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1.1.  Definition .

The field of science, which deals, with the energies possessed by gases and vapours, is known
as Thermodynamies. It also includes the conversion of these energies in terms of heat and mechanical
work and their relationship with properties of the system. A machine, which converts heat into
mechanical work or vice versa, is known as Hear Engine. The field of engineering science, which
deals with the applications of thermodynamics and its laws to work producing and work absorbing
devices, in order to understand their functions and improve their performance, is known as Thermal
Engineering.

The heat is, usually, generated by the combustion of fuel which may be solid, liquid or gas. It
is supplied to the working substance (a source of conveying heat to the heat engine for doing work
in the engine cylinder) at a higher temperature. A part of the heat energy is converted into mechanical
work by expanding the working substance, within the engine cylindes. The remaining heat energy is
rejected at a lower temperature. 7

The working substances, widely ued in the heat engines, are fluids in the gaseous or liquid
state. A mixture of air and fuel is used as & working substance in interal combustion engines, and
water vapour (steam) in the steam engines or steam turbines. \

1.2.  Fundamental Units

The measurement of physical quantities is one of the mostimportant operations+n engineering.
Every quantity is measured in terms of some arbitrary, but internationaily accepted units, called
fundamental units,
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1.3. Derived Units. ;

” Some units are expressed in terms of other units, which are derived from fundamental units
are known as derived units e.g. the unit of area, velocity, acceleration, pressure etc,
1.4. Systems of Units

There are only four systems of units, which are commonly used and universally recognised.
These are known as :

1. C.G.S. units, 2. F.P.S. units, 3. M.K.S. units, and 4. S.I. units.

1.5. C.GS. Units .

In this system, the fundamental units of i'\;n gth, mass and time are centimetre, gram and s&cond
respectively. The C.G.S. units are known as abgolute units or physicist's units.
16. F.P.S. Units

In this system, the fundamental units of Jength, mass and time are foot, pound and second
respectively. '
1.7. M.K.S. Units

In this systen, the fundamental units of length, mass and time are metre, kilogram and second
respectively. The M.K.S. units are knowh as gravitational units or engineer's units.
18. S.L Units (International System of Units)

The 11th General Conference* of Weights-and Measures have recommended a unified ahd
systematically constituted system of fundamental and derived units for international use. This system
is now being used in many countries. In India, the standards of Weights and Measures Act, 1956 (vide
which we switched over to M K.S. units) has been revised to recognise all the S.1. units in industry
and commerce.

In this system of units, there are seven fundamental units and two supplementary units, which
cover the entire field of science and engineering. These units are shown in the following table.

Table 1.1. Fundamental and supplementary ynits.

S.No. Physical quantity Unit

Fundamental units

15 Length (§) Metre (m)

2 Mass (m) Kilogram (kg)

3 Time (1) Second (s)

4. Temperature [ﬁ Kelvin (K)

5. Electric cumrent (I) Ampere (A)

6. Luminous intensity (/) Candela (cd)

i Amount of substance (n) Mole (mal)
Supplementary units

i Plane angle (o B. 6, ¢) Radian (rad)

2. Solid angle {E}_ Steradian (sr) )

—_— —
* It is known as General Conference of Weights and Measures {C.G.P-M ). tisan international OrEnIsAtion,
of which most of the advanced and developing countrics (inciuding India) are members, The conference
“has been entrusted with the task of preseribing definitions for various units of weights and measures. which

are tae very basic of science and technology today.
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The derived units, which will be commonly used in this book, are givenin the following table :

Table 1.2. Derived units.
[ sve. Quantity - Symbol Unit 1
1 Linear velocity v mis
2% Linear acccleration a m/s?
3. Angular velocity [ rad/s
4, Angular acceleration a rad/s’
5; Mass density ' p kg/m’
6. Force, Weight F.W N; IN = lkg-m/s*
7 Pressure p N/m?
8. Work, Energy, Enthalpy W.E H J; 1 =1N-m
9, Power P WilwW=1l5s
10. Absolute or dynamic viscosity 1 N-sim’
11, Kinematic viscosity v m'fs
12. quue;lcy i Hz: 1Hz =1 cycle/s
13. Gas constanl R kg K
14. Thermal conductance h Wm' K
13. Thermal conductivity k WmkK-
16, Specific heat c Jkg K
17. Molar mass or Molecular mass M kg/mol
 E—
1.9. Metre _

The metreis defined as the length equal to 1 650763.73 wavelengths in vacuuim of the radiation _
corresponding to the transition between the levels 2 p,, and 5 d; of the Krypton - 86 atorn.
1.10. Kilogram

The kilogram is defined as the mass of the international prbloiype (standard block of platinum
- iridium alloy) of the kilogram, kept at the international Bureau of Weights and Measures at Sevres,
near Paris.
1.11. Second

The second is defined as the duration of 9 192 631 770 periods of the radiation corresponding
o the transition between the two hyperfine levels of the ground state of the cacsivm - 133 atoin.

1.12. Kelvin e

The kelvin is defined as the fraction 1/273.16 of the thermodynamic temperature of the trinle
point of water. £
Note. The triple point of water is taken as a furdamental fixed point having a temperature 273.16 K.
1.13. Presentation of Units and their Values

The frequent changes in the present day lite are facilitated by an international body known is
Interational Standard Organisation (ISO) which makes recommendations regardirg international
standard procedures. The implementation of SO recommendation, in a country, is assisted by its

organisation appointed for the purpose. In India, Bureau of Indian Standards (BIS) previously known
as Indian Standards Institution (ISI) has been created for this purpose. We have already discussed
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that the fundamental units in M.K.S. and S.1. units for length, mass and time is metre, kilogram and
second respectively. But in actual practice, it is not necessary to express all lengths in metres, all
masses in kilograms and all times in seconds. We shall, sometimes, use the convenient units, which
are multiples or divisions of our basic units in tens. As a typical example, although the metre is the
unit of length, yet a small length of one-thousandth of a metre proves to be more convenient unit,
especially in the dimensioning of drawings. Such convenient units are formed by using a prefix in
front of the basic units to indicate the multiplier. The full list of these prefixes is given in the following
table,

Table 1.3. Prefixes used in basic units.

Factor by which the units Standard form Prefix Abbreviation
is multiplied
& 1 000 000 000 000 102 tes T
1 000 000 000 10° giga G
1 000 000 108 mega M
1 000 10° kilo k
100 10 hecto* h
10 10! deca* da
0.1 10! deci* d
0.01 102 centi* [
0.001 107 milli m
+0.000 001 * micro n
0.000 000 001 10 nano n
0.000 000 000 001 10712 pico p

1.14. Rules for S.1. Units

The eleventh General Conference of Weights and Measures recommended only the funda-
mental and derived units for S.I. system. But it did not elaborate the rules for the usage of the units,
Later on many scientists and engineers held a number of meetings for the style and usage of S.I. units.
Some of the decisions of the ineetings are as follows : '

1. For numbers having five or more digits, the digits should be placed in groups of three
separated by spaces** (instead of commas) counting both to the left and right to the decimal point,

2. In a four digit number,*** the space is not required unless the four digit number is used in
a column of numbers with five or more digits.

3. A dash is to be used to separate unis that are multiplied together. For example, newton x
metre is written as N-m. It should not be confused with mN, which stands for millinewton.

4. Plurals are never used with symbols. For example, metre or metres are written as m.

5. All symbols are written in small letters except the symbols derived from the proper names.
For example, N for newton and W for watt. |

*  These prefixes are generally becoming obsolete probably due to possible confusion. Moreover it i
becoming a conventional practice 1o use only those powers of ten which conform to 10°%, where x is
positive or negative whole number.

**  [In certain countries, comma is still used as the decimal mark.

**%  In certain countries, a space is used even in a four digit number,
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6. The units with names of scientists should not start with capital letter when written in full.
For example, 90 newton and not 90 Newton.

At the time of writing this book, the authors sought the advice of various international
authorities, regarding the use of units and their values. Keeping in view the international reputation
of the authors, as well as international popularity of their books, it was decided to present units* and
their values as per recommendations of ISO and BIS. It was decided to use :

4500 noi 4500 - or 4,500

7 589 000 not 7589000 or 7,58,90,00
0.01255 mot  0.01255 or 01255
30x 10° not  3,0000,000  or 3% 10

The above mentioned figures are meant for numerical valu:s only. Now let us discuss about
the units. We know that the fundamental units in S.1. system of units for length, mass and time are
‘metre, kilogram and second respectively. While expressing these quantitics, we find it time consum-
ing to write the units such as metres, kilograms and seconds, in full, every time we use them. As a
result of this, we find it quite convenient to use some standard abbreviations.

We shall use :

m for metre or metres

km for kilometre or kilometres
kg for kilogram or kilograms

t for tonne or tonnes

s for second or seconds

min for minute or minutes

N-m for newton'x metres (e.g. work done)
kN-m for kilonewton x metres

rev for revolution or revolutions
rad for radian or radians

1.15. Newton’s Laws of Motion

Newton has formulated three laws of motion, which are the basic postulates or assumptions
on which the whole system of dynamics is based. Like other scientific laws, these are also justified
as the results, sp obtained, agree with the actual observations. These three laws of motion are as
follows : z

I Newton's First Law of Motion. It states, 'Every body continues in its state of rest or of uniform
* motion in a straight line, unless it is acted upon by some external force."’ This is also known as Law
of inertia.

The inertia is that property of a atter, by virtue of which a body cannot move of itself, nor
change the motion imparted to it. '

2. Newlon's Second Law of Motion. Tt states, "The rate of change of momentum is directly
proportional to the impressed force and takes place in the same direction in which the force acts."

3. Newion's Third Law of Motion. It states "To every action, there is always an equal and
opposite reaction.”

*  Insome of the question papers of the universities and other examining bodies, standard values are not used.
The authors have tried to avoid such questions in the text of the book. However, at certain places the
questions with sub-standard values have to be included, keeping in view the merits of the question from
the reader's angle.
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1.16. Mass and Weight

Sometimes much confusion and misunderstanding is created, while using the various sysiems
of units in the measurement of force and mass. This happens, because of the lack of clear under-stand-
ing of the difference between mass and weight. The following definitions of mass and weight should
be clearly understood. '

1. Mass. Itis the amount of matter contained in a given body, and does not vary with the
change in its position on the earth’s surface. The mass of a body is measured by direct comparison
with a standard mass by using a lever balance.

2. Weight. Itis the amount of pull, which the earth exerts upon a given body. Since the pull
varies with the distance of the body from the centre of the earth, therefore weight of the body will
also vary with its position on the earth's surface (say latitude and elevation). It is thus obvious, that
the weight is a force.

The earth’s pull in metric units, at sea level and 45° latitude, has been adopted as one force
unit and named one kilogram of force. Thus it is a definite amount of force. But, unfortunately, it has
the same name as the unit of mass. The weight of a body is measured by the use of a spring balance,
which indicates the varying tension in the spring as the body is moved from place to place.

Note. The confusion in the units of mass and weight is eliminated, to a great extent, in S.1. units. In this system,
mass is taken in kg and weight in newtons. The relation between the mass (m) and the weight (W) of a body is

W=mg or m=Wpg
where W is in newtons, m is in kg and g is the acceleration due to gravity in mis’,
1.17. Force

Itis an important factor in the field of Engineering science, which may be defined as an agent
which produces or tends to produce, destroy or lendssto destroy the motion. According to Newton's
Second Law of Motion, the applied force or impressed force is directly proportional to the rate of
change of momentum. We know that

Momentum = Mass x Velocity

Let m = Mass of the body,
u = Initial velocity of the body,
v = Final velocity of the body,
a = Constant acceleration, and
# = Time required to change the velocity from u to v.

. Change of momentum = mv—-mu

muv-mu _ m(v-u -
and rate of change of momentum = - = (r )=ma [ "r":.aJ
or Force, F «« ma or F=kma

where k is a constant of proportionality,

Forthe sake of convenience, the unit of force adopted is such that it produces a unit acceleration
to a body of unit mass.

F = ma = Massx Acceleration

In 8.1 system of units, the unit of force is called nawton (briefly written as N). A newton may
be defined as the force whil& acting upon a mass of one kg produces an acceleration of | m/s%in the
direction of which it acts. Thus

IN = Ikgx 1m/s? = | kg-ny/s?
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1.18. Absolute and Gravitational Units of Force

We have already discussed that when a body of mass 1 kg is moving with an acceleration of
I m/s?, the force acting on the body is | newton (briefly written as | N). Therefore when the same
bady is moving with an acceleration of 9.81 m/s’, the force acting on the body is 9.81 N. But we
denote 1 kg mass attracted towards the earth with an acceleration of 9.81 mi/s” as | kilogram-force
(briefly written as kgf) or | kilogram-weight (briefly written as kg-wt). Itis thus obvious, that

| kgf = | kgx9.81 m/s® = 981 kg-ln{sz =031 N sk AN =1 kg-ma’sl) '

The above unit of force i.e. kilogram force (k) is called gravitational or engineer's units of
force, whereas newton is the absolute or scientific or 8.1 uwnits aof force. It is thus obvious, that the
gravitational or engineer’s units of force are g times greater than the unit of force in the absolute or
S.1. units.

It will be interesting to know that the mass of the body in absolute units is numerically equal
1o the weight of the same body in gravitational anits. For example, consider a body whose miss,

m = 100kg
Therefore the force, with which the body will be atwacted towards the centre of the earth,
F=ma=mg=100x981 = 981 N

Now, as per definition, we know that the weight of a body is the force, by whichit is attracted
towards the centre of the earth, Therefore weight of the body,

W= 98IN = 981/981= 100 kgf v Thet = 9.81N)

in brief, the weight of a body of mass m kg at a place where gravitutional acceleration is *g’
m/s” is m.g newtons.

i.19. Thermodynamic Systems
The thermodynamic system (or simply known as system) may f::%r:w

be broadly defined as a definite area or a space where some thermo-

dynamic process* is taking place. It is a region where cur attention is

focussed for studying a thermodynamic process. A little observation Surroundings

will show that a thermodynamic system has its boundaries and any-

thing outside the boundaries is called its surroundings asshownin Fig. g 11 Thera  'ynamic

I.1. These boundaries may be fixed like that of a tank enclosing a

certain mass of compressed gas, or movable like boundary of a certain
* volume of liquid in a pipe line. "

syslem,

1.20. Classification of Thermodynamic Systems

The thermodynamic systems may be classified into the
tollowing three groups :

I. Closed system ; 2. Opensystem ; and 3. Isolated system.

These systems are discussed, in detail, as follows System (Gas)

| Closed system. This is a system of fixed mass and
identity whase boundaries are determined by the space of the
matter (working substance) occupied in it

A closed system is shown in Fig. 1.2. The gis in the System boundary
eylinder is considered as a system. If heat is supplied to the Fig. 1.2. Closed thermodynamic
cylinder from some external source, the temperature of the gas sysiem.
will increase and the piston will rise.

Y Reler Arl. 1.25
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As the piston rises, the boundary of the system moves. In other words, the heat and work
energy crosses the boundary of the system during this process, but there is no addition or loss of the
original mass of the working substance. It is thus obvious, that the mass of the working substance,
which comprises the system, is fixed.

Thus, a closed system does not permit any mass transfer across its boundary, but it permits
transfer of energy (heat and work).

2. Open system. In this sys- Heat |
tem, the mass of the wcrking sub- === 1
stance crosses the boundwiv of the |, . o —=H.P, Air out
system. Heat and work inay also T T
cross the boundary. Fig. 1.3 shows r-"-‘l i____“]

the diagram of an air compressor

which illustrates an open system.
The working substance

crosses the boundary of the system as

I
4 L

System (Air ‘, Of) o— Work Motor

i
the low pressure (L.P.) air enters the E
compressor and leaves the high pres- P e e s T |
sure (H.P.) air. The work crosses the Z System boundary

boundary of the system through the
driving shaft and the heat is trans-
ferred across the boundary from the
cylinder walls.

Thus, an open system permits both mass and energy (heat and work) transfer across the
boundaries and the mass within the system may not be constant.

Note. An open system may be referred to as eonirol volume. An open system is equivalent in every respect (o a
control volume, but the term open system is used throughout this fext as it specifically implies that the system
can have mass and energy crossing the system boundary.

. 3. Isolated system. A system which is completely uninfluenced by the surrounding is called
an isolated system. It is a system of fixed mass and no heat or work energy cross its boundary. In
other words, an isolated system does not have transfer of either mass or energy (heat or work) with
the surroundings. An open system with its surroundings (known as an universe) is an example of an
isolated system.

Note. The practical examples of isolated systems are rare. The concept of this system is particularly useful in
formuilating the principles derived from the Second Law of Thermodynamics.
1.21. Properties of a System

The *state of a system may be identified or described by certain observable quantities such as
volume, temperature, pressure and density etc. All the quantities, which identify the state of a system,
are called properties.

Note. Thermodynamics deals with those quantities also which are not properties of any system. For example,
when there is a flow of energy between a system and its surroundings, the energy transferred is not a property
of the system or its surroundings. .

1.22. Classification of Properties of a System

The thermodynamic properties of a system may be divided into the following two general
classes :
I. Extensive properties, and 2. Intensive properties.

Fig. 1.3. Open thermodynamic sysiem.

* Refer Art. 1.23.
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1. Fxensive properties. A quantity of matter in a given system 15 divided, notionally into a
number of parts. The properties of the system, whose value for the entire system is equal to the sum
of their values for the individual parts of the system are called exténsive properties, e.g. total volume,
total mass and total energy of a system are its extensive properties,

2. Intensive properties. It may be noticed that the temperature of the system is not equal to the
sum of the temperatures of its individual parts. It is also true for pressure and density of the system.
Thus properties like temperature, pressure and density are called intensive properties.

Note, The ratio of any extensive property of a system to the mass of the system is called an average specific
value of that property (also known as intensive property) e.g. specific volume of a system (v,) is the ratio of the
total volume () of the system to its total mass (m). Mathematically,
v, = v/m
The specific volume is an intensive property.
1.23. State of a System

The state of a system (when the system is in thermodynamic equilibrium) is the condition of
the system at any particular moment which can be identified by
the statement of its properties, such as pressure, volume, lem-
perature gtc. The number of properties which are required to
describe a system depends upon the nature of the system.

Consider a system (gas) enclosed in a cylinder and piston
arrangement as shown in Fig. | 4. Let the system is initially in
equilibrium when the piston is at position 1, represented by its
properties p,, v, and T,. When the system expands, the piston

moves towards right and occupies the final position at 2. At this, E Sys:amﬁ Z

the system is finally in the equilibrium state represented by the (Gas) ':_, :4:
properties p,, v, and T,. The initial and final states, on the piv,T, P Cyinder
pressure-volume diagram, are shown in Fig. 1.4. 1 Piston 2

1.24. Path of Change of State Ryl

When a systern passes through the continuous series of equilibrium states during a change of
state (from the initial state to the final state), then it is known as path of change of state. When the
path is completely specified, it is then known as path of the process.

L.25. Thermodynamic Process ) f

When a system changes its state from one equilibrium state
to another equilibrium state, then the path of successive states
through which the system has passed is known as thermodynamic
process. In Fig. 1.4, 1-2 represents a thermodynamic process.

— Pressure —
»
@

1.26. Thermodynamic Cycle or Cyclic Process 2

When a process or processes are performed on a system in
.such a way that the final state is identical with the initial state, it is — Volume —
then known as a thermodynamic cycle or cyclic process. InFig. 1.5,
I-A-2 and 2-B-1 are processes whereas 1-A-2-B-1 is a thermody- Fig. .5. Thermodynamic process
namic cycle or cyclic process. or cyclic process.

1.27. Quasi-static or Quasi-equilibrium Process

When the process is carried out in such a way that at every instant, the system deviation from
the thermodynamic equilibrium is infinitesimal, then the process is known as gquasi-static or
gquasi-equilibrium process and each state in the process may be considered as an equilibrium state.
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Consider a system (gas) enclosed in a cylinder and piston arrangement as shown in Fig. 1.6
{a). Let the system is initially in equilibrium state when the piston is at A, where the pressure is p,,
volume v, and lemperature T, as shown in Fig. 1.6 (b). The weight (W) on the piston is composed
of number of small weights which balances the upward force exerted by the system. If the whole
weight is remwved from the piston, then there will be unbalanced force between the system and the
surroundings and the piston will move upwards till it hits the stops at B. At this point B, the system
again comes to an equilibrium state where the pressure is p,,, volume v, and temperature 7, But the

intermediate states through which the system has passed, are non-equilibrium states whose properties
(pressure, volume and temperature) are not uniform throughout the system and thus the state of the
system cannot be well defined, Such a process is called irreversible or non-equilibrium process, as
shown by a broken line in Fig. 1.6 (&).

=5 Woghs . A
I A '"}‘& (Initial state) 1!3* -- ..Eq;;githrhm
A 'y Non equili —
Piston —p2 07/ i 2 i ,m';'l‘:"'““ 3 iI Quasi-static
prm i e | L 7
I A AN IR
SO | H
Cytinder | System (Gas) | n‘. n “1: ____ \_ Soe F‘-P n Y 8
lI { | (Final state) ] b 1. H
Surroundings L : H L L H
S - " Voiume —2 L ]
; y _— _ Volm'rre —_—
(a) (b) i () }

Fig. 1.6. Non-equilibrium and quasi-static (or quasi-equilibrium) process,

Now, if the small weights on the piston are removed one by one very slowly, then at any instant
of the upward movement of the piston , the deviation of the state from the thermodynamic equilibrium
will be infinitesimally small, if the gas system is isolated, Thus, every state passed through by the
system will be in equilibrium state. Such a process, which is the locus of all these equilibrium points
passed through the system, is known as guasi-static or quasi-equilibrium process.

Naote: The quasi-static or quasi-equilibrium process is also known as reversible process. A process which can
be reversed in direction and the system retraces the same equilibrium states is known as reversible process.

1.28. Temperature '

Itis an intensive therinogdynamic property, which determines the degree of hotness or the level
of heat intensity of a body, A body is said to be at a high temperature or hot, if it shows high level of
heat intensity in it. Similarly, a body is said to be at a low temperature or cold, if it shows a low level
of heat intensity.

The temperature of a body is measured with the help of an instrument known as thermometer
which is in the form of a glass tube containing mercury in its stem. Following are thc two commonly
used scales for measuring the temperature of a body :

1. Celsius or centigrade scale, and 2. Fahrenheit scale. g

Each of these scales is based on two fixed points known as freezing point of water under
atmospheric pressure or ice point and the boiling point of water or steam point.

1 Celsius or cenrigrade seale, This scale was first used by Celsius in 1742, This scale is mostly
used by engineers and scientists. The freezing point of water on this scale is marked as zero, and the
boiling point of water as 100, The space between these two points has 100 equal divisions, and each
division represents one degree Celsius (written as °C).

2. Fahrenheit scale. This scale was first used in 1665, In this scale, the freezing point of water
1s marked as 32 and the boiling point of water as 212. The space between these two points has 180
equal divisions and each division represents one degree Fahrenheit (written as °F).
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Note. The relation between Celsius scale and Fahrenheit scale is given by :
€. _F-2 € _ F-2
100" 180 " 57 7
Example 1.1. Find the temperature which has the same value on both the Celsius and
Fahrenheit scales. i

Solution.
Let x = Temperature which has the same value on both the Celsius
" and Fahrenheit scales.
We keigw that %= f;—” or 9C=S5(F-32)
9x =5(x-32) = Sx=160
9x-5x=-160 or 4x=-160

3, x=-160/4 = -40
Hence - 40° on the Celsius scale is equal to — 40° on the Fahrenheit scale. Ans.
1.29. Absolute Temperature '

As a matter of fact, the zero readings of Celsius and Fahrenheit scales are chosen arbitrarily
for the purpose of simplicity. It helps us in our calculations, when changes of temperature in a process
are known. But, whenever the value of temperature is used in equations relating to fundamental laws,
then the value of temperature, whose reference point is true zero or absolute zero, is used. The
temperature, below which the temperature of any substance can not fall, is known as absolute zero
temperature,

The absolute zero temperature, for all sorts of calculations, is taken as — 273°C in case of
Celsius scale and — 460°F in case of Fahrenheit scale. The temperatures measured from this ze.o are
called absolute temperatures. The absclute temperature in Celsius scale is called degree Kelvin
(briefly written as K)* ; such that K = °C + 273, Similarly, absolute tem perature in Fahrenheit scale
is called degrees Rankine (briefly written as °R) ; such that °R = °F + 460. i
1.30. Thermodynamic Equilibrium

A system is said to be in thermodynamic equilibrium, if it satisfies the fol lowing three
requirements of equilibrium,

1. Mechanical equilibrium. A system is said to be in mechanical equilibrium, when there is
no unbalanced forces acting on any part of the system or the system as a whole.

2. Thermal equilibrium. A system is said to be in thermal equilibrium, when there is no
temperature difference between the parts of the system or between the system and the surroundings.

3. Chemical equilibrium. A system is said to be in chemical equilibrium, when there is no
chemical reaction within the system and a'so there is no movement of any chemical constituent from
one part of the system to the other.
1.31. Equality of Temperature

Consider two bodies of the same or different materials, one hot and the other cold. When these
bodies are brought in contact, the hot body becomes colder, and the cold body becomes warmer. If
these bodies remain in contact for some time, a state reaches when there is no further observable
change in the properties of the two bodies. This is a state of thermal equilibrium, and at this stage the
two bodies have the equal temperatures. It thus follows that when two bodies are in thermal '
equilibrium with éach other, their temperatures are equal,

* In S L units, degrees Kelvin is not writien as “K but only K.

2-
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1.32. Pressure
The term ‘pressure’ may be defined as the normal force per unit area. The unit of pressure
depends upon the units of force and area.
In S.1. system of units, the practical unit of pressure is N/mm’, N/m’, kN/m?, MN/m? etc. But
sometimes a bigger unit of pressure (known as bar) is used, such that,
Ibar = 1% 10° N/m? = 0.1 x 10° N/m? = 0.1 MN/m’

Sometimes the pressure is expressed in another unit, called Pa (named after Pascal) and kPa,
such that
I Pa-= | N/m? and 1KkPa = 1 kN/m®
1.33. . Gauge Pressure and Absolute Pressure
All the pressure gauges read the difference between the actual pressure in any system and the
amospheric pressure. The reading of the pressure gauge is known as gauge pressure, while the actual
pressure is called absolute pressure. Mathematically,
Absolute pressure = Atmospheric pressure + Gauge pressure
This relation is used for pressures above atmospheric, as shown in Fig. 1.7 (a). For pressures
below atmospheric, the gauge pressure will be negative. This negative gauge pressure is known as
vacuum pressure. Therefore
Absolute pressure = Atmospheric pressure — Vacuum pressure
This relation is shown in Fig, 1.7 (b).

¥
Gauge pressure cogocem—geme—=- Y
Gauge pressure (-ve)
or Vacuum pressure
Absolute i Atmospheric
pressure Atmospheric pressure
pressure 1 Absolute pressure
() Relation between absolute, aimospherc (b) Relation between absolute, atmospheric
and gauge pressure. and vacuum pressure.
Fig. 1.7 \
The standard value of atmospheric pressure is taken as 1.013 bar (or 760 mm of Hg) at sea
level.
Note. We know that 1 bar = 10° Ngl?
- Atmospheric pressure = 1.01¥% 10° = 1013 x 10° N/m®
We alsc know that aimospheric pregssure .
= 760 mm of Hg
| mmof Hg .= 1013 10° /760 = 133.3 N/m’
or I N/m? = 76041013 x 10? = 7.5 % 10™? mm of Hg

1.34. Normal Temperature and Pressure (N.T.P.)

The conditions of temperature and pressure at 0°C (273 K) temperature and 760 mm of Hg
pressure are termed as normal temperature and pressure (briefly writien as N.T.P.)

1.35. Standard Temperature and Pressure (S.T.P.)

The temperature and pressure of any gas, under standard atmospheric conditions, is taken as
15°C (288 K) and 760 mm of He'respectively.
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Example 1.2. The pressure of steam inside a boiler, as measured by pressure gauge, is 1
N/mm?. The barometric pressure of the atmosphere is 765 mm of mercury. Find the absolute pressure
of steam in N/n?, kPa, bar and Nimn?’,

Solution, Given : Gauge pressure = | N/mm’ = 1 x 10° N/m” ; Atmospheric pressirre = 765
mm of Hg

We know that atmospheric pressure

= 765 mm of Hg

= 765% 1333 = 0.102x 10°N/m* .. ("" | mm of Hg = 133.3 N/im?)
.. Absolute pressure of steam

= Atmospheric pressure + Gauge pressure

= 0.102x 10°+ 1 x 10° = 1.102 % 10° N/m? Ans.

= 1102 kPa Ans. ... (" 1kPa=10’ N/m})
= 11.02 bar Ans. ... (" 1 bar = 10° N/m?)
= 1102 Nfmm® Ans. .. (" 1 Nfmm? = 10° N/m?)

Example 1.3. In a condenser of a steam power plant, the vacuunt is recorded as 700 mm of
mercury. If the-baromete~ md‘mg is 760 mm of mercury, find the absolute pressure in the condenser
in N/m?, kPa, bar and N/mm?

Solution.  Given : Vacuum pressure = 700 mm of Hg ; Barumeter readmg 760 mm of Hg

We know that absolute pressure in the condenser

= Atmospheric pressure — Yacuum pressure
= Barometric pressure — Vacuum pressure

= 760 -700 = 60 mm of Hg

= 60x133.3 =798 N/m* Ans.  ...( 1 mm of Hg= 1333 N/m?)
= 7998 kPa Ans. , (7 1 kPa=10° Nim?)
= 007998 bar Ans. .+ 1 bar= 10° Nim?)
= 0.007998 N/mm? Ans. ... | Nimm? = 10° Nfm?)

1.36. Energy

The energy is defined as the capacity to do work. In other words, a system is said to possess
energy when it is capable of doing work. The energy possessed by a system is of the following two
types :

I Stored energy, and 2. Transit energy (or energy in transition)

. The stored energy is the energy possessed by a system within its boundaries. The polcntlal
energy, kineti¢ energy and internal energy are the examples of stored energy.

The transit energy (or energy in transition) is the energy possessed by a system which is
capable of crossing its boundaries. The heat, work and electrical energy are the examples of transit
energy.

It may be noted that only the stored energy is a thermodynamic property whereas the transit
energy is not a thermodynamic property as it depends upon the path.

1.37. Types of Stored Energy

We have discussed above that the potential energy, kinetic energy and internal energy are the
aifferent types of stored energy. These energies are discussed, in detail, as follows :
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1. Potential energy. It is the energy possessed by a body or a system for doing work, by virtue
of its position above the ground level. For example, a body raised to some height above the ground
level possesses potential energy because it can do some work by falling on earth’s surface.

Let W = Weight of the body,
m = Mass of the body,

z = Distance through which the body falls, and
g = Acceleration due to gravity = 9.81 m/s”.
.. Potential energy,
PE=Wz=mg:z
It may be noted that

(a) When W is in newtons and z in metres, then potential energy will be in N-m.
(b) When m is in kg and z in metres, then the potential energy will also be in N-m, as discussed
below :

We know that potential energy,
PE:mgz:kgx?xm=N-m l1N=‘—gﬂ]

2. Kinetic energy. It is the energy possessed by a body or a system, for doing work, by virtue
of its mass “nd velocity of motion.

Let m = Mass of the body, and

V = Velocity of the body.
When m s in kg and Vis in m/s, then kinetic energy will be in N-m, as discussed below :
We know that kinetic energy,

3. R g8 b
KE=Llmroagx ™ KM Nm [N Ikg-m)
2 s s? ]

3. Internal energy. Tt is the energy possessed by a bady or a system due to its molecular
arrangement and motion of the molecules. It is usually represented by U.
In the study of thermodynamics, we are mainly concerned with the change in internal energy
(dU) which depends upon the change in temperature of the system. .
Notes. 1. The total energy of the sysiem (E) is equal to the sum of the above three types of energes.
Mathematically
E=PE+KE+U = mgzi-llxmvz-l-u

Any other form of the energy such as chemical energy, electrical energy eic. is neglected.
For unit mass, the above expression is written as
|

e=pethketu -=g;+-"—;-+u

2. When the system is stationary and the effect of gravity is neglected, then PE = 0, and KE = 0.1n
such a case

E=U or e=u
138. Law of Conservation of Energy

It states, "The energy can neither be created nor destroyed, though it can be transformed from
one form 1o any other form, in which the energy can exist.”
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1.39. Heat
The heat is defined as the energy transferred, without transfer of mass, across the boundary of
a system because of a lemperature difference between the system and the surroundings. It is usually
represented by Q and is expressed in joule (J) or kilo-joule (kJ).
The heat can be transferred in three distinct ways, i.e. conduction, convection and radiation.
The transfer of heat through solids takes place by conduction, while the transfer of heat through fluids
15 by convection. The radiation is an electromagnetic wave phenomenon in which energy can be
transported through transparent substances and even through a vacuum. These three modes of heat
transfer are quite different, but they have one factor in common. All these modes occur across the
surface area of a system because of a temperature difference between the system and the surroundi ngs.
The following points are worth noting about heat :
L. The heatis transferred across a boundary from asystem ata higher temperature toa system
at a lower temperature by virtue of the temperature difference.
2. The heat is a form of transit energy which can be identified only when it crosses the
boundary of a system. It exists only during transfer of energy into or out of a system.
3. The heat flowing into a system is considered as positive and heat flowing out of a system
is considered negative.

1.40. Specific Heat

The specific heat of a substance may be broadly deffited as the amount of heat required to raise
the temperature of a unit mass of any substance through one degree. It is generally denoted byc. In
S.1. system of units, the unit of specific heat () is taken as kJ/kg K. If m kg of a substance of specific
heat ¢ is required to raise the temperature from an initial teniperature of 7, to a final temperature of
T, then

Heat required = mc (7, - T,) k]
where T, and T, may be either in °C or in K.

Since the solids and liquids do not change the volume on heating, therefore they have only
one specific heat, But the gases have the following two *specific heats depending upon the process
adopted for heating the gas. )

1. Specific heat at constant pressure (c,). and

2. Specific heat at constant volume (c,).

Itmay be noted that ¢, is always greater than ¢, The average values of specific heats for some
commonly used substances are given in the following table. /

Table 14. Values of Specific heat for some commonly used substances.

Solids Specific heat Fluids Sple-cﬂfc heat Gases Specific heat at

fkiikg K) (ktikg K) constant pressure |
wAgR)

Steel 0.490 Water 4.187 Air ; 1.000

Copper 0.406 lee 2.110 Carbon dioxide 0.846

Zinc 0.389 Steam 2.094 Nitrogen 1.043

Mercury 0.138 Petrol 1.817 Oxygen 0.913

Coal 1.010 Alcohol 2512 Carbon monoxide 1.047

Coke 0.837 Paraffin oil 2140 Hydrogen 14.257

* For further details, please refer Art. 2.1
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1.41. Thermal or Heat Capacity

The thermal or heat capacity of a substance may be defined as the heat required to raise the
temperature of whole mass of a substance through one degree. Mathematically,

Thermal or heat capacity = m ¢ kI
where m = Mass of the substance in kg, and
¢ = Specific heat of the substance in kI kg K.

1.42. Water Equivalent

The water equivalent of a substance may be defined as the quantity of water, which requires
the same quantity of heat as the substance taraise its temperature through one degree. Mathematically,

Water equivalent of a substance

"

me kg

where m = Mass of the substance in kg, and

¢ = Specific heat of the substance in ki/kg K.
Note. The numerical value of the thermal capacity and the water cquivalent of the substance are the same but
they are expressed in different units,
Example 1.4. Calculate the quantity of heal required 1o raise the temperature of a steel
forging of mass 180 kg from 300 K to 1265 K. The specific heat of steel = 049 ki/kg K
Solution.Given : m = 180 kg ; T,=300K ; T, = 1265 K ; c = 0.49 kl/kg K
We know that the quantity of heat required
= Mass x Sp. heat x Rise in temp. = m¢ (T,-T)
= 180 0.49 (1265 -300) = 85 113 kJ Ans.

1.43. Mechanical Equivalent of Heat

It was established by Joule that heat and mechanical energies are mutually convertible. He
established, experimentally, that there is a numerical relation between the unit of heat and unit of
work. This relation is denoted by J (named after Joule) and is known as Joule’s equivalent or
mechanical equivalent of heat.

Note, In S.1. system of units, the unit of work done is joule or kilo joule (such that 1 J=1 N-mor i kI =1 kN-m).
The unit of heat is also joule or kilo joule, So we can straightway convert heat units into mechanical units and
Vice VErsa.

1.44. Worl:

In mechanics, work is defined as the product of the force (F) and the distance moved (x) in
the direction of the force. Mathematically, work done,
W=Fxx
The unit of work depends upon the unit of force and the distance moved. In S I. system of
units, the practical unit of work is newton-metre (briefly written as N-m). The work of I N-mis known
as joule (briefly written as J) such that | N-m=1J.
In thermodynamics, work may be defined as follows :

1. According to Obert, work is defined as the energ) transferred (without the transfer of mesy)
across the boundary of a system because of an intensive properfy difference ather than temperatiere
that exists between the system and surroundings.

In engineering practice, the intensive property difference is the pressure difference. The
pressure difference (between the system and the surrounding) at the surface of the system gives risc
10 a force and the action of this force over a distance is called mechanical work.
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In some cases, the intensive propery difference may be the electrical potential difference
between the system and the surrounding. In this case, the resulting energy transfer across the system
and boundary is known as electrical work,

2. According to Keenan, work is said to be done by a system during a given operation if the
sole effect of the systent on things external to the system (surroundings) can be reduced to the raising
of a weigh. -

The weight may not be actually raised but the net effect external to the system should be the
raising of a weight.

For example, consider a system consisting of a storage battery, as shown in Fig. 1.8. The
terminals connected W a resistance through a switch constitute external to the system (i.e. surround-
ings). When the switch is closed for a certain period of time, then the current will flow through the
battery and the resistance, as a resull the resistance becomes warmer. This clearly shows that the
system (battery) has interaction with the surroundings. In other words, the energy transfer (electrical
energy) has taken place between the sysiem and the surroundings because of potential difference (not

the temperature).
Winding drum

7

L |

Now according to the mechanics definition of work, there is no force which moves through a
distance. Thus no work is done by the system. However, according to the thermodynamic definition,
the work is done by the system. because the resistance can be replaced by an ideal motor (100% *
cfficient) driving a winding drum , thereby ralsmg aweight. Thus, the sole effect external to the system
(surroundings ) has been reduced to the raising of a weight. Hence, thermodynamic work is done by
the system,

-Fig. L8 Thermodynamic work.

Note, The work done by the system is considered as pasirive work, wh;lc the work done on the system is
considered as negar:mwork

1.45. Heat and WorkmA Path Function

Consider that a system from an initial equilibrium state |
reaches to a final equilibrium state 2 by two different paths 1-A-2
and 1-8-2, as shown in Fig. 1.9. The processes are quasi-static,

When the system changes from its initial state 1 1o final state
2, the quantity of heat transfer will depend upon the intermediate
stages through which the system passes, i.e. its path. In other words,
heat is a path function. Thus, heat is an in2xact differential and is
writlen as 80. On integrating, for the path 1-A-2,

p

of

1"
It

— b—av "1
Volume ——=

1
.I- 80 = [Q]2 =0, or 0, Fig. 1.9. Hu:mzn_d work-a
| 1 .

path function.
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It may be noted that ISQ # (0,— Q,, because heat is not a point function. Thus, it is
| \
meaningless to say ‘heat in a system or hieat of a system’. The heat can not be interpreted similar to

temperature and pressure.®

The work, like heat, is not a thermodynamic property, therefore it is a path function as its value
depends upon the particular path followed during the process. Since the areas upder the curves 1-A-2
and 1-B-2 are different, therefore work done by thesa two processes will also be different**. Hence,
work is an inexact differential and is written as 8W. On integration, for the path I-4-2,

i
Jow=w=w,_, o W
I .

2

As discussed above, j 3W = W, - W, because work is ‘ot a point function. Thus, it is

I

meaningless to say ‘work in a system or work of a system’. Since the work can not be interpreted
similar to temperature and pressure éf the system, therefore it is a path function and jt depends upon
the process. It is not a point functiorf as the temperature and pressure. The work dnnc in taking the
system from state 1 to state 2 will be Wifferent for different paths.
1.46. Comparison of Heat and Work

There are many similarities between heat and work. These ure

1. The heat and work are both transient phenomena. The systems do not possess heat or work.
When a system undergoes a change, heat transfer or work done may occur.

2. The heat and work are boundary phenomena. They are observed at the boundary of the
system. )

3. The heat and work represent the energy crossing the boundary of the system.

4. The heat and wark are path functions and hence they are inexact differentials. They are
written as 8Q and 8W. !

1.47. Power
It may be defined as the rate of doing work or work done per unit time. Mathematically,
. Work done
Power =
Y& = Timetaken

In S.1. system of units, the unit of power is watt (bneﬂy written ac W) which is equal to 1 J/s
or | N-m/s. Generally, a bigger unit of power called kilowatt (briefly written as kW) is used which
is equal to 1000 W.

Notes. 1. If Tis the torque transmitted in N-m or J and w is the angular speed in radfs, then
Paower, P =Tw = Tx2nNIGD walts o (n w =2 NI6D)
where N is the speed in r.p.m,

2. The ralio of power output to power input is known as efficiency. 1t is denoted by a Greck letter cta
(n). It is always less than unity and is represented as percentuge. Mathematically,

Efficiency.n = Loxer output
Power input
A
¥ Heal is not a thermodynamic property whereas the lemperalure and pressure are thermodynamic propert ics.

**¥  The area under the pressure - volume (p-v) diagram represents the work done during the process ind is
given hy pdo.
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14 ws of Thermodynamics
The following three laws of thermoaynamics are important from the subject point of view :
1. Zeroth law of thermodynamics, 2. First law of thermodynamics, and 3. Second law of
thermodynamics.
These laws are discussed, in detail, as follows :
1.49. Zeroth Law of Thermodynamics

This law states, "When two systems are each in thermal equilibrium with a third system, then
the two systems are also in thermal equilibrium with one another.”

This law provides the basis of temperature measurement.
150, First Law of Thermodynamics
™ This law may be stated as follows :
(a) "The heat and mechanical work are mutually convertible". According to this law, when a
closed systemundergoes a thermodynamic cycle, the net heat transfer is equal to the net work transfer.
Ini other words, the cyclic integral of heat transfers is equal to the cyclic integral of work transfers.
Mathematicaily,

foo-fow

where symbol j’ stands for cyclic integral (integral around a complete cycle), and 8Q and 8 Wrepresent
infinitesimal elements of heat and work transfers respectively. It may be noted that 8Q and SW are
expressed in same units.

(b) The energy can neither be created nor destroyed though it can be transformed from one
form to another. According to this law, when a system undergoes a change of state (or a thermody-
namic process), then both heat transfer and work transfer takes place. The net energy transfer is stored
within the system and is known as stored energy or total energy of the system. Mathematically

&0 - 6W = dE

The symbol & is used for a quantity which is inexact differential and symbol d is used for a
quantity which is an exact differential. The quantity £ is an extensive property and represents the
total energy of the system at a particular state. -

On integrating the above expression for a change of state from | to 2, we have

0 ,-W_,=E-E ... (0, Wand E are in same units)
For a unit mass, this expression is wrilten as '
fiz~Wia T 5% ‘
where 0, , = Heat transferred to the system during the process from state 1 to state 2,
W,_, = Workdone by the system on the surroundings during the process,and
E, = Total energy of the system at state 1

mV}
zPEI+KEI+Ui=*mgz1+T+U|
E, = Total energy of the system at state 2
mV}
= PE,+KE,+U, = mgz; + 2 +U,

*  Refer Art. 1.37
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Thus the above expression may be written as

Qia-W, = E-E, whi
= (PE, + KE, + U,) - (PE, + KE, + U,)
= (PE, - PE) + (KE,~ KE,) + (U~ U,) )

v v
m(gz—gz)+m 2 +(U,-U)

For unit mass, this expression is written as

]

vi v
Qo= @5L-g4)+ = + iy~ uy)
J 2 2

Notes. 1. When there is no change in potential energy of the system (i.e. when the height of the system from
the datum level is same), then PE, = PE,. Thus, the above equation (if) is written as

Q- W, = (KE,-KE)+(Uy-U)) ... (i)

2. When there is no change of PE and also there is no flow of the mass into or out of the system, then
PE, = PE,and KE, = KE,. Thus, the above equation (if) is written as

0 ,—-W,=U,-U =dU )
In other words, in a closed or non-flow thermodynamic system,
PE=0 and KE=0
Thus the equation (iv) is known as Non-flow energy equation.
3. For an isolated system for which @, , = W, , = 0, the above equation (i) becomes

E, = E,
This shows that the first law of thermodynamics is the law of conservation of energy,
1.51. Limitations of First Law of Thermodynamics

We have already discussed that according to first law of thermodynamics that

|. When a closed system undergoes a thermodynamic cycle, the net heat transfer is equal to
the net work transfer. This statement does_not specify the direction of flow of heat and work (i.e.
whether the heal flows from a hot body to a cold body or from a cold body to a hot body). It also does
not give any condition under which these transfers take place.

2. The heat energy and mechanical work are mutually convertible. Though the mechanical
work can be fully converted into heat energy, but only a part of heat energy can be converted into
mechanical work. This means that the heat energy and mechanical work are not fully mutually
convertible. In other words, there is a limitation on the conversion
of one form of energy into another form. PMM-L

A machine which violates the first law of thermodynamics
(i.e. energy can neither be created nor destroyed, but can be trans-
formed from one form to another) is known as perpetual motion .
machine of the first kind (briefly written as PMM-I). Itis defined as ~ Fig: 1.10. Perpetual motion
a machine which produces work energy without consuming an ~ Machine of the first kind,
equivalent of energy from other source. Such a machine, as shown in Fig. 1.10,is impossible to obtain
in actual practice, because no machine can produce energy of its own without consuming any other
form of energy.

1.52. Second Law of Thermodynamics

The second law of thermodynamics may be defined in many ways, but the two common
statements according to Kelvin - Planck and Clausius are as follows :

——— Work
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1. Kelvin - Planck Statement. According to Kelvin-Planck *Jt is impossible to construct an
engine working onacyclic process, whose sole purpose is to convert heat energy fromasingle thermal
reservoir* into an equivalent amount of work’. In other words, no actual heat engine, working on a
cyclic process, can convert whole of the heat supplied to it, into mechanical work. It means that there
is a degradation of encrgy in the process of producing mechanical work from the heat supplied. Thus
the Kelvin - Planck stateme.t of the second law of thermodynamics, is sometimes known as law of
degradation of energy.

A heat engine which violates this statement of the second law of thermodynamics (i.e. a heat
engine which converts whole of the heat energy into mechanical work) is known as **perpetual
motion machine of the second kind (briefly wrilten as PMM-II) ar 100 percent efficient machine
which is impossible to obtain in actual practice, because no machine can convert whole of the heat
energy supplied to it, into its equivalent amount of work.

High lemp.
reservoil (Source)
ar,

High temp.
18SENOIf

Heal engine

w=Q, L;; lemp.

Heal enging resanvoir (Sink)
LA
(a) Perpetual motidn machine of the second (6) Heat engine,
kind (impossible).

Fig. 1.11

Thus for the satisfactory operation of a heat engine which is a device used for converting heat”
energy into mechanical work, there should be at-least two reservoirs of heat, one at a ***higher
temperature and the other at a lower temperature, as shown in Fig. 1.11 (b). In this case, consider that
heat energy (Q,) from the high temperature reservoir (or source) at temperature T, is supp lied to the
engine. A part of this heat energy is rejected to the low temperature reservoir (or sink) at temperature
T,. If Q, is the heat rejected to the sink, then the remaining heat (i.e. @, — Q,) is converted into
mechanical work. The fatio of the maximum mechanical work obtained to the total heat supplied to
the engine is known as maximum thermal efficiency (m,,.,) of the engine. Mathematically,

_ Maximumwork obtained _ % =@ _ | & )

= l=—=1-—

Mmax = ™ Total heat supplied ~~ Q, @, T,

Note. For areversible engine, 0,/ T, = Oy /Ty

L A thermal reservoir is a body of infinite heat capacity whichis capable of absorbing or rejecting an unlimited
quantity of heat without affecting its temperature. ;

#+ A perpetual motion machine of the second kind (PMM-II) does not violate the first law of thermodynamics
as such a machine would nol create or destroy encrgy.

#5% [na heat engine, the reservoir (or body) at a higher temperature is known as a source and the reservoir at
a lower temperature is called a sink.



i
A

Jlllr.
R, Elausius Statemen. According to Clausius statement ™/t is impossible for a self acring
ach ine, working i a cyelic process, to transfer neat from a body at d lower temperature to o hody
ata higher temperaiure without the aid of an external agency.” In other words, heat cannot ‘ow itseif
from a cold body 1o a hot body without the help of an external agency (.. without the expetiditure
of mechanical work). .
The device (such as a refrigerator or a heat pump). s shown in Fig. 1.12 (), violates the
Clausius statement because no input work is supplied to th device to transfer heat f; rom a cold body
to a hot body. Such a device is called perpetual motion machine of the second kigd. * '
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Surroundings al T,
Hot body at
Hot body
L atr, [17 %
Q
1 a‘ = Qz+ Wp
Relrigeralor R
or w Heal pump
or Heat pump ) p »
o, a,
Almosphere
al T, al Ti
(a) Perpetual motion machine (h) Refrigerator () Heat pump,

of the second kind.
Fig. 1.12

In order to achieve the object of transferring heat from a cold body to a hot body, the
refrigerator and a heat pump, while operating in a cyclic process, require an input work, as shown in
Fig. 1.12 (b) and (c) respectively. Though there is no difference between the cycle of operations of
the refrigerator and a heat pump and achieve the same overall objective, but the basic purpose of each
is quile different. A refrigerator is a device which operating ih a cyclic process, maintains the
temperature of a cold body (refrigerated space) at a temperature lower than the temperature of the
surroundings. On the other hand, a heat pump is a device which operating in a cyclic process,
maintains the temperature of a hot body (heated space) at a temperature higher than the te mperature
of surroundings. In other words, a refrigerator works beiween the cold body temperature and the
*atmospheric tumperature whereas a heat pump operates between the hot body temperature and the
atmospheric temperature. :

The **performance of refrigerator and heat pump is measured in terms of coefficient of
performance which is defined as the ratio of the maximum heat transferred (i.e. heat taken from the
cold body) to the amount of work required to produce the desired effect. Mathematical ly, maximum
coefficient of performance for a refrigerator, '

0, ) 7

WI; N Q, ‘Qz B f__—fa-

(COP), =

o In case of a refrigerator, the atmosphere acts as a hot body while in case of a heat pump. the almosphere
acts as a cold body.
* The performance of a heat engine is me.sored in terms af thermal efficiency.
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and maximum coefficient of performance for a heat pump,

2 Ql T T,
COYs == = = +1
( P}P WP Ql B Qz T: - Tz T| P~ Tz
= (COP) + |

We see that C.O.P of a heat pump is greater than C.O.P of a refrigerator by unity.
1.53. Equivalence of Kelvin-Planck and Clausius Statements

Though Kelvin-Planck and Clausius statements of the second law of thermodynamics appear
o be different, from each other, but these two statements are virtually equivalent in all respects. The .
equivalence of the Kelvin-Planck and Clausius statements can be proved if it can be shown that the

violation of Kelvin-Planck statement implies the violation of Clausius statement and vice versa. This
is discussed as follows :

High lemp. reservoir
atT, °

Q+4q,

High temp. resenvoir

. Heat We=0,-G
Heat engine p JHeat pump P o
(PMM-I1) pump (PRM-11)

q,
Low lemp. resenvoir Low temp. resanvoir
alT, ar,
(a) O}

Fig. 1.13. Equivalence of Kelvin-Planck and Clausius statements.

1. Consider a system as shown in Fig. 1.13 (a). In this system, a heat enginc having 100 percent
thermal efficiency (ie. PMM-II) is violating the Kelvin-Planck statement as it converts the heat
energy (Q,) from a single high temperature reservoir at T, into an equivalent amount of work (i.e.
W= Q,). This work output of the heat engine can be used to drive a heat pump (or refrigerator) which
receives an amount of heat @, froma low temperature reseivoir at T, and rejects an amount of heat
(Q, + @,) 1o a high temperature reservoir at T,. If the combination of a heat engine and a heat pump
(or refrigerator) is considered as a single system, as shown in Fig. 113 (a), then the result is a device
that operates in a cycle and has no effect on the surroundings other than the transfer of heat Q, from
a low temperature reservoir to a high temperature reservoir, thus violating the Clausius statement.
Herice, a violation of Kelvin-Planck statement leads to a violation of Clausius statement.

2. Consider a system as shown in Fig. 1.13 (b). In this system, a heat pump or refrigerator (i.e.
PMM-I1) is violating the Clausius statement as it transfers heat from a low temperature reservoir at
T, to a high temperature resgrvoir at T, without any expenditure of work. Now let a heat engine,
operating between the same heat reservoirs, receives an amount of heat Q, (as discharged by the heat
pump) from the high temperature reservoir at T;, does work (W = Q, - Q,) and rejects an amount of
heat (2, to the low temperature reservoir at T, If the combination of the heat pump (or refrigerator)
and the heat engine is considered as a single system, as shown in Fig. 1.13 (b), then the resylt is a
device that operates in a cycle whose sole effect is to remove heat at the rate of (@, - (J,) and corivert
it completely into an equivalent amount of work, thus violating the Kelvin-Planck statement. Hence,
+ violation of Clausius statement leads to a violation of Kelvin-Planck staiement.
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From above, we sce that the Kelvin-Planck and Clausius statements of the second law of
thermodynamics are complimentary to each other. The truth of the first 5tzucrnenl implies the truth
of the second statement and vice versa.

Example 1.5. An engine works betwéen the temperature limits of 1775 K and 375 K. Whar
can be the maximum thermal efficiency of this engine ?

Solution. Given : T, = 1775K; T, = 375K
We know that maximum thermal efficiency of the engine,

_h=T  1775-3715

- = T8.87% A
N T 1775 = ().7887 or ns.

Enmple 1.6. A reversible engine is supplied with heat from two constant temperaiure
sources at 900 K and 600 K and rejects heat to a constant temperature sink at 300 K, The engine
develops work equivalent to 90 kJ/s and rejects heat at the rate of 56 kl/s. Estimate * 1. Heat supplied
by each source, and 2. Thermal efficiency of the engine.

Solution. Given : T, =900K; 7, =600K; 7,=T, =300K; W = 90kJ/s;
0, +0, = 56kis
1. Heat supplied by each source

Let Q, = Heat supplied by the first
source, and

Q, = Heat supplied by the second
source.
We know that efficiency of the engine when
the heat is supplied from the first source, q, Q,
_ Work obtained _ W,
™ = Heat supplied ~ Q, Engine "
- Q-0 . n-T,
- QI T Q, a,

I
Q,] Sink

First source Second source
T, T,

000 K ﬂOOK

Q
For a reversible enginc, '];I- = Fz

900300 _
=g sl Fig. 114

.. Work obtained by the engine from the first source,
W =0-0,=0670,
-and heat rejected to the sink,
0,=0,-W =0-0670, =033Q,
Similarly, efficiency of the engine when the heat is supplied from the second sourcr
W -0 T,-T,  600-500

_......____,.__..__._7=05

L ) T, = 60
. Work nlileincd by the engine from the second source,
W,=0,-0,=050,
-
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and heal rejected to the sink,
0,=0,-W,;=0,-050, 5050,
We know that total work obtained from the engine (W),
90 = W,+W, =0670Q,+050, -0 0)
and total heat rejected to the sink,
56 = Q,+ 0, = 0330, +0:5 0, |
* From equations () and (i),
Q, = 100k)/s and Q, = 46 klis Ans.
2. Thermal efficiency of the engine '

We know that maximum thermal efficiency of the engine,

. Workobtained _ We
mix Heatsupplicd Q| o QJ
90

o €
e 0.616 or 61.6% Ans,
Example 1.7. A cold storage is to be maintained at — 5°C while the surroundings are at
35°C. The heat leakage from the surroundings into the cold storage is estimated to be 29 kW. The
actual C.O.P of the refrigeration plant is one -third of an ideal plant working between the same
temperatures. Find the power required to drive the plant.
Solution. Given : T, = —5°C = -5+273 = 268K ; 7, = 35°C = 35+272 = 308 K

0, =29kW ; (COP) —% (COP)yu

wctul
The refrigerating plant operating between the temperatures
T, and T, is shown in Fig. 1.15.
Let W= Work or power required to drive the plant.

We know that the coefficient of performance of an ideal refrig-
eration plant,

T, -
(CORpps === s
2
268
=—— =67
308 - 268
.~ Actual coefficient of performance,
(COP), .. = -%x{C.O.P}M, = %x(ﬂ = 2233
. 0, y )
We also know that C.O.P= —
We
(2 29
= = = |2987 k b
We (COP),,.. 223 ales

Example 1.8. A reversible heat engine operates between two reservoirs at temperatures of
600°C and 40°C. The engine drives a reversible refrigerator which operates between reservoirs at
temperatures of 40°C and — 20°C. The heat transfer to the engine is 2 MJ and the net work output of
the combined engine and refrigerator plant is 360 kJ. Find the heat iransfer to the refrigerant and
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the net heat transfer to the reservoir at 40°C. Also find these values if the efficiency of the heat engine
and C.0.P of the refrigerator are each 40% of their maximum possible values.

Solution. Given : T, = 600°C =600+ 273 =873 K ; T,=T,=40°C=40+ 273 =313 K ;
Tj =-20°C = -20+273 = ZSSK;QI = 2MJ = 2000k ; W = 360kl

The combined heat engine and refrigerator system is shown in Fig. 1.16.
Heat transfer to the refrigerant

Let @, = Heat transfer to the refrigerant. T =873 j [= 253 Kl
We know that maximum efficiency of the heat engine,
T, . a Q
Moy = ot =it 0415 '} ¢
T, 873 Heat (ED Q-Q W ( FDMW
We also know that Erigme l ?
_ Heat supplied — Heat rejected 0,5 W Q=
M = Heat supplied _o- w a: Wy
_ _Work doqe - 0,-0, | T,=T,=313K l
Heat supplied o,
Fig. .16

. Work done by the heat engine,
We = 0,-0Q, = 1, X0, = 0.6415x2000 = 1283 kJ

Since the net work output of the combined heat engine and refrigerator plant i
W = W~ W, = 360 ki, therefore work required for the refrjgerator,

Wy =W, —-W=1283-360 = 923 kJ
We know that maximum C.O.P of the refrigerator,

T, 253

“E-T, =332 - 217

cop,,

We also know that maximum C.O.P. of the refrigerator,
G, g,
(Cop),, = 0.-0, Wu
Oy = (COP), > W, =4217x923 = 3892.3kJ Ans.
Net heat transfer to the reservoir at 40°C
We know that g, = Oy + W, = 389234923 = 48153k
and Q, = Q=W =2000-1283 = 717kJ
*. Net heat transfer (i.e., heat rejected) to the reservoir at 40°C
= 0,+0, = T17+48153 = 55323 k] Anms.

When efficiency of the heat engine and C.0.P. uf the refrigerator are each 40% of their maximum
Jos vible values

We know that the efficiency of the actual heat engine cycle,
Moot = 40% 7, = 041, = 04x06415 = 0.2566
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We = N X 2 ="0.2566 2000 = 513.2KJ
Wy = We—W =513.2-360 = 1532kl
We know that C.O.P. of the actual refrigerator cycle,
(CO.P) = 40% (C.O.P),, = 04(COP,,
= 04x4217 ="1.6868
.. Heat transfer to the refrigerant,
0y = (COP) g% Wy
1.6868 x 153.2 = 258.4 kI ‘Ans,
We know that 0, = O+ W, = 2584+153.2 = 411.6KJ
and 0, =0, - W, =2000-513.2 = 1486.8kJ
- Net heat transfer (i.e., heat rejected) to the reservoir at 40°C
=, +0, = 14868 +411.6 = 1898.4kJ Ans.

actual

EXERCISES

1. The pressure of steam inside a boiler is recorded by a pressure gauge which shows 1.2 N/mm?, If
the barometer reads the atmospheric pressure as 770 mm of mercury, find the absolute pressure of steam inside
the boiler in N/m?, kPa and bar. [Ans. 1.3026 x 10° N/m? ; 1302.6 kPa ; 13.026 bar]
2. Inacondenser, the vacuum is found to be 145 mm of mercury and the barometer reads 735 mm of

mercury. Find the absolute pressure in a condenser in N/m? ; kPa and N/fmm?.
{Ans. 78 647 N/m” ; 78.647 kPa ; 0.078 647 N/mm?]
3. A copper vessel of mass 1.35 kg contains 6.75 kg of water at a temperature of 25°C. Find the heat
required 1o warm the vessel and water to 90°C. Take specific heat of copper = 0,406 ki/kg K and specific heat
of water = 4.187 kl/kg K. [Ans. 1872.6 kJ]
4. The net work output of a cyclic process is 45 kN-m. If the heat input is 125 kJ, determine the
efficiency of the cycle. [Ans. 36%]
5. One kg of air at a temperature of 20°C is heated to a temperature of 60°C. Find the heat supplied to
air when heated at constant pressure. The specific heat for air at constant pressure = | kJ/kg K.  [Ans. 40 kJ|
6. A system receives 10 x 10% ) in the form of heat energy in a specified process and it produces work
of 4 x 10° J. The system velocity changes from 10 m/s to 25 m/s. For 50 kg mass of the system, determine the

change in intenal energy of the system. [Ans. 119.7375 kifkg]
10 x 10° 4x10°
[Hint: g5 = Ts0 kg, wia = . Jikg

key = _]ll_xm(vl)] = %x 1(10)* = 50J/kg

— %xm(l{,)’ - %x 1257 = 3125 Jkg

We know that
g1~ Wiy = (pey—pey) + (key — ke)) + (1 — )
10x 100 4x 10
% 5 " 0+ (312.5-50)+ (43 —u))

.. . (Taking same datum level, pe,= pe,)
& wy—uy, = 1197375 kg = 119.7375k kg
7. Areversihle engine receives heat from a reservoir at 70"'C and rejects heat at temperature 7. A
second reversible engine receives the heat rejected by the first engine to a sink at a temperature 37°C. Calculate

- 8
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the temperature T; for 1. equal efficiency of both the engines, and 2. equal output of both the engines.
[Ans, 276.2°C ; 368.5°C|
8. A domestic food freezer is to be maintained at temperature of - 15'C. The ambient air temperature
is 30°C. If the heat leaks into the freezer at the continuous rate of 1.75 kl/s, find the power required to pum;l)‘this
heal out continuously. [Ans. Q305 kl/s]
9. Aheat pump is used for heating the interior of a house in a cold climate. The ambient temperature
is — 5°Cand the desired interior temperature is 25°C. The compressor of the heal pump is to be driven by a heat
engine working between 1000°C and 25°C. Trealing both the cycles as reversible, calculate the ratio in which
the heat pump and the heat engine share the heating load. |Ans. 7.606]
10. A heat engine is used to drive a heat pump. The heal transfer from the heat engine and from the
heat pump are used to heat the water circulating through the radiators of a building. The efficicncy of the heat
ergine is 27% and C.0.P of the heal pump is 4. Show that the ratio of the heat transfer 1o the circulating water
10 the heat transfer to the engine is 1.81.

QUESTIONS

. Define a thermodynamic system. Explain its different types.
2. What do you understand by property of a system ? Distinguish between extensive and
intensive properties of a system.

3. Define the following properties :
(a) Specific weight (b) Pressure (c) Volume
(d) Temperature (e) Specific volume \(#) Density

4. What is a thermodynamic process and a cyclic process ?

5. Explain the non-equilibrium and quasi-static process. Is the quasi-static process a revers-
ible process ?

6. Define temperature. Name the different temperature scales in common use. Establish
relation between Celsius and Fahrenheit scales ?

7. What is absolute temperature ? How it is obtained for Celsius and Fahrenheit scales ?

8. Distinguish between gauge pressure and absolute pressure. How the gauge pressure is
converted inlo absolute pressure 7

9 What do you understand by N.T.P. and S.T.P. ? What are their values ?

10. Define energy. What is stored energy and transit energy 7 Discuss the types of stored

energy:
1. How heat and work is defined ? Are these quantities a path function or point function ?
12. Explain the three laws of thermodynamics.
OBJECTIVE TYPE QUESTIONS
L. A definite area or a space where some thermodynamic process takes place, is known as
() thermodynamic cycle (b) thermodynamic process
(¢) thermodynamic system () thermodynamic law
2. When neither mass nor energy is allowed to cross the boundary of a system, it is then
called
{a) closed system (h)open system
() isolated system (d) none of these
3 Which of the following is the extensive property of a thermodynamic system 7
() pressure - (h) voluine

(¢) temperature () density
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4. Which of the following is an intensive property of a thermodynamic system ?

(a) volume (b) temperature
(¢) mass (d) energy
5. Which of the following is not a thermodynamic property ?
(a) pressure (b) temperature
(c) heat (d) specific volume

6. When a process or processes are performed on a system in such a way that the final state
is identical with the initial state, it is then known as

(@) thermodynamic cycle (b) thermodynamic property
(c¢) thermodynamic process (d) zeroth law of thermodynamics
7. Atmospheric pressure is equal to
(a) 1.013 bar : (b) 101.3 kN/m*
(¢) 760 mm of Hg (d) all of these
8. First law of thermodynamics deals with
(a) conservation of heat (b) conservation of momentum
(c) conservation of mass (d) conservation of energy
9. Second law of thermodynamics defines
(a) heat (b) work
(¢) entropy (d) internal energy
10. Kelvin-Planck’s law deals with
(a) conservation of work (b) conservation of heat
() conservation of mass (d) conversion of heat into work
ANSWERS
1.(c} 2.(¢) 3.(b) 4. (b) 5.(c)

6.(a) 1.(d) 8.(d) 9.(c) 10.(d)
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Properties of Perfect Gases

1. Introduction. 2. Laws of Perfect Gases. 3. Boyle's Law. 4. Charles’ Law. 5. Gay-Lussac Law.
6. General Gas Equation. 7. Joule's Law. 8. Characteristic Equation of Gas. 9. Avogadro’s Law. 10.
Universal Gas Constant or Molar Constant. 11. Specific Heat of a Gas, 12. Specific Heat at Constant
Volume. 13. Specific Heat at Constant Pressure. 14. Enthalpy of a Gas. 15. Molar Specific Heats of a
Gas. 16. Regnauls' Law. 17. Relation between Specific Heats. 18. Ratio of Specific Heats.

2.1.- Introduction

A perfect gas (or an ideal gas) may be defined as a state of a substance, whose evaporation
fromits liquid state is complete*, and strictly obeys all the gas laws under all conditions of temperature
and pressure. In actual practice, there is no real or actual gas which strictly obeys the gas laws over
the entire range of temperature and pressure. But, the real gases which are ordinarily difficult to
liquify, such as oxygen, nitrogen, hydrogen and air, within certain temperature and pressure limits,
may be regarded as perfect pases.

2.2.  Laws of Perfect Gases

The physical properties of a gas are controlled by the following three variables :
I. Pressure exérted by the gas, 2. Volume occupied by the gas, and 3. Temperature of “'ie gas.

The behaviour of a perfect gas, undeigoing any change in the above mentioned variables, is
governed by the following laws which have been established from experimental results.

1. Boyle’s law, 2. Charles’ law, and 3. Gay-Lussac law.
These laws are discussed, in detail, in the following pages.
2.3. Boyle's Law

This law was formulated by RobertBoyle in 1662, Itstates, '1h¢ absalute pressure of agiven
mass of a perfect gas varies inversely as its volume, when the temperatve remams constant.”

Mathematically,
1
piss o pae Constant

The more useful form cf the above equation is :
P U =Py = pyty = ... = Constant
where suffixes |, , and , ... refer to different sets of conditions.

« Il iis evaporation is partial, the substance is called vapour. A vapour, therefone, contains sume particles of
liquid in suspension. 10 is thus obwious, that steam, carbon dioxide, sulphur dioxide and ammonia are
regarded as vapours, It may be noted that a vapour becomes dry, when it is completely ev aporated. If the
dry vapour is further heated. the process is called super heating and the vapour is called superheated vapour.
The behaviour of superheated viapour is simifar to that ol a perfect gas

30
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24. Charles’ Law
This law was formulated by a Frenchman Jacques A.C. Charles in about 1787. It may be stated
in the following two different forms :

(©) “The volume of a given mass of u perfect gas varies divectly as its absolute temperature,
when the absolute pressure resiaies consgant,” Mathematically,

ve T or %zCo.nslant

or = == = 7= = ... = Constant

where suffixes |, , and , ..... refer to different sets of conditions,

() Al perfeet gases change i volume by 1275310 of its originai volame at " C for every
I change i tenperature, when the pressure remains consianr.”
Let v, = Volume of a given mass of gas at 0° C, and

v, = Volume of the same mass of gas at * C.

Then, according to the above statement,

1 _ 273 41 T
v_v""'ZT} NERA 7 =vox:r—o

% _ Y%
- 2
where T = Absolute temperature corresponding to r° C.

T, = Absolute temperature corresponding to 0° C.

A little consideration will show, that the volume of a gas goes on decreasing by 1/273th of its
original volume for every 1° C decrease in temperature. It is thus obvious, that at a temperature of
=273 C, the volume of the gas would become *zero. The temperature at which the volume of a gas
hecomes zero is called absolute zero temperature.

Note, Inall calculations of a perfect gas, the pressure and temperature values are expressed in absolute units,
2.5.  Gay-Lussac Law

This law states, * The absolute pressure of a given mass of a perfect gas varies drm:dy as its
absolute temperature, when the volume remains constanr,” Mathematically

P
poT or 7= Constant

or — = — == = ,.. = Constant

where suffixes |, , and , ... refer to different sets of conditions.

2.6. General Gas Equation

In the previous section we have discussed the gas laws which give us the relation between the
two variables when the third variable is constant. But in actual practice, all the three variables i.e.,
pressure, volume and temperature, change simultaneously. In order to deal with all practical cases,
the Boyle's law and Charles’ law are combined together, which give us a general gas equation.

It is only theoretical s e value is — 272.16 "C. But for all practical purpuoses, this valuc is taken as
"?q II(
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According to Boyle's law
p o< B or v e ; ... (Keeping T constant)
and according to Charles' law
RS ... (Keeping p consta
Itis thus obvious that

Uoc-l—and T both or vuI
p P

i pveT or pv=CT

where C is a constant, whose value depends upon the mass and properties of the gas concerned.
The more useful form of the general gas equation is :

= —= = —— = ... = Constant

. TZ T]

where suffixes |, , and, refer to different sets of conditions.

Example 2.1. A gas occupies a volume of 0.1 m’ at a remperature of 2F C and a pressure
of 1.5 bar. Find the final temperature of the gas, if it is compressed to a pressure of 7.5 bar and
accupies a volume of 0,04 nv’,

Solution. Given : v, =0.1m’ ;: 7, =20°C=204273=293K; p, = |.5bar
=*0.15x 10°N/m?; p, = 7.5bar = 0.75x 10°N/m?; v, = 0.04 m’

Let T, = Final temperature of the gas.
pY _ Pt
We know that T 2 T,
v, T,
Tz = P U 1 L 0.75 x 10P % 0.04 x 293 - 586K
P Y 0.15x 10°x 0.1

= 586-273 = 313°C Ans.

2.7. Joule’s Law

Itstates, "The change of internal energy of a perfect gas is directly proportional to the change
of temperature,” Mathematically

dE o< dT or dE = mcdl = mc(T,-T,)
where m = Mass of the gas, and
¢ = A constant of proportionality, known as specific heat.

An important consequence of this law is that if the temperature of a given mass m of a gas
changes from 7| to T, then the internal energy will change from £, to E, and the change in internal
energy (E, — E,) will be same irrespective of the manner how the pressure ( p) and volume (v) of the

gas have changed.

“ Thar=01x 10° N/m?.
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28. Characteristic Equation of a Gas

It is a modified form of general gas equation. If the volume (v) in the general gas equation is
taken as that of 1 kg of gas (known as its specific volume, and denoted by v,), then the constant C (in

the general gas equation) is represented by another constant R (in the characteristic equatmn of gas).
Thus the general gas equation may be rewritten as :

pv, = RT
where R is known as characteristic gas constant or simply gas constant.
For any mass m kg of a gas, the characteristic gas equation becomes :
mpv,=mRT
or pe=mRT (v me =)
Notes : 1. The units of gas constant (R) may be obtained as discussed below:

R=_=22W M _ NmAgK = MgK

(. IN-m = 1J)

2. The value of gas constant (R) is different for different gases. In S.1. units, its value for atmospheric
air is taken 287 J/kg K or 0.287 kl/kg K.

3. The equation pv = m R T may also be expressed in another form i.e.,
m i ,
PN L - T (B
p="7RT=pR [ = p]

where p (rho) is the density of the given gas.

Example 2.2. A vessel of capacity 3 m’ contains air at a pressure of 1.5 bar and a
temperature of 25° C. Additional air is now pumped into the system until the pressure rises to 30 bar
and temperature rises to 60° C. Determine the mass of air pumped in and express the quantity as a
volume at a pressure of 1.02 bar and a temperature of 20° C.

If the vessel is allowed to cool until the temperature is again 25" C, calculate the pressure in
the vessel.

Solution. Given : v,=3m’; p,=15bar=0.15x 10°N/m*; 7,=25°C=25+273
=298K; p, =30bar = 3x 10°N/m?; 7, = 60°C = 60+273 = 333K; p, = 1.02 bar
=0.102 x 10°N/m?; 7y = 20°C = 20+273 = 293K
Mass of air pumped in

Let m

H

Mass of air initially filled in the vessel, and

]

m, = Mass of air in the vessel after pumping.

Weknowthat p v, =m RT,

.. { Taking R for air = 287 J/kg K)
Similarly, pY, = mRT, '

mz———————=94.17kg (0= 9)
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.. Mass of air pumped in,
m=my—m; = 94.17-526 = ¥8.91 k2 Ans.

Vit ef afr priaped in ata pressure of 1.02 bar and temperatre of 200 €

Let vy = Volume of air pumped in.
We know that
pyvs =mRT,
U, = iy = 8951 x 287 %« 29 =713 m’ Ans.
2 Pa 0.102 x 10°
Pressure in the vesvel after conling
Let p, = Pressure in the vessel after cooling.
‘We know that the tcmpcratﬁre after cooling,
T,=T,=2°C = 298K
Since the cooling is at constant volume, therefore
b _ T
T
B T‘T:” = 293’;733"_”’6 = 268X 1P N/ = 268 bur Ans.

Example 2.3. A spherical vessel of 1.5 m diameter, containing air at 40° C is evacuated till
the vacuum inside the vessel becomes 735 mm of Hg. Calculate the mass of air pumped out. If the
tank is then cooled to 3° C, what will be the final pressure in the tank ? Take atmospheric pressure
as 760 mm of Hg.

Solution. Given:d=15m; T, =40°C=40+273=313K; p =735 mmofHg;

T, =3°C =3+4273 = 276K; p, = 760 mmof Hg
Moy af Gir pumiped out

Let m = Mass of air pumped out.

First of all, let us find out the initial mass of air (m,) in a vessel. We know that volume of a
spherical vessel,

We know that p v, =m RT,
Y _ (160x133.3) 1767
S0 (G0X1333) LI6T _ | g9,

™ERT, T 287x313
-..( 1 mmof Hg = 1333 Nim® ; and R for air = 287 J/kg K)
Let m, = Mass of air left in the vessel after evacuation.

We know that pressure after evacuation,
p, = Atmospheric pressure — Vacuum pressure

= 760-735 = 2S5 mmof Hg = 25x 133.3 = 3332.5 N/m?
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_ Pt 3332.5%1767

“RT, " wmixan - oveeke

hy
=v,and T, =T)

.. Mass of air pumped out,
m=m-m, = 1.993 - 0.066 = 1927 ke Ans.

Final picssure in the fank

Let p, = Final pressure in the tank.
Since the cooling is at constant volume, thgrefore
L Y
T,
Ty 3332.5%276 _
3 %3 : .
o L 313 R

29.  Avopadro’s Law

It states, "Equual volumes of all guses, ot the same temperature and pressure, contain equal
anmber of moleciles.” )

Thus, according to Avogadro's law, 1 m® of oxygen (O,) will contain the same number of
molecules as | m® of hydrogen (H,) when the temperature and pressure is the same. Since the
molecular mass of hydrogen is 2 and that of oxygen is 16, therefore a molecule of oxygen has a mass
which is 32/2 = 16 times the mass of hydrogen molecules. Moreover, as 1 m’ of these two gases
contain the same number of molecules, and a molecule of oxygen has a mass 16 times than that of
hydrogen molecule, therefore it is evident that density of oxygen is 16 times the density of hydrogen.
Hence, the Avogadro’s law indicates that the density of any two gases is directly proportional to their
molecular masses, if the gases are at the same temperature and pressure.

The density of oxygen at Normal Temperature and Pressure (briefly written as N.-T.P.) i.e. at
0° Cand 1.013 bar is 1.429 kg/m’.

. Specific volume (of | kg) of oxygen at NT.P,,

. 3 [ I
Y = Tazo M 7ke L Specxﬁcvolm_mﬁw}
and volume of 32 kg (or 1 kg molecule briefly written as 1 kg-mol)
= = 3
I.4?'931:32 224m

Similarly, it can be proved that the volume of 1 kg mol of any gas at N.T.P. is 22.4 m’,
Note: | g-mole (molecular mass expressed in gram) of all gases occupies a volume of 22.4 litres at N.T P,
The values of molecular mass for some common gases are given in the following table :

Table 2.1. Molecular mass for some conunon gases.

S No. Gas Molecular | S.No. ) Gas Molecular
mass mass
1. Hydrogen (H,) 2 5. Carbon dioxide (CO,) a4
2. Oxygen (0,) 32 6. Methane (CH,) 16
3. | Nitrogen (N;) 28 7. | Acetylene (C,H,) 26
4, Carbon monoxide (CO) 28 8. Sulphur dioxide (50,) 64
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2.10. Universal Gas Constant or Molar Constant
The universal gas constant or molar constant (generally denoted by R ) of a gas is the product
of the gas constant and the molecular mass of the gas. Mathematically,
R, = MR
where M = Molecular mass of the gas expressed in kg-mole,and
R = Gas constant.
In general, if M|, M,, M,, etc. are the molecular masses of different gases and R, R,, R;, etc.
are their gas constants respectively, then
MR =M,R, = MR, = .. =R,
Notes: 1. The value of R, is same for all gases.
2. InS.L units, the value of R, is taken as 8314 Jkg-mol K or 8.314 kJkg-mol K.
3. The characteristic gas equation (i.e. pv = R T) may be written in terms of molecular mass as :
pv=MRT

Example 2.4. A mass of 2.25 kg of nitrogen occupying .5 m’ is heated from 25° C10 200° C
at a constant volume. Calculate the initial and final pressures of the gas. Take universal gas constant
as 8314 Jfkg mol K. The molecular mass of nitrogen is 28.

5 Solution. Given: m =225kg; o = 15m'; T, =25°C = 25+273 = 298K,
T, =200°C = 200+273 = 473K; R = 8314JkgmolK; M =28

‘We know that gas constant,
R, 8314
- =— = — = 207
M 28 Jkg K
Initial pressure of the gas
Let p = Initial pressure of the gas.
We know that
p,v, = mRT,
mRT
py=— = 2‘25"?9;"293 = 0.133% 10°N/m? = 1.33 bar Ans.
i ;
Final pressure of the gas
Let p, = Final pressure of the gas.
Since the volume is constant, therefore
PP ' AT, 1.33x473
= = == = —= = —=——= = 2.11 bar Ans.
.- T ATT 298 '

1 2

Example 2.5. Nitrogen is to be stored at pressure 140 bar, temperature 27° C in a steel flask
of 0.05 m’ volume. The flask is to be protected against excessive pressure by a fusible plug which will
melt and allow the gas to escape if the temperature rises too high. Find :

1. How many kg of nitrogen will the flask hold at the designed conditions ? Take molecular
mass of nitrogen as 28 ; and

2. At what temperature must the fusible plug melt in order to limit the pressure of the full flask
to a maximum of 168 bar ?
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Solution. Given:p, = 140bar = 14x 10°Nim?; T, = 27°C = 274273 = 300K ;
v, = 005 m':M=28
| Mss oof nitrogen
Let m = Mass of nitrogen in kg which the flask will hold.
We know that gas constan,

Universal gas constant £, 8314
R= =— = — =
Molecular mass M 28 b

... (R, for all gases =8314 J/kg K)

We also know that
pv,=mRT,

2. Melting remperature of fusible plug

Let T, = Melting temperature of fusible plug, and

p, = Maximum pressure = 168 bar = 16.8 x 1°Nm? .. (Given)
Since the gas is heated at constant volume, therefore

p_n

/I

T, = P:,—Tl = M; LO‘:{:BOOE 360K = 87°C Ans.

2.11. Specific Heats of a Gas

The specific heat of a substance may be broadly defined as the amount of heat required to raise
the temperature of its unit mass through one degree. All the liquids and solids have one specific heat
only. But a gas can have any number of specific heats (lying between zero and infinity) depending
upon the conditions, under which it is heated, The following two types of specific heats of a gas are
important from the subject point of view :

I Specific heat at constant volume, and 2. Specific heat at constant pressure.

These specific heats are discussed, in detail, as follows :

2.12. Specific Heat at Constant Yolume

It is the amount of heat required to raise the temperature of a unit mass of gas through one
degree when it is heated at a constant volume. It is generally
denoted by ¢, .

Consider a gas contained in a container with a fixed lid as
shown in Fig. 2.1. Now, if this gas is heated, it will increase the
temperature and pressure of the gas in the container. Since the lid
~ of the comainer is fixed, therefore the volume of gas remains
unchanged. :

'Let m = Mass of the gas,
T, = Initial temperature of tne gas, and

1y = Fiuw Snpeesuteof the . Fig.2.1. Heat being supplied at
constant volume.



8 A Teat Book of Thermal Engineerimg
. Total heat supplied to the gas at constant volume,
Q,, = Mass x Sp. heat at constant volume x Ris¢ in temperature
= me, (T,-T))
It may be noted that whenever a gas is heated at constant volume, no work is done by the gas *
The whole heat energy is utilised inincreasing the temperature and pressure of the gas. In other words,

all the amount of heat supplied remains within the body of the gas, and represents the increase in
internal energy of the gas.

2.13. Specific Heat at Constant Pressure

It is the amount of heat required to raise the temperature of a unit mass of a gas through one
degree, when it is heated at constant pressure. It is generally denoted
byc.

P

Consider a gas contained in a container with a movable lid
as shown in Fig. 2.2. Now if this gas is heated, it will increase the
temperature and pressure of the gas in the container. Since the lid of
the container is movable, therefore it will move upwards, in order
to counterbalance the tendency for pressure to rise.

Let m = Mass of the gas,

T, = Initial temperature of the gas,

v, = Initial volume of the gas, and Fig. 2.2. Heat being supplicd at

T,, v, = Corresponding values for the constant pressuge.
final condition. of the gas.
.. Total heat supplied to the gas, at constant pressure,

Q,., = Mass x Sp, heat at constant pressure x Rise in temperature
= mc, (1,-T)
Whenever a gas is heated at a constant pressure, the heat supplied to the gas is utilised for the

following two purposes :
1. To raise the temperature of the gas. This heat remains within the body of the gas, and

represents the increase in internal energy Mathematically, increase in internal energy,
dU = mc, (T,-T))
2. To do some external work during expansion. Mamcnwuéally. workdone by the gas,
Wi, = p©y=-v) = mR(T,~T) _
It is thus obvious, that the specific heat at constant pressure is higher than the specific heat at
conslant volume.
From above, we may write as
Q,,=dU+W, , or #+Q, - W, _, =dU .. (FirstLaw of Thermodynamics)

*  We know that workdone by the gas,
W =pdv=pv,-uv)
where p = Pressure of the gas, and
dv = Change in volume = v, -7,
When there is no change in volume, then dv = 0. Therefore W= 0

**  Refer Art. 1.49, note 2 equation (iv),
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20 Fathalpy of o Gas

In thermodynamics, one of the basic quantities most frequently recurring is the sum of the
internal energy (U) and the product of pressure and volume ( p ). This sum ('U +p v) is termed as
enthalpy and is written as H. Mathematically,

Enthalpy, H=U+pv
Since (U/ + p v) is made up entirely of properties, therefore enthalpy (#) is also a property.
For a unit mass, specific enthalpy,
h=u+pu,
where u = Specific intemal energy, and
Specific volume.

v

5

We know that Qa=dU+W _,=dU4pde
When gas is heated at constant pressure from an initial condition 1 to a final condition 2, then change in
internal energy,

du = U,-U,
and workdone by the gas,
W_,=pdv=pl,-v)
Q= WU=-U)+py-v)
= (Uy+po)-(U,+pv)) = H,~-H,
and for a unit mass, Gy =h-h

Thus, for a constant pressure process, the heat supplied (o the gas is equal to the change of enthalpy.
215, Maolar Specific Heats of a Gas

The molar or volumetric specific heat of a gas may be defined as the amount of heat required
to raise the temperature of unit mole of gas through one degree. Mathematically, molar specific heat,

c, = Mc
where M = Molecular mass of the gas.
In the similar way as discussed i Art. 2.11, the molar specific heat at constant volume,
Com = Mc,
and molar specific heat at constant pressure,
€= M,
Example 2.6. A closed vessel contains 2 kg of carbon dioxide at temperature 20° C and
pressure 0.7 bar. Heat is supplied to the vessel till the gas acquires a pressure of 1.4 bar. Calcilaie :

I. Final temperature ; 2. Work done on or by the gas ; 3. Heat added ; and 4. Change in internal
energy. Take spec_-ific heat of the gas at constant volume as 0.657 kJ/kg K.

Solutior. Given:m = 2kg; N=2°C=20+273=293K vpy=0.7bar; p,=14 bar

I Fnal temperature
Let T, = Final temperature,

Since the gas is heated in a closed vessel, therefore the volume of gas will remain constant.

We know that

S|

—
T
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2. Warkdone on or by the gas
Since there is no change in volume, therefore workdone on or by the gas (W, ,) is zero. Ans.
3. Heat added
We know that heat added at constant volume,
Q,,=mc,(T,-T,) = 2x0657 (586 -293) = 385kJ Ans.

4 Change in internal energy

Let dl/ = Change in internalenergy.
Weknowthat Q, , = W _,+dlU
dU = @, , = 385K) Ans. c e W, =)

Example 2.7. A mass of (.25 kg of air in a closed system expands from 2 bar, 60 C to | bur
and 40° C while receiving 1.005 kJ of heat from a reservoir at 100" C. The surrounding atmosphere
is at 0.95 bar and 27° C. Determine the maximum work. How much of this work would be done on
the atmosphere ?

Solution. Given : m = 0.25kg; p, = 2bar = 02x 10°N/m?; T, = 60" C = 60 + 273
=333K; p, = Ibar = 0.1x10°N/m?; T, =40°C =40+273 = 313K; Q = [.O0SKJ;
*T, = 100°C; p = 095 bar = 0.095x 1P Nim?; +T = 27°C

Maximum Workdone
First of all, let us find the values of initial volume (v,) and final volume (v,) of air. We know

that
mRT,
= P s o= mRT)
|
025x287x333 _ 119 3 .
YT S ... (Taking R = 287 J&kg K)
s mRT,  025%287x313
Simitady iy yrorr e L

.. Workdone on the atmosphere,
W, = p(v,-v,) = 0.095x 10F (0224 -0.119) = 89751 = 9975k -

We know that change of internal energy,
dU = mc, (T,-T,) = 0.25x0.712(313-1333) = - 3.56kJ

... (Taking ¢, = 0.712kIkg K)

The —ve sign shows tha there is a decrease of internal energy.
Net workdone, W, = Q-dU = 1.005—(-3.56) = 4.565 kJ

. Maximum workdone,
W= W, +W,=9975+4565 = 14.54 k) Ans.

* Superlluous data
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Waorkdone on the armosphere
We have calculated above that the workdene on the atmosphere,
W, = 9975kJ Ans.

Example 2.8. 3 kg of an ideal gas is expanded from a pressure 7 bar and volume 1.5 nt’ 1o
a pressure 1.4 bar and volume 4.5 .n’. The change in internal energy is 525 kJ. The specific heat at
constant volume for the gas is 1.047 ki/kg K. Calculate : I. Gas constant ; 2. Change in enthalpy ;
and 3. Initial and final temperatires.

Solution. Given :m = 3 kg ; p, =7 bar = 0.7 x10° Nim* ; o, = 1.5 m* ; p, = 1.4 bar
= 0.14x 10°N/m? ; v, =4 m’ ; dU =525 kI ; ¢, = 1.047 k)/kg K
I, Gas constant

Let R = Gas constant,

T, and T, = Initial and final temperatures.
Weknowthat p, v, =mRT,
nY  0Tx10°%1.5

RT,=7=—-—3——=0.35><]0° o)
U
Similarly RT, = 53”!—’ & Ml‘ﬂ = 021 x10° oD
Subtracting equation (if) from equation (i),
R(T,-T,) = (0.35-0.21) 10 = 0.14 x 10° o (i)

We also know that change in internal energy
dU =me,(T,-T,)
Since during expansion, there is a decrease in internal energy, therefore the change in internal *
energy is *negative.
=525 = 3xL047(T,-T)) = -3.141 (T, ~T)
T,-T, = 525/3.141 = 167.14 co ()

Dividing equation (iif) by equation (iv), we get
R =014x10%167.14 = 838 Jkg K = 0838 kl/ kg K Ans.
2. Change in enthalpy
First of all, let us find the value of specific heat at constant pressure (cp}‘ We know that

c,=¢, = R or ¢, = R+c, = 0838+1047 = 1.885ki/kg K

- Change in enthalpy,
dH = mc,(T,~T,) = 3x 1 $85 (- 167.14) = —945kJ Ans.

The —ve sign indicates that there is a decease in enthalpy.

We may also say as follows

From equation (iii), we sce that R (T, — T,) is a positive cquation. This shows tha T, is greater than 75,
hecause R is always positive. Thus there is a decrease is internal energy or the change in internal energy is
negative (ie. dU = - 525 k).
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3 Initial and final weriperaticees
From equation (i), we find that initial temperature,

_035x10° _ 035%10° _ 417k aps.

T R 838

and from equation (iv), final temperature,
T, = T,-167.14 = 417- 167.14 = 24986 K Ans.
2.16. Regnault’s Law
This law states, "The two specific heats of a gas (i.e. the specific heat at constant pressute, c,
and specific heat at constant velume, ¢ ) do not change with the change in pressure and temperature
of the gas."
2.17. Relation between Specific Heats

Consider a gas enclosed in a container and being heated, at a constant pressure, from the initial
state | to the final stare 2.
-

Let m = Mass of the gas,
7, = Initial temperature of the gas,
7, = Final temperature of the gas,
v, = Initial volume of the gas,
v, = Final volume of the gas,
¢, = Specificheat al constant pressure,

¢, = Specificheat at constant volume, and
p = Constant pressure.
We know that the heat supplied to the gas at constant pressure,
Ql—z =m Cp (?:1 = Tl)

As already discussed, a part of this heat is utilised in doing the external work, and the rest
remains within the gas, and is used in increasing the internal energy of the gas.

. Heat utilised for external work,

W, = p0,~1) -~
and increase in internal energy, dU = mec,(T,~T)) ... (i)
We know that S0, = W, +dU .. (i)
’“‘}:(Tz'rl} =pw,-v)+mc, (T,-T) (i)
Using characteristic gas equation (i.e. pv = m R T), we have
pv, =mRT, ... (for initial conditions)
and puv,=mRT, . .. (for final conditions)

pu,-v) =mR(T,-T)
Now substituting the value of p (v, —,) in equation (iv),
me, (T,=-T) =mR(T,-T)+m e, (T,-T))

{‘p ’—l‘_'ll =R {l-")

[}

I

Rtc, or ¢
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The above equation may be rewritten as :

Yy

[y
Cp_""u=R or ¢, (y-1)=R ..{where’f—.--f-]

g B (i)
, “ =1

Notes. 1. The equation (v) gives ar important result, as it proves that characteristic constant of a gas (R) is

equal to the difference of its two specific heats (i.e. ¢, - ¢,).

3. The value of R is take 3 as 287 J/kg K or 0.287 ki/kg K.
3, [Interms of molar s ecific heats, the equation (v) may be writlen as
G~ Com = R,

where R, is the universal gas constant and its value is taken 8314 J/kg K or 8.314 kl/kg K.

2.18. Ratio of Specific [leats
The ratig of two specific heais (i.e. ¢ /c,) of a gas is an important constant in the field of

Thermodynamics and is represented by a Greek letter gamma (y). It is also known as adiabatic index.
Since c, is always greater than c,, the value of 1 is always greater than unity. .
We have seen in Art. 2.17 that

€, =€y = R or o= c,+R

Dividing both sides by ¢,
£
i PRI y= ia
% S o

The values of ¢, ¢, and Y for some common gases are given below :

Tabie 2.2. Values of cp and ¢, for some common gases.

e ¢
S.No. Name of gas TU’;; K W”;; K y= EE

m_l. Air 1.000 0.720 1.40
2z Carbon dioxide (CO,) 0.846 0.657 1.29

3 Oxygen (0,) 0.913 0.653 1.39

4. | Nitrogen (N;) 1.043 0.745 1.40

5 Ammonia (NH,) 217 1.#92 1.29

6. Carbon monoxide (CO) 1.047 0.749 1.40

T Hydrogen (H,) 14.257 10.133 1.40

8. Argon (A) 0.523 0.314 1.67

9. Helium (He) 5.234 X 3.153 1.66
10. Methane (CH,) 2.169 1.650 1.31

Example2.9. Onekgofaperfect gas occupiesavolume of 0.85 n’ ar 15° C and at a constant
pressure of I bar. The gas is first heated at a constant volume, and then at a constant pressure. Find
_ the specific heat at constant volume and constant pressure of the gas. Takey = 1.4
Solution. Given :m=1kg;v=085m* ; T=15°C=15+273 =288 K ; p= | bar
= 0.1 10°N/m? ;¥ = ¢ fe, = 1.4
4-
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Specific heat of vas dar constant volume '
Let ¢, = Specific heat of gas at constant volume, and

R = Characteristic gas constant,
We know that

pv=mRT
_P? _ 01x10°%085 _
mT Txoss = 295VkgK = 0295ki/kg K
We also know that
Gy = R__ '0—231 = 0.7375 klkg K Ans.

Specific heat of gas at constant pressure
We know that specific heat of gas at constant pressure,
£, = lde, = 1.4 %x0.7375=1.0325 kl/kg K Ans, ...(" cpfun = 1.4)
Example 2.10. A gas mixture obeying perfect gas law has a molecular mass of 26.7.

Assuming a mean molar specific heat at constant volume of 21.1 kl/kg K, determine the values of
characteristic gas constant, molar specific heat at constant pressure and the ratio of specific heats.

Solution. Given: M =26.7;¢, =21.1 kl/kg K
Characteristic gas constant ’

We know that characteristic gas constant,

_ Universal gasconstant _ R,  8.314

Molecular mass M 26.7
<. (R, forall gases = 8.314 kl [ kg K)

= 03114 klikg K Ans.

Molar specific heat at constant pressure

Molar specific heat al constant pressure.

1

Let c

We know thal

R,oF Com= Kb, = 8314 +21.1 = 29414 k)kg K Ans,

~
I
)
I

Ruatio of specific leats
We know that ratio of specific heats,

i
e 2413 _ | 393 Ans.
e, 2Ll

Example 2.11.  One kg of ideal gas is heated from 18.3° C ta 93.4° C. Assuming R = 0.264
kJ/kg K and Y= 1.18 for the gas, find : 1. Specific heats ; 2. Change in internal energy ; and 3. Change
in enthalpy.

Solution, Given:m=1kg;T,=183°C=183+273=2913K:7,=934"C=93.4+273
=3664K;R=0264kIkg K y=¢ o, =118
Specific heats

Let 6 = Specific heat at constant pressure, and

c, = Specific heat at constant volume.
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R 0.264

= 47 Ktz K A,

* y-1  LI18-1
¢, =Yc, = L1IBx 147 = L.73k)/k2 K Ans,

We know that ¢

Clrange in internal CHErYY
We know that change in internal energy,
dU = me, (T,-T)) = 1 X 1.47 (366.4-291.3) = 1104 kJ Ans.

Change in enthalpy
We know that change in enthalpy,
dH = m (T,=T)) = 1 x1.73(366.4 -291.3) = [130kJ Ans.
Example 2.12. A gas, having initial pressure, volume and temperature as 275 kN/m?, 0.09
m® and 185° C respectively, is compressed at constant pressure until its temperature is 15° C,
Calculate the amount of heat transferred and work done during the process. Take R = 290 Jhg K
and ¢, = 1.005 k/kg K.
Solution. Given:p = 275 kN/m? = 275 x 10° N/m? ; v, =009 m’; T, = 185°C=185+
273 =458K;T,=15°C= 15+2?3=233K;R=290Hkgl(;cp= 1005 klkg K
Amornt of heat tansferred
First of all, let us find the mass of the gas (m). We know that
piv, = mRT,
P 275%10° % 0.09
RT, ~  290x458
We know that the amount of heat transferred,
Q. = me, (Ty~T)) = 0.186 X 1.005 (288 - 458) kJ

= ~31.78kJ Ans,

The —ve sign indicates that the heat has been extracied from the gas during the process. In
other words, the gas is compressed.
Wurkdose during the process

Firstof all, let us find the final volume of the gas (v,). Since the process takes place at constant
pressure, therefore

b, Ul 0.09x288

T T 2 T, 458
We know that the workdone during the process,

Wi, = p(,-v,) = 275 10° (0.056 ~ 0.09) = 9350

= -935k) Ans.
The —ve sign indicates the work is done on the gas. In other words, the gas is compressed.
Example 2.13. A certain gas has c,= 1.96 ki/kg K andc, = 1.5 k)/kg K. Find its molecular

mass and gas constant. A constant volume chamber of 0.3 m’ capacity contains 2 kg of this gas at
5% C. The heat is (ransferred to the gas until the temperature is 100° C. Find the workdone, heat
Iransferred and change in internal energy.
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Solution, Given : ¢, = 196 kikg K ¢, = 1SkikgK;v=03m';m=2kg:7,=5°C
=5+273 = 218K T,=100°C= 100+273=3713K

Molecudar nasy and gas constant
Let M = Molecular mass, and
R = Gas constant,

We know that gas constarn,
R=¢c~¢, = 196~ 1.5 = 046 kl/kg K

_ Universal gas constant _ K, _ 8314 _
and molecular mass, M= Say conitant =R " 046 _ 'Bke Ans.

v (R, for all gases = 8.314 kl/kg K)
Workdone
Since the volume is constant, therefore workdone (H{H) is Ze1o. A ps.

Heat transferred
We know that heat transferred,

Q,, = mec,(T,=T,) = 2x1.5(373-278) = 285 kJ Ans.

Change in internal energy

Let dU = Change in internal energy.
Weknowthat @, , = W _,+dU =0+dU = du
dU = Q,; = 285k] Ans.

Example 2.14. A vessel of 2.5 m’ capacity contains one kg-mole of nitrogen at 100° C.
Evaluate the specific volume and pressure. If the gas is cooled 1o 30° C, calculate final pressure,
change in specific internal energy and specific enthalpy.

The ratio of specific heats is [.4 and one kg-mole nitrogen is 28kg.

Solution. Given : v, =25 m’ ; M = | kg-mole =28 kg ; T, =100°C= 100+ 273 =313 K
T,=30°C=30+273=303 Kiy=cfc,=14
Specific volume and pressure

Let v, = Specific volume of the gas, and

p, = Pressure of the gas.

We know that specific volume of the gas,

T S
CAalrT AT (LORY m kg Ans.
, R, 8314
Gas constant, R= M- B " 297 Wkg K Lo R, =8314)kg mol K)
-Weknowthat p o, = MRT,

MRT, _ 24x297x373

= (] 2
2 o = 1.24 % 10° N/m

"=

124 bar Ans. (U bar=0.1x 10% N/m?)
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Final pressure, change in specific internal enerey and specific enthalpy

Let p, = Final pressure of the gas.
AT TR i e o .
112 I Ld g L =
We know that T T, or T =T, (v =0)
7
p, = Dt o 124X308 _ 107 bar Ans.
T 373

Now. let us find out the values of specific heat al constant pressure (c,) and specific heat at

constant volume (c,).

We know that ¢, ~c, = R

lde,~c, =297 vl e, = 14)
¢, = 297104 = 7425 V/kg = 0.7425k) kg K
and b - ldc, = 14x0.7425 = 1.04 kl/kg K

We know that change in specific internal energy,
du = ¢, (T,—T,) = 0.7425 (303 - 373) =—52kl/kg Ans,

The —ve sign indicates that the specific internal energy is reduced after the gas is.cmteﬂ.
We also know that change in specific enthalpy,
dh = ¢, (T,-T) = 1.04 (303 -373) = - 728 kl/kg Ans.

The —ve sign indicates that the specific enthalpy is reduced after the gas is cooled.

EXERCISES

. Determine the final pressure of a gas when 2 m’ of gas at 6 bar is heated by keeping the lemperature
constant, The final volume is 6 m’. |Ans. 2 bar]
2. A certain quantity of air is cooled at a constant pressure from 300 K to 280 K, If the initial volume
of the airis 0.15 m*, find by how much the volume will diminish ? {Ans. 0.01 m'}
3. A gasatatemperature of 333°C and 20 bar has a volume of 0.06 m’. It is expanded to a volume
of 0.54 m*. Determine the final pressure of the gas if the temperaturc of the gas after expansion is 30" C.
[Ans. 1,33 bar]
4, A gas at a emperature of 20° C and pressure of 1.5 bar occupies a volume of 0.105 m?. 1f the gas
is compressed (o a pressure of 7.3 bar and volume of 0.04 m*, what will be the final temperature of the gas 7

|Ans. 285" C|
5. Acylinder contains 3 kg of air at a pressure of 300 bar and a temperature of 27° C. Find the volume
of air occupied by the gas. Assume R for air as 287 Jikg K. [Ans. 00086 m'|
6. A vessel of capacity S m’ contains 20 kg of an ideal gas having a molecular mass of 25. If the
emperature of the gas is 15° C, ﬁqd its pressure. {Ans, 3 K3 bar|
R
[H‘n‘.l. =gt = %ﬁ = 332.56Jkg K (- R, for anideal gas = 8314)/kg K)

7. A certain gas occupies 0.15 m* al a temperature of 20° C and a pressure of 1.2 bar. If the gas has *
mass of 200 g, calculate (i) value of gas constant, and (i{) molecular mass of the gas.

. [Ans. 307.2 Jikg K ; 27.06]
8. A cenain gas has ¢, = 1.96 klkg K and ¢, = 1.5 klikg K. Find its molecular mass and the gas
constant. The universal gas constantis 8.315 klfkg K. [Ans. 18 ; 0046 klkg K]

9. The volume of air at a pressure of 5 bar and 47° C is 0.5 m”. Calculate the mass of the air, if the
specific heats at constant pressure and volume are | kl/kg K and 0.72 kl/kg K respectively. [Ans. 2.8 kel
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“10. The heated nitrogen gas expands from 0.2 m’ 0 0.85 m*in a quasi-static process al a constin!
pressure of 1000 kPa. For 1 kg mass of gas, determine the amount of workdone by the gas and the final
temperature. R = 296.8 I/kg K, for nitrogen. [Ans. 650 kJ ; 2863 88 K|

11. The gas constant for atmospheric air is 0.287 kJ/kg K and the specific heat at constant volume is

0.713 kl/kg K. Find the specific heat at constant pressure and the ratio of specific heats.
[Ans. | kikg K : 1.403)

12. A certain quantity of gas occupies 0.14 m* at 12.6 bar and 100" C. Calculate the change in internal
energy if the gas is heated to a temperature of 300" C. Take =1klkgKandc,=072 kg K.
& [Ans. 245 k]

13. The temperaturc of 3.5 kg of gas is raised from 95° C to 225" C at a constant pressure. Find the
amount of heat supplied to the gas and the amount of the external workdone. The specific heats at constant
pressure and volume are 1 kJ/kg K and 0.72 kl/kg K respectively, [Ans, 455k) ;1274 k)]

14. An ideal gas 0.9 kg having gas constant 287 J/kg K is heated at constant pressure of 8 bar from

30" C 10 200" C. If the specific heat at constant volume is 0.72 klA&g K, find 1. specific heat at constant pressure,
2. total heat supplied to the gas, 3. increase in internal energy, and 4. workdone in cxpansion.

[Ans. 1.007 kJkg K ; 154.1 k) ; 110.16 k) ;43,94 k)]

15. One kg mole of nitrogen (molecular mass = 28) is contained in a vessel of volume 2.5 m® at 100"

C. 1. Evaluate the mass, the pressure and the specific volume of the gas ; 2. If the ratio of specific heats is 1.4,

evaluate c, and ¢, 3. If the pas cools to the atmospheric temperature of 30° C, evaluate the final pressure of the
gas. 4. Find the increase in specific intemal energy and the increase in specific enthalpy.

[Ans. 28 kg, 12.4 bar, 0.089 m¥kg ; 1.04 ki/kg K. 0.7425 klikg K ; 10.07 bar ; 52 kikg, 72 8 ki/kg|

QUESTIONS

1. Whatis a perfect gas ? Under what conditions does a real gas behave as a perfect gas?

2. Name the variables which control the physical properties of a perfect gas.

3. State Boyle's law and Charles™ law and prove that the characteristic gas equation is
pv=mRT

4. What is the difference between universal gas constant and characteristic gas constant 7

5. Define the specific heat at constant volume and at constant pressure,

6. What do you understand by enthalpy ? Show that for a constant pressure process, the heat
supplied to the gas is equal to the change of enthalpy.

7. Prove that the difference between two specific heats (¢, and c,) is equal to characteristic
gas constant (R).

8. What is an adiabatic index ? Why its value is always greater than unity ?

OBJECTIVE TYPE QUESTIONS

1. If the temperature remains constant, the volume of a given mass of a gas is inversely
proportional to the pressure. This is known as

(a) Charles’ law (b) Boyle's law  (c) Joule's law (d) Gay-Lussac's law
2. The state of a substance whose evaporation from its liguid state is complete, is known as
(a) steam (b) vapour (c) air (d) perfect gas
3. The characteristic equation of a gas is
(a) pv = constant (b)pr = mR (c)pv = mRT (d) pp = RT™

where p, v, T and m = Pressure, volume, temperature and mass of the gas respectively,
and R = Gas constant.

4. The value of gas constant (R) is
(a) 287 kg K (b)28.7 Jkg K (c) 287 Jkg K (d) 0.287 Jrkg K
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5.

(c,)is

10.

1.(b)
6. (b)

The value of universal gas constant (R ) is
(a)8.314 Jkg K (8314 kg K (o) 8314 J/kgK () B34 Vkg K

The gas constant (R) is equal to the................ of two specific heats.

{er) sum (b) difference () product (d) ratio

The specific heat at constant pressure is ... that of specific heat at constant volume.
(1) equal to (b) less than (¢) more than

The ratio of specific heat at constant pressure (c,) and specific heat at constant volume

{er) eqqual to one (h) less than one (¢} more than one (d) none of these
The value of ¢ fc, for airis
(e 1 (Mh14 () 1.8 (2.3

When the gas is heated at constant pressure, then the heat supplied
{¢) raises the temperature of the gas
(b) increases the internal energy of the gas

{¢) does some external work during expansion

{el} both (a) and (b)
(¢) both (b) and (¢)
ANSWERS
2.(d) 3 (o) 4. (a) 5.(d)

T.(c) 8.{c) 0. (M 10. (&)
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Thermodynamic Processes of Perfect Gases

1. Introduction. 2. Classification of Thermodynamic Processes. 3. Workdone During a Non-flow
Process. 4. Application of Firsi Law of Thermodynamics to a Non-flow Process. 5. Heating and
Expansion of Gases in Non-flow Processes. 6. Constant Volume Process (or Isochoric Process). 7.
.Consiant Pressure Process (or Isobaric Process). 8. Hyperbolic Process. 9. Constant Temperature Process
(or Isothermal Process). 10. Adiabatic Process {or Isentropic Frocess). 11. Polytropic Process. 12. Rate
of Heat Transfer (Absorption or Rejection) per Unir Volume During a Polytropic Process. 13,

= Determination aof Folytropic Index. 14. Free Expansion (or Un-resisted Expansion) Process. 15. General
Laws for Expansion and Compression. 16. Summary of Formulae for Heating and Expansion of Perfect
Gases in Reversible Non-flow Processes. 17. Flow Processes. 18. Application of First Law of
Thermodynamics to a Steady Flow Process. 19. Workdone in a Steady Flow Process. 20. Workdone for
Various Steady Flow Processes. 21. Throttling Process. 22. Application of Steady Flow Energy Eguation
to Engineering Systems.

1. Tntroduction

We have already discussed that when a system changes its state from one equilibrium state to
another equilibrium state, then the path of successive states through which the system has passed, is
known as a thermodynamic pracess. Strictly speaking, no system is in true equilibrium during the
process because the properties (such as pressure, volume, temperature etc.) are changing. However,
if the process is assumed to take place sufficiently slowly so that the deviation of the properties at the
intermedliate states is infinitesimally small, then every state passed through by the system will be in
equilibrium. Such a process is called quasi-static or reversible process and it is represented by a
continuous curve on the property diagram (i.e. pressure-volume diagram) as shown in Fig. 3.1 (a).

l 1 (Initiai state) ‘[ | 11 (inii stata)
\
. 5\
Equllibrum stales ‘\
g . \\\“
o 2 I w2
' (Final state) Py
e Vokifhe — — Voluma —
() Reversible process 1) Irreversible process

Fig. 3.1, Reversible and irreversible PrRCTSS

If the process takes place in such a manner that the properties at the intermediate states are
not in equilibrium state (except the initial and final state), then the process is said to be non-equilibrium
or irreversible process. This process is represented by the broken lines on the propeny diagram as

shown in Fig. 3.1 (b).
50
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32.  Classification. 5 Thermodynamic Processes

All the thermodynamic processes are classified into the following two groups :

1. Non-flow processes, and 2. Flow processes.

The processes occurring in closed systems which do not permit the transfer of mass . cross
their boundaries, are known as non-flow processes. Tt may be noted that in a non-flow process, the
energy crosses the system boundary in the form of heat and work, but there is no mass flow into or
out of the system.

The processes occurring in open systems which permit the transfer of mass to aad from the
system, are known as flow processes. It may be noted that in a flow process, the mass enters the system
and leaves after enhancing energy. The flow processes may be steady flow and non-steady flow
processes. The common examples of steady flow processes are flow through nozzles, turbines
compressors etc. and the common examples of non-steady flow processes are filling or evacuation
of vessels.

3.3, Workdone During a Non-flow Process

Consider a system contained in a frictionless piston and cylinder arrangement as shown in Fig.
3.2. As the system expands from its original state 1, it overcomes the external resistance (such as
rotation of the flywheel) which opposes the motion of the piston by
cxerting a force through a distance. The variation of the volume and
pressure of the system as it expands to final state 2, is drawn on the
pressure-volume diagram (briefly called p-v diagram) as shown in
Fig. 3.2,

Let at apy small section (shown shaded), the pressure ( p) of
the system is constant. If A is the cross-sectional area of the piston,
then force on the piston (F = p A) causes the piston to move through
adistance dx. Thus, workdone by the system,

W =Fdv = pAdx = pdo
LU dv = Ado
- Workdone for non-flow process from state 1 to state 2,

2 2
W, = Iﬁw 3 IPdT‘ r Fig. 2.2, Workdone during a
=V i non-flow process.

From above, we sce that the workdone is given by the area under the p-v diagram.
Notes: 1. The workdone by the system is taken as positive while the workdone on the system is considered as
negative.

2, Foranirreversible process, 8W # p dv, because the path of the process is not represented truely on
the p-v diagram due to its non-equilibrium states in the process.
3.4, Application of First Law of Thermodynamics to a Non-flow Process

We have already discussed in Chapter | (Art. 1.49) that when a system undergoes a change
of state or a thermodynamic process, then both the heat transfer and work transfer takes place. The
net energy transfer is stored within the system and is known as stored or total energy of the system.
Mathematically

0),-W_, =dE = E,-E, ()

where Q12 = Heattransferred or heat su p p]iéd to the system during the process
t.e. from state | 10 state 2,

W2 = Workdone by the system on the surrounding during the process
i.e. fromstate | to state 2, )
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E, = *Total energy or stored energy of the system at the end of the process
i.e at state 2, and
£, = Total energy or stored energy of the system at the start of the process i.e. at state |

For a non-flow process, the stored energy is the internal energy only. Thus equation (i) of the first

Jaw of thermodynamics, when applied to a non-flow process or a static system, may be written as
0 ,-W_,=dU=U,-U

where dU = Change in intemalenergy = U, - U,

It may be noted that heat and work are not a property of the system, but their difference
(Q,_, — W,_,) during a process is the numerical equivalent of stored energy. Since the stored energy
is a property, therefore (Q, ,— W, ;) is also a property.

Example 3.1.  When a system is taken from the state A to the state B, in Fig. 3.3, along the
path ACB, 80 kJ of heat flows into the system and the sysiem does 30 ki of work.

1. How much heat flows into the system along the path ADB, if
the workdone is 10 kJ.

2. When the system is returned from the state B to the state Aalong
the curved path, the workdone on the system is 20 kJ. Does the system

absorb or liberate heat and how much heat is absorbed or liberated.

3. If the internal energy at A (U,) = Oand at D (Up) = 40K, find
the heat absorbed in the processes AD and DB. Bl =
Solution. Given : Qcy = 80K ; Wy =30K Fig.3.3

1. Heat flowing into the system along the path ADB, if workdone (W ) = 10 kS
Let Q,pp = Heat flowing into the system alang the path ADB.
U, = Internal energy at A, and
Uy = Internal energy at B.
We know that for path ACB,
; R (e Upy+ Wy
, Uy-Uy, = Qpcg— Wacp = 80-30 = 50K
'We also know that for path ADB,
Quop = (Ug—- U+ Wops = 30+ 10 =60 kS Ans.

0 Wy = 10K0)
2 Heat absorbed or liberated
Let Q,_, = Heat absorbed or liberated along the curved path BA.
Since the work is done on the system, therefore
Wy, = —20K ... (Given)

*  The total energy of a system is the sum ol potential energy (PF). kinclic encrey (A L) und imernal encrgy
(L) plus any other form of the energy such as chemical energy, electrical energy clc

#*  Since internal energy is a point function, and depends on the initial and final staes. therefore dl/ s taken
as (U — Ux) where as heat and work are path functions =
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We know that for the curved path B-A,
Opn = (U, -Up)+ Wop = =(Uy- U+ W s
=-50-20 = - 70 k] Ans.

The —ve sign indicates that heat is liberated by the system.
3. Hear absorbed in the processes AD and DB

Let Csp = Heat absorbed in the process AD,
@y = Heat absorbed in the process DB,
U, = Internal energy atA = 0 ... (Given)
Uy, = Internal energy at D = 40 kJ ... (Given)

We know that work done along the path ADB,
Wapp = WaptWpp
Since the process D-B is a constant volume process, therefore W, g = 0. Thus, workdone
during the process A-D,

W.p= W = 10K

We know that Opp = (Up=U)+W,
= (40-0)+10 = 50kJ Ans.
Similarly Opp = Wa=Up)+ Wy, = Uy-U, (s Wy =0)
= 50-40 = 10kJ Ans.
(7 Uy~ U, = 50k} and U, = 0, therefore U, = 50 kJ)
Example 3.2. A fluid is confined in a cylinder by a spring loaded frictionless piston so that

the pressure in the fluid is a linear function of the volume ( P = a+Ubv). The internal energy of the
Jluid is given by the following equation .

U=335+3pv

where U is in kJ, p in kN/m® and v in m’, If the fluid changes from an initial state of 1.7 bar, 0.03 m’®
to a finai state of 4 bar, 0.06 m’, with no work other than that done on the piston, find the direction
and magnitude of the work and heat transfer.

Solution. Given:p=a+bv;1/=335+3pv:p, = 1 7bar= 170 KN/m?; v, = 003m*;
P, =4 bar =400 kN/m® ; v, = 0.06 m*
We know that change in internal energy of the fluid,
dU = U,-U, = (335 +3p,0,)-(33.5 +3pv)
=3(p,v,-p,v)) = 3(400x 0.06- 170x 0.03) kJ
_ 3(24-5.1) = 56.7k)
We also know that p=a+bv
.. For the initial state of fluid,
170 = a+bx0.03 _ sn XD
and for the final state of fluid, .
400 = a+bx0.06 i ()
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Subtracting equation (i) from equation (if),
400170 = 0.06b-0.03b or 230 = 003b
& b = 7667 ’
Substituting the value of b in equation (i),
170 = a + 7667 x0.03 = a+230
& a=-60
We know that work transfer,

Y

W= _[pdv = f(a+bv}dv

U’ tll

v 3 ol
bt |* Lo
[av+—i—j|u = a(vz—v|)+b[—i-—

I

e 2
— 60 (0.06 — 0.03) + 7667 [ _@2@)_2(0.031 ]

-18+1035 = K.59kJ Ans.
Heattransfer, O, = W, j+dU = 855+567 = 6525k) Ans.

i

L]

Since both work transfer and heat transfer are positive, therefore work is done by the fluid and
heat is supplied to the fluid.
15, Heating and Exparsion of Gases in Non-flaw Processes

. The heating and expanding of a gas may be performed in many ways. But the following are
the different non-flow processes (reversible and irreversible) as applied to perfect gas :
( 1. Reversible non-flow processes. These processes are as follows :

(a) Constant yolume process (o Isochoric process),

(b) Constant pressure process (or Isobaric process),

(¢) Hyperbalic process,

(d) Constant temperature process (o1 Isothermal process)

(e) Adiabatic process (or Isentropic process), and

(f) Polytropic process
2. Irreversible non-flow processes. The free expansion process is an irreversible non-flow
process.

These above mentioned processes are discussed, in detail, in the following pages.

Note: The above mentioned processes are also applicable to the cooling and compression of gases. Cooling is
regarded as negative heating, and compression as negative expansion.

36. Constant Volume Process (or Tsochoric Process)

We have already discussed that when a gas is heated at a constan! volume, its temperature and
pressure will increase. Since there is no change in its volume, therefore no work is done by the gas.
All the heat supplied to the gas is stored within the gas in the form of internal energy. It may be noted
that this process is governed by Gay-Lussac law. Now consider m kg of a certain gas being heated at
constant volume from initial state 1 to a final state 2.

Let puv,and T) = Pressure, volume and temperature at the initial state 1, and

py Uy and Ty = pressure, volume and temperature at the final state 2.
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The process is shown on the pressure-volume ( p-v) and pressure-temperature ( p-T) diagrams
in Fig. 3.4 (a) and (b) respectively.

n 2
—Temperalurg —

(et} pv diangeam, (bt p-T Jiagram.
Fig. 34, Constart voluime process.
Now let us derive the following relations for ihe reversible constant volume process.
1. Pressure-volume-temperature (p-v-T) relationship

We know that the general gas equation is

Y P, :
T, = 3 ...(D
Since the gas is heated at constant volume, therefore v, = v,.
n o P I .
D — = Constant .« [From equation (i
e or 7 = Constan [From eq 0)

Thus the constant volume process is governed by Gay- Lussuc Taw.
2. Warkdenie by the gas
We know that W =pdv

On integrating from state 1 to state 2,
2 2 2
[ow = [pdv=p|av
I ! 1
or Wl_z = p(t}l—illj =0 ke o= 92)

3. Change in internal energy
We know that change in internal energy,

dU = mc,dl ... (Joule's law)
On integrating from state | to state 2,
2 2
IdU = mcvjd'!'
I I
or U,-U, = me, (T,~T))

A4 Heat supplied or heat Jrzmsfe;-
We know that 80 = dU + 3w



56 A Text Book of Thermal Engineering

On integrating from state 1 to state 2,

2 2 2
f80 = [au+[ow
1 1 I
or Q1 = (U,-U)+ W,
Since W, , = 0, therefore heat supplied or heat transfer,
Q2 = U= U, =me,(I,-T)
This shows that all the heat supplied 1o the gas is utilised in increasing the internal energy of
the gas.
5. Change in enthalpy
We know that the change in enthalpy,
dH = dU +d( pv)

On Integrating from state 1 to state 2,

2 2 2
[an = [av+[d(pov)
1 1 |

or H,~H, = (U,=U)+(pyv,~p, v))
me, (Ty-T))+mR(T,-T))

sk P =mRTl;andp:v,= mRTzl

m(TQ—Tl)(cv'!—R)=mrp(T2—Tt} vl g=c, = R)

Notes : 1. The change in internal energy (dU) and the change in enthalpy (dH) have the same expression for
each process.

2. During expansion or heating process, work is done by the gas (iLe. W, , is + ve) ; internal energy of
the pas decreases (i.e. dU/ is —ve ) and heat 1s supplied to the gas (i.e. Q, , is +ve).

3. During compression or coaling process, work is done on the gas (i.e. W, _; is ~ve) ; internal energy
of the gas increases (i.e. dU is +ve) and heat is rejected by the gas (ie. O, ; is -ve).

Example 3.3. A certain gas occupies a space of 0.3 ' ara pressure of 2 bar and a
temperature of 77° C. It is healed at a constant volume, until the pressure is 7 bar. Determine :
1. temperciure at the end of the process ; 2. mass of the gas ; 3. change in internal energy ; and
4. change in enthalpy during the process.

Assume ¢, = 1.005 kifkg K ; €,=0.712 klVkg K ; and R = 287 J/kg K.

Solution. Given: v, = 0.3 m’ ip=2bar=02x 105 N/m? - T,=71°C=77+273=350K,;
py="Tbar=0.7x 10° N/m? 16, = 1005 kIkg K ¢, =0.712 kikg K ; R =287 J/kg K
I. Temperature ar the end of the process

Let T, = Temperature at the end of the process.

We know that *?l
1

;T 6
g n 20 QIR R0 o caw 1995 - 273 mOSP 0 A,
P, 0.2x 10°
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2. Mass of the gas
- Let m = Mass of the gas.
We know that p v, = mRT,
A% 02x10°%03

m=ﬁ.‘l—=w=ﬂ.59? kg Ans.

3. Change in internal energy
We know that change in internal energy,
du = Uy~ U, = mc,(T,-T))
= 0.597x0.712 (1225~ 350) = 372kJ Ans.
4. Change in enthalpy
We know that change in enthalpy,
dff = H,~H, = me, (7,-T)
= 0.597 % 1.005 (1225~ 350) = 525 kJ Ans.
37.  Constant Pressure Process (or Isobaric Process)

We have already discussed that when a gas is heated at a constant pressure, its temperature
and volume will increase, Since there is a change in its volume, therefore the heat supplied to the gas
is utilised to increase the internal energy of the gas and for doing some external work. It may be noted
that this process is governed by Charles’ law. ’

Now consider m kg of a certain gas being heated at a constant pressure from an initial state |

to a final state 2.
Let . vy and T, = Pressure, volume and temperature at the initial state |, and

Py Uy and T, = Pressure, volume and temperature at the final state 2.
The process is shown on the p-v and p-T diagrams in Fig. 3.5 (a) and (b) respectively.

f I
e ) =
@ ] ]
c ' : 3 i !
f \ ! [ : |'
]_I_ _L == i SR G
Y Y T h
e Volume — » == Tempetature —
{et) pv diagram. (&) p-T diagram

Fig. 3,5, Constant pressure process.
Now let us derive the following relations for the reversible constant pressure process.
-\, L. Pressure -volume-temperature (p-v-T relationship)
’ We know that the general gas equation is

L b R 0

TT T]
Since the gas is heated at constant pressure, therefore P =Py

I’I ??3

J .
¥ = 7, or = Constant ... [From equation (§)]

Thus, the constant pressure process is governed by Charles" law.
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2. Workdone by the gas
We know that &W = pdv
On integrating from state | to state 7

4 2 2
[ow=[pdv=p[aw
] l '
or W, =ple,-1) = mR(GL-T))
. py,=mRT andpov, = mRT)
1. Change in internal energ
We have discussed in the previous article that the change in internal energy (dU) is same for

all the processes. Therefore change in internal energy,
di) = U,=-U, =m e (T:-T))

4. Heat supplied or heat transferred
We know that 80 = dU + W
On integrating from state  to state 2,

1 2 2
- [50 = [du+[ow
1 I I
(UI_ Ul] * Wl_: sas {[‘I‘)
mcv{Tz-Tl}-rmR{Tz—Tl}
m(Ty-T) (e, +R)

nacP[TZ-T,} N Cp“fu=R)

0.,

1]

The equation (ii) shows that the heat supplied to the gas is utilised in increasing the inte mal
energy of the gas and for doing some external work.
S. Change in enthalpy
We have discussed in the previous article that the change in enthalpy (dF) is same for all the
processes. Therefore, change in enthalpy,
dH = H,—-H, = mc,(T,~T))
We see that change in enthalpy is equal to the heat supplied or heat transferred.

Note: Ifthe gasiscooled ata constant pressure, then there will be acompression. It is thus obvious that, during
cooling, the temperature and volume will decrease and work is said to be done on the gas. In this case,

Workdone on the gas, W =p@-v)=mR(T-T)
Decrease in internal energy, dU = U =U, = mc, (T\-T)
and heat rejected by the gas, 0., =me, (T =T)

Example 34. The values of spec ific heats at constant pressure and at constant volume for
an ideal gas are 0.984 kJ/kg K and 0.728 kJ/kg K. Find the values of characteristic gas constant (R)
and ratio of specific heats (Y) for the gas. If one kg of this gas is heated at constant pressure from 25°
C to 20(° C. estimate the heat added, ideal workdone and change in internal energy. Also calculate
the pressure and final volume, if the initial volume was 2 m’,

Solution. Given:¢, = 0984 kikg K ;¢c,=0.728kI/kgK jm=1kg; T, = 25°C=25+273

~298 K ;7,=200°C=200+273=473K v, =2m’
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The heating of gas at constant pressure is shown in Fig. 3.6.
Characteristic pas constant

We know that characteristic gas constant, '
R = €, =6y = 0984 -0.728 g
o

I

—

€2 ---1—-_3
= 0.256 kIkg K Ans, : |
1V 1
Reition of specific heais H 1
» . . v, [
We know that ratio of specific heats, 4 2
y=c/c, = 0984/0728 = 135 Ans. _
r Fig. 3.6

Heat added
We know that heat added during constant pressure operation,
0,5 =mc,(T,=T)) = | x0.984 (473 - 298) = 17221J Ans.

Warkdone .

We know that workdone during constant pressurc operation,
W,,=plv,-v) = mR(T,~T,) (2 pv=mRT)
1 x0.256 (473 -298) = 43.8 kI Ans.

-2

1]

Clumnge in internal enerpy
*We know that change in internal Em'.rg;,
dv=U,=U =mc, (T,-T)) = 1x0.728 (473-298) kJ
1274 kJ Ans.

Presyure and final volinme of the gas if the inittal volume, v, =2 m'

Let p, = p, = Pressure of the gas, and

v, = Final volume_of the gas.

AU Pt by 1

We know that o — =— ...( " Pressure is constant)
TI Tz TI 2
v, T.
v, 2 2x4B 34903 Aps,
T, 298
We also know that
p,v, = mRT,

. mRT,  1x256x%298
! v, 2

0.3814 bar Ans. ...( 1bar = 10° N/m’)

= 38 140N/m* .. .(Ris taken in Jkg K)

]

Example 3.5. A quantity of gas has a volume of 0.14 m’, pressure 1.5 bar and a temperature
100° C. If the gas is compressed at a constant pressure, until its volume becomes 0.112 m’, determine :
® The change in intemal energy may also be obtained from the relation

Qia = e/ + Wiz or dU = @y = Wia = 1722448 = 1274K]
5 -
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1. the temperature at the end of compression ; 2. work done in compressing the gas ; 3.
decrease in internal energy ; and 4, heat given out by the gas.
Assume c, = 1.005 kikg K ; ¢, = 0.712 ki/kg K ; and R = 285 J/kg K

Solution. Given : v, =0.14 m’ ; p = 1.5 bar = 0.15 x 10° N/m?; T, = 100° C = 100 +273
=K ;uz-_-{],nzm] ie,= 1.005 kikg K ;¢,=0712kIkg K ; R=2851kg K
The compression of gas at constant pressure is shown in Fig. 3.7,

|. Temperature at the end of compression
Let T, = Temperature at the end of compression. l
. E 2 1
v v g p ey
We know that ?l = Tz T_ | !
I !
e
Ty 2t o QUEXIN o0 gy S
U, 0.14 — Volume ——
= 2984-273 = 254°C Ans. Fig. 3.7

2. Workdone is compressing the gas
We know that workdone in compressing the gas,
W,,=py,-v) =015x% 10°(0.14 - 0.112) = 4200) = 4.2k} Ans.

3. Decrease in internal energy
First of all, let us find the mass of gas (m) admitted for compression. We know that

v, =mRT,

T RT, 285x313

We know that decrease in internal energy,
di = U -U,=mc,(T,~-T)
= 0.197x0.712 (373 -298.4) = 1046 kJ A..-
4. Heat given out by the gas
We know that heat given out by the gas,
Q,=m g, (T,-T,)
= 0.197x%1.005 (373-2984) = 14.77k] Ans.

3.8. Hyperbolic Process

A process, in which the gas is heated or expanded in such a way
that the product of its pressure and volume (i.e. p X ) remains constant,
is called a hyperbolic process.

It may be noted that the hyperbolic process is governed by ;
Boyle's law i.e. pv = constant. If we plot a graph for pressure and
volume, during the process as shown in Fig. 3.8, we shall get a ] [

| o}

o

rectangular hyperbola. Hence, this process is termed as hyperbolic
process. Itis merely a theoretical case, and has a little importance from Yy Vokui'n——iz

the subject point of view. Its practical application is isothermal process,

which is discussed below. Fig. 3.8. Hyperbolic process.
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39. Constant Temperature Process (or Isothermal Process)

A process, in which the temperature of the working substance remains constant during its
expansion or compression, is called constant temperature process or isothermal process. This will
happen when the working substance remains in a perfect thermal contact with the surroundings, so
that the heat ‘sucked in’ or ‘squeezed out’ is compensated exactly for the work done by the gas or on
the gas respectively. Itis thus obvious that in an isothermal process :

1. there is no change in temperature,
2. there is no change in internal energy, and
3. there is no change in enthalpy.

Now consider m kg of a certain gas being heated at constant temperature from an initial state
| to final state 2.

Let p,.v, and T, = Pressure, volume and temperature at the initial state 1, and
pp vy and T, = Pressure, volume and temperature at the final state 2.
The process is shown on the pv and p-T diagrams in Fig. 3.9 (a) and (b) respectively.

‘p, -------- 1

(a) p-v diagram. (b) p-T diagram.
Fig. 39. Constant temperature (Isothermal) process.
Now let us derive the following relations for the reversible constant temperature process or
isothermal process. *
|. Pressure-volume-temperature (p-v-T) relationship

We know that the general gas equation is

Yy Pty
T T T .. ()
1 2
Since the gas is heated at constant temperature, therefore 7| = T,
Py, =p v, o pu = Constant . .. [From equation (i)]

Thus, the constanl temperature process or isothermal process is governed by Boyle's Jaw.
2. Workdone by the gas
We know that W =pdv
On integrating from state 1 to state 2,
2 2
Jow=[paww

2
or W, =] pdv <. (i)
1
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Since the expansion of the gas is isothermal, i.e. pv = C, therefore

py

pv=pv, or p="_
Substituting this value of p in equation (i), we have
D!p v !
{3 dv
WI—Iz-[ o du:PIUIJ;-
o P,

=pv[log‘u]n‘=p v, log ke ... (i)
171 o, 151 3 , .
The above equation may be exprésed-in terms of corresponding logarithm.to the base 10, i.e.
v
W,,=23p v log [;:' ] =23p v logr e ()
U, . y .
where p=y and is know.n as expansion ratio.

I
‘The equation (iv) may also be written as follows :
Weknow that p,v, =p,v,=mRT

= [
. Workdone, W, = 2.3mRTIog[-ﬂ—1J= 23mRTlogr
1
v
Since p, v, = p,v,, therefore 2.0
. U Py

P
.+ Work done, W, , =23p, v, log [P_:J

Volume at the end of expansion
Volume at the beginning of expansion
Yolume at the beginning of com_prcssior:

Volume at the end of compression

Notes : (a). Expansion ratio, r =

(b) Compression ratio, r =
3. Change in internal energy
We know that change in internal energy,
dUu = U,-U, =mc (T,~-T))
Since it is a constant temperature process, i.e. T, = T, therefore
dU=U,-U =0 or U =U,
4. Heat supplied or heat transferred
We know that heat supplied or heat transferred from state 1 to state 2,
Q. =dl+W _, =W, , ... dU=0)
This shows that all the heat supplied to the gas is equal to the workdone by the gas. '

5. Change in enthalpy
We know that change in enthalpy,
dH = Hy~H, = mc,(T,~T)
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Since it is a constant temperature process, i.e. 7, = T, therefore
dH = Hy~H, =0 or H =H,
Example 3.6. A quantity of air has a volume of 0.4 m’ at a pressure of 5 bar and a*
temperature of 80° C. It is expanded ina cy!md'zr at a constant temperature to a pressure of | bar.

Determine the amount of work done by the air during expansion.
Solution. Given: v, =04m’; p =5bar=05x10°N/m’; *T=80°C; p,=1bar

=0.1 x 10° N/m®
First of all, let us find the volume of air at the end of expansion (ie. v,). We know that

Y _ 05x10Px04
Py 0.1x 108
and expansion ratio, r=p,/u,=2/04=35
We know that workdone by the air during expansion,
Wy, = 23p, v, logr =23%0.5x10°<04 log5]
= 046x 10°x 0.699 =321 540J = 321.54kJ Ans.

Example 3.7. 0.1 n’ of air ai a pressure of 1.5 bar is expanded isothermally to 0.5 m’.
Calculate the final pressure of the gas and heat supplied during the process.
Solution. Given:v, = 0.1m*; p, = 1.5bar = 0.15x 10° N/m?; v, = 0.5 m’

P, U, = p,v, OF U, = =2m’

Final pressure of the gas
Let p, = Final pressure of the gas.

Weknowthat p, v, =p,0,

P, % =05 =003x 10° N/m? = 0.3 bar Ans.
Heat supplied during the process
We know that expansion ratio,
r=1v,/v,=05/01=5
.. Workdone during the process,

W, =23p v logr=23x015x105%0.1 log5J

= 0.0345x 10°x 0.699 = 24 115 = 24.115 kJ
We know that in an isothermal process, heat supplied (Q, ,)is equal to the workdone during
the process.
Q,, = W, =24.115K Ans.

3.10. Arllabat:c Process (or Isentropic Process)

A process, in which the workmg substance neither receives nor gives out heat to its surround-
ings, during its expansion or compression, is called an **adiabatic process. This will happen when

» Superfluous data ;

**  Ttmay benoted that the adiubatic process may be revessible or ireversible. The reversible adiabatic process
or frictionless adiabatic process is known as isentropic process (or constant entropy process). But when
friction is involved in the process, then the adiabatic process is said to be irreversible, in which case the

_ entropy docs not remain constant i.e. (he entropy increases (See Chapter 4, Ar. 4.7).
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the working substance remains thermally insulated, so that no heat enters or leaves it during the
process. It is thus obvious, that in an adiabatic or isentropic process :
1. No heat leaves or enters the gas,
2. The temperature of the gas changes, as the work is done at the cost of internal energy, and
3. The change in internal energy is equal to the work done.
Now consider m kg of a certain gas being heated adiabatically from an initial state 1 to a final
state 2.
Let P v, and T = Pressure, volume and tempera-
ture at the initial state 1, and
" pp v, and Ty = Pressure, volume and tempera-
ture at the final state 2,
The process is shown on the p-v diagram in Fig. 3.10.
Now let us derive the following relations for a reversible
adiabatic process.

Fig. 3.10. Adiabatic process,

1. Pressure-volume-remperature (p-v-T) relationship

We know that 80 = dW+dU (First law of thermodynamics) .. . (i)
Since in an adiabatic process, no heat transfer takes places, therefore
50 =0 :
SW+dU = 0
or pdv+me,dl =0
—pdo .
dr = :c’ .. (D)
We know that pv=mRT

Differentiating this e pression, we get
pdo+vdp = mRdT
pdo+vdp pdv+udp
o mR - m(cp—cp)

.. (iif)

sl Ris cp—-c")
Equating equations (if) and (iii),
-pdv pdv+vdp
mec, m(c,-¢)

""p"‘o_pdn+vdp_ i vdp
¢, = —-pdv pdv

e
el B
1
-

y S ——
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o _ %
£l P
dj
yxiu—+—p =0
v p
Integrating both sides,

ylog, v +log,p = Constant or log, pt" = log, C
p'=C or pvl=pp}=..=C .o (V)

The equation (iv) may also be expressed in the }'cllowing forms ;

p v, |
e (L
P-—I —[*—vl] | )]

From the general gas equation, we know that
() p_T ;
o2 o oAy ()
T, T n N

Equating equations (v) and (vi),

Y \] \i -l
v, B T v, T | U, v, N Uy v,
== e ap caciam | S ligtas s =S =
v, T, v T, U v, v, 7,

Y-1
Ty ) :
?1=(v—l] ) « o (i)

From equation (iv), we also know that
1

v ¥
—'=[p—’} : ... i)
Uy Py
From the general gas equation, we know that
o o9 n hoB

or = X i |
T, T n, Lop "

Equating equations (viii) and (ix),

1 1 I
= = e i)
N T, Y Y
Bladigte o B lBF G I h
Py rz P T: Py P2 P,

; L_[a]”
52 Tl_[.P;g] coa(x)

2. Workdone during adiabatic expausion 2

We have already discussed that workdone,
W=pdv
On integrating from state I to state 2,

2 2 2
{EW = ‘!pdv o W,,= Jl'pdo woa(xd)
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‘Since adiabatic expansion of the gas follows the law,
vl
Pl =p! o p= Yy
v

Substituting this value of p in equatinn (xi),

2

p v LA
Wia = .[ o d" P UT.[ vldv - p fﬁ[ Y_:-l]
1 I I

JBYE ey i
-2
Y T-p vl
= iy
RACUWEACER!
= =%
_ Pavi—PiY,
s e
i ot T o
¥—1
PaUa =P Y
= T ... (For compression)
Note : The above equation for work done may also be expressed as :
(@) We know that p, v; =mRT, and p, v, =m R T, , Substituting these values in the equation for
expansion, :

< pul = puy)

-+ (For expansion)

mRT,-mRT, mR(T,~T)
7-1 = -1
mR(T,-T,)
=—-_-_-_T_l
(b) We also know that work done during expansion,
P Pz"1=ﬁ[l_£§_‘j]
¥l r-1 Pt

RT,
=:u[1—p’—a’j| ... po=mRT

W= . . (For expansion)

.. (For compression)

wl 2=

11 Y

3. Change in internal energy

‘We know that change in internal energy,

dU=U,-U, = mc, (T,~-T)

4. Heat supplied or heat transferred

We know that head supphecl or heat transferred in case of adiabatic process is zero, therefore

Q.,=0

5. Change in enthalpy

We know that change in enthalpy,
dH = Hy~H, = mc,(T,~T,)
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Example 3.8, Onelitre of hydrogenat (P Cis suddenly compressed 1o one-half of its volume.

Fir-d the change in temperature of the gas, if the ratio of two specific heats for hydrogen is 1.4,
Solution. Given : v, = 1 litre ; T, =0°C=0+273=273K ; v, = v,/2= /2 = 0.5 ltre ;

y=14
Let - T, = Final temperature of the gas.
=1 14-1
7, Vs 0.5 il
We know that 'Fz = ["'l ] = [ ] = (0.5)"" = 0.758

T, = T,/0.758 = 273/0.758 = 360.16 K

— 360.16-273 = 87.16°C Ans.

Example 3.9. The initial volume of 0.18 kg of a certain gas was 0.15 m’ at a temperature
of I > C and a pressure of I bar. After adiabatic compression to 0.056 n?, the pressure was found to
be- bar. Find ;

1. Gas constant ; 2. Molecular mass of the gas ; 3. Ratio of specific heats ; 4. Two specific
he. s, one at a constant pressure and the other at a constant volume ; and 5, Change of internal

(418 rgy
Solution. Given:m=0.18kg;v, =0.15 m; T, = 15°C=15+ 273=288K;p,=1bar

= 1 x 10P N/m? ; v,=0.056 m’ ; p, =4 bar = 0.4 X 10 N/m’
The p-v diagram is shown in Fig. 3.11.

.. Gas constant
Let R = Gas constant.

We know that
p o, =mRT,

g PV 01x10°%0.15
_mTI T 0.18x288

—— Pressure —s

= 2894 Jkg K = 0.2894 kl/kg K Ans.
2. Melecular mass of the gas
We know that molecular mass of the gas,
Universal gas constant (R ) 8314
~ Characteristic gasconstant (R) _ 289.4
...(" R, = 8314 JkgK, for all gases}

= 28.73 kg Ans.

3, Koo of specific heats
We know that ratio of specific heats,
) 0.4x10°
log| == log| =—=
Py 0.1 % 10 log 4 Q-ggzg. .
v 0.5y " log2.678 ~ 04278
log ;} |08[

']":

- 0056 |

= 1407 Ans.
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4. Specific heat at a constani volume and constant pressure

Let c, = Specific heat at a constant volume, and

¢, = Specific heat at a constant pressure.

We know that ¢,—¢, = R or 1407 ¢, ~ ¢, = 0.2894 (v ¥=¢,/c, = 1407
¢, = 0.2894/0.407 = 0711 K/kg K Ans.
and ¢, = 1407 ¢, = 1407 %0711 = 1kIikg K Ans.

S. Change in internal energy
First of all, let us find the final temperature (T,). We know that

. y=1 1.407- |
L_ [P )T 1.} ket 0.289
e = (025)"™ = 067

T,=T,/067 = 288/ 067 = 430K
We know that change in internal energy,
dU = Uy,-U, = me, (T,~T)) = 0.18x0.711 (430 - 288) kJ
= 1817k Ans.

Example 3.10. A system contains 0.15 ne’ of  gas at a pressure of 3.8 bar and 150° C. It is
expanded adiabatically till the pressure falls to 1 bar. The gas is then heated at a constant pressure
till its enthalpy increases by 70 kJ. Determine the total work done. Takec, = 1 k/kg K and ¢, = 0.714
kl/kg K. :

Solution. Given : v, =0.15m* ; p, =3.8 bar=0.38 x 10° N/m’ ; T, = 150° C = 150 + 273
=428K;p,=1bar=0.1x10°N/m*;dH =70k ;c, =1 ki/kgK ; ¢, = 0714 klkg K

In Fig. 3.12, process 1-2 represents adiabatic expansion
of the gas and the process 2-3 represents heating at constant
pressure.

Fitst of all, let us find the temperature (T,) and volume
(v,) after the adiabatic expansion.

We know that adiabatic index,
r=¢lc,= 170714 =14

2

-1

14-1
T Y S
=1 f_l i ﬂ 2 5 (3‘8)0'36 = 1.465
T, Py 1
or T, = T,/1465 = 423/1465 = 288.7K
: 1 1
v, Y 14 :
and 218 oL < 026 = 0385
v, P 38 . i

v, = v,/0385 = 0.15/0.385 = 039 m’
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Now let us find the temperature (T;) and volume (v,) after constant pressure heating.
Let m = Mass of gas contained in the system.
We know that gas constant,
R=c,~c,=1-0714 = 0286 KkgK = 286 J/kg K

and p,in, =mRT,

We also know that increase in enthalpy (dH),
70 = mc, (T,-T)) = 047 X 1(T,-288.7) kJ

70
& T, = 04?+2887-4376K
Since the heating is at constant pressure, therefore
U _ Y v, T3 039x4376
_— T oE el - S . 0
T,oT, * BT, T 87 B

We know that work done during adiabatic expansion,
PV ~P Y 038x10°%0.15-0.1 X 10°%039

Y gel 14-1 I
3 _ g
:57x1{}0439><l03 = 450007 = 45K

and workdone during constant pressure heating,

W,y = p, (-0 = 0.1 10° (059 ~039) = 20000] = 20KJ

- Total work done, W = W, ,+W,_, = 45+20 = 65kI Ans.
Example3.11. 0.336 m’ of gas at 10 bar and 150° C expands adiabatically, until its pressure

is 4 bar. It is then compressed, isothermally, to its eriginal volume. Find the final temperature and
pressure of the gas. Also determine the change in-internal energy. Take c, = 0.996 kJikg K ; and

¢, =0.703 ki/kg K.
Solution, Given : v, = 0336 m’; p, = 10 bar = 1 X 10° N/m® ; 7, = 150° C = 150 + 273
=423K;p2=4bar=0‘4Xl[]ﬁN!m 10, = 1, =0336m’; ¢, =0996 KIkg K ; ¢, =0.703 kikg K

In Fig. 3.13, process 1-2 represents the adiabatic expan-
sion of the gas and the process 2-3 represents the isothermal
compression to its original volume.

1 R
We know that adiabatic index, i Py

¥ = ¢ /c, = 0.996/0.703 = 1417

Final temperature of the gas Pz """E'" e b
Let 7, = Final temperature of the gas, and _ﬂi_v-‘—-——é;—
= Temperature of the gas after adiabatic —— Volumé —*

expansion, Fig.3.13
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We know that

» F=1 14171
S Ll 10yl 0.294 _
(o) - (2] - e

7, = T/131 = 423/1.31 = 323K

Since the compression is isothermal from 2 to 3, therefore
1,=T,=33K =50°C Ans.

Final pressure of the gas
Let p, = Final pressure of the gas.
We know that for a constant volume process 3-1,
i i
n, T
: h*;—iﬂ‘w-ﬁ?ﬁxm‘lﬁm = 7.6 bar Ans.

Change in internal energy
First of all, let us find the mass of the gas (m).
We know that gas constant,
R =gyt ™= 0.996 -0.703 = 0.293 kW/kgK = 293 JAg K

We also know that
p v, = mRT,
o m=Plﬂl=1x10°x0335_”k
RT, ~  293x423 =

.+ Change in internal energy,
.dU = Uy=U, = mc,(T,—T)) = 27x0.703 (323 - 423) kJ

= —189.8kJ Ans.

The negative sign indicates that there is a decrease in internal energy.

Example 3.12. 0.75 m’ of hydrogen gas is initially at a pressure of I bar and temperature
290 K. It is compressed isentropically to 15 bar. Next it is expanded at constant temperature to
original volume. Finally heat rejection takes place at constant volume and the gas pressure is restored
to rhc original condition of pressure. Find : 1. Pressure, volume and remperature al the end of each
operation ; 2. Heat added during isothermal expansion ; and 3. Change of internal energy during
each process.

For hydrogen, R = 4126 J/kg K ; ¢, = 14.26 ki/kg K.

Solution. Given : v, = 0.75m® ; p, = 1 bar = 0.1 x10° N/m? ; T, = 290 K ; p, = 15 bar
= 15X 10°N/m?;v, = v, = 0.7Sm ;R=4126 Jkg K=4.126 kl/kg K ; c, = 1426 kIkg K

In p-v diagram, as shown in Fig. 3.14, process 1-2 represents isentropic compression, process
2-3 represents expansion at constant temperature (isothermal expansion) and process 3-1 represents
rejection of heat at constant volume.
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|. Pressure, volume and temperature at the end of each operation

Let p,v,andT,= Pressure, volume
and temperature re-
spectively at the end
of isentropic opera-
tion 1-2,

py. vy and Ty = Pressure, volume
and temperature re-
spectively at the end
of isothermal opera-
tion 2-3.

Firstof all, let us find the value of isentropic

index (y). We know that Fig.3.14

€ =C,=R
c,=c,~R=1426-4.126=10.134 Ki/kgK _
¥ = c,/c,=14.26/10.134=1407 |

We know that for isentropic process 1-2,

P 15

P _P2%
and T = T,
or Ty = T x P22 o gopu IS XIPXOUL _ (oo 0o

&0l 0.1x 10°%0.75
Now for isothermal process 2-3,
Pyt =pyy
0.11 4

or p,x—- 15X 10°%——— = 0.22x 10° N/m* = 2.2 bar Ans.

0.75
ooy = b)),
2. Heat added during isothermal expansion
We know that heat added during isothermal expansion 2-3,

PRI N L.

3 = 23p,v, log| —

2-3 Py Yy v )
-23x15x[05xﬂlllog[ozf] 0.38x105% 08347 -

= 0317x10°J = 317 kJ Ans.
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3. Change of internal energy during each process
First of all, let us find the mass of hydrogen (m). We know that

i _nY 00x10°%075 _
v =mRTy o m=30 = "pgxan - ke

We know that chage of internal energy during isenubpic process,
dU = Uy~ U, = mc,(T,-T,) = 0063 x 10.134 (638 - 290) KJ

= 222.18 kJ Ans.
Since in an isothermal process 2-3, the temperature is constant (T, = T5), therefore change in

internal energy during isothermal process is zero. Ans.

.11, Polytropic Process

The polytropic process is also known as the general law for the expansion and compression

of gases, and is given by the relation :
pv* = Constant

where n is a polytropic index, which may have any value from zero to infinity, depending upon the
manner, in which the expansion or cornpression has taken place.

The various equations for polytropic process may be expressed by changing the index n for
¥in the adiabatic process.

Now consider m kg of a certain gas being heated palytropically from an initial state 1 to a final
state 2.

Let p, v, and T, = Pressure, volume and temperature at the initial state 1, and

p, vyand T, = Pressure, volume and temperature at the final state 2.

The process is shown on the p-v diagram in Fig. 3.15. Now let us derive the following relations
for the polytropic process.
1. Pressure-volume-temperature (p-v-T) relationship

The following relations for the polytropic process are derived in the similar way as discussed
for adiabatic process. 8

@ pY=pth=..=C
T rv.'\ﬂ—l IPI
T, |u) E
1 a
/ 1
© b-[a] |*
2 A
n-1
i {Pl ) ; ;
(d) ek B| e Fig. 3.15. Polytropic process.
% S

2. Workdone during polytrapic expansion

The equations for the work done during a polytropic process may also be expressed by
changing the index n for yin the adiabatic process.
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. Workdone during a polytropic process from state 1 to state 2,
PV —p, 1, m R(T,-T,)

Wi = n-1 - n-1
_Phv-py  mR(TG-T)
B n-1 - n-1

3. Chunge in internal energy
We know that change in internal energy,
di/ = U= U, = mc,(T,-T)
4. Heat supplied or heat transfer
We know that the heat supplied or heat transferred,
0, = W ,+dU

PV -PY !
e +PI:IC”(T2—TD

J
MR(TI“Tz)_ R
= i +m>:T__]{T=—TI}

= mR(T,~T) [—1—#]

n—1

(n=1)(y-1)

_ ,,,R{TI_TJ)[H-_I)_-_(H;II]

- . - SO Coc!, R
e T”[ (-1 (- n]
_y=n MR, -T)
71 n-1|
5. Change in enthalpy
We know that change in enthalpy,
. di = H,-H, = mcp(Tz—T,}

Notes ; 1. The equations for heat transfer may also be expressed as :

_y=n _Y=n PiUi—Pt
(a) Q. TﬁleD.rkdmc o i
(&) We know that
-n mR(T,=-T) w_
Ooa = X i = oy ™6 =T
P

e X Change in intemal encrgy

* Weknow thate,—e,= R
Dividing throughoul by e, we have
[ R R

L= o y-1 =2 R
., c, g c i, P

73

... (For expansion)

. . (For compression)
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2. The above equations give the amount of heat, which has passed into the gas through the cylinder
walls as the gas expands. It may be noted that this will happen only when n is less than y. If however, nis greater

than ¥, then heat is rejected by the gas.

3. Similarly, during compression, work done will be negative, ie. work will be done on the gas.
Moreover, heat will be rejected by the gas. This will happen only when n is less than'y.

4. The relation for work dore may also be expressed as :

D
)
_PY—Pb Py Y

Ma= eIy T T oD
Y el O OO 8 I S
R R TN B T

Example 3.13, A certain quantity of air has a volume of 0.028 m’ at a pressure of 1.25 bar
and 25° C. It is compressed to a volume of 0.0042 m’ according to the law pv'* = Constant. Find the
final temperature and work done during compression. Also determine the reduction in pressure ata
constant volume required to bring the air back io its original temperature.

Solution. Given : v, =0.028m’; p, = 1.25 bar = 0.125 X 1P N/m?; 7, =25°C=25+273
=<298K;v,=00042m’;n=13

= The p-v diagram is shown in Fig. 3.16. I P,
Final temperature
Let 7T, = Final temperature. 5 b
We know that E \
- & 2 |
-?-vl ’ E . 0,0042 1.3-1 i E
T, v, 0.028 B,=% ¥
Volume —=
= (0.15)* = 0.566 Fig. 3.16
T, = T,10.566 = 298/0.566 = 526.5K = 526.5-273 = 253.5°C Ans.

Workdone during compression
First of all, let us find the final pressure ( p,) at the end of compression. We know that

n 13
P |4 0.0042
A= » — = | = =| — =
p, o) =pyvy oOr P [”| J [ 0028 J 0.085

p, = p,10.085 = 1.25/0.085 = 14.7 bar = 1.47 x 10° N/m?

We know that workdone during compression,
PP Y 147 x10°%x0.0042 -0.125 X 10° x 0.028

Wed =" g 13-1
_ 81743500 _ 45045 = 8913k Ans.

- 0.3

Pressure at a constant volume _
Let p, = Pressure at a constant volume required to bring the air back to
its initial temperature, T, =298 K.
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We know that for a constant volume process 2-3,
e g of py==——=—_——— =832 bar Ans,

(v vy =0 amd T = T

Example 3.14. A gas mixture obeying perfect gas law has a molecular mass of 26.7. The
gas mixture is compressed through a compression ratio of 12 according to the law pv'** = Constans,
[frominitial conditions of 0.9 bar and 333 K. Assuming amean molar specific heat at constant volum
of 21.1 ki/kg K, find, per kg of mass, the workdone and heat flow across the cylinder walls,

For the above gas, determine the value of characteristic gas consiant, molar specific heat at
a constan: pressure and ratio of specific heass.

Solution. Given : M = 267 ; r=v/v, = 12; 0= 125 ; p, = 0.9 bar = 0.09 x 105 N/m? ;

1 =333K;¢,, = 201 KkgK ;m=1kg

The p-v diagram is shown in Fig. 3.17.
Workdone per kg of gas

Firstof all, let us find the initial volume (z7,), final volume
(v,) and final pressure ( Py)-

We know that  p, o' = p, pf

v n
n=n (U—;J =09(12)'®

= 20.1 bar = 2.01 x 10° N/'m?
We also know that gas constant,

R, 8314
R = =267 = IN4IKgK
mRT,  1x3114x333
and =mRT, 2 ! = - = LI5m
Ll L Sl 0.09x 10° o
vy = u/12 = 115/12 = 0.096 m® o oy = 12)

We know that workdone
AN ThY  009%10%x LIS - 201 x 106 0.096
n—1 - 1251

103 ”‘;’;92960 = ~357840 J = ~357.84 KI Ans.
The negative sign indicates that the work is done on the gas,

Heal flow across the cylinder wally

Let T, = Final temperature.

=1 125~ 1
()
=[B—‘I =(TIEJ = 0537
I

= T,/0.537 = 33370537 = 620K

' T,
We know that

i |
T,
T!
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and speciﬁc heat at constant volume,
C, = Cop/ M = 21.1/26.7 = 0.79 kikg K

». Change in internal energy,
dU = U,-U, = mc,(T; -T) = 1x0.79 (620-1333) = 226.TKJ

We know that heat flow across the cylinder walls,
0, =W ,+dU = ~-35784+2267 = - 131.1KJ Ans.

The negative sign indicates that the heat is rejected through the cylinder walls.

Characteristic gas constant
We know that characteristic gas constant,
_ Universal gas constant _ R, 8314
Molecular mass M~ 26.
©...( R, = 8314JkgK, forall gases

= 3114J&gK = 0.3114k/kg K Ans.

Molar specific heat at a constan! pressure
Let b = Molar specific heat at a constant pressure.

We know that ¢,—c, = R or c,~0.79 = 03114
: c, = 031144079 = 11014 KAgK
and Cpm = M, =267% 11014 = 294 KIAg K Ans.

'Ratio of specific heats
We know that ratio of specific heats,
v = tplcu = 1.1014/0.79 = 1394 Ans.

Example 3.15. An internal combustion engine has the following dimensions :

Diameter of cylinder = 550 mm ; Stroke = 750 mm ; Compression ratio = 13.5. At the end of
the suction stroke, the pressure is | bar and temperature is 316 K. The compression follows the law
pv'?7 = C. Determine : :

. 1. the pressure and temperaiure at the end of compression ; 2. the mass of the charge ; 3. the -
work done during compression ; and 4. the heat rejected during compression.

Take ¢, = 0.996 ki/kg K and c, = 0.707 kKi/kg K.

Solution. Given: D=550mm=0.55m; L=750mm
=075 m;vfu;=135.p, =1bar=0.1 % 10° N/m? ; T, = 316
K;n=13T ¢, =099 kK/kgK v¢,=0707 kg K

In the p-v diagram, as shown in Fig. 3.18, point 1 refers
to the end of suction stroke and point 2 refers to the end of
compression stroke.

. Pressure and temperature at the end of compression
'Let p,and T, = Pressure and temperature at the
end of compression respectively.

We know that

P vl = Py
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v
Py = p, [v—:}. = 0.1 x 10 (13.5)"Y N/m?

= 3536 x 10° N/m® = 3,536 bar Ans.

=1 )
T, v, ;Y -
}; = [;I-J. = (m] = (0.074)* = l.'!_.38!6
T,

=T,/03816 = 316/0.3816 = 828 K Ans.

We also know that

2. Mass of the charge
Let m = Mass of the charge.
We know that swept volume,

=0, = 7xDPxL = (0597075 = 0.178 m’

or v, -—— =0.178 B e S kX
17135 . [ o,
- v, = 0.178x135/125 = 0.192 st
and gas constant, R=c¢,~c, = 0996-0.707 = 0.289 Vg K = 289 Jkg K

We know that  p, v, = mRT,

AU 01x10°%0.192

"=RT, T aoxals - 021 ke Ans

3. Workdone during compression
We know that workdone during compression,

mR(T,-T =
_MR(T-T) _ 021x0.289 (828 -316) = B A

i n=-1 - 1371
4. Heat rejected during compression
We know that adiabatic index,
Y=¢,/c, = 0996/0707 = 141
- Heat rejected during compression,

Q.,= H X Workdone during compression

_141-137
= Tl41-1 X8 = B.195K Ans.

7

|

Example 3.16. 0.2 n’ of mixture of fuel and air at 1.2 bar and 60° C is compressed lgt{il its
pressure becomes 12 bar and temperature becomes 220° C. Then, it is ignited suddenly at consiant
volume and its pressure becomes twice the pressiire at the end of compression. Calculate the
maximum temperature reached and change in internal energy. Also compute the heat transfer during
the compression process. Consider mixture as a prefect gas and take ¢, = 1.072 kifkg K ; and

R=204/ng K.
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Solution. Given : v, =0.2m* ; p, = 1.2 bar = 0.12 x 10° Nim" ; 7, = 60° C = 60 + 273 = 333
K : py = 12 bar = 12X 10° Nim? ; T, = 270° C=270+ 273 =543 K : py =2y ¢, = 1072 kI/kg K ;
R =294 Jfkg K = 0294 kl/kg K. ]

In the p-v diagram, as shown ia Fig. 3.19, process 1-2 repre- i
sents polytropic compression (i.e. according to the general law i 3 b
| 2

Ayf----13

pv" = C)and the process 2-3 represents the constant volume process.

Maximum temperature

Let Ty = Maximum temperature. Py
Since the process 2-3 is a constant volume process, therefore V=
P P — Voluma —
T, = F, - Fig. 3.19
: 2
or ' 1= szg"-=543xﬂ=1086i(=8]3°c Anps.
P, Py
Change in internal energy
_ First of all, let us find the mass of the mixture compressed (f.e. m) and ¢,
& _Pit _ 002x10°%02
Weknowthat p,v, =mRT, or m= RT, = 294x333 = 0245kg
and ¢, =¢,~R= 1072-0.294 = 0778 kikg K o e-, = R)

We know that change in internal energy,
dU = Uy~U, = mc,(T,-T)) = 0.245x 0.778 (1086 —333) kJ
= 143.5k] Ans.
Heat transfer during compression process

First of all, let us find the value of polytropic index (n) for the compression process 1-2.

S L)
We know that ~l=[£i] or 3—3§-=[E]u

T, |p;, 543 12
Taking log on both sides,
. 333 _n-1l 12 a1
g log[543 ]— . log[u) or log0613 =" log 0.1
n—1
-0.2125 = = (1) or n=127
We know that workdone,
_ mR(T-T) 0245%0294(333-543) _ _5¢yg
-2 = b= =
n-1 1271
The negative sign shows that the gas is comprcssq& and the work is done on the gas.
We know that change in internal energy, o

dU = (U=~ U,) = mc, (T,=T,) = 0.245x0.778 (543 -333) = 401
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= Heat transfer during compression process,
0, = W, +dU = —56+40 = ~ 16KJ Ans.

The negative sign indicates that the heat is rejected by the gas.

Example 3.17.  An oil engine has a volume of 60 litres and a compression ratio of 14.2t0 1.
At the beginning of the compression stroke, the pressure and temperature are | bar and 80° C
respectively. At the end of compression, the pressure is 30 bar. The charge is now heated at mmm
pressure until the volume is doubled. Find :

1. The index of compression ; 2. The temperature at the end of camprcsmn, 3. The heat
transfer ; and 4. The heat received in constant pressure operation.

Assume c, = 0.712 ki/kg K and R = 0.293 kifkg K.

Solution, Given : v, =60 litres =60 x 10> m* ; v fv, = 14.2; p, = 1 bar = 0.1 X 10° N/m?;
T,=80°C=80+273=353 K;p,=30bar=3x 10° N/m? ; v, = 20v,;¢,= 0712 kIAkg K ;
R=0293klkg K=293)/kg K

InFig. 3.20, 1-2 represents the polytropic compression process and 2-3 represents the constant
pressure heating process.
1. Index of compression

Let n = Index of compression.

We know that  p, 0" = p, v}

(4

3 x 10°
42y = ——— =
( _) - 0.1x108

Taking log on both sides,
nlog 14.2 = log 30
nXx1.152 = 1477

n = 1.282 Ans,
2. Temperature at the end of compression
Let T, = Temperature at the end of compression,
=1 -

7, 2, . ;Y _

w k -—= T - e = A D-uz = K

e know that T, ['”I J { 1432 ] (0.0704) 0473

T, =T,/0473 = 353/0473 = 7463 K = 473.3°C Ans.

3. Heut transfer

First of all, let us find the mass of the charge (/) and the ratio of specific heats (). We know
that

. -3
pl',""l =,p'_l‘,|,RTl or m:——:—‘-——-——*—-——"EO.OSBkg

We also know that
66 =R or ¢ =c +R=0712+0293 = 1.005kIkg K
T=r¢c,le, =1005/0.712 = 141
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We know that heat transfer,

B y-n mRET-T)) _ 141-1.282 0058x0293(353-7463)
12 = y21 n—-1 141-1 12821
= 03122%-23.7 = —74Kk] Ans.

The negative sign indicates that the heat is rejected.
4. Heat received in constant pressure operation

First of all, let us find the temperature (T,) at the end of constant pressure operation. We know
that, for constant pressure process 2-3,

v, U v, T, 2v,x7463
2D o =t ——=UR6K ..(vy=20)
n, T v, v, -

We know that heat received,

0,y = m, (Ty=T;) & 0.058x 1.005(1492.6 ~7463) = 43.5KJ Aus.

3.18. A system contains 0.15 m’ of air at 4 bar and 423 K. A reversible adiabatic
expansion takes place till the pressure falls to 1 bar. The air is then heated at constant pressure till
enthalpy increases by 67 kJ. Determine the total workdone.

If these processes are replaced by a single reversible polytropic process giving the same work
beiween the same initial and final. states, determine the' index of expansion. Take
¢, = 1.009 kJikg K. :

Solution. Given : v, =0.15 m* ; p, = 4 bar = 04 x 10° Nm?; T, =43 K;p,=1bar
=0l x 105N’ ; dH =67 kJ ; ¢, = 1.009 kI/kg K

In the p-v diagram, as shown in Fig. 3.21, 1-2 represents
reversible adiabatic expansion, 2-3 represents heating at con-
stant pressure.

Total workdone

Py baanq

Pressurg —=

Let m = Mass of air, Po= Py} ---d
v,and T, = Volume and temperature of air
after adiabatic expansion,
v, and T, = Volume and temperature of air
after heating at constant pressure.
We know that
PV 04x10°%0.15 _
Py, = mRT, or m= 0 = ogray - OV
...(Taking R =287 Jkg K)
n) _p
Y = Y 2=
and py @) = p, ()" o [ﬂ| J 7,

1 |

Y i
v, = u,[%‘-] - 0.15[1:- ]” - 04036m  ...( Y forsir=14)
\ F2
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We knnwlhmﬂ:eworkdonc during adiabatic expansion 1-2,
;V _ AU P 0.4 X 10P%0.15—0.1% 108 X 0, 1036 |
=T ] 14-1
. @%—@2‘9 = 49100 = 49.1kJ

Now let us find the workdone during heating at constant pressure.
We know that

: P2Y _ 0.1x10°x 04036
PU = mRTy o Ty =T = Toaaxzgl 0k

and the increase in enthalpy (dH),
67 = me, (Ty—T)) = 0494 % 1.009 (T, —284.6) = 0.5 (T, —284.6)

67
T,= 0‘5+284.6 = 418.6K

Since the heating is at constant pressure from 2 to 3, therefore

i ) ~ 5Ty 04036x418.6
Tz_Ts or v, = T, - e = 0.59%4 m’

We know that workdone during constant pressure process 2-3,
W, = p, (=0, = 0.1 x 10°(0.594 - 0.4036) = 19040J = 19.04kJ

.. Total workdone,

Wy, = W+ Wy, =49.1+19.04 = 68.14 kI Ans.

1-2-3
Index of expansion

Let n = Index of expansion.

The process 1-2 and 2-3 are replaced by a single polytropzc process 1-3 giving the same work
ie. 68.14 kJ or 68.14 x 10°J.

We know that workdone during a polytropic process 1-3 (W, _;),

2 Bl o O 04x10°x0.15-0.1 x 10°x0.594 _ 600
n=1 n-1 n—1
n—1=600/68.14x10° = 0.0088 or n = |.0088 Ans.

3.12. Rate of Heat Transfer (Ahsorption or Rejection) per Unit Volume Daring a Polytroplc
Process
In the previous article, we have seen that heat transfer (absorbed or rejected) during a

polytropic process,

68.14x 10° =

Ql—l i T W, 1-2

where W, , is the work done dunng polytropic process.
If dQ is the .small quantity of heat transfer during small change of pressure and volume, then

dQ = xpdv
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-~ Rate of heat transfer per unit volume,

_Qr_p
dv  y-1

and rate of heat transfer per second,

40 _d0 dv _y-n
dt " do " di ylexdf

where % is the swept volume of the piston per second.

Example 3.19. The law of the expansion curve of a gas engine indicator is found to be
pU" = Constant, and the ratio of specific heats of the mixtare is 1.37. !_f the piston sweeps out
2 m’fmin, when the pressure on this expansion curve is 14 bar, what is the rate of heat transfer per
second at this instant ?

Solution, Given : n = 13 ; y= 137 ; dvldt = 2 m¥/min = 0.0333 m’s ; p = 14 bar
= 14x 10° N/m*

We know that the rate of neat transfer per second,

dQ Y-n_ _dv _137-13 B
s e iy Ty x 1.4x108x0.0333 = 8820

= B.82kJ Ans.

3.13. Determination of polytropic Index
We know that for a polytropic process,

Pl = P
Taking logarithms on both sides,
log p, +nlogv, = log p, +nlogv,
or nlogv, —nlogv, = log p,—logp,
n(logo, —logv,) = logp, —logp,

nlog P logr&
Uy \ 71

(P2

log

Note :

Example3.20. A gasinitially at 603 K expands until its volume is 5.2 times the initial volume,
according 1o pv" = Constant. If the initial and final pressures are observed to be 8.5 bar and I bar,
determine : 1. the index of expansion, 2. work done per kg of gas, and 3. heat exchange per kg ofga.s

Assume c, = 0. 712 kifkg K andy= 14,



Thermodynamic Processes of Perfeci Gases 83
Solution. Given: 7, = 603 K ; v, = 52 v, ; p, = 8.5 bar = 0.85 x 10 N/m? ; p, = 1 bar

= 0.1 X 10°N/m? ; ¢, =0.712kI/kg K ; Y=¢,/ ¢, =14
The p-v diagram is shown in Fig. 3.22.

I. Index of expansion

We know that index of expansion,
P 0.1 x 10
log| — lo
cg[ﬁ] {OSSXI(}“]

_I s i tog [ —
ug[vz] L 52y,

log (0.1176)  _0.9296

= = = 13 A "
log (0.1923) ~ —0.7160 o
Workdone per kg of gas
First of all, fet us find the initial volume (v,) and final volume ().
We know that gas constant, ’
R=c,—c,=ldc,~c, = 04c, = 04x0.712 = 02848 kIkg K
= 2848 J/kg K wel cp!r.::'f: 14)
mRT,  1x2848x603
and v, =mRT, or v, = = - = 0202m’
1 RRER Yoo 085x10°
(v m=1kg)

; v, = 520, = 52x0202 = 1.05m’
We know that workdone perkg of gas,

PV TPU 0.85%10°%0.202-0.1 % 10°% 1.05
- R 13=1 é

=0222x10%J = 222kJ Ans.

3. Heat exchange per kg of gas
We know that heat exchange per kg of gas,

14- ]3

14— =x222 = 55.5kJ Ans.

Q,= ?;-“T x Workdong per kg of gas =

3.14." Free Expansion (or Unresisted Expansion) Process

The free expansion (or unresisted expansion) process is an irreversible non-flov: process. A
free expansion occurs when a fluid is allowed to expand suddenly into a vacuum chamber through
an orifice of large dimensions.

Consider two chambers A and B separated by a partition as shown in Fig. 3. 23 (a). Let the
chamber A contains a perfect gas having volume v,, pressure p,, and temperature T, and the chamber
B is completely evacuated. These chambers are perfectly insulated so that no heat transfer takes place
from or to its surroundings. Now, if the partition is removed, the gas will expand freely and occupy
the whole space as shown in Fig. 3.23 (b). By this, the volume of the gas increases 10 v,, pressure
decreases to p, and the temperature may also decrease to 7.
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Since there is no expansion of the boundary of the system, because it is rigid, therefore no
work is done. Thus, for a free expansion process,

Q,=0;W_,=0anddU =0

The following points may be noted regarding the free expansion of a gas :
1. Since the system is perfectly insulated so that no heat transfer takes place (ie. @, , = 0),
therefore the expansion of gas may be called as an adiabatic expansion.

2. Since the free expansion of the gas from the equilibrium state 1 to the equilibrium state 2
takes place suddenly, therefore the intermediate states will not be in equilibrium states, as shown on
the p-v diagramin Fig. 3.23 (c). Thus the process is irreversible and the expansion is, therefore, known
as irreversible adiabatic expansion.

Boundary Insulation

A 1

FITTS LIS S TSI ST TT S

w— Voluma —

(a) Before expansion (B) After expansion. {c) p-v diagram,
Fig. 3.23, Free expansion. i

3. Since there is rio resistance to overcome during free expansion process, therefore no work
is done by the system (i.e. W,_, = 0). Thus, the free expansion process is also known as * unresisted

expansion process.
4. According to the first law of thermodynamics,
Qg = W, tdU
Since for the free expansion, @, , =0 and W, , =0, therefore the change in intemal energy,
dU =Up,-U, =0 o U, =V,
In other words, the internal energy of the system, in a free expansion process remains constant.

Thus, the free expansion process is also known as constan! internal energy process.
5. We know that change in internal energy,

dU = me,dT = mc,(T,-T))

Since dU = 0, therefore dT = 0 or T, = T, i.e. there is no change in temperature of the
system. In other words, the temperature of the system, in a free expansion process remains constant.

Note : Itcan not be called an isothermal process because in an actual isothermal process, work is done by the
gas during expansion.

6. We know that change in enthalpy,
dH = H,-H, = mcpcﬂ'

Since dT = 0, therefore dH =0 or H, = H|. In other words, the enthalpy of the system in a

free expansion process remains constant. Thus the free expansion process may also be called constant
enthalpy process.

+ I the previous non-flow processesdiscussed, the ex pansion was againstthe resistunce oflcred by the piston.
So all the non-flow processes discussed earlier are resisted expansion processes.
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3.15. General Laws for Expansion and Compression
The general law of expansion or compression of a perfect gas is pv" = Constant (Art. 3.11). Tt

gives the relationship be
_ upon the nature of gas, and condition under which the changes (i.e. ex
place. The value of n may be betwzen zero and infinity. But the follow

from the subject point of view :

1. When n = 0. Tis means p = Constant, i.e. p
= Constant. In other words, for the expansicn
or compression of a perfect gas at constant

pressure, n=0.

2. When n = 1 ; then pv = Constant, ie. the
expansion or compression is isothermal ot hy-

perbolic.

3. When n lies between 1 and n, the expansion or
compression is polytrapic, i.e. pv" = Constant
4. When n =7, the expansion or compression is

adiabatic, i.e. pv" = Constant.
5. When n = e, the expansion or compression is at constant volume, i.e. v = Constant.
Fig. 3.24 shows the curves of expansion of a perfect gas for different values of n. Itis obvious
that greater the value of n, steeper the curve of expansion.
3,16. Summary of Formulae for Heating and Expansion of Perfect Gases in Reversible
Non-flow processes
The following table shows the summary of formulae for heating and expansion of perfect gases
in reversible non-flow processes :

Table 3.1. Summary of formulac for heating and expansion of perfect gases.

— Pressure —=
|

85

tween pressure and volume of a given quantity of gas. The value of n depends

pansion or compression) take

ing values of n are important

Volume —
Fig. 3.24. Curves for various values of n.

5. | Type of reversible po-T Workdone Change of Heat supplied Change in
No. | non-flow process relation (Wy-2) internal energy (G2 enthalpy ,
@U=Up-U) | =W j+du [dH=H3-H)}
1. | Constant volume| - p, p. 0 me (T,-T) | me (T,-T) |mc (T,-T)
B ?l__f;_ L) S A pV2T 4
Constant) 1. %
(Gay-Lussac Law )
2. | Constant pressure 0% plo,-v) me, (T,~T)) nc’{Tz—T'} me, (T,~T)
or Isobaric (p = T°T o
Constan o il
: 4 (Charles’ Law) mR(T,~T,)
3. | Hyperbolic or Y = Py, 7, 0 o, 0
::_u nstant oyeslaw) | A% log, o . pyv log | ==
emperatuge or 1
Isothermal (T = or or
Co U )
el mhs,[;’ mxnog,[—’]
1 T
4, | Adiabatic 'ur Plgll'g PzﬂI A AN me, (T, -T,) 0 mcp(‘rz-]"l)
Isentropic (po' = -1 y-1
Constant) ﬂ_ % o -
LU mR (T, - T
B e | e
-1
TI_ P Y
LP B!
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= E:z:ln:-‘iwc Wl Bl PRy | me, (=T | PP-p®y | me (=T
e n=1 n-1 n-1
(po'=Comstant) | T) [P or +mc, (T,-T,)
2 [ M ; mR (T, -T)) w120
22 n-] =1
T "
adinlt mR(T - T
1 2 | n-|

3.17. Flow Processes

We have already discussed in Art. 3.2, that the processes occuring in *open system which
permit the transfer of mass to and from the system, are known as flow processes. In a flow process,
the mass (working substance) enters the system and leaves after doing the work. The flow process
may be classified as

1. Steady flow process, and 2. Unsteady flow process.

In a steady flow process, the following conditions must be satisfied ;

(a) Therate of mass flow atinlet and outlet is same, i.e. the mass flow rate through the system

remains constant, '

(b) The rate of heat transfer is constant,

(c) The rate of work transfer is constant.

(d) The state of working substance at any point within the system is same at all times.

(€) There is:no change in the chemical composition of the system. Thus no chemical energy

is involved.

If any one of these conditions are not satisfied, then the process is said to be non-steady flow
process. In engincering, we are mainly concerned with steady flow processes, therefore only these
processes are discussed in the following pages.

3.18. Application of First Law of Thermodynamics to a Steady Flow Process

Consider an open system through which the working substance flows at a steady rate, as shown
in Fig. 3.25. The working substance enters the system at section 1 and leaves the system at section 2.

— i A Outlet
| -+ 54 —,
A ! System E—J"J« T
Inlet } i z,
I - 1 !
z, —-IX,LE ___________ i J
i Datum _lavel

Fig. 3.25. Steady flow process.

Let p, = Pressure of the working substance entering the system in N/m?,
v, = Specific volume of the working substance entering the systemin m*/kg
V, = Velocity of the working substance entering the system in nvs,
u, = Specific internal energy of the working substance entering the systeir
inJ/kg,
z, = Height above datum level for inlet in metres,
Pu U Vz- Uy and z, = Corresponding values for the working substance leaving the system.

———————
* Some authors use the tlerm control volume instead of open system.
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g, , = Heat supplied fo the system in J/kg, and

W, 5 = Work delivered by the system in Jikg.
Consider 1kg of mass df the working substance.
We kuow that total energy entering the system per kg of the working substance,

" e, = Internal energy + *Flow or displacement energy + Kinetic energy
+ Potential energy + Heat supplied
¥ _
=up+p vy +_H2_-+g z,t4,. (in Jkg)

* Similarly, total cnergy leaving the system per kg of the working substance,
2

€ = Py gt B+ W, (0 JKE)

Assuming no loss of energy during flow, then according to First Law of Thermodynamics (i.e.
Law of Conservation of Energy), ¢; = ;.

vl V2
L 8 = 2
U P Uyt HEY O = P Uet +8Z, W,

We know that
i, +p, v, =h, = Enthalpy of the working substance entering the cystem in J/kg,
and

U, +p, v, =hy = Enthalpy of the working substance leaving the system iu J/kg.
Thus, the above expression may be written as

v2 v: '

1 2

bt t8y 44, = hy v t8 Wi 2o ()
or hl. +k£l +pe, +g,5 = h;"'h;*'.ﬂfg"'ij_

It may be noted that all the terms in equaiton (i) represent the energy flow per unit mass of the
working substance (i.e. in J/kg). When the equation (i) is multiplied through by the mass of the
working substance (m) in kg/s, then all the terms will represent the energy flow per unit time (i.e. in
Jis). !

Tt_ms the equation (i) may also be written as

2 2
1 2

V:
’”(“‘|+?+3ZI+‘?|-1)= m("t*?*“:'*“’l-z) .- (i)

*  The flow or displaceinent energy is the Encrgy required to flow or move the working substance against its
pressure. Itis also known as flow work.

For example, let the working substance with pressure py (in N/m’) flows through area A, (in m’) and moves
through a distance x; (in metres).

. Energy or work required to flow the working substance,

FE = Foree x Distance = (p, A) x, = p, v, (in joules) Lae e =AX)
where v, = Volume of the working substance in m’.
For 1kg mass of the working substance,

v, = v, = Specific volume of the working substance in m'/kg,

FE = p,v,, (in Jkg) '
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Both the equations (/) and (if) are known as steady flow energy equations.
Notes: 1. In a sieady flow, the mass flow rate (m) of the working substance entering and leaving the system
is given by
| l'rl A
m=——= (in kg/s)
Pa
This equation is known as equation qunnuuy.

2. The sieady flow energy equation (i), for unit mass flc'w may be written as
2 2

V2V
G2=Wi2 = (y=h)+| 5 -5 [+(ey-g2) .. (i)

= (b~ h)) + (ke; - key) + (pey = pe))
In differential form, this expression is writien as
&g - 8w = dh+d (ke)+ d (pe)
3. Inthermodynamics, the effect of gravity is generally neglected, therefore equation (iii) may be written

as
v’ v
Ga—Wia=(h-h)+| - -3 ()
If ¥, = V,, then equaticn {rv)reﬂwuw
(Giamwia = =k e (¥)

4, Inanon-flow pruoéu. the flow or displacement energy at inlet and outlet is zero, i.e., p,v,, = Oand
PaVp=0.Therefore by, = w, and h) = w,.

Thus the equation (v) may be writien as ¢, ,—w, , = iy~ ; which is same as for non-flow
+ proCess.

Example 321. A steady flow thermodynamic system receives fluid at the rate of 6 kg/min
with an initial pressure of 2 bar, velocity 150 m/s, internal energy 800 k/kg and density 27 kg/ne’.
The fluid leaves the system with a final pressure of 8 bar, velocity 200 m/s, internal energy 800 kJ/kg
and density 5 kg/nt’. If fluid receives 80 kl/kg of heat during passing through the system and rises
through 60 metres, determine the workdone during the process.

Solution. Given : m = 6 kg/min = 0.1 kg/s ; p, =2 bar = 0.2 x 10° N/m? ; V, = 150 m/s ;
u, = 800kikg; p,=27kg/m’; p,=Bbar=08x10°N/m?; V,=200ms; u,=800klkg;

=5kgfm‘;qldz=80 K/kg;z,=60m

Consider 1 kg of mass flow.

We know that initial flow energy

=p v, =plp =02x 100/27 = 7407 Ikg = 7407 kg

(g, = ”pl?
and final flowenergy = p, v, = p,/p, = 08x10°/5 = 160x 10° J/kg = 160 kg

.. Initial enthalpy,
hy = uy+p v, = 800+7407 = 807.407 kl/kg

and final enthalpy, h, = u,+p, v, = B0O+ 160 = 960 ki/kg

Initial kinetic energy,
ke, = (V)12 = (15" "2 = 11250 Jkg = 11.25+"kg
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3.19.

or

Final kinetic energy, ke, = (Vy?/2 = (200 /2 = 20000 Vkg = 20 kl/kg
Initialpoicntia.lenﬂ"gy. pe, =gz, =0 ' el 7, =0)
Final potential energy, pe, = gz, = 9.81x60 = 588.6)/kg = 0.5886 ki/kg
Wekmwdwl}nsmdyﬂowemgyequnfmmmmassﬂows
hy +ke, +pe,+q, 4 = hy + ke, + pe, +wy 5
2= Wa = (hy- h)+ (key— )*”[P‘:"Pﬁ)
= (960 - 807.407) + (20 - 11.25) +(0.5886 - 0)
= 161.9316 kl/kg
-Wp = = 1619316 - ¢, , = 161931680 = 81.9316 kifkg
W, = —819316x0.1 = —8.19316 ki/s Ans.. (= m = 0.1kg/s)

The ~ ve sign indicates that the work is done on the system.

Workdone in a Steady Flow Process
We know that the steady flow equation for unit mass flow, in the differential form, is
8q - 8w = dh+d (ke) +d (pe) : ()]
We also know that h=u+pv, =u+p? ... ("~ For unit mass, v, = v)
Differentiating this expression,
dh = du+d(pv) = dut+pdv+vdp ... (i)

— Pressurs —

— Volume —
— Volume —— b o

(a) Non-flow process. (b) Steady flow process.

Fig.3.26. Workdone in a steady flow process.

According to First Law of Thermodynamics for a closed system, we know that

8q = dut+pdv
Now the equation (if) may be written as

dh = Sg+vdp
Substituting this value of dh in equation (i), we have

8- dw = (8q +v dp) +d (ke) +d ( pe)
~8w = vdp+d(ke) +d (pe) . ... (iif)

If the changes in kinetic and potential energies are negligible [i.e. d (ke) =0and d ( pe) =01,

then equsmn (iii) may be written as

—~w =vdp or dw = —vdp
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2 2 2
On integrating, fﬁw = -_rvdp or w_, = —_"vdu (i)
1 1 i

2 2
Thus in a steady flow process, the workdone (w,_,)is— J- v dp instead of Ip dvin a non-flow
: . :
process. Fig. 3.26 shows the difference between workdone in a non-flow and steady flow processes.
Ni;le # The -ve sign in eguation (iv) makes the integral positive during expansion process. In other words,
= Ir.r dp is a positive quantity and represents the workdone by the system.

Rl |
3.20. Workdone for Various Steady Flow Processes
The various steady flow processes, like non-flow processes, are as follows :
1. Constant volume process, 2. Constant pressure process, 3. Constant temperature process,
4. Adiabatic process, and 5. Polytropic process. _
We shall now derive the expressions for workdone duri ng these processes, as discussed below.
The suffixes ; , represents the initial and final conditions respectively. i
1. Constant volume process
= We know that workdone,

2 2
Wi = "J"’dP = —dep =-vip-p)=v(p-p)
1 1

2. Constant pressure process
We know that workdone,

2 2
Wi = ‘J"di’ = ‘”I‘#? =v(p;-p) =0 ...(. p,=p,=Constant)
1 I

3. Constant temperature process
Since the temperature is constant, therefore for a perfect gas,
PV =p, v = p,v, = Constant
I o
)
We know that workdone

or v

2 lp v 2 dP
1.>1
Wiy = "I”"'P = “.[ p dp =~pv, j?
I 1 . 1
==p v [log, p,~log,p|] = p, v, log, p, - log, p;]

P P
=pY log,[-;'] =23p 7 log [;:]

2

N U
= p, log, '61' = 2.3p| v, log 'r;:
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4. Adiabatic process
We know that for an adiabatic process,

pv' = p, vl = p,v§ = Constant

=
[pl ]q
or v=7p| =
p

We know that workdone,
2 2 P 1Ay
W3 ™ _j”df’ = ‘I”l[_l} dp
1 1 P
2 a1 TP
2 P
= ~v, [ pdp = -, i1 | =
1 -=+1
¥ b
1-1 42
o e LT i |
1) KA
=W Y] ",!_l"“I’:l":ﬁl_n"z.jr -n’ ]
L ¥
= y-1 (P, —Py 7))
5. Polytropic process
We know that for a polytropic process,
pv = p, v = p,vj = Constant
.~ Workdone, w)_, = ;—E-T (pyv;—p,0,) .. (Substitutingy = n, for polvtropic process)

3.21. Throttling Process

Fig. 327. Throuling process,

The throttling p.cess is an irreversible steady flow expansion process in which a perfect gas

i expanded through an orifice of minute dimensions such as a narrow throat or a slightly opened

valve as shown in Fig. 3.27. Due to the fall in pressure during expansion, the gas should come out

with a large velocity, butdue to high frictional resistance between the gas and the walls of the aperture,

there is no considerable change in velocity. The kinetic energy of the gas is converted into heat which

"is utilised in warming the gas to its initial temperature. Since no heat is supplied or rejected during
the throttling process, and also no work is done, therefore

' q,=0 and w,_,=0
7=
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We know that steady flow energy equation for unit mass flow is
2 z

¥ .
h, +—?'-l-gzl +q,, = hﬁ- +entw,

Since there is no considerable change in velocity and the inlet and outlet are at the same level,
therefore V, = V, and z; = z,. Now the steady flow energy equation is written as

h = h (g, =0 aid w, =0)
Thus, the throttling process is a constant enthalpy process. We have discussed in Art. 3.14,
that in a free expansion process, the enthalpy also remains constant. But the difference between the
throttling process and the free expansion process is that in the former case, the gas leaves with
regligible velocity where as in the latter case, the gas leaves with a large velocity.
The throttling process was investigated by Joule and Thompson during an experiment known
as Joule Thompson porous plug experiment, as shown in Fig. 3.28 (a).

— Temperature (T)—e
-
w Ol
-
o
wr-
N
D
-

—— Pressure (p) —
(a) Joule Thompson porous plug experiment. (b) Constant enthalpy curve.
Fig.3.28

In this experiment, a stream of gas at pressure p, and temperature T, is forced continuously
through one side of the porous plug, as shown in Fig. 3.28 (). The gas comes out from the other side
of the porous plug at a pressare p, and temperature T,. The whole apparatus is completely insulated
5o that no heat transfer takes place. In the similar way as discussed above, the enthalpy of gas before
and after the process, romains constant, ie. by = A, .

If the pressure p, and temperature 7, is kept constant and the pressure on the downstream of
the porous plug is varied 10 p, Py, Py, Py ©c., then the graph between the pressures and the
corresponding temperatures T3, T, T, T etc. muheawmofoonstamenﬂ!a]py.nslnwnmf"g
3.28 (b) because h, = h, = hy = J: -;. etc.

The slope of a constant enthalpy line is called Joule Thompsan coefficient and is denoted by
M whose value is given by - :

_[ar) |
v ),

The value of Joule Thompson coefficient (1) at a particular state may be positive, zéro o
negative. For a perfect gas, the value of Jt is zero.
322. Application of Steady Flow Energy Equation to Englneering Systems

The application of steady flow energy equation to some of the engineering systems such as —
boilers, condensers, nozzles, diffusers, compressors and turbines are discussed below :

1. Boiler. A boiler, as shown in Fig: 3.29,is a device which supplies heat to water and generates
steam. In this system, there is no change in kinetic and polential encrgies.
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Also there is no workdone by the system. In other words,

(ke,—ke,) = 0, (pe;~pe)) = 0 and w,=0 I‘ L®

[ .
g

M 5
We know that the steady flow energy equation for a unit | - steam |}
mass flow is ' H
‘Waler 4 !
@19~ Wi = (b= hy) +(ke, ~ke)) +(pe, — pe,) =T Water !
" o i
. Thus, for a boiler, the steady flow energy equation is @ :' |
written as : ! ﬁt | | I
[y R OOy 4

9y = hy=hy 0,

This shows that the heat supplied to the system in a Fig. 3.29, Boiler.

boilerincreases the enthalpy of the system. &

2. Condenser. A condenser, as shown in Fig. 3.30. is a device used to condense steam in case
of steam power plants using water as the cooling medium, whereas in refrigeration systems, it is used
to condense refrigerant vapour using air as the cooling medium. For such a system, there is no change
in kinetic and potential energies. Also there is '
no workdone by the system. In other words,

(ke,—ke)) = 0; (pe,—pe;) =0
and w_,=0

‘We know that the steady flow energy
equation for a unit mass flow is,

Q2= Wi = (=h)

+(‘I: o k'|)+{P‘1 _P¢|)

Thus, for a condenser, the steady flow
energy equation becomes .

~G2 = hy=h, or g, =h~—h

The —ve sign with g, , is taken because the heat is lost by the coolant while passing through
the condenser.

3. Evaporator. The evaporator, as shown in Fig. 3.31, is adevice used in refrigeration systems
in which the liquid refrigerant passes, receives heat and leaves as vapour refrigerant. For such a
system, the change in kinetic and potential energies is negligible. Also there is no workdone by the
system. In other words,

('tej_kﬂ = oa {.sz —Pﬂl) =0 I" -----------
]
al'd wl—] = 0 :

Fig. 3.30. Condenser.

. Liquid
We know that the steady flow energy equa-  refrigerantin |

tion for a unit mass flow is o} refrigerant out
Q13— Wy = (= h) ST

+(ke, — ke)) + (pe;—pe) Fig. 3.31. Evaporator,

Thus, for an evaporator, the steady flow energy equation becomes,
Gy = by=h,
Note : The process occuring in an evaporator is the reverse of that of a condenser.

.
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4. Nozzle. A nozzle, as shown in Fig. 3.32, is a device which'increases the velocity or kinetic
energy of the working substance at the expense of its pressure drop. The nozzle is insulated so that
no heatenters orleaves the system (i.e. g,_, = 0).In other words, the flow through nozzles is considered

adiabatic. Further, the system does not deliver any work i.e. w,_, = 0 and there is no change in
potential energy, i.e. ( pe, —pe,) =0.
We know that the steady flow energy equation for a unit mass flow is
Gy.a= Wy = (hy—h))+ (ke —ke,) +(pe,~pe,)) = 0

Thus, for a nozzle, the steady flow energy

equation becomes
0 = (hy—h) +(ke,~ke) T e e e
vz v?
) 1
oF g h~h,

This shows that the increase in kinetic
energy will result in decrease in enthalpy. If the
process is reversed, it is obvious that the decrease _J’
in kinetic energy will result in increase of en-

_thalpy. Such a system is known as diffuser.

gent

p : o «  Fig. 3.32. Convergent-divergent nozzle.
7 -nm the above expression, we have - - ’

VI-VE=2(h—hy) or V] = V] +2(h,~h)
v, = \‘VII +2(h,—h,)
If the initial velocity. V, (also known as velocity of approach) is very small as compared to
outlet velocity V,, then V, may be neglected.

V, = V2(h,—hy)
Note: If A, = Cross-sectional area of the nozzle at inlet,

V, = Velocity of the fluid entering the nozzle,
v, = Specific volume of the fuid at inlet,
s Ay, Vyandu, = Cormresponding values at outlet. .
.. For continuous steady flow, mass flow rate,
_AY AW

/)

3l
5. Turbine. A turbine, as shown in Fig. 3.33, is a device which converts energy of the working
substance (gas or steam) into work in the turbine. The turbine is insulated so that there is no transfer
of heat (i.e. g, , = 0). In other words, the flow through a turbine is considered adiabatic.
We know that the steady flow energy equation for a unit mass a3 _0'15“3’_’["_"‘_ _______
flow is

U

@yy= W,y = (hy— )+ (ke, — ke)) + (pe; — pe))
Thus, for a turbine, the steady flow energy equation becomes
—w,_y = (hy—h)) +(key—ke,) + ( pey —pe))

In case the changes in kinetic and potential energies are
negligible [i.e. (ke, —ke,) = 0 and (pe, —pe,) = 0], then the above Fig. 3.33."Turbine.

L T e

memom == —fl}

Gas or steam out

expression is written as
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W= h—h orw_=h=h

This shows that the work is done by the system due to decrease in enthalpy of the working

substance.
6. Rotary compressor. A totary compressor, as shown in Fig. 3.34, is a device which
compresses air and supplies the same at moderate pressure and in large quantities. The rotary
compressor is insulated so that no heat transfer takes place (i.e. g,_, = 0). In other words, the flow

through a rotary compressor is adiabatic.
We know that the steady flow energy equahon for a unit
mass flow is
9y~ Wi ='(hy=h)) + (ke, ~ ke,) + (pe, — pe;)
Thus, for a rotary compressor, the steady flow energy
equation becomes,
=(=w,)) = (hy~h) +(ke, - ke,) + ( pe,~pe,)
The - ve sign is used because the work is done on the
system. In case the changes in kinetic and potential energies
are negligible [i.e. ke, — ke, = 0and( pe,—pe,) =0, thenthe
above expression is written as

Fig. 3.34, Rotary compressor,

- Wig = hy~h,
This shows that the work is done due to increase in enthalpy.
1. Reciprocating compressor. A reciprocating compressor, as shown in Fig. 3.35, is a device
which compresses air and supplies the same at a considerable higher pressure and in small quantities.
The reciprocating compressor is considered as a steady flow system provided it includes the recenrer

o s m——————— ----“1

which reduces the fluctuation of flow considerably. . |

1
We know that the steady flow energy equa- A==
tion for a unit mass flow is i A
1
T2 = Wyg = (hy—hy) +(ke, — ke,) E
_ +(pe,—pey) !
Since in a reciprocating compressor, the E
changes in kinetic and potentia! energies are negli- gt e ot e e
gible, therefore (kez - hl) =0and (P‘; —Pﬁ) =h Fig.3.35. Reciprocating compressor.
Thus, for a reciprocating compressor, the steady flow energy equation becomes
=@a=w ) = hy=hy or w_, =g ,+(h=h)
The - ve sign to g, , and w,_, is used because the heat is rejected and the work is done on the
system.
Example 3.22. A gas expands through an ideally, insulated nozzle following a reversible
polytropic law »v'? = C. There is no change in potential energy but the pressure drops from 20 bar

10 2 bar and specific volume increases from 0.05 m’ to 0.3 {f the entrance velocity is 80 m/s,
determine the exit velociry.

Solution. Given : *n =12 p; =20 bor =2 X 10° N/ir ; p, = 2 bar = 02 x 10° N/'m? ;
v, =005m’;v,=03m’; V, =80 s

2 Superfuous data
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Let | V, = Exit velocity in m/s.
We know that the steady flow energy equation for a unit mass flow is
h +ke, +pe,+¢, 5, = +ke, +pe,+w, 5
Since the nozzle is insulated so that no heat transfer takes place, therefore g, , = 0. Also there
is no workdone during expansion of gas through the nozzle (i.e. w,_, = 0) and there is no change in
potential energy (i.e. pe, = pe,). Thus the steady flow energy equation is written as
h, +ke, = hy+ke, .

v s
U P Uyt = Uyt pyUp

v} V7
or PV +—i‘ =Py Bd‘l-? .+ (" Foran insulated nozzle, u, = u,)
2 v2 '
2% 1(fxo.us+@gj— = 02x10°x03 4+
v;
103200 = 60000 +—-
V; = 2(103 200 - 60 000) = 86 400

o V, = 294 mis Ans.

_ Example 3.23. The velocity and enthalpy of fluid at the inlet of a certain nozzle are 50 mis
and 2800 ki/kg respectively. The enthalpy at the exit of nozzle is 2600 kl/kg. The nozdle is horizontal

and insulated so that no heat transfer takes place from if. Find : 1. velocity of the fluid at exit of the
nozdle ; 2. mass flow rate, if the area at inlet of nozzle is 0.09 m* and the specific volume is 0. 185
ni'/kg ; and 3. exit area of the nozzle, if the specific volume at the exit of nozzle is 0.495 m/kg.

Solution. Given: V,=50m/s; h, =2800kl/kg=2800x 10°Jkg:  h,=2600 ki/kg
=2600x 10°Vkg: g,,=0; A=009m’; v, =0.I85m’kg; v,=0495 m¥kg
1. Velocity of fluid at exit of noule
Let V, = Velocity of fluid at exit of nozzle.
We know that the steady flow energy equation for & unit mass flow is
h ke +pe,+q, 5 = hy+key+pe+w, 4
Since the nozzle is insulated so that no heat transfer takes place, therefore g,_, = 0. Also there
is no workdone, i.e. w,_, =0. Neglecting the potential energy at inlet and outlet of the nozzle because
of at same level from datum, the steady flow energy equation is written as
h,+ ke, = h,+ke, or ke,—ke, = h ~h,

v: v?
—:!l--i'- =h —h, or V2-VZ=2(h~h)
and v, = WIt2(h, —hy = N0/ +2 (2800x 10° ~ 2600 107)

= Y2500 + 400 x 10° = 6344 nvs Ans.
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2. Mass flow rate
Let m = Mass flow rate in kgfs.

AV,
We know that m=%=%= 243 ky/s Ans.
fi] =

-

3. Exit area of nozzle

Let A, = Exit area of nozzle in m*
AV, mXU,  24.3 x0.495 2
- = —it R (. Ans.
‘We know that m v, or A, v, 6344 0019 m* Ans

Example 3.24. In an air compressor, air flows steadily at the rate of 15 kg per minute. The
air enters the compressor at 5 m/s with a pressure of | bar and a specific volume of 0.5 m'/kg. It
leaves the compressor at 7.5 m/s with a pressure of 7 bar and a specific volume of 0.15 m’/kg. The
internal energy of the air leaving the compressor is 165 kl/kg greater than that of the air entering.
The cooling water in the compressor jackets absorbs heat from the air at the rate of 125 ki/s. Find :
Ii-power reguired to drive the compressor ; and 2. ratio of the inlet pipe diameter to outlet pipe
e el i : .

Solution. Given : m = 15 kg/min =025 kg/s ; V, =5 m/s ; p, = 1 bar = 0.1 x 10° N'm? ;
v,, =05 mkg; V,=7.5m/s ; p, =7 bar=0.7 X 10° Nim? ; v, = 0.15 m'/kg ; u, - u, = 165 kl/kg
=165 X 10° kg ; g, = 125 kils = 125/m = 125/0.25 = 500 k/kg = 500 x 10° Jikg

|. Power required to drive the compressor

Let W, = Work required to drive the compressor in J/kg.
We know that flow energy at inlet -
=p,u, = 0.1x10°x05 = 50 10° Jkg

Flow energy atoutlet = p, v, = 0.7X 10°x0.15 = 105 x 10° Vkg
Kinetic energy at inlet,

ke, = (V)12 = 5%2 = 125)kg

and kinetic energy at outlet,

ke, = (V)2 = (1.5)2 = 8.1 Vkg

We know that the steady flow energy equation for a unit mass flow is
y Uy +p, 0, +he, +pe,— 4,3 = Uy + Py Uy +he; +pey =W,

In this expression, g, _, and'w,_, are taken — ve, because heat is rejected by the air and work

is done on the air. Neglecting the potential energy, the steady flow energy equation may be written
as

Wy a= G = (= 1) + (P Uy — Py Uy) + (key — key)
w,_y— 500X 10% = 165 x 10° + (105 x 10° - 50 x 10) + (28.1 - 12.5)
= 220 % 10 Jkg
« «+ [Neglecting (ke, — ke ), as it ismsmalluoonmhomm?k]
o Wiy = 720X 10° Jikg I
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. Power required to drive the compressor
=mxw_, = 025xT20x 10° Jfs = 80x 10° Vs

= 180 kJ/s = I1BOKW Ans. o (T KIs = 1kW)
Y Ratio of the inlet pipe diameter to outlel pipe diameter
Let D, = Inlet pipe diameter and

D, = Outlet pipe diameter.
AV _AY A WXy,

W = ik e i
e know that H_t":id 7, r A, - Vixo,

E{D 5'.!
Condm L P_l_‘\ﬁzx"”_:\[”x” = 2236 Ans.
% (Dz)l l',I X vﬂ DZ VI x ".;2 5 KO]S

Example 3.25. In a gas turbine, the gases flow al the rate of 5 kg/s. The gases enter the
turbine at a pressure 7 bar witha velocity 120 m/s and leaves at a pressure 2 bar with velocity 250
ny/s. The turbine is m.m!ated. If the enthalpy of the gas at inlet is 900 kJ/kg arrd at outler 600 kt/kg,
determine the capacity of the turbine.

Solution. Given: m=5kg/s; p,=7bar=07x10°N/m?; V,=120m/s; p,=2bar
= 02 105N/m?; V, =250 ms ; b, =900 ki/kg = 900 X 10° kg ; h, = 600 kl/kg = 600 x 10° J/kg
We know that the steady flow energy equation for a unit mass flow is
h, +ke +pe, +q,_, = hy+ke,+pe,+ W,
Since the turbine is insulated so that no heat transfer takes place, therefore ¢, , = 0
Neglecting the potential energy at inlet and outlet, the steady flow energy equation becomes
h +ke, = hy+key+w, ,

ylz 2z
or Wy, = (hy—hy) + (ke, —ke;) = (h, —h,) + A}

2 2
- (mxlo’—ﬁmx!03)+[ll—22[9——12—52(}l]

= 300x 10°-24.05x 10° = 275.95 x 10° J/kg

= Capacity of the turbine
=mxw,_, = 5x275.95x 10" = 1379.75 x 10° J/s
= 1379.75 K/s =1379.75 kW Ans.

EXERCISES

1. One kg of air is heated in a closed vessel, i.e,, at a constant volume from a pressure of 2 bar to §

bar. If the initial temperature of the airis 300 K, determine the change in internal energy. ¢, = 0.712 kikg K.
; [Ans. 3204 kJ)

2. Avolume of 0.5 m’ of gas at a pressure of 10 bar and 200" C is expanded in a cylinderto 1.2 m at
a constant pressure. Calculate the amount of work done by the gas and the increase in internal energy. Assume
¢,=1.005kikg K and ¢, =0.712kIkg K. [Ans. 700 kJ : 1697.35 KJ]
3. Anpiston cylinder containing air éxpands at a constant pressure of 150 kPa from a temperature of
285 K to a temp=rature of 550 K. The mass of air is 0.05 kg. Find the heat transfer, work transfer and the change -
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in intemal energy during the process. Takec, = 1 kl/kg K and R =0.287 kl/kg K.
[Ans. 13.25k) ;3.8 k) ;9.45Kk))
4. One kg of air at a temperature of 40° C is compressed isothermally from a pressure of .5barto 6
bar, Determine the heat rejected by the air during the process of compression. For air, ¢, = 1.005 kg K and
€, =0712klkg K. ' ' [Ans. 124.2K))
5, ..Anideal gas at 30° Cand 1 bar is compressed adiabatically from 5 m’ to 1 m”. Find the temperature,
pressure and the work done. Take y=1.4. [Ans.304° C;9.5bar; 1.125k]]
6. A 0.568 m® capacity insulated vessel of oxygen at the pressure of 13.6 bar is stirred by internal

paddle until the pressure becomes 21 bar. Find out the heat transferred and the work input.
Take ¢, = 0.658 kikg K, and R = 260 Jkg K. [Ans. zero 5 1063.8 klkg)
7. One kg of a gas expands reversibly and adiabatically. Its temperature during the process falls from
515 K to 390 K, while the volume is doubled. The gas does 92 kJ of work in this process. Find : 1. The value of
c,and ¢, ;and 2. The molecular mass of the gas. [Ans. 1.0326 kl/kg K, 0.736 kl/kg K ; 28.03]

8. A gas initially at 14.4 bar and 360° C is expanded isothermally to a pressure of 2.24 bar. It is then
cooled at constant volume till the pressure falls to 1,02 bar. Finally an adiabatic compression brings the gas back
to the initial stage. The mass of the gas is 0.23 kg and ¢, = 1 kl/kg K. Draw the p-v diagram and determine :
1. the value of the adiabatic index of compression ; and 2. the change of internal encrgy of the gas during the
adiabatic process. [Ans. 1.423 ; 558 kJ (decrease)]

9. Acylinder contains 0.084 m® of hydrogen at 1,05 bar and 18° C. Tt is compressed adiabatically to
14 bar and then expanded isothermally to the original volume of 0.084 m’. The characteristic constant for
hydrogen is 4200 J/kg K and its specific heat at constant pressure is 14.28 kikg K.

Determine the final pressure of the gas and the amount of heat which must be added to the gas
during isothermal expansion. Allso calculate the heat which must be abstracted from the gas after expansion in .
order to reduce it to its initial state of pressure. [Ans. 225 bar ; 345 k) : 24.14 KJ|

10. A quantity of gas is compressed according to pv"?* = Constant. The initial temperature and pressure
of the gas is 15°C and | bar respectively. Find the work done in compressing 1 kg of air at 3 bar and the heat
rejected through the walls of the cylinder. y = 1.4 for air. - [Ans. 8265k ;1033 kJ]

11. A quantity of air has a volume of 56.5 litres and a pressure of 7.03 bar. It is expanded in a cylinder
to a pressure of 1.05 bar. Compute the workdone if the expansion is 1. hyperbolic, 2. adiabatic, and 3.
pv't = C.Takey = 14. y [Ans.75.4 k) ;42.5k) ; 55k])

12. 1.4 m’ of a gas at a pressure of 1,26 bar is compressed to a valume of 0.28 m’, The final pressure
is 7 bar. Assuming the compression to be polytropic, calculate the heat transfer and change in intemal energy.
Assume 7=14, [Ans. 252.54 k] (rejected) : 49 kJ (decrease)]

13. Anideal gas of molecular mass 30 and specific heal ratio 1.38 is compressed according to the law
p ' = constant, from a pressure of 1 bar and 15° C to a pressurc of 16 bar. Calculate the temperature at the end
of compression, the heat received or rejected and workdone by the gas during the process. Assume 1 kg mass of

“the gas. Use only calculated values of ¢, and c,. [Ans. 228.7° C ; 81 kJ (rejected) ; 236.78 kJ]

14. A eylinder contains 0.113 m® of air at 1 bar and 90° C. The air is compressed to a volume of 0.028
m?, the final pressure being 5.8 bar. Determine : 1. mass of the air in the cylinder, 2. value of index (m) for the
compression process, 3. increase in internal energy, and 4. heat received or rejected by air during compression.

If, after the above process, the air is cooled at a constant pressure to its original temperature of 90° C,

find tha further work of compression required. y = 1.4 and R =287 J/kg K.
[Ans. 0.108 kg ; 1.26; 123 kJ ; 6.62 k] (rejected) ; 4.912 k]

15. Aninternal combustion engine cylinder has a diameter 240 mm and length of the stroke 400 mm.
The clearance volume is one-fourth of the swept volume. The pressure at the beginning of expansion stroke is
16 bar and the expansion follows the law pv'? = Constant. Determine : 1. the pressure at the end of expansion
stroke, and 2. the work done during the expansion. ' [Ans. 1.974 bar ;9.2 kJ]
16. The intemal energy and equation of statc of a closed gas sysiem, are given by
U= (1884+1256nkl/kg;andpv = 600T

where / is the temperature in °C and Tin Kelvin. p is the pressure in bar and v is the specific volume in m’.
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If the temperature of 2 kg of gas is raised from 100° C to 200° C at |. constant pressure, and
2. according to the law p v'-2 = constant ; find out the heat flow, work flow and change in intemal energy of the
system. [Ans. 251.2kJ ;371.2kJ ; 600 k), 348.8 kJ]

17. Gasat 1.5 barand 295 K in a closed vessel is compressed to 10 bar. Its temperature then becomes
455 K. If the compression follows the law pv* = C, find the value of n. [Ans. 1.3]

18. One kg of fluid cnters the steady flow apparatus at a pressure of 6 bar, velocity 16 m/s and specific
volume 0.4 m*kg. The inlet is 30 m above the ground level. The fluid leaves the apparatus at a pressure of I bar,
velocity 275 m/s ; and specific volume 0.6 m*/kg. The outlet is at the ground level. The total heat loss between
the inlet and outlet is 10 kJ/g of fluid. If 140 kJ/kg of work is done by the system, find the change in specific
internal energy and indicate whether this is a increase or decrease. [Ans. 7.4 ki/kg (decrease)]

19.  Air at the rate of 12 kg/min flows steadily through a nozzle. The pressure and temperature of air at
the inlet to the nozzle are 20 bar and 390 K respectively. The pressure of air at the exit of nozzle is § bar. Assuming
adiabatic flow with initial velocity of 100 m/s, determine the exit velocity and the inlet and exit areas.

Take c, = 1.005 kJ/kg K and y= 1.4, for air. [Ans.516.4 mfs : 112 mm’. 58 mm’)

20. An air compressor draws air at I bar and 20° C and discharges into a line having an inside diameter
of 10 mm. The average air velocity in the line at a point close to the discharge is 7.5 m/s and the discharge
pressure is 3 bar. Assuming that compression takes place adiabatically, determine the power required to drive
the compressor. The velocity of air entering the compressor has negligible velocity. Take c, = 1.005 kikg K ;
R=287 kg K and y= 1.4. [Ans. 0.1665 kW)

21. Airisexpanded reversibly and adiabatically in a turbine from 3.5 bar and 260" C to | bar, The trbine
is insulated and the inlet velocity is negligible. The exit velocity is 150 m/s. Find the work output of the turbine
per unit mass of air flow. Take for air, ¢, = 1,005 kJkg K, and y= 1.4, [Ans. 15 5 klkg]

QUESTIONS
1. 'What do you understand by a ‘thermodynamic process’ ? Distinguish between reversible
and irreversible process. .
_ 2. Explain the difference between non-flow process and a flow process. Derive the equation
for workdone during a non-flow process.
3. What is an isothermal process ? Derive an expression for the workdone during an
isothermal process., :
4. Explain the adiabatic process. Derive an expression for the workdone during the adiabatic
expansion of an ideal gas.
N 5. What is polytropic process ? How does it differ from an adiabatic process.

6. Prove that the heat absorbed or rejected during a polytropic process is H x work (.ionc.

where y is lhl.-, ratio of specific heat and n is the polytropic index.
7. Explain what is meant by "polytropic” operation. Starting from the fundamental, show
that during a polytropic compression, according to the law pt" = Constant, the rate of heat rejection

per unit change in volume is given by [ H ) x p, where v is the ratio of specific heat and p is the

pressure at a particular point (a mean pressure during the process) at which heat rejection is
considered. |
8. Explain free expansion process. What is the difference between throttling process and a
free expansion process ? .

9. What are the assumptions for a steady flow process ? Write the general energy equation
for a steady flow system.

10. Write down the simplified steady flow energy equation for a unit mass flow for (a)
condenser ; (b) compressor ; and (c) turbine.

11.  Apply steady flow energy equation (o a nozzle and derive an equation for velocity at exit.
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OBJECTIVE TYPE QUESTIONS
1. When a gas is heated at constant volume,
(a) its temperature will increase
(b) its pressure will increase
(¢) both temperatuie and pressure will increase
(d) neither temperature nor pressure will increase
2. The heating of a gas at constant pressure is governed by
(a) Boyle's law (b) Charles’ law  (c) Gay-Lussac law  (d) Joule's law
3. A process, in which the gas'is heated or expanded in such a way that the product of it:
pressure and volume remains constant, is called
(a) isothermal process (b) isobaric process
(c) adiabatic process () polytropic process
4. The hyperbolic process is governed by
(a) Boyles law (b) Charles’ law  (c) Gay-Lussac law  (d) Joule's law
5. The heating of gas at constant ...........is governed by Boyle's law.
(a) volume (b) pressure (c) temperature
6. In an isothermal process,
(a) internal energy increases
(b) internal energy decreases -
(c) there is no change in internal energy
(d) internal energy first decreases and then increases
7. The expansion ratio (r) is the ratio of '

v, 2 v, +7, v, +0,
(a) ;,; &) ) (c) "_l (d) _”!_

where v, = Volume at the beginning of expansion, and
v, = Volume at theend of expansion.
8. When lhenpansiunorcqmpusionufﬁwguukcsplmmdingmhhw
pv" = C, then the process is known as
(a) isothermal process " (b) isobaric process
(c) adiabatic process (d) polytropic process
9. An adiabatic process is one in which .
(a) no heat enters or Iuves&tcxas
(b) the temperature of the gas changes
(c) the change in internal energy is equal to the workdone
(d) all of the above )
10. The general law of expansion or compression is pv"™ = C. The process is said to be
iyperbolic, if n is equal to

(2)0 ()1 ©y (d)e
11, If the value of n = U inethe general law pv " = C, then the process is called
(a) isochoric process (b) isobaric process

* (c) isothermal process (d) isentropic process
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1.(c)
6.(c)
11.(b)

12,

13.

14.

15.

A Text v s whaat Engineering

The workdone in a free expansion process is

(a) zero () minimum (¢) maximum (d) positive
In a steady flow process,
(a) the mass flow rate is constant (b) the heat transfer rate is constant
(c) the work transfer rate is constant (d) all of the above
The workdone in steady flow process is given by
2 2 2 2
@[pdo ®-lper @[ (- vdp
1 1 1 i
The throttling process is a
(a) non-flow process (b) steady flow process
{c) non-steady flow process
3 ANSWERS
2.8) 3.(a) 4.(a) 5.9
7.) 8.(d) 9.(d) 10.(8)
12.(a) 13.(d) 14. (d) 15.(b)
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Entropy of Perfect Gases

1. Introduction. 2. Relation between Heat and Entropy. 3. Imporfance of Entropy. 4. Available and
Unavailable Heat Energy. 5. Units of Entropy. 6. Clausius Inequality. 7, Principle of Increase of Entropy.
8. General Expression for Change of Eniropy of a Perfect Gas. 9. Change of Entropy of a Perfect Gas
during Various Thermodynamic Processes. 10. Change of Entropy during Constant Volume Process (or
Isochoric Process). 11. Change of Entropy during Constant Pressure Process (or Isobaric Process). 12,
Change of Entropy during Constant Temperature Process (or Isothermal Process). 13. Change of Entropy
during Reversible Adiabatic Process (or Isentropic Process). I4. Change of Eniropy during Polytropic

Process (po"* = Constant). 15. Approximate Method for Heat Absorbed.

4.1. Introduction

The term ‘entropy’ which literally means transformation, was first introduced by Clausius. It
is an important thermodynamic property of a working substance, which increases with the addition
of heat, and decreases with its removal. As a marter of fact, it is tedious to define the term entropy.
But it is comparatively easy to define change of entropy of a working substance. In a reversible
process, over a small range of temperature, the increase or decrease of entropy, when multiplied by
the absolute temperature. gives the heat absorbed or rejected by the working substance. Mathemati-
cally, heat absorbed by the working substance,

60 = TdS
where T = Absolute temperature, and

dS§ = Increase in entropy.
Naote : The above relation alsa holds good for heat rejected by the working substance. In that case, dS will be
decrease in entropy, n

The engineers and scientists use it for prowd:ng quick solution, to problems deaimg with
reversible adiabatic cxpans:on The entropy is usually represented by S.

42. Relation between Heat and Entropy Tobeonmonamainias E
Consider the heating of a working substance by a reversible J
process as shown by a curve from 1 to 2, on a graph, whose base T Sivamahaiy

lute temperature as shown in Fig. 4.1. This diagram is known as
temperature-entropy (7-5) diagrn.m.

Now consider any point A on the curve 1-2, At this point, let
a small quantity of heat (8Q) be supplied to the working substance,

2
represents the entropy and the vertical ordinate represents the abso- g_
.—

which will increase the entropy by dS. Let the absolute temperature 5 g 4 1. Temperatut-en-
at this instant be T. Then according to the definition of entropy, tropy diagram.
30 = TdS R

103
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From Fig. 4.1, we see that the term TdS represents the area under the curve during this change
of entropy. Now the total area under the curve 1-2 may be found out by integrating the equation (i),
i.e

I 8Q = _[ TdS = Total heat supplied or absorbed
From equation (i), we get
_50
ds : T

The total change in entropy may be obtained by integrating the above expression from state
1 to state 2,

2 2
[as = j%?u oo D)
1 1

Notes : 1. The area under the 7-§ diagram of any thermodynamic process represents the heat absorbed or
rejected during that process.

2 SMI%@ is same for all reversible paths between siates | and 2, so we conclude that this quantity

is independent of a path and is a function of end states only. In other words, the entropy is a point function and
thus it is a property of the system. The entropy may be expressed as a function of other thermodynamic properties
of the system, such as the pressure and lemperature or pressure and volume.

3. We know that according of First Law of Thermodynamics,

8Q = dU+8W = dU+pdv (W = pdo) ... G

and 3Q = TdS C )
From equations (jif) and (iv),

"\ TdS = dU+pdo )

It is very interesting to note that in equations (i) and (iv), 5Q and W are path functions, therefore
these equations are true only for revessible processes. But in equation (v), dS, dU and dv are point functions as
they depend upon the initial and final equilibrium states, therefore equation (v) is true for reversible as well as
immeversible processes. .

4, ‘The entropy remains constant in a reversible cyclic process and increases in an imeversible cyclic
process (see Art. 4.7)
4.3. Importance of Entropy

The maximum possible efficiency obtainable by any engine working on a reversible * Camot
cycle is given by
L,-T,

Tl :
where T, = Highest absolute temperature, and
T, = Lowest absolute temperature.
In general, efficiency is given by

n= -

o Maximum work obtained _ §W
= Heal supplied or absorbed ~ 80

T,-T, '
or W = 80xn =w[%] . ... (From equation ()
1

*  For details, please refer (o Chapter 6 on Thermodynamic Air Cycles,



Entropy of Perfect Gases 105
For one degree temperature drop, the above expression may be written as

aw = ‘—? = d§ = Change in entropy

From this expression, it can be easily understood that
1. The change in entropy r+ presents the maximum amount of work obtainable per degree
drop in temperature,
2. The change in entropy may be regarded as a measure of the rate of the availability or
*unavailability of heat for transformation into work.
3. The increase in er'ropy is obtained from agwr.n quantity of heat at a low temperature,
4.4, Available and Unavailable Heat Energy
The heat energy of a system (or heat supplied to the working substance) is considered to have
the following two parts :
1. Available heat energy ; and 2. Unavailable heat energy.
The available heat energy is that pant of the heat energy (or heat supplied) wluch can be
converted into mechanical work by ideal processes which reduces the system in a state of equilibrium.
The unavailable heat energy is that part of heat energy (or heat supplied) which can not be
converted into mechanical work even by ideal process which reduces the system in a state of
equilibrium. The common term used for unavailable heat energy, according to Second Law of
Thermodynamics, is the heat rejected by the system to the surroundings. .
From above, we have total heat energy or heat supplied to the system,
80 = Available heat energy + Unavailable heat energy
= AHE+UHE = kadumu-lumjected

We know that the maximum possible efficiency obtainable by any engine working on a Camot
cycle is given by

-1, .
= = |~ ) ()]
" T, T,
where 7, = Maximum absolute temperature, and

T, = Lowest absolute temperature.

We also know that efficiency,
y = Maximum work obtsined _ W S @
Heat supplied or absorbed ~ 80 .
From equations (i) and (if),
W T, T,
5!2‘:'—'.’] or 8W = EQ[ _T, |
Since the lowest practical temperature of heat rejection is the temperature of surroundings
(), therefore the above expression may be written as

W = GQ[I—*] aQ sgx— ()

* o ReferAn 44and 413
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We also know that woékdong
8W = Heat supplied — Unavailable heat energy or heat rejected.

= §0-UHE. e (V)
From equations (#ii) and (iv),

Ttl
80-8Qx 7 = 30 -~UHE
1

Thus the unavailable heat energy (U.H.E) or the heat rejected is the product of the lowest
temperature of heat rejection and the change of entropy of the systeri during the process of supplying
heat. In oth r words, the change in entropy may he regarded as a measure of unavailable form of
hearenergy or irreversibility of the process. ;
Note: In the above discussion, the heat rejection takes place from the system to the surrounding (i.e. from a
higher temperature to a lower temperature). At the end of the process, by virtue of Second Law of Thermody-
namics, it is not possible to transfer heat from the system at a lower temperature to the surroundings at a higher
temperature. Thus, the above process of heat transfer is irreversible process.

4.5. Units of Entropy

, The unit of entropy depends upon the unit of heat employed and the absolute temperature. We
know that * i

or UHE =T, 0 =T, xds
ol T U]

Heat supplied or rejected (§0)
. Absolute temperature (T)

Therefore, if the heat supplied or rejected isin kJ and the temperature is in K, then the unit of
entropy is kJ/K. The entropy may be expressed in so many units entropy without assigning any
dimensional units. Since the entropy is expressed per unit mass of the working substance, it would
be more correct o speak *specific entropy. The absolute values of entropy cannot be determined, but
only the change in entropy may be obtained by using equation (i) in Art. 4.2.

Theoreticaily, the entropy of a substance is zere at absolute zero temperature. Hence, in
entropy calculations, some convenient datum should be selected from which measurement may be
made.

It may be noted that water at 0° C is assumed to have zero entropy, and changes in its entropy
are reckoned from this temperature.

4.6. ClausiusInequality

The Clausius inequality states that ‘whenever a closed system undergoes a cyclic process, the
«eyclic integral of 8Q/T is less than zero (i.e. negative) for an irreversible cyclic process and equal to
zero for a reversible cyclic process, Mathematically,

Change in entropy (d5) =

.

fé‘.rg < 0, for an irreversible cyclic process ekl
and f%@ = 0, for areversible cyclic process Lo in)

Combining the equations (i) and (if), the equation for the Clausius inequality is written as

f%‘? <0 . (i)

*  Theentropy is an cxtensive property of the system. The ratio of the extensive property of the system to the
mass of the system is the specific value of that property as explained in Chapter 1.
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The Clausius inequality not only gives mathematical expression (o the second law of thermo-
dynamics, but it also gives the quantitativé measure of irreversibility of the system. For example, the
equation (i) for an irreversible cyclic process may be written as o

f§$+!=0

where I represents the amount by 1vhich the given cyclic process is imreversible. When [ is equal to
zero, then the given cyclic process will be reversible. Moreover, a cyclic process in which §dQ.-‘T is
more than zero, is impossible b xcause it voilates the second law of thermodynamics.
4.7. Principle of Increase of Entropy

We have discussed in Art. 4.6 that the equation for Clausius inequality is

f—a,‘?su -

We know that the change in entropy,

dS=§Q

¥

Since the entropy is a thermodynamic property and the cyclic integral of a thermodynamic
property is zero, therefore equation (i) may be written as

f%@sfds
or é_l?sds

and - dﬁ;z%ﬁ )

When the process is reversible, then
-5
s T
and when the process is ireversible, then

50
d.S')T

If we apply the equation (if) to an isolated system like universe, for which 80 = 0, then the
equation (if) may be written as
- d§5=20
For a reversible cyclic process,
. dS = 0 or S = Constant
In other words, the entropy for a reversible cyclic process remains constant. Now for an
irreversible cyclic process, :
ds > 0
Since, in practice, all processes are irreversible, therefore the entropy of such a system like
universe goes on increasing.
This is known as the principle of increase of entropy.
Note : ‘The principle of change of entropy may also be discussed as follows :
Consider a given quantity of heat energy Q rejected by a hot body at temperature T, and absorbed by a
cold body at lemperature T,
5. :
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- Loss of entropy,by the hotbody = @/ T,
and gain of entropy by the cold body =QIT,

Since T, is greater than T, therefore the gain of entropy by the cold body is greater than the loss of
entropy by the hol body. In other words, we can say that when the temperature *falls in a system (i.e. irreversible
process) the entropy increases.

This conclusion can be extended to any isolated system (say universe) in whpch the heat exchange
between the system (at a lower temperature) and the surroundings (at a higher temperature) takes place in an
irreversible manner. Thus the entropy of an isolated systzm (universe) increases.

48, General Expression for Change of Entropy of a Perfect Gas
Consider a certain quantity of a perfect gas being heated by any thermodynamic process.
Let m = Mass of the gas, )

= Initial pressure of the gas,
v, = Initial volume of fhe gas,
T, = Initial temperature of the gas, and
Py 0y T, = Corresponding values for the final conditions.

Now the relation for the change of entropy during the process may be expressed in
following three ways :
(a) In terms of volume and absolute temperature

We know that for a small change in the state of a working substance, the general gas energy
equation is,

8Q =\dU +8W = mc,dT +pdv ' cons ()
where dT = Small change in temperature, and

dv = Smallchangein volume.

Dividing Yfroughout equation (i) by 7,
8o _ &t po-
T =" T+ T

; . P AR .00 _

S:wepv—mftTmT— y T = dS, therefore

ds = mc, gf+-m£dv ()]

Integrating equation (i) within appmpriale limits,
% s!
I dS = mc I —+ mR.r
3'

[S]:’ mc,[ Iog,‘l"]r’-}mk[ log, v]:‘

o The cold body whu:h isatalower temperature receives heat from ahot body which is at ahigher temperature.
The temperature of the hot body falls. It is similar to a case when we supply heat at constant volume or
constant pressure. After the process, by virtue of second law of thermodynamics, it not possible to transfer
heat from a cold body to a hot body. Such a process is irreversible process.



Entropy of Perfect Gases

c 2o oren 2]
cssnf (3 o o[ 2]

g z_m[c,,.og[;‘l ]W _cn},ng[p_z]]

(b) In terms of pressure and absolute temperature
We know from the general gas equation,
v v. v T,
P11=P11[.n__z Plx!
T, L v p T

v
Substituting the value of ( -JI*

]in equation (i),
1

T T,
§,- 8, = mc, log‘[?:_]+mklog,[%_x-fz—]

= mlug'[; }(c +n)+mmog_[ ]

" .ow substituting R = ¢, ¢, ip the above equation,
T, P
§,-8,=mc lo& +m(c -c,) log, ;2

=23m

(c) In terms of pressure and volume
\ We know from the general gas equation,
ol O L S

= 0
T, T, L. »y

T,
Substituting the value of [ T
1

§,=S, = mc,log, [’::1 "|] mﬂlog‘[-:—.‘:]‘

}n equation (iif),

S, =8, = me ﬂog,]" ~log, T,) + mR (log, v, —log, v,)

fzon]
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..(v)
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Now substituting R = ¢, ~ ¢, in the above equalion,
rp { b i o
. 2 S 2
§,-5, = mc,log, o }+mc,,log, = +mlc,~c) bg‘(v_J
Sk = 4 1
[ (v )
L} it Y 2
= mc, 10g, g )+mcbiog, v, +me, l-:og,[nJ }_m Iog.,[—I
4
(p
= mc, logg kp—f +mc, Iog( = )]

-1 m{3 o2

Notes : 1. Theexpression (vi) is valid for both reversible as well as irreversible processes.

2. Thechange of entropy is positive when heat is absorbed by the gas and there is increase of entropy,

3. Thechange of entropy is negative when heatis removed from the gas and there is decrease of entropy.

Example 4.1. - 0.05 m’ of air at a pressure of 8 bar and temperature 280° C expands to eight
times its original volume and the final temperature after expansion is 2%° C. Calculate change of
entropy of air during the process. Assume ¢, = 1.005 kd/g K and ¢, = 0.712 kl/kg K.

Solution. Given: v, =005m’; p, =8bar=08x10°N/m*; T, =280°C=280+273
=553K; v,=89,=8x005.=04m’; 7,=25°C=25+273=298K; ¢,=1005kikgK"
c,=0712 kg K

Let m = Massof airin kg.

We know that gas constant,

Re=c-c,= 1.005-0712 = 0293 kd/kg K = 293 JkgK

and pv, =mRT or m=R—TI=—29—3;§'53——=0.247.{g

. Change of entropy,

e onfiheef)

< zsxom{onzm[gg)*0293"’ (oos ]]

) = 0568 (-0.19+0.26) = 0.04 kJ/K Ans.
49. Change of Entropy of a Perfect Gas during Yarious Thermodynamic Processes

We have already d,lscussed in Chapter 3, the various thermodynamic processes of a perfect
gas and hnvedcn ved the equations for work done, change of internal energy and heat supplied. Now
we shall derive expressions for the change of entropy during the following thermodynamic processes

1. Constant volume process (or isochoric process) ; 2. Constant pressure process (or Isobaric
process) ; 3. Constant temperature process (or Isothermal process) ; 4. Adiabatic process (or Isentropic

process) ; and 5. Polytropic process.
4.10. Change of Entropy during Constant Volume Process (or Isochoric Process)
Consider a certain quantity of a perfect gas being heated at a constant volume.
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Let m = Mass of the gas,
p, = Initial pressure of the gas,
T, = Initial temperature of the gas,
ppTy = Cormesponding values for the final conditions.
Let this process be represented by the curve 1-2 on 7-S diagram as shown in Fig.42.

We know that for a small change of temperature (d7), the
heat supplied,

8Q = me, dT
Dividing both sides of the above equation by 7,
& dar
F e
dT
or *as = me,<E e [ _&E & ds] Fig. 4.2. T-§ curve dunng constant
. volume process.
Integrating this expression for the total change of entropy,
5 "sz -
s T,
ds = mcvj-:';: or [S]s: = mc,_,[log,T]T'
5, T =
§,-8, = mc,log, % = 23 mc, log L ()
e | v T] ; v ;r!

The above relation may alsp be expressed in terms of pressure. We know from the general gas
equation,

Py P T, P
D122 6 222 (v, =0
T1 Tz Tl Py ! )
ey T]. ol
Substituting the value of [ T ]in equation (1),
r I
5,~§, = 23mc, log ? )
1

The equations (i) and (ii) are valid for both reversible as well as imeversible process.

Alternate proofs for change of entropy
We have seen in Art. 4.8 that the general expression for change of entropy in temms of volume
and absolute temperature is,

T, hl
§-5,=23m| c,log -ﬁ + R log ;"l

N We know that ds = meJTT or é__": . T;
mc,
For 1kg of a perfect ga¥, % = ‘"_::

drT .
The term TS is known as slope of the curve 1-2 on the T-s diagram as shown in Fig. 4.2.
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Since v, = v,, therefore v,/v, = 1. Moreover, log 1 =0 -

T3
5,—8, =23 me,log FI

Similarly, the general expression for change of entropy in terms of pressure and volume is,

Y

Since v, = v, therefore v,fv, = 1. Moreover, log | = 0.

5,-5 =23 s |
p =9 = 23 mc, log —J
"

Example 4.2. A vessel of 2.5 m’ capacity contains I kg-mole of N, at 10(° C. If the gas is
cooled to 30° C, calculate the change in specific entropy.

The ratio of specific heats is i, 4mdanekg -mole nitrogen is 28 kg.

Solution, Given: *v=25m’; M =1 kg-mole =28 kg ; 7, = 100°C = 100 + 273 = 373K ;
T,=30°C=30+273=303K;y=¢c c,= 1.4

Since the universal gas constant (R,) for all gases is 8.314 kl/kg K, therefore characteristic
“gas constant,

R=R,/M=28314/28 = 0.297 kJ’kg K

and G- =R or 14 ¢,-¢, = 0.297 vl fe, == 14)
¢, =0297/04 = 0.74kJ/kgK '

We know that change in specific entropy (i.e. per kg of gas),
o [Ty 303
5,—5, = 23mc,log T = 23X 1x0.741og 73 kl/kg K
1

= - (L1536 kl/kg K Ans.

The — ve sign indicates that there is a decrease in entropy.

Example 43. A vessel of capacity 3 m’ contains air at a pressure of 1.5 bar and a
temperature of 25° C. Additional air is now pumped into the system until the pressure rises to 30 bar
and the temperature rises to 60° C. Determine the mass of air pumped in, and express the quamuy
as a volume at a pressure of 1.02 bar and a temperature onﬂ" C.

If the vessel is allowed tq cool until the temperature is again 25° C, calculate the pressure in
the vessel. Determine the quantity of heat transferred and change of entropy of the gas during the
cooling process only. Neglect the effect of heat capacity of the vessel. Assume air as an ideal gas.

Solution. Given: p,=3m’; p,=15bar=0.15x10°N/m*; T,=25°C=25+273

=298 K ; p,=30bar=3x 10° N/m®; T, =60° C =60 + 273 =333 K
Mass of air pumped in ' )
Let m, = Mass of air initially filled in the vessel, and
= Mass of air in the vessel after pumping.

.

*  Superfluous data
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We know that p, v, = m, a'.lT'l

_ P9 015%10°x3 _ ine R for air = 287 Jkg K)
- m = RT, = oETX298 = 5.26kg ...(Taking R for air Ikg

Similarly Y, = my,RT,

_P% 3x10°x3 _ | ..
i M = RT,  287x333 I il =
»» Mass of ir pumped in, -

m = my—m, = 94.17-526 =88.91 kg Ans.
Volume of air pumped in at a pressure of 1.02 bar and tehperatioe wf 200 C
Given :p=1.02bar=0.102 x 10° N/m?* ; T=20°C=20+273=293K
Let v = Volume of air pumped in.
Weknowthat pv=mRT

» - MRT _ 88.91x287x293
p 0.102x 10f

Pressure in the vessel after cooling
Let py = Pressure in the vessel afier cooling.
We know that the temperature after cooling,
T, =T, = 25°C = 298K
Since the cooling is at constant volume, therefore

=73.3m' Ans.

a.b
p, T
/7
o p,:-!f&=§%$‘—‘°‘=zssxloﬁmm’=zﬁ,am Ans.
2

Heat transferred during cooling
Since the vessel is cooled from 7, = 333 K to the initial temperature T, = 7, = 298 K, therefore
change in internal energy during cooling, :
dU = myc (T, ~T,) = 94.17x0.172 (298 - 333) = - 567 kJ Ans.
The — ve sign indicates that the internal energy decreases during cooling.

We know that heat transferred is equal to change in internal energy, when the process takes
place at constant volume (because work done is zera), Therefore heat transferred,

80 = - 567k] Ans.
The — ve sign indicates that heat is rejected by the gas:
Change of enfropy during cooling prrims.i
We know that change of entro)y during cooling process,

T.
$y-8, = 2.3.,,,‘_;,103[?‘]: 2.3x94.|?x0.712!og[%]km€
1
=~ TA4KIK Ans. ...(Taking ¢, = 0.712 kI/kg K)

The — ve sign indicates that there is a decrease of entropy.
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Example 44. An insulated vessel of capacity 0.056 m’ is divided into two compartments A

. and B by a conducting diaphragm. Each compariment has a capacity of 0.628 m’. The compartment
4 contains air ai a pressure of 1.5 bar and 25° C and the compartment B contains air at a pressure
4.2 bar and 175° C. Find : ]. final equilibriwh temperature, 2. final pressure on each side of the

diaphragm, and 3. change of entropy of the syst
Solution. Given: v, = yy=0028m’; p,=15bar=0.15x 1P N/m?; T,=25°C

=25+4213=298K | py=4.2bar = 042X 10F N/m? ; T,y = 175°C = 175 + 273 = 448 K
1. Final eqm'ﬁbn'mi,l temperature
Let ' T, = Final equilibrium temperature.
Firstall, let us find the mass of air in compartment A (m,, ) and the mass of air in compartment
B (mg). We know that
PaPa _ 0.15x 10Px0.028
RT, 287 x 298
- .. (R for air = 287 J/kg K)
Py _ 042x10°x0.028

PoUp =My RT, or m, = = 0.049 kg

Pply = myRTy or my = RT, = 287x448 = 0.091 kg
Since the diaphragm is conducting, therefore :
Heat gained by air in compartment A
= Heat rejected by air in compartment B
or my ¢, (Te=T,) = mge, (Ty~Ty)
0.049 x ¢, (T - 298) = 0.091 x ¢, (448~ T,)
0.049 7, - 14.6 = 4077 -D.0917, or 0.14T, = 5537
r Tz = 3955K Ans.
2. Final pressure on each side of the diaphragm
Let pag = Final pressure in compartment A, and
pgr = Final pressure in compartment B.
Since the volume of each compartment is same, therefore
% = p—ﬁf O Pup = p;-f.F - L2 :938955 = 1.9 bar A.ns.
and %:p?f' or p“=£§$=5,_2_%13825._5= 3.708 bar Ans.

3. Change of entropy of the system
‘We know that change of entropy fcc compartment A, whose temperature has been increased
from Ty to T,

- L X 395.5
ds), = 2, £ =2 049 % 0.7 i
(ds), 23maculug[r ] 23x0.049x0 I2Iug[ 2

- (Taking ¢, =0712 klikg K)
= 0.08 log (1.327) = 0.0098 kJ/K :
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-

and change of entropy for compartment B, whose temperature has been decreased from 7} to T

T . i
(@), = 23m, c,ing{r—: ] . 2@x0.091x0.?l2lag[%]kﬂl{

= 0.149 log (0.883) = —0.0081 kKJ/K

. Change of entropy of the slystzm. _
dS = (dS), +(dS), = 0.0098 - 00081 =0.0017 kI/K Ans.

4.11. Change of Entropy during Constant Pressure Process (or Isobaric Process) -

or

Consider a certain quantity of a perfect gas being heated at constant pressure.
Let .~ m = Mass of the gas,
v, = Initial volume of the gas,

T, = Initial temperature of the gas,
v,, T, = Corresponding values for the final conditions.

Let this process be represented by the curve 1-2 on T-S diagram as show: in Fig. 4.3,
We know that for a small change of temperature (dT), the heat supplied.
80 = me, dT

Dividing both sides of the above equation by T,

2 %)

a-eff

Pl T Fig.4.3. T-5 curve during constant

Integrating this expression for the total change of entropy, PRI

5, %
IdS = mc’j g
5 T

dr ar. . .7

We know that ds = me, T Y s i
. dar T
For 1 kg ol a perlect gas, =8 "_,.

The term %T is known as slope of the curve 1-2 on the T-§ diagram as shown in Fig:4.3.
5

We have already discussed that slope of the curve for constant volume process is

ar _ T

ds ¢,
- 1 T_T
Since for a perfect gas, ¢, < ¢, themforc")r— or > -
v i r '

Thus, the slope of the curve on the T-5 diagram for constant volume process 1-2” is higher than that of

constunt pressure process 1-7. as shown in Fig. 4.3,
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- S T y I!
] 25, nmc’logf }: =23 me, log ; )

The above relation may also be expressed in terms of volume. We know from the general gas
equation,

pu _py Ly )
T - T N 5 AR

2
Substituting this value of T,/ T, in equation (i),
el i
-8, = ?,‘3 me, log ;]‘ - (i)

The equations (i) and (i7) are valid for both reversible as well as irreversible process.
Alternate proof for change of entropy

We have seen in Art. 4.8 that the general expression for change of entropy in terms of pressure
and absolute temperature,

{7 s
§,-5,=23m c, log +(c,—¢,) log

Since p; = p,, therefore p, / p, = 1. Moreover log 1 =0.

2
=8, = 23mc,log T
1

Similarly, general expression for change of entropy in terms of pressure and volume,

Tl

Since p, = p,, therefore p, / p, = 1. Moreover log 1 =0.

Y
$3=8, = 2.3mc, log ;I'

Example4.5. 0.5 kg of a perfect gas isheated from 100° Cto 300° C at a constant pressure
of 2. 8bar Itis then cooled to 100° C at constantvolume. Find the overall change in entropy. Take

c,= I kg Kand c, = 0.72 kifkg K.
SolutionGiven : m=05kg; T, =100°C =100 +273=373K ; 7,=300°C = 300 + 273 =
573K ; p=2.8 bar=0.28 X 10° N/m?; iT,=100°C=1004273=373 K; ¢, = | KIkg K ¢, =012

klikg K
We know that change of entropy during constant pressure he.ahng
T,

573
1 ] 23x05xlxlog(373J KI/K

=024K/K I
" and change of entropy during constant volume cooling,

5,~5, = 23me, log| 2 | = 23x05x07210g( 32 | kK
=5 = 23m log | 3 573

: T,
8,=5, =23me, log| ==

=-0.154 /K
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" The-ve sign indicates that there is a decrease of entropy.
- Overall change in entropy,
5,-5, = (S,~5,)+(5,~5,) = 0214-0.154 =006 KI/K Ans.
Example 4.6. Cold air from atmosphere is circulated through an air heating system, where
the temperature of air is inc:ased from 7.2° C to 21.2° C without any pressure loss. If the hourly
consumption of wairm air ¢: 21.2° C is 850 m’, calculate how much heat per hour must be imparted
to the air ?
What will be the change in entropy of air circulated per hour ? Assume proper values of the
specific heat of air.
Solution. Given:T, = 72°C=72+213= 2802K:1,= 21.2°C=212+273=2942K ;
»=850m’/h
Heat imparted to the air per hour

Let p, = p, = Atmospheric pressure (constant).
= 1.013 bar = 0.1013 x 10° N/m’ . ... (Given)
R = Gasconstant = 287 Jkg K ... (Assume)

¢, = Specific heat at constant pressure = 1.005kl/kg K ... (Assume)
First of all, let us find the mass of air (m). We know that

- P 0.1013x 10°% 850 _ :
paVy=mRT,0or m= RT, - 287x2942 = 1020 kg/h

We know that heat imparted to the air ,

@ =me, (I,~T) = 1020 x 1.005 (294.2 - 280.2) kJ/h
=14351.4kl/h Ans.
Change in entropy of air circulated per hour

We know that change in entropy of air,

. §,~-§, =23 :1&{.}]::@[%l ] = 23x1020x 1.005103[3—:*;% ] kJ/K/h
=50 kJ/K/h Ans.

Example 4.7. A mass of m, kg of a certain ga.s'a: a temperature T, is mixed at constant
pressure with m, kg of mass of the same gas at a temperature T, (T, >T,). The system is thermally
insulated. Find the change in entropy of the universe and deduce the same for equal masses of the
gas. Show that the change is necessarily positive.

Solution.  Firstof all, letus find the common temperature (T, ) of the mixture of the gas. This
temperature T, is less than T, and greater than 7,. We know that

Heat lost by the gas at temperature T,

= Heat gained by the gas al temperature T,

m 6, (y=T) = myc, (T,~T)
) ... \wherec_is the specific heat of the gas at constant pressure)
A o

[

m +m,
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We know that the change in entropy for the gas whose tegnperature has been decreased from
TioT,,

T
{dS)I " mlcPlOS'{FlJ ...{'nliswi]lbemgaﬁvcnflﬂ'r}

Similarly, the change in entropy for the gas whose temperature has been increased from T
toT,
I o .
(dS), = m, c, log, ?; .+« (This will be positive as T, > T,)
. Change in entgopy of the universe (i.e. isolated system),
' (dS), = (dS), +(dS),

T, T
zmlcplog' }: +mchlog‘, ‘Fz

! e | T T I [ m T+, T, A
L T, (my+m,y) TG Dg’l T, (m, +m,) e

Ifm; = m, = m, then the change in entropy of the universe,

L+T, T,+T,
!dS)_ = mc, log, 2T +mc, log, 2T,
T +T, |[ T\+T,
= me, log,[[ a7, ][ 2T,

[ tog, x+10g,y = tog, xx3) |

T, +T, T+7,

= mc, log, 2\’7'_7'_ chlc) 2{1.“-7’_—
The term within the bracket is the ratio of arithmetic mean and the geometric mean of the
temperatures 7, and 7., Since the arithmetic mean is always greater than the geometric mean, therefore

T, +T, T,
¥t W'y TT

z
Example 4.8. One kg of air at 310 K is heated at constant pressure by bringing it in contact
with a hot reservoir at 1150 K. Find the entropy change of air, hot reservoir and of the universe.
If the air is heated from 310 Kito1150K by first bringing it in contact with a reservoir at 730
'K and then with a reservoir at 1150 K, what will be the change of entropy of the universe ?
Solution.Given:m=1kg; T, =310K ; T, =1150K

is posuive Thus the change in entropy is always positive.

Entropy change of air, hot reservoir and of the universe

We know that entropy change of air,

(@S), = 23me, log| & | = 23x1 x 1 x10g[ 139 )= 1 309 k3K Ans
A »l%8 7, 310

<. (Taking ¢, for air= 1 kl/kg K)
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We also know that the heat absorbed by air or heat rcjca:.wd by hot reservoir,
Q) = Qg =-me,(T=T,) = ~1x1(1150-310) = — 840 kJ
. .. (~ve sign because of heat rejection)
». Change of entropy of the hot reservoir,

Heat rejected (@) -840

() = Rbsolute temperature (Tg) 1150

We know that change of entropy of the universe,
(dS), =.(dS), +(dS), = 1.309~ 0.73 = 0.579 kI/K Ans.

Change of entropy of universe when air is heated in two stages

The air is heated in two stages, first from 310 K to 730 K by bringing it in tontact with a first
reservoir at 730 K and then from 730 K to 1150 K by bringing it in contact with a second reservoir

at 1150 K.
. Heat absorbed by air when heated from 310 K to 730 K or heat rejected by first reservoir,

Qp = Oy = ~me, (T, ~Ty) =~ 1x1(730~310) = - 420K
. (Here T =730 Kand T, =T, =310K)

and heat absorbed by air when heated from 730 K to 1150 K or heat rejected by the second
reservoir,
Qpr = Ogy = — 6, (Tgy—Tp) = = 1X1(1150=730) = —420KJ

... (Here T,, = 1150 K and 7,, = 730K)

We know that change of entropy of the air,

), =23me. | Tal,as tog | 122
JA‘-’”':p”g;r +.mcpugru i

Al

=23x1x 1[[03(%%]-}301;[%]]

=23(0372+0.197) = 1L.309kIK
Change of entropy for the first reservoir,

Op  -420

(dS)g, = ?R_I— =0 - —-0.575 kI/K
Change of entfopy for the second reservoir,
Qm —420
(dS)p, = T, - 1150 = - 0365 kI/K

- Change of entropy of the universe,
(dS), = (dS), +(dS)y +(dS)gy
= 1.309 - 0.581 - 0.575 = 0.369 kI/K Ans.



10 A Teat Book ;:.-_f Thermal Engineering

4.12. Change of Entropy during Constant Temperature Process (or Isothermal Process)
Consider a certain quantity of a perfect gas being heated at constant temperature.

Let m = Mass of the gas, Fuid
p, = Initial pressure of gas, y o il -;—-—-12
v, = Initial volume of gas, i !
Py v, = Corresponding values for the g ' '
final conditions, ° ' i
Let this process be represented by the line 1-2 on 7-§ I H :
diagram as shown in Fig. 4.4. We know that during constant 5, 5,

temperature process (i.e. isothermal process), there is no change
in internal energy, and the heat supplied is equal to the work Fig 4.4. T-S curve during constant
done by the gas. We also kpow that work done during an temperalure process

isothermal process.

%
W, , = 23mRTlcg =y
1

.. Heat supplied, Q, , = W,_, =23 mRTlog[-z-]
o

We know that change of entropy

Heat supplied
~ Absolute temperature

=93 mRT, (%2
or 5,~8,=23 T log[vl]

v Uy |
=2.3mRIcg[;3J= 2.3m{cﬂ—cu)|l!g{f] ()
1 I

The above relation may also be expressed in terms of pressure. We know from the general gas
equation, 4

hY PV h_h
N 2= il T
T, T, = L Hh=R
Substituting the value of {;2_ } n equation (i),

P
5,-5, = 23lel:lg[P ]: 2_].'!:(1"-1‘L_)|ng["'I'] i)
Pz ! P-_,

The equations (i) and (i¥) are valid for both reversible and irreversible processes.
Alternate proofs for change of enfropy
. We have seen in Art. 4.8 that the general expression for change of entropy in terms of volume
and absolute temperature is,

e onf)
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Since T, = T, therefore T,/ T, = 1. Moreover log 1 = 0. :

. §5,-8, =23m(c,~c,) lng[;ﬁJ
\ 1

Similarly, general expression for change of entropy in terms of pressure and absolute

temperature is,
. T P
$,-8,=23m| clog T +(e,—¢,) log ;;
]

" Since T, = T, therefore T,/ T, = 1. Moreaver log | =0.

§,-5,=23m (cp—cn}lug[i—l]

Example4.9. A certain quantity of a perfect gas is heated in a reversible isothermal process
from I bar and 40P C to 10 bar. Find the work done per kg of gas and the change of entropy per kg
of gas. Take R = 287 J/kg K. . :

Solution.Given : p, = 1 bar =0.1 X 10° N/'m?; T, =40°C=40+273=313K;p,=10bar
=1x10° N/m® ; R =287 Jkg K
Workdone per kg of gas

We know that workdone per kg of gas, '

L) Py '
W, =23 m.RTllog(;] = 2.3 mRT, Iog(;'] (Tt =Py
1 2
0.1x 10

= 23x1x287x313
< x _los[lxm‘

]: ~206 610 Jig

= -206.61 ki’kg Ans.
The - ve sign indicates that the work is done on the gas.
Change in entropy per kg of gas ‘
" We know that the change in‘entropy (i.e. change in-specific entropy),

5= -—'_2‘3mklog[£i]= 2,3xlx28ﬂog[gi'l—x%] JkgK

= -660.1JkgK = - 06601 kI/kg K Ans.

The - ve sign indicates that there is a decrease in eniropy.
Note : The change in entropy may also be obtained as follows :

We know that the heat supplied (g, ,) in an isothermal process is equal to the workdone (w, ).

.. Heatsupplied = ¢, y = w;; = — 206,61 kl/kg

.. Change in specific entropy,

Heat supplied - 206.61

51 = Absolute mjnplpﬂatum T e e

Example 4.10. One kg of air occupies 0.084 m’ at 12.5 bar and 537° C. It is expanded at a
constant temperature to a final volume of 0.336 m’. Calculate : ’

I. the pressure at the end of expansion, 2. work done during expansion, 3. heat absorbéd by
*he air, and 4. change of entrapy. '

53—
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Solution. Given : m = 1 kg ; v, = 0.084 m* ; p, = 12.5 bar = 1.25 X 10° N/im? ; T, = 537°C
=537+273=810K v,=0336m’

1. Pressure at the end of expansion

Let p, = Pressure at the end of expansion.
We know that
Y =Pt
Pt 1.25% 108 x 0.084
py = —— = =Sl - 03125 X 108 N/m?
: v, 0.336
= 3,125 bar Ans.

2. Workdone during expansion

We know that workdone during expansion,
v, v,
W, =23mRT, log v— =123p, v, log = ool pyu, = mRT)
1

-zsxlzsxlo‘xoosuug[%): 145 400 5

= 1454 k] Ans.
3. Hleat absorbed by the air )
5 Wc‘: know that during constant temperature process, there is no change in internal energy and
the heat absorbed is equal to the amount of work done by the air.
. Heat absorbed by the air, _
,_, = Work done by the air = 1454 kJ Ans.

4. Change of entropy
‘We know that change of entropy

Heat absorbed 1454
$2=51 = Rbsolute temperature 810 ISME s,

Example4.11.  One kg of hydrogen (molecular mass 2) is expanded from | m’ to 5 m’ during
a free expansion process. Calculate the change in entropy of the gas and the surroundings. If the
expansion between the same two states is carried out by a reversible isothermal nrocess, find the
change in entropy of the gas and. the surroundings. What will be the net change of entropy of the
universe?

Solution. Given:m= lkg;M‘=2;UI=l m’ ;uz=5m

We know that the characteristic gas constant,
Universal gas constant (R,)  g314
= Molecular mass (M) a 2
..( R forall gases = 8 314 kl/kg K)

= 4.157 kikgK

Change in entropy of the gas and the surroundings

Since in a *free expansion process, the temperature of the gas remains constant, therefore the
process is assumed as reversible isothermal process.

*  ReferAn.3.14
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We know that change in entropy of the gas,

(d$)g = 2.3leog[§z-]=' Z,SKl.x4.l$?log[%]= 6.67 KI/K" Ans.
|

Also, in a free expansion process, no heat transfer takes place with the surroundings, therefore
entropy of surroundings remains constant. o :
. Change of entropy of the surroundings,
(dS), = 0, Ams. -

Change in entropy of the gas and the surroundings for reversible isothermal process
We know th  “ange in entropy of the gas during reversible isothermal expansion,

it
(@S); = 23 leog[:z ) =23x 1x4.157 Iogr%] = 667kI/K Ans.

1
p

In an isothermal expansion, the heat transfer takes place between the gas and the surroundings.
The gas absorbs heat and an equal amount of heat is rejected by the surroundings.
.. Change in entropy of the surroundings,
(dS)g = —6.67k/K Ans.

and net change in entropy of the universe,
(dS),, = (dS)g +(dS); = 6.67-6.67 = 0 Ans.
" Exampled.12. 2kgofoxygenal60° C is mixed with 6 kg of nitrogen at the same temperature.

The initial pressure of oxygen and nitrogen is 1.03 bar and remains same after mixing. Find the
increase in entropy. o=

Solution. Given : mg =2 kg'; Tg = TN=60'C=60+273=333K;MN=6kg;
Por = Pt = Pry = 103 bar=0.103 X 10° N/’

We know that the molecular mass of oxygen (M,,) is 32 and the molecular mass of nitrogen
(M, is 28. Since the density (.. mass per unit volume) is directly proportional to the molecular
mass, therefore )

Initial volume of oxygen,

m
oy = ;,i = % = 02143 m’

~ Volume of the mixture,
Uy = Uo+0y = 0.0625 +0.2143 = 02768 m’
We know that the characteristic gas constant for oxygen,
o Universal gas constant (R) 8314
0 = Molecular mass of oxygen (M) 32

.‘.(‘.'R.fnnllgasusaﬂld-kﬂkgl()

=026 KAgK
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{

and characteristic gas constant for nitrogen,

RN—FH—_ﬁ‘=0.297kM;_K ‘
We know that change in entropy for oxygen
Y 0.2768
(dS)y = Z.Smokolog[po } =23x%x2x O.Nhg(o-oﬁzs]k}ﬂ(

= 1.196 log (4.429) = 0.773 kJ/K (increase)
and change in entropy for nitrogen,

A M | 0.2768
, (dS)y = 2.3 my Ry log [ & ] =23x6x0297 |og[0_2143 ]k.l.-‘l{

=4.1 log (1.2916) = 0.456 kI/K (increase)
« Increase in entropy, >

ds = (dS)y +(dS)y = 0.773+0456 =1.229 kI/K Ans.

4.13. Change of Entropy during Reversible Adiabatic Process (or Isentropic Process)

We have already discussed in Art. 3.10, that in a reversible adiabatic process, no heat enters
or leaves the gas. Mathematically, :

6Q=f0 | Tz-------z--"[z
’
ds =0 [ dszéf] g 4
L
In other words, chapge of entropy during a reversible g g
adiabatic process is zero. The reversible adiabatic process on T-§ E [ S !I
graph is shown by a vertical straight line 1-2, as shown in Fig. 4.5. I i
Since the entropy of the gas remains constant during revers- e
ible adiabatic expansion or compression of the gas, this process is —— Enfropy —=
said to be isentropic (i.e. frictionless adiabatic process). This fact Plg. 4%, oo daios
makes the T-5 diagram quite useful in solving problems on adi- * adiabalic ;:;;;?"5
abatic expansion. )

We have also discussed in Art. 3.10, that in an isentropic process (i.e. frictionless adiabatic
process), the temperature of the gas changes and the change in internal energy is equal to the work
done by the gas during expansion (or work is done on the gas during compression). I the adiabatic
process is irreversible (i.e. adiabatic process with *friction) as shown by 1-2"in Fig. 4.5, and the
expansion takes places within the same temperature limits T, and T, then due to internal friction, the
internal energy of the gas at the end of the expansion (i.e. at point 2') will be more than that of at point
2 of reversible process. If 80" is the amount of heat absorbed by the gas due to the internal friction,
then the ratio 8Q'/T will be more. Thus the entropy is more at point 2’ (of irreversible process) than
at point 2 (of reversible process). Thus, an irreversible process always resulls in increase in entrapy
iLe.dS > 0 (Refer Art. 4.7).

Since the internal energy of the gas at the end of imreversible adiabatic expansion is more than
that of isentropic expansion, therefore the amount of work done by the gas will be less than that for

* It may be noted that friction makes the process irreversible as itincreases the heat-contenis of the gis
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reversible expansion. In other words, higher entropy at the end of irreversible process, makes less
availability of heat energy for transformation into work. Thus entropy may be regarded as a measure
of rate of the availability or non-availability of heat energy for transformation into work.

Exampled.13. A0.568m’ capacity insulated vessel of oxygenatapressure of 2baris stirred
" Byan internal paddie until the pressure becomes 2.4 bar. Findout 1. Heat transferred, 2. Work output,

and 3. Change in entropy per kg.

Take ¢, = 0.657 ki/kg K, and R = 260 J/ky K.

Solution. Given : v, =0.568 m* ; p, = 2bar =0.2X 10° N/m’ ; p, = 2.4 bur = 0.24 X 10° N/m?
i ¢, = 0657 ki/kg K;R=260Jkg K
| Heat transferred

Since the vessel is insulited, therefore it is an adiabatic process. We know that in an adiabatic
process no heat is ransferied. Ans.
2. Work auipitt per kg

. First of all, let us find the initial and final temperature of the gas ie. T, and T, respectively.

Consider | kg of mass of the gas.

PiY _ 02x10°x0.568

Weknow that p,v, = mRT, or T R %260 = 437K
P,
Similarly pyUy = m RT,or T, = —”-’—g = 234_%‘1;?& = 543K
(vo=1)

. Change in internal energy,
: dU = me, (T,-T)) = 1 %0657 (524.3-437) = 513kl

We know that in adiabatic process, the work output is at the cost of change ininternal energy.
; Work output = dU = 571.3kJ Ans.
3. Change in eniropy per kg
We know thit inan :llll';lh:!l{i‘c process, there is no change in heat, therefore, there is no change
in entropy also. Ans. & ;

Example 4.14. An ideal gas of mass 0.25 kg has a pressure of 3 bar, a temperature of 80°
C and a volume of 0.07 m’. The gas undergoes an irreversible adiabatic process 1o a final pressure
of 3 bar and a final volume of 0.10 m’, during which the workdone on the gas is 25 kJ. Evaluate c,

and ¢, of the gas and increase in entropy of the gas. J
Solution. Given: m=0.25kg, p, =3 bar = 0.3 x 40" N/fm®; T,= 80°C=80+273=1353 K-;

v, =007 m"; py=3 bar =03 x 10°N/m? v, = 0.1 m*; Wy ,=-25kJ

Valie vf'rﬂ andd ¢, of the gas

First of all, let us find the value of gas constant (R) and the final temperature of the gas (5.

- P 03x10°%007
Weknow that  py v, =mRT, or R="" T, —'0._25x353 = 238Ikg K

Pty 03x10°%0.0

and pyv, =mRT, or T, = " 0 E = 504 K
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We know that change in internal energy,
dU = mc, (T,~T)) = 0.25x¢c, (504 -353) = 37.75¢,
We also know that heat transfer,
0, =dU+ W,
0=13775¢,-25 or c,=25/3775 = 0.662klkg K Ans.
Now c,—c, =R =238Jkg KI = 0.238 kikg K

P
¢, = R+c, = 023840662 = 0.9 k/kg K Ans.

Increase in entropy of the gas
We know that the change in entropy,

5, .
§,-5, = 2.3rr[c Iog[': ]-l—r: Iog[ ]] .. . (General equation)
I .

2 23x025[0662[ug[ }l-l]‘)log[gmﬂ

=0.575[0.6621og 1 +091og 1.42§]
= 0.575x0.9x0.155 = 0.08 kI/K Ans.
The +ve sign indicates that there is an increase in entropy.

4.14. Change of Entropy during Polytropic Process ( pv" = Constant)
Consider a certain quantity of a perfect gas being hieated by polytropic process.

Let m = Mass of the gas,
p; = Initial pressure of the gas,
v, = Initial volume of the gas,
T, = Initial temperature of the gas, and
Py Uy T, = Corresponding values for the final conditions.

We have already discussed in Art. 3.11 that whenever a gas is heated according to the general
law pv”* = constant, the small amount of heat absorbed by the gas during its expansion is given by :

5@=HKSW=I—1xpdu f Wai:done.ﬁW:m)
Dividing this equation throughout by T,
80 _y-n pdv
T y-1" T

Subsliluling% = d§, and f_r = l":t-"ﬂﬂ,\icp'e.h-m.rv.: .o v = mRT)

g:s = uXmRX@
y-1 v

*  For an adiabatic process, @, ; = 0 and W, , ix —ve as work is done on the gas.
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Integrating this expression for the total change of entropy, we have

5 7
_1=n dv
!ds " T_?me! A

or ' 5,-8,= TLmelog[ ) 23mx?;—ixﬂlog[ ] )
Yy
fe-n
-'23m><c" xc (y—-1)lo 2 [ R=c (y-1
=4 Y- o (Y Eul . (Y= 1)1
UZ
= 2.3m{cp—ucyllug ;I- ... (i)

The equations (i) and (if) are valid for both reversible and irreversible processes.

The above relation may also be cxpmssed in terms of absolute temperature and pressure. We
know that in a polytropic process,

i
n_fal  a (L)
Lo\ 7 L)

Substituting this value of v, / v, in equation (i),

’

¥ T
5,5, = Z.SXmeklog[F;]

-1 n—1
_ L RPRT TS |
= MM)_(T"] Xc, (Y ])xn_[ Inlg[r1

Fe.
= 23me, xLlog —l]

= £
= 2.3m><3'—"xRx-—l—-!ug =t
: Y T

We also know that in a polytropic process,
1 1
v,

u_(a) , 2 (&)
T ho\P

Substituting this value of v,/ v, in equation (i),

1
» - n

§,-5 =2.3mx'1-—"leog A

2= y-1 P,

= 23mXI—XRX—IIOg
y-1 Py
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23mx$—xr(7—])x [ ]

p
23me x}'——lub[ 'J
" s

Example 4.15. A perfect gasis camp-e.rsed according to the iaw pv' ¥ = constant from an
nitial pressure of | bar and volume of 0.9 m’ to a final volume of 0.6 m’. Determine the final pressure
and change of entropy per kg of gas during the process. Take Y= 1.4 and R = 287 Jikg K.

Solution. Given: n=1.25; p,=1lbar; v r-(}.‘)rn : z-(l.ﬁm s Y=¢,lc=14;
R =287 kg K=0.287kl/kg K '

Final pressure of the gas
Let Py

1]

Final pressure of the g-as.

We know that

125 _ 1.5
Ay E MY

- 1.25 0.9 12%
e il P | == - he -
Py — P [v!] | [0.6] .66 bar Ans.

Change of entropy per kg of gy i
We know that change of entropy per kg of gas,

v,
2,3mx-$—-xﬁlnb[ ]
|

5,- 8,

1.4-1.25
14-1

0]

23x1x

% 0.287 tog[g;’ ]wx

= 0.247 log (0.6667) = - 0.0435 KI/K Ans.
The —ve sign indicates that there is a decrease of entropy. |

Example 4.16. A certain volume of gas at 320 K and 6.5 bar is expanded 1o four times its
‘originial volume, according 1o pu''® = constant. Determine the final temperature of the gas and
change of entropy per kg of gas, assuming c, = 0.996 k//kg K and ¢, = 0.707 kJtkg K.

Solution. Given: T,=320K;*p,=65bar;v,=4v,;n=125;c,=0996klkg K,
c,=0.707k/kg K

Final temperature of the gas

Let T, = Final temperature of the gas.

T D -] 4‘0 1.25=1
Weknowthat — = |-+ | = = (405 = 1414
I, |9y Yy

o T, = T,/ 1.414-= 320/ 1.414 = 2263 K Ans.

Superfluous data
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Change of entropy per kg aj: gas
We know that charige of entropy per kg of gas,

5,~5,=23m(c —ncv)log[-v—z]
]

4v
3x|(09‘96—1‘25x[}70‘!)log[ ]km(
| Y
= 02576 log4 = 0.155kJ/K Ans.
Example 4.17. 0.2 kg of air with p, = 1.5 barand T, = 300 K is compressed to g pressure
of 15 bar, according to the law pv'® = constant. Determine :

1. Initial and final parameters of the air, 2. Workdone on or by the air ; 3. Heat flow to or
from the air ; and 4. Change of entropy stating whether it is an increase or decrease.

Solution. Given: m=02kg;p,=15bar=0.15x }FN/m’; T, =300K ; p, =15 bar
=15%10PNim?;n=125
. Initiul and final parameters of the air
' Let T, = Final temperature,

v, = Initial volume, and

inal volume.
. a-l 25-1
LY 55 O ¢ U 4
We know that Ta_[ﬁ] _[15 = (0.1)°** = 0.631

T, = T,/10.631 = 300/0.631 = 4754K Ans.
We also know that pv, =mRT,

mRT,  0.2x287x300

b = = 0.115m’ Ans.
=, 0.15x 108 o
. . (Taking R for air = 287 Jkg K)
l |
and AV =Pt O U =0 AT - ons| 2 m
P; 15
= []_mg"m3 Ans
2. Workdone on or by the air
We know that workdone,

“‘,‘ MU TPY 0.15%10Px0.115- lelU‘xUOlS
=28 el 125-1
==39000] = -39k] Ans.

'fhe —ve sign indicates that work is done on the air.
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B
3. Heat flow ta or from the air _
We know that change in internal energy, .
du = mc, (T,-T)) = 0.2 )-s(l?l? (475.4-300) = 25kJ 1

X .. (Taking ¢, = 0.712 kifkg K)
“Heatflow, @, =dU+W,,=25-39 = - |4kI Ane

The ~ve sign indicates that heat flows from the air.
4. Change of entropy

We know that chinge of entropy
; T
il Y-n =
5,-5, 2.3mcsx.ﬂ_llog[rz]
el 14-125, ( 300
=23x02x0.712xx 125-1 log[“?SAJU!K

= 0.1965 log (0.631) = —0.04 KI/K Ans.
The —ve sign indicates that there is a decrease in entropy.

Example 4.18. A mass of 9 kg of air at 1.75 bar and 13° C is compressed to 24,5 bar
according 1o the law pv'** = eonstant, and then cooled at constant volume 1o 15° C. Determine * 1.
Volume and temperature at the end of compression , and 2. Change of entropy during compression
and during constant volume cooling. .

For air, take c, = 0.996 ki/kg K and c, =(0.712 ki/kg K.

Solution. Given: m=9kg; p,=175bar=0.175x 0P Nim?; T7,=13°C=13+273
=286K;p, =245 bar=245X 10° N/im? ;n = 1.32 ; T, = 15°C = I5 +273=288K ; c, =099
kikgK;c,=0712kifkg K

I+
In the p-v diagram, as shown in Fig4.6, the process 1-2
p‘}.ﬂ.c
3

represents the compression of air according to pv'*2 = C and the
process 2-3 represents cooling of air at constant volume. g
o

\. Volume and temperature at the end of compression ) S SRR 1
Let v, = Volume at the end of compression, H :
and -
T, = Temperature at the end of compres- -
sion.
We know that gas constant,

R = ¢~ ¢, = 099%6-0.712 = 0284 ki/kg K = 284 JkgK

mRT|  9x284x286

= =418m®
7, 0.175% 10° “

and pv,=mRT or vy =

We also know that
S P =Py
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1 52
P 0.175x 108 '3
=) = = 4. e —
% '[p,] ls(z.ﬁxm&J

= 4.18(0.0714)°7 = 0.565m’ Ans.

n-1 132-1

5 T, (p)" [(o0175%10°)'®
Weknowthat —=|=2| =|7T7"7"T""% = (0.0714)"%2 = (5,528
e T. [pl] (2.45)(10" . ( )

2
T,=T,/0528 = 286/0528 = 542K = 269°C Ans.

2. Change of entropy
We know that change of entropy during comptession (process 1-2),

%
v
0.565

=23%9 (0.996 - 1.32x0.712) log [—— ] KIK

5,—8, =23m(c,~nc) log

4.1
= 1.16 log (0.135) = — 1.008 KJ/K Ans..

The —ve sign indicates that there is a decrease of entropy.
We also know that change of entropy during constant volume cooling (process 2-3),

- Ll 9 2 10| 288 |
§y—8, = 23 me, log ?2 =23x9x0.712log i KI/K

= 14.74 log (0.5314) = —404 KI/K Ans.

The —ve sign indicates that there is a decrease of entropy.

Example 4.19. A volume of 0.14 m’ of air at 1 bar and 90° C is compressed to 0.014 o’
according to v = Constant. Heat is then added at  constant volume until the pressure is 66 bar. -
Determine : . Heat exchange with cylinder walls during compression, and 2. Change of entropy
during each portion'of the process. : 4

Assumey = 1.4 and R = 286 JAg K.

Solution. Given : v, =0.14m’ ; p, = 1 bar = 0.1X 10° N/m* ; T, =90° C =904 273 =363 K ;
2,=0014m’;n=13; p,=66bar =66 X 10°N/m® ; y=c Jc, = 1.4; R =286 Jkg K = 0.286 kirkg K

In the p-v diagram, as shown in Fig. 4.7, the process 1-2 represents compression according to
pu'? = C and the process 2-3 represents heating at constant volume. E
|, Heat exchange with cylinder walls during compression

First of all, let us find the pressure at the end of com- I
pression (i.e. p,) a i
13
We know that BAA] S D14 1 T
P v, 0.014 I

= (10'? = 1995
pyx19.95 = 1x19.95

P
19.95 bar = 1.995 x 10° N/m’
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We know that workdone during compression,

_ PP 1995 X 10P X 0014 ~ 0.1 x 1(F X (.14
R | 1.3-1

=44635) = 44635k
. Heat exchange with cylinder walls during compression,

W J

G, .‘:':_'flI XW,, i44_|i3"44‘635 = 1116k Ans.

2. Change of entropy during each portion of the Jrocess
First of all let us find out the mass of air (m) and the specific heat at constant volume (c,).

We know that P v, =mRT,

MY 00x10°%0.14.
e —— e ——— 3
MERT, T mex3e - ke

and ¢,—c, =R or ldc¢,-c¢, = 0286
. ¢, = 0.286/04 = 0715kIkg K
We know that change of entropy during compression process 1-2,

o = Y-n 15\
§, Z.3m:\<T_ulxR!u;_,(vl}
14-13 0.014
= z3><0!35x———|4 n xOZBﬁ-Iog[ 0.14 ]ldf!{

= 0.0222 log (0.1) = - 0.0222 kK Ans.
The ~ ve sign indicates that there is a decrease of entropy.
We also know that change of entropy during constant volume process 2-3,

Sy 23%’%(}% ] = 23%0.135 xﬁ.?lslus[ ]692: '?;]

= 0.2221og (3.31) = 0.11SKI/K Ans,

Enmple 4.20. A mass of air is initially at 206° C at fressure af 7 bar and having vlafume
of 0.03 m”. The air is expanded at censtant pressure to 0.09 ir', a polytropic process withn = 1.5 is
then carried out, followed by a constant temperature process which completes the cycle. All processes
are reversible. Skeich the cycle on pressure-voluine-and temperature-entropy planes and find :
I ckange in entropy durmg each process ; 2. Heat recewe& and-heat rejected in the eycle ; and 3.
efficiency of the cycfe

Take R = 287 JAg K and ¢, = 0.713 kifkg K.

Solution.  Given : T, =206°C=206+273=479K ; p, =p, =7 bar =0.7 x I0° N/m" ;
v, =003m";v,=009m";n=15;R=287Jkg K =0287 kikg K; c,=0.713 kikg K -

The pressure-volume (p—'ﬂ')'ﬂ;d temperature-entropy (T-5) diagrams are shown in Fig. 4.8 (a)
and (b) respectively. The process 1-2 represents the expansion of air at constant pressure ; process
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2-3 represents the polytropic expansion i.e. according to pv'* = C and the process 3- | represents the
compression of air at constant lemperature (i.e. isothiermal compression).

p=C
Py = o 2 ' ] 2
f : g 5 H pv"slc
15 _ '
g % i g g=c) )
8 | .o § '
e R R " P \3
el ket 59 o
W ¥ i "
i b ¥ 5 5 9
— Volume — — Entropy—
(a) petr dingram.’ (k) T-§ diagram,
Fig. 4.8
I Change of entropy during each process
First of all, let us find the mass of air (m). We know that
PiY  07x10%003
p,v,=mRT, or Mo == (153 kg
= ! RT, 287 % 479
Let T, = Temperature at the end of constant pressure process 1-2,

v, = Volume at the end of polytropic process 2-3 or at the beginning of
constant temperature process 3-1, and -
py = Pressure at the end of polytropic process 2-3 or at the beginning of

constant temperature process 3-1.
We know that for a constant pressure process 1-2,
Y. B v T 009479
— === = =—"—2 = |437K
ior TRy T
For a polytropic process 2-3,
; a-l { ot ]
£= Bl n u-f!= E l-.l= 14_32 |_$—|=33.=2?.
L, \p P3 T, 47

py = p,/27 = 1/27 = 026 bar = 0026 10° N/’
Now for a constant temperature process 3-1,

Y Tx003

= 3,
m 026 - 0.807 m

P =Pyl B 8=

We know that change in entropy during constant pressure process 1-2,

; i ,
5,-5, = 23me, [og[-,ri)= 23%0153x 1 Iug(%)ﬂﬂ(
i A

..-(e, =Rtc, = 0287+0.713 =1 kifkg K)
= 0352log 3 = 0.168 kJ/K (inerease) Ans. -
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Change in entropy during polytropic process 2-3,

v
85-5 =23 m(c,~nc,) log[v—:]

0.807
0.09

= -0.0246log 8.97 = — 0,024 kKK (decrease) Ans.
and change in entropy during constant temperature process 3-1,

—23x0153(|~I5x07I3Jlug[ Jk]:"l{

Y 003
§,-8; = 23mR log ﬂ‘— = 2.3x0.153 x 0.287 log 0307 kI/K

3
= 0.101 log (0.0372) = -0.144 KI/K (decrease) Ans.
Note : From above, we find that net change of entropy during a cycle,
, dS = (5,-5)+(5,=5)+ (5, - )
= 0.168-0024-0.144 = 0 oo (See Art.4.7)
2. Heat received and heat rejected in a cycle
We know that heat transferred during a constant pressure process 1-2,
Q8 = me, (T,~T,) = 0.153x | (1437 479) = 1466 k) Ans.
The +ve sign indicates that the heat is received b‘y the air.
Workdone during a polytropic process 2-3,

Fl

PYy- Yy _ uvxlo‘xow oozsxm‘xow
n—-1 15-1

_ 6300020982
- 05

Change in internal energy during a polytropic process 2-3,
dU = me, (T, ~T,) = 0.153x0.713 (479 - 1437) = - 104.5kJ

w‘)—]

= 84036) = 84.03¢kJ

We know that heat transferred during a polytropic process 2.3,
0,4 = Wy_,+dU = 84.036 - 1045 = —20.464 kJ

The —ve sign indicates that the heat is rejected by the air.
We also know that heat transferred during a constant temperature process 3-1,

w.
0y, = Workdone = 2.3 mRT, rog[fJ
]

0.03
23x0|53x028?x4?9]og[08m ]I:I
= 484 log (0.0372) = - 69.2kJ

The —ve sign indicates that the heat is rejected by the air,
. Total heat rejected in a cycle

= 20464 +69.2 = 89664 kJ Ans.
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3. Efficiency of the eycle
We know that efficiency of the cycle
Workdone _ Heat supplied — Heat rejected

= Heat supplied Heat supplied
- 1466-8966 _ 3884 or 38.84% Ans.

146.6

4.15. Approximate Method for Heat Absorbed

Consider 1 kg of a perfect gas being heated by any process. Let this process be represented by
the curve 1-2 on T-§ diagram as shown in Fig. 4.9.

Let T, = Initial temperature of the gas,
= Final temperature of the gas,
§, = Initial entropy of the gas, and

§, = Final entropy of the gas.

- . —— Entropy —=
We know that the heat absorbed during the process is .. bed
equal to the area of the T-§ diagram under the curve 1-2 i.e. r'g"%hml-;:ai::’nwpy ——
1-2-2-1". Assuming 1-2 to be a straight line (as shown by the ;
dotted line), we find that

Heat absorbed = Area 1.2.2°.1" = Base x Mean height

+]F‘2
or Q,.,=(5,-8)

Thus, the heat absorbed is approximately equal to the change of entropy multiplied by the
mean absolute temperature.
Note : This method is called approximate method, as we have taken the curve 1-2 o be a straight line.

Example 4.21.  One kg of air is compressed in a cylinder according to the law pp'? =
‘Constant, !f:hc initial temperature is 100° Cmd compression mno uJS find the change of entropy
afﬂumr
" " Also find the pm:enla,ge error, if the change i in emmpy is calmlded by the appmmm
method. Take ¢, = 1 kifkg Kandc = 0714 kikg K.

Solution. Given: m=1kg; n=13; T,=100°C=100+273=373K; v/fv,=15;
c,= 1kIkgK ; c,=0.714 Ki/kg K "

Change of entropy
First of all, let us find the final temperature of the air (i.e. T)

L _(uY" (o
We know that :‘_,; = [”_l]. B [E] = (.4438 w7 ooy = 15)
T, = T, 104438 = 373/0.4438 = 840.5K
We know that change of entropy,

$=8 = 23me,x TR0 [

Ty
g 2
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14-13 (3713 ), -
= 23x 1 X071 x =5 ‘ﬂg[gm.s)ﬂm

= (.547 log (0.4438) = — 0.193kJ/K Ans.
The —ve sign indicates that there*is a decrease of entropy.

~ Percentage error
We know that heat transferred during the process,

n+h
0, =(5,-5) P

2x0Q,_,'  2(-111.26)
ol $=5 =T 3T, T 3138405

-0.1834 Kk

The —ve sign indicates the heal is rejected by the air.
We also know that heat transferred by approximate method,

T,+T,
0, = (SI_SI)[ 12 1]

2xQ1y  2(-11126)
4 275 =T 3T, T 3B+ 8405 R R

The —ve sign indicates that there is a decrease of entropy.

0.193-0.1834

.. Percentage eror = 0.193 = 0.05 or 5% Ans.

EXERCISES .
1. Calculate the change in entropy per kg when 3 kg of air at a pressure of 2.5 bar and temperature
20° C are expanded to a pressure of 1 bar and temperature of 110° C. Take R =0.287 kifkg K jand ¢, = 0.707

ki/kg K. [Ans. 0.528 kI/K]
2. One kg of air is heated at a constant volume from 1 bar and 27° C fo a pressurc of 5 bar. Calculate
the change of entropy. Assume R = 286 J/kg K and ¢, = 0.712 ki/kg K. [Ans. 1,145 kKJ/K]

3. A-constant volume chamber of 0.3 m® capacity contains 2 kg of the gas at 5° C. The heat is transferred
to the gas until the temperaturc is 100° C. Find the heat transferred and the change in intemal energy, enthalpy
and entropy. Take c, = 1.985 ki/kg K and ¢, = 1.507 kl/kg K. 2
[Ans. 286.3 k] ; 286.3 k1 ; 377.15 kJ ; 0.885 kJ/K]

4. 0.28m’of gasata pressure of 10.5 bar and temperature of 538° C is expanded at a conslant pressure
to a volume of 0.34 m®, Determine the change of entropy, assuming ¢, =0.69 ki/kg K and R = 287 J/kg K.

: . [Ans. 0.24 kI/K]

5. A mixture of ideal gases consists of 3 kg of nitrogen (N;) and 5 kg of carbon dioxide (CO,) at a
pressure of 3 bar and a temperature of 20° C. If the ratio of specific heats (y) for the nitrogen is 1.4 kl/kg K and
for carbon dioxide is 1.286 kl/kg X, find : 1. ¢, and , for nitrogen, carbon dioxide and of the mixuwre, and 2.
The changes in intemnal energy, enthalpy and entropy of the mixture, if the mixture is heated o 40° C (a) at
constant volume, and () at constant pressure. )

The molecular masses for nitrogen and carbon dioxide is 28 and 44 respectively.
[Ans. For nitrogen, ¢, = 1.039 kifkg K, ¢, = 0.742 kl/kg K, For carbon dioxide,
¢, = 0.85 kl/kg K, ¢, = 0.661 ki/kg K, For mixiure, ¢, = 0.92 k)/kg K, ¢, =009
KIkg K ; 110.4 kJ, 147.2 k), 0.368 k)/kg ; 1104k, 147.2 k), 0.49 k)/ K]

6. A certain quantity of gas occupies 0.56 m’ at 400° C and 28 bar. Determine the gain in entropy if
the gas expands isothermally to a final volume of 2.8 m’. R=287 Jkg K. |Ans. 3.746 kJ/K|

7. Calculate the changes of entropy per kg of air in the following cases :

(a) Air is heated at constant volume till its final pressure is three times the initial pressure,
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(b) Air is compressed at constant pressure till its final volume is one-half the initial volume : and
(c) Air expands isothirmnlly from 6 bar to 3 bar.
Find the change in entropy if the air undergoes the above three process in sequence.
Take ¢, = 1.01 kikg K and ¢, =072 kikg K.
[Ans. 079 k&g K © - 0,699 klkg K 20,2008 kJ/&g K 5 0.2918 (increase)]
8. A perfect gas is contained n a cylinder and undergoes an isothermal expansion according to the
law 1 = A+ Bu, where p is the pressuic in bar, v is the volume in m" and A and B arc constants. The initial and
final pressures are 8.4 bar and 2.8 barand the corresponding volumes are 0.056 m*and 0,168 m”, Find I, workdone
by the gas, 2. heat transferred during the process, and 3. change in entropy per kg ol gas during expansion. Take
K =275 Jikg K. [Ans, 6272 k1 6272 1) : 03018 kikg K]
9. Calculate the chanp. of entropy when (1,14 kg of gas initially at 170" C expands with a volume ratio
of 5.4 according to pv'H = Constant. Take y= 1.4 and R = 287 klkg K. |Ans. 0.027 kI/K]
1. One kg of air at a pressure of 7 bar and a tlemperature of 363 K undergoes a reversible polytropic
process which may be represented by pv'! = Constant, The final pressure is 1.4 har. Evaluate : 1. The final
specilic volume, temperature and increase in entropy ; and 2. The workdone and heat transfer during the process.
Assume R =287 JAg Kand y= 1.4, [Ans. 0643 m", 3133 K, 0316 kI/K : 142,04 k). 107.04 kJ)

11, One kg of air at I'bar and 15" C is compressed according mpv' = Constant to a pressure of 16
bhar. Calculate the temperature at the end of compression, the heal received orrejected by the air dunng the process
and the change of entropy. Skeich the upmnnn on lemperature-entropy diagram,

Take ¢, = 1005 kikg K, ¢, =0.716 KIkg K,
[Ans. 228.7°C . 92.6 kJ (rejected) ; 0.238 kI/K (decrease))

12, An ideal gas of molecular mass 30 and specific heat ratio 1.38 is compressed according to the law
pu'* = Constant, from a pressure of 1 barand 157 C to a pressure of 16 bar. Calculate the temperature at the end
of compression, the heat received or rejected and workdone by the gas during the process and the change in
entropy. Assume I kg mass of the gas. Use only calculated values of ¢, and c,.

[Ans. 228.7" C; 81 kJ (rejected) ; 0.21 KI/K (decreasc)]

13. A gas engine mixture at 95° C and | bar is compressed with index of compression 1.3, the volume
compression ratio being 6 : 1. The maximum pressure is 25 bar, Assuming the ratio of specific heats as 1,38 and
the specific heat at constant volume as 0.754 kl/kg K, find the change in entropy during compression stroke and
during combustion which takes place at constant volume. Represent the precess on p-v and T-s planes.

[Ans. 0.108 KI/K (decrease) ; 0.67 kJ/K]

14. An ideal gas at temperature T) is heatéd at constant pressure to Ty and then expanded reversibly
according to the law pv” = Constant, until the temperature is again T} Fnd the value of n, if the changes in
entropy during the separate processes are equal, o [ p 2y }

# ns, T+ |

I5. The workdone by 0.07 kg of air when it expands according to pv” = Constant 1s 7.6 kJ. The
temperature of air falls from an initial value of 105" C to a final value of 13" C during the process. Determing ;
1. the heat supplied or rejected by the air during the expansion ; 2. the value 6f index n ; and 3. the change of
entropy, sl.ahng whelhe: this is an increase or decrease. =14 and ¢, = 0.712 klkg K.

(Ans. 3 kI ; 1.24; 0.009 26 kJ/K (increase))

16. One kg ofair at | bar and 27° C is compressed isothermally to one-fifth the original volume. It is
then heated atconstant volume to acondition such that isentropic expansion from that state will return the system
to the original state. Determine the pressure and temperature at the end of constant volume heating. Represent
the processes on pressure-volume and temperature-entropy diagrams, and find : 1. the change in entropy during
each process ; and 2. net workdone during the cycle.

|Ans. 9.518 bar, 571.08 K ; - 0.46 KJ/K, 0.46 kJ/K, zego ; 56.08 k]

17. 0056 m’ of carbon monoxide is contained in a cylinder at 37° C and 1.4 bar. The gas is compressed
100.0224 m’ during the inward stroke of the piston. If the compression process is (a) isothermal, and (b) adiabatic,
_lind : 1. final temperature and pressure. 2. workdone, and 3. change of entropy. Take c, = 1.047 ki/kg K and
¢, =0.749 kl/kg K. [Ans. MO K, 3.5 bar, = 7.176 kJ, - 0.0232 kJ/K ; 447.2 K, 5.05 bar, — 8.68 ki, zero]
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18. Calculate the change of entropy when 1 kg of air changes from atemperature of 330 K anda volume
of 0.14 m” to a temperature of 550 K and a volume of 0.56 m”. If the gas expands according to the law pv" =
Constant, determine the value of index n and the heat absorbed or rejected by the air during the expansion. Show'
that it is approximately equal to the change of entropy multiplied by the mean absolute temperature. R = 286
JAgK ;and ¢, =0.712 kd/kg K. [Ans. 126521574 k)]

QUESTIONS
1. Explain clearly what is meant by 'entropy’ of a gas.
2. Show that the specific entropy change for a perfect gas in a process is given by

] P
e =1:Flog' ;I +c, log, EI- .

where the subscripts | and , relate to the initial and final states and other symbols have their usual
meanings. )

3. Deduce the expressions in terms of initial and final temperatures and pressures, for the
increase in entropy of a perfect gas when heated at a constant volume and at a constant pressure.

4. Show that for an ideal gas, the slope of the constant volume line on a temperature-en(ropy
diagram is higher than that of constant pressure line.

5. Derive an expression for the change of entropy for the isothermal process in terms of
volumes. ) -
6. Starting from the fundamental, show that the change of entropy of a gas undergoing a
polytropic process according to the law pv” = C is given by
' . T,
-8 = N s bl |
.91 S'Fme(‘f—l](n—l)log'[TJ |
where 8,8, = Entropy,
Y = Ratio of specific heats,
n = Index of polytropic operation,
T = Absolute temperature of a gas, and
R = Characteristic gas constant.
7. Establish the equation for the change in entropy of m kg of a perfect gas during a change
according to the law pt”* = Constant, :
T
-n 1
5,-8, = mr:,x;i-_—] It:ig‘[Fz ]
where Yis the ratio of ¢, / ¢,,

8. Show that when one kg of a perfect gas expands according to p”" = constant, the change
in entropy is given by

Ya
5,—5, = (c,—nc)log, ;;

; 9. A mass of m kg of a fluid at a temperature T, is mixed with an equal mass of the same
fluid at a temperature T,. The system is thermally insulated. Show that the entropy change of the
universe is given by
T,+T, ]

dS = 2mc_lo
" "(22"?, T

and show that it is necessarily positive.
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10. Derive an expression for the approximate heat absorbed by a gas when heated from an
absolute temperature T, to T, and an initial entropy of §, t0 §,.

) OBJECTIVE TYPE QUESTIONS

1. The heat absorbed or rei *cted by the working substance is given by

(a) 80 = TdS (5)8Q = TidS  (c)6Q = dSIT

where 80 = Heat absorbed or rejected,

1§ = Increase or decrease of entropy,and
T = Absolute temperature.
2. The property 0i a working substance which increases or decrcases as the heat is supplied
or removed in a reversible manner, is known as !

(a) enthalpy (b) internal energy (c) entropy (d) external energy
3. The entropy may be expressed as a function of
(a) pressure and temperature (b) temperature and volume
(¢) heat and work (d) all of these
4. The entropy of water at 0° C is assumed to be
(a)! (b o (c)-1 (d) 10
5. The change of ent ropy when heat is absorbed by the gas is
(a) positive (b) negative () positive or negative
ANSWERS
1. (a) 2. (¢) 3. (a) 4. 5. (a)

10 -



