Transformers

Objecives

- Become familiar with the flux linkages that exist between the coils of a transformer and how the voltages across the primary and secondary are established.
- Understand the operation of an iron-core and aircore transformer and how to calculate the currents and voltages of the primary and secondary circuits.
- Be aware of how the transformer is used for impedance matching purposes to ensure a high level of power transfer.
- Become aware of all the components that make up the equivalent circuit of a transformer and how they affect its performance and frequency. response.
- Understand how to use and interpret the dot convention of mutually coupled coils in a network.

22.1 INTRODUCTION

Chapter 11 discussed the self-inductance of a coil. We shall now examine the mutual inductance that exists between coils of the same or different dimensions. Mutual inductance is a phenomenon basic to the operation of the transformer, an electrical device used today in almost every field of electrical engineering. This device plays an integral part in power distribution systems and can be found in many electronic circuits and measuring instruments. In this chapter, we discuss three of the basic applications of a transformer: to build up or step down the voltage or current, to act as an impedance matching device, and to isolate (no physical connection) one portion of a circuit from another. In addition, we will introduce the dot convention and will consider the transformer equivalent circuit. 'The chapter concludes with a word about writing mesh equations for a network with mutual inductance.

22.2 MUTUAL INDUCTANCE

A transformer is constructed of two coils placed so that the changing flux developed by one links the other, as shown in Fig, 22.1. This results in an induced voltage across each coil. To distinguish between the coils, we will apply the transformer convention that
the coil to which the source is applied is called the primary, and the coil to which the load is applied is called the secondary.
For the primary of the transformer in Fig. 22.1, an application of Faraday's law [Eq. (11.9)] results in

$$
\begin{equation*}
e_{p}=N_{p} \frac{d \phi_{p}}{d t} \quad \text { (volts, V) } \tag{22.1}
\end{equation*}
$$

FIG. 22.1
Defining the components of a transformer.
revealing that the voltage induced across the primary is directly related to the number of turns in the primary and the rate of change of magnetic flux linking the primary coil. Or, from Eq. (11.11),

$$
\begin{equation*}
e_{p}=L_{p} \frac{d i_{p}}{d t} \quad \text { (volts, V) } \tag{22.2}
\end{equation*}
$$

revealing that the induced voltage across the primary is also directly related to the self-inductance of the primary and the rate of change of current through the primary winding.

The magnitude of e_{s}, the voltage induced across the secondary, is determined by

$$
\begin{equation*}
e_{s}=N_{s} \frac{d \phi_{m}}{d t} \quad \text { (volts, V) } \tag{22.3}
\end{equation*}
$$

where N_{s} is the number of turns in the secondary winding and ϕ_{m} is the portion of the primary flux ϕ_{p} that links the secondary winding.

If all of the flux linking the primary links the secondary, then
and

$$
\phi_{m}=\phi_{p}
$$

$$
\begin{equation*}
e_{s}=N_{s} \frac{d \phi_{\hat{p}}}{d t} \quad(\text { volts, } \mathrm{V}) \tag{22.4}
\end{equation*}
$$

The coefficient of coupling (k) between two coils is determined by

$$
\begin{equation*}
k(\text { coefficient of coupling })=\frac{\phi_{m}}{\phi_{p}} \tag{22.5}
\end{equation*}
$$

Since the maximuin level of ϕ_{m} is ϕ_{p}, the coefficient of coupling between two coils can never be greater than 1 .

The coefficient of coupling between various coils is indicated in Fig. 22.2. In Fig. 22.2(a), the ferromagnetic steel core ensures that most of the flux linking the primary also links the secondary, establishing a coupling coefficient very close to 1 . In Fig. 22.2(b), the fact that both coils are overlapping results in the flux of one coil linking the other coil, with the result that the coefficient of coupling is again very close to 1. In Fig. 22.2(c), the absence of a ferromagnetic core results
in low levels of flux linkage between the coils. The closer the two coils are, the greater is the flux linkage, and the higher is the value of k, although it will never approach a level of 1 . Those coils with low. coefficients of coupling are said to be loosely coupled.

For the secondary, we have

$$
e_{s}=N_{s} \frac{d \phi_{m}}{d t}=N_{s} \frac{d k \phi_{p}}{d t}
$$

and $\quad e_{s}=k N_{s} \frac{d \phi_{p}}{d t} \quad$ (volts, V)
The mutual inductance between the two coils in Fig. 22.1 is deter mined by

$$
\begin{array}{ll}
M=N_{s} \frac{d \phi_{m}}{d i_{p}} \quad & \text { (henries, } \mathrm{H} \text {) } \\
M=N_{p} \frac{d \phi_{p}}{d t_{s}} \quad & \text { (henries, H) } \tag{22.8}
\end{array}
$$

Note in the above equations that the symbol for mutual inductance - is the capital letter M and that its unit of measurement, like that of selfinductance, is the henry. In words, Eqs. (22.7) and (22.8) state that the
mutual inductance between two coils is proportional to the instantaneous change in flux linking one coil due to an instantaneous change in current through the other coil.

In terms of the inductance of each coil and the coefficient of coupling, the mutual inductance is determined by

$$
\begin{equation*}
M=k \sqrt{L_{p} L_{s}} \quad \text { (henries, H) } \tag{22.9}
\end{equation*}
$$

The greater the coefficient of coupling (greater flux linkages), or the greater the inductance of either coil, the higher is the mutual inductance between the coils. Relate this fact to the configurations in Fig. 22.2.

The secondary voltage e_{s} can also be found in terms of the mutual inductance if we rewrite Eq. (22.3) as

$$
\dot{e}_{s}=N_{s}\left(\frac{d \phi_{m}}{d i_{p}}\right)\left(\frac{d i_{p}}{d t}\right)
$$

and, since $M=N_{s}\left(d \phi_{m} / d i_{p}\right)$, it can also be written

$$
\begin{equation*}
\left.e_{s}=M \frac{d i_{p}}{d t} \quad \text { (volts, } \mathrm{V}\right) \tag{22.10}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
e_{p}=M \frac{d i_{s}}{d t} \quad \text { (volts, V) } \tag{22.11}
\end{equation*}
$$

FIG. 22.3
Example 22.1

EXAMPLE 22.1 For the transformer in Fig. 22.3:
a. Find the mutual inductance M.
b. Find the induced voltage e_{p} if the flux ϕ_{p} changes at the rate of $450 \mathrm{mWb} / \mathrm{s}$.
c. Find the induced voltage e_{s} for the same rate of change indicated in part (b).
d. Find the induced voltages e_{p} and e_{s} if the current i_{p} changes at the rate of $0.2 \mathrm{~A} / \mathrm{ms}$.

Solutions:

a. $M=k \sqrt{L_{p} L_{s}}=0.6 \sqrt{(200 \mathrm{mH})(800 \mathrm{mH})}$ *

$$
=0.6 \sqrt{16 \times 10^{-2}}=(0.6)\left(400 \times 10^{-3}\right)=240 \mathrm{mH}
$$

b. $e_{p}=N_{p} \frac{d \phi_{p}}{d t}=(50)(450 \mathrm{mWb} / \mathrm{s})=22.5 \mathrm{~V}$
c. $e_{s}=k N_{s} \frac{d \phi_{p}}{d t}=(0.6)(100)(450 \mathrm{mWb} / \mathrm{s})=27 \mathrm{~V}$
d. $e_{p}=L_{p} \frac{d i_{p}}{d t}=(200 \mathrm{mH})(0.2 \mathrm{~A} / \mathrm{ms})$
$=(200 \mathrm{mH})(200 \mathrm{~A} / \mathrm{s})=40 \mathrm{~V}$
$e_{s}=M \frac{d i_{p}}{d t}=(240 \mathrm{mH})(200 \mathrm{~A} / \mathrm{s})=48 \mathrm{~V}$

22.3 THE IRON-CORE TRANSFORMER

An iron-core transformer under loaded conditions is shown in Fig. 22.4. The iron core will serve to increase the coefficient of coupling between the coils by increasing the mutual flux ϕ_{m}. Recall from Chapter 11 that magnetic flux lines always take the path of least reluctance, which in this case is the iron core.

In the analyses in this chapter, we assume that all of the flux linking coil 1 will link coil 2. In other words, the coefficient of coupling is its

FIG. 22.4
Iron-core transformer:
maximum value, 1 , and $\phi_{m}=\phi_{p}=\phi_{s}$. In addition, we first analyze the transformer from an ideal viewpoint; that is, we neglect losses such as the geometric or dc resistance of the coils, the leakage reactance due to the flux linking either coil that form's no part of ϕ_{m}, and the hysteresis and eddy current losses. This is not to convey the impression, however, that we are far from the actual operation of a transformer. Most transformers manufactured today can be considered almost ideal. The equations we develop under ideal conditions are, in general, a first approximation to the actual response, which is never off by more than a few percentage points. The losses are considered in greater detail in Section 22:6.

When the current i_{p} through the primary circuit of the iron-core transformer is a maximum, the flux ϕ_{m} linking both coils is also a maximum. In. fact, the magnitude of the flux is directly proportional to the current through. the primary windings. Therefore, the two are in phase, and for sinusoidal inputs, the magnitude of the flux varies as a sinusoid also. That is, if
then

$$
i_{p}=\sqrt{2} I_{p} \sin \omega t
$$

$\phi_{m}=\Phi_{m} \sin \omega t$
The induced voltage across the primary due to a sinusoidal input can be determined by Faraday's law:

$$
e_{p}=N_{p} \frac{d \phi_{p}}{d t}=N_{p} \frac{d \phi_{m}}{d t}
$$

Substituting for ϕ_{m} gives us

$$
\quad e_{p}=N_{p} \frac{d}{d t}\left(\Phi_{m} \sin \omega t\right)
$$

and differentiating, we obtain
or

$$
\begin{gathered}
e_{p}=\omega N_{p} \Phi_{m} \cos \bar{\omega} t \\
\text { or } \quad e_{p}=\omega N_{p} \Phi_{m} \sin \left(\omega t+90^{\circ}\right)
\end{gathered}
$$

indicating thát the induced voltage e_{p} leads the current through the primary coil by 90°.

The effective value of e_{p} is

$$
E_{p}=\frac{\omega N_{p} \Phi_{m}}{\sqrt{2}}=\frac{2 \pi f N_{p} \Phi_{m}}{\sqrt{2}}
$$

and

$$
\begin{equation*}
E_{p}=4.44 f N_{p} \Phi_{m} \tag{22.12}
\end{equation*}
$$

which is an equation for the rms value of the voltage across the primary coil in terms of the frequency of the input current or voltage, the number of turns of the primary, and the maximum value of the magnetic flux linking the primary.

For the case under discussion, where the flux linking the secondary equals that of the primary, if we repeat the procedure just described for s the induced voltage across the secondary, we get

$$
\begin{equation*}
E_{s}=4.44 f N_{s} \Phi_{m} \tag{22.13}
\end{equation*}
$$

Dividing Eq. (22.12) by Eq. (22.13) as

$$
\frac{E_{p}}{E_{s}}=\frac{4.44 f N_{p} \Phi_{m}}{4.44 f N_{s} \Phi_{m}}
$$

we obtain

$$
\begin{equation*}
\frac{E_{p}}{E_{s}}=\frac{N_{p}}{N_{s}} \tag{22.14}
\end{equation*}
$$

revealing an important relationship for transformers:
The ratio of the magnitudes of the induced voltages is the same as the ratio of the corresponding turns.

If we consider that

$$
e_{p}=N_{p} \frac{d \phi_{m}}{d t} \quad \text { and } \quad e_{s}=N_{s} \frac{d \phi_{m}}{d t}
$$

and divide one by the other, that is,
then

$$
\begin{gathered}
\frac{e_{p}}{e_{s}}=\frac{N_{p}\left(d \phi_{m} / d t\right)}{N_{s}\left(d \phi_{m} / d t\right)} \\
\frac{e_{p}}{e_{s}}=\frac{N_{p}}{N_{s}}
\end{gathered}
$$

The instantaneous values of e_{1} and e_{2} are therefore related by a constant determined by the turns ratio. Since their instantaneous magnitudes are related by a constant, the induced voltages are in phase, and Eq. (22.14) can be changed to iriclude phasor notation; that is,

$$
\begin{equation*}
\frac{\mathbf{E}_{p}}{\mathbf{E}_{s}}=\frac{\dot{N}_{p}}{N_{s}} \tag{22.15}
\end{equation*}
$$

or, since $\mathbf{V}_{g}=\mathbf{E}_{1}$ and $\mathbf{V}_{L}=\mathbf{E}_{2}$ for the ideal situation,

$$
\begin{equation*}
\frac{\mathbf{V}_{g}}{\mathbf{V}_{L}}=\frac{N_{p}}{N_{s}} \tag{22.16}
\end{equation*}
$$

The ratio N_{p} / N_{s}, usually represented by the lowercase letter a, is referred to as the transformation ratio:

$$
\begin{equation*}
a=\frac{N_{p}}{N_{s}} \tag{22.17}
\end{equation*}
$$

If $a<1$, the transformer is called a step-up transformer since the voltage $E_{s}>E_{p}$; that is,

$$
\begin{gathered}
\frac{E_{p}}{E_{s}}=\frac{N_{p}}{N_{s}}=a \quad \text { or } \quad E_{s}=\frac{E_{p}}{a} \\
E_{s}>E_{p}
\end{gathered}
$$

and, if $a<1$,
If $a>1$, the transformer is called a step-down transformer since $E_{s}<E_{p}$; that is,

$$
\begin{aligned}
& E_{p}=a E_{s} \\
& E_{p}>E_{s}
\end{aligned}
$$

and, if $a>1$, then

EXAMPLE 22.2 For the iron-core transformer in Fig. 22.5:
a. Find the maximum flux Φ_{m}.
b. Find the secondary turns N_{s}

FIG. 22.5 ,
Example 22.2

Solutions;

a. $E_{p}=4.44 N_{p} f \Phi_{m}$

Therefore, $\Phi_{m}=\frac{E_{p}}{4.44 N_{p} f}=\frac{200 \mathrm{~V}}{(4.44)(50 \mathrm{t})(60 \mathrm{~Hz})}$
and

$$
\Phi_{m}=15.02 \mathrm{mWb}
$$

b. $\frac{E_{p}}{E_{s}}=\frac{N_{p}}{N_{s}}$

Therefore, $\quad N_{s}=\frac{N_{p} E_{s}}{E_{p}}=\frac{(50 \mathrm{t})(2400 \mathrm{~V})}{200 \mathrm{~V}}$
$=600$ turns
The induced yoltage across the secondary of the transformer in Fig. 22.4 establishes a current i_{s} through the load Z_{L} and the secondary windings. This current and the turns N_{s} develop an mmf $N_{s} i_{s}$ that is not present under no-load conditions since $i_{s}=0$ and $N_{s} i_{s}=0$. Under loaded or unfoaded conditions, however, the net ampere-turns on the core produced by both the primary and the secondary must remain uncharged for the same flux ϕ_{m} to be established in the core. The flux ϕ_{m} must remain the same to have the same induced voltage across the primary and to balance the voltage impressed across the primary. To-counteract the mmf of the secondary, which is tending to change ϕ_{m}, an additional current must flow in the primary. This current is called the load component of the primary current and is represented by the notation i_{p}^{\prime}.

For the balanced-or equilibrium condition,

$$
N_{p} i_{p}^{\prime}=N_{s} i_{s}
$$

The total current in the primary under loaded conditions is

$$
i_{p}=i_{p}^{\prime}+i_{\phi_{m}}
$$

where $i_{\phi_{m}}$ is the current in the primary necessary to establish the flux ϕ_{m}. For most practical applications, $i_{p}>i_{\phi_{m}}$. For our analysis, we assume $i_{p} \cong i_{p}^{\prime}$, so

$$
N_{p} i_{p}=N_{s} i_{s}
$$

Since the instantaneous values of i_{p} and i_{s} are related by the turns ratio, the phasor quantities \mathbf{I}_{p} and \mathbf{I}_{s} are also related by the same ratio:

$$
\begin{gather*}
N_{p} \mathbf{I}_{p}=N_{s} \mathbf{I}_{s} \\
\frac{\mathbf{I}_{p}}{\mathbf{I}_{s}}=\frac{N_{s}}{N_{p}} \tag{22.18}
\end{gather*}
$$

* The primary and secondary currents of a transformer are therefore related by the inverse ratios of the turns.
Keep in mind that Eq. (22.18) holds true only if we neglect the effects of $i_{\phi_{m}}$. Otherwise, the magnitudes of \mathbf{I}_{p} and \mathbf{I}_{s} are not related by the turns ratio, and I_{p} and I_{s} are not in phase.

For the step-up transformer, $a<1$, and the current in the secondary, $I_{s}=$ $a I_{p}$, is less in magnitude than that in the primary. For a step-down transformer, the reverse is true.

22.4 REFLECTED IMPEDANCE AND POWER

In the previous section we found that 4°.

$$
\frac{\mathbf{V}_{g}}{\mathbf{V}_{L}}=\frac{N_{p}}{N_{s}}=a \quad \text { and } \quad \frac{\mathbf{I}_{p}}{\mathbf{I}_{s}}=\frac{N_{s}}{N_{p}}=\frac{1}{a}
$$

Dividing the first by the second, we have
or

$$
\frac{\mathbf{V}_{g} / \mathbf{V}_{L}}{\mathbf{I}_{p} / \mathbf{I}_{\mathbf{I}}}=\frac{a}{1 / a}
$$

However, since

$$
\mathbf{Z}_{p}=\frac{\mathbf{V}_{g}}{\mathbf{I}_{p}} \quad \text { and } \quad \mathbf{Z}_{L}=\frac{\mathbf{V}_{L}}{\mathbf{I}_{s}}
$$

then

$$
\begin{equation*}
\mathbf{Z}_{p}=a^{2} \mathbf{Z}_{L} \tag{22.19}
\end{equation*}
$$

That is, the impedance of the primary circuit of an ideal transformer is the transformation ratio squared times the impedance of the load. If a transformer is used, therefore, an impedance can be made to appear larger or smaller at the primary by placing it in the secondary of a stepdown $(a>1)$ or step-up $(a<1)$ transformer, respectively. Note that if the load is capacitive or inductive, the reflected impedance is also capacitive or inductive.

For the ideal iron-core transformer,

$$
\frac{E_{p}}{E_{s}}=a=\frac{I_{s}}{I_{p}}
$$

or

$$
\begin{equation*}
E_{p} I_{p}=E_{s} I_{s} \tag{22.20}
\end{equation*}
$$

and

$$
\begin{equation*}
P_{\text {in }}=P_{\text {out }} \quad \text { (ideal conditions) } \tag{22.21}
\end{equation*}
$$

EXAMPLE 22.3 For the iron-core transformer in Fig. 22.6:
a. Find the magnitude of the current in the primary and the impressed voltage across the primary.
b. Find the input resistance of the transformer.

Solutions:

a. $\frac{I_{p}}{I_{s}}=\frac{N_{s}}{N_{p}}$
$I_{p}=\frac{N_{s}}{N_{p}} I_{s}=\left(\frac{5 \mathrm{t}}{40 \mathrm{t}}\right)(0.1 \mathrm{~A})=12.5 \mathrm{~mA}$
$V_{L}=I_{s} Z_{L}=(0.1 \mathrm{~A})(2 \mathrm{k} \Omega)=200 \mathrm{~V}$
Also, $\quad \frac{V_{g}}{V_{L}}=\frac{N_{p}}{N_{s}}$

$$
V_{g}=\frac{N_{p}}{N_{s}} V_{L}=\left(\frac{40 \mathrm{t}}{5 \mathrm{t}}\right)(200 \mathrm{~V})=1600 \mathrm{~V}
$$

FIG. 22.6
Example 22.3.
b. $Z_{p}=a^{2} Z_{L}$

$$
\begin{aligned}
a & =\frac{N_{p}}{N_{s}}=8 \\
Z_{p} & =(8)^{2}(2 \mathrm{k} \Omega)=R_{p}^{-}=128 \mathrm{k} \Omega
\end{aligned}
$$

EXAMPLE 22.4 For the residential supply appearing in Fig. 22.7, determine (assuming a totally resistive load) the following:
a. the value of R to ensure a balanced load
b. the magnitude of I_{1} and I_{2}
c. the line voltage V_{L}
d. the total power delivered for a balanced three-phase load
e. the turns ratio $a=N_{p} / N_{s}$

FIG. 22.7

Solutions:

a. $P_{T}=(10)(60 \mathrm{~W})+200 \mathrm{~W}+2000 \mathrm{~W}$
$\therefore \quad=600 \mathrm{~W}+200 \mathrm{~W}+2000 \mathrm{~W}=2800 \mathrm{~W}$
$P_{\text {in }}=P_{\text {out }}$
$V_{p} I_{p}=V_{s} I_{s}=2800 \mathrm{~W}$ (purely resistive load)
$(2400 \mathrm{~V}) I_{p}=2800 \mathrm{~W}$ and $I_{p}=1.17 \mathrm{~A}$
$R=\frac{V_{\phi}}{I_{p}^{-}}=\frac{2400 \mathrm{~V}}{1.17-\mathrm{A}}=2051.28 \Omega$
b. $P_{1}=600 \mathrm{~W}=V I_{1}=(120 \mathrm{~V}) I_{1}$
and $\quad, \quad I_{1}=\mathbf{5} \mathrm{A}$
$P_{2}=2000 \mathrm{~W}=V I_{2}=(240 \mathrm{~V}) I_{2}$
and

$$
I_{2}=8.33 \mathrm{~A}
$$

c. $V_{L}=\sqrt{3} V_{\phi}=1.73(2400 \mathrm{~V})=4152 \mathrm{~V}$
d. $P_{T}=3 P_{\phi}=3(2800 \mathrm{~W})=8.4 \mathrm{~kW}$
e.s. $a=\frac{N_{p}}{N_{s}}=\frac{V_{p}}{V_{s}}=\frac{2400 \mathrm{~V}}{240 \mathrm{~V}}=10$

22.5 IMPEDANCE MATCHING, ISOLATION, AND DISPLACEMENT

Transformers can be particularly useful when you are trying to ensure that a load receives maximum power from a source. Recall that maximum power is transferred to a load when its impedance is a match with the internal resistance of the supply. Even if a perfect match is unattainable, the closer the load matches the internal resistance, the greater is the power to the load and the more efficient is the system. Unfortunately, unless it is planned as part of the design, most loads are not a close match with the internal impedance of the supply. However, transformers have a unique relationship between their primary and secondary impedances that can be put to good use in the impedance matching process. Example 22.5 demonstrates the significant difference in the power delivered to the load with and without an impedance matching transformer.

EXAMPLE 22.5

a. The source impedance for the supply in Fig. 22.8(a) is 500Ω, which is a poor match with the 8Ω input impedance of the speaker. You can expect only that the power delivered to the speaker will be significantly less than the maximum possible level. Determine the power to the speaker under the conditions in Fig. 22.8(a),
b. In Fig. 22.8(b), a commercially available 500Ω to 8Ω audio impedance matching transformer was introduced between the speaker and the source. Determine the input impedance of the transformer and the power delivered to the speaker.
c. Compare the power delivered to the speaker under the conditions of parts (a) and (b).
d. Find the approximate turns ratio for the transformer,

FIG. 22.8
Example 22.5 .

Solutions:

a. The source current:

$$
I_{s}=\frac{E}{R_{T}}=\frac{120 \mathrm{~V}}{500 \Omega+8 \Omega}=\frac{120 \mathrm{~V}}{508 \Omega}=236.2 \mathrm{~mA}
$$

The power to the speaker:

$$
P=I^{2} R=(236.2 \mathrm{~mA})^{2} \cdot 8 \Omega \cong 446.3 \mathrm{~mW} \cong 0.45 \mathrm{~W}
$$

or less than $1 / 2 \mathrm{~W}$.
b. Since the input impedance of the transformer matches that of the source, maximum power transfer conditions have been established, and the source current is now determined by

$$
I_{s}=\frac{E}{R_{T}}=\frac{120 \mathrm{~V}}{500 \Omega+500 \Omega}=\frac{120 \mathrm{~V}}{1000 \Omega}=120 \mathrm{~mA}
$$

The power, to the primary (which equals that to the secondary for the ideal transformer) is

$$
P=I^{2} R=(120 \mathrm{~mA})^{2} \cdot 500 \Omega=7.2 \mathrm{~W}
$$

The result is not in milliwatts, as obtained above, and exceeds 7 W , which is a significant improvement.
c. Comparing levels, we see that $7.2 \mathrm{~W} / 446.3 \mathrm{~mW}=16.1$, or more than 16 times the power is delivered to the speaker using the impedance matching transformer.
d. $Z_{p}=a^{2} Z_{L}$

$$
a=\sqrt{\frac{Z_{p}}{Z_{L}}}=\sqrt{\frac{500 \Omega}{8 \Omega}}=7.91 \cong 8 ; 1
$$

Another important application of the impedance matching capabilities of a transformer is the matching of the 300Ω twin line transmission line from a television antenna to the 75Ω input impedance of a television (ready-made for the 75Ω coaxial cable), as shown in Fig. 22.9. A match must be made to ensure the strongest signal to the television receiver.

Using the equation $Z_{p}=a^{2} Z_{L}$, we find
and

$$
\begin{gathered}
300 \Omega=a^{2} 75 \Omega \\
a=\sqrt{\frac{300 \Omega}{75 \Omega}}=\sqrt{4}=2
\end{gathered}
$$

with

$$
N_{p}: N_{s}=2: 1 \quad \text { (a step-down transformer) }
$$

FIG. 22.9
Television impedance matching transformer.

EXAMPLE 22.6 Impedance matching transformers are also quite evident in public address systems, such as the one appearing in the 70.7 V system in Fig. 22.10. Although the system has only one set of output terminals, up to four speakers can be connected to this system (the number is a function of the chosen system). Each 8Ω speaker is connected to the 70.7 V line through a 10 W audio-matching transformer (defining the frequency range of linear operation).
a. If each speaker in Fig. 22.10 can receive 10 W of power, what is the maximum power drain on the source?
b. For each speaker, determine the impedance seen at the input side of the transformer if each is operąting under its full 10 W of power.
c. ' Determine the turns ratio of the transformers.
d. At 10 W , what are the speaker voltage and current?
e. What is the load seen by the source with one, two, three, or four speakers connected?

FIG. 22.10
Publiç address system.

Solutions:

a. Ideally, the primary power equal's the power delivered to the load, resulting in a maximum of 40 W from the supply.
b. The power at the primary is
and

$$
\begin{gathered}
P_{P}=V_{p} I_{p}=(70.7 \mathrm{~V}) I_{p}=10 \mathrm{~W} \\
I_{p}=\frac{10 \mathrm{~W}}{70.7 \mathrm{~V}}=141.4 \mathrm{~mA}
\end{gathered}
$$

so that

$$
Z_{p}=\frac{V_{p}}{I_{p}}=\frac{70.7 \mathrm{~V}}{141.4 \mathrm{~mA}}=\mathbf{5 0 0} \Omega
$$

c. $Z_{p}=a^{2} Z_{L} \Rightarrow a=\sqrt{\frac{Z_{p}}{Z_{L}}}=\sqrt{\frac{500 \Omega}{8 \Omega}}=\sqrt{62.5}=7.91 \cong 8: 1$
d. $V_{s}=V_{L}=\frac{V_{p}}{a}=\frac{70.7 \mathrm{~V}}{7.91}=8.94 \mathrm{~V} \cong 9 \mathrm{~V}$
e, All the speakers are in parallel. Therefore,
One speaker: $\quad R_{T}=\mathbf{5 0 0} \Omega$
Two speakers: $\quad R_{T}=\frac{500 \Omega}{2}=\mathbf{2 5 0} \Omega$

Three speakers: $\quad R_{T}=\frac{500 \Omega}{3}=167 \Omega$
Four speakers: $\quad R_{T}=\frac{500 \Omega}{4}=125 \Omega$
Even though the load seen by the source varies with the number of speakers cormected, the source impedance is so low (compared to the lowest load of 125Ω) that the terminal voltage of 70.7 V is essentially constant. This is not the case where the desired result is to match the load to the input impedance; rather, it was to ensure 70.7 V at each primary, no matter how many speakers were connected, and to limit the current drawn from the supply.

The transformer is frequently used to isolate one portion of an electrical system from another. Isolation implies the absence of any direct physical connection. As a first example of its use as an isolation device, consider the measurement of line voltages on the order of $40,000 \mathrm{~V}$ (Fig. 22.11).

FIG. 22.11
Isolating a high-voltage line from the point of measurement.

To apply a voltmeter across $40,000 \mathrm{~V}$ would obviously be a dangerous task due to the possibility of physical contact with the lines when making the necessary connections. Including a transformer in the transmission sysfem as original equipment can bring the potential down to a safe level for measurement purposes and can determine the line voltage using the turns ratio. Therefore, the transformer serves both to isolate and to step down the voltage.

As a second example, consider the application of the voltage v_{x} to the vertical input of the oscilloscope (a measuring instrument) in Fig. 22.12. If the connections are made as shown, and if the generator and oscilloscope have a common ground, the impedance \mathbf{Z}_{2} has been effectively shorted out of the circuit by the ground connection of the oscilloscope. The input voltage to the oscilloscope is therefore meaningless as far as the voltage v_{x} is concerned. In addition, if \mathbf{Z}_{2} is the current-limiting impedance in the circuit, the current in the circuit may rise to a level that causes severe damage to the circuit. If a transformer is used as shown in Fig. 22.13, this problem is eliminated, and the input voltage to the oscilloscope will be v_{x}.

FIG. 22.12
Demonstrating the shorting effect introduced by the grounded side of the vertical channel of an oscilloscope.

FIG. 22.13
Correcting the situation of Fig. 22.12 using an isolation transformer.

The linear variable differential transformer (LVDT) is a sensor that can reveal displacement using transformer effects. In its simplest form, the LVDT has a central winding and two secondary windings, as shown in Fig. 22.14(a). A ferromagnetic core inside the windings is free to move as dictated by some external force. A constant, low-level ac voltage is applied to the primary, and the output voltage is the difference between the voltages induced in the secondaries. If the core is in the position shown in Fig. 22.14(b), a relatively large voltage is induced across the secondary winding labeled coil 1 , and a relatively small voltage is induced across the secondary winding labeled coil 2 (essentially an air-core transformer for this position). The result is a relatively large secondary output voltage. If the core is in the position shown in Fig. 22.14(c), the flux linking each coil is the same, and the output voltage (being the difference) will be quite small. In total, therefore; the position of the core can be related to the secondary voltage, and a position-versus-voltage graph can be developed as shown in Fig. 22.14(d). Due to the nonlinearity of the $B-H$ curve, the curve becomes somewhat nonlinear if the core is moved too far out of the unit.

FIG. 22.14
LVDT transformer: (a) construction; (b) maximum displacement; (c) minimum displacement; (d) graph of induced voltage versus displacement.

22.6 EQUIVALENT CIRCUIT (IRON-CORE TRANSFORMER)

For the nonideal or practical iron-core transformer, the equivalent circuit appears as in Fig. 22.15. As indicated, part of this equivalent circuit includes an ideal transformer. The remaining elements of Fig. 22.15 are those elements that contribute to the nonideal characteristics of the device. The resistances R_{p} and R_{s} are simply the dc or geometric resistance of the primary and secondary windings, respectively. For the primary and secondary coils of a transformer, there is a small amount of flux that links each coil but does not pass through the core, as shown in Fig. 22.16 for the primary winding. This leakage flux, representing a definite loss in the system, is represented by an inductance L_{p} in the primary circuit and an inductance L_{s} in the secondary.

FIG. 22.15
Equivalent circuit for the practical iron-core transformer.

FIG. 22.16
Identifying the leakage flux of the primary.

The resistance R_{c} represents the hysteresis and eddy current losses (core losses) within the core due to an ac flux through the core. The inductance L_{m} (magnetizing inductance) 'is the inductance associated with the magnetization of the core, that is, the establishing of the flux ϕ_{m} in the core. The capacitances C_{p} and C_{s} are the lumped capacitances of the primary and secondary circuits, respectively, and C_{w} represents the equivalent lumped capacitances between the windings of the transformer.

Since i_{p}^{\prime} is normally considerably larger than $i_{\phi_{m}}$ (the magnetizing current), we will ignore $i_{\phi_{m}}$ for the moment (set it equal to zero), resulting in the absence of R_{c} and L_{m} in the reduced equivalent circuit in Fig. 22.17. The capacitances C_{p}, C_{w}, and C_{s} do not appear in the equivalent circuit in Fig. 22.17 since their reactance at typical operating frequencies do not appreciably affect the transfer characteristics of the transformer.

FIG. 22.17
Reduced equivalent circuit for the nonideal iron-core transformer.

If we now reflect the secondary circuit through the ideal transformer using Eq. (22.19), as shown in Fig. 22.18(a), we will have the load and generator voltage in the same continuous circuit. The total resistance and inductive reactance of the primary circuit are determined by

$$
\begin{equation*}
R_{\text {equivalent }}=R_{e}=R_{p}+a^{2} R_{s} \tag{22.22}
\end{equation*}
$$

and

$$
\begin{equation*}
X_{\text {equivalent }}=X_{e}=X_{p}+a^{2} X_{s} \tag{22.23}
\end{equation*}
$$

FIG. 22.18
Reflecting the secondary circuit into the primary side of the iron-core transformer.

FIG. 22.19
Phasor diagram for the iron-core transformer ${ }^{\text {. }}$ with (a) unity power-factor load (resistive) and
(b) lagging power-factor load (inductive).
which result in the useful equivalent circuit of Fig. 22.18(b). The load voltage can be obtained directly from the circuit in Fig. 22.18(b) through the voltage divider rule:
and

$$
\begin{gather*}
a \mathbf{V}_{L}=\frac{R_{i} \mathbf{V}_{g}}{\left(R_{e}+R_{i}\right)+j X_{e}} \\
\mathbf{V}_{L}=\frac{a^{2} R_{L} \mathbf{V}_{g}}{\left(R_{e}+a^{2} R_{L}\right)+j X_{e}} \tag{22.24}
\end{gather*}
$$

The network in Fig. 22.18(b) also allows us to calculate the generator voltage necessary to establish a particular load voltage. The voltages across the elements in Fig. 22.18(b) have the phasor relationship indicated in Fig. 22.19(a). Note that the current is the reference phasor for drawing the phasor diagram. That is, the voltages across the resistive elements are in phase with the current phasor, while the voltage across the equivalent inductance leads the current by 90°. The primary voltage, by Kirchhoff's voltage law, is then the phasor sum of these voltages, as indicated in Fig. 22.19(a). For an inductive load, the phasor diagram appears in Fig. 22.19(b). Note that $a \mathbf{V}_{L}$ leads I by the power-factor angle of the load. The remainder of the diagram is then similar to that for a resistive load. (The phasor diagram for a capacitive load is left to the reader as an exercise.)

The effect of R_{e} and X_{e} on the magnitude of \mathbf{V}_{g} for a particular \mathbf{V}_{L} is obvious from Eq. (22.24) or Fig. 22,19. For increased values of R_{e} or X_{e}, an increase in V_{g} is required for the same load voltage. For R_{e} and $X_{e}=$ $0, V_{L}$ and V_{g} are simply related by the turns ratio.

EXAMPLE 22.7 For a transformer having the equivalent circuit in Fig. 22.20:

FIG. 22.20
Example 22.7
a: Determine R_{e} and X_{e}
b. Determine the magnitude of the voltages V_{L} and V_{g}.
c. Determine the magnitude of the voltage V_{g} to establish the same load voltage in part (b) if R_{e} and $X_{e}=0 \Omega$. Compare with the result of part (b).

Solutions:

a. $R_{e}=R_{p}+a^{2} R_{s}=1 \Omega+(2)^{2}(1 \Omega)=\mathbf{5} \boldsymbol{\Omega}$
$X_{e}=X_{p}+a^{2} X_{s}=2 \Omega+(2)^{2}(2 \Omega)=10 \Omega$
b. The transformed equivalent circuit appears in Fig. 22.21.

$$
a V_{L}=\left(I_{p}\right)\left(a^{2} R_{L}\right)=2400 \mathrm{~V}
$$

Thus,

$$
V_{L}=\frac{2400 \mathrm{~V}}{a}=\frac{2400 \mathrm{~V}}{2}=1200 \mathrm{~V}
$$

and

```
\(\mathbf{V}_{g}=\mathbf{I}_{p}\left(R_{e}+a^{2} R_{L}+j X_{e}\right)\)
    \(=10 \mathrm{~A}(5 \Omega+240 \Omega+j 10 \Omega)=10 \mathrm{~A}(245 \Omega+j 10 \Omega)\)
\(\mathbf{V}_{g}=2450 \mathrm{~V}+j 100 \mathrm{~V}=2452.04 \mathrm{~V} \angle 2.34^{\circ}\)
, \(=\mathbf{2 4 5 2 . 0 4} \mathrm{V} \angle 2.34^{\circ}\)
```


FIG. 22.21
Transformed equivalent circuit of Fig. 22.20.
c. For R_{e} and $X_{e}=0, V_{g}=a V_{L}=(2)(1200 \mathrm{~V})=2400 \mathrm{~V}$.

Therefore, it is necessary to increase the generator voltage by 52.04 V (due to R_{e} and X_{e}) to obtain the same load voltage.

22.7 FREQUENCY CONSIDERATIONS

For certain frequency ranges, the effect of some parameters in the equivalent circuit of the iron-core transformer in Fig. 22.15 should not be ig μ nored. Since it is convenient to consider a low-, mid-, and high-frequency region, the equivalent circuits for each are now introduced and briefly examined.

For the low-frequency region, the series reactance ($2 \pi f L$) of the primary and secondary leakage reactances can be ignored since they are small in magnitude. The magnetizing inductance must be included, however, since it appears in parallel with the secondary reflected circuit, and small impedances in a parallel network can have a dramatic impact on the terminal characteristics. The resulting equivalent network for the low-frequency region is provided in Fig. 22.22(a). As the frequency decreases, the reactance of the magnetizing inductance reduces in magnitude, causing a reduction in the voltage across the secondary circuit. For $f=0 \mathrm{~Hz}, L_{m}$ is ideally a short circuit, and $V_{L}=0$. As the frequency

(a)

(b)

FIG. 22.22
(a) Low-frequency reflected equivalent circuit; (b) mid-frequency reflected circuit.
increases, the reactance of L_{m} is eventually sufficiently large compared with the reflected secondary impedance to be neglected. The midfrequency reflected equivalent circuit then appears as shown in Fig. 22.22(b). Note the absence of reactive elements, resulting in an inphase relationship between load and generator voltages.

For higher frequencies, the capacitive elements and primary and secondary leakage reactances must be considered, as shown in Fig. 22.23. For discussion purposes, the effects of C_{w} and C_{s} appear as a lumped capacitor C in the reflected network in Fig. 22.23; C_{p} does not appear since the effect of C predominates. As the frequency of interest increases, the capacitive reactance ($X_{C}=1 / 2 \pi f C$) decreases to the point that it will have a shorting effect across the secondary circuit of the transformer, causing V_{L} to decrease in magnitude.

FIG. 22.23
High-frequency reflected equivalent circuit.
A typical iron-core transformer-frequency response curve appears in Fig. 22.24. For the low- and high-frequency regions, the primary element responsible for the drop-off is indicated. The peaking that occurs in the high-frequency region is due to the series resonant circuit established by the inductive and capacitive elements of the equivalent circuit. In the peaking region, the series resonant circuit is in, or near, its resonant or tuned state.

FIG. 22.24
Transformer-frequency response curve.

22.8 SERIES CONNECTION OF MUTUALLY COUPLED COILS

In Chapter 11, we found that the total inductance of series isolated coils was determined simply by the sum of the inductances. For two coils that are connected in series but also share the same flux linkages, such as those in Fig. 22.25(a), a mutual term is introduced that alters the total inductance of the series combination. The physical picture of how the coils are connected is indicated in Fig. 22.25(b). An iron core is included,
although the equations to be developed are for any two mutually coupled coils with any value of coefficient of coupling k. When referring to the voltage induced across the inductance L_{1} (or L_{2}) due to the change in flux linkages of the inductance L_{2} (or L_{1}, respectively), the mutual inductance is represented by M_{12}. This type of subscript notation is particularly important when there are two or more mutual terms.

Due to the presence of the mutual term, the induced voltage e_{1} is composed of that due to the self-inductance L_{1} and that due to the mutual inductance M_{12}. That is,

$$
e_{1}=L_{1} \frac{d i_{1}}{d t}+M_{12} \frac{d i_{2}}{d t}
$$

However, since $i_{1}=i_{2}=i$,

$$
e_{1}=L_{1} \frac{d i}{d t}+M_{12} \frac{d i}{d t}
$$

or

$$
\begin{equation*}
\left.e_{1}=\left(L_{1}+M_{12}\right) \frac{d i}{d t} \quad \text { (volts, } \mathrm{V}\right) \tag{22.25}
\end{equation*}
$$

and, similarly,

$$
\begin{equation*}
\left.e_{2}=\left(L_{2}+M_{12}\right) \frac{d i}{d t} \quad \text { (volts, } \mathrm{V}\right) \tag{22.26}
\end{equation*}
$$

For the series connection, the total induced voltage across the series coils, represented by e_{T}, is
or

$$
\begin{gathered}
e_{T}=e_{1}+e_{2}=\left(L_{1}+M_{12}\right) \frac{d i}{d t}+\left(L_{2}{ }^{\prime}+M_{12}\right) \frac{d i}{d t} \\
e_{T}=\left(L_{1}+L_{2}+M_{12}+M_{12}\right) \frac{d i}{d t}
\end{gathered}
$$

and the total effective inductance is

$$
\begin{equation*}
L_{T(+)}=L_{1}+L_{2}+2 M_{12} \quad \text { (henries, } \mathrm{H} \text {) } \tag{22.27}
\end{equation*}
$$

- The subscript $(+)$ was included to indicate that the mutual terms have a positive sign and are. added to the self-inductance values to determine the total inductance. If the coils are wound such as shown in Fig. 22.26, where ϕ_{1} and ϕ_{2} are in opposition, the induced voltages due to the mutual terms oppose that due to the self-inductance, and the total inductance is determined by

$$
\begin{equation*}
L_{r(-)}=L_{1}+L_{2}-2 M_{12} \quad \text { (henries, } \mathrm{H} \text {) } \tag{22.28}
\end{equation*}
$$

Through Eqs. (22.27) and (22.28), the mutual inductance, can be determined by

$$
\begin{equation*}
M_{12}=\frac{1}{4}\left(L_{T(+)}-L_{T(-)}\right) \tag{22.29}
\end{equation*}
$$

Eq. (22.29) is very effective in determining the mutual inductance between two coils. It states that the mutual inductance is equal to onequarter the difference between the total inductance with a positive and negative mutual effect.

FIG. 22.25
Mutually coupled coils comected in series.

FIG.' 22.26
Mutually coupled coils connected in series with negative mutual inductance.

FIG. 22.27
Dot convention for the series coils in (a) Fig. 22.25 and (b) Fig. 22.26.

From the preceding, it should be clear that the mutual inductance directly affects the magnitude of the voltage induced across a coil since it determines the net inductance of the coil. Additional examination reveals that the sign of the mutual term for each coil of a coupled pair is the same. For $L_{T(+)}$ they are both positive, and for $L_{T(-)}$ they are both negative. On a network schematic where it is inconvenient to indicate the windings and the flux path, a system of dots is used that determines whether the mutual terms are to be positive or negative. The dot convention is shown in Fig. 22.27 for the series coils in Figs. 22.25 and 22.26.

If the current through each of the mutually coupled coils is going away from (or toward) the dot as it passes through the coil, the mutual term will be positive, as shown for the case in Fig 22.27(a). If the arrow indicating current direction through the coil is leaving the dot for one coil and entering the dot for the other, the mutual term is negative.

A few possibilities for mutually coupled transformer coils are indicated in Fig. 22.28(a). The sign of M is indicated for each. When determining the sign, be sure to examine the current direction within the coil itself. In Fig. 22.28 (b), one direction is indicated outside for one coil and through for the other. It initially may appear that the sign should be positive since both currents enter the dot, but the current through coil 1 is leaving the dot; hence a negative sign is in order.

FIG. 22.28
Defining the sign of M for mutually coupled transformer coils.

The dot convention also reveals the polarity of the induced voltage across the mutually coupled coil. If the reference direction for the current in a coil leaves the dot, the polarity at the dot for the induced voltage of the mutually coupled coil is positive. In the first two figures in Fig: 22,28(a), the polarity at the dots of the induced voltages is positive. In the third figure in Fig. 22.28(a), the polarity at the dot of the right coil is negative, while the polarity at the dot of the left coil is positive, since the current enters the dot (within the coil) of the right coil. The comments for the third figure in Fig. 22.28(a) can also be applied to the last figure in Fig. 22.28(a).

EXAMPLE 22.8 Find the total inductance of the series coils in Fig. 22.29. Solution:

Coil 1: $L_{1}+M_{12}-M_{13}$
Coil 2: $\quad L_{2}+M_{12}-M_{23}$
Coil 3: $\quad L_{3}-M_{23}-M_{13}$
and

$$
\begin{aligned}
L_{T} & =\left(L_{1}+M_{12}-M_{13}\right)+\left(L_{2}+M_{12}-M_{23}\right)+\left(L_{3}-M_{23}-M_{13}\right) \\
& =L_{1}+L_{2}+L_{3}+2 M_{12}-2 M_{23}-2 M_{13}
\end{aligned}
$$

Substituting values, we find

$$
\begin{aligned}
L_{T} & =5 \mathrm{H}+10 \mathrm{H}+15 \mathrm{H}+2(2 \mathrm{H})-2(3 \mathrm{H})-2(1 \mathrm{H}) \\
& =34 \mathrm{H}-8 \mathrm{H}=26 \mathrm{H}
\end{aligned}
$$

EXAMPLE 22.9 Write the mesh equations for the transformer network ini Fig. 22.30.

Solution: For each coil, the mutual term is positive, and the sign of M in $\mathbf{X}_{m}=\omega M \angle 90^{\circ}$ is positive, as determined by the direction of \mathbf{I}_{1} and \mathbf{I}_{2}. Thus,
or

$$
\mathbf{E}_{1}-\mathbf{I}_{1} R_{1}-\mathbf{I}_{1} X_{L_{1}} \angle 90^{\circ}-\mathbf{I}_{2} X_{m} \angle 90^{\circ}=0
$$

For the other loop,

$$
-\mathbf{I}_{2} X_{L_{2}} \angle 90^{\circ}-\mathbf{I}_{1} X_{m} \angle 90^{\circ}-\mathbf{I}_{2} R_{L}=0
$$

or

$$
\mathbf{I}_{2}\left(R_{L}+j X_{L_{2}}\right)-I_{1} X_{m} \angle 90^{\circ}=0
$$

22.9 AIR-CORE TRANSFORMER

As the name implies, the air-core transformer does not have a ferromagnetic core to link the primary and secondary coils. Rather, the coils are placed sufficiently close to have a mutual inductance that establishes the desired transformer action. In Fig. 22.31, current direction and polarities have been defined for the air-core transformer. Note the presence of a mutual inductance term M, which is positive in this case, as determined by the dot convention.

FIG. 22.31
Air-core transformer equivalent circuit.

From past analysis in this chapter, we now know that

$$
\begin{equation*}
e_{p}=L_{p} \cdot \frac{d i_{p}}{d t}+M \frac{d i_{s}}{d t} \tag{22.30}
\end{equation*}
$$

for the primary circuit.

We found in Chapter 11 that for the pure inductor, with no mutual inductance present, the mathematical relationship

$$
v_{1}=L \frac{d i_{1}}{d t}
$$

resulted in the following useful form of the voltage across an inductor:

$$
\mathbf{V}_{1}=\mathbf{I}_{1} X_{L} \angle 90^{\circ} \quad \text { where } \quad X_{L \Delta}=\omega L
$$

Similarly, it can be shown, for a mutual inductance, that

$$
v_{1}=M \frac{d i_{2}}{d t}
$$

results in

$$
\begin{equation*}
\mathbf{V}_{1}=\mathbf{I}_{2} X_{m} \angle 90^{\circ} \quad \text { where } X_{m}=\omega M \tag{22.31}
\end{equation*}
$$

Eq. (22.30) can then be written (using phasor notation) as

$$
\begin{equation*}
\mathbf{E}_{p}=\mathbf{I}_{p} X_{L_{p}} \angle 90^{\circ}+\mathbf{I}_{s} X_{m} \angle 90^{\circ} \tag{22.32}
\end{equation*}
$$

and

$$
\begin{gather*}
\mathbf{V}_{g}=\mathbf{I}_{p} R_{p} \angle 0^{\circ}+\mathbf{I}_{p} X_{L_{p}} \angle 90^{\circ}+\mathbf{I}_{s} X_{m} \angle 90^{\circ} \\
\mathbf{V}_{g}=\mathrm{I}_{p}\left(R_{p}+j X_{L_{p}}\right)+\mathbf{I}_{s} X_{m} \angle 90^{\circ} \tag{22.33}
\end{gather*}
$$

or

For the secondary circuit,

$$
\begin{equation*}
\mathbf{E}_{s}=\mathbf{I}_{s} X_{L} \angle 90^{\circ}+\mathbf{I}_{p} X_{m} \angle 90^{\circ} \tag{22.34}
\end{equation*}
$$

and

$$
\mathbf{V}_{L}=\mathbf{I}_{s} R_{s} \angle 0^{\circ}+\mathbf{I}_{s} X_{L_{i}} \angle 90^{\circ}+\mathbf{I}_{p} X_{m} \angle 90^{\circ}
$$

or

$$
\begin{equation*}
\mathbf{V}_{L}=\mathbf{I}\left(R_{s}+j X_{L_{s}}\right)+\mathbf{I}_{p} X_{m} \angle 90^{\circ} \tag{22.35}
\end{equation*}
$$

Substituting

$$
V_{L}=-I_{s} Z_{L}
$$

into Eq. (22.35) results in

$$
0=\mathbf{I}_{s}\left(R_{s}+j X_{L_{s}}+\mathbf{Z}_{L}\right)+\mathbf{I}_{p} X_{m} \angle 90^{\circ}
$$

Solving for \mathbf{I}_{s}, we have

$$
\mathbf{I}_{s}=\frac{-\mathbf{I}_{p} X_{m} \angle 90^{\circ}}{R_{s}+j X_{L_{s}}+\mathbf{Z}_{L}}
$$

and substituting into Eq. (22.33), we obtain

$$
\mathbf{V}_{g}=\mathbf{I}_{p}\left(R_{p}+j X_{L_{p}}\right)+\left(\frac{-\mathbf{I}_{p} X_{m} \angle 90^{\circ}}{R_{s}+j X_{L_{q}}+\mathbf{Z}_{L}}\right) X_{m} \angle 90^{\circ}
$$

Thus, the input impedance is

$$
\mathbf{Z}_{i}=\frac{\mathbf{V}_{g}}{\mathbf{I}_{p}}=R_{p}+j X_{L_{p}}-\frac{\left(X_{m} \angle 90^{\circ}\right)^{2}}{R_{s}+j X_{L_{q}}+\mathbf{Z}_{L}}
$$

or, defining

$$
\mathbf{Z}_{p}=R_{p}+j X_{L_{p}} \quad \mathbf{Z}_{s}=R_{s}+j X_{L_{s}} \quad \text { and } \quad X_{m} \angle 90^{\circ}=+j \omega M
$$

we have
and

$$
\begin{align*}
& \mathbf{Z}_{i}=\mathbf{Z}_{p}-\frac{(+j \omega M)^{2}}{\mathbf{Z}_{s}+\mathbf{Z}_{L}} \\
& \mathbf{Z}_{i}=\mathbf{Z}_{p}-\frac{(\omega M)^{2}}{\mathbf{Z}_{s}+\mathbf{Z}_{L}} \tag{22.36}
\end{align*}
$$

The term $(\omega M)^{2} /\left(Z_{s}+Z_{L}\right)$ is called the coupled impedance, and it is independent of the sign of M since it is squared in the equation. Consider also that since $(\omega M)^{2}$ is a constant with 0° phase angle, if the load Z_{L} is resistive, the resulting coupled impedance term appears capacitive due to division of $\left(Z_{s}+R_{L}\right)$ into $(\omega M)^{2}$. This resulting capacitive reactance opposes the series primary inductance L_{p}, causing a reduction in \boldsymbol{Z}_{i}. Including the effect of the mutual term, the input impedance to the network appears as shown in Fig. 22.32.

EXAMPLE 22.10 Determine the input impedance to the air-core transformer in Fig. 22.33.

FIG. 22.33
Example 22.10.

Solution:

$$
\begin{aligned}
\mathbf{Z}_{i} & =\mathbf{Z}_{p}+\frac{(\omega M)^{2}}{\mathbf{Z}_{s}+\mathbf{Z}_{L}} \\
& =R_{p}+j X_{L_{p}}+\frac{(\omega M)^{2}}{R_{s}+j X_{L_{s}}+R_{L}} \\
& =3 \Omega^{-}+j 2.4 \mathrm{k} \Omega+\frac{((400 \mathrm{rad} / \mathrm{s})(0.9 \mathrm{H}))^{2}}{0.5 \Omega+j 400 \Omega+40 \Omega} \\
& \cong j 2.4 \mathrm{k} \Omega+\frac{129.6 \times 10^{3} \Omega}{40.5+j 400} \\
& =j 2.4 \mathrm{k} \Omega+\underbrace{322.4 \Omega-84.22^{\circ}}_{\text {capaciive }} \\
& =j 2.4 \mathrm{k} \Omega+(0.0325 \mathrm{k} \Omega-j 0.3208 \mathrm{k} \Omega) \\
& =0.0325 \mathrm{k} \Omega+j(2.40-0.3208) \mathrm{k} \Omega
\end{aligned}
$$

and $Z_{i}=R_{i}+j X_{L_{i}}=\mathbf{3 2 . 5} \Omega+j 2079 \Omega=\mathbf{2 0 7 9 . 2 5} \Omega \angle 89.10^{\circ}$

22.10 NAMEPLATE DATA

A typical iron-core power transformer rating included in the nameplate data for the transformer might be the following:

$$
5 \mathrm{kVA} \quad 2000 / 100 \mathrm{~V} \quad 60 \mathrm{~Hz}
$$

The 2000 V or the 100 V can be either the primary or the secondary voltage; that is, if 2000 V is the primary voltage, then 100 V is the secondary voltage, and vice versa. The 5 kVA is the apparent power ($S=V I$) rating of the transformer. If the secondary voltage is 100 V , then the maximum load current is

$$
I_{L}=\frac{S}{V_{L}}=\frac{5000 \mathrm{VA}}{100 \mathrm{~V}}=50 \mathrm{~A}
$$

and if the secondary voltage is 2000 V ; then the maximum load current is

$$
I_{L}=\frac{S}{V_{L}}=\frac{5000, \mathrm{VA}}{2000 \mathrm{~V}}=2.5 \mathrm{~A}
$$

The transformer is rated in terms of the apparent power rathen than the average, or real, power for the reason demonstrated by the circuit in Fig. 22.34. Since the current through the load is greater than that determined by the apparent power rating, the transformer may be permanently damaged. Note, however, that since the load is purely capacitive, the average power to the load is zero. The wattage rating is therefore meaningless regarding the ability of this load to damage the transformer.

The transformation ratio of the transformer under discussion can be either of two values. If the secondary voltage is 2000 V , the transformation ratio is $a=N_{p} / N_{s}=V_{g} / V_{L}=100 \mathrm{~V} / 2000 \mathrm{~V}=1 / 20$, and the transformer is a step-up transformer. If the secondary voltage is 100 V , the transformation ratio is $a=N_{p} / N_{s}=V_{g} / V_{L}=2000 \mathrm{~V} / 100 \mathrm{~V}=20$, and the transformer is a step-down transformer.

The rateđ primary current can be determined by applying Eq. (22.18):

$$
I_{p}=\frac{I_{g}}{a}
$$

which is equal to $[2.5 \mathrm{~A} /(1 / 20)]=50 \mathrm{~A}$ if the secondary voltage is 2000 V , and $(50 \mathrm{~A} / 20)=2.5 \mathrm{~A}$ if the secondary voltage is 100 V .

To explain the necessity for including the frequency in the nameplate data, consider Eq. (22.12):

$$
E_{p}=4.44 f_{p} N_{p} \Phi_{m}
$$

and the B-H curve for the iron core of the transformer (Fig. 22.35).

FIG. 22.35
Demonstrating why the frequency of application is important for transformers.

The point of operation on the $B-H$ curve for most transformers is at the knee of the curve. If the frequency of the applied signal drops and N_{p} and E_{p} remain the same, then Φ_{m} must increase in magnitude, as determined by Eq. (22.12):

$$
\Phi_{m} \uparrow=\frac{E_{p}}{4.44 f_{p} \downarrow N_{p}}
$$

The result is that B increases, as shown in Fig. 22.35, causing H to increase also. The resulting ΔI could cause a very high current in the primary, resulting in possible damage to the transformer.

22.11 TYPES OF TRANSFORMERS

Transformers are available in many different shapes and sizes. Some of the more common types include the power transformer, audio transformer, IF (intermediate frequency) transformer, and RF (radio frequency) transformer. Each is designed to fulfill a particular requirement in a specific area of application. The symbols for some of the basic types of transformers are shown in Fig. 22.36.

FIG. 22.36
Transformer symbols.

The method of construction varies from one transformer to another. Two of the many different ways in which the primary and secondary coils can be wound around an iron core are shown in Fig. 22.37. In either case, the core is made of laminated sheets of ferromagnetic material

(b) Shell type

FIG. 22.37
Types of ferromagnetic core construction.

FIG. 22.38
Laminated power transformer.
(Courtesy of the Tamura Corp. of America.)

FIG. 22:39
(a) Two-circuit transformer; (b) autotransformer.
separated by an insulator to reduce the eddy current losses. The sheets themselves also contain a small percentage of silicon to increase the electrical resistivity of the material and further reduce the eddy current losses.

A variation of the core-type transformer appears in Fig. 22.38. This transformer is designed for low-profile (the 1.1 VA size has a maximum height of only 1 in .) applications in power, control, and instrumentation applications. There are actually two transformers on the same core, with the primary and-secondary of each wound side by side. The schematic is provided in Fig. 22.38 for a single $115 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ input using a series connection with centertap for the output. For this unit, the output voltage is 10 V line to centertap with a current rating of 0.11 A , satisfying the condition that $(10 \mathrm{~V})(0.11 \mathrm{~A})=1.1 \mathrm{VA}$ as indicated above. Note the dot convention and the commercial representation of the transformer coils.

The autotransformer [Fig. 22.39(b)] is a type of power transformer that, instead of employing the two-circuit principle (complete isolation between coils), has one winding common to both the input and the output circuits. The induced voltages are related to the turns ratio in the same manner as that described for the two-circuit transformer. If the proper connection is used, a two-circuit power transformer can be used as an autotransformer. The advantage of using it as an autotransformer is that a larger apparent power can be transformed. This can be demonstrated by the two-circuit transformer of Fig. 22.39(a), shown in Fig. 22.39(b) as an autotransformer.

For the two-circuit transformer, note that $S=\left(\frac{1}{20} \mathrm{~A}\right)(120 \mathrm{~V})=6 \mathrm{VA}$, whereas for the autotransformer, $S=\left(1 \frac{1}{20} \mathrm{~A}\right)(120 \mathrm{~V})=126 \mathrm{VA}$, which is many times that of the two-circuit transformer. Note also that the current and voltage of each coil are the same as those for the two-circuit configuration. The disadvantage of the autotransformer is obvious: loss of the isolation between the primary and secondary circuits.

A pulse transformer designed for printed-circuit applications where high-amplitude, long-duration pulses must be transferred without saturation appears in Fig. 22.40. Turns ratios are available from 1 $: 1$ to $5: 1$ at maximum line voltages of 240 V rms at 60 Hz . The upper unit is for printed-circuit applications with isolated dual primaries; whereas the lower unit is the bobbin variety with a single primary winding.

FIG. 22.40
Pulse transformers. (Courtesy of DALE Electronies, Inc.)

The ultra-wideband audio-transformer in Fig. 22.41 is designed to work in the frequency range of 300 Hz to 100 kHz . The unit is quite small, with dimensions of 0.31 in . by 0.41 in . for the area and 0.465 in . for the height. The ac impedance at the primary is $200 \mathrm{k} \Omega \mathrm{CT}$, and it is $1 \mathrm{k} \Omega \mathrm{CT}$ at secondary. The turns ratio is $14.1 \mathrm{CT}: 1 \mathrm{CT}$, with a maximum power rating of 10 mW . The de resistance of the primary is $5.3 \mathrm{k} \Omega$, with 120Ω at the secondary.

22.12 TAPPED AND MULTIPLE-LOAD TRANSFORMERS

For the center-tapped (primary) transformer in Fig. 22.42, where the voltage from the center tap to either outside lead is defined as $E_{p} / 2$, the relationship between E_{p} and E_{s} is

$$
\begin{equation*}
\frac{\mathbf{E}_{p}}{\mathbf{E}_{s}}=\frac{N_{p}}{N_{s}} \tag{22.37}
\end{equation*}
$$

FIG. 22.42 -
Ideal transformer with a center-tapped primary.

For each half-section of the primary,
with

$$
\mathbf{Z}_{1 / 2}=\left(\frac{N_{p} / 2}{N_{s}}\right)^{2} \mathbf{Z}_{L}=\frac{1}{4}\left(\frac{N_{p}}{N_{s}}\right)^{2} \mathbf{Z}_{L}
$$

$$
\mathbf{Z}_{i(A-A)}=\left(\frac{N_{p}}{N_{s}}\right)^{2} \mathbf{Z}_{L}
$$

Therefore,

$$
\begin{equation*}
Z_{1 / 2}=\frac{1}{4} \mathbf{Z}_{i} \tag{22.38}
\end{equation*}
$$

For the multiple-Ioad transformer in Fig. 22.43, the following equations apply:

$$
\begin{equation*}
\frac{\mathbf{E}_{i}}{\mathbf{E}_{2}}=\frac{N_{1}}{N_{2}} \quad \frac{\mathbf{E}_{i}}{\mathbf{E}_{3}}=\frac{N_{1}}{N_{3}}: \frac{\mathbf{E}_{2}}{\mathrm{E}_{3}}=\frac{N_{2}}{N_{3}} \tag{22.39}
\end{equation*}
$$

The total input impedance can be determined by first noting that, for the ideal transformer, the power delivered to the primary-is equal to the power dissipated by the load; that is,

$$
P_{1}=P_{L_{2}}+P_{L_{3}}
$$

Introductory, C.-65A

FIG. 22.43
Ideal transformer with multiple Loads.

FIG. 22.44
Ideal transformer with a tapped secondary and multiple loads.

FIG. 22.45
Applying mesh analysis to magnetically coupled coils.

FIG. 22.46
Appiying mesh analysis to a network with two magnetically coupled coils.
and for resistive loads ($\mathbf{Z}_{i}=R_{i}, \mathbf{Z}_{2}=R_{2}$, and $\mathbf{Z}_{3}=R_{3}$),

$$
\frac{E_{1}^{2}}{R_{i}}=\frac{E_{2}^{2}}{R_{2}}=\frac{E_{3}^{2}}{R_{3}}
$$

or, since
then

$$
\begin{aligned}
& E_{2}=\frac{N_{2}}{N_{1}} E_{i} \quad \text { and } \quad E_{3}=\frac{N_{3}}{N_{1}} E_{1} \\
& \frac{E_{i}^{2}}{R_{i}}=\frac{\left[\left(N_{2} / N_{1}\right) E_{i}\right]^{2}}{R_{2}}+\frac{\left[\left(N_{3} / N_{1}\right) E_{i}\right]^{2}}{R_{3}}
\end{aligned}
$$

and

$$
\frac{E_{i}^{2}}{R_{i}}=\frac{E_{i}^{2}}{\left(N_{1} / N_{2}\right)^{2} R_{2}}+\frac{E_{i}^{2}}{\left(N_{1} / N_{3}\right)^{2} R_{3}}
$$

Thus,

$$
\begin{equation*}
\frac{1}{R_{i}}=\frac{1}{\left(N_{1} / N_{2}\right)^{2} R_{2}}+\frac{1}{\left(N_{1} / N_{3}\right)^{2} R_{3}} \tag{22.40}
\end{equation*}
$$

indicating that the load resistances are reflected in paralle:
For the configuration in Fig. 22.44, with E_{2} and ${ }^{2} E_{3}$ defined as shown, Eqs. (22.39) and (22.40) are applicable.

22.13 NETWORKS WITH MAGNETICALLY COUPLED COILS

For multiloop networks with magnetically coupled coils, the meshanalysis approach is most frequently applied. A firm understanding of the dot convention discussed earlier should make the writing of the equations quite direct and free of errors. Before writing the equations for any particular loop, first determine whether the mutual term is positive or negative, keeping in mind that it will have the same sign as that for the other magnetically coupled coil. For the two-loop network in Fig. 22.45, for example, the mutual term has a positive sign since the current through each coil leaves the dot. For the primary loop,

$$
\mathbf{E}_{1}-\mathbf{I}_{1} \mathbf{Z}_{1}-\mathbf{I}_{1} \mathbf{Z}_{L_{\mathrm{r}}}-\mathbf{1}_{2} \mathbf{Z}_{\mathrm{m}}-\mathbf{Z}_{2}\left(\mathbf{I}_{1}-\mathbf{I}_{2}\right)=0
$$

where M of $\boldsymbol{Z}_{m}=\omega M \angle 90^{\circ}$ is positive, and

$$
\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{\mathcal{L}_{1}}+\mathbf{Z}_{2}\right)-\mathbf{I}_{2}\left(\mathbf{Z}_{2}-\mathbf{Z}_{m}\right)=\mathbf{E}_{1}
$$

Note in the above that the mutual impedance was treated as if it were an additional inductance in series with the inductance L_{1} having a sign determined by the dot conyention and the voltage across which is determined by the current in the magnetically coupled loop.

For the secondary loop,
or

$$
\begin{gathered}
-\mathbf{Z}_{2}\left(\mathbf{I}_{2}-\mathbf{I}_{1}\right)-\mathbf{I}_{2} \mathbf{Z}_{L_{2}}-\mathbf{I}_{1} \mathbf{Z}_{m}-\mathbf{I}_{2} \mathbf{Z}_{3}=0 \\
\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{L_{2}}+\mathbf{Z}_{3}\right)-\mathbf{I}_{1}\left(\mathbf{Z}_{2}-\mathbf{Z}_{m}\right)=0
\end{gathered}
$$

For the network in Fig. 22.46, we find a mutual term between L_{1} and L_{2} and L_{1} and L_{3}, labeled M_{12} and M_{13}, respectively.

For the coils with the dots (L_{1} and L_{3}), since each current through the coils leaves the dot, M_{13} is positive for the chosen direction of l_{1} and I_{3}. However, since the current I_{1} leaves the dot through L_{1}, and I_{2} enters the dot through coil L_{2}, M_{12} is negative. Consequently or the input circuit,

$$
\begin{gathered}
\mathbf{E}_{1}-\mathbf{I}_{1} \mathbf{Z}_{1}-\mathbf{I}_{1} \mathbf{Z}_{L_{1}}-\mathbf{I}_{2}\left(-\mathbf{Z}_{m_{12}}\right)-\mathbf{I}_{3} \mathbf{Z}_{m_{13}}=0 \\
\mathbf{E}_{1}-\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{L_{1}}\right)+\mathbf{H}_{2} \mathbf{Z}_{m_{12}}-\mathbf{I}_{3} Z_{m_{13}}=0
\end{gathered}
$$

For loop 2 ,

$$
\begin{aligned}
-\mathbf{I}_{2} \mathbf{Z}_{2}-\mathbf{I}_{2} \mathbf{Z}_{L_{2}}-\mathbf{I}_{1}\left(-\mathbf{Z}_{m_{12}}\right) & =0 \\
-\mathbf{I}_{1} \mathbf{Z}_{m_{12}}+\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{t_{2}}\right) & =0
\end{aligned}
$$

and for loop 3,
or

$$
-\mathbf{I}_{3} \mathbf{Z}_{3}-\mathbf{I}_{3} \mathbf{X}_{L_{3}}-\mathbf{I}_{1} \mathbf{Z}_{m_{43}}=0
$$

In determinant form,

$$
\begin{array}{lll}
\mathbf{I}_{1}\left(\mathbf{Z}_{1}+\mathbf{Z}_{L_{1}}\right)-\mathbf{I}_{2} \mathbf{Z}_{m_{12}}+\mathbf{I}_{3} \mathbf{Z}_{m_{13}} & =\mathbf{E}_{1} \\
-\mathbf{I}_{1} \mathbf{Z}_{m_{12}} & +\mathbf{I}_{2}\left(\mathbf{Z}_{2}+\mathbf{Z}_{\left.t_{12}\right)}\right)+0 & =0 \\
\mathbf{I}_{1} \mathbf{Z}_{m_{13}} & +0 & +\mathbf{I}_{3}\left(\mathbf{Z}_{3}+\mathbf{Z}_{13}\right)
\end{array}=0
$$

22.14 APPLICATIONS

The transformer has appeared throughout the text in a number of described applications, from the basic de supply to the flyback transformes of a simple flash camera. Transformers were used to increase or decrease the voltage of current level, to act as an impedance matching device, or in some-cases to play a dual role of transformer action and reactive element. They are so common in such a wide variety of systems that it is important to become very familiar with their general characteristics. For most applications, transformer design can be considered 100% efficient. That is, the power applied is the power delivered to the doad In general, however, transformers are frequently the largestelement of a design and, because of the nonlinearity of the $B-H$ curve, can cause some distortion of the transformed waveform. Therefore, they are useful only in situations where the applied voltage is changing with time. The application of a dc voltage to the primary results in 0 V at the secondary, but the appli= cation of a voltage that changes with time, no matter what its generalappearance, fesults in'a voltage on the secondary. Remember that even though it can provide isolation between the primary and secondary circuits, a transformer can transform the load impedance to the primary circuit at a levelt that can significantly affect the behavior of the network. Even the smallest impedatice in the secondary can be made to appear very large in the primary when a step-down transformer is used.

Transformers, like every other component you may use, have power ratings. The larger the power rating, the larger is the resulting transformer, primarily because of the larger conductors in the windings to handle the current. The size of a transformer is also a function of the frequency involved. The lower the frequency, the larger is the required * transformer, as is easily recognized by the size of large power transformers (also affected by the current levels as mentioned above). For the same power level, the higher the frequency of transformation, the smaller the transformer can be. Because of eddy current and bysteresis losses in a transformer, the design of the core is quite importanı. A solid core would introduce high levels of such losses, whereas a core constructed of sheets of high-permeability steel with the proper insulation between the sheets would reduce the losses significantly.

Although vey fundamental in their basic structure, transformers are, among the basic building blocks of electric and electronic systems. There is not a publication on new components that does net include a new design for the variety of applications becing developed every day.

Soldering Gun

Soldering and welding are two operations that are best performed by the application of heat that is unaffected by the thermal characteristics of the materials involved. In other words, the heat applied should not be sensitive to the changing parameters of the welding materials, the metals involved, or the welding conditions. The arc (a heavy current) established in the welding process should remain fixed in magnitude to ensure an even weld. This is best accomplished by ensuring a fixed current through the system even though the load characteristics may change-that is, by ensuring a constant current supply of sufficient amperage to establish the required arc for the welding equipment or even heating of the soldering iron tip. A further requirement for the soldering process is that the heat developed be sufficient to raise the solder to its melting point of about $800^{\circ} \mathrm{F}$.

The soldering gun of Fig. 22.47(a) employs a unique approach to establishing a fixed current through the soldering tip. The soldering tip is actually part of a secondary windĭng of trànsformer having only one turnas its secondary, as shown in Fig, 22.47(b). Because of the heavy currents

FIG. 22.47
that will be established in this single-turn secondary, it is quite large in size to ensure that it can handle the current and to minimize its resistance level. The primary of the transformer has many turns of thinner wire to establish the turns ratio necessary to establish the required current in the secondary. The Universal ${ }^{\text {® }}$ unit of Fig. 22.47 is rated $140 \mathrm{~W} / 100 \mathrm{~W}$, indicating that it has two levels of power controlled by the trigger. As you pull the trigger, the first-setting will be at 100 W , and a fully depressed trigger will provide 140 W of power. The inductance of the primary is 285 mH at the 140 W setting and 380 mH at the 100 W setting, indicating that the switch controls how many windings of the primary will be part of the transformer action for each wattage rating, as shown in Fig. 22.47(c). Since inductance is a direct function of the number of turns, the 140 W setting has fewer turns than the 100 W setting. The dc resistance of the primary was found to be about 11.2Ω for the 140 W setting and 12.8Ω for the 100 W setting, which makes sense also since more turns will require a longer wire, and the resistance should increase accordingly.

Under rated operating conditions, the primary current for each setting can be determined using Ohm's law in the following manner:-

For 140 W ,

$$
I_{p}=\frac{P}{V_{p}}=\frac{140 \mathrm{~W}}{120 \mathrm{~V}}=1.17 \mathrm{~A}
$$

For 100 W ,

$$
I_{p}=\frac{P}{V_{p}}=\frac{100 \mathrm{~W}}{120 \mathrm{~V}}=0.83 \mathrm{~A}
$$

As expected, the current demand is more for the 140 W setting that for the 100 W setting. Using the measured values of input inductance and resistance for the 140 W setting gives the equivalent circuit of Fig. 22.48(a). Using the applied 60 Hz to determine the reactance of the coil and then determining the total impedance seen by the primary results in the following for the source current:

$$
X_{L}=2 \pi f L=2 \pi(60 \mathrm{~Hz})(285 \mathrm{mH})=107.44 \Omega
$$

and

$$
\mathbf{Z}_{T}=R+j X_{L}=11.2 \Omega+j \cdot 107.44 \Omega=108.02 \Omega \angle 84.05^{\circ}
$$

$$
\left|I_{p}\right|=\left|\frac{E}{Z_{T}}\right|=\frac{120 \mathrm{~V}}{108.02 \Omega}=1.11 \mathrm{~A}
$$

which is a close match with the rated level.
For the 100 W level of Fig. 22.48(b), the following analysis would result:

$$
\begin{align*}
& X_{L}=2 \pi f L=2 \pi(60 \mathrm{~Hz})(380 \mathrm{mH})=143.26 \Omega \tag{1}\\
& \mathbf{Z}_{T}=R+j X_{L}=12.8 \Omega+j 143.26 \Omega=143.83 \Omega \angle 84.89^{\circ}
\end{align*}
$$

and
so that

$$
\left|I_{p}\right|=\left|\frac{E}{Z_{T}}\right|=\frac{120 \mathrm{~V}}{143.83 \Omega}=0.83 \mathrm{~A}
$$

which is a match to hundredths place with the value calculated from rated conditions.

Removing the tip and measuring the primary and secondary voltages resulted in $120 \mathrm{~V} / 0.38 \mathrm{~V}$ for the 140 W setting and $120 \mathrm{~V} / 0.31 \mathrm{~V}$ for the 100 W setting, respectively. Since the voltages of a transformer are directly related to the turns ratio, the ratio of the number of turns in

FIG. 22.48
Equivalent circuits for the soldering iron of Fig. 22.47(a): at $140-\mathrm{W}$ setting; (b) at $100-\mathrm{W}$ setting.
the primary $\left(N_{p}\right)$ to that of the secondary $\left(N_{s}\right)$ can be estimated by the following for each setting;

For 140 W ,

$$
\frac{N_{p}}{N_{s}}=\frac{120 \mathrm{~V}}{0.38 \mathrm{~V}} \approx 316
$$

For 100 W ,

$$
\frac{N_{p}}{N_{s}}=\frac{120 \mathrm{~V}}{0.31 \mathrm{~V}} \approx 387
$$

* Looking at the photograph of Fig. 22.47(b), one would certainly consider that there are 300 or more turns in the primary winding.

The currents of a transformer are related by the turns ratio in the following manner, permitting a calculation of the secondary current for each setting:

For 140 W ,

$$
I_{5 \mathrm{n}}=\frac{N_{p}}{N_{s}} I_{p}=316(1.17 \mathrm{~A}) \cong 370 \mathrm{~A}
$$

For 100 W ,

$$
I_{s}=\frac{N_{p}}{N_{s}} I_{p}=387(0.83 \mathrm{~A}) \cong 321 \mathrm{~A}
$$

Quite clearly, the secondary current is much higher for the 140 W setting. Using an Amp-Clamp ${ }^{(2)}$ showed that the current in secondary exceeded 300^{-}A when the power was first applied and the soldering tip was cold. However, as the tip heated up because of the high current levels, the current through the primary dropped to about 215 A for the 140 W setting and to 180 A for the 100 W setting. These high currents are part of the reason that the lifetime of most soldering tips on soldering guns is about 20 hours. Eventually, the tip will simply begin to melt. Using these levels of current and the given power rating, we can approximate the resistance of the secondary as follows:

For 140 W ,

$$
R=\frac{P}{I^{2}}=\frac{140 \mathrm{~W}}{(215 \mathrm{~A})^{2}} \equiv \mathbf{3} \mathbf{m} \boldsymbol{\Omega}
$$

For 100 W ,

$$
R=\frac{P}{l^{2}}=\frac{100 \mathrm{~W}}{(180 \mathrm{~A})^{2}} \cong 3 \mathrm{~m} \Omega
$$

which is low, as expected when you consider the cross-sectional area of the secondary and the fact that the tip is a short section of low-resistance, tin-plated copper.

Orie of the obvious advantages of the soldering gun versus the iron is that the iron is off when you release the trigger, thus reducing energy costs and extending the life of the tip. Applying dc current rather than ac to develop a constant current would be impractical because the high current deriand would require a series of large batteries in parallel.

The above investigation was particularly interesting because of the manner in which the constant current characteristic was estâblished. the Sevels of current established, and the excellent manner in which some of the theory intraduced in the text was verified.

Low-Voltage Compensation

At times during the year, peak demands from the power company can result in a reduced voltage down the line. In midsummer, for example, the line voltage may drop from 120 V to 100 V because of the heavy load often due primarily to air conditioners. However, air conditioners do not run as well under low-voltage conditions, so the following option using an autotransformer may be the solution.

In Fig. 22.49(a), an air conditioner drawing 10 A at 120 V is connected through an autotransformer to the available supply, which has dropped to 100 V . Assuming 100% efficiency, the curreht drawn from the line would have to be 12 A to ensure that $P_{i}=P_{o}=1200 \mathrm{~W}$. Using the analysis introduced in Section 22.11, we find that the current in the primary winding is 2 A with 10 A in the secondary. The 12 A exist only in the line connecting the source to the primary. If the voltage level is increased using the traditional step-up transformer shown in Fig. 22.49(b), the same currents result at the source and load. However, note that the current through the primary is now 12 A , which is 6 times that in the au:totransformer. The result is that the winding in the autotransformer can be much thinner due to the significantly lower current level.

FIG. 22.49
Maintaining a 120 V supply for an air conditioner: (a) using an autotransformer: (b) using a traditional step-up transformer:

Let us now examine the turns ratio required and the number of turns involved for each setup (associating one turn with each volt of the primary and secondary).

For the autotransformer,

$$
\frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}}=\frac{10 \mathrm{~V}}{100 \mathrm{~V}} \Rightarrow \frac{10 \mathrm{t}}{100 \mathrm{t}}
$$

For the traditional transformer,
$\therefore \quad \frac{N_{s}}{N_{p}}=\frac{V_{s}}{V_{p}^{\prime}}=\frac{120 \mathrm{~V}}{100 \mathrm{~V}} \Rightarrow \frac{120 \mathrm{t}}{100 \mathrm{t}}$
In total, therefore, the autotransformer has only 10 turns in the secondary, whereas the traditional has 120 . For the autotransformer, we need only 10 turns of heavy wire to handle the current of 10 A , not the full 120 required for the traditional transformer. In addition, the total number of turns for the autotransformer is 110 , compared to 220 for the traditional transformer.

The net result of all the above is that even though the protection offered by the isolation feature is lost, the autotransformer can be much smaller in size and weight and, therefore, less costly.

Ballast Transformer

Until jusif recently, all fluorescent lights like those in Fig. 22.50(a) had a ballast transformer as shown in Fig. 22.50(b). In many cases, its weight alone is almost equal to that of the fixture itself. In recent years, a solidstate equivalent transformer has been developed that in time will replace most of the ballast transformers.

FIG. 22.50
Fluorescent lamp: (a) general appearance;
(b) internal view with ballast.

The basic connections for a single-bulb fluorescent light are provided in Fig. 22.51(a). Note that the transformer is connected as an autotransformer with the full applied 120 V across the primary. When the switch is closed, the applied voltage and the voltage across the seeondary will add and establish a current through the filaments of the fluorescent bulb. The starter is initially a short circuit to establish the continuous path through the two filaments. In older fluorescent bulbs, the starter was a cylinder with two contacts, as shown in Fig. 22.51(b), which had to be replaced on occasion. It sat right under the fluorescent bulb near one of the bulb connections. Now, as shown by the sketch of the inside of a ballast transformer in Fig. 22.51(c), the starter is now commonly built into the ballast and can no longer be replaced. The voltage established by the auto-transformer action is sufficient to heat the filaments but not light the fluorescent bulb. The fluorescent lamp is a long tube with a coating of fluorescent paint on the inside. It is filled with an inert gas and a smallamount of liquid mercury. The distance between the electrodes at the ends of the lamp is too much for the applied autotransformer voltage to establish conduction. To overcome this problem, the filaments are first heated as described above to convert the mercury (a good conductor)

(a)

(b)

Oil-impregnated, heat-absorbing material throughout inside of container
(c)

FIG. 22.51
(a) Schematic of single-bulb fluorescent lamp; (b) starter; (c) internal view of ballast transformer.
from a liquid to a gas. Conduction can then be established by the application of a large potential across the electrodes. This potential is established when the starter (a thermal switch that opens when it reaches a particular temperature) opens and causes the inductor current to drop from its established level to zero amperes. This quick drop in current establishes a very high spike in voltage across the coils of the autotransformer as determined by $v_{L}=L\left(d i_{L} / d t\right)$. This significant spike in voltage also appears across the bulb and establishes current between the electrodes. Light is then given off as the electrons hit the fluorescent surface on the inside of the tube. It is the persistence of the coating that helps hide the oscillation in conduction level due to the low-frequency $(60 \mathrm{~Hz})$ power that can result in a flickering light. The starter remains open until the next time the bulb is turned on. The flow of charge between electrodes is then maintained solely by the voltage across the autotransformer. This current is relatively low in magnitude because of the reactance of the secondary winding in the resulting series circuit. In other words, the autotransformer has shifted to one that is now providing a reactance to the secondary circuit to limit the current through the bulb. Without this limiting factor, the current through the bulb would be too high, and the bulb would quickly burn out. This action of the coils of the transformer generating the required voltage and then acting as a coil to dimit the current has resulted in the general terminology of swinging choke:

The fact that the light is not generated by an $I R$ drop across a filament of a bulb is the reason fluorescent lights are so energy efficient. In fact, in an incandescent bulb, about 75% of the applied energy is lost in heat, with only 25% going to light emission. In a fluorescent bulb, more than 70% goes to light emission and 30% to heat losses. As a rule of thumb, the lighting from a $40^{\circ} \mathrm{W}$ fluorescent lamp [such as the unit in Fig. 22.50(a) with its two 20 W bulbs] is equivalent to that of a 100 W incandescent bulb.

One other interesting difference between incandescent and fluorescent bulbs is the method of determining whether they are good or bad. For the incandescent light, it is immediately obvious when it fails to give light at all. For the fluorescent bulb, however, assuming that the ballast is in good working order, the bulb begins to dim as its life wears on. The electrodes become coated and less efficient, and the coating on the inner surface begins to 'deteriorate.

Rapid-start fluorescent lamps are different in operation only in that the voltage generated by the transformer is sufficiently large to atomize the gas upon application and initiate conduction, thereby removing the need for a starter and eliminating the warm-up time of the filaments. In time, the solid-state ballast will probably be the unit of choice because of its quick response, higher efficiency, and lighter weight, but the transition will take some time. The basic operation will remain the same, however.

Because of the fluorine gas (hence the name fluorescent bulb) and the mercury in fluorescent lamps, they must be discarded with care. Ask your local disposal facility where to take bulbs. Breaking them for insertion in a plastic bag could be very dangerous. If you happen to break a bulb and get cut in the process, go immediately to a medical facility since you could sustain fluorine or mercury poisoning.

Recent Developments

As pointed out in Chapter 4, the compact flourescent bulb (CFL) has had a tremendous impact on the "green" movement, with entire countries determined to be fully flourescent within the next 3 to 4 years. However, the design of the CFL is electronic in nature and does not use the ballast and starter mechanism described above, although its actual mode of operation is the same. Note in Fig. 4.25 the package of electronics crowded into each CFL, resulting in the higher cost compared to incandescent lighting, In fact, take particular note of the small transformer in the center of the package that is used to hellp establish the required firing voltage. Further impact on the lighting industry is bound to come from the growing interest in light-emitting diodes (LEDs), which have even longer lifetimes than CFLs and do not require a firing mechanism of any kind. As with any new source of light, however, there are both positive and negative aspects to each approach. Some suggest that the future holds' a mixture of use, depending on the application, cost involved, and effect on the environment. On the very positive side, however, it is nice to have options, and those being develops seem to be full of promise.

22.15 COMPUTER ANALYSIS

PSpice

Transformer (Controlled Sources) The simple transformer configuration in Fig. 22.52 is now investigated using controlled sources to mimic the behavior of the transformer as defined by its basic voltage and current relationships.

FIG. 22.52
Applying PSpice to a step-up transformer:
For comparison purposes, a theoretical solution of the network yields the following:

$$
\begin{aligned}
Z_{i} & =a^{2} Z_{L} \\
& =\left(\frac{1}{4}\right)^{2} \cdot 100 \Omega \\
& =6.25 \Omega
\end{aligned}
$$

and

$$
E_{p}=\frac{(6.25 \Omega)(20 \mathrm{~V})}{6.25 \Omega+10 \Omega}=7.692 \mathrm{~V}
$$

with $\quad E_{s}=\frac{1}{a} E_{p}=\frac{1}{(1 / 4)}(7.692 \mathrm{~V})=4(7.692 \mathrm{~V})=30.77 \mathrm{~V}$
and

$$
V_{L}=E_{S}=30.77 \mathrm{~V}
$$

For the ideal transformer, the secondary voltage is defined by $E_{s}=$ $N_{s} / N_{p}\left(E_{p}\right)$ which is $E_{s}=4 E_{p}$ for the network in Fig. 22.52. The fact that the magnitude of one voltage is controlled by another requires that we use the Voltage-Controlled Yoltage Source (VCVS) source in the ANALOG library. It appears as E in the Parts List and has the format appearing in Fig. 22.53. The sensing voltage is E1, and the controlled

FIG. 22.53
Using PSpice to determine the magnitude and phase angle for the load voltage of the network in Fig. 22.52.
voltage appears across the two terminals of the circular symbol for a voltage source. Double-click on the source symbol to set the GAIN to 4 for this example. Note in Fig. 22.53 that the sensing voltage is the pri: mary voltage of the circuit in Fig. 22.52, and the output voltage is connected directly to the load resistor RL. There is no real problem making the necessary connections because of the format of the \mathbf{E} source.

The next step is to set up the current relationship for the transformer. Since the magnitude of one current is controlled by the magnitude of another current in the same configuration, a Current-Controlled Current Source (CCCS) must be employed. It also appears in the ANALOG library under the Parts List as \mathbf{F} and has the format appearing in Fig. 22.53. Note that both currents have a direction associated with them. For the ideal transformer, $I_{p}=N_{s} / N_{p}\left(I_{s}\right)$ which is $I_{p}=4 I_{s}$ for the network in Fig. 22.52. The gain for the part can be set using the same procedure defined for the \mathbf{E}^{-}source. Since the secondary current is the controlling current, its level must be fed into the F source in the same direction as indicated in the controlled source. When making this connection, be sure to click the wire in location before crossing the wire of the primary circuit and then clicking it again after crossing the wire. If you do this properly, a connection point indicated by a small red dot will not appear. The controlled current $I_{R_{1}}$ can be connected as shown because the connection E1 is only sensing a voltage level, essentially has infinite impedance, and can be looked upon as an open circuit. In other words, the current through R1 will be the same as through the controlled source of \mathbf{F}.

A simulation was set up with AC Sweep and 1 kHz for the Start and End Frequencies. One data point per decade was selected, and the simulation was initiated. After the SCHEMATIC1 screen appeared, the window was exited, and PSpice-View Output File was selected to result in the AC ANALYSIS solution of Fig. 22.54. Note that the voltage is 30.77 V , which is an exact match with the theoretical solution.

```
** Profile; "SCHEMATIC1-PSpice 22-1" %
[C:IICA12\PSpice\PSpice 22-1-PSpiceFilesISCHEMATICIWPSpice 22-1.sim ]
```

$* * * * \quad$ AC ANALYSIS \quad TEMPERRATURE $=27.000$ DEG C

The output file for the analysis indicated in Fig. 22.53.

Multisim

Transformer(Library) Multisim is now used to analyze the same transformer configuration just investigated using PSpice. In Fig. 22.55, obtain the source by first selecting Place Source to open the Select a Component dialog box. Select SIGNAL_VOLTAGE followed by AC VOLTAGE and click OK. For the source, peak values are set, hence the difference in the set value in Fig. 22.55 and the rms multimeter reading. Obtain the transformer by selecting Place Basic-Family-BASIC_ VIRTUAL-TS_VIRTUAL. Then select the turns ratio of 2 to open the TS_VIRTUAL dialog box. Change the Primary-to-Secondary Turns Ratio: to 0.25 for this example.

FIG. 22.55
The rest of the configuration is constructed using techniques described earlier. A simulation results in the meter displays in Fig. 22.55. Changing the rms reading of 20.893 V to a peak value results in 29.54 V which is a close match to that obtained using PSpice.

PROBLEMS

SECTION 22.2 Mutual Inductance

1. For the air-core transformer in Fig. 22.56:
a. Find the value of L_{s} if the mutual inductance M is equal to 40 mH .

FIG. 22.56
Problems 1,2 and 3 .
b. Find the induced voltages e_{p} and e_{s} if the flux linking the primary coil changes at the rate of $0.08 \mathrm{~Wb} / \mathrm{s}$,
c. Find the induced voltages e_{p} and e_{s} if the current i_{p} changes at the rate of $0.3 \mathrm{~A} / \mathrm{ms}$.
2. a. Repeat Problem 1 if k is changed to 1 .
b. Repeat Problem I if k is changed to 0.2 .
c. Compare the results of parts (a) and (b).
3. Repeat Problem 1 for $k=0.3, N_{p}=300$ turns, and $N_{s}=$ 25 turns.

SECTION 22.3 The Iron-Core Transformer

4. For the iron-core transformer ($k=1$) in Fig. 22.57:
a. Find the magnitude of the induced voltage E_{S}
b. Find the maximum flux Φ_{m} :
5. Repeat Problem 4 for $N_{p}=240$ and $N_{s}=30$.
6. Find the applied voltage of an iron-core transformer if the secondary voltage is 240 V , and $N_{p}=60$ with $N_{s}=720$.
7. If the maximum flux passing through the core of Problem 4 is 3.75 mWb , find the frequency of the input voltage.

FIG. 22.57

- Problems 4.5 and 7.

SECTION 22.4 Reflected Impedance and Power

8. For the iron-core transformer in Fig. 22.58:
a. Find the magnitude of the current I_{L} and the voltage V_{L} if $a=1 / 5, I_{p}=2 \mathrm{~A}$, and $Z_{L}=2 \Omega$ resistor.
b. Find the input resistance for the data specified in part (a).

FIG. 22.58
Problems 8 through 12.
9. Find the input impedance for the iron-core transformer of Fig. 22.58 if $a=2, I_{p}=4 \mathrm{~A}$, and $V_{g}=120 \mathrm{~V}$.
10. Find the voltage V_{g} and the current I_{p} if the input impedance of the iron-core transformer in Fig. 22.58 is 4Ω, and $V_{L}=$ 600 V and $a=1 / 4$.
11. If $V_{L}=240 \mathrm{~V}, Z_{L}=20 \Omega$ resistor, $I_{p}=0.05 \mathrm{~A}$, and $N_{s}=$ 50 , find the number of turns in the primary circuit of the iron-core transformer in Fig. 22.58.
12.- a. If $N_{p}=400, N_{s}=1200$, and $V_{g}=100 \mathrm{~V}$, find the magnitude of I_{R} for the iron-core transformer in Fig. 22.58 if $Z_{L}=12 \Omega+j 12 \Omega$.
b. Find the magnitude of the voltage \dot{V}_{L} and the current I_{L} for the conditions of part (a).

SECTION 22.5 impedance Matching, Isolation, and Displacement

13. a. For the circuit in Fig. 22.59, find the transformation ratio required to deliver maximum power to the speaker.
b. Find the maximum power delivered to the speaker.

FIG. 22.59
Problem 13.

SECTION 22.6 Equivalent Circuit (Iron-Core Transformer)

14. For the transformer in Fig. 22.60, determine,
a. the equivaient resistance R_{e}.
b. the equivalent reactance X_{e}.
c. the equivalent circuit reflected to the primary.
d. the primary current for $V_{g}=50 \mathrm{~V} \angle 0^{\circ}$.
e. the load veltage $V_{L)^{*}}$
f. the phasor diagram of the reflected primary circuit.
g. the new load voltage if we assume the transformer to be ideal with a $4: 1$ turns ratio. Compare the result with that of part (e).
15. For the transformer in Fig. 22.60, if the resistive load is replaced by an inductive reactance of 20Ω :
a. Determine the total reflected primary impedance.
b. Calculate the primary current. \mathbf{I}_{p}.
c. Determine the voltage across R_{e} and X_{e}, and find the

- reflected load.
d. Draw the phăsor diagram.

Ideal transformer
FIG. 22.60
Problem 14 through 16, 30, and 31 .
16. Repeat Problem 15 for a capacitive load having a reactance of 20Ω.

SECTION 22.7 Frequency Considerations

17. Discuss in your own words the frequency characteristics of the transformer. Use the applicable equivalent circuit and frequency characteristics appearing in this chapter.

SECTION 22.8 Series Connection of Mutually

Coupled Coils

18. Determine the total inductance of the serics coils in Fig. 22.61.

FIG. 22.61
Problem 18.
19. Determine the total indactance of the series coils in Fig. 22.62.

FIG. 22.62
Problem 19.
20. Determine the total inductance of the series coils in Fig. 22.63.

FIG. 22.63
Problem 20.
21. Write the mesh equations for the network in Fig. 22.64.

FIG. 22.64
Problem 21.

SECTION 22.9 Air-Core Transformer

22. Determine the input impedance to the air-core transformer in Fig. 22.65. Sketch the reflected primary network.

FIG. 22.65
Problems 22 and 32.

SECTION 22.10 Nameplate Data

23. An ideal transformer is rated $10 \mathrm{kVA}, 2400 / 120 \mathrm{~V}, 60 \mathrm{~Hz}$.
a. Find the transformation ratio if the 120 V is the secondary voltage.
b. Find the current rating of the secondary if the 120 V is the secondary voltage.
c. Find the current rating of the primary if the 120 V is the secondary voltage.
d. Repeat parts (a) through (c) if the 2400 V is the secondary voltage.

SECTION 22.11 Types of Transformers

24. Determine the primary and secondary voltages and currents for the autotransformer in Fig. 22.66.

FIG. 22.66
Problem 24.

SECTION 22.12 Tapped and Multiple-Load Transformers

25. For the center-tapped transformer in Fig. 22.42, where $N_{p}=$ $100, N_{s}=25, Z_{L}=R \angle 0^{\circ}=5 \Omega \angle 0^{\circ}$, and $\mathbf{E}_{p}=100 \mathrm{~V} \angle 0^{\circ}$:
a. Determine the load voltage and current.
b. Find the impedance \mathbf{Z}_{i}
c. Calculate the impedance $Z_{1 / 2}$.
26. For the multiple-load transformer in Fig. 22.43, where $N_{1}=$ $90, N_{2}=15, N_{3}=45, \mathbf{Z}_{2}=R_{2} \angle 0^{\circ}=8 \Omega \angle 0^{\circ}, \mathbf{Z}_{3}=$ $R_{L} \angle 0^{\circ}=5 \Omega \angle 0^{\circ}$, and $\mathbf{E}_{i}=60 \mathrm{~V} \angle 0^{\circ}$;
a. Determine the load voltages and currents.
b. Calculate \mathbf{Z}_{1}.
27. For the multiple-load transformer in Fig. 22.44, where $N_{1}=$ $420, N_{2}=40, N_{3}=30, Z_{2}=R_{2} \angle 0^{\circ}=12 \Omega \angle 0^{\circ}, Z_{3}$ 号 $R_{3} \angle 0^{\circ}=10 \Omega \angle 0^{\circ}$, and $\mathrm{E}_{1}=120 \mathrm{~V} \angle 60^{\circ}$:
a. Determine the load voltages and currents.
b. Calculate Z_{1}.

SECTION 22.13 Networks with Magnetically Coupled Coils

28. Write the mesh equations for the network of Fig. 22.67.

FiG. 22.67
Problem 28.
29. Write the mesh equations for the network of Fig. 22.68.

FIG. 22.68
Problem 28.

SECTION 22.15 Computer Analysis

PSpice or Multisim

*30. Generate the schematic for the network in Fig. 22.60, and find the voltage V_{L}.
*31. Develop a technique using PSpice or Multisim to find the input impedance at the source for the network in Fig. 22.60.
*32. Using a transformer from the library, find the load voltage for the network in Fig. 22.65 for an applied votage of $40 \mathrm{~V} \angle 0^{\circ}$.

GLOSSARY

Autotransformer A transformer with one winding common to both the primary and the secondary circuits. A loss in-isolation is balanced by the increase in its kilovolt-ampere rating.
Coefficient of coupling (k) A measure of the magnetic coupling of two coils that ranges from a minimum of 0 to a maximum of 1 .
Dot convention A technique for labeling the effect of the mutual inductance on a net inductance of a network or system.
Leakage flux The flux linking the coil that does not pass through the ferromagnetic path of the magnetic circuit.
Loosely coupled A term applied to two coils that have a low coefficient of coupling.
Multiple-load transformers Transformers having more than a single load connected to the secondary winding or windings.
Mutual inductance The inductance that exists between magnetically coupled coils of the same or different dimensions.
Nameplate data Information such as the kilovolt-ampere rating, voltage transformation ratio, and frequency of application that is of primary importance in choosing the proper transformer for a particular application.
Primary The coil or winding to which the source of electrical energy is hormally applied.
Reflected impedance The impedance appearing at the primary. of a transformer due to a load connected to the secondary. Its magnitude is controlled directly by the transformation ratio.
Secondary The coil or winding to which the load is noimally applied.
Step-down transformer A transformer whose secondary voltage is less than its primary voltage. The transformation ratio a is greater than 1 .
Step-up transformer A transformer whose secondary voltage is greater than its primary voltage. The magnitude of the transformation ratio a is less than 1 .
Tapped transformer A transformer having an additional connection between the terminals of the primary or secondary windings.
Transformation ratio (a), The ratio of primary to secondary turns of a transformer.

Polyphase Systems

Objectives

- Become familiar with the operation of a threephase generator and the magnitude and phase relationship connecting the three phase voltages.

- Be able to calculate the voltages and currents for a three-phase \boldsymbol{Y}-connected generator and γ-connected load.
- Understand the significance of the phase sequence for the generated voltages of a three-phase γ-connected or Δ-connected generator.
- Be able to calculate the voltages and currents for a three-phase Δ-connected generator and Δ-connected load.
- Understand how to calculate the real, reactive, and apparent power to all the elements of a γ - or Δ-connected load and be able to measure the power to the load.

23.1 INTRODUCTION

An ac generator designed to develop a single sinusoidal voltage for each rotation of the shaft (rotor) is referred to as a single-phase ac generator. If the number of coils on the rotor is increased in a speciffed manner, the result is a polyphase ac generator, which develops more than one ac phase voltage per rotation of the rotor. In this chapter, the three-phase system is discussed in detail since it is the system most frequently used for power transmission.

In general, three-phase systems are preferred over singte-phase systems for the transmission of power for many reasons, including the following:

1. Thinner conductors can be used to transmit the same kVA at the same voltage, which reduces the amount of copper, required (typically about 25% less) and in turn reduces construction and maintenance costs.
2. The lighter lines are easier to install, and the supporting structures can be less massive and farther apart.
3. Three-phase equipment and motors have preferred running and starting characteristics compared to single-phase systems because of a more even flow of power to the transducer than can be delivered with a single-phase supply.
4. In general, most larger motors are three phase because they are essentially self-starting and do not réquire a special design or additional starting circuitry.

The frequency generated is determined by the number of poles on the notor (the rotating part of the generator) and the speed with which the shaft is turned. In the United States, the line frequency is 60 Hz , whereas in Europe the chosen standard is 50 Hz . Both frequencies were chosen primarily because they çan be generated by a relatively efficient and stable mechanical design that is sensitive to the size of the generating systems and the demand that must be met during peak periods. On aircraft and ships, the demand levels permit the use of a 400 Hz line frequency.

The three-phase system is used by almơst all commercial electric generators. This does not mean that single-phase and two-phase generating systems are obsolete. Most small emergency generators, such as the gasoline type, are one-phase generating systems. The two-phase system is commonly used in servomechanisms, which are self-correcting control systems capable of detecting and adjusting their own operation. Servomechanisms are used in ships and aircraft to keep them on course automatically, or, in simpler devices such as a thermostatic circuit, to regulate heat output: In many cases, however, where single-phase and two-phase inputs are required, they are supplied by one and two phases of a three-phase generating system rather than generated independently.

The number of phase voltages that can be produced by a polyphase generator is not limited to three: Any number of phases can be obtained by spacing the windings for each phase at the proper angular position around the stator. Some electrical systems operate more efficiently if more than three phases are used. One such system involves the process of rectification, which is used to convert an alternating output to one having an average, or dc, value. The greater the number of phases, the smoother is the dc output of the system.

23.2 THREE-PHASE GENERATOR

The three-phase generator in Fig. 23.1(a) has three induction coils placed 120° apart on the stator, as shown symbolically by Fig. 23.1(b). 'Since the three coils have an equal number of turns, and each coil rotates with the same angular velocity, the voltage induced across each coil has the same peak value, shape, and frequency. As the shaft of the generator is turned by some external means, the induced voltages $e_{A N}, e_{B N}$, and $e_{C N}$ are generated simultaneously, as shown in Fig. 23.2 2 Note the 120° phase shift between waveforms and the similarities in appearance of the three sinusoidal functions.

(a) Three-phase generator; (b) induced voltages of a three-phase generator.

In particular, note that
at any instant of time, the algebraic sum of the three phase voltages
of a three-phase generator is zero.
This is shown at $\omega t=0$ in Fig. 23.2, where it is also evident that when - one induced voltage is zero, the other two are 86.6% of their positive or negative maximums. In addition, when any two are equal in magnitude

FIG. 23.2
Phase voltages of a three-phase generator.
and sign (at $0.5 E_{m}$), the remaining induced voltage has the opposite ${ }^{*}$ polarity and a peak value.

The respective sinusoidal expressions for the induced voltages in Fig. 23.2 are

$$
\begin{align*}
& e_{A N}=E_{m(A N} \sin \omega t \\
& e_{B N}=E_{m(B N} \sin \left(\omega t-120^{\circ}\right) \tag{23.1}\\
& e_{C N}=E_{m(C N} \sin \left(\omega t-240^{\circ}\right)=E_{m(C N)} \sin \left(\omega t+120^{\circ}\right)
\end{align*}
$$

The phasor diagram of the induced voltages is shown in Fig. 23.3, where the effective value of each is determined by

$$
\begin{aligned}
& E_{A N}=0.707 E_{m(A N)} \\
& E_{B N}=0.707 E_{m(B N)} \\
& E_{C N}=0.707 E_{m(C N)}
\end{aligned}
$$

and

$$
\begin{aligned}
& \mathbf{E}_{A N}=E_{A N} \angle 0^{\circ} \\
& \mathbf{E}_{B N}=E_{B N} \angle-120^{\circ} \\
& \mathbf{E}_{C N}=E_{C N} \angle+120^{\circ}
\end{aligned}
$$

By rearranging the phasors as shown in Fig. 23.4 and applying a law of vectors that states that the vector sum of any number of vectors drawn such that the "head" of one is connected to the "tail" of the next and the head of the last vector is connected to the tail of the first is zero, we can conclude that the phasor sum of the phase voltages in a three-phase system is zero. That is,

$$
\begin{equation*}
\mathbf{E}_{A N}+\mathbf{E}_{B N}+\mathbf{E}_{C N}=0 \tag{23.2}
\end{equation*}
$$

23.3 Y-CONNECTED GENERATOR

If the three terminals denoted N in Fig. 23.1(b) are connected together, the generator is referred to as a Y-connected three-phase generator (Fig. 23.5). As indicated in Fig. 23.5, the Y is inverted for ease of notation

FIG. 23.3
Phasor diagram for the phase voltages of a three-phase generator.

FIG. 23.4
Demonstrating that the vector sum of the phase voltages of a three-phase generator is zero.

1

FIG. 23.6
Line and phase voltages of the Y-connected three-phase generator.

FIG. 23.7
Determining a line voltage for a three-phase. generator:

FIG. 23.5
Y-connected generator.
and for clarity. The point at which all the terminals are connected is called the neutral point. If a conductor is not attached from this point to the load, the system is calledna Y-connected, three-phase, three-wire generator. If the-neutral is connected, the system is a Y-connected, three-phase, fourwire generator. The function of the neytral will be discussed in detail when we consider the load circuit.

The three conductors connected from A, B, and C to the load are called lines. For the Y-connected system, it should be obvious from Fig. 23.5 that the line current equals the phase current for each phase; that is,

$$
\begin{equation*}
\mathbf{I}_{L}=\mathbf{I}_{\phi g} \tag{23.3}
\end{equation*}
$$

where ϕ is used to denote a phase quantity, and g is a generator parameter.
The voltage from one line to another is caffed a line voltage. On the phasor diagram (Fig. 23.6), it is the phasor drawn from the end of one phase to another in the counterclockwise direction.

Applying Kirchhoff's voltage law around the indicated loop in Fig. 23.6, we obtain
or

$$
\begin{gathered}
\mathbf{E}_{A B}-\mathbf{E}_{A N}+\mathbf{E}_{B N}=0 \\
\mathbf{E}_{A B}=\mathbf{E}_{A N}-\mathbf{E}_{B N}=\mathbf{E}_{A N}+\mathbf{E}_{N B}
\end{gathered}
$$

The phasor diagram is redrawn to find $\mathbf{E}_{A B}$ as shown in Fig. 23.7. Since each phase voltage, when reversed $\left(\mathbf{E}_{N B}\right)$, bisects the other two, $\alpha=60^{\circ}$. The angle β is 30° since a line drawn from opposite ends of a rhombus divides in half both the angle of origin and the opposite angle. Lines drawn between opposite corners of a rhombus also bisect each other at right angles.
*The length x is
and

$$
x=E_{A N} \cos 30^{\circ}=\frac{\sqrt{3}}{2} E_{A N}
$$

$$
E_{A B}=2 x=(2) \frac{\sqrt{3}}{2} E_{A N}=\sqrt{3} E_{A N}
$$

Noting from the phasor diagram that θ of $\mathbf{E}_{A B}=\beta=30^{\circ}$, we obtain the result

$$
\begin{aligned}
& \mathbf{E}_{A B}=E_{A B} \angle 30^{\circ}=\sqrt{3} E_{A N} \angle 30^{\circ} \\
& \mathbf{E}_{C A}=\sqrt{3} E_{C N} \angle 150^{\circ} \\
& \mathbf{E}_{B C}=\sqrt{3} E_{B N} \angle 270^{\circ}
\end{aligned}
$$

and

In words, the magnitude of the line voltage of a Y -connected generator is $\sqrt{3}$ times the phase voltage:

$$
\begin{equation*}
E_{L}=\sqrt{3} E_{\phi} \tag{23.4}
\end{equation*}
$$

with the phase angle between any line voltage and the nearest phase voltage at 30°.

- In sinusoidal notation,
and

$$
\begin{aligned}
& e_{A B}=\sqrt{2} E_{A B} \sin \left(\omega t+30^{\circ}\right) \\
& e_{C A}=\sqrt{2} E_{C A} \sin \left(\omega t+150^{\circ}\right) \\
& e_{B C}=\sqrt{2} E_{B C} \sin \left(\omega t+270^{\circ}\right)
\end{aligned}
$$

The phasor diagram of the line and phase voltages is shown in Fig. 23.8. If the phasors representing the line voltages in Fig. 23.8(a) are rearranged slightly, they, will form a closed loop [Fig. 23.8(b)]. Therefore, we can conclude that the sum of the line voltages is also zero; that is,

$$
\begin{equation*}
\mathbf{E}_{\lambda B}+\mathbf{E}_{C A}+\mathbf{E}_{B C}+0 \tag{22.5}
\end{equation*}
$$

FIG. 23.8
(a) Phasor diagram of the line and phase voltages of a three-phase generator; (b) demonstrating that the vector sum of the line voltages of a three-phase system is zero.

23.4 PHASE SEQUENCE (Y-CONNECTED GENERATOR)

The phase sequence can be determined by the order in which the phasors representing the phase voltages pass through a fixed point on the phasor diagram if the phasors are rotated in a counterclockwise direction. For example, in Fig. 23.9 the phase sequence is $A B C$. However, since the fixed point can be chosen anywhere on the phasor

FIG. 23.9
Determining the phase sequence from the phase voltages of a three-phase generator:

FIG. 23.10
Determining the phase sequence from the line voltages of a three-phase generator.
diagram, the sequence can also be written as $B C A$ or $C A B$. The phase sequence is quite important in the three-phase distribution of power. In a three-phase motor, for example, if two phase voltages are interchanged, the sequence will change, and the direction of rotation of the motor will be reversed. Other effects will be described when we consider the loaded three-phase system.

The phase sequence can also be described in terms of the line voltages. Drawing the line voltages on a phasor diagram in Fig. 23.10, we are able to determine the phase sequence by again rotating the phasors in the counterclockwise direction. In this case, however, the sequence can be determined by noting the order of the passing first or second subscripts. In the system in Fig. 23.10, for example, the phase sequence of the first subscripts passing point P is $A B C$, and the phase sequence of the second subscripts is $B C A$. But we know that $B C A$ is equivalent to $A B C$, so the sequence is the same for each. Note that the phase sequence is the same as that of the phase voltages described in Fig. 23.9.

- If the sequence is given, the phasor diagram can be drawn by simply picking a reference voltage, placing it on the reference axis, and then drawing the other voltages at the proper angular position. For a sequence of $A C B$, for example, we might choose $E_{A B}$ to be the reference [Fig. 23.11(a)] if we wanted the phasor diagram of the line voltages, or $E_{A N}$ for the phase voltages [Fig, 23.11(b)]. For the sequence indicated, the phasor diagrams would be as in Fig. 23.11. In phasor notation,

FIG. 23.11
Drawing the phasor diagram from the phase sequence.

23.5 Y-CONNECTED GENERATOR WITH A Y-CONNECTED LOAD

Loads connected to three-phase supplies are of two types: the Y and the Δ. If a Y-connected load is connected to a Y-connected generator, the system is symbolically represented by Y-Y. The physical setup of such a system is shown in Fig. 23.12.

FIG: 23.12
Y-conhected generator, with a Y-connected load.
If the load is Balanced, the neutral connection, can be removed without affecting the circrit in any manner; that is, if

$$
\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}_{3}
$$

then I_{N} will be zero. (This will be demonstrated in Example 23.1.) Note that in order to have a balanced load, the phase angle must also be the same for each impedance-a condition that was unnecessary in dc circuits when we considered balanced systems.

In practice, if a factory, for example, had only balanced, three-phase loads, the absence of the neutral would have no effect since, ideally, the system would always be balanced. The cost would therefore be less since the number of required conductors would be reduced. However, lighting and most other electrical equipment use only one of the phase voltages, and even if the loading is designed to be balanced (assit should be), there is never perfect continuous balancing since lights and other electrical equipment are turned on and off, upsetting the balanced condition. The neutral is therefore necessary to carry the resulting current away from the load and back to the Y-connected generator. This is demonstrated when we consider unbalanced Y-connected systems.

We shall now examine the four-wire $Y-Y$-connected system. The çurrent passing through each phase of the generator is the same as its corresponding line current, which in turn for a Y -connected load is equal to the current in the phase of the load to which it is attached:

$$
\begin{equation*}
\mathbf{I}_{\phi g}=\mathbf{I}_{L}=\mathbf{I}_{\phi L} \tag{23.6}
\end{equation*}
$$

- For a balanced or an unbalanced load, since the generator and load have a common neutral point, then

$$
\begin{equation*}
\mathbf{V}_{\phi}=\mathbf{E}_{\phi} \tag{23.7}
\end{equation*}
$$

In addition, since $\mathbf{I}_{\phi L}=\mathbf{V}_{\phi} / \mathbf{Z}_{\phi}$, the magnitude of the current in each phase is equal for a balanced load and unequal for an unbalanced load. Recall that for the Y -connected generator, the magnitude of the line voltage is equal to $\sqrt{3}$ times the phase voltage. This same relationship can be applied to a balanced or an unbalanced four-wire Y-connected load:

$$
\begin{equation*}
E_{L}=\sqrt{3} V_{\phi} \tag{23.8}
\end{equation*}
$$

For a voltage drop across a load element, the first subscript refers to that terminal through which the current enters the load element, and the second subscript refers to the terminal from which the current leaves. In other words, the first subscript is, by definition, positive with respect to the second for a voltage drop. Note Fig. 23.13, in which the standard double subscripts for a source of voltage and a voltage drop are indicated.

EXAMPLE 23.1 The phase sequence of the Y-connected generator in Fig. 23.13 is $A B C$.
a. Find the phase angles θ_{2} and θ_{3}.
b. Find the magnitude of the line voltages.
c. Find the line currents.
d. Verify that, since the load is balanced, $\mathbf{I}_{N}=0$.

FIG. 23.13
Example 23.1 .

Solutions:

a. For an $A B C$ phase sequence,

$$
\theta_{2}=-\mathbf{1 2 0} 0^{\circ} \quad \text { and } \quad \theta_{3}=+\mathbf{1 2} 0^{\circ}
$$

b. $\begin{aligned} & E_{L}=\sqrt{3} E_{\phi}=(1.73)(120 \mathrm{~V})=208 \mathrm{~V} . \text { Therefore, } \\ & E_{A B}=E_{B C}=E_{C A}=\mathbf{2 0 8} \mathbf{V}\end{aligned}$
c. $\mathbf{V}_{\phi}=\mathbf{E}_{\phi}$. Therefore,

$$
\begin{aligned}
& \mathbf{V}_{a n}=\mathbf{E}_{A N} \quad \mathbf{V}_{b n}=\mathbf{E}_{B N} \quad \mathbf{V}_{c n}=\mathbf{E}_{C N} \\
& \mathbf{I}_{\phi L}=\mathbf{I}_{a n}=\frac{\mathbf{V}_{a n}}{\mathbf{Z}_{a n}}=\frac{12 Q \mathrm{~V} \angle 0^{\circ}}{3 \Omega+j 4 \Omega}=\frac{120 \mathrm{~V} \angle 0^{\circ}}{5 \Omega \angle 53.13^{\circ}} \\
&= 24 \mathrm{~A} \angle-53.13^{\circ}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{I}_{b n}=\frac{\mathbf{V}_{b n}}{\mathbf{Z}_{b n}}=\frac{120 \mathrm{~V} \angle-120^{\circ}}{5 \Omega \angle 53.13^{\circ}}=24 \mathrm{~A} \angle-173.13^{\circ} \\
& \mathbf{I}_{c n}=\frac{\mathbf{V}_{c n}}{\mathbf{Z}_{c n}}=\frac{120 \mathrm{~V} \angle+120^{\circ}}{5 \Omega \angle 53.13^{\circ}}=24 \mathrm{~A} \angle 66.87^{\circ}
\end{aligned}
$$

and, since $\mathrm{I}_{L}=\mathrm{I}_{\phi L}$,

$$
\begin{aligned}
& \mathbf{I}_{A a}=\mathbf{I}_{a n}=24 \mathrm{~A} \angle-53.13^{\circ} \\
& \mathbf{I}_{B b}=\mathbf{I}_{b n}=24 \mathrm{~A} \angle-173.13^{\circ} \\
& \mathbf{I}_{C c}=\mathbf{I}_{c n}=24 \mathrm{~A} \angle 66.87^{\circ}
\end{aligned}
$$

d. Applying Kirchhoff's current law, we have

$$
\mathbf{I}_{N}=\mathbf{I}_{A a}+\mathbf{I}_{B b}+\mathbf{I}_{C c}{ }_{c}^{\gamma}
$$

In rectangular form,

$$
\begin{aligned}
& \mathrm{I}_{A a}=24 \mathrm{~A} \angle-53.13^{\circ}=14.40 \mathrm{~A}-j 19.20 \mathrm{~A} \\
& \mathrm{I}_{B b}=24 \mathrm{~A} \angle-173.13^{\circ}=-22.83 \mathrm{~A}-j 2.87 \mathrm{~A} \\
& \mathbf{I}_{C_{c}}=24 \mathrm{~A} \angle 66.87^{\circ}=9.43 \mathrm{~A}+j 22.07 \mathrm{~A} \\
& \Sigma\left(\mathbf{I}_{A a}+\mathbf{I}_{B b}+\mathbf{I}_{C c}\right)=0+j 0
\end{aligned}
$$

and I_{N} is in fact equals to zero, as required for a balanced load.

$23.6 \mathrm{Y}-\triangle$ SYSTEM

There is no neutral connection for the $\mathrm{Y}-\Delta$ system in Fig. 23.14. Any variation in the impedance of a phase that produces an unbalanced system simply varies the line and phase currents of the system.

For a balanced load,

$$
\begin{equation*}
\mathbf{Z}_{1}=\mathbf{Z}_{2}=\mathbf{Z}_{3} \tag{23.9}
\end{equation*}
$$

The voltage across each phase of the load is equal to the line voltage of the generator for a balanced or an unbalanced load:

$$
\begin{equation*}
\mathbf{V}_{\phi}=\mathbf{E}_{L} \tag{23.10}
\end{equation*}
$$

FIG. 23.14
Y-connected generator with a Δ-connected load.

The relationship between the line currents and phase currents of a balanced Δ load can be found using an approach very similar to that used in Section 23.3 to find the relationship between the line voltages and phase voltages of a Y-connected generator. For this case, however, Kirchhoff's current law is used instead of Kirchhoff's voltage law.

The result is

$$
\begin{equation*}
I_{L}=\sqrt{3} I_{\phi} \tag{23.11}
\end{equation*}
$$

and the phase angle between a line current and the nearest phase current is 30°. A more detailed discussion of this relationship between the line and phase currents of a Δ-connectef system can be found in Section 23.7.

For a balanced load, the line currents will be equal in magnitude, as will the phase currents.

EXAMPLE 23.2 For the three-phase system in Fig. 23:15:
a. Find the phase angles θ_{2} and θ_{3}.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

3 -phase, 3 -wire, Y -connected generator Phase sequence: $A B C$

FIG. 23.15
Example 23.2.

Solutions:

a. For an $A B C$ sequence,

$$
\theta_{2}=-120^{\circ} \quad \text { and } \quad \theta_{3}=+120^{\circ}
$$

b. $\mathbf{V}_{\phi}=\mathbf{E}_{L}$. Therefore,

$$
\mathbf{V}_{a b}=\mathbf{E}_{A B} \quad \mathbf{V}_{c a}=\mathbf{E}_{C A} . \quad \mathbf{V}_{b c}=\mathbf{E}_{B C}
$$

The phase currents are

$$
\begin{aligned}
& \mathbf{I}_{a b}=\frac{\mathbf{V}_{a b}}{\mathbf{Z}_{a b}}=\frac{150 \mathrm{~V} \angle 0^{\circ}}{6 \Omega+j 8 \Omega}=\frac{150 \mathrm{~V} \angle 0^{\circ}}{10 \Omega \angle 53.13^{\circ}}=15 \mathrm{~A} \angle-53.13^{\circ} \\
& \mathrm{I}_{b c}=\frac{\mathrm{V}_{b c}}{\mathbf{Z}_{b c}}=\frac{150 \mathrm{~V} \angle-120^{\circ}}{10 \Omega \angle 53.13^{\circ}}=15 \mathrm{~A} \angle-173.13^{\circ} \\
& \mathrm{I}_{c a}=\frac{\mathrm{V}_{c a}}{\mathbf{Z}_{c a}}=\frac{150 \mathrm{~V} \angle+120^{\circ}}{10 \Omega \angle 53.13^{\circ}}=15 \mathrm{~A} \angle 66.87^{\circ}
\end{aligned}
$$

cr $I_{L}=\sqrt{3} I_{\phi}=(1.73)(15 \mathrm{~A})=25.95 \mathrm{~A}$. Therefore,

$$
I_{A a}=I_{B b}=I_{C c}=25.95 \mathrm{~A}
$$

23.7Δ-CONNECTED GENERATOR

If we rearrange the coils of the generator in-Fig. 23.16(a) as shawn in Fig. 23.16(b), the system is referred to as a three-phase, three-wire, Δ connected ac generator. In this system, the phase and line voltages are equivalent and equal to the voltage induced across each coil of the generator; that is,

$$
\left.\begin{array}{l}
\mathbf{E}_{A B}=\mathbf{E}_{A N} \text { and } e_{A N}=\sqrt{2} E_{A N} \sin \omega t \\
\mathbf{E}_{B C}=\mathbf{E}_{B N} \text { and } e_{B N}=\sqrt{2} E_{B N} \sin \left(\omega t-120^{\circ}\right) \\
\mathbf{E}_{C A}=\mathbf{E}_{C N} \text { and } e_{C N}=\sqrt{2} E_{C N} \sin \left(\omega t+120^{\circ}\right)
\end{array}\right\} \begin{aligned}
& \text { Phase } \\
& \text { sequence } \\
& A B C
\end{aligned}
$$

or

$$
\begin{equation*}
\mathbf{E}_{L}=\mathbf{E}_{\phi g} \tag{23.12}
\end{equation*}
$$

FIG. 23.16
Δ-connected generator.

Note that only one voltage (magnitude) is available instead of the two available in the Y -connected system.

Unlike the line current for the Y-connected generator, the line current - for the Δ-connected system is not equal to the phase current. The relationship between the two can be found by applying Kirchhoff's current law at one of the nodes and solving for the line current in terms of the phase currents; that is, at node A,
or

$$
\begin{aligned}
& \mathbf{I}_{B A}=\mathbf{I}_{A a}+\mathbf{I}_{A C} \\
& \mathbf{I}_{A a}=\mathbf{I}_{B A}-\mathbf{I}_{A C}=\mathbf{I}_{B A}+\mathbf{I}_{C A}
\end{aligned}
$$

The phasor diagram is shown in Fig. 23.17 for a balanced load.
Using the same procedure to find the line current'as was used to find the line voltage of a Y -connected generator produces the following:

$$
\begin{aligned}
& I_{A a}=\sqrt{3} I_{B A} \angle-30^{\circ} \\
& I_{B b}=\sqrt{3} I_{C B} \angle-150^{\circ} \\
& I_{C C}=\sqrt{3} I_{A C} \angle 90^{\circ}
\end{aligned}
$$

In general;

$$
\begin{equation*}
I_{L}=\sqrt{3} I_{\phi g} \tag{23.13}
\end{equation*}
$$

FiG. 23.17
Determining a line current from the phase currents of a Δ-connected, three-phase generator.

FIG. 23.18
The phasor diagram of the currents of a three-phase, Δ-connected generator.

FIG. 23.19
Determining the phase sequence for a Δ-connected, three-phase generator.
with the phase angle between a line current and the nearest phase current at 30°. The phasor diagram of the currents is shown in Fig. 23.18.

Just as for the voltages of a Y-connected generator, the phasor sum of the line currents or phase currents for Δ-connected systems with balanced loads is zero.

23.8 PHASE SEQUENCE (\triangle-CONNECTED GENERATOR)

Even though the line and phase voltages of a Δ-connected system are the same, it is standard practice to describe the phase sequence in terms of the line voltages. The method used is the same as that described for the line voltages of the Y-connected generator. For example, the phasor diagram of the line voltages for a phase sequence $A B C$ is shown in Fig. 23.19. In drawing such a diagram, one must take care to have the sequence of the first and second subscripts the same. In phasor notation,

$$
\begin{aligned}
& \mathbf{E}_{A B}^{\prime}=E_{A B} \angle 0^{\circ} \\
& \mathbf{E}_{B C}=E_{B C} \angle-120^{\circ} \\
& \mathbf{E}_{C A}=E_{C A} \angle 120^{\circ}
\end{aligned}
$$

$23.9 \Delta-\Delta, \Delta-Y$ THREE-PHASE SYSTEMS

The basic equations necessary to analyze either of the two systems ($\Delta-\Delta$, $\Delta-Y$) have been presented in this chapter. Following are two descriptive examples, one with a Δ-connected load, and one with a Y-connected load.

EXAMPLE 23.3 For the $\Delta-\Delta$ system shown in Fig. 23.20;
a. Find the phase angles θ_{2} and θ_{3} for the specified phase sequence.
b. Find the current in each phase of the load.
c. Find the magnitude of the line currents.

3-phase, 3-wire Δ-connected ac generator Phase-sequence: $A C B$

FIG. 23.20
Example 23.3: $\Delta-\Delta$ system.

Solutions:

a. For an $A C B$ phase sequence,

$$
\theta_{2}=120^{\circ} \text { and } \theta_{3}=-120^{\circ}
$$

b. $\mathbf{V}_{\phi}=\mathrm{E}_{L}$. Therefore,

$$
\mathbf{V}_{a b}=\mathbf{E}_{A B} \quad \mathbf{V}_{c a}=\mathbf{E}_{C A} \quad \mathbf{V}_{b c}=\mathbf{E}_{B C}
$$

The phase currents are

$$
\begin{aligned}
\mathbf{I}_{a b} & =\frac{\mathbf{V}_{a b}}{\mathbf{Z}_{a b}}=\frac{120 \mathrm{~V} \angle 0^{\circ}}{\frac{\left(5 \Omega \angle 0^{\circ}\right)\left(5 \Omega \angle-90^{\circ}\right)}{5 \Omega-j 5 \Omega}}=\frac{120 \mathrm{~V} \angle 0^{\circ}}{\frac{25 \Omega \angle-90^{\circ}}{7.071 \angle-45^{\circ}}} \\
& =\frac{120 \mathrm{~V} \angle 0^{\circ}}{3.54 \Omega \angle-45^{\circ}}=33.9 \mathrm{~A} \angle 45^{\circ} \\
\mathbf{I}_{b c} & =\frac{\mathbf{V}_{b c}^{\circ}}{\mathbf{Z}_{b c}}=\frac{120 \mathrm{~V} \angle 120^{\circ}}{3.54 \Omega \angle-45^{\circ}}=\mathbf{3 3 . 9 \mathrm { A } \angle 1 6 5 ^ { \circ }} \\
\mathbf{I}_{c a} & =\frac{\mathbf{V}_{c a}}{\mathbf{Z}_{c a}}=\frac{120 \mathrm{~V} \angle-120^{\circ}}{3.54 \Omega \angle-45^{\circ}}=\mathbf{3 3 . 9 \mathrm { A } \angle - 7 5 ^ { \circ }}
\end{aligned}
$$

c. $I_{L}=\sqrt{3} I_{\phi}=(1.73)(34 \mathrm{~A})=58.82 \mathrm{~A}$. Therefore,

$$
I_{A a}^{*}=I_{B b}=I_{C c}=58.82 \mathrm{~A}
$$

EXAMPLE 23.4 For the Δ-Y system shown in Fig. 23.21:
a. Find the voltage across each phase of the load.
b. Find the magnitude of the line voltages.

Solutions:

a. $\mathbf{I}_{\phi L}=\mathbf{I}_{L}$. Therefore,

$$
\begin{aligned}
& \mathbf{I}_{a n}=\mathbf{I}_{A a}=2 \mathrm{~A} \angle 0^{\circ} \\
& \mathbf{I}_{b n}=\mathbf{I}_{B b}=2 \mathrm{~A} \angle-120^{\circ} \\
& \mathbf{I}_{c n}=\mathbf{I}_{C c}=2 \mathrm{~A} \angle 120^{\circ}
\end{aligned}
$$

FIG. 23.21
Example 23.4: $\Delta-Y$ system.

The phase voltages are
$\mathbf{V}_{a n}=\mathbf{I}_{a n} \mathbf{Z}_{a n}=\left(2 \mathrm{~A} \angle 0^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)=\mathbf{2 0 V} \angle-53.13^{\circ}$
$V_{b n}=I_{b n} Z_{b n}=\left(2 \mathrm{~A} \angle-120^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)=20 \mathrm{~V} \angle-173.13^{\circ}$
$\mathbf{V}_{c n}=\mathrm{I}_{c n} \mathrm{Z}_{c n}=\left(2 \mathrm{~A} \angle 120^{\circ}\right)\left(10 \Omega \angle-53.13^{\circ}\right)=\mathbf{2 0} \mathrm{V} \angle \mathbf{6 6 . 8 7}{ }^{\circ}$
b. $E_{L}=\sqrt{3} V_{\phi}=(1.73)(20 \mathrm{~V})=34.6 \mathrm{~V}$. Therefore,

$$
E_{B A}=E_{C B}=E_{A C}=34.6 \mathrm{~V}
$$

23.10 POWER

Y-Connected Balanced Load

Please refer to Fig. 23.22 for the following discussion.

FIG. 23.22
Y-connected balanced load.

Average Power The average power delivered to each phase can be determined by

$$
\begin{equation*}
P_{\phi}=V_{\phi} I_{\phi} \cos \theta_{I_{\phi}}^{V_{\phi}}=I_{\phi}^{2} R_{\phi}=\frac{V_{R}^{2}}{R_{\phi}} \tag{watts,W}
\end{equation*}
$$

where $\theta_{I_{\phi}}^{V_{\phi}}$ indicates that θ is the phase angle between V_{ϕ} and I_{ϕ}.
The total power delivered can be determined by Eq. (23.15) or Eq. (23.16):

$$
\begin{equation*}
P_{T}=3 P_{\phi} \quad \text { (W) } \tag{23.15}
\end{equation*}
$$

or, since

$$
V_{\phi}=\frac{E_{L}}{\sqrt{3}} \quad \text { and } \quad I_{\phi}=I_{L}
$$

then ${ }^{-}$

$$
P_{T}=3 \frac{E_{L}}{\sqrt{3}} I_{L} \cos \theta_{I_{\phi}}^{V_{\phi}}
$$

But $\quad\left(\frac{3}{\sqrt{3}}\right)(1)=\left(\frac{3}{\sqrt{3}}\right)\left(\frac{\sqrt{3}}{\sqrt{3}}\right)=\frac{3 \sqrt{3}}{3}=\sqrt{3}$
Therefore,

$$
P_{T}=\sqrt{3} E_{L} I_{L} \cos \theta_{\phi}^{V}=3 I_{L}^{2} R_{\phi} \quad(\mathrm{W})
$$

Reactive Power The reactive power of each phase (in volt-amperes reactive) is

$$
\begin{equation*}
Q_{\phi}=V_{\phi} I_{\phi} \sin \theta_{l_{\phi}}^{V_{\phi}}=I_{\phi}^{2} X_{\phi}=\frac{V_{\phi}^{2}}{X_{\phi}} \quad \text { (VAR) } \tag{23.17}
\end{equation*}
$$

The total reactive power of the load is

$$
\begin{equation*}
Q_{T}=3 Q_{\phi} \quad \text { (VAR) } \tag{23.18}
\end{equation*}
$$

or, proceeding in the same manner as above, we have

$$
\begin{equation*}
Q_{T}=\sqrt{3} E_{L} I_{L} \sin \theta_{I_{\phi}}^{V_{\phi}}=3 I_{L}^{2} X_{\phi} \quad \text { (VAR) } \tag{23.19}
\end{equation*}
$$

Apparent Power The apparent power of each phase is

$$
\begin{equation*}
S_{\phi}=V_{\phi} I_{\phi} \quad \text { (VA) } \tag{23.20}
\end{equation*}
$$

The total apparent power of the load is

$$
\begin{equation*}
S_{T}=3 S_{\phi} \quad \text { (VA) } \tag{23.21}
\end{equation*}
$$

or, as before,

$$
\begin{equation*}
S_{T}=\sqrt{3} E_{L} I_{L} \quad \text { (VA) } \tag{23.22}
\end{equation*}
$$

Powér Factor The power factor of the system is given by

$$
\begin{equation*}
F_{p}=\frac{P_{T}}{S_{T}}=\cos \theta_{I_{\phi}^{V_{\phi}}} \quad \text { (leading or lagging) } \tag{23.23}
\end{equation*}
$$

EXAMPLE 23.5 For the Y-connected load in Fig. 23.23:

FIG. 23.23
Example 23.5.
a. Find the average power to each phase and the total load.
b. Determine the reactive power to each phase and the total reactive power.
c. Find the apparent power to each phase and the total apparent power.
d. Find the power factor of the load.

Solutions:

a. The average power is

$$
\begin{aligned}
P_{\phi} & =V_{\phi} I_{\phi} \cos \theta_{I_{\phi}^{\phi}}=(100 \mathrm{~V})(20 \mathrm{~A}) \cos 53.13^{\circ}=(2000)(0.6) \\
& =1200 \mathrm{~W} \\
P_{\phi} & =I_{\phi}^{2} R_{\phi}=(20 \mathrm{~A})^{2}(3 \Omega)=(400)(3)=1200 \mathrm{~W} \\
P_{\phi} & =\frac{V_{R}^{2}}{R_{\phi}}=\frac{(60 \mathrm{~V})^{2}}{3 \Omega}=\frac{3600}{3}=1200 \mathrm{~W} \\
P_{T} & =3 P_{\phi}=(3)(1200 \mathrm{~W})=\mathbf{3 6 0 0} \mathrm{W}
\end{aligned}
$$

or

$$
P_{T}=\sqrt{3} E_{L} I_{L} \cos \theta_{I_{\phi}^{V_{\phi}}}=(1.732)(173.2 \mathrm{~V})(20 \mathrm{~A})(0.6)=3600 \mathrm{~W}
$$

b. The reactive powet is

$$
\begin{aligned}
Q_{\phi} & =V_{\phi} I_{\phi} \sin \theta_{Y_{\phi}}=(100 \mathrm{~V})(20 \mathrm{~A}) \sin 53.13^{\circ}=(2000)(0.8) \\
& =1600 \mathrm{VAR} \\
\text { or } \quad & Q_{\phi}=I_{\phi}^{2} X_{\phi}=(20 \mathrm{~A})^{2}(4 \Omega)=(400)(4)=1600 \mathrm{VAR} \\
& Q_{T}=3 Q_{\phi}=(3)(1600 \mathrm{VAR})=\mathbf{4 8 0 0} \mathrm{VAR}
\end{aligned}
$$

$Q_{T}=\sqrt{3} E_{L} l_{L} \sin \theta_{I_{\phi}^{V_{\phi}}}=(1.732)(173.2 \mathrm{~V})(20 \mathrm{~A})(0.8)=\mathbf{4 8 0 0} \mathbf{V A R}$
c. The apparent power is

$$
\begin{aligned}
& S_{\phi}=V_{\phi} I_{\phi}=(100 \mathrm{~V})(20 \mathrm{~A})=2000 \mathrm{VA} \\
& S_{T}=3 S_{\phi}=(3)(2000 \mathrm{VA})=6000 \mathrm{VA}
\end{aligned}
$$

or $S_{T}=\sqrt{3} E_{L} I_{L}=(1.732)(173.2 \mathrm{~V})(20 \mathrm{~A})=6000 \mathrm{VA}$
d. The power factor is

$$
F_{p}=\frac{P_{T}}{S_{T}}=\frac{3600 \mathrm{~W}}{6000 . \mathrm{VA}}=0.6 \text { lagging }
$$

Δ-Connected Balanced Load

Please refer to Fig. 23.24 for the following discussion.

FIG. 23.24
Δ-connected balanced load.

Average Power

$$
\begin{gather*}
P_{\phi}=V_{\phi} I_{\phi} \cos \theta_{I_{\phi}}^{V_{\phi}}=I_{\phi}^{2} R_{\phi}=\frac{V_{R}^{2}}{R_{\phi}} \tag{23.24}\\
P_{T}=3 P_{\phi} \tag{23.25}
\end{gather*}
$$

Reactive Power

$$
\begin{array}{r}
Q_{\phi}=V_{\phi} I_{\phi} \sin \theta_{I_{\phi}}^{V_{\phi}}=I_{\phi}^{2} X_{\phi}=\frac{V_{\phi}^{2}}{X_{\phi}} \tag{VAR}\\
Q_{T}=3 Q_{\phi} \quad(\mathrm{VAR})
\end{array}
$$

Apparent Power

$$
\begin{equation*}
S_{\phi}=V_{\phi} f_{\phi} \quad \text { (VA) } \tag{23.28}
\end{equation*}
$$

$$
\begin{equation*}
S_{T}=3 S_{\phi}=\sqrt{ } 3 E_{L} I_{L} \tag{23.29}
\end{equation*}
$$

Power Factor

$$
\begin{equation*}
F_{p}=\frac{P_{T}}{S_{T}} \tag{23.30}
\end{equation*}
$$

EXAMPLE 23.6 For the Δ-Y connected load in Fig. 23.25, find the total average, reactive, and apparent power. In addition, find the power factor of the load.

FIG. 23.25
Example 23.6.

Solution: Consider the Δ and Y separately.
For the Δ :

$$
\begin{aligned}
Z_{\Delta} & =6 \Omega-j 8 \Omega=10 \Omega \angle-53.13^{\circ} \\
I_{\phi} & =\frac{E_{L}}{Z_{\Delta}}=\frac{200 \mathrm{~V}}{10 \Omega}=20 \mathrm{~A} \\
P_{T_{\Delta}} & =3 I_{\phi}^{2} R_{\phi}=(3)(20 \mathrm{~A})^{2}(6 \Omega)=7200 \mathrm{~W} \\
Q_{T_{\Delta}} & =3 I_{\phi}^{2} X_{\phi}=(3)(20 \mathrm{~A})^{2}(8 \Omega)=9600 \mathrm{VAR}(\mathrm{C}) . \\
S_{T_{4}} & =3 V_{\phi} I_{\phi}=(3)(200 \mathrm{~V})(20 \mathrm{~A})=\mathbf{1 2 , 0 0 0} \mathrm{VA}
\end{aligned}
$$

For the Y :

$$
\begin{aligned}
Z_{Y} & =4 \Omega+j 3 \Omega=5 \Omega \angle 36.87^{\circ} \\
I_{\phi} & =\frac{E_{L} / \sqrt{3}}{Z_{\mathrm{Y}}}=\frac{200 \mathrm{~V} / \sqrt{3}}{5 \Omega}=\frac{116 \mathrm{~V}}{5 \Omega}=23.12 \mathrm{~A} \\
P_{T_{\mathrm{Y}}} & =3 I_{\phi}^{2} R_{\phi}=(3)(23.12 \mathrm{~A})^{2}(4 \Omega)=6414.41 \mathrm{~W} \\
Q_{T_{\mathrm{Y}}} & =3 I_{\phi}^{2} X_{\phi}=(3)(23.12 \mathrm{~A})^{2}(3 \Omega)=4810.81 \mathrm{VAR}(L) \\
S_{T_{\mathrm{Y}}} & =3 V_{\phi} I_{\phi}=(3)(116 \mathrm{~V})(23.12 \mathrm{~A})=8045,76 \mathrm{VA}
\end{aligned}
$$

For the total load:

$$
\begin{aligned}
B_{T} & =P_{T_{\mathrm{A}}}+P_{T_{\mathrm{Y}}}=7200 \mathrm{~W}+6414.41 \mathrm{~W}=13,614.41 \mathrm{~W} \\
Q_{T} & =Q_{T_{\mathrm{A}}}-Q_{T_{\mathrm{Y}}}=9600 \mathrm{VAR}(C)-4810.81 \mathrm{VAR}(I) \\
& =4789.19 \mathrm{VAR}(C) \\
S_{T} & =\sqrt{P_{T}^{2}+Q_{T}^{2}}=\sqrt{(13,614.41 \mathrm{~W})^{2}+(4789.19 \mathrm{VAR})^{2}} \\
& =14,432.2 \mathrm{VA} \\
F_{P} & =\frac{P_{\dot{T}}}{S_{T}}=\frac{13,614.41 \mathrm{~W}}{14,432.20 \mathrm{VA}}=0.943 \text { leading }
\end{aligned}
$$

EXAMPLE 23.7 Each transmission line of the three-wire, three-phase system in Fig. 23.26 has an impedance of $15 \Omega+j 20 \Omega$. The system delivers a total power of 160 kW at $12,000 \mathrm{~V}$ to a balanced three-phase load with a lagging power factor of 0,86 .

FIG. 23.26
Example 23.7.
a. Determine the magnitude of the line voltage $E_{A B}$ of the generator.
b. Find the power factor of the total load applied to the generator:
c. What is the efficiency of the system?

Solutions:

a. $V_{\phi}($ load $)=\frac{V_{L}}{\sqrt{3}}=\frac{12,000 \mathrm{~V}}{1.73}=6936.42 \mathrm{~V}$
P_{T} (load) $=3 V_{\phi} I_{\phi} \cos \theta$
and

$$
\begin{aligned}
I_{\phi} & =\frac{P_{T}}{3 V_{\phi} \cos \theta}=\frac{160,000 \mathrm{~W}}{3(6936.42 \mathrm{~V})(0.86)} \\
& =8.94 \mathrm{~A}
\end{aligned}
$$

Since $\theta=\cos ^{-1} 0.86=30.68^{\circ}$, assigning \mathbf{V}_{ϕ} an angle of 0° or $V_{\phi}=$ $V_{\phi} \angle 0^{\circ}$, a lagging power factor results in

$$
\mathbf{I}_{\phi}=8.94 \mathrm{~A} \angle-30.68^{\circ}
$$

For each ,phase, the system will appear as shown in Fig. 23.27, where

$$
\mathbf{E}_{A N}-\mathbf{I}_{\phi} \mathbf{Z}_{\text {line }}-\mathbf{v}_{\phi}=0
$$

FIG. 23.27
The loading on each phase of the system in Fig. 23.26.
or

$$
\begin{aligned}
\mathbf{E}_{A N} & =\mathbf{I}_{\phi} \mathbf{Z}_{\text {line }}+\mathbf{V}_{\phi} \\
& =\left(8.94 \mathrm{~A} \angle-30.68^{\circ}\right)\left(25 \Omega \angle 53.13^{\circ}\right)+6936.42 \mathrm{~V} \angle 0^{\circ} \\
& =223.5 \mathrm{~V} \angle 22.45^{\circ}+6936.42 \mathrm{~V} \angle 0^{\circ} \\
& =206.56 \mathrm{~V}+j 85.35 \mathrm{~V}+6936.42 \mathrm{~V} \\
& =7142.98 \mathrm{~V}+j 85.35 \mathrm{~V} \\
& =7143.5 \mathrm{~V} \angle 0.68^{\circ}
\end{aligned}
$$

Then

$$
\begin{aligned}
E_{A B} & =\sqrt{3} E_{\phi g}=(1.73)(7143.5 \mathrm{~V}) \\
& =12,358.26 \mathrm{~V}
\end{aligned}
$$

b. $P_{T}=P_{\text {load }}+P_{\text {lines }}$

$$
\begin{aligned}
& =160 \mathrm{~kW}+3\left(I_{L}\right)^{2} R_{\text {line }} \\
& =160 \mathrm{~kW}+3(8.94 \mathrm{~A})^{2} 15 \Omega^{\prime} \\
& =160,000 \mathrm{~W}+3596.55 \mathrm{~W} \\
& =163,596.55 \mathrm{~W}
\end{aligned}
$$

and

$$
P_{T}=\sqrt{3} V_{L} I_{L} \cos \theta_{T}
$$

or $\cos \theta_{T}=\frac{P_{T}}{\sqrt{3} V_{L} L_{L}}=\frac{163,596.55 \mathrm{~W}}{(1.73)(12,358.26 \mathrm{~V})(8,94 \mathrm{~A})}$
and

$$
F_{p}=0.856<0.86 \text { of load }
$$

c. $\eta=\frac{P_{o}}{P_{i}}=\frac{P_{o}}{P_{o}+P_{\text {losses }}}=\frac{160 \mathrm{~kW}}{160 \mathrm{~kW}+3596.55 \mathrm{~W}}=0.978$

$$
=97.8 \%
$$

23.11 THREE-WATTMETER METHOD

The power delivered to a balanced or an unbalanced four-wire, Y-connected load can be found by the three-watfmeter method, that is, by using three wattmeters in the manner shown in Fig. 23:28. Each wattmeter measures the power delivered to each phase. The potential coil of each wattmeter is connected parallel with the load, while the current coil is in series with the load. The total average power of the system can be found by summing the three wattmeter readings; that is,

$$
\begin{equation*}
P_{T_{Y}}=P_{1}+P_{2}+P_{3} \tag{23.31}
\end{equation*}
$$

For the load (balanced or unbalanced), the wattmeters are connected as shown in Fig. 23.29. The total power is again the sum of the three wattmeter readings:

$$
\begin{equation*}
P_{T_{\mathrm{t}}}=P_{1}+P_{2}+P_{3} \tag{23.32}
\end{equation*}
$$

FIG. 23.28
Three-wattmeter method for Y-connected load.

FIG. 23.29
Three-watmeter method for a Δ-connected load.

If in either of the çases just described the load is balanced, the power delivered to each phase will be the same. The total power is then just three times any one wattmeter reading.

23.12 TWO-WATTMETER METHOD

The power delivered to a three-phase, three-wire, Δ - or Y-connected, balanced or unbalanced local can be found using only two wattmeters if the proper connection is employed and if the watmeter readings are interpreted properly. The basic connections of this two-wattmeter method are shown in Fig. 23.30: One end of each potential coil is connected to the same line. The current coils are then placed in the remaining lines.

The connection shown in Fig. 23.31 also satisfies the requirements. A third hookupwis also possible, but this is left to the reader as an exercise.

The total power delivered to the load is the algebraic sum of the two wattmeter readings. For a balanced load, we now consider two methods of determining whether the total power is the sum or the difference of the two wattmeter readings. The first method to be described requires

FIG. 23.30
Two-wattmeter method for a Δ - or a Y-connected load.

FIG. 23.31
Alternative hopkup for the two-waltmeter method.

FIG. 23.32
Determining whether the readings obtained using the two-wattmeter method should be added or subtracted.
that we know or are able to find the power factor (leading or lagging) of any one phase of the load. When this information has been obtained, it can be applied directly to the curve in Fig. 23.32.

The curve in Fig. 23.32 is a plot of the power factor of the load (phase) versus the ratio P_{l} / P_{h}, where P_{l} and P_{h} are the magnitudes of the lower- and higher-reading wattmeters, respectively. Note that for a power factor (leading or lagging) greater than 0.5 , the ratio has a positive value. This indicates that both wattmeters are reading positive, and the total power is the sum of the two wattmeter readings; that is, $P_{T}=P_{l}+P_{h}$. For a power factor less than 0.5 (leading or lagging), the ratio has a negative value. This indicates that the smaller-reading wattmeter is reading negative, and the total power is the difference of the two wattmeter readings; that is, $P_{T}=P_{h}-P_{l}$.

A closer examination reveals that, when the power factor is 1 ($\cos 0^{\circ}=1$), corresponding to a purely resistive load, $P_{l} / P_{h}=1$ or $P_{l}=$ P_{h}, and both wattmeters have the same wattage indication. At a power factor equal to $0\left(\cos 90^{\circ}=0\right)$, corresponding to a purely reactive load, $P_{l} / P_{h}=-1$ or $P_{l}=-P_{h}$, and both wattmeters again have the same wattage indication but with opposite signs. The transition from a negative to a positive ratio occurs when the power factor of the load is 0.5 or $\theta=\cos ^{-1} 0.5=60^{\circ}$. At this power factor, $P_{l} / P_{h}=0$, so that $P_{l}=0$, while P_{h} reads the total power delivered to the load.

The second method for determining whether the total power is the sum or difference of the two wattmeter readings involves a simple laboratory test., For the test to be applied, both wattmeters must first have an up-scale deflection. If one of the wattmeters has a below-zero indication, an up-scale deflection can be obtained by simply reversing the leads of the current coil of the wattmeter. To perform the test:

1. Take notice of which line does not have a current coil sensing the line current.
2. For the lower-reading, wattmeter, disconneet the lead of the potential coil connected to the line without the current coij.
3. Take the disconnected lead of the lower-reading wattmeter's potential coil, and touch a connection point on the line that has the current coil of the higher-reading wattmeter.
4. If the pointer deflects downward (below zero watts), the wattage reading of the lower-reading wattmeter should be subtracted from that of the higher-reading wattmeter. Otherwise, the readings should be added.

For a balanced system, since.

$$
P_{T} \Rightarrow P_{h} \pm P_{1}=\sqrt{3} E_{L} I_{L} \cos \theta_{V_{\phi}}^{V_{\phi}}
$$

the power factor of the load (phase) can be found from the wattmeter readings and the magnitude of the line voltage and current:

$$
\begin{equation*}
F_{p}=\cos \theta_{l_{\phi}^{V_{\phi}}}=\frac{P_{h} \pm P_{l}}{\sqrt{3} E_{L} I_{L}} \tag{23.33}
\end{equation*}
$$

EXAMPLE 23:8 For the unbalanced Δ-connected load in Fig. 23.33 with two properly connected wattmeters:

FIG. 23.33
Example 23.8 .
a. Determine the magnitude and angle of the phase currents.
b. Calculate the magnitude and angle of the line currents.
c. Determine the power reading of each wattmeter.
d. Calculate the total power absorbed by the load.
e. Compare the result of part (d) with the total power calculated using the phase currents and the resistive elements.

${ }^{-}$Solutions:

a. $\mathbf{I}_{a b}=\frac{\mathbf{V}_{a b}}{\mathbf{Z}_{a b}}=\frac{\mathbf{E}_{A B}}{\mathbf{Z}_{a b}}=\frac{208 \mathrm{~V} \angle 0^{\circ}}{10 \Omega \angle 0^{\circ}}=20.8 \mathrm{~A} \angle 0^{\circ}$

$$
\begin{aligned}
\mathbf{I}_{b c} & =\frac{\mathbf{V}_{b c}}{\mathbf{Z}_{b c}}=\frac{\mathbf{E}_{B C}}{\mathbf{Z}_{b c}}=\frac{208 \mathrm{~V} \angle-120^{\circ}}{15 \Omega+j 20 \Omega}=\frac{208 \mathrm{~V} \angle-120^{\circ}}{25 \Omega \angle 53.13^{\circ}} \\
& =\mathbf{8 . 3 2} \mathrm{A} \angle-173.13^{\circ} \\
\mathbf{I}_{c a} & =\frac{\mathbf{V}_{c a}}{\mathbf{Z}_{c a}}=\frac{\mathbf{E}_{C A}}{\mathbf{Z}_{c a}}=\frac{208 \mathrm{~V} \angle+120^{\circ}}{12 \Omega+j 12 \Omega}=\frac{208 \mathrm{~V} \angle+120^{\circ}}{16.97 \Omega \angle-45^{\circ}} \\
& =\mathbf{1 2 . 2 6 ~ A ~} \angle 165^{\circ}
\end{aligned}
$$

b. $\mathbf{I}_{A a}=\mathbf{I}_{a b}-\mathbf{I}_{c a}$
$=20.8 \mathrm{~A} \angle 0^{\circ}-12.26 \mathrm{~A} \angle 165^{\circ}$
$=20: 8 \mathrm{~A}-(-11.84 \mathrm{~A}+j 3.17 \mathrm{~A})$
$=20.8 \mathrm{~A}+11.84 \mathrm{~A}-j 3.17 \mathrm{~A}=32.64 \mathrm{~A}-j 3.17 \mathrm{~A}$
$=32.79 \mathrm{~A} \angle-5.55^{8}$

$$
\begin{aligned}
& \mathbf{I}_{B b}=\mathbf{I}_{b c}-\mathbf{I}_{a b} \\
& =8.32 \mathrm{~A} \angle-173.13^{\circ}-20.8 \mathrm{~A} \angle 0^{\circ} \\
& =(-8.26 \mathrm{~A}-j 1 \mathrm{~A})-20.8 \mathrm{~A} \\
& =-8.26 \mathrm{~A}-20.8 \mathrm{~A}-j 1 \mathrm{~A}=-29.06 \mathrm{~A}-j 1 \mathrm{~A} \\
& =29.08 \mathrm{~A} \angle-178.03^{\circ} \\
& \mathbf{I}_{c t}=\mathbf{I}_{c a}-\mathbf{I}_{b c} \\
& =12.26 \mathrm{~A} \angle 165^{\circ}-8.32 \mathrm{~A} \angle-173.13^{\circ} \\
& =(-11.84 \mathrm{~A}+j 3.17 \mathrm{~A})-(-8.26 \mathrm{~A}-j 1 \mathrm{~A}) \\
& =-11.84 \mathrm{~A}+8.26 \mathrm{~A}+j(3.17 \mathrm{~A}+1 \mathrm{~A})=-3.58 \mathrm{~A}+j 4.17 \mathrm{~A} \\
& =5.5 \mathrm{~A} \angle 130.65^{\circ} \\
& \text { c. } P_{1}=V_{a b} I_{A a} \cos \theta_{1_{A a}}^{\mathrm{Y}_{a b}} \quad \mathbf{V}_{a b}=208 \mathrm{~V} \angle 0^{\circ} \\
& \mathrm{I}_{A a}=32.79 \mathrm{~A} \angle-5.55^{\circ} \\
& =(208 \mathrm{~V})(32.79 \mathrm{~A}) \cos 5.55^{\circ} \\
& =6788.35 \mathrm{~W} \\
& \mathbf{V}_{b c}=\mathbf{E}_{B C}=208 \mathrm{~V} \angle-120^{\circ} \\
& \text { but } \\
& \mathbf{V}_{c b}=\mathbf{E}_{C B}=208 \mathrm{~V} \angle-120^{\circ}+180^{\circ} \\
& =208 \mathrm{~V} \angle 60^{\circ} \\
& \text { with } \\
& \mathrm{I}_{C_{c}}=5.5 \mathrm{~A} \angle 130.65^{\circ} \\
& P_{2}=V_{c b} I_{C_{c}} \cos \theta_{I_{c c}}^{\mathbf{V}_{c c}} \\
& =(208 \mathrm{~V})(5.5 \mathrm{~A}) \cos 70.65^{\circ} \\
& =379.1 \mathrm{~W} \\
& \text { d. } P_{T}=P_{1}+P_{2}=6788.35 \mathrm{~W}+379.1 \mathrm{~W} \\
& =7167.45 \mathrm{~W} \\
& \text { e. } P_{T}=\left(I_{a b}\right)^{2} R_{1}+\left(I_{b c}\right)^{2} R_{2}+\left(I_{c a}\right)^{2} R_{3} \\
& =(20.8 \mathrm{~A})^{2} 10 \Omega+(8.32 \mathrm{~A})^{2} 15 \Omega+(12.26 \mathrm{~A})^{2} 12 \Omega \\
& =4326.4 \mathrm{~W}+1038.34 \mathrm{~W}+1803.69 \mathrm{~W} \\
& =7168.43 \mathrm{~W}
\end{aligned}
$$

(The slight difference is due to the level of accuracy carried through the calculations.)

23.13 UNBALANCED, THREE-PHASE, FOUR-WIRE, Y-CONNECTED LOAD

For the three-phase, four-wire, Y-connected load in Fig. 23.34, conditions are such that none of the load impedances are equal-hence we have an unbalanced polyphase load. Since the neutral is a common point between the load and source, no matter what the impedance of each phase of the load and source, the voltage across each phase is the phase voltage of the generator:

$$
\begin{equation*}
\mathbf{V}_{\phi}=\mathbf{E}_{\phi} \tag{23.34}
\end{equation*}
$$

The phase currents can therefore be determined by Ohm's law:

$$
\begin{equation*}
\dot{I}_{\phi_{1}}=\frac{\mathbf{V}_{\phi_{1}}}{\mathbf{Z}_{1}}=\frac{\mathbf{E}_{\phi_{1}}}{\mathbf{Z}_{1}} \quad \text { and so on } \tag{23.35}
\end{equation*}
$$

FIG. 23.34
Unbalanced Y-connected load.
The current in the neutral for any unbalanced system can then be found by applyirfg Kirchhoff's' current law at the common point n :

$$
\begin{equation*}
\mathbf{I}_{N}=\mathbf{I}_{\phi_{1}}+\mathbf{I}_{\phi_{2}}+\mathbf{I}_{\phi_{3}}=\mathbf{I}_{L_{1}}+\mathbf{I}_{L_{2}}+\mathbf{I}_{L_{3}} \tag{23.36}
\end{equation*}
$$

Because of the variety of equipment found in an industrial environment, both three-phase power and single-phase power are usually provided with the single-phase obtained off the three-phase system. In addition, since the load on each phase is continually changing, a four-wire system (with a neutral) is normally used to ensure steady voltage levels and to provide a path for the current resulting from an unbalanced load. The system in Fig. 23.35 has a three-phase transformer dropping the line. voltage from $13,800 \mathrm{~V}$ to 208 V . Al the lower-power-demand loads, such as lighting, wall outlets, security, and so on, use the single-phase, 120 V line to neutral voltage: Higher power loads, such as air conditioners, electric ovens or dryers, and so on, use the single-phase, 208 V available from line to line. For larger motors and special high-demand equipment, the full three-phase power can be taken directly off the system, as shown in

FIG. 23.35
$3 \phi / 1 \phi, 208$ V/I20 V industrial supply.

Fig. 23.35. In the design and construction of a commercial establishment, the National Electric Code requires that every effort be made to ensure that the expected loads, whether they be single- or multiphase, result in a total load that is as balanced as possible between the phases, thus ensuring the highest level of transmission efficiency.

23.14 UNBALANCED, THREE-PHASE, THREE-WIRE, Y-CONNECTED LOAD

For the system shown in Fig. 23.36, the required equations can be derived by first applying Kirchhoff's voltage law around each closed loop to produce

FIG. 23.36
-Unbalanced, three-phase, three-wire, γ-connected load.
Substituting, we have

$$
\begin{gather*}
\mathbf{V}_{a n}=\mathbf{I}_{a n} \mathbf{Z}_{1} \quad \mathbf{V}_{b n}=\mathbf{I}_{b n} \mathbf{Z}_{2} \quad \mathbf{V}_{c n}=\mathbf{I}_{c n} \mathbf{Z}_{3} \\
\begin{array}{l}
\mathbf{E}_{A B}=\mathbf{I}_{a n} \mathbf{Z}_{1}-\mathbf{I}_{b n} \mathbf{Z}_{2} \\
\mathbf{E}_{B C}=\mathbf{I}_{b n} \mathbf{Z}_{2}-\mathbf{I}_{c n} \mathbf{Z}_{3} \\
\mathbf{E}_{C A}=\mathbf{I}_{c n} \mathbf{Z}_{3}-\mathbf{I}_{a n} \mathbf{Z}_{1}
\end{array} \tag{23.37a}
\end{gather*}
$$

Applying Kirchhoff's current law at node n results in

$$
\mathbf{I}_{a n}+\mathbf{I}_{b n}+\mathbf{I}_{c n}=0 \quad \text { and } \quad \mathbf{I}_{b n}=-\mathbf{I}_{a n}-\mathbf{I}_{c n}
$$

Substituting for $\mathbf{I}_{b n}$ in Eqs. (23.37a) and (23.37b) yields

$$
\begin{aligned}
& \mathbf{E}_{A B}=\mathbf{I}_{a n} \mathbf{Z}_{1}-\left[-\left(\mathbf{I}_{a n}+\mathbf{I}_{c n}\right)\right] \mathbf{Z}_{2} \\
& \mathbf{E}_{B C}=-\left(\mathbf{I}_{a n}+\mathbf{I}_{c n}\right) \mathbf{Z}_{2}-\mathbf{I}_{c n} \mathbf{Z}_{3}
\end{aligned}
$$

which are rewritten as

$$
\begin{aligned}
& \mathbf{E}_{A B}=\mathbf{I}_{a n}\left(\mathbf{Z}_{1}+\mathbf{Z}_{2}\right)+\mathbf{I}_{c n} \mathbf{Z}_{2} \\
& \mathbf{E}_{B C}=\mathbf{I}_{a n}\left(-\mathbf{Z}_{2}\right)+\mathbf{I}_{c n}\left[-\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)\right]
\end{aligned}
$$

Using determinants, we have

$$
\begin{aligned}
\mathbf{I}_{a n} & =\frac{\left|\begin{array}{lc}
\mathbf{E}_{A B} & \mathbf{Z}_{2} \\
\mathbf{E}_{B C} & -\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)
\end{array}\right|}{\left|\begin{array}{lc}
\mathbf{Z}_{1}+\mathbf{Z}_{2} & \mathbf{Z}_{2} \\
-\mathbf{Z}_{2} & -\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right)
\end{array}\right|} \\
& =\frac{-\left(\mathbf{Z}_{2}+\mathbf{Z}_{3}\right) \mathbf{E}_{A B}-\mathbf{E}_{B C} \mathbf{Z}_{2}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}-\mathbf{Z}_{2}^{2}+\mathbf{Z}_{2}^{2}} \\
\mathbf{I}_{a n} & =\frac{-\mathbf{Z}_{2}\left(\mathbf{E}_{A B}+\mathbf{E}_{B C}\right)-\mathbf{Z}_{3} \mathbf{E}_{A B}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}}
\end{aligned}
$$

Applying Kirchhoff's voltage law to the line voltages gives

$$
\mathbf{E}_{A B}+\mathbf{E}_{C A}+\mathbf{E}_{B C}=0 \quad \text { or } \quad \mathbf{E}_{A B}+\mathbf{E}_{B C}=-\mathbf{E}_{C A}
$$

Substituting for $\left(\mathbf{E}_{A B}+\mathbf{E}_{C B}\right)$ in the above equation for $\mathbf{I}_{a n}$ gives
and

$$
\mathbf{I}_{a n}=\frac{-\mathbf{Z}_{2}\left(-\mathbf{E}_{C A}\right)-\mathbf{Z}_{3} \mathbf{E}_{A B}}{-\mathbf{Z}_{1} \mathbf{Z}_{2}-\mathbf{Z}_{1} \mathbf{Z}_{3}-\mathbf{Z}_{2} \mathbf{Z}_{3}}
$$

$$
\begin{equation*}
\mathbf{I}_{a n}=\frac{\mathbf{E}_{A B} \mathbf{Z}_{3}-\mathbf{E}_{C A} \mathbf{Z}_{2}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \tag{23.38}
\end{equation*}
$$

In the same manner, it can be shown that

$$
\begin{equation*}
Y_{c n}=\frac{\mathbf{E}_{C A} \mathbf{Z}_{2}-\mathbf{E}_{B C} \mathbf{Z}_{1}{ }^{*}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \tag{23.39}
\end{equation*}
$$

Substituting Eq, (23.39) for $\mathrm{I}_{c n}$ in the right-hand side of Eq. (23.37b), we obtain

$$
\begin{equation*}
\mathbf{I}_{b n}=\frac{\mathbf{E}_{B C} \mathbf{Z}_{1}-\mathbf{E}_{A B} \mathbf{Z}_{3}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \tag{23.40}
\end{equation*}
$$

EXAMPLE 23.9 A phase-sequence indicator is an instrument such as shown in Fig. 23.37(a) that can display the phase sequence of a polyphase circuit. A network that performs this function appears in Fig. 23.37(b). The applied phase sequence is $A B C$. The bulb corresponding to this phase sequence burns more brightly than the bulb indicating the $A C B$ sequence because a greater current is passing through the $A B C$ bulb. Calculating the phase currents demonstrates that this situation does in fact exist:

$$
Z_{\mathrm{L}}=X_{C}=\frac{1}{\omega C}=\frac{1}{(377 \mathrm{rad} / \mathrm{s})\left(16 \times 10^{-6} \mathrm{~F}\right)}=166 \Omega
$$

By Eq. (23.39),

$$
\begin{aligned}
\mathbf{I}_{c n} & =\frac{\mathbf{E}_{C A} \mathbf{Z}_{2}-\mathbf{E}_{B C} \mathbf{Z}_{1}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \\
& =\frac{\left(200 \mathrm{~V} \angle 120^{\circ}\right)\left(200 \Omega \angle 0^{\circ}\right)-\left(200 \mathrm{~V} \angle-120^{\circ}\right)\left(166 \Omega \angle-90^{\circ}\right)}{\left(166 \Omega \angle-90^{\circ}\right)\left(200 \Omega \angle 0^{\circ}\right)+\left(166 \Omega \angle-90^{\circ}\right)\left(200 \Omega \angle 0^{\circ}\right)+\left(200 \Omega \angle 0^{\circ}\right)\left(200 \Omega \angle 0^{\circ}\right)}
\end{aligned}
$$

(a)
(b)

FIG. 23.37
(a) Phase sequence indicator. (b) Phase sequence detector network.
[Part (a) courtesy of Fluke Corporation.]

$$
\mathbf{I}_{c n}=\frac{40,000 \mathrm{~V} \angle 120^{\circ}+33,200 \mathrm{~V} \angle-30^{\circ}}{33,200 \Omega \angle-90^{\circ}+33,200 \Omega \angle-90^{\circ}+40,000 \Omega \angle 0^{\circ}}
$$

Dividing the numerator and denominator by 1000 and converting both to the rectangular domain yields

$$
\begin{aligned}
& \mathbf{I}_{c n}=\frac{(-20+j 34.64)+(28.75-j 16.60)}{40-j 66.4} \\
& ==\frac{8.75+j 18.04}{77.52 \angle-58.93^{\circ}}=\frac{20.05 \angle 64.13^{\circ}}{77.52 \angle-58.93^{\circ}} \\
& \mathbf{I}_{c n}=\mathbf{0 . 2 5 9} \mathbf{A} \angle \mathbf{1 2 3 . 0 6}^{\circ}
\end{aligned}
$$

By Eq. (23.40),

$$
\begin{aligned}
\mathbf{I}_{b n} & =\frac{\mathbf{E}_{B C} \mathbf{Z}_{1}-\mathbf{E}_{A B} \mathbf{Z}_{3}}{\mathbf{Z}_{1} \mathbf{Z}_{2}+\mathbf{Z}_{1} \mathbf{Z}_{3}+\mathbf{Z}_{2} \mathbf{Z}_{3}} \\
& =\frac{\left(200 \mathrm{~V} \angle-120^{\circ}\right)\left(166 \angle-90^{\circ}\right)-\left(200 \mathrm{~V} \angle 0^{\circ}\right)\left(200 \angle 0^{\circ}\right)}{77.52 \times 10^{3} \Omega \angle-58.93^{\circ}} \\
\mathbf{I}_{b n} & =\frac{33,200 \mathrm{~V} \angle-210^{\circ}-40,000 \mathrm{~V} \angle 0^{\circ}}{77.52 \times 10^{\circ} \Omega \angle-58.93^{\circ}}
\end{aligned}
$$

Dividing by 1000 and converting to the rectangular domain yields

$$
\begin{aligned}
\mathbf{I}_{b n} & =\frac{-28.75+j 16.60-40.0}{77.52 \angle-58.93^{\circ}}=\frac{-68.75+j 16.60}{77.52 \angle-58.93^{\circ}} \\
& =\frac{70.73 \angle 166.43^{\circ}}{77.52 \angle-58.93^{\circ}}=\mathbf{0 . 9 1} \mathrm{A} \angle 225.36^{\circ}
\end{aligned}
$$

and $I_{b n}>I_{c n}$ by a factor of more than $3: 1$. Therefore, the bulb indicating an $A B C$ sequence will burn more brightly due to the greater current. If the phase sequence were $A C B$, the reverse would be true.

PROBLEMS

SECTION 23.5 Y-Connected Generator with a Y-Connected Load

1. A balanced Y load having a 10Ω resistance in each leg is connected to a three-phase, four-wire, Y-connected generator having a line voltage of 208 V . Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.
2. Repeat Problem 1 if each phase impedance is changed to a 12Ω resistor in series with a 16Ω capacitive reactance.
3. Repeat Problem 1 if each phase impedance is changed to a 10Ω resistor in parallel with a 10Ω capacitive reactance.
4. The phase sequence for the $Y-Y$ system in Fig. 23.38 is $A B C$.
a. Find the angles θ_{2} and θ_{3} for the specified phase sequence.
b. Find the voltage across each phase impedance in phasor form.
c. Find the current through each phase impedance in phasor form.
d. Draw the phasor diagram of the currents found in part (c), and show that their phasor sum is zero.
e. Find the magnitude of the line currents.
f. Find the magnitude of the line voltages.
5. Repeat Problem 4 if the phase impedances are changed to a 9Ω resistor in series with a 12Ω inductive reactance.
6. Repeat Problem 4 if the phase impedances are changed to a 6Ω resistance in parallel with an 8Ω capacitive reactance.
7. For the system in Fig. 23.39, find the magnitude of the unknown voltages and currents.

FIG. 23.38
Problems 4, 5, 6, and 31 .

FIG. 23.39
Problems 7, 32, and 44.
*8. Compute the magnitude of the voltage $E_{A B}$ for the balanced three-phase system in Fig. 23.40.

FIG. 23.40

Problem 8.

*9. For the Y-Y system in Fig. 23.41:
a. Find the magnitude and angle associated with the voltages $\mathbf{E}_{A N}, \mathbf{E}_{B N}$, and $\mathbf{E}_{C N}$.
b. Determine the magnitude and angle associated with each phase current of the load: $\mathrm{I}_{a n}, \mathrm{I}_{b n}$, and $\mathbf{I}_{c n}$.
c. Find the magnitude and phase angle of each line current: $\mathbf{I}_{A a}, \mathbf{I}_{B b}$, and $\mathbf{I}_{C c}$.
d. Determine the magnitude and phase angle of the voltage across each phase of the load: $\mathbf{V}_{a n}, \mathbf{V}_{b n}$, and $\mathbf{V}_{c n}$.

FiG. 23.41
Problem: 9 .

SECTION $23.6 \quad$ Y- Δ System

10. A balanced Δ load having a 20Ω resistance in each leg is connected to a three-phase, three-wire, Y -connected generator having a line voltage of 208 V . Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.
11. Repeat Problem 10 if each phase impedance is changed to a 6.8Ω resistor in series with a 14Ω indüctive reactance.
12. Repeat Problem 10 if each phase impedance is changed to an 18Ω resistance in parallel with an 18Ω capacitive reactance.
13. The phase sequence for the $Y-\Delta$ system in Fig. 23.42 is $A B C$.
a. Find the angles θ_{2} and θ_{3} for the specified phase sequence.
b. Find the voltage across each phase impedance in phasor form.
c. Draw the phasor diagram of the voltages found in part (b), and show that their sum is zero around the closed loop of the Δ load.

- d. Find the current through each phase impedance in phasor form.
e. Find the magnitude of the line currents.
f. Find the magnitude of the generator phase voltages.

14. Repeat Problem 13 if the phase impedances are changed to a 100Ω resistor in series with a capacitive reactance of 100Ω.
15. Repeat Problem 13 if the phase impedances are changed to a 3Ω resistor in parallel with an inductive reactance of 4Ω.
16. For the system in Fig. 23.43, find the magnitude of the unknown voltages and currents.

FIG. 23.42
Problems 13, 14, 15, 34, and 45.

FIG. 23.43
Problems 16, 35, and 47.
*17. For the Δ-connected load in Fig. 23.44:
a. Find the magnitude and angle of each phase current $\mathbf{I}_{a b}$,
$\mathbf{I}_{b c}$, and $\mathbf{I}_{c a}$.
b. Calculate the magnitude and angle of each line current $\mathbf{I}_{A a}, \mathbf{I}_{B b}$, and $\mathbf{I}_{C c}$.
c. Determine the magnitude and angle of the voltages $\mathbf{E}_{A B}$,
$\mathbf{E}_{B C}$, and $\mathbf{E}_{C A}$.

FIG. 23.44
Problem 17.

SECTION $23.9 \Delta-\Delta, \Delta-Y$ Three-Phase Systems

18. A balanced Y load having a 30Ω resistance in each leg is' connected to a three-phase, Δ-connected generator having a line voltage of 208 V . Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.
19. Repeat Problem 18 if each phase impedance is changed to a 12Ω resistor in series with a 12Ω inductive reactance.
20. Repeat Problem 18 if each phase impedance is changed to a 15Ω resistor in parallel with a 20Ω capacitive reactance.
*21. For the system in Fig. 23.45, find the magnitude of the unknown voltages and currents.
21. Repeat Problem 21 if each phase impedance is changed to a 10Ω resistor in series with a 20Ω inductive reactance.
22. Repeat Problem 21 if each phase impedance is changed to a 20Ω resistor in parallel with a 15Ω capacitive reactance.

FIG. 23.45
Problems 21, 22, 23, and 37.
24. A balanced Δ load having a 220Ω resistance in each leg is connected to a three-phase, Δ-connected generator having a line voltage of 440 V . Calculate the magnitude of
a. the phase voltage of the generator.
b. the phase voltage of the load.
c. the phase current of the load.
d. the line current.
25. Repeat Problem 24 if each phase impedance is changed to a 12Ω resistor in series with a 9Ω capacitive reactance.
26. Repeat Problem 24 if each phase impedance is changed to a 22Ω resistor in parallel with a 22Ω inductive reactance.
27. The phase sequence for the $\Delta-\Delta$ system in Fig. 23.46 is $A B C$.
a. Find the angles θ_{2} and θ_{3} for the specified phase sequence.

- b. Find the voltage across each phase impedance in phasor form:
c. Draw the phasor diagramf of the voltages found in part (b), and show that their phasor sum is zero around the. closed loop of the Δ load.
d. Find the current through each phase impedance in phasor form.
e. Find the magnitude of the line currents.

28. Repeat Problem 25 if each phase impedance is changed to a 12Ω resistor in series with a 16Ω inductive reactance.
29. Repeat Problem 25 if each phase impedarice is changed to a 20Ω resistor in parallel with a 20Ω capacitive reactance.

FIG. 23.46
Problem 27.

SECTION 23.10 Power

30. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 2.
31. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 4.
32. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 7.
33. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 12.
34. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 14.
35. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 16.
36. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 20.
37. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 22.
38. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 26.
39. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the three-phase system in Problem 28.
40. A balanced, three-phase, Δ-connected load has a line voltage of 200 and a total power consumption of 4800 W at a lagging power factor of 0.8 . Find the impedance of each phase in rectangular coordinates.
41. A balanced, three-phase, Y-connected load has a line voltage of 208 and a total power consumption of 1200 W at a leading power factor of 0.6 . Find the impedance of each phase in rectangular coordinates.
*42. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the system in Fig. 23.47.
*43. The Y-Y system in Fig. 23.48 has a balanced loadand a line impedance $\mathbf{Z}_{\text {line }}=4 \Omega+j 20 \Omega$. If the line voltage at the generator is $16,000 \mathrm{~V}$ and the total power delivered to the load is 1200 kW at 80 A , determine each of the following:
a. The magnitude of each phase voltage of the generator.
b. The magnitude of the line currents.
c. The total power delivered by the source.
d. The power factor angle of the entire load "seen" by the source.

FIG. 23.47

- Problem 42.

FIG. 23.48
Problem 43.
e. The magnitude and angle of the current $\mathrm{I}_{A a}$ if $\mathrm{E}_{A N}=$ $E_{A N} \angle 0^{\circ}$.
f. The magnitude and angle of the phase voltage $\mathbf{V}_{a n}$.
g. The impedance of the load of each phase in rectangular coordinates.
h. The difference between the power factor of the load and the power factor of the entire system (including $\mathbf{Z}_{\text {line }}$).
${ }_{x}$ i. The efficiency of the system.

SECTION 23.11 Three-Wattmeter Method

44. a. Sketch the connections required to measure the total watts delivered to the load in Fig. 23.39 using three wattmeters.
b. Determine the total wattage dissipation and the reading of each wattmeter.
45. Repeat Problem 44 for the network in Fig. 23.42.

SECTION 23.12 Two-Wattmeter Method

46. a. For the three-wire system in Fig_ 23.49, properly connect a second wattmeter so that the two measure the total power delivered to the load:
b. If one wattmeter has a reading of 200 W and the other a reading of 85 W , what is the total dissipation in watts if the total power factor is 0.8 leading?

FIG. 23.49
Problem 46.
c. Repeat part (b) if the total power factor is 0.2 lagging $\operatorname{and} P_{l}=100 \mathrm{~W}$.
47. Sketch three different ways that two wattmeters can be connected to measure the total power delivered to the load in Problem 16.
*48. For the Y- Δ system in Fig. 23.50:
a. Determine the magnitude and angle of the phase currents.
b. Find the magnitude and angle of the line currents.
c. Determine the reading of each wattmeter.
d. Find the total power delivered to the load.

SECTION 23.13 Unbalanced, Three-Phase,
 Four-Wire, Y-Connected Load

*49. For the system in Fig. 23.51:
a. Calculate the magnitude of the voltage across each phase of the load.
b. Find the magnitude of the current through each phase of the load.
c. Find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the system.
d. Find the phase currents in phasor form.
e. Using the results of part (c), determine the current \mathbf{I}_{N}.

FIG. 23.51
Problem 49.

SECTION 23.14 Unbalanced, Three-Phase, Three-Wire, Y-Connected Load

*50. For the three-phase, three-wire system in Fig. 23.52, find the magnitude of the current through each phase of the load, and find the total watts, volt-amperes reactive, volt-amperes, and F_{p} of the load.

FIG. 23.52
Problem 50.

GLOSSARY

Δ-connected ac generator A three-phase generator having the three phases connected in the shape of the capital Greek letter delta (Δ).
Line current The current that flows from the generator to the load of a single-phase or polyphase system.
Line voltage The potential difference that exists between the lines of a single-phase or polyphase system.
Neutral connection The connection between the generator and the load that, under balanced conditions, will have zero current associated with it.
Phase current The current that flows through each phase of a single-phase (or polyphase) generator or load.
Phase sequence The order in which the generated sinusoidal voltages of a polyphase generator will affect the load to which they are applied.
Phase voltage The voltage that appears between the line and neutral of a Y-connected generator and from line to line in a Δ-connected generator.

Pólyphase ac generator Anf electromechanical source of ac power that generates more than one sinusoidal voltage per rotation of the rotor. The frequency generated is determined by the speed of rotation and the number of poles of the rotor.
Single-phase ac generator An electromechanical source of ac power that generates a single sinusoidal voltage having a frequency determized by the speed of rotation and the number of poles of the rotor.
Three-wattmeter method A method for determining the total power delivered to a threc-phase load using three wattmeters.

Two-wattmeter method A method for determining the total power delivered to a Δ - or Y-connected three-phase load using only two wattmeters and considering the power factor of the load.
Unbalanced polyphase load A load not having the same impedance in each phase.
Y-connected three-phase generator A three-phase source of ac power in which the three phases are connected in the shape of the letter Y .

Pulse Waveforms and the R-C Response

Objectives

- Become familiar with the specific terms that define a pulse waveform and how to calculate various parameters such as the pulse width, rise and fall times, and tilt.

- Be able to calculate the pulse repetition rate and the duty cycle of any pulse waveform.

- Become aware of the parameters that define the response of an R-C network to a square-wave input.
- Understand how a compensator probe of an oscilloscope is used to improve the appearance of an output pulse waveform.

24.1 INTRODUCTION

Our analysis thus far has been limited to alternating waveforms that vary in a sinusoidal manner. This chapter introduces the basic terminology associated with the pulse waveform and examines the response of an $R-C$ circuit to a square-wave input. The importance of the pulse waveform to the electrical/electronics industry cannet be overstated. A vast array of instrumentation, communication systems, computers, radar systems, and so on, all use pulse signals to control operation, transmit data, and display information in a variety of formats.

The response to a pulse signal of the networks described thus far is quite different from that obtained for sinusoidal signals. In fact, we must refer to the de chapter on capacitors (Chapter 10) for a few fundamental concepts and equations that will help us in the analysis to follow. This chapter is just an introduction, designed to provide the fundamentals that will be helpful when the pulse waveform is encountered in specific areas of application.

24.2 IDEAL VERSUS ACTUAL

The ỉdeal pulse in Fig. 24.1 has vertical sides, sharp corners, and a flat peak characteristic; it starts instantaneously at t_{1} and ends just as abruptly at t_{2}.

FIG. 24.1
Ideal pulse waveform.

The waveform in Fig. 24.1 is applied in the analysis in this chapter and probably in the initial investigation of areas of application beyond the scope of this text. Once the fundamental operation of a device, package, or system is clearly understood using ideal characteristics, the effect of an actual (or true or practical) pulse must be considered. If an attempt were made to introduce all the differences between an ideal and actual pulse in a single figure, the result would probably be complex and confusing. A number of waveforms are therefore used to define the critical parameters.

The reactive elements of a network, in their effort to prevent instantaneous changes in voltage (capacitor) and current (inductor), establish a slope to both edges of the pulse waveform, as shown in Fig. 24,2. The rising edge of the waveform in Fig. 24.2 is defined as the edge that increases from a lower to a higher level.

FIG. 24.2
Actual pulse waveform.

The falling edge is defined by the region or edge where the waveform decreases from a higher to a lower level. Since the rising edge is the first to be encountered (closest to $t=0 \mathrm{~s}$), it is also called the leading edge. The falling edge always follows the leading edge and is therefore often called the trailing edge.

Both regions are defined in Figs. 24.1 and 24.2.

Amplitude

For most applications, the amplitude of a pulse waveform is defined as the peak-to-peak value. Of course, if the waveforms all start and return to the zero-volt level, then the peak and peak-to-peak values are synonymous.
For the purposes of this text, the amplitude of a pulse waveform is the peak-to-peak value, as illustrated in Figs. 24.1 and 24.2.

Pulse Width

The pulse width (t_{p}), or pulse duration, is defined by a pulse level equal to 50% of the peak value.

For the ideal pulse in Fig. 24.1, the pulse width is the same at any level, whereas t_{p} for the waveform in Fig. 24.2 is a very specific value.

Base-Line Voltage

The base-line voltage $\left(V_{b}\right)$ is the voltage level from which the pulse is initiated.

The waveforms in Figs. 24.1 and 24.2 both have a 0 V base-line voltage. In Fig. 24.3(a) the base-line voltage is 1 V , whereas in Fig. 24.3(b) the base-line voltage is -4 V .

FIG. 24.3
Defining the base-line voltage..

Positive-Going and Negative-Going Pulses

A positive-going pulse increases positively from the base-line voltage, whereas a negative-going pulse increases in the negative direction from the base-line voltage.
The waveform in Fig. 24.3(a) is a positive-going pulse, whereas the waveform in Fig. 24.3(b) is a negative-going pulse.

Even though the base-line voltage in Fig. 24.4 is negative, the waveform is positive-going (with an amplitude of 10 V) since the voltage increased in the positive direction from the base-line voltage.

Rise Time $\left(t_{r}\right)$ and Fall Time $\left(t_{f}\right)$

The time required for the pulse to shift from one level to another is of particular importance. The rounding (defined in Fig. 24.5) that occurs at the beginning and end of each transition makes it difficult to define the exact point at which the rise time should be initiated and terminated. For this reason,

FIG. 24.5
Defining t_{r} and t_{f}.

FIG. 24.6
Defining tilt.

FIG. 24.7
Defining preshoot, overshoot, and ringing.
the rise time and the fall time are defined by the 10% and 90% levels, as indicated in Fig. 24.5.

Note that there is no requirement that t_{r} equal t_{f}.

Tilt

Fig. 24.6 illustrates an undesirable but common distortion normally occurring due to a poor low-frequency response characteristic of the system through which a pulse has passed. The drop in peak value is called tilt, droop, or sag. The percentage tilt is defined by

$$
\begin{equation*}
\% \text { tilt }=\frac{V_{1}-V_{2}}{V} \times 100 \% \tag{24.1}
\end{equation*}
$$

where V is the average value of the peak amplitude as determined by

$$
\begin{equation*}
V=\frac{V_{1}+V_{2}}{2} \tag{24.2}
\end{equation*}
$$

Naturally, the less the percentage tilt or sag, the more ideal is the pulse. Due to rounding, it may be difficult to define the values of V_{1} and V_{2}. It is then necessary to approximate the sloping region by a straightline approximation and use the resulting values of V_{1} and V_{2}.

Other distortions include the preshoot and overshoot appearing in Fig. 24.7, normally due to pronounced high-frequency effects of a system, and ringing, due to the interaction between the capacitive and inductive elements of a-network at their naţural or resonant frequency.

EXAMPLE 24.1 Determine the following for the pulse waveform in Fig. 24.8:
a. whether it is positive- or negative-going
b. base-line voltage
c. pulse width
d. maximum amplitudé
e. tilt

FIG. 24.8
Example 24.1.

Solutions:

a. positive-going
b. $V_{b}=-4 \mathrm{~V}$
c. $t_{p}=(12-7) \mathrm{ms}=5 \mathrm{~ms}$
d. $V_{\text {max }}=8 \mathrm{~V}+4 \mathrm{~V}=12 \mathrm{~V}$
e. $V=\frac{\dot{V}_{1}+V_{2}}{2}=\frac{12 \mathrm{~V}+11 \mathrm{~V}}{2}=\frac{23 \mathrm{~V}}{2}=11.5 \mathrm{~V}$
$\%$ tilt $=\frac{V_{1}-V_{2}}{V} \times 100 \%=\frac{12 \mathrm{~V}-11 \mathrm{~V}}{11.5 \mathrm{~V}} \times 100 \%=8.7 \%$
(Remember, V is defined by the average value of the peak amplitude.)

EXAMPLE 24.2 Determine the following for the pulse waveform in Fig. 24.9:
a. whether it is positive- or negative-going
b. base-line voltage
c. tilt
d. amplitude
e. t_{p}
f. t_{r} and t_{f}

Solutions:

a. positive-going
b. $V_{b}=0 \mathrm{~V}$
c. $\%$ tilt $=0 \%$
d. amplitude $=(4$ div. $)(10 \mathrm{mV} /$ div. $)=40 \mathrm{mV}$

FIG. 24.9
Example 24.2.
e. $t_{p}=(3.2$ div. $)(5 \mu \mathrm{~s} /$ div. $)=16 \mu \mathrm{~s}$
f. $t_{r}=(0.4 \mathrm{div}).(5 \mu \mathrm{~s} / \mathrm{div} \mathrm{v})=2 \mu \mathrm{~s}$
$t_{f}=(0.8$ div. $)(5 \mu \mathrm{~s} / \mathrm{div})=.4 \mu \mathrm{~s}$

24.3 PULSE REPETITION RATE AND DUTY CYCLE

A series of pulses such as those appearing in Fig. 24.10 is called a pulse train. The varying widths and heights may contain information that can be decoded at the receiving end.

If the pattern repeats itself in a periodic manner as shown in Fig. 24.11 (a) and (b), the result is called a periodic pulse train.

The period (T) of the pulse train is defined as the time differential between any two similar points on the pulse train, as shown in Figs. 24.11(a) and (b).

FIG. 24.10
Pulse train.

The pulse repetition frequency (prf), or pulse repetition rate (prr), is defined by

$$
\begin{equation*}
\mathrm{prf}(\text { or } \mathrm{prr})=\frac{1}{T} \quad, \mathrm{~Hz} \text { or pulses } / \mathrm{s} \tag{24.3}
\end{equation*}
$$

Applying Eq. (24.3) to each waveform in Fig. 24.11 results in the same pulse repetition frequency since the periods are the same. The result clearly reveals that

the shape of the periodic pulse does not affect the determination of the pulse repetition frequency.

The pulse repetition frequency is determined solely by the period of the repeating pulse. The factor that reveals how much of the period is encompassed by the pulse is called the duty cycle, defined as follows:

$$
\text { Duty cycle }=\frac{\text { pulse width }}{\text { period }} \times 100 \%
$$

or

$$
\begin{equation*}
\text { Duty cycle }=\frac{t_{p}}{T} \times 100 \% \tag{24.4}
\end{equation*}
$$

For Fig. 24.11(a) (a square-wave pattern),

$$
\text { Duty cycle }=\frac{0.5 T}{T} \times 100 \%=\mathbf{5 0} \%
$$

and for Fig. 24.11(b),

$$
\text { Duty cycle }=\frac{0.2 T}{T} \times 100 \%=\mathbf{2 0} \%
$$

The above results clearly reveal that
the duty cycle provides a percentage indication of the portion of the total period encompassed by the pulse waveform.

EXAMPLE 24.3 Determine the pulse repetition frequency and the duty cycle for the periodic pulse waveform in Fig. 24.12.

Solution:

$$
\begin{aligned}
T & =(15-6) \mu \mathrm{s}=9 \mu \mathrm{~s} \\
\mathrm{prf} & =\frac{1}{T}=\frac{1}{9 \mu \mathrm{~s}} \cong 111.11 \mathrm{kHz}
\end{aligned}
$$

FiG. 24.12
Example 24.3.

Duty cycle $=\frac{t_{p}}{T} \times 100 \%=\frac{(8-6) \mu \mathrm{s}}{9 \mu \mathrm{~s}} \times 100 \%$

$$
=\frac{2}{9} \times 100 \% \cong \mathbf{2 2 . 2 2 \%}
$$

EXAMPLE 24.4 Determine the pulse repetition frequency and the duty cycle for the oscilloscope pattern in Fig. 24.13 having the indicated sensitivities.

FIG. 24.13
Example 24.4.

Solution:

$$
\begin{aligned}
T & =(3.2 \mathrm{div} .)(1 \mathrm{~ms} / \mathrm{div} .)=3.2 \mathrm{~ms} \\
t_{p} & =(0.8 \mathrm{div} .)(1 \mathrm{~ms} / \mathrm{div} .)=0.8 \mathrm{~ms} \\
\mathrm{prf} & =\frac{1}{T}=\frac{1}{3.2 \mathrm{~ms}}=312.5 \mathrm{~Hz}
\end{aligned}
$$

Duty cycle $=\frac{t_{p}}{T} \times 100 \%=\frac{0.8 \mathrm{~ms}}{3.2 \mathrm{~ms}} \times 100 \%=25 \%$

EXAMPLE 24.5 Determine the pulse repetition rate and duty cycle for the trigger waveform in Fig. 24.14.

Solution:

$$
\begin{aligned}
T & =(2.6 \text { div. })(10 \mu \mathrm{~s} / \mathrm{div} .)=26 \mu \mathrm{~s} \\
\mathrm{prf} & =\frac{1}{T}=\frac{1}{26 \mu \mathrm{~s}}=38,462 \mathrm{kHz}
\end{aligned}
$$

$$
\begin{aligned}
t_{p} & \equiv(0.2 \mathrm{div} .)(10 \mu \mathrm{~s} / \text { diy. })=2 \mu \mathrm{~s} \\
\text { Duty cycle } & =\frac{t_{p}}{T} \times 100 \%=\frac{2 \mu \mathrm{~s}}{26 \mu \mathrm{~s}} \times 100 \%=7.69 \%
\end{aligned}
$$

24.4 AVERAGE VALUE

The average value of a pulse, waveform can be determined using one of two methods. The first is the procedure outlined in Section 13.7, which can be applied to any alternating waveform. The second can be applied only to pulse waveforms since it utilizes terms specifically related to pulse waveforms; that is,

$$
\begin{equation*}
V_{\mathrm{av}}=(\text { duty cycle })(\text { peak value })+(1-\text { duty cycle })\left(V_{b}\right) \tag{24.5}
\end{equation*}
$$

In Eq. (24.5), the peak value is the maximum deviation from the reference or zero-volt level, and the duty cycle is in decimal form. Eq. (24.5) does not include the effect of any tilt pulse waveforms with sloping sides.

EXAMPLE 24.6 Determine the average value for the periodic pulse waveform in Fig. 24.15.

- FIG. 24.15

Example 24.6.

Solution: By the method in Section 13.7,

$$
\begin{aligned}
& G=\frac{\text { area under curve }}{T} \\
& T=(12-2) \mu \mathrm{s}=10 \mu \mathrm{~s} \\
& G=\frac{(8 \mathrm{mV})(4 \mu \mathrm{~s})+(2 \mathrm{mV})(6 \mu \mathrm{~s})}{10 \mu \mathrm{~s}}=\frac{32 \times 10^{-9}+22 \times 10^{-9}}{10 \times 10^{-6}} \\
&=\frac{44 \times 10^{-9}}{10 \times 10^{-6}}=4.4 \mathrm{mV}
\end{aligned}
$$

By Eq. (2455),

$$
V_{b}=+2 m V
$$

Duty cycle $=\frac{t_{p}}{T}=\frac{(6-2) \mu \mathrm{s}}{10 \mu \mathrm{~s}}=\frac{4}{10}=0.4 \quad$ (decimal form)
Peak value (from 0 V reference $)=8 \mathrm{mV}$

$$
\begin{aligned}
V_{\text {av }} & =(\text { duty cycle })(\text { peak value })+(1-\text { duty cycle })\left(V_{b}\right) \\
& =(0.4)(8 \mathrm{mV})+(1-0.4)(2 \mathrm{mV}) \\
& =3.2 \mathrm{mV}+1.2 \mathrm{mV}=4.4 \mathrm{mV}
\end{aligned}
$$

as obtained above.

EXAMPLE 24.7 Given a periodic pulse waveform with a duty cycle of 28%, a peak value of 7 V , and a base-line voltage of -3 V :
a. Determine the average yalue.
b. Sketch the waveform.
c. Verify the result of part (a) using the method of Section 13.7.

Solutions:

a. By Eq. (24.5),

$$
\begin{aligned}
V_{\mathrm{av}} & =(\text { duty cycle })(\text { peak value })+(1-\text { duty cycle })\left(V_{b}\right) \\
& =(0.28)(7 \mathrm{~V})+(1-0.28)(-3 \mathrm{~V})=1.96 \mathrm{~V}+(-2.16 \mathrm{~V}) \\
& =-0.2 \mathrm{~V}
\end{aligned}
$$

b. See Fig. 24.16.
c. $G=\frac{(7 \mathrm{~V})(0.28 T)-(3 \mathrm{~V})(0.72 T)}{T}=1.96 \mathrm{~V}-2.16 \mathrm{~V}$

$$
=-0.2 \mathrm{~V}
$$

as obtained above.

Instrumentation

The average value (dc value) of any waveform can be easily determined using the oscilloscope. If the mode switch of the scope is set in the ac position, the average or dc component of the applied waveform is blocked by an internal capacitor from reaching the screen. The pattern can be adjusted to establish the display in Fig. 24.17(a). If the mode switch is then placed in the dc position, the vertical shift (positive or negative) reveals the average or dc level of the input signal, as shown in Fig. 24.17(b).

24.5 TRANSIENT R-C NETWORKS

In Chapter 10, the general solution for the transient behavior of an $R-C$ network with or without initial values was developed. The resulting equation for the voltage across a capacitor is repeated here for convenience:

$$
\begin{equation*}
v_{C}=V_{f}+\left(V_{i}-V_{f}\right) e^{-i / R C} \tag{24.6}
\end{equation*}
$$

Recall that V_{i} is the initial voltage across the capacitor when the transient phase is initiated as shown in Fig. 24.18. The voltage V_{f} is the steady-state (resting) value of the voltage across the capacitor when the transient phase has ended. The transient period is approximated as 5τ, where τ is the time constant of the network and is equal to the product $R C$.

FIG. 24.16
Solution to part (b) of Example 24.7. .

(a)

(b)

FIG. 24.17
Determining the average value of a pulse wayeform using an oscilloscope.

FIG. 24.18
Defining the parameters of Eq. (24.6).

FIG. 24.19
Example of the use of Eq. (24.6).

FIG. 24.20
Example 24.8 .

FIG. 24.21
v_{C} and i_{C} for the network in Fig. 24.20.

For the situation where the initial voltage is zero volts, the equation reduces to the following familiar form, where V_{f} is often the applied voltage:

$$
\begin{equation*}
v_{C}=V_{f}\left(1-e^{-t / R C}\right) \quad V_{i}=0 \mathrm{~V} \tag{24.7}
\end{equation*}
$$

For the case in Fig. 24.19, $V_{i}=-2 \mathrm{~V}, V_{f}=+5 \mathrm{~V}$, and

$$
\begin{aligned}
v_{C} & =V_{i}+\left(V_{f}-V_{i}\right)\left(1-e^{-t / R C}\right) \\
& =-2 \mathrm{~V}+[5 \mathrm{~V}-(-2 \mathrm{~V})]\left(1-e^{-t / R C}\right) \\
v_{C} & =-2 \mathrm{~V}+7 \mathrm{~V}\left(1-e^{-t / R C}\right)
\end{aligned}
$$

For the case where $t=\tau=R C$,

$$
\begin{aligned}
v_{C} & =-2 \mathrm{~V}+7 \mathrm{~V}\left(1-e^{-t / \tau}\right)=-2 \mathrm{~V}+7 \mathrm{~V}\left(1-e^{-1}\right) \\
& =-2 \mathrm{~V}+7 \mathrm{~V}(1-0.368)=-2 \mathrm{~V}+7 \mathrm{~V}(0.632) \\
v_{C} & =2.424 \mathrm{~V}
\end{aligned}
$$

as verified by Fig. 24.19.

EXAMPLE 24.8 The capacitor in Fig. 24.20 is initially charged to 2 V before the switch is closed. The switch is then closed.

- a. Determine the mathematical expression for v_{C}.
b. Determine the mathematical expression for i_{c}.
c. Sketch the waveforms of ψ_{C} and i_{C}.

Solutions:

a. $V_{i}=2 \mathrm{~V}$
$V_{f}($ after $5 \tau)=E=8 \mathrm{~V}$
$\tau=R C=(100 \mathrm{k} \Omega)(1 \mu \mathrm{~F})=100 \mathrm{~ms}$
By Eq. (24.6),
$v_{C}=V_{f}+\left(V_{i}-V_{f}\right) e^{-t / R C}$
$=8 \mathrm{~V}+(2 \mathrm{~V}-8 \mathrm{~V}) e^{-t / \tau}$
and

$$
v_{C}=8 \mathrm{~V}-6 \mathrm{~V} e^{-t / \tau}
$$

b. When the switch is first closed, the voltage across the capacitor cannot change instantaneously, and $V_{R}=E-V_{i}=8 \mathrm{~V}-2 \mathrm{~V}=6 \mathrm{~V}$. The current therefore jumps to a level determined by Ohm's law:

$$
I_{R_{\max }}=\frac{V_{R}}{R}=\frac{6 \mathrm{~V}}{100 \mathrm{k} \Omega}=0.06 \mathrm{~mA}
$$

The current then decays to zero amperes with the same time constant calculated in part (a), and

$$
i_{C}=0.06 \mathrm{~mA} e^{-t / \tau}
$$

c. See Fig. 24.21.

EXAMPLE 24.9 Sketch v_{C} for the step input shown in Fig. 24.22. Assume that the -4 mV has been present for a period of time in excess of five time constants of the network. Then determine when $v_{C}=0 \mathrm{~V}$ if the step changes levels at $t=0 \mathrm{~s}$.

FIG. 24.22
Example 24.9.

Solution:

$$
\begin{gathered}
V_{i}=-4 \mathrm{mV} \quad V_{f}=10 \mathrm{mV} \\
\tau=R C=(1 \mathrm{k} \Omega)(0.01 \mu \mathrm{~F})=10 \mu \mathrm{~s}
\end{gathered}
$$

By Eq. (24.6),

$$
\begin{aligned}
v_{C} & =V_{f}+\left(V_{i}-V_{f}\right) e^{-t / R C} \\
& =10 \mathrm{mV}+(-4 \mathrm{mV}-10 \mathrm{mV}) e^{-t / 10 \mu \mathrm{~s}}
\end{aligned}
$$

and

$$
v_{C}=10 \mathrm{mV}-14 \mathrm{mV} e^{-t / 10 \mu \mathrm{~s}}
$$

The waveform appears in Fig. 24.23.
Substituting $v_{C}=0 \mathrm{~V}$ into the above equation yields

$$
v_{C}=0 \mathrm{~V}=10 \mathrm{mV}-14 \mathrm{mV} e^{-t / 10 \mu \mathrm{~s}}
$$

and

$$
\frac{10 \mathrm{mV}}{14 \mathrm{mV}}=e^{-t / 10 \mu \mathrm{~s}}
$$

or

$$
0.714=e^{-t / 10 \mu s}
$$

FIG. 24.23
v_{C} for the network in Fig. 24.22.
and $\quad t=-(10 \mu \mathrm{~s}) \log _{e} 0.714=-(10 \mu \mathrm{~s})(-0.377)=3.37 \mu \mathrm{~s}$
as indicated in Fig. 24.23.

24.6 R-C RESPONSE TO SQUARE-WAVE INPUTS

The square wave in Fig: 24.24 is a particular form of pulse waveform. It has a duty cycle of 50% and an average value of zero volts, as calculated as follows:

FIG. 24.24
Periodic square wave.

$$
\begin{aligned}
\text { Duty cycle } & =\frac{t_{p}}{T} \times 100 \%=\frac{T / 2}{T} \times 100 \%=\mathbf{5 0 \%} \\
V_{\mathrm{av}} & =\frac{\left(V_{1}\right)(T / 2)+\left(-V_{1}\right)(T / 2)}{T}=\frac{0}{T}=0 \mathrm{~V}
\end{aligned}
$$

The application of a dc voltage V_{1} in series with the square wave in Fig. 24.24 can raise the base-line voltage from $-V_{1}$ to zero volts and the average value to V_{1} volts.

If a square wave such as developed in Fig. 24.25 is applied to an $R-C$. circuit as shown in Fig. 24.26, the period of the square wave can have a pronounced effect on the resulting waveform for v_{C}.

FIG. 24.25
Raising the base-line voltage of a square wave to zero volts.

FIG. 24.26
Applying a periodic square-wave pulse train to an R - C network.

For the analysis to follow, we will assume that steady-state conditions will be established after a period of five time constants has passed. The types of waveforms developed across the capacitor can then be separated into three fundamental types: $T / 2>5 \tau, T / 2=5 \tau$, and $T / 2<5 \tau$.

$T / 2>5 \tau$

The condition $T / 2>5 \pi$, or $T>10 \tau$, establishes a situation where the capacitor can charge to its steady-state value in advance of $t=T / 2$. The resulting waveforms for v_{C} and i_{C} appear as shown in Fig. 24.27. Note how

FIG. 24.27 v_{C} and i_{C} for $T / 2>5 \tau$.
closely the voltage v_{C} shadows the applied waveform and how i_{C} is nothing more than a series of very sharp spikes. Note also that the change of V_{i} from Y to zero volts during the rrailing edge resuits in a rapid discharge of v_{C} to zero volts. In essence, when $V_{i}=0$, the capacitor and resistor are in parallel and the capacitor discharges through R with a time constant equal to that encountered during the charging phase but with a direction of charge flow (current) opposite to that established during the charging phase.

$$
T / 2=5 \tau
$$

If the frequency of the square wave is chosen such that $T / 2=5 \tau$ or $T=$ 10τ, the voltage v_{C}^{α} reaches its final vafue just before beginning its discharge phase, as shown in Fig. 24.28. The voltage $v_{\mathcal{C}}$ no longer resembles the square-wave input and, in fact, has some of the characteristics of a triangular waveform. The increased time constant has resulted in a more rounded v_{C}, and i_{C} has increased substantially in width to reveal the longer charging period.

FIG. 24.28
v_{C} and i_{C} for $T / 2=5 \pi$.

$T / 2<5 \tau$

If $T / 2<5 \tau$ or $T<10 \tau$, the voltage v_{C} will not reach its final value during the first pulse (Fig. 24.29), and the discharge cycle will not return to zero volts. In fact, the initial value for each succeeding pulse changes until steady-state conditions are reached. In most instances, it is a good approximation to assume that steady-state conditions have been established in fiye cycles of the applied waveform.

FIG. 24.29
v_{C} and i_{C} for $T / 2<5 \tau$.
As the frequency increases and the period decreases, there will be a flattening of the response for v_{C} until a pattern like that in Fig. 24.30 results. Fig. 24.30 begins to reveal an important conclusion regarding the response curve for v_{C} :

FIG. 24.30
ν_{C} for $T / 2 \ll 5 \tau$ or $T \ll 10 \tau$.

Under steady-state conditions, the average value of v_{C} will equal the average value of the applied square wave.

Note in Figs. 24.29 and 24.30 that the waveform for v_{C} approaches an average value of $\mathrm{V} / 2$.

EXAMPLE 24.10 The 1000 Hz square wave in Fig. 24.31 is applied to the R - C circuit of the same figure.
a. Compare the puise width of the square wave to the time constant of the circuit.
b. Sketch v_{c}
c. Sketch i_{C}.

FIG. 24.31
Example 24.10.

Solutions:

a. $T=\frac{1}{f}=\frac{1}{1000}=1 \mathrm{~ms}$
$t_{p}=\frac{T}{2}=0.5 \mathrm{~ms}$.
$\tau=R C=\left(5 \times 10^{3} \Omega\right)\left(0.01 \times 10^{-6} \mathrm{~F}\right)=0.05 \mathrm{~ms}$
$\frac{t_{p}}{\tau}=\frac{0.5 \mathrm{~ms}}{0.05 \mathrm{~ms}}=10$ and
$t_{p}=10 \tau=\frac{T}{2}$
The result reveals that v_{C} charges to its final value in half the pulse width.
b. For the charging phase, $V_{i}=0 \mathrm{~V}$ and $V_{f}=10 \mathrm{mV}$, and

$$
\begin{aligned}
v_{C}= & V_{f}+\left(V_{i}-V_{f}\right) e^{-t / R C} \\
= & 10 \mathrm{mV}+(0-10 \mathrm{mV}) e^{-t / \tau} \\
& v_{C}=\mathbf{1 0} \mathbf{m V}\left(\mathbf{1}-e^{-t / \tau}\right)
\end{aligned}
$$

For the discharge phase, $V_{i}=10 \mathrm{mV}$ and $V_{f}=0 \mathrm{~V}$, and

$$
\begin{gathered}
v_{C}=V_{f}+\left(V_{i}-V_{f}^{\prime}\right) e^{-t / \tau} \\
=0 \mathrm{~V}+(10 \mathrm{mV}-0 \mathrm{~V}) e^{-t / \tau} \\
v_{C}=10 \mathrm{mV} e^{-t / \tau}
\end{gathered}
$$

and
The waveforin for v_{C} appears in Fig. 24.32.
c. For the charging phase at $t=0 \mathrm{~s}, V_{R}=V$ and $I_{R_{\max }}=1 / R=$ $10 \mathrm{mV} / 5 \mathrm{k} \Omega=2 \mu \mathrm{~A}$ and

$$
i_{C}=I_{\max } e^{-t / \tau}=2 \mu \mathbf{A} e^{-t / \tau}
$$

For the discharge phase, the current will have the same mathematical formulation but the opposite direction, as shown in Fig. 24.33.

EXAMPLE 24.11 Repeat Example 24.10 for $f=10 \mathrm{kHz}$.

Solution:

and
with

$$
T=\frac{1}{f}=\frac{1}{10 \mathrm{kHz}}=0.1 \mathrm{~ms}
$$

$$
\frac{T}{2}=0.05 \mathrm{~ms}
$$

$$
\tau=t_{p}=\frac{T}{2}=0.05 \mathrm{~ms}
$$

FIG. 24.33
i_{C} for the R-C network in Fig. 24.31.

In other words, the pulse width is exactly equal to the time constant of the network. The voltage ν_{C} will not reach the final value beforethe first pulse of the square-wave input returns to zero volts,

For t in the range $t=0$ to $T / 2, V_{i}=0 \mathrm{~V}$ and $V_{f}=10 \mathrm{mV}$, and

$$
v_{C}=10 \mathrm{mV}\left(1-e^{-t / \tau}\right)
$$

Recall from Chapter 10 that at $t=\tau, v_{C}=63.2 \%$ of the final value. Substituting $t=\tau$ into the equation above yields

$$
\begin{aligned}
v_{C} & =(10 \mathrm{mV})\left(1-e^{-1}\right)=(10 \mathrm{mV})(1-0.368) \\
& =(10 \mathrm{mV})(0.632)=6.32 \mathrm{mV}
\end{aligned}
$$

as shown in Fig, 24.34.

FIG. 24.34
v_{C} response for $t_{p}=\tau \equiv \tau / 2$.
For the discharge phase between $t=T / 2$ and $T, V_{i}=6.32 \mathrm{mV}$ and $V_{f}=0 \mathrm{~V}$, and

$$
\begin{aligned}
v_{C} & =V_{f}+\left(V_{i}-V_{f}\right) e^{-t / \tau} \\
& =0 \mathrm{~V}+(6.32 \mathrm{mV}-0 \mathrm{~V}) e^{-t / \tau} \\
v_{C} & =6.32 \mathrm{mV} e^{-t / \tau}
\end{aligned}
$$

with t now being measured from $t \stackrel{*}{=} T / 2$ in Fig. 24.34, In other words, for each interval in Fig. 24.34, the beginning of the transient waveform is defined as $t=0 \mathrm{~s}$. The value of ν_{C} at $t=T$ is therefore determined by substituting $t=\tau$ into the above equation and not 2τ as defined by Fig. 24.34.

Substituting $t=\tau$ gives

$$
\begin{aligned}
v_{C} & =(6.32 \mathrm{mV})\left(e^{-1}\right)=(6.32 \mathrm{mV})(0.368) \\
& =2.33 \mathrm{mV}
\end{aligned}
$$

as shown in Fig. 24.34.

For the next interval, $V_{i}=2.33 \mathrm{mV}$ and $V_{f}=10 \mathrm{mV}$, and

$$
\begin{aligned}
v_{C} & =V_{f}+\left(V_{i}-V_{f}\right) e^{-t / \tau} \\
& =10 \mathrm{mV}+(2.33 \mathrm{mV}-10 \mathrm{mV}) e^{-t / \tau} \\
v_{C} & =10 \mathrm{mV}-7.67 \mathrm{mV} e^{-t / \tau}
\end{aligned}
$$

At $t=\tau$ (since $t=T=2 \tau$ is now $t=0 \mathrm{~s}$ for this interval),

$$
\begin{aligned}
v_{C} & =10 \mathrm{mV}-7.67 \mathrm{mV} e^{-1} \\
& =10 \mathrm{mV}-2.82 \mathrm{mV} \\
v_{C} & =7.18 \mathrm{mV}
\end{aligned}
$$

as shown in Fig. 24.34.
For the ciischarge interval, $V_{i}=7.18 \mathrm{mV}$ and $V_{f}=0 \mathrm{~V}$, and

$$
\begin{aligned}
v_{C} & =V_{f}+\left(V_{i}-V_{f}\right) e^{-t / \tau} \\
= & =0 V+(7.18 \mathrm{mV}-0) e^{-t / \tau} \\
v_{C} & =7.18 \mathrm{mV} e^{-t / \tau}
\end{aligned}
$$

At $t=\tau$ (measured from 3τ in Fig. 24.34),

$$
\begin{aligned}
v_{C} & =(7.18 \mathrm{mV})\left(e^{-1}\right)=(7.18 \mathrm{mV})(0.368) \\
& =2.64 \mathrm{mV}
\end{aligned}
$$

as shown in Fig. 24.34.
Continuing in the same manner, we generate the remaining waveform for ν_{C} as depicted in Fig. 24.34. Note that repetition occurs after $t=8 \tau$, and the waveform has essentially reached steady-state, conditions in a period of time less than 10τ, or five cycles of the applied square wave.

A closer look reveals that both the peak and the lower levels continued to increase until steady-state conditions were established. Since the exponential waveforms between $t=4 T$ and $t=5 T$ have the same time constant; the average value of v_{C} can be determined from the steadystate 7.31 mV and 2.69 mV levels as follows:

$$
V_{\mathrm{av}}=\frac{7.31 \mathrm{mV}+2.69 \mathrm{mV}}{2}=\frac{10 \mathrm{mV}}{2}=5 \mathrm{mV}
$$

which equals the average value of the applied signal, as stated earlier in this section.

We can use the results in Fig. 24.34 to plot i_{C}. At any instant of time,

$$
v_{i}=v_{R}+v_{C} \quad \text { or } \quad v_{R}=v_{i}-v_{C}
$$

and

$$
i_{R}=i_{C}=\frac{v_{i}-v_{C}}{R}
$$

At $t=, 0^{+}, v_{C}=0 \mathrm{~V}$, and

$$
i_{R}=\frac{v_{i}-v_{C}}{R}=\frac{10 \mathrm{mV}-0}{5 \mathrm{k} \Omega}=2 \mu \mathrm{~A}
$$

as shown in Fig. 24.35.
As the charging process proceeds, the cúrrent i_{C} decays at a rate determined by

$$
i_{C}=2 \mu \mathrm{~A} e^{-t / \tau}
$$

At $t=\pi$,

$$
\begin{aligned}
i_{C} & =(2 \mu \mathrm{~A})\left(e^{-\tau / \tau}\right)=(2 \mu \mathrm{~A})\left(e^{-1}\right)=(2 \mu \mathrm{~A})(0.368) \\
& =0.736 \mu \mathrm{~A}
\end{aligned}
$$

as shown in Fig. 24.35.

FIG. 24.35
i_{C} response for $t_{p_{2}}=\tau=T / 2$.

For the trailing edge of the first pulse, the voltage across the capacitor cannot change instantaneously, resulting in the following when $v_{i} \hat{\text { drops }}$ to zero volts:

$$
i_{C}=i_{R}=\frac{v_{t}-v_{C}}{R}=\frac{0-6.32 \mathrm{mV}}{5 \mathrm{k} \Omega}=-1.264 \mu \mathrm{~A}
$$

as illustrated in Fig. 24.35. The current then decays as determined by

$$
i_{C}=-1.264 \mu \mathrm{~A} e^{-t / \tau}
$$

and at $t=\tau_{i}$ (actually $t^{\overrightarrow{2}}=2 \tau$ in Fig. 24.35);

$$
\begin{aligned}
i_{C} & =(-1.264 \mu \mathrm{~A})\left(e^{-\tau / \tau}\right)=(-1.264 \mu \mathrm{~A})\left(e^{-1}\right) \\
& =(-1.264 \mu \mathrm{~A})(0.368)=-0.465 \mu \mathrm{~A}
\end{aligned}
$$

as shown in Eig. 24.35.
At $t=T(t=2 \tau), v_{C}=2.33 \mathrm{mV}$, and v_{i} refurns to 10 mV , resulting in

$$
i_{C}=i_{R}=\frac{v_{i}-v_{C}}{R}=\frac{10 \mathrm{mV}-2.33 \mathrm{mV}}{5 \mathrm{k} \Omega}=1.534 \mu \mathrm{~A}
$$

The equation for the decaying current is now

$$
i_{C}=1.534 \mu \mathrm{~A} e^{-t / \tau}
$$

and at $t=\tau$ (actually $t=3 \tau$ in Fig. 24.35),

$$
i_{C}=(1.534 \mu \mathrm{~A})(0.368)=0.565 \mu \mathrm{~A}
$$

The process continues until steady-state conditions are reached at the same time they were attained for v_{C}. Note in Fig. 24.35 that the positive peak current decreased toward steady-state conditions while the negative peak became more negative. Note that the current waveform becomes symmetrical about the axis when steady-state conditions are established. The result is that the net average current over one cycle is zerd, as it should be in a series $R-C$ circuit. Recall from Chapter' 10 that the capacitor under dc steady-state conditions' can be replaced by an open-circuit equivalent, resulting in $I_{C}=0 \mathrm{~A}$.

Although both examples just provided started with an uncharged capacitor, the same approach can be used effectively for initial conditions. Simply substitute the initial voltage on the capacitor as V_{i} in Eq. (24.6) and proceed as before.

24.7 OSCILLOSCOPE ATTENUATOR AND COMPENSATING PROBE

The $\times 10$ attenuator probe used with oscilloscopes is designed tọ reduce the, magnitude of the input voltage by a factor of 10 . If the input impedance to a scope is $1 \mathrm{M} \Omega$, the $\times 10$ attenuator probe will have an internal resistance of $9 \mathrm{M} \Omega$, as shown in Fig. 24.36.

FIG. 24.36
$\times 10$ attenuator probe.

Applying the voltage divider rule gives

$$
V_{\text {scope }}=\frac{(1 \mathrm{M} \Omega)\left(V_{i}\right)}{1 \mathrm{M} \Omega+9 \mathrm{M} \Omega}=\frac{1}{10} V_{i}
$$

In addition to the input resistance, oseilloscopes have some internal input capacitance, and the probe adds an additional capacitance in parallel with the oscilloscope capacitance, as shown in Fig. 24.37. The probe capacitance is typically about 10 pF for a $1 \mathrm{~m}(3.3 \mathrm{ft})$ cable, reaching about 15 pF for a $3 \mathrm{~m}(9.9 \mathrm{ft})$ cable. The total input capacitance is therefore the sum of the two capacitive elements, resulting in the equivalent network in Fig. 24.38.

FIG. 24.37
Capacitive elements present in an attenuator probe arrangement.

FIG. 24.38
Equivalent network in Fig. 24.37.

FIG. 24.39
Thévenin equivalent for C_{i} in Fig. 24.38.

For the analysis to follow, let us determine the Thévenin equivalent circuit for the capacitor C_{i} :

$$
\begin{aligned}
& E_{\text {Th }}=\frac{(1 \mathrm{M} \Omega)\left(V_{l}\right)}{1 \mathrm{M} \Omega+9 \mathrm{M} \Omega}=\frac{1}{10} V_{i} \\
& R_{\text {Th }}=9 \mathrm{M} \Omega \| 1 \mathrm{M} \Omega=0.9 \mathrm{M} \Omega
\end{aligned}
$$

The Thévenin retwork is shown in Fig. 24.39.
For $\nu_{i}=200 \mathrm{~V}$ (peak),

$$
E_{T h}=0.1 v_{i}=20 \mathrm{~V}(\text { peak })
$$

\therefore and for $v_{C}, V_{f}=20 \mathrm{~V}$ and $V_{i}=0 \mathrm{~V}$, with

$$
\tau=R C=\left(0.9 \times 10^{6} \Omega\right)\left(30 \times 10^{-12} \mathrm{~F}\right)=27 \mu \mathrm{~s}
$$

For an applied frequency of 5 kHz ,

$$
T=\frac{1}{f}=0.2 \mathrm{~ms} \quad \text { and } \quad \frac{T}{2}=0.1 \mathrm{~ms}=100 \mu \mathrm{~s}
$$

with $5 \tau=135 \mu \mathrm{~s}>100 \mu \mathrm{~s}$, as shown in Fig. 24.40, clearly producing a severe rounding distortion of the square wave and a poor representation of the applied signal.

To improve matters, a variable capacitor is often added in parallel with the resistance of the attenuator, resulting in a compensated attenuator probe such as the one shown in.Fig. 24.41. In Chapter 22, it was demonstrated that a square wave can be generated by a summation of sinusoidal signals of particular frequency and amplitude. If we therefore design a network such as the one shown in Fig. 24.42 that ensures that $V_{\text {scope }}$ is $0.1 v_{i}$ for any frequency, then the rounding distortion is removed, and $V_{\text {scope }}$ has the same appearance as v_{i}.

Applying the voltage divider rule to the network in Fig. 24.42 gives

$$
\begin{equation*}
\mathbf{V}_{\text {scope }}=\frac{\mathbf{Z}_{s} \mathbf{V}_{i}}{\mathbf{Z}_{s}+\mathbf{Z}_{p}} \tag{24.8}
\end{equation*}
$$

If the parameters are chosen or adjusted such that

$$
\begin{equation*}
R_{p} C_{p}=R_{s} C_{s} \tag{24.9}
\end{equation*}
$$

the phase angle of Z_{s} and Z_{p} will be the same, and Eq. (24.8) will reduce to

$$
\begin{equation*}
\mathbf{V}_{\text {scope }}=\frac{R_{s} \mathbf{V}_{i}}{R_{s}+R_{p}} \tag{24.10}
\end{equation*}
$$

which is insensitive to frequency since the capacitive elements have dropped out of the relationship.

In the laboratory, simply adjust the probe capacitance using a standard or known square-wave signal until the desired sharp corners of the square wave are obtained. If you avoid the calibration step, you may make a rounded signal look square since you assumed a square wave at the point of measurement.
< Too much capacitance results in an overshoot effect, whereas too little continues to show the rounding effect.

24.8 APPLICATION

TV Remote

The TV remote works in many ways like a garage door opener or car alarm transmitter. There is no visible connection between the transmitter and the receiver, and each transmitter is linked to its receiver with a special code. The only major difference is that the TV remote uses an infrared frequency, while the other two use a much lower rádio frequency.

The TV remote in Fig. 24.43(a) has been opened to reveal the internal construction of its keypad and face in Fig. 24.43(b). The three components in Fig. 24.43(b) are lined up to show how the holes in the cover

FIG. 24.40
The scope pattern for the conditions in Fig. 24.38 with $v_{i}=200 \mathrm{~V}$ peak.

FIG. 24.41
Commercial compensated $10: 1$ attenuator probe. (Courtesy of Tektronix, Inc.)

FIG. 24.42
Compensated attenuator and input impedance to a scope, including the cable capacitance.

FIG. 24.43
TV remote: (a) external appearance; (b) internal corisiruction; (c) carbon keypads;
(d) entarged view of S31 keypad.
match the actual keys in the switch membrane and where each button on the keypad hits on the face of the printed circuit board. Note on the printed circuit board that there is a black pad to match each key on the "membrane."The back side of the switch membrane in Fig. 24.43(c) shows the soft carbon contacts that make contact with the carbon contacts on the printed board when the buttons are depressed. An enlarged view of one of the contacts (S31) in Fig. 24.43(c) is shown in Fig. 24.43(d) to illustrate the separation between circuits and the pattern used to ensure continuity when the solid round carbon pad at the bottom of the key is put in place.

All the connections established when a key is pressed are passed on to a relatively large switch-matrix-encoder IC chip appearing on the back side
of the printed circuit board as shown in Fig. 24.44. For the pad (S31) in Fig. 24.43(d), three wires of the matrix appearing in Fig. 24.43(b) are.connected when the corresponding key (number 5) is pressed. The encoder then reacts to this combination and sends out the appropriate signal as an infrared (IR) signal from the IR LED appearing at the end of the remote control, as shown in Fig. 24.43(b) and Fig. 24.44. The second, smaller LED (red on actual unit) appearing at the top of Fig. 24.43(b) blinks during transmission. Once the batieries are inserted, the CMOS electronic circuitry that controls the operation of the remote is always on. This is possible only because of the very low power drain of CMOS circuitry. The power (PWR) button is used only to turn the TV on and activate the receiver.

The signal sent out by the majority of remotes is one of the two types appearing in Fig. 24.45. In each case there is a key pulse to initiate the signal sequence and to inform the receiver that the coded signal is about to arrive. In Fig. 24.45(a), a 4 bit binary-coded signal is transmitted using pulses in specific locations to represent the "ones" and using the absence of a pulse to represent the "zeros." That coded signal can then be interpreted by the receiver unit and the proper operation performed. In Fig. 24.45(b), the signal is frequency controlled. Each key has a different frequency associated with it. The result is that each key has a specific transmission frequency. Since - each TV receiver responds to a different pulse train, a remote must be coded for the TV under control. There are fixed program remotes that can be used with only one TV. Then there are simart remotes that are preprogrammed internally with a number of remote control codes. You have to set up remotes of this type according to the TV you have, using a three-digit coding system accessed through the TV setup screen. Learning remotes are those that can use the old remote to learn the code and then store it for future use. In this case, one remote is set directly in front of the qther, and the information is transferred from one to the other when both are energized. Remotes are also available that are a combination of the last two,

The remote in Fig. 24.43 uses four AAA batteries in series for a total of 6 V . It has its own local crystal oscillator separate from the IC, as shown by the discrete elements to the top right and midleft of the printed circuit board in Fig. 24:43(c). The crystal itself, which is relatively large

FIG. 24.44
Back side of TV remote in Fig. 24.43.

(a)

(b)

FIG. 24.45
Signal transmissión: (a) pulse train; (b) variation.

FIG. 24.46
Range and coverage arc for TV remote in Fig. 24.43.
compared to the other elements, appears on the other side of the board just above the electrolytic capacitor in Fig. 24.44. The oscillator generates the pulse signal required for proper IC operation. Note how flush most of the discrete elements are in Fig. 24.43(b) and the rather large electrolytic capacitor on the back of the printed circuit board in Fig. 24.44. The specifications on the unit give it a range control of 25 ft with a 30° coverage arc as shown in Fig. 24.46. The arc coverage of your unit can easily be tested by pointing if directly at the TY and then moving it in any direction until it no longer controls the TV.

24.9 COMPUTER ANALYSIS PSpice

R-C Response Our analysis begins with a verification of the results of Example 24.10, which examined the response of the series R - C circuit appearing on the schematic in Fig. 24.47. The source is one used in Chapters

FIG. 24.47
Using PSpice to verify the results of Example 24.10.
10 and 11 to replicate the action of a switch in series with a dc source. The defining attributes for the pulse waveform are repeated for convenience in Fig. 24.48. Recall that the PW was made long enough so that the full transient period could be examined. In this analysis, the pulse width is adjusted to permit viewing the transient behavior of an $R-C$ network between changing levels of the applied pulse. Initially the PW is set at 10 times the time constant of the network so that the full transient response can occur between changes in voltage level. The time constant of the network is $\tau=$ $R C=(5 \mathrm{k} \Omega)(0.01 \mu \mathrm{~F})=0.05 \mathrm{~ms}$, resulting in a PW of 0.5 ms in Fig. 24.47. To establish a square-wave appearance, the period was chosen as twice the pulse width or 1 ms as shown in the VPulse listing.

In the Simulation Settings dialog box, select Time Domain(Transient) to get a response versus time. Select the Run to time at 2 ms so that two full cycles result. Leave the Start saving data after on the default value of 0 s , and set the Maximum step size at $2 \mathrm{~ms} / 1000=2 \mu \mathrm{~s}$. After -simulation, apply Trace-Add Trace-I(C)-OK, and the bottom plot in Fig. 24.49 is the result. Note that the maximum current is $2 \mu \mathrm{~A}$ as determined by $I_{C_{\max }}=10 \mathrm{mV} / 5 \mathrm{k} \Omega$, and the full transient response appears within each pulse. Note also that the current dropped below the axis to reveal a change in direction when the applied voltage dropped from the 10 mV level to 0 V . Through Plot-Add Plot to Window-Trace-Add Trace-V(Vpulse:+)-OK-Trace-Add Trace-V(C:1)-OK, the plots of the applied voltage and the voltage across the capacitor can be displayed in the upper graph in Fig. 24:49. First, select the upper graph in Fig. 24,49 so that you can move the SEL \gg, and then select the Toggle cursor key. Now-left-click on $\mathbf{V}(\mathbf{C}: 1)$ at the bottom right of the graph and left-click again to set a cursor on the graph. Setting the cursor at five time constants reveals that the transient voltage has reached 10 mV . Setting the right-click cursor at ten time constants reveals that V_{C} has also reached the 10 mV level.

FIG. 24.49
Plot of $v_{\text {pulse }} v_{C}$, and i_{C} for the circuit in Fig. 24,47.
Setting $t_{p}=\tau=T / 2$ The parameters of the source will now be modified by changing the frequency of the pulse waveform to 10 kHz with a period of 0.1 ms and a pulse width of 0.05 ms . For Vpulse, the changes are $\mathbf{P W}=0.05 \mathrm{~ms}$ and $\mathbf{P E R}=0.1 \mathrm{~ms}$. The time constant of the network remains the same at 0.05 ms , so the pulse width equals the time constant of the circuit. The result is that it will take a number of pulses before the voltage across the capacitor reaches its final value of 10 mV . Under the Simulation Settings, change the Run to time to $0.5 \mathrm{~ms}=500 \mu \mathrm{~s}$, or

FIG. 24.50
Plot of v_{C} for the circuit in Fig. 24.47 with $t_{p}=\tau=T / 2$.
five cycles of the applied voltage. Change the Maximum step size to ${ }^{2}$ $500 \mu \mathrm{~s} / 1000=500 \mathrm{~ns}=0.5 \mu \mathrm{~s}$. Under the SCHEMATIC1 window, select Trace-Add Trace-V(C:1)-OK to obtain the transient voltage across the capacitor. Select Trace-Add Trace-V(Vpulse:+)-OK to place the applied voltage on the same screen, Note in the resulting plots in Fig. 24.50 that the voltage builds up from 0 V until it appears to reach a fairly steady state after $400 \mu \mathrm{~s}$. At 400μ s, use a left cursor (A1) to find the minimum point with 2.69 mV resulting-an exact match with the longhand calculation of Example 24.11 at 2.69 mV . At $450 \mu \mathrm{~s}$, the rightclick cursor (A2) provides a level of 7.26 mV , which is again a close match with the calculated level of 7.31 mV .

PROBLEMS

SECTION 24.2 Ideal versus Actual

1. Determine the following for the pulse waveform in Fig. 24,51:
a. whether it is positive- or negative-going
b. base-line voltage

FIG: 24.51
Problems 1, 8, and 12,
c. pulse width
d. amplitude
e. \% tilt
f. prf
g. duty cycle -
2. Repeat Problem 1 for the pulse waveform in Fig. 24.52.

FIG. 24.52
Problems 2 and 9.
3. Repeat Problem 1 for the pulse waveform in Fig. 24.53 .

FIG. 24.53
Problems 3, 4, 10, and 13.
4. Determine the rise and fall times for the waveform in Fig. 24.53.
5. Sketch a pulse waveform that has a base-line voltage of -5 mV , a pulse width of $2 \mu \mathrm{~s}$, an amplitude of 15 mV , a 10% tilt, a period of $10 \mu \mathrm{~s}$, and vertical sides and is positive-going.
6. For the waveform in Fig. 24.54, established by straight-line approximations of the original waveform:
a. Determine the rise time.
b. Find the fall time.
c. Find the pulse width.
d. Calculate the frequency.

FIG. 24.54
Problems 6 and 14.
7. For the waveform in Fig. 24.55:
a. Determine the period.
b. Find the frequency.
c. Find the maximum and minimum amplitudes.

FIG. 24.55

SECTION 24.3 Pulse Repetition Rate and Duty Cycle

8. Determine the pulse repetition frequency and duty cycle for the waveform in Fig. 24.51.
9. Determine the pulse repetition frequency and duty cycle for the waveform in Fig. 24.52.
10. Determine the pulse repetition frequency and duty cycle for the waveform in Fig. 24.53.

SECTION 24.4 Average Value

11. For the waveform in Fig. 24.56, determine the
a. period.
b. pulse width.
c. pulse repetition frequency.
d. average value.
e. effective value.

FIG. 24.56
Problem 11.
12. Determine the average value of the periodic pulse waveform in Fig. 24.51.?
13. Ta the best accuracy possible, determine the ayerage value of the waveform in Fig. 24.53.
14. Determine the average value of the waveform in Fig. 24.54.
15. Determine the average value of the periodic pulse train in Fig. 24.55

SECTION 24.5 Transient R-C Networks

16. The capacitor in Fig. 24.57 is initially charged to $5^{\circ} \mathrm{V}$, with the polarity indicated in the figure. The switch is then closed at $t=0 \mathrm{~s}$.
a. What is the mathematical expression for the voltage v_{c} ?
b. Sketch \boldsymbol{v}_{C} versus t.
c. What is the mathematical expression for the current i_{C} ?
d. Sketch i_{C} versus t.

FIG. 24.57
Problem 16.
17. For the input voltage v_{l} appearing in Fig. 24.58, sketch the waveform for v_{0}. Assume that steady-state conditions were established with $v_{i}=8 \mathrm{~V}$.

FIG. 24.58
Problem 17.
18. The switch in Fig. 24.59 is in position 1 until steady-state conditions are established. Then the switch is moved (at $t=$ $0 \mathrm{~s})$ to position 2: Sketch the waveform for the voltage v_{C}.

FIG. 24.59
Problems 18 and 19.
19. Sketch the waveform for i_{C} for Problem 18.

SECTION 24.6 R-C Response to Square-Wave Inputs

20. Sketch the voltage v_{C} for the network in Fig. 24.60 due to the square-wave input of the same figure with a frequency of
a. 500 Hz .
b. 100 Hz .
c. 5000 Hz .

FIG. 24.60.
21. Sketch the curreptic for each frequency in Problem 20.
22. Sketch the response v_{c} of the network in Fig. 24.60 to the square-wave input in Fig 24,61.

FIG. 24.61
Problem 22.
23. If the capacitor in Fig. 24.60 is initially charged to 20 V , sketch the response u_{C} to the same input signal (in- Fig. 24.60) at a frequency of 500 Hz .
24. Repeat Problem 23 if the capacitor is initially charged to $-10^{\prime} \mathrm{V}$.

SECTION 24.7 Oscilloscope Attenuator and Compensating. Probe

25. Given the network in Fig. 24.42 with $R_{p}=9 \mathrm{M} \Omega$ and $R_{s}=$ $1 \mathrm{M} \Omega$, find $\mathrm{V}_{\text {scope }}$ in polar form if $C_{p}=3 \mathrm{pF}, C_{s}=18 \mathrm{pF}$, $C_{c}=9 \mathrm{pF}$, and $v_{i}=\sqrt{2}(100) \sin 2 \pi 10,000 t$. That is, determine $\mathbf{Z}_{\text {s }}$ and \mathbf{Z}_{p}, substitute into Eq. (24:8), and compare the results obtained with Eq. (24.10). Is it verified that the phase angle of \mathbf{Z}_{s} and \mathbf{Z}_{p} is the same under the condition $R_{p} C_{p}=R_{s} C_{s}$?
26. Repeat Problem 25 at $\omega=10^{5} \mathrm{rad} / \mathrm{s}$.

SECTION 24.9 Computer Analysis

PSpice

27. Using schematics, obtain the waveforms for v_{C} and i_{C} for the network in Fig. 24.60 for a frequency of 1 kHz .
${ }^{* 28}$. Using schematics, place the waveforms of $v_{p} v_{C}$ and i_{C} on the same printout for the network in Fig. 24.60 at a frequency of 2 kHz .
*29. Using schematics, obtain the waveform appearing on the scope in Fig. 24.37 with a 20 V pulse input at a frequency of 5 kHz .
*30. Place a capacitor in parallel with R_{p} in Fig. 24.37 that will establish an in-phase relationship between $v_{\text {scope }}$ and v_{l}. Using schematics, obtain the waveform appearing on the scope in Fig. 24.37 with a 20 V pulse input at a frequency of 5 kHz .

GLOSSARY

Actual (true, practical) pulse A pulse waveform having a leading edge and a trailing edge that are not vertical, along with other distortion effects such as tilt, ringing, or overshoot.
Amplitude of a pulse waveform The peak-to-peak value of a pulse waveform.
Attenuator probe Ascope probe that will reduce the strength of the signal applied to the vertical chamel of a scope:
Base-line voltage The voltage level from which a pulse is initiated.
Compensated attenuator probe A scope probe that can reduce the applied signal and balance the effects of the input capacjtance of a scope on the signal to be displayed.
Duty cycle Factor that reveals how much of a period is encompassed by the pulse waveform.
Fall time (t_{f}) The time required for the trailing edge of a pulse waveform to drop from the 90% to the 10% level.
Ideal pulse A pulse waveform characterized as having vertical sides, sharp corners, ànd a flat peak response.
Negative-going pulse A pulse that increases in the negative direction from the base-line voltage.
Periodic pulse train A sequence of pulses that repeats itself after a specific period of time.
Positive-going pulse \AA pulse that increases in the positive direction from the base-line voltage.
Pulse repetition frequency (pulse repetition rate) The frequency of a periodic pulse train.
Pulse train A series of pulses that may have varying heights and widths.
Pulse width $\left(t_{p}\right)$ The pulse width defined by the 50% voltage level.
Rise time (t_{r}) The time required for the leading edge of a pulse waveform to travel from the 10% to the 90% level.
Square wave A periodic pulse waveform with a 50% duty cycle.
Tilt (droop, sag) The drop in peak value across the pulse width of a pulse waveform.

