°, or v lags { by 80°,

c. See Fig. 13.33,

{ = 2cos(wt + 10°) = fsin(m +10° + 90°)
" = 2sin(wr + 100°)

i leads v by Illf.l", or v lags { by 110°,
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FIG. 13.32 : : *- FIG.13.33
Example 13.12(b)! i leads v by 80°. Example 13.12(c): i leads v by 110°.
d. See Fig. 13.34. : Yo . -
< _ .
—sin(wr + 30°) = sin(wr, + 30° — 180°) ' '
% =gin(wt = 150°)

v leads i by lGﬁ", or i lags v"by 160°,
Or using Note

~sinwt + 30°) = sin(wt + 30° +180°)
= sin(wt + 210°)

ileads v by 200°, or v lags i by 200°,

5 .
.'Y. !
i 3
GaExr N ‘ 2" L3
T 0 - Tl 511' : e, i
_i N T Y \_// ‘
10°
L e R =i A
- 360°
FIG. 13.34
Example 13.12(d): v leads | by 160°.
e. See Fig. 13.35. ! A0, By chojes |
’ e
i = —2cos(wt — 60°) = 2cos(wt — 60° — 180°)
= 2cos(wt — 240°)
5
. ¥l wt
£ 9 v 7
1
l—150°

- FIG. 13.36
Example 13,12(e): v and { are in phase.
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FIG. 13.37
Digital starage oscilloscope.
(Courtesy B+K Precision,)

However, cosa = sin(a + 90°)

50 that 2coa(a..-r — 240°) = 2 sin(wr — 240° + 90°)
d = 2 sin(wt — 150°)

v and i are in phase.

Function Generators . ™

Function generators are an important component of the typical labora-
tory setting. The generator of Fig. 13.36 can generate six different out-
puts; sine, triangular, and square wave, ramp, +pulse, and —pulse, with
frequencies extending from 0.5 Hz to 4 MHz. However, as shown in the
output listing, it has a maximum amplitude of 20 Vp.p A number of
other characteristics are included to demonstrate how the text will cover
each in some detail. '

MAIN OUTPUT

Frequency range ; it - 0.5 Hz to 4 MHz in six ranges
WAVEOIMS wovveve vt SIX Waveforms (sine, square, triangle,
ramp, +pulse, —pulse)
" AMPINR oot 20 Vo Sinto an open (10 V,, , in 1o 50.02)
Attenuator ......... v BdB, =20 dB (+2%)—Chapter 21

e 30 02 (+2%}——Chapler 26

Output impedance . :
. <1%, 1 Hz to 100 kHz

Distortion ...........

Rise/fall time .............coe..... wunns <60 ns— Chapter 24
SYNC OUTPUT
Rise time ..... wverne €40 ns—Chapter 24
Waveforms ... ... Square, pulse—Chapter 24
SWEEP . ”
Maode ....... ... Linear/log sweep—Chapter 21
Rate ....... - From 10 ms to 5 s continuously variable
Sweep output ......... w10V (open)
Output iMpedance ...... . wuens S -y +2%-—Chapter26
FIG. 13.36
Function generator.
(Courtesy B+K Precision,)
The Oscilloscope

The oscilloscope of Fig. 13.37 is an instrument that will display the si-
nusoidal alternating waveform in a way that will permit the reviewing of
all of the waveform's characteristics. In some ways; the screen and the
dials give an oscilloscope the appearance of a small TV, but remember
that it can display only what you feed into it. You can't turn it on and ask

for a sine wave, a square wave, and so on; it must be connected to a

source of an active circuit to pick up the desired waveform,
The screen has a standard appearance, with 10 horizontal divisions and

8 vertica.l divisions. Thedi’stme between divisions'is 1 cm on the vertical
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and horizontal scales, providing you with an excellent opportunity to be-
come aware of the length of | cm. The vertical scale is set 10 display voli-
age levels, whereas the Korizontal scale is-always in units of time. The
vertical sensitivity control sets the voltage level for each division, whereas
the horizontal sensitivity control sets the time associated with each divi-
sion. I other words, if the vertical sensitivity is set at 1 V/div., each division
displays a 1 V swing, so that a total vertical swing of 8 divisions represents
8 V peak-to-peak. If the horizontal control s set on 10 ps/div., 4 divisions
equal a time period of 40 us. Remember, the escilloscope display presents
a sinusoidal voltage versus time, not degrees or radians. Further, the verti-
cal scale is always a voltage sensitivity, never units of amperes:

The oscilloscope of Fig. 13.37 is a digital storage scope, where
storage-indicates that it can store waveform in digital form. The digital

storage scope (DSO) is the standard for most laboratories today. At the

input to the scopé, an analog-to-digital converter (ADC) will convert the

~ analog signal info digital at the rate of 250 MSa/s, or 250,000,000 sam-

~ ples per second—an enormous number—capable of picking up any dis-
‘tortion in the waveform. )

»

EXAMPLE 13.13 Find the period, frequéncy. and peak value of the

sinusoidal waveform appearing on the screen of the oscilloscope in,

Fig. 13.38. Note the sensitivities provided in the figure. - .~
Solution: One cycle spané 4 divisions. Therefore, the period is

' 50;4.3)
T=4divi| —— | =200 ps
‘and the frequency is -
1 1
- = e = ——— = § kHZ
f= 77 %0% 1075

The vertical height above the harizontal axis encompasses 2 divisions.

' 01V
-3 divef —— } =0
o 2e{8LY) w02y

An oscilloscope can also be used to make phase measurements between
two sinusoidal waveforms. Virtually all-laboratory oscilloscopes today
have the dual-trace option, that is, the ability to show two waveforms at
the same time, It is important to remember, however, that both wave-
fofims will and must have the same frequency. The hookup procedure for
using an oscilloscope to measure phase angles is covered in detail in
Section 15.13. However, the equation for determining the phase angle
can be introduced using Fig. 13.39.

" First, note that each sinusoidal function has the same frequency, per-

mitting the use of either waveform to determine the period. For the
waveform chosen in Fig. 13.39, the period encompasses 5 divisions at
0.2 ms/div. The phase shift between the waveforms (irrespective of
which is leading or lagging) is 2 divisions. Since the full period
represents a cycle of 360° the following ratio [from which Eq. (13.24)
can be derived] can be formed:

360° L (2]
T (no.of div.)  phase shift (no, of div.)

*Therefore,

PHASE RELATIONS |1I 557

TN TS
PAREWANY

Vertical sensitivity=0.1 V/div.
_ Horizontal s_:nsitivily=501.l.ﬂdiv. ‘

FIG. 13.38
Example 13.13.

Vertical sensitivity = 2 V/div.
Horizontal sensitivity = 0.2 ms/div.

) FIG. 13.39
Finding the phase angle berween waveforms using
a dual-trace oscilloscope.
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Substituting into Eq. (13.24) results in

s D

- @
Height ; .

Average height

distance

(b)

FIG. 13.40
Defining average value.

__ phase shift (no. of diy.)

i : - X 360°
-, _ T (no. of div.)

(13.249)

(2 div.) e S
(5 div.)

and ¢ leads i by 144°,

13.7 AVERAGE VALUE .

Even though the concept of the average value'is an important one -
in most technical fields, its true meaning is often misunderstood. In Fig.
13.40(a), for example, the average height of the sand may be required to
determine the volume of sand available. The average height of the sand
is that height obtained if the distance from one end to the other is main-
tained while the sand is leveled off, as shown in Fig. 13.40(b). The area
under the mound in Fig. 13.40(a) then equals the area under the rectan-
gular shape in Fig. 13.40(b) as determined by A = b X h. Of course, the
depth (into the page) of the sand must be the same for Fig. 13.40(a) and
(b) for the preceding conclusions to have any meaning. _
In Fig. 13.40, the distance was measured from one end to the other. In-
Fig. 13.41(a), the distance extends beyond the end of the original pile in
Fig. 13.40. The situation could be one where a landscaper wants to know

- the average height of the sand if it is spread.out over a distance such as

defined in Fig. 13.41(a). The result of an increased distance is shown in

‘Fig. 13.41(b). The average height has decreased compared to Fig. 13.40.

Quite obviously, therefore, the longer the distance, the lower is the aver-
age value, . .
. If the distance parameter includes a depression, as shown in Fig.

13.42(a), some of the san<'will be used to fill the depression, res ulting in

r Height

Ground level

Effect of distance (length) on average value,

Average height Average height
D E&“d:'.""‘;.'r;;'ii3'=s'--f_:,{'.I CLETIHE . T T, RIS
Same - I Same
distance _ distance
® - FoN
FIG, 13.41 FIG. 13.42

Effect of depressions (negative excursions) on
average value,

1
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an even lower average value for the landscaper, as-shown in Fig.
13.42(b). For a sinusoidal waveform, the depression would have the
same shape as the mound of sand (over one full cycle), resulting in an
average vajue at ground level (or zero volts for a sinusoidal voltage over

“one full period).

After traveling a considerable distance by car, some drivers like to
calculate their average speed for the entire trip. This is usually done
by dividing the miles traveled by the hours required to drive that dis-
tance. For example, if a person traveled 225 mi in 5 h, the average
speed was 225 mi/5 h, or 45 mi/h. This same distance may have been
traveled at various speeds for various mterva!s of time, as shown in
Fig. 13.43.

Speed (mi/h)

- Average speed
s

> e
Lunch break

e FIG. 13.43
Plotting spndwsrsm time for an automobile excursion.

By finding the total area under the curve for the 5 h and then dividiﬁg
the area by 5 h (the total time for the tnp), we obtain the same resu]t of
45 mi/h; that is,

area‘under curve ! :
Average speed Tengtod sueve (13.25)

i/h)(2h) + (50 mi/h)(2.5h
Avemgespeed-Als;Az_(mm X )“Eoml )(2:5h)

=%rmfh—-45mlfh

Eq (13.25) can be extended to include any variable quantity, such as

current or voltage, if we let G denbte the average value, as follows:

. algebraic sum of areas

G (average va]ue) Segth e

(13.26)

The algebraic sum of the areas must be determined since some area
contributions are from below the horizontal axis, Areas above the axis
are assigned a positive sign and those below it a negative sign. A positive
average value is then above the'axis, and a negative value is below it.

The average value of any current or voltage is the value indicated on
a dc meter. In other words, over a complete cycle; the average value is
the equivalent dc value. In the analysis of electronic circuits to be
considered in a later course, both dc and ac sources of voltage will be
applied to the same network. You will then need to know or determine
the dc (or average value) and ac components of the voltage or current in
varfous parts of the system

AVERAGE VALUE 1] 859
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14V

=6 V'

FIG, 13.456

Dqﬁning the average value for the waveform

in Fig. 13.44(b).

Determine the average value of the waveforms in

UZ -
(Square wa:\:c‘.l i Miav
PR

"

1oV -

o 0
(a) (b) -
FIG. 13.44 /{/ /.
Example 13.14, -
Solutions:

a. By inspection, the area above the axis equals the area below over
“one cycle, resulting in-an average™value of zero volts. Using Eq.
(13.26) gives ’ C e

(10V)(1ms) = (10V)(Ims) ¢ -

— - - =0V

- 2ms . 2ms

g

‘b.” Using Eq. (13.26) gives

14 V)(1 ms) = (6 V)(1. .
5w BV KLER) - G VNLI) V6N BV
2ms 2 2

- as shown in Fig. 13.45.

- In reality, the waveforth in Fig. 13.44(b) is simply the square
wave in Fig. 13.44(b) with a dc shift of 4 V; that is, ;

FIG. 13.46
Example 13.15(a).

vz = U + 4V
EXAMPLE 13.15 € average values of the following waveforms
oVl e fu e
_ a, Fig. 13.46,
t(ms) b. Fig. 13.47,
i(A) .
I eycle |

FIG. 13.47 i
Example 13.15(b).

‘Solutions: : :
6o tBV@ms) - (1V)(4ms) 12V -4V _

 8ms 8 Y




" Note Fig. 13.48. ' _
(10 V)(2 ms) — (4 V)(2ms) — (2 V)(2ms)
G=
10ms |

_ =NV+8V -4V _ 16V
A [ 10

Note Fig. 13.49.

-1.6V - &

We found the areas under the curves in Example 13.15 by using a

simple geometric formula. If we encounter a sine wave or any other un-
usual shape, however, we must find t':c area by some other means, We
can obtain a good approximation of the area by attempting to reproduce
the original wave shape using a number of small rectangles or other fa-
miliar shapes, the area of which we already know through simple geo-
metr;c formulas. For example, '

the area of the positive (or negative) pulse of a sine wave is 2A .

Approximating this waveform by two triangles (Fig. 13.50), we obtain
(using area = 1/2 base X heﬁlr for the area of a triangle) a rough idea
of the actual area: b h

- Area shaégd f‘z(li bh) = z[@ @(A,..)] = %A,,.E 1.584,,

A closer approximation'may be a rectangle with two similar trian gles

(Fig. 13.51):
. K 19 now 2 :
Area = .:‘.l,,,'3—-+ Z(Ebh) = .Am'3— + q Ap = i‘!TAm = 2.094A4,,

- which is certainly close to the actual area. If an infinite number of forms

- is used, an exact answer of 24,, can be obtained. For irregular wave-
forms, tl..s method can be especially useful if data such as the average
value are desired. ; ' .

The procedure of calculus that gives the exact solution 24,, is known
as integration. Integration is presented here only to make the method
recognizable to you, it is not necessary (o be proficient in its use to con-
tinue with this text. It is a useful mathematical tool, however, and should
be learned. Finding the area under the positive pulse of a sine wave using
integration, we have :

1

Area = J Apsina da
0

v;rherc | is the sign of integration, 0 and 7 are the limits of integration,
A, sin a is the function to be ntegrated, and de indicates that we are in-
tegrating with respect to a. .
Integrating, we obtain
Area = Ay —cosalf
. = =Ap(cos w — cos 0°)
= =Ag—1 ~ (+1)] = —Aa(=2)

a
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dc voltmeter (between 0 and 8 ms)

FIG. 13.48 ?
The response of a dc meter.to the waveform in
Fig. 13.46.

‘dc ammeter (berween 0 and 10 ms).

FIG. 13.49 ,
The response of a dc meter 1o the waveform in
Fig. 13.47.

FIG. 13.50
Approximating the shape of the positive pulse of a
sinusoidal wavefarm with two right triangles.

|
!
I
]
1
I
|
|
I
|
|
I
L
0 : & = 2,
3. Z 3

" FIG. 13.51

A better ﬂppmxin:lélfoﬂ for the shape of the positive

pulse of ir_sinusol'dai waveform.
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Since we know the area under the positive (or negative) pulse, we can
easily determine the average value of the positive (or negative) region of
a sine wave pulse by applying Eq. (13.26): '

. FIG. 13.52
* " Finding the average value of one-half the Ppositive
pulse of a sinusoidal waveform,

and G=

- Fis

1 cyele t
For the waveform in Fig. 13.52,

24,,/2) 24
G= (24n/2) = 71;“—" (The average is the same as for a full pulse.)

F g ? ; - ;_.;' - n P yzf‘ o
. . LE 13.16 Determine the average value of ihe sinusoidal wave-
FIG. 13.53 = form in Fig. 13.53. : ;

Example 13.16. B i
-l Solution: By inspection it is fairly obvioys that
the average value of a pure sinusoidal waveform over one full cyele is
5 . zero. :
+2mV
A~ A~ j Eq. (13.26): :
o / - : o
+24, — 24,
\/ / 7 i
-16mV 7 -
PLE 13.17 Determine the average value of the waveform in
1354, y .
FIG. 13.54 = # i
Example 13.17, Solution: The peak-to-peak value of the sinusoidal function is
¢ . 16 mV + 2mV = 18 mV. The peak amplitude of the sinusoidal wave-

form is, therefore, 18 mV/2 = 9 mV. Counting down 9 mV from 2 mV
(or 9 mV up from —16 mV) results in an average or dc level of —7 mV,

as noted by the dashed line in Fig, 13,54.
1 e sl ;
- -EXAMPLE 13.18 Determine the average value of the waveform in
—= O H f 55, g . «
Solution: o
FIG. 13.55 '
Example 13.18. 57 | B et 8 BN e

= 2 2

, \/Y&Zwﬁ 13,19 For the waveform in Fig. 13.56, determine whether the
average value is positive or negative, and determine its approximate value.

Solution: From the appearance of the waveform, the average value is
. positive and in the vicinity of 2 mV. Occasionally, judgments of this type
* " will have to be made. Bt A : e i

£oF TH

(]

v FIGTIEe, _Mmstrumentation - : : gy
L Example 1319, h R  The dclcﬁ,‘(or a@emge.fvé\lue of any waveform can be four;d':ﬁs{nga dig-
i ' o “ ital mu-mme_ner._(nMM) or an oscilloscope. For purely dc circuits, setthe ..




QU.

DMM on dc, and read the voltage or current levels. Oscilloscopes are
limited to voltage levels using the sequence of steps listed below:

1. First chioose GND from the DC-GND-AC option list associated

with each. vertical channel. The GND option blocks any signal to
which the oscilloscope probe may be connected from enterirftg

- the oscilloscope and responds with just a horizontal line. Set the

resulting line in the middle of the vertical axis on the horizontal
axis, as shown in Fig. 13.57(a).

3 Apply the oscilloscope probe to the voltage to be measured (if

not already connected), and switch to the DC option. If a de volt-
age is present, the horizontal line shifts up or down, as demon-

strated in Fig, 13.57(b). Multiplying the shift by the vertical .

sensitivity results in the dc voltage. An upward shift is a positive
voltage (higher potential at the red or positive lead of the oscillo-
scope), while a downward shift is a negative voltage (lower po-
tential at the red or positive lead of the oscilloscope).

=21 =

In general,

A
\ A 7 \ -
Vertical sgnsitivity = 50 mV/div.
)] ) * (b)
FIG. 13.57

.

[ Va. = (vertical shift in div.) X (vertical sensitivity in V/div.) | (13.29)

For the waveform in Fig. 13.57(b),

Vge = (2.5 div.)(50 mV/div.) = 125 mV

The oscilloscope can also be used to nieasure the dc or average level

of any waveform using the following sequence:

. Using the GND optmn reset the horizontal line to the middle of
the screen.

. Switch to AC (all de components of the signal to which the probe

is connected will be blocked from entering the oscilloscope—

only the alternating, or changing, components are displayed).

Note the location of some definitive point on the waveform,
such as the bottom of the half-wave rectified waveform of Fig.
13.58(a); that is, note its position op the vertical scale. For the
future, whenever you use the AC option, keep in mind that the
computer will distribute the waveform above and below the hor-

izonral axis such that the average value is zero; that is, the area -

above the axis will equal the area below.

# ;
g [T

¥

Shift = 2.5 div.

wf L

Using the oscilloscope to measure de voltages; (a) setting the GND condition; (b) the vertical
shift resulting from a dc voliage when shifted to the DC option.

AVERAGE VALUE 11| 5863
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=

r B o =
1 : AN

. AN AN AR

AR i 0 = b \ . B T A et B
iy 3 ST S K Reference ¥ _lmn:n_g div.

level
\ _ J @ o J
(a) i (b}
: . FIG.13.58

Determining rhe average value of a nonsinusoidal wavefarm using the o.vcdf,oscope )
(a) vertical channel on the ac mode; (b) vertical channel on the dc mode,

»

3. Then switch to DC (to permit both the d¢ and the ac components
of the waveform to enter the oscilloscope), and note the shift in the
chosen level of part 2, as shown in Fig. 13.58(b). Eq. (13.29) can
then be used to determine the dc or average valueof the waveform.
For the waveform in Fig. 13.58(b), the average value is about

Vav = Ve = (09 div.)(5 V/div.) =45V

The procedure outlined above can be applied to any alternating wave-

form such as the one in Fig. 13.56. In some cases the average value may

' require moving the starting position-of the waveform under the AC op-
tion to a different region of the screen or choosing a higher voltage scale.

By choosing the appropriate scale, you ¢an enable DMMs to read the av-

erage or dc level of any waveform.

-

13.8 EFFECTIVE (rms) VALUES

This section begins to relate dc and ac quantities with respect to the
power delivered to a load. It will help us determine the amplitude of a si-
nusoidal ac current required to deliver the same power as a particular dc
current. The quesuon frequently arises, How is it possible for a sinu-
soidal ac quantity to dchver ‘a net power if, over a full cycle, the net cur-
rent in any one direction is zero (average value = 0)7 It would almost
appear that the power delivered during the positive portion of the sinu-
soidal waveform is withdrawn during the negative portion, and since the
, : . ' two are equal in magnitude, the net power delivered is zero, However,
‘» i understand that regardless of direction, current of any magnitude
through a resistor delivers.power fo that resistor. In other words, during
the positive or negative portions of a sinusoidal ac current, power is
.being delivered at each instant of time to the resistor. The power deliv-
ered at each instant, of course, varies with the magnitude of the sinu-
soidal ac current, but there will be a net flow-during either the positive or
} - the negative pulses with a net flow over the full cycle. The net power
flow equals twice that delivered by either the posmve or the negative re-
gions of sinusoidal quantity.
M + A fixed rd;munsh:p between ac and dc voltages and currents can be
Rl derived from the experimental setup shown in Fig. 13:59. A resistor in a
g, £ witer bath is connected by switches to a de and an ac supply, If switch'1
i e S ' rsclused,adccurremf determined by the resistance R and battery volt-
o e ase .E ls estabhghl:d lhmugh ‘rhe resistor R. Thc temperatire rcached hy




aC generator "= dc source
E

An experimental sétup to establish a relationship
between dc and ac guantities.

=
FIG. 13.59

*

* the water is detérmined by the dc' powcr dissipated in the form of hcat by

the resistor.

If switch 2 is closed and switch 1 lefl open, the ac current through the
resistor has a peak value of I,; The temperature reached by the water is
now determined by the ac power dissipated in'the form of heat by the re-
sistor. The ac input is varied until the temperature is the same as that

. reached with the dc input. When this is accomplished, the average elec-
trical power delivered to the resistor R by the ac soureg is the same as

that delivered by the dc source.

The power delivered by the ac supply at any instant of time is
Py = (isc)*R = (Lnsin wt)*R = (I; sin? wt)R

However,

A

2

Therefore, . '«

‘sin‘ wt =-§(l — cos 2wt)

-

Py = 1;[%(1 - cos 2@:)}3

and

e

2R 12 R

= — " cos 20t
. 2

2

(trigonometric identity)

(13.30)

The average power delivered by the ac source is just the first term,
since the average value of a cosine wave is zero even though the wave
amay have twice the frequency of the original input current waveform.

Equating the average power delivered by the ac generator to that deliv-"

ered by the dc source, |

“

and

which, in words, states that

PM“} = Pdc
IR
. g Il R
2 de
I
Iy = % = 0.7071

the equivalent de va!ue of a sinusoidal current or mlmge is 1/\/2 or

0.707 of its peak ma‘ue
Introductory, C.-37A

EFFECTIVE (rms) VALUES ||| 665
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The equivalent dc value is called the rms or effective value of the sinu-
soidal quantity.

As a simple numerical example, it requires an ac current with a peak
value of V2(10) = 14.14 A to deliver the same power to the resistor in

, Fig. 13.59 as a dc current of 10 A. The effective value of any quantity

plotted as a function of time can be found by using the following equa--
tion derived from the experiment just described:

Caleculus format;»

g which means

o h_r;";"(;}dr
ox

area(i*(t))
T

"rms e

© (1331

(13.32)

In words, Eqs (13. 3!) and (13.32) state that to ﬁnd the rms value, the
function i(f) must first be squared, Afier i(r) is squared, the area under
the curve is found by integration. It is then divided by T, the length of
the cycle or the period of the waveform, to obtain the average or mean
value of the squared waveform. The final step is to take the square root
of the mean value. This procedure is the source for the other designa-

. tion for the effective value, the root-mean-square (rms) value. In fact,

since rms is the most commonly used term in the educational and indus-
trial communities, it is used throughout this lex: =F

The mlat:anshlp between the peak valué and the rms value is the
same for voltages, resulting in the following set of relatmmhlpﬁ for the
examples and text material to follow:

_Em

= 07071,

= 0.707E,,

_ 1333

Similarly,

-

Ty = VU e = 14141

Ep =N3E s

= 1414E

=

" (13.34) '

i

. L

EXAMPL
h part in Fig. 13.60.
i(mA)

12

3.20- Find the rms values of the smusmdal Waveform in

\AAA
VARV

[

()
FIG, 18.60 :-

Example 13.20.

R

*Introductory, c,~ 3?3
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Solution: For part (&), Iy = 0.707(12 X 1073 A) = 343 mA. P
. For part (b), again /ms = 8.48 mA. Note that frequency did not change - . Y i ;
" the effective value in (b) compared to (a). For part (c), Vin, = ® < >

0.707(169. ?3 V)= 120V, the sa_me as available froma home outlet.

EXAMPLE 13.21 The 120'V dc source in Fig. 13.61(a) delivers 3.6 W
to the load. Determine the peak value of the applied voltage (E,,) and the
current (I,,) if the ac suurce [F:g 1 ﬁl(b)j is to deliver the same powet

" to the load. 1
le [T
a : ] s
e
. ‘ _'-
E e ' '
i Frp + - .
——— E=C120V P=36W P=36W- '
: g Load _ Load
(a)
FIG, 1361 ; \
: _Example 13.21. ’
Solution: :
2 . L 4
AT _ Poe = Viclge -
Pdc 3‘-6 W - : § "
d r vl =e—— = 30 mA ' o
B ey e T _ -

I = Vil = (1414)(30 mA) = 42.42mA -
Ep = 'v"E(,jc = (1 414}(120‘/‘) = 169.68V

»

-

EXAMPLE 13.22 Fmd thp rms value of the wavcfonn in Fig. 13.62.
Solution: v* (Fig. 13, 63)

/{9)(4)+f1) \/* e M |

v (V)

1 cycle

1(s)

i
=
0

FIG. 13.62 . FIG. 13.63
Emrrqp!e 13.22. _ The squared waveform of Fig. 13.62.

i
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(V)

t (ms)

A0 - -
"—Icyc!c—'

FIG.13.66
. Exampie13.4

v (V)

t(ms)

v FIG, 13,67

The squared waveforr of Fig. 13.66.

EXAMPLE 13.23 Calculatg the rms value of the voltage in Fig. 13.64. °

v (V)
" 1 aycle
4k : _
ST g
-10f
FIG. 13.64
Example 13.23.
Solution: V* (Fig. 13.65):
6 8 10 1(s) -

FIG. 13.65
The squared waveform aof Fig. 13.64,

EXAMPLE 13.24 Determme the average and rris values of the square
wave in Fig. 13.66. x

Soiutmn Byi lnspccl:mn the average value is zero.

v? (Fig, 1367)
v - [0y X 1073) + (1600)(10 X 1079)
' 20x107 .
M — m =40V

20 x 1073

E _(thé maximum value of the waveform in Fig. 13.66).

The waveforms appearing in these examples are the same as those
used in the examples on the average value. It may prove interesting to

* compare the rms and average values of these waveforms,

The rms values of sinusoidal quantities such as voltage or current are
represented by E and 7, These symbols are the same as those used for dc

- voltages and currents. To avoid confusion, the peak value of a waveform

always has a subscript m associated with it: I,, sin wt Caution: When
finding the rmis value of the positive pulse of a sing wave, note that the
squared area is not simply (24,, )2 = 4A%: it must be found by a com-
pletcly new integration. This i 1s always truc for any.wavefonn lhai is nol
rectaﬂgula: - :

A unique suuatlon arises if a waveform has both a dc and an ac com-
ponent that may "be_due to a source, such as the-oife in Fig. 13.68. The
colnbmauon appears frequently.in the analysis of electronic: networks

: wherc both dc and ac levels are present in the same system.



R 8
6V
asvp]

mnend

b

_ ' FIG. 13.68 ;
Generation and display of a waveform having a dc and an ac component.

The question arises, What is Lhe rms value of the voltage v? You may

be termpted 10 assume that it is the sum of the rms values of each compo- -

nent of the waveform; that is, VT =0.7071(1.5V) + 6V =106V +
6 V= ‘! 06 V. However, the rms \ralue is actually determined by - .

| Vems =V Vdc + "’_w(m_u) (13.35)

which for the waveform in Fig. 13.68 is '
V(6V)2+( 1.06 V)? = \/37 24V = 61V

' 'I‘ius_ result is nouceably léss than the solution of 7.06 V.

Trua rms Meters

Throughout this séction, the rms vﬁlde of a variety of waveforms was '

determined to help ensure that the concept is correctly understood.
However, to use a meter to measure the rms value of the same wave-
forms would require a specially designed meter. Too often, the face of
“a meter will read True fms Multimeter or such. However, in most
cases the meter is only designed to read the rms valye of periodic sig-
nals with no dc level and have a symmetry about the zero axis. Most
multimeters are ac coupled (the dc component of the signal is blocked
by a capacitor at the input terminals), so only the ac portion is més-
ured. For such cases one may be able to first determine the rms valug
- of the ac portion of the waveform and then use the dc section of the
meter to measure the dc level, Theii Eq, (13.35) can be used to deter-
mine the correct rms value. '
The problem, however, is that many, waveforms arg not symmetric
about thg zeto axis—How is an rms reading obtained? In general, the
rms value of any waveform is a measure of the “heating” potential of the
applied waveform, as discussed earlier in this section. A direct result is
the development of meters that use a thermal converter calibrated to dis-
play the proper rms- value, A drawback of this approach, however, is that
the meter will draw power from the circuit during the heating process,
and the results have a low precision standard. A better approach that is
commonly used uses an analog-to-digital converter (ADC) mentioned
earlier to digitize the signal, so that the rms value then can be determined
to a high degree of accuracy. One such meter appears in Fig. 13.69,
which samples the input signal at 1.4 MHz, or 1,400,000 samples per
second—certainly sufficient for a wide variety of signals. This meter
will run the sampling rate at all times, even whenimaking dc measure-
ments, so both the de and ac content of a wavefonn can be displayed at
the same time.

EFFECTIVE (rns) VALUES 11| 569
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» FIG. 13.70
- Full-wave bridge rectifier.

eV = 0637V,

FIG 137
{a} Sinusoidal input; (b) full-wave rectified .ﬂgml

UW‘;‘MI‘H e

A= == - -V, = 0318V,

” ~iw

FG.13.72
~ Half-wave rectified signal,

LY
5 FIG. 13.69
True rms multimeter.

‘ (© Agilent Technologies 2009. All rights reserved.)

13.9 ac METERS AND INSTRUMENTS
.Ir(m-Vane or d’Arsonval Moveﬁlgnt

If an average reading movement such as the iron-vane movement used in
the VOM of Fig. 2.29 is used to measure an ac current or voltage, the level’
indicated by the movement must be multiplied by a calibration factor. In
other words, if the movement of any voltmeter ar ammeter is reading the
average value, that level must be multiplied by a specific constant, or cali-
bration factor, to indicate the rms level. For ac waveforms, the signal must
first be converted to one having an average value over the lime period.
Recall that it is zero over a full period for a sinusoidal waveform. This is
usually accomplished for sinusoidal wayeforms using a bridge rectifier
such as in Fig. 13.70. The conversion process, involving four diodes ina .
bridge configuration, is well documented in most electronic texts.
Fundamentally, cenduction is permitted through the diodes in such a
manner as to convert the sinusoidal input of Fig. 13.71(a) to one having
the appearance of Fig. 13.71(b). The negative portion of the input has
been effectively “flipped over” by the bridge configuration. The result-
ing waveform in Fig. 13.71(b) is called a full-wave rectified waveform.
The zero average value in Fig. 13.71(a) has been replaced by a pattern

having an average value determined by TG
: 2 W _ AV 2V
M S AT = 0637V
22w 27 Lol

. The movement of the pointer is therefore directly related to the peak

value of the signal by the factor 0.637. -
Forming the ratio between lhe rms and dc levels results in

Vins _ 0707V 1-11
Vi R

revealing that the scale indication is 1.11 times the dc level measured by

_t.hc movement; that is,

Mater dioation =211 (3¢ or Arpeags va’lue)] full-wave (135,36)

Some ac meters use a half-wave rectifier arrangement that results in
the waveform in Fig, 13,72, which has half the average Val'ule in Fig.
13,71(b) over one full cyclc The result is ;

[ Meter indication = 2.22 (dc or average value) | half-wave (13.37)



e R ynamometer Movement
T The eléctrodynamomeater movement is a movement that has the distinct
. ‘advantage of béing able to read the turn rms value of any current, volt*
 age, or power measurement without additional circuitry. The basic con-
struction appears in Fig. 13.73, which shows two fixed coils and a
rotating coil. The two fixed coils establish a field similar to that estab-
lished by the permanent magnet in an iron-vane movement. However; in
this case, the same current that establishes the field in the fixed coils will
also establish the field in the movable coil. THe result is opposing
polarities between the rotating and fixed coils that will estabiish a torque
on the movable coil and cause it to rotate and provide a reading using the
attached pointer. Removing the excitation force: will allow the.attached
spring to bring the pointer back to the rest position. Although the elec- .
trodynamometer movement would be very effective in reading the rms
value of any voltage or current, it is used almost exclusively in de/ac

IR L

wattmeters for any shape of iriput. It can also be used for phase shift

méasurements, harmonic’ analysis, and frequency measurements; al--
though improving digitat electronic technology is the new-direction for
these areas of application. §

;

O Méter Terminals O

FIG. 13.73

Electrodynamometer movement.

4

EXAMPLE 13.25 Determine the reading of cach meter for each situa- :
tion in Fig. 13.74(a) and (b). ' '

Solution: For Fig. 13.74(a), situation (1): By Eq. (13.36),
-Meler‘in"dicatiﬂn = L1120 V) = 222V
For Fig. 13.74(a), situation (2):
Vi = 0707V, = (0707)(20 V) = 1414V

For Fig. 13.74(b), situation (1):

#

Vi = Ve = 28Y

i

Fixed coil

‘

‘ac METERS AND INSTRUMENTS (11 671
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[ron-vane
+« movement

ms scale . o ac

_(full-wave
rectifier)

s " o

Voltmeter

-
>V = 20V

o—

@

4

Electrodynamometer
movement

rms scale.

e ‘ +

; o T-

N Voétmeter H

i n @

(b} .

FIG. 13.74 B :
“Example 13,25, : -

e = 15 sin 200¢

For Fig. 13.74(b), situation (2):
Vims = 0.707V,,, = 0.707(15V) = 10.6 V

Frequancy Countar

For fmquancy mcasuremcnts, the n'equency counter in Fig. 13.75 pro-
vides a digital readout of $ine, square, and triangular waves from 0.1 Hz
to 2.4 GHz. The temperature-compensated, crystal-controlled time base
is stable to =1 pa.rt per million per year, - °

FIG 1376
- Frequency counter, 2.4 GHz multifunctional nmrmem
(Coun:esy of B+K Precision.)

. g -
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Clamp-on Meters, -
The AEMC® Clamp Meter inFig. 13.76 is an instrument that can mea-
sure alternating current in the ampere range without having to open the
circuiit. The loop is opened by squeezing the “trigger”; then it is placed
" around the current-carrying conductor, Through transformer action, the
level of current in rms units appears on the appropriate scale. The Model
501 is auto-ranging (that is, each scale changes automatically) and can
measure de or ac currents up to'400 mA. Through the use of additional
leads, it can also be jised as a voltmeter (up to 400 V, dc or ac) and an

"~ ohmmeter (from zero to 400 (1). ; '

%

Impedance Measurements

Before we leave the subject of : ac meters and instrumentation, you
should understand that 1

an ohmmeter cannot be used to measure the ac reactance or
impedance of an element or system even though reactance and 4 .
impedance are measured in plms. FIG. 13.76

Clamp-on ammeter and voltmeter,

Recall that chmmetets cannot be used on energized networks—the o0 ¢ 4 EMC® Ingiruments, Foxborough, MA.)

power must be shut off or disconnected. For an inductor, if the ac power
is removed, the reactance of the coil is simply the dc resistance of the . i
windings because the applicable frequency will be<0 Hz. For a capacitor,
if the ac power is removed, the reactance of the capacitor is simply the

. leakdge resistance of the capacitor. In general, therefore, always keep in -
mind that ohmmeters cart read only the dc resistance of an element or
network, and only after the applied power has been removed.

-

13.10 APPLICATIONS L ' ’
(120 V at 60 Hz) versus (220 V at 50 Hz)

In North and South America, the most common available ac supply is
120 V at 60 Hz; in Western and Central Europe, Africa; Asia, and
Australia, 220 V at 50 Hz is the most common. Japan is unique in that the
eastern part of the country uses 100 V at 50 Hz, whereas most of the
western part uses 100 V at 60 Hz. Itis 220 V a1 50 Hz. The choices of rms -
value and frequency were abviously made carefully because they have
such an important impact on the design and operation of so many systems.
The fact that the frequency difference is only 10 Hz reveals that there
.was agreement on the general frequency range that should be used for.
power generation and distribution. History suggests that the question of
frequency selection originally focused on the frequency that ‘would not
exhibit flicker in the incandescent lamps available in those days. Techni-
cally, however, there really wouldn't be a noticeable difference between n
- 50 and 60 cycles per second based on this criterion. Another important
factor in the early design stages was the effect of frequency on the size of
transformers, which play a major role in power generation and distribu-
tion. Working through the fundamental equations for transformer design,
you will find that the size of a transformer is inversely proportional to fre-
quency. The result is that transformers operating at 50 Hz must be larger
(on a purely mathematical basis about 17% largcr) than those operating at
60 Hz. You will therefore find that transformers lesigned for the interna-
tional market, where they can operate on S0 Hz or 60 Hz, are designed
around the 50 Hz frequency. On the other side: of the coin,-however,
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FIG. 13.77
Wrmy of plugs for a 220V, 50 Hz connection.

. higher frequencies result in increased concerns about arcing, increased
“losses in the transformer core due to eddy current and hysteresis losses,

and skin effect phenomena. Somewhere in the discussion we may wonder
about the fact that 60 Hz is an exact multiple of 60 seconds.in a minute
and 60 minutes in an hour. On the other side of the coin, however, a 60 Hz
signal-has a period of 16.67 ms (an awkward number), but the period of a
50 Hz signal is exactly 20 ms. Since accurate timing is such a critical part

- of our technological design, was this a significant motive in the final

choice? There is also the question about whether the 50 Hz is a result of
the close affinity of this value to the metric system. Keep in mind that
powers of ten are all-powerful in the meiric system, with 100 c¢m in a
meter, 100°C the boiling point of water, and so on. Note that S0 Hz is ex-
actly half of this special number. All in all, it would seem that both sides
have an argument that is worth defending. However, in the final analysis, -
we must also wonder whether the difference is simply political in nature.
.The difference in voltage between the Americas and Eurppe is a differ-
ent matter entirely, in the sense that the difference is close to 100%. Again,
however, there are valid argurrients for both sides. There is no question that

. larger voltages such as 220V raise safety issues beyond those raised by
voltages of 120 V. However, when higher voltages are supplied, there is -

less current in the wire for the same power demand, permitting the use of
smaller conductors—a real money saver. In addition, motors and some ap-

pliances can be smaller in size. Higher voltages, however, also bring back
the concern about arcing effects, insulation requirements, and, due to real
safety concerns, higher installation costs. In general, however, interna-
tional travelers are prepared for most situations if they have a transformer
that can convert from their home level to that of the country they plan to.
visit. Most equipment (not clocks, of course) can run quite well on 50 Hz
or 60 Hz for most travel periods. For any unit not operating at its design
frequency, it simply has to “work a little harder” to perform the given task.
The major problem for the traveler is not the transformier itself but the
wide variety of plugs used from one country to another. Each country has
its own design for the “female” plug in the wall. For a three-week tour, this
could mean as many as 6 to 10 different plugs of the type shown in Fig.
13.77. For a 120 V, 60 Hz supply, the plug is quite standard in appearance

~ with its two spade leads (and possible ground connection).

In any event, both the 120 V at 60 Hz and the 220 V at 50 Hz are ob-
,vmusly meeting the needs of the consumer. It i is a debate that could go
'm at length without an ultimate victor. : .

S__afety" Cnncerns (High 'Vbltages and dc versus ac)
Be aware that any “live” network should be treated with a calculated level

. of respect. Electricity in its various forms is not to be feared but uséd with

some awareness of its potentiglly dangerous side effects, Itis common
knowledge that electricity and water do not mix (never use extension cords

~ orplug in'TVs or radios in the bathroom) because a full 120 V'in a layer of

water of any height (from a shallow puddle to a full bath) can be lethal,
However, other effects of de and ac voltages dre less known. In geperal, as

" the vo]tage and current increase, your concern about safety should increase

exponentially. Fer instance, under dry conditions, most human beings can
survive a 120 Vac shock such as obtained when changing a light bulb, turmn- -
ing on a switch, and so on. Most electricians have experienced such a jolt
many times in their careers, However, ask an electrician to relate how it

 feels to hit 220 V, and the response (if he or she has been unfortunate to ,

have had such an experience) will be totally different, How often have you



hea:d nf P back-hoe epcmtor hitting a 220 V line and having a fatal heart at-
tack? Remember, the operator is sitting in & metal container on a damp
ground which provides an excellent path for the resulting current to flow

e from the line to ground. If only for a short period of time, with the best en-

vironment (rub‘bcr-sole shoes, and so on), in a situation where you can
quickly escape the situation, most human beings can also survive a 220 V
shock. However, as mentioned above, it is one you will not quickly forget.
For \roltagcs beyond 220 V rms, the chances of survival go down exponen-
“ tially with increase in voltage. It takes only about 10 mA of steady current
through the heart to put it in defibrillation. In general, therefore, always be

sure that the power is disconnected when working on the repair of elcc;ncal- '

equipmient.-Don’t assume that throwing a wall switch will disconnect the

_ power, Throw the main circuit breaker and test the lines with a voltmeter
before working on lhe system. Since voltage is a two-point phenomenon,
be sure to work with only one line at at time—accidents happen!

You should also be aware that the reaction to de voltagcs is qmte dif-
ferent from that to ac vo]lages You have probably seen in movies or
comic strips that people are often unable to let go of a hot wire. This is
evidence of the most important difference between the two types of volt-
ages. As mentioned above, if you happen to touch a “hot™ 120 V ac line,
you will probably get a-good sting, but you can let go. Ific happens to be
- a “hot” 120 V dc line, you will probably-not be able to let go, and you
could die. Time plays an important role when this happens, because the
longer you are subjected to the de voltage, the more the resistance in the
body decreases, until a fatal current can be established. Thie reason that
we can let go of an ac line is best demonstrated by carefully examining
the 120V rms, 60 Hz voltage in Fig. 13.78. Since the voltage is oscillat-
_ing, thereisa period when the voltage is near zer0 or less than, say, 20 V,
and is reversing in direction. Although this time “interval is very short, it
- appears every 8.3ms and provides a window for you to lez go.

Now that we are aware of the additional dangers of dc voltages, it is im-

portant to mention that under the wrong conditions, dc voltages as low as .

12 V, such as from a car battery, can be quite dangerous. If you happen to

bé working on a car under wet conditions, or if you are sweating badly for _

some reason or, worse yet, wearing a wedding ring that may have moisture
and bpdy salt undemeath, touching the positive terminal may initiate the
‘process whereby the body resistance begins to drop, and serious injury

could take place. It is one of the reasons you seldom see a professional . ~

electrician wearing any rings or jewelry—it isjust not worth the risk.

‘Before leaving this topic of safety concerns, you should also,be aware of
the dangers of high-frequency supplies. We are all aware of what 2.45 GHz
at 120 V can do to a meat product in a microwave oven, and it is therefore
very lmpmtmn that the seal around the oven be .as tight as possible. How-
ever, don't ever assume that anything is absolutely perfect in design—so
don't make it a habit to view the cooking process in the microwave 6 in.
“from the door on a continuing basis. Find something else to do, and check
the food only when the cooking process is complete. If you ever visit the
Empire State Building, you will notice that you are unable i get close to
the antenna on the dome dué to the high-frequency signals being emiticd
with a great deal of power. Also note the large KEEP QUT signs near radio
transmission towers for local radio stations. Standing within 10 ft of an AM
transmitter working at 540 kHz would bring on disaster. Simply holding
(do not try!) a fluorescent bulb near the tower cou’ | make it light up due to
the excitation of the molecules inside the bulb.'

In total, therefore, treat any situation with high"ac voltages or cut-
rents, high-energy dc levels, and high’frequencies with added care.
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FIG. 13.78
In:ervai of time when sinusoidal voltage is hear
zerovolts.
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13.11 COMPUTER ANALYSIS '
PSpice '

OrCAD Capture offers a variety of ac voltage and current sources. How-
‘ever, for the purposes of this text, the voltage source VSIN and the cur-
rent source ISIN are the most appropriate because they have a list of
attributes that cover current areas of interest. Under the library
SOURCE, a number of others are listed, but they don’t have the full
range of the above, or they are dedicated to only one type of analysis, On
occasion, ISRC is used because it Has an arrow symbol like that appear-
ing in the text, and it can be used for dc, ac, and some transient analyses.
The symbol for ISIN is.a sine wave that utilizes the plus-and-minus sign
(%) to indicate.direction. The sources VAC, IAC, YSRC, and ISRC are
fine if the magnitude and the phase of a specific quantity are desired or if
a transient plot against frequency is desired. However, they will notpro-
vide a transient response against time even if the frequency and the tran-
sient information are provided for the simulation.

For all of the sinusoidal sources, the magnitude (YAMPL) is the peak
value of the waveform, not the rms value. This becomes clear when a
plot of a quantity is desired and the magnitude caleulated by PSplce is

" the peak value of the transient response. However, for a purely steady-
state ac response, the magnitude provided can be the rms value and the
output read as the rms value. Only when a plot is desired will it be clear
that PSpice is accepting every ac magnitude as the peak value of the

. waveform. Of course, the phase angle is the same whether the magmmde
is the peak or the rms value.

Before examining the mechanics of getting. the various sources, re-
member that

L
Transient Analysis provides an ac or a dc output versus time, while
AC ,Sbfeép is used to obtain a plot versus frequency.

To obtain any of the sources listed above, apply the following sequence:
Place part key-Place Part dialog box-Source-(enter type of source).
Once you select the source, the ac source VSIN appears on the
schematic with OFF, VAMPL, and FREQ, Always specify VOFF as
- ' ) 0V (unless a specific value is part of the analysis), and provide a value
e . for the amplitude and frequency. Enter the remaining quantities of
: 'PHASE, AC, DC, DF, and TD by double-clicking on.the source sym-
% bol to obtain the Property Editor, aIthongh PHASE, DF (damping
~ factor), and TD (time delay) do have & default of 0 s. To add a phase
angle, click on PHASE, enter the phase angle in the box below, and
. then select Apply. If you want to display a factor such as a phase angle
~© . of 60°, click on PHASE followed by Display to obtain the Display
" Properties dialog box. Then choose Name and Value followed by OK
‘and Apply, and leave the Properties Editor dialog box (X) to see
PHASE=60 next to the VSIN source. The next chapter includes the

use of the ac source in a simple circuit. '

Multisim

For Multisim, the ac voliage source is available from three sources—the
Place Source key pad in the Compenents toolbar, the Show Power *
Sourge Family in the Virtual or BASIC toolbar, and the Function®
Generator, The major difference among the options is that_the phase
angle cannot be set us:ng the Function Generator.
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Multisim ¥3-1
Trans! Iyns

N FIG. 13.79 ;
Using the oscilloscope ta display the sinusoidal ac voltage source available
in the Multisim Sources tool bin. :

Using ‘the Place Source option, select SIGNAL_VOLTAGE_ ) E
SOURCES group under the Family heading, followed by AC_- =
VOLTAGE. When selected and placed, it displays the default values for . ~ SR
the amplitude, frequenay, and phasé. All the parameters of the source
can be changed by double-clicking on the source symbol to obtain the
dialog box. The listing clearly indicates ‘that the set voltage is the peak
“value. Note that the unit of measurement is controlled by the scrolls to
the right of the default label and cannot be Set by typing in the desired
unit of medsurement. The label can be changed by switching the Label
heading and inserting the desired label. After all the changes have been

“made in the dialog box, click OK, and all the changes appear riext to the

ac voltage source symbol, In Fig: 13.79, the labe] was changed to Vs.and

-the amplitude to 10 V,.while the freqency and phase angle were left with
 their default values, It is particularly important to realize that

for any frequency analysis (that is, where the frequency will change),

“the AC Magnitude of the ac source must.be set under Analysis Setup
in the SIGNAL_VOLTAGE_SOURCES dialog box. Failure to do 50
will create results linked to the default values rather than the value
setunder the Value heading. o e

. -

To view the sinusoidal voltage set in Fig. 13.79, select an oscilloscope
from the Instrument toolbar at the right of the screen. When hooking up
the oscilloscope, do not worry about overlapping wires. Connections are
shown by small, solid dots. It is the fourth option down and has the appear-
ance shown in Fig. 13,79 when selected. Note that it is a dual-channel os-
cilloscope with an A channel and a B channel. It has a ground (G)
connection and a trigger (T) connection. The connections for viewing the
ac voltage source on the A channel are provided in Fig. 13.79. Note that
the trigger control is also connected to the A channel for sync control. The
screen appearing in Fig. 13.79 canbe displayed by double-clicking on the
oscilloscope symbol on the screen. It has all the major controls of a typical
laboratory oscilloscope. When you select Simulate-Run or select 1 on the
Simulate Switch, the ac voltage appears on the screen. Changing the Time
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base to 100 ps/div. results in the display of Fig. 13.79 sincé there are 10
divisions across the screen and 10(100 us) = 1 ms'(the period of the ap-
plied signal).” Changes in the Time base are made by clicking on the
default value to obtain the scrolls in the same box. For a single waveform
like that in Fig. 3.79, be sure to select Sing. (for Singular) in the bottom
right of the scope. It is important to remember, however, that

changes in the oscilloscope setting or any network should not be
made until the simulation is ended by disabling the Siniulate-Run
option or placing the Simulate switch in the 0 mode.

To stop the simulation, there are three options: choose Simulate-Stop
from the top toolbar on the screen; select the red square to the right of
the green arrow; or click the switch back to the 0 position.
- The options within the time base are set by the scroll bars and cannot
be changed—again they match those typically available on a laboratory
oscilloscope. The vertical sensitivity of the A channel was automati-
cally set by the program at 5 V/div. to result in two vertical boxes for the
peak value as shown in Fig. 13.79. Note the AC and DC keypads below
Channel A. Since there is no dc component in the applied signal, either
one results in.the same display. The Trigger gontrol is-set on the posi-
tive transition at a level of 0 V. The T1 and T2 refer to the cursor posi-
tions on the horizofital time axis. By clicking on the small green
triangle at the top of the green line at the far left edge of the screen angd
dragging the triangle, you can move the vertical green line to any posi-
tion along the axis. In Fig. 13.79, it was moved to the peak value of the
waveform at one-quarter of the total period or 0.25'ms = 250 us. Note
the value of T1 (250 us) and the corresponding value of VA1 (9.995 V =
10.0 V). By selecting the other cursor with a yellow triangle at the top
to onie-half the total period or 0.5 ms = 500 s, we find that the value at
T2 (500 ps) is 0,008 pV (VA2), which is essentially 0V for a waveform
with a peak value of 10 V. The accuracy is controlled by the number of
data points called for in the simulation setup. The more data points, the
higher is the likelihood of a higher degree of accuracy for the desired
quantity. However, an increased number of data points also extends the
running time of the simulation, The third line provides the difference
between T2 and T1 as 250 us and difference between their magnitudes
(VA2-VA1) as —9.995 V, with the negative sign appearing because
VA1 is greater than VA2, 4 ; .

As mentioned above, you can also obtain an ac voltage from the
Function Generator appearing as the second option down on the

* Instrument toolbar. Its symbol appears in Fig. 13,80 with positive,

negative, and ground connections. ‘Double-click on the generator
graphic'symbol, and the Function Generator dialog box appears in
which selections can be made. For this example, the sinusoidal waves

. .form is chosen. To set the frequency, click on the unit of measurement
‘o produce a list of options. For this case, kHz was chosen and the 1 left
- as is, The Amplitude (peak value) is set as Vp = 10V and the Offset at

0'V. Note that there is no option to set the. phase angle as was possible
for the source above. Double-clicking or: the oscilloscope generates:the
Oscilloscope-XSCI dialog box in which a Timebase of 100 us/div. can
be-set again with a vertical sensitivity of 5 V/div, Select 1 on the
Simulate switch, and the waveform of Fig. 13.80 appears. Choosin g
Sing. under Trigger results in a fixed display. Set the Simulate switch
on 0 to end the simulation, Placing the cursors in the same position
shows that the waveforms for Figs. 13,79 and 13.80 are the same.
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FIG. 13.80

Us'mg the funcrwn generator to place a sinusoidal ac voltage waveform

. on the screen of the oscilloscope.

Fnr most of the Multisim analyses to, appear in this text the

AC_VOLTAGE under Place Source will be employed. However, with
such a limited introduction 10 Multisim, it seemed appropriate to intro- -
duce the use of the Function Generator, because of its close lmkage S e oy

the laboratory cxpenenc:.ﬁ

PHOBLEMS

““SECTION 13.2 Sinusoidal ac Voltage Characteristics '

and Definitions ~ +

1. Forthe smusmdal waveform-in Fig. 13 81' :
a,  What is the peak value? : ”
: b. What s the instantaneous value at 15 ms and at 20 ms?
¢. What s the peak-to-peak value of the waveform?
d. What is the period of the waveform?
e. How many cycles are shown?

v (V)

-0k

FIG. 13.81
Problem 1.

2. For the sinusoidal signal in Fig. 13.82:
a. Wha is the peak value?
b. What is the instantancous value at 1 us and at 7 ps.

: . What is the peak-to-peak value of the wa.vefqrm'?
d ‘What is the period of the wawform"
e. How many cycles are shown?

i (uA)

FIG. 13.82

i

Problem 2.

3. For the periodic square-wave waveform in Fig. 13.83:
a. What is the peak value?
b. What is thé instantaneous value at 1.5 ms and at 5.1 ms?
¢. What is the peak-10-peak value of the waveform?
.d. What is the period of the waveform?
e. How many cycles are shown?
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.

v(mV)

‘  FIG. 13.83
-Problem 3.

SECTION,13.3 Freqlency Speétrum

4.

5.

Find the period of a periodic waveform whose frequcncy is

a. 200 Hz, b. 40 MHz. -

- e 20 kHz. d. 1 Hz.
Find the frequéncy of a repeanng waveform whose
period is )
a ls. b. s s.
¢. 40 ms. d. 25 us,

- Ifa periodic waveform has a frequency of 1 kHz, how long

(in seconds) will it take to completc five cycles?

. Find the period of a sinusoidal wnvefcnn that compietes 80

cycles in 24 ms.

What is the frequency of a periodic waveform that com-
pletes 42 cycles in 657

. For the oscilloscope pattern of Fig; 13.84:

4, Determine the peak amplitude.

b. Find the period.

¢. Calgulate the frv:qucricy. P

Redraw the oscilloscope pattern if a +20 m¥V de level were
added to the input waveform.,

TR
i Y WS
EW/E

AV \%4

L] 4

—
‘-\1""""‘&.__

Vertical seasitivity = 50 mVdiv,
Horizontal sensitivity = 10 us/dijv.

FIG. 13.84
Problem 9.

SECTION.13.4 The Sinusoidal Waveform

10.

Convert the fqltwjﬁgfdegmes'_ld radians:
La. 40° b. 60° :
d. 170°

c 138°

11.

12.

13.

14.

%15,
 soidal waveform to pass through an angle of 60°,

-*16. If a sinusoidal waveform passes through an angle of 30°.in

S

Convert the following radians to degrees:

a. w3 b. 127

¢ BT d. 0.67

Find the angular velocity of a waveform with a period of
a. 1.8s, b. 0.3 ms.

=B s, d, 4x1075s,

Find the angular velocity of a waveform with a frequency of
a. 100 Hz. b. 0.25 kHz.

c. 2kHz. d. 0.004 MHz.

Find the frequency and peried of sine waves having an an-
gular velocity of

a. 754 rad/s. »

b. 12 rad/s.

-¢. 6000 rad/s.

d. 0,16 rad/s.

Given f = 60 Hz, determine how long it will take the sinu-

5 ms, determine the angular \relecu}r of the waveform.

SECTION 135 General Fnrmat for the Sinusoidal
Voltage or Curren'l

17,

" 18.

Find the amphtude and frequency of the following waves:
. 205sin 377t ‘

. 12 sin 2 1207

108 sin 10,000

. =8 sin 10,058r

Sketch 6 sin 754¢ with the ab&{:lSSﬂ

Rp e

. @& angle in degrees.

*19,

20.

2L
22,

b. angle in radians.
c. time in seconds.

Sketch —8 sin 27 BO¢ with the ahamssa

- a4, angle in degrees.

b. angle in radians.
c. time in seconds.

-If e = 300 sin 157z, how long (in seconds) does it take I!hls

waveform to complete 1/2 cycle?
Given i = (.5 sin a, determine { at @ = 72°
Given v = 20 sin a, determine v ata = 1.2m,

*23. Given v = 30 X 1077 sin ggsetermine the angles at which

*24.

v will be 6 mV.

Ifv=40Vata=30and = | ms, determine the mathe-_
matical expression for the sinusoidal voltage.

SECTION 13.6 Phase Relations

257

Sketch sin(3771 + 60°) with the absc:ssa

a. angle in degrees,

b. angle in radians, ey .
¢. time in seconds. '

Sketch the following waveforms:

a. 50sinfwr+ 0°)

b.. 5 sin(ewr + 120°)

¢ 2cos(wt + 10°) .

d. - =20 sin(wt + 10%)



2? Wnle ﬂ;e unnlym:al mﬁm for the waveforms of Fig.

1383 wmnhhphnusngk in degrees.

~

v (mV)

wt

- (b)

FIG. 13.85
Problem 27.

28. ‘Write the analytical expression for the waveform of Fig.

13.86 with the phase angle in degrees.
2 . #

FIG. 13.86
Problem 28.

* 29. Write theranalytical expression for the waveform of Fig.

13.87 with the phase angle in degrees.
’ v{mV) ;

12

: \ f=2kHz ‘ "

wl

FIG. 13.87 :
Probléem 29.

Antroductory, C.-38A
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30. Write the analytical expression for the wayeform of Fig.
13.88 with the phase angle in radians.

e

FiG. 13.88
_ Problem 30.

31. Find the phasc relationship between the fol.lowmg wave-
forms:

v = 25 sin(ewr + 80°)
i=4 sin(w? — 10°)
32. Find the phase relationship between the following wave-
~ forms: : _
v = 0.2 sinfest — 60°)
i=01sin(wr —20° -

*33, Find the phase relsllonship. between_ the following wave-
_forms: ; : ~

v= 2 cos(wt — 30°) I .
i = 5sin(wr +.60°),

#34, Find the phase relauonsh:p between the following wave-
forms:

v= =4 costui +90°)
i = —2sin(eot + 10°)

%35, The sinusoidal voliage v = 160 sin{27 1000 + 60°) is plot-
ted in Fig. 13.89. Determine |hc time 1, when the wﬂveform
crosses the aXlS : 4

FIG. 13.89 -
Problem 35,
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¥ *36. The sinusoidal current i = 20 X 1072 5in(50,000¢ — 40°) is SECTION 13.7 Awverage Value

?;‘:r‘::r;:silsihfli?;f?ewmsnc the time 1; when the wave- 39, _Find the average value of the periodic waveform in Fig. 13.92.

i .

%, b

.0 I:1' kg
220 mA

FIG. 13.90
Problem 36.

£ b
37. For :he wavefurm of Fig. 13.89, find the time when the , .
waveform has its peak value,, - FIG. 1392"4
38. For the oscilloscope d1splay in Fig. 13.91: . e Problem 39.
*‘a, Determine the period of the waveform. : s
b b. Determine the frequency of each waveform.
¢. Find the rms value of each waveform,
d. Determine the phase, shift between the two waveforms
and determine which leads and which lags.’

o

40. Find t_he average value of the periodic waveform in Fig.
13.93 over one full cycle.

( 1 T L. ) - i (mA)
™~ E I
: B I P e W N 5
7 \;L ¥
7 A el +HHIN 5 ’
/ IR 1A . 1
> 3 ki -
i \ 111 8§  t(ms)
74>
% ] > .
Vertical sensitivity = 0.5 V/div. : v
Horizontal sensitivity = 1 ms/div. 3 ) &
©FIG.13.91 : . s FIG. 13.93

Problem 33, ) : Problem 40.

41, Find the average value of the periodic waveform of Fig.
13.94 over one full cycle.

[ntrddﬁctory; C.-388



a2 Find the average value of the periodic wavefcrrn “of F:g

13.95 over one full cyciel

i(mA)

1 eyele . ‘ Y T

FIG. 13.95
* Problem 42.

43. Find the average value of the penodm function of Fig. 13.96:
a, By inspection.
b. Through calculations.
<. Compare the results of parts (a) and (b).

v(V)

1 eycle —— i

'FIG. 13.96
Problem 43.

44. Find the average value of the periodic waveform in Fig. 13.97.

. FIG. 13.97
Problem 44,

45, For the waveform in Fig. 13.98:
a. Determine the period.
b. Find the frequency.

+

PROBLEMS !ifssa

" ¢. 'Determine the average value,

d. Sketch the resulting oscilloscope display if the vertical
channel is switched from dc to ac.

1

ANs S
i HRAFRD:
WV VIRV/IEY

Vertical sensitivity = 10 mV/div,
N Horizontal sedsitivity = 0.2 ms/div,

FIG. 13.98
Problen 45.

f

*46. For the waveform in Fig. 13.99:
a. Determine the period.
b. Find the frequency.
¢, Determine the average value, o
d. Sketch the resulting oscilloscope display if the vertical
channel is switched from de to ac.

A ; J .

Vertical sensitivity = 10 mV/div.
Horizontal sensitivity = 10 us/div.

8 . FIG. 13.99
¥ Problem 46,

SECTION 13.8 Effective (rms) Values

47. Find thrms values of the following smuscldﬂl waveforms:
a. v = 120"sin(3771 + 60°) -
b i=6% 1073 sin(2m 1000r)
¢ v=8x 10 %sin(27 5000 + 30°) '

48. Write the smusmdal expressions for voltages and currents
having the following rms values at a frequency of 60 Hz |
* with zero phase shift: '
a. 48V '
b, 50 mA
¢ -2kV
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49, Find the rms yalue of the periodic waveform in Fig. 13,100

over one full cycle.

L4

50, Find the rms value of the pcrilodic waveform in Fig. 13.101
over one full-cycle. -

v (V)
1 :
Icy ;
3f cycle :
2 : b
gy YO o : P
0 =2, B & 3 t . |? g8 9 10 11 12 . s
-1t .
=2t ; . ) :
FIG. 13.100
Problem 49,
vV
10{ ) ;
! J eycle .

4
-3k
FIG. 13.101
e Problem 50,
% . "
" 51. 'What are the average and rms values of the square wave in v (V) b
Fig. 13.1027 £
N i I eyele E
8
0 y
]
s =
. ; FIG. 13.102
i £ ; - Problem 51.
#52. For each waveform in Fig. 13.103, determine the period, 8
- frequency, average value, and rms value,© . :
3 . ~ F TN i ™
; . / \\ [\ // )
- HH H + ﬁmh“!/\‘ H '.‘
NV Y
it E y, _ J
B o v o . -Vn(ticaisgl}sitimy‘= 20 mV/div. . Vertical sensitivity = 0.2 V/div. >
oy 1 Horizontal sensitivity = 10 psidiv, Horizontal sensitivity = Sl},us{'di\r_,
= (a) 3 : - ) * )
FIG. 13.103
Problem 52. -
= -



‘53 quthewxvefnmufl'lg 13.104:

a. Carefully sketch the squared waveform. Note that the

equation for the sloping line must first be deter-
mined. .

b. Using some basic area equations and the approximate ap-
proach, find-the approximate area under the squared
curve.

c.’ Determine the rmglyalue of the ori gmnl waveform.

d. Find the average value of the original waveform.

e. How does the average value of the waveform compare
to the rms value?

.-
Y -:—.-.I_.-_-___-'-_' J

el ¥ 2.3 5'6 TWEfF-9 1p 11 12
5., (ERSRERER AR rusm———— .I__ i

1 cycle —»

- FIG.13.104 gk
: . Problem 53.

SECTION 13.9 ac Meters and Instruments

54, Determine the reading of the meter for each siluation in
Fig. 13.105. :

fron-vane movement

l [, = 4mA
rms scale
o | (half-wave
rectifier)
o
o. -
Volimeter ; '
(a)
y ac
. K e
v = 1680377+ 209)
R — - .
. )
FIG. 13.105
Problem 54.
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’ Alternating waveform A waveform lhal oscillates abovc and

below a defined reference level. :

Angular velocity The velocity with which a radius vector pro-
Jecting a sinusoidal function rotates about its center.

Average value Thelevel of a woveform defined by the condition
that the area enclosed by the curve above this level is exactly
~ equal to the area enclosed b)r the curve below this level,

Cahbralmn factor A multiplying factor used to convert from
one meter indication to another.

Clamp Meter®

-ventional voltmeter or ohmmeter.

"Cycle A portion of a waveform contained in oné period of time. :

Effective value The equivalent d¢ value of any alternating volt-
age of CUITEnt. k
Electrodynamometer meters Instruments that can measure
both ac and de quantities without a change in internal circuitry.
Frequency (/) The number of cyeles of a pcnudic waveform
that ocgur in 18
Frequency counter An in_stmment that will provide a digital dis-
play of the frequency or period of a periodic tifhe-varying signal.
‘Instantaneous value The magnitude of a waveform at any in-
stant of time, denoted by lowércase letters.
Lagging waveform A wavefarm that crosses the time axis ata
point in time latér than another waveform of the same frequency.

Léading waveform A waveform that crosses the ‘lime axis at a -

point in time ahead of another waveform of the same fre-
quency.

Oscilloscope Ani instrument that will display, through thé use of a

cathode ray tube, the characteristics of a time-varying signal.

Peak amplitude The mummum valug of a wavelorm as meas-
ured from its average, or mean, value, denoted by uppercase
letters.

- Peak-to-peak value The mngnimdc of the total swing of a signal

from positive to negative peaks. The sum of the absolute values
of the positive and negative peak values.

Peak \alue The maximum value of a waveform, d:nol’ed by
uppcrcuse letters,

Period (T) The time mtervﬂ nec;ssary for one cyclc of a peri-
odic waveform. g

Periodic waveform A waveform that continually"repeats ltsc]f
after a defined time interval,

Phase relationship An indication of which of two waveforms
leads or lags the other, and by -how many degrees or radians.

Radian (rad) A anit of measure used to define a particular seg-
ment of a circle: One radian is approximately equal to 57.3%,
27 rad are equal to 360°,

Root-mean-sguare (rms) value The rool-mean-square or effec-

tive value of a waveform,

blnusoldnl ac waveform An alternating waveform of unique
characteristics that oscillates with equal 1mpl|tudc above and
below a given axis. 3

VOM A multimeter with the capability to measure resistance
and both ac and de levels of current and voltage.

Waveform The path traced by a quamntity, plotied as a function of

some variable such as posnmn time, degrees, temperature,

and so on.

A clamp-type instrument that will permit nonin- -
vasive current measurements and that can be used as & con-
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- Qb' EC. TIVES + Become familiar with the response of a resistor,
: . " an inductor, and a capacitor to the application of a
' sinusoidal voltage or current.

. Learn how to apply the phasor format to add and
subtract sinusoidal waveforms.

« Understand how to caf;ufate the real power to
resistive elements and the reactive power to
inductive and capacitive elements. .

. Become aware of the differences between the
frequency response of ideal and practical elements.,

« Become proficient in the use of a calculator to
work with complex numbers. g

14.1 INTRODUCTION

The response of the basic R, L, and C elements to a sinusoidal voltage and current are exam-
ined in this chapter, with speeial note of how frequency affects the “opposing” characteristic
of each element. Phasor notation is then introduced to establish a method of analysis that per-
mits a direct correspondence with a number of the methods, theorems, and concepts intro-
duced in the dc chapters. - .

14.2 DERIVATIVE '

To understand the response of the basic R, -i,, and C élements to a sinusoidal signal, you need
to examine the concept of the derivative in some detail. You do not have to become proficient
in the mathematical technique but simply understand the impact of a relationship defined by a
derivative. K ' ' :

Recall from Section 10.10 that the derivative dx/dt is defined as the rate of change of x
with respect to time. If x fails to change at a particular instant, dx = 0, and the derivative is
zero. For the sinusoidal waveform, dx/dt is zero only at the positive and negative peaks (wf =
/2 and iw in Fig. 14.1),since x fails to change at these instants of time. The derivative dx/dt
is actually the slope of the graph at any instant of time. I :

dx
x .
i $= max
I
| !
7
/ # il ‘2
A0 ’ X 1 L wi
o 2 3 izt
Sine wave Jl '
(1A% =0
P
FIG. 14.1 P

- Defining those points in a sinusoidal waveform that have maximum and minimum derivatives.
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i
- |
I -~ Higher peak s 2]
: i | o
A ',' dt | I,/ Lbwer peak
4 i
| LETA

A.

A close examination of the sinusaidal waveform will alse indicate
that the greaiest change in x occurs at the instants wr = 0, 7, and 27, The
derivative is therefore a maximum at these points. At 0 and 2, x
increases at its greatest rate, and the derivative is given a positive sign
since x increases with time. At 7r, dx/dr decreases at the same rate as it
increases at 0-and 27, but the derivative is given a negative sign since x
decreases with time. Since the rate of change at 0, 7, and 27 is the same,
the magnitude of the derivative at these points is the same also, For vari-
ous values of wt'between these maxima and minima, the derivative will

’

" exist and have values from the minimum to the maximum ml:luswe A
plot of the derivative in Fig. 14.2 shows that

the derivative ofa sine wave is a cosine wave.

dx dr_ p )
dt i TS ! :
dt

wi

Cosine wave

FIG 142 Sy
_ Derivative of the sine wave of Fig. 14.1.

The peak value of the cosine wave is directly related to the frequency

_ of the original waveform. The higher the frequency, the steeper is the

slope at the horizontal axis and the greater is the value of dx/d!, as shown
in Fig, 14.3 for two different frequencies. -

Note in Fig. 14.3 that even though both waveforms (x; and x2)
have the same peak value, the sinusoidal function with the higher -

Y e fiza

| Steeperslope o
ay |

I 5]

Smaller negative
* - peak

3

Negative peak

FIG. 14.3
Effect of frequency on the pea.{ value of the a'erwauve
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" tracfoency produces the larger peak value for the detivative. In addi-

tion, note that = ¥ - _ s 3
the derivative ofa sine wave has the same period and frequency as :
the original sinusoidal waveform. .

" For the sinusoidal voltage

e(t) = E,, sin(wl £B]

the derivative can be found directly by differentiation (calculus) to pro-

diice the following: : ; 4

d Ry - . -

E_e(r} ='wE,, cos{wt £ 8)
‘= 2mf E,, cos(wt % 8)

(14.1)

The mechanics of the differentiation process are not discussed or -
 investigated here, nor are they required to'continue with the-text.
Note, however, that the peak value of the derivative, 27fEy, is a finc-

tion of the frequency of e(), and the derivative of a sine wave is a
cosine wave. r

14.3 RESPONSE OF BASIC R, L, AND C.
ELEMENTS TO A SINUSOIDAL VOLTAGE
'OR CURRENT - .

Now that we are familiar with the characteristics of the derivative of a si-
. nusoidal function, we can investigate the response of the basic elements
R?L, awd C to a sinusoidal voltage or current. . 3

- Resistor

" For power-line frequencies and frequencies up to a few hundred kilo- -
hertz, resistance is, for all practical purposes, unaffected by the fre-
quency of the applied sinusoidal voltage or current. For this frequency
region, the resistor R in Fig. 14.4 can be treated as a constant, and Ohm's

law can be applied as follows. For v = Vp, sin wt, |

' Vysinwt V, : 3
jal o TmBNE M Gn b = [ sin ot FIG. 14.4
R R R ; Determining the sinusoidal response for a resistive
' element.
. e .
where : Ty (14.2)
i ~ R o
v ¥ . k. ~ i . Vg
In addition, for a given i, voleo ;
) ; i : : 3 . L R
v =iR = (Iysinw)R = IR sinwt = Vi sin wl In
where V= IR (143) 0 O o
P e ’ ¢
 Aplotof vand i.tn Fig. 14.5 reveals that - _
for a purely resistive element, the voltage acr.ss and the current FIG. 14.5
through the element are in phase, with their peak values related by The voltage and current of a resistive element

Ohm’s law. ; are in phase.
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: FIG. 14.6 2 a2
Defining the opposition of an element to the Sflow
of charge through the element,

FIG. 14.7°
Defining the parameters that determine the apposi-
 tion of an inductive element to the flow of charge.

———— iy = [ sin wr

~ FIG.148
Investigating the sinusoidal response
_ of an inductive element,

L: vy leads iy by §0°|,

| )
= . /!L
i , ;.
4 N e ey
Tt AN NS
; A "
- FIG. 14.9 /.

For a pure indiicior, the voliage acrods the coil leads
the current through the coil by 90°,

4

Inductor

For the series configuration in Fig. 14.6, the voltage Vgjemen, Of the

- boxed-in element opposes the source e and thereby reduces the magni-

tude of the current i, The magnitude of the voltage across the element is
determined by the opposition of the element to the flow of charge, or
current i. For a resistive element, we have found that the opposition isits,
resistance and that Vejemen and i are determined bY Velemen: = iR.

We found in Chapter 11 that the voltage across am inductor is directly re-
lated to thie rate of change of current through the coil, Consequently, the
higher the frequency, the greater is the rate of change of current through the
coil, and the greater is the magnitude of the voltage. In‘addition, we found
in the same chapter that the inductance of a coil determines the rate of
change of the flux linking a coil for a particular change in current through
the coil. The higher the inductance, the greater is the rate of change of the )
flux linkages, and the greater is the resulting voltage across the coil.

- The inductive voltage, therefore, is directly related to the frequency
(or, mote specifically, the angular velocity of the sinusoidal ac current
through the coil) and the inductance of the coil. For increasing values of
Jand L in Fig. 14.7, the magnitude of v, increases as described above,

Using the similarities between Figs. 14.6 and 14.7, we find that in-.
creasing levels of vy, are directly related to increasing levels of opposi- °
tion in Fig. 14.6. Since vy increases with both-w (= 27f) and L, the
opposition of an inductive element is as defined in Fig. 14.7. - :

We will now verify some of the preceding conclusions using a more
mathematical approach and then define a few important quantities to be

used in the sections and chapters to follow. =
For the inductor in Fig. 14.8, we recall from Chapter 11 that
i e o ‘
i : L dig :
v, =L—=
b dr

and, applying differentiation, *

dip d , i 5
- };{l,, sin wt) = wl,, cos wt
&ip. -
Therefore, vp=L . L{wl, cos wt) = wLl,, cos wt
or v = Vi sin(wt + 90°)
where ' Vin = wll,

Note that the peak value of v is directly related to w(= 27f) and L as
predicted in the discussion above.
A plot of ug and i, in Fig, 14.9 reveals that

Jor an inductor, vy leads iy by 90° or iy lags v, by 90°. _
1If a phase angle is included in the sinusoidal expression for iz, such as
) i, = I, sin (wr t-ﬂ} f .
then’ vi = wll,, siln(wt =6 + 90°)
The opposition established by an inductor in a sinusoidal ac network
can now be found by applying Eq. (4.1):

cause
Effect = ——— |
.. -Opposition
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which, for our purpases, can be written

Opposition = il )
PPO effect %
Substituting values, we have
Vi LI g ;
Opposition = == = VIm e wl ;
3 Im Im

revealing that the opposition established by an inductor in an ac sinu-
soidal network is directly related to the product of the angular velocity
(w = 2mf ) and the inductance, verifying our carlier conclusions. .
The quantity wL, called the reactance (from the word reaction) of an
inductor, is symbolically represented by X, and is measured in ohms;

that is, ;
[Fmel] @mso) .04 - . ;

In an Ohm's law format, its magnitude can be determined from

=

K

XL=

(chms, ) . (14.5) 5

_ Inductive reactance is the opposition to the flow of current, which

results in the continual interchange of energy betwéen the source and the

magnetic field of the inductor. In -other words, inductive reactance, B .
unlike resistance (which dissipates energy in the form of heat), does not ) = p
dissipate electrical energy (ignoring the effects of the internal resistance it )

of the inductor.) ;

L 4 ; .
Capacitor AT

Let us now Teturn to the series configuration in Fig. 14.6 and insert the
capacitor as the element ‘of interest. For the capacitor, however, we will

. determine f for a particular voltage across the element. When this ap-
proach reaches its conclusion, we will know the relationship between the
voltage and current and can determine the opposing voltage (Veiement) for
any sinusoidal currenti. :

Our investigation of the inductor revealed that the inductive voltage
across a coil opposes the instantaneous change in current through the coil.
For capacitive networks, the voltage across the capacitor is limited by the
rate at which charge can be deposited on, or released by, the plates of the

capacitor during the charging and discharging phases, respectively. In
other words, an instantaneous change in voltage across a capacitor is op-
posed by the fact that there is an-element of time required to deposit charge:
on (or release charge from) the plates of a capacitor, and V = Q/C.
_ Since capacitance is a measure of the rate at which a capacitor will
store charge on its plates, m " : L

for a particular change in voltage across the capacitor, the greater the -
value of capacitance, the greater is the resulting capacitive current,

In addition, the fundamental equation relating the oltage across a ca-
pacitor to the current of a capacitor [i = C(dv/dr); ndicates that

for a particular capacitance, the greater the rate of change of voltage
_across the capacitor, the greater is the capacitive current. . . ¢
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. FIG. 14.11
Investigating the sinusoidal response of a capacitive
element,

1
C: igleads v, by 90°

%

; L Ve
l_- . r.o -u
. ]
% 90

: FIG. 1412 2
The current of a purely capagitive element leads
the veltage across the element by 90°.

Certainly, an increase in frequency corresponds to anincrease in the rate
of change of voltage across the capacitor and to an increase in the cur-
rent of the capacitor,

- The current of a capacitor is therefore directly related to the fre-
quency (or, again more specifically, the angular velocity) and the capac-
itance of the capacitor. An increase in.either quantity results in an
increase in the current of the capacitor. For the basic configuration in
Fig. 14.10, however, we are interested in determining the opposition of

- the capacitor as related to the resistance of a resistor and wl. for the in-

ductor. Since an increase in current corresponds to a decrease in opposi-
tion, and i¢ is préportional to w and C, the opposition of a capacitor is

" inversely related to w (= 2f) and C.

. ; - FIG:14.10 P
Defining the parameters that determine the opposition of a capacitive
’ element Yo the flow of charge.

‘We will now verify, as we did for the inductor, some of the above con- .
clusions using a more mathematical approach. :, i
For the-capacitor of Fig, 14.11, we recall from Chapter 11 that

. duc ;
eTE R

and, applyi;ng di ffenentiatit;n, we obtain .

di
% = %fl«jﬂ sin m:r} = wV,, cos wt
4
Thereforq,
" d . L 2
iec = C—}‘E = C(wV, cos wt) = wCV,, cos wr

or . : ic = I,, sin(wt + 90°)
where = . 1 = aCV,

- Note that the peak value of i is directly related to (= 27f) and C,
as predicted in the discussion above, : .
- Aplot of vcand ic in Fig. 14.12 reveals that

Jor a capacitor, i¢ leads vp by 90°, or v lags ic by 90°."
Ifa pha';e angle is included in the sinusoidal exp;'i'cssion for v, such as
'_ e = V,, sin(er = 6) ' '
then. e = wCVy sin(wr % § + 90°)

*
g, | a

“*A mremonic phrass sometimes used.o remember-the phase relationship between the
voltage and current of a coil and capacitor is “EL/ the [CE man." Note that the [ (inductor)
hI_ilil!ENﬁ!l‘e_l'he F(e leads i by 90°), and the C (capacitor) has the { before the £ (i leads ¢

by 907,

T
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‘

- Applying
o g g v o g : : : " . ;
: Opposition =~ _
and substituting values, We obtain ' s
TR Vi o Vin 5 1 ’
Opposition = ot el e g % - ¥

~

- which agrees with the results obtained above, i
~ The quantity 1 JwC, called the reactance of a capacitor, is symboli-
‘cally represerited by X¢ and is measured in ohms; that is, :

x¢'=;l5 (ohms, Q) (a6

In an Ohm's law format, its magnitude can be determined from : \ .

o Y & =l -y
, =—=(. (dhms, {}) (14.7)
' 2 _ . A

Capacitive reactance is the opposition to the flow of charge, which re-
sults in the continual inferchange of energy between the source and the: .
electric field of the capacitor. Like the inductor, the capacitor does no? dis- ' ' 2
sipate energy in any form (ignoring the effects of the leakage resistance). :

In the circuits just considered, the current was given in the inductive cir- ' e %
cuit and the voltage in the capacitive circuit. This was done to avoid the use T
of integration in finding the unknown quantities. In the inductive circuit,

e diy,
v =_ L ‘E;
: N 3 '
but ;- i =-EJu;_dr (14.8)
In the capacitive circuit,
g dve .
ale ) . .
: 2 o1 i : t
but ve = |icdt N (14.9) -

1 ot h '
Soon, we shall consider a method of analyzing ac circuits that will per-
mit us'to solve for an unknown quantity with sinusoidal input without
having to use direct integration or differentiatiop. P
It is possible.to determine whether a network with one or more ele-
ments is predominantly capacitive or inductive by noting the phase rela-

© _tionship between the input voltage and current.

If the source current leads the applied voliage, the ne!:work.is
predominantly capacitive, and if the applied voltage leads the source
current, it is predominantly inductive. ;

Since we now have an equation for the reactance of an inductor or
capacitor, we do not need to use derivatives or integration in the examples
& .
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Vi = 100V} vp .
i ;
) In phase
i, = 10AY:
o i{fv'h [
FIG. 14.13
Example 14.l{a).

1
ir o

FIG. 14.14
Example 14.1(b),

~Solution: Eq. (14.3): Vi = IR =

V4

* 1o be considered. Simply applying Ohm's law, I,, = E,/X, (or X¢), and

keeping in mind the phase relationship between the voltage and current
for each element will be sufficient to complete the examples.

EXAMPLE 14.1 The voltage across a resistor is indicated. Find the
sinusoidal expression for the current if the resistor is 10 ). Sketch the
curves for v and /. .

a. v = 100 sin 377t
b. v = 25sin(377t + 60°)

Solutions.
Vin 100V
a Eq.(14.2): [y = 2 = o8 ™ 10A
(v and i are in phase), resulting in
; i = 10 sin 377
The curves are sketched in Fig,. 14. 13.
. Ve - 25
b Bq. (142 fy = = o0 =254

(v and i are in phase), resulting in _
i = 2.5sin(377t+ 60°)
The curves are sketched in Fig. 14.14,

EXAMPLE 14.2 The current through a 5 () resistor is given. Find the si-

nusoidal expression for the voltage across the resistor for i = 40 sin(377; +

30°), e ; .

(40A)(5 Q) = 200V

(v and i are in phase), resulting in ' 2
v = 200 sin (377 + 30°)

EXAMPLE 14.3 The current through a 0.1 H coil is provided. Find the
sinusoidal expression for the voltage across the coil. Sketch the v and
i curves. - | i

a [=10sin377t

b. i =7sin(377r - 70°) -
Solutions: 4

a. Eq.(14.4): X; = wL = (377 rad/s)(0.1 H) = 37.7 Q

Eq. (14.5). V,, = 1,X; = (10 A)37.7 Q) =377V

- and we know that for a coil v leads by 90°. Therefore,

v = 377 sin(377t + 90°)

Ly
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i
_ The curves are sketched in Fig. 14.15.

; v | eV = 3TIV
v leads | by 90° Pl N = 10A
¢ o0 | - : iy
TG
FIG. 1415

. Example 14.3(a).

‘b, X, remains at 37.7 Q1.

v, = LX, = (TA)(37.7Q) =2639V
and we know that for a coil v leads i by 90°. Therefore,
v = 2639 sin(377¢ = 70°+ 90°)

an‘d . \ v leads i by 90°.
v = 263.9sin(377¢ + 20°) . :
1 FIG. 14.16
The curves are sketched in Fig, 14.16.. . = Example 14.3(b). -

. EXAMPLE 14.4 The voltage across a 0.5 H coil is p.rovide.d below.
What is the sinusoidal expression for the currént? ¥ -

v = 100 sin 20¢

P o=

Solution:
X; = oL =(20rad/s)(0.5H) = 10
"V _ 100V _ ) -
S T T HES ' 1
and we know the i lags v by 90°. Therefore, i
i = 10 sin(20¢ — 90°)

EXAMPLE 14.5 The voltage across a 1 uF capacitor is provided be-
low, What is the sinusoidal expression for the current? Sketch the v and

i curves.
a
. v = 30 sin 400t

Solution: '

' 1 10 0
Eq. (14.6): Xe =— = = = 2500 Q)

et "¢ wC (400 rad/s)(1 X 1076F) 400

V. 30V ‘

(14N 1, = = =0.0120A = 12 mA
Eq. (14.7): I, X~ 25000 0.0120 12

and we know that for a capacitor { leads v by 90°. Therefore,
i =12 X 1073 sin(400¢ + 907)

-

w
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The curves are sketched in Fig. 14.17.

Ve
V, =30V

g-mﬁ;r_ﬁ'

-2 ——10 %

™~ i leads v by 90°.

i ' FIG. 14.17
Example 14.5,

. EXAMPLE 14.6 The current through a 100 uF capacitor is given, Find -
' the sinusoidal expression for the voltage across the capacitor.

i =-40 sin(500¢ + 60°)
) _ Solution: S |
; Kot —m o _ 10°0 Iozn_mﬂ.
®C (500 fad/s)(100 X 10"5F) §x10° 5
Vi = IyXe = (40 A)(20 Q) =800V
_ and we know that for-a capacitor, v lags i : by 90° Therefore,
o= b . : v = 800 sm(;OOI + 60° = 90°)

and v = 800 sin(500¢ — 30°) ~
e ' “EXAMPLE 14.7 For the following pairs of voltages and currents, de- .
T 2 ok N termine whether the element involved is a capacitor, an inductor, or a re-
o 2 sistor. Determine the value of C, L, or R if suﬂ'lcmnt data are provided
- ; (F!g 14.18):
FIG. 14.18 . a v =100 sin(w! + 40°)

Example 14.7. e : i =20 sin(wr + 40°)
e A b. v ='1000sin(377 + 10°)
i = 38in(377 — 80°)
0 % c. v=500sin(157¢ + 30°)
i =1 sin(157¢ + 120°)
d. v =50 cos(wr + 20°)
i =5 sin(wr + 110°)

. Solutions:
a. Since vand i are in phase, the element is a resistor; and
p F
_Va_ 100V o
i 20A
2 ) b. Since v leads i by 90°, the element is an inductor; and
i ‘ V,, 1000V
- ® AL PRELLARIPTY)
Tl - . L I Y :

3 | = ) so that X = wL = 200 () or



-, ; ” . (0 \
i

L2000 0 2000 :
L_t'w _-377rad!s-0'53u

&7 Smce i tead.s v by 90“ the element i is a capacitor, and
Ty Va 500 v
Eo T4

5000

solhat)fc.-v- -J-“" 5mnm il

1 1

C= — = = 12.74F .

AR @500k | (157 rad/s)(500 Q)

d. v =50 cos(wr + 20°) = 50 sin(ar + 20° + 90°)
= 50 sin{cot + 1107) :

o

" Since v and i are in phase, the eiemcnl isa res:'smr. and

i

Ve SOV - skl i
W T e
14.4 FREQUENCY RESPONSE [

OF THE BASIC ELEMENTS . ;

*Thus far, each description has been for a set freqnency. resulting in a

fixed level of impedance for each of the basic elements. We must now in-
vestigate how a chapge in frequeney affects the impedance level of the
basic elements. It is an-important consideration because most signals
other than those prowded by a power plant contain a Variety of fre-
quency-levels, The last sec.non made it 'quite clear that the reactance of
an inductor or a capacitor is sensitive to the applied frequency. However,
 the question is, How will these reactance levels change if.we stead:ly in-
crease the frequency from a very low level to a much higher level? =
Although we would like to think of every element as ideal, it is im-
portant to realize that every commercial element available today will not

respond in-an ideal fashion for the full range of possible frequencies. -

That is, each element is such that for a particular range of frequencies, it
performs in ar essentially ideal manner. However, there is always a
. range of frequencies in which the performance varies frorh the ideal.
Fortunately, the designer is aware of these limitations and wpII lake them
into account in the design.

The discussion begins with a look at the tesponsc of the ideal
elements—a response that will be assumed for the remaining chapters of
this 'text and one that can be assumed for any initial investigation of a
. network. This discussion is followed by a look at the factors that cause
an element to deviate from an ideal rnqpnnsr: as frequency lcvcls become
too low or high.

Ideal Response

‘— - - . 3 .
Resistor R For an ideal resistor, you can assume that frequency will

have absolutely no effect on the impedance level, as shown by the’

response in Fig. 14.19. Note that at 5kHz or 20 kHz, the resistance of the
resistor remains at 22 (}; there is.no change whatsoever. For the rest of
the analyses in this text, the resistance level remains as the namcplate
value, no matter what frequercy is ﬂpphed ha

Intraductory € - 304 .

20 :

L 1

T L T

FIG. 14.19
R versus f for the range of interest.

.
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L

Inductor L  For the ideal inductor, the equation for the reactance ¢an
be written as follows to isolate the frequency term in the equation. The

. result is a constant times the frequency variable that changes as we move
down the horizontal axis of a plot:

X, =wl=2nflL = (2wL)f = kf  withk = 27L

The resulting cquauen can be compared directly with the equation fora '
straight line: -
gy £, Cy=wmx+b=kf+0=kf

/ _ , .
; where b = 0 and the slope is k or 2arL. X is the y variable, and fis the x
variable, as shown in Fig. 14, 20. Since the inductance determines the

it L = 100 mH g slope of the curve, the higher the inductance, the steeper is the straight-
5 . ~ line plot, as shown in Fig. 14.20 for two levels of inductance. 3

[ lncreasing L > In particular, note that at f = 0 Hz, the reactance of each plot is zero
b ' i “ohms, as determined by substituting f = 0 Hz into the bastc equauon for
- : T ; Lhc reactance of an inductor:

N B A Y R gt Xy = 2mfL = 2n(0HI)L = 00
X, =00af=0Hz A

Since a reactance of zero ohins corresponds with the characteristics of a
FIG. 14.20 y 5 short circuit, we can conclude that 4

X vus“fmquerw at a frequency of 0 Hz, an inductor takes on the characteristics of a

short circuit, as shown in Fig. 14.21. _ “

L ¢ f=0Hz - f=very high frequencies

oo W ——

FIG. 14.21
Effect of low rmd high frequencies on the circuit model of an inducior.

As shown in Fig. 14.21, as the {rcquency mcreases Lhe reactance in- -
creases, until it reaches an extremely high level at very high frequencies.
The result is that

_ at very high frequencies, the characteristics.of an inductor approach
those of an apen circuit, as shown in Fig. 14.21. =

i

N & it The inductor, therefore, is capable of handling impedance iewlﬁ that
cover the entire range, from zero ohms to infinite ohms, changing at a
steady rate determined by the inductance level. The higher the induc-
tance, the faster it approaches the open-circuit equivalent.

Capacitor C For the capacitor, the qu‘mion for the reactance
* R o l =
# ’ i 2afC

can be written as’

L)

F - m . l
X i Xrfe=—= t
g = _ | (o pfeopmk. Q@ .constzmj

which matches the basic format for a hyberbola:
yx=k

Inbradiiabame ™ 20D-
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whére Xc is the Y vanablr. f the x variable, and k a constant equal to
1/2wC). .

H’ybe'rbo]as Imvc ﬂwshnpe appearing in Fig. 14 22 for two ]e.vels of

- capacitancé. Note that the higher the capacitance, the closer the curve

approaches the vertical and horizontal axes at low and high frequencies.

At or near 0 Hz, the reactance of any capacitor is extremely high, as ~

determined by the basic equation for capacitance:
| Ko o = b gt
€7 2mfC  2m(0Hz)C
The result is that ;

at or near 0 Hz, the chamci’erisﬁcs of a capacdur appmadl those of
an open circuit, as shown in Fig 14.23.

f=0Hz * | f=very high frequencies

TR . ey s o Mo
FIG. 14.23

Effect of low and high frequencies on the circuit model of a capacitor.

As the fmqucm:y increases, the reactance approaches a value of zero
. ohms. The result is that !

at very high frequencies, a capacitor takes on the characteristics ofa
short circuit, as shown in Fig. 14.23. - ¢

Itis ih!porihnl to note in Fig. 14.22 that the reactance drops very rap-
* idly as the frequency increases. It is not a gradual drop as encountered
for the rise in inductive reactance. In addition, the reactance sits at a
+ _ fairly low level for a broad range of frequencies. In general, therefore,
recognize that for ca.pacmvc elements, the change in reactance level can
be dramatic with a relatively small change in frequency lcvcl

Finally, recogmze the following:

As frequency increases, the reactance of an mdumvs efemenl
increases, while that of a capacitor decreases, with one approaching
an open-circuit equivalent as the other approaches a short-circuit
equivalent.

¢

" Practical Response

Resistor R In the manufacturing process, every resistive element in-

* herits some stray capacitance levels and lead inductances. For most ap-
plications, the levels are so low that their effects can be ignored.
However, as the frequency extends beyond a few megahertz, it may be
necessary to be aware of their effects. For instance, a number of carbon
gomposition resistors have the frequency response appearing in
Fig. 14.24. The 100 () resistor is essentially stable up to about 300 MHz,

" whereas the 100 k{} resistor starts to'drop off at about 15 MHz. In gen-
eral, therefore, this type of carbon composition resistor has the ideal
characteristics of Fig, 14.19 for frequencies up to about 15 MHz, For
frequencies of 100 Hz, 1 kHz, 150 kHz, and so on, the resistor can be
considered ideal.

l,-.f’c (k)

C = 001 uF

Increasing C
C = 0.03 uF

510 15 20 faHy)

FIG. 14.22
X versus frequency.
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vﬁﬁﬁ_‘-k :

_ "FIG. 1425 © :
Practical egtuvalent for an inductor.,

AR

1 FEd 1 | | | l
B __JE__I_ ! l S EALN
w4l : 11 | LA . 100 02
5 . N o N N
s s . B 2k0
- Ideal response N \ N
B0 1 N
= R N ' N ;
@of 70 : — ‘L \7 T 10k
nameplate 60 H I | | h i 1
value) ! ! ] | } * |
i & CEC (5 | T 8 -
it H = | L
40 |—- 4 :_ LS : \‘ I L= 100 k) ‘“
o | A
30 T it pa
! |
20 ; !
| MHz 10 MHZ. 100 MHz " 1000 MHz
T —

. f(log scale)

'FIG. 14.24 .
Typical resistance-versus- frequmcy curves for carbon
composttion resistors.

The hotizontil scale of Fig. 14.24 is a log scale that starts at 1 MHz
rather than zero as applied to the vertical scale. Logarithms are discussgd
in detail in Chapter 21, which describes why the scale cannot start at
zero and the fact that the major intervals are separated by powers of 10.
For now, simply note that log scales permit the display of a range of fre-
quéncies not possible with a linear scdle such as was used for the vertical _
scale of Fig. 14.24. Imagine trying o draw a lineab scale from 1 MHz to
1000 MHz using a lingar scale. It would be an impossible task unless the
horizontal lenglh of the plot was enormous. As ifdicated above, a great
deal more will be sa:d about log scales in Chapter 21. !

Inductor L™ In reality, _induclance can be affected by frequency, tem-
perature, and current. A ffue equivalent for an inductor appears in Fig.
14.25. The series resistance R, repfesents the copper losses (resistance of

. the many turns of thin coppér wire); the eddy current losses (losses due

to small circular currents in the core when an ac voltage is applied); and

‘the hysteresis losses (losses due to core losses created, by the rapidly re-

versing field in the core). The capacitance Cp is the stray capacnance
that exists between the windings of the mducsor

For most inducters, the construction is usually such that the larger the
mductance the lower is the freque:m.y at which the parasitic elements
become important. That is. fordnductors in the millihenry range (which
is very typical), frequencies approaching 100 kHz can have an effect on
the ideal characteristics of the element. For inductors in the microhenry

range, a frcqucncy of 1 MHz may introduce negative effects. This is not

to suggm‘.t that the inductors lose their effect at these frequenmes but
rather that they can no longer be cons!dered 1d'ea1 (purely inductive
elements).

Fig. 14.26 is a plot of the magmtude ef the impedance Z, of Fig.

* 14.25 versus frequency, Note that up to about 2 MHz, the impedance in-
- creases almost linearly with frequency, clearly s,uggcsung that the 100 xH

inductor is essenually ideal. However, above 2 MHz, all the factors con-
wributing to R; start to increase, while the reactance due to the capacitive
element C, is more pronounced. The dropping level of capacitive reac-

- tance begms tg have a shortmg effect Across thc wn],dmgs of the
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A : FIG. 14.26
- 2y versus frequency for ihe practical inductor equivalent of Fig. 14.25.

oo i . A i -
’ x -

inductor and reduces the ew:rall ‘inductive effect. Evemua]]y. if the fre-
quency continues to increase, the capamtive effects overcome Ehc mduc-
tive effects, and the element actually begins to behave'in a capacitive ) "
fashion. Note the similaritiés of this region with the curves in Fig. 14.22. ¢ s e
Also, note that decreasmg levels of inductance (available with fewer - ' !
- > turns and therefore lower levels of C) de not demonstrate the degrading

effect until higher frequencies are applied. ) g

In scnerai therefore, the frequency of-application for a cml becomes - SE A : Tl
important at increasing frequencies. Inductors lose their ideal character-, - : '

‘istics and, in fact, begin to act as capacmve elemems wuth increasing e TR e P g el =i T
losses at very high frequenciés. . Lo A O R L
Cap!lcitor C The capacitor, like the inductor, is not ideal for the full . = . S "3
frequency rangg. In fact, a transition point exists where the chdracteris- et ; I ol
tics of a capacitor actually take on those of an inductor. The equivalent ' E e

model for an inductor appearing in Fig. 14.27(a) is an expanded version
* of that appearing in Fig. 10.21. An inductor L, was added to reflect the
. inductance present due ta the capacitor leads and any inductance intro-
« ‘duced by the design of the capacitor. The inductance of the leads is typi-
- cally about 0.05 wH per centimeter, which is about 0.2 uH for a.
capacitor with 2 cm leads at each end—a level of inductance that can be

important at very high frequencies. s % .
L 1 ' . - 2 -1 ‘s P
. Z) 3
: ® .20 { A "
i
R, =
* #
r ! Inductive characteristics
b 5 duetod,
7 -
c < :: RP
<R 9 i ;
k = ; ; 20 f(MHz-
rL » K ' log scale)
(a) By
FIG. 14. 2? 3 _ S

= \ Practical equivalent for a capacnor {aJ network; (b) response.
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* The resistance Ry reflects the energy lost due to molecular friction
within the dielectric as the atoms continually realign themselves in the
dielectric due to the applied alternating ac vollage Of interest, how-
ever, the relative permittivity decreases with increasing frequencies but
eventually undergoes a complete turnaround and begins to increase at
very. high frequencie$. Notice the capacitor included in series with Ry
to reflect the fact that this loss is not present under dc conditions. The

" capacitor assumes its open-circuit state for dc applications.

The resistance R, as introduced earlier, is defined by the resistivity of
the- dielectric (typlcally 10'? ) or greater) and the case resistance and

_ will determine the Jevel of leakage current if the capacitor is left to dis-

charge. Depending onrthe capacitor, the discﬁa;gc time can extend.from
a few seconds for some eléctrolytics to hours (paper) or days (poly-
styrene), revealing that electrolytics typtcally have much lowcr levels of
R, than most other capacitors. .

The effect of all the elements on the actual’ response ofal. 01 p,F met:

- allized film capacitor with 2 cm leads is provided in Fig. 14.27(b), where

T ol e

the response is almést ideal for the low and mid-frequency range but
then at about 3.7 MHz begins to show an inductive response due to L.
In general, lhcrefore, the frequency of appl:canon is important
for capacitive- e]emenls because when the frequency increases to a cer-
tain level, the elemcnt takes on inductive characteristics. Also, the fre-
quency of application defines the type of capacitor (or inductor) that is
applied: Electrolytics are limited to frequencies to perhaps 10 kHz, "%
while ceramic or mica can handle frequeneies higher than 10 MHz.
The expected temperature range of operation can have an impor-
tant impact on the type of capacitor chosen for a particular appl_lca-
tion. Electrolytics, tantalum, and some high-k eeramic capacitors are -

-very sensitive to colder temperatures. In fact, most electrolytics lose

20% of their room-temperature capacitance at 0°C (freezing). Higher
temperatures (up to 100°C or 212°F) seem Lo have less impact in gen-
eral than colder temperatures, but high-k ceramics can lose up to 30%
of their capacitance level at 100°C compared to room temperature.
With experience, you will learn the type of capacitor to use for each
application and only be concerned when you encounter very high fre-
quencies, extreme temperatures, or very high currents or voltages.

"

Y

ESR The term equivalent series resistance (ESR) was introduced in
Chapter 10, where it was noted that the topic would surface again after
the concept of frequency response -was introduced. In the simplest of
terms, the ESR as appearing in the simplistic model of Fig. 14.28(a) is
the actual dissipative factor one can expect when using a capacitor at
various frequencies. For dc conditions it is essentially the dc resistance
of the capacitor appearing as R, in Fig. 14.27(a). However, for any ac ap-
 plication the level of dissipation will be a function of the levels of R, and
R, and the frequency applied. .

Although space does not permit a detailed derivation here, -the ESR
fora capac:tor is defined by m.-. follnwtng equation:

1 I Bl
. 2C1R mclﬂﬂ
Note that ttm first term is simply the dc resistance and is not & function
of frequency. However, the next two terms are a function of frequency in

ESR R+

-
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the denommatos tc\rea!mg dmt they will increase very quickly as the

frequency dmps Themh is the valid concern about levels of ESR at low , ;

frequencies. At high frcquencws. the second two terms will die off - ESR=R, + Ry(f) + Rylf)
. quickly, leaving only the de reslstance In general, Lherefom. keep in : 1

mind that

c -/~
. the level ofESR or equivalent series resistance is ﬁ-equem:y sensitive T
and considerably greater at low frequencies than just the dc -

russtam:s. At very high frequenc;gs, it approaches the dc level. * i (@)

It :s auch as important factor in some designs that instruments have
been developed primarily to measure this quantity. One such instrument
appears in Fig, 14. 28(b).

“There are some general rules about thc level of ESR associated with
various capacitors, For all applications, the lower the ESR, the better :
Electrolytic capacitors-typically have much higher levels of ESR than
film, ceramic, or paper capacitors, A standard electrolytic 22 uF capaci-
tor may have an ESR between 5 and 30 {1, while a standard ceramic may
have only 10 to 100 m{, a significant difference. Electrolytics, however,
because of their other characteristics, are still very popular in power
- supply design—it is simply a matter of ba]ancmg the ESR level with
other important factors.

() LE8
F st _ _ FIG. 14.28 -
EXAMPLE 14.8 At what frequency will the reactance of a 200 mH in- ESR. (a) Impact on equivalent model, l;

(b) Measuring instrument.

the resistance level of a 5 tor?
ductor match resi level of a 5 k() resis Bt 57 oty of P e Dol Laies

f .

Sohmon The resistance remains constant at 5 k{) far the frequency
range of the inductor. Therefore,

R=5000Q=X = 2nfL = 2wLf
= 2«(200 %3072 H)f = 1.257f
oo 5000 Hz . . : {
and !f-—. sy = 98KHz ,.

 EXAMPLE 14.9 At what frequency will an inductor of 5 mH have the
$pme reactance as a capacitor of 0.1 ,u.F?

Solution:
- X = xC
nfen 2«;!: , ; .
& 1 > .
1. & _ >
! f 4miLC = 4
and
. 1
zw 217\/(5 % 10~2 H)(0.1 X 107°F)
5
l L. T

r21'r\/5 X 100 (2m)(2.236 X 1075) 14,03
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T 148 AVERAGE POWER AND POWER FACTOR

h | & A common question is, How ¢an a sinusoidal voltage or current deliver
; * power to a load if it seems to be delivering power during one part 6f its
cyclé and taking it back'during the negative part of the sinusoidal cycle?
The equal oscillations above and below the axis seem to suggest that
over one full cycle there is no net transfer of power or energy. However,
as mentioned in the last chapter, there is a net transfer of power over one
full cycle because.power is delivered to the load ar each instant of the . -
= _ applied voltage or current (exCept wheén either is crossing the axis) no
matter what the direction is of the current or polarity of the voltage.
* o demonstrate this, consider the relatively simple configuration in
Fig. 14.29, where an 8 V peak sinusoidal voltage is applied across a 2 {)
resistor. When the voltage is at its pmiﬁve peak, the power delivered at
that instant is 32 W, as shown in the-figuré. At the midpoint of 4 V, the
instantaneous power delivered dmps to 8 Wiswhen the voltage crosses - -
the axis, l[ drops to 0 W. Note, however, that when the applied voltage is
at its negach peak the current may reverse, but at thai instant, 32 W i 15
still being delivered to the resistor.

¢ ! O =4
SVR<Z20

g

i F " . ) v o P=iiR
B ek el
Lo ks
2

= PR LT SIS S e g S ‘
FIG. 14.29

Demon.rrm:mg that power is delivered at every instant of a ﬂnmmda:' voltage
waveform (except vg= 0 V. ‘

-

n total, therefore, 3 i

4 ¥ H
even though the current through and the voltage across reverse )
direction and polarity, respectively, power is delivered to rhe resistive -
load at each instant of time. A -

i If we plot the-power delivered over a full cycle, we obla.m the curve in
= : Fig. 14.30. Note that the applied voltage and resulting current are in
] phase and have twice the frequency of the power curve. For one full
XL cycle of the applied voltage having a period T, the powcr level peaks for-
- y each pulse of the sinusoidal waveform.

y =i f . The fact that the. power curve is always above the horizontal axis
: 1t » ' reveals that power is being delivered to the load at each m.slam of
i _ time of the applied sin usouat valrage. |

.+ Any portion of the power curve below the axis revenls that- powar is
! bcmg rcrurﬁcd to the source. The average value of the power curve
v 5 ;

,r



Power

returned 10 — Ty
source by
elcmcml
% > . 2 A
» 0 A4

Power versus time for a purely resistive load.

w

‘occurs at a level equal to Vol /2, as shown in Fig. 14.30. This power -

level is called the average or real power level. It establishes a particu-
Jar level of power transfer for the full cycle, so that we do not have to
determine the level of power to apply to a quantity that varjés in a sinu-
soidal nature. } y o

If we substitute the equation for the peak value in terms of the' rms
valueas ; :

; Wi, 18
Vil (V2 V) (V2 frws) _ 2 Vims Frms
Pav 3 2 T 2 55 >

we find that the average or real power delivered to a resistor takes on the
following very convenient form: ! 3

R SR

Note that the power equation is exactly the same when applied to dc
networks as long as we work with rms values. ;

The above analysis was for a purely resistive load. If the sinusoidal -

voltage is applied to a network with.a combination of R,:L, and C com-
ponents, the instanianeous equation for the power. levels is.more com-
pléx. However, if we are careful in developing the general equation and
examine the results, we find some general conglusions that will be very
hielpful in the analysis to follow. ~ * -~

In Fig. 14.31, a voltage with an initial phase angle is applied to a net-
work with any combination of elements that results in a current with the
indicated phase angle. !

The power delivered at each instant of time is then defined by

p = vi = Vysin(wt + 0,)m sin(wt + 6;)
Vi dmsin(wt + B‘v}sin(wr + 6;)

il

Using the 1rigonqmctric identity
cos(A = B) — cos(A + B)

sind sinB = : A

2

: Jre see that the fu;&clion_sin(m +6,) sin{‘-‘l.i.r + #;) becomes

5y

.

i=1, sin (@ +6) [

P—

v =V, sin (@ +6,) Load

¥

O__._.——a—-——'-

[
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-+

y

FIG. 14.31

Determining the power delivered in a sinusoidal

ac network.
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4

sin(wt + @, )sin (wt + 8;) .
" cos[(wt +8,) ~ (wf +6;)] = cos[(wr + 8,) + (wr + 6;)]
SRR o2 '
cos(0, ~ 6;) — cos(2wt + 6, + ;)
_.' 2
so that " Fixed valoe ‘ Time-varying (function of 1)
: Vol 0 - (18T
L= L;z’ ™ cos(f, — 9;)} - [ ’; = cos (2wt + 6, + 9;}]

-

A plot of v, i, and p on the same set of axes is shown in Fig. 14.32.
Note that the second factor in the preceding equation is a cosine wave
withi an amplitude of V,,/,,/2 and with a frequency twice that of the volt-
age or current. The average value of this term is zero over one cycle, pro-
ducing no net transfér of energy in any one direction. ;

FIG. 14.32 _
De_,_ﬁm‘ng the average power for a sinusoidal ac network. -

_ The first term in the preceding equation, however, has a constant
magnitude (no time dependence) and therefore provides some net trans-
fer of energy. This term is referred to as the average ‘power or real
power as introduced earlier. The angle (6, — 6)) is the phase angle be-
tween v and i, Since cos(—a) = cos a, " :

the magnitude of average power delivered is independent of whether v
leads i or i leads v. ;

Defining 6 as equal to |6, — ;] , where | | indicates that only the mag-
nitude is important and the sign is immaterial, we have - . ot

o (" e | _
P= "; Zcos @] (watts, W) (14.11)
 where P is the average power in watts, This equation can also be written
2 Ve NK Y
; (\/i V¥ b
. e 4
of, since e V= _\/% and  fp= ﬁm

Eq. (14.11) becomies

P = Vil c08 8] . ‘(14,12)




i

0 SR Y ',AVEHAGEPOWERAND-POWERFACTOH 111 607

F 15

Letusmuiapplyﬁqs (1411)and{1412) to the basic R, L, and C L
e!emenu
R.sl_stor f e ; ” : 7 " i
* In & purely resistive circuit, since v and i are in phase, |6, — 6;} = 6 = 0°, ~ g '
. and cos:@ =-cos 0° = 1, so that

5 ST L -
P="00"= Vonlmms| (W) (14.13)

‘or, since - 1 =-£"—13!

e > [ ) A ms- "R

s V,Z“;, 2 ' . ; 2 i

then P= R B[ (W) LD R ’
Inductbr |

In a purely induetive cnrcult since v leads i by 90" IS - 6; |— 0=
| = 90°| = 90°, Therefore,

Vil

P= > ——=cos 90°__ "Jm

) =0w & fa VR
The average power or power duﬂpared by the idmi‘ mdur:tar
(no associated resistance) is zero watts. = 13 x

- Capacitor |

In a purely capacitive circuit, since i leads v By 90°, |6, — 6, =8 =
| = 90°| = 90°. Therefore, * i .

mlm

; P=—cos(90°)='vmm A

) =0W

The average power or power dissipated 3)- the ideal capacstor (no
associated resistance) is zero watts,

" EXAMPLE 14.10 Find the average power dissipated in a network
whose input current and voltage are the following: ;
i = 5sin(ewr + 40°)
p = 10sin{wt + 40%)
Solution: Since v and i are in phase, the circuit appears (o be purely
resistive at the input termmals Thmfere. '
Vel 1oV 5 A "
mim { )( ) zg w
2 2
Yo, IOV

RN X iy
* 3 R =k

P=

B [[uvm)(m V)P
' R 2

ot P=fR=[0707)(SA)R) = 25W

25W
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.F';, =

] FIG. 14.33
Purely resistive load with F,, = 1.

" FIG. 1434
Pum!y Enduc:w: Iaad w!.rh F =’

P =250 W
-,

4

For the following example, the circuit consists of a combination of re-
sistances and reactances producing phase angles between the input. cur-
rent and voltage different fmm 0° or 90°.

¥

EXAMPLE 14.11 Determine the average power delivered to networks
having the following input voltage and current:

a. v = 100 sin(wr + 40°) ¥ b -
i = 20 sin{wr + 70°) '
b. v'= 150 sinfwr — 70°) *
i = 3 sin(wr — 50”}

- Solutfons

a. V=100, 0,=40"-
I,=20A, 8 =70°

. 0=16, - 6] = 140° = 70°| = | - 30°| = 30°
and-. ; R
NG = 100 V)(20 A :,
P= v-"é—f—',cm.ﬁ' L——%———-}-cos(m") = (1000 W)(0.866)
X = 866 W L
b. .V = 150V, 8, = ~76°
[,=3 -,-\\. é; = —=50°
= |8, — 6l =] - 70° (- 50")?
= |=70° + 50°| = |-20°| = 20° .

VL - . (IS0NNIA ' e
=M ensf = § Vi) cos(20°) = (225 W)(0.9397) -

Y= 21143 W

Power Factor , e _

In the equation P = (V,.1,,/2)cos 8, the'factor that has significant control
over the delivered power level is the cos B.: No matter how large the volt-
age or current, if cos § = 0, the power is zero; if cos @ = 1, the power de- '
livered is a maximum. Since it has such control, the expression was

- given the name power l‘actor and is deﬁned by

Power factor = FP = cos 9 (14.15) .

Fora purely resistive load such as the one shown in F:g 14. 33 the phase
angle between ¥ and #is 0° and F), = cos @ = cos 0° = 1. The power deliv-
ered is a maximum of{V,,,}’,,,jz) ‘cos 8= (100 V)(5° A)/2)(1) =250 W,

For a purer reactive load (inductive or capactitive) such as the one_
shown in Fig. 14.34, the phase angle between v and i is 90° and F,
cos 8 = cos 90° = 0. The power delivered is then the minimum value of
zero walls, even though the current has the same peak. value as thal.
encountered in Fig,'14:33.

For situations where the load is a combination 6f resistive and reac-
tive elements, the power factor varies between 0 and 1. The more resis-
tive the total impedance, the closer is the power factor to 1; the more

. reac:ivwm total 1mpedance the closer is the.power factorto 0.
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a . "

© . In terths of the average power and the terminal voltage and current, v i =2 sin(ef + 40°)
E’lﬁ cosf = Viedoon [ (14.16) ' Vg
_ - rmstmms | - i {rig F,=? : Load v= 50 sin{wt - 20°)
The terms leading and lagging are often written in conjunction with i A
the powi:r_fac-tbl“ They are defined by the cdrrent through the load. If the ___.__|
current leads the voltage across a load, the load has a leading power FIG.14.35 .

factor. If the current lags the voltage across the load, the load has a iR
lagging power factor. In other words,

Example 14._12(&).

capacitive networks have. Ie;fdmg power factors, and inductive
networks have lagging power factors. -

A ]
’ x5 ! oo X
The importance of the.power factor to power distribution systems is
examined in Chapter 19. In fact, one settion is devoted to power-factor
correction. - i ; : : Loo: O

- = : - : \ a ) f, i X
EXAMPLE 14.12 Determine the power factors of the Tollowing loads, ~ i ot ;i?n?::,(“: ;b%w)

and indicate whether they are leading or lagging: kg

a. Fig.14.35 - , W Example 14.12(b). = g
b. Fig. 14.36 ), ; '
¢. Fig. 1437  ° -

a 3 ; ] ———-le=SA -
Solutions: e ;

a. F, = cosf = cos| 40° — (~20°)] = cos 60° = 0.5 leading
b. F, = cos 0| 80° — 30°| = cos 50° = 0.64 lagging

: i 100W W 100W
:f_'f‘r:fi' (20 V)(S A) IOOW L

The load is resistive, and Fp is neither leading nor lagging.

e FpmcosfF

P FIG. 1437
: + : . i o Example 14.12(c).
14,6 COMPLEX NUMBERS | &
: In our analysis of de networks, we found it necessary (o determine the ' g
algebraic sum of voltages and currents, Since the same will also be true - *

for ac networks, the question arises, How do we determine the aigébraic
_sum of twe or more voltages (or currents) that are varying sinusoidally?
Although one solution would be 1o find the algebraic sum on a point-to-
. point basis (as shown in Section 14.12), this would be a long and tedious
process in which accuracy would be directly related to the scale used.
It is the purpose of this chapter to introduce a system of complex num- !
bers that, when related to the sinusoidal ac waveform, results ina technique

fos finding the algebraic sum of sinusoidal waveforms that is quick, direct, Ll : taginaty XIS L)

and accurate. In the following chapters, the technique is exjended-to permit A

the analysis of sinusoidal ac networks in a manner very similar to that ap- 5 : &
plied'to dc networks. The methods and theorems as deseribed for de net- ey +

works can then be applicd to sinusoidal ac networks with little difficulty. ' Real axis

_ A complex number represents a poinit in a two-di mensional plane lo- ; .
cated with reference to two distinct axes. This point can also determine a : e

radius vector drawn from the origin to the point. The horizontal axis is '
called the real axis, while the vertical axis is called the imaginary axis. FIG. 14.38
" Both are labeled in Fig. 14.3% Every number from zero to = can be Defining the real and imaginary axes
represented by some point along the real axis. Prior to the development of af a complex plane.

b Lok : ! . ¢
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=

FIG. 14.39
Defining the rectangular form.

4

this system of complex numbers, it was believed that any number not on
the real axis did not exist—hence the term imaginary for the vertical axis.
In the complex plane, the horizontal or real axis represents all positive
numbers to the right of the imaginary axis and all negative numbers to the
left of the imaginary axis. All positive imaginary numbers are represented
above the real axis, and all negative imaginary numbers, below the real axis.
The symbol j (or sometimes i) is used to denote the imaginary component.
Two forms are used to represent a complex number: rectangular and
olar. Each can represent a point in the plane or a radius vector drawn
from the origin to that point. :

14.7 RECTANGULAR FORM

" The format for the rectangular form is. o ¢

pier AT )

as shown in Fig. 14.39. The letter C was chosen from the word “com-
" plex.”" The boldface notation is for any number with magnitude and di-
rection. The italic is for magnitude only.

EXAMPLE 14.13 Sketch the following complc;t--nufnbcrs in the com-
plex plane:

a C=3+j4 b. C=0-j6 c. C=—10-;20
Solutions: '
a. SeeFig. 1440,  b. SceFig 1441, . ¢, See Fig. 14.42.

yJ
J
Ji i
‘C=3+j4 -10
i | . : 10— o
2 R a g B L +
1 1 o -1 1_‘ ' + &
= o123 + = i e
xS . . "
3 -3 C=0-j6 &
: . -4 : i
. : 2 A 1
4 LD 4 . c.a-_m-ﬁﬁ“"':.ﬂ
FIG. 14.40 FIG. 14.41 FIG. 14.42
Example 14,13(a). Example 14,13(b). v Example 14.13(c).

=

FIG, 14.43
.~ Defining the polar form.

'14.8 POLAR FORM

The format for the polar form is

asa

with the letter Z chosen from the sequence X, ¥, Z
£ indicates magnitude only, and 8 is always measured counterclock-

 wise (CCW) from the positive redl axis, as shown in Fig. 14.43. Angles

measured in the clockwise direction from the positive real axis must

‘have a negative sign associated with them.



A negative sign in front of the polar form has the effect shown in Fig.

* CONVERSION BETWEEN FORMS |11 611

i
14.44.:Note that i_l-ral_t_uﬁj‘jm-a complex number directly opposite the -
complex number with a positive sign. . i C
; ; _ /Tr____\ ;
[ZC==Z26=2ZL46*I180° : L
[-C 229 7,6+ 180°| (14‘1?) - ; ) -
- : = -C .
EXAMPLE 14.14 Sketch the following complex numbers in the com- .
plex plane’ . ' )
=l
a. C=5430° ¢
b C=72,-120° FIG. 14.44,
e. C= =42 £60° Demonstrating the effect of a negative sign
i ) - on the polar form.
Solutions: :
a. See Fig. 14.45.
b. See Fig. 14.46. > : it ]
c. See Fig. 14.47. C=-4.2£60°=42 L 60°+180°
b : = =4.2 L +240* :
v 1 J
p V :
; 5/\rc=smn° *V\ '
4 7\ _ : ; B!
= 4 Al 3 - S
/ J {/
-~ -120°
-—
B v L =720 |4 C=422240° |
FIG. 14.45 FIG. 14.46 . FIG. 1447
Example 14.14(a). Example 14.14(b). Example 14.14(c).
14.9 CONVERSION BETWEEN FORMS C=Z.6=X+jY
e = f T
The two forms are related by the following equations, as illustrated in !
Fig. 14.48. ; :
. z 'y
1 i .
Rectangular to Polar A |
' ’ ) = . -‘—X»—-t +
Z=VX+ (14.20)
PRI 4 :
0 =tan”' (14.21) 4,
_ v - ' FIG. 14.48
= ¢ Conversion between forms.
Polar to Rectangular ' '
= 7] asz) -
0429
a
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Y C=3+54
|
* |
]
z 44
0 i
!
- T if
"j f
FIG. 14.49
Example 14.15.
4J
(0 = 10 £ 45°
10
45&
}
= ¥
ol
FIG, 1450 = °
Example 14.16.
C=-6+j3 : T
II.
| L, :
o 9 =
» l | B8 _\
-
b g
FIG. 14.51
Example 14.17.
L

. ‘0 = 230°

+

- ' FIG. 1452 .
Example 14.18. 5

4

EXAMPLE 14.15 Convert the following from \rcclangular.lo polar

)

form: )
C=3+js (Fig 14.49)
Solution: : ‘
| Z=V0)y+@P=V5=5
0= :an"-'('f) = 53.13° .
_ 3
® and C =5.5313°

EXAMPLE 14.16 Coﬁvert the following from polar to rectangular
form: : \

C=102445  (Fig. 14.50)

Saluﬁon: Rl _
' X = 10 cos 45° = (10)(0.707) = 7.07
Y = 10 sin45° = (10)(0.707) = 7.07
and. . C=1707+j7.07 i

If the co‘i‘nplex number shnul_&t appear in the second, third, or fourth
quadrant, simply convert it in that quadrant, and carefully determine the

proper angle to be associated with the magnitude of the vector.

EXAMPLE 14.17 Convert the foilnwing from rectangular to polar
form: ' ]

= ia +j3  (Fig, 14.51) e
Saiuti;m: | - s .
Z= V[P + (P = V=611
T :an—'(%) Z2657° .
N ‘= 1807 - 2657° = 153.43°

and C = 6.71 £153.43° ' e ek

EXAMPLE 14.18 Convert the followirtg from polar to rectangular
form: 8 -

< C=10£230°  (Fig 14.52)

Solution:

0 ) r ¥ -
© X = Zcos B = 10cos(230° — 180°) = 10 cos 50°
= (10)(0.6428) = 6.428

Y= Zsinf = 10sin 50° = (10)(0,7660) = 7.650

‘ i

L

cand | C=—643-77.66 s A3



14.10 MATHEMATICAL OPERATIONS i
WITHCOMPLEX NUMBERS

Complex nuribers lend themselves readily to the basic mathematical op-
erations of addition, subtraction, multiplication, and division. A few
basic rules and definitions mustbe understood before considering these
‘operations. ; : T e

Let us first e.;(ainine the symbol j associated with imaginary numbers.

By definition, ;

) 1 (14.29)
*Thus, - HR=-1 (14.25)
' [
" (SRl Pmfym =ty ==
with f=pt=(=1) (1) = +1
F=F

and so on. Further,
3 (l) (J)(l) . -
—_—— l — = — —_— - — — ¥
J () i J/N .;5 =l (o

= —f S (1426)

and

Complex Conjugate

The conjugate or complex comugate ofa cfomplex number can be found -
by simply changing the sign of the imaginary part in the rectangular form

or by using the negative of the angle of the polar form. For example, ihe
conjugate of . i '

C =2 +Lj3

1s n ", 2-j3

as shown in Fig. 14.53, The conjugate of
C=2.30""

is : 2 L300 )

as shown in Fig. 14.54,

Reciprocal

The reeiprocal of a complex number is 1 divided by the complex num-

ber. For example, the reciprocal of

L ] .. o »
C=X+jY '
. 3 1 :
15 i TR
‘ X +jY o
and that of Z 48 is
1 ’
ZLo

" nbendirtare . ANA

MATHEMATICAL -OPERATIONS WITH COMPLEX NUMBERS

Jj C=2+j3

J S

~f Compl:aat. conjugale n:;f{’.-
C=2-j3 -
) FIG. 1453 . g
Defining the complex conjugate of a complex
number in rectangular form,

Complex conjugate of C

-J

) FIG. 14.54
Defining the complex conjugaie of a complex
number in polar form.

’

(613,
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We are now prepared to consider the four basic operations of addlflaﬂ
subrracrmn .!fmiﬂp!:cam‘m, and division with complex numbers,

4

Addition

To add two or more complcx numibers, add the real and imaginfry parts
separately For example, if

Cy= _iX| = ,‘Y; Jand Cz = 1X2I._'_‘T s

- ' A then. - [Cy+C=(X; = X;) + j(xY, i.Yzll (14.27)

Therc is really no need to memorize the equation, Simply set one above
the other and consider the rea[ and 4 amagmary parts separalel:,c, as shown
in Example 14.19. .

"

Eoved 2
! EXA-MPL'E 14.19 X
& a AddC;:=2+ 4 ° and C,=3+j1. 5
j b AdC  =3+j6. .and . Cy=~6+,3:
i Gl Solutions: . ' 3
5 . |
' ! 7 " a. ByEq. (14.27), ‘
: 2 et : L ;
' 3 J':Tz : . p C|+C;=(2+3)+j(4+]-}=5+j5
B, e ' Note Fig. 14.55. An alternative method is
2+ 4
34771
o SRR
: : : 545
FIG. 14.55 b Byl @ Yoz

Example 14.19a)..

C;+Cg—{3—6)+3(6+3)--—3+19
Note Fig. 14.56. An alternative method is"

346
—6+j3
4
~3 459
; Subtraction
S In subtraction, the n:aj and imaginary pgrts are agaip consmered scpa-
' rately. For example, if -
p C = iX] th] and. b +X§' * }Yz
_.J \4 .

FIG. 14.56
‘ Example 14,19tb),

then 'C:‘;C_q"=[=x3~(7_;Xz}]+f[ﬂ'i—(:¥z}]_ (14.28)y
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Agali'n-. l.he”re.'is-m;'néed 'té‘:nicmorize the cqﬁation if the alternative
method of Example 14.20 is used. '

EXAMPLE 1420 :
a. Subtract C;= 1 + j 4 from Cy=4 + j 6. ' e
b. Subtract C, = —2 + 3 fromC; = +3 + 3. ;

" Solutions:
' a. ByEq.(14.28),

= Cy=(a- 1)+ j(6—4) =3 +j2 o
Ot AN FIG. 14.57
Note Fig. 14.57. An altemalwe_methm.:l is . 4 Example 14.20(a).
4+j6 i i c
& i
=(1 +j4)
{4 i
4412 . 51
b. By Eq. (14.28), O £ . Ca
: i R 4
Vs Ly C= (35 ()] 1B Sy =82 ; : \“\z A
o * ’ | L 1 X
Note Fig. 14.58. An altérnativé method is \ \
R gl S AN -y R s o LB T g
2 —(—2+j5) ) ; . ~ Y /_.- C|—'C2
+ 4 e Yolfi
. . §-=j2 : £ s
SNSRI, . S E R
Addition or subtraction cannot be performed in polar férm unless the #  FiG.14.58
complex numbers have the same angle 0 or unless they differ only by Exgmple. 14.20(b)
multiples of 180°.- v ; L ]
Sk ¥
LY ¥ )
EXAMPLE 14.21 - , _ )
“a. 2£45° + 3 £45° = 5 £45°. Note Fig. 14.59. - : :
b, 2 £0° — 4 £180° = 6.20°. Note Fig. 14.60. '
i i
o o 45° i 4 ' ’ =4 £ 180°
P _
o Tl A W i
- ¥ - 4 £ 180° ._2_.| - +
RS- PR e
4 . i
FIG. 14.59 _ : FIG. 14.60 : A SN

Example 14.21(a). - Example 14.21(b). "
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Multiplication

To multiply two complex numbers in rectangular form, mt]!tiply the real
and imaginary parts of one i turn by the real and i lmagm.ﬂy parts of the
other. For example, if

Ci=X +jY; and C'=X;+jY,

then . C;-Cy'.+ Xy + jY.
: X+ ¥
NG +inXx;"
i + X\ 13 + jPhYs

XXy + j(11Xa + Xi¥7) + ¥i¥y(~1)

and Ci+Cy = (XiXp - V11a) + j(¥iX, + Xi Y;)l (1429)

In hxamplc 14.22(b), we obtain a solution without resorting to

' memorizmg Eq. (14.29). Simply-carry along the j factor when multi-

plying each part of one vector with the real and imaginary parts of the
other. - \

EXAMPLE 14.22

a. Find Ci-Cyif . 5 :
1 € =243 and C=5+ji0
b. Find C;+Cyif : ;
Cp==2-j37 and Cy=+4-j6
L 3 3 : ) }'
Sahm’ans

¥ a Using the format above, we have:

€€y = [2)s) = 3)(10)] +J[(3}(5) + (29(10]I
T =435

b. Without using the format, we ob:ain_
. o =2=j3.
Al % B 0w
"3—}12 -~
S 4124218
o ,~8 +;(—12+12)——IS
and : Cl Cy = —26 26;:.180"

In polar form, the m&gmtudes are mulnplled and the angles added al
gebmcally For example, for

¥ g Ci=Z; 20, and C,= zg,:sz

cwewtle | [CLG=ZiZy /hx 6] . (1430)
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EXAMPLE 1423 -
 a Fimd € -Caif :

LU gy =54200 camd  Cp=104307

b. FindC; - Caif :
J € = 2.L-40° and Cp=7 £4120°
Solutions: - ' ! )
2 C;-Cy = (5 £20°)(10 £30°) = (5)X10) /20° + 30° = 50 £50°
= (2 £-40°)(7 £+120°) = (2){(7)/=40° + 120°
= 14 £+80° il -

To multiply a complex number in rectangular form by a real number
requires that both she real part and the imaginary part be multiplied by
the real number. For example, ' :

: L 0)2+i3) =20+ 30
and - 50 £0°(0 + j 6) = j 300 = 300 L90°
Division :
To divide (wo cl:;mplcng numbers in-réctanguiar form, multiply the nu-

smerator and denominator by the conjiigate of the denominator and the . i :
resulting real and imaginary parts collected. That is, if “ ¥

Q=X %Y, ad  C=Xo+ )V
o _rimfoa-im) .

then’ — = = :
C: (X3 +jh)(X; —jY2) 2 - Co
_ XXt YY) + j(XaY, — X1 Yz) o
e X3 + 13 ' =
C, XX+ Yi¥y - XsY) - X[-Yz. * ) :
d _— -+ F i 14.31) '~ -
- C; X3+ Y} TR+ | () - \

The equation does not have to be memorized if the steps abive used to
obrain it are employed. That is, first multiply the numerator by the complex
conjugate of the denominator and separate the real and imaginary terms.
Then divide each term by the sum of each termyof the denominator squared.

-

EXAMPLE 14.24
a. Find Cdc: if Cl =1 f'j-i and Cz‘—': 4 “I’js,
b. Find Cy/Cyif C; = =4 —Jj8 and C=+6—jl;
Sq!ut:'ons:
a. By Eq. (14.31),
c, (D@ +@)5) @) - (1)(5)
Lo Ly
G 42+ 52 . 4+ 5
_u ju .
= 41.;‘ 0.59 +027

Ty
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b. Using an alternative method, we obtain

—4 =8

+6 + 1

—j4— 78

—24—j52+-8=-L6-j5?. _
+6i=j1_~ B
+6+j1 =
Sev7e.
L_=J6~ P
36+0+1=37

and == -1

To divide a complex number in rectangular form by a real number,

- both the real part and the imaginary part must be divided by the real

. number.For example, . :
8§+ 10 . ,
— =4 +5
2 J
: _ 6.8 ~j0 '
and i R S 34 -0 =34.,0°

- In polar form, division is accomplished by dividing the magnitude of

the numerator by the magnitude of the denominator and subtracting the
angle of the depominator from that of the numerator. That is, for -

IC| = Z 28, and CQZZQILBZ

- , €y " Zy '
We write ~C;‘.= Zl 59‘, -6, (14.32)
EXAMPLE 14.25

a FindC\/C,if C;=15210°  and* Cy=227°
b. FindC;/C;if C; = 8 £120°  and C =16 £-50°,

‘Soluuons.j X

Ci _ 15210° 15 ' -
SRS =D /0P~ TP = 75 250
R T B Pl

5, G 8adlor s R S
S BD w——— e e O = [=50°} = N o
. ik 16 £ =50° IGM 0.5 2170 _ i

We obtain the reciprocal in the rectangular form by multiplying

‘the numerator and denominator by the complex conjugate of the de-

nominator:

W L .-=-('1' ).(X".‘jY)n X-jy -
X+ \x+¥/\x-jr) " ¥+ p
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et e ¥ G

% ,:' - : 3 . = e | 1 ‘.
ot oantsse IR SY X+y B+ (1439
(¥, Inpula.r form, the reciprocal is 5
6 . (434
240 Z . 43

, A concluding example using the four basic opcraiicns' follows.

EXAMPLE 14.26 Perform the fmIlo-.;uing operations, leaving the an-
swer in polar or rectangular form:_ e a @
@43 H6) 214 +H34E)

@+in=0B-j3) (1-3)+i0+3)
S (6494 - j10)

T @+ji0)4 -0y - r
A [(6)(4) + (9)(10)] +J[(4}9) ~(6)(10)]

e i ‘..42 + 102
: el RO o as
LAY, ¥’ o e - = 0.98—70.21
© (50 £30°)(5 +j5) (50 £30°)(7.07 £45°) _ 353.5 £75°
10L-20° . 10,7200~ 104-20°

= 35.35 /15° = (=20°) = 35.35 L95°
Q@ L20°YG +j4) (222092 £20°)(5 £53.13%)
8—j6 . 10 2—36.87°
(4 240°)(5 £53.13°) 20 £93.13°

= TTT10Z-3687° . 104-3687° ..
=2 /93.13° — (—36.87°) = 2.0 L130°

C.

4. 3L27° = 6 L-40° = (2673 + j 1.362) ~ (4.59 — j 3.857)

= (2673 —4.596) + j(1.362 + 3.857)
=-192+j522

1411 CALCULATOR METHODS
WITH COMPLEX NUMBERS

The process of converting from one form to another or working through

lengthy operations with complex numbers can be time-consuming and
often frustrating if one lost minus sign or decimal point invalidates the
~ solution, Fortunately, technologists of today have calgulators and com-
puter methods that make the process measurably easier with higher de-
grees of reliability and accuracy. ' -

Cnlculatc;rs

The TI-89 caiculator'i-n Fig. 14.61 is only one of numerous calculators

“ that can convert from one form to another and perform lengthy

L

%

FIG. 14.61
TI-89 scientific caleulator- *
(Courtesy of Texas Instruments, Inc.)



* 620 111 THE BASIC ELEMENTS AND PHASORS
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. 4

calcdlations with complex numbers in a concise, neat form. Not all of

the details of using a specific calculator are included here because each
has it§ own format and sequence of steps. However, the basic opera-
tions' with the TI-89 are included pri:‘harily to demonstrate the case
with which the conversions can be made and the format for more com-
plex operations.

There are different routes to perform the conversions and operations
below, but these instructions give you one- approach that is fairly direct

" and straightforward, Since most operations are in the DEGREE rather

than ' RADIAN mode, the sequence in Fig. 14. 62 shows how to set the
DEGREE mode for the operations to follow. A similar sequencc sets the

"RADIAN modc if rcqu:red 4 ; A
: lAngicD!I] DEGREE ERER
: FIG. 14 62
. Setting the DEGREE made on the TI-89 calculator: -

Hscta’ngular to Polar Ccmverswn The sequence in Fig. 14.63
provides a detailed listing of the steps needed to convert from rectangu-
lar to polar form. In the enamplcs to follow, | the scrolling steps are not

- listed to.simplify the sequence.

In the sequence in Fig. 14.63, an up scroll is chosen after Matrix be-
cause that is a more direct path to Vector ops. A down scroll generates the

" same result, but it requires going through the whole listing. The sequence

seems quite, long for such asimple conversion, but with practice you will
be able to perform the scrolling steps quite rapidly. Always be sure the
input data are entered correctly, such as including the / after the y compo-
nent. Any i mcom:ct entry will result in an error listing.,

A [+ 2 i €3 %53 MATH [T Mauix [
[r] Vector ops [Z](T]» Polar [vrel) el 5,83E0 £ 59.0E0
&t 4 FIG. 14,63
Converting 3 + j 3 .ra the polar form u.w:g the TI-89 cakulutar =

Pd!ar to Rectangurar Conversion The sequence in Fig. 14,64 is a
detailed listing of the steps needed to convert from polar to rectangular

* “form. Note in the format that the brackets must surround the polar forn. -

Also, the degree sign must be included with the angle to perform the cal-
culation. The answer is displayed in the engineering notation selected.

[OE6 < B3I CIEDvH D
Angle Eﬁ % @-@ MATH (1] Matrix Ei[] T] Vector ops [SI{1]
Rect 5T 3 00E0+4.00E0i -~ *

¢ FIG.14. 64
Convertmg 5{_53 1° to the rectangular form using the TI-89 cafcufarpr

Mathnmatlcnl Opemtlons Mathematical opcratmns are performed
in the natural order of operations, but you must remember 1o select the

~ format for the solution. For instance, if the sequence in F:g 14.65 did

not mcludc the polar designation, the answer would be in mctanguiar

b
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m--z- -m--z {k
rpom@mwmzmoom 3 | e Tl

FIG. 14.65
Peg’bmmg lhwpemuon (10 é.m‘}(z £.20°).

form even though both' quannues in the calculation are in polar form. In
- the rest of the examples, the scrolling required. to obtain mathematical
functions js not included to minimize the length of the sequence. .
For the product of mixed complex numbers, the sequence of Fig.
14.66 'results. Again, the polar form was selecled for the golution. / 7

' () zm 30 ---- a:-:. 1%

NTER 14.1415}04 98.10E0

; FIG. ‘NGB : " % :
£ Pe:fonnmg the operation (5 L53 1°)52 +J 2} e e . i

I-nnall;, Example 14.26(c) is entered as shown by the sequence in F“;g k>
14.67. Note that the resulis exactly match those obmned earlier: i

EOE - EON- m-m--m--m ok A%
--‘-- mPPolar--zoozumoEo ' g

FIG. 14.67 ' ' <
Ver‘:ﬁmg the vesults of Example 14.26(c). b s i : ®

14.12- PHASORS .

As noted earlier in this chapter, the sdd:uon of sinusoidal voltages and.
currents is frequently required in the analysis -of ac circuits. One ) .
lengthy but valid method of performing this operation is to place both -
sinusoidal waveforins on the same set of axes and add algebraically thl :

- magmmdes of each at every point along the abscissa; as shown for ¢ =

a +-b in Fig. 14.68. Th:s however, can be a long and tedious process )
e
]
) i
1} ) . a
'+t"—l1+& U=ty e -
4 - 4
1 LS
}
- | .
at
1
0
) "
\“v‘ ‘i
As 'J
Y N
\; ,‘
 FIG. 1468 : »

Adding two sinusoidal waveforms on a point-by-point basis.
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2V

By =907~

W,
Ur=t+1
223V T2 8 —2236;1:1(«.-“6141“
" vy =2 sin (wr + 90°)
vl-Ismm
TR SEC ) U (N i, " i 72 SR g
v
- w
8r= 83(00)
63.435 (1=0s)
8,.-':
.90 J
1
by
FIG. 1459 L )

" (a) The ph.a.mr representation of the sinusoidal waveforms of part (b);
-+ (b) finding the sum of two sinuseidal waveforms of vy and v,. F

with limited accuracy. A shorter method uses the rotating radius vector
first appearing in Fig. 13.16. This radius vector, having a constant mag-
- nitude (length) with one end fixed at the origin, is called a phasor when
+ applied to electric circuits. During its rotational developiment of the sine
wave, the phasor will, at the instant r = 0, have the positions shown in
Fig. 14.69(a) for each waveform in Fig. 14.69(b).
Note in Fig. 14.69(b) that v, passes through the horizontal axis at ¢ =
_0's, requiring that the radius vector in Fig. 14:69(a) be on the horizontal
axis to ensure a vertical projection of zere volts at.r = 0 s. [ts length in
Fig. 14.69(a) is equal fo the peak value of the sinusoid as required by the
radius vector in Fig. 13.16. The other sinusoid has passed through 90° of
its rotation by the time r =.0 s is reached and therefore has its maximum
vertical projection as shown in Fig. 14.69(a). Since the vertical projec-
tion is a maximum, the peakvalue of the sinusoid that it generates is also
attained at ¢ = 0 s, as shown in Fig. 14.69(b). Note also'that vr = v, at
- 1= 0ssince v; = 0V at this instant, "
It can be shown [see Fig, 14.69(a)] usmg lhc veclor algebra described
in Section 14.10 that ;

PV Z0° H2V £90° =2, 236V £6343°

i

-



3 . In Dthe:r words :f we convert vy and v; to the phasor form using
v -—V sin(wt + 0) =V, L0

: and ndd them using cnmpzex number algebra, we can ﬁnd the phasor.

fbrm for v with very little difficulty. It can then be converted to the time
domain and plotted on the same set of axes, as'shown in Fig. 14.69(b).
Fig. 14.69(a), showing the magnitudes and relative positions of the vari-
ous phasors, is called a phasor diagram. It is actually a “snapshot” of
the rotating radius vectors at £ = O's. .

Therefore, if the addition-of two sinusoids is required, you should
first convert them to the phasor domain and find the sum using complex
algebra. You can then convert the result to the time domain. .

The case of two sinusoidal functions having phase angles different

from 0° and 90° appears in Fig. 14.70. Note again that the vertical height
of the functions in Fig. 14.70(b) at t = O s is determined by the rotational
positions of the radius vectors in Fig. 14.70(a).

emmsmmbe s ————

i, = sin(er +30°)

iz=6 §|_n(:.|r + _60"}
B e s - )
“a? FIG. 14.70 i

Adding 1wo sinusoidal currents with phase angles other than 90°,

Since the rms, rather than the peak, values are used almost exclu-
“sively in the analysis of ac circuits, the phasor will now be redefined for
the purposes of practicality and uniformity as having a magnitude equal

to the rms value of the sine wave it represents. The angle associated with

the phasor will remain as previously described—the phase angle.
In general, for all of the analyses to follow, the phasor form of a sinu-
soidal voltage or current will be

v V6 and 1—149 . ®

whcre V and 1 are rms values and 0 is the phase afigle. Il should be
pointed out tharin phasor notation, the sine wave is always the refer-
ence, and the frequency is not represented.

Phasor algebra for sinusoidal quantities is applicable only for
waveforms having the same frequency.

allsw - & s;=60°_81=30°("é°” A\'\

* PHASORS |11 623
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FIG. 14.71
Charles Proteus Steinmeiz,
Courtesy of the Hall of History
Foundation, Schenectady, New York

* German-American (Breslau, Germany; Yonkers and
. Schenectady, NY, USA)
(1865-1923) : ) bt 5
Mathematician, Scientist, Engineer, Inventor,
- Professor of Electrical Engineering and
Electrophysics, Union College .
Department Head, General Electric Co.

Although the holder of some 200 patents and recog- -
nized worldwide for his contributions to the study of
* hysteresis losses and electrical iransients, Charles
Proieus Sieinmetz is best recognized for his contribu-
© tion to the study of ac networks. His “Symboli¢ .
* Method of Alternating-current Calculations” provided : -
- ' an approach’to the analysis of ac netwprks that re:
,medamd&a!ufﬂmmmmmmdmnm
...mmmdbyemofmdaym u:eymndﬂhc
- trangition from de to ac sysumc His' approaﬂl inn
.- which the phasor notation of this text is mmd}
: -pcrrnmed a direct analysis of ac systems mmg“,muy
nflhcﬁnomnsmﬂmeﬂnds ufa.nn!ym de

4h

*  The use of phasor notatien in the analysis of ac networks was [irst in-
trodg:cd by Charles Proteus Steinmetz in 1897 (Fig. 14.71).

EXAMPLE 14. 2? Convert the'following from the time to the phasor
domain: o ’

Time Domiain .. . Phasor Domain

50 £0°
(0.707)(69.6) £72° = 4921 £T2°
(0.707)(45) £90° = 3182 £90°

a. VZ(50) sin wt -
b. 69.6 sinfwt + 72°)
¢. 45 cos at

-

~EXAMPLE 14.28 Write the sinusoidal cxpmssmn for the- fullowmg
" phasors lf the frequency is 60 Hz

"
¥

. Time Dormain
i = VZ(10)sin(2m60f + 30°)
and i = 14,14 sin (377t +30°)

v = V2(115)sin(377¢ — 70°)
and v = 162.6 sin (377t — 70°)

Phasor Domain 1

a 1=10230°

b V=115£L-70°

-

EXAMPLE 1429 Fmd the mpu! voltage of the circult in Fzg 14.72 if

L] % = + 2
: 50 sin(377¢ + 30 }}f = 60 Hz
pg, = 30sin(3771 + 60°) _
+ 0
+0 - * +
& [ Uy
-0 “ 3 -k .4
i : FIG. 14,72
Jxample 14.29.

.Solution: Applying Kirchhoff's voltage law, we have

s, €in = Uy + 1 ,
Converting from the time to the phasor domain yields
v, = 50sin(377¢ + 30°) =>V, = 35.35 V £30°
“vp = 30sin(3771 + 6(}") =V, =21 21V £60° .
Ccnvemng from po]a: to rectangular form for addition yields
. : V-—3535V¢’.30°=306]V+;[768V e
s Vp =2121V £60° = 10.61 V + j 1837V

EH



Ei =v‘,+v,,-(3osw+117ﬁs'b + (1061 V +j 1837 V)
; =AY 43605V

£ -Cunven;mg from rectangular to polar farm, we have

- E,- =41.22V +j3605V = 5476V LAl 17°
Converting from the phasor to the time domain, we obtain
' Ey = 5476 V L8117 = e = V2(5476)sin(377¢ + 41. 17=)
and " ey =7743sin(377t + 4117°)

_A'plot of the three waveforms-is shown in Fig. 14.73: Note'that at
each instant of time, thesum of the two waveforms does in fact add up to
€in- AL 1 = 0 (w1 = 0), &, is the sum of the twe positive values, while at

a value of wi, almost midway between /2 and 7, the sum of the pos:-_

tive value of v, and the ncgamre vaiue of vb resuhs inegy=0.

i’

»

4 FIG, 14.73 - ’
Solution to Example 14.29.

EXAMPLE 14.30 Determine the current i for the network in Fig. 14.74,

= 80 X 107 sinwt

—

i =:120 % 107 sin (wr + 60°)

s

n
-3

-
(5

) : - FIG.1474
Example 14.30.

5
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Solution: Applying Kirchhoff's current law, we obtain |
' ir=iy+iy " of  ip=ip— i
Converting from the time to the phasér domain yields

ir = 120 % 102 sin(wt *+ 60°) => 84.84 mA £60°
iy = 80 X 1073 sinwr = 56.56 mA £0°

Converting from polar to rectangular form for subtraction yields
L= 8484 mA Z60° =4242mA + j 7347 mA
_ I) = 56.56 mA £0° = 56.56 mA + j0

Then . )

L=1Ir-1 _ ,

= (4242mA + j73.47T mA) — (56.56 mA + j0)
and L= ~1414mA +j73.47 mA
Converting from rectangular fo polar form, we have
’ | L =7482mA £100.89°

Converting from the phasor to the time domain, we have

I, = 74.82 mA £100.89° =
is = V/2(78.82 X 107 3)sin(eot + 100.89°)

‘and i = 105.8 x 10'3-sin{mr + 100.89°)

A plot of the three waveforms appears in Fig. 14. ’.-‘5 The waveforms

clearly mdwate thatir = h +. iy,

A

i(mA) e
iy =i - it\' -3
‘2 ir . '
120
105.8 ! : i
T 80
' L
= 0
/"2
10089°  60°
f
. . SRS FIG. 14.75

Solution to Example 14.30.
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"-_514*13 COMPUTERANALYSIS‘ .
: _PSpice ' -

" Capncitors and the ac R!sponse ‘The simplest of ac c.apamuve
.c1rcu1Ls is now analyzed to introduce the process of setting up an ac
source and running an ac transient simulation. The ac source in Fig.
14.76 is obtained through Place part key-SOURCE-VSIN-OK.
- Change the name or-value of any parameter by double-clicking on the
pararneter on the display or by double-clicking on the source symbo] to
get'the Property Editor dialog box. Within the dialog box, set the val-
ues appearing in Fig. 14.76. This is done by scrolling across the dialog =
box and selecting the desired quantity from the top listing. When se- :
- lected, a black box will appear under the quantity of interest. Click on
_the'black box, and it will turn white. Enter the value followed by
Display-Name and Value if you want the quantity and its value to ap- "
pear on the screen. If you do not want it to appear on the screen, do not ; . N
use the Display option. Once each quantity is set, the most important : :
step of all must be applied, which is to select the Apply key. If you for- :
- getto apply the changes, none will be used in the anaiysls : , : “

_. :f.‘f:‘f,":""““"“ @ @myﬁmo v |
]_E PSpce 141 Il PAGEL" ]

iy & | ! i
VOFF =0V Vs~
VAMPL =5V -
AC=5V
/FREQ = 1kHz
PHASE = 0

_ FIG. 14.76 ; '
Using PSpice to analyze the response of a capacitor to a sinusoidal ac signal.

The simulation process is initiated by selecting the New Simulation
Profile. Under New Simulation, enter PSpice 14-1 for the Name fol- : A
lowed by Create. In the Simulation Settings dialog box, select -
Analysis and choose Time Domain(Transient) under Analysis type.
Set the Run to time at 3 ms 10 permit a display of three cycles of the si-
nusoidal waveforms (7.= 1/f = 1/1000 Hz = 1 ms). Leave the Start
saving data after at 0 s, and set the Maximum step size at 3 ms/1000 =
3 ps. Clicking OK and then seleéting the Run PSpice icon results in a
plot having a horizontal axis that extends from 0.to 3 ms.
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Now you must tell the computer which waveforms you are interested

& in. First, take a look at the applied ac source by acfectmg Trace-Add

3 ’ ’ Trace-V(Vs:+) followed by OK. The result is the sweeping ac voltage’

‘ in the bottom region of the screen in Fig. 14.77. Note that it has a peak

- value of 5V, and three cycles appear in the 3 ms time frame, The current

5 + for the capacitor can be added by selecting Trace-Add Trace and choos-

, Eng ing 1(C) followed by OK. The wesulting waveform for I(C) appears at a

. 90° phase shift from the applied voltage, with the*current leading the

vnltage (the current has already peaked as the vo}lagc crosses the 0 V
axis). Since the peak value of each plot is in the same magnitude range,
the 5 appearing on the vertical scale can be used for both. A theoreti-
cal analysis results in X¢ = 2.340), and the peak value of J¢ = E{X c=

. ) : 5V/2.34 = 2.136 A, as shown in Fig. 14.77.
P SHOMATIC-Pipce 141 PSpice A0 Demo - (Parce 141 netvel 1 :
(i Be Et e Suruldon Trace Plot Tgah Eruuﬂd,‘.% [iﬂEHtE -8 %
2 '._:]' e E.‘L _ﬂ '..: . - mmrlctﬁmu' i . c
(SRR R G VimE X PRTLE BYE
- . i s . 1 v
¢ %
®
I
y |
s {1
2 |
i
i
| o
o
. & | :
- O lvomzeedr o Teesmwem o wm _m F
o W _ - ' ~ RG.14TT
4 A A plot of the voltage, curreitt, and power for the c'apacrmr in Fig. 14 76.

For pracuce., let us obtam the curve for the power delivered to the
capacitor over the same time period. First select Plot- Add Plot to
Window-Trace-Add Trace to obtain the Add Traces dialog box.
Then choose V(Vs:+), follow it with a * for multiplication obtained

_ from the Funetion listing on the right side of the Add Traces dialog

" box; and finish by selecting I(C). The result is the exprcssmn
V(Vs:+)*I(C) of the power format; p = vi. Click OK, and the power

hed " ’ plot at the top of Fig. 14.77 appears. Note that‘over the full thrge cy-

ey k ~ cles, the area above the axis equals the area below—there is no net

. transfer of powér over the 3 s period. Note also that the power curve
is sinusoidal (which is quite interesting) with a frequency twice that of

B g i) LN N applied signal, Using the cursor control, we caf determine that the

T ot L ; © . maximu power (p:ak value of the sinusoidal wavaﬁ:m) is 5.34 W,

am
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The cursors, in fact, have been added to the lower curves to'show the
, . peak valye of the applied sinusoid and the resulting current. _

- After selecting the Toggle cursor icon, left-click to surround the
symbol to the left of V(Vs:+) at the. bottom of the plot with a dashed
line to show that the curser is providing the levels of that quantity.
When placed:at % of the total period of 250 us (A1), the peak value is
exactly 5 V as shown in the Probe Cursor dialog box, Placing the
cursor over the symbol next 10 I(C) at the bottom of the plot and right-
clicking assigns the ri ght cursor to the current. Placing it at exactly 1 ms
(A2) results in a peak value of 2.136 A to match the solution above. $
To further distinguish between the voltage and current waveforms, the »
color and the width of the lines of the traces were changed. Place the '
cursor right on the plot line and right-click. The Properties option ap- ’
pears. When Properties is selected, a Trace Properties dialog box
appears in which the yellow color can be selected and the width
widened to improve the visibility on the black background. Note that

* yellow was chosen for, Vs and green for I(C). Note also that the axis
and the grid have been changed to a more visible color using the same
procedure. ' 5

Multisim 3 :

Since PSpice reviewed the response-of a capacitive element to an ac

voltage, Multisim repeats the analysis for an inductive element. The

ac voltage source was derived from the Place Source parts bin as de-

scribed in Chapter 13 with the values appearing in Fig. 14.78 set in - 3
the AC-Voltage dialog box. )

FIG, 14.78

Using Multisim to review the response of an inductive element
to-a sinusoidal ac signal.

“Once the circuit has been constructed, the sequence Simulate-Analy-
ses-Transient Analysis results in a Transient Analysis dialog box in
which the Start time is set at 0 s and the End time at 105 ms, The 105 ms
was set as the End time to give the network 100 ms to settle down in its
steady-state mode and 5 ms for five cycles in the output display, The
Minimum number of time points was set at 10,000 to ensure a good
display for the rapidly changing waveforms. ' ¥

Intraductory £ - 447
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e . _ ’ ' ' - Next the Outpn} heading was chosen within the dialog box, and the
’ source’ voltage V(1) and source current I(V8) were maved, from the

Variables In Circuit to Selected variables for analysis using the Add
option, Choosing Simulate results in a waveform that extends from 0 s to
L ; 105 ms. Even though we plan to save only the response that occurs after
100ms, the computer is unaware of our interest, and it plots the response
for the entire period, This is corrected by selecting the Properties keypad
m the toolbar at the top of the graph (it looks like a tag and pencil)ta ob-
tain the Graph Propertiés diadog box. Selecting Bottom Axis permits
: * setting the Range from a Minimum of 0.100 s = ;oq ms to a Maximum
: : - of 0.105 s = 105 ms. Click OK, and the time period of Fig. 14.78 is dis-
o : played. The grid structure is added by selecting the Show Grid keypad,
E + and the color associated with each curve.is displ#yed if we choose the
i Show Legend key next to it, - ' 3
, ' It is clear from the plot that the scale for the source current has to be
improved for us to be able to clearly read its peak and negative values.
- ‘This ig done by first clicking on the I(VS) turve to set the Selected Trace .
at the bottom of the graph as I(VS). A right click, and one can choose the
Trace Properties option to obtain the Graph Properties dialog box.
Under Y-Vertical Axis, select Right Axis to establish the right axis as
A : the scale to be used for the source current. Then select Right Axis and in-
Sia L2 sert the Label: Current(A), select Enabled under the.Axis heading, and
! ' 4inally choose Pen Size as 1. The Scale is Linear and of range ~500E-3
"% to 500E-3 (—~500 mA to 500 mA), with Total Ticks of 8 and Minor
- oL Ticks of 2. The result is the plot of Fig, 14.78. The right axis can now be
improved by selecting Graph Properties agai, followed by Left Axis,
whereby the Current(A) can be deleted! We can now see that the source
current has a peak value of about 160 mA., For more detail on the wave-
Ut : forms, selact the Show Cursors key pad to obuin the Transient Analy-
o sis dialog box with box V(1) and I(VS) listed with the same color
headings as used on the graph. Clicking on one of the cursors and moving
, ) it horizentally to the maximum value of the current will result in x1 =
. . ’ 101.0 ms with y1 at 158.91 mA. Actually, the max y appears below at
: ' 159.07 mA, which could have been obtained if we had increased the

. number of data points, Moving the other cursor to find thé minimim

L o valae of current will result in x2 = 101.24 ms with ¥2 at 2.51 mA (the.

] ' closest to the value of 1 obtainable with this data leVel setting). The max-
imum value of V(1) appears below as 10V, which it should be, and the
distance between the maximum value of I(VS) and the its minimum
value js.dx = 24291 us which is very close to 0.25 ms, or one fourth of
the period of the apphied signal. HYE '

- -

s . -. ) T X . .
. PROBLEMS ¢ ; : 2. Repeat Problem I for thie following sinusoidal function, and.
¥ W 55 2 4 - .compare results. In particular, determine the frequency of
SECTION 14.2 Derivative . " . T the waveforms of Problems 1 and 2, and compare the mag-

1. Plot the following wavefdrm versus time showirg one clear, HIRdc o the activaiite, 4
complete eycle. Then determine the derivative of the wave-
- form using Eq. (14.1), and sketch oné complete cyclg of the
derivativé directly under the, ofiginal Waveforn, ‘Compare

the magnitude of the derjvative at ‘\'m‘iou.& points versus the

VLY ueheindle T

3, .What is the derivative of each of the following sinusoidal

slope of the original sinusoidal function. expressions? : i
TR S it S 7 105sin 377 * b 0.65in(200t +20%)
1.!. = | sin 6,281 S : b ) : e € V220sin(157: - 20°) d. —200 sin(r + 180°)

e RN TN -
" 1 SRR 4 - -

|_no.a;\.-1nrfnnf.. C-41B :



SECTION 14.3 Response of Basic A, L, and C
Elements to a Sinusoidal Voltage or Current Eial

&

10.

‘11

12.

13.

The voltage actoss a 3 ) resistor is as indicated. Find the si-
" nusoidal expression for the current. In addition, skctch the v
and i sinusoidal waveforms on the same axis,

4. 150sin 200¢

b. 30sin(377t + 20°)

¢ 6cosfewr +10°) i
d. =12 sin(wr + 40°) -

The current through a 7 k() resistor is as indicated. Find the
sinusoidal expression for the voltage. In addition, sketch the
v and i sinusoidal waveforms on the same a.:us

a. 0.1 sin 1000t

b. 2 X 107 5in(400¢ — 120°)

. Determine the inductive reactance (in ohms)of a 2 mH coil

for

a, dc y ;

and for the following frequencies:
b. 60Hz

c. 4kHz

d. l .2 MHz

5 Detcrmme the closest standard value mducla.ncc Lhat has a

r:acmuc:of
a. 2kﬂstf=l44'?kHz
b. 40k atf=53kHz.

Determine the frequency at which a 1 mH mductance has
the following inductive reactances:

a. 108}

b. 4k}

e 12k)

i

. The current through a 20 £} indugr.ive reactance is given.

What is the sinusoidal expression for the voltage? Sketch
the v and i sinusoidal wavefnms on the same mus
a. i ="5sinwr

b, i =40 X107 sin{wr + 60°) _

¢ i= —6 sinfwr — 30°)

The current through a 0.1 H coil is given. What is the sinu-
soidal expression for the voltage? -~ =

a. 10 sin 1007

b. 8 X 1078 5in(d00r + 207)

The voltage across a 50 {1 inductive reactance is given.

What is the sinusoidal expression for the current? Sketch

the v and i sinusoidal waveforms on the same set of axes.
a, 120 sin

b. 30 sin{wt + 20°)

The voltage across a 0.2 H coil is given. What is the sinu-
sotdal expression for the current?

a, 1.5 sin 60¢

b, 16X 1077 sin(10r + 2°)

Determme the capacmve reactance (in ohms) of a 5 ,uP ca-
par.‘lmr for

a. de

and for the following frequencies:

b. 60 Hz '

c. 2kHz

d. 2 MHz

-

14,

15.

16.

‘2. 100)

$h PROBLEMS 1/ 631

Determine the clomt standard vnlue capacitance that has a
reactance of -

a. 60()atf=265Hz E ' .
b. 1.2 k{) at 34 kHz. e _
Determine the frgquency at which a 3.9 wF capacitor has
the following capacitive reactances:

b, 1.2kQ)°

c. 0.14 d. 2000 (2

The veltage across a 2.5 {1 cnpac:twc reactance is given,
What is the sinusoidal expressmn for the current? Sketch
the v and i sinusoidal. waveforms on the same set of axes.

. 8 120 sin wi

17.

18.

19.

*20.

*21.

¢ v-= 10.5 sin{wt

b. 4 % 107 sin(wt + 40°)

The voltage across a 1 »F capacitor is given. What is the si-
nusdidal expression for the current? .

a. 30sin 200; § . L
b. 60 X 107 sin 377t ! i

The current through a 10 Q capacitive reactance is given.

Write the sinusoidal expression for the voltage. Sketch the v
and i sinusoidal waveforms on the same set of axes.

a. i=50X 107 sin wr

b. =2 X 107% sin(wr + 60°)

The current through a 0.56,uF capacitor is given, What is.
‘the siniusoidal expression for t.he voltage? _

a. 0.20sin 300r

b. 8 X 107 sin(377¢ — 30°)

For the following pairs of vulmgcs and curfcms. indicate
whether the clcmgnl involved is a capacitor, an inddctor, or
a resistor, and find the velue of C, L, or R if sufficient data
are given:
a. v = 550sin(377¢ + 50°)
i=11sin(377t — 40°)
b. v = 36 sin(754 ~ 80°)
= 4sin(754t — 170°)
-"139)
i.= 1.5 sinfwt — 13%) .
Repeat Problem 20 for the following pairs of voltages and -
currents:
a. v = 2000 sin wt - S
i=5cos o
b. v = 80sin(157r+ 150°)
i = 2sin(157r + 60°)
¢ v =35 sin(wt — 20°)
i= 7 cos{wr — 110°)

SECTION 14.4 Frequency Response

22.

23.

of the Basic Elements

Plot X, versus frequency for a 3 mH coil using a frequency
range of zero to 100 kHz on a linear scale.

Plot X versus frequency for a 1 uF capacitor using a fre-

4 quency range of zero to 10 kHz on a linear scale.

4.

25,

At what frequency will the reactance of a 1 uF capacitor
equal the resistance of a 2 k{) resistor?

The reactance of a coil equals the resistance of a 10 k{} re-
sistor at a frequeney of 5 kHz. Determine the inductance of
the coil.
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26, Determine the frequency at which a 1 uF capaciror and a " b Find the value of the inductance L. What is its probable
10 mH inductor will have the same reactance.. . standard value in m}i‘1 .
27. Determine the capacitance required to establish a capacitive c. Find the average power loss by the inductor.
reactance that will match that of a 2 mH coil at a frequency 34. InFig. 14.81,i = 30 x 1072 sin(27500t = 20°).
of 50 kHz. : P a. Find the sinusoidal expression for e,

b. Find the value of the capacitance C in microfarads.
What is its probable standard value in pF?
N 0 . & Find the average power loss in the ¢apacitor.
*28. Find the average power loss and power factor for each of " i o
the circuits whose input current and voltage are as follows: y
a v = 60 sin(wr + 30°)
i = 15 sinfwr + 60°)
b, v = =50 sin(wt — 20%)
i = =2 sinfwr —20°) ' %
“e. v = 50 sin{wr + 80°) - . :
i =3 cos(wt — 20°) R
d. v-= 75 sin(wt — 5°)
i = 0.08 sin(wr + 35°)
29. If the current through and voltage across an element are i = i Fi
8 sin(wt + 40°) and v = 48 sinf{wr + 40°), respectively, : 2 1G. 14.81
Problem 34
compute the power by I'R, (Vyulpg/2) cos 6, and VI cos 6, vigsa
and compare answers.
A circuit dissipates 100 W (average power) at 150V (cffcc-
tive input vo]tagc) and 2 A (effective input current). What is
the power factor? Repeal if the power is 0 W; 300 W,

SECTION 145 Average Power and Power Factor

=X = 240

‘ 3
I

*33. Fcr the network inFig. 14.82 and the applied signal:
a, Determine the sinusoidal expressions for i) and /5.
b. Find the sxnusmgni expression for i, by combining the

. twa parallel capacitors. ;
*31. The power factor of a circuit is 0.5 lagging. The power de- i g 3 ‘
livered in watts-is 500, If the input voltage is 50 sin(wr + : s 3

fé‘ ?

10%), find the sinusoidal expression for the input current. ~~~ .* : i &
32. InFig. 14.79, e = 34 sin(2m60r + 20°). T .o ;
a. What is the sinusoidal expression for the current? : -[;'l lf;
b. Find the power loss in the eireuit. ; . .
¢. How l{'mg (in seconds) does it mke_ the current to com- i @ C R uF €, =< 10 4F
plete six cycles?
Padas
- i
. ik LR % . F e = 120sin(10% + 60°) !
- . o
,@ ZR=680 . FIG. 14.82
By : pro o EE Lap Problem 35. -
¥ E 4 : ,, ) = :.
A3 ! *36. For the network in Fig. 14.83 and the applied source:
FIG. 14.79 _ " a. Determine the sinusoidal expression for the source volt-
Problem 32, . ) - Age Uy o ) E
F b. Find the sinusoidal.expression for the currents i) and 7.
33, In-Fig. 14.80, ¢ = 128 sinf 1000 + 60°).
a. Find the sinusoidal expression for i, i, = 24 sin (J0% +309) . #.

,, .

. BNy v, ngwm{ L‘g‘llﬂ':m}! -

.

SR REARED : FIG. 14.83.
Problem 33, 3 - . ' Probilem 36+
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SECTION 148 Conversion between Forms
37. Convert the Eollownngﬁpm rectansuiar te polar form:
a 4+j3° b 2+j2

:.4-!-_;12 d. 1000 +j 50
. : —:0004-_,*4000 f. ~04+;08

*38, Com the following from rectangular to polar form:
B —8-J16 R
h. +8—j4 = "
€. 002-70003 :
d, -6x107% - j6x107?
e 208 +0.02 »
£, 1000 + 20

39. Convert the following from polar to reuangula: form:

© a 6L40° b 12 /120°
¢, 2000 /—90° d. 0.0064 /+200°
e. 48 /2° LOSX 107 =200

40, Convert the following from polar to rectangular form:
a. 42 /0.15°
b. 2002 /-60° -
c. 0.006 /=120°
d. 8 X 10°° /—-220° .
e 15/+180°
f. 1.2 /-899%

]

SECTION 14.10 Mathematical Operations
with Complex Numbers .

41. Perform the following additions in rectangular form:
a. (42.+,68)+(76+02) -
b (14247 + (98 +j42) + (0.1 +;0.9)-
e (4% 1078 +76) + (12 X1077 ~ 4 5)
43, Perform the following subtractions in rectangular form:
a. (98 +)62)—(d46+j4.6)
b. (167 + j243)—(—42.3 = j.68)
e (=360 +778) — (- 4~ j6)+(10.8 — 172)
‘a3, Perform the following operations with polar numbers, and
leave the answer in polar form:
a, 6.20°+8.L80°
b. 42 L45° + 62 £60° = 70 £120°
e 20 /—120° - 40 /—150° + B /— 210“+8,‘+240°
44, Perform the following multiplications in recmngulnr form;
a (2+73)6+/8)
h.(78+_;1)(4+12)(7-'~36} :
c. (400 —+j 200)(=0.01 =~ j0.5)(~1 + j 3)
d45. Perform the following multiplications in polar form:
a. (2 £60°)4 £—40°)
b, (69 £8%)(7.2 £=72°)
c. (0.002 £120°)(0.5 £200°)(40 £ +80°)
46. Perform the following divisions in polar form: %
a. (42 £10°)/7 £60°) !
b. (0.006 £120°)/(30 £+60°)
¢ (4360 £-20°)/(40 £-210°) ,
47. Perform the following divisions, and leave the answer in
“rectangular form:
a (8+j8)A2+/2)
b (8+]42/(~6~j4) -
e (~4.5-;6/01 - jq.._S}'

¢

: (4+43)

PROBLEMS |11 633.

+48. Perform the following uperatiéns. and express yuur answer
in rectangular form: ?
+(6-j8)
S TR
b. g L60° L
E“ £0°) + (100 + j400) :
6 £20°)(120 v’-—40‘}{3 + j8)
2.£-30°

#49, Perform the following operations, and express your answer
. in polar form: ;oo ¥
(0.4 £60°)3(300 £40°)

3+j9

5 ((o 02 .1{'1_0"’) )(g)’(m)

#50, 9. Determine a solution for x and y-if
: (x+jd4) + (3x+fy) =T =16 £0°

b. Detérmine-x if

(10 £20%)(x £ —60°) = 30.64 ~ j 25.72

#51, . Determine a solution for x and y if

; (5x 10}~ jy) =90 - j70

b. Determine ¢ il .

BO £0°

20 48

c.

3.464.~ j2

SECTION 14.12 Phasors.

§2. ‘Express the following in phasor form:
8. V2(160)sin(wr + 30°)
b. V2(25 x 107%)sin(157¢ —~ 40°)
¢. 100 sin{wr— 90°) .

*53. fxprc:s the following in phasor form:

. 20sin(377: = 180%)

b 6x 10" "cusmr
c. 3.6x107 cm{?‘i‘#r 20°)

54. Express the' tcllowmg phasar currents and voltages as sine
waves if the frequency is 60 Hz:
a. 1 =40A£20°
b, V=120V £10°
e I=8%1073A £-110°
6000

. Vo=V L 180°
d 5 V418

55, For the system in Fig. 14.84, find the sinusoidal expression
for the unknown yoltage v, if ;
eu. = 60 sin{377t + 45°)
= 20 sin(3771 — 45°)

FIG. 14.84
Problem 55,
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56. For the system in Fig. 14.85, ﬁnd the sinusoidal expmslon
for the unknown current /; if
f, = 20 % 10 sinwt + 60°)
i3 = 6% 107 sin(wr - 30°)

. o 1{," :;1

FIG. 14.85 C o
Problem 56, .

57, Find the sinusoidal expression for the voltage v, for the sys- _

tem in Fig. 14.86if
ey = 120 sin(wr + 30"}
w, = 30 sin{wr + 60°)
= v = 40 sinfwt + 120°)

Uy

FIG. 14.86
i - Prabfem 57

*58. Find the sinusoidal expression for the current i for the sys-
tem in Fig. 14.87if
. i, 18 X 107 sin(377¢ + 180°)
4 iy =8 % 1073 sin(377¢ — 180°)

o~ ; iy= 2!2
Iy ) lfl 4‘1 hl
ti ]
J FIG. 14.87

. Problem 58.

Vs

SECTION 14.13 Computer Annlylls
PBpice or Multisim

59. Plot i, 'and v, versus time for the network in Fig. 14.76 for
tWo cyeles if the frequency is 0.2 kHz,

60. Plot the maghitude and phase angle of the current ic
versus frequency (100 Hz to 100 kHz) for the network in
Fig. 14.76.

*61. Plot the total impedance of the configuration in Fig
14.27(n) versus frequency (100 kHz to 100 MHz) for the
following parameter values; C = 0.1 uF, L, = 0.2 uH, R, =
2 M0, and R, = 100 M(). For what frequency rnnge is the
capacitor "capaciuve""

GLOSSARY

Average or real power The power delivered to and dissipated
by the load over a full cycle,

Complex conjugate A complex number. defined by ‘simply
changing the sign of an imaginary c.nmpnncnt of a complex
number in the rectangular form.

Complex number- A number that represents a point in & two-
dimensional plane located with refetence to two distinct axes.
It defines a vector drawn from the origin to that point.

Derivative The instantaneous rate of change of a function with
respect to time or another variable,

Leading and lagging power Factors An indication of whether a

“network is primarily capacitive or inductive in nature. Lead-
ing power factors are associated with capacitive networks and
lagging power factors with inductive networks.

Phasor A radius vector that has a constant magnitude at a fixed
angle from the positive real axis and that represents a sinu-

. soidal voltage or current in the vector domain.

Phasor diagram A “snapshot” of the phasors that represent a
~ number of sinusoidal waveforms at 1 = 0.
Polar form A method of defining a point in a complex plane :hat

includes a single magnitude to represent the distance from the

origin and an angle to reflect the counterclockwise distance
from the positive real axis.

Power factor (Fp) An indication of how reactive or resistive an
electrical system is. The higher the powar factor, the greater is
the resistive component,

Reactance The opposition of ah inductor or a capacitor to the
flow of charge that results i in the continual exchange of energy

between the circuit and magnetic field of an inductor or the

electric field of a capacitor.
Reciprocal A format defined by | divided by the complex
number. s
Rectangular form A method of defining a point in a complex
plane that includes the magnitude of the real component and
the magnitude of the imaginary component, the latter compo-
_nent being defined h¥ an associated letter j,

»

.



o Senies ANd PAaAllel
f"‘i' Ac Cmcuirs

« Bacome familiar with the characterisr}cs of series "
and parallel ac networks and be able to find

. current, voltage, and power !avals for aach

15.1 INTRODUCTION

In this chapter, phasor algebra is used to dmclnp a quick, direct method for solving both seriest (8

element.

» Be able to find the total :mpadancs of any seriss or
- parallel .-narwork and sketch the irqpedance and '
admmancs diagram of each.

» Daw!op confidence i in applying Kirchhotf’s current
and voltage laws to any‘ series or par&H&!
configuration,

+ Be able to apply the vn!tnge divider rule or current -
divider rule to any ac network.

» Become adept at finding the frequency respomss
“ofa sarfas or paraﬂaf combmatmn df nlamants

A

* and parallel ac circuits. The close relationship that exists between this method for solving for
unknown quantities and the approfichused for de circuits will become ; apparent after a few sim-
ple examples are considered. Once this association is established, many of the rules (current

wtdcr ifle, voltage divider rul

15.2 IMPEDANCE AN
Remstwa,Elaments

ln Chapter. 14, we found forth
and the m&gmmde

€, and 50 on) forde cucu:ls can be readily. applxed to ac crrqults

-

- ssmss ac cmcd.trs

"

D THE PHASOR DIAGHAM

e purely resistive circuit in Fig. H 1, that v and i were in phase,

=2 “or W,=1R

M
FIG. 15.1
Resistive ac circuit.*
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~

“ +
v = ]00 sin wr
FIG. 15.2 .
Example 15.1.
100 V-~ v
0AY-= : ” %r'. 27

0 g : wl

FIG. 15.3
Waveforms for Example 15.1.

i = 4 sin(wt + 30°)

i 20
FIG. 15.4
Example 15.2.
BV - v
il st o
. . e R
30’-' :.‘J_ %’ % ! 7 2r
! '. ; ; L '. : i .
»
"FIG. 155
%vqurmsfarl{mmpk 152

"

-Ialc__

In phasor form,
v=Vysinwt=V =V £L0°

where V 0.707V,,
- Applying Ohm's law and using phasor slgebrn, we have

Ve LO’

< e
I= R/_B @___93

Since i and v are in phase, the angle associated with { also rhust be 0°, To
satisfy this condition, 8z must equal 0°, Substituting 6z = 0°, we find

=% fm—ové%mﬂ

so that in the time domain,

Ra(5)

We use the fact that 8 = 0° in the following polar format to ensure the

proper phase relationship between the voltage and current of a resistor:

' s

The boldface roman quantity Zg, having both magmitude and an asso-
ciated angle, is referred to as the impedance of a resistive element. It is
measured in ohms and is a measure of how much the element will “im-
pede" the flow of charge through the network. The above format will
prove to be a useful “tool” when the networks become more .complex

and phase relationships become less obvious. It is important to realize,

however, that Zg is not a phasor, even though the format R £0° is very
similar to the phasor notation for sinusoidal currents and voltages. The”
term phasor is reserved for quantities that vary with time, and R and its
associated angle of 0° are fixed, nonvarying quantities. "

Fi

EXAMPLE 15.1 Using co;npiex algébra. find the current i for the cir-

" -cuit in Fig. 15.2. Sketch tim waveforms of v and i,

Saluﬂon- Note Fig. 15. 3
v = 100 sin wt=:-phasar form V = 70.71 V £0°

L'V Ve 1071V L0° - X
1-? el s S 208
z v’i(m.m) sin{.ur=2ﬂsiimx

and. i=

EXAMPLE 15.2 Using complex algebra, find the voltage v for the cir-

" cuit in Fig. 15.4. Sketch thc waveforms of v and i.

Sofutlan: Note Fig.'15.5+

i = 4sin(wr + 30°) #phasor formI = 2.828 A £30°

V=12 = (I LO)(R £0°) = (2, 828 A £30°)(2 0 £0°)
- D mSeS6V L ¢

Cand v = V(S 656]sm(cu£ +30°) = 8.0 sin(wt + 300)




Tt is often helpful i ‘the analysis of networks to have a phasor dia-
* gram, which shows-at a glance the magninides and phase relations
~ among the various quantities within the network. For example, the pha-
~ sor diagrams of the circuits considered in‘the two preceding examples
would be as shown in Fig. 15.6. In both cases, it is immediately obvious

. +that v and i are in phase since they both have the same phase angle:

Inductive Reactance _
‘We learned in Chapter 13 that for the pure inductor in Fig. 15.7, the volt-

age leads the current by 90° and that the reactance of the coil X, is deter-
_mined by wL. We have » :

#

"'y = V,,sin ot = phasor form V =V 20°

A " FIG. 15.7
Inductive ac circuir.

>

By Ohm'slaw, % "
Vel VT
K i XLM

Since v leads i By 90°, i must have an angle of —90° asseciated with it.
* To satisfy this condition, 6; must equal +90°. Substituting 8 = 90°,.we
* obtain

VeV - %
o Y EL Y 00 — 908 = -— £=00°
I : Xp £90° XLZ.Q._Q.-. 'XL_ %0

_so that in the time domain, :
! Vv ¥
i= v’i(-—)sin(wr - 90°)
X

We use the fact that 6, = 90° in the following polar format for indue-
| “live reactance to ensure the proper phase relationship between the volt-
age and current of an inductor: T '

The boldface roman quantity Z;, having both magnitude and an asso-
ciated angle, is refetred to as the impedance of an inductive clement, Itis
measured in ohms and is a measure of how much the inductive elemest
“controls or impedes™ the level of current through the network (always

skeep in mind that inductive elements are stdrage devices and do not dis-

sipate like resistors). The above format, like that defined for the resistive

“element, will prove to be a useful tool in the analysis of ac networks.
Again, be aware that Z; is not a phasor quantity, for the same reasons in-
dicated for a resistive element.

IR

~* IMPEDANCE AND THE PHASOR DIAGRAM ‘111 637

S
’ -l
+ B
1 v
et '..._..H H &
14.14 A |
707V d
(a)
i
P /-‘(\ i
47T 3 =
A}
v/"" 5 v
L3
\ 'ﬂ:"(
\ "ﬁ*
/’\\ ‘30"" . s
+
(v) o =

FIG. 15.6
Phasor diagrams for Examples 15.1 and 15.2.
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+
v = 24 sin wt
. FIG.158
Example 15.3,
UV} ‘
BAR === ! ' -
/ Ll
0 r'i ” .E,,r 2w 5wt
P 90’,1-—- 5
FIG. 15.9

" Waveforms for Example 15.3. ' .

i = Ssinfwt + 30°)
ey

+
I,.-riﬂ%u

[ o S
FIG. 15.10
Example 15.4. .

FIG. 15.11
Waveforms for Example 15.4,

.

#

EXAMPLE 15.3 Using complex algebra, find the current i for the cir-
cuitin Fig. 15.8. Sketch the v and { curves. i

Solution: Note Fig. 15.9:

v = 24 sin wt = phasor form V = 16,968 V £0°
NV _ Vo 16968V L0°
Z, X, 290° 30 .L90°
i = \/E(s.ﬁ;s_) sin(wt = 90°) = 8.0 sin (et — 90°)

Iw = 5.656 A £—90°

and

EXAMPLE 15.4 Using complex algebra, find the voltage v for the cir-
cuit in Fig. 15.10. Sketch the v and  curves. Y
Solution: Note Fig, 15.11:

i = 5 sin(wt +30°) = phasor form I = 3.535 A £30°

V=12, = (I L)(X; £90°) = (3.535 A £30°)(4 Q) £.+90°)
= 14,140V £120°, - .

and v = V(14.140) sin(wr + 120°) = 20in(ak + 120°)

The phasor diagrams for the two circuits of the two preceding exam--
ples are shown in Fig. 15.12. Both indicate quite clearly that the voltage
leads the current by 90°. - E

]
] 16,968 A—e!

5.656 A
5 _|r o .
FIG. 15.12 .
Phasor diagrams for Examples 15.3 and 15.4.

Capacitive Reactance .

We learned ?ﬁ Chapter 13 that for the pure capacitor in Fig. 15.13, the
current leads the voltage by 90° and that the reactance of the capacitor
Xc is determined by 1/wC. We have

v = V,,sin w! => phasor form V = V' 20°
: :

f.'

+

‘ Xd = IMC]\ v = V,sinw

JFG.15.13 . i f
Capacitive ac circuit.
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4 Loy T3 gt T L " s e ) . . I
' Applying Ohm's law and using phasor algebra, we find :
B A R '
]m———m e /0° — B "o
R, Tt I : X Lbc XC J
Since i leads v by 90°, i must have an angle of +90° associated with it. To
- satisfy this condition, 8 must equal =90°. Substituting ¢ = —90° yields

V £0° \4 : v
— R — OO — __g 9 . — !_9 &
. I - XC L..g.ou XC L__(_Dl XC 0
80, in the time domain, - ‘ : 3 ¢

RE v’z’(i) sin(wt + 90°)
Xc _

We use the fact that fc = —90° in the following polar format for ca-
pacitive reactance to ensure the proper phase mlatlonshlp between the
“ yoltage and current of a capacitor:

sy

"The holdfacc roman quantity Z,;-, having both magmtudc and an asso- . .
ciated angle, is referred to as the impedance of d capacitive element. It is
‘measured in ohms and is a measure of how much the capacitive element ~
“controls or impedes” the level of current through the network (always*
keep in mind that capacitive elements are Storage devices and do not dis-
sipate like resistors). The above format, like that defined for the resistive
element, will prove a very useful tool in the analysis of ac networks.
Again, be aware that Z is not a phasor quandty. for the same reasons in-
dicated for a resistive elemcnt

" 8
-
-

EXAMPLE 15.5 Using complex ilgcbra. find the current i for the cir- ik o .
cuit in Fig. 15.14. Sketch the v and { curves. ' e s Tl 3
Solution: Note Fig. 15.15: : - : + '

v = 15 sin wt = phasor notation V = 10.605 V. £0°_ LR el
v Ve 10.605 V £0°

I=—= h = A =5, o
To Heloor e AR AL .

and i = V3(5.303)sin(wt + 90°) = 7.5 sin(awt + 90°) ' FIG. 15.14
: ' . Example 15.5.

SR 15 Vhunss

wl

FIG. 15.15

@ Waveforms for Example 15.5.

%
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i = 6sinfwr - 60°)
e

Xe = 05O v

o

FIG. 15.16
Example 15.6,

Leading

10.605 V'

(a)

®)

FIG.15.18
Phasor diagréms for Examples 15.5 and 15.6,

!

fic

EXAM PLE 15.6 Using cnmplex algebra, find the voltage v for the circuit
in Fig, 15.16. Skctch the v and i curves,

Solution: Note Fig: 15.17: e

i=6 d‘in(mr — 60°) => phasor notation I = 4.242°A £~ 60”

V=1Zc= (1£6)(Xc L~ 90“)‘-[4242AL 60°)(0.5 2.£-90°)
= 2121V £-150°

and
\/5(21'121) sin(wr — 150°) = 3.0 sin{wt = 150°)

L

IV -

|
L8

FIG. 15.17
Waveforms for Example 15.6.

4

The phasor diagrams for the two circuits of the two preceding exam-
ples are shown in Fig. 15.18. Bonh :ndicate quite clearly that. thc current
i leads the voltage v by 90°. i

¢

-Ir_npe_dance Diagram

Now that an angle is associated with resistance, inductive reactance, and
capacitive reactance, each can be placed on a complex plane diagram, as
shown in Fig.-15.19. For any network, the resistance will always appear
on the positive real axis, the inductive reactance on the ‘positive imagi-
nary axis, and the capacitive reactance on the negative imaginary axis.

FE]

4 K £90°

N*90°
o 90

RO +

¥ X £90°

FIG. 15.19
Impedance diagram. % -
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‘The fesult is an impedance diagram that can reflect the individual and
total impedance levels of an ac network. ; '
"' We will find in the rest of this text hat networks combining different
* types of elements will havetotal impedances that extend from '—90° to
+00°. If the total impedance has an angle of 0°, it is said to be resistive

in’ nature. I it is closer 1o 907, it is inductive in nature, If it is closer to -

—90°, it {s capaeitive in nature,

Of course, for single-element networks, the angle associated with the
impedance will be the same as that of the resistive or reactive element, as
revealed by Egs. (15.1) through (15.3). It is important to remember that
impedance, like resistance or reactance, is not a phasor quantity repre-
senting a time-varying function with a particular phase shift. It is simply
an operating tool that is extremely useful in determining the magnitude
and angle of quantitiés in a sinusoidal ac network. ;

Once the total impedance of a network is determined, its magnitude
will define the resulting-current level (through Ohm'’s law), whereas its
angle will reveal whether the network is primarily inductive or capaci-
tive or simply resistive. ; '

For any configuration (series, parallel, series-parallel, and so on), the
angle associated with the total impedance is the angle by which the
applied voltage leads the source current. For inductive networks, O
will be positive, whereas for capacitive networks, 87 will be negau'vel.

15.3 SERIES CONFIGURATION -

The overall properties of series ac circuits (Fig. 15.20) are the same as *

those for de circuits. For instance, the total impedance of a system is the
sum of the individual impedances: b

> \z,-=_zi + Tyt Lyt +_zh',] (15:4)

FIG. 15.20

Series impedances,

EXAMPLE 15.7 Draw the impedance diagram for the circuit in Fig.
15.21, and find the total impedance. i

Solution: As indicated by Fig. 15.22, the input impedance can be
‘found graphically from the impedance diagram by properly scaling the
real and imaginary-axes and finding the length of the resultant vector Zr
and angle 7. Or, by using vettor algebra, we obtain
ZT’ = Zi o r‘l.z
= R £0° + X; £90° ¥
=R+jX,=40%j8Q
~Zr = 8.94 L} £63.43°

SERIES CONFIGURATION |11 641

fi

!

BT i
Z;
O ~ - -
FIG. 15.21
v Example 15.7.
j -
e
- |
X, = 80 i
L S I‘
. -4
7 i
R=40 +
FIG. 15.22

Impedance diagram for Example 15.7.
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A 22 z, - s —
; EXAMPLE 15,8 Determine the input impedance to the series network
TS I/ in Fig. 15.23. Draw the impedance diagram. ;
O ”r i I\ B
R=60 X =100 X.=120 Solution: .
Zr Zr=Z,+ L+ 2, . )
= R £0° + X; £90° + X, £-90°
ol | : R RSk 0-120)=60-/20
=R+ j(X - =60+ 100 - 12 =60-j2
FIG, 15.23 A J(% - Xc) : bl ) J
Example 15.8 Zr=6.3210 £~1843

The iﬁwcdance diagram appears in Fig. 15.24. Note that in this exam-
ple, series inductive and capacitive reactances are in direct opposition.

, - ) ' - t/ For the circuit in Fig. 15.23, if the inductive reactance were equal to the
b % =100 capacitive reactance, the input impedance would be purely resistive. We
k will have more to say about this particular condition in a later chapter. - ,
_ ; For the representative series ac configuration in Fig.. 15.25 having
! RS0 . two impedances, the current is the same through each element (as it was
Xe-X =20 g R e, Jﬂr = for the series dc circuits) and is determined by Ohm's law: '
e SN : Zr=Z,+2Z; .

¥enizh and .| 1= : (15.5)

i \ .
The voltage across each element can then be found by another applica-

FIG. 15.24 i . tion of Ohm's law: *
Impedance diagram for Example 15.8. .

R , g I (A5.6a)
§V.I . % - TR [V =1z] it o (15.6b) .

I Z 3
- F i Kirchhoff’s voltage law can then be applied in the same manner as it
o+ < . Z |V is employed for de circuits. However, keep in mind that we are now deal-
E T : 2 ing with the algebraic manipulation of quantities that have both magni-
- ; 2 tude and direction. We have | Y
£ - : . +‘E-V,=V,=0 :

- vy ¢ .
. FIG. 1525 or’ L [B=we W] s

Series ac circuit, - /
The power to the circuit can be determined by

P = E[ cos oy (15.8)

where 67 is the phase angle between E and 1,
Now that a general approach has been introduced, the simplest of se-
ries configurations will be investigated in detail to further emphasize the
_ similarities in the analysis of de circuits. In many of the circuits to be
; corfsidered, 3 + j4 = 5 £53.13° and4 + j 3 = § 2.36.87° are used quite
. - frequently to ensure that the approach is as clear as possible and not lost’
. ' in mathematical complexity. Of course, the problems at the end of the
v ' - chapter will provide plenty of experience with random values,



Aol <

" Refer'io Fig 18.26. " i
;.l‘ '

Ehioor Notation

e=14l4sinwr=E =

Note Fig. 15.27.

100 V£0°

. Zp . '

Zr=Z +Z3=3020°+40490° =30+ /40

and" L Z;=50 /5313 '
Impedance diagram: See Fig. 15.28,

(= E_ loovee

Zr = m =20 A £-53.13°

Vgand Vi -
@hm’s law: d :
Va=IZg = (20 A £-53.13°)(3 O £0°)
=60V £-5313
V. =1Z, = (20A 2-53. 13°)(4n £90°)
=80V L36.87°
Kirchhoff’s vokage !E:w:
ZV=E~-Vg=V, =0
- or . E=V+V, s

In rectangular form,
Ve =60V £-5313° =36V — j48V A
V=80V £+3687° =64V + j48V
and ol : B
E=Vg+ V. =(36V—j48V) +(64V + j48V) =
=100V £0° -

as applied.
. Phasor diagram: Note that for the phasor dtagram in Fig. 15.29, L is

100V +j0

in phase with the voltage across the re51sl0r and lags'the voltagc Across -

the inductor by 90°,
~ Power: The total power in waits delivered to the circuit is
Py ="Elcosfr
= (100 V)(20 A) cos 53. 13“ = (2000 W)(O 6)
= 1200 W

where E and / are effective values and 87 is the phase angle between E
and /, or i

(20 AY(3 0) = (400)(3)
= IZOlLW

SERIES CONFIGURATION 11| 843

R=30 X =40
l‘lrl' : Im\

+uR-

+ =

@, .
e = 141.4 sin wt i

FIG. 15.26
Series R-L circuir.

R=30
AAA
Yy

i+ Vg

x,_--ﬂ'l

+ V-

E=100V 20 1

+

=
FIG. 15.27

Applying phasor notation 1o the network in
Fig. 15,26, 7

XLnﬂﬂ

FIG. 15.28 ,

Impedance diagram for the series R-L circuit in
 Fig. 15.26. . :

+
FIG. 15.29
Phasar diagram for the series R-L circuit in
Fig. 15.26.
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W
+ vy — ."'Uc_

w

FIG. 15.30
Series R-C ac circuit.

¥

X{- = Sﬂ
I
I\
+ Vo -
FIG. 15.31
Applying phasor notation to the circuit in
) Fig. 15.30.
; k
R=60
1]
g Or=53.13° *
T i
X-=8101 %
" 2
1
| '
FIG. 15.32

Impedance diagram for the series R-C ciréuitin . _

Fig. 15.30. 5

;‘ -
C)i = 7.07 sin(er + 53.13%) .

e

=
where / is the effective value, or, finally,

Pr=Pg+ P, = Vplcos g + VI cos

. (60 V)(20 A) cos 0° + (80 V){(20 A) cos 90°
[200W + 0 '
= 1200 W

where O is the phase angle between Vg and I,-and 0 is the phase angle

between V, and I, -
Power factor: The power factor F,, of the circuit is cos 53.13° = 0.6

lagging, where 53.13° is the phase angle between E and L.

If we write the basic power equation P. = EI cos 6 as -

74
cos B = El
where E and [ are the input quantities and P is the power delivered to the
network, and then perform the following substitutions from the basic se-
ries ac circuit as =
PR IR R
csl=—as —s—=—=

R
ElI_EI ‘E E/l Zr

-

. _ = ‘
we find ) FJ’= cos B = Z_T . _ (15.9)

- Reference to Fig. 15.28 also indicates that @ is the impedance angle
fas written in Eq. (15.9), further supporting the fact that the impedance
angle 07 is also the phdse angle between the input Voltage and current for
a series ac cirtuit. To determine the power factor, it is necessary only {0
form the ratio of the total resistance to the magnitude of the input imped-
ance. For the case at hand, ;

R 30
WF. = == —= 0.6 i
p = cos @ Zr 50 0.6 Iagging

as found above.

R-C
Refer to Fig. 15.30.

' Phasor Notation

i = 7.07sin(wr + 53.13°) =1 = SA £53.13°
Note Fig. 1531. , .
Zr

Zr =2 + 2 =6020°+80,-90°=60-80"
and Zr=100Q £L-5313°
Impedance diagram: As shown in Fig. 1532,

_ _ . S
E =1Z; = (5A £53.13%)(10 2 £ —52.13°) = 50V £0°
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Vnand Vc
Vi =1Zg = (I £O)(R £20°) = (5 A £53. 13°)(5 Q £0°)
=30 V.£53.13°
vc 1Zc = (1 LB}{XC £-90°) = (5A £53. 13°)(sn £.—90°)
= 40V L—36.87° _
K:'n:hhoﬁ' s voltage law: , .
“ SoV=E-Vg-Vc=0
or * E=Vg+ V¢ f

which can be verified by vector algebra as demonstrated for the R-L circuit.
Phasor dtagmm Note on the phasor diagram in Fig. 15.33 that the
currént T is in phase with the voltage ‘across the resislor and lcads the
voltage across the capacitor by 90°.
Time domain: In the time domain,’

e = V2(50) sinwt = 70.70 sin wt .
vg = VZ(30) sin(awr + 53.13°) = 42.42 sirf(eot + §3.13°)
ve = V3(40) sin(wf — 36.87°) = 56.56 sin(w! ~ 36.87°)

A plqt’of all of the voltages and the current of the circuit appears in
Fig. 15.34. Note again that i and vg are in phase and that v¢ lags i by 90°.

wl

_ FIG. 15.34
. Wavefarms for the series R-C circuif in Fig. 15.30.

 Power: The total power in watts delivered to the circuit is

Pr= Elcos Oy = (50 V)(5 A) cos 53.13°
=(250)(0.6) = 150 W

or ~ Pr= PR = (5A)%6Q) = (25)(6)
= 150 W

or, finally,

Pr= Py + Pp = Vplcos g + Vel cos e

(30 V)(5 A) cos 0° + (40 V)(5 A) cos 90°
= IS0W+0

=150W .

-

SERIES CONFIGURATION |11 646

+
FIG. 15.33
Phasor diagram for the series R-C circuit in
Fig. 15.30.
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X, =790

X,-Xo=40

=5313°
1

R=34 +

| Xc=30

FIG. 15.37
fmpsdariu diagram for the series R-L-C, dmﬂt:’n

Fig 15.35.

Power factor: The power factor of the circuit is
F, = cos f = cos 53.13° = 0.6 leading
Using Eq. (15.9), we obtain

as determined above.

R-L-C

Refer to Fig. 15.35.

A

e= 70.7 sin mf@

~ -

*

R 61}
Fp=gos8 =2 =15n
= (.6 ieading
3,39 X;= 18 X =30
4 Up - +”L"+uc-
A

=

FIG. 15.35 ~

Phaspr Notation As shown in Fig. 15,36,

E-a 50vzﬂ°@

Series R-L-C ar circuit,

Reidn X =70 Xe=30

‘P“'R—

+: ";_ -

(_

4 ¥
1|

FIG. 15.36

Appe‘vmg phasor notation o the cxr wit in Fi, :g 15. 35

Zr

ZT" Z|+Z2+23"RLUB"‘XI

and

i

$90° + X £—90°
—1D+j‘7ﬂ—j3ﬂ-3ﬂ+}4ﬂ

Zr=5{ £53.13°

Impedance diagram: As shown in Fig. 15.37.

g 3T B

S0V £0°

560 /5313

l{)A L=53. 13“
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Vg, Vp mdv,, _ .
Vi = rz,, (1 L&}(RLO“) = (lOA/_ 53. 13")(311,10")
s #HVL—SS.!? 2
LV = 12y = (1 20)(X 490°) = (10 A £-53.13°)(7 n £90°)
L= 70\1436.8'?" . .

VC==IZC (1£8)(Xe £~ 90“)—(10,&4 —53.13°)(3 0 £-90°)
=30V L=-143.13° :

" Kirchhoff''s voltage law:
EGV E-Vg—V,—-V=0
. or J E=Vp+ V¥V, + Ve

t

" which can also be verified through vector algebra, g
Phasor diagram: The phasor diagram in Fig. 15.38 indicates that '
the current I is in phase with the voltage across the resistor, lags the g
voltage across the inductor by 90°, and leads the voltage across the ca-- - E v N A
pacitor by 90°. _ PR ' '
Time domain: RS

i = V2(10) sin(er — 53.13°) = 14.14 sin(wt = 53.13°) b, Wi A
v = V2(30) sin(wr — 53.13°) = 4242 sin(wt = S3.13°) Ve o
v, = VZ(70) sin(wt + 36.87°) = 98.98 sin(wf + 36.87°) Ve
ve = VA(30) sin(wf — 143.13°) = 4242 sin(ef — 143:13°) " FG.1538

Phasor diagram for the series R-L-C circuit in
* Fig. 15.35. t

‘A plot of all the voltages and the current of the eircuit appears in
Fig. 15 39

h

w

5{
]

-3

FIG. 15.39
Waveforms for_l!re series R-L-C circuit in Fig. 15.35.

" Power: The total power in watts delivered ro the circuit is
Py = El cosfr = (S0.V)(10 A) cos 53.13° = (500)(0.6) = 300 W
or Pr= PR = (10A)430Q) = (100)(3) = 300 W



648 |1 SERIES AND PARALLEL ac CFHCUFTS‘

E= 00V

FIG. 15.40
Exalple 15.9.

i~

or

Pr="Pg+ P, + Pp
= Vglcosfg + V Icos¥, + thcost?c
#= (30 V)(10 A)cos 0° + (70 V)(10 A)coz 90° + (30 V)(10 A)cos 90°
=(30V)(I0A) +0+0=2300W :

wagr factor: The power factor of the circuit is
F, = cosfr = cos 53.13° = 0..6 lagging
Using Eq. (15.9), we obtain
R .30

2 cusﬁ—-é;;g-h-=0.ﬁlagging

15.4 VOLTAGE DIVIDER RULE

The basic format for the voltage divider rule in ac cireuits is exactly the,
same as that for dc circuits:

Z.E
: g .
where V, is the voltage across one or rh_urc elements in a series that have

total impedance Z,, E is the tulai voliage appearing across the series cir-
cuit, and Zy is the wotal impedance of the series circuit,

V= (15.10)

EXAMPLE 15.9 Using the voltage divider rule, find the voltage across
_‘each element of the circuit.in Fig. 15.40..

Solution:
v _ZE_ (4Q2-90°)(100V-£0°) 400 £-90°
€ Zc+Zp -4NL-90°+3020° 3-j4
' -400 £-90°
LA -36.87°
PSR LD Isu\rz* 36.8
. v ZRE  (30£0°)(100V £0°) 300 £0°
R™ Zce+2zg~  5Q02-5313° 5.-53.13°
=60V £+53.13°

EXAMPLE 15.10 Using the valtage divider rule, find the unknown
voltages Vg, Vi, V¢, and V| for the circuit in Fig, 1541,

X, =90 Xc=110

I
T

E =30V

FIG. 15.41
Example 15 10.
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Samﬁon- A ; _
T SOC (6 0 £0°)(50 V £30°)
zk_+z,_+zc T6Q L0 +90490° +17Q2L-90°
L S a0l 4300, - 300.430°
FTeeje—j17. £—i8
300 £30°
10 £-53.13°

V=

=30V .83.13

Calculator The above calculation provides an excellent opportunity
to demonstrate the power of today’s calculators, For the TI-89 calculator,
. the sequence of steps to calculate Vg are shown in Fig. 15.42:

EEED < €03 DI EI €D GG < ERE DR EIERED
-z°m-mz°m ,
ﬂéﬂ mvPowﬂsmEozss-isEa

FIG. 15.42
Using the TI-89 calculator to determine Vi m Exarrgale 15 IG

ZE (990 £90°)(50V £30°) 450 V £120°

V), = —— = =
Loz 10Q £-53.13° 10 £—53.13°
=45V £173.13°
v. o LE_ (70 £-90°)(50V £30°) 850 V £—60°
=
T 100 £-53.13° 10 Z-53°
_ =85V L~6.87°
v Lt ZIE (002904170 £~90°)(50 V £30°)
TR T o 100 £-53.13°
(8 £—90°)(50 £30°)
T 104-53.13% 3
400 Z-60° - _ ;
e T OY 687 ; .

EXAMPLE 15.11 For the circuit in Fig. 15.43:

" a. Calculate I., Vi, Vi, and Vgin phasor form.
b. Calculate the total power factor. >
. Calculate the average power delivered to the circuit,

C, = 20uF C; = 200 uF

Ry=60 Ry =40 L, =005H L, =005H
5 I( If
K
u o LA "

|

e = 1/Z(20) sin 37Tt

FIG. 15.43
Example 15.11.
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d. Draw the phasor diagram.
e. Obtain the phasor sum of Vg, Vy, and Ve, and show that it equals the

input voltage E.
f. Find Vg and Vg using the voltage divider rule.

Solutions:

a. Combining common elements and finding the reactance of the in-
ductor and capacitor, we obtain -

Rr=60+40=100
Ly =005H +005H=0.1H

Cr= 200 uF = 100 uF
. X; = wL = (377 rad/s)(0.1 H) = 37.70Q
R - o 10°0
F€ 7 wC T (377 rad/s)(100 x 1075 F) 37700

Redrawing the circuit using phasor notation results in Fig. 15.44.

=26530

26,53 0)

R=100 X, =3.700 %=

E=20VZ0

FIG. 15.44
Applying phasor notation to the circuit in Fig. 15.43.

For the circuit in Fig. 15.44,

Zr =R L0° + X, £90° + X¢ £—90°
100 +j37.70Q — j26.53 Q.
100 +/1117 0 = 15 Q £48.16°

The current I is
B 20V £0°
Zr- 150 £48.16°

The voltage across the resistor, inductor, and capacitor can be found
using Ohm’s law:

Va'=1Zp = (I LO)(R £0°) = (133 A £=48.16°)(100) .:0°)
= 1330 V £4,-48.16°

V=12 =0 £6)(X 1 £90°) = (133 A £—-48.16°)(37.70 0 £90°)
= 50.14 V £41.84°

I= = 133A £-48.16°

¢ Vca.%lzc (I £6)(Xe £-90°) = (1.33 A £—48.16°)(26.53 1 £-90°)

= 3528 V £ -138,16°

b. The total power factor, determined by the angle between the applied
voltage E aﬁd the resulung current I, is 48.16°: '

F,= cos& = cos 48. 16° = Oﬁﬁ?lugging

10.0. = 0667Iagging

%N R —h
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¢ The toral pov.;fc'r in watts delivered to the circuit is = :
B g = Elcos f = (20 V)(1.33 IA)(G.GG'?) = 17.714 W
d. The phasor diagram appears in Fig. 15.45.
e, The phasot sum of Vg, VL. and Ve is
E=Vgp+ V. + V¢ ' ! ; 2
=1330V L—48.16° + 50.14 V £41.84° + 3528 V £ —138.16°
E = 1330V £—48.16° + 14.86 V £41.84°

Therefore, .

E= V(1330 V)2 + (1486 V) =20V

and oy = 0° (from phasor diagram) Ve 3

and ' E =20 £0° - . FIG. 15.45 !

e %R_E_ = (100 LO")(ZOY £0°) . 500V 20° Phasor dfagrqu_ar the circuit in Fig. 15.43.
. Zr 150 £48.16° T 15 £48.16°
=133V £-48.16° _
v o B 2630 £-90°)(20V £0°) _ 5306V 290"
Zr 15 {1 £48.16° 15 £48.16°

= 3537V L—138.16°

r

15.5 FREQUENCY RESPONSE FOR SERIES
ac CIRCUITS ' ;

Thus far, the analysis has been for a fixed frequency, resulting in a fixed
value for the reactance of an inductor or a capacitor. We now examine
how the response of a series circuit changes as the frequency chahges. .
We assume ideal elements throughout the discussion, so that the re-
sponse of each element will be as shown in Fig. 15.46. Each response in
Fig. 15.46 was discussed in detail in Chapter 14,

i 1
A Xc.::i—ff_—ﬂ

ol SF

™+

||]—<

FIG. 15.46
Reviewing the frequency response of the basic elements.
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When considering elements in serics, remember that the total imped-
ance is the sum of the individual elements and that the reaciance of an
inductor i< in direct opposition to that of a capacitor. For Fig. 15.46, we
are first aware that the resistance will remain fixed for the full range of
frequencies: It will always be there, but, more important, its magnitude
will not change. The inductor, however, will provide increasing levels of
impedance as the frequency increases, while the eapacitor will provide
lower levels of impedance. .

We are also aware from Chapter 14 that the inductor has a short-
circuit equivalence at f = 0 Hz or very low frequencies, while the capaci-
tor is nearly an'open circuit for the same frequency range. For very high
frequencies, the capacitor approaches the short-circuit equivalence, and
the inductor approaches the open-circuit equivalence.

I general, therefore, if we encouhter a series R-L-C circuit at very low
frequencies, we can assume that the capacitor, with its very large imped-
ance, will be the predominant factor. If the circuit is just an R-L series cir-
cuit; the impedance may be determined primarily by the resistive element
since the reactance of the inductor is so small. As the frequericy increases,
the reactance of the coil increases to the point where it totally outshadows
the impedance of the resistor. For'an R-L-C combination, as the fre-
quency increases, the reactance of the capacitor begins to approach a
short-ciscuit equivalence, and the total impedance will be deterrhined pri-
marily by the inductive element. At'very high frequencies, for an R-C
series circuit, the total impedance eventually approaches that of the resis-
tor since the impedance of the capacitor is.dropping off so quickly.

In total, therefore, .

when encountering a series ac circuit of any combination of
elements, always use the ideclized response of each element to
establish some feeling for how the circuit will respond as the
Sfrequency changes, ' '

Once you have a logical, overall sense for what the response will be, you
can concentrate on working out the details. :

]

Series R-C ac Circuit

As an example of establishing the frequency response of a circuit, con-
sider the series R-C circuit in Fig. 15.47. As noted next to the source, the
frequency range of interest is from 0 to 20 kHz. A great deal of detail is
provided for this particular combination, so that obtaining the response
of a series R-L or R-L-C combination will be quite straightforward,
Since the resistance remains fixed at 5 k() for the full frequency
range, and the total impedance is the sum of the impedances, it is imme-
diately obvious that the lowest possible impedance is 5 k(). The highest

R

AWy - :

) ' Sl _L N
g
E=[0V.L0® Z,’- . Lol 0.01 uF VC
fi0to20kHz - T -
; )
=
FIG, 15.47

Determining the frequency.response of a'series R-C circuil.
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impedarice, however, is dependent on the capacitive element since its 3 .
impedance at very low frequencies is extremely high. At very low fre- r . *
quencies we can conclude, without a single calculation, that the imped- :
ance is determined primarily by the impedance of the capacitor, At the
highest frequencies, we can assume that the reactance of the capacitor
has dropped to such low levels that the impedance of the combination
willrapproach that of the resistance. : '
The frequency at Which the reactance of the capacitor drops to that of
the resistor can be determined by setting the reactance of the capacitor
‘equal to that of the resistor as follows: i

1
Xc= =R
g 2mfiC
Solving for the ﬁ%quency yields
fi= = (15.11)
V" 2mRC :

This significant point appears in the frequency plots in Fig. 15.48.
Substituting values, we find that it occurs at -

1 1
N =52k T 20(5 kQ)(0.01 uF)
We now know that for frequencies greater than fi, R > X and that for

frequencies less than fi, Xc > R, as shown in Fig. 15.48.
Now. for the details. The total impedance is determined by the follow-

= 3,18 kHz

ing ‘équation:
Zr=R - jXc
g Xc|
aind Zp=ZpLOr = VR + X f_—tan_'_l?c (15.12)

The magnitude and angle of the total impedance can now be found at
any frequency of interest by simply substituting into Eq. (15.12). The
_presence of the capacitor suggests that we start from a low frequency
(100 Hz) and then open the spacing until we reach the upper limit of

interest (20 kHz).
2 .
5kl
0 B 7
AMA

R-:Xc R‘)Xg

FIG. 15.48
The frequency response for the individual elements of a series R-C circaat.

]
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]

or Ve = Ve LBC \/._.___%

1ne

f= 100 Hz

I 1
Xr=
€7 2afC "~ 2m(100 Hz)(0.01 uF)

and Z7= VR + X¢ = V(5kQP + (159.16 k§2)° = 159.24 k62

= 159.16 kf)

st aXc - _,159.16kQ g
with @y = —tan ‘?C = —fan ‘E%%‘%—— = —tan~' 31.83
= _88‘20. .
and Lr = 159.24 k() +.—88.2°

which compares very closely with Z¢ = 159.16 k) £ —90° if the circuit
were purely capacitive (R = 0{}). Our assumption that the circuit is pn
marily capacitive at low frequencies is therefore confirmed. '

f=1kHz
f A 1
2mfC  2w(1 kHz)(0.01 uF)
and . Zp= VR + Xt = V(5k0)? + (1592k0) = 16.69 k)
; G XE 1599 i

g RN D
~tan"'3.18 = —72.54°

and Zr = 16.69 k2 £ —72.54°

A noticeable drop in the magnitude has occurred, and the impedance

Xc = = 15.92 k)

with 8y = —tan

- angle has dropped almost 17° from the purely capacitive level,

Continuing, we obtain 3
f= S5kHz: Z;= 593k /—32.48°
F=10kHz: Zr = 525k £~17.66°
f=15kHz: Zy =511k £~11.98°
f=20kHz: Zy= 5.06 k) £—9.04°

Note how close the magnitude of Zr at f = 20 kHz is to the resistance
level of 5 k(2. In addition, note how the phase angle is approaching that

" associated with a pure resistive network (0°), .

A plot of Zr versus frequency in Fig. 15.49 completely supports our
assumption based on the curves in Fig. 15.48, The plot of 8 versus fré-
quency in Fig. 15.50 further suggests that the total impedance made a
transumn from one of a capacitive nature (8 = —90°) to one with resis-
tive characteristics By =0°)..

+Applying the voltage divider rule to determine the voltage across the
capacitor in phasor form yields

ZcE
Vom X
% Zp+Zc
_ (Kl —90°)E £0°) _ XcE £-%0°
R=jXc '~ R—jXc ~
o XckE £-90°
VR + X* g—tan"XCgR

/ —90° + tan~ (XC/'R)




RS T 15 0 s
; FIG. 15.49
The magnitude of the input impedance versus frequency for the eircuit in
Fig. 15.47. .
6 :
f(kHz)

1 A 10 15 a0
3 1

.

0°

=30°

45"

The ﬁh’ass angle of the inpud impedance versus frequency for the circuit ié
- ' Fig. 15.47. '
£ i S
The magnitude of V¢ is therefore determined by
il 4
’ PS ' - X
= - (15.13)

Circuit resistive '

L]

\erh

Circuit capacitive

FIG. 16.50

SRR
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and the phase angle 8¢ by which V- leads E is given by

{80 = ~90° + m"% = —taﬁ'l}R— (15.14)
C

To determine the frequency response, Xc must be calculated for each
frequency of interest and inserted into Egs. (15.13) and (15.14).
To begin our analysis, we should consider the case of f= 0 Hz (de

* conditions).

-

f=0Hz
: 1
her 2#(0)C

i 61==> very large value

~

Applying the open-circuit equivalent for the capacitor based on the
above calculation results in the following: ~

Ve=FE = 10V20°

If we apply Eq. (15.13), we find

Xt R?
. and . VR§+XE-E VXE-=XC‘
) XcE XcE
atE ¢ VRS Xt Xc
with s~ L 10k e
: y Xc o

verifying the above conclusions.

f=1kHz Applying Eq. (15.13) gives
' 1 5 =

&% 2mfC ~ (2)(1 X 10* Hz)(0.01 X 10~ F)

VR R = VR F (1592600 = 16,69 k0

' XcE __ (1592kQ)(10)

= 15.92kQ}

and V= =954V
_ VR + X% 16.69 k)

Applying Eq. (15.14) gives

R 5k
= =tan~! = = —an~L.
ol b T
= —~tan"'0.314 = —-17.46°
and " Ve =983V .£-17.46°

As expected, the high reactance of the capacitor at low frequencies has
resulted in the major part of the applied voltage appearing across the ca-
pacitor, £

If we plot the phasor diagrams for f = 0 Hz and f = 1 kHz, as shown in
Fig, 15.51, we find that V. is beginning a clockwise rotation with an in-
crease in frequency that will increase the angle 6 and decrease the phase
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1=0A A a0
— eV = 0,

f=0H: . \k—lﬂaa
’
) [ = 1k

_ FIG. 15.51
The phasor diagram for the circuit in Fig, 1547 for f = 0 Hz and | kHz,

L4
angle between I and E. Recall that for a purely capacitive network, T leads
E by 90°. As the frequency increases, therefore, the capacitive reactance is
decreasing, and eventually R >> X¢ with ¢ = —90° and the angle be-
tween I and E will approach 0°. Keep in mind as we proceed through the
other frequencies that f¢ is the phase angle between V¢ and E and that the
magnitude of the angle by which I leads E is determined by '

6] = 90° ~ 16¢| (15.15)

f= 5 kHz - Applying Eq. (15.13) gives
27fC (2m)(5 % 10° Hz)(0.01.X 107°F)

Note the dramatic drop in X from 1 kHz to § kHz. In fact, X is now
less than the resistance R of the network, and the phase angle determined
by tarl*l{_chR) must be Iess than 45°. Here,

- Xe = 3.18 k(2

vom  XE (B18kO)I0V) oo
T VR X V(5KQ)E + (318k0)
: R L 5k0
i = — o I =]
with Bi tan Xe t 32

= —tan~11.56 = —57.38°

f=10kHz
Xe=159Kk0  Ve=303V 6c=-7234

.

f =15 kHz
Xe=106kQ Ve=2001V 0c= —78.02°

f=20 kHz
Xe=79578Q V=157V 06c = —80.96°

The phasor diagrams for f = 5 kHz and f = 20 kHz appear in Fig.
15.52 1o shiow the continuing rotation of the V¢ vector,

Note also from Figs. 15.51 and 15.52 that the vector Vg and the current
I have grown in magnitude with the reduction in the capacitive reactance.

PONSE FOR SERIES ac CIRCUITS I 687

FIG. 15.52
The phasor diagram for the circuit in Fig. 15.47 for
f=5kHz and 20 kHz.
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Eventually, at very high frequencies, X¢ will approach zero ohms and
the short-circuit equivalent can be applied, resulting in V¢ = 0V and
B¢ =.—90° and producing the phasor diagram in Fig. 15.53, The net-
work is then resistive, the phase angle between I and E is essentially
zero degrees, and Vg and / are their maximum values.

— VO = 07
[V ——
vcanv E ‘565-90“

f = very high frequencies

FIG, 15.53"
The pha.rar dm,gram for the circuit in Fig. 15.47 at very high frequencies.

A plot of Vo versus frequency appears in Fig. 15.54. At low frcquen—
cies, X >> R, and V¢ is very close to £ in magnitude. As the applied
frequency increases, X¢ decreases in magnitude along with Vi as Vg
captures more of the applied voltage. A plot of 6 versus frequency is
provided in Fig. 15.55. At low frequencies, the phase angle between Vi
and E is very small since V- = E. Recall that if two phasors are equal,
they must have the same angle. As the applied frequency increases, the
network becomes more resistive, and the phase angle between Vg and E
approaches 90°. Keep in mind that, at high frequencies, I and E are ap-
proactiing an in-phase situation, and the angle between V¢ and E will
approach that between Vi and I, which we know must be 00° (Ic lead-
ing Vg

A plol of Vg versus froqucncy approaches E volts fmm zero volts
with an increase in frequency, but remember that V3 # E — V¢ due to
the vector relationship. The phase angle between I'and E could be plot-
ted directly from Fig. 15.55 using Eq. (15.15).

In Chapter 21, the analysis of this section is extended to a much wider
frequency range using a log axis for frequency. It will be demonstrated

Network capacitive

. Network resistive

" f(kHz)

'’ FIG. 15.54
The magnitude of the voltage Ve versus frequency for the cirouit in Fig. 15.47.



- frequencies and be effectively “shorted out” at very high frequencies.

C -

c. s s R FREQUENCY RESPONSE “OR SERIES ac CIRCUITS 111 889-
 § 8 (phase angle between E and Ve)
e K i L .- L 1 I
1 0 REARS. PEe 10 ‘s 20  flkHz)
: -.__30_,__ \Network capacitive
—@" . /’eC m
. -Netva'ork 1esistive
-90°
: FIG, 16556
* The phase angle between E and V¢ versus frequency for the circuit.in
i Fig. 1547, : . X

that an R-C circuit such as that in Fig. 15.47 can be used as a filter to de-
termine which frequencies will have the greatest impagct on the stage to
follow. From our current analysis, it is obvious that any network con-
nected across the capacitor will receive the greatest potential Jevel at low

The analysis of a series R-L circuit proceeds in much the same man-
ner, except that X, and V, increases with frequency and the angle be-
tween 1 and E approaches 90° (voltage leading the current) rather than 0%
1f ¥ is plotted versus frequency, ¥ will approach E, as demonstrated in
Example 15.12, and X, will eventually attain a leve] at which the open-
circuit equivalent is appropriate. R

EXAMPLE 15.12 For the series R-L circuit in Fig. 15.56:

a. Determine the frequency at which X, = R. .-

b. Develop a mental image of the change in total impedance with fre-
quency without doing any calculations. :

¢. Find the total impedance at f =100 Hz and 40 kHz, and compare
your answer with the assumptions of part (b). .

d. Plot the gurve of Vy versus frequency. .

¢. Find the phase angle of the total impedance at j = 40 kHz. Can the
circuit be considered inductive at this frequency? Why? .

R
T e
. + Zr A +
E=20V L0° | L f‘cOmH v

£ 040 kHz — . = . ] .
x X

FIG. 16.56
Circuit for Example 15.12.
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Solutions:
a. Xp=2mfiL=R
R 2k0
s e o ST
- and & " ey

b. ‘At low frequencies, R > X; and the impedance will be very close to

* that of the resistor, or 2 k(). As the frequency increases, X; increases
to a point where it is the predominant factor. The result is that the

¢ curve starts almost horizontal at 2 kf} and then increases linearly to

very high levels.
; X,
€ Zp=R+jX,=2Zr20; = VRE+ X} Lian™! ?L
" “Atf = 100 Hz:

= 2mfL = 2m(100 Hz)(40 mH) = 25.13'02

i Zr= VR + X} = V(2k0)? + (25.13 0)?
= 2000.16 = R .

At f = 40 kHz:
= 2mfL = 2m(40 kHz)(40 mH) = 10.05 kQ)

and. zr— \/R2 + X = V(2k0)? + (10.05 kN)?
=10 25kﬂ = X,

-Both calculations support the conclusions of part (b).
d. Applying the voltage dividerrule gives

Vl.:-_
T

“ From part (c), we know that at 100 Hz, Zr = R, so that Vg = 20V and
V1. = OV, Part (c) revealed that at 40 kHz, Zy = X;,sothat V; = 20V
and Vi == 0 V. The result is two plot points for the curve in Fig: 15.57.

WV e o

10v

oft 5 10 WL - 40 kH
F!G 15.57 .
.PL'or:ing Vi versus f for the series R-L circuit in Fag 15.56.
At1kHz R X; =2nfL =025kQ)
and V.= DR OOl 248V z.; 87°
ST T 2k + j025ka <82
At5kHz X, =2nfL=126kQ0

L ; S ‘;r-_{;.zem,:guo)(zovaov)
' BT T2k + 1260

=10.68 V £57.79°



CAIOWHz Xy = 2w =25k »
3 5 K0,£90°)(20 V £0°)
od VL= TSk 1 25KR ¢

The complete plot appears in Fig. 1557. -
s m'n'lﬁ= - 1005 KO 10.05 k(2
P S Sl 2kQ
The angle 87 is closing in on the 90° of a purely inductive network.
Therefore, the network can be considered quite inductive at a fre-

quency of 40 kHz.

= 15.63 V £38.66°

= 78.75°

15.6 SUMMARY" SERIES ac CIRCUITS

The following is a review of impartant conclusions that can be derived
from the discussion and-examples of the previous sections. The list is not
all-inclusive, but it does emphasize some of the conclusions that should
be carried forward in the futune analysis of ac systems.

For series. ac circuits wkk reactive elements:

1. The total impedance wt}l be frequency a‘epem‘em

2. The impedance of any one element can be greater than the total
impedance of the network..

3. The inductive and capacitive reactances are always in direct
opposition on an impedance diagram.

4. Depending on the frequency applied, the same circuit can be
eithér predominantly inductive or predominantly capacitive.

5. At lower frequencies, the capacitive elements will usually have
the most impact on the total impedance, while at high frequen-
cigs, the inductive elements will usually have the most impact.

6. The magnitude of the volitage across any one element can be

‘" greater than the applied voltage.

7. The magnitude of the voltage across an element compared to the
other elements of the circuit is directly related to the magnitude
of its impedance; that is, the larger the impedance of an element,
the larger is the magnitude of the voltage across the element.

8. The voltages across a coil or capacitor are.always in direct
opposition on a phasor diagram.

9. The current is always in phase with the voltage across the resistive
elements, lags the voltage across all the inductive elements by 90°,
and leads the voltage across all the capacitive elements by 90°.

- 10. The larger the resistive element of a circuit compared to the net
reactive impedance, the closer is thé power factor to unity.

PARALLEL ac CIRCUITS

15.7 ADMITTANCE AND SUSCEPTANCE

The discussion for parallel ac circuits is very similar to that for de cir-
cuits. In dc circuits, conductance (G) was defined as being equal to I/R.
The total conductance of a parallel circuit was then found by adding the
conductance of each branch. The total resistance Ry is simply 1/Gr.

In ac circuits, we define admittance (Y) as being equal to 1/Z. The ‘

unit of measure for admittance as defined by the SI system is siemens,

Intrndvctary . 424

ADMITTANCE AND SUSCEPTANCE 111861

r
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; e~

which has the symbol S. Admittance is a measure of how well an ac cir-
cuit will admis, or allow, current to flow in the circuit. The larger its
value, therefore, the heavier is the current flow for the same applied po-
tential. The total admittance of a circuit can also be found by finding the
sum of the parallel admittances. The total impedance Zy of the circuit is
then 1/Y7; that is, for the network in Fig. 15.58,

‘|YT=Yi+Y2+Y3+'."+Yﬂ (15.16)
5 i)
and = (15.17)
ii__ XY= EI: Y, :-lzz- T Y= i; YN ZR
g [ e EONCINE
" FIG.1558

Paralle! ac network.

or, since Z 1/Y,

1 1- | 1 1 :
i e e R b e © (1518
5 % B Zy o
and §
: 1 . ;
o e 5 Al
e T R ISR
2 I, I Zy
matching Eq. (6.3) for dc networks.
For two impedances in parallel,
LA P
Zr. 2, I

If the mampulauons used in Chapter 6 to find the total resistance of two

- parallel resistors are now applied, the following similar equation results:

Lz

Zr = Zl ¥z, (15.20)

v .

For N parallel equal impedances (Z,), the total zmpedancc is deter-
mined by

L4y -
Ir =3 asan
For three parallel impedances,
W77y
= . : 15.22
4y 2\ + L+ 212, ( )

Introductory; C.-43B
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As pointed out in the iniroduction to this section, conductance is the
reciprocal of resistance, and s . G

Yg = 1 = G LO° (15.23)

X' RO

_The reciprocal of reactance (1/X) is called susceptance and is a mea-

sure of how suscepfible an element is to the passage of current through
it. Susceptance is also measured in siemens and is represented by the

capital letter B.
For the inductor, %
P S R s )
L= T X 290 X 29
i . 1 :
Defining . |BL= Y (siemens, S) . (15.25)
g ’ L v .

 Note that for inductance, an increase in frequency or inductance will
result in a decrease in susceptance or, correspondingly, in admittance.

For the capacitor,
SR DTN WP A ) T
€T Z2c Xc 4-90°  Xc .
£ % £y
Defining Be=—- (siemens, S) (15.28)

o Yo = Bo A90° (15.29)

For the capacitor, therefore, an increase in frequency or capacitance
will result in an increase in its susceptibility. . L

For parallel ac circuits, the admittance diagram is used with the 4j
three admittances, represented as shown in Fig. 15.59.

Note in Fig. 15.59 that the conductance (like resistance) is on the pos-

" itive real axis, whereas inductive and capacitive susceptances are in di- i

rect opposition on the imaginary axis.
For any configuration (series, parallel, series-parallel, and so on), the
angle associated with the total admittance is the angle by which the
source current leads the applied voltage. For inductive networks, 0z is
negative, whereas for capacitive networks, Oy is positive. B, 2-90°

| B £90°

GLO

-+

For paralle! ac networks, the components of the configuration and the
desired quantities determine whether to use an impedance or admittance
approach. If the total impedance is requested, the most direct route may FIG. 15.59
be to use impedance parameters. However, sometimes using admittance Admittance diagram.
parameters can also be very efficient, as demonstrated in some of the ex- b
amples in the rest of the text. In general, use the approach with which
you are more comfortable. Naturally, if the format of the desired quan-
tity is spelled out, it is usually best to work with those parameters.




864 1| SERIES AND PARALLEL ac CIRCUITS

" EXAMPLE 15.13 For the network in Fig, 15.60:
| _ : 1
< a. Calculate the input impedance.

ol

R=Z200 X =100
= b. Draw the impedance diagram. _
c. Find the admittance of each parallel branch,
d. Determmc the 1nput admittance and dmw the admittance cl:agrnm
FIG. 15.60 :
Esample 15.13. -~ Solutians; | ot
. g . ZeZy (208 £0°)(10 Q2 £90°)
o o z,;‘- Zp+2, 200+;100
R . = 20D _ 030 L6343

22,361 £26:57° .
' =4.9pﬂ+j7.9SQ=RT+jXLr

8930/ - Z; = 7950 £90° ] ; i Slheis -
b. The impedance diagram appears in Fig. 15.61.

6343 | . : 1
y ¢ ¥ “Gz_o*’=-—40°==~——¢0° 0.058 £0°
Zp=40000 200 R R 200 e
=005’S+10
1 1
Y, =B z_-—QU"-——Hz_ P = L -0
kA Xy ~N =50 ,

FIG. 1551 -0184-90’=0—;015

.Impedmx:e daagmmfor the nemrork in Fig. 15.60. d. YT =Ygt Y, = “%5 s +J'0} s (0 jo.1 S)

=0.058—-;018 = G-—;BL
The admittance diagram appears in Fig. 15.62.

i
¥ =_£.bs S“_Oi EXAMPLE 15 14 Repeat Examp!e 15.13 for-the parallel network in
6343t Fig. 15.63. .
" 2 i : Solutions:
0.112§
| 1 ] ‘ ¥ L3
Y;_:D.[S.ﬁ—?ﬂ“ ! 4 _Z?.:_. l ;
LS Y - e .
T Zg Zr ZC : : 3
. FIG, 15.62 z s 1 J
Admittance diagram for the network in Fig. 15.60. Vg 1 : i
' + - 4 :
i 5020°° 80290° " 200 2-90°
T — : . ) 1
Xr e > AP ' + T 028 20"+ 01258 2-90° ¥ 0.05 S 290°
TR0 X B80 Xm0 o F | B
- LR : . a . F
_ i< 028~/ 00755 021368 £ -20,56°
= : ks * =468 Q £20.56°
FiG. 15.63 ) s . _ ‘A . ey
; Example 15.14. ) - f -
‘.‘ I ' ZRZLZC

o = Zpty + L2 + ZRZC
A o w4 L (5020930 ¢90°)(20 0 £-90°)
" ' : , (50 LO“)(S 0 £90°) + (8. £90°)(20 0 z_-90°}
+ (50 £0°)(20 Q £ -90°)

Xy 8000 £0° .
40 £90° + 160 £0° + 100 £~90°




¢
soun 800 0 ,
=760 + 406100 160 — ;60 - : .
£ 800Q. :

= 170.88 2—20.56°
© = 4680 £2056° =4380 + j1.64Q.

b. The impedance diagrara appears in Fig. 15.64.
| Tty P .
c. Yg q&ﬂ RLO SQLU -] &
=028 20°=025+/80
: x 1 1
= -0 = — / —0()° = — o
Y =BLL-90 =l 90* = o L0
=0.1258 L-90° = 0_—}01255
- B GO e 4000 e 2507
YC Be £90 Yo £90 00 /_90
= 0,050 £+90° = 0+ 0.050S

d. YT_YR+YL+YC' i .
(025+}'U)+(0-j‘01255)+(0+]00505) !
=028 —}_00755 = 0.214 S £-20.56°

The admittance diagram appears in Fig. 15,65,

On many occasions, the inverse relauunshlp Y;— = 1/ZrorZr=1 /YT
will require that-we divide the number 1 by a complex number having a
real and an imaginary part. This division, if not performed in the polar
form, requires that we multiply the numerator and denominator by=the
conjugate of the denominator, as follows: '

il it | _( 1 )((‘mﬂﬁﬂ))
T, T a0+j60 \an+j60/\(4Q-j60)
I
46

' 4 6
ranid . G
. IR R A TR

To avoid this laborious task each time we want to find the reclprocal
of a complcx number in rectangular form, a format can be developed
using the following complex number, which is symbolic of any imped-
ance or admittance in the first or fourth quadrant: :

S ( 1 )(a1¢j51) _a % jb
ay Ijbl ay Ijbl dy :O-_jf.l] ﬂ% e b%
o R o (1530)
F ay = jby  ai + b Jz+!>2'

-

Note that the denominator is simply the sum of the-squares of each term.

The sign is inverted between the real afid imaginary parts. A few exam-

* . ples will develop some familiarity with the use of this equation.

ADMITTANCE AND SUSCEPTANCE 11| 665
et

4.68 0
_,4ﬁ§3a=1mnzw

Zp=4380c0° %

FIG. 15.64
Impedance diagram for the nerwork in Fig. 15.63.

'.‘ J
by, 4
I = '
20.56° |
Y, —- Yo |
I ! 0.21458 :
........... i"r
Y Y,

: FIG. 15.65
Admittance diagram for the nerwork in Fig. 15.63.
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" FIG. 15.67
ParallekFac network.

&

C

EXAMPLE 15.15 Find the admittance of each set of series elements in
Fig. 15.66. _ I

e R< 60
¥
X80
(=)
FIG: 15.66
Example 15.15.
Solutions: <
& Z=R-jXc=60=~j8Q
Eq. (15.30): : )
' 1 6 8
Y = = B
6080  (6)2+(8)2 ‘(67 + (8)
6 ~
.~ 100" */700° '

b. Z=100+j4Q +(~j010Q) =100+ /390
Eq. (15.30):
o s g 0 10 VTR
Z 100+;390. (1002 + (972 {107 + Gy

0 e
11531 - {11531 ~ 008 108348

fa

15.8 PARALLEL ac NETWORKS

For the representative parallel ac network in Fig. 15.67, the total imped-
ance or admittance is determined as described in the previous section,
and the source current is determined by Ohm's law as follows:

)
= EYy| - (1531)

Since the voltage is the same across parallel elements, the current
through each branch can then be found through another application of
Ohm’s law: ' >

E 3
I = z—l = EY, . (15.32)




1.2 = % = EY: . (15.33)

-

- Kirchhoff's current law can then be applied in the same manner as,
used for dc networks. However, keep in mind that we are now dealing
‘with the algebraic manipulation of quantities that have both magnitude
and direction. We have '

1—11—12=0

. L e

The power to the network can be determined by

where 9;? is the phase angle between E and L
Let ps now look at a few examples carried out in great detail for the
first exposure. : .

R-L
Refer to Fig. 15.68.
i, s a_
P . ;Igh lir. !
e = V/Z(20) sinfur + ss.u_‘)' rR=3330 X, 8250
T * a ) -
 FIG. 15.68 4
Paralle!l R-L network. -

Phasor Notation As shown in Fig. 15.69.

1=10A20°

i I e

E=20VZ5.3 R=310 X, 250

FIG. 15.69
Applying phasor notation to the network in Fig. 15.68,

YT#Y3+YL 5
A5, 1
- ° 4+ —0ON)° = —— o — = e
G L0°+BLL 90. .3.33‘]40 50% %0
=038 20°+04S2-90° =038~ 048
=058 L-531% '
1 1

T 5= o B e
T=¥r 0S5S4=5313°

=24} £53.1¥

Y

PARALLEL ac NETWORKS |11 667,
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GL0"=03820°

53.13° T

B £-90° = 045 £-90° 58 £-53.13°

e

~

" i
e Deeaaaa

FIG.16.70
Admirtance diagram Jor the paraliel R-L nerwork in
Fig. 15.68.

FIG. 15.71
Phasor diagram for the parallel R-L network in
Fig. 15.68.

t

Admittance diagram: As shown in Fig, 15.70;

I= % =EY7 = (20 V 253.13°)(0.5 5 £~53.13°) = 10 A £0°

n == "‘u, (E 26)(G 20°)

= (20 V £53.13°)(0.3 § £0°) = 6 A £53.13°

, LD s
L = X, 290° = (E £6)(Br, £-90°)

= (20 V £53.13°)(0.4 § £—90°)
=8A L-3687°

Kirchhaff’s current law: At node a,
I- Ig = I,[_ =0
.0! I=1Iz+ I

10A £0° = 6 A£53.13° + 8 A £—36.87°
10A£0°=(360A+480A) + (640A — j4.80A) = 10A + /0

and . 10A£0° = 10A £0° (checks)

Phasor diagram: The phasor diagram in Fig. 15,71 indicates that the
applied voltage E is in phase with the current I and leads the current I
by 90°,

Power: The total powcr in watts delivered to the circuit is

Pr = EI cos 07
= (20 V)(10 A) cos 53.13° = (200 W){(0:6)
=120 W

or Pr=I°R = ‘f VEG = (20V)}03S) = 120 W

or, finally,

Pr=Pgp+ P, = Elycos8g + EI} cos 0,
=(20V)(64) cos 0% + (20 V)(B A)cos 90° = 120 W + 0
=120 W :

Power factor: The power factor of the circuit is
Fp = cos Or = c05'53.13° = 0.6 lagging

or, through an analysis similar to that used for a series ac circuit,

. TRl G .
and . I-}, f.cosﬂ Y| - (15.36)_

where G and Y7 are the magnitudes of the total conductance and admit-
tance of the parallel network. For this case,

038 -
b cosar—m =0.6lagging

Impedance approach: The current I can also be found by first finding

, the total 1mpednnce of the network: A
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LU Zay (333020250 £90°)
P z'r ZR+ZL 3,33{]{_01:_'_2.59/_90“
i M - ] o K i
4.164 £L36.87° 20 £5313° | e

 Then, using Ohm'’s law, we obtain
E _ 20V £53.13°

"% 20zsme WAL
R-C
Refer to Fig. 15.72.
- _ﬂ 0i gl
- + . Hn. . *ir_-.
i = 14.14 sin wr e RS 1670 X FR1250
X e ' _ ¢
FIG. 15.72 : ‘ '
. Parallel R-C network. ) )
Phasor Notation As shown in Fig. 15.73. _ ' .
; - a 3 . o - - g
zar e a2 " @
d,l, e _
1=10A40° “ RN X FR1250
FIG. 15.73 S
Applying phasor notation to rhe nerwork in Fig. 15. 72. _ ' .
Y o 1
Y7 =Yr+Yc=G L0°+ Be LI0° L0°+ P ¥
yp=Ypirie® BeL90° = 1ore £0°+ 150 490 ; .
=068 z’.ﬂ" +0.885£90°=06S+j0.85 =108 £5313°
1 1 k
== =10 £=5313
Zr= g T Tos 5w LI
Admittance diagram: As shown in Fig. 15.74. I ) i
I 10 A, £0° Yr= 15453.]?
=1 =-_—_— — = —-53,13° BrZ90° = 088 £L60° p-=-=-mmm===-
=l = e e — WYL c | E
= (E £6)(G 40°) i
—{10\:4 ~53.13°)(06 S £0°) = 6A £—53.13° '
Ic = (E £6)(Bc £90°) §3.13° ;
= (10V 2-53.13°)(0.8 S £90°) = 8 A L36.87° i ,
Kirchhoff's current law: At node a, GL0® =0658£0° +
I-Ig=1Ic=0
or 1=Iz+I¢ ' FIG. 15.74

Admittance diagram for the parallel R-C nerwork in
which can also be verified (as for the R-L network) through vector algebra. Fig. 15.72.
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+
FIG. 15,75
Pkasor diagram for the parallel R-C nerwork
in Fig. 15.74.
w9

S o

Phasor diagram: The phasor diagram in Fig. 15.75 indicates that E is
in phase with the current through the resistor I and lags the capacitive
current I~ by 90°,

Time domain:

e = V2(10) sin{wt — 53. 13‘) = 14,14 sin(wt — 53.13°)
ir = V2(6) sin(wt — 53.13°) = 8.48 sin(ewt — 53.13°)
ic = V2(8) sin(wt + 36.87°) = 11.31 sin(et + 36.87°)

A plot of all of the currents and the voltage appears in Fig. 15.76.
Note that e and ig are in phase and e lags i by 90°.

il

FIG.1576 "
Waveforms for the parallel R-C network in Fig, 15.72.

Power:

Pr = Elcos @ = (10 V)(10 A) cos 53.13° = (10)%(0.6)
60 W

or Pr=E*G = (10 V)*(0.6 S) = 60 W
or, ﬁ'nally -

Pr= P+ PC El,q cos g + E!C cos f¢
= (10V)(6 A} cos 0° + (10 V)(8A) cos 90°
=60W

. Power factor:  The power factor of the ¢ircuit fs
Fy =c0s53.13% = ﬂ 6 leading
Using Eq. (15. ‘36), we have

]

Fp = cos O = ;- = — = 0.6 leading
T :
!mpedance approach: The voltage E can also be found by ﬁrsl: find-
ing the total 1mpedance of the circuit: -
ZrZc ' (1670 £0°)(1.25 O £-90°)
Zp +Z¢ 1670 L0° + 1250 £-90°

2.09 £~90° '
T DT Tt

Zr =
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,. and then lui.ng Ohm'l law, we find
E= IZT-(lOALO')(lﬂZ. 53.19°) = 10V £ —53.19°

R-L ()
Refer to Fig. 15.77.

hu a

+ ‘Ig “J. PC
¢ = V/3(100) sin(or + 53.13°) rSmn X, Sen xRN0
=
FIG. 15.77

Parallel R-L-C ac network.
- Pha.mr notation: As shown in Fig. 15.78.
1 :
— a 1 ' >

Pn : . e e :

>330 X, Sj140 X, FTR330

E = 100V £ 53.13°

=
A.ll

FIG, 16.78 i
Applying phasor notation to-the network in Fig. 15.77.

Yr =Yg+ YL + Yo = GLO0°+ By £-90° + Bc £90°
1 o 1 —ane 1 ane

= tTen s ta <

=038 20°+0.7S 2~90° + 0.3 S £90°

=03S-j07S+/03S -

=038 -j04S =058 £-5313° ' "
: 1 S s 4i
Zr=5; " ossz-saur 29 eBE -

_ Be £90° = 035 £90°
Admittance diagram: As shown in Fig, 15.79,

E g GLOF = 035820
[ =— =EYr = (100V £53.13°)(0.5 S £—53.13°) = 50 A £0° = .
R/ 533 | ' t

Ig = (E £6)(G £0°)

= (100V £53.13°)(0.3 S £0°) = 30 A £53.13° B, - B¢
I, = (E £6)(By £~%0°) _l_ .
= (100 V £53.13°)(0.7 S £—90°) = 70 A £-36.87° S T W Yp = 055 £-53.13°
’ = (E £8)(B¢ £90°)

= (100 V £53.13°)(0.3 8 £+90°) = 30 A £143.13°
Kirchhoff’s current law: At node a, . -
=Ip=l; =Ip= FIG. 15.79

l— Ix=d—le 0 . Admittance diagram for the parallel R-L-C network
or -~ . I=Ix+ I +Ic _ L in Fig. 15.77. _ '

By £-90° = 07§ £-90°
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J Phasor diagram: The phasor diagram in Fig. 15.80 indicates that the
E impressed voltage E is in phase with the current I through the resistor,
leads the current I, through the inductor by 90°, and lags the current I
e of the capacitor by 90°,
. ¥ n{ﬂt domain:
L = e i = V32(50) sin wit = 70.70 sin et
,13° ~
i ig = V2(30) sin(wt + 53.13°) = 42.42 sin(et + 53.13°)
,-(.\ 36.87° H o i = V2(70) sin(wt — 36.87°) = 98.98 sin(wt — 36.87°)
% v S ic = V2(30) sin(wr + 143.13°) = 42.42 sin(ewt + 143.13°)
- /
<‘\?, A plot of all of the currents and the impressed voltagc dppears in
I Fig. 15.81.
: Power: The total power in watts delivered to the circuit is _
> FIG. 15.80 o Pr = EIcos@ = (100 V)(50 A) cos 53.13° = (5000)(0.6)
Phasor diagram for the parallel R-L-C network = 3000 W
in Fig. 15.77., .

FIG. 15.81
Wavefarms for the parallel R-L-C network in Fig. 15.77.
or Py = E*G = (100 V)*(0.3 S) = 3000 W
or, finally,
e : : Pr=Fp=+ Py + Pc

= Elgcos 0g + Ely cos 0 + Elc cos ¢
" = (100 V)(30 A) cos 0° + (100 V(70 A) cos 90°
+ (100 V)(30 A) cos 90°.
= 3000 W + 0+ 0 ’ . :
* - =3000 W

Power factor: The power factor of the circuit is
Fp = cos Or = cos 53.13° = 0.6 lagging
-Using Eq. (15.36), we obtain -

F,=cosﬂ;-=—=—--—--06!agging 9
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Iﬁpcdam appmah “The input curfent I can also be determined by
ﬁrnﬁndng the totak mpudm in the follnwmg manner:
i z‘T : : ZRZLZC
. " T2y, + L + Take
+ - “and, applying Ohm's law, we obtain
' E 100,V £53.13°

Lh = R e~ AL

=20, 53_ 13°

15.9 CURRENT DIVIDER RULE

The ba;i: format for the current divider rule in ac circuits is exactly the

same as that for de circuits; that s, for two paraliel branches with imped-

ances Z, and Z, as shown in Fig. 15.82,

(15.37)

EXAMPLE 15.16 ‘Using the current divider. rule, find the current
through edch impedance in Fig. 15.83.

Solution:

e Bl (490 £90°)(20 A £0°) 80 A £90°
R™Zg+Z;, 3020°+40.290° 52£53.13°

‘= 16 A £36.87°
| (30 £0°)(20A £0°) . 60 A £0°
E- Zr+Zr 5Q2£53.13°  5453.13°

=12A L-853.13°

EXAMPLE 15'1;! Using the current divider rule, find the current
llu'nngh each parallel branch in F:g 15.84,

Soﬂmon.

; 2k - (m.a 90*')(5;&../_30"):1045. £—60°
R-L = ZC+ZRL —-j20+10+j80 1+j6

v 10AZ—60° L
o saosse T VO4A L-14054

Zpidr - (10 + j8Q)SA L30)
Zpr+2Zc 6.08 () £80:54°
_ (B.06 £B2.87°)(5 A £30°) 4030 A £112.87°

6.08 £80.54° . 6.083 £80.54°
= 6.63 A £32.33°

dp =

.15.10 FREQUENCY RESPONSE
OF PARALLEL ELEMENTS -

Recall that for elements in scrles, the total impedance is the diect sum of
the impedances of each element, and the largest real or imaginary compo-
~nent has the most impact on the total impedance. For parallel elements, it

=l Zy
= (e
--.I: z:
FIG. 15.82
Applying the current divider rule,
o
— I
I=20AL0 Il" 1 §
8 ;
RZ30 XS0
o
- FIG. 15.83
Example 15.16:
" xL

F;

I = 5A L 30° 10 80

PSS S

FIG. 15.84
Example 15.17.
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is important to remember that the smallest parallel resistor or the small-
est parallel reactance will have the most impact on the real or imaginary
component, respectively, of the total impedance. :

In Fig. 15.85, the frequency response has been included for each ele-
ment of a parallel R-L-C combination. At very low frequencies, the imped-
ance of the coil will be less than that of the resistor or capacitor, resulting
in an inductive network in"which the reactance of the inductor will have
the most impact on the total impedance. As the frequency incfeases, the
impedance of the inductor will increase, while the impedance of the ca-
pacitor will decrease. Depending on the components chosen, it is possible
that the reactance of the capacitor will drop to a point where it will equal
the impedance of the coil before either one reaches the resistance level.

FIG. 15.85
Frequency response for parallel R-L-C elements.

Therefore, it is impossible to make too many broad statements about
the effect of each element as the frequency increases. In general, how-
ever, for very low frequencies, we can assume that a parallel R-L-C net-
work will be inductive as described above, and at very high frequencies
it will be capacitive since X will drop to very low levels. In between, a
point will result at which X; will equal X and where X or X will equal

" R. The frequencies at which these events occur, however, depend on the

elements chosen and the frequency range of interest. In general, how-
ever, keep in mind that the smaller the resistance or reactance, the
greater is its impact on the total impedance of a parallel system.

Let us now note the impact of frequency on the total impedance and
inductive current for the parallel R-L network in Flg 15.86 for a fre-
quency range of zero through 40 kHz.

g

I=100ma 0 ( RS0 Lg"m}l
5 -«

f:0to 20 kHz

.I e +"?l

FIG. 15.86
Dmmhmg the frequency response of a paraﬂef R-L network.
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s s 3 LedmH 2000
zZy RZ200Q LBy < onfL
f ] --—f -—-
%’ ) XL(R ’XI_)R f
" FIG. 15.87

The frequency response of the individual elements of a parallel R-L network.

Zr Before getting into specifics, let us first develop a “sense” for the

impact of frequency on the network in Fig. 15.86 by noting the impedance-

versus-frequency curves of the individual elements, as shown in Fig. ; 8
15.87. The fact that the elements are now in parallel requires that

we consider their characteristics in a different manner than occurred for

the series R-C circuit in Section 15.5. Recall that for parallel elements,

the element with the smallest impedance will have the greatest impact

on the total impedance at that frequency. In Fig. 15.87, for example, X; - e .
is very small.at low frequencies compared to R, establishing X}, as the

predominant factor in this frequency range. In other words, at low fre-

‘quencies the network will be primarily inductive, and the angle associ-

ated with the total impedance will be close to 90°, as with a pure

inductor. As the frequency increases, X, increases until it equals the im-

pedance of the resistor (220 (2). The frequency at which this situation

occurs can be determined in the following manner: '

XL=211:!";L=R

and fzr" 24l - (15.38)

which for the network in Fig. 15.86is -

P PRY . e B
: 72l 2m(4 X 107*H)
e = 875 kHz

which falls within the frequency range of-interest.

For frequencies less than fgX; < R, and for frequencies greatar than

fos XL > R, as shown in Fig. 15.87. A general equation for the total im- ' \
pedance in vector form can be developed in the following manner:
.
E Zr+ Z
(R £0°)(Xp £90°) _ RXy £90°
R + jX|, R* + X7 £wan™' X /R

RX}, 7
. d W i s o — I x: /R
an Zr Y/ EZ@ tan~! X1/
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so that IZT = —\/Eig—ﬁj (15.39)

' A K
= —_— =1 _._'L = -1 2.
and o5 fr = 90° — tan R tan X, (15.40)

The magnitude and angle of the total impedance can now be found at
any frequency of interest simply by substituting Egs. (15.39) and (15.40).

f=1KkHz
X, = 2mfL = 2m(1kHz)(4 X 1073 H) = 25.12 00
and _
RX, (220 0)(25.12 Q)
ARG ... = 2496 Q
T VR V(200) + (25.20)
£ 2200
. g | ~1
e SN A L 3

_ = tan~! 8.76 = 83.49°
and  Zp = 2496 0 £83.49°

This value compares very closely with X; = 25.12 ) £90°, which it
would be if the network were purely inductive (R = o (1). Our assump-
tion that the network is primarily inductive at low fmqucnc:cs is there-
fore confirmed.
Contlnumg we obtain

f= SkHz Zy=109.1Q £60.23°
f=10kHz: Zr=165.5 0} £41.21°
f=15kHz: Zr=189.99 Q £30.28°
f=120kHz Zr=20153Q £23.65°
f=30kHz: Z7=21119Q £16.27°
f=40kHz: Zr= 214919 £12.35°

At f =40 kHz, note how closely the magnitude of Z; has approached
the resistance level of 220 (} and how the associated angle with the total
impedance is approaching zero degrees. The result is a network with ter-
minal characteristics that are becoming more and more resistive as the
frequency increases, which further confirms the earlier conclusions de-
veloped by the curves in Fig. 15.87.

Plots of Z; versus frequency in Fig. 15.88.and 87 in Fig. 15.89 clearly
reveal the transition from an inductivéetwork to one that has resistive
characteristics. Note that the transition frequency of 8.75 kHz occurs
right in the middle of the “knee” of the curves for both Zy and 67.

A review of Figs. 15.49 and 15.88 reveals that a series R-C and a
parallel R-L network will have an impedance level that approaches the
resistance of the network at high frequencies. The capacitive circuif
approaches the level from above, whereas the inductive network does
the same from below. For the series R-L circuit and the parallel RB-C
network, the total imipedance will begin at the resistance level and then
display the characteristics of the reactive elements at high frequencies.
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A
ey ¥y ] Network resistive
R=200F}, R '
200 + SRl o A
' K >REreR)
Xy m Rl ===~= .
- / Nstwérkindu'cﬁve
i
!
qux(z, X)
o1 587510 T R R T
; FIG. 15.88 '
The magnitude qf the input impedance versus frequency for the network in
Flg 15.86.
A
Ve,
w- L]
Inductive (X; < R)
60°
g orln - "ol : v ’
307 4 : .
Resistive (X; > R)
Di i I 1 L L 'l 1 4 1
- . 10 S 30 -30 40 - f(H2) 5
: FIG. 15.89
The phase aagle of the input impedance versus frequenqy far the network ' . L
in Fig. 1586 : ) o

I App‘lyijxg'the current divider rule to the network in Fig, 15.86 results

in the following:
T el ;
S 5 % 2 ZRV.+ :_ZL
(RLO)L0°) RI £0° 4

R+jX% \/;a2 + X} gm-" X;-/R

e # 1L=:LA0L- ,_,_ [~an™ X /R

; -lifltroduclory, B MA
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fie

The magnitude of /y is therefore determined by

- ‘RI
L_ VR + x}

and the phase angle 6,, by which I leads I, is given by

’9,, = —tan™! —’;—‘;ﬁ = (15.42)

. Because 8y is always negative, the magnitude of @, is, in actuality, the
angle by which I lags I,

To begin our analysis, let us first consider :hc case of f= 0 Hz (dc
conditions).

(15.41)

f=QHz
: X, = 2nfl = 2n(0 Hz)L = 0 Q)

Applymg the shnrt-ctrcuit equivalent for the inductor in Fig. 15. 86 re-
sults in

I, = I = 100 mA £0°
as appearing in Figs. 15.90 and 15.91,
f=1KHZ Applying Eq. (15.41) gives _
Xy = 2mfL = 27(1 kHz)(4 mH) = 25.12 0
and VR + X7 =V(200) + (25.120) = 221,43 0

: 220 02)(100 mA
and Iy = d ( X ) = 99.35mA
\/szz + XL . 2140
I(mA) s
00 QR —~ = === === m- s o e e e
Pt
50 -
X, >Rl => U-m.%)
25
resistive 3
o1 5 1o 5 z'o, 30 40 f(kHz)
W R FIG.1890 . 4 |
The magmtudé qﬂh current 1, versus frqgmcy for :he pamud qu.uem'ort
” s mﬁg 15.86.- g o
By o In{roducmri" c u s




Network resistive .

B ) e ———— = e o e e .k ol
FIG. 15.91
The phase angle of the current 1; versus frequenty for the pamilel R-L network
" in Fig. 15.86.
with
X 25120 :
RS E flold - CERGEEE | - ~tah=3 0 —£.&1°
6, = tan R = —tan 2200 tan 114 .h 6.51
and - Iy =9935 mA £=-6.51°

The result is a current I that is-still very close to the source current i in
both magnitude and phase.
Continuing, we obtain ~

f= SkHz I.=8684mA £-29.72°
f=10kHz I, = 6538 mA L-4879°
f=15kHz; 15-50,43:-“;-59.72",
f=20kHz: 1 = 40.11 mA £—66.35°
f=30kHz I =28.02mA £~7373°
f=40kHz: I; = 21.38 mA L-77.65"

The plot of the magmtude of I; versus frequency is provnded in Fig.
15.90 and reveals that the current through the coil dropped from its
maximum of 100 mA to almost 20 mA at 40 kHz. As the reactance of
the coil increased with frequency, more of the source current chose the
lower-resistance path of the resistor. The magnitude of the phase angle
between I and'1 is approaching 90° with an increase in frequency, as
shown in Fig. 15.91, leaving its initial value of zero degrees at f =0Hz
far behind.

At f = 1 kHz, the phasor diagram of the network appears as shﬂwn n
Fig. 15.92. First note that the magnitude and the phase angle of I are
very close to those of L Since the voltage across a coil must lead the cur-
rent through a coil by 90°, the voltage V; appears as shown. The voltage

across a resistor is in phase with the current through the resistor, result-
ing in the direction of I shewn in Fig. 1592, of course, at this fre-
. quency R > Xy, and the current / is.relatively small in magnitiide.

"

30 40 Sf{kHz)

e S S : FREQUENCY RESPONSE OF PARALLEL ELEMENTS (1| 679

-651° Iy

FIG. 15.92

The phasor diagram for the paralle! R-L network in

v Fig. 15.86 ar’f = I kHz.
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1235° Ig - v

W grese T
FIG. 15.93

The phasor diagram for the parallel R-L network in
Fig. 15.86 at f = 40 kHz,

fic”

“Atf ='40 kHz, the phasor diagram changes to that appearing in Fig.
15.93. Note that now I and I are close in magnitude and phase because

* Xz > R. The magnitude of Iy, has dropped to very low levels, and the phase

angle associated with I, is approaching —90°. The network is now more
“resistive” compared.to its “inductive” characteristics at low frequencies.

The analysis of a parallel R-C or R-L-C network would proceed in much
the same manner, with the inductive impedance predominating at low fre-
quencies and the capacitive reactance predominating at high frequencies.

15.11 SUMMARY: PARALLEL ac NETWORKS

The following is a review of important conclusions that can be derived
from the discussion and examples of the previous sections. The list is not
all-inclusive, but it does emphasize some of the conclusions that should
be carried forward in the future analysis of ac systems.

For parallel ac networks with reactive elements:

1. The total admittance or impedance will be frequency dependent.

2. Depending on the frequency applied, the same. network can be
either predominantly inductive or predominanily capacitive.

3. The magnitude of the current through any one branch can be
greater than the source current.

4. The inductive and capacitive susceplances are in direct opposition
on an admittance diagram. ,

5. At lower frequencies, the inductive elements will usually have the
most impact on the total impedance, while at high frequencies,

. the capacitive elements will usually have the most impact.

6. The impedance of any one element can be less than the total .

impedance (recall that for de cireuits, the total resistance mmf
always be less thaii the smallest parallel resistor). il

7. The magnitude of the current through an element, compared to the

 other elements of the network, is directly related to the magnitude

of its impedance; that is, the smaller the impedance of an element,
the larger. is the magnitude of the current through the elenlent.

8. The current through a coil is always in direct opposition with the
current through a capacitor on'a phasor diagram.

- 9. The applied voltage is always in phase with-the current through

the resistive elements, leads the voltage across all the inductive
elements by 90°, and lags the current through ali capacitive ele-
ments by 90°.

10. The smaller the resiszive e!emem af a uenvork compared to the ,
net reactive susceptance, the closer is the power factor to unity.

15.12 EQUIVALENT CIRCUITS = .

In a series ac circuit, the total impedance of two or more elements in se-
ries is often equivalent to an impedance that can be achieved with fewer
elements of different values, the elements nnd their values being deter-
mined by the frequency applied, This is also truc: for parallel circuits. For
1he circuit in Flg 15, 94{3),,

. o

COE Ry (50 LA 90°){wn.¢90*') 50.40.:_
7"'— Ze+Zp 50s- =90° +10.4) 290° ~'5290°
l&ﬂ/_ﬂ%" Sk S 5 e
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o ." Ottt |
Zr Xe=7=sa x;oas . Zr X FR=100
e o— o
v fa) . b (b)
FIG. 15.94

' Defining the-equivalence berween two nerworks at a specific frequency.

The total impedance at the frequency applied is equivalent to a capacitor
with areactance of 10 £}, as shown in Fig. 15.94(b)= Always keep in
mind that this equivalence is true only at the applied frequency. If
the frequency changes, the reactance of each element changes, and the
equivalent circuit changes—perhaps from capacifive to inductive.in the
.above'example.
Another interesting development appears if the impedance of a paral- ' *

lel circuit, such as the one in’ F:g' 15.95(a), is found in rectangular form. —AMN
In this case, R=1920 X =140

=
“AAA
L

230

i e Z,Zp o (40 z.9{}°)(3 9} 7-0'0). :
T™ 2, +Zp 40 29° +3Q20° . i
= 12 £90° o ; o ,
mﬁLSBIZ’," 24[}1'}A36.87. i o S .
—1929+,r1440 iy it i \
: Taie . FIG. 16.95
which is the imPCdﬂﬂCe of -ﬁ St_‘,nes .Clrcll]t with a resistor of 1.92 ﬂ and Fl.l!di?lg the series equivalent cur;;ffgr gpgmﬂgj
- an inductive reactance of 1.44 (1, as shown in Fig. 15.95(b). : R-L network. -
The current I will be the same in each circuit in Fig. 15.94 or Fig. i
15.95 if the same input voltage E-is applied. For a parallel circuit of one
resistive element and one reactive element, the series circuit with the -
same input impedance will always be composed of one resistive and one
 reactive element. The impedance of each element of the series circuit -* : .
will be different from that of the ‘parallel circuit, but ‘the reactive ele-
ments will always be of the same type; that is, an R-L circuit and an R-C
parallel circuit will have an cquiva_.lent'&L and R-C series_circuit, re- o— _
spectively. The same is true when converting from a series to a parallel . ' : -
cireuit, In the discussion to follow, keep in mind that . ™G z,

the term equivalent refers only to the fact that for the same apph'cd R
potential, the same impedance and input current will result. o

To formulate the equivalence between the séries and parallel circuits, : @
the equivalent series circufit for a resistor and reactance in parallel can be
found by determining the total impedance of the circuit in rectangular

form; that is, for the circuit in Fig. 15.96(a), o AWy
1 1 « 1 1 B ¥
Yy=—4——=—Fj— Z,=,—
P R, %X, R; Xp Y=Y,
and i o
AR SR S )
Y, (R = (1/X) e FIG. 15.96 :
IR, % /% - Defining the parameters of equivalent series and

ﬂ'(l/R,,)* +-(-1fx,,)’i'j (I/Rp)-’+ (1‘;x,,7)= | parallelnétworks. " -
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Xp

Xe P4k
) o

qu 15,97

Example 15.18.

&é?kﬂ”

+

i

Multiplying the numerator and denomiinator of each term by R X;

_results in
L % R X3 . WX,
PCXIr RIS R
= R, *jX, [Flg. 15.96(b)]

2 X2

pAp
and R; = sz_-l'R_; (15.43)

. : R;XP 15

U_UITh ; R X§+R§ ( -"“}

For the network in Fig. 15.95,

RK . (3O)e0)

=48ﬂ.

=1920Q

R. = =
X+ R (402 + (30)

and

RX,  (30)40)

23

X, =

X2 + .'e"‘T 7 ﬂ)2 +(30)?

which agrees with th: pmwous result,

The equivalent parallel circuit for a circuit with a resistor and reac-.
tance in series can be found by finding the total admittance of the system
in rectangular form; that is, for the circuit in Fig. 15.96(b),

=:‘h‘&ﬂ

Tk 144 02

g

Z, = K;vjX,
Y ='i = L = R’ i Ay
TZ Rrix, B+X: 'R+Xxi
iy
= G;%]8, ‘ T [Fig 1596(] . ¥
. :
Jor ot ' ,_=—-—‘R L (15.45)
’ M 5
: - . R} + x?
it X =ty (15.46)
&
For the above example, ;
& 2% e (1929)%(144{1)1 £760 < o
P ity 1920 192-- "
_ . R+ X2 _5760 L
md xp x’ 1.44 4-0“

as shown in Fig. 15.95 (a).

E!AMPLE 15.18 Dnten_mne the series equivalent circuit for the net-

work in Fig. 1597,



i

Solution:

' % R’ = s kﬂ !
Xp(m&ullmﬁ) = 1Xf Xcl =19k — 4 k(2|
2 =5kl - ;
and 2

R,X} . (8kQ)(5kQ)? _ 200k
) x’ + R‘ (s K0 + (BkQ): 89
with '

= 2.25k{}

Rx, _@® kﬂ)’(i k) _ 320k0
s x’ - R= (k) + (8kM): 89
= 3.60kQ (inductive)

‘The equivalent series circuit appears in Fig. 15.98.

EXAMPLE 15.18 For the network in Fig. 15.99: :

Determine Y7 and Zr.
Sketch the admittance diagram.
FindEand I, -

+

peos

.the network.

e. Determine the equivalent scncs circuit as far as the lermmal charac-

teristics of the network are concerned.

' f. Using the equivalent circuit. developed in part (e), calculate E, and

compare it with the result of part (c).

Compute the power factor of the network and the power delivered to

EQUIVALENT CIRCUITS |H 683

R, X,

2250 3.60k0

;
o-
FIG. 15.98
\, The fquwm'cm series.circuit for the paraffef network
in Fig. 15.97.
A}

g. Determinie the power delivered to the network, and compare it with -

- the solution of part (d),

h. Determine the equivalent parallel network from the equivalent se-
ries circuit, and calculate the total adrmtzance Y. Cﬂmpare the re-

sult wnth the soluuon of part (a).

i= V2 {12} sin IGOGI

G C e

Yr

r

+
oy - -
i e Ry E:m NR, Ezdu 4 8 gs mH L2§12 mH ﬂ\so UE C?‘? 20 pF
. I 2

Y . '
Si [ ]

FIG. 15.99

. v Example 15.19.

Solutfbnr

a. Combining common elements and: finding the reactance of the in-

ductor and capacitor, we obtain
Rr=100[400 =80
Lr=6mH| 12mH = 4 mH
Cr = 80 uF + 20 uF = 100 uF
X, = wL = (1000 rad/s)(4 mH) = 4 2
l .

! T b
Xe = o = (000 radls)(100 uF) ~ 1

-
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Be £90°
]

GLO®

By - B

“« Admittance diagram for the parallel R-L-C network

/-50.194°

[
0.1958

i

|

Yr

]

1B, 2 90°

FIG. 15.101

in Fig. 15.99,

-

¢
d Fp=

e Ly =—

| c

——-

Yr

I-lZﬁAO‘G) E RES0 X;gm X == 100

FIG. 15.100

Applying phasor notation to the network a'n Fl'g 15.99.

The netwerk is redrawn in Fig. 15. 100 with phasor notation. The

total admittance is

YT—YR'I'YL-!-YC
= G L0° + By 2~90° + Be £ +90°

1
80

490

=L 004 sm 90°+—1~—.¢+90°

100

=0.1255 £0°+ 0255 £-90° + 0.1 § £+90°
. =01255- 0258 + 018§
=0.1258 - j0.155 = 0.195S 2 ~50.194°

: 1
Zr Y
b. See Fig. 15.101.

o B T s

T
el

P=Elcosf =

0.1958

12A£0°

Yr 0.1958 £~50.194°
61538 V 2.50.194°

4 0 £L90°

= 472.75 W

1

1

Yr

0 195 § £-50.194°

=—= —l—L —50.194° =513.ﬂ.(.5019°

= 6154V £50.19°

= 1539'A 2-39.81°

= 0.641 iaggiug' (E leads T)
(61,538 V)(12 A) cos 50.194°

= 5128 () £ +50.194°
=3280 +,3940

=R +jX;

XL=394“_WL

3940 - 3.

S = 394 mH

L=

1000 rad/s

[}

The series equivalent circuit appears in Fig, 15.102,

I=12A20°

FIG. 15.102

Series equmakm ¢ircuit for the parallel R-L-C network in Fig. 15.99 with

@ = 1000 rad/s.
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£ B S IZy= (12A L0°)(5.138 1 £50.194°)
. =654V £50.194° - (as above)

g P=PR=(2A7(3280)=47232W (asabove)

R 4+ X (3280)% + (3940)* - e : I=12AZ0° R0 Lgsmf}
B, ‘RP Sl i 3280 x ‘
+x2 (3280) +(3940) - : : it
.\r=R3 1at e ) = 66790 i =
S LA 3.94 Q ¥ _ - .
. ' : s FIG. 15.103
The parallel equivalent circuit appears in Fig. 15.103. e Parallel equivalent of the circuit in Fig. 15.102.
; e ;
Yy = GL0° + By £-90° = — L0° + —90°
=G4 + B LSO = gn L0 b R s T

" =0.125520° + 0155 £-90° il
~ 0,125 — j0.155 = 01958 £50.194°  (as above)

15.13 PHASE MEASUREMENTS

Measuring the phase angle between quantities is one of the most im- E

‘portant functions that an oscilloscope can perform. It is an operation - .-
that must be performed carefully, however, or you may obtain the in-

correct result or damage the equipment. Whenever you are using.the

dual-trace capability of an oscilloscope, the most important thing to re- .

member is that . : : .

both channels of a dual-frace nsciﬂo's:l;nps must be connected to the
‘ same ground.

Measuring Zrand 07 T [ TR
For ac parallel networks restricted to resistive-loads; the total imped-
_ ance can be found in the same manner as described for dc circuits:
Simply remove the source ahd place an ohmmeter across the network
terminals. However, e 4 .

for parallel ac networks with reactive elements, thé total impedance
- cannot be measured with an ohmmeter. .

~ An experimental procedure must be defined that permits determining the
maghnitude and the angle of the terminal impedance.

The phase angle between the applied voltage and the resulting source - 1
current is one of the most important because (a) it is also the'phase angle |
associated with the total impedance; (b) it provides ait instant indication
of whether a network is resistive or reactive; (c) it reveals whether a net-
work is inductive or capacitive; and (d) it can be used to find the power
delivered to the network, :

In Fig. 15.104, a resistor has been added to the configuration between
the source and the network to permit measuring the current and finding
the phase angle between the applied voltage and the source current.

At the frequency of interest, the applied voltage establishes a voltage
across the sensing resistor that can be displayed by one channel of the
dual-trace oscilloscope. In Fig. 15.104, channel 1 is displaying the ap-
pliéd voltage and channel 2 the voltage across the sensing resistor. Sen-
sitivities for each channel are chosen to establish the waveforms
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Channel 2

Sensing resistor

FIG, 15.104
Usi;lg an oscilloscope to measure Zy and 6y,

PN F¢ ~

\

Channel 1 g ,/

2 Vidiv,
ny

P T & a0l | b Charel 2
e 10 mV/div.

VR s

1.7 diw! - N\ /
LA 717

FIG. 16.105
.. e and vg_for the:configuration in Fig. 15.104,

g appearing on the screen in Fig. 15.105. As emphasized above, note that
i * both channels have the same ground connection. In fact, the need for a
common ground connection is the only reason that the sensing resistor |
was not connected to the positive side of the supply. Since oscilloscopes
display only voltages versus time, the peak value of the sotirce current
must be found using Ohm's law. Since the voltage across a resistor and
the current through the resistar are in phase, the phase angle betwegn
the two voltages will be the same as that between the applied voltage
and the rg_std;ing\;_op_tr;g current, : S

Using the sensitivities, we find that the peak value of the applied volt-
age is ’ : _

' En = (4div)2 V/div) =8V
while the peak value of the voltage across the sensing resistor is
. : L Vajpaio = (div.)(10mV/div.) = 20mV
Using Ohm's law, we find that the peak value of the current is

.. VR,peak)  20mV _ -
N R o, A
The sensing resistor is chosen small enough so that the voltage across
the sensing: resistor is small enough to- perrit the approximation .
- Vi ='E = Vi, ='E. The magnitude of the input impedance is then

i

V. E 8V
. n—-ﬁﬂﬂ-=--—-'::
7 o dp T mA Ll
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: For‘thc chosen horizontal sensitivity, each waveform in Fig. 15.105
has a period 7"defined by ten horizontal divisions, and the phase angle
between the two waveforms is 1.7 divisions. Using the fict that each pe-
' riod of a sintsoidal waveform encompasses 360°, we can set up the fol-
lowing ratios to determine the phaseangle 6: = .
10 div. _ 1.7 div.
360° ]

a7 6= (il'g—)seui =612°

In general,

(div. for 6)

0= a0 e,

Therefore, the total impedan;.:e is ' _ )
Zp = 4KQ £612° = 1.93KQ +j351kQ = R+ jX), ;
‘which is equivalent to the series combination of a 1.93 kQ) resistor and 8 S
~ an inductor with a reactance of 3.51 k() (at the frequency of interest). ~
Measuring the Phase Angje e
between Various Voltages \ :
In Fig. 15.106, an oscilloscope is being used to find the phase relation- : e _ b
ship between the applied voltage and-the voltage across the inductor. =1 . o :
Note again that each chanicl shares the same ground connection, The re- 2
sulting pattern appears in Fig. 15.107 with the chosen sensitivities. This
time, both channels have the same sensitivity, resulting in the following . _—
peak:values for the voltages: _ dis. 2 . .
' " Ep = (3div.)(2 V/div.) =6V v
VLYPN) = (1.6 div.)(2 Vidiv.) =' 3.&\’
The phase angle is determined using Eq. 15.45:
: -é— (1div.) « 360° . : ; .
- (8div.) : : . . .
g = 45° ‘ :

Channel Channel
1. :

. FIG.15:106 -
Determining the phase relationship between € and ..
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FIG."15.108
An improper phase-ma:u;emm; connection,

e

. N
- e
Channel 1 o ; . b /Chﬂﬂl’l_&l 2
2 Vidiv. A /K /J/‘ 2 Vidiv.

fet

N
N1/

= 6

-
1 div. ::l" T=8div. ——— 4|

- FIG. 15.107
Der?mfm‘ng the phase angle between & and vy for the configuration in
Fig. 15.106.

If the phase relationship between e and g is desired, the pscilloscope
caniiot be connected as shown in Fig. 15.108. The grounds of each chan-
nel are internally connected in the oscilloscape, forcitig point b to have:
the same potential as point a. The result would be a direct connection be-
tween points a and b that would short out the inductive element. If the
inductive element is the predominant factor in controlling the level of the
current, the current in the circuit-could'rise to dangerous levels and dam-
age the' oscilloscope or supply. The easiest ‘way to find the phase rela-
tionship between e and vg would be to simply interchange the positions
of the resistor-and the inductor and proceed as before.

For the parallel network in Fig. 15.109, the phase relationship be-
tween two of the branch currents, ig and i;, can be determined using a
sensing resistor,-as shown in the figure. The value of the sensing resistor
is chosen small enough in comparison to the value of the series inductive
reactance to ensure that it will not affect the general response of the net-
work, Channel 1 displays the voltage v, and channel 2 the voltage vp,.
Since vg is in phase with iz, and g is in phase with i;, the phase rela-
tionship between g and ug, will be the same as between ig and i;. The
peak value of each current can be found through a simple application of
Ohm's law. :

e——
Oscilloscope

FIG. 15.109"
Determining the phase relationship between iy and iy,
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15.14 APPLICA'ITONS

‘Home W‘rmg

" An expanded view of house wiring is prowded in Fig. 15.110 to permit a
discussion of the entire system. The house panel has been included with
the "feed” and the important grounding mechanism. In addition, a num-
ber of typical circuits found in the home have been included to provide a
sense for the manner in which the total power is distributed.

First note how the copper bars in the panel are laid out to provide both
120 V and 240 V. Between any one bar and ground is the single-phase
120 V supply. However, the bars have been arranged so that 240 V can
be obtained between twg vertical adjacent bars using a double-gang cir-
cuit breaker. When time permits, examine your own panel (but do not re-
move the cover), and note the dual cu'cmt bn:akcr mngcment for the
240 V supply.
~ For appliances such as fixtures and heaters that have a metal casmg.
the ground wire is connected to the metal casing to provide a direct path
to gréund path for a “shorting” or errant current as described in Section
6.8. For outlets that do not have a conductive casing, the ground lead is
connected o a point on the outlet that dlsl:nbutcs to all important points
of the outlet.

Note the series arrangement between the thermostat and the heater but
the paralle] arrangement between heaters on the same circuit. In addition,

Switched outlets Parallel outlets Y

+

APPLICATIONS [/| 689

122 kW h
electric range I
— Ho00000
== 2000000000
3 | | 240V R dbus-bar i
oy — = MAIN PANEL
T -
L Air conditioner
t_‘_ -
40V
860,W =
F ‘H
FIG. 15.110

Home wiring diagram.

Parallel electric
baseboard heaters



690 |11 SERIES AND PARALLEL ac CIRCUITS

LY )
\
.
LS
o b B
+ Ly = 3.3 mH :
v, B
e Woofer
7
L A :
r e I\ I 370 }LH .
Ey =41 uF it =
g B0
Muir.mu

.

I
I\

C]s'r;h= 19 HF

FIG. 15.111
Crossover speaker systept,

e

* &

note the series connection of switches to lights in the upper-right corner
but the parallel connection of lights and outlets. Due to high cutrent de-
mand, the air conditioner, heaters, and elec{nc stové have 30 A breakers,
Keep in mind that the total current does not equal the product of the two
(or 60 A) since each breaker isin a line and the same current will flow
through each breaker. e 2

In general, you now have a surface understanding of the general

‘wiring.in your home. You may hot be a qualified, licensed electrician,

but at least you should now be able to converse with some intelligence
about the system. ¥

Speakel". Systems

The best rep-ruduétiun of sound is obtained by using different speakers

for the low-, mid-, and high-frequency regions. Although the typical

audio range for the human ear is from about 100 Hz to 20 kHz, speak-
ers are available from 20 Hz to 40 kHz. For the low-frequency range
usually extending from about 20 Hz to 300 Hz, a speaker referred to as
a woofer is used. Of the three speakers, it is normally the largest. The
mid-range spcaker is typically smaller in size and covers the range
from about 100 Hz to 5 kHz. The tweeter; as it is normally called, is
usually the smallest. of the three speakers and typically covers the
range from about 2 kHz to 25 kHz. There is an overlap of frequencies -
to ensure that frequencies aren't lost in those regions where the re-
sponse of one drops off and the other takes over.' A great deal more
about the range of each spéaker and their dB response (a term you may
have heard when discussing speaker response) is covered in detail in
Chapter 21.

One popular method for hooking up the three speakers is thescross-
over configuration in Fig. 15.111. Note that it is nothing more than a
parallel network with a speaker in cach branch and full applied voltage
across each branch. The added elements (inductors-and capacitors) were
carefully chosen to set the range of response for each speaker. Note that
each speaker is !abelcd with an impedance level and associated fre-
quenicy. This type of information is typical when purchasing a quality
speakef- It lmmcchately identifies the lypc of speaker and reveals at

. which quuuncy it will have its maximum response. A detailed analysis

of the same- network will be included #n Scction 21.15. For now, how-

&l e\rer, it should prove inlereslmg to determine the total impedance of each p

‘branch at specific frequencies to see if indeed the response of one will
far outweigh the response of the other two. Since an amplifier with arf
output impedance of 8 £} is to be used, maximum trarisfer of power (see
Section 18.5 for ac networks) to the speaker results when the impedance

“of the branch is equal to or very close to 8 ().

Let us begin by examining the response of the fr_cqutncms to be car-

* ried primarily by the mid-range speaker since it represents the greatest

portion of the human hearing range. Since the mid-range speaker branch
is rated at 8 (2 at.1.4 kHz, let us test the effect of applylng 1.4 kHz to all

‘branches.of the crossover network,

,For the mid-range speaker: 4
1 -
Xc = .
L 2nfC 211"(1 4 kl-tz)(ﬂ ,u.F)
.XL = Zﬂﬂ. 27(1 4kHz)(270 BH) = 2, 78 ﬂ i
; R=8ﬂ e BT

2420



e Zm,.,,,,,=ﬂ+;(x,_ Xc)=sn+;{zvan 242Q)
. =80 +j0360
Y =B0080 £~258° =80 L0°=R

In Fig. 15. 1 12(&} ‘the smpllﬁer with the output impedance of 8 {} has
' béen applied across the mid-range speaker at a freqncn-::y of 1.4 kHz,
Since the total reactance offered by the two series reactive elements is so
small compared to the 8 () resistance of the speaker, we can essentially
replace the series combination of the coil and capacitor by a short circuit
of 0 (). We are then left with a situation where the load impedance is an
exact match with the output impedance of the amplifier, and maximum
power will be delivered to the speaker. Because of the equal series im-
pedances, each will capture half Lhe applied voltage or 6 V. The power to
the speaker is then V/R = (6 V) ;’Bﬂ =45W.
At a frequency of 14 kHz, we would expect the woofer and tweeter to
have minimum impact on the generated sound, We will now test the validity
of this statement by dﬂemumng;he 1mpedamceufmh branch at 1.4 kHz.

(=X +jX, == 0:04 )

X,
280 v
& Ebsn a[:;?ﬂ
Midringe
Amplifier
(a)
@
X;
100~ 1 !
; speaker
woa T i
3 &
<80
B e pe
" Woofer
Ampliﬂc-r
(b)
L
: =
I/
i ! S
speaker
; ) aie j =397 mA
" 20.150 - :
i 280
' 2y ere
. Tweeler
Amplifier
. (4]
FIG. 15.112

*  Crossover network: (a) mid-range .ipeahr at 1.4 kHy; ( b) woafer at |
1.4 kHz; (c) tweeter. e

AEPLICATIE_}NS [, 681
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e

For the woofer,
Xy = 2ufL = 2mw(1.4 kHz)(3.3 mH) = 29.03 O
and Zuooter = R+ jXp =80+ j29.030}

= 30.11 0 £74.59° -

which is a poor match with the output-impedance of the amphﬁer The
resulting network is shown in Fig. 15.112(b).
The total load on the source of 12V is

Zr=80+80 +,29030 =160 +,29.030
=133.15 0 261.14°

.andthecurrentis

(=B o 12V0
Zr . 33.15Q £61.14°

= 362 mA £ —61.14°
The power to the 8 () speaker is then
Puooter = PR = (362 mA)z(sm =105 W

or about 1 W.

Consequently, the sound generatad by the mid-range speaker far out-
weighs the response of the woofer (as it should}

For the tweeter in Fig. 15.112,

5 1 1
€ ¥ 2mfC ” 2m(1.4 kHz)(3.9 uF)

=29.150

and Zoweerer = R —4Xc =80 — ;291551

*“30_3392; 74.65°

whi;:h. as for the woofer, is a poor match with the output impedance of

" the amplifier. The current is given as

I=-£ 12V £0°

Zr 30230 7-74.65°
= 397 mA £74.65°

" The power to the 8 £ speaker is then
" Peweer = I’R = (397 mA)%(8 ) =126 W

or about 1.3 W.
Consequently, the sound generated by the mid-range speaker far out-
weighs the response of the tweeter also.
.All in all, the mid-range speaker -predominates at a frequency of
1.4 kHz for the crossover network in Fig. 15.111. »
‘Let us.now determine, the impedance of the twaaeter at 20 kHz and the

~ impact of the woofer at this fmquency

For the I:weeter.

1 1 G
Xe = 2ufC a0 F) - 20

~. with Zyierir =861 —j2.04 Q) = 8260) L~ 14.31°

Even though the magnitude of the impedance of the branch is not ex-
actly 8 £, it js very close. hnd the speaqu wdl receive a high level of

- power (actually443w) i
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Fortheg\qur. il vt i 4V (volts)
ik K;*?’ﬂﬂn 2«(201&!7.)(33@) = 414690 il 7 ‘30'15&?3
: \iri:p T 80} — j414.69Q = 414.77 Q) £88.9° -

-which is a terrible match with the output impedance of the amplifier.
Therefore, the speaker will receive a very low level of power (6,69 mW =
0.007W). .

For all the calculations, note that the capacitive elements predominate 20
at low frequencies and the inductive elemcnts at high frequencies. For
the low frequencies, the reactance of the coil is quite small, permitting 2 g uf:qp
full wansfer of power to the speaker. For the high-frequency tweeter, the voltage
reactance of the capacitor is quite small, providing a direct path for .

. power flow to the speaker. .. i

Phase-Shift Power Control

In Chapter 11, the internal stmcmre of alight dlmme.r was eum:ned and !
its basic operation described. We can now tumn our al:tention to how thc V (volts)
power flow to the bulb is.controlled. p

If the dimmer were composed of simply resistive elements, all the
voltages of the network would bein phase as shown in Fig. 15.113(a). If _
we assume that 20 V are required to turn on the triac in Fig. 11. 68, the
power will be distributed to the bulb for the period highlighted by the
blue area of Fig..15.113(a). For this situation, the bulb is.close to full
brightness since the applied voltage is available to the bulb for almost
the entire cycle. To reduce the power to the bulb (and therefore reduce its
brightness), the controlling voltage would need a lower peak voltage, as
shown in Fig. 15.113(b). In fact, the waveform in Fig. 15.113(b) is such
that the turn-on voltage is not reached until the peak value occurs. In this
case, power is delivered to the bulb for only half the cycle, and the
brightness of the bulb.is reduced. The problem with using only resistive
elements in a dimmer now becomes apparent: The bulb can be made no
dimmer than the situation depicted by Fig. 15.113(b). Any further reduc-

" tion in the controlling voltage would reduce its peak value below the |

trigger level, and the bulb would never turn on. (b)

This dilemma can be resolved by using a series combination of ele- .
ments such as shown in F:g 15.114(a) from the dimmer in Fig. 11.68." e - FK,;‘ 15'"? " .
Note that the controlling voltage is the voltage across the capacitor, Ligiitiminer; (ul Wit pyely st Baneaty

: T ; it (b) half-cycle power distribution.
while the ful] line voltage of 120 V rms; 170 V peak, is across the entire :
branch. To'describe the behavior of the network, let us examine the case

Applied
voltage

170

- L]
olc

+ + 4
*
» -
R <80KkQ
» - . ¥
: 170V £0°
Vyje = 170V £0° o
(peak)
C ZTRO068 F  Vooum

(b)

FiG. 15.114
Light dimmer: (a) from Fig. 11.68; (b) with rheastat set at 33 k{1,

e $owms ™ AER
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defined by setting the potentiometer (used as a rheostat) to 1/10 its max-
imum value, or 33 k{). Combining the 33 k() with the fixed resistance of
47 k{2 results in a total resistance of 80 k{2 and the equivalent network in

Fig. 15.114(b).

At 60 Hz, the reactance of the capacitor is

1 1
2mfC ~ 2m(60 Hz)(62 uF)
Applying the voltage divider rule gives
S T,
cantrol ZR _]_ zc
_ (4278 k0 £~90°)(V, £0°)  42.78kQV, £-90°

B0 kQ — j42.78 k() 9072 k) £-28.14°
= 0472V, £—61.86°

Using a peak value of 170 V gives

Veontrol = 0472(170 V) £ —61.86°
= §0.24 V £~61.86°

producing the Wavcfurm in Fig. 15.1 lS(a}. The result is a waveform with
a phase shift of 61.86° (lagging the applied line voltage) and a relatively
high peak value. The high peak value results in a quick transition to the
20 V turn-on level, and power is distributed to the bulb for the major por-
tion of the applied signal. Recall from the discussion in Chapter 11 that
the response in the negative region is a replica of that achieved in the pos-
itive region. If we reduced thc,potennometer resistance further, the phase
angle would be reduced, and the bulb would burn bnghter The situation
is now very similar to that described for the response in Fig. 15.113(a). In
other words, nothing has been gained thus far by usmg the capacitive ele-
ment in the control network. However, let us now increase the potentiome-
ter resistance to 200 k) and note the effect on the controlling voltage.
That is,

XC = = 42,78 k{)

Ry = 200k + 47 k) = 247k

1 V (volts)

170 +

29.07 |
A

0°

FIG. 15.115

Light dimmer in Fig. 11.68; (a) rheostat set ar 33 k(2; (b) rheostal set at 200 k0.
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(42.78kQ £~ 90“)(V £0°) 4278 kQV, £-90°
T Tk~ jA278KQ | 250.78 kO £~9.8°
= (0.171 V, £—80.2° : ?

_and using a peak value of 170 V, we have

Veanrol = 0.171(170 V) £-80.2°
i = 29.07 V L —80.2°

The peak value has been substantially reduced to only 29.07 V, and the
. phase-shift angle has'increased t0.80.2°. The result, as depicted by
Fig. 15.115(b), is that the firing potential of 20 V is not reached until
near the end of the positive region of the applied voltage. Power is deliv-
ered to the bulb for only a very short period of time, causing the bulb to
be quite dim, significantly dimmer than obtained from the response.in
Fig. 15.113(b).

A conduction angle less than 90° is therefore posslble. duc only to the
phase shift introduced by the series R-C combination. Thus, it is posmblc
to construct a network of some significance with a rather simple pair of
elements.

" 15.15 COMPUTER ANALYSIS |
PSpice

Series R-L-C Circlit The R-L-C network in Fig. 15.35 is now ana-
lyzed using OrCAD Capture. Since the inductive and capacitive reac-
tances cannot be entered onto the screen, the ‘associated mductwe and
capacitive levéls were first determined as follows

1 l '

2 C = Sarxe - 2n(1kH2)3 01 - = 5305 4F
Enter the values into the schematic as shown in Fig. 15.116. For the ac
source, the sequence is Place part icon-SOURCE-VSIN-OK with
VOFF set at 0V, VAMPL set at 70.7 V (the peak value of the applied si-
nusoidal source in Fig. 15.35), and FREQ = 1 kHz. Double-click on the
source symbol and the Property Editor appears, confirming the above
choices and showing that DF = 0 s, PHASE = 0°, and TD = 0 s as set _
by the defdult levels, You are now ready to do an analysis of the circuit A
for the fixed frequency of 1 kHz. '

The simulation process is initiated by first selecting the New Simula-
tion Profile icon and inserting PSpice 15-1 as the Name followed by
Create. The Simulation Settings dialog appears and since you are con- -
tinuing ta plot the results against time, select the Time Domain (Tran-
sient) option under Analysis type. Since the period of each cycle of the
applied source is 1 ms, set the Run to time at 5 ms so that five cycles ap-
pear. Leave the Start saving data after at 0 s even though there will be an
oscillatory period for the reactive elements before the circuit settles
down. Set the Maximum step size at 5 ms/1000 = 5 ps. Finally, select "
OK followed by the Run PSpice key. The result i is a blank screen wnﬂan
x+axis extending from 0 sto 5 ms.

XC-'—'
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FIG. 15.116
. Using PSpice to analyze a series R-L-C ac circui,

The first quantity of interest is the current through the circuit, so se-

lect 'IYace-Add-Trace followed by I(R) and OK. The resulting plot in

» : Fig. 15.117 clearly shows that there is a period of storing and discharg-
: ing of the reactive elements before a steady-state lcvel is established. It

4 SCHEMATICH Popice 13- - P’si:iiﬁnqio”m-'ﬂ"l&ml”imf -
{iB Bte £t Yew Gmubation Tiace Plot Tgoh Window Help %, :!nence il

Elu\, i B AB Jﬁ‘

- P.&E-YI— : .L -

cxmmgavsﬂ _ Times 3000603
* - FIG. 15.117 -~

?p‘for of the current for the circuit in Fig. 15.116 showing the transition [from
' the transient state to the steady-state response.
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A plot of the steady-state responsé (t > 3 ms) for vy, v, and i for the circuit in
y Fig. 15.116. .

would appear that after 3 ms, steady-state-conditions have been essen-
tially established. Select the Toggle cursor key, and lefi-click; a cursor
appears that can be moved along the axis near the maximum value
around 1.4 ms. In fact, the cursor reveals a maximum value of 16.4 A,
which exceeds the steady-state solution by over 2 A. Right-click to es-
tablish a second cursor on the screen that can be plaged near the steady-
state peak around 4.4 ms. The resulting peak value is about 14.15 A,
. which is 2 match with the longhand solution for Fig. 15.35, We will
' therefore assume that steady-state conditions have been established for
. the circuit after 4 ms. A )

Now add the source voltage through Trace-Add Trace-V(Vs:+)-
OK to obtain the multiple plot at the bottom of Fig. 15.118. For the
voltage across the coil, the sequence Plot-Add Plot to Window-
Trace-Add Trace-V(L:1)-V(L:2) results in the plot appearing at the
top of Fig: 15.118. Take special note that the Trace Expression is
- V(L:1)=V(L:2) rather than just V(L:1) because V(L:1) would be the
voltage from that point to ground, which would include the voltage
across the capacitor. In addition, the — sign between the two comes
from the Funetions or Macros list at the right of the Add Traces di-
alog box. Finally, since we know that the waveforms are fairly steady
after 3 ms, cut awdy the waveforms before 3 ms with Plot-Axis
Settings-X axis-User Defined-3ms to 5ms-OK to obtain the two
cycles of Fig. 15.118. Now you can clearly see that the peak value
of the voltage across the coil is 100 V to match the analysis of
Fig. 15.35. It is also clear that the applied voltage leads the input cur-
rent by an angle that can be determined using the cursors. First acti-
vate the cursor option by selecting the cursor key (a red plot through
the origin) in the second toolbar down from the menu bar, Then se-
lect V(Vs:+) at the bottom left of the screen with a left click, and set
it at that point where the applied voltage passes through the horizontal
axis with a positive slope. The result is A1 = 4 msat —4.243 uV =

COMPUTER ANALYSIS 111 887
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0 V. Then select I(R) at the bottom left of the screen with a right '
click, and place it at the point where the current waveform passes
through the horizontal axis with a positive slope. The result is A2 = .
4.15ms at =55.15 mA = 0.55 A = 0 A (compared to a peak value of
14.14 A} At the bottom of the Probe Cursor dialog box, the time
difference is 147.24 us.

- Now set up the ratio

147.24 14724 ps _ [/
lOOOm = 360°
4 = 52.99° 4

The phase angle by which the apphed voltage leads the source is

52 99°, which is very close to the theoretical solution of 53.13° ob-
tained in Fig. 15.39. Increasmg the number of data points for the plot
would-have increased the accuracy level and brought the results closer .
to 53 A o

Multisim

We now examine the response of a network versus frequency rather than
time using the network in Fig. 15.86, which now appears on the schematic
in Fig. 15.119. The ac current source appears as AC_CURRENT_
SOURCE under the SIGNAL_CURRENT_SOURCES Family listing.
Note that the current source was given an amplitude of 1 A tb establish a
magnitude match between the response of the voltage across the network
and the impedance of the network. That is,

2= ] = %

Before applying computer methoids, we should develop a rough idea
of what to expect so that we have something to which to compare the

o “";F

FfG 15, 'I'IﬂI
_ Ob!afning an Impadance plot for a pam;’b.-f R-L nerwark using Mnfrfxrm



c

- computer solution. At very high frequencies such as 1 MHz, the imped-
ance of the inductive element will be about 25 k), which when placed
in parallel with the 220 £ will look like an open circuit. The result is

" that as the frequency’gets Very high, we should expect the impedance of
the network to approach the 220 {) level of the resistor, In addition,
since the network will take on resistive characteristics at very high fre-
quencies, the angle associated with the input impedance should also ap-
proach 0°. At very low frequencies the reactance of the inductive
element will be much less than the 220 £ of the resistor, and the net-
work will take on inductive characteristics. In fact, at, say, 10 Hz, the
reactance of the indugtor is only about 0.25 0, which is very close to a
short-circuit equivalent compared to the parallel 220 Q resistor. The re-
sult is that the impedance of the network is very close to 0 {} at very low
frequencies. Again, since the inductive effects are so strong at low fre-
quencies, the phase angle associated with the input impedance should
be very close to 90°,

Now for the computer analysis. The current source, the resistor ele-
ment, and the inductor-are all placed and connected using procedures
 described in detail in earlier chapters. However; there is one big differ-
ence this time: Since the output will be plotted versus- frequency, the
AC Analysis Magnitude in the AC_CURRENT dialog box for the
> source must be set to 1 A. In this case, the default level of 1A matches
that of the applied source, so you were set even if you failed to check

- the setting. In the future, however, a voltage or.current source may be

used that does not-have an amplitude of 1, and proper entries must be

made to this listing. = = ;

For the simulation, first apply the sequence Simulate-Analyses- -

AC Analysis to obtain the AC Analysis dialog box. Set the Start fre-
quency at 10 Hz so that you have entries at very low fréquencies, and
set the Stop frequency at 1MHz so that you have data points at the
other end of the spectrum. The Sweep type can remain Decade, but
the number of points per decade will be 1000 so that you obtain & de-
tailed plot. Set the Vertical scale on Linear. Within Output vari-
ables, V(1). Shifting it over to the Selected variables for analysis
column using the Add keypad and then hitting the Simulate key re-
sults in the two plots in Fig. 15.119. Select the Show/Hide Grid key

to place the grid on the graph, and select the Show/Hide Cursors key - -
to place the AC Analysis dialog box appearing in Fig, 15:119, Since.

two graphs are present, define the one you are working on by clicking
on the Voltage or Phase heading on the left side of each plot. A small
red arrow appears when selected so you know which is the active plot.

When setting up the cursors, be sure that you have activated the cor-

rect plot. When the red cursor is moved to 10 Hz (x1), you find that the
voltage across the network is only 0.251 V (y1), resulting in an input
impedance of only 0.25 —quite small and matching your theoretical
prediction. In addition, note that the phase angle is essentially at 90°

in the other plot, confirming your other assumption above—a totally

inductive network, If you set-the blue cursor near 100 kHz (x2 =
102.3 kHz), you will find that the impedance at 219.2 Q (y2) is clos-
ing in on the resistance of the parallel resistor of 220 ), again con-
firming the preliminary analysis above, As noted in the bottom of the
AC Analysis box, the maximum value of the voltage is 219.99 Q or
essentially 220 {} at 1 MHz. Before leaving the plat, note the advan-
tages of using a log axis when you want a response over a wide fre-
quency range.

COMPUTER ANALYSIS |11 899
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PROBLEMS

SECTION 156.2 Impedance and the Phasor Diagram
1. Express the impedances in Fig. 15.120 in both polar and

rectangular forms.
pe L=12H
R=680 i @ =377 radls
(a) - (b)
C-]ﬂpF P C-ﬂ.“?ﬂF
o = 100 rad/s f =10kHz
- (d) (e)
FIG. 15.120 .
v Problem 1.

2. Find the current i for the elements in Fig. 15.121 using com-
 blex algebra.. Sketch the waveforms for v and i on the same

set of axes.

| — ! 2

+ o + i
30 v o= 15 sin(w+ 10°) X, &2mH v = 6 sin(500t + 10°)_
(a) (b
FIG. 15.121
Problem 2,

3. Find the voltage v for the elements in Fig. 15,122 using
complex algebra. Sketch the waveforms of v and  on the

same set of axes.

1 = 4 % 10 sin 1000 1 = 1.5 sinfur + 60°)
— A ———w
PR g +-
< . =
RS20y : L 12mH
” ) . /= 200H:z
(a) . ’ (b)
FIG. 15,122

FProblem 3. -

SECTION 16.3 Series Configuration

4. Calculate the total impedance of the circuits in Fig, 15,123,
Express your answer in rectangular and polar forms, and
draw the impedance diagram. :

-

L=47mH

f=50Hz
©

R=2200

‘@ =157 rad/s ,
f)

. T8 :
.- .
C=2uF ==y = 120sinwr  f= 5kHz

o—_ E
(c)

= 2% 107 sin(157¢ + 40°

Y

R

C=TS0.047 uF v
Q—-—_—

(c)



.
o R, Z 100
o
@ ) ®
FIG. 15.123
Problem 4.

5, Calculate the total impedance of the circuits in Fig. 15.124.
Express your answer in rectangular and polar forms, and
draw the impedance diagram.

R=30

Xc -Sn -
)

R=1kn X =2k

X, 410

‘FIG. 15.124
" Problem 5.

6. Find the type and impedance in ohms of the series circuit el-
ements that must be in the closed container in Fig. 15.125
for the indicated voltages and currents’to exist at the input
terminals. (Find the simplest series circuit that will satisfy
the indicated conditions.) ?
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R'I = lmx;_l = lzkﬂ

5.6k}

0 )
' XLl = 6.8k0
()

=

R=41001L =47mH

. ‘
fltk.“!'. C-ﬂ.lp?
Ly = 200 mH .

(c)

I = 02A£-60°
—_—

I=60AL70°
2 —

I = 20mA £40°
—
O ; " Q] o
+ + + :
*, a
E=120veer | 2 E=80vzne | 2?2 E=8kvzee [ ?
= : 2 =
(a) (b) (c)
FIG. 16.126
Problems 6 and 26,
7. For the circuit in Fig. 15.126: i ¢. Find the curgant I and the voltages Vg and V, in phasog
a. Find the total impedance Zg in polar form. form. !
b, Draw the impedance diagram. : d. Draw the phisor diagram of the voltages E, Vg, and ¥y,

R=80 X, =60

f.
4

h

FIG. 15.126 ‘ i
Pmb[emr 7 and 48.

and the cursent L.

Verify Kirchhoff's voltage law around the closed
loop.

Find the average power delivered to the circuit.

Find the power factor of the circuit, and indicate
whether it is leading or lagging.

Find the sinusoidal expressions for the voltages and cur-

rent if the frequency is 60 Hz.
Plot the waveforms for the voltages and current on the
same set of axes. .
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8. Repeat Problem 7 for the circiit in Fig. 15.127, replacing 11. Using the oscilloscope reading in Fig. 15.130, determine
V with V¢ in parts (c) and (d). the resistance R (closest standard value).
R=180. C=91 uF
AV {f . 4
3 TV +‘}¢'_ E=20V( ) 20 ;c 43.20 V(p-p)
E=120V£2° Il e I e ¥
- = 60 Hz N
Z f
=
FIG. 15.127 | FIG. 15.130
Problem 8.” Problem 11.
9. For the circuit in Fig. 15.128: *12. Using the DMM current reading and the oscilloscope mea-
a, Find the total impedance Zy in polar.form, : surement in Fig. 15.131;
b. Draw the impedance diagram, h a. Determine the inductance L.
c. Find the value of C in microfarads and L in henries. b. Find the resistance R, _
d. Find the current Land the voltages Vg, Vi, and V¢ in + ¢ Find the closest standard value for the inductance found
phasor form. in part (a). ) :

€. Draw the phasor diagram of the voltages E, Vp, Vy, and
Ve and the current I ; )
Verify Kirchhoff’s voltage law aréund the closed loop. 1.3 mA(rms)
g Find the average power delivered to the circuit. Z
h. Find the power factor of the circuit, and indicaie

o

whether it is leading or lagging. LS i + +
i flr:i r::w sinusoidal expressions for the voltages and ol m(:'.“d':}u Scope = 22.8 V(p-p)
J. Plot the waveforms for the voltages and current on the % :
" same set of axes, o4 +
:  FIG.18131
R=4n X, =60 Xc=100 Problem 12,

*13, Using the oscilloscope reading in Fig. 15.132:
a. Find the rms value of the current in the series circuit.
b. Determine the capacitance C.

e = 70.7 sin 3771

¢

FIG. 15.128
Problem 9, . !cop: =827V(p-p)
: ' . . AAA
. Yy
10. Repeat Problem 9 for-the circuit in Fig. 15,129 except for B + 10k _
putie)” ., ©. o . E =12 V(rms) c/ =
f=40kHz =~
qu. 15.132
Problem 13,

e = 6in(20,000¢ + 60°)

: : _ . SECTION 154 Voltage Divider Rule

FIG. 15.129 ) * 14, Calculate the voltages V¥, and V; for the circuits in Fig.
Problem 10, : . 15.133 in.phasor form using the voltage divider rule.
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E'= 120V £60°

. FIG. 15.133
Problem 14.

15. Calculate the voltages V, and V3 for the circuits in Fig.
15 134 in phasor form using lhe voltage divider rule.
¥

200 200 00 . : 47k0 k0 33k0

+v, -

E =20V CE = 120VZ20°

- (@)

" FIG. 16.134 - :
Problem 15. . s

#16. For the circuit in Fig. 15.135:

a. Determine I, Vg, and V¢ in phasor form.

b. Calculate the total power factor, and indicate whather it
is leading or lagging.

¢, Calculate the average power delivered to the circuit,

d. Draw the impedance diagram. .

e. Draw the phasor diagram of the voltages E, Vg, and Vo
and the current L,

f. Find the voltages Vg and Ve using the voltage dwider
rule, and compare them with the results of part (a). :

‘g Draw the equivalent series circuit of the above as far as . -
thel.oml lmpedmcen.ndmccummim concemed,

+ Vg — I !
I\
e 3010 L=20mH 39 pp
e = \/1(20) sin(1000: + 40°) - il
-
. ] FIG. 16.136
o Ve Problems 16 and 47. -
17. Anelectrical load has a power factor of 0.8 lagging. It dissi-
pates 8 kW at a voltage of 200 V. Calculate-the impedance 2
of this load in rectangular coordinates. .
*18. Find the series element or elements that must be in the en-
closed container in Fig, 15.136 to satisfy the following con- E= \
ditions: " N

a, Average power to circuit = =300 W.
b, Circuit has a lagging power factor.

- FIG. 15,136
Problem I8.
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SECTION 155 Frequency Response for Series ac
Circuits

*19, For the circuit in Fig, 15.137; @
a. Plot Zr and 07 versus frequency for a frequency range of

zero to 20 kHz. =
b. Plot V; versus frequency fcr the frequency :ange of
part (a).
c. Plot 8; versus frequency for the frequency range of
part (a).
d.’ Plot Vg versus frequency for thc frequency range of
part (a).
+ Ve =
R
AAA
b2 Yy
vt 1k
+ 1 I , +
e = 7.07 sin wt
E=5VZ0° LEg0ml V,
¥
FIG. 15.137 .
Problem 19.

“20. For the circuit in Fig. 15.138:
a. Plot Zy and 87 versus frequency for a frequency range of
zero to 10 kHz.
b. Plot' V¢ versus frequency for the frequency range of
part (a).

¢ Plot ¢ versus frequency for the frequency range of -

part (a).
d. Plot Vg versus frequency for the frcqucncy range of
part (a),

o
~0.47uF Ve

¢ = 2/%(10) sin wi

FIG. 15,138
Problem 20,

*21, For the series R-L- Ccm:ull in Fig. 15.139:
8. Plot Zrand 87 versus frequency for a frequency nnge of
zero to 20 kHz in increments of 1 kHz.
b. Plot Vi (magnitude only) versus frequency for the same
frequency range of part (a),
c. Plot / (magnitude only) versus frequency for the same
frequency range of part (a). !

E = 120V £0° e _ c

=

‘FIG. 15.139
Problem 21.

22, For the series R-C circuit in Fig. 15.140:

8, Determine the frequency at which X¢ = R. _

b. Develop a mental image of the ch.mge in total imped-
ance with frequcncy without resorting to a single calcu-
lation.

¢ Find the total impedance at 100 Hz and 10 kHz, and
compare your answer with the assumptions of part (b),

d. Plot the curve of V¢ versus frequency.

- e Find the phase angle of the total impedance at f =
40 kHz. s the network resistive or capacitive at this
frequency?,

R

Z; 200
+*

+
:f“_ ;m“‘:n"k;':" @ C7 047 uF Ve

- P
FIG. 15.140
Problem 22,
SECTION 15.7 Admittance and Susceptance

23. Find the total admittance of the branches in Fig. 15.141.
Identify the values of conductance and susceptance, and

draw the admittance diagram.
Om———
- ‘h 1 —
‘_'r ::R = 6810 " Y-r XL ‘= 200 a
B "
(2) ) ' ®)
o )
Yr =X =2k0
[ S——
(e)
FIG. 16.141
Problem 23.



14 F'mdtlﬂmu‘l-dmhumfwmcnﬂworks of Fig. 15.142.
Identify the values 5f total conductance and admittance, and
~ draw the admitiance dngmn

o
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ooty ot , o S
Yr = R Yl’ 3 i = YT <
: 200 60 01 CoZTn0 AR 220 <3k 6kl =<9k
o— = o
(a) o al (b) «(c)
) . FIG. 15.142
Problem 24.
25. l-"“md the total admittance. for-the networks of Fig, 15.143. .
" Identify the values of total conductance and admittance, and
draw the admittance diagram.
. R=470 30 00
Y, . Y
T it T S0
-
] 3
(@ S ; (b) ()
FIG. 15.143
Problem 25. -
zﬁ. Repeat Problem 6 for the parallel circuit elements that must g find the power factor of the circuit, and indicate

be in the closed container for the same voltage and current
to exist at the input terminals. (Find the simplest parallel
circuit that will satisfy the mu_ditiqna indicated.)

SECTION 15.8 Parallel ac Networks

27. For the circuit in Fig, 15.144;

a. Find the total admittance Y in polar form.

b. Draw the admittance diagram.

c. Find the voltage E and the-currents g and I in phasor
form.

d. Draw the phasor diagram of the currents 1, lg, and I,
and the voltage E.

e. 'Verify Kirchhoff’s current law at one node.

f. Find the average power delivered to the circuit.

L
L=2A40°
—

I

+ Y L
E@ RZ 100 xbg 200

AA

FIG. 15.144
_Pmblem 27.

whether it is leading or lagging.

h. Find the sinusoidal expressions for the currents and _

voltage if the frequency is 60 Hz.
i. Plot the waveforms for the currents and voltage on the
same set of axes.

28. Repeat Problem 27 for the ircuit in Fig. 15.145, rcplacmg'

I, with I in parts (c) and (d).

I, = 2mA £20°

—

; 2 L ["
*IR llc
+ 4 A
E R 10K, cTn.u WF
_f=’60 Hf.i.

FIG. 15.145
- Problem 28.

29. For the circuit in Fig. 15.146:

Find the total gdmittance and impedance in polar form.

Draw the admittance and impedance diagrams.

. Find the value of C in microfarads and L in henries,

Find the voltage E and currents Iy, I, and I in phasor

form. ’

e. Draw the phasor diagram of the currents I, Iy, 1, and
§ Iﬁ' and the voliage E.

eEngpR
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f. Verify Kirchhoff's current law at one node. + l" 11';. li
g. Find the average power delivered to the circuit. r _ 2
h. Find the power factor of the circuit, and indicate ot A < 201 Y. ==
whether it is leading or lagging. iy = 36in(3771 4+ 60°) ¢ Rg12 0 x g c T30
i. Find the sinusoidal expressions for the currents and
voltage, =
J. Plot the waveforms for the currents and voltage on the = "
same set of axes, FIG. 15.146
30. Repeat Problem 29 for the circuit in Fig. 15.14% except for Problem 29,
part (c).
I I T |
iy = 5% lO"sin(lOﬁﬂr—Zﬂ’)(), R IO L gssn C 0,12 uF
=
‘FIG. 15.147
‘Problem 30,
SECTION 156.8 Current Divider Rule
31, Calculate the currents I; and I in Fig, 15,148 in phasor
form using the current divider ruls
o 3 X 1 X 5"
1=20A240°| T ‘:
l I=6A230° 40 I=4A20° 48 R
= 2% RXL gm n oy
R = - :
> . R I Xe Jlff X1 1.2k0
. # ( LY 000 -} L
2 120 60 100 400
(a) - (b) (c)
_ ' FIG. 15.148
" Problem 31.

SECTION 15.10 Frequency Response of Parallel
. Elements

~ *32. For the parallel R-C network in Fig. 15.149:
a. Plot Zr and 67 versus frequency for a frequency range

[

Plot Iy versus frequency for the frequency range of
part (a). ' .

*33. Forthe parallel R-L network in Fig. 15.150:"
a.

Plot Zy and 8 versus frequency for a frequency range

of zero to 20 kHz. of zero to 10 kHz. !
b. Plot V¢ versus frcqucncy for the frequency range of b. Plot [, versus frequency for the frequency range of part
part (a). (a).
- c. Plotlg versus frequcncy for the fmquency range of part (a),
T e r oo
Zr 3l » R K e L
£ -
; FIG. 15.149 FIG. 15.150
Problems 32 and 34. Problems 33 and 35.
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34, Plot Yy and 0y (6f Y7 = Yp £.67) for a frequency range of

zero to 20 kHz for the network in Fig. 15.149.

35. Hm!-rmd&r (of Y7 = Yr £0y) for a frequency range of
mwlnu{zfamenemmkamg 15.150.
36. For the parallel R-L-C network in Fig, 15.151:

.
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Plot Yy and B,- (of Y;- = Yr £L07) fora frequcncy range
of zero to 20 kHz.
b. Repeat part (a) for Zr and 67 (of Zr = Zr £67). .
¢. Plot V¢ versus frequency for the frequency range of
part (a). ¥
d. Plot]; versus frequency for the frequency range of part (a).

e o
- Zr -
I = 10mA £0° ' R:"'lm Lg € =7=3,000 pF v,_.
¥ AL 100 mH h
¥y
_l_ Y A
-
FIG. 156.151
Problem 36.

SECTION 15.12 Equivalent Circuits

37. For the series circuits in Fig. 15:152, find a parallel circuit
that will have the same total impedance (Z7).

200 400 14 k0
.
o o—m—fwﬂ\—{(—
Zr
o - ;
@ . (b)
FIG. 15.1562
Problem 37.

38. For the paralle] circuits in Fig, 15.153, find a series circuit
that will have the same total impedance.

=20k

FIG. 15.153
Problem 38.

’

. *39. For the network in Fig. 15.154:

a. Calculate E, Iy, and I in phasor form.

b. Calculate the total power factor, and indicate whether jt
is leading or lagging.

¢. Calculate the average power delivered to the circuit.

d. Draw the admittance diagram.

e. Draw the phasor diagram of the currents L, Iz, and I,
and the voltage E.

f. Find the current [ for each capacitor using only Kirch-
hoff"s current law.

g Find the series circuit of one resistive and reactive element
that will have the same impedance as the original circuit.

iy =V sin 2% 1000t

e L

|200 _ I = 10mH
TSI uF : C=T=1 uF

3\
)
-1
AAR
Yy
(o]

\

FIG. 15.154
Problem 39.

40, Find the element or elements that must be in the closed con-
tainer in Fig. 15.155 to satisfy the following conditions.
(Find the simplest parallel cjrcuit that will satisfy the indi-

* cated conditions.) .

, & Average power to the circuit = 3000 W.

b. Circuit has a lagging power factor.

I =40A 20

- —
g +
>
E = 100V20° =
=
=

-~

>20 01

FIG. 15.155
Problem 40.

SECTION 15.13 Phase Measurements

41. For the circuit in Fig. 15,156, determine the phase relation-
ship between the following using a dual-trace oscilloscope.
The circuit can be reconstructed differently for each part,
but do not use sensing resistors, Show all connections on a
redrawn diagram.

a. eand ve
b. eand i
c. eand vy
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+ Uy = + by -
=W /00
1[4 R L
+ +
:@ . (= SN TP
=
FIG. 15.156
Problem 41.

42. For the network in Fig. 15.157, determine the phase rela-

tionship between the following using a dual-trace oscillo-
scope, The network must remain as constructed in Fig.
15.157, but sensing resistors can be introduced. Show all
connections on a redrawn diagram.

a, eandvg,
b, eand i,
¢ ipandic

C.
+
Ry g, I,fC '
- [
L P-L .

FIG. 15.157
Problem 42,

43, For the oscilloscope traces in Fig. 15.158:
a. Determine the phase relationship between the wave-
forms, and indicate which one leads or lags.
b, Determine the peak-to-peak and rms values of each
~ waveform,
c Flru:l the frequency of cach waveform.

e
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Vertical sensitivity = 0.5 V/div.
' Horizontal sensitivity = 0.2 ms/div.
L@ .

Vertical sensitivity = 2 V/div.
‘' Herizontal sensitivity = 10 ps/div.
) . ) T

FIG. 15.158
Problem 43.

SECTION 15.15 Computer Analysis
PSpice or Multisim '
44. For the network in Fig. 15.124 (usef'=_ 1 kHz):
a. Deterinine the rms values of the voltages Vg and V; and
the.current I
b. Plot ug, vy, and i versus time on separate plots.
c. Place e, vg, vy, and i on the same plot, and label accord-
ingly.
_45. For the network in Fig. 15.144: + .
a. Determine the rms values of the currents Iy, Ig, and Iy,
b. Plot iy, ig, and iy, versus time on separate plots.
¢. Place e, iy, ig, and iy on the same plot, and label accordingly.
46.. For the network in Fig. 15.127:
a. Plot the impedance of the network versus frr.qnency
from 0 to 10 kHz. '
b.’ Plot the current i versus frequency for thc frequency
range zero to lO kl-l:'.

i

*47. For the network in Fig. 15.135:
a. Find the rms values of the voltages vg and ve at a fre-
quency of 1 kHz.
b, Plot v versus frequency for the fmquency range zero to
10 kHz. A
"¢. Plot'the phase angle between e and i for the freguency
' range zero to 10 kHz.

GLOSSARY WERL.

Adniittance A measure of how easily a network will “admit” the
-passage of current through (Rat system, It is measured in
siemens, abbreviated S, and is represented by the ca.p;m] letter ¥.

Admitiance diagram A vector display that clearly depicts the

. magnitude of the admittance of the conductance,: capacitive
susceptance, and inductive susceptance and the magnitude
..and angle of the total admittance of the sysiem.



: Curruﬁdlvﬁw rlilp A ;ne:hod by which the cum:nt tiuough ci-
. her of two.parallel branches can be determined in an ac et-
Rbrl wqr% wl{hmlt ﬁm ﬁnding the vultaga across - ‘the parallel
3 elmul'ts For every series ac netwotk ‘there is a paral-

P el ac nevwork (and vice versa) that will be “equivalent” in the

: sense that the input current and impedance are the same.

' Impedance diagram A vector display that clearly depicts the
magnitude of the impedance of the resistive, reactive, and ca-
pacitive componeénts of a network and the magnitude and
angle of the total impedance of the system: .

Parallel ac circuits A connection of elements in an ac network
in which all the elements have two points in common. The
voltage is the same across each element.

'Inlroductofy‘ C.-46A

. ® GLGSSAﬁY 1417709
Phasor diagram A vector display that provides at a glance the
magnitiide and phase relationships ‘among the various voit-
ages and currents of a network, :
Series ac configurution A connection of elements in an ac net- .
work in which no two impedances have more than one tcrrm-
nal in"common and fhe cun’en.l is 1he same through each
clement. Y
Susceptance A measure of how,“susceptible™ an element is to
the passage of current through it. It is measured in siemens,
abbreviated S, and is represented by the capital letter B.
Voltage divider rule A method through which fhe voltage
across one element of a series of elements in an ac network
can be defermined without first having to find the current
through the elements. \



