CHAPTER |

1. INTRODUCTION

The word "computer” comes from the word
"compute” which means to calculate. So a compuler is
normally considered to be a calculating device that can

* perform arithmetic operations at enormous speed.

In fact, the original objective for inventing the
computer was lo create a fast calculating machine. But
more than 80% of the work done by computers today is of
non-mathematical or non-numerical nature. Hence, to
define a computer merely as calculating device is to ignore
over 80% of its work.

More accurately, a computer may be defined as a
device that operates upon information or data. Data can be
anythirig like bio-data of various applicants when the
computer is used for recruiting personnel, or the marks
obtained by various students in various subjects when the
computer is used o prepare results, or the details (name,
age, sex, elc.) of various passengers when the computer is
employed for making airline or railway reservations, or
numbers of different types in case of application of
computers for scientific research problems, elc.

Thus, data comes in various shapes and sizes

depending upon the type of computer application. A
compuler can store, process, and retrieve data as and when
desired. The fact that computers process data is so
fundamental that many people have started calling it a data
processor.

The name data processor is more inclusive because
modem compuiers not only compute in the usual sense but
also perform other functions with the data that flow to and
from them. For examgle, data processors may gather data
from various incoming sources, merge (process of mixing
or putting together) them all, sort (process of arranging in
some scquence - ascending or descending) them in the
desired order and finally print them in the desired format
None of these operations involve the arithmetic operations
normally associated with a computing device but the term
computer is often applied anyway,

CHARACTERISTICS OF COMPUTERS

1. Speed. A computer is a very fast device. It can
perform in a few seconds the amount of work that a human
being can do in an entire year - if he worked day and night
and did rothing else. To put it in a different manner, a

2 Computer F unda;nemals

computer does in one minule what would lake a man his
entire lifetime.

While talking about the speed of a computer, we do
not alk in terms of seconds or even milliseconds (10~3).
Our units of speed are the microseconds (107¢), the
nanoseconds (1079), and even the picoseconds (10—12). A
powerful computer is capable of performing about 3 o 4
million simple arithmetic operations per second.

2. Accuracy. The accuracy of a computer is consistently
high and the degree of accuracy of a particular computer
depends upon its design. But for a particular computer, each
and every calculation is performed with the same accuracy.

Errors can occur in.a computer, but these are mainly
due 1o human rather than technological weaknesses, that is,
duc to imprecise thinking by the programmer (a person who
wriles instructions for a computer to solve a particular
problem) or due o inaccurate data.

3. Diligence. Unlike human beings, 2 computer is free from
monotony, tiredness, lack of concentration, etc., and hence
can work for hours together without creating any error and
without grumbling. Due to this property, computers
obviously score over-human beings in doing routine type of
jobs which require great accuracy. If ten million
calculations have to be performed, a computer will perform
the ten millionth calculation with exacily the same accuracy
and speed as the first one.

4. Versatility. Versatility is one of the most wonderful
things about the computer, One moment, it is preparing the
results of particular examination, the next moment it is busy
preparing electricity bills, and- in between, it may be
helping an office secrelary to trace an imporiant létier in
seconds. All that is required to change its talent is to slip in
a new program (a sequence of insuuctions for the
computer) into it. Briefly, a computer is capable of
performing almost any task provided that the task can be
reduced to a series of logical steps,

5. Power of Remembering. As a human being acquires
new knowledge, the brain subconsciously selects what it
feels to be important and worth retaining in its memory,
and relegates unimportant details to the back of the mind or
just forgets them. With computers, this is not the case. A
compuler can store- and vecall any amount of information
because of its secondary storage (a type of detachable
memory) capability. Every piece of information can be
retained as long as desired by the user and can be recalled
as and when required. Even after several years, the
information recalled will be as accurate as on the day when
it was fed to the computer. A computer forgets or looses

certain information only when it is asked to do so. So it is
entirely upto the user to make a computer retain or forget a
particular information.

6. No 1.Q. A computer is not a magical device. Tt can only
perform tasks that a human being can. The difference is that
it performs these tasks with unthinkable speed and
accuracy. It possesses no intelligence of its own. Its L.Q. is
zero, at least till today. It has to be told what to do and in
what sequence. Hence, only the user can determine what
tasks a computer will perform. A computer cannot lake ils
own decision in this regard.

7. No Feelings. Computers are devoid of emotions. They
have no feelings and no instincts because they are machine.
Although men have succecded in building a memory for the
computer, but no computcr possesses the equivalent of a
human heart and scul. Based on owr feelings, taste,
knowledge, and experience, we often make cerain
judgements in our day to day life. But compulers cannot
make such judgements on their own. Their judgement is
based on the instructions given 1o them in the form of
programs that are written by us. They arc only as good as
man makes and uses them.

THE EVOLUTION OF COMPUTERS

Necessity is the mother of invention, The saying
holds true for computers also because computers were
invented as a result of man's search for fast and accurate
calculating devices.

The earliest device that qualifies as a digital
computer is the "abacus” also known as "sorcban". This
device permits the users to represent numbers by the
position of beads on a rack. Simple addition and subtraction
can be carried out rapidly and efficiently by positioning the
beads appropriately. Although, the abacus was invented
around 600 B.C., it is inleresting 10 note that it is still used
in the Far East and its users can calculate at amazing

speeds.

Another manual calculaung device was John
Napicr's bone or cardboard multiplication calculator. It was
designed in the early 17th century and its upgraded versions
were in use even around 1890,

The first mechanical adding machine was invented
by Blaise Pascal in 1642. Later, in the year 1671, Baron
Gotfried Wilhelm von Leibniz of Germany invented the
first calculator for multiplication. Keyboard machines
originaled in the United States around 1880 and are
extensively used even today. Around this period only,
Herman Hollerith came up with the concept of punched

Introduction 3

o

Figure 1.1. A thirtecnth century abacus.

cards which are extensively used as input media in modern
digital computers. Business machines and calculators made
their appearance in Europe and America towards the end of
the nineteenth century,

\

Charles Babbage, a nineteenth cenury Professor at
Cambridge University, is considered to be the father of
moderm digital computers. During his period, mathematical
and statistical tables were prepared-by a group of clerks.

Even the utmost care and precautions could not eliminate

human errors. Babbage had to spend several hours checking
these tables. Soon he became dissatisfied and exasperated
with this type of monotonous job. The result was that he
started thinking to build a machine which could compute
tables guaranteed to be error-free. In this process, Babbage
designed a "Difference Engine” in the year 1822 which
could produce reliable tables. In 1842, Babbage came out
with his new idea of Analytical Engine that was intended to
be completely automatic. It was 10 be capable of
performing the basic arithmetic functions for an
mathematical problem and it was to do so at an average
speed of 60 additions per minute. Unfortunately, he was
unable to produce a working model of this machine mainly
because the precision engineering required to manufacture
the machine was not available during that period. However,
his efforts established a number of principles which have
been shown to be fundamental to the design of any digital
computer. We will now discuss about some of the well
known early computers. ’

THE MARK I COMPUTER (1937-44)

Also known as Automatic Sequence Controlled
2-A

calculator, this was the first fully automatic calculating
machine designed by Howard A. Aiken of Harvard
University in collaboration with IBM (International
Business Machines) corporation. Its design was based on
the techniques already developed for punched card
machinery.

Although this machine proved 10 be extremely
reliable, it was very complex in design and huge in size. It
used over 3000 electrically actuated switches to control its
operations and was approximately 50 feet long and 8 fect
high. It was capable of performing five basic arithmetic
operations : addition, subtraction, multiplication, division.
and table reference. A number as big as 23 decimal digits
could be used in this machine. It took approximately 0.3
seccond to add two numbers and 4.5 seconds for
multiplication of two numbers. Hence, the machine was
very slow as compared to todays computers.

It was basically an electro-mechanical device since
both mechanical and clectronic components were used in its
design. Although its operations were nol controlled
electronically, Aiken's machine is often classified as
computer because 1ts instructions, which were entered by
means of punched paper tape, could be altered.

THE ATANASOFF - BERRY COMPUTER (1939-42)

This elecromic machine was developed by Dr. John
Atanasoff to solve certain mathematical equations. It was
called the Atanasoff - Berry Computer, or ABC, after its
inventor's name and his assistant, Clifford Berry It uscd 45
vacuum tubes for internal logic and capacitors for storage.

Computer Fundamentals

THE ENIAC (1943-46)

The Electronic Numerical Integrator - And
Calculator (ENIAC) was the first all electronic computer, It
was constructed at the Moore School of Engineering of the
University of Pennsylvania, U.S.A by a design team led by
Professors J. Presper Eckert and John Mauchly.

ENIAC was developed as a result of military need.
It took up the wall space in a 20 X 40 square feet room and
used 18,000 vacuum tubes. The addition of two numbers
was-achieved in 200 microseconds, and multiplication in
2000 microseconds.

Although, much faster in speed as compared 10
Mark 1 computer, ENIAC had two major shortcomings : it
could store and Pjanipulam only d very limited amount of
information, and its programs were wired on boards. These
limitations made it difficult to detect errors and 10 change
the programs. Hence its use was limited. However,
whatever be the shoricomings of ENIAC, 1t represented an
impressive teat of electronic engineering and was used for
many years 10 solve ballistic problems.

THE EDVAC (1946-52)

The operation of ENIAC was seniously handicapped
by the witing board. This problem was later overcome by
the new concept of "stored program” develaped by Dr. John
Von Neumann. The basic idea behind the stored program
concept is that a sequence of instructions as well as data
can be stored in the memory of ithe computer for the
purpose of automatically directing the flow of operations.
The stored program featre considerably influenced the

. development of modemn digital computers and because of

this feature we often refer o modem digital computers as
stored program digital computers. The Electronic Discrete
Varnabie Automatc Compuier (EDVAC) was designed on
stored program concept. Von Newinann has also got a share

- of the credit for introducing the idea of storing both

instryctions and data in the binary form (a systam that uses
oaly two digits - 0 & 1 to represent all characters) instead
of the decimal numbers or human readable words.

THE EDSAC (1947-49)

Almost simultaneously with EDVAC of U.S.A., the

Britishers developed the Eleotronic Delay Storage

Automatic Calculator (EDSAC). The machine executed its
first program in May 1949. In this machine, addition
operation was . accomplished in 1500 microseconds, and
multipbication operation in 4000 microseconds. The
machine was developed by a group of scientists headed by
Professor Maurice Wilkes at the Cambridge University

Mathematical Laboratory.

MANCHESTER MARK 1 (1948)

This computer was a small experimental machine
based on the stored program concept. It was designed at
Manchester University by a group of scicntists headed by
Professor M.H.A. Newman. Its slorage capacity was only
32 words, each of 31 binary digits. This was too limited to
store data and instructions. Hence, the Manchester Mark [
was hardly of any practical use.

THE UNIVAC I (1951)

The Universal Automatic Computer (UNIVAC) was
the first digital compuier which was not “one of a kind".
Many UNIVAC machines were produced, the first of which
was installed in the Census Bureau in 1951 and was used
continuously for 10 yecars. The first business use of a
computer, a UNIVAC 1, was by General Electric
Corporation in 1954,

In 1952, the International Business Machines (IBM)
Corporation introduced the 701 commercial computer. In
rapid succession, improved models of the UNIVAC I and
other 700-series machines were introduced. In 1953, IBM
produced the IBM-650 and sold over 1000 of these
computers.

The commercially available digital computers, that -
could be used for business and scientific applications, had
arrived.

THE COMPUTER GENERATIONS

"Generation” in computer talk is a step in
wechnology. It provides a framework for the growth of the
computer indusiry. Onginaily, the ierm *generation' was
used to distinguish between varying hardware technologies.
But nowadays, it has been extended to include both the
hardware and the software (see Chapter 10 for definition of
hardware and software) which together make up an entire
compuler sysiem. 2 : o .

. The custom of referring to the computer era in terms
of generations came into wide use only after 1964. There
are totally five computer generations known till today. Each
generation has been discussed below in detail along with
their advantages and disadvantages. Although there is a
certain amount of overlapping between the generations, the
approximate dates shown against each are normally
accepted.

2-B

)

FIRST GENERATION (1942-1955)

We have already discussed about some of the early
computers - ENIAC, EDVAC, EDSAC, ecic. These
machines and other of their time were made possible by the
invention of "vacuum tube", which was a fragile glass
device that could conwrol and amplify electronic signals.

These vacuum tube computers are referred 10 as first-
generation compulers.

Advantages

1. Vacuum tubes were the only electronic
components available during those days.

2. Vacuum tube technology made possible the
advent of electronic digital computers.

3. These computers were the fastest calculating
device of their time. They could perform
computations in milliseconds.

Disadvantages

Too bulky in size

Unreliable

Thousands of vacuum tubes that were used
cmitted large amount of heat and bumt out
frequently

Air conditioning required

Prone to frequent hardware faiiures

. Constant maintenance required

. Nonportable

Manual assembly of individual components into
functioning unit required

9. Commercial production was difficuit and costly
10. Limited commercial use

el

g o B

SECOND GENERATION (1955-196%)

The transistor, a smaller and more reliable successor
to the vacuum tube, was invented in 1947. However,
compulers that used transistors were not produced in
quantity until over a decade later. The second generation
emerged with transistors being the brain of the computer.

With both the first and the second generation
computers, the basic component was a discrete or separate
entity. The many thousands of individual components had
to be assembled by hand into functioning circuits. The
manual assembly of individual components and the cost of
labour involved at this assembly stage made the
commercial production of these computers difficult and
costly.

Advantages

~

Introduction 5

1. Smaller in size as compared to first generation
computers ‘

More reliable

Less heat generated

4, These computers were able to reduce
computational times from milliseconds to
microsecorids.

5. Less prone to haruware failures

6. Betler portability

7. Wider commercial use

w e

Disadvantages

1. Air-conditioning required

2. Frequent maintenance required

3. Manual assembly of individual components into
a functioning unit was required

4. Commercial production was difficult and costly.

THIRD GENERATION (1964-1975)

Advances in electronics technology continued and
the advent of “"microelectronics” technology made it
possible to integrate large number of circuit elements into
very small (less than 5 mm square) surface of silicon
known, as “chips". This new technology was called
“integrated circuits” (ICs). The third generation was based
on IC technology and the computers that were designed
with the use of integrated circuits were called third
generation computers.

(b) A transistor

(8) A vacvum tube
An IC ¢hy

Figure 1.2. Electronics devices used for manufacturing
computers of different generations. '

6 Computer Fundamentals

Advantages

1. Smauer i1n size as compared lo previous

generation compulters.

2. Even more reliable than second generation
computers,

3. Even lower heat generated than sccond

generation compulters,

4, These computers were able to reduce
computational times from microseconds to
nanoseconds.

5. Maintenance cost is low because hardware
failures are rare.

6. Easily portable.

7. Totally generai purpose. Widely used for various '

commercial applications all over the world.

8. Less power requirement than previous

~ generation computers.

9. Manual assembly of individual components into
a functioning unit not required. So human labour
and cost involved at assembly stage reduced
drastically,

10. Commercial production was easier and cheaper.

Disadvantages

1. Air-conditioning required in many cases.
2. Highly sophisticated technology required for the
manufacture of IC chips.

FOURTH GENERATION (1975 ONWARDS)

Initially, the integrated circuits contained only about
ten to twenty components. This technology was named
small scale integration (SSI). Later, with the advancement
in technology for manufacturing ICs, it became possible 10
integrate upto a hundred components on a single chip. This
technology came to be known as medium scale integrauon
(MSI). Then came the era of large scale integration (LSI)
when il was possible to integrate over 30,000 components
onto a single chip. Effort is stll on for further
miniatrization and it is expecied that more than one
million components will be integrated on a single chip
known as very large scale integration (VLSI).

A fourth generation computer, which is what we
have now, has LSI chips as its brain. It is LSI technology
which has led to the development of very small but
estremely powerful computers. It was the start of a social
revolution. A whole computer circuit was soon available on
a single chip, the size of a postage stamp. Overnight
computers became incredibly compact. They became
irexpensive to make and suddenly it became possible for
anyone and every Onc o Own a computer.

Advantages

1. Smallest in size because of high component

density

Very reliable

Heat generated is negligible

No air conditioning required in most cases

Much faster in computation than previous

generations

Hardware failure is negligible

minimal maintenance is required

7. Easily portable because of their small size

8. Totally general purpose

9. Minimal labour and cost involved at assembly
stage

10. Cheapest among all generations

Lo koD

()

and hence

Disadvantage

1. Highly sophisticated technology required. for the
manufacture of LSI chips.

FIFTH GENERATION (YET TO COME)

Scientists are now at work on the fifth generation
computers - a promise, but not yet a reality. They aim to
bring us machines with genuine 1.Q., the ability to reason
logically, and with real knowledge of the world. Thus,
unlike the last four generations which naturally followed its
predecessor, the fifth generation will be totally different,
totally novel, totally new.

In structure it will be parallel (the present ones are
serial) and will be able to do multiple tasks simultancously.
In functions, it will not be algorithmic (step by .step, with
one step at a time). In nature, it will nct do just data
processing (number crunching) but knowledge processing.
In inference, it will not be merely deductive, but also
inductive. In application, it will behave like an expert. In
programming, it will interact with humans in ordinary
language (unlike BASIC, COBOL, FORTRAN, etc. which
present computers need). And in architecture, it will have
KIPS (Knowledge Information Processing System) rather
than the present DIPS/LIPS (Data/Logic Information
Processing System).

The odds of coming out with a fifth generation
computer are heaviest for Japan. They have already started
work in this direction few years back. Japan has chosen the
PROLOG (Programming in Logic) language as its
operating software and plans to have the final machine talk
with human beings, see and deliver pictures and hear the
normal, natural language.

QUESTIONS

. What is a computer ? Why is it also known as a
data processor ?

. List out and explain some of the imporiant
characteristics of a computer.

. What is an abacus ?

_ Who is known as the father of modem digital
computers and why ?

. Why are modem digital computers often referred
to as stored program digital computers ?

. Give the full form of the following abbreviations
used in computer terminology :

IBM, ENIAC, EDVAC, EDSAC, UNIVAC.

. What is meant by ‘generation’ in computer
terminology ? How many computer generations
are there till now ?

Introduction 7

8. List out the various computer generations along
with their basic characteristics.

9. Write a short note on fifth generation coinputers.

10. What arc the advantages of transistors over
vacuum tubes ?

11. What is an IC ? How does it helo in reducing the
size of computers ?

12. List out some of the advantages of IC technology
over transistor technology.

13. Give the full form of the following abbreviations
used in computer terminology !
IC, SSI, MSI, LSI, VLSI, DIPS LIPS,
PROLOG. :

CHAPTER 2

5. BASIC COMPUTER

All computer systems perform the following five
basic operations :

1. Inputting. The process of entering data and instructions
into the computer system.

2. Storing. Saving data and instructions so that they are
available for initial or for additional processing as and
when required.

3. Processing. Performing arithmetic operations or logical
operations (comparisons like equal to, less thag greater
than, etc.) on data in order to convert them frto useful
information.

4, Outputting. The process of producing useful
information or results for the user, such as a printed report
or visual display.

.

ORGANIZATION

5. Controlling. Directing the manncr and scquence in
which all of the above operations are performed.

The goal of this chapter is 1o familiarize you with
the computer system units that perform these functions.
This chapter will provide you with an overview of
computer systems as they ar¢ viewed by compuler system
architects. It is an introduction to chapters 7, 8 and 9 which
describe the major units and their functions in more detail.

The internal architectural design of compulers
differs from one system model to another. However, the
basic organization remains the same for all computer
systems. A block diagram of the basic computcr
organization is shown in Figure 2.1. In this figuie, the solid
lines are used to indicate the flow of instruction and data,
and the dotted lines represent the control exercised by the
control unit. Tt displays the five major building blocks, or

10 Computer Fundamentals

functional units, of a digital computer system. These five
units correspond to the five basic operations performed by
ail computer systems. The function of each of these units is
described below:

INPUT UNIT

Data and instructions must enter the computer
- system before any computation can be performed on the
supplied data. This task is performed by the input unit that
links the external environment with the computer system.
Data and instructions enter input units in forms that depend
upon the particular device used. For example, data is
entered from a keyboard in a manner similar (o typing, and
this differs from the way in which data is enlered through a
card reader which is another type of input device, However,
regardless of the form in which they receive their inputs, all
input devices must provide a computer with data that are
transformed into the binary cédes that the primary memory
of a computer is designed to accept. This transformation is
accomplished by units called input interfaces. Input
interfaces are designed to match the unique physical or
electrical characteristics of input devices 1o the
requirements of the computer system.

In short, the following functions are performed by
an input unit ;

L. It accepts (or reads) the list of instructions and
data from the outside world.

2. It converts thesc instructions and data in
computer acceptable form.

3. It supplies the converted instructions and data to
the computer system for further processing.

OUTPUT UNIT

The job of an output unit is Just the revérse of that of
an input unit. It supplies information and results of
computation to the outside world. Thus it links the
computer with the external environment. As computers
work with binary code, the results produced are also in the
binary form. Hence, before supplying the results to the
outside world, it must be converted to human acceptable
(readable) form. This task is accomplished by units called
oulput interfaces. Output interfaces are designed to match
the unique physical or electrical characteristics of output
devices (terminals, printers, efc.) to the requirements of the
external environment,

In short, the following functions are performed by
an output uni :

1. It accepts the results produced by the computer
which are in coded form and hence cannot be
easily understood by us,

2. It converts these coded resulis to human
acceptable (readable) form,

3. It supplies the converted results to the outside
world.

STORAGE UNIT

The data and instructions that are entered into the
computer system through input units have to be stored
inside the computer before the actual processing slarts,
Similarly, the results produced by the computer after
processing must also be kept somewhere inside the
computer system before being passed on to the output units,
Moreover, the intermediate results produced by the
computer must also be preserved for ongoing processing.
The storage unit or the primary/main storage of a computer
system is designed to cater 1o all these needs. I provides
space for storing data and instructions, space for
intermediate results, and also space for the final results,

In short, the specific functions of the storage unit are
to hold (store) :

1. All the data to be processed and the instructions
required for processing (received from input
devices).

Intermediate results of processing,.

Final results of processing before these results
are released to an output device.

ARITHMETIC LOGIC UNIT

o 3

The arithmetic logic unit (ALU) of a computer
Sysiem is the place where the acical execution of the
instructions takes place during the processing operation. To
he more precise, all calculations are performed and all
comparisons (decisions) are made in the ALU. The data and
instructions, stored in the primary storage prior to
processing, are transferred as and when needed to the ALU
where processing takes place. No processing is done in the
primary storage unit. Intermediate results generated in-the—
ALU are temporarily transferred back to the primary
storage until needed at a later time. Data may thus move
from primary storage 10 ALU and back again o storage
many times before the processing is over. After the
completion of processing, the final results which are stored
in the storage unit are released to an output device. !

The type and number of arithmetic and logic
operations that a computer can perform is determined by
the enginesring désign of the ALU. However, almost all

Basic Computer Urganization 11

PROGRAM INPUT SRR AT _/ ouTPUT
| [UNIT
& DATA UNIT UNIT / RESULTS
l I |
I : I
| | |
|
L__ _ L |contROoL | |
UNIT
! CENTRAL
| PROCESSING
! UNIT
ARITHMETIC
Ll Loaic
UNIT

Figure 2.1. Basic organisation of a computer system

ALU's are designed to perform the four basic arithmetic
operations - add, subtract, multiply, divide and logic
operations or comparisons such as less than, equal to, or
greater than.

CONTROL UNIT

How does the input device know that it is time for it
to feed data into the storage unit ? How does the ALU
know what should be done with the data once they are
received ?

And how is it that only the final results are sent Lo
the output device and not the intermediate results 7 All this
is possible because of the control unit of the computer
system. By selecting, interpreting, and seeing to the
execution of the program instructions, the control unit is
able 1o maintain order and direct the operation of the entire
system. Although, it does not perform any actual processing
on the data, the control unit acts as a central nervous system
for the other components of the computer. It manages and
coordinates the entire computer system. It obtains
instructions from the program stored in main memory,
interprets the instructions, and issues signals that cause
other units of the system to execute them.

CENTRAL PROCESSING UNIT

The control unit and the arithmetic logic unit of a
computer system are jointly known as the Central
Processing Unit (CPU). The CPU is the brain of any
computer system. In a human body, all major decisions are
taken by the brain and the other parts of the body function
as directed by the brain. Similarly, in a computer system,
all major calculations and comparisons are made inside the
CPU and the CPU is also responsible for activating and
controlling the operations of other units of a computer
system.

THE SYSTEM CONCEPT

You might have observed by now that we have been
referring 10 a computer as a system (compuler system).
What can be the reason behind this ? To know the answer
let us first consider the definition of a system.

A system is a group of iniegmtcd parts that have the
common purpose of achieving some objective(s). So, the
following three characleristics are key o a system :

1. A system has more than one clement.

12

Computer Fundamentals

. All the elements of a system arc logically

related.

. All the elements of a system arc controlled in

such a way that the system goal is achicved.

Since a computer is made up of integrated

components (input and output devices, storage, CPU) that
work together to perform the steps called for in the program
being executed, it is a system. The input or output units
cannot function until they receive signals from the CPU.
Similarly, the storage unit or the CPU alone is of no use. So
the usefulness of each unit depends on other units and can
be realized only when all units are put together (integrated)
to form a system, .

QUESTIONS

. What are the five basic operations performed by

any computer system ?

. Draw a block diagram to illustrate the basic

organisation of a computer system and explain
the functions of the various units.

. What is an input interface ? How does it differ

from an output interface ?

. What is a system 7 Why do we refer 10 a

computer as a system ?

CHAPTER 3

3. NUMBER SYSTEMS

We have already seen, in the previous chapter that
inside a computer system, data is stored in a format that
cannot be casily read by human beings. This is thc rcason
why input and output (I/O) interfaces are required. Every
computer stores numbers, letters, and other special
characters in a coded form. Before going into the details of
these codes, it is essential to have a basic understanding of
the number system. So the goal of this chapter is to
familiarize you with the basic fundamentals of number
system, It also introduces some of the commonly used
number systems by computer professionals and the
relationship between them.

Number systems are basically of two types: non-
positional and positional. .

NON-POSITIONAL NUMBER SYSTEMS

In early days, human beings counted on fingerr.
When ten fingers were not adequate, stones, pebbles, or
sticks were used to indicate values. This method of
counting uses an additive approach or the non-positional
number system. In this system, we have symbols such as I
for 1, 11 for 2, 111 for 3, IIII for 4, IIII for 5, etc. Each

symbol represents the same value regardless of its position
in the number and the symbols are simply added to find out
the value of a particular number. Since it is very difficult to
perform arithmetic with such a number system, positional
number systems were developed as the centuries passed.

POSITIONAL NUMBER SYSTEMS

In a positional number system, there are only a few
symbols called digits, and these symbols represent different;
values depending on the position they occupy in the
number. The value of each digit in such a number is
determined by three considerations :

1. the digit itself,

2. the position of the digit in the number, and

3. the base of the number system (where base is

defined as the total number of digits available in
the number system).

The number sysiem that we use in our day-to-day
life is called the Decimal number system. In this system, the
base is equal to 10 because there are altogether tcn symbols
or digits (0.1,2.3,4,5.6,7,8.9) used in this system. You know
that in the decimal system, the successive positions to the

14 Computer Fundamcntals

left of the wecimal point represent units, tens, hundreds,
thousands, ctc. But you may not have given much attention
to the fact that cach position represents a specific power of
the base (10). For example, the decimal number 2586
(written as 2586,0) consists of the digit 6 in the units
position, 8 in the tens position, 5 in the hundreds position,
and 2 in the thousands position and its value can be written
as:

(2x1000)+(5x100) «(8x10)+(6x 1)

or 2000 + 500 ~+ 80 + 6

or 2586

It may also be observed that the same digit significs
different values depending on the position it occupies in the
number. For example,

In 2586)0 the digit 6 signifigs 6 x 100=6

In 2568, the digit 6 signifies 6 x 101 = 60
In 26589 the digit 6 significs 6 x 102 = 600
In 6258, the digit 6 significs 6 x 103 = 6000

Thus any number can be represented by using the
available digits and arranging them in various positions.

The. principles that apply o the decimal system
apply in any.other positional number system. It is important
only to keep track of the base of the number system in
which we are working.

There are iwo charactesistics of all number systems
that are suggested by the vali . of the base. In all number
systems, the value of the base determines the total number
of different symbols or digits available in the number
system. The first of these choices is always zero. The
second characteristic is that the maximum value of a single
digit is always equal to onc less than the value of the base.

Some of the number systems commonly used in
computer design and by computer professionals are
discussed below.

BINARY NUMBER SYSTEM

The binary number system is exactly like the
decimal system except that the base is 2 instead of 10. We
have only two symbols or digits (0 and 1) that can be used
in this number system. Note that the largest single digit is 1
(one less than the base). Again, each position in a binary

number represents a power of the base (2). As such, in this
system, the rightmost position is the units (20) position, the
second position from the right is the 2°s (2!) position and
proceeding in this way we have 4's (22) position, 8's (23)
position, 16's (24) position, and so on. Thus, the decimal
equivalent of the binary number 10101 (written as 10101;)
is

(1x29) + (0x23) + (1x22) + (0x21) + (1x20)
orl6 + 0 + 4 + 0 + 1
or 21

In order to be specific about which system we are referring
1o, it is common practice 1o indicate the base as a subscript.
Thus we write :

10101, =21,

"Binary digit" is often referred 10 by the common
abbreviation bir. Thus, a "bit" in computer terminology
means either a 0 or a 1. A binary number consisting of n
bits is called an n-bit number. Table 3.1 lists all the 3-bit
numbers along with their decimal cquivalent. Remember
that we have only two digits, 0 and 1, in the binary system,
and hence the binary equivalent of the decimal number 2
has to be stated as 10 (read as one, zero). Another important
point o note is that with 3 bits (positions), only 8 (23)
different patterns of 0's and 1's are possible and from Table
3.1 it may be seen that a 3-bit number can have one of the 8
values in the range 0 to 7. In fact, it can be shown that any
decimal number in the range 0 to 20-! can be represented in
the binary form as an n-bit number.

Every computer stores numbers, letters, and other
special characters in Dbinary f{orm. There are several
occasions when computer professionals have to know the
raw dala contained in a computer’'s memory. A common
way of looking at the contents of a computer’s memory -is
1o print out the memory contents on the line printer. This
print out is called a memory dump. If memory dumps were
to be printed using binary numbers, the computer
professionals would be confronted with many pages of Os
and ls. ‘Working with these numbers would be very
difficult and error prone.

Because of the quantity of printout that would be
required in a memory dump of binary digits and the lack of
digit variety (Os and 1s only), two number systems, octal
and hexadecimal, are used as shoricut notation for binary,
These number systems and their relationship with the
binary number system will now. be explained in this
chapter. .

Table 3.1,

3-bit Numbers With Their Decimal
Values.
Binary. Decimal
Equivalent
000 0
001 1
010 2
011 3
100 4
101 ' 5
110 6
111 7
OCTAL NUMBER SYSTEM

In the octal number sysiem the base is 8. So in this
system there are only cight symbols or digits : 0,1,2,3,4,5.6
and 7 (8 and 9 do nut exist in this sysiem). Here also the
largest single digit is 7 (one less than the base). Again, each
position in an octal number represents a power of the base
(8). Thus the decimal equivalent of the octal number 2057
(writien as 2057g) is : '

(2x8%)+(0x82)+(5x81)+(7x80)
orl024 + 0 + 40 + 7
or 1071
So we have 2057g = 107110_
Observe that since there are only 8 digits in the octal

number system, so 3 bits (23 = 8) are sufficient to represent
any octal number in binary (see Table 3.1).

Number Systems 15

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system is onc with a base
of 16. The base of 16 suggests choices of 16 single-
character digits or symbols. The first 10 digits are the digits
of a decimal system 0, 1, 2, 3,4, 5, 6,7, 8, 9. The remaining
six digits are denoted by A, B, C, D, E, F representing the
decimal values 10, 11, 12, 13, 14, 15 respectively. In the
hexadecimal number system, therefore, the letters A
through F are number digits. The number A has a decimal
equivalent value of 10 and the hexadecimal F has a
decimal equivalent value of 15. Thus, largest single digit is
For 15 (one less than the base). Again, cach position in a
hexadecimal sysiem represents a power of the base (16).
Thus the decimal equivalent of the hexadecimal number
IAF (writtzn as 1AF |) is:

(1% 16%) + (A x 161) + (F x 160)

or(1x256)+(10x 16)+(15x 1)

or 256 + 160 + 15

or43l
Thus l)"\.F=6 =431,

Observe that since there are only 16 digits in the
hexadecimal number system, so 4 bits (2¢ = 16) are
sufficient to represent any hexadecimal number in binary.

CONYERTING FROM ONE NUMBER SYSTEM TO
ANOTHER

Numbers expressed in decimal are much more
meaningful to us than are values expressed in any other
number. system. This is mainly because of the fact that we
have been using decimal numbers in our day-to-day life
right from childhoad. However, any number value in one
number system can be represented in any other number
system. Because the input and the final output values are to
be in decimal, computer professionals are often required to .
convert numbers in other number systems to decimal and
vice-versa. There are many methods or techniques that can
be used to convert numbers from one base to another. We
will see cne technigue used in converting to base 10 from
any other base and a second technique 10 be used in
converting from base 10 to any other base.

CONVERTING TO DECIMAL FROM ANOTHER BASE

The following three steps are used to converl 1o a
base 10 value from any other number system :

16 ¢ Computer Fundamentals
>

Step1: Determine the column (pasitional)
value of each digit (this depends on
the position of the digit and the base
of the number system).

Step2: Multiply the obtained column values
(in Step 1) by the' digits in the
corresponding columns,

Siep3: Sum the products calculated in Stcp 2.
The total is the equivalent value in
decimal.

Example 3.1. 110012 = 710
Solution :

Step1: Determine column values
Column Number Column Value
(from right)

1 20=1
2 21=2
3 22=4
4 22=8
5 24=16

Step2: Multiply column values by corre-

sponding column digits
16 8 4 2 1

x1 x1 x0 x0 xi

16 8 0 0 1

Step3: Sum the products

16+8+0+0+1=25
Hence, 110012 = 2570

Example 3'2. 47068 = 710

Solution : -

Step1:
Column Number Column Value
(from right}
1 80=1
2 8l«8
3 82 =64
4 83=512
Step2:
512 64 8 1
x4 X7 0 " x6
2048 448 0 6
Step3:

2048 + 448 + 0 + 6 =2502
Hence, 47065 = 250210
Example 3.3. 1AC16="10
Solution :
1ACi =1x 162+ A x 161+ Cx 160
=1x256+10x16+12x1

256 + 160 + 12
42840

Example 34. 40527 ="
Solution :

40527 =4 xTF+0X T2+ Sx T +2XT0
—4x33+0x49+5x7+2x1

=1372 + 0 + 35+ 2
= 14090
Example 3.5. 40526 =10
Solution :

40526=4 x63+0x 62+ 5% 6! +2x60
=4x216+0x36+5x6+2x1
=864 + 0 +30 + 2

= 89610

Comparingthis result with the result obtained in Example
3.4, we find that although the digits (4052) are same for
both the numbers, but their decimal equivalent is different.
This is because of the fact that the number in Example 3.4
is represented in base 7 number system whereas the number
in Example 3.5 is represented in base 6 system.

Example 3.6. 110014="10
Solution :

110014=1x%x44 +1x43+0x42+0x41 +1x40
=1x256+1x64+0x16+0x4 +1x1
=256+ 64+ 0 + 0 + 1
=32110

Compare the result with Example 3.1,
Example 3.7. 1AC13 =9

Solution :

IAC|3=1x132+Ax131+Cx 130
=1x169+10x13+12x1
=311y9

Cbmpare the result with Example 3.3,

CONVERTING FROM BASE :0 TO A NEW BASE
(DIVISION - REMAINDER TECHNIQUE)

The following four steps are used to convert a number from
base 10 to a new base:

Step1: Divide the decimal number to be
converted by the value of the new
base.

Step2: Record the remainder from step 1 as
the rightmost digit (least significant
digit) of the new base number,

Step3: Divide the quotient of the previous
divide by the new base.

Step 4 : Record the remainder from step 3 as
the next digit (1o the left) of the new
base number. ’

Repeat steps 3 and 4, recording remainders from
right to left, until the quotient becomes zero in step 3. Note
that the last remainder thus obtained will be the most

Number Systems 17
significant digit (MSD) of the new base number.

Example 3.8 2510="2
Solution ;

Steps 1 & 2: 25/2 = 12 and remainder 1
Steps 3 & 4: 12/2 = 6 and remainder 0
Steps 3 & 4: 6/2 =3 and remainder 0
Steps 3 & 4: 372 =1 and remainder 1
Steps 3 & 4: 1/2 =0 and remainder 1

As mentioned ir. Steps 2 & 4, the remainders have to be
arranged in the reverse order so that the first remainder

becomes the least significant digit (LSD) and the last
remainder becomes the most significant digit (MSD).

Hence, 2510 = 110012

Compare the result with Example 3.1.

Example 3.9. 4210="
Selution :
2| 42 ~Remainders
Lo 0
------- 10 1
....... : .
T I
! -_“l 0

Hence, 4219 = 1010103

Example 3.10, 95210="8

18 Compuwer Fundamentals

Solution :
8 952 Remainders
------- 119 0
——————— 14 7
E l 6
g !

Hence , 952in= 16708

Example 3.11. 42810="16
Solution :
Remainders in
16 | 428 hexadecimal,
26 R2=C
------- 1 10=A
"“"'0 1=1

Hence, 428,,= 1ACs
Compare the result with Example 3.3,

10019 =75

Example 3.12.
Solution :
S 100 Remainders
Y 0
------- 4 0
o 4
Hence, 10010 = 4005
Example 3.13. 10010=14
Solution :
4 100 Remainders

25 0
g 1
£ "'1 2
i !

Hence, 100,5= 12104

Compare this result with the result obtained in Example

312,

Example 3.14 .

Solution:

12

1715,5="12
Remainders in
1715 Base 12
------ 142 11=B
------- 11 10 = A
.“—-.0 11=B

Hence, 171510=BAB2

CONVERTING FROM A BASE OTHER THAN 10 TO A

BASE OTHER THAN 10

The following two Steps are used 10 convert a
numbesr from 2 base other than 10 to a base other than 10,

Step1:

Step2:

Example 3.15.

Solution :

Step 1:

Convert the original numoer to a
decimal number (base 10).

Convert the decimal number so
obtained to the new base.

545¢="4

Convert from base 6 to base 10
545=5x62+4x61+5x60
=5x36+4x6 +5x1

= 180+ 24 + 5

= 20910

Step2: Convert 209 to base 4
4 209 Remainders
------ 52 1
3 -".13 0
....... . 1
...... 0 3

Hence, 20910= 31014
So, 5455=209)0=31014

Thus, 5454 = 31014

Example 3.16. 101110, =13
Solution :
Step1: Convert 1011105 to base 10
101110, =1x25+0%24+1x2+1x22+1
x21+0x20
=32+0+ 8+ 4+ 2+ 0
= 4610
Step2: Convert 461p to base 8.
8 46 Remainders
5 6
0 5

Hencz, 4610 = 563
So, 101110, = 469 = 563

Thus, 101110, = 565

Example 3.17. 110100113 = %46
Solution :
Step1: Convert 110100112 to base 10

3-A

Number Systems 19

110100112 =1x274+1x264+0x25+1x24+0

x23+0x22+1x214+1x20

=1x128+1x64+0x32+1x16+
O0x8+0x4+1x2+1x1

=128+64+0+16+0+0+2+1

=211,

Step2: Convert 211p to base 16

16 211

13 3=3in
Hexadecimal

Remainders

0 13=Din
Hexadecimal

Hence, 21110= D315
S0, 110100112 = 21110= D316
Thus, 110100112 = D3¢

Example 3.16 illustrates the method of converting a number
from binary to octal. Similarly, Example 3.17 shows how to
convert a number from binary 1o hexadecimal. However,
these ¢ > lengthy procedures and shortcut methods can be
used when we desire such conversions. We will now
discuss these shortcut methods.

SHORTCUT METHOD FOR BINARY TO OCTAL
CONVERSION

The following steps are used in this method :

Step1: Divide the binary digits into groups of
three (starting from the right).
Step2: Convert each group of three binary

digits into one octal digit. (Refer to
Table 3.1 and try i0 remember that
since there are only 8 digits (010 7) in
the octal number system, so 3 bits
(23 = 8) are sufficient to represent any
octal number ip binary). * Since
decimal digits 0 to-7 are cqual to octal
digits 0 w 7 so binary to decimal
¢onversion can be used in this step.

Y Digital Computer Fundamentals

Example 3.18. 101110, =73
Solution :
Step1: Divide the binary digits into groups of
. 3 starting from right (LSD)
101 119
[]
Step 2: Convert each group into one digit of
octal (use binary-to-decimal
~conversion)
1013 =1x22+0x214+1x20
=4 + 0 + 1
= S
110, =1x2241x21+0x20
=4 + 2 +0
= 6g

Hence, 101110,% 563
Compare this result with the result of Example 3.16.

1101010, =75

Example 3.19,

Solution :

1101010, =001 101 010
(Group 3 digits from right)
=152g
(Convert each group to an octal
digie)

Hence, 1101010 = 1523

SHORTCUT METHOD FOR OCTAL TO BINARY
CONVERSION

The following steps are used in this method :

Step 1: Convert each octal digit to a 3 digit
' binary number. (The ccial digits may
be treated as declmaj fo} this
conversion).

Step 2: Combine all the resulting binary
groups (of 3 digits each) into a single
binary number.

Example 3.20. 5623=17
Solution :

Step 1 : Convent each octal digit to 3 binary
digits
Sg= 1013
5g =110z
2g = 0102

" Step2: Combine the binary groups

562 =101 110010
5. 6 2

Hence, 5625 = 101110010,

Example 321

6751y =79
Solutien :
67513 =110 111 101 001
6 7 8 1
=1101111010012

Hence, 67513 = 110111101001,

SHORTCUT METHOD FOR BINARY TO
HEXADECIMAL CONVERSION

The following steps are used in this methad :

Step ! : Dmde the binary digits into groups of
four (starting from the right),
Step2: Convert cach group of four binary

digits 1 one hexadecimal digit.
Remember that hexadecimal digits 0
to 9 are equal to decimal digits 0 10 9,
and hexadecimal digits A to F are
equal to decimal digits 10 to 15.
Hence for this step, the binary to
decimal conversion procedure can be
used, but the decimal values 10 1o 15
must be represenied as hexadecimal A
toF.

3-B

Example 3.22. 110100113 = 716
Solution :
Step1: Divide the binary digits into groups of
4,
1101 Q011
‘ Step2:. Convert each group of 4 binary digits
to | hexadecimal digit
11012 =1x234+1x2240x21+1x20
=8 +4 + 0+ 1
=13y
=Dyg
0011y =0x234+0x22+1x2141x20

=0 +0 + 2 +1
=35

Hence, 110100113 = D314

Compare the result with the result of Example 3.17,

Example 323, 10110101100, = 746
Solution :
10110101100, = 0101 1010 1100
(Group 4 digits from right)
=5AC
{Convert each group to a hexadecimal
digit)

Hesnce, 101 101011002 = 5ACy5

SHORTCUT METHOD FOR HEXADECIMAL TO
BINARY CONVERSION

The following steps are used in this method :

Step 1: Convert the decimal equivalent of
each hexadecimal digit to 4 binary
digits.

Step2: Combine all the resulting binary

groups (of 4 digits each) into a single
binary number.

Number Systems 21

Example 3.24, 2ABig=17;
Solution :

Steg 1: Convert the decimal equivalent of
each hexadecimal digit 10 4 binary
digits
216 =2j0 =00102
A= 1010= 1010,

Big=11;0= 1011
Step 2: Combine the binary groups

2AB1g=0010 10101011

2 A B
Hence, 2AB |6 = 001010101011,
Example 3.25. ABCis=7
Solution :
ABCs = 1010 1011 1100
A B C
= 101010111100,

Hence, ABé;a = 101010111100,

Finally, Table 3.2 summarises the relationship
between the decimal, binary, hexadecimal, and octal
number systems. Note that the maximum value for a single
digit of octal (7) is equal to the maximum value of three
digits of binary. The value range of one digit of octal
duplicates the valye range of three digits of binary. If octal
digits are substituted for binary digits, the substitution is on
a onc-to-three basis. Thus, computers that print octal
numbers instead of binary, while taking memory dump,
save one-third of the printing space and time,

Similarly, note that the maximum value of one digit
in hexadecimal is equal 1o the maximum value of four
digits in.binary. Thus the value range of one digit of
hexadecimal is equivalent 1o the value range of four digits
of binary. Therefore, hexadecimal shortcut notation is a
one-to-four reduction in the space and time required for
memory dump. '

22 Digital Compute? Fundamenials

FRACTIONAL NUMBERS

In binary number system, fractional numbers are
formed in the same general way as in the decimal system.
Just as in the decimal system,

0.235 = (2x10-1) + (3x10-2) + (5x10-3)
and
68.53 =(6x10!) + (8x100) + (5x10-1) + (3x10-2)

Similarly in the binary sysiem,

0.101 =(ix2-1) + (0x2-2) + (1x2-3)
and
16.01 =(1x2!) + (0x20) + (0x2-1) + (1x2-2)

Thus, the binary point scrves the same purposc as the
decimal point. Some of the positional values in the binary
sysiem are given below,

Binary Point
Position 4 3 2 1 0 . -1 -2 -3 -4
Position 2% 2° 22 2! 2° i 2 il ok
Value
Quantity I a5 3 &
Represented ke 4 & U 2 4 8 16

In general, @ number in a number system with base b
would be written as :
@pdn.1..a0.4.1a-2...8.m

and would be interpreted to mean

n X b+ apg xbrl+ L +agxb0l+ayxbl + azxb2+

wet . X bm

The symbols an, an.1, .., am used in the above
representation should be one of the b symbols allowed in
the number sysiem.

Thus, as per the above mentioned general rule,
46.32g = (4x81) + (6x80) + (3x8-1) + {2x8-2)

and

5A.3C1¢, = (5x161) + (Ax160) + (3x16-1) + (Cx16-2)

Example 3.26.

Solution :

110.1012

Example 3.27.

Sotution :

127.545

Example 3.28.

Solution :

2B.C4)¢

Find the decimal equivalent of the
binary number 110.101

= 1x22 + 1x21 +0x20 + 1x2-! + 0x2-2
+ 1x23

=4 +2 +0 +.5 +0
=6 + 05+ 0.125

= 6.625)p

+.125

Find the decimal eguivalent of the
octal number 127.54

= 1x82 + 2x8! + 7x8C + 5x8-1 + 4x8-2
=64+ 164 7 + 5/8 +4/64
=87+ 0.625 + 0.0625

=87.68731p

Find the decimal equivalent of the
hexadecimal number 2B.C4

2x16! + Bx160 + Cx16-1 + 4x16-2
32 + B + C/16 + 4/256

43 +0.75 + 0.015625
43.765652)¢

nw n

Table 3.2. Relationship between Decimal,
‘ Binary, Hexadecimal and Octsl

Number Systems

Decimal Hexa Binary Octal
_Decimal

0 = () 0 0

1 1 1 1

2 2 10 2

3 3 11 3

4 4 100 4

5 5 101)

6 6 110 6

7 7 111 7

3 8 1000 10

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 B 1111

16 10 10000

Number Systems 23

QUESTIONS

. What is the difference between a positional and a

non-positional number system ? Give examples

of both types of number systems.
&

. What is meant by the basc of a number system 7,

Give examples to illustrate the role of base in
positional number sysiems.

. What is the value of the base for decimal,

hexadecimal, binary and octal number systems ?

. Give an example for octal number system to

show that the same digit may signify different
values depending on the position it occupics in
the number.

. What will be the total number of different

symbols or digits and. the maximum value of a
single digit for the following number Systems :

a) number system with base 5.
b) number system with base 20,
¢) number system with base 9.
d) number system with base 12.

. What is a bit in computer terminology 7 How

many different patterns of bits are possible with
a) S bits

b) 7 bits

c) 8 bits?

. Explain the meaning of the term "memory

dump".

. Why are octal and/or hexadecimal number

systems used as shortcut notation ?

. Find cut the decimal equivalents of the following

binary numbers,

a) 1101011 b) 11010

¢) 10110011 d) 11011101
e) 1110101 f) 1000

g) 10110001100
h) 1010101100
i) 110001 H i

10.Find out the octal equivalents of the binary

numbers of Question 9.

11.Find out the hexadecimal equivalents of the

binary numbers of Question 9.

12, Convert the following numbers to decimal:

a) 1101102 b) 25735 .
¢) 2A3B16 d) 12349

13. Convert the following decimal numbers o bjnary :
a) 43550 b) 169410
) 3210 d) 13510

14. Convert the decimal numbers of Question 13 to octal,

15. Convert the decimal numbers of Question 13 to
hexadecimal.

’

16, a) 1256
b) 249 = N
c) ABCie = 8
17. Convert the [illowing numbers lo iheir binary

%

.

equivalent :
a) 2ACie b) FABs
c) 26i4g d) 5628 '
18. Find the decimal equivalent of the following numbers
a) 111012 b) 1001.0112 ’
) 247.658 d) A2B.D41s

CHAPTER 4

4. COMPUTER CODES

In the previous chapter, we have discussed about-

true or "pure” binary numbers. In this chapter, we will see
how these binary numbers are coded to represent characters
in the computer memory. Thus, the goal of this chapter is to
present the formats used in computer memory to record
data. Although many coding schemes have been developed
over the years, we will be discussing only the most
commonly used computer codes.

Numeric data is not the only form of data that is
be handled by a computer. We often require to process
alphanumeric data also. An alphanumeric data is a string of
symbols where a symbol may be one of the letrers
ABC,..Z or one of the digits 0,1,2,....9 or a special

character, such as + - * /, . () = (space or blank) etc. An .

alphabetic data consists of only the letters A,B,C,...,Z and
the blank character. Similarly, numeric data consists of
only numbers 0,12....9. However, any daia must be
represented internally by the bits 0 & 1. As such, binary
coding schemes are used 1o represent data internally in the
computer memory. In binary coding, every symbol that
appears in the dala is represented by a group of bits. The
group of bits used to represent a symbol is cailed a byte. To
indicate the number of bits in a group, sometimes a byte is

referred tc as "n-bit byte” where the group contains n bits.
However, the term byte is commonly used to mean an 8-bit
byte (a group of 8 bits) because most of the modemn
computers use 8 bits Lo represent a symbol.

BCD CODE

The Binary Coded Decimal (BCD) code is one of
the early memory codes. It is based on the idea of
converting each digit of a decimal number into its binary
cquivalent rather than converting the entire decimal value
into a pure binary form. This facilitatés the conversion
process to a great extent.

The BCD equivaient of each decimal digit is shown in
Table 4.1. Since 8 and 9 require 4 bits, all decimal digits
are represented in BCD by 4 bis. You have seen in
Example 3.9 that 42,, is equal to 101010, in a pure binary
form.)

Converting 42,, into BCD, however, produces the following
result :

42,,=0100 Q010
4 2

or 01000010 in BCD

26 Digital Computer Fundamenials

Note that each decimal digit is independently
converted 10 a 4 bit binary number and hence the
conversion process is very easy. Also note that when 4 bits
-arc used, altogether 16 {24) configurations are possible
(refer to hexadecimal number system). But from Table 4.1
you can see that only the first 10 of these combinations are
used to represent decimal digits, The remaining 6
arrangements (1010,

Table 4.1. BCD Equivalent of Decimal Digits

Decimal Digits BCD Equivalent

0000,
0001
0010
0011
0100
0101
0110
0111
1000
1001

VOO ~IW Wil =O

1011, 1100, 1101, 1110 and 1111) have decimal values
from 10 1o 15. These arrangements are not used in BCD
coding. That is, 1010 does not represent 10,, in BCD.
Instead,

10, =0001 0000
1 0
or 00010000 in BCD
Similarly,
15, =!1QQL 0101
1 5
or 00010101 in BCD

in the above discussion, we have used a group of 4
bits to represent a digit (character) in BCD. 4-bit BCD
coding system can be used to represent only decimal
numbers because 4 bits are insufficient to represent the
various characters used by a computer. Instead of using 4
bits with only 16 possible characters, computer designers
commonly use 6 bits to represent characters in BCD code.
In the 6-bit BCD code, the four BCD numeric place
posiuiuns are retained, but two additional zone positions are
added. With 6 bits, it is possible to represent 64 (26)

different characters. This is a sufficient number to code the
decimal digits (10), alphabetic letters (26), and other special
characters (28). Table 4.2 illustrates the coding of
alphabetic and numeric characters in BCD.

In Chapter 3, we have seen the use of octal and
hexadecimal number systems as shortcut notation for
binary. Because BCD is a 6-bit code, it can be casily
divided into two 3-bit groups. Each of these 3-bit groups
can be represented by 1 octal digit. Thus, octal number
system is used as shortcut notation for memory dump by
computers that use BCD code for internal representation of
characters. This results in a one-to-three reduction in the

~ volume of memory dump. Table 4.2 also shows the oclal

equivalent of the alphabetic and numeric characters coded
in BCD.

Example 4.1. Show the binary digits used to record
the word BASE in BCD.
Solution :
B = 110010 in BCD binary notation
A = 110001 in BCD binary ndlation
§ = 010010 in BCD binary notation
E = 110101 in BCD binary notation
So the binary digits
110010 110001 010010 110101
B A S E

will record the word BASE in BCD.

Example 4.2. Using octal notation show the BCD
coding for the word DIGIT.
Solution ;
D = 64 in BCD octal notation
I =71 in BCD octal notation
G = 67 in BCD octal notation
I = 71 in BCD octal notation
T = 23 in BCD octal notation

So the BCD coding for the word DIGIT in octal notation
will be :

6471 671 71 23
D1 G T

Tabled4.2. Alphabetic And Numeric
Characters In BCD Along With
Their Octal Equivalent.
Character BCD Code Octal
Equivalent
Zone Digit

A 11 0001 61
B 11 0010 62
& 11 0011 63
D 11 0100 64
E 11 0101 65
F 11 0110 66
G 11 0111 67
H 11 1000 70
I 11 1001 71
i) 10 0001 41
K 10 0010 42
L 10 0011 43
M 10 0100 44
N 10 0101 45
0] 10 0110 46
P 10 0111 47
Q 10 1000 50
R 10 1001 51
S 01 0010 22
T 01 0011 23
u 01 0100 24
\' 01 0101 25
w 01 0110 26
X 01 0111 27
Y 01 1000 30
Z 01 1001 31
1 00 0001 01
2 00 0010 02
3 00 0011 03
4 00 0100 04
5 00 0101 05
6 00 0110 06
7 00 0111 07
8 00 1000 10
9 00 1001 11
0 00 1010 12

Cempuzer Codes 17

EBCDIC

The majnr problem with BCD code is that only 64
(2%) different charucters can be represented in it. This 18 not
sufficient for providing decimal numbers (10}, lower-case
letters (26), capital letters (26), and a tairly large number of
other special characters (28+).

Hence, the BCD code was extended from a 6-bit
code 10 an 8-bit code. The added 2 bits ure used as
additional zone bits, expanding the zone to 4 bits. The
resulting code is called the extended binary-coded decimal
interchange code (EBCDIC). In this cede, it is possible 10
represent 256 (28) different characters instead of 64 (2), In
addition 1o the various characler requircments mentiored
above, this also allows a large variety of printable
characters and several nonprintable control characters. The
control characters arc used to control such activities as
printer vertical spacing, movement of cursor on the
terminal screen, etc. All of the 256 bit combinalions have
not yet been assigned characters, so the code can sull grow
as new requirements develop.

Because EBCDIC is an 8-bit code, 1t can be easily
divided into two 4-bit groups. Each of these 4-i1t groups
can be represented by 1 hexadecimal digit (refer 1o Chapter
3). Thus, hexadecimal number system is used as shortcut
notation for memory dump by computers that use EBCDIC
for internal representation of characters. This results in a
one-to-four reduction in the volume of memory dump.
Table 4.3 shows the alphac<iic and numeric characters in
EBCDIC along with their hexadecimal equivalent.

Developed by IBM, EBCDIC code is used in most
IBM meodels and in many other computers,

ZONED AND PACKED DECIMAL NUMBERS

From Table 4.3, it can be observed that in the
EBCDIC code, the digit values are the same as the numeric
characters - O through 9 (0000-1001). But numeric values
need some special consideration because we must have a
way of indicating whether the number is positive, negative,
or unsigned (implies positive). Thus, when a numeric value
is represented in EBCDIC, a sign indicator is used in the
zone position of the rightmost digit. A sign indicator of
hexadecimal C is a plus sign, hexadecimal D is a minus
sign, and a hexadecimal F mecans the number is unsigned.
Table 4.4 illustrates the representation of numeric values in
EBCDIC. Note that the only zone affected by the sign is the
zone of the rightmost digit. All other zones remair as F, the
zone value for numeric characters in EBCDIC. Because
each decimal digit has a zone with it, numbers coded in
EBCDIC are called zoned decimal numbers. Numeric data

28 Computer Fundamenials

input into the computer are usually zoned decimal numbers,
Printers can print only those numeric characters that arc in a
zoned-decimal format,

However, most computers cannot perform

arithmetic operations on zoned-decimal data. Thus, before
i1y arithmetic operatien can be performed, the data must be
converted to a format on which arithmetic operations are
possible. One such acceptable format is the packed decimal
format. The following steps arc used to convert a zoned
decimal number 1o a packed decimal number ;

. Step1: The zone half and the digit half of the
; rightmost byte are reversed. This
moves the sign to the extreme right of

the number.

Step2: All remaining zones are dropped out.

Table 4.5 illustrates the conversion process of zoned
decimal data o patked dala.

It may be observed that packed data requires fewer
number of bytes (group of 8 bits) as compared to zoned
data. In the zoned format, there is only one digit per byte
(each digit along with the zone requires 8 bits). But there
are two digits in each byte in the packed format (each digit
requires 4 bits). If the packing process does not completely
fill a byte, it is filled with a zero. For example, the zoned
data F3F4F5F6 will convert to packed data 03456F,
Observe that in this exampie, the zoned data requires 4
bytes and the packed data requires only 3 bytes.

Example 4.3, Using binary notation, wﬁte the
EBCDIC coding for theé word BIT.
How many bytes are required for this

" representation?
Solution :
B = 1100 0010 in EBCDIC binary notation
I = 1100 1001 in EBCD'C binary notation
T = 1110 0011 in EBCDIC binary notation

So the EBCDIC coding for the word BIT in binary notation
will be :

11000010 11001001 11100011
B i f

3 bytes will be required for this representation because each
letter requires 1 byte (or 8 bits) for its representation.

Table4.3. Alphabetic And Numeric
Characters in EBCDIC Along With
Their Hexadecimal Equivalent.
Character EBCDIC Code Hexa-
decimal
Equivalent
Zone Digit
A 1100 0001 Cl
B 1100 0G.) c2
C 1100 0011 C3
D 1100 0100 C4
E 1100 0101 C5
F 1100 0110 Cc6
G 1100 0111 c?
H 1100 1000 ‘C8
I 1100 1001 c9
] 1101 0001 D1
K 1101 0010 D2
L 1101 0011 D3
M 1101 0100 D4
N 1101 0101 DS
(0] 1101 0110 D6
P 1101 0111 D7
Q 1101 1000 D8
R 1101 1001 D9
S 1110 0010 E2
T 1110 0011 E3
U 1110 0100 E4
v 1110 0101 E5
w 1110 0110 E6
X 1110 0111 E7
¥ _ 1110 - 1000 E8
Z 1110 1001 E9
0 1111 0000 FO
1 i 1) 0001 F1
2 1111 0010 F2
3 1111 0011 F3
4 1111 0100 F4
5 1111 0101 F5
6 1111 0110 F6
if 1111 0111 F7 -
8 1111 1000 F8
9 1111 1001 Fo

Table 4.4, Mumeric Values In EBCDIC In
Hexadecimal Notation
Numeric EBCDIC Sign
Value Indicator
345 F3F4F5 F for unsigned
+345 F3F4C5 C for positive
-345 F3F4D5 D for negative
Table 4.5. Zoned And Packed Decimal
Numbers
Numeric Zoned Packed
Value Format Format
345 F3F4F5 345F
"+345 F3F4Cs 345C
345 F3F4D5 345D
3456 F3F4F5F6 03456F
Example 4 4. . Write the EBCDIC coding for the
word ZONE (use hexadecimal
notation). How many bytes will be
required for this representation 7
Solution :
Z = E9 in EBCDIC hexadecimal notation
‘O = D6 in EBCDIC hexadecimal notation
N = D5 in EBCDIC hexadecimal notation
E = C5 in EBCDIC hexadecimal notation

So the EBCDIC coding for the word ZONE in hexadecimal
notation will be :

E2 D6D5 G5
Z ON E

Each hexadecimal digit requires 4 bits and there are
altogether 8 hexadecimal digits, So in all 8 x 4 = 32 bits
will be required. But 8 bits = 1 byte. So 32 bits = 4 bytes.
Hence, 4 bytes will be required for this representation.

We may also write directly that since each letter
requires 1 byte for its representation in EBRCDIC and there
are 4 letters in the word ZONE, 0 4 byles will be required

Computer Codes 29

for this representation.

Example 4.5. Write the EBCDIC zoned-decimal
coding for the wvalue +256 (use
hexadecimal). How many bytes will
be required for this representation ?

Solution :

4256 = F2FSC6 in EBCDIC

Each hexadecimal digit requires 4 bits and there are
altogether 6 hexadecimal digits. So in all 6x4 = 24 bits or 3
bytes (8 bits = 1 byte) wil be required for this
representation,

We may also wrile directly that since each digit
requires 1 byte for its representation in the EBCDIC zoned
decima! coding and there are 3 digits in the given number,
s0 3 bytes will be required for this representation,

Lxample 4.6. Write -128 as packed decimal number
{use hexadecimal). How many bytes
will be required for this
representation?

Solution :

-128 = F1F2D8 in EBCDIC
= 128D in packed format

Each hexadecimal digit requires 4 bits and there are
altogether 4 hexadecimal digits. So in all 4x4 = 16 bits or 2
bytes (I byte = 8 bus) will be reguired for this
representation,

ASCII

Another computer code that is very widely used is
the American Standard Code for Information Interchange
(ASCI). ASCII has been adopted by several ®merican
computer manufacturers as their computers' internal code.
This ccde is popular in data communications, is used
almost exclusively 1o represent data internally in
microcomputers, and is frequently found in the larger
computers produced by some vendors.

ASCII is of two types : ASCI-7 and ASCI-S.
ASCII-7 is a 7 bit code that allows 128 (27) different
characters. The first 3 bits are used as zone bits and the last
4 bits indicate the digit. Microcomputers using 8-bit byte
(group of 8 bits for one byte) use the 7-bit ASCII by
leaving the leftmost first bit of each byte as a zero. Table

J0 Digital Computer Fundamentals

4.6 shows the alphabetic and numeric characters in ASCI1-7
notation.

ASCII-8 is an extended version of ASCII-7. It is an
8-bit code that allows 256 (2%) different characters rather
than 128. The additional bit is added to the zone bits. Table
4.7 shows the alphabetic and numeric characters in ASCII-8
notation. Observe that other than the =zone-valve
differences, ASCII-7 and ASCII-8 are identical. ASCII also
uses hexadecimal as its four-to-one shortcut notation for
memory dump. Tuables 4.6 and 4.7 also show the
hexadecimal equivalent of the ASCII nolations.

Example 4.7. Write the binary coding for the word
BOY in ASCIl-7. How many byltes
are required for this representation?

Solution :

B = 1000010 in ASCII-7 binary nolation «
O = 1001111 in ASCII-7 binary notation
Y = 1011001 in ASCII-7 binary notation.
Hence the binary coding for the word BOY in
ASCII-7 will be :

1000010 1001111 1011001
B 0 b

As each character in ASCII-7 requires onc byte for
its represcntation and since there are 3 characters in the
word BOY, so 3 bywes will be required for this
representation.

Example 4.8, Write the hexadecimal coding for the
word GIRL in ASCII-7. How many
bytes are required for this
repres aation?

Solution :

G =47 in ASCII-7 hexadecimal notation
I =49 in ASCII-7 hexadecimal notation
R = 52 in ASCII-7 hexadecimal notation
L =4C in ASCII-7 hexadecimal notation
Hence the hexadecimal coding for the word GIRL in
ASCIL-7 willbe :

47 492 32 4C
G 1R L

As each character in ASCII-7 requires one by‘e for
its representation and since there are 4 characters in the
word

Table 4.6. Numeric And Alphabetic
Chararacters In ASCIT-7 Notation
Along With Their Hexadecimal
Equivalent.
Character ASCII-7 Code Hexa-
decimal
Equivalent
Zone Digit

0 011 0000 30

1 011 0001 31

2 011 0010 32

3 011 0011 33 .

4 011 0100 34

5 011 0101 35

6 011 0110 36

7 011 0111 37

8 011 1000 38

9 01l 1001 39

A 100 0001 41

B 100 0010 42

C 100 0011 43

D 100 0100 44,

E 100 0101 45

F 100 0110 46

G 100 0111 47

H 100 1000 48

I 100 1001 49

J 100 1010 4A

K 100 1011 4B

E 100 1100 4C

M 100 1101 4D

N 100 1110 4E

0 100 1111 4F

P 101 0000 50

Q 101 0001 51

R 101 © 0010 52

8 101 0011 53

] 101 0100 54

U 101 0101 55

v 101 0110 56

W 1M 0111 57

X 101 1000 58

b d 101 1001 59

Z 101 1010 SA

GIRL, so 4 bytes will be required for this

representation.
Example .9, Write the binary coding for the word
SKY in ASCII-8. How many byles are
required for this representation?

Solution

S =10110011 in ASCII-8 binary notation
K'=10101011 in ASCII-8 binary notation
Y = 10111001 in ASCII-8 binary notation

Hence the binary coding for the word SKY in
ASCII-8 will be :

10110011 10101011 10111001
N K Y

As cach character in ASCII-8 requires one byie for
us representation and since there are 3 characters in the
word SKY, so 3 bytes will be required for this
representation.
Example 4.10 Write the hexadecimal coding for the
word STAR in ASCII-8. How many
byws are required for this
representation?

Solution :

5=B3 in ASCII-§ hexadecimal notaton
T=B4 in ASCII-8 hexadecimal notauen
A=Al in ASCII-8 hexadecimal notition
R = B2 in ASCII-8 hexadecimal notation

fence the hexadecimal coding for the word STAR
in ASCII-8 will be :

B3 B4 Al B2
S T

b
x

As each character in ASCII-8 requires one byte for
I8 representation and since there are 4 characters in the
word STAR, so 4 bytes will be required for this
representation.

COLLATING SEQUENCE

The value of an alphanumeric or alphabetic data
element is usually the name of some object. Obviously one
would not like 10 perform any arithmetic on such data but
one may like to compare them in order 1w arrange them in
some desired sequence. Now, if we compare the aiphabetic

Computer Codes 31

values A and B, which one will be treated as greater by the
computer? For an answer © such questions, it is necessary
10 have some assigned ordering among the characters used
by the computer. This ordering is known as the collating
sequence.

Collating sequence may vary from one computer
system 10 another depending on the type of computer code
used by a parucular computer. To illustrate this. let us
consider the compuler codes already discussed in this
chapter. Observe from Tables 4.2 and 4.3 that the zone
values of the characiers A through 9 decreases in BCD code
from the equivalent of decimal 3 down to 0. while in
EBCDIC, the zone valucs of the charuciers A through 9
increases from the equivalent of decimal 12 0 15. This
means that a computer which uses BCD code for its intema!
representation of characters will weat alphabetic characters
(A B, ..., Z) to be greater than numeric chazacters (0, 1. ..,
9). On the other hand, a computer which uses EBCDIC for
its internal representation of characiers will rest numeric
characters 1o be greater than alphabelic characters.
Similarly, observe from Tables 4.6 and 4.7 that a computer
which uses ASCIL for its internui representztion of
characters will place numbers aheud of letiers during a sort
(ascending) because the number characters have a zone
value that is less than the zone value for letters.

Howcver, whatever may be the type of computer
code used, in most (not all - in BCD 059) collaung
sequences the following rules arc observed :

L. Leters arc considered in alphabetic order
(A<B<Cx...<Z}

[

Digits are considered in numeric order

(O<1<2<...<9).

Example 4.11. _ Suppost a compuler uses EBCDIC as

s imernal representation of

characters. In which order will this

computer sort the following strings :
23,Al1,1A°

Solution ;

In EBCDIC, numeric characters arc treated to be
greater than alphabetic characters. Hence the numeric
characters will be placed after the alphabetic characters. So
the computer will treat the given string as

Al<lA<23

Hence the sorted sequence will be : A1, 1A, 23.

Table 4.7, MNumeric And Alphabetic Example 4.12. Suppose a computer uses ASCII for
Characters In ASCI-8 Notation d its internal representation of

Along With Their Hexadecimal characters. Tn which order will this
Equivalent. computer sort the following strings !
23, A1, 1A?
Character ASCH-8 Code Hexa- — '}ﬁ
deatil Solution :
one Diait Equivalent In ASCIL numeric characters are treated 1o be less
w than alphabetic characters. Hence the numeric charactecs
will be placed before the alphabetic characters. So this
? gig: % 2? computer will treat the given string as : 23<1A<Al,
% 3:31 %i? gg’ Hence the.sorted sequence will be: 23, 1A, Al
4 0101 0100 54
5 0101 0101 55 -
6 0101 0110 56 : QUESTIONS
7 0101 0111 7 ' '
g g:gi :% gg 1. Define the term “byle’. What is the difference
between a bit and a byte 7
N = 2. Write the 4-bit BCD code for the following
c 1010 0011 A; numbers : (a) 25,, (b) 64., () 128,, (d) 1024,
g :gig 8}3? i: 3. Using binary notation, show the BCD coding for
E 1010 0110 A6 the following words: (a) BIT (b) BYTE
G 1010 o111 A7 €008,
'H e }g :g 4. Using octal notation, show the BCD coding for
] 1010 1010 AA the following words: (@) COMPUTER (b)
K 1010 101" ° AB INPUT 18) VIRED,
= ig:g v e 5. Why was BCD code extended to EBCDIC ?
ﬁ 32!9 “1? A'.E-: 7 6. How many different characters are possible in
- R & the following codes : "CD, EBCDIC, ASCII-7,
P 1011 0000 BO Al ASCILEL
g %8:1 %é g; 7. Suppose a new computer code is desigrned that
S 1011 0011 B3 uses 9 bits. How many different characiers are
T 1011 0100 B4 possible in this code ?
g_ ig:i g:?é gg 8 Why are octal and hexadecimal shortcut
W 1011 0111 B7 ‘ notations used ? Identify the shoricut notations
X 1011 1000 B used for each of these computer codes: BCD,
Y 1011 1001 B9 EBCDIC, ASCII-7, and ASCII-8,
z M .
s g o 9. Why do we have a packed decimal format ? How

does it differ from a zoned decimal format ?

10. Using binary notation, write the EBCDIC coding
for the following words : (a) SUN (b) MOON
(c) AT. How many bytes are required for cach of
Lthese representations ?

11, Using hexadecimal notation, write the EBCDIC
coding for the following words : (a) PROGRAM
(b) OUTPUT (c) BYTE. How many byles are
required for each of these representations ?

12. Using hexadecimal notation, write the zoncd-
decimal coding - for the following numbers :
{a) 1256 (b) +439 (c) -63. How miany byies will
be required for each of these representations ?

13. Using hexadecimal notation, write the packed-
decimal coding for the following numbers :
(a) 12915 (b) +9876 (c) 872.

How many bytes will be required for cach of
thesc representations ?

14. List out the similarities and differences between
7-bit and 8-bit ASCII.

15. Using binary notation, write the ASCI-7 and
ASCII-8 codes for the following words -
(a) DRY (b) WET (c) DAMP.

Compuier Codes 33

How many byles are required for each of these
representations ?

16. Using hexadecimal notation, write the ASCII-7
and ASCII-8 codes for the following words :
(a) PRINT (b) TYPE (¢) RUB.

How many bytes are required for cach of these
representations ?

17.Explain thc meaning of the term “collating
sequence”.

I8.A computer uses EBCDIC as its internai
representation of characters. In which order will
this compuler son the following strings : ABC,
123,245, ADD??

19. A computer uses ASCIL In whichi order will this
computer sort the following suings : BED. 512,
ADD, 128, BAD? -

20. Give the full form of the following abbreviaticns
: BCD, EBCDIC, ASCII

CHAPTER S

5. COMPUTER ARITHMETIC

In Chapter 4 you have scen that compuiers store
numbers, letters, and other characters in coded form that is
related 1o the binary number system. In this chapter you
will learn why computers us¢ binary numbers instead of
decimal numbers and how the basic arithmetic onerations
are performed inside the computer using binary numbers.

WHY BINARY

You might have observed in Chapter 3 that the use
of a smaller base may require more positions to represent a
given value (recall the reason for using octal and
hexadecimal shortcut notations). For example, 9o =
10015. Here four positions are required instead of onc to
represent the decimal number 9 in binary form. In spite of
this fact, almost all computers use binary numbers. So the
obvious question that arises to ones mind is that why do we
go for binary numbers instead of decimal numbers? The
reasons are as follows :

1. The first and the foremost reason is that
clectronic and electrical components, by their
very nature, operate in a binary mode.
Information is handled in the computer by

clectronic/electrical components such as
transistors, semiconductors, wires, etc. all of
which can only indicate two states or conditions
- on(1) or off(0). Transistors arc cither
conducting(l) or nonconducting(0) ; magnetic
malerials arc either magnetized(l) or non-

‘magnetized(0) in one direction or in the oppositg

direction; a pulse or voliage is present(1) or not
present(0) in wire. All information is reprecented
within the computer by the presence or absence
of these various signals. The binary number
system, which has only two digits (0 and 1), is
muost suitable and is conveniently used to expresst
the two possible states. The concept of binary
components is illustrated in Figure 5.1.

The second reason is that computer circuits only
have w0 handle two binary digits rather than ten
decimal digits. The result is that the internal
circuit design of computers is simplified 0 a
great extent. This ulumately results in less
expensive and more rcliable circuits for
computers.

36 Digital Computer Fundamentals

3. Finally, the binary system is used because
everything that can be done with a base of 10 can
also be done in binary. How this is achieved has

been discussed below.
BINARY
STATE ON (1) OFF (0)
<X 1/ 2t
Bulb Y /<
Switch —O0— 00— -—o/o—
Circuit I
Pulse -
1l
Figure 5.1. Examples of devices thal work in
binary mode. These devices can only
represent two states - on or off. These
states can represent eithera 1 ora 0 or
a yes or a no.
BINARY ARITHMFTIC

In this section you will see how the four basic
arithmetc operaliéns are periormed inside a computer
using binary numbers. Actually, binary arithmetic is much
simpler to learn because binary system deals with only two
digits - 0 and 1. So all binary numbers are made up of only
O's and 1's and when arithmetic operations are performed on
these numbers, the resulis aic also in O's and 1's only.

ADDITION

Binary addition is performed in the same manner as
decimal addition. However, since binary sysiem has only
two digits, the additon table for binary arithmetic is very
simple consisting of only four entries. The complele table
for binary addiuon is as follows:

0+0=0
0+1=1
1+0=1

1+ 1=0 plus acarry of 1 to next higher column’

Carry-overs arc performed in the same manner as in
decim~! arithmetic. Since 1 is the largest digit in the binary

system, any sum greater than 1 requires that a digit be
carried over. For instance, 10 plus 10 binary requires the
addition of two 1's in the second position. Since 1+1 = 0
plus a carry-over of 1, the sum of 10 + 10 is 100 in binary.

By repeated use of the above rules, any two binary
numbers can be added ogether by adding two bits at a uime.
The exact procedure is illustrated with the examples given
below.

Example 5.1. Add the binary numbers 101 and 10 in
; both decimal and binary form.
Solution :
BINARY DECIMAL
101 5
+10 +2
111 7
Example 5.2. Add the binary numbers 10011 and
1001 in both decimal and binary form.
Soluticn ;
BINARY DECIMA]
carry 11 carry |
10011 19
+1001 +9
11100 28

Note that while adding the first and the second
column of the binary example, a carry i1s generated.

Example 5.3. Add the binary numbers 100111 and
11011 in both decimal and binary

form.

4-B

Solution :
BINARY DECIMAL
CARRY 11111 CARRY 1
100111 39
+ 11011 +27
1000010 66

In this example, we face a new situation (1+1+1)
brought about by the carry-over of 1 in the second column.
This can also be handled using the same four rules for
binary addition. The addition of three 1's can be broken up
into two sieps. First we add only two 1's givi\ng 10
(1+1=10). The third 1 is now added to this result to obtain
1i (a1 sum with a 1 carry). So we conclude that 1+ 1+ 1 =
1 plus a carry of 1 to next higher column.

SUBTRACTION

The principles of decimal sublraction can as well bé
applied (o subtraction of numbers in other bases. It consfsts
of two steps, which are repeated for each column of the
numbers. The first step is o determine if it is necessary o
borrow. If the subtrahend (the lower digit) is larger than the
minuend (the upper digil), it is necessary 1o borrow from
the column to the left. It is important fo note here that the
value borrowed depends upon the base of the number and is
always the decimal ecquivalent of the base. Thus, in
decimal, 10 is borrowed: in binary, 2 is borrowed; in octal,
8 is borrowed; in hexadecimal, 16 is borrowed. The second
step is simply w subtract the lower value from the upper
value. The complete table for binary subtraction is as
follows :

with a borrow from thenext column

Observe that the only case in which it is necessary to
borrow is when 1 is subtracted from 0. The exact procedure
is illustrated with the examples given below,

Example 5.4 Subtract 01110, from 10101,.

Solution :
Borrow [12
0202
10101
01110
00111

Computer Arithmetic 37

In the first column, 0 is subtracted from 1. No
borrow is required in this case and the result is 1. In the
second column, we have (o subtract 1 from 0. As seen in
the table for binary subtraction, a borrow is necessary to
perform this subtraction. So a 1 is borrowed from the third
column which becomes 2 in the second column because the
base is 2. A 1 in the 4s column is equal 10 2 in the 2s
column. Now, in the second column, we subtract 1 from 2
giving a result of 1. The borrow performed in the second
column reduces the 1 in the third column to 0. So in the
third column, once again we have to subtract 1 from 0 for
which borrow is required. The fourth column contains a 0
and thus has nothing to borrow. Therefore, we have to
borrow from the fifth column. Borrowing 1 from the fifth
column gives 2 in the fourth column. A 1 in the 165 column
equals 2 in the 8s column. Now the fourth column has
something to borrow, When 1 of the 2 in the fourth column
is borrowed, it becomes 2 in the third column. Now, in the
third column, we subtract 1 from 2 giving a result of 1. The
borrow performed in the third column reduces the 1 in the
fifth column to 0 and the 2 in the fourth column 1o 1.
Hence, subtraction of the fourth column is now 1 from L7
giving 0 and in the fifth column, subtraction is O from 0,
giving 0. Thus the final resuli of subtraction is 00111,. The
result may be verified by subtracting 14,, (= 01110, from
21, (10101,) which gives 7,, (= 00111,).

Example 5.5. Subtract 0111000, from 1011100,.\

Solution :

BORROW 7
1011100
-0111000
0100100
‘The result may be verified by subtracting 56, (=
0111000y from 92,, (= 1011100,) which gives 36, (=
0100100,).

Additive Method of Subtraction.

The direct method of subtraction using the borrow
concept scems 1 be easiest when people perform
subtraction with paper and pencil. However, when
subtracion is implewanted by means of digital
components, this method s found to be less efficient than
the additive method of subtraction. It may sound surprising
that even subtraction is performed using an ‘additive
method. This method of subtraction by an additive
approach is known as complementary subtraction.

In order to understand complementary subtraction, it
is necessary 1o know what is meant by the complement ~f a

38 Di gital Computer Fundamentals

number. For a number which has n digits in it, a
complement is defined as the difference between the
number and the base raised to the nth power minus one.
The definition is illustrated with the following examples :
Lxample 5.6. Find the complement of 37,,.
Solution :

Since the number has 2 digits and the value of base
is 10,0 (Base)" - 1 =102-1=99

Now 99 - 37 =62
Thus the complement of 37,,=62,,
Example 5.7. Find the complement of 6,.

Solution :

Since the number has 1 digit and the value of base is
8 so(Base)"-1=81-1=7,

Also 6, =6,

No: Zu-6p=1ls=1;

Thus the complement of 6, = 1,.
Example 5.8. Find the complement of 10101,

Solution :

Since the number has 5 digits and the value of basc

is2,
s Y a.
Sc(Base)"-1-2°-1=30y9

AISO 10]012=21]0
Now 3110 - 2110 = 1010 = 10102
Thus the complement of 10101, = 01010,.

" Observe from Example 5.8 that in case of binary
numbers, it is not necessary to go through the usual process
of obtamning complement. Instead, when dealing with
binary numbers, a quick way to obtain a number's
complement is to transform all its 0's to 1's, and all its 1's to
0's. For example, :he complement of 1011010 is 0100101.
Thus circuit for obtaining complement of a number in
binary system can be easily designed at very less expense,

So we have seen how to obtain the complement of a

number. We will now sece how subtraction is performed
using the complementary methed.

Subtraction by the complementary method involves
the following three steps :

Step 1: Find the complement of the number
you are subtracting (subtrahend);

Step 2: Add this to the number from which
you are laking away (minuend);

Step3: If there is a carry of 1, add it o obtain

the result; if there is no carry,
recomplement the sum and attach a
negative sign (o obtain the result,

To illustrate the procedure, let us first consider few
examples for decimal numbers.

Example 5.9. Subtract 56,, from 92, using
complementary method.
Solution :
Step 1: Complement of 56,4
=102-1-56
=99-56
= 4310
Step 2: 92
+4 3 (complement of 56)
153
|
|
Step 3: “-->1 (add the carry of 1)
Result =36

The resuli may be verified using the method of
normal subtraction : 92 - 56 = 36.

Example 5.10. Subtract 35, from 18,, using
complementary method.
Solution :
Step 1: Complement of 35,p

=102-1-35
=99-135

=649
Step2:
18
+64 (complement of 35)
82
Step3: There is no carry. So recomplement

the sum and attach a negative sign 10
obtain the result.
Result = -(99 - 82)
=-17 ’
The result may be verified using the method of
normal subtraction:

18-35=-17

Lev us re-work these examples using binary
numbers, :

Example 5.11. Subtract 0111000, (56,) from
1011100, (92,,) using complementary
method.

Selution :

1011100

+10001 11 (complement of 0111000)

0100100
Result = 0100100, = 36,,

Verify the result with the results of Example 5.5 and
Example 5.9.

Example 5.12. Subtract 100011, (35,,) from 010010,

(18,,) using complementary method.

Solution :

010010
+0 11100 (complement of 100011)

101110

As there is no carry, so we have 1o complement the
sum and attach a negative sign to it. Hence

Result = -010001, (complement of 101110,)

Computer Arithmetic 39

=-1 710
Verify the result with the result of Example 5.10.
Example 5.13.

Subtract 01110, from 10101, using
complementary method.

Solution :

10101
+1000 1 (complement of 01110)

00111
Result= 00111,
Verify the result with the result of Erample 5.4.

MULTIPLICATION

Multiplication in the binary system also follows the same
general rules as decimal multiplication. However, learning
the binary multiplication is a trivial task because the tabie
for binary multiplication is very short, with only four
cntries instead of the 100 necessary for decimal
multiplication. The complete table for binary muliiplication
is as follows :

0x0=C0C
0x1=0
1x0=0
1x1=1

The method of binary multiplication is illustrated

with the example given below. I is only necessary 1o copy

the multiplicand if the digit in the multiplier is 1, and to

copy all Os if the digit in the multiplicr is a 0. The case with
which each step of the operation is performed is apparent.

Example 5.14. Multiply the binary numbers 1010 and
1001.
1010 Multiplicand
x1001 Multiplier

1010 Partial Product
0000 Partial Product
0000 Partial Product
1010 Partial Product

Final Product

40 Digital Computer Fundamenials

1011010 Final Product

Note that the multiplicand is simply copicd when
multiplier digit is 1 and when the multiplier digit is 0, the
partial product is only a string of zero's. As in decimal
multiplication, each partial product is shilied one place to
the left from the previous partial product. Finally, all the
partial products obtained in this manner are added
according to the binary addition rules to obtain the final
product.

In actual practice, whenever a 0 appears in the
muluplier, a separate partial product consisting of a string
of zeros need not be generated. Instead, only a left shift will
do. As a result, Example 5.14 may be reduced o

1010
x1001

(s = left shift)

1011010

A computer would also follow this procedure in
performing multiplication. The result of this multiplication
may be verified by multiplying 10,, (1010, by 9,, (1001,
which produces a result of 90,, (1011010,).

//

It may not be obvicus how to handle the addition if
the result of the muliiplication gives columns with more
than two 1s. They can be handlied as pairs or by adjusting
the column to whichk the carry is placed, as shown by
Example 5.15.

Additive Mcthod of Multiplication.

Most of the computers perform muliiplication
operation by the way of addition only. This can be casily
scen by considering an example, say 4 x 8. The résult for
this multiplication can be determined by evaluating, with
necessary carry overs, 8+8+8+8. That is, the result is
obtained simply by adding the digit 8 four times. Similarly,
the computer performs all multiplication operations in
binary using the additive approach.

This idea of repcated addition may seem 10 be a
longer way of doing things, but remember that the
computer is well suited to carry out the operations at great
speed. The intemal circuit design of compuler systems is

also simplified to a great extent by using this method of
muluplication.

Example 5.15. Multiply the binary numbers 1111 and

111,

Solution :

—
—

11

11
1 1%

-k b
—

11010101

Addition
Handled
As Pairs
(Column 3)

1 1
Fr
' 1 Prg::em
i
1}

1 Carry
From

e Col 2

T 0

Add two
Carries
to Col. 4

Addition
Handled

As Single
Carry (Col 3

From
Problem

Carry
From
Col 2

LJ

-

| Carry to Col 4

Carry to Col 5

DIVISION

Binary division is, again, very simple. As in the
decimal system (or in any other number system), division
dy zero is meaningless. Hence, the complete table fo-
binary division is as follows :

0/1=0
1/1=1

The division process is performed in a manner
similar 1o decimal division. The rules for binary division
are ;

1. Start from the left of the dividend.

2. Perform a series of subtractions in which the
divisor is subtracted from the dividend.,

3. If subtraction is possible, put a 1 in the quotient
and subtract the divisor from the comresponding
digits of dividend.

4. If subtraction is not possible (divisor greater than
remainder), record a 0 in the quotient.

5. Bring down the next digit to add to the
remainder digits. Proceed as before in a manner
similar to long division,

The method is illustrated by Example 5.16.

The result may be verified by dividing 33,,
(100001,) by 6,, (110,) which gives a quotient nf 5,, (101,)
_and aremainder of 3,,(11,).

Additive Method of Division.

Even division operation is performed inside most
computers by the process of addition only. This may again
sound surprising, but it is true. The computer performs the
division operation essentially by repeating the
complementary subtraction method. For example, 35 /.5
may be thought of as :

35-5=130
30-5=25
25-5=20
20-5=1i5
15-5=10

10-5=5

Computer Arithmetic 41

5-5=0
Example 5.16. Divide 100001, by 110,.
Solution :
0101 {Quotient)
110 } 100001 (Dividend)

110 =~——— 1

1000 ~—— 2

110 =——— 3
100 «— 4

110 «——5

1001
110 ~—7

-~ §

11 (Remainder)

1 Divisor greater than 100, so put 0 in quotient

2 Add digit from dividend
to group used above

3 Subtraction possible so put 1 in quotient

4 Remainder from subtraction
plus digit from dividend

5 Divisor greater, so put 0 in quotient

@ Add digit from dividend te group

7 Subtraction possible, so put1in quotient

42 Computer Fundamentals

That is, the divisor is subtracted repeatedly from the
dividend until the result of subtraction becomes less than or
equal to zero. The total number of times subuaction was
performed gives the value of the quotient. In this case, the
value of quotient is 7 because the divisor (5) has been
subtracted 7 tumes from the dividend (35) until the result of
subtraction becomes zero. If the result of last subtraction is
zero then there is no remainder for the division. But, if it is
less than zero, then the last subtraction is ignored and the
result of the previous subtraction is taken as the value of the
remainder. In this case, the last subtraction operation is not
counted for evaluating the value of the quotient. The
process is illustrated below with an example.

Example 5.17. Divide 33,, by 6,, using the method of

addition.
Solution :
33-6=27
27-6=21
21-6=15
15-6=9
9-6=3
3-6=-3

Total number of subtractions =
the last subtraction in less than zero, so

. Since the result of

Quotient = 6 - 1 (ignore last subtraction) = 5
Remainder = 3 (result of previous subtraction)
Thus, 33 /6 = 5 with a remainder 3.

Note that it has been assumed here that all the
subtraction operations are carried ovt using the
complementary subtraction method (additive method).

Once again, performing division inside a computer
by the way of addition is desirable because the addition and
complementation operations are easily performed in a
computer and usually save the labour and expense of
designing complicated circuits.

We have demonstrated how computer arithmetic is
based on addition. Exactly how this simplifics matter can
only be understood in the context of binary (not in
decimal}. The number of individual steps may indeed be

incrcased because-all computer arithmetic is reduced to
addition, but the computer can carry out binary additions at
such great speed that this is not a disadvantage.

QUESTIONS

1. Why have computers been designed to use the
binary number system ?

2. Add the binary numbers 1011 and 101 in both
decimal and binary form.

3. Add the binary numbers 1010110 and 1011010.

4. Add the binary numbers 10111 and 1011,

5. Find the complement of the following numbers :
a) 495, b)29,

c) 4, d)C,

e) 2, f) 32,

6. Find the complement of the following binary
numbers :

a) 10 b) 101
c) 101101 d) 011011

€) 001101001110
7. Subtract 0110111, from 1101110,.
8. Subtract 01010, from 10000,.
9. Subtract 011011, from 110111,.

10. Subtract 25,, from 50, using complementary
method.

11. Subtract 25,, from 20,, using complementary
method.

12, Subtract 234, from 588,, using complementary
method,

13. Subtract 216,, from 172,, using complementary
method.

. 14, Subtract 01010, from -
complementary method.

10000, using

15.Subtract 110111, from 101110, using
complementary method.

16. Subtract 011011, from 110111, using
complementary method.

17. Subtract 1111, from 1100, using complementary
method.

18. Multiply the binary numbers 1100 and 1010.
19. Multiply the binary numbers 01101 and 1001.
20. Multiply the binary numbers 101111 and 111

21. Divide 11001, by 101..

Computer Arithmetic 43

22.Divide 0110111, by 0111,

23. Briefly explain how multiplication and division
operations are performed within a computer
using additive approach.

24, What is the primary advantage of performing
subtraction by the complementary method in
digital computers ? '

25. iscuss the advantages and disadvantages of
‘performing the various arithmetic operations by
the additive method in a digital compuler,

CHAPTER 6

6. BOOLEAN ALGEBRA AND
LOGIC CIRCUITS

In the previous chapters you have seen that
computers normally use binary numbers. In this chapter,
you will learn about an algebra that deals with the binary
number system. This algebra, known as Boolean algebra, is
very useful in designing logic circuits used by the
processors of computer systems. In addition to this, you
will also learn about the elementary logic gates that are
used to build up circuits of different types o pertorm the
necessary arithmetic operations. These logic gates are the
building blocks of all the circuits in a computer. Finally, in
this chapter, you will also learn how to use Boolean algebra
to design simple logic circuits frequratiy used by the
arithmetic logic unit of almost all computers.

BOOLEAN ALGEBRA

In the mid-1800's, an algebra which simplified the
representation and manipulation of propositional logic was

developed by the English mathematician, George Boole
(1815-1864). It became known as Boolean algebra after its
developer's name. Later, in the year 1938, Claude E.
Shannon, a rescarch assistant in the department of_electrical
engincering at the Massachusetts Institute of Technology,
published a thesis entitled, "A Symbolic Analysis of Relay
and Switching Circuits™. In his thesis, he proposed the use
of Boolean algebra in the design of relay swilching circuits.
The basic techniques described by Shannon were adopted
almost universally for the design and analysis of switching
circuits. Because of the analogous relationship between. the
action of relays and of modem electronic circuits, the same
techniques which were developed for the design of relay
circuits are still being used in the design of modern high-
speed computers.

Boolean algebra provides an economical and
straightforward approach to the design of relay and other

46 Digital Computer Fundamentals

types of switching circuits. Just as an ordinary algebraic
expression may be simplifiecd by means of the basic
thcorems, the cxpression describing a given switching
circuit network may also be reduced or simplified using
Boolean algebra. Boolean algebra is now being used
extensively in designing the circuitry used in computers. In
short, a knowledge of Boolcan algebra is must in the
computing field.

FUNDAMENTAL CONCEPTS OF BOOLEAN
ALGEBRA

1. Use of Binary digits. In a normal algebraic
expression, a variable can take any numecrical
value. For example, in the expression 3A + 7B =
C, we assume that A, B, and C may range
through the entire field of real numbers.

Since Boolcan algebra deals with the binary
number system, the varnables used in the
Boolean cquations. may assume only two
possible values (0 and 1). If an ecquation
describing Jogical circuitry has several variables,
it is still undersiood that each of the variables
can assume only the values 0 or 1. For example,
in the equation A + B = C, cach of the variables
A, B, and C may have only the values O or 1.

2 Logical addition. The symbol "+ is used for
logical addition operator. It is also known as
“OR’ operator. We can definc the + symbol (OR
operator) by listing all possible combinations of
A and B and the resulting value of C in the
equation A + B = C. [t may be noted that since
the variables A and B can have only rwo possible
values (U or 1) so only four (22) combinations of
inputs are possible -as shown in Table 6.1. The
resulting output values for each of the four input
combinations are given in the table. Such a table
is known as a truth table. Thus, Table 6.1 is truth
table for the logical OR operator.

Observe that the result is 0 only when the value
of both the input variables is 0. The result is 1
when any of the input variables is 1. Note that a
result of 1 is also obtained when both the inputs
A and B are 1. This is the reason why the +
symbol does not have the "normal” meaning, but
is a logical addition operator. This concept of
logical addition may be extended to any number
of variables. Fot example, in the equation A + B
+C+D=E, evenif A, B, C.and D all had the

value of 1, the sum of the values (the result E)
vould be 1 only. The equation A + B = C is
nonmally read as "A or B equals C".

Table 6.1. Truth Table For Logical OR (+)

Operator.
INPUTS QUTPUT
0 0 0
0 1 1
1 0 1
1 1 1

Logical multiplication. The symbol *." is used for
logical muldplication operator. It is also known
as "AND' operator. We can again define the .
symbol (AND operator) by listing all possible
combinations of A and B and the resulting value
of C in the cquation A . B = C. The truth table
for logical AND operator is shown in Table 6.2.
Observe from the truth table that the result C is
equal to 1 only when both the input variables A
and B are 1, otherwise it is 0. The equation A . B
= C s normally read as "A and B equals C".

Table 6.2. Truth Table For Logical AND (.)

Operator.
INPUTS OuUTPUT
A g e
0 0 0
0 1 0
1 0 0
1 1 1

Complementation. The two operations defined so
far (OR and AND) arc binary operations because
they define an operation on two variables. The
complementation operation is a unary operation
which is defined on a single variable.

The symbol *-' is normally used for
complementation operator. It is also known as
"NOT operator. Thus we wrile A, meaning “take
the complement of A," or (A + B), mcaning
"take the complement ¢f A + B." The
complementation of a variable is the reverse of
its value. Thus, if A=0then A= 1andif A =1
then A = 0, The truth table for logical NOT ()
operator is shown in Table 6.3, A is read as
"complement of A” or "not ol A”.

Table 6.3. Truth Table For Logical NOT (-)
Operator.
INPUT OUTPUT
A A
0 1
1 0
5. Operator precedence. Does A + B . C mean (A +

B).Cor A+ (B.C)? The two generate different
valuesfor A=1,B =0, and C =0, for then we
have (1 +0).0=0and 1 + (0. 0) = 1, which
differ. Hence it is necessary to define operator
precedence in order 1o correctly cvaluate
Boolean expressions, The precedence of Boolean
operalors is as follows :

1. The expression is scanned from left 1o right.

)

Expressions enclosed within parentheses are
evaluated first.

3. Ali complement (NOT) operations are performed
next.

4. All"." (AND) operatons are performed after that.

5. Finally all "+ (OR) operations are performed in
the end.

So according to this precedence rule, A + B . c
means A + (B . C). Similarly for the cxpression A .-ﬁ. the
complement of A and B are both evaluated first and the
results are then ANDed. Again for the expression (A + B),
the expression inside the parenthesis (A + B) is evaluated
first and the result so obtained is then complemented.

Boolean Algebra and Logic Circuits 47

POSTULATES OF BOOLEAN ALGEBRA
Foswiare I :
(a) A =0ifand enly if A is not equal to 1
(b) A= 1ifand only il A is not equal 10 0
Postulate 2 -
(a) x+0=x
(b) x.l=x
Posiudate 3 Commutative Law
(@ x+y=y+x
® x.y=y.x
Postulare 4 : Associative Law
(@ x+(y+2=(x+y)+2
(b) X (Y- Z) =% 2y) .7
Postulate 5 : Disinbutive Law
(a) X {y+z)=x y+x.z
(b) X+y.z=(x+y)(x +7)
Postulate 6 :
(@ x+x=1
) xX=0
The postulates listed above are the basic axioms of
the algebraic structure and need no proof. They are used to
prove the theorems of Boolcan algebra.
THE PRINCIPLE OF DUALITY
In Boolean algebra, there is a precise duality
between the operators .(AND) & +(OR) and the digits 0 &
1. For instance, let us consider Table 6.4. We can sce that
the second row of the tble is obtainable form the first row
and vice - versa simply by interchanging “+ with *." and "0’
with "1". Tis important property is known as the principle

of duality i Boolean algebra.

The implication of this duality is that any theorem in
Boolean aliebra has dual obtainable by interchanging “+'

48 Computer Fundamentals

with "." and *0' with "1'. Thus if a particular theorem is
proved, its dual theorem automatically holds and need not
be proved separately.

Table 6.4,

Illustrating The Principle Of
Duality In Boolean Algebra.
Column 1| Column2 Column 3
Row1 | 1+1=1 [1+0=0+1=1 0+0=0
Row 2 0.0=0 |0.1=1.0=0 1.1=1

THEOREMS OF BOOLEAN ALGEBRA

Some of the impornant theorems of Boolean algebra
are stated below along with their proof.

Theorem I (Idempotent law)

(@x+x=x
(b)Y x. x=X%
Proof of (a)
L.HS.
=x+x
=(x+x).1 by postulate 2(b)

=(x + x).(x +X) by postulate A(a)

=X+ XX by postulate 5(b)
=x+0 by postulate 6(b)
= by postulate 2(a)
=R.H.S.

Proof of (b)

L.H.S.

=X X

=x.x+0 by postulate 2(a)

=X.X+xX by postulate 6(b)
=x. (x+%) by postulate 5(a)
S0, by postulate 6(a)
=X by postulate 2(b)
=R.H.S.

Note that theorem 1(b) is the dual of theorem 1(a)
and that each step of the proof in part (b) is the dual of pan
(a). Any dual theorem can be similarly derived from the
proof of its corresponding pair. Hence from now onwards,
the proof of part (a) only will be given. Interested readers
can apply the principle of duality to the various steps of the
proof of part (a) 10 obtain the proof of part (b) for ahy
thcorem.

Theorem 2

(aA)x+1=1

®)x.0=0
Proof of (a;
L.HS.
=x+1
=(x+1).1 by postulate 2(b)
= (x+1).(x+x) by postulate 6(a)
=x+1X by postulate 5(b)
=x+x.l by postulate 3(b)
=x+x by postulate 2(b)
=1 by postulate 6(a)
=R.H.S.

Proof of (b) holds by duality.
Theorem 3 (Absorption law)

(aA)x+xy =x

Boolean Algebra and Logic Circuits 49

Table 6.6 preves Theorem 3(b) by the method of perfect

induction.

Table 6.6.

Truth Table For Proving Theorem
3(b) By The Method Of Perfect

(b) x . (x+y) =x
Proof of (a)
[LHS,
=X+ Xy
=x.l+xy by postulate 2(b)
=x.(1+y) by postulate 5(a)
=x.(y+l) by postulate 3(a)
=x.1 by theorem 2(a)
=x by postulate 2(b)
=R.HS.

Proof of (b) holds by duality.

Proof by the method of perfect induction. The theorems of
Boolean algebra can also be proved by means of truth
tables. In a truth wble, both sides of the relation are
checked 1o vyicld identical results for all possible
combinations of varables involved. In principle, it is
possible 10 enumerate all possible combinations of the
variables involved because Boolean algebra deals with

variables that can have only two values. This method of

proving theorems is called cxhaustb@ cnumeration or
perfect induction.

Induction.
X XTy X (x+y)
0 0 0
0 1 1 0
1 0 1 1
1 1 1 1
P

Table 6.5. Truth Table For Proving Theorem

3(a) By The Method Of Perfect
Induction.

X y X'y X+ Xy

0 0 0 0

0 1 0 0

1 0 0 1

1 1 1 1

For example, Table 6.5 is a truth wble tor proving
Theorem 3(a) by the method of perfect induction. Similarly,

Theorem 4 (Involution Law)
X=x
Procf

Table 6.7 proves this thcorem by the
method of perfect induction.

Table 6.7. Truth Table For Proving Theorem
4 By The Method Of Perfect
Induction.
4 4
X x X
0 1 0
1 0 1

Note that- Theorem 4 has no dual since it deals with the
NGT operator which is unary operator.

50 Digital Computer Fundamentals

Theorem 5 Theorem 6 (De Morgan's law)
@x.X+y)=x.y @xXFy=x.y
Mx+X.y =x+Y X y=X+Y
Proof of (a) Proof of (a)
Table 6.8 proves this theorem by the Table 6.10 proves this theorem by the
method of perfect induction. method of perfect induction.
Table 6.8. Truth Table for Proving Theorem Table 6.10, Truth Table For Proving Theorem
5(a) By The Method Of Perfect 6(a) By The Method Of Perfect
Induction. Induction.
[- 1] |
x y X | x+yl|x(x+y)| x-y X y Ix+ylxFy|| X | ¥ [(x-¥
g 0 : 1 0 0 0 0 0 1 1 1 1
1 1
” 4 0 0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
1 0 1 0 1 0
1 1 1 1 1
1 0 0 0 0
Proof of (b)
Proof of (b)
Table 6.9 proves this theorem by the
method of perfect induction. Table 6.11 proves this theorem by the
method of pertect induction.
Table 6.9. Truth Table For Proving Theorem
5(b) By The Method Of Perfect Table 6.11. Truth Table For Proving Theorem
Induction. 6(b) By The Method Of Perfect
Induction.
Fol = :
—1— : X Yy |x'y|xyl||l x y [x+y
X y X |x'y |[x+x-y|[x+y
0 0 0 1 1
0 0 1 0 0 0 0 ! 1
0 1 1 1 1 1 : g I 1 0]
1 o | o | o 1 1 L T LR S N T e
1 1 0 0 1 1 g 4= 1 0 o |0 [~.0

Theorems 6(a) and 6(b) are important and very
useful. They are known as De Morgan's laws. They can be
extended 10 n vanables as given below.

The basic Boolean ‘identities are summansed in
Table 6.12. It is suggested that the readers should become
well conversant with the identities given in this table in
order to vre the algebra effecuvely.

Table 6.12. Summary Of Basic Boolean
Identities.
SL.
NO. IDENTITIES DUAL IDENTITIES
1. |A+0=A Al=A
2. |A+1=1 »|A.0=0
3. |A+A=A AA=A
4. |A+A=1 [a.A=0
5. [A=A b
6. |A+B=B+A A.B=B.A
7. |(A+B)+C=A+(B+C) |(A.%).C=A.(B.C)
8. |A.(B+C)=A.B+A.C|A+B.C={A+B).(A+C)
9. |A+A.B=A lA.(A+B)=A
10. {A-A.B=A~+B {A.(AR+B)=A_B
M. |A<B<A.3 I E=Rs B

BOOLEAN FUNCTIONS

A Beolean function is an expression formed with
binary vaniabies, the two binary operators OR and AND,
5-A

Boolean Aleebra and Logic Circuits S1

the unary operator NOT, parenthescs and cqual sign. For a
given value of the vanables, the value of the function can
be either 0 or 1. For example, consider the cquation

W=X+Y.2Z

Here the variable W is a lunction of X, Y and Z.
This is wntten as W = {(X,Y.Z) and the right hand side of
the equation is called an expression. The symbols X, Y and
Z are referred 1o as fiterals of this funcuon.

The above is an example of a Boolcan function
represenied as an algebraic expression. A Boolean function
may also be represented in the form of a truth table. The
number of rows in the wble will be cqual to 27, where n is
the number of literals (binary variables) used in the
function. The combinations of 0's and 1's for each row of
this table is easily obtained from the binary numbers by
counting from 0 to 2°-1. For each row of the table, there is
a value for the function equal to either O or 1 which is listed
in separate column _of the table. Such a wuth wble for the
function W = X + Y . Z is shown in Table 6.13. Obscrve
that there are cight (23) possible distinct combinations for
assigning bits to three variables. The column labeled W is
either a 0 or a 1 for each of these combinations. The wble
shows that out of eight, there are five differcnt
combinations for which W = 1.

Table 6.13. Truth Table For The
FunctionW=X+Y.Z

Boolean

>
<
N
z

—_ o 0O0 00
S o e N i
- OO0 =020
PO SR R, o (T G e |

The question now arises - is an algebraic exprossion
for a given Boolean function enique? In other words, is it
possible 10 find two algebraic expressions that specify the
same Boalean function? The answer 10 this guestion s yes.
As a matter of fact. the manipulation of Boolean algebra-is

52 Digital Computer Fundam®nigls

applicd mostly 10 the problem of finding simpler
expressions for a given expression. For example, let us
consider the following two functions :

F,=xyz+xyz+xyand

I

F, +Xx.z

U}

X.

<

Table 6.14. Truth Table For The Boolean
Functions:

F, =X.y.z + X.y.z + x.y and

»
<
=2
~N
—
e
>3
n

- - OO0DO
R = e =2 =
N o I < I o R =]
OO0 == =20—=0D
OO = = =0 =0

The represemtation of these two functions in the
form of truth table is shown in Table 6.14. From the table
we find that the function F, is same as the function F, since
both have identical O's and 1's for each combination of
values of the three binary variables x, y and z. In general,
w0 funciions of n binary variables are said to be equal if
they have the same value for all possible 27 combinations
of the n literals.

MINIMIZATION OF BOOLEAN FUNCTIONS-

When a Boolean function is implemented with logic
gates (discussed later in this chapter), each literal in the
function designates an input to a gale and each term is
implemented with a gate. Thus for a given Boolean
function, the minimization of the number of literals and the
number of terms will result in a circuit with less
equipments. For example, since functions F, and F, of Table
6.14 are equal Boolean functions, it is more economical to
implement the F, form than the F, form because the F, form
contains fewer terms. To find simpler circuits, one must
know how 1o manipulate Boolean functions to obtain cqual

and simpler expressions. What constitutes the best form of
Boolean function depends on the particular application.
However, we will give consideration only to the criterion of
equipment minimization which is achieved by literal
minimization.

There are several methods used for minimizing the
number of literals in a Boolean function. However, a
discussion of all these methods is beyond the scope of this
book. Hence here we will consider only the method of
algebrgic manipulations. Unforunately, in this method,
there are no specific rules or guidelines 1o be followed that
will guarantee the final answer. The only method available
is cut-and-try procedure employing the postulates, the basic
theorems, and any other manipulation method which
becomes familiar with use. The following examples
illustrate this procedure.

Example 6.1. Simplify the following Boolean
functions to a minimum number of
literals.

(@) x +x.y

®)x.(X+vy)

©)xyz. +X.yz+xy
dxy+xz+yz

©) (x+y). X+z) . (y+z)

Solution :

(@)

X +Y..y

= (x4%).(x+y) by postulate 5(b)
= 1.(x+y) by postulate 6(a)
= (x4y).1 " by postulate 3(b)
= X+y by postulate 2(b)
(b)

x(X+y)

=XX+ XYy by postulate 5(a)
=0+xy by postulate 6(b)

=xy+0 by postulate 3(a)
=Xy by postulate 2(a)
(c)

XYyzZ+Xyz+xy
=xz.(y+y) +xy by postulate 5(a)

=Xz.(y+¥) +xy by postulaic 3(a)

=xz.l+xy by postulate 6(a)
=Xz+xy by postulate 2(b)
(d)

Xy+Xxz+yz
=xy+xz+yzl by postulaie 2(b)

= XY+ XZ+ Y2 (x+X)
by postulale 6(a)

=Xy +XZ+HYZX+ Y2
by postulate 3(a)

SXY+HXZHXYZ+H Y2
by postulate 3(b)

=xyl+Xz+xyzr+Xyz
by postulate 2(b)

=xyl+xyz+xz+Xyz
by postulate 3(a)

=xy.(142) + X.z(l+y)
by postulate 5(a)

= xy.(z+]) + Xz (y+1)
by postulate 3(a)

=xy.l+xzl by theorem 2(a)
=Xy+xz by postulate 2(b)
(e)

(x+y) . (x+2).{y+z)

= (x+y) . (X+2) by duaitty from (d).

Note that in the Example 6.1, functions {a) and (b)

Booleun Algebra and Lagic Circuits 53

are the dual of each other and use dual cxpressions in
corresponding minimization steps. Function (¢) shows the
cquality of the functions F, and F, of
Table 6.14. Function (d) illustrates the fact that an increcase
in the number of literals sometimes leads 1o a final simpler
cxpression, Observe that function (c) is the dual of function
(d). Hence it is not minimized directly and can be easily
derived from the dual of the sleps used to derive function

(d).

COMPLEMENT OF A FUNCTION

The complement of a function F is F and is obtained
by interchanging O's for 1's and 1's for 0's in the truth table
that defines the function. For example Table _6.15 defincs
the function F = x.y + .z and its complement F,

Table 6.15. Truth Table For The Function F =
X.¥ +X.z And Its Complement .,

=

-
e

N

|

OO 4w agn -
hull

- =000 =-0O

=00 «a00
4040 w0a0

e N e o W)

Algebraically, the complement of a function may be
derived through De Morgan's theorems whose generalized
forms are as follows :

A,+A:+A,+...+A‘,=E,.K,,-ﬁ,,.._ﬂ.
—_— . - -
.-\1.A,.A,.__A,:A,+A,+A,+...+A,

These theorems state that the complement of a
function is obtained by interchanging the OR and the AND
operators and complementing each literal. The method is
iliustrated below through an exampic.

Example 6.2. Find the complement of the following
tunctions :

@F =Xyz+xys

M F=x.{yZ+yz)

54 Digital Computer Fundamentals

Solution ;

Applying De Morgan's theorems as many times as
necessary, the complements are obtained as follows :

(a)

e
1
»|
<
Ll
+ |
>
<l
N

)

A simpler procedure for deriving the complement of
a function is to take the dual of the function and then
complement each literal. This method follows from the
generalized De Morgan's theorems. Remember that the dual
of a function is obtained by interchanging OR and AND
operators and O's and 1's. The method is illustrated below
with the help of an example.

Example 6.3. Find the complement of the function«
F, and F, of Example 6.2. by taking
their dual and complementing each
literal.

Solution:

(a)

F, =t£.y."}j+'i.§.z
The dual of F, is: (x+y+7).(x+y+z)
Complementing each literal we get
F, = (x47+2).{x+y+7)
()
F. =x.(yz+y.2)
The dual of F, is: x +(y+z).(y+z)
Complementing each literal we get

E, = *+(y+2).(Y+2).

CANONICAL FORMS FOR BOOLEAN FUNCTIONS

Minterms and Maxterms. A binary variable may appear
either in its normal form (x) or in its complement form (X).
Now consider two binary variables x and y combined with
an AND operation. Since each variable may appear in
either form, there are four possible combinations :

XYEY, XYL Ky

Each of these four AND 1erms is called a minterm or a
standard product.

In a similar manner, n variables can be combined 10
form 2" minterms. The 27 different minterms may be
determined by a method similar to the one shown in Table
6.16 below for three variables. The binary numbers from 0
102" - 1are listed under the n variables. Each minterm is
obtained from an AND term of the n variables, with each
variable being primed if the corresponding bit of the binary
number is 0 and unprimed if a 1.

Table 6.16. Minterms And Maxterms For
Three Variables.
VYARIABLES MINTERMS MAXTERMS
X Y Z | Term DESIG TERM DESIG-
ATION NATION

0 0 0 | xyz mo X+Y+Z | Mg
0 0 1 xyz m, X+y*Z | Ms
0 1 0 | xy= m2 x+y+z Mz
o] 1 1 1 Tyaz m3, | XYZ[Ma
1 G 0 | xyz ma, | XVZ] M
T 10 |1 | xFz | ms, | X4y9Z| w5
1 110 | xyT me, | X*Y*tZ | Me
I 101 | xyz | X+YvZ | My

A symbol for each minterm is also shown in the table and is
of the form m,, where j denotes the decimal equivalent of
the binary number of the minterm designated.

In a similar fashicn, n variables farming an OR
term, with each variable being primed or unprimed, provide
27 possible combinations called maxterms or standard
sums.

_ The cight maxterms for three variables, together

with their symbolic designation, are listed i Table 6.16.
Any 2" maxterms for n variables may be determined
similarly. Each maxterm is obtained from an OR term of
the n variables, with each variable being unprimed if the
corresponding bit is O and primed if itisa 1.

Note that cach maxterm is the compiement of its
corresponding minterm and vice-versa.

Sum-of-Products

A sum-of-products expression is a product lerm
(minterm) or several product terms (minterms) logically
added (ORed) logether.

For example, the expression xy +7X.y is a sum-of-

products expression. The following are all sum-of-products
expressions:

X+y
X+yz

Xy +Z
Xy +xyz

The following steps are followed to express a
Boolean function in its sum-of-products form :

1. Construct a truth table for the given Boolean
function.

2. Form a minterm for ecach combination of the
variables which produces a 1 in the function.

3. The desired expression is the sum (OR) of all the
minterms obtained in step 2.

For example, in case of function F, of Table 6.17,

the following three combinations of the variables produce a
1:

001, 100 and 111
Their corresponding minterms are
x.y.z,x.y.zand x.y.z

Hence, taking the sum (OR) of all these minterms, the
function F, can be expressed in its sum-of-products form as:

Boolean Algebra and Logic Circuits 55

F, =xyz+xyz+xyz
or
F, =m,+m,+m.

Similarly, it may be easily verified that the funcuon F, of
Table 6.17 can be expressed in its sum-of-products form as:

F, SXy2+XVi+XyZ+XVyZ

or
F, =m,+m,+m, + m-
Table 6.17. Truth Table For Functions F; And
Fj.
S ——
x y z ! F, F_ F:
0 0 0 0 ! 0
0 0 1 il ; 0
0 1 0 0 t 0
0 1 1 "] | 1
1 0 o 1 0
1 Q 1 0 1
1 1 0 0 1
1 1 1 1 1

It is sometimes convenient 1o express a Boolean
function in its sum-of-products form. If not in this form, it
can be made so by first expanding the expression into a sum
of AND terms. Each term is then inspected to sce if it
contains all the variables. If it misses one or more variables,
it is ANDed with an expression of the form (x+%), where x
is one of the missing variables. The following example
clarifies this procedure.

Example 6 4. Express the Boolean function F = A +
B.C in the sum-of-minterms
(products) form,

Solution :

The function has three variables A, B and C. The
first term A is missing two variables, therefore;

A =A@B+B)=AB+ARB

56 Computer Fundamenials

This is still missing onc vanablc, so
A =AB.(C+C) + AB.(C+0)

=ABC+ABC+ABC+ABC
The second term B.C is missing onc variable, therefore
R=B.C(A+A)
=ABC+ABC

S0 by combining all the terms we get

F =ABC+ABC+ABC+ABC+ABC +

AB.C

But in the above cxpression, the term AB.C appears lwice
and according to thecorem 1{a) we have x+x = x, Hence it is
possible 10 remove onc of the them. Rearranging the
minterms in ascending order, we finally obtain :

F =ABC+ABC+ABC+ABC+ABC
=M+ Mg+ Mg+ Mg +my

It is sometimes convenicent 1o cxpress the Boolcan
function, when in its sum-of-minterms, in the following
short notation:

F(ABC) =%(14.567)

The summation symbol % stands for the ORing of
terms. The numbers following it are the minierms of the
function. And finally, the letiers in parentheses with F form

a list of the variables in the order taken when the minterm is
converied to an AND term.

Product-of-Sums
A product-of-sems expression s a sum term

(maxterm) or sevcral sum terms (maxterms) logically
multiplied (ANDed) together. Fur example, the expression
(X+¥).{x+¥} 15 a product of sums expression. The following
arc all product-of-sums expressions:

X

(x+y)

x+y) .z

(x+Y) . (x+v) . (x+7)

(x+y).(X+y+Z)

The following steps are followed to express a
Boolean function in its product-of-sums form:

1. Construct a truth table for the given Boolean
function.

2. Form a maxterm for each combination of the
variables which produce a 0 in the function.

3. The desired expression is the product (AND) of
all the maxterms obtained in step 2.

For example in case of function F, of Table 6.17, the
following five combinations of the variables produce a 0:
000, 010,011, 101, and 110

Their corresponding maxtierms are :
(x+y+2), (x+¥+2), (x+y+z), (x+y+7), and (X+y+z)

Hence, taking the product (AND) of all these maxterms, the
function F, can be expressed in its product-of-sums form as:

F, = (x+y+2)(x4¥+2).(x+y+2). X+ y+2). (Xt y+2)
or
F, =M,.M, . M,.M, .M,

Similarly, it may be easily verified that the function
F, of Table 6.17 can be expressed in its product-of-sums
form as :

F, =(x+y+2).(x+y+z).(x+y+z).(x+y+z)

or

F, =M,. M, .M, . M,

In order Lo express a Boolean function in its product-
of-sums form, it must first be brought into a form of OR
terms. This may be done by using the distributive law :

X + y.2 = (x+y).(x+2)

Then any missing variable (say x) in each OR term
is ORed with the form xx. This procedure is clarified by
the following example :

Example 6.5. Express the Boolean function

F =xy+xz
in the product-of-maxterms (sums) form.

Solution:

At first we ceavert the function into OR terms using

the distributive law:

F =xy +x.2z
= (X.y+X).(x.y+2)
= (x4%).(y+%).(x+2).(y+2)
= (X+y).(x+2).(y+2)

The function has three varables x, y and z. Each OR
term is missing one variable, thercfore :

Ty = X4y + 2.2 = (x+y+2).(X+y+7)
X4Z=X4Z4yy= (x+z+y).(x+z+7)
y+z = XX + y+z = (x+y+z).(x+y+2)

Combining all the terms and removing those that appear

more than once, we finally obtain : .

F =(x+y+2).(x+y +2).[x+y+2).(x+y+2)
=M, M. M.. M,

A covenient way 1o express this function is as follows:

F (xy2) =T(0,245)

The product symboldenotes the ANDing of
maxterms. The numbers following it are the maxterms of
the function.

The sum-of-products and the product-of-sums form
of Boolean expressions are known as standard forms. One
prime reason for liking the sum-of-products or the product-
of-sums expressions is their straightforward conversion o
very nice gating networks which are more desirable from
most implementation points of view. In their purest, nicest
form they go into two-level networks, which are networks
for which the longest path through which the signal must
pass from input to output is two gates.

CONVERSION BETWEEN CANONICAL FORMS

The complement of a function expressed as the sum-
of-minterms equals the sum-of-minterms missing from the
original function, This is because the original function is
expressed by those minterms that make the function equal
to 1, while its complement is a 1 for those minterms for
which the function is a 0. For example, the function

F(ABC) =%(14567)

=m, + M, + Ms+ M, + m,

Boolean Algebra and Logic Circuits 57

has a complement that can be
cxpressed as :
FABC) =%(023)

=me+Mm,+m,

Now, if we take the complement of F, by De Morgan's
thcorem we obtain F back in a different form :

=m,.m,.m,
=M, M. M,
=M©02.3)

The last conversion follows from the defintion of
minterms and maxterms as shown in Table 6.16. From the
table, it is clear that the following relation holds true -

—-.m)':' Ml

That is, the maxtcrm with subscript j 15 a
complement of the minterm with the same subscrpt j, and
vice versa.

The last example has demonsirated the conversion
between a function expressed in sum-of-minterms and s
equivalent in product-of-maxterms. A similar argument will
show that the conversion between the product-of-maxterms
and the sum-of-minterms is similar, We now state a gencral
conversion procedure:

"To convert {rom on¢ cancnical form to another,
interchange the symbol and list those numbers missing
from the original form.”

For example, the funcuon

F(x.,v.z) =T0,24.5)
is cxpressed in the product-of-maxterms form. Its
conversion (o sum-of-minterms is :

Fxyz) — =%(1367)

Note that in order to find the missing terms, onc
must realize that the total number of minterms or maxicrms

is always 27, where n is the number of binary vanables in
the function.

LOGIC GATES

All operations within a computer are carried out by
means of combinations of signals passing through standard
blocks of built-in circuits that are knewn as logic gates. In
other words, a logic gaie is simply an clectroniv circat

S8 Digiial Computer Fundamentals

which operates on one or more input signals 10 produce
standard output signals. These logic pates are the bailding
blocks of uli the circuits in @ computer.

Computer circuits are built up using combinations of
ifferent types of logic gates to perform the necessary
operaton, There are several types of gates, but we shall
consider here only some of the most important ones. These
arc sufficient (o introduce the concept of circuit design
using logic galcs.

AND GATE

An AND gate is the physical realization of the
logical multplication (AND) operation. That 1S, it is an
clectronic circuit that gencrates an output signal of 1 only if
all input signals are also 1

To have a conceptual idea, let us consider the case
of Figurc .1. Here two switches A and B are connected in
series. 1t as obvious that the inpui current will reach the
output point anly when both the switches are in the on(l)
state. There will be no output (output = 0) if cither one or
both the switches are in the off(0) state. So. two or more
switches connected in serics behave as an AND gale.

oo

Input A

%__p—o
B Qutpul

Figure 6.1, Two or more switches connected in

series behave as an AND gate.

The behaviour of a Ingic gate, that is the state of its
output signal depending on the various combinations of
input signals, is convenicntly described by means of a truth
table. The truth table and the block diagram svmbol for an
AND gate for two mput signals are shown in Figure 6.2.
Since there are enly two inputs (A & B), so only four (2%)
combinations of inputs are possible. Also observe from the
truth wble that an output of 1 is obtained only when both
the inputs are in 1 stale. otherwise it is 0.

OR GATE

An OR gate is the physical realization of the logical
addition (OR) operation. That is, it is an electronic circuit
lhgi‘igencmlcsan output signal of 1 if anly of the input signals
isalso 1,

Two or more switches connected in parallel behave
as an OR gate. It can be scen from Figure 6.3. that the input
current will reach the output point when any one of the two
swilches are in the on(1) state. There will be no output only
when both the switches (A & B) arc in the off(0) state.

the truth table and the block diagram symbol for an
OR gate for two input signals are shown-in Figure 6.4.
Observe that an output of 1 is obtained when any of the
input signals is 1. Output is 0 only when both the inputs are

0.
AL C=A'B
B O0——
INPUTS OUTPUT
A B C=A-8B
0 0 0
0 1 0
1 0 0
1 1 1
Figure 6.2. Block diagram symbol w04 o 1able
foran AND gale.
o/c—
A
G SIS FY
Input Output
o

Figure 6.3. TFwo or more switches connected in

parallel behave as an OR gate.

Boolean Algebra and Logic Circuits 59

A C=A-B éo'"o___D___o
B C O——= D=A-B-C

OUTPUT
INPUTS INPUTS CuUTPUT

A B C=A+B
A B C D
0 ; ¢ 0 0 0 0

0 1 1

y 0 1 0 0 1 0
L 0 1 1 0
1 0 0 0
1 0 1 0]
Figure 6.4, Block diagram symbol and truth wble 1 1 0 0
for an OR gate. 1 1 1 1

Just as the + and . operatiens could be extended 1o
scveral vanables using the associative law, AND gates and
OR gates can have more than two inputs. Figure 6.5 shows
three input AND and OR gales and the table of all input
combinations for cach. As might be hoped, the output of the
AND pate with inputs A, B, and Cis a 1 only if A and B
and C are 1, i.e, when all three of the inputs are 1. so that
we wrile the output as A.B.C. Similarly, the OR gate with
inputs A, B,and Chasa 1 outputif Acr BorCisa 1, so
that we can write A+B+C for its output.

!

The abave argument can be extended. A four-input INPUTS OUTPUT
AND gate has a 1 output only when all four mputs are 1,

and a four-input OR gate has a 1 output when ary of its
inputsisa l.

>

B

0O

D

NOT GATE

A NOT gate is the physical realization of the
complementation operation. That is, it is an electronic
circuil that generates an output signal which is the reverse
of the input signal. A NOT gate is also known as an
inverter because it inveris the input.

The truth table and the block diagram symbo! for a
NOT gate are shown in Figure 6.6. Recall tia: the
complementation operation is unary operation which is

- 1t a2 0000
- 42 00 =<+ 00
B e o T
o G =i (st TR S o G O o

defined on a single variable. Hence a NOT gate always has
a single input. Figure 6.6 shows also that connecung two
NOT gates in series gives an output equal to the input, and
this is the gating_counterpant 1o the law of the double
complementation, A = A. Figure 6.5. Three input AND and OR-gates.

60 Digital Computer Fundamcntals

A_—D&——

INPUT

OUTPUT

A

Figure 6.6.

A C:A’B:E—‘._B:K'*‘E
B

(a) Block diagram symbol and truth

A

table for a NOT gate.

(b) Two NOT gates in serics.

>l
I

INPUTS QUTPUT
A B C=A+B
0 0 1
0 1 Y
1 0 1
1 1 0
Figure 6.7. Block diagram symbol and truth table

fora NAND gate.

NAND GATE

A NAND gate is a complemented AND gate. That
is, the output of NAND gate will be a 1 1f any one of the
inputs is a 0 and will be a 0 only when all the inputs are 1.

The truth table and the block diagram symbol for a
NAND gate are shown in Figure 6.7. The symbol ™ is
usually used to rcprcscm_g_NP_‘_N’D_ operation in boolean
expressions. Thus, A'B = A.B = A+B.

The operation of a NAND gate can be analysed
using the equivalent block diagram circuit shown in Figure
6.8, which has an AND gate followed by a NOT gate. For
inputs A and B, the output of the AND gate will be A.B
which is fed as input to the NOT gate. So the complement
of AB will be A.B which is equal to A+B or ATB. In fact,
small circle on the output of the NAND gate (see Figure
6.7) represents complementation. The NAND gate can then
be seen (o be an AND gate followed by a NOT gate.

3—“} A8 {>F TE-R-BoAte

Figure 6.8. NAND gatc realization with an AND

gate and a NOT gate.

Multiple-input NAND gates can be analysed
similarly. A threc-input NAND gate with inputs A, B, and
C will have an output equal 10 A.B.C or A + B + C, which
says that the output will be a 1 if any of the inputs is a 0 and
will be a 0 only when all three inputs are 1.

NOR GATE

A NOR gate is a complemented OR gate. That is,
the output of 2 NOR gate will be a 1 only when all inputs
are 0 and it will be a 0 if any input represents a 1.

The truth table and the block diagram symbol for 2
NOR gate are shown in Figure 6.9. The symbol ' "
usually used to represent a NOR operation in Boolean
expressions. Thus, A4B = A+B = A.B.

The operation of a NOR gate can be analysed using
the equivalent block diagram circuit shown in Figure 6.10,
which has an OR gate follawed by a MOT gate. For inputs
A and B, the output of the OR gate will be A + B which is
fed as input to the NOT gate. So the complement of A+B
will be A+B which is equal to AB or ALB. In fact, the

small circle on the output of the NOR gate (scc Figure 6.9)
represents complementation. The NOR gate can then be
seen o be an OR gate followed by a NOT gate.

C=AIB=A+B=A'B
B

INPUTS

1
QUTPUT ;

1
>
®

A B c

- = 0O
- O =0
o NNl

Figurc 6.9. Block diagram symbol and iruth table

for a NOR gate.

Multiple input NOR gates can be analysed similarly.
A three-input NOR gate with inputs A, B, and C will have
an output equal 1o A + B + C or A.B.C, which says that the
output will be a 1 only when all the three inputs are 0 and it
will be a 0 if any of the three inputsisa 1.

“:§ p ol [>¢ ATB-R-E-ale
B

Figurc 6.10. NOR gale realization with an OR gate
and a NOT gate.

LOGIC CIRCUITS

The logic gates described in the previous section are
seldom used by themselves but are used in combinations.
They are intcrconnected 1o form gating, or logic, networks
which are known as combinational logic circvits. For these
logic circuits, the Boolean algebra expression can be
derived by sysiematically progressing from input to output
on the gales. Few examples are given below.

Example 6.6. Find the Boolean expression for the
output of the logic circuit given
below.

Boolean Algebra and Logic Circuits 6]

Solution :
Input A is fed to the NOT gate whose output will be A.

Inputs B and C are fed to the OR gate whose output will be
B+C.

Now these two outputs (A and B + C) are fed as input 10 the
AND gate. So the output produced by the AND gate will be
A.(B+QC)

Hence D=A.(B+C)
which is the required Boolcan cxpression for the output of
the given logic circuit.
Example 6.7. Find the logic equation for the output
praduced by the logic circuit given
below.

Solution :

The output of the OR gate is

The output of the first AND gate is

AR o cscssifly)

62 Digital Computer Fundamentals

Since the cxpression (b) is fed as input to the NOT gate. So
the output of the NOT gate is

Now expressions (a) and {(c) are fed as input to the second
AND gale. So its output will be

(A+B).(A.B)

Hence C = (A+B).(A.B) which 1s the desired logic equation
for the output produced by the given logic circuit.

Example 6.8, Find the Boolean expression for the
output of the logic circuit given
below.

Sorution

At point |, the output of the OR gate is

The inputs 1o the AND galte at point 4 arc (A+B), C. and D.
Hence al point 4, the output of the AND gate is

(A+B).C.D ---- (d)

The inputs to the AND gate at point 5 are (A+B), 6 and D.
Hence at point 5, the output of the AND gate is

(A+B)C.D - ()

Finally, the inputs to the OR gate at point 6 are (d) and (e).
Hence at point 6, the output of the OR gate is

(A+B).C.D. + (A+B).CD.
SoE = (A+B).C.D. + (A+B).C.D

which is the required Boolean expression for the output of
the given logic circuit.

CONVERTING EXPRESSIONS TO LOGIC
CIRCUITS

We have just now considered few examples that
illustrate the method of deriving Boolean expression for a
given logic circuit. The reverse problem of constructing a
logic circuit for a given Boolean expression is also not
difficult. The three logic gates - AND, OR, and NOT are
said 10 be logically complete because any Boolean
expression may be realized using only these three gates.
The method of constructing logic circuits for Boolean
expressions using only these threc gates is illustrated below
with the help of somé examples.

Example 6.9, Construct a logic circuit for the

Boolean expression A.B + C.

Solution :

A A-B
Bl o

. ‘): : A-B+C

The desired logic circuit is shown above which is self
explanatory.

Example 6.10. Construct a logic _circuit for _the
Boolean expression A.B + C.D+EF

Solurtion :

The desired logic circuit is shown above which is
self explanatory.

Construct a logic circuit for the
Boolean expression (x+y).(x+z).(y+z)

Example 6.11.

Solution -

(x-y) (-2 (r-2

The desired logic circuil is shown above which is
self explanatory,

THE UNIVERSAL NAND GATE

We have scen that AND, OR, and NOT gates are
logically complete in the sense that any Boolean function
may be realized using these three gates. However, the
NAND gate, which was introduced in the previous secuon,
is said to be universal gate because it is alone sufficient to
implement any Boolean function.

Example 6.12. Construct a logic circuit .or the
Boolean expression
(x+y+2).(x+y).(x+Y)

Booiean Algebra and Logic Circuits 63

Solutior -

Eeyp+a

Wy s (e Ly

The desired logic circuit is shown above which is self
explanatory.

To show that any Boolean function can be
implemented with the sole use of NAND gates, we need
only show that the logical operations AND, OR, and NOT
can be implemenied with NAND gates. This is shown in
Figure 6.11 below.

AA=A+A=A
A

fa) Not gate implementation

(&} AND gate implementation

>

A at A B-A+B-A+B

(c) OR gate impiemeniatian

Figure 6.11. Implementation of NOT, AND, and

OR gates by NAND gates,

A NOT opersuon s obtained from a one-input
NAND gate. Thus we find that a single-input NAND pate
behaves as an inverter.

The AND operation requires two NAND gates. The
first onc produces the inverted AND and the second one

64 Digital Computer Fundamentals

being a single input NAND gale, acts as an inverter to
obtain the normal AND output.

For the OR operation, the normal inputs A and B are
first complemented using two single put NAND paies.
Now the complemented variables are fed as input to another
NAND gate which produces the normal ORed output.

The implementation of Boolean funcuons with
NAND gates may be obtained by means of a simple block
diagram manipulation technique. The method requircs that
lwo other logic diagrams be drawn prior 10 obtaining the
NAND logic diagram. The following steps are 1o be Lam-.,d
out in scquence :

Step 1: From the given algebraic expression,
draw the logic diagram with AND,
OR, and NOT gates. Assume that both
the normal (A) and complement (A)
inputs are available,

Step 2: Draw a second logic diagram with the
equivalent NAND logic substituted
for cach AND, OR, and NOT gale.
Step 3: Remove any two cascaded inverters
from the diagram since double
inversion docs not perform any
logical funcuon. Also remove
inverters connected o single external
inputs and complement the
corresponding nput vanable. The
new logic diagram so obtained is the
required NAND gate implementation
of the Boolean function.

oy

Example 6.3, Conswuct a logic circuit for the

Boolean expression A. B e (A+B.D)
using only NAND gates,

Solution :

The AND/OR implementauon for the given Boolean
expression is drawn in Figure 6.12(a). Now each AND gate
is substituted by a NAND gate followed by an inverter and
each OR gate is substituted by two input inverters followed
by a NAND gate. Thus each AND gate is substituted by
two NAND gates and cach OR gate is substituted by three
NAND gawes. The logic diagram so obtained is shown in
Figure 6.12(b). Note that Figure 6.12(b) has scven inverters
(single input NAND gates) and five two-input NAND
gates. Each two-input NAND gate has a number inside the
gate symbol for identification purpose. Pairs of inverters
connected in cascade (from each AND box 10 each OR box)

are removed since they 1orm doubie mversion which has no
meaning. The inverter connecied to inpul A is removed and
the input variable is changed from A oA, The result is the
NAMND lome diagram shown in Figure 6.12(c), with the
number inside cach NAND gate identifying the gate from
Figure(b).

This example demonstrates thai the number of
NAND gates required to implement the Boolean function is
equal 1o the number of AND/OR gates, provided both the
normal and complement inputs arc available. Otherwise
inverters must be used to gencrate any required
complemented inputs.

A-B+C-(A+8:D)

C C (A+8B:0)

(a) AND/OR implementation.

(b) Substituting equivalent NAND functions.

A-B+C-{A+B-D)

D
T .

ol

o w

|

(c) NAND implementation.

Figure 6.12. Step-by-step NAND implementation
for the Boolean cxpression of
Example 6.13.

Example 6.14. Construct a logic circuit for the

Boolean expression (A+E).(B+C.D)
using only NAND gates.

Solution :

The AND/OR implementation for the given Boolean
expression is drawn in Figure 6.13(a). Now the NAND
equivalent of cach AND and each OR gate is substituted
resulting in Figure 6.13(b). Note that Figure 6.13(b) has six
inverters (single input NAND gates) and four twa-input
NAND gates. One pair of cascaded inveriers _may be
removed. Also the three external inputs A, B, and E, which
go dircctly 1o inverters, are omplemenied and the
corresponding inverters arc removed. The final NAND gate
implemcntation so obtamed is shown in Figure 6.13(c). The
number inside cach NAND gawe of Figure 6.13(c)
corresponds to the NAND gate of Figure 6.13(b) having the
same number, '

(A+E)-(B+cC D)

Dt

(a) AND/OR implementation.

Boolean Algebra and Logic Circuits 65

(A+f)-(@+C-D)

A
c
(A-E) (B-C D)
C
D
4
B ; 7

(c} NAND implementation.

Figure 6.13. Step-by-stcpr NAND implementation
fer the Boolean expression of
Example 6.14.

For this example, the number of NAND pgaies
required is equal to the number of AND/OR gates plus an
addiuonal inverter at the output (NAND gate number 5). In
general, the number of NAND gates required to implement
a Boolean functon equals the number of AND/OR gates,
cxcept for an occassional inverter, This is true only when
both normal and complemented inputs are available
becausc the conversion forces certain input variables to be
complemented.

THE UNIVERSAL NOR GATE
The NOR tunction is the dual of the NAND

function. For this reason, all procedures and rules for NOR
logic form a dual of the corresponding procedures and rules

66 Compuier Fundamentals

developed from NAND logic. Like the NAND gate, the
NOR gate is also universal because it is alone sufficient o
implement any Boolean function.

To show that any Boolean function can be
implemented with the sole use of NOR gates, we need only
show that the logical operations AND, OR, and NOT can be
implemented with NOR gates. This is shown in Figure 6.14
below.

The NOT opcration is obtained from a one-input NOR gate.
Thus, a single input NOR gale is yet another inverier
circuit, i

(a) Not gate implementation

=D Do

(b) OR gate implementation

Figure 6.14. Implementation of NOT, OR and
AND gates by NOR gates.

The OR operabion requires two NUK gates. The first
one produces the inverted OR and the second one being a
single input NOT gate, acts as an inverer 10 obtain the
normal OR output.

The AND operation is achieved through a NOR gate
with additional inverters in each input.

Similar to the NAND logic diagram, the
implementation of Boolean functions with NOR gates may
be obtained by carrying out the following steps in sequence

Step 1: For the given algcbraic expression,
draw the logic diagram with AND,
OR and NOT gates. Assume that both
the normal (A) and complement @A)
inputs are available.

Step 2: Draw a second logic diagram with
equivalent NOR logic substituted for
each AND, OR, and NOT gate.

Step 3: Remove any two cascaded inverters

from the diagram since double
inversion does not perform any
logical function. Also remove
inverters connected to single exiernal
inputs and complement the
corresponding input variable. The
new logic diagram so obtained is the
required NAND gate implementation
of the given Boolean function.
Example 6.15. Construct a logic diagram for the
Boolean expression A.B + C.(A+B.D)
using only NOR gaics.

Solution :

The AND/OR implementation for the given Boolean
expression is showm in Figure 6.15(a). Now cach OR gate is
substituted by a NOR gate followed by an inverter and each
AND gate is substituted by two input inverters followed by
a NOR pgate. Thus cach OR gate is substituted by two NOR
gates and cach AND gate is substituted by three NOR gales.
The logic diagram so oblained is shown in Figure 6.15(b).
Nole that Figure 6.15(b) has eight inverers (single input
NOR gates) and five two-input NOR gates. One pair of
cascaded inverters (from the OR box to the AND box) may
be removed. Also the five external inputs A, B, B, D and C,
which go directly w inverters, are complemented and the
corresponding inverters are removed.

A-B+C-{A+B-D)

C C (A+B-D

(a) AND/OR implementation.

e ————y

{b) Substituting equivalent NOR functions,

i AB+C. (A *8.0)
DL

: Dob
_6 O
A

¢ s

(c) NOR implementation.

Figure 6.15. Step-by-step NOR implememation for
the Boolean expression of Example
6.15.

Boolean Algebra and Logic Circuits 67

The final NOR gate implementation so obtained is
shown in Figure 6.15(c). The number inside each NOR gate
of Figure 6.15(c) corresponds to the NOR gate of Figure
6.15(b) having the same number.

The number of NOR gates in this example equals
the number of AND/OR gates plus an additional inverter in
the output (NOR gate number 6). In general, the number of
NOR gates required to implement a Boolean function
equals the number of AND/OR gates, except for an
occasional inverter. This is true only if both normal and
complement inputs are available because the conversion
forces certain input variables to be complemented,

Combinational circuits are more frequently
constructed with NAND or NOR gates than with AND, OR
and NOT gates. NAND and NOR gates are more popular
than the AND and OR gates because NAND and NOR
gaies arc easily constructed with tramsistor circuits and
Boolean functions can be easily ‘implemented with them.
Moreover, NAND and NOR gates are superior io AND and
OR gates from the hardware point of view, as they supply -
oulputs thal maintain the signal value without loss .of
amplitude. OR and AND gates sometimes need amplitude
restoration afier the signal travels through a few levels of
gates.

EXCLUSIVE-OR AND EQUIVALENCE FUNCTIONS
Exclusive-or and equivalence, denoted by & and Q)
respectively, are binary operations that perform the
following Boolean functions:
A®B=AB+AB
AQB=AB+AB

The truth table and the block diagram symbol for the
exclusive-or and the equivalence operations are shown in

* Figure 6.16 and Figure 6.17 respectively. Observe that the

two operations are the complement of each other. Each is
commutative and associative. Because of these two
properties, a function of three or more variables can be
expressed without parentheses as follows:

A@B@C=A®E®OC)
=A®B®C

The exclusive-or and equivalence operations have

“many excellent characteristics as candidates for logic gates
but are expensive 1o construct with physical components.
They are available as standard logic gates in IC packages
but are usually constructed intemally with other standard

68 Digital Compuler Fundamenials

gates. For example, Figure 6.18(a) shows the
implementation of a two-input exclusive-or function with
AND, OR and NOT gates. Figure 6.18(b) -shows its
implementation with NAND gates.

- g:):D__o C=A@DB=AB+AB
B

or

b 5 C=ADB =AB- AB
B O

[INPUTS OUTPUT
A I B C=A®B
—
) 0 0
0 i) 1
1 0 1
1 1 0

Figure 6.16. Block diagram symbol and vuth table

for an EXCLUSIVE-OR operation.

A o 4
& C=-A@gB=AB+ AB

INPUTS OUTPUT

b

LA

B C=A0B

- -0
=l =]
- 00 =

Figure 6.17.
for an EQUIVALENCE operation.

Block diagram symbol and wuth table

Only a limited number of Boolean functions can be
expressed exclusively in terms of exclusive-or or
equivalence operations. Nevertheless, these functions
emerge quile often during the design of digital systems. The
two functions arc particularly useful in arithmetic
operations and crror detection and correction.

AB

» Pl

B
@

p-d|

c
“:KB

\

- (a) Tmplementation with AND/OR/MOT gates.

SADB = AB - AB

—
: S

(b) Implementation with NAND gates.

Figure 6.18. Logic diagrams of EXCLUSIVE-OR
function.

DESIGN OF COMBINATICNAL CIRCUITS

The design of combinational circuits starts from the
verbal outline of the problem and ends in a logic circuit

diagram.

The procedure involves the following sieps:

1. Sute the given problem compietely and exacdly.
6-B

[

Interpret he problem and detennine the
available mnput variables and required outpul
variables.

3. Assign a letter symbol to each input and output
variables.

4. Design the truth table that defines the required
relations between inputs and cutpus.

5. Obuwin the simplified Boolean function for each
oulput.

6. Draw the logic circuir diagram to implement the
Boclean function.

To illustrate the design procedure, we will design
adder circuits because addition is the most basic arithmetic
operation for any computer system,

Addition in binary system can be summarized by the
following four rules :

0+0=0
D+1=1
1+0=1
1+1=10

The first three operations proauce a sum whose
length is one digit, but when both augend and addend bits
are equal to 1, the binary sum consists of two digits. The
higher significant bit of this result is called a carry. When
the augend and addend numbers contain more sigaificant
digits, the carry obtained from the addition of (wo bits is
added to the next higher order pair of significant bits. A
combinational circuit that performs the addition of two bits
is called a half-adder. One that performs the addition of
three bits (two significant bits and previous carry) is called
a full-adder. The name of the former stems from the fact
that two half-adders can br employed o implement a full-
adder.

DESIGN OF BALF-ADDER

From the definition of a hal{-adder, we find that this
circuit needs two binary inputs and two binary outputs. The
input vagables designate the augend and addend bits
whereas the output variables produce the sum and carry
bits. Let A and B be the two inputs and S (for sum) and C
(for carry} be the two outputs. The truth table of Figure 6.19
exactly defines the function of the half-adder.

Boolean Algebra and Logic Circuits 69

The simplified Boolean funclions for the two
outputs, directly obtained form the truth table, are ;
S=AB+AB
C = r\B

The logic circuit diagram (o implement this is shown
. in Figure 6.20.

INPUTS OUTPUTS
A B C S
=%

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

Figure 6.19. Truth table for a half-adder.
s {2 yEs
=50 +ab

¥

Figure 6.20. Logic circuit diagram for a half-adder.

70 Digital Computer Fundamentals

The half-adder is limited in the sense that it can add
only two single bits. Although it generates a carry for the
next higher pair of significant bits, it cannot accept a carry
generated from the previous pair of lower significant bits. A
full-adder solves this problem.

DESIGN OF FULL-ADDER

A full-adder forms the arithmetic sum of three input
bits. Thus it consists of three inputs and two outputs. Two
of the input vanables (A and B) represent the augend and
the addend bits and the third inpul variable (D) represents
the carry from the previous lower significant position, Two
outpuls are necessary because the sum of three binary digits
ranges in value from 0 to 3, and binary 2 and 3 need two
digits. Thesc two outputs are designated by the symbaols S
(for sum) and C (for carry). The truth-table of Figure 6.21
exactly defines the function of full-adder. The 1's and 0's
for the output variables are determined from the arithmetic
sum of the three input variables. When all input variables
are 0, the output is O for bothr C and S. The S output is equal
to I wnen only one input is equal 10 1 or when all three
inputs are equal to 1. The C ourput is 1 if two or three
inputs are equal to 1.

INPUTS OUTPUTS
A B D Cc S
0 0 o v 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0] 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1
Figure 6.21. Truth table for a full-adder.

The sum-of-products expressions for the two outputs
an be directly obtained from the truth table and is given
below :

S =ABD+ABD+ABD+ABD

C =ABD+ABD+ABD+ABD
Although the expression for S cannot be simplified, it is
possible to simplify the expression for C as follows :

C =ABD+ABD+ABD+ABD

=ABD+ABD+ABD+ABD+ABD+
AB.D(since x + x =x)

=(ABD+AB.D)+(ABD + ABD)+(ABD +
AB.D)

= (A+A).B.D + (B+B).A.D +(D+D).A.B
. =BD+AD+AB (sincex+x=1)
=AB+AD+B.D

Hence, finally we obtain the following expressions for the
Lwo outputs

S =ABD+ABD+ABD+AED
C =AB+AD+BD
The logic circuit diagram to implemert this is shown in

Figure 6.22.

A full-adder can also be implemented with 1wo half-
adderr and one OR gate as shown in Figure 6,23,

The S output from the second haif-adder 15 the exclusive-or
cf I and the cuiput of the first halt-adder giving :

S =(AB+AB)D+(AB+AND
=(AB+AD).D+ABD+ABD
~E+B)A+B).D+ABD+ALD

= (A+B).(A+R)D + ABD + ALD

=(AA+AB+AB+BB)D+ABD+ABD

O Wi

omw >

owi>

A.B.D

cCw>»

NI

Figure 6.22. Logic Circuit diagram for a full-adder.

A-B

A
(A®B)D c
B B ‘B+A+B=ASB. _D

HA

>

AGBEeD

Figwe 6,23, Implementation of full-adder with two
half-adders amd one OR gate.

And we have the carry output
C =(AB+AB.LD+AB _
=ABD+ABD+AB(D+D) _
=ABD+ABD+ABD+ABD
This can be simplificd as before to

C =AB+AD+B.D

Boolean Algebra and Logic Circuits 7]

A PARALLEL BINARY ADDER

Parallel binary adders are used 10 add two binary
numbers, For example, if we want to add two four-bit
numbers, we nced 10 construct a parallel four-bit binary
adder as shown in Figure 6,24, Such an adder requires onc
half-adder (denoted by HA) and three full-adders (denoted
by FA). The binary numbers being added are ALAL A A
and B, B, B, B, and the answer is :

Figure 6.24. A parallel four-bit binary adder.

The first column requires only a half-adder. For any
column above the first, there may be a carry from the
preceding column. Therefore, we must use a full-adder for
cach celumn above the first.

To illustrate how the adder of Figure 6.24 works, lat
us see how it will add two numbers say 9 and 11. The
binary equivalent of decimal 9 is 1001, and that of decimal

11 is 1011, Figure 6.25 shows the binary adder with these
inputs.

Figure 6.25. Example of adding two four-bit
numbers using a parallel adder.

72 Digital Computer Fundamentals

As shown in the figure, the half-adder adds 141 to
give asum of 0 and a carry 1. The carry goes into the first
full-adder, which adds O + 1 + 1 to get a sum of 0 and a
carry of 1. This carry goes into the next full-adder, which
adds 0 + 0 + 1 to get a sum of 1 and a carry of 0. The last
full-adder adds 1 + 1 + 0 to get a sum of 0 and a carry of 1.
The final output of the system is 10100. The decimal
equivalent of binary 10100 is 20 which is the correct
decimal sum of 9 and 11.

The parallel binary adder of Figure 6.24 has limited
capacity. The largest binary numbers that can be added
using itare 1111 and 1111, So,1ts maxirnum capacity is :

15 1111
+ 15 + 1111

30 11110
In order to increase the capacity, more full-adders
can be connected 1o the left end of the system. For instance,
to add six bit numbers, two more full-adders must be
connected and for adding eight bit numbers, four more full-
adders must be connected to the left end of the full-adder of
Figure 6.24.

QUESTIONS

1. Explain the principle of duality in Boolean
algebra. How is it useful ?

2. Give' the dual of the following Boolean

expressions :

(a)A+B

(b) A+B+C _

(VAB+AR

(d) A+B

(e) A(A+B)

HA+AB

3. Givethe dual of the rule
A+AB=A+B

4. Prepare a truth table for the following Boolean
expressions :

(8) AB+AB _

) AB.C+BC
(©)A+B _
(A+B+C
(&)ABC _ _
(DABC+ABC _
(8) (A+B).(A+C).(B+C)
(hAC+AC

5. Suate and prove Lhe two basic De Morgan's

theorems.

_ Prove the following rules by the method of

perfect induction.

(@) AB+AB=A
(b)A+AB=A+B
©OA.(A+Q=A __ _
(d) (A+B).(A.B)= A.B + BA

—

(¢) (A+B).(A+B) = A.B +AB

. Simplify the following Boolean expressions and

draw logic circuit diagrams for your simplified
expressions using AND, OR and NOT gates :

(A)Ry2+ XY Z+XY.Z+XY.2
(DY R.y.2+ XV Z+XYyZ+XYT
©AC+AB+ABC+BC _ _
(d)ABC+ABC+ABC+ABC+ABC

(¢) (A+B+C) . (A+E+C) . (A+B+C) . (A+B+C)
(N(ABC).(ABC+ABC+ABC)

_ Find the complement of the following

2xpressions :

(@ AB+AC

(b) AB+ AB

(c) (A+B) . (B:—_C_)_. (A+C)
(d)A.(BL+BC)

) A.(B+0O) -

(N A.(B+C).(C+D)

(@) AB+{AB). (BC+B.0

. Express the following Boolean funcuons in thei

sum-of-products form. Ensure that each term ha
all the literals.

(a) A(B+C) _

(b) (A+B).(B+C) __

() (AB).(AB.C+AC)_
(d) (A+C).(A+B+C).(A+B)
(e) (A+B)C

(f) A+C).(AB+AC+B.C)

10. Express the following Boolean functions in the

product-of-sums form. Ensure that each term h
all the literals.

() A+B.C

®b)AB+C

()A+B+C

(@) AB).(AC+BO)

(c) (A.B).(B+C)

HA+AB+AC

11. What will be the outputs of the following logic
circuits for e specified inputs ?

Bm

:
R«

oW OO0 © > 0>

(e)

Boolean Algeb. « and Logic Circuits 73

—] s

12. Construct logic circuit
following Boolean
AND/OR/NOT gates :

(@) AB+ A.B

(b) (A+B).(A.B).

(c) (A+B).(A+C).(B+C) __
(d) A.B + (KB).(B.C +B.0)
(e) (A+B).(A+C).(A+B)

diagrams for the
expressions using

13."AND, OR and NOT gates are logically
complete.” Discuss.

14. Why are NAND and NOR gates called nniversal
gates 7

15.Show the implementation of the logical
operations AND, OR and NOT only with NAND
gates and only with NOR gates.

16. Construct logic circuit diagrams for the Boolean -
expressions of Question- 12 using only NAND
gates.

17. Construct logic circuit diagrams for the Boelean.
expressions of Question 12 using only NOR
gates.

18. Construct logic circuit diagram for a hulf-adder
using only NAND gates.

19. Consiruct logic circuit diagram for a half-adder
using only NOR gates.

26 Why are combinational circuits more frequently
constructed with NAND or NOR gates than wuh
AND, OR and NOT gates ?

21. Prove that
(a) (A@BY@C = A®@B@C)
(b) (ACB)EC = AS(BOC)

74

Computer Fundamentals

22.Construct a logic circuit diagram for the
exclusive-or function using only NOR gates.

23.Construct a logic circuit diagram for the
equivalence function using only NAND gates.

24. A logic circuit has three inputs A, B and C. It
generates an output of 1 only when A=0,B=1,
C=0o0orA=1B=1 C =0 Designa
combinational circuit for this system,

25. A logic circuit has three inputs A, B and C. It
generates an output of 1 only under the
following conditions:

A=0, B=0, C=0
A=0, B=l,

Design a combinational circuit for this system.

26, Design a gating network which will have outputs
Oonly whenA=0,B=0,C=0;A=1,B=0,C
=0, A=1,B=1,C=0, The outputs are to be 1
for all other cases.

27. A three bit message is (o be transmitted with an
odd parity. An odd parity generator generates a
parity bit (say P) so as o make the total number
of 1's odd (including P). That is, P = 1 only when
the number of 1's in the input string is even.
Design a combinational logic circuit for such a
parity generator,

28. Design a combinational logic circuit (o generate
an even parity for hexadecimal digits.

CHAPTER 7

7. PRIMARY STORAGE

This chapter introduces the basic fundamentals re-
lated to the primary storage or the main memory of a
computer system. In this chapter, you will leam about stor-
age locations and addresses, how to determine the capacity
of storage units, the difference between fixed and variable
word-length storage organizations, and several other terms
related to the main memory of a computer system.

Any storage unit of a computer system is ranked
according to the following criteria :

1. Access time. This is the time required to locate
and retrieve stored data {from the storage unit in
response 1o a program instruction. A fast access
time is preferred.

2. Storage capacity. It is the amount of data that
can be stored in the storage unit. A large capac-
ity is desired.

3. Cost per bit of storage. An obvious goal is 0
minimize this cost.

Based on the above mentioned criteria, storage units
are basically of two types - primary and secondary. As

compared to secondary storage units, primary storage units
have faster access time, smaller storage capacily, and
higher cost per bit of storage. In this chapter, we will be
concentrating only on the cuncepts of primary storage. We
shall learn about different types of secondary storage
devices in the next chapter.

STORAGE LOCATIONS AND ADDRESSES

A primary or internal storage scction 1s basic to all
computers. It is made up of several small storage areas
called locations or cclls. Each of these locations can store a
fixed number of bits called word length of that particular
primary storage. Thus, as shown in Figure 7.1, a given
memory is divided into N words, where N generally is
some power of 2. Each word or location has a built-in and
unique number assigned to it. This number is called the
address of the location and is used to identity the location.
Each location can hold either a data item or an instruction,
and its address remains the same regardless of is contents.
The addresses normally start at 0 and the highest address
equals the number of words that can be stored in the
memory minus L

