
CHAPTER 11

11. PLANNING THE COMPUTER
PROGRAM

In Chapter 10, computer programs have been
described as the software of the computer system. We are
now at the point in the system life cycle where programs
are to be written. But before writing a computer program,
one must be clear about the processing steps to be
performed by the computer. Thus, to produce an effective
computer program, one must first plan the logic (the
various steps) of the program. If one attempts to plan the
logic approach and write the program at the same time, he
will likely become so involved with the required instruction
formats that program logic will suffer. Hence, before we
learn how to write a program (next chapter), we will first
learn how to plan the logic of a computer program in this
chapter

PURPOSE OF PROGRAM PLANNING

Suppose you am asked by your teacher to solve an

arithmetic problem and you are not familiar with the steps
involved in solving that problem. In such a situation, you
will not be able to solve the problem. The same principle
applies to writing computer programs also. A programmer
cannot write the instructions to be followed by a computer
unless the programmer knows how to solve the problem
manually.

Suppose you know the steps to be followed for
solving the given problem but while solving the problem,
you forget to apply some of the steps or you apply the
calculation steps in the wrong sequence. Obviously, you
will get a wrong answer. Similarly, while writing a
computer program, if the programmer leaves out some of
the instructions for the computer or writes the fhtructions
in the wrong sequence, then the computer will calculate a
wrong answer. Thus, to produce an effective computr
program, it is necessary that the programmer writes each

118	 Computer Fundamentals

and every instruction in the proper sequence. However, the
instruction sequence (logic) of a computer program can be
very complex. Hence, in order to ensure that the program
instructions are appropriate for the problem and are in the
correct sequence, programs must be planned before they are
written.

ALGORITHM

The term algorithm may be formaliy defined as a
sequence of instructions designed in such a way that if the
instructions are executed in the specified sequence, the
desired results will be obtained. The instructions, however,
should be precise and unambiguous and the result should be
obtained after a finite number of executional steps. The
latter condition actually states that an algorithm must
terminate and should not repeat one or more instructions
infinitely. In other words, the algorithm represents the logic
of the processing to be performed. However, in order to
qualify as an algorithm, a sequence of instructions must
possess the following characteristics:

1. Each and every instruction should be precise and
unambiguous.

2. Each instruction should be such that it can be
performed in a finite time.

3. One or mote instructions should not be repeated
infinitely. This ensures that the algorithm will
ultimately terminate.

4. After performing the instructions, that is after the
algorithm terminates, the desired results must be
obtained.

	

ai	 cgh :c a!gorih!s. 1't tic consider a
simple example.

Example 71.1. There are 50 students in a class who
appeared in their final examination.
Their marksheets have been given to
you. Write an algorithm to calculate and
print the total number of students who
passed in first division.

Algorithm:

Step 1: Initialize TOTAL FIRST DIVISION
and TOTAL MARK SHEETS
CHECKED to zero.

	

Step 2:	 Take the marksheet uf the next
studenL

Step 3: Check the division column of the
markslicct to see if it is I: if no, go to
step 5.

Step 4:	 Add 1 t TOTAL FIRST DIVISION.

Step 5:	 Add 1 to TOTAL MARKSI-1EETS
CHECKED.

Step 6:	 is	 TOTAL	 MARKS HEETS
CHECKED 50: if no, go to step 2.

Step 7:	 Print TOTAL FIRST DIVISION.

Step 8:	 Stop.

It must be clear to the readers from this example that
even for very simple problems, the development of
algorithms is not so simple as it might initially appear and
requires some thinking. It may also be noted from the given
example that in order to solve a given problem, each and
every instruction must be strictly carried out in a particular
sequence. It is this tact which a beginner to problem
solving by computers finds difficult to appreciate.

There are various ways in which an algorithm can be
expressed. When an algorithm is expressed in a
programming language, it becomes a program. Thus, any
program is an algorithm although the reverse is not true.
Besides represented as programs, algorithms are often
expressed in the form of flowcharts which is discussed
below,

FLOWCHARTS

A flowchart is a pictorial representation of an
algorithm that uses boxes of different shapes to denote
different types of instructions. The actual instructions are
written within these boxes using clear and concise
statements. These boxes are connected by solid lines having
arrow marks to indicate the flow of operation, that is, the
exact sequence in which the instructions are to be executed.

Normally, an algorithm is first represented in the
form of a flowchart and the flowchart is then expressed in
some programming language to prepare a computer
program. The main advantage of this two step approach in
program writing is that while drawing a flowchart one is
not concerned with the details of the elements of
programming language. Hence, he can fully concentrate on
the logic of the procedure. Moreover, since a flowchart
shows the how of operations in pictorial form, any error in
the logic of the procedure can be detected more easily than
in the case of a program. Once the flowchart is ready, the

Planning The Cam pwer J'rogrwn 119

programmer can forget about the logic and can concentrate
only on coding the Operations in each box of the flowchart
in terms of the statemcnts of the programming language.
This will normally ensure an error-free program,

A flowchart, therefore, is a picture of the logic to be
included in the computer program. It is simply a method of
assisting the programmer to lay out, in a visual, two-
dimensional format, ideas on how to organise a sequence of
Steps necessary to solve a problem by a computer. It is
basically the plan to be followed when the program is
written. It acts like a road map for a programmer and guides
him how to go from the starting point to the final point
while writing a computer program.

Experienced programmers sometimes write
programs without. drawing the flowchart. However, for a
beginner it is recommended that a flowchart be drawn first
in order to reduce the number of errors and omissions in the
program. Moreover, it is a good practice to have a
flowchart along with a computer program because a
flowchart is very helpful during the testing of the program
as woll as while incorporating further modifications in the
program.

FLOWCHART SYMBOLS

We have seen that a flowchart uses boxes of
different shapes to denote different types of instructions.
The communication of program logic through fl owcharts is
made easier through the use of symbols that have
standardized meanings. For example, a diamond always
means a decision. Only a few symbols are needed to
indicate the necessary operations in a flowchart. These
symbols have been standardised by the American National
Standards Institute (ANSI). These symbols are shown in
Figure 11.1 and their functions are discussed below.

Terminal. The terminal symbol, as the name implies,
is used to indicate the beginning (START), ending (STOP),
and pauses (HALT) in the program logic flow. It is the first
symbol and the last symbol in the program logic. In
addition, if the program logic calls lor a pause in the
program, that also is indicated with a terminal symbol. A
pause is normally used in the program logic under some
error conditions or if forms had to be changed in the
computer's line printer during the processing of that
program.

InpwlOwput. The input/output symbol is used to
denote any function of an input/output device in the
program. If there is a program instruction to input data from
a disk, tape, card reader, terminal, or any other type of input
device, that step will be indicated in the flowchart wiiii an

input/output symbol. Similarly, all output instructions,
whether it is output on a printer, magnetic tape, magnetic
disk, terminal screen, or any Output device, are indicated in
the flowchart with an input/output symbol.

Processing. A processing symbol is used in a
flowchart to represent arithmetic and data movement
instructions. Thus, all arithmetic processes of adding,
subtracting, multiplying and dividing arc shown by a
processing symbol. The logical process of moving data
from one location of the main memory to another is also
denoted by this symbol. When more than one arithmetic
and data movement instructions are to be executed
consecutively, they are normally placed in the same
processing box and they art- assumed to be executed in the
order of their appearance.

ziJ

	

TERMINAL	 INPUT/0J1-pUT

1

	

PROCESSING	 FLOWLINES

	

DECSION	 CONNECTORS

Figure 11.1. Various flowchart symbols.

Flowlines. Flowlines with arrowheads are used to
indicate the flow of operation, tha' is, the exact sequence in
which the instructions are to be executed. The normal flow
of flowchart is from top to bottom and left to right.
Arrowheads are required only when the normal top to
bottom flow is not to be followed. However, as a good
practice and in order to avoid ambiguity, flowlines are
usually drawn with an arrowhead at the point of entr y to a

120 Digital Computer Fundamentals

symbol. Good practice also dictates that flowlines should
not cross each other and that such intersections should be
avoided whenever possible.

Decision. The decision symbol is used in a flowchart
to indicate a point at which a decision has to be made and a
branch to one of two or more alternative points is possible.
Figure 11.2 shows three different ways in which a decision
symbol can be used. It may be noted from these examples
that the criterion for making the decision should be
indicated clearly within the decision box. Moreover, the
condition upon which each of the possible exit paths will be
executed should be identified and all the possible paths
should be accounted for. During execution, the appropriate
path is followed depending upon the result of the decision.

(a)Two-way branch

COMPARE >

A=B

(b)Three-way branch

)	 1	 2	 3	 4	 5	 other

(C) Multiple-way branch

Figure 11.2. Examples of decision symbols.

Connector. If a flowchart becomes very long, the
flowlines start criss-crossing at many places that causes
confusion and reduces understandability of the flowchart.
Moreover, there are instances when a flowchart becomes
too long to lit in a single page and the use of flowlines
becomes impossible. Thus, whenever a flowchart becomes
complex enough that the number and direction of tiowlines
is confusing or it spreads over more than one page, it is
useful to utilize the connector symbol as a substitute for
flowlines. This symbol represents an entry from, or an exit
to another part of the flowchart. A connector symbol is
represented by a circle and a letter or digit is placed within
the circle to indicate the link. A pair of identically labeled
connector symbols is commonly used to indicate a
continued flow when the use of a line is confusing. So two
connectors with identical labels serve the same function as
a long flowline. That is, they show an exit to some other
chart section, or they indicate an entry fom another part of
the chart. How is it possible to determine if a connector is
used as an entry or an exit point? It is very simple: if an
arrow enters but does not leave a connector, it is an exit
point and program control is transferred to the identically
labeled connector that does have an outlet. It may be noted
that connectors do not represent any operation and their use
in a flowchart is only for the sake of convenience and
clarity.

SAMPLE FLOWCHARTS

A tlowchart should be drawn using the symbols
mentioned above. To describe an algorithm in the form of a
flowchart is not very difficult. What is required is some
common sense and a little practice. The art of flowcharting
is introduced below with the help of some simple examples.

l'rmn1e 11.2. A student appears in an examination
that consists of total 10 subjects, eacn
subject having maximum marks of 100.
The roll number of the student, his
name, and the marks obtained by him in
various ' subjects is supplied as input
data. Such a collection of related data
items that. is treated as a unit is known
as a record. Draw a flowchart for the
algorithm to calculate the percentage
marks obtained by the student in this
examinaiion and then to print it along
with his roll number and name.

Solution:
The flowchart for the algorithm of this problem is

shown in Figure 11.3. The first symbol is a terminal labeled
START. It shows that this is the starting point or beginning
of our flowchart logic. It does not mean that the computer is

Planning The Computer Program 121

to be turned on or that anyone is to press a start button. The
second symbol is an 110 symbol that is labeled specifically
to show that this step is READ INPUT DATA. This Step
will input the roll number, name, and the marks obtained by
the student from an input device into the main storage of
the computer system. The third symbol is a processing
symbol which is suitably labeled to indicate that at this
step, the computer will add the marks obtained by the
student in various subjects and then store the sum in a
memory location which has been given the name TOTAL.
The fourth symbol is again a processing symbol. The label
inside it clearly indicates that the percentage marks
obtained by the student is calculated at this stage by
dividing TOTAL by 10 and the result is stored in a memory
Location which has been given the name PERCENTAGE.
The fifth symbol is an 110 symbol and is labeled WRITE
OUTPUT DATA. This logical

START

READ
INPUT
DATA

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

PERCENTAGE
= OTALJ1O

WRITE
OUTPUT
DATA

STOP

Figure 11.3. Flowchart for Example 11.2.

step in the flowchart indicates that the data desired as
output will be outputted on the line printer. Note that details

such as the roll number, name, and the marks or percentage
being inputted or outputted or the specific positions being
used are not a part of the logical steps of inputting or
outputting. This information already appears in the system
design documents and wil be included in the computer
program as input and output descriptions. The sixth symbol
is a terminal symbol labeled STOP. This symbol indicates
the conclusion of our logic - that is, the conclus i on of the
computer program. The various symbols used in the
flowchart are connected by directed fiowliries to indicate
the sequence in 'vhich the inslructions are to be executed.

The logic depicted in Figure 11.3 there-tore, will
read the students's record, calculate the percentage marks
obtained by him, print one line, and then stop. One would
certainly not like to use a computer to solve a trivial
problem such as this. flowe'er, if we have to compute the
percentage marks obtained by several students in the snrne
examination then we may like to Lake the help of a
computer. The next example illustrates how to do this.

Example 11,3. 50 students of a class appear in the
examination of Example 11.2. Draw a
flowchart for the algorithm to calculate
and print the percentage mnrks obtained
by each student along with his roll
number and name.

Solution

Since all the students have appeared in the some
examination, so the process of calculation and printing the
percentage marks obtained by each student will basically
remain the same. The same process of reading the input
data, adding the marks of all subjects, calculating the
percentage, and then wciiing the output data has to be
repeated for all the 50 students. Hence, an easy solution that
comes to ones mind for this problem is to repeat the
intermediate four symbols of Figure 11.3 fifty times.
However if that is done, a total of 202 (50 x 4 + 2)
flowchart symbols will have to be drawn. Obviously this
will be a very time consuming and tedious job and hence is
not desirable. We will now see how to solve this problem in
a simpler way.

In a situation where the same logical steps can be
repeated, the flowline symbols are used in a flowchart to
indicate the repetitive nature of thç logic in the form of a

process loop. Figure 11.4 illustrates a flowchart with a
process loop. Note the arrowhead on the flowline that forms
the loop. It points upward indicating that as soon as the
WRITE operation is over the control will flow back to the
READ operation. Thus, the process loop of Figure 11.4

122 Digital Computer Fundamentals

solves the problem of an exceedingly long flowchart by.
reusing the same logical steps over and over again.
However, the flowchart of Figure 11.4 is incomplete
because the process loop has introduced a new problem.
The proces.; loop shown does not has a logical ending. It
will continue to attempt to repeat those four steps until
someone manually cancels the job. This is an example of art
infinite loop vnd hence the flowchart of Figure 11.4 does
not represent in algorithm because an algorithm must
terminate. So we have to Find out a way of terminating the
algorithm. This is done by the use of a decision symbol.

START

READ
INPUT
DATA

ADD. MARKS OF
ALL SUBJECTS
GIVING TOTAL

variable COUNT has been introduced which is inidaii7ed to
zero outside the process loop and is incremented

START

COUNT = 0

READ
INPUT
DATA

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

PERCENTAGE
TOTAL/i0

WRITE
PERCENTAGF
	

OUTPUT
= TOTAL/la
	

DATA

ADD 1 TO
WRITE	 COUNT
OUTPUT
DATA

is
LINT - 50

Figure 11.4. flowchart for the solution of Example
11.3 with an infinite (endless) process
loop.

Figure 11.5 shows a flowchart which uses a decision
step to terminate the algorithm. In this flowchart, another

YES

STOP

Figure] 1.5. flowchart for the solution of Example
11.3.

Planning The Computer Program 123

by 1 after processing the data for each SLUIICIit. Thus, the
value of COUNT will always be equal to the number 01

students whose data has already been processed. At the
decision step, the value of COUNT is Compared with 50
which is the total number of students ,,ho have appeared
for the examination. The steps within the process loop are
repeated until thL' value of COUNT becomes equal to 50.
As soon as the value of COUNT becomes equal to 50, the
instruction at the decision step causes the control to flow
out of the loop and the processing Stops because a terminal
symbol labeled STOP is encountered. Thus, the flowchart
of Figure 11.5 is a complete and correct solution to the
problem of Example 11.3.

Although the flowchart of Figure 11.5 is a correct
solution to the given problem, it suffers front two major
drawbacks. The first drawback is that in order to make the
decision at the decision step, one must know the exact
r.umbcr of students who appeared in the examination.
Suppose the examination of Example 11.2 is a university
examination in whch the total number of students who
appeared for the examination is too big (say more than ten
thousand). In such a situation, the counting of the total
number of input records (data for each student) becomes a
tedious job. Even then, if we do stick on countiniz the input
records manuall y and supply the number of records to be
compared against COUNT in the decision box and suppose
while counting we make some error then the logic will not
work. if the supplied number is less than the actual number
of input records, then the computer will not process the data
for last few students. And if the supplied number is more
than the actual number of input records, the computer will
try to read more records than what is supplied which will
cause an error in the logic.

The second drawback is that the flowchart of Figure
11.5 is not a generalized solution to the given problem.
Suppose the examination is conducted every year anti so we
will like to use the same program every year to process the
students' data. However, the number of students appearing
in the examination may not remain the same every yrar.
This year it may be 50, but next Year it can be 55 or 60 or
anything. So if the computer program to solve this problem
was based on the flowchart of Figure 11.5. the statement
concerned with the decision step in that program will have
to be changed again and again to supnlv the exact number
of students. This is not a good programming practice. A
good program should be general in nature. For example, in
this case we should write a program that need not be
modified every time even if the total number of students
changes.

The flowchart of Figure 11.5 suffers from these

Figure 11 .6. Generalised flowchart for the solution
of Example 11.3 using the concept of
trailer record. Here the process loop is
terminated by detecting a special non-
data record.

drawbacks because in thiçflowchart the process loop is
being contxolled by counting. When the loop has been
executed 50 times, the decision will cause execution to
proceed to the STOP, thus terminating processing. (The
reader should carefully step through the logic to ensure that
the loop will be executed exactly 50 times and not 49 or

124 Digital Computer Fundamentals

51.) To avoid these drawbacks, another method can be
adopted to control the process loop. In this method, the end
of input data is marked by a trailer record, that is, the last
data record in the input is followed by a record whose sole
purpose is to indicatc that the end of the inputdata has been
reached. Suppose the first 7 characters of the input record
of a student represents his roll number (ROLLNO). Since
0000000 is never used as a roll number, a value of 0000000
as the first7 characters can be used to represent the trailer
record. As each input record is processed, the ROLLNO
can he compared with 0000000 to determine if processing
is complete. The logic of this process is illustrated in the
flowchart of Figure 11.6. It is important to recognize that
the programmer would have to include instructions in the
program which specifically compare the ROLLNO to
00(0000 in order to determine whether to continue or to
terminate.

The concept of a trailer record centers around the
notion of selecting a field (a particular item of data) in the
input record which will be used to indicate the end of data
and then selecting a trailer value also known as sentinel
value which will never occur as normal data value for that
field. The roll number of 0000000 is a good example. It
may also be noted that when a trailer record is used to mark
the end of input data, the decision box used for checking
the trailer value should almost always be flowcharted
immediately after the input symbol.

Example 11.4. For the examination of Example 11.2,
we want to make a list of only those
students who have passed (obtained
30% or more marks) in the
examination. In the end, we also want
to print out the total number of students
who have oasscd. Acciimir.g th
input data of all the students is
terminated by a trailer record that has
sentinel value of 9999999 for
ROLLNO, draw a flowchart for the
algorithm to do the above job.

Solution:

The flowchart in Figure 11.7 is a solution to this
aroblem. There are two decision symbols in this flowchart.
The first decision symbol checks for a trailer record by
comparing ROLLNO against the value 9999999 to
determine if processing is complete. The second decision
symbol is used to check whether the student has passed or
failed by comparing the percentage marks obtained by him
against 30. If the student's PERCENTAGE is equal to or
more than 30 then he ha passed otherwise he has failed.

Note from the flowchart that the operation WRITE
OUTPUT DATA is performed only if the student has
passed. If he has failed, we directly perform the operation
READ INPUT DATA without performing the WRITE
operation. This ensures that the output list provided by the
computer will contain the details of only those students
who have passed in the examination.

Another point to be noted in this flowchart is the use
of variable COUNT. This variable has been initialized to
zero in the beginning and is incremented by I every time
the operation WRITE OUTPUT DATA is performed. But
we have seen that thç operation WRITE OUTPUT DATA
is performed only for the students who have passed. Hence,
the variable COUNT will be incremented by 1 only in case
of students who have passed. Thus, the value of COUNT
will always be equal to the number of students whose data
has already been processed and who have been identified as
passed. Finally, when the trailer record is detected, the
operation WRITE COUNT will print out the final value of
COUNT that will be equal to the total number of students
who have passed the examination.

Example 11.5. Suppose the input data of each student
for the examination of Example 11.2
also contains information regarding the
sex of the candidate in the field named
SEXCODE that can have values M (for
male) or F (for female). We want to
make a list of only those female
students who have passed in)scCOnd
division (obtained 45% or more but less
than 60% marks). In the end we also
want to print out the total number of
such students. Assuming that the input
data of all the students is terminated by
a trailer record that has a sentinel value
of Z for SEXCODE draw a flowchart
for the algorithm to do the above job.

Solution:

The flowchart in Figure 11.8 is a solution to this
problem. There are four decision symbols in this flowchart.
The first decision symbol checks for a trailer record by
comparing SEXCODE against the value Z to determine if
processing is complete. The second decision symbol is used
to check whether the candidate is female or not b)
comparing the SEXCODE of that candidate against F. Note
that if the SEXCODE is not F, that is, the candidate is not a
female, we do not process the data of that student and
return back to perform the operation of reading input data.
This step ensures that the data of only female students will
be taken for further processing.

Planning The Computer Program 125

Figure 11.7. Flowchart for the solution of Example 11.4.

126 Digital Computer Fundamentals

The last two decision symbols in the flowchart are
used to check whether the student has passed in second
division or not. The first of these decisions is used to ensure
that the student has scored 45% or more marks. If she has
scored less than 45% then it means that she is not a second
divisioner and hence without making any further check
return back to the operation of reading input data. In case
the student has scored 45% or more marks then we go one
step further in the logic and by using the fourth decision in
the flowchart we check whether her marks are less than
60% by comparing her PERCENTAGE against 60. If the
condition at this step turns out to be false then it means that
the student has scored 60% or more marks and hence she is
a first divisioner and not a second divisioner. So once again
we return back to read a new data without writing any
output data. If the condition inside the fourth decision
symbol turns out to be true then the female candidate can
be classified to be a second divjsjoner. Hence in this case
only we perform the operation WRITE OUTPUT DATA
and subsequently increment the value of COUNT by I.

It is suggested that the reader should go through the
logic of this flowchart again and again tintil he/she is
convinced that the output list provided by the computer will
Contain the details of only those female students who have
passed in second division. The reader should also get
convinced that finally when the trailer record is detected,
the operation WRITE COUNT will print out the value of
COUNT that will be equal to the total number of female
students who have passed in second division. This
flowchart is an example of a multiple-decision chart.

The flowchart of Figure 11.8 has been reproduced in
Figure 11.9 to illustrate the use of connectors. There are
four exit connectors having the label 1 all of which indicate
a flow of conrrrJ to !' fib ai - zymbui having an entry
connector labeled 1. This symbol is the input symbol in the
flowchart. Similarly the exit connector having a label 2
indicates a flow of control to the entry connector labeled 2.
The reader should compare the flowcharts of Figure 11.8
and Figure 11.9 and should get convinced that both the
flowcharts represent the same logic.

A flowchart may seem simple to prepare, but you
will find that much practice is needed in order to think
through a problem in discrete, logical steps, to assume
nothing and to forget nothing. Moreover, not everyone will
tackle a problem in exactly the same way and, in
consequence, several different flowcharts could be drafted
for the same problem. It may also be noted that a completed
flowchart is not a Complete computer program. It is only an
aid to programming. For a given problem, i. defines the
procedure and the logic involved. From the examples that

have been discussed above, we are in a better position to
understand what this 'logic means.

LEVELS OF FLOWCHARTS

There are no set standards on the amount of detail
mat should be provided in a flowchart. A flowchart that
outlines the main segments of a program or that shows less
detail is a macroflowchart. On the other hand, a flowchart
with more detail is a microflowchar:, or detailed flowchart.

For example, let us consider the examination
problem that we have already discussed. In all the
flowcharts of the examination problem, there is a
processing box having the instruction 'ADD MARKS OF
ALL SUBJECTS GIVING TOTAL. In order to display
how the value of TOTAL is computed, a detailed flowchart
can be drawn as shown in Figure 11.10. In a similar
manner, the 110 boxes for the READ and WRITE operations
can also be converted to a detailed flowchart.

FLOWCHARTING RULES

While programmers have a good deal of freedom in
creating flowcharts, there are a number of general rules and
guidelines recommended by the American National
Standards Institute (ANSI) to help standardize the
flowcharting process. Various computer manufacturers and
data processing departments usually" have similar
flowcharting standards. Some of these rules and guidelines
are as follows

I. First chart the main line of logic, then
incorporate detail.

2. Maintain a rnnsster !evc! af dc.a" t £n d given
flowchart.

3. Do not chart every detail or the flowchart will
only be a graphic representation, step by step, of
the program. A reader who is interested in
greater details can refer to the program itself.

4. Words in the flowchart symbols should be
common statements and easy to understand. It is
recommended to use descriptive titles written in
designers own language rather than in machine
oriented language.

5. Be consistent in using names and variables in the
flowchart.

6. Go from left to right and top to bottom in
constructing flowcharts.

Planning The Computer Program /27

Figure 11.8. Flowchart for the solution of Example 11.5.

128	 Computer Fundamentals

7. Keep the flowchart as simple as possible. The
crossing of flowlincs should be avoided as far as
practicable.

8. If a new flowcharting page is needed, it is
recommended that the flowchart be broken at an
input or output point. Moreover properly labeled
connectors should be used to link the portions of
the flowchart on different pages.

ADVANTAGES OF FLOWCHARTS

The following benefits may be obtained when
flowcharts are used for the purpose of program planning.

1. Better Communication : The old saying that "a
picture is worth a thousand words' holds true for flowcharts
also. Since, a flowchart is a pictorial representation of a
program, it is easier for a programmer to explain the logic
of a program to some other programmer or to his boss
through a flowchart rather than the program itself.

2. Effective Analysis: A macro flowchart that charts
the main line of logic of a software system becomes a
system model that can be broken down into detailed parts
for study and further analysis of the system.

3. Effective synthesis; A group of programmers are
normally associated with the design of big software
systems. Each programmer is responsible for designing
only a part Lf the entire system. So initially, if each
programmer draws a flowchart for his part of design, the
flowcharts of all the programmers can be placed together to
visualize the overall system design. Any problem in linking
the various parts of the system can be easily detected at this
stage and the design can be accordingly modified.
Flowcharts are thus used as workin g mrv1s in the dccigr,
of new programs and software systems.

4. Proper Program Documentation : Program
documentation involves collecting, organizing, storing, and
otherwise maintaining a complete historical record of
programs and the other documents associated with a
system. Good documentation is needed for the following
reasons:

(a) Documented knowledge belongs to an
organization and does not disappear with the
departure (resignation/retirement) of a
programmer.

(b) If projects are postponed, documented work will
not have to be duplicated.

(c) If prcrams are modified in the future, th
programmer will have a more understandable
recor;1 of what was originally done.

From what we have seen of the nature of flowcharts,
it is obvious that they can provide valuable documentation
support.

5. Efficient Coding : Once a flowchart is ready,
programmers find it very easy to write the concerned
program because the flowchart acts as a roadmap for them.
It guides them to go from the starting point of the program
to the final point ensuring that no steps are omitted. The
ultimate result is an error free program developed at a faster
rate.

6. Systematic Debugging: Even after taking full care
in program design, some errors may remain in tle program
because the designer might have never thought about a
particular case. These errors are detected only when we
start executing the program on a computer. Such type of
program errors are called bugs and the process of removing
these errors is known as debugging.

Once a bug is detected, it is easier to find out the
reason for that bug by going through the logic of the
program in flowchart form. A flowchart is very helpful in
detecting, locating, and removing mistakes (bugs) in a
program in a systematic manner.

7. Systematic Testing Testing is the process of
confirming whether a program will successfully do all the
jobs for which it has been designed under the specified
constraints. For testing a program, different set of data is
fed as input to that program to test the different paths in the
program logic. For example, to test the complete loic of
iic plugram for i.xample 11.5, the following set of data is
necessary:

(a) Data for a male candidate.

(b) Data for a female candidate who I'as scored less
then 45%.

(c) Data for a female candidate who has exactly
scored 45%.

(d) Data for a female candidate who has scored
more than 45% but less than 60%.

(e) Data for a female candidate who has exactly
scored 60%.

Planning The Computer Program 129

START

COUNT = 0

READ
1	 INPUT.

DATA

	

NO	

YES

D*2^0—	
IS

ODEODE=F

YES

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

PERCENTAGE
= TOTAL/10

IS
D,—.NO PERCENTAGE

I YES

ERCENTAGE

YES

WRITE
OUTPUT
DATA

ADD 1 TO
COUNT

Figure 11.9. flowchart of Figure 11.8 redrawn to illustrate the use of connectors.

* 1ADO MARKS OF
ALL SUBJECTS
GIVING TOTAL

DECISION TABLES

130 Digital Computer Fundamentals

/A MICRO
FLOW CHART

2. Owijig to the symbol-string nature of
flowharting, any changes or modifications in
the program logic will usually require a
completely new flowchart Redrawing a
flowchart is again so tedious that many
companies either do not redo them or produce
the flowchart by using a computer program to
draw it. There are several computer programs
available that will read the program's instructions
and draw a flowchart of its logic, but these
programs are fairly expensive to acquire and use
a lot of computer time.

3. There are no standards determining the amount
of detail that should be included in a flowchart.

(I) Data for a female candidate who has scored
more than 60%.

(g) And obviously in the end the trader data having
sentinel value..

A flowchart proves to be very helpful in designing
the test data for systematic testing of programs.

PART OF A MACRO
FLOWCHART Because of such limitations, many organizations are[:::,;,

 = onow reducing the amount of flowcharting used. In its place,
 they are using alternative tools for program analysis, two of

TOTAL TOTAL MARKS 1)7 	 which are briefly discussed below.

Decision tables are used to define clearly and
concisely the word statement of a problem in a tabular
form, They can prove to be a powerful tool for defining
complex program logic. As the name implies, decision
tables reveal what decisions or actions the computer is to
take as a result of the input data. When the computer has to
make a large number of decisions or if there are a large
number of different branches within a program, decision
tables are particularly useful. In these cases, decision tables
are preferred to flowcharts.

Is -
I >_io

YES

Figure 11.10. DeIaili!	 'chart of add iiiarks of all
subjects giving TOTAL

LIMITATIONS OF FLOWCHARTS

In spite of their many obvious advantages,
flowcharts have several limitations which are as follows:

Flowcharts are very time consuming and
laborious to draw with proper symbols and
spacing, especially for large complex programs.
In this chapter, you have seen examples of small
program flowcharts developed for relatively
small programs. You can very well imagine how
difficult it would be to develop a detailed
program flowchart for a program containing over
50,000 statements.

The steps to be followed for constructing a decision
table are as follows:

I. Properly define the problem that has to be solved
by computer.

2. List out all the conditions to be tested in the
problem.

3. List out the corresponding actions that should be
taken with each combination of conditions.

4. Form a decision table using the two lists.

Most decision tables have six parts. The basic
format of a decision table is shown in Figure 11.11. The
first part of the decision table contains the name and/or
number of the table. For some larger applications, two or
more decision tables may be used in the analysis part of
program development. The second part of the table, known

Planning The Corn pwer Program 131

as condition stub, descirbes the conditions that could exist
in the program logic. Thus, the contents of condition stub
correspond to the conditions contained in the decision
symbols of a flowchart. Action stub, the third part of the
decision table, contains the action statements. These
statements correspond to the statements located in
nondecision symbols of a flowchart. While the condition
rtatcments reveal the possible states of the input data, the
action statements describe the possible actions of the
computer system. The right hand side of the decision table
contains the rule numbers (part 4), the actual conditions
(part 5), and the actions taken by the computer (part 6). The
condition entries correspond to the paths leading out from
decision symbols.

TABLE HEADING	 DECISION RULES

CONDITION	 CONDITION

	

STUB	 ENTRIES

	

ACTION	 ACTION

	

STUB	 ENTRIES

FigurL 11.11. Formatofa decision table.

A decision iabl for the problem of Example 11,5
that was chaited in Figure 11.8 is shown in Figure 1112 In
this table, each rule number is a given condition followed
by a specific action to be taken by the computer. The six
rule numbers, the six actual conditions, and the associitcd
actions taken by the computer system are discussed below.

Rule I The student is a female, and the
percentage marks obtained is 45% or
more, and the percentage marks
obtained is less than 60%. The
computer should write the output data,
add 1 to COUNT, and then read the
next student's record. It is a case of a
female student who has passed in
second division.

Rule 2 The student is female, and the
percentage marks obtained is 45% or
more, and the percentage marks
obtained is not less than 60%. The
computer should directly read the next
student's record without performing

any other Operation. It is the case of a
female student who has passed in first
division (60% or more marks).

Rule 3 The student is a female and the
percentage marks obtained is not 45%
or more. A dash (-) in this column
against the last condition means that
this condition is irrelevant in arriving
at the action. In fact if
PERCENTAGE is not equal to or
greater then 45 then it has to be less
than 60. PERCENTAGE greater than
or equal to 60 is logically impossible.
Such conditions in the decision table
which are irrelevant in arriving at an
action are known as don't care
conditions and are denoted by a dash.
For this rule, the computer should
directly read the next student's record
without performing any other
operation. It is the case of a female
student who has scored less than 45%
and hence she is not a second
divisioner.

Rule 4 The student is a female, and the other
conditions are don't care conditions.
The computer should calculate
PERCENTAGE after adding marks of
all subjects and then proceed to test
further conditions. It is the case of a
female student whose PERCENTAGE
has yet to be calculated.

Rule 5 The student is a male, and the other
conditions are don't care conditions.
The computer should directly read the
next student's record without
performing any other operation. It is
the case of a male student.

Rule 6 In all the previous five rules, it was
ascertained that the current record is
not a trailer record because all these
rules have a value N (No) for the
condition SEXCODE = Z. In this rule,
the SEXCODE is equal to Z which
indicates a trailer record and hence the
computer should write the value of
COUNT and then STOP. The other
conditions in this rule are don't care
conditions. It is the case of a trailer
record.

10- A

132	 Computer Fundamentals

In the decision table. "Y" means yes, "N means no,
means don't care, and 'X" means the Computer should take
this action.

3. It is also easier to follow a particular path down
one column than through several flowchart
pages.

However, decision tables are not very popular and
are not so widely used as charts because

1. Flowcharts are better able to express the total
sequence of events needed to solve a problem.

Decision
Examination problem of Example 11.5

	 rule number.

Condition Statements
2. Flowcharts are more familiar to, and are

preferred by, many programmers and beginners

PSEUDOCODE

Y jv N .- .- I -	 Pseudocode is another programming analysis toolI N that is used for planning program logic. Pseudo means
inhita non or false and Code" refers to the instructions
written in a programming language. Pseudocode, therefore,
is an irnitauon of actual cornpunsr instructions. These
pseudoinstructions are phrases written i n ordinary natural
language (e.g., English, French, German, etc.). Instead ofx	 411 using symbols to describe the logic steps of a program, as
in flowcharting, pseudocode uses a structure that resemblesTiq^ 	 computer instructions. Because it emphasises the design of

 the program, pseudocode is also called Program Design
nguagc (PDL)

Pseudccode is made up of the following basic logic
structures that have been proved to be sufficient for writing
any computer program

1. Sequence

2. Selection (IF.. .'ll-IEN, . .ELSE
or IF. TilE

SEXCODE = 2	 -

SEXCODE F

PERCENTAGE = > 45

PERCENTAGE	 60

Actions Taken

Calcue PERCENTAGE

Write output data

Add Ito COUNT

Read next Student record

Write COUNT

STOP

NNNN N r'

NI-

Figure 11.12. Decision table for the examination
oroblem of Example 11.5.

ADVANTAGES AND LIMITATIONS OF DECISION
TABLES

Decision tables are normally used in place of
flowcharts because of the following reasons:

1. They are easier to draw and change than charts.

2. They provide more compact documentation. A
.small table can replace several pages of charts.

3. Iteration (DO ... WHILE or REPEAT—UNTIL)

Sequeiwe logic is used for performing instructions
one after another in sequence. Thus, for sequence logic,
pseudocode instructions are written in the order, or
sequence, in which they are to be performed. The logic
how of pseudocode is from the top to the bottom. Figure
11.13 shows an example of sequence logic structure.

Selection logic, also known as decision logic, is used
for making decisions. It is used for selecting the proper path
out of the two or more alternative paths in the program
logic. Selection logic is depicted as either an IF ... THEN or
an IF—THEN ... ELSE structure. The flowcharts of Figure
1j.14 and 11.15 illustrate the logic of these structures.

10- B

Planning The Computer Program 133

FLOWCHART

Their corresponding pseudocode is also given in these
figures. The IF ... THEN ... ELSE construct says that if the
condition is true, then do process 1, else (if the condition is
not true) do process 2. Thus, in this case either process I or
process 2 will be executed depending on whether the
specified condition is true or false. However, if we do not
want to choose between two processes and if we simply
want to decide if a process is 'to be performed or not, then
the IF ... THEN structure is used. The IF ... THEN structure
says that if the condition is true, then do process 1 and if it
is not true then skip over process I. In both the structures,
process I and process 2 can actually be one or more
processes. They are not limited to a single process. ENDIF
is used to indicate the end of the decision structures.

FLOWCHART

PROCESS 1

PROCESS 2

PSEU0000DE

Process 1

Process 2

Figure 11.13. flowchart and pscudccodc for
sequence Structure.

PSEUD000DE

a

0

IF Condition
T HEN process i

ELSE

process 2

END IF

a

a
a

Figure 11.14. Flowchart and	 pscudocodc	 for
IR..THEN. ..ELSE selection structure.

1terarioi logic is used to produce loops when one or
more instructions may be executed several times depending
on some condition. It uses two structures called the
DO ... WHILE and the REPEAT ... UNTIL. They are
illustrated by flowcharts in Figure 11,16 and Figure 11.17
respectively. Their corresponding pseudocodes are also
given in these figures. Both DO ... WHILE and
REPEAT ... UNTIL are used for looping. The differences are
that in the DO ... WHILE. the looping will continue as long
as the condition is u-tie. The looping stops when the
condition is not true. On the other hand, in case of

334 Digital Computer Fundamentals

REPEAT—UNTIL, the looping continues until the
condition becomes true. That is, the execution of the
statements within the loop is repeated as long as the
condition is not true. In both the DO ... WHILE and
REPEAT ... UNTIL, the loop must contain a statement that
will change the condition that controls the loop. if it
doesn't, the looping will continue without end which is the
case of an infinite loop. Remember that no program should
contain an infinite loop. Also note that the condition is
tested at the top of the loop in the DO..WHJLE and at the
bottom of the loop in the REPEAT ... UNTIL. ENDIX)
marks the end of a DO—WHILE structure and UNTIL
followed by some condition marks the end of the
REPEAT. ..UNTIL structure.

FLOWCHART

TNO

YES

PROCESSTJ

PSEUDOCODE

S

IF CONDITION

THEN PROCESS 1

END IF

DO ... WHILE loop asks, "Is the SEXCODE equal to F?' If
the answer is yes, PERCENTAGE is calculated and again
the third statement within the loop asks, "Is
PERCENTAGE equal to or greater than 45?" If it is, then
"Is PERCENTAGE less than 60?" This is a series of three
IF—THEN decision structures. Each one ends with an
ENDIF vertically aligned below the appropriate IF.

FLOWCHART

PSEUDOCODE

Figure 11.15. flowchart and pseudocode for
IF... THEN selection structure,

The pseudocode version of the logic of the problem
of Example 11.5 that was charted in Figure 11.8 is shown in
Figure 11.18. in the pseudocode example, the first line
initializes the value of COUNT to zero and the second line
reads the input data of the first studen. The third line is the
beginning of a loop using the DO ... WHILE structure. ft
indicates that the loop will continue so long as the value of
SEXCODE is not equal to Z that is, as long as the trailer
record is not found. In this example, a series of decisions
followed by an instruction to read next students record are
included within the loop. The first statement within the

DO WHILE CONDITION

PROCESs 1

PROCESS n

ENODO

Figure 11.16. Flowchart and pseudocode for
DO ... WHILE iteration structure.

Planning The Computer Program 135

FLOWCHART

PROCESS 1

PROCESS n

2cOwDmON

YES

PSEUDOCODE

REPEAT

PROCESS

PROCESS 2

UNTIL CONDITION

DO.-.WHILE loop to stop, because the condition
(SEXCODE not equal to Z) is no longer true. When the
DO ... WHILE condition is no longer true, the neat logical
step will be the instruction following the ENDDO. At this
stage, the value of COUNT will be printed (write COUNT)
and finally the program execution will stop (STOP).

Set COUNT to zero
Read first student record
DO WHILE SEXC0DE is not equal to Z

IF SEXCODE =.F THEN
calculate PERCENTAGE
IF PERCENTAGE => 45 THEN

IF PERCENTAGE < 60 THEN
Write output data
Add 1 to COUNT

ENDI F
ENDIF

ENDIF
Read next student record

ENDDO
Write COUNT
STOP

Figure 11.18, Pseudocode for the examination
problem of Example 11.5,

Figure 11.17. Flowchart and pseudocode for
REPEAT.,.UNTIL iteration structure.

The two instructions - write output data, and add I
to COUNT are performed only if all three conditions (that
Of SEXCODE being F, PERCENTAGE being equal to or
more than 45, and PERCENTAGE being less than 60) are
found to be true (answered yes). If any of the three
conditions is not true, the logic path goes to the statement
that reads next student's record. After the last student's
record is processed, the trailer record for which the value of
SEXCOr)E is Z is encountered. This will cause the

One important feature of pseudocode as a
programming tool is the use of indentation. Each statement
within the DO.. .WHILE loop, is indented, to show that it is
part of the loop. Similarly, the statements within each
[F ... THEN structure is indented properly to clearly specify
the statements which are part of each structure. The use of
indentation in pseudocode is the same technique used with
the various Programming languages. Its sole purpose is to
clarify the logical structure of the program. With this
technique, we can tell at a glance which statements make up
each of the logic structure of the total program logic. To

136	 Computer Fundamentals

fully appreciate this faCtor, the reader should compare the
equivalent non-indented pseudocode of Figure 11.19 to that

f Figure 11.18. The difference in clarity would be far
gi 'ater if this were a longer pseudocode covering, foi
insunce, one or more pages.

ADVANTAGES AND LIMITATIONS OF
PSEUDOCODE

Pscudocodc has three main advantages:

1. Converting a pseudocode to a programming
language is much more easier as compared to
converting a flowchart or a decision table.

2. As compared to a flowchart, it is easier to
modify the peudocode of a program logic when
program modifications are necessary.

SET COUNT to Zero

Read first student record

DO WHILE SEXCODE is not equal to Z.

IF SEXCODE = F

THEN Calculate PERCENTAGE

IF PERCENTAGE= >45

THEN IF PERCENTAGE <60

THEN Write output data

POC 1 to UOUNT

ENDIF

ENDIF

ENDIF

Read next student record

ENDDO

Write COUNT.

STOP

Figure 11.19. Non-indented version of pseudocode
of Figure 11.18.

3. Writing of pseudocode involves much less time
and effort than drawing an equivalent flowchart.
Pseudocode is easier to write than an actual
programming language because it has only a few
rules to follow, allowing the programmer to
concentrate on the logic of the program.

However, pseudocodc suffers from the following
limitaticiis

I. In case of pseudocode, a graphic representation
of program logic is not available,

2. There are no standard rules to follow in using
pseudocode. Different programmers use '.heir
own style of writing pseudocodc and hence
Communication problem occurs due to lack of
standardization.

3. For a beginner, it is more difficult to follow the
logic of or write pseudocode, as compared to
flowcharting.

QUESTIONS

1. Why is it advisible to plan the logic of a program
before writing it?

2. What is an algorithm? What are the
characteristics necessary for a sequence of
insinictions to qualify as an algorithm ?

3, What is a flowchart?

4. How does a flowchart help a programmer in
program development?

. Can a flowchart be drawn for a task if the person
drawing the flowchart cannot perform the task
manually ? Discuss.

6. What are the various symbols used in
flowcharting ? Give their pictorial
representation.

7. Describe the function of the various flowchartin
symbols.

8. Why are there standards for the symbols used ir
drawing flowcharts?

9. What is a record ? A trailer record?

Planning The Compwer Program 137

10. What is a senunel value? Discuss its use.

11: What is a process loop? An infinite loop?

12.Wh y is it necessary to avoid infinite ioops in
program design?

13. "A loop consists of a body, a test for exit
condition, and a return provision. Discuss this
statement.

14.What is a generalized algorithm ? Why should
programs be general in nature?

15.Discuss the difference between loop control by
counting and loop control by the use of sentinel
value. Which is preferable and why ?

15. How can a counter be used to keep track of the
number of times a loop has been executed?

17.Is it possible to have more than one flowchart for
a given problem ? Give masons for your answer.

18.What is the difference between a macroflowohart
and a microflowchait? Illustrate with an
example.

19.What are the various guidelines to be followed
while drawing a flowchart?

20.Discuss the various advantages and limitations
of flowcharting.

21W v is proper documentation of a program
necessary?

22.What are program bugs 7 What is debugging?

23.What is meant by testing a program ? How is it
done?

24.What are decision tables? When are they
preferred to flowcharts?

25, What are the various steps to be followed for
constructing a decision table?

26.Draw the basic format of a decision table and
discuss the role of each part.

27.What are don't care conditions in decision
tables?

28.List out the various advantages and limitations of
decision tables.

29.What is a pseudocode 7 Why is it so called 7
Give another name for pseudocode.

30.What are the three basic logic structures used in
writing pseudocode ? Discuss the use of each.

31.Draw flowcharts for the two different structures
used for selection logic.

32.What is the difference between the IF.. THEN
and the IF ... THEN ... ELSE structures?

33.Draw flowcharts for the two different structures
used for iteration logic.

34.Both DO ... WHILE and REPEAT ... UNTIL are
used for looping. Discuss the difference between
the two structures.

35.What is the purpose of the ENDIF and ENDDO?

36.What is indentation ? Why is it used in writing
pseudocodes?

37.Discuss the advantages and limitations of
pseudocode.

38.Three numbers, denoted by the variables A, B,
and C are supplied as input data. Draw a
flowchart for the logic to pick and print the
largest of the three numbers.

39.Draw a flowchart of the logical steps needed to
produce a printed listing of all students over the
age of 20 in a class. The input records co.ltain
the name and age of the students. Assume a
sentinel value of 99 for the age field of the trailer
record.

40.Draw a flowchart of the logical steps needed to
print the name and age of the oldest and the
youngest student in a class. The input records
contain the name and age of the students.
Assume a sentinel value of 99 for the age field of
the trailer record.

41 The first 20 records in a data set are to be read
and printed. Draw a flowchart for the algorithm
to do this job. Make sure that the processing
stops after the twentieth record.

138	 Computer Fundamentals

42. Input data regarding the information of
employees of a company has been supplied. The
first field of each input record contains the
employee number (EMPNO). Assume that the
input data of all the employees is terminated by a
trailer record having a trailer value of 99999 for
EMPNO. Draw a flowchart for the logic to count
and print the total number of input records, that
is, the total number of employees.

43. For the employees problem of Question 42, we
want to count and print the number of only male
employees in the age ranpn of 25 to 30. Assume
that the input records contain SEXCODE and
AGE fields to provide this information. Draw a
flowchart for the algorithm to perform this job.

44. Suppose that a population survey has been
carried out in a given city, and that the
information received from the survey has been
transcribed onto punched cards. Since the cards
have 80 colums each, one card contains the
name, address, sex, age, profession, etc., of one
employee. That is, each card contains one record
pertaining to one employee. Our problem is to
print the details of all the adults (aged 18 years
or more) in the city under survey. Finally, we
also want to print the total number of adults.
Assume a suitable sentinel value for any field in
the trailer record and draw a flowchart for the
algorithm to do this task.

45. A set of examination papers which have been
graded with scores from 0 to 100 is to be
starched to find how many of them arc above 90.
The total has to be printed. Prepare a flowchnrt
to illustrate this job. Assume a suitable sentinel
value for the trailer record.

46. Each paper in a set of examination papers
includes a grade of A, B, C, D, or E. A count is
to be made of how many papers have grade of A
and how many have grade of E. The total count
of both types have to be printed at the end.
Prepare a flowchart to perform this function,
Assume a suitable sentinel value for the trailer
record.

47. A shopkeeper wants to have a general program
for his personal computer that will prepare bills
for each customer as and when he sells goods to
them. His idea is that as soon as the customer
purchases some goods from his shop, he will
supply the description, unit price, and the

quantity purchased for each item, as input to the
computer. He wants that with this information,
the computer should print each item along with
its unit price, quantity purchased and the total
price. Finally, the computer should als, punt the
total cost of all the items purchased by the
customer. Assuming that a sentiiiulk vdC of zero
is used for the quantity purchased field in the
trailer record, draw a flowchart for the logic to
do this job.

48. An employer plans to pay a bonus to each
employee. Those earning Rs.2000 or above are
to be paid 10 percent of their salary; those
earning less than Rs.2000 're to be paid Rs.200.
The input records contain the employee number,
name, and salary of the employees. The output to
be printed should cont' a the employee number,
name, and the amount of bonus to be paid for
each employee. Draw a flowchart for the
algorithm to do this job. Assume a suitable
sentinel value for any of the fields of the trailer
record.

49.Each employee pay record includes the hours
worked and the pay rate. The gross pay is to be
determined as hours worked times pay rate and
is to be printed (or each emplo yee. For all hours
worked in excess of 40, the overtime rate, which
is 1.5 times the regular rate, is to be paid. Draw a
flowchart to illustrate the problem logic. Assume
a suitable sentinel value for any of the input
fields of the trailer record,

50. A data file contains a set of exam i nation scores
is fcin'.'.'ed by c treitcr rceo

of . 1. Draw a flowchart for the logic to calculate
and print the average of the scores.

51.The data file of Question 50 is expanded to
include several sets of data, each requiring
calculation of its average. Each data set is
followed by a trailer record with a value of -1;
however, the last data set is followed by a trailer
record with a value of -2. Draw a flowchart for
the logic to perform this task.

52.Suppose five numbers denoted by the variables
A. B, C, D, and E are supplied as input. Draw a
flowchart for the logic to print these numbers in
descending order of magnitude.

53.Draw a flowchart for the logic to find out
whether a given triangle ABC is isosceles.

Planning The Cornr,Wer Program 139

Assume that the angles of the triangle are
supplied as input. Print the answer as yes or no.

54. Draw a flowchart for the logic to find out
whether a given triangle ABC is a right angled
triangle. Assume that the sides of the triangle arc
supplied as input data. Print the answer as yes or
no.

55. Draw a flowchart for the logic to find Out
whether a given quadrilateral ABCD is a
rectangle. Assume that all the four angles and
four sides of the quadrilateral are supplied as
input data. Print the answer as yes or no.

56.Draw a flowchart to illustrate the logic to
convert a number from base 10 to a new base
.using the division-remainder technique.

57.Draw a flowchart to illustrate the logic to
convCrt a number to decimal from another base.

58.Obtain a decision table to solve the problem
described in Question 38.

59, Obtain a decision table to solve the problem
described in Question 43.

60.Ohtain a decision table to solve the problem
described in Question 46.

61.Obtain a decision table to solve the problem
described in Question 53.

62.Obtain a decision table to solve
the problem

described in Question 54.

63. Write the pseudocode to solve the problem
described in Question 39.

64. Write the pseudocodc to solve the problem
described in Question 40.

65. Write the pseudocode to solve the problem
described in Question 43.

66. Write the pseudocode to solve thc problem
described in Question 46.

67. Write the pseudocode to solve the problem
described in Question 47.

68. Write the pseudocode to solve the problem
described in Question 48.

69. Write the pseudocode to solve the problem
described in Question 49.

70. Write the pseudocode to solve the problem
described	 in	 Question	 53.

CHAPTER 12

12. COMPUTER LANGUAGES

This chapter continues the development of computer
programs that was begun in Chapter U. After the
programming analysis phase, discussed in the previous
chapter, has been completed, the second step in the
development of computer programs is to write the specific
instructions, needed to process an application, intoa
language and form acceptable to a computer system. The
process of writing such program instructions for an
analysed problem is cz.led coding. In this chapter, we will

see how the logical steps of our program plan will be coded
as program instructions. The goal of this chapter is to
introduce some of the common computer languages used in
writing computer programs.

ANALOGY WITH NATURAL LANGUAGES

A language is a system of communication. With our
natural language such as English, we communicate to one
another our ideas and emotions. Similarly, a computer
language is a means of communication used In

communicate between people and the computer. With the
help of a computer language, a programmer tells a
computer what he wants it to do. All natural language's

(English, French, German, etc.) use a standard set of
symbols for the purpose of communication. These symbols
are understood by everyone using that language. We
normally call this set of symbols the vocabulary of that
particular language. For example the words we use in
English are the symbols of English language that make up
its vocabulary. Each word has definite meaning which can
be looked up in a dictionary. In a similar manner, all
computer languages have a vocabulary of their own. Ea, h
symbol of the vocabulary has definite unambiguous
meaning which can be looked up in the manual meant for
that language. Hence, each symbol of a computer language
is used to tell the computer to do a particular job. The main
difference between a natural language and a computer
language is that natural languages have a large vocabulary
but most computer languages use a very limited or
restricted vocabulary. This is mainly because a
programming language by its very nature and purpose does
not need to say too much. Each and every problem to be
solved by a computer has to be broken down into discrete
(simple and separate), logical steps which basically
comprise of four fundamental operations- input and output
operations, arithmetic operations, movement of information
within the CPU, and logical or comparison operations.

142 Digital Computer Fundamentals

Each natural language has a systematic method of
using symbols of that language. In English, this method is
given by the rules of grammar. These rules tell us which
words to use and how to ase them. Similarly, the symbols
of a particular computer language must also be used as per
set rules which are known as the syntax rules of the
language. In case of a natural language, people can use poor
or incorrect vocabulary and grammar and still make
themselves understood. However, computers, being a
machine, are receptive only to exact vocabulary used
correctly as per syntax rules of the language being used.
Thus, in case of a computer language, we must stick by the
exact rules of the language if we want to be understood by
the computer. As yet, no computer is capable of correcting
and deducing meaning from incorrect instructions.
Computer languages are smaller and simpler than natural
languagcs but they have to be used with great precision.

Unless a programmer adheres exactly to the syntax
rules of a programming language, even down to the correct
punctuation marks, his commands will not be understood
by the computer.

Programming languages have improved throughout
the years, just as computer hardware has improved. They
have progressed from machine-oriented languages that use
strings of binary Is and Os to problem-oriented languages

us common mathematical and/or English terms.
However, all computer languages can be classified in the
following three broad categories:

(a) Machine Language

(b) Assembly Language

(c) High-level Language. -

We shall now examine the evolution and nature of
each type of language.

MACHINE LANGUAGE

Although computers can be programmed to
understand many different computer languages, there is
only one language understood by the computer without
using a translation program. This language is called the
machine language or the machine code of the computer.
Machine code is the fundamental language of a ccmputer
and is normally written as strings of binary is and Os. The
circuitry of a computer is wired in such a way that it
immediately recognizes the machine language and converts

it into the electrical signals needed to run the computer.

An instruction prepared in any machine language
has a two-part format, as shown in Figure 12.1. The first
part is the command or operation, and it tells the computer
what function to perform. Every computer has an operation
code or opcode for each of its functions. The second part or
the instruction is the operand, and it tells the computer
where to find or store the data or other instrucLions that are
to be manipulated. Thus, each instruction tells the control
unit of the CPU what to do and the length and location of
the data fields that are involved in the operation. Typical
operations involve reading, adding, subtracting, writing,
and soon.

OPCODE	 OPERAND
(operation code)	 (Address/Location)

Figure 12.1. Instruction format.

We already know that all computers use binary
digits (Os and is) for performing internal operations. Hence,
most computers machine language consists of strings of
binary numbers and is the only one the CPU directly
understands. When stored inside the computer, the symbols
which make up the machine language program are made up
of Is and Os. For example, a typical program instruction to
print Out a number on the printer might be

101100i
I I

i i ininni i mi inn

The propam to add two numbers in memory and
print the result might look something like the following:

001000000000001 100111001
001100000000010000100001
0110000000000iIlooioii 10
101000111111011100101110
000000000000000000000000

This is obviously not a very easy language to learn, partly
because it is difficult to read and understand and partly
because it is written in a number system with which we are
not familiar. But it will be surprising to note that some of

Compuier Languages 243

the first programmers, who worked with the first few
computers, actually wrote their programs in binary form as
above.

Since human programmers are more familiar with
the decimal number system, most of them preferred to write
the computer instructions in decimal, and leave the input
device to convert these to binary. In fact, witho;tt too much
effort, a computer can be wired so that instead of using long
strings of is and Os we can use the more familiar decimal
numbers. With this change, the preceding program appears
as follows

10001471
14002041
30003456
50773456

The set of instruction codes, whether in binary or
decimal, which can be directly understood by the CPU of a
computer without the help of a Lranslatirig program, is
called a machine code or machine language. Thus, a
machine language program need not necessarily be coded
as strings of binary digits(is and Os). It can also be written
using decimal digits if the circuitry of the computer being
used permits this.

Advantages and Limitations of Machine Language

Programs written in machine language can be
executed very fast by the computer. This is mainly because
machine instructions are directly understood by the CPU
and no translation of the program is required. However,
writing a program in machine language has several
disadvantages which are discussed below.

Machine dependent, Because the internal design
of every type of computer is different from every
other type of computer and needs different
electrical signals to operate, the machine
language also is different from computer to
computer. It is determined by thi actual design
or construction of the ALU, the control unit, and
the size as well as the word length of the
memory unit. Hence, suppose after becoming
proficient in the machine code of a particular
computer, a company decides Co change to
another computer, the programmer may be
required to learn a new machine language and
would have to rewrite all the existing programs.

2. Difficult to program. Although c' - '! used by
the computer, machine languagelifftcult to
program. It is necessary for the programmer
either to memorize the dozens of code numbers
for the commands in the machine's instruction
set or to constantly refer to a reference card. A
programmer is also forced to keep track of the
storage location of data and instructions.
Moreover, a machine language programmer
must be an expert who knows about the
hardware structure of the computer.

3. Error prone. For writing programs in machine
!anguag, since a programmer has to remember
the opeodes and he must also keep track of the
storage location of data and instructions, it
becomes very difficult for him to concentrate
fully on the logic of the problem. This frequently
results in program errors. H--ace, it is easy to
make errors while using machine code.

Dfficub to mod.fy. It is difficult to correct or
modify machine language programs. Checking
machine instructions to locate errors is about as
tedious as writing them initially. Similarly,
modifying a machine language program at a later
date is so difficult that many programmers would
prefer to code the new logic afresh instead of
incorporating the necessary modifications in the
old program.

In short, wrtting a program in machine language is
so difficult and time consuming that it is rarely used today.

ASSEMBLY LANGUAGE

One of the first steps in improving the program
preparation process was to substitute letter symbols-
mnemonics for the numeric operation codes of machine
language. A mnemonic (or memory aid) is any kind of
mental trick we use to help us remember. Mnemonics come
in various shapes and sizes, all of them useful in their own
way. For example, a computer may be designed to interpret
the machine code of 1111 (binary) or 15 (decimal) as the
operation subtract', but it is easier for a human being to
remember it as SUB.

Use of Symbols Instead of Numeric OpCodes

All computers have the power of handling letters as
well as numbers. Hence, a computer can be taught to
recognize Certain combination of letters or numbers. It can
be taught (by means of a program) to substitute the nunibe

144	 Computer Fundamentals

14 every time it sees the symbol ADD, substitute the
number 15 every time it sees the symbol SUB, and so
forth. In this way, the computer can be traine.d to translate a
program written with symbols instead of numbers into the
computer's own machine language. Then we can write
program for the computer using symbols instead of
numbers, and have the computer do its own translating.
This makes it easier for the programmer, because he can
use letters, symbols and mnemonics instead of numbers for
writing his programs. For example, the preceding program
that was written in machine language for adding two
numbers and printing out the result could be written in the

following way

CLA A
ADD B
STA C
-[YP C
H LT

Which would mean tike A, add B. store the result
in C, type C. and halt." The computer, by means of a
translating program, would translate each line of this
program into the corresponding machine language program.

1..cc flrjgrarr	 C!) PC' c.'a.'Jn
CC! esoorda PC C

Figure 12.2. Illustrating the translation process of
an assembler.

At this point we must learn a few more terms. The

language which substitutes letters and symbols for the
numbers in the machine language program is called an

assembly language or symbolic language. A program

written in symbolic language that uses symbols instead of
numbers is called an assembly code or a symbolic program.
The translator program that translates an assembly code
into the computer's machine code is called an assembler.

The assembler is a system program which is supplied by the

computer manufacturer. It is written by system
programmers with great care. It is so called because in
addition to translating the assembly code into machine

code, it also, 'assembles' the machine code in the main
memory of the computer and makes it ready for execution.
A symbolic program written by a programmer in assembly

language is called a source program. After the SourCe

program has been convcr:-'d into machine language by an
assembler, it is referred to as an object program. As shown

in Figure 12.2, the input to an assembler is a source
program written in assembly language and its output is an

object program which is in machine language. Since the
assembler translates each assembly language instruction
into an equivalent machine language instruction, there is a
one-to-one correspondence between the assembly
instructions of source program and the machine instrucdons

of object program.

By now, it must have been clear to the readers that
when we write a program in symbolic language, we first
run he assembler (program) to assemble the symbolic
program into machine language, and then we run the
machine language program to gel our answer. You will

notice that this means more time spent by the computer - it
not only has to run the main program to get the answer, but
it also must tLrst translate the original symbolic program
into machine language. But symbolic programming saves
so much time and effort of the programmer that the extra
time spent by the computer is worth

To see how symbolic programming works, let is
first write a short machine language program and then see
how we would write the same program in assembly
language. For this, let us assume that the computer uses the
following mnemonics for the operation codes mentioned

against

	

',lremOnC Op
	 Meaning

Code

HL 7	 00	 '-:a use <1 Cod Cl prcPrar11 to stcp

CL/-	 10	 :e .r C Ala 'to Aou:'Cr

ADD	 14	 0 I.'. !)e Cor)It')I' Ot A roq51e'

SUB	 5	 S...nSraCl IrOfl Cd rOe PLC I A rLqmtef

STA	 30	 5! CrC A rLQrSLCr

each. For simplicity, here we have considered only five
operation codes that will be used in writing our program.
Like this there can be more than hundred operation codes
available with a particular computer.

The program we will write is quite simple : adding

two numbers and storing the sum. The regular machine
language program for this will be as follows:

Computer Languages 145

Memory	 Contents	 I
l

Location op I	
commentsI

Coda	 AddresI

C	 ¶0	 100 	 C4e &	 to A

0001	 14	 1001	 Add	 nvme to th Cortart. o A ,ul4q1
-	 30	 1	 Store tt er	 ibm A r.ste

Contents
Location

P0001

emory
cation

Mnemonic Address

0000	 CLA	 1000
 ADD	 1001

0002	 STA	 1002
0003	 HLT

Use of Symbols Instead of Addresses

OCC lor Sr
1001	 Fleewwd lob Cob rj

Pwred fob th

It has been assumed here that thç computer is
capable of handling decimal numbers instead 'pf only binary
numbers The two numbers to be added are stored in
memory locations 1000 and 1001, and the answer obtained
after adding the two numbers is to be scored in location
1002. The first irjsj-uccjon at location 0000 clears (makes
zero) the A register (accumulator) and puts the contents of
location 1000 (first number) in it. The second machine
instruction at location 0001 adds the contents of location
1001 (second number) to the contents of A register (first
number) and stores the sum in A register, The third
instructjcn at location 0002 stores the answer from A
register into memory location 1002. Finally, the fourth
machine instruction at location 0003 stops the execution of
the program.

Now we will see how to write the same program in
assembly language. We can easily replace the op-code in
roch of the preceding instructions by the corresponding
Mnemonic and write the program as given below instead;
and let the computer handle the rest The assembler
program would then translate CLA to 10, ADD to 14, STA
to 30 and HLT to 00, thus producing the machine language
program.

But there is no need to stop here; after all, t is not
much more work to memorize a few numbers for op-codes,
and using symbols for op-codes just makes more work for
the computer. We might as well let the computer do a large
share of the work.

One of the greatest problems in machine language
programming comes from keeping track of addresses.
E very time we write a large program, we need a pad of
paper off to the side on which we keep a running list of
what numbers are stored where. Each time we want a
number, we must look up the address on this list - This takes
time and can lead to mistakes if we are not careful. Why
not let the computer do this part of work for us ? We can
include, as part of the assembly program, a section that
does nothing but keeps a list of addresses for numbers.

In the preceding sample program to add two
numbers, we might start the symbolic program by telling
the computer something like the following:

From now on address 1000 will be called FIRST,
address 1001 will be called SCND, and address 1002 will
be called ANSR.'

In response to this, the assembler sets up a table
somewhere in the computer memory which looks
something like the following:

FRST= 1000
SCND 1001
ANSR = 1002

From now on, we just call numbers by their names.
The assembler will look up the name in the table arid
provide the right address, thus saving us even more work.
This means we can write our sample progaro as shown
below:

146 Digital Computer Fundamentals

,DD SCND

STA ANSR

HLT

Then we start the assembler working on this
symbolic program. We see that the first four steps are not
really parts of the main program to add the two numbers;
they are instructions to the assembler on what to do, and am

called pseudo-instructions. The word pseudo, from rho
greek word meaning false, fake or pretended, describe them
quite well they are instructions that do not do anything in
the main program, but only provide information to the
assembler to tell it how we want the program assembled.

To see how the assembler changes this symbolic
program into machine language, let us follow it step by
step.

Cntents
Memory	

e 	 AddressLocation

0000	 CLA I FRST

0001	 ADD I SCND

0002	 1 STA
f

ANSR

0003	 HLT

The assembler then looks up the address for each of
the numbers, translates the mnemonic op-code into the
numerical op-code and comes out with a machine language
program. For example, in the first instruction CLA FRST,
the assembler translates the CLA into an op-code of 10 and
iooks up the address of FRST in the table. It finds the
address as 1000, and so it puts the first machine language
instruction as 10 1000. In the same way it translates the
ADD SCND instruction into 14 1001, and so on, making
the machine language program step by step.

But there is one more part of our work that we can
hand over to the computer. We need not even tell the
computer where to place each number and where to place
each instruction, as we have been doing till now. Instead of
saying something like Place H(S1 in WUU, Lf'il) in
1001, and ASNR in 1002,' we need only tell the computer
to start putting the numbers into memory starting with
address 1000. In the same way we do not have to specify
that the instruction CLA FRST goes into 0000, ADD
SCND into 0001, and so on - we merely tell the computer
to start the program at location 0000. The symbolic.
program would therefore go something like this:

START PROGRAM AT 0000 AND START DATA AT
1000

SET ASIDE AN ADDRESS FOR FRST

SET ASIDE AN ADDRESS FOR SCND

SET ASIDE AN ADDRESS FOR ANSR

CLA FRST

'r first step tells the assembler that the program
should start at address 0000 and each following instruction
should be in the following address, and that the data (in this
example this inchids the FRST and SCND numbers, as
well as the ANSR) should start at memory location 1000.

The next step tells the assembler to set aside an
address for FRST. The assembler therefore picks the first
free address in the group set aside for data, which is 1000,
and will at it FRST from now on, Note that because we
will refer to the address with the symbol FRST from now
on, we really do not care what the address exactly is:
whether it is 1000 or 1001 or 4253 makes no difference
because the assembler will keep track of it.

The IICXL sicp u.iis iii aui	 , S' asdC an

address for SCND. The next free address after 1000 is 1001
(because 1000 is already taken by FRST), and so the
assembler will supply the address 1001 every time we use
the symbel SCND.

In the same way, the next step tells the assembler to
set aside an address, this time 1002, for ANSR. Thh is the
last pseudo- instruction, and the next instruction will start
the program itself.

The next instruction is CLA M. which the
computer translates into 10 1000 by translating CLA into
10 and looking up the address of FRST in its table which is
1000. Siniiiarl', the assembler wiUtranslate the instruction
ADD SCND into 14 (X)l and the instruction STA ANSR
into 30 1002. Finally it translates HLT into 00, thus
providing the complete machine language program for the
given assembly language program.

Computer Languages 147

Advantages of Assembly Language Over Machine
Language

Assembly languages have the following advantages
over machine languages:

Easier to understand and use. Assembly
languages are easier to understand and use
because mnemonics are used instead of numeric
op-codes and suitable names are used for data.
The use of mnemonics means that comments are
usually not needed: the program itself is
understandable. Symbolic programming also
saves a lot of time and effort of the programmer
because it is easier to write as compared to
machine language programs.

2. Easy to locate and correct errors. While writing
programs in assembly language, fewer errors are
made, and those that are made are easier to find
and correct because of the use of mnemonics and
symbolic field names. Furthermore, assemblers
are so designed that they automatically catch
errors. If we use an invalid mnemonic or a name
that has never been defined, the assembler will
print out an error indication. For example,
suppose one instruction in the symbolic program
reads ADD AREA, and we forget to define what
AREA is, the assembler will look through its
table to find AREA and not finding it will
indicate the error.

Easier to modify. Assembly language programs
are easier for people to modify than machine-
language programs. This is mainly because they
are easier to understand an hence it is easier to
locate, correct., and modify instructions as and
when desired. Moreover, insertion or removal of
certain instructions from the program does not
require change in the address part of the
instructions following that part of the program.
This is required in case of machine language.

No worry about addresses. One of the greatest
advantage of assembly language is that it
eliminates worry about address for instructions
and data. This is more important than it seems at
first glance. Suppose we have written a Long
machine language program involving many steps
and many references to itself within the program,
such as looping, and address modifications, and
so on. At the very end we may suddenly discover
that we have left out an instruction in the middle.

If we insert that instruction, we will have to
remember all the following instructions, and go
through the entire program to check any
references to other steps. This is a tedious job.
But if we write the same program in symbolic
language, we merely add the extra instruction,
and the assembler will take care of the step
numbering automatically.

5. Easily relocatable. Suppose mat an assembly
language program starts at address 1000 and we
suddfl1y find that we have another program to
be used with this program and this program also
starts at location 1000. Obviously, one of the tWO

programs will have to be rewritten to be moved
somewhere else. In machine language, this can
be a complicated job. But in case of assembly
language, we ineiel y have to change the first
statement; for example instead of

START PROGRAM AT 1000 AND START
DATA AT 2000

we merely change this first statement to

START PROGRAM AT 3000 AND START
DATA AT 4000

and run the symbolic program once more
through the assembler. The equivalent machine
language program will this time start at memory
location 3000 instead of 1000, and there will be
no conflict with the other program. In other
words, using symbolic language we can easily
move programs from one section of the memory
to another; we say that assembly language
programs are easily re!ocatable because their
location is easily changed merely by changing
the first instruction. This is not easily done with
machine language programming.

6. Efficiency of macmae language. In addition to
the above mentioned advantages, an assembly
language program also enjoys the efficiency of
its corresponding machine code because there is
one to one correspondance between the
instructions of an assembiy language program
and its corresponding machine language
program. Except for pseudo-instructions, which
am simply instructions to the assembler, every
other instruction of an assembly langiage
program is translated into one machine language
instruction. For every machine language
instruction, there is a corresponding symbolic

11-A

148 Digital Corn purer Fundanirnials

instruction and for every symbolic instruction
(except the pseudo-instructions) there is a
corresponding machine instruction. In other
words, the symbolic program will be just as long
as the resulting machine language program. So
leaving out the translation time required by the
assembler, the actual execution time of an
assembly language program and its equivalent
machine language program (written
independently) will be the same. The reason we
are stressing this important fact is that there are
languages (called macro-languages) in which a
single instruction may get translated into an
entire series of machine language instructions.
Assembly language, in its basic form, is not one
of these - there is one-to-one relationship
between symbolic and machine languages.

Limitations of Assembly Language

The following disadvantages of machine language
are not solved by using assembly language

Machine dependent. Because each instruction in
the symbolic language is translated into exactly
one machine language instruction, assembly
languages are machine dependent. That is, they
are designed for the specific make and model of
the processor being used. A decision to change
to another computer still usually requires
learning a new language and the conversion of
all existing programs - a very expensive
undertaking.

Kno'led2e of /i,ir1w,,"'	 Sc
assembly languages are machine dependent, so
the programmer must be aware of a particular
machines characteristics and requirements as the
program is written. An assembly language
programmer must know how his machine works
and should have a good knowledge of the logical
structure of his computer in order to write a good
assembly language program.

3. Machine level coding. In case of an assembly
language, instructions are still written at the
machine-code level - that is, one assembler
instruction is substituted for one machine-code
instruction.

Machine and assembly languages being machine
dependent, are referred to as low-level languages.

Assembly Languages With Macro Instruvton

In general, assembly languages are termed one-for-
one in nature, that is, each a.ssernbiy language instruction
will result in one machine language instruction. However,
quite often a certain set of machine language or assembly
language instructions have to be used over and over. For
example, three instructions, one after the other, might be
needed to print out a number on a particular computer.
These three instructions, always in LhC sante ordei, rriiglu be
used over and over in the same program. instead of forcing
the programmer to write out the set of three instructions
every time he wants to print a number, we might as well
design the assembler (program) in such a way so as in take
care of these instructions. Every time the programmer gave
the PRINT instruction, for example, the assembler would
translate it into three machine language instructions instead
of one, thtis supplying the complete set of instructions
required for printing.

Any instruction, such as PRINT, which gets
translated into several machine language instructions, is
called a macro instruction. There might be many such
macro instructions permitted by a particular assembler.
Thus, to speed up the ceding process, assemblers were
developed that could produce a variable amount of machine
language instructions for each macro instruction of the
assemhl language program.

The use of macro instructions adds much work to
the computer because the translation process becomes more
than just changing each word into a number. The assembler
must be able to Supply the missing steps as well, but it
means a tremendous saving of work for the programmer.
The programmer gets relieved of the task of writing an
instruction for every machine operation performed: it
acdue die iength ot inc programs he writes, cuts down on
his errors, and simplifies his programming.

The macro instruction capability was developed
very early in the evolution of computer languages. In fact, it
is this concept of multiple machine instructions from one
macro instruction around which today's machine-
independent higher level languages are designed.

HIGH-LEVEL LANGUAGE

We have already seen that writing of programs in
machine language or assembly language requires a deep
knowledge of the internal structure of the computer. While
writing programs in any of these languages, a programmer
has to remember all the operation codes (numeric or
mnemonic) of the computer and know in detail what each
code does and how it affects the various registers of the

11-B

Computer Languages 149

computer. However, we have also seen that in order to
write a good computer program, the programmer should
mainly concentrate on the logic of the problem rather than
be concerned with the details of the internal Structure of the
computer. In order to facilitate the programmers to use
computers without the need to know in detail the internal
structure of the computer, high-level languages were
developed.

High-level languages, instead of being machine
based, are oriented more towards the Problem to be solved.
These languages enable the programmer to write
instructions using English words and familiar mathematical
symbols. So it becomes easier for him to concentrate on the
logic of his problem rather than getting involved in
programming details. Obviously, the two-part format
shown in Figure 12.1, that was required for writing
Instructions in machine language or assembly language, is
not necessary for writing instructions in a high-level
language. For exarnpk, let us consider the same problem of
adding two numbers (FRST & SCND) and storing the sum
in ANSR. We have already seen that three low-level
(machine/assembly) instructions are required for
performing this job. However, if we use a bigh-lcvcl
language, say FORTRAN for instance, to instruct the
computer to do this job, onl y one instruction need be
written

ANSR =FRST+ SCND

This instruction is obviously very easy to understand
and write because it resembles the familiar algebraic
notation for adding two numbers : a = h + c.

High-level languages are basically symbolic
languages that use English words and/or mathematical
symbols rather than mnemonic codes, In other words, a
high-level language is a symbolic language with nothing
but macro-instructions. Every instruction which the
programmer writes in a high-level language is translated
into many machine language instructions. This is one-to-
many translation and not one-to-one as in the case of
assembly language. It is due to this reason that high-level
languages are so called.

High-level languages are also known as problem-
oriented language: because the macro instructions are
especially picked to be useful for solving particular types of
problems. Each such language is then best to solve a
particular class of problems and may be completely useless
for solving other types of problems. For example, if a high-
level lanruage is capable of handling business-type
applications that consist of high input volume, relatively

little processing, and a high output volume, then the
language is a business. oriented language. On the other
hand, languages excellent at performing sophisticated
computations but not adept at handling large data files are
mathematically-oriented languages. Thus, a problem-
or,ented language is designed in such a way that ILS

instructions may be written more like the language of the
problem. For example, a scientist using a science-oriented
language can use scientific formulas, and a business man
with a business-oriented language can use business terms.
Hence, high-level languages are generally easier to learn
and write.

COMPILERS

Since a computer hardware is capable of
understanding only machine level instructions, so it is
necessary to convert the instructions of a program written
in high-level language to machine instructions before the
program can be executed by the computer. We have seen
that assembly languages use an assembler to perform this
conversion process. In case of a high-level language, this
job is carried out by a compiler. Thus, a compiler is a
translating program (much more sophisticated than an
assembler) that translaies the instructions of a high-level
language into machine language. A compiler is so called
because it compiles a set of machine fanguage instructions
for every program instruction of a high-level language. A
program written by a programmer in a high-level language
is called a source program. After this source program has
been converted into machine language by a compiler, it is
referred to as an object program. As shown in Figure 12.3
the input to a compiler (program) is a source program
written in a high-level language and its output is an object
program which consists of machine language instructions.
Note that the source program and the object program are
the same program, but at different stages of development.

UTPUT	
Lga'L'

P,)gr.	 Program

CO-mary.-..rCe Pc'r-)	 •	 Oh: P,og-a='
'a,Sior

Figure 12.3. Illustrating the translation process of a
compler.

A compiler can translate only those sonrce programs
which have oven writte1t in the language or wiich the

Program Pt
fl h i gh-level

Language LI

Program P2
in hgh-level
Language L2

Machne Code
for P1

Machine Code
for P2

Compiler br
Language Li

Compiler for
Language L2

Computer supporling
Lanquaes Li & L

150 Digital Computer Fundamentals

computer is meant- For example, a FORTRAN compiler is
only capable of translating source programs which have
been written in FORTRAN and, therefore, each machine
requires a separate comoiler for each high-level language

that it supports. This is illustrated in Figure 124. Moreover,
since an object program for one machine will not be the

same as the object program for another machine, it is

necessary that each machine must have tic own 'personal'
compiler for a particular language, say Ll. r:lglffe 12.5
illustrates how machine-independence is achieved by using
different compilers to translate the same high-level
language program to machine languages of different
computers.

Compilers are large programs which reside
permanently on secondary storage. When the iranslauon of
a program is to be done, they are copied into the main
memory of the computer. The compiler, being a program, is
executed in the CPU. While translating a given progcarn
the compiler analyses each statement in the source program
and generates a sequence of machine instructions which,
when executed, will precisely carry out the computation
specified in the statement- As the compiler analyses each
statement, it uncovers certain types of errors, These are
referred to as din gnosdc errors. The compiler can diagnose
the following kinds of errors in a source program

Figure 12.4. Illustrating the requirement of
separate compilers for each high-level
language supported by a computer.

U;n.
Complier

for	

wilt rur or,	 Compu ter P.
computerocomputer A	

or P1 ifll

Computer A

Program P1
or hgh-14b obir neO
Language Li	

resulls

Mach -

",

comp'Ler to,	
for

P1 that
Compute' BL

^C^pte,
will run ono Compute, B

Figure 12.5. Illustrating the machine independence
characteristic of a high-level
language. Separate compilers are
required for the same language on
different compuu'xs.

a. Illegal characters

h. Illegal combination of characters

c. Improper sequencing of instructions in a

program.

A source program containing an error diagnosed by
the compiler will not be com piled into in rrhjrb pro am.

The compiler will print out a suitable message indicating
this, along with a list of coded error messages which
indicate the type of errors committed. The error diagnostics
is an invaluable aid to the programmer.

-A compiler, however, cannot diagnose logical
errors. It can only diagnose grammatical (syntax) errors in
the program. It cannot know ones intentions. For example,
if one has wrongly punched -25 as the age of a person,
when he actually intended +25, the compiler cannot
diagnose this. Programs containing such errors will be
successfully compiled and the object code will be obtained
without any error message. However, such programs, when
executed, will not produce the right answers. So logical
errors are detected only after the program is executed and
the result produced does not tally with the desired result.
Hence, it is essential to be precise in writing a program and
pay careful attention to the smallest detail.

Computer Languages 152

INTERPRETERS

An interpreter is another type of translator used for
translating high-level languages into machine code. It takes
one statement of a high-level language and translates it into
a machine instruction which is immediately executed.
Translation and execution alternate for each statement
encountered ill high-level language program. In other
words, an mierpreter translates one instruction, and the
control unit executes the resulting machine code, the next
instruction is translated, and the control unit executes the
machine cede instruction, and so on. This differs from a
compiler which merely translates the entire source program
into an object program and is not involved in its execution.
In case of a compiler, the whole source program is
translated into an equivalent machine language program.
The object code thus obtained, is permanently saved for
future use and is used every time the program is to be
executed. So repeated compilation is not necessary for
repeated cxecudon of a program. However, in case of an
interpreter, no object code is saved for future use because
the translation and the execution processes alternate. The
next time an insifliction is used, it must once again be
interpreted and translated into machine language. For
example, during the repetitive processing of the instructions
within a loop, each instruction in the loop will have to be
reinterpreted every time the loop is executed.

Interpreters are often employed with
microcomputers (small computers). The advantage of an
interpreter over a compiler is fast response to changes in the
source program. The interpreter eliminates the need for a
separate compiling run after each program change to add
features or correct errors. Moreover, a compiler is a
complex program compared to an interpreter. Interpreters
are easy to write and they do not require large memory
space in the computer. The interpreter, however, is a time
consuming translation method because each statement must
be translated every time it is executed from the source
program. Thus, a Compiled machine language program runs
much faster than an interpreted program.

Assemblers, compilers, and interpreters are systems
software that translate a source program written by the user
to an object program which is meaningful to the hardware
of the computer. These translators arc also referred to as
language processors. since they are used for processing a
particular language.

Based on the above discussions, we conclude that, in
general, a programming language should possess the
following characteristics to be considered high-level:

I. The language should be relatively independent
of a given computer system. That is, instead of
being machine based, it should be oriented more
towards the problem to be solved.

2. Each statement of the language should be a
macro instruction that gets translated into many
machine language instructions.

3. The language should enable the programmers to
write instructions using familiar words and
mathematical symbols. It should be natural and
should use abbreviations and worth used in
everyday communication.

4. The language should be independent of machine
language instructions and other pieces of system
software ex-pt for the compiler or the
interpreter.

5. The language should not be experimental in
nature and should exist on more than one
computer system.

Advantages of High-Level Languages

High level languages enjoy the following
advantages dyer assembly and machine languages

Machine independence, High-level languages are
machine independent. This is a very valuable
advantage because it means that a company
changing computers - even to one from a
different manufacturer - will not be required to
rewrite all the programs that it is Currently using.
Even for programs written in the high-level
languages, some modifications are almost
always required, but these modifications are
relatively minor and can be easily done without
much effort. In other words, a program written in
a high-level language can be run on many
different types of computers with very little or
practically no effort.

2. Easy to learn and use. These languages are very
similar to the languages normally used by us in
our day-to-day life. Hence they are easy to learn
and use. The programmer need not learn
anything about the computer he is going to use.
He need not worry about how to store his
numbers in the computer, where to store them,
what to do with them, etc. That is the
programmer need not know the machine
instructions, the data format, and so on.

152	 Corn nater Fundamentals

However, such a knowledge is desirable since it
allows the programmer to utilize the system
more efficiently.

3. Fewer errors. In case of high-level languages,
since the programmer need not write all the
small steps carried out by the computer, he is
much less likely to make an error. The computer
takes care of all the little details, and will not
iatroduce any error of its own unless something
breaks down. Furthermore, compilers are so
designed that they automatically catch and point
out the errors made by the programmer. Hence,
diagnostic errors, if any, can be easily located
and corrected by the programmer.

Lower program preparation cost. Writing
programs in high-level languages requires less
Lime and effort which ultimately leads to lower
prcg'-am preparation cost. Generally, the cost of
all phases of program preparation (coding,
debugging, testing, etc.) is lower with a high-
level language than with an assembly language
or with a machine language.

5. Better documentation. A high-level language is
designed in such a wa y that its instructions may
be written more like the language of the
problem. Thus the statements of a program
written in a high-level language can be easily
understood by a person familiar with the
,AO'O!crfl. For the documentation of such
programs, very few ,r practically no separate
:omment statements are required.

6. Easier to maintain. Programs written in hi g h-
level languages are easier to maintain than
assembly language or machine language
programs. This is mainly because they are easier
to understand and hence it is easier to locate,
correct, and modify instructions as and when
desired. Insertion or removal of certain
instructions from a program is also possible
without any complication. Thus, major changes
can be incorporated with very little effort.

Limnations of high-level Languages

Two disadvantages of high-level languages are

Lower efficiency. Generally. a program written
in assembly language or machine language is
more efficient than one written in high-level
language. That s, the programs written in high-

level languages take more time 10 run and
require more main stnraee.

2. Lack of flexibility. Because the automatic
features of high-level languages always occur
and are not under the control of the programmer,
they are less flexible than assembly languages.
An assembly language provides programmers
access to all the special features of the machine
the) are using. Certain types of operations which
are easily programmed using the machines
assembly language, are impractical to attempt
using a high-level language. This lack of
flexibility means that some tasks cannot be done
in a high-level language, or can be done only
with great difficulty.

In most cases, din ad\ assies of high-level
languages far outweigh the disadvnci.gcs. Most computer
installations use a high-level language for most programs
and use an assembly language for doing special tasks that
cannot be easily done otherwise

sOMFL-llL(;H.LEVEI. LANGUAGES

The credit for the development of the first high-level
language is usually given to Dr. Grace Hopper who
described the idea of a compiler and its language as early as
1952- Two languages were developed under Dr. Hopper's
directions : FLOWMATIC was a commercial and business
language which could easily be put together from the
contents of a flowchart, whereas MATHEMATIC was a
mathematical language. These two languages were an early
example of the development of high-level languages in
different directions - business and commercial, and science
ind m!ber .ore. Src :hcr, ia 7 odici imigim-ievel
languages have been produced. Today there are over 200
high-level languages. However, most of these are for very
special purposes or âr designed to sQive problems in a very
specific applications area. Some of the most common high-
level languages have been briefly described below. The
primary objective is to provide some insiht into these
languages rather than to provide detailed knowledge
required to write programs.

FORTRAN

One of the oldest and -the most popular high-level
language is FORTRAN which stands for FORmula
TRANslation Originally developed by IBM (International
Business Machine Corporation) for its 704 computer in
1957, FORTRAN has undergone several revisions so that
the language has been evolving into a wider and more
tsefu! language with time. The original FORTRAN was

Computer Languages 153

S0011 foliowcd by FORTRAN II. The next popular and
advanced version was FORTRAN IV. In order to allow a
Program that was written for one computer system to be run
on another computer system, this version was standardized
by the American National Standards Institute (ANSI) in the
year 1966. FORTRAN thus has the distinction of being the
first standardized language. In 1977 an updated version of
FORTRAN IV, known as FORTRAN 77, was announced
and standardized by ANSI. It contains several additional
features which aic not a part of FORTRAN IV, e.g.
character and file handling, constructs related to a more
structural approach to programming.

FORTRAN was designed to solve scientific and
engineering problems and is currently the most popular
language anlong scientists and engineers. The language is
oriented towards solving problems of a mathematical natuxe
and has been designed as an algebra-based programming
language. Any formula or those mat

hematical relationships
that can be expressed algebraically cart easily be expressed
as a FORTRAN Instruction, e.g. A = B + C - D. To
illustrate the nature of FORTRAN programs, a simple
FORTRAN program to compute and print the sum of 10
numbers is given below.

C I:ORl'RAN i'ROGRAM ..() COMPUTE
C TIlE SUM OF 10 NUMBERS

SUM = 0
DO 50 I = 1, 10
REAl) (5, 10) N

10 FORMAT (F6 . 2)
SUM = SUM + N

50 CONTINUE
WRIIE (6, 20) SUM

20 FORMAT (IX, 'TILE SUM OF GIVEN
- NUMIJERS' FlU . 2)

STOP
END

From the example you can see that a FORTRAN
program consists of a	 series of statements. These
statements supply input/output, calculation,
logic/comparison, and other basic instructions to the
computer. The words READ, WRITE, DO, and STOP in
the statements mean exactly what you would expect. A
FORTRAN program requires that certain parts of every
statement be placed in certain columns. Statement numbers,
which are optional in FORTRAN, are placed in columns I-
5 (10, 50 and 20 in this example). A comment statement
starts with a C in the first column (the first statement of this
example). Comment statements are used in programs for
the purpose of documentation or explanation designed to
ccist anyone reading the source program listing.

Comments do not form a part of the program logic and are
ignored by the computer. The actual FORTRAN statement
is placed in columns 7-72. A character in column 6 means
that the statement in the previous line is being continued in
this line. Columns 73-80 are ignored by the computers. Thd
programmer may use these columns for any purpose, such
as numberi ng each statement or writing a program code
name.

In the example above, the value of SUM is first
initialized to 0. The next statement tells the computer to do
a loop that starts at the DO statement and ends in line
having label 50, which is a CONTINUE statement. Inside
the loop, values of N are read and added to SUM one by
one. After the computer loops 10 times, reading and
accumulating the sum of 10 numbers, the computer goes
out of the loop and drops down to the next statement. This
is the WRITE statement which prints the message: THE
SUM OF GIVEN NUMBERS = followed by the computed
value of SUM. The next statement, which is a STOP
statement tells the computer to stop the execution of the
program. Finally, the END statement tells the computer that
there are no more instructions or statements in the program.
The data for this program is contained in a separate file and
is not shown in the program.

COBOL

COBOL is an acronym for COmmon Business
Oriented Language. As its name implies, this language was
designed specifically for business data processing and
today it is the most widely used business-oriented
programming language, Unlike FORTRAN, which
gradually developed into a full-fledged language, the
vocabulary and grammar of COBOL were worked out in
1959-1960 by a committee of the COnference on DAta
SYstems Languages (CODASYL) as a joint effort of
computer users, manufacturers, and the United States
government. After the vocabulary and grammar were
defined by this committee, the various manufacturers wrote
the compilers for their computers. Since 1960, the language
has been revised, but revision by manufacturers have been
rare, because other CODASYL committees have continued
to maintain, revise, and extend the initial specifications, An
ANSI COBOL standard was first published in 1968, and a
later version was approved in 1974. As long as these
standards are followed, a COBOL program can be run on
any computer system with an ANSI COBOL compiler.

COBOL was designed to have the appearance and
structure of a business report written in English. Thus, a
COBOL program is constructed from sentences,
paragraphs, sections, and divisions. All COBOL programs
must have four divisions namely, the idon.tificatiorr

154 Digital Computer Fundamentals

division, the environnient division, the data division, and
the procedure division. The nature of COBOL program is
illustrated below with the help of a simple COBOL
program to compute and print the sum of given numbers.

IDENTIFICATION DIVISION.
PROGRAM-ID. SUMUP.
AUTHOR. P K SINHA.
• THIS PROGRAM COMPUTES AND PRINTS
• THE SUM OF GIVEN NUMBERS.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. BURROUGHS-6700.
OBJECT-COMPUTER. BIJRROUGHS-6700.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT DATA-FILE ASSIGN TO
C.._RD-READEIL
SELECT OUTPUT-FILE ASSIGN TO PRINTER

DATA DIVISION.
FILE SECTION.
FD DATA-FILE

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMFITED
DATA RECORD IS INPUT-DATA-RECORD.

01	 INPUT-DATA-RECORD.
05 N	 PICTURE 9(6)V99.
05 FILLER PICTURE X(72).

FD	 OUTPUT-FILE
RECORD CONTAINS 132 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD IS OUTPUT-RECORD.

01	 OUTPUT-RECORD.
05 FILLER PICTURE X
05 111LLIURL)).
05 SUM PICTURE 9(10)V99.
05 FILLER PICTURE X(94).

WORKING-STORAGE SECTION.
77	 MESSAGE PICTURE X(25) VALUE IS

THE SUM OF GIVEN NUMBERS=".

PROCEDURE DIVISION.
OPEN-FILES.

OPEN INPUT DATA-FILE.
OPEN OUTPUT OUTPUT-FILE.

INITIALIZATION.
MOVE SPACES TO OUTPUT-RECORD.
MOVE ZERO TO SUM.

PROCESS-LOOP.
READ DATA-FILE AT END CO TO
PRINT-PARA,
ADD NTO SUM.

GO TO PROCESS-LOOP.
PRINT-PARA.

MOVE MESSAGE TO TITLE.
WRITE OUTPUT-RECORD.

END-OF-JOB.
CLOSE DATA-FILE.
CLOSE OUTPUT-FILE.
.STOP RUN.

it can be easily seen from this example that COBOL
is a self-documenting language. Self-dxumenting
languages are those that do not require much explanation in
order to be understood by some one reading the program
instructions.

The self-documenting aspect of COBOL is made
possible by its English like sentence and paragraph
structure and the very generous ma.dmum symbolic field-
name length of 30 characters. With a field-name length of
up to 30 characters, the name can clearly identify the field
and its purposc COBOL programmers should ensure that
the field name that arc used are meaningful, so that the self-
documenting feature of the language is not lost.

Like FORTRAN, most COBOL compilers require
that certain parts of every statement be placed in certain
columns. There are 80 columns in a line out of which
columns 1-3 are used for page number and columns 4-6
identify line numbers. The use of sequence numbers is
optional and can be omitted. An asterisk (*) in column 7
indicates a comment line and the entry is not compiled to
produce object code. Comment lines are actually some
notes revealing we intentions of the programmer and are
used for program documentation. The actual COBOL
statements are placed in columns 8-72. Notice that there are
two margins: A and B. The A margin that starts at column
8 is used to start a new division, section, or paragraph. The
B margin that starts at column 12 is used to start any
sentence. Finally, columns 73-80 which the computer
ignores, can be used to write some identification.

BASIC

BASIC (Beginners All-purpose Symbolic Instruction
Code) was developed by Professors John Kemeny and
Thomas Kurtz in the year 1964 at Darmouth College in the
United States. Their purpose was to develop a language
which would be very easy to learn and thus can be used-by
the undergraduate students in all fields of study. The
language has few grammatical rules and can be learnt in a
few hours of concentrated study. In order to understand and
write programs in BASIC, it is not necessary to learn
complex programming techniques. A person with little or
no knowledge of computers or programming can team to

Computer Languages 155

write BASIC programs in a short period of time. Because of
it

s
 simplicity and bias towards the user, BASIC is even

being used by school SIUdCnLS. It is a language well suited
for use in education and has become extremely popular
with micro.-'omputer USCtS.

Unlike FORTRAN or COBOL. BASIC is an
iiterpretcr based language. Instead of compilers,
interpreters a' generally used in microcomputer systems to
translate BASIC instructions into machine-language code.
Thus, as a BASIC program is being entered, its statements
are checked for syntax errors which can be immediately
corrected. This feature of BASIC makes it one of the most
popular computer languages used in microcomputer
systcms It is available in almost all microcomputers and
even in some pocket calculators. Though simple and easy to
learn. BASIC is quite flexible and reasonably powerful. It
can be used for both business and scientific applications.
Probably the greatest drawback of this ianguage is that it
has not yet been standardized. The language varies
significantly from one computer system to another. Thus, a
BASIC program written on one computer may not work on
another unless modified.

A Basic program to compute and print the sum of 10
numbers is given below:

5 REM PROGRAM TO COMI'UTE
6	 REM FIlE SUM OF 10 NUMI3ERS
10 LET S=0
20	 FOR I = 1 • 1 •O 10
30 READ N
40 LETS S 4 N
50 NEXT I
60 PRINT 'TIlE SUM OF GIVEN NUMIiERS="
70	 DATA 4. 20, 15, 32. 48
80	 DATA 12, 3, 9. 14, 44
90 END

It can be observed from this example that a BASIC
program is made tip of a series of statements. Each
statement stasis with a statement num.,..r and a key word,
followed in most cases by some type of action. For
example, in the statement, "40 LET S = S + N', 40 is the
statement number, LET is the key word, and S = S + N is
the action. The first statement of the progain which is a
REM statement is a remark being made for the purpose of
explaining or documenting a program step. It has no effect
on the program logic. The instruction must have a line
number, the key word REM, and an y remark that the
programmer wishes to make. In our example, the remark
statement was used to name the program. The two DATA
statements in the program are used to furnish the input data.

The FOR and NEXT statements control the loop that is
meant for adding the 10 numbers one by one. The END
statement stops the progi-w-ii execution.

PASCAL.

Named alter the famous French mathematician
I3laise Pascal, this language was first introducted in the year
1971 by Professor Niklaus Wirth of the Federal Institute of
Technology in Zurich Switzerland. His aim was to develop
a language after the concepts associated with structured
programming. Thus, PASCAL was the first language to
fully embody in an organised way the concepts of
structured programming. The language is relatively easy to
learn, and it allows the programmer to structure the
programming problem. This means that the program must
be written in logical modules which are in turn called by a
main controlling module. In other words, PASCAL is
designed to force us to look at a problem in a logical way
and to lay out a solution before we begin writing the
program. It is based on the theory that the use of too many
GO TO statements in a program makes the program clumsy
and unstruenired. The logic of such programs becomes
complex and these programs are difficult to understand and
mriaintain because they lack any rôcognizabie structure or
flow of control. Hence, as a good programming practice, a
programmer should avoid the use of GO TO statements in
his program as far as practicable. The features of PASCAL
help us in overcoming this problem. The language is
designed in such a way that complete PASCAL programs
can be written without the use of GO TO statements. The
process of looping or repeating a sequence is handled
automatically by special loop control statements. PASCAL
is thus widely recognised as a language that instills good
programming habits in a programmer. Owing to this reason,
Ns language is also extensively used to teach programming
to beginners. The features of PASCAL allow it to be used
for both scientific and business applications Hence, it is a
very powerful language and has been implemented on
several different computers including minicomputers and
microcomputers. A PASCAL version of a summing
program similar to those presented earlier in other
languages is shown below.

PROGRAM SUMNUMS (INPUT, OUTPUT);
(PROGRAM TO COMPUTE THE SUM OF 10
NUMBERS *)
(S DECLARATION OF VARIABLES 5)

VAR SUM, N : REAL;
VAR I: INTEGER;

BEGIN
SUM := 0;
FOR I:=1TO 1000

15 1) Digital Computer Fundamentals

BEGIN
READ (Nt,
SUM : = SUM + N;

END:
RITFLN ('THE SUM OF GIVEN NUMBERS=

SUM):
END.

The first line of the program contains the name of
the Program which is SUMNUMS. This is followed b y two
comment lines which are used for documentation purpose.
5ny comment can be placed within the symbols (* and *)
to document a PASCAL program. Then, all the variables
are declared. The variables SUM and N are declared as real
and hence they can be assigned any real number. Similarly,
the variable t, that has been declared to be an integer
variable, can be assigned any integer value. The heart of the
program starts with the word BEGIN and ends with the
word END. First, the variable SUM is initialized to zero.
The next statement starts a DO loop that reads and
computes the sum of the 10 numbers. Finally, the statement
having WRITELN prints the result of the program. It may
be observed that PASCAL programs are composed of
blocks starting with BEGIN and terminating with END. All
variables are declared at the beginning of the program and
program statements proceed in a logical ilow front Start to
finish.

PLII

PL/I stands for programming language one. It was
designed in the mid-1960s by IBM as a general purpose
language having features similar tc COBOL for business
applications and features similar to FORTRAN for
scientific applications in addition to other features such as
siring manipulation and list processing. The intention was
to create a universal language which would be adequate for
programming any kind of pp l 2cn. A PM ijdard was
produced by an ANSI committee in the year 1976. A subset
of this full standard, known as PLII-G is also available for
use with small computers.

Although PM is one of the most versatile and the
most powerful of the programming languages, it is not the
most commonly used. The main reason behind this is that
since PLJI has features found in both FORTRAN and
COBOL, it is a sophisticated language. It is enormous by
any standards and is not easy to learn in its totality.
Furthermore, the complexity of the language makes a
compiler and support - packages for the full language quite
large. Because of its size and heritage, the language so far
has been available primarily on IBM equipment and is not
very widely used or accepted.

A PM program for the summing problem is given

below to illustrate the nature of the language.

SUMNUMS : PROCEDURE OPTIONS (MAIN';
/* PROGRAM TO COMPUTE THE SUM OF 10
NUMBERS */
DECLARE (SUM. N) FIXED;
DECLARE I FIXED;
SUM 0:
DO I = I TO 10;

GET (N);
SUM = SUM + N;

END;
PUT EDIT cTHE SUM OF GIVEN NUMBERS =', SUM)
(AJ-5);
END;

It can be seen from this example, that the basic
element of a P1.11 program is a statement. Each statement is
Ierminated by a semicolon (;) and several statements may
be combined to form a procedure. A procedure may
represent an entire small program (as in this example) or a
block or module of a inore complex program. Because of its
modular structure, a beginner need only learn a small part
of the language in order to write programs for a particular
type of application. Moreover, modular procedure blocks
and other features of the language allow the use of the
various concepts of structured programming.

OTHER HIGH-LEVEL LANGUAGES

The high-level programming languages that were
discussed above are not necessarily the most important or
most popular languages. These languages were presented in
some detail to give you a better understanding of computer
programming and nature of hh.i.'cl ag i general.
There are several other programming languages which are
equally important and popular. Some of these languages are
briefly discussed in this section.

RPG. Report program Generator (RPG) is a business-
oriented, general purpose programming language. As the
name implies, the language is designed to generate the
output reports resulting from the processing of common
business applications. The language was developed by IBM
as a result of their customer requests for an easy and
economic mechanism for producing reports and was
launched in the year 1961 for use on the IBM 1401
computer. The latter version of RPG, called RPG II, greatly
improved the language and gave it additional capabilities.

RPG is considerably different from other
programming languages. Instead of writing instructions or
statements, the programmer uses vety detailed coding

Certipwcr Languages 157

sheets to Write his specificalions about input, calculations,
and output. These sheets specify exactly what is to be done,
and then the computer uses them to gcncrae the necessary
instructions to perform the desired applicauon. Thus. RPG
is easier to learn and use as compared to COBOL.
Moreover, RPG can duplicate any COBOL program.
Owing to these reasons, RPG is commonly used on many
small computers and in small businesses. It is well suited
for applications where large files are read, few calculations
are performed, and output reports are created. However,
RPG has restricted mathematical capabil i ty and cannot be
used for scientific applications.

ALGOL. Like FORTRAN, ALGOL (.4LGOrithmic
Language) is also one of the earliest and the most
influential high-level languages that was designed for
scientific applications. It was designed by an international
group of mathematicians, and developed by groups in
Europe and the United States. The language was first
introduced in 1958, resulting in ALGOL58. Later on, it was
revised in 1960 and this revised version, known as
ALGO1,60, was the most widely used version of the
language. The most recent, and the most powerful, version
is ALGOL68. Like PASCAL and FL/I, ALGOL is a block-
structured or modular language that is well suited for use in
a structured programming setting. One area in which
ALGOL, as originally defined, is quite deficient is that of
input/output. The language was primarily designed as a way
of expressing algorithms, and I/O statements were not made
a pars of the official language. ALGOL has not proven to be
as popular in the United States as in Europe for practical
work, although it is widely used in universities, especially
in computer science departments because of its elegance
and power. The lack of 110 facilities, plus the fact that the
largest computer manufacturer, IBM, did not favour
ALGOL early in its existence, has contributed to its lack of
widespread usage.	 -

AFL. APL (A Programming Language) was developed by
Kenneth in 1962. It is a very powerful programming
language that is well suited for specifying complex
algorithms. Much of its power is vested in the rich set of
mathematical operators available, zmabling easy
manipulation of matrices and arrays of highest rank. This
language is a real-time language developed primarily for
scientific applications. It is usually used in an iriLerpretive
and interactive manner - an environment Ahich gr..a'Jy
enhances its power. Since APL uses a rather large and
unusual character set, a special keyboard and terminal is
necessary for its implementation. Until recently, only
certain IBM equipment supported APL. However, the
advent of low-cost terminals capable of handling many
different type of fonts and the growing number of APL
users have brought it into wider, but still limited, usage.

ADA. ADA is a new general purpose programming
language. It was developed in the year 1980 at the request
of the U.S. Department of Defence (DOD) for use in
military applications. The language was developed at
Honeywell Computer Company by a group of scientists
headed by Ichbiah. It is named in honour of Lord Byron's
daughter Ada Augustha Lovelace. Ada was a close friend
of Charles Babbage, who has made significant
contributions in some of the earlier developments of
computer systems. Ada used to work with Babbage. She is
considered by many to be the first "programmer" because
she wrote the first computer program for the mechanical
computer (Analytical Engine) developed by Charles
Babbage.

Ada is an extremely complicated language with a
very large number of features. In addition to the normal
types of statements and commands. ADA also allows the
use of packages. A package allows for a collection of
related computational procedures and resources. Packages
are specified or written into the declarative part of the
program, which is typically at the top of an ADA program.
Then various procedural statements in the program can
access the package and use it. Another important feature of
ADA is the use of tasks. Tasks are used to allow concurrent
programming which is very useful for military applications.
Like packages, tasks have a specification part. Once
specified, tasks can be used within the body of the program
as and when needed. It is expected that most future
programs written for the Department of Defense. U.S.A.
will have to be in this language. As a result, this new
language may become very popular in the field of defense.

US?. LISP stands for LISt Processing. This language was
designed by McCarthy and is suitable for nonnumeric
applications. It is a powerful language for handling logical
operations. Because of this feature, the language is
extensively used in the areas of pattern recognition,
artificial intelligence, and for simulation of games.

SNOBOL. SNOBOL (SLriNg Oriented SymBOlic Language)
is another language used for nonnumeric applications. As
the name implies, the language was basically designed to
manipulate strings of characters. SNOBOL has powerful
string manipulation features that facilitate various types of
operations on strings of characters such as string
comparison, splitting of a string, combining two strings,
etc. Thus, this language has been widely accepted for
applications in the area-of text processing.

C. C is a relatively new language which is becoming very
popular day-by-day. It was designed at Bell Telephone
Laboratories, U.S.A. Like PASCAL and ALGOL, C is a
block structured language and has several features that

158 Digital Computer Fundamentals

allow the use of the various concepts of structured
programming. Moreover, a special feature of this language,
that is normally absent in other high-level languages, is that
it allows the manipulation of internal processor registers of
the computer. Thus, the language also enjoys the advantage
of having some of the pocrs of assembly language.
Because of this feature, C language is now being
extensively used for systems programming like design of
compilers and operating systems. Most computer vendors
of today, supply this language along with their computer
systems.

PROLOG. PROLOG stands for PROgramming in LOGic. It
is a very new programming language designed for handling
complex logical operations. The language is being used to
design intelligent computer systems and is expected to gain
popularity in the near luture.

CHARACTERISTICS OF A GOOD
LANGUAGE

In the previous section, we have seen that there are
some high-level languages which are very popular and
there are others which are used only by a small group of
programmers. Why do programmers prefer one language
over another? One ob.ious reason is the area of application.
However, another equally important reason is the
characteristics of the language. Several properties believed
to be important with respect to making a language good and
usable by human beings are briefly outlined below.

Simplicity. Programming Languages that are
simple and easy to learn and use are liked by
many programmers. For example, BASIC is used
by many programmers only because of its
simplicity. Thus, a language should provide a
programmer wirh C 1e2, pk, aii unitieci set
of concepts which can be easily grasped. There
should be a minimum number of different
concepts, with the rules for their combination
being as simple and regular as possible.
However, the power needed for die, language
should not be sacrificed for simplicity.

2. Naturalness. A language should be natural for
thc ' application area it has been designed. In
other words, it should be problem-oriented. It
should provide appropriate operators, data
structures, control structures, and a natural
syntax in order to facilitate the users to code
their problem easily and efficiently. Often if a
major amount of programming in a particular
area is required, it is extremely useful to develop
.a programming language just for that class of

applications. FORTRAN and COBOL are gc.xi
examples of scientific and business languages
respectively that possess high degree of
naturalness.

3. Efficiency. Efficiency is certainl y a major
element in the evaluation of any programming
language. Thus, while designing a compiler or an
interpreter for a particular language, system
programmers must give due consideration to
space and time efficiency. A programming
language should be such that its programs are
efficiently translated into machine code, are
efficiently executed, and acquire as little space in
the memory as possible.

4. Struciurednes.r. Structwedness means that the
language should have necessary features to allow
its users to write their programs based on the
concepts of structused programming. The main
reason behind thiS is that, this property of a
language greatly affects the ease with which a
program may be written, tested, and maintained.
Moreover, it forces a programmer to look at his
problem in a logical way and hence he creates
fewer errors while writing a program for his
problem. PASCAL, P1./I. and ALGOL are some
of the languages having this property.

Compactness. Users of a high-level, problem-
oriented language should be able to express
intended operations concisely, since this is one
of the fundamental reasons for having it. A
verbose language can tax the programmers sheer
writing stamina and thus reduce its usefulness.
COBOL ic g!terai!y co ike.i by many
programmers because it is verbose in nature and
lacks compactness.

6. Locality. A programming language should be
sugh that while writing a program, it
need not jump around visually as the text of the
program is prepared. COBOL lacks locality
because data definitions are separated from
processing statements, perhaps by many pages of
code. On the other hand, APL is very local since
it requires no declarations, thus permitting the
programmer to concentrate almost solely on the
part of the program around the statement
currently being worked with.

7. Extensibility. A good programming language
should also allow extension through simple,
natural, and elegant mechanisms. Almost all

Computer Languages 159

languagus, provide sttiprogiam definition
mechanisms for this purpose, but there are some
languages that are rather weak in this aspect.

8. Suitability to Environment. Depending upon the
type of application for which 1 programming
language has been designed, the language roust
also be mwle suitable lo its environment. For
example, a language designed for real time-
applications must he tnieraetise in nature. On the
other hand, languages used for data processing
jobs like pay-roll, stores accounting, etc., may be
designed to be operative in batch mode. A
language designed for interaction, say APL, is
not as usable in batch mode. Likewise, a
language designed for batch usage may prove
quite frustrating if used interactively from a
terminal.

SUBROUTINES

As we are going to abandon the chapter on program
writing, it is felt essential to introduce the concept of
subroutines which are very frequently used in
programming.

Suppose we arc writing a program for solving a
trignomctric problem. During the problem, suppose we
need to calculate the square root of a number three times.
Should we write the square root procedure into our program
thrice? Why can we not write the square root procedure just
once, and use it every time we need it?

We could of course write the steps required for the
calculation of square root each time we need them in the
program. But a much easier way of handling the problem is
to write these steps once and then refer to them each time
we need them.

Su.broujines (also called subprograms) are programs
written in such a way that they can be brought into use in
other programs and used whenever needed, without
rewriting. In other words, a subroutine is any standardized
program written in such a way that it can be used as part of
another program whenever necessary. A subroutine is
normally invoked through other programs by the use of
CALL statements.

There are many subroutines such as those for
finding square roots, Sines, Cosines, logarithms, etc. which
are used Over and over by many programmers. Such
subroutines are usually supplied by the computer
manufacturers along with the language compiler and are
referred to as built-in functions. Other subroutines can

easily be written and used as and when we need them.

QUESTIONS

I. Discuss the analogy between a computer
language and a natural lan.rzuagc.

2. How does a computer language differ from a
natural language ?

3. Name the three different categories of computer
languages

4. What is a machine language ? Why is it
required?

5. What are the advantages and limitations of
machine language ?

6. When is a computer language called machine
dependent ? What is the main disadvantage of
such a language?

7. A machine language instruction has a two-part
format. Identify these parts and discuss the
function of each.

8. What is a mnemonic ? How is it helpful in case
of computer languages?

9. What is an assembly language ? What are its
advantages over machine language?

10.What is an assembler?

11.What is the difference between a source program
and an object program?

12.What is a macro instruction 2 How does it help
in reducing a programmers job 7

13.What are high-level Languages ? Why are they
known as problem-oriented languages ? Name
some high-level languages.

14.Why are high-level languages easier to use?

15.What is a compiler ? Why is it required ? A
computer supports five high-level languages ?
Ilow many compilers will this computer have?

16.Illustrate the machine independent characteristic
of high-level languages.

160 Computer Languages

17. What type of errors can be detected by a
compiler ? What type of errors cannot be
detected?

18. What is an interpreter? How does it differ from
a compiler?

19. List Out the characteristics necessary for a
programming language to be considered as a
high-level language.

20. What are the advantages and limitations of high-
level languages?

21. Briefly describe the development and use of the
following programming languages

(a) FORTRAN
(b) COBOL
(c) BASIC
(d) PASCAL
(e) PL/1
(0 ADA
(g) RPG
(h) ALGOL
(I) APL
(j) SNOBOL
(k) LISP

22. What characteristics are desirable for a good
computer language?

23. What is a subroutine ? How do subroutines help
in program wnting?

24. Would you be equally likely to choose
FORTRAN or COBOL for a given task? Why?

25. What is the purpose of a language processor ?
Are language processors harcware or software?

26. While writirg a program. a programmer
erroneously instructed the computer to calculate
the area of a rectangle by adding the width to its
length (that is, AREA = LENGTH + WIDTH)
instead of multiplying the length and width.
Would you expect the language processor to
detect this error? Explain.

27. A programmer eliminates all language processor
errors from his program and then runs it to get
printed results. The programmer therefore
concludes that the program is complete.
Comment.

2. It is said that an assembly language is 'one-for-
one but a high-level language is many-for-
one. Explain what this means.

29. What is meant by standardization of a language?
Why is it important?

30.What is the role of comments in a program, and
how are they treated by the language processor?

31. What is a self-documenting language 2 Illustrate
with an example.

32.List out some of the program preparation
techniques that are often included under the term
'structured programming'.

33.Give the full form of the following terms
(a) FORTRAN
(b) COBOL
(C) tSASIL
(d) PL/l
(e) RPG
(1) ALGOL
(g) APL
(h) LISP
(I) SNOI3OL

CHAPTER 13

13. SYSTEM IMPLEMENTATION
AND OPERATION

In the previous two chapters, we have discussed the
analysis, design, and Coding phases of a computerised
system. After the computer programs have been prepared,
the computer information system enters the implementation
and operation phase. The goal of this chapter is to describe
the principal activities of the implementation and operation
phase, which relate to testing and debugging of programs,
coiriplete docum entation of th e system, changeover to the
new system, and system modification and maintenance,

TESTING AND DEBUGGING

So long as computers are programmed by human
beings, computer programs will be subject to errors.
Program errors are known as buss and the process of
detecting and correcting these errors is called debugging. In

general, testing is the process of making sure that the
program performs the intended cask, and debugging is the
process of locating and eliminating program errors. Testing
and debugging are vital steps in developing computer
programs. They are also time-consuming steps. In fact, the
time spent in testing and debugging often equals or exceeds
the time spent in program coding.

In general, there are two types of errors that occur in
a computer program - syntax errors and logical errors.
Syntax errors result when the rules or syntax of the
programming language are not followed. Such program
errors typically involve incorrect punctuation, incorrect
word sequence, undefined terms, or misuse of terms. For
example, the FORTRAN statement C = (A + 8/2 has a
syntax error. In tilLs example, the problem is a missing
closing parenthesis which should be placed in we
appropriate place depending on the logic of the program.

162

Ail syntax errors must be found and corrected before
there is any chance of running the program. Almost all
language processors are designed to detect syntax errors.
The language processors print error messages. on the source
listing that indicate the number of the statement with errors
and give hints as to the nature of the error. These error
messages are very useful and are used by the programmers
to rectify all syntax errors in their programs. Thus, it is a
elatively easy task to detect and cor. ct syntax errors.

It should be noted that in high-level languages such
as FORTRAN and COBOL a single error often causes
multiple error messages to be generated. There are two
reasons for multiple error messages. One is that high-level
language instructions often require multiple machine steps.
The other reason is that symbolic instructions are often
dependent upon other instructions and if an instruction
containing an error is one that defines a field name, all
instructions in the program using that field name will be
listed as errors. The error message will say that a field
being used is not a defined name. In such a case, removal of
the single error will result in the removal of all associated
error messages.

The second. type of error, a logical error, is an error
in planning the program's logic. In this case, the language
processor successfully translates the source cede into
machine code. The computer actually does not know that an
error has been made. It follows the program instructions
and outputs the results, but the output is not correct. The
problem is that the logic being followed does not produce
the results that were desired. When a logical error occurs,
all you know is that the computer is not printing the correct
output. The computer does not tell you what is wrong. For
example, if a FORTRAN instruction should be 'A
but has been coded as "A = B+C", this error will not be
detected by the language processor since no language rules
have been broken. However, the output produced will not
be correct. Thus, it is an example of a logical error.

In order to determine whether or not a logical error
exists, the program must be tested. The purpose of testing is
to determine whether the results are correct. The testing
procedure involves running the program to process input
test data that will produce known results. By running the
program and comparing the obtained answers to-the known
correct results, the accuracy of the program logic can be
determined. Logic errors are typically due either to missing
logic or to incorrect logic. If the logic is wrong, the answers
generated from the test data will be wrong. These errors are
the easiest of the logic errors to find. Errors caused by
missing logic result from logical situations that the program
was not designed to htndle. As an example, suppose that a
numeric field is to be used in an arithmetic process and that

the data entry openi!or enters a value for the field that is not
numeric. The progrim logic should determine that the data
are not numeric prior to attempting the. arithmetic process.
If that logic is missing and nomiumeric data is used in an
arithmetic operation, the program will fail. This type of hug
can be difficult to find. The only way for this error to recur
is for nonnumeric data to be entered Into a numeric field. It
is possible for the program to be used for weeks, months, or
years before this happens and the erro: in program logic
shows up.

In order to completely tcst the program logic, the
test data must test each logical function of the program.
J.'Ier.ce, the selection of proper test data is important in
program testing. In general, the test data selected for resting
a program should include:

1. Normal data, which will test the generally used
program paths.

2. Unusual but valid data, which will test the
program paths used to handle exceptions. Such
data might be encountered occasionally in
running the program.

3. Incorrect, incomplete, or inappropriate data,
which will test the error-handling capabilities of
the program. This is done to see how the
program reacts in abnormal and unusual
circumstances. Good programs should be able to
handle abnormal data without blowing up or
generating meaningless output.

If a program runs successfully with the test data and
produces correct results, it is normally released for use.
However, even at this stage errors may still remain in me
program. In case of a complex problem, there may be
thousands of different possible paths through the program
and it may not be practical or even possible to trace through
all these paths during testing. There are certain errors in
complex systems that remain dormant for months and years
together and hence it is impossible to certify that very
complex systems are error-free.

There are s'veral ways to locate and correct logical
errors some of which are briefly described below:

One approach is to study the source code
producing the incorrect results and try to
determine the cause of problem. However, some
errors are difficult to find, and simple inspection
of the source program does not reveal the nature

—of the error.

S y o,n hnploncntaiiwt wid Operwwn 163

It is a negative activity in that
it is ecntercd around elimination
of known errors or bugs.

2. Another approach is IC put several pont 01 WIILC

AcJflcfltS in the program that indicate the
values of intermediate cumpu&auon. These
slatenicnts can also be used In tell you what is
happening during the cxeCulion of the program.
Once the errors have been found and corrected,
these print or write statements are removed from
the program.

The third approach involves the use of tracing
routines which are software tools provided to the
programmer to help in debugging the program
logic. Tracing rosuines or debug packases 3ciL

the programmer in following the logic by
printing out intermediate calculation results and
field values that are used in making logical
disroas in the program. Using thcsc
techniques, the programmci cui follow the
programs execution step Dy step in order o
determine where the logic is in error.

in a few cases, the logical error can be
difficult to tinu, and the nwnbcr of fields
involved are so numerous, that the only way to
uncover the source of the error is to look at a
printout of the contents of memory. This printout
is called a storage dump or ,nenory dump. The
memory dump lists the instructions and data held
in the computers memory in their raw Form, that
is, their binary or equivalent hexadecimal or
octal form. The programmer can then study this
istirig tor possLbk clues to the cause of We

programming ersor(s). Most programmers of
nigh level languages resort to the use of memory
dumps only when all other methods of detecting
the logical error fails.

Dlffc;crjcc Between Testing and Debugging

2. it is a positive
icusty iuiet seeks to
dcinonsuate that the
prn.gram is correct and
does, in tact, ncct5 its
design specifications.

3. Testing is complete
when	 all	 desired
verifications 	 against
spccificauons	 have
been pert ornic.d.

4. Testing, can and
noukI be planned. It is

a definable task in
which inc how and
.w. ar to test can be
<pcfrcd. Testing can
be aehedtricd to iake
place at a specific time
in the development
cycle.

S. Testing can begin in
the ealy stages of the
development effort. Of
course the tests
themselves must be run
near the end of a
project, but the
decisions of what to
test, how to test, with
what kind of data, can
and should be
completed bcfoe the
ceding is started.

Debugging is finished when
there are no known errors.
However, debugging is a
process	 that ends	 only
temporarily, because
subsequent execution of a
program may uncover other
errors - thereby restarting the
debugging process.

Because debugging is a
reactive procedure which
stems from testing, it cannot be
planned ahead of Lime. The
best that can be done is to
establish guidelines of how to
debug and develop a list of
"what to look for.

Debugging, on the other hand,
cannot begin until the end of
the	 development	 cycle.
because	 it	 requires	 an
executable program.

Testing and debugging are two separate tasks They
shutiki riot be confused with cacti outer. The diItcrcncC
bclwecn these two proeesses arc outlined below

TESTING
	

DEBUGGING

I. Te,uuig	 .	 is J	 in
in woicri a t!Io1'aIi is	 which progr-ai	 co ors are
Vallidawd

DOCUMENTATION

A compulcnse4 system cannot be considered to be
complete until it is properly documented. In fact,
docunicritauon is an on-going process that starts in the

udy poase of the system and continue s tPP

uinic.nricoiaiion	 and	 operation	 phase.	 Moicover.

r i seunlseiitauori is a process that nevei ends througnoul tre
t tnc system. It has to be earned out from tiffie to time

as and when the system is modified during its mnarntenarnc

T)I3SC.

A

164 Digital Computer Fundamentals

System documentation involves collecting,
organizing, storing, and otherwise maintaining a complete
historical record of programs and other documents used or
prepared during the different phases of the system. Proper
documentation of a system is necessary due to the
following reasons:

It solves the problem of indispcnsibility of an
individual for an organisalion. In large
organ isation 1 over the years, the designer and
dcvclopci of a software system may not be in the
same organisaLon. In such eases, even if the
person who nas designed or programmed the
system, leaves the organisation, the documented
knowledge remains with the organisation which
can be used for the continuity of the system.

2. Maintainability of cmputer software poses a
concern to maor data processing installations.
The key to maintenance is proper and dynamic
documentation. A well documented system is
easy to modify and maintain in the future. It is
easier to understand the logic of a program from
the documented records rather than its code.
System flowcharts, program flowcharts, or
comments used within the programs prove to be
very helpful in this regard.

3. Documented records are quite helpful in
restarting a projet that was postponed due to
some reason or the other. The job need not be
started from scratch and the old ideas may still
be easily recapitulated which saves lot of time
and avoids duplication of work.

Documentation of a software system is normally
provided in the following forms:

I. Comments. Comments are very useful aid in
documenting a program. From maintenance point of view,
comments have been considered to be a must. Comments
are used within a program to assist anyone reading the
source program listing. They are used to explain the logic
of the program. They do aut contain any program logic and
are ignored (not translated) by the language processor.

Comments should be used intelligently to improve
the quality and understandability of the program. They
should not be redundant, incorrect, incomplete, or written
i"' such a way that cannot be understood by anyone else.
For example, a redundant comment for the statement N -

N+l would be "INCREMENT N BY 1. Useful comments
are those which describe the meaning of a group of
statements such as "READ AND ECHO PRINT THE
INPUT DATA. In other words, comments should mediate
between the program and the problem domain. Almost all
high level languages provide the facility of writing
comments along with the source code of a program and it is
suggested that programmers should liberally use this
facility for proper documentation of their programs.

2. Systems Manual. A good software system must be
supported with a standard systems manual that contains the
following information:

a. A statement of the problem clearly defining the
objectives of the computerised system and its
usefulness for various categories of users.

b. A broad description of the system specifying the
scope of the problem, the environment in which
the programs function, the system limitations,
the form and type of input data to be used, and
the form and type of output required.

c. Specific program names along with their
dcscriptinn and purpose.

d. Detailed system flow charts and program flow

charts cross referenced to the program listing.

e. Narrative description of the program listings, the
processing and calculations performed and the
control procedures.

f. A source listing of all the programs together with
full details of any modifications made since.

g. Description and specifications of all input and
output media required for the operation of
various programs.

h. Specimen of all input forms and printed outputs.

i. File layout, that is, the detailed layout of input
and output records.

12 - B

urn IrnpIernin..i:. fl mi Operatin 165

j. The structure and description of test data and Lest
results, storage dumps, trace program printouts.
etc.. used to debug the prrnnis

3. Operation Mar.aal. A good sof ire ;ick.ige illu .sl hr
supported with a good operation manual to ensure the
smooth running of the package. It is the operator A ho will
perform the regular processing after the sysier il gets
stabilised and not the programmer who has developed the
package. Hence, the operation manual must contain the
following information

a. Set up and operational details of each program

b. List of computer switches, their location, setting
and purpose.

c Loading and unloadin g procedares

d. Starting, finning, and LerIiiiiailn g procedures

c. A description and esarople 01 any control
Statements that may be used

f All console commands along with errors and
console messages that could arise, their meaning,
reply and/or operat'.maon.

g. List of error conditions with explanations for
their re-entry into the system.

h. List of programs to be executed before md after
execution of each program.

I. Special checks if any and security measures, etc.

The importance of program documentation cannot
be over emphasized. There have been too many problems in
the past with poorly documented systems. The result is
usually errors and problems with the computer programs at
a later date. It is very difficult to incorporate modifications
in such systems and hence they are very expensive to
maintain. Owing to these reasons, several computer
installations develop strict documentation standards. These

standards describe it detail how documentation is to be
perlirmetl and what reports and outputs arc necessary for

Iel:I:ienLitIt'n Lo l'c	 'rnplcted .successliiltv.

(:.\c;EOvER TO THE NEW SYSTEM

Once the programs are tested and appear to be
producing correct results, the system conversion and
chagcovcr begins. At thu sta ge, the old system, if an y , is
phased out and the t.e system is phased in. The
changeover process normally involves the following
operations

Training of personnel. Everyone who will be
affected by the new system should receive some
training to become familiar with the changes
This training should be both system training arid
user training. The overall purpose of system
training is to train members of the data
processing department on various technical
aspects of the new system. On the other hand,
user training is designed to allow managers.
decision makers, and other users to become
familiar with the new s y stem so as to increase
their involvement and participation in the new
System.

2. Replacement of old forms and operation
prcedurcs by new ones

Retirement of old input and output devices in
t;vQur of new hardware.

4. Incorporation of necessary changes in manual
methods and assignment of new jobs to various
personnel.

5. It is also necessary to convert all the data files
from manual to computer files. Thai is, current
files are changed into a form acceptable to the
processor. Files should be consolidated and
duplicate records eliminated. File inconsistencies
or any errois in current files must be detected
and removed.

3.

There are three different methods normally followed
to carry out the changeover process. These. are immediate
changeover, parallel run and phased con. ersion. Each of
these methods has iLS own advantoocs and disadvantages.

- •z;::;: -H

GpmaZr
PhA-

166 Digital Computer Fundamentals

As illustrated in Figure 13.1(a), in this method of
conversion, the operation of the old syscm is totally
abandoned from the date of changeover and the complete
new system starts operating from that day onwards. This
method of changeover is very risky because it has been
found that most systems pose some problem or the other
during the changeover process. The inbctwecn failure of the
new system due to any such problem may prove to be very
harmful causing total breakdown, and the work cannot
progress at all because the operation of the old system has
already been abandoned. However, this method is preferred
in situations where changeover time is very less, available
manpower is also less, and the system is not a very critical
one to business operiions so that changeover problems
would not trigger a disaster.

PARALLEL RUN

One 01 the best ways to implement a new system is
called running in parallel. As shown in Figure 131(b), in
tai method, the old system is opeiatct,l with the same data
as the new system and on the same time schedule for the
initial three or four cycles.

Cou(idcnce in the adequacy of the new system is
noriraJ1y established by comparing the data it produces

with the data produced by the rOd ccn g iiic time of

parallel operation. Some discrepencies may be discovered.

Oiler. these are dec to inaccuracies in the old system that
were not recognized before as inaccuracies. Unforeseen
exceptions will appear for which no programming was
provided. Some of the discrepencies Oct. epiKal during the

parallel operation stage will be due to ovcraignts and
mistakes in the programming itself. These must be

riecied by further debugging before the conversion IS

oii'.plcte.

The main advantage of parallel run is the availability

of old system as a backup. If there are any problems with
die new programs they can be corrected while toe existing
s

Y
.stcrn is still being used. Thus, iflerc is no intciuption of

service if there are problems with the new programs. Alter

the bugs are removed, the new sysicri is slo.vly phased in

whil
e he old system is slowi phased Out.

() immdiI chr,QOOt

(0) Parallel rut'

Cpia ton

system

rerfl , ___—ø

(c) Phasoci	 '-'tJr5.Ufl

igwe 13.1. Methods of system changeover to the
new system.

This method. niwe .:, iS 'ae pet rrc'J III Sonic

c&.es fxi, it is yen c.'.pmflSie and ie celtsumnIr.g

Additiona l ii5(!r3WCt, which is of scarce rOUttC in most

oigari:z.auons, must be provided !or the e.peiation of two

No single method is suitable for converting all types of
systems and the choice of a particular method largely
depends upon the prevailing conversion circumstances
These methods are briefly described below:

IMMEDIATE CHANGEOVER

System Implementation and Opera:i'm t'.i7

systems in parallel. Due to the requirement of adtitional
manpower and equipment resources for parallel Pin, the
organization is under considerable strain during the period
of parallel operation, and, if it is long continued,
organizational breakdowns tend to occur. To hold costs in
line, experience indicates that parallel operation must not
be carried on any longer than needed to establish
confidence in the new system. Continuing usem too long is
a sign of weakness in the new system. Moreover, parallel
run method of system conversion is also not used in
situations where the new system differs to a great extent
from the old system in the functions that it periorres and its
input and output.

PHASED CONVERSiON

As depicted in Figure 13.1(c), in this method, the
complete changeover to the new system takes place
incrementally over a period of time. The new system is
gradually implemented part by part and the old system is
gradually phased ouL The results produced by each part of
the new system is compared against the results of the old
system. Any discrcpencies or errors found are checked and
removed. Once confidence is developed in a particular pact
of the new system, that part of the new system is phased in
and the corresponding part (operations) of the old system is
phased oui This approach is continued for each and every
part of the new system. Thus, over a period of time, the new
system is slowly-slowly phased in, whic the old system is
slowly-slowly phased out.

This method of changeover enjoys several
advantages. It is not as expensive as the parallel run method
because the changeover process being gradual can usually
be handled with existing manpower and equipment
resources. There is no danger of interruption of service if
there are problems with the dew programs because the
corresponding part of the old system is still in operation.
Moreover, the users get sufficient time to become
acquainted with the new system. Hence, they can
confidently handle the new system when the complete
system is handed over to them. However, the phased
conversion method cannot be used in situations where the
time period supplied for conversion process is very lesi or
when the new system significantly differs from
system.

SYSTEM EVALUATION

Once the new system is implemented and in
operation, it is necessary to evaluate the system to verify
whether or not it is meeting ILS performancc'obicctTVc.s.

These performance objectives of the system are cicarly
sia:ed during its study phase. The post imp]erncni.Then
System evaluation is normally earned Out b' people who
have an independent view point and are not responsible for
the development and maintenance of the sytcrn. While
evaluating a system, the following points are considered:

1. Evaluation of efficiency: The new system is
compared against the old system to evaluate its
efficiency in comparison to the old one. In case
of any slack, the reason is analysed and if
possible, necessary modifications are
incorporated in the system to rectify it.

2. Cost/benefit analysis: The key to evaluating a
system is the costs and benefits to be derived
from alternate systems. This can be a long and
expensive process. Information can be
assembled on the actual cost of using the ncw
system, and this cost can be compared wit h the
anticipated cost as outlined in the report of the
feasibility study group. If discrepancies are
found on the high side, action can be taken to
find out the reasons and then to correct or offset
the causes.

Of course, benefits are not all tangible and
measurable. However, those that are measurable
should be expressed numerically. As a general
rule, whenever we identify a tangible specific
objective, we also should state the measurement
that we will make in the operation phase to
determine whether or not the system meets the
objective. Mathematical measurements can also
be made of the cost savings made possible by a
computerised system, and hardware and software
operating expenses can be monitored
continually.

3. Time schedule : It should also be evaluated
whether the various time schedules prepared
during the stud y phase in the beginning have
been met or not. This type of evaluation is quite
helpful in preparing time schedules for the new
systems that will be deigned in future.
Moreover, it should also be evaluated whether
the planned processing procedures are being
followed no:. Are all new procedures being
processed on the computer? Have all old
procedures been eliminated? If not, why not?

163 Digital Computer Eundwni'ntai.r

4. Users satisfaction	 People are ,he final
evaluators of information systems. [fence, it
should be found out whether the users are
satisfied with the new sysicin or not. How useful
is the system for them? How enthusiastic arc
they about the service they receive? Do they
receive outputs in time to take necessary action?
The morale of employees using or affected by a
system is a good measure of the success of the
project.

Ease of modification : Sooner or later, all
systems must change in response to changes in

their environment. New laws, changes in
technology, atid changes in the goals and
objective ,-, of the business are examples of causes
of change. Thus, the ease with which a system
can be modified to react to changes is also a
significant measure of its effectiveness n
achieving its objectives.

6. Error rate The frequency of failure of the
system should also be evaluated. This should be
reduced to minimum.

SYSTEM MAINTENANCE

No matter how good the new system is, how well it
was installed and how well It may be operating, changes in
business operations will force changes in the system.
Changing business conditions, revised user needs, new
laws, changes in technology, etc. are some factors which
require that production programs be continually maintained
and modified. The major cause of program maintenance is
due to user requests, normally for program enhancemrnr.
As a manager uses q ":ci iJugran1, there is a tendency
to demand additional reports and outputs from the program.
Changes in data storage and organization. program bugs,
and emergency program repairs are other important causes
for maintenance. The remaining program maintenance is
due to hardware changes, system software changes,
enhancing program documentation, and sheduted and
routine debugging.

Several studies have shown that, on an average,
application programmers and system analysis personnel
spend over half their time on program maintenance. Hence.
program maintenance is an important duty of programmers
and may involve all steps from problem definition through
analysis, design. and program preparation. In some
instaPations there are programmers who do nothing but
maintain production programs. n fact, in many
organizations well over bal., the total programming effort is

nt aim maintcnancc And it is estimated that over ihc life
ccic of a typical application. the maintenance and
enhancement costs that are incurred may be two to four
times larger than the initial development Cost.'..

Frequent change is disruptive and disturbing.
Therefore, some control over changes is required. One
method of achieving this control is to have all requests for
change evaluated by a change control board. This board
should be made up of the principal users of the system, a
system analyst, and data processing personnel who are
(:umlmar with the s ystem. Normal maintenance operations
need riOt he approved by the change control board, hut these
operations should be recorded and summanzcd for periodic
reporting to the board. Examples of maintenance activities
arc mnodilying the format of a report or rewriting a part of a
computer program component to improve its efficiency.
Major changes are those that significantly alter the system
or requi re extensive personnel, hardware, or software. An
example of a major change would be conversion of the
system from hatch processing to online terminals.

When programs are modified, it is important to
make sure that program documentation is also changed
accordingly. Without the existence of proper
documentation that is consistent with the programs, future
changes would be very difficult and costly to accomplish.

QUESTIONS

I. What are the two types of errors that can occur
in a computer program ? Give an example of
each to illustrate their nature.

2. How are syntax errors detected and corrected?

3. How are logical errors detected and corrected?

4. Is it easier to detect a syntax error or a logical
error? Give reasons for your answer.

5. Why should a program be tested?

6. What are the different types of test data that
should be selected for testing a program?

7. Why is it not possible for a very complex systeiv

System Implemenrazion and Operation 169

to certify that it is error free?

8. What is a memory dump ? How is it useful for a
programmer?

9. Differentiate between testing and debugging.

10. Why is system documentation necessary?

11. Discuss the different types of system
documentation normally used for documenting a
system.

12. What type of operations are normally carried out

in the system changeover process?

13 Discuss the three different methods of system
changeover along with !hrr advantages and
disadvantages,

14. What are the various factors that should be
evaluated during the system evaluation process?

15. Why is system maintenance required? Why is it
considered an important process?

6.	 How can f rcqucm pogram modifications be
controlled?

CHAPTER 14

14. OPERATING SYSTEMS

In the list few chapters we have dealt with the
planning, coding, operation, and maintenance of seftwarc
systems. in this chapter, you will lca.'m about a very,
important and special type of software that falls under the
catr.gory of systems software. This systems software is
known as orating system. The goal of this chapter is to
introduce the concepts rehired to operating s stems and to
show how this particular s ystems software is used
the computer a useful, eas y -to-use root.

D!F1NrnON AND FUNCTIONS

An operating sys:eni (OS) is an integrated set of
progran's that is used to manage the various resources and
overall operations of a computer system. It is designed to
support the activites of a computer installation. lis prime
obiectiv is to improve the crlirm:ecc and efficiency of a
computer system and increase facility, the ewe with which
a s ystem can be used. Thus, like a manager of a company,
an operating system is responsible for the sn'ooir and
efficient operation of the entire computer system.
Moreover, it makes the computer system user friendly. That
is. it makes it easier for people to interface with and make
use of the computer.

Operating systems go by many different names,
depending on the manufacturer of the computer. Other
terms used to describe the operating system are monitor.
exe.urive supervisor, controller, and master control
programs. No matter by which name they are called, today
most operating systems perform the following functions:

I Processor management, that is, assignment of
processors to different tasks being performed by
the computer system.

2. Memory management, that is, allocation of main
memory and other storage areas to the system
programs as well as user programs and data.

13

3. lnpuiiOutput management, that is coordination
and assignment of the different input and output
devices while one or more programs a;c being
executed.

4. File management, that is. the storage of files on
various storage devices and the transfer of these
files from one storage device, to another. It also
allows all files to be easil y changed and

172 Digital Computer tundtir,wnta/s

modified through the use of text editors or some
other file manipulation routines.

5. Estabhhment and enforcement of a job priority
system. Thai is, it determines and maintains the
order in which jobs are to be executed in the
computer system.

6. Automatic transition from job to job as directed
by special control staicmcnLs.

7. Interpretation of commar . ']s and fnstructions.

8. Coordination and assignment of compilers,
assemblers, utility programs, and other software
to the various users of the computer system.

9. Establishment of data security and integrity. That
is, it keeps different programs and data in such a
manner that they do not interfere with each
other. Moreover. it also pro:ccts itolf from being
destroyed by any user.

10. Production of dumps, traces, error messages, and
other debugging and error-detecting aids.

II.	 Maintenance of internal time clock and log of
system usage for all users.

12. Facilitates easy communication between the
computer system and the computer (human)
operator.

In effect, besides the hardware, each computir
system consists of an operating system that enables a user
to effectively use the system. Thus, as shown in Figure
14.1, the OS tends to isolate the hardware from the user.
The user communicates with the OS, supplies application
programs and input data, and receives output results.
However, it is interesting to known that all the tasks
performed by the OS are performed automatically. The
tuncuons of the OS are transparent to the user - he really is
not at all concerned with shat the OS is doing or how the
OS directs the hardware to handle certain tasks.

Users

Application Programs

Operating system

Hardware

An operating system performs a wide variety of
jobs. Each of these jobs are performed by one or more
computer programs and afl ¶beec czm Tu plogf-WInS aie
jointly known as an operating system. Out of the complete
operating system, normally, one control program resides in
the main memory of the computer system. Ths control
program is known as the resident program or the resident

routine. The either programs are stored on the disk and are
called transient programs or transient routines. These
programs include utility programs, compilers, assemblers,
etc. The control program transfers these programs into the
main memory and executes them as an when they are
needed. It may be recalled here that the capacity of the
main memory of any computer system is very small as
compared to its secondary storage devices like disks. This
is because main memory is very expensive as compared to
secondary storage devices. This is the reason why only the
control program is stored in main memory and the rest of
the operating system is stored on disks.

Figure 14.1. The in-between software layers isclate
the hardware of a computer system
from its users.

The efficiency of an operating system. and the
overall performance. of a computer installation is judged by
a combination of two main factors. They are:

Throughput. It is the total volume of work
performed by the system over a given period of
time.

2. Turnaround Time. It is also known as response
Lime and is defined as the in:cr,'al between the
time a user submits his job to the system fot
processing and the time he receives results.
Response time is especially impor1ait where

Operating Systems 173

many different users share the usc Ot the svtcm

and the overall progress of their work dcpcnb
upon their receiving prompt results frorn the
system.

EVOLUTION OF OPERATING sYSTf:1S

It is believed that one of the first operating svscms
was developed in the early 1950s for the IBM 701
computers. This OS was elementary in nature and was not
so powerful as the operating systems of toda ys computers.
Since then, lot of research work has been carried out in this
direction with the result that today we have very powerful
operating systems which are machine independent and can
execute several jobs at a time on the same machine. The
main aim of all the researchers involved in the development
of OS was to devise ways to minimise the idle time of the
computer system and to use the computer system in the
most efficient and economical way.

In tile earl y days of computers. job-to-job transition
was not automatic. For each and every job to be executed
by the computer. the operator had to clear Lhe main memory
to remove any data remaining from the previous job, load
the program and data of the current job from the input
devices, set the appropriate switches, and finally run ihe job
to obtain the results from the output devices. After the
completion of one job, the same process had to be repeated
for the next job by the computer operator. Because of the
manual transition from one job to another, lot of computer
time was wasted since the computer remained idle while
the operator loaded and unloaded jobs. In order to reduce
this idle time, a method of automatic job-to-job transition
was devised. With this facility, when one job is finished,

the system control is automatically transferred back to the
operating system which automatically performs the
housekeeping jobs needed to load and run the next job.

The automatic job-to-job transition facility provided
by the OS reduced the idle time of the computer to a great
extent. But still there was another scope for reducing the
idle t ime of the CPU. If you remember properly, we have

seen in Chapter 9 that the speed of CPU is much more as
compared to the speed of I/O devices. Hence, the CPU was
normally idle while a particular job was busy with some I/O
operations. So the next attempt by OS developers was to
overcome this speed mis-match by executing more than one
program at the same time. In this method, while one
program was busy with some I/O operation, the CPU time
was utiliscd for processing another job.

In a similar manner, there have been many improvements in
the operating systems of early days. A modern OS is very
sophisticated and does much more than what we ' have

discussed above. lii the next few section... sc will discuss

some of the common concepts and terms rclaLcd to the
.peratii)g systems of modern

BATCH PROCESSING

Batch processing is one of the oldcst methods of
running programs that is still being employed lv mary data
processing centres for processing their jobs. h based an
the idea of auiom.t:c job-to-job transition facility provided
b y almost all operating systems. In a hatch mode, each user
prepares his program off-line and submits i c to the
computer centre. A computer operator collects the
programs which have been punched on cards and stacks one
program or job on top of another, When a batch of
programs have been collected, the operator loads this batch
of programs into the computer at one time where they are
exccuted one alter another. Finally, the operator retrcves
the printed outputs of all these ihs and returns them to the
concerned users.

Batch processing is also known as serial, sequential,
off line., or stacked j oh process ig. When a computer Is

used in this way, the input data (and often the program) are
introduced into the computer and processed automatically.
generally without operator's mnlcrvcttuoo. Often many
different jobs (or sets of data) are processed, one right after
another, or even at the same time. hui without any
interaction from the users during program execution.

The method of batch processing reduces the idle
time of a computer system because transition from one job
to another does not require operator intervention.
Moreover, it is the most appropriate method of processing
for many types of applications such as payroll or
preparation of customer statements where it is not
necessary to update information (records) on daily besis.
However, batch processing suffers from . several
disadvantages which are as follows:

It reduces timeliness in some cases. The time
required to accumulate data into hatches, in
some instances, destroys much of the value of
the data. The information that results from
eventual processing is no longer timely.

Though efficient from the computer's point of
view, batch processing makes each job wait in
line at each

step and often increases its

turnaround time.

In batch processing, it is difficult to provide the
desired priority scheduling. For example, if two
high priority jobs were to be run but were in

174 D:gita? Computer Fu!:.

separate batches, one would have io wait until
the other's batch was completel y processed.

JOB CONTROL LANGUAGE (JCL)

We have just now seen that in batch proccssing, a
set of jobs are stacked together and fed to the computer
system. But the obvious question that arises to ones mind is
that how the computer separates each job for automatic job-
to-job transition. Moreover, how does the s ystem know
which compiler or what hardware devices are to be used by
a particular job 7 In order that the operating system can
identify a new job and determine what action should be
taken for the job, some control information is rcccsary.
These control statements are written in a language known
as the job control language (JCL). Usually every program
and data sets are preceded and followed by JCL statements.

When a program is prepared for a computer run, it is
necessary to prepare job control statements and place them
in proper order along with the program, before the program
is fed to the computer system. Thus, each program has,
besides the program itself, aset of instructions called JCL
instructions which instruct the operating system on the
identity and requirements of the job. JCL statements tell the
OS such thingsa the name of the job, the user's name and
account number, the I/C) devices to be used during
processing, the assembler or compiler to be used if
language translation is required, and so on.

The job control language for one computer is
different from that of another computer. Therefore, JCI.
statements differ from computer to computer and hence it is
not possible to list here a set of statements that you can
simply copy and use with your computer system. lr, order to
know the JCL statements of your computer, it is suggested
that yc CUAL your instructor or supervisor, or an
experienced programmer of your computer installation.
However, a simple example is given below so that you can
see what JCL statements look like. You will then have a
better understanding of what the JCL statements used with

your system do.

Suppose we wish to run a simple FORTRAN
program on the Burroughs-6700 computer. The structure of
the job deck in that case will be as follows:

<I> BEGIN JOB ONOC

<I> USER = SINHA/SNI-1

<I> COMPILE UPDATE FORTRAN GO
FORTRAN source program cards

<I> DATA
Data Cards

<I> END JOE

The above control statements are writan in the
work-flow language (\VFL) which is the JCL for
Burroughs-670) system. Each control statement of WFL
starts with the symbol <I> in column 1. The symbol <I>
represents an invalid character (such as a combination of I,
2 and 3 punched in the same column). This implies that no
program or data card should have the symbol <I> punched
on its first column. It should be noted that this symbol is
typical and not universal. For example. IBM operating
systems use two consecutive slashes to indicate a JCL
statement and Honeywell-6000 tises a $ cha!actcr in the
first column for this purpose.

The BEGIN JOB statement signes the beginning of
a new job to the operating system. A name must be
assigned to the job which is ONGC ih this example. The
next WFL statement is used to specify the uscrcode and the
password of the user. Each user of a Burtoughs-6700
installation is assigned a uscrcode by the system manager.
In addition to the usercode, each user is also allotted a
password which can be subsequently changed by the user as
and when he desires. Both the usercode and his password
must be specified correctly in the USER talemerlt of WFL.
In our example, the usercode is SIN HA and the password is
SNH. The password provides an added security to the user
so that another person cannot run a job using his usercode.
The operating system first checks the usercode given by the
user with the list of valid usercodes stored within the
system. If the usercode is found to be valid, then his
password is checked to see if it is valid for the given user.
Unlecc i i ' - ' uctce be	 a; idu..ude aG nis password
correctly, the job will not be accepted by the operating
system. The third WF1. statement is a COMPII .E statement.
The word FORTRAN in this state.ent indicates that the
source program is written in FORTRAN and hence a
FORTRAN compiler will be required for its translation.
The compiler specified by the user (in our case FORTRAN)
is fetched from the secondary storage device (normally
disk) and placed in the main memory to facilitate
translation of the source program. The user also specifies
the name of the object program which is UPDATE for our
example. Hence the object code obtained after the
successful compilation of the source program will be stored
in the system by the name UPDATE. Finally, the word GO
in this statement indicates that the object program is to be
executed. The operating system will automatically start
executing the program as soon as the translation process is
over. It may kindly be noted here that since we are
compiling a program, so if an y error is detected during the

Operating Syverns 175

translation process, no object code will be created for this
program and subsequently no execution will be done even
if the user has specified (30 in the COMPILE statement of
WFL The COMPILE statement is followed by the source
program statements. The DATA stateuir.nt which is again a
WFL statement denotes the end of the source program and
the beginning of the data that will be used by the program.
Finally, the END JOB statement indicates the end of the
job. A job deck prepared in the above fashion can be
submitted to a Burroughs-o(X) installation for compilation
and execution of a FORTRAN program,

reason for spooling is to keep the programs and data readily
available to the fast and expensive CPU on a high speed I/O
medium such as tape or disk. Reading from tapes or disk is
usually at the rate of 10 bytes/second in contrast to 2000
bytes/second for a card reader. Similarly, the speed of
writing on tape or disk is of the order of 10 bytes/second
contrasted to writing on even a fast line printer at a speed of
2000 bytesecond.

SPOOLING

In batch mode of aperathri, the processing speed of
a computer system can be cuiihei enhanced by a technique
known as SPOOLing (Simultaneous Peripheral Output On
Line).

We know that dedicated I/O devices (devices which
cannot be shared concurrenhly by several processes) like
card readers and printers are considerably slower compared
to the speed of the CPU. For example, a fast card reader can
operate at a speed of 1500 cards/minute for an 80-column
card. This is equivalent to reading 2000 bytes/second (1500
a 80 x 1/60). On the other hand, for a rnc.diurn speed
computer, the processing speed of the CPU is
approximately 3x 106 bytes/second. Thus while a card
reader is supplying just one clianater to the main memory.
the CP 1 1 can perform many thousands of internal operations
before it needs to become involved with next character
from the card reader. In other words, during reading of
information into memory the CPU had to wait because of
slow rcadng. The speed mismatch in this case is of the
order of 1500. Simiar speed mismatch exists for a large
oernber of peripheral devices such as printers, teletypes.
etc.

Spooling is a technique that has been successfully
used on a number of computer systems to reduce the above
mentionea sjxed mismatch and in turn the idle time of the
CPU. It is the prcss of placing all data that comes from
an input device or goes to an output device on either a
magnetic tape or disk. rhis is shown in Figure 14.2. A
batch of Program when fed to the card reader is read and

mporar.lv stated on a magnetic tape or disk instead of
being direci; ere rl in the main Ineniury. The progarns
stored ott tape or disk are now fed to and pioc essed by the
main computer. The results ohurcd uis aan -ritter, on
tape or disk ins:eaii of Deng direetis printed ..r the pduttc.
Tl'e colnerns of oaipui or disk are aid fiflLCU Cii Ii)C
pntiiter. The process Of 'Al-fling the iipur • tati :uii ourpul
results on tape or disk is known as spooiing. The pniiiar

FCerd	 Input	 Man	 ____________
L P.eeder	 ernCry

(a) Mode of data transfer, without spooling facility.

(b) Mode of data transfer with spooling facility.

Figure 14.2. Illustrating the process of spooling.

Special spooling programs are executed by the
operating system to transfer the data from the disk or tape
to the main memory or an input or output device. In a
sense, the disk or tape device acts as a buffer area between
main storage, which is extremely fast, and 110 devices,
which are relatively slow. Spooling programs are executed

hen the CPU is not too busy with other jobs. However, in
most computer systems, special low cost hO processors are
used for spooling the input data from a card reader (or any
otcr stOw input device) on to the tape or dt	 or [0!
pospooledling Lbs s 	 results miu ih tape or disk on to the

.'.cr t ot .iny otherdow output devir.se) Tr,ese tiC)
eCSSr,rs ti IkCI nilependcii ol tile m.aiii CPU ibis

n bks the main ugh speed e. xilsive . CPU to be ltiiI,
..Ievüied to ituain coi'sng jh

C	 SUPERVISOR I

PROGRAM A

WASTED

Otain Memory

SUPERVISOR I SUPERVISOR

PROGRAMS I
PROGRAM C

WASTED
WASTED

Maui Memory	 Main Memory

176 Digital Computer Fundamentals

The process of spooling is transparent to the users
program. In general, spooling makes better use of both the
main memory and the CPU.

MULTIPROGRAMMING

In case of batch processing, the batched programs
are loaded one after another in sequence into the main
memory for processing. Once loaded, a program will
remain in the main memory until its execution is
compkied Pius, the program which is currently being
executed will be the sole occupant of the users area of the
main memory (remember that the supervisor always resides
in a part of the nLuri memory) and it will have the CPU
exclusively available to itself. When there is only one
program in main memory, two of' the s ystems most
powerful resources may be under-utilized, its expensive
memory and the full capabilities of the CPU. As shown in
Figure 143, every program will not be large enugh to
occupy the full users' area of the main memory. Similarly,
all programs will not be highly computational to utilize 1he
lull processing capability of the CPU. Basically there are
two types of programs:

for scientific and engineering applications need very little
I/() Lit req:rc cnormoui computation. These programs are
called CPU-hound progr.irns because more of CPU-time is
required for processing s.ch programs.

Main Memory

SUPERVISOR

wit, ic,
—PROM

PROGRAM B

Secondary
Disk Storage	 Pm.jAM C

'Vcitir'q t ' i CPUi
C

C
ci

Figure 14.3. tll:strating the under-utlintion of
memory wlICfl only one program
occupies the whole memory.

I/O-bound programs arid CPU-bound programs. irograms
used for commercial data processing normally read in vast
amount of data, perform very little computation and ootput
laigc amount of information. Such programs are known as
110-bound programs, since the majority of work they
perform is input-outpuL On the other hand, programs used

Figure 14.4. Illustrating	 the	 operation	 of
mtiprogramming.

In order to overcome the problem of under-
utilization of main memory and the CPU, the concept of
multiprogramming was introduced in operating systems.
Multiprogramming is the name given to the interleaved

execution of two or more different and independent
programs by the same computer. With the storage-resident
supervisor eonepL (see Figure 14.3) we have been
introduced to the notion of having two programs in the
main memory at the same time : the supervisor for overall
system control and th user program for performing user's
task. In multiprogramming, this concept is carried one step
further by placing two or more user's programs in main
memory and executing theta concurrently. The CPU
swhche.s from one program to another almost
instantaneously. Since the operating speed of CPU is much
faa:cr than that of I/O operations, the CPU can allocate time
to several programs instead of remaining idle when one is
busy with I/O operations. In multiprogramming system,

Operating Systems 177

when one program is waiting for I/O transfer, there is
another program ready to utilize the CPU, thus it is possible
for several users to share the time of the CPU. However, it
is important to note that multiprogramming is not defined
to e the execution of instructions from several programs at
the same instant of time. Rather, it does mean that there are
a number of programs available to the CPU (stored in main
memory) and that a portion of one is executed, then a
segment of another and so on. Although two or more users
programs reside in the main storage simultaneously, the
CPU is capable of executing only one instruction at a time.
Hence at any given time, only one of the programs has
control of the CPU and is executing insi.rections.
Simultaneous execution of more than one program with a
single CPU is impossible. In some multiprogramming
systems, only a fixed number of jobs can be processed
concurrently (nultiprogramming with fixed tasks) (MFT),
while in others the number of jobs can vary
(multiprogramming with variable tasks) (MVT).

RUNNING

C	 \,

e /	 \
-	 /

\cc.

READY	 BLOCKED
110 Completed I

Figure 14.5. The thec different states of a program
residing in main memory in case of
multiprogramming.

A simple example of multiprogramming is given in
Figure 14.4. At the particular time instance shown in the
figure, program A is not utilizing the CPU since it is busy
writing output data on to the disk (I/O operation). Hence the
CPU is being utilized to execute program B which is also
present in the main memory. Another program C, residing
in the main memory, is waiting for the CPU to become free.
Actually, as shown in Figure 14.5, in case of
multiprogramming all the programs residing in the main
memory will be in one of the following three states
running (CPU is being used), blocked (I/O operation is
being done) and ready (waiting for CPU). For our example,
programs A. B and C are in blocked, running and ready
states respectively. Since program C is in the ready state, as
soon as the execution of program B is completed or
program B requires to do I/O operation, the CPU will start
executing program C. In the meanwhile, if A completes its
output opc.ation, it will be in the ready state waiting for the
CPU. Thus in multiprogramming, the CPU is almost always
busy. When program A is reading data or outputting results
(1/0 operations), program B's instructions can then be
executed, and if both programs are involved in I/O activity,
then program C can be executed. The area occupied by each
program residing simultaneously in the main memory is
known as a memory partition. The actual number of
memory partitions and hence programs allowed in the main
memory at any given time varies depending upon the
operating system in use at a particular installation.
Moreover, those jobs awaiting entry into the main memory
are queued on a fast secondary storage device such as a
magnetic disk. The first job from this queue will be loaded
into the main memory as soon as any one of the jobs
already occupying the main memory is completed and the
corresponding memory partition becomes free.

Requirements of Multiprogramming Systems

Multiprogramming has two main advantages
increased throughput and lowered response time.
Throughput is increased by utilizing the idle time of the
CPU for running other programs that are already residing in
the main memory. Response time is lowered by recognizing
the priority of a job as it enters the system and by
processing jobs on a priority basis.

On the other hand, the incorporation of
multiprogamming in the operating system has, of course,
complicated matters. For a computer to work
simultaneously on many programs, the following addtunal
hardware and software fcarur:s rue required

Large memory. For multiprogramming to work
satisfactorily, Large main memory is required (of

178 Digital Computer Fundamentals

the order of 128K or more), together with fast
secondary storage devices like disk and fast
CPU. The main memory should be large enough
to accommodate a good number of users
programs along with the supervisor.

2. Memory protection. Computers designed for
multiprogramming must provide some type of
memory protection mechanism to prevent a
program in one memory partition from changing
inforauon or instruction of a program in
another memory partition. For example, in
Figure 14.4 we would not want program A to
inadvertently destroy something in the
completely independent program B or program
C. In a multiprogramming environment this is
achieved by the memory protection fecunre, a
combination of hardware and software, which
prevents one program from addressing beyond
the limits of its own allocated storage area.

Program status preservation. We have seen that
in multiprogramming, a portion of one program
is executed, then a segment of another, and so
on. This requires the stopping of a program
execution and then restarting its execution after
some time. In order to restart a program, all the
values that were stored in memory and the CPU
registers that were being used at the time of its
stopping should be restored. A new program
would however need a l l CPU registers for its use
and would clear them. Thus, before a program is
suspended and the control is passed to another
program, the values of all CPU registers (pc,
accumulator, etc.) should be stored in the
memory area of that program and then restored
when the control is ultimately returned to the
first program. This is known as program status
preservation.

Proper job mix. A proper mix of 1/0-bound and
CPU-bound jobs is required to effectively
overlap the operations of the CPU and 1/0
devices. It is necessary that when a program is
.waiing for 1/0 operation, another program must
have couh omIut21ion to keep the CPU busy.
if all programs need I/O at the same time, the
CPU will agztn be idle. Hence the main memory
should conL'lrn some CPU-bound pfog:anls and
orc ! 'O-t'ouncl çoi grains in us	 av'

f -tL;ons so ihar .0 least ore ot the program
wiuJ dcs not need I/U is k uy a .adaIIe o
the CPU tor pioessing

MULTIPROCESSING

Upto this point we have considered systems with a
single CPU. klowever, we have already seen that the use of
I/O channels or I/O processors improves the efficiency of
the computer system by making possible concurrent input,
processing, and output operations. The CPU can perform
arithmetic and logical operations on parts of one or more
programs while I/O operations are concurrently carried out
by 1/0 processors on other parts of programs. The
architecture of a computer having 1/0 processors is shown
in Figure 14.6.

The idea of USC of 1/0 processors to improve the
performance of a computer system was carried one step
further by designing systems that make use of more than
one CPU. Such systems are called multiprocessing systems.
The term multiprocessing is used to describe interconnected
computer configurations or computers with two or more
independent CPUs that have the ability to simultaneously
execute

rt 'J

Figure 14.6. Architecture of a computer sysLerr
having ItO processors.

several programs. In such a s'stcm, inctrucnuns hunt
different and independent programs can be pri.x essed at the
same instant of time by different CPUs or the CPUs may
simultaneously execute different instructions from the same
program. The basic organisation of a typical
multiprocessing system is shown in Figure 14.7.

There are almost ittw ._ ..., nurnbci of pu.sibe
mnultiprocetg cytims. In suite tcius several small
CPUs are hrkc t.:!iur i uer um dw ivajoj processiog.
hf one of 0.eriat! -- Pt-y i breuks •.iowri, th.' (-ther CPUs w,I
etomaucady Laice .e: . 	 c.h. hi other voos. Cl'tis ult'.

'tincctcd ir i toe!ab,rae CCn1jt.ter It .. ;
data prostn ,dicnsd in rr,-.o	 .. an 1XIullpik

In hese networks, sin.h	 eaued tcrtt end proc.ssors

HJ
I/O

I
Unils

I/O
Processors

I/C

Un, 5

Operating Systems 179

are used for scheduling and controlling all jobs entering the
system from remote terminals and other input devices.
Thus, the main CPU or CPUs called host computers or
back-end processors are used on'y for major processing
jobs and not for data communication. In some
multiprocessing systems, each CPU performs only spccific

Main
CPU i H Memory	 -"	

CPU 2

Difference Between Multiprogramming and
Multiprocessing

Multiprogamrning is the interleaved execution of
two or more processes by a si .gle CPU computer system.
On the other hand, m hiprocessing is the simultaneous
execution, of :wo or more processes by a computer system
having more than one CPU. To be more specific, we may
point out here that multiprogramming involves execulng a
portion ut one program, then a segn'.n: of another, etc., in
brief consecutive time periods. Multiprocess design,
however, makes it possible for the system to
sirn aneously work on several program segments of one
Or more programs.

Advantages and Limitations of Multiprocessing

There are numerous advantages of multiprocessing
some of which are listed here:

It improves thr oerforniance Omputcr
systems by allowing parallel processing of
segments of programs. Better performance is
directly reflected by increased throughput and
lowered turnaround time of such systems.

2. In athijuon to me CPUs, it also facilitates more
efficient utilization of all the other devices of the
computer system.

3. It provides a built-in backup. If one of the CPUs
breaks down, the other CPU(s) automatically
takes over the complete workload until repairs
are made. Thus, a complete breakdown of such
system is very-very rare.

Multiprocessing, however, is not an easy task
because of the following reasons:

A very sophisticated operating system is
required to schedule, balance and coordinate thc
input, output and processing activities of
multiple CPUs. The design of such an OS is a
time taking job and requirs highly skilled
com puter professionals.

2. A large main memory is xquired for
accom modatiiig the sophisticated operating
system along with several users programs.

3. Such systems are very expensive. in 30diuon to
the high charges paid initi:illy, t]e regular
operation and maintenance c se systems is
olert a costly nffir.

Figure 14.7. Basic organisalion of a typical
multiprocessing system.

types of applications. For example, in case of a
multiprocessing system with two CPUs, one may be used to
process only on-line jobs while another one may be meant
for processing only batch applications. However, these
systems are so designed that in case of breakdown of one
CPU, the other CPU takes over the complete workload until
repairs are made. Moreover, different multiprocessing
systems use different types of memory configurations. In
some systems each CPU has its own main memory, in
others all the CPUs may share a common memory, while in
some others each CPU may have access to both separate
and common memories.
13- A

180 Digital Computer Fundamentals

It is expected that multiprocessing systems will soon
become commonplace. In the future, all large computer
systems will use multiple, parallel processors to share high-
speed and complex operations and to enhance processing
throughout. There will be computers within computers,
because some of these processors will be complete
microcomputers. The entire system will be under the
control of a complex, powerful operating system.

MAIN MEMORY

TIME
USER 1	 A SUPERVISOR

USER 1	 14—•-1. USER 1
TERMINAL 2	

[
USER 2

USER 3

- USER 3ONLINE

STORAGE

TERMINAL 3 f/I

I
TER	

C P
US ER-N

Figure 14.8. Concept of a timesharing system

TIME-SHARING

Timesharing is a term used to describe a processing
system with a number of independent, relatively low speed,
online, simultaneously usable stations. Each station
provides direct access to the CPU.

In other words, timesharing refers to the allocation
of computer resources in a time-dependent fashion to
several programs simultaneously. T he principal notion of a

timesharing system is to provide a large number of users
direct access to the computer for problem solving. ibis is
accomplished by providing a scp:u:tte terminal t each user.
All these terminals are connected to the main computer
system. Thus, a timesharing system has many, even
hundreds, of terminals linked up to the same computer at
the same time. This is shown in Figure i4.8. Unlike
multiprogramming, where programs are executed on a
priority basis, in timesharing the CPU time is divided
among all the users on a scheduled basis. The basic idea
behind timesharing systems is to allow all user programs to
have a brief share of the CPU time in turn. Each user
program, beginning from the first program and proceeding
through the last, is allocated a very short period of CPU
time one by one. This short period of time during which a
iser gels the attention of the CPU is known as a time slice.
line slot or quantum and is typically of the order of 10 to
10 milliseconds. The processing speed of the system and
the use of multiprogramming in conjunction with
timesharing allows the CPU to switch from one user station
to another and to do a part of each job in the allocated time
slice until the job is completed. The speed is frequently
such that the user has the illusion that he alone is using the
computer. It is somewhat like viewing a motion-picture
film made up of individual frames, the switching is so fast
that the processing at any given terminal appears to be
continuous.

For example, let us assume that the time slice for a
timesharing system is 10 milliseconds. That is, the
timesharing operating system allocates 10 milliseconds to
each user during which a program belonging to this user is
executed. An average speed computer whose speed is of the
order of I million instructions per second can execute 10 c
10 x 10 = 10,000 instructions in 10 milliseconds.
Suppose there are 100 users for this timesharing system.
T1.. i	 3 111*it is allocated to each user, a
particular user will get the CPU's attention once in every 10
x 100 milliseconds = 1 second. As human reaction times
are a few seconds, a particular user will not notice any
delaN in executing his commands and normally feels that he
is the sole user of the system. Moreover, it is not
economically feasible to allow a single user to use a large
computer interactively because his speed of thinking and
typing is much slower than the processing speed of a
computer. While a particular user is engaged in thinking or
is busy typing his input, a timesharing system can service
many other users.

Even though it may appear that several users are
using the computer system at the same time, a single CPU
system can only execute one instruction at a time. Thus like
a multiprogramming system, even with a timesharing
system, only one progiam can be in control of the CPU at

13- B

User 2
rAcr-)

J.er C

Lser 5

Re3ciy

Use' 4

Ma I)

(A)

User I
-

User S
tReaCy)

User 5
(Active)

User 4
(Wart)

(B)

User -3

rI

User 2
(RCa

User 3
(Wart)

Open-fling Systc,ets il

any given time. As a result, at any instant, all the users woo
are using a timesharing system will fail in one of the
following three status groups.

Active : the user's program currently has corirsol
of the CPU. Obviously only one user will be
active at a time.

2. Ready the users program is ready to continue
but is waiting for its turn to get the attention (if
CPU. More than one user an be in ready state at
a Lime.

3. Wait : the user has made no request for cxeeutioo
of his job or the user's program is waiting for
some I/O operation (for instance, the user is
sitting at the terminal and is thinking what
should be the next step). Again, more than one
user can be in wait state at a time.

The procexs of switching from one status to another
is illustrated in Figure 14.9. Moreover, the concepts of a
timesharing system and user status are illustrated in Figure
14.10. In Figure 14.10(a) user 2 is active, users 1, 3, and 4
are in wait status and users 5 and 6 are in ready status. As
soon as the lime slice of user 2 is completed, the
timesharing supervisor moves on to the next ready user

Active

//2 Tç\\ '

0

feadyJ.

	

	 Wail
to completed

Figure 14.10. User Status in a timesharing system.

(those in wait status are skipped since they are making no
demand for the CPU). The next ready user in the queue is
user 5 which now becomes active as shown in Figure
14.10(b). User 5 will remain active until the allotted time
slice expires, or until the program needs I/O operation, or if
the program execution is over during this time period. At
that time, control is passed on to the next ready user in the
quooe which is user 6 for our Whenever 1/0
eperauon is completed for a 'ait user. th uw'r' st:s ',v!!
be changed to ready and serviced the next time around

In a typcai timesharing system, hundreds of users'
may be using the system simultaneously. As the total main
memory available in a computer is limited, it is not possible

Figure 14.9. The process of switching between the	 to keep the programs of all the users of a timesharing
three status of a time shrfng system.	 system simultaneously in the main memory. Thus at any

182 Digital Conputer Fundwncntols

inStant, the timesharing operating system keeps only a few
programs in the main memory and the rest are stored on the
disk storage. At a particular instance of time, the memory
resident programs include the active program and some of
the ready programs which will get CPU's attention very
shortly. A wait program of the main memory is normally
replaced by a ready program on the disk storage. As and
when a program is to be executed, it is brought hack to the
main memory from the disk and the inactive program is
sent to the disk. The operation of transferring programs
from the main memory to the disk storage and back is
known as swapping. Referring to Figure 14J0, as user 2 is
executing, the system will be ensuring that the next ready
job is in main memory. If it is not, then one of the wait
programs is swapped out (onto disk) as shown in Figure
14.11(a) and the next ready user, user S in this case, is
swapped in as shown in Figure 14.11(h). This swapping
process, sometimes know as roll-in roll-out, is repeated
many times within a few seconds. In this case, disks are the
only feasible secondary storage devices since they have a
much faster rate of information transfer than magnetic tapes
and provi. direct access.

In timesharing systems, the user OfLen carries a
dialogue or conversation with the central system. Hence it
is also known as conversational or interactive computing.
The computer can be programmed to interrogate the user as
required, to respond to requests, replies, and even to
mistakes. A user can proceed step-by-step, testing portions
of his procedure or trying out various approaches to a
problem solution. This is the reason why timesharing
systems have been found to be most suitable for program
development and testing. In fact, the BASIC language was
designed specifically for timesharing systems. Systems
which are fully interactive inspect each statement of a new
program as it is entered into the computer via a terminal.
An y syntax error in he cag 3' . ,augtmimge are uctectet
and immediately displayed on the video screen so that the
user can make appropriate corrections. The user corrects his
program with an editing system. When all the syntax errors
are corrected, the program can be run and tested to ensure
its validity. The requisite data is fed front the terminal
during program execution. The data may also be stored in a
data file on disk and fed to the program when it needs it-
Errors encountered during execution of the program are
displayed on the terminal. These run time errors can be
immediately corrected by the user and another test run can
be made. The greatest benefit, of such a system is that errors
can be encountered, corrected, and work can continue
immediately. This is in contrast to a batch system in which
errors are corrected offline and the job is submitted for
another run. The time delay between job submission and
rcturnf the otttput in a batch system is often mcastirci in
hours. 05rernight 'urnaround is also yy.comTnon.-

MAIN
MEMORY

TIME SHARING
SUPERVISOR

	

USER 1	 ------ USER I

	

USER 6

USER2	
U

DISK
STORAGE

(a)

MAIN
MEMORY

TIME SHARING
SUPERVISOR

USER 5

USER 6

USER2	 I__ LJ
DISK

L—..—,
STORAGE

(b)

	Figure 14,11. Swapping	 of	 programs	 in
timesharing system.

Obviously this time lapse does not contribute well to the
thinking efficiency of a programmer. The interactive
programming and debugging capability of BASIC has
proven to be so effective in improving programmer
efficiency, that interactive versions of the batch-oriented
FORTRAN and COBOL are also available now.

Operating Systems 183

Advantages of Timesharing 	 Disadvantages of Timesharing

Reduces CPU idle lime. It is wasteful and
expensive for the CPU to be effecvely utilized
less than 30% of the time. Yet this is what
happens in a conventional batch processing
installation as the CPU waits during set-up times
and during I/O operations. Timesharing
significantly increases CPU utilization by
switching from one program to another in rapid
succession. Thus the throughput of the
installation increases to a great extent.

2. Offers computing facility to small users. Small
users can gain direct access to much more
sophisticated hardware and software than they
could otherwise justify or afford. In a
timesharing system they merely pay a fee for
resources used and are relieved of the hardware,
software, and personnel problems associated
with acquiring and maintaining their own
iriUiUation.

Provides advantages of quick response. The
turnaround time or the response Lime is
negligible in case of a timesharing system. Thus,
timesharing allows managers to react more
rapidly. Furthermore, it permits them to interact
or converse with the system in seeking solutions
to unusual problems and answers to poorly
defined questions. Timesharing may also reduce
waste in the use of business resources and it can
permit quick follow-up on creative ideas. In
short, it helps in improving the users' efficiency
to a great extent.

4. Reduces the output of paper. If a manager can
retrieve at any time the specific information he
needs from an online file, he does not need a
bulky report that contains much of the file
in formation.

Avoids duplication of software. There are several
programs ehich are frequently used by many
users. In a Lime-sharing system, such programs
are stored in the system libracv. A user need not
write his own program instructions when
performing such processing tasks. He need only
call up the needed program stored online at the
computer Site and supply the data.

Question of securit y . Since hundreds of users use
a timesharing system simultaneously, provision
must be made to protect the security and
integrity of user programs and data. The
programs and data of different users should not
get mixed up. This is currently being
accomplished by such methods as (a) assigning
and (b) requiring hierarchies of passwords or
lockwords from users prior to 'lIe access.
However, in spite of such precautions, skilled
penetrators succeed in bypassing the
programmed controls of current timesharing
systems.

2. Problem of reliability. A time sharing system
should be highly rehable as it caters to the needs'
of several users. Hence provisions must he made
to provide dependable and continuous service.
The self-repairing computer or some sort of
standby arrangement may ultimately help to
overcome the reliabilit y problem. But troubles
that occur arc often with the online peripheral
devices or software and not with the main CPU.

Problem of data communications. In a
timesharing system, the users in l rract with the
main computer system through remote terminals
that require data communication facilities. The
cost of data communication has been declining
but not so rapidly as the cost of data processing.
Thus, data transmission charges make qp an
increasing portion of the total timesharing cost
package. lii addition, telephone lines were
designed for voice communication rather than
data communication, with the result that current
transmission facilities are not considered
adequate by many timesharing spokesmen.

Question of overhead involved. The reader can
probably appreciate that the timesharing system
With its control functions such as switching from
user to user and swapping programs in and out
Lakes up an appreciable amount of CPU time.
This is termed overhead and must be minimized
in the overall hardwarc-sofm are design. If a
System is properly balanced, then the overhead is
manageable and the computer response time to a
user request will be small. However, if the
system is overloaded with too many users, then
the overhead can get out of hand, resulting in
very poor response..

184 Di ire! Computer Fundamentals

ON-LINE PROCESSING

On-line processing (also called direct-access or
I .riciom-access processing) permits transaction data to be
cd under CPU control directly into secondary on-line

storage devices from the point where. data originates
without first being sorted (sorting of data is required in case
of sequential processing). These data may be keyed in by
the use of a typewriter like terminal, or they may be
produced by a variety of other data collection and
transaction recording devices. The CPU can make
programmed input control checks during this process.
Using these input data, appropriate records (which are
normally organized in the secondary storage unit in random
fashion) may be quickly updated. The access to, and
retrieval of, any record is quick and direct. Information
contained in any record is accessible to the user without the
necessity of a sequential search of the file and within a
fraction of a second after the enquiry message has been
transmitted. Thus, en-line processing systems feature
random and rapid input of transactions and immediate and
direct access to record contents as and when needed. A
simplified concept of on-line processing is depicted in
Figure 14.12.

A timesharing system is a typical example of on-line
processing. However, it should be noted here that on-line
processing systems may differ considerably in level of
complexity. Some systems may have only a few terminals,
and the volume of transactions to be processed may thus be
low: these transactions may be processed on a first-come,
lust-served basis with no attempt being made to use
timesharing or multiprogramming and the system may
employ relatively simple data communication facilities, At

Figure 14.12. On-line processing.

the other extreme are on-line systems that have hundreds of
remote stations and communication lines; they use
multiprogramming or timesharing to keep the response time
within acceptable range so that users do not get irrtated due
to delays in response.

On-line processing and direct access to records
require unique hardware and software. For example, the
capacity of the primary storage unit of the system must be
adequate to accommodate the complex on-line operating
system supervisor along with other users programs. Also.
since many on-line users may have access to stored records,
software security provisions are necessary to prevent
confidential information from falling into unauthorized
hands and prevent deliberate or accidental tampering of
data and program files. Furthermore, in many cases, CPU
must be fast enough to respond to multiple on-line stations
operating simultaneously in a multiprogramming mode: and
large capacity peripheral on-line storage units are required
to store additional operating system elements, user data and
programs. Finally, data transmission facilities must be
provided to communicate with on-line terminals located in
the. next room, on the next block, or thousands of miles
away.

REAL-TIME PROCESSING

There are many applications that require an
immediate response from the computer. Getting a stock
market quotarion, finding the current level of product
inventory, and searching a criminal data file for a possible
suspect may all be actions that need to be done without
delay. In these cases, a real-time processing system is
needed. Real-time means immediate response from the
computer. A system in which a transaction acccsses and
updates a file quickly enough to affect the original decision
making is called a real-time system. The essential feature is
that the input data must be processed quickly enough so
that further action can then be promptly taken on the
results.

In other words. a r l -'i"'c proccssi.,g system may
be described as an on-line processing system with severe
time limitations. It may be noted here that a real-time
system uses on-line processing, but an on-line system need
not necessarily operate in real-time mode.

Real-time processing requires immediate (not
periodic) transaction input from all input-originating
terminals. Many remote stations are tied directly by high-
speed communications equipment into one or more CPUs.
Several stations may be operating simultaneously. Files are
updated each minute, and enquiries are answered by split-
second access to up-to-the-minute records. The system
processes input data and presents the result in such a form
that human judgement can immediately be brought into
decisive action.

One of the early and very sophisticated commercial
real-time systems was the American Airlines SABRE

Opera'ing Systems 185

reservation system. The following factors jusLiry the use ot
real-time processing for an airline reservation system

1.	 There are hundreds of flights daily.

2,	 Each flight may have as many as 300 seats or
more "in inventory".

3. As soon as a seat is reserved/cancelled, the
concerned files must be updated before the next
transaction can be processed,

4. The response Lime should be very short because
a customer', reservation is to be done while he
waits.

5. Seats may be sold for only a portion of flight-
For example. Mr. XYZ may book a seat to
Baroda on a Delhi to Bombay flight which stops
in Baroda. That seat will then be available for
the Baroda to Bombay leg.

6. Hundreds of agents throughout the Luunni are
selling seats from the inventory.

7. An airline seat is a very perishable item. If it is
not sold, It is lost once a flight is made,

Owing to the above mentioned reasons, efficient
operation of present-day ma jor airlines would be very
difficult and almost impossible without a real-time
processing system. Few more examples of business real-
time processing are

1 Air traffic control system,

2. Reservation systems used by hotels and car
rental agencies. These systems keep track of the
availability of hotel rooms or cars at any instance
of time.

3. Systems that provide immediate updating of
customer accounts in saving banks,

4. Systems	 that	 provide	 up-to-the-minute
information on stock prices.

5. Process control systems as in nuder reactor
plants and steel mills.

Similarly, there are many applications that require
real-Lime processing. It would be a mistake, however, to
assume that real-time processing should be universally
ap.iied to all data processing applications. A quick-

response system can be designed to fit the needs of the
business. Some applications can be processed on a lower
priority or background basis using batch methods (e.g.
payroll); some can be on-line with periodic (not immediate)
updating real-time methods,

Real-time systems are required to he highly reliable
because even minima] downtime in many critical
applications may be hazardous causing danger to several
lives and substantial financial loss. For example, in case of
a computerised air traffic control system, the radar and
computers that keep track of air traffic in each region, must
operate constantly with minimum mai r lenance. An
unscheduled downtime in this real-time system may cost
lives of several human beings. Similarl .j, in case of a
chemical process-control system, high degree of zeliability
is essential, since ev.n minimal downtime can lead to a
ruined batch of product or damage to expensive equipment
with substantial financial loss. In order to achieve the
desired degree of reliability, real-time systems are normally
duplicated so that, in the event of a break down, back-up
facilities are immediately available for continuous
operation of the system. This makes some systems very
expensive but, in the environment, to which real-time
systems are applied, a fail-proof system is essential.

VIRTUAL STORAGE

Virtual storage may be described as a hierarchy of
two memory systems - one of them is a low cost, large
capacity , low speed system (on-line disk storage) and the
other is a high cost, small capacity, high speed system
(main memory). The operating system manages the two
memory systems in such a way that a user feels that he has
access to a single, large, directly addressable, and fast, main
memory.

A virtual memory system facilitates its users to use a
large addressable memory space without worrying about
the size limitations of the physical main memory.
Moreover, in case of multiprogramming or timesharing
systems, it also permits the sharing of memory space
among several users efficiently and economically.

In order to implement a virtual memory system, the
main memory is divided into fixed size contiguous areas,
called page frames. In addition, all users programs, residing
on the on-line disk storage, are also divided into pieces of
the same size, called either pages or segments. Now, only
those program pages or segments that are actually required
at a particular time in the processing, rcd be in the primary
(or real) storage. The remaining pages or segments may be
kept temporarily in online (or virtual) storage, from svhr.re
they can be rapidly retrieved as and when needed following

Or Pe' pages of prcgrarrr 1

OrSer pages of pr ..ojra'r 3
Ire pages O f prr. 4

'roer pa;es of p rrojra ,rr 5

D,tecl
Access
On--Line
Storage

186 Dig.aai Computer Fundamentals

program interruption (see Figure 14.13). The operating
system handles the swapping of program pages or segments
between the main memory and the on-line disk storage.

MAIN MEMORY

S:pervisor

Page 5 of program 1

Page 2 of program

flg 8 of prooram 4

Pagu. 1 of progrlrne 5

Figure 14.13. A virtual storage system.

Thus, from the applications programmer's point of
view, the effective (or virtual) size of the available primary
storage may appear to be unlimited*.

In previous sections, we have seen mat wien a
Syteiu is oocracd in umesharing or real-Lime

mode, only a few instructions are executed for one user at
any given moment. Then the computer executes a few
instructions for another user and so on. In a few seconds,
the computer could process a few instructions for over a
hundred users. Because the computer is only executing a
few instructions of one users program at onetime, it will be
wastage of main memory if the complete program of that
user is stored in main memory, instead, the concept of
virtual storage can be cifectively used in this case to
simultaneously accommodate program segments of a large
number of users in the main memory. With more program
segments of different users residing simultaneously in main
memory, the CPU is less likely to have to wait for programs
to be transferred from the disk to main storage. This
reduces CPU idle time and increases he number of jobs
that can be run in a given timespan. It is important to note
that even in this particular application of virtual storage, the

physical size of main memory remains the same. It only
appears to be larger because more gets done in less time.

OS-CONTROLLED SOFTWARE

A computer can do nothing with a program of
instructions, and each job required must have iS own
special program. However there are many tasks of a routine
nature that all computer users require their machine to
perform from time to time. It would clearly be wasteful if
each user spent a lot of time writing programs for these
tasks and it is normal practice for the computer
manufacturers to supply programs for these tas.ks along
with the operating system and the hardware of the machine.
These OS-controlled sofivares reduce the time and expense
of preparing applications programs and are normally
grouped in three categories - translating programs, library
programs, and utility programs. They are briefly discussed
below.

TRANSLATING PROGRAMS

Translating programs, also known as language
processors, are eystem programs that translate a source
program written by the user to an object progiam which is
meaningful to the hardware of the computer. These include
the assembler and the various compilers and interpreters
wailable with the system. A translating program is usually
alled up from a direct-access storage device only after the

job control program of the operating system interprets a job
control statement and informs the operating system
supervisor of what is needed.

LIBRARY PROGRAMS

I ihrry iregrne uf frequenity used
subroutines supplied by users and computer vendors. These
standard routines are stored in a direct-access storage
device and are called up by the operating system whenever
they are required in the processing of other programs. This
eliminates the need for a programmer to rewrite these
modules every time they are used. A librarian program
controls the storage and use of these programs in the system
library. It maintains a program directory for this purpose
and also facilitates the addition of new programs to the
library or deletion of unwanted programs from the library.
In the area of scientific applications, the usual types of
library routines available are the mathematical functions
such ar square root and exponential functions. Other
operations of various types are also encountered such as
matrix inversion, statistical analysis, conversion of numbers
from one base to another (binary to decimal and decimal to
binary), etc. All these and many other frequently used
routines are normally available as library programs.

Operating Systems 187

UTILITY PROGRAMS

Utility programs, also known as service programs,
are routines that perform needed serv ices such as editing
texts or programs,' debugging programs to correct logical
rnisLakcs, sorting records into a particular sequence for
processing, or transferring data from one I/O device to
ramothcr. These routines are also available for call-up b y the
operating system and once again the job control StaterncnLs
of a particular user tell the operating system supervisor
which utility programs are needed by the user. A few
examples of utility programs commonly available in a
computer system are briefly described below.

I. Text editor. A text editor is a program that
facilitates the creation and correction of texts. The text
being edited could be an English langua ge letter, but most
Often, it is a s y mbolic language program typed by the user.
The text editor program does not interpret the meaning of
the text but has the capabilit y of changing it when special
commands are issued by user. For example, when a
symbolic language program is being entered into a
computer memory via a video-terminal, the programmer
may USC the facility of a text editor program to correct his
typing errors by issuing commands to insert, delete, or
replace characters in his source programs. Thus, with the
help of a text editor, the user can prepare programs an
correct them with relative ease.

2. Debug giiig tool. Debugging tool is a program that
nelps the user to locate and cci-rect logical mistakes in his
program. A dynamic debugging tool allows the
programmer to control program execution using a video
terminal while his program is being executed in the
computer. While his program is being executed, the user
can stop the execution of the program at any desired point,
he can examine contents of various registers, change
contents of registers and memory, make alterations to his
binary programs, and other similar functions. Thus, by
using the facilities of a dynamic debugging tool, the user
can easily detect and correct logical errors in his program.

3. Sort and merge. In the area of commercial data
processing applications, the most widely used routines are
sort and merge. Sort programs are used to arrange data into
a specified sequence. For example, business transactions
may be stored in computer in the order in which they occur.
The transactions may have to be sorted by different items
such as by account number to identify the customer or by
salesman's name to caculate the commission to be paid.
The sort program reads the unsequenced input file and by
means of various copying techniques ultimately produces
as output a copy of the input file in the required sequence.
Merge programs, on the other hand, are used to combine

two or more .eLs of sorted data into one file containing all
the items of all the original sets in sorted order.

4. Memory dump program. A memory dump
program allows the user to print the contents of specified
locations in main memory at some particular point during
the program execution. A memory dump typically shows
both the program and operand data. By inspecting both
program and data, and comparing it with what it should
have been if the program had run correctly, the programmer
is able to find the mistakes in his program.

5. Trace routine. A truce routine allows the user to
trace the flow of his program while it is executed. He can
request, for example, that the contents of ccr.ain registers or
memory locations be printed every time a branch statement
is executed or when the value of certain variables are
changed. This allows the user to get a clear picture of what
Nis program is doing and thus be able to correct mistakes in
his program.

. Peripheral interchange programs. These utility
programs facilitate transfer of data from one 1/0 device to
another. They make possible the copying of data from one
unit, for instance, magnetic tape, to another unit, for
'instance, magnetic disk. It is also possible to copy data
from one tape unit to another tape unit or from one disk unit
to another disk unit. This results in a more efficient
utilization of the data preparation equipments.

QUESTIONS

I.	 What is an operating system ? Why is it
necessary for a computer system?

2. List out the various functions normally
performed by an operating system.

3. The operating system tends to isolate the
hardware from the users'. Discuss this statement.

4. What is a supervisor ? How does it differ from
the transient routines of an operating system ?

5. Differentiate between the terms throughput and
turnaround time.

6. Explain how jobs are processed in batch mode.

7. What are the advantages ansi disadvantages of
batch processing?

8. What are some of the reasons that JCI

188 Digital Computer Fundrnen;aLc

statements are needed when you submit your job
for computer processing?

	

9.	 Would you say that all computers use the same
types of JCL statements? Why?

10, .. You want to compile and execute a COBOL
program. In plain English, list out the necessary
JCL statements you will prepare for this job.

11. What is spooling ? How does it help in
improving the efficiency of a computer system ?

12. Define	 multiprogramming.	 Explain	 how
multiprograming c	 es effecuvo itilization of
main memory and CPU.

	

13,	 Differentiate between I/O-bound and CPU-
bound jobs.

14. List out some of the hardware and software
facilities required for a multiprogramming
system to work satisfactorily.

15. What is multiprocessing ? (Jive the basic
organization of a multiprocessing system.

16. How	 is	 multiprocessing different from
rnutiprograrnming?

17. Discuss the advantages and limitations of
mutiprocessing systems.

18. What is a time-slice ? In a timesharing system,
explain how each and every user feels that he is
the sole user of the computer system.

19. What are the three different states in which all
users of a timesharing system fall ? Illustrate
how a particular user switches from one state to
another.

20. What is swapping ? How does it help an
operating system in memory management?

21. Why are timesharing systems considered to be
most suitable for program development and
testing?

22. What type of hardware facilities are required for
a timesharing computer system?

23. Discuss the advantages and disadvantages of a
timesharing system.

24, Mutiprogramming and timesharing both ;nvolvc
multiple users in the computer i)flcuricntly
What is the basic difference between the two
concepts ?

25. What is meant by real-time processing 7 Give
some examples of real-time applications.

26. "A real-time system uses on-line processing but
an on-line system need not necessarily operate in
real-time mode." Explain.

27. Why is a high degree of reliability necessary, for
real-Lime systems 7 flow is this achieved 7

28. Will it be practical to use magnetic tape files in
conjunction with a real-time system? Give
reasons for your answer.

29. What do you understand by the term response-
time" ? Why is response time critical in a real-
time system ?

30. What is a virtual memory 7 How is it
implemented?

31. What are the two mairi advantages of a virtual
memory system?

32. What are library routines ? Why are they
normally	 supplied	 by	 the	 computer
manufacturers ?

33- What is a librarian? What are its functions ?

34- What is a text editor?

35. How is a dynamic debugging tool used by a
programmer?

36. Explain how memory dump programs and trace
routines help a programmer in finding out
mistakes in his program.

37. What is the use of peripheral interchange
programs?

38. One of your friends wishes to use your account
in the computer to enter and test his program.
What information you must provide for him/her
to proceed?

CHAPTER 15

15. BUSINESS DATA PROCESSING
CONCEPTS

This chapter deals with the basic concepts of
business data processing. In this chapter, you will first learn
the difference between data and information and the
hierarchy of data storage, Then you will learn about the
various types of file organizations and file utilities
commonly used in business data processing applications.
Finally, this chapter a1 so introduces the basic concepts of
data base systems and its advantages and limitations.

WHAT IS DATA PROCESSING

Data arc a collection of facts- unorganized but able
to be organized into useful information. A collection of
sales orders, time sheets, and class registration cards are a
few examples. Data are manipulated to produce output,
such as bills and paychecks. When this output can be used
to help people make decisions it is called information.

Processing is a series of actions or operations that
convert inputs into outputs. When we speak of data
processing, the input is data, and the output is useful

information. Hence, data processing is defined as series of
actions or operations that converts data into useful
information. The data processing system is used to include
the resources such as people, procedures, and devices that
are used to accomplish the processing of data for producing
desirable outpul

Thus, data are the raw material of information and
just as raw materials are transformed into finished products
by a manufacturing process, raw data are transformed into
information by data processing.

DATA STORAGE-HIERARCHY

The basic building block of data is a character,
which consists of letters (A, B, C...Z), numeric digits (0, 1,
2...9) or special characters (+, -, I, ', ., S...). These
characters are put together to form a field (also called a
fact, data item, or data element). Afield is a meaningful
collection of related characters. It is the smallest logical
data entity that is treated as a single unit in data processing.

!WvnrTi

Figure 15.1. Relationship between character, field,
record, and file.

190	 Computer Fundamentals

For example, if we are processing employees data of a
company, we may have an employee code field, an
employee name field, an hours worked field, an hourly-pay-
rate field, a tax-rate-deduction field, etc. Ficlds are
normally grouped together to form a record. A record, then,
is a collection of related fields that are treated as a single
unit. An employee record would he a collection of fields of
one employee. These fields would include the employee's
code, name, hours-worked, pay-rate, tax-rate-deduction,
and so forth. Records are then grouped to form a file. A/lie
is a number of related records that are treated as a unit. For
example, a collection of all employee records for one
company would be ail employee file. Similarly, a collection
of all inventory records for a particular conipany forms an
inventory file. Figure 15.1 reveals these data relationships.

It is customary to set up a masic' fIle of pemsancut
(and, usually, the latest) data, and to use transaction files
containing data of a temporary nature. For example, the
master payroll file will contain not only all the permanent
details about each employee, his name and code, pay-rate,
income tax rate and so forth, but it will also include the
current gross-pay-b-date total and the tax paid-to-date
total. The transaction payroll file will contain details of
hours worked this week, normal and overtime, and, if
piecework is involved, the quantity of goods made. When
the payroll program is processed, both files will have to be
consu!ted to generate this week's payslips, and the master
file updated in readiness for the following week.

A data base is a collection of integrated and related
master files. It is a collection of logically related data
elements that may he structured in various ways in meet the
multiple processing and retrieval needs of organizations
and individuals. Characters, fiekis, records, flies, and data
bases form a hierarchy of data storage. Figure 15.2
summarizes the data storage hierarchy used by computer-
based processing systems. Characters are combined to
make a field, fields are combined to make a record, records
are combined to make a file, and files are combined to
make a data base.

Figure 15.2. A dam io-ge hie-e:cb..

FILE ORGANIZATIONS

System designers choose to organize, access, and
process records and files in different ways depending on the
type of application and the needs of users. The three
commonly used file organizations used in business data
processing applications are - sequcntial direct and indexed
sequential organizations. The selection of a particular file
organization depends upon the type of application. The best
organization to use in a given application is the one that
happens to meet the user's needs in the most effective and
economical manner. In making the choice for an
application, designers must evaluate the distinct strengths
and weaknesses of each file organization. File., organization
requires the use of some key field or unique identifying
value that is found in every record in the file. The key value
must be unique for each record of the file because

Business Data Processing Concepts 191

duplications would cause serious problems. In the payroll
example, the employee code field may be used as the key
field.

SEQUENTIAL FILES

In a sequential file, records are stored one after
another in an ascending or descending order determined by
the key field of the records. In payroll example, the records
of the employee file may be organized sequentially by
employee code sequence. Sequentially organized files that
are processed by computer systems are normally stored on
storage media such as magnetic tape. punched paper rape,
punched cards, or magnetic disks. To access these records,
the computer must read the file in sequence from the
beginning. The first record is read and processed first, then
the second record in the File sequence, and so on. To locate
a particular record, the computer program must read in each
record in sequence and compare its key field to rue one that
is needed. The retrieval search ends only when the desired
key mzitclies with the key field of the currentl y read record.
On an average, about halt the file has to be searched to
retrieve the desired record from a sequential file.

AdN antages of sequential files

1. Easy to organize, maintain, arid understand.

2. There is no overhead in address generation.
Locating a particular record requires only the
specification of the key field.

3. Relatively inexpensive I/O media and devices
can he used for the storage and p 'iocessing of
such files.

4. It is the most efficient and economical file
organization in case of applications in which
there are a large number of file records to be
updated at regularly scheduled intervals. That is,
when the activity ratio (the ratio of the total
number of records in transaction file and the
total number of records in master file) is very
high. Applications such as payroll processing,
billing and statement preparation, nd hank
cheque processing meet these conditions.

Disadvantages of sequential files

It proves to be very inefficient and uneconomical
for app'i:alions in which rije ac:iviiv ratio is very
low.

Since in entire s iueai; ic ma y neci Lo be

read just to retrieve and update few records,
accumulation of transactions into hatches is
required before processing them.

Transactions must be sorted and placed in
sequence prior to processing.

Timeliness of data in the file deteriorates while
hatches are being accumulated.

5. Data redundancy i t ypicall y high since the same
data may he stored in several files sequenced on
different keys.

DIRECT FILES

A direct file (also called a random or 'lative file)
Consists of records organized in such a way that it is
possible for the computer to directly locate the key of the
desired record without having to search through a equcnce
of other records. This means that the time remired for
online enquiry and updating of a few records is much faster
than when hatch techniques are used. However, a direct-
access storagestorage device (DASD) such as a drum, disk, strip
file, or mass core is essential for storing a direct file.

A record is stored in a direct file by its key field.
Although it might he possible to directly use the storage
location numbers in DASD as the ke ys for the records
stored in those locations, this is seldom done. Instead, an
arithmetic procedure called hashing is frequently used. In
this method, an address generating function is used to
convert the record key number into a DASD storage
address. The address generating function is selected in such
a manner that the generated addresses should be distributed
uniformly over the entire range of the file area and a unique
address should be generated for each record key. However,
in practice, the above constraints are usually not satisfied
and the address generating function often maps a large
number of records to the same storage address. Several
methods are followed to overcome this problem of collision
when it occurs. One approach is to include a pointer field at
the location calculated by the hashing function. This field
points to the DASD location of another record Ihat has the
same calculated address value. When the computer is given
the key of a record to he processed at a later date, it reuses
the hashing function to locate the stored record. If the
record is found at the location calculated by the hashing
function, the search is over and the record is directly
accessed for processing. On the other hand, if the record at
the calculated address does not have the correct key, the
computer looks at the pointer field to continue the search.

192 Digital Computer Fundnnienials

Advartages of direct (lies

The access to, and rciricval of a record is quick
and direct. Any record can be located and
retrieved directly in a fraction of a second
without the need for a sequential search of the
file.

-I
	

Transactions need not be sorted and placed in
sequence prior to processing.

3 Accumulation of transactions into batches is not
required before processing them. They may be
processed as and when generated.

4 It can also provide up-to-the minute information
in response to inquiries from simultaneously
usable online stations.

5 If required, it is also possible to process direct
file records sequentially i n a record key
sequence.

6. A direct file organization is most suitable for
interactive online applications such as airline or
railway reservation systems, teller facility in
banking applications. etc.

Disadvantages of direct files

These files must be stored on a direct-access
storage device. Hence, relatively expensive
hardware and software resources are required

2. File updation (addition and deletion of records)
is more difficult as compared to sequential files.

3. Address generation overhead is involved for
accessing each record due to hashing function.

4. May be less efficient in the use of storage space
than sequentially organized files.

a. Special security measures are necessary for
online direct files that are accessible from
several stations.

INDEXED SEQUENTIAL FILES

We are all familiar with the concept of an index. For
example, the directory in a large multistoried building is an
index that helps us to locate a particular person's room
within the building. For instance, to find the room of Dr.
Sharma within the building, we would look up his name in

the directory (index) and read the corresponding floor
number and room number. This idea of scanning a logically
sequenced table is preferable to searching door by door for
the particular name. Similarly, if we wished to read the
section in this book about printers, we would not begin on
page 1 and read every page until we came across the topic
of interest- Rather, we would find the subject in the
contents (which serves as an index) to locate the page
number, and then turn directly to that page to begin reading.

Indexed sequential files use exactly the same
principle. The records in this type of file are organized in
sequence and an inlcx table is used to speed up access to
the records without requiring a search of the entire file. The
records of the file can be stored in random sequence but the
index table is in sorted sequence on the key value. This
provides the user with a very powerful tool. Not only can
the file be processed randomly, but it can also be processed
scquentiali. Since the index table is in a sorted sequence
on the key value, the file management system simply
accesses the data records in the order of the index values.
Thus indexed sequential files provide the user sequential
access, even though the file management system is
accessing the data records in a physically random order.

	

Erpoyeej Adess	 Ad)eSS	 SmOG Ge

	

CdeYLOcai0G	 Locata'	 Reoo

c•o	 jooa	 c2

	

O1	 0:0	 C''L

	coa 	 o

ouea	 moo?

Figure 15.1 Organization of an indexed sequential
file.

This concept is illustrated in Figure 15.3. This
technique of file management is commonly referred to as
the Indexed Sequential Access Method (ISAM). Files of this
type are called ISAM files.

Business Data Processing Concept.c 193

Advantages of indexed sequential files

I. Permits the efficient and economical use of
sequer.uaJ processing techniques when the
activity ratio is high.

2. Permits direct aci:ess processing of records in a
relatively efficient way when the activity ratio is
low.

Disadvantages of indexed sequential files

1. These files must be stored on a direct-access
storage device. Hence, relati ve l y expensive
hardware and software resources are required,

2. Access to records may be slower than direct
files.

3. Less efficient in the use of storage space than
some other alternatives.

FILE UTILITIES

File utilities consist of routines which perform a
variety of generalised operations on data files. Normally,
file utilities are data independent. This means that the
routines are written quite generally, and will operate on any
data formats and even on data held on different types of
storage medium. Some of the comrnorly used file utilities
are discussed below.

SORTING

The purpose of sorting a file is to arrange records
within a file in some defined sequence. This sequence is
determined by the ordering of certain specified fields within
the record. Fields whose ordering determine the sequence
of a file in the sorting process are known as keys. The
simplest case is an ordering on a single key. For example, a
tile of personnel records may be sequenced by ascending
order of ernplovc.e cede :ts shown iii Figure 15.4. A mote
complex ordering may be produced by introducing a further
key in the sorting process. For example, Suppose each
record of the personnel file also contains a field for
department number to which the employee belongs. Now
the order of sorting may be employee code within
department number. This means that. al] tecocth for the
lowest department number are presented first, eacri in

Employee code	 Department Number

101	 2

23	 3

124

176	 2

178

702	 3

213

Figure 15.4. Sorting on one key in ascending
employee code sequence.

Employee Code	 Department Number

124

178

213

101	 2

176	 2

123	 3

202	 3

Figure 15.5. Sorting n two keys. Ascending
employee code within ascending
departmen number. Department
number is primary key and employee
code is secondary key.

ascending sequence of employee code: then all records for
the next department number and so on. This is indicated in
Figure 15.5. In this example, two keys have been used in
the sorting process - department number is called the
primary key and employee code is known as the Secondary
key.

According to the extent and sophistication of the
sort utility available, the size and number of keys which can
be specified, and the typi of ordering (e.g. ascending,
descending, alphabetical) will vary.

194	 Computer Fundamentals

Since sorting is a very common data-processing
requiremenL manufacturers provide sort utility software
which enables users to specify their particular sequencing
requirements by means of simple paramcte:. Software is
usually avaiIabe for sorting files held on all types of
storage devices. The user specifies the sort keys, and also
details about the type of file such as storage device, file
labels, record structure. The sort utility program reads the
unsequenced input file, and by means of various copying
techniques ultimately produces as output a copy of the
input file in the required sequence.

SEARCHING

Searching is the process of scanning a file to find a
particular record. The efficiency of a search algorithm
depends on the file organisation. For example, to search a
particular record in a sequential file, the file is scanned
sequentially beginning with the first record and the desired
key is compared one-by-one with the key field of each
record. The search process terminates when the matching
key is found. On the other hand, direct file organisation
enables the program to have immediate access to the
desired record. The program need only inform the file
management system which record is needed, and the
management system then searches through the filing system
and produces the desired record. Normally, the time
required to search a particular record from a direct file is
much less as compared to the Lime required to search it
from a sequential file.

MERGING

Merging of files involves the combining of records
from two or more ordered files into a single ordered file.
Each of the constituent files must be in the same order,
although the record layout of tiles need not be identical.
The output tile will be in the same order as the input files,
placing records from each in their correct relative order.

For example, in Figure 15.6, files A and B are
merged to produce an output file C.

COPYING

File copying routines are provided for producing an
exact copy of a tile, either from one unit of a storage device
onto another similar unit, e.g., from one tape reel to
another, or frerti one storage medium to another, e.g..
copying a card or disk file onto tape.

These routines are normally used for taking back-up
copies of useful tiles. For example, a disk file may be
copied on a tape or floppy for back-up purpose. File

copying routines are also known as peripheral interchange
programs since tl:ty are used to copy a file from one
peripheral device onto another peripheral device.

eAj	 TFi1ccI1	 LEiii

125	 I	 112	 112

119127

137	 129

i39

159	 11

1.16

129	

Z"	

150

137

139

146

150

152

159

Figure 15.6. Merging of files A and B to produoc
file C.

PRINTING

Printing routines are used to print file contents upon
a printer. File contents may be reproduced in different
formats on the printer if there is a difference in the internal
and external data formats, e.g. binary to character
conversion. S pecial printing may be provided if the file
contains program instructions rather than data. Scrie
selection and editing facilities are normally provided with
printing routines to enable parts of files to be output, e.g,
specified number of records or blocks and certain portions
only of records to be printed.

MAINTENANCE

File maintenance is the term given to any system of
reorganisation of data items within a file, where the
rcorganisa!ion is independent of the information content of
the file. File maintenance software in effect is a form of

Business Data Processing Concept: 195

selective copying. Extra facilities include the combining of
data from more than one file, the deletion of records
indcntiflcd by record key or record Count within a file, and
the selection of specific portiorLs of records to be copied.

LABELLING

Files held on a storage device are identified by a
special block of data held as the first block on the file. This
block, called the file label. contains certain control
information enabling the file contents to be identified, and
may also contain additional information about the storage
unit iLself, such as the date when the unit was last written
to, the number of times written to, and the serial number of
the unit.

ScRATCH1NG

In systems where file labelling is used, it is
generally not possible to write to a file unless the control
information in the label block indicates that the data on the
file is no longer valid. In any system, however, certain files
may hold data which has become out of the date, or is
invalid for other reasons, and thus is available for writing
to A routine must thus be available to alter the label so as
to indicate that this state has been reached, even though the
purge (make pure and clean) date has not yet been reached,
or the file label is unchanged. The scratch routine will
enable a new label to be written to a file with an already
valid label, and must therefore be used with care., as it is
possible to destroy valid data if wrongly used,

DATA BASE SYSTEMS

With the reduction in the cost of computer systems,
data processing activities have increased drastically.
Nowadays, computers are being used not only by almost all
organizations, but also by the various departments of an
organization. 'Thus, an organization may use computers for
hartdliog a variety of applications for its different
departments. In a conventional data processing system,
each seperate application had its own master file organized
in a sequential, direct, or indexed sequential fashion. The
records in each file were organized according to a single
key field. Associated with each of these files was a set of
programs for preparing required reports. Each file was
processed virtually independently of the other riles, and
each file Would include its own set of processing programs
for icocessthg that file.

Tills method of file processing 'vas used on vrwatly
all early computers and, indeed, is still commonly used
14 - A

today. However, for most modern processing needs, this
type of system has a number of shortcomings, which are as
follows:	 -

Data redundancy. The same basic data fields are
included in .many different files. For example,
suppose a file containing employee details is
organized according to the employee code as key
field. If we wish to get the names of employees
with a certain educational qualification from this
file, we need to search all file records. If the
need for such art became a routine,
then a new file structured on an educational
background key would be created and a new
program would be written to process this file. Of
course, this second file would duplicate much of
the data stored in the first personnel file.

2. Data inconsistency. When changes occur in a
data item, every file which contains that field
should be updated to reflect the change.
Confusion can result when one file is updated
while another file containing the same field is
not updated. This is a very common occurrence
and leads to the problem of inconsistency. If one
of the files is inadvertently not updated correctly,
then the same entries in different files will be
different (inconsistent) resulting in frequent
discrepencies among reports produced from
different files.

3. Lack of pro,ram/clata independence. The
programs used with file oriented applications
usually contain "picture," "format." or "daLa
statements that precisely define each data field to
beprocessed. Anytime if there is a need to add
delete, or change data. formats, the application
program must also be changed. Likewise, a
significant revision in a program may require a
restructuring of the data file processed by the
program. Changing programs to accommodate
data format changes is a major maintenance
activity in many data processing installations
today.

4. Wastage of resources. Redundancy of data
between files also results in wasted storage and
wasted processing time in updating all files.' I
the same- data item is stored in several flies,
obviously wasted storage will result. Moreovc,
the cost of entering and storing the same data in
many files can be quite expensive.

196 Digital Computer Fundamentals

THE DATA BASE CONCEPT

In order to overcome the problems of a conventional
filcoriented data Processing system, the data base concept
was introduced Although there are differences of opinion
about what CPflStitUteS a data base system, the most
preveant view is that such systems possess the following
characteristics

1. it is a centralized and integrated shared data file
which consists of all data used by a company

2. It is organized and structured in a different
manner than the conventional sequential file
organizations.

3. Its organization permits access to any or all data
quantities by all applications with equal ease.

4. Its organization is such that duplication of data is
minimised if not eliminated entirely.

5. It emphasizes the independence of programs and
data. It involves the concept of separating data
definition from the applications programs and
including it as part of the database.

6. It provides for the definition of logical
relationships which exist between various
records in the data base.

7. It is stored on a direct-access storage device.

The first step in moving from ordinary file
management to a data base system is to separate all data
drfiniririns from the applications pro grams and to
consolidate them into a separate entity called a schema, as
illustrated in Figure 15.7. In addition to data definition, the
schema also includes an indication of the logical
relationships between various components of the data base.
This is rcpreentcd in Figure 15.7 by the data structure
definitions. In other words, virtually everything there is to
know about the data base and its structure is included in the
schema.

The schema then hecoirc.s a compoe.cnt of the
overall data base itself. From the schema the installation
can generate dictionaries containing a complete description
of the data base. These will, in turn, be used by systems
analysts in defining new applications.

Data base systems are typically installed and
coordinated by aii individual called the data base

af,njnistrator. He has the overall authority to establisu and

control data definitions and standards. He is responsible for
determining the relationships among data elements, and for
designing the data base security system to guard against
unauthorised use. He also trains and assists applications
programmers in the use of data base. A data dictionary is
developed and used in a data base to document and
maintain the data definitions.

C),

	Procedurs Procedures	 Procedures

o

C))

0
Data	 Data	 Data

	

t defirutions	 definitions	 definitions

	

Data	 I The
structure	 ________ Schema
definitions	 I

Figure 15.7. Illustrating the use of schema in data
base for separating data definitions
from programs.

DATA BASE MANAGEMENT SYSTEM

A collection of programs required to store and
retrieve data from a data base is called a data base

management system (DBMS). As shown in Figure 15.8, the
principal components of a DBMS are a data description
module and a data manipulation module. The data
description module of the DBMS analyzes the data
requirements of applications programs and transfers control
to the data manipulation module, w!ch retrieves the
needed data elements from the data base.

14- B

Business Data Processing Concepts 19/

DBMS

- T

AppicaO Descipior.

Data	
Data

102)	 manipulation011
moo we	

-	 base

Figure 15.8. Principal components of a DBMS

A DBMS can organize, process, and present selected
data elements from the data base. This capability enables
decision makers to search, probe, and query data base
contents in order to extract answers that are not available in
regular reports. For example, a query of the form "list out
all male employees who are more than 45 years old and less
than 50 years old and whose basic salary is more than Rs
3000/- per month can easily be answered from an
employee data base.

Data base management systems free the programmer
from the need to worry about the organization and location
of data. All of the daLi. needed by an application program
can be accessed, regardless of access method, record
location, or record content- Programming is speeded up
because the programmer can concentrate upon the logic of
the application. Most DBMS are designed to interact with
the commonly used programming languages such as
COBOL. Many DBMS include special, user-friendly query
lcnguoges. These languages can be easily learned by
rionprograrnming users of the system, enabling them to
access the data base for information as needed without the
help of any programmer.

DATA BASE STRUCTURING TECHNIQUES

able to access and retrieve data from nonkey record fields.
Thatis, the DBMS is able to structure and tie together the
logically related data from several, large files. Identifying
these logical relationships is a job of the data base
administrator. A data dcfinitLoiz language is used for this
purpose. The DBMS may then employ one of the following
structuring techniques for the efficient storage, access, and
retrieval operations of data.

List structures. In this method, records are linked
together by the use of pointers. A pointer is a data item in a
record that identifies the storage location of another
logically related record. For example, let us assume that an
employee file contains five records. There is one record for
each employee. Now assume that we wish to find out all
employees with a job classification of C2. One way to do
this is to add a pointer at the end of each record for job
classiflcaion C2. The pointer simply indicates (or points
to) the address or location of next record containing an
employee with a job classification of C2. Pointers for job
classification C2 are shown in Figure 15.9. When a list of
records are tied together using pointers, the Iist.is called a
linked list.

Jot,	 Pont..
Narm.
	 500	 CIasS,Itcat,Or.	 Pay rate	 to. CO

br	 (P SINHA
	 I 1021

102 1	 R.S.PATEL

	

NP.1	 M	 Cl	 15.00 [J

104 I	 R.K. RANA	 I U	 C2	 I

CI

We have seen how seqthotitiai, direct and indexed
sequential approaches arc used to organize and structure the
data in single files. However a DBMS is able to integrate
data elements from several files to answer specific user
inquiries for information. This means that the DBMS is

	 Figure 15.9 A list structure using a pointer r ('2.

L

198 Digital Computer Fundamentals

With pcinter, the addresses and locations of related
records are ac:ually placed in the records themselves. An
altetnative to pointers is the index or inverted list. In this
method, the relationship between various data elerneros is
placed in a separate file or table called an index or an
invtrted list. It is referred to as an inverted list because the
attribute values, such as sex, job classification, and pay rate
are inverted with the keys used for direct access. In other
words the key for the record and the actual contents or
attributes of the record are reversed. This allows us to start
with an attribute, such as job classification, and determine
which records contain employees with that particular
attribute. lnvertd lists for sex, job classification, and pay
rates of employ.cs cf Figure 15.9 are shown in Figure
i s.o.

Suppose if there is a query to determine all
employees belonging to job class Cl, then the computer
goes . to the job classification index and reads the pointer
values for job classiui.ation Cl. This aliews the computer
to directly access the records of employees 103 and 105, the
employees belonging to job classification Cl. Similarly, the
index for sex can be used to list out all the male or all the
female employee directly. Also the pay rate index can be
used to find employees with certain pay rate ranges.

SEX INDEX

Key Values	 I'uhitcr Vahiesj

M	 101, 105, 104

102,10-5

JOB CLASSIFICATION INDEX

Key Vulues	 l'oiiitci' Vulucs

Cl	 1)3,105
C2	 101,102,104

PAY RATE INDEX

Key Values	 Puixiter \'ulucs

5 . 01-1000	 102. 105

10.01-15.00	 101, 10:3,104

hierarchical or tree Structures. In this method, data
units are structured in multiple levels that graphically
resemble an inverted tree with the root at the top and
branches icrrncd below. Below rue single-itot data
component are subordinate elements or node:. each of
which, in turn, has one or more other ckmcnts. There is a
parent-child relationship in a hierarchical sLrdcture. A
parent node is one that has one or more snbrdinate
elements or nodes. The data and records that are below the
parent node are its children nodes. There may be numerous
children nodes under each parent node, but there can be
only one parent node for an y one child node. Note that the
branches in a tree sLnictuc arc not connected. A typical
hierarchical sLruture is shown in Figure 15.11.

Fi g 15.10.	 Example of indexes and inverted Lts	 Figure 15.11. A typical hierarchical (tree) structute.

Bu.ciness Data Processing Concepis 199

Figure 15.12. A typical network stricture.

tables could be established to link a college course with the
instructor of the cot-se, and with the location of the class as
shown in Figure 15.13. To find the name of the mstructor
and the location of the Hindi class, the course/instructor
relation is searched to get the name of the instructor (R.
Pandey), and the coursc/loc3tion relation table is searched
to get the class location (Room 210). Many other relations
are, of course, possible.

COURSEINSTRIjCTI1
RELATION TABLE

Ccljre	 IrilluclO,

EIsgIII.i1	 5K Ray
Hindi	 N
P1w'CI	 PKSon
CI'.n'slry	 P &
Moths	 N P. Singh

The hierarchical structure for data bases in very
popular. A large nunThcr of computer programs have been
writien that use this structure. On the other hand, there are
also disadvantages. White it is possible to force most data
into a hierarchical structure, ic can be difficult and
awkward. In addition, a hierarchical structure can be more
complex and more difficult to understand for managers and
executivcs. Even then, the hierarchical structure continues
to be a dominant one for large organizations, such as airline
companies and credit card companies.

Network structures. A nct\volk structure is an
extension of the lijerarcitical or tree structure. Instead of
having only one parent node, however, the network
structure can have multiple parent nodes for a child node.
Thus. each node may have several owners and may. in turn,
own any number of other data items. Data management
software permits the extraction of the needed information
from such a structure by beginning w'.h any record in a file.

A typical network structure illustrating the
relationship between students and the subjects taken by
them is shown in Figure 15.12. There are three students and
five .Aubjccts. The lines drawn between the students and the
subjects show which students have taken which subjects. It
can be easily seen that student I has taken subjects 1, 3, and
5, that student 2 has taken sub iects 1, 2, and 4, and that
student 3 has taken subjects 3, 4, and 5. Of course, there
could be thousands of students and many more subjects.

Relational s:ruclures. The overall purpose of this
model is to relate data records using a standard tabular
formaL It uses normal two-dimer.siooal tables to describe
aU relationships between data. For example, relational

COURSE/ LOCATION 1 [OTHEP
RELATON TARLE	 TON TA

Cou,seJ' LIIi0l	 I
I	 Fo, e,n5Ie

libles reItng
E n Bh ,h	 R000 l'5	 C0.lrnos WIIh
k,L'h$	 Roo,o 2M	 I

115C5e0'nl,y	 Poo'	 IS CI

Physics	 Ro.'n l	 3y3 of o,eeIo.ç
Hindi	 R0001 201	 hou's CI credI

etc

Figure 15.13. Illustrating relational sinicwre.

The relational model is a relatively new data base
structuring technique. This model does not foráe us to use a
structure, such as the hierarchical structure or' the network
structure. This is one of the advantages of the relational
approach. The data in the relational model, in most cases,
can be identical to the actual relationships tiat exist
between the records and various data items. This is an
important advantage over hierarchical and network models.
As a result, them has been a considerable amount of interest
in developing relational data basu systems. Today relational
models exist for large computers as well as small
microcomputers.

ADVANTAGES AND LIMITATIONS OF DATA BASE
SYSTEMS

In comparison to a conventional file-oriented data
processing system. a data base system enjoys the following
advantages;

200 Lnif(1/ Cci,n1;uo.'r Pu, CJ('mci iu

1. The integration and sharing of data files
minimizeS the duplication and redundancy of
data to a great cxlenL

2. Imegrution of Ouw files also results in a
ciinsidcrablc saving of storage space and in uata
entry and data storage costs.

3. Fewer applications programs need to be
developed for obtaining various reports due to
independence of programs and data.

4. The query language facility helps non-
programming personnel to access the data base
for information as needed without the help of
any programmer.

5 Faster preparation of information to support
nonrecurring tasks and changing conditions is
possible.

6. Updation of data becomes easier due to
integration of data files. Fewer errors may result
when several records may be updated
Simultaneously.

On the other hand, the following are some of the
limitations of a data base system

1. More complex and expensive hardware and
software resources are needed.

2. Sophisticated security measures must he
implemented to prevent unauthoziscd access of
sensitive data in online storage.

3. Hardware or software failures might result in the
destruction of vital data base contents.

4. A lengthy conversion period may be needed,
higher personnel training costs may be incurred,
and more sophisticated skills are needed by those
responsible for the data base system.

QUESTIONS

1. What is the difference between data and
information ?

2. What is meant by data processing?

3. What is a data processing system?

4. Describe the data storage hierarchy.

5. Give an example to illustrate die relationship
between a character, a field, a record, and a file.

6. What is the diffcrencc between a master file and
a transaction file ?

7. 1-low are data organized in business data
processing systems ?

	

S.	 What is a key field ? What role does it play in
file creation ?

9 How is a sequential file organized ? How are
records in a sequential file accessed ? How are
these records processed ?

	

ID]
	

What conditions support the use of sequential
file?

	

II.	 How is a record stored in a direct file ? How is it
retrieved and processed 3

	

12.	 What conditions support the use of direct files
and dircet-access processing ?

	

13
	

F{o are records stored in an indexed sequential
file'! How are they retrieved and processed ?

14 Discuss the advantages and limitations of the
sequential, direct, and indexed sequential file
approaches.

15. \Vhtit are file utilities 3

16. Differemitiate between the process of sorting and
merging of files.

17. Explain the use of the following file utilities
copying, printing, labelling, and scratching.

18. What arc the shortcomings of a conventional file
oriented data processing system 7

19. What are the characteristics of a data base
system?

20. What is a data base schema?

21. What are the jobs and responsibilities of a data
base administrator?

22. What is a data dictionary?

Business Data Processing Concepts 201

23.	 What is a data base management system ? How	 to a pointer !

is it used?

24. Identify and discuss the structuring techniques
used by data base management systems.

25. What is an inverted list? How does it compare

26. What is the difference between a hierarchical
and a network structure?

27. What are the advantages and limitations of a data
base system ?

