CHAPTER 11

11. PLANNING THE COMPUTER

In Chapter 10, computer programs have been
described as the software of the computer system. We are
now at the point in the system life cycle where programs
are 1o be written. But before writing a computer program,
one must be clear about the processing steps to be
performed by the computer. Thus, to produce an effective
computer program, one must first plan the logic (the
various steps) of the program. If one attempts to plan the
logic approach and write the program at the same time, he
will likely become so involved with the required instruction
formats that program logic will suffer. Hence, before we
lean how to write a program (next chapter), we will first
leam how to plan the logic of a computer program in this
chapter.

PURPOSE OF PROGRAM PLANNING

Suppose you are asked by your teacher to solve an

PROGRAM

arithmetic problem and you are not familiar with the steps
involved in solving that problem. In such a situation, you
will not be able to solve the problem. The same principle
applies to writing computer programs also. A programmer
cannot write the instructions to be followed by a computer
unless the programmer knows how to solve the problem
manually.

Suppose you know the steps to be followed for
solving the given problem but while solving the problem,
you forget to apply some of the steps or you apply the
calculation steps in the wrong sequence. Obviously, you
will get a wrong answer. Similarly, while writing a
computer program, if the programmer leaves out some of
the instructions for the computer or writes the ihstructions
in the wrong sequence, then the computer will calculate a
wrong answer. Thus, to produce an effective computer
program, it is necessary that the programmer writes each

118 Computer Fundamentals

and every instruction in the proper sequence. However, the
instruction sequence (logic) of a computer program can be
very complex. Hence, in order 1o ensure that the program
instructions are appropriate for the problem and are in the
correct sequence, programs must be planned before they are
written.

ALGORITHM

The term algorithm may be formaliy defined as a
sequence of instructions designed in such a way that if the
instructions are cxecuted in the specificd sequence, the
desired results will be obtained. The instructions, however,
should be precise and unambiguous and the result should be
obtained after a finite number of executional steps. The
lawter cordition actually states that an algorithm must
terminate and should not repeat one or more instructions
infinitely. In other words, the algorithm represents the logic
of the processing to be performed. However, in order (¢
qualify as an algorithm, a sequence of instructions must
possess the following characteristics :

1. Each and every instruction should be precise and
unambiguous.

2. Each instruction should be such that it can be
performed in a finite time.

3. One or more instructions should not be repeated
infinitely. This ensures that the algorithm will
ultimately terminate.

4. After performing the instructions, that is after the
algorithm terminates, the desired results must be
obtained.

To gain insight into algorithms, let us consider a
simple example.
Example 11.1. There are 50 students in a class who
appeared in their final examination,
Their marksheets have been given to
you. Write an algorithm to calculate and
print the total number of students who
passed in first division.

Algorithm :
Step 1: Initialize TOTAL FIRST DIVISION

and TOTAL MARK SHEETS

CHECKED to zero. -

Step 2: Take the marksheet of the next

student.

Step 3: Check the division column of the
marksheet to see if itis I : if no, go to
step 5.

Step 4 : Add 1 to TOTAL FIRST DIVISION.

Step S: Add 1 o TOTAL MARKSHEETS
CHECKED.

Step6: is TOTAL MARKSHEETS
CHECKED = 50 : if no, go to step 2.

S‘Iep s Print TOTAL FIRST DIVISION.

Step 8 Stop.

It must be clear to the readers from this example that
even for very simple problems, the development of
algorithms is not so simple as it might initially appear and
requires some thinking. It may also be noted from the given
example that in order to solve a given problem, each and
every instruction must be strictly carried out in a particular
sequence. It is this fact which a beginner (o problem
solving by computers finds difficult to appreciate.

There are various ways in which an algorithm can be
expressed. When an algonthm is expressed in a
programming language, it becomes a program. Thus, any
program is an algorithm although the reverse is not true.
Besides represented as programs, algorithms are often
expressed in the form of flowcharts which is discussed
below.,

FLOWCHARTS

A flowchart is a pictorial representation of an
algorithm that uses boxes of different shapes to denote
different types of instructions. The actual instructions are
written within these boxes using clear and concise
statements. These boxes arc connected by solid lines having
arrow marks 1o indicate the flow of operation, that is, the
exact sequence in which the instructions are to be executed,

Normally, zn algorithm is first represented in the
form of a flowchart and the flowchart is then expressed in
some programming language 1o prepare a computer
program. The main advantage of this two step approach in
program writing is that while drawing a flowchart one is
not concerned with the details of the elements of
programming language. Hence, he can fully concentrate on
the logic of the procedure. Moreover, since a flowchart
shows the flow of operations in pictorial form, any error in
the logic of the procedure can be detected more casily than
in the case of a program. Once the flowchart is ready, the

programmer can forget about the logic and can concentrate
only on coding the operations in each box of the flowchart
in terms of the statements of the programming language.
This will normally ensure an error-free program,

A flowchart, therefore, is a picture of the logic to be
included in the computer program. It is simply a method of
assisting the programmer to lay out, in a visual, two-
dimensional format, ideas on how to organise a sequence of
steps necessary to solve a problem by a computer. It is
basically the plan to be followed when the program is
writien. It acts like a road map for a programmer and guides
him how to go from the starting point to the final point
while writing a computer program.

Expericnced programmers sometimes write
programs without drawing the flowchart. However, for a
beginner it is recommended that a flowchart be drawn first
in order to reduce the number of errors and omissions in the
program. Morcover, it is a good praclice to have a
flowchart along with a computer program because a
flowchart is very helpful during the testing of the program
as well as while incorporating further modifications in the
program.

FLOWCHART SYMBOLS

We have seen that a flowchart uses boxes of
different shapes 1o denote different types of instructions.
The communication of program logic through flowcharts is
made easier through the use of symbols that have
standardized meanings. For example, a diamond always
means a decision. Only a few symbols are needed 1o
indicate the necessary operations in a flowchart. These
symbols have been standardised by the American National
Standards Institute (ANSI). These symbols are shown in
Figure 11.1 and their functions are discussed below.

Terminal. The terminal symbol, as the name implies,
is used to indicate the beginning (START), ending (STOP),
and pauses (HALT) in the program logic flow. It is the first
symbol and the last symbol in the program logic. In
addition, if the program logic calls for a pause in the
program, that also is indicated with a terminal symbol. A
pause is nomally used in the program logic under some
emror conditions or if forms had to be changed in the
computer's line printer during the processing of that
program. '

Input/Output. The inputfoutput symbol is used to
denote any function of an inputfoutput device in the
program. If there is a program instruction to input data from
a disk, tape, card reader, terminal, or any other type of input
device, that step will be indicated in the flowchart with an

Planning The Computer Program 119

input/output symbol. Similarly, all output instructions,
whether it is output on a printer, magnetic tape, magnetic
disk, terminal screcn, or any output device, are indicated in
the flowchart with an input/output symbol,

Pracessing. A processing symbol is used in a
flowchart to represent arithmetic and data movement
instructions. Thus, all arithmetic processes of adding,
subtracting, multiplying and dividing are shown by a
processing symbol. The logical process of moving data
from onc location of the main memory to another is also
denoted by this symbol. When more than one arithmetic
and dala movement instructions are to be exccuted
consccutively, they are normally placed in the same
processing box and they are assumed (0 be executed in the
order of their appearance.

C)

TERMINAL

INPUT/QUTPUT

—_——
PROCESSING FLOWLINES
DECISION CONMNECTORS

Figure 11.1. Various flowchart symbols.

Flowlines. Flowlines with arrowheads are used o
indicate the flow of operzation, that is, the exact sequence in
which the instructions are to be executed. The normal flow
of flowchart is from top to bottom and left to right.
Arrowheads are required only when the normal top 10
bottom flow is not to be followed. However, as a good
practice and in order o avoid ambiguity, flowlines are
usually drawn with an arrowhead at the point of entry to a

120 Digital Computer Fundamentals

symbol. Good practice also dictates that flowlines should
not cross each other and that such intersections should be
avoided whenever possible.

Decision. The decision symbol is used in a flowchart
wo indicate a point at which a decision has to be made and a
branch to one of two or more altemative points is possible.
Figure 11.2 shows three different ways in which a decision
symbol can be used. It may be noted from these examples
that the criterion for making the decision should be
indicated clearly within the decision box. Moreover, the
condition upon which each of the possible exit paths will be
executed should be identified and all the possible paths
should be accounted for. During execution,-the appropriate
path is followed depending upon the result of the decision.

NO
Yes
4

(a) Two-way branch

COMPARE
A&B
A=B

(b) Three-way branch

RERERRS

{c} Mutltiple-way branch

Figure 11.2. Examples of decision symbols.

Connector. If a flowchart becomes very long, the
flowlines start criss-crossing at many places that causes
confusion and reduces understandability of the flowchart,
Moreover, there are instances when a flowchart becomes
too long to fit in a single page and the use of flowlines
becomes impossible. Thus, whenever a flowchart becomes
complex enough that the number and direction of fiowlines
is confusing or it spreads over more than one page, it is
useful to utilize the connector symbol as a substitute for
flowlines. This symbol represents an entry from, or an exit
to -another part of the flowchart. A connector symbol is
represented by a circle and a letter or digit is placed within
the circle to indicate the link. A pair of identically labeled
connector symbols is commonly used to indicale a
continued flow when the use of a line is confusing. So two
connectors with identical labels serve the same function as
a long flowline. That is, they show an exit to some other
chart section, or they indicate an entry from another part of
the chart. How is it possible to determine if a connector is
used as an entry or an exit point? It is very simple: if an
arrow enters but does not leave a connector, it is an exit
point and program control is transferred to the identically
labeled connector that does have an outlet. It may be noted
that connectors do not represent any operation and their use
in a flowchart is only for the sake of convenience and
clarity.

SAMPLE FLOWCHARTS

A tlowchart should be drawn using the symbols
mentioned above. To describe an algorithm in the form of a
flowchart is not very difficult. What is required is some
common sense and a little practice. The art of flowcharting
is introduced below with the help of some simple examples.
Example 11.2. A student appears in an examination
that consists of total 10 subjects, each
subject having maximum marks of 100.
The roll number of the student, his
name, and the marks obtained by him in
various™ subjects is supplied as input
data. Such a collection of related data
items that is treated as a unit is known
as a record. Draw a flowchart for the
algorithm to calculate the percentage
marks obtained by the student in this
examination and then to print it along
with his roll number and name.

Solution :

The flowchart for the algorithm of this problem is
shown in Figure 11.3. The first symbol is a terminal labeled
START. It shows that this is the starting point or beginning
of our flowchart logic. It does not mean that the computer is

10 be turned on or that anyone is Lo press a start button. The
second symbol is an /O symbol that is labeled specifically
to show that this'step is READ INPUT DATA. This step
will input the roll number, name, and the marks obtained by
the student from an input device into the main storage of
the computer system. The third symbol is a processing
symbol which is suitably labeled to indicate that at this
step, the computer will add the marks obtained by the
student in various subjects and then store the sum in a
memory location which has been given the name TOTAL.
The fourth symbol is again a processing symbol. The label
inside it clearly indicates that the percentage marks
obtained by the student is calculated at this stage by
dividing TOTAL by 10 and the result is storcd in a memory
location which has been given the name PERCENTAGE.
The fifth symbol is an 1/O symbol and is labeled WRITE
OUTPUT DATA. This logical

ADD-MARKS OF
ALL SUBJECTS
GIVING TOTAL

A

PERCENTAGE
=TOTAL/O

Figure 11.3. Flowchart for Example 11.2.

step in the flowchart indicates that the data desired as
output will be outputted on the line printer. Note that details

Planning The Computer Program 12i

such as the roll number, name, and the marks or percentage
being inputied or outputted or the specific positions being
used are not a part of the logical steps of inputting or
outputting. This information already appears in the system
design documents and wil. be included in the computer
program as input and output descriptions. The sixth symbol
is a terminal symbol labeled STOP. This symbol indicates
the conclusion of our logic - that is, the conclusion of the
computer program. The various symbols used in the
flowchart are connected by directed flowlines to indicate
the sequence in which the instructions are to be executed.

The logic depicted in Figure 11.3 theretore, will
read the students’s record, calculate the perceniage marks
obtained by him, print one line, and then stop. One would
certainly not like to usc a compuler o solve a trivial
problem such as this. However, if we have to compute the
percentage marks obtained by several students in the same
examination then we may like to take the help of a
computer. The next example illustrates how to do this.
Example 11.3. 50 students of a class appear in the
examination of Example 11.2. Draw a
flowchart for the algorithm to calculate
and print the percentage marks obtained
by each student along with his roll
number and name.

Solution :

Since all the students have appeared in the same
cexamination, so the process of calculation and printing the
percentage marks obtained by cach student will basically
remain the same. The same process of reading the input
data, adding the marks of ali subjects, calculating the
percentage, and then writing the output data has o be
repeated for all the 50 students. Hence, an gasy solution thai
comes to ones mind for this problem is o repeat the
intermediate four symbols of Figure 11.3 fifty times.
However if that is done, a total of 202 (50 x 4 + 2)
flowchart symbols will have to be drawn. Obviously this
will be a very time consuming and tedious job and hence is
not desirable. We will now see how 1o solve this problem in
a simpler way.

In a situation where the same logical steps can be
repeated, the flowline symbols are used in a fowchart 10
indicate the repetitive nature of the logic in the form of a
process loop. Figure 114 illustrates a flowchart with a
process loop. Note the arrowhead on the flowline that forms
the loop. It points upward indicating that as soon as the
WRITE operation is over the control will flow back to the
READ operation. Thus, the process loop of Figurc 11.4

122 Digital Computer Fundamentals

solves the problem of an exceedingly long flowchan by.

reusing the same logical steps over and over again,
However, the flowchant of Figure 114 is incomplele
because the process loop has introduced a ncw problem,
The proces: loop shown docs not has a logical ending. It
will continue 1o attlempt to repeat those four sieps until
someonc manually cancels the job. This is an example of an
infinite loop »nd hence the flowchart of Figure 11.4 does
not represeni an algorithm because an algorithm must
terminate. So we have to find out a way of terminating the
algorithm. This is done by the use of a decision symbol.

ST
1

READ
INPUT
DATA

4

ADD. MARKS OF
ALL SUBJECTS |
GIVING TOTAL

PERCENTAGF
=TOTAL/10

WRITE
OUTPUT
DATA

Figure 11.4. Flowchart for the solution of Example
11.3 with an infinite (endless) process
loop.

Figure 11.5 shows a flowchart which uses a decision
Step 1o terminate the algorithm. In this flowchart, another

variable COUNT has been introduced which 1§ initialized 10
zero outside the process loop and is incremented

C START j

!

COUNT =0

4

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

'

PERCENTAGE
=TOTAL/10

WRITE
QUTPUT
DATA

ADD1TO
COUNT

NO

YES

C STOP 3

Figure 11.5. Flowchart for the solution of Example
1323

by 1 after processing the data for each swudent. Thus, the
value of COUNT will always be equal 1o the number of
students whose data has already been processed. At the
decision siep, the value of COUNT is compared with 50
which is the towl number of students who have appeared
for the examination. The steps within the process loop are
repeated until the value of COUNT becomes equal 10 50.
As soon as the value of COUNT becomes equal 1o 50, the
instruction at the decision step causes the control 10 flow
out of the loop and the processing stops because a terminal
symbol labeled STOP is encountered. Thus, the flowchart
of Figure 11.5 is a complete and correct solution 10 the
problem of Example 11.3.

Although the flowchart of Figure 11.5 is a correct
solution tc the giver problem, it suffers from two major
drawbacks. The first drawback is that in order to make the
decision at the decision step, one must know the exact
rumber of students who appeared in the examination.
Suppose the examination of Example 11.2 is a university
examination in which the total number of sudents who
appeared for the examination is 100 big (sav more than ten
thousand). In such a silwaton, the counting of the total
number of input records (data for each student) becomes a
tedious job. Even then, if we do stick on counting the input
records manually and supply the number of records 1o be
compared against COUNT in the decision box and suppose
while counting we make some error then the logic will not
work. If the supplied number is less than the actual number
of input records, then the computer will not process the data
for last few students. And if the supplied number is more
than the actual number of input records, the computer will
try to read more records than what is supplied which will
cause an error in the logic.

The second drawback is that the flowchart of Figure
11.5 is not a generalized soluticn 1o the given problem.
Suppose the examination is conducted every year and sn we
will like to use the same program every year Lo process Lthe
students’ data. However, the number of students appearing
in the examination may not remain the same every year.
This year it may be S0, but next year it can be 55 or 60 or
anything. So if the computer program 1o solve this problem
was based on the flowchart of Figure 11.5, the statement
concerned with the decision step in that program will have
to be changed again and again to supply the exact number
of students. This is not a good programming praclice. A
good program should be general in nature. For example, in
this case we should writc a program that need not be
modified every time cven if the otal number of students
changes.

The flowchart of Figure 11.5 suffers from these

Planning The Computer Program 123

Co D

READ
INPUT
DATA

ADD MARKS OF
ALL SUBJECTS

=

GIVING TOTAL

PERCENTAGE
=TOTALM0

WRITE
QUTPUT
DATA

Figure 11.6. Generalised flowchart for the solution
of Example 11.3 using the concept of
trailer record. Here the process loop is
terminated by detecting a special non-
data record.

drawbacks because in thi@flowchan the process loap is
being conuolled by counting. 'When the loop has been
executed 50 times, the decision will cause execution to
proceed o the STOP, thus terminating processing. (The
reader should carefully step through the logic 10 ensure that
the loop will be exccuted exactly SO times and not 49 or

124 Digital Computer Fundamentals

51.) To avoid these drawbacks, another method can be
adopted to control the process loop. In this method, the end
of input data is marked by a trailer record, that is, the last
data record in the input is followed by a record whose sole
purpose is to indicate that the end of the input'data has been
reached. Suppose the first 7 characters of the input record
of a student represents his roll number (ROLLNO). Since
0000000 is never used as a roll number, a value of 0000000
as the first 7 characters can be used to represent the trailer
record. As each input record is processed, the ROLLNO
can be compared with 0000000 to determine if processing
is complete. The logic of this process is illustrated in the
flowchart of Figure 11.6. It is important to recognize that
the programmer would have to include instructions in the
program which specifically compare the ROLLNO w0
0000000 in order to determine whether to continue or to
terminate.

The concept of a trailer record centers around the
notion of selecting a field (a particular item of datw) in the
input record which will be used to indicate the end of data
and then sclecting a rtrailer value also known as sentinel
value which will never occur as normal data value for that
field. The roll number of 0000000 is a good example. It
may also be noted that when a trailer record is used to mark
the end of input data, the decision box used for checking
the trailer value should almost always be flowcharied
immediately after the input symbol.

Example 11.4. For the examination of Example 11.2,
we want to make a list of only those
students who have passed (obtained
30% or more marks) in the
examination. In the end, we also want
to print out the total number of students
who have passed. Assnming that the
input data of all the swdents is
terminated by a trailer record that has

sentinel value of 9999999 for
ROLLNO, draw a flowchart for the
algorithm to do the above job.

Solution :

The flowchart in Figure 11.7 is a solution to this
oroblem. There are two decision symbols in this flowchart.
The first decision symbol checks for a trailer record by
comparing ROLLNO against the value 9999999 1o
determine if processing is complete. The second decision
symbol is used to check whether the student has passed or
failed by comparing the percentage marks obtained by him
against 30. If the student's PERCENTAGE is equal to or
more than 30 then he has passed otherwise he has failed.

Note from the flowchart that the operation WRITE
OUTPUT DATA is performed only if the student has
passed. If he has failed, we directly perform the operation
READ INPUT DATA without performing the WRITE
operation. This ensures that the output list provided by the
computer will contain the details of only those students
who have passed in the examination.

Another point to be noted in this flowchart is the use
of variable COUNT. This variable has been initialized 1o
zero in the beginning and is incremented by 1 every time
the operation WRITE OUTPUT DATA is performed. But
we have seen that the operation WRITE OUTPUT DATA
is performed only for the students who have passed. Hence,
the variable COUNT will be incremented by 1 only in case
of students who have passed. Thus, the value of COUNT
will always be equal to the number of students whose data
has already been processed and who have been identified as
passed. Finally, when the trailer record is detected, the
operation WRITE COUNT will print out the final value of
COUNT that will be equal to the total number of students
who have passed the examination.
Example 11.5. Suppose the input data of each student
for the examination of Example 11.2
also contains information regarding the
sex of the candidate in the field named
SEXCODE that can have values M (for
male) or F (for female). We want to
make a list of only those female
students who have passed in second
division (obtained 45% or more but less
than 60% marks). In the end we also
want to print out the total number of
such students. Assuming that the input
data of all the students is terminated by
a wrailer record that has a sentinel value
of Z for SEXCODE draw a flowchart
for the algorithm to do the above job.

Solution :

The flowchart in Figure 11.8 is a solution 1o this
problem. There are four decision symbols in this flowchart.
The first decision symbol checks for a trailer record by
comparing SEXCODE against the value Z to determine if
processing is complete. The second decision symbol is used
to check whether the candidaie is female or not by
comparing the SEXCODE of that candidate against F. Note
that if the SEXCODE is not F, that is, the candidate is not a
female, we do not process the data of that student and
return back to perform the operation of reading input data,
This step ensures that the data of only female students will
be taken for further processing,

Planning The Computer Program 125

YES

WRITE
COUNT
ADD MARKS OF

ALL SUBJECTS
GIVING TOTAL

l C sTOP

PERCENTAGE
=TOTAL/10

1S

PERCENTAGE
= >30

ADD1TO
TO COUNT

l

Figure 11.7. Flowchart for the solution of Example 11.4.

126 Digital Computer Fundamentals

The last two decision symbols in the flowchart are
used 1o check whether the student has passed in second
division or not. The first of these decisions is used to ensure
that the student has scored 45% or more marks. If she has
scored less than 45% then it means that she is not a second
divisioner and hence without making any further check we
return back 1o the operation of rzading input data. In case
the student has scored 45% or more marks then we go one
step further in the logic and by using the fourth decision in
the flowchart we check whether her marks are less than
60% by comparing her PERCENTAGE against 60. If the
condition at this step turns out 1o be false then it means that
the student has scored 60% or more marks and hence she is
a first divisioner and not a second divisioner. So once again
we retum back o read a new data without writing any
output data, If the condition inside the fourth decision
symbol tums out to be true then the female candidate can
be classified 10 be a second divisioner. Hence in this case
only we perform the operation WRITE QUTPUT DATA
and subsequently increment the value of COUNT by 1.

It is suggested that the reader should go through the
logic of this flowchart again and again untl he/she is
convinced that the output list provided by the computer will
contain the details of only those female students who have
passed in second division. The reader should also get
convinced that finally when the trailer record is detected,
the operation WRITE COUNT will print out the value of
COUNT that will be equal 1o the total number of female
students who have passed in second division. This
flowchart is an example of a multiple-decision chart.

The flowchart of Figure 11.8 has been reproduced in
Figure 11.9 to illustrate the use of connectors. There are
four exit connectors having the label 1 all of which indicate
a flow of control to the flowchan symboi having an entry
connector labeled 1. This symbol is the input symbol in the
flowchart. Similarly the exit connecior having a label 2
indicates a flow of control 1o the entry connector labeled 2.
The reader should compare the flowcharts of Figure 11.8
and Figure 11.9 and should get convinced that both the
flowcharts represent the same logic.

A flowchart may seem simple to prepare, but you
will find that much practice is needed in order to think
through a problem in discrete, logical steps, to assume
nothing and to forget nothing. Moreover, not everyone will
tackle a problem in exactly the same way and, in
consequence, several different flowcharts could be drafted
for the same problem. It may also be noted that a completed
flowchart is not a complete computer program. It is only an
aid 1o programming. For a given problem, i. defines the
procedure and the logic involved. From the examples that

have been discussed above, we are in a better position to
understand what this "logic’ means.

LEVELS OF FLOWCHARTS

There are no set standards on the amount of detail
wat should be provided in a flowchart. A flowchart that
outlines the main segments of a program or that shows less
detail is a macroflowchart. On the other hand, a flowchart
with more detail is a microflowchart, or detailed flowchart,

For example, let us consider the examination
problem that we have already discussed. In all the
flowcharts of the examination problem, there is a
processing box having the instruction "ADD MARKS OF
ALL SUBJECTS GIVING TOTAL". In order o display
how the value of TOTAL is compuled, a detailed flowchart
can be drawn as shown in Figure 11.10. In a similar
manner, the [/0 boxes for the READ and WRITE operations
can also be converted to a detailed flowchart,

FLOWCHARTING RULES

While programmers have a good deal of freedom in
creating flowcharts, there are a number of general rules and
guidelines recommended by the American National
Standards Institute (ANSI) to help standardize the
flowcharting process. Various computer manufacturers and
data processing departments usually have similar
flowcharting standards. Some of these rules and guidelines
are as follows :

1. First chart the main line of logic, then
incorporate detail.

2. Maintain a consistent leve! of deiail for a given
flowchart.

3. Do not chart every detail or the flowchart will
only be a graphic representation, step by step, of
the program. A reader who is interested in
greater details can refer to the program itself,

4. Words in the flowchart symbols should be
common statements and easy to understand. It is
recommended 10 use descriptive titles written in
designer's own language rather than in machine
oriented language.

5. Be consistent in using names and variables in the
flowchart.

6. Go from left to right and top to bottom in
constructing flowcharts,

Planning The Computer Program 127

(START)

T

1S

Y
SEXCODE &

&
2

WRITE
COUNT

(STOP)

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

-

PERCENTAGE
= TOTAL/0

IS
PERCENTAGE
= 2> 45

IS
PERCENTAGE
< 60

NO

WRITE
OUTPUT
- DATA

¥

ADD1TO
COUNT

\

Figure 11.8. Flowchart for the solution of Example 11.5.

128 Computer Fundamentals

7. Keep the flowchart as simple as possible. The
crossing of flowlines should be avoided as far as
practicable.

8. If a new flowcharting page is needed, it is
recommended that the flowchart be broken at an
input or output point. Moreover properly labeled
connectors should be used to link the portions of
the flowchart on different pages.

ADVANTAGES OF FLOWCHARTS

The following benefits may be obtained when
flowcharts are used for the purpose of program planning.

1. Better Communication : The old saying that "a
picture is worth a thousand words" holds true for flowcharts
also. Since, a flowchart is a pictorial representation of a
program, it is easier for a programmer to explain the logic
of a program to some other programmer or to his boss
through a flowchart rather than the program itself.

2. Effective Analysis : A macro flowchart that charts
the main line of logic of a software system becomes a
system model that can be broken down into detailed parts
for study and further analysis of the system.

3. Effective synthesis : A group of programmers are
normally associated with the design of big software
systems. Each programmer is responsible for designing
only a part f the entire system. So initially, if each
programmer draws a flowchart for his part of design, the
flowcharts of all the programmers can be placed together to
visualize the overall system design. Any problem in linking
the various parts of the system can be easily detected at this
stage and the design can be accordingly modified.
Flowcharts are thus used as working mndels in the design
of new programs and software systems.

4. Proper Program Documeniation Program
documentation involves collecting, organizing, stoning, and
otherwise maintaining a complete historical record of
programs and the other documents associated with a
system. Good documentation is needed for the following
reasons :

(a) Documented knowledge ©belongs to an
organization and does not disappear with the
departure (resignation/retirement) of a
programmer.

(b) If projects are postponed, documented work will
not have to be duplicated.

{c) If pregrams are modified in the futre, th
programmer will have a more understandable
record of what was originally done.

From what we have seen of the nature of flowcharts,
it is obvious that they can provide valuable documentation

support.

S. Efficient Coding : Once a flowchart is ready,
programmers find it very easy to write the concerned
program because the flowchart acts as a roadmap for them.
It guides them to go from the starting point of the program
to the final point ensuring that no steps are omitted. The
ultimate result is an error free program developed at a faster
rate.

6. Systematic Debugging : Even after taking full care
in program design, some errors may remain in the program
because the designer might have ncver thought about a
particular case. These errors are detecied only when we
start executing the program on a computer. Such type of
program crrors are called bugs and the process of removing
these errors is known as debugging.

Once a bug is detected, it is easier to find out the
reason for that bug by going through the logic of the
program in flowchart form. A flowchart is very helpful in
detecting, locating, and removing mistakes (bugs) in a
program in a systematic manner.

7. Systematic Testing : Testing is the process of
confirming whether a program will successfully do all the
jobs for which it has been designed under the specified
constraints, For testing a program, different set of data is
fed as input to that program to test the different paths in the
program logic. For example, to test the complete logic of
ihic program for Example 11.5, the following set of data is
necessary :

(a) Data for a male candidate.

(b) Data for a female candidate who bas scored less
then 45%.

(c) Data for a female candidate who has exactly
scored 45%.

(d) Data for a female candidate who has scored
more than 45% but less than 60%.

(¢) Data for a female candidate who has exactly
scored 60%.

Planning The Computer Program 129

(START)
}

I COUNT =0]

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

!

PERCENTAGE
=TOTAL/0Q

ADD1TO
COUNT

Figure 11.9. Flowchart of Figure 11.8 redrawn to illustrate the use of connectors.

130 Digital Computer Fundamentals
(f) Data for a female candidate who has scored
more than 60%.

(8) And obviously in the end the trailer data having
sentinel value.

A fowchart proves to be very helpful in designing
the test data for systematic testing of programs.

A MICRO
FLOW CHART
PART OF A MACRO ;
FLOWCHART 1=1
TOTAL =0

TOTAL = TOTAL - MARKS m—l

ADD MARKS OF
ALL SUBJECTS
GIVING TOTAL

Figure 11.10. Detailed flowchart of add marks of all
subjects giving TOTAL

LIMITATIONS OF FLOWCHARTS

In spite of their many obvious advantages,
flowcharts have several limitations which are as follows -

L. Flowcharts are very time consuming and
laberious to draw with proper symbols and
spacing, especially for large complex programs.
In this chapter, you have seen examples of small
program flowcharts developed for relatively
small programs. You can very well imagine how
difficult it would be to develop a detailed
program flowchart for a program containing over
50,000 statements,

2. Owing to the symbol-string nawre of
flowcharting, any changes or modifications in
the program logic will usually require a
completely new flowchart. Redrawing a
flowchart is again so tedious that many
companies either do not redo them or produce
the flowchart by using a computer program (o
draw it. Therc are several computer programs
available that will read the program's instructions
and draw a ilowchart of its logic, but these
programs are fairly expensive o acquire and use
a lot of computer time,

3. There are no standards determining the amount
of detail that should be included in a flowchart,

Because of such limitations, many organizations are
now reducing the amount of flowcharting used. In its place,
they are using alternative tools for program analysis, two of
which are briefly discussed below.

DECISION TABLES

Decision tables are used to define clearly and
concisely the word stalement of a problem in a tabular
form. They can prove to be a powerful tool for defining
complex program logic. As the name implies, decision
tables reveal what decisions or actions the computer is o
take as a result of the input data. When the computer has to
make a large number of decisions or if there are a large
number of different branches within a program, decision
tables are particularly useful. In these cases, decision tables
are preferred to flowcharts.

The steps to be followed for constructing a decision
table are as follows :

1. Properly define the problem that has to be solved
by computer.

2. List out all the conditions to be tested in the
probiem.

3. List out the corresponding actions that should be
taken with each combination of conditions.

4. Form a decision table using the two lists.

Most decision tables have six parts. The basic
format of a decision table is shown in Figure 11.11. The
first part of the decision table contains the name and/or
number of the table. For some larger applications, two or
more decision tables may be used in the analysis part of
program development. The second part of the table, known

as condition stub, descirbes the conditions that could exist
in the program logic. Thus, the contents of condilion stub
correspond to the conditions contained in the decision
symbols of a flowchar. Action stub, the third pan of the
decision 1able, contains the action statements. These
statements comrespond W the statements located in
nondecision symbols of a flowchart. While the condition
statements reveal the possible states of the input data, the
action statements describé the possible actions of the
compuier system. The right hand side of the decision table
contains the rule numbers (part 4), the actual conditions
(part 5), and the actions taken by the computer (part 6). The
condition entries correspond to the paths leading out from
decision symbols.

TABLE HEADING DECISION RULES

CONDITION CONDITION
sSTUB ENTRIES
ACTION ACTION
STUB ENTRIES

Figure 11.11. Format of a detision table.

A decision tablé for the problem of Example 11.5
that was chaited in Figure 11.8 is shown in Figure 11.12 In
this 1able, each rule number is a given condition followed
by a specific action to be taken by the computer. The six
rule numbers, the six actual conditions, and the associated
actions taken by the computer system are discussed below,

Rule 1: The student is a female, and the
percentage marks obtained is 45% or
more, and the percentage marks
obtained is less than 60%. The
computer should write the output data,
add 1 1o COUNT, and then read the
next student's record. It is a case of a
female student who has passed in
second division.

Rule 2 : The student is female, and the
percentage marks obtained is 45% or
more, and the percentage marks
obtained is not less than 60%. The
computer should directly read the next
student's record without performing

10-A

Rule 3:

Rule 4 :

Rule 5:

Rule 6:

Planning The Compuwter Program 131

any other operation. It is the case of a
female ctudent who has passed in first
division (60% or more marks).

The student is a female and the
percentage marks obtained is not 45%
or more. A dash (-) in this column
against the last condition means that
this condition is irrelevant in arriving
at the action. In fact if
PERCENTAGE is not equal to or
greater then 45 then it has to be less
than 60. PERCENTAGE greater than
or equal to 60 is logically impossible.
Such conditions in the decision table
which are irrelevant in arriving at an
action are known as don't care
conditions and are denoted by a dash.
For this rule, the computer should
directly read the next student's record
without performing any other
operation. It is the case of a female
student who has scored less than 45%
and hence she is not a second
divisioner.

The student is a female, and the other
conditions are don't care conditicns.
The computer should calculate
PERCENTAGE after adding marks of
all subjects and then proceed to test
further conditions. It is the case of a
female student whose PERCENTAGE
has yet to be calculated.

The student is a male, and the other
conditions are don't care conditions.
The computer should directly read the
next student's record without
performing any other operation. It is
the case of a male student.

In all the previous five rules, it was
ascertained that the current record is
not a trailer record because all these
rules have a value N (No) for the
condition SEXCODE = Z. In this rule,
the SEXCODE is equal to Z which
indicates a trailer record and hence the
computer should write the value of
COUNT and then STOP. The other
conditions in this rule are don't car¢
conditons. It is the case of a trailer
record.

132 Computer Fundamentals

In the decision table, "Y" means yes, "N" means no, "-"
means don't care, and "X" means the computer should take
this action.

Decision]
Examination problem of Example 11.5 fule number.
12131415 |6
Condition Stalements
| i
SEXCODE = 2 NINTN{NTN]Y
SEXCODE =F YIY|Y|lYy N|—
PERCENTAGE = > 45 Y]YIN -1=1-
PERCENTAGE < 60 YIN[=]=I=]=
Actions Taken [
Calcuiate PERCENTAGE | X
Write output data X 1
Add 110 COUNT X |
Read next student record % [%X X
Wiite COUNT [X
4
STOP] X

Figure 11.12. Decision table for the examination
nroblem of Example 11.5.

ADVANTAGES AND LIMITATIONS OF DECISION
TABLES

Decision tables are normally used in place of
flowcharts because of the following reasons:

1. They are easier to draw and change than charts.

2. They provide more compact documentation. A
.small table can replace several pages of charts.

3. Itis also easier to follow a particular path down
one column than through several flowchart
pages. ’

However, decision tables are not very popular and
are not 52 widely used as charts because :

1. Flowcharts are better able to express the total
sequence of events needed to solve a problem.

2. Flowcharts are more familiar to, and are
preferred by, many programmers and beginners

PSEUDOCODE

Pseudocode is ancther programming analysis wol
that 15 used for planning program logic. "Pseudo” means
imitauon or false and "Code" refers to the instructions
written in a programming language, Pseudocode, therefore,
i1s an imitadon of actual computer instructions. Thesc
pseudoinstructions are phrases written in ordinary natural
language (e.g., English, French, German, ctc.). Instead of
using symbols to describe the logic steps of a program, as
in flowcharting, pseudocode uses a structure that resembles
computer instructions. Because it emphasises the design of
the program, pseudocode is also called Program Design
Language (PDL)

Pseudocode is made up of the following basic logic
structures that have been proved (o be sufficient for writing
any computer program :

1. Sequence

2. Selection (TF. . .THEN. . .ELSE
or [IF. THEN)

3. Tteration (DO...WHILE or REPEAT...UNTIL)

Sequence logic is used for performing instructions
one after another in sequence. Thus, for sequence logic,
pseudocede instructions are written in the order, or
sequence, in which they are 1w be performed. The logic
flow of pscudocode is from the top to the botom. Figure
11.13 shows an example of sequence logic structure.

Selection logic, also known as decision logic, is used
for making decisions. It is used for sclecting the proper path
out of the two or more alternative paths in the program
logic. Selection logic ic depicted as either an IF... THEN or
an IF...THEN..ELSE strucwre. The flowcharis of Figure
ii.14 and 11.15 illustrate the logic of these structures.

10-B

Planning The Computer Program 133

FLOWCHART

Their corresponding pseudocode is also given in these
figures. The IF...THEN..ELSE construct says that if the
condition is true, then do process 1, else (if the condition is
not true) do process 2. Thus, in this case either process 1 or
process 2 will be executed depending on whether the
specified condition is true or false. However, if we do not
want 1o choose between two processes and if we simply
want to decide if a process is'to be performed or not, then YES
the IF..THEN structure is used. The [F..THEN structure
says that if the condition is true, then do process 1 and if it
is not truc then skip over process 1. In both the structures, PROCESS 1 PROCESS 2
process 1 and process 2 can actually be onc or more

NO

4

processes. They are not limited 10 a single process. ENDIF
is used 1o indicate the cnd of the decision structures.

,

FLOWCHART
l PSEUDOCODE
L]
PROCESS 1 -
o
IF Condition
THEN process 1
PROCESS 2 ELSE
' process 2
l END IF
L]
L]
PSEUDOCODE .
L]
* Figurc 11.14. Flowchart and pseudocode for
a 1F...THEN...ELSE selection structure.
Process 1 Iteration logic is used to produce loops when one or
more instructions may be executed several times depending
Process 2 on some condition. It uses two structures called the™

DO..WHILE and the REPEAT..UNTIL. They are
illustrated by flowcharts in Figure 11.16 and Figure 11.17
L) respectively. Their corresponding pseudocodes are also
given in thesc figures. Both DO..WHILE and
REPEAT...UNTIL are used for looping. The differences are
that in the DO...WHILE, the looping will continue as long
Figure 11.13. Flowchart and pscudocode for as the condition is true. The looping stops when the
sequence structare. condition is not true. On the other hand, in case of

L

134 Digital Computer Fundamentals

REPEAT..UNTIL, the looping continues until the
condition becomes true. That is, the execution of he
statements within the loop is repeated as long as the
condition is not true. In both the DO..WHILE and
REPEAT...UNTIL, the loop must contain a statement that
will change the condition that controls the loop. If it
doesn't, the looping will continue without end which is the
casc of an infinite loop. Remember that no program should
contain an infinite loop. Also note that the condition is
tested at the top of the loop in the DO...WHILE and at the
bouom of the loop in the REPEAT..UNTIL. ENDDO
marks the end of a DO..WHILE structure and UNTIL
followed by some condition marks the end of the
REPEAT...UNTIL structure.

FLOWCHART

CONDITION
3

IF CONDITION

THEN PROCESS 1
END IF
°

Figure 11.15. Flowchart and pseudocode for
IF...THEN s¢lection structure.

The pseudocode version of the logic of the problem
of Example 11.5 that was charted in Figure 11.8 is shown in
Figure 11.18. In the pseudocode example, the first line
initializes the value of COUNT 1o zero and the second line
reads the input data of the first studeni. The third line is the
beginning of a ioop using the DO..WHILE structure. It
indicates that the loop will continue so long as the value of
SEXCODE is not equal to Z - that is, as long as the frailer
record is not found. In this example, a series of decisions
followed by an instruction to read next student's record ae
included within the loop. The first statement within the

DO...WHILE loop asks, "Is the SEXCODE equal to F?" If
the answer is yes, PERCENTAGE is calculated and again
the third statement within the loop asks, "Is
PERCENTAGE equal to or greater than 457" If it is, then
“Is PERCENTAGE less than 607" This is a series of three
IF..THEN decision structures. Each one ends with an
ENDIF vertically aligned below the appropriate IF.

FLOWCHART

CONDITION
Vi

PROCESS 1

PROCESS n

—

PSEUDOCODE

DO WHILE CONDITION
PROCESS 1

PROCESS n

ENDDO
.

-

Figure 11.16. Flowchart and pseudocode for
DO...WHILE iteration structure.

FLOWCHART

Lo

¥

PROCESS 1

PROCESS n

NO

PSEUDOCODE
e R T

-
L]

L]
REPEAT

PROCESS 1
PROCESS 2

UNTIL CONDITION
-

-

Figure 11.17. Flowchart and pseudocode for
REPEAT...UNTIL iteration structure.

The 1wo instructions - write output data, and add 1
to COUNT are performed only if all three conditions (that
of SEXCODE being F, PERCENTAGE being equal w0 or
more than 45, and PERCENTAGE being less than 69) are
found 10 be true (answered yes). If any of the three
conditions is not true, the logic path goes to the statement
that reads next student’s record. Afier the last student's
record is processed, the trailer record for which the valye of
SEXCODE is Z is encountered. This will cause, the

Planning The Computer Program 135 -

DO..WHILE loop to stop, because the condition
(SEXCODE not equal to Z) is no longer true. When the
DO..WHILE condition is no longer true, the next logical
step will be the instruction following the ENDDO. At this
stage, the value of COUNT will be printed (write COUNT)
and finally the program execution will stop (STOP).

Set COUNT to zero
Read first student record
DO WHILE SEXCODE is not equal to Z
IF SEXCODE =F THEN
calculate PERCENTAGE
IF PERCENTAGE => 45 THEN
IF PERCENTAGE < 60 THEN
Write output data
Add 1 to COUNT
ENDIF
ENDIF
ENDIF
Read next student record
ENDDO
Write COUNT
STOP

Figure 11.18. Pseudocode for the examination
problem of Example 11.5.

One important feature of pseudocode as a
programming tool is the use of indentation, Each statement
within the DO...WHILE loop, is indented, to show that it is
part of the loop. Similarly, the statements within each
IF..THEN structure is indented properly to clearly specify
the statements which are part of each structure. The use of
indentation in pseudocode is the same technique used with
the various programming languages. Its sole purpose is o
clarify the logical structure of the program. With this
technique, we can tell at a glance which statements make up
cach of the logic structure of the total program logic. To

136 Computer Fundamentals

fully appreciate this factor, the reader should compare the
equivalent non-indented pscudocode of Figure 11.19 (o that
o[Figure 11.18. The difference in clarity would be far
giater if this were a longer pscudocode covering, for
instince, onc or more pages.

ADVANTAGES AND LIMITATIONS OF
PSEUDCCODE

Pseudocode has three main advantages:

1. Converting a pscudocode o a programming
language is much more casicr as compared (o
converting a flowchart or a decision Lable.

2. As compared to a flowchart, it is casier 1o
modify the pseudocode of a program logic when
program modifications are necessary.

SET COUNT to Zero

Read first student record

DO WHILE SEXCODE is not equal to Z.
IF SEXCODE = F

THEN Calculate PERCENTAGE
!F PERCENTAGE = > 45
THEN IF PERCENTAGE <60
THEN Write output data

Add 1 to COUNT

ENDIF

ENDIF

ENDIF

Read next student record
ENDDO

Write COUNT,

STOP

Figure 11.19. Non-indented version of pseudocode
of Figure 11.18.

3. Writing of pseudocede involves much Jess time
and effort than drawing an equivalent flowchart,
Pscudocode is easier 1o wrile than an actual
programming language because it has only a few
rules o follow, allowing the programmer to
concentrate on the logic of the program.

However, pscudocode suffers from the following
limitatious :

1. In case of pseudocode, a graphic representation
of program logic is not available.

2. There are no standard rules o follow in using
pscudocode. Different programmers use tacir
own style of writing pseudocode and hence
communication problem occurs due 1o lack of
standardization.

3. For a beginner, it is more difficult to follow the

logic of or write pscudocode, as compared to
flowcharting.

QUESTIONS

1. Why is il advisible 1o plan the logic of a program
before writing it ?

2

What is an algorithm? What arc the
characlcristics necessary for a scquence of
instructions to qualify as an algorithm ?

2, What is a flowchart ?

4. How docs a flowcharl help a programmer in
program development ?

Ln

Can a flowchart be drawn for a task if the person
drawing the flowchart cannot perform the task
manually ? Discuss.

6. What arc the varous symbols used in
flowcharting 7 Give their pictorial
representation.

7, Describe the function of the various flowcharting
symbols.

8. Why are there standards for the symbols used ir
drawing flowcharts ?

9. What is a record ? A trailer record ?

10. What is a sentinel value ? Discuss its use.
11, What is a process loop ? An infinite loop ?

12, Why is it necessary to avoid infinite loops in
program design 7

13."A loop consists of a body, a test for exit
condition, and a return provision.” Discuss this
statement.

14. What is a gcneralizéd algoriihrn 7 Why should
programs be general in nature ?

15. Discuss the difference between loop control by
counting and loop control by the use of sentinel
value. Which is preferable and why ?

16. How can a counter be used to keep track of the
number of times a loop has been executed ?

17.1s it possible to have more than one flowchart for
a given problem ? Give reasens for your answer,

18. What is the difference between a macroflowchart
and a microflowchart? Illustrate with an
example.

19. What are the various guidelines 10 be followed
while drawing a flowchant ?

20, Discuss the various advantages and limitations
of flowcharting.

21.My s proper documentation of a program
necessary ?

22, What are program bugs 7 What is debugging ?

23, What is meant by testing a program ? How is it
done ?

24. What are decision tables? When are they
preferred to flowcharts ?

25. What are the various steps to be followed for
constructing a decision table ?

26. Draw the basic format of a decision table and
discuss the role of each part.

27.What are don't care conditions in decision
tables ?

Planning The Computer Program 137

28. List out the various advantages and limitations of
decision tables,

29. What is a pseudocode ? Why is it so called ?
Give another name for pseudocode.

30. What are the three basic logic structures used in
writing pseudocode ? Discuss the use of each.

31. Draw flowcharts for the two different structures
used for selection logic.

32.What is the difference between the IF.. THEN
and the IF..THEN...ELSE structures ?

33. Draw flowcharts for the two different structures
used for iteration logic,

34.Both DO..WHILE and REPEAT..UNTIL arc
used for looping. Discuss the difference between
the two structures.

35. What is the purpose of the ENDIF and ENDDO?

36. What is indentation 7 Why is it used in writing
pseudocodes ?

37.Discuss the advantages and limitations of
pseudocede.

38. Thrce numbers, denoted by the variables A, B,
and C are supplied as input data, Draw a
flowchart for the logic to pick and print the
largest of the three numbers.

39. Draw a flowchart of the logical steps needed 10
produce a printed listing of all students over the
age of 20 in a class. The input records coatain
the name and age of the students. Assume a
sentinel value of 99 for the age ficld of the trailer
record,

40. Draw a flowchart of the logical steps needed to
print the name and age of the oldest and the
youngest student in a class. The input records
contain the name and age of the students.
Assume a sentinel value of 99 for the age field of
the trailer record.

41.The first 20 records in a data set are (o be read
and printed. Draw a flowchart for the algorithm
1o do this job. Make sure that the processing
stops after the twentieth record.

138

42,

43.

45.

C omp.urer Fundamentals

Input data regarding the information of
employees of a company has been supplied. The
first field of each input record contains the
employee number (EMPNO). Assume that the
input data of all the employecs is terminated by a
trailer record having a trailer value of 99999 for
EMPNO. Draw a flowchart for the logic to count
and print the total number of input records, that
is, the total number of cmployees.

For the employees problem of Question 42, we
want 1o count and print the number of only male
employees in the age range of 25 to 30. Assume
that the input records contain SEXCODE and
AGE fields to provide this information. Draw a
flowchart for the algorithm to perform this job.

.Suppose that a population survey has been

carried out in a given cily, and that the
information received from the surycy has been
transcribed onto punched cards. Since the cards
have 80 colums each, one card contains the
name, address, sex, age, profession, ctc., of one
employee. That is, cach card contains one record
pertaining to one employee. Our problem is to
print the details of all the adulis (aged 18 years
or more) in the city under survey. Finally, we
also want to print the total number of adults.
Assume a suitable sentinel value for any field in
the trailer record and draw a flowchart for the
algorithm to do this task.

A set of examination papers which have been
graded with scores from 0 to 100 is to be
searched to find how many of them are above 90.
The total has to be printed. Prepare a flowchart
to illustrate this job. Assume a suitable sentinel
value for the trailer record.

46.Each paper in a set of examination 'papers

47.

includes a grade of A, B, C, D, or E. A count is
to be made of how many papers have grade of A
and how many have grade of E. The total count
of both types have to be printed at the end.
Prepare a flowchart to perform this function.
Assume a suitable sentinel value for the trailer
record. ‘ :

A shopkeeper wants to have a general program
for his personal computer that will prepare bills
for each customer as and when he sells goods to
them. His idea is that as soon as the customer
purchases some goods from his shop, he will
supply the description, unit price, and (he

quantity purchased for each item, as input to the
computer. He wants that with this information,
the computer should print each item along with
its unit price, quantily purchased and the total
price. Finally, the computer should alsc prnt the
total cost of all the items purchased by the
customer. Assuming that a sentinci value of zero
is used for the quantity purchased ficld in the
trailer record, draw a flowchart for the logic to
do this job.

48. An employer plans o pay a bonus to each

employee. Those earning Rs.2000 or above are
10 be paid 10 percent of their salary; those
earning less than Rs.2000 are 1o be paid Rs.200.
The input records contain the cmployee number,
name, and salary of the employees. The output to
be printed should contzin the employce number,

" name, and the amount of bonus to be paid for

each employee. Draw a flowchart for the
algorithm to do this job. Assume a suitable
sentinel value for any of the fields of the trailer
record.

49, Each employee pay record includes the hours

worked and the pay rate. The gross pay is to be
determined as hours worked times pay rate and
is 10 be printed for each employee. For all hours
worked in excess of 40, the overtime rate, which
is 1.5 times the regular rate, is to be paid. Draw a
flowchart to illustrate the problem logic. Assume
a suitable sentinel valuc for any of the input
ficlds of the trailer record.

50. A data file contains a sct of ¢cxamination scores

a trailer record with a valuc
of -1. Draw a flowchart for the logic to calculate
and print the average of the scores.

and s followed by a trail

51.The data file of Question 50 is cxpanded to

include several sets of data, each requiring
calculation of its average. Each data- set is
followed by a trailer record with a value of -1;
however, the last data set is followed by a trailer
record with a value of -2. Draw a flowchart for
the logic to perform this task.

52. Suppose five numbers denoted by the variables

A, B, C, D, and E are supplied as input. Draw a
flowchart for the logic to print these numbers in
descending order of magnitude.

53.Draw a flowchart for the logic to find out

whether a given triangle ABC is isosceles.

Assume that the angles of the triangle arc
supplied as input. Print the answer as ycs or no.

54, Draw a flowchart for the logic to find out
whether a given triangle ABC is a right angled
triangle. Assume that the sides of the triangle are
supplied as input data, Print the answer as yes or
no.

55.Draw a flowchan for the logic to find out
whether a given quadrilateral ABCD is a
rectangle. Assume that all the four angles and
four sides of the quadrilaicral arc supplied as

_ input data. Print the answer as yes or no.

56.Draw a flowchart to illustrate the logic o
convert a number from base 10 10 a new base
using the division-remainder technique.

57.Draw a flowchart to illustrate the logic to
convert a number to decimal from another base.

58.Obtain a decision table to solve the problem
described in Question 38,

59, Obtain a decision table to solve the problem
described in Question 42,

60. Obwin a decision table 1o solve the problem
described in Question 46.

Planning The Computer Pregram 139

61.0Obtain a decision table to
described in Question 53.

62.Obtain a decision table 10
described in Question 54.

63. Write the pscudocode to
described in Question 39,

64. Wrile the pseudocode to
described in Question 40.

65. Write the pscudocode 1o
described in Question 43.

66. Write the pseudocode to
described in Question 46.

67. Write the pscudocode to
described in Question 47.
68. Write the pseudocode 1o

described in Question 48.

69. Write the pscudocode (o
described in Question 49.

70. Write the pscudocode Lo
described in

solve

solve

solve

solve

solve

solve

solve

solve

solve

snive

the

the

the

the

the

the

the

Question

problem

problem

problem

problem

problem

problem

problem

problem

problem

problem
53,

CHAPTER 12

12. COMPUTER LANGUAGES

This chapier continues the development of computer
programs that was begun in Chapter 11. After the
programming analysis phase, discussed in the previous
chapter, has been completed, the second step in the
development of compuler programs is 10 write the specific
instructions, needed to process an application, inlo a
language and form accepiable 10 a computer system. The
process of writing such program instructions for an
analysed problem is cziled coding. In this chapter, we will
sec how the logical steps of our program plan will be coded
as program instructions. The goal of this chapter is 10
introduce some of the common computer languages used in
wriling compuler programs.

ANALOGY WITH NATURAL LANGUAGES

A language is a system of communication. With our
natural language such as English, we communicale (o one
another our ideas and emotons. Similarly, a computer
language is a means of communication osed 10
communicate between people and the computer. With the
help of a computer language, a programmer clls a
computer what he wants it to do. All natural languages

- restricted

(English, French, German, cic.) use a standard set of
symbols for the purpose of communication, These symbols
are understood by everyone using that language. We
normally call this set of symbols the vocabulary of that
particular language. For example, the words we use in
English are the symbols of English language that make up
its vocabulary. Each word has definite meaning which can

-be looked up in a dictionary. In 2 similar manner, all

computer languages have a vocabulary of their own. Each
symbol of the vocabulary has definite unambiguous
meaning which can be looked up in the manual meant for
that language. Hence, each symbol of a computer language
is used 1o tell the computer 1o do a particular job. The main
difference between a natural language and a computer
language is that natural languages have a large vocabulary
but most computer languages use a very limited or
vocabulary. This is mainly becausc a
programming language by its very nature and purpose does
not need to say too much. Each and every prablem to be
solved by a computer has to be broken down into discrete
(simple and separate), logical sieps which basically
comprise of four fundamental operations - input and output
operations, arithmetic operations, movement of information
within the CPU, and logical or comparison operations.

142 Digital Computer Fundamentals

Each natural language has a systematic method of
using symbols of that language. In English, this method is
given by the rules of grammar. These rules tell us which
words to use and how to use them. Similarly, the symbois
of a particular computer language must also be used as per
set rules which are known as the syniax rules of the
language. In case of a natural language, people can use poor
or incorrect vocabulary and grammar and still make
themselves understood. However, computers, being a
machine, are receptive only to exact vocabulary used
correctly as per syntax rules of the language being used.
Thus, in case of a computer language, we must stick by the
exact rules of the language if we want to be understood by
the computer. As yet, no computer is capable of comrecting
and deducing meaning from incomect instructions.
Computer languages are smaller and simpler than natural
languages but they have to be used with great precision.

Unless a programmer adheres exactly to the syntax
rules of a programming language, even down 1o the correct
punctuation marks, his commands will not be understood
by the computer.

Programming languages have improved throughout
the years, just as computer hardware has improved. They
have progressed from machine-oriented languages that use
strings of binary 1s and 0s to problem-oriented languages
that usz common mathematical and/or English terms.
However, all computer languages can be classified in the
following three broad categories :

(a) Machine Language
(b) Assembly Language

(c) High-level Language.-

We shall now examine the evolution and nature of
each type of language.

MACHINE LANGUAGE

Although computers can be programmed to
understand many different computer languages, there is
only one language understood by the computer without
using a translation program. This language is called the
machine language or the machine code of the computer.
Machine code is the fundamental language of a computer
and is normally written as strings of binary 1s and 0s. The
circuitry of a computer is wired in such a way that it
immediately recognizes the machine language and converts

it into the electrical signals needed 10 run the computer.

An instruction prepared in any machine language
has a two-part format, as shown in Figure 12.1. The first
part is the command or operation, and it t2lls the computer
what function to perform. Every compuier has an operation
code or opcode for each of its functions. The second part of
the instruction is the operand, and it tells the computer
where to find or store the data or other instructions that are
to be manipulated. Thus, each instruction tells the control

‘nnit of the CPU what to do and the length and location of

the data fields that are involved in the operation. Typical
operations involve reading, adding, subtracting, writing,
and so on.

OPCODE OPERAND

(operation code) (Address/Location)

Figure 12.1. Instruction format.

We already know that all computers use binary
digits {Os and 1s) for performing internal operations. Hence,
most compaters' machine language consists of strings of
binary numbers and is the only enc the CPU directly
understands. When stored inside the computer, the symbols
which make up the machine language program are made up
of 1s and 0s. For example, a typical program instruction to
print out a rumber on the printer might be

The program to add two numbers in memory and
print the result might look something like the following :

001000000000001100111001
001100000000010000100001
011000000000011100101110
101000111111011100101110

This is obviously not a very easy language to learn, partly
because it is difficult to read and understand and partly
because it is written in a number system with which we are
not familiar. But it will be surprising to note that some of

the first programmers, who worked with the first few
computers, actually wrote their programs in binary form as
above,

Since human programmers are more familiar with
the decimal number system, most of them preferred 10 write
the computer instructions in decimal, and leave the input
device o convert these to binary. In fact, withoit too much
effort, a computer can be wired so that instead of using long
strings of 1s and Os we can use the more familiar decimal
numbers. With this charge, the preceding program appears
as follows :

10001471
14002041
30003456
50773456
00000000

The set of instruction codes, whether in binary or
decimal, which can be directly understood by the CPU of a
computer without the help of a translating program, is
called a machine code or machine language. Thus, a
machine language program need not necessarily be coded
as strings of binary digits (1s and 0s). It can also be written
using decimal digits if the circuitry of the computer being
used permits this,

Advantages and Limitations of Machine Language

Programs written in machine language can be
exccuted very fast by the computer. This is mainly because
machine instructions are directly understood by the CPU
and no translation of the program is required. However,
writing a program in machine language has several
disadvantages which are discussed below.

1. Machine dependent. Because the internal design
of every type of computer is different from every
other type of computer and nceds different
electrical signals 1o operate, the machine
language also is different from computer 1o
computer. It is determined by th+ actual design
or construction of the ALU, the control unit, and
the size as well as the word length of the
memory unit. Hence, suppose after becoming
proficient in the machine code of a particular
computer, a company decides o change to
another computer, the programmer may be
required to leam a new machine language and
would have to rewrite all the existing programs.

Computer Languages 143

2. Difficult to program. Although e~y used by
the computer, machine language :- Jifficult 1o
program. It is necessary for the programmer
either 1o memorize the dozens of code numbers
for the commands in the machine's instruction
set or to constantly refer 0 a reference card. A
programmer is also forced to keep track of the
storage location of dala and instructions.
Moreover, a machine language programmer
must be an expert who knows about the
hardware structure of the computer,

3. Error prone. For wriung programs in machine
language, since a programmer has 1o remember
the opcodes and he must also keep track of the
storage location of data and instructions, it
becomes very difficult for him to concentrate
fully on the logic of the problem. This frequently
resulls in program errors. Hence, it is easy 1o
make errors while using machine code.

4. Difficult to modify. It is difficult to correct or
modify machine language programs. Checking
machine instructions 1o locate errors is about as
tedious as writing them iniually. Similarly,
meditying a machine language program at a later
date is so difficult that many programmers would
prefer to code the new logic afresh instead of
incorporating the necessary modifications in the
old program.

In shon, writing a program in machine language is
so difficult and time consuming that it is rarely used today.

ASSEMBLY LANGUAGE

One of the first sieps in improving the program
preparation process was to substitute letter symbols-
mnemonics for the numeric operation codes of machine
language. A mnemonic (or memory aid) is any kind of
mental trick we use to help us remember. Mnemonics come
in various shapes and sizes, all of them useful in their own
way. For example, a computer may be designed {0 interpret
the machine code of 1111 (binary) or 15 (decimal) as the
operation “subtract’, but it is easier for a human being 1o
remember it as SUB.

Use of Symbols Instead of Numeric OpCodes

All computers have the power of handling leters as
well as numbers. Hence, a computer can be taught 1o
recognize certain combination of letters or numbers. It can
be taught (by means of a program) to substitute the number

144 Computer Fundamenials

14 every lime it sees the symbol ADD, substitute the
number 15 every time it secs the symbol SUB, and so
forth. In this way, the computer can be trained to translale a
program written with symbols instead of numbers into the
computer's own machine language. Then we can write
program for the computer using symbols instead of
numbers, and have the computer do its own translating.
This makes it easier for the programmer, because he can
use letters, symbols, and mnemonics instead of numbers for
writing his programs. For example, the preceding program
that was written in machine language for adding two
numbers and printing out the result could be written in the
following way :

CLA A
ADD B
STA C
TYP C
HLT

Which would mean “take A, add B, store the result
in C, type C, and halt." The computer, by means of a
translating program, would wanslae each line of this
program into the corresponding machine language program.

Assemt BT
Languag: NPUT SEM e TeUT A
LaNGuage ————— 3| ASSEMELEW Language

Progar Frogram

R Cne-10-0One
tsource program) (Ohject program,
correspongdance

Figure 12.2. Tlustrating the translation process of
an assembler.

At this point we must learn a few more terms. The
language which substitutes letters and symbols for the
numbers in the machine language program is called an
assembly language or symbolic language. A program
written in symbolic language that uses symbols instead of
numbers is called an assembly code or a symbolic program.
The translator program that translates an assembly code
into the computer's machine code is called an assembler.
The assembler is a system program which is supplied by the
computer manufacturer. It is written” by system
programmers with great care. It is so called because in
addition to translating the assembly code into machine

code, it also, “assembles’ the machine code in the main
memory of the computer and makes it ready for execution.
A symbolic program wrillen by a programmer in assembly
language is called a source program. Alter the source
program has been converied into machine language by an
assembler, it is referred (o as an object program. As shown
in Figure 12.2, the input 10 an assembler is a source
program wrillen in assembly language and its cutput is an
object program which is in machine language. Since the
assembler translates cach assembly language instruction
into an equivalent machine language instruction, there is a
one-to-onc comrespondence between the assembly
instructions of source program and the machine instructions
of object program.

By now, it must have been clear to the readers that
when we write a program in symbolic language, we first
run the assembler (program) to assemble the symbolic
program inlo machine language, and then we run the
machine language program to get our answer. You will
notice that this means more time spent by the computer - it
not only has (o run the main program (o get the answer, but
it also must first translate the original symbolic program
into machine language. But symbolic programming saves
<o much time and effort of the programmer that the extra
time spent by the computer is worth it.

To see how symbolic programming works, let us
first write a short machine language program and then see
how we would write the same program in assembly
language. For this, let us assume that the computer uses the
following mnemonics for the operation codes mentioned
against

tAnemon:c C(igp Meamng
HLT 70 malt used atend of program 10 S10p
CLA 10 Tiear & Acdinto A register
ADD 14 £oir 10 the contents ot A register
SuB 15 S, pstract Irom contents ol A regrster
STA 3 Store A regisler

each. For simplicity, here we have considered only five
operation codes that will be used in writing our program.
Like this there can be more than hundred operation codes
available with a particular computer.

The program we will write is quile simple : adding
two numbers and storing the sum. The regular machine
language program for this will be as follows :

Memory Contents P—
Lecation| op
Code | Address
0000 10 1000 Clear & add first rumber to A register
0001 14 1001 Add second number to the contents of A regisler
0oc2 N 1002 Store the answee from A register
003 2] Haft
1000 Reserved for first number
1001 Reserved for second num bed
[+ 43 Peservad for the answer.

It has been assumed here thar the computer is
capable of handling decimal numbers instead 'vf only binary
numbers. The two numbers 10 be added are stored in
memory locations 1000 and 1001, and the answer obtained
after adding the two numbers is to be stored i location
1002. The first instruction at location 0000 clears (makes
zero) the A register (accumulator) and puts the conlents of
location 1000 (first number) in it. The second machine
instruction at location 0001 adds the contents of location
1001 (second number) 10 the contents of A register (first
number) and stores the sum in A register. The third
instructicn at location 0002 Stores the answer from A
register into memory location 1002. Finally, the fourth
machine instruction at location 0003 stops the execution of
the program.

Now we will see how 10 write the same program in
assembly language. We can easily replace the op-code in
each of the preceding instructions by the corresponding
mnemonic and write the program as given below instead:
and let the computer handle the rest. The assembler
pregram would then translate CLA 1o 10, ADD 10 14, STA
to 30 and HLT to 00, thus producing the machine language
program,

Computer Languages 145

Mernory Contents
Location Mnemonic | Address
0000 CLA 1000
0001 ADD 1001
0002 STA 1002

0003 HLT

Use of Symbols Instead of Addresses

But there is no need to stop here; after all, it is not
much more work (o memorize a few numbers for op-codes,
and using symbols for op-codes Just makes more work for
the computer. We might as well let the computer do a large
share of the work.,

One of the greatest problems in machine language
programming comes from keeping track of addresses.
Every time we write a large program, we need a pad of
paper off 1w the side on which we keep a running list of
what numbers are stored where, Each’ lime we want a
number, we must look up the address on this list. This takes
time and can lead to mistakes if we are not careful. Why
not let the computer do this part of work for us ? We can
include, as part of the assembly program, a section that
does nothing but keeps a list of addresses for numbers.

In the preceding sample program to add two
numbers, we might start the symbolic program by telling
the computer something like the following :

"From now on address 1000 will be called FRST,
address 1001 will be called SCND, and address 1002 will
be called ANSR."

In response to this, the assembler sets up a table
somewhere in the computer memory which looks
something like the following:

FRST = 1000
SCND = 1001
ANSR = 1002

From now on, we just call numbers by their names.
The assembler will look up the name in the table and
provide the right address, thus saving us even more work.
This means we can write our sample program as shown
below:

146 Digital Computer Fundamentals

Memory Contents
Location Mnemonic | Address
0000 CLA FRST
0001 ADD SCND
0002 STA ANSR
00023 HLT
L

The assembler then looks up the address for each of
the numbers, translates the mnemonic op-code into the
numerical op-code and comes out with a machine language
program. For example, in the first instrucuon CLA FRST,
the asscmbler translates the CLA into an op-code of 10 and
looks up the address of FRST in the table. It finds the
address as 1000, and so it puts the first machine language
instruction as 10 1000. In the same way il translates the
ADD SCND instruction into 14 1001, and so on, making
the machine language program siep by step.

But there is one more part of our work that we can
hand over to the computer. We need not even teli the
computer where to place cach number and where 10 place
each instruction, as we have been doing till now. Instead of
saying something like "Place FRST n 1UU0, SCND 1n
1001, and ASNR in 1002," we nced only tell the computer
to starl pulting the numbers into memory starting with
address 1000. In the same way we do not have o specify
that the instruction CLA FRST goes into 0000, ADD
SCND into 0001, and so on - we merely tell the computer
10 start the program at location 0000. The symbolic -
program would therefore go something like this :

START PROGRAM AT 0000 AND START DATA AT
1000

SET ASIDE AN ADDRESS FOR FRST
SET ASIDE AN ADDRESS FOR SCND
SET ASIDE AN ADDRESS FOR ANSR

CLA FRST

ADD SCND
STA ANSR
HLT

Then we start the assembler working on this
symbolic program. We see that the first four steps are not
really pants of the main program to add the two numbers;
they arc instructions to the assembler on what 1o do, and are
called pseudo-instructions. The word pseudo, from the
greek word meaning false, fake or pretended, describe them
quite well : they are instructions that do not do anything in
the main program, but only provide information to the
assembler to tell it how we want the program asscmbled.

To sce how the assembler changes this symbolic
program into machine language, let us follow it step by
step.

“The first step tells the assembler that the program
should start at address 0000 and cach following instruction
should be in the following address, and that the data (in this
example this includes the FRST and SCND numbers, as
well as the ANSR) should start at memory location 1000.

The next step tells the assembler to sel aside an
address for FRST. The assembler therefore picks the first
free address in the group set aside for data, which is 1000,
and will call it FRST from now on. Note that because we
will refer o the address with the symbol FRST from now
on, we really do not care what the address exactly is:
whether it is 1000 or 1001 or 4253 makes no difference
because the assembler will keep track of it.

The nexi step ielis ihe assembier 0 sci aside an
address for SCND. The next free address after 1000 is 1001
(because 1000 is already taken by FRST), and so the
assembler will supply the address 1001 every lime we use
the symbol SCND.

In the same way, the next step tells the assembler 10
sel aside an address, this/time 1002, for ANSR. This is the
Jast psendo-instruction, and the next instruction will start
the program itself.

The next instruction is CLA FRST, which the
computer translates into 10 1000 by translating CLA into
10 and looking up the address of FRST in its table which is
1000. Shnﬂml}. the assembler wil translate the instruction
ADD SCND into 14 1001 and the instruction STA ANSR
into 30 1002. Fipally it translates HLT into 00, thus
providing the complete machine language program for the
given assembly language program.

Computer Languages 147

Advantages of Assembly Language Over Machine It we insert that instruction, we will have 1o
Language remember all the following instructions, and go

Assembly languages have the following advantages

over machine languages :

1. Easier to understand and use. Assembly
languages are easier to understand and use
because mnemonics are used instead of numeric
op-codes and suitable names are used for data.
The use of mnemonics means that comments are
usually not needed; the program itself is
understandable. Symbolic programming also
saves a Jot of time and effort of the programmer
because it is easier to write as compared to
machine language programs.

2. Easy to locate and correct errors, While writing
programs in assembly language, fewer errors are
made, and those that are made are easier to find
and correct because of the use of mnemonics and
symbolic field names. Furthermore, assemblers
are 50 designed that they automatically catch
errors. If we use an invalid mnemonic or a name
that has never been defined, the assembler will
print out an error indication. For example,
suppose one instruction in the symbolic program
reads ADD AREA, and we forget to define what
AREA is, the assembler will look through its
table 1o find AREA and not finding it will
indicate the error.

3. Easier 1o modify. Assembly language programs
are easier for people to meodify than machine-
language programs. This 1s mainly because they
are easier to understand an hence it is easier to
locate, correct, and modify instructions as and
when desired. Moreover, insertion or removal of
certain instructions from the program does not
require change in the address part of the
instructions following that part of the program.
This is required in case of machine language.

No worry about addresses. One of the greatest
advantage of assembly language is that it
eliminates worry about address for instructions
and data. This is more important than it seems at
first glance. Suppose we have written a long
machine language program involving many steps
and many references 1o itself within the program,
such as looping, and address modifications, and
so on, At the very end we may suddenly discover
that we have left out an instruction in the middle.

11-A

through the entire program to check any
references to other steps. This is a tedious job.
But if we writc the same program in symbolic
language, we merely add the extra instruction,
and the assembler will take care of the step
numbering automatically.

. Easily relocatable. Suppose that an assembly

language program starts at address 1000 and we
suddefily find that we have another program to
be used with this program and this program also
starts at location 1000. Obviously, one of the two
programs will have 1o be rewritten to be moved
somewhere else. In machine language, this can
be a complicated job. But in case of assembly
language, we merely have to change the first
statement; for example instead of :

START PROGRAM AT 1000 AND START
DATA AT 2000

we merely change this first statement to

START PROGRAM AT 3000 AND START
DATA AT 4000

and run the symbolic program once more
through the assembler. The equivalent machine
language program will this time start at memory
locaiion 3000 instead of 1000, and there will be
no conflict with the other program. In other
words, using symbolic language we can easily
move programs from one section of the memory
io another; we say that assembly language
programs are easily relocatable because their
location is easily changed merely by changing
the first instruction. This is not easily done with
machine language programming.

Efficiency of macnne tanguage. In addition to
the above mentioned advantages, an assembly
language program also enjoys the efficiency of
its corresponding machine code because there is
one to one correspondance between the
instructions of an assembly language program
and its comesponding machine language
program. Except for pseudo-instructions, which
are simply instructions to the assembler, every
other instruction of an assembly langlage
program is translated into one machine language
instruction. For every machine language
instruction, there is a corresponding symbolic

148 Digital Computer Fundamentals

instruction and for every symbolic instruction
(except the pseudo-instructions) there is a
corresponding machine instruction. In other
words, the symbolic program will be just as long
as the resuling machine language program. So
leaving out the translation time required by the
assembler, the actual execution time of an
assembly language program and ils equivalent
machine language program (written
independently) will be the same. The reason we
are stressing this imponant fact is that there are
languages (called macro-languages) in which a
single instruction may get lranslated into an
entire series of machine language instructions,
Assembly language, in ils basic form, is not one
of these - there is one-to-one relationship
between symbolic and machine languages.

Limitations of Assembly Language

The following disadvantages of machine language
are not solved by using assembly language -

1. Mackine dependent. Because each instruction in
the symbolic language is translated into exactly
one machine language instruction, assembly
languages are machine dependent. That is, they
are designed for the specific make and model of
the processor being used. A decision to change
to another computer sull usuvally requires
leaming a new language and the conversion of
all existing programs - a very cxpensive
undertaking,

2. Knowledge of hardware required. Since
assembly languages are machine dependent, so
the programmer must be aware of a particular
machine's characteristics and requirements as the
program is written. An assembly language
programmer must know how his machine works
and should have a good knowledge of the logical
structure of his computer in order to write a good
assembly language program.

3. Machine level coding. In case of an assembly
language, instructions are still written at the
machine-code level - that is, one assembler
instruction is substituted for one machine-code
instruction.

Machinc and assembly languvages being machine
dependent, are referred to as low-level laniguages.

Assembly Languages With Macro Instructions

In general, assembly languages arc termed one-for-.
one in nature, that is, cach assembly language instruction
will result in one machine language instruction, However,
quite often a certain set of machine language or assembly
language instructions have to be used over and over. For
example, three instructions, one after the other, might be
needed to print out a number on a particular computer.
These three instructions, always in the same order, might be
used over and over in the same program. Instead of forcing
the programmer to wrile out the set of three instructions
every time he wants to print a number, we might as well
design the assembler (program) in such a way so as 10 take
care of these instructions. Every time the programmer gave
the PRINT instruction, for example, the assembler would
translate it into three machine language instructions instead
of one, thas supplying the complecle set of instructions
required for printing.

Any instruction, such as PRINT, which geis
translated into several machine language instructions, is
called a macro instruction. There might be many such
macro instructions permitied by a particular assembler.
Thus, to speed up the coding process, assemblers were
developed rhat could produce a variable amount of machine
language instructions for cach macro instruction of the
assembly language program.

The use of macro instructions adds much work o
the computer because the translation process becomes more
than just changing cach word into a number. The assembler
must be able to supply the missing steps as well, but it
means a tremendous saving of work for the programmer.
The programmer gets relieved of the task of writing an
instruction for every machine operation performed: It
reduces the length of the programs he wriles, cuts down on
his errors, and simplifies his programming.

The macro instruction capability was developed
very early in the evolution of computer languages. In fact, it
is this concept of multiple machine instructions from one
macre instruction around which today's machine-
independent higher level languages are designed.

HIGH-LEVEL LANGUAGE

We have already seen that writing of programs in
machine language or assembly language requires a deep
knowledge of the intemal structure of the computer. While
writing programs in any of these languages, a programmer
has to remember all the operation codes (numeric or
mnemonic) of the computer and know in detail what each
code does and how il affects the various registers of the

11-B

computer. However, we have also seen that in order to
write a good computer program. the programmer should
mainly concentrate on the logic of the problem rather than
be concerned with the details of the internal structure of the
computer. In order 1o facilitate the programmers 1o use
computers without the need to know in detail the internal
structure of the computer, high-level languages were
developed.

High-level languages, instead of being machine
based, are oriented more towards the problem to be solved.
These languages cnable the programmer to write
instructions using English words and familiar mathematical
symbols. So it becomes easier for him to concentrate on the
logic of his problem rather than getting involved in
programming details. Obviously, the two-part format
shown in Figure 12.1, that was required for writing
instructions in machine language or assembly language, is
not necessary for writing instructions in a high-tevel
language. For cxample, let us consider the same problem of
adding two numbers (FRST & SCND) and storing the sum
in ANSR, We have alrcady seen that three low-level
(machine/assembly) instructions are required for
performing this job. However, if we use a ligh-level
language, say FORTRAN for instance, to instruct the
computer to do this job, only one instruction need be
wrilten :

ANSR =FRST + SCND

This instruction is obviously very easy 0 understand
and write because it resembles the familiar algebraic
notation for adding two numbers : a = b + c.

High-level languages are basically symbolic
languages that use English words and/or mathematical
symbols rather than mnemonic codes. In other words, a
high-level language is a symbolic language with nothing
but macro-instructions. Every instruction which the
programmer writes in a high-level language is translated
into many machine language instructions. This is one-to-
many translation and not one-to-one as in the case of
assembly language. It is due 1o this reason that high-level
languages are so called.

High-level languages are also known as problem-
oriented language: because the macro instructions are
especially picked to be useful for solving particuler types of
problems. Each such language is then best 1o solve a
particular class of problems and may be completely useless
for solving other types of problems. For example, if a high-
level lanouage is capable of handling business-type
applications that consist of high input volume, relatively

Computer Languages 149

lile processing, and a high ourput volume, then the
language is a business-oriented language. On the other
hand, languages excellent at performing sophisticated
computations but not adept at handling large data files are
mathematically-oriented languages. Thus, a problem-
oniented language is designed in such a way that is
instruclions may be written more like the language of the
problem. For example, a scientist using a scicnce-oriented
language can use scientific formulas, and a business man
with a business-oriented language can use business terms.
Hence, high-level languages are generally easier to learn
and write.

COMPILERS

Since a computer hardware is capable of
understanding only machine. level instructions, so it is
necessary o convert the instructions of a program written
in high-level language to machine instructions before the
program can be executed by the computer. We have scen
that assembly languages use an assembler to perform this
conversion process. In case of a high-level language, this
Job is carried out by a compiler. Thus, a compiler is a
translating program (much more sophisticated than an
assembler) that translaies the instructions of a high-level
language into machine language. A compiler is so called
because it compiles a set of machine language instructions
for every program instruction of a high-level language. A
program written by a programmer in a high-level language
is called a source program. After this source program has
been converted into machine language by a compiler, it is
referred w0 as an object program. As shown in Figure 12.3
the input to a compiler (program) is a source program
written in a high-level language and its output is an object
program which consists of machine language instructions.
Note that the source program and the object program are
the same program, but at different stages of development.

High-Level INPUT QUTPUT Machine
Lang.oage COMPILER Language
Pr-,g:. m Program
ong-to-man

Source Program) 24 (Object Program)

Translation

Figure 12.3. Tllustrating the translation process of a
compuler.

A compiler can transiate only those source prograias
which have ccen written in the language for which the

150 Digital Computer Fundamentals

computer is meant. For example, a FORTRAN compiler is
only capable of translating source programs which have
been written in FORTRAN and, therefore, cach machine
requires a separate compiler for each high-level language

Program P1

in high-level Compiler for Machine Code
Language L! Language L1 for P1
Program P2

in :?gh—level Compuler for Machine Code
Language L2 Language L2 for P2

7

Computer supporting
Languages L1 & L7

Figure 12.4. Illustrating the requirement of
separate compilers for each high-level
language supported by a computer.

Complier for Machine Codg Executed O

Language L1 ~ :::‘Pn‘,,l.h; —*1 Coinputer A

on computer Camputera \

P m P1 Same

;u’?:;kluvﬂ results

Language L1 ablained
g Mach!ne Code

Compilar for tor P1 that . Exccuieg on

Language L1 will run on Computer B

on Computer B Computer B

Figure 12.5. Illustrating the machine independence

characteristic of 2 high-level
language. Separate compilers are
required for the same language on
different computers.

that it supports. This is illustrated in Figure 12.4. Moreover,
since an object program for one machine will not be the
same as the object program for another machine, it is
necessary that each machine must have its own “personal’
compiler for a particular language, say L1. Figure 12.5
illustrates how machine-independence is achieved by using
different compilers o translate the same high-level
language program to machine languages of different
computers.

Compilers are large programs which reside
permanently on secondary storage. When the translation of
a program is 1o be done, they arc copied into the main

_memory of the computer. The compiler, being a program, is

executed in the CPU. While translating a given program,
the compiler analyses each statement in the source program
and generates a sequence of machine instructions which,
when executed, will precisely carry out the computation
specified in the statement. As the compiler analyses cach
statement, it uncovers certain types of errors. These are
referred to as diagnostic errors. The compiler can diagnose
the following kinds of errors in a source program :

a. lllegal characters
b. Illegal combination of characters

c. Improper sequencing of instructions m a
program.

A source program conlaining an error diagnosed by
the compiler will not be compiled into an ohject program.
The compiler will print out a suitable message indicating
this, along with a list of coded crror messages which
indicate the type of errors committed. The error diagnostics
is an invaluable aid (o the programmer.

A compiler, howevér, cannol diagnose logical
errors. It can only diagnose grammatical (syntax) errors in
the program. It cannot know ones intentions. For example,
if one has wrongly punched -25 as the age of a person,
when he actually intended +25, the compiler cannot
diagnose this. Programs containing such errors will be
successfully compiled and the object code will be obtained
without any error message. However, such programs, when
executed, will not produce the right answers. So logical
errors are detected only after the program is executed and
the result produced does not tally with the desired result.
Hengce, it is essential to be precise in writing a program and
pay careful attentior: to the smallest detail.

INTERPRETERS

An interpreter is another type of translator used for
translating high-level languages into machine code. It takes
one statement of a high-level language and wranslates it into
a machine instruction which is immediately executed.
Translation and execution aliemate for each stalement
encountered in the high-level language program. In other
words, an interpreter translates one instruction, and the
control unit execules the resulting machine code, the next
instruction is translated, and the control unit execules the
machine code instruction, and so on. This differs from a
compiler which merely translates the entire source program
into an object program and is not involved in its execution.
In case of a compiler, the whole source program is
translated into an equivalent machine language program.
The cbject code, thus obtained, is permanently saved for
future use and is used every time the program is o be
execuled. So repeated compilation is not necessary for
repeated execution of a program. However, in case of an
interpreter, no object code is saved for future use because
the translation and the execution processes altemale. The
next time an instruction is used, it must once again be
mterpreted and transiated into machine language. For
example, during the repetitive processing of the instructions
within a loop, each instruction in the loop will have to be
reinterpreted every time the loop is executed.

Interpreters are often employed with
microcompulers (smali computers). The advantage of an
interpreter over a compiler is fast response 10 changes in the

source program. The interpreter climinates the need for a*

scparate compiling run afier each program change to add
features or correct errors, Moreover, a compiler is a
complex program compared 0 an interpreter. Interpreters
arc casy to write and they do not require large memory
space in the computer. The interpreter, however, is a time
consuming translation method because each statement must
be translated every time it is executed from the source
program. Thus, a compiled machine language program runs
much faster than an interpreted program.

Assemblers, compilers, and interpreters are systems
software that translate a source program written by the user
to an object program which is meaningful to the hardware
of the computer. These translators are also referred to as
language processors. since they are used for processing a
particular language. '

Based on the above discussions, we conclude that. in
general, a programming language should possess the
following characteristics to be considered high-level :

Computer Languages 151

I. The language should be relatively independent
of a given computer system. That is, instead of
being machine based, it should be oriented more
towards the problem to be solved.

[

Each statement of the language should be a
macro instruction that gets translated into many
machine language instructions.

3. The language should enable the programmers 1o
wrile instructions using familiar words and
mathematical symbols. It should be natural and
should use abbreviations and words used in
everyday communication.

4. The language should be independent of machine
language instructions and other pieces of system
software except for the compiler or the
interpreter.

5. The language should not be experimental in
nature and should exist on more than one
compuoter system.

Advantages of High-Level Languages

High level languages enjoy the following
advantages dver assembly and machine languages :

1. Machine independence. High-lavel languages are
machine independent. This is a very valuable
advantage because it means that a company .
changing computers - even to one from a
different manufacturer - will not be required to
rewrite all the programs that 1t is currently using.
Even for programs written in the high-level
languages, some modifications are almost
always required, but these modifications are
relatively minor and can be easily done without
much effort. In other words, a program wrilten in
a high-level language can be run on many
different types of computers with very little or
practically no effort.

2. Easy to learn and use. These languages are very
similar to the languages normally used by us in
our day-to-day life. Hence they are easy to learn
and use. The programmer need not leam
anything about the computer he is going to use.
He need not worry about how 1o store his
numbers in the computer, where 1o store them,
what to do with them, etc. That is the
programmer need not know the machine
instructions, the data format, and so on.

152 Computer Fundamentals

However, such a knowledge is desirable since it
allows the programmer to ulilize the system
more efficientlv.

3. Fewer errors. In case of high-level languages,
since the programmer need not write all the
small steps carried out by the computer, he is
much less likely to make an error. The computer
takes care of all the litde details, and will not
itroduce any error of its own unless something
breaks down. Furthermore, compilers arc so
designed that they automaticaily caich and point
out the errors made by the programmer. Hence,
diagnostic errors, if any, can be easily localed
and corrected by the programmer.

4. Lower program preparation cost. Writing
programs in high-level languages requires less
tume and effort which ultimalely leads to lower
prcgram preparation cost. Generally, the cost of
all phases of program preparation (coding,
debugging, testing, etc.) is lower with a high-
level language than with an assembly language
or with a machine Janguage.

5. Better documeniation. A high-level language is
designed in such a way that its instructions may
be written more like the language of the
problem. Thus the statements of a program
written in a high-level language can be casily
understood by a person familiar with the
~roolem. For ik
programs, very few or practically no separale
comment statements are required.

6. Easier to maintain. Programs written in high-
level languages are easier to maintain than
assembly language or machine language
programs, This is mainly because ihey are easier
to understand and hence it is easier to locate,
correct, and modify instructions as and when
desired. Insertion or removal of certain
instructions from a program is also possible
without any complication. Thus, major changes
can be incorporated with very little effort.

Limitations of High-level Languages
Two disadvaniages of high-level languages are
- 1. Lower efficiency. Generally, a program written
in assembly language or machine language is

more efficient than one written in high-level
language. That s, the programs written in high-

documentation of such

level languages take more time o run and
require more main storage.

[

Lack of flexibility. Because the automatic
features of high-level languages always occur
and arc not under the control of the programmer,
they are less flexible than assembly languages.
An asscmbly language provides programmers
access to all the special features of the machine
they are using, Centain types of operations which
are easily programmed using the machine's
assembly language, are impractical to attempt
using a high-level language. This lack of
flexibility means that some tasks cannot be done
in a high-level language, or can be done only
with great difficulty.

In most cases, the advantages of high-level
languages far outweigh the disadvantages. Most computer
installations usc a high-level- language for most programs
and use an assembly language for doing special lasks that
cannot be casily denc otherwise

SOME-HIGH-LEVEL LANGUAGES

The credit for the development of the first high-level
language is usually. given-to Dr. Grace Hopper who
described the idea of a compiler and its language as early as
1952. Two languages were developed under Dr. Hopper's
directions : FLOWMATIC was a commercial and business
language which could easily be put together from the
contents of a flowchart, whereas MATHEMATIC was a
mathematical language. These two languages were an early
example of the development of high-level languages in
different dircctions - business and commercial, and science
and mathematics.” Since then, many other high-level
languages have been produced. Today there are over 200
high-level languages. However, most of these are for very
special purposes or aré designed to sqlve problems in a very
specific applications area. Some of the most common high-
level languages have been briefly described below. The
primary objective is to provide some insight into these
languages rather than to provide detailed knowledge
required to write programs,

FORTRAN

One of the oldest and the most popular high-level
language is FORTRAN ‘which suands for FORmula
TRANslation. Originally developed by IBM (International
Business Machine Corporation) for its 704 computer in
1957, FORTRAN has undergone several revisions so that
the language has been evolving into a wider and more
useful language with time. The original FORTRAN was

soon followed by FORTKRAN II. The next popular and
advanced version was FORTRAN IV. In order 1o allow a
program that was written for one computer system (o be run
on another computer system, this version was standardized
by the American National Standards Institute (ANSI) in the
year 1966, FORTRAN thus has the distinction of being the
first standardized language. In 1977 an updated version of
FORTRAN IV, known as FORTRAN 77, was announced
and standardized by ANSL It contains severa! additional
feawres which are not a pant of FORTRAN 1V, c.g.
character and file handling, constructs related to a more
structural approach o programming.

FORTRAN was designed to solve scicntific and
engineering problems and is currently the most popular
language among scientists and engincers. The language is
otiented towards solving problems of a mathematical nature
and has been designed as an algebra-based programming
language. Any formula or those mathematical relationships
that can be expressed algebraically can easily be expressed
as a FORTRAN instruction, e.g. A = B + C - D. To
tlustrate the nature of FORTRAN programs, a simple
FORTRAN program 10 compute and print the sum of 10
numbers is given below.

& FORTRAN PROGRAM TQ COMPUTE
C THE SUM OF 10 NUMBERS

SUM = 0
DOSOI=1,10
READ (5. 10) N

10 FORMAT (F6 . 2)
SUM = SUM + N
50 CONTINUE
WRITE (6, 20) SUM
20 FORMAT (1X, 'THE SUM OF GIVEN
-~ NUMBERS=", F10 . 2)
STOP
END

From the example you can see that a FORTRAN
program consists of a serics of statements. These
statements supply input/output, calculation,
logic/comparison, and other basic instructions to the
computer. The words READ, WRITE, DO, and STOP in
the statements mean exacily what you would expect. A
FORTRAN program requires that certain parts of every
statement be placed in certain columns. Statement numbers,
which are optional in FORTRAN, are placed in columns 1-
5 (10, 50 and 20 in this example). A comment statement
starts with a C in the first column (the first statement of this
example). Comment statements are used in programs for
the purpose of documentation or explanation designed to
acsist anyone reading the source program listing.

Computer Languages 153

Comments do not form a par of the program logic and are
ignored by the computer. The actual FORTRAN statement
is placed in columns 7-72. A character in column 6 means
that the statement in the previous line is being continued in
this line. Columns 73-80 are ignored by the computers. The
programmer may use these columns for any purpose, such
as numbering each stalement or wriling a program cede
name.

In the example above, the value of SUM is first
initialized to 0. The next statement tells the computer to do
a loop that starts at the DO statement and ends in line
having label 50, which is a CONTINUE statement. Inside
the loop, values of N are read and added to SUM one by
one. After the computer loops 10 times, reading and
accumulating the sum of 10 numbers, the computer goes
out of the loop and drops down to the next statement. This
is the WRITE statement which prints the message : THE
SUM OF GIVEN NUMBERS = followed by the computed
value of SUM. The next statement, which is a STOP
statement teils the computer 10 stop the execution of the
program. Finally, the END statement tells the computer that
there are no more instructions or statements in the program.
The data for this program is contained in a separate file and
is not shown in the program.

COBOL

COBOL is an acronym for COmmon Business
Oriented Language. As its name implies, this language was
designed specifically for business data processing and
today it is the most widely used business-oriented
programming language. Unlike FORTRAN, which
gradually developed into a full-fledged language, the
vocabulary and grammar of COBOL were worked out in
1959-1960 by a committee of the COnference on DAta
SYsiems Languages (CODASYL) as a joint effort of
computer uvsers, manufacturers, and the United States
government. After the vocabulary and grammar were
defined by this cominittee, the various manufacturers wroie
the compilers for their computers. Since 1960, the language
has been revised, but revision by manufacturers have been
rare, because other CODASYL committees have continued
to maintain, revise, and extend the initial specifications. An
ANSI COBOL standard was first publiched in 1968, and a
later version was approved in 1974. As long as these
standards are followed, 2 COBOL program can be run on
any computer system with an ANSI COBOL compiler.,

COBOL was designed to have the appearance and
structure of a business report written in English, Thus, a
COBOL program is constructed from sentences,
paragraphs, sections, and divisions. All COBOL programs
must have four divisions namely, the identificaiion

154 Digital Computer Fundamentals

division, the environment division, the dala division, and
the procedure division. The nature of COBOL program is
illustrated below with the help of a simple COBOL
program to compute and print the sum of given numbers.

IDENTIFICATICON DIVISION.
PROGRAM-ID. SUMUP.
AUTHOR. P X SINHA,
* THIS PROGRAM COMPUTES AND PRINTS
* THE SUM OF GIVEN NUMBERS.
ENVIRONMENT DiVISION,
CONFIGURATION SECTION.
SOURCE-COMPUTER. BURROUGHS-6700.
OBJECT-COMPUTER. BURROUGHS-6700.
INPUT-OUTPUT SECTION.
FILE-CONTROL.
SELECT DATA-FILE ASSIGN TO
CARD-READER.

SELECT QUTPUT-FILE ASSIGN TO PRINTER.

DATA DIVISION.
FILE SECTION.
FD DATA-FILE
RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD IS INPUT-DATA-RECORD.
01 INPUT-DATA-RECORD.
05N PICTURE 9(6)V%9.
05 FILLER PICTURE X(72).
FD OUTPUT-FILE
RECORD CONTAINS 132 CHARACTERS
LABEL RECORD IS OMITTED
DATA RECORD IS OUTPUT-RECORD.
01 OUTPUT-RECORD.
05 FILLER PICTURE X.
05 TITLE PICTURE X(25).
05 SUM PICTURE 9(10)V99.
05 FILLER PICTURE X(54).
WORKING-STORAGE SECTION.
77 MESSAGE PICTURE X(25) VALUE IS
"THE SUM OF GIVEN NUMBERS=".

PROCEDURE DIVISION.
OPEN-FILES.
OPEN INPUT DATA-FILE.
OPEN OUTPUT QUTPUT-FILE.
INITIALIZATION.
MOVE SPACES TO OUTPUT-RECORD.
MOVE ZERO TO SUM.

PROCESS-LOQP.
READ DATA-FILE AT END CO TO
PRINT-PARA.
ADD N TO SUM.

GO TO PROCESS-LOOQP.
PRINT-PARA.

MOVE MESSAGE TO TITLE.

WRITE OUTPUT-RECORD.
END-OF-JOB.

CLOSE DATA-FILE.

CLOSE OUTPUT-FILE.

STOP RUN.

) it can be easily seen from this example that COBOL
is a seclf-documenting language. Self-documenting
languages are those that do not require much explanation in
order 10 be understood by some one reading the program
instructions,

The self-documenting aspect of COBOL is made
possible by its English like sentence and paragraph
structure and the very generous maximum symbolic field-
name length of 30 characters. With a ficld-name length of
up to 30 characters, the name can clearly identify the ficld
and its purpose. COBOL programmers should ensure that
the ficld name that are used are meaningful, so that the self-
documenting feature of the language is not lost.

Like FORTRAN, most COBOL compilers require
that cerain parts of every stalement be placed in certain
columns. There are 80 columns in a line out of which
columns 1-3 are used for page number and columns 4-6
identify line numbers. The use of sequence numbers is
optional and can be omitted. An asterisk (*) in column 7
indicates a comment line and the entry is not compiled to
produce object code. Comment lines are actually some
notes revealing the intentions of the programmer and are
used for program documentation. The actual COBOL
statements are placed in columns 8-72. Notice that there are
two margins : A and B. The A margin that starls at column
8 is used 1o slart a new division, section, or paragraph. The
B margin that starts al column 12 is used to start any
sentence. Finally, columns 73-80, which the computer
ignores, can be used to wrile some identification,

BASIC

BASIC (Beginners All-purpose Symbolic /nstruction
Code) was developed by Professors John Kemeny and
Thomas Kurtz in the year 1964 at Darmouth College in the
United Siates. Their purpose was o develop a language
which would be very easy to learn and thus can be used by
the undergraduate students in all fields of study. The
language has few grammatical rules and can be leamnt in a
few hours of concentrated study. In order to understand and
write programs in BASIC, it is not necessary lo leam
complex programming techniques. A person with little or
no knowledge of computers or programming can leam to

wrile BASIC programs in a short period of time. Because of
its simplicity and bias towards the user, BASIC is even
being uscd by school students. It is a language well suited
for use in cducation and has become extremely popular
with micro~omputer users.

Unlike FORTRAN or COBOL, BASIC is an
iaterpreter based language. Instead of compilers,
interpreters are generally used in microcomputer systems Lo
translate BASIC instructions into machine-language code.
Thus, as a BASIC program is being entered, its statements
are checked for syntax errors which can be immediately
corrected. This feature of BASIC makes it one of the most
popular conputer languages used in microcomputer
systems. It is available in almost all microcomputers and
even in some pocket calculators. Though simple and easy to
learn, BASIC is quite flexible and reasonably powerful. It
can be used for both business and scientific applications.
Probably the greatest drawback of this ianguage is that it
has not yet been standardized, The language varies
significantly from one computer system to another, Thus, a
BASIC program wrilten on one computer may not work on
another unless modified.

A Basic program te compute and print the sum of 10
numbers is given below :

5 REM PROGRAM TO COMPUTE
6 REM THE SUM OF 10 NUMBERS

10 LETS=0

20 FORI=1TO10
30 READ N

40 LETS=S8S+N
50 NEXTI

60 PRINT "THE SUM OF GIVEN NUMBERS="; S
70 DATA 4, 20, 15, 32. 48

80 DATA 12,3, 9, 14, 44

90 END

" It can be observed from this cxample that a BASIC
program is made up of a series of statements. Each
statement slarts with a stalement numl.r and a key word,
followed in most cases by some type of action. For
example, in the statement, "40 LET S = S + N", 40 is the
statement number, LET is the key word, and S = § + N is
the action. The first statement of the prograim which is a
REM statement is a remark being made for the purpose of
explaining or documenting a program step. It has no effect
on the program logic. The instruction must have a line
number, the key word REM, and any remark that the
programmer wishes to make. In our example, the remark
statement was used to name the program. The two DATA
statements in the program are used 10 fumnish the input data.

Computer Languages 155

The FOR and NEXT swatements control the loop that is
meant for adding the 10 numbers one by one. The END
statement stops the program execution,

PASCAL

Named after the famous French mathematician
Blaise Pascal, this language was first introducted in the year
1971 by Professor Niklaus Wirth of the Federal Institute of
Technology in Zurich Switzerland. His aim was 1o develop
a language after the concepts associated with structured
programming. Thus, PASCAL was the first language to
fully embody in an organised way the concepls of
structured programming. The language is relatively easy to
leam, and it allows the programmer to structure the
programming problem. This means that the program must
be written in logical modules which are in turn called by a
main controlling module. In other words, PASCAL is
designed to force us to look at a problem in a logical way
and to lay out a solution before we begin writing the
program. It is based on the theory that the use of oo many
GO TO statements in a program makes the program clumsy
and unstructured. The logic of such programs becomes
complex and these programs are difficult 1o understand and
maintain because they lack any récognizable structure or
flow of control. Hence, as a good programming practce, a
programmer should aveid the use of GO TO statements in
his program as far as practicable. The features of PASCAL
help us in overcoming this problem. The language is
designed in such a way that complete PASCAL programs
can be writien without the use of GO TO statements. The
process of looping or repeating a sequence is handled
automatically by special loop control statements. PASCAL
is thus widely recognised as a language that instills good
programming habits in a programmer, Owing to this reason,
this language is also extensively used to teach programming
to beginners. The features of PASCAL allow it to be used
for both scientific and business applications. Hence, it is a
very powerful language and has been implemented on
several different computers including minicomputers and
microcomputers, A PASCAL version of a summing
program similar to those presented earlier in other
languages is shown below.

PROGRAM SUMNUMS (INPUT, OUTPUT);

(* PROGRAM TO COMPUTE THE SUM OF 10
NUMBERS *)

(* DECLARATION OF VARIABLES *)

VAR SUM,N :REAL;

VAR I : INTEGER;

BEGIN
SUM =0;
FOR 1:=1TO 10 DO

155 Digital Coraputer Fundamentals

BEGIN
READ (N):
SUM:=SUM+N;
END; 3
WRITELN ("THE SUM OF GIVEN NUMBERS=',
SUM):
END.

The first line of the program contains the name of
the program which is SUMNUMS. This is followed by two
comment lines which are used for documentation purpose.
Any comment can be placed within the symbols (* and *)
to document a PASCAL program. Then, all the variables
are declared. The variables SUM and N are declared as real
and hence they can be assigned any real number. Similarly,
the variable 1, that has been declared to be an integer
variable, can be assigned any integer value. The heart of the
program starts with the word BEGIN and ends with the
word END. First, the variable SUM is initialized to zero.
The next statement starts a DO loop that reads and
computes the sum of the 10 numbers. Finally, the statement
having WRITELN prints the result of the program. It may
be observed that PASCAL. programs are composed of
blocks starting with BEGIN and terminating with END. All
variables are declared at the beginning of the program and
program stalements proceed in a logical flow from start to
finish.

PL/I

PL/I stands for programming language one, It was
designed in the mid-1960s by IBM as a general purpose
language having features similar tc COBOL for business
applications and feawres similar to FORTRAN for
scientific applications in addition to other features such as
string manipulation and list processing. The intention was
to create a universal language which would be adequate for
programming any kind of application, A PL/I standard was
produced by an ANSI committee in the year 1976. A subset
of this full standard, known as PL/I-G is also available for
use with small computers.

Although PL/I is one of the most versatile and the
most powerful of the programming languages, it is not the
most commonly used. The main reason behind this is that
since PL/I has feawres found in both FORTRAN and
COBOL, it is a sophisticated language. It is enormous by
any standards and is not easy to learn in its totality.
Furthermore, the complexity of the language makes a
compiler and support-packages for the full language quite
large. Because of its size and heritage, the language so far
has been available primarily on IBM equipment and is not
very widely used or accepted.

A PL/I program for the summing problem is given

below 1o illustrate the nature of the language.

SUMNUMS : PROCEDURE OPTIONS (MAIN);
/* PROGRAM TO COMPUTE THE SUM OF 10
NUMBERS */
DECLARE (SUM, N) FIXED;
DECLARE I FIXED:;
SUM = 0;
DOI1=1TO10;
GET (N);
SUM=SUM+N;
END;
PUT EDIT { THE SUM OF GIVEN NUUMBERS =', SUM)
(AF5);
END;

It can be seen from this example, that the basic
element of a PL/I program is a statement. Each statement is
terminated by a semicolon (;) and several statements may
be combined to form a procedure. A procedure may
represent an entire small program (as in this example) or a
block or module of a more complex program. Because of its
modular structure, 2 beginner need only icarn a small part
of the language in order to write programs for a particular
type of application. Moreover, modular procedure blocks
and other feawres of the language allow the use of the
various concepts of structured programming.

OTHER HIGH-LEVEL LANGUAGES

The high-level programming languages that were
discussed above are not necessarily the most important or
most popular languages. These languages were presented in
some detail to give you a better understanding of computer
programming and nature of high-leve! languages in general.
There are several other programming languages which are
equally important and popular. Some of these languages are
briefly discussed in this section.

RPG. Report program Generator (RPG) is a business-
oriented, general purpose programming language. As the
name implies, the language is designed to generate the
output reports resulting from the processing of common
business applications. The language was developed by IBM
as a result of their customer requests for an easy and
economic mechanism for producing reports and was
launched in the year 1961 for use on the IBM 1401
computer, The latter version of RPG, called RPG 11, greatly
improved the language and gave it additional capabilities.

RPG is considerably different from other
programming languages. Instead of writing instructions or
statements, the programmer uses very detailed coding

sheets 1o write his specifications about input, calculations,
and output. These sheets specify exactly what is to be done,
and then the computer uses them 1o generate the necessary
instructions to perform the desired application. Thus, RPG
is easier 10 leamn and use as compared 10 COBOL.
Moreover, RPG can duplicate any COBOL program.
Owing 1o these reasons, RPG is commonly used on many
small computers and in small businesses. It is well suited
for applications where large files are read, few calculatons
are performed, and output reports are created. However,
RPG has restricted mathematical capability and cannot be
used for scientific applications.

ALGOL. Like FORTRAN, ALGOL (ALGOrithmic
Languagej is also one of the earliest and the most
influential high-level languages that was designed for
scientific applications. It was designed by an international
group of mathematicians, and developed by groups in
Europe and the United States. The language was first
introduced in 1958, resulting in ALGOLSS. Later on, it was
revised in 1960 and this revised version, known as
ALGOL60, was the most widely used version of the
language. The most recent, and the most powerful, version
is ALGOL68. Like PASCAL and PL/I, ALGOL is a block-
structured or modular language that is well suited for use in
a structured programming setting. One area in which
ALGOL, as originally defined, is quite deficient is that of
input/output. The language was pnmarily designed as a way
of expressing alzorithms, and 1/O statements were not made
a part of the official language. ALGOL has not proven to be
as popular in the United Stawes as in Europe for practical
work, although it is widely used in universities, especially
in computer science departments becausc of its elegance
and power. The lack of I/O facilities, plus the fact that the
largest computer manufacturer, IBM, did not favour
ALGOL early in its existence, has contributed to its lack of
widespread usage. —

APL. APL (A Programming Language) was developed by
Kenneth in 1962. It is a very powerful programming
language that is well suited for specifying complex
algorithms. Much of its power is vested in the rich set of
mathematical operators available, cnabling easy
manipulation of matrices and arrays of highest rank. This
language is a real-ume language developed primarily for
scientific applications. Tt is usually used in an interpretive
and interactive manner - an environment which greatly
enhances its power. Since APL uses a rather large and
unusual character set, a special keyboard and terminal is
necessary for its implementation. Until recently, only
certain IBM equipment supported APL. However, the
advent of low-cost terminals capable of handling many
different type of fonts and the growing number of APL
users have brought it into wider, but still limited, usage.

Compuier Languages 157

ADA. ADA is a new general purpose programming
ianguage. It was developed in the ycar 1980 at the request
of the U.S. Department of Defence (DOD) for use in
military applications. The language was developed at
Honeywell Computer Company by a group of scientists
headed by Ichbiah. It is named in honour of Lord Byron's
daughter Ada Augustha Lovelace. Ada was a close friend
of Charles Babbage, who has made significant
contributions in some of the earlier developments of
computer systems. Ada used to work with Babbage. She is
considered by many to be the first "programmer” because
she wrote the first computer program for the mechanical
computer (Analytical Engine) developed by Charles
Babbage.

Ada is an extremely complicated language with a
very large number of features. In addition to the normal
types of statements and commands, ADA also allows the
use of packages. A package allows for a collection of
related computational procedures and resources. Packages
are specified or wrltien into the declarative part of the
program, which is typically at the 1op of an ADA program.
Then various procedural statements in the program can
access the package and uvse it. Another important feature of
ADA is the use of tasks. Tasks are used to allow concurrent
programming which is very useful for military applications.
Like packages, tasks have a specificalion part. Once
specified, tasks can be used within the body of the program
as and when needed. It is expected that most future
programs written for the Depaniment of Defense, U.S.A.
will have to be in this language. As a result, this new
language may become very popular in the field of defense,

LISP. LISP stands for LISt Processing. This language was
designed by McCarthy and is suitable for nonnumeric
applications. It is a powerful language for handling logical
operations. Because of this feature, the language is
extensively used in the areas of pattern recognition,
artificial intelligence, and for simulation of games.

SNOBOL. SNOBOL (StriNg Oriented SymBOlic Language)
is another language used for nonnumeric applications. As
the name implies, the language was basically designed to
manipulate strings of characters. SNOBOL has powerful
string manipulation features that facilitate various 1ypes of
operations on strings of characters such as string
comparison, splitting of a string, combining two strings,
etc. Thus, this language has been widely accepted for
applications in the area-of text processing.

C. C is a relatively new language which is becoming very
popular day-by-day. It was designed at Bell Telephone
Laboratories, U.S.A. Like PASCAL and ALGOL, C is a
block structured language and has several features that

-

158 Digital Computer Fundamenials

allow the usec of the various concepts of structured
programming. Moreover, a special feature of this language,
that is normally absent in other high-level languages, is that
it allows the manipulation of iniernal processor registers of
the computer. Thus, the language also enjoys the advantage
of having some of the powers of assembly language.
Because of this feature, C language is now being
extensively used for systems programming like design of
compilers and operating systems, Most computer vendors
of today, supply this language along with their computer
systems.

PROLOG. PROLOG stands for PROgramming in LOGic. It
is a very new programming language designed for handling
complex logica! operations. The language is being used 1o
design intelligent computer systems and is expecied 10 gain
popularity in the near future.

CHARACTERISTICS OF A GOOD
LANGUAGE

In the previous section, we have seen that there are
some high-level languages which are very popular and
there arc others which are used only by a small group of
programmers. Why do programmers prefer one language
over another? One obvious reason is the area of application.
However, another equally important reason is the
characteristics of the language. Several properties believed
to be important with respect to making a language good and
usable by human beings are briefly outlincd below.

1. Simplicity, Programming languages that are
simple and casy to learn and use are liked by
many programmers. For example, BASIC is used
by many programmers only because of ils
simplicity. Thus, a language should provide a
programmer with a clear, simple, and unified set
of concepts which can be easily grasped. There
should be a minimum number of different
concepts, with the rules for their combination
being as simple and regular as possible.
However, the power needed for the language
should not be sacrificed for simplicity.

2. Nawralness. A language should be natural for
the application area it has been designed. In
other words, it should be problem-oricnted. It
should provide appropriate operators, data
structures; control structures, and a natural
syntax in order to facilitate the users to code
their problem easily and efficiently. Often if a
major amount of programming in a particular
area is required, it is extremely useful to develop
.2 programming language just for that class of

applications. FORTRAN and COBOL are good
examples of scientific and business languages
respectively that possess high degrce of
naturalness.

. Efficiency. Efficiency is certainly a major

element in the evaluation of any programming
language. Thus, while designing a compiler or an
interpreter for a partcular language, system
programmers must give due consideration (o
space and time efficiency. A programming
language should be such that its prograins are
efficiently translated into machine code, are
efficiently executed, and acquire as little space in
the memory as possible.

. Structuredness. Structuredness means that the

language should have necessary features to allow
its users 10 write their programs based on the
concepts of structured programming. The main
reason behind this is that, this propenty of a
language greatly affects the ease with which a
program may be written, tested, and maintained.
Moreover, it forces a programmer to look at his
problem in a logical way and hence he creates
fewer errors while writing a program for his
problem. PASCAL, PL/I, and ALGOL are some
of the languages having this property.

. Compactness. Users of a high-level, problem-

oriented language should be able 1o express
intended operations concisely, since this is one
of the fundamental reasons for having it. A
verbose language can tax the programmer's sheer
writing stamina and thus reduce its usefulness.
COBOL is generally noi liked by many
programmers because it is verbose in nature and
lacks compactness.

. Locality. A programming language should be

such that while writing a program, a programmer
need not jump around visually as the text of the
program is prepared. COBOL lacks locality
because data definitions are separated from
processing statements, perhaps by many pages of
code. On the other hand, APL is very local since
it requires no declarations, thus permitting the
programmer O concentrate almost solely on the
part of the program around the statement
currently being worked with.

Extensibility. A good programming language
should also allow extension through simple,
natural, and elegamt mechanisms. ‘Almost all

languages provide subprogram definition
mechanisms for this purpose, but there are some
languages that are rather weak in this aspect.

8. Suitavility to Environment. Depending upon the
type of application for which & programming
language has been designed, the language must
also be made suitable to its environment. For
example, a language designed for real time
applications must be interactive in nature. On the
other hand, languages used for data processing
jobs like pay-roll, stores accounting, etc., may be
designed w0 be operative in baich mode. A
language designed for interaction, say APL, is
not as usable in batch mode. Likewise, a
language designed for baich usage may prove
quite frustrating if uwsed interactively from a
terminal.

SUBROUTINES

As we are going 1o abandon the chapter on program
writing, it is felt essential to introduce the concept of
subroutines which are very frequently wused in
programming.

Suppose we arc wriling a program for solving a
ingnometric problem. During the problem, suppose we
need o calculate the square root of a number three times.
Should we write the square root procedure into our program
thrice? Why can we not write the square root procadure just
once, and use it every lime we need it?

We could of course wrile the steps required for the
calculatior. of square root each time we need them in the
program. Bul a much easier way of handling the problem is
1o write these steps once and then refer to them each time
we need them.

Subroutines (also called subprograms) are programs
wrillen in such a way that they can be brought into use in
other programs and used whenever needed, without
rewriting. In other words, a subroutine is any standardized
program wrilten in such a way that it can be used as part of
another program whenever nccessary. A subroutine is

normally invoked through other programs by the use of
CALL statements.

There are many subroutines such as those for
finding square roots, sines, cosines, logarithms, etc. which
are used over and over by many programmers. Such
_Subroutines are usually supplied by the computer
manufacturers along with the language compiler and are
referred to as buili-in functions. Other subroutines can

Computer Languages 159

easily be written and used as and when we need them.

QUESTIONS

1. Discuss the analogy between a computer
language and a natural language.

2. How dees a computer language differ from a
natural language ?

[FE]

. Name the three different categories of computer
languages

4. What is a machine language 7 Why is it
requircd?

5. What are the advantages and limitations of
machine language ?

6. When is a computer language called machine
dependent ? What is the main disadvantage of
such a language?

7. A machine language instruction has a two-part
format. Identify these parts and discuss the
function of each.

8. What is a mnemonic ? How i1s it heipful in case
of computer languages ?

9. What is an assembly language 7 What are iis
advantages over machine language ?

10. What is an assembler ?

11. What is the difference between a source program
and an object program ?

12. What is a macro instruction ? How dees it help
in reducing a programmer's job ?

13. What are high-level languages 7 Why are they
known as problem-oriented languages ? Name
some high-level languages.

14. Why are high-level languages easier to use ?
15. What is a compiler 7 Why is it required ? A
computer suppoerts five high-level languages ?

How many compilers will this computer have ?

16. Illustrate the machine independent characteristic
of high-level languages.

160 Computer Languages

17.What type of errors can be detected by a
compiler ? What type of emors cannot be
detected ?

18. What is an interpreter 7 How does it differ from
a compiler ?

19.List out the characteristics necessary for a
programming language 10 be considered as a
high-level language.

20. What are the advantages and limitations of high-
level languages ?

2

. Briefly describe the development and use of the
following programming languages :

(a) FORTRAN
(b) COBOL
(c) BASIC
(d) PASCAL
() PL/1

(f) ADA

(8) RPG

(h) ALGOL
(i) APL

(J) SNOBOL
(k) LISP

22. What characteristics are desirable for a good
computer language ?

23. What is a subroutine ? How do subroutines help
in program writing ?

24.Would you be equally likely to choose
FORTRAN or COBOL for a given task ? Why ?

25.What is the purpose of a langu;agc processor ?
Are language processors hardware or software ?

26. While writing a program, a programmer
erroncously instructed the computer to calculate
the area of a rectangle by adding the width to its
length (that is, AREA = LENGTH + WIDTH)
instead of multiplying the length and width.
Would you expect the language processor to
detect this error 7 Explain.

27. A programmer eliminates all language processor
errors from his program and then runs it to get
printed results. The programmer therefore
concludes that the program is complete.
Comment.

28. 1t is said that an assembly language is "one-for-
one” but a high-level language is "many-for-
one”, Explain what this means.

29. What is meant by standardization of a language?
Why is it important ?

30. What is the role of comments in a program, and
how are they treated by the language processor 7

3

et

- What 1s a self-documenting language ? Illustrate
with an example.

32.List out some of the program preparation
techniques that are often included under the term
"structured programming”.

33. Give the full form of the following terms -
(a) FORTRAN
(by COBOL
(c) BASIC
(d) PL/1
(e) RPG
{f) ALGOL
(g) APL
(h) LISP
(i) SNOBOL

CHAPTER 13

13. SYSTEM IMPLEMENTATION
AND OPERATION

In the previous two chapters, we have discussed the
analysis, design, and coding phases of a computerised
system. After the computer programs have been prepared,
the computer information System enters the implementation
and operation phase. The goal of this chapter is to describe
the principal activities of the implementation and operation
phase, which relate 10 lesting and debugging of programs,
complete documentation of the system, changeover to the
new system, and system modification and maintenance,

TESTING AND DEBUGGING

So long as computers are programmed by human
beings, computer programs will be subject 1o errors.
Program errors are known ag bugs and the process of
detecting and correcting these errors is called debugging. In

general, festing is the process of making sure that the
program performs the intended task, and debugging is the
process of locating and eliminating program errors, Testing
and debugging are vital steps in developing computer
programs. They are also time-consuming steps. In fact, the
lime spent in testing and debugging often equals or exceeds
the time spent in program coding,

In general, there are two types of errors that occur in
a computer program - syniax errors and logical errors.
Syntax ermors result when the rules or syntax of the
programming language are not followed. Such program
errors typically involve incorrect punctuation, incorrect
word sequence, undefinzd terms, or misuse of terms. For
example, the FORTRAN statement C = (A + B/f2 has a
syntax error. In this example, the problem is a missing
closing parenthesis which should be placed in the
appropriate place depending on the logic of the program.

162

Ail syntax errors must be found and corrected before
there is any chance of running the program. Almost all
language processors are designed 1o detect syntax errors.
The language processors print error messages on the source
listing that indicate the number of the statement with errors
and give hints as to the nature of the ermor. These error
messages are vory useful and are used by the programmers
to rectify all syntax errors in their programs. Thus, it is a
-glatively easy task to detect and cor. €l syntax errors.

It should be noted that in high-level languages such
as FORTRAN and COBOL a single error often causes
multiple error messages to be generated. There arc two
reasons for multiple error messages. One is that high-level
language instructions often require multiple machine steps.
The other reason is that symbolic instructions are often
dependent upon other instructions and if an instruction
containing an emor is one that defines a field name, all
instructions in the program using that field name will be
listed as ermrors. The error message will say that a field
being uscd is not a defined name. In such a case, removal of
the single error will result in the removal of all associated
€ITOr messages.

The second-type of error, a logical error, is an error
in planning the program's logic. In this case, the language
processor successfully translates the source code into
machine code. The computer actually does not know that an
error has been made. Tt follows the program instructions
and outputs the results, but the output is not correct. The
problem is that the logic being followed does not produce
the results that were desired. When a logical error occurs,
all you know is that the computer is not printing the correct
output. The computer does not tell you what is wrong. For
example, if a FORTRAN instruction should be "A = B*C"
but has been coded as "A = B+C", this error will not be
detected by the language processor since no language rules
have been broken. However, the output produced will not
be correct. Thus, it is an example of a logical error.

In order to determine whether or not a logical error
exists, the program must be tested. The purpose of testing is
to determine whether the results are correct. The testing
procedure involves mnning the program to process input
test data that will produce known results. By running the
program and comparing the obtained answers to-the known
correct results, the accuracy of the program logic can be
delermined. Logic errors are typically due either (o missing
logic or to incorrect logic. If the logic is wrong, the answers
generated from the test data will be wrong. These errors are
the easiest of the logic errors to find. Errors caused by
missing logic result from logical situations that the program

-was not designed to handle. As an cxample, suppose that a
numeric field is to be used in an arithmetic process and that

the data entry operz'or enters a valuc for the ficld that is not
numeric. The progrzm logic should determine that the data
are not numeric prior to attempting the arithmetic process.
If that logic is missing and nonnumeric data is used in an
arithmetic operation, the program will fail, This type of bug
can be difficult to find. The only way for this error to occur
is for nonnumeric data to be entered into a numeric field. It
is possible for the program to be used for weeks, months, or
years before this happens and the eror in program logic
shows up.

In order to completely test the program logic, the
test data must test each logical function of the program.
Herce, the sclection of proper lest data is important in
program testing. In general, the test data sclected for testing
a program should include :

1. Normal data, which will test the generally used
program paths.

2. Unusual but valid data, which will test the
program paths used to handle exceptions. Such
data might be encountered occasionally in
running the program.

3. Incorrect, incomplete, or inappropriate data,
which will test the error-handling capabilities of
the program. This is done to sce how the
program reacts in abnormal and unusual
circumstances. Good programs should be able to
handle abnormal data without blowing up or
generaling meaningless output.

If a program runs successfully with the test data and
produces correct results, it is normally released for use.
However, even at this stage errors may sull remain in the
program. In case of a complex problem, there may be
thousands of different possible paths through the program
and it may not be practical or even possible to trace through
all these paths during testing. There are certain errors in
complex systems that remain dormant for months and years
together and hence it is impossible to certify that very
complex systems are error-free.

There are several ways to locate and correct logical
errors some of which are briefly described below :

1. One approach is to study the source code
producing the incorrect results and Uty to
determine the cause of problem. However, some
errors are difficult to find, and simple inspection
of the source program does not reveal the nature

—of the erfor.

2. Another approach is Lo put several print o write
sialements in the program that indicaw the
values of intermediale compuations. These
stalcments can also be used w0 tell you what is
happening during the cacculion of the program.
Ouce the errors have been found and correcied,
these print or wrile stalcments are removed from

the program.

3. The third approach invoives the use of tracing
routines which are software tools provided w the
programmer w0 help in debugging the program
logic. Tracing routines or debug packages assist
the programmer in lollowing the logic oy
printing out intermediate calculauon resuits and
field valucs that arc used in making logical
decisions in the program. Using these
iechaiques, the programmes cad follow the
program'’s cxcculion step Dy siep in order (©
determine where the I0gIC 1S 1t error,

4 in a few cases, the logical crror can be so
difficult w0 find, and the numbcr of ficlds
involved are so numcrous, that the only way 10
uncover the source of the error is o look at a
pantout of the contents of memory. This printout
is called a siorage dump or memory dump. The
memory dump lists the inswructions and data held
in the computer's memory in their raw form, that
is, theu binary or cquivalent hexadecimal of
ocial form. The programmer can then study this
listing for possible clues to the cause of the
programming error(s). Most programmers of
migh level languages resort o the use of memory
dumps only when all other methods of delecting
the Jogical error fails.

Difference Between Testing and Debugging
Testing and debugging are 1wo separaie tusks. They

should not be confused with cach otner. The difterences
between these (wo processes arc oullined below :

Svsiem Impiementation and Operation 163

2. It is a positive
activily that sceks W
demonsuate that the
program is correct and
does, in fact, incels i
design specifications.

3. Testing 1s complcle
when all desired
verifications against
specificauons have
been performed.

4, Tesung, can and
should be planncd. It is
a deflinuble task in
which the how and
widl 0 lest can be
specificd. Tesung can
pe scheduicd to ke
nlace at a specific ume
in the development
cycle.

5. Tesung can begin in
the ealy stages of the
development cffort. Of
course the tests
themselves must be run
near the end of a
project, but the
decisions of what to
iest, how 1o iest, with
what kind of data, can
and should be
completcd before the
coding is started.

It is a ncgalive acuvity in that
it i5 centered around elimination
of known crrors or bugs.

Debugging is finished when
thecre are no known erors.

However, debugging is a
process that ends only
temporarily, because

subsequent execution of a
program may uncover other
emors - thereby restarting the
dcbugging process.

Because debugging is a
reactive procedure which
stems from testing, it cannot be
planncd ahcad of time. The
best that can be dome is 1o
establish guidclines of how
debug and develop a list of
"what 10 look for.”

Dcbugging, on the other hand,
cannot begin until the ead of
the development cycle,
because it requires an
executable program.

DOCUMENTATION

A compuicrised system cannot be considered 10 be

TESTING DEBUGGING

1. Tesung 1s 3 provess Debuggng s @ pisxdss in
in which a. program is which progmm errors are
validaied. TCMOYey

12 - A

complete unil it is properly documented. In facs,
documentalion is an on-going process that staris in the
stwdy phase of the system and coatinues gl s
impiementation and * operation phase. Moicover,
documentauon is a process that never ends throughout the
Life of the system. It has 1o be camied out from time W bme

as and when the system is modified during its mainienance
Dhase.

164 Digital Compuier Fundamentals

Systemm documentation involves collecting,
organizing, storing, and otherwise maintaining a complete
historical record of programs and other documents used or
prepared during the different phases of the system. Proper
documentation of a system 1s necessary due to the
following reasons :

1. It solves the problem of indispensibility of an
individual for an organisation. In large
organisations, over the years, the designer and
developer of a software sysiem may not be in the
same organisation. In such cases, even if the
person who nas designed or programmed the
system, leaves the organisation, the documented
knowledge remains with the organisation which
~an be used for the continuity of the system.

2. Maintainability of computer software poses a
concern L0 maior data processing installations.
The key to mawmienance is proper and dynamic
documentation, A well documented system is
easy o modify and maintain in the future. It is
easier to understand the logic of a program from
the documented records rather than its code.
System flowcharts, program flowcharis, or
comments used within the programs prove 1o be
very helpful in this regard.

3. Documented records are quite helpful in
restarting a projcct that was postponed due to
some reason or the other. The job need not be
started from scratch and the old ideas may still
be easily recapitulated which saves lot of time
and avoids duplication of work.

Documentation of a software system is normally
provided in the following forms :

1. Commemnts. Comments are very useful aid in
documenting a program. From maintenance point of view,
comments have been considered to be a must. Comments
are used within a program (o assist anyone reading the
source program listing. They are used to explain the logic
of the program. They do aot contain any program logic and
are ignored (not translated) by the language processor.

Comments should be used intelligently to improve
the quality and understandability of the program. They
should not be redundant, incorrect, incomplete, or written
in such a way that cannot be understcod by anyone clse.
For example, a redundant comment for the statement N =

N+1 would be "INCREMENT N BY 1". Uscful comments
are those which describe the meaning of a group of
statements such as "READ AND ECHO PRINT THE
INPUT DATA". In other words, comments should mediate
between the program and the protlem domain. Almost all
high level languages provide the facility of writing
comments along with the source code of a program and il is
suggested that programmers should liberally usc this
facility for proper documentation of their programs.

2. Systems Manual. A good software sysiem must be
supported with a standard sysicms manual that contains the
following information :

a. A statement of the problem clearly defining the
objectives of the computerised system and its
usefulness for various categories of users.

b. A broad description of the system specifying the
scope of the problem, the environment in which
the programs function, the sysiem limitations,
the form and type of input dala to be used, and
the form and type of output required.

c. Specific program names along with their
description and purpose.

d. Detailed system flow charts and program flow
charts cross referenced to the program listing.

e. Narative description of the program listings, the
processing and calculations performed and the
control procedures.

f. A source listing of all the programs together with
full details of any modifications made since.

g. Description and specifications of all input and
output media required for the operation of
various programs.

h. Specimen of all input forms and printed outputs.
i. File layout, that is, the detailed layout of input

and output records.

12-B

J- The structure and description of test data and test
results, storage dumps, trace program printouts,
cic., used Lo debug the programs.

3. Operation Manual. A good softwure package must be
supported with a good operation manual 10 cnsure the
smooth running of the package. It is the operator who will
perform the regular processing after the sysiem gets
stabilised and not the programmer who has developed the
package. Hence, the operation manual must contain the
following information :

a. Setup and operauonal details of cach program,

b. List of computer swiiches, their location, setting
and purpose.

¢. Loading and unleading procedures

d. Suarting, running, and erminating procedures.

e. A descripion and example of any control
staterments that may be uscd

f. All console commands along with errors and
console messages that could arise, their meaning,
reply and/or operation acuon.

g. List of error conditions with explanations for
their re-entry into the system.

h. List of programs to be executed before ond after
execution of each program.

i. Special checks if any and security measures, elc.

The importance of program documentation cannot
be over emphasized. There have been too many problems in
the past with poorly documented systems. The result is
usually errors and problems with the computer programs at
a later date. It is very difficult to incorporate modifications
in such systems and hence they are very cxpensive to
maintain. Owing to these reasons, several computer
installations develop strict documentation standards. These

Svitem Implementation and Operation 165

standards describe in dewul how documentauon is to be
performed and what reports and outputs arc necessary for
ducumertation o be completed successtully,

CHANGEOVER TO THE NEW SYSTEM

Once the programs are tested and appear to be
producing correct results, the system conversion and
chaugeover begins, A this siage, the old system, if any, is
phased out and the rew sysiem is phased in. The
changeover process normally involves the following
operatons :)

1. Training of personnel. Everyone who will be
affected by the new system should receive some
training to become familiar with the changes
This training should be both system training and
user training. The overall purpose of sysiem
truning is to train “members of the data
processing department on various techrical
aspects of the new system. On the other hand,
user training is designed to allow managers,
decision makers, and other users 1o become
familiar with the new system so as to increase
their invoivement and participation in the new
syslem.

2. Replacement of old forms and operation

procedures by new ones.

Retirement of old input and output devices in
favour of new hardware.

(%)

4. Incorporation of necessary changes in manual
methods and assignment of new jobs to various
personnel.

5. Tt is also necessary to convert all the Aata files
from manual to computer files, That is, current
files are changed -into a form acceptable to the
processor. Files should be consolidated and
duplicate records eliminated. File inconsistencics
or any errors in cumrent files must be detected
and removed.

There are three different methods normally followed
to carry out the changeover process. These are immediate
changeover, parallel run and phased con-ersion. Each of
these methods has its own advantages end disadvantages.

166 Digital Computer Fundamentals

No single method is suitable for converting all types of
systems and the choice of a particular method largely
depends upon the prevailing conversion circumstances.
These methods are briefly described below :

IMMEDIATE CHANGEOVER

As illustrated in Figure 13.1(a), in this method of
conversion, the operation of thc old sysiem is lotally
abandoned from the date of changeover and the complete
new sysiem starts operating from that day onwards. This
method of changeover is very risky because it has been
found that most systems pose some problem or the other
during the changeover process. The inbetween failure of the
new system du¢ to any such problem may prove 1o be very
harmful causing total breakdown, and the work cannot
progress at all because the operation of the old system has
already been abandoned. However, this method is preferred
in situations where changeover tme is very less, avaiiable
manpower is also less, and the system is not a very critical
one to business opcrations so that changecver problems
would not trigger a disaster,

PARALLEL RUN

One of the best ways 0 implement a new system is
calicd running in parallel. As showa in Figure 13.1(b},
this method, the old system is operated with the same data
as the new system and on the same lime schedule for the
initial three or four cycles.

Confidence in the adequacy of the new system is
normally established by comparing the data it produces
with the dzta produced by the old system during the ume of
paralle} operation. Some discrepencies may be discovered.
Often these are duc 1o inaccuracies in the old system that
were not recognized beforc as inaccuracics. Unforeseen
exceptions will appear for which no programming was
provided. Some of the discrepencies that appear during the
parallel operation stage will be due to oversights and
mistakes in the programming iiself. These must be
somected by further debugging before the comversion is
complete.

The main advaniage of paraliel run is the availabiity
of old system as a backup. If there are any problems with
the new programs, they can be corrected while the existing
svstem is still being used. Thus, ihere is no Interruption of
service if there are probiems with the new programs. After
the bugs arc removed, the new sysiem is siewly phased in,
while the old system is slowly phased ouL

Operation I

ODevelopment o
M onase s Phase —‘l
Qld systern New sysiem

Time ——®

(a) Immediate changeovel |

-
TN

Naw system

TINE i

(p) Paratiel run

1 Oporation
Phase

Qld sysiem
1
7

MNew system

Time ——&

(c) Prased convarsion

Figwe 13.1, Methods of sysiem changeover 1o the
new system.

This method, howeve:r, 18 not preferred i some
cases because it is very expensive and Lme COnsuming.
Additional manpower, which is a scarce resource In most
organizauons, must be provided for the operation of two

systems in parallel. Due 10 the requircment of additional
manpower and equipment resources for parallel run, the
organization is under considerable strain during the period
of parallel operation, and, if it is long continued,
organizational breakdowns tend 10 occur. To hold cests in
line, experience indicates that parallel operation must not
be cammied on any longer than needed tc establish
confidence in the new system. Continuing them too long is
a sign of weakness in the new system. Morcover, parallel
run method of system conversion is also not used in
situations where the ncw system differs to a great extent
from the old system in the functions that it performs and its
input and output.

PHASED CONVERSION

As depicted in Figure 13.1(c), in this method, the
complete changeover to the new syslem takes place
incrementally over a period of time. The new system is
gradually implemented part by part and the old system is
gradually phased out. The results produced by cach part of
the new system is compared against the results of the old
system. Any discrepencies or errors found are checked and
removed. Once confidence is developed in a particular part
of the new system, that part of the new system is phased in
and the corresponding part (operations) of the old system is
phased out. This approach is continued for each and every
part of the new system. Thus, over a period of ume, the now
system is slowly-slowly phased in, while the old system is
slowly-slowly phased out.

This method of changeover enjoys several
advantages. It is not as expensive as the parallel run method
because the changeover process being gradual can usually
be handled with cxisting manpower and equipment
resources. There is no danger of interruption of service if
there are problems with the new programs because the
corresponding part of the old system is still in operation.
Moreover, the uscrs get sufficient time 10 become
acquainted with the new system, Hence, they can
confidently handle the nmew system when the complete
system is handed over to them. However, the phased
conversion method cannot be used in situations where the
time period supplied for conversion process is very 5% or
when the new system significantly differs from
system.

SYSTEM EVALUATION

Once the new system is implemented and in
operation, it is necessary o evaluale the system to verify
whether or not it is meeting its performance objectives.

System Implementation and Operation 57

‘These performance objectives of the system arc ciearly
stazed during its study phase. The post implementation
system cvaluation is normally carried out by people who
have an independent view point and are not responsible for
the development and maintenance of the system. While
evaluating a system, the following points are considered :

1. Evaluation of efficiency: The new system is
compared against the old system to evaluate its
efficiency in comparison to the old one. In casc
of any slack, the rcasen is analysed and if
possible, necessary modifications are
incorporated in the system to rectify it.

2. Costlbenefit analysis: The key to evaluating a
system is the costs and bencfits o be derived
from alicrnate systems. This can be a long and
cxpensive process. Information can be
assembled on the actual cost of using the ncw
system, and this cost can be compared with the
anticipated cost as outlined in the report of the
feasibility study group. If discrepancies are
found on the high side, action can be taken to
find out the reasons and theu to correct or offset
the causes.

Of course, bencfits are not all tangible and
measurable. However, those that are measurable
should be expressed numerically, As a gencral
rule, whenever we identify a tangible specific
objective, we also should state the measurement
that we will make in the operation phase to
determine whether or not the system mects the
objective. Mathematical measurements can also
be made of the cost savings made possible by a
computerised system, and hardwarc and software
operaling expenses can be monitored
continually.

3. Time schedule: Tt should also be evaluated
whether the various time schedules prepared
during the study phase in the beginning have
been met or not. This type of evaluation is guite
helpful in preparing time schedules for the new
systems that will be designed in future.
Morcover, it should also be evaluated whether
the planned processing procedures arc being
followed or not. Arc all new procedures being
processed on the computer? Have all old
procedures been eliminated? If not, why not?

168 Digital Computer Fundamentais

4. Users sausfaction: Pcople arc the final
cvaluators of information systems. Hence, it
should be found out whether the users are
sausficd with the new sysicm or nol. How useful
is the system for them? How cnthusiastic arc
they about the scrvice they receive? Do they
receive oulputs in time Lo take necessary action?
The morale of employees using or aflected by a
system is a good measure of the success of the
project.

5. Ease of modification: Sooncr or later, all
systems must change in response 10 changes in
their environmenl. New laws, changes in
technology, and changes in the goals and
objectives of the business arc examples of causcs
of change. Thus, the casc with which a system
can be modificd to react to changes is also a
significant meascre of its clfectivencss
achieving its objectives.,

6. Error rate : The frequency of failure of the
system should also be evaluated. This should be
reduced to minimum.

SYSTEM MAINTENANCE

No matter how good the new sysiem is, how well it
was installed and how well it may be operating, changes in
business operations will force changes in the system.
Changing business conditions, revised user needs, new
laws, changes in technology, ete. are some factors which
require that production programs be continually maintained
and modified. The major cause of program maintenance is
due to user requests, normally for program enhancements.
As a manager uscs a compuici program, there is a tendency
1o demand additional reports and outputs from the program.
Changes in data storage and organization, program bugs,
and emergency program repairs are other important causes
for maintenance. The remaining program maintenance is
duc to hardwarc changes, system software changes,
enhancing program documentation, and sheduled and
routine debugging.

cveral studics have shown that, on an average,
application programmers and system znalysis personnel
spend over half their time on program maintenance. Hence,
program maintenance is an important duty of programmers
and may involve all steps from problem definition through
analysis, design, and program preparation. In some
instal’ations there are programmers who do nothing but
maintain production programs. in fact, in many
organizations well over hal! the total programming effort is

spent on maintenance. And it is estimated that over the life
cycle of a typical application, the mainenance and
enhancement costs that are incurred may be two to four
times larger than the initial development costs,

Frequent change is disruptive and disturbing.
Therefore, some control over changes is required. One
methad of achieving this control is to have all requests for
change cvaluated by a change control board. This board
should be made up of the principal users of the system, a
system analyst, and data processing personnel who are
familiar with the system. Normal maintenance operations
nced not be approved by the change control board, but these
operations should be recorded and summanized for periodic
reporting to the board. Examples of maintcnance activities
arc modilying the format of a report or rewritng a part of a
compuler program component lo improve its efficiency.
Major changes arc those that significantly alter the system
or require extensive personnel, hardware, or software. An
cxample of a major change would be conversion of the
system from balch processing to online terminals.

When programs arc modified, it 1s important to
make sure that program documentation is also changed
accordingly. Without the ecxistence of proper
documentation that is consistent with the programs, future
changes would be very difficult and costly to accomplish,

QUESTIONS

1. What are the two types of errors that can occur
in a computer program ? Give an example of
cach to illustrate their nature.

(=]

How are syntax errors detected and corrected ?

3 How are logical crrors detected and corrected ?

4. Is it casier to detect a syntax error or a logical
error ? Give reasons for your answer.

5. Why should a program be tested ?

6. What are the different types of test data that
should be selected for testing a program ?

7. Why is it not possible for a very complex system

10.

12,

to certify that it is error free 7

What is a memory dump ? How is it uscful for a
programmer 7

Differentiate between testing and debugging.

Why 1s system documentation necessary ?

Discuss the different types of system
documentation normally used for documenting a
system.

What type of operations are normally carried out

14,

15.

System Implementation and Operaiion 169

in the system changeover process ?

Discuss the three different methods of system
changeover along with their advantages and
disadvantages.

What are the various factors that should be
evaluated during the system evaluation process ?

Why is system maintenance required ? Why is it .
considered an important process ?

Hew can frequent program modifications be
controlied ?

CHAPTER 14

14. OPERATING SYSTEMS

In the last few chapters we have dealt with the
planning, coding, operation. and maintenance of scfiware
systems. Tn this chapter, you will learn about a very
important and special type of software that falls under the
catrgory of systems software. This sysiems software is
known as operating system. The goal of this chapter is to
introduce the concepls related to operating sy stems and 1o
show how this particular systems soflware is used o make
the computer a useful, easy-to-use wol.

DEFINITION AND FUNCTIONS

An operating system (0S) is an integrated sct of
programs that is used to manage the various resources and
overall operations of a computer system. It is designed to
suppont the activities of a computer installation. lis prime
objective is to improve the performance and efficiency of a
computer sysiem and increase facility. the ease with which
a system can be used. Thus, like a manager of 2 company,
an operating system is responsible for the smeoth and
efficient operation of the emire compuier system.
Morcover, it makes the computer system user friendly. That

15, it makes it casicr for people 10 interface with and make
usc of the computer.

Operating systcms go by many different names,
depending on the manufacturer of the computer. Other
terms used (o describe the operating sysiem are monifor,
execulive, supervisor, controfler, and master control
programs. No matter by which name they are called, today
most operating systems perform the following functions :

1 Processor management, that is, assignment of
processors to different iasks being performed by
the computier system.

t2

Memory management, that is, allocation of main
memory and other storage arcas to the system
programs as well as user programs and data.
]

3 Input/Output management, that is coordinatuon
and assignment of the different input and output
devices while one or more programs arc being
exccuted.

4. File management, that is, the storage of files on
various storage devices and the transfer of these
files from one storage device to another. It also
allows all files 10 be easily changed and

172 Digital Computer + undamentals

modificd through the use of text editors or some
other file manipulation routincs.

5 Estabhishment and cnforcement of a job priority
svstem, That is, it determines and maintains the
order in which jobs arc to be cxccuted in the
computer system.

6. Automatic transition from job to job as dirccted
by special control statements.

% Interpretation of commar-ds and instructions.

8. Coordination and assignment of compilers,
assemblers, uulity programs, and other software
to the various users of the computer systen.

9. Establishment of data security and integrity. That
is, it keeps diffcrent programs and data in such a
manner that they do not interfere with each
other. Morcover, it also protects itself from being
destroyed by any user.

10. Production of dumps, traces, error messages, and
other debugging and crror-detecting aids,

11. Maintenance of internal time clock and log of
system usage for all users.

12, Facilitates easy communication between the
computer system and the computer (human)
operator.

An operaling system performs a wide varicty of
jobs. Each of these jobs arc performed by onc or more
computer programs and all these computer programs are
jointly known as an operating sysicm. Cut of the complete
operating system, normally, one control program resides in
the main memory of the cemputer system. This control
program is known 2s the resident program or the resident
routine. The other programs are stored on the disk and arc
called transient programs or transient routines. These
programs include utility programs, compilers, asscmblers,
elc. The control program transfers thesc programs into the
main memory and executes them as an when they are
needed. It may be recalled here that the capacity of the
main memory of any computer system is very small as
compared 1o its secondary storage devices like disks. This
is because main memory is very expensive as compared o
secondary storage devices. This is the reason why only the
control program is stored in main memory and the rest of
the operating system is stored on disks.

In cffect, besides the hardware, each computer
system consists of an operating system that enables a user
to effectively use the system. Thus, as shown in Figure
14.1, the OS tends to isolate the hardware from the user.
The user communicates with the OS, supplics application
programs and input data, and rcccives output resulls.
However, it 1s interesting to known that all the tasks
performed by the OS are performed automatically. The
functions of the OS arc ransparent to the user - he really 1s
not at all concerned with what the OS is doing or how the
OS directs the hardware to handle certain tasks.

Users

Application Programs

Operating system

Hardware

Figurc 14.1. The in-between software layers isclaic
the hardwarc of a computer system
from its uscrs.

The efficiency of an operating system . and the
overall performance of a computer installation is judged by
a combination of two main factors. They are :

1. Throughput. Ti is the total volume of work
performed by the system over a given period of
time.

2 Turnaround Time. It is also known as response
time and is defined as the interval between the
time a user submits his job 1o the system for
processing and the time he receives results.
Response time is especially importaht where

many different users share the use of the sysiem
and the overall progress of their work depends
upon thewr receiving prompt results from the
sysem.

EVOLUTION OF OPERATING SYSTEMS

It is believed that one of the first operating sysiems
was developed 1n the carly 1950s for the IBM 701
computers. This OS was elementary in nawre and was not
so powerful as the operating systems of todays computers.
Since then, lot of rescarch work has been carriced out in this
direction with the result that today we have very powerful
operating systems which are machine independent and can
execute severai jobs at a time on the same machine. The
main aim of all the rescarchers involved in the development
of OS was to devise ways to minimise the idle time of the
computer system and to use the computer system in the
most efficicnt and economical way.

In the early days of computers, job-to-job transition
was not automatic. For each and every job to be executed
by the computer, the operator had to clear the main memory
1o remove any data remaining from the previous job, load
the program and daia of the current job from the input
devices, set the appropriate switches, and finally run the job
1o obtain the results from the output devices. After the
completion of one job, the same process had to be repeated
for the next job by the computer operator. Because of the
manual transition from one job to another, lot of computer
time was wasted since the computer remained idle while
the operator loaded and unloaded jobs. In orcer to reduce
this 1dle time, a method of automatic job-to-job transition
was devised. With this facility, when one job is finished,
the system control is automatically transferred back to the
aperating system which automatically performs the
housekeeping jobs needed to load and run the next jeb.

The automatic job-to-job transition facility provided
by the OS reduced the idle time of the computer to a great
extent. But still there was another scope for reducing the
idle time of the CPU. If you remember properly, we have
seen in Chapter 9 that the speed of CPU is much more as
compared to the speed of 1/O devices. Hence, the CPU was
normally idle while a particular job was busy with some 1/O
operations. So the next attempt by OS developers was to
overcome this speed mis-match by cxecuting more than one
program at the same time. In this method, while one
program was busy with some 1/O operation, the CPU lime
was utilised for processing another job.

In a similar manner, there have been many improvements in
the operating systems of early days. A modern OS is very
sophisticated and does much more than what we " have

Operating Systems 173

discussed above. In the next few sections, we wall discuss
same of the common concepts and terms related to the
operating systems of modemn computers.

" BATCH PROCESSING

Batch processing is one of the oldest methods of
running programs that 1s sull being employed by many data
processing centres [or processing their jobs, It i based on
the idea of automaiic job-to-job transition facility provided
by almost all operating systems. In a batch mode, each user
prepares his program off-line and submits 1t to the
computer centre. A computer operaior collects the
programs which have been punched on cards and stacks one
program or job on top of another. When a btaich of
programs have been collected, the operator loads this batch
of programs into the computer at one time where they are
exccuted one after another. Finally, the operator retrieves
the printed outputs of al! these jobs and retums them 10 the
concemned users.

Batch processing is also known as serial, sequential,
off line, or stacked job process ag. When a computer s
used in this way, the input data (and often the program) are
introduced into the computer and processed automatically,
generally without operator's intervention. Often many
different jobs (or sels of data) are processed, one right after
another, or even at the same Lme, but without any
interaction from the users during program cxecution.

The method of batch processing reduces the idie
time of a computer system because transition from one job
to another does - nol require operator intervention.
Morcover, it is the most appropriate method of processing
for many types of applicatuons such as payroll or
preparation of customer statements where 1t is not
necessary to update information (records) on daily basis.

However, baich processing suffers from several
disadvantages which are as follows :
1 It reduces timeliness in some cases. The time

required to accumulate data into baiches, in
some instances, destroys much of the value of
the data. The information that results from
eventual processing is no longer timely.

2. Though efficient from the computer’s point of
view, batch processing makes each job wail in
line at cach step and often increases its
turnaround time.

3. In batch processing, it is difficult to provide the
desired priority scheduling. For example, if two
high priority johs were to be run but were in

174 Digital Computer Fundamentals

separate batches, one would have to wait uniil
the other's batch was completely processed.

JOB CONTROL LANGUAGE (JCL)

We have just now scen that in batch processing, a
set of jobs are stacked together and fed to the computer
system. But the obvious question that arises to ones mind is
that how the computer separates each job for autematic job-
to-job transition. Morcover, how does the system know
which compiler or what hardware devices are to be used by
a particular job 7 In order that the operaling system can
identify a new job and determine what action should be
taken for the job, some control infonmation is nccessary.
Thesc control statements are writlen in a language known
as the job control language (JCL). Usually cvery program
and data sets are preceded and followed by JCL statements.

When a program is prepared for a computer run, it is
necessary (o prepare job control statements and place them
in proper order along with the program, before the program
is fed to the computer system. Thus, cach program has,
besides the program itself, a_set of instructions called JCL
instructions which instruct the operating system on the
identity and requircments of the job. JCL statements tell the
OS such things as the name of the job, the user's name and
account rumber, the 1/Q devices w0 be used during
processing, the assembler or compiler 1o be used if
language translation is required, and so on.

The job control language for one computer is
different from that of another computer. Therefore, JCL
statements differ from computer to computer and hence it is
not possible to list here a set of statements that you can
simply copy and use with your computer systern. Ir, order to
know the JCL statements of your computer, it is suggested
that you comsull your instructor or supervisor, or an
expericnced programmer of your computer installation.
However, a simple example is given below so that you can
see what JCL statements look like. You will then have a
better understanding of what the JCL statements used with

your system do.

Suppose we wish to run a simple FORTRAN
program on the Burroughs-6700 computer. The structure of
the job deck in that case will be as follows :

<I> BEGIN JOB ONGC
<I> USER = SINHA/SNH

<I> COMPILE UPDATE FORTRAN GO
FORTRAN source program cards

<I> DATA
Data Cards

<[> END JOB

The above control stalements are writien in the
work-flow language (WFL) which is the JCL for
Burroughs-6700 system. Each control statement of WFL
starts with the symbol <I> in column 1. The symbol <I>
represents an invalid character (such as a combination of 1,
2 and 3 punched in the same column). This implies that no
program or data card should have the symbol! <[> punched
on its first column. It should be noted that this symboi is
typical and net universal. For example, IBM operating
systems use !wo consecutive slashes to indicac a JCL
statement and Honeywell-6000 uses a $ character in the
first column for this purpose.

The BEGIN JOB statement signz!s the beginning of
a new job to the operating system. A name must be
assigned to the job which is ONGC ih this example. The
next WFL stztement is used to specify the usercode and the
password of the user. Each user of a Burroughs-6700
installation is assigned a usercode by the system manager.
In addition to the uscrcode, each user is also allotted a
password which can be subsequently changed by the uscr as
and when he desires. Both the usercode and his password
must be specified correctly in the USER statement of WFL.
In our example, the usercode is SINHA and the password is
SNH. The password provides an added sccurily to the user
so that another person cannot run a job vsing his usercode.
The operating system first checks the usercode given by the
user with the list of valid uscrcodes stored within the
system. If the usercode is found o be valid, then his
password is checked to see if it is valid for the given user.
Unless a user quotes both the usercode and his password
correctly, the job will not be accepted by the operating
system. The third WFL statement is a COMPILE statement.
The word FORTRAN in this staterent indicates that the
source program is written in FORTRAN and hence a
FORTRAN compiler will be required for its translation.
The compiler specificd by the user (in our casc FORTRAN)
is fetched from the secondary storage device (normally
disk) and placed in the main memory 1o facilitate
translation of the source program. The user also specifics
the name of the object program which is UPDATE for our
example. Hence the object code obtained after the
successful compilation of the source program will be stored
in the system by the name UPDATE. Finally, the word GO
in this statement indicates that the object program is to be
executed. The operating system will automatically start
exccuting the program as soon as the wranslation process is
over. It may kindly be noted here that since we are
compiling a program, so if any error is detected during the

translation process, no object code will be created for this
program and subsequently no execution will be done even
if the user has specified GO in the COMPILE statement of
WFL. The COMPILE statement is followed by the source
program statements. The DATA stateincnt which is again a
WFL statement denotes the end of the source program and
the beginning .of the data that will be used by the program.
Finally, the END JOB statement indicates the end of the
job. A job deck prepared in the above fashion can be
submitted to a Burroughs-o /00 installation for compilation
and execution of a FORTRAN program.

SPOOLING

In batch mode of operation, the processing speed of
a computer sysiem can be furiher enhanced by a technique
known as SPQOLing (Simultaneous Periphcral Qutput On
Line).

We know that dedicated I/O devices {devices which
cannot be shared concurrently by several processes) like
card readers and printers are considerably slower compared
to the speed of the CPU. For example, a fast card reader can
operaic at a speed of 1500 cards/minute for an 80-column
card. This is equivalent 1o reading 2000 bytes/second (1500
x 80 x 1/60). On the other hand, for a medium speed
computer, the processing speed of the CPU is
approximately 3x10% bytes/second. Thus while a card
reader is supplying just one character io the main memory,
the CP'! can perform many thousands of internal operations
before it needs to become involved with next character
from the card reader. In other words, during reading of
information into memory the CPU had 1o wait because of
slow read'ng. The spced mismaich in this case is of the
order of 1500. Similar speed mismatch exists for a large
number of peripheral devices such as printers, teletypes,
etc,

Spooling is a technique that has been successfully
used on a number of computer systems to reduce the above
mentionzd speed mismatch and in turn the idle tme of the
CPU. It is the process of placing all data that comes from
an input device or goes 0 an output device on cither a
magnelic tape or disk. This is shown in Figure 142, A
baich of program when fed to the card reader is read and
temporanly stored on a magnetic lape or disk instead of
being direciy swred in the main memory. The programs
stored on tape or disk are now fed to and processed by the
mam computer. The reselts obwined are again wrilten on
tape or disk instead of being direcily printed ¢ the printer,
The coments of output lape or disk are faler printed ¢n the
pnter. The process of storing the inpur daws and outpui
results on tape or disk us known as spooling. The prinary

Operating Systems 175

reason for spoolirig is 10 keep the programs and data readily
available to the fast and expensive CPU on a high speed I[/O
medium such as tape or disk. Reading from tapes or disk is
usually at the rate of 105 bytes/second in contrast to 2000
bytes/second for a card reader. Similarly, the speed of
wriling on Lape or disk is of the order of 105 bytes/second
contrasted to writing on even a fast line printer at a speed of
2000 bytes;<econd.

Card Input Main
Reader Memaory

Qutput Printer I

(a) Mode of data wansfer without spooling facility.

Cara Input spooied

Reader Input

Main Output | oviner
Memory Output

(b) Mode of data transfer with spooling facility.
Figure 14.2. Illustrating the process of spooling.

Special spooling programs are executed by the
operating system to transfer the data from the disk or tape
lo the main memory or an input or output device. In a
sense, the disk or tape device acts as a buffer area between
main storage, which is extremely fast, and /O devices,
which are relatively slow. Spooling programs are executed
when the CPU is not too busy with other jobs. However, in
most computer systems, special low cost [/O processors are
used for spooling the input data from a card reader (or any
oljer siow input device) on 10 the tape or disk or fx
painting the spooled results f-om the tape or disk on 1o the
pioser (or oany other slow output device). These O
piocessors tuncuon ndependent of the main CPU. This

nables the main high speed eapensive CPU © be fully
devoted o man computing job.

176 Digital Computer Fundamenials

The process of spooling is transparent 1o the user's
program. In general, spooling makes better use of both the
main memory and the CPU.

MULTIPROGRAMMING

In case of batch processing, the batched programs
are loaded one afier another in sequence into the main
memcery for processing. Once loaded, a program will
remain in the main memory until its execution is
completed. Thus, the program which is currently being
executed will be the sole occupant of the users' area of the
main memory (remember that the supervisor always resides
in a part of the mwn memory) and it will have the CPU
exclusively available to itself. When there is only one
program in main memory, two of the system's most
powerful resources may be under-utilized. its expensive
memory and the full capabilities of the CPU. As shown in
Figure 14.3, every program will not be large enough to
occupy the full users’ area of the main memory, Similarly,
all programs will not be highly computational 10 utilize e
full processing capability of the CPU. Basically there are
two types of programs :

]
N =
i] SUPERVISOR SUPERVISOR SUPERVISOR
]
PROGRAM A PROGRAM B
PROGRAM C
2
2 | wasTeD P
WASTED
EX
tAain Memory .Main Memory Main Memory

Figure 14.3. Illustrating ‘the under-utilization of
memory when only one program
occupies the whole memory.

1/O-bound programs and CPU-bound programs. Programs
used for commercial data processing normally read in vast
amount of data, perform very little computation and output
large ameunt of information. Such programs are known as
1/0-bound programs, since the majority of work they
perform is input-outpul. On the other hand, programs used

for scientific and engineering applications need very little
1/O Lut require enormous computation. These programs are
called CPU-bound programs because more of CPU-time is
required for processing such programs.

© Main Memory
h‘-__j__
P T e SUPERVISOR
____’,_/
P] writing
- PROGRAM A
—~———n — outputdaa
[t ol e
b 0 T » PROGRAM B
L--.______,----“' §
Secondary =
Disk Storage S PROGHRAM C
= (Waiting for CPU)
5
=)
g
o
— CPU

Figure 14.4. ustrating the
multprogramming,.

operation of

In order to overcome the problem of under-
utilization of main memory and the CPU, the concept of
muluprogramming was introduced in operaung systems.
"Multiprogramming 1s the name given o the interleaved
execution of two or more different and independent
programs by the same computer.” With the sterage-resident
supervisor concept (sce Figure 14.3) we have been
introduced 10 the noudon of having two programs in the
main memory at the same time : the supervisor for overall
system control and the user program for performing user's
task. In multiprogramming, this concept is carried cne step
further by placing two or more user's programs in main
memory and execuling them concurrently. The CPU
switches from- one program 1o another almost
instantanecusly. Since the operating speed of CPU is much
fasier than that of 1/O operations, the CPU can allocale time
to several programs instead of remaining idle when one is
busy with I/O operations. In multiprogramming system,

when one program is waiting for /O transfer, there is
another program ready to utilize the CPU, thus it is possible
for several users to share the time of the CPU. However, it
is important to note that multiprogramming is not defined
1o 5e the execution of instructions from several programs at
the same instant of time. Rather, it does mean that there are
a number of programs available to the CPU (stored in main
memory) and that a portion of one is executed, then a
segment of another and so on. Although two or more users'
programs reside in the main storage simultancously, the
CPU is capable of executing only one instruction at a ime.
Hence at any given lime, only one of the programs has
control of the CPU and is exccuting instructions.
Simultaneous execution of more than one program with a
single CPU is impossible. In some multiprogramming
systems, only a fixed number of jobs can be processed
concurrently (multiprogramming with fixed rasks) (MFT),
while in others the number of jobs can vary
{multiprogramming with variable rasks) (MVT).

RUNNING

170 Completed

Figure 14.5. The thiee different states of a program
residing in main memory in case of
multiprogramming.

Operating Systems 177

A simple example of multiprogramming is given in
Figure 14.4. At the paricular time instance shown in the
figure, program A is not utilizing the CPU since it is busy
writing output data on to the disk (/O operation). Hence the
CPU is being utilized to execute program B which is also
present in the main memory. Another program C, residing
in the main memory, is waiting for the CPU 1o become free.
Acwally, as shown in Figure 14.5, in case of
multiprogramming all the programs residing in the main
memory will be in onc of the following Lhree states :
running (CPU is being used), blocked (I/O operation is
being done) and ready (waiting for CPU). For our example,
programs A, B and C are in blocked, running and ready
slates respectively. Since program C is in the ready state, as
soon as the execution of program B is completed or
program B requires to do 1/O operation, the CPU will start
executing program C. In the meanwhile, if A completes its
oulput opc.ation, it will be in the ready state waiting for the
CPU. Thus in multiprogramming, the CPU is almost always
busy. When program A isrcading data or outputling results
(/O operations), program B's instructions can then be
executed, and if both programs are involved in /O acuvity,
then program C can be executed. The area occupied by each
program residing simultaneously in the main memory is
known as a memory partition. The acwal number of
memory parttions and hence programs allowed in the main
memory al any given lime varies depending upon the
operaling system in usc &t a partcular installation,
Moreover, those jobs awaling entry into the main memory
are queued on a fast secondary storage device such as a
magnetic disk. The first job from this queue will be loaded
into the main memory as soon as any one of the jobs
already occupying the main memory is completed and the
corresponding memory partition becomes free.

Requirements of Multiprogramming Systems

Mulliprogramming has two main advantages :
increased throughput and lowered response time.
Throughput is increased by utilizing the idle time of the
CPU for running other programs that are already residing in
the main memory. Response time is lowered by recognizing
the priority oi a job as il enters the system and by
processing jobs on a priority basis.

On the .other hand, the incorporation of
multiprogamming in the operating system has, of course,
complicated matters. For a computer 0 work
simultaneously on many programs, the following additional
hardware and software feamures are required :

L. Large memory. For multiprogramming 0 work
satisfactorily, large main memory is required (of

178 Digital Computer Fundamentals

the order of 128K or more), together with fast
secondary storage devices like disk and fast
CPU. The main memory should be large enough
10 accommodate a good number of users'
programs along with the supervisor.

2 Memory protection. Computers designed for
multiprogramming must provide some type of
memory prolection mechanism (o prevent a
program in one memory partition from changing
inforpation or instruction of a program in
another memory partition. For example, in
Figure 14.4 we would not want program A (o
inadvertenldy destroy something in the
_completely independent program B or program
C. In a multiprogramming environment this is
achicved by the memory protection feature, a
combination of hardware and soltware, which
prevents one program from addressing beyond
the limits of its own allocated storage area.

3. Program slatus preservation. We have scen that
In multiprogramming, a portion of onc program
is executed, then a segment of another, and so
on. This requires the stopping of a program
exccution and then restarting its cxecution after
some time. In order to restart a program, all the
valucs that were stored in-memory and the CPU
registers that were being used at the time of its
stopping should be restorcd. A ncw program
would however nced all CPU registers for ils usc
and would clear them. Thus. before a program is
suspended and the control is passed to another
program, the values of all CPU registers (pc,
accumulator, etc.) should be stored in the
memory area of that program and then restored
when the control is ultimately retumed to the
first program. This is known as program status
preservation.

4. Proper job mix. A proper mix of I/O-bound and
CPU-bound jobs 1s requircd to effectively
overlap the operations of the CPU and IO
devices. It is necessary that when a program is
waiting for 1/O operation, another program must
have encugh computation to kecp the CPU busy.
if all programs necd 1/O at the same time, the
CPU will again be idle. Hence the main memaory
should contain some CPU-bound programs and
some [/O-bound programs in @5 vaniow
partitions so that at least one of the program
which does not need /O is always available w©
the CPU for processing

MULTIPROCESSING

Uplo this point we have considered systems with a
single CPU. However, we have already seen that the use of
1/0 channels or 1/O processors improves the efficiency of
the computer system by making possible concurrent input,
processing, and output operations. The CPU can perform
arithmetic and logical operations on parts of one or more
programs while I/O operations are concurrently carricd out
by /O processors on other parts of programs. The
architecture of a computer having 1/O processors is shown
in Figure 14.6.

The idea of usc of /O processors o improve the
performance of a computer sysiem was carried one siep
further by designing systems that make use of more than
one CPU. Such systems are called multiprocessing systems.
The term muliiprocessing is used lo describe interconnected
computer configurations or computers with lwo or more
independent CPUs that have the ability 10 simultaneously
execute

LT

unils Frocessors ce

Figure 14.6. Archilecture of a compuler system
having !/O processors.

several programs. In such a sysiem, instructions fiom
different and independent programs can be processed at the
same instant of time by different CPUs or the CPUs may
simultaneously execute different instructions from the same
program. The basic organisation of a typical
multiprocessing system is shown in Figure 14.7.

There are almost limitiess aumber of possibie
multiprocessing systems. In soine svsiems, several small
CPUs are linked together o perform the inajor processing.
If one of the smalt CPUs breaks down, the other CPUSs will
automatically take cver s job, In other systems, CPUs are
connected into elaborate computer networks, Distributed
data processing (discussed in next chapler) s an example.
fn these neiworks, smali:CPUs catied front-cnd procassors

are used for scheduling and controlling all jobs entering the
system from remote terminals and other input devices.
Thus, the main CPU or CPUs called host coinputers or
back-end processors are used oniy for major processing
jobs and not for data communication. In some
multiprocessing systems, each CPU performs only specific

Main
CPU 1 [— [

Memory CPU2

-

1Y0 1/0
P

Processors R rocessors

_l

140 1/O
Units Units

———]

Figure 147. Basic organisation of a typical
multiprocessing system.

types of applications. For example, in case of a
multiprocessing system with two CPUs, one may be used to
process only on-line jobs while another one may be meant
for processing only batch applications. However, these
systems are so designed that in case of breakdown of one
CPU, the other CPU takes over the complete workload until
repairs are made. Moreover, different multiprocessing
systems use different types of memory configurations. In
some systems each CPU bhas its own main memory, in
others all the CPUs may- share a common memory, while in
some others each CPU may have access to both separate
and common memorics.

13- A

Operating Systems 179

Difference Between Multiprogramming and
Multiprocessing

Multiprog.amming is the interleaved cxecution of
two or more processes by a single CPUJ computer system.
On the other hand, m ‘Wiprocessing is the simultaneous
execution of two or more processes by a compuler system
having more than one CPU. To be more specific, we may
point out here that multiprogramming involves executing a
portion of one program, then a segmen: of another, etc., in
brief consccutive Ume periods. Multiprocess design,
however, makes it possible for the system to
sim_.tancously werk on several program segments of one
Or MOre Programs.

Advantages and Limitaticns of Multiprocessing

There are. numerous advantages of multiprocessing
some of which are listed here :

1, It improves the performance computer
systems by allowing parallel processing of
scgments of programs. Better performance is
directly reflected by increased throughput and
lowered wrnaround time of such systems.

2 In addiuon to the CPUs, it also facilitates more
elTicient utilization of all the other devices of the
compulter system.

3. It provides a built-in backup. If one of the CPUs
breaks down, the other CPU(s) automatically
takes over the complete workload untl repairs
are made. Thus, a complete breakdown of such
system is very-very rare.

Multiprocessing, however, is not an easy task
because of the following reasons :

1. A very sophisticated operating system s
required o schedule, balance and coordinate the
input, output and processing activities of
multiple CPUs, The design of such an OS is a
time laking job and requires highly skilled
computer professionals.

2, A large main memory is Jequired for
accommodating the sophisticated operating
system along with several users programs.

3 Such systems are very expensive. In addition to
the high -charges paid initially, the regular
cperation and maintenance of (hose syslems is
alen a costly affair.

180 Digital Computer Fundamentals

It is expected that multiprocessing systems will soon
become cemmonplace. In the future, all large computer
systems will use multple, parallel processors to share high-
speed and complex operations and to enhance processing
throughout. There will be computers within computers,
because some of these processors will be complete
microcomputers. The .cntire system will be under the
control of a complex, powerful operating system.

MAIN MEMORY

TERMINAL 1

TIME SHARING
USER 1 SUPERVISOR
USERA 1
TERMINAL 2
sen
R2
o USER 3
TERMINAL 3 J
USER /
| = USER-N ONLINE
1 STORAGE
!
TERMINAL N
cPU
USER-N

Figure 14.8. Concept of a imesharing system.
TIME-SHARING

Timesharing is a term used to describe a processing
system with a number of independent, relatively low speed,
online, simultaneously usable swuations. Each station
provides direct access to the CPU.

In other words, timesharing refers 10 the allocation
of computer resources in a time-dependent fachion (o
several programs simultancously. The principal notion of a

timesharing system is 1o provide a large number of users
direct access to the computer for problem solving. This is
accomplished by providing a sepruale terminal 1o each user..
All these terminals are connected 0 the main computer
system. Thus, a timesharing sysiem has many, even
hundreds, of terminals linked up to the same computer at
the same time. This is shown in Figure 14.8. Unlike
multiprogramming, where programs are exccuted on a
priority basis, in timesharing the CPU time is divided
among all the users on a scheduled basis. The basic idea
behind timesharing systems is to allow all user programs 1o
have a brief share of the CPU time in tum. Each user
program, beginning from the first program and proceeding
through the last, is allocated a very short period of CPU
time one by one, This short period of time during which a
1ser gets the attention of the CPU is known as a time siice,
ime slot or quantum and is typically of the order of 10 to
!0 milliseconds. The processing speed of the system and
the use of multiprogramming in conjunction with
timesharing allows the CPU to swilch from one user station
to another and to do a part of cach job in the allocated tme
slice until the job is completed. The speed is frequently
such that the user has the illusion that he alone is using the
computer. IL is somewhat like viewing a motion-picture
film made up of individual frames, the switching is so fast
that the processing at any given lerminal appears to be
continuous.

For example, let us assume that the time slice for a
timesharing system is 10 milliseconds. That is, the
timesharing operating system allocates 10 milliseconds to
each user during which a program belonging to this user is
executed. An average speed computer whose speed is of the
order of 1 million instructions per second can execute 10 x
163 x 10% = 10,000 instructions in 10 milliseconds.
Suppose there are 100 users for this limesharing system,

. Then if 10 miliiseconds 1s allocated to each user, a

particular user will get the CPU's attention once in every 10
x 100 milliseconds = 1 second. As human reaction times
are a few seconds, a particular user will not notice any
delay in exccuting his commands and normally feels that he
is the sole user of the system. Moreover, it is not
economically feasible to allow a single user to use a large
computer interactively because his speed of thinking and
typing is much slower than the processing speed of a
computer. While a particular user is engaged in thinking or
is busy typing his input, a timesharing system can service
many other users.

Even though it may appear that several users are
using the computer system at the same time, a single CPU
system can only execule one instruction at a lime. Thus like
a multiprogramming system, even with a timesharing
system, only one program can be in control of the CPU at

13-8B

any given time. As a result, at any instant, all the users who
are using a timesharing system will fail in one of the
following three status groups.

L. Active : the user's program currently has control
of the CPU. Cbviously only one user will be
active at a time.

2. Ready : the user's program is ready 1o continue
but is waiting for its wrm to get the atention nf
CPU. More than one user an be in ready state at
a ume.

3. Wait : the user has made no request for execution
of his job or the user's program is waiting for
some I/O operation (for instance, the user is
siting at the terminal and is thinking what
should be the next step). Again, more than one
uscr can be in wait state at a time.

The process of switching from one status 1o another
is illustrated in Figure 14.9. Morcover, the concepts of a
timesharing system and user staws are illustrated in Figure
14.10. In Figure 14.10(a) user 2 is active, users 1, 3, and 4
are in wait status and users 5 and 6 are in ready status. As
soon as the time’ slice of wser 2 is completed, the
timesharing supervisor moves on to the next ready user

/0 completed

Figure 14.9. The process of switching between the
three status of a time sharifig system.

Operating Systems 181

User b Jser 2
(Ready) (Active)
User 5 User 3
{Ready) (Wai)
User 4

(Wan) e

(A) 2

User 1

{Wait)
User 6 User 2
{Ready) Y (Ready;
User 5 User 3
(Active) (Wait)

Figure 14.10. User status in a timesharing system.

(those in wail status are skipped since they are making no
demand for the CPU). The next ready user in the queue is
user 5 which now becomes active as shown in Figure
14.10(b). User 5 will_remain active until the allotted time
slice expires, or until the program needs /O operation, or if
the program execution is over during this time period. At
that time, control is passed on to the next ready user in the
quege which is user 6 for our example. Whenever 1/O
gdperation is completed for a wait user. that user's stats wilt
be changed to ready and serviced the next time around

In a typical timesharing system, hundreds of users
may be using the system simultaneously. As the total main
memory available in a computer is limijed, it is not possible
to keep the programs of all the users of a timesharing
system simultaneously in the main memory. Thus at any

182 Digital Computer Fundamentals

instant, the timesharing operating system keeps only a few
programs in the main memory and the rest are stored on the
disk storage. At a particular instance of time, the memory
resident programs include the active program and some of
the rcady programs which will get CPU's altention very
shortly. A wait program of thc main memory is normally
replaced by a rcady program on the disk storage. As and
when a program is 1o be excculed, it is brought back 1o the
main mcmory from the disk and the inactive program is
scnt 1o the disk. The operation of transferring programs

Trom the main memory to the disk swrage and back is

known as swapping. Relerring to Figure 14.10, as user 2 is
exccuting, the system will be ensuring that the next ready
job is in main memory. If it is not, then one of the wait
programs is swapped out (onto disk) as shown in Figure
14.11(a) and the next ready user, user 5 in this case, is
swapped in as shown in Figure 14.11(b). This swapping
process, sometimes know as roll-in roll-out, is repeated
many times within a few scconds. In this case, disks are the
only feasible secondary storage devices since they have a
much faster rate of information transfer than magnetic apes
and provic. dircct access.

In timesharing sysicms, the user often carrics a
cialogue or conversation with the central system. Hence it
is alsa known as conversational or interactive compuling.
The computer can be programmed (0 interrogate the user as
required, 1o respond to requests, replics, and cven 1o
mistakes. A uscr can proceed step-by-siep, testing portions
of his procedure or trying out various approaches o a
problem solution. This is the rcason why tmesharing
systems have been found 1o be most suitable for program
devclopment and testing. In fact, the BASIC language was
designed specifically for timesharing sysiems. Systems
which are fully intcractive inspect cach statement of a new
program as it is cntered into the computer via a terminal.
Any syntax crrors in the usage of the language are deteeted
and immediatcly displayed on the vidco screen so thai the
uscr can make appropriate corrections. The user corrects his
program with an editing sysiem. When all the syntax crrors
are corrected, the program can be run and tested 10 ensure
its validity. The requisite data is fed from the terminal
during program e¢xecution, The data may also be stored in a
data file on disk and fcd to the program when it needs it.
Errors cncountered during exccution of the program are
displayed on the terminal. These run time crrors can be
immediately corrected by the user and another test run can

be made. The greatest benefit of such a sysiem is that crrors

can be encountered, corrected, and work can continuc
immediatcly. This is in contrast to a batch system in which
crrors arce corrected offline and the job is submitted for
another run. The time delay between job submission and
return_of the oxtput in a batgh system is oficn measured in
hours. Oyemight 'urnaround is also very-common:-

MAIN
MEMORY
TIME SHARING
SUPERVISOR —
USER 1 %
USER 6 gl
USER 2 E
: DISK
T STORAGE
| ————— |
(=)
MAIN
MEMORY
TIME SHARING
SUPERVISOR il
USER 5 —
USER 6 %
USER 2 ,
. DISK
Gy STORAGE
|_—
(b)

Figure 14.11. Swapping of programs in a
timesharing system.

Obviously this time lapse docs not contribute well o the
thinking cfficicncy of a programmer. The intcractive
programming and dcbugging capability of BASIC has
proven to be so cffective in improving programmer
efficiency, that intcractive versions of the baich-oriented
FORTRAN and COBOL arc also available now.

Advantages of Timesharing

L.

r

pJ

Reduces CPU idle time. It is wasleful and
expensive for the CPU to be effectively utilized
less than 30% of the time. Yet this is what
happens in a conventional batch processing
installation as the CPU waits during set-up times
and during §/O operations. Timesharing
significantly increases CPU utilization by
switching from one program 1o another in rapid
succession. Thus the throughput of the
installation increases 10 a great extent.

Offers computing facility to small users. Small
users can gain direct access to much more
sophisticated hardware and software than they
could otherwise justify or afford. In a
timesharing system thcy merely pay a fec for
resources used and are relieved of the hardware,
software, and personnel problems associated
with acquinng and maintaining their own
installation.

Provides advantages of quick response. The
turnaround lime or the response ume is
negligible in case of a timesharing system. Thus,
timesharing allows managers 10 react more
rapidly. Furthermore, it permits them to interact
or converse with the system in seeking solutions
to “unusual problems and answers to poorly
defined questions. Timesharing may also reduce
wasle in the use of business resources and it can
permit quick follow-up on creative idcas. In
short, it helps in improving the users’ efficiency
to a great extent.

Reduces the output of paper. If a manager can
retricve at any time the specific information he
needs from an online file, he docs not need a
bulky report that contains much of the file
information.

Avoids duplication of software. There are scveral

-programs which are frequently used by many

users. In a time-sharing system, such programs
are stored in the system library. A user need not
write his own program instructions when
performing such processing tasks. He necd only
call up the needed program stored online at the

computer site and supply the data.

Operating Systems 183

Disadvantages of Timesharing

Question of security. Since hundreds of users use
a timesharing system simultancously, provision
must be made 1o protect the security and
integrity of user programs and data. The
programs and data of different users should not
get mixed up. This is currently being
accomplished by such methods as (a) assigning
and (b) requiring hierarchies of passwords or
lockwords from wusers prior 0 file access.
However, in spite of such precautions, skilled
penetrators succeed - bypassing the
programmed controls of current timesharing
systems.

Problem of reliability. A time sharing systcm
should be highly reliable as it caters to the needs
of several users. Hence provisions must be made
to provide dependable and continuous service.
The self-repairing computer or some sort of
standby arrangement may ultimately help to
overcome the reliability problem. But troubles’
that occur are often with the online peripheral
devices or software and not with the main CPU.

Problem of data communications. In a
timesharing system, the users interact with the
main computer system through remote terminals
that require data communication facilitics. The
cost of dala communication has been declining
but not so rapidly as the cost of data processing.
Thus, data transmission charges make yp an
increasing portion of the total timesharing cost
package. In addition, iclcphone lines were
designed for voice communication rather than
data communication, with the result that cumrent
transmission facilities are not considered
adequate by many timesharing spokesmen.

Question of overhead involved. The reader can
probably appreciate that the timesharing system
with its control functions such as switching from
user o uscr and swapping programs in and -out
takes up an appreciable amount of CPU time.
This is termed overhead and must be minimized
in the overall hardware-sofiware design. If a
system is properly balanced, then the overhead is
managcable and the computer response time to a
user request will be small. However, if the
system is overloaded with toe many users, then
the overhead can get out of hand, resulting in
Very pOOr response.

184 Dipital Computer Fundamentals

ON-LINE PROCESSING

On-line processing (also called direct-access or
random-access processing) permits transaction data to be
fed under CPU control directly into secondary on-line
storage devices from the point where data originates
without first being sorted (sorting of data is required in case
of sequential processing). These data may be keyed in by
the use of a typewriter like terminal, or they may be
produced by a variety of other daa collection and
rransaction recording devices. The CPU can make
programmed input control checks during this process.
Using these input data, appropriate records (which are
normally organized in the secondary storage unit in random
fashion) may be quickly updated. The access w, and
retricval of, any record is quick and direct. Information
contained in any record is accessible to the user without the
necessity of a sequential search of the file and within a
fraction of a second after the enquiry message has been
transmitted. Thus, on-line processing systems feature
random and rapid input of transactions and immediate and
direct access to record contents as and when needed. A
simplified concept of on-line processing is depicted in
Figure 14.12.

A timesharing system is a typical example of on-line
processing. However, it should be noted here that on-linc
processing systems may differ considerably in level of
complexity. Some systems may have only a few terminals,
and the volume of transactions to be processed may thus be
low; these transactions may be processed on a first-come,
fist-served basis with no auempt being made 10 use
timesharing or multiprogramming and the system may
employ relatively simple data communication facilities. At

On-Line Siations

Transaction
input

Enquiry laput/
Syztem Response

Figure 14.12. On-line processing.

the other extreme are on-line systems that have hundreds of
remole stations and communication lines; they use
multiprogramming or timesharing to keep the response time
within accepiable range so that users do not get irritated due
1o delavs in response.

On-line processing and dircct access 1o records
require unique hardware and software, For cxample, the
capacity of the primary storage unit of the system must be
adequate to accommodate the complex on-line operating
syslem supervisor along with other users’ programs. Also,
since many on-line users may have access 1o stored records,
software security provisions are necessary (o prevent
confidential information from falling into unauthorized
hands and prevent deliberate or accidental tampering of
data and program files. Furthermore, in many cases, CPU
must be fast enough to respond 1o multiple on-line stations
operaling simultancously in a multiprogramming mode; and
large capacity peripheral on-line storage units are required
to store additional operating system clements, user data and
programs. Finally, data transmission facilities must be
provided to communicate with on-line terminals located in
the next room, on the next block, or thousands of miles
away.

REAL-TIME PROCESSING

There arc many applications thal require an
immediate tesponse from the computer. Getling a stock
market quotation, finding the current level of product
inventory, and searching a criminal data file for a possible
suspect may all be actions that need to be done without
delay. In thesc cases, a real-ume processing syslem is
needed. Real-time means immediate response from the
computer. A system in which a transaction accesses and
updates a file quickly enough to affect the original decision
making is called a real-time system. The essential feature is
that the input data must be processed quickly enough so
that further action can then be prompiy taken on the
results.

In cother words. a real-time processing system may
be described as an on-line processing sysiem with severe
lime limitations. It may be noted here that a rcal-time
system uses on-line processing, but an on-line system need
not necessarily operate in real-time mode.

Real-time processing requires immediate (not
periodic) transaction input from all input-originating
terminals. Many remote stations are tied directly by high-
speed communications equipment into one or more CPUs.
Several stations may be operating simultaneously. Files are
updated each minute, and enquirics are answered by split-
second access to up-lo-the-minute records. The system
processes input data and presents the result in such a form
that human judgement can immediately be brought into
decisive action.

* One of the early and very sophisticated commercial
real-ime systems was the American Airlines SABRE

reservation system. The following factors justify the use ol
real-time processing for an airline reservation system :

L. There are hundreds of flights daily.

2. Each flight may have as many as 300 seats or
more "in inventory”.

3 As soon as a seai is rcserved/cancelled, the
concemned files must be updated before the next
transaction can be processed.

4. The response 1ime should be very short because
a customers reservaton is 1o be done while he
waits.

5. Seats may be sold for only a portion of flight.
For example, Mr. XYZ may book a seat to
Baroda on a Delhi to Bombay flight which stops
in Baroda. That seat will then be available for
the Baroda to Bombay leg.

6. Hundreds of agents throughout the country are
selling seats from the inventory.

7. An airline seat is a very perishable item. If it is
not sold, it is lost once a flight is made.

Owing to the above mentioned reasons, efficient
operation of present-day major airlines would be very
difficult and almost impossible without a real-time
processing system, Few more examples of business real-
lime processing are :

1. Air traffic control system,

2. Reservation syslems used by hotels and car
rental agencies. These systems keep track of the
availability of holel rooms or cars at any instance
of time.

3. Systems that provide immediate updating of
customer accounis in saving banks,

4. Systems that provide
information on stock prices.

up-to-the-minute

5. Process control sysiems as in nucler reactor
plants and steel mills,

Similarly, there are many applications that require
real-time processing. It would be a mistake, however, o
assume that real-time processing should be universally
apLiied to all data processing applications. A quick-

Operating Systems 185

response system can be designed to fit the needs of the
business. Some applications can be processed on a lower
priority or background basis using batch methods (e.g.
payroll); some can be on-line with periodic (not immediate)
updating real-time methods.

Real-time systems are required 10 be highly reliable
because even minimal downtime in many critical
applications may be hazardous causing danger to several
lives and substantial financial loss. For example, in case of
a computerised air traffic control system, the radar and
computers that keep track of air traffic in cach region, must
operate constantly with minimum mainicnance. An
unscheduled downtime in this real-time system may cost
lives of several human beings. Similarly, in case of a
chemical process-control system, high degree of eliability
is essential, since even minimal downtime can lead to a
ruined batch of product or damage (o expensive equipment
with substantial financial loss. In order to achicve the
desired degree of reliabilily, real-time systems are normally
duplicated so that, in the event of a break down, back-up
facilites are immediately available for continuous
operation of the system. This makes some systems very
expensive but, in the environment to which real-time
systems are applied, a fail-proof system is essential.

VIRTUAL STORAGE

Virtual storage may be described as a hierarchy of
two memory systems - one of them is a low cost, large
capacity, low speed system (on-line disk storage) and the
other is a high cost, small capacity, high speed system
(main memory). The operating system manages the two
memory systems in such a way that a user feels that he has
access 1o a single, large, directly addressable, and fast, main
memory.

A virtual memory system facilitates its users to use a
large addressable memory space without worrying about
the size limitations of the physical main memory.
Moreover, in case of multiprogramming or timesharing
systems, it also permits the sharing of memory space
among several users efficiently and economically.

In order 10 implement a virtal memory system, the
main memory is divided into fixed size contiguous areas,
called page frames. In addition, all users programs, residing
on the on-line disk storage, are also divided into pieces of
the same size, called either pages or segments. Now, only
those program pages or segments that are actually required
at a particular time in the processing, need be in the primary
(or real) storage. The remaining pages or segments may be
kept temporarily in online (or virtwal) storage, from where
they can be rapidly retrieved as and when needed following

186 Digitat Computer Fundamentals

program interruption (see Figure 14.13). The operating
system handles the swapping of program pages or segments
between the main memory and the on-line disk storage.

Other pages of program 1
Other pages of program 3

MAIN MEMORY

"\ Olher pages of program 4
Other pages of program §
1

Supervisor

Page 5 of program 1

Page 2 of program ?

== Direct
Access
On:Line

Page 1 of programe 5 . L Storage
i

Fage 8 of program 4

Figure 14.13. A virtual storage system.

-Thus, from the applications programmer’s point of
view, the effective (or virtual) size of the available primary
storage may appear to be unlimiied;

In previous sections, we have seen that when a
computer sysicm is operaied 1n umesharing or real-time
mode, only a few instructions are executed for one user at
any given moinent. Then the computer executes a few
instructions for another user and so on. In a few seconds,
the computer could process a few instructions for over a
hundred users. Because the computer is only exccuting a
few instructions of one user's program at one time, it will be
wastage of main memory if the complete program of that
user is stored in main memory, instead, the concept of
virtual storage can be erfectively used in this case to
simultaneously accommodate program segments of a large
number of users in the main memory. With more program
segments of different users residing simultaneously in main
memory, the CPU is less likely to have to wait for programs
o be transferred from the disk to main storage. This
reduces CPU idle time and increases :he number of jobs
that can be run in a given time span. It is important to note
that even in this particular application of virtual storage, the

physical size of main memory remains the same. It only
appears to be larger because more gets done in less time.

OS-CONTROLLED SOFTWARE

A computer can do nothing with a program of
instructions, and cach job required must have ils own
special program. However there are many tasks of a routine
nature that all computer users require their machine to
perform from time to time. It would clearly be wasteful if
each user spent a lot of time writing programs for these
tasks and it is normal practice for the computer
manufacturers to supply programs for these tasks along
with the operating system and the hardware of the machine.
These OS-controiled soffwares reduce the time and expense
of preparing applications programs and are normally
grouped in three categories - translating programs, library
programs, and utility programs. They are bricfly discussed
below.

TRANSLATING PROGRAMS

Translaling programs, also known as language
processors, are <ystem programs that translatc a source
program written by the user to an object program which is
meaningful to the hardware of the computer. These include
the assembler and the various compilers and interpreters
wailable with the system. A translaling program is usually
called up from a direct-access storage device only afier the .
job control program of the operating system interprets a job
control statement and informs the operating system
supervisor of what is needed.

LIBRARY PROGRAMS

" Library programs consist of frequently used
subroutines supplied by users and compuler vendors, These
standard routines are stored in a direct-access slorage
device and are called up by the operating system whenever
they are required in the processing of other programs. This
eliminates the nced for a programmer to rewrite these
modules every time they are used. A librarian program
controls the storage and use of these programs in the system
library. It maintains a program directory for this purpose
and also facilitates the addition of new programs to the
library or deletion of unwanted programs from the library.
In the area of scientific applications, the usual types of
library routines available are the mathematical functions
such as square root and exponential functions. Other
operations of various types are also encountered such as
matrix inversion, statistical analysis, conversion of numbers
from one base o another (binary to decimal and decimal to
binary), etc. All these and many other frequently used
routines are normally available as library programs.

UTILITY PROGRAMS

Utility programs, also known as service programs,
are routines that perform necded services such as editing
texts or ‘programs,-debugging. programs to cerrect logical
misiakes, sorting records into a particular sequence for
processing, or transferring data from one /O device 1o
another. These routines are also available for call-up by the
operating system and once again the job control statements
of a particular user tell the operating system supervisor
which utility programs are necded by the user. A few

examples of uulity programs commonly available in a

computer system are briefly described below.

1. Text editor. A texi editor is a program that
facilitates the creation and cormection of texts. The text
being edited could be an English language letter, but most
often, it is a symbolic language program typed by the user.
The text editor program does not interpret the meaning of
the text but has the capability of changing it when special
commands are issued by user. For example, when a
symbolic language program is being entered ino a
computer memory via a video-terminal, the programmer
may use the facility of a text editor program 10 correct his
lyping errors by issuing commands 10 insert, delete, or
replace characters in his source programs. Thus, with the
help of a text editor, the user can prepare programs and
correct them with relative ease.

2. Debugging tool. Debugging tool is a program that
nelps the user 10 locate and comect logical mistakes in his
program. - A dynamic dcbugging 1ool- allows the
programmer 1o control program exccution using a video

terminal while his program is being executed in the -

computer. While his program is being executed, the user

can stop the execution of the program at any desired point, *

he can examine contents of various registers, change

contents of registers and memory, make alterations to his -

binary programs, and other similar functions. Thus, by
using the facilities of a dynamic debugging tool, the user
can easily detect and correct logical errors in his program.

3. Sort and merge. In the area of commercial data
processing applications, the most widely used routines are
sort and merge. Sort programs are used to arrange data into
a specified sequence. For example, business transactions
may be stored in computer in the order in which they occur.
The transactions may have to be sorted by different items
such as by account number to identify the customer or by
salesman’s name to calculate the commission to be paid.
The sort program reads the unsequenced input file and by
means of various copying techniques ultimately produces
as output a copy of the input file in the required sequence.
Merge programs, on the other hand, are used to combine

Operating Systems 187

two or more sets of sorted data into one file containing all
the items of all the original sets in sorted order.

4, Memory dump program. A memory dump
program allows the user to print the contents of specified
locations in main memory at some particular point during
the program execution. A memory dump lypically shows
both the program and operand data. By inspecting both
program and data, and comparing it with what it should
have been if the program had run correctly, the programmer
is able to find the mistakes in his program.

5. Trace routine. A trace routine allows the user lo
trace the flow of his program while it is executed. He can
request, for example, that the contents of ceriain registers or
mamory locations be printed every time a branch statement

s exccuted or when the value of certain variables are

changed. This allows the user 10 get a clear picture of what
his program is doing and thus be able to correct mistakes in
his program.

8. Peripheral interchange programs. These utility
programs facilitate transfer of data from one /O device to
another. They make possible the copying of data {from one
unit, for instance, magnetic tape, to another unit, for

‘instance, magnetic disk. It is also possible to copy data

from one tape unit 1o another tape unit or from one disk unit
to another disk unit. This results in a more efficient
utilization of the data preparation equipments.

QUESTIONS

L What is an operating system ? Why is it
" necessary for a computer system ?

2. List out the various functions normally
performed by an operating system. ___

3. "The operating system tends 1o isolate the
hardware from the users”, Discuss this statement.

4, What is a supervisor 7 How does it differ from
the transient routines of an operating system ?

5: Differentiate between the terms throughput and
turnaround time,

6. Explain how jobs are processed in batch mode.

7. What are the advantages and disadvantages of
batch processing ?

8. What are some of the reasons that JCT

188 Digital Computer Fundamentals

10. .

14 5

12.

14.

15

17.

19.

20.

21.

22.

23.

statements are needed when you submit your job
for computer processing ?

Would you say that all computers use the same
types of JCL statements 7 Why ?

You want to compile and executc a COBOL
program. In plain English, list out the necessary
JCL statements you will prepare for this job.

What 1s spooling ? How does it help in
improving the efficiency of a computer system ?

Define multiprogramming. Explain how
multiprograming cn-.res effective utilization of
main memory and CPU.

Differentiate between I/O-bound and CPU-
bound jobs.

List out some of the hardware and software
facilities required for a multiprogramming
system o work satisfactorily.

What is multiprocessing ? Give the basic
organization of a multiprocessing system.

How is multprocessing different from
mutiprogramming ?

Discuss the advantages and limitations of
mutiprocessing systems,

What is a time-slice ? In a timesharing system,
explain how each and every user feels that he is
the sole user of the computer system.

What are the three different states in which all
users of a timesharing system fall 7 Illustrate
how a particular user switches from one state to
another.

What is swapping ? How does it help an
operating system in memory management ?

Why are timesharing systems considered to be
most suitable for program development and
testing ?

What type of hardware facilities are required for
a timesharing computer system ?

Discuss the advantages and disadvantages of a
timesharing system.

24,

25;

¢ H

28.

29,
30.
31.
32
33.

34,

35.

36.

37.

38.

Mutiprogramming and timesharing both involve
multiple users in the computer concurrently
What is the basic difference between the two
concepts ?

What is meant by real-time processing ? Give
some examples of real-ime applications,

"A real-lime system uses on-line processing but
an on-line system need not necessarily operate in
real-time mode." Explain.

Why is a high degree of reliability necessary for
real-time systems ? How is this achieved ?

Will it be practical to use magnetic tape files in
conjunction with a real-time system? Give
reasons for your answer,

What do you undersiand by the term "response-
time" ? Why is response time critical in a real-
time system ?

What is a virtwal memory ? How is it
implemented ?

What are the two main advantages of a virtual
memory system ?

What are library routines ? Why are they
normally supplied by the computer
manufacturers ?

What is a librarian? What are its functions ?
What is a text editor ?

How is a dynamic debugging tool used by a
programmer ?

Explain how memory dump programs and trace
routines help a programmer in finding out
mistakes in his program.

What is the use of peripheral interchange
programs ?

One of your friends wishes to use your account
in the computer to enter and test his program.
What information you must provide for him/her
to proceed ?

CHAPTER 15

15. BUSINESS DATA PROCESSING

This chapter deals with the basic concepts of
business data processing. In this chapter, you will first learn
the difference between data and information and the
hierarchy of data storage. Then you will learn about the
various types of file organizations and file utilities
commonly used in business data processing applications.
Finally, this chapter also introduces the basic concepts of
data base systems and its advantages and limitations.

WHAT IS DATA PROCESSING

Data are a collection of facts - unorganized but able
to be organized into useful information. A collection of
sales orders, time sheets, and class registration cards are a
few examples. Data are manipulated to produce outpuit,
such as bills and paychecks. When this ourput can be used
to help people make decisions, it is called information.

Processing is a series of actions or operations that
convert inputs into outputs. When we speak of data
processing, the input is data, and the output is useful

CONCEPTS

information. Hence, data processing is defined as series of
actions or operations that converts data into useful
information. The data processing system is used to include
the resources such as people, procedures, and devices that
are used to accomplish the processing of data for producing
desirable output.

Thus, data are the raw material of information and
just as raw materials are transformed into finished products
by a manufacturing process, raw data are transformed into
information by data processing.

DATA STORAGE-HIERARCHY

The basic building block of data is a character,
which consists of letters (A, B, C...Z), numeric digits (0, 1,
2..9) or special characters (+, -, /, *, ., $..). These
characters are put together to form a field (also called a
fact, data item, or data element). A field is a meaningful
collection of related characters. It is the smallest logical
data entity that is treated as a single unit in data processing.

190 Computer Fundamentals

For example, if we are processing cmployces data of a
company, wc¢ may have an cmployec code ficld, an
cmployec name ficld, an hours worked [icld, an hourly-pay-
rate ficld, a 1ax-ratc-deduction ficld, cte. Ficlds are
normally grouped together to form a record. A record, then,
is a collection of related ficlds that arc trealed as a single
unit. An employee record would be a collection of ficlds of
onc cmployee. These ficlds would include the employee's
code, name, hours-worked, pay-rate, tax-rate-deduction,
and so forth. Records are then grouped 1o form a [ile. A file
is a number of related records that are treated as a unit. For
example, a collection of all ecmployce records for one
company would be an employee file. Similarly, a collection
of all inventory records for a particular company forms an
inventory file. Figure 15.1 reveals these data relationships.

It is customary to sct up a master file of pcrmancnt
(and, usually, the laest) data, and 10 use transaction files
contining data of a temporary nature. For example, the
master payroll file will contain not only all the permanent
details about cach employee, his name and code, pay-rate,
income 1ax rate and so forth, but it will also include the
current gross-pay-lo-date total and the tax paid-lo-date
total. The transaction payroll file will contain dctails of
hours worked this week, normal and overtime, and, if
piccework is involved, the quantity of goods made. When
the payroll program is processed, both files will have to be
consulted 1o generate this weck's payslips, and the master
file updated in readiness for the following weck.

r

[

[004 ALK RANA 40

1400 009
[o0s nesmen @ oo o1

A character

0002 RS PATEL 42 1000 007
000t WP SINHA 45 lzm oog

\\

F-.m Aliia

A tocord

Figure 15.1. Relationship between character, ficld,

record, and file.

A data base is a collection of integrated and related
master files. It is a collection of logically rclated data
clements that may be structured in various ways to meet the
multiple processing and retricval nceds of organizations
and individuals. Characters, ficlds, records, files, and data
bases f[orm a hierarchy of dala storage. Figure 15.2
summarizes the data storage hicrarchy used by computer-
based processing systems. Characters are combined lo
make a ficld, ficlds arc combined to make a record, records
are combined to make a file, and files arc combined to
make a data base.

L Data base I

F FHe 1

1 Record 1

[i | I e ¥ o] Field n 1
Figurc 15.2. A data storage hierarchy.
FILE ORGANIZATIONS

System designers choose to organize, access, and
process records and files in different ways depending on the
type of application and the needs of users. The three
commonly uscd file organizations used in business data
processing applications are - scquential, direct and indexed
sequential organizations. The selection of a particular file
organization depends upon the type of application. The best
organization to usc in a given application is the one that
happens 1o meet the user's needs in the most effective and
economical manner. In' making the choice for an
application, designers must evaluate the distinct strengths
and weaknesses of each file organization. File organization
requires the usc of some key field or unique identifying
value that is found in every record in the file. The key value
muost be unique for cach record of the file because

duplications would cause serious problems. In the payroll
example, the employee code field may be used as the key
field.

SEQUENTIAL FILES

In a sequential file, records are stored onc after
another in an ascending or descending order determined by
the key ficld of the records. In payroll example, the records
of the employee file may be organized sequentially by
employee code sequence. Sequentially orgamzed files that
are processed by computer systems are normally stored on
storage media such as magnetic tape, punched paper tape,
punched cards, or magnelic disks. To access these records,
the computer must read the file in scquence from the
beginning. The first record is read and processed first, then
the second record in the file sequence, and so on. To locate
a particular record, the computer program must read in each
record in sequence and compare its key ficld 1o the one that
is needed. The retrieval search ends only when the desired
key matches with the key ficld of the currently read record.
On an average, apout half the file has to be scarched 1o
retrieve the desired record from a sequential file,

Advantages of sequential files

1. Easy to organize, maintain, and understand.
2 There is no overhead in address genecration.

Locating a particular record requires only the
specification of the key field.

3 Relatively inexpensive I/O media and devices
can be used for the storage and processing of
such files.

4, It is the most efficient and economical file

organization in case of applications in which
there are a large number of file records to be
updated at regularly scheduled intervals. That is,
when the acrivity ratio (the ratio of the total
number of records in transaction file and the
total number of records in master file) is very
high. Applications such as payroll processing,
billing and statement preparation, and bank
cheque processing meet these conditions,

Disadvantages of sequential files

I It proves to be very inefficient and uneconomical
for applications in which the activity ratio is very
low.

3 Since an entire scquential file may need 1o be

Business Data Processing Concepts 19]

read just 1o retricve and updale few records,
accumulation of transactions into baiches is
required before processing them.

3 Transactions must be sorted and placed in
sequence prior 10 processing.

4. Timeliness of data in the file deteriorates while
batches are being accumulated.

5 Data redundancy is typically high since the same
data may be stored in several files sequenced on
different keys.

DIRECT FILES

A direct file (also called a random or -=lative file)
consists of rccords organized in such a way that it is
possible for the computer to directly locate the key of the
desired record without having to search through 2 sequence
of other records. This means that the time recuired for
online enquiry and updating of a few records is muoch faster
than when batch techniques are used. However, a direct-
access storage device (DASD) such as a drum, disk, strip
file, or mass core is essential for storing a direct file.

A record is stored in a direct file by its key field.
Although it might be possible 1o directly use the storage
location numbers in DASD as the keys for the records
stored in those locations, this is seldom done. Insiead, an
arithmetic procedure called hashing is frequenuy used. In
this mcthod, an address generating function is used o
convert the record key number into a DASD siorage
address. The address generating function is selected in such
a manner that the generated addresses should be distributed
uniformly over the entire range of the file area and a unique
address should be gencrated for each record key. However,
in practice, the above constraints arc usually not satisfied
and the address generating function often maps a large
number of records to the same storage address. Several
methods are followed o overcome this problem of collision
when it occurs. One approach is to include a pointer field at
the location calculated by the hashing function. This field
points 1o the DASD location of another record that has the
same calculated address value. When the computer is given
the key of a record to be processed at a later date, it reuses
the hashing function to locate the stored record, If the
record is found at the location calculated by the hashing
function, the search is over and the record is directly
accessed for processing. On the other hand, if the record at
the calculated address does not have the correct kev, the
computer looks at the pointer field 1o continuc the search.

192 Digital Computer Fundcmentals

Advantages of direct liles

1. The access 1o, and retrieval of a record is quick
and dircct. Any record can be located and
retricved directly in a fraction of a sccond
without the need for a scquential search of the
file.

=

Transactions nced not be sorted and placed in
scquence prior 1o processing.

3 Accumulation of transactions into batches is not
required before processing them. They may be
processed as and when generated.

4. It can also provide up-to-the minute information
in response to inquirics from simultaneously
usable online stations.

5. If required, it is also possible 1o process direct
file records sequentially in a record key
sequence.

6. A dircet file organization is most suitable for

interactive online applications such as airline or
railway rescrvation systems, teller facility in
banking applications, eic.

Disadvantages of direct files

L These files must be stored on a direct-access
storage device. Hence, relatively expensive
hardware and software resources are required.

\

2 File updaton (addition and dcletion of rccords)

is more difficult as compared 1o scquential files.

3 Address generation overhead is involved for
accessing each record due to hashing function.

4, May be less efficient in the use of storage space
than sequentially organized files.

5. Special security measures are necessary for
online direct files that are accessible from
several stations.

INDEXED SEQUENTIAL FILES

We are all familiar with the concept of an index. For
example, the dircctory in a large multistoried building is an
index that helps us to locate a particular person's room
within the building. For instance, to find the room of Dr.
Sharma within the building, we would ook up his name in

the dircclory (index) and read the corresponding floor
number and room number, This idea of scanning a logically
scquenced table is preferable to searching door by door for
the particular name. Similarly, if we wished to read the
section in this book about printers, we would not begin on
page 1 and read cvery page until we came across the lopic
of interest. Rather, we would find the subject in the
contents (which serves as an index) to locale the page
number, and then turn directly to that page to begin reading.

Indexcd sequential files use exactly the same
principle. The records in this type of file are organized in
sequence and an index table is used o speed up access to
the records without requiring a scarch of the entire file. The
records of the file can be stored in random sequence but the
index table is in sorted sequence on the key value. This
provides the user with a very powerful tool, Not only can
the file be processed randomly, but it can also be processed
scquentially. Since the index lable is in a sorted sequence
on the key value, the file management system simply
accesses the data records in the order of the index values.
Thus indexed sequential files provide the user sequential
access, even though the file management system is
accessing the data records in a physically random order.

Employee Address Address Emplcyee
Code key Location Location Record
com 1003 1001 0002 RS PATEL
Q0g? 1001 . 1 1002 0002 R K RANA l
CD;W 1004 i 1003 0001 ﬂlf’ S"HHAJ
i ooo4 1002 N 1004 OGN P SINGH

l
e |

Figure 15.3. Organization of an indexed sequential
file.

This concept is illustrated in Figure 15.3. This
technique of file management is commonly referred to as
the Indexed Sequential Access Method (ISAM). Files of this
type are called /SAM files.

Advantages of indexed sequential files

L Permits the efficient and economical use of
sequental processing techniques when the
activity rauo is high.

2. Permits direct access processing of records in a
relatively efficient way when the activity ratio is
low.

Disadvantages of indexed sequential files

L. These files must be stored on a direct-access
storage device. Hence, relatively expensive
hardware and software resources are required.

[

Access 1o records may be slower than direct
files.

3. Less efficient in the use of storage space than
some other altematives.

FILE UTILITIES

File utilides consist of routines which perform a
variety of generalised operations on data files. Normally,
file utlives are data independent. This means that the
routines are written quite generally, and will operate on any
data formats-and even on data held on different types of
storage medium. Some of the commorly used file utilities
are discussed below.

SORTING

The purpose of sorting a file is to arrange records
within a file in some defined sequence. This sequence 1s
determined by the ordering of certain specified fields within
the record. Fields whose ordering determine the sequence
of a file in the sorting process are known as keys. The
simplest case is an ordering on a single key. For example, a
file of personnel records may be sequenced by ascending
order of employee code as shown in Figure 15.4. A more
complex ordering may be produced by introducing a further
key in the sorting process. For example, suppose each
record of the personnel file also contins a field for
department number to which the employee belongs. Now
the order of sorting may be employee code within
department number. This means that all records for the
lowest department number are presented first, eacn in

Business Data Processing Concepts 193

(- Employee code Depariment Number
1-01 B 2
123 3
124 1
176 2
178 1
202 3
213 1
_

Figure 154. Sorting on one key in ascending
employee code sequence.

r Employee Code Depariment Number
124 i 1 _—
178 '
213 1
101 2
176 2
123 3
202 3

Figure 15.5. Sorting on two keys. Ascending
employee code within ascending
department number. Department
number is primary key and employee
code is secondary key.

ascending sequence of employee code : then all records for
the next department number and so on. This is indicated in
Figure 15.5. In this example, two keys have been used in
the sorting process - department number is called the
primary key and employec code is known as the secondary
key.

According to the exient and sophistication of the
sort utility available, the size and number of keys which can
be specified, and the type of ordering (e.g. ascending,
descending, alphabetical) will vary.

194 Computer Fundamentals

Since sorting is a very common dala-processing
requirement, manufacturers provide sort utility software
which enables users to specify their. particular scquencing
requircments by means of simple parametess. Software is
usually available for sorting files held on all types of
storage devices. The user specifies the sort keys, and also
details about the type of file such as storage device, file
labels, record structure. The sort utility program reads the
unsequenced input file, and by means of various copying
techniques ultimatcly produces as output a copy of the
input file in the required sequence.

SEARCHING

Secarching is the process of scanning a file to find a
particular record. The efficiency of a scarch algorithm
depends on the file organisation. For example, to scarch a
particular record in a sequential file, the file is scanned
sequentially beginning with the first record and the desired
key is compared onc-by-one with the key ficld of cach
record. The scarch process terminates when the matching
key is found. On the other hand, direct file organisation
enables the program (o have immediate access o the
desired record. The program nced only inform the file
management system which record is neceded, and the
management system then searches through the filing systcm
and produces the desired record. Normally, the time
required to search a particular record from a dircct file is
much less as compared to the time required (o scarch it
from a sequential file.

MERGING

Merging of files involves the combining of records
from two or more ordered files into a single ordered file.
Each of the constituent filcs must be in the same order,
aithough the record layout of files need not be identical.
The output file will be in the same order as the input files,
placing records from each in their correct relative order.

For example, in Figure 15.6, files A and B are
merged to produce an output file C.

COPYING

File copying routines are provided for producing an
exact copy of a file, either from one unit of a storage device
onto another similar unit, e.g., from one tape reel to
another, or frcm one slorage medium to another, e.g.,
copying a card or disk file onto tape.

These routines are normally used for taking back-up
copies of useful files. For cxample, a disk file may be
copied on a tape or floppy for back-up purpose. File

copying routines are also known as peripheral interchange
programs since they arc used to copy 2 file from one
peripheral device onto another peripheral device.

jH

125 112 12
127 \ 119 119
137 \ 125 129
146 \ T/ 139
159 \ 129 150
__—\ = /_E—?__
139
146 /——
150
152
159

Figure 15.6. Merging of files A and B to produce
file C.

PRINTING

Printing routines are used to print file contents upon
a printer. File contents may be reproduced in different
formats on the printer if there is a difference in the intemal
and external data formats, c.g. binary to characicr
conversion. Special printing may be provided if the file
containg program instructions rather than Adata. Scme
selection and editing facilities are normally provided with
printing routines to enable parts of files to be output, e.g,
specifie number of records or blocks and certain portions
only of records to be printed.

MAINTENANCE

File maintenance is the term given to any system of
reorganisation of data items within a file, where the
reorganisation is independent of the information content of
the file. File maintenance software in effect is a form of

selective copying. Extra facilities include the combining of
data from more than one file, the deletion of records
indentified by record key or record count within a file, and
the selection of specific portions of records 0 be copied.

LABELLING

Files held on a storage device are identified by a
special block of data held as the first block on the file. This
block, called the file label, contains certain control
information enabling the {ile conients o be identified, and
may aiso contain additional information about the storage
unit iself, such as the date when the unit was last written
to, the number of times written 1o, and the serial number of
the unikt

SCRATCHING

In systems where file labelling is used, it is
generally not possible to write to a file unless the contro]
information in the label block indicates that the data on the
file is no longer valid. In any system, however, certain files
may hold data which has become out of the date, or is
invalid for other reasons, and thus is available for writing
0. A routine must thus be available to alter the label so as
to indicate that this state has been reached, even though the
purge (make pure and clean) date has not yet been reached,
or the file label is unchanged. The scraich routine will
cnable a new !abel to be written to a file with an already
valid label, and must therefore be used with care, as it is
possible to destroy valid data if wrongiy used.

DATA BASE SYSTEMS

With the reduction in the cost of computer systems,
data processing activities have increased drastically.
Nowadays, computers are being used not only by almost all
organizations, but also by the various departments of an
organization. Thus, an organization may use computers for
handling a variety of applications for its different
departmenis. In a conventional data processing system,
each seperate application had its own master file organized
in a sequential, direct, or indexed sequental fashion, The
records in each file were organized according to a single
key field. Associated with each of these files was a set of
programs for preparing required reports. Each file was
processed virtally independently cf the other files, and
each file would include its own set of processing programs
for processing that file. ;

This method of file processing “vas used on virtually
ali eariy computers and, indeed, is still commonly used
14 - A

Business Data Processing Concepts 195

today. However, for most modem processing needs, this
type of system has a number of shortcomings, which are as
follows: '

1. Data redundancy. The same basic data fields are
included in.many different files, For example,
suppose a file containing employee details is
organized according to the employee code as key
field. If we wish to get the names of employees
with a certain educational qualification from this
file, we nced to search all file records. If the
need for such an information became a routine,
then a new file structured on an educational
background key would be created and a new
program would be written to process this file. Of
course, this second file would duplicate much of
the data stored in the first personnel file.

2

Data inconsistency. When changes occur in a
data item, every file which contains that ficld
'should 'be updated to reflect the change.
Confusion can result when one file is updated
while another file containing the same field is
not updated. This is a very common occurrence
and leads to the problem of inconsistency. If one
of the files is inadvertently not updated correctly,
then the same entries in different files will be
different (inconsistent) resulting in frequent
discrepencies among reports produced from
_different files.

3. Lack of program/data independence. The
programs used with file oriented applications
usually contain "picture,” "format,” or “data”
statements that precisely define each data field to
be'processed. Anytime if there is a need to add
delete, or change data formats, the application
program must also be changed. Likewise, a
significant revision in a program may require a
restructuring of the data file processed by the
program. Changing programs to accommodate
data format changes is a major maintenance
activity in many data processing installations
today. :

4. Wastage of resources. Redundancy of data
between files also results in wasted storage and
wasted processing time in updating all files: I7

the -same data item is stored in several files,

obviously wasted storage will result. Moreover,
the cost of entering and storing the same data in

many files can be quite expensive.

196 Digital Computer Fundamcntals

THE DATA BASE CONCEPT

In order o overcome the problems of a conventional
file-oriented data processing system, the data base concept
was introduced Although there are differences of opinion
about what constitutes a data base system, thc most
prevelant view is that such systems possess the following
characteristics :

1. It is a centralized and integrated shared data file
which consists of all data uszd by a company

2. It is organized and structured in a different
manner than the conventional sequential file
organizations.

¥
3. Its organization permits access to any or all data

quantitics by all applications with equal ease.

4. Its organization is such that duplication of data is
minimised if not eliminated entirely.

5. It emphasizes the independence of programs and
data. It involves the concept of separating data
definition from the applications programs and
including it as part of the database.

6. It provides for the definition of logical
relationships which exist betwecen various
records in the data base.

7. - Itis stored on a direct-access storage device.

The first step in moving from ordinary file
management to a data base system is to scparate all data
definitions from the applications programs and to
consolidate them into a separate entity called a schema, as
illustrated in Figure 15.7. In addition to data definition, the
schema also includes an indicauon of the logical
relationships between various components of the data base.
This is represented in Figure 15.7 by the data structure
definitions. In other words, virtually everything there is 10
know about the data hase and its structure is included in the
schema.

The schema then hecomes a component of the
overall data base itself. From the schema the instailation
can generate dictionaries containing a complete description
of the data base. These will, in turn, be used by systems
analysts in defining new applications.

Data base systems are typically installed and
coordinated by an individual called the data base
ardministrator. He has the overall authority to establist and

control data definiticns and standards. He is responsible for
determining the relationships among data clements, and for
designing the data base security system 10 guard against
unauthorised use. He also trains and assists applications
programmers in the use of data base. A data dictionary is
developed and used in a data base to document and
maintain the data definitions.

w

& | Procedurés| | Procedures Procedures
o

(o] - - -

o L] e se @ .

m =

C - - L]

o

5 Data Data Data

& | definitions | | definitions definitions
<L

-

D.ata The
slructgre Schema
definitions

Figure 15.7. [Illustrating the use of schema in data
base for separating data definitions
from programs.

DATA BASE MANAGEMENT SYSTEM

A collection of programs required to store and
retricve data from a data base is called a data base
management system (DBMS). As shown in Figurc 15.8, the
principal components of a DBMS are a dala description
module and a data manipulation module. The data
description inodule of the DBMS analyzes the data
requirements of applications programs and transfers control
to the data manipulation module, which retrieves the
nceded data elements from the data base.

14- B

DBMS

T T 7

| |

| Dala :

Application 1 Description

Program 1 modte |

| I

| I

|

_ |t 1

|
Cutpul ! Data T Data
repart + manipulation | base

| mooule T

e t®™ | a

I "

N I

Figure 15.8. Principal components of a DBMS.

A DBMS can organize, process, and present selected
data elements from the data base. This capability enables
decision makers to search, probe, and query data base
contents in order to extract answers that are not available in
regular reports. For example, a query of the form "list out
all male employees who are more than 45 years old and less
than 50 years old and whose basic salary is more than Rs
3000/- per month" can easily be answercd from an
employee data base.

Data basc management systems frec the programmer
from the need to worry about the organization and location
of data. All or the daw: needed by an application program
can be accessed, regardless of access method, record
location, or record content Programming is speeded up
because the programmer can concentrate upon the logic of
the application. Most DBMS are designed 1o interact with
the commonly used programming languages such as
COBOL. Many DBMS include special, user-friendly query
languages. These languages can be casily lcammed by
nonprogramming users of the system, enabling them to
access the data base for information as needed without the
help of any programmer.

DATA BASE STRUCTURING TECHNIQUES

We have seen how seqUetiial, dircct and indexed
sequential approaches are used to organize and structure the
data in single files, However a DBMS is able o integrate
data elements from several files 10 answer specific user
inquiries for information. This means that the DBMS is

Business Data Processing Concepts 197

able 1o access and retrieve data from nonkey record ficlds.
That 15, the DBMS is able to structure and ue together the
logically related data from scveral,large files. Identifying
these logical relationships is a fob of the dawa base
administrator. A data definition language is usced for this
purpose. The DBMS may then employ onc of the following
structuring techniques for the efficient storage, access, and
retrieval operations of data.

List structures. In this method, records are linked
together by the use of pointers. A pointer is a data item in a
record that identifies the storage location of another
logically related record. For example, let us assume that an
employee file contains five records. There is one record for
each employee. Now assume that we wish to find out all
employees with a job classification of C2. One way to do
this is to add a pointer at the end of cach record for job
classification C2. The pointer simply indicatcs (or points
10) the address or location of ncxt record containing an
emplpyec with a job classification of C2. Pointers for job
classification C2 arc shown in Figurc 15.9. When a list of
records are tied together using pointers, the list.is called a
linked list.

Job Pomter

Key Name Sox Classificatior. Pay rale for C2

ef--;.‘ wn l K P. SINHA I M l c2 —] 12.00 [sz
i]

L“TT" ‘ R.S. PATEL I F I c2 l 1000 l 104 |

f 103 I N.P. SINGH I M [c1] 15.00 l j

104 l RK. RANA] M I c2 I 14.00 ISmoJ

T

| 105 i V. RANI l F

Figyre 15.9. A list structure using a pointer Yor C2.

198 Digital Computer Fundamentals

With pointer, the addresses and locations of relaied
records are actually placed in the records themselves. An
alternative 0 pointers is the index or inverted list. In this
micthod, the relationship between various data elements is
placed in a separate file or table called an index or an
inverted list. It is referred 10 as an inverted list because the
attribute values, such as sex, job classificauon, and pay rate
are inverted with the keys used for direct access. In other
words, the key for the record and the actual contents or
auributes of the record are reversed. This allows us to start
with an aitribute, such as job classification, and determine
which records contain employees with that particular
attribute. Inverted lists for sex, job classification, and pay
rates of empleyees of Figure 15.9 are shown in Figure
15.10.

Suppose if there is a query o determine all
employees belonging o job class Cl, then the computer
goes- 10 the job classification index and reads the pointer
values for job classifitation C1. This alicws the computer
to directly access the records of employees 103 and 105, the
employces belonging 10 job classification C1. Similarly, the
index for sex can Be used o list out all the male or all the
female employees directly. Also the pay rate index can be
used to find employees with certain pay rate ranges.

SEX INDEX
Key Values Pointer Values
M 101, 103, 104
F 102, 105

JOB CLASSIFICATION

INDEX

Key Vulues Pointer Values

C1 103, 105
C2 101,102, 104

PAY RATE INDEX

- Key Values

5.01—10.00
10.01--15.00

Pointer Values

103, 105
101, 103, 104

Fig 15.10. Example of indexes and inverted Lists

Hierarchical or tree siructures. In this method, data
units are structured in multiple levels that graphically
resemble an inverted tree with the root at the top and
branches formed below. Below the single-root data
component arc subordinate elements or nodes, cach of
which, in tum, has one or more other clements. There is a
parent-child relationship in a hierarchical structure. A
parent node is one that has onc or more subordinate
elements or nodes. The data and records that are below the
parent node are its children nodes. There may be numerous
children nodes under each parent node, but there can be
only one parent node for any one child node. Note that the
branches in a tree structure are not connccted. A typical
hierarchical structure is shown in Figure 15.11.

Customer

[TL
I !

Address Craciy Invoica

O T

Tatal
Pin Specitic

Amounl
Code Progucts of Invoice

City Stale

e

Product
Code
Number

Quantity Unit
Supplea Price |

Figure 15.11. A typical hierarchical (tree) structure.

Studenl Stdent Studant
1 2

Subject Subjec! Subiect Subjact Subject
1 2 3 4 5
‘- 2

Figure 15.12. A typical network structure.

The hierarchical structure for data bases in very
popular. A large number of computer programs have been
written that use this structure. On the other hand, there are
also disadvantages. While it is possibie to force most data
into a hierarchical structure, it can be difficult and
awkward, In addition, a hierarchical structure can be more
complex and more difficult to understand for managers and
executives. Even then, the hierarchical structure continucs
to be 2 dominant one for Jarge organizations, such as airline
companies and credit card companies.

Nerwork structures. A network structure is an
extension of the “hierarchical or tree structure. Instead of
having only one¢ paremt node, however, the network
structure can have multiple parent nodes for a child node.
Thus. each node may have several owners and may, in turn,
own any number of other daia items. Data management
software permits the extraction of the needed information
from such a strueture by beginning with any record in a file.

A typical network structure illustrating the
relaticnship between students and the subjects taken by
them is shown in Figure 15.12. There are three students and
five subjects. The lines drawn between the students and the
subjects show which students have taken which subjects. Tt
can be easily seen that student 1 has taken subjects 1, 3, and
5, that student 2 has taken subjects 1, 2, and 4, and that
student 3 has taken subjects 3, 4, and 5. Of course. there
could be thousands of students and many more subjects.

Relational structures. The overall purpose of this
model is 10 relate data records using a standard tabular
format. It uses nomal two-dimensional tables to describe
ali relationships between data. For example, relational

Business Data Processing Concepis 199

tables could be established to link a college course with the
instructor of the course, and with the location of the class as
shown in Figure 15.13. To find the name of the instructor
and the location of the Hindi class, the courscfinstructor
relation is scarched to get the name of the instructor (R.
Pandey), and the course/location relation table is searched
to get the class location (Room 210). Many other relations
are, of course, possible.

COURSE/INSTRUCTOR
RELATION TABLE
Course Instructor

English S.K. Ray
Hindi R Pandey
Physics P.K. Sen
Chamistry RS Gupts
Maths N.P. Singh
. .
- .

COURSE/ LOCATION OTHER
RELATION TABLE RELAT!ION TABLES
Couise Lozation
For axample
z 5 & & Iables relating
gl 0om 1
Matns | Room 2 i et
Chemistry Room 115 9.
Physics Room 108 aays ol meeling,
Hindi Room 201 hours of credit,
. . etc
. .

Figure 15.13. DNustrating relational siruciure.

The relational model is 2 relatively new daia base
structuring technique. This model docs not forée us to use a
structure, such as the hierarchical structure or the netwerk
structure. This is one of the advantages of the relational
approach. The data in the relational model, in most cases,
can be identical to the actual relationships that exist
between the records and various data items. This is an
important advantage over hierarchical and network models.
As a result, there has been a considerable amount of interest
in developing relational data basc systems. Today relational
models exist for large computers as well as small
microcomputers.

ADVANTAGES AND LIMITATIONS OF DATA BASE
SYSTEMS

In comparison to a conventional file-oriented data
processing system, a data base system enjoys the following
advantages :

200 Digital Compuier Fundomentals

(s8]

The inegration and sharing of data files
minimizes the duplicanon and redundancy of
data to a great exicnl.

Integration of waw files also results in a
considerable saving of storage space and in yata
cntry and data storage costs.

Fewer applications programs need to be
developed for obtaining various reports due 1o
independence of programs and data.

The query language facility helps non-
programming personncl to access the data base
for information as nceded without the help of
any programmer.

Faster preparation of information to support
nonrecurring tasks and changing condilions is
possible.

Updation of data becomes casier due to
integration of data files. Fewer crrors may result
when several records may be updated
simultaneously.

On the other hand, the following-are some of the

limitations of a data base system :

1.

!\)

More complex and expensive hardwarc and
software resources are necded.

Sophisticated security measures must be
implemented to prevent unauthorised access of

sensitive data in online storage.

Hardware or softwarc failures might result in the
destruction of vital data base conients.

A lengthy conversion period may be needed,
higher personnel training costs may be incurred,

and more sophisticated skills are needed by those
responsible for the data base system.

QUESTIONS

What is the difference between data and
information ?

What is meant by data processing ?

What is a data processing system ?

11

15.

16.

22.

Describe the data storage hicrarchy,

Give an example to illustrate the relationship
between a characler, a ficld, a record, and a file.

What is the difference between a master file and
a transaction file ?

How arc dai2a organized in busincss data
processing systems ?

What is 2 key field ? What role does it play in
file creation ?

How is a sequential filc organized ? How are
records in a scquential file accessed ? How are
these records processed ?

What conditions support the use of sequential
file 7

How is a record stored in a direct file ? How is it
retricved and processed ?

What conditions support the use of direct files
and dircct-access processing ?

How arc records stored in an indexed sequential
file ? How are they retricved and processed ?

Discuss the advantages and limitations of the
sequential, dircct, and indexed sequential file
approaches.

What arc file utilities ?

Differentiate between the process of sorting and
merging of files.

Explain the use of the following file utilities :
copying, printing, labelling, and scratching.

What are the shortcomings of a conventional file
oricnted data processing system ?

What are the characteristics of a data base
system ?

What is a data base schema ?

What are the jobs and responsibilities of a data

base administrator ?

What is a data dictionary ?

23

24,

25,

What is a data base management system ? How
is it used ?

Identify and discuss the structuring techniques
used by data base management systems.

What is an inverted list 7 How does it compare

26.

27.

Business Data Processing Concepts 201

to a pointer ?

What is the difference between a hicrarchical
and a network structure ?

What are the advantages and limitatuons of a data
base system ?

