
CHAPTER 1

1. INTRODUCTION

The word "computer' comes from the word
"compute' which means to calculate. So a computer is
normally considered to be a calculating device that can
perform arithmetic operations at eitorrnous speed.

In fact, the original objective for inventing the
computer was to create a fast calculating machine. But
more than 80% of the work done by computers today is of
non-mathematical or non-numerical nature. Hence, to
define a computer merely as calculating device is to ignore
over 80% of its work.

More accurately, a computer may be defined as a
device that operates upon information or data. Data can be
anything like bio-data of various applicants when the
computer is used for recruiting personnel, or the marks
obtained by various students in various subjects when the
computer is used to prepare results, or the details (name,
age, sex, etc.) of various passengers when the computer is
employed for making airline or railway reservations, or
numbers of different E3W in case of application of
computers for scientific research problems, etc.

Thus, data comes in various shapes and sizes

depending upon the type of computer application. A
computer can store, process, and retrieve data as and when
desired. The fact that computers process data is so
fundamental that many people have started calling it a data
processor.

The name data processor is more inclusive because
modern computers not only compute in the usual sense but
also perform other functions with the data that flow to and
front them. For example, data processors may gather data
from various incoming sources, merge (process of mixing
or putting together) them all, sort (process of arranging in
some sequence - ascending or descending) them in the
desired order and finally print them in the desired formal
None of these operations involve the arithmetic operations
normally associated with a computing device but the term
computer is often applied anyway.

CHARACTERISTICS OF COMPUTERS

I. Speed. A computer is a very fast device. It can
perform in a few seconds the amount of work that a human
being can do in an entire year - if he worked day and night
and did nothing else. To put it in a different manner, a

Computer Fundamentals

computer does in one minute what would take a man his
entire lifetime.

While talking about the speed of a computer, we do
not talk in terms of seconds or even milliseconds (10-3).
Our units of speed are the microseconds (10 -6), the
nanoseconds (10-9), and even the picoseconds (10-12). A
powerful computer is capable of performing about 3 to 4
million simple arithmetic operations per second.

2, Accuracy. The accuracy of a computer is consistently
high and the degree of accuracy of a particular computer
depends upon Its design. But for a particular computer, each
and every calculation is performed with the same accuracy.

Errors can occur in .a computer, but these are mainly
due to human rather than technological weaknesses, that is,
due to imprecise thinking by the programmer (a person who
writes instructions for a computer to solve a particular
problem) or due to inaccurate data.

3. Diligence. UnLike human beings, a computer is free from
monotony, tiredness, lack of concentration, etc., and hence
can work for hours together without creating any error and
without grumbling. Due to this property, computers
obviously score over human beings in doing routine type of
jobs which require great accuracy. If ten million
calculations have to be performed, a computer will perform
the ten millionth calculation with exactly the same accuracy
and speed as the first one.

4. Versatility. Versatility is one of the most wonderful
things about the computer. One moment, it is preparing the
results of particular examination, the next moment it is busy
preparing electricity bills, and in between, it may be
helping an office secretary to trace an important i&ter in
seconds. All that is required to change its talent is to slip in
a new program a scqueia. l, of fc th
computer) into it. Briefly, a computer is capable of
performing almost any task provided that the task can be
reduced to a series of logical steps.

5. Power of Remembering. As a human being acquires
new knowledge, the brain subconsciously selects what it
feels to be important and worth retaining in its memory,
and relegates unimportant details to the back of the mind or
just forgets them. With computers, this is not the case. A
computer can store. and fecall any amount of information
because of its secondaiy storage (a type of detachable
memory) capability. Every piece of information can be
retained as long as desired by the user and can be recalled
as and when required. Even after several years, the
information recalled will be as accurate as on the day when
it was fed to the computer. A computer forgets or looses

certain information only when it is asked to do so. So it is
entirely upto the user to make a computer retain or forget a
particular information.

6. No I.Q. A computer is not a magical device. It can only
perform tasks that a human being can. The difference is that
it performs these tasks with unthinkable speed and
accuracy. It possesses no intelligence of its own. Its I.Q. is
xero, at least till today. It has to be told what to do and in
what sequence. Hence, only the user can determine what
tasks a computer will perform. A computer cannot take its
own decision in this regard.

7. No Feelings. Computers are devoid of emotions. They
have no feelings and no instincts because they are machine.
Although men have succeeded in building a memory for the
computer, but no computer possesses the equivalent of a
human heart and soul. Based on our feelings, taste,
knowledge, and experience, we often make certain
judgements in our day to day life. But computers cannot
make such judgements on their own. Their judgement is
based on the instructions given to them in the form of
programs that are written by us. They are only as good as
man makes and uses them.

THE EVOLUTION OF COMPUTERS

Necessity is the mother of invention. The saying
holds true for computers also because computers were
invented as a result of man's search for flst and accurate
calculating devices.

The earliest device that qualifies as a digital
computer is the "abacus" also known as 'soroban". This
device permits the users to represent numbers by the
position of beads on a rack. Simple addition and subtraction
can be carried out rapidly and efficiently by positioning the
.n1c annropriatelv. Although, the abacus was invented

around 600 B.C., it is interesting to note that it is still usel
in the Far East and its users can calculate at amazing
speeds.

Another manual calcuiatug device was John
Napicr's bone or cardboard multiplication calculator. It was
designed in the early 17th century and its upgraded versions
were in use even around 1890.

The first mechanical adding machine was invented
by Blaise Pascal in 1642. Later, in the year 1671, Baron
Gottfried Wilhelm von Leibniz of Germany invented the
first calculator for multiplication. Keyboard machines
originated in the United States around 1880 and are
extensively used even today. Around this period only,
Herman Hollerith came up with the concept of punched

Introduction 3

Figure 1.1. A thirteenth century abacus.

cards which are extensively used as input media in modem
digital computers. Business machines and calculators made
their appearance in Europe and America towards the end of
the nineteenth century.

Charles Babbage, a nineteenth century Professor at
Cambridge University, is considered to be the father of
modem digital computers. During his period, mathematical
and statistical tables were prepared-by a group of clerks.
Even the utmost care and precautions could not eliminate
human errors. Babbage had to spend several hours checking
these tables. Soon he became dissatisfied and exasperated
with this type of monotonous job. The result waS that he
started thinking to build a machine which could compute
tables guaranteed to be error-free. In this process, Babhge
designed a "Difference Engine" in the year 1822 which
could produce reliable tables. In 1842, Babbaga came out
with his new idea of Analytical Engine that was intended to
be completely automatic. It was to be capable of
performing the basic arithmetic functions for any
mathematical problem and it was to do so at an average
speed of 60 additions per minute. Unfortunatel y , he was
unable to produce a working model of this machine mainly
because the precision engineering required to manufacture
the machine was not available during that period. However,
his efforts established a number of principles which have
been shown to be fundamental to the design of any digital
computer. We will now discuss about some of the well
known early computers.

THE MARK I COMPUTER (1937-44)

Also known as Automatic Sequence Controlled

calculator, this was the first fully automatic calculating
machine designed by Howard A. Aiken of Harvard
University in collaboration with IBM (International
Business Machines) corporation. Its design was based on
the techniques already developed for punched card
machinery.

Although this machine proved to be extremely
reliable, it was very complex in design and huge in size. It
used over 3000 electrically actuated Switches to control its
operations and was approximately 50 feet long and 8 feet
high. It was capable of performing five basic arithmetic
operations addition, subtraction, multiplication, division.
and tabie reference. A number as big as 23 decimal digits
could be used in this machine. It took approximately 0.3
second to add two numbers and 4.5 seconds for
multiplication of two numbers. Hence, the machine was
very slow as compared to todays computers.

It was basically an electro-mechanical device since
both mechanical and electronic components were used in its
design. Although its operations were not controlled
electronically, Aiken's machine is often classified as
computer because as instructions, which were entered by
means of punched paper tape, could be altered,

THE ATANASOFF - BERRY COMPUTER (1939-42)

This electronic machine was developed by Dr. John
Atanasoff to solve certain mathematical equations. It was
called the Atanasoff - Berry Computer, or ABC, after its
inventor's name and his assistant, Clifford Berry It used 45
vacuum tubes for internal logic and capacitors for storage.

2-

Computer Fundamentals

THE ENIAC (1943-46)

The Electronic Numerical Integrator And
Calculato (ENIAC) was the first all electronic computer. It
was constructed at the Moore School of Engineering of the
University of Pennsylvania, U.s.A by a design team led by
Professors J. Presper Eckert and John Mauchly.

ENIA(,. was developed as a result of military need.
It took up the wall space in a 20 X 40 square feet room and
used 18,000 vacuum tubes. The addition of two numbers
was-achieved in 200 microseconds, and multiplication in
2000 microseconds,

Although, much faster in speed as compared to
Mark 1 computer, ENIAC had two major shortcomings : it
could store and anipuiate only a very limited amount of
information, and its programs were wired on boards. T1iese
limitations iade it difficult to detect errors and to change
the programs. Hence its use was limited. However,
whatever be the shortcomings of ENIAC, it represented an
impressive feat of electronic engineering and was used for
many years to solve ballistic problems.

THE EDVAC (1946-52)

The operation of ENIAC was seriously handicapped
by the wiling board. This problem was later overcome by
the new concept of 'stored program" developed by Dr. John
Von Neumann. The basic idea behind the stored program
concept is that a sequence of instructions as well as data
can be stored in the mmor)? of the computer for the
purpose of automatically directing the flow of operations.
The stored psogram feature considerably influenced the
development of modern computers and because of
this feature we often refer to modem digital computers as
stored program digital computers. The Electronic Discrete
Vananie ,uu,(itaLj . C,jc: (ED'.AC 'lcini1 on
stored program concept. Von Neumann has also got a share
of the credit for introducing the idea of storing both
instructions and data in the binary form (a system that uses
only two digits - 0 & 1 to represent all characters) instead
of the decimal numbers or human readable words.

THE EDSAC (1947-49)

Almost simultaneously with EDVAC of U.S.A., the
-. Britishers developed the Eleoronic Delay Storage

Automatic Calculator (EDSAC). The machine executed its
first program in May 1949. In this machine, addition
operation wasaccomplished in 1500 microseconds, and
multipbcatiori operation in 4000 rnicroseeonds. -The
machine was developed by a group of scientists headed by
Pofesscr Maurice Wilkes at the Cambridge University

Mathematical Laboratory.

MANCHESTER MARK 1(1948)

This computer was a small experimental machine
based on the stored program concept. It was designed at
Manchester University by a group of scientists headed by
Professor M.H.A. Newman. Its storage capacity was only
32 wor4s, each of 31 binary digits. This was too limited to
store data and instructions. Hence, the Manchester Mark I
was hardly of any practical use.

THE UN1VAC 1(1951)

The Universal Automatic Computer (UNIVAC) was
the first digital computer which was not "one of a kind.
Many UNiVAC machines were produced, the first of which
was installed in the Census Bureau in 1951 and was used
continuously for 10 years. The first business use of a
computer, a UNIVAC I, was by General Electric
Corporation in 1954.

In 1952, the International Business Machines (IBM)
Corporation introduced the 701 commercial computer. In
rapid succession, improved models of the UNIVAC I and
other 7()0senes machines were introduced. In 1953, IBM
produced the IBM-650 and sold over 1000 of these
computers.

The commercially available digital computers, that
could be used for business and scientific applications, had
arrived.

THE COMPUTER GENERATIONS

"Generation" in computer talk is a step in
Lechnology. It provides a framework for th6 growth of the
computer industry. Onginauy, WC LHH 'gccu.icf "as
used to distinguish between varying hardware technologies.
But nowadays, it has been extended to include both the
hardware and the software (see Chapter 10 for definition of
hardware and software) which together make up an entire
computer system.

The custom of referring to the computer era in terms
of generations came into wide use only after 1964. There
are totally five computer generations known till today. Each
generation has been discussed below in detail along with
their advantages and disadvantages. Although there is a
certain amount of overlapping between the generations, the
approximate dates shown against each are normally
accepted.

2-B

Fill
Eb) A transistor

a) A vacyum tube

lnfroducxion 5

1RST GENERATION (1942-1955)

We have already discussed about some of the early
computers - ENIAC, EDVAC. EDSAC, etc. These
machines and other of their time wcre made possible by the
invention of "vacuum cube', which was a fragile glass
device that could control and amplify electronic signals.
These vacuum tube computers are referred to as first-
generation Computers.

Advantages

1. Vacuum tubes were the only electronic
components available during those days.

2. Vacuum tube technology made possible the
advent of electronic digital computers.

3. These computers were the fastest cakulating
device of their time. They could perform
computations in milliseconds.

Disadvantages

I. Too bulky in size
2. Unreliable
3. Thousands of vacuum tubes that were used

emitted large amount of heat and burnt out
frequently

4. Air conditioning required
5. Prone to frequent hardware failures
6. Constant maintenance required
7. Nonportable
8. Manual assembly of individual components Into

functioning unit required
9. Commercial production was difficult and costly
10.Limited commercial use

SECOND GENERATION (1955-1964)

The transistor, a smaller and more reliable successor
to the vacuum tube, was invented in 1947. However,
computers that used transistors were not produced in
quantity until over a decade later. The second generation
emerged with transistors being the brain of the compulrr.

With both the first and the second generation
computers, the basic component was a discrete or separate
entity. The man y thousands of individual components had
to be assembled by hand into functioning circuits. The
manual assembly of indiiduaI components and the cost of
labour involved at this assembly stage made the
commercial production of these computers difficult and
costly.

1. Smaller in size as compared to first generation
computers

2. More reliable
3. Less neat generated
4. These computers were able to reduce

computational times from milliseconds to
microseconds.

5. Less prone to haruware failures
6. Better portability
7. Wider commercial use

Disadvantages

I. Air-conditioning required
2. Frequent maintenance required
3. Manual assembly of individual components into

a functioning unit was required
4. Commercial production was difficult and costly.

THIRD GENERATION (1964-1975)

Advances in electronics technology continued and
the advent of 'microelectronics" technology made it
possible to integrate large number of circuit elements into
very small (less than 5 mm square) surface of silicon
knowrt, as chips". This new technology was called
"integrated circuits" (ICs). The third generation was based
on IC technology and the computers that were designed
with the use of integrated circuits were called third
generation computers.

Figure 1.2. Electronics devices used for manufacturing
computers of different generations.

Advantages

Computer Fundamentals

Advantages

1. Smaier in size as compared to previous
generation computers.

2. Even more reliable than second generation
computers.

3. Even lower heat generated than second
generation computers.

4. These computers were able to reduce
computational times from microseconds to
nanoseconds.

5. Maintenance cost is low because hardware
failures are rare.

6. Easily portable.
7. Totally general purpose. Widely used for various

commercial applications all over the world,
8. Less power requirement than previous

generation computers.
9. Manual assembly of individual components into

a functioning unit not required. So human labour
and cost involved at assembly stage reduced
drastically.

10.Commercial production was easier and cheaper.

Disadvantages

1. Air-conditioning required in many cases.
2. Highly sophisticated technology required for the

manufacture of IC chips.

FOURTH GENERATION (1975 ONWARDS)

Initially, the integrated circuits contained only about
ten to twenty components. This technology was named
small scale integration (SSI). Later, with the advancement
in technology for manufacturing ICs, it became possible to
ntrtr'. unto a hundred components on a single chip. This

technology tame to be known as medium scale integration
(MSI). Then came the era of large, scale integration (LSI)
when it was possible to integrate over 30,000 components
onto a single chip. Effort is still on for further
miniatuvzation and it is expected that more than one
million components will be integrated on a single chip
known as very large scale integration (VLSI).

A fourth generation computer, which is what we
have now, has LSI chips as its brain. It is LSI technology
which has led to the development of very small but
extremely powerful computers. It was the start of a social
revolution. A whole computer circuit was soon available on
a single chip, the size of a postage stamp. Overnight
computers became incredibly compact. They became
inexpensive to make and suddenly it became possible for
anyone and every one to own a computer.

Advantages

1. Smallest in size because of high component
density

2. Very reliable
3. Heat generated is negligible
4. No air conditioning required in most cases
5. Much faster in computation than previous

generations
6. Hardware failure is negligible and hence

minimal maintenance is required
7. Easily portable because of their small size
8. Totally general purpose
9. Minimal labour and cost involved at assembly

stage
10.Cheapest among all generations

Disadvantage

1. Highly sophisticated technology required for th
manufacture of LSI chips.

FIFTH GENERATION (YET TO COME)

Scie,nusts are now at work on the fifth generation
computers - a promise, but not yet a reality. They aim to
bring us machines with genuine l.Q., the ability to reason
logically, and with real knowledge of the world. Thus,
unlike the last four generations which naturally followed its
predecessor, the fifth generation will be totally dijfercnt,
totally novel, totally new.

In structure it will be parallel (the present ones are
serial) and will be able to do multiple tasks simultaneously.
In functions, it will not be algorithmic (step by step, with
one step at a time). In nature, it will net do just data
processing (number crunching) but knowledge processing.
ii ic;ccc, '.'!! '.o h merely deductive, but also

inductive. In application, it will behave like an expert. In
programming, it will interact with humans in ordinary
language (unlike BASIC. COBOL, FORTRAN, etc. which
present computers need). And in architecture, it will have
KIPS (Knowledge Information Processing System) rather
than the present DIPS/LIPS (Data/Logic Information
Processing System).

The odds of coming out with a fifth generation
computer are heaviest for Japan. They have already started
work in this direction few years back. Japan has chosen the
PROLOG (Programming in Logic) language as its
operating software and plans to have the final machine talk
with human beings, see and deliver pictures and hear the
normal, natural language.

Jnzrnductii.'n 7

3.
4.

5,

6.

7.

QUESTIONS

What is a computer? Why is it also known as a
data processor?
List out and explain some of the important
characteristics of a computer.
What is an abacus?
Who is known as the father of modem digital
computers and why?
Why are modern digital computers often referred
to as Stored program digital computers?
Give the full form of the following abbreviations
used in computer terminology:
IBM, ENIAC, EDVAC, EDSAC, UNIVAC.
What is meant by generation' in computer
terminology? How many computer generations
are there till now?

8. List out the various computer generations along
with their basic characteristics.

9, Write a short note on fifth generation computers.
10.What are the advantages of transistors over

vacuum tubes?
11.What is an IC ?.How does it helo in reducing the

Size of computers?
12.List out some of the advantages of IC technology

over transistor technology.
13.Give the full form of the following abbreviations

used in computer terminology:
IC, SSI, MSI, LSI, VLSI, DIPS LIPS,
PROLOG.

CHAPTER 2

2. BASIC COMPUTER
ORGANIZATION

All computer systems perform the following five

basic operations:

1. Inputting. The process of entering data and instructions
into the computer system.

2. Storing. Saving data and instructions so that they are
available for initial or for additional processing as and
when required.

3. Processing. Performing arithmetic operations or logical
operations (comparisons like equal to, less than greater
than, etc.) on data in order to convert them frito useful
information.

4. Outputting. The process of producing useful
information or results for the user, such as a printed report
or 'visual display.

5. Controlling. Directing the manner and sequence in
which all of the above operations are performed.

The goal of this chapter is to familiarize you with
the computer system units that perform these functions,
This chapter will provide you with an overview of
computer systems as they are viewed by computer system
architects. It is an introduction to chapters 7, 8 and 9 which

describe the major units and their functions in more detail.

The internal architectural design of computers
differs from one system model to another. However, the
basic organization remains the same for all computer
systems. A block diagram of the basic omputcT
organization is shown in Figure 2.1. In this liguic. the solid
lines are used to indicate the flow of instruction and data,
and the dotted lines represent the control exercised by the
control uOit. It displays the five majot building blocks, or

10	 Computer Fundamentals

functional units, of a digital computer system. These five
units ci. rresrond to the five basic operations performed by
ail computer systems. The function of each of these units is
described below:

INPUT UNIT

Data and instructions must enter the computer
system before any computation can be performed on the
supplied data. This task is performed by the input unit that
links the external environment with the computer system.
Data and instructions enter input units in forms that depend
upon the particular device used. For example, data is
entered from a keyboard in a manner similar to typing, and
this differs from the way in which data is entered through a
card reader which is another type of input device, However,
regardless of the form in which they receive their inputs, all
input devices must provide a computer with data that are
transformed into the binary cOdes that the primary memory
of a computer is designed to accept. This transformation is
accomplished by units called input interfaces. Input
interfaces are designed to match the unique physical or
electrical characteristics of input devices to the
requirements of the computer system.

In short, the following functions are performed by
an input unit:

I. It accepts (or reads) the list of instructions and
data from the outside world.

2. It converts these instructions and data in
computer acceptable form.

3. It supplies the converted instructions and data to
the computer system for further processing.

OUTPUT UNIT

The job of an output unit is just the reverse of that of
an input unit. It supplies information and results of
computation to the outside world. Thus it links the
computer with the external environment. As computers
work with binary code, the results produced are also in the
binary form. Hence, before supplying the results to the
outside world, it must be converted to human acceptable
(readable) form. This task is accomplished by units called
output interfaces. Output interfaces are designed to match
the unique physical or electrical characteristics of output
devices (terminals, printers, etc.) to the requirements of the
external environment.

In short, the following functions are performed by
an output unit:

1. It accepts the results produced by the computer
which are in coded form and hence cannot be
easily understood by us.

2. It converts these coded results to human
acceptable (readable) form,

3. It supplies the converted results to the outside
world.

STORAGE UNIT

The data and instructions that are entered into the
computer system through input units have to be stored
inside the computer before the actual processing starts.
Similarly, the results produced by the computer after
processing must also be kept somewhere inside the
computer system before being passed on to the output units.
Moreover, the intermediate results produced by the
computer must also be pre-served for ongoing processing.
The storage unit or the primary/main storage of a computer
system is designed to cater to all these needs. It provides
space for storing data and instructions, space for
intermediate results, and also space for the final results.

In short, the specific functions of the storage unit are
to hold (store)

I. All the data to be processed and the instructions
required for processing (received from input
devices).

2. Intermediate results of processing.
3. Final results of processing before these results

are released to an output device.

ARITHMETIC LOGIC UNIT

The arithmetic logic unit (ALU) of a computer
system is Lilt; pia wiii c f thC
instructions takes place during the processing operation. To
be more precise, all calculations are performed and all
comparisons (decisions) are made in the ALU. The data and
instructions, stored in the primary storage prior to
processing, are transferred as and whets needed to the ALl)
where processing takes place. No processing is done in the
primary storage unit. Intermediate results generated in-the.--
ALU are temporarily transferred back to the primary
storage until needed at a later time. Data may thus move
from primary storage to ALU and back again to storage
many times before the processing is over. After the
completion of processing, the final results which are stored
in the storage unit are released to an output device.

The type and number of arithmetic and logic
operations that a computer can perform is determined by
the engineering design of the ALl). However: almost all

Basic Computer Urgani2aUon Ii

PROGRAM
	

INPUT	 STORAGE
	

OUTPUT

& DATA
	 UNIT	 UNIT

	
UNIT RESULTS

CONTROL ----J
UNIT

CENTRAL
PROCESSING

UNIT

ARITHMETIC
LOGIC
UNIT

Figure 2. 1. Basic organisation of a computer system

ALU's are designed to perform the four basic arithmetic
operations - add, subtract, multiply, divide and logic
operations or comparisons such as less than, equal to, or
greater than.

CONTROL UNIT

How does the input device know that it is time for it
to feed data into the storage unit? How does the ALU
know what should be done with the data once they are
received?

And how is it that only the final results are sent to
the output device and not the intermediate results ? All this
is possible because of the control unit of the computer
system By selecting, interpreting, and seeing to the
execution of the program instructions, the control unit is
able to maintain order and direct the operation of the entire
system. Although, it does not perform any actual processing
on the data, the control unit acts as a central nervous system
for the other components of the computer. It manages and
coordinates the entire computer system. It obtains
instructions from the program stored in main memory,
interprets the instructions, and issues signals that cause
other units of the system to execute them.

CENTRAL PROCESSING UNIT

The control unit and the arithmetic logic unit of a
computer system are jointly known as the Central
Processing Uni (CPU). The CPU is the brain of any
computer system. In a human body, all major decisions are
taken by the brain and the other parts of the body function
as directed by the brain. Similarly, in a computer system,
all major calculations and comparisons are made inside the
CPU and the CPU is also responsible foraccivating and
controlling the operations of other units of a computer
system.

THE SYSTEM CONCEPT

You might have observed by now that we have been
referring to a computer as a system (computer system).
What can be the reason behind this ? To know the answer
let us first consider the definition of a system.

A system is a group of integrated parts that have the
common purpose of achieving some objective(s). So, the
following three characteristics are key to a system

1. A system has more than one clement.

12	 Computer Fundamentals

2. All the elements of a system arc logically
related.

3. All the elements of a system are controlled in
such a way that the system goal is achieved.

Since a computer is made up of integrated
components (input and output devices, storage, CPU) that
work together to perform the steps called for in the program
being executed, it is a system. The input or output units
cannot function until they receive signals from the CPU.
Similarly, the storage unit or the CPU alone is of no use. So
the usefulness of each unit depends on other units and can
be realized only when all units are put together (integrated)
to form a system.

QUESTIONS

1. What are the five basic operations performed by
any computer system ?

2. Draw a block diagram to illustrate the basic
organisation of a computer system and explain
the functions of the various units.

3. What is an input interface? How does it differ
from an output interface?

4. What is a system ? Why do we refer to a
computer as a system?

CHAPTER 3

3, NUMBER SYSTEMS

We have already seen. in the previous chapter that
inside a computer system, data is stored in a format that
cannot be easily read by human beings. This is the reason
why input and output (110) interfaces are required. Every
computer stores numbers, letters, and other special
characters in a coded form. Before going into the details of
these codes, it is essential to have a basic understanding of
the number system. So the goal of this chapter is to
familiarize you with the basic fundamentals of number
system. It also introduces some of the commonly used
number systems by computer professionals and the
clationship between them.

Number systems are basically of two types: non-
positional and positional.

NON-POSITIONAL NUMBER SYSTEMS

In early days, human beings counted on finger.
When ten lingers were not adequate, stones, pebbles, or
sticks were used to indicate values. This method of
counting uses an additive approach or the non-positional
number system. In this system, we have symbols such as I
fOr 1, 11 for 2, 111 for 3. 1111 for 4, 11111 for 5, etc. Each

symbol represents the same value regardless of its position
in the number and the symbols are simply added to find Out
the value of a particular number. Since it is very difficult to
perform arithmetic with such a number system, positional
number systems were developed as the centuries passed.

POSITIONAL NUMBER SYSTEMS

In a positional number system, there are only a few
symbols called digits. and these symbols represent differcnt
values depending on the position they occupy in the
number. The value of each digit in such a number is
determined by three considerations

1. the digit itself,
2. the position of the digit in the number, and
3. the base of the number system (where base is

defined as the total number of digits available in
the number system).

The number system that we use in our day-to-day
life is called the Decimal number system. In this system, the
base is equal to 10 because there are altogether ten symbols
or digits (0,1,2,3,4,5.6,7,8.9) used in this system. You know
that in the decimal system, the successive positions to the

14	 Computer. Fundaa,.'nios

left of the uccimal point represent units, tens, hundreds,
thousands, etc. But you may not have given much attention
to the fact that each position represents a specific power of
the base (10). For example, the decimal number 2586
(written as 258610) consists of the digit 6 in the units
position, 8 in the tens position, 5 in the hundreds position,
and 2 in the thousands position and its value can be written
as

(2x 1000)+(5x I00) .'-(8x 10)+(6x I)

or 2000+ 500 -- 80 4 6

or 2586

It may also be observed that the same digit signifies
different values depending on the position it occupies in the
number. For example.

In 258610 the digit 6 signifits 6 x l(6

In 25681 the digit 6 signifies 6 x 101 = 60

In 2658 1 the digit 6 signifies 6 x 10 2 = 6(K)

In 62581 the digit 6 signifies 6 x 103 = 6000

Thus any number can be represented by using the
available digits and arranging them in various positions.

The principles that apply to the decimal system
apply in any other positional number system. it is important
only to keep track of the base of the number system in
which we are working.

Them are Lwu of !i nnmhr systems
that are suggested by the vb of the base. In all number
systems, the value of the base determines the total number
of different symbols or digits available in the number
system. The first of these choices is always zero. The
second characteristic is that the maximum value of a single
digit is always equal to one less than the value of the base.

Some of the number systems commonly used in
computer design and by computer professionals are
discussed below.

BJNARY NUMBER SYSTEM

The binary rmber system is exactly like the
decimal system except that the base is 2 instead of 10. We
have only two symbols or digits (0 and 1) that can be used
in this number system. Note that the largest single digit is 1
(one less than the base). Again, each position in a binary

number represents a power of the base (2). As such, in this
system, the rightmost position is the units (2 0) position, the
second position from the right is the 2's (2 1) position and
proceeding in this way we have 4's (2 2) position, 8's (23)
position, 16's (24) position, and so on. Thus, the decimal
equivalent of the binary number 10101 (written as 101012)
is

(I x24) + (0x23) + (I x22) + (0x21) + (1 x20)

orló+ 0 + 4 + 0 + I

or 21

In order to be specific about which system we are referring
to, it is common practice to indicate the base as a subscript.
Thus we write

101012	 2110

Binary digit is often referred to by the common
abbreviation big . Thus, a 'bit in computer terminology
means either a 0 or a 1. A binary number consisting of n
bits is called an n-bit number. 'Table 3,1 lists all the 3-bit
numbers along with their decimal equivalent- Remember
that we have only two digits, 0 and 1, in the binary system,
and hence the binary equivalent of the decimal number 2
has to be stated as 10 (read as one, zero). Another important
point to note is that with 3 bits (positions), only 8 (23)
different patterns of 0's and l's are possible and from Table
3,1 it may be seen that a 3-bit number can have one of the 8
values in the range U to 7. In fact, it can be shown that any
decimal number in the range 0 to 2nl can be represented in
the binary form as an n-bit number.

Every computer stores numbers, letters, and other
special characters in binary fu. There ero sv,rl
occasions when computer professionals have to know the
raw data contained in a computer's memory. A common
way of looking at the contents of a Computer's memory is
to print out the memory contents on the line printer. This
print out is called a memory dump. If memory dumps were
to be printed using binary numbers, the computer
professionals would be confronted with many pages of Os
and is. Working with these numbers would be very
difficult and error prone.

Because of the quantity of printout that would be
required in a memory dump of binary digits and the lack of
digit variety (Os and is only), two number systems, octal
and hexadecimal, are used as shortcut notation for binary,
These number systems and their relationship with the
binary number system will now be explained in this
chapter.

Number Systems 15

Table 3.1.	 3-bit Numbers With Their Decimal
Values.

OCTAL NUMBER SYSTEM

In the octal number system the base is 8. So in this
system there are only eight symbols or digits : 0,1,2,3,4,5,6
and 7 (8 and 9 do nut exist in this system). Here also the
largest single digit is 7 (one less than the base). Again, each
position in an octal number represents a power of the base
(8). Thus the decimal equivalent of the octal number 2057
(written as 2057) is:

(2 x 8 3) + (Ox 82) + (5 x St) + (7 x 80)

or1024+ 0 + 40 + 7

or 1071

So we have 20578	 1071

Observe that since there are only 8 digits in the ociar
number system, so 3 bits (23 8) are sufficient to represent
any octal number in.binary (see Table 3.1).

HEXADECIMAL NUMBER SYSTEM

The hexadecimal number system is one with a base
of 16. The base of 16 suggests choices of 16 single-
character digits or symbols. The first 10 digits are the digits
of decimal system 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The remaining
six digits are denoted by A, B, C, D, E, F representing the
decimal values 10, 11, 12, 13, 14, 15 respectively. In the
hexadecimal number system, therefore, the letters A
through F are number digits. The number A has a decimal
equivalent value of 10 and the hexadecimal F has a
decimal equivalent value of 15. Thus, largest single digit is
F or 15 (one less than the base). Again, each position in a
hexadecimal system represents a power of the base (16).
Thus the decimal equivalent of the hexadecimal number
1AF (wri1t'n as lAF1) is:

(1 x 16) + (Ax 16 1) + (F x 160)

or(1x256)+(lOx 16)+(15x 1)

or 256 + 160 + 15

or 431

Thus 1AF16 -3'io

Observe that since there are only 16 digits in the
hexadecimal number system, so 4 bits (24 = 16) are
sufficient to represent any hexadecimal number in binary,

CONVERTING FROM ONE NUMBER SYSTEM TO
ANOTHER

Numbers expressed in decimal are much more
meaningful to us than are values expressed in any other
numbersystem. This is mainly because of the fact that we
have been using decimal numbers in our day-to-thy life
right from childhood. However, any number value in one
number system can be represented in any other number
system. Because the input and the final output values are to
be in decimal, computer professionals are often required to
convert numbers in ocher number systems to decimal and
vice-versa. There are many methods or techniques that can
be used to convert numbers from one base to another. We
will see one technique used in converting to base 10 from
any other base and a second technique to be used in
converting from base 10 to any other base.

CONVERTING TO DECIMAL FROM ANOTHER BASE

The following three steps are used to convert to a
base 10 value from any other number system:

Step 2:
512	 64	 8	 1

x4	 x7	 xO	 x6

2048 448	 0	 6

Step 3:
2048 + 448 +0 +6= 2502

Hence, 4706 = 250210

Example 3.3.	 IACI6 =?io

Solution:

IAC 16 =1xl62+AX161+Cx160

= 1 x2564 10 16+ 12x I

= 256 + 160 + 12

=428o

Example 3.4.	 4052 =

Solution:

40527 4X71'+0x72 t5x7 1 +2x70

-A Y 43 + 0 x 49 + 5 x 7 + 2 x I

=1372 + 0 + 3+ 2

= 1409

Example 3.5.	 40526 =

Solution:

40526 = 4 x 63 +0 x 62 + 5 x 6 + 2 x 60

=4x216+0x36+S x 6 + 2 x 1

= 864 + 0 + 30 + 2

=896io

Step 1
Column Number
(from right)

2

3

4

Column Value

80= 1

81+8

82 = 64

g3= 512

16	 Compu!er Fundamentals

Step 1 Determine the column (positional)
value of each digit (this depends on
the position of the digit and the base
of the number system).

Step 2: Multiply the obtained column values
(in Step 1) by the digits in the

corresponding columns.

Step 3: Sum the products calculated in Step 2.
The total is the equivalent value in

decimal.

Example 3.1.	 110012?10

Solution:

Step 1:
	 Determine column values

Column Number
	

Column Value

(from right)

= l

2
	

21 = 2

3
	

22 = 4

4
	

2=8

5
	

24 16

Step 2:	 Multiply column values by corre-
sponding column digits

168421
xl xl xO xci xi

16 8 0 0 1

Step 3:	 Sum the products

16+8+0+0+1 = 2 5

Hence, 110012=2510

Example Y2.	 4706s?io

Solution -

Compare the result with Example 3.1.

Example 3.9.	 4210 =

Solution

2

Hence, 42 i o=

Example 3.10.

42

21

10

5

2

0

L0l0l0

952	 ?g

,Remainders

0

0

0

Number Systems 117

Comparing this result with the result obtained in Example
3.4, we find that although the digits (4052) are same for
both the numbers, but their decimal equivalent is different.
This is because of the fact that the number in Example 3.4
is represented in base 7 number system whereas the number
in Example 3.5 is represented in base 6 system.

Example 3.6.	 110014=?10

Solution

11001 4 =1x44 +1x43+0x42+0x41+1x40
=1x256+1x64+0x16+0x4 +lxl
=256+ 64+ 0 + 0 + 1
=32110

Compare the result with Example 3. 1.

Example 37.	 IAC13 = ?io

significant digit (MSD) of the new base number.

Example 3.8	 2510=?2

Solution:

Steps I & 2: 25i2 = 12 and remainder I
Steps 3 & 4: 1212 = 6 and remainder 0
Steps 3 & 4: 6/2 = 3 and remainder 0
Steps 3 & 4: 3/2 = 1 and remainder I
Steps 3 & 4: 1/2 = 0 and remainder 1

As mentioned ir. Steps 2 & 4, the remainders have to be
arranged in the reverse order so that the first remainder
becomes the least significant digit (LSD) and the last
remainder becomes the most significant digi(MSD).

Hence, 2510= 110012

Solw,bn.

1AC 1 3= Ix 132+Ax 13 1 +Cx 130
= lx 169+ 10 x. 13+ 12x 1

311,o

Compare the result with Example 3.3.

CONVERTING FROM BASE :010 A NEW BASE
(DIVISION -REMAINDER TECHNIQUE)

The following four steps are used to convert a number from
base 10 to a new base:

Step I : Divide the decimal number to be
converted by the value of the new
base.

Step 2: Record the remainder from step I as
the rightmost digit (least significant
digit) of the new base nunber.

Step 3:	 Divide the quotient of the previous
divide by the new base.

Step 4: Record the remainder from step 3 as
the next digit (to the left) of the new
base number.

Repeat steps 3 and 4. recording remainders froip
right to left, until the quotient becomes Zen) in step 3. Note
that the last remainder thus obtained will be the most

18	 Computer Fundamentals

Solution:

	8	 952	 Remainders

119	 0

14	 7

1	 6

Hence 952n = 1b708

	

Example 3.11,	 42810 716

Solution:

Remainders in
16	 428	 hexadecimal.

26	 12=C

I	 10A

0	 1=1

Hence, 428o = IAC16

Compare the result with Example 33.

	

Example 3.12.	 10010=

Solution:

	5	 100	 Remainders

20	 0

4	 0

	

I	 0	 4

Hence, 10010=4005

	

Example 3.13.	 10010 = ?4

Solution:

	4 I	 100	 Remainders

25	 0

6	 1

1	 2

0	 1

Hence, 1 00 = 12104

Compare this result with the result obtained in Example
3.12.

	

Example 3.14.	 171510=?12

Solution.

Remainders in
12	 1715	 Base 12

142	 11=B

11	 10=A

0	 IlB

Hence, 1715 10 = BAB12

CONVERTING FROM A BASE OTHER THAN 10 TO A
BASE OTHER THAN 10

The following two steps are used to convert a
&iunii,C L-cm a bace othr than 10 to a base other than 10.

	

Step 1:	 Convert the original numoer to a
decimal number (base 10).

	

Step 2:	 Convert the decimal number so
obtained to the new base.

	

Example 3.15.	 556 =

Solution:

	Step 1:	 Convert from base 6to base 10
545 = 5 x 62 + 4 x 6 1 +5x60

=5x36+4x6 +5x1
= 180 + 24 + 5

= 209jo

	

Step 2
	

Convert 209 1o to base 4

	

4
	

209	 Remainders

52	 1

13	 0

3	 1

0	 3

Hence, 209 ,o 31014

So, 545620910=31014

Thus,	 =310!4

Example 3.16.

Solution:

Step 1:

1011102

1011 10n,

Convert 1011102 to base 30

-1x 25 +0 x24+ lx 23+ lx22 + 1
x 21 + Ox 20
= 32 + 0 + 8 + 4 + 2 + 0
= 4610

	

Step 2:	 Convert 46 10 to base 8.

	

8	 46	 Remainders

5	 6

•0	 5

Henc, 4610 568

So, 101110r461o=56g

Thus, 1011102=568

	

Example 3.17.	 110100112 ?16

Solution :

	Step 1:	 Convert 110100112 to base 10

Number Systems 19

110100112 =1x27+1x26+0x25i-1x24+O
x 23 + Ox 22 + 1 x 2' + 1 x 20

=1 x128+ 1x64+0x32+1 x16+
0x8+0x4+ 1 x2+lx I

=128+64+0+16+0+0+2+1

=211w

Step 2
	

Convert 21110 to base 16

16
	

211	 Remainders

13	 3=3in
Hexadecimal

0	 13=Din
Hexadecimal

Hence, 211	 D336

So, 110100112=211,0= D316

Thus, 110100112 = D316

Example 3.16 illustrates the method of converting a number
from binary to octal. Similarly, Example 3.17 shows how to
convert a number from binary to hexadecimal. However,
these lengthy procedures and shortcut methods can be
used when we desire such conversions. We will now
discuss these shortcut methods.

SHORTCUT METHOD FOR BINARY TO OCTAL
CONVERSION

The following steps are used in this method:

Step 1:	 Divide the binary digits into groups of
three (starting from the right).

Step 2: Convert each group of three binary
digits into one octal digit. (Refer to
Table 3.1 and try to remember that
since there are only 8 digits (0 to 7) in
the octal number system, so 3 bits
(23 = 8) are sufficient to represent any
octal number ix binary). Since
decimal digits 0 to are equal to octal
digits 0 to 7 so binary to decimal
1.conversion can be used in this step.

3-A

20 Digital Computer Fu,6arnentalx

Step 2

Example 3.20

Solution:

Combine all the resulting binary
groups (of 3 digits each) into a single
binary number.

5628=?2	 -

	

Step I	 Convert each octal digit to 3 binary
digits

1012
58= 1102
25 = 0102

	

Step 2 :	 Combine the binary groups
5628 =JQiUQQ.i

562

Hence, 562g= 1011100102

	

Example 3.21.	 67518=?2

Solution:

6751 8 	 Jit) ill 191 991
6	 151

= 1101111010012
Hence, 6751s 1101111010012

SHORTCUT METHOD FOR BINARY TO
HEXADECIMAL CONVERSION

The following steps are used in this method:

	

Step 1:	 Divide the binary digits into groups of
foil (starting from the right).

Step 2: Convert each group of four binary
digits to one hexadecimal digit.
Rcriember that hexadecimal digits 0
to 9 are equal to decimal digits 0 to 9,
and hcadecima1 digits A to F are
equal to decimal digits 10 to 15.
Herice for this step, the binary to
decimal conversion procedure can be
used, but the decimal values 10 to 15
must be represented as hexadecimal A
to F.

3-B

Example 3.18. 	 1011102 ?g

Solhaion:

Step 1:
	

Divide the binary digits into greuns of
3 starting from right (LSD)

Step 2:
	

Convert each group into one digit of
octal	 (use	 binary-to-dcimaI

-- conversion)

1012	 = I x22+0x2+ I x20
=4+0+1

5s

1102	 = 1x22 +1x21 +0x20
=4+ 2+0
= 6

Hence, 101110t568

Compare this result with the result of Example 3.16.

Example 3.19.	 11010102 =

Solution:

11010102	 =flQtQ
(Group 3 digits from right)
=l52
(Convert each group to an octal
wgn)

Hence, 11010102=1528

SHORTCUT METHOD FOR OCTAL TO BINARY
CONVERSION

The following steps are used in this method:

SEM 1: Convert each octal digit to a 3 digit
binary number. (The octall digits may
be treated as decimal fot this
conversion).

Number Systems 21

Example 3.22.	 110100112

Solution:

Step I
4.
Divide the binary digits into groups of

UQIU

Step 2;.	 Convert each group of 4 binary digits
to I hexadecimal digit.

11012	 =1x23+1x22+0x21+1x20
8 +4+0+ 1

= 1310
=

00112	 0x21+0x22+1x71+1x20
=0+0+2 + 1
=

Hence, 110100112rD3l6

Compare the result with the result of Example 3.17

Example 3.23.	 101101011002

Solution

101101011002	 iQ.Q .0
(Group 4 digits from right)

=5AC
(Convert each group to a hexadecunal
digit)

Hence, 1011O1Oijo() 5AC16

SHORTCUT METHOD FOR }UXADEC11MAL TO
BINARY CONVERSION

The following steps are used in this method

Convert the decimal equivalent of
each hexadecimal digit to 4 binary
digits.

Combine all the resulting binary
groups (of 4 digits each) into a single
binary number

	

Example .24.	 2AB6

Solution.

Steç. I : Convert the decimal equivalent of
each hexadecimal digit to 4 binary
digits

2 16 =210 =00102
A 16 = 101= 10102
B 1 6= 11i= 10112

	

Step 2:	 Combine the binary groups

2AB16 = 11 i!liJ.QU
2 A B

Hence, 2AB 16 = 0010101010117

	

Exan,le 3,25.	 ABC 16 =

Solwi

	A13C16	 =iQ1iQUiiQQ
ABC

=1010101111002
Hence, ABC 16 1010101111002

Finally, Table 3.2 summarises the relationship
between the decimal, binary, hexadecimal, and octal
number systems. Note that the maximum value for a single
digit of Octal (7) is equal to the maximum value of three
digits of binary. The value range of one digit of octal
duplicates the vale range of three digits of binary. If octal
digits are substituted for binary digits, the substitution is on
a one-to-three basis. Thus, computers that print octal
numbers instead of binary, while taking memory dump,
save one-third of the printing space inid time.

Similarly, note that the maximum value of one digit
in hexadecimal is equal to the ni;axirnum value of four
digits in binary. Thus the value range of one digit of
hexadecimal is equivalent to the value range of four digits
of binary. Therefore, hexadecimal shortcut notation is a
one-to-four reduction in the space and time required for
memory dump.

Step!

Step 2

22 Digital Corn puu7 Fuiviamensals

FRACTIONAL NUMBERS

In binary number system, fractional numbers are
tbiincd in the same general way as in the decimal system.
Just as in the decimal system.

0.2-35 --- 	 + (3x10'2) + (5x10'3)
and
68.53 = (6x101) +(8x]00) + (5x10-l) + (3x10-2)

Similarly in the binary system,

(>10! = (1x2- 1) i- (0x2'2) + (1x2-3)
and
1001 =(1x2 1) +(0x2°) + (0x2' l)	 (1 x2-2)

5A.3C16= (5x16 1) + (Ax160) + (3x 16- 1) + (Cx 162)

Example 3.26.	 Find the decimal equivalent of the
binary number 110.101

Solution:

110.1012	 = 1x22 + 1x2 1 + 0x2° + 1x2' I + 0x2'2
+ 1x2'3
=4 +2 +0 +.5 +0 +125
= 6 + 0.5 + 0,125
= 6.62510

Example 3,27
	

Find the decimal equivalent of Ow-
octal number 127.54

Sotution:Thus, the binary point serves the same purpose as the
decimal point. Some of the positional values in the binary
system are given below.

Binary Point

Position	 4	 3	 2	 1	 0	 .	 -1 -2 -3 -4

Position	 2	 2	 22 2' 20	 2' 2.2 2' 2
Value
Quantity,	

16 8	 4	 2	 1	
1

Represented	 2 4 S 16

In general, a number in a number system with base b
would be written as

and would be interpreted to mean

= 1x82 + 2x3 1 + 7x81 + 5x8' 1 + 4x8-2
= 64 + 16 + 7 + 5/8 + 4164
= 87 + 0.625 + 0.0625
= 87.6875j

Example 3.28. 	 Find the decimal equivalent of the
hexadecimal number 2B.C4

Solution:

2B.C416	 =2xl6 t +Bx16O +Cl6't +4x16-
= 32 + B + C/16 + 4/256
= 43 + 0.75 + 0.015625
= 43•76565210

anxbn+an1xbn'I.-.,,+arjxbo+a,ixb.I+a,xb.2+

The symbols a, an-1,....a.m used in the above
representation should be one of the h symbols allowed in
the number system.

Thus, as per the above mentioned general rule,

46.32 = (4x8 1) + (6x80) + (3x81) + (2x8-2)

and

Number Systems 23

Table 3.2. Relationship between Decimal,
Binary, HexidftcimaI mo Octbl
Number Systems

Decimal
	

Hexa	 Binary	 Octal

Decimal

0
	

0
	

0
	

0

2
	

2
	

10
	

2

3
	

3
	

11
	

3

4	 4	 100
	

4

5
	

5
	

101	 5

6
	

6
	

110
	

6

7
	

7
	

111	 7

8
	

8
	

1000
	

10

9
	

9
	

1001

10
	

A	 biG

11	 B	 1011

12	 C
	

1100

13
	

D	 1101

14
	

E
	

1110

15
	

F
	

1111

16	 10
	

10000

QUESTIONS

1. What is the difference between a positional and a
non-positional number system ? Give examples
of both types of number systems.

2. What is meant by the base of a number system?.
Give examples to illustrate the role of base in
positional number systems.

3. What is the value of the base for decimal,
hexadecimal binary and octal number systems?

4. Give an example for octal number system to
show that the same digit may signify different
values depending on the position it occupies in
the number.

5. What will be the total number of different
symbols or digits and the maximum value of a
single digit for the following numbc.rystems

a)number system with base 5.
b) number system with base 20.
c) number system with base 9.
d) number system with base 12.

6. What is a bit in computer terminology ? How
many different patterns of bits are possible with
a) 5 bits
b)7 bits
c) 8 bits?

7. Explain tJ'e meaning of the term 'memory
dump".

8. Why are octal and/or hexadecimal number
systems used as shortcut notation?

9. Find out the decimal equivalents of the following
binary numbers.

a) 1101011	 b) 11010
c)10110011	 d)1101110l
e) 1110101	 01000
g) 10110001100
h) 1010101100
i) 110001	 j)111

10. Find out the octal equivalents of the binary
numbers of Question 9.

11. Find out the hexadecimal equivalents of the
binary numbers of Question 9.

12. Convert the following numbers to dedm4:

a) 1101102	 b) 25736

c) 2A31316	 d) 12349

13. Convert the following decimal numbers to binary;

a) 435io	 b) 169410

c) 3210	 d) 135 to

14. Convert the decimal numbers of Question 13 to octal,

15. Convert the decimal numbers of Question 13 to
hexadecimal.

16. a) 125

b)249	 =

c) A13C,	 = 78

17. Convert the fillowing numbers to their binary
equivalent:

a) 2AC16	 b) FABI6

C) 2648	 d) 562

18. Find the decimal equivalent of the following numbers

2) 111.012	 h) 1001.0112

c) 247.658	 d) A213.P416

1

CHAPTER 4

4. COMPUTER CODES

I n the previous chapter, we have discussed about
true or purc" binary numbers. In this chapter. we will see
how these binary numbers are coded to represent characters
in the computer memory. Thus, the goal of this chapter is to
present the formats used in computer memory to record
data. Although many coding schemes have been developed
over the years, we will be discussing only the most
commonly used computer codes.

Numeric data is not the only form of data that is to
be handled by a computer. We often require to process
alphanumeric data also. An alphanumeric data is a string of
symbols where a symbol may be one of the letters

A,B,C,...Z or one of the digits 0,l,2_.,9 or a special

character, such as i - * I , . () = (space or blank) etc. An
alphabetic data consists of only the letters A.B.0.....Z and
the blank character. Similarly, numeric data consists of
only numbers 0,1,2......9. However, any data must be
represented internally by the bits 0 & 1. As such, binary
coding schemes are used to represent data internally in the
computer memory. In binary coding, every symbol that
appears in the data is represented by a group of bits. The
group of bits used to represent a symbol is called a byte. To
indicate the number of bits in a group, sometimes a byte is

referred to as "n-bit byte" where the group contains n bits.
However, the term byte is commonly used to mean an 8-bit
byte (a group of 8 bits) because most of the modem
computers use 8 bits to represent a symbol.

BCD CODE

The Binary Coded Decimal (BCD) code is one of
the early memory codes. It is based on the idea of
converting each digit of a decimal number into its binary
equivalent rather than converting the entire decimal value
into a purr binary form. This facilitates the conversion
process to a great extent.

The BCD equivalent of each decimal digit is shown in
Table 4.1. Since 8 and 9 require 4 bits, all decimal digits
are represented in BCD by 4 bits. You have seen in
Example 3.9 that 42, is equal to 1010102 in a pure binary
form.
Converting 42 into BCD, however, produces the following
result:
42 Q =Qjj QIIQ

4	 2
or OI0000IO1nBCD

26 Digital Computer Fwidii'nentals

Note that each decimal digit is independently
converted to a 4 bit binary number and hence the
conversion process is very easy. Also note that when 4 bits
are used, altogether 16 (2) configurations are possible
(refer to hexadecimal number system). But from Table 4.1
you can see that only the first 10 of these combinations are
used to represent decimal digits. The remaining 6
arrangements (1010,

Table 4.1.	 BCD Equivalent of Decimal Digits

Decimal Digits 	 BCD Equivalent

0
	

"I

1
	

I

2
	

•1

3
	

I
4
	 • SI

5
6
	

• S

7
	

I

8
	

SI,

9
	

S.

1011, 1100, 1101, 1110 and 1111) have decimal values
from 10 to 15. These arrangements are not used in BCD
coding. That is, 1010 does not represent 10 10 in BCD.
Instead,

1010
1	 0

or	 00010000 in BCE)

Similarly,

1510	 oj QM
1	 5

or	 00010101 in BCD

In the above discussion, we have used a group of 4
bits to represent a digit (character) in BCE). 4-bit BCD
coding system can be used to represent only decimal
numbers because 4 bits are insufficient to represent the
various characters used by a computer. Instead of using 4
bits with only 16 possible characters, computer designers
commonly use 6 bits to represent characters in BCD code.
In the 6-bit BCD code, the four BCD numeric place
posiuu.s are retainr.d, but two additional zone positions are
added. With 6 bits, it is possible to represent 64 (26)

different characters. This is a sufficient number to code the
decimal digits (10), alphabetic letters (26), and other special
characters (28). Table 4.2 illustra t es the coding of
alphabetic and numeric characters in BCD.

In Chapter 3, we have seen the use of octal and
hexadecimal number systems as shortcut notation for
binary. Because BCD is a 6-bit code, it can be easily
divided into two 3-bit groups. Each of these 3-bit groups
can be represented by 1 octal digit. Thus, octal number
system is used as shortcut notation for memory dump by
computers that use BCD code for internal representation of
characters. This results in a one-to-three reduction in the
volume of memory dump. Table 4.2 also shows the octal
equivalent of the alphabetic and numeric characters coded
in BCE).

Example 43.	 Show the binary digits used to record
he word BASE in BCD.

Solution

B = 110010 in BCD binary notation
A = 110001 in BCD binary notation
S = 010010 in BCE) binary notation
E = 110101 in BCD binary notation

So the binary digits

HOUIpI(01U1L€IlispIL ('11

will record the word BASE in BCD.

Example 4.2.	 Using octal notation show the BCD
coding for the word DIGIT.

Solution:

D = 64 in BCD octal notation
I = 71 in BCD octal notation
G = 67 in BCD octal notation
I = 71 in BCD octal notation
T = 23 in BCD octal notation

So the BCE) coding for the word DIGIT in octal notation
will be:

211fl2
DIGIT

Table 4,2.	 Alphabetic And Numeric
Characters In BCD Along With
Their Octal Equivalent.

Character	 BCD Code	 Octal
Equivalent

Zone	 Digit

A
B
C
D
E
F
0
H

K
L
M
N
0
P

Q
R

S
T
U
V
W
X
Y
Z

2
3
4
5
6
7
8
9
0

Ii
11
11
11
11
Ii
11
11
11

10
10
10
10
10
10
10
10
10

01
01
01
01
01
01
01
01

if
SI
'S
'S
IS
II
'I
'I

I,

Oil
I'

I,
• 0i

I
S	 I

Oh
'S

0O I
0S
I IS
'I
I	 I

0IS
S.

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010

61
62
63
64
65
66
67
70
71

41
42
43
44

45

46
47

50
51

22
23
24
25
26
27
30
31

01
02
03
04
05
06
07
10
11
12

Ccmpu:er Cxe.c 7

EBCDIC

The major problem with BCD code is that only 64
(26) different characters can be represented in it. This is not
sufficient for providing decimal numbers (10), lower-case
letters 26), capital letters (26), and a fairly large number of
other special characters (28+).

Hence, the BCD code was extended from a 6-bit
code to an 8-bit code. The added 2 bits are used as
additional zone bits, expanding the zone to 4 hits. The
resulting code is called the extended binary-coded dccimal
interchange code (EBCDIC). In this code, it is possible to
represent 256 (28) different characters instead of 64 (26). In
addition to the various character requirements mentior.ed
above, this also allows a large variety of printable
characters and several nonprintable control characters. The
control characters are used to control such activities as
printer vertical spacing, movement of cursor on the
terminal screen, etc. All of the 256 bit combinations have
not yet been assigned characters, so the code can still grow
as new requirements develop.

Because EBCDIC is an 8-bit code, it can he easily
divided into two 4-bit groups. Each of these 4-i it gToups
can be represented by I hexadecimal digit (refer to Chapter
3). Thus, hexadecimal number system is used as shortcut
notation for memory dump by computers that use EBCDIC
for internal representation of characters. This results in a
one-to-four reduction in the volume of memory dump.
Table 4.3 shows the alphaL' tic and numeric characters in
EBCDIC along with their l'xadecimal equivalent.

Developed by IBM, EBCDIC code is used in most
IBM models and in many other computers.

ZONED AND PACKED DECIMAL NUMBERS

From Table 4.3, it can be observed that jr the
EBCDIC code, the digit values are the same as the numeric
characters - 0 through 9 (0000-1001). But numeric values
need some special consideration because we must have a
way of indicating whether the number is positive, negative,
or unsigned (implies positive). Thus, when a numeric value
is represented in EBCDIC, a sign indicator is used in the
zone position of the rightmost digit. A sign indicator of
hexadecimal C is a plus sign, hexadecimal D is a minus
sign, and a hexadecimal F means the number is unsigned.
Table 4.4 illustrates the representation of numeric values in
EBCDIC. Note that the only zone affected by the sign is the
zone of the rightmost digit. All other zones remair. as F, the
zone value for numeric characters in EBCDIC. because
each decimal digit has a zone with it, numbers coded in
EBCDIC are called zoned decimal numbers. Numeric data

28	 Computer Fundamentr!ls

input into the computer are usuall y zoned decimal numbers,
Printers can print only those numeric characters that mc in a
zoned-decimal format,

However, most computers cannot perform
arithmetic operations on zoned-decimal data. Thus, before
aay arithmetic operation can be performed, the data must be
converted to a format on which arithmetic operations are
possible, One such acceptable format is the packed decimal
format. The following steps are used to convert a zoned
decimal number to a packed decimal number:

Step 1: The zone half and the digit half of the
rightmost byte are reversed. This
moves the sign to the extreme right of
the number.

Step 2 :	 All remaining zones are dropped out.

Table 4.5 illustrates the conversion process of zoned
decimal data to paCked data.

It may be observed that packed data requires fewer
number of bytes (group of 8 bits) as compared to zoned
data. In the zoned format, there is only one digit per byte
(each digit along with the zone requires 8 bits). But there
are two digits in each byte in the packed format (each digit
requires 4 bits). If the packing process does not completely
fill a byte, it is filled with a zero. For example, the zoned
data F3F4F5F6 will convert to packed data 03456F.
Observe that in this example, the zoned data requires 4
bytes and the packed data requires only 3 bytes.

Example 4.3. Using binary notation, write the
EBCDIC coding for thd word BIT.
How many bytes are required for this

- representation?

Solution

B = 1100 0010 in ECD1C binary notation
I = 1100 1001 in EBCD'C binary notation
T = 1110 0011 in EBCDIC binary notation

So the EBCDIC coding for the word BIT in binary notation
will be

3 bytes will be required for this representation because each
letter requires I byte (or 8 bits) for its representation.

Table 4.3. Alphabetic And Numeric
Characters In EBCDIC Along With
Their Hexadecimal Equivalent.

Charter	 EBCDIC Code	 Hexa-
decimal
Equivalent

Zone	 Digit

	

A
	

1100
	

0001
	

CI

	

B
	

1100
	

0G.)
	

C2

	

C
	

1100
	

0011
	

C3

	

D
	

1100
	

0100
	

C4

	

E	 1100
	

0101
	

CS

	

F
	

1100
	

0110
	

C6

	

G
	

1100
	

0111	 C7

	

H
	

1100
	

1000
	

C8
1100
	

1001
	

C9

1101
	

DOOl
	

Dl

	

K
	

1101
	

0010
	

D2

	

L
	

1101
	

0011
	

D3

	

M	 1101
	

0100
	

D4

	

N
	

1101
	

0101
	

D5

	

0
	

1101
	

0110
	

D6

	

P
	

1101
	

0111
	

D7

	

Q
	

1101
	

1000
	

D8

	

R
	

1101	 1001	 D9

	

S
	

1110
	

0010
	

E2

	

T
	

1110
	

0011
	

E3

	

U
	

1110
	

0100
	

E4

	

V	 1110
	

0101
	

ES

	

W	 1110
	

0110
	

E6

	

X
	

1110
	

0111
	

E7

	

Y
	

1110
	

1000
	

E8

	

Z
	

1110
	

1001
	

E9

	

0
	

1111
	

•0I	 FO
1111
	

U,
	

Fl

	

2
	

1111	 S. S
	

F2
3
	

1111
	

5'
	

Fl
4
	

1111
	

S $•
	

F4
S
	

1111	 F5
6
	

1111	 F6
7	 1111	 F7
8
	

1111	 S.
	

F8
9
	

1111	 F9

Computer Codes 29

Table 44,

Numeric
Value

345
+345
-345

Numeric Values In EBCDIC In
Hexadecimal Notation

EBCDIC Sign
Indicator

F3174F5	 F for unsigned
F3F4C5	 C for positive
F3F4D5	 D for negative

for this representation.

Example 4.5, Write the EBCDIC zoned-decimal
coding for the value +256 (use
hexadecimal). How many bytes will
be required for this representation?

Solution

+256 = F2F5C6 in EBCDIC

Table 4.5.	 Zoned	 And Packed Decimal
Numbers

Numeric	 Zoned	 Packed
Value	 Format	 Format

345	 F3F4F5	 345F
+345	 F3F4C5	 345C
-345	 F3F4D5	 3451)
3456	 F3F4F5F6	 03456F

Example 4.4. Write the EBCDIC coding for the
word ZONE (use hexadecimal
notation). How many bytes will be-
required for this representation?

Solution

Z = E9 in EBCDIC hexadecimal notation
0 = 1)6 in EBCDIC hexadecimal notation
N = D5 in EBCDIC hexadecimal notation
E = CS in EBCDIC hexadecimal notation

So the EBCDIC coding for the word ZONE in hexadecimal
notation will be:

a IM Pi cl
ZONE

Each hexadecimal digit requires 4 bits and there are
altogether 8 hexadecimal digits. So in all 8 x 4 = 32 bits
will be required. But 8 bits = I byte. So 32 bits = 4 bytes.
Hence, 4 bytes will be required for this representation.

We may also write directly that since each letter
requires I byte for its representation in EBCDIC and there
are 4 letters in the word ZONE, so 4 bytes will be required

Each hexadecimal digit rcqu'ues 4 bits and there are.
altogether 6 hexadecimal digits. So in all 6x4 = 24 bits or 3
bytes (8 bits = I byte) will be required for this
representation.

We may also write directly that since each digit
requires 1 byte for its representation in the EBCDIC zoned
decimal coding and there are 3 digits in the given number,
so 3 bytes will be required for this representation.

Example 4.6.	 Write -128 as packed decimal number
(use hexadecimal). How many bytes
will	 be	 required	 for	 this
representation?

Solution:

-128 = F1F2D8 in EBCDIC
= 128D in packed format.

Each hexadecimal digit requires 4 bits and there are
altogether 4 hexadecimal digits. So in all 4x4 = 16 bits or 2
bytes (1 byte = 8 bits) will be required for this
representation.

ASCII

Another computer code that is very widely used is
the American Standard Cede for Information Interchange
(ASCII). ASCII has been adopted by several ftmerican
computer manufacturers as their computers' internal code.
This cede is popular in data communications, is used
almost exclusively to represent data internally in
microcomputers, and is frequently found in the larger
computers produced by some vendors.

ASCII is of two types : ASCII-7 and ASCII-8.
ASCII-7 is a 7 bit code that allows 128 (2) different
characters. The first 3 bits are used as zone bits and the last
4 bits indicate the digit. Microcomputers using 8-bit byte
(group of 8 . bits for one byte) use the 7-bit ASCII by
leaving the leftmost first bit of each byte as a zero. Table

0
	

011	 I	 30
011
	

31
-I
	

011	 S. I	 32
3
	

011
	 'I	 33

4
	

011	 • 5I	 34
5
	

011
	 S.	 35

6
	

011
	

36
7
	

011
	

37
8
	

011
	 I,,	 38

9
	

011
	 I,	 39

A
B
C
D
E
F
G
H

K
L
M
"I

0

P
Q
R
V

I
U
V
W
X
Y
Z

1'

IS

S.
S.
S
I,
I
I

II

S

I,

101
101
101
101
101
101
101
V11
101
101
101

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
£ A L V

1111

S
S.'
SI S
IS
S	 $
S.
S	 S
S
.5,
I,
I.

41
42
43
44.
45
46
47
48
49
4A
413
4C
4D
' L.

4F

50
51
52
53
54
55
56
57
58
59
5A

JO Digital Computer Fldamern(21s

4.6 shows the alphabetic and numeric characters in ASCII-7
notation.

ASCII-8 is an extended version of ASCII-7. It is an
8-bit code that allows 256 (2) different characters rather
than 128. The additional bit is added to the zone bits. Table
4.7 shows the alphabetic and numeric characters in ASCII-9
notation. Observe that other than the zone-value
differences, ASCII-7 and ASCII-8 are identical. ASCII also
uses hexadecimal as its four-to-one shortcut notation for
memory dump. Tables 4.6 and 4.7 also show the
hexadecimal equivalent of the ASCII notations.

Example 4.7. Write the binary coding for the word
BOY in ASCII-7. How many bytes
are required for this representation?

Solution

B IO00010 in ASCII-7 binary notation
0 = 1001111 in ASCII-7 binary notation
Y = 1011001 in ASCII-7 binary notation.

Hence the binary ceding for the word BOY in
ASCII-7 will be

1000010 1001111 101 1Q01
B	 0	 Y

As each character in ASCII-7 requires one byte for
its representation and since there are 3 characters in the
word BOY, so 3 bytes will be required for this
representation.

Example 4.8.	 Write the hexadecimal coding for the
word GIRL in ASCII-7. How many
bytes	 are	 required	 for	 this
ieui-	 3tiOfl

Solution

G 47 in ASCII-7 hexadecimal notation
I = 49 in ASCII-7 hexadecimal notation
R = 52 in ASCII-7 hexadecimal notation
L 4C in ASCII-7 hexadecimal notation

Hence the hexadecimal ceding for the word GIRL in
ASCII-7 will be:

GIRL

As each character in ASCII-7 requires one byte for
its representation and since there are 4 characters in the
word

Table 4.6.	 Numeric	 And	 Alphtibetk
Chararacters In ASCII-7 Notation
Along With Their Hexadecimal
Equivalent.

Character	 ASCII-7 Cede	 Hexa-
decimal
Equivalent

Zone	 Digit

GIRL, so 4 bytes will be required for this

Co.ipwcr Codes 31

representation.

Example .'.9. Write the binary coding for the word

SKY in ASCII-8. How many bytes are

required for this representation?

Solution

S = 101 10011 in ASCII-8 binary notation

K = 101 01011 in ASCII-8 binary notation

Y = 10111001 in ASCII-8 binary notation

Hence the binary coding for the word SKY in
ASCII-8 will be

10110011 10101011 1ii_i00I
S	 K	 Y

As each character in ASCII-8 requires one h te for

is representation and since iliere are 3 characters in the
vord SKY, so 3 bytes viii be rc'4uIrcd for this
represe citation.

Lxa,vc;ci'e 4.10	 Write the hexadecimal coding for the

word STAR in ASCII-S. How many
bytes	 are	 required	 for	 this
rept e sen talon?

So/coin,,

S = 03 in ASCII-8 hexadecimal notaton

T = 04 in ASCII-S hexadecimal notauon

A = Al in ASCII-8 hexadeemial notation

R B2 in ASCII-8 hexadecimal notatton

-(ence the hexadecimal coding for the word STAR
in ASCII-9 will be

STAR

As each character in ASCII-8 requires one byte for

its representation and since there are 4 characters in the
word STAR. so 4 bytes will be required for this
representation,

COLLATING SEQUENCE

The value of an alphanumeric or alphabetic data

element is usually the name of some objcct. Obviously one

would not like to perform any anthrneijc on such data but

One may like to compare them in order to arrange them in

Some desired sequence. Now, if we conipare the alphabetic

values A and B, which one will be treated as greater by the

computer? For an answer to such questions, it is necessary

to have some assigned ordering among the characters used

by the computer. This ordering is known as the collating
sequence.

Collating sequence may var)' front one computer

system to another depending on the type of computer code

used by a particular computer. To illustrate this, let us

consider the computer codes alread y discussed in this
chapter. Observe from Tables 4.2 and 4.3 that the zone

values of the characters A through 9 decreases in BCD code

from the equivalent of decimal 3 down to 0, while in

EBCDIC, the zone values of the characters A through 9

increases from the equivalent of decimal 12 to 15. This

means that a computer hich uses BCD code fot its internal

representation of characters will Lreat alphabetic characters
(A, B,..., Z) to he greater than numeric chanteters 0, 1

9. On the oilier hand, a computer which uses EBCDIC for

its internal representation of characters w ill treat numeric

characters to be greater than alphabetic character5.
Similarly, observe front Tables 4 .6 and 4.7 that a computer

'.hcch uses ASCII for its internal representation 01

characters will place numbers ahead of letters during a sort

(ascendingi because the number characters ha-,e a zone

value that is less ihan the zone value for letters.

Hosever, hatever may be the type of computer

code used, in most (not all - in BCD 0>9) collating
sequences the following rules are observed

Letters are considered in alph:ilsetcc order

(A'cB<C< ... <Z)

2.	 Digits are considered	 in	 numeric order
(0<1<2< .. <9).

Erarnple 4.11.	 - Suppose a computer uses EBCDIC as

its internal representation of

characters. In which order will this

computer sort the following strings
23, Al, IA?

Soaiion

In EBCDIC, numeric characters are treated to be

greater than alphabetic characters Hence the numeric

characters will be placed after the alphabetic characters. So

the computer will treat the given siring as

A 1<1 A <23

Herce the sorted sequence will be : Al, IA, 23.

Table 4.7. Numeric And Alphabetic
Characters In ASCU-8 Notation
Along With Their Hexadecimal
Equivalent.

Character
	

ASCI-8 Code
	

Hexa-
decimal
Equivalent

0

2
3
4
)
6
7
8
9

A
B
C
D
E

G
1-1

J
K
L
M
N

P
Q
R
S
T
U
V.
W
X
Y
z

Zone

0101
0101
0101
0101
0101
0101
0101
0101
0101
0101

1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
1010
RI fl

1011
1011
loll
1011
loll
1011
1011

1011

loll

1011
1011

Digit

0000
0001
0010
0011
0100
0101
0110
0111
loop
1001

0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

0000
0001
0010
0011
0100
0101
(1110
0111
1000
1001
1010

50
51
52
53
54
55
56
57
58
59

Al
A2
A3
A4
A5
A6
A7
A8
A9
AA
All
AC
AD
AE
AF

110
31
B2
B3
B4
85
86
B?
118
B9
BA

32

Example 4.12.	 Suppose a computer uses ASCII for
its internal representation of
characters. In which order will this
computer sort the following strings
23, Al, IA?

Solution.'

In ASCII, numeric characters are treated to be less
than alphabetic characters. Hence the numeric characters
will be placed before the alphabetic characters. So this
computer will treat the given string as: 23<1A<A1.

Hence the sorted sequence will be :23, IA, Al.

QUEST IONS

1. Define the term 'byte. What is the difference
between a bit and a byte ?

2. Write the 4-bit BCD code for the following
numbers: (a) 25,, (b)	 , (c) 128 1 (d) 10241,

3. Using binary notation, show (h BCD coding for
the following words: (a) BIT (b) BYTE
(c) CODE.

4. Using octal notation, show the BCD coding for
the following words: (a) CO{PUTER (b)
INPUT (c) VIDEO.

5. Why was BCD code extended to EBCDIC?

0 11(1w m.'mv (lIIf,R'r,I r1'r'I.-,'.'

the following codes: "CD, EBCDIC, ASCII-7,
and ASCII-8?

7. Suppose a new computer code is designed that
uses 9 bits. How many different characters are
possible in this code?

8. Why are octal and hexadecimal shortcut
notations used ? Identify the shortcut notations
used for each of these coluputer codes : BCD,
EBCDIC, ASCII-7, and ASCIi-8.

9. Why do we have a packed decimal format? How
does it differ from a zoned decimal format?

Computer Codes 33

10.Using binary notation, write the EBCDIC coding
for the following words (a) SUN (b) MOON
(c) AT, How many bytes are required for each of
these representations ?

11.Using hexadecimal notation, write the EBCDIC
coding for the following words: (a) PROGRAM
(b) OUTPUT (c) BYTE. How many bytes are
required for each of these representations 7

12.Using hexadecimal notauon, write the zoned.
decimal coding • for the following numbers
(a) 1256 (b) +439 (c) -63. Hew niany bytes will
be required for each of these representations 7

13.Using hexadecimal notation, write the packed-
decimal coding for the following numbers
(a) 12915 (b) +9876 (c) 872.
How many bytes will be required for each of
these representations ?

14.List out the stinilarmues and differences betwcn
7-bit and 8-bit ASCII.

I. Using binary notation, write the ASCII-? and
ASCII-8 codes for the following words
(a) DRY (h) Win (c) DAMP.

How many bytes are required for each of these
representations 7

16.Using hexadecimal notation, write the ASCII-?
and ASCII-8 codes for the following words
(a) PRINT (h) TYPE (e) RUB.
How many bytes are required for each of these
representations 7

17.Explain the ncc'iing of the term 	 collating
sequL-mnc(.

18.A computer u.es E13CD!C as its internal
reprmaon of characters. In which order will
this computer .ort the following strings : ABC,
123, 245, ADD!

19.A conipumer uses ASCII. In which omder will this
Coiiputci sort thc following strings : BED. 512,
AD[) 128, BAD?

20.Give the lull form of the following abbreviations
BCD. EBCDIC, ASCII

CHAPTER 5

5. COMPUTER ARITHMETIC

In Chapter 4 you have seen that computers store
numbers, letters, and other characters in coded form that is
related to the binary number system. in this chapter you
will learn why computers usq binary numbers instead of
decimal numbers and how the basic arithmetic ooerations
are performed inside the computer using binary numbers.

WHY BINARY

You might have observed in Chapter 3 that the use
of a smaller base may require more positions to represent a
given value (recall the reason for using octal and
hexadecimal shortcut notations). For example, 9 1 0 =
10012. l-(ere four positions are required instead of one to
represent the decimal number 9 in binary form. In spite of
this fact, almost all computers use binary numbers. So the
obvious question that arises to ones mind is that why do we
go for binary numbers instead of decimal numbers? The
reasons areas follows:

The first and the foremost reason is that
electronic and electrical components, by their
very nature, operate in a binar y mode.
Information is handled in the computer by

cicctronicfelcctrical components such as
transistors, semiconductors, wires, etc. all of
which can only indicate two states or conditions

on(l) or off(0). Transistors are eithe
condncting(1) or nonconducting(0) magnetic
materials are either magnetized(1) or non-
magnea7ed(0) in one direction or in the oppositp
direction a pulse or voltage is present(l) or not
pre-sent(0) in wire. All information is repreentcd
within the computer by the presence or absence
of these various signals. The binary number
system, which has only two digits (0 and 1), is
most suitable and is conveniently used to express
the two possible states. The concept of binary
components is illustrated in Figure 5.1.

2. The second reason is that computer circuits only
have to handle two binary digits rather than ten
decimal digits. The result is that the internal
circuit design of computers is simplified to a
great extent. This ultimately results in less
expensive and more reliable circuits Ioi
computers.

4-A

Example 5.2.

Soluztcn:

BINARY

carry	 11
10011
+1001

11100

Add the binary numbers 10011 and
1001 in both decimal and binary form.

l)ECIMAJ

carry I
19
+9

28

36 Digital Computer Fundamentals

3.	 Finally, the binary system is used because	 system, any sum greater than I rcquircs that a digit be
everything that can be done with a base of 10 can 	 carried over. For instance, 10 plus 10 binary requires the
also be done in binary. How this is achieved has 	 addition of two Is in the second position. Since 1+1 = 0
been discussed below.	 plus a carry-over of I. the sum of 10 + 10 is 100 in binary.

By repeated use of the above rules, any two binary
numbers can be added together by adding two bits at a time.
The exact procedure is illustrated with the examples given
below.

BINARY

	

STATE	 ON (1)	 OFF (0)

Bulb	

-TF

	

Switch	 —O------.-

Circuit
Pulse

Figure 5.1. Examples of devices that work in
binary mode. These devices can only
represent two states - on or off. These
states can represent either a I or a 0 or
a yes or a no.

BINARY ARITHMTIC

In this seqion you will see how the four basic
arithmetic operatiôis are performed inside a computer
using binary numbers. Actually, binary arithmetic is much
simpler to learn because binary system deals with only two
digits - 0 and I. So all binary numbers are made up of only
0's and l's and when arithmetic operations are performed on

	

these numh'rv . !he	 z., alu in Us and is only.

ADDITION

Binary addition is performed in the same manner as
decimal addition. However, since binary system has only
two digits, the addition table for binary arithmetic is very
simple consisting of only four entries. The complete table
for binary addition is as follows:

0+0=0
0+1=1
1+0=1
1 + 1 = 0 plus a carry of ito next higher column

Carry-overs are performed in the same manner as in
deciml arithmetic. Since 1 is the largest digit in the binary

Example 5.!.	 Add the binary numbers 101 and 10 in
both decimal and binary form.

Solution

BINARY DECIMAL
101
	

5
-1-10
	

+2

I'll
	

7

Note that while adding the first and the second
column of the binary example, a carry is generated.

Example 5.3. Add the binary numbers 100111 and
11011 in both decimal and binary
form.

4-B

Computer Arithmetic 37

Solution

	BINARY	 DECIMAL
CARRY	 11111 CARRY I

	

100111	 39

	

+11011	 +27

	

1000010	 66

In this example, we face a new situation (1+1+1)
brought about by the carry-over of 1 in the second column.
This can also be handled using the same four rules for
binary addition. The addition of three l's can be broken up
into two steps. First we add only two l's giving 10
(1+1=10), The third I is now added to this result to obtain
11 (a I sum with a I carry). So we conclude that 1 + 1 + 1 =
I plus a carry of 1 to next higher column.

SUBTRACTION

The principles of decimal subtraction can as well e
applied to subtraction of numbers in other bases. It consists
of two steps, which are repeated for each column of the
numbers. The first step is to determine if it is necessary to
borrow. If the subtrahend (the lower digit) is larger than the
minuend ([lie upper di git), it is necessary to borrow from
the column to the left. It is important to note here that the
value borrowed depends upon the base of the number and is
always the decimal equivalent of the base. Thus, in
decimal, 10 is borrowed; in binary, 2 is borrowed: in octal,
8 is borrowed; in hexadecimal, 16 is borrowed. The second
step is simply to subtract the lower value from the upper
value. The complete table for binary subtraction is as
follows

0-0=0
1-0=1
1-1=0
0- 1 = I with a borrow from the-next column

Observe that the only case in which it is necessar y to
borrow is when I is subtracted from 0. The exact procedure
is illustrated with the examples given below.

Example 5.4	 Subtract 01110. from 10101,

Solution

Borrow 1 12
"t,,0202

10101
—01110

00111

In the first column, 0 is subtracted from 1. No
borrow is required in this case and the result is 1. In the
second column, we have to subtract I from 0. As seen in
the table for binary subtraction, a borrow is necessary to
perform this subtraction. So a I is borrowed from the third
column which becomes 2 in the second column because the
base is 2. A I in the 4s column is equal to 2 in the 2s
column. Now, in the second column, we subtract 1 from 2
giving a result of 1. The borrow performed in the second
column reduces the I in the third column to 0. So in the
third column, once again we have to subtract I from 0 for
which borrow is required. The fourth column contains a 0
and thus has nothing to borrow. Therefore, we have to
borrow from the fifth column. Borrowing I from the fifth
column gives 2 in the fourth column. A I in the 16s column
equals 2 in the 8s column. Now the fourth column has
something to borrow. When I of the 2 in the fourth column
is borrowed, it becomes 2 in the third column. Now, in the
third column, we subtract I from 2 giving a result of I. The
borrow performed in the third column reduces the 1 in the
fifth column to 0 and the 2 in the fourth column to I.
Hence, subtraction of the fourth column is now I from I
giving C) and in the fifth column, subtraction is 0 from 0,
giving 0. Thus the final result of subtraction is 00111 2. The
result may be verified by subtracting I4, (= 01110) from
2I(0101,) which gives 7,(= 001112).

Example 5.5.	 Subtract 0111000, from 1011100..

Solution

BORROW 2
1011100

-0111000

0100100
The result may be verified by subtracting 56,, =

0111000,) from 92 2 (= 1011100,) which gives 36, =
01(X) 1002).

Additive Method of Subtraction.

The direct method of subtraction using the borrow
concept seems to be easiest when people perton'n
subtraction with paper and pencil. However, when
subtraction is imp1cir.nted by means of digital
components, this method s found to be less efficient than
the additive method of subtraction. Ii may sound surprising
that even subtraction is performed using an additive
method. This method of subtraction by an additive
approach is known as comple,nentrs subtraction.

In order to understand complementary subu'acuon, it
is necessary to know what is meant by the complement 'f a

Solution:

Step I

Step 2

Step 3

Result

Complement of 5610
Or 102 1 - 56
Or 99 . 56
=

92
-1-4 3 (complement of 56)

135

.-->1 (add the carry of 1)

=36

38 Digital Computer Fundamentals

number. For a number which has n digits in it. a
complement is defined as the difference between the
number and the base raised to the nth power minus one.
The definition is illustrated with the following examples:

Example 5.6.	 Find the complement of 37.

Solution:

Since the number has 2 digits and the value of base
is 10. co (Base) . I = 102- I = 99

Now 99 - 37 = 62

Thus the complement of 37 , = 62,

Example 5.7.	 Find the complement of 6,

Solution:

Since, the number has I digit and the value of base is
8, so (Base) - I = 8 1 - 1 = 720

Also 6 = 6

No. 7-6,=l=1,

•Thus the complement of 6 =

Example 5.8.	 Find the complement of 101012.

Solution

Since the number has 5 digits and the value of base
is 2,

Sc (Ecc) - I . 2< -

Also 101012=2110

Now 31 10 . 21 10 = 10 10 00 10102

Thus the complement of 10101 2 = 010102.

Observe from Example 5.8 that in case of binary
numbers, it is not necessary to go through the usual process
of obtaining complement. Instead, when dealing with
binary numbers, a quick way to obtain a , numbers
complement is to transform all its Os to l's, and all its l's to
Os. For example, :he complement of 1011010 is 0100101.
Thus circuit for obtaining complement of a number in
binary system can be easily designed at very less expense.

So we have seen how to obtain the complement of a

number. We will now see how subtraction is performed
using the complementary method.

Subtraction by the complementary method involves
the following three steps:

	

Step I :	 Find the complement of the number
you are subtracting (subtrahend):

	

Step 2;	 Add this to the number from which
You are taking away (minuend);

Step 3 ; If there is a carry of I, add it to obtain
the result; if there is no carry,
rccomplement the sum and attach a
negative sign to obtain the result.

To illustrate the procedure, let us first consider few
examples for decimal numbers.

	

Example 5.9.	 Subtract 56	 from 92,	 using
complementary method.

The result may be verified using the method of
normal subtraction: 92 - 56 00 36.

	

Example 5.10.	 Subtract 35	 from 18, using
complementary method-

Solution :

	Step 1:	 Complement of 35 10
= 102 - 1 - 35
= 99 - 35

Computer Arithmetic 39

Step 2:	
^ 6410	 = -172.

18
+&l (complement of 35)

82
Step 3: There is no carry. So recomplemcnt

the sum and attach a negative sign to
Obtain the result.
Result -(99 - 82)

= -17
The result may be verified using the method of

normal subtraction:

18 - 35 = -17

Let us re-work these examples using binary
numbers.

Example -5.11 Subtract 0111000 2 (56) from
10111002 (92) using complementary
method.

Solution

10 11 I 0 0
+ 1 000 111 (complement of 0111000)

10 1000 11

---> 1 (add the carry ofl)

0100100

Result = 0100100, = 362

Verify the result with the results of Example 5,5 and
Example 5.9.

Example 5.12.	 Subtract 100011 2 (35) from 010010;
(18 2) using complementary method.

So/u.'ion:

010010
+0 111 0 0 (complement of 100011)

101110

As there is no carry, so we have to complement the
sum and attach a negative sign to it. Hence

Result= -010001 2 (complement of 101110)

Verify the result with the result of Example 5.10.

	

Example 5.13. 	 Subtract 01110, from 10101 using
complementary method.

Solution

10101
+1 000 1 (complement of 01110)

100110

> 1 (add the carry ofl)

001 11
Result= 001112
Verify the result with 1ie result of E.- ample 5.4.

MULTIPLICATION

Multiplication in the binary system also follows the same
general rules as decimal multiplication. However, learning
the binary multiplication is a trivial task because the table
for binary multiplication is very short, with only four
entries instead of the 100 necessary for decimal
multiplication. The complete table for binary multiplication
is as follows

OxO=C

Ox I '0

lxO=0

	

I xl	 I

The method of binary multiplication is illustrated
with the example given below. It is only necessary to copy
the multiplicand if the digit in the multiplier is 1, and to
copy all Os if the digit in the multiplier is a 0. The ease with
which each step of the operation is performed is apparent.

	

Example 5.14.	 Multiply the binary numbers 1010 and
1001.

	

1010	 Multiplicand

	

xlOOl	 MultipUcr

	

1010	 Partial Product

	

0000	 Partial Product

	

0000	 Partial Product

	

1010	 Partial Product

	

1011010	 Final Product

40 Digital Computer Fundamentals

also simplified to a great extent by using this method of
1011010 FinalProduct	 multiplication.

Note that the multiplicand is simply copied when
multiplier digit is I and when the multiplier digit is 0, the
partial product is only a string of zeros. As in decimal
multiplication, each partial product is shifted one place to
the left from the previous partial product. Finally, all the
partial products obtained in this manner are added
according to the binary addition rules to obtain the final
product.

In actual practice, whenever a 0 appears in the
multiplier, a separate partial product consisting of a string
of zeros need not be generated. Instead, only a left shift will
do. As a result, Example 5.14 may be reduced to

Multiply the binary numbers 1111 and
Ill.

1111
xlii

1111
1111

1111

1101 Clio1

Example 5.15.

Solution

1010
xlOOl

1010
101Oss	 (S = left shift)

1011010

A computer would also follow this procedure in
performing multiplication. The result of this multiplication
may be verified by multiplying I0, (1010 2) by 9 (10012)
which produces a result of 90 (10110102).

It may not be obvious how to handle the addition if
the result of the multiplication gives columns with more
than two Is. They can be handled as paiis or by adjusting
the column to whichwhiu'h th, ''"- .; IUU iJ
Example 5.15.

Additive Method of Multiplication.

Most of the computers perform multiplication
operation by the way of addition only. This can be easily
seen by considering an example, say 4 x S. The rsult for
this multiplication can be determined by evaluating, with
necessary carry overs, 8+8+8+8. That is, the result is
obtained simply by adding the digit 8 four times. Similarly,
the computer performs all multiplication operations in
binary using the additive approach,

This idea of repeated addition may seem to be a
longer way of doing things, but remember that the
computer is well suited to carry out the operations at great
speed. The intemal circuit design of computer systems is

Addition
Handled
As Pairs
(Column 3)

ri 11	 kom
Pobleni

j1
L	 Carry

1	 3' From
Cot 2

0
Add two
Car, i.
to Cot. 4

Addition
Handled
As Single
Carry (Cot 3

ri
From

Sum	 1

I 1
,JProblom

L
Carry
From
Col 2

Carry to Cot 4
Carry to Cot 5

Computer Arithmetic 41

DIVISION
	

5-5=0

	Binary division is, again, very simple. As in the	 Example 5.16.	 Divide 100001 2 by 1102.

	

decimal system (or in any other number system), division 	 Solution
y zero is meaningless. Hence, the complete table f(,-

binary divisin is as follows:

0/1=0 0101	 (Quotient)

1/1=1	 iio)	 100001 	 (Dividend)
110-u	 1

	

The division process is performed in a manner 	 1000	 2similar to decimal division. The rules for binary division
are

I. Start from the left of the dividend.

2. Perform a series of subtractions in which we
divisor is subtracted from the dividend.

3. If subtraction is possible, put a I in the quotient
and subtract the divisor from the corresponding
digits of dividend.

4. If subtraction is not possible (divisor greater than
remainder), record a 0 in the quotient.

5. Bring down the next digit to add to the
remainder digits. Proceed as before in a manner
similar to long division,

The m e thod is illustrated by Example 5.16.

The result may be verified by dividin g 33
(10000I) by 6 (1102) which gives a quotient of 5 (101)
and a remainder of	 (II,).

Additive Method or Division.

Even division operation is performed inside most
computers by the process of addition only. This may again
sound surprising, but it is true. The computer performs the
division operation essentially by repeating the
complementary subtraction method. For example, 35 /,5
may be thought of as:

35 -5 = 30

30 - 5 = 25

25 - 5 = 20

20-5 =

15 -5 = 10

10- 5= 5

110 --3

100	 4

110 --.- 5

1001	 6
110 —7

11	 (Remainder)

1	 Divisor greater than 100, so put 0 in quotient

2	 Add digit from dividend

to group used above

3	 Subtraction possible so put 1 in quotient

4	 Remainder from subtraction

plus digit from dividend

5	 Divisor greater, so put 0 in quotient

6
	

Add digit from dividend to group

7
	

Subtraction possible, so put 1 in quotient

42	 Computer Fundamentals

That is, the divisor is subtracted repeatedly from the
dividend until the result of subtraction becomes less than or
equal to zero. The total number of times subtraction was
performed gives the value of the quotient. In this case, the
value of quotient is 7 because the divisor (5) has been
subtracted 7 Limes from the dividend (35) until the result of
subtraction becomes zero. If the result of last subtraction is
zero then there is no remainder for the division. But, if it is
less than zero, then the last subtraction is igr.ored and the
result of the previous subtraction is taken as the value of the
remainder. In this ease, the last subtraction operation is not
counted for evaluating the value of the quotient. The
process is illustrated below with an example.

Example 5.17.	 Divide 33, by 6,, using the method of
addition.

Solution

33 -6 = 27

27 - 6 = 21

21-6=15

15-6= 9

9-6= 3

3 - 6 = -3

Total number of subtractions = 6. Since the result of
the last subtraction in less than zero, so

Quotient = 6 - I (ignore last subtraction) = 5

Remainder= - (:dt cf picious suDtraction)

Thus, 33 / 6 = 5 with a remainder 3.

Note that it has been assumed here that all the
subtraction operations are carried 01.1 using the
complementary subtraction method (additive method).

Once again, performing division inside a computer
by the way of addition is desirable because the addition and
complementation operations are easily performed in a
computer and usually save the labour and expense of
designing complicated circuits.

We have demonstrated how computer arithmetic is
based on addition. Exactly how this simplifies matter can
only be understood in the context of binary (not in
decimal). The number of individual steps may indeed be

increased because' all computer arithmetic is reduced to
addition, but the computer can carry out binary additions at
such great speed that this is not a disadvantage.

QUESTIONS

I. Why have computers been designed to use the
binary number system ?

2. Add the binary numbers 1011 and 101 in both
decimal and binary form.

3. Add the binary numbers 1010110 and 1011010.

4. Add the binary numbers 10111 and 1011.

5. Find the complement of the following numbers:

a) 495,,	 b) 2912

c) 4,	 d) C,

e)2,	 f)32,

6. Find the complement of the following binary
numbers:

a) 10	 b) 101

c) 101101 d) 011011

C) 001101001110

7. Subtract 0110111, from 11011102.

8. Subtract 010102 from 100002.

9. Subtract 011011, from 110111,.

10.Subtract 25, from 50, using complementary
method,

11.Subtract 25,, from 20, using complementary
method,

12. Subtract 234,, from 588, using complementary
method,

13.Subtract 216,, from 172,, using complementary
method.

14. Subtract	 01010 2	from	 100002	using
complementary method.

Computer Arithmetic 43

15.Subtract	 110111 2	from	 1011102	using
complementary method.

16.Subtract	 011011 2	from	 110111 2	using
complementary method.

17.Subtract 1111 2 from 11002 using complementary
method.

18.Multiply the binary numbers 1100 and 1010.

19.Multiply the binary numbers 01101 and 1001.

20. Multiply the binary numbers 101111 and 111

21. Divide 11001 1 by 1012.

22. Divide 01101] l 2 hy 01112.

23. Briefly explain how multiplication and division
operations are performed within a computer
using additive approach.

24. What is the primary advantage of performing
subtraction by the complementary method in
digital computers

25. Discuss the advantages and disadantagcs of
performing the various arithmetic operations h\
the additive method in a digital computer.

CHAPTER 6

6, BOOLEAN ALGEBRA AND
LOGIC CIRCUITS

In the previous chapters you have seen that
computers normally use binary numbers. In this chapter,
you will learn about an algebra that deals with the binary
number system. This algebra, known as Boolean algebra, is
very useful in designing logic circuits used by the
processors of computer systems. In addition to this, you
will also learn about the elementary logic gates that are
used to build up circuits of different types to perform the
necessary arithmetic operations. These logic gates are the
building blocks of all the circuits in a computer. Finally, in
this chapter, you will also learn how to use Boolean algebra
to design simple logic circuits frequutiy used by the
arithmetic logic unit of almost all computers.

BOOLEAN ALGEBRA

In the mid-1800's. an algebra which simplified the
representation and manipulation of propositional logic was

developed by the English mathematician. George Boole
(1815-1864). It became known as Boolean algebra after its
developer's name. Later, in the year 1938, Claude E.
Shannon, a research assistant in the department of electrical
engineering at the Massachusetts Institute of Technology,
published a thesis entitled, 'A Symbolic Analysis of Relay
and Switching Circuits. In his thesis, he proposed the use
of Boolean algebra in the design of relay switching circuits.
The basic techniques described by Shannon were adopted
almost universally for the design and analysis of switching
circuits. Because of the analogous relationship between the
action of relays and of modem electronic circuits, the same
techniques which were developed for the design of relay
circuits are still being used in the design of modern high-
speed computers.

Boolean algebra provides an economical and
straightforward approach to the design of relay and other

46 Digital Computer J:und(cfl (ala

types of switching circuits. Just as an ordinary algebraic
expression may be simplified by means of the basic
theorems, the expression describing a given switching
circuit network may also be reduced or simplified using
Boolean algebra. Boolean algebra is now being used
extensively in designing the circuitry used in computers. In
short, a knowledge of Boolean algebra is must in the
computing field.

FUNDAMENTAL CONCEPTS OF BOOLEAN
ALGEBRA

Use of Binary digits. In a normal algebraic
expression, a variable can take any numerical
value. For example, in the expression 3A + 713 =
C. we assume that A, B. and C may range
through the entire field of real numbers.

Since Boolean algebra deals with the binary
number system, the variables used in the
Boolean equations may assume only two
possible values (0 and 1). If an equation
describing logical circuitry has several variables,
it is still understood that each of the variables
can assume only the values 0 or I. For example,
in the equation A + B = C, each of the sanables
A, B, and C may have only the values Our 1.

Logical addition. The symbol ' -t ' is used for
logical addition operator. It is also known as
'OR' operator. We can dfin the symbol (OR
operator) by listing all possible combinations of
A and B and the resulting value of C in the
equation A + B = C. It may be noted that since
the variables A and 13 can have only rw
values (0 or 1) so only four (22) combinations of
inputs are possible as shown in Table 6.1. The
resulting output values for each of the four input
combinations arc given in the table. Such a table
is known as a truth table. Thus. Table 6.1 is truth
table for the logical OR operator.

Observe that the result is 0 only when the value
of both the input variables is 0. The result is 1
when any of the input variables is 1. Note that a
result of 1 is also obtained when both the inputs
A and B are 1. This is the reason why the +
symbol does not have the "normal' meaning, but
is a logical addition operator. This concept of
logical addition may be extended to any number
of variables. For example, in the equation A + B
+ C + D = E, even if A, B. C, and D all had the

value of 1, the sum of the values (the result F,)
v.uuld be I only. The equation A + 13 = C is
normally read as "A or B equals C".

Table 6.1.	 Truth Table For Logical OR (+)
Operator.

3. Logical multiplication. The symbol is used for
logical multiplication operator. It is also known
as 'AND operator. We can again define the
symbol (AND operator) by listing all possible
combinations of A and B and the resulting value
of C in the equation A . B C. The truth table
for logical AND operator is shown in Table 6.2.
Observe from the truth table that the result C is
equal to I only when both thc input variables A
and B are I, otherwise it is 0. The equation A . 13
= C is normall y read as A and B equals C".

Table 6.2.	 Truth Table For Logical AND (.)
Operator.

Complementation. The two operations defined so
far (OR and AND) are binary operations because
they define an operation on two variables. The
complementation operation is a unary operation

hich is defined on a single variable.

800leaa 41t'ctra ana Logic Circuits 47

the symbol S., is normall y used for
Complementation operator. It is also known as
NOT Operator. Thus we write A. otcaning take

the complement of A," or (A + B). meaning
"take the complement Of A + B." The
complementation of a variable is the reverse of
its value. Thus, if A = 0 then A = I and if A =
then A = 0. The truth table for locical NOT (-)
operator is shown in Table 6.3. A is read as
complement of A or not of A.

Table 6.3.	 Truth Table For Logical NOT (-)
Operator.

5.	 Operator precede-ice. Dees A + B -C mean (A +
B) C or A + (B . Ci The two generate different
values for A= 1,B=0, and C =0, for then we
have (1 + 0) . B = 0 and I + (0. 0) = 1, which
differ. Hence it is necessary to define operator
precedence in order to correctly evaluate
Boolean expressions. The precedence of Boolean
operators is as follows

I. The expression is scanned from left to right.

2. Expressions enclosed within parentheses are
evaluated first.

3. All complement (NOT) operations are performed
next.

4. All (AND) operations are performed after that.

. Finally all '+' (OR) operations are performed in
the cmi.

So according to this precedence ride, A+ B . C
means A + (B . Q. Similarly for the expression A . B, the
complement of A and B are both evaluated first and the
results arc then ANDed. Again for the expression (A + B),
the expression inside the parenthesis (A + B) is evaluated
first and the result so obtained is then corflplCniet.d

POSTULATES OF BOO1.EAN ALGII3RA

Postulate I

(a)	 A 0 if and onl y if A is not equal to I

(h)	 A = I if and only if A is not equ:il to 0

Postulate 2 =

(a)	 x+0=

(h)	 x.l=x

Po.ctula'e 3 Conmut,ii l ye Law

(a) x+y=y+x

(b) x.y=y.s

Postulate -. .\oiaiive Law

(a) x+(v+i=Li+ NI) +,

(b) x.(y.z)=(x.yi.z

Postulate 5 : Distributive Law

(a) x.(+r)=x .y+x.z

(b) x+y.7=(x+y)+i'

Postulate o

(a) x4=I

(b) x.=0

The postulates listed above are the basic axioms of
the algebraic structure and need no proof. They are used to
prove the theorems of Boolean algebra.

THE PRINCIPLE OF DUALITY

In Boolean algebra, there is a precise duality
between the operators (AND) & ..(OR) and the digits 0 &
I. For instance, let us consider Table 6.4. W ca ll see that
the second row of the table is obtainable form the first row
and vice . versa simply by interchanging '+' with 'd '0
with I'.	 is important property is known as the principle
of duality	 Boolean algebra.

ftc iniplication of this dualit) is that any theorem in
Boolean alcebra has dual obtainable by interchanging '+

48	 Computer Fundamentals

= X. +

= X. (x+

=z,l

with '.' and '0 with '1. Thus if a particular theorem is
proved, its dual theorem automatically holds and need not
be proved separately.

Table 6.4.	 Illustrating The	 Principle	 Of
Duality In Boolean Algebra.

by postulate 6(b)

by postulate 5(a)

by postulate 6(a)

by postulate 2(b)

Column 1
1

Column 2	 Column 3

fowl	 1+1=1 1+0=0+1 = 1 1 0+0=0

Row 	 0.0=00.1=1.0=0	 1.1=1

THEOREMS OF BOOLEAN ALGEBRA

Some of the important theorems of Boolean algebrt
are stated below along with their proof.

Theorem i (Idempotent law)

(a) x + x = x

(b) x . x = x

Proof of (ca)

L.H.S.

=x+x

= R.H.S.

Note that theorem 1(b) is the dual of theorem 1(a)
and that each step of the proof in part (b) is the dual of part
(a). Any dual theorem can be similarly derived from the
proof of its corresponding pair. Hence from now onwards,
the proof of part (a) only will be given. Interested readers
can apply the principle of duality to the various steps of the
proof of part (a) to obtain the proof of part (b) for arty
theorem.

Theorem 2

(a) x + 1 = 1

(b)x . 0 = 0

Proof of (a)

L.H.S.

=x+l

= (x + x).l	 by postulate 2(b)

=(x + x).(x +i') by nniikoe A(\

= x i- xi'	 by postulate 5(b)

= x + 0	 by postulate 6(b)

= x	 by postulate 2(a)

= R.H.S.

= (x+l).

= (x+l).(x+i)

=x+

= x + x. I

=x+x

= R.H.S.

by postulate 2(b)

by postu late 6(a)

by postulate 5(b)

by postulate 3(b)

by postulate 2(b)

by postulate 6(a)

P r o of of (b)

L.H.S.	 Proof of (b) holds by duality.

=	 X
	

Theorem 3 (Absorption law)

= x . x + 0	 by postulate 2(a)	 (a)x+x.y =x

Boolean Algebra and Logic Circuits 49

(b) x (x+y) = x

Proof of (a)

L.H.S.

= x +

= x.l + x.y	 by postulate 2(b)

= x (l+y)	 by postulate 5(3)

= x (Y+ I)	 by postulate -3a)

= x I	 by theorem 2(a)

=	 by postulate 2(b)

= R.H.S.

Proof of (h) holds by duality.

Proof by the method of perfc:r induction. ilic theorems of
Boolean algebra caf i also be prosed by means of truth
tables. In a truth table, boih sides of the relations are
checked to yield identical results for all possible
combinations of variables involved. In principle, it is
possible to enumerate all possible combinations of the
variables involved because Boolean algebra decils with
variables that can have onl y two values. This method of
proving theorems is called cxhaustiA enumeration or
perfect induction.

Table 6.5. Truth Table For Prosing Theorem
3(a) By The %ivthod 01 I'crlect
induction.

Table 6.6 proves Theorem 3(b) by the method of perfect
induction.

Table 6.6. Truth Table For Proving Theorem
3(b) By The Method Of Perfect
tnductjon,

Iheorenn 4 (Involution I.a)

x=x

Proc

Table 6.7 proves this theorem by the
method of perfect induction.

Table 6.7. Truth Table For Proving Theorem
4 By The Method Of Perfect
Induction.

For example, Table 6.5 is a truth tabte lot proving
Theorem 3(a) by the method of perfect induction. Similarly,

Note that- Theorem 4 has no dual since it deals with LISC

NU' operator which is unary operator.

Y

0
1
0

x

0
0
1
1

RR

x	 x+y x(x+y) xy

1	 1	 0	 0
1	 1	 0	 0
o	 0	 0	 0
o	 1	 1

50 Digital Computer Fundamentals

Theorem 5

(a) x	 + y) = x . y

(b)x+.y =x+y

Proof of (a)

Table 6.8 proves this theorem by ihe
method of perfect induction.

Table 6.8. Truth Table for Proving Theorem
5(a) By The Method Of Perfect
Induction.

Theorem 6 (Dc Morgan's law)

a)	 =- . V

(b)T3=i+

Proof of (a)

Table 6.10 proves this theorem by the
method of perfect induction.

Table 6.10. Truth Table For Proving Theorem
6(a) By The Method Of Perfect
Induction.

Proof of (b)
Proof 01(b)

Table 6.9 proves this theorem by the
method of perfect induction.

	

	 Table 6.11 proves this theorem by the
method of perfect induction.

Table 6.9.	 Truth Table For Proving Theorem
3(b) By The Method Of Perfect 	 Table 6.11. Truth Table For Proving Theorem

Induction.

	

	 6(b) By The Method Of Perfect
Induction.

ON

x	
Y I x - Y I

x - Y
I

x	 Y	
I
x

+

0	 0	 0	 1	 1	 1	 1
0	 1	 0	 1	 1	 0	 1
1	 0	 0	 1	 0	 1	 1
1	 1	 1	 0	 0	 0	 0

Theorems 6(a) and 6(b) are imporwnl and very
useful. They are known as Dc Morga n's laws. Thc y can be
extended to n van abies as given below.

- -
XI + X, + Xl + . . + x. = XI . XI . X, .. . X.

The bas ic Boolean ' idcnliLies are summarised in
Table 6.12. h is s uggested that the readers should become
well convcl3am with the identi ties given in !.h is wb le in
order to t: ::e the algebra e£fccuvely.

Table 6. 12. Sum ma ry Of n ~lsic Boolean
Ide nt it ies.

SL.
IDENnTIES DUAL IDENTITIES NO.

-
1. A .. O ., A A ."', A

2. Ai" 1 '" 1 • A . O '" 0

3. ATA . A A . A _ A

4. AT A ,. 1 A. A '" 0

5. A", A

6. A 1" B s B .A A . a _ B . A

7 . (A . B) • C :o A .. (B 1" C) (A . q) . C .. A . (B . C)

B. A . (B .. C) ",A . B 1"A . C A .. B .C", (,.c.. B) . /A .. C)

9. A .. A . B _ A A .(A .. 8) ::; A

10. A . A . B .. A . B :,; . (A .. B) : A . B

11 . !A* B ", A . S !A c .. A .. B
I

BOOL EAN FUNCTIONS

A Boolean function is an . expressIOn formed Y. ith
binary vari ab;es, !.he two binary opera tors OR and AN D ,

5 - A

Boo lean A./ pebra and Logic CircuilS 51

the unary opera tor NOT, parcmhcses and eqUal sign. For a
given ',alue of the variables, Lhe villuc of Lhe function can
be eithe r 0 or I. For example , consider the equa tion

w =x +y .z

Here the variable W is a rll n~ t iun o f X, Y and Z.
Th is is wrillen as W = f(X ,Y Z) and the right hand s ide of
the equation is called an t::tpression. The sym bols X, Y and
Z are re ic rred to as literals of this func ti o n.

The above is an examp le 01 a 13oolc:.1O fu nc tion
represented as an aJ gebraic expression. A Book:an func tion
may also be .represented in the form o f a truth l~h le . The
nu mber of rows in the t.able wi ll be cqu~li to 21"1, where n is
lhe number of literals (bin&ry vari ables) uscd in the
fune·tion. The co mb inatio ns of O's and I's for each row of
this table is easily obtained from the bi nary number.;) by
count ing from 0 to 2n_l . For each row o f the Llble, thcre is
a va lue fo r Ihe func tion equal to either 0 or 1 which is li sted
in se parate co lumn...2.f the lable. Sueh a truth Llblc for the
funn]on W = X + Y . Z is shown in Table 6.13. Observe
tha t (here arc e ight (23) possib le di stinct co ml)inations for
ass i,l.;ning biLS to three variables. The col umn hlbc lc li W is
e ither a 0 or a 1 for each of lhese combinations . T he t:.lbl c
sho ws that out of eigh t, there arc five diffe re nt
combinations fo r which W = 1.

Table 6. 13. Truth Table For T he Boolean
F u ncti on W ;;: X + Y . z

x y Z w

0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

The qucstion now ari ses . is an a lgebraic expr.;ssion
for a given Uoolea n function un ique'? In other words, is il
poSSIble to fi nd twu algebraic express ions that speci fy thr
same llooJeJ, n function? The 3Jlswcr to this qt;est io~ is),(':0..

As a maller o f fJct. the man ipulatiOlI of Boolean al ~e t'l l.l-i ...

I

Example 6.1.

(a)x+.y

(b) x . (+ y)

Simplify the following Boolean
functions to a minimum number of
literals.

52 Digital Computer Fwid.nzils

applied mostly to the problem of finding simpler
expressions [or a givert expression. For example, let us
consider the following two functions

F,	 +iy.z + x.'and

F2 = x +j.z

Table 6.14. Truth Table For The Boolean
Functions:

F =x.y.z +iy.z + XT and

F =x+.z

'Re representation of these two functions in the
form of truth table is shown in Table 6.14. From the table
we find that the function F, is same as the function F, since
both have identical Os and l's for each combination of
values of the three binary variables x, y and z. In
tvo ullLuoiiS of n binary variables are said to be equal if
they have the same value for all possible ,n combinations
of the n literals.

MINIMIZATION OF BOOLEAN FUNCTIONS-

When a Boolean function is implemented with logic
gates (discussed later in this chapter), each literal in the
function designates an input to a gate and each icon is
implemented with a gate. 'thus for a given Boolean
function. the minimization of the number of literals and the
number of terms will result in a circuit with less
equipments. For example, since functions F, and F 2 of Table
6.14 are equal Boolean functions, it is more economical to
irnplcrtcnt. the F 2 form than the F, form because the F 2 form
contains fewer terms. To find simpler circuits, one must
know how to manipulate Boolean functions to obtain equal

and simpler expressions. What constitutes the best form of
Boolean function depends on the particular application.
However, we will give consideration only to the criterion of
equipment minimization which is achieved by literal
minimization.

There are several methods used for minimizing the
number of literals in a Boolean function. However, a
discussion of all these methods is beyond the scope of this
book. Hence here we will consider only the method of
algebraic manipulations. Unfortunately, in this method,
there are no specific rules or guidelines to be followed that
will guarantee the final answer. The only method available
is cut-and-try procedure employing the postulates, the basic
theorems, and any other manipulation method which
becomes familiar with use. The following examples
illustrate this procedure.

(c) x.. z. + Ty.z + x.y

(d)x.y +.z + y.z

(e) (x+y). (-i-z) . (y+z)

Solution:

(a)

K +7.y

= (x+).(x+y)	 by postulate 5(b)

= I .(x+y)	 by postulate 6(a)

= (x+y).1	 by postulate 3(b)

= x+y	 by postulate 2(b)

(b)

x.(r+y)

= X7+ x.y	 by postulate 5(a)

= 0 + x.y	 by postulate 6(b)
5-B

Rooic,n Algebra and Logic Circuits 53

= x.y + 0	 by postulate 3(a)

= x.y	 by postulate 2(a)

(c)

x.7.z + x.y.z + x.y

x.z.(y+y) + x.y	 b postulate 5(a)

=x.z.(y+) + x.3	 by postulate 3(a)

=i2.i + X.Y	 by postulate 6(a)

+ x.y	 by postulate 2(b)

(d)

x.y + •iz + y.z

= x.y +iz + y.z.l	 by postulate 2(b)

= x.y +i.z + y.z.(x+)
by postulate 6(a)

= x.y +x.z + y.z.x + y.z.x
by postulate 5(a)

= x.y +x.z + X.y2-fX.y.z

by postulate 3(b)

x.y.1 +x.z + x.v.z +x.v.z
by postulate 2(h)

= x.y.l + x.yi +xz +x.y.z
by postulate 3(a)

x.y.(1+z) +
by postulate 5(a)

= x.y.(z+l) +.z.(y+l)
b y postulate 3(a)

= x.y.1 +.z. I	 by theorem 2(a)

= x.y +i.z	 by postulate 2(b)

(e)

(x+y)

(x+y) . (+z)	 by L1:aiity from (d).

Note that in the Example 6.1, funtinns (a) and (h)

are the dual of each other and use dual expressions in
corresponding minimization steps. Function c) shows the
equality	 of	 the	 functions	 F,	 and	 F.	 of
Table 6.14. Function (d) illustrates the fact that an in
in the number of literals sometimes leads to a final simpler
expression. Ohser.'c that function (e) is the dual of function
(d). Hence it is not minimized directly and can be easily
derived from the dual of the steps used to derive function
(d).

COMPLEMENT OF A FUNCTION

The complement of a function F is Fand is obtained
by interchanging 0's for l's and l's for U's in the truth table
that defines the function. For example Table 6.15 defines
the function F x. + .z and its complement F.

Table 6.15. Truth Table For The Function F =
+.z And its Complement F.

F

0

C
oLLtiUL

Algebraically, the complement of a function ma y be
derived through Dc Morgan's theorems whose generalized
forms are as follows:

-
A.A2.AAI+A+A++

These theorems state that the complement of a
function is obtained by interchanging the OR and the AND
operators and complementing each literal. The method is
illustrated below through an example.

Fzwiipie 0.2.	 rind the complement of the following
lunctionS
(a) F, =x.y.z +—X.—Y./

(b) F2 = x . (-y -j' + y.z)

54 Digital Computer Fundamcrocil.

Solution
	 CANONICAL F)RMS FOR BOOLEAN FUNCTIONS

Applying Dc Morgan's theorems as many Limes as	 Minterms and Maxterrn.s. A binary variable may appear
necessary, the complements are obtained as follows: 	 either in its normal form (x) or in Its complement form (i).

Now consider two binary variables x and y combined with
an AND operation. Since each variable may appear in

(a)	 either form, there are four possible combinations

F, = yz+x .y
=
=	 (++)
= (x+V+z) (x+y+)

(b)

-	 =x.(.z+y.z
+ i+ y.z)

=.;+)-)
=.+	 +)
= + (y+z).(+'

A simpler procedure for deriving the complement of
a function is to take the dual of the function and then
complement each literal. This method follows from the
generalized De Morgan's theorems. Remember that the dual
of a function is obtained by interchanging OR and AND
operators and 0's and l's. The method is illustrated below
with the help of an example.

Eiample 6.3. Find the complement of the function-
F, and F2 of Example 6.2. by taking
their dual and complementing each
literal.

Solution:

(a)

F = x.y.z + x.y.z

The dual of F is: (i-i-y+).(+3+z)

Complementing each literal we get

F, = (x+5+z).(x+y+)

(h)

F2 = x (z+ y.z)

The dual of F, is: x

Complementing each literal we get

F,

x.y, x.y, x.y, x.y

Each of these four AND terms is called a ,ninterm or a
standard product.

In a similar manner, n variables can be combined to
form 2n minterms. The 2" different minterms may be
determined by a method similar to the one shown in Table
6.16 below for three variables. The binary numbers from 0
to 2n - 1 are listed under the n variables. Each minterm is
obtained from an AND term of the n variables, with each
variable being primed if the corresponding bit of the binary
number is and unprimed if a I.

Table 616, Minterms And Maxterms For
Three Variables,

VARIABLES I MINTERMS I MAXTERMS

X Y Z J TERM	 TERM DESIG-
NATION

o	 o	 0	 iii.	 ma,	 X4yZ	 Mo

G	 0	 1	 mi,	 Mi

o	 1	 0	 iy.	 m.	 xy+z	 M2
1)	 1 I 1	 rrp,	 x+y-Pz	 M3

1	 0	 0	 X.yy.	m4,

1	 0	 1	 x.7.z.	 ms,	 X+y+Z	 pj5

1	 '1	 0	 x.y'.	 X+Y+Z	 Me

I	 1	 1	 x.y.z.	 m7,

A symbol for each minrerm is also shown in the table and is
of the form m,, where j denotes the decimal equivalent of
the binary number of the minterm designated.

In a similar fashion, ii variables formiig an OR
term, with each variable being primed or uriprimed, provide
2" possible combinations called tna.xterms or standard
sums.

The eight ma'uerms for three variables, together

l3ooicor. Algebra and Logic Circuits 55

with their symbolic designation, are listed in Table 6.16.
Any 21, maxterms for n variables may be determined
similarly. Each nlasten-n is obtained from an OR term of
the n variables, with each variable being unprimed if the
corresponding bit is and primed if it is a 1

Note that each maxterm is the complement of its
corresponding minterm and vice-versa.

Sum-of-Products

A sum-of-products expression is a product term
(minterm) or several product terms (minterms) logically
added (ORed) together.

For example, the expression x +i.y is a sum-of-
products expression. The following are all sum-of-products
expressions:

x

x+y

x + y.z

x.y + z.

x.y + x.y.z

The following Steps are followed to express a
Boolean function in its sum-of-products form

I. Construct a truth table for the given Boolean
function.

2 Form a m;nterm for each combination of the
variables which produces a 1 in the function.

3. The desired expression is the sum (OR) of all the
minterms obtained jr,Step 2.

For example, in case of function F 1 of Table 6.17,
tie following three combinations of the variables produce a

001,100 and Ill

Th eir corresponding minterms are

x.y.z, x.y.z and x.yz

Hence, taking the sum (OR) of all these minterms, the
function F, can be expressed in its sum-of-products form as:

	

F,	 =i.z -	 V. 1,

or
F1 =m+m-i-m

Similarly, it may be easil y verified that the function E of
Table 6.17 can be expressed in its sum-of-products form as:

F1 =i.y.z + x..z 4- X . V . Z + x v.z
or

F1 = m, + m, + m + m.

Table 6.17. Truth Table For Functions F 1 And
F2.

	

o	 o	 0	 0	 0

	

o	 0	 1	 1	 0

	

o	 1	 0	 0	 0

	

o	 1	 1	 0	 1

	

1	 0	 C	 1	 0

	

1	 0	 1	 0	 1

	

1	 1	 0	 0	 1

	

1	 1	 1	 1	 1

It is sometimes convenient to exprcss a Boolean
function in its sum-of-products form. If not in this loon, it
can be made so by first expanding the expression into a sum
of AND terms, Each term is then inspected to see if it
contains all the variables. If it misses one or more variables,
it is ANDed with an expression of the form (x-+-'), where x
is one of the missing vaniah!es. The following example
clarifies this procedure.

Example 6.4.	 Express the Boolean function F = A +
RC	 in	 the	 sum-of-minterins
(products) form,

Solution

The function has three variables A, B and C. The
first term A is missing two variables, therefore;

A	 =A(B+B)=A,B+A.

Sb	 Computer Fundamentals

This is still missing one variable, so
A	 A.B.(C+C) + A.B.(C+C)

= A.B.0 + A.B.C+ A.B.0 + A.0

The second term B.0 is tnising one variable, therefore

(= B.C.(A+A)

= A.B.0 4 A.B.0

So by rrnbining all the terms we get

= A.B.0 + A.B.0 + A.B.0 + A.0 + A.B.0
A.B.0

But in the above e x pression, theterm ARC appears twice
and according to theorem 1(a) we have x+x = x. Hence it is
possible to remove one of the them. Rearranging the
rnlrtcrms in ascending order, we finall y obtain

F	 A.B.0 + A.0 + A.B.0 + A.B.C+ A.B.0
=M 1 + M4 + m 5 + m + ni

It is sometimes Convenient 10 express the Boolean
function, when in its sum-of-ininterms, in the following
short notation:

F(A,BC)	 =(l,4,(,7,

The summation symbol stands for the ORing of
terms. The numbers following it are the minierms of the
function. And finally, the letter -- in parentheses with F form
a list of the variables in the order taken when the mintcrm is
converted to an AND term.

Product-of-Sums

A product-ofsunis expression is a sum term
(maxterm) or sevcril sum tcrols i ma.sterms) logically
multiplied ..\Nr)cd) tog-,:the.. Re example, the expression

a product of sums expression. The Following
are all Product-of-sums expressions:

x

(x+y)

(x47). (x+v) .

(x+y).(+y+z)

The following steps are followed to express a
Boolean function in its product-of-sums form:

1. Construct a truth table for the given Boolean
function.

2. Form a maxtel-ni for each combination of the
variables which produce a 0 in the function.

3. The desired expression is the product (AND) of
all the maxterms obtained in step 2.

For example in case of function F of Table 6.17, the
following five combinations of the variables produce a 0:
000,010,011,101. and 110

Their corresponding maxterms are:

(x+y+z). (x^77+z), (x47.), (+v -), and +y+z)

Hence, taking the product (AND) of all these maxierms, the
function F can be expressed in its product-of-sums form as:

F
or

F, =N1Q.M.M3.M.M,

Similarly, it may be easily vcr:f,cd that the function
F. of Table 6.17 can be expressed in its product-of-sums
form as

F: =(x+Y+z).(x+y).(+'+z).(+y+z)
or

F, =M.M.M.M,

In order to express a Boolean function in its product-
of-sunis form, it must first be hrouhm into a forni of OR
terms. This may be done by using the distributive law

x + y.i. = (x+y).(x+z)

Then any missing variable (say x) in each OR term
is ORed with the form x. This procedure is clarified by
the following example

Example 6.5.	 Express the Boolean function

F =x.y+i.z
in the prod uct-of-maxterms (sums) form.

Solution:

At first we ce'.vert the function into OR terms using

Boolean Algebra and Logic Circuits 57

the distributive law:

F = x.y +x.z
= (x.y+).(x.y+z)
= (x+i.(y+).(x+z).(y+z)
= (-i.y).(x+z).(y-i-z)

The function has three variables x, y and z. Each OR
term is missing one variable, therefore:

i+y = 'is-y + z= (+y+z).(4-y+)

x+z = x+z + v.y= (x4-z+y).(x+z+y)

y+z = x.+ y+z (x+y+z).(+y+z)

Combining all the terms and removing those that appear
more than once, we finally obtain

F =(x+y+z).(x+) 4-z).(+y+z).(+y+z)

= M. M. - M' . M,

A covenient way to express this function is as follows:

F (x,y.z) = IT (0,2,4.5)

The product symbolItdenotes the ANDing of
maxterms. The numbers following it are the maxterms of
the function.

The sum-of-products and the product-of-sums form
of Boolean expressions are known as standard forms. One
prime reason for liking the sum-of-products or the product-
of-sums expressions is their straightforward conversion to
very nice gating networks which are more desirable from
most implementation points of view. In their purest, nicest
form they go into two-level networks, which are network-s
for which the longest path through which the signal must
pass from input to output is two gates.

CONVERSION BETWEEN CANONICAL FORMS

The complement of a function expressed as the sum-
of-minterms equals the sum-of-mintcnns missing from the
original function. This is because the original function is
expressed by those minterms that make the function equal
to 1, while its complement is a 1 for those minterms for
which the function is a 0. For example, the function

F(A,B,C)	 =Zo.4.5,6.7
= m 1 + rn, + m 5 -f m -+- m,

has a complement that can be
expressed as:

F(A,B,C)	 =(0,2,3)
= m0 + m + m,

Now, if we take the complement of F, by Dc Morgan's
theorem we obtain F hack in a different form

F =m.+m+m,
= m. in2 . m,
= M. M 2 . M,
=IT(023)

The last conversion follows Iroro the definition of
minicrms and maxterms as shown in Table 6.16. From the
table, it is clear that the following relation holds truc

= M,

That is, the maxtcrm with subscript j is a
complement of the mintcrm with the same subscript j, and
vice versa.

The last example has demonstrated the conversion
between a function expressed a stlrn-Ol-mifltCrlT)s and its
equivalent in product-of-maxtcrms. A similar argument will
show that the conversion between the product-of-maxterms
and the sum-of-mintcrrns is similar. We now state a general
conversion procedure:

To convert from one canonical form to another,
interchange the symbol and list those numbers missing
from the original form --

For example, the function

F(x,y.z)	 =Tl'0245)
is expressed in the product-of-mastenns fomi. Its
conversion to sum-of-niinterrns is

F(x,y,z)	 =(13,6,7)

Note that in order to Find the missing terms, one
must realize that the total number of minterms or maxterms
is always 2n, where n is the number of binarN , variables in
the function.

LOGIC GATES

All operations within a computer are carried out by
means of combinations of signals passing through standard
blocks of built-in circuits that are kr,e'vn as logic gates. In
other words, a logic g ite is simply an cl'rrertrt. cirealt

V ii,Jtr1i/ (i, flpurcr Fundamentals

hich OpC rates on one or it 'Ii: input s zrta	 to prod UCC

..troLrtl .rriLplJL signak. 1'hee l ogic gales ar'
lice ITICUIts in a computer.

(' incputcr Ct(jits are built up none combinations of
(!dfcrcnt types of logic gales to perform the necessary
operation. There we several type of gates, but we shall
consider here only some Of the roost important ones. These
are sufficient to introduce the concept of circuit design
using logic gates.

AND GATE

An AND gate is the physical reali,amion of the
logical multiplication (AND) operaliun. That is, it is an
electronic Circuit that generates an output Signal of I only it
all input signals are also I

To have a conceptual idea, lit us ConsidLi mc case
of Ftiur 6.1 lcrc two svicbcs A and B are connected in
series. It is obvious that the. input current will JTaLII the
output point only when both the switches are in the on(I)
state. There will be no output (output	 if either one or
both the s; itches arc in the ohith) suite. So. 	 o or more
s itches connected in series behave as an AND gate.

Input	 A	 B

C	

In
 Output

Fgur 6.1

	

	 Two or toe s itches connected in
series bchaee as an AND gate.

The behaviour of a logic gate, that is the state of its
output signal depending on the various combinations of
input signals, is conveniently described by means of a truth
table. The truth table and the block dia g ram s y mbol for an
AND gate for two input signals are shown in Figure 6.2.
Since there are onl y wo !npuis (A & B), so only four (22)
combinations ofinputs ire possible Also observe from the
truth table that an output of I is ohiained only when both
the inputs are ill 1 state utherwise it 5 0.

OR GATE

An OR gate is the phvsiLal realization of the logical
addition (OR) operation. That is, it is an electronic circuit

th 'gencrjçan output signal of I if ariy of the input signals
is also ..

Tw or more switches connected in parallel behave
as an OR gate. It can be seen from Figure 6.3. that the input
current will reach the output point when any one of the two
switches are in the on(l) state. There will be no output only
when both the switches (A & B) are in the off(0) state.

he truth table and the block diagram symbol for an
OR gate for two input signals are shown in Figure 6.4.
Observe that an output of I is obtained when any of the
input signals is 1. Output is only when both the inputs are
(-I.

: IIIIII1II,—_----_o C = A B

INPUTS	 OUTPUT1

A	 B	 C=AB

o	 o	 a
o	 1	 0
1	 0	 0
1	 1	 1

Figure 6.2.	 Block diagram symbol' table
for an AND gate.

oXo

Input	 outpul

Figure 6.3. Two or more switches connected in
parallel behave as an OR gate.

Boolean Algebra and Logic Circuits 59

A ^^

B	
C A - B Ag

Bo	 -	 p
C o	D=A•BC

INPUTS	 II OUTPUT

A	 I	 B	 ii C=AiB

o	 o	 0
o	 1	 1
1	 0	 1
1	 1	 1

Figure 6.4.	 Block diagram symbol and with table
for an OR gate.

Just as the + and operations cou]d be ostended to
several variables using the associative law. AND gates and
OR gates can have more than two inputs. Figure 6.5 shows
three input AND and OR gates and the table of all input

corribiitations for each. As roichi be hoped, the output of the

AND gate with inputs A, B, and C is a 1 onl y if A and B
and C arc 1, i.e. when all three of the inputs are 1. so that

we write Lite output as A.B.C. Similarl y , the OR gate with
inputs A. B. and C has a I output if A or B or C is a I, so
that we can write A+B+Q for its output

Flit' above argum.nt can be extended. A tour-input
ANt) ,catc has a i output only when all four inputs are 1,

and a four-input OR gate has a I output when any of its
inputs is a I.

NOT GATE

A NOT gate is the physical realization of the

complementation operation. That is, it is an electronic

circuit that generates an output signal which is the reverse

of the input signal. A NOT gate is also known as an
inverter because it invcr1s the input.

The truth table and the block diagram symbo l fci a
NOT gate are shown in Figure 6.6. iccail that the

complementation operation is unary operation which is

defined on a single variable. Hence a NOT gate always has

a single input. Figure 6.6 shows also that connecting tv,o

NOT gates in series gives an output equal to the input, and
this is the gating,,sounterpart to the law of the double
complenientatjon A = A.

INPUTS	 j OUTPUT

A	 B	 cJ	 0
Ho	 0	 0	 0

o	 o	 1	 0
o	 1	 0	 0
o	 1	 1	 0
1	 0	 0	 0
1	 0	 1	 0
1	 1	 0	 0
1	 1	 1	 1

Bo—
CD—	 D=AB- C

INPUTS	 OUTPUT

A	 B	 C	 D

0	 0	 0	 0
0	 0	 1	 1
o	 i	 °1	 1
0	 1	 1	 1
1	 0	 0	 1
1	 0	 1	 1
1	 1	 0	 1
1	 1	 1	 1

Figure 6.5.	 Three input AND and OR-gates.

A	 B

o

710o

C = A+ B

60 Digital Computer Fundamentals

A	 A

NAND GATE

A NAND gate is a complemented AND gate. That
is, the output of NAND gate will be a 1 if any one of the
inputs is a 0 and will beaU only when all the inputs are I.

The truth table and the block diagram symbol for a
NAND gate are shown in Figure 6.7. The symbol 1 is

usually used to represent a NAND. operation in boolean

expressions. Thu.c. AB = A.B A-4-B.

The operation of a NAND gate can be analysed
using the equivalent block diagram circuit shown in Figure
6.8, which has an AND gate followed by a NOT gate. For
inputs A and B, the output of the AND gate will be A.B

which is fed as input to the NOT gate. So the complement

of A.B will be which is equal to A+B or AIB. In fact,
small circle ott the output of the NAND gate (see Figure
6.7) represents complementation. The NAND gate can then
be seen to be an AND gate followed by a NOT gate.

—G = - B At B

Figure 6.6.	 (a) Block diagram symbol and truth
table for a NOT gate.

(h) Two NOT gates in series.
Figure 6.8. NAND gate realization with an AND

gate and a NOT gate.

C
At B	 = - t- Multiple-input NAND gates can be analysed

 similarly. A ihrcc-input NANDwith inps B, and
C will have an output equal to A.B.0 or A + B + C, which
says that the output will be a 1 if any of the inputs is a 0 and

will he a 0 only when all three inputs are I.

INPUTS	 11 OUTPUT
NOR GATE

A NOR gate is a complemented OR gate. That is,
the output of a NOR gate will be a I only when all inputs
are 0 and it will be a 0 if any input represents a I.

The truth table and the block diagram symbol fo a
NOR gate are shown in Figure 6.9. The symbol 't-' is

usually used to represent aNOR operation in Boolean
expressions. Thus. AJ,.B = A+--B = ;U-

The operation of a NOR gate can he analysed using

the equivalent block diagram circuit shown in Figure 6.10,
which has an OR gate followed by a NOT gate. For inputs

A and B, the output of the OR gate will be A + B which is

Figure 6.7.	 Block diagram symbol and truth table 	 fed as input to the NOT gate. So the complement of Ai-B

for a NAND gate.	 will be A+B which is equal to A.B or A4 B. In fact, the

Boolean A1'c1'ra and Logic Circu:ic 61

small circle on the output of the NOR cate (scc Figure 6.9)
represents complementation. The NOR gate can then be
seen to be an OR gale followed by a NOT gaic.

A	
C=AA -B=AB

INPUTS	 11 OUTPUT

A	 I	 a	 Ii C=AB

00

	 1
o	 i	 o
1	 0	 0
1	 1	 0

Figure 6.9.	 Block diagram symbol and truth table
for a NOR gate.

Multiple input NOR gates can be anal y sed similarly.
A three-input NOR gale with input.sA. B. and C will have
an output equal to A + B + C or AP.C. which says that the
output will be a I only when all the three inputs are 0 and it
will be a 0 1 wy of the three inputs is a 1.

Solution

Input A is fed to the NOT pie whose output will be A.

Inputs B and C are fed to the OR gate whose output will be
B + C.

Now tnese two outputs (A and B + C) are fed as input to the
AND gate. So the output produced by the AND gate will be
A . (B + C)

	

Hence	 D=AjB +C)
which is the required Bo lcan expression for the output of
the given logic Hrcuit

Example 6.7. Find the logic equation for the output
produced by the logic circuit given
below.

A , 9 = A = A 4 B

Figure 6.10. NOR gate realization with an OR gate
and a NOT gate.

LOGIC CIRCUITS

The logic gates described in the previous section are
seldom used by themselves but are used in combinations.
They are interconnected to form gating, or logic, networks
which are known as combinational logic ciciiiLc. For these
logic Circuits, the Boolean algebra expression can be
derived by systematically progressing from input to output
on the gates. Few examples are given below-

Example 6.6. Find the Boolean expression for the
output of the logic circuit given
below.

I L.,
Solution:

The output of the OR gate is

A+B ----------(a)

The output of the first AND gate is

A.B(b)

•----

A

H

C

E

Solozinn

U

B

62 Digital Computer Fundamentals

Since the expression (b) is fed as input to the NOT gate. So
the output of the NOT gale is

(c)

Now Cxprcsssins (a) and (c) are fed as input to the second
AND gate. Sc) its output will be

(A +B).(A .13)

Hence C = (A+B.(A.B) which is the desired logic equation
for the output produced by the given logic Circuit.

Ex:nple 6. Find the Boolean expression for the
output of the logic circuit given
below.

The inputs to the AND gate at point 5 are (A+B), C, and I).
Hence at point 5, the output of the AND gate is

(A-t-B).C.D---- (e)

Finally, the inputs to the OR gate at point 6 are (d) and (e).
Hence at point 6, the output of the OR gate is

(A+B).C.D. + (A+B).C.D.

So E = (A+B).C.D. + (A+B).C.D

which is the required Boolean expression for the output of
the given logic circuit.

CONVERTING EXPRESSIONS TO LOGIC
CIRCUITS

We have just now considered few examples that
illustrate the method of deriving Boolean expression for a
given logic circuit. The reverse problem of constructing a
logic circuit for a given Boolean expression is also not
difficult. The three logic gates - AND, OR, and NOT are
said to be logically complete because any Boolean
expression may be realized using only these three gates.
The method of constructing logic circuits for Boolean
expressions using only these three gates is illustrated below
with the help of some examples.

Example 6.9.	 Construct a logic Circuit for the
Boolcan expression A.B + C.

At point the output of the OR gate is

A+13 ----------(a)

At point 2, the output of the NOT gate is

------------- (b)

At point 3, the output of the NOT gate is

D ------------(c)

The inputs to the AND gate at point 4 are (A-i-13, C. and D
Hence at point 4, the output of the AND gate is

(A+13).C.D ---- (d)

-c

The desired logic circuit is shown above which is self
explanatory.

Example 6.10.	 Construct a logic circuit for the
Boolean expression AT + C.D + E.F

Lsfl. .'tcwl 'Igebra and Logic Circuits 63

Solution
	

Soltaio"

AB - C

I. 'ii ii' 0

The desired logic circuit is shown above which is
ir explanatory.

Example 6.11.	 Construct a logic circuit for the
Boolean expression (x+y).(x-i-z).(y+z)

Solution

x

Y

I. ' :i (y

z

The desired logic circuit is shown above which is
self explanatory.

THE UNIVERSAL NAND GATE

We have seen that AND. OR, and NOT gates are
logically complete in the sense that any Booleaji function
may be realized using these three gates. However, the
NAND gate, which was introdued in the previous section,
is said to be universal gate because it is alone sufficient to
implement any Boolean function.

Example 6.12.	 Construct a logic circuit or the
Boolean expression
(x+y+z).(x+),Cx+)

The desired logic circuit is shown above which is self
explanatory.

To show that any Boolean function can be
implemented with the sole use of NAND gates, we need
only show that the logical operations AND, OR, and NOT
can be implemented with NAND gates. This is shown in
Figure 6.11 below.

) Not ge

(C AN' gate

:	

= A B

(c) OR gate o'p'r1et..w'

Figure6.11. Implementation of NOT. AND, and
OR gates by NAND gates.

A NOT operou s obtained from a one-Input
NAND gate. Thus we find that a single-input NAND gate
behaves as an inverter.

The AND operation iequffcs two NAND gates. The
first one produces the inverted AND and the second one

64 Digital Computer Fundamentals

being a single input NAND gate, uCIS as an inverter to
obtain the normal AND output.

For the OR operation, the normal inputs A and B are
fast complemented using two single input NAND gates.
Now the complemented variables are fed as input to another
NAND gate which produces the normal ORed output.

The implementation of Boolean functions with
NAND gates may be obtained by means of a simple block
diagram manipulation technique. The method requires that
two other logic diagrams be drawn prior to obtaining the
N AND logic diagram. The following steps are to be carried
out in Sequence

are remocd since they tarot double, inversion which has no
mcanute The iuvcnter conhILCad to input A is rumoved and
the iiiU1 sanahlc is clhanved front A to A. The result is the
NANI) 1.a'C :l:au':im SflOW!1 in Figure 6.12(c), with the
nur:her insiJc ca. ii NAND gate identifying the gate from

This example demonstrates that the number of
NAND gates required to implement the Boolean function is
equal to the number of ANDjOR gates, provided both the
normal and complement inputs are available. Otherwise
inverters must be used to generate any required
complemented inputs.

Step I:	 From the given algebraic expression, 	 A
draw the logic diagram with AND. 	 B

OR, and NOT gates. Assume that both
the normal (A) and complement (A)
inputs are available.

Step 2: Draw a second logic diagram with the
equivalent NAND logic substituted
for each AND, OR, and NOT gate.

Step 3:	 Remove any two cascaded inverters
from the diagram	 inCc double
inversion does not perform any
logical	 function.	 Also	 remove
inverters connected to single external
inputs and aouiplement the
coiresporidi r.g Input variable. The
new logic dtagram so obtained is the
required NAND gate implementation
of the Boolean function.

B
0

A

C

(a) AND/OR implementation.

.J3. Cr.-tc: Irtr rhe
Boolean expression A.B + C.(A+B.D)
using only NAND gates.

Solution

The AND/OR implementation for the given Boolean
expression is drawn in Figure 6.12(a). Now each AND gate
is substituted by a NAND gate followed by an inverter and
each OR gate is substituted by two input inverters followed
by a NAJND gate. Thus each AND gate is substituted by
two NAND gates and each OR gate i substituted by three
NAND gates. The logic diagram so üb T at:ed is shown in
Figure 6.12(b). Note that Figure has seven inverters
single input NAND gates) and live two-intutt .NAND

gates. Each two-input NAND gate has a number inside the
gate symbol for identification purpose. Pairs of inverters
connected in cascade (from each AND box to each OR box)

AtAj

A K

LL
C	 IA a

(b) Substituting equivalent NAND functions.

IA . !) . CO. co)

A

B

B

D

A

C
ci
Dl.
B—

Aff

Boolean Algebra and Logic Circuits 65

A-BC- (AB.Dt

(c) NAND implementation.

Figure 6.12. Step-by-step NAND implementation
for the Boolean expression of 	 (h) Substituting equivalent NAND functions.
Example 6.13.

Example 6.14. Construct a logic circuit for the
Boolean expression (A1E).(B+C.D)
using only NAND gates

Solution

Thc AND/OR implementation for the given Boolean
expression is drawn in Figure 6.13(a). Now the NAND
equivalent of each AND and each OR gate is substituted
resulting in Figure 6.13(b). Note that Figure 6.13(b) has six
inverters (single input NAND gates) and four two-input
NAND gates. One pair of cascaded inversers ma y be
removed. Also the three external inputs A. 13, and E. which
go directl y to inverters, are mp!emente.d and the
corresponding inverters :tic removed. The final NAND gate
implementation so obtained is shown in Figure 6.13(c). The
number inside each NAND gate of Figure 6.13(e)
corresponds to the NAND gate of Figure 6.13(b) having the
same number.

A

E

C
0

B

(a) AND/OR mmpk'meniation.

A
E

C

D

B

(c) NAND imnplcmeniaiion.

Figure 6.13. Step-by-step NAND implementation
icr the Boolean expression of
Example 6.14.

For this example, the number of NAND gates
required is equal to the number of AND/OR gates plus an
additional inverter at the output (NAND gate number 5). In
general, We number of NAND gates required to implement
a Boolean function equals the number of AND/OR gates,
except for an occassional inverter. This is true only when
both normal and complemented inputs are available
because the conversion forces certain input variables to be
complemented.

THE UNIVERSAL NOR GATE

The NOR function is the dual of the NAND
function. For this reason, all procedures and rules for NOR
logic form a dual of the corresponding procedures and rules

C

A

B

0

AO + C (A B Di

66	 Computer Fundamentals

developed from NAND logic. Like the NAND gate, the
NOR gate is also universal because it is alone sufficient to
implement any Boolean function.

To show that any Boolean function can be
implemented with the sole use of NOR gates, we need only
show that the logical operations AND, OR, and NOT can be
implemented with NOR gates. This is shown in Figure 6.14
below.

The NOT operation is obtained from a one-input NOR gale.
Thus, a single input NOR gate is yet another inverter
circuit.

AAA—A
A

(a) Not gate implementation

A+D

(b) OR gate implementation

Figure 6.14. Implementation of NOT. OR and
AND gates by NOR gates.

Ilie OR operation requires two INUt(gates. inc ILrSL
one produces the inverted OR and the second one being a
single input NOT gate, acts as an inverter to obtain the
normal OR output.

The AND operation is achieved through a NOR gate
with additional inverters in each input.

Similar to the NAND logic diagram, the
impleiiicntation of Boolean functions with NOR gates may
be obtained by carrying out rIte following steps in sequence

Step 2: Draw a second logic diagram with
equivalent NOR logic substituted for
each AND. OR. and NOT gate.

Step 3: Remove any two cascaded inverters
from the diagram since double
inversion does not perform any
logical	 function.	 Also	 remove
inverters connected to single external
inputs and complement the
corresponding input variable. The
new logic diagram so obtained is the
required NAND gate implementation
of the given Boolean function.

	

Example 6.15.	 Construct a logic diagram for the
Boolean expression AT + C.(A+B.D)
using only NOR gates.

Solution:

The AND/OR implementation for the given Boolean
expression is shown in Figure 6.15(a). Now each OR gate is
substituted by a NOR gate followed by an inverter and each
AND gate is substituted by two input inverters followed by
a NOR gate. Thus each OR gate is substituted by two NOR
gates and each ANT) gate is substituted by three NOR gates.
The logic diagram so obtained is shown in Figure 6.15(b).
Note that Figure 6.15(b) has eight inverters (single input
NOR gates) and five two-input NOR gates. One pair of
cascaded inverters (from the OR box to the AND box) may
he removed. Also the five external inputs A, B, B, D and C,
which go directly to inverters, are complemented and the
corresponding inverters are removed.

Step 1.	 For thc given alchraic expression,
c'iraw the [ugi(; thagi	 v ah AND,
OR and NOT gates. Assume that both
the normal A) and complement (A)
inputs are available. 	 (a) AND/OR implementation.

L_ J

(b) Substituting equivalent NOR functions.

Boo/eon Algebra and Lotc Circuits 67

The final NOR gate implementation so obtained is
shown in Figure 6.15(c). The number inside each NOR gate
of Figure 6.15(c) corresponds to the OR gate of Figure
6.15(b) having the same number.

The number of NOR gates in this example equals
the number of AND/OR gates plus an additional inverter in
the output (NOR gate number 6). In general, the number of
NOR gates required to implement a Boolean function
equals the number of AND/OR gates, except for an
occasional inverter. This is true only if both normal and
complement inputs are available because the conversion
forces certain input variables to be Complemented.

Combinational circuits are more frequently
constructed with NAND or NOR gates than with AND, OR
and NOT gates. NAND and NOR gates are more popular
than the AND and OR gates because NAND and NOR
gates are easily constructed with transistor circuits and
Boolean functions can be easily implemented with them.
Moreover, NAND and NOR gates are superior to AND and
OR gates from the hardware point of view, as they supply
outputs that maintain the signal value without lossof
amplitude. OR and AND gates sometimes need amplitude
restoration after the signal travels through a few levels of
gates.

EXCLUSIVE-OR AND EQUIVALENCE FUNCTIONS

A
B

B

D

&

C

(c) NOR implcmentation

Exclusive-or and equivalence, denoted by ® and Q
respectively, are binary operations that perform the
following Boolean functions:

AB=A.+XB

A 0 B = A.B +

The truth table and the block diagram symbol for the
exclusive-or and the equivalence operations are shown in
Figure 6.16 and Figure 6.17 respectively. Observe that the
two operations are the complement of each other. Each is
commutative and associative. Because of these two
properties, a function of three or more variables can be
expressed without parentheses as follows:

(A 0 B) (DC =A® (B C)

= A® B C

The exclusive-or and equivalence operations have
many excellent characteristics as candidates for logic gatesFigure 6.15. Step-by-step NOR implementation for 	 but are expensive to construct with physica, components.

the Boalean expression of Example 	 They are available as standard logic gates in IC packages

6 A	
6.15,	

but are usually constructed internally with other standard
-

C

68 Digital Computer Fundamentals

gates. For example, Figure 6.18(a) shows the
implementation of a two-input exclusive-or [unction with
AND, OR and NOT gates. Figure 6.18(b) shows its
implementation with NAND gates.

A

Only a limited number of Boolcan functions can be
esprcsscd exclusively in terms of exclusive-or or
equivalence operations. Nevertheless, these functions
emerge quite often during the design of digital systems. The
two functions are particularly useful in arithmetic
operations and error detection and correction.

C A.	 A

A
or

:^
(DC=ABA.8A.E3

INPUTS

o	 0
o	 1
1	 0
1	 1

Figure 6.16. Block diagram symbol and uuth table
for an EXCLUSIVE-OR opera Lion.

-
AB+A•B

B

OUTPUT

C=AB

0	
A

I
0

B

(a) lirplcmcrnation with AND/OR/NOT gates.

-	 cAGB z k8 .

() lrnplcmcntation with NAND gates.

Figure 618. Logic diagrams of EXCLUSI\E-OR
function.

DESIGN OF COMBINATIONAL CIRCUITS

The design of combinational ciruuit.s starts from the
verbal outline of the problem and ends in a logic circuit
diagram.

The procedure involves the following steps:

I. State the given problem completely and exactly.
6-B

INPUTS

A	 B	 C=A®B

o	 0	 1
o	 .1	 0
1	 0	 0
1	 1

Figure 6.17. Block diagram symbol and uutli table
for an EQUIVALENCE operation.

Ron/eon Algebra and Logic Circuits 69

	2. interpret die probern and dtcnntne the	 The simplified Boolean !'unctions for the two

	

available input variables and requtrcd output	 outputs, directly obtained fortn the truth table, are
variables

3. Assign a letter symbol to each input and output
variables,

4. Design the truth table that defires the required
relations between mputs and cutpuie.

5. Obtain the simplified Boolean function for each
output.

6. Draw the logic circuit diagram to implement the
Boolean function.

To iLlustrate the design procedure, we will design
adder circuits because addition is the most basic antlimeiic
operation for any computir rystem.

Addition in binary system can be summarized by the
following four rules

0 + 0 = 0

0+1 =

1+0=1

I + 1 = 10

The first three operations proouce a Sun whose
length is one digit, but when both augend and addend bits
are equal to 1, the binary sum consists of two digits. The
higher significant bit of this result is called a carry. When
the augend and addend numbers contain more significant
digits, the carry obtained frorri the addioon of iwo bits is
added to the next higher order pair of sigrmiicant bits. A
combinational circuit that performs the addion of two bits
is called a half-adder. One that performs the addition of
three bits (two significant bits and previous carry) is called
a full-adder. The name of the former stems from the fact
ihct two half-adders can tr employed to implement a full-
adder.

DESIGN OF HALF-ADDER

S = A.B + AT

C = A.B

The logic circuit diagram Lo implement this is shown
in Figure 6.20.

INPUTS	 OUTPUTS

A	 B	 C 1	 S

o	 o	 0	 0
o	 1	 0	 1
1	 0	 0	 1
1	 1	 1	 0

Figure 6.19. Truth table for a hail-adder.

-	 +

From the definition of a half-adder, we find that this
circuit needs two binary inputs and two binary outputs. The
input vaables designate the augenil and addend hits
whereas the output variables produce the sum and carry
bus. Let A and 13 be the two inputs and S (for sum) and C
(for carry) be the tan outputs. The truth table of Figure 6.19
exactly defines the function of the half-adder. 	 Figure 6.20. Logic circuit diagram for a half-adder.

70 Digital Computer Fundamentals

The. half-adder is limited in the sense that it can add
only two single bits, Although it generates a carry for the
next higher pair of significant bits, it cannot accept a carry
generated from the previous pair of lower significant bits. A
full-adder solves this problem.

DESIGN OF FULL-ADDER

A full-adder forms the arithmetic sum of three input
bits. Thus it consists of three inputs and two outputs. Two
of the input variables (A and B) represent the augend and
the addend bits and the third input variable (D) represents
the carry from the previous lower significant position. Two
outputs are necessary because the .um of three binary digits
ranges in value from () to 3, and binary 2 and 3 need two

igis. These two outputs are designated by the symbols S
(for sum) and C (for carry). The truth-table of Figure 6.21
exactly defines the function of full-adder. The Is and Os
for the output variables are determined from the arithmetic
sum of the three input variables. When all input variables
are 0, the output is for bothC and S. The S output is equal
to I wnen only one input is equal to I or when all three
inputs are equal to 1. The C output is 1 if two or three
inputs are equal to 1.

INPUTS	 H OUTPUTS

A	 I	 B	 I	 D	 11	 C	 I	 S

o	 I	 I	 'I	
'

o	 0	 1	 0	 1
o	 1	 0	 0	 1
o	 1	 1	 1	 0
1	 00	 0	 1
1	 0	 1	 1	 0
1	 1	 0	 1	 0
1	 1	 1	 1	 1

Figure 6.21, Truth table for a full-adder.

The sum-of-products expressions for the two outputs
an be directly obtained from the truth table and is given

below:

S =A.B.D +A.Bi) + A.D + A.B.D

C = A.B.D + AB.D + A.BJ) + A.B.D
Although the expression for S cannot be simplified, it is
possible to simplify the expression for C as follows

C = A.B.D + AJ3.D + A.B.D+ A.B.D

= A.B.D + A.D + A.BD + A,B.D A.B.D +
A.B.D (since x + x = x)

= (A.B.D + A.B.D)-i-(A.B.D + A.B.D)+(A.13J) +
A.B. D)

= (A+A)B.D + (B+B).A.D +(D+D).A.B

= B.D + A.D + AM (Since x + x= 1)

A.B + A.D + B.D

Hence, finally we obtain the following expressions for the
two Outputs:

S =AM.D + A.B.D+ A.13.D+ AOl)

C =A.B+A.D+B.D
The logic circuit diagram to implemert this is shown in
Figure 6.22.

A full-adder can also be implemented with two half-
adder and one OR gate as shown in Figure 6.23.

The S niiinht fton :h	 cd haif-auner is Lhe exclusive-or
cf I) and the Output of the first halt-adder givin

S = (A.13+ A.II).D + (XB + A.H).J

(7B + AJ).D + X.B.D + A.13.13

(7; + IT).(A + 13).D + 7;.1L13 +

= (A+ff).(A+13) t) i- A.l3. + AM.!)

= (A.A + All + A.B + 135).D + A.B.D i A.D

(A.B + AJI).D -.B.D + AB.D

= A.B.D + A.1D + .B D+ A13.5

AJ3.D+ A.B.D

C

A
B
D

A
B
0

A
B
b

A
B
0

A
B

A
D

B
D

Boo/can Algebra and Logic Circuits 71

A PARALLEL BINARY ADDPR

Parallel binary adders are used to add two binary
numbers. For example, if we want to add two four-bit
numocrs, we need to construct a parallel four-bit binary
adder as shown in Figure 6.24. Such an adder require.s one
half-adder (denoted by HA) and three full-adders (denoted

s

	

	 by FA). The binary number3 being added are A, A, A, A,
and B, B, B, B and the answer is

A, A, A, A
+B, B, B, B,

S i S, 5,5, S.

fA,	 A,	 A

FA	 FA	 HA

Figure 6,24. A parallel four-bit binary adder.

The first column requires only a half-adder. For any
column above the first, there may be a carry from the
preceding column, Therefore, we must use a full-adder for
each celumn above the first.Figure 6.22. Logic Circuit diagram for a full-adder.

AB
A-	

(A Bl DD 	 CHA	 fiHA

AeBG D
Figuic 6,23, Implementation of full-adder with two

half-adders and one OR gate.

And we have the carry output

C =(A.B+AD+A.B	 -
= .B.D + A.aD + A.B.(D + D)

A,B.D + A.B.D + A.B.D + A.B.D

Thi s can be simplified as before to

C =A.B+A.D+B.D

To illustrate how the adder of Figure 6.24 works, let
us see how it will add two numbers say 9 and 11. The
binary equivalent of decimal 9 is 1001, and that of decimal
ills 1011. Figure 6.25 shows the binary adder with these
inputs.

Figure 6.25. Example of adding two four-bit
numbers using a parallel adder.

72 Digital Computer Fundamentals

As shown in the figure, the half-adder adds 1+1 to
give a um of 0 and a carry i. The carry goes into the rsi
full-adder, which adds 0 + I + I to get a sum of 0 and a
carry of 1. This carry goes into the next full-adder, which
adds 0 + 0 + I to get a sum of I and a carry of 0. Tbe last
full-adder adds I + I + 0 to get a sum of 0 and a carry of 1.
The final output of the system is 10100. The decimal
equivalent of binary 10100 is 20 wrtich is the correct
decimal sum of 9 and Ii.

The parallel binary adder of Figure 6.24 has limited
capacity. The largest binary numbers that can be added
using it are 1111 and 1111, So. its maximum capacity is

	

15	 1111

	

+ 15	 1-	 1111

	

30	 11111)
In order to increase the capacity, more full-adders

can be connected to the left end of the system. For instance,
to add six hit numbers, two more full-adders must be
connected and for adding eight bit numbers, four more full-
adders must be connected to the left end of the full-adder of
Figure 6.24.

QUESTIONS

(a) A.B +A.B -
(b) A.B.0 + B.0
(c)A+B -
(d) A + B
(e)AB.0 - -
(1) AEC + A.B.0 -
(g) (A+B).(A+C).(B+C)
(h) KC +7.7

5. State arid prove the two basic Dc Morgans
theorems.

6. Prove the following rules by the method of
perfect induction.

(a) AB+ A.B= A
(b)A +A.B A+B
(c)A.(A+CjA -
(d) (A+B).(A.BJ,
(e) (A.4-B).(A+B) = A.B +.B

7. Simplify the following Boolean expressions and
draw logic ci:cuit diagrams for your simplified
expressions using AND, OR and NOT gates

(a) x.y.r + x.y.z + X7Y.z + x.y.z
(biy.z +x'i+ x.y.z + x.y
(c) A.0 + A.B -. A.B.0 + B.0
(d)A.B.0 + ' .B,C + AB.0 + A.B.0 ± A.0
(e) (A+B'4-C) . (A+B+C) . (A+B+C). (A+B+C)
(I) (ABC) . (A.B.0 + A.B.0 +.B.C)

8. Find the complement of the following
expressions

(a) A.B + A.0
(b) A.B + A.B
(c) (A+B) . (B+C. IA+C)
(d) A . (B.C+ BC)
(e)A.(+C)
(f)A.(B+C).(C+D)	 -
(g) A.B + .B) . (B.0 + BC)

9 Fxnn qC 1)'c fells':, n Buuiean functions in thei
sum-of-products form. Ensure thT each term ha
all the literals.

(a) A.(B+C)
(b) (A+B).(B±C)
(c) (A.B).(A.B.C+A.C)
(d) (A+C).(A+13+C).(A+B)
(e) (A+B).0
(I) (-4-C).(A.B + A.0 + BC)

10. Express the following Boolean functions in the
product-of-sums form. Ensure that each term h
all the literals.
(3) K+ BT
(b) A.B + C
(c) A! B + C
(d) (A.B).(A.0 + BC)
(c) (A.B).+C)
(1) A + A.B +.0

1. Explain the principle of duality in Boolean
algebra. How is it useful?

2. Give the dual of the following Boolean
expressions
(a) A +_6
(b) A+B+C
(c' A.B . A P

(d) A+B
(e) A.(A+B)
(f)4-A.B

3. Give the dual of the rule
A + 7.2 = A + B

4. Prepare a truth table for the following Boolean
expressions:

Boolean A1geb and Logic Circuits 73

A
B

A
8

C
D

C

(e)

11. What will be the outputs of the following logic
circuits for u'e specified inputs?

A

B

(a)

A

B

(b)

A

C

A

B

C
D

B

D

(c)

A

B

A

C

B

F-
(d)

12, Construct logic circuit diagrams for the
following Boolean expressions using
AND/OR/NOT gates:
(a) A.B + A.B
(b) (A+).(A.B).	 -
(c) (&+B).(A+C).(B+C)
(d) A.B + ('X.B).(B.0 4 BC)
(c) (A±B).(A+C).A+ff)

13. 'AND, OR and NOT gates are logically
complete.' Discuss.

14.Why are NAND and NOR gates called Universal
gates?

15.Show the implementation of the logical
operations AND, OR and NOT only with NAND
gales and only with NOR gates.

16.Construct logic circuit diagrams for the Boolean
expressions of Question 12 using only NAND
gales.

17.Construct logic circuif diagrams for the Boelea.u.
expressions of Question 12 using only NOR
gates.

18.Construct logic circuit diagram for a half-adder
using only NAND gates.

19.Consrict logic circuit diagram for a half-adder
using only NOR gates.

20 Why are combinational circuits more frequently
constructed with NAND or NOR gates than with
AND. OR and NOT gales?

21. Prove that
(a) (AB)GC= 4G(BC)
(b) (AOl3) = AO(BOC)

74	 Computer Fundamentals

22. Construct a logic circuit diagram for the
exclusive-or function using only NOR gates.

23. Construct a logic circuit diagram for the
equivalence function using only NAND gales,

24. A logic circuit has three inputs A, B and C. It
generates an output of I only when A = 0.3 = 1,
C=OorA=I,B=1.C=0. Design a
combinational circuit for this system,

25.A logic circuit has three inputs A, B and C. It
generates an output of I only under the
following conditions:
A=0, R=0, C=0
A=0, 13=1, C=l
A=l, B=0, C=1
A=1, B=I, C=1

Design a combinational circuit for this system.

26. Design a gating network which will have outputs
O only when A=0,B=O,C=O;A= 1,B=0,C
=0 A=l,B=1,C=0. The outputs are tobel
for all other cases.

27. A three bit message is to be transmitted with an
odd parity. An odd parity generator generates a
parity bit (say P) so as to make the total number
of l's odd (including P). That is, P 1 only when
the number of l's in the input siring is even.
Design a combinational logic circuit for such a
parity generator.

28. Design a combinational logic circuit to generate
an even parity for hexadecimal digits.

CHAPTER 7

7, PRIMARY STORAGE

This chapter introduces the basic fundamentals re-
lated to the primary storage or the main memory of a
computer system. In this chapter, you will learn about stor-
age locations and addresses, how to determine the capacity
of storage units, the difference between fixed and variable
word-length storage organizations, and several other terms
related to the main memory of a computer system.

Any storage unit of a computer system is ranked
according to the following criteria:

Access time. This is the time required to locate
and retrieve stored data from the storage unit in
response to a program instruction. A fast access
time is preferred.

2. Storage capacity. It is the amount of data that
can be stored in the storage unit. -A large capac-
ity is desired.

3. Cost per bit of storage. An obvious goal is to
minimize this cost.

Based on the above mentioned criteria, Storage units
are basically of two types - primary and secondary. As

compared to secondary storage units, primary storage units
have faster access time, smaller storage capacity, and
higher cost per bit of storage. In this chapter, we will be
concentrating only on the cLncepts of primary storage. We
shall learn about different types of secondary storage
devices in the next chapter.

STORAGE LOCATIONS AND ADDRESSES

A primary or internal storage section is basic to all
computers. It is made up of several small storage areas
called locations or cells. Each of these locations can store a
fixed number of bits called word length of that particular
primary storage. Thus, as shown in Figure 7.1, a given
memory is divided into N words, where N generally is
some power of 2. Each word or location has a built-in and
unique number assigned to it. This number is called the
address of the location and is used to identify the location.
Each location can hold either a data item or an instruction,
and its address remains the same regardless of its contents.
The addresses normally start at 0 and the highest address
equals the number of words that can be stored in the
memory	 minus	 I.

