* Chapter 1

Boundary Valve Problems

MATHEMATICAL FORMULATION AND SOLUTION OF PHYSICAL PROBLEMS .
In solving problema of science and engineering the following atepa are generally taken,

1. Mathematical formulation. To achieve such formulation we usually adopt mathematical
models which serve to approximate the real objects under investigation.

Example 1. .

To investigate the motion of the earth or other planet about the sun we con choose points ss mathe
matical models of the sun and sarth. On the other hand, if we wish to investigate the motion of the
aarth about its axis, the mathematical model cannot be a peint but might be a apheze or evan mors accu-
rately ar sllipaold. .

In the mathematical formulation we use known physieal lnws to set up egquationa

describing the problem. TIf the laws are unknown we may even be led to set up sZpers-

mente in order to discover them.

Example 2.

In deseribing the motjon of a planet about the sun we use Newton's laws to arrive nt B differenticl
equation involving the distance of the planet from the aun at any time.

2. Mathematical solution. Once a problem has been successfully formulated in terms of
equations, we need to solve them for the unknowns involved, subject to the various
conditions which are given or implied in the physical problem. Ome importunt con-
sideration is whether such solutions actually ewist and, if they do exist, whether they
are unigie.

In the attempt to find solutions, the need for new kinds of mathematical analysis—
leading to new mathematical problems — may arise.

Example 3.

J.B.J. Fourier, in attempling to solve a problem in hest flow which he had formulated in terms of
partial differsntial equations, was led to the mathematical problem of expansion of functions lnto aeries
involving sines and cosines. Such series, now called Fourier coriss, are of interest from the point of view
of mathematical theory and in phyaicn] applicationa, as we shall sse in Chapter 2.

3. Physfcal interpretation. After a solution has been obtained, it is useful to interpret it
physically. Such interpretations may be of value in suggesting other kinda of problema,
which could lead to new knowledge of a mathematical or physical nature.

In thiz book we shall be mainly concerned with the mathematical formulation of physi-
cal problems in terms of partial differential equations and with the solution of such eguations
by methods commonly called Fourier methods,
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DEFINITIONS PERTAINING TO PARTIAL DIFFERENTIAL EQUATIONS

A partial differential equation ia an equation containing ap unknown function of two
or more variebles and its partial derivatives with respect to these variables.

The order of a partial differential egustion is the order of the highest derlvative
present.

Exampla 4.

.a.f..;.‘; = g2 —y is s partisi differential equation of order two, or m second-order partial differential

equation. Here u in the dependent vuriable while 2 and y sre independent variables,

A solution of a partisl differential equation is any function which satisfies the equation
identically.

The general golution ie a solution which contrins a number of arbitrery independent
fonctions equal to the order of the equation.

A particular solution is one which can be obtained from the general solution by particu-
lar choice of the arbitrary functions.

Ezsmple §

An swen by substitution, u = oty — §zp2 + Fiz)+ Gly) is a solution of the partial diferential equation
of Example 4. Bacause it contains two arbitrary independent Iunctions Flz) and G(y) it is the general
solution. I iIn particular Flz) =2ainz, @ly) = 3t -6, we obtaln the porticular selution

u o= 2%y — Jap? + 2einc + St — 8

A eingular solution is one which cannot be obtained from the genersl aolution by par-
tienlar choice of the arbitrary functions.

2
It u= z%%— %—“;) , where u 6 a function of £ and ¥, we see by sgbstitution that both

u=zFy) — [F)]* and u =&%/{ ore solutions. The first in the general sclution invalving one arbitrary
funetion F{y). The seeond, which cannot be obtained from the general solution by any choice of Fiy),
ia o snguler solution.

A boundary velus problem involving a partisl differential equation seeks all solutions
of the equation which satisfy conditions called boundary conditions. Theorems relating to
the existence and uniqueness of such solutions are called existence and untqueness theorems.

LINEAR PARTIAL DIFFERENTIAL EQUATIONS

The general linear partial differential equation of order two in two independent vari-
ables has the form

Pu 8 Fu ) du
Aw+83xay+c@—s+na+.€a—y+m = ¢ {2)

where 4,3, “".G may depend on z and ¥ but not on . A second-order equation with
independent variables « and y which does not have the form (2) is called nonlinear.

’ It G=0 identicall}t the equation is called komogeneous, while if G » 0 it i called non-
homogeneous, Generalizations to higher-order equations are easily made.

Becat_:se of the nst}:re of th_e solutiops of (1), the equation is often classified as ellipiic,
hyperbqlw. or perabolic according as B® —4AC is less than, greater than, or equal to zero,
respectively. _
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SOME IMPORTANT PARTIAL DIFFERENTIAL EQUATIONS

1. Vibrating string equation %% = ad} Lo

This equation is applicable to the small
transverse vibrations of a taut, Aexible string, .
such as a violin string, initizlly located on the y

z-gxig and set into motion (see Fig. 1-1). The - ‘

funetion ¥(z,{) is the displacement of any :

peint x of the string at time ¢. .~ The constant . v, ) *
T

= ¢/p, where 7 is the (constant) tension in ]

the string and p is the (constant) mass per
unit length of the string. It is assumed that
no external forces act on the string and that Fig.1-1
it vibrates only due o its elasticity. -

The equation can easily be generalized to higher dlmensmns, a8 for example the
vibrations of a membrane or drumhead in two dimensions. In twe dimensiona, the
equation is

éz g’z &2
i (:;;ﬁ P
U

2. Heat conduction equation i x Vi

Here u{e,y,2,t) ia the temperature at position {z,¢,2) in & solid at time ¢ The con-
stant «, called the diffusivity, is equal to Kfen, where the thermal conductivily K, the
specific heat » and the denaity {mass per unit volume) u are assumed constant. We call
U2 the Laplacien of u; it is given in three-dimenaional rectangular coordinates
(@ %2 by

o . o

3 = == — —
Vi P ay? t @

3. Laplace's equation Vv =

This eguation occurs in many ficlds. In the theory of heat conduction, for example,
v is the steady-state temperature, i.e. the temperature after a long time has elapsed,
whose equation is obtained by putting #u/dt =0 in the heat conduction equation above.
In the theory of gravitation or electricity v represents the growvitational or electric
potentiel respectively. For this reason the equation is often called the potentml equation.

The problem of aolving Vv =0 inside a region R when v i3 some g:ven funct:on
on the bounidary of R is often called a Dirichlet problem.

PR

4. Longitudinal vlbratlons of a beam 2?: < g::: )

This equation describes the motion of & beam (Fig. 1-2, page 4) Whlch can v:brate
longitudinally (i.e. in the z-direction) the vibrations being assurmed.small, - The varfable
w(, t) is the longitudinal displacement from the equilibrium poaition of the cross ‘geation
at x. 'The constant ¢ = E}JA, where E is the modulus of elasticity: (»stress divided
by strain) and depends on the ‘properties of the beam, u i8 the density (miass per unit
volume). \

Note that this equation is the same as that for a vibrating string.
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5. Transverse vibrations of & beam % + b‘g-;?; = ¢

This equation describes the motion of a beam (initially located on the z-sxis, Bee
Fig. 1-8) which is vibrating transversely (i.e. perpendicular to the r-direction) sssuming
small vibrations, In this case (%, t) is the tranaverse displacement or deflection &t any
time ¢ of any point z. The constant b* = El/Au, where E ia the modulus of elasticity,
I ia the moment of inertir of any cross section about the z-axis, A is the srea of cross
gection and p is the mass per unit length. In case an external tranaverse foree Fiz, f)
is applied, the right-hand side of the equation is repleced by 4*F(z, H/EL

v

! v, Rk Rluneln s
RS .1—“%@

Fig.1-2 Fig.1.3

THE LAPLACIAN IN DIFFERENT COQRDINATE SYSTEMS

The Laplacian ¥ often erises in partial differential equations of science and engi-
neering. Depending on the type of problem involved, the choice of coordinate system may
be important in obtaining solutions. For example, if the problem involves a cylinder, it
will often be convenient to use cylindrical coordinates; while if it Involves a aphere, it will
be convenient to uae apherical coordinales, ’

The Laplacian in eylindrical coordinates (p, ¢, 2} {see Fig. 1-4) is given by

viu §§+§:-‘-:+§;-g-§‘;+%:,i @)
The transformation equations between rectangular and cylindrical coordinates are

T = peosg, § = phing, £=2 ’ , %
where p20, 02 ¢ <2, —w <2 Lo,

The Laplacian in spherical coordinates (r, 5, 8) (aee Fig, 1.5) is given by

Pig. 1
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1af,omy - 1 4 an 1 &u
viu ﬁﬁ;(#ﬁ;) + ﬁsin&?ﬁ(sinsﬁﬁ) * Asinig aef )

The transformation equations between rectangular and spherical coordinates are
T = rsindcosg, ¥y = rainfdaing, 2 = recosd (5)
where =0, 0=¢Sa 05 ¢<2r )

METHODS OF SOLVING BOUNDARY VALUE PROBLEMS

There are many methods by which boundary value problems involving linear partial
differentlal equations can be solved. In this book we thall be concerned with two methods
which represent somewhat uppesing pointa of view.

In the firat method we seek to find the general solution of the partial differential equa-
tion and then particularize it to obtain the actual solution by using the boundary condi-
tions. In the second method we first find particular solutions of the partial differential
equation and then build up the actual solution by use of these particular solutions. Of the
two methods the second will be found to be of far greater applicability than the first.

1. General solutions. In this method we first find the general solution and then that par-
ticular solution which satisfies the boundary conditions, The following theorems are of
fundamental importance.

Theorem 1-1 (Superposition principle): If uy,us, . .., % are solutions of B linear ho-
mogeneous partial differential equation, then cwmi+can+ -+ + cutén,
where ¢y, €1, ..., ¢s 212 conatants, is also a aolution.

Theorem I-2: The general solution of a linear nonhomogeneous partial differential e|qua-
- tion is obtained by adding a particular solution of the nonhomogeneous
equation to the general solution of the homogeneous equation.

We can sometimes find general solutions by using the methoda of ordinary differen-
tial equations. See Problems 1.15 and 1.18.

If A,B,...,F in (1) are constants, then the genersl solution of the homogeneous
equation can be found by assuming that « = e=**», where g and b are constants to be
determined. See Problems 1,17--1.20. ' .

2. Pariicular solutions by separation of variables. In this method, which Is simple hut
powerful, it is assumed that a solution can be expressed as & product of unknown fune-
tions each of which depends on only one of the independent variables. The success of
the method hinges on being able fo write the resulting equation a0 that one side depends
on only cne veriable while the other side depends on the remaining variables —from
which it is concluded that each side must be a constant, By repetition of thia, the un-
¥nown functions can be determined. Suparposition of these solutions can then be used
to find the setual solution. See Problems 1.21-1.25.
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Solved Problems

MATHEMATICAL FORMULATION OF PHYSICAL PROBLEMS

L1,

12

on Ax Is given by

Derive the vibrating string equation on page 8.

Reforring to Fig. 1-6, assume that As represents
an edlement of are of the string. Hince the tension is
sssumad conwtant, the net upward vertical force acticg

roindg ~ relnd . (1)

Bince 1lns = tan#, approximately, for smull angles,
this force in
%y -

r r
o |a+ax irix

(%}

= .'!![ By
using the fact that the slope is tane = g ‘We use here the notation e and ol F for the

partial derivatives of y with respect to » evalupted st # and o + Az, respectively, By Newton's lsw
this net Torco In equal #o the mase of the string (x an) thmes the acceleration of an, which is given by

%+g whers ¢+ 0 a8 Ae—0. Thus we have approximately

[ |z+as = (FM}(&-F') | @

atT
If the vibrations arve smail, then ae = Az ;pprau‘hnnwly, xo thet (5] becomes on divielen by aae:

Sy -
bdx |s+az x|z
e %?',- + e )

Talkdng the limit as a4z~ 0 (In which caze ¢~ 0 also), we have

AE) B < el e

Write the boundary conditions for a vibrating string of length L for which (z) the
ends =0 and = =1L arefixed, (b)the initial shape is given by f{z), (e) the initial
veloeity diatribution {a given by g(z)}, (d) the displacement at any point = at time ¢
in boupded.

{e) I thootring is fixed at s =0 and « =L, then the displacement y{z,2) at =0 and ¢ =L
must be zero for all times ¢ 0, iea

wWo.n =0 yLt =0 t>0
(b) Bince the atring has an initisl shape given by f(»), we muss hove
iz, 0) = fix) 0<zs< L
(¢} Sinca the initisl welocity of the string st asy point x is g(z), we must have
vz, 0) = piz} 0<e<L
Nota that y,(x,0) Is the same a6 9y/8t evalusted at £ = 0.
(d) Bines gz, £} in bounded, we can find a constant & independent of x end ¢ such that
[ulr )] < M 95z <L, >0

Write boundary conditions for a vihrating string for which (z) the end z=0 ia
moving so that ita displacement is given in terms of time by G, (b) theend 2= 1L
is not fixed but is free to move.
{#) The displacement at 2 =0 is given by ¥(0,t). Thus we have

w0, £) = Gig) t>q
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(b) 1f r ia the tension, the tranaverse force acting at any point # is

i
12 = dng)

Since the end z =L is free to move so that there is ne force acting on it, the boundary
condition is given by
L) =0 o AL} =0 t>0

14. Suppose that in Problem 1.1 the tension in the string i3 varigble, i.e. dependa on the
particular point taken. Denoting this tension by »(x), show that the equation for the
vibrating string is 3 L oy

ZL@5l = o

In this case we write (£) of Problem 1.1 uxs

&y ~ oy |
LS ] I r{z) i
so that the eorresponding equation {4} is
oy _ dy
rix) 8z |2+ ar iz) #x |r - ﬂ +
Y T

Thus, taking the limit as Az = 0 {in which case ¢ —= 0}, we cbtain

8 Wl = 8y
iz ['{’] | T e
after multiplying by e.

. L3, Show that the heat flux acruvss a plane in a conducting medium is given by —K g%.

where & i3 the temperature, n {s a normal in a direction perpendicular to the plane
and K is the thermal conductivity of the medium.

Suppose we have two parallel planes [ and I a dis- ! 11
tonce an spart (Fig. 1-T), having temperaturea u and
1+ Au, respectively. Then the heat flows from the plane
of higher temperature to the plane of lower temperature.
Alsg, the amount of heat per unit area per vnit time, cnlled
the heat Auxz, is directly proportienal to the difference in
temperature 4u Bnd inversely proportional to the distance .
An. Thuas we have

u =+ An

An
Heat flux from I Il = --K%E 1) '

where K ia the constant of proportionslity, called the ther-
mal conduckivily. The minua sign occurs in (I} since if
Aw > 0 the heat flow actualiy takes place from II to L. Fig.1-7

By taking the limit of (£} ms An and thus iu approaches zerc, we have a3 required:
Hest fiux acroas plane I = ~K g-l; ’ (&)
We sometimes call :-,—': the gradient of u which in vector form ia Vu, ao that (£) can be written

Heat flux acrossplanel = ~KVu o d]

16. If the temperature at any point (z,y,2) of a solid at time t ia u(z,y,2,2) and it X, ¢
and ;. are respectively the thermal conductivity, specific heat and density of the solid,
all assumed conatant, show that
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%‘{- = «Qu where « = K/op

Consider a small volume element af the solid ¥, as indicated in Fig. 1-B and greatly enlarged
in Fig. 1-p. By Problem 1.5 the amount of heat per unit pres per unit time entering the element

through fece PQRS ja ~K :—: o where %E L indicates the derivative of u with reapect t¢ 2 evaly-

ated st the pogition z. Sinee the area of face PQRS is Ay iz, the total amount of heat entering
the element through face PQRT in time At i

du
KT Lnya.z At . $))

Similarly, the amount of hoat lesving the element through face NWET In

_Kﬁ'; v og AV AZAL ¢4}
whers 7‘:—2 . indicates the derivative of » with respect to x evaluated at z 4+ Az,

'The amount of heat which remains in the element iz given by the amount entering minua the
ammount lesving, which !s, from {1) and {g),

Ju
{5

In & similar way we can ghow thet the amounts of heat remaining in the elemant dus to heat
transfer taking place in the - and s-directlons are given by

3w
A Ka_z :}nya.za: 1]

L o

{K“ ooty Kay v} Ag as at ()
éu du

end {KE wtas KE;L} Az by a¢ (5)

reapattivaly,

The total amount of heat gained by the element is given by the sum of (3), () and {5}, This
amount of heat serves to raize its tomperature by the amount au. Now, we know that the heat
needed to raise the tempersture of a mesz m by 4u s glven by mo Au, where o is the wpecific heat,
If the denaity of the polid s », the masa {s ™ = pAzspaz. Thus the quantity of hest givan by
the sum of (1), (4} and (5} is equal to

Cu AT &Y Az AU {6)

It we now equate the sum of (), (4) and (5} to (8), and divide by 4z Ay Arat, we find

du u aul aul au du

K2 - KT i L u — il 1

{ 3z |x+asz Kaz Tl o4 Kau y+ay K&y v i 4 Kas whdx K.az . = “,&L‘
Az ay oF at

In the limit ne ax,ay, A2 and At el appraseh zero the above equetion becomes

(gt , afpoe) | 2fpn) | _a
M(x 6:) + W(Kay) + éx(x'a_:) = eugy (2}
er,as K is a Eonstant,
By b Py _ u
K(ﬂz" +W+E§) = opyy (8}
This can ba rewriiten as
fu ;
T Vg o #}

. K
where « = B called the difusivity.
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L%

1.8,

1.9,

£ :,_l}?l’i;-"-'%{""—';'—"; x
ol A e - -
' i ..I‘.L ;
R
T L -
|
| F
|
i
)
i
z.p,0} P
i Q
’I
g o
ay W
Fig. 18 Fig.1-9

Work Problem 1.8 by using vector methods.

Let V be sn urbiteury volume lying within the solid, and lat § denote its surface (nee Fip. 1-8).
The total Hux of heat aeress 5, or the quantity of hest feaving S per unit time, is

Jj [—K¥Vu)"ndS

5
whero n is sn outward-drawn unit normal to 8. Thus the quantity of heat entering § per unit time is

.ff{h"\?u}‘nlfs = Lf T KTV ()
-~ v

by the diverwo e theorem, The heat contained in w volume V ois given by

{ff o

v
Tioq ied 1 raie of iperenst of heat ix

AV N Y % “

Equatine the right-hand sides of (1) and (2),

: j]’["‘%: - V'(Kvu}]dv _ @
L

ani sinee 17 15 nrhitrary, the intepgrand, sssumed continunug, must he identically zerw, so that

;
"“Iﬁ% = VKTw

or if &.¢, 4 are vunsiants,
g

K
= = . 2
T ” V¥ WV (#

Show that for steady-state heat flow the heat conduction aquation of Problem 1.6 or
1.7 reduces to Lapluce’s equation, Qi = 0.

I the esse of steady-stute heal Aow the temperature u fdoes not depend on time £, 50 that
An

. il .
T 0.  Thus the equation :t . x40 hepomes Vin = 0.

A thin bar of diffusivity » has its ends at z=10 and z=1L on the z-axiy (see

Fig, 1-10;. Its lateral surface is insulated so that heat cannot enter or eacape.



10 BOUNDARY VALUE PROBLEMS [GHAP.1

'(a') It .th'e initial temperature ia f{x) and the ends are kept at terqperature zero, set up
the boutidary value problem. (5) Work part (o} if theend = = L is insulated. (¢} Work
_part (e) if the end 3 = L radiates into the surrounding medium, which is assumed to

be af temperature .

Thina 18 & problem in one-dimensiona! heat con-
duction since the temperature cah only depend on _ . -
the position = at any time ¢ gnd can thus be de-
noted by ulz, ). The heat conduction equation is
thus given by

n .  Mu Fig.1.10
R~ ¢<z<h t>0 ¢ ] 4

(a) Since the endn are kept at temperature zerc, we have )
w08} = 0, w{L ) =0 t>0 ()
Since the initial tempernture iz f(x), we have

uiz, 0) = flx p<z<h {5

Alno, from physical considerations the temperature muat be bounded; hencs
|wlz, )] < M p<z<L, t>0 )
The problem of solving (I} subject to conditions (£), {3} and (4] is the required boundary
vglue problem. A problem exactly eguivalent to that considered above is that of an infinite

alab of conducting material bounded by the planes z = ¢ and « = L, where the planes are
kept at temmperature zevo and where the temperature distribution initislly is f(=).

(3) 12 the end 2 =L is insulated instead of being at temperature zero, then we musi find a
replacament for the condition u(L,t) =0 in (g} To do this we note that if the end z=L
ia insnlated then the Aux &t x = [ is zero. Thus we have

Bu

K |-t o or equivalently  u{L, 1) = ¢ 5

which ia the reguired boundary ¢ondition,

{c} Kt ia Known from physicul laws of heat transfer that the heat flux of radiation from one object
at temiperature L/, to another object at temperature U, is given by ot} = Ud, where « i
a constant and the temperatures U, and U; are given in abaciute or Helvin temperature which
§s the nomber of Celsius (centiprade) degrees plus 273, This law i often esllad Stefan’s
yodiation law. From this we obtain the boundary condition

~Kub, ) = alui —1) where u; = ul(l, t) (#)
If «, and g do not differ too greatly from each other, we can write

W =) = (wy — g+ ndug+ 1%+ 1l

3 2
(n, — aghey I:C:—;) + (:i—l) + i—l + lj
0

~ dudli, —up

It

since (uyfug?, (w,lugh, {x,/ug) eve approximately equul ta l. Using this approximation, which ia
often referred to as Newlon's law of oooling, we can write (§) aa

=Kt (L, €) = Blug— 1q) ‘ (7}
where 8 is 8 constant,

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

110. Determine whether each of the fellowing partial differential equations is linear or

ronlinesr, etate the order of sach equation, and name the dependent and indepenrdent
variables.
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dn a° .
{a) i — 453;; {inear, arder 2, dep. var, a, ind. var, x,f
7 2
(b ‘3:; = y“%g lingar, order 3, dep. var. &, ind. var. x, )
E’W . .
ey W 7T = st nonlinear, arder 2, dep. var. W, ind. var. r a,t
a! 2z
(d) 6::; + __I— % = 0 linear, order 2, dep. var &, ind, var. &, %2
Y
@ (g’i) <Z_:,) =1 nonlinear, order t, dep. var. z, ind. var. &, v

111, Classify each of the following equations as elliptic, hyperbolie or parabolic,

4, e _
I:ﬂ'.) axi + ayﬂ = ¢
u=g A=1 B=0 C=1; B*-JAC=-41<0 =nd the equation is ellipbic.
A 8%
® T =

p=t A=g 8=0, C=0, B=d4AC =0 and the squation is parabolic.

Y _ o
() ETA g ¥
y=t u=y A=at =0 C=-1; B~4AC=4a*>10 and the aguation ia hy-
perbolic.
8% B‘u au _
(d} 622+33Id§ 43!'—4‘5 21y+4ﬂ. = 2x 3y

A=1, fi=3 =4 BI—4AC =-7<0 end the equation is edliplic,

M #2 3
g} T—s b -+ 3yt —
(e} gt ¥zt
A=2 B=0, C=y B!'-4AC = —4zy. Hence, in the region zy >0 the equation
is elliptie; in the reglon =y << 0 the equation is hyperbalie; if xp =0, the equation

s parabolic.

=0

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS
112, Show that u(z,f) =e%sin2z is a solution to the boundary value problem
ou _ 0%

3= ZF, w(0,8) = s, ) =0, u{x,d) = sin 2z
From ulx,ty = ¢=8 gin 2z we have
wll, ) = e=8gind = 0, ufst) = e~Hginlr =0, ulz, 0) = g-%sain2x = sin2x
and the boundary conditions sre satisfied.
Bu g mog gt L, PR A
Also T fe— 5t gin 2x, Z - 26 cos 2, e ie sin 2z

Then substituting into the differential equation, we have

—Ba-8t 5in 2 = 2U-4e~" sin2x)
which is an identity,
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LI3. (o) Show that v =F(y-—-3x), where F ig an arbitrary differentiable function, is a

general solution of the equation
v d
m vy = 0

(4) Find the particular solution which satisfies the condition #»(0,%) =4 Biny.

{a) Tet y—32z=u. Then v=F@} wnd
m _

3% = auam = Fig—8 = -—3Fu)
o _ gvow _ - ™
w - ma Friu)1}y = F'u}
au v _
Thus ™ + 85-1'; = 0

Sinee the equation is of order one, the golution ¢ =< Flu} = Fy — 3x), which involves one
arhitrary mnctionf in & general polution.

) wix,p) = F{y—382). Then v{d,¢) = Fly) = 4giny. But lf Fly) = 4siny. then oz, ¥ =
Fi{y = 8z) = 4 ain{y—8x) is the required solution.

114. (a) Show that %(z,%) = F{Zz +5¢) + G(2x-5t) is s genersl solution of

2.
Ty _ 25@

Bt ax?
{t) Find & particuler solution satisfying the conditions
#0.0) = ¥yt =0, y(x0) = sin2x, wfx,0) =0
{0} Let 205+ Bt=w, 2x~B2=v Then y = Flu}+ Giv).
8 o BF g |, 0G4y

A = AT o PGB CEN-E) = BFW) — BG) (1)

%% = 2orw-semn = BB _ IR o ppeny o) @)
K

Boo Tl BN o ppgn + GeND = 2P+ 260) @

] ' r

B = Lppwraem) = o8 G380 _ py g @

From () and {4), 4 TE T 25%% and the equation js satisfied. Since the equstion is of
order £ and the solution involves two arbitrary functlons, it is & general solution,

{b) We have from yix,f} = F(2z 1 5t) + G(2z —E1),

vix, 0} = F@z) + C(22) = sings (5)
Also wimd) = g% = 6F'(2x+ 58 — 5G'(2% — 5
%0 that ¥z 0} = BF'22) — 6G'Ze) = O 03}
Diffeventiating (5}, 2F'(2r) + 26'(2x) = ZeomPz ”
From {8), Fi2z) = G2z} %)

Then from (7], and {8), {2) = @) = Feoe 2z
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from which F(2x) = LtainZzx + ¢,  G@z) = Jainly + ¢
i vtk = } ;in (2x+ 5t + Lain@z -5+ .0, + e
Using (0, =0 or plrz, ) =0, g4+, =0 30 that

w8y = Jein(2z+58) + §sin{2r—6¢) = sin 2z coa bt

which can be checked na the required selution.

13

METHODS OF FINDING SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

L15.

L16.

L.17.

Z. .
(¢) Solve the equation &—%—% = z%y.

(b) Find the particular zolution for which 2(z,0) = #%, 2(1,3) = cozy.

dfoz

da dy

{a) Write the equation aa —(—) = r2y. Then intcgrating with respect to x, we find

az

— i

F *z ¥+ Fly)
where F(y} ia arbitrary,

Integrating (2} with respect to 2,
z = }afy? o+ jF[y) dy 4 Gix)
where Gz} is arbitrary. The result {#) can be written

: = sx,y) = 38+ HE) + Giz)
which has two erbitrary (independent) functiona and is therefore a gencral solution.

(b)) Since zix,0) = x!, we have from (3)

2 = HO) + Gt er GiF) = 28— H(O
Thus z = jal? + Hi) + = — Hi0)
Since 2{l,4) = cosy, 'we have from (5)
cosy = 3+ H) + 1 - HEO) or Hiy) = eosy — f* - 1+ HO)
Using (6) in (5), we find the required soclution
i z = }afp® teosy - fpt b2t —1

& du

— + 2= = =z
Solve ‘awac + 25 x
Write the equaticn as ;; t%% + 2u] = gl Integrating with respect to 2,

Mo = 2 o 2, o 2 FO

t—aT+2u——a-+F(l} or ac+t“"3c+ :
This is a linear equation having integrating factor g W = pine = g = g2 Then

3,
-;E(teu) = "T’ + R
32
Integrating, ex = %‘“ n f P dt + Hiz) = ﬁé‘— + Gt} + Hiz)
and this is the reqguired general solution,
. . ? dtu %

Pind solutions of LACR +2—= = 0

32 5z 5y I

n

(84

£4]

)

(5]

()
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Assume u = eor+du, Sybstituting in the given equation, we find
(a2 + 3ab + ZhR)emxtty = { or a2 < Sab 4 24T = @

Then (a4+bu+26)=0C and o=-b e=-28 If ga=-b e~ 0x+or=pv—s} {34 golution
for any value of b, If o = —2b, ¢—2t+bb = gblk—21) j3 4 golution for any value of b.

Since the squation is linear gnd bomogeneows, sums of these solutions are solutions {Theorem
1-1). For example, 3e2(v—x) — 2e¥y—5! 4 Ga¥¥—3r jg 5 aolution {mong manhy others), and one is
thus led to Fiy — ) where F is arbitrary, which can be verified as a solution. Similarly, G{y — 2x),
where G is arbitrary, is a sclutivon. The general solution found by addition is then given by

u = Fly—2) + Gly—2=x)

Sy | R
118 Find a general solution of (o) 200 +3%% = 24, (1) 4%— g v P

= g
T oy

ordy ' ot

{€) Let w = ¢os+ty Then Za+36 =12 a = Z _zab. and  el(Z=3DWZIT + by = grpth/2H2y—32y
is a solution.

Thus » = e*F(Z2y — 3x} iy & peneral solution.
() Lot u = gst¥, Then 40? ~dab+3* =0 and b = 2a,Za. From this w = izt apd
80 F{z + 2y} ia o solution.

By analogy with repeated roots for- ardinary differential eguations we might be led to
helieve 2Glx+ 2y) or yG{z + 24} to be enother solution, and thet this is in fact true is easy
to verify. Thua a genersl solation is

u = Flz+2p) + «Gix + 2y) or v = Fiz-+ 2y} + yCiz+ 2y

Pu  Fu
axt ayt
2 2
The homogencous equation %+3—% = 0 has general salution u = Fix+ i) + Gz — iy}
by Problom 1.3%{c). % ¥

Te find a particular golution of the given equation assume = = a¢2*¥ where a is an unknown
congtant, Thia is the method of undetermined coefficients az in ordinary differential equations.
We find a =2, so that {he required general solution is

LI®. Solve = 10e¥*v,

¥ = Fle+iy) + Glz—1y) + 2eistv

Fu U
1.20, Solve a2 4'6_11'7“ = @by,

The homogeneoua equation has general solution
v = F{2zxty) + Giz~y)

Te fnd a particular solution, we would normally sssume ¢ = ze®*+¥ a3 in Problem L19 but
this sssumed solution is already included in F{2z + y); Hence we assume as in ordinary differential
equations that o = «2e®¥+¥ (or w = ayels+v}, Substituting, we fied a = i

Then a general solution is

« = Fz+y) + G@r—y) + jzetate

SEPARATION OF YARIABLES
1.21. SBolve the boundary value problem
s _ 461;,

@ = iy WOW = Bew
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1.28.

by the method of aeparation of variables.

Let u=XY in the given equation, where X depends only vn = and ¥ depends only on y.
Then X'Y = 4XY or X'MX = YUY
where X' = dX/dz and Y’ = d¥/dy,

Binee X depends only on x and ¥ depends only on y and since = and y are independent vari-
ables, each zide rmust be & constant, say ¢.
Then X' —4¢X =0, Y'—c¥ =0, whose selations are X = Aetes, ¥ = Beov,
A polution is thua given by
uwr,y) = XY = ABRetdz+s) o Kpettzsn
From the boundary condition,
¥0,p) = Eev = g%

which is poesible if and only f K =8 and ¢=—3 Then u(r.y) = Se—Miz+e) = ge—lax—dv i
the required solution.

Solve Problem 121 if »(0,y) = Be~¥ 4 4o~%,

As bofore & solution is Keeteds), Then Kealizts} and Kpeaaidz+¥) gro solutions shd by the
principle of superposition 30 alsc Is their sum; La. a salution ia

ﬂ(“: ‘ﬂ'} - Ele"-'l“““ | 1] + K,gq(‘.: +¥}
From the boundary condition,

u@,y) = Ko |+ Kyeta¥ = 8e=3 5 go—%»
which is pegsible if end only if &, =8, K; =4, ¢, =8, o5 = —5.
Then u(#,y) = 8e=3Ur+w) + fe=Sstu) = Ba=Mi=3wf 4g=5— 50 jx tha required polution.

Solve %‘5 = 23%’::, 0<2<d ¢>0, giventhat u{0,t) = u(3,¢) = 0,
u(z,0) = Bsind«z — 8sin8rx + 2 3inllrz, he(e, 8)| < M

where the last condition states that « is bounded for 0 <z < 3, ¢t > 9.

Let w=XT. Then XT’=X"T and X"/X = T'/2T. Each side muat ba s constant, which we
call =A% ({If we use +A%, the resulting sclution obtained doss not satisfy the houndedneszs eondi-
tion for real values of N.) Then

X7+ a3x = @, 42T = ¢
with rolutiens X = A, cosdx + Byainkz, T = ge-2h
A solution of the partial differential eguation iz thus given by
u(r, ) = XT = co~P(4 cosin + Byainiz) = o-BM (4 eos hx + B gin ax)
Since u(0,)=0, ¢ 2"(4)=0 or A =0. Thena
u(x, £) = Bo~* ginax

Sinee u(3,8 =0, Be~M"" gin8r=0. It B = 0, the solution is identically zevo, so we must have
sindh =0 or 3n =mr, X=mr/3, where m=0%1,22,..., Thusa solution is

ule, ) = Re—tvis s[n%

Also, by the principle of superposition,
myre
3
ia & sclution. By the last boundary condition,

£
u(z, 6} = Bye~imis'ed gin 4 Bpe—mi%tre gy i clag. Bae= et gin o

(1)
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1.24.

BOUNDARY VALUE PROBLEMS, [CHAP.1

vl
3
= Eaindexs — $5inBrx + 2 ginlirx

u(z, 0} B, sin

1

x £
+ Bg!ih E;— + By Einm'uT’r

which in posaible if and only it B, =5, my =12, By = —3, mz =24, Ba=2, my=30.
Substituting these in (), the required solution is
ufz, &) = 5¢—32't gindrz — B¢~ 128" gin Brx + 2870007t gin 10px #)

“vhis boundary value problem has the following interpretation as 2 heat flow preblem. A bar
whose aurface is insulated (Fig. 1-11) has & length of 3 units and a diffusivity of 2 unita. If its ends
ate kept at temperaturc zero units and Its initial temperature w(z,0) = bsindexr — 3 sinBrx +
2 gin 10vz, find the temperature at poaition & at time #, i.e. find wulz, ).

14
Solve %= 16%, 0<z<2, t>0, subject to the conditions %(0,¢) =9, ¥(2,t) =0,

y(z,0) = 6 sinzx ~ 3 sind=z, w(z,0) =0, julz, tY < M.

Let ¥ = X7, where X depends only on =, 7 depends only or i Then subatitution in the
differential equation yields
X = 16X"T o XX = T/16T

o separating' the variables. Since each side must be a constant, aay —3%, we have

X0+ aX =0, T"+16MT7 =0
Solving these we find C

X = ggeonhs 4 dysindr, T T & cos 4at + by min dat

Thus & gelution is
px ) = (zjcezrz + b sin »x){ag cos dut + by gin dit) 1]

To find the constanta it is simpler to proceed by using first those boundary conditions invelving
two zeros, such ms w(0.8) = & p,(x,0) = 0. From yi0, ) =0 we see from () thet

(@, cos dAt + by gindar) = 0
g0 that to obtain 8 non zero solution {2} we must have a, = 0. Thus {2} becomes
ylz, &) = (b sinaz){a, con dat + ba gin 408} (=)
Differentiation of (2) with respect lu { yielde
iz ) = (b, sinAxi{—4nd, sin 428 + dnby cos dad)
so that we have on putting .+ =0 and using the condition y(z, 0] =0
iz, 0y = (b sinixj{4rby} = 0 (3}

In order to obtain & solution () which is not zero we see from {#) that we must have b; =10,
Thus (£) becomes
iz, 1) = B sinhx cosdit

on putting b, =0 and writing B = ba,

From {2, £ = ¢ we now find
- Bein2hcogdit =

n

and we see that we mist have sin2X =0, ie. 2n = mx or } = mpf2 where m = 0,=1, 2, . .
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1.25.

mrx

2
is & solution. Since this solution is bounded, the conditlon |y(x, )] < M is automatically satisfied.

Thus iz, 8} = Hain cos 2mat {4}

in order to satisfy the Iast condition, #(z,0) = § sinzz — 3 ain dvx, we first use the principle
of superposition to obtain the zolution

Myre z
'2' cos 2myrt + Basin m’; cos 2myrt (&)

ylz, ) = Bysin

Then putting ¢ = 0 we arrive at

Myra z
iz, = B sin—l;—r-— + By sinm!;

= §sin=z — 8§ gin 4r2

This is possible if and only if B, =6, m, =2, B£;=-3, my=258 Thus the required sslution
{8) ix
wix, ) = 6 sinnx condvt — 3 sin dox cos Léoi 1)

This boundary value probiem can be interprated physically in termsa of the vibrations of a atring.
The string haa jta ends fixed et 2 =0 and x = 2 and ia given an initial shape fz) = 8 sinpx —
3 gindrz. It i3 then released so that it initial wvelecity je zero. Then (6) givea the displmcement
of any point ¢ of the string al any later time .

Solve Zu——t#: 2%, 0<x<8 t>0, given that u(0, ) =w(3,5) =0, ulz 0)=f(z},
|ulz, £)| < M.

Thia problem differs from Problem 1.23 only in the condition wuiz, &) = f(z). In seeking to
satiafy this last condition we see that teking & finite number of terma, as in {I} of Problem 1.23,
will ba insufficient for arbitrary f{z). Thus we are led to assume that infinitely many terme are
taken, ie

»
wz,d) = B Bpe-imr'us sin-—"’-!*é"?--"E
me=]

The condition 4(x,0) = fix) then leads to
mez

Az = mgl By, sin—g

ot the problem of expansion of 2 function into a sine series. Such trigonometric axpansions, or
Fourier neries, will be considered in detnil in the next chapter,

Supplementary Problems

MATHEMATICAL FORMULATION OF PHYSICAL PROELEMS

128,

127

It g taut, horizontal etring with fixed ends vibrates in a vertical plane under the influence of grav-
ity, show that fts equation is
ﬂ - us .a—..-

4
)
art dxt s

where ¢ is the acceleration dus to gravity.

A thin bar [ocated on the r-axis has it ends at » =0 end £ = L. The initial temperature of the
bar is fiz), 0 <& < L, and the enda » = 0, z = L are maintained at constant temperaturea 7, T,
respectively. Asauming the surrounding medium is at temperature uy and that Newton's law of
cooling applies, shew that the partial differentiz]l equetion for the temperature of the bar at any
point at any time is given by

du 8%u

# S T T Blewgd

and write the corvesponding boondary conditions.
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131,

BOUNDARY VALUE PROBLEMS |CHAP. 1

Write the boundary conditions in Problem 1.27 if (e} the ends =0 and x =L are insulated,
%) the ends = =0 and z = I radiate into the surrounding medium according to Newton's law
of cooling.

The gravitationsl potential v at any point {x.y, =) outside of & mass v Jocated at the point (X, ¥, Z)
is defined a5 the mass m divided by the distance of the point (x, ¥, 2) from {X,Y,Z). Show that
v satisfies Laplace’s equation Uiy = Q.

Extend the reacit of Problem .29 to a salid body.

A string has its endy fixed al =0 and z=L. Itis gdizplaced o dlstence k at its midpaint and
then released. Formulate & boundary yalue problem for the displacement Wz, t) of any point =
of the strinpg at time 2.

CLASSIFICATION OF PARTIAL DIFFERENTIAL EQUATIONS

123, Determine whether esch of ihe follawing partial differential equations is linear or nonlinear, state
the order of each equation, and name the dependent and independent varisbles.
@ frepegico @ B =R @ Frn < E
e @ T - a2 = m

133,  Classify each of the following equations as eiliptic, hyperbolic or parabolic,
@ %—g:—ﬁ = 0 (e) (x’—l)%+2::y%+{y’-l)%
(@) :_3‘2.322;* o= xtm v wr-ni- -0 M>o
{d) zﬂg.i.% + By a‘:?:;y + :27]; [

SOLUTIONS OF PARTIAL DIFFERENTIAL EQUATIONS

143, Show that (=, ¥} = 4e~% roady s a sclution te the boundary value problem

:% + -;;% = §, glecf = 0, zx0 = 4%
135, (a} Show that =y} = =F(2x+y) is a general sclution of x-g-:— - 2:% =

=]

(6} Find » partienlar solution satisfying (3,9 = yt

Find a partiai differentizl equation having genersl solution u = Flx— 3y} + G(2e + y).

Find a partial differential equmtion having general zolution

() z = e=f(2y—3z), (b z = f2z+y) + glz — 2y} N

NERAIL SOLUTIONS OF PARTFIAL DIFFERENTIAL EQUATIONS

1.8

{1} Solve

(01 TFind the particolar salution for whick

R By B .

dxdy  ay

gm0} = 4 -§-§,
z

zZ.y} = .
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139.  Find genersl solutiona of each of the following.

e e’ B, g LTI .
{a) Er =-a_y£ (b E+2W = 3u {c} 6==+av9 0
o, _ 43 _ Pa_ g P2 P2 _
@ o iz 3&;{! =0 & azay @ Ay?
140. Find general aolutions of each of the following.
W, Lo _ L P i S
{e) i + 2-5; =z (c} e + 23£’OE 4
. Py C P2 _ 0 g _
® %}, = 24 pan @ 5% =355t iy = cuny
aty i Py _ )
141.  Solva o + zazx‘h‘! + 'a-F = 1&.
. av I 8% . _ Flr—gt) + Glr+cl)
142.  Show that & general solution of % + % 3 T da W YT il r .

SEPARATION OF VARIABHLES
143.  Solve each of the following boundazy volwe problems by the methed of separation of variables.

111 an n _
(ah 3T 25 =0, w(m0) = o7
a_ﬂ = ’?E-‘ = -8z 4 ~1r
%) P 2ay +u, ulz,0) 8¢~ 4 Ze
(o %% = "%ziu't" w0, = 0, wur® =0 wz0) = 2ein3z - dginbe
du _ P 3p2 g
) 3% = azE w0, 8) = 0, w2t} =0, wzd = EcusT—Gnos—%

& 2= s:—:, w(z,0) = Be=%

B
g ., Bt — 10eeS — fam
() Tl 2u, wiz 0} = 10s-3 — ga=t
(g) %%" = %gj. wd, ) =0, ulg,$) =0, u@x0 = ssin'—;+Sainrs

144, Soive and give s physical interpretation to the boundary value problem
H
e oD g0 = wE) = 0 30 =0, KO = M@ O<2<5E>0

i (o} Fay =Gainrs, (B} flx) = 3 sindre — 2 ain Bra.

146, Sove 2 = %—Eu H w08 =0 w38 =0 ux0 =2ains— mndem

14¢. Buppese that in Problem 1.24 we have (2,0} = f{#), where 0 <=z <2 Show how the problem
can ba solved if we know how to expand f(x) in & series of sines.

147. Suppose that in Problem 125 the boundary conditions are u (0,8) =0, (3,6 =0, wu=(w, 0) = flw).
Show how the problem can be golved if we know how to cxpand f{z} In n serien of cominen. Give
o physical interprataticn of this problem.



Chapter 2

Fourier Series and Applications

THE NEED FOR FOURIER SERIES

In Problem 1.25, page 17, we saw that to obtain a solution to a particular boundary
value problem we should need to know how to expand a function into & trigonometric series.
In this chapter we shall investigate the theory of such series and shall use the theory to
golve many boundary value problems.

Since each term of the trigonometric series considered in Problem 1.25 is periodic, it
is clear that if we are to expand funetions in such series, the functions should also be
periodic. We therefore turn now to the consideration of periodic functions.

PERIODIC FUNCTIONS

. A function /{z) is said io have a period P or to be periodic with period P if for all =z,
f(z + P} = f(z), where ¥ is a positive constant. ‘The least value of P > 0 is called the least
period or simply the period of f{x).

Example 1.
The function sinx has periods 2e, 43, 8x, ..., since sitl (% + 2, gin {z + dvl, sin (2 + 6s), ... all equal
sinz. However, 2r Is the Jeast period or the period of sinx.

Example 2,
The period of sin nx or cos =y, where n is a positive integer, is 2¢/n,

Example 3.
The period of tan x is w.

Example 4.
A conatmnt has any positive number as a period.

Other e-amples of periodic functions are shown in the graphs of Fig. 2-1.

Mi;g ) f{z]lj fz) %_

Ay YV Y Faaa

Y e : | L[ e,
{a) (by T

Fig. 2-1

20
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PIECEWISE CONTINUOUS FUNCTIONS fiz)

A function f(z) is said to be pizcewise con- . 1 |
tinuous in an interval if (i) the interval can be 1
divided into a finite number of subintervals in i/é
each of which f(z) is continuous and (ii} the f(zlo)
limits of f(z) as & approaches the endpoints of
each subinterval are finite. Another way of
stating this is to say that a piecewise continu-
ous function is one that has at most a finite
number of finite discontinuities. An example
of a piecewise continuous function is shown in
Fig. 2-2. The functions of Fig. 2-1{e) and (¢
are piecewise continueus, The function of Fig.
2-1(b) is continuous. Fig. 2-2

The limit of f(x) from the right or the right-hand limit of f(z} is often denoted hy
I(T; flx+9 = flx +0), where > 0. Similarly, the limit of f(z) from the left or the lefi-

hand lHmit of f{z) is denoted by lin} flz—¢) = Azx=0), where ¢> 0. The values flz+0)

and f(z—0) at the point z in Fig. 2-2 are as indicated. The fact that 0 and ¢>0
is sometimes indicated briefly by ¢— 0+. Thus, for example, lim fz+¢ = flz+0),
lim flz—d = fz -0 o

of =

3

!

1

i
—f—

ﬁﬁy | \..'
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|
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|
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B o o ——

DEFINITION OF FOURIER SERIES

Let f(x) be defined in the interval (—L, L) and determined outside of this interval by
fiz +2L) = Az}, i.e. assume that f(z) has the peviod 2L. The Fourier series or Fourier ex-
pangicn corresponding to f(2) is defined to bhe

to - Hrlk . RaZ
3t ”‘,;1 (u.. cos - + Basin T) (1)
where the Fourier coefficicnts @, and b. are

L o
an = %:f f{=x) cosﬂlfda:
—i
y o i n=01%,... #)
= = ipp e
b, = )., f(x) sin T dz
Motivation for this definition s supplied in Problem 2.4.
If f(x) has the period 2L, the coefficienta ¢. and . can be determined equivalently
from 1 e+ 2L
Bn = EI flx) cos%dx
N n=012,... 7))
1 pefit . nak
b = EJ (@) 8in ~7— dz

where ¢ is any real number. In the special case ¢ = —L, (8) becomes (£). Note that the

L
constant term in (1) is equal to ;——” = E%f f{z)dz, which is the mean of J{z) over a
L :

period.
If L=x the series (1) and the coefficients (2} or (§) are particularly simple. The
function in this case has the period 2x. .

It should be emphagized that the series () is only the series which corresponds to fl2).
We do not know whether this series converges or even, if it does converge, whether it con-



22 FOURIER RERIES AND APPLICATIONS [CHAP. 2

verges to f(.f). This problem of convergence was examined by Dérichklet, who develaped
conditions for convergence of Fourier series which we now consider.

DIRICHLET CONDITIONS
Theorem 2-I: Suppose that
{i) fiz) is defined and single-valued except posaibly at a finite number of
pointa in (~L, L) :
(i)  F(z) is periodic with period 2L
{iii) F(x) and F(z) are piecewise continuous in {~L, L)
Then the series (1) with coefficienta (2) or (3) converges to
(a) f(=) if z is a point of continuity

@ [E+9 ;‘f("‘ =9 if % is a point of discontinuity

For a proof see Problems 2,18-2.28.
According to this result we can write

— nrk s BmX
@ = 3+ (occos™Z + byain “f?') )

at any point of conlinuity . However, if x is a point of discontinuity, then the left side is
replaced by 3{f(z +0) + fiz — 0)], 30 that the series converges to the mean value of f(2 + 0)
and f(x - 0).

The conditions (i}, (i) and (iif) imposed on fix) are sufficient but not necessary, ie. if
the conditions are satisfied the convergence is guaranteed. However, if they are not satia-
fied the series may or may not converge. The conditions above are generally satigfied in
cases which arise in science or engineering.

There-are at present no known necessary and sufficient conditions for convergence of
Fourier series. It iz of interest that continuity of f{x) does not aione insure CONvergence
of a Fourier series.

ODD AND EVEN FUNCTIONS
A function f(z) is called odd if f(-x) = —f(z). Thus z* 2®—~32*+2z, sin z, tan 82
are odd functions. '
A function f(z) is called even if f(—2)=Ff(2). Thus z¢, 22 —4x* + B, coaz, e+ et
e even functions,

The functions portrayed graphically in Fig, 2-1{a) and 2-1(b) are odd and even respec-
‘vely, but that of Fig. 2-1{c} is neither odd nor even.

In the Fourier series corresponding to an odd function, only sine terms ean be present.
* the Fourier series corresponding to an even function, only cosine terms {and possibly &
matant, which we shall consider to be a cosine term) can be present,

JALF-RANGE FOURIER SINE OR COSINE SERIES

A half-range Fourier sine or cosine series is a series in which only sine terms or only
'odine terms are present, respeclively,. When a half-range serles correaponding to a given
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function is desired, the function is generally defined in the interval (0, L) [which is half of
the intervsl (—L, L), thus aceounting for the name half-range] and then the function is
specified as odd or even, so that it is clearly defined in the other half of the interval, namely
{—L,0). In such case, we have : '

L
a. =0, b, = % f f(x) gin f%fdx for half-range sine series
e

53

L
| &s %f fix) cos % dx  for holf-range cosine series
L]

H
=
y
1l

PARSEVAL’S IDENTITY states that
1 gt . a? &, .
= = 9 + ¥ 6
2, ey = 3+ Tawem (©)

if a, and b. are the Fourier coefficients corresponding to f(x) and if f(x) satisfies the
Dirichlet conditions, :

UNIFORM CONVERGENCE :
Suppose that we have an infinite series 3 u.(z). We define the Rth partial sum of the
n=1 .
series to be the sum of the first & terms of the-geries, i.e.

S4a) = F u,(2) )

Now by definition the infinite series is said to comwerge to f(x) in some interval if given
any positive number ., there exists for each x in the interval a positive number N such that

1§ (x} = Fla)| .< ¢ whenever R > N 3]

The number & depends in genera) not only on « but also on 2. Wae ecall f(x) the sum of
the series. :

An important case oceurs when N depends on « but not on the value of z in the interval,

In such case we say that the series converges uniformly or is uniformly convergent to f(z).

Two very important properties of uniformly convergent series are summarized in the
following two theorems.

Theorem 2.2: 1f each term of an infinite series ia continuous in an interval (s,5) and the
series is uniformly eonvergent to the sum f{z) in this interval, then

1. f(=} is also eontinuous in the interval .
2. the series can be integrated term by term, ie.

Sl walae = £ e ®

Theorem 2-3: If each term of an infinite series has a derivative and the series of deriva-
tives is uniformly convergent, then the series can be differentiated term by
term, {.e. '

£ Sue = 3 fulo) (10)

_There are various ways of proving the uniform convergence of 3 series. The most
cbvious way is to actually find the sum §,(z) in closed Sorm and then apply the definition

directly. A second and most powerful way is to use & theorem called the Weierstrass M-
test. '



24 FOURIER SERIES AND AFFLICATIONS [CHAP. 2

Theorem 24 {(Welerstrass M teat): 1f there exists a set of conzlants M., n=12,.
guch that for all z in an interval [u.(z)] & M., and if furthermore Z; M

converges, then E #a(2) converges unlformly in the interval. Incidently,
the series is also ubsolutely convergent, i.e. E lun(Z}| converges, under these

conditions.
Example 5. = pinnx
The seriea 2 TR cenverges wniformly in the fnterval (—r, =) [or, [n fact, in any interval], since a

nex]
pet of congtants M, = 1/nt can be found auch Lhat

-
um M l s = and E =5 converges

INTEGRATION AND DIFFERENTIATION OF FOURIER SERJES
Integration and differentiation of Fourier series can be justified by using Theorems 2-2
and 2-8, which hold for series in general. It must be emphasized, however, that those
theorems provide guflicient conditions and are not necessary. The following theorem for
integration is eapeciaily useful.
Theorem 2.61 The Fourler seriea eorresponding to f(z) may be integrated term by term
from o to 7, and the reaulting series will converge uniformly to J‘ fiu) du,

provided that f(x) is piecewise continuous in ~L =z =L and botheand =
are in this interval.

COMPLEX NOTATION FOR FOURIER SERIES
Using Euler's identities,
e = coad + ising, ™™ 2 coa® — {sind (1)

where 1 i the imaginary unit such that 2= ~1, the Fourier series for f(z) can be written
in complex form as

f{zl = -i c“ehrm {12)

L
where o G = 2—]}‘}-_,_ flx)e =it dy (15

In writing the equality (12}, we are supposing that the Dirichlet conditions are satisfied
and further that f(x) is continuous at 2. If f(z) i3 discontinuous at z, the left side of (19}

should be replaced by f&+ 9 ;’f_‘?““).

DOUBLE FOURIER SERIES

‘The idea of a Fourier series expanaion for a function of a gingle variable & ¢an be ex-
tended to the case of functions of two variables x and ¥, i.e. f(x,y). For example, we can
expand f(z,¥) intoc a dowble Fourier sine series

fle,y) = .g E B sin ’E-x qmﬂzs‘ (14)

' 4 ot . . ’
where Bui = ”i,'"i.'j; J: flz, 9 sm%{sm%dmdy (15}
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Similar results can be obtained for cosine series or for series having both sines and cosines.
These ideas can be generalized to triple Fourier series, etc.

APPLICATIONS OF FOURIER SERIES

There are numerous applications of Fourjer series to soluticns of boundary value prob-
lems, For example:

1. Heatflow. See Problems 2.25-2.29.
2 Laplace’s equation. . See Problems 2.30, 2.31.
3. Vibraling systems. See Problems 2.32, 2.33.

Solved Problems

FOURIER SERIES
21, Graph each of the following functions.

8 0z <b
o = P = 10
(@) f(=) {~3 scz<t eriod
H2) ‘ R
i .
-— Fericd -

- N — e - § p— ———— ————

T T T T T 1) T T T T T X Ed
—13 -0 -15 —1b -3 a i 3 14 3 ] 25

Fig.29 L

Since the period is 10, that portion of the graph in —§<z <58 {inditated heavy in Fig.
2.3 ghave) is extended periodically outside this range (indicated dashed). Note that K} ia not
deflned at = = 0,5, —5, 10, ~10,15, --1b, ete. These values ara the discontinuities of J{ETR .

sing O0=2zxEx
b = Peri = 2;
{b) Flx) { 0 sz eriod = 27

flx)
Pesiod ~——v
~ - F RS
hY (! \\ !/ ‘\ f’
LY r) L% A ri P
—~4r iy - [] r [ dr ™
Fig. 2-4 s '

Refer to Fig. 2-4 above. Note that f(z) is defined for all 'z and fa eontinuous everywhera,
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0 0=z .
@ f) = <1 2=22<4 Period=6
0 4=52<6
fie) Perigd =
- ——— - L .
1
e T T T ol j ¥ T — - . - . x
L L e ‘0 g o I T
Fig. 2-5

Refer to Fig. 2-3 above

Note that #{z) iz defined for all &£ and ia discontinuovs at

= =0 &4 2§ =10, £14,. ..

L
22 Prove f krz

J"" kzr _ L
sin——dzr = ——cos——
-t L ke
J‘L ccs mdx = L 8in
-L L kr

23. Prove (a) f cos 2% cos 27T n-:\: ——dx =

L

® J

.

_ L krz
ain Td-'l! = J::. cns-r-dz

Rz
sm-—L—cos—"—dx = 0

it k=123,....

where m and # can assume any of the values 1,2,3, ... .

(@) ¥rom trigonemetry:

cogd cos B = flcoz (A — B) + cos(d + BN,

sind sin B

. Then, if %t == n, we have by Problem 2.2,

=0
kez{® = -k ky + L -k = 0
7 krcos » o cos(~kos) = .
L
Bl = Eotake - Euniwm = 0
e
Jd' ain 2 in P24y = 0 mn
-L L L - L m=n

$icos{A —~B) — cos (A + B)}

z
mrE @rE - (mt — n)r:r {m + njrx _
J.—r. cos-—-b <08 2% 9 Tdr = 2_’. { + ¢oB T, }dz "
Stmilerly, i m 7, S
L L
. MET rTE - 1 vz {m+ nlrx "
I-L #in == sin Z dz 3 f-;. {cus T o8 2 }dzl =
I m=mn, wehave .
* #irk  maw _ o1 Snrx
LLCMTNET&E = Ef_ 1 + cos L)dz = L
L
. f sinP7E B 5 = 7 f (1 == zog 2—-—“-5—) dr = [
-L
Note that if n = n = 0 these integrals are equal to 2L and O respectively.
(b} We have amA cos B = i{sin {4 — B} +sin(4 + B)}. Then by Problem 2.2, if m = 4,
i : .
J:L sm—i'-" cosm de 2J‘ { fm — u)”" + &in (s +Ln)”:} dz = 0
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24.

If m=n, L
j lmw——cosmdx = 2f sm = 0
-1 L

The resulta of parte () and (6) remain valid when the 'lu'rubs of {ntegration —L, L are replaced
by ¢, ¢+ 2L respectively.

If the series 4 + 2 ( &.cos F—EE + b, 8in &EE} converges uniformly to f{z) in (—L, L),
A=}
ahow that for n=1,2,3, ..

@ o=} f i Eds, ) b= feysnFe © 4=F

(e} Multiplying fly = A+ El (n,con Tt basin—g= “;”) 1)
B L

by cos™ZZ and integrating from —L to L, using Problem 2.3, we havs

L
L. R
A j-_L c08 =~ e

Mk
f-:. ftz) cos ™% de
- nre mex nre
+ 2 {%I_LMm-eoamdz + b, f cas-w—nn ya d:l.'}

n=l

= gL fmwQ *
1 k - mrx . _

Thus & = flx} cos " dz fm=123,...
Y A

{5 Multiplyving (1} by sin p_t;_x and integrating froim —L to L, nsing Problem 2.3, we have
i
f Fl) sinm;x de = A f mi]l:l'f":‘-'?rE dz
-t

- L
+ 3 {anf smmcosnﬂ-fz + &, f sin---—sln—-—dz}
-5 L L
L

nel
= b,
Thus b = IJ' f(z)smmdx it m=1,2,8,...
{cy  Integration of {1 from —I: to L, using Problem 2.2, glves
1. - L
J i = 2 o 4 = A Aok

-1 -L
[ ao
Putting = =0 in the result of part {a), we find &, = E f{:} dr and 30 A = T

The above results also hold when the integration limits —L. L are replaced by ¢, ¢+ 2L,

Note thet in al] parts gbove, interchange of summation and Intcgration ia valid becanse the
serles 15 aspumed to converge uniformly to f{z) in {(—L,L). Even when thiy assumption ia not
warranted, the ecefficients a, and 3, as obtained above are called Fourier coefficients corresponding
te f(x), and the carresponding eeries with thess values of a, and b, is called the Fourier asriss
corresponding to fix}. An important problem in this case is to investigate conditions under which
this series actuslly converges to f(#). Sufficient conditions for this convergence are the Dirichlet
eonditions established below in Problems 2.18-2.23.

{2) Find the Fourier coefficients corresponding to the function

0 -Bgagh
z) = Period = 10
fa) {3 0<a«<hb ert
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{b) Write the corresponding Fourier series.

(¢) How should f(z) be defined st z = —5, =0 and z =& in order that the Fourier
seriea will converge to f(x) for -6 Sz 257
The graph of f{z) i» shown in Fig. 2-8 below.

.f(‘h
—w—— Pariad ——

- T - -
i
5

T
-18 -0 -0
Fir. 26

(o) Parlod =2L =10 and L =0. Choosa the interval ¢ to ¢+ 2L as —6 to 5, 8o that ¢ = —b,
Then

+ 2L 5
G, = %Jj !(z)m?dz = %f_’ﬂx}coa%‘gcﬁc

"
= %{J‘; el cou"’—ﬁ—mdz + J; (8) cns%ﬁdx} = %fcaaz‘—;’—dx

= -:-(;‘!' aln lgﬁ) :

ta=0 == ¢o=%_‘:w9;—"d= =%j:dx = 8

= 0 it nro

_ L e T O nex

b, = E.‘: Hz)sin=y=dz = Ef_:f(x)sln 5 4%
= L ez ® @) sin™TE = Ej‘s-m
- E{f_‘(omn 2200 + @) sin] dx} = 3f n™ue
= B{_B mez\' - 1z cosus)
T OB\ 5 /o T

{8) The correaponding Fourier series ls

%" + 'E‘ (u. m’-‘Lﬂ + by :in%) =

% 3{1 = cos ux) ROL
n§! ux sin b

3
2
= 8 8 e LB A B
—2-{-"(&“54—3“&15 + gein~g + )

-+

{o} S8ince f(x) satisfien the Dirichiet conditions, we can say that the series converges to f(=) at all
points of continuity 2ad to Iw)_;:&.‘_“l at points of discontinuity, At z=—5, 0 and B,

which are pointa of discontinuity, the series converges to (34-0)/2 = 3/2, 28 seen from the
gruph. The sariea will converge to f(z) for —5 =z =5 if we redefine f(x) us follows:

2 r = —b
[ a0
fle) = 432 =0  Period = 10
] Db
2 z=0

Expand f(z) =z 0 < x <2, in & Fourier series if the period is 2.
The graph of f{¢) with pericd 2v iz shown in Fig. 2-7.
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HO
/ / 1 f
/ F r '
/ ’ /-’ /,
o i g l pid
- - - u -~ . - z
; T { 7
—Br —-4x -2r 8r

Fig-2-7

Period =20 =27 and L =». Chooaing ¢ =0, we have

%fﬁu !{z}mmdz = %fxx'mmndz
1{( ) stn-.u) {2‘)( couu) + 2 ,:::M)H:* - 5' av0

ita=h o = J‘ zide =

Gy,

1]

b, = -}.fm fiz) .in%’-dx = i-v‘:“n:?sinn:dx
= i{(ﬁ)(—‘—“%;“—’—) 2z 1( """”‘) + le)(‘“"”)} :" - =
Then fiz) = 22 = igi-i- i (%cumx—“—mu) for 0 < & < Zm.
27, Using the results of Problem 2.6, prove that 11-,+ %3-%%5 + = %
At z =0 the Fouri¢r serics of Problem 2.6 reduces to 5;— + ng ii‘

But by the Dirichlet eonditions, the scriea convergea at 2 = t5 30+ dn2) = 207,
_ Hence the desired result,

ODD AND EVEN FUNCTIONS. HALF-RANGE FQURIER SERIES
2_.8. Classify each of the following functions according as they are even, odd, or neither

even nor odd. 7
2 0<x<3
& z) = Period = &
@ f=) {—2 ~-B<r <0
From Fig, 28 below it is seen that f{—z) = —f(x), s0 that the function is odd..
f(x)
- — - [ ——
x
T L] 1 T
- -3 [ 1
. — _! -----
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. cosx O<z <
= Period = 2
@ =) { 0 w<z<2 i

From Fig. 2-9 below it is seen that the function ia neither even nor odd

HE)

Q
—r

Fig. 29

(6) flz)==2(10-2z), 0<z<10, Period=10

From Fig. 2-10 below the function is seen to be even

fx)

0|

1

L
=

-

e B

Y

~

-,

Fig.2-10
2.9,

Show that an even function can have no sine terms in its Fourier expansion.
Method 1.

No sine terms appear if b, =0, ==1,2,3,. To show this, Jut vs write

L 1A
b= 3 f M %Ea = ;,f fwyinEas + 1 [ o en®ie @

n—-—- dzx +
If wa make the tramaformation 2 = —u in the first integral on the right of {f}, we ohtain
1°

L
1, rmenEae = " onan(-Ba = -1 {7 -0 it

j' 116 oin "2 de

(e}
where we have used the fact that for an even function fl~u) = f{u) and in the last step that the
dummy varieble of integration « can be replaced by any other symbel, in particular =. Thus from
{f), uaing (9}, we have

18
-}J; Sl sin B2 du =

= —-f Ha) siu“"dz +bf Flz) sin—zidx =6
Method 2.
Assuming convergence
a = .
{x}) = 2 "gl (a, cmsnl‘i + b, Emﬂzw)
ﬂ. =
Th C f—g) = =L heE in 2%
en Fl—=) 2 + n:g: (m,‘ coa b, 8in L)
I fix) is even, f(—a) = f{z). Menrce

= S lyd A TR I i Hnex
3 +“§l( cos == + b, mL) = 3 -I—-E (a,coub —b-gm-L_..
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< . ) ag = nerr
and so '21 by, :in%ﬁ = q, ie - fi®) = r + “gl B €03~ =

and no sine terms zppear. This method ia wesker than Method 1 since convergence is assumed.

In & similar manner we can show that an odd function has no cosine terms {ox constant term)
in ita Pourier expanaion.

L

2190, If f(x) is even, show that (a) a{=% j ‘ f(z) cog %dx. % b.=0.

_ 1" nrr _ 1 o vz 1 I.’. _—
(a) o = EJ‘_‘_ f(z} coa=p=dz = LJ‘_&‘{{Q]M FEde o+ | 1) con 72 de
L‘niﬂg x ='—ul
1 * ” L ’ L
T,J:,' €3] cua%gdz = %J; Fl—w) cua(%)du — %J: !(ﬂ}eosﬁz'&du
since by definltion of an even function f(—u) = f(u). Then

L. L L
o = %j; ;(u)caa%du+%j; 1) Bl dz = %J; 1) cos P ds

{4) This follows by Meathod 1 of Problem 2.9,

211, Expand f(x) =sinz, 0 <z <w ina Fourier cogine series.

A Fourier series consisting of cosine terms alone is obisined only for an éven funetfon. Henee
we extend the deflnition of /(%) so that it becomes even (dashed part of Fig. 2.11). With thia
extengion, fix] is defined in an interval of length £r. Taking the period s 2, we have 2L =2,
ge that L=nm

~ y
Ny
w x
¥
-2
Fig.2-11
By Problem 2,10, &, =0 and
_ et nrx ZJ""
B, = = z) gopme=dzr = = af dz
" Lju fiz e T 4T =5 X n % connz
- 3""“’ . _ 1f coslndt)e , ecoatn—Da=i]|"
= 3 {sin (2 + nx) + sin(z—n2)}dz = o e + =1 o
= 1 1—ms(ﬂ+1)r+coa(ﬂ-~1]:r—-1 _ 1) 1+ecosaw _ 1+ coans
T n+1 n—-1 o a+1 n~-1
= 21t cosmm)
= = 1) it nwl R
T N
For n=1, & = Ef sinzeosx de = 2sinlzi 0. e '
T B 2 ]
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Than e =

212. Expand f(z) =2, 0<z <2, ina half-range (o) sine series, (b} cosine series,

(s) Extend the definition of the given function to that of the odd function of period 2 shown in
Fig. 212 below, This is sometimes called the odd extension of f{z). Then 8L =4, L =2,

fix)
’ s
’ 7 P
7/ / 7
.f! 0 pa T
I F T I ” |
=8 = T 2 PR LI
s 4 g
s / s 7/
h Fig.2-12
'ﬁm gy = 0- and
a C .
b, = %J; fiz) lln%d: = %j; a:sin--:!“-;;E dz
-2 —q z —
= {(ﬂ(;tﬂtnéﬁ) - ﬂ)(ig;,rsin %’5)} =y Coens

L w‘
= =2 connr sin
arrt HT

nrx

Than =)

= ;(lin— — Zuin2fZ 4 2 gndI2 )

(b) Extend the definition of f(x) to that of the even function of perisd 4 shown in Fig. 2-13 below.
This is the even extension of f(zr)." Then 2L =4, L =2

=)
~ N b )
, 7 N /N “ s N
N O/ ~ N/
¢ > . z
-l. -yq -l! 9 ; 4 ¢
Fig. 2-13

Thus 5, = 0, .
= 2 hrx 2 Riix
e, = Lj: f(z} con 2 de = E.,‘; % cos= dr

k4

= {(4‘}(;‘%351-\%—2) - Ili(;%casigf } '

= f%{mm - im0

2
Hn=0, q=f3d==2‘
(]



CHAP. 2] FOURIER SERIES AND APPLICATIONS a3

Then 2 = 1+ 3 Ao(connr— 1) cos E2

a=x1 nips

=1 —%(m-—--i-icnus-:ﬁ + :’W;‘;j*‘ )

It ehould be noted that mlthough both seriea of (o) mnd (0) represent fiz} in the interval
0 < z < 2, the second series converges more rapidly. -

PARSEVAL'S IDENTITY

213

14,

Assuming that the Fourler serlea mmupondmg to 7(x) converges uni!ormly to f(z)
in (=L, L}, prove Parseval's identity

If vepe = F+ Zarm
where the integral is assumed to exist,

s = 2+ i' & 00s 22 + b, mlflﬁ) then multiplying by f(t) and integrating

term by termn frem =L to L (which Ia justified: since the series in uniformly convergent), wa obtain

L - L .
%‘f-" fyda + ;1{‘.’. -r—].. =) g“% dz + b, f—-f. fz) Iill-‘i-! dg}

L
I teande
-L

uE L]
= =L+ L% (al+b8 161 0
F g=1 . )
where wa have used the resulta

froote = 1oy [ roeBEa s, [ e =t ®
ar -L

obtained from the Fourler coefficienta.

The rvequirad resuit followa on dividing both sides of (7) by L. Parseval's identity is valid
under less restrictive conditions than Imposed here. In Chapter 8 we ahzl discuss tha significance
of Parseval'a identity in conmection with generalizations of Fourier series known as orihonormal
reries. .

{a) Write Parseval's identity corresponding to the Fourier series of Froblem 2.12(&).

(2) Determine from (c) the sum § of the serien — +  + o+ + +.:1+...

1‘ 26 3‘

(o} Here L =2; ay=28; ¢ = ,(mu«-l],n#ﬂ b, =0.

iy
Then Parseval’s ldentity becomes
3 H =
%J‘_b {Hx)2dx = %f_‘ zlds = _,(i}* + 2 Mi—e(couw—- 1

1 .1.1 rt

o 3o g B L L, Lyl ... -
o ?“s+rl(l4+9‘+5‘+ ). o wtgtmt = %"
DU W TP DO S U Gy | S U
) § = Gtmimt = (1'+F+F+")+(ﬁ+i'i+ﬁ+ )

= {Lpi o,y /11,
= (1*"'3«"'5-4' )"’2‘1**'2*"'3*"' )
- 2 s ) =7
= 3g + 15 fvom which S--ﬁ
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2.15. Prove that for all positive integers M,
a: S 2 2 l - 2
T @) = of (f@y
where a, and &, are the Fourier coefficients corresponding to f(z), and f(z) is assumed
piecewise continuous in (—L, L). k
M
Let Sylz) = %‘- + 21 (a. ms% + by sin"—f) . tn
For M =1,2,9,... thisis the nequence of parti;ll sums of the Fouriér series corresponding to flz)
ke
We have f_' {fix) — Sylz)idx 20 "
mince the inteprand in non-negative, Fxpmnding the integrand, we obtain
L L L
2 J‘_L £(2) 834z} d= — f_ ) Su(e)de f_ Ve ®

Multiplying both sides of (f} by 2f(x} and integrating from —L to L, uiing equations (£) ot
Problem 2,13, gives

L
EJ‘ Lf(z)SM(a:)dz = 25{ + E (a,,-l- bﬂj} (4}
Alao, squaring (I} and Integrating frem —L to L, using Problem 2.3, we find

L
_f“Lsf.(s)dm = { +E{c.+bl} 6

Subatitution of (4) and (5) into () and dividing by L yields the required reeuit.
Taking the limit ag M =+ =, wa obtsin Beesel's imqmlity
a., z
- T E (@+by) = L {f(ﬂ}zdx (&)
If the equality holds, wa bave Parseval’s identity (Problem 2.13).

We can think of Sy(z) 85 representing an approzimaiion to M=), while the leit hand side of
(£}, divided by 2L, represents the mean square error of the approximation. Parseval's identity
indicates that as M — = the mean square error approaches zero, while Beasel’s inequslity indicates
the possibility that this mean square error does not approach zern,

The resulta arc connected with the idea of completeneas. If, for example, wo were to lesve
out one or more termse in & Fourier yeries (cos dww/L, sayl, wa could never get the mean square error
to approach zero, no matter how meny terma we took. Wa shall return to these idess from & gen-
eralized viewpoint in Chapter 3.

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
2.16. (¢) Find a PFourler series for f{x)=2? 0<wx <2, by integrating the series of
Problem 2.12(a). (b) Use (s} to evaluate the series 3 (ZL°7°,

— g
(¢} From Problem 2.12(s), e
= 4 L QN SR PR SN . R
s—r(smz 2nm2 -l-sn ) ) n
Integrating both sides from ¢ to = {applying Theorem 2-6, page 24) and multiplying by 2,
we find
18 e 1 2wz 1 S
i = — —_—— == = il A

2 c ra(cm: 3 el + 35 %% 5 ) =

where € = -—-—(1-—-—1-+-!-—l+---).
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{b) To determine T in another wey. note that {2) represcnis the Fourier cosine seties for =% in
0<x <2 Then since L =2 in this case,

. 1 S 4
C—'z‘-'z_ﬁf""“”‘eﬁ””‘“s

Then from the value of C in [a), we have

|-»-l
%

z
+ aam - _-i - !-

= L
e T T 22T 8 4 16 3 18

217. Show that term by term differentiation of the series in Problem 2.12(a) is not valid.

Term by term differentiation yielda 2 cos?zf-— cusz—zi + cns% - ) Since the nth term

of this saries does not approach 0, the series does not vonverge for any value of =

CONVERGENCE OF FOURIER SERIES _
218, Provethat (o) L costdcos2t+ - +cos Mt = sin (M -+ 4)¢

2 T T2sinit
1 resin(M+ ) 1 1 sm(M+i)i _ 1
j T Zsindt dt 2’ j T 2aindt dt = 3.

{a) Wehave cosntsin J¢ = j{sin 2+ J)¢t —sinir = {}t). Then summing from n=1 to M,
ain }4{cos ¢ +cos 2¢ + - - - + cos Mt} (vind ¢~ sin 42} + (sin §¢—sindt)

4 err o [sin (M}t~ ain (M~ §)E]

HHain (M + J)¢ — sin 1t}
On dividing by sin §¢ and adding 4, the required result follows.

{6} Integrate the resunit in (4} from O to v and —r to 0 respectively.

Thia gives the reguired
results, since the integtals of all tha cosine terms are zerp.

219, Prove that lim [ f(x)sinawdzs = tim { /f(x)cosnzdz = O if f{z) is piecewise
continuous, """ el i

ad
This follows at once from Problem 2.15, since i the series -—+ E (e
lim a, = li'm by

L TR

+ b?,) is convergent,

The resnlt iz sometimes colled Riemann's theorem.

2.20. Prove that lim f flaysin(M +3)zdz = 0 if f(z) is piecewise continuous.
We hove

™ " L
f fiz) sin (M + Jlz dz = f {7z} sin §2} cos Mz dz + J‘ {1(2) cos 4z} win Mz de
-r - -
Then the required result foltows at once by using the result of Problem 2,19, with f{z) replaced by
flz} sin g« and f(x} cos 4=, respectively, which are piecewlae continuons if f(x) is.
The result can alap be proved whenl the integration limits are & and b instead of —z and ».

221, Assuming that L =, i.e. that the Fourier series eorresponding to f(z) has period

2L = 2x, show that
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S5 = %+i(&mu+b.ninn=) = f,lr _:f(t+’)ﬂi;:‘£:a:tt

Using the formulas for the Fourler coeficients with L =», we hpve

(lj:" flu) cosnat du)mm + (i-.f_: H{u) sin nu du)sln nz

a, cosnx + b, zin s -
= -:-J:: fiu){con nu ecsnx 4 §in nu ajn nx) du

= é-[-:- fw) cos miu = z}du

Alse, 3= af rwe

P
Then Sylc) =t u§1 (o, coznz + b, sin nx)

) I 1 M pw _
gf_' fluddu + ;.g,f_, fiu) connlu —z) du

L . o
= %J'_' Jiu) {% + -g, cos iy — :}} du
IR O akd s (M + ix— )
= ;f_r 109 =g s =gy

using Problom 18, Letting t—~a =, wohave

17" . sin (M + §)¢
Sule) = ;f_'“!f{f"'wla—mf‘—!—dt

Bites the Integrand has period ©r, we can replacs the Interval —r—=%,r—¢ by any other
interval of length 2v, in partienlar —,r. Thus we obiain the required result.

222, Prove that

Syiz) - (f{z+o}_§ Kz“o)) = ,-lr_f: —(—TF—HH’;;’;:_O ain (M + )t dt

+ %j: ﬁ“";”g};’:f”) oin (M + §)¢ dt

From Prehlem 2.1,

’ sty o in (M + it
Butet = 2 ju+a S L L ++f m+z;5‘-'m*—f-¢e )

Multipiying the integrals of Problem 2.18(3) by f(z —0) and f(x + 0) veapuctivaly,
£zt 0) + & ~0) o in (M + 4t
@+ O '; =0 - %J: f(z—D}Mdt +%J;'f[z+0)mdl ("

2 bin §¢ 2 sin §r
Bubtracting (#) from (1) ylelds the required result.

223, If f(z) and f/(x) are piecawise continuous in {~m ), prove that
.Ei.'.‘:. Sz) = flz +0) %-_f[w -0}

ﬁ?‘ function ﬂ%}ﬂi‘ﬂ is plocewise eontinnous in 0< ¢ S» because Hz) Is plecewine
eontinuons.

Alse,
: ﬂl+n!—$¢+0} _ [zt —flat0), & flzt 9~ flw+0)
s%{- 2ain = Jim ) = lim N Z

tm0e sin gt trts
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Y

exlats, since by hypothesis #(x) ia piecewlse continuous, so that the right-hand derivative of f{z) at
cach z axista. !

Thus fit+ =) = f{x+0)

T sin * n is piecewise continuons in 0 & £ X v,
Bimilarly, ﬂﬁ‘_;%i(:dl ia plecewise continuons in —» S ¢t S 0.

Then from Problems 2.20 and 2.22, we have )
Hm 5 Smiz) - fexQ 0L = § - o Im Suis) = fla+0) + fiz — 0)
M st o4 2 M = m ’

DOUBLE FOURIER SERIES N
224, Obtain formally the Fourier coefficients (15), page 24, for the double Fourier sine

geries (14).
Suppose that fisy) = m§1 ngl B ainm-r';'?- uh\’—'z';”- . ’ i
We can writa this as - e ]
fe, ) = “3;1 T "“-LT %
— X ey
where Cn = “21 Bon nin-Ln— £}

Now we can consider (£} us o Fourier series ih which ¢ s kept conatant so that the Fourler
coeficients Cw are glven by

o2 (h mez
Cm = 1‘1'.'; If(il.il')iln-z;"d: (4

On noting that Cm is 8 function of ¥, we see that (#) can bo considersd sz & Fourier neriea for
which the eosfficlents B, are given by

L
By = %J’; IC... d“%"” {5)
If we now aae (&) In (8), wa pee that
= 4 " Mz noy
P = g ] S e e s e @

APPLICATIONS TO HEAT CONDUCTION

225. Find the temperature of the bar in Problem 1.23, page 16, if the initia] temperature
is 26°C. )

This problem is jdentical with Problem 1.23, except that to setiefy the mitinl condition
wix, 0) = 25 it is necessary to superimpose an infinite numbar of sclutions, 1.a; we must replace
equation (1) of that preblem by

Wzt = 3 B gin 222
m=1 3
which for ¢t =0 ylelds -
2% = I By . 0<w<3?

mel
Thig amounts &6 expanding 25 iz a Fourier tina sevier. By tho methods of thip chapier wa than
find

L 3 —
B = [ tenTEe = 1 BunlEe - Moo
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The result can be written
_ % BO(l —commtr) _, 000 oo TUE
wlx, } = ngl. —w € 0 ein—3

108 gmamtngin 2% 4+ Lottt gingn 4 oo
r g s

which can be varifled ee the required solution.
This problem {llustrates the importanca of Fourier series in eolving boundary value problems.

Solve the boundary value problem

e _ 50
a = Yo

This is the same as Problem 1.23, page 15, except that the ends of the bar are at tempera-
turee 10°C and 40°C instead of 0°C. As far az the solution goes, this makes quite a difference
since we can no longer conclude that 4 =0 end M = me/3 as in that problem. )

w0, f) = 10, u(3,8) = 40, u(z,0) = 25, |uiz, &) < M

To aclve the present problem wasume that w(x, f) = o[z, f) + ¢{x) where {z) is to be auitably
determined. In terma of u(x,{) the boundery value preblem becomes
E1 aty

gt ¢ (x), (0,8 + ¢{0)

10, v(3,8) + ¢(3) = 40, v(z,0) + {z) = 25, Wz, < M

This ¢an be simplified by choosing

#E = 0, @) = 10, (3 = 40
from which we find ¢(z) = 10x+ 10, so that the resulting boundary vaiue problem ia
i g%

at zE’ o8 8 = 0, vi#h = 0, vz 0) = 16~ 10z

An in Problem 1.25 we find from the first three of these,

viz,t) = S B ettt g, X
mol 3
The laat condition yielde
15 — 10z = mgl B, sin —-—m;:
from which 8 :
2 ,
B, = E,[, {16 — 10z2) sm% dr = :-T‘:_{emmr -1)

Since wiz, ) = v{z, ) + ¢(z}, we have finally

wHf) = Wz + 10+ i 30 cosmr — 1)e=m's'ere .inﬁg_’!
me]

nr
an the required solution.

" Tl:: term 10z + 10 ip the auadﬁ-eteu campemﬁrs, ive. the temperature after a long time has
elapne

A bar of lgn_giih L whose entire surface is insulated including its ends at z =0 apd
Z = L has initial temperature f{z}. Determine the subsequent tempersture of the bar.

In this crse, the boundary value problem is -

b _ %

' at - a3 - i #4)

jul=, )] <:'M, u,(ls.t} =0 w(lt) =0, k0 = f) ®
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Letting % = X7 in ({} and separating the variables, we find ’

1R ar ...?.L = .E
AT = X'T or T =X
Setting each side equal to the constant —X2, we find

T4+ 2T = 90, X2 X =0

so thet X = acoarz+bainrg, T = ga—m't

A solation is thus given by
wle, ) = (4 conhx + H sin Az}
where 4 = ae¢, B = be.
From wu,0,t) =0 we have B =10 so that
uwiz, t) = Ae~™ poanz
Then from (L, ) =0 we have

gin Al = 0 or AL = e, m=0,123 __.

Thus wz, f) = As—en'wuL! goy m;z m=01%...
To eetisfy the last condition, ufx, 0) = f(z), we uze the superpesition prineipla to obtain

A =
ulz, t) = _21 + “El A e it msg{;ﬂ

Then from u{x,0) = fiz} we ace that
fiz) = A + i Ae—emirisilt gog XL
2 mw] L

Thus, from Fourier series we find

L
Ap = %J; F=y cosmz‘:x dx

. .
and niz, t) = %f“ Fizyde + %E’ (e—m'ﬂn'mﬂ;i) j:' fiz) cos %az

228. A circulsr plate of unit radius, whose faces are
insulated, has half of its boundary kept at constant
temperature #, and the other half at constant tem-
perature u» (zee Fig. 2.14). Find the steady-state
temperature of the plate.

In polar covrdinates (p, ¢) the partinl differential equa-
tinn for steady-state heat flow is

1 P -
+;,E;§—O {1}

2.
Pu L
iy p dp

Fig. 2-14
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The boundary conditlons wre
@ ¢) U, O(<p«<y
u(l, =
¢ sy w<g¢< Py
jufp, g} < M, Le, « {8 bounded in the region

Lat u{s, ¢) = Pe where P is & function of p and ¢ i a function of ¢.
Pre +1py + Lper = o
» &

Dividing by P&, multiplying by o2 snd rearranging terms,
L N
P P &
Setting eech side equal to 22, .
& + Mg = pBE" 4 P — 3P = ¢
The first equation in (4) hew general solution
* = Aycoshg + B sinieg

[CHAP. 2

@)
@

Then (1) bacomes

@

By letting P = c* in the second equation of (4), which i 8 Couchy or Euler differantial squaiion,

we find &= =1; a0 that o* and p~* are solutions, Thus we obtain the geners] solutlon

P o= Ayt + Bya?

Sirce ulp, ) muet have period 2x In ¢, we must have A=m=0,1,2,8,.., .

Alao, since & must ba bonnded at p = 0, we must have By = 0. Thus

u = P® = dgom{4; cosamg + Bysinmg) = pMA cosme + B sinmg)

By superposition, a solution i

A .
oigh = G+ 3 an(Ay cosme + By ainme)

A =
from which wl, 9) = -2—° + X (Aycosme + B, ainmg)
mm=l

Then from the theory of Fourier series,

. v
Ay = 1 X w(l, ¢} coa mg dy

T

- IJ-I' 1 ir a
= Jo EH) cwmd¢+;‘£ ty con g da {u1+u’

' b1 4
By = lj; u(l, p) min mg dy

(ty = wy)

if m>0
it m=0

= _lf' inmedo + L [y i
v Hy Bin mg ¢+;L Up sinmg dg = mmmm— (] — cogmy)

mr

u + oy + i {1ty = ug)(1l — cos mr)}

Then; ulp, 9) = 3 2 p— p™ ain mig
L W uy | Hu - ug)
= ) + - {pﬁin¢+*psliﬂsﬁ+ tef ainBg ++ ...}

tan

o Mithuy oy, Zp ain p)
= T + -t 2 F
I 1 _nS

on making use of Problem 2.84.

(s) :
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229. A square plate with sides of unit length has fts
faces insulsted and its sides kept at 0°C. If the
initial temperature is specified, determine the sub-
sequent temperature at any point of the plate.

Chogse a ceordinate system as shown Im Fig. 2-16.

Then the equation for the temperature u(e,v,#} at any (0,1)
peint (z, ) at time £ is : :
fa oL fot o oc |
The boundary conditions are given by : & 3
Inte, w0 < M 9,0 os¢c (1,9

&0, 7,8 = sl 8) = ulx, 0,8 = u(x 1,t] = 0
u{z.lh’)} = f(#;ﬂ)
where 0<z<1, a<y<1, £>0, Fig. 213

To aslve the boundary value problem Jet # = X¥7T, where X, Y, T are functions of », ¥, £ re-
apactively. Then (I) becomes _
XY = «(X"YT+X¥Y"T)

Dividing by «X¥YT yields

ro_x,

s X Y
Sines the left side iz a function of ¢ alone, while the right side is a function of » and ¥, we w0
that each side must be & conatant, say —AY (which is needed for boundedness). Thus

X b

r ] = = =32
T+ xatT = 0 Tty W {£)
The mecond equation can he written as
xn yr
x =¥ ¥

and since the Jeft side depends only on z while the right side depends only an y each sido must
be s constant, say —p®  Thus

X+ X =0 ¥+ (- Y = ¢ E4]
Solutione to the two equations ir (%) and the first equation in {2) sre given by
X = gyeoapr+ by ginpx, ¥ = epeosyAB—yuly + by sin Vi -2y, T = ap— "
It follows that a solution to {i} is given by
wlx, ¥, ] = (a, eos pz + by sin px)ieg cos VAE =0y + by win mﬂ)(nf‘*ﬁ}

From the boundary conditien 1(0,3, & =0 we see that a; = 0. From x(z, 0,8} =0 we 2ee that
oy = 0. Thus the snl-uti‘on gatistying these two conditlons is

wEpt) = Be M pinpm atn VA3 - 2y

where we have written B = b bsa,

From the boundary condition w(l.and) = 0 we aee that 4 = mr, m = 1,2,8,.... Frem
u(z,1,) =0 we sce that Val= 3 =ar, n=1,2,3, ..., or A= vVmitnin

It follows that n sclution satisfying all the conditions except u{z,p,0)} = f(2.¥) is given by

ulz,y, ) = Bestn*+a"ir' ginmes sinney



42 FOURIER 3ERIES AND AFPPLICATIONS [CHAP. 2

Now, by the superposition theorern we can arrive at the possible soluticn

-

u{zl ¥ ‘) = i B’lﬂ‘ —utm? +II')‘!"‘ sin meT gin nry {‘}

mEl wwl

Letting ¢=0 and using the condition wufz,y,0) = fiz,y), "we arrive at

-

flz.y) = i , Bey 8in Moz ain noy

m=1 n=

As in Preblem 2,24 we then find that
1 1
Bun = 4J; J; Flx, ¥) sin mex pin vy dx dy 5

Thus the formal solutien to our problemm Is given by (4), where the By are determined trom (g).

LAPLACE'S EQUATION

2.30. Suppose that the square plate of Problem 2.29 has ¥
three sides kept at temperature zero, while the
fourth side is kept at temperature #,. Determine
the steady-state temperature everywhere in the
plate. 0, 1) pm

Choose the side having temperature w, to be the one BN
where y =1, as shown in Fig. 2-16. Since weo wish the of
steady-state temperature u, which does not depend on time 2, -
the equation s ohtained from (£} of Prohlem 2.20 by setting

- dufpt = 9, je. Laplace's equation in twa dimensions:

0 0,0
Lo BT .
e tE <0 o
The boundary conditions are
ully) = wll,y) = wx,0) = 0, wlx,i) = x Fig. 2-15

and ()] < M.

To solve this boundary value problem let % = X¥ in (1) to obtain

XY +X¥" =9 o §i=-{;
Setting each side equsl to —AY yields
X'+ 32X = ¥Y'—xy = p
Irem which
X = aqcoshz + b, ginAc ¥ = gycoshAy + bysinh hy

Then @ possible solution ia
u(x, ¥) = (e; cos Az + b, Bin ax){e; cosh Ay + by ainh dy)

From w(0,1) = ¢ we find ¢, = 0. From 7,00 =0 we find a3 =0. From wll,p) =0 we find
h=mr, m=1,23.... Thus a solution Batisfying sl these conditions ia

-ufz, y) = B sinmrx pinh moy

'tl‘; sat}isrgr the last condition, u(x, 1) = ¥4, We must first use the principle of auperposition to ohtain
C Eplution

iz, y) = "21 B, sin mrz sinh mey _ (£]
Then from wuix, 1) = ty we must have

& )
w = mgl (B Einh mr) sin may
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231.

Thus, using the theory of Fourler series,
f' 2ig;{1 ~ cosms)

B sinhme = 2 ), sln Maz =
o M

. B = 21¢)(1 ~ coamz) )
from which m . (&
From (£) and (3) we obtain

oy = 2_“{ % 1 —coams inh
T, = = 7”1 sinhmr 103 ] 'm:r?: sInh Moy
Note thal this ia'a Dirichlet problem, since we are solving Laplace's equation Vi =0 foru
ingide a region & when u is specified on the boundury of R.

If the square plate of Problem 2.20 has its sides
kept at constant temperatures 4, s, us, M, respec-
tively, show how to determine the steady-state tem-
perature.

Tho temperatures at which the sldes are kept are indi-
cated in Fig, 2-17. The fuet that most of these tempera-
tures are nenzero makes for the same type of difflculty
consldered in Problem 2.26. Ta overcome this diffieulty we
bresk the problem ap inte four problems of the type of
Problem 230, where three of the four sides have tempera-
ture zero. Wae can then show that the solution to the given
problem iz the sum of solutions te the problems indivated
by Figs. 2-18 to 2-21 below.

" n
Fig. 2-18 Fig. 2-19 Fig. 220 Fig.2-21

The details are left to Problem 2.57 which provides a generalization to the case where the side
temperatures may vary,

APPLICATIONS TO VIBRATING STRINGS AND MEMBRANES
232. A satring of length L is stretched hetween

points (0,0) and {L,0) on the z.axis. At Y )

time t=0 it has a shape given by f(x),

0<x<L, and it is released from rest

Find the displacement of the string at any

later time. vt ) L
- 4

The eguation of the vibrating string is

2
%?;:-:;2% 0z L, t>0

where y{z, ) = displacement from z-axis at time ¢ .
{Fig. 2-22). Fig. 222
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Hince the ends of the string are fixed ut & =190 apd ==L,
p(0, 8 = y(L,t) =0 t>0
Sinen the initial ahepe of the string la given by H=)
¥z, 0 = fix) p<z<kL
Since the initlal velocity of the string is zero,
wniz,0 = 0 otz L
To aolve this boundary value problem, let ¥ = XT as usual,
Then XT" = adX"T or T"ie*T = X"/X -
Caliing the separation constant —x%, we have
T + MetT = 0 Xt = 0
and T = A,sinhat + By coadat X = Agsindx + Byconda
A aolution is thus given by
" ylm ) = XT = (Agsin ;s + Bg os de}{4, sindat + B, cosrat)
From ¢(8,8) =90, A;=90. Then '
y(z.t) = Byeinkx(A; sindat + B, cod at) = pinix(d gindct + 8 cos dat)

From w(L, 6 =0, we have alhiL{A sindat +B coshat) = 0, oo that sinal = 0, AL = ms or
% = mr/l, since the pecomd factor must not be equal to zero. Now,

y(z, &) = sinizidke cos hat — Bla pin hat)
and yy(z, 0 = (ain Ax){Axe) = 0, from which 4 =0 Thue

_ . 2 morat
ylz, 6} = Bsin—p—cos—p

To satiofy the condition iz, 0 = fz), it wilt be necessary to superpase sclutions. This yields

= . MeE mral
piz. ey = ‘Eiﬁms:n T cos g

Thea W = M) = 3 BosnZEE

mwl

and from the theory of Fourier series, _
I mer
B = 1§ fisinTfta
- L), Flz) ain 7 %
The final result is .
s {2t MR . mez mral

yiety = ”E-l (L J; fi#) sin=pg~ dx) sin =7 o8 =y

whith ¢an be verified s the solution.

The terma in this serles represent the notural or normal modes of vibration. The {frequency of
the mth normal mods fm i0 obteined from the term im;olving cosmz:" and is given by

We=ZE o« =B Ry}

Since all the frequencies are integer multiplea of the lowest [requency 1, the vibrations of the
string will yleld » musicel tone, as in the case of & viglin or piano string. The first three rormal
modes are fllusteated in Fig. 2-28. As time increasen the shapes of these modea vary from curves
shown aolid to curves shown deshed and then back again, the time for a comptete eyele being the
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{=) (o) ()
' Fig.2-23

period and the recipracal of this period being the Irequency. We call the mode (o} the Jundamental
mode or frat harmonic, while (3) and (¢) are called the vecond and third harmonic {or first and
second overtons), respectively.

A sguare drumhead or membrane has edges which u
are fixed and of unit length. If the drumbhead is
glven an initial tranaverse displacement and then
relensed, determine the subsequent motion. (0, 1) a,1y

Amppume 3 coordinate gystem as in Flg. 2-24 and aup- DO
pose that the transvorse displacement from the equilibrivm )
position {i.e, the perpendicular distance from the xy-plana}
of any point (2, ¥) nt_time ¢ in given by £(z,y, 1),

Then the equation for the tranaverse motion ia

a2 Pz 4t 0.0 a,0
e “’(;;ﬁm’) &)

where o® = r/p, the qumntity = being the tenpion per unit

length along any lina drawn in the drumhead, and g is the
mass per unkt ares. Fig. 2-24

Assuming the initial transverse displacement to be f(x,¥) and the initial velocity o be zere,
wa have the conditions

|Hz 1, 0) < M, 2090 = sl 6 = iz0,t = axm 1,8 = 0,
2z, 0,00 = fle,¥), =zle.y0 =0

where we have in addition exprassed the condition for boundedness and the conditions that the edges
do not move. >

To solve the boundary value problem we let z = X¥T in (7), where X, ¥, T are functions of
=z, v, and { respectively. Then, proceeding as in Problem 2.29, we find

r.ld' XIF YH

ar - Xty
and we are led exactly aa in Problem 229 to the equation
T+ =0, X +uuX =0 Y +=u8Y =0
Holutions of these aquations are
X = oycompz + byninge, ¥ = oycosVaE— by + bpain VAE— sty
T = ayeconhat + byuinhat
A solution of {1} ta thus given by

2z, y,8) = (o, cospe + b, gin we)a, com VAT = 2y + by sin VAT — pF y){ag coa Aat + by zin Aat)
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From #(0,y,8) =0 we find a, =0. From 2lz, 0,8 =0 we find &, =0. From FACN y._ﬂl =0
we find by =0 Thus the golution satiafying these conditione {and the bowndedness condition} is

iz, y, 1) = B sinuzgin Va2— 2y coshat

From {1, 1) =0 we geo that p=my, m=123 .. .. From 2(z,1,6) = 0 we sex that
\‘hi—#’=ﬂvﬂ'| “=1|2!sl"'l ie )= sz'l'ﬂaw'

Thus a sclution sstisfying sl eonditions but 2(z. ¥, o = flz, v} ie-given by
Hz,y,0) = B sinmresinney cos vmi4 n?rat
By the superposition theorem wa can arrive at the possible solution

- w
e, 9.0 = mél ‘El B, sin mx® sin ney cog Vm? + n¥oal (2

Then, letting ¢ =0 and using z(, ¥, 0} = fiz, ¢}, wa arrive at

-

-
eyl = T X B, sinmer sin ey
m=1 n=l
from which we are led as in Problem E24 to
3 ot
Bma = 4 J; J; £, ) 5in mex gin ey dz dy )

Thus the formal solution to our problem in glgen by (£), where the coefficients By, are determined
from (2)-

In thig problem the netural modes have frequencies f,, given by Brfmn = Vit rtra, ie.
fma = %"'m2+n!1J':T 14}

The lowest mode, m =90, n=1 or m=1 n=0, has frequency 1g,v(-n'_,«. The next higher one
has m =1, n =1 with frequeney JV2r/y, which is not an integer multipla vf the lowest (i.e. fun-
damentsl) frequeney. Similarly, higher modes do not in general have frequencies which are
integer multiples of the fundamental frequency. In such case we do nat pet musie.

.

Supplementary Problems

FOURIER SERIES

234,

Graph each of the following functions and find ite corresponding Fourier serles, using properties
of even and ndd functions wherever appllcable.

_ B O<z<2 . — A H220 .
m flz} = 8 z<z<4 Period 4 8 fimy = - 024 Pariod B
ox f&Exr=3
) fiz} = 4x, 0 <2 <10, Period 10 = i
() } x z er @ fiz) {0 gcgcg Periodf

In each part of Problem £.34, tell where the discontinuities af #(x) are located and to whet value
the series convergea at these discontinuities.

-5 D24

Expand - /(x) = {z—ﬁ 1<s<8

in & Foprier series of period 8.
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237, (g} Expand f(x) =cosx, 0 <2<z ina Fourier sine series.
(b} How should f{a) be defined nt » =0 ami r = r so that the series will converge to flx) for
V=xas?

239, (¢} Expand in 4 Fourier series flz) = cosr, 0 <'x <, if the peried is 7. and (b) compare with
the result of Problem 2.37, explaining the similaritics and differences if any: )

x [V~ |

B—x 4=<xz<8 in a series of [a) sines, (b) cosines. .

239, Expand flr} = {

240, Prove that for 052 € =,

_ 2 cosBx  cosdr  cosBE
(II') x(:—x} - ? - ( 1z + PT} =+ 57 + "')
_ Bfslnz | sinde | sinbx .
by xz—2) = ;(T"- 35 +--5—3--|- “')
241.  Use Probiem 2.40 to shaw that .
s 1 _ &t = 5 (-l e
() :-:", w6 @) ..gl I T fe) .‘g, (@n—18 ~ 82’
11 _1 111 L NE
2.42. Show that ‘l—s‘ﬁ'ﬁ—?'—ﬁ‘l"a}'l'l—ii—'"-— 128"

INTEGRATION AND DIFFERENTIATION OF FOURIER SERIES
2.4 (@) Show that for —7 < x <z,

_ ginz sin2: | min8z
x = 2( T ) + 3 )

{5 By integrating the resvlt of {a}, show that for —z S x5 =,

T2 Cos & cos 2z con Bx
¥ = a— a— — =HERE o aas
F2 7 4 ( T 3] + 37 )

fe) By inteprating the result of {b), show that for —s = xE =,

X _ ainx - sin2s  sindx
Tlz—a¥z 2} = 12( s g + = )
{d} Show that the series on the right in parts () and {¢) converge oniformly to the functions on
the left.
241 () Show that for —= < = < =, _ .-
% oEsx = —-l-sinz + 2 —z—sin23+—-§—sin33+—j-—sin4x— ree
2 13 2+4 3«5

{b) Use (a} to show that for —v S 2 5 =,

coslr  cogdz +cos45: ..
1+3 2+4 3.5

xsinx = 1—%cos:&'-: 2( -

245. By differentiating the result of Problem 2.40(b}, prove that for DS x=mw,

_ = _4fecosx  coaldx | ecosbsx , |
“2_7(1=+3t+52+ )

PARSEVAL'S IDENTITY
246. By using Problern 2.40 and Parseval's identity, show that

z 1 _ o 1 .
{a) u§L ‘E = 30 {5} ,gl PR T
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247,

248,

2.49.

FOURIER 8ERIES AND APPLICATIONS [CHAP. 2

1 1 1, . B8 .

Show that -1—2.—5"*——‘3"5’*'—'—'5*.7,4- TR [Hint. Use Problem 2.11)]
S 1 - S .1 __ = 7

Show that (a) n§|W = 98’ ) 'El Br—1P _ 960"
1 1 1 .. =3

Show thet Frgr g T oLt T 4 g2 T 16

SOLUTIONS USING FOURIER SERIES

250,

251.

252,

254.

255.

58,

257,

(2) Solve the béundary value problem
o 0 = w0 = 0wz D)

ot (-1 1) = 2bz
where Q<2< 4, £t>0,
(5) Interpret physically the houndary value proklem in {a).
(o) Show that the solution of the boundary value problem
Bl ) =umd =0 el = @

where 0 <z < g, >0, ia given by

we,t) = %J:!{z}dz +2 S o't cogme J:f[:u}mmd:s

m=1

(&) Intorpret physieally the toundary value problem in (a).

Find the steady-state temperature in o bar whose ends are located st z =0 and z =10, it thege
ends are kept at 160°C and 108°C reapectively,

A cirewlar plete of unit radiun (sce Fig. 2-14, page 39) whoee faces are insulated haa ite boundary
kept at temperature 120+ 60 coa2p. Find the steady-state temperature of the plate.

Show that paing + }od sin3p + fofeinbe + -0 = taﬂ"(%":i?)
and thus complete Problem 2.28.

A string 2 £t long is atretched betwean two fixed points z =90 snd z =2. If the displacoment
of the string from the «-axis at ¢ =0 is given by f{z) = 0.03 2(¢ — =} and if the initial velocity
is zero, find the displacament at any later time.

A oquare plate of gide ¢ has cone mide mainteined at temperature f(x} and the others at zere, as
indieoted fn Fig. 2-86. Show that the steady-state temperature at any point of the plate 1a
glven by '

B2 (") sin 2= krz
wen = 3 [t [ e ankE® ae | ain 28 arm Bk

Work Problem 2.56 If the sldes are maintsined at temperstures f,(z), g,{), 72(z), Fe(y), respactivaly.
[Héne.  Use the principle of superposition and the result of Problem 2.66.].
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Fig.2-2%8 Fig.2-26

25,  An infinitely long plate of widih o (indicated by the shaded tegion of Fig, 2-26) has ita two
paralle] sides maintaloed st temperature 0 and its other side st conatant temperaiure uy  {a} Show
that the steady-state temperature is glven by

: duy L 1 3z 1 bz
= ——| =¥ gipy — 2g—17 gig —— a0 gy ———
wiz, ) - (a v ain = + 3° ¥ ain p + 5° sin == + .

(% Use Problem 2.54 to show that

2 -
uz,y) = —:'lm-ll:s-———‘:i:,f;”

289 Solve Problem 1.76 if the string has its ends fixed at ¢« =0 and =z =L and if its initial displace-
moent and velocity are given by f(z) and p(z) respectively.

286. A square plate (Fig. 2-27) having sides of unit length has
its edges fixad in the zy-plane mnd is set into transverae
vibration.

{a} Ehow that the transverse displacament z{x,y,0) of any
point [z, 8l time ¢ is given by

dé &z
. W o (iﬁ 3 Ey"‘)
where ot {8 & counstant.

{t} Show that if the plate is given an initisl shape fiz, ¥}
and released with velocity gie ), then the displacement
is glven by Flg. 227

-
Hz,p ) = m§1 -§| [Ame 208 Ampatt + B, 8in hp,al] 3in maw ain nry

Co o
where Ama = 4 j; J:' #z, ¥} sin mex sin nyy dz dy

) sin mox sin nry dz dy

and A, = r¥Ymi4aR

*

181, Work Problem 2.40 for a rectangular plats of sides b and c.

262 Prove that tho result for u{z, ¢} obinined in Problem 2.25 Mtually satisfies the partial diferential
eqtation and the bonndary conditions,

263,  Solve the pourdary value problem

Ju

EE‘:Ei_ﬁ b<g<L e>0

0N = w, wl,f) = ouy,  w@0) = 0
where o and L nre constants, and interpret phyaleally.
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2.65.

268,

267,

2x58,

2489,

2.70.

2.91.

[ L
2
-

FQURIER SERIES AND APPLICATIONS [CRAP, 2
Work Problem 2.63 if u(z, 0) = fix).

Solve end interpret physically the boundary value problem
¥y oy -
T <0

where (0,0 =10, p(L,#) =0, tx,0) = f(z), p(2, 00 =0, 4,0, =0, y (L, #)) =0, yle.t) < A

Woark Problem 2.66 if y,lx, 0) = giz)

A plate iz bounded by twp <onceentric cireles of radius
¢ and b, as shown in Fig, 2-28, The frces are insulated
and the houndaries are kept at temperatures f{#) and gia)
respectively.  Show that the steady-siate temperature at
any point {», ¢) is given by ’

x B
ulr,s) = A, + Bglnr + X (A,,rﬂ+;%) eos ne
“=l -

. D
4 (C.lr" + ;) sin m}

where 4, 8nd B, are determined from

1 ir
Aot Byine = g [ fnds

1 ‘
Ao+ Bamd = L [ o) as Fig. 228

A4, By, ure determined from

]

2 I
Agn + Baa " = 1-1;.’- fe)cosneds, A b + B b i f gl#) cosne de
( ]

b

and C,, D, are determined from

It

LMo 1™
Car + Dan = 27 fiorsinnade,  Can 4 Der = 2 (7 506 sinne do
] ' b

Investigate the limiting cases of Problem 2.67 a3 {o) a—+ 0, {b) &~ =, and give physieal inter-
pretationg, -

(@) Soive the boundary value problem

;0 #u
oy o, 2 -rx
at = Yo T Pe .

where w{0,t) =0, u(l.0) =0, uir,0) = f{z), i, Ol <M, and (b) give a physical interpretation.

Waork Problem 2.69._ if fe—vz is Teplaced by 4y 5in ez, where ¥y and o are constants,

Fi a2
Bolve ‘;} = ﬂ*;‘%“f where ¥(0,8) = 0, WL, t)=10, pz 0 = flz), pdlx 00 =0, lyl=, O < M,

and glive a physical interpretation,

Find the steady-atate temperaiure in a salid cube of unit side (Fig. 2-29) if the face in the zy-plane
is kept st the preseribed tempersture Fix,y), while all other foces nre kept at temperature zero,
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2.73.

274

1.

2.76.

How would you solve Problem 2.72 if femperatures were prescribed on the other faces also?

How would you»solve Préblem 2.72 if tha initial temperators inside the cube was given and you
wished to find the temperature ingide the cube at any later time?

Generalize the result of Problem 2.72 to any rectangular parallelapiped,

A plate in the form of a gector of & circle of radiua o has central angle B, as shown in Fig, 2-80.
If the circular part is maintained st a temperature f(o), B <o < g, while the bounding rodil are
maintained at temperature zero, find the steady-state tempersturs averywhere in tha sactor.

Y viﬁ%’ﬂ
e

=y

Pz, y)

Fig.2-29

A-q6ol6



Chapter 3

Orthogonal Functions

DEFINITIONS INVOLVING ORTHOGONAL FUNCTIONS.
ORTHONORMALL SETS

Many properties of Fourier series considered in Chapter 2 depended on such results as

i L
i WMk L REL _ mrk Nl -
_£ BiR—p~sin—y-dz = 0, _£ cos—g=cos—5—dr = 0 {m ) (2}

In this chapter we shall seek to generalize some ideas of Chapter 2. To do this we first
recall some elernentary properties of veetors.

Two vectors A and B are cslled orthogonal (perpendicular) if A-B=0 or A.B,+
AeBy+ AsBy = 0, where A=A;i+4:j+Ask and B = Bii+ B:j + Bk, Although not geo-
metriczally or physically obvious, these ideas oan be generalized to include vectors with
more than three components. In particular we can think of a function, say A(z), as being a
vector with an infinity of components (i.e. an infinite-dimensional vector), the value of each
component being specified by substituting a particalar value of z teken from some interval
{e,&). It i3 natural in such case to define two functions, A{x) and B(z), as orthogonal in
(a, by if

J;b A{z)Blz}dz = 0 2

The left side of (2} is often called the scalar product of A{x) and B(z).

A vector A is called a unit vector or normealized vector if its magnitude is unity, i.e.

if ArA=4A2=1. Extending the concept, we say that the function A(z) fa normal or
normalized in (e, d) it

S aoya < o Q

From the above it is clear that we can consider a set of functions {¢,(2)}, ¥=1,2,8,...,
having the properties

¥
_f sl2) e fx)dz = 0 men _ (4)
J: {g.(2))?dx = 1 m=1238,... (5)

Each member of the get is orthogonal to every other member of the set and is a]30 normal-
lzed. We eall such & set of functions an orthonormal set in (e, b).

The equations (4) and (%) can be summarized by writing
b
S treerae = s, ®

Wwhere 8aq, called Kronecker's symbol, is defined as 0 if s < n and 1 if m=n,

62
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Example 1.
The set of functions

fa

. ¢ T . i " '
¢mizd = ijslnmz m=1,23,...

is an orthonormal set in the interval D = z S5 m

ORTHOGONALITY WITH RESPECT TO A WEIGHT FUNC;!"'IﬁN
L]
It I v @umde = 5, ¢

where w(z) 30, we often say that the set {y(=)} i3 orthonormal with respect to the
' density Junction or weight function w(2). In such case the set ¢ ()= 1{@%1)%(3:).
m=1,23,...,-is an orthonormal set in («, b).

EXPANSION OF FUNCTIONS IN ORTHONORMAL SERIE3

Just as any vector r in 3 dimensions can be expanded in a set of mutually crthogonal
unit vectors i, j, k in the form r=e¢i+ead + e, 30 we consider the possibility of expanding
a function f(z) in a set of orthonormal functions, ie. . -

flzy = 2. c.¢(x) esSz=h (8
RE
Such series, called orthonormal geries, are generalizations of Fourier series and are of
great interest and utility both from theoretical and applied viewpoints,

Assuming that the series on the right of (8) converges to f(z}, we can formelly multiply
both sidea by ¢_{2) and integrate both sides froma to b to obtain

e = f Do mds ©

which are called the generalized Fourier coeficignts. As in the case of Fourier series, &n
investigation should be made to determine whether the geries on the right of (8) with co-
efficients (9) actually converges o f{x). In practice, if f(z) and f{x) are piecewise continu-
ous in {a,b), then the series on the right of (8) with coefficients given by (9) converges to
3[f{z +0) + flz— 0)} as in the ense of Fourier series.

APPROXIMATIONS IN THE LEAST-SQUARES SENSE .
Let f(z) and f'{x) be piccewise continuous in (a,5). Let ¢ (x), m=1,2,..., be ortho-
normal in (g, b). Suppose now that we consider the finite sum

S8 = 3 as) (160)

nxl

as an approximation to f(x), where o, n=1,23,..., are constants presently unknown.
Then the mean squere error of this approximation is given by

5 1o - syt
: b

-—

+

P - Mean sguare error = .

(11

and the root meas square error En, i8 given by the square root of (i1}, ie.

. b
Bru = \fbiafn if(z) — Sy} dz (12)
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We now seek to determine the constants = .which will produce the least root mean
square error. The result i3 supplied in the following theorem which is proved in Prob-
lem 8.5, :

Theorem 3-1: The root mean sguare error (12) is lemst (i.e. a minimum) when the co-
efficients are equal to the generalized Fourier coefcients (9), i.e. when

o = o = § i@ (19)

We often say that S,(z) with coefficients c_ is an npprozimation to f(x) in the least-
sgueres sense or a least-squares approximation to f{x).

It is of interest to note that once we have worked out an approximation to f(z) in the
least-squares sense by using the coeficients ¢, we do mof have to recompute these coeffi-
cients if we wish to have a better approximation. This is sometimes referred to as the

principle of finality. : _ .

PARSEVAL'S IDENTITY FOR ORTHONORMAL SERIES. COMPLETENESS

For the case where o =¢, we can show (see Problem 3.5) that the root mean square
error is given by

B = ! [ s - i‘.c:]m (19
Tooal L&

It is seen that Eem: depends on M. As M -+ » we would expect that Eme— 0, in which case
we would have

.f,, Clferdr = glez (15)

Now, {15) could certainly not be true if, for example, we left out certain functions $,(%)
in the series approximation, i.e. if the set of functions were incomplete. We are therefore
led to define & set of functions 4 (2) to be complete if and only if Em—~0 8a M- «, so
that (15) is valid, We vefer to (15) as Parseval's identity for orthonormal series of func-
tions. In (6) of Chapter 2, page 23, we have obteined Parseval’s identity for the apecial
case of Fourier series.

In the case where E\; > (0 a8 M~ =, ie.

im § ) - S,epar = o o)
we sometimes write '
1‘3_1.1; Sy® = fim (17)

This is read the limit in mean of S,{z) as M = equals f(x) or S,(x) convergea in the mean to
f(z) as M - = and is equivalent to (16),

STUBM-LIﬁU’HL@ SYSTEMS. EIGENVALUES AND EIGENFUNCTIONS
A boundary value iwoblem-having the form

d d -
}E[NIJ aii] + [g{x)+ar(zl)y = 0O a=z=}h
- (28)
aya) +ayia) = 0,  Bu(b) + A y(b) = 0
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where «, e, A, 8, are given comstants; n(z), g(s), r(z) are given functions which we shall
assume to be differentiable and A is an unspecified parameter independent of 2, is called a
Sturm-Liouville boundary value problem or Sturm-Liouville syatem. Such aystems arise
in practice on using the separation of variables method in solution of partial differential
equations. In such case A is the “separation constant.” See Problem 8.14.

A nonirivial solution of this system, ie. one which is not identically zero, exists in
general only for a particular set of values of the parameter A, These values are called
the characteriztic velues, or more often eigenvalues, of the system. The corresponding solu-
tions ere called charecteristic functions or eigenfunctions of the system. In general to each
eigenvalue there is one eigenfunction, although exceptions can occuy,

If p(x) and q(») are real, then the eigenvalues are real. Also, the eigenfunctions form
an orthogonal set with respect to the weight funetion #{z), which is generally taken a8 non-
negative, i.e. r(z) = 0. It follows that by suitable normalization the aet of functiona can
be made an orthonormal set with respect to 7{z) in ¢S 2 =b., See Problems 3.8-3.11.

THE GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

Given a finite or infinite set of linearly independent functions (), ¢,(%), vy{z), ... de-
fined in an interval (¢, b) it is possible to gensrate from these funetiona a set of arthonormal
functions in {e,5). To do this we first consider a new set of functions obtained from the
¢, (%) and given by

oy 91(@h  Cop 0y() + Cpiig{), €y ¥ (&) + Oy a2} + gyl - {9

where the ¢'s are constants to be determined.  We shall degignate the functiona in (15) by
'ﬁdﬁ), %(x)s ¢'s(a:): rrorn

We now choose the constants ¢,,,£,,0,, ... 30 that the functions ¢ (2), d,(x) ¢y(2@)s . . .
are mutuoelly orthogonal and alss normalized in (g, b). The process, known as the Gram-
Schmidt orthemormalization process, ia illustrated in Problem 3.12,

Apn cxtension to the case where orthonormalization is with respect to & given weight
function iz easily made.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

In the course of sciving boundary value problems waing separation of variables we often
arrive at Sturm-Liouville differential equations {see Problem B8.15, for example). The
parameter A in these equations is the separation constant, and the values of A which are
obtained represent the real eigenvalues. The solution of the boundary value problem is then
obtained in terms of the corresponding mutuaily orthogonal eigenfunctions.

For an illustration which does not invelve Fourier series, see Problem 3.13. Other illus-
“trations involving this general precedure will be given in later chapters.
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) Solved Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

31.

3.2

{2) Show that the set of functions .
1, Isiﬁ%, cos—'—'g, sin ?l’i' cosgz-,—x, sini}‘f, coas—zf-.
form an orthogonal set in the interval {—L, L}.

(b) Determine the corresponding normalizing constants for the et in (a) 8o that the
set is orthonormal in (~L, L}, '

{a} This follows at once from the results of Problems 2.2 and 2.3, page 26,
{t) By Problem 23, “

L L
. g W = L J' o MwE -
_’ZL sin? dx v _Lcns T dz L
I Fl L 2
1 . mzd — | 1 mex -
Then f_b(&sm—ﬂ-—) dz =i, f—i. (-J;m—-—b ) de = 1
’ . L - . L 1\
AIBU' j' (l)ﬂ de = 2L oT -’- . (m) d¢ = 1

Thusa the required orthonormsl! set is given by
1 ox 1 . Zax 1 2xT

1 1 . wx
— r— 1 1 Rl ——=tpd 5, a— — Con ——, A
AR in @w L 7 Bin =g JI T .

Let {¢ (x}) be @ get of functions which are mutually orthonormel in (g, b). Prove

that if 2 e, ¢,(x) converges uniformly to f{x} in (¢,d), then
=l » .
6o = f 1nemds

Multiplying both sides of - «
e = glcﬂﬁn(z) (1

by #giz) and integrating from o ta b, we have

L4 . = B . i .
[roocatr = 3o f onieiias @

) whete the interchange of integration and summation is justiﬁed by the fact that the eeries converges

uniformly to f{z).- Now since the functions {¢,(x)} are mutuaily orthonormal in (g, b}, we have

) b 0 mekn
J;wmf.z)@..(ﬂdx = {1.

: m = i
so thet {£) hecomes b -
J: A7) eml2d 5 = Ca i

a8 reguired.

We call the coefficients ¢y piven by {f) (he peneralizted Fourier coefficients corresponding to
£{z) even theugh nothing may be known about the convergence of the series in (1). As in the case
of Fourier series, convergence of & ¢, ¢q(#) iz then investigated using the coefficients (3). The

n=1

conditions of convergence depend of cowrse on the types of orthonormal functions used. In the
remainder of this book we shall ba concerned with many examples of orthonormal functiona end
series,
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LEAST-SQUARES APPROXIMATIONS. PARSEVAL'S IDENTITY
AND COMPLETENESS '

as 8,4z = f_‘, .9a(2), where ¢(2), n=1,2, ..., is orthecnormal in (g, b), prove

that =
I i) - s e _f U)rdz - aza e, + 3 al

n=I
B
where ¢, = I Kx) ¢, (x)dz are the generalized Fourier coefficienta corresponding
to fiz). .

We have M
fiz) = Sulz} = f(z@) = F atnl)

By squaring we obtain
)

M »
[He) = Suin))2 = (A= ~ 2 ngl an 1) ¢ala) + rﬂgl ugl apy ctn P} Pulx)

Integrating beth aides from o to b using

f " o) i) i, { on(@) aula) bz = {u mrn

11 m=na

wo obtain

b [ M M
f [flx} — Sylzlftdr = f [fleNids — 2 % ape, + 2 o2
a 2 A=l LT}

We have assumed that f(x) is such that all the above integrals exist.

34. Show that
& b o s
S ma-sares = §UErds + Fe-op - T
Thia follows from Problem 2.4 by noting that
b M M b » )
J-u Ween?* de = 2n§'| e T ..;: = f [tz + g: e = 2oy )
v M
[ inenpds + 3, (e catt = ]

0 M M

"fie + 3 = e - 3 o8

il

35.  (e) Prove Theorem 8.1, page 54: The root mean aquare error is a minimum when
the coefficients a, equal the Fourier coefficients ¢,.

(b} What is the value of the root mean square error in this caze?
(e} From Problem 8.4 we have
b u M M
f o -swemer = [ pomrac+ § eu-or - §a

Mow the root mean aquare error will be 2 minimum when the shove in & minimum, Howaver, it

is cdeir that the right-hand aide iz a minimum when 2 (an— e} = 0, ie. when a, =,
for all 5
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{#) From part {a) we gee that the minimem value of the root mean square errot Ig given hy

Be = [525 [ Vo - Swtempan ] .
. - J%_T[ib[f[z}]zds - 'él c’%]m

Prove that if e, n=1,2,5,..., denote the generalized Fourier coefficients corre-
aponding to f(x), then - »

Sa = [ e

nwi [

From Problem 3.6 we see thot, since the root mean sguare srror must he nonnegative,

if

L

M b
2t s f o | m
Then, taking the limit a5 M = « and noting thet the right side does not depend on M, it follows that
- b
S & f lard i
n=1 a

This inequaltity is often called Beasel's inegualily.

As o consequency of (2) we soe that if the right side of {£) exists, then the series on the left
must converge, In the gpecial case where the equality holds in (2) we obtain Porseval's identity.

]
Show that lim f fiz) ¢,(z) dz = 0.

L] -
By definition we have ¢, = I @} putz) dz.  But since X c? converges by Problem 3.6, the
. a nual
nth term ¢2, and with it ¢,, must epproach zero as m— ®, which is the reguired result, Note that
this result for the speeial case of Fourier series is Réemann's theorem (5ce Problem 2.19, page 35).

STURM-LIOUVILLE SYSTEMS, EIGENVALUES AND EIGENFUNCTIONS

38

(e) Verify that the system y”-}-iy =0, 401 =10, (1) =0 is a Sturm-Liouville sys-
tem. (b} Find the eigenvalues and eigenfunctions of the system. {¢} Prove that the
eigenfunctions are orthogonal in (0,1). {(d) Find the corresponding set of normalized
cigenfunctions. (s) Expand f{») =1 in a series of these orthonormsl functions.

fa} The system is a special case of (F&), page 54, with plz) =1, glx) =0, H2)=1, =0, 0 =1,
e, =1, a; =0, f{43=1, B, =0 and thus is & Sturm-Livuville system.

{¥) The general solution of " +iy =0 i8 y = AcosVhz + B ainvViz, From the boundary
condition w{) =0 we have A =40, te. y=2D5zin ﬁa: Frem the boundary econdition
y(1} = 0 we have Esinyh =0; since B cannot be zero (stherwise the solutien will be iden.
tically zero, i.e. trivial), we must have sim,r =& Then v")_; =mr, &= m%? where

m=1,28 ... erethe required eigenvalues.
The eigenfunctions belonging to the aigenvalues r = m¥z? can be designated by B, sln nirz,
m=127%.... Note that we exclude the value m =0 or L =10 ms an eigenvalue, gince the

correaponding eigenfunction is zero.

(¢} The eiganfunctions are orthogonal since

1 1
f (B, sin max)(B,, sin nrg) dz BB, f Bin max sin vrx dx
o o

_BmBa
T2

f l[coa! (m —~nrx — cos (m + njox] dz
9

BBy sin{m—njrz _ gin{m+ nhrx| |

2 {m—nhr m + n)r

= 0, mena

o
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9.

3!10.

(@) The eigenfunctions will be orthonormat if

1
f (B sinmzz)ds = 1
a

1 2 1 A2 . .
fe. if B2 f sin?max dy = % J. {1 ~ ¢osdmge)dz = _2.1 =1, or By= v@, taking the
o (]

positive aquare root. Thus the set V2 sinmar, m = 1.2, .. ., i3 an orthonormal pet.

{e) We must find conatants ¢, cg, . .. such that
wlt
flz) = I endnle)
L LAt

where f(&) =1, ¢u(2) = V2 sinmre. By the methods of Fourier seTies,
VE(t ~ conme)

mmr

n = j"f(zwm{z)dz = ﬁ_j;'ainmrxdx =

Then the required seriea [Fourler series] is, assuming 0 < x < 1,

1 = i __________}2(1 —ﬂ::am gin maz

mm]

Show {hat the eigenvalues of a Sturm-Liouville system are real.

We have £[rm ]t = o (1)
awla) + a’la) = 0,  myid} + fa'ih) = 0 £)

Then assuming plx), ¢lz), #(2), ey, 2g. By B2 are real, while A and vy may be complex, we have on
kaking the complex conjugate (represented by using w bar, s in 7. A):

%Eﬂﬂg + jqley +Rr(z)jt = 0 "
afla} + mf(a) = 0,  HE)H+ Pait(Bh = O )

Multiplying equation (2} by ¢, (3) by y and subtracting, we find after simpli;fyi;':g.
£ B ~ 5] = (= Nrthg
Then integzating from & to b, we have
a—% J:’ riElviide =  pl=dyy — 9v) : =0 ' ()

on using *he conditions (2) and (4} Since #(z) =0 and is not identically zere in (a, ), the integral
on the left of (5) is positive and 80 A—R =0 or A =%, ao that A is real,

Show that the eigenfunctions belonging to two different eigenvalues are orthogonal
with respect to r(z) in (g, b).
If y; and y, are eigenfunctions belonging to the aigenvalues A, and A, respectively,

d d
E[”{”}§]+ fale) + 0zl = 0 )]
oy (8] + eiled = 0, B131(8) + Bayild) = © (£)
o
d% pl=) -5;—2] + fate) +agrtelyy = 0O (s
=0 #)

apal(e) + aila) = 0, Zuld) + By
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Then meltiplying (1) by s, (8 by y, and eubtracting, we find as in Preblem 3.9,
2 powas—vai)l = e

Integrating from a to b, wa have en using (2} and {(4),
S 3
(A =2y J: riahgads =  p(R)tawi—vayi) =0

and singe A, ¥ &, We have the required result

b
§ rewmads = o

Given the Sturm-Liouville system y” +iy =0, ¥(0} =0, {L)+ py(L) =10, where £
and L are given constants. Find {(g) the sigenvalues and (b) the normalized eigen-
functions of the system, {¢) Expand £(2), 0 <% < L, in a series of these normalized

eigenfunctions. _
{}) The general solution of ¢ + iy =10 is
' v = Acosviw + Bsinvie
Then from the condition (0} = O we find A =0, sothat
' vy = Bsinyiw
The condibon L)+ py(l) =0 gives .
BVrcasVAL + BeinViL = 0 or tanyiL = —1%’5 #3)

which 15 the equation for determining the eigenvalaes A, This equation cannot be solved exactly;
however we cen obtain approximate values graphically. To do thie we let v = VAL so that

the squation becomes v
tenv = = of )

The values of v, and from these the values of s, can bs obtained from the intersection peints
v, 0ty ... of the graphs of w =tanv¢ mnd w = —v/SL, se indicsted in Frig. 3-1. In com-
ptraction of these we have assumed that & and L are positive. We else note thet we need only
find the positive roots of (1)

o A e A e e

Fig. 3.1
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(b} Tha elgenfunctions are given by

ealx) = B, sinVi .z {2
wheze A, % =12,3,..., represent the eigenvalues obtained in part [a). To normalize these
we require L

f BlaevReds = 1
B: pt
Le. —23f (1=cos2Vi 2lde = 1
[
. o, )
or 8 = {4}

Vi L ~ ain2yA, L

Thus a zet of normafized eigenfunctions s given by

wlx) = \/ Vi sin Vi, % n=182, . .. (&)
2V, L —sin 2va, L

(0 1 f@) = § oupua), then

L _ “/—
oy = j; fm) gaz)dx = Jz\/_[, - I #(z) sin v, = d2 {5

Thua the required expansion in that with coeficients given by (6}, Tha expansion for fz) can
equivalently ba written as

' fiw) = ﬁ {f fi®) sinva, = dz} Bin Vi, (6]

nel zv’f’,.z, - 3in 2V,

GRAM-SCEMIDT ORTHONORMALIZATION PROCESS

3.12. Generate a set of polynomisls orthonormal in the interval {-1,1) frem the sequence
Lo, 2% 2, .

Amord{ng to the Gram-Schmidt process we congider the functions
#1E) = 03 2@ = o+ oepr,  galx) = oy + T + oyt
Since ¢.{z} must be erthogonel to ¢,{z) in (—1, 1}, we have
f_ll (o1}en + omm)de = 0 ie oyl = 0
from which ey =0, becauas e » 0. 'Thus we have
#ilz) = ey dgl@) = ope

In order that ¢,(x) and #2(%) be normalized in (—1,1) we must have

fl(c.,)ﬂdz =1 _fltcuz)*dx = 1

= 1 _ 3
"-n-t‘J; G = Taly

Since ga{x) most be orthogonsl to dy(x) and gofz) in (—1,1), we have

frem which

t ! '
f 1&'"}{"31 +ogat e dr = 0, f {e29%)(eay + o9y + egyr®h e = O
- -1

from which "
' Zemy Ffoas = 0 or opy=—deg, =10

Thus ?slE = eyl — 323 /
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In order that g,(x) be normalized in (-1, 1) we must have
1
.’11 [l —823fdz = 1  whence oy = e NG
The orthonarmal functions thus far are given by

#il®) = :\Ff’ w7 = *\E‘x- eale) = =\E(8x’2_ 1)

By continuing the process (see Problem 3.29) we find

= 0 86x! — 30a% +
ol®) = :ﬁ(ﬁ’.‘fz_.aﬁ), slz) = :&(___.gL.ﬁ),

From these we obtain the Legendre polynomiala

2 —_
Pm = 1, Pya) = & Prm) = Sl P = B
- 30x% + 38
P} = 86zt 2 % o
The polynomials sre such that Pp(i}=1, n= 0,1,2.8 .... We shall investigate Legendre poly-

nomisls and epplications in Chapter T.

APPLICATIONS TO BOUNDARY VALUE PROBLEMS

318, A thin conducting bar whose ends are at = =0 and z =1L has the end z=0 at
temperature zero, while at the end z=1L radiation takes place inte & medinm of
temperature zero. Assuming that the surface is insulated end that the initial tem-
perature i f(z), ¢ < # <L, find the temperature at any point z of the bar at any
time &. )

The beat conduction equation for the temperature in & bar whose surface 15 insulated is

du _- 8%
3t ° "ot 1)

Assuming Newton's law of cooling applies at the end z =1L, we obtain the econditlon
~KudL,ty = hlu(l, )0
or ufl,t) = —fAul,p) (2}

where @ = K/k, K being the thermal conductivity and A & constent of proportionality. The re-
maining boundary conditions are given by

w0, = 0, uiz,0) = A=) juinn < M
To solve this boundery value problem we let o = X7 in (2) to sbtain the solution

u = el {A cos Ax -+ B sinAx)

From u(0i} =0 we find A =0, so that

ufe, t) = Be=a\" gin az
The boundary condition (2) yields X
tanxL = 8- "
This equation 13 cxactly the same as (I} on page 60 with ) replaced by A%, Daenoting the sth pesi-
tive root of () by A, == 1,2,8, ..., we see that svlutions are
uwlz,8) = Boe it slnag

Using the principle of puperposition we then srrive at a solution

ulz, ) = EIH,.G“"‘-!’sin).,x
—
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The last boundary condition, uw(z,0) = f{z). now leads to
ey = é} B, sinhe
We can find B,, by multiplying both sides by sin )z and then integrating, using the faet that
j;bain);,,,x ginx,xde = O men

However the result ia already available to us from (6} of Problem 8.11 if wa veplace ), by A3, Thua

the solutian is \
dh e~ ¥hat gin ka2 L ,
ufz, b)) = i ﬁrm{_‘: Hz) ain gz dx}

n=L

3.14. () Show that separation of variables in the boundary value problém

v _ 9 au
o) = ZIR@E |+ ko  0<z<L £>0

w00 = 0, wl,f =6 wz0) = f#) Wi <M

leads to a Sturm-Liouville system. (b} Give a physical interprefation of the equa-
tion in {a). (¢} How would you proceed to solve the boundary value problem in (e)?

{a) Letting u = XT in the given equation, we find
. d dX
gWXT = T4 [K{:)Tx-] + A(@XT

Then dividing by ¢(=x}XT ylelds

T oo _1_4d aX
T Fix)X dx K(z) dx + iz}
Setting each side equal to —i, we find )
T+ AT = 0 (1)
d
L[]+ e+ r0mnx = o @

Also, from the condftions w(0,2) =0 and u(L,f) =0 we are led to the conditions
X{oy =0 XL =0 ' i

The reguired Sturm-Licuville system is given by (¢) and (8). Note that the Sturm-Liouville
differential equation (2) correaponds to that of (/8), page 64, if we choose ¥y =X, p(x) = K(z),
glz) = hiz), r(z) = piz). _

(#} By comparisen with the derivation of the heat conduction equrtion on page B we mee that
ulz, 1) can be interpreted as the temperature st any point » at ime & In such case Ki2) is
the (nonconstant) thermal conduetivity and g(z) is the specific heat multiplied by the density.
The term Mx)u can represent the fact that a Mewton's law of cooling type radiation into a
medium of tamperature zero i taking place at the surface of the bar, with a proportionality
fnetor that depends on position.

te}  From equation {2) subject to boundary conditions (8} we can find elger values ), and normalized

aiganfunctions X,(z), where 7= L,2,3,.... Equation {I) glves T =¢e~',, Thus a selutien
obtained by superposition 1a

wlz, 8} = i co~ it X (=}
nwl
From the boundary condition u{z, 0} = f{z) we have

fla) = ii 8 X (2
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which leads to L
8y = J: Hix) X, la) dz

Thur we obtain the solution

L

- L
wwt) = 3 {j; f(2) X () dx} e=MUX (z)

Supplementary Problems

ORTHOGONAL FUNCTIONS AND ORTHONORMAL SERIES

315, Given the functiona ap, e, + @,%, oy + 8% + ayz? where ay, ..., &y Bre constents, Determine the con-
stants =0 that these functions ere mutually orthonormal in the interval {0, 1)

316, Generalize Problem 3.15 to arbitrary finite intervals.

3.17. {a) Show that the functions 1,1 — =, 2 — dx + z? are mutugily orthogonsl 1n (0, =) with respect to
the density fuhetion ¢—3, (b) Obtain a mutuslly orthonormal set.

218, Give & vector interpretation to funetions which are orthunormal with respect o a density or

weight function.

3.1¢%. {a) Show thei-the functions cos(n co:;'lzh, n=0,1,2258. ..., are mutually crthogonal in (~1,1)
with respect to the weight function (1 —%-42 (b QObtain a mutually orthonormal set of these
functions.

320. Show how to expand f{z) into a series E: €4 oY, where p,(t) are mutually orthonormal in {c, b)
=
with respect te tha weight function w(x).

3.2, (o) Expend f(z) inte a serics having the form X ¢, p.{%), where ¢, {#) are the mutually ertho-
i n=g
normal functions of Problem 3.19. {4 Diacuss the relationship of the series in (o) to Fourier geriea.

APPEOXIMATIONS IN THE LEAST-SQUARES SENSE. PARSEVAL'S IDENTITY
AND COMPLETENESS '

322,  Let r be any thres-dimensional vector. Show that
: (g) {eeil+(r+§)* =& r? ) (r-iPFireHirkF = r?

where 2= r+y pnd discuss these with reference to Bessel's inequality ar]d Parseval’s identity.
Compare with Problem 3.6.

323. Suppose that one term in any orthonormal series {such as a Fourier series! iz omitted. {z) Can
we expand an arbitrary funetion f{x) in the series? (b} Can Parscval's identity be satiafied? {c) Can
Degpel’s inequality be setiafied? Juatify your answera.

.
324, (8) Find e,,c5¢; such that f [z — (e, sinzx = ¢y 8in 2z + 3 sin Ix){2dz §s 8 minimum.
-

() What is the mean equare error and root medn squUETE errer in approximating z by ¢ sinx +
¢y 8in 2 4+ o4 8in 3z, where &y, ¢y, ¢ are the values obtained in a)?
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{c] Suppose that ik is desired to approximate 2 by a, tin = + ay sin 2% + ay 8in 8z + o sin 42 In the
least-squares sense in the interval {—=, 7). Are the values a;, ey, ay the same as o), ¢g &3 of
part (a)? Explain and discuss the sigt_\iﬁt‘,anca of this,

125. Verify that Beasel's inequality holds in Problem 3.24.

3.26. Discusa the Telationship of Problem 3.24 with the expansion of Hz) =2 in & Fourier seriea in the
interval {—r,=).

327, Prove that the aet of orthonormal functions en(2), n=1,2,3,..., cannot be complete in (a, ) if
there exists some function f(z) different from zero which ia orthogonal to all members of the set, i.a if

b
Iﬁ;}.;,(x)dx =0 n=123,...
-]

328 Ig the converse of Problem 3.27 true? Explain

GRAM-SCHMIDT ORTHONORMALIZATION PROCESS

829, Verify that a continuation of the process In Problem 812 produces the indicated remults for gz}
and g;le).

330, CGiven the set of functions 1,x,2% %%, ..., obtaln from these & set of functions which are mutually
orthonormal in (—1,1) with respect to the weight function .

331, Work Problem 3.30 if the interval Is {0, =) and the weight function s =% The polynomials thus
obtained are Laguerre polynominls.

332 Io it possible to use the Gram-Schmidt process to obtain from x, 1-u=, 3+2z a set of functiona
orthonormal in (0,1)? Explain,

STURM-LIOUVILLE SYSTEMS. EIGENVALUES AND FIGENFUNCTIONS
333, (1) Verity that the syatem y” =iy =0, pl0)=0 p{l) =0 isa Sturm-Liouville pystem.
{) Find the eigenvalues and eigenfunctions of the aystem.

(¢} Prove that the eigenfunctiona are orthogonal and determine the correaponding erthonermal
functions,

334  Work Problem 3.33, if the boundary conditions are {(a} g0} =0, '(1} = 0; (B} V(O =0, ¥} =0,

335, Shaw that in Problem 3,11 we have
g = 27y + A2
n T INYLEYA

336.  Show that any equation having the form on(z)y” + afr)y’ + [ag(x) + rag(z)jy = 0 ean be writian
in Sturm-Licuville form as

d
-&‘f;[: 1L | g +artelly = 0
with ooy = oy = -?;-p{xl. rz) = %pm‘

$17. Discuss Problem 3.3 if the boundaty conditions are replaced by w0, 8) = A, 6), ufL, 0=
hystlL, ).
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338, (a) Show that separation of variables in the houndary velue problem

ot = Zlvmk | + waw

po ) =0, wL,t) =0, ¥z0 ={ wezo =0 s <M
leads to & Sturm-Liouvilte system, (b} Giva a phyasicsl interpretation of the equations in (s}).
(¢) How would you solve the boundary valie problem?

239, Discuss Problem 838 if the boundary conditions y{0,¢) =0, y(L,) = 0 are replaced by (0,8 =
Ry, ), yetl, € = Row(L, £), respeetively.

APPLICATIONB TO BOUNDARY VALUE PROBLEMS
440, (a) Solve the boundary value problem

T
--—‘- = 'axi O0<g<L, ¢t>0

u(0,8) = 0, willf) =0, ulr,0) = flz), iw(zm O] <M
and () interpret physically,

3.41. {®) Solve the boundary velue problem
By a0
att [r
90,0 =0, ylL g =90, ylz,0 = fz), = =0 | <M
and (b} interpret physically,

342, (a) Sclve the boundary value problem

?;Eg+b=%;—*j=o 0<z<L, t>0

§o,0) =0, w0, =10, wL, =0 (L4 =0 u=0=/[ [|Hetd) <M
and (5} interpret physicslly,

343  Show that the solution of the boundary value problem

o _
it~ % Laxl, t>0

w0, ) = huf0, t), w(itht) = —hullt), wz,0 = fiz)
where x, h and ! are constants, is _
= Ay coB AT + b osin h2
ufz, 8 = 'E' e xiit c(kﬁ iy v J:)'(a}{h, conhx + A ain az) da

2ha

where », are solutions of the equation tanal = Frh Give a physical Interpretation.



Chapter 4

Gamma, Beta and
Other Special Functions

SPECIAL FUNCTIONS

In the process of obtaining solutions to beundery value problems we often arrive at
spectal functions, In this chapter we shall survey some special functions that will be em-
ployed in later chapters. If desired, the astudent may akip this chapter, returning to it
should the need arise.

THE GAMMA FUNCTION
The gamma function, denoted by Iin), is defined by

Mn) = f wle~2 dz {1}
[}
which is convergent for 2 > 0.
A recurrence formula for the gamma function is
n41) = nrin) (2)

where T(1)=1 (see Problem 4.1). From (), P{#) ean be determined for all a> 0 when
the values for 1 &% <2 (er any other interval of unit length) are known (see table on page
68}, In particular if » is a positive integer, then

Ma+l)=n! =n=1238... (&
For this reason I'(n} is sometimes ealled the feetorial function.

— — — - TE) _ 4! _
Examples. rE = 1! =1, T() = B = 120, és% =S=1

4!

B
It can be shown (Problem 4.4) that

) = V7 D)

The recurrence relation (2) is s difference equation which has (1) as s solution: . By

taking (1) aa the definition of T(n) for n >0, we can generalize the gamma function to

2 < 0 by use of {2) in the form
Tin+1
r(ﬂ) = —!—n—) . (5)

See Problem 4.7, for example. The process is called analytic continuation.

67
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TABLE OF VALUES AND GRAPH OF THE GAMMA FUNCTION

n ri=)
100 1.0000
116 0951
180 09182
180  0.887
1.40  0.8878
1.50 0.8882 Fig. 41
160  0.893F
170 0.9086
1.80  0.8314
160  0.8618
200  1.0000

ASYMPTOTIC FORMULA FOR r(n)

It » is large, the computational difficulties inherent in a direet calculation of r{n) are
apparent. A useful result in such case is supplied by the relation

Mn+1) = Bernre-nghlitntld 0wl (&)

For moat practical purposes the last factor, which s very close to 1 for large #, can be
omitted. If % is an integer, we can write

n! ~ yBmunie~" s}
whers ~ means “is approximately equal to for large #". This ia sometimes called Stirling's
faotorial approzimation (or aeymptotic formula) for n 1,

MISCELLANEOUS RESULTS INVOLVING THE GAMMA FUNCTION

*

1. He)rl-z) = —
BIEY Zvr

In particular if = =3, 1(§) = VT as in (4).
2 U=} (2 +4) = V7 (2z)

This is called the duplication formula for the gamma function.
3. I‘{w} I‘(x + Q‘!?:) r(x -+ %) . .r(x + m?;: 1) rm gpllfti-ma {211,)(!1!_"‘.)!2 r(mm]

The duplication formula 1a a apecial case of this with m = g, '

5 L, 1 138

4. M= +1) Vinzate {1- + 1oz * 2Aast  5igd0e T }

This is called Stirling's asymptotic series for the gamma funetion. The series in
braces is an asymptotic series as defined on page 70,

5. M) = J: elnzgde = —y

where y is Euler's constant and is defined as

ll‘iﬂ(1+%+:l)—,+ +ﬂ%—lnM) = O.5TT2156. ..
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1

r{g+1) 1
3

1,1 1
D) Ttatgt o Aioy

THE BETA FUNCTION
The bete function, denoted by B(m, 1), is defined by

Bim,n) = j; i1 g ds @)

which is convergent for m> 0, 1 > 0.
The beta function {g connected with the gemma function according to the relation

_- T{(m)T(n) )

B{m, n) T(m + 1)
See Problem 4.12, Using () we can define B{m,n) for m < 0, n <0,
Many integrals can be avaluated in terms of beta or gamma functions. Two useful
results are

e
tm=1§ cogte-t - = [Lmrin)
J: gin §cos-tgds = }B(m,n) = 3Tm+ ) (26)
valid for m >0 and n >0 (see Problems 4.11 and 4.14) and
T i = 1-9) = o=
5 T%7 x = CpPr(i-p = Bin prr 0<p<l (in

See Problem 4.18.

OTHER SPECIAL FPUNCTIONS

Many other special functions are of importance in science and engineering, Some of
these are given in the following Yat. Others will be considered in later chapters.

2 ro_a 2 r-
1. Error funetion. erf(z) = —J" evdy = 1~ —f g
(2} =) i) e vdu
2. Complementary erfc(z) = lf‘e'“'du = 1 - erfix)
error function. Ve
8. Exponentialintegral.  Ei(z) = J' " du
Fi
1. Sineintegral. , _ £ 8inw = * _ [*"sinu
ineintegra Si(z) _}: o G 3 L Tu du
5. Cosine integral. Cilzy = J' TS g,
6. Frednel sine integral, S(x) = «\E Jﬂsinu’ de = 1 — \E f “sinutdu
T [y T

7. Fresnel cosine integral, Cix) = @fxeoau’&u
-]

2 E ]
1- J: cos uldu
H’.£
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ASYMPTOTIC SERIES OR EXPANSIONS
Consider the series

Sy = Go+%+§—§ --.+%E+A._ 2
and suppoze that S} = @0 + % T _g% P 2% (13)

are the partial sums of the series.
If Ra(#) = f(z) — Sa(z), where f{z) is given, is such that for every n
limx"|Ru(z)] = 0 (14}

then S(z) is called an asymptotic series or expansion of f(x) and we dencte this by writing
f(x) ~ S(z).

In practice the series (1£) diverges. However, by taking the sum of successive terms
of the series, stopping just before the terms begin to increase, we may obtain a useful
approximation for f(z). The approximation becomes better the larger the value of =.

Various operations with asymptotic series are permissible. For example, asymptotic
gories may be multiplied together or integrated term by term to yield another asymptotic
geries,

'Solved Problems

THE GAMMA FUNCTION
41, Prove: (a) I{n+1)=nr(n), n>0; (b)) rnt+l)=nl n=123,....

“ Y
Jl zre¢—tdz = lim zRe~2dx
0

H

(g} T(n+1) g .
-

L] ]
- —— a—1
. J; {(—e~tjinun—1) dz}

M
;P'm {_Mae-}f + ”J' ph=1g-I dz} = nF(m) it n>0
- L]

L

tim {(s“](—s‘-"}
Mew

w M
b)) T = f e-idz = dim | evdz = lJim 1—e ) = 1
L+ Mww o) Moo

Put #=1,2,3,... in I's+1)=nln). Then
@ = IT{) = i, (@) = 21%) = 2+1 = &1, r{d) = 8I¢3) = 3.2t = 3¢
In gerneral, T(n+1) ==al if nia & positive integer. .

r(6) ri) r(3) I'2.6) 6 I(3)
12, Evaluate (o) Z1(8)’ (b) )" (¢} IG5 {d) 5T(g
v _ B! _ B524:8:3 _
@ 53 “ Tz ¥ Tzez - W
®) S TR RAC I B8 157 N |
D T{}) T3) a
@ Dares 2! (1.5){0.5) T{0.5) _ 16
T{5.5) A5NIE)25){1.E)0.5) £(0.5)  §i6
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4.6.

47

Prove that T{1) =/~

BL(R) _ MpupTi® _ 4

@ 5U(§) =  BI{§ 8

Evaluate (o) _j; Pe-rdz, (B) J; 2e% dz,
{a) J; Pe~2dz = rd) = 3! = B

{b).Let 2x = . Then the integral becomen

= . L]
y\® _.dy _ 1 . _rm _ 61 _ 45 .
J;(E)”z = e =P 5= F

0 L]
Wehave 0{§) = f z-ittg-tdz = EJ; e~%'du, onletting = = . It follows that
e o - .

ot = {2 J;mr"'du}{z J:me-v' au} = 4'[: j;"e-‘v'-w'i dw dv

Charging to polar coordinatea (p, ¢}, where u = p ¢os¢, ¥ = p sing, the jast integral becomes
w/2 - 4 e =
4_f f o dade = 4 -3 dp =«
) [] o

uy Joma T Je=o oo
sndso I'({) = vr

Evaluate (a) .j;“ﬁ‘_”ad”' ®) J:”S""’dz, () J;lv"ia;nz :

{a) Letting 3% = z, the integral becomes

J;-\f;ﬁe'h}:"“dz = Q-J;‘:""‘e—h!x = Ty = %

® J‘:R'"’dz = j; " otnaf g = f:a-mw"'dz. Let (41n3)? = = and the integral

becomea

. 1 r@) VI
e—-=d = —-—-—f g-llp-sdy = = £
J; (\?4 In3 2ydin3 Jo 2/4In3 Y
{t) Let —Inz=u, Then 2=¢ . When =1, u=0; when #=10, #==. The integral
becomes »
a-'
i1

"ﬁdu = J;au-l!tg—sdu = r{i’) - ﬁ

Evaiuate J: z*e*" dz, where m,n,a are positive constants.

Letting ex" =y, the integral becomes

" ¥ t/nym ¥ i 1 " 1 -1
J; (a) }_G-'d{(_a_) } = mmﬂ);n.‘; gpimti¥n-lg-vigy = Mc..nu.l'(m,‘ )

Evaluate (a) T(~1/2), (b) D(-5/2).
We uae the gemrali;ution to negative values defined by (s} = Nnt 1} .
n
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4.10.

GAMMA, BETA AND QTHER SPECIAL FUNCTIONS

(s} Letting n=—f, Di=1/2) =08 = ayx.

() Letting n=—9/2, Ti-8/8) = SEMR _ SBVE _&VE

—8/z —-32 ~ 8§
Then r(~8/2) = 08 - - & o5
(—1)"n!

1
Prove that j: 2™ (inz)dx = sy

{CHAP, 4

where n i8 a positive integer and m > —1.

-
Letting # = ¢—v, the integral becomes (—])“f yre—milmdy  If (s 1)y =u, this last
*

Integral becomes
du (-1

N L = " me-vdy = Lt _
(—1) j; mrDn mFi (m+1)n+1.£ we-vdu = {m+1),‘ﬂl‘(u+1) =

Prove that _]: e Neosprdh = %\!?e-s'uu‘

Lot [ = Ho @) = j; e~aoa gn dh.  Then

- .
% = J: (—ae-a2*) win B dA

= g—w_'»\‘ : ”_ a * -ad - _B
= 5 sin g\ s 2aJs e=adoos B3 dh = C I
1 ...’;.!: - 4 i S
Thus Iap 2w o af b = 2

Integration with respect to § vields .
Inf = -% 0o

or I = Ha,g) = Qe e

{

ks
"t

=11 ]

- w T
= = L 1 f —W2e-r gy =
But € = I{a,0) J: ¢ A -

Thus, as reguired,
l = 1 4 ’E,;—a’m
2 o

)

—1)"n!

+ 1}:‘}!

{1

@

JE—, on letting » = ad%

A particle is attracted toward a fixed point O with a foree inversely proportional to
its instantaneous distance from G. If the particle is released from rest, find the time

for it to reach O.
At tims ¢ =0 let the particle be located on the x-axia st & =a >0 and lat O be the origin.
Then by Newton's Iaw fz k
ngE = T3

where  in the mase of the particle and k > 0 is n constant of pmportiﬂnalify._

Lat L v, the velseity of the particle. Then

== ==
di _ 12 di _d.'t dt
ml.lg-! = .3 or wrd = —~klnx + ¢
dz r 2

upon integratlng. Since ¢t =0 st z =¢, we find ¢e=kIna Then

w8 =& - L ne
7 T kwy v v=F < VM\J ne

dfz _dv _dvdr

du
Vidx

1P

and (1)

2

]
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where the negative gign im chozen since » iz decreasing B3 ¢ increanes. We thus find that the time
T taken for the particle to go from =g to x =0 is given by

r—\!__[;‘ﬁ“__ )

Letting Ina/c =u or & = ae—u, this hecomsas

T = & %J‘: w-iBgme gy = u‘\h-"%r{ﬁ} = aqf3%

THE BETA FUNCTION -
411. Prove that (a) B{m,n) =B(n,m), (») B{m.n)= 2I sin™ "¢ cos™! § d§.
4

(a) Using the transformation 2 =1—y, we bave

il

1
Blm,»} = J;lt"‘“’(l"ﬂ""'fﬂ J;(l"lf)""l"‘"dl‘

Il

1
J; PHI-ym=ldy = B, m)
(b} Using the transformation = = sinls, we bave

1 Ldd)
Bim,n} = J; 2m=i{]l =gy — J; (0in? )= (o @)= =1 2 3in # cos » da

L2
2 sinim—1g aogn—1 g da
L

It

: - Iimir{n) .
442, Provethat B{mx) = T + ) m,n >0,
Letting z = 27, weh = [ amtemrds = 2 ettt g,
g = we have T(m) J;z a=r de 2]: zim—1 =& gy

Similerly, r(n) = Sf‘v’”-ieﬂ‘ dv.  Then
13

(ot )

L] o :‘ ”.
= 4 j gIm—1ganey  =irt by
A J; gin-le de dy

I{m} I(n)

Tramsforming to polar coordinates, x = -poobﬂ, ¥ = paing,

it
Tm)P(n) = f J;_ PRI ER) -l gt onn am— Vg mints~1g doda

- 3
4( =0 prm a1 P dp)(‘£=° coxIm=1 4 winn=1 @ dﬂ)

wfd
21:‘(m+1'|}.r0 comtt—lg gin®—1g &y == P{m+n) B{n, m)

It

L{m + n) Bi{m, )

]

using the resuits of Problem 4.11, Hence the requu-ed rasult follows,
The above argiment can be maide rigorous by using a Umiting procedure,
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413. Evaluate () _[' A1 - zpdz, (8) f 2o o | WE R

I'e5) {4 .’3! 1
(o} _j: il —wpdz = BG4 = -"‘-.}(Q}-L‘! = T = 280

{b) Letting = = Zv, the integral becomes

1 g _ -t b a2 TR _ B4v2
I [ et = E S s-arde = WEBGY = i T

() lettlng 2 >=a%x or y = aV'E, the integral becomes
1 6 .
522 iRl — x)i2dy = %8(512.3/2] - e rERNE _ zat
)

- 2r{4d) 32
nfe
P tee = Ilm T{r) i n
414. Show that j; sin 8 coat=—t @ df 2T(m + 1) m, x> 0.

Thiy follaws at once from Problema 4.11 and 412,

=/ w'E P
415. Evaluate (o) ‘5; sinfo dd, (b) j; gint G coz®@ de, (o) J; coa* § di.
{o} Let Zm—~1=6 2n—-1=90, L& m =97t n =12, in Problem 4.14.

Then the required integml has the value L '”22:_:;{; 2 . 212

1= = rs/)rE _ 8.
{5) Letting Zm—1=4, 2n—1 =5, the required integral has the value oA 915"

r
) Jf costade = 2 J: ® oulé s, Thus, Jetting Sm—1=0, 2n—1=4 in Problem 414, the
[}

valu i ZTQETEE) _ 37

B 13} 8
wrd LTI
416. Prove J: gsinrp df = I cos* g dé = (a}l g Z T (‘.ﬂ = 1f p i8 an even posi-
2448

tive integer, (b} (p 1) if p is an odd positive integer.

1-83«6--

From Problem 4.14 with 8m—1=p, éx—1= 0, we have

W Tije+ 1IN
j; sin?é ds = F-——__Bl‘ﬂ(p-?-Z}]

(a) If p=_2r, the integral squals
Fr+ Ty  r—§ir— g+ (-1

ZT{r+ 1) - 2p(r— 1) -}
@ D@r—%ly _ 1:3:6-{@r—-1) s
S TorEr—2) 8 B 2+4'62r 2
0y If p=2r+1, the mtegral equals
Pt PR rr—U)ecleVE . 2:406-2
Zrir+ i 2+ fr— P Ve T 180584 1)

"3 il . .
In both cases J; slnr e de = j; cosP ¢ g, e Been by letting & = -’;—— .
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-

;-r;‘! wra [ . d
] , " 3 r] , 3 g,
4.17. Evaluate (a) J.ces ¢do, (&) J; sin G cos® s dg, (c) j; sin® #

ta} From Problem 4.16 the intepral equals 7o, 6% = %‘-'2- [compare Problem 4.15{(a)].

(6) The integral equals
0

E 2F ] Tid
- -]
f sin? (1 — sinZa) de = sinde do = fo sinfody = o _ 24
1 [}

1-3 1-3-+5 15

The method of Problem 4.15(b).can alsc be used.

8.5
. . . 1‘3'5"7? 35:1'
R - r—— — = —
(¢} The given integral equals 4J° ginfe ds = 4(2-#-612) Il

- -~
4.18. Given fo 13:_ Idx = si:pvr’ show that T(p)r{l—p) = sin?prr where O <p <1.

Letting 'f% =y or & = I_E? the given integral becomes
1 ' .
J; woil-w-rdy = Blp.l—p) = I(p)T(l—p)

and the result follows.

419, Evaluate j; i‘%’f'

X 1 ("™ g-oH B =2
Let 3t =2, Then the integral becomes - dx = = —— by Problem
418 with p= 3. 4 Ju l+=x 4 sln (z/4} 4
The result can aiso be obiained by leiting ¥2 = tan o
z ] 161r
420. Showthat | 2{B=Fds = 2o
4 9\/§
Letbing 23 = 8y or x = 2433, the integrsl becomas
1 . 1
f Bytit . {33(1_9) Cfymsdy = Ef p A —yindy = EBQ-H
o 3.1 3
_ sr@ity) _ g _ 8 = i
B R i Ao Bl

4.21. Prove the duplication formula: 2¥-'T(p)ip+4} = V= I(2p)

g Y. 7))
Let I = f gin?Padz, J = j sindr 2x dx.
[ 0

rip+ v

Then 1= 4Be+id = 5oy

Letting 2x = u, we find

1 T wil
JS = EI sinfPudy = j sintfydu = !
(] o

But 7

1l

E.15 wiE
I {2 sin z coszyerds =< 20 f 8in? g cos?F 1 dx
|13 ]

\
- tnip 4 43
I VT

]

2°-1B(p+ 4, p+ 3
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Then since 1=/,
Tp+4vr _ 28-1{rp+ 4t
2prim) T 2p {2y}

and the required result follows.

“cosx _ w
422. Prove that _j: -;;-—-dz = IT@)cos(plD)’ 0<p<l
Webave — = r—lta-)v‘:nrle‘“dm Then

'W;_W ;.._1_. - wp—l —xu -_;.L..J!m_;ﬂ’.p_d b
£ =Ei‘d.'.: F(FJJ; j; uP—1g—¥ cog x dudz mh TTe™ L

where we have reverséd the order of integration and used the fu¢t that
-[; e~ ppaz dr = u_z!éﬁ (8)

Letting u? = v in the laat intagwal in (1), we hava by Problem 4.18

R 4 du = 1 ‘v:v—n:nd _ r _ T ®
J: T+u™ = §J; T¥0 Y = Tanm+1m/2 ~ 2cospuiZ

Substitution of (8) in (1} yields the required result.

STIRLING'S FORMULA
i 428, Show that for large », #!={/2mu*e-" approximately.

We have - . ©
Tn+l) = j;z"a“‘dx = J;e"'""dx {1}

The function % lnx — o« hes a reietive maximum for = n, as ia easily shown by elementary
caleulus. Thia tands ug to the substitution 2 = n-+ g Then (Z) becomes

e+l = ‘..,,J uﬂln(nfﬂl—sdy = e..,,J" grinn +nintlbum —u #
- —a

L
#F g—N j- eMintltyin) -'dl."
—hR

l.!p t now the analysis is rigorous. The formal procedures which follow can be mpde rigoreus
by suitable limiting procesaes, but the proofs become involved and we shall omit them.

In {2) uae the reault

“In(l+zt = = -5+

with £ =y/n. Then on letting ¥ = V®v, we find

:] x3 )
x ?—cc- (.’]

. = n
Tir+l) = n'{e—"f a=V2m 4+ Psan" - dy = mrernyy e-dtit + virava— ... o )
- -E

When n is large a close approximation s )
L]
Fint1) = pre-s ﬁf e~ gy = Vimanre {(5)

It is of inkerest that from (4) we can obtain the entire asymplotic series for the ea func-
tion {tesult 4. on puge 6B). See Problem 4.35, gamma func
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SPECIAL PUNCTIONS AND ASYMPTOTIC EXPANSIONS
4.24, (a) Prove that if 2> 0, p> 0, then

ne_“
L = J; Fd’h’. = Suz} + Rax)

where
]I pip+1 o +1 +7n
Sfz) = e {;E?_ Lo 2B e DR lm" —l}
g -
Riz) = (CApripp+1)fotn) f o du
bl Sl
(8) Prove that ~lim 2* f Lo ~ Su@)| = lim 2R, (o)
{¢) Explain the sighificance of the reauits in (d).
{e¢) Integrating by parts, we have
LT - *® g -
fp = i G—t;;-d:! = s_l:;- —pj; -:P—;;d% = Pzﬂ .y .
Simitarly L., = S~ (p3+ 1), s that
I, = ‘a:;- - p{ﬁ,;:;—(v-i-l}lpn} = -";—:- - -2%;; + plp+ Dpey

By continuing in this mannar the required resuit follows.
bl -
B |R2) = plp+1)--- (p+rt)_£ ;,—“_;ma'n & plpt 1) P'rﬂ}J Wdu
ple Ll --{p+u)
= EEEE

since f e~vdn = f e=ddu = 1, Thus
x o

w4
lim s*R,aH & lim PRFLrA o,

r—+x I=w ze¥
{e) Beeause of the results in (B), we can say that
J'"e" - emxdl Bt
r M € LI L5 B A

i.e. the series on the right is the asyruptotic expansion of the function on the left.

4.25. Show that sy 1 1+3 1-3-5
e . ce
erf(s) ~ 1‘7&‘2‘5*@‘ T +)

We have erf (2)

It

—_— e~vdy = j wHEpmu di
VT o V=

= 1 - —-f w- MV emu gy

Now from the resuit (1) of Problem 4.24 we have, on Jetting p = 1/2 and replacing & by #?%,

o
tendy ~ ges(L_ 1 41:3_1:3:8,
J; s e du o r (..-: 2x3+22ﬂ T +

which gives the required reault.

3
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Supplementary Problems

THE GAMMA FUNCTION

RG (@) r{3/2)
@ srayree O Trore

¢26. Evaluste () T(1/2) 1(3/2) 1'(B/2).
L = r
. 1 He-tdx, {b zf o=, 2o~ g,
427 Evaluate ({a) j; ¢ x, ) J; a x, () J; xle 2

428. PFind [(a) f*s"':'dx. {b) J.ﬂ?frz-e"f;da:, {e) f“:ﬁs""’ dy.
o ¢ .

425, Showthat [~ 4 a1 \F 4> 0
ow tha = 4i=, )
. F s

I 132
430, Provethat {a) Yn) = f In —) de, >0 . .
a ]
H q N
1 I'(g +1}

) .Ir; z*’(ln;) dz = i;&-l)_":i' p> -1, g» -1

1 1 i

43t. Evaluvate ({a) f {In x)tdz, (b) f (# Inz)3de, (6) I- ‘\fa In (M=) dx.
L[] (L] Lhd )

432, Evaluate (o} P{(—N3, (&) I(-1/3).

433, Prove thas Hm Mg = « where m=0,1,2,8,....

I —m

(=Lm 2m /5

434. Prove that it m is & pogitive integer, I'(~m+ 1) = i-:m

435, Prove that {1} = J; e~ Inx dx is a negative number. (It is equal to —y, where y = 0.57721G, .,
is colled Ewulor's coneient)

436. Oblzin the miscellancous result 4. on page 68 from the result (4) of Problem 4.23.
[Hing: Expand VIR~ - in 4 power series and replace the lower limit of the integral by —w=.}

THE BETA FUNCTIQON
437.  Evaluste (o} B(8,5), (b) B{3/2,2), (o) B(L/3,2/8)

1 ] T
438. Pind (g} f (1 -2 dz, (B j VL= wiz de, (2} f (4 = 2232 d,
L5 ] - [1]

~ 4 , 3 dx
459 Evaluate {a} J W4 —u) 2 dy,  (B) f —_———
* b VBr—a®
¢ dy {r{1/0)}2
4.40. F that = .
TOVE - J; m ‘e ‘!,2_?

'smfs o
441. Evaluste e} J sinfgcostods, (&) f cost ¢ de.
° 0

L] w2
442, Evalusic (o) f sinSe s,  (b) f co3 9 sinZa dv.
(1] [}
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" " -/
448.  Prove that fu)-L Vien ads = #AV/2 (B J: tan? o di = %—m%:, t<p<l.

444 Prove that (a,)_|" 2ds _ 7 (a)f My x
a -]

T+# " 3 1+v a3
w o 2w
de = here a, b > 0.
445, Prove that .f., 2t T B - 8V8 s » v

Y 2x , ,
= e— : 4.46,
445. Prove that inmdz w4 [Hnl: Dllﬂerenﬁate with respest to b in Problem ]

S8PECIAL FUNCTIONS AND ASYMPTOTIC EXPANEIONS

_ 2 __a° = _ e
441,  Show that eri{x)—ﬁ(x 3'1!+5'21 ,!.M-l- )

. . =3 .2t _ 81, .
148, Obtain the asymptiotic expansion El(z]*-—;—(l-—-;-i—;--;i-!- )

449, Show that (o) Si(—3) = —Si(z), (b} S¥(=)=r/2,

458, Obtain the asymptotic expansions

o) ~ I Mnzfl 3t B! N cosmi Bl 41
'S‘-Im} F T (w w‘+m’ ) z (1 x3+=s‘ )
. )
Cile) ~ E‘.’.?E(; ia+___...)_“_.";£(;_§+§_...)
sing ., w -
458 Showthstf s = grreeg, 0< <L,

[ ] m
452,  Show that _f sinslds = f cosatds = LafZ.
(] S 2y 2

t5. Provethat lim —= ~ ¢

e



